1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <acpi/video.h> 28 #include <linux/i2c.h> 29 #include <linux/input.h> 30 #include <linux/intel-iommu.h> 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/dma-resv.h> 34 #include <linux/slab.h> 35 36 #include <drm/drm_atomic.h> 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_atomic_uapi.h> 39 #include <drm/drm_damage_helper.h> 40 #include <drm/drm_dp_helper.h> 41 #include <drm/drm_edid.h> 42 #include <drm/drm_fourcc.h> 43 #include <drm/drm_plane_helper.h> 44 #include <drm/drm_probe_helper.h> 45 #include <drm/drm_rect.h> 46 47 #include "display/intel_audio.h" 48 #include "display/intel_crt.h" 49 #include "display/intel_ddi.h" 50 #include "display/intel_display_debugfs.h" 51 #include "display/intel_dp.h" 52 #include "display/intel_dp_mst.h" 53 #include "display/intel_dpll.h" 54 #include "display/intel_dpll_mgr.h" 55 #include "display/intel_drrs.h" 56 #include "display/intel_dsi.h" 57 #include "display/intel_dvo.h" 58 #include "display/intel_fb.h" 59 #include "display/intel_gmbus.h" 60 #include "display/intel_hdmi.h" 61 #include "display/intel_lvds.h" 62 #include "display/intel_sdvo.h" 63 #include "display/intel_snps_phy.h" 64 #include "display/intel_tv.h" 65 #include "display/intel_vdsc.h" 66 #include "display/intel_vrr.h" 67 68 #include "gem/i915_gem_lmem.h" 69 #include "gem/i915_gem_object.h" 70 71 #include "gt/gen8_ppgtt.h" 72 73 #include "pxp/intel_pxp.h" 74 75 #include "g4x_dp.h" 76 #include "g4x_hdmi.h" 77 #include "i915_drv.h" 78 #include "intel_acpi.h" 79 #include "intel_atomic.h" 80 #include "intel_atomic_plane.h" 81 #include "intel_bw.h" 82 #include "intel_cdclk.h" 83 #include "intel_color.h" 84 #include "intel_crtc.h" 85 #include "intel_de.h" 86 #include "intel_display_types.h" 87 #include "intel_dmc.h" 88 #include "intel_dp_link_training.h" 89 #include "intel_dpt.h" 90 #include "intel_fbc.h" 91 #include "intel_fbdev.h" 92 #include "intel_fdi.h" 93 #include "intel_fifo_underrun.h" 94 #include "intel_frontbuffer.h" 95 #include "intel_hdcp.h" 96 #include "intel_hotplug.h" 97 #include "intel_overlay.h" 98 #include "intel_panel.h" 99 #include "intel_pcode.h" 100 #include "intel_pipe_crc.h" 101 #include "intel_plane_initial.h" 102 #include "intel_pm.h" 103 #include "intel_pps.h" 104 #include "intel_psr.h" 105 #include "intel_quirks.h" 106 #include "intel_sbi.h" 107 #include "intel_sprite.h" 108 #include "intel_tc.h" 109 #include "intel_vga.h" 110 #include "i9xx_plane.h" 111 #include "skl_scaler.h" 112 #include "skl_universal_plane.h" 113 #include "vlv_sideband.h" 114 115 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 116 struct intel_crtc_state *pipe_config); 117 static void ilk_pch_clock_get(struct intel_crtc *crtc, 118 struct intel_crtc_state *pipe_config); 119 120 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state); 121 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 122 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 123 const struct intel_link_m_n *m_n, 124 const struct intel_link_m_n *m2_n2); 125 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 126 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state); 127 static void hsw_set_transconf(const struct intel_crtc_state *crtc_state); 128 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 129 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); 130 static void intel_modeset_setup_hw_state(struct drm_device *dev, 131 struct drm_modeset_acquire_ctx *ctx); 132 133 /** 134 * intel_update_watermarks - update FIFO watermark values based on current modes 135 * @dev_priv: i915 device 136 * 137 * Calculate watermark values for the various WM regs based on current mode 138 * and plane configuration. 139 * 140 * There are several cases to deal with here: 141 * - normal (i.e. non-self-refresh) 142 * - self-refresh (SR) mode 143 * - lines are large relative to FIFO size (buffer can hold up to 2) 144 * - lines are small relative to FIFO size (buffer can hold more than 2 145 * lines), so need to account for TLB latency 146 * 147 * The normal calculation is: 148 * watermark = dotclock * bytes per pixel * latency 149 * where latency is platform & configuration dependent (we assume pessimal 150 * values here). 151 * 152 * The SR calculation is: 153 * watermark = (trunc(latency/line time)+1) * surface width * 154 * bytes per pixel 155 * where 156 * line time = htotal / dotclock 157 * surface width = hdisplay for normal plane and 64 for cursor 158 * and latency is assumed to be high, as above. 159 * 160 * The final value programmed to the register should always be rounded up, 161 * and include an extra 2 entries to account for clock crossings. 162 * 163 * We don't use the sprite, so we can ignore that. And on Crestline we have 164 * to set the non-SR watermarks to 8. 165 */ 166 static void intel_update_watermarks(struct drm_i915_private *dev_priv) 167 { 168 if (dev_priv->wm_disp->update_wm) 169 dev_priv->wm_disp->update_wm(dev_priv); 170 } 171 172 static int intel_compute_pipe_wm(struct intel_atomic_state *state, 173 struct intel_crtc *crtc) 174 { 175 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 176 if (dev_priv->wm_disp->compute_pipe_wm) 177 return dev_priv->wm_disp->compute_pipe_wm(state, crtc); 178 return 0; 179 } 180 181 static int intel_compute_intermediate_wm(struct intel_atomic_state *state, 182 struct intel_crtc *crtc) 183 { 184 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 185 if (!dev_priv->wm_disp->compute_intermediate_wm) 186 return 0; 187 if (drm_WARN_ON(&dev_priv->drm, 188 !dev_priv->wm_disp->compute_pipe_wm)) 189 return 0; 190 return dev_priv->wm_disp->compute_intermediate_wm(state, crtc); 191 } 192 193 static bool intel_initial_watermarks(struct intel_atomic_state *state, 194 struct intel_crtc *crtc) 195 { 196 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 197 if (dev_priv->wm_disp->initial_watermarks) { 198 dev_priv->wm_disp->initial_watermarks(state, crtc); 199 return true; 200 } 201 return false; 202 } 203 204 static void intel_atomic_update_watermarks(struct intel_atomic_state *state, 205 struct intel_crtc *crtc) 206 { 207 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 208 if (dev_priv->wm_disp->atomic_update_watermarks) 209 dev_priv->wm_disp->atomic_update_watermarks(state, crtc); 210 } 211 212 static void intel_optimize_watermarks(struct intel_atomic_state *state, 213 struct intel_crtc *crtc) 214 { 215 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 216 if (dev_priv->wm_disp->optimize_watermarks) 217 dev_priv->wm_disp->optimize_watermarks(state, crtc); 218 } 219 220 static int intel_compute_global_watermarks(struct intel_atomic_state *state) 221 { 222 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 223 if (dev_priv->wm_disp->compute_global_watermarks) 224 return dev_priv->wm_disp->compute_global_watermarks(state); 225 return 0; 226 } 227 228 /* returns HPLL frequency in kHz */ 229 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 230 { 231 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 232 233 /* Obtain SKU information */ 234 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 235 CCK_FUSE_HPLL_FREQ_MASK; 236 237 return vco_freq[hpll_freq] * 1000; 238 } 239 240 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 241 const char *name, u32 reg, int ref_freq) 242 { 243 u32 val; 244 int divider; 245 246 val = vlv_cck_read(dev_priv, reg); 247 divider = val & CCK_FREQUENCY_VALUES; 248 249 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != 250 (divider << CCK_FREQUENCY_STATUS_SHIFT), 251 "%s change in progress\n", name); 252 253 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 254 } 255 256 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 257 const char *name, u32 reg) 258 { 259 int hpll; 260 261 vlv_cck_get(dev_priv); 262 263 if (dev_priv->hpll_freq == 0) 264 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 265 266 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 267 268 vlv_cck_put(dev_priv); 269 270 return hpll; 271 } 272 273 static void intel_update_czclk(struct drm_i915_private *dev_priv) 274 { 275 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 276 return; 277 278 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 279 CCK_CZ_CLOCK_CONTROL); 280 281 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n", 282 dev_priv->czclk_freq); 283 } 284 285 static bool is_hdr_mode(const struct intel_crtc_state *crtc_state) 286 { 287 return (crtc_state->active_planes & 288 ~(icl_hdr_plane_mask() | BIT(PLANE_CURSOR))) == 0; 289 } 290 291 /* WA Display #0827: Gen9:all */ 292 static void 293 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) 294 { 295 if (enable) 296 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 297 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); 298 else 299 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 300 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 301 } 302 303 /* Wa_2006604312:icl,ehl */ 304 static void 305 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 306 bool enable) 307 { 308 if (enable) 309 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 310 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 311 else 312 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 313 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 314 } 315 316 /* Wa_1604331009:icl,jsl,ehl */ 317 static void 318 icl_wa_cursorclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 319 bool enable) 320 { 321 intel_de_rmw(dev_priv, CLKGATE_DIS_PSL(pipe), CURSOR_GATING_DIS, 322 enable ? CURSOR_GATING_DIS : 0); 323 } 324 325 static bool 326 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) 327 { 328 return crtc_state->master_transcoder != INVALID_TRANSCODER; 329 } 330 331 static bool 332 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state) 333 { 334 return crtc_state->sync_mode_slaves_mask != 0; 335 } 336 337 bool 338 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 339 { 340 return is_trans_port_sync_master(crtc_state) || 341 is_trans_port_sync_slave(crtc_state); 342 } 343 344 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 345 enum pipe pipe) 346 { 347 i915_reg_t reg = PIPEDSL(pipe); 348 u32 line1, line2; 349 u32 line_mask; 350 351 if (DISPLAY_VER(dev_priv) == 2) 352 line_mask = DSL_LINEMASK_GEN2; 353 else 354 line_mask = DSL_LINEMASK_GEN3; 355 356 line1 = intel_de_read(dev_priv, reg) & line_mask; 357 msleep(5); 358 line2 = intel_de_read(dev_priv, reg) & line_mask; 359 360 return line1 != line2; 361 } 362 363 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 364 { 365 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 366 enum pipe pipe = crtc->pipe; 367 368 /* Wait for the display line to settle/start moving */ 369 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 370 drm_err(&dev_priv->drm, 371 "pipe %c scanline %s wait timed out\n", 372 pipe_name(pipe), onoff(state)); 373 } 374 375 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 376 { 377 wait_for_pipe_scanline_moving(crtc, false); 378 } 379 380 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 381 { 382 wait_for_pipe_scanline_moving(crtc, true); 383 } 384 385 static void 386 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 387 { 388 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 389 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 390 391 if (DISPLAY_VER(dev_priv) >= 4) { 392 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 393 i915_reg_t reg = PIPECONF(cpu_transcoder); 394 395 /* Wait for the Pipe State to go off */ 396 if (intel_de_wait_for_clear(dev_priv, reg, 397 I965_PIPECONF_ACTIVE, 100)) 398 drm_WARN(&dev_priv->drm, 1, 399 "pipe_off wait timed out\n"); 400 } else { 401 intel_wait_for_pipe_scanline_stopped(crtc); 402 } 403 } 404 405 void assert_transcoder(struct drm_i915_private *dev_priv, 406 enum transcoder cpu_transcoder, bool state) 407 { 408 bool cur_state; 409 enum intel_display_power_domain power_domain; 410 intel_wakeref_t wakeref; 411 412 /* we keep both pipes enabled on 830 */ 413 if (IS_I830(dev_priv)) 414 state = true; 415 416 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 417 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 418 if (wakeref) { 419 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 420 cur_state = !!(val & PIPECONF_ENABLE); 421 422 intel_display_power_put(dev_priv, power_domain, wakeref); 423 } else { 424 cur_state = false; 425 } 426 427 I915_STATE_WARN(cur_state != state, 428 "transcoder %s assertion failure (expected %s, current %s)\n", 429 transcoder_name(cpu_transcoder), 430 onoff(state), onoff(cur_state)); 431 } 432 433 static void assert_plane(struct intel_plane *plane, bool state) 434 { 435 enum pipe pipe; 436 bool cur_state; 437 438 cur_state = plane->get_hw_state(plane, &pipe); 439 440 I915_STATE_WARN(cur_state != state, 441 "%s assertion failure (expected %s, current %s)\n", 442 plane->base.name, onoff(state), onoff(cur_state)); 443 } 444 445 #define assert_plane_enabled(p) assert_plane(p, true) 446 #define assert_plane_disabled(p) assert_plane(p, false) 447 448 static void assert_planes_disabled(struct intel_crtc *crtc) 449 { 450 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 451 struct intel_plane *plane; 452 453 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 454 assert_plane_disabled(plane); 455 } 456 457 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 458 enum pipe pipe) 459 { 460 u32 val; 461 bool enabled; 462 463 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe)); 464 enabled = !!(val & TRANS_ENABLE); 465 I915_STATE_WARN(enabled, 466 "transcoder assertion failed, should be off on pipe %c but is still active\n", 467 pipe_name(pipe)); 468 } 469 470 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 471 enum pipe pipe, enum port port, 472 i915_reg_t dp_reg) 473 { 474 enum pipe port_pipe; 475 bool state; 476 477 state = g4x_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 478 479 I915_STATE_WARN(state && port_pipe == pipe, 480 "PCH DP %c enabled on transcoder %c, should be disabled\n", 481 port_name(port), pipe_name(pipe)); 482 483 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 484 "IBX PCH DP %c still using transcoder B\n", 485 port_name(port)); 486 } 487 488 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 489 enum pipe pipe, enum port port, 490 i915_reg_t hdmi_reg) 491 { 492 enum pipe port_pipe; 493 bool state; 494 495 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 496 497 I915_STATE_WARN(state && port_pipe == pipe, 498 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 499 port_name(port), pipe_name(pipe)); 500 501 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 502 "IBX PCH HDMI %c still using transcoder B\n", 503 port_name(port)); 504 } 505 506 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 507 enum pipe pipe) 508 { 509 enum pipe port_pipe; 510 511 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 512 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 513 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 514 515 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 516 port_pipe == pipe, 517 "PCH VGA enabled on transcoder %c, should be disabled\n", 518 pipe_name(pipe)); 519 520 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 521 port_pipe == pipe, 522 "PCH LVDS enabled on transcoder %c, should be disabled\n", 523 pipe_name(pipe)); 524 525 /* PCH SDVOB multiplex with HDMIB */ 526 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 527 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 528 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 529 } 530 531 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 532 struct intel_digital_port *dig_port, 533 unsigned int expected_mask) 534 { 535 u32 port_mask; 536 i915_reg_t dpll_reg; 537 538 switch (dig_port->base.port) { 539 case PORT_B: 540 port_mask = DPLL_PORTB_READY_MASK; 541 dpll_reg = DPLL(0); 542 break; 543 case PORT_C: 544 port_mask = DPLL_PORTC_READY_MASK; 545 dpll_reg = DPLL(0); 546 expected_mask <<= 4; 547 break; 548 case PORT_D: 549 port_mask = DPLL_PORTD_READY_MASK; 550 dpll_reg = DPIO_PHY_STATUS; 551 break; 552 default: 553 BUG(); 554 } 555 556 if (intel_de_wait_for_register(dev_priv, dpll_reg, 557 port_mask, expected_mask, 1000)) 558 drm_WARN(&dev_priv->drm, 1, 559 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", 560 dig_port->base.base.base.id, dig_port->base.base.name, 561 intel_de_read(dev_priv, dpll_reg) & port_mask, 562 expected_mask); 563 } 564 565 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 566 { 567 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 568 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 569 enum pipe pipe = crtc->pipe; 570 i915_reg_t reg; 571 u32 val, pipeconf_val; 572 573 /* Make sure PCH DPLL is enabled */ 574 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 575 576 /* FDI must be feeding us bits for PCH ports */ 577 assert_fdi_tx_enabled(dev_priv, pipe); 578 assert_fdi_rx_enabled(dev_priv, pipe); 579 580 if (HAS_PCH_CPT(dev_priv)) { 581 reg = TRANS_CHICKEN2(pipe); 582 val = intel_de_read(dev_priv, reg); 583 /* 584 * Workaround: Set the timing override bit 585 * before enabling the pch transcoder. 586 */ 587 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 588 /* Configure frame start delay to match the CPU */ 589 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 590 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 591 intel_de_write(dev_priv, reg, val); 592 } 593 594 reg = PCH_TRANSCONF(pipe); 595 val = intel_de_read(dev_priv, reg); 596 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe)); 597 598 if (HAS_PCH_IBX(dev_priv)) { 599 /* Configure frame start delay to match the CPU */ 600 val &= ~TRANS_FRAME_START_DELAY_MASK; 601 val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 602 603 /* 604 * Make the BPC in transcoder be consistent with 605 * that in pipeconf reg. For HDMI we must use 8bpc 606 * here for both 8bpc and 12bpc. 607 */ 608 val &= ~PIPECONF_BPC_MASK; 609 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 610 val |= PIPECONF_8BPC; 611 else 612 val |= pipeconf_val & PIPECONF_BPC_MASK; 613 } 614 615 val &= ~TRANS_INTERLACE_MASK; 616 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 617 if (HAS_PCH_IBX(dev_priv) && 618 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 619 val |= TRANS_LEGACY_INTERLACED_ILK; 620 else 621 val |= TRANS_INTERLACED; 622 } else { 623 val |= TRANS_PROGRESSIVE; 624 } 625 626 intel_de_write(dev_priv, reg, val | TRANS_ENABLE); 627 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 628 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n", 629 pipe_name(pipe)); 630 } 631 632 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 633 enum transcoder cpu_transcoder) 634 { 635 u32 val, pipeconf_val; 636 637 /* FDI must be feeding us bits for PCH ports */ 638 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 639 assert_fdi_rx_enabled(dev_priv, PIPE_A); 640 641 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 642 /* Workaround: set timing override bit. */ 643 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 644 /* Configure frame start delay to match the CPU */ 645 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 646 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 647 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 648 649 val = TRANS_ENABLE; 650 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 651 652 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 653 PIPECONF_INTERLACED_ILK) 654 val |= TRANS_INTERLACED; 655 else 656 val |= TRANS_PROGRESSIVE; 657 658 intel_de_write(dev_priv, LPT_TRANSCONF, val); 659 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 660 TRANS_STATE_ENABLE, 100)) 661 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n"); 662 } 663 664 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv, 665 enum pipe pipe) 666 { 667 i915_reg_t reg; 668 u32 val; 669 670 /* FDI relies on the transcoder */ 671 assert_fdi_tx_disabled(dev_priv, pipe); 672 assert_fdi_rx_disabled(dev_priv, pipe); 673 674 /* Ports must be off as well */ 675 assert_pch_ports_disabled(dev_priv, pipe); 676 677 reg = PCH_TRANSCONF(pipe); 678 val = intel_de_read(dev_priv, reg); 679 val &= ~TRANS_ENABLE; 680 intel_de_write(dev_priv, reg, val); 681 /* wait for PCH transcoder off, transcoder state */ 682 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 683 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n", 684 pipe_name(pipe)); 685 686 if (HAS_PCH_CPT(dev_priv)) { 687 /* Workaround: Clear the timing override chicken bit again. */ 688 reg = TRANS_CHICKEN2(pipe); 689 val = intel_de_read(dev_priv, reg); 690 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 691 intel_de_write(dev_priv, reg, val); 692 } 693 } 694 695 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 696 { 697 u32 val; 698 699 val = intel_de_read(dev_priv, LPT_TRANSCONF); 700 val &= ~TRANS_ENABLE; 701 intel_de_write(dev_priv, LPT_TRANSCONF, val); 702 /* wait for PCH transcoder off, transcoder state */ 703 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 704 TRANS_STATE_ENABLE, 50)) 705 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n"); 706 707 /* Workaround: clear timing override bit. */ 708 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 709 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 710 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 711 } 712 713 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 714 { 715 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 716 717 if (HAS_PCH_LPT(dev_priv)) 718 return PIPE_A; 719 else 720 return crtc->pipe; 721 } 722 723 void intel_enable_transcoder(const struct intel_crtc_state *new_crtc_state) 724 { 725 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 726 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 727 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 728 enum pipe pipe = crtc->pipe; 729 i915_reg_t reg; 730 u32 val; 731 732 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe)); 733 734 assert_planes_disabled(crtc); 735 736 /* 737 * A pipe without a PLL won't actually be able to drive bits from 738 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 739 * need the check. 740 */ 741 if (HAS_GMCH(dev_priv)) { 742 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 743 assert_dsi_pll_enabled(dev_priv); 744 else 745 assert_pll_enabled(dev_priv, pipe); 746 } else { 747 if (new_crtc_state->has_pch_encoder) { 748 /* if driving the PCH, we need FDI enabled */ 749 assert_fdi_rx_pll_enabled(dev_priv, 750 intel_crtc_pch_transcoder(crtc)); 751 assert_fdi_tx_pll_enabled(dev_priv, 752 (enum pipe) cpu_transcoder); 753 } 754 /* FIXME: assert CPU port conditions for SNB+ */ 755 } 756 757 /* Wa_22012358565:adl-p */ 758 if (DISPLAY_VER(dev_priv) == 13) 759 intel_de_rmw(dev_priv, PIPE_ARB_CTL(pipe), 760 0, PIPE_ARB_USE_PROG_SLOTS); 761 762 reg = PIPECONF(cpu_transcoder); 763 val = intel_de_read(dev_priv, reg); 764 if (val & PIPECONF_ENABLE) { 765 /* we keep both pipes enabled on 830 */ 766 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv)); 767 return; 768 } 769 770 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE); 771 intel_de_posting_read(dev_priv, reg); 772 773 /* 774 * Until the pipe starts PIPEDSL reads will return a stale value, 775 * which causes an apparent vblank timestamp jump when PIPEDSL 776 * resets to its proper value. That also messes up the frame count 777 * when it's derived from the timestamps. So let's wait for the 778 * pipe to start properly before we call drm_crtc_vblank_on() 779 */ 780 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 781 intel_wait_for_pipe_scanline_moving(crtc); 782 } 783 784 void intel_disable_transcoder(const struct intel_crtc_state *old_crtc_state) 785 { 786 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 787 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 788 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 789 enum pipe pipe = crtc->pipe; 790 i915_reg_t reg; 791 u32 val; 792 793 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe)); 794 795 /* 796 * Make sure planes won't keep trying to pump pixels to us, 797 * or we might hang the display. 798 */ 799 assert_planes_disabled(crtc); 800 801 reg = PIPECONF(cpu_transcoder); 802 val = intel_de_read(dev_priv, reg); 803 if ((val & PIPECONF_ENABLE) == 0) 804 return; 805 806 /* 807 * Double wide has implications for planes 808 * so best keep it disabled when not needed. 809 */ 810 if (old_crtc_state->double_wide) 811 val &= ~PIPECONF_DOUBLE_WIDE; 812 813 /* Don't disable pipe or pipe PLLs if needed */ 814 if (!IS_I830(dev_priv)) 815 val &= ~PIPECONF_ENABLE; 816 817 if (DISPLAY_VER(dev_priv) >= 12) 818 intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), 819 FECSTALL_DIS_DPTSTREAM_DPTTG, 0); 820 821 intel_de_write(dev_priv, reg, val); 822 if ((val & PIPECONF_ENABLE) == 0) 823 intel_wait_for_pipe_off(old_crtc_state); 824 } 825 826 bool 827 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info, 828 u64 modifier) 829 { 830 return info->is_yuv && 831 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2); 832 } 833 834 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 835 { 836 unsigned int size = 0; 837 int i; 838 839 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 840 size += rot_info->plane[i].dst_stride * rot_info->plane[i].width; 841 842 return size; 843 } 844 845 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 846 { 847 unsigned int size = 0; 848 int i; 849 850 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) { 851 if (rem_info->plane_alignment) 852 size = ALIGN(size, rem_info->plane_alignment); 853 size += rem_info->plane[i].dst_stride * rem_info->plane[i].height; 854 } 855 856 return size; 857 } 858 859 bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 860 { 861 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 862 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 863 864 return DISPLAY_VER(dev_priv) < 4 || 865 (plane->has_fbc && 866 plane_state->view.gtt.type == I915_GGTT_VIEW_NORMAL); 867 } 868 869 /* 870 * Convert the x/y offsets into a linear offset. 871 * Only valid with 0/180 degree rotation, which is fine since linear 872 * offset is only used with linear buffers on pre-hsw and tiled buffers 873 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 874 */ 875 u32 intel_fb_xy_to_linear(int x, int y, 876 const struct intel_plane_state *state, 877 int color_plane) 878 { 879 const struct drm_framebuffer *fb = state->hw.fb; 880 unsigned int cpp = fb->format->cpp[color_plane]; 881 unsigned int pitch = state->view.color_plane[color_plane].stride; 882 883 return y * pitch + x * cpp; 884 } 885 886 /* 887 * Add the x/y offsets derived from fb->offsets[] to the user 888 * specified plane src x/y offsets. The resulting x/y offsets 889 * specify the start of scanout from the beginning of the gtt mapping. 890 */ 891 void intel_add_fb_offsets(int *x, int *y, 892 const struct intel_plane_state *state, 893 int color_plane) 894 895 { 896 *x += state->view.color_plane[color_plane].x; 897 *y += state->view.color_plane[color_plane].y; 898 } 899 900 /* 901 * From the Sky Lake PRM: 902 * "The Color Control Surface (CCS) contains the compression status of 903 * the cache-line pairs. The compression state of the cache-line pair 904 * is specified by 2 bits in the CCS. Each CCS cache-line represents 905 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 906 * cache-line-pairs. CCS is always Y tiled." 907 * 908 * Since cache line pairs refers to horizontally adjacent cache lines, 909 * each cache line in the CCS corresponds to an area of 32x16 cache 910 * lines on the main surface. Since each pixel is 4 bytes, this gives 911 * us a ratio of one byte in the CCS for each 8x16 pixels in the 912 * main surface. 913 */ 914 static const struct drm_format_info skl_ccs_formats[] = { 915 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 916 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 917 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 918 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 919 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 920 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 921 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 922 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 923 }; 924 925 /* 926 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the 927 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles 928 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of 929 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in 930 * the main surface. 931 */ 932 static const struct drm_format_info gen12_ccs_formats[] = { 933 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 934 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 935 .hsub = 1, .vsub = 1, }, 936 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 937 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 938 .hsub = 1, .vsub = 1, }, 939 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 940 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 941 .hsub = 1, .vsub = 1, .has_alpha = true }, 942 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 943 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 944 .hsub = 1, .vsub = 1, .has_alpha = true }, 945 { .format = DRM_FORMAT_YUYV, .num_planes = 2, 946 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 947 .hsub = 2, .vsub = 1, .is_yuv = true }, 948 { .format = DRM_FORMAT_YVYU, .num_planes = 2, 949 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 950 .hsub = 2, .vsub = 1, .is_yuv = true }, 951 { .format = DRM_FORMAT_UYVY, .num_planes = 2, 952 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 953 .hsub = 2, .vsub = 1, .is_yuv = true }, 954 { .format = DRM_FORMAT_VYUY, .num_planes = 2, 955 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 956 .hsub = 2, .vsub = 1, .is_yuv = true }, 957 { .format = DRM_FORMAT_XYUV8888, .num_planes = 2, 958 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 959 .hsub = 1, .vsub = 1, .is_yuv = true }, 960 { .format = DRM_FORMAT_NV12, .num_planes = 4, 961 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 }, 962 .hsub = 2, .vsub = 2, .is_yuv = true }, 963 { .format = DRM_FORMAT_P010, .num_planes = 4, 964 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 965 .hsub = 2, .vsub = 2, .is_yuv = true }, 966 { .format = DRM_FORMAT_P012, .num_planes = 4, 967 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 968 .hsub = 2, .vsub = 2, .is_yuv = true }, 969 { .format = DRM_FORMAT_P016, .num_planes = 4, 970 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 971 .hsub = 2, .vsub = 2, .is_yuv = true }, 972 }; 973 974 /* 975 * Same as gen12_ccs_formats[] above, but with additional surface used 976 * to pass Clear Color information in plane 2 with 64 bits of data. 977 */ 978 static const struct drm_format_info gen12_ccs_cc_formats[] = { 979 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 3, 980 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 981 .hsub = 1, .vsub = 1, }, 982 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 3, 983 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 984 .hsub = 1, .vsub = 1, }, 985 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 3, 986 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 987 .hsub = 1, .vsub = 1, .has_alpha = true }, 988 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 3, 989 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 990 .hsub = 1, .vsub = 1, .has_alpha = true }, 991 }; 992 993 static const struct drm_format_info * 994 lookup_format_info(const struct drm_format_info formats[], 995 int num_formats, u32 format) 996 { 997 int i; 998 999 for (i = 0; i < num_formats; i++) { 1000 if (formats[i].format == format) 1001 return &formats[i]; 1002 } 1003 1004 return NULL; 1005 } 1006 1007 static const struct drm_format_info * 1008 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 1009 { 1010 switch (cmd->modifier[0]) { 1011 case I915_FORMAT_MOD_Y_TILED_CCS: 1012 case I915_FORMAT_MOD_Yf_TILED_CCS: 1013 return lookup_format_info(skl_ccs_formats, 1014 ARRAY_SIZE(skl_ccs_formats), 1015 cmd->pixel_format); 1016 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1017 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1018 return lookup_format_info(gen12_ccs_formats, 1019 ARRAY_SIZE(gen12_ccs_formats), 1020 cmd->pixel_format); 1021 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1022 return lookup_format_info(gen12_ccs_cc_formats, 1023 ARRAY_SIZE(gen12_ccs_cc_formats), 1024 cmd->pixel_format); 1025 default: 1026 return NULL; 1027 } 1028 } 1029 1030 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 1031 u32 pixel_format, u64 modifier) 1032 { 1033 struct intel_crtc *crtc; 1034 struct intel_plane *plane; 1035 1036 if (!HAS_DISPLAY(dev_priv)) 1037 return 0; 1038 1039 /* 1040 * We assume the primary plane for pipe A has 1041 * the highest stride limits of them all, 1042 * if in case pipe A is disabled, use the first pipe from pipe_mask. 1043 */ 1044 crtc = intel_get_first_crtc(dev_priv); 1045 if (!crtc) 1046 return 0; 1047 1048 plane = to_intel_plane(crtc->base.primary); 1049 1050 return plane->max_stride(plane, pixel_format, modifier, 1051 DRM_MODE_ROTATE_0); 1052 } 1053 1054 static void 1055 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 1056 struct intel_plane_state *plane_state, 1057 bool visible) 1058 { 1059 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1060 1061 plane_state->uapi.visible = visible; 1062 1063 if (visible) 1064 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); 1065 else 1066 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); 1067 } 1068 1069 static void fixup_plane_bitmasks(struct intel_crtc_state *crtc_state) 1070 { 1071 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1072 struct drm_plane *plane; 1073 1074 /* 1075 * Active_planes aliases if multiple "primary" or cursor planes 1076 * have been used on the same (or wrong) pipe. plane_mask uses 1077 * unique ids, hence we can use that to reconstruct active_planes. 1078 */ 1079 crtc_state->enabled_planes = 0; 1080 crtc_state->active_planes = 0; 1081 1082 drm_for_each_plane_mask(plane, &dev_priv->drm, 1083 crtc_state->uapi.plane_mask) { 1084 crtc_state->enabled_planes |= BIT(to_intel_plane(plane)->id); 1085 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 1086 } 1087 } 1088 1089 void intel_plane_disable_noatomic(struct intel_crtc *crtc, 1090 struct intel_plane *plane) 1091 { 1092 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1093 struct intel_crtc_state *crtc_state = 1094 to_intel_crtc_state(crtc->base.state); 1095 struct intel_plane_state *plane_state = 1096 to_intel_plane_state(plane->base.state); 1097 1098 drm_dbg_kms(&dev_priv->drm, 1099 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 1100 plane->base.base.id, plane->base.name, 1101 crtc->base.base.id, crtc->base.name); 1102 1103 intel_set_plane_visible(crtc_state, plane_state, false); 1104 fixup_plane_bitmasks(crtc_state); 1105 crtc_state->data_rate[plane->id] = 0; 1106 crtc_state->min_cdclk[plane->id] = 0; 1107 1108 if (plane->id == PLANE_PRIMARY) 1109 hsw_disable_ips(crtc_state); 1110 1111 /* 1112 * Vblank time updates from the shadow to live plane control register 1113 * are blocked if the memory self-refresh mode is active at that 1114 * moment. So to make sure the plane gets truly disabled, disable 1115 * first the self-refresh mode. The self-refresh enable bit in turn 1116 * will be checked/applied by the HW only at the next frame start 1117 * event which is after the vblank start event, so we need to have a 1118 * wait-for-vblank between disabling the plane and the pipe. 1119 */ 1120 if (HAS_GMCH(dev_priv) && 1121 intel_set_memory_cxsr(dev_priv, false)) 1122 intel_wait_for_vblank(dev_priv, crtc->pipe); 1123 1124 /* 1125 * Gen2 reports pipe underruns whenever all planes are disabled. 1126 * So disable underrun reporting before all the planes get disabled. 1127 */ 1128 if (DISPLAY_VER(dev_priv) == 2 && !crtc_state->active_planes) 1129 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 1130 1131 intel_disable_plane(plane, crtc_state); 1132 intel_wait_for_vblank(dev_priv, crtc->pipe); 1133 } 1134 1135 unsigned int 1136 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state) 1137 { 1138 int x = 0, y = 0; 1139 1140 intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 1141 plane_state->view.color_plane[0].offset, 0); 1142 1143 return y; 1144 } 1145 1146 static int 1147 __intel_display_resume(struct drm_device *dev, 1148 struct drm_atomic_state *state, 1149 struct drm_modeset_acquire_ctx *ctx) 1150 { 1151 struct drm_crtc_state *crtc_state; 1152 struct drm_crtc *crtc; 1153 int i, ret; 1154 1155 intel_modeset_setup_hw_state(dev, ctx); 1156 intel_vga_redisable(to_i915(dev)); 1157 1158 if (!state) 1159 return 0; 1160 1161 /* 1162 * We've duplicated the state, pointers to the old state are invalid. 1163 * 1164 * Don't attempt to use the old state until we commit the duplicated state. 1165 */ 1166 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1167 /* 1168 * Force recalculation even if we restore 1169 * current state. With fast modeset this may not result 1170 * in a modeset when the state is compatible. 1171 */ 1172 crtc_state->mode_changed = true; 1173 } 1174 1175 /* ignore any reset values/BIOS leftovers in the WM registers */ 1176 if (!HAS_GMCH(to_i915(dev))) 1177 to_intel_atomic_state(state)->skip_intermediate_wm = true; 1178 1179 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 1180 1181 drm_WARN_ON(dev, ret == -EDEADLK); 1182 return ret; 1183 } 1184 1185 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 1186 { 1187 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 1188 intel_has_gpu_reset(&dev_priv->gt)); 1189 } 1190 1191 void intel_display_prepare_reset(struct drm_i915_private *dev_priv) 1192 { 1193 struct drm_device *dev = &dev_priv->drm; 1194 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 1195 struct drm_atomic_state *state; 1196 int ret; 1197 1198 if (!HAS_DISPLAY(dev_priv)) 1199 return; 1200 1201 /* reset doesn't touch the display */ 1202 if (!dev_priv->params.force_reset_modeset_test && 1203 !gpu_reset_clobbers_display(dev_priv)) 1204 return; 1205 1206 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 1207 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 1208 smp_mb__after_atomic(); 1209 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 1210 1211 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 1212 drm_dbg_kms(&dev_priv->drm, 1213 "Modeset potentially stuck, unbreaking through wedging\n"); 1214 intel_gt_set_wedged(&dev_priv->gt); 1215 } 1216 1217 /* 1218 * Need mode_config.mutex so that we don't 1219 * trample ongoing ->detect() and whatnot. 1220 */ 1221 mutex_lock(&dev->mode_config.mutex); 1222 drm_modeset_acquire_init(ctx, 0); 1223 while (1) { 1224 ret = drm_modeset_lock_all_ctx(dev, ctx); 1225 if (ret != -EDEADLK) 1226 break; 1227 1228 drm_modeset_backoff(ctx); 1229 } 1230 /* 1231 * Disabling the crtcs gracefully seems nicer. Also the 1232 * g33 docs say we should at least disable all the planes. 1233 */ 1234 state = drm_atomic_helper_duplicate_state(dev, ctx); 1235 if (IS_ERR(state)) { 1236 ret = PTR_ERR(state); 1237 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n", 1238 ret); 1239 return; 1240 } 1241 1242 ret = drm_atomic_helper_disable_all(dev, ctx); 1243 if (ret) { 1244 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 1245 ret); 1246 drm_atomic_state_put(state); 1247 return; 1248 } 1249 1250 dev_priv->modeset_restore_state = state; 1251 state->acquire_ctx = ctx; 1252 } 1253 1254 void intel_display_finish_reset(struct drm_i915_private *dev_priv) 1255 { 1256 struct drm_device *dev = &dev_priv->drm; 1257 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 1258 struct drm_atomic_state *state; 1259 int ret; 1260 1261 if (!HAS_DISPLAY(dev_priv)) 1262 return; 1263 1264 /* reset doesn't touch the display */ 1265 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 1266 return; 1267 1268 state = fetch_and_zero(&dev_priv->modeset_restore_state); 1269 if (!state) 1270 goto unlock; 1271 1272 /* reset doesn't touch the display */ 1273 if (!gpu_reset_clobbers_display(dev_priv)) { 1274 /* for testing only restore the display */ 1275 ret = __intel_display_resume(dev, state, ctx); 1276 if (ret) 1277 drm_err(&dev_priv->drm, 1278 "Restoring old state failed with %i\n", ret); 1279 } else { 1280 /* 1281 * The display has been reset as well, 1282 * so need a full re-initialization. 1283 */ 1284 intel_pps_unlock_regs_wa(dev_priv); 1285 intel_modeset_init_hw(dev_priv); 1286 intel_init_clock_gating(dev_priv); 1287 intel_hpd_init(dev_priv); 1288 1289 ret = __intel_display_resume(dev, state, ctx); 1290 if (ret) 1291 drm_err(&dev_priv->drm, 1292 "Restoring old state failed with %i\n", ret); 1293 1294 intel_hpd_poll_disable(dev_priv); 1295 } 1296 1297 drm_atomic_state_put(state); 1298 unlock: 1299 drm_modeset_drop_locks(ctx); 1300 drm_modeset_acquire_fini(ctx); 1301 mutex_unlock(&dev->mode_config.mutex); 1302 1303 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 1304 } 1305 1306 static bool underrun_recovery_supported(const struct intel_crtc_state *crtc_state) 1307 { 1308 if (crtc_state->pch_pfit.enabled && 1309 (crtc_state->pipe_src_w > drm_rect_width(&crtc_state->pch_pfit.dst) || 1310 crtc_state->pipe_src_h > drm_rect_height(&crtc_state->pch_pfit.dst) || 1311 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)) 1312 return false; 1313 1314 if (crtc_state->dsc.compression_enable) 1315 return false; 1316 1317 if (crtc_state->has_psr2) 1318 return false; 1319 1320 if (crtc_state->splitter.enable) 1321 return false; 1322 1323 return true; 1324 } 1325 1326 static void icl_set_pipe_chicken(const struct intel_crtc_state *crtc_state) 1327 { 1328 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1329 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1330 enum pipe pipe = crtc->pipe; 1331 u32 tmp; 1332 1333 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe)); 1334 1335 /* 1336 * Display WA #1153: icl 1337 * enable hardware to bypass the alpha math 1338 * and rounding for per-pixel values 00 and 0xff 1339 */ 1340 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 1341 /* 1342 * Display WA # 1605353570: icl 1343 * Set the pixel rounding bit to 1 for allowing 1344 * passthrough of Frame buffer pixels unmodified 1345 * across pipe 1346 */ 1347 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 1348 1349 if (IS_DG2(dev_priv)) { 1350 /* 1351 * Underrun recovery must always be disabled on DG2. However 1352 * the chicken bit meaning is inverted compared to other 1353 * platforms. 1354 */ 1355 tmp &= ~UNDERRUN_RECOVERY_ENABLE_DG2; 1356 } else if (DISPLAY_VER(dev_priv) >= 13) { 1357 if (underrun_recovery_supported(crtc_state)) 1358 tmp &= ~UNDERRUN_RECOVERY_DISABLE_ADLP; 1359 else 1360 tmp |= UNDERRUN_RECOVERY_DISABLE_ADLP; 1361 } 1362 1363 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp); 1364 } 1365 1366 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 1367 { 1368 struct drm_crtc *crtc; 1369 bool cleanup_done; 1370 1371 drm_for_each_crtc(crtc, &dev_priv->drm) { 1372 struct drm_crtc_commit *commit; 1373 spin_lock(&crtc->commit_lock); 1374 commit = list_first_entry_or_null(&crtc->commit_list, 1375 struct drm_crtc_commit, commit_entry); 1376 cleanup_done = commit ? 1377 try_wait_for_completion(&commit->cleanup_done) : true; 1378 spin_unlock(&crtc->commit_lock); 1379 1380 if (cleanup_done) 1381 continue; 1382 1383 drm_crtc_wait_one_vblank(crtc); 1384 1385 return true; 1386 } 1387 1388 return false; 1389 } 1390 1391 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 1392 { 1393 u32 temp; 1394 1395 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE); 1396 1397 mutex_lock(&dev_priv->sb_lock); 1398 1399 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 1400 temp |= SBI_SSCCTL_DISABLE; 1401 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 1402 1403 mutex_unlock(&dev_priv->sb_lock); 1404 } 1405 1406 /* Program iCLKIP clock to the desired frequency */ 1407 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 1408 { 1409 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1410 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1411 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 1412 u32 divsel, phaseinc, auxdiv, phasedir = 0; 1413 u32 temp; 1414 1415 lpt_disable_iclkip(dev_priv); 1416 1417 /* The iCLK virtual clock root frequency is in MHz, 1418 * but the adjusted_mode->crtc_clock in in KHz. To get the 1419 * divisors, it is necessary to divide one by another, so we 1420 * convert the virtual clock precision to KHz here for higher 1421 * precision. 1422 */ 1423 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 1424 u32 iclk_virtual_root_freq = 172800 * 1000; 1425 u32 iclk_pi_range = 64; 1426 u32 desired_divisor; 1427 1428 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 1429 clock << auxdiv); 1430 divsel = (desired_divisor / iclk_pi_range) - 2; 1431 phaseinc = desired_divisor % iclk_pi_range; 1432 1433 /* 1434 * Near 20MHz is a corner case which is 1435 * out of range for the 7-bit divisor 1436 */ 1437 if (divsel <= 0x7f) 1438 break; 1439 } 1440 1441 /* This should not happen with any sane values */ 1442 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 1443 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 1444 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) & 1445 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 1446 1447 drm_dbg_kms(&dev_priv->drm, 1448 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 1449 clock, auxdiv, divsel, phasedir, phaseinc); 1450 1451 mutex_lock(&dev_priv->sb_lock); 1452 1453 /* Program SSCDIVINTPHASE6 */ 1454 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 1455 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 1456 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 1457 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 1458 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 1459 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 1460 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 1461 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 1462 1463 /* Program SSCAUXDIV */ 1464 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 1465 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 1466 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 1467 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 1468 1469 /* Enable modulator and associated divider */ 1470 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 1471 temp &= ~SBI_SSCCTL_DISABLE; 1472 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 1473 1474 mutex_unlock(&dev_priv->sb_lock); 1475 1476 /* Wait for initialization time */ 1477 udelay(24); 1478 1479 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE); 1480 } 1481 1482 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 1483 { 1484 u32 divsel, phaseinc, auxdiv; 1485 u32 iclk_virtual_root_freq = 172800 * 1000; 1486 u32 iclk_pi_range = 64; 1487 u32 desired_divisor; 1488 u32 temp; 1489 1490 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 1491 return 0; 1492 1493 mutex_lock(&dev_priv->sb_lock); 1494 1495 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 1496 if (temp & SBI_SSCCTL_DISABLE) { 1497 mutex_unlock(&dev_priv->sb_lock); 1498 return 0; 1499 } 1500 1501 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 1502 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 1503 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 1504 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 1505 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 1506 1507 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 1508 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 1509 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 1510 1511 mutex_unlock(&dev_priv->sb_lock); 1512 1513 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 1514 1515 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 1516 desired_divisor << auxdiv); 1517 } 1518 1519 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 1520 enum pipe pch_transcoder) 1521 { 1522 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1523 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1524 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 1525 1526 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder), 1527 intel_de_read(dev_priv, HTOTAL(cpu_transcoder))); 1528 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder), 1529 intel_de_read(dev_priv, HBLANK(cpu_transcoder))); 1530 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder), 1531 intel_de_read(dev_priv, HSYNC(cpu_transcoder))); 1532 1533 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder), 1534 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 1535 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder), 1536 intel_de_read(dev_priv, VBLANK(cpu_transcoder))); 1537 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder), 1538 intel_de_read(dev_priv, VSYNC(cpu_transcoder))); 1539 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder), 1540 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder))); 1541 } 1542 1543 /* 1544 * Finds the encoder associated with the given CRTC. This can only be 1545 * used when we know that the CRTC isn't feeding multiple encoders! 1546 */ 1547 struct intel_encoder * 1548 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 1549 const struct intel_crtc_state *crtc_state) 1550 { 1551 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1552 const struct drm_connector_state *connector_state; 1553 const struct drm_connector *connector; 1554 struct intel_encoder *encoder = NULL; 1555 int num_encoders = 0; 1556 int i; 1557 1558 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 1559 if (connector_state->crtc != &crtc->base) 1560 continue; 1561 1562 encoder = to_intel_encoder(connector_state->best_encoder); 1563 num_encoders++; 1564 } 1565 1566 drm_WARN(encoder->base.dev, num_encoders != 1, 1567 "%d encoders for pipe %c\n", 1568 num_encoders, pipe_name(crtc->pipe)); 1569 1570 return encoder; 1571 } 1572 1573 /* 1574 * Enable PCH resources required for PCH ports: 1575 * - PCH PLLs 1576 * - FDI training & RX/TX 1577 * - update transcoder timings 1578 * - DP transcoding bits 1579 * - transcoder 1580 */ 1581 static void ilk_pch_enable(const struct intel_atomic_state *state, 1582 const struct intel_crtc_state *crtc_state) 1583 { 1584 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1585 struct drm_device *dev = crtc->base.dev; 1586 struct drm_i915_private *dev_priv = to_i915(dev); 1587 enum pipe pipe = crtc->pipe; 1588 u32 temp; 1589 1590 assert_pch_transcoder_disabled(dev_priv, pipe); 1591 1592 /* For PCH output, training FDI link */ 1593 intel_fdi_link_train(crtc, crtc_state); 1594 1595 /* We need to program the right clock selection before writing the pixel 1596 * mutliplier into the DPLL. */ 1597 if (HAS_PCH_CPT(dev_priv)) { 1598 u32 sel; 1599 1600 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 1601 temp |= TRANS_DPLL_ENABLE(pipe); 1602 sel = TRANS_DPLLB_SEL(pipe); 1603 if (crtc_state->shared_dpll == 1604 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 1605 temp |= sel; 1606 else 1607 temp &= ~sel; 1608 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 1609 } 1610 1611 /* XXX: pch pll's can be enabled any time before we enable the PCH 1612 * transcoder, and we actually should do this to not upset any PCH 1613 * transcoder that already use the clock when we share it. 1614 * 1615 * Note that enable_shared_dpll tries to do the right thing, but 1616 * get_shared_dpll unconditionally resets the pll - we need that to have 1617 * the right LVDS enable sequence. */ 1618 intel_enable_shared_dpll(crtc_state); 1619 1620 /* set transcoder timing, panel must allow it */ 1621 assert_pps_unlocked(dev_priv, pipe); 1622 ilk_pch_transcoder_set_timings(crtc_state, pipe); 1623 1624 intel_fdi_normal_train(crtc); 1625 1626 /* For PCH DP, enable TRANS_DP_CTL */ 1627 if (HAS_PCH_CPT(dev_priv) && 1628 intel_crtc_has_dp_encoder(crtc_state)) { 1629 const struct drm_display_mode *adjusted_mode = 1630 &crtc_state->hw.adjusted_mode; 1631 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 1632 i915_reg_t reg = TRANS_DP_CTL(pipe); 1633 enum port port; 1634 1635 temp = intel_de_read(dev_priv, reg); 1636 temp &= ~(TRANS_DP_PORT_SEL_MASK | 1637 TRANS_DP_SYNC_MASK | 1638 TRANS_DP_BPC_MASK); 1639 temp |= TRANS_DP_OUTPUT_ENABLE; 1640 temp |= bpc << 9; /* same format but at 11:9 */ 1641 1642 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 1643 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 1644 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 1645 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 1646 1647 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 1648 drm_WARN_ON(dev, port < PORT_B || port > PORT_D); 1649 temp |= TRANS_DP_PORT_SEL(port); 1650 1651 intel_de_write(dev_priv, reg, temp); 1652 } 1653 1654 ilk_enable_pch_transcoder(crtc_state); 1655 } 1656 1657 void lpt_pch_enable(const struct intel_crtc_state *crtc_state) 1658 { 1659 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1660 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1661 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 1662 1663 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 1664 1665 lpt_program_iclkip(crtc_state); 1666 1667 /* Set transcoder timing. */ 1668 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A); 1669 1670 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 1671 } 1672 1673 static void cpt_verify_modeset(struct drm_i915_private *dev_priv, 1674 enum pipe pipe) 1675 { 1676 i915_reg_t dslreg = PIPEDSL(pipe); 1677 u32 temp; 1678 1679 temp = intel_de_read(dev_priv, dslreg); 1680 udelay(500); 1681 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) { 1682 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) 1683 drm_err(&dev_priv->drm, 1684 "mode set failed: pipe %c stuck\n", 1685 pipe_name(pipe)); 1686 } 1687 } 1688 1689 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state) 1690 { 1691 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1692 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1693 const struct drm_rect *dst = &crtc_state->pch_pfit.dst; 1694 enum pipe pipe = crtc->pipe; 1695 int width = drm_rect_width(dst); 1696 int height = drm_rect_height(dst); 1697 int x = dst->x1; 1698 int y = dst->y1; 1699 1700 if (!crtc_state->pch_pfit.enabled) 1701 return; 1702 1703 /* Force use of hard-coded filter coefficients 1704 * as some pre-programmed values are broken, 1705 * e.g. x201. 1706 */ 1707 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 1708 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 1709 PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); 1710 else 1711 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 1712 PF_FILTER_MED_3x3); 1713 intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y); 1714 intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height); 1715 } 1716 1717 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 1718 { 1719 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1720 struct drm_device *dev = crtc->base.dev; 1721 struct drm_i915_private *dev_priv = to_i915(dev); 1722 1723 if (!crtc_state->ips_enabled) 1724 return; 1725 1726 /* 1727 * We can only enable IPS after we enable a plane and wait for a vblank 1728 * This function is called from post_plane_update, which is run after 1729 * a vblank wait. 1730 */ 1731 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 1732 1733 if (IS_BROADWELL(dev_priv)) { 1734 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 1735 IPS_ENABLE | IPS_PCODE_CONTROL)); 1736 /* Quoting Art Runyan: "its not safe to expect any particular 1737 * value in IPS_CTL bit 31 after enabling IPS through the 1738 * mailbox." Moreover, the mailbox may return a bogus state, 1739 * so we need to just enable it and continue on. 1740 */ 1741 } else { 1742 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE); 1743 /* The bit only becomes 1 in the next vblank, so this wait here 1744 * is essentially intel_wait_for_vblank. If we don't have this 1745 * and don't wait for vblanks until the end of crtc_enable, then 1746 * the HW state readout code will complain that the expected 1747 * IPS_CTL value is not the one we read. */ 1748 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 1749 drm_err(&dev_priv->drm, 1750 "Timed out waiting for IPS enable\n"); 1751 } 1752 } 1753 1754 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 1755 { 1756 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1757 struct drm_device *dev = crtc->base.dev; 1758 struct drm_i915_private *dev_priv = to_i915(dev); 1759 1760 if (!crtc_state->ips_enabled) 1761 return; 1762 1763 if (IS_BROADWELL(dev_priv)) { 1764 drm_WARN_ON(dev, 1765 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 1766 /* 1767 * Wait for PCODE to finish disabling IPS. The BSpec specified 1768 * 42ms timeout value leads to occasional timeouts so use 100ms 1769 * instead. 1770 */ 1771 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 1772 drm_err(&dev_priv->drm, 1773 "Timed out waiting for IPS disable\n"); 1774 } else { 1775 intel_de_write(dev_priv, IPS_CTL, 0); 1776 intel_de_posting_read(dev_priv, IPS_CTL); 1777 } 1778 1779 /* We need to wait for a vblank before we can disable the plane. */ 1780 intel_wait_for_vblank(dev_priv, crtc->pipe); 1781 } 1782 1783 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *crtc) 1784 { 1785 if (crtc->overlay) 1786 (void) intel_overlay_switch_off(crtc->overlay); 1787 1788 /* Let userspace switch the overlay on again. In most cases userspace 1789 * has to recompute where to put it anyway. 1790 */ 1791 } 1792 1793 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 1794 const struct intel_crtc_state *new_crtc_state) 1795 { 1796 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 1797 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1798 1799 if (!old_crtc_state->ips_enabled) 1800 return false; 1801 1802 if (intel_crtc_needs_modeset(new_crtc_state)) 1803 return true; 1804 1805 /* 1806 * Workaround : Do not read or write the pipe palette/gamma data while 1807 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 1808 * 1809 * Disable IPS before we program the LUT. 1810 */ 1811 if (IS_HASWELL(dev_priv) && 1812 (new_crtc_state->uapi.color_mgmt_changed || 1813 new_crtc_state->update_pipe) && 1814 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 1815 return true; 1816 1817 return !new_crtc_state->ips_enabled; 1818 } 1819 1820 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 1821 const struct intel_crtc_state *new_crtc_state) 1822 { 1823 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 1824 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1825 1826 if (!new_crtc_state->ips_enabled) 1827 return false; 1828 1829 if (intel_crtc_needs_modeset(new_crtc_state)) 1830 return true; 1831 1832 /* 1833 * Workaround : Do not read or write the pipe palette/gamma data while 1834 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 1835 * 1836 * Re-enable IPS after the LUT has been programmed. 1837 */ 1838 if (IS_HASWELL(dev_priv) && 1839 (new_crtc_state->uapi.color_mgmt_changed || 1840 new_crtc_state->update_pipe) && 1841 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 1842 return true; 1843 1844 /* 1845 * We can't read out IPS on broadwell, assume the worst and 1846 * forcibly enable IPS on the first fastset. 1847 */ 1848 if (new_crtc_state->update_pipe && old_crtc_state->inherited) 1849 return true; 1850 1851 return !old_crtc_state->ips_enabled; 1852 } 1853 1854 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) 1855 { 1856 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1857 1858 if (!crtc_state->nv12_planes) 1859 return false; 1860 1861 /* WA Display #0827: Gen9:all */ 1862 if (DISPLAY_VER(dev_priv) == 9) 1863 return true; 1864 1865 return false; 1866 } 1867 1868 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) 1869 { 1870 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1871 1872 /* Wa_2006604312:icl,ehl */ 1873 if (crtc_state->scaler_state.scaler_users > 0 && DISPLAY_VER(dev_priv) == 11) 1874 return true; 1875 1876 return false; 1877 } 1878 1879 static bool needs_cursorclk_wa(const struct intel_crtc_state *crtc_state) 1880 { 1881 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1882 1883 /* Wa_1604331009:icl,jsl,ehl */ 1884 if (is_hdr_mode(crtc_state) && 1885 crtc_state->active_planes & BIT(PLANE_CURSOR) && 1886 DISPLAY_VER(dev_priv) == 11) 1887 return true; 1888 1889 return false; 1890 } 1891 1892 static void intel_async_flip_vtd_wa(struct drm_i915_private *i915, 1893 enum pipe pipe, bool enable) 1894 { 1895 if (DISPLAY_VER(i915) == 9) { 1896 /* 1897 * "Plane N strech max must be programmed to 11b (x1) 1898 * when Async flips are enabled on that plane." 1899 */ 1900 intel_de_rmw(i915, CHICKEN_PIPESL_1(pipe), 1901 SKL_PLANE1_STRETCH_MAX_MASK, 1902 enable ? SKL_PLANE1_STRETCH_MAX_X1 : SKL_PLANE1_STRETCH_MAX_X8); 1903 } else { 1904 /* Also needed on HSW/BDW albeit undocumented */ 1905 intel_de_rmw(i915, CHICKEN_PIPESL_1(pipe), 1906 HSW_PRI_STRETCH_MAX_MASK, 1907 enable ? HSW_PRI_STRETCH_MAX_X1 : HSW_PRI_STRETCH_MAX_X8); 1908 } 1909 } 1910 1911 static bool needs_async_flip_vtd_wa(const struct intel_crtc_state *crtc_state) 1912 { 1913 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 1914 1915 return crtc_state->uapi.async_flip && intel_vtd_active() && 1916 (DISPLAY_VER(i915) == 9 || IS_BROADWELL(i915) || IS_HASWELL(i915)); 1917 } 1918 1919 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, 1920 const struct intel_crtc_state *new_crtc_state) 1921 { 1922 return (!old_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)) && 1923 new_crtc_state->active_planes; 1924 } 1925 1926 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, 1927 const struct intel_crtc_state *new_crtc_state) 1928 { 1929 return old_crtc_state->active_planes && 1930 (!new_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)); 1931 } 1932 1933 static void intel_post_plane_update(struct intel_atomic_state *state, 1934 struct intel_crtc *crtc) 1935 { 1936 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1937 const struct intel_crtc_state *old_crtc_state = 1938 intel_atomic_get_old_crtc_state(state, crtc); 1939 const struct intel_crtc_state *new_crtc_state = 1940 intel_atomic_get_new_crtc_state(state, crtc); 1941 enum pipe pipe = crtc->pipe; 1942 1943 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); 1944 1945 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) 1946 intel_update_watermarks(dev_priv); 1947 1948 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state)) 1949 hsw_enable_ips(new_crtc_state); 1950 1951 intel_fbc_post_update(state, crtc); 1952 intel_drrs_page_flip(state, crtc); 1953 1954 if (needs_async_flip_vtd_wa(old_crtc_state) && 1955 !needs_async_flip_vtd_wa(new_crtc_state)) 1956 intel_async_flip_vtd_wa(dev_priv, pipe, false); 1957 1958 if (needs_nv12_wa(old_crtc_state) && 1959 !needs_nv12_wa(new_crtc_state)) 1960 skl_wa_827(dev_priv, pipe, false); 1961 1962 if (needs_scalerclk_wa(old_crtc_state) && 1963 !needs_scalerclk_wa(new_crtc_state)) 1964 icl_wa_scalerclkgating(dev_priv, pipe, false); 1965 1966 if (needs_cursorclk_wa(old_crtc_state) && 1967 !needs_cursorclk_wa(new_crtc_state)) 1968 icl_wa_cursorclkgating(dev_priv, pipe, false); 1969 1970 } 1971 1972 static void intel_crtc_enable_flip_done(struct intel_atomic_state *state, 1973 struct intel_crtc *crtc) 1974 { 1975 const struct intel_crtc_state *crtc_state = 1976 intel_atomic_get_new_crtc_state(state, crtc); 1977 u8 update_planes = crtc_state->update_planes; 1978 const struct intel_plane_state *plane_state; 1979 struct intel_plane *plane; 1980 int i; 1981 1982 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 1983 if (plane->enable_flip_done && 1984 plane->pipe == crtc->pipe && 1985 update_planes & BIT(plane->id)) 1986 plane->enable_flip_done(plane); 1987 } 1988 } 1989 1990 static void intel_crtc_disable_flip_done(struct intel_atomic_state *state, 1991 struct intel_crtc *crtc) 1992 { 1993 const struct intel_crtc_state *crtc_state = 1994 intel_atomic_get_new_crtc_state(state, crtc); 1995 u8 update_planes = crtc_state->update_planes; 1996 const struct intel_plane_state *plane_state; 1997 struct intel_plane *plane; 1998 int i; 1999 2000 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 2001 if (plane->disable_flip_done && 2002 plane->pipe == crtc->pipe && 2003 update_planes & BIT(plane->id)) 2004 plane->disable_flip_done(plane); 2005 } 2006 } 2007 2008 static void intel_crtc_async_flip_disable_wa(struct intel_atomic_state *state, 2009 struct intel_crtc *crtc) 2010 { 2011 struct drm_i915_private *i915 = to_i915(state->base.dev); 2012 const struct intel_crtc_state *old_crtc_state = 2013 intel_atomic_get_old_crtc_state(state, crtc); 2014 const struct intel_crtc_state *new_crtc_state = 2015 intel_atomic_get_new_crtc_state(state, crtc); 2016 u8 update_planes = new_crtc_state->update_planes; 2017 const struct intel_plane_state *old_plane_state; 2018 struct intel_plane *plane; 2019 bool need_vbl_wait = false; 2020 int i; 2021 2022 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 2023 if (plane->need_async_flip_disable_wa && 2024 plane->pipe == crtc->pipe && 2025 update_planes & BIT(plane->id)) { 2026 /* 2027 * Apart from the async flip bit we want to 2028 * preserve the old state for the plane. 2029 */ 2030 plane->async_flip(plane, old_crtc_state, 2031 old_plane_state, false); 2032 need_vbl_wait = true; 2033 } 2034 } 2035 2036 if (need_vbl_wait) 2037 intel_wait_for_vblank(i915, crtc->pipe); 2038 } 2039 2040 static void intel_pre_plane_update(struct intel_atomic_state *state, 2041 struct intel_crtc *crtc) 2042 { 2043 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2044 const struct intel_crtc_state *old_crtc_state = 2045 intel_atomic_get_old_crtc_state(state, crtc); 2046 const struct intel_crtc_state *new_crtc_state = 2047 intel_atomic_get_new_crtc_state(state, crtc); 2048 enum pipe pipe = crtc->pipe; 2049 2050 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state)) 2051 hsw_disable_ips(old_crtc_state); 2052 2053 if (intel_fbc_pre_update(state, crtc)) 2054 intel_wait_for_vblank(dev_priv, pipe); 2055 2056 if (!needs_async_flip_vtd_wa(old_crtc_state) && 2057 needs_async_flip_vtd_wa(new_crtc_state)) 2058 intel_async_flip_vtd_wa(dev_priv, pipe, true); 2059 2060 /* Display WA 827 */ 2061 if (!needs_nv12_wa(old_crtc_state) && 2062 needs_nv12_wa(new_crtc_state)) 2063 skl_wa_827(dev_priv, pipe, true); 2064 2065 /* Wa_2006604312:icl,ehl */ 2066 if (!needs_scalerclk_wa(old_crtc_state) && 2067 needs_scalerclk_wa(new_crtc_state)) 2068 icl_wa_scalerclkgating(dev_priv, pipe, true); 2069 2070 /* Wa_1604331009:icl,jsl,ehl */ 2071 if (!needs_cursorclk_wa(old_crtc_state) && 2072 needs_cursorclk_wa(new_crtc_state)) 2073 icl_wa_cursorclkgating(dev_priv, pipe, true); 2074 2075 /* 2076 * Vblank time updates from the shadow to live plane control register 2077 * are blocked if the memory self-refresh mode is active at that 2078 * moment. So to make sure the plane gets truly disabled, disable 2079 * first the self-refresh mode. The self-refresh enable bit in turn 2080 * will be checked/applied by the HW only at the next frame start 2081 * event which is after the vblank start event, so we need to have a 2082 * wait-for-vblank between disabling the plane and the pipe. 2083 */ 2084 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active && 2085 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 2086 intel_wait_for_vblank(dev_priv, pipe); 2087 2088 /* 2089 * IVB workaround: must disable low power watermarks for at least 2090 * one frame before enabling scaling. LP watermarks can be re-enabled 2091 * when scaling is disabled. 2092 * 2093 * WaCxSRDisabledForSpriteScaling:ivb 2094 */ 2095 if (old_crtc_state->hw.active && 2096 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv)) 2097 intel_wait_for_vblank(dev_priv, pipe); 2098 2099 /* 2100 * If we're doing a modeset we don't need to do any 2101 * pre-vblank watermark programming here. 2102 */ 2103 if (!intel_crtc_needs_modeset(new_crtc_state)) { 2104 /* 2105 * For platforms that support atomic watermarks, program the 2106 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 2107 * will be the intermediate values that are safe for both pre- and 2108 * post- vblank; when vblank happens, the 'active' values will be set 2109 * to the final 'target' values and we'll do this again to get the 2110 * optimal watermarks. For gen9+ platforms, the values we program here 2111 * will be the final target values which will get automatically latched 2112 * at vblank time; no further programming will be necessary. 2113 * 2114 * If a platform hasn't been transitioned to atomic watermarks yet, 2115 * we'll continue to update watermarks the old way, if flags tell 2116 * us to. 2117 */ 2118 if (!intel_initial_watermarks(state, crtc)) 2119 if (new_crtc_state->update_wm_pre) 2120 intel_update_watermarks(dev_priv); 2121 } 2122 2123 /* 2124 * Gen2 reports pipe underruns whenever all planes are disabled. 2125 * So disable underrun reporting before all the planes get disabled. 2126 * 2127 * We do this after .initial_watermarks() so that we have a 2128 * chance of catching underruns with the intermediate watermarks 2129 * vs. the old plane configuration. 2130 */ 2131 if (DISPLAY_VER(dev_priv) == 2 && planes_disabling(old_crtc_state, new_crtc_state)) 2132 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 2133 2134 /* 2135 * WA for platforms where async address update enable bit 2136 * is double buffered and only latched at start of vblank. 2137 */ 2138 if (old_crtc_state->uapi.async_flip && !new_crtc_state->uapi.async_flip) 2139 intel_crtc_async_flip_disable_wa(state, crtc); 2140 } 2141 2142 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 2143 struct intel_crtc *crtc) 2144 { 2145 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2146 const struct intel_crtc_state *new_crtc_state = 2147 intel_atomic_get_new_crtc_state(state, crtc); 2148 unsigned int update_mask = new_crtc_state->update_planes; 2149 const struct intel_plane_state *old_plane_state; 2150 struct intel_plane *plane; 2151 unsigned fb_bits = 0; 2152 int i; 2153 2154 intel_crtc_dpms_overlay_disable(crtc); 2155 2156 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 2157 if (crtc->pipe != plane->pipe || 2158 !(update_mask & BIT(plane->id))) 2159 continue; 2160 2161 intel_disable_plane(plane, new_crtc_state); 2162 2163 if (old_plane_state->uapi.visible) 2164 fb_bits |= plane->frontbuffer_bit; 2165 } 2166 2167 intel_frontbuffer_flip(dev_priv, fb_bits); 2168 } 2169 2170 /* 2171 * intel_connector_primary_encoder - get the primary encoder for a connector 2172 * @connector: connector for which to return the encoder 2173 * 2174 * Returns the primary encoder for a connector. There is a 1:1 mapping from 2175 * all connectors to their encoder, except for DP-MST connectors which have 2176 * both a virtual and a primary encoder. These DP-MST primary encoders can be 2177 * pointed to by as many DP-MST connectors as there are pipes. 2178 */ 2179 static struct intel_encoder * 2180 intel_connector_primary_encoder(struct intel_connector *connector) 2181 { 2182 struct intel_encoder *encoder; 2183 2184 if (connector->mst_port) 2185 return &dp_to_dig_port(connector->mst_port)->base; 2186 2187 encoder = intel_attached_encoder(connector); 2188 drm_WARN_ON(connector->base.dev, !encoder); 2189 2190 return encoder; 2191 } 2192 2193 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 2194 { 2195 struct drm_connector_state *new_conn_state; 2196 struct drm_connector *connector; 2197 int i; 2198 2199 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 2200 i) { 2201 struct intel_connector *intel_connector; 2202 struct intel_encoder *encoder; 2203 struct intel_crtc *crtc; 2204 2205 if (!intel_connector_needs_modeset(state, connector)) 2206 continue; 2207 2208 intel_connector = to_intel_connector(connector); 2209 encoder = intel_connector_primary_encoder(intel_connector); 2210 if (!encoder->update_prepare) 2211 continue; 2212 2213 crtc = new_conn_state->crtc ? 2214 to_intel_crtc(new_conn_state->crtc) : NULL; 2215 encoder->update_prepare(state, encoder, crtc); 2216 } 2217 } 2218 2219 static void intel_encoders_update_complete(struct intel_atomic_state *state) 2220 { 2221 struct drm_connector_state *new_conn_state; 2222 struct drm_connector *connector; 2223 int i; 2224 2225 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 2226 i) { 2227 struct intel_connector *intel_connector; 2228 struct intel_encoder *encoder; 2229 struct intel_crtc *crtc; 2230 2231 if (!intel_connector_needs_modeset(state, connector)) 2232 continue; 2233 2234 intel_connector = to_intel_connector(connector); 2235 encoder = intel_connector_primary_encoder(intel_connector); 2236 if (!encoder->update_complete) 2237 continue; 2238 2239 crtc = new_conn_state->crtc ? 2240 to_intel_crtc(new_conn_state->crtc) : NULL; 2241 encoder->update_complete(state, encoder, crtc); 2242 } 2243 } 2244 2245 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, 2246 struct intel_crtc *crtc) 2247 { 2248 const struct intel_crtc_state *crtc_state = 2249 intel_atomic_get_new_crtc_state(state, crtc); 2250 const struct drm_connector_state *conn_state; 2251 struct drm_connector *conn; 2252 int i; 2253 2254 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 2255 struct intel_encoder *encoder = 2256 to_intel_encoder(conn_state->best_encoder); 2257 2258 if (conn_state->crtc != &crtc->base) 2259 continue; 2260 2261 if (encoder->pre_pll_enable) 2262 encoder->pre_pll_enable(state, encoder, 2263 crtc_state, conn_state); 2264 } 2265 } 2266 2267 static void intel_encoders_pre_enable(struct intel_atomic_state *state, 2268 struct intel_crtc *crtc) 2269 { 2270 const struct intel_crtc_state *crtc_state = 2271 intel_atomic_get_new_crtc_state(state, crtc); 2272 const struct drm_connector_state *conn_state; 2273 struct drm_connector *conn; 2274 int i; 2275 2276 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 2277 struct intel_encoder *encoder = 2278 to_intel_encoder(conn_state->best_encoder); 2279 2280 if (conn_state->crtc != &crtc->base) 2281 continue; 2282 2283 if (encoder->pre_enable) 2284 encoder->pre_enable(state, encoder, 2285 crtc_state, conn_state); 2286 } 2287 } 2288 2289 static void intel_encoders_enable(struct intel_atomic_state *state, 2290 struct intel_crtc *crtc) 2291 { 2292 const struct intel_crtc_state *crtc_state = 2293 intel_atomic_get_new_crtc_state(state, crtc); 2294 const struct drm_connector_state *conn_state; 2295 struct drm_connector *conn; 2296 int i; 2297 2298 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 2299 struct intel_encoder *encoder = 2300 to_intel_encoder(conn_state->best_encoder); 2301 2302 if (conn_state->crtc != &crtc->base) 2303 continue; 2304 2305 if (encoder->enable) 2306 encoder->enable(state, encoder, 2307 crtc_state, conn_state); 2308 intel_opregion_notify_encoder(encoder, true); 2309 } 2310 } 2311 2312 static void intel_encoders_pre_disable(struct intel_atomic_state *state, 2313 struct intel_crtc *crtc) 2314 { 2315 const struct intel_crtc_state *old_crtc_state = 2316 intel_atomic_get_old_crtc_state(state, crtc); 2317 const struct drm_connector_state *old_conn_state; 2318 struct drm_connector *conn; 2319 int i; 2320 2321 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 2322 struct intel_encoder *encoder = 2323 to_intel_encoder(old_conn_state->best_encoder); 2324 2325 if (old_conn_state->crtc != &crtc->base) 2326 continue; 2327 2328 if (encoder->pre_disable) 2329 encoder->pre_disable(state, encoder, old_crtc_state, 2330 old_conn_state); 2331 } 2332 } 2333 2334 static void intel_encoders_disable(struct intel_atomic_state *state, 2335 struct intel_crtc *crtc) 2336 { 2337 const struct intel_crtc_state *old_crtc_state = 2338 intel_atomic_get_old_crtc_state(state, crtc); 2339 const struct drm_connector_state *old_conn_state; 2340 struct drm_connector *conn; 2341 int i; 2342 2343 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 2344 struct intel_encoder *encoder = 2345 to_intel_encoder(old_conn_state->best_encoder); 2346 2347 if (old_conn_state->crtc != &crtc->base) 2348 continue; 2349 2350 intel_opregion_notify_encoder(encoder, false); 2351 if (encoder->disable) 2352 encoder->disable(state, encoder, 2353 old_crtc_state, old_conn_state); 2354 } 2355 } 2356 2357 static void intel_encoders_post_disable(struct intel_atomic_state *state, 2358 struct intel_crtc *crtc) 2359 { 2360 const struct intel_crtc_state *old_crtc_state = 2361 intel_atomic_get_old_crtc_state(state, crtc); 2362 const struct drm_connector_state *old_conn_state; 2363 struct drm_connector *conn; 2364 int i; 2365 2366 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 2367 struct intel_encoder *encoder = 2368 to_intel_encoder(old_conn_state->best_encoder); 2369 2370 if (old_conn_state->crtc != &crtc->base) 2371 continue; 2372 2373 if (encoder->post_disable) 2374 encoder->post_disable(state, encoder, 2375 old_crtc_state, old_conn_state); 2376 } 2377 } 2378 2379 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, 2380 struct intel_crtc *crtc) 2381 { 2382 const struct intel_crtc_state *old_crtc_state = 2383 intel_atomic_get_old_crtc_state(state, crtc); 2384 const struct drm_connector_state *old_conn_state; 2385 struct drm_connector *conn; 2386 int i; 2387 2388 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 2389 struct intel_encoder *encoder = 2390 to_intel_encoder(old_conn_state->best_encoder); 2391 2392 if (old_conn_state->crtc != &crtc->base) 2393 continue; 2394 2395 if (encoder->post_pll_disable) 2396 encoder->post_pll_disable(state, encoder, 2397 old_crtc_state, old_conn_state); 2398 } 2399 } 2400 2401 static void intel_encoders_update_pipe(struct intel_atomic_state *state, 2402 struct intel_crtc *crtc) 2403 { 2404 const struct intel_crtc_state *crtc_state = 2405 intel_atomic_get_new_crtc_state(state, crtc); 2406 const struct drm_connector_state *conn_state; 2407 struct drm_connector *conn; 2408 int i; 2409 2410 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 2411 struct intel_encoder *encoder = 2412 to_intel_encoder(conn_state->best_encoder); 2413 2414 if (conn_state->crtc != &crtc->base) 2415 continue; 2416 2417 if (encoder->update_pipe) 2418 encoder->update_pipe(state, encoder, 2419 crtc_state, conn_state); 2420 } 2421 } 2422 2423 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 2424 { 2425 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2426 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 2427 2428 plane->disable_plane(plane, crtc_state); 2429 } 2430 2431 static void ilk_crtc_enable(struct intel_atomic_state *state, 2432 struct intel_crtc *crtc) 2433 { 2434 const struct intel_crtc_state *new_crtc_state = 2435 intel_atomic_get_new_crtc_state(state, crtc); 2436 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2437 enum pipe pipe = crtc->pipe; 2438 2439 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 2440 return; 2441 2442 /* 2443 * Sometimes spurious CPU pipe underruns happen during FDI 2444 * training, at least with VGA+HDMI cloning. Suppress them. 2445 * 2446 * On ILK we get an occasional spurious CPU pipe underruns 2447 * between eDP port A enable and vdd enable. Also PCH port 2448 * enable seems to result in the occasional CPU pipe underrun. 2449 * 2450 * Spurious PCH underruns also occur during PCH enabling. 2451 */ 2452 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 2453 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 2454 2455 if (intel_crtc_has_dp_encoder(new_crtc_state)) 2456 intel_dp_set_m_n(new_crtc_state, M1_N1); 2457 2458 intel_set_transcoder_timings(new_crtc_state); 2459 intel_set_pipe_src_size(new_crtc_state); 2460 2461 if (new_crtc_state->has_pch_encoder) 2462 intel_cpu_transcoder_set_m_n(new_crtc_state, 2463 &new_crtc_state->fdi_m_n, NULL); 2464 2465 ilk_set_pipeconf(new_crtc_state); 2466 2467 crtc->active = true; 2468 2469 intel_encoders_pre_enable(state, crtc); 2470 2471 if (new_crtc_state->has_pch_encoder) { 2472 /* Note: FDI PLL enabling _must_ be done before we enable the 2473 * cpu pipes, hence this is separate from all the other fdi/pch 2474 * enabling. */ 2475 ilk_fdi_pll_enable(new_crtc_state); 2476 } else { 2477 assert_fdi_tx_disabled(dev_priv, pipe); 2478 assert_fdi_rx_disabled(dev_priv, pipe); 2479 } 2480 2481 ilk_pfit_enable(new_crtc_state); 2482 2483 /* 2484 * On ILK+ LUT must be loaded before the pipe is running but with 2485 * clocks enabled 2486 */ 2487 intel_color_load_luts(new_crtc_state); 2488 intel_color_commit(new_crtc_state); 2489 /* update DSPCNTR to configure gamma for pipe bottom color */ 2490 intel_disable_primary_plane(new_crtc_state); 2491 2492 intel_initial_watermarks(state, crtc); 2493 intel_enable_transcoder(new_crtc_state); 2494 2495 if (new_crtc_state->has_pch_encoder) 2496 ilk_pch_enable(state, new_crtc_state); 2497 2498 intel_crtc_vblank_on(new_crtc_state); 2499 2500 intel_encoders_enable(state, crtc); 2501 2502 if (HAS_PCH_CPT(dev_priv)) 2503 cpt_verify_modeset(dev_priv, pipe); 2504 2505 /* 2506 * Must wait for vblank to avoid spurious PCH FIFO underruns. 2507 * And a second vblank wait is needed at least on ILK with 2508 * some interlaced HDMI modes. Let's do the double wait always 2509 * in case there are more corner cases we don't know about. 2510 */ 2511 if (new_crtc_state->has_pch_encoder) { 2512 intel_wait_for_vblank(dev_priv, pipe); 2513 intel_wait_for_vblank(dev_priv, pipe); 2514 } 2515 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 2516 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 2517 } 2518 2519 /* IPS only exists on ULT machines and is tied to pipe A. */ 2520 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 2521 { 2522 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 2523 } 2524 2525 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 2526 enum pipe pipe, bool apply) 2527 { 2528 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)); 2529 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 2530 2531 if (apply) 2532 val |= mask; 2533 else 2534 val &= ~mask; 2535 2536 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val); 2537 } 2538 2539 static void icl_pipe_mbus_enable(struct intel_crtc *crtc, bool joined_mbus) 2540 { 2541 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2542 enum pipe pipe = crtc->pipe; 2543 u32 val; 2544 2545 /* Wa_22010947358:adl-p */ 2546 if (IS_ALDERLAKE_P(dev_priv)) 2547 val = joined_mbus ? MBUS_DBOX_A_CREDIT(6) : MBUS_DBOX_A_CREDIT(4); 2548 else 2549 val = MBUS_DBOX_A_CREDIT(2); 2550 2551 if (DISPLAY_VER(dev_priv) >= 12) { 2552 val |= MBUS_DBOX_BW_CREDIT(2); 2553 val |= MBUS_DBOX_B_CREDIT(12); 2554 } else { 2555 val |= MBUS_DBOX_BW_CREDIT(1); 2556 val |= MBUS_DBOX_B_CREDIT(8); 2557 } 2558 2559 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val); 2560 } 2561 2562 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) 2563 { 2564 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2565 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2566 2567 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe), 2568 HSW_LINETIME(crtc_state->linetime) | 2569 HSW_IPS_LINETIME(crtc_state->ips_linetime)); 2570 } 2571 2572 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) 2573 { 2574 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2575 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2576 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder); 2577 u32 val; 2578 2579 val = intel_de_read(dev_priv, reg); 2580 val &= ~HSW_FRAME_START_DELAY_MASK; 2581 val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 2582 intel_de_write(dev_priv, reg, val); 2583 } 2584 2585 static void icl_ddi_bigjoiner_pre_enable(struct intel_atomic_state *state, 2586 const struct intel_crtc_state *crtc_state) 2587 { 2588 struct intel_crtc *master = to_intel_crtc(crtc_state->uapi.crtc); 2589 struct drm_i915_private *dev_priv = to_i915(master->base.dev); 2590 struct intel_crtc_state *master_crtc_state; 2591 struct drm_connector_state *conn_state; 2592 struct drm_connector *conn; 2593 struct intel_encoder *encoder = NULL; 2594 int i; 2595 2596 if (crtc_state->bigjoiner_slave) 2597 master = crtc_state->bigjoiner_linked_crtc; 2598 2599 master_crtc_state = intel_atomic_get_new_crtc_state(state, master); 2600 2601 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 2602 if (conn_state->crtc != &master->base) 2603 continue; 2604 2605 encoder = to_intel_encoder(conn_state->best_encoder); 2606 break; 2607 } 2608 2609 if (!crtc_state->bigjoiner_slave) { 2610 /* need to enable VDSC, which we skipped in pre-enable */ 2611 intel_dsc_enable(encoder, crtc_state); 2612 } else { 2613 /* 2614 * Enable sequence steps 1-7 on bigjoiner master 2615 */ 2616 intel_encoders_pre_pll_enable(state, master); 2617 if (master_crtc_state->shared_dpll) 2618 intel_enable_shared_dpll(master_crtc_state); 2619 intel_encoders_pre_enable(state, master); 2620 2621 /* and DSC on slave */ 2622 intel_dsc_enable(NULL, crtc_state); 2623 } 2624 2625 if (DISPLAY_VER(dev_priv) >= 13) 2626 intel_uncompressed_joiner_enable(crtc_state); 2627 } 2628 2629 static void hsw_crtc_enable(struct intel_atomic_state *state, 2630 struct intel_crtc *crtc) 2631 { 2632 const struct intel_crtc_state *new_crtc_state = 2633 intel_atomic_get_new_crtc_state(state, crtc); 2634 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2635 enum pipe pipe = crtc->pipe, hsw_workaround_pipe; 2636 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 2637 bool psl_clkgate_wa; 2638 2639 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 2640 return; 2641 2642 if (!new_crtc_state->bigjoiner) { 2643 intel_encoders_pre_pll_enable(state, crtc); 2644 2645 if (new_crtc_state->shared_dpll) 2646 intel_enable_shared_dpll(new_crtc_state); 2647 2648 intel_encoders_pre_enable(state, crtc); 2649 } else { 2650 icl_ddi_bigjoiner_pre_enable(state, new_crtc_state); 2651 } 2652 2653 intel_set_pipe_src_size(new_crtc_state); 2654 if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 2655 bdw_set_pipemisc(new_crtc_state); 2656 2657 if (!new_crtc_state->bigjoiner_slave && !transcoder_is_dsi(cpu_transcoder)) { 2658 intel_set_transcoder_timings(new_crtc_state); 2659 2660 if (cpu_transcoder != TRANSCODER_EDP) 2661 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder), 2662 new_crtc_state->pixel_multiplier - 1); 2663 2664 if (new_crtc_state->has_pch_encoder) 2665 intel_cpu_transcoder_set_m_n(new_crtc_state, 2666 &new_crtc_state->fdi_m_n, NULL); 2667 2668 hsw_set_frame_start_delay(new_crtc_state); 2669 2670 hsw_set_transconf(new_crtc_state); 2671 } 2672 2673 crtc->active = true; 2674 2675 /* Display WA #1180: WaDisableScalarClockGating: glk */ 2676 psl_clkgate_wa = DISPLAY_VER(dev_priv) == 10 && 2677 new_crtc_state->pch_pfit.enabled; 2678 if (psl_clkgate_wa) 2679 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 2680 2681 if (DISPLAY_VER(dev_priv) >= 9) 2682 skl_pfit_enable(new_crtc_state); 2683 else 2684 ilk_pfit_enable(new_crtc_state); 2685 2686 /* 2687 * On ILK+ LUT must be loaded before the pipe is running but with 2688 * clocks enabled 2689 */ 2690 intel_color_load_luts(new_crtc_state); 2691 intel_color_commit(new_crtc_state); 2692 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 2693 if (DISPLAY_VER(dev_priv) < 9) 2694 intel_disable_primary_plane(new_crtc_state); 2695 2696 hsw_set_linetime_wm(new_crtc_state); 2697 2698 if (DISPLAY_VER(dev_priv) >= 11) 2699 icl_set_pipe_chicken(new_crtc_state); 2700 2701 intel_initial_watermarks(state, crtc); 2702 2703 if (DISPLAY_VER(dev_priv) >= 11) { 2704 const struct intel_dbuf_state *dbuf_state = 2705 intel_atomic_get_new_dbuf_state(state); 2706 2707 icl_pipe_mbus_enable(crtc, dbuf_state->joined_mbus); 2708 } 2709 2710 if (new_crtc_state->bigjoiner_slave) 2711 intel_crtc_vblank_on(new_crtc_state); 2712 2713 intel_encoders_enable(state, crtc); 2714 2715 if (psl_clkgate_wa) { 2716 intel_wait_for_vblank(dev_priv, pipe); 2717 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 2718 } 2719 2720 /* If we change the relative order between pipe/planes enabling, we need 2721 * to change the workaround. */ 2722 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe; 2723 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 2724 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 2725 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 2726 } 2727 } 2728 2729 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state) 2730 { 2731 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 2732 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2733 enum pipe pipe = crtc->pipe; 2734 2735 /* To avoid upsetting the power well on haswell only disable the pfit if 2736 * it's in use. The hw state code will make sure we get this right. */ 2737 if (!old_crtc_state->pch_pfit.enabled) 2738 return; 2739 2740 intel_de_write(dev_priv, PF_CTL(pipe), 0); 2741 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0); 2742 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0); 2743 } 2744 2745 static void ilk_crtc_disable(struct intel_atomic_state *state, 2746 struct intel_crtc *crtc) 2747 { 2748 const struct intel_crtc_state *old_crtc_state = 2749 intel_atomic_get_old_crtc_state(state, crtc); 2750 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2751 enum pipe pipe = crtc->pipe; 2752 2753 /* 2754 * Sometimes spurious CPU pipe underruns happen when the 2755 * pipe is already disabled, but FDI RX/TX is still enabled. 2756 * Happens at least with VGA+HDMI cloning. Suppress them. 2757 */ 2758 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 2759 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 2760 2761 intel_encoders_disable(state, crtc); 2762 2763 intel_crtc_vblank_off(old_crtc_state); 2764 2765 intel_disable_transcoder(old_crtc_state); 2766 2767 ilk_pfit_disable(old_crtc_state); 2768 2769 if (old_crtc_state->has_pch_encoder) 2770 ilk_fdi_disable(crtc); 2771 2772 intel_encoders_post_disable(state, crtc); 2773 2774 if (old_crtc_state->has_pch_encoder) { 2775 ilk_disable_pch_transcoder(dev_priv, pipe); 2776 2777 if (HAS_PCH_CPT(dev_priv)) { 2778 i915_reg_t reg; 2779 u32 temp; 2780 2781 /* disable TRANS_DP_CTL */ 2782 reg = TRANS_DP_CTL(pipe); 2783 temp = intel_de_read(dev_priv, reg); 2784 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 2785 TRANS_DP_PORT_SEL_MASK); 2786 temp |= TRANS_DP_PORT_SEL_NONE; 2787 intel_de_write(dev_priv, reg, temp); 2788 2789 /* disable DPLL_SEL */ 2790 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 2791 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 2792 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 2793 } 2794 2795 ilk_fdi_pll_disable(crtc); 2796 } 2797 2798 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 2799 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 2800 } 2801 2802 static void hsw_crtc_disable(struct intel_atomic_state *state, 2803 struct intel_crtc *crtc) 2804 { 2805 /* 2806 * FIXME collapse everything to one hook. 2807 * Need care with mst->ddi interactions. 2808 */ 2809 intel_encoders_disable(state, crtc); 2810 intel_encoders_post_disable(state, crtc); 2811 } 2812 2813 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 2814 { 2815 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2816 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2817 2818 if (!crtc_state->gmch_pfit.control) 2819 return; 2820 2821 /* 2822 * The panel fitter should only be adjusted whilst the pipe is disabled, 2823 * according to register description and PRM. 2824 */ 2825 drm_WARN_ON(&dev_priv->drm, 2826 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE); 2827 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder); 2828 2829 intel_de_write(dev_priv, PFIT_PGM_RATIOS, 2830 crtc_state->gmch_pfit.pgm_ratios); 2831 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control); 2832 2833 /* Border color in case we don't scale up to the full screen. Black by 2834 * default, change to something else for debugging. */ 2835 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0); 2836 } 2837 2838 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 2839 { 2840 if (phy == PHY_NONE) 2841 return false; 2842 else if (IS_DG2(dev_priv)) 2843 /* 2844 * DG2 outputs labelled as "combo PHY" in the bspec use 2845 * SNPS PHYs with completely different programming, 2846 * hence we always return false here. 2847 */ 2848 return false; 2849 else if (IS_ALDERLAKE_S(dev_priv)) 2850 return phy <= PHY_E; 2851 else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) 2852 return phy <= PHY_D; 2853 else if (IS_JSL_EHL(dev_priv)) 2854 return phy <= PHY_C; 2855 else if (DISPLAY_VER(dev_priv) >= 11) 2856 return phy <= PHY_B; 2857 else 2858 return false; 2859 } 2860 2861 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 2862 { 2863 if (IS_DG2(dev_priv)) 2864 /* DG2's "TC1" output uses a SNPS PHY */ 2865 return false; 2866 else if (IS_ALDERLAKE_P(dev_priv)) 2867 return phy >= PHY_F && phy <= PHY_I; 2868 else if (IS_TIGERLAKE(dev_priv)) 2869 return phy >= PHY_D && phy <= PHY_I; 2870 else if (IS_ICELAKE(dev_priv)) 2871 return phy >= PHY_C && phy <= PHY_F; 2872 else 2873 return false; 2874 } 2875 2876 bool intel_phy_is_snps(struct drm_i915_private *dev_priv, enum phy phy) 2877 { 2878 if (phy == PHY_NONE) 2879 return false; 2880 else if (IS_DG2(dev_priv)) 2881 /* 2882 * All four "combo" ports and the TC1 port (PHY E) use 2883 * Synopsis PHYs. 2884 */ 2885 return phy <= PHY_E; 2886 2887 return false; 2888 } 2889 2890 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 2891 { 2892 if (DISPLAY_VER(i915) >= 13 && port >= PORT_D_XELPD) 2893 return PHY_D + port - PORT_D_XELPD; 2894 else if (DISPLAY_VER(i915) >= 13 && port >= PORT_TC1) 2895 return PHY_F + port - PORT_TC1; 2896 else if (IS_ALDERLAKE_S(i915) && port >= PORT_TC1) 2897 return PHY_B + port - PORT_TC1; 2898 else if ((IS_DG1(i915) || IS_ROCKETLAKE(i915)) && port >= PORT_TC1) 2899 return PHY_C + port - PORT_TC1; 2900 else if (IS_JSL_EHL(i915) && port == PORT_D) 2901 return PHY_A; 2902 2903 return PHY_A + port - PORT_A; 2904 } 2905 2906 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 2907 { 2908 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 2909 return TC_PORT_NONE; 2910 2911 if (DISPLAY_VER(dev_priv) >= 12) 2912 return TC_PORT_1 + port - PORT_TC1; 2913 else 2914 return TC_PORT_1 + port - PORT_C; 2915 } 2916 2917 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 2918 { 2919 switch (port) { 2920 case PORT_A: 2921 return POWER_DOMAIN_PORT_DDI_A_LANES; 2922 case PORT_B: 2923 return POWER_DOMAIN_PORT_DDI_B_LANES; 2924 case PORT_C: 2925 return POWER_DOMAIN_PORT_DDI_C_LANES; 2926 case PORT_D: 2927 return POWER_DOMAIN_PORT_DDI_D_LANES; 2928 case PORT_E: 2929 return POWER_DOMAIN_PORT_DDI_E_LANES; 2930 case PORT_F: 2931 return POWER_DOMAIN_PORT_DDI_F_LANES; 2932 case PORT_G: 2933 return POWER_DOMAIN_PORT_DDI_G_LANES; 2934 case PORT_H: 2935 return POWER_DOMAIN_PORT_DDI_H_LANES; 2936 case PORT_I: 2937 return POWER_DOMAIN_PORT_DDI_I_LANES; 2938 default: 2939 MISSING_CASE(port); 2940 return POWER_DOMAIN_PORT_OTHER; 2941 } 2942 } 2943 2944 enum intel_display_power_domain 2945 intel_aux_power_domain(struct intel_digital_port *dig_port) 2946 { 2947 if (intel_tc_port_in_tbt_alt_mode(dig_port)) { 2948 switch (dig_port->aux_ch) { 2949 case AUX_CH_C: 2950 return POWER_DOMAIN_AUX_C_TBT; 2951 case AUX_CH_D: 2952 return POWER_DOMAIN_AUX_D_TBT; 2953 case AUX_CH_E: 2954 return POWER_DOMAIN_AUX_E_TBT; 2955 case AUX_CH_F: 2956 return POWER_DOMAIN_AUX_F_TBT; 2957 case AUX_CH_G: 2958 return POWER_DOMAIN_AUX_G_TBT; 2959 case AUX_CH_H: 2960 return POWER_DOMAIN_AUX_H_TBT; 2961 case AUX_CH_I: 2962 return POWER_DOMAIN_AUX_I_TBT; 2963 default: 2964 MISSING_CASE(dig_port->aux_ch); 2965 return POWER_DOMAIN_AUX_C_TBT; 2966 } 2967 } 2968 2969 return intel_legacy_aux_to_power_domain(dig_port->aux_ch); 2970 } 2971 2972 /* 2973 * Converts aux_ch to power_domain without caring about TBT ports for that use 2974 * intel_aux_power_domain() 2975 */ 2976 enum intel_display_power_domain 2977 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch) 2978 { 2979 switch (aux_ch) { 2980 case AUX_CH_A: 2981 return POWER_DOMAIN_AUX_A; 2982 case AUX_CH_B: 2983 return POWER_DOMAIN_AUX_B; 2984 case AUX_CH_C: 2985 return POWER_DOMAIN_AUX_C; 2986 case AUX_CH_D: 2987 return POWER_DOMAIN_AUX_D; 2988 case AUX_CH_E: 2989 return POWER_DOMAIN_AUX_E; 2990 case AUX_CH_F: 2991 return POWER_DOMAIN_AUX_F; 2992 case AUX_CH_G: 2993 return POWER_DOMAIN_AUX_G; 2994 case AUX_CH_H: 2995 return POWER_DOMAIN_AUX_H; 2996 case AUX_CH_I: 2997 return POWER_DOMAIN_AUX_I; 2998 default: 2999 MISSING_CASE(aux_ch); 3000 return POWER_DOMAIN_AUX_A; 3001 } 3002 } 3003 3004 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 3005 { 3006 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3007 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3008 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 3009 struct drm_encoder *encoder; 3010 enum pipe pipe = crtc->pipe; 3011 u64 mask; 3012 3013 if (!crtc_state->hw.active) 3014 return 0; 3015 3016 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 3017 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(cpu_transcoder)); 3018 if (crtc_state->pch_pfit.enabled || 3019 crtc_state->pch_pfit.force_thru) 3020 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 3021 3022 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 3023 crtc_state->uapi.encoder_mask) { 3024 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 3025 3026 mask |= BIT_ULL(intel_encoder->power_domain); 3027 } 3028 3029 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 3030 mask |= BIT_ULL(POWER_DOMAIN_AUDIO_MMIO); 3031 3032 if (crtc_state->shared_dpll) 3033 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 3034 3035 if (crtc_state->dsc.compression_enable) 3036 mask |= BIT_ULL(intel_dsc_power_domain(crtc, cpu_transcoder)); 3037 3038 return mask; 3039 } 3040 3041 static u64 3042 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 3043 { 3044 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3045 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3046 enum intel_display_power_domain domain; 3047 u64 domains, new_domains, old_domains; 3048 3049 domains = get_crtc_power_domains(crtc_state); 3050 3051 new_domains = domains & ~crtc->enabled_power_domains.mask; 3052 old_domains = crtc->enabled_power_domains.mask & ~domains; 3053 3054 for_each_power_domain(domain, new_domains) 3055 intel_display_power_get_in_set(dev_priv, 3056 &crtc->enabled_power_domains, 3057 domain); 3058 3059 return old_domains; 3060 } 3061 3062 static void modeset_put_crtc_power_domains(struct intel_crtc *crtc, 3063 u64 domains) 3064 { 3065 intel_display_power_put_mask_in_set(to_i915(crtc->base.dev), 3066 &crtc->enabled_power_domains, 3067 domains); 3068 } 3069 3070 static void valleyview_crtc_enable(struct intel_atomic_state *state, 3071 struct intel_crtc *crtc) 3072 { 3073 const struct intel_crtc_state *new_crtc_state = 3074 intel_atomic_get_new_crtc_state(state, crtc); 3075 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3076 enum pipe pipe = crtc->pipe; 3077 3078 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3079 return; 3080 3081 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3082 intel_dp_set_m_n(new_crtc_state, M1_N1); 3083 3084 intel_set_transcoder_timings(new_crtc_state); 3085 intel_set_pipe_src_size(new_crtc_state); 3086 3087 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 3088 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY); 3089 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0); 3090 } 3091 3092 i9xx_set_pipeconf(new_crtc_state); 3093 3094 crtc->active = true; 3095 3096 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3097 3098 intel_encoders_pre_pll_enable(state, crtc); 3099 3100 if (IS_CHERRYVIEW(dev_priv)) 3101 chv_enable_pll(new_crtc_state); 3102 else 3103 vlv_enable_pll(new_crtc_state); 3104 3105 intel_encoders_pre_enable(state, crtc); 3106 3107 i9xx_pfit_enable(new_crtc_state); 3108 3109 intel_color_load_luts(new_crtc_state); 3110 intel_color_commit(new_crtc_state); 3111 /* update DSPCNTR to configure gamma for pipe bottom color */ 3112 intel_disable_primary_plane(new_crtc_state); 3113 3114 intel_initial_watermarks(state, crtc); 3115 intel_enable_transcoder(new_crtc_state); 3116 3117 intel_crtc_vblank_on(new_crtc_state); 3118 3119 intel_encoders_enable(state, crtc); 3120 } 3121 3122 static void i9xx_crtc_enable(struct intel_atomic_state *state, 3123 struct intel_crtc *crtc) 3124 { 3125 const struct intel_crtc_state *new_crtc_state = 3126 intel_atomic_get_new_crtc_state(state, crtc); 3127 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3128 enum pipe pipe = crtc->pipe; 3129 3130 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3131 return; 3132 3133 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3134 intel_dp_set_m_n(new_crtc_state, M1_N1); 3135 3136 intel_set_transcoder_timings(new_crtc_state); 3137 intel_set_pipe_src_size(new_crtc_state); 3138 3139 i9xx_set_pipeconf(new_crtc_state); 3140 3141 crtc->active = true; 3142 3143 if (DISPLAY_VER(dev_priv) != 2) 3144 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3145 3146 intel_encoders_pre_enable(state, crtc); 3147 3148 i9xx_enable_pll(new_crtc_state); 3149 3150 i9xx_pfit_enable(new_crtc_state); 3151 3152 intel_color_load_luts(new_crtc_state); 3153 intel_color_commit(new_crtc_state); 3154 /* update DSPCNTR to configure gamma for pipe bottom color */ 3155 intel_disable_primary_plane(new_crtc_state); 3156 3157 if (!intel_initial_watermarks(state, crtc)) 3158 intel_update_watermarks(dev_priv); 3159 intel_enable_transcoder(new_crtc_state); 3160 3161 intel_crtc_vblank_on(new_crtc_state); 3162 3163 intel_encoders_enable(state, crtc); 3164 3165 /* prevents spurious underruns */ 3166 if (DISPLAY_VER(dev_priv) == 2) 3167 intel_wait_for_vblank(dev_priv, pipe); 3168 } 3169 3170 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 3171 { 3172 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 3173 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3174 3175 if (!old_crtc_state->gmch_pfit.control) 3176 return; 3177 3178 assert_transcoder_disabled(dev_priv, old_crtc_state->cpu_transcoder); 3179 3180 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n", 3181 intel_de_read(dev_priv, PFIT_CONTROL)); 3182 intel_de_write(dev_priv, PFIT_CONTROL, 0); 3183 } 3184 3185 static void i9xx_crtc_disable(struct intel_atomic_state *state, 3186 struct intel_crtc *crtc) 3187 { 3188 struct intel_crtc_state *old_crtc_state = 3189 intel_atomic_get_old_crtc_state(state, crtc); 3190 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3191 enum pipe pipe = crtc->pipe; 3192 3193 /* 3194 * On gen2 planes are double buffered but the pipe isn't, so we must 3195 * wait for planes to fully turn off before disabling the pipe. 3196 */ 3197 if (DISPLAY_VER(dev_priv) == 2) 3198 intel_wait_for_vblank(dev_priv, pipe); 3199 3200 intel_encoders_disable(state, crtc); 3201 3202 intel_crtc_vblank_off(old_crtc_state); 3203 3204 intel_disable_transcoder(old_crtc_state); 3205 3206 i9xx_pfit_disable(old_crtc_state); 3207 3208 intel_encoders_post_disable(state, crtc); 3209 3210 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 3211 if (IS_CHERRYVIEW(dev_priv)) 3212 chv_disable_pll(dev_priv, pipe); 3213 else if (IS_VALLEYVIEW(dev_priv)) 3214 vlv_disable_pll(dev_priv, pipe); 3215 else 3216 i9xx_disable_pll(old_crtc_state); 3217 } 3218 3219 intel_encoders_post_pll_disable(state, crtc); 3220 3221 if (DISPLAY_VER(dev_priv) != 2) 3222 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3223 3224 if (!dev_priv->wm_disp->initial_watermarks) 3225 intel_update_watermarks(dev_priv); 3226 3227 /* clock the pipe down to 640x480@60 to potentially save power */ 3228 if (IS_I830(dev_priv)) 3229 i830_enable_pipe(dev_priv, pipe); 3230 } 3231 3232 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc, 3233 struct drm_modeset_acquire_ctx *ctx) 3234 { 3235 struct intel_encoder *encoder; 3236 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3237 struct intel_bw_state *bw_state = 3238 to_intel_bw_state(dev_priv->bw_obj.state); 3239 struct intel_cdclk_state *cdclk_state = 3240 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 3241 struct intel_dbuf_state *dbuf_state = 3242 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 3243 struct intel_crtc_state *crtc_state = 3244 to_intel_crtc_state(crtc->base.state); 3245 struct intel_plane *plane; 3246 struct drm_atomic_state *state; 3247 struct intel_crtc_state *temp_crtc_state; 3248 enum pipe pipe = crtc->pipe; 3249 int ret; 3250 3251 if (!crtc_state->hw.active) 3252 return; 3253 3254 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 3255 const struct intel_plane_state *plane_state = 3256 to_intel_plane_state(plane->base.state); 3257 3258 if (plane_state->uapi.visible) 3259 intel_plane_disable_noatomic(crtc, plane); 3260 } 3261 3262 state = drm_atomic_state_alloc(&dev_priv->drm); 3263 if (!state) { 3264 drm_dbg_kms(&dev_priv->drm, 3265 "failed to disable [CRTC:%d:%s], out of memory", 3266 crtc->base.base.id, crtc->base.name); 3267 return; 3268 } 3269 3270 state->acquire_ctx = ctx; 3271 3272 /* Everything's already locked, -EDEADLK can't happen. */ 3273 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc); 3274 ret = drm_atomic_add_affected_connectors(state, &crtc->base); 3275 3276 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret); 3277 3278 dev_priv->display->crtc_disable(to_intel_atomic_state(state), crtc); 3279 3280 drm_atomic_state_put(state); 3281 3282 drm_dbg_kms(&dev_priv->drm, 3283 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 3284 crtc->base.base.id, crtc->base.name); 3285 3286 crtc->active = false; 3287 crtc->base.enabled = false; 3288 3289 drm_WARN_ON(&dev_priv->drm, 3290 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0); 3291 crtc_state->uapi.active = false; 3292 crtc_state->uapi.connector_mask = 0; 3293 crtc_state->uapi.encoder_mask = 0; 3294 intel_crtc_free_hw_state(crtc_state); 3295 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw)); 3296 3297 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder) 3298 encoder->base.crtc = NULL; 3299 3300 intel_fbc_disable(crtc); 3301 intel_update_watermarks(dev_priv); 3302 intel_disable_shared_dpll(crtc_state); 3303 3304 intel_display_power_put_all_in_set(dev_priv, &crtc->enabled_power_domains); 3305 3306 cdclk_state->min_cdclk[pipe] = 0; 3307 cdclk_state->min_voltage_level[pipe] = 0; 3308 cdclk_state->active_pipes &= ~BIT(pipe); 3309 3310 dbuf_state->active_pipes &= ~BIT(pipe); 3311 3312 bw_state->data_rate[pipe] = 0; 3313 bw_state->num_active_planes[pipe] = 0; 3314 } 3315 3316 /* 3317 * turn all crtc's off, but do not adjust state 3318 * This has to be paired with a call to intel_modeset_setup_hw_state. 3319 */ 3320 int intel_display_suspend(struct drm_device *dev) 3321 { 3322 struct drm_i915_private *dev_priv = to_i915(dev); 3323 struct drm_atomic_state *state; 3324 int ret; 3325 3326 if (!HAS_DISPLAY(dev_priv)) 3327 return 0; 3328 3329 state = drm_atomic_helper_suspend(dev); 3330 ret = PTR_ERR_OR_ZERO(state); 3331 if (ret) 3332 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 3333 ret); 3334 else 3335 dev_priv->modeset_restore_state = state; 3336 return ret; 3337 } 3338 3339 void intel_encoder_destroy(struct drm_encoder *encoder) 3340 { 3341 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 3342 3343 drm_encoder_cleanup(encoder); 3344 kfree(intel_encoder); 3345 } 3346 3347 /* Cross check the actual hw state with our own modeset state tracking (and it's 3348 * internal consistency). */ 3349 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 3350 struct drm_connector_state *conn_state) 3351 { 3352 struct intel_connector *connector = to_intel_connector(conn_state->connector); 3353 struct drm_i915_private *i915 = to_i915(connector->base.dev); 3354 3355 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 3356 connector->base.base.id, connector->base.name); 3357 3358 if (connector->get_hw_state(connector)) { 3359 struct intel_encoder *encoder = intel_attached_encoder(connector); 3360 3361 I915_STATE_WARN(!crtc_state, 3362 "connector enabled without attached crtc\n"); 3363 3364 if (!crtc_state) 3365 return; 3366 3367 I915_STATE_WARN(!crtc_state->hw.active, 3368 "connector is active, but attached crtc isn't\n"); 3369 3370 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 3371 return; 3372 3373 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 3374 "atomic encoder doesn't match attached encoder\n"); 3375 3376 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 3377 "attached encoder crtc differs from connector crtc\n"); 3378 } else { 3379 I915_STATE_WARN(crtc_state && crtc_state->hw.active, 3380 "attached crtc is active, but connector isn't\n"); 3381 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 3382 "best encoder set without crtc!\n"); 3383 } 3384 } 3385 3386 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 3387 { 3388 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3389 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3390 3391 /* IPS only exists on ULT machines and is tied to pipe A. */ 3392 if (!hsw_crtc_supports_ips(crtc)) 3393 return false; 3394 3395 if (!dev_priv->params.enable_ips) 3396 return false; 3397 3398 if (crtc_state->pipe_bpp > 24) 3399 return false; 3400 3401 /* 3402 * We compare against max which means we must take 3403 * the increased cdclk requirement into account when 3404 * calculating the new cdclk. 3405 * 3406 * Should measure whether using a lower cdclk w/o IPS 3407 */ 3408 if (IS_BROADWELL(dev_priv) && 3409 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 3410 return false; 3411 3412 return true; 3413 } 3414 3415 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 3416 { 3417 struct drm_i915_private *dev_priv = 3418 to_i915(crtc_state->uapi.crtc->dev); 3419 struct intel_atomic_state *state = 3420 to_intel_atomic_state(crtc_state->uapi.state); 3421 3422 crtc_state->ips_enabled = false; 3423 3424 if (!hsw_crtc_state_ips_capable(crtc_state)) 3425 return 0; 3426 3427 /* 3428 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 3429 * enabled and disabled dynamically based on package C states, 3430 * user space can't make reliable use of the CRCs, so let's just 3431 * completely disable it. 3432 */ 3433 if (crtc_state->crc_enabled) 3434 return 0; 3435 3436 /* IPS should be fine as long as at least one plane is enabled. */ 3437 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 3438 return 0; 3439 3440 if (IS_BROADWELL(dev_priv)) { 3441 const struct intel_cdclk_state *cdclk_state; 3442 3443 cdclk_state = intel_atomic_get_cdclk_state(state); 3444 if (IS_ERR(cdclk_state)) 3445 return PTR_ERR(cdclk_state); 3446 3447 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 3448 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100) 3449 return 0; 3450 } 3451 3452 crtc_state->ips_enabled = true; 3453 3454 return 0; 3455 } 3456 3457 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 3458 { 3459 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3460 3461 /* GDG double wide on either pipe, otherwise pipe A only */ 3462 return DISPLAY_VER(dev_priv) < 4 && 3463 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 3464 } 3465 3466 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state) 3467 { 3468 u32 pixel_rate = crtc_state->hw.pipe_mode.crtc_clock; 3469 struct drm_rect src; 3470 3471 /* 3472 * We only use IF-ID interlacing. If we ever use 3473 * PF-ID we'll need to adjust the pixel_rate here. 3474 */ 3475 3476 if (!crtc_state->pch_pfit.enabled) 3477 return pixel_rate; 3478 3479 drm_rect_init(&src, 0, 0, 3480 crtc_state->pipe_src_w << 16, 3481 crtc_state->pipe_src_h << 16); 3482 3483 return intel_adjusted_rate(&src, &crtc_state->pch_pfit.dst, 3484 pixel_rate); 3485 } 3486 3487 static void intel_mode_from_crtc_timings(struct drm_display_mode *mode, 3488 const struct drm_display_mode *timings) 3489 { 3490 mode->hdisplay = timings->crtc_hdisplay; 3491 mode->htotal = timings->crtc_htotal; 3492 mode->hsync_start = timings->crtc_hsync_start; 3493 mode->hsync_end = timings->crtc_hsync_end; 3494 3495 mode->vdisplay = timings->crtc_vdisplay; 3496 mode->vtotal = timings->crtc_vtotal; 3497 mode->vsync_start = timings->crtc_vsync_start; 3498 mode->vsync_end = timings->crtc_vsync_end; 3499 3500 mode->flags = timings->flags; 3501 mode->type = DRM_MODE_TYPE_DRIVER; 3502 3503 mode->clock = timings->crtc_clock; 3504 3505 drm_mode_set_name(mode); 3506 } 3507 3508 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 3509 { 3510 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 3511 3512 if (HAS_GMCH(dev_priv)) 3513 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 3514 crtc_state->pixel_rate = 3515 crtc_state->hw.pipe_mode.crtc_clock; 3516 else 3517 crtc_state->pixel_rate = 3518 ilk_pipe_pixel_rate(crtc_state); 3519 } 3520 3521 static void intel_crtc_readout_derived_state(struct intel_crtc_state *crtc_state) 3522 { 3523 struct drm_display_mode *mode = &crtc_state->hw.mode; 3524 struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; 3525 struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 3526 3527 drm_mode_copy(pipe_mode, adjusted_mode); 3528 3529 if (crtc_state->bigjoiner) { 3530 /* 3531 * transcoder is programmed to the full mode, 3532 * but pipe timings are half of the transcoder mode 3533 */ 3534 pipe_mode->crtc_hdisplay /= 2; 3535 pipe_mode->crtc_hblank_start /= 2; 3536 pipe_mode->crtc_hblank_end /= 2; 3537 pipe_mode->crtc_hsync_start /= 2; 3538 pipe_mode->crtc_hsync_end /= 2; 3539 pipe_mode->crtc_htotal /= 2; 3540 pipe_mode->crtc_clock /= 2; 3541 } 3542 3543 if (crtc_state->splitter.enable) { 3544 int n = crtc_state->splitter.link_count; 3545 int overlap = crtc_state->splitter.pixel_overlap; 3546 3547 /* 3548 * eDP MSO uses segment timings from EDID for transcoder 3549 * timings, but full mode for everything else. 3550 * 3551 * h_full = (h_segment - pixel_overlap) * link_count 3552 */ 3553 pipe_mode->crtc_hdisplay = (pipe_mode->crtc_hdisplay - overlap) * n; 3554 pipe_mode->crtc_hblank_start = (pipe_mode->crtc_hblank_start - overlap) * n; 3555 pipe_mode->crtc_hblank_end = (pipe_mode->crtc_hblank_end - overlap) * n; 3556 pipe_mode->crtc_hsync_start = (pipe_mode->crtc_hsync_start - overlap) * n; 3557 pipe_mode->crtc_hsync_end = (pipe_mode->crtc_hsync_end - overlap) * n; 3558 pipe_mode->crtc_htotal = (pipe_mode->crtc_htotal - overlap) * n; 3559 pipe_mode->crtc_clock *= n; 3560 3561 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 3562 intel_mode_from_crtc_timings(adjusted_mode, pipe_mode); 3563 } else { 3564 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 3565 intel_mode_from_crtc_timings(adjusted_mode, adjusted_mode); 3566 } 3567 3568 intel_crtc_compute_pixel_rate(crtc_state); 3569 3570 drm_mode_copy(mode, adjusted_mode); 3571 mode->hdisplay = crtc_state->pipe_src_w << crtc_state->bigjoiner; 3572 mode->vdisplay = crtc_state->pipe_src_h; 3573 } 3574 3575 static void intel_encoder_get_config(struct intel_encoder *encoder, 3576 struct intel_crtc_state *crtc_state) 3577 { 3578 encoder->get_config(encoder, crtc_state); 3579 3580 intel_crtc_readout_derived_state(crtc_state); 3581 } 3582 3583 static int intel_crtc_compute_config(struct intel_crtc *crtc, 3584 struct intel_crtc_state *pipe_config) 3585 { 3586 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3587 struct drm_display_mode *pipe_mode = &pipe_config->hw.pipe_mode; 3588 int clock_limit = dev_priv->max_dotclk_freq; 3589 3590 drm_mode_copy(pipe_mode, &pipe_config->hw.adjusted_mode); 3591 3592 /* Adjust pipe_mode for bigjoiner, with half the horizontal mode */ 3593 if (pipe_config->bigjoiner) { 3594 pipe_mode->crtc_clock /= 2; 3595 pipe_mode->crtc_hdisplay /= 2; 3596 pipe_mode->crtc_hblank_start /= 2; 3597 pipe_mode->crtc_hblank_end /= 2; 3598 pipe_mode->crtc_hsync_start /= 2; 3599 pipe_mode->crtc_hsync_end /= 2; 3600 pipe_mode->crtc_htotal /= 2; 3601 pipe_config->pipe_src_w /= 2; 3602 } 3603 3604 if (pipe_config->splitter.enable) { 3605 int n = pipe_config->splitter.link_count; 3606 int overlap = pipe_config->splitter.pixel_overlap; 3607 3608 pipe_mode->crtc_hdisplay = (pipe_mode->crtc_hdisplay - overlap) * n; 3609 pipe_mode->crtc_hblank_start = (pipe_mode->crtc_hblank_start - overlap) * n; 3610 pipe_mode->crtc_hblank_end = (pipe_mode->crtc_hblank_end - overlap) * n; 3611 pipe_mode->crtc_hsync_start = (pipe_mode->crtc_hsync_start - overlap) * n; 3612 pipe_mode->crtc_hsync_end = (pipe_mode->crtc_hsync_end - overlap) * n; 3613 pipe_mode->crtc_htotal = (pipe_mode->crtc_htotal - overlap) * n; 3614 pipe_mode->crtc_clock *= n; 3615 } 3616 3617 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 3618 3619 if (DISPLAY_VER(dev_priv) < 4) { 3620 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 3621 3622 /* 3623 * Enable double wide mode when the dot clock 3624 * is > 90% of the (display) core speed. 3625 */ 3626 if (intel_crtc_supports_double_wide(crtc) && 3627 pipe_mode->crtc_clock > clock_limit) { 3628 clock_limit = dev_priv->max_dotclk_freq; 3629 pipe_config->double_wide = true; 3630 } 3631 } 3632 3633 if (pipe_mode->crtc_clock > clock_limit) { 3634 drm_dbg_kms(&dev_priv->drm, 3635 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 3636 pipe_mode->crtc_clock, clock_limit, 3637 yesno(pipe_config->double_wide)); 3638 return -EINVAL; 3639 } 3640 3641 /* 3642 * Pipe horizontal size must be even in: 3643 * - DVO ganged mode 3644 * - LVDS dual channel mode 3645 * - Double wide pipe 3646 */ 3647 if (pipe_config->pipe_src_w & 1) { 3648 if (pipe_config->double_wide) { 3649 drm_dbg_kms(&dev_priv->drm, 3650 "Odd pipe source width not supported with double wide pipe\n"); 3651 return -EINVAL; 3652 } 3653 3654 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 3655 intel_is_dual_link_lvds(dev_priv)) { 3656 drm_dbg_kms(&dev_priv->drm, 3657 "Odd pipe source width not supported with dual link LVDS\n"); 3658 return -EINVAL; 3659 } 3660 } 3661 3662 intel_crtc_compute_pixel_rate(pipe_config); 3663 3664 if (pipe_config->has_pch_encoder) 3665 return ilk_fdi_compute_config(crtc, pipe_config); 3666 3667 return 0; 3668 } 3669 3670 static void 3671 intel_reduce_m_n_ratio(u32 *num, u32 *den) 3672 { 3673 while (*num > DATA_LINK_M_N_MASK || 3674 *den > DATA_LINK_M_N_MASK) { 3675 *num >>= 1; 3676 *den >>= 1; 3677 } 3678 } 3679 3680 static void compute_m_n(unsigned int m, unsigned int n, 3681 u32 *ret_m, u32 *ret_n, 3682 bool constant_n) 3683 { 3684 /* 3685 * Several DP dongles in particular seem to be fussy about 3686 * too large link M/N values. Give N value as 0x8000 that 3687 * should be acceptable by specific devices. 0x8000 is the 3688 * specified fixed N value for asynchronous clock mode, 3689 * which the devices expect also in synchronous clock mode. 3690 */ 3691 if (constant_n) 3692 *ret_n = DP_LINK_CONSTANT_N_VALUE; 3693 else 3694 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 3695 3696 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 3697 intel_reduce_m_n_ratio(ret_m, ret_n); 3698 } 3699 3700 void 3701 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 3702 int pixel_clock, int link_clock, 3703 struct intel_link_m_n *m_n, 3704 bool constant_n, bool fec_enable) 3705 { 3706 u32 data_clock = bits_per_pixel * pixel_clock; 3707 3708 if (fec_enable) 3709 data_clock = intel_dp_mode_to_fec_clock(data_clock); 3710 3711 m_n->tu = 64; 3712 compute_m_n(data_clock, 3713 link_clock * nlanes * 8, 3714 &m_n->gmch_m, &m_n->gmch_n, 3715 constant_n); 3716 3717 compute_m_n(pixel_clock, link_clock, 3718 &m_n->link_m, &m_n->link_n, 3719 constant_n); 3720 } 3721 3722 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) 3723 { 3724 /* 3725 * There may be no VBT; and if the BIOS enabled SSC we can 3726 * just keep using it to avoid unnecessary flicker. Whereas if the 3727 * BIOS isn't using it, don't assume it will work even if the VBT 3728 * indicates as much. 3729 */ 3730 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 3731 bool bios_lvds_use_ssc = intel_de_read(dev_priv, 3732 PCH_DREF_CONTROL) & 3733 DREF_SSC1_ENABLE; 3734 3735 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 3736 drm_dbg_kms(&dev_priv->drm, 3737 "SSC %s by BIOS, overriding VBT which says %s\n", 3738 enableddisabled(bios_lvds_use_ssc), 3739 enableddisabled(dev_priv->vbt.lvds_use_ssc)); 3740 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 3741 } 3742 } 3743 } 3744 3745 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 3746 const struct intel_link_m_n *m_n) 3747 { 3748 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3749 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3750 enum pipe pipe = crtc->pipe; 3751 3752 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe), 3753 TU_SIZE(m_n->tu) | m_n->gmch_m); 3754 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 3755 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m); 3756 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n); 3757 } 3758 3759 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 3760 enum transcoder transcoder) 3761 { 3762 if (IS_HASWELL(dev_priv)) 3763 return transcoder == TRANSCODER_EDP; 3764 3765 /* 3766 * Strictly speaking some registers are available before 3767 * gen7, but we only support DRRS on gen7+ 3768 */ 3769 return DISPLAY_VER(dev_priv) == 7 || IS_CHERRYVIEW(dev_priv); 3770 } 3771 3772 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 3773 const struct intel_link_m_n *m_n, 3774 const struct intel_link_m_n *m2_n2) 3775 { 3776 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3777 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3778 enum pipe pipe = crtc->pipe; 3779 enum transcoder transcoder = crtc_state->cpu_transcoder; 3780 3781 if (DISPLAY_VER(dev_priv) >= 5) { 3782 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder), 3783 TU_SIZE(m_n->tu) | m_n->gmch_m); 3784 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder), 3785 m_n->gmch_n); 3786 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder), 3787 m_n->link_m); 3788 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder), 3789 m_n->link_n); 3790 /* 3791 * M2_N2 registers are set only if DRRS is supported 3792 * (to make sure the registers are not unnecessarily accessed). 3793 */ 3794 if (m2_n2 && crtc_state->has_drrs && 3795 transcoder_has_m2_n2(dev_priv, transcoder)) { 3796 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder), 3797 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 3798 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder), 3799 m2_n2->gmch_n); 3800 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder), 3801 m2_n2->link_m); 3802 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder), 3803 m2_n2->link_n); 3804 } 3805 } else { 3806 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe), 3807 TU_SIZE(m_n->tu) | m_n->gmch_m); 3808 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 3809 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m); 3810 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n); 3811 } 3812 } 3813 3814 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 3815 { 3816 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 3817 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 3818 3819 if (m_n == M1_N1) { 3820 dp_m_n = &crtc_state->dp_m_n; 3821 dp_m2_n2 = &crtc_state->dp_m2_n2; 3822 } else if (m_n == M2_N2) { 3823 3824 /* 3825 * M2_N2 registers are not supported. Hence m2_n2 divider value 3826 * needs to be programmed into M1_N1. 3827 */ 3828 dp_m_n = &crtc_state->dp_m2_n2; 3829 } else { 3830 drm_err(&i915->drm, "Unsupported divider value\n"); 3831 return; 3832 } 3833 3834 if (crtc_state->has_pch_encoder) 3835 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 3836 else 3837 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 3838 } 3839 3840 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state) 3841 { 3842 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3843 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3844 enum pipe pipe = crtc->pipe; 3845 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 3846 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 3847 u32 crtc_vtotal, crtc_vblank_end; 3848 int vsyncshift = 0; 3849 3850 /* We need to be careful not to changed the adjusted mode, for otherwise 3851 * the hw state checker will get angry at the mismatch. */ 3852 crtc_vtotal = adjusted_mode->crtc_vtotal; 3853 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 3854 3855 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 3856 /* the chip adds 2 halflines automatically */ 3857 crtc_vtotal -= 1; 3858 crtc_vblank_end -= 1; 3859 3860 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 3861 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 3862 else 3863 vsyncshift = adjusted_mode->crtc_hsync_start - 3864 adjusted_mode->crtc_htotal / 2; 3865 if (vsyncshift < 0) 3866 vsyncshift += adjusted_mode->crtc_htotal; 3867 } 3868 3869 if (DISPLAY_VER(dev_priv) > 3) 3870 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder), 3871 vsyncshift); 3872 3873 intel_de_write(dev_priv, HTOTAL(cpu_transcoder), 3874 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); 3875 intel_de_write(dev_priv, HBLANK(cpu_transcoder), 3876 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); 3877 intel_de_write(dev_priv, HSYNC(cpu_transcoder), 3878 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); 3879 3880 intel_de_write(dev_priv, VTOTAL(cpu_transcoder), 3881 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); 3882 intel_de_write(dev_priv, VBLANK(cpu_transcoder), 3883 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); 3884 intel_de_write(dev_priv, VSYNC(cpu_transcoder), 3885 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); 3886 3887 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 3888 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 3889 * documented on the DDI_FUNC_CTL register description, EDP Input Select 3890 * bits. */ 3891 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 3892 (pipe == PIPE_B || pipe == PIPE_C)) 3893 intel_de_write(dev_priv, VTOTAL(pipe), 3894 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 3895 3896 } 3897 3898 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 3899 { 3900 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3901 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3902 enum pipe pipe = crtc->pipe; 3903 3904 /* pipesrc controls the size that is scaled from, which should 3905 * always be the user's requested size. 3906 */ 3907 intel_de_write(dev_priv, PIPESRC(pipe), 3908 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1)); 3909 } 3910 3911 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 3912 { 3913 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 3914 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 3915 3916 if (DISPLAY_VER(dev_priv) == 2) 3917 return false; 3918 3919 if (DISPLAY_VER(dev_priv) >= 9 || 3920 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 3921 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; 3922 else 3923 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; 3924 } 3925 3926 static void intel_get_transcoder_timings(struct intel_crtc *crtc, 3927 struct intel_crtc_state *pipe_config) 3928 { 3929 struct drm_device *dev = crtc->base.dev; 3930 struct drm_i915_private *dev_priv = to_i915(dev); 3931 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 3932 u32 tmp; 3933 3934 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); 3935 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 3936 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 3937 3938 if (!transcoder_is_dsi(cpu_transcoder)) { 3939 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); 3940 pipe_config->hw.adjusted_mode.crtc_hblank_start = 3941 (tmp & 0xffff) + 1; 3942 pipe_config->hw.adjusted_mode.crtc_hblank_end = 3943 ((tmp >> 16) & 0xffff) + 1; 3944 } 3945 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); 3946 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 3947 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 3948 3949 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); 3950 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 3951 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 3952 3953 if (!transcoder_is_dsi(cpu_transcoder)) { 3954 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); 3955 pipe_config->hw.adjusted_mode.crtc_vblank_start = 3956 (tmp & 0xffff) + 1; 3957 pipe_config->hw.adjusted_mode.crtc_vblank_end = 3958 ((tmp >> 16) & 0xffff) + 1; 3959 } 3960 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); 3961 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 3962 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 3963 3964 if (intel_pipe_is_interlaced(pipe_config)) { 3965 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 3966 pipe_config->hw.adjusted_mode.crtc_vtotal += 1; 3967 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1; 3968 } 3969 } 3970 3971 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 3972 struct intel_crtc_state *pipe_config) 3973 { 3974 struct drm_device *dev = crtc->base.dev; 3975 struct drm_i915_private *dev_priv = to_i915(dev); 3976 u32 tmp; 3977 3978 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe)); 3979 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 3980 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 3981 } 3982 3983 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 3984 { 3985 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3986 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3987 u32 pipeconf; 3988 3989 pipeconf = 0; 3990 3991 /* we keep both pipes enabled on 830 */ 3992 if (IS_I830(dev_priv)) 3993 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 3994 3995 if (crtc_state->double_wide) 3996 pipeconf |= PIPECONF_DOUBLE_WIDE; 3997 3998 /* only g4x and later have fancy bpc/dither controls */ 3999 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 4000 IS_CHERRYVIEW(dev_priv)) { 4001 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 4002 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 4003 pipeconf |= PIPECONF_DITHER_EN | 4004 PIPECONF_DITHER_TYPE_SP; 4005 4006 switch (crtc_state->pipe_bpp) { 4007 case 18: 4008 pipeconf |= PIPECONF_6BPC; 4009 break; 4010 case 24: 4011 pipeconf |= PIPECONF_8BPC; 4012 break; 4013 case 30: 4014 pipeconf |= PIPECONF_10BPC; 4015 break; 4016 default: 4017 /* Case prevented by intel_choose_pipe_bpp_dither. */ 4018 BUG(); 4019 } 4020 } 4021 4022 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 4023 if (DISPLAY_VER(dev_priv) < 4 || 4024 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 4025 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 4026 else 4027 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 4028 } else { 4029 pipeconf |= PIPECONF_PROGRESSIVE; 4030 } 4031 4032 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 4033 crtc_state->limited_color_range) 4034 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 4035 4036 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 4037 4038 pipeconf |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 4039 4040 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf); 4041 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); 4042 } 4043 4044 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 4045 { 4046 if (IS_I830(dev_priv)) 4047 return false; 4048 4049 return DISPLAY_VER(dev_priv) >= 4 || 4050 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 4051 } 4052 4053 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state) 4054 { 4055 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4056 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4057 u32 tmp; 4058 4059 if (!i9xx_has_pfit(dev_priv)) 4060 return; 4061 4062 tmp = intel_de_read(dev_priv, PFIT_CONTROL); 4063 if (!(tmp & PFIT_ENABLE)) 4064 return; 4065 4066 /* Check whether the pfit is attached to our pipe. */ 4067 if (DISPLAY_VER(dev_priv) < 4) { 4068 if (crtc->pipe != PIPE_B) 4069 return; 4070 } else { 4071 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 4072 return; 4073 } 4074 4075 crtc_state->gmch_pfit.control = tmp; 4076 crtc_state->gmch_pfit.pgm_ratios = 4077 intel_de_read(dev_priv, PFIT_PGM_RATIOS); 4078 } 4079 4080 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 4081 struct intel_crtc_state *pipe_config) 4082 { 4083 struct drm_device *dev = crtc->base.dev; 4084 struct drm_i915_private *dev_priv = to_i915(dev); 4085 enum pipe pipe = crtc->pipe; 4086 struct dpll clock; 4087 u32 mdiv; 4088 int refclk = 100000; 4089 4090 /* In case of DSI, DPLL will not be used */ 4091 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 4092 return; 4093 4094 vlv_dpio_get(dev_priv); 4095 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 4096 vlv_dpio_put(dev_priv); 4097 4098 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 4099 clock.m2 = mdiv & DPIO_M2DIV_MASK; 4100 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 4101 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 4102 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 4103 4104 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 4105 } 4106 4107 static void chv_crtc_clock_get(struct intel_crtc *crtc, 4108 struct intel_crtc_state *pipe_config) 4109 { 4110 struct drm_device *dev = crtc->base.dev; 4111 struct drm_i915_private *dev_priv = to_i915(dev); 4112 enum pipe pipe = crtc->pipe; 4113 enum dpio_channel port = vlv_pipe_to_channel(pipe); 4114 struct dpll clock; 4115 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 4116 int refclk = 100000; 4117 4118 /* In case of DSI, DPLL will not be used */ 4119 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 4120 return; 4121 4122 vlv_dpio_get(dev_priv); 4123 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 4124 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 4125 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 4126 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 4127 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 4128 vlv_dpio_put(dev_priv); 4129 4130 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 4131 clock.m2 = (pll_dw0 & 0xff) << 22; 4132 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 4133 clock.m2 |= pll_dw2 & 0x3fffff; 4134 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 4135 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 4136 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 4137 4138 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 4139 } 4140 4141 static enum intel_output_format 4142 bdw_get_pipemisc_output_format(struct intel_crtc *crtc) 4143 { 4144 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4145 u32 tmp; 4146 4147 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 4148 4149 if (tmp & PIPEMISC_YUV420_ENABLE) { 4150 /* We support 4:2:0 in full blend mode only */ 4151 drm_WARN_ON(&dev_priv->drm, 4152 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); 4153 4154 return INTEL_OUTPUT_FORMAT_YCBCR420; 4155 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 4156 return INTEL_OUTPUT_FORMAT_YCBCR444; 4157 } else { 4158 return INTEL_OUTPUT_FORMAT_RGB; 4159 } 4160 } 4161 4162 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 4163 { 4164 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4165 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 4166 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4167 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4168 u32 tmp; 4169 4170 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 4171 4172 if (tmp & DISPPLANE_GAMMA_ENABLE) 4173 crtc_state->gamma_enable = true; 4174 4175 if (!HAS_GMCH(dev_priv) && 4176 tmp & DISPPLANE_PIPE_CSC_ENABLE) 4177 crtc_state->csc_enable = true; 4178 } 4179 4180 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 4181 struct intel_crtc_state *pipe_config) 4182 { 4183 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4184 enum intel_display_power_domain power_domain; 4185 intel_wakeref_t wakeref; 4186 u32 tmp; 4187 bool ret; 4188 4189 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 4190 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 4191 if (!wakeref) 4192 return false; 4193 4194 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 4195 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 4196 pipe_config->shared_dpll = NULL; 4197 4198 ret = false; 4199 4200 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 4201 if (!(tmp & PIPECONF_ENABLE)) 4202 goto out; 4203 4204 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 4205 IS_CHERRYVIEW(dev_priv)) { 4206 switch (tmp & PIPECONF_BPC_MASK) { 4207 case PIPECONF_6BPC: 4208 pipe_config->pipe_bpp = 18; 4209 break; 4210 case PIPECONF_8BPC: 4211 pipe_config->pipe_bpp = 24; 4212 break; 4213 case PIPECONF_10BPC: 4214 pipe_config->pipe_bpp = 30; 4215 break; 4216 default: 4217 break; 4218 } 4219 } 4220 4221 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 4222 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 4223 pipe_config->limited_color_range = true; 4224 4225 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 4226 PIPECONF_GAMMA_MODE_SHIFT; 4227 4228 if (IS_CHERRYVIEW(dev_priv)) 4229 pipe_config->cgm_mode = intel_de_read(dev_priv, 4230 CGM_PIPE_MODE(crtc->pipe)); 4231 4232 i9xx_get_pipe_color_config(pipe_config); 4233 intel_color_get_config(pipe_config); 4234 4235 if (DISPLAY_VER(dev_priv) < 4) 4236 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 4237 4238 intel_get_transcoder_timings(crtc, pipe_config); 4239 intel_get_pipe_src_size(crtc, pipe_config); 4240 4241 i9xx_get_pfit_config(pipe_config); 4242 4243 if (DISPLAY_VER(dev_priv) >= 4) { 4244 /* No way to read it out on pipes B and C */ 4245 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 4246 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 4247 else 4248 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); 4249 pipe_config->pixel_multiplier = 4250 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 4251 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 4252 pipe_config->dpll_hw_state.dpll_md = tmp; 4253 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 4254 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 4255 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe)); 4256 pipe_config->pixel_multiplier = 4257 ((tmp & SDVO_MULTIPLIER_MASK) 4258 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 4259 } else { 4260 /* Note that on i915G/GM the pixel multiplier is in the sdvo 4261 * port and will be fixed up in the encoder->get_config 4262 * function. */ 4263 pipe_config->pixel_multiplier = 1; 4264 } 4265 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv, 4266 DPLL(crtc->pipe)); 4267 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 4268 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv, 4269 FP0(crtc->pipe)); 4270 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv, 4271 FP1(crtc->pipe)); 4272 } else { 4273 /* Mask out read-only status bits. */ 4274 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 4275 DPLL_PORTC_READY_MASK | 4276 DPLL_PORTB_READY_MASK); 4277 } 4278 4279 if (IS_CHERRYVIEW(dev_priv)) 4280 chv_crtc_clock_get(crtc, pipe_config); 4281 else if (IS_VALLEYVIEW(dev_priv)) 4282 vlv_crtc_clock_get(crtc, pipe_config); 4283 else 4284 i9xx_crtc_clock_get(crtc, pipe_config); 4285 4286 /* 4287 * Normally the dotclock is filled in by the encoder .get_config() 4288 * but in case the pipe is enabled w/o any ports we need a sane 4289 * default. 4290 */ 4291 pipe_config->hw.adjusted_mode.crtc_clock = 4292 pipe_config->port_clock / pipe_config->pixel_multiplier; 4293 4294 ret = true; 4295 4296 out: 4297 intel_display_power_put(dev_priv, power_domain, wakeref); 4298 4299 return ret; 4300 } 4301 4302 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv) 4303 { 4304 struct intel_encoder *encoder; 4305 int i; 4306 u32 val, final; 4307 bool has_lvds = false; 4308 bool has_cpu_edp = false; 4309 bool has_panel = false; 4310 bool has_ck505 = false; 4311 bool can_ssc = false; 4312 bool using_ssc_source = false; 4313 4314 /* We need to take the global config into account */ 4315 for_each_intel_encoder(&dev_priv->drm, encoder) { 4316 switch (encoder->type) { 4317 case INTEL_OUTPUT_LVDS: 4318 has_panel = true; 4319 has_lvds = true; 4320 break; 4321 case INTEL_OUTPUT_EDP: 4322 has_panel = true; 4323 if (encoder->port == PORT_A) 4324 has_cpu_edp = true; 4325 break; 4326 default: 4327 break; 4328 } 4329 } 4330 4331 if (HAS_PCH_IBX(dev_priv)) { 4332 has_ck505 = dev_priv->vbt.display_clock_mode; 4333 can_ssc = has_ck505; 4334 } else { 4335 has_ck505 = false; 4336 can_ssc = true; 4337 } 4338 4339 /* Check if any DPLLs are using the SSC source */ 4340 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) { 4341 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i)); 4342 4343 if (!(temp & DPLL_VCO_ENABLE)) 4344 continue; 4345 4346 if ((temp & PLL_REF_INPUT_MASK) == 4347 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 4348 using_ssc_source = true; 4349 break; 4350 } 4351 } 4352 4353 drm_dbg_kms(&dev_priv->drm, 4354 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 4355 has_panel, has_lvds, has_ck505, using_ssc_source); 4356 4357 /* Ironlake: try to setup display ref clock before DPLL 4358 * enabling. This is only under driver's control after 4359 * PCH B stepping, previous chipset stepping should be 4360 * ignoring this setting. 4361 */ 4362 val = intel_de_read(dev_priv, PCH_DREF_CONTROL); 4363 4364 /* As we must carefully and slowly disable/enable each source in turn, 4365 * compute the final state we want first and check if we need to 4366 * make any changes at all. 4367 */ 4368 final = val; 4369 final &= ~DREF_NONSPREAD_SOURCE_MASK; 4370 if (has_ck505) 4371 final |= DREF_NONSPREAD_CK505_ENABLE; 4372 else 4373 final |= DREF_NONSPREAD_SOURCE_ENABLE; 4374 4375 final &= ~DREF_SSC_SOURCE_MASK; 4376 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 4377 final &= ~DREF_SSC1_ENABLE; 4378 4379 if (has_panel) { 4380 final |= DREF_SSC_SOURCE_ENABLE; 4381 4382 if (intel_panel_use_ssc(dev_priv) && can_ssc) 4383 final |= DREF_SSC1_ENABLE; 4384 4385 if (has_cpu_edp) { 4386 if (intel_panel_use_ssc(dev_priv) && can_ssc) 4387 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 4388 else 4389 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 4390 } else 4391 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 4392 } else if (using_ssc_source) { 4393 final |= DREF_SSC_SOURCE_ENABLE; 4394 final |= DREF_SSC1_ENABLE; 4395 } 4396 4397 if (final == val) 4398 return; 4399 4400 /* Always enable nonspread source */ 4401 val &= ~DREF_NONSPREAD_SOURCE_MASK; 4402 4403 if (has_ck505) 4404 val |= DREF_NONSPREAD_CK505_ENABLE; 4405 else 4406 val |= DREF_NONSPREAD_SOURCE_ENABLE; 4407 4408 if (has_panel) { 4409 val &= ~DREF_SSC_SOURCE_MASK; 4410 val |= DREF_SSC_SOURCE_ENABLE; 4411 4412 /* SSC must be turned on before enabling the CPU output */ 4413 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 4414 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n"); 4415 val |= DREF_SSC1_ENABLE; 4416 } else 4417 val &= ~DREF_SSC1_ENABLE; 4418 4419 /* Get SSC going before enabling the outputs */ 4420 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 4421 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 4422 udelay(200); 4423 4424 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 4425 4426 /* Enable CPU source on CPU attached eDP */ 4427 if (has_cpu_edp) { 4428 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 4429 drm_dbg_kms(&dev_priv->drm, 4430 "Using SSC on eDP\n"); 4431 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 4432 } else 4433 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 4434 } else 4435 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 4436 4437 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 4438 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 4439 udelay(200); 4440 } else { 4441 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n"); 4442 4443 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 4444 4445 /* Turn off CPU output */ 4446 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 4447 4448 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 4449 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 4450 udelay(200); 4451 4452 if (!using_ssc_source) { 4453 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n"); 4454 4455 /* Turn off the SSC source */ 4456 val &= ~DREF_SSC_SOURCE_MASK; 4457 val |= DREF_SSC_SOURCE_DISABLE; 4458 4459 /* Turn off SSC1 */ 4460 val &= ~DREF_SSC1_ENABLE; 4461 4462 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 4463 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 4464 udelay(200); 4465 } 4466 } 4467 4468 BUG_ON(val != final); 4469 } 4470 4471 /* Implements 3 different sequences from BSpec chapter "Display iCLK 4472 * Programming" based on the parameters passed: 4473 * - Sequence to enable CLKOUT_DP 4474 * - Sequence to enable CLKOUT_DP without spread 4475 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 4476 */ 4477 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 4478 bool with_spread, bool with_fdi) 4479 { 4480 u32 reg, tmp; 4481 4482 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread, 4483 "FDI requires downspread\n")) 4484 with_spread = true; 4485 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) && 4486 with_fdi, "LP PCH doesn't have FDI\n")) 4487 with_fdi = false; 4488 4489 mutex_lock(&dev_priv->sb_lock); 4490 4491 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 4492 tmp &= ~SBI_SSCCTL_DISABLE; 4493 tmp |= SBI_SSCCTL_PATHALT; 4494 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 4495 4496 udelay(24); 4497 4498 if (with_spread) { 4499 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 4500 tmp &= ~SBI_SSCCTL_PATHALT; 4501 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 4502 4503 if (with_fdi) 4504 lpt_fdi_program_mphy(dev_priv); 4505 } 4506 4507 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 4508 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 4509 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 4510 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 4511 4512 mutex_unlock(&dev_priv->sb_lock); 4513 } 4514 4515 /* Sequence to disable CLKOUT_DP */ 4516 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 4517 { 4518 u32 reg, tmp; 4519 4520 mutex_lock(&dev_priv->sb_lock); 4521 4522 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 4523 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 4524 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 4525 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 4526 4527 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 4528 if (!(tmp & SBI_SSCCTL_DISABLE)) { 4529 if (!(tmp & SBI_SSCCTL_PATHALT)) { 4530 tmp |= SBI_SSCCTL_PATHALT; 4531 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 4532 udelay(32); 4533 } 4534 tmp |= SBI_SSCCTL_DISABLE; 4535 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 4536 } 4537 4538 mutex_unlock(&dev_priv->sb_lock); 4539 } 4540 4541 #define BEND_IDX(steps) ((50 + (steps)) / 5) 4542 4543 static const u16 sscdivintphase[] = { 4544 [BEND_IDX( 50)] = 0x3B23, 4545 [BEND_IDX( 45)] = 0x3B23, 4546 [BEND_IDX( 40)] = 0x3C23, 4547 [BEND_IDX( 35)] = 0x3C23, 4548 [BEND_IDX( 30)] = 0x3D23, 4549 [BEND_IDX( 25)] = 0x3D23, 4550 [BEND_IDX( 20)] = 0x3E23, 4551 [BEND_IDX( 15)] = 0x3E23, 4552 [BEND_IDX( 10)] = 0x3F23, 4553 [BEND_IDX( 5)] = 0x3F23, 4554 [BEND_IDX( 0)] = 0x0025, 4555 [BEND_IDX( -5)] = 0x0025, 4556 [BEND_IDX(-10)] = 0x0125, 4557 [BEND_IDX(-15)] = 0x0125, 4558 [BEND_IDX(-20)] = 0x0225, 4559 [BEND_IDX(-25)] = 0x0225, 4560 [BEND_IDX(-30)] = 0x0325, 4561 [BEND_IDX(-35)] = 0x0325, 4562 [BEND_IDX(-40)] = 0x0425, 4563 [BEND_IDX(-45)] = 0x0425, 4564 [BEND_IDX(-50)] = 0x0525, 4565 }; 4566 4567 /* 4568 * Bend CLKOUT_DP 4569 * steps -50 to 50 inclusive, in steps of 5 4570 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 4571 * change in clock period = -(steps / 10) * 5.787 ps 4572 */ 4573 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 4574 { 4575 u32 tmp; 4576 int idx = BEND_IDX(steps); 4577 4578 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0)) 4579 return; 4580 4581 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase))) 4582 return; 4583 4584 mutex_lock(&dev_priv->sb_lock); 4585 4586 if (steps % 10 != 0) 4587 tmp = 0xAAAAAAAB; 4588 else 4589 tmp = 0x00000000; 4590 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 4591 4592 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 4593 tmp &= 0xffff0000; 4594 tmp |= sscdivintphase[idx]; 4595 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 4596 4597 mutex_unlock(&dev_priv->sb_lock); 4598 } 4599 4600 #undef BEND_IDX 4601 4602 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 4603 { 4604 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 4605 u32 ctl = intel_de_read(dev_priv, SPLL_CTL); 4606 4607 if ((ctl & SPLL_PLL_ENABLE) == 0) 4608 return false; 4609 4610 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 4611 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 4612 return true; 4613 4614 if (IS_BROADWELL(dev_priv) && 4615 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 4616 return true; 4617 4618 return false; 4619 } 4620 4621 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 4622 enum intel_dpll_id id) 4623 { 4624 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 4625 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id)); 4626 4627 if ((ctl & WRPLL_PLL_ENABLE) == 0) 4628 return false; 4629 4630 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 4631 return true; 4632 4633 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 4634 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 4635 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 4636 return true; 4637 4638 return false; 4639 } 4640 4641 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 4642 { 4643 struct intel_encoder *encoder; 4644 bool has_fdi = false; 4645 4646 for_each_intel_encoder(&dev_priv->drm, encoder) { 4647 switch (encoder->type) { 4648 case INTEL_OUTPUT_ANALOG: 4649 has_fdi = true; 4650 break; 4651 default: 4652 break; 4653 } 4654 } 4655 4656 /* 4657 * The BIOS may have decided to use the PCH SSC 4658 * reference so we must not disable it until the 4659 * relevant PLLs have stopped relying on it. We'll 4660 * just leave the PCH SSC reference enabled in case 4661 * any active PLL is using it. It will get disabled 4662 * after runtime suspend if we don't have FDI. 4663 * 4664 * TODO: Move the whole reference clock handling 4665 * to the modeset sequence proper so that we can 4666 * actually enable/disable/reconfigure these things 4667 * safely. To do that we need to introduce a real 4668 * clock hierarchy. That would also allow us to do 4669 * clock bending finally. 4670 */ 4671 dev_priv->pch_ssc_use = 0; 4672 4673 if (spll_uses_pch_ssc(dev_priv)) { 4674 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n"); 4675 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); 4676 } 4677 4678 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 4679 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n"); 4680 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 4681 } 4682 4683 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 4684 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n"); 4685 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 4686 } 4687 4688 if (dev_priv->pch_ssc_use) 4689 return; 4690 4691 if (has_fdi) { 4692 lpt_bend_clkout_dp(dev_priv, 0); 4693 lpt_enable_clkout_dp(dev_priv, true, true); 4694 } else { 4695 lpt_disable_clkout_dp(dev_priv); 4696 } 4697 } 4698 4699 /* 4700 * Initialize reference clocks when the driver loads 4701 */ 4702 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 4703 { 4704 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 4705 ilk_init_pch_refclk(dev_priv); 4706 else if (HAS_PCH_LPT(dev_priv)) 4707 lpt_init_pch_refclk(dev_priv); 4708 } 4709 4710 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) 4711 { 4712 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4713 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4714 enum pipe pipe = crtc->pipe; 4715 u32 val; 4716 4717 val = 0; 4718 4719 switch (crtc_state->pipe_bpp) { 4720 case 18: 4721 val |= PIPECONF_6BPC; 4722 break; 4723 case 24: 4724 val |= PIPECONF_8BPC; 4725 break; 4726 case 30: 4727 val |= PIPECONF_10BPC; 4728 break; 4729 case 36: 4730 val |= PIPECONF_12BPC; 4731 break; 4732 default: 4733 /* Case prevented by intel_choose_pipe_bpp_dither. */ 4734 BUG(); 4735 } 4736 4737 if (crtc_state->dither) 4738 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 4739 4740 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 4741 val |= PIPECONF_INTERLACED_ILK; 4742 else 4743 val |= PIPECONF_PROGRESSIVE; 4744 4745 /* 4746 * This would end up with an odd purple hue over 4747 * the entire display. Make sure we don't do it. 4748 */ 4749 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && 4750 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 4751 4752 if (crtc_state->limited_color_range && 4753 !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 4754 val |= PIPECONF_COLOR_RANGE_SELECT; 4755 4756 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 4757 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; 4758 4759 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 4760 4761 val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 4762 4763 intel_de_write(dev_priv, PIPECONF(pipe), val); 4764 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 4765 } 4766 4767 static void hsw_set_transconf(const struct intel_crtc_state *crtc_state) 4768 { 4769 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4770 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4771 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 4772 u32 val = 0; 4773 4774 if (IS_HASWELL(dev_priv) && crtc_state->dither) 4775 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 4776 4777 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 4778 val |= PIPECONF_INTERLACED_ILK; 4779 else 4780 val |= PIPECONF_PROGRESSIVE; 4781 4782 if (IS_HASWELL(dev_priv) && 4783 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 4784 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; 4785 4786 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val); 4787 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder)); 4788 } 4789 4790 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 4791 { 4792 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4793 const struct intel_crtc_scaler_state *scaler_state = 4794 &crtc_state->scaler_state; 4795 4796 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4797 u32 val = 0; 4798 int i; 4799 4800 switch (crtc_state->pipe_bpp) { 4801 case 18: 4802 val |= PIPEMISC_6_BPC; 4803 break; 4804 case 24: 4805 val |= PIPEMISC_8_BPC; 4806 break; 4807 case 30: 4808 val |= PIPEMISC_10_BPC; 4809 break; 4810 case 36: 4811 /* Port output 12BPC defined for ADLP+ */ 4812 if (DISPLAY_VER(dev_priv) > 12) 4813 val |= PIPEMISC_12_BPC_ADLP; 4814 break; 4815 default: 4816 MISSING_CASE(crtc_state->pipe_bpp); 4817 break; 4818 } 4819 4820 if (crtc_state->dither) 4821 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 4822 4823 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 4824 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 4825 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 4826 4827 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 4828 val |= PIPEMISC_YUV420_ENABLE | 4829 PIPEMISC_YUV420_MODE_FULL_BLEND; 4830 4831 if (DISPLAY_VER(dev_priv) >= 11 && is_hdr_mode(crtc_state)) 4832 val |= PIPEMISC_HDR_MODE_PRECISION; 4833 4834 if (DISPLAY_VER(dev_priv) >= 12) 4835 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC; 4836 4837 if (IS_ALDERLAKE_P(dev_priv)) { 4838 bool scaler_in_use = false; 4839 4840 for (i = 0; i < crtc->num_scalers; i++) { 4841 if (!scaler_state->scalers[i].in_use) 4842 continue; 4843 4844 scaler_in_use = true; 4845 break; 4846 } 4847 4848 intel_de_rmw(dev_priv, PIPE_MISC2(crtc->pipe), 4849 PIPE_MISC2_UNDERRUN_BUBBLE_COUNTER_MASK, 4850 scaler_in_use ? PIPE_MISC2_BUBBLE_COUNTER_SCALER_EN : 4851 PIPE_MISC2_BUBBLE_COUNTER_SCALER_DIS); 4852 } 4853 4854 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val); 4855 } 4856 4857 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 4858 { 4859 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4860 u32 tmp; 4861 4862 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 4863 4864 switch (tmp & PIPEMISC_BPC_MASK) { 4865 case PIPEMISC_6_BPC: 4866 return 18; 4867 case PIPEMISC_8_BPC: 4868 return 24; 4869 case PIPEMISC_10_BPC: 4870 return 30; 4871 /* 4872 * PORT OUTPUT 12 BPC defined for ADLP+. 4873 * 4874 * TODO: 4875 * For previous platforms with DSI interface, bits 5:7 4876 * are used for storing pipe_bpp irrespective of dithering. 4877 * Since the value of 12 BPC is not defined for these bits 4878 * on older platforms, need to find a workaround for 12 BPC 4879 * MIPI DSI HW readout. 4880 */ 4881 case PIPEMISC_12_BPC_ADLP: 4882 if (DISPLAY_VER(dev_priv) > 12) 4883 return 36; 4884 fallthrough; 4885 default: 4886 MISSING_CASE(tmp); 4887 return 0; 4888 } 4889 } 4890 4891 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) 4892 { 4893 /* 4894 * Account for spread spectrum to avoid 4895 * oversubscribing the link. Max center spread 4896 * is 2.5%; use 5% for safety's sake. 4897 */ 4898 u32 bps = target_clock * bpp * 21 / 20; 4899 return DIV_ROUND_UP(bps, link_bw * 8); 4900 } 4901 4902 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 4903 struct intel_link_m_n *m_n) 4904 { 4905 struct drm_device *dev = crtc->base.dev; 4906 struct drm_i915_private *dev_priv = to_i915(dev); 4907 enum pipe pipe = crtc->pipe; 4908 4909 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe)); 4910 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe)); 4911 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 4912 & ~TU_SIZE_MASK; 4913 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe)); 4914 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 4915 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 4916 } 4917 4918 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 4919 enum transcoder transcoder, 4920 struct intel_link_m_n *m_n, 4921 struct intel_link_m_n *m2_n2) 4922 { 4923 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4924 enum pipe pipe = crtc->pipe; 4925 4926 if (DISPLAY_VER(dev_priv) >= 5) { 4927 m_n->link_m = intel_de_read(dev_priv, 4928 PIPE_LINK_M1(transcoder)); 4929 m_n->link_n = intel_de_read(dev_priv, 4930 PIPE_LINK_N1(transcoder)); 4931 m_n->gmch_m = intel_de_read(dev_priv, 4932 PIPE_DATA_M1(transcoder)) 4933 & ~TU_SIZE_MASK; 4934 m_n->gmch_n = intel_de_read(dev_priv, 4935 PIPE_DATA_N1(transcoder)); 4936 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder)) 4937 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 4938 4939 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 4940 m2_n2->link_m = intel_de_read(dev_priv, 4941 PIPE_LINK_M2(transcoder)); 4942 m2_n2->link_n = intel_de_read(dev_priv, 4943 PIPE_LINK_N2(transcoder)); 4944 m2_n2->gmch_m = intel_de_read(dev_priv, 4945 PIPE_DATA_M2(transcoder)) 4946 & ~TU_SIZE_MASK; 4947 m2_n2->gmch_n = intel_de_read(dev_priv, 4948 PIPE_DATA_N2(transcoder)); 4949 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder)) 4950 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 4951 } 4952 } else { 4953 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe)); 4954 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe)); 4955 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 4956 & ~TU_SIZE_MASK; 4957 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe)); 4958 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 4959 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 4960 } 4961 } 4962 4963 void intel_dp_get_m_n(struct intel_crtc *crtc, 4964 struct intel_crtc_state *pipe_config) 4965 { 4966 if (pipe_config->has_pch_encoder) 4967 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 4968 else 4969 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 4970 &pipe_config->dp_m_n, 4971 &pipe_config->dp_m2_n2); 4972 } 4973 4974 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc, 4975 struct intel_crtc_state *pipe_config) 4976 { 4977 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 4978 &pipe_config->fdi_m_n, NULL); 4979 } 4980 4981 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state, 4982 u32 pos, u32 size) 4983 { 4984 drm_rect_init(&crtc_state->pch_pfit.dst, 4985 pos >> 16, pos & 0xffff, 4986 size >> 16, size & 0xffff); 4987 } 4988 4989 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state) 4990 { 4991 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4992 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4993 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; 4994 int id = -1; 4995 int i; 4996 4997 /* find scaler attached to this pipe */ 4998 for (i = 0; i < crtc->num_scalers; i++) { 4999 u32 ctl, pos, size; 5000 5001 ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i)); 5002 if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN) 5003 continue; 5004 5005 id = i; 5006 crtc_state->pch_pfit.enabled = true; 5007 5008 pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i)); 5009 size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i)); 5010 5011 ilk_get_pfit_pos_size(crtc_state, pos, size); 5012 5013 scaler_state->scalers[i].in_use = true; 5014 break; 5015 } 5016 5017 scaler_state->scaler_id = id; 5018 if (id >= 0) 5019 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 5020 else 5021 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 5022 } 5023 5024 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state) 5025 { 5026 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5027 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5028 u32 ctl, pos, size; 5029 5030 ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe)); 5031 if ((ctl & PF_ENABLE) == 0) 5032 return; 5033 5034 crtc_state->pch_pfit.enabled = true; 5035 5036 pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe)); 5037 size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe)); 5038 5039 ilk_get_pfit_pos_size(crtc_state, pos, size); 5040 5041 /* 5042 * We currently do not free assignements of panel fitters on 5043 * ivb/hsw (since we don't use the higher upscaling modes which 5044 * differentiates them) so just WARN about this case for now. 5045 */ 5046 drm_WARN_ON(&dev_priv->drm, DISPLAY_VER(dev_priv) == 7 && 5047 (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe)); 5048 } 5049 5050 static bool ilk_get_pipe_config(struct intel_crtc *crtc, 5051 struct intel_crtc_state *pipe_config) 5052 { 5053 struct drm_device *dev = crtc->base.dev; 5054 struct drm_i915_private *dev_priv = to_i915(dev); 5055 enum intel_display_power_domain power_domain; 5056 intel_wakeref_t wakeref; 5057 u32 tmp; 5058 bool ret; 5059 5060 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 5061 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 5062 if (!wakeref) 5063 return false; 5064 5065 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 5066 pipe_config->shared_dpll = NULL; 5067 5068 ret = false; 5069 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 5070 if (!(tmp & PIPECONF_ENABLE)) 5071 goto out; 5072 5073 switch (tmp & PIPECONF_BPC_MASK) { 5074 case PIPECONF_6BPC: 5075 pipe_config->pipe_bpp = 18; 5076 break; 5077 case PIPECONF_8BPC: 5078 pipe_config->pipe_bpp = 24; 5079 break; 5080 case PIPECONF_10BPC: 5081 pipe_config->pipe_bpp = 30; 5082 break; 5083 case PIPECONF_12BPC: 5084 pipe_config->pipe_bpp = 36; 5085 break; 5086 default: 5087 break; 5088 } 5089 5090 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 5091 pipe_config->limited_color_range = true; 5092 5093 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { 5094 case PIPECONF_OUTPUT_COLORSPACE_YUV601: 5095 case PIPECONF_OUTPUT_COLORSPACE_YUV709: 5096 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 5097 break; 5098 default: 5099 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 5100 break; 5101 } 5102 5103 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 5104 PIPECONF_GAMMA_MODE_SHIFT; 5105 5106 pipe_config->csc_mode = intel_de_read(dev_priv, 5107 PIPE_CSC_MODE(crtc->pipe)); 5108 5109 i9xx_get_pipe_color_config(pipe_config); 5110 intel_color_get_config(pipe_config); 5111 5112 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 5113 struct intel_shared_dpll *pll; 5114 enum intel_dpll_id pll_id; 5115 bool pll_active; 5116 5117 pipe_config->has_pch_encoder = true; 5118 5119 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe)); 5120 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 5121 FDI_DP_PORT_WIDTH_SHIFT) + 1; 5122 5123 ilk_get_fdi_m_n_config(crtc, pipe_config); 5124 5125 if (HAS_PCH_IBX(dev_priv)) { 5126 /* 5127 * The pipe->pch transcoder and pch transcoder->pll 5128 * mapping is fixed. 5129 */ 5130 pll_id = (enum intel_dpll_id) crtc->pipe; 5131 } else { 5132 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL); 5133 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 5134 pll_id = DPLL_ID_PCH_PLL_B; 5135 else 5136 pll_id= DPLL_ID_PCH_PLL_A; 5137 } 5138 5139 pipe_config->shared_dpll = 5140 intel_get_shared_dpll_by_id(dev_priv, pll_id); 5141 pll = pipe_config->shared_dpll; 5142 5143 pll_active = intel_dpll_get_hw_state(dev_priv, pll, 5144 &pipe_config->dpll_hw_state); 5145 drm_WARN_ON(dev, !pll_active); 5146 5147 tmp = pipe_config->dpll_hw_state.dpll; 5148 pipe_config->pixel_multiplier = 5149 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 5150 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 5151 5152 ilk_pch_clock_get(crtc, pipe_config); 5153 } else { 5154 pipe_config->pixel_multiplier = 1; 5155 } 5156 5157 intel_get_transcoder_timings(crtc, pipe_config); 5158 intel_get_pipe_src_size(crtc, pipe_config); 5159 5160 ilk_get_pfit_config(pipe_config); 5161 5162 ret = true; 5163 5164 out: 5165 intel_display_power_put(dev_priv, power_domain, wakeref); 5166 5167 return ret; 5168 } 5169 5170 static bool transcoder_ddi_func_is_enabled(struct drm_i915_private *dev_priv, 5171 enum transcoder cpu_transcoder) 5172 { 5173 enum intel_display_power_domain power_domain; 5174 intel_wakeref_t wakeref; 5175 u32 tmp = 0; 5176 5177 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 5178 5179 with_intel_display_power_if_enabled(dev_priv, power_domain, wakeref) 5180 tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)); 5181 5182 return tmp & TRANS_DDI_FUNC_ENABLE; 5183 } 5184 5185 static u8 hsw_panel_transcoders(struct drm_i915_private *i915) 5186 { 5187 u8 panel_transcoder_mask = BIT(TRANSCODER_EDP); 5188 5189 if (DISPLAY_VER(i915) >= 11) 5190 panel_transcoder_mask |= BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 5191 5192 return panel_transcoder_mask; 5193 } 5194 5195 static u8 hsw_enabled_transcoders(struct intel_crtc *crtc) 5196 { 5197 struct drm_device *dev = crtc->base.dev; 5198 struct drm_i915_private *dev_priv = to_i915(dev); 5199 u8 panel_transcoder_mask = hsw_panel_transcoders(dev_priv); 5200 enum transcoder cpu_transcoder; 5201 u8 enabled_transcoders = 0; 5202 5203 /* 5204 * XXX: Do intel_display_power_get_if_enabled before reading this (for 5205 * consistency and less surprising code; it's in always on power). 5206 */ 5207 for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, 5208 panel_transcoder_mask) { 5209 enum intel_display_power_domain power_domain; 5210 intel_wakeref_t wakeref; 5211 enum pipe trans_pipe; 5212 u32 tmp = 0; 5213 5214 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 5215 with_intel_display_power_if_enabled(dev_priv, power_domain, wakeref) 5216 tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)); 5217 5218 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 5219 continue; 5220 5221 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 5222 default: 5223 drm_WARN(dev, 1, 5224 "unknown pipe linked to transcoder %s\n", 5225 transcoder_name(cpu_transcoder)); 5226 fallthrough; 5227 case TRANS_DDI_EDP_INPUT_A_ONOFF: 5228 case TRANS_DDI_EDP_INPUT_A_ON: 5229 trans_pipe = PIPE_A; 5230 break; 5231 case TRANS_DDI_EDP_INPUT_B_ONOFF: 5232 trans_pipe = PIPE_B; 5233 break; 5234 case TRANS_DDI_EDP_INPUT_C_ONOFF: 5235 trans_pipe = PIPE_C; 5236 break; 5237 case TRANS_DDI_EDP_INPUT_D_ONOFF: 5238 trans_pipe = PIPE_D; 5239 break; 5240 } 5241 5242 if (trans_pipe == crtc->pipe) 5243 enabled_transcoders |= BIT(cpu_transcoder); 5244 } 5245 5246 cpu_transcoder = (enum transcoder) crtc->pipe; 5247 if (transcoder_ddi_func_is_enabled(dev_priv, cpu_transcoder)) 5248 enabled_transcoders |= BIT(cpu_transcoder); 5249 5250 return enabled_transcoders; 5251 } 5252 5253 static bool has_edp_transcoders(u8 enabled_transcoders) 5254 { 5255 return enabled_transcoders & BIT(TRANSCODER_EDP); 5256 } 5257 5258 static bool has_dsi_transcoders(u8 enabled_transcoders) 5259 { 5260 return enabled_transcoders & (BIT(TRANSCODER_DSI_0) | 5261 BIT(TRANSCODER_DSI_1)); 5262 } 5263 5264 static bool has_pipe_transcoders(u8 enabled_transcoders) 5265 { 5266 return enabled_transcoders & ~(BIT(TRANSCODER_EDP) | 5267 BIT(TRANSCODER_DSI_0) | 5268 BIT(TRANSCODER_DSI_1)); 5269 } 5270 5271 static void assert_enabled_transcoders(struct drm_i915_private *i915, 5272 u8 enabled_transcoders) 5273 { 5274 /* Only one type of transcoder please */ 5275 drm_WARN_ON(&i915->drm, 5276 has_edp_transcoders(enabled_transcoders) + 5277 has_dsi_transcoders(enabled_transcoders) + 5278 has_pipe_transcoders(enabled_transcoders) > 1); 5279 5280 /* Only DSI transcoders can be ganged */ 5281 drm_WARN_ON(&i915->drm, 5282 !has_dsi_transcoders(enabled_transcoders) && 5283 !is_power_of_2(enabled_transcoders)); 5284 } 5285 5286 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 5287 struct intel_crtc_state *pipe_config, 5288 struct intel_display_power_domain_set *power_domain_set) 5289 { 5290 struct drm_device *dev = crtc->base.dev; 5291 struct drm_i915_private *dev_priv = to_i915(dev); 5292 unsigned long enabled_transcoders; 5293 u32 tmp; 5294 5295 enabled_transcoders = hsw_enabled_transcoders(crtc); 5296 if (!enabled_transcoders) 5297 return false; 5298 5299 assert_enabled_transcoders(dev_priv, enabled_transcoders); 5300 5301 /* 5302 * With the exception of DSI we should only ever have 5303 * a single enabled transcoder. With DSI let's just 5304 * pick the first one. 5305 */ 5306 pipe_config->cpu_transcoder = ffs(enabled_transcoders) - 1; 5307 5308 if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, 5309 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder))) 5310 return false; 5311 5312 if (hsw_panel_transcoders(dev_priv) & BIT(pipe_config->cpu_transcoder)) { 5313 tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder)); 5314 5315 if ((tmp & TRANS_DDI_EDP_INPUT_MASK) == TRANS_DDI_EDP_INPUT_A_ONOFF) 5316 pipe_config->pch_pfit.force_thru = true; 5317 } 5318 5319 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); 5320 5321 return tmp & PIPECONF_ENABLE; 5322 } 5323 5324 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 5325 struct intel_crtc_state *pipe_config, 5326 struct intel_display_power_domain_set *power_domain_set) 5327 { 5328 struct drm_device *dev = crtc->base.dev; 5329 struct drm_i915_private *dev_priv = to_i915(dev); 5330 enum transcoder cpu_transcoder; 5331 enum port port; 5332 u32 tmp; 5333 5334 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 5335 if (port == PORT_A) 5336 cpu_transcoder = TRANSCODER_DSI_A; 5337 else 5338 cpu_transcoder = TRANSCODER_DSI_C; 5339 5340 if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, 5341 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) 5342 continue; 5343 5344 /* 5345 * The PLL needs to be enabled with a valid divider 5346 * configuration, otherwise accessing DSI registers will hang 5347 * the machine. See BSpec North Display Engine 5348 * registers/MIPI[BXT]. We can break out here early, since we 5349 * need the same DSI PLL to be enabled for both DSI ports. 5350 */ 5351 if (!bxt_dsi_pll_is_enabled(dev_priv)) 5352 break; 5353 5354 /* XXX: this works for video mode only */ 5355 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); 5356 if (!(tmp & DPI_ENABLE)) 5357 continue; 5358 5359 tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); 5360 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 5361 continue; 5362 5363 pipe_config->cpu_transcoder = cpu_transcoder; 5364 break; 5365 } 5366 5367 return transcoder_is_dsi(pipe_config->cpu_transcoder); 5368 } 5369 5370 static void hsw_get_ddi_port_state(struct intel_crtc *crtc, 5371 struct intel_crtc_state *pipe_config) 5372 { 5373 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5374 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 5375 enum port port; 5376 u32 tmp; 5377 5378 if (transcoder_is_dsi(cpu_transcoder)) { 5379 port = (cpu_transcoder == TRANSCODER_DSI_A) ? 5380 PORT_A : PORT_B; 5381 } else { 5382 tmp = intel_de_read(dev_priv, 5383 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 5384 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 5385 return; 5386 if (DISPLAY_VER(dev_priv) >= 12) 5387 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 5388 else 5389 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 5390 } 5391 5392 /* 5393 * Haswell has only FDI/PCH transcoder A. It is which is connected to 5394 * DDI E. So just check whether this pipe is wired to DDI E and whether 5395 * the PCH transcoder is on. 5396 */ 5397 if (DISPLAY_VER(dev_priv) < 9 && 5398 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) { 5399 pipe_config->has_pch_encoder = true; 5400 5401 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); 5402 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 5403 FDI_DP_PORT_WIDTH_SHIFT) + 1; 5404 5405 ilk_get_fdi_m_n_config(crtc, pipe_config); 5406 } 5407 } 5408 5409 static bool hsw_get_pipe_config(struct intel_crtc *crtc, 5410 struct intel_crtc_state *pipe_config) 5411 { 5412 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5413 struct intel_display_power_domain_set power_domain_set = { }; 5414 bool active; 5415 u32 tmp; 5416 5417 if (!intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, 5418 POWER_DOMAIN_PIPE(crtc->pipe))) 5419 return false; 5420 5421 pipe_config->shared_dpll = NULL; 5422 5423 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_set); 5424 5425 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 5426 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_set)) { 5427 drm_WARN_ON(&dev_priv->drm, active); 5428 active = true; 5429 } 5430 5431 intel_dsc_get_config(pipe_config); 5432 if (DISPLAY_VER(dev_priv) >= 13 && !pipe_config->dsc.compression_enable) 5433 intel_uncompressed_joiner_get_config(pipe_config); 5434 5435 if (!active) { 5436 /* bigjoiner slave doesn't enable transcoder */ 5437 if (!pipe_config->bigjoiner_slave) 5438 goto out; 5439 5440 active = true; 5441 pipe_config->pixel_multiplier = 1; 5442 5443 /* we cannot read out most state, so don't bother.. */ 5444 pipe_config->quirks |= PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE; 5445 } else if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 5446 DISPLAY_VER(dev_priv) >= 11) { 5447 hsw_get_ddi_port_state(crtc, pipe_config); 5448 intel_get_transcoder_timings(crtc, pipe_config); 5449 } 5450 5451 if (HAS_VRR(dev_priv) && !transcoder_is_dsi(pipe_config->cpu_transcoder)) 5452 intel_vrr_get_config(crtc, pipe_config); 5453 5454 intel_get_pipe_src_size(crtc, pipe_config); 5455 5456 if (IS_HASWELL(dev_priv)) { 5457 u32 tmp = intel_de_read(dev_priv, 5458 PIPECONF(pipe_config->cpu_transcoder)); 5459 5460 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) 5461 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 5462 else 5463 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 5464 } else { 5465 pipe_config->output_format = 5466 bdw_get_pipemisc_output_format(crtc); 5467 } 5468 5469 pipe_config->gamma_mode = intel_de_read(dev_priv, 5470 GAMMA_MODE(crtc->pipe)); 5471 5472 pipe_config->csc_mode = intel_de_read(dev_priv, 5473 PIPE_CSC_MODE(crtc->pipe)); 5474 5475 if (DISPLAY_VER(dev_priv) >= 9) { 5476 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe)); 5477 5478 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 5479 pipe_config->gamma_enable = true; 5480 5481 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 5482 pipe_config->csc_enable = true; 5483 } else { 5484 i9xx_get_pipe_color_config(pipe_config); 5485 } 5486 5487 intel_color_get_config(pipe_config); 5488 5489 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe)); 5490 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); 5491 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 5492 pipe_config->ips_linetime = 5493 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); 5494 5495 if (intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, 5496 POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe))) { 5497 if (DISPLAY_VER(dev_priv) >= 9) 5498 skl_get_pfit_config(pipe_config); 5499 else 5500 ilk_get_pfit_config(pipe_config); 5501 } 5502 5503 if (hsw_crtc_supports_ips(crtc)) { 5504 if (IS_HASWELL(dev_priv)) 5505 pipe_config->ips_enabled = intel_de_read(dev_priv, 5506 IPS_CTL) & IPS_ENABLE; 5507 else { 5508 /* 5509 * We cannot readout IPS state on broadwell, set to 5510 * true so we can set it to a defined state on first 5511 * commit. 5512 */ 5513 pipe_config->ips_enabled = true; 5514 } 5515 } 5516 5517 if (pipe_config->bigjoiner_slave) { 5518 /* Cannot be read out as a slave, set to 0. */ 5519 pipe_config->pixel_multiplier = 0; 5520 } else if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 5521 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 5522 pipe_config->pixel_multiplier = 5523 intel_de_read(dev_priv, 5524 PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 5525 } else { 5526 pipe_config->pixel_multiplier = 1; 5527 } 5528 5529 out: 5530 intel_display_power_put_all_in_set(dev_priv, &power_domain_set); 5531 5532 return active; 5533 } 5534 5535 static bool intel_crtc_get_pipe_config(struct intel_crtc_state *crtc_state) 5536 { 5537 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5538 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 5539 5540 if (!i915->display->get_pipe_config(crtc, crtc_state)) 5541 return false; 5542 5543 crtc_state->hw.active = true; 5544 5545 intel_crtc_readout_derived_state(crtc_state); 5546 5547 return true; 5548 } 5549 5550 /* VESA 640x480x72Hz mode to set on the pipe */ 5551 static const struct drm_display_mode load_detect_mode = { 5552 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 5553 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 5554 }; 5555 5556 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 5557 struct drm_crtc *crtc) 5558 { 5559 struct drm_plane *plane; 5560 struct drm_plane_state *plane_state; 5561 int ret, i; 5562 5563 ret = drm_atomic_add_affected_planes(state, crtc); 5564 if (ret) 5565 return ret; 5566 5567 for_each_new_plane_in_state(state, plane, plane_state, i) { 5568 if (plane_state->crtc != crtc) 5569 continue; 5570 5571 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 5572 if (ret) 5573 return ret; 5574 5575 drm_atomic_set_fb_for_plane(plane_state, NULL); 5576 } 5577 5578 return 0; 5579 } 5580 5581 int intel_get_load_detect_pipe(struct drm_connector *connector, 5582 struct intel_load_detect_pipe *old, 5583 struct drm_modeset_acquire_ctx *ctx) 5584 { 5585 struct intel_encoder *encoder = 5586 intel_attached_encoder(to_intel_connector(connector)); 5587 struct intel_crtc *possible_crtc; 5588 struct intel_crtc *crtc = NULL; 5589 struct drm_device *dev = encoder->base.dev; 5590 struct drm_i915_private *dev_priv = to_i915(dev); 5591 struct drm_mode_config *config = &dev->mode_config; 5592 struct drm_atomic_state *state = NULL, *restore_state = NULL; 5593 struct drm_connector_state *connector_state; 5594 struct intel_crtc_state *crtc_state; 5595 int ret; 5596 5597 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 5598 connector->base.id, connector->name, 5599 encoder->base.base.id, encoder->base.name); 5600 5601 old->restore_state = NULL; 5602 5603 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex)); 5604 5605 /* 5606 * Algorithm gets a little messy: 5607 * 5608 * - if the connector already has an assigned crtc, use it (but make 5609 * sure it's on first) 5610 * 5611 * - try to find the first unused crtc that can drive this connector, 5612 * and use that if we find one 5613 */ 5614 5615 /* See if we already have a CRTC for this connector */ 5616 if (connector->state->crtc) { 5617 crtc = to_intel_crtc(connector->state->crtc); 5618 5619 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 5620 if (ret) 5621 goto fail; 5622 5623 /* Make sure the crtc and connector are running */ 5624 goto found; 5625 } 5626 5627 /* Find an unused one (if possible) */ 5628 for_each_intel_crtc(dev, possible_crtc) { 5629 if (!(encoder->base.possible_crtcs & 5630 drm_crtc_mask(&possible_crtc->base))) 5631 continue; 5632 5633 ret = drm_modeset_lock(&possible_crtc->base.mutex, ctx); 5634 if (ret) 5635 goto fail; 5636 5637 if (possible_crtc->base.state->enable) { 5638 drm_modeset_unlock(&possible_crtc->base.mutex); 5639 continue; 5640 } 5641 5642 crtc = possible_crtc; 5643 break; 5644 } 5645 5646 /* 5647 * If we didn't find an unused CRTC, don't use any. 5648 */ 5649 if (!crtc) { 5650 drm_dbg_kms(&dev_priv->drm, 5651 "no pipe available for load-detect\n"); 5652 ret = -ENODEV; 5653 goto fail; 5654 } 5655 5656 found: 5657 state = drm_atomic_state_alloc(dev); 5658 restore_state = drm_atomic_state_alloc(dev); 5659 if (!state || !restore_state) { 5660 ret = -ENOMEM; 5661 goto fail; 5662 } 5663 5664 state->acquire_ctx = ctx; 5665 restore_state->acquire_ctx = ctx; 5666 5667 connector_state = drm_atomic_get_connector_state(state, connector); 5668 if (IS_ERR(connector_state)) { 5669 ret = PTR_ERR(connector_state); 5670 goto fail; 5671 } 5672 5673 ret = drm_atomic_set_crtc_for_connector(connector_state, &crtc->base); 5674 if (ret) 5675 goto fail; 5676 5677 crtc_state = intel_atomic_get_crtc_state(state, crtc); 5678 if (IS_ERR(crtc_state)) { 5679 ret = PTR_ERR(crtc_state); 5680 goto fail; 5681 } 5682 5683 crtc_state->uapi.active = true; 5684 5685 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi, 5686 &load_detect_mode); 5687 if (ret) 5688 goto fail; 5689 5690 ret = intel_modeset_disable_planes(state, &crtc->base); 5691 if (ret) 5692 goto fail; 5693 5694 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 5695 if (!ret) 5696 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, &crtc->base)); 5697 if (!ret) 5698 ret = drm_atomic_add_affected_planes(restore_state, &crtc->base); 5699 if (ret) { 5700 drm_dbg_kms(&dev_priv->drm, 5701 "Failed to create a copy of old state to restore: %i\n", 5702 ret); 5703 goto fail; 5704 } 5705 5706 ret = drm_atomic_commit(state); 5707 if (ret) { 5708 drm_dbg_kms(&dev_priv->drm, 5709 "failed to set mode on load-detect pipe\n"); 5710 goto fail; 5711 } 5712 5713 old->restore_state = restore_state; 5714 drm_atomic_state_put(state); 5715 5716 /* let the connector get through one full cycle before testing */ 5717 intel_wait_for_vblank(dev_priv, crtc->pipe); 5718 return true; 5719 5720 fail: 5721 if (state) { 5722 drm_atomic_state_put(state); 5723 state = NULL; 5724 } 5725 if (restore_state) { 5726 drm_atomic_state_put(restore_state); 5727 restore_state = NULL; 5728 } 5729 5730 if (ret == -EDEADLK) 5731 return ret; 5732 5733 return false; 5734 } 5735 5736 void intel_release_load_detect_pipe(struct drm_connector *connector, 5737 struct intel_load_detect_pipe *old, 5738 struct drm_modeset_acquire_ctx *ctx) 5739 { 5740 struct intel_encoder *intel_encoder = 5741 intel_attached_encoder(to_intel_connector(connector)); 5742 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev); 5743 struct drm_encoder *encoder = &intel_encoder->base; 5744 struct drm_atomic_state *state = old->restore_state; 5745 int ret; 5746 5747 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 5748 connector->base.id, connector->name, 5749 encoder->base.id, encoder->name); 5750 5751 if (!state) 5752 return; 5753 5754 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 5755 if (ret) 5756 drm_dbg_kms(&i915->drm, 5757 "Couldn't release load detect pipe: %i\n", ret); 5758 drm_atomic_state_put(state); 5759 } 5760 5761 static int i9xx_pll_refclk(struct drm_device *dev, 5762 const struct intel_crtc_state *pipe_config) 5763 { 5764 struct drm_i915_private *dev_priv = to_i915(dev); 5765 u32 dpll = pipe_config->dpll_hw_state.dpll; 5766 5767 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 5768 return dev_priv->vbt.lvds_ssc_freq; 5769 else if (HAS_PCH_SPLIT(dev_priv)) 5770 return 120000; 5771 else if (DISPLAY_VER(dev_priv) != 2) 5772 return 96000; 5773 else 5774 return 48000; 5775 } 5776 5777 /* Returns the clock of the currently programmed mode of the given pipe. */ 5778 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 5779 struct intel_crtc_state *pipe_config) 5780 { 5781 struct drm_device *dev = crtc->base.dev; 5782 struct drm_i915_private *dev_priv = to_i915(dev); 5783 u32 dpll = pipe_config->dpll_hw_state.dpll; 5784 u32 fp; 5785 struct dpll clock; 5786 int port_clock; 5787 int refclk = i9xx_pll_refclk(dev, pipe_config); 5788 5789 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 5790 fp = pipe_config->dpll_hw_state.fp0; 5791 else 5792 fp = pipe_config->dpll_hw_state.fp1; 5793 5794 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 5795 if (IS_PINEVIEW(dev_priv)) { 5796 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 5797 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 5798 } else { 5799 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 5800 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 5801 } 5802 5803 if (DISPLAY_VER(dev_priv) != 2) { 5804 if (IS_PINEVIEW(dev_priv)) 5805 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 5806 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 5807 else 5808 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 5809 DPLL_FPA01_P1_POST_DIV_SHIFT); 5810 5811 switch (dpll & DPLL_MODE_MASK) { 5812 case DPLLB_MODE_DAC_SERIAL: 5813 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 5814 5 : 10; 5815 break; 5816 case DPLLB_MODE_LVDS: 5817 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 5818 7 : 14; 5819 break; 5820 default: 5821 drm_dbg_kms(&dev_priv->drm, 5822 "Unknown DPLL mode %08x in programmed " 5823 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 5824 return; 5825 } 5826 5827 if (IS_PINEVIEW(dev_priv)) 5828 port_clock = pnv_calc_dpll_params(refclk, &clock); 5829 else 5830 port_clock = i9xx_calc_dpll_params(refclk, &clock); 5831 } else { 5832 enum pipe lvds_pipe; 5833 5834 if (IS_I85X(dev_priv) && 5835 intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) && 5836 lvds_pipe == crtc->pipe) { 5837 u32 lvds = intel_de_read(dev_priv, LVDS); 5838 5839 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 5840 DPLL_FPA01_P1_POST_DIV_SHIFT); 5841 5842 if (lvds & LVDS_CLKB_POWER_UP) 5843 clock.p2 = 7; 5844 else 5845 clock.p2 = 14; 5846 } else { 5847 if (dpll & PLL_P1_DIVIDE_BY_TWO) 5848 clock.p1 = 2; 5849 else { 5850 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 5851 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 5852 } 5853 if (dpll & PLL_P2_DIVIDE_BY_4) 5854 clock.p2 = 4; 5855 else 5856 clock.p2 = 2; 5857 } 5858 5859 port_clock = i9xx_calc_dpll_params(refclk, &clock); 5860 } 5861 5862 /* 5863 * This value includes pixel_multiplier. We will use 5864 * port_clock to compute adjusted_mode.crtc_clock in the 5865 * encoder's get_config() function. 5866 */ 5867 pipe_config->port_clock = port_clock; 5868 } 5869 5870 int intel_dotclock_calculate(int link_freq, 5871 const struct intel_link_m_n *m_n) 5872 { 5873 /* 5874 * The calculation for the data clock is: 5875 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 5876 * But we want to avoid losing precison if possible, so: 5877 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 5878 * 5879 * and the link clock is simpler: 5880 * link_clock = (m * link_clock) / n 5881 */ 5882 5883 if (!m_n->link_n) 5884 return 0; 5885 5886 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 5887 } 5888 5889 static void ilk_pch_clock_get(struct intel_crtc *crtc, 5890 struct intel_crtc_state *pipe_config) 5891 { 5892 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5893 5894 /* read out port_clock from the DPLL */ 5895 i9xx_crtc_clock_get(crtc, pipe_config); 5896 5897 /* 5898 * In case there is an active pipe without active ports, 5899 * we may need some idea for the dotclock anyway. 5900 * Calculate one based on the FDI configuration. 5901 */ 5902 pipe_config->hw.adjusted_mode.crtc_clock = 5903 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 5904 &pipe_config->fdi_m_n); 5905 } 5906 5907 /* Returns the currently programmed mode of the given encoder. */ 5908 struct drm_display_mode * 5909 intel_encoder_current_mode(struct intel_encoder *encoder) 5910 { 5911 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5912 struct intel_crtc_state *crtc_state; 5913 struct drm_display_mode *mode; 5914 struct intel_crtc *crtc; 5915 enum pipe pipe; 5916 5917 if (!encoder->get_hw_state(encoder, &pipe)) 5918 return NULL; 5919 5920 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 5921 5922 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 5923 if (!mode) 5924 return NULL; 5925 5926 crtc_state = intel_crtc_state_alloc(crtc); 5927 if (!crtc_state) { 5928 kfree(mode); 5929 return NULL; 5930 } 5931 5932 if (!intel_crtc_get_pipe_config(crtc_state)) { 5933 kfree(crtc_state); 5934 kfree(mode); 5935 return NULL; 5936 } 5937 5938 intel_encoder_get_config(encoder, crtc_state); 5939 5940 intel_mode_from_crtc_timings(mode, &crtc_state->hw.adjusted_mode); 5941 5942 kfree(crtc_state); 5943 5944 return mode; 5945 } 5946 5947 /** 5948 * intel_wm_need_update - Check whether watermarks need updating 5949 * @cur: current plane state 5950 * @new: new plane state 5951 * 5952 * Check current plane state versus the new one to determine whether 5953 * watermarks need to be recalculated. 5954 * 5955 * Returns true or false. 5956 */ 5957 static bool intel_wm_need_update(const struct intel_plane_state *cur, 5958 struct intel_plane_state *new) 5959 { 5960 /* Update watermarks on tiling or size changes. */ 5961 if (new->uapi.visible != cur->uapi.visible) 5962 return true; 5963 5964 if (!cur->hw.fb || !new->hw.fb) 5965 return false; 5966 5967 if (cur->hw.fb->modifier != new->hw.fb->modifier || 5968 cur->hw.rotation != new->hw.rotation || 5969 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) || 5970 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) || 5971 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) || 5972 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst)) 5973 return true; 5974 5975 return false; 5976 } 5977 5978 static bool needs_scaling(const struct intel_plane_state *state) 5979 { 5980 int src_w = drm_rect_width(&state->uapi.src) >> 16; 5981 int src_h = drm_rect_height(&state->uapi.src) >> 16; 5982 int dst_w = drm_rect_width(&state->uapi.dst); 5983 int dst_h = drm_rect_height(&state->uapi.dst); 5984 5985 return (src_w != dst_w || src_h != dst_h); 5986 } 5987 5988 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 5989 struct intel_crtc_state *new_crtc_state, 5990 const struct intel_plane_state *old_plane_state, 5991 struct intel_plane_state *new_plane_state) 5992 { 5993 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 5994 struct intel_plane *plane = to_intel_plane(new_plane_state->uapi.plane); 5995 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5996 bool mode_changed = intel_crtc_needs_modeset(new_crtc_state); 5997 bool was_crtc_enabled = old_crtc_state->hw.active; 5998 bool is_crtc_enabled = new_crtc_state->hw.active; 5999 bool turn_off, turn_on, visible, was_visible; 6000 int ret; 6001 6002 if (DISPLAY_VER(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 6003 ret = skl_update_scaler_plane(new_crtc_state, new_plane_state); 6004 if (ret) 6005 return ret; 6006 } 6007 6008 was_visible = old_plane_state->uapi.visible; 6009 visible = new_plane_state->uapi.visible; 6010 6011 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible)) 6012 was_visible = false; 6013 6014 /* 6015 * Visibility is calculated as if the crtc was on, but 6016 * after scaler setup everything depends on it being off 6017 * when the crtc isn't active. 6018 * 6019 * FIXME this is wrong for watermarks. Watermarks should also 6020 * be computed as if the pipe would be active. Perhaps move 6021 * per-plane wm computation to the .check_plane() hook, and 6022 * only combine the results from all planes in the current place? 6023 */ 6024 if (!is_crtc_enabled) { 6025 intel_plane_set_invisible(new_crtc_state, new_plane_state); 6026 visible = false; 6027 } 6028 6029 if (!was_visible && !visible) 6030 return 0; 6031 6032 turn_off = was_visible && (!visible || mode_changed); 6033 turn_on = visible && (!was_visible || mode_changed); 6034 6035 drm_dbg_atomic(&dev_priv->drm, 6036 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 6037 crtc->base.base.id, crtc->base.name, 6038 plane->base.base.id, plane->base.name, 6039 was_visible, visible, 6040 turn_off, turn_on, mode_changed); 6041 6042 if (turn_on) { 6043 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) 6044 new_crtc_state->update_wm_pre = true; 6045 6046 /* must disable cxsr around plane enable/disable */ 6047 if (plane->id != PLANE_CURSOR) 6048 new_crtc_state->disable_cxsr = true; 6049 } else if (turn_off) { 6050 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) 6051 new_crtc_state->update_wm_post = true; 6052 6053 /* must disable cxsr around plane enable/disable */ 6054 if (plane->id != PLANE_CURSOR) 6055 new_crtc_state->disable_cxsr = true; 6056 } else if (intel_wm_need_update(old_plane_state, new_plane_state)) { 6057 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) { 6058 /* FIXME bollocks */ 6059 new_crtc_state->update_wm_pre = true; 6060 new_crtc_state->update_wm_post = true; 6061 } 6062 } 6063 6064 if (visible || was_visible) 6065 new_crtc_state->fb_bits |= plane->frontbuffer_bit; 6066 6067 /* 6068 * ILK/SNB DVSACNTR/Sprite Enable 6069 * IVB SPR_CTL/Sprite Enable 6070 * "When in Self Refresh Big FIFO mode, a write to enable the 6071 * plane will be internally buffered and delayed while Big FIFO 6072 * mode is exiting." 6073 * 6074 * Which means that enabling the sprite can take an extra frame 6075 * when we start in big FIFO mode (LP1+). Thus we need to drop 6076 * down to LP0 and wait for vblank in order to make sure the 6077 * sprite gets enabled on the next vblank after the register write. 6078 * Doing otherwise would risk enabling the sprite one frame after 6079 * we've already signalled flip completion. We can resume LP1+ 6080 * once the sprite has been enabled. 6081 * 6082 * 6083 * WaCxSRDisabledForSpriteScaling:ivb 6084 * IVB SPR_SCALE/Scaling Enable 6085 * "Low Power watermarks must be disabled for at least one 6086 * frame before enabling sprite scaling, and kept disabled 6087 * until sprite scaling is disabled." 6088 * 6089 * ILK/SNB DVSASCALE/Scaling Enable 6090 * "When in Self Refresh Big FIFO mode, scaling enable will be 6091 * masked off while Big FIFO mode is exiting." 6092 * 6093 * Despite the w/a only being listed for IVB we assume that 6094 * the ILK/SNB note has similar ramifications, hence we apply 6095 * the w/a on all three platforms. 6096 * 6097 * With experimental results seems this is needed also for primary 6098 * plane, not only sprite plane. 6099 */ 6100 if (plane->id != PLANE_CURSOR && 6101 (IS_IRONLAKE(dev_priv) || IS_SANDYBRIDGE(dev_priv) || 6102 IS_IVYBRIDGE(dev_priv)) && 6103 (turn_on || (!needs_scaling(old_plane_state) && 6104 needs_scaling(new_plane_state)))) 6105 new_crtc_state->disable_lp_wm = true; 6106 6107 return 0; 6108 } 6109 6110 static bool encoders_cloneable(const struct intel_encoder *a, 6111 const struct intel_encoder *b) 6112 { 6113 /* masks could be asymmetric, so check both ways */ 6114 return a == b || (a->cloneable & (1 << b->type) && 6115 b->cloneable & (1 << a->type)); 6116 } 6117 6118 static bool check_single_encoder_cloning(struct intel_atomic_state *state, 6119 struct intel_crtc *crtc, 6120 struct intel_encoder *encoder) 6121 { 6122 struct intel_encoder *source_encoder; 6123 struct drm_connector *connector; 6124 struct drm_connector_state *connector_state; 6125 int i; 6126 6127 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 6128 if (connector_state->crtc != &crtc->base) 6129 continue; 6130 6131 source_encoder = 6132 to_intel_encoder(connector_state->best_encoder); 6133 if (!encoders_cloneable(encoder, source_encoder)) 6134 return false; 6135 } 6136 6137 return true; 6138 } 6139 6140 static int icl_add_linked_planes(struct intel_atomic_state *state) 6141 { 6142 struct intel_plane *plane, *linked; 6143 struct intel_plane_state *plane_state, *linked_plane_state; 6144 int i; 6145 6146 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 6147 linked = plane_state->planar_linked_plane; 6148 6149 if (!linked) 6150 continue; 6151 6152 linked_plane_state = intel_atomic_get_plane_state(state, linked); 6153 if (IS_ERR(linked_plane_state)) 6154 return PTR_ERR(linked_plane_state); 6155 6156 drm_WARN_ON(state->base.dev, 6157 linked_plane_state->planar_linked_plane != plane); 6158 drm_WARN_ON(state->base.dev, 6159 linked_plane_state->planar_slave == plane_state->planar_slave); 6160 } 6161 6162 return 0; 6163 } 6164 6165 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 6166 { 6167 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6168 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6169 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); 6170 struct intel_plane *plane, *linked; 6171 struct intel_plane_state *plane_state; 6172 int i; 6173 6174 if (DISPLAY_VER(dev_priv) < 11) 6175 return 0; 6176 6177 /* 6178 * Destroy all old plane links and make the slave plane invisible 6179 * in the crtc_state->active_planes mask. 6180 */ 6181 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 6182 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) 6183 continue; 6184 6185 plane_state->planar_linked_plane = NULL; 6186 if (plane_state->planar_slave && !plane_state->uapi.visible) { 6187 crtc_state->enabled_planes &= ~BIT(plane->id); 6188 crtc_state->active_planes &= ~BIT(plane->id); 6189 crtc_state->update_planes |= BIT(plane->id); 6190 } 6191 6192 plane_state->planar_slave = false; 6193 } 6194 6195 if (!crtc_state->nv12_planes) 6196 return 0; 6197 6198 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 6199 struct intel_plane_state *linked_state = NULL; 6200 6201 if (plane->pipe != crtc->pipe || 6202 !(crtc_state->nv12_planes & BIT(plane->id))) 6203 continue; 6204 6205 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 6206 if (!icl_is_nv12_y_plane(dev_priv, linked->id)) 6207 continue; 6208 6209 if (crtc_state->active_planes & BIT(linked->id)) 6210 continue; 6211 6212 linked_state = intel_atomic_get_plane_state(state, linked); 6213 if (IS_ERR(linked_state)) 6214 return PTR_ERR(linked_state); 6215 6216 break; 6217 } 6218 6219 if (!linked_state) { 6220 drm_dbg_kms(&dev_priv->drm, 6221 "Need %d free Y planes for planar YUV\n", 6222 hweight8(crtc_state->nv12_planes)); 6223 6224 return -EINVAL; 6225 } 6226 6227 plane_state->planar_linked_plane = linked; 6228 6229 linked_state->planar_slave = true; 6230 linked_state->planar_linked_plane = plane; 6231 crtc_state->enabled_planes |= BIT(linked->id); 6232 crtc_state->active_planes |= BIT(linked->id); 6233 crtc_state->update_planes |= BIT(linked->id); 6234 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n", 6235 linked->base.name, plane->base.name); 6236 6237 /* Copy parameters to slave plane */ 6238 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE; 6239 linked_state->color_ctl = plane_state->color_ctl; 6240 linked_state->view = plane_state->view; 6241 6242 intel_plane_copy_hw_state(linked_state, plane_state); 6243 linked_state->uapi.src = plane_state->uapi.src; 6244 linked_state->uapi.dst = plane_state->uapi.dst; 6245 6246 if (icl_is_hdr_plane(dev_priv, plane->id)) { 6247 if (linked->id == PLANE_SPRITE5) 6248 plane_state->cus_ctl |= PLANE_CUS_PLANE_7; 6249 else if (linked->id == PLANE_SPRITE4) 6250 plane_state->cus_ctl |= PLANE_CUS_PLANE_6; 6251 else if (linked->id == PLANE_SPRITE3) 6252 plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL; 6253 else if (linked->id == PLANE_SPRITE2) 6254 plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL; 6255 else 6256 MISSING_CASE(linked->id); 6257 } 6258 } 6259 6260 return 0; 6261 } 6262 6263 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 6264 { 6265 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 6266 struct intel_atomic_state *state = 6267 to_intel_atomic_state(new_crtc_state->uapi.state); 6268 const struct intel_crtc_state *old_crtc_state = 6269 intel_atomic_get_old_crtc_state(state, crtc); 6270 6271 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 6272 } 6273 6274 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) 6275 { 6276 const struct drm_display_mode *pipe_mode = 6277 &crtc_state->hw.pipe_mode; 6278 int linetime_wm; 6279 6280 if (!crtc_state->hw.enable) 6281 return 0; 6282 6283 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 6284 pipe_mode->crtc_clock); 6285 6286 return min(linetime_wm, 0x1ff); 6287 } 6288 6289 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, 6290 const struct intel_cdclk_state *cdclk_state) 6291 { 6292 const struct drm_display_mode *pipe_mode = 6293 &crtc_state->hw.pipe_mode; 6294 int linetime_wm; 6295 6296 if (!crtc_state->hw.enable) 6297 return 0; 6298 6299 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 6300 cdclk_state->logical.cdclk); 6301 6302 return min(linetime_wm, 0x1ff); 6303 } 6304 6305 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) 6306 { 6307 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6308 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6309 const struct drm_display_mode *pipe_mode = 6310 &crtc_state->hw.pipe_mode; 6311 int linetime_wm; 6312 6313 if (!crtc_state->hw.enable) 6314 return 0; 6315 6316 linetime_wm = DIV_ROUND_UP(pipe_mode->crtc_htotal * 1000 * 8, 6317 crtc_state->pixel_rate); 6318 6319 /* Display WA #1135: BXT:ALL GLK:ALL */ 6320 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 6321 dev_priv->ipc_enabled) 6322 linetime_wm /= 2; 6323 6324 return min(linetime_wm, 0x1ff); 6325 } 6326 6327 static int hsw_compute_linetime_wm(struct intel_atomic_state *state, 6328 struct intel_crtc *crtc) 6329 { 6330 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6331 struct intel_crtc_state *crtc_state = 6332 intel_atomic_get_new_crtc_state(state, crtc); 6333 const struct intel_cdclk_state *cdclk_state; 6334 6335 if (DISPLAY_VER(dev_priv) >= 9) 6336 crtc_state->linetime = skl_linetime_wm(crtc_state); 6337 else 6338 crtc_state->linetime = hsw_linetime_wm(crtc_state); 6339 6340 if (!hsw_crtc_supports_ips(crtc)) 6341 return 0; 6342 6343 cdclk_state = intel_atomic_get_cdclk_state(state); 6344 if (IS_ERR(cdclk_state)) 6345 return PTR_ERR(cdclk_state); 6346 6347 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, 6348 cdclk_state); 6349 6350 return 0; 6351 } 6352 6353 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 6354 struct intel_crtc *crtc) 6355 { 6356 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6357 struct intel_crtc_state *crtc_state = 6358 intel_atomic_get_new_crtc_state(state, crtc); 6359 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 6360 int ret; 6361 6362 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv) && 6363 mode_changed && !crtc_state->hw.active) 6364 crtc_state->update_wm_post = true; 6365 6366 if (mode_changed && crtc_state->hw.enable && 6367 dev_priv->dpll_funcs && 6368 !crtc_state->bigjoiner_slave && 6369 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) { 6370 ret = dev_priv->dpll_funcs->crtc_compute_clock(crtc_state); 6371 if (ret) 6372 return ret; 6373 } 6374 6375 /* 6376 * May need to update pipe gamma enable bits 6377 * when C8 planes are getting enabled/disabled. 6378 */ 6379 if (c8_planes_changed(crtc_state)) 6380 crtc_state->uapi.color_mgmt_changed = true; 6381 6382 if (mode_changed || crtc_state->update_pipe || 6383 crtc_state->uapi.color_mgmt_changed) { 6384 ret = intel_color_check(crtc_state); 6385 if (ret) 6386 return ret; 6387 } 6388 6389 ret = intel_compute_pipe_wm(state, crtc); 6390 if (ret) { 6391 drm_dbg_kms(&dev_priv->drm, 6392 "Target pipe watermarks are invalid\n"); 6393 return ret; 6394 } 6395 6396 /* 6397 * Calculate 'intermediate' watermarks that satisfy both the 6398 * old state and the new state. We can program these 6399 * immediately. 6400 */ 6401 ret = intel_compute_intermediate_wm(state, crtc); 6402 if (ret) { 6403 drm_dbg_kms(&dev_priv->drm, 6404 "No valid intermediate pipe watermarks are possible\n"); 6405 return ret; 6406 } 6407 6408 if (DISPLAY_VER(dev_priv) >= 9) { 6409 if (mode_changed || crtc_state->update_pipe) { 6410 ret = skl_update_scaler_crtc(crtc_state); 6411 if (ret) 6412 return ret; 6413 } 6414 6415 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state); 6416 if (ret) 6417 return ret; 6418 } 6419 6420 if (HAS_IPS(dev_priv)) { 6421 ret = hsw_compute_ips_config(crtc_state); 6422 if (ret) 6423 return ret; 6424 } 6425 6426 if (DISPLAY_VER(dev_priv) >= 9 || 6427 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 6428 ret = hsw_compute_linetime_wm(state, crtc); 6429 if (ret) 6430 return ret; 6431 6432 } 6433 6434 ret = intel_psr2_sel_fetch_update(state, crtc); 6435 if (ret) 6436 return ret; 6437 6438 return 0; 6439 } 6440 6441 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 6442 { 6443 struct intel_connector *connector; 6444 struct drm_connector_list_iter conn_iter; 6445 6446 drm_connector_list_iter_begin(dev, &conn_iter); 6447 for_each_intel_connector_iter(connector, &conn_iter) { 6448 struct drm_connector_state *conn_state = connector->base.state; 6449 struct intel_encoder *encoder = 6450 to_intel_encoder(connector->base.encoder); 6451 6452 if (conn_state->crtc) 6453 drm_connector_put(&connector->base); 6454 6455 if (encoder) { 6456 struct intel_crtc *crtc = 6457 to_intel_crtc(encoder->base.crtc); 6458 const struct intel_crtc_state *crtc_state = 6459 to_intel_crtc_state(crtc->base.state); 6460 6461 conn_state->best_encoder = &encoder->base; 6462 conn_state->crtc = &crtc->base; 6463 conn_state->max_bpc = (crtc_state->pipe_bpp ?: 24) / 3; 6464 6465 drm_connector_get(&connector->base); 6466 } else { 6467 conn_state->best_encoder = NULL; 6468 conn_state->crtc = NULL; 6469 } 6470 } 6471 drm_connector_list_iter_end(&conn_iter); 6472 } 6473 6474 static int 6475 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 6476 struct intel_crtc_state *pipe_config) 6477 { 6478 struct drm_connector *connector = conn_state->connector; 6479 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 6480 const struct drm_display_info *info = &connector->display_info; 6481 int bpp; 6482 6483 switch (conn_state->max_bpc) { 6484 case 6 ... 7: 6485 bpp = 6 * 3; 6486 break; 6487 case 8 ... 9: 6488 bpp = 8 * 3; 6489 break; 6490 case 10 ... 11: 6491 bpp = 10 * 3; 6492 break; 6493 case 12 ... 16: 6494 bpp = 12 * 3; 6495 break; 6496 default: 6497 MISSING_CASE(conn_state->max_bpc); 6498 return -EINVAL; 6499 } 6500 6501 if (bpp < pipe_config->pipe_bpp) { 6502 drm_dbg_kms(&i915->drm, 6503 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 6504 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 6505 connector->base.id, connector->name, 6506 bpp, 3 * info->bpc, 6507 3 * conn_state->max_requested_bpc, 6508 pipe_config->pipe_bpp); 6509 6510 pipe_config->pipe_bpp = bpp; 6511 } 6512 6513 return 0; 6514 } 6515 6516 static int 6517 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 6518 struct intel_crtc_state *pipe_config) 6519 { 6520 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6521 struct drm_atomic_state *state = pipe_config->uapi.state; 6522 struct drm_connector *connector; 6523 struct drm_connector_state *connector_state; 6524 int bpp, i; 6525 6526 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 6527 IS_CHERRYVIEW(dev_priv))) 6528 bpp = 10*3; 6529 else if (DISPLAY_VER(dev_priv) >= 5) 6530 bpp = 12*3; 6531 else 6532 bpp = 8*3; 6533 6534 pipe_config->pipe_bpp = bpp; 6535 6536 /* Clamp display bpp to connector max bpp */ 6537 for_each_new_connector_in_state(state, connector, connector_state, i) { 6538 int ret; 6539 6540 if (connector_state->crtc != &crtc->base) 6541 continue; 6542 6543 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 6544 if (ret) 6545 return ret; 6546 } 6547 6548 return 0; 6549 } 6550 6551 static void intel_dump_crtc_timings(struct drm_i915_private *i915, 6552 const struct drm_display_mode *mode) 6553 { 6554 drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, " 6555 "type: 0x%x flags: 0x%x\n", 6556 mode->crtc_clock, 6557 mode->crtc_hdisplay, mode->crtc_hsync_start, 6558 mode->crtc_hsync_end, mode->crtc_htotal, 6559 mode->crtc_vdisplay, mode->crtc_vsync_start, 6560 mode->crtc_vsync_end, mode->crtc_vtotal, 6561 mode->type, mode->flags); 6562 } 6563 6564 static void 6565 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 6566 const char *id, unsigned int lane_count, 6567 const struct intel_link_m_n *m_n) 6568 { 6569 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 6570 6571 drm_dbg_kms(&i915->drm, 6572 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 6573 id, lane_count, 6574 m_n->gmch_m, m_n->gmch_n, 6575 m_n->link_m, m_n->link_n, m_n->tu); 6576 } 6577 6578 static void 6579 intel_dump_infoframe(struct drm_i915_private *dev_priv, 6580 const union hdmi_infoframe *frame) 6581 { 6582 if (!drm_debug_enabled(DRM_UT_KMS)) 6583 return; 6584 6585 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 6586 } 6587 6588 static void 6589 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv, 6590 const struct drm_dp_vsc_sdp *vsc) 6591 { 6592 if (!drm_debug_enabled(DRM_UT_KMS)) 6593 return; 6594 6595 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc); 6596 } 6597 6598 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 6599 6600 static const char * const output_type_str[] = { 6601 OUTPUT_TYPE(UNUSED), 6602 OUTPUT_TYPE(ANALOG), 6603 OUTPUT_TYPE(DVO), 6604 OUTPUT_TYPE(SDVO), 6605 OUTPUT_TYPE(LVDS), 6606 OUTPUT_TYPE(TVOUT), 6607 OUTPUT_TYPE(HDMI), 6608 OUTPUT_TYPE(DP), 6609 OUTPUT_TYPE(EDP), 6610 OUTPUT_TYPE(DSI), 6611 OUTPUT_TYPE(DDI), 6612 OUTPUT_TYPE(DP_MST), 6613 }; 6614 6615 #undef OUTPUT_TYPE 6616 6617 static void snprintf_output_types(char *buf, size_t len, 6618 unsigned int output_types) 6619 { 6620 char *str = buf; 6621 int i; 6622 6623 str[0] = '\0'; 6624 6625 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 6626 int r; 6627 6628 if ((output_types & BIT(i)) == 0) 6629 continue; 6630 6631 r = snprintf(str, len, "%s%s", 6632 str != buf ? "," : "", output_type_str[i]); 6633 if (r >= len) 6634 break; 6635 str += r; 6636 len -= r; 6637 6638 output_types &= ~BIT(i); 6639 } 6640 6641 WARN_ON_ONCE(output_types != 0); 6642 } 6643 6644 static const char * const output_format_str[] = { 6645 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 6646 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 6647 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 6648 }; 6649 6650 static const char *output_formats(enum intel_output_format format) 6651 { 6652 if (format >= ARRAY_SIZE(output_format_str)) 6653 return "invalid"; 6654 return output_format_str[format]; 6655 } 6656 6657 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 6658 { 6659 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 6660 struct drm_i915_private *i915 = to_i915(plane->base.dev); 6661 const struct drm_framebuffer *fb = plane_state->hw.fb; 6662 6663 if (!fb) { 6664 drm_dbg_kms(&i915->drm, 6665 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 6666 plane->base.base.id, plane->base.name, 6667 yesno(plane_state->uapi.visible)); 6668 return; 6669 } 6670 6671 drm_dbg_kms(&i915->drm, 6672 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %p4cc modifier = 0x%llx, visible: %s\n", 6673 plane->base.base.id, plane->base.name, 6674 fb->base.id, fb->width, fb->height, &fb->format->format, 6675 fb->modifier, yesno(plane_state->uapi.visible)); 6676 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n", 6677 plane_state->hw.rotation, plane_state->scaler_id); 6678 if (plane_state->uapi.visible) 6679 drm_dbg_kms(&i915->drm, 6680 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 6681 DRM_RECT_FP_ARG(&plane_state->uapi.src), 6682 DRM_RECT_ARG(&plane_state->uapi.dst)); 6683 } 6684 6685 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 6686 struct intel_atomic_state *state, 6687 const char *context) 6688 { 6689 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 6690 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6691 const struct intel_plane_state *plane_state; 6692 struct intel_plane *plane; 6693 char buf[64]; 6694 int i; 6695 6696 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n", 6697 crtc->base.base.id, crtc->base.name, 6698 yesno(pipe_config->hw.enable), context); 6699 6700 if (!pipe_config->hw.enable) 6701 goto dump_planes; 6702 6703 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 6704 drm_dbg_kms(&dev_priv->drm, 6705 "active: %s, output_types: %s (0x%x), output format: %s\n", 6706 yesno(pipe_config->hw.active), 6707 buf, pipe_config->output_types, 6708 output_formats(pipe_config->output_format)); 6709 6710 drm_dbg_kms(&dev_priv->drm, 6711 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 6712 transcoder_name(pipe_config->cpu_transcoder), 6713 pipe_config->pipe_bpp, pipe_config->dither); 6714 6715 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n", 6716 transcoder_name(pipe_config->mst_master_transcoder)); 6717 6718 drm_dbg_kms(&dev_priv->drm, 6719 "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n", 6720 transcoder_name(pipe_config->master_transcoder), 6721 pipe_config->sync_mode_slaves_mask); 6722 6723 drm_dbg_kms(&dev_priv->drm, "bigjoiner: %s\n", 6724 pipe_config->bigjoiner_slave ? "slave" : 6725 pipe_config->bigjoiner ? "master" : "no"); 6726 6727 drm_dbg_kms(&dev_priv->drm, "splitter: %s, link count %d, overlap %d\n", 6728 enableddisabled(pipe_config->splitter.enable), 6729 pipe_config->splitter.link_count, 6730 pipe_config->splitter.pixel_overlap); 6731 6732 if (pipe_config->has_pch_encoder) 6733 intel_dump_m_n_config(pipe_config, "fdi", 6734 pipe_config->fdi_lanes, 6735 &pipe_config->fdi_m_n); 6736 6737 if (intel_crtc_has_dp_encoder(pipe_config)) { 6738 intel_dump_m_n_config(pipe_config, "dp m_n", 6739 pipe_config->lane_count, &pipe_config->dp_m_n); 6740 if (pipe_config->has_drrs) 6741 intel_dump_m_n_config(pipe_config, "dp m2_n2", 6742 pipe_config->lane_count, 6743 &pipe_config->dp_m2_n2); 6744 } 6745 6746 drm_dbg_kms(&dev_priv->drm, 6747 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 6748 pipe_config->has_audio, pipe_config->has_infoframe, 6749 pipe_config->infoframes.enable); 6750 6751 if (pipe_config->infoframes.enable & 6752 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 6753 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n", 6754 pipe_config->infoframes.gcp); 6755 if (pipe_config->infoframes.enable & 6756 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 6757 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 6758 if (pipe_config->infoframes.enable & 6759 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 6760 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 6761 if (pipe_config->infoframes.enable & 6762 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 6763 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 6764 if (pipe_config->infoframes.enable & 6765 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) 6766 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 6767 if (pipe_config->infoframes.enable & 6768 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA)) 6769 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 6770 if (pipe_config->infoframes.enable & 6771 intel_hdmi_infoframe_enable(DP_SDP_VSC)) 6772 intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc); 6773 6774 drm_dbg_kms(&dev_priv->drm, "vrr: %s, vmin: %d, vmax: %d, pipeline full: %d, guardband: %d flipline: %d, vmin vblank: %d, vmax vblank: %d\n", 6775 yesno(pipe_config->vrr.enable), 6776 pipe_config->vrr.vmin, pipe_config->vrr.vmax, 6777 pipe_config->vrr.pipeline_full, pipe_config->vrr.guardband, 6778 pipe_config->vrr.flipline, 6779 intel_vrr_vmin_vblank_start(pipe_config), 6780 intel_vrr_vmax_vblank_start(pipe_config)); 6781 6782 drm_dbg_kms(&dev_priv->drm, "requested mode:\n"); 6783 drm_mode_debug_printmodeline(&pipe_config->hw.mode); 6784 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n"); 6785 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode); 6786 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode); 6787 drm_dbg_kms(&dev_priv->drm, "pipe mode:\n"); 6788 drm_mode_debug_printmodeline(&pipe_config->hw.pipe_mode); 6789 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.pipe_mode); 6790 drm_dbg_kms(&dev_priv->drm, 6791 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 6792 pipe_config->port_clock, 6793 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 6794 pipe_config->pixel_rate); 6795 6796 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n", 6797 pipe_config->linetime, pipe_config->ips_linetime); 6798 6799 if (DISPLAY_VER(dev_priv) >= 9) 6800 drm_dbg_kms(&dev_priv->drm, 6801 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 6802 crtc->num_scalers, 6803 pipe_config->scaler_state.scaler_users, 6804 pipe_config->scaler_state.scaler_id); 6805 6806 if (HAS_GMCH(dev_priv)) 6807 drm_dbg_kms(&dev_priv->drm, 6808 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 6809 pipe_config->gmch_pfit.control, 6810 pipe_config->gmch_pfit.pgm_ratios, 6811 pipe_config->gmch_pfit.lvds_border_bits); 6812 else 6813 drm_dbg_kms(&dev_priv->drm, 6814 "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n", 6815 DRM_RECT_ARG(&pipe_config->pch_pfit.dst), 6816 enableddisabled(pipe_config->pch_pfit.enabled), 6817 yesno(pipe_config->pch_pfit.force_thru)); 6818 6819 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n", 6820 pipe_config->ips_enabled, pipe_config->double_wide); 6821 6822 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 6823 6824 if (IS_CHERRYVIEW(dev_priv)) 6825 drm_dbg_kms(&dev_priv->drm, 6826 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 6827 pipe_config->cgm_mode, pipe_config->gamma_mode, 6828 pipe_config->gamma_enable, pipe_config->csc_enable); 6829 else 6830 drm_dbg_kms(&dev_priv->drm, 6831 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 6832 pipe_config->csc_mode, pipe_config->gamma_mode, 6833 pipe_config->gamma_enable, pipe_config->csc_enable); 6834 6835 drm_dbg_kms(&dev_priv->drm, "degamma lut: %d entries, gamma lut: %d entries\n", 6836 pipe_config->hw.degamma_lut ? 6837 drm_color_lut_size(pipe_config->hw.degamma_lut) : 0, 6838 pipe_config->hw.gamma_lut ? 6839 drm_color_lut_size(pipe_config->hw.gamma_lut) : 0); 6840 6841 dump_planes: 6842 if (!state) 6843 return; 6844 6845 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 6846 if (plane->pipe == crtc->pipe) 6847 intel_dump_plane_state(plane_state); 6848 } 6849 } 6850 6851 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 6852 { 6853 struct drm_device *dev = state->base.dev; 6854 struct drm_connector *connector; 6855 struct drm_connector_list_iter conn_iter; 6856 unsigned int used_ports = 0; 6857 unsigned int used_mst_ports = 0; 6858 bool ret = true; 6859 6860 /* 6861 * We're going to peek into connector->state, 6862 * hence connection_mutex must be held. 6863 */ 6864 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); 6865 6866 /* 6867 * Walk the connector list instead of the encoder 6868 * list to detect the problem on ddi platforms 6869 * where there's just one encoder per digital port. 6870 */ 6871 drm_connector_list_iter_begin(dev, &conn_iter); 6872 drm_for_each_connector_iter(connector, &conn_iter) { 6873 struct drm_connector_state *connector_state; 6874 struct intel_encoder *encoder; 6875 6876 connector_state = 6877 drm_atomic_get_new_connector_state(&state->base, 6878 connector); 6879 if (!connector_state) 6880 connector_state = connector->state; 6881 6882 if (!connector_state->best_encoder) 6883 continue; 6884 6885 encoder = to_intel_encoder(connector_state->best_encoder); 6886 6887 drm_WARN_ON(dev, !connector_state->crtc); 6888 6889 switch (encoder->type) { 6890 case INTEL_OUTPUT_DDI: 6891 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev)))) 6892 break; 6893 fallthrough; 6894 case INTEL_OUTPUT_DP: 6895 case INTEL_OUTPUT_HDMI: 6896 case INTEL_OUTPUT_EDP: 6897 /* the same port mustn't appear more than once */ 6898 if (used_ports & BIT(encoder->port)) 6899 ret = false; 6900 6901 used_ports |= BIT(encoder->port); 6902 break; 6903 case INTEL_OUTPUT_DP_MST: 6904 used_mst_ports |= 6905 1 << encoder->port; 6906 break; 6907 default: 6908 break; 6909 } 6910 } 6911 drm_connector_list_iter_end(&conn_iter); 6912 6913 /* can't mix MST and SST/HDMI on the same port */ 6914 if (used_ports & used_mst_ports) 6915 return false; 6916 6917 return ret; 6918 } 6919 6920 static void 6921 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_atomic_state *state, 6922 struct intel_crtc_state *crtc_state) 6923 { 6924 const struct intel_crtc_state *from_crtc_state = crtc_state; 6925 6926 if (crtc_state->bigjoiner_slave) { 6927 from_crtc_state = intel_atomic_get_new_crtc_state(state, 6928 crtc_state->bigjoiner_linked_crtc); 6929 6930 /* No need to copy state if the master state is unchanged */ 6931 if (!from_crtc_state) 6932 return; 6933 } 6934 6935 intel_crtc_copy_color_blobs(crtc_state, from_crtc_state); 6936 } 6937 6938 static void 6939 intel_crtc_copy_uapi_to_hw_state(struct intel_atomic_state *state, 6940 struct intel_crtc_state *crtc_state) 6941 { 6942 crtc_state->hw.enable = crtc_state->uapi.enable; 6943 crtc_state->hw.active = crtc_state->uapi.active; 6944 crtc_state->hw.mode = crtc_state->uapi.mode; 6945 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode; 6946 crtc_state->hw.scaling_filter = crtc_state->uapi.scaling_filter; 6947 6948 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc_state); 6949 } 6950 6951 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state) 6952 { 6953 if (crtc_state->bigjoiner_slave) 6954 return; 6955 6956 crtc_state->uapi.enable = crtc_state->hw.enable; 6957 crtc_state->uapi.active = crtc_state->hw.active; 6958 drm_WARN_ON(crtc_state->uapi.crtc->dev, 6959 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0); 6960 6961 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode; 6962 crtc_state->uapi.scaling_filter = crtc_state->hw.scaling_filter; 6963 6964 /* copy color blobs to uapi */ 6965 drm_property_replace_blob(&crtc_state->uapi.degamma_lut, 6966 crtc_state->hw.degamma_lut); 6967 drm_property_replace_blob(&crtc_state->uapi.gamma_lut, 6968 crtc_state->hw.gamma_lut); 6969 drm_property_replace_blob(&crtc_state->uapi.ctm, 6970 crtc_state->hw.ctm); 6971 } 6972 6973 static int 6974 copy_bigjoiner_crtc_state(struct intel_crtc_state *crtc_state, 6975 const struct intel_crtc_state *from_crtc_state) 6976 { 6977 struct intel_crtc_state *saved_state; 6978 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6979 6980 saved_state = kmemdup(from_crtc_state, sizeof(*saved_state), GFP_KERNEL); 6981 if (!saved_state) 6982 return -ENOMEM; 6983 6984 saved_state->uapi = crtc_state->uapi; 6985 saved_state->scaler_state = crtc_state->scaler_state; 6986 saved_state->shared_dpll = crtc_state->shared_dpll; 6987 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 6988 saved_state->crc_enabled = crtc_state->crc_enabled; 6989 6990 intel_crtc_free_hw_state(crtc_state); 6991 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 6992 kfree(saved_state); 6993 6994 /* Re-init hw state */ 6995 memset(&crtc_state->hw, 0, sizeof(saved_state->hw)); 6996 crtc_state->hw.enable = from_crtc_state->hw.enable; 6997 crtc_state->hw.active = from_crtc_state->hw.active; 6998 crtc_state->hw.pipe_mode = from_crtc_state->hw.pipe_mode; 6999 crtc_state->hw.adjusted_mode = from_crtc_state->hw.adjusted_mode; 7000 7001 /* Some fixups */ 7002 crtc_state->uapi.mode_changed = from_crtc_state->uapi.mode_changed; 7003 crtc_state->uapi.connectors_changed = from_crtc_state->uapi.connectors_changed; 7004 crtc_state->uapi.active_changed = from_crtc_state->uapi.active_changed; 7005 crtc_state->nv12_planes = crtc_state->c8_planes = crtc_state->update_planes = 0; 7006 crtc_state->bigjoiner_linked_crtc = to_intel_crtc(from_crtc_state->uapi.crtc); 7007 crtc_state->bigjoiner_slave = true; 7008 crtc_state->cpu_transcoder = (enum transcoder)crtc->pipe; 7009 crtc_state->has_audio = false; 7010 7011 return 0; 7012 } 7013 7014 static int 7015 intel_crtc_prepare_cleared_state(struct intel_atomic_state *state, 7016 struct intel_crtc_state *crtc_state) 7017 { 7018 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7019 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7020 struct intel_crtc_state *saved_state; 7021 7022 saved_state = intel_crtc_state_alloc(crtc); 7023 if (!saved_state) 7024 return -ENOMEM; 7025 7026 /* free the old crtc_state->hw members */ 7027 intel_crtc_free_hw_state(crtc_state); 7028 7029 /* FIXME: before the switch to atomic started, a new pipe_config was 7030 * kzalloc'd. Code that depends on any field being zero should be 7031 * fixed, so that the crtc_state can be safely duplicated. For now, 7032 * only fields that are know to not cause problems are preserved. */ 7033 7034 saved_state->uapi = crtc_state->uapi; 7035 saved_state->scaler_state = crtc_state->scaler_state; 7036 saved_state->shared_dpll = crtc_state->shared_dpll; 7037 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 7038 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 7039 sizeof(saved_state->icl_port_dplls)); 7040 saved_state->crc_enabled = crtc_state->crc_enabled; 7041 if (IS_G4X(dev_priv) || 7042 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7043 saved_state->wm = crtc_state->wm; 7044 7045 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 7046 kfree(saved_state); 7047 7048 intel_crtc_copy_uapi_to_hw_state(state, crtc_state); 7049 7050 return 0; 7051 } 7052 7053 static int 7054 intel_modeset_pipe_config(struct intel_atomic_state *state, 7055 struct intel_crtc_state *pipe_config) 7056 { 7057 struct drm_crtc *crtc = pipe_config->uapi.crtc; 7058 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7059 struct drm_connector *connector; 7060 struct drm_connector_state *connector_state; 7061 int base_bpp, ret, i; 7062 bool retry = true; 7063 7064 pipe_config->cpu_transcoder = 7065 (enum transcoder) to_intel_crtc(crtc)->pipe; 7066 7067 /* 7068 * Sanitize sync polarity flags based on requested ones. If neither 7069 * positive or negative polarity is requested, treat this as meaning 7070 * negative polarity. 7071 */ 7072 if (!(pipe_config->hw.adjusted_mode.flags & 7073 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 7074 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 7075 7076 if (!(pipe_config->hw.adjusted_mode.flags & 7077 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 7078 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 7079 7080 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 7081 pipe_config); 7082 if (ret) 7083 return ret; 7084 7085 base_bpp = pipe_config->pipe_bpp; 7086 7087 /* 7088 * Determine the real pipe dimensions. Note that stereo modes can 7089 * increase the actual pipe size due to the frame doubling and 7090 * insertion of additional space for blanks between the frame. This 7091 * is stored in the crtc timings. We use the requested mode to do this 7092 * computation to clearly distinguish it from the adjusted mode, which 7093 * can be changed by the connectors in the below retry loop. 7094 */ 7095 drm_mode_get_hv_timing(&pipe_config->hw.mode, 7096 &pipe_config->pipe_src_w, 7097 &pipe_config->pipe_src_h); 7098 7099 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 7100 struct intel_encoder *encoder = 7101 to_intel_encoder(connector_state->best_encoder); 7102 7103 if (connector_state->crtc != crtc) 7104 continue; 7105 7106 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 7107 drm_dbg_kms(&i915->drm, 7108 "rejecting invalid cloning configuration\n"); 7109 return -EINVAL; 7110 } 7111 7112 /* 7113 * Determine output_types before calling the .compute_config() 7114 * hooks so that the hooks can use this information safely. 7115 */ 7116 if (encoder->compute_output_type) 7117 pipe_config->output_types |= 7118 BIT(encoder->compute_output_type(encoder, pipe_config, 7119 connector_state)); 7120 else 7121 pipe_config->output_types |= BIT(encoder->type); 7122 } 7123 7124 encoder_retry: 7125 /* Ensure the port clock defaults are reset when retrying. */ 7126 pipe_config->port_clock = 0; 7127 pipe_config->pixel_multiplier = 1; 7128 7129 /* Fill in default crtc timings, allow encoders to overwrite them. */ 7130 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode, 7131 CRTC_STEREO_DOUBLE); 7132 7133 /* Pass our mode to the connectors and the CRTC to give them a chance to 7134 * adjust it according to limitations or connector properties, and also 7135 * a chance to reject the mode entirely. 7136 */ 7137 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 7138 struct intel_encoder *encoder = 7139 to_intel_encoder(connector_state->best_encoder); 7140 7141 if (connector_state->crtc != crtc) 7142 continue; 7143 7144 ret = encoder->compute_config(encoder, pipe_config, 7145 connector_state); 7146 if (ret == -EDEADLK) 7147 return ret; 7148 if (ret < 0) { 7149 drm_dbg_kms(&i915->drm, "Encoder config failure: %d\n", ret); 7150 return ret; 7151 } 7152 } 7153 7154 /* Set default port clock if not overwritten by the encoder. Needs to be 7155 * done afterwards in case the encoder adjusts the mode. */ 7156 if (!pipe_config->port_clock) 7157 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock 7158 * pipe_config->pixel_multiplier; 7159 7160 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 7161 if (ret == -EDEADLK) 7162 return ret; 7163 if (ret == -EAGAIN) { 7164 if (drm_WARN(&i915->drm, !retry, 7165 "loop in pipe configuration computation\n")) 7166 return -EINVAL; 7167 7168 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n"); 7169 retry = false; 7170 goto encoder_retry; 7171 } 7172 if (ret < 0) { 7173 drm_dbg_kms(&i915->drm, "CRTC config failure: %d\n", ret); 7174 return ret; 7175 } 7176 7177 /* Dithering seems to not pass-through bits correctly when it should, so 7178 * only enable it on 6bpc panels and when its not a compliance 7179 * test requesting 6bpc video pattern. 7180 */ 7181 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 7182 !pipe_config->dither_force_disable; 7183 drm_dbg_kms(&i915->drm, 7184 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 7185 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 7186 7187 return 0; 7188 } 7189 7190 static int 7191 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state) 7192 { 7193 struct intel_atomic_state *state = 7194 to_intel_atomic_state(crtc_state->uapi.state); 7195 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7196 struct drm_connector_state *conn_state; 7197 struct drm_connector *connector; 7198 int i; 7199 7200 for_each_new_connector_in_state(&state->base, connector, 7201 conn_state, i) { 7202 struct intel_encoder *encoder = 7203 to_intel_encoder(conn_state->best_encoder); 7204 int ret; 7205 7206 if (conn_state->crtc != &crtc->base || 7207 !encoder->compute_config_late) 7208 continue; 7209 7210 ret = encoder->compute_config_late(encoder, crtc_state, 7211 conn_state); 7212 if (ret) 7213 return ret; 7214 } 7215 7216 return 0; 7217 } 7218 7219 bool intel_fuzzy_clock_check(int clock1, int clock2) 7220 { 7221 int diff; 7222 7223 if (clock1 == clock2) 7224 return true; 7225 7226 if (!clock1 || !clock2) 7227 return false; 7228 7229 diff = abs(clock1 - clock2); 7230 7231 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 7232 return true; 7233 7234 return false; 7235 } 7236 7237 static bool 7238 intel_compare_m_n(unsigned int m, unsigned int n, 7239 unsigned int m2, unsigned int n2, 7240 bool exact) 7241 { 7242 if (m == m2 && n == n2) 7243 return true; 7244 7245 if (exact || !m || !n || !m2 || !n2) 7246 return false; 7247 7248 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 7249 7250 if (n > n2) { 7251 while (n > n2) { 7252 m2 <<= 1; 7253 n2 <<= 1; 7254 } 7255 } else if (n < n2) { 7256 while (n < n2) { 7257 m <<= 1; 7258 n <<= 1; 7259 } 7260 } 7261 7262 if (n != n2) 7263 return false; 7264 7265 return intel_fuzzy_clock_check(m, m2); 7266 } 7267 7268 static bool 7269 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 7270 const struct intel_link_m_n *m2_n2, 7271 bool exact) 7272 { 7273 return m_n->tu == m2_n2->tu && 7274 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 7275 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 7276 intel_compare_m_n(m_n->link_m, m_n->link_n, 7277 m2_n2->link_m, m2_n2->link_n, exact); 7278 } 7279 7280 static bool 7281 intel_compare_infoframe(const union hdmi_infoframe *a, 7282 const union hdmi_infoframe *b) 7283 { 7284 return memcmp(a, b, sizeof(*a)) == 0; 7285 } 7286 7287 static bool 7288 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a, 7289 const struct drm_dp_vsc_sdp *b) 7290 { 7291 return memcmp(a, b, sizeof(*a)) == 0; 7292 } 7293 7294 static void 7295 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 7296 bool fastset, const char *name, 7297 const union hdmi_infoframe *a, 7298 const union hdmi_infoframe *b) 7299 { 7300 if (fastset) { 7301 if (!drm_debug_enabled(DRM_UT_KMS)) 7302 return; 7303 7304 drm_dbg_kms(&dev_priv->drm, 7305 "fastset mismatch in %s infoframe\n", name); 7306 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 7307 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 7308 drm_dbg_kms(&dev_priv->drm, "found:\n"); 7309 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 7310 } else { 7311 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name); 7312 drm_err(&dev_priv->drm, "expected:\n"); 7313 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 7314 drm_err(&dev_priv->drm, "found:\n"); 7315 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 7316 } 7317 } 7318 7319 static void 7320 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv, 7321 bool fastset, const char *name, 7322 const struct drm_dp_vsc_sdp *a, 7323 const struct drm_dp_vsc_sdp *b) 7324 { 7325 if (fastset) { 7326 if (!drm_debug_enabled(DRM_UT_KMS)) 7327 return; 7328 7329 drm_dbg_kms(&dev_priv->drm, 7330 "fastset mismatch in %s dp sdp\n", name); 7331 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 7332 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a); 7333 drm_dbg_kms(&dev_priv->drm, "found:\n"); 7334 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b); 7335 } else { 7336 drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name); 7337 drm_err(&dev_priv->drm, "expected:\n"); 7338 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a); 7339 drm_err(&dev_priv->drm, "found:\n"); 7340 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b); 7341 } 7342 } 7343 7344 static void __printf(4, 5) 7345 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, 7346 const char *name, const char *format, ...) 7347 { 7348 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 7349 struct va_format vaf; 7350 va_list args; 7351 7352 va_start(args, format); 7353 vaf.fmt = format; 7354 vaf.va = &args; 7355 7356 if (fastset) 7357 drm_dbg_kms(&i915->drm, 7358 "[CRTC:%d:%s] fastset mismatch in %s %pV\n", 7359 crtc->base.base.id, crtc->base.name, name, &vaf); 7360 else 7361 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n", 7362 crtc->base.base.id, crtc->base.name, name, &vaf); 7363 7364 va_end(args); 7365 } 7366 7367 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 7368 { 7369 if (dev_priv->params.fastboot != -1) 7370 return dev_priv->params.fastboot; 7371 7372 /* Enable fastboot by default on Skylake and newer */ 7373 if (DISPLAY_VER(dev_priv) >= 9) 7374 return true; 7375 7376 /* Enable fastboot by default on VLV and CHV */ 7377 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7378 return true; 7379 7380 /* Disabled by default on all others */ 7381 return false; 7382 } 7383 7384 static bool 7385 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 7386 const struct intel_crtc_state *pipe_config, 7387 bool fastset) 7388 { 7389 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev); 7390 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 7391 bool ret = true; 7392 u32 bp_gamma = 0; 7393 bool fixup_inherited = fastset && 7394 current_config->inherited && !pipe_config->inherited; 7395 7396 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 7397 drm_dbg_kms(&dev_priv->drm, 7398 "initial modeset and fastboot not set\n"); 7399 ret = false; 7400 } 7401 7402 #define PIPE_CONF_CHECK_X(name) do { \ 7403 if (current_config->name != pipe_config->name) { \ 7404 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 7405 "(expected 0x%08x, found 0x%08x)", \ 7406 current_config->name, \ 7407 pipe_config->name); \ 7408 ret = false; \ 7409 } \ 7410 } while (0) 7411 7412 #define PIPE_CONF_CHECK_X_WITH_MASK(name, mask) do { \ 7413 if ((current_config->name & (mask)) != (pipe_config->name & (mask))) { \ 7414 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 7415 "(expected 0x%08x, found 0x%08x)", \ 7416 current_config->name & (mask), \ 7417 pipe_config->name & (mask)); \ 7418 ret = false; \ 7419 } \ 7420 } while (0) 7421 7422 #define PIPE_CONF_CHECK_I(name) do { \ 7423 if (current_config->name != pipe_config->name) { \ 7424 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 7425 "(expected %i, found %i)", \ 7426 current_config->name, \ 7427 pipe_config->name); \ 7428 ret = false; \ 7429 } \ 7430 } while (0) 7431 7432 #define PIPE_CONF_CHECK_BOOL(name) do { \ 7433 if (current_config->name != pipe_config->name) { \ 7434 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 7435 "(expected %s, found %s)", \ 7436 yesno(current_config->name), \ 7437 yesno(pipe_config->name)); \ 7438 ret = false; \ 7439 } \ 7440 } while (0) 7441 7442 /* 7443 * Checks state where we only read out the enabling, but not the entire 7444 * state itself (like full infoframes or ELD for audio). These states 7445 * require a full modeset on bootup to fix up. 7446 */ 7447 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 7448 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 7449 PIPE_CONF_CHECK_BOOL(name); \ 7450 } else { \ 7451 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 7452 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ 7453 yesno(current_config->name), \ 7454 yesno(pipe_config->name)); \ 7455 ret = false; \ 7456 } \ 7457 } while (0) 7458 7459 #define PIPE_CONF_CHECK_P(name) do { \ 7460 if (current_config->name != pipe_config->name) { \ 7461 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 7462 "(expected %p, found %p)", \ 7463 current_config->name, \ 7464 pipe_config->name); \ 7465 ret = false; \ 7466 } \ 7467 } while (0) 7468 7469 #define PIPE_CONF_CHECK_M_N(name) do { \ 7470 if (!intel_compare_link_m_n(¤t_config->name, \ 7471 &pipe_config->name,\ 7472 !fastset)) { \ 7473 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 7474 "(expected tu %i gmch %i/%i link %i/%i, " \ 7475 "found tu %i, gmch %i/%i link %i/%i)", \ 7476 current_config->name.tu, \ 7477 current_config->name.gmch_m, \ 7478 current_config->name.gmch_n, \ 7479 current_config->name.link_m, \ 7480 current_config->name.link_n, \ 7481 pipe_config->name.tu, \ 7482 pipe_config->name.gmch_m, \ 7483 pipe_config->name.gmch_n, \ 7484 pipe_config->name.link_m, \ 7485 pipe_config->name.link_n); \ 7486 ret = false; \ 7487 } \ 7488 } while (0) 7489 7490 /* This is required for BDW+ where there is only one set of registers for 7491 * switching between high and low RR. 7492 * This macro can be used whenever a comparison has to be made between one 7493 * hw state and multiple sw state variables. 7494 */ 7495 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 7496 if (!intel_compare_link_m_n(¤t_config->name, \ 7497 &pipe_config->name, !fastset) && \ 7498 !intel_compare_link_m_n(¤t_config->alt_name, \ 7499 &pipe_config->name, !fastset)) { \ 7500 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 7501 "(expected tu %i gmch %i/%i link %i/%i, " \ 7502 "or tu %i gmch %i/%i link %i/%i, " \ 7503 "found tu %i, gmch %i/%i link %i/%i)", \ 7504 current_config->name.tu, \ 7505 current_config->name.gmch_m, \ 7506 current_config->name.gmch_n, \ 7507 current_config->name.link_m, \ 7508 current_config->name.link_n, \ 7509 current_config->alt_name.tu, \ 7510 current_config->alt_name.gmch_m, \ 7511 current_config->alt_name.gmch_n, \ 7512 current_config->alt_name.link_m, \ 7513 current_config->alt_name.link_n, \ 7514 pipe_config->name.tu, \ 7515 pipe_config->name.gmch_m, \ 7516 pipe_config->name.gmch_n, \ 7517 pipe_config->name.link_m, \ 7518 pipe_config->name.link_n); \ 7519 ret = false; \ 7520 } \ 7521 } while (0) 7522 7523 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 7524 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 7525 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 7526 "(%x) (expected %i, found %i)", \ 7527 (mask), \ 7528 current_config->name & (mask), \ 7529 pipe_config->name & (mask)); \ 7530 ret = false; \ 7531 } \ 7532 } while (0) 7533 7534 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 7535 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 7536 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 7537 "(expected %i, found %i)", \ 7538 current_config->name, \ 7539 pipe_config->name); \ 7540 ret = false; \ 7541 } \ 7542 } while (0) 7543 7544 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 7545 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 7546 &pipe_config->infoframes.name)) { \ 7547 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 7548 ¤t_config->infoframes.name, \ 7549 &pipe_config->infoframes.name); \ 7550 ret = false; \ 7551 } \ 7552 } while (0) 7553 7554 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \ 7555 if (!current_config->has_psr && !pipe_config->has_psr && \ 7556 !intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \ 7557 &pipe_config->infoframes.name)) { \ 7558 pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \ 7559 ¤t_config->infoframes.name, \ 7560 &pipe_config->infoframes.name); \ 7561 ret = false; \ 7562 } \ 7563 } while (0) 7564 7565 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ 7566 if (current_config->name1 != pipe_config->name1) { \ 7567 pipe_config_mismatch(fastset, crtc, __stringify(name1), \ 7568 "(expected %i, found %i, won't compare lut values)", \ 7569 current_config->name1, \ 7570 pipe_config->name1); \ 7571 ret = false;\ 7572 } else { \ 7573 if (!intel_color_lut_equal(current_config->name2, \ 7574 pipe_config->name2, pipe_config->name1, \ 7575 bit_precision)) { \ 7576 pipe_config_mismatch(fastset, crtc, __stringify(name2), \ 7577 "hw_state doesn't match sw_state"); \ 7578 ret = false; \ 7579 } \ 7580 } \ 7581 } while (0) 7582 7583 #define PIPE_CONF_QUIRK(quirk) \ 7584 ((current_config->quirks | pipe_config->quirks) & (quirk)) 7585 7586 PIPE_CONF_CHECK_I(cpu_transcoder); 7587 7588 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 7589 PIPE_CONF_CHECK_I(fdi_lanes); 7590 PIPE_CONF_CHECK_M_N(fdi_m_n); 7591 7592 PIPE_CONF_CHECK_I(lane_count); 7593 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 7594 7595 if (DISPLAY_VER(dev_priv) < 8) { 7596 PIPE_CONF_CHECK_M_N(dp_m_n); 7597 7598 if (current_config->has_drrs) 7599 PIPE_CONF_CHECK_M_N(dp_m2_n2); 7600 } else 7601 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 7602 7603 PIPE_CONF_CHECK_X(output_types); 7604 7605 /* FIXME do the readout properly and get rid of this quirk */ 7606 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 7607 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hdisplay); 7608 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_htotal); 7609 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_start); 7610 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_end); 7611 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_start); 7612 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_end); 7613 7614 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vdisplay); 7615 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vtotal); 7616 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_start); 7617 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_end); 7618 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_start); 7619 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_end); 7620 7621 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay); 7622 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal); 7623 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start); 7624 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end); 7625 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start); 7626 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end); 7627 7628 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay); 7629 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal); 7630 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start); 7631 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end); 7632 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start); 7633 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end); 7634 7635 PIPE_CONF_CHECK_I(pixel_multiplier); 7636 7637 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 7638 DRM_MODE_FLAG_INTERLACE); 7639 7640 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 7641 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 7642 DRM_MODE_FLAG_PHSYNC); 7643 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 7644 DRM_MODE_FLAG_NHSYNC); 7645 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 7646 DRM_MODE_FLAG_PVSYNC); 7647 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 7648 DRM_MODE_FLAG_NVSYNC); 7649 } 7650 } 7651 7652 PIPE_CONF_CHECK_I(output_format); 7653 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 7654 if ((DISPLAY_VER(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 7655 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7656 PIPE_CONF_CHECK_BOOL(limited_color_range); 7657 7658 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 7659 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 7660 PIPE_CONF_CHECK_BOOL(has_infoframe); 7661 /* FIXME do the readout properly and get rid of this quirk */ 7662 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) 7663 PIPE_CONF_CHECK_BOOL(fec_enable); 7664 7665 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 7666 7667 PIPE_CONF_CHECK_X(gmch_pfit.control); 7668 /* pfit ratios are autocomputed by the hw on gen4+ */ 7669 if (DISPLAY_VER(dev_priv) < 4) 7670 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 7671 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 7672 7673 /* 7674 * Changing the EDP transcoder input mux 7675 * (A_ONOFF vs. A_ON) requires a full modeset. 7676 */ 7677 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 7678 7679 if (!fastset) { 7680 PIPE_CONF_CHECK_I(pipe_src_w); 7681 PIPE_CONF_CHECK_I(pipe_src_h); 7682 7683 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 7684 if (current_config->pch_pfit.enabled) { 7685 PIPE_CONF_CHECK_I(pch_pfit.dst.x1); 7686 PIPE_CONF_CHECK_I(pch_pfit.dst.y1); 7687 PIPE_CONF_CHECK_I(pch_pfit.dst.x2); 7688 PIPE_CONF_CHECK_I(pch_pfit.dst.y2); 7689 } 7690 7691 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 7692 /* FIXME do the readout properly and get rid of this quirk */ 7693 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) 7694 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 7695 7696 PIPE_CONF_CHECK_X(gamma_mode); 7697 if (IS_CHERRYVIEW(dev_priv)) 7698 PIPE_CONF_CHECK_X(cgm_mode); 7699 else 7700 PIPE_CONF_CHECK_X(csc_mode); 7701 PIPE_CONF_CHECK_BOOL(gamma_enable); 7702 PIPE_CONF_CHECK_BOOL(csc_enable); 7703 7704 PIPE_CONF_CHECK_I(linetime); 7705 PIPE_CONF_CHECK_I(ips_linetime); 7706 7707 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); 7708 if (bp_gamma) 7709 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma); 7710 7711 if (current_config->active_planes) { 7712 PIPE_CONF_CHECK_BOOL(has_psr); 7713 PIPE_CONF_CHECK_BOOL(has_psr2); 7714 PIPE_CONF_CHECK_BOOL(enable_psr2_sel_fetch); 7715 PIPE_CONF_CHECK_I(dc3co_exitline); 7716 } 7717 } 7718 7719 PIPE_CONF_CHECK_BOOL(double_wide); 7720 7721 if (dev_priv->dpll.mgr) 7722 PIPE_CONF_CHECK_P(shared_dpll); 7723 7724 /* FIXME do the readout properly and get rid of this quirk */ 7725 if (dev_priv->dpll.mgr && !PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 7726 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 7727 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 7728 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 7729 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 7730 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 7731 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 7732 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 7733 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 7734 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 7735 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 7736 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 7737 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 7738 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 7739 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 7740 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 7741 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 7742 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 7743 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 7744 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 7745 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 7746 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 7747 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 7748 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 7749 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 7750 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 7751 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 7752 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 7753 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 7754 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 7755 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 7756 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 7757 } 7758 7759 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 7760 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 7761 PIPE_CONF_CHECK_X(dsi_pll.div); 7762 7763 if (IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) >= 5) 7764 PIPE_CONF_CHECK_I(pipe_bpp); 7765 7766 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.pipe_mode.crtc_clock); 7767 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock); 7768 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 7769 7770 PIPE_CONF_CHECK_I(min_voltage_level); 7771 } 7772 7773 if (current_config->has_psr || pipe_config->has_psr) 7774 PIPE_CONF_CHECK_X_WITH_MASK(infoframes.enable, 7775 ~intel_hdmi_infoframe_enable(DP_SDP_VSC)); 7776 else 7777 PIPE_CONF_CHECK_X(infoframes.enable); 7778 7779 PIPE_CONF_CHECK_X(infoframes.gcp); 7780 PIPE_CONF_CHECK_INFOFRAME(avi); 7781 PIPE_CONF_CHECK_INFOFRAME(spd); 7782 PIPE_CONF_CHECK_INFOFRAME(hdmi); 7783 PIPE_CONF_CHECK_INFOFRAME(drm); 7784 PIPE_CONF_CHECK_DP_VSC_SDP(vsc); 7785 7786 PIPE_CONF_CHECK_X(sync_mode_slaves_mask); 7787 PIPE_CONF_CHECK_I(master_transcoder); 7788 PIPE_CONF_CHECK_BOOL(bigjoiner); 7789 PIPE_CONF_CHECK_BOOL(bigjoiner_slave); 7790 PIPE_CONF_CHECK_P(bigjoiner_linked_crtc); 7791 7792 PIPE_CONF_CHECK_I(dsc.compression_enable); 7793 PIPE_CONF_CHECK_I(dsc.dsc_split); 7794 PIPE_CONF_CHECK_I(dsc.compressed_bpp); 7795 7796 PIPE_CONF_CHECK_BOOL(splitter.enable); 7797 PIPE_CONF_CHECK_I(splitter.link_count); 7798 PIPE_CONF_CHECK_I(splitter.pixel_overlap); 7799 7800 PIPE_CONF_CHECK_I(mst_master_transcoder); 7801 7802 PIPE_CONF_CHECK_BOOL(vrr.enable); 7803 PIPE_CONF_CHECK_I(vrr.vmin); 7804 PIPE_CONF_CHECK_I(vrr.vmax); 7805 PIPE_CONF_CHECK_I(vrr.flipline); 7806 PIPE_CONF_CHECK_I(vrr.pipeline_full); 7807 PIPE_CONF_CHECK_I(vrr.guardband); 7808 7809 #undef PIPE_CONF_CHECK_X 7810 #undef PIPE_CONF_CHECK_I 7811 #undef PIPE_CONF_CHECK_BOOL 7812 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 7813 #undef PIPE_CONF_CHECK_P 7814 #undef PIPE_CONF_CHECK_FLAGS 7815 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 7816 #undef PIPE_CONF_CHECK_COLOR_LUT 7817 #undef PIPE_CONF_QUIRK 7818 7819 return ret; 7820 } 7821 7822 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 7823 const struct intel_crtc_state *pipe_config) 7824 { 7825 if (pipe_config->has_pch_encoder) { 7826 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 7827 &pipe_config->fdi_m_n); 7828 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock; 7829 7830 /* 7831 * FDI already provided one idea for the dotclock. 7832 * Yell if the encoder disagrees. 7833 */ 7834 drm_WARN(&dev_priv->drm, 7835 !intel_fuzzy_clock_check(fdi_dotclock, dotclock), 7836 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 7837 fdi_dotclock, dotclock); 7838 } 7839 } 7840 7841 static void verify_wm_state(struct intel_crtc *crtc, 7842 struct intel_crtc_state *new_crtc_state) 7843 { 7844 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7845 struct skl_hw_state { 7846 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 7847 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 7848 struct skl_pipe_wm wm; 7849 } *hw; 7850 const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal; 7851 int level, max_level = ilk_wm_max_level(dev_priv); 7852 struct intel_plane *plane; 7853 u8 hw_enabled_slices; 7854 7855 if (DISPLAY_VER(dev_priv) < 9 || !new_crtc_state->hw.active) 7856 return; 7857 7858 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 7859 if (!hw) 7860 return; 7861 7862 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 7863 7864 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 7865 7866 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv); 7867 7868 if (DISPLAY_VER(dev_priv) >= 11 && 7869 hw_enabled_slices != dev_priv->dbuf.enabled_slices) 7870 drm_err(&dev_priv->drm, 7871 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", 7872 dev_priv->dbuf.enabled_slices, 7873 hw_enabled_slices); 7874 7875 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 7876 const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 7877 const struct skl_wm_level *hw_wm_level, *sw_wm_level; 7878 7879 /* Watermarks */ 7880 for (level = 0; level <= max_level; level++) { 7881 hw_wm_level = &hw->wm.planes[plane->id].wm[level]; 7882 sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level); 7883 7884 if (skl_wm_level_equals(hw_wm_level, sw_wm_level)) 7885 continue; 7886 7887 drm_err(&dev_priv->drm, 7888 "[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 7889 plane->base.base.id, plane->base.name, level, 7890 sw_wm_level->enable, 7891 sw_wm_level->blocks, 7892 sw_wm_level->lines, 7893 hw_wm_level->enable, 7894 hw_wm_level->blocks, 7895 hw_wm_level->lines); 7896 } 7897 7898 hw_wm_level = &hw->wm.planes[plane->id].trans_wm; 7899 sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id); 7900 7901 if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 7902 drm_err(&dev_priv->drm, 7903 "[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 7904 plane->base.base.id, plane->base.name, 7905 sw_wm_level->enable, 7906 sw_wm_level->blocks, 7907 sw_wm_level->lines, 7908 hw_wm_level->enable, 7909 hw_wm_level->blocks, 7910 hw_wm_level->lines); 7911 } 7912 7913 hw_wm_level = &hw->wm.planes[plane->id].sagv.wm0; 7914 sw_wm_level = &sw_wm->planes[plane->id].sagv.wm0; 7915 7916 if (HAS_HW_SAGV_WM(dev_priv) && 7917 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 7918 drm_err(&dev_priv->drm, 7919 "[PLANE:%d:%s] mismatch in SAGV WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 7920 plane->base.base.id, plane->base.name, 7921 sw_wm_level->enable, 7922 sw_wm_level->blocks, 7923 sw_wm_level->lines, 7924 hw_wm_level->enable, 7925 hw_wm_level->blocks, 7926 hw_wm_level->lines); 7927 } 7928 7929 hw_wm_level = &hw->wm.planes[plane->id].sagv.trans_wm; 7930 sw_wm_level = &sw_wm->planes[plane->id].sagv.trans_wm; 7931 7932 if (HAS_HW_SAGV_WM(dev_priv) && 7933 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 7934 drm_err(&dev_priv->drm, 7935 "[PLANE:%d:%s] mismatch in SAGV trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 7936 plane->base.base.id, plane->base.name, 7937 sw_wm_level->enable, 7938 sw_wm_level->blocks, 7939 sw_wm_level->lines, 7940 hw_wm_level->enable, 7941 hw_wm_level->blocks, 7942 hw_wm_level->lines); 7943 } 7944 7945 /* DDB */ 7946 hw_ddb_entry = &hw->ddb_y[plane->id]; 7947 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane->id]; 7948 7949 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 7950 drm_err(&dev_priv->drm, 7951 "[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n", 7952 plane->base.base.id, plane->base.name, 7953 sw_ddb_entry->start, sw_ddb_entry->end, 7954 hw_ddb_entry->start, hw_ddb_entry->end); 7955 } 7956 } 7957 7958 kfree(hw); 7959 } 7960 7961 static void 7962 verify_connector_state(struct intel_atomic_state *state, 7963 struct intel_crtc *crtc) 7964 { 7965 struct drm_connector *connector; 7966 struct drm_connector_state *new_conn_state; 7967 int i; 7968 7969 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 7970 struct drm_encoder *encoder = connector->encoder; 7971 struct intel_crtc_state *crtc_state = NULL; 7972 7973 if (new_conn_state->crtc != &crtc->base) 7974 continue; 7975 7976 if (crtc) 7977 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 7978 7979 intel_connector_verify_state(crtc_state, new_conn_state); 7980 7981 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 7982 "connector's atomic encoder doesn't match legacy encoder\n"); 7983 } 7984 } 7985 7986 static void 7987 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 7988 { 7989 struct intel_encoder *encoder; 7990 struct drm_connector *connector; 7991 struct drm_connector_state *old_conn_state, *new_conn_state; 7992 int i; 7993 7994 for_each_intel_encoder(&dev_priv->drm, encoder) { 7995 bool enabled = false, found = false; 7996 enum pipe pipe; 7997 7998 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n", 7999 encoder->base.base.id, 8000 encoder->base.name); 8001 8002 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 8003 new_conn_state, i) { 8004 if (old_conn_state->best_encoder == &encoder->base) 8005 found = true; 8006 8007 if (new_conn_state->best_encoder != &encoder->base) 8008 continue; 8009 found = enabled = true; 8010 8011 I915_STATE_WARN(new_conn_state->crtc != 8012 encoder->base.crtc, 8013 "connector's crtc doesn't match encoder crtc\n"); 8014 } 8015 8016 if (!found) 8017 continue; 8018 8019 I915_STATE_WARN(!!encoder->base.crtc != enabled, 8020 "encoder's enabled state mismatch " 8021 "(expected %i, found %i)\n", 8022 !!encoder->base.crtc, enabled); 8023 8024 if (!encoder->base.crtc) { 8025 bool active; 8026 8027 active = encoder->get_hw_state(encoder, &pipe); 8028 I915_STATE_WARN(active, 8029 "encoder detached but still enabled on pipe %c.\n", 8030 pipe_name(pipe)); 8031 } 8032 } 8033 } 8034 8035 static void 8036 verify_crtc_state(struct intel_crtc *crtc, 8037 struct intel_crtc_state *old_crtc_state, 8038 struct intel_crtc_state *new_crtc_state) 8039 { 8040 struct drm_device *dev = crtc->base.dev; 8041 struct drm_i915_private *dev_priv = to_i915(dev); 8042 struct intel_encoder *encoder; 8043 struct intel_crtc_state *pipe_config = old_crtc_state; 8044 struct drm_atomic_state *state = old_crtc_state->uapi.state; 8045 struct intel_crtc *master = crtc; 8046 8047 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi); 8048 intel_crtc_free_hw_state(old_crtc_state); 8049 intel_crtc_state_reset(old_crtc_state, crtc); 8050 old_crtc_state->uapi.state = state; 8051 8052 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id, 8053 crtc->base.name); 8054 8055 pipe_config->hw.enable = new_crtc_state->hw.enable; 8056 8057 intel_crtc_get_pipe_config(pipe_config); 8058 8059 /* we keep both pipes enabled on 830 */ 8060 if (IS_I830(dev_priv) && pipe_config->hw.active) 8061 pipe_config->hw.active = new_crtc_state->hw.active; 8062 8063 I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active, 8064 "crtc active state doesn't match with hw state " 8065 "(expected %i, found %i)\n", 8066 new_crtc_state->hw.active, pipe_config->hw.active); 8067 8068 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active, 8069 "transitional active state does not match atomic hw state " 8070 "(expected %i, found %i)\n", 8071 new_crtc_state->hw.active, crtc->active); 8072 8073 if (new_crtc_state->bigjoiner_slave) 8074 master = new_crtc_state->bigjoiner_linked_crtc; 8075 8076 for_each_encoder_on_crtc(dev, &master->base, encoder) { 8077 enum pipe pipe; 8078 bool active; 8079 8080 active = encoder->get_hw_state(encoder, &pipe); 8081 I915_STATE_WARN(active != new_crtc_state->hw.active, 8082 "[ENCODER:%i] active %i with crtc active %i\n", 8083 encoder->base.base.id, active, 8084 new_crtc_state->hw.active); 8085 8086 I915_STATE_WARN(active && master->pipe != pipe, 8087 "Encoder connected to wrong pipe %c\n", 8088 pipe_name(pipe)); 8089 8090 if (active) 8091 intel_encoder_get_config(encoder, pipe_config); 8092 } 8093 8094 if (!new_crtc_state->hw.active) 8095 return; 8096 8097 if (new_crtc_state->bigjoiner_slave) 8098 /* No PLLs set for slave */ 8099 pipe_config->shared_dpll = NULL; 8100 8101 intel_pipe_config_sanity_check(dev_priv, pipe_config); 8102 8103 if (!intel_pipe_config_compare(new_crtc_state, 8104 pipe_config, false)) { 8105 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 8106 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 8107 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 8108 } 8109 } 8110 8111 static void 8112 intel_verify_planes(struct intel_atomic_state *state) 8113 { 8114 struct intel_plane *plane; 8115 const struct intel_plane_state *plane_state; 8116 int i; 8117 8118 for_each_new_intel_plane_in_state(state, plane, 8119 plane_state, i) 8120 assert_plane(plane, plane_state->planar_slave || 8121 plane_state->uapi.visible); 8122 } 8123 8124 static void 8125 verify_single_dpll_state(struct drm_i915_private *dev_priv, 8126 struct intel_shared_dpll *pll, 8127 struct intel_crtc *crtc, 8128 struct intel_crtc_state *new_crtc_state) 8129 { 8130 struct intel_dpll_hw_state dpll_hw_state; 8131 u8 pipe_mask; 8132 bool active; 8133 8134 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 8135 8136 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name); 8137 8138 active = intel_dpll_get_hw_state(dev_priv, pll, &dpll_hw_state); 8139 8140 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 8141 I915_STATE_WARN(!pll->on && pll->active_mask, 8142 "pll in active use but not on in sw tracking\n"); 8143 I915_STATE_WARN(pll->on && !pll->active_mask, 8144 "pll is on but not used by any active pipe\n"); 8145 I915_STATE_WARN(pll->on != active, 8146 "pll on state mismatch (expected %i, found %i)\n", 8147 pll->on, active); 8148 } 8149 8150 if (!crtc) { 8151 I915_STATE_WARN(pll->active_mask & ~pll->state.pipe_mask, 8152 "more active pll users than references: 0x%x vs 0x%x\n", 8153 pll->active_mask, pll->state.pipe_mask); 8154 8155 return; 8156 } 8157 8158 pipe_mask = BIT(crtc->pipe); 8159 8160 if (new_crtc_state->hw.active) 8161 I915_STATE_WARN(!(pll->active_mask & pipe_mask), 8162 "pll active mismatch (expected pipe %c in active mask 0x%x)\n", 8163 pipe_name(crtc->pipe), pll->active_mask); 8164 else 8165 I915_STATE_WARN(pll->active_mask & pipe_mask, 8166 "pll active mismatch (didn't expect pipe %c in active mask 0x%x)\n", 8167 pipe_name(crtc->pipe), pll->active_mask); 8168 8169 I915_STATE_WARN(!(pll->state.pipe_mask & pipe_mask), 8170 "pll enabled crtcs mismatch (expected 0x%x in 0x%x)\n", 8171 pipe_mask, pll->state.pipe_mask); 8172 8173 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 8174 &dpll_hw_state, 8175 sizeof(dpll_hw_state)), 8176 "pll hw state mismatch\n"); 8177 } 8178 8179 static void 8180 verify_shared_dpll_state(struct intel_crtc *crtc, 8181 struct intel_crtc_state *old_crtc_state, 8182 struct intel_crtc_state *new_crtc_state) 8183 { 8184 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8185 8186 if (new_crtc_state->shared_dpll) 8187 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 8188 8189 if (old_crtc_state->shared_dpll && 8190 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 8191 u8 pipe_mask = BIT(crtc->pipe); 8192 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 8193 8194 I915_STATE_WARN(pll->active_mask & pipe_mask, 8195 "pll active mismatch (didn't expect pipe %c in active mask (0x%x))\n", 8196 pipe_name(crtc->pipe), pll->active_mask); 8197 I915_STATE_WARN(pll->state.pipe_mask & pipe_mask, 8198 "pll enabled crtcs mismatch (found %x in enabled mask (0x%x))\n", 8199 pipe_name(crtc->pipe), pll->state.pipe_mask); 8200 } 8201 } 8202 8203 static void 8204 verify_mpllb_state(struct intel_atomic_state *state, 8205 struct intel_crtc_state *new_crtc_state) 8206 { 8207 struct drm_i915_private *i915 = to_i915(state->base.dev); 8208 struct intel_mpllb_state mpllb_hw_state = { 0 }; 8209 struct intel_mpllb_state *mpllb_sw_state = &new_crtc_state->mpllb_state; 8210 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 8211 struct intel_encoder *encoder; 8212 8213 if (!IS_DG2(i915)) 8214 return; 8215 8216 if (!new_crtc_state->hw.active) 8217 return; 8218 8219 if (new_crtc_state->bigjoiner_slave) 8220 return; 8221 8222 encoder = intel_get_crtc_new_encoder(state, new_crtc_state); 8223 intel_mpllb_readout_hw_state(encoder, &mpllb_hw_state); 8224 8225 #define MPLLB_CHECK(name) do { \ 8226 if (mpllb_sw_state->name != mpllb_hw_state.name) { \ 8227 pipe_config_mismatch(false, crtc, "MPLLB:" __stringify(name), \ 8228 "(expected 0x%08x, found 0x%08x)", \ 8229 mpllb_sw_state->name, \ 8230 mpllb_hw_state.name); \ 8231 } \ 8232 } while (0) 8233 8234 MPLLB_CHECK(mpllb_cp); 8235 MPLLB_CHECK(mpllb_div); 8236 MPLLB_CHECK(mpllb_div2); 8237 MPLLB_CHECK(mpllb_fracn1); 8238 MPLLB_CHECK(mpllb_fracn2); 8239 MPLLB_CHECK(mpllb_sscen); 8240 MPLLB_CHECK(mpllb_sscstep); 8241 8242 /* 8243 * ref_control is handled by the hardware/firemware and never 8244 * programmed by the software, but the proper values are supplied 8245 * in the bspec for verification purposes. 8246 */ 8247 MPLLB_CHECK(ref_control); 8248 8249 #undef MPLLB_CHECK 8250 } 8251 8252 static void 8253 intel_modeset_verify_crtc(struct intel_crtc *crtc, 8254 struct intel_atomic_state *state, 8255 struct intel_crtc_state *old_crtc_state, 8256 struct intel_crtc_state *new_crtc_state) 8257 { 8258 if (!intel_crtc_needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 8259 return; 8260 8261 verify_wm_state(crtc, new_crtc_state); 8262 verify_connector_state(state, crtc); 8263 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 8264 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 8265 verify_mpllb_state(state, new_crtc_state); 8266 } 8267 8268 static void 8269 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 8270 { 8271 int i; 8272 8273 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) 8274 verify_single_dpll_state(dev_priv, 8275 &dev_priv->dpll.shared_dplls[i], 8276 NULL, NULL); 8277 } 8278 8279 static void 8280 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 8281 struct intel_atomic_state *state) 8282 { 8283 verify_encoder_state(dev_priv, state); 8284 verify_connector_state(state, NULL); 8285 verify_disabled_dpll_state(dev_priv); 8286 } 8287 8288 int intel_modeset_all_pipes(struct intel_atomic_state *state) 8289 { 8290 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 8291 struct intel_crtc *crtc; 8292 8293 /* 8294 * Add all pipes to the state, and force 8295 * a modeset on all the active ones. 8296 */ 8297 for_each_intel_crtc(&dev_priv->drm, crtc) { 8298 struct intel_crtc_state *crtc_state; 8299 int ret; 8300 8301 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 8302 if (IS_ERR(crtc_state)) 8303 return PTR_ERR(crtc_state); 8304 8305 if (!crtc_state->hw.active || 8306 drm_atomic_crtc_needs_modeset(&crtc_state->uapi)) 8307 continue; 8308 8309 crtc_state->uapi.mode_changed = true; 8310 8311 ret = drm_atomic_add_affected_connectors(&state->base, 8312 &crtc->base); 8313 if (ret) 8314 return ret; 8315 8316 ret = intel_atomic_add_affected_planes(state, crtc); 8317 if (ret) 8318 return ret; 8319 8320 crtc_state->update_planes |= crtc_state->active_planes; 8321 } 8322 8323 return 0; 8324 } 8325 8326 static void 8327 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) 8328 { 8329 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8330 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8331 struct drm_display_mode adjusted_mode = 8332 crtc_state->hw.adjusted_mode; 8333 8334 if (crtc_state->vrr.enable) { 8335 adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax; 8336 adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax; 8337 adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 8338 crtc->vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 8339 } 8340 8341 drm_calc_timestamping_constants(&crtc->base, &adjusted_mode); 8342 8343 crtc->mode_flags = crtc_state->mode_flags; 8344 8345 /* 8346 * The scanline counter increments at the leading edge of hsync. 8347 * 8348 * On most platforms it starts counting from vtotal-1 on the 8349 * first active line. That means the scanline counter value is 8350 * always one less than what we would expect. Ie. just after 8351 * start of vblank, which also occurs at start of hsync (on the 8352 * last active line), the scanline counter will read vblank_start-1. 8353 * 8354 * On gen2 the scanline counter starts counting from 1 instead 8355 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 8356 * to keep the value positive), instead of adding one. 8357 * 8358 * On HSW+ the behaviour of the scanline counter depends on the output 8359 * type. For DP ports it behaves like most other platforms, but on HDMI 8360 * there's an extra 1 line difference. So we need to add two instead of 8361 * one to the value. 8362 * 8363 * On VLV/CHV DSI the scanline counter would appear to increment 8364 * approx. 1/3 of a scanline before start of vblank. Unfortunately 8365 * that means we can't tell whether we're in vblank or not while 8366 * we're on that particular line. We must still set scanline_offset 8367 * to 1 so that the vblank timestamps come out correct when we query 8368 * the scanline counter from within the vblank interrupt handler. 8369 * However if queried just before the start of vblank we'll get an 8370 * answer that's slightly in the future. 8371 */ 8372 if (DISPLAY_VER(dev_priv) == 2) { 8373 int vtotal; 8374 8375 vtotal = adjusted_mode.crtc_vtotal; 8376 if (adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 8377 vtotal /= 2; 8378 8379 crtc->scanline_offset = vtotal - 1; 8380 } else if (HAS_DDI(dev_priv) && 8381 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 8382 crtc->scanline_offset = 2; 8383 } else { 8384 crtc->scanline_offset = 1; 8385 } 8386 } 8387 8388 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 8389 { 8390 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 8391 struct intel_crtc_state *new_crtc_state; 8392 struct intel_crtc *crtc; 8393 int i; 8394 8395 if (!dev_priv->dpll_funcs) 8396 return; 8397 8398 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 8399 if (!intel_crtc_needs_modeset(new_crtc_state)) 8400 continue; 8401 8402 intel_release_shared_dplls(state, crtc); 8403 } 8404 } 8405 8406 /* 8407 * This implements the workaround described in the "notes" section of the mode 8408 * set sequence documentation. When going from no pipes or single pipe to 8409 * multiple pipes, and planes are enabled after the pipe, we need to wait at 8410 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 8411 */ 8412 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) 8413 { 8414 struct intel_crtc_state *crtc_state; 8415 struct intel_crtc *crtc; 8416 struct intel_crtc_state *first_crtc_state = NULL; 8417 struct intel_crtc_state *other_crtc_state = NULL; 8418 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 8419 int i; 8420 8421 /* look at all crtc's that are going to be enabled in during modeset */ 8422 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 8423 if (!crtc_state->hw.active || 8424 !intel_crtc_needs_modeset(crtc_state)) 8425 continue; 8426 8427 if (first_crtc_state) { 8428 other_crtc_state = crtc_state; 8429 break; 8430 } else { 8431 first_crtc_state = crtc_state; 8432 first_pipe = crtc->pipe; 8433 } 8434 } 8435 8436 /* No workaround needed? */ 8437 if (!first_crtc_state) 8438 return 0; 8439 8440 /* w/a possibly needed, check how many crtc's are already enabled. */ 8441 for_each_intel_crtc(state->base.dev, crtc) { 8442 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 8443 if (IS_ERR(crtc_state)) 8444 return PTR_ERR(crtc_state); 8445 8446 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 8447 8448 if (!crtc_state->hw.active || 8449 intel_crtc_needs_modeset(crtc_state)) 8450 continue; 8451 8452 /* 2 or more enabled crtcs means no need for w/a */ 8453 if (enabled_pipe != INVALID_PIPE) 8454 return 0; 8455 8456 enabled_pipe = crtc->pipe; 8457 } 8458 8459 if (enabled_pipe != INVALID_PIPE) 8460 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 8461 else if (other_crtc_state) 8462 other_crtc_state->hsw_workaround_pipe = first_pipe; 8463 8464 return 0; 8465 } 8466 8467 u8 intel_calc_active_pipes(struct intel_atomic_state *state, 8468 u8 active_pipes) 8469 { 8470 const struct intel_crtc_state *crtc_state; 8471 struct intel_crtc *crtc; 8472 int i; 8473 8474 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 8475 if (crtc_state->hw.active) 8476 active_pipes |= BIT(crtc->pipe); 8477 else 8478 active_pipes &= ~BIT(crtc->pipe); 8479 } 8480 8481 return active_pipes; 8482 } 8483 8484 static int intel_modeset_checks(struct intel_atomic_state *state) 8485 { 8486 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 8487 8488 state->modeset = true; 8489 8490 if (IS_HASWELL(dev_priv)) 8491 return hsw_mode_set_planes_workaround(state); 8492 8493 return 0; 8494 } 8495 8496 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 8497 struct intel_crtc_state *new_crtc_state) 8498 { 8499 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 8500 return; 8501 8502 new_crtc_state->uapi.mode_changed = false; 8503 new_crtc_state->update_pipe = true; 8504 } 8505 8506 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state, 8507 struct intel_crtc_state *new_crtc_state) 8508 { 8509 /* 8510 * If we're not doing the full modeset we want to 8511 * keep the current M/N values as they may be 8512 * sufficiently different to the computed values 8513 * to cause problems. 8514 * 8515 * FIXME: should really copy more fuzzy state here 8516 */ 8517 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 8518 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 8519 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 8520 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 8521 } 8522 8523 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, 8524 struct intel_crtc *crtc, 8525 u8 plane_ids_mask) 8526 { 8527 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 8528 struct intel_plane *plane; 8529 8530 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 8531 struct intel_plane_state *plane_state; 8532 8533 if ((plane_ids_mask & BIT(plane->id)) == 0) 8534 continue; 8535 8536 plane_state = intel_atomic_get_plane_state(state, plane); 8537 if (IS_ERR(plane_state)) 8538 return PTR_ERR(plane_state); 8539 } 8540 8541 return 0; 8542 } 8543 8544 int intel_atomic_add_affected_planes(struct intel_atomic_state *state, 8545 struct intel_crtc *crtc) 8546 { 8547 const struct intel_crtc_state *old_crtc_state = 8548 intel_atomic_get_old_crtc_state(state, crtc); 8549 const struct intel_crtc_state *new_crtc_state = 8550 intel_atomic_get_new_crtc_state(state, crtc); 8551 8552 return intel_crtc_add_planes_to_state(state, crtc, 8553 old_crtc_state->enabled_planes | 8554 new_crtc_state->enabled_planes); 8555 } 8556 8557 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) 8558 { 8559 /* See {hsw,vlv,ivb}_plane_ratio() */ 8560 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || 8561 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || 8562 IS_IVYBRIDGE(dev_priv); 8563 } 8564 8565 static int intel_crtc_add_bigjoiner_planes(struct intel_atomic_state *state, 8566 struct intel_crtc *crtc, 8567 struct intel_crtc *other) 8568 { 8569 const struct intel_plane_state *plane_state; 8570 struct intel_plane *plane; 8571 u8 plane_ids = 0; 8572 int i; 8573 8574 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 8575 if (plane->pipe == crtc->pipe) 8576 plane_ids |= BIT(plane->id); 8577 } 8578 8579 return intel_crtc_add_planes_to_state(state, other, plane_ids); 8580 } 8581 8582 static int intel_bigjoiner_add_affected_planes(struct intel_atomic_state *state) 8583 { 8584 const struct intel_crtc_state *crtc_state; 8585 struct intel_crtc *crtc; 8586 int i; 8587 8588 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 8589 int ret; 8590 8591 if (!crtc_state->bigjoiner) 8592 continue; 8593 8594 ret = intel_crtc_add_bigjoiner_planes(state, crtc, 8595 crtc_state->bigjoiner_linked_crtc); 8596 if (ret) 8597 return ret; 8598 } 8599 8600 return 0; 8601 } 8602 8603 static bool bo_has_valid_encryption(struct drm_i915_gem_object *obj) 8604 { 8605 struct drm_i915_private *i915 = to_i915(obj->base.dev); 8606 8607 return intel_pxp_key_check(&i915->gt.pxp, obj, false) == 0; 8608 } 8609 8610 static bool pxp_is_borked(struct drm_i915_gem_object *obj) 8611 { 8612 return i915_gem_object_is_protected(obj) && !bo_has_valid_encryption(obj); 8613 } 8614 8615 static int intel_atomic_check_planes(struct intel_atomic_state *state) 8616 { 8617 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 8618 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 8619 struct intel_plane_state *plane_state; 8620 struct intel_plane *plane; 8621 struct intel_plane_state *new_plane_state; 8622 struct intel_plane_state *old_plane_state; 8623 struct intel_crtc *crtc; 8624 const struct drm_framebuffer *fb; 8625 int i, ret; 8626 8627 ret = icl_add_linked_planes(state); 8628 if (ret) 8629 return ret; 8630 8631 ret = intel_bigjoiner_add_affected_planes(state); 8632 if (ret) 8633 return ret; 8634 8635 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 8636 ret = intel_plane_atomic_check(state, plane); 8637 if (ret) { 8638 drm_dbg_atomic(&dev_priv->drm, 8639 "[PLANE:%d:%s] atomic driver check failed\n", 8640 plane->base.base.id, plane->base.name); 8641 return ret; 8642 } 8643 } 8644 8645 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 8646 new_crtc_state, i) { 8647 u8 old_active_planes, new_active_planes; 8648 8649 ret = icl_check_nv12_planes(new_crtc_state); 8650 if (ret) 8651 return ret; 8652 8653 /* 8654 * On some platforms the number of active planes affects 8655 * the planes' minimum cdclk calculation. Add such planes 8656 * to the state before we compute the minimum cdclk. 8657 */ 8658 if (!active_planes_affects_min_cdclk(dev_priv)) 8659 continue; 8660 8661 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 8662 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 8663 8664 if (hweight8(old_active_planes) == hweight8(new_active_planes)) 8665 continue; 8666 8667 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); 8668 if (ret) 8669 return ret; 8670 } 8671 8672 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 8673 new_plane_state = intel_atomic_get_new_plane_state(state, plane); 8674 old_plane_state = intel_atomic_get_old_plane_state(state, plane); 8675 fb = new_plane_state->hw.fb; 8676 if (fb) { 8677 new_plane_state->decrypt = bo_has_valid_encryption(intel_fb_obj(fb)); 8678 new_plane_state->force_black = pxp_is_borked(intel_fb_obj(fb)); 8679 } else { 8680 new_plane_state->decrypt = old_plane_state->decrypt; 8681 new_plane_state->force_black = old_plane_state->force_black; 8682 } 8683 } 8684 8685 return 0; 8686 } 8687 8688 static int intel_atomic_check_cdclk(struct intel_atomic_state *state, 8689 bool *need_cdclk_calc) 8690 { 8691 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 8692 const struct intel_cdclk_state *old_cdclk_state; 8693 const struct intel_cdclk_state *new_cdclk_state; 8694 struct intel_plane_state *plane_state; 8695 struct intel_bw_state *new_bw_state; 8696 struct intel_plane *plane; 8697 int min_cdclk = 0; 8698 enum pipe pipe; 8699 int ret; 8700 int i; 8701 /* 8702 * active_planes bitmask has been updated, and potentially 8703 * affected planes are part of the state. We can now 8704 * compute the minimum cdclk for each plane. 8705 */ 8706 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 8707 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 8708 if (ret) 8709 return ret; 8710 } 8711 8712 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 8713 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 8714 8715 if (new_cdclk_state && 8716 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk) 8717 *need_cdclk_calc = true; 8718 8719 ret = intel_cdclk_bw_calc_min_cdclk(state); 8720 if (ret) 8721 return ret; 8722 8723 new_bw_state = intel_atomic_get_new_bw_state(state); 8724 8725 if (!new_cdclk_state || !new_bw_state) 8726 return 0; 8727 8728 for_each_pipe(dev_priv, pipe) { 8729 min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk); 8730 8731 /* 8732 * Currently do this change only if we need to increase 8733 */ 8734 if (new_bw_state->min_cdclk > min_cdclk) 8735 *need_cdclk_calc = true; 8736 } 8737 8738 return 0; 8739 } 8740 8741 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 8742 { 8743 struct intel_crtc_state *crtc_state; 8744 struct intel_crtc *crtc; 8745 int i; 8746 8747 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 8748 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 8749 int ret; 8750 8751 ret = intel_crtc_atomic_check(state, crtc); 8752 if (ret) { 8753 drm_dbg_atomic(&i915->drm, 8754 "[CRTC:%d:%s] atomic driver check failed\n", 8755 crtc->base.base.id, crtc->base.name); 8756 return ret; 8757 } 8758 } 8759 8760 return 0; 8761 } 8762 8763 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, 8764 u8 transcoders) 8765 { 8766 const struct intel_crtc_state *new_crtc_state; 8767 struct intel_crtc *crtc; 8768 int i; 8769 8770 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 8771 if (new_crtc_state->hw.enable && 8772 transcoders & BIT(new_crtc_state->cpu_transcoder) && 8773 intel_crtc_needs_modeset(new_crtc_state)) 8774 return true; 8775 } 8776 8777 return false; 8778 } 8779 8780 static int intel_atomic_check_bigjoiner(struct intel_atomic_state *state, 8781 struct intel_crtc *crtc, 8782 struct intel_crtc_state *old_crtc_state, 8783 struct intel_crtc_state *new_crtc_state) 8784 { 8785 struct intel_crtc_state *slave_crtc_state, *master_crtc_state; 8786 struct intel_crtc *slave, *master; 8787 8788 /* slave being enabled, is master is still claiming this crtc? */ 8789 if (old_crtc_state->bigjoiner_slave) { 8790 slave = crtc; 8791 master = old_crtc_state->bigjoiner_linked_crtc; 8792 master_crtc_state = intel_atomic_get_new_crtc_state(state, master); 8793 if (!master_crtc_state || !intel_crtc_needs_modeset(master_crtc_state)) 8794 goto claimed; 8795 } 8796 8797 if (!new_crtc_state->bigjoiner) 8798 return 0; 8799 8800 slave = intel_dsc_get_bigjoiner_secondary(crtc); 8801 if (!slave) { 8802 DRM_DEBUG_KMS("[CRTC:%d:%s] Big joiner configuration requires " 8803 "CRTC + 1 to be used, doesn't exist\n", 8804 crtc->base.base.id, crtc->base.name); 8805 return -EINVAL; 8806 } 8807 8808 new_crtc_state->bigjoiner_linked_crtc = slave; 8809 slave_crtc_state = intel_atomic_get_crtc_state(&state->base, slave); 8810 master = crtc; 8811 if (IS_ERR(slave_crtc_state)) 8812 return PTR_ERR(slave_crtc_state); 8813 8814 /* master being enabled, slave was already configured? */ 8815 if (slave_crtc_state->uapi.enable) 8816 goto claimed; 8817 8818 DRM_DEBUG_KMS("[CRTC:%d:%s] Used as slave for big joiner\n", 8819 slave->base.base.id, slave->base.name); 8820 8821 return copy_bigjoiner_crtc_state(slave_crtc_state, new_crtc_state); 8822 8823 claimed: 8824 DRM_DEBUG_KMS("[CRTC:%d:%s] Slave is enabled as normal CRTC, but " 8825 "[CRTC:%d:%s] claiming this CRTC for bigjoiner.\n", 8826 slave->base.base.id, slave->base.name, 8827 master->base.base.id, master->base.name); 8828 return -EINVAL; 8829 } 8830 8831 static void kill_bigjoiner_slave(struct intel_atomic_state *state, 8832 struct intel_crtc_state *master_crtc_state) 8833 { 8834 struct intel_crtc_state *slave_crtc_state = 8835 intel_atomic_get_new_crtc_state(state, master_crtc_state->bigjoiner_linked_crtc); 8836 8837 slave_crtc_state->bigjoiner = master_crtc_state->bigjoiner = false; 8838 slave_crtc_state->bigjoiner_slave = master_crtc_state->bigjoiner_slave = false; 8839 slave_crtc_state->bigjoiner_linked_crtc = master_crtc_state->bigjoiner_linked_crtc = NULL; 8840 intel_crtc_copy_uapi_to_hw_state(state, slave_crtc_state); 8841 } 8842 8843 /** 8844 * DOC: asynchronous flip implementation 8845 * 8846 * Asynchronous page flip is the implementation for the DRM_MODE_PAGE_FLIP_ASYNC 8847 * flag. Currently async flip is only supported via the drmModePageFlip IOCTL. 8848 * Correspondingly, support is currently added for primary plane only. 8849 * 8850 * Async flip can only change the plane surface address, so anything else 8851 * changing is rejected from the intel_atomic_check_async() function. 8852 * Once this check is cleared, flip done interrupt is enabled using 8853 * the intel_crtc_enable_flip_done() function. 8854 * 8855 * As soon as the surface address register is written, flip done interrupt is 8856 * generated and the requested events are sent to the usersapce in the interrupt 8857 * handler itself. The timestamp and sequence sent during the flip done event 8858 * correspond to the last vblank and have no relation to the actual time when 8859 * the flip done event was sent. 8860 */ 8861 static int intel_atomic_check_async(struct intel_atomic_state *state) 8862 { 8863 struct drm_i915_private *i915 = to_i915(state->base.dev); 8864 const struct intel_crtc_state *old_crtc_state, *new_crtc_state; 8865 const struct intel_plane_state *new_plane_state, *old_plane_state; 8866 struct intel_crtc *crtc; 8867 struct intel_plane *plane; 8868 int i; 8869 8870 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 8871 new_crtc_state, i) { 8872 if (intel_crtc_needs_modeset(new_crtc_state)) { 8873 drm_dbg_kms(&i915->drm, "Modeset Required. Async flip not supported\n"); 8874 return -EINVAL; 8875 } 8876 8877 if (!new_crtc_state->hw.active) { 8878 drm_dbg_kms(&i915->drm, "CRTC inactive\n"); 8879 return -EINVAL; 8880 } 8881 if (old_crtc_state->active_planes != new_crtc_state->active_planes) { 8882 drm_dbg_kms(&i915->drm, 8883 "Active planes cannot be changed during async flip\n"); 8884 return -EINVAL; 8885 } 8886 } 8887 8888 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 8889 new_plane_state, i) { 8890 /* 8891 * TODO: Async flip is only supported through the page flip IOCTL 8892 * as of now. So support currently added for primary plane only. 8893 * Support for other planes on platforms on which supports 8894 * this(vlv/chv and icl+) should be added when async flip is 8895 * enabled in the atomic IOCTL path. 8896 */ 8897 if (!plane->async_flip) 8898 return -EINVAL; 8899 8900 /* 8901 * FIXME: This check is kept generic for all platforms. 8902 * Need to verify this for all gen9 platforms to enable 8903 * this selectively if required. 8904 */ 8905 switch (new_plane_state->hw.fb->modifier) { 8906 case I915_FORMAT_MOD_X_TILED: 8907 case I915_FORMAT_MOD_Y_TILED: 8908 case I915_FORMAT_MOD_Yf_TILED: 8909 break; 8910 default: 8911 drm_dbg_kms(&i915->drm, 8912 "Linear memory/CCS does not support async flips\n"); 8913 return -EINVAL; 8914 } 8915 8916 if (old_plane_state->view.color_plane[0].stride != 8917 new_plane_state->view.color_plane[0].stride) { 8918 drm_dbg_kms(&i915->drm, "Stride cannot be changed in async flip\n"); 8919 return -EINVAL; 8920 } 8921 8922 if (old_plane_state->hw.fb->modifier != 8923 new_plane_state->hw.fb->modifier) { 8924 drm_dbg_kms(&i915->drm, 8925 "Framebuffer modifiers cannot be changed in async flip\n"); 8926 return -EINVAL; 8927 } 8928 8929 if (old_plane_state->hw.fb->format != 8930 new_plane_state->hw.fb->format) { 8931 drm_dbg_kms(&i915->drm, 8932 "Framebuffer format cannot be changed in async flip\n"); 8933 return -EINVAL; 8934 } 8935 8936 if (old_plane_state->hw.rotation != 8937 new_plane_state->hw.rotation) { 8938 drm_dbg_kms(&i915->drm, "Rotation cannot be changed in async flip\n"); 8939 return -EINVAL; 8940 } 8941 8942 if (!drm_rect_equals(&old_plane_state->uapi.src, &new_plane_state->uapi.src) || 8943 !drm_rect_equals(&old_plane_state->uapi.dst, &new_plane_state->uapi.dst)) { 8944 drm_dbg_kms(&i915->drm, 8945 "Plane size/co-ordinates cannot be changed in async flip\n"); 8946 return -EINVAL; 8947 } 8948 8949 if (old_plane_state->hw.alpha != new_plane_state->hw.alpha) { 8950 drm_dbg_kms(&i915->drm, "Alpha value cannot be changed in async flip\n"); 8951 return -EINVAL; 8952 } 8953 8954 if (old_plane_state->hw.pixel_blend_mode != 8955 new_plane_state->hw.pixel_blend_mode) { 8956 drm_dbg_kms(&i915->drm, 8957 "Pixel blend mode cannot be changed in async flip\n"); 8958 return -EINVAL; 8959 } 8960 8961 if (old_plane_state->hw.color_encoding != new_plane_state->hw.color_encoding) { 8962 drm_dbg_kms(&i915->drm, 8963 "Color encoding cannot be changed in async flip\n"); 8964 return -EINVAL; 8965 } 8966 8967 if (old_plane_state->hw.color_range != new_plane_state->hw.color_range) { 8968 drm_dbg_kms(&i915->drm, "Color range cannot be changed in async flip\n"); 8969 return -EINVAL; 8970 } 8971 8972 /* plane decryption is allow to change only in synchronous flips */ 8973 if (old_plane_state->decrypt != new_plane_state->decrypt) 8974 return -EINVAL; 8975 } 8976 8977 return 0; 8978 } 8979 8980 static int intel_bigjoiner_add_affected_crtcs(struct intel_atomic_state *state) 8981 { 8982 struct intel_crtc_state *crtc_state; 8983 struct intel_crtc *crtc; 8984 int i; 8985 8986 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 8987 struct intel_crtc_state *linked_crtc_state; 8988 struct intel_crtc *linked_crtc; 8989 int ret; 8990 8991 if (!crtc_state->bigjoiner) 8992 continue; 8993 8994 linked_crtc = crtc_state->bigjoiner_linked_crtc; 8995 linked_crtc_state = intel_atomic_get_crtc_state(&state->base, linked_crtc); 8996 if (IS_ERR(linked_crtc_state)) 8997 return PTR_ERR(linked_crtc_state); 8998 8999 if (!intel_crtc_needs_modeset(crtc_state)) 9000 continue; 9001 9002 linked_crtc_state->uapi.mode_changed = true; 9003 9004 ret = drm_atomic_add_affected_connectors(&state->base, 9005 &linked_crtc->base); 9006 if (ret) 9007 return ret; 9008 9009 ret = intel_atomic_add_affected_planes(state, linked_crtc); 9010 if (ret) 9011 return ret; 9012 } 9013 9014 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9015 /* Kill old bigjoiner link, we may re-establish afterwards */ 9016 if (intel_crtc_needs_modeset(crtc_state) && 9017 crtc_state->bigjoiner && !crtc_state->bigjoiner_slave) 9018 kill_bigjoiner_slave(state, crtc_state); 9019 } 9020 9021 return 0; 9022 } 9023 9024 /** 9025 * intel_atomic_check - validate state object 9026 * @dev: drm device 9027 * @_state: state to validate 9028 */ 9029 static int intel_atomic_check(struct drm_device *dev, 9030 struct drm_atomic_state *_state) 9031 { 9032 struct drm_i915_private *dev_priv = to_i915(dev); 9033 struct intel_atomic_state *state = to_intel_atomic_state(_state); 9034 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9035 struct intel_crtc *crtc; 9036 int ret, i; 9037 bool any_ms = false; 9038 9039 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9040 new_crtc_state, i) { 9041 if (new_crtc_state->inherited != old_crtc_state->inherited) 9042 new_crtc_state->uapi.mode_changed = true; 9043 } 9044 9045 intel_vrr_check_modeset(state); 9046 9047 ret = drm_atomic_helper_check_modeset(dev, &state->base); 9048 if (ret) 9049 goto fail; 9050 9051 ret = intel_bigjoiner_add_affected_crtcs(state); 9052 if (ret) 9053 goto fail; 9054 9055 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9056 new_crtc_state, i) { 9057 if (!intel_crtc_needs_modeset(new_crtc_state)) { 9058 /* Light copy */ 9059 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, new_crtc_state); 9060 9061 continue; 9062 } 9063 9064 if (!new_crtc_state->uapi.enable) { 9065 if (!new_crtc_state->bigjoiner_slave) { 9066 intel_crtc_copy_uapi_to_hw_state(state, new_crtc_state); 9067 any_ms = true; 9068 } 9069 continue; 9070 } 9071 9072 ret = intel_crtc_prepare_cleared_state(state, new_crtc_state); 9073 if (ret) 9074 goto fail; 9075 9076 ret = intel_modeset_pipe_config(state, new_crtc_state); 9077 if (ret) 9078 goto fail; 9079 9080 ret = intel_atomic_check_bigjoiner(state, crtc, old_crtc_state, 9081 new_crtc_state); 9082 if (ret) 9083 goto fail; 9084 } 9085 9086 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9087 new_crtc_state, i) { 9088 if (!intel_crtc_needs_modeset(new_crtc_state)) 9089 continue; 9090 9091 ret = intel_modeset_pipe_config_late(new_crtc_state); 9092 if (ret) 9093 goto fail; 9094 9095 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 9096 } 9097 9098 /** 9099 * Check if fastset is allowed by external dependencies like other 9100 * pipes and transcoders. 9101 * 9102 * Right now it only forces a fullmodeset when the MST master 9103 * transcoder did not changed but the pipe of the master transcoder 9104 * needs a fullmodeset so all slaves also needs to do a fullmodeset or 9105 * in case of port synced crtcs, if one of the synced crtcs 9106 * needs a full modeset, all other synced crtcs should be 9107 * forced a full modeset. 9108 */ 9109 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9110 if (!new_crtc_state->hw.enable || intel_crtc_needs_modeset(new_crtc_state)) 9111 continue; 9112 9113 if (intel_dp_mst_is_slave_trans(new_crtc_state)) { 9114 enum transcoder master = new_crtc_state->mst_master_transcoder; 9115 9116 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) { 9117 new_crtc_state->uapi.mode_changed = true; 9118 new_crtc_state->update_pipe = false; 9119 } 9120 } 9121 9122 if (is_trans_port_sync_mode(new_crtc_state)) { 9123 u8 trans = new_crtc_state->sync_mode_slaves_mask; 9124 9125 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) 9126 trans |= BIT(new_crtc_state->master_transcoder); 9127 9128 if (intel_cpu_transcoders_need_modeset(state, trans)) { 9129 new_crtc_state->uapi.mode_changed = true; 9130 new_crtc_state->update_pipe = false; 9131 } 9132 } 9133 9134 if (new_crtc_state->bigjoiner) { 9135 struct intel_crtc_state *linked_crtc_state = 9136 intel_atomic_get_new_crtc_state(state, new_crtc_state->bigjoiner_linked_crtc); 9137 9138 if (intel_crtc_needs_modeset(linked_crtc_state)) { 9139 new_crtc_state->uapi.mode_changed = true; 9140 new_crtc_state->update_pipe = false; 9141 } 9142 } 9143 } 9144 9145 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9146 new_crtc_state, i) { 9147 if (intel_crtc_needs_modeset(new_crtc_state)) { 9148 any_ms = true; 9149 continue; 9150 } 9151 9152 if (!new_crtc_state->update_pipe) 9153 continue; 9154 9155 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state); 9156 } 9157 9158 if (any_ms && !check_digital_port_conflicts(state)) { 9159 drm_dbg_kms(&dev_priv->drm, 9160 "rejecting conflicting digital port configuration\n"); 9161 ret = -EINVAL; 9162 goto fail; 9163 } 9164 9165 ret = drm_dp_mst_atomic_check(&state->base); 9166 if (ret) 9167 goto fail; 9168 9169 ret = intel_atomic_check_planes(state); 9170 if (ret) 9171 goto fail; 9172 9173 intel_fbc_choose_crtc(dev_priv, state); 9174 ret = intel_compute_global_watermarks(state); 9175 if (ret) 9176 goto fail; 9177 9178 ret = intel_bw_atomic_check(state); 9179 if (ret) 9180 goto fail; 9181 9182 ret = intel_atomic_check_cdclk(state, &any_ms); 9183 if (ret) 9184 goto fail; 9185 9186 if (intel_any_crtc_needs_modeset(state)) 9187 any_ms = true; 9188 9189 if (any_ms) { 9190 ret = intel_modeset_checks(state); 9191 if (ret) 9192 goto fail; 9193 9194 ret = intel_modeset_calc_cdclk(state); 9195 if (ret) 9196 return ret; 9197 9198 intel_modeset_clear_plls(state); 9199 } 9200 9201 ret = intel_atomic_check_crtcs(state); 9202 if (ret) 9203 goto fail; 9204 9205 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9206 new_crtc_state, i) { 9207 if (new_crtc_state->uapi.async_flip) { 9208 ret = intel_atomic_check_async(state); 9209 if (ret) 9210 goto fail; 9211 } 9212 9213 if (!intel_crtc_needs_modeset(new_crtc_state) && 9214 !new_crtc_state->update_pipe) 9215 continue; 9216 9217 intel_dump_pipe_config(new_crtc_state, state, 9218 intel_crtc_needs_modeset(new_crtc_state) ? 9219 "[modeset]" : "[fastset]"); 9220 } 9221 9222 return 0; 9223 9224 fail: 9225 if (ret == -EDEADLK) 9226 return ret; 9227 9228 /* 9229 * FIXME would probably be nice to know which crtc specifically 9230 * caused the failure, in cases where we can pinpoint it. 9231 */ 9232 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9233 new_crtc_state, i) 9234 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 9235 9236 return ret; 9237 } 9238 9239 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 9240 { 9241 struct intel_crtc_state *crtc_state; 9242 struct intel_crtc *crtc; 9243 int i, ret; 9244 9245 ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base); 9246 if (ret < 0) 9247 return ret; 9248 9249 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9250 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 9251 9252 if (mode_changed || crtc_state->update_pipe || 9253 crtc_state->uapi.color_mgmt_changed) { 9254 intel_dsb_prepare(crtc_state); 9255 } 9256 } 9257 9258 return 0; 9259 } 9260 9261 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 9262 struct intel_crtc_state *crtc_state) 9263 { 9264 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9265 9266 if (DISPLAY_VER(dev_priv) != 2 || crtc_state->active_planes) 9267 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 9268 9269 if (crtc_state->has_pch_encoder) { 9270 enum pipe pch_transcoder = 9271 intel_crtc_pch_transcoder(crtc); 9272 9273 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 9274 } 9275 } 9276 9277 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 9278 const struct intel_crtc_state *new_crtc_state) 9279 { 9280 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 9281 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9282 9283 /* 9284 * Update pipe size and adjust fitter if needed: the reason for this is 9285 * that in compute_mode_changes we check the native mode (not the pfit 9286 * mode) to see if we can flip rather than do a full mode set. In the 9287 * fastboot case, we'll flip, but if we don't update the pipesrc and 9288 * pfit state, we'll end up with a big fb scanned out into the wrong 9289 * sized surface. 9290 */ 9291 intel_set_pipe_src_size(new_crtc_state); 9292 9293 /* on skylake this is done by detaching scalers */ 9294 if (DISPLAY_VER(dev_priv) >= 9) { 9295 if (new_crtc_state->pch_pfit.enabled) 9296 skl_pfit_enable(new_crtc_state); 9297 } else if (HAS_PCH_SPLIT(dev_priv)) { 9298 if (new_crtc_state->pch_pfit.enabled) 9299 ilk_pfit_enable(new_crtc_state); 9300 else if (old_crtc_state->pch_pfit.enabled) 9301 ilk_pfit_disable(old_crtc_state); 9302 } 9303 9304 /* 9305 * The register is supposedly single buffered so perhaps 9306 * not 100% correct to do this here. But SKL+ calculate 9307 * this based on the adjust pixel rate so pfit changes do 9308 * affect it and so it must be updated for fastsets. 9309 * HSW/BDW only really need this here for fastboot, after 9310 * that the value should not change without a full modeset. 9311 */ 9312 if (DISPLAY_VER(dev_priv) >= 9 || 9313 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 9314 hsw_set_linetime_wm(new_crtc_state); 9315 9316 if (DISPLAY_VER(dev_priv) >= 11) 9317 icl_set_pipe_chicken(new_crtc_state); 9318 } 9319 9320 static void commit_pipe_pre_planes(struct intel_atomic_state *state, 9321 struct intel_crtc *crtc) 9322 { 9323 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9324 const struct intel_crtc_state *old_crtc_state = 9325 intel_atomic_get_old_crtc_state(state, crtc); 9326 const struct intel_crtc_state *new_crtc_state = 9327 intel_atomic_get_new_crtc_state(state, crtc); 9328 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 9329 9330 /* 9331 * During modesets pipe configuration was programmed as the 9332 * CRTC was enabled. 9333 */ 9334 if (!modeset) { 9335 if (new_crtc_state->uapi.color_mgmt_changed || 9336 new_crtc_state->update_pipe) 9337 intel_color_commit(new_crtc_state); 9338 9339 if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 9340 bdw_set_pipemisc(new_crtc_state); 9341 9342 if (new_crtc_state->update_pipe) 9343 intel_pipe_fastset(old_crtc_state, new_crtc_state); 9344 } 9345 9346 intel_psr2_program_trans_man_trk_ctl(new_crtc_state); 9347 9348 intel_atomic_update_watermarks(state, crtc); 9349 } 9350 9351 static void commit_pipe_post_planes(struct intel_atomic_state *state, 9352 struct intel_crtc *crtc) 9353 { 9354 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9355 const struct intel_crtc_state *new_crtc_state = 9356 intel_atomic_get_new_crtc_state(state, crtc); 9357 9358 /* 9359 * Disable the scaler(s) after the plane(s) so that we don't 9360 * get a catastrophic underrun even if the two operations 9361 * end up happening in two different frames. 9362 */ 9363 if (DISPLAY_VER(dev_priv) >= 9 && 9364 !intel_crtc_needs_modeset(new_crtc_state)) 9365 skl_detach_scalers(new_crtc_state); 9366 } 9367 9368 static void intel_enable_crtc(struct intel_atomic_state *state, 9369 struct intel_crtc *crtc) 9370 { 9371 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9372 const struct intel_crtc_state *new_crtc_state = 9373 intel_atomic_get_new_crtc_state(state, crtc); 9374 9375 if (!intel_crtc_needs_modeset(new_crtc_state)) 9376 return; 9377 9378 intel_crtc_update_active_timings(new_crtc_state); 9379 9380 dev_priv->display->crtc_enable(state, crtc); 9381 9382 if (new_crtc_state->bigjoiner_slave) 9383 return; 9384 9385 /* vblanks work again, re-enable pipe CRC. */ 9386 intel_crtc_enable_pipe_crc(crtc); 9387 } 9388 9389 static void intel_update_crtc(struct intel_atomic_state *state, 9390 struct intel_crtc *crtc) 9391 { 9392 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9393 const struct intel_crtc_state *old_crtc_state = 9394 intel_atomic_get_old_crtc_state(state, crtc); 9395 struct intel_crtc_state *new_crtc_state = 9396 intel_atomic_get_new_crtc_state(state, crtc); 9397 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 9398 9399 if (!modeset) { 9400 if (new_crtc_state->preload_luts && 9401 (new_crtc_state->uapi.color_mgmt_changed || 9402 new_crtc_state->update_pipe)) 9403 intel_color_load_luts(new_crtc_state); 9404 9405 intel_pre_plane_update(state, crtc); 9406 9407 if (new_crtc_state->update_pipe) 9408 intel_encoders_update_pipe(state, crtc); 9409 } 9410 9411 intel_fbc_update(state, crtc); 9412 9413 /* Perform vblank evasion around commit operation */ 9414 intel_pipe_update_start(new_crtc_state); 9415 9416 commit_pipe_pre_planes(state, crtc); 9417 9418 if (DISPLAY_VER(dev_priv) >= 9) 9419 skl_update_planes_on_crtc(state, crtc); 9420 else 9421 i9xx_update_planes_on_crtc(state, crtc); 9422 9423 commit_pipe_post_planes(state, crtc); 9424 9425 intel_pipe_update_end(new_crtc_state); 9426 9427 /* 9428 * We usually enable FIFO underrun interrupts as part of the 9429 * CRTC enable sequence during modesets. But when we inherit a 9430 * valid pipe configuration from the BIOS we need to take care 9431 * of enabling them on the CRTC's first fastset. 9432 */ 9433 if (new_crtc_state->update_pipe && !modeset && 9434 old_crtc_state->inherited) 9435 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 9436 } 9437 9438 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 9439 struct intel_crtc_state *old_crtc_state, 9440 struct intel_crtc_state *new_crtc_state, 9441 struct intel_crtc *crtc) 9442 { 9443 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9444 9445 drm_WARN_ON(&dev_priv->drm, old_crtc_state->bigjoiner_slave); 9446 9447 intel_encoders_pre_disable(state, crtc); 9448 9449 intel_crtc_disable_planes(state, crtc); 9450 9451 /* 9452 * We still need special handling for disabling bigjoiner master 9453 * and slaves since for slave we do not have encoder or plls 9454 * so we dont need to disable those. 9455 */ 9456 if (old_crtc_state->bigjoiner) { 9457 intel_crtc_disable_planes(state, 9458 old_crtc_state->bigjoiner_linked_crtc); 9459 old_crtc_state->bigjoiner_linked_crtc->active = false; 9460 } 9461 9462 /* 9463 * We need to disable pipe CRC before disabling the pipe, 9464 * or we race against vblank off. 9465 */ 9466 intel_crtc_disable_pipe_crc(crtc); 9467 9468 dev_priv->display->crtc_disable(state, crtc); 9469 crtc->active = false; 9470 intel_fbc_disable(crtc); 9471 intel_disable_shared_dpll(old_crtc_state); 9472 9473 /* FIXME unify this for all platforms */ 9474 if (!new_crtc_state->hw.active && 9475 !HAS_GMCH(dev_priv)) 9476 intel_initial_watermarks(state, crtc); 9477 } 9478 9479 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 9480 { 9481 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 9482 struct intel_crtc *crtc; 9483 u32 handled = 0; 9484 int i; 9485 9486 /* Only disable port sync and MST slaves */ 9487 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9488 new_crtc_state, i) { 9489 if (!intel_crtc_needs_modeset(new_crtc_state) || old_crtc_state->bigjoiner) 9490 continue; 9491 9492 if (!old_crtc_state->hw.active) 9493 continue; 9494 9495 /* In case of Transcoder port Sync master slave CRTCs can be 9496 * assigned in any order and we need to make sure that 9497 * slave CRTCs are disabled first and then master CRTC since 9498 * Slave vblanks are masked till Master Vblanks. 9499 */ 9500 if (!is_trans_port_sync_slave(old_crtc_state) && 9501 !intel_dp_mst_is_slave_trans(old_crtc_state)) 9502 continue; 9503 9504 intel_pre_plane_update(state, crtc); 9505 intel_old_crtc_state_disables(state, old_crtc_state, 9506 new_crtc_state, crtc); 9507 handled |= BIT(crtc->pipe); 9508 } 9509 9510 /* Disable everything else left on */ 9511 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9512 new_crtc_state, i) { 9513 if (!intel_crtc_needs_modeset(new_crtc_state) || 9514 (handled & BIT(crtc->pipe)) || 9515 old_crtc_state->bigjoiner_slave) 9516 continue; 9517 9518 intel_pre_plane_update(state, crtc); 9519 if (old_crtc_state->bigjoiner) { 9520 struct intel_crtc *slave = 9521 old_crtc_state->bigjoiner_linked_crtc; 9522 9523 intel_pre_plane_update(state, slave); 9524 } 9525 9526 if (old_crtc_state->hw.active) 9527 intel_old_crtc_state_disables(state, old_crtc_state, 9528 new_crtc_state, crtc); 9529 } 9530 } 9531 9532 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 9533 { 9534 struct intel_crtc_state *new_crtc_state; 9535 struct intel_crtc *crtc; 9536 int i; 9537 9538 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9539 if (!new_crtc_state->hw.active) 9540 continue; 9541 9542 intel_enable_crtc(state, crtc); 9543 intel_update_crtc(state, crtc); 9544 } 9545 } 9546 9547 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 9548 { 9549 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9550 struct intel_crtc *crtc; 9551 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9552 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 9553 u8 update_pipes = 0, modeset_pipes = 0; 9554 int i; 9555 9556 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 9557 enum pipe pipe = crtc->pipe; 9558 9559 if (!new_crtc_state->hw.active) 9560 continue; 9561 9562 /* ignore allocations for crtc's that have been turned off. */ 9563 if (!intel_crtc_needs_modeset(new_crtc_state)) { 9564 entries[pipe] = old_crtc_state->wm.skl.ddb; 9565 update_pipes |= BIT(pipe); 9566 } else { 9567 modeset_pipes |= BIT(pipe); 9568 } 9569 } 9570 9571 /* 9572 * Whenever the number of active pipes changes, we need to make sure we 9573 * update the pipes in the right order so that their ddb allocations 9574 * never overlap with each other between CRTC updates. Otherwise we'll 9575 * cause pipe underruns and other bad stuff. 9576 * 9577 * So first lets enable all pipes that do not need a fullmodeset as 9578 * those don't have any external dependency. 9579 */ 9580 while (update_pipes) { 9581 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9582 new_crtc_state, i) { 9583 enum pipe pipe = crtc->pipe; 9584 9585 if ((update_pipes & BIT(pipe)) == 0) 9586 continue; 9587 9588 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 9589 entries, I915_MAX_PIPES, pipe)) 9590 continue; 9591 9592 entries[pipe] = new_crtc_state->wm.skl.ddb; 9593 update_pipes &= ~BIT(pipe); 9594 9595 intel_update_crtc(state, crtc); 9596 9597 /* 9598 * If this is an already active pipe, it's DDB changed, 9599 * and this isn't the last pipe that needs updating 9600 * then we need to wait for a vblank to pass for the 9601 * new ddb allocation to take effect. 9602 */ 9603 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 9604 &old_crtc_state->wm.skl.ddb) && 9605 (update_pipes | modeset_pipes)) 9606 intel_wait_for_vblank(dev_priv, pipe); 9607 } 9608 } 9609 9610 update_pipes = modeset_pipes; 9611 9612 /* 9613 * Enable all pipes that needs a modeset and do not depends on other 9614 * pipes 9615 */ 9616 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9617 enum pipe pipe = crtc->pipe; 9618 9619 if ((modeset_pipes & BIT(pipe)) == 0) 9620 continue; 9621 9622 if (intel_dp_mst_is_slave_trans(new_crtc_state) || 9623 is_trans_port_sync_master(new_crtc_state) || 9624 (new_crtc_state->bigjoiner && !new_crtc_state->bigjoiner_slave)) 9625 continue; 9626 9627 modeset_pipes &= ~BIT(pipe); 9628 9629 intel_enable_crtc(state, crtc); 9630 } 9631 9632 /* 9633 * Then we enable all remaining pipes that depend on other 9634 * pipes: MST slaves and port sync masters, big joiner master 9635 */ 9636 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9637 enum pipe pipe = crtc->pipe; 9638 9639 if ((modeset_pipes & BIT(pipe)) == 0) 9640 continue; 9641 9642 modeset_pipes &= ~BIT(pipe); 9643 9644 intel_enable_crtc(state, crtc); 9645 } 9646 9647 /* 9648 * Finally we do the plane updates/etc. for all pipes that got enabled. 9649 */ 9650 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9651 enum pipe pipe = crtc->pipe; 9652 9653 if ((update_pipes & BIT(pipe)) == 0) 9654 continue; 9655 9656 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 9657 entries, I915_MAX_PIPES, pipe)); 9658 9659 entries[pipe] = new_crtc_state->wm.skl.ddb; 9660 update_pipes &= ~BIT(pipe); 9661 9662 intel_update_crtc(state, crtc); 9663 } 9664 9665 drm_WARN_ON(&dev_priv->drm, modeset_pipes); 9666 drm_WARN_ON(&dev_priv->drm, update_pipes); 9667 } 9668 9669 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 9670 { 9671 struct intel_atomic_state *state, *next; 9672 struct llist_node *freed; 9673 9674 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 9675 llist_for_each_entry_safe(state, next, freed, freed) 9676 drm_atomic_state_put(&state->base); 9677 } 9678 9679 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 9680 { 9681 struct drm_i915_private *dev_priv = 9682 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 9683 9684 intel_atomic_helper_free_state(dev_priv); 9685 } 9686 9687 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 9688 { 9689 struct wait_queue_entry wait_fence, wait_reset; 9690 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 9691 9692 init_wait_entry(&wait_fence, 0); 9693 init_wait_entry(&wait_reset, 0); 9694 for (;;) { 9695 prepare_to_wait(&intel_state->commit_ready.wait, 9696 &wait_fence, TASK_UNINTERRUPTIBLE); 9697 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 9698 I915_RESET_MODESET), 9699 &wait_reset, TASK_UNINTERRUPTIBLE); 9700 9701 9702 if (i915_sw_fence_done(&intel_state->commit_ready) || 9703 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 9704 break; 9705 9706 schedule(); 9707 } 9708 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 9709 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 9710 I915_RESET_MODESET), 9711 &wait_reset); 9712 } 9713 9714 static void intel_cleanup_dsbs(struct intel_atomic_state *state) 9715 { 9716 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9717 struct intel_crtc *crtc; 9718 int i; 9719 9720 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9721 new_crtc_state, i) 9722 intel_dsb_cleanup(old_crtc_state); 9723 } 9724 9725 static void intel_atomic_cleanup_work(struct work_struct *work) 9726 { 9727 struct intel_atomic_state *state = 9728 container_of(work, struct intel_atomic_state, base.commit_work); 9729 struct drm_i915_private *i915 = to_i915(state->base.dev); 9730 9731 intel_cleanup_dsbs(state); 9732 drm_atomic_helper_cleanup_planes(&i915->drm, &state->base); 9733 drm_atomic_helper_commit_cleanup_done(&state->base); 9734 drm_atomic_state_put(&state->base); 9735 9736 intel_atomic_helper_free_state(i915); 9737 } 9738 9739 static void intel_atomic_prepare_plane_clear_colors(struct intel_atomic_state *state) 9740 { 9741 struct drm_i915_private *i915 = to_i915(state->base.dev); 9742 struct intel_plane *plane; 9743 struct intel_plane_state *plane_state; 9744 int i; 9745 9746 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9747 struct drm_framebuffer *fb = plane_state->hw.fb; 9748 int ret; 9749 9750 if (!fb || 9751 fb->modifier != I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC) 9752 continue; 9753 9754 /* 9755 * The layout of the fast clear color value expected by HW 9756 * (the DRM ABI requiring this value to be located in fb at offset 0 of plane#2): 9757 * - 4 x 4 bytes per-channel value 9758 * (in surface type specific float/int format provided by the fb user) 9759 * - 8 bytes native color value used by the display 9760 * (converted/written by GPU during a fast clear operation using the 9761 * above per-channel values) 9762 * 9763 * The commit's FB prepare hook already ensured that FB obj is pinned and the 9764 * caller made sure that the object is synced wrt. the related color clear value 9765 * GPU write on it. 9766 */ 9767 ret = i915_gem_object_read_from_page(intel_fb_obj(fb), 9768 fb->offsets[2] + 16, 9769 &plane_state->ccval, 9770 sizeof(plane_state->ccval)); 9771 /* The above could only fail if the FB obj has an unexpected backing store type. */ 9772 drm_WARN_ON(&i915->drm, ret); 9773 } 9774 } 9775 9776 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 9777 { 9778 struct drm_device *dev = state->base.dev; 9779 struct drm_i915_private *dev_priv = to_i915(dev); 9780 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 9781 struct intel_crtc *crtc; 9782 u64 put_domains[I915_MAX_PIPES] = {}; 9783 intel_wakeref_t wakeref = 0; 9784 int i; 9785 9786 intel_atomic_commit_fence_wait(state); 9787 9788 drm_atomic_helper_wait_for_dependencies(&state->base); 9789 9790 if (state->modeset) 9791 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 9792 9793 intel_atomic_prepare_plane_clear_colors(state); 9794 9795 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9796 new_crtc_state, i) { 9797 if (intel_crtc_needs_modeset(new_crtc_state) || 9798 new_crtc_state->update_pipe) { 9799 9800 put_domains[crtc->pipe] = 9801 modeset_get_crtc_power_domains(new_crtc_state); 9802 } 9803 } 9804 9805 intel_commit_modeset_disables(state); 9806 9807 /* FIXME: Eventually get rid of our crtc->config pointer */ 9808 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 9809 crtc->config = new_crtc_state; 9810 9811 if (state->modeset) { 9812 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 9813 9814 intel_set_cdclk_pre_plane_update(state); 9815 9816 intel_modeset_verify_disabled(dev_priv, state); 9817 } 9818 9819 intel_sagv_pre_plane_update(state); 9820 9821 /* Complete the events for pipes that have now been disabled */ 9822 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9823 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 9824 9825 /* Complete events for now disable pipes here. */ 9826 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { 9827 spin_lock_irq(&dev->event_lock); 9828 drm_crtc_send_vblank_event(&crtc->base, 9829 new_crtc_state->uapi.event); 9830 spin_unlock_irq(&dev->event_lock); 9831 9832 new_crtc_state->uapi.event = NULL; 9833 } 9834 } 9835 9836 if (state->modeset) 9837 intel_encoders_update_prepare(state); 9838 9839 intel_dbuf_pre_plane_update(state); 9840 intel_psr_pre_plane_update(state); 9841 9842 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9843 if (new_crtc_state->uapi.async_flip) 9844 intel_crtc_enable_flip_done(state, crtc); 9845 } 9846 9847 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 9848 dev_priv->display->commit_modeset_enables(state); 9849 9850 if (state->modeset) { 9851 intel_encoders_update_complete(state); 9852 9853 intel_set_cdclk_post_plane_update(state); 9854 } 9855 9856 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 9857 * already, but still need the state for the delayed optimization. To 9858 * fix this: 9859 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 9860 * - schedule that vblank worker _before_ calling hw_done 9861 * - at the start of commit_tail, cancel it _synchrously 9862 * - switch over to the vblank wait helper in the core after that since 9863 * we don't need out special handling any more. 9864 */ 9865 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 9866 9867 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9868 if (new_crtc_state->uapi.async_flip) 9869 intel_crtc_disable_flip_done(state, crtc); 9870 9871 if (new_crtc_state->hw.active && 9872 !intel_crtc_needs_modeset(new_crtc_state) && 9873 !new_crtc_state->preload_luts && 9874 (new_crtc_state->uapi.color_mgmt_changed || 9875 new_crtc_state->update_pipe)) 9876 intel_color_load_luts(new_crtc_state); 9877 } 9878 9879 /* 9880 * Now that the vblank has passed, we can go ahead and program the 9881 * optimal watermarks on platforms that need two-step watermark 9882 * programming. 9883 * 9884 * TODO: Move this (and other cleanup) to an async worker eventually. 9885 */ 9886 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9887 new_crtc_state, i) { 9888 /* 9889 * Gen2 reports pipe underruns whenever all planes are disabled. 9890 * So re-enable underrun reporting after some planes get enabled. 9891 * 9892 * We do this before .optimize_watermarks() so that we have a 9893 * chance of catching underruns with the intermediate watermarks 9894 * vs. the new plane configuration. 9895 */ 9896 if (DISPLAY_VER(dev_priv) == 2 && planes_enabling(old_crtc_state, new_crtc_state)) 9897 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 9898 9899 intel_optimize_watermarks(state, crtc); 9900 } 9901 9902 intel_dbuf_post_plane_update(state); 9903 intel_psr_post_plane_update(state); 9904 9905 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 9906 intel_post_plane_update(state, crtc); 9907 9908 modeset_put_crtc_power_domains(crtc, put_domains[crtc->pipe]); 9909 9910 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 9911 9912 /* 9913 * DSB cleanup is done in cleanup_work aligning with framebuffer 9914 * cleanup. So copy and reset the dsb structure to sync with 9915 * commit_done and later do dsb cleanup in cleanup_work. 9916 */ 9917 old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb); 9918 } 9919 9920 /* Underruns don't always raise interrupts, so check manually */ 9921 intel_check_cpu_fifo_underruns(dev_priv); 9922 intel_check_pch_fifo_underruns(dev_priv); 9923 9924 if (state->modeset) 9925 intel_verify_planes(state); 9926 9927 intel_sagv_post_plane_update(state); 9928 9929 drm_atomic_helper_commit_hw_done(&state->base); 9930 9931 if (state->modeset) { 9932 /* As one of the primary mmio accessors, KMS has a high 9933 * likelihood of triggering bugs in unclaimed access. After we 9934 * finish modesetting, see if an error has been flagged, and if 9935 * so enable debugging for the next modeset - and hope we catch 9936 * the culprit. 9937 */ 9938 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 9939 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 9940 } 9941 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 9942 9943 /* 9944 * Defer the cleanup of the old state to a separate worker to not 9945 * impede the current task (userspace for blocking modesets) that 9946 * are executed inline. For out-of-line asynchronous modesets/flips, 9947 * deferring to a new worker seems overkill, but we would place a 9948 * schedule point (cond_resched()) here anyway to keep latencies 9949 * down. 9950 */ 9951 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 9952 queue_work(system_highpri_wq, &state->base.commit_work); 9953 } 9954 9955 static void intel_atomic_commit_work(struct work_struct *work) 9956 { 9957 struct intel_atomic_state *state = 9958 container_of(work, struct intel_atomic_state, base.commit_work); 9959 9960 intel_atomic_commit_tail(state); 9961 } 9962 9963 static int __i915_sw_fence_call 9964 intel_atomic_commit_ready(struct i915_sw_fence *fence, 9965 enum i915_sw_fence_notify notify) 9966 { 9967 struct intel_atomic_state *state = 9968 container_of(fence, struct intel_atomic_state, commit_ready); 9969 9970 switch (notify) { 9971 case FENCE_COMPLETE: 9972 /* we do blocking waits in the worker, nothing to do here */ 9973 break; 9974 case FENCE_FREE: 9975 { 9976 struct intel_atomic_helper *helper = 9977 &to_i915(state->base.dev)->atomic_helper; 9978 9979 if (llist_add(&state->freed, &helper->free_list)) 9980 schedule_work(&helper->free_work); 9981 break; 9982 } 9983 } 9984 9985 return NOTIFY_DONE; 9986 } 9987 9988 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 9989 { 9990 struct intel_plane_state *old_plane_state, *new_plane_state; 9991 struct intel_plane *plane; 9992 int i; 9993 9994 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 9995 new_plane_state, i) 9996 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 9997 to_intel_frontbuffer(new_plane_state->hw.fb), 9998 plane->frontbuffer_bit); 9999 } 10000 10001 static int intel_atomic_commit(struct drm_device *dev, 10002 struct drm_atomic_state *_state, 10003 bool nonblock) 10004 { 10005 struct intel_atomic_state *state = to_intel_atomic_state(_state); 10006 struct drm_i915_private *dev_priv = to_i915(dev); 10007 int ret = 0; 10008 10009 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 10010 10011 drm_atomic_state_get(&state->base); 10012 i915_sw_fence_init(&state->commit_ready, 10013 intel_atomic_commit_ready); 10014 10015 /* 10016 * The intel_legacy_cursor_update() fast path takes care 10017 * of avoiding the vblank waits for simple cursor 10018 * movement and flips. For cursor on/off and size changes, 10019 * we want to perform the vblank waits so that watermark 10020 * updates happen during the correct frames. Gen9+ have 10021 * double buffered watermarks and so shouldn't need this. 10022 * 10023 * Unset state->legacy_cursor_update before the call to 10024 * drm_atomic_helper_setup_commit() because otherwise 10025 * drm_atomic_helper_wait_for_flip_done() is a noop and 10026 * we get FIFO underruns because we didn't wait 10027 * for vblank. 10028 * 10029 * FIXME doing watermarks and fb cleanup from a vblank worker 10030 * (assuming we had any) would solve these problems. 10031 */ 10032 if (DISPLAY_VER(dev_priv) < 9 && state->base.legacy_cursor_update) { 10033 struct intel_crtc_state *new_crtc_state; 10034 struct intel_crtc *crtc; 10035 int i; 10036 10037 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10038 if (new_crtc_state->wm.need_postvbl_update || 10039 new_crtc_state->update_wm_post) 10040 state->base.legacy_cursor_update = false; 10041 } 10042 10043 ret = intel_atomic_prepare_commit(state); 10044 if (ret) { 10045 drm_dbg_atomic(&dev_priv->drm, 10046 "Preparing state failed with %i\n", ret); 10047 i915_sw_fence_commit(&state->commit_ready); 10048 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10049 return ret; 10050 } 10051 10052 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 10053 if (!ret) 10054 ret = drm_atomic_helper_swap_state(&state->base, true); 10055 if (!ret) 10056 intel_atomic_swap_global_state(state); 10057 10058 if (ret) { 10059 struct intel_crtc_state *new_crtc_state; 10060 struct intel_crtc *crtc; 10061 int i; 10062 10063 i915_sw_fence_commit(&state->commit_ready); 10064 10065 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10066 intel_dsb_cleanup(new_crtc_state); 10067 10068 drm_atomic_helper_cleanup_planes(dev, &state->base); 10069 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10070 return ret; 10071 } 10072 intel_shared_dpll_swap_state(state); 10073 intel_atomic_track_fbs(state); 10074 10075 drm_atomic_state_get(&state->base); 10076 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 10077 10078 i915_sw_fence_commit(&state->commit_ready); 10079 if (nonblock && state->modeset) { 10080 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 10081 } else if (nonblock) { 10082 queue_work(dev_priv->flip_wq, &state->base.commit_work); 10083 } else { 10084 if (state->modeset) 10085 flush_workqueue(dev_priv->modeset_wq); 10086 intel_atomic_commit_tail(state); 10087 } 10088 10089 return 0; 10090 } 10091 10092 /** 10093 * intel_plane_destroy - destroy a plane 10094 * @plane: plane to destroy 10095 * 10096 * Common destruction function for all types of planes (primary, cursor, 10097 * sprite). 10098 */ 10099 void intel_plane_destroy(struct drm_plane *plane) 10100 { 10101 drm_plane_cleanup(plane); 10102 kfree(to_intel_plane(plane)); 10103 } 10104 10105 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv) 10106 { 10107 struct intel_plane *plane; 10108 10109 for_each_intel_plane(&dev_priv->drm, plane) { 10110 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, 10111 plane->pipe); 10112 10113 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base); 10114 } 10115 } 10116 10117 10118 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 10119 struct drm_file *file) 10120 { 10121 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 10122 struct drm_crtc *drmmode_crtc; 10123 struct intel_crtc *crtc; 10124 10125 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 10126 if (!drmmode_crtc) 10127 return -ENOENT; 10128 10129 crtc = to_intel_crtc(drmmode_crtc); 10130 pipe_from_crtc_id->pipe = crtc->pipe; 10131 10132 return 0; 10133 } 10134 10135 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 10136 { 10137 struct drm_device *dev = encoder->base.dev; 10138 struct intel_encoder *source_encoder; 10139 u32 possible_clones = 0; 10140 10141 for_each_intel_encoder(dev, source_encoder) { 10142 if (encoders_cloneable(encoder, source_encoder)) 10143 possible_clones |= drm_encoder_mask(&source_encoder->base); 10144 } 10145 10146 return possible_clones; 10147 } 10148 10149 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 10150 { 10151 struct drm_device *dev = encoder->base.dev; 10152 struct intel_crtc *crtc; 10153 u32 possible_crtcs = 0; 10154 10155 for_each_intel_crtc(dev, crtc) { 10156 if (encoder->pipe_mask & BIT(crtc->pipe)) 10157 possible_crtcs |= drm_crtc_mask(&crtc->base); 10158 } 10159 10160 return possible_crtcs; 10161 } 10162 10163 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 10164 { 10165 if (!IS_MOBILE(dev_priv)) 10166 return false; 10167 10168 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0) 10169 return false; 10170 10171 if (IS_IRONLAKE(dev_priv) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE)) 10172 return false; 10173 10174 return true; 10175 } 10176 10177 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 10178 { 10179 if (DISPLAY_VER(dev_priv) >= 9) 10180 return false; 10181 10182 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 10183 return false; 10184 10185 if (HAS_PCH_LPT_H(dev_priv) && 10186 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 10187 return false; 10188 10189 /* DDI E can't be used if DDI A requires 4 lanes */ 10190 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 10191 return false; 10192 10193 if (!dev_priv->vbt.int_crt_support) 10194 return false; 10195 10196 return true; 10197 } 10198 10199 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 10200 { 10201 struct intel_encoder *encoder; 10202 bool dpd_is_edp = false; 10203 10204 intel_pps_unlock_regs_wa(dev_priv); 10205 10206 if (!HAS_DISPLAY(dev_priv)) 10207 return; 10208 10209 if (IS_DG2(dev_priv)) { 10210 intel_ddi_init(dev_priv, PORT_A); 10211 intel_ddi_init(dev_priv, PORT_B); 10212 intel_ddi_init(dev_priv, PORT_C); 10213 intel_ddi_init(dev_priv, PORT_D_XELPD); 10214 } else if (IS_ALDERLAKE_P(dev_priv)) { 10215 intel_ddi_init(dev_priv, PORT_A); 10216 intel_ddi_init(dev_priv, PORT_B); 10217 intel_ddi_init(dev_priv, PORT_TC1); 10218 intel_ddi_init(dev_priv, PORT_TC2); 10219 intel_ddi_init(dev_priv, PORT_TC3); 10220 intel_ddi_init(dev_priv, PORT_TC4); 10221 icl_dsi_init(dev_priv); 10222 } else if (IS_ALDERLAKE_S(dev_priv)) { 10223 intel_ddi_init(dev_priv, PORT_A); 10224 intel_ddi_init(dev_priv, PORT_TC1); 10225 intel_ddi_init(dev_priv, PORT_TC2); 10226 intel_ddi_init(dev_priv, PORT_TC3); 10227 intel_ddi_init(dev_priv, PORT_TC4); 10228 } else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) { 10229 intel_ddi_init(dev_priv, PORT_A); 10230 intel_ddi_init(dev_priv, PORT_B); 10231 intel_ddi_init(dev_priv, PORT_TC1); 10232 intel_ddi_init(dev_priv, PORT_TC2); 10233 } else if (DISPLAY_VER(dev_priv) >= 12) { 10234 intel_ddi_init(dev_priv, PORT_A); 10235 intel_ddi_init(dev_priv, PORT_B); 10236 intel_ddi_init(dev_priv, PORT_TC1); 10237 intel_ddi_init(dev_priv, PORT_TC2); 10238 intel_ddi_init(dev_priv, PORT_TC3); 10239 intel_ddi_init(dev_priv, PORT_TC4); 10240 intel_ddi_init(dev_priv, PORT_TC5); 10241 intel_ddi_init(dev_priv, PORT_TC6); 10242 icl_dsi_init(dev_priv); 10243 } else if (IS_JSL_EHL(dev_priv)) { 10244 intel_ddi_init(dev_priv, PORT_A); 10245 intel_ddi_init(dev_priv, PORT_B); 10246 intel_ddi_init(dev_priv, PORT_C); 10247 intel_ddi_init(dev_priv, PORT_D); 10248 icl_dsi_init(dev_priv); 10249 } else if (DISPLAY_VER(dev_priv) == 11) { 10250 intel_ddi_init(dev_priv, PORT_A); 10251 intel_ddi_init(dev_priv, PORT_B); 10252 intel_ddi_init(dev_priv, PORT_C); 10253 intel_ddi_init(dev_priv, PORT_D); 10254 intel_ddi_init(dev_priv, PORT_E); 10255 intel_ddi_init(dev_priv, PORT_F); 10256 icl_dsi_init(dev_priv); 10257 } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { 10258 intel_ddi_init(dev_priv, PORT_A); 10259 intel_ddi_init(dev_priv, PORT_B); 10260 intel_ddi_init(dev_priv, PORT_C); 10261 vlv_dsi_init(dev_priv); 10262 } else if (DISPLAY_VER(dev_priv) >= 9) { 10263 intel_ddi_init(dev_priv, PORT_A); 10264 intel_ddi_init(dev_priv, PORT_B); 10265 intel_ddi_init(dev_priv, PORT_C); 10266 intel_ddi_init(dev_priv, PORT_D); 10267 intel_ddi_init(dev_priv, PORT_E); 10268 } else if (HAS_DDI(dev_priv)) { 10269 u32 found; 10270 10271 if (intel_ddi_crt_present(dev_priv)) 10272 intel_crt_init(dev_priv); 10273 10274 /* Haswell uses DDI functions to detect digital outputs. */ 10275 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 10276 if (found) 10277 intel_ddi_init(dev_priv, PORT_A); 10278 10279 found = intel_de_read(dev_priv, SFUSE_STRAP); 10280 if (found & SFUSE_STRAP_DDIB_DETECTED) 10281 intel_ddi_init(dev_priv, PORT_B); 10282 if (found & SFUSE_STRAP_DDIC_DETECTED) 10283 intel_ddi_init(dev_priv, PORT_C); 10284 if (found & SFUSE_STRAP_DDID_DETECTED) 10285 intel_ddi_init(dev_priv, PORT_D); 10286 if (found & SFUSE_STRAP_DDIF_DETECTED) 10287 intel_ddi_init(dev_priv, PORT_F); 10288 } else if (HAS_PCH_SPLIT(dev_priv)) { 10289 int found; 10290 10291 /* 10292 * intel_edp_init_connector() depends on this completing first, 10293 * to prevent the registration of both eDP and LVDS and the 10294 * incorrect sharing of the PPS. 10295 */ 10296 intel_lvds_init(dev_priv); 10297 intel_crt_init(dev_priv); 10298 10299 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 10300 10301 if (ilk_has_edp_a(dev_priv)) 10302 g4x_dp_init(dev_priv, DP_A, PORT_A); 10303 10304 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) { 10305 /* PCH SDVOB multiplex with HDMIB */ 10306 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 10307 if (!found) 10308 g4x_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 10309 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED)) 10310 g4x_dp_init(dev_priv, PCH_DP_B, PORT_B); 10311 } 10312 10313 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED) 10314 g4x_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 10315 10316 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED) 10317 g4x_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 10318 10319 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED) 10320 g4x_dp_init(dev_priv, PCH_DP_C, PORT_C); 10321 10322 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED) 10323 g4x_dp_init(dev_priv, PCH_DP_D, PORT_D); 10324 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 10325 bool has_edp, has_port; 10326 10327 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 10328 intel_crt_init(dev_priv); 10329 10330 /* 10331 * The DP_DETECTED bit is the latched state of the DDC 10332 * SDA pin at boot. However since eDP doesn't require DDC 10333 * (no way to plug in a DP->HDMI dongle) the DDC pins for 10334 * eDP ports may have been muxed to an alternate function. 10335 * Thus we can't rely on the DP_DETECTED bit alone to detect 10336 * eDP ports. Consult the VBT as well as DP_DETECTED to 10337 * detect eDP ports. 10338 * 10339 * Sadly the straps seem to be missing sometimes even for HDMI 10340 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 10341 * and VBT for the presence of the port. Additionally we can't 10342 * trust the port type the VBT declares as we've seen at least 10343 * HDMI ports that the VBT claim are DP or eDP. 10344 */ 10345 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 10346 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 10347 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port) 10348 has_edp &= g4x_dp_init(dev_priv, VLV_DP_B, PORT_B); 10349 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 10350 g4x_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 10351 10352 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 10353 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 10354 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port) 10355 has_edp &= g4x_dp_init(dev_priv, VLV_DP_C, PORT_C); 10356 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 10357 g4x_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 10358 10359 if (IS_CHERRYVIEW(dev_priv)) { 10360 /* 10361 * eDP not supported on port D, 10362 * so no need to worry about it 10363 */ 10364 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 10365 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port) 10366 g4x_dp_init(dev_priv, CHV_DP_D, PORT_D); 10367 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port) 10368 g4x_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 10369 } 10370 10371 vlv_dsi_init(dev_priv); 10372 } else if (IS_PINEVIEW(dev_priv)) { 10373 intel_lvds_init(dev_priv); 10374 intel_crt_init(dev_priv); 10375 } else if (IS_DISPLAY_VER(dev_priv, 3, 4)) { 10376 bool found = false; 10377 10378 if (IS_MOBILE(dev_priv)) 10379 intel_lvds_init(dev_priv); 10380 10381 intel_crt_init(dev_priv); 10382 10383 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 10384 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n"); 10385 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 10386 if (!found && IS_G4X(dev_priv)) { 10387 drm_dbg_kms(&dev_priv->drm, 10388 "probing HDMI on SDVOB\n"); 10389 g4x_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 10390 } 10391 10392 if (!found && IS_G4X(dev_priv)) 10393 g4x_dp_init(dev_priv, DP_B, PORT_B); 10394 } 10395 10396 /* Before G4X SDVOC doesn't have its own detect register */ 10397 10398 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 10399 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n"); 10400 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 10401 } 10402 10403 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) { 10404 10405 if (IS_G4X(dev_priv)) { 10406 drm_dbg_kms(&dev_priv->drm, 10407 "probing HDMI on SDVOC\n"); 10408 g4x_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 10409 } 10410 if (IS_G4X(dev_priv)) 10411 g4x_dp_init(dev_priv, DP_C, PORT_C); 10412 } 10413 10414 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED)) 10415 g4x_dp_init(dev_priv, DP_D, PORT_D); 10416 10417 if (SUPPORTS_TV(dev_priv)) 10418 intel_tv_init(dev_priv); 10419 } else if (DISPLAY_VER(dev_priv) == 2) { 10420 if (IS_I85X(dev_priv)) 10421 intel_lvds_init(dev_priv); 10422 10423 intel_crt_init(dev_priv); 10424 intel_dvo_init(dev_priv); 10425 } 10426 10427 for_each_intel_encoder(&dev_priv->drm, encoder) { 10428 encoder->base.possible_crtcs = 10429 intel_encoder_possible_crtcs(encoder); 10430 encoder->base.possible_clones = 10431 intel_encoder_possible_clones(encoder); 10432 } 10433 10434 intel_init_pch_refclk(dev_priv); 10435 10436 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 10437 } 10438 10439 static enum drm_mode_status 10440 intel_mode_valid(struct drm_device *dev, 10441 const struct drm_display_mode *mode) 10442 { 10443 struct drm_i915_private *dev_priv = to_i915(dev); 10444 int hdisplay_max, htotal_max; 10445 int vdisplay_max, vtotal_max; 10446 10447 /* 10448 * Can't reject DBLSCAN here because Xorg ddxen can add piles 10449 * of DBLSCAN modes to the output's mode list when they detect 10450 * the scaling mode property on the connector. And they don't 10451 * ask the kernel to validate those modes in any way until 10452 * modeset time at which point the client gets a protocol error. 10453 * So in order to not upset those clients we silently ignore the 10454 * DBLSCAN flag on such connectors. For other connectors we will 10455 * reject modes with the DBLSCAN flag in encoder->compute_config(). 10456 * And we always reject DBLSCAN modes in connector->mode_valid() 10457 * as we never want such modes on the connector's mode list. 10458 */ 10459 10460 if (mode->vscan > 1) 10461 return MODE_NO_VSCAN; 10462 10463 if (mode->flags & DRM_MODE_FLAG_HSKEW) 10464 return MODE_H_ILLEGAL; 10465 10466 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 10467 DRM_MODE_FLAG_NCSYNC | 10468 DRM_MODE_FLAG_PCSYNC)) 10469 return MODE_HSYNC; 10470 10471 if (mode->flags & (DRM_MODE_FLAG_BCAST | 10472 DRM_MODE_FLAG_PIXMUX | 10473 DRM_MODE_FLAG_CLKDIV2)) 10474 return MODE_BAD; 10475 10476 /* Transcoder timing limits */ 10477 if (DISPLAY_VER(dev_priv) >= 11) { 10478 hdisplay_max = 16384; 10479 vdisplay_max = 8192; 10480 htotal_max = 16384; 10481 vtotal_max = 8192; 10482 } else if (DISPLAY_VER(dev_priv) >= 9 || 10483 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 10484 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 10485 vdisplay_max = 4096; 10486 htotal_max = 8192; 10487 vtotal_max = 8192; 10488 } else if (DISPLAY_VER(dev_priv) >= 3) { 10489 hdisplay_max = 4096; 10490 vdisplay_max = 4096; 10491 htotal_max = 8192; 10492 vtotal_max = 8192; 10493 } else { 10494 hdisplay_max = 2048; 10495 vdisplay_max = 2048; 10496 htotal_max = 4096; 10497 vtotal_max = 4096; 10498 } 10499 10500 if (mode->hdisplay > hdisplay_max || 10501 mode->hsync_start > htotal_max || 10502 mode->hsync_end > htotal_max || 10503 mode->htotal > htotal_max) 10504 return MODE_H_ILLEGAL; 10505 10506 if (mode->vdisplay > vdisplay_max || 10507 mode->vsync_start > vtotal_max || 10508 mode->vsync_end > vtotal_max || 10509 mode->vtotal > vtotal_max) 10510 return MODE_V_ILLEGAL; 10511 10512 if (DISPLAY_VER(dev_priv) >= 5) { 10513 if (mode->hdisplay < 64 || 10514 mode->htotal - mode->hdisplay < 32) 10515 return MODE_H_ILLEGAL; 10516 10517 if (mode->vtotal - mode->vdisplay < 5) 10518 return MODE_V_ILLEGAL; 10519 } else { 10520 if (mode->htotal - mode->hdisplay < 32) 10521 return MODE_H_ILLEGAL; 10522 10523 if (mode->vtotal - mode->vdisplay < 3) 10524 return MODE_V_ILLEGAL; 10525 } 10526 10527 /* 10528 * Cantiga+ cannot handle modes with a hsync front porch of 0. 10529 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 10530 */ 10531 if ((DISPLAY_VER(dev_priv) > 4 || IS_G4X(dev_priv)) && 10532 mode->hsync_start == mode->hdisplay) 10533 return MODE_H_ILLEGAL; 10534 10535 return MODE_OK; 10536 } 10537 10538 enum drm_mode_status 10539 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, 10540 const struct drm_display_mode *mode, 10541 bool bigjoiner) 10542 { 10543 int plane_width_max, plane_height_max; 10544 10545 /* 10546 * intel_mode_valid() should be 10547 * sufficient on older platforms. 10548 */ 10549 if (DISPLAY_VER(dev_priv) < 9) 10550 return MODE_OK; 10551 10552 /* 10553 * Most people will probably want a fullscreen 10554 * plane so let's not advertize modes that are 10555 * too big for that. 10556 */ 10557 if (DISPLAY_VER(dev_priv) >= 11) { 10558 plane_width_max = 5120 << bigjoiner; 10559 plane_height_max = 4320; 10560 } else { 10561 plane_width_max = 5120; 10562 plane_height_max = 4096; 10563 } 10564 10565 if (mode->hdisplay > plane_width_max) 10566 return MODE_H_ILLEGAL; 10567 10568 if (mode->vdisplay > plane_height_max) 10569 return MODE_V_ILLEGAL; 10570 10571 return MODE_OK; 10572 } 10573 10574 static const struct drm_mode_config_funcs intel_mode_funcs = { 10575 .fb_create = intel_user_framebuffer_create, 10576 .get_format_info = intel_get_format_info, 10577 .output_poll_changed = intel_fbdev_output_poll_changed, 10578 .mode_valid = intel_mode_valid, 10579 .atomic_check = intel_atomic_check, 10580 .atomic_commit = intel_atomic_commit, 10581 .atomic_state_alloc = intel_atomic_state_alloc, 10582 .atomic_state_clear = intel_atomic_state_clear, 10583 .atomic_state_free = intel_atomic_state_free, 10584 }; 10585 10586 static const struct drm_i915_display_funcs skl_display_funcs = { 10587 .get_pipe_config = hsw_get_pipe_config, 10588 .crtc_enable = hsw_crtc_enable, 10589 .crtc_disable = hsw_crtc_disable, 10590 .commit_modeset_enables = skl_commit_modeset_enables, 10591 .get_initial_plane_config = skl_get_initial_plane_config, 10592 }; 10593 10594 static const struct drm_i915_display_funcs ddi_display_funcs = { 10595 .get_pipe_config = hsw_get_pipe_config, 10596 .crtc_enable = hsw_crtc_enable, 10597 .crtc_disable = hsw_crtc_disable, 10598 .commit_modeset_enables = intel_commit_modeset_enables, 10599 .get_initial_plane_config = i9xx_get_initial_plane_config, 10600 }; 10601 10602 static const struct drm_i915_display_funcs pch_split_display_funcs = { 10603 .get_pipe_config = ilk_get_pipe_config, 10604 .crtc_enable = ilk_crtc_enable, 10605 .crtc_disable = ilk_crtc_disable, 10606 .commit_modeset_enables = intel_commit_modeset_enables, 10607 .get_initial_plane_config = i9xx_get_initial_plane_config, 10608 }; 10609 10610 static const struct drm_i915_display_funcs vlv_display_funcs = { 10611 .get_pipe_config = i9xx_get_pipe_config, 10612 .crtc_enable = valleyview_crtc_enable, 10613 .crtc_disable = i9xx_crtc_disable, 10614 .commit_modeset_enables = intel_commit_modeset_enables, 10615 .get_initial_plane_config = i9xx_get_initial_plane_config, 10616 }; 10617 10618 static const struct drm_i915_display_funcs i9xx_display_funcs = { 10619 .get_pipe_config = i9xx_get_pipe_config, 10620 .crtc_enable = i9xx_crtc_enable, 10621 .crtc_disable = i9xx_crtc_disable, 10622 .commit_modeset_enables = intel_commit_modeset_enables, 10623 .get_initial_plane_config = i9xx_get_initial_plane_config, 10624 }; 10625 10626 /** 10627 * intel_init_display_hooks - initialize the display modesetting hooks 10628 * @dev_priv: device private 10629 */ 10630 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 10631 { 10632 if (!HAS_DISPLAY(dev_priv)) 10633 return; 10634 10635 intel_init_cdclk_hooks(dev_priv); 10636 intel_init_audio_hooks(dev_priv); 10637 10638 intel_dpll_init_clock_hook(dev_priv); 10639 10640 if (DISPLAY_VER(dev_priv) >= 9) { 10641 dev_priv->display = &skl_display_funcs; 10642 } else if (HAS_DDI(dev_priv)) { 10643 dev_priv->display = &ddi_display_funcs; 10644 } else if (HAS_PCH_SPLIT(dev_priv)) { 10645 dev_priv->display = &pch_split_display_funcs; 10646 } else if (IS_CHERRYVIEW(dev_priv) || 10647 IS_VALLEYVIEW(dev_priv)) { 10648 dev_priv->display = &vlv_display_funcs; 10649 } else { 10650 dev_priv->display = &i9xx_display_funcs; 10651 } 10652 10653 intel_fdi_init_hook(dev_priv); 10654 } 10655 10656 void intel_modeset_init_hw(struct drm_i915_private *i915) 10657 { 10658 struct intel_cdclk_state *cdclk_state; 10659 10660 if (!HAS_DISPLAY(i915)) 10661 return; 10662 10663 cdclk_state = to_intel_cdclk_state(i915->cdclk.obj.state); 10664 10665 intel_update_cdclk(i915); 10666 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK"); 10667 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw; 10668 } 10669 10670 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state) 10671 { 10672 struct drm_plane *plane; 10673 struct intel_crtc *crtc; 10674 10675 for_each_intel_crtc(state->dev, crtc) { 10676 struct intel_crtc_state *crtc_state; 10677 10678 crtc_state = intel_atomic_get_crtc_state(state, crtc); 10679 if (IS_ERR(crtc_state)) 10680 return PTR_ERR(crtc_state); 10681 10682 if (crtc_state->hw.active) { 10683 /* 10684 * Preserve the inherited flag to avoid 10685 * taking the full modeset path. 10686 */ 10687 crtc_state->inherited = true; 10688 } 10689 } 10690 10691 drm_for_each_plane(plane, state->dev) { 10692 struct drm_plane_state *plane_state; 10693 10694 plane_state = drm_atomic_get_plane_state(state, plane); 10695 if (IS_ERR(plane_state)) 10696 return PTR_ERR(plane_state); 10697 } 10698 10699 return 0; 10700 } 10701 10702 /* 10703 * Calculate what we think the watermarks should be for the state we've read 10704 * out of the hardware and then immediately program those watermarks so that 10705 * we ensure the hardware settings match our internal state. 10706 * 10707 * We can calculate what we think WM's should be by creating a duplicate of the 10708 * current state (which was constructed during hardware readout) and running it 10709 * through the atomic check code to calculate new watermark values in the 10710 * state object. 10711 */ 10712 static void sanitize_watermarks(struct drm_i915_private *dev_priv) 10713 { 10714 struct drm_atomic_state *state; 10715 struct intel_atomic_state *intel_state; 10716 struct intel_crtc *crtc; 10717 struct intel_crtc_state *crtc_state; 10718 struct drm_modeset_acquire_ctx ctx; 10719 int ret; 10720 int i; 10721 10722 /* Only supported on platforms that use atomic watermark design */ 10723 if (!dev_priv->wm_disp->optimize_watermarks) 10724 return; 10725 10726 state = drm_atomic_state_alloc(&dev_priv->drm); 10727 if (drm_WARN_ON(&dev_priv->drm, !state)) 10728 return; 10729 10730 intel_state = to_intel_atomic_state(state); 10731 10732 drm_modeset_acquire_init(&ctx, 0); 10733 10734 retry: 10735 state->acquire_ctx = &ctx; 10736 10737 /* 10738 * Hardware readout is the only time we don't want to calculate 10739 * intermediate watermarks (since we don't trust the current 10740 * watermarks). 10741 */ 10742 if (!HAS_GMCH(dev_priv)) 10743 intel_state->skip_intermediate_wm = true; 10744 10745 ret = sanitize_watermarks_add_affected(state); 10746 if (ret) 10747 goto fail; 10748 10749 ret = intel_atomic_check(&dev_priv->drm, state); 10750 if (ret) 10751 goto fail; 10752 10753 /* Write calculated watermark values back */ 10754 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 10755 crtc_state->wm.need_postvbl_update = true; 10756 intel_optimize_watermarks(intel_state, crtc); 10757 10758 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 10759 } 10760 10761 fail: 10762 if (ret == -EDEADLK) { 10763 drm_atomic_state_clear(state); 10764 drm_modeset_backoff(&ctx); 10765 goto retry; 10766 } 10767 10768 /* 10769 * If we fail here, it means that the hardware appears to be 10770 * programmed in a way that shouldn't be possible, given our 10771 * understanding of watermark requirements. This might mean a 10772 * mistake in the hardware readout code or a mistake in the 10773 * watermark calculations for a given platform. Raise a WARN 10774 * so that this is noticeable. 10775 * 10776 * If this actually happens, we'll have to just leave the 10777 * BIOS-programmed watermarks untouched and hope for the best. 10778 */ 10779 drm_WARN(&dev_priv->drm, ret, 10780 "Could not determine valid watermarks for inherited state\n"); 10781 10782 drm_atomic_state_put(state); 10783 10784 drm_modeset_drop_locks(&ctx); 10785 drm_modeset_acquire_fini(&ctx); 10786 } 10787 10788 static int intel_initial_commit(struct drm_device *dev) 10789 { 10790 struct drm_atomic_state *state = NULL; 10791 struct drm_modeset_acquire_ctx ctx; 10792 struct intel_crtc *crtc; 10793 int ret = 0; 10794 10795 state = drm_atomic_state_alloc(dev); 10796 if (!state) 10797 return -ENOMEM; 10798 10799 drm_modeset_acquire_init(&ctx, 0); 10800 10801 retry: 10802 state->acquire_ctx = &ctx; 10803 10804 for_each_intel_crtc(dev, crtc) { 10805 struct intel_crtc_state *crtc_state = 10806 intel_atomic_get_crtc_state(state, crtc); 10807 10808 if (IS_ERR(crtc_state)) { 10809 ret = PTR_ERR(crtc_state); 10810 goto out; 10811 } 10812 10813 if (crtc_state->hw.active) { 10814 struct intel_encoder *encoder; 10815 10816 /* 10817 * We've not yet detected sink capabilities 10818 * (audio,infoframes,etc.) and thus we don't want to 10819 * force a full state recomputation yet. We want that to 10820 * happen only for the first real commit from userspace. 10821 * So preserve the inherited flag for the time being. 10822 */ 10823 crtc_state->inherited = true; 10824 10825 ret = drm_atomic_add_affected_planes(state, &crtc->base); 10826 if (ret) 10827 goto out; 10828 10829 /* 10830 * FIXME hack to force a LUT update to avoid the 10831 * plane update forcing the pipe gamma on without 10832 * having a proper LUT loaded. Remove once we 10833 * have readout for pipe gamma enable. 10834 */ 10835 crtc_state->uapi.color_mgmt_changed = true; 10836 10837 for_each_intel_encoder_mask(dev, encoder, 10838 crtc_state->uapi.encoder_mask) { 10839 if (encoder->initial_fastset_check && 10840 !encoder->initial_fastset_check(encoder, crtc_state)) { 10841 ret = drm_atomic_add_affected_connectors(state, 10842 &crtc->base); 10843 if (ret) 10844 goto out; 10845 } 10846 } 10847 } 10848 } 10849 10850 ret = drm_atomic_commit(state); 10851 10852 out: 10853 if (ret == -EDEADLK) { 10854 drm_atomic_state_clear(state); 10855 drm_modeset_backoff(&ctx); 10856 goto retry; 10857 } 10858 10859 drm_atomic_state_put(state); 10860 10861 drm_modeset_drop_locks(&ctx); 10862 drm_modeset_acquire_fini(&ctx); 10863 10864 return ret; 10865 } 10866 10867 static void intel_mode_config_init(struct drm_i915_private *i915) 10868 { 10869 struct drm_mode_config *mode_config = &i915->drm.mode_config; 10870 10871 drm_mode_config_init(&i915->drm); 10872 INIT_LIST_HEAD(&i915->global_obj_list); 10873 10874 mode_config->min_width = 0; 10875 mode_config->min_height = 0; 10876 10877 mode_config->preferred_depth = 24; 10878 mode_config->prefer_shadow = 1; 10879 10880 mode_config->funcs = &intel_mode_funcs; 10881 10882 mode_config->async_page_flip = HAS_ASYNC_FLIPS(i915); 10883 10884 /* 10885 * Maximum framebuffer dimensions, chosen to match 10886 * the maximum render engine surface size on gen4+. 10887 */ 10888 if (DISPLAY_VER(i915) >= 7) { 10889 mode_config->max_width = 16384; 10890 mode_config->max_height = 16384; 10891 } else if (DISPLAY_VER(i915) >= 4) { 10892 mode_config->max_width = 8192; 10893 mode_config->max_height = 8192; 10894 } else if (DISPLAY_VER(i915) == 3) { 10895 mode_config->max_width = 4096; 10896 mode_config->max_height = 4096; 10897 } else { 10898 mode_config->max_width = 2048; 10899 mode_config->max_height = 2048; 10900 } 10901 10902 if (IS_I845G(i915) || IS_I865G(i915)) { 10903 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; 10904 mode_config->cursor_height = 1023; 10905 } else if (IS_I830(i915) || IS_I85X(i915) || 10906 IS_I915G(i915) || IS_I915GM(i915)) { 10907 mode_config->cursor_width = 64; 10908 mode_config->cursor_height = 64; 10909 } else { 10910 mode_config->cursor_width = 256; 10911 mode_config->cursor_height = 256; 10912 } 10913 } 10914 10915 static void intel_mode_config_cleanup(struct drm_i915_private *i915) 10916 { 10917 intel_atomic_global_obj_cleanup(i915); 10918 drm_mode_config_cleanup(&i915->drm); 10919 } 10920 10921 /* part #1: call before irq install */ 10922 int intel_modeset_init_noirq(struct drm_i915_private *i915) 10923 { 10924 int ret; 10925 10926 if (i915_inject_probe_failure(i915)) 10927 return -ENODEV; 10928 10929 if (HAS_DISPLAY(i915)) { 10930 ret = drm_vblank_init(&i915->drm, 10931 INTEL_NUM_PIPES(i915)); 10932 if (ret) 10933 return ret; 10934 } 10935 10936 intel_bios_init(i915); 10937 10938 ret = intel_vga_register(i915); 10939 if (ret) 10940 goto cleanup_bios; 10941 10942 /* FIXME: completely on the wrong abstraction layer */ 10943 intel_power_domains_init_hw(i915, false); 10944 10945 if (!HAS_DISPLAY(i915)) 10946 return 0; 10947 10948 intel_dmc_ucode_init(i915); 10949 10950 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 10951 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | 10952 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); 10953 10954 i915->framestart_delay = 1; /* 1-4 */ 10955 10956 i915->window2_delay = 0; /* No DSB so no window2 delay */ 10957 10958 intel_mode_config_init(i915); 10959 10960 ret = intel_cdclk_init(i915); 10961 if (ret) 10962 goto cleanup_vga_client_pw_domain_dmc; 10963 10964 ret = intel_dbuf_init(i915); 10965 if (ret) 10966 goto cleanup_vga_client_pw_domain_dmc; 10967 10968 ret = intel_bw_init(i915); 10969 if (ret) 10970 goto cleanup_vga_client_pw_domain_dmc; 10971 10972 init_llist_head(&i915->atomic_helper.free_list); 10973 INIT_WORK(&i915->atomic_helper.free_work, 10974 intel_atomic_helper_free_state_worker); 10975 10976 intel_init_quirks(i915); 10977 10978 intel_fbc_init(i915); 10979 10980 return 0; 10981 10982 cleanup_vga_client_pw_domain_dmc: 10983 intel_dmc_ucode_fini(i915); 10984 intel_power_domains_driver_remove(i915); 10985 intel_vga_unregister(i915); 10986 cleanup_bios: 10987 intel_bios_driver_remove(i915); 10988 10989 return ret; 10990 } 10991 10992 /* part #2: call after irq install, but before gem init */ 10993 int intel_modeset_init_nogem(struct drm_i915_private *i915) 10994 { 10995 struct drm_device *dev = &i915->drm; 10996 enum pipe pipe; 10997 struct intel_crtc *crtc; 10998 int ret; 10999 11000 if (!HAS_DISPLAY(i915)) 11001 return 0; 11002 11003 intel_init_pm(i915); 11004 11005 intel_panel_sanitize_ssc(i915); 11006 11007 intel_pps_setup(i915); 11008 11009 intel_gmbus_setup(i915); 11010 11011 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n", 11012 INTEL_NUM_PIPES(i915), 11013 INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); 11014 11015 for_each_pipe(i915, pipe) { 11016 ret = intel_crtc_init(i915, pipe); 11017 if (ret) { 11018 intel_mode_config_cleanup(i915); 11019 return ret; 11020 } 11021 } 11022 11023 intel_plane_possible_crtcs_init(i915); 11024 intel_shared_dpll_init(dev); 11025 intel_fdi_pll_freq_update(i915); 11026 11027 intel_update_czclk(i915); 11028 intel_modeset_init_hw(i915); 11029 intel_dpll_update_ref_clks(i915); 11030 11031 intel_hdcp_component_init(i915); 11032 11033 if (i915->max_cdclk_freq == 0) 11034 intel_update_max_cdclk(i915); 11035 11036 /* 11037 * If the platform has HTI, we need to find out whether it has reserved 11038 * any display resources before we create our display outputs. 11039 */ 11040 if (INTEL_INFO(i915)->display.has_hti) 11041 i915->hti_state = intel_de_read(i915, HDPORT_STATE); 11042 11043 /* Just disable it once at startup */ 11044 intel_vga_disable(i915); 11045 intel_setup_outputs(i915); 11046 11047 drm_modeset_lock_all(dev); 11048 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 11049 intel_acpi_assign_connector_fwnodes(i915); 11050 drm_modeset_unlock_all(dev); 11051 11052 for_each_intel_crtc(dev, crtc) { 11053 if (!to_intel_crtc_state(crtc->base.state)->uapi.active) 11054 continue; 11055 intel_crtc_initial_plane_config(crtc); 11056 } 11057 11058 /* 11059 * Make sure hardware watermarks really match the state we read out. 11060 * Note that we need to do this after reconstructing the BIOS fb's 11061 * since the watermark calculation done here will use pstate->fb. 11062 */ 11063 if (!HAS_GMCH(i915)) 11064 sanitize_watermarks(i915); 11065 11066 return 0; 11067 } 11068 11069 /* part #3: call after gem init */ 11070 int intel_modeset_init(struct drm_i915_private *i915) 11071 { 11072 int ret; 11073 11074 if (!HAS_DISPLAY(i915)) 11075 return 0; 11076 11077 /* 11078 * Force all active planes to recompute their states. So that on 11079 * mode_setcrtc after probe, all the intel_plane_state variables 11080 * are already calculated and there is no assert_plane warnings 11081 * during bootup. 11082 */ 11083 ret = intel_initial_commit(&i915->drm); 11084 if (ret) 11085 drm_dbg_kms(&i915->drm, "Initial modeset failed, %d\n", ret); 11086 11087 intel_overlay_setup(i915); 11088 11089 ret = intel_fbdev_init(&i915->drm); 11090 if (ret) 11091 return ret; 11092 11093 /* Only enable hotplug handling once the fbdev is fully set up. */ 11094 intel_hpd_init(i915); 11095 intel_hpd_poll_disable(i915); 11096 11097 intel_init_ipc(i915); 11098 11099 return 0; 11100 } 11101 11102 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 11103 { 11104 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 11105 /* 640x480@60Hz, ~25175 kHz */ 11106 struct dpll clock = { 11107 .m1 = 18, 11108 .m2 = 7, 11109 .p1 = 13, 11110 .p2 = 4, 11111 .n = 2, 11112 }; 11113 u32 dpll, fp; 11114 int i; 11115 11116 drm_WARN_ON(&dev_priv->drm, 11117 i9xx_calc_dpll_params(48000, &clock) != 25154); 11118 11119 drm_dbg_kms(&dev_priv->drm, 11120 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 11121 pipe_name(pipe), clock.vco, clock.dot); 11122 11123 fp = i9xx_dpll_compute_fp(&clock); 11124 dpll = DPLL_DVO_2X_MODE | 11125 DPLL_VGA_MODE_DIS | 11126 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 11127 PLL_P2_DIVIDE_BY_4 | 11128 PLL_REF_INPUT_DREFCLK | 11129 DPLL_VCO_ENABLE; 11130 11131 intel_de_write(dev_priv, FP0(pipe), fp); 11132 intel_de_write(dev_priv, FP1(pipe), fp); 11133 11134 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 11135 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 11136 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 11137 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 11138 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 11139 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 11140 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 11141 11142 /* 11143 * Apparently we need to have VGA mode enabled prior to changing 11144 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 11145 * dividers, even though the register value does change. 11146 */ 11147 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 11148 intel_de_write(dev_priv, DPLL(pipe), dpll); 11149 11150 /* Wait for the clocks to stabilize. */ 11151 intel_de_posting_read(dev_priv, DPLL(pipe)); 11152 udelay(150); 11153 11154 /* The pixel multiplier can only be updated once the 11155 * DPLL is enabled and the clocks are stable. 11156 * 11157 * So write it again. 11158 */ 11159 intel_de_write(dev_priv, DPLL(pipe), dpll); 11160 11161 /* We do this three times for luck */ 11162 for (i = 0; i < 3 ; i++) { 11163 intel_de_write(dev_priv, DPLL(pipe), dpll); 11164 intel_de_posting_read(dev_priv, DPLL(pipe)); 11165 udelay(150); /* wait for warmup */ 11166 } 11167 11168 intel_de_write(dev_priv, PIPECONF(pipe), 11169 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 11170 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 11171 11172 intel_wait_for_pipe_scanline_moving(crtc); 11173 } 11174 11175 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 11176 { 11177 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 11178 11179 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n", 11180 pipe_name(pipe)); 11181 11182 drm_WARN_ON(&dev_priv->drm, 11183 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & 11184 DISPLAY_PLANE_ENABLE); 11185 drm_WARN_ON(&dev_priv->drm, 11186 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & 11187 DISPLAY_PLANE_ENABLE); 11188 drm_WARN_ON(&dev_priv->drm, 11189 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & 11190 DISPLAY_PLANE_ENABLE); 11191 drm_WARN_ON(&dev_priv->drm, 11192 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE); 11193 drm_WARN_ON(&dev_priv->drm, 11194 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE); 11195 11196 intel_de_write(dev_priv, PIPECONF(pipe), 0); 11197 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 11198 11199 intel_wait_for_pipe_scanline_stopped(crtc); 11200 11201 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 11202 intel_de_posting_read(dev_priv, DPLL(pipe)); 11203 } 11204 11205 static void 11206 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 11207 { 11208 struct intel_crtc *crtc; 11209 11210 if (DISPLAY_VER(dev_priv) >= 4) 11211 return; 11212 11213 for_each_intel_crtc(&dev_priv->drm, crtc) { 11214 struct intel_plane *plane = 11215 to_intel_plane(crtc->base.primary); 11216 struct intel_crtc *plane_crtc; 11217 enum pipe pipe; 11218 11219 if (!plane->get_hw_state(plane, &pipe)) 11220 continue; 11221 11222 if (pipe == crtc->pipe) 11223 continue; 11224 11225 drm_dbg_kms(&dev_priv->drm, 11226 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 11227 plane->base.base.id, plane->base.name); 11228 11229 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 11230 intel_plane_disable_noatomic(plane_crtc, plane); 11231 } 11232 } 11233 11234 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 11235 { 11236 struct drm_device *dev = crtc->base.dev; 11237 struct intel_encoder *encoder; 11238 11239 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 11240 return true; 11241 11242 return false; 11243 } 11244 11245 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 11246 { 11247 struct drm_device *dev = encoder->base.dev; 11248 struct intel_connector *connector; 11249 11250 for_each_connector_on_encoder(dev, &encoder->base, connector) 11251 return connector; 11252 11253 return NULL; 11254 } 11255 11256 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 11257 enum pipe pch_transcoder) 11258 { 11259 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 11260 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 11261 } 11262 11263 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state) 11264 { 11265 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 11266 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11267 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 11268 11269 if (DISPLAY_VER(dev_priv) >= 9 || 11270 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 11271 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); 11272 u32 val; 11273 11274 if (transcoder_is_dsi(cpu_transcoder)) 11275 return; 11276 11277 val = intel_de_read(dev_priv, reg); 11278 val &= ~HSW_FRAME_START_DELAY_MASK; 11279 val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 11280 intel_de_write(dev_priv, reg, val); 11281 } else { 11282 i915_reg_t reg = PIPECONF(cpu_transcoder); 11283 u32 val; 11284 11285 val = intel_de_read(dev_priv, reg); 11286 val &= ~PIPECONF_FRAME_START_DELAY_MASK; 11287 val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 11288 intel_de_write(dev_priv, reg, val); 11289 } 11290 11291 if (!crtc_state->has_pch_encoder) 11292 return; 11293 11294 if (HAS_PCH_IBX(dev_priv)) { 11295 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe); 11296 u32 val; 11297 11298 val = intel_de_read(dev_priv, reg); 11299 val &= ~TRANS_FRAME_START_DELAY_MASK; 11300 val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 11301 intel_de_write(dev_priv, reg, val); 11302 } else { 11303 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); 11304 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder); 11305 u32 val; 11306 11307 val = intel_de_read(dev_priv, reg); 11308 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 11309 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 11310 intel_de_write(dev_priv, reg, val); 11311 } 11312 } 11313 11314 static void intel_sanitize_crtc(struct intel_crtc *crtc, 11315 struct drm_modeset_acquire_ctx *ctx) 11316 { 11317 struct drm_device *dev = crtc->base.dev; 11318 struct drm_i915_private *dev_priv = to_i915(dev); 11319 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 11320 11321 if (crtc_state->hw.active) { 11322 struct intel_plane *plane; 11323 11324 /* Clear any frame start delays used for debugging left by the BIOS */ 11325 intel_sanitize_frame_start_delay(crtc_state); 11326 11327 /* Disable everything but the primary plane */ 11328 for_each_intel_plane_on_crtc(dev, crtc, plane) { 11329 const struct intel_plane_state *plane_state = 11330 to_intel_plane_state(plane->base.state); 11331 11332 if (plane_state->uapi.visible && 11333 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 11334 intel_plane_disable_noatomic(crtc, plane); 11335 } 11336 11337 /* Disable any background color/etc. set by the BIOS */ 11338 intel_color_commit(crtc_state); 11339 } 11340 11341 /* Adjust the state of the output pipe according to whether we 11342 * have active connectors/encoders. */ 11343 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc) && 11344 !crtc_state->bigjoiner_slave) 11345 intel_crtc_disable_noatomic(crtc, ctx); 11346 11347 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) { 11348 /* 11349 * We start out with underrun reporting disabled to avoid races. 11350 * For correct bookkeeping mark this on active crtcs. 11351 * 11352 * Also on gmch platforms we dont have any hardware bits to 11353 * disable the underrun reporting. Which means we need to start 11354 * out with underrun reporting disabled also on inactive pipes, 11355 * since otherwise we'll complain about the garbage we read when 11356 * e.g. coming up after runtime pm. 11357 * 11358 * No protection against concurrent access is required - at 11359 * worst a fifo underrun happens which also sets this to false. 11360 */ 11361 crtc->cpu_fifo_underrun_disabled = true; 11362 /* 11363 * We track the PCH trancoder underrun reporting state 11364 * within the crtc. With crtc for pipe A housing the underrun 11365 * reporting state for PCH transcoder A, crtc for pipe B housing 11366 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 11367 * and marking underrun reporting as disabled for the non-existing 11368 * PCH transcoders B and C would prevent enabling the south 11369 * error interrupt (see cpt_can_enable_serr_int()). 11370 */ 11371 if (has_pch_trancoder(dev_priv, crtc->pipe)) 11372 crtc->pch_fifo_underrun_disabled = true; 11373 } 11374 } 11375 11376 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 11377 { 11378 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 11379 11380 /* 11381 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 11382 * the hardware when a high res displays plugged in. DPLL P 11383 * divider is zero, and the pipe timings are bonkers. We'll 11384 * try to disable everything in that case. 11385 * 11386 * FIXME would be nice to be able to sanitize this state 11387 * without several WARNs, but for now let's take the easy 11388 * road. 11389 */ 11390 return IS_SANDYBRIDGE(dev_priv) && 11391 crtc_state->hw.active && 11392 crtc_state->shared_dpll && 11393 crtc_state->port_clock == 0; 11394 } 11395 11396 static void intel_sanitize_encoder(struct intel_encoder *encoder) 11397 { 11398 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 11399 struct intel_connector *connector; 11400 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 11401 struct intel_crtc_state *crtc_state = crtc ? 11402 to_intel_crtc_state(crtc->base.state) : NULL; 11403 11404 /* We need to check both for a crtc link (meaning that the 11405 * encoder is active and trying to read from a pipe) and the 11406 * pipe itself being active. */ 11407 bool has_active_crtc = crtc_state && 11408 crtc_state->hw.active; 11409 11410 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 11411 drm_dbg_kms(&dev_priv->drm, 11412 "BIOS has misprogrammed the hardware. Disabling pipe %c\n", 11413 pipe_name(crtc->pipe)); 11414 has_active_crtc = false; 11415 } 11416 11417 connector = intel_encoder_find_connector(encoder); 11418 if (connector && !has_active_crtc) { 11419 drm_dbg_kms(&dev_priv->drm, 11420 "[ENCODER:%d:%s] has active connectors but no active pipe!\n", 11421 encoder->base.base.id, 11422 encoder->base.name); 11423 11424 /* Connector is active, but has no active pipe. This is 11425 * fallout from our resume register restoring. Disable 11426 * the encoder manually again. */ 11427 if (crtc_state) { 11428 struct drm_encoder *best_encoder; 11429 11430 drm_dbg_kms(&dev_priv->drm, 11431 "[ENCODER:%d:%s] manually disabled\n", 11432 encoder->base.base.id, 11433 encoder->base.name); 11434 11435 /* avoid oopsing in case the hooks consult best_encoder */ 11436 best_encoder = connector->base.state->best_encoder; 11437 connector->base.state->best_encoder = &encoder->base; 11438 11439 /* FIXME NULL atomic state passed! */ 11440 if (encoder->disable) 11441 encoder->disable(NULL, encoder, crtc_state, 11442 connector->base.state); 11443 if (encoder->post_disable) 11444 encoder->post_disable(NULL, encoder, crtc_state, 11445 connector->base.state); 11446 11447 connector->base.state->best_encoder = best_encoder; 11448 } 11449 encoder->base.crtc = NULL; 11450 11451 /* Inconsistent output/port/pipe state happens presumably due to 11452 * a bug in one of the get_hw_state functions. Or someplace else 11453 * in our code, like the register restore mess on resume. Clamp 11454 * things to off as a safer default. */ 11455 11456 connector->base.dpms = DRM_MODE_DPMS_OFF; 11457 connector->base.encoder = NULL; 11458 } 11459 11460 /* notify opregion of the sanitized encoder state */ 11461 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 11462 11463 if (HAS_DDI(dev_priv)) 11464 intel_ddi_sanitize_encoder_pll_mapping(encoder); 11465 } 11466 11467 /* FIXME read out full plane state for all planes */ 11468 static void readout_plane_state(struct drm_i915_private *dev_priv) 11469 { 11470 struct intel_plane *plane; 11471 struct intel_crtc *crtc; 11472 11473 for_each_intel_plane(&dev_priv->drm, plane) { 11474 struct intel_plane_state *plane_state = 11475 to_intel_plane_state(plane->base.state); 11476 struct intel_crtc_state *crtc_state; 11477 enum pipe pipe = PIPE_A; 11478 bool visible; 11479 11480 visible = plane->get_hw_state(plane, &pipe); 11481 11482 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 11483 crtc_state = to_intel_crtc_state(crtc->base.state); 11484 11485 intel_set_plane_visible(crtc_state, plane_state, visible); 11486 11487 drm_dbg_kms(&dev_priv->drm, 11488 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 11489 plane->base.base.id, plane->base.name, 11490 enableddisabled(visible), pipe_name(pipe)); 11491 } 11492 11493 for_each_intel_crtc(&dev_priv->drm, crtc) { 11494 struct intel_crtc_state *crtc_state = 11495 to_intel_crtc_state(crtc->base.state); 11496 11497 fixup_plane_bitmasks(crtc_state); 11498 } 11499 } 11500 11501 static void intel_modeset_readout_hw_state(struct drm_device *dev) 11502 { 11503 struct drm_i915_private *dev_priv = to_i915(dev); 11504 struct intel_cdclk_state *cdclk_state = 11505 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 11506 struct intel_dbuf_state *dbuf_state = 11507 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 11508 enum pipe pipe; 11509 struct intel_crtc *crtc; 11510 struct intel_encoder *encoder; 11511 struct intel_connector *connector; 11512 struct drm_connector_list_iter conn_iter; 11513 u8 active_pipes = 0; 11514 11515 for_each_intel_crtc(dev, crtc) { 11516 struct intel_crtc_state *crtc_state = 11517 to_intel_crtc_state(crtc->base.state); 11518 11519 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi); 11520 intel_crtc_free_hw_state(crtc_state); 11521 intel_crtc_state_reset(crtc_state, crtc); 11522 11523 intel_crtc_get_pipe_config(crtc_state); 11524 11525 crtc_state->hw.enable = crtc_state->hw.active; 11526 11527 crtc->base.enabled = crtc_state->hw.enable; 11528 crtc->active = crtc_state->hw.active; 11529 11530 if (crtc_state->hw.active) 11531 active_pipes |= BIT(crtc->pipe); 11532 11533 drm_dbg_kms(&dev_priv->drm, 11534 "[CRTC:%d:%s] hw state readout: %s\n", 11535 crtc->base.base.id, crtc->base.name, 11536 enableddisabled(crtc_state->hw.active)); 11537 } 11538 11539 cdclk_state->active_pipes = dbuf_state->active_pipes = active_pipes; 11540 11541 readout_plane_state(dev_priv); 11542 11543 for_each_intel_encoder(dev, encoder) { 11544 struct intel_crtc_state *crtc_state = NULL; 11545 11546 pipe = 0; 11547 11548 if (encoder->get_hw_state(encoder, &pipe)) { 11549 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 11550 crtc_state = to_intel_crtc_state(crtc->base.state); 11551 11552 encoder->base.crtc = &crtc->base; 11553 intel_encoder_get_config(encoder, crtc_state); 11554 11555 /* read out to slave crtc as well for bigjoiner */ 11556 if (crtc_state->bigjoiner) { 11557 /* encoder should read be linked to bigjoiner master */ 11558 WARN_ON(crtc_state->bigjoiner_slave); 11559 11560 crtc = crtc_state->bigjoiner_linked_crtc; 11561 crtc_state = to_intel_crtc_state(crtc->base.state); 11562 intel_encoder_get_config(encoder, crtc_state); 11563 } 11564 } else { 11565 encoder->base.crtc = NULL; 11566 } 11567 11568 if (encoder->sync_state) 11569 encoder->sync_state(encoder, crtc_state); 11570 11571 drm_dbg_kms(&dev_priv->drm, 11572 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 11573 encoder->base.base.id, encoder->base.name, 11574 enableddisabled(encoder->base.crtc), 11575 pipe_name(pipe)); 11576 } 11577 11578 intel_dpll_readout_hw_state(dev_priv); 11579 11580 drm_connector_list_iter_begin(dev, &conn_iter); 11581 for_each_intel_connector_iter(connector, &conn_iter) { 11582 if (connector->get_hw_state(connector)) { 11583 struct intel_crtc_state *crtc_state; 11584 struct intel_crtc *crtc; 11585 11586 connector->base.dpms = DRM_MODE_DPMS_ON; 11587 11588 encoder = intel_attached_encoder(connector); 11589 connector->base.encoder = &encoder->base; 11590 11591 crtc = to_intel_crtc(encoder->base.crtc); 11592 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; 11593 11594 if (crtc_state && crtc_state->hw.active) { 11595 /* 11596 * This has to be done during hardware readout 11597 * because anything calling .crtc_disable may 11598 * rely on the connector_mask being accurate. 11599 */ 11600 crtc_state->uapi.connector_mask |= 11601 drm_connector_mask(&connector->base); 11602 crtc_state->uapi.encoder_mask |= 11603 drm_encoder_mask(&encoder->base); 11604 } 11605 } else { 11606 connector->base.dpms = DRM_MODE_DPMS_OFF; 11607 connector->base.encoder = NULL; 11608 } 11609 drm_dbg_kms(&dev_priv->drm, 11610 "[CONNECTOR:%d:%s] hw state readout: %s\n", 11611 connector->base.base.id, connector->base.name, 11612 enableddisabled(connector->base.encoder)); 11613 } 11614 drm_connector_list_iter_end(&conn_iter); 11615 11616 for_each_intel_crtc(dev, crtc) { 11617 struct intel_bw_state *bw_state = 11618 to_intel_bw_state(dev_priv->bw_obj.state); 11619 struct intel_crtc_state *crtc_state = 11620 to_intel_crtc_state(crtc->base.state); 11621 struct intel_plane *plane; 11622 int min_cdclk = 0; 11623 11624 if (crtc_state->bigjoiner_slave) 11625 continue; 11626 11627 if (crtc_state->hw.active) { 11628 /* 11629 * The initial mode needs to be set in order to keep 11630 * the atomic core happy. It wants a valid mode if the 11631 * crtc's enabled, so we do the above call. 11632 * 11633 * But we don't set all the derived state fully, hence 11634 * set a flag to indicate that a full recalculation is 11635 * needed on the next commit. 11636 */ 11637 crtc_state->inherited = true; 11638 11639 intel_crtc_update_active_timings(crtc_state); 11640 11641 intel_crtc_copy_hw_to_uapi_state(crtc_state); 11642 } 11643 11644 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 11645 const struct intel_plane_state *plane_state = 11646 to_intel_plane_state(plane->base.state); 11647 11648 /* 11649 * FIXME don't have the fb yet, so can't 11650 * use intel_plane_data_rate() :( 11651 */ 11652 if (plane_state->uapi.visible) 11653 crtc_state->data_rate[plane->id] = 11654 4 * crtc_state->pixel_rate; 11655 /* 11656 * FIXME don't have the fb yet, so can't 11657 * use plane->min_cdclk() :( 11658 */ 11659 if (plane_state->uapi.visible && plane->min_cdclk) { 11660 if (crtc_state->double_wide || DISPLAY_VER(dev_priv) >= 10) 11661 crtc_state->min_cdclk[plane->id] = 11662 DIV_ROUND_UP(crtc_state->pixel_rate, 2); 11663 else 11664 crtc_state->min_cdclk[plane->id] = 11665 crtc_state->pixel_rate; 11666 } 11667 drm_dbg_kms(&dev_priv->drm, 11668 "[PLANE:%d:%s] min_cdclk %d kHz\n", 11669 plane->base.base.id, plane->base.name, 11670 crtc_state->min_cdclk[plane->id]); 11671 } 11672 11673 if (crtc_state->hw.active) { 11674 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 11675 if (drm_WARN_ON(dev, min_cdclk < 0)) 11676 min_cdclk = 0; 11677 } 11678 11679 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 11680 cdclk_state->min_voltage_level[crtc->pipe] = 11681 crtc_state->min_voltage_level; 11682 11683 intel_bw_crtc_update(bw_state, crtc_state); 11684 11685 intel_pipe_config_sanity_check(dev_priv, crtc_state); 11686 11687 /* discard our incomplete slave state, copy it from master */ 11688 if (crtc_state->bigjoiner && crtc_state->hw.active) { 11689 struct intel_crtc *slave = crtc_state->bigjoiner_linked_crtc; 11690 struct intel_crtc_state *slave_crtc_state = 11691 to_intel_crtc_state(slave->base.state); 11692 11693 copy_bigjoiner_crtc_state(slave_crtc_state, crtc_state); 11694 slave->base.mode = crtc->base.mode; 11695 11696 cdclk_state->min_cdclk[slave->pipe] = min_cdclk; 11697 cdclk_state->min_voltage_level[slave->pipe] = 11698 crtc_state->min_voltage_level; 11699 11700 for_each_intel_plane_on_crtc(&dev_priv->drm, slave, plane) { 11701 const struct intel_plane_state *plane_state = 11702 to_intel_plane_state(plane->base.state); 11703 11704 /* 11705 * FIXME don't have the fb yet, so can't 11706 * use intel_plane_data_rate() :( 11707 */ 11708 if (plane_state->uapi.visible) 11709 crtc_state->data_rate[plane->id] = 11710 4 * crtc_state->pixel_rate; 11711 else 11712 crtc_state->data_rate[plane->id] = 0; 11713 } 11714 11715 intel_bw_crtc_update(bw_state, slave_crtc_state); 11716 drm_calc_timestamping_constants(&slave->base, 11717 &slave_crtc_state->hw.adjusted_mode); 11718 } 11719 } 11720 } 11721 11722 static void 11723 get_encoder_power_domains(struct drm_i915_private *dev_priv) 11724 { 11725 struct intel_encoder *encoder; 11726 11727 for_each_intel_encoder(&dev_priv->drm, encoder) { 11728 struct intel_crtc_state *crtc_state; 11729 11730 if (!encoder->get_power_domains) 11731 continue; 11732 11733 /* 11734 * MST-primary and inactive encoders don't have a crtc state 11735 * and neither of these require any power domain references. 11736 */ 11737 if (!encoder->base.crtc) 11738 continue; 11739 11740 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 11741 encoder->get_power_domains(encoder, crtc_state); 11742 } 11743 } 11744 11745 static void intel_early_display_was(struct drm_i915_private *dev_priv) 11746 { 11747 /* 11748 * Display WA #1185 WaDisableDARBFClkGating:glk,icl,ehl,tgl 11749 * Also known as Wa_14010480278. 11750 */ 11751 if (IS_DISPLAY_VER(dev_priv, 10, 12)) 11752 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0, 11753 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS); 11754 11755 if (IS_HASWELL(dev_priv)) { 11756 /* 11757 * WaRsPkgCStateDisplayPMReq:hsw 11758 * System hang if this isn't done before disabling all planes! 11759 */ 11760 intel_de_write(dev_priv, CHICKEN_PAR1_1, 11761 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 11762 } 11763 11764 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv)) { 11765 /* Display WA #1142:kbl,cfl,cml */ 11766 intel_de_rmw(dev_priv, CHICKEN_PAR1_1, 11767 KBL_ARB_FILL_SPARE_22, KBL_ARB_FILL_SPARE_22); 11768 intel_de_rmw(dev_priv, CHICKEN_MISC_2, 11769 KBL_ARB_FILL_SPARE_13 | KBL_ARB_FILL_SPARE_14, 11770 KBL_ARB_FILL_SPARE_14); 11771 } 11772 } 11773 11774 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 11775 enum port port, i915_reg_t hdmi_reg) 11776 { 11777 u32 val = intel_de_read(dev_priv, hdmi_reg); 11778 11779 if (val & SDVO_ENABLE || 11780 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 11781 return; 11782 11783 drm_dbg_kms(&dev_priv->drm, 11784 "Sanitizing transcoder select for HDMI %c\n", 11785 port_name(port)); 11786 11787 val &= ~SDVO_PIPE_SEL_MASK; 11788 val |= SDVO_PIPE_SEL(PIPE_A); 11789 11790 intel_de_write(dev_priv, hdmi_reg, val); 11791 } 11792 11793 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 11794 enum port port, i915_reg_t dp_reg) 11795 { 11796 u32 val = intel_de_read(dev_priv, dp_reg); 11797 11798 if (val & DP_PORT_EN || 11799 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 11800 return; 11801 11802 drm_dbg_kms(&dev_priv->drm, 11803 "Sanitizing transcoder select for DP %c\n", 11804 port_name(port)); 11805 11806 val &= ~DP_PIPE_SEL_MASK; 11807 val |= DP_PIPE_SEL(PIPE_A); 11808 11809 intel_de_write(dev_priv, dp_reg, val); 11810 } 11811 11812 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 11813 { 11814 /* 11815 * The BIOS may select transcoder B on some of the PCH 11816 * ports even it doesn't enable the port. This would trip 11817 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 11818 * Sanitize the transcoder select bits to prevent that. We 11819 * assume that the BIOS never actually enabled the port, 11820 * because if it did we'd actually have to toggle the port 11821 * on and back off to make the transcoder A select stick 11822 * (see. intel_dp_link_down(), intel_disable_hdmi(), 11823 * intel_disable_sdvo()). 11824 */ 11825 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 11826 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 11827 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 11828 11829 /* PCH SDVOB multiplex with HDMIB */ 11830 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 11831 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 11832 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 11833 } 11834 11835 /* Scan out the current hw modeset state, 11836 * and sanitizes it to the current state 11837 */ 11838 static void 11839 intel_modeset_setup_hw_state(struct drm_device *dev, 11840 struct drm_modeset_acquire_ctx *ctx) 11841 { 11842 struct drm_i915_private *dev_priv = to_i915(dev); 11843 struct intel_encoder *encoder; 11844 struct intel_crtc *crtc; 11845 intel_wakeref_t wakeref; 11846 11847 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 11848 11849 intel_early_display_was(dev_priv); 11850 intel_modeset_readout_hw_state(dev); 11851 11852 /* HW state is read out, now we need to sanitize this mess. */ 11853 get_encoder_power_domains(dev_priv); 11854 11855 if (HAS_PCH_IBX(dev_priv)) 11856 ibx_sanitize_pch_ports(dev_priv); 11857 11858 /* 11859 * intel_sanitize_plane_mapping() may need to do vblank 11860 * waits, so we need vblank interrupts restored beforehand. 11861 */ 11862 for_each_intel_crtc(&dev_priv->drm, crtc) { 11863 struct intel_crtc_state *crtc_state = 11864 to_intel_crtc_state(crtc->base.state); 11865 11866 drm_crtc_vblank_reset(&crtc->base); 11867 11868 if (crtc_state->hw.active) 11869 intel_crtc_vblank_on(crtc_state); 11870 } 11871 11872 intel_sanitize_plane_mapping(dev_priv); 11873 11874 for_each_intel_encoder(dev, encoder) 11875 intel_sanitize_encoder(encoder); 11876 11877 for_each_intel_crtc(&dev_priv->drm, crtc) { 11878 struct intel_crtc_state *crtc_state = 11879 to_intel_crtc_state(crtc->base.state); 11880 11881 intel_sanitize_crtc(crtc, ctx); 11882 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 11883 } 11884 11885 intel_modeset_update_connector_atomic_state(dev); 11886 11887 intel_dpll_sanitize_state(dev_priv); 11888 11889 if (IS_G4X(dev_priv)) { 11890 g4x_wm_get_hw_state(dev_priv); 11891 g4x_wm_sanitize(dev_priv); 11892 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 11893 vlv_wm_get_hw_state(dev_priv); 11894 vlv_wm_sanitize(dev_priv); 11895 } else if (DISPLAY_VER(dev_priv) >= 9) { 11896 skl_wm_get_hw_state(dev_priv); 11897 } else if (HAS_PCH_SPLIT(dev_priv)) { 11898 ilk_wm_get_hw_state(dev_priv); 11899 } 11900 11901 for_each_intel_crtc(dev, crtc) { 11902 struct intel_crtc_state *crtc_state = 11903 to_intel_crtc_state(crtc->base.state); 11904 u64 put_domains; 11905 11906 put_domains = modeset_get_crtc_power_domains(crtc_state); 11907 if (drm_WARN_ON(dev, put_domains)) 11908 modeset_put_crtc_power_domains(crtc, put_domains); 11909 } 11910 11911 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 11912 } 11913 11914 void intel_display_resume(struct drm_device *dev) 11915 { 11916 struct drm_i915_private *dev_priv = to_i915(dev); 11917 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 11918 struct drm_modeset_acquire_ctx ctx; 11919 int ret; 11920 11921 if (!HAS_DISPLAY(dev_priv)) 11922 return; 11923 11924 dev_priv->modeset_restore_state = NULL; 11925 if (state) 11926 state->acquire_ctx = &ctx; 11927 11928 drm_modeset_acquire_init(&ctx, 0); 11929 11930 while (1) { 11931 ret = drm_modeset_lock_all_ctx(dev, &ctx); 11932 if (ret != -EDEADLK) 11933 break; 11934 11935 drm_modeset_backoff(&ctx); 11936 } 11937 11938 if (!ret) 11939 ret = __intel_display_resume(dev, state, &ctx); 11940 11941 intel_enable_ipc(dev_priv); 11942 drm_modeset_drop_locks(&ctx); 11943 drm_modeset_acquire_fini(&ctx); 11944 11945 if (ret) 11946 drm_err(&dev_priv->drm, 11947 "Restoring old state failed with %i\n", ret); 11948 if (state) 11949 drm_atomic_state_put(state); 11950 } 11951 11952 static void intel_hpd_poll_fini(struct drm_i915_private *i915) 11953 { 11954 struct intel_connector *connector; 11955 struct drm_connector_list_iter conn_iter; 11956 11957 /* Kill all the work that may have been queued by hpd. */ 11958 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 11959 for_each_intel_connector_iter(connector, &conn_iter) { 11960 if (connector->modeset_retry_work.func) 11961 cancel_work_sync(&connector->modeset_retry_work); 11962 if (connector->hdcp.shim) { 11963 cancel_delayed_work_sync(&connector->hdcp.check_work); 11964 cancel_work_sync(&connector->hdcp.prop_work); 11965 } 11966 } 11967 drm_connector_list_iter_end(&conn_iter); 11968 } 11969 11970 /* part #1: call before irq uninstall */ 11971 void intel_modeset_driver_remove(struct drm_i915_private *i915) 11972 { 11973 if (!HAS_DISPLAY(i915)) 11974 return; 11975 11976 flush_workqueue(i915->flip_wq); 11977 flush_workqueue(i915->modeset_wq); 11978 11979 flush_work(&i915->atomic_helper.free_work); 11980 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list)); 11981 } 11982 11983 /* part #2: call after irq uninstall */ 11984 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915) 11985 { 11986 if (!HAS_DISPLAY(i915)) 11987 return; 11988 11989 /* 11990 * Due to the hpd irq storm handling the hotplug work can re-arm the 11991 * poll handlers. Hence disable polling after hpd handling is shut down. 11992 */ 11993 intel_hpd_poll_fini(i915); 11994 11995 /* 11996 * MST topology needs to be suspended so we don't have any calls to 11997 * fbdev after it's finalized. MST will be destroyed later as part of 11998 * drm_mode_config_cleanup() 11999 */ 12000 intel_dp_mst_suspend(i915); 12001 12002 /* poll work can call into fbdev, hence clean that up afterwards */ 12003 intel_fbdev_fini(i915); 12004 12005 intel_unregister_dsm_handler(); 12006 12007 intel_fbc_global_disable(i915); 12008 12009 /* flush any delayed tasks or pending work */ 12010 flush_scheduled_work(); 12011 12012 intel_hdcp_component_fini(i915); 12013 12014 intel_mode_config_cleanup(i915); 12015 12016 intel_overlay_cleanup(i915); 12017 12018 intel_gmbus_teardown(i915); 12019 12020 destroy_workqueue(i915->flip_wq); 12021 destroy_workqueue(i915->modeset_wq); 12022 12023 intel_fbc_cleanup_cfb(i915); 12024 } 12025 12026 /* part #3: call after gem init */ 12027 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915) 12028 { 12029 intel_dmc_ucode_fini(i915); 12030 12031 intel_power_domains_driver_remove(i915); 12032 12033 intel_vga_unregister(i915); 12034 12035 intel_bios_driver_remove(i915); 12036 } 12037 12038 void intel_display_driver_register(struct drm_i915_private *i915) 12039 { 12040 if (!HAS_DISPLAY(i915)) 12041 return; 12042 12043 intel_display_debugfs_register(i915); 12044 12045 /* Must be done after probing outputs */ 12046 intel_opregion_register(i915); 12047 acpi_video_register(); 12048 12049 intel_audio_init(i915); 12050 12051 /* 12052 * Some ports require correctly set-up hpd registers for 12053 * detection to work properly (leading to ghost connected 12054 * connector status), e.g. VGA on gm45. Hence we can only set 12055 * up the initial fbdev config after hpd irqs are fully 12056 * enabled. We do it last so that the async config cannot run 12057 * before the connectors are registered. 12058 */ 12059 intel_fbdev_initial_config_async(&i915->drm); 12060 12061 /* 12062 * We need to coordinate the hotplugs with the asynchronous 12063 * fbdev configuration, for which we use the 12064 * fbdev->async_cookie. 12065 */ 12066 drm_kms_helper_poll_init(&i915->drm); 12067 } 12068 12069 void intel_display_driver_unregister(struct drm_i915_private *i915) 12070 { 12071 if (!HAS_DISPLAY(i915)) 12072 return; 12073 12074 intel_fbdev_unregister(i915); 12075 intel_audio_deinit(i915); 12076 12077 /* 12078 * After flushing the fbdev (incl. a late async config which 12079 * will have delayed queuing of a hotplug event), then flush 12080 * the hotplug events. 12081 */ 12082 drm_kms_helper_poll_fini(&i915->drm); 12083 drm_atomic_helper_shutdown(&i915->drm); 12084 12085 acpi_video_unregister(); 12086 intel_opregion_unregister(i915); 12087 } 12088