1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <acpi/video.h> 28 #include <linux/i2c.h> 29 #include <linux/input.h> 30 #include <linux/intel-iommu.h> 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/dma-resv.h> 34 #include <linux/slab.h> 35 36 #include <drm/drm_atomic.h> 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_atomic_uapi.h> 39 #include <drm/drm_damage_helper.h> 40 #include <drm/drm_dp_helper.h> 41 #include <drm/drm_edid.h> 42 #include <drm/drm_fourcc.h> 43 #include <drm/drm_plane_helper.h> 44 #include <drm/drm_probe_helper.h> 45 #include <drm/drm_rect.h> 46 47 #include "display/intel_audio.h" 48 #include "display/intel_crt.h" 49 #include "display/intel_ddi.h" 50 #include "display/intel_display_debugfs.h" 51 #include "display/intel_dp.h" 52 #include "display/intel_dp_mst.h" 53 #include "display/intel_dpll.h" 54 #include "display/intel_dpll_mgr.h" 55 #include "display/intel_dsi.h" 56 #include "display/intel_dvo.h" 57 #include "display/intel_fb.h" 58 #include "display/intel_gmbus.h" 59 #include "display/intel_hdmi.h" 60 #include "display/intel_lvds.h" 61 #include "display/intel_sdvo.h" 62 #include "display/intel_tv.h" 63 #include "display/intel_vdsc.h" 64 #include "display/intel_vrr.h" 65 66 #include "gem/i915_gem_lmem.h" 67 #include "gem/i915_gem_object.h" 68 69 #include "gt/intel_rps.h" 70 #include "gt/gen8_ppgtt.h" 71 72 #include "g4x_dp.h" 73 #include "g4x_hdmi.h" 74 #include "i915_drv.h" 75 #include "intel_acpi.h" 76 #include "intel_atomic.h" 77 #include "intel_atomic_plane.h" 78 #include "intel_bw.h" 79 #include "intel_cdclk.h" 80 #include "intel_color.h" 81 #include "intel_crtc.h" 82 #include "intel_de.h" 83 #include "intel_display_types.h" 84 #include "intel_dmc.h" 85 #include "intel_dp_link_training.h" 86 #include "intel_fbc.h" 87 #include "intel_fdi.h" 88 #include "intel_fbdev.h" 89 #include "intel_fifo_underrun.h" 90 #include "intel_frontbuffer.h" 91 #include "intel_hdcp.h" 92 #include "intel_hotplug.h" 93 #include "intel_overlay.h" 94 #include "intel_pipe_crc.h" 95 #include "intel_pm.h" 96 #include "intel_pps.h" 97 #include "intel_psr.h" 98 #include "intel_quirks.h" 99 #include "intel_sideband.h" 100 #include "intel_sprite.h" 101 #include "intel_tc.h" 102 #include "intel_vga.h" 103 #include "i9xx_plane.h" 104 #include "skl_scaler.h" 105 #include "skl_universal_plane.h" 106 107 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 108 struct intel_crtc_state *pipe_config); 109 static void ilk_pch_clock_get(struct intel_crtc *crtc, 110 struct intel_crtc_state *pipe_config); 111 112 static int intel_framebuffer_init(struct intel_framebuffer *ifb, 113 struct drm_i915_gem_object *obj, 114 struct drm_mode_fb_cmd2 *mode_cmd); 115 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state); 116 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 117 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 118 const struct intel_link_m_n *m_n, 119 const struct intel_link_m_n *m2_n2); 120 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 121 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state); 122 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state); 123 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 124 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); 125 static void intel_modeset_setup_hw_state(struct drm_device *dev, 126 struct drm_modeset_acquire_ctx *ctx); 127 128 struct i915_dpt { 129 struct i915_address_space vm; 130 131 struct drm_i915_gem_object *obj; 132 struct i915_vma *vma; 133 void __iomem *iomem; 134 }; 135 136 #define i915_is_dpt(vm) ((vm)->is_dpt) 137 138 static inline struct i915_dpt * 139 i915_vm_to_dpt(struct i915_address_space *vm) 140 { 141 BUILD_BUG_ON(offsetof(struct i915_dpt, vm)); 142 GEM_BUG_ON(!i915_is_dpt(vm)); 143 return container_of(vm, struct i915_dpt, vm); 144 } 145 146 #define dpt_total_entries(dpt) ((dpt)->vm.total >> PAGE_SHIFT) 147 148 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 149 { 150 writeq(pte, addr); 151 } 152 153 static void dpt_insert_page(struct i915_address_space *vm, 154 dma_addr_t addr, 155 u64 offset, 156 enum i915_cache_level level, 157 u32 flags) 158 { 159 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 160 gen8_pte_t __iomem *base = dpt->iomem; 161 162 gen8_set_pte(base + offset / I915_GTT_PAGE_SIZE, 163 vm->pte_encode(addr, level, flags)); 164 } 165 166 static void dpt_insert_entries(struct i915_address_space *vm, 167 struct i915_vma *vma, 168 enum i915_cache_level level, 169 u32 flags) 170 { 171 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 172 gen8_pte_t __iomem *base = dpt->iomem; 173 const gen8_pte_t pte_encode = vm->pte_encode(0, level, flags); 174 struct sgt_iter sgt_iter; 175 dma_addr_t addr; 176 int i; 177 178 /* 179 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 180 * not to allow the user to override access to a read only page. 181 */ 182 183 i = vma->node.start / I915_GTT_PAGE_SIZE; 184 for_each_sgt_daddr(addr, sgt_iter, vma->pages) 185 gen8_set_pte(&base[i++], pte_encode | addr); 186 } 187 188 static void dpt_clear_range(struct i915_address_space *vm, 189 u64 start, u64 length) 190 { 191 } 192 193 static void dpt_bind_vma(struct i915_address_space *vm, 194 struct i915_vm_pt_stash *stash, 195 struct i915_vma *vma, 196 enum i915_cache_level cache_level, 197 u32 flags) 198 { 199 struct drm_i915_gem_object *obj = vma->obj; 200 u32 pte_flags; 201 202 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 203 pte_flags = 0; 204 if (vma->vm->has_read_only && i915_gem_object_is_readonly(obj)) 205 pte_flags |= PTE_READ_ONLY; 206 if (i915_gem_object_is_lmem(obj)) 207 pte_flags |= PTE_LM; 208 209 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); 210 211 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 212 213 /* 214 * Without aliasing PPGTT there's no difference between 215 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally 216 * upgrade to both bound if we bind either to avoid double-binding. 217 */ 218 atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags); 219 } 220 221 static void dpt_unbind_vma(struct i915_address_space *vm, struct i915_vma *vma) 222 { 223 vm->clear_range(vm, vma->node.start, vma->size); 224 } 225 226 static void dpt_cleanup(struct i915_address_space *vm) 227 { 228 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 229 230 i915_gem_object_put(dpt->obj); 231 } 232 233 static struct i915_address_space * 234 intel_dpt_create(struct intel_framebuffer *fb) 235 { 236 struct drm_gem_object *obj = &intel_fb_obj(&fb->base)->base; 237 struct drm_i915_private *i915 = to_i915(obj->dev); 238 struct drm_i915_gem_object *dpt_obj; 239 struct i915_address_space *vm; 240 struct i915_dpt *dpt; 241 size_t size; 242 int ret; 243 244 if (intel_fb_needs_pot_stride_remap(fb)) 245 size = intel_remapped_info_size(&fb->remapped_view.gtt.remapped); 246 else 247 size = DIV_ROUND_UP_ULL(obj->size, I915_GTT_PAGE_SIZE); 248 249 size = round_up(size * sizeof(gen8_pte_t), I915_GTT_PAGE_SIZE); 250 251 if (HAS_LMEM(i915)) 252 dpt_obj = i915_gem_object_create_lmem(i915, size, 0); 253 else 254 dpt_obj = i915_gem_object_create_stolen(i915, size); 255 if (IS_ERR(dpt_obj)) 256 return ERR_CAST(dpt_obj); 257 258 ret = i915_gem_object_set_cache_level(dpt_obj, I915_CACHE_NONE); 259 if (ret) { 260 i915_gem_object_put(dpt_obj); 261 return ERR_PTR(ret); 262 } 263 264 dpt = kzalloc(sizeof(*dpt), GFP_KERNEL); 265 if (!dpt) { 266 i915_gem_object_put(dpt_obj); 267 return ERR_PTR(-ENOMEM); 268 } 269 270 vm = &dpt->vm; 271 272 vm->gt = &i915->gt; 273 vm->i915 = i915; 274 vm->dma = i915->drm.dev; 275 vm->total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 276 vm->is_dpt = true; 277 278 i915_address_space_init(vm, VM_CLASS_DPT); 279 280 vm->insert_page = dpt_insert_page; 281 vm->clear_range = dpt_clear_range; 282 vm->insert_entries = dpt_insert_entries; 283 vm->cleanup = dpt_cleanup; 284 285 vm->vma_ops.bind_vma = dpt_bind_vma; 286 vm->vma_ops.unbind_vma = dpt_unbind_vma; 287 vm->vma_ops.set_pages = ggtt_set_pages; 288 vm->vma_ops.clear_pages = clear_pages; 289 290 vm->pte_encode = gen8_ggtt_pte_encode; 291 292 dpt->obj = dpt_obj; 293 294 return &dpt->vm; 295 } 296 297 static void intel_dpt_destroy(struct i915_address_space *vm) 298 { 299 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 300 301 i915_vm_close(&dpt->vm); 302 } 303 304 /* returns HPLL frequency in kHz */ 305 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 306 { 307 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 308 309 /* Obtain SKU information */ 310 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 311 CCK_FUSE_HPLL_FREQ_MASK; 312 313 return vco_freq[hpll_freq] * 1000; 314 } 315 316 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 317 const char *name, u32 reg, int ref_freq) 318 { 319 u32 val; 320 int divider; 321 322 val = vlv_cck_read(dev_priv, reg); 323 divider = val & CCK_FREQUENCY_VALUES; 324 325 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != 326 (divider << CCK_FREQUENCY_STATUS_SHIFT), 327 "%s change in progress\n", name); 328 329 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 330 } 331 332 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 333 const char *name, u32 reg) 334 { 335 int hpll; 336 337 vlv_cck_get(dev_priv); 338 339 if (dev_priv->hpll_freq == 0) 340 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 341 342 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 343 344 vlv_cck_put(dev_priv); 345 346 return hpll; 347 } 348 349 static void intel_update_czclk(struct drm_i915_private *dev_priv) 350 { 351 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 352 return; 353 354 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 355 CCK_CZ_CLOCK_CONTROL); 356 357 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n", 358 dev_priv->czclk_freq); 359 } 360 361 /* WA Display #0827: Gen9:all */ 362 static void 363 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) 364 { 365 if (enable) 366 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 367 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); 368 else 369 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 370 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 371 } 372 373 /* Wa_2006604312:icl,ehl */ 374 static void 375 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 376 bool enable) 377 { 378 if (enable) 379 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 380 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 381 else 382 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 383 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 384 } 385 386 static bool 387 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) 388 { 389 return crtc_state->master_transcoder != INVALID_TRANSCODER; 390 } 391 392 static bool 393 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state) 394 { 395 return crtc_state->sync_mode_slaves_mask != 0; 396 } 397 398 bool 399 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 400 { 401 return is_trans_port_sync_master(crtc_state) || 402 is_trans_port_sync_slave(crtc_state); 403 } 404 405 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 406 enum pipe pipe) 407 { 408 i915_reg_t reg = PIPEDSL(pipe); 409 u32 line1, line2; 410 u32 line_mask; 411 412 if (DISPLAY_VER(dev_priv) == 2) 413 line_mask = DSL_LINEMASK_GEN2; 414 else 415 line_mask = DSL_LINEMASK_GEN3; 416 417 line1 = intel_de_read(dev_priv, reg) & line_mask; 418 msleep(5); 419 line2 = intel_de_read(dev_priv, reg) & line_mask; 420 421 return line1 != line2; 422 } 423 424 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 425 { 426 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 427 enum pipe pipe = crtc->pipe; 428 429 /* Wait for the display line to settle/start moving */ 430 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 431 drm_err(&dev_priv->drm, 432 "pipe %c scanline %s wait timed out\n", 433 pipe_name(pipe), onoff(state)); 434 } 435 436 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 437 { 438 wait_for_pipe_scanline_moving(crtc, false); 439 } 440 441 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 442 { 443 wait_for_pipe_scanline_moving(crtc, true); 444 } 445 446 static void 447 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 448 { 449 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 450 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 451 452 if (DISPLAY_VER(dev_priv) >= 4) { 453 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 454 i915_reg_t reg = PIPECONF(cpu_transcoder); 455 456 /* Wait for the Pipe State to go off */ 457 if (intel_de_wait_for_clear(dev_priv, reg, 458 I965_PIPECONF_ACTIVE, 100)) 459 drm_WARN(&dev_priv->drm, 1, 460 "pipe_off wait timed out\n"); 461 } else { 462 intel_wait_for_pipe_scanline_stopped(crtc); 463 } 464 } 465 466 /* Only for pre-ILK configs */ 467 void assert_pll(struct drm_i915_private *dev_priv, 468 enum pipe pipe, bool state) 469 { 470 u32 val; 471 bool cur_state; 472 473 val = intel_de_read(dev_priv, DPLL(pipe)); 474 cur_state = !!(val & DPLL_VCO_ENABLE); 475 I915_STATE_WARN(cur_state != state, 476 "PLL state assertion failure (expected %s, current %s)\n", 477 onoff(state), onoff(cur_state)); 478 } 479 480 /* XXX: the dsi pll is shared between MIPI DSI ports */ 481 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 482 { 483 u32 val; 484 bool cur_state; 485 486 vlv_cck_get(dev_priv); 487 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 488 vlv_cck_put(dev_priv); 489 490 cur_state = val & DSI_PLL_VCO_EN; 491 I915_STATE_WARN(cur_state != state, 492 "DSI PLL state assertion failure (expected %s, current %s)\n", 493 onoff(state), onoff(cur_state)); 494 } 495 496 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 497 enum pipe pipe, bool state) 498 { 499 bool cur_state; 500 501 if (HAS_DDI(dev_priv)) { 502 /* 503 * DDI does not have a specific FDI_TX register. 504 * 505 * FDI is never fed from EDP transcoder 506 * so pipe->transcoder cast is fine here. 507 */ 508 enum transcoder cpu_transcoder = (enum transcoder)pipe; 509 u32 val = intel_de_read(dev_priv, 510 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 511 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 512 } else { 513 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 514 cur_state = !!(val & FDI_TX_ENABLE); 515 } 516 I915_STATE_WARN(cur_state != state, 517 "FDI TX state assertion failure (expected %s, current %s)\n", 518 onoff(state), onoff(cur_state)); 519 } 520 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 521 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 522 523 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 524 enum pipe pipe, bool state) 525 { 526 u32 val; 527 bool cur_state; 528 529 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 530 cur_state = !!(val & FDI_RX_ENABLE); 531 I915_STATE_WARN(cur_state != state, 532 "FDI RX state assertion failure (expected %s, current %s)\n", 533 onoff(state), onoff(cur_state)); 534 } 535 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 536 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 537 538 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 539 enum pipe pipe) 540 { 541 u32 val; 542 543 /* ILK FDI PLL is always enabled */ 544 if (IS_IRONLAKE(dev_priv)) 545 return; 546 547 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 548 if (HAS_DDI(dev_priv)) 549 return; 550 551 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 552 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 553 } 554 555 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 556 enum pipe pipe, bool state) 557 { 558 u32 val; 559 bool cur_state; 560 561 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 562 cur_state = !!(val & FDI_RX_PLL_ENABLE); 563 I915_STATE_WARN(cur_state != state, 564 "FDI RX PLL assertion failure (expected %s, current %s)\n", 565 onoff(state), onoff(cur_state)); 566 } 567 568 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) 569 { 570 i915_reg_t pp_reg; 571 u32 val; 572 enum pipe panel_pipe = INVALID_PIPE; 573 bool locked = true; 574 575 if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv))) 576 return; 577 578 if (HAS_PCH_SPLIT(dev_priv)) { 579 u32 port_sel; 580 581 pp_reg = PP_CONTROL(0); 582 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 583 584 switch (port_sel) { 585 case PANEL_PORT_SELECT_LVDS: 586 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); 587 break; 588 case PANEL_PORT_SELECT_DPA: 589 g4x_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); 590 break; 591 case PANEL_PORT_SELECT_DPC: 592 g4x_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); 593 break; 594 case PANEL_PORT_SELECT_DPD: 595 g4x_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); 596 break; 597 default: 598 MISSING_CASE(port_sel); 599 break; 600 } 601 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 602 /* presumably write lock depends on pipe, not port select */ 603 pp_reg = PP_CONTROL(pipe); 604 panel_pipe = pipe; 605 } else { 606 u32 port_sel; 607 608 pp_reg = PP_CONTROL(0); 609 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 610 611 drm_WARN_ON(&dev_priv->drm, 612 port_sel != PANEL_PORT_SELECT_LVDS); 613 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); 614 } 615 616 val = intel_de_read(dev_priv, pp_reg); 617 if (!(val & PANEL_POWER_ON) || 618 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 619 locked = false; 620 621 I915_STATE_WARN(panel_pipe == pipe && locked, 622 "panel assertion failure, pipe %c regs locked\n", 623 pipe_name(pipe)); 624 } 625 626 void assert_pipe(struct drm_i915_private *dev_priv, 627 enum transcoder cpu_transcoder, bool state) 628 { 629 bool cur_state; 630 enum intel_display_power_domain power_domain; 631 intel_wakeref_t wakeref; 632 633 /* we keep both pipes enabled on 830 */ 634 if (IS_I830(dev_priv)) 635 state = true; 636 637 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 638 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 639 if (wakeref) { 640 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 641 cur_state = !!(val & PIPECONF_ENABLE); 642 643 intel_display_power_put(dev_priv, power_domain, wakeref); 644 } else { 645 cur_state = false; 646 } 647 648 I915_STATE_WARN(cur_state != state, 649 "transcoder %s assertion failure (expected %s, current %s)\n", 650 transcoder_name(cpu_transcoder), 651 onoff(state), onoff(cur_state)); 652 } 653 654 static void assert_plane(struct intel_plane *plane, bool state) 655 { 656 enum pipe pipe; 657 bool cur_state; 658 659 cur_state = plane->get_hw_state(plane, &pipe); 660 661 I915_STATE_WARN(cur_state != state, 662 "%s assertion failure (expected %s, current %s)\n", 663 plane->base.name, onoff(state), onoff(cur_state)); 664 } 665 666 #define assert_plane_enabled(p) assert_plane(p, true) 667 #define assert_plane_disabled(p) assert_plane(p, false) 668 669 static void assert_planes_disabled(struct intel_crtc *crtc) 670 { 671 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 672 struct intel_plane *plane; 673 674 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 675 assert_plane_disabled(plane); 676 } 677 678 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 679 enum pipe pipe) 680 { 681 u32 val; 682 bool enabled; 683 684 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe)); 685 enabled = !!(val & TRANS_ENABLE); 686 I915_STATE_WARN(enabled, 687 "transcoder assertion failed, should be off on pipe %c but is still active\n", 688 pipe_name(pipe)); 689 } 690 691 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 692 enum pipe pipe, enum port port, 693 i915_reg_t dp_reg) 694 { 695 enum pipe port_pipe; 696 bool state; 697 698 state = g4x_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 699 700 I915_STATE_WARN(state && port_pipe == pipe, 701 "PCH DP %c enabled on transcoder %c, should be disabled\n", 702 port_name(port), pipe_name(pipe)); 703 704 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 705 "IBX PCH DP %c still using transcoder B\n", 706 port_name(port)); 707 } 708 709 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 710 enum pipe pipe, enum port port, 711 i915_reg_t hdmi_reg) 712 { 713 enum pipe port_pipe; 714 bool state; 715 716 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 717 718 I915_STATE_WARN(state && port_pipe == pipe, 719 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 720 port_name(port), pipe_name(pipe)); 721 722 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 723 "IBX PCH HDMI %c still using transcoder B\n", 724 port_name(port)); 725 } 726 727 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 728 enum pipe pipe) 729 { 730 enum pipe port_pipe; 731 732 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 733 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 734 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 735 736 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 737 port_pipe == pipe, 738 "PCH VGA enabled on transcoder %c, should be disabled\n", 739 pipe_name(pipe)); 740 741 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 742 port_pipe == pipe, 743 "PCH LVDS enabled on transcoder %c, should be disabled\n", 744 pipe_name(pipe)); 745 746 /* PCH SDVOB multiplex with HDMIB */ 747 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 748 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 749 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 750 } 751 752 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 753 struct intel_digital_port *dig_port, 754 unsigned int expected_mask) 755 { 756 u32 port_mask; 757 i915_reg_t dpll_reg; 758 759 switch (dig_port->base.port) { 760 case PORT_B: 761 port_mask = DPLL_PORTB_READY_MASK; 762 dpll_reg = DPLL(0); 763 break; 764 case PORT_C: 765 port_mask = DPLL_PORTC_READY_MASK; 766 dpll_reg = DPLL(0); 767 expected_mask <<= 4; 768 break; 769 case PORT_D: 770 port_mask = DPLL_PORTD_READY_MASK; 771 dpll_reg = DPIO_PHY_STATUS; 772 break; 773 default: 774 BUG(); 775 } 776 777 if (intel_de_wait_for_register(dev_priv, dpll_reg, 778 port_mask, expected_mask, 1000)) 779 drm_WARN(&dev_priv->drm, 1, 780 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", 781 dig_port->base.base.base.id, dig_port->base.base.name, 782 intel_de_read(dev_priv, dpll_reg) & port_mask, 783 expected_mask); 784 } 785 786 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 787 { 788 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 789 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 790 enum pipe pipe = crtc->pipe; 791 i915_reg_t reg; 792 u32 val, pipeconf_val; 793 794 /* Make sure PCH DPLL is enabled */ 795 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 796 797 /* FDI must be feeding us bits for PCH ports */ 798 assert_fdi_tx_enabled(dev_priv, pipe); 799 assert_fdi_rx_enabled(dev_priv, pipe); 800 801 if (HAS_PCH_CPT(dev_priv)) { 802 reg = TRANS_CHICKEN2(pipe); 803 val = intel_de_read(dev_priv, reg); 804 /* 805 * Workaround: Set the timing override bit 806 * before enabling the pch transcoder. 807 */ 808 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 809 /* Configure frame start delay to match the CPU */ 810 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 811 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 812 intel_de_write(dev_priv, reg, val); 813 } 814 815 reg = PCH_TRANSCONF(pipe); 816 val = intel_de_read(dev_priv, reg); 817 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe)); 818 819 if (HAS_PCH_IBX(dev_priv)) { 820 /* Configure frame start delay to match the CPU */ 821 val &= ~TRANS_FRAME_START_DELAY_MASK; 822 val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 823 824 /* 825 * Make the BPC in transcoder be consistent with 826 * that in pipeconf reg. For HDMI we must use 8bpc 827 * here for both 8bpc and 12bpc. 828 */ 829 val &= ~PIPECONF_BPC_MASK; 830 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 831 val |= PIPECONF_8BPC; 832 else 833 val |= pipeconf_val & PIPECONF_BPC_MASK; 834 } 835 836 val &= ~TRANS_INTERLACE_MASK; 837 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 838 if (HAS_PCH_IBX(dev_priv) && 839 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 840 val |= TRANS_LEGACY_INTERLACED_ILK; 841 else 842 val |= TRANS_INTERLACED; 843 } else { 844 val |= TRANS_PROGRESSIVE; 845 } 846 847 intel_de_write(dev_priv, reg, val | TRANS_ENABLE); 848 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 849 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n", 850 pipe_name(pipe)); 851 } 852 853 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 854 enum transcoder cpu_transcoder) 855 { 856 u32 val, pipeconf_val; 857 858 /* FDI must be feeding us bits for PCH ports */ 859 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 860 assert_fdi_rx_enabled(dev_priv, PIPE_A); 861 862 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 863 /* Workaround: set timing override bit. */ 864 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 865 /* Configure frame start delay to match the CPU */ 866 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 867 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 868 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 869 870 val = TRANS_ENABLE; 871 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 872 873 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 874 PIPECONF_INTERLACED_ILK) 875 val |= TRANS_INTERLACED; 876 else 877 val |= TRANS_PROGRESSIVE; 878 879 intel_de_write(dev_priv, LPT_TRANSCONF, val); 880 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 881 TRANS_STATE_ENABLE, 100)) 882 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n"); 883 } 884 885 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv, 886 enum pipe pipe) 887 { 888 i915_reg_t reg; 889 u32 val; 890 891 /* FDI relies on the transcoder */ 892 assert_fdi_tx_disabled(dev_priv, pipe); 893 assert_fdi_rx_disabled(dev_priv, pipe); 894 895 /* Ports must be off as well */ 896 assert_pch_ports_disabled(dev_priv, pipe); 897 898 reg = PCH_TRANSCONF(pipe); 899 val = intel_de_read(dev_priv, reg); 900 val &= ~TRANS_ENABLE; 901 intel_de_write(dev_priv, reg, val); 902 /* wait for PCH transcoder off, transcoder state */ 903 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 904 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n", 905 pipe_name(pipe)); 906 907 if (HAS_PCH_CPT(dev_priv)) { 908 /* Workaround: Clear the timing override chicken bit again. */ 909 reg = TRANS_CHICKEN2(pipe); 910 val = intel_de_read(dev_priv, reg); 911 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 912 intel_de_write(dev_priv, reg, val); 913 } 914 } 915 916 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 917 { 918 u32 val; 919 920 val = intel_de_read(dev_priv, LPT_TRANSCONF); 921 val &= ~TRANS_ENABLE; 922 intel_de_write(dev_priv, LPT_TRANSCONF, val); 923 /* wait for PCH transcoder off, transcoder state */ 924 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 925 TRANS_STATE_ENABLE, 50)) 926 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n"); 927 928 /* Workaround: clear timing override bit. */ 929 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 930 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 931 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 932 } 933 934 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 935 { 936 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 937 938 if (HAS_PCH_LPT(dev_priv)) 939 return PIPE_A; 940 else 941 return crtc->pipe; 942 } 943 944 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) 945 { 946 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 947 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 948 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 949 enum pipe pipe = crtc->pipe; 950 i915_reg_t reg; 951 u32 val; 952 953 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe)); 954 955 assert_planes_disabled(crtc); 956 957 /* 958 * A pipe without a PLL won't actually be able to drive bits from 959 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 960 * need the check. 961 */ 962 if (HAS_GMCH(dev_priv)) { 963 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 964 assert_dsi_pll_enabled(dev_priv); 965 else 966 assert_pll_enabled(dev_priv, pipe); 967 } else { 968 if (new_crtc_state->has_pch_encoder) { 969 /* if driving the PCH, we need FDI enabled */ 970 assert_fdi_rx_pll_enabled(dev_priv, 971 intel_crtc_pch_transcoder(crtc)); 972 assert_fdi_tx_pll_enabled(dev_priv, 973 (enum pipe) cpu_transcoder); 974 } 975 /* FIXME: assert CPU port conditions for SNB+ */ 976 } 977 978 /* Wa_22012358565:adlp */ 979 if (DISPLAY_VER(dev_priv) == 13) 980 intel_de_rmw(dev_priv, PIPE_ARB_CTL(pipe), 981 0, PIPE_ARB_USE_PROG_SLOTS); 982 983 reg = PIPECONF(cpu_transcoder); 984 val = intel_de_read(dev_priv, reg); 985 if (val & PIPECONF_ENABLE) { 986 /* we keep both pipes enabled on 830 */ 987 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv)); 988 return; 989 } 990 991 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE); 992 intel_de_posting_read(dev_priv, reg); 993 994 /* 995 * Until the pipe starts PIPEDSL reads will return a stale value, 996 * which causes an apparent vblank timestamp jump when PIPEDSL 997 * resets to its proper value. That also messes up the frame count 998 * when it's derived from the timestamps. So let's wait for the 999 * pipe to start properly before we call drm_crtc_vblank_on() 1000 */ 1001 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 1002 intel_wait_for_pipe_scanline_moving(crtc); 1003 } 1004 1005 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) 1006 { 1007 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1008 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1009 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1010 enum pipe pipe = crtc->pipe; 1011 i915_reg_t reg; 1012 u32 val; 1013 1014 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe)); 1015 1016 /* 1017 * Make sure planes won't keep trying to pump pixels to us, 1018 * or we might hang the display. 1019 */ 1020 assert_planes_disabled(crtc); 1021 1022 reg = PIPECONF(cpu_transcoder); 1023 val = intel_de_read(dev_priv, reg); 1024 if ((val & PIPECONF_ENABLE) == 0) 1025 return; 1026 1027 /* 1028 * Double wide has implications for planes 1029 * so best keep it disabled when not needed. 1030 */ 1031 if (old_crtc_state->double_wide) 1032 val &= ~PIPECONF_DOUBLE_WIDE; 1033 1034 /* Don't disable pipe or pipe PLLs if needed */ 1035 if (!IS_I830(dev_priv)) 1036 val &= ~PIPECONF_ENABLE; 1037 1038 intel_de_write(dev_priv, reg, val); 1039 if ((val & PIPECONF_ENABLE) == 0) 1040 intel_wait_for_pipe_off(old_crtc_state); 1041 } 1042 1043 bool 1044 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info, 1045 u64 modifier) 1046 { 1047 return info->is_yuv && 1048 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2); 1049 } 1050 1051 unsigned int 1052 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) 1053 { 1054 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1055 unsigned int cpp = fb->format->cpp[color_plane]; 1056 1057 switch (fb->modifier) { 1058 case DRM_FORMAT_MOD_LINEAR: 1059 return intel_tile_size(dev_priv); 1060 case I915_FORMAT_MOD_X_TILED: 1061 if (DISPLAY_VER(dev_priv) == 2) 1062 return 128; 1063 else 1064 return 512; 1065 case I915_FORMAT_MOD_Y_TILED_CCS: 1066 if (is_ccs_plane(fb, color_plane)) 1067 return 128; 1068 fallthrough; 1069 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1070 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1071 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1072 if (is_ccs_plane(fb, color_plane)) 1073 return 64; 1074 fallthrough; 1075 case I915_FORMAT_MOD_Y_TILED: 1076 if (DISPLAY_VER(dev_priv) == 2 || HAS_128_BYTE_Y_TILING(dev_priv)) 1077 return 128; 1078 else 1079 return 512; 1080 case I915_FORMAT_MOD_Yf_TILED_CCS: 1081 if (is_ccs_plane(fb, color_plane)) 1082 return 128; 1083 fallthrough; 1084 case I915_FORMAT_MOD_Yf_TILED: 1085 switch (cpp) { 1086 case 1: 1087 return 64; 1088 case 2: 1089 case 4: 1090 return 128; 1091 case 8: 1092 case 16: 1093 return 256; 1094 default: 1095 MISSING_CASE(cpp); 1096 return cpp; 1097 } 1098 break; 1099 default: 1100 MISSING_CASE(fb->modifier); 1101 return cpp; 1102 } 1103 } 1104 1105 unsigned int 1106 intel_fb_align_height(const struct drm_framebuffer *fb, 1107 int color_plane, unsigned int height) 1108 { 1109 unsigned int tile_height = intel_tile_height(fb, color_plane); 1110 1111 return ALIGN(height, tile_height); 1112 } 1113 1114 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 1115 { 1116 unsigned int size = 0; 1117 int i; 1118 1119 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 1120 size += rot_info->plane[i].dst_stride * rot_info->plane[i].width; 1121 1122 return size; 1123 } 1124 1125 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 1126 { 1127 unsigned int size = 0; 1128 int i; 1129 1130 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 1131 size += rem_info->plane[i].dst_stride * rem_info->plane[i].height; 1132 1133 return size; 1134 } 1135 1136 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 1137 { 1138 if (DISPLAY_VER(dev_priv) >= 9) 1139 return 256 * 1024; 1140 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || 1141 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1142 return 128 * 1024; 1143 else if (DISPLAY_VER(dev_priv) >= 4) 1144 return 4 * 1024; 1145 else 1146 return 0; 1147 } 1148 1149 static bool has_async_flips(struct drm_i915_private *i915) 1150 { 1151 return DISPLAY_VER(i915) >= 5; 1152 } 1153 1154 unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, 1155 int color_plane) 1156 { 1157 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1158 1159 if (intel_fb_uses_dpt(fb)) 1160 return 512 * 4096; 1161 1162 /* AUX_DIST needs only 4K alignment */ 1163 if (is_ccs_plane(fb, color_plane)) 1164 return 4096; 1165 1166 if (is_semiplanar_uv_plane(fb, color_plane)) { 1167 /* 1168 * TODO: cross-check wrt. the bspec stride in bytes * 64 bytes 1169 * alignment for linear UV planes on all platforms. 1170 */ 1171 if (DISPLAY_VER(dev_priv) >= 12) { 1172 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) 1173 return intel_linear_alignment(dev_priv); 1174 1175 return intel_tile_row_size(fb, color_plane); 1176 } 1177 1178 return 4096; 1179 } 1180 1181 drm_WARN_ON(&dev_priv->drm, color_plane != 0); 1182 1183 switch (fb->modifier) { 1184 case DRM_FORMAT_MOD_LINEAR: 1185 return intel_linear_alignment(dev_priv); 1186 case I915_FORMAT_MOD_X_TILED: 1187 if (has_async_flips(dev_priv)) 1188 return 256 * 1024; 1189 return 0; 1190 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1191 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1192 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1193 return 16 * 1024; 1194 case I915_FORMAT_MOD_Y_TILED_CCS: 1195 case I915_FORMAT_MOD_Yf_TILED_CCS: 1196 case I915_FORMAT_MOD_Y_TILED: 1197 case I915_FORMAT_MOD_Yf_TILED: 1198 return 1 * 1024 * 1024; 1199 default: 1200 MISSING_CASE(fb->modifier); 1201 return 0; 1202 } 1203 } 1204 1205 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 1206 { 1207 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1208 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 1209 1210 return DISPLAY_VER(dev_priv) < 4 || 1211 (plane->has_fbc && 1212 plane_state->view.gtt.type == I915_GGTT_VIEW_NORMAL); 1213 } 1214 1215 static struct i915_vma * 1216 intel_pin_fb_obj_dpt(struct drm_framebuffer *fb, 1217 const struct i915_ggtt_view *view, 1218 bool uses_fence, 1219 unsigned long *out_flags, 1220 struct i915_address_space *vm) 1221 { 1222 struct drm_device *dev = fb->dev; 1223 struct drm_i915_private *dev_priv = to_i915(dev); 1224 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 1225 struct i915_vma *vma; 1226 u32 alignment; 1227 int ret; 1228 1229 if (WARN_ON(!i915_gem_object_is_framebuffer(obj))) 1230 return ERR_PTR(-EINVAL); 1231 1232 alignment = 4096 * 512; 1233 1234 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 1235 1236 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); 1237 if (ret) { 1238 vma = ERR_PTR(ret); 1239 goto err; 1240 } 1241 1242 vma = i915_vma_instance(obj, vm, view); 1243 if (IS_ERR(vma)) 1244 goto err; 1245 1246 if (i915_vma_misplaced(vma, 0, alignment, 0)) { 1247 ret = i915_vma_unbind(vma); 1248 if (ret) { 1249 vma = ERR_PTR(ret); 1250 goto err; 1251 } 1252 } 1253 1254 ret = i915_vma_pin(vma, 0, alignment, PIN_GLOBAL); 1255 if (ret) { 1256 vma = ERR_PTR(ret); 1257 goto err; 1258 } 1259 1260 vma->display_alignment = max_t(u64, vma->display_alignment, alignment); 1261 1262 i915_gem_object_flush_if_display(obj); 1263 1264 i915_vma_get(vma); 1265 err: 1266 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 1267 1268 return vma; 1269 } 1270 1271 struct i915_vma * 1272 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 1273 bool phys_cursor, 1274 const struct i915_ggtt_view *view, 1275 bool uses_fence, 1276 unsigned long *out_flags) 1277 { 1278 struct drm_device *dev = fb->dev; 1279 struct drm_i915_private *dev_priv = to_i915(dev); 1280 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 1281 intel_wakeref_t wakeref; 1282 struct i915_gem_ww_ctx ww; 1283 struct i915_vma *vma; 1284 unsigned int pinctl; 1285 u32 alignment; 1286 int ret; 1287 1288 if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj))) 1289 return ERR_PTR(-EINVAL); 1290 1291 if (phys_cursor) 1292 alignment = intel_cursor_alignment(dev_priv); 1293 else 1294 alignment = intel_surf_alignment(fb, 0); 1295 if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment))) 1296 return ERR_PTR(-EINVAL); 1297 1298 /* Note that the w/a also requires 64 PTE of padding following the 1299 * bo. We currently fill all unused PTE with the shadow page and so 1300 * we should always have valid PTE following the scanout preventing 1301 * the VT-d warning. 1302 */ 1303 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) 1304 alignment = 256 * 1024; 1305 1306 /* 1307 * Global gtt pte registers are special registers which actually forward 1308 * writes to a chunk of system memory. Which means that there is no risk 1309 * that the register values disappear as soon as we call 1310 * intel_runtime_pm_put(), so it is correct to wrap only the 1311 * pin/unpin/fence and not more. 1312 */ 1313 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 1314 1315 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 1316 1317 /* 1318 * Valleyview is definitely limited to scanning out the first 1319 * 512MiB. Lets presume this behaviour was inherited from the 1320 * g4x display engine and that all earlier gen are similarly 1321 * limited. Testing suggests that it is a little more 1322 * complicated than this. For example, Cherryview appears quite 1323 * happy to scanout from anywhere within its global aperture. 1324 */ 1325 pinctl = 0; 1326 if (HAS_GMCH(dev_priv)) 1327 pinctl |= PIN_MAPPABLE; 1328 1329 i915_gem_ww_ctx_init(&ww, true); 1330 retry: 1331 ret = i915_gem_object_lock(obj, &ww); 1332 if (!ret && phys_cursor) 1333 ret = i915_gem_object_attach_phys(obj, alignment); 1334 if (!ret) 1335 ret = i915_gem_object_pin_pages(obj); 1336 if (ret) 1337 goto err; 1338 1339 if (!ret) { 1340 vma = i915_gem_object_pin_to_display_plane(obj, &ww, alignment, 1341 view, pinctl); 1342 if (IS_ERR(vma)) { 1343 ret = PTR_ERR(vma); 1344 goto err_unpin; 1345 } 1346 } 1347 1348 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { 1349 /* 1350 * Install a fence for tiled scan-out. Pre-i965 always needs a 1351 * fence, whereas 965+ only requires a fence if using 1352 * framebuffer compression. For simplicity, we always, when 1353 * possible, install a fence as the cost is not that onerous. 1354 * 1355 * If we fail to fence the tiled scanout, then either the 1356 * modeset will reject the change (which is highly unlikely as 1357 * the affected systems, all but one, do not have unmappable 1358 * space) or we will not be able to enable full powersaving 1359 * techniques (also likely not to apply due to various limits 1360 * FBC and the like impose on the size of the buffer, which 1361 * presumably we violated anyway with this unmappable buffer). 1362 * Anyway, it is presumably better to stumble onwards with 1363 * something and try to run the system in a "less than optimal" 1364 * mode that matches the user configuration. 1365 */ 1366 ret = i915_vma_pin_fence(vma); 1367 if (ret != 0 && DISPLAY_VER(dev_priv) < 4) { 1368 i915_vma_unpin(vma); 1369 goto err_unpin; 1370 } 1371 ret = 0; 1372 1373 if (vma->fence) 1374 *out_flags |= PLANE_HAS_FENCE; 1375 } 1376 1377 i915_vma_get(vma); 1378 1379 err_unpin: 1380 i915_gem_object_unpin_pages(obj); 1381 err: 1382 if (ret == -EDEADLK) { 1383 ret = i915_gem_ww_ctx_backoff(&ww); 1384 if (!ret) 1385 goto retry; 1386 } 1387 i915_gem_ww_ctx_fini(&ww); 1388 if (ret) 1389 vma = ERR_PTR(ret); 1390 1391 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 1392 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 1393 return vma; 1394 } 1395 1396 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) 1397 { 1398 if (flags & PLANE_HAS_FENCE) 1399 i915_vma_unpin_fence(vma); 1400 i915_vma_unpin(vma); 1401 i915_vma_put(vma); 1402 } 1403 1404 /* 1405 * Convert the x/y offsets into a linear offset. 1406 * Only valid with 0/180 degree rotation, which is fine since linear 1407 * offset is only used with linear buffers on pre-hsw and tiled buffers 1408 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 1409 */ 1410 u32 intel_fb_xy_to_linear(int x, int y, 1411 const struct intel_plane_state *state, 1412 int color_plane) 1413 { 1414 const struct drm_framebuffer *fb = state->hw.fb; 1415 unsigned int cpp = fb->format->cpp[color_plane]; 1416 unsigned int pitch = state->view.color_plane[color_plane].stride; 1417 1418 return y * pitch + x * cpp; 1419 } 1420 1421 /* 1422 * Add the x/y offsets derived from fb->offsets[] to the user 1423 * specified plane src x/y offsets. The resulting x/y offsets 1424 * specify the start of scanout from the beginning of the gtt mapping. 1425 */ 1426 void intel_add_fb_offsets(int *x, int *y, 1427 const struct intel_plane_state *state, 1428 int color_plane) 1429 1430 { 1431 *x += state->view.color_plane[color_plane].x; 1432 *y += state->view.color_plane[color_plane].y; 1433 } 1434 1435 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) 1436 { 1437 switch (fb_modifier) { 1438 case I915_FORMAT_MOD_X_TILED: 1439 return I915_TILING_X; 1440 case I915_FORMAT_MOD_Y_TILED: 1441 case I915_FORMAT_MOD_Y_TILED_CCS: 1442 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1443 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1444 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1445 return I915_TILING_Y; 1446 default: 1447 return I915_TILING_NONE; 1448 } 1449 } 1450 1451 /* 1452 * From the Sky Lake PRM: 1453 * "The Color Control Surface (CCS) contains the compression status of 1454 * the cache-line pairs. The compression state of the cache-line pair 1455 * is specified by 2 bits in the CCS. Each CCS cache-line represents 1456 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 1457 * cache-line-pairs. CCS is always Y tiled." 1458 * 1459 * Since cache line pairs refers to horizontally adjacent cache lines, 1460 * each cache line in the CCS corresponds to an area of 32x16 cache 1461 * lines on the main surface. Since each pixel is 4 bytes, this gives 1462 * us a ratio of one byte in the CCS for each 8x16 pixels in the 1463 * main surface. 1464 */ 1465 static const struct drm_format_info skl_ccs_formats[] = { 1466 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 1467 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 1468 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 1469 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 1470 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 1471 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 1472 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 1473 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 1474 }; 1475 1476 /* 1477 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the 1478 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles 1479 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of 1480 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in 1481 * the main surface. 1482 */ 1483 static const struct drm_format_info gen12_ccs_formats[] = { 1484 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 1485 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1486 .hsub = 1, .vsub = 1, }, 1487 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 1488 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1489 .hsub = 1, .vsub = 1, }, 1490 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 1491 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1492 .hsub = 1, .vsub = 1, .has_alpha = true }, 1493 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 1494 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1495 .hsub = 1, .vsub = 1, .has_alpha = true }, 1496 { .format = DRM_FORMAT_YUYV, .num_planes = 2, 1497 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1498 .hsub = 2, .vsub = 1, .is_yuv = true }, 1499 { .format = DRM_FORMAT_YVYU, .num_planes = 2, 1500 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1501 .hsub = 2, .vsub = 1, .is_yuv = true }, 1502 { .format = DRM_FORMAT_UYVY, .num_planes = 2, 1503 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1504 .hsub = 2, .vsub = 1, .is_yuv = true }, 1505 { .format = DRM_FORMAT_VYUY, .num_planes = 2, 1506 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1507 .hsub = 2, .vsub = 1, .is_yuv = true }, 1508 { .format = DRM_FORMAT_XYUV8888, .num_planes = 2, 1509 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1510 .hsub = 1, .vsub = 1, .is_yuv = true }, 1511 { .format = DRM_FORMAT_NV12, .num_planes = 4, 1512 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 }, 1513 .hsub = 2, .vsub = 2, .is_yuv = true }, 1514 { .format = DRM_FORMAT_P010, .num_planes = 4, 1515 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1516 .hsub = 2, .vsub = 2, .is_yuv = true }, 1517 { .format = DRM_FORMAT_P012, .num_planes = 4, 1518 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1519 .hsub = 2, .vsub = 2, .is_yuv = true }, 1520 { .format = DRM_FORMAT_P016, .num_planes = 4, 1521 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1522 .hsub = 2, .vsub = 2, .is_yuv = true }, 1523 }; 1524 1525 /* 1526 * Same as gen12_ccs_formats[] above, but with additional surface used 1527 * to pass Clear Color information in plane 2 with 64 bits of data. 1528 */ 1529 static const struct drm_format_info gen12_ccs_cc_formats[] = { 1530 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 3, 1531 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1532 .hsub = 1, .vsub = 1, }, 1533 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 3, 1534 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1535 .hsub = 1, .vsub = 1, }, 1536 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 3, 1537 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1538 .hsub = 1, .vsub = 1, .has_alpha = true }, 1539 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 3, 1540 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1541 .hsub = 1, .vsub = 1, .has_alpha = true }, 1542 }; 1543 1544 static const struct drm_format_info * 1545 lookup_format_info(const struct drm_format_info formats[], 1546 int num_formats, u32 format) 1547 { 1548 int i; 1549 1550 for (i = 0; i < num_formats; i++) { 1551 if (formats[i].format == format) 1552 return &formats[i]; 1553 } 1554 1555 return NULL; 1556 } 1557 1558 static const struct drm_format_info * 1559 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 1560 { 1561 switch (cmd->modifier[0]) { 1562 case I915_FORMAT_MOD_Y_TILED_CCS: 1563 case I915_FORMAT_MOD_Yf_TILED_CCS: 1564 return lookup_format_info(skl_ccs_formats, 1565 ARRAY_SIZE(skl_ccs_formats), 1566 cmd->pixel_format); 1567 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1568 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1569 return lookup_format_info(gen12_ccs_formats, 1570 ARRAY_SIZE(gen12_ccs_formats), 1571 cmd->pixel_format); 1572 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1573 return lookup_format_info(gen12_ccs_cc_formats, 1574 ARRAY_SIZE(gen12_ccs_cc_formats), 1575 cmd->pixel_format); 1576 default: 1577 return NULL; 1578 } 1579 } 1580 1581 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane) 1582 { 1583 return DIV_ROUND_UP(fb->pitches[skl_ccs_to_main_plane(fb, ccs_plane)], 1584 512) * 64; 1585 } 1586 1587 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 1588 u32 pixel_format, u64 modifier) 1589 { 1590 struct intel_crtc *crtc; 1591 struct intel_plane *plane; 1592 1593 if (!HAS_DISPLAY(dev_priv)) 1594 return 0; 1595 1596 /* 1597 * We assume the primary plane for pipe A has 1598 * the highest stride limits of them all, 1599 * if in case pipe A is disabled, use the first pipe from pipe_mask. 1600 */ 1601 crtc = intel_get_first_crtc(dev_priv); 1602 if (!crtc) 1603 return 0; 1604 1605 plane = to_intel_plane(crtc->base.primary); 1606 1607 return plane->max_stride(plane, pixel_format, modifier, 1608 DRM_MODE_ROTATE_0); 1609 } 1610 1611 static 1612 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, 1613 u32 pixel_format, u64 modifier) 1614 { 1615 /* 1616 * Arbitrary limit for gen4+ chosen to match the 1617 * render engine max stride. 1618 * 1619 * The new CCS hash mode makes remapping impossible 1620 */ 1621 if (DISPLAY_VER(dev_priv) < 4 || is_ccs_modifier(modifier) || 1622 intel_modifier_uses_dpt(dev_priv, modifier)) 1623 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); 1624 else if (DISPLAY_VER(dev_priv) >= 7) 1625 return 256 * 1024; 1626 else 1627 return 128 * 1024; 1628 } 1629 1630 static u32 1631 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) 1632 { 1633 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1634 u32 tile_width; 1635 1636 if (is_surface_linear(fb, color_plane)) { 1637 u32 max_stride = intel_plane_fb_max_stride(dev_priv, 1638 fb->format->format, 1639 fb->modifier); 1640 1641 /* 1642 * To make remapping with linear generally feasible 1643 * we need the stride to be page aligned. 1644 */ 1645 if (fb->pitches[color_plane] > max_stride && 1646 !is_ccs_modifier(fb->modifier)) 1647 return intel_tile_size(dev_priv); 1648 else 1649 return 64; 1650 } 1651 1652 tile_width = intel_tile_width_bytes(fb, color_plane); 1653 if (is_ccs_modifier(fb->modifier)) { 1654 /* 1655 * Display WA #0531: skl,bxt,kbl,glk 1656 * 1657 * Render decompression and plane width > 3840 1658 * combined with horizontal panning requires the 1659 * plane stride to be a multiple of 4. We'll just 1660 * require the entire fb to accommodate that to avoid 1661 * potential runtime errors at plane configuration time. 1662 */ 1663 if ((DISPLAY_VER(dev_priv) == 9 || IS_GEMINILAKE(dev_priv)) && 1664 color_plane == 0 && fb->width > 3840) 1665 tile_width *= 4; 1666 /* 1667 * The main surface pitch must be padded to a multiple of four 1668 * tile widths. 1669 */ 1670 else if (DISPLAY_VER(dev_priv) >= 12) 1671 tile_width *= 4; 1672 } 1673 return tile_width; 1674 } 1675 1676 static struct i915_vma * 1677 initial_plane_vma(struct drm_i915_private *i915, 1678 struct intel_initial_plane_config *plane_config) 1679 { 1680 struct drm_i915_gem_object *obj; 1681 struct i915_vma *vma; 1682 u32 base, size; 1683 1684 if (plane_config->size == 0) 1685 return NULL; 1686 1687 base = round_down(plane_config->base, 1688 I915_GTT_MIN_ALIGNMENT); 1689 size = round_up(plane_config->base + plane_config->size, 1690 I915_GTT_MIN_ALIGNMENT); 1691 size -= base; 1692 1693 /* 1694 * If the FB is too big, just don't use it since fbdev is not very 1695 * important and we should probably use that space with FBC or other 1696 * features. 1697 */ 1698 if (IS_ENABLED(CONFIG_FRAMEBUFFER_CONSOLE) && 1699 size * 2 > i915->stolen_usable_size) 1700 return NULL; 1701 1702 obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size); 1703 if (IS_ERR(obj)) 1704 return NULL; 1705 1706 /* 1707 * Mark it WT ahead of time to avoid changing the 1708 * cache_level during fbdev initialization. The 1709 * unbind there would get stuck waiting for rcu. 1710 */ 1711 i915_gem_object_set_cache_coherency(obj, HAS_WT(i915) ? 1712 I915_CACHE_WT : I915_CACHE_NONE); 1713 1714 switch (plane_config->tiling) { 1715 case I915_TILING_NONE: 1716 break; 1717 case I915_TILING_X: 1718 case I915_TILING_Y: 1719 obj->tiling_and_stride = 1720 plane_config->fb->base.pitches[0] | 1721 plane_config->tiling; 1722 break; 1723 default: 1724 MISSING_CASE(plane_config->tiling); 1725 goto err_obj; 1726 } 1727 1728 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); 1729 if (IS_ERR(vma)) 1730 goto err_obj; 1731 1732 if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base)) 1733 goto err_obj; 1734 1735 if (i915_gem_object_is_tiled(obj) && 1736 !i915_vma_is_map_and_fenceable(vma)) 1737 goto err_obj; 1738 1739 return vma; 1740 1741 err_obj: 1742 i915_gem_object_put(obj); 1743 return NULL; 1744 } 1745 1746 static bool 1747 intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 1748 struct intel_initial_plane_config *plane_config) 1749 { 1750 struct drm_device *dev = crtc->base.dev; 1751 struct drm_i915_private *dev_priv = to_i915(dev); 1752 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 1753 struct drm_framebuffer *fb = &plane_config->fb->base; 1754 struct i915_vma *vma; 1755 1756 switch (fb->modifier) { 1757 case DRM_FORMAT_MOD_LINEAR: 1758 case I915_FORMAT_MOD_X_TILED: 1759 case I915_FORMAT_MOD_Y_TILED: 1760 break; 1761 default: 1762 drm_dbg(&dev_priv->drm, 1763 "Unsupported modifier for initial FB: 0x%llx\n", 1764 fb->modifier); 1765 return false; 1766 } 1767 1768 vma = initial_plane_vma(dev_priv, plane_config); 1769 if (!vma) 1770 return false; 1771 1772 mode_cmd.pixel_format = fb->format->format; 1773 mode_cmd.width = fb->width; 1774 mode_cmd.height = fb->height; 1775 mode_cmd.pitches[0] = fb->pitches[0]; 1776 mode_cmd.modifier[0] = fb->modifier; 1777 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 1778 1779 if (intel_framebuffer_init(to_intel_framebuffer(fb), 1780 vma->obj, &mode_cmd)) { 1781 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n"); 1782 goto err_vma; 1783 } 1784 1785 plane_config->vma = vma; 1786 return true; 1787 1788 err_vma: 1789 i915_vma_put(vma); 1790 return false; 1791 } 1792 1793 static void 1794 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 1795 struct intel_plane_state *plane_state, 1796 bool visible) 1797 { 1798 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1799 1800 plane_state->uapi.visible = visible; 1801 1802 if (visible) 1803 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); 1804 else 1805 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); 1806 } 1807 1808 static void fixup_plane_bitmasks(struct intel_crtc_state *crtc_state) 1809 { 1810 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1811 struct drm_plane *plane; 1812 1813 /* 1814 * Active_planes aliases if multiple "primary" or cursor planes 1815 * have been used on the same (or wrong) pipe. plane_mask uses 1816 * unique ids, hence we can use that to reconstruct active_planes. 1817 */ 1818 crtc_state->enabled_planes = 0; 1819 crtc_state->active_planes = 0; 1820 1821 drm_for_each_plane_mask(plane, &dev_priv->drm, 1822 crtc_state->uapi.plane_mask) { 1823 crtc_state->enabled_planes |= BIT(to_intel_plane(plane)->id); 1824 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 1825 } 1826 } 1827 1828 static void intel_plane_disable_noatomic(struct intel_crtc *crtc, 1829 struct intel_plane *plane) 1830 { 1831 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1832 struct intel_crtc_state *crtc_state = 1833 to_intel_crtc_state(crtc->base.state); 1834 struct intel_plane_state *plane_state = 1835 to_intel_plane_state(plane->base.state); 1836 1837 drm_dbg_kms(&dev_priv->drm, 1838 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 1839 plane->base.base.id, plane->base.name, 1840 crtc->base.base.id, crtc->base.name); 1841 1842 intel_set_plane_visible(crtc_state, plane_state, false); 1843 fixup_plane_bitmasks(crtc_state); 1844 crtc_state->data_rate[plane->id] = 0; 1845 crtc_state->min_cdclk[plane->id] = 0; 1846 1847 if (plane->id == PLANE_PRIMARY) 1848 hsw_disable_ips(crtc_state); 1849 1850 /* 1851 * Vblank time updates from the shadow to live plane control register 1852 * are blocked if the memory self-refresh mode is active at that 1853 * moment. So to make sure the plane gets truly disabled, disable 1854 * first the self-refresh mode. The self-refresh enable bit in turn 1855 * will be checked/applied by the HW only at the next frame start 1856 * event which is after the vblank start event, so we need to have a 1857 * wait-for-vblank between disabling the plane and the pipe. 1858 */ 1859 if (HAS_GMCH(dev_priv) && 1860 intel_set_memory_cxsr(dev_priv, false)) 1861 intel_wait_for_vblank(dev_priv, crtc->pipe); 1862 1863 /* 1864 * Gen2 reports pipe underruns whenever all planes are disabled. 1865 * So disable underrun reporting before all the planes get disabled. 1866 */ 1867 if (DISPLAY_VER(dev_priv) == 2 && !crtc_state->active_planes) 1868 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 1869 1870 intel_disable_plane(plane, crtc_state); 1871 intel_wait_for_vblank(dev_priv, crtc->pipe); 1872 } 1873 1874 static struct i915_vma *intel_dpt_pin(struct i915_address_space *vm) 1875 { 1876 struct drm_i915_private *i915 = vm->i915; 1877 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 1878 intel_wakeref_t wakeref; 1879 struct i915_vma *vma; 1880 void __iomem *iomem; 1881 1882 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 1883 atomic_inc(&i915->gpu_error.pending_fb_pin); 1884 1885 vma = i915_gem_object_ggtt_pin(dpt->obj, NULL, 0, 4096, 1886 HAS_LMEM(i915) ? 0 : PIN_MAPPABLE); 1887 if (IS_ERR(vma)) 1888 goto err; 1889 1890 iomem = i915_vma_pin_iomap(vma); 1891 i915_vma_unpin(vma); 1892 if (IS_ERR(iomem)) { 1893 vma = iomem; 1894 goto err; 1895 } 1896 1897 dpt->vma = vma; 1898 dpt->iomem = iomem; 1899 1900 i915_vma_get(vma); 1901 1902 err: 1903 atomic_dec(&i915->gpu_error.pending_fb_pin); 1904 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 1905 1906 return vma; 1907 } 1908 1909 static void intel_dpt_unpin(struct i915_address_space *vm) 1910 { 1911 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 1912 1913 i915_vma_unpin_iomap(dpt->vma); 1914 i915_vma_put(dpt->vma); 1915 } 1916 1917 static void 1918 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, 1919 struct intel_initial_plane_config *plane_config) 1920 { 1921 struct drm_device *dev = intel_crtc->base.dev; 1922 struct drm_i915_private *dev_priv = to_i915(dev); 1923 struct drm_crtc *c; 1924 struct drm_plane *primary = intel_crtc->base.primary; 1925 struct drm_plane_state *plane_state = primary->state; 1926 struct intel_plane *intel_plane = to_intel_plane(primary); 1927 struct intel_plane_state *intel_state = 1928 to_intel_plane_state(plane_state); 1929 struct intel_crtc_state *crtc_state = 1930 to_intel_crtc_state(intel_crtc->base.state); 1931 struct drm_framebuffer *fb; 1932 struct i915_vma *vma; 1933 1934 /* 1935 * TODO: 1936 * Disable planes if get_initial_plane_config() failed. 1937 * Make sure things work if the surface base is not page aligned. 1938 */ 1939 if (!plane_config->fb) 1940 return; 1941 1942 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { 1943 fb = &plane_config->fb->base; 1944 vma = plane_config->vma; 1945 goto valid_fb; 1946 } 1947 1948 /* 1949 * Failed to alloc the obj, check to see if we should share 1950 * an fb with another CRTC instead 1951 */ 1952 for_each_crtc(dev, c) { 1953 struct intel_plane_state *state; 1954 1955 if (c == &intel_crtc->base) 1956 continue; 1957 1958 if (!to_intel_crtc_state(c->state)->uapi.active) 1959 continue; 1960 1961 state = to_intel_plane_state(c->primary->state); 1962 if (!state->ggtt_vma) 1963 continue; 1964 1965 if (intel_plane_ggtt_offset(state) == plane_config->base) { 1966 fb = state->hw.fb; 1967 vma = state->ggtt_vma; 1968 goto valid_fb; 1969 } 1970 } 1971 1972 /* 1973 * We've failed to reconstruct the BIOS FB. Current display state 1974 * indicates that the primary plane is visible, but has a NULL FB, 1975 * which will lead to problems later if we don't fix it up. The 1976 * simplest solution is to just disable the primary plane now and 1977 * pretend the BIOS never had it enabled. 1978 */ 1979 intel_plane_disable_noatomic(intel_crtc, intel_plane); 1980 if (crtc_state->bigjoiner) { 1981 struct intel_crtc *slave = 1982 crtc_state->bigjoiner_linked_crtc; 1983 intel_plane_disable_noatomic(slave, to_intel_plane(slave->base.primary)); 1984 } 1985 1986 return; 1987 1988 valid_fb: 1989 plane_state->rotation = plane_config->rotation; 1990 intel_fb_fill_view(to_intel_framebuffer(fb), plane_state->rotation, 1991 &intel_state->view); 1992 1993 __i915_vma_pin(vma); 1994 intel_state->ggtt_vma = i915_vma_get(vma); 1995 if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0) 1996 if (vma->fence) 1997 intel_state->flags |= PLANE_HAS_FENCE; 1998 1999 plane_state->src_x = 0; 2000 plane_state->src_y = 0; 2001 plane_state->src_w = fb->width << 16; 2002 plane_state->src_h = fb->height << 16; 2003 2004 plane_state->crtc_x = 0; 2005 plane_state->crtc_y = 0; 2006 plane_state->crtc_w = fb->width; 2007 plane_state->crtc_h = fb->height; 2008 2009 if (plane_config->tiling) 2010 dev_priv->preserve_bios_swizzle = true; 2011 2012 plane_state->fb = fb; 2013 drm_framebuffer_get(fb); 2014 2015 plane_state->crtc = &intel_crtc->base; 2016 intel_plane_copy_uapi_to_hw_state(intel_state, intel_state, 2017 intel_crtc); 2018 2019 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 2020 2021 atomic_or(to_intel_plane(primary)->frontbuffer_bit, 2022 &to_intel_frontbuffer(fb)->bits); 2023 } 2024 2025 unsigned int 2026 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state) 2027 { 2028 int x = 0, y = 0; 2029 2030 intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 2031 plane_state->view.color_plane[0].offset, 0); 2032 2033 return y; 2034 } 2035 2036 static int 2037 __intel_display_resume(struct drm_device *dev, 2038 struct drm_atomic_state *state, 2039 struct drm_modeset_acquire_ctx *ctx) 2040 { 2041 struct drm_crtc_state *crtc_state; 2042 struct drm_crtc *crtc; 2043 int i, ret; 2044 2045 intel_modeset_setup_hw_state(dev, ctx); 2046 intel_vga_redisable(to_i915(dev)); 2047 2048 if (!state) 2049 return 0; 2050 2051 /* 2052 * We've duplicated the state, pointers to the old state are invalid. 2053 * 2054 * Don't attempt to use the old state until we commit the duplicated state. 2055 */ 2056 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 2057 /* 2058 * Force recalculation even if we restore 2059 * current state. With fast modeset this may not result 2060 * in a modeset when the state is compatible. 2061 */ 2062 crtc_state->mode_changed = true; 2063 } 2064 2065 /* ignore any reset values/BIOS leftovers in the WM registers */ 2066 if (!HAS_GMCH(to_i915(dev))) 2067 to_intel_atomic_state(state)->skip_intermediate_wm = true; 2068 2069 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 2070 2071 drm_WARN_ON(dev, ret == -EDEADLK); 2072 return ret; 2073 } 2074 2075 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 2076 { 2077 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 2078 intel_has_gpu_reset(&dev_priv->gt)); 2079 } 2080 2081 void intel_display_prepare_reset(struct drm_i915_private *dev_priv) 2082 { 2083 struct drm_device *dev = &dev_priv->drm; 2084 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 2085 struct drm_atomic_state *state; 2086 int ret; 2087 2088 if (!HAS_DISPLAY(dev_priv)) 2089 return; 2090 2091 /* reset doesn't touch the display */ 2092 if (!dev_priv->params.force_reset_modeset_test && 2093 !gpu_reset_clobbers_display(dev_priv)) 2094 return; 2095 2096 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 2097 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 2098 smp_mb__after_atomic(); 2099 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 2100 2101 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 2102 drm_dbg_kms(&dev_priv->drm, 2103 "Modeset potentially stuck, unbreaking through wedging\n"); 2104 intel_gt_set_wedged(&dev_priv->gt); 2105 } 2106 2107 /* 2108 * Need mode_config.mutex so that we don't 2109 * trample ongoing ->detect() and whatnot. 2110 */ 2111 mutex_lock(&dev->mode_config.mutex); 2112 drm_modeset_acquire_init(ctx, 0); 2113 while (1) { 2114 ret = drm_modeset_lock_all_ctx(dev, ctx); 2115 if (ret != -EDEADLK) 2116 break; 2117 2118 drm_modeset_backoff(ctx); 2119 } 2120 /* 2121 * Disabling the crtcs gracefully seems nicer. Also the 2122 * g33 docs say we should at least disable all the planes. 2123 */ 2124 state = drm_atomic_helper_duplicate_state(dev, ctx); 2125 if (IS_ERR(state)) { 2126 ret = PTR_ERR(state); 2127 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n", 2128 ret); 2129 return; 2130 } 2131 2132 ret = drm_atomic_helper_disable_all(dev, ctx); 2133 if (ret) { 2134 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 2135 ret); 2136 drm_atomic_state_put(state); 2137 return; 2138 } 2139 2140 dev_priv->modeset_restore_state = state; 2141 state->acquire_ctx = ctx; 2142 } 2143 2144 void intel_display_finish_reset(struct drm_i915_private *dev_priv) 2145 { 2146 struct drm_device *dev = &dev_priv->drm; 2147 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 2148 struct drm_atomic_state *state; 2149 int ret; 2150 2151 if (!HAS_DISPLAY(dev_priv)) 2152 return; 2153 2154 /* reset doesn't touch the display */ 2155 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 2156 return; 2157 2158 state = fetch_and_zero(&dev_priv->modeset_restore_state); 2159 if (!state) 2160 goto unlock; 2161 2162 /* reset doesn't touch the display */ 2163 if (!gpu_reset_clobbers_display(dev_priv)) { 2164 /* for testing only restore the display */ 2165 ret = __intel_display_resume(dev, state, ctx); 2166 if (ret) 2167 drm_err(&dev_priv->drm, 2168 "Restoring old state failed with %i\n", ret); 2169 } else { 2170 /* 2171 * The display has been reset as well, 2172 * so need a full re-initialization. 2173 */ 2174 intel_pps_unlock_regs_wa(dev_priv); 2175 intel_modeset_init_hw(dev_priv); 2176 intel_init_clock_gating(dev_priv); 2177 intel_hpd_init(dev_priv); 2178 2179 ret = __intel_display_resume(dev, state, ctx); 2180 if (ret) 2181 drm_err(&dev_priv->drm, 2182 "Restoring old state failed with %i\n", ret); 2183 2184 intel_hpd_poll_disable(dev_priv); 2185 } 2186 2187 drm_atomic_state_put(state); 2188 unlock: 2189 drm_modeset_drop_locks(ctx); 2190 drm_modeset_acquire_fini(ctx); 2191 mutex_unlock(&dev->mode_config.mutex); 2192 2193 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 2194 } 2195 2196 static void icl_set_pipe_chicken(struct intel_crtc *crtc) 2197 { 2198 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2199 enum pipe pipe = crtc->pipe; 2200 u32 tmp; 2201 2202 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe)); 2203 2204 /* 2205 * Display WA #1153: icl 2206 * enable hardware to bypass the alpha math 2207 * and rounding for per-pixel values 00 and 0xff 2208 */ 2209 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 2210 /* 2211 * Display WA # 1605353570: icl 2212 * Set the pixel rounding bit to 1 for allowing 2213 * passthrough of Frame buffer pixels unmodified 2214 * across pipe 2215 */ 2216 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 2217 2218 /* 2219 * "The underrun recovery mechanism should be disabled 2220 * when the following is enabled for this pipe: 2221 * WiDi 2222 * Downscaling (this includes YUV420 fullblend) 2223 * COG 2224 * DSC 2225 * PSR2" 2226 * 2227 * FIXME: enable whenever possible... 2228 */ 2229 if (IS_ALDERLAKE_P(dev_priv)) 2230 tmp |= UNDERRUN_RECOVERY_DISABLE; 2231 2232 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp); 2233 } 2234 2235 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 2236 { 2237 struct drm_crtc *crtc; 2238 bool cleanup_done; 2239 2240 drm_for_each_crtc(crtc, &dev_priv->drm) { 2241 struct drm_crtc_commit *commit; 2242 spin_lock(&crtc->commit_lock); 2243 commit = list_first_entry_or_null(&crtc->commit_list, 2244 struct drm_crtc_commit, commit_entry); 2245 cleanup_done = commit ? 2246 try_wait_for_completion(&commit->cleanup_done) : true; 2247 spin_unlock(&crtc->commit_lock); 2248 2249 if (cleanup_done) 2250 continue; 2251 2252 drm_crtc_wait_one_vblank(crtc); 2253 2254 return true; 2255 } 2256 2257 return false; 2258 } 2259 2260 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 2261 { 2262 u32 temp; 2263 2264 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE); 2265 2266 mutex_lock(&dev_priv->sb_lock); 2267 2268 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2269 temp |= SBI_SSCCTL_DISABLE; 2270 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 2271 2272 mutex_unlock(&dev_priv->sb_lock); 2273 } 2274 2275 /* Program iCLKIP clock to the desired frequency */ 2276 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 2277 { 2278 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2279 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2280 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 2281 u32 divsel, phaseinc, auxdiv, phasedir = 0; 2282 u32 temp; 2283 2284 lpt_disable_iclkip(dev_priv); 2285 2286 /* The iCLK virtual clock root frequency is in MHz, 2287 * but the adjusted_mode->crtc_clock in in KHz. To get the 2288 * divisors, it is necessary to divide one by another, so we 2289 * convert the virtual clock precision to KHz here for higher 2290 * precision. 2291 */ 2292 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 2293 u32 iclk_virtual_root_freq = 172800 * 1000; 2294 u32 iclk_pi_range = 64; 2295 u32 desired_divisor; 2296 2297 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 2298 clock << auxdiv); 2299 divsel = (desired_divisor / iclk_pi_range) - 2; 2300 phaseinc = desired_divisor % iclk_pi_range; 2301 2302 /* 2303 * Near 20MHz is a corner case which is 2304 * out of range for the 7-bit divisor 2305 */ 2306 if (divsel <= 0x7f) 2307 break; 2308 } 2309 2310 /* This should not happen with any sane values */ 2311 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 2312 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 2313 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) & 2314 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 2315 2316 drm_dbg_kms(&dev_priv->drm, 2317 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 2318 clock, auxdiv, divsel, phasedir, phaseinc); 2319 2320 mutex_lock(&dev_priv->sb_lock); 2321 2322 /* Program SSCDIVINTPHASE6 */ 2323 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 2324 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 2325 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 2326 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 2327 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 2328 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 2329 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 2330 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 2331 2332 /* Program SSCAUXDIV */ 2333 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 2334 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 2335 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 2336 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 2337 2338 /* Enable modulator and associated divider */ 2339 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2340 temp &= ~SBI_SSCCTL_DISABLE; 2341 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 2342 2343 mutex_unlock(&dev_priv->sb_lock); 2344 2345 /* Wait for initialization time */ 2346 udelay(24); 2347 2348 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE); 2349 } 2350 2351 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 2352 { 2353 u32 divsel, phaseinc, auxdiv; 2354 u32 iclk_virtual_root_freq = 172800 * 1000; 2355 u32 iclk_pi_range = 64; 2356 u32 desired_divisor; 2357 u32 temp; 2358 2359 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 2360 return 0; 2361 2362 mutex_lock(&dev_priv->sb_lock); 2363 2364 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2365 if (temp & SBI_SSCCTL_DISABLE) { 2366 mutex_unlock(&dev_priv->sb_lock); 2367 return 0; 2368 } 2369 2370 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 2371 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 2372 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 2373 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 2374 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 2375 2376 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 2377 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 2378 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 2379 2380 mutex_unlock(&dev_priv->sb_lock); 2381 2382 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 2383 2384 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 2385 desired_divisor << auxdiv); 2386 } 2387 2388 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 2389 enum pipe pch_transcoder) 2390 { 2391 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2392 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2393 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2394 2395 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder), 2396 intel_de_read(dev_priv, HTOTAL(cpu_transcoder))); 2397 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder), 2398 intel_de_read(dev_priv, HBLANK(cpu_transcoder))); 2399 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder), 2400 intel_de_read(dev_priv, HSYNC(cpu_transcoder))); 2401 2402 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder), 2403 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 2404 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder), 2405 intel_de_read(dev_priv, VBLANK(cpu_transcoder))); 2406 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder), 2407 intel_de_read(dev_priv, VSYNC(cpu_transcoder))); 2408 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder), 2409 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder))); 2410 } 2411 2412 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) 2413 { 2414 u32 temp; 2415 2416 temp = intel_de_read(dev_priv, SOUTH_CHICKEN1); 2417 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 2418 return; 2419 2420 drm_WARN_ON(&dev_priv->drm, 2421 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) & 2422 FDI_RX_ENABLE); 2423 drm_WARN_ON(&dev_priv->drm, 2424 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) & 2425 FDI_RX_ENABLE); 2426 2427 temp &= ~FDI_BC_BIFURCATION_SELECT; 2428 if (enable) 2429 temp |= FDI_BC_BIFURCATION_SELECT; 2430 2431 drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n", 2432 enable ? "en" : "dis"); 2433 intel_de_write(dev_priv, SOUTH_CHICKEN1, temp); 2434 intel_de_posting_read(dev_priv, SOUTH_CHICKEN1); 2435 } 2436 2437 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) 2438 { 2439 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2440 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2441 2442 switch (crtc->pipe) { 2443 case PIPE_A: 2444 break; 2445 case PIPE_B: 2446 if (crtc_state->fdi_lanes > 2) 2447 cpt_set_fdi_bc_bifurcation(dev_priv, false); 2448 else 2449 cpt_set_fdi_bc_bifurcation(dev_priv, true); 2450 2451 break; 2452 case PIPE_C: 2453 cpt_set_fdi_bc_bifurcation(dev_priv, true); 2454 2455 break; 2456 default: 2457 BUG(); 2458 } 2459 } 2460 2461 /* 2462 * Finds the encoder associated with the given CRTC. This can only be 2463 * used when we know that the CRTC isn't feeding multiple encoders! 2464 */ 2465 struct intel_encoder * 2466 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 2467 const struct intel_crtc_state *crtc_state) 2468 { 2469 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2470 const struct drm_connector_state *connector_state; 2471 const struct drm_connector *connector; 2472 struct intel_encoder *encoder = NULL; 2473 int num_encoders = 0; 2474 int i; 2475 2476 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 2477 if (connector_state->crtc != &crtc->base) 2478 continue; 2479 2480 encoder = to_intel_encoder(connector_state->best_encoder); 2481 num_encoders++; 2482 } 2483 2484 drm_WARN(encoder->base.dev, num_encoders != 1, 2485 "%d encoders for pipe %c\n", 2486 num_encoders, pipe_name(crtc->pipe)); 2487 2488 return encoder; 2489 } 2490 2491 /* 2492 * Enable PCH resources required for PCH ports: 2493 * - PCH PLLs 2494 * - FDI training & RX/TX 2495 * - update transcoder timings 2496 * - DP transcoding bits 2497 * - transcoder 2498 */ 2499 static void ilk_pch_enable(const struct intel_atomic_state *state, 2500 const struct intel_crtc_state *crtc_state) 2501 { 2502 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2503 struct drm_device *dev = crtc->base.dev; 2504 struct drm_i915_private *dev_priv = to_i915(dev); 2505 enum pipe pipe = crtc->pipe; 2506 u32 temp; 2507 2508 assert_pch_transcoder_disabled(dev_priv, pipe); 2509 2510 if (IS_IVYBRIDGE(dev_priv)) 2511 ivb_update_fdi_bc_bifurcation(crtc_state); 2512 2513 /* Write the TU size bits before fdi link training, so that error 2514 * detection works. */ 2515 intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe), 2516 intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 2517 2518 /* For PCH output, training FDI link */ 2519 dev_priv->display.fdi_link_train(crtc, crtc_state); 2520 2521 /* We need to program the right clock selection before writing the pixel 2522 * mutliplier into the DPLL. */ 2523 if (HAS_PCH_CPT(dev_priv)) { 2524 u32 sel; 2525 2526 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 2527 temp |= TRANS_DPLL_ENABLE(pipe); 2528 sel = TRANS_DPLLB_SEL(pipe); 2529 if (crtc_state->shared_dpll == 2530 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 2531 temp |= sel; 2532 else 2533 temp &= ~sel; 2534 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 2535 } 2536 2537 /* XXX: pch pll's can be enabled any time before we enable the PCH 2538 * transcoder, and we actually should do this to not upset any PCH 2539 * transcoder that already use the clock when we share it. 2540 * 2541 * Note that enable_shared_dpll tries to do the right thing, but 2542 * get_shared_dpll unconditionally resets the pll - we need that to have 2543 * the right LVDS enable sequence. */ 2544 intel_enable_shared_dpll(crtc_state); 2545 2546 /* set transcoder timing, panel must allow it */ 2547 assert_panel_unlocked(dev_priv, pipe); 2548 ilk_pch_transcoder_set_timings(crtc_state, pipe); 2549 2550 intel_fdi_normal_train(crtc); 2551 2552 /* For PCH DP, enable TRANS_DP_CTL */ 2553 if (HAS_PCH_CPT(dev_priv) && 2554 intel_crtc_has_dp_encoder(crtc_state)) { 2555 const struct drm_display_mode *adjusted_mode = 2556 &crtc_state->hw.adjusted_mode; 2557 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 2558 i915_reg_t reg = TRANS_DP_CTL(pipe); 2559 enum port port; 2560 2561 temp = intel_de_read(dev_priv, reg); 2562 temp &= ~(TRANS_DP_PORT_SEL_MASK | 2563 TRANS_DP_SYNC_MASK | 2564 TRANS_DP_BPC_MASK); 2565 temp |= TRANS_DP_OUTPUT_ENABLE; 2566 temp |= bpc << 9; /* same format but at 11:9 */ 2567 2568 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2569 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 2570 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2571 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 2572 2573 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 2574 drm_WARN_ON(dev, port < PORT_B || port > PORT_D); 2575 temp |= TRANS_DP_PORT_SEL(port); 2576 2577 intel_de_write(dev_priv, reg, temp); 2578 } 2579 2580 ilk_enable_pch_transcoder(crtc_state); 2581 } 2582 2583 void lpt_pch_enable(const struct intel_crtc_state *crtc_state) 2584 { 2585 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2586 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2587 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2588 2589 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 2590 2591 lpt_program_iclkip(crtc_state); 2592 2593 /* Set transcoder timing. */ 2594 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A); 2595 2596 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 2597 } 2598 2599 static void cpt_verify_modeset(struct drm_i915_private *dev_priv, 2600 enum pipe pipe) 2601 { 2602 i915_reg_t dslreg = PIPEDSL(pipe); 2603 u32 temp; 2604 2605 temp = intel_de_read(dev_priv, dslreg); 2606 udelay(500); 2607 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) { 2608 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) 2609 drm_err(&dev_priv->drm, 2610 "mode set failed: pipe %c stuck\n", 2611 pipe_name(pipe)); 2612 } 2613 } 2614 2615 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state) 2616 { 2617 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2618 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2619 const struct drm_rect *dst = &crtc_state->pch_pfit.dst; 2620 enum pipe pipe = crtc->pipe; 2621 int width = drm_rect_width(dst); 2622 int height = drm_rect_height(dst); 2623 int x = dst->x1; 2624 int y = dst->y1; 2625 2626 if (!crtc_state->pch_pfit.enabled) 2627 return; 2628 2629 /* Force use of hard-coded filter coefficients 2630 * as some pre-programmed values are broken, 2631 * e.g. x201. 2632 */ 2633 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 2634 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 2635 PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); 2636 else 2637 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 2638 PF_FILTER_MED_3x3); 2639 intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y); 2640 intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height); 2641 } 2642 2643 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 2644 { 2645 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2646 struct drm_device *dev = crtc->base.dev; 2647 struct drm_i915_private *dev_priv = to_i915(dev); 2648 2649 if (!crtc_state->ips_enabled) 2650 return; 2651 2652 /* 2653 * We can only enable IPS after we enable a plane and wait for a vblank 2654 * This function is called from post_plane_update, which is run after 2655 * a vblank wait. 2656 */ 2657 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 2658 2659 if (IS_BROADWELL(dev_priv)) { 2660 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 2661 IPS_ENABLE | IPS_PCODE_CONTROL)); 2662 /* Quoting Art Runyan: "its not safe to expect any particular 2663 * value in IPS_CTL bit 31 after enabling IPS through the 2664 * mailbox." Moreover, the mailbox may return a bogus state, 2665 * so we need to just enable it and continue on. 2666 */ 2667 } else { 2668 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE); 2669 /* The bit only becomes 1 in the next vblank, so this wait here 2670 * is essentially intel_wait_for_vblank. If we don't have this 2671 * and don't wait for vblanks until the end of crtc_enable, then 2672 * the HW state readout code will complain that the expected 2673 * IPS_CTL value is not the one we read. */ 2674 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 2675 drm_err(&dev_priv->drm, 2676 "Timed out waiting for IPS enable\n"); 2677 } 2678 } 2679 2680 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 2681 { 2682 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2683 struct drm_device *dev = crtc->base.dev; 2684 struct drm_i915_private *dev_priv = to_i915(dev); 2685 2686 if (!crtc_state->ips_enabled) 2687 return; 2688 2689 if (IS_BROADWELL(dev_priv)) { 2690 drm_WARN_ON(dev, 2691 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 2692 /* 2693 * Wait for PCODE to finish disabling IPS. The BSpec specified 2694 * 42ms timeout value leads to occasional timeouts so use 100ms 2695 * instead. 2696 */ 2697 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 2698 drm_err(&dev_priv->drm, 2699 "Timed out waiting for IPS disable\n"); 2700 } else { 2701 intel_de_write(dev_priv, IPS_CTL, 0); 2702 intel_de_posting_read(dev_priv, IPS_CTL); 2703 } 2704 2705 /* We need to wait for a vblank before we can disable the plane. */ 2706 intel_wait_for_vblank(dev_priv, crtc->pipe); 2707 } 2708 2709 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) 2710 { 2711 if (intel_crtc->overlay) 2712 (void) intel_overlay_switch_off(intel_crtc->overlay); 2713 2714 /* Let userspace switch the overlay on again. In most cases userspace 2715 * has to recompute where to put it anyway. 2716 */ 2717 } 2718 2719 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 2720 const struct intel_crtc_state *new_crtc_state) 2721 { 2722 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 2723 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2724 2725 if (!old_crtc_state->ips_enabled) 2726 return false; 2727 2728 if (intel_crtc_needs_modeset(new_crtc_state)) 2729 return true; 2730 2731 /* 2732 * Workaround : Do not read or write the pipe palette/gamma data while 2733 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 2734 * 2735 * Disable IPS before we program the LUT. 2736 */ 2737 if (IS_HASWELL(dev_priv) && 2738 (new_crtc_state->uapi.color_mgmt_changed || 2739 new_crtc_state->update_pipe) && 2740 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 2741 return true; 2742 2743 return !new_crtc_state->ips_enabled; 2744 } 2745 2746 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 2747 const struct intel_crtc_state *new_crtc_state) 2748 { 2749 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 2750 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2751 2752 if (!new_crtc_state->ips_enabled) 2753 return false; 2754 2755 if (intel_crtc_needs_modeset(new_crtc_state)) 2756 return true; 2757 2758 /* 2759 * Workaround : Do not read or write the pipe palette/gamma data while 2760 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 2761 * 2762 * Re-enable IPS after the LUT has been programmed. 2763 */ 2764 if (IS_HASWELL(dev_priv) && 2765 (new_crtc_state->uapi.color_mgmt_changed || 2766 new_crtc_state->update_pipe) && 2767 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 2768 return true; 2769 2770 /* 2771 * We can't read out IPS on broadwell, assume the worst and 2772 * forcibly enable IPS on the first fastset. 2773 */ 2774 if (new_crtc_state->update_pipe && old_crtc_state->inherited) 2775 return true; 2776 2777 return !old_crtc_state->ips_enabled; 2778 } 2779 2780 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) 2781 { 2782 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 2783 2784 if (!crtc_state->nv12_planes) 2785 return false; 2786 2787 /* WA Display #0827: Gen9:all */ 2788 if (DISPLAY_VER(dev_priv) == 9) 2789 return true; 2790 2791 return false; 2792 } 2793 2794 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) 2795 { 2796 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 2797 2798 /* Wa_2006604312:icl,ehl */ 2799 if (crtc_state->scaler_state.scaler_users > 0 && DISPLAY_VER(dev_priv) == 11) 2800 return true; 2801 2802 return false; 2803 } 2804 2805 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, 2806 const struct intel_crtc_state *new_crtc_state) 2807 { 2808 return (!old_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)) && 2809 new_crtc_state->active_planes; 2810 } 2811 2812 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, 2813 const struct intel_crtc_state *new_crtc_state) 2814 { 2815 return old_crtc_state->active_planes && 2816 (!new_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)); 2817 } 2818 2819 static void intel_post_plane_update(struct intel_atomic_state *state, 2820 struct intel_crtc *crtc) 2821 { 2822 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2823 const struct intel_crtc_state *old_crtc_state = 2824 intel_atomic_get_old_crtc_state(state, crtc); 2825 const struct intel_crtc_state *new_crtc_state = 2826 intel_atomic_get_new_crtc_state(state, crtc); 2827 enum pipe pipe = crtc->pipe; 2828 2829 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); 2830 2831 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) 2832 intel_update_watermarks(crtc); 2833 2834 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state)) 2835 hsw_enable_ips(new_crtc_state); 2836 2837 intel_fbc_post_update(state, crtc); 2838 2839 if (needs_nv12_wa(old_crtc_state) && 2840 !needs_nv12_wa(new_crtc_state)) 2841 skl_wa_827(dev_priv, pipe, false); 2842 2843 if (needs_scalerclk_wa(old_crtc_state) && 2844 !needs_scalerclk_wa(new_crtc_state)) 2845 icl_wa_scalerclkgating(dev_priv, pipe, false); 2846 } 2847 2848 static void intel_crtc_enable_flip_done(struct intel_atomic_state *state, 2849 struct intel_crtc *crtc) 2850 { 2851 const struct intel_crtc_state *crtc_state = 2852 intel_atomic_get_new_crtc_state(state, crtc); 2853 u8 update_planes = crtc_state->update_planes; 2854 const struct intel_plane_state *plane_state; 2855 struct intel_plane *plane; 2856 int i; 2857 2858 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 2859 if (plane->enable_flip_done && 2860 plane->pipe == crtc->pipe && 2861 update_planes & BIT(plane->id)) 2862 plane->enable_flip_done(plane); 2863 } 2864 } 2865 2866 static void intel_crtc_disable_flip_done(struct intel_atomic_state *state, 2867 struct intel_crtc *crtc) 2868 { 2869 const struct intel_crtc_state *crtc_state = 2870 intel_atomic_get_new_crtc_state(state, crtc); 2871 u8 update_planes = crtc_state->update_planes; 2872 const struct intel_plane_state *plane_state; 2873 struct intel_plane *plane; 2874 int i; 2875 2876 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 2877 if (plane->disable_flip_done && 2878 plane->pipe == crtc->pipe && 2879 update_planes & BIT(plane->id)) 2880 plane->disable_flip_done(plane); 2881 } 2882 } 2883 2884 static void intel_crtc_async_flip_disable_wa(struct intel_atomic_state *state, 2885 struct intel_crtc *crtc) 2886 { 2887 struct drm_i915_private *i915 = to_i915(state->base.dev); 2888 const struct intel_crtc_state *old_crtc_state = 2889 intel_atomic_get_old_crtc_state(state, crtc); 2890 const struct intel_crtc_state *new_crtc_state = 2891 intel_atomic_get_new_crtc_state(state, crtc); 2892 u8 update_planes = new_crtc_state->update_planes; 2893 const struct intel_plane_state *old_plane_state; 2894 struct intel_plane *plane; 2895 bool need_vbl_wait = false; 2896 int i; 2897 2898 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 2899 if (plane->need_async_flip_disable_wa && 2900 plane->pipe == crtc->pipe && 2901 update_planes & BIT(plane->id)) { 2902 /* 2903 * Apart from the async flip bit we want to 2904 * preserve the old state for the plane. 2905 */ 2906 plane->async_flip(plane, old_crtc_state, 2907 old_plane_state, false); 2908 need_vbl_wait = true; 2909 } 2910 } 2911 2912 if (need_vbl_wait) 2913 intel_wait_for_vblank(i915, crtc->pipe); 2914 } 2915 2916 static void intel_pre_plane_update(struct intel_atomic_state *state, 2917 struct intel_crtc *crtc) 2918 { 2919 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2920 const struct intel_crtc_state *old_crtc_state = 2921 intel_atomic_get_old_crtc_state(state, crtc); 2922 const struct intel_crtc_state *new_crtc_state = 2923 intel_atomic_get_new_crtc_state(state, crtc); 2924 enum pipe pipe = crtc->pipe; 2925 2926 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state)) 2927 hsw_disable_ips(old_crtc_state); 2928 2929 if (intel_fbc_pre_update(state, crtc)) 2930 intel_wait_for_vblank(dev_priv, pipe); 2931 2932 /* Display WA 827 */ 2933 if (!needs_nv12_wa(old_crtc_state) && 2934 needs_nv12_wa(new_crtc_state)) 2935 skl_wa_827(dev_priv, pipe, true); 2936 2937 /* Wa_2006604312:icl,ehl */ 2938 if (!needs_scalerclk_wa(old_crtc_state) && 2939 needs_scalerclk_wa(new_crtc_state)) 2940 icl_wa_scalerclkgating(dev_priv, pipe, true); 2941 2942 /* 2943 * Vblank time updates from the shadow to live plane control register 2944 * are blocked if the memory self-refresh mode is active at that 2945 * moment. So to make sure the plane gets truly disabled, disable 2946 * first the self-refresh mode. The self-refresh enable bit in turn 2947 * will be checked/applied by the HW only at the next frame start 2948 * event which is after the vblank start event, so we need to have a 2949 * wait-for-vblank between disabling the plane and the pipe. 2950 */ 2951 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active && 2952 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 2953 intel_wait_for_vblank(dev_priv, pipe); 2954 2955 /* 2956 * IVB workaround: must disable low power watermarks for at least 2957 * one frame before enabling scaling. LP watermarks can be re-enabled 2958 * when scaling is disabled. 2959 * 2960 * WaCxSRDisabledForSpriteScaling:ivb 2961 */ 2962 if (old_crtc_state->hw.active && 2963 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv)) 2964 intel_wait_for_vblank(dev_priv, pipe); 2965 2966 /* 2967 * If we're doing a modeset we don't need to do any 2968 * pre-vblank watermark programming here. 2969 */ 2970 if (!intel_crtc_needs_modeset(new_crtc_state)) { 2971 /* 2972 * For platforms that support atomic watermarks, program the 2973 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 2974 * will be the intermediate values that are safe for both pre- and 2975 * post- vblank; when vblank happens, the 'active' values will be set 2976 * to the final 'target' values and we'll do this again to get the 2977 * optimal watermarks. For gen9+ platforms, the values we program here 2978 * will be the final target values which will get automatically latched 2979 * at vblank time; no further programming will be necessary. 2980 * 2981 * If a platform hasn't been transitioned to atomic watermarks yet, 2982 * we'll continue to update watermarks the old way, if flags tell 2983 * us to. 2984 */ 2985 if (dev_priv->display.initial_watermarks) 2986 dev_priv->display.initial_watermarks(state, crtc); 2987 else if (new_crtc_state->update_wm_pre) 2988 intel_update_watermarks(crtc); 2989 } 2990 2991 /* 2992 * Gen2 reports pipe underruns whenever all planes are disabled. 2993 * So disable underrun reporting before all the planes get disabled. 2994 * 2995 * We do this after .initial_watermarks() so that we have a 2996 * chance of catching underruns with the intermediate watermarks 2997 * vs. the old plane configuration. 2998 */ 2999 if (DISPLAY_VER(dev_priv) == 2 && planes_disabling(old_crtc_state, new_crtc_state)) 3000 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3001 3002 /* 3003 * WA for platforms where async address update enable bit 3004 * is double buffered and only latched at start of vblank. 3005 */ 3006 if (old_crtc_state->uapi.async_flip && !new_crtc_state->uapi.async_flip) 3007 intel_crtc_async_flip_disable_wa(state, crtc); 3008 } 3009 3010 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 3011 struct intel_crtc *crtc) 3012 { 3013 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3014 const struct intel_crtc_state *new_crtc_state = 3015 intel_atomic_get_new_crtc_state(state, crtc); 3016 unsigned int update_mask = new_crtc_state->update_planes; 3017 const struct intel_plane_state *old_plane_state; 3018 struct intel_plane *plane; 3019 unsigned fb_bits = 0; 3020 int i; 3021 3022 intel_crtc_dpms_overlay_disable(crtc); 3023 3024 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 3025 if (crtc->pipe != plane->pipe || 3026 !(update_mask & BIT(plane->id))) 3027 continue; 3028 3029 intel_disable_plane(plane, new_crtc_state); 3030 3031 if (old_plane_state->uapi.visible) 3032 fb_bits |= plane->frontbuffer_bit; 3033 } 3034 3035 intel_frontbuffer_flip(dev_priv, fb_bits); 3036 } 3037 3038 /* 3039 * intel_connector_primary_encoder - get the primary encoder for a connector 3040 * @connector: connector for which to return the encoder 3041 * 3042 * Returns the primary encoder for a connector. There is a 1:1 mapping from 3043 * all connectors to their encoder, except for DP-MST connectors which have 3044 * both a virtual and a primary encoder. These DP-MST primary encoders can be 3045 * pointed to by as many DP-MST connectors as there are pipes. 3046 */ 3047 static struct intel_encoder * 3048 intel_connector_primary_encoder(struct intel_connector *connector) 3049 { 3050 struct intel_encoder *encoder; 3051 3052 if (connector->mst_port) 3053 return &dp_to_dig_port(connector->mst_port)->base; 3054 3055 encoder = intel_attached_encoder(connector); 3056 drm_WARN_ON(connector->base.dev, !encoder); 3057 3058 return encoder; 3059 } 3060 3061 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 3062 { 3063 struct drm_connector_state *new_conn_state; 3064 struct drm_connector *connector; 3065 int i; 3066 3067 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 3068 i) { 3069 struct intel_connector *intel_connector; 3070 struct intel_encoder *encoder; 3071 struct intel_crtc *crtc; 3072 3073 if (!intel_connector_needs_modeset(state, connector)) 3074 continue; 3075 3076 intel_connector = to_intel_connector(connector); 3077 encoder = intel_connector_primary_encoder(intel_connector); 3078 if (!encoder->update_prepare) 3079 continue; 3080 3081 crtc = new_conn_state->crtc ? 3082 to_intel_crtc(new_conn_state->crtc) : NULL; 3083 encoder->update_prepare(state, encoder, crtc); 3084 } 3085 } 3086 3087 static void intel_encoders_update_complete(struct intel_atomic_state *state) 3088 { 3089 struct drm_connector_state *new_conn_state; 3090 struct drm_connector *connector; 3091 int i; 3092 3093 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 3094 i) { 3095 struct intel_connector *intel_connector; 3096 struct intel_encoder *encoder; 3097 struct intel_crtc *crtc; 3098 3099 if (!intel_connector_needs_modeset(state, connector)) 3100 continue; 3101 3102 intel_connector = to_intel_connector(connector); 3103 encoder = intel_connector_primary_encoder(intel_connector); 3104 if (!encoder->update_complete) 3105 continue; 3106 3107 crtc = new_conn_state->crtc ? 3108 to_intel_crtc(new_conn_state->crtc) : NULL; 3109 encoder->update_complete(state, encoder, crtc); 3110 } 3111 } 3112 3113 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, 3114 struct intel_crtc *crtc) 3115 { 3116 const struct intel_crtc_state *crtc_state = 3117 intel_atomic_get_new_crtc_state(state, crtc); 3118 const struct drm_connector_state *conn_state; 3119 struct drm_connector *conn; 3120 int i; 3121 3122 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3123 struct intel_encoder *encoder = 3124 to_intel_encoder(conn_state->best_encoder); 3125 3126 if (conn_state->crtc != &crtc->base) 3127 continue; 3128 3129 if (encoder->pre_pll_enable) 3130 encoder->pre_pll_enable(state, encoder, 3131 crtc_state, conn_state); 3132 } 3133 } 3134 3135 static void intel_encoders_pre_enable(struct intel_atomic_state *state, 3136 struct intel_crtc *crtc) 3137 { 3138 const struct intel_crtc_state *crtc_state = 3139 intel_atomic_get_new_crtc_state(state, crtc); 3140 const struct drm_connector_state *conn_state; 3141 struct drm_connector *conn; 3142 int i; 3143 3144 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3145 struct intel_encoder *encoder = 3146 to_intel_encoder(conn_state->best_encoder); 3147 3148 if (conn_state->crtc != &crtc->base) 3149 continue; 3150 3151 if (encoder->pre_enable) 3152 encoder->pre_enable(state, encoder, 3153 crtc_state, conn_state); 3154 } 3155 } 3156 3157 static void intel_encoders_enable(struct intel_atomic_state *state, 3158 struct intel_crtc *crtc) 3159 { 3160 const struct intel_crtc_state *crtc_state = 3161 intel_atomic_get_new_crtc_state(state, crtc); 3162 const struct drm_connector_state *conn_state; 3163 struct drm_connector *conn; 3164 int i; 3165 3166 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3167 struct intel_encoder *encoder = 3168 to_intel_encoder(conn_state->best_encoder); 3169 3170 if (conn_state->crtc != &crtc->base) 3171 continue; 3172 3173 if (encoder->enable) 3174 encoder->enable(state, encoder, 3175 crtc_state, conn_state); 3176 intel_opregion_notify_encoder(encoder, true); 3177 } 3178 } 3179 3180 static void intel_encoders_disable(struct intel_atomic_state *state, 3181 struct intel_crtc *crtc) 3182 { 3183 const struct intel_crtc_state *old_crtc_state = 3184 intel_atomic_get_old_crtc_state(state, crtc); 3185 const struct drm_connector_state *old_conn_state; 3186 struct drm_connector *conn; 3187 int i; 3188 3189 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3190 struct intel_encoder *encoder = 3191 to_intel_encoder(old_conn_state->best_encoder); 3192 3193 if (old_conn_state->crtc != &crtc->base) 3194 continue; 3195 3196 intel_opregion_notify_encoder(encoder, false); 3197 if (encoder->disable) 3198 encoder->disable(state, encoder, 3199 old_crtc_state, old_conn_state); 3200 } 3201 } 3202 3203 static void intel_encoders_post_disable(struct intel_atomic_state *state, 3204 struct intel_crtc *crtc) 3205 { 3206 const struct intel_crtc_state *old_crtc_state = 3207 intel_atomic_get_old_crtc_state(state, crtc); 3208 const struct drm_connector_state *old_conn_state; 3209 struct drm_connector *conn; 3210 int i; 3211 3212 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3213 struct intel_encoder *encoder = 3214 to_intel_encoder(old_conn_state->best_encoder); 3215 3216 if (old_conn_state->crtc != &crtc->base) 3217 continue; 3218 3219 if (encoder->post_disable) 3220 encoder->post_disable(state, encoder, 3221 old_crtc_state, old_conn_state); 3222 } 3223 } 3224 3225 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, 3226 struct intel_crtc *crtc) 3227 { 3228 const struct intel_crtc_state *old_crtc_state = 3229 intel_atomic_get_old_crtc_state(state, crtc); 3230 const struct drm_connector_state *old_conn_state; 3231 struct drm_connector *conn; 3232 int i; 3233 3234 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3235 struct intel_encoder *encoder = 3236 to_intel_encoder(old_conn_state->best_encoder); 3237 3238 if (old_conn_state->crtc != &crtc->base) 3239 continue; 3240 3241 if (encoder->post_pll_disable) 3242 encoder->post_pll_disable(state, encoder, 3243 old_crtc_state, old_conn_state); 3244 } 3245 } 3246 3247 static void intel_encoders_update_pipe(struct intel_atomic_state *state, 3248 struct intel_crtc *crtc) 3249 { 3250 const struct intel_crtc_state *crtc_state = 3251 intel_atomic_get_new_crtc_state(state, crtc); 3252 const struct drm_connector_state *conn_state; 3253 struct drm_connector *conn; 3254 int i; 3255 3256 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3257 struct intel_encoder *encoder = 3258 to_intel_encoder(conn_state->best_encoder); 3259 3260 if (conn_state->crtc != &crtc->base) 3261 continue; 3262 3263 if (encoder->update_pipe) 3264 encoder->update_pipe(state, encoder, 3265 crtc_state, conn_state); 3266 } 3267 } 3268 3269 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 3270 { 3271 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3272 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 3273 3274 plane->disable_plane(plane, crtc_state); 3275 } 3276 3277 static void ilk_crtc_enable(struct intel_atomic_state *state, 3278 struct intel_crtc *crtc) 3279 { 3280 const struct intel_crtc_state *new_crtc_state = 3281 intel_atomic_get_new_crtc_state(state, crtc); 3282 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3283 enum pipe pipe = crtc->pipe; 3284 3285 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3286 return; 3287 3288 /* 3289 * Sometimes spurious CPU pipe underruns happen during FDI 3290 * training, at least with VGA+HDMI cloning. Suppress them. 3291 * 3292 * On ILK we get an occasional spurious CPU pipe underruns 3293 * between eDP port A enable and vdd enable. Also PCH port 3294 * enable seems to result in the occasional CPU pipe underrun. 3295 * 3296 * Spurious PCH underruns also occur during PCH enabling. 3297 */ 3298 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3299 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 3300 3301 if (new_crtc_state->has_pch_encoder) 3302 intel_prepare_shared_dpll(new_crtc_state); 3303 3304 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3305 intel_dp_set_m_n(new_crtc_state, M1_N1); 3306 3307 intel_set_transcoder_timings(new_crtc_state); 3308 intel_set_pipe_src_size(new_crtc_state); 3309 3310 if (new_crtc_state->has_pch_encoder) 3311 intel_cpu_transcoder_set_m_n(new_crtc_state, 3312 &new_crtc_state->fdi_m_n, NULL); 3313 3314 ilk_set_pipeconf(new_crtc_state); 3315 3316 crtc->active = true; 3317 3318 intel_encoders_pre_enable(state, crtc); 3319 3320 if (new_crtc_state->has_pch_encoder) { 3321 /* Note: FDI PLL enabling _must_ be done before we enable the 3322 * cpu pipes, hence this is separate from all the other fdi/pch 3323 * enabling. */ 3324 ilk_fdi_pll_enable(new_crtc_state); 3325 } else { 3326 assert_fdi_tx_disabled(dev_priv, pipe); 3327 assert_fdi_rx_disabled(dev_priv, pipe); 3328 } 3329 3330 ilk_pfit_enable(new_crtc_state); 3331 3332 /* 3333 * On ILK+ LUT must be loaded before the pipe is running but with 3334 * clocks enabled 3335 */ 3336 intel_color_load_luts(new_crtc_state); 3337 intel_color_commit(new_crtc_state); 3338 /* update DSPCNTR to configure gamma for pipe bottom color */ 3339 intel_disable_primary_plane(new_crtc_state); 3340 3341 if (dev_priv->display.initial_watermarks) 3342 dev_priv->display.initial_watermarks(state, crtc); 3343 intel_enable_pipe(new_crtc_state); 3344 3345 if (new_crtc_state->has_pch_encoder) 3346 ilk_pch_enable(state, new_crtc_state); 3347 3348 intel_crtc_vblank_on(new_crtc_state); 3349 3350 intel_encoders_enable(state, crtc); 3351 3352 if (HAS_PCH_CPT(dev_priv)) 3353 cpt_verify_modeset(dev_priv, pipe); 3354 3355 /* 3356 * Must wait for vblank to avoid spurious PCH FIFO underruns. 3357 * And a second vblank wait is needed at least on ILK with 3358 * some interlaced HDMI modes. Let's do the double wait always 3359 * in case there are more corner cases we don't know about. 3360 */ 3361 if (new_crtc_state->has_pch_encoder) { 3362 intel_wait_for_vblank(dev_priv, pipe); 3363 intel_wait_for_vblank(dev_priv, pipe); 3364 } 3365 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3366 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 3367 } 3368 3369 /* IPS only exists on ULT machines and is tied to pipe A. */ 3370 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 3371 { 3372 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 3373 } 3374 3375 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 3376 enum pipe pipe, bool apply) 3377 { 3378 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)); 3379 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 3380 3381 if (apply) 3382 val |= mask; 3383 else 3384 val &= ~mask; 3385 3386 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val); 3387 } 3388 3389 static void icl_pipe_mbus_enable(struct intel_crtc *crtc) 3390 { 3391 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3392 enum pipe pipe = crtc->pipe; 3393 u32 val; 3394 3395 val = MBUS_DBOX_A_CREDIT(2); 3396 3397 if (DISPLAY_VER(dev_priv) >= 12) { 3398 val |= MBUS_DBOX_BW_CREDIT(2); 3399 val |= MBUS_DBOX_B_CREDIT(12); 3400 } else { 3401 val |= MBUS_DBOX_BW_CREDIT(1); 3402 val |= MBUS_DBOX_B_CREDIT(8); 3403 } 3404 3405 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val); 3406 } 3407 3408 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) 3409 { 3410 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3411 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3412 3413 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe), 3414 HSW_LINETIME(crtc_state->linetime) | 3415 HSW_IPS_LINETIME(crtc_state->ips_linetime)); 3416 } 3417 3418 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) 3419 { 3420 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3421 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3422 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder); 3423 u32 val; 3424 3425 val = intel_de_read(dev_priv, reg); 3426 val &= ~HSW_FRAME_START_DELAY_MASK; 3427 val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 3428 intel_de_write(dev_priv, reg, val); 3429 } 3430 3431 static void icl_ddi_bigjoiner_pre_enable(struct intel_atomic_state *state, 3432 const struct intel_crtc_state *crtc_state) 3433 { 3434 struct intel_crtc *master = to_intel_crtc(crtc_state->uapi.crtc); 3435 struct drm_i915_private *dev_priv = to_i915(master->base.dev); 3436 struct intel_crtc_state *master_crtc_state; 3437 struct drm_connector_state *conn_state; 3438 struct drm_connector *conn; 3439 struct intel_encoder *encoder = NULL; 3440 int i; 3441 3442 if (crtc_state->bigjoiner_slave) 3443 master = crtc_state->bigjoiner_linked_crtc; 3444 3445 master_crtc_state = intel_atomic_get_new_crtc_state(state, master); 3446 3447 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3448 if (conn_state->crtc != &master->base) 3449 continue; 3450 3451 encoder = to_intel_encoder(conn_state->best_encoder); 3452 break; 3453 } 3454 3455 if (!crtc_state->bigjoiner_slave) { 3456 /* need to enable VDSC, which we skipped in pre-enable */ 3457 intel_dsc_enable(encoder, crtc_state); 3458 } else { 3459 /* 3460 * Enable sequence steps 1-7 on bigjoiner master 3461 */ 3462 intel_encoders_pre_pll_enable(state, master); 3463 intel_enable_shared_dpll(master_crtc_state); 3464 intel_encoders_pre_enable(state, master); 3465 3466 /* and DSC on slave */ 3467 intel_dsc_enable(NULL, crtc_state); 3468 } 3469 3470 if (DISPLAY_VER(dev_priv) >= 13) 3471 intel_uncompressed_joiner_enable(crtc_state); 3472 } 3473 3474 static void hsw_crtc_enable(struct intel_atomic_state *state, 3475 struct intel_crtc *crtc) 3476 { 3477 const struct intel_crtc_state *new_crtc_state = 3478 intel_atomic_get_new_crtc_state(state, crtc); 3479 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3480 enum pipe pipe = crtc->pipe, hsw_workaround_pipe; 3481 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 3482 bool psl_clkgate_wa; 3483 3484 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3485 return; 3486 3487 if (!new_crtc_state->bigjoiner) { 3488 intel_encoders_pre_pll_enable(state, crtc); 3489 3490 if (new_crtc_state->shared_dpll) 3491 intel_enable_shared_dpll(new_crtc_state); 3492 3493 intel_encoders_pre_enable(state, crtc); 3494 } else { 3495 icl_ddi_bigjoiner_pre_enable(state, new_crtc_state); 3496 } 3497 3498 intel_set_pipe_src_size(new_crtc_state); 3499 if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 3500 bdw_set_pipemisc(new_crtc_state); 3501 3502 if (!new_crtc_state->bigjoiner_slave && !transcoder_is_dsi(cpu_transcoder)) { 3503 intel_set_transcoder_timings(new_crtc_state); 3504 3505 if (cpu_transcoder != TRANSCODER_EDP) 3506 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder), 3507 new_crtc_state->pixel_multiplier - 1); 3508 3509 if (new_crtc_state->has_pch_encoder) 3510 intel_cpu_transcoder_set_m_n(new_crtc_state, 3511 &new_crtc_state->fdi_m_n, NULL); 3512 3513 hsw_set_frame_start_delay(new_crtc_state); 3514 } 3515 3516 if (!transcoder_is_dsi(cpu_transcoder)) 3517 hsw_set_pipeconf(new_crtc_state); 3518 3519 crtc->active = true; 3520 3521 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */ 3522 psl_clkgate_wa = DISPLAY_VER(dev_priv) == 10 && 3523 new_crtc_state->pch_pfit.enabled; 3524 if (psl_clkgate_wa) 3525 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 3526 3527 if (DISPLAY_VER(dev_priv) >= 9) 3528 skl_pfit_enable(new_crtc_state); 3529 else 3530 ilk_pfit_enable(new_crtc_state); 3531 3532 /* 3533 * On ILK+ LUT must be loaded before the pipe is running but with 3534 * clocks enabled 3535 */ 3536 intel_color_load_luts(new_crtc_state); 3537 intel_color_commit(new_crtc_state); 3538 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 3539 if (DISPLAY_VER(dev_priv) < 9) 3540 intel_disable_primary_plane(new_crtc_state); 3541 3542 hsw_set_linetime_wm(new_crtc_state); 3543 3544 if (DISPLAY_VER(dev_priv) >= 11) 3545 icl_set_pipe_chicken(crtc); 3546 3547 if (dev_priv->display.initial_watermarks) 3548 dev_priv->display.initial_watermarks(state, crtc); 3549 3550 if (DISPLAY_VER(dev_priv) >= 11) 3551 icl_pipe_mbus_enable(crtc); 3552 3553 if (new_crtc_state->bigjoiner_slave) 3554 intel_crtc_vblank_on(new_crtc_state); 3555 3556 intel_encoders_enable(state, crtc); 3557 3558 if (psl_clkgate_wa) { 3559 intel_wait_for_vblank(dev_priv, pipe); 3560 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 3561 } 3562 3563 /* If we change the relative order between pipe/planes enabling, we need 3564 * to change the workaround. */ 3565 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe; 3566 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 3567 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 3568 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 3569 } 3570 } 3571 3572 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state) 3573 { 3574 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 3575 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3576 enum pipe pipe = crtc->pipe; 3577 3578 /* To avoid upsetting the power well on haswell only disable the pfit if 3579 * it's in use. The hw state code will make sure we get this right. */ 3580 if (!old_crtc_state->pch_pfit.enabled) 3581 return; 3582 3583 intel_de_write(dev_priv, PF_CTL(pipe), 0); 3584 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0); 3585 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0); 3586 } 3587 3588 static void ilk_crtc_disable(struct intel_atomic_state *state, 3589 struct intel_crtc *crtc) 3590 { 3591 const struct intel_crtc_state *old_crtc_state = 3592 intel_atomic_get_old_crtc_state(state, crtc); 3593 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3594 enum pipe pipe = crtc->pipe; 3595 3596 /* 3597 * Sometimes spurious CPU pipe underruns happen when the 3598 * pipe is already disabled, but FDI RX/TX is still enabled. 3599 * Happens at least with VGA+HDMI cloning. Suppress them. 3600 */ 3601 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3602 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 3603 3604 intel_encoders_disable(state, crtc); 3605 3606 intel_crtc_vblank_off(old_crtc_state); 3607 3608 intel_disable_pipe(old_crtc_state); 3609 3610 ilk_pfit_disable(old_crtc_state); 3611 3612 if (old_crtc_state->has_pch_encoder) 3613 ilk_fdi_disable(crtc); 3614 3615 intel_encoders_post_disable(state, crtc); 3616 3617 if (old_crtc_state->has_pch_encoder) { 3618 ilk_disable_pch_transcoder(dev_priv, pipe); 3619 3620 if (HAS_PCH_CPT(dev_priv)) { 3621 i915_reg_t reg; 3622 u32 temp; 3623 3624 /* disable TRANS_DP_CTL */ 3625 reg = TRANS_DP_CTL(pipe); 3626 temp = intel_de_read(dev_priv, reg); 3627 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 3628 TRANS_DP_PORT_SEL_MASK); 3629 temp |= TRANS_DP_PORT_SEL_NONE; 3630 intel_de_write(dev_priv, reg, temp); 3631 3632 /* disable DPLL_SEL */ 3633 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 3634 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 3635 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 3636 } 3637 3638 ilk_fdi_pll_disable(crtc); 3639 } 3640 3641 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3642 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 3643 } 3644 3645 static void hsw_crtc_disable(struct intel_atomic_state *state, 3646 struct intel_crtc *crtc) 3647 { 3648 /* 3649 * FIXME collapse everything to one hook. 3650 * Need care with mst->ddi interactions. 3651 */ 3652 intel_encoders_disable(state, crtc); 3653 intel_encoders_post_disable(state, crtc); 3654 } 3655 3656 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 3657 { 3658 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3659 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3660 3661 if (!crtc_state->gmch_pfit.control) 3662 return; 3663 3664 /* 3665 * The panel fitter should only be adjusted whilst the pipe is disabled, 3666 * according to register description and PRM. 3667 */ 3668 drm_WARN_ON(&dev_priv->drm, 3669 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE); 3670 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 3671 3672 intel_de_write(dev_priv, PFIT_PGM_RATIOS, 3673 crtc_state->gmch_pfit.pgm_ratios); 3674 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control); 3675 3676 /* Border color in case we don't scale up to the full screen. Black by 3677 * default, change to something else for debugging. */ 3678 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0); 3679 } 3680 3681 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 3682 { 3683 if (phy == PHY_NONE) 3684 return false; 3685 else if (IS_ALDERLAKE_S(dev_priv)) 3686 return phy <= PHY_E; 3687 else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) 3688 return phy <= PHY_D; 3689 else if (IS_JSL_EHL(dev_priv)) 3690 return phy <= PHY_C; 3691 else if (DISPLAY_VER(dev_priv) >= 11) 3692 return phy <= PHY_B; 3693 else 3694 return false; 3695 } 3696 3697 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 3698 { 3699 if (IS_ALDERLAKE_P(dev_priv)) 3700 return phy >= PHY_F && phy <= PHY_I; 3701 else if (IS_TIGERLAKE(dev_priv)) 3702 return phy >= PHY_D && phy <= PHY_I; 3703 else if (IS_ICELAKE(dev_priv)) 3704 return phy >= PHY_C && phy <= PHY_F; 3705 else 3706 return false; 3707 } 3708 3709 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 3710 { 3711 if (DISPLAY_VER(i915) >= 13 && port >= PORT_D_XELPD) 3712 return PHY_D + port - PORT_D_XELPD; 3713 else if (DISPLAY_VER(i915) >= 13 && port >= PORT_TC1) 3714 return PHY_F + port - PORT_TC1; 3715 else if (IS_ALDERLAKE_S(i915) && port >= PORT_TC1) 3716 return PHY_B + port - PORT_TC1; 3717 else if ((IS_DG1(i915) || IS_ROCKETLAKE(i915)) && port >= PORT_TC1) 3718 return PHY_C + port - PORT_TC1; 3719 else if (IS_JSL_EHL(i915) && port == PORT_D) 3720 return PHY_A; 3721 3722 return PHY_A + port - PORT_A; 3723 } 3724 3725 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 3726 { 3727 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 3728 return TC_PORT_NONE; 3729 3730 if (DISPLAY_VER(dev_priv) >= 12) 3731 return TC_PORT_1 + port - PORT_TC1; 3732 else 3733 return TC_PORT_1 + port - PORT_C; 3734 } 3735 3736 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 3737 { 3738 switch (port) { 3739 case PORT_A: 3740 return POWER_DOMAIN_PORT_DDI_A_LANES; 3741 case PORT_B: 3742 return POWER_DOMAIN_PORT_DDI_B_LANES; 3743 case PORT_C: 3744 return POWER_DOMAIN_PORT_DDI_C_LANES; 3745 case PORT_D: 3746 return POWER_DOMAIN_PORT_DDI_D_LANES; 3747 case PORT_E: 3748 return POWER_DOMAIN_PORT_DDI_E_LANES; 3749 case PORT_F: 3750 return POWER_DOMAIN_PORT_DDI_F_LANES; 3751 case PORT_G: 3752 return POWER_DOMAIN_PORT_DDI_G_LANES; 3753 case PORT_H: 3754 return POWER_DOMAIN_PORT_DDI_H_LANES; 3755 case PORT_I: 3756 return POWER_DOMAIN_PORT_DDI_I_LANES; 3757 default: 3758 MISSING_CASE(port); 3759 return POWER_DOMAIN_PORT_OTHER; 3760 } 3761 } 3762 3763 enum intel_display_power_domain 3764 intel_aux_power_domain(struct intel_digital_port *dig_port) 3765 { 3766 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 3767 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 3768 3769 if (intel_phy_is_tc(dev_priv, phy) && 3770 dig_port->tc_mode == TC_PORT_TBT_ALT) { 3771 switch (dig_port->aux_ch) { 3772 case AUX_CH_C: 3773 return POWER_DOMAIN_AUX_C_TBT; 3774 case AUX_CH_D: 3775 return POWER_DOMAIN_AUX_D_TBT; 3776 case AUX_CH_E: 3777 return POWER_DOMAIN_AUX_E_TBT; 3778 case AUX_CH_F: 3779 return POWER_DOMAIN_AUX_F_TBT; 3780 case AUX_CH_G: 3781 return POWER_DOMAIN_AUX_G_TBT; 3782 case AUX_CH_H: 3783 return POWER_DOMAIN_AUX_H_TBT; 3784 case AUX_CH_I: 3785 return POWER_DOMAIN_AUX_I_TBT; 3786 default: 3787 MISSING_CASE(dig_port->aux_ch); 3788 return POWER_DOMAIN_AUX_C_TBT; 3789 } 3790 } 3791 3792 return intel_legacy_aux_to_power_domain(dig_port->aux_ch); 3793 } 3794 3795 /* 3796 * Converts aux_ch to power_domain without caring about TBT ports for that use 3797 * intel_aux_power_domain() 3798 */ 3799 enum intel_display_power_domain 3800 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch) 3801 { 3802 switch (aux_ch) { 3803 case AUX_CH_A: 3804 return POWER_DOMAIN_AUX_A; 3805 case AUX_CH_B: 3806 return POWER_DOMAIN_AUX_B; 3807 case AUX_CH_C: 3808 return POWER_DOMAIN_AUX_C; 3809 case AUX_CH_D: 3810 return POWER_DOMAIN_AUX_D; 3811 case AUX_CH_E: 3812 return POWER_DOMAIN_AUX_E; 3813 case AUX_CH_F: 3814 return POWER_DOMAIN_AUX_F; 3815 case AUX_CH_G: 3816 return POWER_DOMAIN_AUX_G; 3817 case AUX_CH_H: 3818 return POWER_DOMAIN_AUX_H; 3819 case AUX_CH_I: 3820 return POWER_DOMAIN_AUX_I; 3821 default: 3822 MISSING_CASE(aux_ch); 3823 return POWER_DOMAIN_AUX_A; 3824 } 3825 } 3826 3827 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 3828 { 3829 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3830 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3831 struct drm_encoder *encoder; 3832 enum pipe pipe = crtc->pipe; 3833 u64 mask; 3834 enum transcoder transcoder = crtc_state->cpu_transcoder; 3835 3836 if (!crtc_state->hw.active) 3837 return 0; 3838 3839 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 3840 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); 3841 if (crtc_state->pch_pfit.enabled || 3842 crtc_state->pch_pfit.force_thru) 3843 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 3844 3845 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 3846 crtc_state->uapi.encoder_mask) { 3847 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 3848 3849 mask |= BIT_ULL(intel_encoder->power_domain); 3850 } 3851 3852 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 3853 mask |= BIT_ULL(POWER_DOMAIN_AUDIO); 3854 3855 if (crtc_state->shared_dpll) 3856 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 3857 3858 if (crtc_state->dsc.compression_enable) 3859 mask |= BIT_ULL(intel_dsc_power_domain(crtc_state)); 3860 3861 return mask; 3862 } 3863 3864 static u64 3865 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 3866 { 3867 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3868 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3869 enum intel_display_power_domain domain; 3870 u64 domains, new_domains, old_domains; 3871 3872 domains = get_crtc_power_domains(crtc_state); 3873 3874 new_domains = domains & ~crtc->enabled_power_domains.mask; 3875 old_domains = crtc->enabled_power_domains.mask & ~domains; 3876 3877 for_each_power_domain(domain, new_domains) 3878 intel_display_power_get_in_set(dev_priv, 3879 &crtc->enabled_power_domains, 3880 domain); 3881 3882 return old_domains; 3883 } 3884 3885 static void modeset_put_crtc_power_domains(struct intel_crtc *crtc, 3886 u64 domains) 3887 { 3888 intel_display_power_put_mask_in_set(to_i915(crtc->base.dev), 3889 &crtc->enabled_power_domains, 3890 domains); 3891 } 3892 3893 static void valleyview_crtc_enable(struct intel_atomic_state *state, 3894 struct intel_crtc *crtc) 3895 { 3896 const struct intel_crtc_state *new_crtc_state = 3897 intel_atomic_get_new_crtc_state(state, crtc); 3898 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3899 enum pipe pipe = crtc->pipe; 3900 3901 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3902 return; 3903 3904 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3905 intel_dp_set_m_n(new_crtc_state, M1_N1); 3906 3907 intel_set_transcoder_timings(new_crtc_state); 3908 intel_set_pipe_src_size(new_crtc_state); 3909 3910 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 3911 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY); 3912 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0); 3913 } 3914 3915 i9xx_set_pipeconf(new_crtc_state); 3916 3917 crtc->active = true; 3918 3919 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3920 3921 intel_encoders_pre_pll_enable(state, crtc); 3922 3923 if (IS_CHERRYVIEW(dev_priv)) { 3924 chv_prepare_pll(crtc, new_crtc_state); 3925 chv_enable_pll(crtc, new_crtc_state); 3926 } else { 3927 vlv_prepare_pll(crtc, new_crtc_state); 3928 vlv_enable_pll(crtc, new_crtc_state); 3929 } 3930 3931 intel_encoders_pre_enable(state, crtc); 3932 3933 i9xx_pfit_enable(new_crtc_state); 3934 3935 intel_color_load_luts(new_crtc_state); 3936 intel_color_commit(new_crtc_state); 3937 /* update DSPCNTR to configure gamma for pipe bottom color */ 3938 intel_disable_primary_plane(new_crtc_state); 3939 3940 dev_priv->display.initial_watermarks(state, crtc); 3941 intel_enable_pipe(new_crtc_state); 3942 3943 intel_crtc_vblank_on(new_crtc_state); 3944 3945 intel_encoders_enable(state, crtc); 3946 } 3947 3948 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) 3949 { 3950 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3951 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3952 3953 intel_de_write(dev_priv, FP0(crtc->pipe), 3954 crtc_state->dpll_hw_state.fp0); 3955 intel_de_write(dev_priv, FP1(crtc->pipe), 3956 crtc_state->dpll_hw_state.fp1); 3957 } 3958 3959 static void i9xx_crtc_enable(struct intel_atomic_state *state, 3960 struct intel_crtc *crtc) 3961 { 3962 const struct intel_crtc_state *new_crtc_state = 3963 intel_atomic_get_new_crtc_state(state, crtc); 3964 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3965 enum pipe pipe = crtc->pipe; 3966 3967 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3968 return; 3969 3970 i9xx_set_pll_dividers(new_crtc_state); 3971 3972 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3973 intel_dp_set_m_n(new_crtc_state, M1_N1); 3974 3975 intel_set_transcoder_timings(new_crtc_state); 3976 intel_set_pipe_src_size(new_crtc_state); 3977 3978 i9xx_set_pipeconf(new_crtc_state); 3979 3980 crtc->active = true; 3981 3982 if (DISPLAY_VER(dev_priv) != 2) 3983 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3984 3985 intel_encoders_pre_enable(state, crtc); 3986 3987 i9xx_enable_pll(crtc, new_crtc_state); 3988 3989 i9xx_pfit_enable(new_crtc_state); 3990 3991 intel_color_load_luts(new_crtc_state); 3992 intel_color_commit(new_crtc_state); 3993 /* update DSPCNTR to configure gamma for pipe bottom color */ 3994 intel_disable_primary_plane(new_crtc_state); 3995 3996 if (dev_priv->display.initial_watermarks) 3997 dev_priv->display.initial_watermarks(state, crtc); 3998 else 3999 intel_update_watermarks(crtc); 4000 intel_enable_pipe(new_crtc_state); 4001 4002 intel_crtc_vblank_on(new_crtc_state); 4003 4004 intel_encoders_enable(state, crtc); 4005 4006 /* prevents spurious underruns */ 4007 if (DISPLAY_VER(dev_priv) == 2) 4008 intel_wait_for_vblank(dev_priv, pipe); 4009 } 4010 4011 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 4012 { 4013 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 4014 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4015 4016 if (!old_crtc_state->gmch_pfit.control) 4017 return; 4018 4019 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 4020 4021 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n", 4022 intel_de_read(dev_priv, PFIT_CONTROL)); 4023 intel_de_write(dev_priv, PFIT_CONTROL, 0); 4024 } 4025 4026 static void i9xx_crtc_disable(struct intel_atomic_state *state, 4027 struct intel_crtc *crtc) 4028 { 4029 struct intel_crtc_state *old_crtc_state = 4030 intel_atomic_get_old_crtc_state(state, crtc); 4031 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4032 enum pipe pipe = crtc->pipe; 4033 4034 /* 4035 * On gen2 planes are double buffered but the pipe isn't, so we must 4036 * wait for planes to fully turn off before disabling the pipe. 4037 */ 4038 if (DISPLAY_VER(dev_priv) == 2) 4039 intel_wait_for_vblank(dev_priv, pipe); 4040 4041 intel_encoders_disable(state, crtc); 4042 4043 intel_crtc_vblank_off(old_crtc_state); 4044 4045 intel_disable_pipe(old_crtc_state); 4046 4047 i9xx_pfit_disable(old_crtc_state); 4048 4049 intel_encoders_post_disable(state, crtc); 4050 4051 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 4052 if (IS_CHERRYVIEW(dev_priv)) 4053 chv_disable_pll(dev_priv, pipe); 4054 else if (IS_VALLEYVIEW(dev_priv)) 4055 vlv_disable_pll(dev_priv, pipe); 4056 else 4057 i9xx_disable_pll(old_crtc_state); 4058 } 4059 4060 intel_encoders_post_pll_disable(state, crtc); 4061 4062 if (DISPLAY_VER(dev_priv) != 2) 4063 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 4064 4065 if (!dev_priv->display.initial_watermarks) 4066 intel_update_watermarks(crtc); 4067 4068 /* clock the pipe down to 640x480@60 to potentially save power */ 4069 if (IS_I830(dev_priv)) 4070 i830_enable_pipe(dev_priv, pipe); 4071 } 4072 4073 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc, 4074 struct drm_modeset_acquire_ctx *ctx) 4075 { 4076 struct intel_encoder *encoder; 4077 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4078 struct intel_bw_state *bw_state = 4079 to_intel_bw_state(dev_priv->bw_obj.state); 4080 struct intel_cdclk_state *cdclk_state = 4081 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 4082 struct intel_dbuf_state *dbuf_state = 4083 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 4084 struct intel_crtc_state *crtc_state = 4085 to_intel_crtc_state(crtc->base.state); 4086 struct intel_plane *plane; 4087 struct drm_atomic_state *state; 4088 struct intel_crtc_state *temp_crtc_state; 4089 enum pipe pipe = crtc->pipe; 4090 int ret; 4091 4092 if (!crtc_state->hw.active) 4093 return; 4094 4095 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 4096 const struct intel_plane_state *plane_state = 4097 to_intel_plane_state(plane->base.state); 4098 4099 if (plane_state->uapi.visible) 4100 intel_plane_disable_noatomic(crtc, plane); 4101 } 4102 4103 state = drm_atomic_state_alloc(&dev_priv->drm); 4104 if (!state) { 4105 drm_dbg_kms(&dev_priv->drm, 4106 "failed to disable [CRTC:%d:%s], out of memory", 4107 crtc->base.base.id, crtc->base.name); 4108 return; 4109 } 4110 4111 state->acquire_ctx = ctx; 4112 4113 /* Everything's already locked, -EDEADLK can't happen. */ 4114 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc); 4115 ret = drm_atomic_add_affected_connectors(state, &crtc->base); 4116 4117 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret); 4118 4119 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc); 4120 4121 drm_atomic_state_put(state); 4122 4123 drm_dbg_kms(&dev_priv->drm, 4124 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 4125 crtc->base.base.id, crtc->base.name); 4126 4127 crtc->active = false; 4128 crtc->base.enabled = false; 4129 4130 drm_WARN_ON(&dev_priv->drm, 4131 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0); 4132 crtc_state->uapi.active = false; 4133 crtc_state->uapi.connector_mask = 0; 4134 crtc_state->uapi.encoder_mask = 0; 4135 intel_crtc_free_hw_state(crtc_state); 4136 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw)); 4137 4138 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder) 4139 encoder->base.crtc = NULL; 4140 4141 intel_fbc_disable(crtc); 4142 intel_update_watermarks(crtc); 4143 intel_disable_shared_dpll(crtc_state); 4144 4145 intel_display_power_put_all_in_set(dev_priv, &crtc->enabled_power_domains); 4146 4147 dev_priv->active_pipes &= ~BIT(pipe); 4148 cdclk_state->min_cdclk[pipe] = 0; 4149 cdclk_state->min_voltage_level[pipe] = 0; 4150 cdclk_state->active_pipes &= ~BIT(pipe); 4151 4152 dbuf_state->active_pipes &= ~BIT(pipe); 4153 4154 bw_state->data_rate[pipe] = 0; 4155 bw_state->num_active_planes[pipe] = 0; 4156 } 4157 4158 /* 4159 * turn all crtc's off, but do not adjust state 4160 * This has to be paired with a call to intel_modeset_setup_hw_state. 4161 */ 4162 int intel_display_suspend(struct drm_device *dev) 4163 { 4164 struct drm_i915_private *dev_priv = to_i915(dev); 4165 struct drm_atomic_state *state; 4166 int ret; 4167 4168 if (!HAS_DISPLAY(dev_priv)) 4169 return 0; 4170 4171 state = drm_atomic_helper_suspend(dev); 4172 ret = PTR_ERR_OR_ZERO(state); 4173 if (ret) 4174 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 4175 ret); 4176 else 4177 dev_priv->modeset_restore_state = state; 4178 return ret; 4179 } 4180 4181 void intel_encoder_destroy(struct drm_encoder *encoder) 4182 { 4183 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 4184 4185 drm_encoder_cleanup(encoder); 4186 kfree(intel_encoder); 4187 } 4188 4189 /* Cross check the actual hw state with our own modeset state tracking (and it's 4190 * internal consistency). */ 4191 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 4192 struct drm_connector_state *conn_state) 4193 { 4194 struct intel_connector *connector = to_intel_connector(conn_state->connector); 4195 struct drm_i915_private *i915 = to_i915(connector->base.dev); 4196 4197 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 4198 connector->base.base.id, connector->base.name); 4199 4200 if (connector->get_hw_state(connector)) { 4201 struct intel_encoder *encoder = intel_attached_encoder(connector); 4202 4203 I915_STATE_WARN(!crtc_state, 4204 "connector enabled without attached crtc\n"); 4205 4206 if (!crtc_state) 4207 return; 4208 4209 I915_STATE_WARN(!crtc_state->hw.active, 4210 "connector is active, but attached crtc isn't\n"); 4211 4212 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 4213 return; 4214 4215 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 4216 "atomic encoder doesn't match attached encoder\n"); 4217 4218 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 4219 "attached encoder crtc differs from connector crtc\n"); 4220 } else { 4221 I915_STATE_WARN(crtc_state && crtc_state->hw.active, 4222 "attached crtc is active, but connector isn't\n"); 4223 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 4224 "best encoder set without crtc!\n"); 4225 } 4226 } 4227 4228 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 4229 { 4230 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4231 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4232 4233 /* IPS only exists on ULT machines and is tied to pipe A. */ 4234 if (!hsw_crtc_supports_ips(crtc)) 4235 return false; 4236 4237 if (!dev_priv->params.enable_ips) 4238 return false; 4239 4240 if (crtc_state->pipe_bpp > 24) 4241 return false; 4242 4243 /* 4244 * We compare against max which means we must take 4245 * the increased cdclk requirement into account when 4246 * calculating the new cdclk. 4247 * 4248 * Should measure whether using a lower cdclk w/o IPS 4249 */ 4250 if (IS_BROADWELL(dev_priv) && 4251 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 4252 return false; 4253 4254 return true; 4255 } 4256 4257 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 4258 { 4259 struct drm_i915_private *dev_priv = 4260 to_i915(crtc_state->uapi.crtc->dev); 4261 struct intel_atomic_state *state = 4262 to_intel_atomic_state(crtc_state->uapi.state); 4263 4264 crtc_state->ips_enabled = false; 4265 4266 if (!hsw_crtc_state_ips_capable(crtc_state)) 4267 return 0; 4268 4269 /* 4270 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 4271 * enabled and disabled dynamically based on package C states, 4272 * user space can't make reliable use of the CRCs, so let's just 4273 * completely disable it. 4274 */ 4275 if (crtc_state->crc_enabled) 4276 return 0; 4277 4278 /* IPS should be fine as long as at least one plane is enabled. */ 4279 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 4280 return 0; 4281 4282 if (IS_BROADWELL(dev_priv)) { 4283 const struct intel_cdclk_state *cdclk_state; 4284 4285 cdclk_state = intel_atomic_get_cdclk_state(state); 4286 if (IS_ERR(cdclk_state)) 4287 return PTR_ERR(cdclk_state); 4288 4289 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 4290 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100) 4291 return 0; 4292 } 4293 4294 crtc_state->ips_enabled = true; 4295 4296 return 0; 4297 } 4298 4299 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 4300 { 4301 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4302 4303 /* GDG double wide on either pipe, otherwise pipe A only */ 4304 return DISPLAY_VER(dev_priv) < 4 && 4305 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 4306 } 4307 4308 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state) 4309 { 4310 u32 pixel_rate = crtc_state->hw.pipe_mode.crtc_clock; 4311 struct drm_rect src; 4312 4313 /* 4314 * We only use IF-ID interlacing. If we ever use 4315 * PF-ID we'll need to adjust the pixel_rate here. 4316 */ 4317 4318 if (!crtc_state->pch_pfit.enabled) 4319 return pixel_rate; 4320 4321 drm_rect_init(&src, 0, 0, 4322 crtc_state->pipe_src_w << 16, 4323 crtc_state->pipe_src_h << 16); 4324 4325 return intel_adjusted_rate(&src, &crtc_state->pch_pfit.dst, 4326 pixel_rate); 4327 } 4328 4329 static void intel_mode_from_crtc_timings(struct drm_display_mode *mode, 4330 const struct drm_display_mode *timings) 4331 { 4332 mode->hdisplay = timings->crtc_hdisplay; 4333 mode->htotal = timings->crtc_htotal; 4334 mode->hsync_start = timings->crtc_hsync_start; 4335 mode->hsync_end = timings->crtc_hsync_end; 4336 4337 mode->vdisplay = timings->crtc_vdisplay; 4338 mode->vtotal = timings->crtc_vtotal; 4339 mode->vsync_start = timings->crtc_vsync_start; 4340 mode->vsync_end = timings->crtc_vsync_end; 4341 4342 mode->flags = timings->flags; 4343 mode->type = DRM_MODE_TYPE_DRIVER; 4344 4345 mode->clock = timings->crtc_clock; 4346 4347 drm_mode_set_name(mode); 4348 } 4349 4350 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 4351 { 4352 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4353 4354 if (HAS_GMCH(dev_priv)) 4355 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 4356 crtc_state->pixel_rate = 4357 crtc_state->hw.pipe_mode.crtc_clock; 4358 else 4359 crtc_state->pixel_rate = 4360 ilk_pipe_pixel_rate(crtc_state); 4361 } 4362 4363 static void intel_crtc_readout_derived_state(struct intel_crtc_state *crtc_state) 4364 { 4365 struct drm_display_mode *mode = &crtc_state->hw.mode; 4366 struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; 4367 struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 4368 4369 drm_mode_copy(pipe_mode, adjusted_mode); 4370 4371 if (crtc_state->bigjoiner) { 4372 /* 4373 * transcoder is programmed to the full mode, 4374 * but pipe timings are half of the transcoder mode 4375 */ 4376 pipe_mode->crtc_hdisplay /= 2; 4377 pipe_mode->crtc_hblank_start /= 2; 4378 pipe_mode->crtc_hblank_end /= 2; 4379 pipe_mode->crtc_hsync_start /= 2; 4380 pipe_mode->crtc_hsync_end /= 2; 4381 pipe_mode->crtc_htotal /= 2; 4382 pipe_mode->crtc_clock /= 2; 4383 } 4384 4385 if (crtc_state->splitter.enable) { 4386 int n = crtc_state->splitter.link_count; 4387 int overlap = crtc_state->splitter.pixel_overlap; 4388 4389 /* 4390 * eDP MSO uses segment timings from EDID for transcoder 4391 * timings, but full mode for everything else. 4392 * 4393 * h_full = (h_segment - pixel_overlap) * link_count 4394 */ 4395 pipe_mode->crtc_hdisplay = (pipe_mode->crtc_hdisplay - overlap) * n; 4396 pipe_mode->crtc_hblank_start = (pipe_mode->crtc_hblank_start - overlap) * n; 4397 pipe_mode->crtc_hblank_end = (pipe_mode->crtc_hblank_end - overlap) * n; 4398 pipe_mode->crtc_hsync_start = (pipe_mode->crtc_hsync_start - overlap) * n; 4399 pipe_mode->crtc_hsync_end = (pipe_mode->crtc_hsync_end - overlap) * n; 4400 pipe_mode->crtc_htotal = (pipe_mode->crtc_htotal - overlap) * n; 4401 pipe_mode->crtc_clock *= n; 4402 4403 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4404 intel_mode_from_crtc_timings(adjusted_mode, pipe_mode); 4405 } else { 4406 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4407 intel_mode_from_crtc_timings(adjusted_mode, adjusted_mode); 4408 } 4409 4410 intel_crtc_compute_pixel_rate(crtc_state); 4411 4412 drm_mode_copy(mode, adjusted_mode); 4413 mode->hdisplay = crtc_state->pipe_src_w << crtc_state->bigjoiner; 4414 mode->vdisplay = crtc_state->pipe_src_h; 4415 } 4416 4417 static void intel_encoder_get_config(struct intel_encoder *encoder, 4418 struct intel_crtc_state *crtc_state) 4419 { 4420 encoder->get_config(encoder, crtc_state); 4421 4422 intel_crtc_readout_derived_state(crtc_state); 4423 } 4424 4425 static int intel_crtc_compute_config(struct intel_crtc *crtc, 4426 struct intel_crtc_state *pipe_config) 4427 { 4428 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4429 struct drm_display_mode *pipe_mode = &pipe_config->hw.pipe_mode; 4430 int clock_limit = dev_priv->max_dotclk_freq; 4431 4432 drm_mode_copy(pipe_mode, &pipe_config->hw.adjusted_mode); 4433 4434 /* Adjust pipe_mode for bigjoiner, with half the horizontal mode */ 4435 if (pipe_config->bigjoiner) { 4436 pipe_mode->crtc_clock /= 2; 4437 pipe_mode->crtc_hdisplay /= 2; 4438 pipe_mode->crtc_hblank_start /= 2; 4439 pipe_mode->crtc_hblank_end /= 2; 4440 pipe_mode->crtc_hsync_start /= 2; 4441 pipe_mode->crtc_hsync_end /= 2; 4442 pipe_mode->crtc_htotal /= 2; 4443 pipe_config->pipe_src_w /= 2; 4444 } 4445 4446 if (pipe_config->splitter.enable) { 4447 int n = pipe_config->splitter.link_count; 4448 int overlap = pipe_config->splitter.pixel_overlap; 4449 4450 pipe_mode->crtc_hdisplay = (pipe_mode->crtc_hdisplay - overlap) * n; 4451 pipe_mode->crtc_hblank_start = (pipe_mode->crtc_hblank_start - overlap) * n; 4452 pipe_mode->crtc_hblank_end = (pipe_mode->crtc_hblank_end - overlap) * n; 4453 pipe_mode->crtc_hsync_start = (pipe_mode->crtc_hsync_start - overlap) * n; 4454 pipe_mode->crtc_hsync_end = (pipe_mode->crtc_hsync_end - overlap) * n; 4455 pipe_mode->crtc_htotal = (pipe_mode->crtc_htotal - overlap) * n; 4456 pipe_mode->crtc_clock *= n; 4457 } 4458 4459 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4460 4461 if (DISPLAY_VER(dev_priv) < 4) { 4462 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 4463 4464 /* 4465 * Enable double wide mode when the dot clock 4466 * is > 90% of the (display) core speed. 4467 */ 4468 if (intel_crtc_supports_double_wide(crtc) && 4469 pipe_mode->crtc_clock > clock_limit) { 4470 clock_limit = dev_priv->max_dotclk_freq; 4471 pipe_config->double_wide = true; 4472 } 4473 } 4474 4475 if (pipe_mode->crtc_clock > clock_limit) { 4476 drm_dbg_kms(&dev_priv->drm, 4477 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 4478 pipe_mode->crtc_clock, clock_limit, 4479 yesno(pipe_config->double_wide)); 4480 return -EINVAL; 4481 } 4482 4483 /* 4484 * Pipe horizontal size must be even in: 4485 * - DVO ganged mode 4486 * - LVDS dual channel mode 4487 * - Double wide pipe 4488 */ 4489 if (pipe_config->pipe_src_w & 1) { 4490 if (pipe_config->double_wide) { 4491 drm_dbg_kms(&dev_priv->drm, 4492 "Odd pipe source width not supported with double wide pipe\n"); 4493 return -EINVAL; 4494 } 4495 4496 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 4497 intel_is_dual_link_lvds(dev_priv)) { 4498 drm_dbg_kms(&dev_priv->drm, 4499 "Odd pipe source width not supported with dual link LVDS\n"); 4500 return -EINVAL; 4501 } 4502 } 4503 4504 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 4505 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 4506 */ 4507 if ((DISPLAY_VER(dev_priv) > 4 || IS_G4X(dev_priv)) && 4508 pipe_mode->crtc_hsync_start == pipe_mode->crtc_hdisplay) 4509 return -EINVAL; 4510 4511 intel_crtc_compute_pixel_rate(pipe_config); 4512 4513 if (pipe_config->has_pch_encoder) 4514 return ilk_fdi_compute_config(crtc, pipe_config); 4515 4516 return 0; 4517 } 4518 4519 static void 4520 intel_reduce_m_n_ratio(u32 *num, u32 *den) 4521 { 4522 while (*num > DATA_LINK_M_N_MASK || 4523 *den > DATA_LINK_M_N_MASK) { 4524 *num >>= 1; 4525 *den >>= 1; 4526 } 4527 } 4528 4529 static void compute_m_n(unsigned int m, unsigned int n, 4530 u32 *ret_m, u32 *ret_n, 4531 bool constant_n) 4532 { 4533 /* 4534 * Several DP dongles in particular seem to be fussy about 4535 * too large link M/N values. Give N value as 0x8000 that 4536 * should be acceptable by specific devices. 0x8000 is the 4537 * specified fixed N value for asynchronous clock mode, 4538 * which the devices expect also in synchronous clock mode. 4539 */ 4540 if (constant_n) 4541 *ret_n = DP_LINK_CONSTANT_N_VALUE; 4542 else 4543 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 4544 4545 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 4546 intel_reduce_m_n_ratio(ret_m, ret_n); 4547 } 4548 4549 void 4550 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 4551 int pixel_clock, int link_clock, 4552 struct intel_link_m_n *m_n, 4553 bool constant_n, bool fec_enable) 4554 { 4555 u32 data_clock = bits_per_pixel * pixel_clock; 4556 4557 if (fec_enable) 4558 data_clock = intel_dp_mode_to_fec_clock(data_clock); 4559 4560 m_n->tu = 64; 4561 compute_m_n(data_clock, 4562 link_clock * nlanes * 8, 4563 &m_n->gmch_m, &m_n->gmch_n, 4564 constant_n); 4565 4566 compute_m_n(pixel_clock, link_clock, 4567 &m_n->link_m, &m_n->link_n, 4568 constant_n); 4569 } 4570 4571 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) 4572 { 4573 /* 4574 * There may be no VBT; and if the BIOS enabled SSC we can 4575 * just keep using it to avoid unnecessary flicker. Whereas if the 4576 * BIOS isn't using it, don't assume it will work even if the VBT 4577 * indicates as much. 4578 */ 4579 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 4580 bool bios_lvds_use_ssc = intel_de_read(dev_priv, 4581 PCH_DREF_CONTROL) & 4582 DREF_SSC1_ENABLE; 4583 4584 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 4585 drm_dbg_kms(&dev_priv->drm, 4586 "SSC %s by BIOS, overriding VBT which says %s\n", 4587 enableddisabled(bios_lvds_use_ssc), 4588 enableddisabled(dev_priv->vbt.lvds_use_ssc)); 4589 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 4590 } 4591 } 4592 } 4593 4594 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 4595 const struct intel_link_m_n *m_n) 4596 { 4597 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4598 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4599 enum pipe pipe = crtc->pipe; 4600 4601 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe), 4602 TU_SIZE(m_n->tu) | m_n->gmch_m); 4603 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 4604 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m); 4605 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n); 4606 } 4607 4608 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 4609 enum transcoder transcoder) 4610 { 4611 if (IS_HASWELL(dev_priv)) 4612 return transcoder == TRANSCODER_EDP; 4613 4614 /* 4615 * Strictly speaking some registers are available before 4616 * gen7, but we only support DRRS on gen7+ 4617 */ 4618 return DISPLAY_VER(dev_priv) == 7 || IS_CHERRYVIEW(dev_priv); 4619 } 4620 4621 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 4622 const struct intel_link_m_n *m_n, 4623 const struct intel_link_m_n *m2_n2) 4624 { 4625 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4626 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4627 enum pipe pipe = crtc->pipe; 4628 enum transcoder transcoder = crtc_state->cpu_transcoder; 4629 4630 if (DISPLAY_VER(dev_priv) >= 5) { 4631 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder), 4632 TU_SIZE(m_n->tu) | m_n->gmch_m); 4633 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder), 4634 m_n->gmch_n); 4635 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder), 4636 m_n->link_m); 4637 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder), 4638 m_n->link_n); 4639 /* 4640 * M2_N2 registers are set only if DRRS is supported 4641 * (to make sure the registers are not unnecessarily accessed). 4642 */ 4643 if (m2_n2 && crtc_state->has_drrs && 4644 transcoder_has_m2_n2(dev_priv, transcoder)) { 4645 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder), 4646 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 4647 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder), 4648 m2_n2->gmch_n); 4649 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder), 4650 m2_n2->link_m); 4651 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder), 4652 m2_n2->link_n); 4653 } 4654 } else { 4655 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe), 4656 TU_SIZE(m_n->tu) | m_n->gmch_m); 4657 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 4658 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m); 4659 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n); 4660 } 4661 } 4662 4663 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 4664 { 4665 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 4666 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 4667 4668 if (m_n == M1_N1) { 4669 dp_m_n = &crtc_state->dp_m_n; 4670 dp_m2_n2 = &crtc_state->dp_m2_n2; 4671 } else if (m_n == M2_N2) { 4672 4673 /* 4674 * M2_N2 registers are not supported. Hence m2_n2 divider value 4675 * needs to be programmed into M1_N1. 4676 */ 4677 dp_m_n = &crtc_state->dp_m2_n2; 4678 } else { 4679 drm_err(&i915->drm, "Unsupported divider value\n"); 4680 return; 4681 } 4682 4683 if (crtc_state->has_pch_encoder) 4684 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 4685 else 4686 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 4687 } 4688 4689 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state) 4690 { 4691 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4692 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4693 enum pipe pipe = crtc->pipe; 4694 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 4695 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 4696 u32 crtc_vtotal, crtc_vblank_end; 4697 int vsyncshift = 0; 4698 4699 /* We need to be careful not to changed the adjusted mode, for otherwise 4700 * the hw state checker will get angry at the mismatch. */ 4701 crtc_vtotal = adjusted_mode->crtc_vtotal; 4702 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 4703 4704 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 4705 /* the chip adds 2 halflines automatically */ 4706 crtc_vtotal -= 1; 4707 crtc_vblank_end -= 1; 4708 4709 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 4710 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 4711 else 4712 vsyncshift = adjusted_mode->crtc_hsync_start - 4713 adjusted_mode->crtc_htotal / 2; 4714 if (vsyncshift < 0) 4715 vsyncshift += adjusted_mode->crtc_htotal; 4716 } 4717 4718 if (DISPLAY_VER(dev_priv) > 3) 4719 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder), 4720 vsyncshift); 4721 4722 intel_de_write(dev_priv, HTOTAL(cpu_transcoder), 4723 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); 4724 intel_de_write(dev_priv, HBLANK(cpu_transcoder), 4725 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); 4726 intel_de_write(dev_priv, HSYNC(cpu_transcoder), 4727 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); 4728 4729 intel_de_write(dev_priv, VTOTAL(cpu_transcoder), 4730 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); 4731 intel_de_write(dev_priv, VBLANK(cpu_transcoder), 4732 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); 4733 intel_de_write(dev_priv, VSYNC(cpu_transcoder), 4734 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); 4735 4736 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 4737 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 4738 * documented on the DDI_FUNC_CTL register description, EDP Input Select 4739 * bits. */ 4740 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 4741 (pipe == PIPE_B || pipe == PIPE_C)) 4742 intel_de_write(dev_priv, VTOTAL(pipe), 4743 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 4744 4745 } 4746 4747 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 4748 { 4749 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4750 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4751 enum pipe pipe = crtc->pipe; 4752 4753 /* pipesrc controls the size that is scaled from, which should 4754 * always be the user's requested size. 4755 */ 4756 intel_de_write(dev_priv, PIPESRC(pipe), 4757 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1)); 4758 } 4759 4760 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 4761 { 4762 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4763 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 4764 4765 if (DISPLAY_VER(dev_priv) == 2) 4766 return false; 4767 4768 if (DISPLAY_VER(dev_priv) >= 9 || 4769 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 4770 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; 4771 else 4772 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; 4773 } 4774 4775 static void intel_get_transcoder_timings(struct intel_crtc *crtc, 4776 struct intel_crtc_state *pipe_config) 4777 { 4778 struct drm_device *dev = crtc->base.dev; 4779 struct drm_i915_private *dev_priv = to_i915(dev); 4780 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 4781 u32 tmp; 4782 4783 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); 4784 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 4785 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 4786 4787 if (!transcoder_is_dsi(cpu_transcoder)) { 4788 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); 4789 pipe_config->hw.adjusted_mode.crtc_hblank_start = 4790 (tmp & 0xffff) + 1; 4791 pipe_config->hw.adjusted_mode.crtc_hblank_end = 4792 ((tmp >> 16) & 0xffff) + 1; 4793 } 4794 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); 4795 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 4796 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 4797 4798 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); 4799 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 4800 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 4801 4802 if (!transcoder_is_dsi(cpu_transcoder)) { 4803 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); 4804 pipe_config->hw.adjusted_mode.crtc_vblank_start = 4805 (tmp & 0xffff) + 1; 4806 pipe_config->hw.adjusted_mode.crtc_vblank_end = 4807 ((tmp >> 16) & 0xffff) + 1; 4808 } 4809 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); 4810 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 4811 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 4812 4813 if (intel_pipe_is_interlaced(pipe_config)) { 4814 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 4815 pipe_config->hw.adjusted_mode.crtc_vtotal += 1; 4816 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1; 4817 } 4818 } 4819 4820 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 4821 struct intel_crtc_state *pipe_config) 4822 { 4823 struct drm_device *dev = crtc->base.dev; 4824 struct drm_i915_private *dev_priv = to_i915(dev); 4825 u32 tmp; 4826 4827 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe)); 4828 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 4829 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 4830 } 4831 4832 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 4833 { 4834 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4835 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4836 u32 pipeconf; 4837 4838 pipeconf = 0; 4839 4840 /* we keep both pipes enabled on 830 */ 4841 if (IS_I830(dev_priv)) 4842 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 4843 4844 if (crtc_state->double_wide) 4845 pipeconf |= PIPECONF_DOUBLE_WIDE; 4846 4847 /* only g4x and later have fancy bpc/dither controls */ 4848 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 4849 IS_CHERRYVIEW(dev_priv)) { 4850 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 4851 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 4852 pipeconf |= PIPECONF_DITHER_EN | 4853 PIPECONF_DITHER_TYPE_SP; 4854 4855 switch (crtc_state->pipe_bpp) { 4856 case 18: 4857 pipeconf |= PIPECONF_6BPC; 4858 break; 4859 case 24: 4860 pipeconf |= PIPECONF_8BPC; 4861 break; 4862 case 30: 4863 pipeconf |= PIPECONF_10BPC; 4864 break; 4865 default: 4866 /* Case prevented by intel_choose_pipe_bpp_dither. */ 4867 BUG(); 4868 } 4869 } 4870 4871 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 4872 if (DISPLAY_VER(dev_priv) < 4 || 4873 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 4874 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 4875 else 4876 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 4877 } else { 4878 pipeconf |= PIPECONF_PROGRESSIVE; 4879 } 4880 4881 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 4882 crtc_state->limited_color_range) 4883 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 4884 4885 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 4886 4887 pipeconf |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 4888 4889 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf); 4890 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); 4891 } 4892 4893 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 4894 { 4895 if (IS_I830(dev_priv)) 4896 return false; 4897 4898 return DISPLAY_VER(dev_priv) >= 4 || 4899 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 4900 } 4901 4902 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state) 4903 { 4904 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4905 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4906 u32 tmp; 4907 4908 if (!i9xx_has_pfit(dev_priv)) 4909 return; 4910 4911 tmp = intel_de_read(dev_priv, PFIT_CONTROL); 4912 if (!(tmp & PFIT_ENABLE)) 4913 return; 4914 4915 /* Check whether the pfit is attached to our pipe. */ 4916 if (DISPLAY_VER(dev_priv) < 4) { 4917 if (crtc->pipe != PIPE_B) 4918 return; 4919 } else { 4920 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 4921 return; 4922 } 4923 4924 crtc_state->gmch_pfit.control = tmp; 4925 crtc_state->gmch_pfit.pgm_ratios = 4926 intel_de_read(dev_priv, PFIT_PGM_RATIOS); 4927 } 4928 4929 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 4930 struct intel_crtc_state *pipe_config) 4931 { 4932 struct drm_device *dev = crtc->base.dev; 4933 struct drm_i915_private *dev_priv = to_i915(dev); 4934 enum pipe pipe = crtc->pipe; 4935 struct dpll clock; 4936 u32 mdiv; 4937 int refclk = 100000; 4938 4939 /* In case of DSI, DPLL will not be used */ 4940 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 4941 return; 4942 4943 vlv_dpio_get(dev_priv); 4944 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 4945 vlv_dpio_put(dev_priv); 4946 4947 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 4948 clock.m2 = mdiv & DPIO_M2DIV_MASK; 4949 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 4950 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 4951 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 4952 4953 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 4954 } 4955 4956 static void chv_crtc_clock_get(struct intel_crtc *crtc, 4957 struct intel_crtc_state *pipe_config) 4958 { 4959 struct drm_device *dev = crtc->base.dev; 4960 struct drm_i915_private *dev_priv = to_i915(dev); 4961 enum pipe pipe = crtc->pipe; 4962 enum dpio_channel port = vlv_pipe_to_channel(pipe); 4963 struct dpll clock; 4964 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 4965 int refclk = 100000; 4966 4967 /* In case of DSI, DPLL will not be used */ 4968 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 4969 return; 4970 4971 vlv_dpio_get(dev_priv); 4972 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 4973 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 4974 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 4975 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 4976 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 4977 vlv_dpio_put(dev_priv); 4978 4979 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 4980 clock.m2 = (pll_dw0 & 0xff) << 22; 4981 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 4982 clock.m2 |= pll_dw2 & 0x3fffff; 4983 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 4984 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 4985 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 4986 4987 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 4988 } 4989 4990 static enum intel_output_format 4991 bdw_get_pipemisc_output_format(struct intel_crtc *crtc) 4992 { 4993 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4994 u32 tmp; 4995 4996 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 4997 4998 if (tmp & PIPEMISC_YUV420_ENABLE) { 4999 /* We support 4:2:0 in full blend mode only */ 5000 drm_WARN_ON(&dev_priv->drm, 5001 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); 5002 5003 return INTEL_OUTPUT_FORMAT_YCBCR420; 5004 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 5005 return INTEL_OUTPUT_FORMAT_YCBCR444; 5006 } else { 5007 return INTEL_OUTPUT_FORMAT_RGB; 5008 } 5009 } 5010 5011 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 5012 { 5013 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5014 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 5015 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5016 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 5017 u32 tmp; 5018 5019 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 5020 5021 if (tmp & DISPPLANE_GAMMA_ENABLE) 5022 crtc_state->gamma_enable = true; 5023 5024 if (!HAS_GMCH(dev_priv) && 5025 tmp & DISPPLANE_PIPE_CSC_ENABLE) 5026 crtc_state->csc_enable = true; 5027 } 5028 5029 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 5030 struct intel_crtc_state *pipe_config) 5031 { 5032 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5033 enum intel_display_power_domain power_domain; 5034 intel_wakeref_t wakeref; 5035 u32 tmp; 5036 bool ret; 5037 5038 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 5039 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 5040 if (!wakeref) 5041 return false; 5042 5043 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 5044 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 5045 pipe_config->shared_dpll = NULL; 5046 5047 ret = false; 5048 5049 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 5050 if (!(tmp & PIPECONF_ENABLE)) 5051 goto out; 5052 5053 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 5054 IS_CHERRYVIEW(dev_priv)) { 5055 switch (tmp & PIPECONF_BPC_MASK) { 5056 case PIPECONF_6BPC: 5057 pipe_config->pipe_bpp = 18; 5058 break; 5059 case PIPECONF_8BPC: 5060 pipe_config->pipe_bpp = 24; 5061 break; 5062 case PIPECONF_10BPC: 5063 pipe_config->pipe_bpp = 30; 5064 break; 5065 default: 5066 break; 5067 } 5068 } 5069 5070 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 5071 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 5072 pipe_config->limited_color_range = true; 5073 5074 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 5075 PIPECONF_GAMMA_MODE_SHIFT; 5076 5077 if (IS_CHERRYVIEW(dev_priv)) 5078 pipe_config->cgm_mode = intel_de_read(dev_priv, 5079 CGM_PIPE_MODE(crtc->pipe)); 5080 5081 i9xx_get_pipe_color_config(pipe_config); 5082 intel_color_get_config(pipe_config); 5083 5084 if (DISPLAY_VER(dev_priv) < 4) 5085 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 5086 5087 intel_get_transcoder_timings(crtc, pipe_config); 5088 intel_get_pipe_src_size(crtc, pipe_config); 5089 5090 i9xx_get_pfit_config(pipe_config); 5091 5092 if (DISPLAY_VER(dev_priv) >= 4) { 5093 /* No way to read it out on pipes B and C */ 5094 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 5095 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 5096 else 5097 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); 5098 pipe_config->pixel_multiplier = 5099 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 5100 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 5101 pipe_config->dpll_hw_state.dpll_md = tmp; 5102 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 5103 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 5104 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe)); 5105 pipe_config->pixel_multiplier = 5106 ((tmp & SDVO_MULTIPLIER_MASK) 5107 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 5108 } else { 5109 /* Note that on i915G/GM the pixel multiplier is in the sdvo 5110 * port and will be fixed up in the encoder->get_config 5111 * function. */ 5112 pipe_config->pixel_multiplier = 1; 5113 } 5114 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv, 5115 DPLL(crtc->pipe)); 5116 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 5117 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv, 5118 FP0(crtc->pipe)); 5119 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv, 5120 FP1(crtc->pipe)); 5121 } else { 5122 /* Mask out read-only status bits. */ 5123 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 5124 DPLL_PORTC_READY_MASK | 5125 DPLL_PORTB_READY_MASK); 5126 } 5127 5128 if (IS_CHERRYVIEW(dev_priv)) 5129 chv_crtc_clock_get(crtc, pipe_config); 5130 else if (IS_VALLEYVIEW(dev_priv)) 5131 vlv_crtc_clock_get(crtc, pipe_config); 5132 else 5133 i9xx_crtc_clock_get(crtc, pipe_config); 5134 5135 /* 5136 * Normally the dotclock is filled in by the encoder .get_config() 5137 * but in case the pipe is enabled w/o any ports we need a sane 5138 * default. 5139 */ 5140 pipe_config->hw.adjusted_mode.crtc_clock = 5141 pipe_config->port_clock / pipe_config->pixel_multiplier; 5142 5143 ret = true; 5144 5145 out: 5146 intel_display_power_put(dev_priv, power_domain, wakeref); 5147 5148 return ret; 5149 } 5150 5151 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv) 5152 { 5153 struct intel_encoder *encoder; 5154 int i; 5155 u32 val, final; 5156 bool has_lvds = false; 5157 bool has_cpu_edp = false; 5158 bool has_panel = false; 5159 bool has_ck505 = false; 5160 bool can_ssc = false; 5161 bool using_ssc_source = false; 5162 5163 /* We need to take the global config into account */ 5164 for_each_intel_encoder(&dev_priv->drm, encoder) { 5165 switch (encoder->type) { 5166 case INTEL_OUTPUT_LVDS: 5167 has_panel = true; 5168 has_lvds = true; 5169 break; 5170 case INTEL_OUTPUT_EDP: 5171 has_panel = true; 5172 if (encoder->port == PORT_A) 5173 has_cpu_edp = true; 5174 break; 5175 default: 5176 break; 5177 } 5178 } 5179 5180 if (HAS_PCH_IBX(dev_priv)) { 5181 has_ck505 = dev_priv->vbt.display_clock_mode; 5182 can_ssc = has_ck505; 5183 } else { 5184 has_ck505 = false; 5185 can_ssc = true; 5186 } 5187 5188 /* Check if any DPLLs are using the SSC source */ 5189 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) { 5190 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i)); 5191 5192 if (!(temp & DPLL_VCO_ENABLE)) 5193 continue; 5194 5195 if ((temp & PLL_REF_INPUT_MASK) == 5196 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 5197 using_ssc_source = true; 5198 break; 5199 } 5200 } 5201 5202 drm_dbg_kms(&dev_priv->drm, 5203 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 5204 has_panel, has_lvds, has_ck505, using_ssc_source); 5205 5206 /* Ironlake: try to setup display ref clock before DPLL 5207 * enabling. This is only under driver's control after 5208 * PCH B stepping, previous chipset stepping should be 5209 * ignoring this setting. 5210 */ 5211 val = intel_de_read(dev_priv, PCH_DREF_CONTROL); 5212 5213 /* As we must carefully and slowly disable/enable each source in turn, 5214 * compute the final state we want first and check if we need to 5215 * make any changes at all. 5216 */ 5217 final = val; 5218 final &= ~DREF_NONSPREAD_SOURCE_MASK; 5219 if (has_ck505) 5220 final |= DREF_NONSPREAD_CK505_ENABLE; 5221 else 5222 final |= DREF_NONSPREAD_SOURCE_ENABLE; 5223 5224 final &= ~DREF_SSC_SOURCE_MASK; 5225 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5226 final &= ~DREF_SSC1_ENABLE; 5227 5228 if (has_panel) { 5229 final |= DREF_SSC_SOURCE_ENABLE; 5230 5231 if (intel_panel_use_ssc(dev_priv) && can_ssc) 5232 final |= DREF_SSC1_ENABLE; 5233 5234 if (has_cpu_edp) { 5235 if (intel_panel_use_ssc(dev_priv) && can_ssc) 5236 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 5237 else 5238 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 5239 } else 5240 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5241 } else if (using_ssc_source) { 5242 final |= DREF_SSC_SOURCE_ENABLE; 5243 final |= DREF_SSC1_ENABLE; 5244 } 5245 5246 if (final == val) 5247 return; 5248 5249 /* Always enable nonspread source */ 5250 val &= ~DREF_NONSPREAD_SOURCE_MASK; 5251 5252 if (has_ck505) 5253 val |= DREF_NONSPREAD_CK505_ENABLE; 5254 else 5255 val |= DREF_NONSPREAD_SOURCE_ENABLE; 5256 5257 if (has_panel) { 5258 val &= ~DREF_SSC_SOURCE_MASK; 5259 val |= DREF_SSC_SOURCE_ENABLE; 5260 5261 /* SSC must be turned on before enabling the CPU output */ 5262 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 5263 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n"); 5264 val |= DREF_SSC1_ENABLE; 5265 } else 5266 val &= ~DREF_SSC1_ENABLE; 5267 5268 /* Get SSC going before enabling the outputs */ 5269 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5270 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5271 udelay(200); 5272 5273 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5274 5275 /* Enable CPU source on CPU attached eDP */ 5276 if (has_cpu_edp) { 5277 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 5278 drm_dbg_kms(&dev_priv->drm, 5279 "Using SSC on eDP\n"); 5280 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 5281 } else 5282 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 5283 } else 5284 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5285 5286 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5287 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5288 udelay(200); 5289 } else { 5290 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n"); 5291 5292 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5293 5294 /* Turn off CPU output */ 5295 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5296 5297 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5298 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5299 udelay(200); 5300 5301 if (!using_ssc_source) { 5302 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n"); 5303 5304 /* Turn off the SSC source */ 5305 val &= ~DREF_SSC_SOURCE_MASK; 5306 val |= DREF_SSC_SOURCE_DISABLE; 5307 5308 /* Turn off SSC1 */ 5309 val &= ~DREF_SSC1_ENABLE; 5310 5311 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5312 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5313 udelay(200); 5314 } 5315 } 5316 5317 BUG_ON(val != final); 5318 } 5319 5320 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 5321 { 5322 u32 tmp; 5323 5324 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 5325 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 5326 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 5327 5328 if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) & 5329 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 5330 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n"); 5331 5332 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 5333 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 5334 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 5335 5336 if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) & 5337 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 5338 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n"); 5339 } 5340 5341 /* WaMPhyProgramming:hsw */ 5342 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 5343 { 5344 u32 tmp; 5345 5346 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 5347 tmp &= ~(0xFF << 24); 5348 tmp |= (0x12 << 24); 5349 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 5350 5351 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 5352 tmp |= (1 << 11); 5353 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 5354 5355 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 5356 tmp |= (1 << 11); 5357 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 5358 5359 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 5360 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 5361 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 5362 5363 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 5364 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 5365 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 5366 5367 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 5368 tmp &= ~(7 << 13); 5369 tmp |= (5 << 13); 5370 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 5371 5372 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 5373 tmp &= ~(7 << 13); 5374 tmp |= (5 << 13); 5375 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 5376 5377 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 5378 tmp &= ~0xFF; 5379 tmp |= 0x1C; 5380 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 5381 5382 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 5383 tmp &= ~0xFF; 5384 tmp |= 0x1C; 5385 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 5386 5387 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 5388 tmp &= ~(0xFF << 16); 5389 tmp |= (0x1C << 16); 5390 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 5391 5392 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 5393 tmp &= ~(0xFF << 16); 5394 tmp |= (0x1C << 16); 5395 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 5396 5397 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 5398 tmp |= (1 << 27); 5399 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 5400 5401 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 5402 tmp |= (1 << 27); 5403 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 5404 5405 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 5406 tmp &= ~(0xF << 28); 5407 tmp |= (4 << 28); 5408 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 5409 5410 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 5411 tmp &= ~(0xF << 28); 5412 tmp |= (4 << 28); 5413 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 5414 } 5415 5416 /* Implements 3 different sequences from BSpec chapter "Display iCLK 5417 * Programming" based on the parameters passed: 5418 * - Sequence to enable CLKOUT_DP 5419 * - Sequence to enable CLKOUT_DP without spread 5420 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 5421 */ 5422 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 5423 bool with_spread, bool with_fdi) 5424 { 5425 u32 reg, tmp; 5426 5427 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread, 5428 "FDI requires downspread\n")) 5429 with_spread = true; 5430 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) && 5431 with_fdi, "LP PCH doesn't have FDI\n")) 5432 with_fdi = false; 5433 5434 mutex_lock(&dev_priv->sb_lock); 5435 5436 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5437 tmp &= ~SBI_SSCCTL_DISABLE; 5438 tmp |= SBI_SSCCTL_PATHALT; 5439 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5440 5441 udelay(24); 5442 5443 if (with_spread) { 5444 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5445 tmp &= ~SBI_SSCCTL_PATHALT; 5446 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5447 5448 if (with_fdi) { 5449 lpt_reset_fdi_mphy(dev_priv); 5450 lpt_program_fdi_mphy(dev_priv); 5451 } 5452 } 5453 5454 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 5455 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 5456 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 5457 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 5458 5459 mutex_unlock(&dev_priv->sb_lock); 5460 } 5461 5462 /* Sequence to disable CLKOUT_DP */ 5463 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 5464 { 5465 u32 reg, tmp; 5466 5467 mutex_lock(&dev_priv->sb_lock); 5468 5469 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 5470 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 5471 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 5472 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 5473 5474 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5475 if (!(tmp & SBI_SSCCTL_DISABLE)) { 5476 if (!(tmp & SBI_SSCCTL_PATHALT)) { 5477 tmp |= SBI_SSCCTL_PATHALT; 5478 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5479 udelay(32); 5480 } 5481 tmp |= SBI_SSCCTL_DISABLE; 5482 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5483 } 5484 5485 mutex_unlock(&dev_priv->sb_lock); 5486 } 5487 5488 #define BEND_IDX(steps) ((50 + (steps)) / 5) 5489 5490 static const u16 sscdivintphase[] = { 5491 [BEND_IDX( 50)] = 0x3B23, 5492 [BEND_IDX( 45)] = 0x3B23, 5493 [BEND_IDX( 40)] = 0x3C23, 5494 [BEND_IDX( 35)] = 0x3C23, 5495 [BEND_IDX( 30)] = 0x3D23, 5496 [BEND_IDX( 25)] = 0x3D23, 5497 [BEND_IDX( 20)] = 0x3E23, 5498 [BEND_IDX( 15)] = 0x3E23, 5499 [BEND_IDX( 10)] = 0x3F23, 5500 [BEND_IDX( 5)] = 0x3F23, 5501 [BEND_IDX( 0)] = 0x0025, 5502 [BEND_IDX( -5)] = 0x0025, 5503 [BEND_IDX(-10)] = 0x0125, 5504 [BEND_IDX(-15)] = 0x0125, 5505 [BEND_IDX(-20)] = 0x0225, 5506 [BEND_IDX(-25)] = 0x0225, 5507 [BEND_IDX(-30)] = 0x0325, 5508 [BEND_IDX(-35)] = 0x0325, 5509 [BEND_IDX(-40)] = 0x0425, 5510 [BEND_IDX(-45)] = 0x0425, 5511 [BEND_IDX(-50)] = 0x0525, 5512 }; 5513 5514 /* 5515 * Bend CLKOUT_DP 5516 * steps -50 to 50 inclusive, in steps of 5 5517 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 5518 * change in clock period = -(steps / 10) * 5.787 ps 5519 */ 5520 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 5521 { 5522 u32 tmp; 5523 int idx = BEND_IDX(steps); 5524 5525 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0)) 5526 return; 5527 5528 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase))) 5529 return; 5530 5531 mutex_lock(&dev_priv->sb_lock); 5532 5533 if (steps % 10 != 0) 5534 tmp = 0xAAAAAAAB; 5535 else 5536 tmp = 0x00000000; 5537 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 5538 5539 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 5540 tmp &= 0xffff0000; 5541 tmp |= sscdivintphase[idx]; 5542 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 5543 5544 mutex_unlock(&dev_priv->sb_lock); 5545 } 5546 5547 #undef BEND_IDX 5548 5549 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 5550 { 5551 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 5552 u32 ctl = intel_de_read(dev_priv, SPLL_CTL); 5553 5554 if ((ctl & SPLL_PLL_ENABLE) == 0) 5555 return false; 5556 5557 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 5558 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 5559 return true; 5560 5561 if (IS_BROADWELL(dev_priv) && 5562 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 5563 return true; 5564 5565 return false; 5566 } 5567 5568 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 5569 enum intel_dpll_id id) 5570 { 5571 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 5572 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id)); 5573 5574 if ((ctl & WRPLL_PLL_ENABLE) == 0) 5575 return false; 5576 5577 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 5578 return true; 5579 5580 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 5581 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 5582 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 5583 return true; 5584 5585 return false; 5586 } 5587 5588 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 5589 { 5590 struct intel_encoder *encoder; 5591 bool has_fdi = false; 5592 5593 for_each_intel_encoder(&dev_priv->drm, encoder) { 5594 switch (encoder->type) { 5595 case INTEL_OUTPUT_ANALOG: 5596 has_fdi = true; 5597 break; 5598 default: 5599 break; 5600 } 5601 } 5602 5603 /* 5604 * The BIOS may have decided to use the PCH SSC 5605 * reference so we must not disable it until the 5606 * relevant PLLs have stopped relying on it. We'll 5607 * just leave the PCH SSC reference enabled in case 5608 * any active PLL is using it. It will get disabled 5609 * after runtime suspend if we don't have FDI. 5610 * 5611 * TODO: Move the whole reference clock handling 5612 * to the modeset sequence proper so that we can 5613 * actually enable/disable/reconfigure these things 5614 * safely. To do that we need to introduce a real 5615 * clock hierarchy. That would also allow us to do 5616 * clock bending finally. 5617 */ 5618 dev_priv->pch_ssc_use = 0; 5619 5620 if (spll_uses_pch_ssc(dev_priv)) { 5621 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n"); 5622 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); 5623 } 5624 5625 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 5626 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n"); 5627 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 5628 } 5629 5630 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 5631 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n"); 5632 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 5633 } 5634 5635 if (dev_priv->pch_ssc_use) 5636 return; 5637 5638 if (has_fdi) { 5639 lpt_bend_clkout_dp(dev_priv, 0); 5640 lpt_enable_clkout_dp(dev_priv, true, true); 5641 } else { 5642 lpt_disable_clkout_dp(dev_priv); 5643 } 5644 } 5645 5646 /* 5647 * Initialize reference clocks when the driver loads 5648 */ 5649 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 5650 { 5651 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 5652 ilk_init_pch_refclk(dev_priv); 5653 else if (HAS_PCH_LPT(dev_priv)) 5654 lpt_init_pch_refclk(dev_priv); 5655 } 5656 5657 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) 5658 { 5659 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5660 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5661 enum pipe pipe = crtc->pipe; 5662 u32 val; 5663 5664 val = 0; 5665 5666 switch (crtc_state->pipe_bpp) { 5667 case 18: 5668 val |= PIPECONF_6BPC; 5669 break; 5670 case 24: 5671 val |= PIPECONF_8BPC; 5672 break; 5673 case 30: 5674 val |= PIPECONF_10BPC; 5675 break; 5676 case 36: 5677 val |= PIPECONF_12BPC; 5678 break; 5679 default: 5680 /* Case prevented by intel_choose_pipe_bpp_dither. */ 5681 BUG(); 5682 } 5683 5684 if (crtc_state->dither) 5685 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 5686 5687 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 5688 val |= PIPECONF_INTERLACED_ILK; 5689 else 5690 val |= PIPECONF_PROGRESSIVE; 5691 5692 /* 5693 * This would end up with an odd purple hue over 5694 * the entire display. Make sure we don't do it. 5695 */ 5696 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && 5697 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 5698 5699 if (crtc_state->limited_color_range && 5700 !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 5701 val |= PIPECONF_COLOR_RANGE_SELECT; 5702 5703 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 5704 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; 5705 5706 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 5707 5708 val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 5709 5710 intel_de_write(dev_priv, PIPECONF(pipe), val); 5711 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 5712 } 5713 5714 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state) 5715 { 5716 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5717 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5718 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5719 u32 val = 0; 5720 5721 if (IS_HASWELL(dev_priv) && crtc_state->dither) 5722 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 5723 5724 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 5725 val |= PIPECONF_INTERLACED_ILK; 5726 else 5727 val |= PIPECONF_PROGRESSIVE; 5728 5729 if (IS_HASWELL(dev_priv) && 5730 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 5731 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; 5732 5733 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val); 5734 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder)); 5735 } 5736 5737 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 5738 { 5739 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5740 const struct intel_crtc_scaler_state *scaler_state = 5741 &crtc_state->scaler_state; 5742 5743 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5744 u32 val = 0; 5745 int i; 5746 5747 switch (crtc_state->pipe_bpp) { 5748 case 18: 5749 val |= PIPEMISC_DITHER_6_BPC; 5750 break; 5751 case 24: 5752 val |= PIPEMISC_DITHER_8_BPC; 5753 break; 5754 case 30: 5755 val |= PIPEMISC_DITHER_10_BPC; 5756 break; 5757 case 36: 5758 val |= PIPEMISC_DITHER_12_BPC; 5759 break; 5760 default: 5761 MISSING_CASE(crtc_state->pipe_bpp); 5762 break; 5763 } 5764 5765 if (crtc_state->dither) 5766 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 5767 5768 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 5769 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 5770 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 5771 5772 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 5773 val |= PIPEMISC_YUV420_ENABLE | 5774 PIPEMISC_YUV420_MODE_FULL_BLEND; 5775 5776 if (DISPLAY_VER(dev_priv) >= 11 && 5777 (crtc_state->active_planes & ~(icl_hdr_plane_mask() | 5778 BIT(PLANE_CURSOR))) == 0) 5779 val |= PIPEMISC_HDR_MODE_PRECISION; 5780 5781 if (DISPLAY_VER(dev_priv) >= 12) 5782 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC; 5783 5784 if (IS_ALDERLAKE_P(dev_priv)) { 5785 bool scaler_in_use = false; 5786 5787 for (i = 0; i < crtc->num_scalers; i++) { 5788 if (!scaler_state->scalers[i].in_use) 5789 continue; 5790 5791 scaler_in_use = true; 5792 break; 5793 } 5794 5795 intel_de_rmw(dev_priv, PIPE_MISC2(crtc->pipe), 5796 PIPE_MISC2_UNDERRUN_BUBBLE_COUNTER_MASK, 5797 scaler_in_use ? PIPE_MISC2_BUBBLE_COUNTER_SCALER_EN : 5798 PIPE_MISC2_BUBBLE_COUNTER_SCALER_DIS); 5799 } 5800 5801 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val); 5802 } 5803 5804 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 5805 { 5806 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5807 u32 tmp; 5808 5809 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 5810 5811 switch (tmp & PIPEMISC_DITHER_BPC_MASK) { 5812 case PIPEMISC_DITHER_6_BPC: 5813 return 18; 5814 case PIPEMISC_DITHER_8_BPC: 5815 return 24; 5816 case PIPEMISC_DITHER_10_BPC: 5817 return 30; 5818 case PIPEMISC_DITHER_12_BPC: 5819 return 36; 5820 default: 5821 MISSING_CASE(tmp); 5822 return 0; 5823 } 5824 } 5825 5826 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) 5827 { 5828 /* 5829 * Account for spread spectrum to avoid 5830 * oversubscribing the link. Max center spread 5831 * is 2.5%; use 5% for safety's sake. 5832 */ 5833 u32 bps = target_clock * bpp * 21 / 20; 5834 return DIV_ROUND_UP(bps, link_bw * 8); 5835 } 5836 5837 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 5838 struct intel_link_m_n *m_n) 5839 { 5840 struct drm_device *dev = crtc->base.dev; 5841 struct drm_i915_private *dev_priv = to_i915(dev); 5842 enum pipe pipe = crtc->pipe; 5843 5844 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe)); 5845 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe)); 5846 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 5847 & ~TU_SIZE_MASK; 5848 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe)); 5849 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 5850 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5851 } 5852 5853 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 5854 enum transcoder transcoder, 5855 struct intel_link_m_n *m_n, 5856 struct intel_link_m_n *m2_n2) 5857 { 5858 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5859 enum pipe pipe = crtc->pipe; 5860 5861 if (DISPLAY_VER(dev_priv) >= 5) { 5862 m_n->link_m = intel_de_read(dev_priv, 5863 PIPE_LINK_M1(transcoder)); 5864 m_n->link_n = intel_de_read(dev_priv, 5865 PIPE_LINK_N1(transcoder)); 5866 m_n->gmch_m = intel_de_read(dev_priv, 5867 PIPE_DATA_M1(transcoder)) 5868 & ~TU_SIZE_MASK; 5869 m_n->gmch_n = intel_de_read(dev_priv, 5870 PIPE_DATA_N1(transcoder)); 5871 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder)) 5872 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5873 5874 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 5875 m2_n2->link_m = intel_de_read(dev_priv, 5876 PIPE_LINK_M2(transcoder)); 5877 m2_n2->link_n = intel_de_read(dev_priv, 5878 PIPE_LINK_N2(transcoder)); 5879 m2_n2->gmch_m = intel_de_read(dev_priv, 5880 PIPE_DATA_M2(transcoder)) 5881 & ~TU_SIZE_MASK; 5882 m2_n2->gmch_n = intel_de_read(dev_priv, 5883 PIPE_DATA_N2(transcoder)); 5884 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder)) 5885 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5886 } 5887 } else { 5888 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe)); 5889 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe)); 5890 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 5891 & ~TU_SIZE_MASK; 5892 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe)); 5893 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 5894 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5895 } 5896 } 5897 5898 void intel_dp_get_m_n(struct intel_crtc *crtc, 5899 struct intel_crtc_state *pipe_config) 5900 { 5901 if (pipe_config->has_pch_encoder) 5902 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 5903 else 5904 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 5905 &pipe_config->dp_m_n, 5906 &pipe_config->dp_m2_n2); 5907 } 5908 5909 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc, 5910 struct intel_crtc_state *pipe_config) 5911 { 5912 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 5913 &pipe_config->fdi_m_n, NULL); 5914 } 5915 5916 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state, 5917 u32 pos, u32 size) 5918 { 5919 drm_rect_init(&crtc_state->pch_pfit.dst, 5920 pos >> 16, pos & 0xffff, 5921 size >> 16, size & 0xffff); 5922 } 5923 5924 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state) 5925 { 5926 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5927 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5928 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; 5929 int id = -1; 5930 int i; 5931 5932 /* find scaler attached to this pipe */ 5933 for (i = 0; i < crtc->num_scalers; i++) { 5934 u32 ctl, pos, size; 5935 5936 ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i)); 5937 if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN) 5938 continue; 5939 5940 id = i; 5941 crtc_state->pch_pfit.enabled = true; 5942 5943 pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i)); 5944 size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i)); 5945 5946 ilk_get_pfit_pos_size(crtc_state, pos, size); 5947 5948 scaler_state->scalers[i].in_use = true; 5949 break; 5950 } 5951 5952 scaler_state->scaler_id = id; 5953 if (id >= 0) 5954 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 5955 else 5956 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 5957 } 5958 5959 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state) 5960 { 5961 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5962 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5963 u32 ctl, pos, size; 5964 5965 ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe)); 5966 if ((ctl & PF_ENABLE) == 0) 5967 return; 5968 5969 crtc_state->pch_pfit.enabled = true; 5970 5971 pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe)); 5972 size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe)); 5973 5974 ilk_get_pfit_pos_size(crtc_state, pos, size); 5975 5976 /* 5977 * We currently do not free assignements of panel fitters on 5978 * ivb/hsw (since we don't use the higher upscaling modes which 5979 * differentiates them) so just WARN about this case for now. 5980 */ 5981 drm_WARN_ON(&dev_priv->drm, DISPLAY_VER(dev_priv) == 7 && 5982 (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe)); 5983 } 5984 5985 static bool ilk_get_pipe_config(struct intel_crtc *crtc, 5986 struct intel_crtc_state *pipe_config) 5987 { 5988 struct drm_device *dev = crtc->base.dev; 5989 struct drm_i915_private *dev_priv = to_i915(dev); 5990 enum intel_display_power_domain power_domain; 5991 intel_wakeref_t wakeref; 5992 u32 tmp; 5993 bool ret; 5994 5995 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 5996 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 5997 if (!wakeref) 5998 return false; 5999 6000 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 6001 pipe_config->shared_dpll = NULL; 6002 6003 ret = false; 6004 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 6005 if (!(tmp & PIPECONF_ENABLE)) 6006 goto out; 6007 6008 switch (tmp & PIPECONF_BPC_MASK) { 6009 case PIPECONF_6BPC: 6010 pipe_config->pipe_bpp = 18; 6011 break; 6012 case PIPECONF_8BPC: 6013 pipe_config->pipe_bpp = 24; 6014 break; 6015 case PIPECONF_10BPC: 6016 pipe_config->pipe_bpp = 30; 6017 break; 6018 case PIPECONF_12BPC: 6019 pipe_config->pipe_bpp = 36; 6020 break; 6021 default: 6022 break; 6023 } 6024 6025 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 6026 pipe_config->limited_color_range = true; 6027 6028 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { 6029 case PIPECONF_OUTPUT_COLORSPACE_YUV601: 6030 case PIPECONF_OUTPUT_COLORSPACE_YUV709: 6031 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 6032 break; 6033 default: 6034 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 6035 break; 6036 } 6037 6038 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 6039 PIPECONF_GAMMA_MODE_SHIFT; 6040 6041 pipe_config->csc_mode = intel_de_read(dev_priv, 6042 PIPE_CSC_MODE(crtc->pipe)); 6043 6044 i9xx_get_pipe_color_config(pipe_config); 6045 intel_color_get_config(pipe_config); 6046 6047 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 6048 struct intel_shared_dpll *pll; 6049 enum intel_dpll_id pll_id; 6050 bool pll_active; 6051 6052 pipe_config->has_pch_encoder = true; 6053 6054 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe)); 6055 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 6056 FDI_DP_PORT_WIDTH_SHIFT) + 1; 6057 6058 ilk_get_fdi_m_n_config(crtc, pipe_config); 6059 6060 if (HAS_PCH_IBX(dev_priv)) { 6061 /* 6062 * The pipe->pch transcoder and pch transcoder->pll 6063 * mapping is fixed. 6064 */ 6065 pll_id = (enum intel_dpll_id) crtc->pipe; 6066 } else { 6067 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL); 6068 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 6069 pll_id = DPLL_ID_PCH_PLL_B; 6070 else 6071 pll_id= DPLL_ID_PCH_PLL_A; 6072 } 6073 6074 pipe_config->shared_dpll = 6075 intel_get_shared_dpll_by_id(dev_priv, pll_id); 6076 pll = pipe_config->shared_dpll; 6077 6078 pll_active = intel_dpll_get_hw_state(dev_priv, pll, 6079 &pipe_config->dpll_hw_state); 6080 drm_WARN_ON(dev, !pll_active); 6081 6082 tmp = pipe_config->dpll_hw_state.dpll; 6083 pipe_config->pixel_multiplier = 6084 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 6085 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 6086 6087 ilk_pch_clock_get(crtc, pipe_config); 6088 } else { 6089 pipe_config->pixel_multiplier = 1; 6090 } 6091 6092 intel_get_transcoder_timings(crtc, pipe_config); 6093 intel_get_pipe_src_size(crtc, pipe_config); 6094 6095 ilk_get_pfit_config(pipe_config); 6096 6097 ret = true; 6098 6099 out: 6100 intel_display_power_put(dev_priv, power_domain, wakeref); 6101 6102 return ret; 6103 } 6104 6105 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 6106 struct intel_crtc_state *pipe_config, 6107 struct intel_display_power_domain_set *power_domain_set) 6108 { 6109 struct drm_device *dev = crtc->base.dev; 6110 struct drm_i915_private *dev_priv = to_i915(dev); 6111 unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP); 6112 unsigned long enabled_panel_transcoders = 0; 6113 enum transcoder panel_transcoder; 6114 u32 tmp; 6115 6116 if (DISPLAY_VER(dev_priv) >= 11) 6117 panel_transcoder_mask |= 6118 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 6119 6120 /* 6121 * The pipe->transcoder mapping is fixed with the exception of the eDP 6122 * and DSI transcoders handled below. 6123 */ 6124 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 6125 6126 /* 6127 * XXX: Do intel_display_power_get_if_enabled before reading this (for 6128 * consistency and less surprising code; it's in always on power). 6129 */ 6130 for_each_cpu_transcoder_masked(dev_priv, panel_transcoder, 6131 panel_transcoder_mask) { 6132 bool force_thru = false; 6133 enum pipe trans_pipe; 6134 6135 tmp = intel_de_read(dev_priv, 6136 TRANS_DDI_FUNC_CTL(panel_transcoder)); 6137 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 6138 continue; 6139 6140 /* 6141 * Log all enabled ones, only use the first one. 6142 * 6143 * FIXME: This won't work for two separate DSI displays. 6144 */ 6145 enabled_panel_transcoders |= BIT(panel_transcoder); 6146 if (enabled_panel_transcoders != BIT(panel_transcoder)) 6147 continue; 6148 6149 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 6150 default: 6151 drm_WARN(dev, 1, 6152 "unknown pipe linked to transcoder %s\n", 6153 transcoder_name(panel_transcoder)); 6154 fallthrough; 6155 case TRANS_DDI_EDP_INPUT_A_ONOFF: 6156 force_thru = true; 6157 fallthrough; 6158 case TRANS_DDI_EDP_INPUT_A_ON: 6159 trans_pipe = PIPE_A; 6160 break; 6161 case TRANS_DDI_EDP_INPUT_B_ONOFF: 6162 trans_pipe = PIPE_B; 6163 break; 6164 case TRANS_DDI_EDP_INPUT_C_ONOFF: 6165 trans_pipe = PIPE_C; 6166 break; 6167 case TRANS_DDI_EDP_INPUT_D_ONOFF: 6168 trans_pipe = PIPE_D; 6169 break; 6170 } 6171 6172 if (trans_pipe == crtc->pipe) { 6173 pipe_config->cpu_transcoder = panel_transcoder; 6174 pipe_config->pch_pfit.force_thru = force_thru; 6175 } 6176 } 6177 6178 /* 6179 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 6180 */ 6181 drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && 6182 enabled_panel_transcoders != BIT(TRANSCODER_EDP)); 6183 6184 if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, 6185 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder))) 6186 return false; 6187 6188 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); 6189 6190 return tmp & PIPECONF_ENABLE; 6191 } 6192 6193 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 6194 struct intel_crtc_state *pipe_config, 6195 struct intel_display_power_domain_set *power_domain_set) 6196 { 6197 struct drm_device *dev = crtc->base.dev; 6198 struct drm_i915_private *dev_priv = to_i915(dev); 6199 enum transcoder cpu_transcoder; 6200 enum port port; 6201 u32 tmp; 6202 6203 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 6204 if (port == PORT_A) 6205 cpu_transcoder = TRANSCODER_DSI_A; 6206 else 6207 cpu_transcoder = TRANSCODER_DSI_C; 6208 6209 if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, 6210 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) 6211 continue; 6212 6213 /* 6214 * The PLL needs to be enabled with a valid divider 6215 * configuration, otherwise accessing DSI registers will hang 6216 * the machine. See BSpec North Display Engine 6217 * registers/MIPI[BXT]. We can break out here early, since we 6218 * need the same DSI PLL to be enabled for both DSI ports. 6219 */ 6220 if (!bxt_dsi_pll_is_enabled(dev_priv)) 6221 break; 6222 6223 /* XXX: this works for video mode only */ 6224 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); 6225 if (!(tmp & DPI_ENABLE)) 6226 continue; 6227 6228 tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); 6229 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 6230 continue; 6231 6232 pipe_config->cpu_transcoder = cpu_transcoder; 6233 break; 6234 } 6235 6236 return transcoder_is_dsi(pipe_config->cpu_transcoder); 6237 } 6238 6239 static void hsw_get_ddi_port_state(struct intel_crtc *crtc, 6240 struct intel_crtc_state *pipe_config) 6241 { 6242 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6243 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 6244 enum port port; 6245 u32 tmp; 6246 6247 if (transcoder_is_dsi(cpu_transcoder)) { 6248 port = (cpu_transcoder == TRANSCODER_DSI_A) ? 6249 PORT_A : PORT_B; 6250 } else { 6251 tmp = intel_de_read(dev_priv, 6252 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 6253 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 6254 return; 6255 if (DISPLAY_VER(dev_priv) >= 12) 6256 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 6257 else 6258 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 6259 } 6260 6261 /* 6262 * Haswell has only FDI/PCH transcoder A. It is which is connected to 6263 * DDI E. So just check whether this pipe is wired to DDI E and whether 6264 * the PCH transcoder is on. 6265 */ 6266 if (DISPLAY_VER(dev_priv) < 9 && 6267 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) { 6268 pipe_config->has_pch_encoder = true; 6269 6270 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); 6271 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 6272 FDI_DP_PORT_WIDTH_SHIFT) + 1; 6273 6274 ilk_get_fdi_m_n_config(crtc, pipe_config); 6275 } 6276 } 6277 6278 static bool hsw_get_pipe_config(struct intel_crtc *crtc, 6279 struct intel_crtc_state *pipe_config) 6280 { 6281 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6282 struct intel_display_power_domain_set power_domain_set = { }; 6283 bool active; 6284 u32 tmp; 6285 6286 if (!intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, 6287 POWER_DOMAIN_PIPE(crtc->pipe))) 6288 return false; 6289 6290 pipe_config->shared_dpll = NULL; 6291 6292 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_set); 6293 6294 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 6295 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_set)) { 6296 drm_WARN_ON(&dev_priv->drm, active); 6297 active = true; 6298 } 6299 6300 intel_dsc_get_config(pipe_config); 6301 if (DISPLAY_VER(dev_priv) >= 13 && !pipe_config->dsc.compression_enable) 6302 intel_uncompressed_joiner_get_config(pipe_config); 6303 6304 if (!active) { 6305 /* bigjoiner slave doesn't enable transcoder */ 6306 if (!pipe_config->bigjoiner_slave) 6307 goto out; 6308 6309 active = true; 6310 pipe_config->pixel_multiplier = 1; 6311 6312 /* we cannot read out most state, so don't bother.. */ 6313 pipe_config->quirks |= PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE; 6314 } else if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 6315 DISPLAY_VER(dev_priv) >= 11) { 6316 hsw_get_ddi_port_state(crtc, pipe_config); 6317 intel_get_transcoder_timings(crtc, pipe_config); 6318 } 6319 6320 if (HAS_VRR(dev_priv) && !transcoder_is_dsi(pipe_config->cpu_transcoder)) 6321 intel_vrr_get_config(crtc, pipe_config); 6322 6323 intel_get_pipe_src_size(crtc, pipe_config); 6324 6325 if (IS_HASWELL(dev_priv)) { 6326 u32 tmp = intel_de_read(dev_priv, 6327 PIPECONF(pipe_config->cpu_transcoder)); 6328 6329 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) 6330 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 6331 else 6332 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 6333 } else { 6334 pipe_config->output_format = 6335 bdw_get_pipemisc_output_format(crtc); 6336 } 6337 6338 pipe_config->gamma_mode = intel_de_read(dev_priv, 6339 GAMMA_MODE(crtc->pipe)); 6340 6341 pipe_config->csc_mode = intel_de_read(dev_priv, 6342 PIPE_CSC_MODE(crtc->pipe)); 6343 6344 if (DISPLAY_VER(dev_priv) >= 9) { 6345 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe)); 6346 6347 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 6348 pipe_config->gamma_enable = true; 6349 6350 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 6351 pipe_config->csc_enable = true; 6352 } else { 6353 i9xx_get_pipe_color_config(pipe_config); 6354 } 6355 6356 intel_color_get_config(pipe_config); 6357 6358 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe)); 6359 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); 6360 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 6361 pipe_config->ips_linetime = 6362 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); 6363 6364 if (intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, 6365 POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe))) { 6366 if (DISPLAY_VER(dev_priv) >= 9) 6367 skl_get_pfit_config(pipe_config); 6368 else 6369 ilk_get_pfit_config(pipe_config); 6370 } 6371 6372 if (hsw_crtc_supports_ips(crtc)) { 6373 if (IS_HASWELL(dev_priv)) 6374 pipe_config->ips_enabled = intel_de_read(dev_priv, 6375 IPS_CTL) & IPS_ENABLE; 6376 else { 6377 /* 6378 * We cannot readout IPS state on broadwell, set to 6379 * true so we can set it to a defined state on first 6380 * commit. 6381 */ 6382 pipe_config->ips_enabled = true; 6383 } 6384 } 6385 6386 if (pipe_config->bigjoiner_slave) { 6387 /* Cannot be read out as a slave, set to 0. */ 6388 pipe_config->pixel_multiplier = 0; 6389 } else if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 6390 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 6391 pipe_config->pixel_multiplier = 6392 intel_de_read(dev_priv, 6393 PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 6394 } else { 6395 pipe_config->pixel_multiplier = 1; 6396 } 6397 6398 out: 6399 intel_display_power_put_all_in_set(dev_priv, &power_domain_set); 6400 6401 return active; 6402 } 6403 6404 static bool intel_crtc_get_pipe_config(struct intel_crtc_state *crtc_state) 6405 { 6406 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6407 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 6408 6409 if (!i915->display.get_pipe_config(crtc, crtc_state)) 6410 return false; 6411 6412 crtc_state->hw.active = true; 6413 6414 intel_crtc_readout_derived_state(crtc_state); 6415 6416 return true; 6417 } 6418 6419 /* VESA 640x480x72Hz mode to set on the pipe */ 6420 static const struct drm_display_mode load_detect_mode = { 6421 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 6422 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 6423 }; 6424 6425 struct drm_framebuffer * 6426 intel_framebuffer_create(struct drm_i915_gem_object *obj, 6427 struct drm_mode_fb_cmd2 *mode_cmd) 6428 { 6429 struct intel_framebuffer *intel_fb; 6430 int ret; 6431 6432 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 6433 if (!intel_fb) 6434 return ERR_PTR(-ENOMEM); 6435 6436 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); 6437 if (ret) 6438 goto err; 6439 6440 return &intel_fb->base; 6441 6442 err: 6443 kfree(intel_fb); 6444 return ERR_PTR(ret); 6445 } 6446 6447 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 6448 struct drm_crtc *crtc) 6449 { 6450 struct drm_plane *plane; 6451 struct drm_plane_state *plane_state; 6452 int ret, i; 6453 6454 ret = drm_atomic_add_affected_planes(state, crtc); 6455 if (ret) 6456 return ret; 6457 6458 for_each_new_plane_in_state(state, plane, plane_state, i) { 6459 if (plane_state->crtc != crtc) 6460 continue; 6461 6462 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 6463 if (ret) 6464 return ret; 6465 6466 drm_atomic_set_fb_for_plane(plane_state, NULL); 6467 } 6468 6469 return 0; 6470 } 6471 6472 int intel_get_load_detect_pipe(struct drm_connector *connector, 6473 struct intel_load_detect_pipe *old, 6474 struct drm_modeset_acquire_ctx *ctx) 6475 { 6476 struct intel_crtc *intel_crtc; 6477 struct intel_encoder *intel_encoder = 6478 intel_attached_encoder(to_intel_connector(connector)); 6479 struct drm_crtc *possible_crtc; 6480 struct drm_encoder *encoder = &intel_encoder->base; 6481 struct drm_crtc *crtc = NULL; 6482 struct drm_device *dev = encoder->dev; 6483 struct drm_i915_private *dev_priv = to_i915(dev); 6484 struct drm_mode_config *config = &dev->mode_config; 6485 struct drm_atomic_state *state = NULL, *restore_state = NULL; 6486 struct drm_connector_state *connector_state; 6487 struct intel_crtc_state *crtc_state; 6488 int ret, i = -1; 6489 6490 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 6491 connector->base.id, connector->name, 6492 encoder->base.id, encoder->name); 6493 6494 old->restore_state = NULL; 6495 6496 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex)); 6497 6498 /* 6499 * Algorithm gets a little messy: 6500 * 6501 * - if the connector already has an assigned crtc, use it (but make 6502 * sure it's on first) 6503 * 6504 * - try to find the first unused crtc that can drive this connector, 6505 * and use that if we find one 6506 */ 6507 6508 /* See if we already have a CRTC for this connector */ 6509 if (connector->state->crtc) { 6510 crtc = connector->state->crtc; 6511 6512 ret = drm_modeset_lock(&crtc->mutex, ctx); 6513 if (ret) 6514 goto fail; 6515 6516 /* Make sure the crtc and connector are running */ 6517 goto found; 6518 } 6519 6520 /* Find an unused one (if possible) */ 6521 for_each_crtc(dev, possible_crtc) { 6522 i++; 6523 if (!(encoder->possible_crtcs & (1 << i))) 6524 continue; 6525 6526 ret = drm_modeset_lock(&possible_crtc->mutex, ctx); 6527 if (ret) 6528 goto fail; 6529 6530 if (possible_crtc->state->enable) { 6531 drm_modeset_unlock(&possible_crtc->mutex); 6532 continue; 6533 } 6534 6535 crtc = possible_crtc; 6536 break; 6537 } 6538 6539 /* 6540 * If we didn't find an unused CRTC, don't use any. 6541 */ 6542 if (!crtc) { 6543 drm_dbg_kms(&dev_priv->drm, 6544 "no pipe available for load-detect\n"); 6545 ret = -ENODEV; 6546 goto fail; 6547 } 6548 6549 found: 6550 intel_crtc = to_intel_crtc(crtc); 6551 6552 state = drm_atomic_state_alloc(dev); 6553 restore_state = drm_atomic_state_alloc(dev); 6554 if (!state || !restore_state) { 6555 ret = -ENOMEM; 6556 goto fail; 6557 } 6558 6559 state->acquire_ctx = ctx; 6560 restore_state->acquire_ctx = ctx; 6561 6562 connector_state = drm_atomic_get_connector_state(state, connector); 6563 if (IS_ERR(connector_state)) { 6564 ret = PTR_ERR(connector_state); 6565 goto fail; 6566 } 6567 6568 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); 6569 if (ret) 6570 goto fail; 6571 6572 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); 6573 if (IS_ERR(crtc_state)) { 6574 ret = PTR_ERR(crtc_state); 6575 goto fail; 6576 } 6577 6578 crtc_state->uapi.active = true; 6579 6580 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi, 6581 &load_detect_mode); 6582 if (ret) 6583 goto fail; 6584 6585 ret = intel_modeset_disable_planes(state, crtc); 6586 if (ret) 6587 goto fail; 6588 6589 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 6590 if (!ret) 6591 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); 6592 if (!ret) 6593 ret = drm_atomic_add_affected_planes(restore_state, crtc); 6594 if (ret) { 6595 drm_dbg_kms(&dev_priv->drm, 6596 "Failed to create a copy of old state to restore: %i\n", 6597 ret); 6598 goto fail; 6599 } 6600 6601 ret = drm_atomic_commit(state); 6602 if (ret) { 6603 drm_dbg_kms(&dev_priv->drm, 6604 "failed to set mode on load-detect pipe\n"); 6605 goto fail; 6606 } 6607 6608 old->restore_state = restore_state; 6609 drm_atomic_state_put(state); 6610 6611 /* let the connector get through one full cycle before testing */ 6612 intel_wait_for_vblank(dev_priv, intel_crtc->pipe); 6613 return true; 6614 6615 fail: 6616 if (state) { 6617 drm_atomic_state_put(state); 6618 state = NULL; 6619 } 6620 if (restore_state) { 6621 drm_atomic_state_put(restore_state); 6622 restore_state = NULL; 6623 } 6624 6625 if (ret == -EDEADLK) 6626 return ret; 6627 6628 return false; 6629 } 6630 6631 void intel_release_load_detect_pipe(struct drm_connector *connector, 6632 struct intel_load_detect_pipe *old, 6633 struct drm_modeset_acquire_ctx *ctx) 6634 { 6635 struct intel_encoder *intel_encoder = 6636 intel_attached_encoder(to_intel_connector(connector)); 6637 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev); 6638 struct drm_encoder *encoder = &intel_encoder->base; 6639 struct drm_atomic_state *state = old->restore_state; 6640 int ret; 6641 6642 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 6643 connector->base.id, connector->name, 6644 encoder->base.id, encoder->name); 6645 6646 if (!state) 6647 return; 6648 6649 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 6650 if (ret) 6651 drm_dbg_kms(&i915->drm, 6652 "Couldn't release load detect pipe: %i\n", ret); 6653 drm_atomic_state_put(state); 6654 } 6655 6656 static int i9xx_pll_refclk(struct drm_device *dev, 6657 const struct intel_crtc_state *pipe_config) 6658 { 6659 struct drm_i915_private *dev_priv = to_i915(dev); 6660 u32 dpll = pipe_config->dpll_hw_state.dpll; 6661 6662 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 6663 return dev_priv->vbt.lvds_ssc_freq; 6664 else if (HAS_PCH_SPLIT(dev_priv)) 6665 return 120000; 6666 else if (DISPLAY_VER(dev_priv) != 2) 6667 return 96000; 6668 else 6669 return 48000; 6670 } 6671 6672 /* Returns the clock of the currently programmed mode of the given pipe. */ 6673 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 6674 struct intel_crtc_state *pipe_config) 6675 { 6676 struct drm_device *dev = crtc->base.dev; 6677 struct drm_i915_private *dev_priv = to_i915(dev); 6678 enum pipe pipe = crtc->pipe; 6679 u32 dpll = pipe_config->dpll_hw_state.dpll; 6680 u32 fp; 6681 struct dpll clock; 6682 int port_clock; 6683 int refclk = i9xx_pll_refclk(dev, pipe_config); 6684 6685 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 6686 fp = pipe_config->dpll_hw_state.fp0; 6687 else 6688 fp = pipe_config->dpll_hw_state.fp1; 6689 6690 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 6691 if (IS_PINEVIEW(dev_priv)) { 6692 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 6693 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 6694 } else { 6695 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 6696 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 6697 } 6698 6699 if (DISPLAY_VER(dev_priv) != 2) { 6700 if (IS_PINEVIEW(dev_priv)) 6701 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 6702 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 6703 else 6704 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 6705 DPLL_FPA01_P1_POST_DIV_SHIFT); 6706 6707 switch (dpll & DPLL_MODE_MASK) { 6708 case DPLLB_MODE_DAC_SERIAL: 6709 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 6710 5 : 10; 6711 break; 6712 case DPLLB_MODE_LVDS: 6713 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 6714 7 : 14; 6715 break; 6716 default: 6717 drm_dbg_kms(&dev_priv->drm, 6718 "Unknown DPLL mode %08x in programmed " 6719 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 6720 return; 6721 } 6722 6723 if (IS_PINEVIEW(dev_priv)) 6724 port_clock = pnv_calc_dpll_params(refclk, &clock); 6725 else 6726 port_clock = i9xx_calc_dpll_params(refclk, &clock); 6727 } else { 6728 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv, 6729 LVDS); 6730 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 6731 6732 if (is_lvds) { 6733 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 6734 DPLL_FPA01_P1_POST_DIV_SHIFT); 6735 6736 if (lvds & LVDS_CLKB_POWER_UP) 6737 clock.p2 = 7; 6738 else 6739 clock.p2 = 14; 6740 } else { 6741 if (dpll & PLL_P1_DIVIDE_BY_TWO) 6742 clock.p1 = 2; 6743 else { 6744 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 6745 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 6746 } 6747 if (dpll & PLL_P2_DIVIDE_BY_4) 6748 clock.p2 = 4; 6749 else 6750 clock.p2 = 2; 6751 } 6752 6753 port_clock = i9xx_calc_dpll_params(refclk, &clock); 6754 } 6755 6756 /* 6757 * This value includes pixel_multiplier. We will use 6758 * port_clock to compute adjusted_mode.crtc_clock in the 6759 * encoder's get_config() function. 6760 */ 6761 pipe_config->port_clock = port_clock; 6762 } 6763 6764 int intel_dotclock_calculate(int link_freq, 6765 const struct intel_link_m_n *m_n) 6766 { 6767 /* 6768 * The calculation for the data clock is: 6769 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 6770 * But we want to avoid losing precison if possible, so: 6771 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 6772 * 6773 * and the link clock is simpler: 6774 * link_clock = (m * link_clock) / n 6775 */ 6776 6777 if (!m_n->link_n) 6778 return 0; 6779 6780 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 6781 } 6782 6783 static void ilk_pch_clock_get(struct intel_crtc *crtc, 6784 struct intel_crtc_state *pipe_config) 6785 { 6786 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6787 6788 /* read out port_clock from the DPLL */ 6789 i9xx_crtc_clock_get(crtc, pipe_config); 6790 6791 /* 6792 * In case there is an active pipe without active ports, 6793 * we may need some idea for the dotclock anyway. 6794 * Calculate one based on the FDI configuration. 6795 */ 6796 pipe_config->hw.adjusted_mode.crtc_clock = 6797 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 6798 &pipe_config->fdi_m_n); 6799 } 6800 6801 /* Returns the currently programmed mode of the given encoder. */ 6802 struct drm_display_mode * 6803 intel_encoder_current_mode(struct intel_encoder *encoder) 6804 { 6805 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6806 struct intel_crtc_state *crtc_state; 6807 struct drm_display_mode *mode; 6808 struct intel_crtc *crtc; 6809 enum pipe pipe; 6810 6811 if (!encoder->get_hw_state(encoder, &pipe)) 6812 return NULL; 6813 6814 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 6815 6816 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 6817 if (!mode) 6818 return NULL; 6819 6820 crtc_state = intel_crtc_state_alloc(crtc); 6821 if (!crtc_state) { 6822 kfree(mode); 6823 return NULL; 6824 } 6825 6826 if (!intel_crtc_get_pipe_config(crtc_state)) { 6827 kfree(crtc_state); 6828 kfree(mode); 6829 return NULL; 6830 } 6831 6832 intel_encoder_get_config(encoder, crtc_state); 6833 6834 intel_mode_from_crtc_timings(mode, &crtc_state->hw.adjusted_mode); 6835 6836 kfree(crtc_state); 6837 6838 return mode; 6839 } 6840 6841 /** 6842 * intel_wm_need_update - Check whether watermarks need updating 6843 * @cur: current plane state 6844 * @new: new plane state 6845 * 6846 * Check current plane state versus the new one to determine whether 6847 * watermarks need to be recalculated. 6848 * 6849 * Returns true or false. 6850 */ 6851 static bool intel_wm_need_update(const struct intel_plane_state *cur, 6852 struct intel_plane_state *new) 6853 { 6854 /* Update watermarks on tiling or size changes. */ 6855 if (new->uapi.visible != cur->uapi.visible) 6856 return true; 6857 6858 if (!cur->hw.fb || !new->hw.fb) 6859 return false; 6860 6861 if (cur->hw.fb->modifier != new->hw.fb->modifier || 6862 cur->hw.rotation != new->hw.rotation || 6863 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) || 6864 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) || 6865 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) || 6866 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst)) 6867 return true; 6868 6869 return false; 6870 } 6871 6872 static bool needs_scaling(const struct intel_plane_state *state) 6873 { 6874 int src_w = drm_rect_width(&state->uapi.src) >> 16; 6875 int src_h = drm_rect_height(&state->uapi.src) >> 16; 6876 int dst_w = drm_rect_width(&state->uapi.dst); 6877 int dst_h = drm_rect_height(&state->uapi.dst); 6878 6879 return (src_w != dst_w || src_h != dst_h); 6880 } 6881 6882 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 6883 struct intel_crtc_state *crtc_state, 6884 const struct intel_plane_state *old_plane_state, 6885 struct intel_plane_state *plane_state) 6886 { 6887 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6888 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 6889 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6890 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 6891 bool was_crtc_enabled = old_crtc_state->hw.active; 6892 bool is_crtc_enabled = crtc_state->hw.active; 6893 bool turn_off, turn_on, visible, was_visible; 6894 int ret; 6895 6896 if (DISPLAY_VER(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 6897 ret = skl_update_scaler_plane(crtc_state, plane_state); 6898 if (ret) 6899 return ret; 6900 } 6901 6902 was_visible = old_plane_state->uapi.visible; 6903 visible = plane_state->uapi.visible; 6904 6905 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible)) 6906 was_visible = false; 6907 6908 /* 6909 * Visibility is calculated as if the crtc was on, but 6910 * after scaler setup everything depends on it being off 6911 * when the crtc isn't active. 6912 * 6913 * FIXME this is wrong for watermarks. Watermarks should also 6914 * be computed as if the pipe would be active. Perhaps move 6915 * per-plane wm computation to the .check_plane() hook, and 6916 * only combine the results from all planes in the current place? 6917 */ 6918 if (!is_crtc_enabled) { 6919 intel_plane_set_invisible(crtc_state, plane_state); 6920 visible = false; 6921 } 6922 6923 if (!was_visible && !visible) 6924 return 0; 6925 6926 turn_off = was_visible && (!visible || mode_changed); 6927 turn_on = visible && (!was_visible || mode_changed); 6928 6929 drm_dbg_atomic(&dev_priv->drm, 6930 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 6931 crtc->base.base.id, crtc->base.name, 6932 plane->base.base.id, plane->base.name, 6933 was_visible, visible, 6934 turn_off, turn_on, mode_changed); 6935 6936 if (turn_on) { 6937 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) 6938 crtc_state->update_wm_pre = true; 6939 6940 /* must disable cxsr around plane enable/disable */ 6941 if (plane->id != PLANE_CURSOR) 6942 crtc_state->disable_cxsr = true; 6943 } else if (turn_off) { 6944 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) 6945 crtc_state->update_wm_post = true; 6946 6947 /* must disable cxsr around plane enable/disable */ 6948 if (plane->id != PLANE_CURSOR) 6949 crtc_state->disable_cxsr = true; 6950 } else if (intel_wm_need_update(old_plane_state, plane_state)) { 6951 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) { 6952 /* FIXME bollocks */ 6953 crtc_state->update_wm_pre = true; 6954 crtc_state->update_wm_post = true; 6955 } 6956 } 6957 6958 if (visible || was_visible) 6959 crtc_state->fb_bits |= plane->frontbuffer_bit; 6960 6961 /* 6962 * ILK/SNB DVSACNTR/Sprite Enable 6963 * IVB SPR_CTL/Sprite Enable 6964 * "When in Self Refresh Big FIFO mode, a write to enable the 6965 * plane will be internally buffered and delayed while Big FIFO 6966 * mode is exiting." 6967 * 6968 * Which means that enabling the sprite can take an extra frame 6969 * when we start in big FIFO mode (LP1+). Thus we need to drop 6970 * down to LP0 and wait for vblank in order to make sure the 6971 * sprite gets enabled on the next vblank after the register write. 6972 * Doing otherwise would risk enabling the sprite one frame after 6973 * we've already signalled flip completion. We can resume LP1+ 6974 * once the sprite has been enabled. 6975 * 6976 * 6977 * WaCxSRDisabledForSpriteScaling:ivb 6978 * IVB SPR_SCALE/Scaling Enable 6979 * "Low Power watermarks must be disabled for at least one 6980 * frame before enabling sprite scaling, and kept disabled 6981 * until sprite scaling is disabled." 6982 * 6983 * ILK/SNB DVSASCALE/Scaling Enable 6984 * "When in Self Refresh Big FIFO mode, scaling enable will be 6985 * masked off while Big FIFO mode is exiting." 6986 * 6987 * Despite the w/a only being listed for IVB we assume that 6988 * the ILK/SNB note has similar ramifications, hence we apply 6989 * the w/a on all three platforms. 6990 * 6991 * With experimental results seems this is needed also for primary 6992 * plane, not only sprite plane. 6993 */ 6994 if (plane->id != PLANE_CURSOR && 6995 (IS_IRONLAKE(dev_priv) || IS_SANDYBRIDGE(dev_priv) || 6996 IS_IVYBRIDGE(dev_priv)) && 6997 (turn_on || (!needs_scaling(old_plane_state) && 6998 needs_scaling(plane_state)))) 6999 crtc_state->disable_lp_wm = true; 7000 7001 return 0; 7002 } 7003 7004 static bool encoders_cloneable(const struct intel_encoder *a, 7005 const struct intel_encoder *b) 7006 { 7007 /* masks could be asymmetric, so check both ways */ 7008 return a == b || (a->cloneable & (1 << b->type) && 7009 b->cloneable & (1 << a->type)); 7010 } 7011 7012 static bool check_single_encoder_cloning(struct intel_atomic_state *state, 7013 struct intel_crtc *crtc, 7014 struct intel_encoder *encoder) 7015 { 7016 struct intel_encoder *source_encoder; 7017 struct drm_connector *connector; 7018 struct drm_connector_state *connector_state; 7019 int i; 7020 7021 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 7022 if (connector_state->crtc != &crtc->base) 7023 continue; 7024 7025 source_encoder = 7026 to_intel_encoder(connector_state->best_encoder); 7027 if (!encoders_cloneable(encoder, source_encoder)) 7028 return false; 7029 } 7030 7031 return true; 7032 } 7033 7034 static int icl_add_linked_planes(struct intel_atomic_state *state) 7035 { 7036 struct intel_plane *plane, *linked; 7037 struct intel_plane_state *plane_state, *linked_plane_state; 7038 int i; 7039 7040 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7041 linked = plane_state->planar_linked_plane; 7042 7043 if (!linked) 7044 continue; 7045 7046 linked_plane_state = intel_atomic_get_plane_state(state, linked); 7047 if (IS_ERR(linked_plane_state)) 7048 return PTR_ERR(linked_plane_state); 7049 7050 drm_WARN_ON(state->base.dev, 7051 linked_plane_state->planar_linked_plane != plane); 7052 drm_WARN_ON(state->base.dev, 7053 linked_plane_state->planar_slave == plane_state->planar_slave); 7054 } 7055 7056 return 0; 7057 } 7058 7059 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 7060 { 7061 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7062 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7063 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); 7064 struct intel_plane *plane, *linked; 7065 struct intel_plane_state *plane_state; 7066 int i; 7067 7068 if (DISPLAY_VER(dev_priv) < 11) 7069 return 0; 7070 7071 /* 7072 * Destroy all old plane links and make the slave plane invisible 7073 * in the crtc_state->active_planes mask. 7074 */ 7075 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7076 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) 7077 continue; 7078 7079 plane_state->planar_linked_plane = NULL; 7080 if (plane_state->planar_slave && !plane_state->uapi.visible) { 7081 crtc_state->enabled_planes &= ~BIT(plane->id); 7082 crtc_state->active_planes &= ~BIT(plane->id); 7083 crtc_state->update_planes |= BIT(plane->id); 7084 } 7085 7086 plane_state->planar_slave = false; 7087 } 7088 7089 if (!crtc_state->nv12_planes) 7090 return 0; 7091 7092 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7093 struct intel_plane_state *linked_state = NULL; 7094 7095 if (plane->pipe != crtc->pipe || 7096 !(crtc_state->nv12_planes & BIT(plane->id))) 7097 continue; 7098 7099 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 7100 if (!icl_is_nv12_y_plane(dev_priv, linked->id)) 7101 continue; 7102 7103 if (crtc_state->active_planes & BIT(linked->id)) 7104 continue; 7105 7106 linked_state = intel_atomic_get_plane_state(state, linked); 7107 if (IS_ERR(linked_state)) 7108 return PTR_ERR(linked_state); 7109 7110 break; 7111 } 7112 7113 if (!linked_state) { 7114 drm_dbg_kms(&dev_priv->drm, 7115 "Need %d free Y planes for planar YUV\n", 7116 hweight8(crtc_state->nv12_planes)); 7117 7118 return -EINVAL; 7119 } 7120 7121 plane_state->planar_linked_plane = linked; 7122 7123 linked_state->planar_slave = true; 7124 linked_state->planar_linked_plane = plane; 7125 crtc_state->enabled_planes |= BIT(linked->id); 7126 crtc_state->active_planes |= BIT(linked->id); 7127 crtc_state->update_planes |= BIT(linked->id); 7128 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n", 7129 linked->base.name, plane->base.name); 7130 7131 /* Copy parameters to slave plane */ 7132 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE; 7133 linked_state->color_ctl = plane_state->color_ctl; 7134 linked_state->view = plane_state->view; 7135 7136 intel_plane_copy_hw_state(linked_state, plane_state); 7137 linked_state->uapi.src = plane_state->uapi.src; 7138 linked_state->uapi.dst = plane_state->uapi.dst; 7139 7140 if (icl_is_hdr_plane(dev_priv, plane->id)) { 7141 if (linked->id == PLANE_SPRITE5) 7142 plane_state->cus_ctl |= PLANE_CUS_PLANE_7; 7143 else if (linked->id == PLANE_SPRITE4) 7144 plane_state->cus_ctl |= PLANE_CUS_PLANE_6; 7145 else if (linked->id == PLANE_SPRITE3) 7146 plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL; 7147 else if (linked->id == PLANE_SPRITE2) 7148 plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL; 7149 else 7150 MISSING_CASE(linked->id); 7151 } 7152 } 7153 7154 return 0; 7155 } 7156 7157 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 7158 { 7159 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 7160 struct intel_atomic_state *state = 7161 to_intel_atomic_state(new_crtc_state->uapi.state); 7162 const struct intel_crtc_state *old_crtc_state = 7163 intel_atomic_get_old_crtc_state(state, crtc); 7164 7165 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 7166 } 7167 7168 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) 7169 { 7170 const struct drm_display_mode *pipe_mode = 7171 &crtc_state->hw.pipe_mode; 7172 int linetime_wm; 7173 7174 if (!crtc_state->hw.enable) 7175 return 0; 7176 7177 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 7178 pipe_mode->crtc_clock); 7179 7180 return min(linetime_wm, 0x1ff); 7181 } 7182 7183 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, 7184 const struct intel_cdclk_state *cdclk_state) 7185 { 7186 const struct drm_display_mode *pipe_mode = 7187 &crtc_state->hw.pipe_mode; 7188 int linetime_wm; 7189 7190 if (!crtc_state->hw.enable) 7191 return 0; 7192 7193 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 7194 cdclk_state->logical.cdclk); 7195 7196 return min(linetime_wm, 0x1ff); 7197 } 7198 7199 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) 7200 { 7201 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7202 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7203 const struct drm_display_mode *pipe_mode = 7204 &crtc_state->hw.pipe_mode; 7205 int linetime_wm; 7206 7207 if (!crtc_state->hw.enable) 7208 return 0; 7209 7210 linetime_wm = DIV_ROUND_UP(pipe_mode->crtc_htotal * 1000 * 8, 7211 crtc_state->pixel_rate); 7212 7213 /* Display WA #1135: BXT:ALL GLK:ALL */ 7214 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 7215 dev_priv->ipc_enabled) 7216 linetime_wm /= 2; 7217 7218 return min(linetime_wm, 0x1ff); 7219 } 7220 7221 static int hsw_compute_linetime_wm(struct intel_atomic_state *state, 7222 struct intel_crtc *crtc) 7223 { 7224 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7225 struct intel_crtc_state *crtc_state = 7226 intel_atomic_get_new_crtc_state(state, crtc); 7227 const struct intel_cdclk_state *cdclk_state; 7228 7229 if (DISPLAY_VER(dev_priv) >= 9) 7230 crtc_state->linetime = skl_linetime_wm(crtc_state); 7231 else 7232 crtc_state->linetime = hsw_linetime_wm(crtc_state); 7233 7234 if (!hsw_crtc_supports_ips(crtc)) 7235 return 0; 7236 7237 cdclk_state = intel_atomic_get_cdclk_state(state); 7238 if (IS_ERR(cdclk_state)) 7239 return PTR_ERR(cdclk_state); 7240 7241 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, 7242 cdclk_state); 7243 7244 return 0; 7245 } 7246 7247 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 7248 struct intel_crtc *crtc) 7249 { 7250 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7251 struct intel_crtc_state *crtc_state = 7252 intel_atomic_get_new_crtc_state(state, crtc); 7253 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 7254 int ret; 7255 7256 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv) && 7257 mode_changed && !crtc_state->hw.active) 7258 crtc_state->update_wm_post = true; 7259 7260 if (mode_changed && crtc_state->hw.enable && 7261 dev_priv->display.crtc_compute_clock && 7262 !crtc_state->bigjoiner_slave && 7263 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) { 7264 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state); 7265 if (ret) 7266 return ret; 7267 } 7268 7269 /* 7270 * May need to update pipe gamma enable bits 7271 * when C8 planes are getting enabled/disabled. 7272 */ 7273 if (c8_planes_changed(crtc_state)) 7274 crtc_state->uapi.color_mgmt_changed = true; 7275 7276 if (mode_changed || crtc_state->update_pipe || 7277 crtc_state->uapi.color_mgmt_changed) { 7278 ret = intel_color_check(crtc_state); 7279 if (ret) 7280 return ret; 7281 } 7282 7283 if (dev_priv->display.compute_pipe_wm) { 7284 ret = dev_priv->display.compute_pipe_wm(crtc_state); 7285 if (ret) { 7286 drm_dbg_kms(&dev_priv->drm, 7287 "Target pipe watermarks are invalid\n"); 7288 return ret; 7289 } 7290 } 7291 7292 if (dev_priv->display.compute_intermediate_wm) { 7293 if (drm_WARN_ON(&dev_priv->drm, 7294 !dev_priv->display.compute_pipe_wm)) 7295 return 0; 7296 7297 /* 7298 * Calculate 'intermediate' watermarks that satisfy both the 7299 * old state and the new state. We can program these 7300 * immediately. 7301 */ 7302 ret = dev_priv->display.compute_intermediate_wm(crtc_state); 7303 if (ret) { 7304 drm_dbg_kms(&dev_priv->drm, 7305 "No valid intermediate pipe watermarks are possible\n"); 7306 return ret; 7307 } 7308 } 7309 7310 if (DISPLAY_VER(dev_priv) >= 9) { 7311 if (mode_changed || crtc_state->update_pipe) { 7312 ret = skl_update_scaler_crtc(crtc_state); 7313 if (ret) 7314 return ret; 7315 } 7316 7317 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state); 7318 if (ret) 7319 return ret; 7320 } 7321 7322 if (HAS_IPS(dev_priv)) { 7323 ret = hsw_compute_ips_config(crtc_state); 7324 if (ret) 7325 return ret; 7326 } 7327 7328 if (DISPLAY_VER(dev_priv) >= 9 || 7329 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 7330 ret = hsw_compute_linetime_wm(state, crtc); 7331 if (ret) 7332 return ret; 7333 7334 } 7335 7336 if (!mode_changed) { 7337 ret = intel_psr2_sel_fetch_update(state, crtc); 7338 if (ret) 7339 return ret; 7340 } 7341 7342 return 0; 7343 } 7344 7345 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 7346 { 7347 struct intel_connector *connector; 7348 struct drm_connector_list_iter conn_iter; 7349 7350 drm_connector_list_iter_begin(dev, &conn_iter); 7351 for_each_intel_connector_iter(connector, &conn_iter) { 7352 struct drm_connector_state *conn_state = connector->base.state; 7353 struct intel_encoder *encoder = 7354 to_intel_encoder(connector->base.encoder); 7355 7356 if (conn_state->crtc) 7357 drm_connector_put(&connector->base); 7358 7359 if (encoder) { 7360 struct intel_crtc *crtc = 7361 to_intel_crtc(encoder->base.crtc); 7362 const struct intel_crtc_state *crtc_state = 7363 to_intel_crtc_state(crtc->base.state); 7364 7365 conn_state->best_encoder = &encoder->base; 7366 conn_state->crtc = &crtc->base; 7367 conn_state->max_bpc = (crtc_state->pipe_bpp ?: 24) / 3; 7368 7369 drm_connector_get(&connector->base); 7370 } else { 7371 conn_state->best_encoder = NULL; 7372 conn_state->crtc = NULL; 7373 } 7374 } 7375 drm_connector_list_iter_end(&conn_iter); 7376 } 7377 7378 static int 7379 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 7380 struct intel_crtc_state *pipe_config) 7381 { 7382 struct drm_connector *connector = conn_state->connector; 7383 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7384 const struct drm_display_info *info = &connector->display_info; 7385 int bpp; 7386 7387 switch (conn_state->max_bpc) { 7388 case 6 ... 7: 7389 bpp = 6 * 3; 7390 break; 7391 case 8 ... 9: 7392 bpp = 8 * 3; 7393 break; 7394 case 10 ... 11: 7395 bpp = 10 * 3; 7396 break; 7397 case 12 ... 16: 7398 bpp = 12 * 3; 7399 break; 7400 default: 7401 MISSING_CASE(conn_state->max_bpc); 7402 return -EINVAL; 7403 } 7404 7405 if (bpp < pipe_config->pipe_bpp) { 7406 drm_dbg_kms(&i915->drm, 7407 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 7408 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 7409 connector->base.id, connector->name, 7410 bpp, 3 * info->bpc, 7411 3 * conn_state->max_requested_bpc, 7412 pipe_config->pipe_bpp); 7413 7414 pipe_config->pipe_bpp = bpp; 7415 } 7416 7417 return 0; 7418 } 7419 7420 static int 7421 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 7422 struct intel_crtc_state *pipe_config) 7423 { 7424 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7425 struct drm_atomic_state *state = pipe_config->uapi.state; 7426 struct drm_connector *connector; 7427 struct drm_connector_state *connector_state; 7428 int bpp, i; 7429 7430 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 7431 IS_CHERRYVIEW(dev_priv))) 7432 bpp = 10*3; 7433 else if (DISPLAY_VER(dev_priv) >= 5) 7434 bpp = 12*3; 7435 else 7436 bpp = 8*3; 7437 7438 pipe_config->pipe_bpp = bpp; 7439 7440 /* Clamp display bpp to connector max bpp */ 7441 for_each_new_connector_in_state(state, connector, connector_state, i) { 7442 int ret; 7443 7444 if (connector_state->crtc != &crtc->base) 7445 continue; 7446 7447 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 7448 if (ret) 7449 return ret; 7450 } 7451 7452 return 0; 7453 } 7454 7455 static void intel_dump_crtc_timings(struct drm_i915_private *i915, 7456 const struct drm_display_mode *mode) 7457 { 7458 drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, " 7459 "type: 0x%x flags: 0x%x\n", 7460 mode->crtc_clock, 7461 mode->crtc_hdisplay, mode->crtc_hsync_start, 7462 mode->crtc_hsync_end, mode->crtc_htotal, 7463 mode->crtc_vdisplay, mode->crtc_vsync_start, 7464 mode->crtc_vsync_end, mode->crtc_vtotal, 7465 mode->type, mode->flags); 7466 } 7467 7468 static void 7469 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 7470 const char *id, unsigned int lane_count, 7471 const struct intel_link_m_n *m_n) 7472 { 7473 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7474 7475 drm_dbg_kms(&i915->drm, 7476 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 7477 id, lane_count, 7478 m_n->gmch_m, m_n->gmch_n, 7479 m_n->link_m, m_n->link_n, m_n->tu); 7480 } 7481 7482 static void 7483 intel_dump_infoframe(struct drm_i915_private *dev_priv, 7484 const union hdmi_infoframe *frame) 7485 { 7486 if (!drm_debug_enabled(DRM_UT_KMS)) 7487 return; 7488 7489 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 7490 } 7491 7492 static void 7493 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv, 7494 const struct drm_dp_vsc_sdp *vsc) 7495 { 7496 if (!drm_debug_enabled(DRM_UT_KMS)) 7497 return; 7498 7499 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc); 7500 } 7501 7502 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 7503 7504 static const char * const output_type_str[] = { 7505 OUTPUT_TYPE(UNUSED), 7506 OUTPUT_TYPE(ANALOG), 7507 OUTPUT_TYPE(DVO), 7508 OUTPUT_TYPE(SDVO), 7509 OUTPUT_TYPE(LVDS), 7510 OUTPUT_TYPE(TVOUT), 7511 OUTPUT_TYPE(HDMI), 7512 OUTPUT_TYPE(DP), 7513 OUTPUT_TYPE(EDP), 7514 OUTPUT_TYPE(DSI), 7515 OUTPUT_TYPE(DDI), 7516 OUTPUT_TYPE(DP_MST), 7517 }; 7518 7519 #undef OUTPUT_TYPE 7520 7521 static void snprintf_output_types(char *buf, size_t len, 7522 unsigned int output_types) 7523 { 7524 char *str = buf; 7525 int i; 7526 7527 str[0] = '\0'; 7528 7529 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 7530 int r; 7531 7532 if ((output_types & BIT(i)) == 0) 7533 continue; 7534 7535 r = snprintf(str, len, "%s%s", 7536 str != buf ? "," : "", output_type_str[i]); 7537 if (r >= len) 7538 break; 7539 str += r; 7540 len -= r; 7541 7542 output_types &= ~BIT(i); 7543 } 7544 7545 WARN_ON_ONCE(output_types != 0); 7546 } 7547 7548 static const char * const output_format_str[] = { 7549 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 7550 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 7551 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 7552 }; 7553 7554 static const char *output_formats(enum intel_output_format format) 7555 { 7556 if (format >= ARRAY_SIZE(output_format_str)) 7557 return "invalid"; 7558 return output_format_str[format]; 7559 } 7560 7561 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 7562 { 7563 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 7564 struct drm_i915_private *i915 = to_i915(plane->base.dev); 7565 const struct drm_framebuffer *fb = plane_state->hw.fb; 7566 7567 if (!fb) { 7568 drm_dbg_kms(&i915->drm, 7569 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 7570 plane->base.base.id, plane->base.name, 7571 yesno(plane_state->uapi.visible)); 7572 return; 7573 } 7574 7575 drm_dbg_kms(&i915->drm, 7576 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %p4cc modifier = 0x%llx, visible: %s\n", 7577 plane->base.base.id, plane->base.name, 7578 fb->base.id, fb->width, fb->height, &fb->format->format, 7579 fb->modifier, yesno(plane_state->uapi.visible)); 7580 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n", 7581 plane_state->hw.rotation, plane_state->scaler_id); 7582 if (plane_state->uapi.visible) 7583 drm_dbg_kms(&i915->drm, 7584 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 7585 DRM_RECT_FP_ARG(&plane_state->uapi.src), 7586 DRM_RECT_ARG(&plane_state->uapi.dst)); 7587 } 7588 7589 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 7590 struct intel_atomic_state *state, 7591 const char *context) 7592 { 7593 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 7594 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7595 const struct intel_plane_state *plane_state; 7596 struct intel_plane *plane; 7597 char buf[64]; 7598 int i; 7599 7600 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n", 7601 crtc->base.base.id, crtc->base.name, 7602 yesno(pipe_config->hw.enable), context); 7603 7604 if (!pipe_config->hw.enable) 7605 goto dump_planes; 7606 7607 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 7608 drm_dbg_kms(&dev_priv->drm, 7609 "active: %s, output_types: %s (0x%x), output format: %s\n", 7610 yesno(pipe_config->hw.active), 7611 buf, pipe_config->output_types, 7612 output_formats(pipe_config->output_format)); 7613 7614 drm_dbg_kms(&dev_priv->drm, 7615 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 7616 transcoder_name(pipe_config->cpu_transcoder), 7617 pipe_config->pipe_bpp, pipe_config->dither); 7618 7619 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n", 7620 transcoder_name(pipe_config->mst_master_transcoder)); 7621 7622 drm_dbg_kms(&dev_priv->drm, 7623 "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n", 7624 transcoder_name(pipe_config->master_transcoder), 7625 pipe_config->sync_mode_slaves_mask); 7626 7627 drm_dbg_kms(&dev_priv->drm, "bigjoiner: %s\n", 7628 pipe_config->bigjoiner_slave ? "slave" : 7629 pipe_config->bigjoiner ? "master" : "no"); 7630 7631 drm_dbg_kms(&dev_priv->drm, "splitter: %s, link count %d, overlap %d\n", 7632 enableddisabled(pipe_config->splitter.enable), 7633 pipe_config->splitter.link_count, 7634 pipe_config->splitter.pixel_overlap); 7635 7636 if (pipe_config->has_pch_encoder) 7637 intel_dump_m_n_config(pipe_config, "fdi", 7638 pipe_config->fdi_lanes, 7639 &pipe_config->fdi_m_n); 7640 7641 if (intel_crtc_has_dp_encoder(pipe_config)) { 7642 intel_dump_m_n_config(pipe_config, "dp m_n", 7643 pipe_config->lane_count, &pipe_config->dp_m_n); 7644 if (pipe_config->has_drrs) 7645 intel_dump_m_n_config(pipe_config, "dp m2_n2", 7646 pipe_config->lane_count, 7647 &pipe_config->dp_m2_n2); 7648 } 7649 7650 drm_dbg_kms(&dev_priv->drm, 7651 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 7652 pipe_config->has_audio, pipe_config->has_infoframe, 7653 pipe_config->infoframes.enable); 7654 7655 if (pipe_config->infoframes.enable & 7656 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 7657 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n", 7658 pipe_config->infoframes.gcp); 7659 if (pipe_config->infoframes.enable & 7660 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 7661 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 7662 if (pipe_config->infoframes.enable & 7663 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 7664 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 7665 if (pipe_config->infoframes.enable & 7666 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 7667 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 7668 if (pipe_config->infoframes.enable & 7669 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) 7670 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 7671 if (pipe_config->infoframes.enable & 7672 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA)) 7673 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 7674 if (pipe_config->infoframes.enable & 7675 intel_hdmi_infoframe_enable(DP_SDP_VSC)) 7676 intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc); 7677 7678 drm_dbg_kms(&dev_priv->drm, "vrr: %s, vmin: %d, vmax: %d, pipeline full: %d, guardband: %d flipline: %d, vmin vblank: %d, vmax vblank: %d\n", 7679 yesno(pipe_config->vrr.enable), 7680 pipe_config->vrr.vmin, pipe_config->vrr.vmax, 7681 pipe_config->vrr.pipeline_full, pipe_config->vrr.guardband, 7682 pipe_config->vrr.flipline, 7683 intel_vrr_vmin_vblank_start(pipe_config), 7684 intel_vrr_vmax_vblank_start(pipe_config)); 7685 7686 drm_dbg_kms(&dev_priv->drm, "requested mode:\n"); 7687 drm_mode_debug_printmodeline(&pipe_config->hw.mode); 7688 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n"); 7689 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode); 7690 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode); 7691 drm_dbg_kms(&dev_priv->drm, "pipe mode:\n"); 7692 drm_mode_debug_printmodeline(&pipe_config->hw.pipe_mode); 7693 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.pipe_mode); 7694 drm_dbg_kms(&dev_priv->drm, 7695 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 7696 pipe_config->port_clock, 7697 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 7698 pipe_config->pixel_rate); 7699 7700 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n", 7701 pipe_config->linetime, pipe_config->ips_linetime); 7702 7703 if (DISPLAY_VER(dev_priv) >= 9) 7704 drm_dbg_kms(&dev_priv->drm, 7705 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 7706 crtc->num_scalers, 7707 pipe_config->scaler_state.scaler_users, 7708 pipe_config->scaler_state.scaler_id); 7709 7710 if (HAS_GMCH(dev_priv)) 7711 drm_dbg_kms(&dev_priv->drm, 7712 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 7713 pipe_config->gmch_pfit.control, 7714 pipe_config->gmch_pfit.pgm_ratios, 7715 pipe_config->gmch_pfit.lvds_border_bits); 7716 else 7717 drm_dbg_kms(&dev_priv->drm, 7718 "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n", 7719 DRM_RECT_ARG(&pipe_config->pch_pfit.dst), 7720 enableddisabled(pipe_config->pch_pfit.enabled), 7721 yesno(pipe_config->pch_pfit.force_thru)); 7722 7723 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n", 7724 pipe_config->ips_enabled, pipe_config->double_wide); 7725 7726 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 7727 7728 if (IS_CHERRYVIEW(dev_priv)) 7729 drm_dbg_kms(&dev_priv->drm, 7730 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 7731 pipe_config->cgm_mode, pipe_config->gamma_mode, 7732 pipe_config->gamma_enable, pipe_config->csc_enable); 7733 else 7734 drm_dbg_kms(&dev_priv->drm, 7735 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 7736 pipe_config->csc_mode, pipe_config->gamma_mode, 7737 pipe_config->gamma_enable, pipe_config->csc_enable); 7738 7739 drm_dbg_kms(&dev_priv->drm, "degamma lut: %d entries, gamma lut: %d entries\n", 7740 pipe_config->hw.degamma_lut ? 7741 drm_color_lut_size(pipe_config->hw.degamma_lut) : 0, 7742 pipe_config->hw.gamma_lut ? 7743 drm_color_lut_size(pipe_config->hw.gamma_lut) : 0); 7744 7745 dump_planes: 7746 if (!state) 7747 return; 7748 7749 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7750 if (plane->pipe == crtc->pipe) 7751 intel_dump_plane_state(plane_state); 7752 } 7753 } 7754 7755 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 7756 { 7757 struct drm_device *dev = state->base.dev; 7758 struct drm_connector *connector; 7759 struct drm_connector_list_iter conn_iter; 7760 unsigned int used_ports = 0; 7761 unsigned int used_mst_ports = 0; 7762 bool ret = true; 7763 7764 /* 7765 * We're going to peek into connector->state, 7766 * hence connection_mutex must be held. 7767 */ 7768 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); 7769 7770 /* 7771 * Walk the connector list instead of the encoder 7772 * list to detect the problem on ddi platforms 7773 * where there's just one encoder per digital port. 7774 */ 7775 drm_connector_list_iter_begin(dev, &conn_iter); 7776 drm_for_each_connector_iter(connector, &conn_iter) { 7777 struct drm_connector_state *connector_state; 7778 struct intel_encoder *encoder; 7779 7780 connector_state = 7781 drm_atomic_get_new_connector_state(&state->base, 7782 connector); 7783 if (!connector_state) 7784 connector_state = connector->state; 7785 7786 if (!connector_state->best_encoder) 7787 continue; 7788 7789 encoder = to_intel_encoder(connector_state->best_encoder); 7790 7791 drm_WARN_ON(dev, !connector_state->crtc); 7792 7793 switch (encoder->type) { 7794 case INTEL_OUTPUT_DDI: 7795 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev)))) 7796 break; 7797 fallthrough; 7798 case INTEL_OUTPUT_DP: 7799 case INTEL_OUTPUT_HDMI: 7800 case INTEL_OUTPUT_EDP: 7801 /* the same port mustn't appear more than once */ 7802 if (used_ports & BIT(encoder->port)) 7803 ret = false; 7804 7805 used_ports |= BIT(encoder->port); 7806 break; 7807 case INTEL_OUTPUT_DP_MST: 7808 used_mst_ports |= 7809 1 << encoder->port; 7810 break; 7811 default: 7812 break; 7813 } 7814 } 7815 drm_connector_list_iter_end(&conn_iter); 7816 7817 /* can't mix MST and SST/HDMI on the same port */ 7818 if (used_ports & used_mst_ports) 7819 return false; 7820 7821 return ret; 7822 } 7823 7824 static void 7825 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_atomic_state *state, 7826 struct intel_crtc_state *crtc_state) 7827 { 7828 const struct intel_crtc_state *from_crtc_state = crtc_state; 7829 7830 if (crtc_state->bigjoiner_slave) { 7831 from_crtc_state = intel_atomic_get_new_crtc_state(state, 7832 crtc_state->bigjoiner_linked_crtc); 7833 7834 /* No need to copy state if the master state is unchanged */ 7835 if (!from_crtc_state) 7836 return; 7837 } 7838 7839 intel_crtc_copy_color_blobs(crtc_state, from_crtc_state); 7840 } 7841 7842 static void 7843 intel_crtc_copy_uapi_to_hw_state(struct intel_atomic_state *state, 7844 struct intel_crtc_state *crtc_state) 7845 { 7846 crtc_state->hw.enable = crtc_state->uapi.enable; 7847 crtc_state->hw.active = crtc_state->uapi.active; 7848 crtc_state->hw.mode = crtc_state->uapi.mode; 7849 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode; 7850 crtc_state->hw.scaling_filter = crtc_state->uapi.scaling_filter; 7851 7852 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc_state); 7853 } 7854 7855 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state) 7856 { 7857 if (crtc_state->bigjoiner_slave) 7858 return; 7859 7860 crtc_state->uapi.enable = crtc_state->hw.enable; 7861 crtc_state->uapi.active = crtc_state->hw.active; 7862 drm_WARN_ON(crtc_state->uapi.crtc->dev, 7863 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0); 7864 7865 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode; 7866 crtc_state->uapi.scaling_filter = crtc_state->hw.scaling_filter; 7867 7868 /* copy color blobs to uapi */ 7869 drm_property_replace_blob(&crtc_state->uapi.degamma_lut, 7870 crtc_state->hw.degamma_lut); 7871 drm_property_replace_blob(&crtc_state->uapi.gamma_lut, 7872 crtc_state->hw.gamma_lut); 7873 drm_property_replace_blob(&crtc_state->uapi.ctm, 7874 crtc_state->hw.ctm); 7875 } 7876 7877 static int 7878 copy_bigjoiner_crtc_state(struct intel_crtc_state *crtc_state, 7879 const struct intel_crtc_state *from_crtc_state) 7880 { 7881 struct intel_crtc_state *saved_state; 7882 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7883 7884 saved_state = kmemdup(from_crtc_state, sizeof(*saved_state), GFP_KERNEL); 7885 if (!saved_state) 7886 return -ENOMEM; 7887 7888 saved_state->uapi = crtc_state->uapi; 7889 saved_state->scaler_state = crtc_state->scaler_state; 7890 saved_state->shared_dpll = crtc_state->shared_dpll; 7891 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 7892 saved_state->crc_enabled = crtc_state->crc_enabled; 7893 7894 intel_crtc_free_hw_state(crtc_state); 7895 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 7896 kfree(saved_state); 7897 7898 /* Re-init hw state */ 7899 memset(&crtc_state->hw, 0, sizeof(saved_state->hw)); 7900 crtc_state->hw.enable = from_crtc_state->hw.enable; 7901 crtc_state->hw.active = from_crtc_state->hw.active; 7902 crtc_state->hw.pipe_mode = from_crtc_state->hw.pipe_mode; 7903 crtc_state->hw.adjusted_mode = from_crtc_state->hw.adjusted_mode; 7904 7905 /* Some fixups */ 7906 crtc_state->uapi.mode_changed = from_crtc_state->uapi.mode_changed; 7907 crtc_state->uapi.connectors_changed = from_crtc_state->uapi.connectors_changed; 7908 crtc_state->uapi.active_changed = from_crtc_state->uapi.active_changed; 7909 crtc_state->nv12_planes = crtc_state->c8_planes = crtc_state->update_planes = 0; 7910 crtc_state->bigjoiner_linked_crtc = to_intel_crtc(from_crtc_state->uapi.crtc); 7911 crtc_state->bigjoiner_slave = true; 7912 crtc_state->cpu_transcoder = (enum transcoder)crtc->pipe; 7913 crtc_state->has_audio = false; 7914 7915 return 0; 7916 } 7917 7918 static int 7919 intel_crtc_prepare_cleared_state(struct intel_atomic_state *state, 7920 struct intel_crtc_state *crtc_state) 7921 { 7922 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7923 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7924 struct intel_crtc_state *saved_state; 7925 7926 saved_state = intel_crtc_state_alloc(crtc); 7927 if (!saved_state) 7928 return -ENOMEM; 7929 7930 /* free the old crtc_state->hw members */ 7931 intel_crtc_free_hw_state(crtc_state); 7932 7933 /* FIXME: before the switch to atomic started, a new pipe_config was 7934 * kzalloc'd. Code that depends on any field being zero should be 7935 * fixed, so that the crtc_state can be safely duplicated. For now, 7936 * only fields that are know to not cause problems are preserved. */ 7937 7938 saved_state->uapi = crtc_state->uapi; 7939 saved_state->scaler_state = crtc_state->scaler_state; 7940 saved_state->shared_dpll = crtc_state->shared_dpll; 7941 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 7942 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 7943 sizeof(saved_state->icl_port_dplls)); 7944 saved_state->crc_enabled = crtc_state->crc_enabled; 7945 if (IS_G4X(dev_priv) || 7946 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7947 saved_state->wm = crtc_state->wm; 7948 7949 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 7950 kfree(saved_state); 7951 7952 intel_crtc_copy_uapi_to_hw_state(state, crtc_state); 7953 7954 return 0; 7955 } 7956 7957 static int 7958 intel_modeset_pipe_config(struct intel_atomic_state *state, 7959 struct intel_crtc_state *pipe_config) 7960 { 7961 struct drm_crtc *crtc = pipe_config->uapi.crtc; 7962 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7963 struct drm_connector *connector; 7964 struct drm_connector_state *connector_state; 7965 int base_bpp, ret, i; 7966 bool retry = true; 7967 7968 pipe_config->cpu_transcoder = 7969 (enum transcoder) to_intel_crtc(crtc)->pipe; 7970 7971 /* 7972 * Sanitize sync polarity flags based on requested ones. If neither 7973 * positive or negative polarity is requested, treat this as meaning 7974 * negative polarity. 7975 */ 7976 if (!(pipe_config->hw.adjusted_mode.flags & 7977 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 7978 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 7979 7980 if (!(pipe_config->hw.adjusted_mode.flags & 7981 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 7982 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 7983 7984 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 7985 pipe_config); 7986 if (ret) 7987 return ret; 7988 7989 base_bpp = pipe_config->pipe_bpp; 7990 7991 /* 7992 * Determine the real pipe dimensions. Note that stereo modes can 7993 * increase the actual pipe size due to the frame doubling and 7994 * insertion of additional space for blanks between the frame. This 7995 * is stored in the crtc timings. We use the requested mode to do this 7996 * computation to clearly distinguish it from the adjusted mode, which 7997 * can be changed by the connectors in the below retry loop. 7998 */ 7999 drm_mode_get_hv_timing(&pipe_config->hw.mode, 8000 &pipe_config->pipe_src_w, 8001 &pipe_config->pipe_src_h); 8002 8003 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 8004 struct intel_encoder *encoder = 8005 to_intel_encoder(connector_state->best_encoder); 8006 8007 if (connector_state->crtc != crtc) 8008 continue; 8009 8010 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 8011 drm_dbg_kms(&i915->drm, 8012 "rejecting invalid cloning configuration\n"); 8013 return -EINVAL; 8014 } 8015 8016 /* 8017 * Determine output_types before calling the .compute_config() 8018 * hooks so that the hooks can use this information safely. 8019 */ 8020 if (encoder->compute_output_type) 8021 pipe_config->output_types |= 8022 BIT(encoder->compute_output_type(encoder, pipe_config, 8023 connector_state)); 8024 else 8025 pipe_config->output_types |= BIT(encoder->type); 8026 } 8027 8028 encoder_retry: 8029 /* Ensure the port clock defaults are reset when retrying. */ 8030 pipe_config->port_clock = 0; 8031 pipe_config->pixel_multiplier = 1; 8032 8033 /* Fill in default crtc timings, allow encoders to overwrite them. */ 8034 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode, 8035 CRTC_STEREO_DOUBLE); 8036 8037 /* Pass our mode to the connectors and the CRTC to give them a chance to 8038 * adjust it according to limitations or connector properties, and also 8039 * a chance to reject the mode entirely. 8040 */ 8041 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 8042 struct intel_encoder *encoder = 8043 to_intel_encoder(connector_state->best_encoder); 8044 8045 if (connector_state->crtc != crtc) 8046 continue; 8047 8048 ret = encoder->compute_config(encoder, pipe_config, 8049 connector_state); 8050 if (ret < 0) { 8051 if (ret != -EDEADLK) 8052 drm_dbg_kms(&i915->drm, 8053 "Encoder config failure: %d\n", 8054 ret); 8055 return ret; 8056 } 8057 } 8058 8059 /* Set default port clock if not overwritten by the encoder. Needs to be 8060 * done afterwards in case the encoder adjusts the mode. */ 8061 if (!pipe_config->port_clock) 8062 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock 8063 * pipe_config->pixel_multiplier; 8064 8065 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 8066 if (ret == -EDEADLK) 8067 return ret; 8068 if (ret < 0) { 8069 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n"); 8070 return ret; 8071 } 8072 8073 if (ret == I915_DISPLAY_CONFIG_RETRY) { 8074 if (drm_WARN(&i915->drm, !retry, 8075 "loop in pipe configuration computation\n")) 8076 return -EINVAL; 8077 8078 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n"); 8079 retry = false; 8080 goto encoder_retry; 8081 } 8082 8083 /* Dithering seems to not pass-through bits correctly when it should, so 8084 * only enable it on 6bpc panels and when its not a compliance 8085 * test requesting 6bpc video pattern. 8086 */ 8087 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 8088 !pipe_config->dither_force_disable; 8089 drm_dbg_kms(&i915->drm, 8090 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 8091 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 8092 8093 return 0; 8094 } 8095 8096 static int 8097 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state) 8098 { 8099 struct intel_atomic_state *state = 8100 to_intel_atomic_state(crtc_state->uapi.state); 8101 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8102 struct drm_connector_state *conn_state; 8103 struct drm_connector *connector; 8104 int i; 8105 8106 for_each_new_connector_in_state(&state->base, connector, 8107 conn_state, i) { 8108 struct intel_encoder *encoder = 8109 to_intel_encoder(conn_state->best_encoder); 8110 int ret; 8111 8112 if (conn_state->crtc != &crtc->base || 8113 !encoder->compute_config_late) 8114 continue; 8115 8116 ret = encoder->compute_config_late(encoder, crtc_state, 8117 conn_state); 8118 if (ret) 8119 return ret; 8120 } 8121 8122 return 0; 8123 } 8124 8125 bool intel_fuzzy_clock_check(int clock1, int clock2) 8126 { 8127 int diff; 8128 8129 if (clock1 == clock2) 8130 return true; 8131 8132 if (!clock1 || !clock2) 8133 return false; 8134 8135 diff = abs(clock1 - clock2); 8136 8137 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 8138 return true; 8139 8140 return false; 8141 } 8142 8143 static bool 8144 intel_compare_m_n(unsigned int m, unsigned int n, 8145 unsigned int m2, unsigned int n2, 8146 bool exact) 8147 { 8148 if (m == m2 && n == n2) 8149 return true; 8150 8151 if (exact || !m || !n || !m2 || !n2) 8152 return false; 8153 8154 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 8155 8156 if (n > n2) { 8157 while (n > n2) { 8158 m2 <<= 1; 8159 n2 <<= 1; 8160 } 8161 } else if (n < n2) { 8162 while (n < n2) { 8163 m <<= 1; 8164 n <<= 1; 8165 } 8166 } 8167 8168 if (n != n2) 8169 return false; 8170 8171 return intel_fuzzy_clock_check(m, m2); 8172 } 8173 8174 static bool 8175 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 8176 const struct intel_link_m_n *m2_n2, 8177 bool exact) 8178 { 8179 return m_n->tu == m2_n2->tu && 8180 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 8181 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 8182 intel_compare_m_n(m_n->link_m, m_n->link_n, 8183 m2_n2->link_m, m2_n2->link_n, exact); 8184 } 8185 8186 static bool 8187 intel_compare_infoframe(const union hdmi_infoframe *a, 8188 const union hdmi_infoframe *b) 8189 { 8190 return memcmp(a, b, sizeof(*a)) == 0; 8191 } 8192 8193 static bool 8194 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a, 8195 const struct drm_dp_vsc_sdp *b) 8196 { 8197 return memcmp(a, b, sizeof(*a)) == 0; 8198 } 8199 8200 static void 8201 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 8202 bool fastset, const char *name, 8203 const union hdmi_infoframe *a, 8204 const union hdmi_infoframe *b) 8205 { 8206 if (fastset) { 8207 if (!drm_debug_enabled(DRM_UT_KMS)) 8208 return; 8209 8210 drm_dbg_kms(&dev_priv->drm, 8211 "fastset mismatch in %s infoframe\n", name); 8212 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 8213 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 8214 drm_dbg_kms(&dev_priv->drm, "found:\n"); 8215 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 8216 } else { 8217 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name); 8218 drm_err(&dev_priv->drm, "expected:\n"); 8219 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 8220 drm_err(&dev_priv->drm, "found:\n"); 8221 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 8222 } 8223 } 8224 8225 static void 8226 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv, 8227 bool fastset, const char *name, 8228 const struct drm_dp_vsc_sdp *a, 8229 const struct drm_dp_vsc_sdp *b) 8230 { 8231 if (fastset) { 8232 if (!drm_debug_enabled(DRM_UT_KMS)) 8233 return; 8234 8235 drm_dbg_kms(&dev_priv->drm, 8236 "fastset mismatch in %s dp sdp\n", name); 8237 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 8238 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a); 8239 drm_dbg_kms(&dev_priv->drm, "found:\n"); 8240 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b); 8241 } else { 8242 drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name); 8243 drm_err(&dev_priv->drm, "expected:\n"); 8244 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a); 8245 drm_err(&dev_priv->drm, "found:\n"); 8246 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b); 8247 } 8248 } 8249 8250 static void __printf(4, 5) 8251 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, 8252 const char *name, const char *format, ...) 8253 { 8254 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 8255 struct va_format vaf; 8256 va_list args; 8257 8258 va_start(args, format); 8259 vaf.fmt = format; 8260 vaf.va = &args; 8261 8262 if (fastset) 8263 drm_dbg_kms(&i915->drm, 8264 "[CRTC:%d:%s] fastset mismatch in %s %pV\n", 8265 crtc->base.base.id, crtc->base.name, name, &vaf); 8266 else 8267 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n", 8268 crtc->base.base.id, crtc->base.name, name, &vaf); 8269 8270 va_end(args); 8271 } 8272 8273 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 8274 { 8275 if (dev_priv->params.fastboot != -1) 8276 return dev_priv->params.fastboot; 8277 8278 /* Enable fastboot by default on Skylake and newer */ 8279 if (DISPLAY_VER(dev_priv) >= 9) 8280 return true; 8281 8282 /* Enable fastboot by default on VLV and CHV */ 8283 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8284 return true; 8285 8286 /* Disabled by default on all others */ 8287 return false; 8288 } 8289 8290 static bool 8291 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 8292 const struct intel_crtc_state *pipe_config, 8293 bool fastset) 8294 { 8295 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev); 8296 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 8297 bool ret = true; 8298 u32 bp_gamma = 0; 8299 bool fixup_inherited = fastset && 8300 current_config->inherited && !pipe_config->inherited; 8301 8302 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 8303 drm_dbg_kms(&dev_priv->drm, 8304 "initial modeset and fastboot not set\n"); 8305 ret = false; 8306 } 8307 8308 #define PIPE_CONF_CHECK_X(name) do { \ 8309 if (current_config->name != pipe_config->name) { \ 8310 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8311 "(expected 0x%08x, found 0x%08x)", \ 8312 current_config->name, \ 8313 pipe_config->name); \ 8314 ret = false; \ 8315 } \ 8316 } while (0) 8317 8318 #define PIPE_CONF_CHECK_X_WITH_MASK(name, mask) do { \ 8319 if ((current_config->name & (mask)) != (pipe_config->name & (mask))) { \ 8320 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8321 "(expected 0x%08x, found 0x%08x)", \ 8322 current_config->name & (mask), \ 8323 pipe_config->name & (mask)); \ 8324 ret = false; \ 8325 } \ 8326 } while (0) 8327 8328 #define PIPE_CONF_CHECK_I(name) do { \ 8329 if (current_config->name != pipe_config->name) { \ 8330 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8331 "(expected %i, found %i)", \ 8332 current_config->name, \ 8333 pipe_config->name); \ 8334 ret = false; \ 8335 } \ 8336 } while (0) 8337 8338 #define PIPE_CONF_CHECK_BOOL(name) do { \ 8339 if (current_config->name != pipe_config->name) { \ 8340 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8341 "(expected %s, found %s)", \ 8342 yesno(current_config->name), \ 8343 yesno(pipe_config->name)); \ 8344 ret = false; \ 8345 } \ 8346 } while (0) 8347 8348 /* 8349 * Checks state where we only read out the enabling, but not the entire 8350 * state itself (like full infoframes or ELD for audio). These states 8351 * require a full modeset on bootup to fix up. 8352 */ 8353 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 8354 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 8355 PIPE_CONF_CHECK_BOOL(name); \ 8356 } else { \ 8357 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8358 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ 8359 yesno(current_config->name), \ 8360 yesno(pipe_config->name)); \ 8361 ret = false; \ 8362 } \ 8363 } while (0) 8364 8365 #define PIPE_CONF_CHECK_P(name) do { \ 8366 if (current_config->name != pipe_config->name) { \ 8367 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8368 "(expected %p, found %p)", \ 8369 current_config->name, \ 8370 pipe_config->name); \ 8371 ret = false; \ 8372 } \ 8373 } while (0) 8374 8375 #define PIPE_CONF_CHECK_M_N(name) do { \ 8376 if (!intel_compare_link_m_n(¤t_config->name, \ 8377 &pipe_config->name,\ 8378 !fastset)) { \ 8379 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8380 "(expected tu %i gmch %i/%i link %i/%i, " \ 8381 "found tu %i, gmch %i/%i link %i/%i)", \ 8382 current_config->name.tu, \ 8383 current_config->name.gmch_m, \ 8384 current_config->name.gmch_n, \ 8385 current_config->name.link_m, \ 8386 current_config->name.link_n, \ 8387 pipe_config->name.tu, \ 8388 pipe_config->name.gmch_m, \ 8389 pipe_config->name.gmch_n, \ 8390 pipe_config->name.link_m, \ 8391 pipe_config->name.link_n); \ 8392 ret = false; \ 8393 } \ 8394 } while (0) 8395 8396 /* This is required for BDW+ where there is only one set of registers for 8397 * switching between high and low RR. 8398 * This macro can be used whenever a comparison has to be made between one 8399 * hw state and multiple sw state variables. 8400 */ 8401 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 8402 if (!intel_compare_link_m_n(¤t_config->name, \ 8403 &pipe_config->name, !fastset) && \ 8404 !intel_compare_link_m_n(¤t_config->alt_name, \ 8405 &pipe_config->name, !fastset)) { \ 8406 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8407 "(expected tu %i gmch %i/%i link %i/%i, " \ 8408 "or tu %i gmch %i/%i link %i/%i, " \ 8409 "found tu %i, gmch %i/%i link %i/%i)", \ 8410 current_config->name.tu, \ 8411 current_config->name.gmch_m, \ 8412 current_config->name.gmch_n, \ 8413 current_config->name.link_m, \ 8414 current_config->name.link_n, \ 8415 current_config->alt_name.tu, \ 8416 current_config->alt_name.gmch_m, \ 8417 current_config->alt_name.gmch_n, \ 8418 current_config->alt_name.link_m, \ 8419 current_config->alt_name.link_n, \ 8420 pipe_config->name.tu, \ 8421 pipe_config->name.gmch_m, \ 8422 pipe_config->name.gmch_n, \ 8423 pipe_config->name.link_m, \ 8424 pipe_config->name.link_n); \ 8425 ret = false; \ 8426 } \ 8427 } while (0) 8428 8429 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 8430 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 8431 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8432 "(%x) (expected %i, found %i)", \ 8433 (mask), \ 8434 current_config->name & (mask), \ 8435 pipe_config->name & (mask)); \ 8436 ret = false; \ 8437 } \ 8438 } while (0) 8439 8440 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 8441 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 8442 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8443 "(expected %i, found %i)", \ 8444 current_config->name, \ 8445 pipe_config->name); \ 8446 ret = false; \ 8447 } \ 8448 } while (0) 8449 8450 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 8451 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 8452 &pipe_config->infoframes.name)) { \ 8453 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 8454 ¤t_config->infoframes.name, \ 8455 &pipe_config->infoframes.name); \ 8456 ret = false; \ 8457 } \ 8458 } while (0) 8459 8460 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \ 8461 if (!current_config->has_psr && !pipe_config->has_psr && \ 8462 !intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \ 8463 &pipe_config->infoframes.name)) { \ 8464 pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \ 8465 ¤t_config->infoframes.name, \ 8466 &pipe_config->infoframes.name); \ 8467 ret = false; \ 8468 } \ 8469 } while (0) 8470 8471 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ 8472 if (current_config->name1 != pipe_config->name1) { \ 8473 pipe_config_mismatch(fastset, crtc, __stringify(name1), \ 8474 "(expected %i, found %i, won't compare lut values)", \ 8475 current_config->name1, \ 8476 pipe_config->name1); \ 8477 ret = false;\ 8478 } else { \ 8479 if (!intel_color_lut_equal(current_config->name2, \ 8480 pipe_config->name2, pipe_config->name1, \ 8481 bit_precision)) { \ 8482 pipe_config_mismatch(fastset, crtc, __stringify(name2), \ 8483 "hw_state doesn't match sw_state"); \ 8484 ret = false; \ 8485 } \ 8486 } \ 8487 } while (0) 8488 8489 #define PIPE_CONF_QUIRK(quirk) \ 8490 ((current_config->quirks | pipe_config->quirks) & (quirk)) 8491 8492 PIPE_CONF_CHECK_I(cpu_transcoder); 8493 8494 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 8495 PIPE_CONF_CHECK_I(fdi_lanes); 8496 PIPE_CONF_CHECK_M_N(fdi_m_n); 8497 8498 PIPE_CONF_CHECK_I(lane_count); 8499 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 8500 8501 if (DISPLAY_VER(dev_priv) < 8) { 8502 PIPE_CONF_CHECK_M_N(dp_m_n); 8503 8504 if (current_config->has_drrs) 8505 PIPE_CONF_CHECK_M_N(dp_m2_n2); 8506 } else 8507 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 8508 8509 PIPE_CONF_CHECK_X(output_types); 8510 8511 /* FIXME do the readout properly and get rid of this quirk */ 8512 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 8513 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hdisplay); 8514 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_htotal); 8515 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_start); 8516 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_end); 8517 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_start); 8518 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_end); 8519 8520 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vdisplay); 8521 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vtotal); 8522 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_start); 8523 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_end); 8524 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_start); 8525 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_end); 8526 8527 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay); 8528 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal); 8529 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start); 8530 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end); 8531 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start); 8532 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end); 8533 8534 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay); 8535 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal); 8536 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start); 8537 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end); 8538 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start); 8539 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end); 8540 8541 PIPE_CONF_CHECK_I(pixel_multiplier); 8542 8543 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8544 DRM_MODE_FLAG_INTERLACE); 8545 8546 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 8547 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8548 DRM_MODE_FLAG_PHSYNC); 8549 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8550 DRM_MODE_FLAG_NHSYNC); 8551 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8552 DRM_MODE_FLAG_PVSYNC); 8553 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8554 DRM_MODE_FLAG_NVSYNC); 8555 } 8556 } 8557 8558 PIPE_CONF_CHECK_I(output_format); 8559 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 8560 if ((DISPLAY_VER(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 8561 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8562 PIPE_CONF_CHECK_BOOL(limited_color_range); 8563 8564 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 8565 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 8566 PIPE_CONF_CHECK_BOOL(has_infoframe); 8567 /* FIXME do the readout properly and get rid of this quirk */ 8568 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) 8569 PIPE_CONF_CHECK_BOOL(fec_enable); 8570 8571 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 8572 8573 PIPE_CONF_CHECK_X(gmch_pfit.control); 8574 /* pfit ratios are autocomputed by the hw on gen4+ */ 8575 if (DISPLAY_VER(dev_priv) < 4) 8576 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 8577 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 8578 8579 /* 8580 * Changing the EDP transcoder input mux 8581 * (A_ONOFF vs. A_ON) requires a full modeset. 8582 */ 8583 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 8584 8585 if (!fastset) { 8586 PIPE_CONF_CHECK_I(pipe_src_w); 8587 PIPE_CONF_CHECK_I(pipe_src_h); 8588 8589 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 8590 if (current_config->pch_pfit.enabled) { 8591 PIPE_CONF_CHECK_I(pch_pfit.dst.x1); 8592 PIPE_CONF_CHECK_I(pch_pfit.dst.y1); 8593 PIPE_CONF_CHECK_I(pch_pfit.dst.x2); 8594 PIPE_CONF_CHECK_I(pch_pfit.dst.y2); 8595 } 8596 8597 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 8598 /* FIXME do the readout properly and get rid of this quirk */ 8599 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) 8600 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 8601 8602 PIPE_CONF_CHECK_X(gamma_mode); 8603 if (IS_CHERRYVIEW(dev_priv)) 8604 PIPE_CONF_CHECK_X(cgm_mode); 8605 else 8606 PIPE_CONF_CHECK_X(csc_mode); 8607 PIPE_CONF_CHECK_BOOL(gamma_enable); 8608 PIPE_CONF_CHECK_BOOL(csc_enable); 8609 8610 PIPE_CONF_CHECK_I(linetime); 8611 PIPE_CONF_CHECK_I(ips_linetime); 8612 8613 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); 8614 if (bp_gamma) 8615 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma); 8616 8617 PIPE_CONF_CHECK_BOOL(has_psr); 8618 PIPE_CONF_CHECK_BOOL(has_psr2); 8619 PIPE_CONF_CHECK_BOOL(enable_psr2_sel_fetch); 8620 PIPE_CONF_CHECK_I(dc3co_exitline); 8621 } 8622 8623 PIPE_CONF_CHECK_BOOL(double_wide); 8624 8625 PIPE_CONF_CHECK_P(shared_dpll); 8626 8627 /* FIXME do the readout properly and get rid of this quirk */ 8628 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 8629 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 8630 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 8631 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 8632 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 8633 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 8634 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 8635 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 8636 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 8637 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 8638 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 8639 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 8640 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 8641 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 8642 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 8643 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 8644 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 8645 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 8646 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 8647 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 8648 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 8649 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 8650 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 8651 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 8652 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 8653 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 8654 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 8655 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 8656 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 8657 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 8658 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 8659 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 8660 8661 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 8662 PIPE_CONF_CHECK_X(dsi_pll.div); 8663 8664 if (IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) >= 5) 8665 PIPE_CONF_CHECK_I(pipe_bpp); 8666 8667 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.pipe_mode.crtc_clock); 8668 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock); 8669 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 8670 8671 PIPE_CONF_CHECK_I(min_voltage_level); 8672 } 8673 8674 if (fastset && (current_config->has_psr || pipe_config->has_psr)) 8675 PIPE_CONF_CHECK_X_WITH_MASK(infoframes.enable, 8676 ~intel_hdmi_infoframe_enable(DP_SDP_VSC)); 8677 else 8678 PIPE_CONF_CHECK_X(infoframes.enable); 8679 8680 PIPE_CONF_CHECK_X(infoframes.gcp); 8681 PIPE_CONF_CHECK_INFOFRAME(avi); 8682 PIPE_CONF_CHECK_INFOFRAME(spd); 8683 PIPE_CONF_CHECK_INFOFRAME(hdmi); 8684 PIPE_CONF_CHECK_INFOFRAME(drm); 8685 PIPE_CONF_CHECK_DP_VSC_SDP(vsc); 8686 8687 PIPE_CONF_CHECK_X(sync_mode_slaves_mask); 8688 PIPE_CONF_CHECK_I(master_transcoder); 8689 PIPE_CONF_CHECK_BOOL(bigjoiner); 8690 PIPE_CONF_CHECK_BOOL(bigjoiner_slave); 8691 PIPE_CONF_CHECK_P(bigjoiner_linked_crtc); 8692 8693 PIPE_CONF_CHECK_I(dsc.compression_enable); 8694 PIPE_CONF_CHECK_I(dsc.dsc_split); 8695 PIPE_CONF_CHECK_I(dsc.compressed_bpp); 8696 8697 PIPE_CONF_CHECK_BOOL(splitter.enable); 8698 PIPE_CONF_CHECK_I(splitter.link_count); 8699 PIPE_CONF_CHECK_I(splitter.pixel_overlap); 8700 8701 PIPE_CONF_CHECK_I(mst_master_transcoder); 8702 8703 PIPE_CONF_CHECK_BOOL(vrr.enable); 8704 PIPE_CONF_CHECK_I(vrr.vmin); 8705 PIPE_CONF_CHECK_I(vrr.vmax); 8706 PIPE_CONF_CHECK_I(vrr.flipline); 8707 PIPE_CONF_CHECK_I(vrr.pipeline_full); 8708 PIPE_CONF_CHECK_I(vrr.guardband); 8709 8710 #undef PIPE_CONF_CHECK_X 8711 #undef PIPE_CONF_CHECK_I 8712 #undef PIPE_CONF_CHECK_BOOL 8713 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 8714 #undef PIPE_CONF_CHECK_P 8715 #undef PIPE_CONF_CHECK_FLAGS 8716 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 8717 #undef PIPE_CONF_CHECK_COLOR_LUT 8718 #undef PIPE_CONF_QUIRK 8719 8720 return ret; 8721 } 8722 8723 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 8724 const struct intel_crtc_state *pipe_config) 8725 { 8726 if (pipe_config->has_pch_encoder) { 8727 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 8728 &pipe_config->fdi_m_n); 8729 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock; 8730 8731 /* 8732 * FDI already provided one idea for the dotclock. 8733 * Yell if the encoder disagrees. 8734 */ 8735 drm_WARN(&dev_priv->drm, 8736 !intel_fuzzy_clock_check(fdi_dotclock, dotclock), 8737 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 8738 fdi_dotclock, dotclock); 8739 } 8740 } 8741 8742 static void verify_wm_state(struct intel_crtc *crtc, 8743 struct intel_crtc_state *new_crtc_state) 8744 { 8745 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8746 struct skl_hw_state { 8747 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 8748 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 8749 struct skl_pipe_wm wm; 8750 } *hw; 8751 const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal; 8752 int level, max_level = ilk_wm_max_level(dev_priv); 8753 struct intel_plane *plane; 8754 u8 hw_enabled_slices; 8755 8756 if (DISPLAY_VER(dev_priv) < 9 || !new_crtc_state->hw.active) 8757 return; 8758 8759 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 8760 if (!hw) 8761 return; 8762 8763 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 8764 8765 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 8766 8767 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv); 8768 8769 if (DISPLAY_VER(dev_priv) >= 11 && 8770 hw_enabled_slices != dev_priv->dbuf.enabled_slices) 8771 drm_err(&dev_priv->drm, 8772 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", 8773 dev_priv->dbuf.enabled_slices, 8774 hw_enabled_slices); 8775 8776 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 8777 const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 8778 const struct skl_wm_level *hw_wm_level, *sw_wm_level; 8779 8780 /* Watermarks */ 8781 for (level = 0; level <= max_level; level++) { 8782 hw_wm_level = &hw->wm.planes[plane->id].wm[level]; 8783 sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level); 8784 8785 if (skl_wm_level_equals(hw_wm_level, sw_wm_level)) 8786 continue; 8787 8788 drm_err(&dev_priv->drm, 8789 "[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8790 plane->base.base.id, plane->base.name, level, 8791 sw_wm_level->enable, 8792 sw_wm_level->blocks, 8793 sw_wm_level->lines, 8794 hw_wm_level->enable, 8795 hw_wm_level->blocks, 8796 hw_wm_level->lines); 8797 } 8798 8799 hw_wm_level = &hw->wm.planes[plane->id].trans_wm; 8800 sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id); 8801 8802 if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8803 drm_err(&dev_priv->drm, 8804 "[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8805 plane->base.base.id, plane->base.name, 8806 sw_wm_level->enable, 8807 sw_wm_level->blocks, 8808 sw_wm_level->lines, 8809 hw_wm_level->enable, 8810 hw_wm_level->blocks, 8811 hw_wm_level->lines); 8812 } 8813 8814 hw_wm_level = &hw->wm.planes[plane->id].sagv.wm0; 8815 sw_wm_level = &sw_wm->planes[plane->id].sagv.wm0; 8816 8817 if (HAS_HW_SAGV_WM(dev_priv) && 8818 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8819 drm_err(&dev_priv->drm, 8820 "[PLANE:%d:%s] mismatch in SAGV WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8821 plane->base.base.id, plane->base.name, 8822 sw_wm_level->enable, 8823 sw_wm_level->blocks, 8824 sw_wm_level->lines, 8825 hw_wm_level->enable, 8826 hw_wm_level->blocks, 8827 hw_wm_level->lines); 8828 } 8829 8830 hw_wm_level = &hw->wm.planes[plane->id].sagv.trans_wm; 8831 sw_wm_level = &sw_wm->planes[plane->id].sagv.trans_wm; 8832 8833 if (HAS_HW_SAGV_WM(dev_priv) && 8834 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8835 drm_err(&dev_priv->drm, 8836 "[PLANE:%d:%s] mismatch in SAGV trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8837 plane->base.base.id, plane->base.name, 8838 sw_wm_level->enable, 8839 sw_wm_level->blocks, 8840 sw_wm_level->lines, 8841 hw_wm_level->enable, 8842 hw_wm_level->blocks, 8843 hw_wm_level->lines); 8844 } 8845 8846 /* DDB */ 8847 hw_ddb_entry = &hw->ddb_y[plane->id]; 8848 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane->id]; 8849 8850 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 8851 drm_err(&dev_priv->drm, 8852 "[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n", 8853 plane->base.base.id, plane->base.name, 8854 sw_ddb_entry->start, sw_ddb_entry->end, 8855 hw_ddb_entry->start, hw_ddb_entry->end); 8856 } 8857 } 8858 8859 kfree(hw); 8860 } 8861 8862 static void 8863 verify_connector_state(struct intel_atomic_state *state, 8864 struct intel_crtc *crtc) 8865 { 8866 struct drm_connector *connector; 8867 struct drm_connector_state *new_conn_state; 8868 int i; 8869 8870 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 8871 struct drm_encoder *encoder = connector->encoder; 8872 struct intel_crtc_state *crtc_state = NULL; 8873 8874 if (new_conn_state->crtc != &crtc->base) 8875 continue; 8876 8877 if (crtc) 8878 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 8879 8880 intel_connector_verify_state(crtc_state, new_conn_state); 8881 8882 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 8883 "connector's atomic encoder doesn't match legacy encoder\n"); 8884 } 8885 } 8886 8887 static void 8888 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 8889 { 8890 struct intel_encoder *encoder; 8891 struct drm_connector *connector; 8892 struct drm_connector_state *old_conn_state, *new_conn_state; 8893 int i; 8894 8895 for_each_intel_encoder(&dev_priv->drm, encoder) { 8896 bool enabled = false, found = false; 8897 enum pipe pipe; 8898 8899 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n", 8900 encoder->base.base.id, 8901 encoder->base.name); 8902 8903 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 8904 new_conn_state, i) { 8905 if (old_conn_state->best_encoder == &encoder->base) 8906 found = true; 8907 8908 if (new_conn_state->best_encoder != &encoder->base) 8909 continue; 8910 found = enabled = true; 8911 8912 I915_STATE_WARN(new_conn_state->crtc != 8913 encoder->base.crtc, 8914 "connector's crtc doesn't match encoder crtc\n"); 8915 } 8916 8917 if (!found) 8918 continue; 8919 8920 I915_STATE_WARN(!!encoder->base.crtc != enabled, 8921 "encoder's enabled state mismatch " 8922 "(expected %i, found %i)\n", 8923 !!encoder->base.crtc, enabled); 8924 8925 if (!encoder->base.crtc) { 8926 bool active; 8927 8928 active = encoder->get_hw_state(encoder, &pipe); 8929 I915_STATE_WARN(active, 8930 "encoder detached but still enabled on pipe %c.\n", 8931 pipe_name(pipe)); 8932 } 8933 } 8934 } 8935 8936 static void 8937 verify_crtc_state(struct intel_crtc *crtc, 8938 struct intel_crtc_state *old_crtc_state, 8939 struct intel_crtc_state *new_crtc_state) 8940 { 8941 struct drm_device *dev = crtc->base.dev; 8942 struct drm_i915_private *dev_priv = to_i915(dev); 8943 struct intel_encoder *encoder; 8944 struct intel_crtc_state *pipe_config = old_crtc_state; 8945 struct drm_atomic_state *state = old_crtc_state->uapi.state; 8946 struct intel_crtc *master = crtc; 8947 8948 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi); 8949 intel_crtc_free_hw_state(old_crtc_state); 8950 intel_crtc_state_reset(old_crtc_state, crtc); 8951 old_crtc_state->uapi.state = state; 8952 8953 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id, 8954 crtc->base.name); 8955 8956 pipe_config->hw.enable = new_crtc_state->hw.enable; 8957 8958 intel_crtc_get_pipe_config(pipe_config); 8959 8960 /* we keep both pipes enabled on 830 */ 8961 if (IS_I830(dev_priv) && pipe_config->hw.active) 8962 pipe_config->hw.active = new_crtc_state->hw.active; 8963 8964 I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active, 8965 "crtc active state doesn't match with hw state " 8966 "(expected %i, found %i)\n", 8967 new_crtc_state->hw.active, pipe_config->hw.active); 8968 8969 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active, 8970 "transitional active state does not match atomic hw state " 8971 "(expected %i, found %i)\n", 8972 new_crtc_state->hw.active, crtc->active); 8973 8974 if (new_crtc_state->bigjoiner_slave) 8975 master = new_crtc_state->bigjoiner_linked_crtc; 8976 8977 for_each_encoder_on_crtc(dev, &master->base, encoder) { 8978 enum pipe pipe; 8979 bool active; 8980 8981 active = encoder->get_hw_state(encoder, &pipe); 8982 I915_STATE_WARN(active != new_crtc_state->hw.active, 8983 "[ENCODER:%i] active %i with crtc active %i\n", 8984 encoder->base.base.id, active, 8985 new_crtc_state->hw.active); 8986 8987 I915_STATE_WARN(active && master->pipe != pipe, 8988 "Encoder connected to wrong pipe %c\n", 8989 pipe_name(pipe)); 8990 8991 if (active) 8992 intel_encoder_get_config(encoder, pipe_config); 8993 } 8994 8995 if (!new_crtc_state->hw.active) 8996 return; 8997 8998 intel_pipe_config_sanity_check(dev_priv, pipe_config); 8999 9000 if (!intel_pipe_config_compare(new_crtc_state, 9001 pipe_config, false)) { 9002 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 9003 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 9004 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 9005 } 9006 } 9007 9008 static void 9009 intel_verify_planes(struct intel_atomic_state *state) 9010 { 9011 struct intel_plane *plane; 9012 const struct intel_plane_state *plane_state; 9013 int i; 9014 9015 for_each_new_intel_plane_in_state(state, plane, 9016 plane_state, i) 9017 assert_plane(plane, plane_state->planar_slave || 9018 plane_state->uapi.visible); 9019 } 9020 9021 static void 9022 verify_single_dpll_state(struct drm_i915_private *dev_priv, 9023 struct intel_shared_dpll *pll, 9024 struct intel_crtc *crtc, 9025 struct intel_crtc_state *new_crtc_state) 9026 { 9027 struct intel_dpll_hw_state dpll_hw_state; 9028 u8 pipe_mask; 9029 bool active; 9030 9031 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 9032 9033 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name); 9034 9035 active = intel_dpll_get_hw_state(dev_priv, pll, &dpll_hw_state); 9036 9037 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 9038 I915_STATE_WARN(!pll->on && pll->active_mask, 9039 "pll in active use but not on in sw tracking\n"); 9040 I915_STATE_WARN(pll->on && !pll->active_mask, 9041 "pll is on but not used by any active pipe\n"); 9042 I915_STATE_WARN(pll->on != active, 9043 "pll on state mismatch (expected %i, found %i)\n", 9044 pll->on, active); 9045 } 9046 9047 if (!crtc) { 9048 I915_STATE_WARN(pll->active_mask & ~pll->state.pipe_mask, 9049 "more active pll users than references: 0x%x vs 0x%x\n", 9050 pll->active_mask, pll->state.pipe_mask); 9051 9052 return; 9053 } 9054 9055 pipe_mask = BIT(crtc->pipe); 9056 9057 if (new_crtc_state->hw.active) 9058 I915_STATE_WARN(!(pll->active_mask & pipe_mask), 9059 "pll active mismatch (expected pipe %c in active mask 0x%x)\n", 9060 pipe_name(crtc->pipe), pll->active_mask); 9061 else 9062 I915_STATE_WARN(pll->active_mask & pipe_mask, 9063 "pll active mismatch (didn't expect pipe %c in active mask 0x%x)\n", 9064 pipe_name(crtc->pipe), pll->active_mask); 9065 9066 I915_STATE_WARN(!(pll->state.pipe_mask & pipe_mask), 9067 "pll enabled crtcs mismatch (expected 0x%x in 0x%x)\n", 9068 pipe_mask, pll->state.pipe_mask); 9069 9070 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 9071 &dpll_hw_state, 9072 sizeof(dpll_hw_state)), 9073 "pll hw state mismatch\n"); 9074 } 9075 9076 static void 9077 verify_shared_dpll_state(struct intel_crtc *crtc, 9078 struct intel_crtc_state *old_crtc_state, 9079 struct intel_crtc_state *new_crtc_state) 9080 { 9081 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9082 9083 if (new_crtc_state->shared_dpll) 9084 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 9085 9086 if (old_crtc_state->shared_dpll && 9087 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 9088 u8 pipe_mask = BIT(crtc->pipe); 9089 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 9090 9091 I915_STATE_WARN(pll->active_mask & pipe_mask, 9092 "pll active mismatch (didn't expect pipe %c in active mask (0x%x))\n", 9093 pipe_name(crtc->pipe), pll->active_mask); 9094 I915_STATE_WARN(pll->state.pipe_mask & pipe_mask, 9095 "pll enabled crtcs mismatch (found %x in enabled mask (0x%x))\n", 9096 pipe_name(crtc->pipe), pll->state.pipe_mask); 9097 } 9098 } 9099 9100 static void 9101 intel_modeset_verify_crtc(struct intel_crtc *crtc, 9102 struct intel_atomic_state *state, 9103 struct intel_crtc_state *old_crtc_state, 9104 struct intel_crtc_state *new_crtc_state) 9105 { 9106 if (!intel_crtc_needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 9107 return; 9108 9109 verify_wm_state(crtc, new_crtc_state); 9110 verify_connector_state(state, crtc); 9111 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 9112 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 9113 } 9114 9115 static void 9116 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 9117 { 9118 int i; 9119 9120 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) 9121 verify_single_dpll_state(dev_priv, 9122 &dev_priv->dpll.shared_dplls[i], 9123 NULL, NULL); 9124 } 9125 9126 static void 9127 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 9128 struct intel_atomic_state *state) 9129 { 9130 verify_encoder_state(dev_priv, state); 9131 verify_connector_state(state, NULL); 9132 verify_disabled_dpll_state(dev_priv); 9133 } 9134 9135 int intel_modeset_all_pipes(struct intel_atomic_state *state) 9136 { 9137 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9138 struct intel_crtc *crtc; 9139 9140 /* 9141 * Add all pipes to the state, and force 9142 * a modeset on all the active ones. 9143 */ 9144 for_each_intel_crtc(&dev_priv->drm, crtc) { 9145 struct intel_crtc_state *crtc_state; 9146 int ret; 9147 9148 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 9149 if (IS_ERR(crtc_state)) 9150 return PTR_ERR(crtc_state); 9151 9152 if (!crtc_state->hw.active || 9153 drm_atomic_crtc_needs_modeset(&crtc_state->uapi)) 9154 continue; 9155 9156 crtc_state->uapi.mode_changed = true; 9157 9158 ret = drm_atomic_add_affected_connectors(&state->base, 9159 &crtc->base); 9160 if (ret) 9161 return ret; 9162 9163 ret = intel_atomic_add_affected_planes(state, crtc); 9164 if (ret) 9165 return ret; 9166 9167 crtc_state->update_planes |= crtc_state->active_planes; 9168 } 9169 9170 return 0; 9171 } 9172 9173 static void 9174 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) 9175 { 9176 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9177 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9178 struct drm_display_mode adjusted_mode = 9179 crtc_state->hw.adjusted_mode; 9180 9181 if (crtc_state->vrr.enable) { 9182 adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax; 9183 adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax; 9184 adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 9185 crtc->vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 9186 } 9187 9188 drm_calc_timestamping_constants(&crtc->base, &adjusted_mode); 9189 9190 crtc->mode_flags = crtc_state->mode_flags; 9191 9192 /* 9193 * The scanline counter increments at the leading edge of hsync. 9194 * 9195 * On most platforms it starts counting from vtotal-1 on the 9196 * first active line. That means the scanline counter value is 9197 * always one less than what we would expect. Ie. just after 9198 * start of vblank, which also occurs at start of hsync (on the 9199 * last active line), the scanline counter will read vblank_start-1. 9200 * 9201 * On gen2 the scanline counter starts counting from 1 instead 9202 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 9203 * to keep the value positive), instead of adding one. 9204 * 9205 * On HSW+ the behaviour of the scanline counter depends on the output 9206 * type. For DP ports it behaves like most other platforms, but on HDMI 9207 * there's an extra 1 line difference. So we need to add two instead of 9208 * one to the value. 9209 * 9210 * On VLV/CHV DSI the scanline counter would appear to increment 9211 * approx. 1/3 of a scanline before start of vblank. Unfortunately 9212 * that means we can't tell whether we're in vblank or not while 9213 * we're on that particular line. We must still set scanline_offset 9214 * to 1 so that the vblank timestamps come out correct when we query 9215 * the scanline counter from within the vblank interrupt handler. 9216 * However if queried just before the start of vblank we'll get an 9217 * answer that's slightly in the future. 9218 */ 9219 if (DISPLAY_VER(dev_priv) == 2) { 9220 int vtotal; 9221 9222 vtotal = adjusted_mode.crtc_vtotal; 9223 if (adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 9224 vtotal /= 2; 9225 9226 crtc->scanline_offset = vtotal - 1; 9227 } else if (HAS_DDI(dev_priv) && 9228 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 9229 crtc->scanline_offset = 2; 9230 } else { 9231 crtc->scanline_offset = 1; 9232 } 9233 } 9234 9235 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 9236 { 9237 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9238 struct intel_crtc_state *new_crtc_state; 9239 struct intel_crtc *crtc; 9240 int i; 9241 9242 if (!dev_priv->display.crtc_compute_clock) 9243 return; 9244 9245 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9246 if (!intel_crtc_needs_modeset(new_crtc_state)) 9247 continue; 9248 9249 intel_release_shared_dplls(state, crtc); 9250 } 9251 } 9252 9253 /* 9254 * This implements the workaround described in the "notes" section of the mode 9255 * set sequence documentation. When going from no pipes or single pipe to 9256 * multiple pipes, and planes are enabled after the pipe, we need to wait at 9257 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 9258 */ 9259 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) 9260 { 9261 struct intel_crtc_state *crtc_state; 9262 struct intel_crtc *crtc; 9263 struct intel_crtc_state *first_crtc_state = NULL; 9264 struct intel_crtc_state *other_crtc_state = NULL; 9265 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 9266 int i; 9267 9268 /* look at all crtc's that are going to be enabled in during modeset */ 9269 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9270 if (!crtc_state->hw.active || 9271 !intel_crtc_needs_modeset(crtc_state)) 9272 continue; 9273 9274 if (first_crtc_state) { 9275 other_crtc_state = crtc_state; 9276 break; 9277 } else { 9278 first_crtc_state = crtc_state; 9279 first_pipe = crtc->pipe; 9280 } 9281 } 9282 9283 /* No workaround needed? */ 9284 if (!first_crtc_state) 9285 return 0; 9286 9287 /* w/a possibly needed, check how many crtc's are already enabled. */ 9288 for_each_intel_crtc(state->base.dev, crtc) { 9289 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 9290 if (IS_ERR(crtc_state)) 9291 return PTR_ERR(crtc_state); 9292 9293 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 9294 9295 if (!crtc_state->hw.active || 9296 intel_crtc_needs_modeset(crtc_state)) 9297 continue; 9298 9299 /* 2 or more enabled crtcs means no need for w/a */ 9300 if (enabled_pipe != INVALID_PIPE) 9301 return 0; 9302 9303 enabled_pipe = crtc->pipe; 9304 } 9305 9306 if (enabled_pipe != INVALID_PIPE) 9307 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 9308 else if (other_crtc_state) 9309 other_crtc_state->hsw_workaround_pipe = first_pipe; 9310 9311 return 0; 9312 } 9313 9314 u8 intel_calc_active_pipes(struct intel_atomic_state *state, 9315 u8 active_pipes) 9316 { 9317 const struct intel_crtc_state *crtc_state; 9318 struct intel_crtc *crtc; 9319 int i; 9320 9321 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9322 if (crtc_state->hw.active) 9323 active_pipes |= BIT(crtc->pipe); 9324 else 9325 active_pipes &= ~BIT(crtc->pipe); 9326 } 9327 9328 return active_pipes; 9329 } 9330 9331 static int intel_modeset_checks(struct intel_atomic_state *state) 9332 { 9333 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9334 9335 state->modeset = true; 9336 9337 if (IS_HASWELL(dev_priv)) 9338 return hsw_mode_set_planes_workaround(state); 9339 9340 return 0; 9341 } 9342 9343 /* 9344 * Handle calculation of various watermark data at the end of the atomic check 9345 * phase. The code here should be run after the per-crtc and per-plane 'check' 9346 * handlers to ensure that all derived state has been updated. 9347 */ 9348 static int calc_watermark_data(struct intel_atomic_state *state) 9349 { 9350 struct drm_device *dev = state->base.dev; 9351 struct drm_i915_private *dev_priv = to_i915(dev); 9352 9353 /* Is there platform-specific watermark information to calculate? */ 9354 if (dev_priv->display.compute_global_watermarks) 9355 return dev_priv->display.compute_global_watermarks(state); 9356 9357 return 0; 9358 } 9359 9360 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 9361 struct intel_crtc_state *new_crtc_state) 9362 { 9363 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 9364 return; 9365 9366 new_crtc_state->uapi.mode_changed = false; 9367 new_crtc_state->update_pipe = true; 9368 } 9369 9370 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state, 9371 struct intel_crtc_state *new_crtc_state) 9372 { 9373 /* 9374 * If we're not doing the full modeset we want to 9375 * keep the current M/N values as they may be 9376 * sufficiently different to the computed values 9377 * to cause problems. 9378 * 9379 * FIXME: should really copy more fuzzy state here 9380 */ 9381 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 9382 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 9383 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 9384 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 9385 } 9386 9387 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, 9388 struct intel_crtc *crtc, 9389 u8 plane_ids_mask) 9390 { 9391 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9392 struct intel_plane *plane; 9393 9394 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 9395 struct intel_plane_state *plane_state; 9396 9397 if ((plane_ids_mask & BIT(plane->id)) == 0) 9398 continue; 9399 9400 plane_state = intel_atomic_get_plane_state(state, plane); 9401 if (IS_ERR(plane_state)) 9402 return PTR_ERR(plane_state); 9403 } 9404 9405 return 0; 9406 } 9407 9408 int intel_atomic_add_affected_planes(struct intel_atomic_state *state, 9409 struct intel_crtc *crtc) 9410 { 9411 const struct intel_crtc_state *old_crtc_state = 9412 intel_atomic_get_old_crtc_state(state, crtc); 9413 const struct intel_crtc_state *new_crtc_state = 9414 intel_atomic_get_new_crtc_state(state, crtc); 9415 9416 return intel_crtc_add_planes_to_state(state, crtc, 9417 old_crtc_state->enabled_planes | 9418 new_crtc_state->enabled_planes); 9419 } 9420 9421 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) 9422 { 9423 /* See {hsw,vlv,ivb}_plane_ratio() */ 9424 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || 9425 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || 9426 IS_IVYBRIDGE(dev_priv); 9427 } 9428 9429 static int intel_crtc_add_bigjoiner_planes(struct intel_atomic_state *state, 9430 struct intel_crtc *crtc, 9431 struct intel_crtc *other) 9432 { 9433 const struct intel_plane_state *plane_state; 9434 struct intel_plane *plane; 9435 u8 plane_ids = 0; 9436 int i; 9437 9438 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9439 if (plane->pipe == crtc->pipe) 9440 plane_ids |= BIT(plane->id); 9441 } 9442 9443 return intel_crtc_add_planes_to_state(state, other, plane_ids); 9444 } 9445 9446 static int intel_bigjoiner_add_affected_planes(struct intel_atomic_state *state) 9447 { 9448 const struct intel_crtc_state *crtc_state; 9449 struct intel_crtc *crtc; 9450 int i; 9451 9452 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9453 int ret; 9454 9455 if (!crtc_state->bigjoiner) 9456 continue; 9457 9458 ret = intel_crtc_add_bigjoiner_planes(state, crtc, 9459 crtc_state->bigjoiner_linked_crtc); 9460 if (ret) 9461 return ret; 9462 } 9463 9464 return 0; 9465 } 9466 9467 static int intel_atomic_check_planes(struct intel_atomic_state *state) 9468 { 9469 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9470 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9471 struct intel_plane_state *plane_state; 9472 struct intel_plane *plane; 9473 struct intel_crtc *crtc; 9474 int i, ret; 9475 9476 ret = icl_add_linked_planes(state); 9477 if (ret) 9478 return ret; 9479 9480 ret = intel_bigjoiner_add_affected_planes(state); 9481 if (ret) 9482 return ret; 9483 9484 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9485 ret = intel_plane_atomic_check(state, plane); 9486 if (ret) { 9487 drm_dbg_atomic(&dev_priv->drm, 9488 "[PLANE:%d:%s] atomic driver check failed\n", 9489 plane->base.base.id, plane->base.name); 9490 return ret; 9491 } 9492 } 9493 9494 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9495 new_crtc_state, i) { 9496 u8 old_active_planes, new_active_planes; 9497 9498 ret = icl_check_nv12_planes(new_crtc_state); 9499 if (ret) 9500 return ret; 9501 9502 /* 9503 * On some platforms the number of active planes affects 9504 * the planes' minimum cdclk calculation. Add such planes 9505 * to the state before we compute the minimum cdclk. 9506 */ 9507 if (!active_planes_affects_min_cdclk(dev_priv)) 9508 continue; 9509 9510 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 9511 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 9512 9513 if (hweight8(old_active_planes) == hweight8(new_active_planes)) 9514 continue; 9515 9516 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); 9517 if (ret) 9518 return ret; 9519 } 9520 9521 return 0; 9522 } 9523 9524 static int intel_atomic_check_cdclk(struct intel_atomic_state *state, 9525 bool *need_cdclk_calc) 9526 { 9527 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9528 const struct intel_cdclk_state *old_cdclk_state; 9529 const struct intel_cdclk_state *new_cdclk_state; 9530 struct intel_plane_state *plane_state; 9531 struct intel_bw_state *new_bw_state; 9532 struct intel_plane *plane; 9533 int min_cdclk = 0; 9534 enum pipe pipe; 9535 int ret; 9536 int i; 9537 /* 9538 * active_planes bitmask has been updated, and potentially 9539 * affected planes are part of the state. We can now 9540 * compute the minimum cdclk for each plane. 9541 */ 9542 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9543 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 9544 if (ret) 9545 return ret; 9546 } 9547 9548 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 9549 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 9550 9551 if (new_cdclk_state && 9552 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk) 9553 *need_cdclk_calc = true; 9554 9555 ret = dev_priv->display.bw_calc_min_cdclk(state); 9556 if (ret) 9557 return ret; 9558 9559 new_bw_state = intel_atomic_get_new_bw_state(state); 9560 9561 if (!new_cdclk_state || !new_bw_state) 9562 return 0; 9563 9564 for_each_pipe(dev_priv, pipe) { 9565 min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk); 9566 9567 /* 9568 * Currently do this change only if we need to increase 9569 */ 9570 if (new_bw_state->min_cdclk > min_cdclk) 9571 *need_cdclk_calc = true; 9572 } 9573 9574 return 0; 9575 } 9576 9577 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 9578 { 9579 struct intel_crtc_state *crtc_state; 9580 struct intel_crtc *crtc; 9581 int i; 9582 9583 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9584 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 9585 int ret; 9586 9587 ret = intel_crtc_atomic_check(state, crtc); 9588 if (ret) { 9589 drm_dbg_atomic(&i915->drm, 9590 "[CRTC:%d:%s] atomic driver check failed\n", 9591 crtc->base.base.id, crtc->base.name); 9592 return ret; 9593 } 9594 } 9595 9596 return 0; 9597 } 9598 9599 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, 9600 u8 transcoders) 9601 { 9602 const struct intel_crtc_state *new_crtc_state; 9603 struct intel_crtc *crtc; 9604 int i; 9605 9606 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9607 if (new_crtc_state->hw.enable && 9608 transcoders & BIT(new_crtc_state->cpu_transcoder) && 9609 intel_crtc_needs_modeset(new_crtc_state)) 9610 return true; 9611 } 9612 9613 return false; 9614 } 9615 9616 static int intel_atomic_check_bigjoiner(struct intel_atomic_state *state, 9617 struct intel_crtc *crtc, 9618 struct intel_crtc_state *old_crtc_state, 9619 struct intel_crtc_state *new_crtc_state) 9620 { 9621 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9622 struct intel_crtc_state *slave_crtc_state, *master_crtc_state; 9623 struct intel_crtc *slave, *master; 9624 9625 /* slave being enabled, is master is still claiming this crtc? */ 9626 if (old_crtc_state->bigjoiner_slave) { 9627 slave = crtc; 9628 master = old_crtc_state->bigjoiner_linked_crtc; 9629 master_crtc_state = intel_atomic_get_new_crtc_state(state, master); 9630 if (!master_crtc_state || !intel_crtc_needs_modeset(master_crtc_state)) 9631 goto claimed; 9632 } 9633 9634 if (!new_crtc_state->bigjoiner) 9635 return 0; 9636 9637 if (1 + crtc->pipe >= INTEL_NUM_PIPES(dev_priv)) { 9638 DRM_DEBUG_KMS("[CRTC:%d:%s] Big joiner configuration requires " 9639 "CRTC + 1 to be used, doesn't exist\n", 9640 crtc->base.base.id, crtc->base.name); 9641 return -EINVAL; 9642 } 9643 9644 slave = new_crtc_state->bigjoiner_linked_crtc = 9645 intel_get_crtc_for_pipe(dev_priv, crtc->pipe + 1); 9646 slave_crtc_state = intel_atomic_get_crtc_state(&state->base, slave); 9647 master = crtc; 9648 if (IS_ERR(slave_crtc_state)) 9649 return PTR_ERR(slave_crtc_state); 9650 9651 /* master being enabled, slave was already configured? */ 9652 if (slave_crtc_state->uapi.enable) 9653 goto claimed; 9654 9655 DRM_DEBUG_KMS("[CRTC:%d:%s] Used as slave for big joiner\n", 9656 slave->base.base.id, slave->base.name); 9657 9658 return copy_bigjoiner_crtc_state(slave_crtc_state, new_crtc_state); 9659 9660 claimed: 9661 DRM_DEBUG_KMS("[CRTC:%d:%s] Slave is enabled as normal CRTC, but " 9662 "[CRTC:%d:%s] claiming this CRTC for bigjoiner.\n", 9663 slave->base.base.id, slave->base.name, 9664 master->base.base.id, master->base.name); 9665 return -EINVAL; 9666 } 9667 9668 static void kill_bigjoiner_slave(struct intel_atomic_state *state, 9669 struct intel_crtc_state *master_crtc_state) 9670 { 9671 struct intel_crtc_state *slave_crtc_state = 9672 intel_atomic_get_new_crtc_state(state, master_crtc_state->bigjoiner_linked_crtc); 9673 9674 slave_crtc_state->bigjoiner = master_crtc_state->bigjoiner = false; 9675 slave_crtc_state->bigjoiner_slave = master_crtc_state->bigjoiner_slave = false; 9676 slave_crtc_state->bigjoiner_linked_crtc = master_crtc_state->bigjoiner_linked_crtc = NULL; 9677 intel_crtc_copy_uapi_to_hw_state(state, slave_crtc_state); 9678 } 9679 9680 /** 9681 * DOC: asynchronous flip implementation 9682 * 9683 * Asynchronous page flip is the implementation for the DRM_MODE_PAGE_FLIP_ASYNC 9684 * flag. Currently async flip is only supported via the drmModePageFlip IOCTL. 9685 * Correspondingly, support is currently added for primary plane only. 9686 * 9687 * Async flip can only change the plane surface address, so anything else 9688 * changing is rejected from the intel_atomic_check_async() function. 9689 * Once this check is cleared, flip done interrupt is enabled using 9690 * the intel_crtc_enable_flip_done() function. 9691 * 9692 * As soon as the surface address register is written, flip done interrupt is 9693 * generated and the requested events are sent to the usersapce in the interrupt 9694 * handler itself. The timestamp and sequence sent during the flip done event 9695 * correspond to the last vblank and have no relation to the actual time when 9696 * the flip done event was sent. 9697 */ 9698 static int intel_atomic_check_async(struct intel_atomic_state *state) 9699 { 9700 struct drm_i915_private *i915 = to_i915(state->base.dev); 9701 const struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9702 const struct intel_plane_state *new_plane_state, *old_plane_state; 9703 struct intel_crtc *crtc; 9704 struct intel_plane *plane; 9705 int i; 9706 9707 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9708 new_crtc_state, i) { 9709 if (intel_crtc_needs_modeset(new_crtc_state)) { 9710 drm_dbg_kms(&i915->drm, "Modeset Required. Async flip not supported\n"); 9711 return -EINVAL; 9712 } 9713 9714 if (!new_crtc_state->hw.active) { 9715 drm_dbg_kms(&i915->drm, "CRTC inactive\n"); 9716 return -EINVAL; 9717 } 9718 if (old_crtc_state->active_planes != new_crtc_state->active_planes) { 9719 drm_dbg_kms(&i915->drm, 9720 "Active planes cannot be changed during async flip\n"); 9721 return -EINVAL; 9722 } 9723 } 9724 9725 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 9726 new_plane_state, i) { 9727 /* 9728 * TODO: Async flip is only supported through the page flip IOCTL 9729 * as of now. So support currently added for primary plane only. 9730 * Support for other planes on platforms on which supports 9731 * this(vlv/chv and icl+) should be added when async flip is 9732 * enabled in the atomic IOCTL path. 9733 */ 9734 if (!plane->async_flip) 9735 return -EINVAL; 9736 9737 /* 9738 * FIXME: This check is kept generic for all platforms. 9739 * Need to verify this for all gen9 and gen10 platforms to enable 9740 * this selectively if required. 9741 */ 9742 switch (new_plane_state->hw.fb->modifier) { 9743 case I915_FORMAT_MOD_X_TILED: 9744 case I915_FORMAT_MOD_Y_TILED: 9745 case I915_FORMAT_MOD_Yf_TILED: 9746 break; 9747 default: 9748 drm_dbg_kms(&i915->drm, 9749 "Linear memory/CCS does not support async flips\n"); 9750 return -EINVAL; 9751 } 9752 9753 if (old_plane_state->view.color_plane[0].stride != 9754 new_plane_state->view.color_plane[0].stride) { 9755 drm_dbg_kms(&i915->drm, "Stride cannot be changed in async flip\n"); 9756 return -EINVAL; 9757 } 9758 9759 if (old_plane_state->hw.fb->modifier != 9760 new_plane_state->hw.fb->modifier) { 9761 drm_dbg_kms(&i915->drm, 9762 "Framebuffer modifiers cannot be changed in async flip\n"); 9763 return -EINVAL; 9764 } 9765 9766 if (old_plane_state->hw.fb->format != 9767 new_plane_state->hw.fb->format) { 9768 drm_dbg_kms(&i915->drm, 9769 "Framebuffer format cannot be changed in async flip\n"); 9770 return -EINVAL; 9771 } 9772 9773 if (old_plane_state->hw.rotation != 9774 new_plane_state->hw.rotation) { 9775 drm_dbg_kms(&i915->drm, "Rotation cannot be changed in async flip\n"); 9776 return -EINVAL; 9777 } 9778 9779 if (!drm_rect_equals(&old_plane_state->uapi.src, &new_plane_state->uapi.src) || 9780 !drm_rect_equals(&old_plane_state->uapi.dst, &new_plane_state->uapi.dst)) { 9781 drm_dbg_kms(&i915->drm, 9782 "Plane size/co-ordinates cannot be changed in async flip\n"); 9783 return -EINVAL; 9784 } 9785 9786 if (old_plane_state->hw.alpha != new_plane_state->hw.alpha) { 9787 drm_dbg_kms(&i915->drm, "Alpha value cannot be changed in async flip\n"); 9788 return -EINVAL; 9789 } 9790 9791 if (old_plane_state->hw.pixel_blend_mode != 9792 new_plane_state->hw.pixel_blend_mode) { 9793 drm_dbg_kms(&i915->drm, 9794 "Pixel blend mode cannot be changed in async flip\n"); 9795 return -EINVAL; 9796 } 9797 9798 if (old_plane_state->hw.color_encoding != new_plane_state->hw.color_encoding) { 9799 drm_dbg_kms(&i915->drm, 9800 "Color encoding cannot be changed in async flip\n"); 9801 return -EINVAL; 9802 } 9803 9804 if (old_plane_state->hw.color_range != new_plane_state->hw.color_range) { 9805 drm_dbg_kms(&i915->drm, "Color range cannot be changed in async flip\n"); 9806 return -EINVAL; 9807 } 9808 } 9809 9810 return 0; 9811 } 9812 9813 static int intel_bigjoiner_add_affected_crtcs(struct intel_atomic_state *state) 9814 { 9815 struct intel_crtc_state *crtc_state; 9816 struct intel_crtc *crtc; 9817 int i; 9818 9819 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9820 struct intel_crtc_state *linked_crtc_state; 9821 struct intel_crtc *linked_crtc; 9822 int ret; 9823 9824 if (!crtc_state->bigjoiner) 9825 continue; 9826 9827 linked_crtc = crtc_state->bigjoiner_linked_crtc; 9828 linked_crtc_state = intel_atomic_get_crtc_state(&state->base, linked_crtc); 9829 if (IS_ERR(linked_crtc_state)) 9830 return PTR_ERR(linked_crtc_state); 9831 9832 if (!intel_crtc_needs_modeset(crtc_state)) 9833 continue; 9834 9835 linked_crtc_state->uapi.mode_changed = true; 9836 9837 ret = drm_atomic_add_affected_connectors(&state->base, 9838 &linked_crtc->base); 9839 if (ret) 9840 return ret; 9841 9842 ret = intel_atomic_add_affected_planes(state, linked_crtc); 9843 if (ret) 9844 return ret; 9845 } 9846 9847 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9848 /* Kill old bigjoiner link, we may re-establish afterwards */ 9849 if (intel_crtc_needs_modeset(crtc_state) && 9850 crtc_state->bigjoiner && !crtc_state->bigjoiner_slave) 9851 kill_bigjoiner_slave(state, crtc_state); 9852 } 9853 9854 return 0; 9855 } 9856 9857 /** 9858 * intel_atomic_check - validate state object 9859 * @dev: drm device 9860 * @_state: state to validate 9861 */ 9862 static int intel_atomic_check(struct drm_device *dev, 9863 struct drm_atomic_state *_state) 9864 { 9865 struct drm_i915_private *dev_priv = to_i915(dev); 9866 struct intel_atomic_state *state = to_intel_atomic_state(_state); 9867 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9868 struct intel_crtc *crtc; 9869 int ret, i; 9870 bool any_ms = false; 9871 9872 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9873 new_crtc_state, i) { 9874 if (new_crtc_state->inherited != old_crtc_state->inherited) 9875 new_crtc_state->uapi.mode_changed = true; 9876 } 9877 9878 intel_vrr_check_modeset(state); 9879 9880 ret = drm_atomic_helper_check_modeset(dev, &state->base); 9881 if (ret) 9882 goto fail; 9883 9884 ret = intel_bigjoiner_add_affected_crtcs(state); 9885 if (ret) 9886 goto fail; 9887 9888 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9889 new_crtc_state, i) { 9890 if (!intel_crtc_needs_modeset(new_crtc_state)) { 9891 /* Light copy */ 9892 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, new_crtc_state); 9893 9894 continue; 9895 } 9896 9897 if (!new_crtc_state->uapi.enable) { 9898 if (!new_crtc_state->bigjoiner_slave) { 9899 intel_crtc_copy_uapi_to_hw_state(state, new_crtc_state); 9900 any_ms = true; 9901 } 9902 continue; 9903 } 9904 9905 ret = intel_crtc_prepare_cleared_state(state, new_crtc_state); 9906 if (ret) 9907 goto fail; 9908 9909 ret = intel_modeset_pipe_config(state, new_crtc_state); 9910 if (ret) 9911 goto fail; 9912 9913 ret = intel_atomic_check_bigjoiner(state, crtc, old_crtc_state, 9914 new_crtc_state); 9915 if (ret) 9916 goto fail; 9917 } 9918 9919 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9920 new_crtc_state, i) { 9921 if (!intel_crtc_needs_modeset(new_crtc_state)) 9922 continue; 9923 9924 ret = intel_modeset_pipe_config_late(new_crtc_state); 9925 if (ret) 9926 goto fail; 9927 9928 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 9929 } 9930 9931 /** 9932 * Check if fastset is allowed by external dependencies like other 9933 * pipes and transcoders. 9934 * 9935 * Right now it only forces a fullmodeset when the MST master 9936 * transcoder did not changed but the pipe of the master transcoder 9937 * needs a fullmodeset so all slaves also needs to do a fullmodeset or 9938 * in case of port synced crtcs, if one of the synced crtcs 9939 * needs a full modeset, all other synced crtcs should be 9940 * forced a full modeset. 9941 */ 9942 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9943 if (!new_crtc_state->hw.enable || intel_crtc_needs_modeset(new_crtc_state)) 9944 continue; 9945 9946 if (intel_dp_mst_is_slave_trans(new_crtc_state)) { 9947 enum transcoder master = new_crtc_state->mst_master_transcoder; 9948 9949 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) { 9950 new_crtc_state->uapi.mode_changed = true; 9951 new_crtc_state->update_pipe = false; 9952 } 9953 } 9954 9955 if (is_trans_port_sync_mode(new_crtc_state)) { 9956 u8 trans = new_crtc_state->sync_mode_slaves_mask; 9957 9958 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) 9959 trans |= BIT(new_crtc_state->master_transcoder); 9960 9961 if (intel_cpu_transcoders_need_modeset(state, trans)) { 9962 new_crtc_state->uapi.mode_changed = true; 9963 new_crtc_state->update_pipe = false; 9964 } 9965 } 9966 9967 if (new_crtc_state->bigjoiner) { 9968 struct intel_crtc_state *linked_crtc_state = 9969 intel_atomic_get_new_crtc_state(state, new_crtc_state->bigjoiner_linked_crtc); 9970 9971 if (intel_crtc_needs_modeset(linked_crtc_state)) { 9972 new_crtc_state->uapi.mode_changed = true; 9973 new_crtc_state->update_pipe = false; 9974 } 9975 } 9976 } 9977 9978 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9979 new_crtc_state, i) { 9980 if (intel_crtc_needs_modeset(new_crtc_state)) { 9981 any_ms = true; 9982 continue; 9983 } 9984 9985 if (!new_crtc_state->update_pipe) 9986 continue; 9987 9988 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state); 9989 } 9990 9991 if (any_ms && !check_digital_port_conflicts(state)) { 9992 drm_dbg_kms(&dev_priv->drm, 9993 "rejecting conflicting digital port configuration\n"); 9994 ret = -EINVAL; 9995 goto fail; 9996 } 9997 9998 ret = drm_dp_mst_atomic_check(&state->base); 9999 if (ret) 10000 goto fail; 10001 10002 ret = intel_atomic_check_planes(state); 10003 if (ret) 10004 goto fail; 10005 10006 intel_fbc_choose_crtc(dev_priv, state); 10007 ret = calc_watermark_data(state); 10008 if (ret) 10009 goto fail; 10010 10011 ret = intel_bw_atomic_check(state); 10012 if (ret) 10013 goto fail; 10014 10015 ret = intel_atomic_check_cdclk(state, &any_ms); 10016 if (ret) 10017 goto fail; 10018 10019 if (intel_any_crtc_needs_modeset(state)) 10020 any_ms = true; 10021 10022 if (any_ms) { 10023 ret = intel_modeset_checks(state); 10024 if (ret) 10025 goto fail; 10026 10027 ret = intel_modeset_calc_cdclk(state); 10028 if (ret) 10029 return ret; 10030 10031 intel_modeset_clear_plls(state); 10032 } 10033 10034 ret = intel_atomic_check_crtcs(state); 10035 if (ret) 10036 goto fail; 10037 10038 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10039 new_crtc_state, i) { 10040 if (new_crtc_state->uapi.async_flip) { 10041 ret = intel_atomic_check_async(state); 10042 if (ret) 10043 goto fail; 10044 } 10045 10046 if (!intel_crtc_needs_modeset(new_crtc_state) && 10047 !new_crtc_state->update_pipe) 10048 continue; 10049 10050 intel_dump_pipe_config(new_crtc_state, state, 10051 intel_crtc_needs_modeset(new_crtc_state) ? 10052 "[modeset]" : "[fastset]"); 10053 } 10054 10055 return 0; 10056 10057 fail: 10058 if (ret == -EDEADLK) 10059 return ret; 10060 10061 /* 10062 * FIXME would probably be nice to know which crtc specifically 10063 * caused the failure, in cases where we can pinpoint it. 10064 */ 10065 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10066 new_crtc_state, i) 10067 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 10068 10069 return ret; 10070 } 10071 10072 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 10073 { 10074 struct intel_crtc_state *crtc_state; 10075 struct intel_crtc *crtc; 10076 int i, ret; 10077 10078 ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base); 10079 if (ret < 0) 10080 return ret; 10081 10082 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 10083 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 10084 10085 if (mode_changed || crtc_state->update_pipe || 10086 crtc_state->uapi.color_mgmt_changed) { 10087 intel_dsb_prepare(crtc_state); 10088 } 10089 } 10090 10091 return 0; 10092 } 10093 10094 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 10095 struct intel_crtc_state *crtc_state) 10096 { 10097 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10098 10099 if (DISPLAY_VER(dev_priv) != 2 || crtc_state->active_planes) 10100 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 10101 10102 if (crtc_state->has_pch_encoder) { 10103 enum pipe pch_transcoder = 10104 intel_crtc_pch_transcoder(crtc); 10105 10106 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 10107 } 10108 } 10109 10110 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 10111 const struct intel_crtc_state *new_crtc_state) 10112 { 10113 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 10114 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10115 10116 /* 10117 * Update pipe size and adjust fitter if needed: the reason for this is 10118 * that in compute_mode_changes we check the native mode (not the pfit 10119 * mode) to see if we can flip rather than do a full mode set. In the 10120 * fastboot case, we'll flip, but if we don't update the pipesrc and 10121 * pfit state, we'll end up with a big fb scanned out into the wrong 10122 * sized surface. 10123 */ 10124 intel_set_pipe_src_size(new_crtc_state); 10125 10126 /* on skylake this is done by detaching scalers */ 10127 if (DISPLAY_VER(dev_priv) >= 9) { 10128 if (new_crtc_state->pch_pfit.enabled) 10129 skl_pfit_enable(new_crtc_state); 10130 } else if (HAS_PCH_SPLIT(dev_priv)) { 10131 if (new_crtc_state->pch_pfit.enabled) 10132 ilk_pfit_enable(new_crtc_state); 10133 else if (old_crtc_state->pch_pfit.enabled) 10134 ilk_pfit_disable(old_crtc_state); 10135 } 10136 10137 /* 10138 * The register is supposedly single buffered so perhaps 10139 * not 100% correct to do this here. But SKL+ calculate 10140 * this based on the adjust pixel rate so pfit changes do 10141 * affect it and so it must be updated for fastsets. 10142 * HSW/BDW only really need this here for fastboot, after 10143 * that the value should not change without a full modeset. 10144 */ 10145 if (DISPLAY_VER(dev_priv) >= 9 || 10146 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 10147 hsw_set_linetime_wm(new_crtc_state); 10148 10149 if (DISPLAY_VER(dev_priv) >= 11) 10150 icl_set_pipe_chicken(crtc); 10151 } 10152 10153 static void commit_pipe_pre_planes(struct intel_atomic_state *state, 10154 struct intel_crtc *crtc) 10155 { 10156 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10157 const struct intel_crtc_state *old_crtc_state = 10158 intel_atomic_get_old_crtc_state(state, crtc); 10159 const struct intel_crtc_state *new_crtc_state = 10160 intel_atomic_get_new_crtc_state(state, crtc); 10161 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10162 10163 /* 10164 * During modesets pipe configuration was programmed as the 10165 * CRTC was enabled. 10166 */ 10167 if (!modeset) { 10168 if (new_crtc_state->uapi.color_mgmt_changed || 10169 new_crtc_state->update_pipe) 10170 intel_color_commit(new_crtc_state); 10171 10172 if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 10173 bdw_set_pipemisc(new_crtc_state); 10174 10175 if (new_crtc_state->update_pipe) 10176 intel_pipe_fastset(old_crtc_state, new_crtc_state); 10177 10178 intel_psr2_program_trans_man_trk_ctl(new_crtc_state); 10179 } 10180 10181 if (dev_priv->display.atomic_update_watermarks) 10182 dev_priv->display.atomic_update_watermarks(state, crtc); 10183 } 10184 10185 static void commit_pipe_post_planes(struct intel_atomic_state *state, 10186 struct intel_crtc *crtc) 10187 { 10188 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10189 const struct intel_crtc_state *new_crtc_state = 10190 intel_atomic_get_new_crtc_state(state, crtc); 10191 10192 /* 10193 * Disable the scaler(s) after the plane(s) so that we don't 10194 * get a catastrophic underrun even if the two operations 10195 * end up happening in two different frames. 10196 */ 10197 if (DISPLAY_VER(dev_priv) >= 9 && 10198 !intel_crtc_needs_modeset(new_crtc_state)) 10199 skl_detach_scalers(new_crtc_state); 10200 } 10201 10202 static void intel_enable_crtc(struct intel_atomic_state *state, 10203 struct intel_crtc *crtc) 10204 { 10205 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10206 const struct intel_crtc_state *new_crtc_state = 10207 intel_atomic_get_new_crtc_state(state, crtc); 10208 10209 if (!intel_crtc_needs_modeset(new_crtc_state)) 10210 return; 10211 10212 intel_crtc_update_active_timings(new_crtc_state); 10213 10214 dev_priv->display.crtc_enable(state, crtc); 10215 10216 if (new_crtc_state->bigjoiner_slave) 10217 return; 10218 10219 /* vblanks work again, re-enable pipe CRC. */ 10220 intel_crtc_enable_pipe_crc(crtc); 10221 } 10222 10223 static void intel_update_crtc(struct intel_atomic_state *state, 10224 struct intel_crtc *crtc) 10225 { 10226 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10227 const struct intel_crtc_state *old_crtc_state = 10228 intel_atomic_get_old_crtc_state(state, crtc); 10229 struct intel_crtc_state *new_crtc_state = 10230 intel_atomic_get_new_crtc_state(state, crtc); 10231 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10232 10233 if (!modeset) { 10234 if (new_crtc_state->preload_luts && 10235 (new_crtc_state->uapi.color_mgmt_changed || 10236 new_crtc_state->update_pipe)) 10237 intel_color_load_luts(new_crtc_state); 10238 10239 intel_pre_plane_update(state, crtc); 10240 10241 if (new_crtc_state->update_pipe) 10242 intel_encoders_update_pipe(state, crtc); 10243 } 10244 10245 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 10246 intel_fbc_disable(crtc); 10247 else 10248 intel_fbc_enable(state, crtc); 10249 10250 /* Perform vblank evasion around commit operation */ 10251 intel_pipe_update_start(new_crtc_state); 10252 10253 commit_pipe_pre_planes(state, crtc); 10254 10255 if (DISPLAY_VER(dev_priv) >= 9) 10256 skl_update_planes_on_crtc(state, crtc); 10257 else 10258 i9xx_update_planes_on_crtc(state, crtc); 10259 10260 commit_pipe_post_planes(state, crtc); 10261 10262 intel_pipe_update_end(new_crtc_state); 10263 10264 /* 10265 * We usually enable FIFO underrun interrupts as part of the 10266 * CRTC enable sequence during modesets. But when we inherit a 10267 * valid pipe configuration from the BIOS we need to take care 10268 * of enabling them on the CRTC's first fastset. 10269 */ 10270 if (new_crtc_state->update_pipe && !modeset && 10271 old_crtc_state->inherited) 10272 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 10273 } 10274 10275 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 10276 struct intel_crtc_state *old_crtc_state, 10277 struct intel_crtc_state *new_crtc_state, 10278 struct intel_crtc *crtc) 10279 { 10280 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10281 10282 drm_WARN_ON(&dev_priv->drm, old_crtc_state->bigjoiner_slave); 10283 10284 intel_crtc_disable_planes(state, crtc); 10285 10286 /* 10287 * We still need special handling for disabling bigjoiner master 10288 * and slaves since for slave we do not have encoder or plls 10289 * so we dont need to disable those. 10290 */ 10291 if (old_crtc_state->bigjoiner) { 10292 intel_crtc_disable_planes(state, 10293 old_crtc_state->bigjoiner_linked_crtc); 10294 old_crtc_state->bigjoiner_linked_crtc->active = false; 10295 } 10296 10297 /* 10298 * We need to disable pipe CRC before disabling the pipe, 10299 * or we race against vblank off. 10300 */ 10301 intel_crtc_disable_pipe_crc(crtc); 10302 10303 dev_priv->display.crtc_disable(state, crtc); 10304 crtc->active = false; 10305 intel_fbc_disable(crtc); 10306 intel_disable_shared_dpll(old_crtc_state); 10307 10308 /* FIXME unify this for all platforms */ 10309 if (!new_crtc_state->hw.active && 10310 !HAS_GMCH(dev_priv) && 10311 dev_priv->display.initial_watermarks) 10312 dev_priv->display.initial_watermarks(state, crtc); 10313 } 10314 10315 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 10316 { 10317 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 10318 struct intel_crtc *crtc; 10319 u32 handled = 0; 10320 int i; 10321 10322 /* Only disable port sync and MST slaves */ 10323 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10324 new_crtc_state, i) { 10325 if (!intel_crtc_needs_modeset(new_crtc_state) || old_crtc_state->bigjoiner) 10326 continue; 10327 10328 if (!old_crtc_state->hw.active) 10329 continue; 10330 10331 /* In case of Transcoder port Sync master slave CRTCs can be 10332 * assigned in any order and we need to make sure that 10333 * slave CRTCs are disabled first and then master CRTC since 10334 * Slave vblanks are masked till Master Vblanks. 10335 */ 10336 if (!is_trans_port_sync_slave(old_crtc_state) && 10337 !intel_dp_mst_is_slave_trans(old_crtc_state)) 10338 continue; 10339 10340 intel_pre_plane_update(state, crtc); 10341 intel_old_crtc_state_disables(state, old_crtc_state, 10342 new_crtc_state, crtc); 10343 handled |= BIT(crtc->pipe); 10344 } 10345 10346 /* Disable everything else left on */ 10347 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10348 new_crtc_state, i) { 10349 if (!intel_crtc_needs_modeset(new_crtc_state) || 10350 (handled & BIT(crtc->pipe)) || 10351 old_crtc_state->bigjoiner_slave) 10352 continue; 10353 10354 intel_pre_plane_update(state, crtc); 10355 if (old_crtc_state->bigjoiner) { 10356 struct intel_crtc *slave = 10357 old_crtc_state->bigjoiner_linked_crtc; 10358 10359 intel_pre_plane_update(state, slave); 10360 } 10361 10362 if (old_crtc_state->hw.active) 10363 intel_old_crtc_state_disables(state, old_crtc_state, 10364 new_crtc_state, crtc); 10365 } 10366 } 10367 10368 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 10369 { 10370 struct intel_crtc_state *new_crtc_state; 10371 struct intel_crtc *crtc; 10372 int i; 10373 10374 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10375 if (!new_crtc_state->hw.active) 10376 continue; 10377 10378 intel_enable_crtc(state, crtc); 10379 intel_update_crtc(state, crtc); 10380 } 10381 } 10382 10383 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 10384 { 10385 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10386 struct intel_crtc *crtc; 10387 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10388 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 10389 u8 update_pipes = 0, modeset_pipes = 0; 10390 int i; 10391 10392 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 10393 enum pipe pipe = crtc->pipe; 10394 10395 if (!new_crtc_state->hw.active) 10396 continue; 10397 10398 /* ignore allocations for crtc's that have been turned off. */ 10399 if (!intel_crtc_needs_modeset(new_crtc_state)) { 10400 entries[pipe] = old_crtc_state->wm.skl.ddb; 10401 update_pipes |= BIT(pipe); 10402 } else { 10403 modeset_pipes |= BIT(pipe); 10404 } 10405 } 10406 10407 /* 10408 * Whenever the number of active pipes changes, we need to make sure we 10409 * update the pipes in the right order so that their ddb allocations 10410 * never overlap with each other between CRTC updates. Otherwise we'll 10411 * cause pipe underruns and other bad stuff. 10412 * 10413 * So first lets enable all pipes that do not need a fullmodeset as 10414 * those don't have any external dependency. 10415 */ 10416 while (update_pipes) { 10417 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10418 new_crtc_state, i) { 10419 enum pipe pipe = crtc->pipe; 10420 10421 if ((update_pipes & BIT(pipe)) == 0) 10422 continue; 10423 10424 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 10425 entries, I915_MAX_PIPES, pipe)) 10426 continue; 10427 10428 entries[pipe] = new_crtc_state->wm.skl.ddb; 10429 update_pipes &= ~BIT(pipe); 10430 10431 intel_update_crtc(state, crtc); 10432 10433 /* 10434 * If this is an already active pipe, it's DDB changed, 10435 * and this isn't the last pipe that needs updating 10436 * then we need to wait for a vblank to pass for the 10437 * new ddb allocation to take effect. 10438 */ 10439 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 10440 &old_crtc_state->wm.skl.ddb) && 10441 (update_pipes | modeset_pipes)) 10442 intel_wait_for_vblank(dev_priv, pipe); 10443 } 10444 } 10445 10446 update_pipes = modeset_pipes; 10447 10448 /* 10449 * Enable all pipes that needs a modeset and do not depends on other 10450 * pipes 10451 */ 10452 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10453 enum pipe pipe = crtc->pipe; 10454 10455 if ((modeset_pipes & BIT(pipe)) == 0) 10456 continue; 10457 10458 if (intel_dp_mst_is_slave_trans(new_crtc_state) || 10459 is_trans_port_sync_master(new_crtc_state) || 10460 (new_crtc_state->bigjoiner && !new_crtc_state->bigjoiner_slave)) 10461 continue; 10462 10463 modeset_pipes &= ~BIT(pipe); 10464 10465 intel_enable_crtc(state, crtc); 10466 } 10467 10468 /* 10469 * Then we enable all remaining pipes that depend on other 10470 * pipes: MST slaves and port sync masters, big joiner master 10471 */ 10472 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10473 enum pipe pipe = crtc->pipe; 10474 10475 if ((modeset_pipes & BIT(pipe)) == 0) 10476 continue; 10477 10478 modeset_pipes &= ~BIT(pipe); 10479 10480 intel_enable_crtc(state, crtc); 10481 } 10482 10483 /* 10484 * Finally we do the plane updates/etc. for all pipes that got enabled. 10485 */ 10486 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10487 enum pipe pipe = crtc->pipe; 10488 10489 if ((update_pipes & BIT(pipe)) == 0) 10490 continue; 10491 10492 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 10493 entries, I915_MAX_PIPES, pipe)); 10494 10495 entries[pipe] = new_crtc_state->wm.skl.ddb; 10496 update_pipes &= ~BIT(pipe); 10497 10498 intel_update_crtc(state, crtc); 10499 } 10500 10501 drm_WARN_ON(&dev_priv->drm, modeset_pipes); 10502 drm_WARN_ON(&dev_priv->drm, update_pipes); 10503 } 10504 10505 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 10506 { 10507 struct intel_atomic_state *state, *next; 10508 struct llist_node *freed; 10509 10510 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 10511 llist_for_each_entry_safe(state, next, freed, freed) 10512 drm_atomic_state_put(&state->base); 10513 } 10514 10515 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 10516 { 10517 struct drm_i915_private *dev_priv = 10518 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 10519 10520 intel_atomic_helper_free_state(dev_priv); 10521 } 10522 10523 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 10524 { 10525 struct wait_queue_entry wait_fence, wait_reset; 10526 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 10527 10528 init_wait_entry(&wait_fence, 0); 10529 init_wait_entry(&wait_reset, 0); 10530 for (;;) { 10531 prepare_to_wait(&intel_state->commit_ready.wait, 10532 &wait_fence, TASK_UNINTERRUPTIBLE); 10533 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 10534 I915_RESET_MODESET), 10535 &wait_reset, TASK_UNINTERRUPTIBLE); 10536 10537 10538 if (i915_sw_fence_done(&intel_state->commit_ready) || 10539 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 10540 break; 10541 10542 schedule(); 10543 } 10544 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 10545 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 10546 I915_RESET_MODESET), 10547 &wait_reset); 10548 } 10549 10550 static void intel_cleanup_dsbs(struct intel_atomic_state *state) 10551 { 10552 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10553 struct intel_crtc *crtc; 10554 int i; 10555 10556 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10557 new_crtc_state, i) 10558 intel_dsb_cleanup(old_crtc_state); 10559 } 10560 10561 static void intel_atomic_cleanup_work(struct work_struct *work) 10562 { 10563 struct intel_atomic_state *state = 10564 container_of(work, struct intel_atomic_state, base.commit_work); 10565 struct drm_i915_private *i915 = to_i915(state->base.dev); 10566 10567 intel_cleanup_dsbs(state); 10568 drm_atomic_helper_cleanup_planes(&i915->drm, &state->base); 10569 drm_atomic_helper_commit_cleanup_done(&state->base); 10570 drm_atomic_state_put(&state->base); 10571 10572 intel_atomic_helper_free_state(i915); 10573 } 10574 10575 static void intel_atomic_prepare_plane_clear_colors(struct intel_atomic_state *state) 10576 { 10577 struct drm_i915_private *i915 = to_i915(state->base.dev); 10578 struct intel_plane *plane; 10579 struct intel_plane_state *plane_state; 10580 int i; 10581 10582 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 10583 struct drm_framebuffer *fb = plane_state->hw.fb; 10584 int ret; 10585 10586 if (!fb || 10587 fb->modifier != I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC) 10588 continue; 10589 10590 /* 10591 * The layout of the fast clear color value expected by HW 10592 * (the DRM ABI requiring this value to be located in fb at offset 0 of plane#2): 10593 * - 4 x 4 bytes per-channel value 10594 * (in surface type specific float/int format provided by the fb user) 10595 * - 8 bytes native color value used by the display 10596 * (converted/written by GPU during a fast clear operation using the 10597 * above per-channel values) 10598 * 10599 * The commit's FB prepare hook already ensured that FB obj is pinned and the 10600 * caller made sure that the object is synced wrt. the related color clear value 10601 * GPU write on it. 10602 */ 10603 ret = i915_gem_object_read_from_page(intel_fb_obj(fb), 10604 fb->offsets[2] + 16, 10605 &plane_state->ccval, 10606 sizeof(plane_state->ccval)); 10607 /* The above could only fail if the FB obj has an unexpected backing store type. */ 10608 drm_WARN_ON(&i915->drm, ret); 10609 } 10610 } 10611 10612 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 10613 { 10614 struct drm_device *dev = state->base.dev; 10615 struct drm_i915_private *dev_priv = to_i915(dev); 10616 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 10617 struct intel_crtc *crtc; 10618 u64 put_domains[I915_MAX_PIPES] = {}; 10619 intel_wakeref_t wakeref = 0; 10620 int i; 10621 10622 intel_atomic_commit_fence_wait(state); 10623 10624 drm_atomic_helper_wait_for_dependencies(&state->base); 10625 10626 if (state->modeset) 10627 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 10628 10629 intel_atomic_prepare_plane_clear_colors(state); 10630 10631 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10632 new_crtc_state, i) { 10633 if (intel_crtc_needs_modeset(new_crtc_state) || 10634 new_crtc_state->update_pipe) { 10635 10636 put_domains[crtc->pipe] = 10637 modeset_get_crtc_power_domains(new_crtc_state); 10638 } 10639 } 10640 10641 intel_commit_modeset_disables(state); 10642 10643 /* FIXME: Eventually get rid of our crtc->config pointer */ 10644 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10645 crtc->config = new_crtc_state; 10646 10647 if (state->modeset) { 10648 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 10649 10650 intel_set_cdclk_pre_plane_update(state); 10651 10652 intel_modeset_verify_disabled(dev_priv, state); 10653 } 10654 10655 intel_sagv_pre_plane_update(state); 10656 10657 /* Complete the events for pipes that have now been disabled */ 10658 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10659 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10660 10661 /* Complete events for now disable pipes here. */ 10662 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { 10663 spin_lock_irq(&dev->event_lock); 10664 drm_crtc_send_vblank_event(&crtc->base, 10665 new_crtc_state->uapi.event); 10666 spin_unlock_irq(&dev->event_lock); 10667 10668 new_crtc_state->uapi.event = NULL; 10669 } 10670 } 10671 10672 if (state->modeset) 10673 intel_encoders_update_prepare(state); 10674 10675 intel_dbuf_pre_plane_update(state); 10676 10677 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10678 if (new_crtc_state->uapi.async_flip) 10679 intel_crtc_enable_flip_done(state, crtc); 10680 } 10681 10682 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 10683 dev_priv->display.commit_modeset_enables(state); 10684 10685 if (state->modeset) { 10686 intel_encoders_update_complete(state); 10687 10688 intel_set_cdclk_post_plane_update(state); 10689 } 10690 10691 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 10692 * already, but still need the state for the delayed optimization. To 10693 * fix this: 10694 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 10695 * - schedule that vblank worker _before_ calling hw_done 10696 * - at the start of commit_tail, cancel it _synchrously 10697 * - switch over to the vblank wait helper in the core after that since 10698 * we don't need out special handling any more. 10699 */ 10700 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 10701 10702 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10703 if (new_crtc_state->uapi.async_flip) 10704 intel_crtc_disable_flip_done(state, crtc); 10705 10706 if (new_crtc_state->hw.active && 10707 !intel_crtc_needs_modeset(new_crtc_state) && 10708 !new_crtc_state->preload_luts && 10709 (new_crtc_state->uapi.color_mgmt_changed || 10710 new_crtc_state->update_pipe)) 10711 intel_color_load_luts(new_crtc_state); 10712 } 10713 10714 /* 10715 * Now that the vblank has passed, we can go ahead and program the 10716 * optimal watermarks on platforms that need two-step watermark 10717 * programming. 10718 * 10719 * TODO: Move this (and other cleanup) to an async worker eventually. 10720 */ 10721 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10722 new_crtc_state, i) { 10723 /* 10724 * Gen2 reports pipe underruns whenever all planes are disabled. 10725 * So re-enable underrun reporting after some planes get enabled. 10726 * 10727 * We do this before .optimize_watermarks() so that we have a 10728 * chance of catching underruns with the intermediate watermarks 10729 * vs. the new plane configuration. 10730 */ 10731 if (DISPLAY_VER(dev_priv) == 2 && planes_enabling(old_crtc_state, new_crtc_state)) 10732 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 10733 10734 if (dev_priv->display.optimize_watermarks) 10735 dev_priv->display.optimize_watermarks(state, crtc); 10736 } 10737 10738 intel_dbuf_post_plane_update(state); 10739 10740 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 10741 intel_post_plane_update(state, crtc); 10742 10743 modeset_put_crtc_power_domains(crtc, put_domains[crtc->pipe]); 10744 10745 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 10746 10747 /* 10748 * DSB cleanup is done in cleanup_work aligning with framebuffer 10749 * cleanup. So copy and reset the dsb structure to sync with 10750 * commit_done and later do dsb cleanup in cleanup_work. 10751 */ 10752 old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb); 10753 } 10754 10755 /* Underruns don't always raise interrupts, so check manually */ 10756 intel_check_cpu_fifo_underruns(dev_priv); 10757 intel_check_pch_fifo_underruns(dev_priv); 10758 10759 if (state->modeset) 10760 intel_verify_planes(state); 10761 10762 intel_sagv_post_plane_update(state); 10763 10764 drm_atomic_helper_commit_hw_done(&state->base); 10765 10766 if (state->modeset) { 10767 /* As one of the primary mmio accessors, KMS has a high 10768 * likelihood of triggering bugs in unclaimed access. After we 10769 * finish modesetting, see if an error has been flagged, and if 10770 * so enable debugging for the next modeset - and hope we catch 10771 * the culprit. 10772 */ 10773 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 10774 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 10775 } 10776 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10777 10778 /* 10779 * Defer the cleanup of the old state to a separate worker to not 10780 * impede the current task (userspace for blocking modesets) that 10781 * are executed inline. For out-of-line asynchronous modesets/flips, 10782 * deferring to a new worker seems overkill, but we would place a 10783 * schedule point (cond_resched()) here anyway to keep latencies 10784 * down. 10785 */ 10786 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 10787 queue_work(system_highpri_wq, &state->base.commit_work); 10788 } 10789 10790 static void intel_atomic_commit_work(struct work_struct *work) 10791 { 10792 struct intel_atomic_state *state = 10793 container_of(work, struct intel_atomic_state, base.commit_work); 10794 10795 intel_atomic_commit_tail(state); 10796 } 10797 10798 static int __i915_sw_fence_call 10799 intel_atomic_commit_ready(struct i915_sw_fence *fence, 10800 enum i915_sw_fence_notify notify) 10801 { 10802 struct intel_atomic_state *state = 10803 container_of(fence, struct intel_atomic_state, commit_ready); 10804 10805 switch (notify) { 10806 case FENCE_COMPLETE: 10807 /* we do blocking waits in the worker, nothing to do here */ 10808 break; 10809 case FENCE_FREE: 10810 { 10811 struct intel_atomic_helper *helper = 10812 &to_i915(state->base.dev)->atomic_helper; 10813 10814 if (llist_add(&state->freed, &helper->free_list)) 10815 schedule_work(&helper->free_work); 10816 break; 10817 } 10818 } 10819 10820 return NOTIFY_DONE; 10821 } 10822 10823 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 10824 { 10825 struct intel_plane_state *old_plane_state, *new_plane_state; 10826 struct intel_plane *plane; 10827 int i; 10828 10829 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 10830 new_plane_state, i) 10831 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 10832 to_intel_frontbuffer(new_plane_state->hw.fb), 10833 plane->frontbuffer_bit); 10834 } 10835 10836 static int intel_atomic_commit(struct drm_device *dev, 10837 struct drm_atomic_state *_state, 10838 bool nonblock) 10839 { 10840 struct intel_atomic_state *state = to_intel_atomic_state(_state); 10841 struct drm_i915_private *dev_priv = to_i915(dev); 10842 int ret = 0; 10843 10844 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 10845 10846 drm_atomic_state_get(&state->base); 10847 i915_sw_fence_init(&state->commit_ready, 10848 intel_atomic_commit_ready); 10849 10850 /* 10851 * The intel_legacy_cursor_update() fast path takes care 10852 * of avoiding the vblank waits for simple cursor 10853 * movement and flips. For cursor on/off and size changes, 10854 * we want to perform the vblank waits so that watermark 10855 * updates happen during the correct frames. Gen9+ have 10856 * double buffered watermarks and so shouldn't need this. 10857 * 10858 * Unset state->legacy_cursor_update before the call to 10859 * drm_atomic_helper_setup_commit() because otherwise 10860 * drm_atomic_helper_wait_for_flip_done() is a noop and 10861 * we get FIFO underruns because we didn't wait 10862 * for vblank. 10863 * 10864 * FIXME doing watermarks and fb cleanup from a vblank worker 10865 * (assuming we had any) would solve these problems. 10866 */ 10867 if (DISPLAY_VER(dev_priv) < 9 && state->base.legacy_cursor_update) { 10868 struct intel_crtc_state *new_crtc_state; 10869 struct intel_crtc *crtc; 10870 int i; 10871 10872 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10873 if (new_crtc_state->wm.need_postvbl_update || 10874 new_crtc_state->update_wm_post) 10875 state->base.legacy_cursor_update = false; 10876 } 10877 10878 ret = intel_atomic_prepare_commit(state); 10879 if (ret) { 10880 drm_dbg_atomic(&dev_priv->drm, 10881 "Preparing state failed with %i\n", ret); 10882 i915_sw_fence_commit(&state->commit_ready); 10883 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10884 return ret; 10885 } 10886 10887 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 10888 if (!ret) 10889 ret = drm_atomic_helper_swap_state(&state->base, true); 10890 if (!ret) 10891 intel_atomic_swap_global_state(state); 10892 10893 if (ret) { 10894 struct intel_crtc_state *new_crtc_state; 10895 struct intel_crtc *crtc; 10896 int i; 10897 10898 i915_sw_fence_commit(&state->commit_ready); 10899 10900 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10901 intel_dsb_cleanup(new_crtc_state); 10902 10903 drm_atomic_helper_cleanup_planes(dev, &state->base); 10904 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10905 return ret; 10906 } 10907 intel_shared_dpll_swap_state(state); 10908 intel_atomic_track_fbs(state); 10909 10910 drm_atomic_state_get(&state->base); 10911 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 10912 10913 i915_sw_fence_commit(&state->commit_ready); 10914 if (nonblock && state->modeset) { 10915 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 10916 } else if (nonblock) { 10917 queue_work(dev_priv->flip_wq, &state->base.commit_work); 10918 } else { 10919 if (state->modeset) 10920 flush_workqueue(dev_priv->modeset_wq); 10921 intel_atomic_commit_tail(state); 10922 } 10923 10924 return 0; 10925 } 10926 10927 struct wait_rps_boost { 10928 struct wait_queue_entry wait; 10929 10930 struct drm_crtc *crtc; 10931 struct i915_request *request; 10932 }; 10933 10934 static int do_rps_boost(struct wait_queue_entry *_wait, 10935 unsigned mode, int sync, void *key) 10936 { 10937 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); 10938 struct i915_request *rq = wait->request; 10939 10940 /* 10941 * If we missed the vblank, but the request is already running it 10942 * is reasonable to assume that it will complete before the next 10943 * vblank without our intervention, so leave RPS alone. 10944 */ 10945 if (!i915_request_started(rq)) 10946 intel_rps_boost(rq); 10947 i915_request_put(rq); 10948 10949 drm_crtc_vblank_put(wait->crtc); 10950 10951 list_del(&wait->wait.entry); 10952 kfree(wait); 10953 return 1; 10954 } 10955 10956 static void add_rps_boost_after_vblank(struct drm_crtc *crtc, 10957 struct dma_fence *fence) 10958 { 10959 struct wait_rps_boost *wait; 10960 10961 if (!dma_fence_is_i915(fence)) 10962 return; 10963 10964 if (DISPLAY_VER(to_i915(crtc->dev)) < 6) 10965 return; 10966 10967 if (drm_crtc_vblank_get(crtc)) 10968 return; 10969 10970 wait = kmalloc(sizeof(*wait), GFP_KERNEL); 10971 if (!wait) { 10972 drm_crtc_vblank_put(crtc); 10973 return; 10974 } 10975 10976 wait->request = to_request(dma_fence_get(fence)); 10977 wait->crtc = crtc; 10978 10979 wait->wait.func = do_rps_boost; 10980 wait->wait.flags = 0; 10981 10982 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); 10983 } 10984 10985 int intel_plane_pin_fb(struct intel_plane_state *plane_state) 10986 { 10987 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 10988 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 10989 struct drm_framebuffer *fb = plane_state->hw.fb; 10990 struct i915_vma *vma; 10991 bool phys_cursor = 10992 plane->id == PLANE_CURSOR && 10993 INTEL_INFO(dev_priv)->display.cursor_needs_physical; 10994 10995 if (!intel_fb_uses_dpt(fb)) { 10996 vma = intel_pin_and_fence_fb_obj(fb, phys_cursor, 10997 &plane_state->view.gtt, 10998 intel_plane_uses_fence(plane_state), 10999 &plane_state->flags); 11000 if (IS_ERR(vma)) 11001 return PTR_ERR(vma); 11002 11003 plane_state->ggtt_vma = vma; 11004 } else { 11005 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11006 11007 vma = intel_dpt_pin(intel_fb->dpt_vm); 11008 if (IS_ERR(vma)) 11009 return PTR_ERR(vma); 11010 11011 plane_state->ggtt_vma = vma; 11012 11013 vma = intel_pin_fb_obj_dpt(fb, &plane_state->view.gtt, false, 11014 &plane_state->flags, intel_fb->dpt_vm); 11015 if (IS_ERR(vma)) { 11016 intel_dpt_unpin(intel_fb->dpt_vm); 11017 plane_state->ggtt_vma = NULL; 11018 return PTR_ERR(vma); 11019 } 11020 11021 plane_state->dpt_vma = vma; 11022 11023 WARN_ON(plane_state->ggtt_vma == plane_state->dpt_vma); 11024 } 11025 11026 return 0; 11027 } 11028 11029 void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) 11030 { 11031 struct drm_framebuffer *fb = old_plane_state->hw.fb; 11032 struct i915_vma *vma; 11033 11034 if (!intel_fb_uses_dpt(fb)) { 11035 vma = fetch_and_zero(&old_plane_state->ggtt_vma); 11036 if (vma) 11037 intel_unpin_fb_vma(vma, old_plane_state->flags); 11038 } else { 11039 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11040 11041 vma = fetch_and_zero(&old_plane_state->dpt_vma); 11042 if (vma) 11043 intel_unpin_fb_vma(vma, old_plane_state->flags); 11044 11045 vma = fetch_and_zero(&old_plane_state->ggtt_vma); 11046 if (vma) 11047 intel_dpt_unpin(intel_fb->dpt_vm); 11048 } 11049 } 11050 11051 /** 11052 * intel_prepare_plane_fb - Prepare fb for usage on plane 11053 * @_plane: drm plane to prepare for 11054 * @_new_plane_state: the plane state being prepared 11055 * 11056 * Prepares a framebuffer for usage on a display plane. Generally this 11057 * involves pinning the underlying object and updating the frontbuffer tracking 11058 * bits. Some older platforms need special physical address handling for 11059 * cursor planes. 11060 * 11061 * Returns 0 on success, negative error code on failure. 11062 */ 11063 int 11064 intel_prepare_plane_fb(struct drm_plane *_plane, 11065 struct drm_plane_state *_new_plane_state) 11066 { 11067 struct i915_sched_attr attr = { .priority = I915_PRIORITY_DISPLAY }; 11068 struct intel_plane *plane = to_intel_plane(_plane); 11069 struct intel_plane_state *new_plane_state = 11070 to_intel_plane_state(_new_plane_state); 11071 struct intel_atomic_state *state = 11072 to_intel_atomic_state(new_plane_state->uapi.state); 11073 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11074 const struct intel_plane_state *old_plane_state = 11075 intel_atomic_get_old_plane_state(state, plane); 11076 struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb); 11077 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb); 11078 int ret; 11079 11080 if (old_obj) { 11081 const struct intel_crtc_state *crtc_state = 11082 intel_atomic_get_new_crtc_state(state, 11083 to_intel_crtc(old_plane_state->hw.crtc)); 11084 11085 /* Big Hammer, we also need to ensure that any pending 11086 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 11087 * current scanout is retired before unpinning the old 11088 * framebuffer. Note that we rely on userspace rendering 11089 * into the buffer attached to the pipe they are waiting 11090 * on. If not, userspace generates a GPU hang with IPEHR 11091 * point to the MI_WAIT_FOR_EVENT. 11092 * 11093 * This should only fail upon a hung GPU, in which case we 11094 * can safely continue. 11095 */ 11096 if (intel_crtc_needs_modeset(crtc_state)) { 11097 ret = i915_sw_fence_await_reservation(&state->commit_ready, 11098 old_obj->base.resv, NULL, 11099 false, 0, 11100 GFP_KERNEL); 11101 if (ret < 0) 11102 return ret; 11103 } 11104 } 11105 11106 if (new_plane_state->uapi.fence) { /* explicit fencing */ 11107 i915_gem_fence_wait_priority(new_plane_state->uapi.fence, 11108 &attr); 11109 ret = i915_sw_fence_await_dma_fence(&state->commit_ready, 11110 new_plane_state->uapi.fence, 11111 i915_fence_timeout(dev_priv), 11112 GFP_KERNEL); 11113 if (ret < 0) 11114 return ret; 11115 } 11116 11117 if (!obj) 11118 return 0; 11119 11120 11121 ret = intel_plane_pin_fb(new_plane_state); 11122 if (ret) 11123 return ret; 11124 11125 i915_gem_object_wait_priority(obj, 0, &attr); 11126 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB); 11127 11128 if (!new_plane_state->uapi.fence) { /* implicit fencing */ 11129 struct dma_fence *fence; 11130 11131 ret = i915_sw_fence_await_reservation(&state->commit_ready, 11132 obj->base.resv, NULL, 11133 false, 11134 i915_fence_timeout(dev_priv), 11135 GFP_KERNEL); 11136 if (ret < 0) 11137 goto unpin_fb; 11138 11139 fence = dma_resv_get_excl_unlocked(obj->base.resv); 11140 if (fence) { 11141 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 11142 fence); 11143 dma_fence_put(fence); 11144 } 11145 } else { 11146 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 11147 new_plane_state->uapi.fence); 11148 } 11149 11150 /* 11151 * We declare pageflips to be interactive and so merit a small bias 11152 * towards upclocking to deliver the frame on time. By only changing 11153 * the RPS thresholds to sample more regularly and aim for higher 11154 * clocks we can hopefully deliver low power workloads (like kodi) 11155 * that are not quite steady state without resorting to forcing 11156 * maximum clocks following a vblank miss (see do_rps_boost()). 11157 */ 11158 if (!state->rps_interactive) { 11159 intel_rps_mark_interactive(&dev_priv->gt.rps, true); 11160 state->rps_interactive = true; 11161 } 11162 11163 return 0; 11164 11165 unpin_fb: 11166 intel_plane_unpin_fb(new_plane_state); 11167 11168 return ret; 11169 } 11170 11171 /** 11172 * intel_cleanup_plane_fb - Cleans up an fb after plane use 11173 * @plane: drm plane to clean up for 11174 * @_old_plane_state: the state from the previous modeset 11175 * 11176 * Cleans up a framebuffer that has just been removed from a plane. 11177 */ 11178 void 11179 intel_cleanup_plane_fb(struct drm_plane *plane, 11180 struct drm_plane_state *_old_plane_state) 11181 { 11182 struct intel_plane_state *old_plane_state = 11183 to_intel_plane_state(_old_plane_state); 11184 struct intel_atomic_state *state = 11185 to_intel_atomic_state(old_plane_state->uapi.state); 11186 struct drm_i915_private *dev_priv = to_i915(plane->dev); 11187 struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb); 11188 11189 if (!obj) 11190 return; 11191 11192 if (state->rps_interactive) { 11193 intel_rps_mark_interactive(&dev_priv->gt.rps, false); 11194 state->rps_interactive = false; 11195 } 11196 11197 /* Should only be called after a successful intel_prepare_plane_fb()! */ 11198 intel_plane_unpin_fb(old_plane_state); 11199 } 11200 11201 /** 11202 * intel_plane_destroy - destroy a plane 11203 * @plane: plane to destroy 11204 * 11205 * Common destruction function for all types of planes (primary, cursor, 11206 * sprite). 11207 */ 11208 void intel_plane_destroy(struct drm_plane *plane) 11209 { 11210 drm_plane_cleanup(plane); 11211 kfree(to_intel_plane(plane)); 11212 } 11213 11214 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv) 11215 { 11216 struct intel_plane *plane; 11217 11218 for_each_intel_plane(&dev_priv->drm, plane) { 11219 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, 11220 plane->pipe); 11221 11222 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base); 11223 } 11224 } 11225 11226 11227 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 11228 struct drm_file *file) 11229 { 11230 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 11231 struct drm_crtc *drmmode_crtc; 11232 struct intel_crtc *crtc; 11233 11234 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 11235 if (!drmmode_crtc) 11236 return -ENOENT; 11237 11238 crtc = to_intel_crtc(drmmode_crtc); 11239 pipe_from_crtc_id->pipe = crtc->pipe; 11240 11241 return 0; 11242 } 11243 11244 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 11245 { 11246 struct drm_device *dev = encoder->base.dev; 11247 struct intel_encoder *source_encoder; 11248 u32 possible_clones = 0; 11249 11250 for_each_intel_encoder(dev, source_encoder) { 11251 if (encoders_cloneable(encoder, source_encoder)) 11252 possible_clones |= drm_encoder_mask(&source_encoder->base); 11253 } 11254 11255 return possible_clones; 11256 } 11257 11258 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 11259 { 11260 struct drm_device *dev = encoder->base.dev; 11261 struct intel_crtc *crtc; 11262 u32 possible_crtcs = 0; 11263 11264 for_each_intel_crtc(dev, crtc) { 11265 if (encoder->pipe_mask & BIT(crtc->pipe)) 11266 possible_crtcs |= drm_crtc_mask(&crtc->base); 11267 } 11268 11269 return possible_crtcs; 11270 } 11271 11272 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 11273 { 11274 if (!IS_MOBILE(dev_priv)) 11275 return false; 11276 11277 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0) 11278 return false; 11279 11280 if (IS_IRONLAKE(dev_priv) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE)) 11281 return false; 11282 11283 return true; 11284 } 11285 11286 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 11287 { 11288 if (DISPLAY_VER(dev_priv) >= 9) 11289 return false; 11290 11291 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 11292 return false; 11293 11294 if (HAS_PCH_LPT_H(dev_priv) && 11295 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 11296 return false; 11297 11298 /* DDI E can't be used if DDI A requires 4 lanes */ 11299 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 11300 return false; 11301 11302 if (!dev_priv->vbt.int_crt_support) 11303 return false; 11304 11305 return true; 11306 } 11307 11308 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 11309 { 11310 struct intel_encoder *encoder; 11311 bool dpd_is_edp = false; 11312 11313 intel_pps_unlock_regs_wa(dev_priv); 11314 11315 if (!HAS_DISPLAY(dev_priv)) 11316 return; 11317 11318 if (IS_ALDERLAKE_P(dev_priv)) { 11319 intel_ddi_init(dev_priv, PORT_A); 11320 intel_ddi_init(dev_priv, PORT_B); 11321 intel_ddi_init(dev_priv, PORT_TC1); 11322 intel_ddi_init(dev_priv, PORT_TC2); 11323 intel_ddi_init(dev_priv, PORT_TC3); 11324 intel_ddi_init(dev_priv, PORT_TC4); 11325 } else if (IS_ALDERLAKE_S(dev_priv)) { 11326 intel_ddi_init(dev_priv, PORT_A); 11327 intel_ddi_init(dev_priv, PORT_TC1); 11328 intel_ddi_init(dev_priv, PORT_TC2); 11329 intel_ddi_init(dev_priv, PORT_TC3); 11330 intel_ddi_init(dev_priv, PORT_TC4); 11331 } else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) { 11332 intel_ddi_init(dev_priv, PORT_A); 11333 intel_ddi_init(dev_priv, PORT_B); 11334 intel_ddi_init(dev_priv, PORT_TC1); 11335 intel_ddi_init(dev_priv, PORT_TC2); 11336 } else if (DISPLAY_VER(dev_priv) >= 12) { 11337 intel_ddi_init(dev_priv, PORT_A); 11338 intel_ddi_init(dev_priv, PORT_B); 11339 intel_ddi_init(dev_priv, PORT_TC1); 11340 intel_ddi_init(dev_priv, PORT_TC2); 11341 intel_ddi_init(dev_priv, PORT_TC3); 11342 intel_ddi_init(dev_priv, PORT_TC4); 11343 intel_ddi_init(dev_priv, PORT_TC5); 11344 intel_ddi_init(dev_priv, PORT_TC6); 11345 icl_dsi_init(dev_priv); 11346 } else if (IS_JSL_EHL(dev_priv)) { 11347 intel_ddi_init(dev_priv, PORT_A); 11348 intel_ddi_init(dev_priv, PORT_B); 11349 intel_ddi_init(dev_priv, PORT_C); 11350 intel_ddi_init(dev_priv, PORT_D); 11351 icl_dsi_init(dev_priv); 11352 } else if (DISPLAY_VER(dev_priv) == 11) { 11353 intel_ddi_init(dev_priv, PORT_A); 11354 intel_ddi_init(dev_priv, PORT_B); 11355 intel_ddi_init(dev_priv, PORT_C); 11356 intel_ddi_init(dev_priv, PORT_D); 11357 intel_ddi_init(dev_priv, PORT_E); 11358 intel_ddi_init(dev_priv, PORT_F); 11359 icl_dsi_init(dev_priv); 11360 } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { 11361 intel_ddi_init(dev_priv, PORT_A); 11362 intel_ddi_init(dev_priv, PORT_B); 11363 intel_ddi_init(dev_priv, PORT_C); 11364 vlv_dsi_init(dev_priv); 11365 } else if (DISPLAY_VER(dev_priv) >= 9) { 11366 intel_ddi_init(dev_priv, PORT_A); 11367 intel_ddi_init(dev_priv, PORT_B); 11368 intel_ddi_init(dev_priv, PORT_C); 11369 intel_ddi_init(dev_priv, PORT_D); 11370 intel_ddi_init(dev_priv, PORT_E); 11371 intel_ddi_init(dev_priv, PORT_F); 11372 } else if (HAS_DDI(dev_priv)) { 11373 u32 found; 11374 11375 if (intel_ddi_crt_present(dev_priv)) 11376 intel_crt_init(dev_priv); 11377 11378 /* Haswell uses DDI functions to detect digital outputs. */ 11379 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 11380 if (found) 11381 intel_ddi_init(dev_priv, PORT_A); 11382 11383 found = intel_de_read(dev_priv, SFUSE_STRAP); 11384 if (found & SFUSE_STRAP_DDIB_DETECTED) 11385 intel_ddi_init(dev_priv, PORT_B); 11386 if (found & SFUSE_STRAP_DDIC_DETECTED) 11387 intel_ddi_init(dev_priv, PORT_C); 11388 if (found & SFUSE_STRAP_DDID_DETECTED) 11389 intel_ddi_init(dev_priv, PORT_D); 11390 if (found & SFUSE_STRAP_DDIF_DETECTED) 11391 intel_ddi_init(dev_priv, PORT_F); 11392 } else if (HAS_PCH_SPLIT(dev_priv)) { 11393 int found; 11394 11395 /* 11396 * intel_edp_init_connector() depends on this completing first, 11397 * to prevent the registration of both eDP and LVDS and the 11398 * incorrect sharing of the PPS. 11399 */ 11400 intel_lvds_init(dev_priv); 11401 intel_crt_init(dev_priv); 11402 11403 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 11404 11405 if (ilk_has_edp_a(dev_priv)) 11406 g4x_dp_init(dev_priv, DP_A, PORT_A); 11407 11408 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) { 11409 /* PCH SDVOB multiplex with HDMIB */ 11410 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 11411 if (!found) 11412 g4x_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 11413 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED)) 11414 g4x_dp_init(dev_priv, PCH_DP_B, PORT_B); 11415 } 11416 11417 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED) 11418 g4x_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 11419 11420 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED) 11421 g4x_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 11422 11423 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED) 11424 g4x_dp_init(dev_priv, PCH_DP_C, PORT_C); 11425 11426 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED) 11427 g4x_dp_init(dev_priv, PCH_DP_D, PORT_D); 11428 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 11429 bool has_edp, has_port; 11430 11431 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 11432 intel_crt_init(dev_priv); 11433 11434 /* 11435 * The DP_DETECTED bit is the latched state of the DDC 11436 * SDA pin at boot. However since eDP doesn't require DDC 11437 * (no way to plug in a DP->HDMI dongle) the DDC pins for 11438 * eDP ports may have been muxed to an alternate function. 11439 * Thus we can't rely on the DP_DETECTED bit alone to detect 11440 * eDP ports. Consult the VBT as well as DP_DETECTED to 11441 * detect eDP ports. 11442 * 11443 * Sadly the straps seem to be missing sometimes even for HDMI 11444 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 11445 * and VBT for the presence of the port. Additionally we can't 11446 * trust the port type the VBT declares as we've seen at least 11447 * HDMI ports that the VBT claim are DP or eDP. 11448 */ 11449 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 11450 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 11451 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port) 11452 has_edp &= g4x_dp_init(dev_priv, VLV_DP_B, PORT_B); 11453 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 11454 g4x_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 11455 11456 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 11457 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 11458 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port) 11459 has_edp &= g4x_dp_init(dev_priv, VLV_DP_C, PORT_C); 11460 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 11461 g4x_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 11462 11463 if (IS_CHERRYVIEW(dev_priv)) { 11464 /* 11465 * eDP not supported on port D, 11466 * so no need to worry about it 11467 */ 11468 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 11469 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port) 11470 g4x_dp_init(dev_priv, CHV_DP_D, PORT_D); 11471 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port) 11472 g4x_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 11473 } 11474 11475 vlv_dsi_init(dev_priv); 11476 } else if (IS_PINEVIEW(dev_priv)) { 11477 intel_lvds_init(dev_priv); 11478 intel_crt_init(dev_priv); 11479 } else if (IS_DISPLAY_VER(dev_priv, 3, 4)) { 11480 bool found = false; 11481 11482 if (IS_MOBILE(dev_priv)) 11483 intel_lvds_init(dev_priv); 11484 11485 intel_crt_init(dev_priv); 11486 11487 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 11488 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n"); 11489 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 11490 if (!found && IS_G4X(dev_priv)) { 11491 drm_dbg_kms(&dev_priv->drm, 11492 "probing HDMI on SDVOB\n"); 11493 g4x_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 11494 } 11495 11496 if (!found && IS_G4X(dev_priv)) 11497 g4x_dp_init(dev_priv, DP_B, PORT_B); 11498 } 11499 11500 /* Before G4X SDVOC doesn't have its own detect register */ 11501 11502 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 11503 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n"); 11504 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 11505 } 11506 11507 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) { 11508 11509 if (IS_G4X(dev_priv)) { 11510 drm_dbg_kms(&dev_priv->drm, 11511 "probing HDMI on SDVOC\n"); 11512 g4x_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 11513 } 11514 if (IS_G4X(dev_priv)) 11515 g4x_dp_init(dev_priv, DP_C, PORT_C); 11516 } 11517 11518 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED)) 11519 g4x_dp_init(dev_priv, DP_D, PORT_D); 11520 11521 if (SUPPORTS_TV(dev_priv)) 11522 intel_tv_init(dev_priv); 11523 } else if (DISPLAY_VER(dev_priv) == 2) { 11524 if (IS_I85X(dev_priv)) 11525 intel_lvds_init(dev_priv); 11526 11527 intel_crt_init(dev_priv); 11528 intel_dvo_init(dev_priv); 11529 } 11530 11531 for_each_intel_encoder(&dev_priv->drm, encoder) { 11532 encoder->base.possible_crtcs = 11533 intel_encoder_possible_crtcs(encoder); 11534 encoder->base.possible_clones = 11535 intel_encoder_possible_clones(encoder); 11536 } 11537 11538 intel_init_pch_refclk(dev_priv); 11539 11540 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 11541 } 11542 11543 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 11544 { 11545 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11546 11547 drm_framebuffer_cleanup(fb); 11548 11549 if (intel_fb_uses_dpt(fb)) 11550 intel_dpt_destroy(intel_fb->dpt_vm); 11551 11552 intel_frontbuffer_put(intel_fb->frontbuffer); 11553 11554 kfree(intel_fb); 11555 } 11556 11557 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 11558 struct drm_file *file, 11559 unsigned int *handle) 11560 { 11561 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11562 struct drm_i915_private *i915 = to_i915(obj->base.dev); 11563 11564 if (i915_gem_object_is_userptr(obj)) { 11565 drm_dbg(&i915->drm, 11566 "attempting to use a userptr for a framebuffer, denied\n"); 11567 return -EINVAL; 11568 } 11569 11570 return drm_gem_handle_create(file, &obj->base, handle); 11571 } 11572 11573 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 11574 struct drm_file *file, 11575 unsigned flags, unsigned color, 11576 struct drm_clip_rect *clips, 11577 unsigned num_clips) 11578 { 11579 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11580 11581 i915_gem_object_flush_if_display(obj); 11582 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 11583 11584 return 0; 11585 } 11586 11587 static const struct drm_framebuffer_funcs intel_fb_funcs = { 11588 .destroy = intel_user_framebuffer_destroy, 11589 .create_handle = intel_user_framebuffer_create_handle, 11590 .dirty = intel_user_framebuffer_dirty, 11591 }; 11592 11593 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, 11594 struct drm_i915_gem_object *obj, 11595 struct drm_mode_fb_cmd2 *mode_cmd) 11596 { 11597 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 11598 struct drm_framebuffer *fb = &intel_fb->base; 11599 u32 max_stride; 11600 unsigned int tiling, stride; 11601 int ret = -EINVAL; 11602 int i; 11603 11604 intel_fb->frontbuffer = intel_frontbuffer_get(obj); 11605 if (!intel_fb->frontbuffer) 11606 return -ENOMEM; 11607 11608 i915_gem_object_lock(obj, NULL); 11609 tiling = i915_gem_object_get_tiling(obj); 11610 stride = i915_gem_object_get_stride(obj); 11611 i915_gem_object_unlock(obj); 11612 11613 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 11614 /* 11615 * If there's a fence, enforce that 11616 * the fb modifier and tiling mode match. 11617 */ 11618 if (tiling != I915_TILING_NONE && 11619 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 11620 drm_dbg_kms(&dev_priv->drm, 11621 "tiling_mode doesn't match fb modifier\n"); 11622 goto err; 11623 } 11624 } else { 11625 if (tiling == I915_TILING_X) { 11626 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 11627 } else if (tiling == I915_TILING_Y) { 11628 drm_dbg_kms(&dev_priv->drm, 11629 "No Y tiling for legacy addfb\n"); 11630 goto err; 11631 } 11632 } 11633 11634 if (!drm_any_plane_has_format(&dev_priv->drm, 11635 mode_cmd->pixel_format, 11636 mode_cmd->modifier[0])) { 11637 drm_dbg_kms(&dev_priv->drm, 11638 "unsupported pixel format %p4cc / modifier 0x%llx\n", 11639 &mode_cmd->pixel_format, mode_cmd->modifier[0]); 11640 goto err; 11641 } 11642 11643 /* 11644 * gen2/3 display engine uses the fence if present, 11645 * so the tiling mode must match the fb modifier exactly. 11646 */ 11647 if (DISPLAY_VER(dev_priv) < 4 && 11648 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 11649 drm_dbg_kms(&dev_priv->drm, 11650 "tiling_mode must match fb modifier exactly on gen2/3\n"); 11651 goto err; 11652 } 11653 11654 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, 11655 mode_cmd->modifier[0]); 11656 if (mode_cmd->pitches[0] > max_stride) { 11657 drm_dbg_kms(&dev_priv->drm, 11658 "%s pitch (%u) must be at most %d\n", 11659 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? 11660 "tiled" : "linear", 11661 mode_cmd->pitches[0], max_stride); 11662 goto err; 11663 } 11664 11665 /* 11666 * If there's a fence, enforce that 11667 * the fb pitch and fence stride match. 11668 */ 11669 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { 11670 drm_dbg_kms(&dev_priv->drm, 11671 "pitch (%d) must match tiling stride (%d)\n", 11672 mode_cmd->pitches[0], stride); 11673 goto err; 11674 } 11675 11676 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 11677 if (mode_cmd->offsets[0] != 0) { 11678 drm_dbg_kms(&dev_priv->drm, 11679 "plane 0 offset (0x%08x) must be 0\n", 11680 mode_cmd->offsets[0]); 11681 goto err; 11682 } 11683 11684 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); 11685 11686 for (i = 0; i < fb->format->num_planes; i++) { 11687 u32 stride_alignment; 11688 11689 if (mode_cmd->handles[i] != mode_cmd->handles[0]) { 11690 drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n", 11691 i); 11692 goto err; 11693 } 11694 11695 stride_alignment = intel_fb_stride_alignment(fb, i); 11696 if (fb->pitches[i] & (stride_alignment - 1)) { 11697 drm_dbg_kms(&dev_priv->drm, 11698 "plane %d pitch (%d) must be at least %u byte aligned\n", 11699 i, fb->pitches[i], stride_alignment); 11700 goto err; 11701 } 11702 11703 if (is_gen12_ccs_plane(fb, i) && !is_gen12_ccs_cc_plane(fb, i)) { 11704 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i); 11705 11706 if (fb->pitches[i] != ccs_aux_stride) { 11707 drm_dbg_kms(&dev_priv->drm, 11708 "ccs aux plane %d pitch (%d) must be %d\n", 11709 i, 11710 fb->pitches[i], ccs_aux_stride); 11711 goto err; 11712 } 11713 } 11714 11715 /* TODO: Add POT stride remapping support for CCS formats as well. */ 11716 if (IS_ALDERLAKE_P(dev_priv) && 11717 mode_cmd->modifier[i] != DRM_FORMAT_MOD_LINEAR && 11718 !intel_fb_needs_pot_stride_remap(intel_fb) && 11719 !is_power_of_2(mode_cmd->pitches[i])) { 11720 drm_dbg_kms(&dev_priv->drm, 11721 "plane %d pitch (%d) must be power of two for tiled buffers\n", 11722 i, mode_cmd->pitches[i]); 11723 goto err; 11724 } 11725 11726 fb->obj[i] = &obj->base; 11727 } 11728 11729 ret = intel_fill_fb_info(dev_priv, intel_fb); 11730 if (ret) 11731 goto err; 11732 11733 if (intel_fb_uses_dpt(fb)) { 11734 struct i915_address_space *vm; 11735 11736 vm = intel_dpt_create(intel_fb); 11737 if (IS_ERR(vm)) { 11738 ret = PTR_ERR(vm); 11739 goto err; 11740 } 11741 11742 intel_fb->dpt_vm = vm; 11743 } 11744 11745 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); 11746 if (ret) { 11747 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret); 11748 goto err; 11749 } 11750 11751 return 0; 11752 11753 err: 11754 intel_frontbuffer_put(intel_fb->frontbuffer); 11755 return ret; 11756 } 11757 11758 static struct drm_framebuffer * 11759 intel_user_framebuffer_create(struct drm_device *dev, 11760 struct drm_file *filp, 11761 const struct drm_mode_fb_cmd2 *user_mode_cmd) 11762 { 11763 struct drm_framebuffer *fb; 11764 struct drm_i915_gem_object *obj; 11765 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 11766 struct drm_i915_private *i915; 11767 11768 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); 11769 if (!obj) 11770 return ERR_PTR(-ENOENT); 11771 11772 /* object is backed with LMEM for discrete */ 11773 i915 = to_i915(obj->base.dev); 11774 if (HAS_LMEM(i915) && !i915_gem_object_is_lmem(obj)) { 11775 /* object is "remote", not in local memory */ 11776 i915_gem_object_put(obj); 11777 return ERR_PTR(-EREMOTE); 11778 } 11779 11780 fb = intel_framebuffer_create(obj, &mode_cmd); 11781 i915_gem_object_put(obj); 11782 11783 return fb; 11784 } 11785 11786 static enum drm_mode_status 11787 intel_mode_valid(struct drm_device *dev, 11788 const struct drm_display_mode *mode) 11789 { 11790 struct drm_i915_private *dev_priv = to_i915(dev); 11791 int hdisplay_max, htotal_max; 11792 int vdisplay_max, vtotal_max; 11793 11794 /* 11795 * Can't reject DBLSCAN here because Xorg ddxen can add piles 11796 * of DBLSCAN modes to the output's mode list when they detect 11797 * the scaling mode property on the connector. And they don't 11798 * ask the kernel to validate those modes in any way until 11799 * modeset time at which point the client gets a protocol error. 11800 * So in order to not upset those clients we silently ignore the 11801 * DBLSCAN flag on such connectors. For other connectors we will 11802 * reject modes with the DBLSCAN flag in encoder->compute_config(). 11803 * And we always reject DBLSCAN modes in connector->mode_valid() 11804 * as we never want such modes on the connector's mode list. 11805 */ 11806 11807 if (mode->vscan > 1) 11808 return MODE_NO_VSCAN; 11809 11810 if (mode->flags & DRM_MODE_FLAG_HSKEW) 11811 return MODE_H_ILLEGAL; 11812 11813 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 11814 DRM_MODE_FLAG_NCSYNC | 11815 DRM_MODE_FLAG_PCSYNC)) 11816 return MODE_HSYNC; 11817 11818 if (mode->flags & (DRM_MODE_FLAG_BCAST | 11819 DRM_MODE_FLAG_PIXMUX | 11820 DRM_MODE_FLAG_CLKDIV2)) 11821 return MODE_BAD; 11822 11823 /* Transcoder timing limits */ 11824 if (DISPLAY_VER(dev_priv) >= 11) { 11825 hdisplay_max = 16384; 11826 vdisplay_max = 8192; 11827 htotal_max = 16384; 11828 vtotal_max = 8192; 11829 } else if (DISPLAY_VER(dev_priv) >= 9 || 11830 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 11831 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 11832 vdisplay_max = 4096; 11833 htotal_max = 8192; 11834 vtotal_max = 8192; 11835 } else if (DISPLAY_VER(dev_priv) >= 3) { 11836 hdisplay_max = 4096; 11837 vdisplay_max = 4096; 11838 htotal_max = 8192; 11839 vtotal_max = 8192; 11840 } else { 11841 hdisplay_max = 2048; 11842 vdisplay_max = 2048; 11843 htotal_max = 4096; 11844 vtotal_max = 4096; 11845 } 11846 11847 if (mode->hdisplay > hdisplay_max || 11848 mode->hsync_start > htotal_max || 11849 mode->hsync_end > htotal_max || 11850 mode->htotal > htotal_max) 11851 return MODE_H_ILLEGAL; 11852 11853 if (mode->vdisplay > vdisplay_max || 11854 mode->vsync_start > vtotal_max || 11855 mode->vsync_end > vtotal_max || 11856 mode->vtotal > vtotal_max) 11857 return MODE_V_ILLEGAL; 11858 11859 if (DISPLAY_VER(dev_priv) >= 5) { 11860 if (mode->hdisplay < 64 || 11861 mode->htotal - mode->hdisplay < 32) 11862 return MODE_H_ILLEGAL; 11863 11864 if (mode->vtotal - mode->vdisplay < 5) 11865 return MODE_V_ILLEGAL; 11866 } else { 11867 if (mode->htotal - mode->hdisplay < 32) 11868 return MODE_H_ILLEGAL; 11869 11870 if (mode->vtotal - mode->vdisplay < 3) 11871 return MODE_V_ILLEGAL; 11872 } 11873 11874 return MODE_OK; 11875 } 11876 11877 enum drm_mode_status 11878 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, 11879 const struct drm_display_mode *mode, 11880 bool bigjoiner) 11881 { 11882 int plane_width_max, plane_height_max; 11883 11884 /* 11885 * intel_mode_valid() should be 11886 * sufficient on older platforms. 11887 */ 11888 if (DISPLAY_VER(dev_priv) < 9) 11889 return MODE_OK; 11890 11891 /* 11892 * Most people will probably want a fullscreen 11893 * plane so let's not advertize modes that are 11894 * too big for that. 11895 */ 11896 if (DISPLAY_VER(dev_priv) >= 11) { 11897 plane_width_max = 5120 << bigjoiner; 11898 plane_height_max = 4320; 11899 } else { 11900 plane_width_max = 5120; 11901 plane_height_max = 4096; 11902 } 11903 11904 if (mode->hdisplay > plane_width_max) 11905 return MODE_H_ILLEGAL; 11906 11907 if (mode->vdisplay > plane_height_max) 11908 return MODE_V_ILLEGAL; 11909 11910 return MODE_OK; 11911 } 11912 11913 static const struct drm_mode_config_funcs intel_mode_funcs = { 11914 .fb_create = intel_user_framebuffer_create, 11915 .get_format_info = intel_get_format_info, 11916 .output_poll_changed = intel_fbdev_output_poll_changed, 11917 .mode_valid = intel_mode_valid, 11918 .atomic_check = intel_atomic_check, 11919 .atomic_commit = intel_atomic_commit, 11920 .atomic_state_alloc = intel_atomic_state_alloc, 11921 .atomic_state_clear = intel_atomic_state_clear, 11922 .atomic_state_free = intel_atomic_state_free, 11923 }; 11924 11925 /** 11926 * intel_init_display_hooks - initialize the display modesetting hooks 11927 * @dev_priv: device private 11928 */ 11929 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 11930 { 11931 if (!HAS_DISPLAY(dev_priv)) 11932 return; 11933 11934 intel_init_cdclk_hooks(dev_priv); 11935 intel_init_audio_hooks(dev_priv); 11936 11937 intel_dpll_init_clock_hook(dev_priv); 11938 11939 if (DISPLAY_VER(dev_priv) >= 9) { 11940 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 11941 dev_priv->display.crtc_enable = hsw_crtc_enable; 11942 dev_priv->display.crtc_disable = hsw_crtc_disable; 11943 } else if (HAS_DDI(dev_priv)) { 11944 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 11945 dev_priv->display.crtc_enable = hsw_crtc_enable; 11946 dev_priv->display.crtc_disable = hsw_crtc_disable; 11947 } else if (HAS_PCH_SPLIT(dev_priv)) { 11948 dev_priv->display.get_pipe_config = ilk_get_pipe_config; 11949 dev_priv->display.crtc_enable = ilk_crtc_enable; 11950 dev_priv->display.crtc_disable = ilk_crtc_disable; 11951 } else if (IS_CHERRYVIEW(dev_priv) || 11952 IS_VALLEYVIEW(dev_priv)) { 11953 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 11954 dev_priv->display.crtc_enable = valleyview_crtc_enable; 11955 dev_priv->display.crtc_disable = i9xx_crtc_disable; 11956 } else { 11957 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 11958 dev_priv->display.crtc_enable = i9xx_crtc_enable; 11959 dev_priv->display.crtc_disable = i9xx_crtc_disable; 11960 } 11961 11962 intel_fdi_init_hook(dev_priv); 11963 11964 if (DISPLAY_VER(dev_priv) >= 9) { 11965 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; 11966 dev_priv->display.get_initial_plane_config = skl_get_initial_plane_config; 11967 } else { 11968 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; 11969 dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; 11970 } 11971 11972 } 11973 11974 void intel_modeset_init_hw(struct drm_i915_private *i915) 11975 { 11976 struct intel_cdclk_state *cdclk_state; 11977 11978 if (!HAS_DISPLAY(i915)) 11979 return; 11980 11981 cdclk_state = to_intel_cdclk_state(i915->cdclk.obj.state); 11982 11983 intel_update_cdclk(i915); 11984 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK"); 11985 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw; 11986 } 11987 11988 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state) 11989 { 11990 struct drm_plane *plane; 11991 struct intel_crtc *crtc; 11992 11993 for_each_intel_crtc(state->dev, crtc) { 11994 struct intel_crtc_state *crtc_state; 11995 11996 crtc_state = intel_atomic_get_crtc_state(state, crtc); 11997 if (IS_ERR(crtc_state)) 11998 return PTR_ERR(crtc_state); 11999 12000 if (crtc_state->hw.active) { 12001 /* 12002 * Preserve the inherited flag to avoid 12003 * taking the full modeset path. 12004 */ 12005 crtc_state->inherited = true; 12006 } 12007 } 12008 12009 drm_for_each_plane(plane, state->dev) { 12010 struct drm_plane_state *plane_state; 12011 12012 plane_state = drm_atomic_get_plane_state(state, plane); 12013 if (IS_ERR(plane_state)) 12014 return PTR_ERR(plane_state); 12015 } 12016 12017 return 0; 12018 } 12019 12020 /* 12021 * Calculate what we think the watermarks should be for the state we've read 12022 * out of the hardware and then immediately program those watermarks so that 12023 * we ensure the hardware settings match our internal state. 12024 * 12025 * We can calculate what we think WM's should be by creating a duplicate of the 12026 * current state (which was constructed during hardware readout) and running it 12027 * through the atomic check code to calculate new watermark values in the 12028 * state object. 12029 */ 12030 static void sanitize_watermarks(struct drm_i915_private *dev_priv) 12031 { 12032 struct drm_atomic_state *state; 12033 struct intel_atomic_state *intel_state; 12034 struct intel_crtc *crtc; 12035 struct intel_crtc_state *crtc_state; 12036 struct drm_modeset_acquire_ctx ctx; 12037 int ret; 12038 int i; 12039 12040 /* Only supported on platforms that use atomic watermark design */ 12041 if (!dev_priv->display.optimize_watermarks) 12042 return; 12043 12044 state = drm_atomic_state_alloc(&dev_priv->drm); 12045 if (drm_WARN_ON(&dev_priv->drm, !state)) 12046 return; 12047 12048 intel_state = to_intel_atomic_state(state); 12049 12050 drm_modeset_acquire_init(&ctx, 0); 12051 12052 retry: 12053 state->acquire_ctx = &ctx; 12054 12055 /* 12056 * Hardware readout is the only time we don't want to calculate 12057 * intermediate watermarks (since we don't trust the current 12058 * watermarks). 12059 */ 12060 if (!HAS_GMCH(dev_priv)) 12061 intel_state->skip_intermediate_wm = true; 12062 12063 ret = sanitize_watermarks_add_affected(state); 12064 if (ret) 12065 goto fail; 12066 12067 ret = intel_atomic_check(&dev_priv->drm, state); 12068 if (ret) 12069 goto fail; 12070 12071 /* Write calculated watermark values back */ 12072 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 12073 crtc_state->wm.need_postvbl_update = true; 12074 dev_priv->display.optimize_watermarks(intel_state, crtc); 12075 12076 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 12077 } 12078 12079 fail: 12080 if (ret == -EDEADLK) { 12081 drm_atomic_state_clear(state); 12082 drm_modeset_backoff(&ctx); 12083 goto retry; 12084 } 12085 12086 /* 12087 * If we fail here, it means that the hardware appears to be 12088 * programmed in a way that shouldn't be possible, given our 12089 * understanding of watermark requirements. This might mean a 12090 * mistake in the hardware readout code or a mistake in the 12091 * watermark calculations for a given platform. Raise a WARN 12092 * so that this is noticeable. 12093 * 12094 * If this actually happens, we'll have to just leave the 12095 * BIOS-programmed watermarks untouched and hope for the best. 12096 */ 12097 drm_WARN(&dev_priv->drm, ret, 12098 "Could not determine valid watermarks for inherited state\n"); 12099 12100 drm_atomic_state_put(state); 12101 12102 drm_modeset_drop_locks(&ctx); 12103 drm_modeset_acquire_fini(&ctx); 12104 } 12105 12106 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) 12107 { 12108 if (IS_IRONLAKE(dev_priv)) { 12109 u32 fdi_pll_clk = 12110 intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; 12111 12112 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; 12113 } else if (IS_SANDYBRIDGE(dev_priv) || IS_IVYBRIDGE(dev_priv)) { 12114 dev_priv->fdi_pll_freq = 270000; 12115 } else { 12116 return; 12117 } 12118 12119 drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); 12120 } 12121 12122 static int intel_initial_commit(struct drm_device *dev) 12123 { 12124 struct drm_atomic_state *state = NULL; 12125 struct drm_modeset_acquire_ctx ctx; 12126 struct intel_crtc *crtc; 12127 int ret = 0; 12128 12129 state = drm_atomic_state_alloc(dev); 12130 if (!state) 12131 return -ENOMEM; 12132 12133 drm_modeset_acquire_init(&ctx, 0); 12134 12135 retry: 12136 state->acquire_ctx = &ctx; 12137 12138 for_each_intel_crtc(dev, crtc) { 12139 struct intel_crtc_state *crtc_state = 12140 intel_atomic_get_crtc_state(state, crtc); 12141 12142 if (IS_ERR(crtc_state)) { 12143 ret = PTR_ERR(crtc_state); 12144 goto out; 12145 } 12146 12147 if (crtc_state->hw.active) { 12148 struct intel_encoder *encoder; 12149 12150 /* 12151 * We've not yet detected sink capabilities 12152 * (audio,infoframes,etc.) and thus we don't want to 12153 * force a full state recomputation yet. We want that to 12154 * happen only for the first real commit from userspace. 12155 * So preserve the inherited flag for the time being. 12156 */ 12157 crtc_state->inherited = true; 12158 12159 ret = drm_atomic_add_affected_planes(state, &crtc->base); 12160 if (ret) 12161 goto out; 12162 12163 /* 12164 * FIXME hack to force a LUT update to avoid the 12165 * plane update forcing the pipe gamma on without 12166 * having a proper LUT loaded. Remove once we 12167 * have readout for pipe gamma enable. 12168 */ 12169 crtc_state->uapi.color_mgmt_changed = true; 12170 12171 for_each_intel_encoder_mask(dev, encoder, 12172 crtc_state->uapi.encoder_mask) { 12173 if (encoder->initial_fastset_check && 12174 !encoder->initial_fastset_check(encoder, crtc_state)) { 12175 ret = drm_atomic_add_affected_connectors(state, 12176 &crtc->base); 12177 if (ret) 12178 goto out; 12179 } 12180 } 12181 } 12182 } 12183 12184 ret = drm_atomic_commit(state); 12185 12186 out: 12187 if (ret == -EDEADLK) { 12188 drm_atomic_state_clear(state); 12189 drm_modeset_backoff(&ctx); 12190 goto retry; 12191 } 12192 12193 drm_atomic_state_put(state); 12194 12195 drm_modeset_drop_locks(&ctx); 12196 drm_modeset_acquire_fini(&ctx); 12197 12198 return ret; 12199 } 12200 12201 static void intel_mode_config_init(struct drm_i915_private *i915) 12202 { 12203 struct drm_mode_config *mode_config = &i915->drm.mode_config; 12204 12205 drm_mode_config_init(&i915->drm); 12206 INIT_LIST_HEAD(&i915->global_obj_list); 12207 12208 mode_config->min_width = 0; 12209 mode_config->min_height = 0; 12210 12211 mode_config->preferred_depth = 24; 12212 mode_config->prefer_shadow = 1; 12213 12214 mode_config->funcs = &intel_mode_funcs; 12215 12216 mode_config->async_page_flip = has_async_flips(i915); 12217 12218 /* 12219 * Maximum framebuffer dimensions, chosen to match 12220 * the maximum render engine surface size on gen4+. 12221 */ 12222 if (DISPLAY_VER(i915) >= 7) { 12223 mode_config->max_width = 16384; 12224 mode_config->max_height = 16384; 12225 } else if (DISPLAY_VER(i915) >= 4) { 12226 mode_config->max_width = 8192; 12227 mode_config->max_height = 8192; 12228 } else if (DISPLAY_VER(i915) == 3) { 12229 mode_config->max_width = 4096; 12230 mode_config->max_height = 4096; 12231 } else { 12232 mode_config->max_width = 2048; 12233 mode_config->max_height = 2048; 12234 } 12235 12236 if (IS_I845G(i915) || IS_I865G(i915)) { 12237 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; 12238 mode_config->cursor_height = 1023; 12239 } else if (IS_I830(i915) || IS_I85X(i915) || 12240 IS_I915G(i915) || IS_I915GM(i915)) { 12241 mode_config->cursor_width = 64; 12242 mode_config->cursor_height = 64; 12243 } else { 12244 mode_config->cursor_width = 256; 12245 mode_config->cursor_height = 256; 12246 } 12247 } 12248 12249 static void intel_mode_config_cleanup(struct drm_i915_private *i915) 12250 { 12251 intel_atomic_global_obj_cleanup(i915); 12252 drm_mode_config_cleanup(&i915->drm); 12253 } 12254 12255 static void plane_config_fini(struct intel_initial_plane_config *plane_config) 12256 { 12257 if (plane_config->fb) { 12258 struct drm_framebuffer *fb = &plane_config->fb->base; 12259 12260 /* We may only have the stub and not a full framebuffer */ 12261 if (drm_framebuffer_read_refcount(fb)) 12262 drm_framebuffer_put(fb); 12263 else 12264 kfree(fb); 12265 } 12266 12267 if (plane_config->vma) 12268 i915_vma_put(plane_config->vma); 12269 } 12270 12271 /* part #1: call before irq install */ 12272 int intel_modeset_init_noirq(struct drm_i915_private *i915) 12273 { 12274 int ret; 12275 12276 if (i915_inject_probe_failure(i915)) 12277 return -ENODEV; 12278 12279 if (HAS_DISPLAY(i915)) { 12280 ret = drm_vblank_init(&i915->drm, 12281 INTEL_NUM_PIPES(i915)); 12282 if (ret) 12283 return ret; 12284 } 12285 12286 intel_bios_init(i915); 12287 12288 ret = intel_vga_register(i915); 12289 if (ret) 12290 goto cleanup_bios; 12291 12292 /* FIXME: completely on the wrong abstraction layer */ 12293 intel_power_domains_init_hw(i915, false); 12294 12295 if (!HAS_DISPLAY(i915)) 12296 return 0; 12297 12298 intel_dmc_ucode_init(i915); 12299 12300 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 12301 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | 12302 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); 12303 12304 i915->framestart_delay = 1; /* 1-4 */ 12305 12306 i915->window2_delay = 0; /* No DSB so no window2 delay */ 12307 12308 intel_mode_config_init(i915); 12309 12310 ret = intel_cdclk_init(i915); 12311 if (ret) 12312 goto cleanup_vga_client_pw_domain_dmc; 12313 12314 ret = intel_dbuf_init(i915); 12315 if (ret) 12316 goto cleanup_vga_client_pw_domain_dmc; 12317 12318 ret = intel_bw_init(i915); 12319 if (ret) 12320 goto cleanup_vga_client_pw_domain_dmc; 12321 12322 init_llist_head(&i915->atomic_helper.free_list); 12323 INIT_WORK(&i915->atomic_helper.free_work, 12324 intel_atomic_helper_free_state_worker); 12325 12326 intel_init_quirks(i915); 12327 12328 intel_fbc_init(i915); 12329 12330 return 0; 12331 12332 cleanup_vga_client_pw_domain_dmc: 12333 intel_dmc_ucode_fini(i915); 12334 intel_power_domains_driver_remove(i915); 12335 intel_vga_unregister(i915); 12336 cleanup_bios: 12337 intel_bios_driver_remove(i915); 12338 12339 return ret; 12340 } 12341 12342 /* part #2: call after irq install, but before gem init */ 12343 int intel_modeset_init_nogem(struct drm_i915_private *i915) 12344 { 12345 struct drm_device *dev = &i915->drm; 12346 enum pipe pipe; 12347 struct intel_crtc *crtc; 12348 int ret; 12349 12350 if (!HAS_DISPLAY(i915)) 12351 return 0; 12352 12353 intel_init_pm(i915); 12354 12355 intel_panel_sanitize_ssc(i915); 12356 12357 intel_pps_setup(i915); 12358 12359 intel_gmbus_setup(i915); 12360 12361 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n", 12362 INTEL_NUM_PIPES(i915), 12363 INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); 12364 12365 for_each_pipe(i915, pipe) { 12366 ret = intel_crtc_init(i915, pipe); 12367 if (ret) { 12368 intel_mode_config_cleanup(i915); 12369 return ret; 12370 } 12371 } 12372 12373 intel_plane_possible_crtcs_init(i915); 12374 intel_shared_dpll_init(dev); 12375 intel_update_fdi_pll_freq(i915); 12376 12377 intel_update_czclk(i915); 12378 intel_modeset_init_hw(i915); 12379 intel_dpll_update_ref_clks(i915); 12380 12381 intel_hdcp_component_init(i915); 12382 12383 if (i915->max_cdclk_freq == 0) 12384 intel_update_max_cdclk(i915); 12385 12386 /* 12387 * If the platform has HTI, we need to find out whether it has reserved 12388 * any display resources before we create our display outputs. 12389 */ 12390 if (INTEL_INFO(i915)->display.has_hti) 12391 i915->hti_state = intel_de_read(i915, HDPORT_STATE); 12392 12393 /* Just disable it once at startup */ 12394 intel_vga_disable(i915); 12395 intel_setup_outputs(i915); 12396 12397 drm_modeset_lock_all(dev); 12398 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 12399 drm_modeset_unlock_all(dev); 12400 12401 for_each_intel_crtc(dev, crtc) { 12402 struct intel_initial_plane_config plane_config = {}; 12403 12404 if (!to_intel_crtc_state(crtc->base.state)->uapi.active) 12405 continue; 12406 12407 /* 12408 * Note that reserving the BIOS fb up front prevents us 12409 * from stuffing other stolen allocations like the ring 12410 * on top. This prevents some ugliness at boot time, and 12411 * can even allow for smooth boot transitions if the BIOS 12412 * fb is large enough for the active pipe configuration. 12413 */ 12414 i915->display.get_initial_plane_config(crtc, &plane_config); 12415 12416 /* 12417 * If the fb is shared between multiple heads, we'll 12418 * just get the first one. 12419 */ 12420 intel_find_initial_plane_obj(crtc, &plane_config); 12421 12422 plane_config_fini(&plane_config); 12423 } 12424 12425 /* 12426 * Make sure hardware watermarks really match the state we read out. 12427 * Note that we need to do this after reconstructing the BIOS fb's 12428 * since the watermark calculation done here will use pstate->fb. 12429 */ 12430 if (!HAS_GMCH(i915)) 12431 sanitize_watermarks(i915); 12432 12433 return 0; 12434 } 12435 12436 /* part #3: call after gem init */ 12437 int intel_modeset_init(struct drm_i915_private *i915) 12438 { 12439 int ret; 12440 12441 if (!HAS_DISPLAY(i915)) 12442 return 0; 12443 12444 /* 12445 * Force all active planes to recompute their states. So that on 12446 * mode_setcrtc after probe, all the intel_plane_state variables 12447 * are already calculated and there is no assert_plane warnings 12448 * during bootup. 12449 */ 12450 ret = intel_initial_commit(&i915->drm); 12451 if (ret) 12452 drm_dbg_kms(&i915->drm, "Initial modeset failed, %d\n", ret); 12453 12454 intel_overlay_setup(i915); 12455 12456 ret = intel_fbdev_init(&i915->drm); 12457 if (ret) 12458 return ret; 12459 12460 /* Only enable hotplug handling once the fbdev is fully set up. */ 12461 intel_hpd_init(i915); 12462 intel_hpd_poll_disable(i915); 12463 12464 intel_init_ipc(i915); 12465 12466 return 0; 12467 } 12468 12469 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 12470 { 12471 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12472 /* 640x480@60Hz, ~25175 kHz */ 12473 struct dpll clock = { 12474 .m1 = 18, 12475 .m2 = 7, 12476 .p1 = 13, 12477 .p2 = 4, 12478 .n = 2, 12479 }; 12480 u32 dpll, fp; 12481 int i; 12482 12483 drm_WARN_ON(&dev_priv->drm, 12484 i9xx_calc_dpll_params(48000, &clock) != 25154); 12485 12486 drm_dbg_kms(&dev_priv->drm, 12487 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 12488 pipe_name(pipe), clock.vco, clock.dot); 12489 12490 fp = i9xx_dpll_compute_fp(&clock); 12491 dpll = DPLL_DVO_2X_MODE | 12492 DPLL_VGA_MODE_DIS | 12493 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 12494 PLL_P2_DIVIDE_BY_4 | 12495 PLL_REF_INPUT_DREFCLK | 12496 DPLL_VCO_ENABLE; 12497 12498 intel_de_write(dev_priv, FP0(pipe), fp); 12499 intel_de_write(dev_priv, FP1(pipe), fp); 12500 12501 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 12502 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 12503 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 12504 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 12505 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 12506 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 12507 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 12508 12509 /* 12510 * Apparently we need to have VGA mode enabled prior to changing 12511 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 12512 * dividers, even though the register value does change. 12513 */ 12514 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 12515 intel_de_write(dev_priv, DPLL(pipe), dpll); 12516 12517 /* Wait for the clocks to stabilize. */ 12518 intel_de_posting_read(dev_priv, DPLL(pipe)); 12519 udelay(150); 12520 12521 /* The pixel multiplier can only be updated once the 12522 * DPLL is enabled and the clocks are stable. 12523 * 12524 * So write it again. 12525 */ 12526 intel_de_write(dev_priv, DPLL(pipe), dpll); 12527 12528 /* We do this three times for luck */ 12529 for (i = 0; i < 3 ; i++) { 12530 intel_de_write(dev_priv, DPLL(pipe), dpll); 12531 intel_de_posting_read(dev_priv, DPLL(pipe)); 12532 udelay(150); /* wait for warmup */ 12533 } 12534 12535 intel_de_write(dev_priv, PIPECONF(pipe), 12536 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 12537 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 12538 12539 intel_wait_for_pipe_scanline_moving(crtc); 12540 } 12541 12542 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 12543 { 12544 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12545 12546 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n", 12547 pipe_name(pipe)); 12548 12549 drm_WARN_ON(&dev_priv->drm, 12550 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & 12551 DISPLAY_PLANE_ENABLE); 12552 drm_WARN_ON(&dev_priv->drm, 12553 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & 12554 DISPLAY_PLANE_ENABLE); 12555 drm_WARN_ON(&dev_priv->drm, 12556 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & 12557 DISPLAY_PLANE_ENABLE); 12558 drm_WARN_ON(&dev_priv->drm, 12559 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE); 12560 drm_WARN_ON(&dev_priv->drm, 12561 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE); 12562 12563 intel_de_write(dev_priv, PIPECONF(pipe), 0); 12564 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 12565 12566 intel_wait_for_pipe_scanline_stopped(crtc); 12567 12568 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 12569 intel_de_posting_read(dev_priv, DPLL(pipe)); 12570 } 12571 12572 static void 12573 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 12574 { 12575 struct intel_crtc *crtc; 12576 12577 if (DISPLAY_VER(dev_priv) >= 4) 12578 return; 12579 12580 for_each_intel_crtc(&dev_priv->drm, crtc) { 12581 struct intel_plane *plane = 12582 to_intel_plane(crtc->base.primary); 12583 struct intel_crtc *plane_crtc; 12584 enum pipe pipe; 12585 12586 if (!plane->get_hw_state(plane, &pipe)) 12587 continue; 12588 12589 if (pipe == crtc->pipe) 12590 continue; 12591 12592 drm_dbg_kms(&dev_priv->drm, 12593 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 12594 plane->base.base.id, plane->base.name); 12595 12596 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12597 intel_plane_disable_noatomic(plane_crtc, plane); 12598 } 12599 } 12600 12601 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 12602 { 12603 struct drm_device *dev = crtc->base.dev; 12604 struct intel_encoder *encoder; 12605 12606 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 12607 return true; 12608 12609 return false; 12610 } 12611 12612 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 12613 { 12614 struct drm_device *dev = encoder->base.dev; 12615 struct intel_connector *connector; 12616 12617 for_each_connector_on_encoder(dev, &encoder->base, connector) 12618 return connector; 12619 12620 return NULL; 12621 } 12622 12623 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 12624 enum pipe pch_transcoder) 12625 { 12626 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 12627 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 12628 } 12629 12630 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state) 12631 { 12632 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12633 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12634 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 12635 12636 if (DISPLAY_VER(dev_priv) >= 9 || 12637 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 12638 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); 12639 u32 val; 12640 12641 if (transcoder_is_dsi(cpu_transcoder)) 12642 return; 12643 12644 val = intel_de_read(dev_priv, reg); 12645 val &= ~HSW_FRAME_START_DELAY_MASK; 12646 val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12647 intel_de_write(dev_priv, reg, val); 12648 } else { 12649 i915_reg_t reg = PIPECONF(cpu_transcoder); 12650 u32 val; 12651 12652 val = intel_de_read(dev_priv, reg); 12653 val &= ~PIPECONF_FRAME_START_DELAY_MASK; 12654 val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12655 intel_de_write(dev_priv, reg, val); 12656 } 12657 12658 if (!crtc_state->has_pch_encoder) 12659 return; 12660 12661 if (HAS_PCH_IBX(dev_priv)) { 12662 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe); 12663 u32 val; 12664 12665 val = intel_de_read(dev_priv, reg); 12666 val &= ~TRANS_FRAME_START_DELAY_MASK; 12667 val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12668 intel_de_write(dev_priv, reg, val); 12669 } else { 12670 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); 12671 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder); 12672 u32 val; 12673 12674 val = intel_de_read(dev_priv, reg); 12675 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 12676 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12677 intel_de_write(dev_priv, reg, val); 12678 } 12679 } 12680 12681 static void intel_sanitize_crtc(struct intel_crtc *crtc, 12682 struct drm_modeset_acquire_ctx *ctx) 12683 { 12684 struct drm_device *dev = crtc->base.dev; 12685 struct drm_i915_private *dev_priv = to_i915(dev); 12686 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 12687 12688 if (crtc_state->hw.active) { 12689 struct intel_plane *plane; 12690 12691 /* Clear any frame start delays used for debugging left by the BIOS */ 12692 intel_sanitize_frame_start_delay(crtc_state); 12693 12694 /* Disable everything but the primary plane */ 12695 for_each_intel_plane_on_crtc(dev, crtc, plane) { 12696 const struct intel_plane_state *plane_state = 12697 to_intel_plane_state(plane->base.state); 12698 12699 if (plane_state->uapi.visible && 12700 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 12701 intel_plane_disable_noatomic(crtc, plane); 12702 } 12703 12704 /* 12705 * Disable any background color set by the BIOS, but enable the 12706 * gamma and CSC to match how we program our planes. 12707 */ 12708 if (DISPLAY_VER(dev_priv) >= 9) 12709 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe), 12710 SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE); 12711 } 12712 12713 /* Adjust the state of the output pipe according to whether we 12714 * have active connectors/encoders. */ 12715 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc) && 12716 !crtc_state->bigjoiner_slave) 12717 intel_crtc_disable_noatomic(crtc, ctx); 12718 12719 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) { 12720 /* 12721 * We start out with underrun reporting disabled to avoid races. 12722 * For correct bookkeeping mark this on active crtcs. 12723 * 12724 * Also on gmch platforms we dont have any hardware bits to 12725 * disable the underrun reporting. Which means we need to start 12726 * out with underrun reporting disabled also on inactive pipes, 12727 * since otherwise we'll complain about the garbage we read when 12728 * e.g. coming up after runtime pm. 12729 * 12730 * No protection against concurrent access is required - at 12731 * worst a fifo underrun happens which also sets this to false. 12732 */ 12733 crtc->cpu_fifo_underrun_disabled = true; 12734 /* 12735 * We track the PCH trancoder underrun reporting state 12736 * within the crtc. With crtc for pipe A housing the underrun 12737 * reporting state for PCH transcoder A, crtc for pipe B housing 12738 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 12739 * and marking underrun reporting as disabled for the non-existing 12740 * PCH transcoders B and C would prevent enabling the south 12741 * error interrupt (see cpt_can_enable_serr_int()). 12742 */ 12743 if (has_pch_trancoder(dev_priv, crtc->pipe)) 12744 crtc->pch_fifo_underrun_disabled = true; 12745 } 12746 } 12747 12748 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 12749 { 12750 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 12751 12752 /* 12753 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 12754 * the hardware when a high res displays plugged in. DPLL P 12755 * divider is zero, and the pipe timings are bonkers. We'll 12756 * try to disable everything in that case. 12757 * 12758 * FIXME would be nice to be able to sanitize this state 12759 * without several WARNs, but for now let's take the easy 12760 * road. 12761 */ 12762 return IS_SANDYBRIDGE(dev_priv) && 12763 crtc_state->hw.active && 12764 crtc_state->shared_dpll && 12765 crtc_state->port_clock == 0; 12766 } 12767 12768 static void intel_sanitize_encoder(struct intel_encoder *encoder) 12769 { 12770 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 12771 struct intel_connector *connector; 12772 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 12773 struct intel_crtc_state *crtc_state = crtc ? 12774 to_intel_crtc_state(crtc->base.state) : NULL; 12775 12776 /* We need to check both for a crtc link (meaning that the 12777 * encoder is active and trying to read from a pipe) and the 12778 * pipe itself being active. */ 12779 bool has_active_crtc = crtc_state && 12780 crtc_state->hw.active; 12781 12782 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 12783 drm_dbg_kms(&dev_priv->drm, 12784 "BIOS has misprogrammed the hardware. Disabling pipe %c\n", 12785 pipe_name(crtc->pipe)); 12786 has_active_crtc = false; 12787 } 12788 12789 connector = intel_encoder_find_connector(encoder); 12790 if (connector && !has_active_crtc) { 12791 drm_dbg_kms(&dev_priv->drm, 12792 "[ENCODER:%d:%s] has active connectors but no active pipe!\n", 12793 encoder->base.base.id, 12794 encoder->base.name); 12795 12796 /* Connector is active, but has no active pipe. This is 12797 * fallout from our resume register restoring. Disable 12798 * the encoder manually again. */ 12799 if (crtc_state) { 12800 struct drm_encoder *best_encoder; 12801 12802 drm_dbg_kms(&dev_priv->drm, 12803 "[ENCODER:%d:%s] manually disabled\n", 12804 encoder->base.base.id, 12805 encoder->base.name); 12806 12807 /* avoid oopsing in case the hooks consult best_encoder */ 12808 best_encoder = connector->base.state->best_encoder; 12809 connector->base.state->best_encoder = &encoder->base; 12810 12811 /* FIXME NULL atomic state passed! */ 12812 if (encoder->disable) 12813 encoder->disable(NULL, encoder, crtc_state, 12814 connector->base.state); 12815 if (encoder->post_disable) 12816 encoder->post_disable(NULL, encoder, crtc_state, 12817 connector->base.state); 12818 12819 connector->base.state->best_encoder = best_encoder; 12820 } 12821 encoder->base.crtc = NULL; 12822 12823 /* Inconsistent output/port/pipe state happens presumably due to 12824 * a bug in one of the get_hw_state functions. Or someplace else 12825 * in our code, like the register restore mess on resume. Clamp 12826 * things to off as a safer default. */ 12827 12828 connector->base.dpms = DRM_MODE_DPMS_OFF; 12829 connector->base.encoder = NULL; 12830 } 12831 12832 /* notify opregion of the sanitized encoder state */ 12833 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 12834 12835 if (HAS_DDI(dev_priv)) 12836 intel_ddi_sanitize_encoder_pll_mapping(encoder); 12837 } 12838 12839 /* FIXME read out full plane state for all planes */ 12840 static void readout_plane_state(struct drm_i915_private *dev_priv) 12841 { 12842 struct intel_plane *plane; 12843 struct intel_crtc *crtc; 12844 12845 for_each_intel_plane(&dev_priv->drm, plane) { 12846 struct intel_plane_state *plane_state = 12847 to_intel_plane_state(plane->base.state); 12848 struct intel_crtc_state *crtc_state; 12849 enum pipe pipe = PIPE_A; 12850 bool visible; 12851 12852 visible = plane->get_hw_state(plane, &pipe); 12853 12854 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12855 crtc_state = to_intel_crtc_state(crtc->base.state); 12856 12857 intel_set_plane_visible(crtc_state, plane_state, visible); 12858 12859 drm_dbg_kms(&dev_priv->drm, 12860 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 12861 plane->base.base.id, plane->base.name, 12862 enableddisabled(visible), pipe_name(pipe)); 12863 } 12864 12865 for_each_intel_crtc(&dev_priv->drm, crtc) { 12866 struct intel_crtc_state *crtc_state = 12867 to_intel_crtc_state(crtc->base.state); 12868 12869 fixup_plane_bitmasks(crtc_state); 12870 } 12871 } 12872 12873 static void intel_modeset_readout_hw_state(struct drm_device *dev) 12874 { 12875 struct drm_i915_private *dev_priv = to_i915(dev); 12876 struct intel_cdclk_state *cdclk_state = 12877 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 12878 struct intel_dbuf_state *dbuf_state = 12879 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 12880 enum pipe pipe; 12881 struct intel_crtc *crtc; 12882 struct intel_encoder *encoder; 12883 struct intel_connector *connector; 12884 struct drm_connector_list_iter conn_iter; 12885 u8 active_pipes = 0; 12886 12887 for_each_intel_crtc(dev, crtc) { 12888 struct intel_crtc_state *crtc_state = 12889 to_intel_crtc_state(crtc->base.state); 12890 12891 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi); 12892 intel_crtc_free_hw_state(crtc_state); 12893 intel_crtc_state_reset(crtc_state, crtc); 12894 12895 intel_crtc_get_pipe_config(crtc_state); 12896 12897 crtc_state->hw.enable = crtc_state->hw.active; 12898 12899 crtc->base.enabled = crtc_state->hw.enable; 12900 crtc->active = crtc_state->hw.active; 12901 12902 if (crtc_state->hw.active) 12903 active_pipes |= BIT(crtc->pipe); 12904 12905 drm_dbg_kms(&dev_priv->drm, 12906 "[CRTC:%d:%s] hw state readout: %s\n", 12907 crtc->base.base.id, crtc->base.name, 12908 enableddisabled(crtc_state->hw.active)); 12909 } 12910 12911 dev_priv->active_pipes = cdclk_state->active_pipes = 12912 dbuf_state->active_pipes = active_pipes; 12913 12914 readout_plane_state(dev_priv); 12915 12916 for_each_intel_encoder(dev, encoder) { 12917 pipe = 0; 12918 12919 if (encoder->get_hw_state(encoder, &pipe)) { 12920 struct intel_crtc_state *crtc_state; 12921 12922 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12923 crtc_state = to_intel_crtc_state(crtc->base.state); 12924 12925 encoder->base.crtc = &crtc->base; 12926 intel_encoder_get_config(encoder, crtc_state); 12927 if (encoder->sync_state) 12928 encoder->sync_state(encoder, crtc_state); 12929 12930 /* read out to slave crtc as well for bigjoiner */ 12931 if (crtc_state->bigjoiner) { 12932 /* encoder should read be linked to bigjoiner master */ 12933 WARN_ON(crtc_state->bigjoiner_slave); 12934 12935 crtc = crtc_state->bigjoiner_linked_crtc; 12936 crtc_state = to_intel_crtc_state(crtc->base.state); 12937 intel_encoder_get_config(encoder, crtc_state); 12938 } 12939 } else { 12940 encoder->base.crtc = NULL; 12941 } 12942 12943 drm_dbg_kms(&dev_priv->drm, 12944 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 12945 encoder->base.base.id, encoder->base.name, 12946 enableddisabled(encoder->base.crtc), 12947 pipe_name(pipe)); 12948 } 12949 12950 intel_dpll_readout_hw_state(dev_priv); 12951 12952 drm_connector_list_iter_begin(dev, &conn_iter); 12953 for_each_intel_connector_iter(connector, &conn_iter) { 12954 if (connector->get_hw_state(connector)) { 12955 struct intel_crtc_state *crtc_state; 12956 struct intel_crtc *crtc; 12957 12958 connector->base.dpms = DRM_MODE_DPMS_ON; 12959 12960 encoder = intel_attached_encoder(connector); 12961 connector->base.encoder = &encoder->base; 12962 12963 crtc = to_intel_crtc(encoder->base.crtc); 12964 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; 12965 12966 if (crtc_state && crtc_state->hw.active) { 12967 /* 12968 * This has to be done during hardware readout 12969 * because anything calling .crtc_disable may 12970 * rely on the connector_mask being accurate. 12971 */ 12972 crtc_state->uapi.connector_mask |= 12973 drm_connector_mask(&connector->base); 12974 crtc_state->uapi.encoder_mask |= 12975 drm_encoder_mask(&encoder->base); 12976 } 12977 } else { 12978 connector->base.dpms = DRM_MODE_DPMS_OFF; 12979 connector->base.encoder = NULL; 12980 } 12981 drm_dbg_kms(&dev_priv->drm, 12982 "[CONNECTOR:%d:%s] hw state readout: %s\n", 12983 connector->base.base.id, connector->base.name, 12984 enableddisabled(connector->base.encoder)); 12985 } 12986 drm_connector_list_iter_end(&conn_iter); 12987 12988 for_each_intel_crtc(dev, crtc) { 12989 struct intel_bw_state *bw_state = 12990 to_intel_bw_state(dev_priv->bw_obj.state); 12991 struct intel_crtc_state *crtc_state = 12992 to_intel_crtc_state(crtc->base.state); 12993 struct intel_plane *plane; 12994 int min_cdclk = 0; 12995 12996 if (crtc_state->bigjoiner_slave) 12997 continue; 12998 12999 if (crtc_state->hw.active) { 13000 /* 13001 * The initial mode needs to be set in order to keep 13002 * the atomic core happy. It wants a valid mode if the 13003 * crtc's enabled, so we do the above call. 13004 * 13005 * But we don't set all the derived state fully, hence 13006 * set a flag to indicate that a full recalculation is 13007 * needed on the next commit. 13008 */ 13009 crtc_state->inherited = true; 13010 13011 intel_crtc_update_active_timings(crtc_state); 13012 13013 intel_crtc_copy_hw_to_uapi_state(crtc_state); 13014 } 13015 13016 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 13017 const struct intel_plane_state *plane_state = 13018 to_intel_plane_state(plane->base.state); 13019 13020 /* 13021 * FIXME don't have the fb yet, so can't 13022 * use intel_plane_data_rate() :( 13023 */ 13024 if (plane_state->uapi.visible) 13025 crtc_state->data_rate[plane->id] = 13026 4 * crtc_state->pixel_rate; 13027 /* 13028 * FIXME don't have the fb yet, so can't 13029 * use plane->min_cdclk() :( 13030 */ 13031 if (plane_state->uapi.visible && plane->min_cdclk) { 13032 if (crtc_state->double_wide || DISPLAY_VER(dev_priv) >= 10) 13033 crtc_state->min_cdclk[plane->id] = 13034 DIV_ROUND_UP(crtc_state->pixel_rate, 2); 13035 else 13036 crtc_state->min_cdclk[plane->id] = 13037 crtc_state->pixel_rate; 13038 } 13039 drm_dbg_kms(&dev_priv->drm, 13040 "[PLANE:%d:%s] min_cdclk %d kHz\n", 13041 plane->base.base.id, plane->base.name, 13042 crtc_state->min_cdclk[plane->id]); 13043 } 13044 13045 if (crtc_state->hw.active) { 13046 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 13047 if (drm_WARN_ON(dev, min_cdclk < 0)) 13048 min_cdclk = 0; 13049 } 13050 13051 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 13052 cdclk_state->min_voltage_level[crtc->pipe] = 13053 crtc_state->min_voltage_level; 13054 13055 intel_bw_crtc_update(bw_state, crtc_state); 13056 13057 intel_pipe_config_sanity_check(dev_priv, crtc_state); 13058 13059 /* discard our incomplete slave state, copy it from master */ 13060 if (crtc_state->bigjoiner && crtc_state->hw.active) { 13061 struct intel_crtc *slave = crtc_state->bigjoiner_linked_crtc; 13062 struct intel_crtc_state *slave_crtc_state = 13063 to_intel_crtc_state(slave->base.state); 13064 13065 copy_bigjoiner_crtc_state(slave_crtc_state, crtc_state); 13066 slave->base.mode = crtc->base.mode; 13067 13068 cdclk_state->min_cdclk[slave->pipe] = min_cdclk; 13069 cdclk_state->min_voltage_level[slave->pipe] = 13070 crtc_state->min_voltage_level; 13071 13072 for_each_intel_plane_on_crtc(&dev_priv->drm, slave, plane) { 13073 const struct intel_plane_state *plane_state = 13074 to_intel_plane_state(plane->base.state); 13075 13076 /* 13077 * FIXME don't have the fb yet, so can't 13078 * use intel_plane_data_rate() :( 13079 */ 13080 if (plane_state->uapi.visible) 13081 crtc_state->data_rate[plane->id] = 13082 4 * crtc_state->pixel_rate; 13083 else 13084 crtc_state->data_rate[plane->id] = 0; 13085 } 13086 13087 intel_bw_crtc_update(bw_state, slave_crtc_state); 13088 drm_calc_timestamping_constants(&slave->base, 13089 &slave_crtc_state->hw.adjusted_mode); 13090 } 13091 } 13092 } 13093 13094 static void 13095 get_encoder_power_domains(struct drm_i915_private *dev_priv) 13096 { 13097 struct intel_encoder *encoder; 13098 13099 for_each_intel_encoder(&dev_priv->drm, encoder) { 13100 struct intel_crtc_state *crtc_state; 13101 13102 if (!encoder->get_power_domains) 13103 continue; 13104 13105 /* 13106 * MST-primary and inactive encoders don't have a crtc state 13107 * and neither of these require any power domain references. 13108 */ 13109 if (!encoder->base.crtc) 13110 continue; 13111 13112 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 13113 encoder->get_power_domains(encoder, crtc_state); 13114 } 13115 } 13116 13117 static void intel_early_display_was(struct drm_i915_private *dev_priv) 13118 { 13119 /* 13120 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl 13121 * Also known as Wa_14010480278. 13122 */ 13123 if (IS_DISPLAY_VER(dev_priv, 10, 12)) 13124 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0, 13125 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS); 13126 13127 if (IS_HASWELL(dev_priv)) { 13128 /* 13129 * WaRsPkgCStateDisplayPMReq:hsw 13130 * System hang if this isn't done before disabling all planes! 13131 */ 13132 intel_de_write(dev_priv, CHICKEN_PAR1_1, 13133 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 13134 } 13135 13136 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv)) { 13137 /* Display WA #1142:kbl,cfl,cml */ 13138 intel_de_rmw(dev_priv, CHICKEN_PAR1_1, 13139 KBL_ARB_FILL_SPARE_22, KBL_ARB_FILL_SPARE_22); 13140 intel_de_rmw(dev_priv, CHICKEN_MISC_2, 13141 KBL_ARB_FILL_SPARE_13 | KBL_ARB_FILL_SPARE_14, 13142 KBL_ARB_FILL_SPARE_14); 13143 } 13144 } 13145 13146 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 13147 enum port port, i915_reg_t hdmi_reg) 13148 { 13149 u32 val = intel_de_read(dev_priv, hdmi_reg); 13150 13151 if (val & SDVO_ENABLE || 13152 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 13153 return; 13154 13155 drm_dbg_kms(&dev_priv->drm, 13156 "Sanitizing transcoder select for HDMI %c\n", 13157 port_name(port)); 13158 13159 val &= ~SDVO_PIPE_SEL_MASK; 13160 val |= SDVO_PIPE_SEL(PIPE_A); 13161 13162 intel_de_write(dev_priv, hdmi_reg, val); 13163 } 13164 13165 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 13166 enum port port, i915_reg_t dp_reg) 13167 { 13168 u32 val = intel_de_read(dev_priv, dp_reg); 13169 13170 if (val & DP_PORT_EN || 13171 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 13172 return; 13173 13174 drm_dbg_kms(&dev_priv->drm, 13175 "Sanitizing transcoder select for DP %c\n", 13176 port_name(port)); 13177 13178 val &= ~DP_PIPE_SEL_MASK; 13179 val |= DP_PIPE_SEL(PIPE_A); 13180 13181 intel_de_write(dev_priv, dp_reg, val); 13182 } 13183 13184 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 13185 { 13186 /* 13187 * The BIOS may select transcoder B on some of the PCH 13188 * ports even it doesn't enable the port. This would trip 13189 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 13190 * Sanitize the transcoder select bits to prevent that. We 13191 * assume that the BIOS never actually enabled the port, 13192 * because if it did we'd actually have to toggle the port 13193 * on and back off to make the transcoder A select stick 13194 * (see. intel_dp_link_down(), intel_disable_hdmi(), 13195 * intel_disable_sdvo()). 13196 */ 13197 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 13198 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 13199 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 13200 13201 /* PCH SDVOB multiplex with HDMIB */ 13202 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 13203 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 13204 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 13205 } 13206 13207 /* Scan out the current hw modeset state, 13208 * and sanitizes it to the current state 13209 */ 13210 static void 13211 intel_modeset_setup_hw_state(struct drm_device *dev, 13212 struct drm_modeset_acquire_ctx *ctx) 13213 { 13214 struct drm_i915_private *dev_priv = to_i915(dev); 13215 struct intel_encoder *encoder; 13216 struct intel_crtc *crtc; 13217 intel_wakeref_t wakeref; 13218 13219 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 13220 13221 intel_early_display_was(dev_priv); 13222 intel_modeset_readout_hw_state(dev); 13223 13224 /* HW state is read out, now we need to sanitize this mess. */ 13225 13226 /* Sanitize the TypeC port mode upfront, encoders depend on this */ 13227 for_each_intel_encoder(dev, encoder) { 13228 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 13229 13230 /* We need to sanitize only the MST primary port. */ 13231 if (encoder->type != INTEL_OUTPUT_DP_MST && 13232 intel_phy_is_tc(dev_priv, phy)) 13233 intel_tc_port_sanitize(enc_to_dig_port(encoder)); 13234 } 13235 13236 get_encoder_power_domains(dev_priv); 13237 13238 if (HAS_PCH_IBX(dev_priv)) 13239 ibx_sanitize_pch_ports(dev_priv); 13240 13241 /* 13242 * intel_sanitize_plane_mapping() may need to do vblank 13243 * waits, so we need vblank interrupts restored beforehand. 13244 */ 13245 for_each_intel_crtc(&dev_priv->drm, crtc) { 13246 struct intel_crtc_state *crtc_state = 13247 to_intel_crtc_state(crtc->base.state); 13248 13249 drm_crtc_vblank_reset(&crtc->base); 13250 13251 if (crtc_state->hw.active) 13252 intel_crtc_vblank_on(crtc_state); 13253 } 13254 13255 intel_sanitize_plane_mapping(dev_priv); 13256 13257 for_each_intel_encoder(dev, encoder) 13258 intel_sanitize_encoder(encoder); 13259 13260 for_each_intel_crtc(&dev_priv->drm, crtc) { 13261 struct intel_crtc_state *crtc_state = 13262 to_intel_crtc_state(crtc->base.state); 13263 13264 intel_sanitize_crtc(crtc, ctx); 13265 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 13266 } 13267 13268 intel_modeset_update_connector_atomic_state(dev); 13269 13270 intel_dpll_sanitize_state(dev_priv); 13271 13272 if (IS_G4X(dev_priv)) { 13273 g4x_wm_get_hw_state(dev_priv); 13274 g4x_wm_sanitize(dev_priv); 13275 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 13276 vlv_wm_get_hw_state(dev_priv); 13277 vlv_wm_sanitize(dev_priv); 13278 } else if (DISPLAY_VER(dev_priv) >= 9) { 13279 skl_wm_get_hw_state(dev_priv); 13280 } else if (HAS_PCH_SPLIT(dev_priv)) { 13281 ilk_wm_get_hw_state(dev_priv); 13282 } 13283 13284 for_each_intel_crtc(dev, crtc) { 13285 struct intel_crtc_state *crtc_state = 13286 to_intel_crtc_state(crtc->base.state); 13287 u64 put_domains; 13288 13289 put_domains = modeset_get_crtc_power_domains(crtc_state); 13290 if (drm_WARN_ON(dev, put_domains)) 13291 modeset_put_crtc_power_domains(crtc, put_domains); 13292 } 13293 13294 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 13295 } 13296 13297 void intel_display_resume(struct drm_device *dev) 13298 { 13299 struct drm_i915_private *dev_priv = to_i915(dev); 13300 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 13301 struct drm_modeset_acquire_ctx ctx; 13302 int ret; 13303 13304 if (!HAS_DISPLAY(dev_priv)) 13305 return; 13306 13307 dev_priv->modeset_restore_state = NULL; 13308 if (state) 13309 state->acquire_ctx = &ctx; 13310 13311 drm_modeset_acquire_init(&ctx, 0); 13312 13313 while (1) { 13314 ret = drm_modeset_lock_all_ctx(dev, &ctx); 13315 if (ret != -EDEADLK) 13316 break; 13317 13318 drm_modeset_backoff(&ctx); 13319 } 13320 13321 if (!ret) 13322 ret = __intel_display_resume(dev, state, &ctx); 13323 13324 intel_enable_ipc(dev_priv); 13325 drm_modeset_drop_locks(&ctx); 13326 drm_modeset_acquire_fini(&ctx); 13327 13328 if (ret) 13329 drm_err(&dev_priv->drm, 13330 "Restoring old state failed with %i\n", ret); 13331 if (state) 13332 drm_atomic_state_put(state); 13333 } 13334 13335 static void intel_hpd_poll_fini(struct drm_i915_private *i915) 13336 { 13337 struct intel_connector *connector; 13338 struct drm_connector_list_iter conn_iter; 13339 13340 /* Kill all the work that may have been queued by hpd. */ 13341 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 13342 for_each_intel_connector_iter(connector, &conn_iter) { 13343 if (connector->modeset_retry_work.func) 13344 cancel_work_sync(&connector->modeset_retry_work); 13345 if (connector->hdcp.shim) { 13346 cancel_delayed_work_sync(&connector->hdcp.check_work); 13347 cancel_work_sync(&connector->hdcp.prop_work); 13348 } 13349 } 13350 drm_connector_list_iter_end(&conn_iter); 13351 } 13352 13353 /* part #1: call before irq uninstall */ 13354 void intel_modeset_driver_remove(struct drm_i915_private *i915) 13355 { 13356 if (!HAS_DISPLAY(i915)) 13357 return; 13358 13359 flush_workqueue(i915->flip_wq); 13360 flush_workqueue(i915->modeset_wq); 13361 13362 flush_work(&i915->atomic_helper.free_work); 13363 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list)); 13364 } 13365 13366 /* part #2: call after irq uninstall */ 13367 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915) 13368 { 13369 if (!HAS_DISPLAY(i915)) 13370 return; 13371 13372 /* 13373 * Due to the hpd irq storm handling the hotplug work can re-arm the 13374 * poll handlers. Hence disable polling after hpd handling is shut down. 13375 */ 13376 intel_hpd_poll_fini(i915); 13377 13378 /* 13379 * MST topology needs to be suspended so we don't have any calls to 13380 * fbdev after it's finalized. MST will be destroyed later as part of 13381 * drm_mode_config_cleanup() 13382 */ 13383 intel_dp_mst_suspend(i915); 13384 13385 /* poll work can call into fbdev, hence clean that up afterwards */ 13386 intel_fbdev_fini(i915); 13387 13388 intel_unregister_dsm_handler(); 13389 13390 intel_fbc_global_disable(i915); 13391 13392 /* flush any delayed tasks or pending work */ 13393 flush_scheduled_work(); 13394 13395 intel_hdcp_component_fini(i915); 13396 13397 intel_mode_config_cleanup(i915); 13398 13399 intel_overlay_cleanup(i915); 13400 13401 intel_gmbus_teardown(i915); 13402 13403 destroy_workqueue(i915->flip_wq); 13404 destroy_workqueue(i915->modeset_wq); 13405 13406 intel_fbc_cleanup_cfb(i915); 13407 } 13408 13409 /* part #3: call after gem init */ 13410 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915) 13411 { 13412 intel_dmc_ucode_fini(i915); 13413 13414 intel_power_domains_driver_remove(i915); 13415 13416 intel_vga_unregister(i915); 13417 13418 intel_bios_driver_remove(i915); 13419 } 13420 13421 void intel_display_driver_register(struct drm_i915_private *i915) 13422 { 13423 if (!HAS_DISPLAY(i915)) 13424 return; 13425 13426 intel_display_debugfs_register(i915); 13427 13428 /* Must be done after probing outputs */ 13429 intel_opregion_register(i915); 13430 acpi_video_register(); 13431 13432 intel_audio_init(i915); 13433 13434 /* 13435 * Some ports require correctly set-up hpd registers for 13436 * detection to work properly (leading to ghost connected 13437 * connector status), e.g. VGA on gm45. Hence we can only set 13438 * up the initial fbdev config after hpd irqs are fully 13439 * enabled. We do it last so that the async config cannot run 13440 * before the connectors are registered. 13441 */ 13442 intel_fbdev_initial_config_async(&i915->drm); 13443 13444 /* 13445 * We need to coordinate the hotplugs with the asynchronous 13446 * fbdev configuration, for which we use the 13447 * fbdev->async_cookie. 13448 */ 13449 drm_kms_helper_poll_init(&i915->drm); 13450 } 13451 13452 void intel_display_driver_unregister(struct drm_i915_private *i915) 13453 { 13454 if (!HAS_DISPLAY(i915)) 13455 return; 13456 13457 intel_fbdev_unregister(i915); 13458 intel_audio_deinit(i915); 13459 13460 /* 13461 * After flushing the fbdev (incl. a late async config which 13462 * will have delayed queuing of a hotplug event), then flush 13463 * the hotplug events. 13464 */ 13465 drm_kms_helper_poll_fini(&i915->drm); 13466 drm_atomic_helper_shutdown(&i915->drm); 13467 13468 acpi_video_unregister(); 13469 intel_opregion_unregister(i915); 13470 } 13471