1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <acpi/video.h> 28 #include <linux/i2c.h> 29 #include <linux/input.h> 30 #include <linux/intel-iommu.h> 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/dma-resv.h> 34 #include <linux/slab.h> 35 36 #include <drm/drm_atomic.h> 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_atomic_uapi.h> 39 #include <drm/drm_damage_helper.h> 40 #include <drm/drm_dp_helper.h> 41 #include <drm/drm_edid.h> 42 #include <drm/drm_fourcc.h> 43 #include <drm/drm_plane_helper.h> 44 #include <drm/drm_probe_helper.h> 45 #include <drm/drm_rect.h> 46 47 #include "display/intel_audio.h" 48 #include "display/intel_crt.h" 49 #include "display/intel_ddi.h" 50 #include "display/intel_display_debugfs.h" 51 #include "display/intel_dp.h" 52 #include "display/intel_dp_mst.h" 53 #include "display/intel_dpll.h" 54 #include "display/intel_dpll_mgr.h" 55 #include "display/intel_dsi.h" 56 #include "display/intel_dvo.h" 57 #include "display/intel_fb.h" 58 #include "display/intel_gmbus.h" 59 #include "display/intel_hdmi.h" 60 #include "display/intel_lvds.h" 61 #include "display/intel_sdvo.h" 62 #include "display/intel_snps_phy.h" 63 #include "display/intel_tv.h" 64 #include "display/intel_vdsc.h" 65 #include "display/intel_vrr.h" 66 67 #include "gem/i915_gem_lmem.h" 68 #include "gem/i915_gem_object.h" 69 70 #include "gt/intel_rps.h" 71 #include "gt/gen8_ppgtt.h" 72 73 #include "g4x_dp.h" 74 #include "g4x_hdmi.h" 75 #include "i915_drv.h" 76 #include "intel_acpi.h" 77 #include "intel_atomic.h" 78 #include "intel_atomic_plane.h" 79 #include "intel_bw.h" 80 #include "intel_cdclk.h" 81 #include "intel_color.h" 82 #include "intel_crtc.h" 83 #include "intel_de.h" 84 #include "intel_display_types.h" 85 #include "intel_dmc.h" 86 #include "intel_dp_link_training.h" 87 #include "intel_fbc.h" 88 #include "intel_fdi.h" 89 #include "intel_fbdev.h" 90 #include "intel_fifo_underrun.h" 91 #include "intel_frontbuffer.h" 92 #include "intel_hdcp.h" 93 #include "intel_hotplug.h" 94 #include "intel_overlay.h" 95 #include "intel_pipe_crc.h" 96 #include "intel_pm.h" 97 #include "intel_pps.h" 98 #include "intel_psr.h" 99 #include "intel_quirks.h" 100 #include "intel_sideband.h" 101 #include "intel_sprite.h" 102 #include "intel_tc.h" 103 #include "intel_vga.h" 104 #include "i9xx_plane.h" 105 #include "skl_scaler.h" 106 #include "skl_universal_plane.h" 107 108 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 109 struct intel_crtc_state *pipe_config); 110 static void ilk_pch_clock_get(struct intel_crtc *crtc, 111 struct intel_crtc_state *pipe_config); 112 113 static int intel_framebuffer_init(struct intel_framebuffer *ifb, 114 struct drm_i915_gem_object *obj, 115 struct drm_mode_fb_cmd2 *mode_cmd); 116 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state); 117 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 118 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 119 const struct intel_link_m_n *m_n, 120 const struct intel_link_m_n *m2_n2); 121 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 122 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state); 123 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state); 124 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 125 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); 126 static void intel_modeset_setup_hw_state(struct drm_device *dev, 127 struct drm_modeset_acquire_ctx *ctx); 128 129 struct i915_dpt { 130 struct i915_address_space vm; 131 132 struct drm_i915_gem_object *obj; 133 struct i915_vma *vma; 134 void __iomem *iomem; 135 }; 136 137 #define i915_is_dpt(vm) ((vm)->is_dpt) 138 139 static inline struct i915_dpt * 140 i915_vm_to_dpt(struct i915_address_space *vm) 141 { 142 BUILD_BUG_ON(offsetof(struct i915_dpt, vm)); 143 GEM_BUG_ON(!i915_is_dpt(vm)); 144 return container_of(vm, struct i915_dpt, vm); 145 } 146 147 #define dpt_total_entries(dpt) ((dpt)->vm.total >> PAGE_SHIFT) 148 149 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 150 { 151 writeq(pte, addr); 152 } 153 154 static void dpt_insert_page(struct i915_address_space *vm, 155 dma_addr_t addr, 156 u64 offset, 157 enum i915_cache_level level, 158 u32 flags) 159 { 160 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 161 gen8_pte_t __iomem *base = dpt->iomem; 162 163 gen8_set_pte(base + offset / I915_GTT_PAGE_SIZE, 164 vm->pte_encode(addr, level, flags)); 165 } 166 167 static void dpt_insert_entries(struct i915_address_space *vm, 168 struct i915_vma *vma, 169 enum i915_cache_level level, 170 u32 flags) 171 { 172 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 173 gen8_pte_t __iomem *base = dpt->iomem; 174 const gen8_pte_t pte_encode = vm->pte_encode(0, level, flags); 175 struct sgt_iter sgt_iter; 176 dma_addr_t addr; 177 int i; 178 179 /* 180 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 181 * not to allow the user to override access to a read only page. 182 */ 183 184 i = vma->node.start / I915_GTT_PAGE_SIZE; 185 for_each_sgt_daddr(addr, sgt_iter, vma->pages) 186 gen8_set_pte(&base[i++], pte_encode | addr); 187 } 188 189 static void dpt_clear_range(struct i915_address_space *vm, 190 u64 start, u64 length) 191 { 192 } 193 194 static void dpt_bind_vma(struct i915_address_space *vm, 195 struct i915_vm_pt_stash *stash, 196 struct i915_vma *vma, 197 enum i915_cache_level cache_level, 198 u32 flags) 199 { 200 struct drm_i915_gem_object *obj = vma->obj; 201 u32 pte_flags; 202 203 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 204 pte_flags = 0; 205 if (vma->vm->has_read_only && i915_gem_object_is_readonly(obj)) 206 pte_flags |= PTE_READ_ONLY; 207 if (i915_gem_object_is_lmem(obj)) 208 pte_flags |= PTE_LM; 209 210 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); 211 212 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 213 214 /* 215 * Without aliasing PPGTT there's no difference between 216 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally 217 * upgrade to both bound if we bind either to avoid double-binding. 218 */ 219 atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags); 220 } 221 222 static void dpt_unbind_vma(struct i915_address_space *vm, struct i915_vma *vma) 223 { 224 vm->clear_range(vm, vma->node.start, vma->size); 225 } 226 227 static void dpt_cleanup(struct i915_address_space *vm) 228 { 229 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 230 231 i915_gem_object_put(dpt->obj); 232 } 233 234 static struct i915_address_space * 235 intel_dpt_create(struct intel_framebuffer *fb) 236 { 237 struct drm_gem_object *obj = &intel_fb_obj(&fb->base)->base; 238 struct drm_i915_private *i915 = to_i915(obj->dev); 239 struct drm_i915_gem_object *dpt_obj; 240 struct i915_address_space *vm; 241 struct i915_dpt *dpt; 242 size_t size; 243 int ret; 244 245 if (intel_fb_needs_pot_stride_remap(fb)) 246 size = intel_remapped_info_size(&fb->remapped_view.gtt.remapped); 247 else 248 size = DIV_ROUND_UP_ULL(obj->size, I915_GTT_PAGE_SIZE); 249 250 size = round_up(size * sizeof(gen8_pte_t), I915_GTT_PAGE_SIZE); 251 252 if (HAS_LMEM(i915)) 253 dpt_obj = i915_gem_object_create_lmem(i915, size, 0); 254 else 255 dpt_obj = i915_gem_object_create_stolen(i915, size); 256 if (IS_ERR(dpt_obj)) 257 return ERR_CAST(dpt_obj); 258 259 ret = i915_gem_object_set_cache_level(dpt_obj, I915_CACHE_NONE); 260 if (ret) { 261 i915_gem_object_put(dpt_obj); 262 return ERR_PTR(ret); 263 } 264 265 dpt = kzalloc(sizeof(*dpt), GFP_KERNEL); 266 if (!dpt) { 267 i915_gem_object_put(dpt_obj); 268 return ERR_PTR(-ENOMEM); 269 } 270 271 vm = &dpt->vm; 272 273 vm->gt = &i915->gt; 274 vm->i915 = i915; 275 vm->dma = i915->drm.dev; 276 vm->total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 277 vm->is_dpt = true; 278 279 i915_address_space_init(vm, VM_CLASS_DPT); 280 281 vm->insert_page = dpt_insert_page; 282 vm->clear_range = dpt_clear_range; 283 vm->insert_entries = dpt_insert_entries; 284 vm->cleanup = dpt_cleanup; 285 286 vm->vma_ops.bind_vma = dpt_bind_vma; 287 vm->vma_ops.unbind_vma = dpt_unbind_vma; 288 vm->vma_ops.set_pages = ggtt_set_pages; 289 vm->vma_ops.clear_pages = clear_pages; 290 291 vm->pte_encode = gen8_ggtt_pte_encode; 292 293 dpt->obj = dpt_obj; 294 295 return &dpt->vm; 296 } 297 298 static void intel_dpt_destroy(struct i915_address_space *vm) 299 { 300 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 301 302 i915_vm_close(&dpt->vm); 303 } 304 305 /* returns HPLL frequency in kHz */ 306 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 307 { 308 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 309 310 /* Obtain SKU information */ 311 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 312 CCK_FUSE_HPLL_FREQ_MASK; 313 314 return vco_freq[hpll_freq] * 1000; 315 } 316 317 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 318 const char *name, u32 reg, int ref_freq) 319 { 320 u32 val; 321 int divider; 322 323 val = vlv_cck_read(dev_priv, reg); 324 divider = val & CCK_FREQUENCY_VALUES; 325 326 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != 327 (divider << CCK_FREQUENCY_STATUS_SHIFT), 328 "%s change in progress\n", name); 329 330 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 331 } 332 333 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 334 const char *name, u32 reg) 335 { 336 int hpll; 337 338 vlv_cck_get(dev_priv); 339 340 if (dev_priv->hpll_freq == 0) 341 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 342 343 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 344 345 vlv_cck_put(dev_priv); 346 347 return hpll; 348 } 349 350 static void intel_update_czclk(struct drm_i915_private *dev_priv) 351 { 352 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 353 return; 354 355 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 356 CCK_CZ_CLOCK_CONTROL); 357 358 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n", 359 dev_priv->czclk_freq); 360 } 361 362 /* WA Display #0827: Gen9:all */ 363 static void 364 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) 365 { 366 if (enable) 367 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 368 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); 369 else 370 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 371 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 372 } 373 374 /* Wa_2006604312:icl,ehl */ 375 static void 376 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 377 bool enable) 378 { 379 if (enable) 380 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 381 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 382 else 383 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 384 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 385 } 386 387 static bool 388 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) 389 { 390 return crtc_state->master_transcoder != INVALID_TRANSCODER; 391 } 392 393 static bool 394 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state) 395 { 396 return crtc_state->sync_mode_slaves_mask != 0; 397 } 398 399 bool 400 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 401 { 402 return is_trans_port_sync_master(crtc_state) || 403 is_trans_port_sync_slave(crtc_state); 404 } 405 406 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 407 enum pipe pipe) 408 { 409 i915_reg_t reg = PIPEDSL(pipe); 410 u32 line1, line2; 411 u32 line_mask; 412 413 if (DISPLAY_VER(dev_priv) == 2) 414 line_mask = DSL_LINEMASK_GEN2; 415 else 416 line_mask = DSL_LINEMASK_GEN3; 417 418 line1 = intel_de_read(dev_priv, reg) & line_mask; 419 msleep(5); 420 line2 = intel_de_read(dev_priv, reg) & line_mask; 421 422 return line1 != line2; 423 } 424 425 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 426 { 427 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 428 enum pipe pipe = crtc->pipe; 429 430 /* Wait for the display line to settle/start moving */ 431 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 432 drm_err(&dev_priv->drm, 433 "pipe %c scanline %s wait timed out\n", 434 pipe_name(pipe), onoff(state)); 435 } 436 437 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 438 { 439 wait_for_pipe_scanline_moving(crtc, false); 440 } 441 442 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 443 { 444 wait_for_pipe_scanline_moving(crtc, true); 445 } 446 447 static void 448 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 449 { 450 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 451 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 452 453 if (DISPLAY_VER(dev_priv) >= 4) { 454 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 455 i915_reg_t reg = PIPECONF(cpu_transcoder); 456 457 /* Wait for the Pipe State to go off */ 458 if (intel_de_wait_for_clear(dev_priv, reg, 459 I965_PIPECONF_ACTIVE, 100)) 460 drm_WARN(&dev_priv->drm, 1, 461 "pipe_off wait timed out\n"); 462 } else { 463 intel_wait_for_pipe_scanline_stopped(crtc); 464 } 465 } 466 467 /* Only for pre-ILK configs */ 468 void assert_pll(struct drm_i915_private *dev_priv, 469 enum pipe pipe, bool state) 470 { 471 u32 val; 472 bool cur_state; 473 474 val = intel_de_read(dev_priv, DPLL(pipe)); 475 cur_state = !!(val & DPLL_VCO_ENABLE); 476 I915_STATE_WARN(cur_state != state, 477 "PLL state assertion failure (expected %s, current %s)\n", 478 onoff(state), onoff(cur_state)); 479 } 480 481 /* XXX: the dsi pll is shared between MIPI DSI ports */ 482 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 483 { 484 u32 val; 485 bool cur_state; 486 487 vlv_cck_get(dev_priv); 488 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 489 vlv_cck_put(dev_priv); 490 491 cur_state = val & DSI_PLL_VCO_EN; 492 I915_STATE_WARN(cur_state != state, 493 "DSI PLL state assertion failure (expected %s, current %s)\n", 494 onoff(state), onoff(cur_state)); 495 } 496 497 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 498 enum pipe pipe, bool state) 499 { 500 bool cur_state; 501 502 if (HAS_DDI(dev_priv)) { 503 /* 504 * DDI does not have a specific FDI_TX register. 505 * 506 * FDI is never fed from EDP transcoder 507 * so pipe->transcoder cast is fine here. 508 */ 509 enum transcoder cpu_transcoder = (enum transcoder)pipe; 510 u32 val = intel_de_read(dev_priv, 511 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 512 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 513 } else { 514 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 515 cur_state = !!(val & FDI_TX_ENABLE); 516 } 517 I915_STATE_WARN(cur_state != state, 518 "FDI TX state assertion failure (expected %s, current %s)\n", 519 onoff(state), onoff(cur_state)); 520 } 521 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 522 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 523 524 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 525 enum pipe pipe, bool state) 526 { 527 u32 val; 528 bool cur_state; 529 530 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 531 cur_state = !!(val & FDI_RX_ENABLE); 532 I915_STATE_WARN(cur_state != state, 533 "FDI RX state assertion failure (expected %s, current %s)\n", 534 onoff(state), onoff(cur_state)); 535 } 536 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 537 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 538 539 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 540 enum pipe pipe) 541 { 542 u32 val; 543 544 /* ILK FDI PLL is always enabled */ 545 if (IS_IRONLAKE(dev_priv)) 546 return; 547 548 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 549 if (HAS_DDI(dev_priv)) 550 return; 551 552 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 553 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 554 } 555 556 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 557 enum pipe pipe, bool state) 558 { 559 u32 val; 560 bool cur_state; 561 562 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 563 cur_state = !!(val & FDI_RX_PLL_ENABLE); 564 I915_STATE_WARN(cur_state != state, 565 "FDI RX PLL assertion failure (expected %s, current %s)\n", 566 onoff(state), onoff(cur_state)); 567 } 568 569 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) 570 { 571 i915_reg_t pp_reg; 572 u32 val; 573 enum pipe panel_pipe = INVALID_PIPE; 574 bool locked = true; 575 576 if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv))) 577 return; 578 579 if (HAS_PCH_SPLIT(dev_priv)) { 580 u32 port_sel; 581 582 pp_reg = PP_CONTROL(0); 583 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 584 585 switch (port_sel) { 586 case PANEL_PORT_SELECT_LVDS: 587 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); 588 break; 589 case PANEL_PORT_SELECT_DPA: 590 g4x_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); 591 break; 592 case PANEL_PORT_SELECT_DPC: 593 g4x_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); 594 break; 595 case PANEL_PORT_SELECT_DPD: 596 g4x_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); 597 break; 598 default: 599 MISSING_CASE(port_sel); 600 break; 601 } 602 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 603 /* presumably write lock depends on pipe, not port select */ 604 pp_reg = PP_CONTROL(pipe); 605 panel_pipe = pipe; 606 } else { 607 u32 port_sel; 608 609 pp_reg = PP_CONTROL(0); 610 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 611 612 drm_WARN_ON(&dev_priv->drm, 613 port_sel != PANEL_PORT_SELECT_LVDS); 614 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); 615 } 616 617 val = intel_de_read(dev_priv, pp_reg); 618 if (!(val & PANEL_POWER_ON) || 619 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 620 locked = false; 621 622 I915_STATE_WARN(panel_pipe == pipe && locked, 623 "panel assertion failure, pipe %c regs locked\n", 624 pipe_name(pipe)); 625 } 626 627 void assert_pipe(struct drm_i915_private *dev_priv, 628 enum transcoder cpu_transcoder, bool state) 629 { 630 bool cur_state; 631 enum intel_display_power_domain power_domain; 632 intel_wakeref_t wakeref; 633 634 /* we keep both pipes enabled on 830 */ 635 if (IS_I830(dev_priv)) 636 state = true; 637 638 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 639 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 640 if (wakeref) { 641 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 642 cur_state = !!(val & PIPECONF_ENABLE); 643 644 intel_display_power_put(dev_priv, power_domain, wakeref); 645 } else { 646 cur_state = false; 647 } 648 649 I915_STATE_WARN(cur_state != state, 650 "transcoder %s assertion failure (expected %s, current %s)\n", 651 transcoder_name(cpu_transcoder), 652 onoff(state), onoff(cur_state)); 653 } 654 655 static void assert_plane(struct intel_plane *plane, bool state) 656 { 657 enum pipe pipe; 658 bool cur_state; 659 660 cur_state = plane->get_hw_state(plane, &pipe); 661 662 I915_STATE_WARN(cur_state != state, 663 "%s assertion failure (expected %s, current %s)\n", 664 plane->base.name, onoff(state), onoff(cur_state)); 665 } 666 667 #define assert_plane_enabled(p) assert_plane(p, true) 668 #define assert_plane_disabled(p) assert_plane(p, false) 669 670 static void assert_planes_disabled(struct intel_crtc *crtc) 671 { 672 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 673 struct intel_plane *plane; 674 675 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 676 assert_plane_disabled(plane); 677 } 678 679 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 680 enum pipe pipe) 681 { 682 u32 val; 683 bool enabled; 684 685 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe)); 686 enabled = !!(val & TRANS_ENABLE); 687 I915_STATE_WARN(enabled, 688 "transcoder assertion failed, should be off on pipe %c but is still active\n", 689 pipe_name(pipe)); 690 } 691 692 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 693 enum pipe pipe, enum port port, 694 i915_reg_t dp_reg) 695 { 696 enum pipe port_pipe; 697 bool state; 698 699 state = g4x_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 700 701 I915_STATE_WARN(state && port_pipe == pipe, 702 "PCH DP %c enabled on transcoder %c, should be disabled\n", 703 port_name(port), pipe_name(pipe)); 704 705 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 706 "IBX PCH DP %c still using transcoder B\n", 707 port_name(port)); 708 } 709 710 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 711 enum pipe pipe, enum port port, 712 i915_reg_t hdmi_reg) 713 { 714 enum pipe port_pipe; 715 bool state; 716 717 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 718 719 I915_STATE_WARN(state && port_pipe == pipe, 720 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 721 port_name(port), pipe_name(pipe)); 722 723 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 724 "IBX PCH HDMI %c still using transcoder B\n", 725 port_name(port)); 726 } 727 728 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 729 enum pipe pipe) 730 { 731 enum pipe port_pipe; 732 733 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 734 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 735 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 736 737 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 738 port_pipe == pipe, 739 "PCH VGA enabled on transcoder %c, should be disabled\n", 740 pipe_name(pipe)); 741 742 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 743 port_pipe == pipe, 744 "PCH LVDS enabled on transcoder %c, should be disabled\n", 745 pipe_name(pipe)); 746 747 /* PCH SDVOB multiplex with HDMIB */ 748 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 749 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 750 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 751 } 752 753 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 754 struct intel_digital_port *dig_port, 755 unsigned int expected_mask) 756 { 757 u32 port_mask; 758 i915_reg_t dpll_reg; 759 760 switch (dig_port->base.port) { 761 case PORT_B: 762 port_mask = DPLL_PORTB_READY_MASK; 763 dpll_reg = DPLL(0); 764 break; 765 case PORT_C: 766 port_mask = DPLL_PORTC_READY_MASK; 767 dpll_reg = DPLL(0); 768 expected_mask <<= 4; 769 break; 770 case PORT_D: 771 port_mask = DPLL_PORTD_READY_MASK; 772 dpll_reg = DPIO_PHY_STATUS; 773 break; 774 default: 775 BUG(); 776 } 777 778 if (intel_de_wait_for_register(dev_priv, dpll_reg, 779 port_mask, expected_mask, 1000)) 780 drm_WARN(&dev_priv->drm, 1, 781 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", 782 dig_port->base.base.base.id, dig_port->base.base.name, 783 intel_de_read(dev_priv, dpll_reg) & port_mask, 784 expected_mask); 785 } 786 787 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 788 { 789 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 790 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 791 enum pipe pipe = crtc->pipe; 792 i915_reg_t reg; 793 u32 val, pipeconf_val; 794 795 /* Make sure PCH DPLL is enabled */ 796 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 797 798 /* FDI must be feeding us bits for PCH ports */ 799 assert_fdi_tx_enabled(dev_priv, pipe); 800 assert_fdi_rx_enabled(dev_priv, pipe); 801 802 if (HAS_PCH_CPT(dev_priv)) { 803 reg = TRANS_CHICKEN2(pipe); 804 val = intel_de_read(dev_priv, reg); 805 /* 806 * Workaround: Set the timing override bit 807 * before enabling the pch transcoder. 808 */ 809 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 810 /* Configure frame start delay to match the CPU */ 811 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 812 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 813 intel_de_write(dev_priv, reg, val); 814 } 815 816 reg = PCH_TRANSCONF(pipe); 817 val = intel_de_read(dev_priv, reg); 818 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe)); 819 820 if (HAS_PCH_IBX(dev_priv)) { 821 /* Configure frame start delay to match the CPU */ 822 val &= ~TRANS_FRAME_START_DELAY_MASK; 823 val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 824 825 /* 826 * Make the BPC in transcoder be consistent with 827 * that in pipeconf reg. For HDMI we must use 8bpc 828 * here for both 8bpc and 12bpc. 829 */ 830 val &= ~PIPECONF_BPC_MASK; 831 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 832 val |= PIPECONF_8BPC; 833 else 834 val |= pipeconf_val & PIPECONF_BPC_MASK; 835 } 836 837 val &= ~TRANS_INTERLACE_MASK; 838 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 839 if (HAS_PCH_IBX(dev_priv) && 840 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 841 val |= TRANS_LEGACY_INTERLACED_ILK; 842 else 843 val |= TRANS_INTERLACED; 844 } else { 845 val |= TRANS_PROGRESSIVE; 846 } 847 848 intel_de_write(dev_priv, reg, val | TRANS_ENABLE); 849 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 850 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n", 851 pipe_name(pipe)); 852 } 853 854 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 855 enum transcoder cpu_transcoder) 856 { 857 u32 val, pipeconf_val; 858 859 /* FDI must be feeding us bits for PCH ports */ 860 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 861 assert_fdi_rx_enabled(dev_priv, PIPE_A); 862 863 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 864 /* Workaround: set timing override bit. */ 865 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 866 /* Configure frame start delay to match the CPU */ 867 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 868 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 869 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 870 871 val = TRANS_ENABLE; 872 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 873 874 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 875 PIPECONF_INTERLACED_ILK) 876 val |= TRANS_INTERLACED; 877 else 878 val |= TRANS_PROGRESSIVE; 879 880 intel_de_write(dev_priv, LPT_TRANSCONF, val); 881 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 882 TRANS_STATE_ENABLE, 100)) 883 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n"); 884 } 885 886 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv, 887 enum pipe pipe) 888 { 889 i915_reg_t reg; 890 u32 val; 891 892 /* FDI relies on the transcoder */ 893 assert_fdi_tx_disabled(dev_priv, pipe); 894 assert_fdi_rx_disabled(dev_priv, pipe); 895 896 /* Ports must be off as well */ 897 assert_pch_ports_disabled(dev_priv, pipe); 898 899 reg = PCH_TRANSCONF(pipe); 900 val = intel_de_read(dev_priv, reg); 901 val &= ~TRANS_ENABLE; 902 intel_de_write(dev_priv, reg, val); 903 /* wait for PCH transcoder off, transcoder state */ 904 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 905 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n", 906 pipe_name(pipe)); 907 908 if (HAS_PCH_CPT(dev_priv)) { 909 /* Workaround: Clear the timing override chicken bit again. */ 910 reg = TRANS_CHICKEN2(pipe); 911 val = intel_de_read(dev_priv, reg); 912 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 913 intel_de_write(dev_priv, reg, val); 914 } 915 } 916 917 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 918 { 919 u32 val; 920 921 val = intel_de_read(dev_priv, LPT_TRANSCONF); 922 val &= ~TRANS_ENABLE; 923 intel_de_write(dev_priv, LPT_TRANSCONF, val); 924 /* wait for PCH transcoder off, transcoder state */ 925 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 926 TRANS_STATE_ENABLE, 50)) 927 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n"); 928 929 /* Workaround: clear timing override bit. */ 930 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 931 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 932 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 933 } 934 935 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 936 { 937 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 938 939 if (HAS_PCH_LPT(dev_priv)) 940 return PIPE_A; 941 else 942 return crtc->pipe; 943 } 944 945 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) 946 { 947 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 948 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 949 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 950 enum pipe pipe = crtc->pipe; 951 i915_reg_t reg; 952 u32 val; 953 954 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe)); 955 956 assert_planes_disabled(crtc); 957 958 /* 959 * A pipe without a PLL won't actually be able to drive bits from 960 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 961 * need the check. 962 */ 963 if (HAS_GMCH(dev_priv)) { 964 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 965 assert_dsi_pll_enabled(dev_priv); 966 else 967 assert_pll_enabled(dev_priv, pipe); 968 } else { 969 if (new_crtc_state->has_pch_encoder) { 970 /* if driving the PCH, we need FDI enabled */ 971 assert_fdi_rx_pll_enabled(dev_priv, 972 intel_crtc_pch_transcoder(crtc)); 973 assert_fdi_tx_pll_enabled(dev_priv, 974 (enum pipe) cpu_transcoder); 975 } 976 /* FIXME: assert CPU port conditions for SNB+ */ 977 } 978 979 /* Wa_22012358565:adl-p */ 980 if (DISPLAY_VER(dev_priv) == 13) 981 intel_de_rmw(dev_priv, PIPE_ARB_CTL(pipe), 982 0, PIPE_ARB_USE_PROG_SLOTS); 983 984 reg = PIPECONF(cpu_transcoder); 985 val = intel_de_read(dev_priv, reg); 986 if (val & PIPECONF_ENABLE) { 987 /* we keep both pipes enabled on 830 */ 988 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv)); 989 return; 990 } 991 992 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE); 993 intel_de_posting_read(dev_priv, reg); 994 995 /* 996 * Until the pipe starts PIPEDSL reads will return a stale value, 997 * which causes an apparent vblank timestamp jump when PIPEDSL 998 * resets to its proper value. That also messes up the frame count 999 * when it's derived from the timestamps. So let's wait for the 1000 * pipe to start properly before we call drm_crtc_vblank_on() 1001 */ 1002 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 1003 intel_wait_for_pipe_scanline_moving(crtc); 1004 } 1005 1006 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) 1007 { 1008 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1009 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1010 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1011 enum pipe pipe = crtc->pipe; 1012 i915_reg_t reg; 1013 u32 val; 1014 1015 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe)); 1016 1017 /* 1018 * Make sure planes won't keep trying to pump pixels to us, 1019 * or we might hang the display. 1020 */ 1021 assert_planes_disabled(crtc); 1022 1023 reg = PIPECONF(cpu_transcoder); 1024 val = intel_de_read(dev_priv, reg); 1025 if ((val & PIPECONF_ENABLE) == 0) 1026 return; 1027 1028 /* 1029 * Double wide has implications for planes 1030 * so best keep it disabled when not needed. 1031 */ 1032 if (old_crtc_state->double_wide) 1033 val &= ~PIPECONF_DOUBLE_WIDE; 1034 1035 /* Don't disable pipe or pipe PLLs if needed */ 1036 if (!IS_I830(dev_priv)) 1037 val &= ~PIPECONF_ENABLE; 1038 1039 if (DISPLAY_VER(dev_priv) >= 12) 1040 intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), 1041 FECSTALL_DIS_DPTSTREAM_DPTTG, 0); 1042 1043 intel_de_write(dev_priv, reg, val); 1044 if ((val & PIPECONF_ENABLE) == 0) 1045 intel_wait_for_pipe_off(old_crtc_state); 1046 } 1047 1048 bool 1049 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info, 1050 u64 modifier) 1051 { 1052 return info->is_yuv && 1053 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2); 1054 } 1055 1056 unsigned int 1057 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) 1058 { 1059 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1060 unsigned int cpp = fb->format->cpp[color_plane]; 1061 1062 switch (fb->modifier) { 1063 case DRM_FORMAT_MOD_LINEAR: 1064 return intel_tile_size(dev_priv); 1065 case I915_FORMAT_MOD_X_TILED: 1066 if (DISPLAY_VER(dev_priv) == 2) 1067 return 128; 1068 else 1069 return 512; 1070 case I915_FORMAT_MOD_Y_TILED_CCS: 1071 if (is_ccs_plane(fb, color_plane)) 1072 return 128; 1073 fallthrough; 1074 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1075 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1076 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1077 if (is_ccs_plane(fb, color_plane)) 1078 return 64; 1079 fallthrough; 1080 case I915_FORMAT_MOD_Y_TILED: 1081 if (DISPLAY_VER(dev_priv) == 2 || HAS_128_BYTE_Y_TILING(dev_priv)) 1082 return 128; 1083 else 1084 return 512; 1085 case I915_FORMAT_MOD_Yf_TILED_CCS: 1086 if (is_ccs_plane(fb, color_plane)) 1087 return 128; 1088 fallthrough; 1089 case I915_FORMAT_MOD_Yf_TILED: 1090 switch (cpp) { 1091 case 1: 1092 return 64; 1093 case 2: 1094 case 4: 1095 return 128; 1096 case 8: 1097 case 16: 1098 return 256; 1099 default: 1100 MISSING_CASE(cpp); 1101 return cpp; 1102 } 1103 break; 1104 default: 1105 MISSING_CASE(fb->modifier); 1106 return cpp; 1107 } 1108 } 1109 1110 unsigned int 1111 intel_fb_align_height(const struct drm_framebuffer *fb, 1112 int color_plane, unsigned int height) 1113 { 1114 unsigned int tile_height = intel_tile_height(fb, color_plane); 1115 1116 return ALIGN(height, tile_height); 1117 } 1118 1119 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 1120 { 1121 unsigned int size = 0; 1122 int i; 1123 1124 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 1125 size += rot_info->plane[i].dst_stride * rot_info->plane[i].width; 1126 1127 return size; 1128 } 1129 1130 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 1131 { 1132 unsigned int size = 0; 1133 int i; 1134 1135 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 1136 size += rem_info->plane[i].dst_stride * rem_info->plane[i].height; 1137 1138 return size; 1139 } 1140 1141 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 1142 { 1143 if (DISPLAY_VER(dev_priv) >= 9) 1144 return 256 * 1024; 1145 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || 1146 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1147 return 128 * 1024; 1148 else if (DISPLAY_VER(dev_priv) >= 4) 1149 return 4 * 1024; 1150 else 1151 return 0; 1152 } 1153 1154 static bool has_async_flips(struct drm_i915_private *i915) 1155 { 1156 return DISPLAY_VER(i915) >= 5; 1157 } 1158 1159 unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, 1160 int color_plane) 1161 { 1162 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1163 1164 if (intel_fb_uses_dpt(fb)) 1165 return 512 * 4096; 1166 1167 /* AUX_DIST needs only 4K alignment */ 1168 if (is_ccs_plane(fb, color_plane)) 1169 return 4096; 1170 1171 if (is_semiplanar_uv_plane(fb, color_plane)) { 1172 /* 1173 * TODO: cross-check wrt. the bspec stride in bytes * 64 bytes 1174 * alignment for linear UV planes on all platforms. 1175 */ 1176 if (DISPLAY_VER(dev_priv) >= 12) { 1177 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) 1178 return intel_linear_alignment(dev_priv); 1179 1180 return intel_tile_row_size(fb, color_plane); 1181 } 1182 1183 return 4096; 1184 } 1185 1186 drm_WARN_ON(&dev_priv->drm, color_plane != 0); 1187 1188 switch (fb->modifier) { 1189 case DRM_FORMAT_MOD_LINEAR: 1190 return intel_linear_alignment(dev_priv); 1191 case I915_FORMAT_MOD_X_TILED: 1192 if (has_async_flips(dev_priv)) 1193 return 256 * 1024; 1194 return 0; 1195 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1196 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1197 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1198 return 16 * 1024; 1199 case I915_FORMAT_MOD_Y_TILED_CCS: 1200 case I915_FORMAT_MOD_Yf_TILED_CCS: 1201 case I915_FORMAT_MOD_Y_TILED: 1202 case I915_FORMAT_MOD_Yf_TILED: 1203 return 1 * 1024 * 1024; 1204 default: 1205 MISSING_CASE(fb->modifier); 1206 return 0; 1207 } 1208 } 1209 1210 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 1211 { 1212 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1213 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 1214 1215 return DISPLAY_VER(dev_priv) < 4 || 1216 (plane->has_fbc && 1217 plane_state->view.gtt.type == I915_GGTT_VIEW_NORMAL); 1218 } 1219 1220 static struct i915_vma * 1221 intel_pin_fb_obj_dpt(struct drm_framebuffer *fb, 1222 const struct i915_ggtt_view *view, 1223 bool uses_fence, 1224 unsigned long *out_flags, 1225 struct i915_address_space *vm) 1226 { 1227 struct drm_device *dev = fb->dev; 1228 struct drm_i915_private *dev_priv = to_i915(dev); 1229 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 1230 struct i915_vma *vma; 1231 u32 alignment; 1232 int ret; 1233 1234 if (WARN_ON(!i915_gem_object_is_framebuffer(obj))) 1235 return ERR_PTR(-EINVAL); 1236 1237 alignment = 4096 * 512; 1238 1239 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 1240 1241 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); 1242 if (ret) { 1243 vma = ERR_PTR(ret); 1244 goto err; 1245 } 1246 1247 vma = i915_vma_instance(obj, vm, view); 1248 if (IS_ERR(vma)) 1249 goto err; 1250 1251 if (i915_vma_misplaced(vma, 0, alignment, 0)) { 1252 ret = i915_vma_unbind(vma); 1253 if (ret) { 1254 vma = ERR_PTR(ret); 1255 goto err; 1256 } 1257 } 1258 1259 ret = i915_vma_pin(vma, 0, alignment, PIN_GLOBAL); 1260 if (ret) { 1261 vma = ERR_PTR(ret); 1262 goto err; 1263 } 1264 1265 vma->display_alignment = max_t(u64, vma->display_alignment, alignment); 1266 1267 i915_gem_object_flush_if_display(obj); 1268 1269 i915_vma_get(vma); 1270 err: 1271 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 1272 1273 return vma; 1274 } 1275 1276 struct i915_vma * 1277 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 1278 bool phys_cursor, 1279 const struct i915_ggtt_view *view, 1280 bool uses_fence, 1281 unsigned long *out_flags) 1282 { 1283 struct drm_device *dev = fb->dev; 1284 struct drm_i915_private *dev_priv = to_i915(dev); 1285 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 1286 intel_wakeref_t wakeref; 1287 struct i915_gem_ww_ctx ww; 1288 struct i915_vma *vma; 1289 unsigned int pinctl; 1290 u32 alignment; 1291 int ret; 1292 1293 if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj))) 1294 return ERR_PTR(-EINVAL); 1295 1296 if (phys_cursor) 1297 alignment = intel_cursor_alignment(dev_priv); 1298 else 1299 alignment = intel_surf_alignment(fb, 0); 1300 if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment))) 1301 return ERR_PTR(-EINVAL); 1302 1303 /* Note that the w/a also requires 64 PTE of padding following the 1304 * bo. We currently fill all unused PTE with the shadow page and so 1305 * we should always have valid PTE following the scanout preventing 1306 * the VT-d warning. 1307 */ 1308 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) 1309 alignment = 256 * 1024; 1310 1311 /* 1312 * Global gtt pte registers are special registers which actually forward 1313 * writes to a chunk of system memory. Which means that there is no risk 1314 * that the register values disappear as soon as we call 1315 * intel_runtime_pm_put(), so it is correct to wrap only the 1316 * pin/unpin/fence and not more. 1317 */ 1318 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 1319 1320 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 1321 1322 /* 1323 * Valleyview is definitely limited to scanning out the first 1324 * 512MiB. Lets presume this behaviour was inherited from the 1325 * g4x display engine and that all earlier gen are similarly 1326 * limited. Testing suggests that it is a little more 1327 * complicated than this. For example, Cherryview appears quite 1328 * happy to scanout from anywhere within its global aperture. 1329 */ 1330 pinctl = 0; 1331 if (HAS_GMCH(dev_priv)) 1332 pinctl |= PIN_MAPPABLE; 1333 1334 i915_gem_ww_ctx_init(&ww, true); 1335 retry: 1336 ret = i915_gem_object_lock(obj, &ww); 1337 if (!ret && phys_cursor) 1338 ret = i915_gem_object_attach_phys(obj, alignment); 1339 else if (!ret && HAS_LMEM(dev_priv)) 1340 ret = i915_gem_object_migrate(obj, &ww, INTEL_REGION_LMEM); 1341 /* TODO: Do we need to sync when migration becomes async? */ 1342 if (!ret) 1343 ret = i915_gem_object_pin_pages(obj); 1344 if (ret) 1345 goto err; 1346 1347 if (!ret) { 1348 vma = i915_gem_object_pin_to_display_plane(obj, &ww, alignment, 1349 view, pinctl); 1350 if (IS_ERR(vma)) { 1351 ret = PTR_ERR(vma); 1352 goto err_unpin; 1353 } 1354 } 1355 1356 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { 1357 /* 1358 * Install a fence for tiled scan-out. Pre-i965 always needs a 1359 * fence, whereas 965+ only requires a fence if using 1360 * framebuffer compression. For simplicity, we always, when 1361 * possible, install a fence as the cost is not that onerous. 1362 * 1363 * If we fail to fence the tiled scanout, then either the 1364 * modeset will reject the change (which is highly unlikely as 1365 * the affected systems, all but one, do not have unmappable 1366 * space) or we will not be able to enable full powersaving 1367 * techniques (also likely not to apply due to various limits 1368 * FBC and the like impose on the size of the buffer, which 1369 * presumably we violated anyway with this unmappable buffer). 1370 * Anyway, it is presumably better to stumble onwards with 1371 * something and try to run the system in a "less than optimal" 1372 * mode that matches the user configuration. 1373 */ 1374 ret = i915_vma_pin_fence(vma); 1375 if (ret != 0 && DISPLAY_VER(dev_priv) < 4) { 1376 i915_vma_unpin(vma); 1377 goto err_unpin; 1378 } 1379 ret = 0; 1380 1381 if (vma->fence) 1382 *out_flags |= PLANE_HAS_FENCE; 1383 } 1384 1385 i915_vma_get(vma); 1386 1387 err_unpin: 1388 i915_gem_object_unpin_pages(obj); 1389 err: 1390 if (ret == -EDEADLK) { 1391 ret = i915_gem_ww_ctx_backoff(&ww); 1392 if (!ret) 1393 goto retry; 1394 } 1395 i915_gem_ww_ctx_fini(&ww); 1396 if (ret) 1397 vma = ERR_PTR(ret); 1398 1399 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 1400 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 1401 return vma; 1402 } 1403 1404 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) 1405 { 1406 if (flags & PLANE_HAS_FENCE) 1407 i915_vma_unpin_fence(vma); 1408 i915_vma_unpin(vma); 1409 i915_vma_put(vma); 1410 } 1411 1412 /* 1413 * Convert the x/y offsets into a linear offset. 1414 * Only valid with 0/180 degree rotation, which is fine since linear 1415 * offset is only used with linear buffers on pre-hsw and tiled buffers 1416 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 1417 */ 1418 u32 intel_fb_xy_to_linear(int x, int y, 1419 const struct intel_plane_state *state, 1420 int color_plane) 1421 { 1422 const struct drm_framebuffer *fb = state->hw.fb; 1423 unsigned int cpp = fb->format->cpp[color_plane]; 1424 unsigned int pitch = state->view.color_plane[color_plane].stride; 1425 1426 return y * pitch + x * cpp; 1427 } 1428 1429 /* 1430 * Add the x/y offsets derived from fb->offsets[] to the user 1431 * specified plane src x/y offsets. The resulting x/y offsets 1432 * specify the start of scanout from the beginning of the gtt mapping. 1433 */ 1434 void intel_add_fb_offsets(int *x, int *y, 1435 const struct intel_plane_state *state, 1436 int color_plane) 1437 1438 { 1439 *x += state->view.color_plane[color_plane].x; 1440 *y += state->view.color_plane[color_plane].y; 1441 } 1442 1443 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) 1444 { 1445 switch (fb_modifier) { 1446 case I915_FORMAT_MOD_X_TILED: 1447 return I915_TILING_X; 1448 case I915_FORMAT_MOD_Y_TILED: 1449 case I915_FORMAT_MOD_Y_TILED_CCS: 1450 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1451 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1452 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1453 return I915_TILING_Y; 1454 default: 1455 return I915_TILING_NONE; 1456 } 1457 } 1458 1459 /* 1460 * From the Sky Lake PRM: 1461 * "The Color Control Surface (CCS) contains the compression status of 1462 * the cache-line pairs. The compression state of the cache-line pair 1463 * is specified by 2 bits in the CCS. Each CCS cache-line represents 1464 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 1465 * cache-line-pairs. CCS is always Y tiled." 1466 * 1467 * Since cache line pairs refers to horizontally adjacent cache lines, 1468 * each cache line in the CCS corresponds to an area of 32x16 cache 1469 * lines on the main surface. Since each pixel is 4 bytes, this gives 1470 * us a ratio of one byte in the CCS for each 8x16 pixels in the 1471 * main surface. 1472 */ 1473 static const struct drm_format_info skl_ccs_formats[] = { 1474 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 1475 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 1476 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 1477 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 1478 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 1479 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 1480 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 1481 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 1482 }; 1483 1484 /* 1485 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the 1486 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles 1487 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of 1488 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in 1489 * the main surface. 1490 */ 1491 static const struct drm_format_info gen12_ccs_formats[] = { 1492 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 1493 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1494 .hsub = 1, .vsub = 1, }, 1495 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 1496 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1497 .hsub = 1, .vsub = 1, }, 1498 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 1499 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1500 .hsub = 1, .vsub = 1, .has_alpha = true }, 1501 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 1502 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1503 .hsub = 1, .vsub = 1, .has_alpha = true }, 1504 { .format = DRM_FORMAT_YUYV, .num_planes = 2, 1505 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1506 .hsub = 2, .vsub = 1, .is_yuv = true }, 1507 { .format = DRM_FORMAT_YVYU, .num_planes = 2, 1508 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1509 .hsub = 2, .vsub = 1, .is_yuv = true }, 1510 { .format = DRM_FORMAT_UYVY, .num_planes = 2, 1511 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1512 .hsub = 2, .vsub = 1, .is_yuv = true }, 1513 { .format = DRM_FORMAT_VYUY, .num_planes = 2, 1514 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1515 .hsub = 2, .vsub = 1, .is_yuv = true }, 1516 { .format = DRM_FORMAT_XYUV8888, .num_planes = 2, 1517 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1518 .hsub = 1, .vsub = 1, .is_yuv = true }, 1519 { .format = DRM_FORMAT_NV12, .num_planes = 4, 1520 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 }, 1521 .hsub = 2, .vsub = 2, .is_yuv = true }, 1522 { .format = DRM_FORMAT_P010, .num_planes = 4, 1523 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1524 .hsub = 2, .vsub = 2, .is_yuv = true }, 1525 { .format = DRM_FORMAT_P012, .num_planes = 4, 1526 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1527 .hsub = 2, .vsub = 2, .is_yuv = true }, 1528 { .format = DRM_FORMAT_P016, .num_planes = 4, 1529 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1530 .hsub = 2, .vsub = 2, .is_yuv = true }, 1531 }; 1532 1533 /* 1534 * Same as gen12_ccs_formats[] above, but with additional surface used 1535 * to pass Clear Color information in plane 2 with 64 bits of data. 1536 */ 1537 static const struct drm_format_info gen12_ccs_cc_formats[] = { 1538 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 3, 1539 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1540 .hsub = 1, .vsub = 1, }, 1541 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 3, 1542 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1543 .hsub = 1, .vsub = 1, }, 1544 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 3, 1545 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1546 .hsub = 1, .vsub = 1, .has_alpha = true }, 1547 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 3, 1548 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1549 .hsub = 1, .vsub = 1, .has_alpha = true }, 1550 }; 1551 1552 static const struct drm_format_info * 1553 lookup_format_info(const struct drm_format_info formats[], 1554 int num_formats, u32 format) 1555 { 1556 int i; 1557 1558 for (i = 0; i < num_formats; i++) { 1559 if (formats[i].format == format) 1560 return &formats[i]; 1561 } 1562 1563 return NULL; 1564 } 1565 1566 static const struct drm_format_info * 1567 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 1568 { 1569 switch (cmd->modifier[0]) { 1570 case I915_FORMAT_MOD_Y_TILED_CCS: 1571 case I915_FORMAT_MOD_Yf_TILED_CCS: 1572 return lookup_format_info(skl_ccs_formats, 1573 ARRAY_SIZE(skl_ccs_formats), 1574 cmd->pixel_format); 1575 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1576 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1577 return lookup_format_info(gen12_ccs_formats, 1578 ARRAY_SIZE(gen12_ccs_formats), 1579 cmd->pixel_format); 1580 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1581 return lookup_format_info(gen12_ccs_cc_formats, 1582 ARRAY_SIZE(gen12_ccs_cc_formats), 1583 cmd->pixel_format); 1584 default: 1585 return NULL; 1586 } 1587 } 1588 1589 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane) 1590 { 1591 return DIV_ROUND_UP(fb->pitches[skl_ccs_to_main_plane(fb, ccs_plane)], 1592 512) * 64; 1593 } 1594 1595 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 1596 u32 pixel_format, u64 modifier) 1597 { 1598 struct intel_crtc *crtc; 1599 struct intel_plane *plane; 1600 1601 if (!HAS_DISPLAY(dev_priv)) 1602 return 0; 1603 1604 /* 1605 * We assume the primary plane for pipe A has 1606 * the highest stride limits of them all, 1607 * if in case pipe A is disabled, use the first pipe from pipe_mask. 1608 */ 1609 crtc = intel_get_first_crtc(dev_priv); 1610 if (!crtc) 1611 return 0; 1612 1613 plane = to_intel_plane(crtc->base.primary); 1614 1615 return plane->max_stride(plane, pixel_format, modifier, 1616 DRM_MODE_ROTATE_0); 1617 } 1618 1619 static 1620 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, 1621 u32 pixel_format, u64 modifier) 1622 { 1623 /* 1624 * Arbitrary limit for gen4+ chosen to match the 1625 * render engine max stride. 1626 * 1627 * The new CCS hash mode makes remapping impossible 1628 */ 1629 if (DISPLAY_VER(dev_priv) < 4 || is_ccs_modifier(modifier) || 1630 intel_modifier_uses_dpt(dev_priv, modifier)) 1631 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); 1632 else if (DISPLAY_VER(dev_priv) >= 7) 1633 return 256 * 1024; 1634 else 1635 return 128 * 1024; 1636 } 1637 1638 static u32 1639 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) 1640 { 1641 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1642 u32 tile_width; 1643 1644 if (is_surface_linear(fb, color_plane)) { 1645 u32 max_stride = intel_plane_fb_max_stride(dev_priv, 1646 fb->format->format, 1647 fb->modifier); 1648 1649 /* 1650 * To make remapping with linear generally feasible 1651 * we need the stride to be page aligned. 1652 */ 1653 if (fb->pitches[color_plane] > max_stride && 1654 !is_ccs_modifier(fb->modifier)) 1655 return intel_tile_size(dev_priv); 1656 else 1657 return 64; 1658 } 1659 1660 tile_width = intel_tile_width_bytes(fb, color_plane); 1661 if (is_ccs_modifier(fb->modifier)) { 1662 /* 1663 * Display WA #0531: skl,bxt,kbl,glk 1664 * 1665 * Render decompression and plane width > 3840 1666 * combined with horizontal panning requires the 1667 * plane stride to be a multiple of 4. We'll just 1668 * require the entire fb to accommodate that to avoid 1669 * potential runtime errors at plane configuration time. 1670 */ 1671 if ((DISPLAY_VER(dev_priv) == 9 || IS_GEMINILAKE(dev_priv)) && 1672 color_plane == 0 && fb->width > 3840) 1673 tile_width *= 4; 1674 /* 1675 * The main surface pitch must be padded to a multiple of four 1676 * tile widths. 1677 */ 1678 else if (DISPLAY_VER(dev_priv) >= 12) 1679 tile_width *= 4; 1680 } 1681 return tile_width; 1682 } 1683 1684 static struct i915_vma * 1685 initial_plane_vma(struct drm_i915_private *i915, 1686 struct intel_initial_plane_config *plane_config) 1687 { 1688 struct drm_i915_gem_object *obj; 1689 struct i915_vma *vma; 1690 u32 base, size; 1691 1692 if (plane_config->size == 0) 1693 return NULL; 1694 1695 base = round_down(plane_config->base, 1696 I915_GTT_MIN_ALIGNMENT); 1697 size = round_up(plane_config->base + plane_config->size, 1698 I915_GTT_MIN_ALIGNMENT); 1699 size -= base; 1700 1701 /* 1702 * If the FB is too big, just don't use it since fbdev is not very 1703 * important and we should probably use that space with FBC or other 1704 * features. 1705 */ 1706 if (IS_ENABLED(CONFIG_FRAMEBUFFER_CONSOLE) && 1707 size * 2 > i915->stolen_usable_size) 1708 return NULL; 1709 1710 obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size); 1711 if (IS_ERR(obj)) 1712 return NULL; 1713 1714 /* 1715 * Mark it WT ahead of time to avoid changing the 1716 * cache_level during fbdev initialization. The 1717 * unbind there would get stuck waiting for rcu. 1718 */ 1719 i915_gem_object_set_cache_coherency(obj, HAS_WT(i915) ? 1720 I915_CACHE_WT : I915_CACHE_NONE); 1721 1722 switch (plane_config->tiling) { 1723 case I915_TILING_NONE: 1724 break; 1725 case I915_TILING_X: 1726 case I915_TILING_Y: 1727 obj->tiling_and_stride = 1728 plane_config->fb->base.pitches[0] | 1729 plane_config->tiling; 1730 break; 1731 default: 1732 MISSING_CASE(plane_config->tiling); 1733 goto err_obj; 1734 } 1735 1736 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); 1737 if (IS_ERR(vma)) 1738 goto err_obj; 1739 1740 if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base)) 1741 goto err_obj; 1742 1743 if (i915_gem_object_is_tiled(obj) && 1744 !i915_vma_is_map_and_fenceable(vma)) 1745 goto err_obj; 1746 1747 return vma; 1748 1749 err_obj: 1750 i915_gem_object_put(obj); 1751 return NULL; 1752 } 1753 1754 static bool 1755 intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 1756 struct intel_initial_plane_config *plane_config) 1757 { 1758 struct drm_device *dev = crtc->base.dev; 1759 struct drm_i915_private *dev_priv = to_i915(dev); 1760 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 1761 struct drm_framebuffer *fb = &plane_config->fb->base; 1762 struct i915_vma *vma; 1763 1764 switch (fb->modifier) { 1765 case DRM_FORMAT_MOD_LINEAR: 1766 case I915_FORMAT_MOD_X_TILED: 1767 case I915_FORMAT_MOD_Y_TILED: 1768 break; 1769 default: 1770 drm_dbg(&dev_priv->drm, 1771 "Unsupported modifier for initial FB: 0x%llx\n", 1772 fb->modifier); 1773 return false; 1774 } 1775 1776 vma = initial_plane_vma(dev_priv, plane_config); 1777 if (!vma) 1778 return false; 1779 1780 mode_cmd.pixel_format = fb->format->format; 1781 mode_cmd.width = fb->width; 1782 mode_cmd.height = fb->height; 1783 mode_cmd.pitches[0] = fb->pitches[0]; 1784 mode_cmd.modifier[0] = fb->modifier; 1785 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 1786 1787 if (intel_framebuffer_init(to_intel_framebuffer(fb), 1788 vma->obj, &mode_cmd)) { 1789 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n"); 1790 goto err_vma; 1791 } 1792 1793 plane_config->vma = vma; 1794 return true; 1795 1796 err_vma: 1797 i915_vma_put(vma); 1798 return false; 1799 } 1800 1801 static void 1802 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 1803 struct intel_plane_state *plane_state, 1804 bool visible) 1805 { 1806 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1807 1808 plane_state->uapi.visible = visible; 1809 1810 if (visible) 1811 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); 1812 else 1813 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); 1814 } 1815 1816 static void fixup_plane_bitmasks(struct intel_crtc_state *crtc_state) 1817 { 1818 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1819 struct drm_plane *plane; 1820 1821 /* 1822 * Active_planes aliases if multiple "primary" or cursor planes 1823 * have been used on the same (or wrong) pipe. plane_mask uses 1824 * unique ids, hence we can use that to reconstruct active_planes. 1825 */ 1826 crtc_state->enabled_planes = 0; 1827 crtc_state->active_planes = 0; 1828 1829 drm_for_each_plane_mask(plane, &dev_priv->drm, 1830 crtc_state->uapi.plane_mask) { 1831 crtc_state->enabled_planes |= BIT(to_intel_plane(plane)->id); 1832 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 1833 } 1834 } 1835 1836 static void intel_plane_disable_noatomic(struct intel_crtc *crtc, 1837 struct intel_plane *plane) 1838 { 1839 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1840 struct intel_crtc_state *crtc_state = 1841 to_intel_crtc_state(crtc->base.state); 1842 struct intel_plane_state *plane_state = 1843 to_intel_plane_state(plane->base.state); 1844 1845 drm_dbg_kms(&dev_priv->drm, 1846 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 1847 plane->base.base.id, plane->base.name, 1848 crtc->base.base.id, crtc->base.name); 1849 1850 intel_set_plane_visible(crtc_state, plane_state, false); 1851 fixup_plane_bitmasks(crtc_state); 1852 crtc_state->data_rate[plane->id] = 0; 1853 crtc_state->min_cdclk[plane->id] = 0; 1854 1855 if (plane->id == PLANE_PRIMARY) 1856 hsw_disable_ips(crtc_state); 1857 1858 /* 1859 * Vblank time updates from the shadow to live plane control register 1860 * are blocked if the memory self-refresh mode is active at that 1861 * moment. So to make sure the plane gets truly disabled, disable 1862 * first the self-refresh mode. The self-refresh enable bit in turn 1863 * will be checked/applied by the HW only at the next frame start 1864 * event which is after the vblank start event, so we need to have a 1865 * wait-for-vblank between disabling the plane and the pipe. 1866 */ 1867 if (HAS_GMCH(dev_priv) && 1868 intel_set_memory_cxsr(dev_priv, false)) 1869 intel_wait_for_vblank(dev_priv, crtc->pipe); 1870 1871 /* 1872 * Gen2 reports pipe underruns whenever all planes are disabled. 1873 * So disable underrun reporting before all the planes get disabled. 1874 */ 1875 if (DISPLAY_VER(dev_priv) == 2 && !crtc_state->active_planes) 1876 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 1877 1878 intel_disable_plane(plane, crtc_state); 1879 intel_wait_for_vblank(dev_priv, crtc->pipe); 1880 } 1881 1882 static struct i915_vma *intel_dpt_pin(struct i915_address_space *vm) 1883 { 1884 struct drm_i915_private *i915 = vm->i915; 1885 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 1886 intel_wakeref_t wakeref; 1887 struct i915_vma *vma; 1888 void __iomem *iomem; 1889 1890 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 1891 atomic_inc(&i915->gpu_error.pending_fb_pin); 1892 1893 vma = i915_gem_object_ggtt_pin(dpt->obj, NULL, 0, 4096, 1894 HAS_LMEM(i915) ? 0 : PIN_MAPPABLE); 1895 if (IS_ERR(vma)) 1896 goto err; 1897 1898 iomem = i915_vma_pin_iomap(vma); 1899 i915_vma_unpin(vma); 1900 if (IS_ERR(iomem)) { 1901 vma = iomem; 1902 goto err; 1903 } 1904 1905 dpt->vma = vma; 1906 dpt->iomem = iomem; 1907 1908 i915_vma_get(vma); 1909 1910 err: 1911 atomic_dec(&i915->gpu_error.pending_fb_pin); 1912 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 1913 1914 return vma; 1915 } 1916 1917 static void intel_dpt_unpin(struct i915_address_space *vm) 1918 { 1919 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 1920 1921 i915_vma_unpin_iomap(dpt->vma); 1922 i915_vma_put(dpt->vma); 1923 } 1924 1925 static bool 1926 intel_reuse_initial_plane_obj(struct drm_i915_private *i915, 1927 const struct intel_initial_plane_config *plane_config, 1928 struct drm_framebuffer **fb, 1929 struct i915_vma **vma) 1930 { 1931 struct intel_crtc *crtc; 1932 1933 for_each_intel_crtc(&i915->drm, crtc) { 1934 struct intel_crtc_state *crtc_state = 1935 to_intel_crtc_state(crtc->base.state); 1936 struct intel_plane *plane = 1937 to_intel_plane(crtc->base.primary); 1938 struct intel_plane_state *plane_state = 1939 to_intel_plane_state(plane->base.state); 1940 1941 if (!crtc_state->uapi.active) 1942 continue; 1943 1944 if (!plane_state->ggtt_vma) 1945 continue; 1946 1947 if (intel_plane_ggtt_offset(plane_state) == plane_config->base) { 1948 *fb = plane_state->hw.fb; 1949 *vma = plane_state->ggtt_vma; 1950 return true; 1951 } 1952 } 1953 1954 return false; 1955 } 1956 1957 static void 1958 intel_find_initial_plane_obj(struct intel_crtc *crtc, 1959 struct intel_initial_plane_config *plane_config) 1960 { 1961 struct drm_device *dev = crtc->base.dev; 1962 struct drm_i915_private *dev_priv = to_i915(dev); 1963 struct intel_crtc_state *crtc_state = 1964 to_intel_crtc_state(crtc->base.state); 1965 struct intel_plane *plane = 1966 to_intel_plane(crtc->base.primary); 1967 struct intel_plane_state *plane_state = 1968 to_intel_plane_state(plane->base.state); 1969 struct drm_framebuffer *fb; 1970 struct i915_vma *vma; 1971 1972 /* 1973 * TODO: 1974 * Disable planes if get_initial_plane_config() failed. 1975 * Make sure things work if the surface base is not page aligned. 1976 */ 1977 if (!plane_config->fb) 1978 return; 1979 1980 if (intel_alloc_initial_plane_obj(crtc, plane_config)) { 1981 fb = &plane_config->fb->base; 1982 vma = plane_config->vma; 1983 goto valid_fb; 1984 } 1985 1986 /* 1987 * Failed to alloc the obj, check to see if we should share 1988 * an fb with another CRTC instead 1989 */ 1990 if (intel_reuse_initial_plane_obj(dev_priv, plane_config, &fb, &vma)) 1991 goto valid_fb; 1992 1993 /* 1994 * We've failed to reconstruct the BIOS FB. Current display state 1995 * indicates that the primary plane is visible, but has a NULL FB, 1996 * which will lead to problems later if we don't fix it up. The 1997 * simplest solution is to just disable the primary plane now and 1998 * pretend the BIOS never had it enabled. 1999 */ 2000 intel_plane_disable_noatomic(crtc, plane); 2001 if (crtc_state->bigjoiner) { 2002 struct intel_crtc *slave = 2003 crtc_state->bigjoiner_linked_crtc; 2004 intel_plane_disable_noatomic(slave, to_intel_plane(slave->base.primary)); 2005 } 2006 2007 return; 2008 2009 valid_fb: 2010 plane_state->uapi.rotation = plane_config->rotation; 2011 intel_fb_fill_view(to_intel_framebuffer(fb), 2012 plane_state->uapi.rotation, &plane_state->view); 2013 2014 __i915_vma_pin(vma); 2015 plane_state->ggtt_vma = i915_vma_get(vma); 2016 if (intel_plane_uses_fence(plane_state) && 2017 i915_vma_pin_fence(vma) == 0 && vma->fence) 2018 plane_state->flags |= PLANE_HAS_FENCE; 2019 2020 plane_state->uapi.src_x = 0; 2021 plane_state->uapi.src_y = 0; 2022 plane_state->uapi.src_w = fb->width << 16; 2023 plane_state->uapi.src_h = fb->height << 16; 2024 2025 plane_state->uapi.crtc_x = 0; 2026 plane_state->uapi.crtc_y = 0; 2027 plane_state->uapi.crtc_w = fb->width; 2028 plane_state->uapi.crtc_h = fb->height; 2029 2030 if (plane_config->tiling) 2031 dev_priv->preserve_bios_swizzle = true; 2032 2033 plane_state->uapi.fb = fb; 2034 drm_framebuffer_get(fb); 2035 2036 plane_state->uapi.crtc = &crtc->base; 2037 intel_plane_copy_uapi_to_hw_state(plane_state, plane_state, crtc); 2038 2039 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 2040 2041 atomic_or(plane->frontbuffer_bit, &to_intel_frontbuffer(fb)->bits); 2042 } 2043 2044 unsigned int 2045 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state) 2046 { 2047 int x = 0, y = 0; 2048 2049 intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 2050 plane_state->view.color_plane[0].offset, 0); 2051 2052 return y; 2053 } 2054 2055 static int 2056 __intel_display_resume(struct drm_device *dev, 2057 struct drm_atomic_state *state, 2058 struct drm_modeset_acquire_ctx *ctx) 2059 { 2060 struct drm_crtc_state *crtc_state; 2061 struct drm_crtc *crtc; 2062 int i, ret; 2063 2064 intel_modeset_setup_hw_state(dev, ctx); 2065 intel_vga_redisable(to_i915(dev)); 2066 2067 if (!state) 2068 return 0; 2069 2070 /* 2071 * We've duplicated the state, pointers to the old state are invalid. 2072 * 2073 * Don't attempt to use the old state until we commit the duplicated state. 2074 */ 2075 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 2076 /* 2077 * Force recalculation even if we restore 2078 * current state. With fast modeset this may not result 2079 * in a modeset when the state is compatible. 2080 */ 2081 crtc_state->mode_changed = true; 2082 } 2083 2084 /* ignore any reset values/BIOS leftovers in the WM registers */ 2085 if (!HAS_GMCH(to_i915(dev))) 2086 to_intel_atomic_state(state)->skip_intermediate_wm = true; 2087 2088 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 2089 2090 drm_WARN_ON(dev, ret == -EDEADLK); 2091 return ret; 2092 } 2093 2094 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 2095 { 2096 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 2097 intel_has_gpu_reset(&dev_priv->gt)); 2098 } 2099 2100 void intel_display_prepare_reset(struct drm_i915_private *dev_priv) 2101 { 2102 struct drm_device *dev = &dev_priv->drm; 2103 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 2104 struct drm_atomic_state *state; 2105 int ret; 2106 2107 if (!HAS_DISPLAY(dev_priv)) 2108 return; 2109 2110 /* reset doesn't touch the display */ 2111 if (!dev_priv->params.force_reset_modeset_test && 2112 !gpu_reset_clobbers_display(dev_priv)) 2113 return; 2114 2115 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 2116 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 2117 smp_mb__after_atomic(); 2118 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 2119 2120 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 2121 drm_dbg_kms(&dev_priv->drm, 2122 "Modeset potentially stuck, unbreaking through wedging\n"); 2123 intel_gt_set_wedged(&dev_priv->gt); 2124 } 2125 2126 /* 2127 * Need mode_config.mutex so that we don't 2128 * trample ongoing ->detect() and whatnot. 2129 */ 2130 mutex_lock(&dev->mode_config.mutex); 2131 drm_modeset_acquire_init(ctx, 0); 2132 while (1) { 2133 ret = drm_modeset_lock_all_ctx(dev, ctx); 2134 if (ret != -EDEADLK) 2135 break; 2136 2137 drm_modeset_backoff(ctx); 2138 } 2139 /* 2140 * Disabling the crtcs gracefully seems nicer. Also the 2141 * g33 docs say we should at least disable all the planes. 2142 */ 2143 state = drm_atomic_helper_duplicate_state(dev, ctx); 2144 if (IS_ERR(state)) { 2145 ret = PTR_ERR(state); 2146 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n", 2147 ret); 2148 return; 2149 } 2150 2151 ret = drm_atomic_helper_disable_all(dev, ctx); 2152 if (ret) { 2153 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 2154 ret); 2155 drm_atomic_state_put(state); 2156 return; 2157 } 2158 2159 dev_priv->modeset_restore_state = state; 2160 state->acquire_ctx = ctx; 2161 } 2162 2163 void intel_display_finish_reset(struct drm_i915_private *dev_priv) 2164 { 2165 struct drm_device *dev = &dev_priv->drm; 2166 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 2167 struct drm_atomic_state *state; 2168 int ret; 2169 2170 if (!HAS_DISPLAY(dev_priv)) 2171 return; 2172 2173 /* reset doesn't touch the display */ 2174 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 2175 return; 2176 2177 state = fetch_and_zero(&dev_priv->modeset_restore_state); 2178 if (!state) 2179 goto unlock; 2180 2181 /* reset doesn't touch the display */ 2182 if (!gpu_reset_clobbers_display(dev_priv)) { 2183 /* for testing only restore the display */ 2184 ret = __intel_display_resume(dev, state, ctx); 2185 if (ret) 2186 drm_err(&dev_priv->drm, 2187 "Restoring old state failed with %i\n", ret); 2188 } else { 2189 /* 2190 * The display has been reset as well, 2191 * so need a full re-initialization. 2192 */ 2193 intel_pps_unlock_regs_wa(dev_priv); 2194 intel_modeset_init_hw(dev_priv); 2195 intel_init_clock_gating(dev_priv); 2196 intel_hpd_init(dev_priv); 2197 2198 ret = __intel_display_resume(dev, state, ctx); 2199 if (ret) 2200 drm_err(&dev_priv->drm, 2201 "Restoring old state failed with %i\n", ret); 2202 2203 intel_hpd_poll_disable(dev_priv); 2204 } 2205 2206 drm_atomic_state_put(state); 2207 unlock: 2208 drm_modeset_drop_locks(ctx); 2209 drm_modeset_acquire_fini(ctx); 2210 mutex_unlock(&dev->mode_config.mutex); 2211 2212 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 2213 } 2214 2215 static bool underrun_recovery_supported(const struct intel_crtc_state *crtc_state) 2216 { 2217 if (crtc_state->pch_pfit.enabled && 2218 (crtc_state->pipe_src_w > drm_rect_width(&crtc_state->pch_pfit.dst) || 2219 crtc_state->pipe_src_h > drm_rect_height(&crtc_state->pch_pfit.dst) || 2220 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)) 2221 return false; 2222 2223 if (crtc_state->dsc.compression_enable) 2224 return false; 2225 2226 if (crtc_state->has_psr2) 2227 return false; 2228 2229 if (crtc_state->splitter.enable) 2230 return false; 2231 2232 return true; 2233 } 2234 2235 static void icl_set_pipe_chicken(const struct intel_crtc_state *crtc_state) 2236 { 2237 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2238 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2239 enum pipe pipe = crtc->pipe; 2240 u32 tmp; 2241 2242 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe)); 2243 2244 /* 2245 * Display WA #1153: icl 2246 * enable hardware to bypass the alpha math 2247 * and rounding for per-pixel values 00 and 0xff 2248 */ 2249 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 2250 /* 2251 * Display WA # 1605353570: icl 2252 * Set the pixel rounding bit to 1 for allowing 2253 * passthrough of Frame buffer pixels unmodified 2254 * across pipe 2255 */ 2256 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 2257 2258 if (IS_DG2(dev_priv)) { 2259 /* 2260 * Underrun recovery must always be disabled on DG2. However 2261 * the chicken bit meaning is inverted compared to other 2262 * platforms. 2263 */ 2264 tmp &= ~UNDERRUN_RECOVERY_ENABLE_DG2; 2265 } else if (DISPLAY_VER(dev_priv) >= 13) { 2266 if (underrun_recovery_supported(crtc_state)) 2267 tmp &= ~UNDERRUN_RECOVERY_DISABLE_ADLP; 2268 else 2269 tmp |= UNDERRUN_RECOVERY_DISABLE_ADLP; 2270 } 2271 2272 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp); 2273 } 2274 2275 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 2276 { 2277 struct drm_crtc *crtc; 2278 bool cleanup_done; 2279 2280 drm_for_each_crtc(crtc, &dev_priv->drm) { 2281 struct drm_crtc_commit *commit; 2282 spin_lock(&crtc->commit_lock); 2283 commit = list_first_entry_or_null(&crtc->commit_list, 2284 struct drm_crtc_commit, commit_entry); 2285 cleanup_done = commit ? 2286 try_wait_for_completion(&commit->cleanup_done) : true; 2287 spin_unlock(&crtc->commit_lock); 2288 2289 if (cleanup_done) 2290 continue; 2291 2292 drm_crtc_wait_one_vblank(crtc); 2293 2294 return true; 2295 } 2296 2297 return false; 2298 } 2299 2300 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 2301 { 2302 u32 temp; 2303 2304 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE); 2305 2306 mutex_lock(&dev_priv->sb_lock); 2307 2308 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2309 temp |= SBI_SSCCTL_DISABLE; 2310 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 2311 2312 mutex_unlock(&dev_priv->sb_lock); 2313 } 2314 2315 /* Program iCLKIP clock to the desired frequency */ 2316 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 2317 { 2318 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2319 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2320 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 2321 u32 divsel, phaseinc, auxdiv, phasedir = 0; 2322 u32 temp; 2323 2324 lpt_disable_iclkip(dev_priv); 2325 2326 /* The iCLK virtual clock root frequency is in MHz, 2327 * but the adjusted_mode->crtc_clock in in KHz. To get the 2328 * divisors, it is necessary to divide one by another, so we 2329 * convert the virtual clock precision to KHz here for higher 2330 * precision. 2331 */ 2332 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 2333 u32 iclk_virtual_root_freq = 172800 * 1000; 2334 u32 iclk_pi_range = 64; 2335 u32 desired_divisor; 2336 2337 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 2338 clock << auxdiv); 2339 divsel = (desired_divisor / iclk_pi_range) - 2; 2340 phaseinc = desired_divisor % iclk_pi_range; 2341 2342 /* 2343 * Near 20MHz is a corner case which is 2344 * out of range for the 7-bit divisor 2345 */ 2346 if (divsel <= 0x7f) 2347 break; 2348 } 2349 2350 /* This should not happen with any sane values */ 2351 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 2352 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 2353 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) & 2354 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 2355 2356 drm_dbg_kms(&dev_priv->drm, 2357 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 2358 clock, auxdiv, divsel, phasedir, phaseinc); 2359 2360 mutex_lock(&dev_priv->sb_lock); 2361 2362 /* Program SSCDIVINTPHASE6 */ 2363 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 2364 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 2365 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 2366 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 2367 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 2368 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 2369 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 2370 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 2371 2372 /* Program SSCAUXDIV */ 2373 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 2374 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 2375 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 2376 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 2377 2378 /* Enable modulator and associated divider */ 2379 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2380 temp &= ~SBI_SSCCTL_DISABLE; 2381 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 2382 2383 mutex_unlock(&dev_priv->sb_lock); 2384 2385 /* Wait for initialization time */ 2386 udelay(24); 2387 2388 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE); 2389 } 2390 2391 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 2392 { 2393 u32 divsel, phaseinc, auxdiv; 2394 u32 iclk_virtual_root_freq = 172800 * 1000; 2395 u32 iclk_pi_range = 64; 2396 u32 desired_divisor; 2397 u32 temp; 2398 2399 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 2400 return 0; 2401 2402 mutex_lock(&dev_priv->sb_lock); 2403 2404 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2405 if (temp & SBI_SSCCTL_DISABLE) { 2406 mutex_unlock(&dev_priv->sb_lock); 2407 return 0; 2408 } 2409 2410 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 2411 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 2412 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 2413 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 2414 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 2415 2416 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 2417 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 2418 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 2419 2420 mutex_unlock(&dev_priv->sb_lock); 2421 2422 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 2423 2424 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 2425 desired_divisor << auxdiv); 2426 } 2427 2428 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 2429 enum pipe pch_transcoder) 2430 { 2431 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2432 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2433 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2434 2435 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder), 2436 intel_de_read(dev_priv, HTOTAL(cpu_transcoder))); 2437 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder), 2438 intel_de_read(dev_priv, HBLANK(cpu_transcoder))); 2439 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder), 2440 intel_de_read(dev_priv, HSYNC(cpu_transcoder))); 2441 2442 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder), 2443 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 2444 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder), 2445 intel_de_read(dev_priv, VBLANK(cpu_transcoder))); 2446 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder), 2447 intel_de_read(dev_priv, VSYNC(cpu_transcoder))); 2448 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder), 2449 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder))); 2450 } 2451 2452 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) 2453 { 2454 u32 temp; 2455 2456 temp = intel_de_read(dev_priv, SOUTH_CHICKEN1); 2457 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 2458 return; 2459 2460 drm_WARN_ON(&dev_priv->drm, 2461 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) & 2462 FDI_RX_ENABLE); 2463 drm_WARN_ON(&dev_priv->drm, 2464 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) & 2465 FDI_RX_ENABLE); 2466 2467 temp &= ~FDI_BC_BIFURCATION_SELECT; 2468 if (enable) 2469 temp |= FDI_BC_BIFURCATION_SELECT; 2470 2471 drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n", 2472 enable ? "en" : "dis"); 2473 intel_de_write(dev_priv, SOUTH_CHICKEN1, temp); 2474 intel_de_posting_read(dev_priv, SOUTH_CHICKEN1); 2475 } 2476 2477 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) 2478 { 2479 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2480 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2481 2482 switch (crtc->pipe) { 2483 case PIPE_A: 2484 break; 2485 case PIPE_B: 2486 if (crtc_state->fdi_lanes > 2) 2487 cpt_set_fdi_bc_bifurcation(dev_priv, false); 2488 else 2489 cpt_set_fdi_bc_bifurcation(dev_priv, true); 2490 2491 break; 2492 case PIPE_C: 2493 cpt_set_fdi_bc_bifurcation(dev_priv, true); 2494 2495 break; 2496 default: 2497 BUG(); 2498 } 2499 } 2500 2501 /* 2502 * Finds the encoder associated with the given CRTC. This can only be 2503 * used when we know that the CRTC isn't feeding multiple encoders! 2504 */ 2505 struct intel_encoder * 2506 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 2507 const struct intel_crtc_state *crtc_state) 2508 { 2509 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2510 const struct drm_connector_state *connector_state; 2511 const struct drm_connector *connector; 2512 struct intel_encoder *encoder = NULL; 2513 int num_encoders = 0; 2514 int i; 2515 2516 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 2517 if (connector_state->crtc != &crtc->base) 2518 continue; 2519 2520 encoder = to_intel_encoder(connector_state->best_encoder); 2521 num_encoders++; 2522 } 2523 2524 drm_WARN(encoder->base.dev, num_encoders != 1, 2525 "%d encoders for pipe %c\n", 2526 num_encoders, pipe_name(crtc->pipe)); 2527 2528 return encoder; 2529 } 2530 2531 /* 2532 * Enable PCH resources required for PCH ports: 2533 * - PCH PLLs 2534 * - FDI training & RX/TX 2535 * - update transcoder timings 2536 * - DP transcoding bits 2537 * - transcoder 2538 */ 2539 static void ilk_pch_enable(const struct intel_atomic_state *state, 2540 const struct intel_crtc_state *crtc_state) 2541 { 2542 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2543 struct drm_device *dev = crtc->base.dev; 2544 struct drm_i915_private *dev_priv = to_i915(dev); 2545 enum pipe pipe = crtc->pipe; 2546 u32 temp; 2547 2548 assert_pch_transcoder_disabled(dev_priv, pipe); 2549 2550 if (IS_IVYBRIDGE(dev_priv)) 2551 ivb_update_fdi_bc_bifurcation(crtc_state); 2552 2553 /* Write the TU size bits before fdi link training, so that error 2554 * detection works. */ 2555 intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe), 2556 intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 2557 2558 /* For PCH output, training FDI link */ 2559 dev_priv->display.fdi_link_train(crtc, crtc_state); 2560 2561 /* We need to program the right clock selection before writing the pixel 2562 * mutliplier into the DPLL. */ 2563 if (HAS_PCH_CPT(dev_priv)) { 2564 u32 sel; 2565 2566 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 2567 temp |= TRANS_DPLL_ENABLE(pipe); 2568 sel = TRANS_DPLLB_SEL(pipe); 2569 if (crtc_state->shared_dpll == 2570 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 2571 temp |= sel; 2572 else 2573 temp &= ~sel; 2574 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 2575 } 2576 2577 /* XXX: pch pll's can be enabled any time before we enable the PCH 2578 * transcoder, and we actually should do this to not upset any PCH 2579 * transcoder that already use the clock when we share it. 2580 * 2581 * Note that enable_shared_dpll tries to do the right thing, but 2582 * get_shared_dpll unconditionally resets the pll - we need that to have 2583 * the right LVDS enable sequence. */ 2584 intel_enable_shared_dpll(crtc_state); 2585 2586 /* set transcoder timing, panel must allow it */ 2587 assert_panel_unlocked(dev_priv, pipe); 2588 ilk_pch_transcoder_set_timings(crtc_state, pipe); 2589 2590 intel_fdi_normal_train(crtc); 2591 2592 /* For PCH DP, enable TRANS_DP_CTL */ 2593 if (HAS_PCH_CPT(dev_priv) && 2594 intel_crtc_has_dp_encoder(crtc_state)) { 2595 const struct drm_display_mode *adjusted_mode = 2596 &crtc_state->hw.adjusted_mode; 2597 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 2598 i915_reg_t reg = TRANS_DP_CTL(pipe); 2599 enum port port; 2600 2601 temp = intel_de_read(dev_priv, reg); 2602 temp &= ~(TRANS_DP_PORT_SEL_MASK | 2603 TRANS_DP_SYNC_MASK | 2604 TRANS_DP_BPC_MASK); 2605 temp |= TRANS_DP_OUTPUT_ENABLE; 2606 temp |= bpc << 9; /* same format but at 11:9 */ 2607 2608 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2609 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 2610 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2611 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 2612 2613 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 2614 drm_WARN_ON(dev, port < PORT_B || port > PORT_D); 2615 temp |= TRANS_DP_PORT_SEL(port); 2616 2617 intel_de_write(dev_priv, reg, temp); 2618 } 2619 2620 ilk_enable_pch_transcoder(crtc_state); 2621 } 2622 2623 void lpt_pch_enable(const struct intel_crtc_state *crtc_state) 2624 { 2625 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2626 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2627 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2628 2629 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 2630 2631 lpt_program_iclkip(crtc_state); 2632 2633 /* Set transcoder timing. */ 2634 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A); 2635 2636 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 2637 } 2638 2639 static void cpt_verify_modeset(struct drm_i915_private *dev_priv, 2640 enum pipe pipe) 2641 { 2642 i915_reg_t dslreg = PIPEDSL(pipe); 2643 u32 temp; 2644 2645 temp = intel_de_read(dev_priv, dslreg); 2646 udelay(500); 2647 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) { 2648 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) 2649 drm_err(&dev_priv->drm, 2650 "mode set failed: pipe %c stuck\n", 2651 pipe_name(pipe)); 2652 } 2653 } 2654 2655 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state) 2656 { 2657 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2658 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2659 const struct drm_rect *dst = &crtc_state->pch_pfit.dst; 2660 enum pipe pipe = crtc->pipe; 2661 int width = drm_rect_width(dst); 2662 int height = drm_rect_height(dst); 2663 int x = dst->x1; 2664 int y = dst->y1; 2665 2666 if (!crtc_state->pch_pfit.enabled) 2667 return; 2668 2669 /* Force use of hard-coded filter coefficients 2670 * as some pre-programmed values are broken, 2671 * e.g. x201. 2672 */ 2673 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 2674 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 2675 PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); 2676 else 2677 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 2678 PF_FILTER_MED_3x3); 2679 intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y); 2680 intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height); 2681 } 2682 2683 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 2684 { 2685 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2686 struct drm_device *dev = crtc->base.dev; 2687 struct drm_i915_private *dev_priv = to_i915(dev); 2688 2689 if (!crtc_state->ips_enabled) 2690 return; 2691 2692 /* 2693 * We can only enable IPS after we enable a plane and wait for a vblank 2694 * This function is called from post_plane_update, which is run after 2695 * a vblank wait. 2696 */ 2697 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 2698 2699 if (IS_BROADWELL(dev_priv)) { 2700 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 2701 IPS_ENABLE | IPS_PCODE_CONTROL)); 2702 /* Quoting Art Runyan: "its not safe to expect any particular 2703 * value in IPS_CTL bit 31 after enabling IPS through the 2704 * mailbox." Moreover, the mailbox may return a bogus state, 2705 * so we need to just enable it and continue on. 2706 */ 2707 } else { 2708 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE); 2709 /* The bit only becomes 1 in the next vblank, so this wait here 2710 * is essentially intel_wait_for_vblank. If we don't have this 2711 * and don't wait for vblanks until the end of crtc_enable, then 2712 * the HW state readout code will complain that the expected 2713 * IPS_CTL value is not the one we read. */ 2714 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 2715 drm_err(&dev_priv->drm, 2716 "Timed out waiting for IPS enable\n"); 2717 } 2718 } 2719 2720 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 2721 { 2722 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2723 struct drm_device *dev = crtc->base.dev; 2724 struct drm_i915_private *dev_priv = to_i915(dev); 2725 2726 if (!crtc_state->ips_enabled) 2727 return; 2728 2729 if (IS_BROADWELL(dev_priv)) { 2730 drm_WARN_ON(dev, 2731 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 2732 /* 2733 * Wait for PCODE to finish disabling IPS. The BSpec specified 2734 * 42ms timeout value leads to occasional timeouts so use 100ms 2735 * instead. 2736 */ 2737 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 2738 drm_err(&dev_priv->drm, 2739 "Timed out waiting for IPS disable\n"); 2740 } else { 2741 intel_de_write(dev_priv, IPS_CTL, 0); 2742 intel_de_posting_read(dev_priv, IPS_CTL); 2743 } 2744 2745 /* We need to wait for a vblank before we can disable the plane. */ 2746 intel_wait_for_vblank(dev_priv, crtc->pipe); 2747 } 2748 2749 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *crtc) 2750 { 2751 if (crtc->overlay) 2752 (void) intel_overlay_switch_off(crtc->overlay); 2753 2754 /* Let userspace switch the overlay on again. In most cases userspace 2755 * has to recompute where to put it anyway. 2756 */ 2757 } 2758 2759 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 2760 const struct intel_crtc_state *new_crtc_state) 2761 { 2762 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 2763 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2764 2765 if (!old_crtc_state->ips_enabled) 2766 return false; 2767 2768 if (intel_crtc_needs_modeset(new_crtc_state)) 2769 return true; 2770 2771 /* 2772 * Workaround : Do not read or write the pipe palette/gamma data while 2773 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 2774 * 2775 * Disable IPS before we program the LUT. 2776 */ 2777 if (IS_HASWELL(dev_priv) && 2778 (new_crtc_state->uapi.color_mgmt_changed || 2779 new_crtc_state->update_pipe) && 2780 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 2781 return true; 2782 2783 return !new_crtc_state->ips_enabled; 2784 } 2785 2786 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 2787 const struct intel_crtc_state *new_crtc_state) 2788 { 2789 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 2790 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2791 2792 if (!new_crtc_state->ips_enabled) 2793 return false; 2794 2795 if (intel_crtc_needs_modeset(new_crtc_state)) 2796 return true; 2797 2798 /* 2799 * Workaround : Do not read or write the pipe palette/gamma data while 2800 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 2801 * 2802 * Re-enable IPS after the LUT has been programmed. 2803 */ 2804 if (IS_HASWELL(dev_priv) && 2805 (new_crtc_state->uapi.color_mgmt_changed || 2806 new_crtc_state->update_pipe) && 2807 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 2808 return true; 2809 2810 /* 2811 * We can't read out IPS on broadwell, assume the worst and 2812 * forcibly enable IPS on the first fastset. 2813 */ 2814 if (new_crtc_state->update_pipe && old_crtc_state->inherited) 2815 return true; 2816 2817 return !old_crtc_state->ips_enabled; 2818 } 2819 2820 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) 2821 { 2822 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 2823 2824 if (!crtc_state->nv12_planes) 2825 return false; 2826 2827 /* WA Display #0827: Gen9:all */ 2828 if (DISPLAY_VER(dev_priv) == 9) 2829 return true; 2830 2831 return false; 2832 } 2833 2834 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) 2835 { 2836 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 2837 2838 /* Wa_2006604312:icl,ehl */ 2839 if (crtc_state->scaler_state.scaler_users > 0 && DISPLAY_VER(dev_priv) == 11) 2840 return true; 2841 2842 return false; 2843 } 2844 2845 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, 2846 const struct intel_crtc_state *new_crtc_state) 2847 { 2848 return (!old_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)) && 2849 new_crtc_state->active_planes; 2850 } 2851 2852 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, 2853 const struct intel_crtc_state *new_crtc_state) 2854 { 2855 return old_crtc_state->active_planes && 2856 (!new_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)); 2857 } 2858 2859 static void intel_post_plane_update(struct intel_atomic_state *state, 2860 struct intel_crtc *crtc) 2861 { 2862 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2863 const struct intel_crtc_state *old_crtc_state = 2864 intel_atomic_get_old_crtc_state(state, crtc); 2865 const struct intel_crtc_state *new_crtc_state = 2866 intel_atomic_get_new_crtc_state(state, crtc); 2867 enum pipe pipe = crtc->pipe; 2868 2869 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); 2870 2871 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) 2872 intel_update_watermarks(crtc); 2873 2874 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state)) 2875 hsw_enable_ips(new_crtc_state); 2876 2877 intel_fbc_post_update(state, crtc); 2878 2879 if (needs_nv12_wa(old_crtc_state) && 2880 !needs_nv12_wa(new_crtc_state)) 2881 skl_wa_827(dev_priv, pipe, false); 2882 2883 if (needs_scalerclk_wa(old_crtc_state) && 2884 !needs_scalerclk_wa(new_crtc_state)) 2885 icl_wa_scalerclkgating(dev_priv, pipe, false); 2886 } 2887 2888 static void intel_crtc_enable_flip_done(struct intel_atomic_state *state, 2889 struct intel_crtc *crtc) 2890 { 2891 const struct intel_crtc_state *crtc_state = 2892 intel_atomic_get_new_crtc_state(state, crtc); 2893 u8 update_planes = crtc_state->update_planes; 2894 const struct intel_plane_state *plane_state; 2895 struct intel_plane *plane; 2896 int i; 2897 2898 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 2899 if (plane->enable_flip_done && 2900 plane->pipe == crtc->pipe && 2901 update_planes & BIT(plane->id)) 2902 plane->enable_flip_done(plane); 2903 } 2904 } 2905 2906 static void intel_crtc_disable_flip_done(struct intel_atomic_state *state, 2907 struct intel_crtc *crtc) 2908 { 2909 const struct intel_crtc_state *crtc_state = 2910 intel_atomic_get_new_crtc_state(state, crtc); 2911 u8 update_planes = crtc_state->update_planes; 2912 const struct intel_plane_state *plane_state; 2913 struct intel_plane *plane; 2914 int i; 2915 2916 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 2917 if (plane->disable_flip_done && 2918 plane->pipe == crtc->pipe && 2919 update_planes & BIT(plane->id)) 2920 plane->disable_flip_done(plane); 2921 } 2922 } 2923 2924 static void intel_crtc_async_flip_disable_wa(struct intel_atomic_state *state, 2925 struct intel_crtc *crtc) 2926 { 2927 struct drm_i915_private *i915 = to_i915(state->base.dev); 2928 const struct intel_crtc_state *old_crtc_state = 2929 intel_atomic_get_old_crtc_state(state, crtc); 2930 const struct intel_crtc_state *new_crtc_state = 2931 intel_atomic_get_new_crtc_state(state, crtc); 2932 u8 update_planes = new_crtc_state->update_planes; 2933 const struct intel_plane_state *old_plane_state; 2934 struct intel_plane *plane; 2935 bool need_vbl_wait = false; 2936 int i; 2937 2938 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 2939 if (plane->need_async_flip_disable_wa && 2940 plane->pipe == crtc->pipe && 2941 update_planes & BIT(plane->id)) { 2942 /* 2943 * Apart from the async flip bit we want to 2944 * preserve the old state for the plane. 2945 */ 2946 plane->async_flip(plane, old_crtc_state, 2947 old_plane_state, false); 2948 need_vbl_wait = true; 2949 } 2950 } 2951 2952 if (need_vbl_wait) 2953 intel_wait_for_vblank(i915, crtc->pipe); 2954 } 2955 2956 static void intel_pre_plane_update(struct intel_atomic_state *state, 2957 struct intel_crtc *crtc) 2958 { 2959 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2960 const struct intel_crtc_state *old_crtc_state = 2961 intel_atomic_get_old_crtc_state(state, crtc); 2962 const struct intel_crtc_state *new_crtc_state = 2963 intel_atomic_get_new_crtc_state(state, crtc); 2964 enum pipe pipe = crtc->pipe; 2965 2966 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state)) 2967 hsw_disable_ips(old_crtc_state); 2968 2969 if (intel_fbc_pre_update(state, crtc)) 2970 intel_wait_for_vblank(dev_priv, pipe); 2971 2972 /* Display WA 827 */ 2973 if (!needs_nv12_wa(old_crtc_state) && 2974 needs_nv12_wa(new_crtc_state)) 2975 skl_wa_827(dev_priv, pipe, true); 2976 2977 /* Wa_2006604312:icl,ehl */ 2978 if (!needs_scalerclk_wa(old_crtc_state) && 2979 needs_scalerclk_wa(new_crtc_state)) 2980 icl_wa_scalerclkgating(dev_priv, pipe, true); 2981 2982 /* 2983 * Vblank time updates from the shadow to live plane control register 2984 * are blocked if the memory self-refresh mode is active at that 2985 * moment. So to make sure the plane gets truly disabled, disable 2986 * first the self-refresh mode. The self-refresh enable bit in turn 2987 * will be checked/applied by the HW only at the next frame start 2988 * event which is after the vblank start event, so we need to have a 2989 * wait-for-vblank between disabling the plane and the pipe. 2990 */ 2991 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active && 2992 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 2993 intel_wait_for_vblank(dev_priv, pipe); 2994 2995 /* 2996 * IVB workaround: must disable low power watermarks for at least 2997 * one frame before enabling scaling. LP watermarks can be re-enabled 2998 * when scaling is disabled. 2999 * 3000 * WaCxSRDisabledForSpriteScaling:ivb 3001 */ 3002 if (old_crtc_state->hw.active && 3003 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv)) 3004 intel_wait_for_vblank(dev_priv, pipe); 3005 3006 /* 3007 * If we're doing a modeset we don't need to do any 3008 * pre-vblank watermark programming here. 3009 */ 3010 if (!intel_crtc_needs_modeset(new_crtc_state)) { 3011 /* 3012 * For platforms that support atomic watermarks, program the 3013 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 3014 * will be the intermediate values that are safe for both pre- and 3015 * post- vblank; when vblank happens, the 'active' values will be set 3016 * to the final 'target' values and we'll do this again to get the 3017 * optimal watermarks. For gen9+ platforms, the values we program here 3018 * will be the final target values which will get automatically latched 3019 * at vblank time; no further programming will be necessary. 3020 * 3021 * If a platform hasn't been transitioned to atomic watermarks yet, 3022 * we'll continue to update watermarks the old way, if flags tell 3023 * us to. 3024 */ 3025 if (dev_priv->display.initial_watermarks) 3026 dev_priv->display.initial_watermarks(state, crtc); 3027 else if (new_crtc_state->update_wm_pre) 3028 intel_update_watermarks(crtc); 3029 } 3030 3031 /* 3032 * Gen2 reports pipe underruns whenever all planes are disabled. 3033 * So disable underrun reporting before all the planes get disabled. 3034 * 3035 * We do this after .initial_watermarks() so that we have a 3036 * chance of catching underruns with the intermediate watermarks 3037 * vs. the old plane configuration. 3038 */ 3039 if (DISPLAY_VER(dev_priv) == 2 && planes_disabling(old_crtc_state, new_crtc_state)) 3040 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3041 3042 /* 3043 * WA for platforms where async address update enable bit 3044 * is double buffered and only latched at start of vblank. 3045 */ 3046 if (old_crtc_state->uapi.async_flip && !new_crtc_state->uapi.async_flip) 3047 intel_crtc_async_flip_disable_wa(state, crtc); 3048 } 3049 3050 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 3051 struct intel_crtc *crtc) 3052 { 3053 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3054 const struct intel_crtc_state *new_crtc_state = 3055 intel_atomic_get_new_crtc_state(state, crtc); 3056 unsigned int update_mask = new_crtc_state->update_planes; 3057 const struct intel_plane_state *old_plane_state; 3058 struct intel_plane *plane; 3059 unsigned fb_bits = 0; 3060 int i; 3061 3062 intel_crtc_dpms_overlay_disable(crtc); 3063 3064 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 3065 if (crtc->pipe != plane->pipe || 3066 !(update_mask & BIT(plane->id))) 3067 continue; 3068 3069 intel_disable_plane(plane, new_crtc_state); 3070 3071 if (old_plane_state->uapi.visible) 3072 fb_bits |= plane->frontbuffer_bit; 3073 } 3074 3075 intel_frontbuffer_flip(dev_priv, fb_bits); 3076 } 3077 3078 /* 3079 * intel_connector_primary_encoder - get the primary encoder for a connector 3080 * @connector: connector for which to return the encoder 3081 * 3082 * Returns the primary encoder for a connector. There is a 1:1 mapping from 3083 * all connectors to their encoder, except for DP-MST connectors which have 3084 * both a virtual and a primary encoder. These DP-MST primary encoders can be 3085 * pointed to by as many DP-MST connectors as there are pipes. 3086 */ 3087 static struct intel_encoder * 3088 intel_connector_primary_encoder(struct intel_connector *connector) 3089 { 3090 struct intel_encoder *encoder; 3091 3092 if (connector->mst_port) 3093 return &dp_to_dig_port(connector->mst_port)->base; 3094 3095 encoder = intel_attached_encoder(connector); 3096 drm_WARN_ON(connector->base.dev, !encoder); 3097 3098 return encoder; 3099 } 3100 3101 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 3102 { 3103 struct drm_connector_state *new_conn_state; 3104 struct drm_connector *connector; 3105 int i; 3106 3107 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 3108 i) { 3109 struct intel_connector *intel_connector; 3110 struct intel_encoder *encoder; 3111 struct intel_crtc *crtc; 3112 3113 if (!intel_connector_needs_modeset(state, connector)) 3114 continue; 3115 3116 intel_connector = to_intel_connector(connector); 3117 encoder = intel_connector_primary_encoder(intel_connector); 3118 if (!encoder->update_prepare) 3119 continue; 3120 3121 crtc = new_conn_state->crtc ? 3122 to_intel_crtc(new_conn_state->crtc) : NULL; 3123 encoder->update_prepare(state, encoder, crtc); 3124 } 3125 } 3126 3127 static void intel_encoders_update_complete(struct intel_atomic_state *state) 3128 { 3129 struct drm_connector_state *new_conn_state; 3130 struct drm_connector *connector; 3131 int i; 3132 3133 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 3134 i) { 3135 struct intel_connector *intel_connector; 3136 struct intel_encoder *encoder; 3137 struct intel_crtc *crtc; 3138 3139 if (!intel_connector_needs_modeset(state, connector)) 3140 continue; 3141 3142 intel_connector = to_intel_connector(connector); 3143 encoder = intel_connector_primary_encoder(intel_connector); 3144 if (!encoder->update_complete) 3145 continue; 3146 3147 crtc = new_conn_state->crtc ? 3148 to_intel_crtc(new_conn_state->crtc) : NULL; 3149 encoder->update_complete(state, encoder, crtc); 3150 } 3151 } 3152 3153 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, 3154 struct intel_crtc *crtc) 3155 { 3156 const struct intel_crtc_state *crtc_state = 3157 intel_atomic_get_new_crtc_state(state, crtc); 3158 const struct drm_connector_state *conn_state; 3159 struct drm_connector *conn; 3160 int i; 3161 3162 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3163 struct intel_encoder *encoder = 3164 to_intel_encoder(conn_state->best_encoder); 3165 3166 if (conn_state->crtc != &crtc->base) 3167 continue; 3168 3169 if (encoder->pre_pll_enable) 3170 encoder->pre_pll_enable(state, encoder, 3171 crtc_state, conn_state); 3172 } 3173 } 3174 3175 static void intel_encoders_pre_enable(struct intel_atomic_state *state, 3176 struct intel_crtc *crtc) 3177 { 3178 const struct intel_crtc_state *crtc_state = 3179 intel_atomic_get_new_crtc_state(state, crtc); 3180 const struct drm_connector_state *conn_state; 3181 struct drm_connector *conn; 3182 int i; 3183 3184 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3185 struct intel_encoder *encoder = 3186 to_intel_encoder(conn_state->best_encoder); 3187 3188 if (conn_state->crtc != &crtc->base) 3189 continue; 3190 3191 if (encoder->pre_enable) 3192 encoder->pre_enable(state, encoder, 3193 crtc_state, conn_state); 3194 } 3195 } 3196 3197 static void intel_encoders_enable(struct intel_atomic_state *state, 3198 struct intel_crtc *crtc) 3199 { 3200 const struct intel_crtc_state *crtc_state = 3201 intel_atomic_get_new_crtc_state(state, crtc); 3202 const struct drm_connector_state *conn_state; 3203 struct drm_connector *conn; 3204 int i; 3205 3206 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3207 struct intel_encoder *encoder = 3208 to_intel_encoder(conn_state->best_encoder); 3209 3210 if (conn_state->crtc != &crtc->base) 3211 continue; 3212 3213 if (encoder->enable) 3214 encoder->enable(state, encoder, 3215 crtc_state, conn_state); 3216 intel_opregion_notify_encoder(encoder, true); 3217 } 3218 } 3219 3220 static void intel_encoders_pre_disable(struct intel_atomic_state *state, 3221 struct intel_crtc *crtc) 3222 { 3223 const struct intel_crtc_state *old_crtc_state = 3224 intel_atomic_get_old_crtc_state(state, crtc); 3225 const struct drm_connector_state *old_conn_state; 3226 struct drm_connector *conn; 3227 int i; 3228 3229 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3230 struct intel_encoder *encoder = 3231 to_intel_encoder(old_conn_state->best_encoder); 3232 3233 if (old_conn_state->crtc != &crtc->base) 3234 continue; 3235 3236 if (encoder->pre_disable) 3237 encoder->pre_disable(state, encoder, old_crtc_state, 3238 old_conn_state); 3239 } 3240 } 3241 3242 static void intel_encoders_disable(struct intel_atomic_state *state, 3243 struct intel_crtc *crtc) 3244 { 3245 const struct intel_crtc_state *old_crtc_state = 3246 intel_atomic_get_old_crtc_state(state, crtc); 3247 const struct drm_connector_state *old_conn_state; 3248 struct drm_connector *conn; 3249 int i; 3250 3251 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3252 struct intel_encoder *encoder = 3253 to_intel_encoder(old_conn_state->best_encoder); 3254 3255 if (old_conn_state->crtc != &crtc->base) 3256 continue; 3257 3258 intel_opregion_notify_encoder(encoder, false); 3259 if (encoder->disable) 3260 encoder->disable(state, encoder, 3261 old_crtc_state, old_conn_state); 3262 } 3263 } 3264 3265 static void intel_encoders_post_disable(struct intel_atomic_state *state, 3266 struct intel_crtc *crtc) 3267 { 3268 const struct intel_crtc_state *old_crtc_state = 3269 intel_atomic_get_old_crtc_state(state, crtc); 3270 const struct drm_connector_state *old_conn_state; 3271 struct drm_connector *conn; 3272 int i; 3273 3274 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3275 struct intel_encoder *encoder = 3276 to_intel_encoder(old_conn_state->best_encoder); 3277 3278 if (old_conn_state->crtc != &crtc->base) 3279 continue; 3280 3281 if (encoder->post_disable) 3282 encoder->post_disable(state, encoder, 3283 old_crtc_state, old_conn_state); 3284 } 3285 } 3286 3287 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, 3288 struct intel_crtc *crtc) 3289 { 3290 const struct intel_crtc_state *old_crtc_state = 3291 intel_atomic_get_old_crtc_state(state, crtc); 3292 const struct drm_connector_state *old_conn_state; 3293 struct drm_connector *conn; 3294 int i; 3295 3296 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3297 struct intel_encoder *encoder = 3298 to_intel_encoder(old_conn_state->best_encoder); 3299 3300 if (old_conn_state->crtc != &crtc->base) 3301 continue; 3302 3303 if (encoder->post_pll_disable) 3304 encoder->post_pll_disable(state, encoder, 3305 old_crtc_state, old_conn_state); 3306 } 3307 } 3308 3309 static void intel_encoders_update_pipe(struct intel_atomic_state *state, 3310 struct intel_crtc *crtc) 3311 { 3312 const struct intel_crtc_state *crtc_state = 3313 intel_atomic_get_new_crtc_state(state, crtc); 3314 const struct drm_connector_state *conn_state; 3315 struct drm_connector *conn; 3316 int i; 3317 3318 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3319 struct intel_encoder *encoder = 3320 to_intel_encoder(conn_state->best_encoder); 3321 3322 if (conn_state->crtc != &crtc->base) 3323 continue; 3324 3325 if (encoder->update_pipe) 3326 encoder->update_pipe(state, encoder, 3327 crtc_state, conn_state); 3328 } 3329 } 3330 3331 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 3332 { 3333 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3334 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 3335 3336 plane->disable_plane(plane, crtc_state); 3337 } 3338 3339 static void ilk_crtc_enable(struct intel_atomic_state *state, 3340 struct intel_crtc *crtc) 3341 { 3342 const struct intel_crtc_state *new_crtc_state = 3343 intel_atomic_get_new_crtc_state(state, crtc); 3344 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3345 enum pipe pipe = crtc->pipe; 3346 3347 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3348 return; 3349 3350 /* 3351 * Sometimes spurious CPU pipe underruns happen during FDI 3352 * training, at least with VGA+HDMI cloning. Suppress them. 3353 * 3354 * On ILK we get an occasional spurious CPU pipe underruns 3355 * between eDP port A enable and vdd enable. Also PCH port 3356 * enable seems to result in the occasional CPU pipe underrun. 3357 * 3358 * Spurious PCH underruns also occur during PCH enabling. 3359 */ 3360 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3361 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 3362 3363 if (new_crtc_state->has_pch_encoder) 3364 intel_prepare_shared_dpll(new_crtc_state); 3365 3366 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3367 intel_dp_set_m_n(new_crtc_state, M1_N1); 3368 3369 intel_set_transcoder_timings(new_crtc_state); 3370 intel_set_pipe_src_size(new_crtc_state); 3371 3372 if (new_crtc_state->has_pch_encoder) 3373 intel_cpu_transcoder_set_m_n(new_crtc_state, 3374 &new_crtc_state->fdi_m_n, NULL); 3375 3376 ilk_set_pipeconf(new_crtc_state); 3377 3378 crtc->active = true; 3379 3380 intel_encoders_pre_enable(state, crtc); 3381 3382 if (new_crtc_state->has_pch_encoder) { 3383 /* Note: FDI PLL enabling _must_ be done before we enable the 3384 * cpu pipes, hence this is separate from all the other fdi/pch 3385 * enabling. */ 3386 ilk_fdi_pll_enable(new_crtc_state); 3387 } else { 3388 assert_fdi_tx_disabled(dev_priv, pipe); 3389 assert_fdi_rx_disabled(dev_priv, pipe); 3390 } 3391 3392 ilk_pfit_enable(new_crtc_state); 3393 3394 /* 3395 * On ILK+ LUT must be loaded before the pipe is running but with 3396 * clocks enabled 3397 */ 3398 intel_color_load_luts(new_crtc_state); 3399 intel_color_commit(new_crtc_state); 3400 /* update DSPCNTR to configure gamma for pipe bottom color */ 3401 intel_disable_primary_plane(new_crtc_state); 3402 3403 if (dev_priv->display.initial_watermarks) 3404 dev_priv->display.initial_watermarks(state, crtc); 3405 intel_enable_pipe(new_crtc_state); 3406 3407 if (new_crtc_state->has_pch_encoder) 3408 ilk_pch_enable(state, new_crtc_state); 3409 3410 intel_crtc_vblank_on(new_crtc_state); 3411 3412 intel_encoders_enable(state, crtc); 3413 3414 if (HAS_PCH_CPT(dev_priv)) 3415 cpt_verify_modeset(dev_priv, pipe); 3416 3417 /* 3418 * Must wait for vblank to avoid spurious PCH FIFO underruns. 3419 * And a second vblank wait is needed at least on ILK with 3420 * some interlaced HDMI modes. Let's do the double wait always 3421 * in case there are more corner cases we don't know about. 3422 */ 3423 if (new_crtc_state->has_pch_encoder) { 3424 intel_wait_for_vblank(dev_priv, pipe); 3425 intel_wait_for_vblank(dev_priv, pipe); 3426 } 3427 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3428 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 3429 } 3430 3431 /* IPS only exists on ULT machines and is tied to pipe A. */ 3432 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 3433 { 3434 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 3435 } 3436 3437 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 3438 enum pipe pipe, bool apply) 3439 { 3440 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)); 3441 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 3442 3443 if (apply) 3444 val |= mask; 3445 else 3446 val &= ~mask; 3447 3448 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val); 3449 } 3450 3451 static void icl_pipe_mbus_enable(struct intel_crtc *crtc, bool joined_mbus) 3452 { 3453 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3454 enum pipe pipe = crtc->pipe; 3455 u32 val; 3456 3457 /* Wa_22010947358:adl-p */ 3458 if (IS_ALDERLAKE_P(dev_priv)) 3459 val = joined_mbus ? MBUS_DBOX_A_CREDIT(6) : MBUS_DBOX_A_CREDIT(4); 3460 else 3461 val = MBUS_DBOX_A_CREDIT(2); 3462 3463 if (DISPLAY_VER(dev_priv) >= 12) { 3464 val |= MBUS_DBOX_BW_CREDIT(2); 3465 val |= MBUS_DBOX_B_CREDIT(12); 3466 } else { 3467 val |= MBUS_DBOX_BW_CREDIT(1); 3468 val |= MBUS_DBOX_B_CREDIT(8); 3469 } 3470 3471 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val); 3472 } 3473 3474 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) 3475 { 3476 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3477 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3478 3479 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe), 3480 HSW_LINETIME(crtc_state->linetime) | 3481 HSW_IPS_LINETIME(crtc_state->ips_linetime)); 3482 } 3483 3484 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) 3485 { 3486 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3487 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3488 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder); 3489 u32 val; 3490 3491 val = intel_de_read(dev_priv, reg); 3492 val &= ~HSW_FRAME_START_DELAY_MASK; 3493 val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 3494 intel_de_write(dev_priv, reg, val); 3495 } 3496 3497 static void icl_ddi_bigjoiner_pre_enable(struct intel_atomic_state *state, 3498 const struct intel_crtc_state *crtc_state) 3499 { 3500 struct intel_crtc *master = to_intel_crtc(crtc_state->uapi.crtc); 3501 struct drm_i915_private *dev_priv = to_i915(master->base.dev); 3502 struct intel_crtc_state *master_crtc_state; 3503 struct drm_connector_state *conn_state; 3504 struct drm_connector *conn; 3505 struct intel_encoder *encoder = NULL; 3506 int i; 3507 3508 if (crtc_state->bigjoiner_slave) 3509 master = crtc_state->bigjoiner_linked_crtc; 3510 3511 master_crtc_state = intel_atomic_get_new_crtc_state(state, master); 3512 3513 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3514 if (conn_state->crtc != &master->base) 3515 continue; 3516 3517 encoder = to_intel_encoder(conn_state->best_encoder); 3518 break; 3519 } 3520 3521 if (!crtc_state->bigjoiner_slave) { 3522 /* need to enable VDSC, which we skipped in pre-enable */ 3523 intel_dsc_enable(encoder, crtc_state); 3524 } else { 3525 /* 3526 * Enable sequence steps 1-7 on bigjoiner master 3527 */ 3528 intel_encoders_pre_pll_enable(state, master); 3529 if (master_crtc_state->shared_dpll) 3530 intel_enable_shared_dpll(master_crtc_state); 3531 intel_encoders_pre_enable(state, master); 3532 3533 /* and DSC on slave */ 3534 intel_dsc_enable(NULL, crtc_state); 3535 } 3536 3537 if (DISPLAY_VER(dev_priv) >= 13) 3538 intel_uncompressed_joiner_enable(crtc_state); 3539 } 3540 3541 static void hsw_crtc_enable(struct intel_atomic_state *state, 3542 struct intel_crtc *crtc) 3543 { 3544 const struct intel_crtc_state *new_crtc_state = 3545 intel_atomic_get_new_crtc_state(state, crtc); 3546 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3547 enum pipe pipe = crtc->pipe, hsw_workaround_pipe; 3548 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 3549 bool psl_clkgate_wa; 3550 3551 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3552 return; 3553 3554 if (!new_crtc_state->bigjoiner) { 3555 intel_encoders_pre_pll_enable(state, crtc); 3556 3557 if (new_crtc_state->shared_dpll) 3558 intel_enable_shared_dpll(new_crtc_state); 3559 3560 intel_encoders_pre_enable(state, crtc); 3561 } else { 3562 icl_ddi_bigjoiner_pre_enable(state, new_crtc_state); 3563 } 3564 3565 intel_set_pipe_src_size(new_crtc_state); 3566 if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 3567 bdw_set_pipemisc(new_crtc_state); 3568 3569 if (!new_crtc_state->bigjoiner_slave && !transcoder_is_dsi(cpu_transcoder)) { 3570 intel_set_transcoder_timings(new_crtc_state); 3571 3572 if (cpu_transcoder != TRANSCODER_EDP) 3573 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder), 3574 new_crtc_state->pixel_multiplier - 1); 3575 3576 if (new_crtc_state->has_pch_encoder) 3577 intel_cpu_transcoder_set_m_n(new_crtc_state, 3578 &new_crtc_state->fdi_m_n, NULL); 3579 3580 hsw_set_frame_start_delay(new_crtc_state); 3581 } 3582 3583 if (!transcoder_is_dsi(cpu_transcoder)) 3584 hsw_set_pipeconf(new_crtc_state); 3585 3586 crtc->active = true; 3587 3588 /* Display WA #1180: WaDisableScalarClockGating: glk */ 3589 psl_clkgate_wa = DISPLAY_VER(dev_priv) == 10 && 3590 new_crtc_state->pch_pfit.enabled; 3591 if (psl_clkgate_wa) 3592 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 3593 3594 if (DISPLAY_VER(dev_priv) >= 9) 3595 skl_pfit_enable(new_crtc_state); 3596 else 3597 ilk_pfit_enable(new_crtc_state); 3598 3599 /* 3600 * On ILK+ LUT must be loaded before the pipe is running but with 3601 * clocks enabled 3602 */ 3603 intel_color_load_luts(new_crtc_state); 3604 intel_color_commit(new_crtc_state); 3605 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 3606 if (DISPLAY_VER(dev_priv) < 9) 3607 intel_disable_primary_plane(new_crtc_state); 3608 3609 hsw_set_linetime_wm(new_crtc_state); 3610 3611 if (DISPLAY_VER(dev_priv) >= 11) 3612 icl_set_pipe_chicken(new_crtc_state); 3613 3614 if (dev_priv->display.initial_watermarks) 3615 dev_priv->display.initial_watermarks(state, crtc); 3616 3617 if (DISPLAY_VER(dev_priv) >= 11) { 3618 const struct intel_dbuf_state *dbuf_state = 3619 intel_atomic_get_new_dbuf_state(state); 3620 3621 icl_pipe_mbus_enable(crtc, dbuf_state->joined_mbus); 3622 } 3623 3624 if (new_crtc_state->bigjoiner_slave) 3625 intel_crtc_vblank_on(new_crtc_state); 3626 3627 intel_encoders_enable(state, crtc); 3628 3629 if (psl_clkgate_wa) { 3630 intel_wait_for_vblank(dev_priv, pipe); 3631 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 3632 } 3633 3634 /* If we change the relative order between pipe/planes enabling, we need 3635 * to change the workaround. */ 3636 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe; 3637 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 3638 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 3639 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 3640 } 3641 } 3642 3643 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state) 3644 { 3645 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 3646 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3647 enum pipe pipe = crtc->pipe; 3648 3649 /* To avoid upsetting the power well on haswell only disable the pfit if 3650 * it's in use. The hw state code will make sure we get this right. */ 3651 if (!old_crtc_state->pch_pfit.enabled) 3652 return; 3653 3654 intel_de_write(dev_priv, PF_CTL(pipe), 0); 3655 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0); 3656 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0); 3657 } 3658 3659 static void ilk_crtc_disable(struct intel_atomic_state *state, 3660 struct intel_crtc *crtc) 3661 { 3662 const struct intel_crtc_state *old_crtc_state = 3663 intel_atomic_get_old_crtc_state(state, crtc); 3664 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3665 enum pipe pipe = crtc->pipe; 3666 3667 /* 3668 * Sometimes spurious CPU pipe underruns happen when the 3669 * pipe is already disabled, but FDI RX/TX is still enabled. 3670 * Happens at least with VGA+HDMI cloning. Suppress them. 3671 */ 3672 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3673 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 3674 3675 intel_encoders_disable(state, crtc); 3676 3677 intel_crtc_vblank_off(old_crtc_state); 3678 3679 intel_disable_pipe(old_crtc_state); 3680 3681 ilk_pfit_disable(old_crtc_state); 3682 3683 if (old_crtc_state->has_pch_encoder) 3684 ilk_fdi_disable(crtc); 3685 3686 intel_encoders_post_disable(state, crtc); 3687 3688 if (old_crtc_state->has_pch_encoder) { 3689 ilk_disable_pch_transcoder(dev_priv, pipe); 3690 3691 if (HAS_PCH_CPT(dev_priv)) { 3692 i915_reg_t reg; 3693 u32 temp; 3694 3695 /* disable TRANS_DP_CTL */ 3696 reg = TRANS_DP_CTL(pipe); 3697 temp = intel_de_read(dev_priv, reg); 3698 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 3699 TRANS_DP_PORT_SEL_MASK); 3700 temp |= TRANS_DP_PORT_SEL_NONE; 3701 intel_de_write(dev_priv, reg, temp); 3702 3703 /* disable DPLL_SEL */ 3704 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 3705 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 3706 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 3707 } 3708 3709 ilk_fdi_pll_disable(crtc); 3710 } 3711 3712 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3713 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 3714 } 3715 3716 static void hsw_crtc_disable(struct intel_atomic_state *state, 3717 struct intel_crtc *crtc) 3718 { 3719 /* 3720 * FIXME collapse everything to one hook. 3721 * Need care with mst->ddi interactions. 3722 */ 3723 intel_encoders_disable(state, crtc); 3724 intel_encoders_post_disable(state, crtc); 3725 } 3726 3727 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 3728 { 3729 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3730 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3731 3732 if (!crtc_state->gmch_pfit.control) 3733 return; 3734 3735 /* 3736 * The panel fitter should only be adjusted whilst the pipe is disabled, 3737 * according to register description and PRM. 3738 */ 3739 drm_WARN_ON(&dev_priv->drm, 3740 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE); 3741 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 3742 3743 intel_de_write(dev_priv, PFIT_PGM_RATIOS, 3744 crtc_state->gmch_pfit.pgm_ratios); 3745 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control); 3746 3747 /* Border color in case we don't scale up to the full screen. Black by 3748 * default, change to something else for debugging. */ 3749 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0); 3750 } 3751 3752 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 3753 { 3754 if (phy == PHY_NONE) 3755 return false; 3756 else if (IS_DG2(dev_priv)) 3757 /* 3758 * DG2 outputs labelled as "combo PHY" in the bspec use 3759 * SNPS PHYs with completely different programming, 3760 * hence we always return false here. 3761 */ 3762 return false; 3763 else if (IS_ALDERLAKE_S(dev_priv)) 3764 return phy <= PHY_E; 3765 else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) 3766 return phy <= PHY_D; 3767 else if (IS_JSL_EHL(dev_priv)) 3768 return phy <= PHY_C; 3769 else if (DISPLAY_VER(dev_priv) >= 11) 3770 return phy <= PHY_B; 3771 else 3772 return false; 3773 } 3774 3775 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 3776 { 3777 if (IS_DG2(dev_priv)) 3778 /* DG2's "TC1" output uses a SNPS PHY */ 3779 return false; 3780 else if (IS_ALDERLAKE_P(dev_priv)) 3781 return phy >= PHY_F && phy <= PHY_I; 3782 else if (IS_TIGERLAKE(dev_priv)) 3783 return phy >= PHY_D && phy <= PHY_I; 3784 else if (IS_ICELAKE(dev_priv)) 3785 return phy >= PHY_C && phy <= PHY_F; 3786 else 3787 return false; 3788 } 3789 3790 bool intel_phy_is_snps(struct drm_i915_private *dev_priv, enum phy phy) 3791 { 3792 if (phy == PHY_NONE) 3793 return false; 3794 else if (IS_DG2(dev_priv)) 3795 /* 3796 * All four "combo" ports and the TC1 port (PHY E) use 3797 * Synopsis PHYs. 3798 */ 3799 return phy <= PHY_E; 3800 3801 return false; 3802 } 3803 3804 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 3805 { 3806 if (DISPLAY_VER(i915) >= 13 && port >= PORT_D_XELPD) 3807 return PHY_D + port - PORT_D_XELPD; 3808 else if (DISPLAY_VER(i915) >= 13 && port >= PORT_TC1) 3809 return PHY_F + port - PORT_TC1; 3810 else if (IS_ALDERLAKE_S(i915) && port >= PORT_TC1) 3811 return PHY_B + port - PORT_TC1; 3812 else if ((IS_DG1(i915) || IS_ROCKETLAKE(i915)) && port >= PORT_TC1) 3813 return PHY_C + port - PORT_TC1; 3814 else if (IS_JSL_EHL(i915) && port == PORT_D) 3815 return PHY_A; 3816 3817 return PHY_A + port - PORT_A; 3818 } 3819 3820 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 3821 { 3822 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 3823 return TC_PORT_NONE; 3824 3825 if (DISPLAY_VER(dev_priv) >= 12) 3826 return TC_PORT_1 + port - PORT_TC1; 3827 else 3828 return TC_PORT_1 + port - PORT_C; 3829 } 3830 3831 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 3832 { 3833 switch (port) { 3834 case PORT_A: 3835 return POWER_DOMAIN_PORT_DDI_A_LANES; 3836 case PORT_B: 3837 return POWER_DOMAIN_PORT_DDI_B_LANES; 3838 case PORT_C: 3839 return POWER_DOMAIN_PORT_DDI_C_LANES; 3840 case PORT_D: 3841 return POWER_DOMAIN_PORT_DDI_D_LANES; 3842 case PORT_E: 3843 return POWER_DOMAIN_PORT_DDI_E_LANES; 3844 case PORT_F: 3845 return POWER_DOMAIN_PORT_DDI_F_LANES; 3846 case PORT_G: 3847 return POWER_DOMAIN_PORT_DDI_G_LANES; 3848 case PORT_H: 3849 return POWER_DOMAIN_PORT_DDI_H_LANES; 3850 case PORT_I: 3851 return POWER_DOMAIN_PORT_DDI_I_LANES; 3852 default: 3853 MISSING_CASE(port); 3854 return POWER_DOMAIN_PORT_OTHER; 3855 } 3856 } 3857 3858 enum intel_display_power_domain 3859 intel_aux_power_domain(struct intel_digital_port *dig_port) 3860 { 3861 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 3862 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 3863 3864 if (intel_phy_is_tc(dev_priv, phy) && 3865 dig_port->tc_mode == TC_PORT_TBT_ALT) { 3866 switch (dig_port->aux_ch) { 3867 case AUX_CH_C: 3868 return POWER_DOMAIN_AUX_C_TBT; 3869 case AUX_CH_D: 3870 return POWER_DOMAIN_AUX_D_TBT; 3871 case AUX_CH_E: 3872 return POWER_DOMAIN_AUX_E_TBT; 3873 case AUX_CH_F: 3874 return POWER_DOMAIN_AUX_F_TBT; 3875 case AUX_CH_G: 3876 return POWER_DOMAIN_AUX_G_TBT; 3877 case AUX_CH_H: 3878 return POWER_DOMAIN_AUX_H_TBT; 3879 case AUX_CH_I: 3880 return POWER_DOMAIN_AUX_I_TBT; 3881 default: 3882 MISSING_CASE(dig_port->aux_ch); 3883 return POWER_DOMAIN_AUX_C_TBT; 3884 } 3885 } 3886 3887 return intel_legacy_aux_to_power_domain(dig_port->aux_ch); 3888 } 3889 3890 /* 3891 * Converts aux_ch to power_domain without caring about TBT ports for that use 3892 * intel_aux_power_domain() 3893 */ 3894 enum intel_display_power_domain 3895 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch) 3896 { 3897 switch (aux_ch) { 3898 case AUX_CH_A: 3899 return POWER_DOMAIN_AUX_A; 3900 case AUX_CH_B: 3901 return POWER_DOMAIN_AUX_B; 3902 case AUX_CH_C: 3903 return POWER_DOMAIN_AUX_C; 3904 case AUX_CH_D: 3905 return POWER_DOMAIN_AUX_D; 3906 case AUX_CH_E: 3907 return POWER_DOMAIN_AUX_E; 3908 case AUX_CH_F: 3909 return POWER_DOMAIN_AUX_F; 3910 case AUX_CH_G: 3911 return POWER_DOMAIN_AUX_G; 3912 case AUX_CH_H: 3913 return POWER_DOMAIN_AUX_H; 3914 case AUX_CH_I: 3915 return POWER_DOMAIN_AUX_I; 3916 default: 3917 MISSING_CASE(aux_ch); 3918 return POWER_DOMAIN_AUX_A; 3919 } 3920 } 3921 3922 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 3923 { 3924 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3925 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3926 struct drm_encoder *encoder; 3927 enum pipe pipe = crtc->pipe; 3928 u64 mask; 3929 enum transcoder transcoder = crtc_state->cpu_transcoder; 3930 3931 if (!crtc_state->hw.active) 3932 return 0; 3933 3934 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 3935 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); 3936 if (crtc_state->pch_pfit.enabled || 3937 crtc_state->pch_pfit.force_thru) 3938 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 3939 3940 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 3941 crtc_state->uapi.encoder_mask) { 3942 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 3943 3944 mask |= BIT_ULL(intel_encoder->power_domain); 3945 } 3946 3947 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 3948 mask |= BIT_ULL(POWER_DOMAIN_AUDIO_MMIO); 3949 3950 if (crtc_state->shared_dpll) 3951 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 3952 3953 if (crtc_state->dsc.compression_enable) 3954 mask |= BIT_ULL(intel_dsc_power_domain(crtc_state)); 3955 3956 return mask; 3957 } 3958 3959 static u64 3960 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 3961 { 3962 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3963 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3964 enum intel_display_power_domain domain; 3965 u64 domains, new_domains, old_domains; 3966 3967 domains = get_crtc_power_domains(crtc_state); 3968 3969 new_domains = domains & ~crtc->enabled_power_domains.mask; 3970 old_domains = crtc->enabled_power_domains.mask & ~domains; 3971 3972 for_each_power_domain(domain, new_domains) 3973 intel_display_power_get_in_set(dev_priv, 3974 &crtc->enabled_power_domains, 3975 domain); 3976 3977 return old_domains; 3978 } 3979 3980 static void modeset_put_crtc_power_domains(struct intel_crtc *crtc, 3981 u64 domains) 3982 { 3983 intel_display_power_put_mask_in_set(to_i915(crtc->base.dev), 3984 &crtc->enabled_power_domains, 3985 domains); 3986 } 3987 3988 static void valleyview_crtc_enable(struct intel_atomic_state *state, 3989 struct intel_crtc *crtc) 3990 { 3991 const struct intel_crtc_state *new_crtc_state = 3992 intel_atomic_get_new_crtc_state(state, crtc); 3993 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3994 enum pipe pipe = crtc->pipe; 3995 3996 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3997 return; 3998 3999 if (intel_crtc_has_dp_encoder(new_crtc_state)) 4000 intel_dp_set_m_n(new_crtc_state, M1_N1); 4001 4002 intel_set_transcoder_timings(new_crtc_state); 4003 intel_set_pipe_src_size(new_crtc_state); 4004 4005 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 4006 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY); 4007 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0); 4008 } 4009 4010 i9xx_set_pipeconf(new_crtc_state); 4011 4012 crtc->active = true; 4013 4014 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 4015 4016 intel_encoders_pre_pll_enable(state, crtc); 4017 4018 if (IS_CHERRYVIEW(dev_priv)) { 4019 chv_prepare_pll(crtc, new_crtc_state); 4020 chv_enable_pll(crtc, new_crtc_state); 4021 } else { 4022 vlv_prepare_pll(crtc, new_crtc_state); 4023 vlv_enable_pll(crtc, new_crtc_state); 4024 } 4025 4026 intel_encoders_pre_enable(state, crtc); 4027 4028 i9xx_pfit_enable(new_crtc_state); 4029 4030 intel_color_load_luts(new_crtc_state); 4031 intel_color_commit(new_crtc_state); 4032 /* update DSPCNTR to configure gamma for pipe bottom color */ 4033 intel_disable_primary_plane(new_crtc_state); 4034 4035 dev_priv->display.initial_watermarks(state, crtc); 4036 intel_enable_pipe(new_crtc_state); 4037 4038 intel_crtc_vblank_on(new_crtc_state); 4039 4040 intel_encoders_enable(state, crtc); 4041 } 4042 4043 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) 4044 { 4045 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4046 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4047 4048 intel_de_write(dev_priv, FP0(crtc->pipe), 4049 crtc_state->dpll_hw_state.fp0); 4050 intel_de_write(dev_priv, FP1(crtc->pipe), 4051 crtc_state->dpll_hw_state.fp1); 4052 } 4053 4054 static void i9xx_crtc_enable(struct intel_atomic_state *state, 4055 struct intel_crtc *crtc) 4056 { 4057 const struct intel_crtc_state *new_crtc_state = 4058 intel_atomic_get_new_crtc_state(state, crtc); 4059 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4060 enum pipe pipe = crtc->pipe; 4061 4062 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 4063 return; 4064 4065 i9xx_set_pll_dividers(new_crtc_state); 4066 4067 if (intel_crtc_has_dp_encoder(new_crtc_state)) 4068 intel_dp_set_m_n(new_crtc_state, M1_N1); 4069 4070 intel_set_transcoder_timings(new_crtc_state); 4071 intel_set_pipe_src_size(new_crtc_state); 4072 4073 i9xx_set_pipeconf(new_crtc_state); 4074 4075 crtc->active = true; 4076 4077 if (DISPLAY_VER(dev_priv) != 2) 4078 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 4079 4080 intel_encoders_pre_enable(state, crtc); 4081 4082 i9xx_enable_pll(crtc, new_crtc_state); 4083 4084 i9xx_pfit_enable(new_crtc_state); 4085 4086 intel_color_load_luts(new_crtc_state); 4087 intel_color_commit(new_crtc_state); 4088 /* update DSPCNTR to configure gamma for pipe bottom color */ 4089 intel_disable_primary_plane(new_crtc_state); 4090 4091 if (dev_priv->display.initial_watermarks) 4092 dev_priv->display.initial_watermarks(state, crtc); 4093 else 4094 intel_update_watermarks(crtc); 4095 intel_enable_pipe(new_crtc_state); 4096 4097 intel_crtc_vblank_on(new_crtc_state); 4098 4099 intel_encoders_enable(state, crtc); 4100 4101 /* prevents spurious underruns */ 4102 if (DISPLAY_VER(dev_priv) == 2) 4103 intel_wait_for_vblank(dev_priv, pipe); 4104 } 4105 4106 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 4107 { 4108 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 4109 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4110 4111 if (!old_crtc_state->gmch_pfit.control) 4112 return; 4113 4114 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 4115 4116 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n", 4117 intel_de_read(dev_priv, PFIT_CONTROL)); 4118 intel_de_write(dev_priv, PFIT_CONTROL, 0); 4119 } 4120 4121 static void i9xx_crtc_disable(struct intel_atomic_state *state, 4122 struct intel_crtc *crtc) 4123 { 4124 struct intel_crtc_state *old_crtc_state = 4125 intel_atomic_get_old_crtc_state(state, crtc); 4126 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4127 enum pipe pipe = crtc->pipe; 4128 4129 /* 4130 * On gen2 planes are double buffered but the pipe isn't, so we must 4131 * wait for planes to fully turn off before disabling the pipe. 4132 */ 4133 if (DISPLAY_VER(dev_priv) == 2) 4134 intel_wait_for_vblank(dev_priv, pipe); 4135 4136 intel_encoders_disable(state, crtc); 4137 4138 intel_crtc_vblank_off(old_crtc_state); 4139 4140 intel_disable_pipe(old_crtc_state); 4141 4142 i9xx_pfit_disable(old_crtc_state); 4143 4144 intel_encoders_post_disable(state, crtc); 4145 4146 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 4147 if (IS_CHERRYVIEW(dev_priv)) 4148 chv_disable_pll(dev_priv, pipe); 4149 else if (IS_VALLEYVIEW(dev_priv)) 4150 vlv_disable_pll(dev_priv, pipe); 4151 else 4152 i9xx_disable_pll(old_crtc_state); 4153 } 4154 4155 intel_encoders_post_pll_disable(state, crtc); 4156 4157 if (DISPLAY_VER(dev_priv) != 2) 4158 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 4159 4160 if (!dev_priv->display.initial_watermarks) 4161 intel_update_watermarks(crtc); 4162 4163 /* clock the pipe down to 640x480@60 to potentially save power */ 4164 if (IS_I830(dev_priv)) 4165 i830_enable_pipe(dev_priv, pipe); 4166 } 4167 4168 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc, 4169 struct drm_modeset_acquire_ctx *ctx) 4170 { 4171 struct intel_encoder *encoder; 4172 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4173 struct intel_bw_state *bw_state = 4174 to_intel_bw_state(dev_priv->bw_obj.state); 4175 struct intel_cdclk_state *cdclk_state = 4176 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 4177 struct intel_dbuf_state *dbuf_state = 4178 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 4179 struct intel_crtc_state *crtc_state = 4180 to_intel_crtc_state(crtc->base.state); 4181 struct intel_plane *plane; 4182 struct drm_atomic_state *state; 4183 struct intel_crtc_state *temp_crtc_state; 4184 enum pipe pipe = crtc->pipe; 4185 int ret; 4186 4187 if (!crtc_state->hw.active) 4188 return; 4189 4190 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 4191 const struct intel_plane_state *plane_state = 4192 to_intel_plane_state(plane->base.state); 4193 4194 if (plane_state->uapi.visible) 4195 intel_plane_disable_noatomic(crtc, plane); 4196 } 4197 4198 state = drm_atomic_state_alloc(&dev_priv->drm); 4199 if (!state) { 4200 drm_dbg_kms(&dev_priv->drm, 4201 "failed to disable [CRTC:%d:%s], out of memory", 4202 crtc->base.base.id, crtc->base.name); 4203 return; 4204 } 4205 4206 state->acquire_ctx = ctx; 4207 4208 /* Everything's already locked, -EDEADLK can't happen. */ 4209 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc); 4210 ret = drm_atomic_add_affected_connectors(state, &crtc->base); 4211 4212 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret); 4213 4214 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc); 4215 4216 drm_atomic_state_put(state); 4217 4218 drm_dbg_kms(&dev_priv->drm, 4219 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 4220 crtc->base.base.id, crtc->base.name); 4221 4222 crtc->active = false; 4223 crtc->base.enabled = false; 4224 4225 drm_WARN_ON(&dev_priv->drm, 4226 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0); 4227 crtc_state->uapi.active = false; 4228 crtc_state->uapi.connector_mask = 0; 4229 crtc_state->uapi.encoder_mask = 0; 4230 intel_crtc_free_hw_state(crtc_state); 4231 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw)); 4232 4233 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder) 4234 encoder->base.crtc = NULL; 4235 4236 intel_fbc_disable(crtc); 4237 intel_update_watermarks(crtc); 4238 intel_disable_shared_dpll(crtc_state); 4239 4240 intel_display_power_put_all_in_set(dev_priv, &crtc->enabled_power_domains); 4241 4242 dev_priv->active_pipes &= ~BIT(pipe); 4243 cdclk_state->min_cdclk[pipe] = 0; 4244 cdclk_state->min_voltage_level[pipe] = 0; 4245 cdclk_state->active_pipes &= ~BIT(pipe); 4246 4247 dbuf_state->active_pipes &= ~BIT(pipe); 4248 4249 bw_state->data_rate[pipe] = 0; 4250 bw_state->num_active_planes[pipe] = 0; 4251 } 4252 4253 /* 4254 * turn all crtc's off, but do not adjust state 4255 * This has to be paired with a call to intel_modeset_setup_hw_state. 4256 */ 4257 int intel_display_suspend(struct drm_device *dev) 4258 { 4259 struct drm_i915_private *dev_priv = to_i915(dev); 4260 struct drm_atomic_state *state; 4261 int ret; 4262 4263 if (!HAS_DISPLAY(dev_priv)) 4264 return 0; 4265 4266 state = drm_atomic_helper_suspend(dev); 4267 ret = PTR_ERR_OR_ZERO(state); 4268 if (ret) 4269 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 4270 ret); 4271 else 4272 dev_priv->modeset_restore_state = state; 4273 return ret; 4274 } 4275 4276 void intel_encoder_destroy(struct drm_encoder *encoder) 4277 { 4278 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 4279 4280 drm_encoder_cleanup(encoder); 4281 kfree(intel_encoder); 4282 } 4283 4284 /* Cross check the actual hw state with our own modeset state tracking (and it's 4285 * internal consistency). */ 4286 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 4287 struct drm_connector_state *conn_state) 4288 { 4289 struct intel_connector *connector = to_intel_connector(conn_state->connector); 4290 struct drm_i915_private *i915 = to_i915(connector->base.dev); 4291 4292 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 4293 connector->base.base.id, connector->base.name); 4294 4295 if (connector->get_hw_state(connector)) { 4296 struct intel_encoder *encoder = intel_attached_encoder(connector); 4297 4298 I915_STATE_WARN(!crtc_state, 4299 "connector enabled without attached crtc\n"); 4300 4301 if (!crtc_state) 4302 return; 4303 4304 I915_STATE_WARN(!crtc_state->hw.active, 4305 "connector is active, but attached crtc isn't\n"); 4306 4307 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 4308 return; 4309 4310 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 4311 "atomic encoder doesn't match attached encoder\n"); 4312 4313 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 4314 "attached encoder crtc differs from connector crtc\n"); 4315 } else { 4316 I915_STATE_WARN(crtc_state && crtc_state->hw.active, 4317 "attached crtc is active, but connector isn't\n"); 4318 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 4319 "best encoder set without crtc!\n"); 4320 } 4321 } 4322 4323 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 4324 { 4325 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4326 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4327 4328 /* IPS only exists on ULT machines and is tied to pipe A. */ 4329 if (!hsw_crtc_supports_ips(crtc)) 4330 return false; 4331 4332 if (!dev_priv->params.enable_ips) 4333 return false; 4334 4335 if (crtc_state->pipe_bpp > 24) 4336 return false; 4337 4338 /* 4339 * We compare against max which means we must take 4340 * the increased cdclk requirement into account when 4341 * calculating the new cdclk. 4342 * 4343 * Should measure whether using a lower cdclk w/o IPS 4344 */ 4345 if (IS_BROADWELL(dev_priv) && 4346 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 4347 return false; 4348 4349 return true; 4350 } 4351 4352 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 4353 { 4354 struct drm_i915_private *dev_priv = 4355 to_i915(crtc_state->uapi.crtc->dev); 4356 struct intel_atomic_state *state = 4357 to_intel_atomic_state(crtc_state->uapi.state); 4358 4359 crtc_state->ips_enabled = false; 4360 4361 if (!hsw_crtc_state_ips_capable(crtc_state)) 4362 return 0; 4363 4364 /* 4365 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 4366 * enabled and disabled dynamically based on package C states, 4367 * user space can't make reliable use of the CRCs, so let's just 4368 * completely disable it. 4369 */ 4370 if (crtc_state->crc_enabled) 4371 return 0; 4372 4373 /* IPS should be fine as long as at least one plane is enabled. */ 4374 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 4375 return 0; 4376 4377 if (IS_BROADWELL(dev_priv)) { 4378 const struct intel_cdclk_state *cdclk_state; 4379 4380 cdclk_state = intel_atomic_get_cdclk_state(state); 4381 if (IS_ERR(cdclk_state)) 4382 return PTR_ERR(cdclk_state); 4383 4384 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 4385 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100) 4386 return 0; 4387 } 4388 4389 crtc_state->ips_enabled = true; 4390 4391 return 0; 4392 } 4393 4394 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 4395 { 4396 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4397 4398 /* GDG double wide on either pipe, otherwise pipe A only */ 4399 return DISPLAY_VER(dev_priv) < 4 && 4400 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 4401 } 4402 4403 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state) 4404 { 4405 u32 pixel_rate = crtc_state->hw.pipe_mode.crtc_clock; 4406 struct drm_rect src; 4407 4408 /* 4409 * We only use IF-ID interlacing. If we ever use 4410 * PF-ID we'll need to adjust the pixel_rate here. 4411 */ 4412 4413 if (!crtc_state->pch_pfit.enabled) 4414 return pixel_rate; 4415 4416 drm_rect_init(&src, 0, 0, 4417 crtc_state->pipe_src_w << 16, 4418 crtc_state->pipe_src_h << 16); 4419 4420 return intel_adjusted_rate(&src, &crtc_state->pch_pfit.dst, 4421 pixel_rate); 4422 } 4423 4424 static void intel_mode_from_crtc_timings(struct drm_display_mode *mode, 4425 const struct drm_display_mode *timings) 4426 { 4427 mode->hdisplay = timings->crtc_hdisplay; 4428 mode->htotal = timings->crtc_htotal; 4429 mode->hsync_start = timings->crtc_hsync_start; 4430 mode->hsync_end = timings->crtc_hsync_end; 4431 4432 mode->vdisplay = timings->crtc_vdisplay; 4433 mode->vtotal = timings->crtc_vtotal; 4434 mode->vsync_start = timings->crtc_vsync_start; 4435 mode->vsync_end = timings->crtc_vsync_end; 4436 4437 mode->flags = timings->flags; 4438 mode->type = DRM_MODE_TYPE_DRIVER; 4439 4440 mode->clock = timings->crtc_clock; 4441 4442 drm_mode_set_name(mode); 4443 } 4444 4445 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 4446 { 4447 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4448 4449 if (HAS_GMCH(dev_priv)) 4450 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 4451 crtc_state->pixel_rate = 4452 crtc_state->hw.pipe_mode.crtc_clock; 4453 else 4454 crtc_state->pixel_rate = 4455 ilk_pipe_pixel_rate(crtc_state); 4456 } 4457 4458 static void intel_crtc_readout_derived_state(struct intel_crtc_state *crtc_state) 4459 { 4460 struct drm_display_mode *mode = &crtc_state->hw.mode; 4461 struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; 4462 struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 4463 4464 drm_mode_copy(pipe_mode, adjusted_mode); 4465 4466 if (crtc_state->bigjoiner) { 4467 /* 4468 * transcoder is programmed to the full mode, 4469 * but pipe timings are half of the transcoder mode 4470 */ 4471 pipe_mode->crtc_hdisplay /= 2; 4472 pipe_mode->crtc_hblank_start /= 2; 4473 pipe_mode->crtc_hblank_end /= 2; 4474 pipe_mode->crtc_hsync_start /= 2; 4475 pipe_mode->crtc_hsync_end /= 2; 4476 pipe_mode->crtc_htotal /= 2; 4477 pipe_mode->crtc_clock /= 2; 4478 } 4479 4480 if (crtc_state->splitter.enable) { 4481 int n = crtc_state->splitter.link_count; 4482 int overlap = crtc_state->splitter.pixel_overlap; 4483 4484 /* 4485 * eDP MSO uses segment timings from EDID for transcoder 4486 * timings, but full mode for everything else. 4487 * 4488 * h_full = (h_segment - pixel_overlap) * link_count 4489 */ 4490 pipe_mode->crtc_hdisplay = (pipe_mode->crtc_hdisplay - overlap) * n; 4491 pipe_mode->crtc_hblank_start = (pipe_mode->crtc_hblank_start - overlap) * n; 4492 pipe_mode->crtc_hblank_end = (pipe_mode->crtc_hblank_end - overlap) * n; 4493 pipe_mode->crtc_hsync_start = (pipe_mode->crtc_hsync_start - overlap) * n; 4494 pipe_mode->crtc_hsync_end = (pipe_mode->crtc_hsync_end - overlap) * n; 4495 pipe_mode->crtc_htotal = (pipe_mode->crtc_htotal - overlap) * n; 4496 pipe_mode->crtc_clock *= n; 4497 4498 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4499 intel_mode_from_crtc_timings(adjusted_mode, pipe_mode); 4500 } else { 4501 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4502 intel_mode_from_crtc_timings(adjusted_mode, adjusted_mode); 4503 } 4504 4505 intel_crtc_compute_pixel_rate(crtc_state); 4506 4507 drm_mode_copy(mode, adjusted_mode); 4508 mode->hdisplay = crtc_state->pipe_src_w << crtc_state->bigjoiner; 4509 mode->vdisplay = crtc_state->pipe_src_h; 4510 } 4511 4512 static void intel_encoder_get_config(struct intel_encoder *encoder, 4513 struct intel_crtc_state *crtc_state) 4514 { 4515 encoder->get_config(encoder, crtc_state); 4516 4517 intel_crtc_readout_derived_state(crtc_state); 4518 } 4519 4520 static int intel_crtc_compute_config(struct intel_crtc *crtc, 4521 struct intel_crtc_state *pipe_config) 4522 { 4523 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4524 struct drm_display_mode *pipe_mode = &pipe_config->hw.pipe_mode; 4525 int clock_limit = dev_priv->max_dotclk_freq; 4526 4527 drm_mode_copy(pipe_mode, &pipe_config->hw.adjusted_mode); 4528 4529 /* Adjust pipe_mode for bigjoiner, with half the horizontal mode */ 4530 if (pipe_config->bigjoiner) { 4531 pipe_mode->crtc_clock /= 2; 4532 pipe_mode->crtc_hdisplay /= 2; 4533 pipe_mode->crtc_hblank_start /= 2; 4534 pipe_mode->crtc_hblank_end /= 2; 4535 pipe_mode->crtc_hsync_start /= 2; 4536 pipe_mode->crtc_hsync_end /= 2; 4537 pipe_mode->crtc_htotal /= 2; 4538 pipe_config->pipe_src_w /= 2; 4539 } 4540 4541 if (pipe_config->splitter.enable) { 4542 int n = pipe_config->splitter.link_count; 4543 int overlap = pipe_config->splitter.pixel_overlap; 4544 4545 pipe_mode->crtc_hdisplay = (pipe_mode->crtc_hdisplay - overlap) * n; 4546 pipe_mode->crtc_hblank_start = (pipe_mode->crtc_hblank_start - overlap) * n; 4547 pipe_mode->crtc_hblank_end = (pipe_mode->crtc_hblank_end - overlap) * n; 4548 pipe_mode->crtc_hsync_start = (pipe_mode->crtc_hsync_start - overlap) * n; 4549 pipe_mode->crtc_hsync_end = (pipe_mode->crtc_hsync_end - overlap) * n; 4550 pipe_mode->crtc_htotal = (pipe_mode->crtc_htotal - overlap) * n; 4551 pipe_mode->crtc_clock *= n; 4552 } 4553 4554 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4555 4556 if (DISPLAY_VER(dev_priv) < 4) { 4557 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 4558 4559 /* 4560 * Enable double wide mode when the dot clock 4561 * is > 90% of the (display) core speed. 4562 */ 4563 if (intel_crtc_supports_double_wide(crtc) && 4564 pipe_mode->crtc_clock > clock_limit) { 4565 clock_limit = dev_priv->max_dotclk_freq; 4566 pipe_config->double_wide = true; 4567 } 4568 } 4569 4570 if (pipe_mode->crtc_clock > clock_limit) { 4571 drm_dbg_kms(&dev_priv->drm, 4572 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 4573 pipe_mode->crtc_clock, clock_limit, 4574 yesno(pipe_config->double_wide)); 4575 return -EINVAL; 4576 } 4577 4578 /* 4579 * Pipe horizontal size must be even in: 4580 * - DVO ganged mode 4581 * - LVDS dual channel mode 4582 * - Double wide pipe 4583 */ 4584 if (pipe_config->pipe_src_w & 1) { 4585 if (pipe_config->double_wide) { 4586 drm_dbg_kms(&dev_priv->drm, 4587 "Odd pipe source width not supported with double wide pipe\n"); 4588 return -EINVAL; 4589 } 4590 4591 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 4592 intel_is_dual_link_lvds(dev_priv)) { 4593 drm_dbg_kms(&dev_priv->drm, 4594 "Odd pipe source width not supported with dual link LVDS\n"); 4595 return -EINVAL; 4596 } 4597 } 4598 4599 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 4600 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 4601 */ 4602 if ((DISPLAY_VER(dev_priv) > 4 || IS_G4X(dev_priv)) && 4603 pipe_mode->crtc_hsync_start == pipe_mode->crtc_hdisplay) 4604 return -EINVAL; 4605 4606 intel_crtc_compute_pixel_rate(pipe_config); 4607 4608 if (pipe_config->has_pch_encoder) 4609 return ilk_fdi_compute_config(crtc, pipe_config); 4610 4611 return 0; 4612 } 4613 4614 static void 4615 intel_reduce_m_n_ratio(u32 *num, u32 *den) 4616 { 4617 while (*num > DATA_LINK_M_N_MASK || 4618 *den > DATA_LINK_M_N_MASK) { 4619 *num >>= 1; 4620 *den >>= 1; 4621 } 4622 } 4623 4624 static void compute_m_n(unsigned int m, unsigned int n, 4625 u32 *ret_m, u32 *ret_n, 4626 bool constant_n) 4627 { 4628 /* 4629 * Several DP dongles in particular seem to be fussy about 4630 * too large link M/N values. Give N value as 0x8000 that 4631 * should be acceptable by specific devices. 0x8000 is the 4632 * specified fixed N value for asynchronous clock mode, 4633 * which the devices expect also in synchronous clock mode. 4634 */ 4635 if (constant_n) 4636 *ret_n = DP_LINK_CONSTANT_N_VALUE; 4637 else 4638 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 4639 4640 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 4641 intel_reduce_m_n_ratio(ret_m, ret_n); 4642 } 4643 4644 void 4645 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 4646 int pixel_clock, int link_clock, 4647 struct intel_link_m_n *m_n, 4648 bool constant_n, bool fec_enable) 4649 { 4650 u32 data_clock = bits_per_pixel * pixel_clock; 4651 4652 if (fec_enable) 4653 data_clock = intel_dp_mode_to_fec_clock(data_clock); 4654 4655 m_n->tu = 64; 4656 compute_m_n(data_clock, 4657 link_clock * nlanes * 8, 4658 &m_n->gmch_m, &m_n->gmch_n, 4659 constant_n); 4660 4661 compute_m_n(pixel_clock, link_clock, 4662 &m_n->link_m, &m_n->link_n, 4663 constant_n); 4664 } 4665 4666 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) 4667 { 4668 /* 4669 * There may be no VBT; and if the BIOS enabled SSC we can 4670 * just keep using it to avoid unnecessary flicker. Whereas if the 4671 * BIOS isn't using it, don't assume it will work even if the VBT 4672 * indicates as much. 4673 */ 4674 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 4675 bool bios_lvds_use_ssc = intel_de_read(dev_priv, 4676 PCH_DREF_CONTROL) & 4677 DREF_SSC1_ENABLE; 4678 4679 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 4680 drm_dbg_kms(&dev_priv->drm, 4681 "SSC %s by BIOS, overriding VBT which says %s\n", 4682 enableddisabled(bios_lvds_use_ssc), 4683 enableddisabled(dev_priv->vbt.lvds_use_ssc)); 4684 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 4685 } 4686 } 4687 } 4688 4689 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 4690 const struct intel_link_m_n *m_n) 4691 { 4692 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4693 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4694 enum pipe pipe = crtc->pipe; 4695 4696 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe), 4697 TU_SIZE(m_n->tu) | m_n->gmch_m); 4698 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 4699 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m); 4700 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n); 4701 } 4702 4703 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 4704 enum transcoder transcoder) 4705 { 4706 if (IS_HASWELL(dev_priv)) 4707 return transcoder == TRANSCODER_EDP; 4708 4709 /* 4710 * Strictly speaking some registers are available before 4711 * gen7, but we only support DRRS on gen7+ 4712 */ 4713 return DISPLAY_VER(dev_priv) == 7 || IS_CHERRYVIEW(dev_priv); 4714 } 4715 4716 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 4717 const struct intel_link_m_n *m_n, 4718 const struct intel_link_m_n *m2_n2) 4719 { 4720 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4721 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4722 enum pipe pipe = crtc->pipe; 4723 enum transcoder transcoder = crtc_state->cpu_transcoder; 4724 4725 if (DISPLAY_VER(dev_priv) >= 5) { 4726 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder), 4727 TU_SIZE(m_n->tu) | m_n->gmch_m); 4728 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder), 4729 m_n->gmch_n); 4730 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder), 4731 m_n->link_m); 4732 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder), 4733 m_n->link_n); 4734 /* 4735 * M2_N2 registers are set only if DRRS is supported 4736 * (to make sure the registers are not unnecessarily accessed). 4737 */ 4738 if (m2_n2 && crtc_state->has_drrs && 4739 transcoder_has_m2_n2(dev_priv, transcoder)) { 4740 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder), 4741 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 4742 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder), 4743 m2_n2->gmch_n); 4744 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder), 4745 m2_n2->link_m); 4746 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder), 4747 m2_n2->link_n); 4748 } 4749 } else { 4750 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe), 4751 TU_SIZE(m_n->tu) | m_n->gmch_m); 4752 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 4753 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m); 4754 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n); 4755 } 4756 } 4757 4758 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 4759 { 4760 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 4761 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 4762 4763 if (m_n == M1_N1) { 4764 dp_m_n = &crtc_state->dp_m_n; 4765 dp_m2_n2 = &crtc_state->dp_m2_n2; 4766 } else if (m_n == M2_N2) { 4767 4768 /* 4769 * M2_N2 registers are not supported. Hence m2_n2 divider value 4770 * needs to be programmed into M1_N1. 4771 */ 4772 dp_m_n = &crtc_state->dp_m2_n2; 4773 } else { 4774 drm_err(&i915->drm, "Unsupported divider value\n"); 4775 return; 4776 } 4777 4778 if (crtc_state->has_pch_encoder) 4779 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 4780 else 4781 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 4782 } 4783 4784 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state) 4785 { 4786 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4787 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4788 enum pipe pipe = crtc->pipe; 4789 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 4790 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 4791 u32 crtc_vtotal, crtc_vblank_end; 4792 int vsyncshift = 0; 4793 4794 /* We need to be careful not to changed the adjusted mode, for otherwise 4795 * the hw state checker will get angry at the mismatch. */ 4796 crtc_vtotal = adjusted_mode->crtc_vtotal; 4797 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 4798 4799 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 4800 /* the chip adds 2 halflines automatically */ 4801 crtc_vtotal -= 1; 4802 crtc_vblank_end -= 1; 4803 4804 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 4805 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 4806 else 4807 vsyncshift = adjusted_mode->crtc_hsync_start - 4808 adjusted_mode->crtc_htotal / 2; 4809 if (vsyncshift < 0) 4810 vsyncshift += adjusted_mode->crtc_htotal; 4811 } 4812 4813 if (DISPLAY_VER(dev_priv) > 3) 4814 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder), 4815 vsyncshift); 4816 4817 intel_de_write(dev_priv, HTOTAL(cpu_transcoder), 4818 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); 4819 intel_de_write(dev_priv, HBLANK(cpu_transcoder), 4820 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); 4821 intel_de_write(dev_priv, HSYNC(cpu_transcoder), 4822 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); 4823 4824 intel_de_write(dev_priv, VTOTAL(cpu_transcoder), 4825 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); 4826 intel_de_write(dev_priv, VBLANK(cpu_transcoder), 4827 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); 4828 intel_de_write(dev_priv, VSYNC(cpu_transcoder), 4829 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); 4830 4831 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 4832 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 4833 * documented on the DDI_FUNC_CTL register description, EDP Input Select 4834 * bits. */ 4835 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 4836 (pipe == PIPE_B || pipe == PIPE_C)) 4837 intel_de_write(dev_priv, VTOTAL(pipe), 4838 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 4839 4840 } 4841 4842 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 4843 { 4844 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4845 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4846 enum pipe pipe = crtc->pipe; 4847 4848 /* pipesrc controls the size that is scaled from, which should 4849 * always be the user's requested size. 4850 */ 4851 intel_de_write(dev_priv, PIPESRC(pipe), 4852 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1)); 4853 } 4854 4855 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 4856 { 4857 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4858 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 4859 4860 if (DISPLAY_VER(dev_priv) == 2) 4861 return false; 4862 4863 if (DISPLAY_VER(dev_priv) >= 9 || 4864 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 4865 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; 4866 else 4867 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; 4868 } 4869 4870 static void intel_get_transcoder_timings(struct intel_crtc *crtc, 4871 struct intel_crtc_state *pipe_config) 4872 { 4873 struct drm_device *dev = crtc->base.dev; 4874 struct drm_i915_private *dev_priv = to_i915(dev); 4875 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 4876 u32 tmp; 4877 4878 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); 4879 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 4880 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 4881 4882 if (!transcoder_is_dsi(cpu_transcoder)) { 4883 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); 4884 pipe_config->hw.adjusted_mode.crtc_hblank_start = 4885 (tmp & 0xffff) + 1; 4886 pipe_config->hw.adjusted_mode.crtc_hblank_end = 4887 ((tmp >> 16) & 0xffff) + 1; 4888 } 4889 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); 4890 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 4891 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 4892 4893 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); 4894 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 4895 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 4896 4897 if (!transcoder_is_dsi(cpu_transcoder)) { 4898 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); 4899 pipe_config->hw.adjusted_mode.crtc_vblank_start = 4900 (tmp & 0xffff) + 1; 4901 pipe_config->hw.adjusted_mode.crtc_vblank_end = 4902 ((tmp >> 16) & 0xffff) + 1; 4903 } 4904 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); 4905 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 4906 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 4907 4908 if (intel_pipe_is_interlaced(pipe_config)) { 4909 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 4910 pipe_config->hw.adjusted_mode.crtc_vtotal += 1; 4911 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1; 4912 } 4913 } 4914 4915 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 4916 struct intel_crtc_state *pipe_config) 4917 { 4918 struct drm_device *dev = crtc->base.dev; 4919 struct drm_i915_private *dev_priv = to_i915(dev); 4920 u32 tmp; 4921 4922 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe)); 4923 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 4924 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 4925 } 4926 4927 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 4928 { 4929 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4930 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4931 u32 pipeconf; 4932 4933 pipeconf = 0; 4934 4935 /* we keep both pipes enabled on 830 */ 4936 if (IS_I830(dev_priv)) 4937 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 4938 4939 if (crtc_state->double_wide) 4940 pipeconf |= PIPECONF_DOUBLE_WIDE; 4941 4942 /* only g4x and later have fancy bpc/dither controls */ 4943 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 4944 IS_CHERRYVIEW(dev_priv)) { 4945 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 4946 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 4947 pipeconf |= PIPECONF_DITHER_EN | 4948 PIPECONF_DITHER_TYPE_SP; 4949 4950 switch (crtc_state->pipe_bpp) { 4951 case 18: 4952 pipeconf |= PIPECONF_6BPC; 4953 break; 4954 case 24: 4955 pipeconf |= PIPECONF_8BPC; 4956 break; 4957 case 30: 4958 pipeconf |= PIPECONF_10BPC; 4959 break; 4960 default: 4961 /* Case prevented by intel_choose_pipe_bpp_dither. */ 4962 BUG(); 4963 } 4964 } 4965 4966 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 4967 if (DISPLAY_VER(dev_priv) < 4 || 4968 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 4969 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 4970 else 4971 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 4972 } else { 4973 pipeconf |= PIPECONF_PROGRESSIVE; 4974 } 4975 4976 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 4977 crtc_state->limited_color_range) 4978 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 4979 4980 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 4981 4982 pipeconf |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 4983 4984 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf); 4985 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); 4986 } 4987 4988 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 4989 { 4990 if (IS_I830(dev_priv)) 4991 return false; 4992 4993 return DISPLAY_VER(dev_priv) >= 4 || 4994 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 4995 } 4996 4997 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state) 4998 { 4999 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5000 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5001 u32 tmp; 5002 5003 if (!i9xx_has_pfit(dev_priv)) 5004 return; 5005 5006 tmp = intel_de_read(dev_priv, PFIT_CONTROL); 5007 if (!(tmp & PFIT_ENABLE)) 5008 return; 5009 5010 /* Check whether the pfit is attached to our pipe. */ 5011 if (DISPLAY_VER(dev_priv) < 4) { 5012 if (crtc->pipe != PIPE_B) 5013 return; 5014 } else { 5015 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 5016 return; 5017 } 5018 5019 crtc_state->gmch_pfit.control = tmp; 5020 crtc_state->gmch_pfit.pgm_ratios = 5021 intel_de_read(dev_priv, PFIT_PGM_RATIOS); 5022 } 5023 5024 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 5025 struct intel_crtc_state *pipe_config) 5026 { 5027 struct drm_device *dev = crtc->base.dev; 5028 struct drm_i915_private *dev_priv = to_i915(dev); 5029 enum pipe pipe = crtc->pipe; 5030 struct dpll clock; 5031 u32 mdiv; 5032 int refclk = 100000; 5033 5034 /* In case of DSI, DPLL will not be used */ 5035 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 5036 return; 5037 5038 vlv_dpio_get(dev_priv); 5039 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 5040 vlv_dpio_put(dev_priv); 5041 5042 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 5043 clock.m2 = mdiv & DPIO_M2DIV_MASK; 5044 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 5045 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 5046 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 5047 5048 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 5049 } 5050 5051 static void chv_crtc_clock_get(struct intel_crtc *crtc, 5052 struct intel_crtc_state *pipe_config) 5053 { 5054 struct drm_device *dev = crtc->base.dev; 5055 struct drm_i915_private *dev_priv = to_i915(dev); 5056 enum pipe pipe = crtc->pipe; 5057 enum dpio_channel port = vlv_pipe_to_channel(pipe); 5058 struct dpll clock; 5059 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 5060 int refclk = 100000; 5061 5062 /* In case of DSI, DPLL will not be used */ 5063 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 5064 return; 5065 5066 vlv_dpio_get(dev_priv); 5067 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 5068 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 5069 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 5070 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 5071 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 5072 vlv_dpio_put(dev_priv); 5073 5074 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 5075 clock.m2 = (pll_dw0 & 0xff) << 22; 5076 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 5077 clock.m2 |= pll_dw2 & 0x3fffff; 5078 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 5079 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 5080 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 5081 5082 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 5083 } 5084 5085 static enum intel_output_format 5086 bdw_get_pipemisc_output_format(struct intel_crtc *crtc) 5087 { 5088 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5089 u32 tmp; 5090 5091 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 5092 5093 if (tmp & PIPEMISC_YUV420_ENABLE) { 5094 /* We support 4:2:0 in full blend mode only */ 5095 drm_WARN_ON(&dev_priv->drm, 5096 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); 5097 5098 return INTEL_OUTPUT_FORMAT_YCBCR420; 5099 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 5100 return INTEL_OUTPUT_FORMAT_YCBCR444; 5101 } else { 5102 return INTEL_OUTPUT_FORMAT_RGB; 5103 } 5104 } 5105 5106 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 5107 { 5108 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5109 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 5110 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5111 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 5112 u32 tmp; 5113 5114 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 5115 5116 if (tmp & DISPPLANE_GAMMA_ENABLE) 5117 crtc_state->gamma_enable = true; 5118 5119 if (!HAS_GMCH(dev_priv) && 5120 tmp & DISPPLANE_PIPE_CSC_ENABLE) 5121 crtc_state->csc_enable = true; 5122 } 5123 5124 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 5125 struct intel_crtc_state *pipe_config) 5126 { 5127 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5128 enum intel_display_power_domain power_domain; 5129 intel_wakeref_t wakeref; 5130 u32 tmp; 5131 bool ret; 5132 5133 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 5134 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 5135 if (!wakeref) 5136 return false; 5137 5138 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 5139 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 5140 pipe_config->shared_dpll = NULL; 5141 5142 ret = false; 5143 5144 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 5145 if (!(tmp & PIPECONF_ENABLE)) 5146 goto out; 5147 5148 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 5149 IS_CHERRYVIEW(dev_priv)) { 5150 switch (tmp & PIPECONF_BPC_MASK) { 5151 case PIPECONF_6BPC: 5152 pipe_config->pipe_bpp = 18; 5153 break; 5154 case PIPECONF_8BPC: 5155 pipe_config->pipe_bpp = 24; 5156 break; 5157 case PIPECONF_10BPC: 5158 pipe_config->pipe_bpp = 30; 5159 break; 5160 default: 5161 break; 5162 } 5163 } 5164 5165 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 5166 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 5167 pipe_config->limited_color_range = true; 5168 5169 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 5170 PIPECONF_GAMMA_MODE_SHIFT; 5171 5172 if (IS_CHERRYVIEW(dev_priv)) 5173 pipe_config->cgm_mode = intel_de_read(dev_priv, 5174 CGM_PIPE_MODE(crtc->pipe)); 5175 5176 i9xx_get_pipe_color_config(pipe_config); 5177 intel_color_get_config(pipe_config); 5178 5179 if (DISPLAY_VER(dev_priv) < 4) 5180 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 5181 5182 intel_get_transcoder_timings(crtc, pipe_config); 5183 intel_get_pipe_src_size(crtc, pipe_config); 5184 5185 i9xx_get_pfit_config(pipe_config); 5186 5187 if (DISPLAY_VER(dev_priv) >= 4) { 5188 /* No way to read it out on pipes B and C */ 5189 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 5190 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 5191 else 5192 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); 5193 pipe_config->pixel_multiplier = 5194 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 5195 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 5196 pipe_config->dpll_hw_state.dpll_md = tmp; 5197 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 5198 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 5199 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe)); 5200 pipe_config->pixel_multiplier = 5201 ((tmp & SDVO_MULTIPLIER_MASK) 5202 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 5203 } else { 5204 /* Note that on i915G/GM the pixel multiplier is in the sdvo 5205 * port and will be fixed up in the encoder->get_config 5206 * function. */ 5207 pipe_config->pixel_multiplier = 1; 5208 } 5209 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv, 5210 DPLL(crtc->pipe)); 5211 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 5212 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv, 5213 FP0(crtc->pipe)); 5214 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv, 5215 FP1(crtc->pipe)); 5216 } else { 5217 /* Mask out read-only status bits. */ 5218 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 5219 DPLL_PORTC_READY_MASK | 5220 DPLL_PORTB_READY_MASK); 5221 } 5222 5223 if (IS_CHERRYVIEW(dev_priv)) 5224 chv_crtc_clock_get(crtc, pipe_config); 5225 else if (IS_VALLEYVIEW(dev_priv)) 5226 vlv_crtc_clock_get(crtc, pipe_config); 5227 else 5228 i9xx_crtc_clock_get(crtc, pipe_config); 5229 5230 /* 5231 * Normally the dotclock is filled in by the encoder .get_config() 5232 * but in case the pipe is enabled w/o any ports we need a sane 5233 * default. 5234 */ 5235 pipe_config->hw.adjusted_mode.crtc_clock = 5236 pipe_config->port_clock / pipe_config->pixel_multiplier; 5237 5238 ret = true; 5239 5240 out: 5241 intel_display_power_put(dev_priv, power_domain, wakeref); 5242 5243 return ret; 5244 } 5245 5246 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv) 5247 { 5248 struct intel_encoder *encoder; 5249 int i; 5250 u32 val, final; 5251 bool has_lvds = false; 5252 bool has_cpu_edp = false; 5253 bool has_panel = false; 5254 bool has_ck505 = false; 5255 bool can_ssc = false; 5256 bool using_ssc_source = false; 5257 5258 /* We need to take the global config into account */ 5259 for_each_intel_encoder(&dev_priv->drm, encoder) { 5260 switch (encoder->type) { 5261 case INTEL_OUTPUT_LVDS: 5262 has_panel = true; 5263 has_lvds = true; 5264 break; 5265 case INTEL_OUTPUT_EDP: 5266 has_panel = true; 5267 if (encoder->port == PORT_A) 5268 has_cpu_edp = true; 5269 break; 5270 default: 5271 break; 5272 } 5273 } 5274 5275 if (HAS_PCH_IBX(dev_priv)) { 5276 has_ck505 = dev_priv->vbt.display_clock_mode; 5277 can_ssc = has_ck505; 5278 } else { 5279 has_ck505 = false; 5280 can_ssc = true; 5281 } 5282 5283 /* Check if any DPLLs are using the SSC source */ 5284 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) { 5285 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i)); 5286 5287 if (!(temp & DPLL_VCO_ENABLE)) 5288 continue; 5289 5290 if ((temp & PLL_REF_INPUT_MASK) == 5291 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 5292 using_ssc_source = true; 5293 break; 5294 } 5295 } 5296 5297 drm_dbg_kms(&dev_priv->drm, 5298 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 5299 has_panel, has_lvds, has_ck505, using_ssc_source); 5300 5301 /* Ironlake: try to setup display ref clock before DPLL 5302 * enabling. This is only under driver's control after 5303 * PCH B stepping, previous chipset stepping should be 5304 * ignoring this setting. 5305 */ 5306 val = intel_de_read(dev_priv, PCH_DREF_CONTROL); 5307 5308 /* As we must carefully and slowly disable/enable each source in turn, 5309 * compute the final state we want first and check if we need to 5310 * make any changes at all. 5311 */ 5312 final = val; 5313 final &= ~DREF_NONSPREAD_SOURCE_MASK; 5314 if (has_ck505) 5315 final |= DREF_NONSPREAD_CK505_ENABLE; 5316 else 5317 final |= DREF_NONSPREAD_SOURCE_ENABLE; 5318 5319 final &= ~DREF_SSC_SOURCE_MASK; 5320 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5321 final &= ~DREF_SSC1_ENABLE; 5322 5323 if (has_panel) { 5324 final |= DREF_SSC_SOURCE_ENABLE; 5325 5326 if (intel_panel_use_ssc(dev_priv) && can_ssc) 5327 final |= DREF_SSC1_ENABLE; 5328 5329 if (has_cpu_edp) { 5330 if (intel_panel_use_ssc(dev_priv) && can_ssc) 5331 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 5332 else 5333 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 5334 } else 5335 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5336 } else if (using_ssc_source) { 5337 final |= DREF_SSC_SOURCE_ENABLE; 5338 final |= DREF_SSC1_ENABLE; 5339 } 5340 5341 if (final == val) 5342 return; 5343 5344 /* Always enable nonspread source */ 5345 val &= ~DREF_NONSPREAD_SOURCE_MASK; 5346 5347 if (has_ck505) 5348 val |= DREF_NONSPREAD_CK505_ENABLE; 5349 else 5350 val |= DREF_NONSPREAD_SOURCE_ENABLE; 5351 5352 if (has_panel) { 5353 val &= ~DREF_SSC_SOURCE_MASK; 5354 val |= DREF_SSC_SOURCE_ENABLE; 5355 5356 /* SSC must be turned on before enabling the CPU output */ 5357 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 5358 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n"); 5359 val |= DREF_SSC1_ENABLE; 5360 } else 5361 val &= ~DREF_SSC1_ENABLE; 5362 5363 /* Get SSC going before enabling the outputs */ 5364 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5365 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5366 udelay(200); 5367 5368 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5369 5370 /* Enable CPU source on CPU attached eDP */ 5371 if (has_cpu_edp) { 5372 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 5373 drm_dbg_kms(&dev_priv->drm, 5374 "Using SSC on eDP\n"); 5375 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 5376 } else 5377 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 5378 } else 5379 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5380 5381 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5382 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5383 udelay(200); 5384 } else { 5385 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n"); 5386 5387 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5388 5389 /* Turn off CPU output */ 5390 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5391 5392 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5393 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5394 udelay(200); 5395 5396 if (!using_ssc_source) { 5397 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n"); 5398 5399 /* Turn off the SSC source */ 5400 val &= ~DREF_SSC_SOURCE_MASK; 5401 val |= DREF_SSC_SOURCE_DISABLE; 5402 5403 /* Turn off SSC1 */ 5404 val &= ~DREF_SSC1_ENABLE; 5405 5406 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5407 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5408 udelay(200); 5409 } 5410 } 5411 5412 BUG_ON(val != final); 5413 } 5414 5415 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 5416 { 5417 u32 tmp; 5418 5419 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 5420 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 5421 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 5422 5423 if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) & 5424 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 5425 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n"); 5426 5427 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 5428 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 5429 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 5430 5431 if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) & 5432 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 5433 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n"); 5434 } 5435 5436 /* WaMPhyProgramming:hsw */ 5437 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 5438 { 5439 u32 tmp; 5440 5441 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 5442 tmp &= ~(0xFF << 24); 5443 tmp |= (0x12 << 24); 5444 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 5445 5446 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 5447 tmp |= (1 << 11); 5448 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 5449 5450 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 5451 tmp |= (1 << 11); 5452 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 5453 5454 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 5455 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 5456 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 5457 5458 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 5459 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 5460 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 5461 5462 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 5463 tmp &= ~(7 << 13); 5464 tmp |= (5 << 13); 5465 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 5466 5467 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 5468 tmp &= ~(7 << 13); 5469 tmp |= (5 << 13); 5470 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 5471 5472 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 5473 tmp &= ~0xFF; 5474 tmp |= 0x1C; 5475 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 5476 5477 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 5478 tmp &= ~0xFF; 5479 tmp |= 0x1C; 5480 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 5481 5482 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 5483 tmp &= ~(0xFF << 16); 5484 tmp |= (0x1C << 16); 5485 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 5486 5487 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 5488 tmp &= ~(0xFF << 16); 5489 tmp |= (0x1C << 16); 5490 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 5491 5492 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 5493 tmp |= (1 << 27); 5494 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 5495 5496 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 5497 tmp |= (1 << 27); 5498 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 5499 5500 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 5501 tmp &= ~(0xF << 28); 5502 tmp |= (4 << 28); 5503 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 5504 5505 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 5506 tmp &= ~(0xF << 28); 5507 tmp |= (4 << 28); 5508 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 5509 } 5510 5511 /* Implements 3 different sequences from BSpec chapter "Display iCLK 5512 * Programming" based on the parameters passed: 5513 * - Sequence to enable CLKOUT_DP 5514 * - Sequence to enable CLKOUT_DP without spread 5515 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 5516 */ 5517 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 5518 bool with_spread, bool with_fdi) 5519 { 5520 u32 reg, tmp; 5521 5522 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread, 5523 "FDI requires downspread\n")) 5524 with_spread = true; 5525 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) && 5526 with_fdi, "LP PCH doesn't have FDI\n")) 5527 with_fdi = false; 5528 5529 mutex_lock(&dev_priv->sb_lock); 5530 5531 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5532 tmp &= ~SBI_SSCCTL_DISABLE; 5533 tmp |= SBI_SSCCTL_PATHALT; 5534 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5535 5536 udelay(24); 5537 5538 if (with_spread) { 5539 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5540 tmp &= ~SBI_SSCCTL_PATHALT; 5541 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5542 5543 if (with_fdi) { 5544 lpt_reset_fdi_mphy(dev_priv); 5545 lpt_program_fdi_mphy(dev_priv); 5546 } 5547 } 5548 5549 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 5550 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 5551 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 5552 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 5553 5554 mutex_unlock(&dev_priv->sb_lock); 5555 } 5556 5557 /* Sequence to disable CLKOUT_DP */ 5558 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 5559 { 5560 u32 reg, tmp; 5561 5562 mutex_lock(&dev_priv->sb_lock); 5563 5564 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 5565 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 5566 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 5567 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 5568 5569 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5570 if (!(tmp & SBI_SSCCTL_DISABLE)) { 5571 if (!(tmp & SBI_SSCCTL_PATHALT)) { 5572 tmp |= SBI_SSCCTL_PATHALT; 5573 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5574 udelay(32); 5575 } 5576 tmp |= SBI_SSCCTL_DISABLE; 5577 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5578 } 5579 5580 mutex_unlock(&dev_priv->sb_lock); 5581 } 5582 5583 #define BEND_IDX(steps) ((50 + (steps)) / 5) 5584 5585 static const u16 sscdivintphase[] = { 5586 [BEND_IDX( 50)] = 0x3B23, 5587 [BEND_IDX( 45)] = 0x3B23, 5588 [BEND_IDX( 40)] = 0x3C23, 5589 [BEND_IDX( 35)] = 0x3C23, 5590 [BEND_IDX( 30)] = 0x3D23, 5591 [BEND_IDX( 25)] = 0x3D23, 5592 [BEND_IDX( 20)] = 0x3E23, 5593 [BEND_IDX( 15)] = 0x3E23, 5594 [BEND_IDX( 10)] = 0x3F23, 5595 [BEND_IDX( 5)] = 0x3F23, 5596 [BEND_IDX( 0)] = 0x0025, 5597 [BEND_IDX( -5)] = 0x0025, 5598 [BEND_IDX(-10)] = 0x0125, 5599 [BEND_IDX(-15)] = 0x0125, 5600 [BEND_IDX(-20)] = 0x0225, 5601 [BEND_IDX(-25)] = 0x0225, 5602 [BEND_IDX(-30)] = 0x0325, 5603 [BEND_IDX(-35)] = 0x0325, 5604 [BEND_IDX(-40)] = 0x0425, 5605 [BEND_IDX(-45)] = 0x0425, 5606 [BEND_IDX(-50)] = 0x0525, 5607 }; 5608 5609 /* 5610 * Bend CLKOUT_DP 5611 * steps -50 to 50 inclusive, in steps of 5 5612 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 5613 * change in clock period = -(steps / 10) * 5.787 ps 5614 */ 5615 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 5616 { 5617 u32 tmp; 5618 int idx = BEND_IDX(steps); 5619 5620 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0)) 5621 return; 5622 5623 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase))) 5624 return; 5625 5626 mutex_lock(&dev_priv->sb_lock); 5627 5628 if (steps % 10 != 0) 5629 tmp = 0xAAAAAAAB; 5630 else 5631 tmp = 0x00000000; 5632 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 5633 5634 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 5635 tmp &= 0xffff0000; 5636 tmp |= sscdivintphase[idx]; 5637 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 5638 5639 mutex_unlock(&dev_priv->sb_lock); 5640 } 5641 5642 #undef BEND_IDX 5643 5644 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 5645 { 5646 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 5647 u32 ctl = intel_de_read(dev_priv, SPLL_CTL); 5648 5649 if ((ctl & SPLL_PLL_ENABLE) == 0) 5650 return false; 5651 5652 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 5653 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 5654 return true; 5655 5656 if (IS_BROADWELL(dev_priv) && 5657 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 5658 return true; 5659 5660 return false; 5661 } 5662 5663 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 5664 enum intel_dpll_id id) 5665 { 5666 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 5667 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id)); 5668 5669 if ((ctl & WRPLL_PLL_ENABLE) == 0) 5670 return false; 5671 5672 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 5673 return true; 5674 5675 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 5676 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 5677 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 5678 return true; 5679 5680 return false; 5681 } 5682 5683 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 5684 { 5685 struct intel_encoder *encoder; 5686 bool has_fdi = false; 5687 5688 for_each_intel_encoder(&dev_priv->drm, encoder) { 5689 switch (encoder->type) { 5690 case INTEL_OUTPUT_ANALOG: 5691 has_fdi = true; 5692 break; 5693 default: 5694 break; 5695 } 5696 } 5697 5698 /* 5699 * The BIOS may have decided to use the PCH SSC 5700 * reference so we must not disable it until the 5701 * relevant PLLs have stopped relying on it. We'll 5702 * just leave the PCH SSC reference enabled in case 5703 * any active PLL is using it. It will get disabled 5704 * after runtime suspend if we don't have FDI. 5705 * 5706 * TODO: Move the whole reference clock handling 5707 * to the modeset sequence proper so that we can 5708 * actually enable/disable/reconfigure these things 5709 * safely. To do that we need to introduce a real 5710 * clock hierarchy. That would also allow us to do 5711 * clock bending finally. 5712 */ 5713 dev_priv->pch_ssc_use = 0; 5714 5715 if (spll_uses_pch_ssc(dev_priv)) { 5716 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n"); 5717 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); 5718 } 5719 5720 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 5721 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n"); 5722 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 5723 } 5724 5725 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 5726 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n"); 5727 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 5728 } 5729 5730 if (dev_priv->pch_ssc_use) 5731 return; 5732 5733 if (has_fdi) { 5734 lpt_bend_clkout_dp(dev_priv, 0); 5735 lpt_enable_clkout_dp(dev_priv, true, true); 5736 } else { 5737 lpt_disable_clkout_dp(dev_priv); 5738 } 5739 } 5740 5741 /* 5742 * Initialize reference clocks when the driver loads 5743 */ 5744 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 5745 { 5746 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 5747 ilk_init_pch_refclk(dev_priv); 5748 else if (HAS_PCH_LPT(dev_priv)) 5749 lpt_init_pch_refclk(dev_priv); 5750 } 5751 5752 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) 5753 { 5754 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5755 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5756 enum pipe pipe = crtc->pipe; 5757 u32 val; 5758 5759 val = 0; 5760 5761 switch (crtc_state->pipe_bpp) { 5762 case 18: 5763 val |= PIPECONF_6BPC; 5764 break; 5765 case 24: 5766 val |= PIPECONF_8BPC; 5767 break; 5768 case 30: 5769 val |= PIPECONF_10BPC; 5770 break; 5771 case 36: 5772 val |= PIPECONF_12BPC; 5773 break; 5774 default: 5775 /* Case prevented by intel_choose_pipe_bpp_dither. */ 5776 BUG(); 5777 } 5778 5779 if (crtc_state->dither) 5780 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 5781 5782 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 5783 val |= PIPECONF_INTERLACED_ILK; 5784 else 5785 val |= PIPECONF_PROGRESSIVE; 5786 5787 /* 5788 * This would end up with an odd purple hue over 5789 * the entire display. Make sure we don't do it. 5790 */ 5791 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && 5792 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 5793 5794 if (crtc_state->limited_color_range && 5795 !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 5796 val |= PIPECONF_COLOR_RANGE_SELECT; 5797 5798 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 5799 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; 5800 5801 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 5802 5803 val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 5804 5805 intel_de_write(dev_priv, PIPECONF(pipe), val); 5806 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 5807 } 5808 5809 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state) 5810 { 5811 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5812 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5813 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5814 u32 val = 0; 5815 5816 if (IS_HASWELL(dev_priv) && crtc_state->dither) 5817 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 5818 5819 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 5820 val |= PIPECONF_INTERLACED_ILK; 5821 else 5822 val |= PIPECONF_PROGRESSIVE; 5823 5824 if (IS_HASWELL(dev_priv) && 5825 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 5826 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; 5827 5828 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val); 5829 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder)); 5830 } 5831 5832 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 5833 { 5834 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5835 const struct intel_crtc_scaler_state *scaler_state = 5836 &crtc_state->scaler_state; 5837 5838 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5839 u32 val = 0; 5840 int i; 5841 5842 switch (crtc_state->pipe_bpp) { 5843 case 18: 5844 val |= PIPEMISC_6_BPC; 5845 break; 5846 case 24: 5847 val |= PIPEMISC_8_BPC; 5848 break; 5849 case 30: 5850 val |= PIPEMISC_10_BPC; 5851 break; 5852 case 36: 5853 /* Port output 12BPC defined for ADLP+ */ 5854 if (DISPLAY_VER(dev_priv) > 12) 5855 val |= PIPEMISC_12_BPC_ADLP; 5856 break; 5857 default: 5858 MISSING_CASE(crtc_state->pipe_bpp); 5859 break; 5860 } 5861 5862 if (crtc_state->dither) 5863 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 5864 5865 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 5866 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 5867 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 5868 5869 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 5870 val |= PIPEMISC_YUV420_ENABLE | 5871 PIPEMISC_YUV420_MODE_FULL_BLEND; 5872 5873 if (DISPLAY_VER(dev_priv) >= 11 && 5874 (crtc_state->active_planes & ~(icl_hdr_plane_mask() | 5875 BIT(PLANE_CURSOR))) == 0) 5876 val |= PIPEMISC_HDR_MODE_PRECISION; 5877 5878 if (DISPLAY_VER(dev_priv) >= 12) 5879 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC; 5880 5881 if (IS_ALDERLAKE_P(dev_priv)) { 5882 bool scaler_in_use = false; 5883 5884 for (i = 0; i < crtc->num_scalers; i++) { 5885 if (!scaler_state->scalers[i].in_use) 5886 continue; 5887 5888 scaler_in_use = true; 5889 break; 5890 } 5891 5892 intel_de_rmw(dev_priv, PIPE_MISC2(crtc->pipe), 5893 PIPE_MISC2_UNDERRUN_BUBBLE_COUNTER_MASK, 5894 scaler_in_use ? PIPE_MISC2_BUBBLE_COUNTER_SCALER_EN : 5895 PIPE_MISC2_BUBBLE_COUNTER_SCALER_DIS); 5896 } 5897 5898 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val); 5899 } 5900 5901 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 5902 { 5903 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5904 u32 tmp; 5905 5906 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 5907 5908 switch (tmp & PIPEMISC_BPC_MASK) { 5909 case PIPEMISC_6_BPC: 5910 return 18; 5911 case PIPEMISC_8_BPC: 5912 return 24; 5913 case PIPEMISC_10_BPC: 5914 return 30; 5915 /* 5916 * PORT OUTPUT 12 BPC defined for ADLP+. 5917 * 5918 * TODO: 5919 * For previous platforms with DSI interface, bits 5:7 5920 * are used for storing pipe_bpp irrespective of dithering. 5921 * Since the value of 12 BPC is not defined for these bits 5922 * on older platforms, need to find a workaround for 12 BPC 5923 * MIPI DSI HW readout. 5924 */ 5925 case PIPEMISC_12_BPC_ADLP: 5926 if (DISPLAY_VER(dev_priv) > 12) 5927 return 36; 5928 fallthrough; 5929 default: 5930 MISSING_CASE(tmp); 5931 return 0; 5932 } 5933 } 5934 5935 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) 5936 { 5937 /* 5938 * Account for spread spectrum to avoid 5939 * oversubscribing the link. Max center spread 5940 * is 2.5%; use 5% for safety's sake. 5941 */ 5942 u32 bps = target_clock * bpp * 21 / 20; 5943 return DIV_ROUND_UP(bps, link_bw * 8); 5944 } 5945 5946 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 5947 struct intel_link_m_n *m_n) 5948 { 5949 struct drm_device *dev = crtc->base.dev; 5950 struct drm_i915_private *dev_priv = to_i915(dev); 5951 enum pipe pipe = crtc->pipe; 5952 5953 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe)); 5954 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe)); 5955 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 5956 & ~TU_SIZE_MASK; 5957 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe)); 5958 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 5959 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5960 } 5961 5962 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 5963 enum transcoder transcoder, 5964 struct intel_link_m_n *m_n, 5965 struct intel_link_m_n *m2_n2) 5966 { 5967 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5968 enum pipe pipe = crtc->pipe; 5969 5970 if (DISPLAY_VER(dev_priv) >= 5) { 5971 m_n->link_m = intel_de_read(dev_priv, 5972 PIPE_LINK_M1(transcoder)); 5973 m_n->link_n = intel_de_read(dev_priv, 5974 PIPE_LINK_N1(transcoder)); 5975 m_n->gmch_m = intel_de_read(dev_priv, 5976 PIPE_DATA_M1(transcoder)) 5977 & ~TU_SIZE_MASK; 5978 m_n->gmch_n = intel_de_read(dev_priv, 5979 PIPE_DATA_N1(transcoder)); 5980 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder)) 5981 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5982 5983 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 5984 m2_n2->link_m = intel_de_read(dev_priv, 5985 PIPE_LINK_M2(transcoder)); 5986 m2_n2->link_n = intel_de_read(dev_priv, 5987 PIPE_LINK_N2(transcoder)); 5988 m2_n2->gmch_m = intel_de_read(dev_priv, 5989 PIPE_DATA_M2(transcoder)) 5990 & ~TU_SIZE_MASK; 5991 m2_n2->gmch_n = intel_de_read(dev_priv, 5992 PIPE_DATA_N2(transcoder)); 5993 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder)) 5994 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5995 } 5996 } else { 5997 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe)); 5998 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe)); 5999 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 6000 & ~TU_SIZE_MASK; 6001 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe)); 6002 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 6003 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 6004 } 6005 } 6006 6007 void intel_dp_get_m_n(struct intel_crtc *crtc, 6008 struct intel_crtc_state *pipe_config) 6009 { 6010 if (pipe_config->has_pch_encoder) 6011 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 6012 else 6013 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 6014 &pipe_config->dp_m_n, 6015 &pipe_config->dp_m2_n2); 6016 } 6017 6018 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc, 6019 struct intel_crtc_state *pipe_config) 6020 { 6021 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 6022 &pipe_config->fdi_m_n, NULL); 6023 } 6024 6025 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state, 6026 u32 pos, u32 size) 6027 { 6028 drm_rect_init(&crtc_state->pch_pfit.dst, 6029 pos >> 16, pos & 0xffff, 6030 size >> 16, size & 0xffff); 6031 } 6032 6033 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state) 6034 { 6035 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6036 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6037 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; 6038 int id = -1; 6039 int i; 6040 6041 /* find scaler attached to this pipe */ 6042 for (i = 0; i < crtc->num_scalers; i++) { 6043 u32 ctl, pos, size; 6044 6045 ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i)); 6046 if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN) 6047 continue; 6048 6049 id = i; 6050 crtc_state->pch_pfit.enabled = true; 6051 6052 pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i)); 6053 size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i)); 6054 6055 ilk_get_pfit_pos_size(crtc_state, pos, size); 6056 6057 scaler_state->scalers[i].in_use = true; 6058 break; 6059 } 6060 6061 scaler_state->scaler_id = id; 6062 if (id >= 0) 6063 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 6064 else 6065 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 6066 } 6067 6068 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state) 6069 { 6070 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6071 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6072 u32 ctl, pos, size; 6073 6074 ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe)); 6075 if ((ctl & PF_ENABLE) == 0) 6076 return; 6077 6078 crtc_state->pch_pfit.enabled = true; 6079 6080 pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe)); 6081 size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe)); 6082 6083 ilk_get_pfit_pos_size(crtc_state, pos, size); 6084 6085 /* 6086 * We currently do not free assignements of panel fitters on 6087 * ivb/hsw (since we don't use the higher upscaling modes which 6088 * differentiates them) so just WARN about this case for now. 6089 */ 6090 drm_WARN_ON(&dev_priv->drm, DISPLAY_VER(dev_priv) == 7 && 6091 (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe)); 6092 } 6093 6094 static bool ilk_get_pipe_config(struct intel_crtc *crtc, 6095 struct intel_crtc_state *pipe_config) 6096 { 6097 struct drm_device *dev = crtc->base.dev; 6098 struct drm_i915_private *dev_priv = to_i915(dev); 6099 enum intel_display_power_domain power_domain; 6100 intel_wakeref_t wakeref; 6101 u32 tmp; 6102 bool ret; 6103 6104 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 6105 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 6106 if (!wakeref) 6107 return false; 6108 6109 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 6110 pipe_config->shared_dpll = NULL; 6111 6112 ret = false; 6113 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 6114 if (!(tmp & PIPECONF_ENABLE)) 6115 goto out; 6116 6117 switch (tmp & PIPECONF_BPC_MASK) { 6118 case PIPECONF_6BPC: 6119 pipe_config->pipe_bpp = 18; 6120 break; 6121 case PIPECONF_8BPC: 6122 pipe_config->pipe_bpp = 24; 6123 break; 6124 case PIPECONF_10BPC: 6125 pipe_config->pipe_bpp = 30; 6126 break; 6127 case PIPECONF_12BPC: 6128 pipe_config->pipe_bpp = 36; 6129 break; 6130 default: 6131 break; 6132 } 6133 6134 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 6135 pipe_config->limited_color_range = true; 6136 6137 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { 6138 case PIPECONF_OUTPUT_COLORSPACE_YUV601: 6139 case PIPECONF_OUTPUT_COLORSPACE_YUV709: 6140 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 6141 break; 6142 default: 6143 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 6144 break; 6145 } 6146 6147 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 6148 PIPECONF_GAMMA_MODE_SHIFT; 6149 6150 pipe_config->csc_mode = intel_de_read(dev_priv, 6151 PIPE_CSC_MODE(crtc->pipe)); 6152 6153 i9xx_get_pipe_color_config(pipe_config); 6154 intel_color_get_config(pipe_config); 6155 6156 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 6157 struct intel_shared_dpll *pll; 6158 enum intel_dpll_id pll_id; 6159 bool pll_active; 6160 6161 pipe_config->has_pch_encoder = true; 6162 6163 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe)); 6164 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 6165 FDI_DP_PORT_WIDTH_SHIFT) + 1; 6166 6167 ilk_get_fdi_m_n_config(crtc, pipe_config); 6168 6169 if (HAS_PCH_IBX(dev_priv)) { 6170 /* 6171 * The pipe->pch transcoder and pch transcoder->pll 6172 * mapping is fixed. 6173 */ 6174 pll_id = (enum intel_dpll_id) crtc->pipe; 6175 } else { 6176 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL); 6177 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 6178 pll_id = DPLL_ID_PCH_PLL_B; 6179 else 6180 pll_id= DPLL_ID_PCH_PLL_A; 6181 } 6182 6183 pipe_config->shared_dpll = 6184 intel_get_shared_dpll_by_id(dev_priv, pll_id); 6185 pll = pipe_config->shared_dpll; 6186 6187 pll_active = intel_dpll_get_hw_state(dev_priv, pll, 6188 &pipe_config->dpll_hw_state); 6189 drm_WARN_ON(dev, !pll_active); 6190 6191 tmp = pipe_config->dpll_hw_state.dpll; 6192 pipe_config->pixel_multiplier = 6193 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 6194 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 6195 6196 ilk_pch_clock_get(crtc, pipe_config); 6197 } else { 6198 pipe_config->pixel_multiplier = 1; 6199 } 6200 6201 intel_get_transcoder_timings(crtc, pipe_config); 6202 intel_get_pipe_src_size(crtc, pipe_config); 6203 6204 ilk_get_pfit_config(pipe_config); 6205 6206 ret = true; 6207 6208 out: 6209 intel_display_power_put(dev_priv, power_domain, wakeref); 6210 6211 return ret; 6212 } 6213 6214 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 6215 struct intel_crtc_state *pipe_config, 6216 struct intel_display_power_domain_set *power_domain_set) 6217 { 6218 struct drm_device *dev = crtc->base.dev; 6219 struct drm_i915_private *dev_priv = to_i915(dev); 6220 unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP); 6221 unsigned long enabled_panel_transcoders = 0; 6222 enum transcoder panel_transcoder; 6223 u32 tmp; 6224 6225 if (DISPLAY_VER(dev_priv) >= 11) 6226 panel_transcoder_mask |= 6227 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 6228 6229 /* 6230 * The pipe->transcoder mapping is fixed with the exception of the eDP 6231 * and DSI transcoders handled below. 6232 */ 6233 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 6234 6235 /* 6236 * XXX: Do intel_display_power_get_if_enabled before reading this (for 6237 * consistency and less surprising code; it's in always on power). 6238 */ 6239 for_each_cpu_transcoder_masked(dev_priv, panel_transcoder, 6240 panel_transcoder_mask) { 6241 bool force_thru = false; 6242 enum pipe trans_pipe; 6243 6244 tmp = intel_de_read(dev_priv, 6245 TRANS_DDI_FUNC_CTL(panel_transcoder)); 6246 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 6247 continue; 6248 6249 /* 6250 * Log all enabled ones, only use the first one. 6251 * 6252 * FIXME: This won't work for two separate DSI displays. 6253 */ 6254 enabled_panel_transcoders |= BIT(panel_transcoder); 6255 if (enabled_panel_transcoders != BIT(panel_transcoder)) 6256 continue; 6257 6258 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 6259 default: 6260 drm_WARN(dev, 1, 6261 "unknown pipe linked to transcoder %s\n", 6262 transcoder_name(panel_transcoder)); 6263 fallthrough; 6264 case TRANS_DDI_EDP_INPUT_A_ONOFF: 6265 force_thru = true; 6266 fallthrough; 6267 case TRANS_DDI_EDP_INPUT_A_ON: 6268 trans_pipe = PIPE_A; 6269 break; 6270 case TRANS_DDI_EDP_INPUT_B_ONOFF: 6271 trans_pipe = PIPE_B; 6272 break; 6273 case TRANS_DDI_EDP_INPUT_C_ONOFF: 6274 trans_pipe = PIPE_C; 6275 break; 6276 case TRANS_DDI_EDP_INPUT_D_ONOFF: 6277 trans_pipe = PIPE_D; 6278 break; 6279 } 6280 6281 if (trans_pipe == crtc->pipe) { 6282 pipe_config->cpu_transcoder = panel_transcoder; 6283 pipe_config->pch_pfit.force_thru = force_thru; 6284 } 6285 } 6286 6287 /* 6288 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 6289 */ 6290 drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && 6291 enabled_panel_transcoders != BIT(TRANSCODER_EDP)); 6292 6293 if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, 6294 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder))) 6295 return false; 6296 6297 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); 6298 6299 return tmp & PIPECONF_ENABLE; 6300 } 6301 6302 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 6303 struct intel_crtc_state *pipe_config, 6304 struct intel_display_power_domain_set *power_domain_set) 6305 { 6306 struct drm_device *dev = crtc->base.dev; 6307 struct drm_i915_private *dev_priv = to_i915(dev); 6308 enum transcoder cpu_transcoder; 6309 enum port port; 6310 u32 tmp; 6311 6312 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 6313 if (port == PORT_A) 6314 cpu_transcoder = TRANSCODER_DSI_A; 6315 else 6316 cpu_transcoder = TRANSCODER_DSI_C; 6317 6318 if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, 6319 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) 6320 continue; 6321 6322 /* 6323 * The PLL needs to be enabled with a valid divider 6324 * configuration, otherwise accessing DSI registers will hang 6325 * the machine. See BSpec North Display Engine 6326 * registers/MIPI[BXT]. We can break out here early, since we 6327 * need the same DSI PLL to be enabled for both DSI ports. 6328 */ 6329 if (!bxt_dsi_pll_is_enabled(dev_priv)) 6330 break; 6331 6332 /* XXX: this works for video mode only */ 6333 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); 6334 if (!(tmp & DPI_ENABLE)) 6335 continue; 6336 6337 tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); 6338 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 6339 continue; 6340 6341 pipe_config->cpu_transcoder = cpu_transcoder; 6342 break; 6343 } 6344 6345 return transcoder_is_dsi(pipe_config->cpu_transcoder); 6346 } 6347 6348 static void hsw_get_ddi_port_state(struct intel_crtc *crtc, 6349 struct intel_crtc_state *pipe_config) 6350 { 6351 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6352 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 6353 enum port port; 6354 u32 tmp; 6355 6356 if (transcoder_is_dsi(cpu_transcoder)) { 6357 port = (cpu_transcoder == TRANSCODER_DSI_A) ? 6358 PORT_A : PORT_B; 6359 } else { 6360 tmp = intel_de_read(dev_priv, 6361 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 6362 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 6363 return; 6364 if (DISPLAY_VER(dev_priv) >= 12) 6365 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 6366 else 6367 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 6368 } 6369 6370 /* 6371 * Haswell has only FDI/PCH transcoder A. It is which is connected to 6372 * DDI E. So just check whether this pipe is wired to DDI E and whether 6373 * the PCH transcoder is on. 6374 */ 6375 if (DISPLAY_VER(dev_priv) < 9 && 6376 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) { 6377 pipe_config->has_pch_encoder = true; 6378 6379 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); 6380 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 6381 FDI_DP_PORT_WIDTH_SHIFT) + 1; 6382 6383 ilk_get_fdi_m_n_config(crtc, pipe_config); 6384 } 6385 } 6386 6387 static bool hsw_get_pipe_config(struct intel_crtc *crtc, 6388 struct intel_crtc_state *pipe_config) 6389 { 6390 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6391 struct intel_display_power_domain_set power_domain_set = { }; 6392 bool active; 6393 u32 tmp; 6394 6395 if (!intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, 6396 POWER_DOMAIN_PIPE(crtc->pipe))) 6397 return false; 6398 6399 pipe_config->shared_dpll = NULL; 6400 6401 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_set); 6402 6403 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 6404 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_set)) { 6405 drm_WARN_ON(&dev_priv->drm, active); 6406 active = true; 6407 } 6408 6409 intel_dsc_get_config(pipe_config); 6410 if (DISPLAY_VER(dev_priv) >= 13 && !pipe_config->dsc.compression_enable) 6411 intel_uncompressed_joiner_get_config(pipe_config); 6412 6413 if (!active) { 6414 /* bigjoiner slave doesn't enable transcoder */ 6415 if (!pipe_config->bigjoiner_slave) 6416 goto out; 6417 6418 active = true; 6419 pipe_config->pixel_multiplier = 1; 6420 6421 /* we cannot read out most state, so don't bother.. */ 6422 pipe_config->quirks |= PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE; 6423 } else if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 6424 DISPLAY_VER(dev_priv) >= 11) { 6425 hsw_get_ddi_port_state(crtc, pipe_config); 6426 intel_get_transcoder_timings(crtc, pipe_config); 6427 } 6428 6429 if (HAS_VRR(dev_priv) && !transcoder_is_dsi(pipe_config->cpu_transcoder)) 6430 intel_vrr_get_config(crtc, pipe_config); 6431 6432 intel_get_pipe_src_size(crtc, pipe_config); 6433 6434 if (IS_HASWELL(dev_priv)) { 6435 u32 tmp = intel_de_read(dev_priv, 6436 PIPECONF(pipe_config->cpu_transcoder)); 6437 6438 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) 6439 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 6440 else 6441 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 6442 } else { 6443 pipe_config->output_format = 6444 bdw_get_pipemisc_output_format(crtc); 6445 } 6446 6447 pipe_config->gamma_mode = intel_de_read(dev_priv, 6448 GAMMA_MODE(crtc->pipe)); 6449 6450 pipe_config->csc_mode = intel_de_read(dev_priv, 6451 PIPE_CSC_MODE(crtc->pipe)); 6452 6453 if (DISPLAY_VER(dev_priv) >= 9) { 6454 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe)); 6455 6456 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 6457 pipe_config->gamma_enable = true; 6458 6459 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 6460 pipe_config->csc_enable = true; 6461 } else { 6462 i9xx_get_pipe_color_config(pipe_config); 6463 } 6464 6465 intel_color_get_config(pipe_config); 6466 6467 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe)); 6468 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); 6469 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 6470 pipe_config->ips_linetime = 6471 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); 6472 6473 if (intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, 6474 POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe))) { 6475 if (DISPLAY_VER(dev_priv) >= 9) 6476 skl_get_pfit_config(pipe_config); 6477 else 6478 ilk_get_pfit_config(pipe_config); 6479 } 6480 6481 if (hsw_crtc_supports_ips(crtc)) { 6482 if (IS_HASWELL(dev_priv)) 6483 pipe_config->ips_enabled = intel_de_read(dev_priv, 6484 IPS_CTL) & IPS_ENABLE; 6485 else { 6486 /* 6487 * We cannot readout IPS state on broadwell, set to 6488 * true so we can set it to a defined state on first 6489 * commit. 6490 */ 6491 pipe_config->ips_enabled = true; 6492 } 6493 } 6494 6495 if (pipe_config->bigjoiner_slave) { 6496 /* Cannot be read out as a slave, set to 0. */ 6497 pipe_config->pixel_multiplier = 0; 6498 } else if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 6499 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 6500 pipe_config->pixel_multiplier = 6501 intel_de_read(dev_priv, 6502 PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 6503 } else { 6504 pipe_config->pixel_multiplier = 1; 6505 } 6506 6507 out: 6508 intel_display_power_put_all_in_set(dev_priv, &power_domain_set); 6509 6510 return active; 6511 } 6512 6513 static bool intel_crtc_get_pipe_config(struct intel_crtc_state *crtc_state) 6514 { 6515 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6516 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 6517 6518 if (!i915->display.get_pipe_config(crtc, crtc_state)) 6519 return false; 6520 6521 crtc_state->hw.active = true; 6522 6523 intel_crtc_readout_derived_state(crtc_state); 6524 6525 return true; 6526 } 6527 6528 /* VESA 640x480x72Hz mode to set on the pipe */ 6529 static const struct drm_display_mode load_detect_mode = { 6530 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 6531 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 6532 }; 6533 6534 struct drm_framebuffer * 6535 intel_framebuffer_create(struct drm_i915_gem_object *obj, 6536 struct drm_mode_fb_cmd2 *mode_cmd) 6537 { 6538 struct intel_framebuffer *intel_fb; 6539 int ret; 6540 6541 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 6542 if (!intel_fb) 6543 return ERR_PTR(-ENOMEM); 6544 6545 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); 6546 if (ret) 6547 goto err; 6548 6549 return &intel_fb->base; 6550 6551 err: 6552 kfree(intel_fb); 6553 return ERR_PTR(ret); 6554 } 6555 6556 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 6557 struct drm_crtc *crtc) 6558 { 6559 struct drm_plane *plane; 6560 struct drm_plane_state *plane_state; 6561 int ret, i; 6562 6563 ret = drm_atomic_add_affected_planes(state, crtc); 6564 if (ret) 6565 return ret; 6566 6567 for_each_new_plane_in_state(state, plane, plane_state, i) { 6568 if (plane_state->crtc != crtc) 6569 continue; 6570 6571 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 6572 if (ret) 6573 return ret; 6574 6575 drm_atomic_set_fb_for_plane(plane_state, NULL); 6576 } 6577 6578 return 0; 6579 } 6580 6581 int intel_get_load_detect_pipe(struct drm_connector *connector, 6582 struct intel_load_detect_pipe *old, 6583 struct drm_modeset_acquire_ctx *ctx) 6584 { 6585 struct intel_encoder *encoder = 6586 intel_attached_encoder(to_intel_connector(connector)); 6587 struct intel_crtc *possible_crtc; 6588 struct intel_crtc *crtc = NULL; 6589 struct drm_device *dev = encoder->base.dev; 6590 struct drm_i915_private *dev_priv = to_i915(dev); 6591 struct drm_mode_config *config = &dev->mode_config; 6592 struct drm_atomic_state *state = NULL, *restore_state = NULL; 6593 struct drm_connector_state *connector_state; 6594 struct intel_crtc_state *crtc_state; 6595 int ret; 6596 6597 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 6598 connector->base.id, connector->name, 6599 encoder->base.base.id, encoder->base.name); 6600 6601 old->restore_state = NULL; 6602 6603 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex)); 6604 6605 /* 6606 * Algorithm gets a little messy: 6607 * 6608 * - if the connector already has an assigned crtc, use it (but make 6609 * sure it's on first) 6610 * 6611 * - try to find the first unused crtc that can drive this connector, 6612 * and use that if we find one 6613 */ 6614 6615 /* See if we already have a CRTC for this connector */ 6616 if (connector->state->crtc) { 6617 crtc = to_intel_crtc(connector->state->crtc); 6618 6619 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 6620 if (ret) 6621 goto fail; 6622 6623 /* Make sure the crtc and connector are running */ 6624 goto found; 6625 } 6626 6627 /* Find an unused one (if possible) */ 6628 for_each_intel_crtc(dev, possible_crtc) { 6629 if (!(encoder->base.possible_crtcs & 6630 drm_crtc_mask(&possible_crtc->base))) 6631 continue; 6632 6633 ret = drm_modeset_lock(&possible_crtc->base.mutex, ctx); 6634 if (ret) 6635 goto fail; 6636 6637 if (possible_crtc->base.state->enable) { 6638 drm_modeset_unlock(&possible_crtc->base.mutex); 6639 continue; 6640 } 6641 6642 crtc = possible_crtc; 6643 break; 6644 } 6645 6646 /* 6647 * If we didn't find an unused CRTC, don't use any. 6648 */ 6649 if (!crtc) { 6650 drm_dbg_kms(&dev_priv->drm, 6651 "no pipe available for load-detect\n"); 6652 ret = -ENODEV; 6653 goto fail; 6654 } 6655 6656 found: 6657 state = drm_atomic_state_alloc(dev); 6658 restore_state = drm_atomic_state_alloc(dev); 6659 if (!state || !restore_state) { 6660 ret = -ENOMEM; 6661 goto fail; 6662 } 6663 6664 state->acquire_ctx = ctx; 6665 restore_state->acquire_ctx = ctx; 6666 6667 connector_state = drm_atomic_get_connector_state(state, connector); 6668 if (IS_ERR(connector_state)) { 6669 ret = PTR_ERR(connector_state); 6670 goto fail; 6671 } 6672 6673 ret = drm_atomic_set_crtc_for_connector(connector_state, &crtc->base); 6674 if (ret) 6675 goto fail; 6676 6677 crtc_state = intel_atomic_get_crtc_state(state, crtc); 6678 if (IS_ERR(crtc_state)) { 6679 ret = PTR_ERR(crtc_state); 6680 goto fail; 6681 } 6682 6683 crtc_state->uapi.active = true; 6684 6685 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi, 6686 &load_detect_mode); 6687 if (ret) 6688 goto fail; 6689 6690 ret = intel_modeset_disable_planes(state, &crtc->base); 6691 if (ret) 6692 goto fail; 6693 6694 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 6695 if (!ret) 6696 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, &crtc->base)); 6697 if (!ret) 6698 ret = drm_atomic_add_affected_planes(restore_state, &crtc->base); 6699 if (ret) { 6700 drm_dbg_kms(&dev_priv->drm, 6701 "Failed to create a copy of old state to restore: %i\n", 6702 ret); 6703 goto fail; 6704 } 6705 6706 ret = drm_atomic_commit(state); 6707 if (ret) { 6708 drm_dbg_kms(&dev_priv->drm, 6709 "failed to set mode on load-detect pipe\n"); 6710 goto fail; 6711 } 6712 6713 old->restore_state = restore_state; 6714 drm_atomic_state_put(state); 6715 6716 /* let the connector get through one full cycle before testing */ 6717 intel_wait_for_vblank(dev_priv, crtc->pipe); 6718 return true; 6719 6720 fail: 6721 if (state) { 6722 drm_atomic_state_put(state); 6723 state = NULL; 6724 } 6725 if (restore_state) { 6726 drm_atomic_state_put(restore_state); 6727 restore_state = NULL; 6728 } 6729 6730 if (ret == -EDEADLK) 6731 return ret; 6732 6733 return false; 6734 } 6735 6736 void intel_release_load_detect_pipe(struct drm_connector *connector, 6737 struct intel_load_detect_pipe *old, 6738 struct drm_modeset_acquire_ctx *ctx) 6739 { 6740 struct intel_encoder *intel_encoder = 6741 intel_attached_encoder(to_intel_connector(connector)); 6742 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev); 6743 struct drm_encoder *encoder = &intel_encoder->base; 6744 struct drm_atomic_state *state = old->restore_state; 6745 int ret; 6746 6747 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 6748 connector->base.id, connector->name, 6749 encoder->base.id, encoder->name); 6750 6751 if (!state) 6752 return; 6753 6754 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 6755 if (ret) 6756 drm_dbg_kms(&i915->drm, 6757 "Couldn't release load detect pipe: %i\n", ret); 6758 drm_atomic_state_put(state); 6759 } 6760 6761 static int i9xx_pll_refclk(struct drm_device *dev, 6762 const struct intel_crtc_state *pipe_config) 6763 { 6764 struct drm_i915_private *dev_priv = to_i915(dev); 6765 u32 dpll = pipe_config->dpll_hw_state.dpll; 6766 6767 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 6768 return dev_priv->vbt.lvds_ssc_freq; 6769 else if (HAS_PCH_SPLIT(dev_priv)) 6770 return 120000; 6771 else if (DISPLAY_VER(dev_priv) != 2) 6772 return 96000; 6773 else 6774 return 48000; 6775 } 6776 6777 /* Returns the clock of the currently programmed mode of the given pipe. */ 6778 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 6779 struct intel_crtc_state *pipe_config) 6780 { 6781 struct drm_device *dev = crtc->base.dev; 6782 struct drm_i915_private *dev_priv = to_i915(dev); 6783 enum pipe pipe = crtc->pipe; 6784 u32 dpll = pipe_config->dpll_hw_state.dpll; 6785 u32 fp; 6786 struct dpll clock; 6787 int port_clock; 6788 int refclk = i9xx_pll_refclk(dev, pipe_config); 6789 6790 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 6791 fp = pipe_config->dpll_hw_state.fp0; 6792 else 6793 fp = pipe_config->dpll_hw_state.fp1; 6794 6795 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 6796 if (IS_PINEVIEW(dev_priv)) { 6797 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 6798 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 6799 } else { 6800 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 6801 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 6802 } 6803 6804 if (DISPLAY_VER(dev_priv) != 2) { 6805 if (IS_PINEVIEW(dev_priv)) 6806 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 6807 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 6808 else 6809 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 6810 DPLL_FPA01_P1_POST_DIV_SHIFT); 6811 6812 switch (dpll & DPLL_MODE_MASK) { 6813 case DPLLB_MODE_DAC_SERIAL: 6814 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 6815 5 : 10; 6816 break; 6817 case DPLLB_MODE_LVDS: 6818 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 6819 7 : 14; 6820 break; 6821 default: 6822 drm_dbg_kms(&dev_priv->drm, 6823 "Unknown DPLL mode %08x in programmed " 6824 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 6825 return; 6826 } 6827 6828 if (IS_PINEVIEW(dev_priv)) 6829 port_clock = pnv_calc_dpll_params(refclk, &clock); 6830 else 6831 port_clock = i9xx_calc_dpll_params(refclk, &clock); 6832 } else { 6833 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv, 6834 LVDS); 6835 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 6836 6837 if (is_lvds) { 6838 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 6839 DPLL_FPA01_P1_POST_DIV_SHIFT); 6840 6841 if (lvds & LVDS_CLKB_POWER_UP) 6842 clock.p2 = 7; 6843 else 6844 clock.p2 = 14; 6845 } else { 6846 if (dpll & PLL_P1_DIVIDE_BY_TWO) 6847 clock.p1 = 2; 6848 else { 6849 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 6850 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 6851 } 6852 if (dpll & PLL_P2_DIVIDE_BY_4) 6853 clock.p2 = 4; 6854 else 6855 clock.p2 = 2; 6856 } 6857 6858 port_clock = i9xx_calc_dpll_params(refclk, &clock); 6859 } 6860 6861 /* 6862 * This value includes pixel_multiplier. We will use 6863 * port_clock to compute adjusted_mode.crtc_clock in the 6864 * encoder's get_config() function. 6865 */ 6866 pipe_config->port_clock = port_clock; 6867 } 6868 6869 int intel_dotclock_calculate(int link_freq, 6870 const struct intel_link_m_n *m_n) 6871 { 6872 /* 6873 * The calculation for the data clock is: 6874 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 6875 * But we want to avoid losing precison if possible, so: 6876 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 6877 * 6878 * and the link clock is simpler: 6879 * link_clock = (m * link_clock) / n 6880 */ 6881 6882 if (!m_n->link_n) 6883 return 0; 6884 6885 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 6886 } 6887 6888 static void ilk_pch_clock_get(struct intel_crtc *crtc, 6889 struct intel_crtc_state *pipe_config) 6890 { 6891 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6892 6893 /* read out port_clock from the DPLL */ 6894 i9xx_crtc_clock_get(crtc, pipe_config); 6895 6896 /* 6897 * In case there is an active pipe without active ports, 6898 * we may need some idea for the dotclock anyway. 6899 * Calculate one based on the FDI configuration. 6900 */ 6901 pipe_config->hw.adjusted_mode.crtc_clock = 6902 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 6903 &pipe_config->fdi_m_n); 6904 } 6905 6906 /* Returns the currently programmed mode of the given encoder. */ 6907 struct drm_display_mode * 6908 intel_encoder_current_mode(struct intel_encoder *encoder) 6909 { 6910 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6911 struct intel_crtc_state *crtc_state; 6912 struct drm_display_mode *mode; 6913 struct intel_crtc *crtc; 6914 enum pipe pipe; 6915 6916 if (!encoder->get_hw_state(encoder, &pipe)) 6917 return NULL; 6918 6919 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 6920 6921 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 6922 if (!mode) 6923 return NULL; 6924 6925 crtc_state = intel_crtc_state_alloc(crtc); 6926 if (!crtc_state) { 6927 kfree(mode); 6928 return NULL; 6929 } 6930 6931 if (!intel_crtc_get_pipe_config(crtc_state)) { 6932 kfree(crtc_state); 6933 kfree(mode); 6934 return NULL; 6935 } 6936 6937 intel_encoder_get_config(encoder, crtc_state); 6938 6939 intel_mode_from_crtc_timings(mode, &crtc_state->hw.adjusted_mode); 6940 6941 kfree(crtc_state); 6942 6943 return mode; 6944 } 6945 6946 /** 6947 * intel_wm_need_update - Check whether watermarks need updating 6948 * @cur: current plane state 6949 * @new: new plane state 6950 * 6951 * Check current plane state versus the new one to determine whether 6952 * watermarks need to be recalculated. 6953 * 6954 * Returns true or false. 6955 */ 6956 static bool intel_wm_need_update(const struct intel_plane_state *cur, 6957 struct intel_plane_state *new) 6958 { 6959 /* Update watermarks on tiling or size changes. */ 6960 if (new->uapi.visible != cur->uapi.visible) 6961 return true; 6962 6963 if (!cur->hw.fb || !new->hw.fb) 6964 return false; 6965 6966 if (cur->hw.fb->modifier != new->hw.fb->modifier || 6967 cur->hw.rotation != new->hw.rotation || 6968 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) || 6969 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) || 6970 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) || 6971 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst)) 6972 return true; 6973 6974 return false; 6975 } 6976 6977 static bool needs_scaling(const struct intel_plane_state *state) 6978 { 6979 int src_w = drm_rect_width(&state->uapi.src) >> 16; 6980 int src_h = drm_rect_height(&state->uapi.src) >> 16; 6981 int dst_w = drm_rect_width(&state->uapi.dst); 6982 int dst_h = drm_rect_height(&state->uapi.dst); 6983 6984 return (src_w != dst_w || src_h != dst_h); 6985 } 6986 6987 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 6988 struct intel_crtc_state *crtc_state, 6989 const struct intel_plane_state *old_plane_state, 6990 struct intel_plane_state *plane_state) 6991 { 6992 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6993 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 6994 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6995 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 6996 bool was_crtc_enabled = old_crtc_state->hw.active; 6997 bool is_crtc_enabled = crtc_state->hw.active; 6998 bool turn_off, turn_on, visible, was_visible; 6999 int ret; 7000 7001 if (DISPLAY_VER(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 7002 ret = skl_update_scaler_plane(crtc_state, plane_state); 7003 if (ret) 7004 return ret; 7005 } 7006 7007 was_visible = old_plane_state->uapi.visible; 7008 visible = plane_state->uapi.visible; 7009 7010 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible)) 7011 was_visible = false; 7012 7013 /* 7014 * Visibility is calculated as if the crtc was on, but 7015 * after scaler setup everything depends on it being off 7016 * when the crtc isn't active. 7017 * 7018 * FIXME this is wrong for watermarks. Watermarks should also 7019 * be computed as if the pipe would be active. Perhaps move 7020 * per-plane wm computation to the .check_plane() hook, and 7021 * only combine the results from all planes in the current place? 7022 */ 7023 if (!is_crtc_enabled) { 7024 intel_plane_set_invisible(crtc_state, plane_state); 7025 visible = false; 7026 } 7027 7028 if (!was_visible && !visible) 7029 return 0; 7030 7031 turn_off = was_visible && (!visible || mode_changed); 7032 turn_on = visible && (!was_visible || mode_changed); 7033 7034 drm_dbg_atomic(&dev_priv->drm, 7035 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 7036 crtc->base.base.id, crtc->base.name, 7037 plane->base.base.id, plane->base.name, 7038 was_visible, visible, 7039 turn_off, turn_on, mode_changed); 7040 7041 if (turn_on) { 7042 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) 7043 crtc_state->update_wm_pre = true; 7044 7045 /* must disable cxsr around plane enable/disable */ 7046 if (plane->id != PLANE_CURSOR) 7047 crtc_state->disable_cxsr = true; 7048 } else if (turn_off) { 7049 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) 7050 crtc_state->update_wm_post = true; 7051 7052 /* must disable cxsr around plane enable/disable */ 7053 if (plane->id != PLANE_CURSOR) 7054 crtc_state->disable_cxsr = true; 7055 } else if (intel_wm_need_update(old_plane_state, plane_state)) { 7056 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) { 7057 /* FIXME bollocks */ 7058 crtc_state->update_wm_pre = true; 7059 crtc_state->update_wm_post = true; 7060 } 7061 } 7062 7063 if (visible || was_visible) 7064 crtc_state->fb_bits |= plane->frontbuffer_bit; 7065 7066 /* 7067 * ILK/SNB DVSACNTR/Sprite Enable 7068 * IVB SPR_CTL/Sprite Enable 7069 * "When in Self Refresh Big FIFO mode, a write to enable the 7070 * plane will be internally buffered and delayed while Big FIFO 7071 * mode is exiting." 7072 * 7073 * Which means that enabling the sprite can take an extra frame 7074 * when we start in big FIFO mode (LP1+). Thus we need to drop 7075 * down to LP0 and wait for vblank in order to make sure the 7076 * sprite gets enabled on the next vblank after the register write. 7077 * Doing otherwise would risk enabling the sprite one frame after 7078 * we've already signalled flip completion. We can resume LP1+ 7079 * once the sprite has been enabled. 7080 * 7081 * 7082 * WaCxSRDisabledForSpriteScaling:ivb 7083 * IVB SPR_SCALE/Scaling Enable 7084 * "Low Power watermarks must be disabled for at least one 7085 * frame before enabling sprite scaling, and kept disabled 7086 * until sprite scaling is disabled." 7087 * 7088 * ILK/SNB DVSASCALE/Scaling Enable 7089 * "When in Self Refresh Big FIFO mode, scaling enable will be 7090 * masked off while Big FIFO mode is exiting." 7091 * 7092 * Despite the w/a only being listed for IVB we assume that 7093 * the ILK/SNB note has similar ramifications, hence we apply 7094 * the w/a on all three platforms. 7095 * 7096 * With experimental results seems this is needed also for primary 7097 * plane, not only sprite plane. 7098 */ 7099 if (plane->id != PLANE_CURSOR && 7100 (IS_IRONLAKE(dev_priv) || IS_SANDYBRIDGE(dev_priv) || 7101 IS_IVYBRIDGE(dev_priv)) && 7102 (turn_on || (!needs_scaling(old_plane_state) && 7103 needs_scaling(plane_state)))) 7104 crtc_state->disable_lp_wm = true; 7105 7106 return 0; 7107 } 7108 7109 static bool encoders_cloneable(const struct intel_encoder *a, 7110 const struct intel_encoder *b) 7111 { 7112 /* masks could be asymmetric, so check both ways */ 7113 return a == b || (a->cloneable & (1 << b->type) && 7114 b->cloneable & (1 << a->type)); 7115 } 7116 7117 static bool check_single_encoder_cloning(struct intel_atomic_state *state, 7118 struct intel_crtc *crtc, 7119 struct intel_encoder *encoder) 7120 { 7121 struct intel_encoder *source_encoder; 7122 struct drm_connector *connector; 7123 struct drm_connector_state *connector_state; 7124 int i; 7125 7126 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 7127 if (connector_state->crtc != &crtc->base) 7128 continue; 7129 7130 source_encoder = 7131 to_intel_encoder(connector_state->best_encoder); 7132 if (!encoders_cloneable(encoder, source_encoder)) 7133 return false; 7134 } 7135 7136 return true; 7137 } 7138 7139 static int icl_add_linked_planes(struct intel_atomic_state *state) 7140 { 7141 struct intel_plane *plane, *linked; 7142 struct intel_plane_state *plane_state, *linked_plane_state; 7143 int i; 7144 7145 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7146 linked = plane_state->planar_linked_plane; 7147 7148 if (!linked) 7149 continue; 7150 7151 linked_plane_state = intel_atomic_get_plane_state(state, linked); 7152 if (IS_ERR(linked_plane_state)) 7153 return PTR_ERR(linked_plane_state); 7154 7155 drm_WARN_ON(state->base.dev, 7156 linked_plane_state->planar_linked_plane != plane); 7157 drm_WARN_ON(state->base.dev, 7158 linked_plane_state->planar_slave == plane_state->planar_slave); 7159 } 7160 7161 return 0; 7162 } 7163 7164 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 7165 { 7166 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7167 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7168 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); 7169 struct intel_plane *plane, *linked; 7170 struct intel_plane_state *plane_state; 7171 int i; 7172 7173 if (DISPLAY_VER(dev_priv) < 11) 7174 return 0; 7175 7176 /* 7177 * Destroy all old plane links and make the slave plane invisible 7178 * in the crtc_state->active_planes mask. 7179 */ 7180 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7181 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) 7182 continue; 7183 7184 plane_state->planar_linked_plane = NULL; 7185 if (plane_state->planar_slave && !plane_state->uapi.visible) { 7186 crtc_state->enabled_planes &= ~BIT(plane->id); 7187 crtc_state->active_planes &= ~BIT(plane->id); 7188 crtc_state->update_planes |= BIT(plane->id); 7189 } 7190 7191 plane_state->planar_slave = false; 7192 } 7193 7194 if (!crtc_state->nv12_planes) 7195 return 0; 7196 7197 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7198 struct intel_plane_state *linked_state = NULL; 7199 7200 if (plane->pipe != crtc->pipe || 7201 !(crtc_state->nv12_planes & BIT(plane->id))) 7202 continue; 7203 7204 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 7205 if (!icl_is_nv12_y_plane(dev_priv, linked->id)) 7206 continue; 7207 7208 if (crtc_state->active_planes & BIT(linked->id)) 7209 continue; 7210 7211 linked_state = intel_atomic_get_plane_state(state, linked); 7212 if (IS_ERR(linked_state)) 7213 return PTR_ERR(linked_state); 7214 7215 break; 7216 } 7217 7218 if (!linked_state) { 7219 drm_dbg_kms(&dev_priv->drm, 7220 "Need %d free Y planes for planar YUV\n", 7221 hweight8(crtc_state->nv12_planes)); 7222 7223 return -EINVAL; 7224 } 7225 7226 plane_state->planar_linked_plane = linked; 7227 7228 linked_state->planar_slave = true; 7229 linked_state->planar_linked_plane = plane; 7230 crtc_state->enabled_planes |= BIT(linked->id); 7231 crtc_state->active_planes |= BIT(linked->id); 7232 crtc_state->update_planes |= BIT(linked->id); 7233 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n", 7234 linked->base.name, plane->base.name); 7235 7236 /* Copy parameters to slave plane */ 7237 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE; 7238 linked_state->color_ctl = plane_state->color_ctl; 7239 linked_state->view = plane_state->view; 7240 7241 intel_plane_copy_hw_state(linked_state, plane_state); 7242 linked_state->uapi.src = plane_state->uapi.src; 7243 linked_state->uapi.dst = plane_state->uapi.dst; 7244 7245 if (icl_is_hdr_plane(dev_priv, plane->id)) { 7246 if (linked->id == PLANE_SPRITE5) 7247 plane_state->cus_ctl |= PLANE_CUS_PLANE_7; 7248 else if (linked->id == PLANE_SPRITE4) 7249 plane_state->cus_ctl |= PLANE_CUS_PLANE_6; 7250 else if (linked->id == PLANE_SPRITE3) 7251 plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL; 7252 else if (linked->id == PLANE_SPRITE2) 7253 plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL; 7254 else 7255 MISSING_CASE(linked->id); 7256 } 7257 } 7258 7259 return 0; 7260 } 7261 7262 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 7263 { 7264 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 7265 struct intel_atomic_state *state = 7266 to_intel_atomic_state(new_crtc_state->uapi.state); 7267 const struct intel_crtc_state *old_crtc_state = 7268 intel_atomic_get_old_crtc_state(state, crtc); 7269 7270 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 7271 } 7272 7273 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) 7274 { 7275 const struct drm_display_mode *pipe_mode = 7276 &crtc_state->hw.pipe_mode; 7277 int linetime_wm; 7278 7279 if (!crtc_state->hw.enable) 7280 return 0; 7281 7282 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 7283 pipe_mode->crtc_clock); 7284 7285 return min(linetime_wm, 0x1ff); 7286 } 7287 7288 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, 7289 const struct intel_cdclk_state *cdclk_state) 7290 { 7291 const struct drm_display_mode *pipe_mode = 7292 &crtc_state->hw.pipe_mode; 7293 int linetime_wm; 7294 7295 if (!crtc_state->hw.enable) 7296 return 0; 7297 7298 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 7299 cdclk_state->logical.cdclk); 7300 7301 return min(linetime_wm, 0x1ff); 7302 } 7303 7304 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) 7305 { 7306 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7307 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7308 const struct drm_display_mode *pipe_mode = 7309 &crtc_state->hw.pipe_mode; 7310 int linetime_wm; 7311 7312 if (!crtc_state->hw.enable) 7313 return 0; 7314 7315 linetime_wm = DIV_ROUND_UP(pipe_mode->crtc_htotal * 1000 * 8, 7316 crtc_state->pixel_rate); 7317 7318 /* Display WA #1135: BXT:ALL GLK:ALL */ 7319 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 7320 dev_priv->ipc_enabled) 7321 linetime_wm /= 2; 7322 7323 return min(linetime_wm, 0x1ff); 7324 } 7325 7326 static int hsw_compute_linetime_wm(struct intel_atomic_state *state, 7327 struct intel_crtc *crtc) 7328 { 7329 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7330 struct intel_crtc_state *crtc_state = 7331 intel_atomic_get_new_crtc_state(state, crtc); 7332 const struct intel_cdclk_state *cdclk_state; 7333 7334 if (DISPLAY_VER(dev_priv) >= 9) 7335 crtc_state->linetime = skl_linetime_wm(crtc_state); 7336 else 7337 crtc_state->linetime = hsw_linetime_wm(crtc_state); 7338 7339 if (!hsw_crtc_supports_ips(crtc)) 7340 return 0; 7341 7342 cdclk_state = intel_atomic_get_cdclk_state(state); 7343 if (IS_ERR(cdclk_state)) 7344 return PTR_ERR(cdclk_state); 7345 7346 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, 7347 cdclk_state); 7348 7349 return 0; 7350 } 7351 7352 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 7353 struct intel_crtc *crtc) 7354 { 7355 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7356 struct intel_crtc_state *crtc_state = 7357 intel_atomic_get_new_crtc_state(state, crtc); 7358 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 7359 int ret; 7360 7361 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv) && 7362 mode_changed && !crtc_state->hw.active) 7363 crtc_state->update_wm_post = true; 7364 7365 if (mode_changed && crtc_state->hw.enable && 7366 dev_priv->display.crtc_compute_clock && 7367 !crtc_state->bigjoiner_slave && 7368 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) { 7369 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state); 7370 if (ret) 7371 return ret; 7372 } 7373 7374 /* 7375 * May need to update pipe gamma enable bits 7376 * when C8 planes are getting enabled/disabled. 7377 */ 7378 if (c8_planes_changed(crtc_state)) 7379 crtc_state->uapi.color_mgmt_changed = true; 7380 7381 if (mode_changed || crtc_state->update_pipe || 7382 crtc_state->uapi.color_mgmt_changed) { 7383 ret = intel_color_check(crtc_state); 7384 if (ret) 7385 return ret; 7386 } 7387 7388 if (dev_priv->display.compute_pipe_wm) { 7389 ret = dev_priv->display.compute_pipe_wm(state, crtc); 7390 if (ret) { 7391 drm_dbg_kms(&dev_priv->drm, 7392 "Target pipe watermarks are invalid\n"); 7393 return ret; 7394 } 7395 7396 } 7397 7398 if (dev_priv->display.compute_intermediate_wm) { 7399 if (drm_WARN_ON(&dev_priv->drm, 7400 !dev_priv->display.compute_pipe_wm)) 7401 return 0; 7402 7403 /* 7404 * Calculate 'intermediate' watermarks that satisfy both the 7405 * old state and the new state. We can program these 7406 * immediately. 7407 */ 7408 ret = dev_priv->display.compute_intermediate_wm(state, crtc); 7409 if (ret) { 7410 drm_dbg_kms(&dev_priv->drm, 7411 "No valid intermediate pipe watermarks are possible\n"); 7412 return ret; 7413 } 7414 } 7415 7416 if (DISPLAY_VER(dev_priv) >= 9) { 7417 if (mode_changed || crtc_state->update_pipe) { 7418 ret = skl_update_scaler_crtc(crtc_state); 7419 if (ret) 7420 return ret; 7421 } 7422 7423 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state); 7424 if (ret) 7425 return ret; 7426 } 7427 7428 if (HAS_IPS(dev_priv)) { 7429 ret = hsw_compute_ips_config(crtc_state); 7430 if (ret) 7431 return ret; 7432 } 7433 7434 if (DISPLAY_VER(dev_priv) >= 9 || 7435 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 7436 ret = hsw_compute_linetime_wm(state, crtc); 7437 if (ret) 7438 return ret; 7439 7440 } 7441 7442 if (!mode_changed) { 7443 ret = intel_psr2_sel_fetch_update(state, crtc); 7444 if (ret) 7445 return ret; 7446 } 7447 7448 return 0; 7449 } 7450 7451 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 7452 { 7453 struct intel_connector *connector; 7454 struct drm_connector_list_iter conn_iter; 7455 7456 drm_connector_list_iter_begin(dev, &conn_iter); 7457 for_each_intel_connector_iter(connector, &conn_iter) { 7458 struct drm_connector_state *conn_state = connector->base.state; 7459 struct intel_encoder *encoder = 7460 to_intel_encoder(connector->base.encoder); 7461 7462 if (conn_state->crtc) 7463 drm_connector_put(&connector->base); 7464 7465 if (encoder) { 7466 struct intel_crtc *crtc = 7467 to_intel_crtc(encoder->base.crtc); 7468 const struct intel_crtc_state *crtc_state = 7469 to_intel_crtc_state(crtc->base.state); 7470 7471 conn_state->best_encoder = &encoder->base; 7472 conn_state->crtc = &crtc->base; 7473 conn_state->max_bpc = (crtc_state->pipe_bpp ?: 24) / 3; 7474 7475 drm_connector_get(&connector->base); 7476 } else { 7477 conn_state->best_encoder = NULL; 7478 conn_state->crtc = NULL; 7479 } 7480 } 7481 drm_connector_list_iter_end(&conn_iter); 7482 } 7483 7484 static int 7485 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 7486 struct intel_crtc_state *pipe_config) 7487 { 7488 struct drm_connector *connector = conn_state->connector; 7489 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7490 const struct drm_display_info *info = &connector->display_info; 7491 int bpp; 7492 7493 switch (conn_state->max_bpc) { 7494 case 6 ... 7: 7495 bpp = 6 * 3; 7496 break; 7497 case 8 ... 9: 7498 bpp = 8 * 3; 7499 break; 7500 case 10 ... 11: 7501 bpp = 10 * 3; 7502 break; 7503 case 12 ... 16: 7504 bpp = 12 * 3; 7505 break; 7506 default: 7507 MISSING_CASE(conn_state->max_bpc); 7508 return -EINVAL; 7509 } 7510 7511 if (bpp < pipe_config->pipe_bpp) { 7512 drm_dbg_kms(&i915->drm, 7513 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 7514 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 7515 connector->base.id, connector->name, 7516 bpp, 3 * info->bpc, 7517 3 * conn_state->max_requested_bpc, 7518 pipe_config->pipe_bpp); 7519 7520 pipe_config->pipe_bpp = bpp; 7521 } 7522 7523 return 0; 7524 } 7525 7526 static int 7527 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 7528 struct intel_crtc_state *pipe_config) 7529 { 7530 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7531 struct drm_atomic_state *state = pipe_config->uapi.state; 7532 struct drm_connector *connector; 7533 struct drm_connector_state *connector_state; 7534 int bpp, i; 7535 7536 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 7537 IS_CHERRYVIEW(dev_priv))) 7538 bpp = 10*3; 7539 else if (DISPLAY_VER(dev_priv) >= 5) 7540 bpp = 12*3; 7541 else 7542 bpp = 8*3; 7543 7544 pipe_config->pipe_bpp = bpp; 7545 7546 /* Clamp display bpp to connector max bpp */ 7547 for_each_new_connector_in_state(state, connector, connector_state, i) { 7548 int ret; 7549 7550 if (connector_state->crtc != &crtc->base) 7551 continue; 7552 7553 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 7554 if (ret) 7555 return ret; 7556 } 7557 7558 return 0; 7559 } 7560 7561 static void intel_dump_crtc_timings(struct drm_i915_private *i915, 7562 const struct drm_display_mode *mode) 7563 { 7564 drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, " 7565 "type: 0x%x flags: 0x%x\n", 7566 mode->crtc_clock, 7567 mode->crtc_hdisplay, mode->crtc_hsync_start, 7568 mode->crtc_hsync_end, mode->crtc_htotal, 7569 mode->crtc_vdisplay, mode->crtc_vsync_start, 7570 mode->crtc_vsync_end, mode->crtc_vtotal, 7571 mode->type, mode->flags); 7572 } 7573 7574 static void 7575 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 7576 const char *id, unsigned int lane_count, 7577 const struct intel_link_m_n *m_n) 7578 { 7579 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7580 7581 drm_dbg_kms(&i915->drm, 7582 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 7583 id, lane_count, 7584 m_n->gmch_m, m_n->gmch_n, 7585 m_n->link_m, m_n->link_n, m_n->tu); 7586 } 7587 7588 static void 7589 intel_dump_infoframe(struct drm_i915_private *dev_priv, 7590 const union hdmi_infoframe *frame) 7591 { 7592 if (!drm_debug_enabled(DRM_UT_KMS)) 7593 return; 7594 7595 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 7596 } 7597 7598 static void 7599 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv, 7600 const struct drm_dp_vsc_sdp *vsc) 7601 { 7602 if (!drm_debug_enabled(DRM_UT_KMS)) 7603 return; 7604 7605 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc); 7606 } 7607 7608 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 7609 7610 static const char * const output_type_str[] = { 7611 OUTPUT_TYPE(UNUSED), 7612 OUTPUT_TYPE(ANALOG), 7613 OUTPUT_TYPE(DVO), 7614 OUTPUT_TYPE(SDVO), 7615 OUTPUT_TYPE(LVDS), 7616 OUTPUT_TYPE(TVOUT), 7617 OUTPUT_TYPE(HDMI), 7618 OUTPUT_TYPE(DP), 7619 OUTPUT_TYPE(EDP), 7620 OUTPUT_TYPE(DSI), 7621 OUTPUT_TYPE(DDI), 7622 OUTPUT_TYPE(DP_MST), 7623 }; 7624 7625 #undef OUTPUT_TYPE 7626 7627 static void snprintf_output_types(char *buf, size_t len, 7628 unsigned int output_types) 7629 { 7630 char *str = buf; 7631 int i; 7632 7633 str[0] = '\0'; 7634 7635 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 7636 int r; 7637 7638 if ((output_types & BIT(i)) == 0) 7639 continue; 7640 7641 r = snprintf(str, len, "%s%s", 7642 str != buf ? "," : "", output_type_str[i]); 7643 if (r >= len) 7644 break; 7645 str += r; 7646 len -= r; 7647 7648 output_types &= ~BIT(i); 7649 } 7650 7651 WARN_ON_ONCE(output_types != 0); 7652 } 7653 7654 static const char * const output_format_str[] = { 7655 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 7656 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 7657 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 7658 }; 7659 7660 static const char *output_formats(enum intel_output_format format) 7661 { 7662 if (format >= ARRAY_SIZE(output_format_str)) 7663 return "invalid"; 7664 return output_format_str[format]; 7665 } 7666 7667 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 7668 { 7669 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 7670 struct drm_i915_private *i915 = to_i915(plane->base.dev); 7671 const struct drm_framebuffer *fb = plane_state->hw.fb; 7672 7673 if (!fb) { 7674 drm_dbg_kms(&i915->drm, 7675 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 7676 plane->base.base.id, plane->base.name, 7677 yesno(plane_state->uapi.visible)); 7678 return; 7679 } 7680 7681 drm_dbg_kms(&i915->drm, 7682 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %p4cc modifier = 0x%llx, visible: %s\n", 7683 plane->base.base.id, plane->base.name, 7684 fb->base.id, fb->width, fb->height, &fb->format->format, 7685 fb->modifier, yesno(plane_state->uapi.visible)); 7686 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n", 7687 plane_state->hw.rotation, plane_state->scaler_id); 7688 if (plane_state->uapi.visible) 7689 drm_dbg_kms(&i915->drm, 7690 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 7691 DRM_RECT_FP_ARG(&plane_state->uapi.src), 7692 DRM_RECT_ARG(&plane_state->uapi.dst)); 7693 } 7694 7695 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 7696 struct intel_atomic_state *state, 7697 const char *context) 7698 { 7699 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 7700 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7701 const struct intel_plane_state *plane_state; 7702 struct intel_plane *plane; 7703 char buf[64]; 7704 int i; 7705 7706 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n", 7707 crtc->base.base.id, crtc->base.name, 7708 yesno(pipe_config->hw.enable), context); 7709 7710 if (!pipe_config->hw.enable) 7711 goto dump_planes; 7712 7713 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 7714 drm_dbg_kms(&dev_priv->drm, 7715 "active: %s, output_types: %s (0x%x), output format: %s\n", 7716 yesno(pipe_config->hw.active), 7717 buf, pipe_config->output_types, 7718 output_formats(pipe_config->output_format)); 7719 7720 drm_dbg_kms(&dev_priv->drm, 7721 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 7722 transcoder_name(pipe_config->cpu_transcoder), 7723 pipe_config->pipe_bpp, pipe_config->dither); 7724 7725 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n", 7726 transcoder_name(pipe_config->mst_master_transcoder)); 7727 7728 drm_dbg_kms(&dev_priv->drm, 7729 "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n", 7730 transcoder_name(pipe_config->master_transcoder), 7731 pipe_config->sync_mode_slaves_mask); 7732 7733 drm_dbg_kms(&dev_priv->drm, "bigjoiner: %s\n", 7734 pipe_config->bigjoiner_slave ? "slave" : 7735 pipe_config->bigjoiner ? "master" : "no"); 7736 7737 drm_dbg_kms(&dev_priv->drm, "splitter: %s, link count %d, overlap %d\n", 7738 enableddisabled(pipe_config->splitter.enable), 7739 pipe_config->splitter.link_count, 7740 pipe_config->splitter.pixel_overlap); 7741 7742 if (pipe_config->has_pch_encoder) 7743 intel_dump_m_n_config(pipe_config, "fdi", 7744 pipe_config->fdi_lanes, 7745 &pipe_config->fdi_m_n); 7746 7747 if (intel_crtc_has_dp_encoder(pipe_config)) { 7748 intel_dump_m_n_config(pipe_config, "dp m_n", 7749 pipe_config->lane_count, &pipe_config->dp_m_n); 7750 if (pipe_config->has_drrs) 7751 intel_dump_m_n_config(pipe_config, "dp m2_n2", 7752 pipe_config->lane_count, 7753 &pipe_config->dp_m2_n2); 7754 } 7755 7756 drm_dbg_kms(&dev_priv->drm, 7757 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 7758 pipe_config->has_audio, pipe_config->has_infoframe, 7759 pipe_config->infoframes.enable); 7760 7761 if (pipe_config->infoframes.enable & 7762 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 7763 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n", 7764 pipe_config->infoframes.gcp); 7765 if (pipe_config->infoframes.enable & 7766 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 7767 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 7768 if (pipe_config->infoframes.enable & 7769 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 7770 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 7771 if (pipe_config->infoframes.enable & 7772 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 7773 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 7774 if (pipe_config->infoframes.enable & 7775 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) 7776 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 7777 if (pipe_config->infoframes.enable & 7778 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA)) 7779 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 7780 if (pipe_config->infoframes.enable & 7781 intel_hdmi_infoframe_enable(DP_SDP_VSC)) 7782 intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc); 7783 7784 drm_dbg_kms(&dev_priv->drm, "vrr: %s, vmin: %d, vmax: %d, pipeline full: %d, guardband: %d flipline: %d, vmin vblank: %d, vmax vblank: %d\n", 7785 yesno(pipe_config->vrr.enable), 7786 pipe_config->vrr.vmin, pipe_config->vrr.vmax, 7787 pipe_config->vrr.pipeline_full, pipe_config->vrr.guardband, 7788 pipe_config->vrr.flipline, 7789 intel_vrr_vmin_vblank_start(pipe_config), 7790 intel_vrr_vmax_vblank_start(pipe_config)); 7791 7792 drm_dbg_kms(&dev_priv->drm, "requested mode:\n"); 7793 drm_mode_debug_printmodeline(&pipe_config->hw.mode); 7794 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n"); 7795 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode); 7796 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode); 7797 drm_dbg_kms(&dev_priv->drm, "pipe mode:\n"); 7798 drm_mode_debug_printmodeline(&pipe_config->hw.pipe_mode); 7799 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.pipe_mode); 7800 drm_dbg_kms(&dev_priv->drm, 7801 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 7802 pipe_config->port_clock, 7803 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 7804 pipe_config->pixel_rate); 7805 7806 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n", 7807 pipe_config->linetime, pipe_config->ips_linetime); 7808 7809 if (DISPLAY_VER(dev_priv) >= 9) 7810 drm_dbg_kms(&dev_priv->drm, 7811 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 7812 crtc->num_scalers, 7813 pipe_config->scaler_state.scaler_users, 7814 pipe_config->scaler_state.scaler_id); 7815 7816 if (HAS_GMCH(dev_priv)) 7817 drm_dbg_kms(&dev_priv->drm, 7818 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 7819 pipe_config->gmch_pfit.control, 7820 pipe_config->gmch_pfit.pgm_ratios, 7821 pipe_config->gmch_pfit.lvds_border_bits); 7822 else 7823 drm_dbg_kms(&dev_priv->drm, 7824 "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n", 7825 DRM_RECT_ARG(&pipe_config->pch_pfit.dst), 7826 enableddisabled(pipe_config->pch_pfit.enabled), 7827 yesno(pipe_config->pch_pfit.force_thru)); 7828 7829 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n", 7830 pipe_config->ips_enabled, pipe_config->double_wide); 7831 7832 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 7833 7834 if (IS_CHERRYVIEW(dev_priv)) 7835 drm_dbg_kms(&dev_priv->drm, 7836 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 7837 pipe_config->cgm_mode, pipe_config->gamma_mode, 7838 pipe_config->gamma_enable, pipe_config->csc_enable); 7839 else 7840 drm_dbg_kms(&dev_priv->drm, 7841 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 7842 pipe_config->csc_mode, pipe_config->gamma_mode, 7843 pipe_config->gamma_enable, pipe_config->csc_enable); 7844 7845 drm_dbg_kms(&dev_priv->drm, "degamma lut: %d entries, gamma lut: %d entries\n", 7846 pipe_config->hw.degamma_lut ? 7847 drm_color_lut_size(pipe_config->hw.degamma_lut) : 0, 7848 pipe_config->hw.gamma_lut ? 7849 drm_color_lut_size(pipe_config->hw.gamma_lut) : 0); 7850 7851 dump_planes: 7852 if (!state) 7853 return; 7854 7855 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7856 if (plane->pipe == crtc->pipe) 7857 intel_dump_plane_state(plane_state); 7858 } 7859 } 7860 7861 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 7862 { 7863 struct drm_device *dev = state->base.dev; 7864 struct drm_connector *connector; 7865 struct drm_connector_list_iter conn_iter; 7866 unsigned int used_ports = 0; 7867 unsigned int used_mst_ports = 0; 7868 bool ret = true; 7869 7870 /* 7871 * We're going to peek into connector->state, 7872 * hence connection_mutex must be held. 7873 */ 7874 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); 7875 7876 /* 7877 * Walk the connector list instead of the encoder 7878 * list to detect the problem on ddi platforms 7879 * where there's just one encoder per digital port. 7880 */ 7881 drm_connector_list_iter_begin(dev, &conn_iter); 7882 drm_for_each_connector_iter(connector, &conn_iter) { 7883 struct drm_connector_state *connector_state; 7884 struct intel_encoder *encoder; 7885 7886 connector_state = 7887 drm_atomic_get_new_connector_state(&state->base, 7888 connector); 7889 if (!connector_state) 7890 connector_state = connector->state; 7891 7892 if (!connector_state->best_encoder) 7893 continue; 7894 7895 encoder = to_intel_encoder(connector_state->best_encoder); 7896 7897 drm_WARN_ON(dev, !connector_state->crtc); 7898 7899 switch (encoder->type) { 7900 case INTEL_OUTPUT_DDI: 7901 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev)))) 7902 break; 7903 fallthrough; 7904 case INTEL_OUTPUT_DP: 7905 case INTEL_OUTPUT_HDMI: 7906 case INTEL_OUTPUT_EDP: 7907 /* the same port mustn't appear more than once */ 7908 if (used_ports & BIT(encoder->port)) 7909 ret = false; 7910 7911 used_ports |= BIT(encoder->port); 7912 break; 7913 case INTEL_OUTPUT_DP_MST: 7914 used_mst_ports |= 7915 1 << encoder->port; 7916 break; 7917 default: 7918 break; 7919 } 7920 } 7921 drm_connector_list_iter_end(&conn_iter); 7922 7923 /* can't mix MST and SST/HDMI on the same port */ 7924 if (used_ports & used_mst_ports) 7925 return false; 7926 7927 return ret; 7928 } 7929 7930 static void 7931 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_atomic_state *state, 7932 struct intel_crtc_state *crtc_state) 7933 { 7934 const struct intel_crtc_state *from_crtc_state = crtc_state; 7935 7936 if (crtc_state->bigjoiner_slave) { 7937 from_crtc_state = intel_atomic_get_new_crtc_state(state, 7938 crtc_state->bigjoiner_linked_crtc); 7939 7940 /* No need to copy state if the master state is unchanged */ 7941 if (!from_crtc_state) 7942 return; 7943 } 7944 7945 intel_crtc_copy_color_blobs(crtc_state, from_crtc_state); 7946 } 7947 7948 static void 7949 intel_crtc_copy_uapi_to_hw_state(struct intel_atomic_state *state, 7950 struct intel_crtc_state *crtc_state) 7951 { 7952 crtc_state->hw.enable = crtc_state->uapi.enable; 7953 crtc_state->hw.active = crtc_state->uapi.active; 7954 crtc_state->hw.mode = crtc_state->uapi.mode; 7955 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode; 7956 crtc_state->hw.scaling_filter = crtc_state->uapi.scaling_filter; 7957 7958 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc_state); 7959 } 7960 7961 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state) 7962 { 7963 if (crtc_state->bigjoiner_slave) 7964 return; 7965 7966 crtc_state->uapi.enable = crtc_state->hw.enable; 7967 crtc_state->uapi.active = crtc_state->hw.active; 7968 drm_WARN_ON(crtc_state->uapi.crtc->dev, 7969 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0); 7970 7971 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode; 7972 crtc_state->uapi.scaling_filter = crtc_state->hw.scaling_filter; 7973 7974 /* copy color blobs to uapi */ 7975 drm_property_replace_blob(&crtc_state->uapi.degamma_lut, 7976 crtc_state->hw.degamma_lut); 7977 drm_property_replace_blob(&crtc_state->uapi.gamma_lut, 7978 crtc_state->hw.gamma_lut); 7979 drm_property_replace_blob(&crtc_state->uapi.ctm, 7980 crtc_state->hw.ctm); 7981 } 7982 7983 static int 7984 copy_bigjoiner_crtc_state(struct intel_crtc_state *crtc_state, 7985 const struct intel_crtc_state *from_crtc_state) 7986 { 7987 struct intel_crtc_state *saved_state; 7988 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7989 7990 saved_state = kmemdup(from_crtc_state, sizeof(*saved_state), GFP_KERNEL); 7991 if (!saved_state) 7992 return -ENOMEM; 7993 7994 saved_state->uapi = crtc_state->uapi; 7995 saved_state->scaler_state = crtc_state->scaler_state; 7996 saved_state->shared_dpll = crtc_state->shared_dpll; 7997 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 7998 saved_state->crc_enabled = crtc_state->crc_enabled; 7999 8000 intel_crtc_free_hw_state(crtc_state); 8001 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 8002 kfree(saved_state); 8003 8004 /* Re-init hw state */ 8005 memset(&crtc_state->hw, 0, sizeof(saved_state->hw)); 8006 crtc_state->hw.enable = from_crtc_state->hw.enable; 8007 crtc_state->hw.active = from_crtc_state->hw.active; 8008 crtc_state->hw.pipe_mode = from_crtc_state->hw.pipe_mode; 8009 crtc_state->hw.adjusted_mode = from_crtc_state->hw.adjusted_mode; 8010 8011 /* Some fixups */ 8012 crtc_state->uapi.mode_changed = from_crtc_state->uapi.mode_changed; 8013 crtc_state->uapi.connectors_changed = from_crtc_state->uapi.connectors_changed; 8014 crtc_state->uapi.active_changed = from_crtc_state->uapi.active_changed; 8015 crtc_state->nv12_planes = crtc_state->c8_planes = crtc_state->update_planes = 0; 8016 crtc_state->bigjoiner_linked_crtc = to_intel_crtc(from_crtc_state->uapi.crtc); 8017 crtc_state->bigjoiner_slave = true; 8018 crtc_state->cpu_transcoder = (enum transcoder)crtc->pipe; 8019 crtc_state->has_audio = false; 8020 8021 return 0; 8022 } 8023 8024 static int 8025 intel_crtc_prepare_cleared_state(struct intel_atomic_state *state, 8026 struct intel_crtc_state *crtc_state) 8027 { 8028 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8029 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8030 struct intel_crtc_state *saved_state; 8031 8032 saved_state = intel_crtc_state_alloc(crtc); 8033 if (!saved_state) 8034 return -ENOMEM; 8035 8036 /* free the old crtc_state->hw members */ 8037 intel_crtc_free_hw_state(crtc_state); 8038 8039 /* FIXME: before the switch to atomic started, a new pipe_config was 8040 * kzalloc'd. Code that depends on any field being zero should be 8041 * fixed, so that the crtc_state can be safely duplicated. For now, 8042 * only fields that are know to not cause problems are preserved. */ 8043 8044 saved_state->uapi = crtc_state->uapi; 8045 saved_state->scaler_state = crtc_state->scaler_state; 8046 saved_state->shared_dpll = crtc_state->shared_dpll; 8047 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 8048 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 8049 sizeof(saved_state->icl_port_dplls)); 8050 saved_state->crc_enabled = crtc_state->crc_enabled; 8051 if (IS_G4X(dev_priv) || 8052 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8053 saved_state->wm = crtc_state->wm; 8054 8055 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 8056 kfree(saved_state); 8057 8058 intel_crtc_copy_uapi_to_hw_state(state, crtc_state); 8059 8060 return 0; 8061 } 8062 8063 static int 8064 intel_modeset_pipe_config(struct intel_atomic_state *state, 8065 struct intel_crtc_state *pipe_config) 8066 { 8067 struct drm_crtc *crtc = pipe_config->uapi.crtc; 8068 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 8069 struct drm_connector *connector; 8070 struct drm_connector_state *connector_state; 8071 int base_bpp, ret, i; 8072 bool retry = true; 8073 8074 pipe_config->cpu_transcoder = 8075 (enum transcoder) to_intel_crtc(crtc)->pipe; 8076 8077 /* 8078 * Sanitize sync polarity flags based on requested ones. If neither 8079 * positive or negative polarity is requested, treat this as meaning 8080 * negative polarity. 8081 */ 8082 if (!(pipe_config->hw.adjusted_mode.flags & 8083 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 8084 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 8085 8086 if (!(pipe_config->hw.adjusted_mode.flags & 8087 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 8088 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 8089 8090 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 8091 pipe_config); 8092 if (ret) 8093 return ret; 8094 8095 base_bpp = pipe_config->pipe_bpp; 8096 8097 /* 8098 * Determine the real pipe dimensions. Note that stereo modes can 8099 * increase the actual pipe size due to the frame doubling and 8100 * insertion of additional space for blanks between the frame. This 8101 * is stored in the crtc timings. We use the requested mode to do this 8102 * computation to clearly distinguish it from the adjusted mode, which 8103 * can be changed by the connectors in the below retry loop. 8104 */ 8105 drm_mode_get_hv_timing(&pipe_config->hw.mode, 8106 &pipe_config->pipe_src_w, 8107 &pipe_config->pipe_src_h); 8108 8109 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 8110 struct intel_encoder *encoder = 8111 to_intel_encoder(connector_state->best_encoder); 8112 8113 if (connector_state->crtc != crtc) 8114 continue; 8115 8116 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 8117 drm_dbg_kms(&i915->drm, 8118 "rejecting invalid cloning configuration\n"); 8119 return -EINVAL; 8120 } 8121 8122 /* 8123 * Determine output_types before calling the .compute_config() 8124 * hooks so that the hooks can use this information safely. 8125 */ 8126 if (encoder->compute_output_type) 8127 pipe_config->output_types |= 8128 BIT(encoder->compute_output_type(encoder, pipe_config, 8129 connector_state)); 8130 else 8131 pipe_config->output_types |= BIT(encoder->type); 8132 } 8133 8134 encoder_retry: 8135 /* Ensure the port clock defaults are reset when retrying. */ 8136 pipe_config->port_clock = 0; 8137 pipe_config->pixel_multiplier = 1; 8138 8139 /* Fill in default crtc timings, allow encoders to overwrite them. */ 8140 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode, 8141 CRTC_STEREO_DOUBLE); 8142 8143 /* Pass our mode to the connectors and the CRTC to give them a chance to 8144 * adjust it according to limitations or connector properties, and also 8145 * a chance to reject the mode entirely. 8146 */ 8147 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 8148 struct intel_encoder *encoder = 8149 to_intel_encoder(connector_state->best_encoder); 8150 8151 if (connector_state->crtc != crtc) 8152 continue; 8153 8154 ret = encoder->compute_config(encoder, pipe_config, 8155 connector_state); 8156 if (ret < 0) { 8157 if (ret != -EDEADLK) 8158 drm_dbg_kms(&i915->drm, 8159 "Encoder config failure: %d\n", 8160 ret); 8161 return ret; 8162 } 8163 } 8164 8165 /* Set default port clock if not overwritten by the encoder. Needs to be 8166 * done afterwards in case the encoder adjusts the mode. */ 8167 if (!pipe_config->port_clock) 8168 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock 8169 * pipe_config->pixel_multiplier; 8170 8171 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 8172 if (ret == -EDEADLK) 8173 return ret; 8174 if (ret < 0) { 8175 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n"); 8176 return ret; 8177 } 8178 8179 if (ret == I915_DISPLAY_CONFIG_RETRY) { 8180 if (drm_WARN(&i915->drm, !retry, 8181 "loop in pipe configuration computation\n")) 8182 return -EINVAL; 8183 8184 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n"); 8185 retry = false; 8186 goto encoder_retry; 8187 } 8188 8189 /* Dithering seems to not pass-through bits correctly when it should, so 8190 * only enable it on 6bpc panels and when its not a compliance 8191 * test requesting 6bpc video pattern. 8192 */ 8193 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 8194 !pipe_config->dither_force_disable; 8195 drm_dbg_kms(&i915->drm, 8196 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 8197 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 8198 8199 return 0; 8200 } 8201 8202 static int 8203 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state) 8204 { 8205 struct intel_atomic_state *state = 8206 to_intel_atomic_state(crtc_state->uapi.state); 8207 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8208 struct drm_connector_state *conn_state; 8209 struct drm_connector *connector; 8210 int i; 8211 8212 for_each_new_connector_in_state(&state->base, connector, 8213 conn_state, i) { 8214 struct intel_encoder *encoder = 8215 to_intel_encoder(conn_state->best_encoder); 8216 int ret; 8217 8218 if (conn_state->crtc != &crtc->base || 8219 !encoder->compute_config_late) 8220 continue; 8221 8222 ret = encoder->compute_config_late(encoder, crtc_state, 8223 conn_state); 8224 if (ret) 8225 return ret; 8226 } 8227 8228 return 0; 8229 } 8230 8231 bool intel_fuzzy_clock_check(int clock1, int clock2) 8232 { 8233 int diff; 8234 8235 if (clock1 == clock2) 8236 return true; 8237 8238 if (!clock1 || !clock2) 8239 return false; 8240 8241 diff = abs(clock1 - clock2); 8242 8243 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 8244 return true; 8245 8246 return false; 8247 } 8248 8249 static bool 8250 intel_compare_m_n(unsigned int m, unsigned int n, 8251 unsigned int m2, unsigned int n2, 8252 bool exact) 8253 { 8254 if (m == m2 && n == n2) 8255 return true; 8256 8257 if (exact || !m || !n || !m2 || !n2) 8258 return false; 8259 8260 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 8261 8262 if (n > n2) { 8263 while (n > n2) { 8264 m2 <<= 1; 8265 n2 <<= 1; 8266 } 8267 } else if (n < n2) { 8268 while (n < n2) { 8269 m <<= 1; 8270 n <<= 1; 8271 } 8272 } 8273 8274 if (n != n2) 8275 return false; 8276 8277 return intel_fuzzy_clock_check(m, m2); 8278 } 8279 8280 static bool 8281 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 8282 const struct intel_link_m_n *m2_n2, 8283 bool exact) 8284 { 8285 return m_n->tu == m2_n2->tu && 8286 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 8287 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 8288 intel_compare_m_n(m_n->link_m, m_n->link_n, 8289 m2_n2->link_m, m2_n2->link_n, exact); 8290 } 8291 8292 static bool 8293 intel_compare_infoframe(const union hdmi_infoframe *a, 8294 const union hdmi_infoframe *b) 8295 { 8296 return memcmp(a, b, sizeof(*a)) == 0; 8297 } 8298 8299 static bool 8300 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a, 8301 const struct drm_dp_vsc_sdp *b) 8302 { 8303 return memcmp(a, b, sizeof(*a)) == 0; 8304 } 8305 8306 static void 8307 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 8308 bool fastset, const char *name, 8309 const union hdmi_infoframe *a, 8310 const union hdmi_infoframe *b) 8311 { 8312 if (fastset) { 8313 if (!drm_debug_enabled(DRM_UT_KMS)) 8314 return; 8315 8316 drm_dbg_kms(&dev_priv->drm, 8317 "fastset mismatch in %s infoframe\n", name); 8318 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 8319 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 8320 drm_dbg_kms(&dev_priv->drm, "found:\n"); 8321 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 8322 } else { 8323 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name); 8324 drm_err(&dev_priv->drm, "expected:\n"); 8325 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 8326 drm_err(&dev_priv->drm, "found:\n"); 8327 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 8328 } 8329 } 8330 8331 static void 8332 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv, 8333 bool fastset, const char *name, 8334 const struct drm_dp_vsc_sdp *a, 8335 const struct drm_dp_vsc_sdp *b) 8336 { 8337 if (fastset) { 8338 if (!drm_debug_enabled(DRM_UT_KMS)) 8339 return; 8340 8341 drm_dbg_kms(&dev_priv->drm, 8342 "fastset mismatch in %s dp sdp\n", name); 8343 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 8344 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a); 8345 drm_dbg_kms(&dev_priv->drm, "found:\n"); 8346 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b); 8347 } else { 8348 drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name); 8349 drm_err(&dev_priv->drm, "expected:\n"); 8350 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a); 8351 drm_err(&dev_priv->drm, "found:\n"); 8352 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b); 8353 } 8354 } 8355 8356 static void __printf(4, 5) 8357 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, 8358 const char *name, const char *format, ...) 8359 { 8360 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 8361 struct va_format vaf; 8362 va_list args; 8363 8364 va_start(args, format); 8365 vaf.fmt = format; 8366 vaf.va = &args; 8367 8368 if (fastset) 8369 drm_dbg_kms(&i915->drm, 8370 "[CRTC:%d:%s] fastset mismatch in %s %pV\n", 8371 crtc->base.base.id, crtc->base.name, name, &vaf); 8372 else 8373 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n", 8374 crtc->base.base.id, crtc->base.name, name, &vaf); 8375 8376 va_end(args); 8377 } 8378 8379 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 8380 { 8381 if (dev_priv->params.fastboot != -1) 8382 return dev_priv->params.fastboot; 8383 8384 /* Enable fastboot by default on Skylake and newer */ 8385 if (DISPLAY_VER(dev_priv) >= 9) 8386 return true; 8387 8388 /* Enable fastboot by default on VLV and CHV */ 8389 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8390 return true; 8391 8392 /* Disabled by default on all others */ 8393 return false; 8394 } 8395 8396 static bool 8397 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 8398 const struct intel_crtc_state *pipe_config, 8399 bool fastset) 8400 { 8401 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev); 8402 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 8403 bool ret = true; 8404 u32 bp_gamma = 0; 8405 bool fixup_inherited = fastset && 8406 current_config->inherited && !pipe_config->inherited; 8407 8408 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 8409 drm_dbg_kms(&dev_priv->drm, 8410 "initial modeset and fastboot not set\n"); 8411 ret = false; 8412 } 8413 8414 #define PIPE_CONF_CHECK_X(name) do { \ 8415 if (current_config->name != pipe_config->name) { \ 8416 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8417 "(expected 0x%08x, found 0x%08x)", \ 8418 current_config->name, \ 8419 pipe_config->name); \ 8420 ret = false; \ 8421 } \ 8422 } while (0) 8423 8424 #define PIPE_CONF_CHECK_X_WITH_MASK(name, mask) do { \ 8425 if ((current_config->name & (mask)) != (pipe_config->name & (mask))) { \ 8426 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8427 "(expected 0x%08x, found 0x%08x)", \ 8428 current_config->name & (mask), \ 8429 pipe_config->name & (mask)); \ 8430 ret = false; \ 8431 } \ 8432 } while (0) 8433 8434 #define PIPE_CONF_CHECK_I(name) do { \ 8435 if (current_config->name != pipe_config->name) { \ 8436 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8437 "(expected %i, found %i)", \ 8438 current_config->name, \ 8439 pipe_config->name); \ 8440 ret = false; \ 8441 } \ 8442 } while (0) 8443 8444 #define PIPE_CONF_CHECK_BOOL(name) do { \ 8445 if (current_config->name != pipe_config->name) { \ 8446 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8447 "(expected %s, found %s)", \ 8448 yesno(current_config->name), \ 8449 yesno(pipe_config->name)); \ 8450 ret = false; \ 8451 } \ 8452 } while (0) 8453 8454 /* 8455 * Checks state where we only read out the enabling, but not the entire 8456 * state itself (like full infoframes or ELD for audio). These states 8457 * require a full modeset on bootup to fix up. 8458 */ 8459 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 8460 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 8461 PIPE_CONF_CHECK_BOOL(name); \ 8462 } else { \ 8463 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8464 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ 8465 yesno(current_config->name), \ 8466 yesno(pipe_config->name)); \ 8467 ret = false; \ 8468 } \ 8469 } while (0) 8470 8471 #define PIPE_CONF_CHECK_P(name) do { \ 8472 if (current_config->name != pipe_config->name) { \ 8473 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8474 "(expected %p, found %p)", \ 8475 current_config->name, \ 8476 pipe_config->name); \ 8477 ret = false; \ 8478 } \ 8479 } while (0) 8480 8481 #define PIPE_CONF_CHECK_M_N(name) do { \ 8482 if (!intel_compare_link_m_n(¤t_config->name, \ 8483 &pipe_config->name,\ 8484 !fastset)) { \ 8485 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8486 "(expected tu %i gmch %i/%i link %i/%i, " \ 8487 "found tu %i, gmch %i/%i link %i/%i)", \ 8488 current_config->name.tu, \ 8489 current_config->name.gmch_m, \ 8490 current_config->name.gmch_n, \ 8491 current_config->name.link_m, \ 8492 current_config->name.link_n, \ 8493 pipe_config->name.tu, \ 8494 pipe_config->name.gmch_m, \ 8495 pipe_config->name.gmch_n, \ 8496 pipe_config->name.link_m, \ 8497 pipe_config->name.link_n); \ 8498 ret = false; \ 8499 } \ 8500 } while (0) 8501 8502 /* This is required for BDW+ where there is only one set of registers for 8503 * switching between high and low RR. 8504 * This macro can be used whenever a comparison has to be made between one 8505 * hw state and multiple sw state variables. 8506 */ 8507 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 8508 if (!intel_compare_link_m_n(¤t_config->name, \ 8509 &pipe_config->name, !fastset) && \ 8510 !intel_compare_link_m_n(¤t_config->alt_name, \ 8511 &pipe_config->name, !fastset)) { \ 8512 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8513 "(expected tu %i gmch %i/%i link %i/%i, " \ 8514 "or tu %i gmch %i/%i link %i/%i, " \ 8515 "found tu %i, gmch %i/%i link %i/%i)", \ 8516 current_config->name.tu, \ 8517 current_config->name.gmch_m, \ 8518 current_config->name.gmch_n, \ 8519 current_config->name.link_m, \ 8520 current_config->name.link_n, \ 8521 current_config->alt_name.tu, \ 8522 current_config->alt_name.gmch_m, \ 8523 current_config->alt_name.gmch_n, \ 8524 current_config->alt_name.link_m, \ 8525 current_config->alt_name.link_n, \ 8526 pipe_config->name.tu, \ 8527 pipe_config->name.gmch_m, \ 8528 pipe_config->name.gmch_n, \ 8529 pipe_config->name.link_m, \ 8530 pipe_config->name.link_n); \ 8531 ret = false; \ 8532 } \ 8533 } while (0) 8534 8535 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 8536 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 8537 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8538 "(%x) (expected %i, found %i)", \ 8539 (mask), \ 8540 current_config->name & (mask), \ 8541 pipe_config->name & (mask)); \ 8542 ret = false; \ 8543 } \ 8544 } while (0) 8545 8546 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 8547 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 8548 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8549 "(expected %i, found %i)", \ 8550 current_config->name, \ 8551 pipe_config->name); \ 8552 ret = false; \ 8553 } \ 8554 } while (0) 8555 8556 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 8557 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 8558 &pipe_config->infoframes.name)) { \ 8559 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 8560 ¤t_config->infoframes.name, \ 8561 &pipe_config->infoframes.name); \ 8562 ret = false; \ 8563 } \ 8564 } while (0) 8565 8566 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \ 8567 if (!current_config->has_psr && !pipe_config->has_psr && \ 8568 !intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \ 8569 &pipe_config->infoframes.name)) { \ 8570 pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \ 8571 ¤t_config->infoframes.name, \ 8572 &pipe_config->infoframes.name); \ 8573 ret = false; \ 8574 } \ 8575 } while (0) 8576 8577 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ 8578 if (current_config->name1 != pipe_config->name1) { \ 8579 pipe_config_mismatch(fastset, crtc, __stringify(name1), \ 8580 "(expected %i, found %i, won't compare lut values)", \ 8581 current_config->name1, \ 8582 pipe_config->name1); \ 8583 ret = false;\ 8584 } else { \ 8585 if (!intel_color_lut_equal(current_config->name2, \ 8586 pipe_config->name2, pipe_config->name1, \ 8587 bit_precision)) { \ 8588 pipe_config_mismatch(fastset, crtc, __stringify(name2), \ 8589 "hw_state doesn't match sw_state"); \ 8590 ret = false; \ 8591 } \ 8592 } \ 8593 } while (0) 8594 8595 #define PIPE_CONF_QUIRK(quirk) \ 8596 ((current_config->quirks | pipe_config->quirks) & (quirk)) 8597 8598 PIPE_CONF_CHECK_I(cpu_transcoder); 8599 8600 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 8601 PIPE_CONF_CHECK_I(fdi_lanes); 8602 PIPE_CONF_CHECK_M_N(fdi_m_n); 8603 8604 PIPE_CONF_CHECK_I(lane_count); 8605 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 8606 8607 if (DISPLAY_VER(dev_priv) < 8) { 8608 PIPE_CONF_CHECK_M_N(dp_m_n); 8609 8610 if (current_config->has_drrs) 8611 PIPE_CONF_CHECK_M_N(dp_m2_n2); 8612 } else 8613 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 8614 8615 PIPE_CONF_CHECK_X(output_types); 8616 8617 /* FIXME do the readout properly and get rid of this quirk */ 8618 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 8619 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hdisplay); 8620 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_htotal); 8621 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_start); 8622 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_end); 8623 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_start); 8624 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_end); 8625 8626 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vdisplay); 8627 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vtotal); 8628 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_start); 8629 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_end); 8630 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_start); 8631 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_end); 8632 8633 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay); 8634 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal); 8635 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start); 8636 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end); 8637 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start); 8638 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end); 8639 8640 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay); 8641 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal); 8642 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start); 8643 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end); 8644 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start); 8645 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end); 8646 8647 PIPE_CONF_CHECK_I(pixel_multiplier); 8648 8649 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8650 DRM_MODE_FLAG_INTERLACE); 8651 8652 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 8653 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8654 DRM_MODE_FLAG_PHSYNC); 8655 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8656 DRM_MODE_FLAG_NHSYNC); 8657 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8658 DRM_MODE_FLAG_PVSYNC); 8659 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8660 DRM_MODE_FLAG_NVSYNC); 8661 } 8662 } 8663 8664 PIPE_CONF_CHECK_I(output_format); 8665 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 8666 if ((DISPLAY_VER(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 8667 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8668 PIPE_CONF_CHECK_BOOL(limited_color_range); 8669 8670 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 8671 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 8672 PIPE_CONF_CHECK_BOOL(has_infoframe); 8673 /* FIXME do the readout properly and get rid of this quirk */ 8674 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) 8675 PIPE_CONF_CHECK_BOOL(fec_enable); 8676 8677 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 8678 8679 PIPE_CONF_CHECK_X(gmch_pfit.control); 8680 /* pfit ratios are autocomputed by the hw on gen4+ */ 8681 if (DISPLAY_VER(dev_priv) < 4) 8682 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 8683 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 8684 8685 /* 8686 * Changing the EDP transcoder input mux 8687 * (A_ONOFF vs. A_ON) requires a full modeset. 8688 */ 8689 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 8690 8691 if (!fastset) { 8692 PIPE_CONF_CHECK_I(pipe_src_w); 8693 PIPE_CONF_CHECK_I(pipe_src_h); 8694 8695 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 8696 if (current_config->pch_pfit.enabled) { 8697 PIPE_CONF_CHECK_I(pch_pfit.dst.x1); 8698 PIPE_CONF_CHECK_I(pch_pfit.dst.y1); 8699 PIPE_CONF_CHECK_I(pch_pfit.dst.x2); 8700 PIPE_CONF_CHECK_I(pch_pfit.dst.y2); 8701 } 8702 8703 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 8704 /* FIXME do the readout properly and get rid of this quirk */ 8705 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) 8706 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 8707 8708 PIPE_CONF_CHECK_X(gamma_mode); 8709 if (IS_CHERRYVIEW(dev_priv)) 8710 PIPE_CONF_CHECK_X(cgm_mode); 8711 else 8712 PIPE_CONF_CHECK_X(csc_mode); 8713 PIPE_CONF_CHECK_BOOL(gamma_enable); 8714 PIPE_CONF_CHECK_BOOL(csc_enable); 8715 8716 PIPE_CONF_CHECK_I(linetime); 8717 PIPE_CONF_CHECK_I(ips_linetime); 8718 8719 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); 8720 if (bp_gamma) 8721 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma); 8722 8723 PIPE_CONF_CHECK_BOOL(has_psr); 8724 PIPE_CONF_CHECK_BOOL(has_psr2); 8725 PIPE_CONF_CHECK_BOOL(enable_psr2_sel_fetch); 8726 PIPE_CONF_CHECK_I(dc3co_exitline); 8727 } 8728 8729 PIPE_CONF_CHECK_BOOL(double_wide); 8730 8731 if (dev_priv->dpll.mgr) 8732 PIPE_CONF_CHECK_P(shared_dpll); 8733 8734 /* FIXME do the readout properly and get rid of this quirk */ 8735 if (dev_priv->dpll.mgr && !PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 8736 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 8737 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 8738 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 8739 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 8740 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 8741 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 8742 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 8743 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 8744 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 8745 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 8746 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 8747 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 8748 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 8749 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 8750 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 8751 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 8752 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 8753 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 8754 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 8755 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 8756 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 8757 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 8758 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 8759 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 8760 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 8761 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 8762 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 8763 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 8764 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 8765 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 8766 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 8767 } 8768 8769 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 8770 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 8771 PIPE_CONF_CHECK_X(dsi_pll.div); 8772 8773 if (IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) >= 5) 8774 PIPE_CONF_CHECK_I(pipe_bpp); 8775 8776 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.pipe_mode.crtc_clock); 8777 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock); 8778 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 8779 8780 PIPE_CONF_CHECK_I(min_voltage_level); 8781 } 8782 8783 if (fastset && (current_config->has_psr || pipe_config->has_psr)) 8784 PIPE_CONF_CHECK_X_WITH_MASK(infoframes.enable, 8785 ~intel_hdmi_infoframe_enable(DP_SDP_VSC)); 8786 else 8787 PIPE_CONF_CHECK_X(infoframes.enable); 8788 8789 PIPE_CONF_CHECK_X(infoframes.gcp); 8790 PIPE_CONF_CHECK_INFOFRAME(avi); 8791 PIPE_CONF_CHECK_INFOFRAME(spd); 8792 PIPE_CONF_CHECK_INFOFRAME(hdmi); 8793 PIPE_CONF_CHECK_INFOFRAME(drm); 8794 PIPE_CONF_CHECK_DP_VSC_SDP(vsc); 8795 8796 PIPE_CONF_CHECK_X(sync_mode_slaves_mask); 8797 PIPE_CONF_CHECK_I(master_transcoder); 8798 PIPE_CONF_CHECK_BOOL(bigjoiner); 8799 PIPE_CONF_CHECK_BOOL(bigjoiner_slave); 8800 PIPE_CONF_CHECK_P(bigjoiner_linked_crtc); 8801 8802 PIPE_CONF_CHECK_I(dsc.compression_enable); 8803 PIPE_CONF_CHECK_I(dsc.dsc_split); 8804 PIPE_CONF_CHECK_I(dsc.compressed_bpp); 8805 8806 PIPE_CONF_CHECK_BOOL(splitter.enable); 8807 PIPE_CONF_CHECK_I(splitter.link_count); 8808 PIPE_CONF_CHECK_I(splitter.pixel_overlap); 8809 8810 PIPE_CONF_CHECK_I(mst_master_transcoder); 8811 8812 PIPE_CONF_CHECK_BOOL(vrr.enable); 8813 PIPE_CONF_CHECK_I(vrr.vmin); 8814 PIPE_CONF_CHECK_I(vrr.vmax); 8815 PIPE_CONF_CHECK_I(vrr.flipline); 8816 PIPE_CONF_CHECK_I(vrr.pipeline_full); 8817 PIPE_CONF_CHECK_I(vrr.guardband); 8818 8819 #undef PIPE_CONF_CHECK_X 8820 #undef PIPE_CONF_CHECK_I 8821 #undef PIPE_CONF_CHECK_BOOL 8822 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 8823 #undef PIPE_CONF_CHECK_P 8824 #undef PIPE_CONF_CHECK_FLAGS 8825 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 8826 #undef PIPE_CONF_CHECK_COLOR_LUT 8827 #undef PIPE_CONF_QUIRK 8828 8829 return ret; 8830 } 8831 8832 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 8833 const struct intel_crtc_state *pipe_config) 8834 { 8835 if (pipe_config->has_pch_encoder) { 8836 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 8837 &pipe_config->fdi_m_n); 8838 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock; 8839 8840 /* 8841 * FDI already provided one idea for the dotclock. 8842 * Yell if the encoder disagrees. 8843 */ 8844 drm_WARN(&dev_priv->drm, 8845 !intel_fuzzy_clock_check(fdi_dotclock, dotclock), 8846 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 8847 fdi_dotclock, dotclock); 8848 } 8849 } 8850 8851 static void verify_wm_state(struct intel_crtc *crtc, 8852 struct intel_crtc_state *new_crtc_state) 8853 { 8854 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8855 struct skl_hw_state { 8856 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 8857 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 8858 struct skl_pipe_wm wm; 8859 } *hw; 8860 const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal; 8861 int level, max_level = ilk_wm_max_level(dev_priv); 8862 struct intel_plane *plane; 8863 u8 hw_enabled_slices; 8864 8865 if (DISPLAY_VER(dev_priv) < 9 || !new_crtc_state->hw.active) 8866 return; 8867 8868 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 8869 if (!hw) 8870 return; 8871 8872 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 8873 8874 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 8875 8876 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv); 8877 8878 if (DISPLAY_VER(dev_priv) >= 11 && 8879 hw_enabled_slices != dev_priv->dbuf.enabled_slices) 8880 drm_err(&dev_priv->drm, 8881 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", 8882 dev_priv->dbuf.enabled_slices, 8883 hw_enabled_slices); 8884 8885 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 8886 const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 8887 const struct skl_wm_level *hw_wm_level, *sw_wm_level; 8888 8889 /* Watermarks */ 8890 for (level = 0; level <= max_level; level++) { 8891 hw_wm_level = &hw->wm.planes[plane->id].wm[level]; 8892 sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level); 8893 8894 if (skl_wm_level_equals(hw_wm_level, sw_wm_level)) 8895 continue; 8896 8897 drm_err(&dev_priv->drm, 8898 "[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8899 plane->base.base.id, plane->base.name, level, 8900 sw_wm_level->enable, 8901 sw_wm_level->blocks, 8902 sw_wm_level->lines, 8903 hw_wm_level->enable, 8904 hw_wm_level->blocks, 8905 hw_wm_level->lines); 8906 } 8907 8908 hw_wm_level = &hw->wm.planes[plane->id].trans_wm; 8909 sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id); 8910 8911 if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8912 drm_err(&dev_priv->drm, 8913 "[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8914 plane->base.base.id, plane->base.name, 8915 sw_wm_level->enable, 8916 sw_wm_level->blocks, 8917 sw_wm_level->lines, 8918 hw_wm_level->enable, 8919 hw_wm_level->blocks, 8920 hw_wm_level->lines); 8921 } 8922 8923 hw_wm_level = &hw->wm.planes[plane->id].sagv.wm0; 8924 sw_wm_level = &sw_wm->planes[plane->id].sagv.wm0; 8925 8926 if (HAS_HW_SAGV_WM(dev_priv) && 8927 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8928 drm_err(&dev_priv->drm, 8929 "[PLANE:%d:%s] mismatch in SAGV WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8930 plane->base.base.id, plane->base.name, 8931 sw_wm_level->enable, 8932 sw_wm_level->blocks, 8933 sw_wm_level->lines, 8934 hw_wm_level->enable, 8935 hw_wm_level->blocks, 8936 hw_wm_level->lines); 8937 } 8938 8939 hw_wm_level = &hw->wm.planes[plane->id].sagv.trans_wm; 8940 sw_wm_level = &sw_wm->planes[plane->id].sagv.trans_wm; 8941 8942 if (HAS_HW_SAGV_WM(dev_priv) && 8943 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8944 drm_err(&dev_priv->drm, 8945 "[PLANE:%d:%s] mismatch in SAGV trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8946 plane->base.base.id, plane->base.name, 8947 sw_wm_level->enable, 8948 sw_wm_level->blocks, 8949 sw_wm_level->lines, 8950 hw_wm_level->enable, 8951 hw_wm_level->blocks, 8952 hw_wm_level->lines); 8953 } 8954 8955 /* DDB */ 8956 hw_ddb_entry = &hw->ddb_y[plane->id]; 8957 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane->id]; 8958 8959 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 8960 drm_err(&dev_priv->drm, 8961 "[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n", 8962 plane->base.base.id, plane->base.name, 8963 sw_ddb_entry->start, sw_ddb_entry->end, 8964 hw_ddb_entry->start, hw_ddb_entry->end); 8965 } 8966 } 8967 8968 kfree(hw); 8969 } 8970 8971 static void 8972 verify_connector_state(struct intel_atomic_state *state, 8973 struct intel_crtc *crtc) 8974 { 8975 struct drm_connector *connector; 8976 struct drm_connector_state *new_conn_state; 8977 int i; 8978 8979 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 8980 struct drm_encoder *encoder = connector->encoder; 8981 struct intel_crtc_state *crtc_state = NULL; 8982 8983 if (new_conn_state->crtc != &crtc->base) 8984 continue; 8985 8986 if (crtc) 8987 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 8988 8989 intel_connector_verify_state(crtc_state, new_conn_state); 8990 8991 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 8992 "connector's atomic encoder doesn't match legacy encoder\n"); 8993 } 8994 } 8995 8996 static void 8997 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 8998 { 8999 struct intel_encoder *encoder; 9000 struct drm_connector *connector; 9001 struct drm_connector_state *old_conn_state, *new_conn_state; 9002 int i; 9003 9004 for_each_intel_encoder(&dev_priv->drm, encoder) { 9005 bool enabled = false, found = false; 9006 enum pipe pipe; 9007 9008 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n", 9009 encoder->base.base.id, 9010 encoder->base.name); 9011 9012 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 9013 new_conn_state, i) { 9014 if (old_conn_state->best_encoder == &encoder->base) 9015 found = true; 9016 9017 if (new_conn_state->best_encoder != &encoder->base) 9018 continue; 9019 found = enabled = true; 9020 9021 I915_STATE_WARN(new_conn_state->crtc != 9022 encoder->base.crtc, 9023 "connector's crtc doesn't match encoder crtc\n"); 9024 } 9025 9026 if (!found) 9027 continue; 9028 9029 I915_STATE_WARN(!!encoder->base.crtc != enabled, 9030 "encoder's enabled state mismatch " 9031 "(expected %i, found %i)\n", 9032 !!encoder->base.crtc, enabled); 9033 9034 if (!encoder->base.crtc) { 9035 bool active; 9036 9037 active = encoder->get_hw_state(encoder, &pipe); 9038 I915_STATE_WARN(active, 9039 "encoder detached but still enabled on pipe %c.\n", 9040 pipe_name(pipe)); 9041 } 9042 } 9043 } 9044 9045 static void 9046 verify_crtc_state(struct intel_crtc *crtc, 9047 struct intel_crtc_state *old_crtc_state, 9048 struct intel_crtc_state *new_crtc_state) 9049 { 9050 struct drm_device *dev = crtc->base.dev; 9051 struct drm_i915_private *dev_priv = to_i915(dev); 9052 struct intel_encoder *encoder; 9053 struct intel_crtc_state *pipe_config = old_crtc_state; 9054 struct drm_atomic_state *state = old_crtc_state->uapi.state; 9055 struct intel_crtc *master = crtc; 9056 9057 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi); 9058 intel_crtc_free_hw_state(old_crtc_state); 9059 intel_crtc_state_reset(old_crtc_state, crtc); 9060 old_crtc_state->uapi.state = state; 9061 9062 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id, 9063 crtc->base.name); 9064 9065 pipe_config->hw.enable = new_crtc_state->hw.enable; 9066 9067 intel_crtc_get_pipe_config(pipe_config); 9068 9069 /* we keep both pipes enabled on 830 */ 9070 if (IS_I830(dev_priv) && pipe_config->hw.active) 9071 pipe_config->hw.active = new_crtc_state->hw.active; 9072 9073 I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active, 9074 "crtc active state doesn't match with hw state " 9075 "(expected %i, found %i)\n", 9076 new_crtc_state->hw.active, pipe_config->hw.active); 9077 9078 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active, 9079 "transitional active state does not match atomic hw state " 9080 "(expected %i, found %i)\n", 9081 new_crtc_state->hw.active, crtc->active); 9082 9083 if (new_crtc_state->bigjoiner_slave) 9084 master = new_crtc_state->bigjoiner_linked_crtc; 9085 9086 for_each_encoder_on_crtc(dev, &master->base, encoder) { 9087 enum pipe pipe; 9088 bool active; 9089 9090 active = encoder->get_hw_state(encoder, &pipe); 9091 I915_STATE_WARN(active != new_crtc_state->hw.active, 9092 "[ENCODER:%i] active %i with crtc active %i\n", 9093 encoder->base.base.id, active, 9094 new_crtc_state->hw.active); 9095 9096 I915_STATE_WARN(active && master->pipe != pipe, 9097 "Encoder connected to wrong pipe %c\n", 9098 pipe_name(pipe)); 9099 9100 if (active) 9101 intel_encoder_get_config(encoder, pipe_config); 9102 } 9103 9104 if (!new_crtc_state->hw.active) 9105 return; 9106 9107 if (new_crtc_state->bigjoiner_slave) 9108 /* No PLLs set for slave */ 9109 pipe_config->shared_dpll = NULL; 9110 9111 intel_pipe_config_sanity_check(dev_priv, pipe_config); 9112 9113 if (!intel_pipe_config_compare(new_crtc_state, 9114 pipe_config, false)) { 9115 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 9116 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 9117 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 9118 } 9119 } 9120 9121 static void 9122 intel_verify_planes(struct intel_atomic_state *state) 9123 { 9124 struct intel_plane *plane; 9125 const struct intel_plane_state *plane_state; 9126 int i; 9127 9128 for_each_new_intel_plane_in_state(state, plane, 9129 plane_state, i) 9130 assert_plane(plane, plane_state->planar_slave || 9131 plane_state->uapi.visible); 9132 } 9133 9134 static void 9135 verify_single_dpll_state(struct drm_i915_private *dev_priv, 9136 struct intel_shared_dpll *pll, 9137 struct intel_crtc *crtc, 9138 struct intel_crtc_state *new_crtc_state) 9139 { 9140 struct intel_dpll_hw_state dpll_hw_state; 9141 u8 pipe_mask; 9142 bool active; 9143 9144 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 9145 9146 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name); 9147 9148 active = intel_dpll_get_hw_state(dev_priv, pll, &dpll_hw_state); 9149 9150 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 9151 I915_STATE_WARN(!pll->on && pll->active_mask, 9152 "pll in active use but not on in sw tracking\n"); 9153 I915_STATE_WARN(pll->on && !pll->active_mask, 9154 "pll is on but not used by any active pipe\n"); 9155 I915_STATE_WARN(pll->on != active, 9156 "pll on state mismatch (expected %i, found %i)\n", 9157 pll->on, active); 9158 } 9159 9160 if (!crtc) { 9161 I915_STATE_WARN(pll->active_mask & ~pll->state.pipe_mask, 9162 "more active pll users than references: 0x%x vs 0x%x\n", 9163 pll->active_mask, pll->state.pipe_mask); 9164 9165 return; 9166 } 9167 9168 pipe_mask = BIT(crtc->pipe); 9169 9170 if (new_crtc_state->hw.active) 9171 I915_STATE_WARN(!(pll->active_mask & pipe_mask), 9172 "pll active mismatch (expected pipe %c in active mask 0x%x)\n", 9173 pipe_name(crtc->pipe), pll->active_mask); 9174 else 9175 I915_STATE_WARN(pll->active_mask & pipe_mask, 9176 "pll active mismatch (didn't expect pipe %c in active mask 0x%x)\n", 9177 pipe_name(crtc->pipe), pll->active_mask); 9178 9179 I915_STATE_WARN(!(pll->state.pipe_mask & pipe_mask), 9180 "pll enabled crtcs mismatch (expected 0x%x in 0x%x)\n", 9181 pipe_mask, pll->state.pipe_mask); 9182 9183 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 9184 &dpll_hw_state, 9185 sizeof(dpll_hw_state)), 9186 "pll hw state mismatch\n"); 9187 } 9188 9189 static void 9190 verify_shared_dpll_state(struct intel_crtc *crtc, 9191 struct intel_crtc_state *old_crtc_state, 9192 struct intel_crtc_state *new_crtc_state) 9193 { 9194 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9195 9196 if (new_crtc_state->shared_dpll) 9197 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 9198 9199 if (old_crtc_state->shared_dpll && 9200 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 9201 u8 pipe_mask = BIT(crtc->pipe); 9202 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 9203 9204 I915_STATE_WARN(pll->active_mask & pipe_mask, 9205 "pll active mismatch (didn't expect pipe %c in active mask (0x%x))\n", 9206 pipe_name(crtc->pipe), pll->active_mask); 9207 I915_STATE_WARN(pll->state.pipe_mask & pipe_mask, 9208 "pll enabled crtcs mismatch (found %x in enabled mask (0x%x))\n", 9209 pipe_name(crtc->pipe), pll->state.pipe_mask); 9210 } 9211 } 9212 9213 static void 9214 verify_mpllb_state(struct intel_atomic_state *state, 9215 struct intel_crtc_state *new_crtc_state) 9216 { 9217 struct drm_i915_private *i915 = to_i915(state->base.dev); 9218 struct intel_mpllb_state mpllb_hw_state = { 0 }; 9219 struct intel_mpllb_state *mpllb_sw_state = &new_crtc_state->mpllb_state; 9220 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 9221 struct intel_encoder *encoder; 9222 9223 if (!IS_DG2(i915)) 9224 return; 9225 9226 if (!new_crtc_state->hw.active) 9227 return; 9228 9229 if (new_crtc_state->bigjoiner_slave) 9230 return; 9231 9232 encoder = intel_get_crtc_new_encoder(state, new_crtc_state); 9233 intel_mpllb_readout_hw_state(encoder, &mpllb_hw_state); 9234 9235 #define MPLLB_CHECK(name) do { \ 9236 if (mpllb_sw_state->name != mpllb_hw_state.name) { \ 9237 pipe_config_mismatch(false, crtc, "MPLLB:" __stringify(name), \ 9238 "(expected 0x%08x, found 0x%08x)", \ 9239 mpllb_sw_state->name, \ 9240 mpllb_hw_state.name); \ 9241 } \ 9242 } while (0) 9243 9244 MPLLB_CHECK(mpllb_cp); 9245 MPLLB_CHECK(mpllb_div); 9246 MPLLB_CHECK(mpllb_div2); 9247 MPLLB_CHECK(mpllb_fracn1); 9248 MPLLB_CHECK(mpllb_fracn2); 9249 MPLLB_CHECK(mpllb_sscen); 9250 MPLLB_CHECK(mpllb_sscstep); 9251 9252 /* 9253 * ref_control is handled by the hardware/firemware and never 9254 * programmed by the software, but the proper values are supplied 9255 * in the bspec for verification purposes. 9256 */ 9257 MPLLB_CHECK(ref_control); 9258 9259 #undef MPLLB_CHECK 9260 } 9261 9262 static void 9263 intel_modeset_verify_crtc(struct intel_crtc *crtc, 9264 struct intel_atomic_state *state, 9265 struct intel_crtc_state *old_crtc_state, 9266 struct intel_crtc_state *new_crtc_state) 9267 { 9268 if (!intel_crtc_needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 9269 return; 9270 9271 verify_wm_state(crtc, new_crtc_state); 9272 verify_connector_state(state, crtc); 9273 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 9274 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 9275 verify_mpllb_state(state, new_crtc_state); 9276 } 9277 9278 static void 9279 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 9280 { 9281 int i; 9282 9283 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) 9284 verify_single_dpll_state(dev_priv, 9285 &dev_priv->dpll.shared_dplls[i], 9286 NULL, NULL); 9287 } 9288 9289 static void 9290 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 9291 struct intel_atomic_state *state) 9292 { 9293 verify_encoder_state(dev_priv, state); 9294 verify_connector_state(state, NULL); 9295 verify_disabled_dpll_state(dev_priv); 9296 } 9297 9298 int intel_modeset_all_pipes(struct intel_atomic_state *state) 9299 { 9300 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9301 struct intel_crtc *crtc; 9302 9303 /* 9304 * Add all pipes to the state, and force 9305 * a modeset on all the active ones. 9306 */ 9307 for_each_intel_crtc(&dev_priv->drm, crtc) { 9308 struct intel_crtc_state *crtc_state; 9309 int ret; 9310 9311 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 9312 if (IS_ERR(crtc_state)) 9313 return PTR_ERR(crtc_state); 9314 9315 if (!crtc_state->hw.active || 9316 drm_atomic_crtc_needs_modeset(&crtc_state->uapi)) 9317 continue; 9318 9319 crtc_state->uapi.mode_changed = true; 9320 9321 ret = drm_atomic_add_affected_connectors(&state->base, 9322 &crtc->base); 9323 if (ret) 9324 return ret; 9325 9326 ret = intel_atomic_add_affected_planes(state, crtc); 9327 if (ret) 9328 return ret; 9329 9330 crtc_state->update_planes |= crtc_state->active_planes; 9331 } 9332 9333 return 0; 9334 } 9335 9336 static void 9337 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) 9338 { 9339 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9340 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9341 struct drm_display_mode adjusted_mode = 9342 crtc_state->hw.adjusted_mode; 9343 9344 if (crtc_state->vrr.enable) { 9345 adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax; 9346 adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax; 9347 adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 9348 crtc->vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 9349 } 9350 9351 drm_calc_timestamping_constants(&crtc->base, &adjusted_mode); 9352 9353 crtc->mode_flags = crtc_state->mode_flags; 9354 9355 /* 9356 * The scanline counter increments at the leading edge of hsync. 9357 * 9358 * On most platforms it starts counting from vtotal-1 on the 9359 * first active line. That means the scanline counter value is 9360 * always one less than what we would expect. Ie. just after 9361 * start of vblank, which also occurs at start of hsync (on the 9362 * last active line), the scanline counter will read vblank_start-1. 9363 * 9364 * On gen2 the scanline counter starts counting from 1 instead 9365 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 9366 * to keep the value positive), instead of adding one. 9367 * 9368 * On HSW+ the behaviour of the scanline counter depends on the output 9369 * type. For DP ports it behaves like most other platforms, but on HDMI 9370 * there's an extra 1 line difference. So we need to add two instead of 9371 * one to the value. 9372 * 9373 * On VLV/CHV DSI the scanline counter would appear to increment 9374 * approx. 1/3 of a scanline before start of vblank. Unfortunately 9375 * that means we can't tell whether we're in vblank or not while 9376 * we're on that particular line. We must still set scanline_offset 9377 * to 1 so that the vblank timestamps come out correct when we query 9378 * the scanline counter from within the vblank interrupt handler. 9379 * However if queried just before the start of vblank we'll get an 9380 * answer that's slightly in the future. 9381 */ 9382 if (DISPLAY_VER(dev_priv) == 2) { 9383 int vtotal; 9384 9385 vtotal = adjusted_mode.crtc_vtotal; 9386 if (adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 9387 vtotal /= 2; 9388 9389 crtc->scanline_offset = vtotal - 1; 9390 } else if (HAS_DDI(dev_priv) && 9391 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 9392 crtc->scanline_offset = 2; 9393 } else { 9394 crtc->scanline_offset = 1; 9395 } 9396 } 9397 9398 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 9399 { 9400 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9401 struct intel_crtc_state *new_crtc_state; 9402 struct intel_crtc *crtc; 9403 int i; 9404 9405 if (!dev_priv->display.crtc_compute_clock) 9406 return; 9407 9408 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9409 if (!intel_crtc_needs_modeset(new_crtc_state)) 9410 continue; 9411 9412 intel_release_shared_dplls(state, crtc); 9413 } 9414 } 9415 9416 /* 9417 * This implements the workaround described in the "notes" section of the mode 9418 * set sequence documentation. When going from no pipes or single pipe to 9419 * multiple pipes, and planes are enabled after the pipe, we need to wait at 9420 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 9421 */ 9422 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) 9423 { 9424 struct intel_crtc_state *crtc_state; 9425 struct intel_crtc *crtc; 9426 struct intel_crtc_state *first_crtc_state = NULL; 9427 struct intel_crtc_state *other_crtc_state = NULL; 9428 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 9429 int i; 9430 9431 /* look at all crtc's that are going to be enabled in during modeset */ 9432 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9433 if (!crtc_state->hw.active || 9434 !intel_crtc_needs_modeset(crtc_state)) 9435 continue; 9436 9437 if (first_crtc_state) { 9438 other_crtc_state = crtc_state; 9439 break; 9440 } else { 9441 first_crtc_state = crtc_state; 9442 first_pipe = crtc->pipe; 9443 } 9444 } 9445 9446 /* No workaround needed? */ 9447 if (!first_crtc_state) 9448 return 0; 9449 9450 /* w/a possibly needed, check how many crtc's are already enabled. */ 9451 for_each_intel_crtc(state->base.dev, crtc) { 9452 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 9453 if (IS_ERR(crtc_state)) 9454 return PTR_ERR(crtc_state); 9455 9456 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 9457 9458 if (!crtc_state->hw.active || 9459 intel_crtc_needs_modeset(crtc_state)) 9460 continue; 9461 9462 /* 2 or more enabled crtcs means no need for w/a */ 9463 if (enabled_pipe != INVALID_PIPE) 9464 return 0; 9465 9466 enabled_pipe = crtc->pipe; 9467 } 9468 9469 if (enabled_pipe != INVALID_PIPE) 9470 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 9471 else if (other_crtc_state) 9472 other_crtc_state->hsw_workaround_pipe = first_pipe; 9473 9474 return 0; 9475 } 9476 9477 u8 intel_calc_active_pipes(struct intel_atomic_state *state, 9478 u8 active_pipes) 9479 { 9480 const struct intel_crtc_state *crtc_state; 9481 struct intel_crtc *crtc; 9482 int i; 9483 9484 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9485 if (crtc_state->hw.active) 9486 active_pipes |= BIT(crtc->pipe); 9487 else 9488 active_pipes &= ~BIT(crtc->pipe); 9489 } 9490 9491 return active_pipes; 9492 } 9493 9494 static int intel_modeset_checks(struct intel_atomic_state *state) 9495 { 9496 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9497 9498 state->modeset = true; 9499 9500 if (IS_HASWELL(dev_priv)) 9501 return hsw_mode_set_planes_workaround(state); 9502 9503 return 0; 9504 } 9505 9506 /* 9507 * Handle calculation of various watermark data at the end of the atomic check 9508 * phase. The code here should be run after the per-crtc and per-plane 'check' 9509 * handlers to ensure that all derived state has been updated. 9510 */ 9511 static int calc_watermark_data(struct intel_atomic_state *state) 9512 { 9513 struct drm_device *dev = state->base.dev; 9514 struct drm_i915_private *dev_priv = to_i915(dev); 9515 9516 /* Is there platform-specific watermark information to calculate? */ 9517 if (dev_priv->display.compute_global_watermarks) 9518 return dev_priv->display.compute_global_watermarks(state); 9519 9520 return 0; 9521 } 9522 9523 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 9524 struct intel_crtc_state *new_crtc_state) 9525 { 9526 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 9527 return; 9528 9529 new_crtc_state->uapi.mode_changed = false; 9530 new_crtc_state->update_pipe = true; 9531 } 9532 9533 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state, 9534 struct intel_crtc_state *new_crtc_state) 9535 { 9536 /* 9537 * If we're not doing the full modeset we want to 9538 * keep the current M/N values as they may be 9539 * sufficiently different to the computed values 9540 * to cause problems. 9541 * 9542 * FIXME: should really copy more fuzzy state here 9543 */ 9544 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 9545 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 9546 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 9547 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 9548 } 9549 9550 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, 9551 struct intel_crtc *crtc, 9552 u8 plane_ids_mask) 9553 { 9554 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9555 struct intel_plane *plane; 9556 9557 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 9558 struct intel_plane_state *plane_state; 9559 9560 if ((plane_ids_mask & BIT(plane->id)) == 0) 9561 continue; 9562 9563 plane_state = intel_atomic_get_plane_state(state, plane); 9564 if (IS_ERR(plane_state)) 9565 return PTR_ERR(plane_state); 9566 } 9567 9568 return 0; 9569 } 9570 9571 int intel_atomic_add_affected_planes(struct intel_atomic_state *state, 9572 struct intel_crtc *crtc) 9573 { 9574 const struct intel_crtc_state *old_crtc_state = 9575 intel_atomic_get_old_crtc_state(state, crtc); 9576 const struct intel_crtc_state *new_crtc_state = 9577 intel_atomic_get_new_crtc_state(state, crtc); 9578 9579 return intel_crtc_add_planes_to_state(state, crtc, 9580 old_crtc_state->enabled_planes | 9581 new_crtc_state->enabled_planes); 9582 } 9583 9584 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) 9585 { 9586 /* See {hsw,vlv,ivb}_plane_ratio() */ 9587 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || 9588 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || 9589 IS_IVYBRIDGE(dev_priv); 9590 } 9591 9592 static int intel_crtc_add_bigjoiner_planes(struct intel_atomic_state *state, 9593 struct intel_crtc *crtc, 9594 struct intel_crtc *other) 9595 { 9596 const struct intel_plane_state *plane_state; 9597 struct intel_plane *plane; 9598 u8 plane_ids = 0; 9599 int i; 9600 9601 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9602 if (plane->pipe == crtc->pipe) 9603 plane_ids |= BIT(plane->id); 9604 } 9605 9606 return intel_crtc_add_planes_to_state(state, other, plane_ids); 9607 } 9608 9609 static int intel_bigjoiner_add_affected_planes(struct intel_atomic_state *state) 9610 { 9611 const struct intel_crtc_state *crtc_state; 9612 struct intel_crtc *crtc; 9613 int i; 9614 9615 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9616 int ret; 9617 9618 if (!crtc_state->bigjoiner) 9619 continue; 9620 9621 ret = intel_crtc_add_bigjoiner_planes(state, crtc, 9622 crtc_state->bigjoiner_linked_crtc); 9623 if (ret) 9624 return ret; 9625 } 9626 9627 return 0; 9628 } 9629 9630 static int intel_atomic_check_planes(struct intel_atomic_state *state) 9631 { 9632 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9633 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9634 struct intel_plane_state *plane_state; 9635 struct intel_plane *plane; 9636 struct intel_crtc *crtc; 9637 int i, ret; 9638 9639 ret = icl_add_linked_planes(state); 9640 if (ret) 9641 return ret; 9642 9643 ret = intel_bigjoiner_add_affected_planes(state); 9644 if (ret) 9645 return ret; 9646 9647 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9648 ret = intel_plane_atomic_check(state, plane); 9649 if (ret) { 9650 drm_dbg_atomic(&dev_priv->drm, 9651 "[PLANE:%d:%s] atomic driver check failed\n", 9652 plane->base.base.id, plane->base.name); 9653 return ret; 9654 } 9655 } 9656 9657 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9658 new_crtc_state, i) { 9659 u8 old_active_planes, new_active_planes; 9660 9661 ret = icl_check_nv12_planes(new_crtc_state); 9662 if (ret) 9663 return ret; 9664 9665 /* 9666 * On some platforms the number of active planes affects 9667 * the planes' minimum cdclk calculation. Add such planes 9668 * to the state before we compute the minimum cdclk. 9669 */ 9670 if (!active_planes_affects_min_cdclk(dev_priv)) 9671 continue; 9672 9673 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 9674 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 9675 9676 if (hweight8(old_active_planes) == hweight8(new_active_planes)) 9677 continue; 9678 9679 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); 9680 if (ret) 9681 return ret; 9682 } 9683 9684 return 0; 9685 } 9686 9687 static int intel_atomic_check_cdclk(struct intel_atomic_state *state, 9688 bool *need_cdclk_calc) 9689 { 9690 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9691 const struct intel_cdclk_state *old_cdclk_state; 9692 const struct intel_cdclk_state *new_cdclk_state; 9693 struct intel_plane_state *plane_state; 9694 struct intel_bw_state *new_bw_state; 9695 struct intel_plane *plane; 9696 int min_cdclk = 0; 9697 enum pipe pipe; 9698 int ret; 9699 int i; 9700 /* 9701 * active_planes bitmask has been updated, and potentially 9702 * affected planes are part of the state. We can now 9703 * compute the minimum cdclk for each plane. 9704 */ 9705 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9706 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 9707 if (ret) 9708 return ret; 9709 } 9710 9711 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 9712 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 9713 9714 if (new_cdclk_state && 9715 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk) 9716 *need_cdclk_calc = true; 9717 9718 ret = dev_priv->display.bw_calc_min_cdclk(state); 9719 if (ret) 9720 return ret; 9721 9722 new_bw_state = intel_atomic_get_new_bw_state(state); 9723 9724 if (!new_cdclk_state || !new_bw_state) 9725 return 0; 9726 9727 for_each_pipe(dev_priv, pipe) { 9728 min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk); 9729 9730 /* 9731 * Currently do this change only if we need to increase 9732 */ 9733 if (new_bw_state->min_cdclk > min_cdclk) 9734 *need_cdclk_calc = true; 9735 } 9736 9737 return 0; 9738 } 9739 9740 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 9741 { 9742 struct intel_crtc_state *crtc_state; 9743 struct intel_crtc *crtc; 9744 int i; 9745 9746 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9747 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 9748 int ret; 9749 9750 ret = intel_crtc_atomic_check(state, crtc); 9751 if (ret) { 9752 drm_dbg_atomic(&i915->drm, 9753 "[CRTC:%d:%s] atomic driver check failed\n", 9754 crtc->base.base.id, crtc->base.name); 9755 return ret; 9756 } 9757 } 9758 9759 return 0; 9760 } 9761 9762 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, 9763 u8 transcoders) 9764 { 9765 const struct intel_crtc_state *new_crtc_state; 9766 struct intel_crtc *crtc; 9767 int i; 9768 9769 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9770 if (new_crtc_state->hw.enable && 9771 transcoders & BIT(new_crtc_state->cpu_transcoder) && 9772 intel_crtc_needs_modeset(new_crtc_state)) 9773 return true; 9774 } 9775 9776 return false; 9777 } 9778 9779 static int intel_atomic_check_bigjoiner(struct intel_atomic_state *state, 9780 struct intel_crtc *crtc, 9781 struct intel_crtc_state *old_crtc_state, 9782 struct intel_crtc_state *new_crtc_state) 9783 { 9784 struct intel_crtc_state *slave_crtc_state, *master_crtc_state; 9785 struct intel_crtc *slave, *master; 9786 9787 /* slave being enabled, is master is still claiming this crtc? */ 9788 if (old_crtc_state->bigjoiner_slave) { 9789 slave = crtc; 9790 master = old_crtc_state->bigjoiner_linked_crtc; 9791 master_crtc_state = intel_atomic_get_new_crtc_state(state, master); 9792 if (!master_crtc_state || !intel_crtc_needs_modeset(master_crtc_state)) 9793 goto claimed; 9794 } 9795 9796 if (!new_crtc_state->bigjoiner) 9797 return 0; 9798 9799 slave = intel_dsc_get_bigjoiner_secondary(crtc); 9800 if (!slave) { 9801 DRM_DEBUG_KMS("[CRTC:%d:%s] Big joiner configuration requires " 9802 "CRTC + 1 to be used, doesn't exist\n", 9803 crtc->base.base.id, crtc->base.name); 9804 return -EINVAL; 9805 } 9806 9807 new_crtc_state->bigjoiner_linked_crtc = slave; 9808 slave_crtc_state = intel_atomic_get_crtc_state(&state->base, slave); 9809 master = crtc; 9810 if (IS_ERR(slave_crtc_state)) 9811 return PTR_ERR(slave_crtc_state); 9812 9813 /* master being enabled, slave was already configured? */ 9814 if (slave_crtc_state->uapi.enable) 9815 goto claimed; 9816 9817 DRM_DEBUG_KMS("[CRTC:%d:%s] Used as slave for big joiner\n", 9818 slave->base.base.id, slave->base.name); 9819 9820 return copy_bigjoiner_crtc_state(slave_crtc_state, new_crtc_state); 9821 9822 claimed: 9823 DRM_DEBUG_KMS("[CRTC:%d:%s] Slave is enabled as normal CRTC, but " 9824 "[CRTC:%d:%s] claiming this CRTC for bigjoiner.\n", 9825 slave->base.base.id, slave->base.name, 9826 master->base.base.id, master->base.name); 9827 return -EINVAL; 9828 } 9829 9830 static void kill_bigjoiner_slave(struct intel_atomic_state *state, 9831 struct intel_crtc_state *master_crtc_state) 9832 { 9833 struct intel_crtc_state *slave_crtc_state = 9834 intel_atomic_get_new_crtc_state(state, master_crtc_state->bigjoiner_linked_crtc); 9835 9836 slave_crtc_state->bigjoiner = master_crtc_state->bigjoiner = false; 9837 slave_crtc_state->bigjoiner_slave = master_crtc_state->bigjoiner_slave = false; 9838 slave_crtc_state->bigjoiner_linked_crtc = master_crtc_state->bigjoiner_linked_crtc = NULL; 9839 intel_crtc_copy_uapi_to_hw_state(state, slave_crtc_state); 9840 } 9841 9842 /** 9843 * DOC: asynchronous flip implementation 9844 * 9845 * Asynchronous page flip is the implementation for the DRM_MODE_PAGE_FLIP_ASYNC 9846 * flag. Currently async flip is only supported via the drmModePageFlip IOCTL. 9847 * Correspondingly, support is currently added for primary plane only. 9848 * 9849 * Async flip can only change the plane surface address, so anything else 9850 * changing is rejected from the intel_atomic_check_async() function. 9851 * Once this check is cleared, flip done interrupt is enabled using 9852 * the intel_crtc_enable_flip_done() function. 9853 * 9854 * As soon as the surface address register is written, flip done interrupt is 9855 * generated and the requested events are sent to the usersapce in the interrupt 9856 * handler itself. The timestamp and sequence sent during the flip done event 9857 * correspond to the last vblank and have no relation to the actual time when 9858 * the flip done event was sent. 9859 */ 9860 static int intel_atomic_check_async(struct intel_atomic_state *state) 9861 { 9862 struct drm_i915_private *i915 = to_i915(state->base.dev); 9863 const struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9864 const struct intel_plane_state *new_plane_state, *old_plane_state; 9865 struct intel_crtc *crtc; 9866 struct intel_plane *plane; 9867 int i; 9868 9869 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9870 new_crtc_state, i) { 9871 if (intel_crtc_needs_modeset(new_crtc_state)) { 9872 drm_dbg_kms(&i915->drm, "Modeset Required. Async flip not supported\n"); 9873 return -EINVAL; 9874 } 9875 9876 if (!new_crtc_state->hw.active) { 9877 drm_dbg_kms(&i915->drm, "CRTC inactive\n"); 9878 return -EINVAL; 9879 } 9880 if (old_crtc_state->active_planes != new_crtc_state->active_planes) { 9881 drm_dbg_kms(&i915->drm, 9882 "Active planes cannot be changed during async flip\n"); 9883 return -EINVAL; 9884 } 9885 } 9886 9887 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 9888 new_plane_state, i) { 9889 /* 9890 * TODO: Async flip is only supported through the page flip IOCTL 9891 * as of now. So support currently added for primary plane only. 9892 * Support for other planes on platforms on which supports 9893 * this(vlv/chv and icl+) should be added when async flip is 9894 * enabled in the atomic IOCTL path. 9895 */ 9896 if (!plane->async_flip) 9897 return -EINVAL; 9898 9899 /* 9900 * FIXME: This check is kept generic for all platforms. 9901 * Need to verify this for all gen9 platforms to enable 9902 * this selectively if required. 9903 */ 9904 switch (new_plane_state->hw.fb->modifier) { 9905 case I915_FORMAT_MOD_X_TILED: 9906 case I915_FORMAT_MOD_Y_TILED: 9907 case I915_FORMAT_MOD_Yf_TILED: 9908 break; 9909 default: 9910 drm_dbg_kms(&i915->drm, 9911 "Linear memory/CCS does not support async flips\n"); 9912 return -EINVAL; 9913 } 9914 9915 if (old_plane_state->view.color_plane[0].stride != 9916 new_plane_state->view.color_plane[0].stride) { 9917 drm_dbg_kms(&i915->drm, "Stride cannot be changed in async flip\n"); 9918 return -EINVAL; 9919 } 9920 9921 if (old_plane_state->hw.fb->modifier != 9922 new_plane_state->hw.fb->modifier) { 9923 drm_dbg_kms(&i915->drm, 9924 "Framebuffer modifiers cannot be changed in async flip\n"); 9925 return -EINVAL; 9926 } 9927 9928 if (old_plane_state->hw.fb->format != 9929 new_plane_state->hw.fb->format) { 9930 drm_dbg_kms(&i915->drm, 9931 "Framebuffer format cannot be changed in async flip\n"); 9932 return -EINVAL; 9933 } 9934 9935 if (old_plane_state->hw.rotation != 9936 new_plane_state->hw.rotation) { 9937 drm_dbg_kms(&i915->drm, "Rotation cannot be changed in async flip\n"); 9938 return -EINVAL; 9939 } 9940 9941 if (!drm_rect_equals(&old_plane_state->uapi.src, &new_plane_state->uapi.src) || 9942 !drm_rect_equals(&old_plane_state->uapi.dst, &new_plane_state->uapi.dst)) { 9943 drm_dbg_kms(&i915->drm, 9944 "Plane size/co-ordinates cannot be changed in async flip\n"); 9945 return -EINVAL; 9946 } 9947 9948 if (old_plane_state->hw.alpha != new_plane_state->hw.alpha) { 9949 drm_dbg_kms(&i915->drm, "Alpha value cannot be changed in async flip\n"); 9950 return -EINVAL; 9951 } 9952 9953 if (old_plane_state->hw.pixel_blend_mode != 9954 new_plane_state->hw.pixel_blend_mode) { 9955 drm_dbg_kms(&i915->drm, 9956 "Pixel blend mode cannot be changed in async flip\n"); 9957 return -EINVAL; 9958 } 9959 9960 if (old_plane_state->hw.color_encoding != new_plane_state->hw.color_encoding) { 9961 drm_dbg_kms(&i915->drm, 9962 "Color encoding cannot be changed in async flip\n"); 9963 return -EINVAL; 9964 } 9965 9966 if (old_plane_state->hw.color_range != new_plane_state->hw.color_range) { 9967 drm_dbg_kms(&i915->drm, "Color range cannot be changed in async flip\n"); 9968 return -EINVAL; 9969 } 9970 } 9971 9972 return 0; 9973 } 9974 9975 static int intel_bigjoiner_add_affected_crtcs(struct intel_atomic_state *state) 9976 { 9977 struct intel_crtc_state *crtc_state; 9978 struct intel_crtc *crtc; 9979 int i; 9980 9981 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9982 struct intel_crtc_state *linked_crtc_state; 9983 struct intel_crtc *linked_crtc; 9984 int ret; 9985 9986 if (!crtc_state->bigjoiner) 9987 continue; 9988 9989 linked_crtc = crtc_state->bigjoiner_linked_crtc; 9990 linked_crtc_state = intel_atomic_get_crtc_state(&state->base, linked_crtc); 9991 if (IS_ERR(linked_crtc_state)) 9992 return PTR_ERR(linked_crtc_state); 9993 9994 if (!intel_crtc_needs_modeset(crtc_state)) 9995 continue; 9996 9997 linked_crtc_state->uapi.mode_changed = true; 9998 9999 ret = drm_atomic_add_affected_connectors(&state->base, 10000 &linked_crtc->base); 10001 if (ret) 10002 return ret; 10003 10004 ret = intel_atomic_add_affected_planes(state, linked_crtc); 10005 if (ret) 10006 return ret; 10007 } 10008 10009 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 10010 /* Kill old bigjoiner link, we may re-establish afterwards */ 10011 if (intel_crtc_needs_modeset(crtc_state) && 10012 crtc_state->bigjoiner && !crtc_state->bigjoiner_slave) 10013 kill_bigjoiner_slave(state, crtc_state); 10014 } 10015 10016 return 0; 10017 } 10018 10019 /** 10020 * intel_atomic_check - validate state object 10021 * @dev: drm device 10022 * @_state: state to validate 10023 */ 10024 static int intel_atomic_check(struct drm_device *dev, 10025 struct drm_atomic_state *_state) 10026 { 10027 struct drm_i915_private *dev_priv = to_i915(dev); 10028 struct intel_atomic_state *state = to_intel_atomic_state(_state); 10029 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10030 struct intel_crtc *crtc; 10031 int ret, i; 10032 bool any_ms = false; 10033 10034 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10035 new_crtc_state, i) { 10036 if (new_crtc_state->inherited != old_crtc_state->inherited) 10037 new_crtc_state->uapi.mode_changed = true; 10038 } 10039 10040 intel_vrr_check_modeset(state); 10041 10042 ret = drm_atomic_helper_check_modeset(dev, &state->base); 10043 if (ret) 10044 goto fail; 10045 10046 ret = intel_bigjoiner_add_affected_crtcs(state); 10047 if (ret) 10048 goto fail; 10049 10050 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10051 new_crtc_state, i) { 10052 if (!intel_crtc_needs_modeset(new_crtc_state)) { 10053 /* Light copy */ 10054 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, new_crtc_state); 10055 10056 continue; 10057 } 10058 10059 if (!new_crtc_state->uapi.enable) { 10060 if (!new_crtc_state->bigjoiner_slave) { 10061 intel_crtc_copy_uapi_to_hw_state(state, new_crtc_state); 10062 any_ms = true; 10063 } 10064 continue; 10065 } 10066 10067 ret = intel_crtc_prepare_cleared_state(state, new_crtc_state); 10068 if (ret) 10069 goto fail; 10070 10071 ret = intel_modeset_pipe_config(state, new_crtc_state); 10072 if (ret) 10073 goto fail; 10074 10075 ret = intel_atomic_check_bigjoiner(state, crtc, old_crtc_state, 10076 new_crtc_state); 10077 if (ret) 10078 goto fail; 10079 } 10080 10081 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10082 new_crtc_state, i) { 10083 if (!intel_crtc_needs_modeset(new_crtc_state)) 10084 continue; 10085 10086 ret = intel_modeset_pipe_config_late(new_crtc_state); 10087 if (ret) 10088 goto fail; 10089 10090 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 10091 } 10092 10093 /** 10094 * Check if fastset is allowed by external dependencies like other 10095 * pipes and transcoders. 10096 * 10097 * Right now it only forces a fullmodeset when the MST master 10098 * transcoder did not changed but the pipe of the master transcoder 10099 * needs a fullmodeset so all slaves also needs to do a fullmodeset or 10100 * in case of port synced crtcs, if one of the synced crtcs 10101 * needs a full modeset, all other synced crtcs should be 10102 * forced a full modeset. 10103 */ 10104 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10105 if (!new_crtc_state->hw.enable || intel_crtc_needs_modeset(new_crtc_state)) 10106 continue; 10107 10108 if (intel_dp_mst_is_slave_trans(new_crtc_state)) { 10109 enum transcoder master = new_crtc_state->mst_master_transcoder; 10110 10111 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) { 10112 new_crtc_state->uapi.mode_changed = true; 10113 new_crtc_state->update_pipe = false; 10114 } 10115 } 10116 10117 if (is_trans_port_sync_mode(new_crtc_state)) { 10118 u8 trans = new_crtc_state->sync_mode_slaves_mask; 10119 10120 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) 10121 trans |= BIT(new_crtc_state->master_transcoder); 10122 10123 if (intel_cpu_transcoders_need_modeset(state, trans)) { 10124 new_crtc_state->uapi.mode_changed = true; 10125 new_crtc_state->update_pipe = false; 10126 } 10127 } 10128 10129 if (new_crtc_state->bigjoiner) { 10130 struct intel_crtc_state *linked_crtc_state = 10131 intel_atomic_get_new_crtc_state(state, new_crtc_state->bigjoiner_linked_crtc); 10132 10133 if (intel_crtc_needs_modeset(linked_crtc_state)) { 10134 new_crtc_state->uapi.mode_changed = true; 10135 new_crtc_state->update_pipe = false; 10136 } 10137 } 10138 } 10139 10140 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10141 new_crtc_state, i) { 10142 if (intel_crtc_needs_modeset(new_crtc_state)) { 10143 any_ms = true; 10144 continue; 10145 } 10146 10147 if (!new_crtc_state->update_pipe) 10148 continue; 10149 10150 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state); 10151 } 10152 10153 if (any_ms && !check_digital_port_conflicts(state)) { 10154 drm_dbg_kms(&dev_priv->drm, 10155 "rejecting conflicting digital port configuration\n"); 10156 ret = -EINVAL; 10157 goto fail; 10158 } 10159 10160 ret = drm_dp_mst_atomic_check(&state->base); 10161 if (ret) 10162 goto fail; 10163 10164 ret = intel_atomic_check_planes(state); 10165 if (ret) 10166 goto fail; 10167 10168 intel_fbc_choose_crtc(dev_priv, state); 10169 ret = calc_watermark_data(state); 10170 if (ret) 10171 goto fail; 10172 10173 ret = intel_bw_atomic_check(state); 10174 if (ret) 10175 goto fail; 10176 10177 ret = intel_atomic_check_cdclk(state, &any_ms); 10178 if (ret) 10179 goto fail; 10180 10181 if (intel_any_crtc_needs_modeset(state)) 10182 any_ms = true; 10183 10184 if (any_ms) { 10185 ret = intel_modeset_checks(state); 10186 if (ret) 10187 goto fail; 10188 10189 ret = intel_modeset_calc_cdclk(state); 10190 if (ret) 10191 return ret; 10192 10193 intel_modeset_clear_plls(state); 10194 } 10195 10196 ret = intel_atomic_check_crtcs(state); 10197 if (ret) 10198 goto fail; 10199 10200 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10201 new_crtc_state, i) { 10202 if (new_crtc_state->uapi.async_flip) { 10203 ret = intel_atomic_check_async(state); 10204 if (ret) 10205 goto fail; 10206 } 10207 10208 if (!intel_crtc_needs_modeset(new_crtc_state) && 10209 !new_crtc_state->update_pipe) 10210 continue; 10211 10212 intel_dump_pipe_config(new_crtc_state, state, 10213 intel_crtc_needs_modeset(new_crtc_state) ? 10214 "[modeset]" : "[fastset]"); 10215 } 10216 10217 return 0; 10218 10219 fail: 10220 if (ret == -EDEADLK) 10221 return ret; 10222 10223 /* 10224 * FIXME would probably be nice to know which crtc specifically 10225 * caused the failure, in cases where we can pinpoint it. 10226 */ 10227 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10228 new_crtc_state, i) 10229 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 10230 10231 return ret; 10232 } 10233 10234 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 10235 { 10236 struct intel_crtc_state *crtc_state; 10237 struct intel_crtc *crtc; 10238 int i, ret; 10239 10240 ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base); 10241 if (ret < 0) 10242 return ret; 10243 10244 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 10245 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 10246 10247 if (mode_changed || crtc_state->update_pipe || 10248 crtc_state->uapi.color_mgmt_changed) { 10249 intel_dsb_prepare(crtc_state); 10250 } 10251 } 10252 10253 return 0; 10254 } 10255 10256 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 10257 struct intel_crtc_state *crtc_state) 10258 { 10259 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10260 10261 if (DISPLAY_VER(dev_priv) != 2 || crtc_state->active_planes) 10262 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 10263 10264 if (crtc_state->has_pch_encoder) { 10265 enum pipe pch_transcoder = 10266 intel_crtc_pch_transcoder(crtc); 10267 10268 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 10269 } 10270 } 10271 10272 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 10273 const struct intel_crtc_state *new_crtc_state) 10274 { 10275 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 10276 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10277 10278 /* 10279 * Update pipe size and adjust fitter if needed: the reason for this is 10280 * that in compute_mode_changes we check the native mode (not the pfit 10281 * mode) to see if we can flip rather than do a full mode set. In the 10282 * fastboot case, we'll flip, but if we don't update the pipesrc and 10283 * pfit state, we'll end up with a big fb scanned out into the wrong 10284 * sized surface. 10285 */ 10286 intel_set_pipe_src_size(new_crtc_state); 10287 10288 /* on skylake this is done by detaching scalers */ 10289 if (DISPLAY_VER(dev_priv) >= 9) { 10290 if (new_crtc_state->pch_pfit.enabled) 10291 skl_pfit_enable(new_crtc_state); 10292 } else if (HAS_PCH_SPLIT(dev_priv)) { 10293 if (new_crtc_state->pch_pfit.enabled) 10294 ilk_pfit_enable(new_crtc_state); 10295 else if (old_crtc_state->pch_pfit.enabled) 10296 ilk_pfit_disable(old_crtc_state); 10297 } 10298 10299 /* 10300 * The register is supposedly single buffered so perhaps 10301 * not 100% correct to do this here. But SKL+ calculate 10302 * this based on the adjust pixel rate so pfit changes do 10303 * affect it and so it must be updated for fastsets. 10304 * HSW/BDW only really need this here for fastboot, after 10305 * that the value should not change without a full modeset. 10306 */ 10307 if (DISPLAY_VER(dev_priv) >= 9 || 10308 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 10309 hsw_set_linetime_wm(new_crtc_state); 10310 10311 if (DISPLAY_VER(dev_priv) >= 11) 10312 icl_set_pipe_chicken(new_crtc_state); 10313 } 10314 10315 static void commit_pipe_pre_planes(struct intel_atomic_state *state, 10316 struct intel_crtc *crtc) 10317 { 10318 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10319 const struct intel_crtc_state *old_crtc_state = 10320 intel_atomic_get_old_crtc_state(state, crtc); 10321 const struct intel_crtc_state *new_crtc_state = 10322 intel_atomic_get_new_crtc_state(state, crtc); 10323 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10324 10325 /* 10326 * During modesets pipe configuration was programmed as the 10327 * CRTC was enabled. 10328 */ 10329 if (!modeset) { 10330 if (new_crtc_state->uapi.color_mgmt_changed || 10331 new_crtc_state->update_pipe) 10332 intel_color_commit(new_crtc_state); 10333 10334 if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 10335 bdw_set_pipemisc(new_crtc_state); 10336 10337 if (new_crtc_state->update_pipe) 10338 intel_pipe_fastset(old_crtc_state, new_crtc_state); 10339 10340 intel_psr2_program_trans_man_trk_ctl(new_crtc_state); 10341 } 10342 10343 if (dev_priv->display.atomic_update_watermarks) 10344 dev_priv->display.atomic_update_watermarks(state, crtc); 10345 } 10346 10347 static void commit_pipe_post_planes(struct intel_atomic_state *state, 10348 struct intel_crtc *crtc) 10349 { 10350 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10351 const struct intel_crtc_state *new_crtc_state = 10352 intel_atomic_get_new_crtc_state(state, crtc); 10353 10354 /* 10355 * Disable the scaler(s) after the plane(s) so that we don't 10356 * get a catastrophic underrun even if the two operations 10357 * end up happening in two different frames. 10358 */ 10359 if (DISPLAY_VER(dev_priv) >= 9 && 10360 !intel_crtc_needs_modeset(new_crtc_state)) 10361 skl_detach_scalers(new_crtc_state); 10362 } 10363 10364 static void intel_enable_crtc(struct intel_atomic_state *state, 10365 struct intel_crtc *crtc) 10366 { 10367 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10368 const struct intel_crtc_state *new_crtc_state = 10369 intel_atomic_get_new_crtc_state(state, crtc); 10370 10371 if (!intel_crtc_needs_modeset(new_crtc_state)) 10372 return; 10373 10374 intel_crtc_update_active_timings(new_crtc_state); 10375 10376 dev_priv->display.crtc_enable(state, crtc); 10377 10378 if (new_crtc_state->bigjoiner_slave) 10379 return; 10380 10381 /* vblanks work again, re-enable pipe CRC. */ 10382 intel_crtc_enable_pipe_crc(crtc); 10383 } 10384 10385 static void intel_update_crtc(struct intel_atomic_state *state, 10386 struct intel_crtc *crtc) 10387 { 10388 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10389 const struct intel_crtc_state *old_crtc_state = 10390 intel_atomic_get_old_crtc_state(state, crtc); 10391 struct intel_crtc_state *new_crtc_state = 10392 intel_atomic_get_new_crtc_state(state, crtc); 10393 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10394 10395 if (!modeset) { 10396 if (new_crtc_state->preload_luts && 10397 (new_crtc_state->uapi.color_mgmt_changed || 10398 new_crtc_state->update_pipe)) 10399 intel_color_load_luts(new_crtc_state); 10400 10401 intel_pre_plane_update(state, crtc); 10402 10403 if (new_crtc_state->update_pipe) 10404 intel_encoders_update_pipe(state, crtc); 10405 } 10406 10407 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 10408 intel_fbc_disable(crtc); 10409 else 10410 intel_fbc_enable(state, crtc); 10411 10412 /* Perform vblank evasion around commit operation */ 10413 intel_pipe_update_start(new_crtc_state); 10414 10415 commit_pipe_pre_planes(state, crtc); 10416 10417 if (DISPLAY_VER(dev_priv) >= 9) 10418 skl_update_planes_on_crtc(state, crtc); 10419 else 10420 i9xx_update_planes_on_crtc(state, crtc); 10421 10422 commit_pipe_post_planes(state, crtc); 10423 10424 intel_pipe_update_end(new_crtc_state); 10425 10426 /* 10427 * We usually enable FIFO underrun interrupts as part of the 10428 * CRTC enable sequence during modesets. But when we inherit a 10429 * valid pipe configuration from the BIOS we need to take care 10430 * of enabling them on the CRTC's first fastset. 10431 */ 10432 if (new_crtc_state->update_pipe && !modeset && 10433 old_crtc_state->inherited) 10434 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 10435 } 10436 10437 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 10438 struct intel_crtc_state *old_crtc_state, 10439 struct intel_crtc_state *new_crtc_state, 10440 struct intel_crtc *crtc) 10441 { 10442 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10443 10444 drm_WARN_ON(&dev_priv->drm, old_crtc_state->bigjoiner_slave); 10445 10446 intel_encoders_pre_disable(state, crtc); 10447 10448 intel_crtc_disable_planes(state, crtc); 10449 10450 /* 10451 * We still need special handling for disabling bigjoiner master 10452 * and slaves since for slave we do not have encoder or plls 10453 * so we dont need to disable those. 10454 */ 10455 if (old_crtc_state->bigjoiner) { 10456 intel_crtc_disable_planes(state, 10457 old_crtc_state->bigjoiner_linked_crtc); 10458 old_crtc_state->bigjoiner_linked_crtc->active = false; 10459 } 10460 10461 /* 10462 * We need to disable pipe CRC before disabling the pipe, 10463 * or we race against vblank off. 10464 */ 10465 intel_crtc_disable_pipe_crc(crtc); 10466 10467 dev_priv->display.crtc_disable(state, crtc); 10468 crtc->active = false; 10469 intel_fbc_disable(crtc); 10470 intel_disable_shared_dpll(old_crtc_state); 10471 10472 /* FIXME unify this for all platforms */ 10473 if (!new_crtc_state->hw.active && 10474 !HAS_GMCH(dev_priv) && 10475 dev_priv->display.initial_watermarks) 10476 dev_priv->display.initial_watermarks(state, crtc); 10477 } 10478 10479 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 10480 { 10481 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 10482 struct intel_crtc *crtc; 10483 u32 handled = 0; 10484 int i; 10485 10486 /* Only disable port sync and MST slaves */ 10487 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10488 new_crtc_state, i) { 10489 if (!intel_crtc_needs_modeset(new_crtc_state) || old_crtc_state->bigjoiner) 10490 continue; 10491 10492 if (!old_crtc_state->hw.active) 10493 continue; 10494 10495 /* In case of Transcoder port Sync master slave CRTCs can be 10496 * assigned in any order and we need to make sure that 10497 * slave CRTCs are disabled first and then master CRTC since 10498 * Slave vblanks are masked till Master Vblanks. 10499 */ 10500 if (!is_trans_port_sync_slave(old_crtc_state) && 10501 !intel_dp_mst_is_slave_trans(old_crtc_state)) 10502 continue; 10503 10504 intel_pre_plane_update(state, crtc); 10505 intel_old_crtc_state_disables(state, old_crtc_state, 10506 new_crtc_state, crtc); 10507 handled |= BIT(crtc->pipe); 10508 } 10509 10510 /* Disable everything else left on */ 10511 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10512 new_crtc_state, i) { 10513 if (!intel_crtc_needs_modeset(new_crtc_state) || 10514 (handled & BIT(crtc->pipe)) || 10515 old_crtc_state->bigjoiner_slave) 10516 continue; 10517 10518 intel_pre_plane_update(state, crtc); 10519 if (old_crtc_state->bigjoiner) { 10520 struct intel_crtc *slave = 10521 old_crtc_state->bigjoiner_linked_crtc; 10522 10523 intel_pre_plane_update(state, slave); 10524 } 10525 10526 if (old_crtc_state->hw.active) 10527 intel_old_crtc_state_disables(state, old_crtc_state, 10528 new_crtc_state, crtc); 10529 } 10530 } 10531 10532 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 10533 { 10534 struct intel_crtc_state *new_crtc_state; 10535 struct intel_crtc *crtc; 10536 int i; 10537 10538 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10539 if (!new_crtc_state->hw.active) 10540 continue; 10541 10542 intel_enable_crtc(state, crtc); 10543 intel_update_crtc(state, crtc); 10544 } 10545 } 10546 10547 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 10548 { 10549 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10550 struct intel_crtc *crtc; 10551 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10552 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 10553 u8 update_pipes = 0, modeset_pipes = 0; 10554 int i; 10555 10556 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 10557 enum pipe pipe = crtc->pipe; 10558 10559 if (!new_crtc_state->hw.active) 10560 continue; 10561 10562 /* ignore allocations for crtc's that have been turned off. */ 10563 if (!intel_crtc_needs_modeset(new_crtc_state)) { 10564 entries[pipe] = old_crtc_state->wm.skl.ddb; 10565 update_pipes |= BIT(pipe); 10566 } else { 10567 modeset_pipes |= BIT(pipe); 10568 } 10569 } 10570 10571 /* 10572 * Whenever the number of active pipes changes, we need to make sure we 10573 * update the pipes in the right order so that their ddb allocations 10574 * never overlap with each other between CRTC updates. Otherwise we'll 10575 * cause pipe underruns and other bad stuff. 10576 * 10577 * So first lets enable all pipes that do not need a fullmodeset as 10578 * those don't have any external dependency. 10579 */ 10580 while (update_pipes) { 10581 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10582 new_crtc_state, i) { 10583 enum pipe pipe = crtc->pipe; 10584 10585 if ((update_pipes & BIT(pipe)) == 0) 10586 continue; 10587 10588 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 10589 entries, I915_MAX_PIPES, pipe)) 10590 continue; 10591 10592 entries[pipe] = new_crtc_state->wm.skl.ddb; 10593 update_pipes &= ~BIT(pipe); 10594 10595 intel_update_crtc(state, crtc); 10596 10597 /* 10598 * If this is an already active pipe, it's DDB changed, 10599 * and this isn't the last pipe that needs updating 10600 * then we need to wait for a vblank to pass for the 10601 * new ddb allocation to take effect. 10602 */ 10603 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 10604 &old_crtc_state->wm.skl.ddb) && 10605 (update_pipes | modeset_pipes)) 10606 intel_wait_for_vblank(dev_priv, pipe); 10607 } 10608 } 10609 10610 update_pipes = modeset_pipes; 10611 10612 /* 10613 * Enable all pipes that needs a modeset and do not depends on other 10614 * pipes 10615 */ 10616 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10617 enum pipe pipe = crtc->pipe; 10618 10619 if ((modeset_pipes & BIT(pipe)) == 0) 10620 continue; 10621 10622 if (intel_dp_mst_is_slave_trans(new_crtc_state) || 10623 is_trans_port_sync_master(new_crtc_state) || 10624 (new_crtc_state->bigjoiner && !new_crtc_state->bigjoiner_slave)) 10625 continue; 10626 10627 modeset_pipes &= ~BIT(pipe); 10628 10629 intel_enable_crtc(state, crtc); 10630 } 10631 10632 /* 10633 * Then we enable all remaining pipes that depend on other 10634 * pipes: MST slaves and port sync masters, big joiner master 10635 */ 10636 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10637 enum pipe pipe = crtc->pipe; 10638 10639 if ((modeset_pipes & BIT(pipe)) == 0) 10640 continue; 10641 10642 modeset_pipes &= ~BIT(pipe); 10643 10644 intel_enable_crtc(state, crtc); 10645 } 10646 10647 /* 10648 * Finally we do the plane updates/etc. for all pipes that got enabled. 10649 */ 10650 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10651 enum pipe pipe = crtc->pipe; 10652 10653 if ((update_pipes & BIT(pipe)) == 0) 10654 continue; 10655 10656 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 10657 entries, I915_MAX_PIPES, pipe)); 10658 10659 entries[pipe] = new_crtc_state->wm.skl.ddb; 10660 update_pipes &= ~BIT(pipe); 10661 10662 intel_update_crtc(state, crtc); 10663 } 10664 10665 drm_WARN_ON(&dev_priv->drm, modeset_pipes); 10666 drm_WARN_ON(&dev_priv->drm, update_pipes); 10667 } 10668 10669 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 10670 { 10671 struct intel_atomic_state *state, *next; 10672 struct llist_node *freed; 10673 10674 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 10675 llist_for_each_entry_safe(state, next, freed, freed) 10676 drm_atomic_state_put(&state->base); 10677 } 10678 10679 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 10680 { 10681 struct drm_i915_private *dev_priv = 10682 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 10683 10684 intel_atomic_helper_free_state(dev_priv); 10685 } 10686 10687 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 10688 { 10689 struct wait_queue_entry wait_fence, wait_reset; 10690 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 10691 10692 init_wait_entry(&wait_fence, 0); 10693 init_wait_entry(&wait_reset, 0); 10694 for (;;) { 10695 prepare_to_wait(&intel_state->commit_ready.wait, 10696 &wait_fence, TASK_UNINTERRUPTIBLE); 10697 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 10698 I915_RESET_MODESET), 10699 &wait_reset, TASK_UNINTERRUPTIBLE); 10700 10701 10702 if (i915_sw_fence_done(&intel_state->commit_ready) || 10703 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 10704 break; 10705 10706 schedule(); 10707 } 10708 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 10709 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 10710 I915_RESET_MODESET), 10711 &wait_reset); 10712 } 10713 10714 static void intel_cleanup_dsbs(struct intel_atomic_state *state) 10715 { 10716 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10717 struct intel_crtc *crtc; 10718 int i; 10719 10720 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10721 new_crtc_state, i) 10722 intel_dsb_cleanup(old_crtc_state); 10723 } 10724 10725 static void intel_atomic_cleanup_work(struct work_struct *work) 10726 { 10727 struct intel_atomic_state *state = 10728 container_of(work, struct intel_atomic_state, base.commit_work); 10729 struct drm_i915_private *i915 = to_i915(state->base.dev); 10730 10731 intel_cleanup_dsbs(state); 10732 drm_atomic_helper_cleanup_planes(&i915->drm, &state->base); 10733 drm_atomic_helper_commit_cleanup_done(&state->base); 10734 drm_atomic_state_put(&state->base); 10735 10736 intel_atomic_helper_free_state(i915); 10737 } 10738 10739 static void intel_atomic_prepare_plane_clear_colors(struct intel_atomic_state *state) 10740 { 10741 struct drm_i915_private *i915 = to_i915(state->base.dev); 10742 struct intel_plane *plane; 10743 struct intel_plane_state *plane_state; 10744 int i; 10745 10746 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 10747 struct drm_framebuffer *fb = plane_state->hw.fb; 10748 int ret; 10749 10750 if (!fb || 10751 fb->modifier != I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC) 10752 continue; 10753 10754 /* 10755 * The layout of the fast clear color value expected by HW 10756 * (the DRM ABI requiring this value to be located in fb at offset 0 of plane#2): 10757 * - 4 x 4 bytes per-channel value 10758 * (in surface type specific float/int format provided by the fb user) 10759 * - 8 bytes native color value used by the display 10760 * (converted/written by GPU during a fast clear operation using the 10761 * above per-channel values) 10762 * 10763 * The commit's FB prepare hook already ensured that FB obj is pinned and the 10764 * caller made sure that the object is synced wrt. the related color clear value 10765 * GPU write on it. 10766 */ 10767 ret = i915_gem_object_read_from_page(intel_fb_obj(fb), 10768 fb->offsets[2] + 16, 10769 &plane_state->ccval, 10770 sizeof(plane_state->ccval)); 10771 /* The above could only fail if the FB obj has an unexpected backing store type. */ 10772 drm_WARN_ON(&i915->drm, ret); 10773 } 10774 } 10775 10776 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 10777 { 10778 struct drm_device *dev = state->base.dev; 10779 struct drm_i915_private *dev_priv = to_i915(dev); 10780 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 10781 struct intel_crtc *crtc; 10782 u64 put_domains[I915_MAX_PIPES] = {}; 10783 intel_wakeref_t wakeref = 0; 10784 int i; 10785 10786 intel_atomic_commit_fence_wait(state); 10787 10788 drm_atomic_helper_wait_for_dependencies(&state->base); 10789 10790 if (state->modeset) 10791 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 10792 10793 intel_atomic_prepare_plane_clear_colors(state); 10794 10795 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10796 new_crtc_state, i) { 10797 if (intel_crtc_needs_modeset(new_crtc_state) || 10798 new_crtc_state->update_pipe) { 10799 10800 put_domains[crtc->pipe] = 10801 modeset_get_crtc_power_domains(new_crtc_state); 10802 } 10803 } 10804 10805 intel_commit_modeset_disables(state); 10806 10807 /* FIXME: Eventually get rid of our crtc->config pointer */ 10808 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10809 crtc->config = new_crtc_state; 10810 10811 if (state->modeset) { 10812 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 10813 10814 intel_set_cdclk_pre_plane_update(state); 10815 10816 intel_modeset_verify_disabled(dev_priv, state); 10817 } 10818 10819 intel_sagv_pre_plane_update(state); 10820 10821 /* Complete the events for pipes that have now been disabled */ 10822 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10823 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10824 10825 /* Complete events for now disable pipes here. */ 10826 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { 10827 spin_lock_irq(&dev->event_lock); 10828 drm_crtc_send_vblank_event(&crtc->base, 10829 new_crtc_state->uapi.event); 10830 spin_unlock_irq(&dev->event_lock); 10831 10832 new_crtc_state->uapi.event = NULL; 10833 } 10834 } 10835 10836 if (state->modeset) 10837 intel_encoders_update_prepare(state); 10838 10839 intel_dbuf_pre_plane_update(state); 10840 10841 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10842 if (new_crtc_state->uapi.async_flip) 10843 intel_crtc_enable_flip_done(state, crtc); 10844 } 10845 10846 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 10847 dev_priv->display.commit_modeset_enables(state); 10848 10849 if (state->modeset) { 10850 intel_encoders_update_complete(state); 10851 10852 intel_set_cdclk_post_plane_update(state); 10853 } 10854 10855 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 10856 * already, but still need the state for the delayed optimization. To 10857 * fix this: 10858 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 10859 * - schedule that vblank worker _before_ calling hw_done 10860 * - at the start of commit_tail, cancel it _synchrously 10861 * - switch over to the vblank wait helper in the core after that since 10862 * we don't need out special handling any more. 10863 */ 10864 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 10865 10866 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10867 if (new_crtc_state->uapi.async_flip) 10868 intel_crtc_disable_flip_done(state, crtc); 10869 10870 if (new_crtc_state->hw.active && 10871 !intel_crtc_needs_modeset(new_crtc_state) && 10872 !new_crtc_state->preload_luts && 10873 (new_crtc_state->uapi.color_mgmt_changed || 10874 new_crtc_state->update_pipe)) 10875 intel_color_load_luts(new_crtc_state); 10876 } 10877 10878 /* 10879 * Now that the vblank has passed, we can go ahead and program the 10880 * optimal watermarks on platforms that need two-step watermark 10881 * programming. 10882 * 10883 * TODO: Move this (and other cleanup) to an async worker eventually. 10884 */ 10885 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10886 new_crtc_state, i) { 10887 /* 10888 * Gen2 reports pipe underruns whenever all planes are disabled. 10889 * So re-enable underrun reporting after some planes get enabled. 10890 * 10891 * We do this before .optimize_watermarks() so that we have a 10892 * chance of catching underruns with the intermediate watermarks 10893 * vs. the new plane configuration. 10894 */ 10895 if (DISPLAY_VER(dev_priv) == 2 && planes_enabling(old_crtc_state, new_crtc_state)) 10896 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 10897 10898 if (dev_priv->display.optimize_watermarks) 10899 dev_priv->display.optimize_watermarks(state, crtc); 10900 } 10901 10902 intel_dbuf_post_plane_update(state); 10903 10904 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 10905 intel_post_plane_update(state, crtc); 10906 10907 modeset_put_crtc_power_domains(crtc, put_domains[crtc->pipe]); 10908 10909 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 10910 10911 /* 10912 * DSB cleanup is done in cleanup_work aligning with framebuffer 10913 * cleanup. So copy and reset the dsb structure to sync with 10914 * commit_done and later do dsb cleanup in cleanup_work. 10915 */ 10916 old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb); 10917 } 10918 10919 /* Underruns don't always raise interrupts, so check manually */ 10920 intel_check_cpu_fifo_underruns(dev_priv); 10921 intel_check_pch_fifo_underruns(dev_priv); 10922 10923 if (state->modeset) 10924 intel_verify_planes(state); 10925 10926 intel_sagv_post_plane_update(state); 10927 10928 drm_atomic_helper_commit_hw_done(&state->base); 10929 10930 if (state->modeset) { 10931 /* As one of the primary mmio accessors, KMS has a high 10932 * likelihood of triggering bugs in unclaimed access. After we 10933 * finish modesetting, see if an error has been flagged, and if 10934 * so enable debugging for the next modeset - and hope we catch 10935 * the culprit. 10936 */ 10937 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 10938 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 10939 } 10940 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10941 10942 /* 10943 * Defer the cleanup of the old state to a separate worker to not 10944 * impede the current task (userspace for blocking modesets) that 10945 * are executed inline. For out-of-line asynchronous modesets/flips, 10946 * deferring to a new worker seems overkill, but we would place a 10947 * schedule point (cond_resched()) here anyway to keep latencies 10948 * down. 10949 */ 10950 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 10951 queue_work(system_highpri_wq, &state->base.commit_work); 10952 } 10953 10954 static void intel_atomic_commit_work(struct work_struct *work) 10955 { 10956 struct intel_atomic_state *state = 10957 container_of(work, struct intel_atomic_state, base.commit_work); 10958 10959 intel_atomic_commit_tail(state); 10960 } 10961 10962 static int __i915_sw_fence_call 10963 intel_atomic_commit_ready(struct i915_sw_fence *fence, 10964 enum i915_sw_fence_notify notify) 10965 { 10966 struct intel_atomic_state *state = 10967 container_of(fence, struct intel_atomic_state, commit_ready); 10968 10969 switch (notify) { 10970 case FENCE_COMPLETE: 10971 /* we do blocking waits in the worker, nothing to do here */ 10972 break; 10973 case FENCE_FREE: 10974 { 10975 struct intel_atomic_helper *helper = 10976 &to_i915(state->base.dev)->atomic_helper; 10977 10978 if (llist_add(&state->freed, &helper->free_list)) 10979 schedule_work(&helper->free_work); 10980 break; 10981 } 10982 } 10983 10984 return NOTIFY_DONE; 10985 } 10986 10987 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 10988 { 10989 struct intel_plane_state *old_plane_state, *new_plane_state; 10990 struct intel_plane *plane; 10991 int i; 10992 10993 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 10994 new_plane_state, i) 10995 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 10996 to_intel_frontbuffer(new_plane_state->hw.fb), 10997 plane->frontbuffer_bit); 10998 } 10999 11000 static int intel_atomic_commit(struct drm_device *dev, 11001 struct drm_atomic_state *_state, 11002 bool nonblock) 11003 { 11004 struct intel_atomic_state *state = to_intel_atomic_state(_state); 11005 struct drm_i915_private *dev_priv = to_i915(dev); 11006 int ret = 0; 11007 11008 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 11009 11010 drm_atomic_state_get(&state->base); 11011 i915_sw_fence_init(&state->commit_ready, 11012 intel_atomic_commit_ready); 11013 11014 /* 11015 * The intel_legacy_cursor_update() fast path takes care 11016 * of avoiding the vblank waits for simple cursor 11017 * movement and flips. For cursor on/off and size changes, 11018 * we want to perform the vblank waits so that watermark 11019 * updates happen during the correct frames. Gen9+ have 11020 * double buffered watermarks and so shouldn't need this. 11021 * 11022 * Unset state->legacy_cursor_update before the call to 11023 * drm_atomic_helper_setup_commit() because otherwise 11024 * drm_atomic_helper_wait_for_flip_done() is a noop and 11025 * we get FIFO underruns because we didn't wait 11026 * for vblank. 11027 * 11028 * FIXME doing watermarks and fb cleanup from a vblank worker 11029 * (assuming we had any) would solve these problems. 11030 */ 11031 if (DISPLAY_VER(dev_priv) < 9 && state->base.legacy_cursor_update) { 11032 struct intel_crtc_state *new_crtc_state; 11033 struct intel_crtc *crtc; 11034 int i; 11035 11036 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 11037 if (new_crtc_state->wm.need_postvbl_update || 11038 new_crtc_state->update_wm_post) 11039 state->base.legacy_cursor_update = false; 11040 } 11041 11042 ret = intel_atomic_prepare_commit(state); 11043 if (ret) { 11044 drm_dbg_atomic(&dev_priv->drm, 11045 "Preparing state failed with %i\n", ret); 11046 i915_sw_fence_commit(&state->commit_ready); 11047 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 11048 return ret; 11049 } 11050 11051 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 11052 if (!ret) 11053 ret = drm_atomic_helper_swap_state(&state->base, true); 11054 if (!ret) 11055 intel_atomic_swap_global_state(state); 11056 11057 if (ret) { 11058 struct intel_crtc_state *new_crtc_state; 11059 struct intel_crtc *crtc; 11060 int i; 11061 11062 i915_sw_fence_commit(&state->commit_ready); 11063 11064 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 11065 intel_dsb_cleanup(new_crtc_state); 11066 11067 drm_atomic_helper_cleanup_planes(dev, &state->base); 11068 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 11069 return ret; 11070 } 11071 intel_shared_dpll_swap_state(state); 11072 intel_atomic_track_fbs(state); 11073 11074 drm_atomic_state_get(&state->base); 11075 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 11076 11077 i915_sw_fence_commit(&state->commit_ready); 11078 if (nonblock && state->modeset) { 11079 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 11080 } else if (nonblock) { 11081 queue_work(dev_priv->flip_wq, &state->base.commit_work); 11082 } else { 11083 if (state->modeset) 11084 flush_workqueue(dev_priv->modeset_wq); 11085 intel_atomic_commit_tail(state); 11086 } 11087 11088 return 0; 11089 } 11090 11091 struct wait_rps_boost { 11092 struct wait_queue_entry wait; 11093 11094 struct drm_crtc *crtc; 11095 struct i915_request *request; 11096 }; 11097 11098 static int do_rps_boost(struct wait_queue_entry *_wait, 11099 unsigned mode, int sync, void *key) 11100 { 11101 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); 11102 struct i915_request *rq = wait->request; 11103 11104 /* 11105 * If we missed the vblank, but the request is already running it 11106 * is reasonable to assume that it will complete before the next 11107 * vblank without our intervention, so leave RPS alone. 11108 */ 11109 if (!i915_request_started(rq)) 11110 intel_rps_boost(rq); 11111 i915_request_put(rq); 11112 11113 drm_crtc_vblank_put(wait->crtc); 11114 11115 list_del(&wait->wait.entry); 11116 kfree(wait); 11117 return 1; 11118 } 11119 11120 static void add_rps_boost_after_vblank(struct drm_crtc *crtc, 11121 struct dma_fence *fence) 11122 { 11123 struct wait_rps_boost *wait; 11124 11125 if (!dma_fence_is_i915(fence)) 11126 return; 11127 11128 if (DISPLAY_VER(to_i915(crtc->dev)) < 6) 11129 return; 11130 11131 if (drm_crtc_vblank_get(crtc)) 11132 return; 11133 11134 wait = kmalloc(sizeof(*wait), GFP_KERNEL); 11135 if (!wait) { 11136 drm_crtc_vblank_put(crtc); 11137 return; 11138 } 11139 11140 wait->request = to_request(dma_fence_get(fence)); 11141 wait->crtc = crtc; 11142 11143 wait->wait.func = do_rps_boost; 11144 wait->wait.flags = 0; 11145 11146 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); 11147 } 11148 11149 int intel_plane_pin_fb(struct intel_plane_state *plane_state) 11150 { 11151 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 11152 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11153 struct drm_framebuffer *fb = plane_state->hw.fb; 11154 struct i915_vma *vma; 11155 bool phys_cursor = 11156 plane->id == PLANE_CURSOR && 11157 INTEL_INFO(dev_priv)->display.cursor_needs_physical; 11158 11159 if (!intel_fb_uses_dpt(fb)) { 11160 vma = intel_pin_and_fence_fb_obj(fb, phys_cursor, 11161 &plane_state->view.gtt, 11162 intel_plane_uses_fence(plane_state), 11163 &plane_state->flags); 11164 if (IS_ERR(vma)) 11165 return PTR_ERR(vma); 11166 11167 plane_state->ggtt_vma = vma; 11168 } else { 11169 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11170 11171 vma = intel_dpt_pin(intel_fb->dpt_vm); 11172 if (IS_ERR(vma)) 11173 return PTR_ERR(vma); 11174 11175 plane_state->ggtt_vma = vma; 11176 11177 vma = intel_pin_fb_obj_dpt(fb, &plane_state->view.gtt, false, 11178 &plane_state->flags, intel_fb->dpt_vm); 11179 if (IS_ERR(vma)) { 11180 intel_dpt_unpin(intel_fb->dpt_vm); 11181 plane_state->ggtt_vma = NULL; 11182 return PTR_ERR(vma); 11183 } 11184 11185 plane_state->dpt_vma = vma; 11186 11187 WARN_ON(plane_state->ggtt_vma == plane_state->dpt_vma); 11188 } 11189 11190 return 0; 11191 } 11192 11193 void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) 11194 { 11195 struct drm_framebuffer *fb = old_plane_state->hw.fb; 11196 struct i915_vma *vma; 11197 11198 if (!intel_fb_uses_dpt(fb)) { 11199 vma = fetch_and_zero(&old_plane_state->ggtt_vma); 11200 if (vma) 11201 intel_unpin_fb_vma(vma, old_plane_state->flags); 11202 } else { 11203 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11204 11205 vma = fetch_and_zero(&old_plane_state->dpt_vma); 11206 if (vma) 11207 intel_unpin_fb_vma(vma, old_plane_state->flags); 11208 11209 vma = fetch_and_zero(&old_plane_state->ggtt_vma); 11210 if (vma) 11211 intel_dpt_unpin(intel_fb->dpt_vm); 11212 } 11213 } 11214 11215 /** 11216 * intel_prepare_plane_fb - Prepare fb for usage on plane 11217 * @_plane: drm plane to prepare for 11218 * @_new_plane_state: the plane state being prepared 11219 * 11220 * Prepares a framebuffer for usage on a display plane. Generally this 11221 * involves pinning the underlying object and updating the frontbuffer tracking 11222 * bits. Some older platforms need special physical address handling for 11223 * cursor planes. 11224 * 11225 * Returns 0 on success, negative error code on failure. 11226 */ 11227 int 11228 intel_prepare_plane_fb(struct drm_plane *_plane, 11229 struct drm_plane_state *_new_plane_state) 11230 { 11231 struct i915_sched_attr attr = { .priority = I915_PRIORITY_DISPLAY }; 11232 struct intel_plane *plane = to_intel_plane(_plane); 11233 struct intel_plane_state *new_plane_state = 11234 to_intel_plane_state(_new_plane_state); 11235 struct intel_atomic_state *state = 11236 to_intel_atomic_state(new_plane_state->uapi.state); 11237 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11238 const struct intel_plane_state *old_plane_state = 11239 intel_atomic_get_old_plane_state(state, plane); 11240 struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb); 11241 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb); 11242 int ret; 11243 11244 if (old_obj) { 11245 const struct intel_crtc_state *crtc_state = 11246 intel_atomic_get_new_crtc_state(state, 11247 to_intel_crtc(old_plane_state->hw.crtc)); 11248 11249 /* Big Hammer, we also need to ensure that any pending 11250 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 11251 * current scanout is retired before unpinning the old 11252 * framebuffer. Note that we rely on userspace rendering 11253 * into the buffer attached to the pipe they are waiting 11254 * on. If not, userspace generates a GPU hang with IPEHR 11255 * point to the MI_WAIT_FOR_EVENT. 11256 * 11257 * This should only fail upon a hung GPU, in which case we 11258 * can safely continue. 11259 */ 11260 if (intel_crtc_needs_modeset(crtc_state)) { 11261 ret = i915_sw_fence_await_reservation(&state->commit_ready, 11262 old_obj->base.resv, NULL, 11263 false, 0, 11264 GFP_KERNEL); 11265 if (ret < 0) 11266 return ret; 11267 } 11268 } 11269 11270 if (new_plane_state->uapi.fence) { /* explicit fencing */ 11271 i915_gem_fence_wait_priority(new_plane_state->uapi.fence, 11272 &attr); 11273 ret = i915_sw_fence_await_dma_fence(&state->commit_ready, 11274 new_plane_state->uapi.fence, 11275 i915_fence_timeout(dev_priv), 11276 GFP_KERNEL); 11277 if (ret < 0) 11278 return ret; 11279 } 11280 11281 if (!obj) 11282 return 0; 11283 11284 11285 ret = intel_plane_pin_fb(new_plane_state); 11286 if (ret) 11287 return ret; 11288 11289 i915_gem_object_wait_priority(obj, 0, &attr); 11290 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB); 11291 11292 if (!new_plane_state->uapi.fence) { /* implicit fencing */ 11293 struct dma_fence *fence; 11294 11295 ret = i915_sw_fence_await_reservation(&state->commit_ready, 11296 obj->base.resv, NULL, 11297 false, 11298 i915_fence_timeout(dev_priv), 11299 GFP_KERNEL); 11300 if (ret < 0) 11301 goto unpin_fb; 11302 11303 fence = dma_resv_get_excl_unlocked(obj->base.resv); 11304 if (fence) { 11305 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 11306 fence); 11307 dma_fence_put(fence); 11308 } 11309 } else { 11310 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 11311 new_plane_state->uapi.fence); 11312 } 11313 11314 /* 11315 * We declare pageflips to be interactive and so merit a small bias 11316 * towards upclocking to deliver the frame on time. By only changing 11317 * the RPS thresholds to sample more regularly and aim for higher 11318 * clocks we can hopefully deliver low power workloads (like kodi) 11319 * that are not quite steady state without resorting to forcing 11320 * maximum clocks following a vblank miss (see do_rps_boost()). 11321 */ 11322 if (!state->rps_interactive) { 11323 intel_rps_mark_interactive(&dev_priv->gt.rps, true); 11324 state->rps_interactive = true; 11325 } 11326 11327 return 0; 11328 11329 unpin_fb: 11330 intel_plane_unpin_fb(new_plane_state); 11331 11332 return ret; 11333 } 11334 11335 /** 11336 * intel_cleanup_plane_fb - Cleans up an fb after plane use 11337 * @plane: drm plane to clean up for 11338 * @_old_plane_state: the state from the previous modeset 11339 * 11340 * Cleans up a framebuffer that has just been removed from a plane. 11341 */ 11342 void 11343 intel_cleanup_plane_fb(struct drm_plane *plane, 11344 struct drm_plane_state *_old_plane_state) 11345 { 11346 struct intel_plane_state *old_plane_state = 11347 to_intel_plane_state(_old_plane_state); 11348 struct intel_atomic_state *state = 11349 to_intel_atomic_state(old_plane_state->uapi.state); 11350 struct drm_i915_private *dev_priv = to_i915(plane->dev); 11351 struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb); 11352 11353 if (!obj) 11354 return; 11355 11356 if (state->rps_interactive) { 11357 intel_rps_mark_interactive(&dev_priv->gt.rps, false); 11358 state->rps_interactive = false; 11359 } 11360 11361 /* Should only be called after a successful intel_prepare_plane_fb()! */ 11362 intel_plane_unpin_fb(old_plane_state); 11363 } 11364 11365 /** 11366 * intel_plane_destroy - destroy a plane 11367 * @plane: plane to destroy 11368 * 11369 * Common destruction function for all types of planes (primary, cursor, 11370 * sprite). 11371 */ 11372 void intel_plane_destroy(struct drm_plane *plane) 11373 { 11374 drm_plane_cleanup(plane); 11375 kfree(to_intel_plane(plane)); 11376 } 11377 11378 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv) 11379 { 11380 struct intel_plane *plane; 11381 11382 for_each_intel_plane(&dev_priv->drm, plane) { 11383 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, 11384 plane->pipe); 11385 11386 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base); 11387 } 11388 } 11389 11390 11391 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 11392 struct drm_file *file) 11393 { 11394 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 11395 struct drm_crtc *drmmode_crtc; 11396 struct intel_crtc *crtc; 11397 11398 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 11399 if (!drmmode_crtc) 11400 return -ENOENT; 11401 11402 crtc = to_intel_crtc(drmmode_crtc); 11403 pipe_from_crtc_id->pipe = crtc->pipe; 11404 11405 return 0; 11406 } 11407 11408 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 11409 { 11410 struct drm_device *dev = encoder->base.dev; 11411 struct intel_encoder *source_encoder; 11412 u32 possible_clones = 0; 11413 11414 for_each_intel_encoder(dev, source_encoder) { 11415 if (encoders_cloneable(encoder, source_encoder)) 11416 possible_clones |= drm_encoder_mask(&source_encoder->base); 11417 } 11418 11419 return possible_clones; 11420 } 11421 11422 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 11423 { 11424 struct drm_device *dev = encoder->base.dev; 11425 struct intel_crtc *crtc; 11426 u32 possible_crtcs = 0; 11427 11428 for_each_intel_crtc(dev, crtc) { 11429 if (encoder->pipe_mask & BIT(crtc->pipe)) 11430 possible_crtcs |= drm_crtc_mask(&crtc->base); 11431 } 11432 11433 return possible_crtcs; 11434 } 11435 11436 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 11437 { 11438 if (!IS_MOBILE(dev_priv)) 11439 return false; 11440 11441 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0) 11442 return false; 11443 11444 if (IS_IRONLAKE(dev_priv) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE)) 11445 return false; 11446 11447 return true; 11448 } 11449 11450 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 11451 { 11452 if (DISPLAY_VER(dev_priv) >= 9) 11453 return false; 11454 11455 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 11456 return false; 11457 11458 if (HAS_PCH_LPT_H(dev_priv) && 11459 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 11460 return false; 11461 11462 /* DDI E can't be used if DDI A requires 4 lanes */ 11463 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 11464 return false; 11465 11466 if (!dev_priv->vbt.int_crt_support) 11467 return false; 11468 11469 return true; 11470 } 11471 11472 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 11473 { 11474 struct intel_encoder *encoder; 11475 bool dpd_is_edp = false; 11476 11477 intel_pps_unlock_regs_wa(dev_priv); 11478 11479 if (!HAS_DISPLAY(dev_priv)) 11480 return; 11481 11482 if (IS_DG2(dev_priv)) { 11483 intel_ddi_init(dev_priv, PORT_A); 11484 intel_ddi_init(dev_priv, PORT_B); 11485 intel_ddi_init(dev_priv, PORT_C); 11486 intel_ddi_init(dev_priv, PORT_D_XELPD); 11487 } else if (IS_ALDERLAKE_P(dev_priv)) { 11488 intel_ddi_init(dev_priv, PORT_A); 11489 intel_ddi_init(dev_priv, PORT_B); 11490 intel_ddi_init(dev_priv, PORT_TC1); 11491 intel_ddi_init(dev_priv, PORT_TC2); 11492 intel_ddi_init(dev_priv, PORT_TC3); 11493 intel_ddi_init(dev_priv, PORT_TC4); 11494 } else if (IS_ALDERLAKE_S(dev_priv)) { 11495 intel_ddi_init(dev_priv, PORT_A); 11496 intel_ddi_init(dev_priv, PORT_TC1); 11497 intel_ddi_init(dev_priv, PORT_TC2); 11498 intel_ddi_init(dev_priv, PORT_TC3); 11499 intel_ddi_init(dev_priv, PORT_TC4); 11500 } else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) { 11501 intel_ddi_init(dev_priv, PORT_A); 11502 intel_ddi_init(dev_priv, PORT_B); 11503 intel_ddi_init(dev_priv, PORT_TC1); 11504 intel_ddi_init(dev_priv, PORT_TC2); 11505 } else if (DISPLAY_VER(dev_priv) >= 12) { 11506 intel_ddi_init(dev_priv, PORT_A); 11507 intel_ddi_init(dev_priv, PORT_B); 11508 intel_ddi_init(dev_priv, PORT_TC1); 11509 intel_ddi_init(dev_priv, PORT_TC2); 11510 intel_ddi_init(dev_priv, PORT_TC3); 11511 intel_ddi_init(dev_priv, PORT_TC4); 11512 intel_ddi_init(dev_priv, PORT_TC5); 11513 intel_ddi_init(dev_priv, PORT_TC6); 11514 icl_dsi_init(dev_priv); 11515 } else if (IS_JSL_EHL(dev_priv)) { 11516 intel_ddi_init(dev_priv, PORT_A); 11517 intel_ddi_init(dev_priv, PORT_B); 11518 intel_ddi_init(dev_priv, PORT_C); 11519 intel_ddi_init(dev_priv, PORT_D); 11520 icl_dsi_init(dev_priv); 11521 } else if (DISPLAY_VER(dev_priv) == 11) { 11522 intel_ddi_init(dev_priv, PORT_A); 11523 intel_ddi_init(dev_priv, PORT_B); 11524 intel_ddi_init(dev_priv, PORT_C); 11525 intel_ddi_init(dev_priv, PORT_D); 11526 intel_ddi_init(dev_priv, PORT_E); 11527 intel_ddi_init(dev_priv, PORT_F); 11528 icl_dsi_init(dev_priv); 11529 } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { 11530 intel_ddi_init(dev_priv, PORT_A); 11531 intel_ddi_init(dev_priv, PORT_B); 11532 intel_ddi_init(dev_priv, PORT_C); 11533 vlv_dsi_init(dev_priv); 11534 } else if (DISPLAY_VER(dev_priv) >= 9) { 11535 intel_ddi_init(dev_priv, PORT_A); 11536 intel_ddi_init(dev_priv, PORT_B); 11537 intel_ddi_init(dev_priv, PORT_C); 11538 intel_ddi_init(dev_priv, PORT_D); 11539 intel_ddi_init(dev_priv, PORT_E); 11540 } else if (HAS_DDI(dev_priv)) { 11541 u32 found; 11542 11543 if (intel_ddi_crt_present(dev_priv)) 11544 intel_crt_init(dev_priv); 11545 11546 /* Haswell uses DDI functions to detect digital outputs. */ 11547 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 11548 if (found) 11549 intel_ddi_init(dev_priv, PORT_A); 11550 11551 found = intel_de_read(dev_priv, SFUSE_STRAP); 11552 if (found & SFUSE_STRAP_DDIB_DETECTED) 11553 intel_ddi_init(dev_priv, PORT_B); 11554 if (found & SFUSE_STRAP_DDIC_DETECTED) 11555 intel_ddi_init(dev_priv, PORT_C); 11556 if (found & SFUSE_STRAP_DDID_DETECTED) 11557 intel_ddi_init(dev_priv, PORT_D); 11558 if (found & SFUSE_STRAP_DDIF_DETECTED) 11559 intel_ddi_init(dev_priv, PORT_F); 11560 } else if (HAS_PCH_SPLIT(dev_priv)) { 11561 int found; 11562 11563 /* 11564 * intel_edp_init_connector() depends on this completing first, 11565 * to prevent the registration of both eDP and LVDS and the 11566 * incorrect sharing of the PPS. 11567 */ 11568 intel_lvds_init(dev_priv); 11569 intel_crt_init(dev_priv); 11570 11571 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 11572 11573 if (ilk_has_edp_a(dev_priv)) 11574 g4x_dp_init(dev_priv, DP_A, PORT_A); 11575 11576 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) { 11577 /* PCH SDVOB multiplex with HDMIB */ 11578 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 11579 if (!found) 11580 g4x_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 11581 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED)) 11582 g4x_dp_init(dev_priv, PCH_DP_B, PORT_B); 11583 } 11584 11585 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED) 11586 g4x_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 11587 11588 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED) 11589 g4x_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 11590 11591 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED) 11592 g4x_dp_init(dev_priv, PCH_DP_C, PORT_C); 11593 11594 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED) 11595 g4x_dp_init(dev_priv, PCH_DP_D, PORT_D); 11596 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 11597 bool has_edp, has_port; 11598 11599 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 11600 intel_crt_init(dev_priv); 11601 11602 /* 11603 * The DP_DETECTED bit is the latched state of the DDC 11604 * SDA pin at boot. However since eDP doesn't require DDC 11605 * (no way to plug in a DP->HDMI dongle) the DDC pins for 11606 * eDP ports may have been muxed to an alternate function. 11607 * Thus we can't rely on the DP_DETECTED bit alone to detect 11608 * eDP ports. Consult the VBT as well as DP_DETECTED to 11609 * detect eDP ports. 11610 * 11611 * Sadly the straps seem to be missing sometimes even for HDMI 11612 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 11613 * and VBT for the presence of the port. Additionally we can't 11614 * trust the port type the VBT declares as we've seen at least 11615 * HDMI ports that the VBT claim are DP or eDP. 11616 */ 11617 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 11618 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 11619 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port) 11620 has_edp &= g4x_dp_init(dev_priv, VLV_DP_B, PORT_B); 11621 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 11622 g4x_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 11623 11624 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 11625 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 11626 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port) 11627 has_edp &= g4x_dp_init(dev_priv, VLV_DP_C, PORT_C); 11628 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 11629 g4x_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 11630 11631 if (IS_CHERRYVIEW(dev_priv)) { 11632 /* 11633 * eDP not supported on port D, 11634 * so no need to worry about it 11635 */ 11636 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 11637 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port) 11638 g4x_dp_init(dev_priv, CHV_DP_D, PORT_D); 11639 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port) 11640 g4x_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 11641 } 11642 11643 vlv_dsi_init(dev_priv); 11644 } else if (IS_PINEVIEW(dev_priv)) { 11645 intel_lvds_init(dev_priv); 11646 intel_crt_init(dev_priv); 11647 } else if (IS_DISPLAY_VER(dev_priv, 3, 4)) { 11648 bool found = false; 11649 11650 if (IS_MOBILE(dev_priv)) 11651 intel_lvds_init(dev_priv); 11652 11653 intel_crt_init(dev_priv); 11654 11655 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 11656 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n"); 11657 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 11658 if (!found && IS_G4X(dev_priv)) { 11659 drm_dbg_kms(&dev_priv->drm, 11660 "probing HDMI on SDVOB\n"); 11661 g4x_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 11662 } 11663 11664 if (!found && IS_G4X(dev_priv)) 11665 g4x_dp_init(dev_priv, DP_B, PORT_B); 11666 } 11667 11668 /* Before G4X SDVOC doesn't have its own detect register */ 11669 11670 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 11671 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n"); 11672 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 11673 } 11674 11675 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) { 11676 11677 if (IS_G4X(dev_priv)) { 11678 drm_dbg_kms(&dev_priv->drm, 11679 "probing HDMI on SDVOC\n"); 11680 g4x_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 11681 } 11682 if (IS_G4X(dev_priv)) 11683 g4x_dp_init(dev_priv, DP_C, PORT_C); 11684 } 11685 11686 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED)) 11687 g4x_dp_init(dev_priv, DP_D, PORT_D); 11688 11689 if (SUPPORTS_TV(dev_priv)) 11690 intel_tv_init(dev_priv); 11691 } else if (DISPLAY_VER(dev_priv) == 2) { 11692 if (IS_I85X(dev_priv)) 11693 intel_lvds_init(dev_priv); 11694 11695 intel_crt_init(dev_priv); 11696 intel_dvo_init(dev_priv); 11697 } 11698 11699 for_each_intel_encoder(&dev_priv->drm, encoder) { 11700 encoder->base.possible_crtcs = 11701 intel_encoder_possible_crtcs(encoder); 11702 encoder->base.possible_clones = 11703 intel_encoder_possible_clones(encoder); 11704 } 11705 11706 intel_init_pch_refclk(dev_priv); 11707 11708 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 11709 } 11710 11711 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 11712 { 11713 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11714 11715 drm_framebuffer_cleanup(fb); 11716 11717 if (intel_fb_uses_dpt(fb)) 11718 intel_dpt_destroy(intel_fb->dpt_vm); 11719 11720 intel_frontbuffer_put(intel_fb->frontbuffer); 11721 11722 kfree(intel_fb); 11723 } 11724 11725 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 11726 struct drm_file *file, 11727 unsigned int *handle) 11728 { 11729 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11730 struct drm_i915_private *i915 = to_i915(obj->base.dev); 11731 11732 if (i915_gem_object_is_userptr(obj)) { 11733 drm_dbg(&i915->drm, 11734 "attempting to use a userptr for a framebuffer, denied\n"); 11735 return -EINVAL; 11736 } 11737 11738 return drm_gem_handle_create(file, &obj->base, handle); 11739 } 11740 11741 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 11742 struct drm_file *file, 11743 unsigned flags, unsigned color, 11744 struct drm_clip_rect *clips, 11745 unsigned num_clips) 11746 { 11747 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11748 11749 i915_gem_object_flush_if_display(obj); 11750 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 11751 11752 return 0; 11753 } 11754 11755 static const struct drm_framebuffer_funcs intel_fb_funcs = { 11756 .destroy = intel_user_framebuffer_destroy, 11757 .create_handle = intel_user_framebuffer_create_handle, 11758 .dirty = intel_user_framebuffer_dirty, 11759 }; 11760 11761 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, 11762 struct drm_i915_gem_object *obj, 11763 struct drm_mode_fb_cmd2 *mode_cmd) 11764 { 11765 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 11766 struct drm_framebuffer *fb = &intel_fb->base; 11767 u32 max_stride; 11768 unsigned int tiling, stride; 11769 int ret = -EINVAL; 11770 int i; 11771 11772 intel_fb->frontbuffer = intel_frontbuffer_get(obj); 11773 if (!intel_fb->frontbuffer) 11774 return -ENOMEM; 11775 11776 i915_gem_object_lock(obj, NULL); 11777 tiling = i915_gem_object_get_tiling(obj); 11778 stride = i915_gem_object_get_stride(obj); 11779 i915_gem_object_unlock(obj); 11780 11781 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 11782 /* 11783 * If there's a fence, enforce that 11784 * the fb modifier and tiling mode match. 11785 */ 11786 if (tiling != I915_TILING_NONE && 11787 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 11788 drm_dbg_kms(&dev_priv->drm, 11789 "tiling_mode doesn't match fb modifier\n"); 11790 goto err; 11791 } 11792 } else { 11793 if (tiling == I915_TILING_X) { 11794 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 11795 } else if (tiling == I915_TILING_Y) { 11796 drm_dbg_kms(&dev_priv->drm, 11797 "No Y tiling for legacy addfb\n"); 11798 goto err; 11799 } 11800 } 11801 11802 if (!drm_any_plane_has_format(&dev_priv->drm, 11803 mode_cmd->pixel_format, 11804 mode_cmd->modifier[0])) { 11805 drm_dbg_kms(&dev_priv->drm, 11806 "unsupported pixel format %p4cc / modifier 0x%llx\n", 11807 &mode_cmd->pixel_format, mode_cmd->modifier[0]); 11808 goto err; 11809 } 11810 11811 /* 11812 * gen2/3 display engine uses the fence if present, 11813 * so the tiling mode must match the fb modifier exactly. 11814 */ 11815 if (DISPLAY_VER(dev_priv) < 4 && 11816 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 11817 drm_dbg_kms(&dev_priv->drm, 11818 "tiling_mode must match fb modifier exactly on gen2/3\n"); 11819 goto err; 11820 } 11821 11822 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, 11823 mode_cmd->modifier[0]); 11824 if (mode_cmd->pitches[0] > max_stride) { 11825 drm_dbg_kms(&dev_priv->drm, 11826 "%s pitch (%u) must be at most %d\n", 11827 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? 11828 "tiled" : "linear", 11829 mode_cmd->pitches[0], max_stride); 11830 goto err; 11831 } 11832 11833 /* 11834 * If there's a fence, enforce that 11835 * the fb pitch and fence stride match. 11836 */ 11837 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { 11838 drm_dbg_kms(&dev_priv->drm, 11839 "pitch (%d) must match tiling stride (%d)\n", 11840 mode_cmd->pitches[0], stride); 11841 goto err; 11842 } 11843 11844 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 11845 if (mode_cmd->offsets[0] != 0) { 11846 drm_dbg_kms(&dev_priv->drm, 11847 "plane 0 offset (0x%08x) must be 0\n", 11848 mode_cmd->offsets[0]); 11849 goto err; 11850 } 11851 11852 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); 11853 11854 for (i = 0; i < fb->format->num_planes; i++) { 11855 u32 stride_alignment; 11856 11857 if (mode_cmd->handles[i] != mode_cmd->handles[0]) { 11858 drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n", 11859 i); 11860 goto err; 11861 } 11862 11863 stride_alignment = intel_fb_stride_alignment(fb, i); 11864 if (fb->pitches[i] & (stride_alignment - 1)) { 11865 drm_dbg_kms(&dev_priv->drm, 11866 "plane %d pitch (%d) must be at least %u byte aligned\n", 11867 i, fb->pitches[i], stride_alignment); 11868 goto err; 11869 } 11870 11871 if (is_gen12_ccs_plane(fb, i) && !is_gen12_ccs_cc_plane(fb, i)) { 11872 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i); 11873 11874 if (fb->pitches[i] != ccs_aux_stride) { 11875 drm_dbg_kms(&dev_priv->drm, 11876 "ccs aux plane %d pitch (%d) must be %d\n", 11877 i, 11878 fb->pitches[i], ccs_aux_stride); 11879 goto err; 11880 } 11881 } 11882 11883 /* TODO: Add POT stride remapping support for CCS formats as well. */ 11884 if (IS_ALDERLAKE_P(dev_priv) && 11885 mode_cmd->modifier[i] != DRM_FORMAT_MOD_LINEAR && 11886 !intel_fb_needs_pot_stride_remap(intel_fb) && 11887 !is_power_of_2(mode_cmd->pitches[i])) { 11888 drm_dbg_kms(&dev_priv->drm, 11889 "plane %d pitch (%d) must be power of two for tiled buffers\n", 11890 i, mode_cmd->pitches[i]); 11891 goto err; 11892 } 11893 11894 fb->obj[i] = &obj->base; 11895 } 11896 11897 ret = intel_fill_fb_info(dev_priv, intel_fb); 11898 if (ret) 11899 goto err; 11900 11901 if (intel_fb_uses_dpt(fb)) { 11902 struct i915_address_space *vm; 11903 11904 vm = intel_dpt_create(intel_fb); 11905 if (IS_ERR(vm)) { 11906 ret = PTR_ERR(vm); 11907 goto err; 11908 } 11909 11910 intel_fb->dpt_vm = vm; 11911 } 11912 11913 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); 11914 if (ret) { 11915 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret); 11916 goto err; 11917 } 11918 11919 return 0; 11920 11921 err: 11922 intel_frontbuffer_put(intel_fb->frontbuffer); 11923 return ret; 11924 } 11925 11926 static struct drm_framebuffer * 11927 intel_user_framebuffer_create(struct drm_device *dev, 11928 struct drm_file *filp, 11929 const struct drm_mode_fb_cmd2 *user_mode_cmd) 11930 { 11931 struct drm_framebuffer *fb; 11932 struct drm_i915_gem_object *obj; 11933 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 11934 struct drm_i915_private *i915; 11935 11936 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); 11937 if (!obj) 11938 return ERR_PTR(-ENOENT); 11939 11940 /* object is backed with LMEM for discrete */ 11941 i915 = to_i915(obj->base.dev); 11942 if (HAS_LMEM(i915) && !i915_gem_object_can_migrate(obj, INTEL_REGION_LMEM)) { 11943 /* object is "remote", not in local memory */ 11944 i915_gem_object_put(obj); 11945 return ERR_PTR(-EREMOTE); 11946 } 11947 11948 fb = intel_framebuffer_create(obj, &mode_cmd); 11949 i915_gem_object_put(obj); 11950 11951 return fb; 11952 } 11953 11954 static enum drm_mode_status 11955 intel_mode_valid(struct drm_device *dev, 11956 const struct drm_display_mode *mode) 11957 { 11958 struct drm_i915_private *dev_priv = to_i915(dev); 11959 int hdisplay_max, htotal_max; 11960 int vdisplay_max, vtotal_max; 11961 11962 /* 11963 * Can't reject DBLSCAN here because Xorg ddxen can add piles 11964 * of DBLSCAN modes to the output's mode list when they detect 11965 * the scaling mode property on the connector. And they don't 11966 * ask the kernel to validate those modes in any way until 11967 * modeset time at which point the client gets a protocol error. 11968 * So in order to not upset those clients we silently ignore the 11969 * DBLSCAN flag on such connectors. For other connectors we will 11970 * reject modes with the DBLSCAN flag in encoder->compute_config(). 11971 * And we always reject DBLSCAN modes in connector->mode_valid() 11972 * as we never want such modes on the connector's mode list. 11973 */ 11974 11975 if (mode->vscan > 1) 11976 return MODE_NO_VSCAN; 11977 11978 if (mode->flags & DRM_MODE_FLAG_HSKEW) 11979 return MODE_H_ILLEGAL; 11980 11981 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 11982 DRM_MODE_FLAG_NCSYNC | 11983 DRM_MODE_FLAG_PCSYNC)) 11984 return MODE_HSYNC; 11985 11986 if (mode->flags & (DRM_MODE_FLAG_BCAST | 11987 DRM_MODE_FLAG_PIXMUX | 11988 DRM_MODE_FLAG_CLKDIV2)) 11989 return MODE_BAD; 11990 11991 /* Transcoder timing limits */ 11992 if (DISPLAY_VER(dev_priv) >= 11) { 11993 hdisplay_max = 16384; 11994 vdisplay_max = 8192; 11995 htotal_max = 16384; 11996 vtotal_max = 8192; 11997 } else if (DISPLAY_VER(dev_priv) >= 9 || 11998 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 11999 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 12000 vdisplay_max = 4096; 12001 htotal_max = 8192; 12002 vtotal_max = 8192; 12003 } else if (DISPLAY_VER(dev_priv) >= 3) { 12004 hdisplay_max = 4096; 12005 vdisplay_max = 4096; 12006 htotal_max = 8192; 12007 vtotal_max = 8192; 12008 } else { 12009 hdisplay_max = 2048; 12010 vdisplay_max = 2048; 12011 htotal_max = 4096; 12012 vtotal_max = 4096; 12013 } 12014 12015 if (mode->hdisplay > hdisplay_max || 12016 mode->hsync_start > htotal_max || 12017 mode->hsync_end > htotal_max || 12018 mode->htotal > htotal_max) 12019 return MODE_H_ILLEGAL; 12020 12021 if (mode->vdisplay > vdisplay_max || 12022 mode->vsync_start > vtotal_max || 12023 mode->vsync_end > vtotal_max || 12024 mode->vtotal > vtotal_max) 12025 return MODE_V_ILLEGAL; 12026 12027 if (DISPLAY_VER(dev_priv) >= 5) { 12028 if (mode->hdisplay < 64 || 12029 mode->htotal - mode->hdisplay < 32) 12030 return MODE_H_ILLEGAL; 12031 12032 if (mode->vtotal - mode->vdisplay < 5) 12033 return MODE_V_ILLEGAL; 12034 } else { 12035 if (mode->htotal - mode->hdisplay < 32) 12036 return MODE_H_ILLEGAL; 12037 12038 if (mode->vtotal - mode->vdisplay < 3) 12039 return MODE_V_ILLEGAL; 12040 } 12041 12042 return MODE_OK; 12043 } 12044 12045 enum drm_mode_status 12046 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, 12047 const struct drm_display_mode *mode, 12048 bool bigjoiner) 12049 { 12050 int plane_width_max, plane_height_max; 12051 12052 /* 12053 * intel_mode_valid() should be 12054 * sufficient on older platforms. 12055 */ 12056 if (DISPLAY_VER(dev_priv) < 9) 12057 return MODE_OK; 12058 12059 /* 12060 * Most people will probably want a fullscreen 12061 * plane so let's not advertize modes that are 12062 * too big for that. 12063 */ 12064 if (DISPLAY_VER(dev_priv) >= 11) { 12065 plane_width_max = 5120 << bigjoiner; 12066 plane_height_max = 4320; 12067 } else { 12068 plane_width_max = 5120; 12069 plane_height_max = 4096; 12070 } 12071 12072 if (mode->hdisplay > plane_width_max) 12073 return MODE_H_ILLEGAL; 12074 12075 if (mode->vdisplay > plane_height_max) 12076 return MODE_V_ILLEGAL; 12077 12078 return MODE_OK; 12079 } 12080 12081 static const struct drm_mode_config_funcs intel_mode_funcs = { 12082 .fb_create = intel_user_framebuffer_create, 12083 .get_format_info = intel_get_format_info, 12084 .output_poll_changed = intel_fbdev_output_poll_changed, 12085 .mode_valid = intel_mode_valid, 12086 .atomic_check = intel_atomic_check, 12087 .atomic_commit = intel_atomic_commit, 12088 .atomic_state_alloc = intel_atomic_state_alloc, 12089 .atomic_state_clear = intel_atomic_state_clear, 12090 .atomic_state_free = intel_atomic_state_free, 12091 }; 12092 12093 /** 12094 * intel_init_display_hooks - initialize the display modesetting hooks 12095 * @dev_priv: device private 12096 */ 12097 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 12098 { 12099 if (!HAS_DISPLAY(dev_priv)) 12100 return; 12101 12102 intel_init_cdclk_hooks(dev_priv); 12103 intel_init_audio_hooks(dev_priv); 12104 12105 intel_dpll_init_clock_hook(dev_priv); 12106 12107 if (DISPLAY_VER(dev_priv) >= 9) { 12108 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 12109 dev_priv->display.crtc_enable = hsw_crtc_enable; 12110 dev_priv->display.crtc_disable = hsw_crtc_disable; 12111 } else if (HAS_DDI(dev_priv)) { 12112 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 12113 dev_priv->display.crtc_enable = hsw_crtc_enable; 12114 dev_priv->display.crtc_disable = hsw_crtc_disable; 12115 } else if (HAS_PCH_SPLIT(dev_priv)) { 12116 dev_priv->display.get_pipe_config = ilk_get_pipe_config; 12117 dev_priv->display.crtc_enable = ilk_crtc_enable; 12118 dev_priv->display.crtc_disable = ilk_crtc_disable; 12119 } else if (IS_CHERRYVIEW(dev_priv) || 12120 IS_VALLEYVIEW(dev_priv)) { 12121 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 12122 dev_priv->display.crtc_enable = valleyview_crtc_enable; 12123 dev_priv->display.crtc_disable = i9xx_crtc_disable; 12124 } else { 12125 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 12126 dev_priv->display.crtc_enable = i9xx_crtc_enable; 12127 dev_priv->display.crtc_disable = i9xx_crtc_disable; 12128 } 12129 12130 intel_fdi_init_hook(dev_priv); 12131 12132 if (DISPLAY_VER(dev_priv) >= 9) { 12133 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; 12134 dev_priv->display.get_initial_plane_config = skl_get_initial_plane_config; 12135 } else { 12136 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; 12137 dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; 12138 } 12139 12140 } 12141 12142 void intel_modeset_init_hw(struct drm_i915_private *i915) 12143 { 12144 struct intel_cdclk_state *cdclk_state; 12145 12146 if (!HAS_DISPLAY(i915)) 12147 return; 12148 12149 cdclk_state = to_intel_cdclk_state(i915->cdclk.obj.state); 12150 12151 intel_update_cdclk(i915); 12152 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK"); 12153 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw; 12154 } 12155 12156 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state) 12157 { 12158 struct drm_plane *plane; 12159 struct intel_crtc *crtc; 12160 12161 for_each_intel_crtc(state->dev, crtc) { 12162 struct intel_crtc_state *crtc_state; 12163 12164 crtc_state = intel_atomic_get_crtc_state(state, crtc); 12165 if (IS_ERR(crtc_state)) 12166 return PTR_ERR(crtc_state); 12167 12168 if (crtc_state->hw.active) { 12169 /* 12170 * Preserve the inherited flag to avoid 12171 * taking the full modeset path. 12172 */ 12173 crtc_state->inherited = true; 12174 } 12175 } 12176 12177 drm_for_each_plane(plane, state->dev) { 12178 struct drm_plane_state *plane_state; 12179 12180 plane_state = drm_atomic_get_plane_state(state, plane); 12181 if (IS_ERR(plane_state)) 12182 return PTR_ERR(plane_state); 12183 } 12184 12185 return 0; 12186 } 12187 12188 /* 12189 * Calculate what we think the watermarks should be for the state we've read 12190 * out of the hardware and then immediately program those watermarks so that 12191 * we ensure the hardware settings match our internal state. 12192 * 12193 * We can calculate what we think WM's should be by creating a duplicate of the 12194 * current state (which was constructed during hardware readout) and running it 12195 * through the atomic check code to calculate new watermark values in the 12196 * state object. 12197 */ 12198 static void sanitize_watermarks(struct drm_i915_private *dev_priv) 12199 { 12200 struct drm_atomic_state *state; 12201 struct intel_atomic_state *intel_state; 12202 struct intel_crtc *crtc; 12203 struct intel_crtc_state *crtc_state; 12204 struct drm_modeset_acquire_ctx ctx; 12205 int ret; 12206 int i; 12207 12208 /* Only supported on platforms that use atomic watermark design */ 12209 if (!dev_priv->display.optimize_watermarks) 12210 return; 12211 12212 state = drm_atomic_state_alloc(&dev_priv->drm); 12213 if (drm_WARN_ON(&dev_priv->drm, !state)) 12214 return; 12215 12216 intel_state = to_intel_atomic_state(state); 12217 12218 drm_modeset_acquire_init(&ctx, 0); 12219 12220 retry: 12221 state->acquire_ctx = &ctx; 12222 12223 /* 12224 * Hardware readout is the only time we don't want to calculate 12225 * intermediate watermarks (since we don't trust the current 12226 * watermarks). 12227 */ 12228 if (!HAS_GMCH(dev_priv)) 12229 intel_state->skip_intermediate_wm = true; 12230 12231 ret = sanitize_watermarks_add_affected(state); 12232 if (ret) 12233 goto fail; 12234 12235 ret = intel_atomic_check(&dev_priv->drm, state); 12236 if (ret) 12237 goto fail; 12238 12239 /* Write calculated watermark values back */ 12240 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 12241 crtc_state->wm.need_postvbl_update = true; 12242 dev_priv->display.optimize_watermarks(intel_state, crtc); 12243 12244 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 12245 } 12246 12247 fail: 12248 if (ret == -EDEADLK) { 12249 drm_atomic_state_clear(state); 12250 drm_modeset_backoff(&ctx); 12251 goto retry; 12252 } 12253 12254 /* 12255 * If we fail here, it means that the hardware appears to be 12256 * programmed in a way that shouldn't be possible, given our 12257 * understanding of watermark requirements. This might mean a 12258 * mistake in the hardware readout code or a mistake in the 12259 * watermark calculations for a given platform. Raise a WARN 12260 * so that this is noticeable. 12261 * 12262 * If this actually happens, we'll have to just leave the 12263 * BIOS-programmed watermarks untouched and hope for the best. 12264 */ 12265 drm_WARN(&dev_priv->drm, ret, 12266 "Could not determine valid watermarks for inherited state\n"); 12267 12268 drm_atomic_state_put(state); 12269 12270 drm_modeset_drop_locks(&ctx); 12271 drm_modeset_acquire_fini(&ctx); 12272 } 12273 12274 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) 12275 { 12276 if (IS_IRONLAKE(dev_priv)) { 12277 u32 fdi_pll_clk = 12278 intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; 12279 12280 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; 12281 } else if (IS_SANDYBRIDGE(dev_priv) || IS_IVYBRIDGE(dev_priv)) { 12282 dev_priv->fdi_pll_freq = 270000; 12283 } else { 12284 return; 12285 } 12286 12287 drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); 12288 } 12289 12290 static int intel_initial_commit(struct drm_device *dev) 12291 { 12292 struct drm_atomic_state *state = NULL; 12293 struct drm_modeset_acquire_ctx ctx; 12294 struct intel_crtc *crtc; 12295 int ret = 0; 12296 12297 state = drm_atomic_state_alloc(dev); 12298 if (!state) 12299 return -ENOMEM; 12300 12301 drm_modeset_acquire_init(&ctx, 0); 12302 12303 retry: 12304 state->acquire_ctx = &ctx; 12305 12306 for_each_intel_crtc(dev, crtc) { 12307 struct intel_crtc_state *crtc_state = 12308 intel_atomic_get_crtc_state(state, crtc); 12309 12310 if (IS_ERR(crtc_state)) { 12311 ret = PTR_ERR(crtc_state); 12312 goto out; 12313 } 12314 12315 if (crtc_state->hw.active) { 12316 struct intel_encoder *encoder; 12317 12318 /* 12319 * We've not yet detected sink capabilities 12320 * (audio,infoframes,etc.) and thus we don't want to 12321 * force a full state recomputation yet. We want that to 12322 * happen only for the first real commit from userspace. 12323 * So preserve the inherited flag for the time being. 12324 */ 12325 crtc_state->inherited = true; 12326 12327 ret = drm_atomic_add_affected_planes(state, &crtc->base); 12328 if (ret) 12329 goto out; 12330 12331 /* 12332 * FIXME hack to force a LUT update to avoid the 12333 * plane update forcing the pipe gamma on without 12334 * having a proper LUT loaded. Remove once we 12335 * have readout for pipe gamma enable. 12336 */ 12337 crtc_state->uapi.color_mgmt_changed = true; 12338 12339 for_each_intel_encoder_mask(dev, encoder, 12340 crtc_state->uapi.encoder_mask) { 12341 if (encoder->initial_fastset_check && 12342 !encoder->initial_fastset_check(encoder, crtc_state)) { 12343 ret = drm_atomic_add_affected_connectors(state, 12344 &crtc->base); 12345 if (ret) 12346 goto out; 12347 } 12348 } 12349 } 12350 } 12351 12352 ret = drm_atomic_commit(state); 12353 12354 out: 12355 if (ret == -EDEADLK) { 12356 drm_atomic_state_clear(state); 12357 drm_modeset_backoff(&ctx); 12358 goto retry; 12359 } 12360 12361 drm_atomic_state_put(state); 12362 12363 drm_modeset_drop_locks(&ctx); 12364 drm_modeset_acquire_fini(&ctx); 12365 12366 return ret; 12367 } 12368 12369 static void intel_mode_config_init(struct drm_i915_private *i915) 12370 { 12371 struct drm_mode_config *mode_config = &i915->drm.mode_config; 12372 12373 drm_mode_config_init(&i915->drm); 12374 INIT_LIST_HEAD(&i915->global_obj_list); 12375 12376 mode_config->min_width = 0; 12377 mode_config->min_height = 0; 12378 12379 mode_config->preferred_depth = 24; 12380 mode_config->prefer_shadow = 1; 12381 12382 mode_config->funcs = &intel_mode_funcs; 12383 12384 mode_config->async_page_flip = has_async_flips(i915); 12385 12386 /* 12387 * Maximum framebuffer dimensions, chosen to match 12388 * the maximum render engine surface size on gen4+. 12389 */ 12390 if (DISPLAY_VER(i915) >= 7) { 12391 mode_config->max_width = 16384; 12392 mode_config->max_height = 16384; 12393 } else if (DISPLAY_VER(i915) >= 4) { 12394 mode_config->max_width = 8192; 12395 mode_config->max_height = 8192; 12396 } else if (DISPLAY_VER(i915) == 3) { 12397 mode_config->max_width = 4096; 12398 mode_config->max_height = 4096; 12399 } else { 12400 mode_config->max_width = 2048; 12401 mode_config->max_height = 2048; 12402 } 12403 12404 if (IS_I845G(i915) || IS_I865G(i915)) { 12405 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; 12406 mode_config->cursor_height = 1023; 12407 } else if (IS_I830(i915) || IS_I85X(i915) || 12408 IS_I915G(i915) || IS_I915GM(i915)) { 12409 mode_config->cursor_width = 64; 12410 mode_config->cursor_height = 64; 12411 } else { 12412 mode_config->cursor_width = 256; 12413 mode_config->cursor_height = 256; 12414 } 12415 } 12416 12417 static void intel_mode_config_cleanup(struct drm_i915_private *i915) 12418 { 12419 intel_atomic_global_obj_cleanup(i915); 12420 drm_mode_config_cleanup(&i915->drm); 12421 } 12422 12423 static void plane_config_fini(struct intel_initial_plane_config *plane_config) 12424 { 12425 if (plane_config->fb) { 12426 struct drm_framebuffer *fb = &plane_config->fb->base; 12427 12428 /* We may only have the stub and not a full framebuffer */ 12429 if (drm_framebuffer_read_refcount(fb)) 12430 drm_framebuffer_put(fb); 12431 else 12432 kfree(fb); 12433 } 12434 12435 if (plane_config->vma) 12436 i915_vma_put(plane_config->vma); 12437 } 12438 12439 /* part #1: call before irq install */ 12440 int intel_modeset_init_noirq(struct drm_i915_private *i915) 12441 { 12442 int ret; 12443 12444 if (i915_inject_probe_failure(i915)) 12445 return -ENODEV; 12446 12447 if (HAS_DISPLAY(i915)) { 12448 ret = drm_vblank_init(&i915->drm, 12449 INTEL_NUM_PIPES(i915)); 12450 if (ret) 12451 return ret; 12452 } 12453 12454 intel_bios_init(i915); 12455 12456 ret = intel_vga_register(i915); 12457 if (ret) 12458 goto cleanup_bios; 12459 12460 /* FIXME: completely on the wrong abstraction layer */ 12461 intel_power_domains_init_hw(i915, false); 12462 12463 if (!HAS_DISPLAY(i915)) 12464 return 0; 12465 12466 intel_dmc_ucode_init(i915); 12467 12468 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 12469 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | 12470 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); 12471 12472 i915->framestart_delay = 1; /* 1-4 */ 12473 12474 i915->window2_delay = 0; /* No DSB so no window2 delay */ 12475 12476 intel_mode_config_init(i915); 12477 12478 ret = intel_cdclk_init(i915); 12479 if (ret) 12480 goto cleanup_vga_client_pw_domain_dmc; 12481 12482 ret = intel_dbuf_init(i915); 12483 if (ret) 12484 goto cleanup_vga_client_pw_domain_dmc; 12485 12486 ret = intel_bw_init(i915); 12487 if (ret) 12488 goto cleanup_vga_client_pw_domain_dmc; 12489 12490 init_llist_head(&i915->atomic_helper.free_list); 12491 INIT_WORK(&i915->atomic_helper.free_work, 12492 intel_atomic_helper_free_state_worker); 12493 12494 intel_init_quirks(i915); 12495 12496 intel_fbc_init(i915); 12497 12498 return 0; 12499 12500 cleanup_vga_client_pw_domain_dmc: 12501 intel_dmc_ucode_fini(i915); 12502 intel_power_domains_driver_remove(i915); 12503 intel_vga_unregister(i915); 12504 cleanup_bios: 12505 intel_bios_driver_remove(i915); 12506 12507 return ret; 12508 } 12509 12510 /* part #2: call after irq install, but before gem init */ 12511 int intel_modeset_init_nogem(struct drm_i915_private *i915) 12512 { 12513 struct drm_device *dev = &i915->drm; 12514 enum pipe pipe; 12515 struct intel_crtc *crtc; 12516 int ret; 12517 12518 if (!HAS_DISPLAY(i915)) 12519 return 0; 12520 12521 intel_init_pm(i915); 12522 12523 intel_panel_sanitize_ssc(i915); 12524 12525 intel_pps_setup(i915); 12526 12527 intel_gmbus_setup(i915); 12528 12529 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n", 12530 INTEL_NUM_PIPES(i915), 12531 INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); 12532 12533 for_each_pipe(i915, pipe) { 12534 ret = intel_crtc_init(i915, pipe); 12535 if (ret) { 12536 intel_mode_config_cleanup(i915); 12537 return ret; 12538 } 12539 } 12540 12541 intel_plane_possible_crtcs_init(i915); 12542 intel_shared_dpll_init(dev); 12543 intel_update_fdi_pll_freq(i915); 12544 12545 intel_update_czclk(i915); 12546 intel_modeset_init_hw(i915); 12547 intel_dpll_update_ref_clks(i915); 12548 12549 intel_hdcp_component_init(i915); 12550 12551 if (i915->max_cdclk_freq == 0) 12552 intel_update_max_cdclk(i915); 12553 12554 /* 12555 * If the platform has HTI, we need to find out whether it has reserved 12556 * any display resources before we create our display outputs. 12557 */ 12558 if (INTEL_INFO(i915)->display.has_hti) 12559 i915->hti_state = intel_de_read(i915, HDPORT_STATE); 12560 12561 /* Just disable it once at startup */ 12562 intel_vga_disable(i915); 12563 intel_setup_outputs(i915); 12564 12565 drm_modeset_lock_all(dev); 12566 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 12567 drm_modeset_unlock_all(dev); 12568 12569 for_each_intel_crtc(dev, crtc) { 12570 struct intel_initial_plane_config plane_config = {}; 12571 12572 if (!to_intel_crtc_state(crtc->base.state)->uapi.active) 12573 continue; 12574 12575 /* 12576 * Note that reserving the BIOS fb up front prevents us 12577 * from stuffing other stolen allocations like the ring 12578 * on top. This prevents some ugliness at boot time, and 12579 * can even allow for smooth boot transitions if the BIOS 12580 * fb is large enough for the active pipe configuration. 12581 */ 12582 i915->display.get_initial_plane_config(crtc, &plane_config); 12583 12584 /* 12585 * If the fb is shared between multiple heads, we'll 12586 * just get the first one. 12587 */ 12588 intel_find_initial_plane_obj(crtc, &plane_config); 12589 12590 plane_config_fini(&plane_config); 12591 } 12592 12593 /* 12594 * Make sure hardware watermarks really match the state we read out. 12595 * Note that we need to do this after reconstructing the BIOS fb's 12596 * since the watermark calculation done here will use pstate->fb. 12597 */ 12598 if (!HAS_GMCH(i915)) 12599 sanitize_watermarks(i915); 12600 12601 return 0; 12602 } 12603 12604 /* part #3: call after gem init */ 12605 int intel_modeset_init(struct drm_i915_private *i915) 12606 { 12607 int ret; 12608 12609 if (!HAS_DISPLAY(i915)) 12610 return 0; 12611 12612 /* 12613 * Force all active planes to recompute their states. So that on 12614 * mode_setcrtc after probe, all the intel_plane_state variables 12615 * are already calculated and there is no assert_plane warnings 12616 * during bootup. 12617 */ 12618 ret = intel_initial_commit(&i915->drm); 12619 if (ret) 12620 drm_dbg_kms(&i915->drm, "Initial modeset failed, %d\n", ret); 12621 12622 intel_overlay_setup(i915); 12623 12624 ret = intel_fbdev_init(&i915->drm); 12625 if (ret) 12626 return ret; 12627 12628 /* Only enable hotplug handling once the fbdev is fully set up. */ 12629 intel_hpd_init(i915); 12630 intel_hpd_poll_disable(i915); 12631 12632 intel_init_ipc(i915); 12633 12634 return 0; 12635 } 12636 12637 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 12638 { 12639 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12640 /* 640x480@60Hz, ~25175 kHz */ 12641 struct dpll clock = { 12642 .m1 = 18, 12643 .m2 = 7, 12644 .p1 = 13, 12645 .p2 = 4, 12646 .n = 2, 12647 }; 12648 u32 dpll, fp; 12649 int i; 12650 12651 drm_WARN_ON(&dev_priv->drm, 12652 i9xx_calc_dpll_params(48000, &clock) != 25154); 12653 12654 drm_dbg_kms(&dev_priv->drm, 12655 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 12656 pipe_name(pipe), clock.vco, clock.dot); 12657 12658 fp = i9xx_dpll_compute_fp(&clock); 12659 dpll = DPLL_DVO_2X_MODE | 12660 DPLL_VGA_MODE_DIS | 12661 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 12662 PLL_P2_DIVIDE_BY_4 | 12663 PLL_REF_INPUT_DREFCLK | 12664 DPLL_VCO_ENABLE; 12665 12666 intel_de_write(dev_priv, FP0(pipe), fp); 12667 intel_de_write(dev_priv, FP1(pipe), fp); 12668 12669 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 12670 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 12671 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 12672 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 12673 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 12674 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 12675 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 12676 12677 /* 12678 * Apparently we need to have VGA mode enabled prior to changing 12679 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 12680 * dividers, even though the register value does change. 12681 */ 12682 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 12683 intel_de_write(dev_priv, DPLL(pipe), dpll); 12684 12685 /* Wait for the clocks to stabilize. */ 12686 intel_de_posting_read(dev_priv, DPLL(pipe)); 12687 udelay(150); 12688 12689 /* The pixel multiplier can only be updated once the 12690 * DPLL is enabled and the clocks are stable. 12691 * 12692 * So write it again. 12693 */ 12694 intel_de_write(dev_priv, DPLL(pipe), dpll); 12695 12696 /* We do this three times for luck */ 12697 for (i = 0; i < 3 ; i++) { 12698 intel_de_write(dev_priv, DPLL(pipe), dpll); 12699 intel_de_posting_read(dev_priv, DPLL(pipe)); 12700 udelay(150); /* wait for warmup */ 12701 } 12702 12703 intel_de_write(dev_priv, PIPECONF(pipe), 12704 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 12705 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 12706 12707 intel_wait_for_pipe_scanline_moving(crtc); 12708 } 12709 12710 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 12711 { 12712 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12713 12714 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n", 12715 pipe_name(pipe)); 12716 12717 drm_WARN_ON(&dev_priv->drm, 12718 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & 12719 DISPLAY_PLANE_ENABLE); 12720 drm_WARN_ON(&dev_priv->drm, 12721 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & 12722 DISPLAY_PLANE_ENABLE); 12723 drm_WARN_ON(&dev_priv->drm, 12724 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & 12725 DISPLAY_PLANE_ENABLE); 12726 drm_WARN_ON(&dev_priv->drm, 12727 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE); 12728 drm_WARN_ON(&dev_priv->drm, 12729 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE); 12730 12731 intel_de_write(dev_priv, PIPECONF(pipe), 0); 12732 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 12733 12734 intel_wait_for_pipe_scanline_stopped(crtc); 12735 12736 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 12737 intel_de_posting_read(dev_priv, DPLL(pipe)); 12738 } 12739 12740 static void 12741 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 12742 { 12743 struct intel_crtc *crtc; 12744 12745 if (DISPLAY_VER(dev_priv) >= 4) 12746 return; 12747 12748 for_each_intel_crtc(&dev_priv->drm, crtc) { 12749 struct intel_plane *plane = 12750 to_intel_plane(crtc->base.primary); 12751 struct intel_crtc *plane_crtc; 12752 enum pipe pipe; 12753 12754 if (!plane->get_hw_state(plane, &pipe)) 12755 continue; 12756 12757 if (pipe == crtc->pipe) 12758 continue; 12759 12760 drm_dbg_kms(&dev_priv->drm, 12761 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 12762 plane->base.base.id, plane->base.name); 12763 12764 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12765 intel_plane_disable_noatomic(plane_crtc, plane); 12766 } 12767 } 12768 12769 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 12770 { 12771 struct drm_device *dev = crtc->base.dev; 12772 struct intel_encoder *encoder; 12773 12774 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 12775 return true; 12776 12777 return false; 12778 } 12779 12780 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 12781 { 12782 struct drm_device *dev = encoder->base.dev; 12783 struct intel_connector *connector; 12784 12785 for_each_connector_on_encoder(dev, &encoder->base, connector) 12786 return connector; 12787 12788 return NULL; 12789 } 12790 12791 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 12792 enum pipe pch_transcoder) 12793 { 12794 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 12795 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 12796 } 12797 12798 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state) 12799 { 12800 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12801 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12802 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 12803 12804 if (DISPLAY_VER(dev_priv) >= 9 || 12805 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 12806 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); 12807 u32 val; 12808 12809 if (transcoder_is_dsi(cpu_transcoder)) 12810 return; 12811 12812 val = intel_de_read(dev_priv, reg); 12813 val &= ~HSW_FRAME_START_DELAY_MASK; 12814 val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12815 intel_de_write(dev_priv, reg, val); 12816 } else { 12817 i915_reg_t reg = PIPECONF(cpu_transcoder); 12818 u32 val; 12819 12820 val = intel_de_read(dev_priv, reg); 12821 val &= ~PIPECONF_FRAME_START_DELAY_MASK; 12822 val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12823 intel_de_write(dev_priv, reg, val); 12824 } 12825 12826 if (!crtc_state->has_pch_encoder) 12827 return; 12828 12829 if (HAS_PCH_IBX(dev_priv)) { 12830 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe); 12831 u32 val; 12832 12833 val = intel_de_read(dev_priv, reg); 12834 val &= ~TRANS_FRAME_START_DELAY_MASK; 12835 val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12836 intel_de_write(dev_priv, reg, val); 12837 } else { 12838 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); 12839 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder); 12840 u32 val; 12841 12842 val = intel_de_read(dev_priv, reg); 12843 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 12844 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12845 intel_de_write(dev_priv, reg, val); 12846 } 12847 } 12848 12849 static void intel_sanitize_crtc(struct intel_crtc *crtc, 12850 struct drm_modeset_acquire_ctx *ctx) 12851 { 12852 struct drm_device *dev = crtc->base.dev; 12853 struct drm_i915_private *dev_priv = to_i915(dev); 12854 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 12855 12856 if (crtc_state->hw.active) { 12857 struct intel_plane *plane; 12858 12859 /* Clear any frame start delays used for debugging left by the BIOS */ 12860 intel_sanitize_frame_start_delay(crtc_state); 12861 12862 /* Disable everything but the primary plane */ 12863 for_each_intel_plane_on_crtc(dev, crtc, plane) { 12864 const struct intel_plane_state *plane_state = 12865 to_intel_plane_state(plane->base.state); 12866 12867 if (plane_state->uapi.visible && 12868 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 12869 intel_plane_disable_noatomic(crtc, plane); 12870 } 12871 12872 /* 12873 * Disable any background color set by the BIOS, but enable the 12874 * gamma and CSC to match how we program our planes. 12875 */ 12876 if (DISPLAY_VER(dev_priv) >= 9) 12877 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe), 12878 SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE); 12879 } 12880 12881 /* Adjust the state of the output pipe according to whether we 12882 * have active connectors/encoders. */ 12883 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc) && 12884 !crtc_state->bigjoiner_slave) 12885 intel_crtc_disable_noatomic(crtc, ctx); 12886 12887 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) { 12888 /* 12889 * We start out with underrun reporting disabled to avoid races. 12890 * For correct bookkeeping mark this on active crtcs. 12891 * 12892 * Also on gmch platforms we dont have any hardware bits to 12893 * disable the underrun reporting. Which means we need to start 12894 * out with underrun reporting disabled also on inactive pipes, 12895 * since otherwise we'll complain about the garbage we read when 12896 * e.g. coming up after runtime pm. 12897 * 12898 * No protection against concurrent access is required - at 12899 * worst a fifo underrun happens which also sets this to false. 12900 */ 12901 crtc->cpu_fifo_underrun_disabled = true; 12902 /* 12903 * We track the PCH trancoder underrun reporting state 12904 * within the crtc. With crtc for pipe A housing the underrun 12905 * reporting state for PCH transcoder A, crtc for pipe B housing 12906 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 12907 * and marking underrun reporting as disabled for the non-existing 12908 * PCH transcoders B and C would prevent enabling the south 12909 * error interrupt (see cpt_can_enable_serr_int()). 12910 */ 12911 if (has_pch_trancoder(dev_priv, crtc->pipe)) 12912 crtc->pch_fifo_underrun_disabled = true; 12913 } 12914 } 12915 12916 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 12917 { 12918 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 12919 12920 /* 12921 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 12922 * the hardware when a high res displays plugged in. DPLL P 12923 * divider is zero, and the pipe timings are bonkers. We'll 12924 * try to disable everything in that case. 12925 * 12926 * FIXME would be nice to be able to sanitize this state 12927 * without several WARNs, but for now let's take the easy 12928 * road. 12929 */ 12930 return IS_SANDYBRIDGE(dev_priv) && 12931 crtc_state->hw.active && 12932 crtc_state->shared_dpll && 12933 crtc_state->port_clock == 0; 12934 } 12935 12936 static void intel_sanitize_encoder(struct intel_encoder *encoder) 12937 { 12938 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 12939 struct intel_connector *connector; 12940 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 12941 struct intel_crtc_state *crtc_state = crtc ? 12942 to_intel_crtc_state(crtc->base.state) : NULL; 12943 12944 /* We need to check both for a crtc link (meaning that the 12945 * encoder is active and trying to read from a pipe) and the 12946 * pipe itself being active. */ 12947 bool has_active_crtc = crtc_state && 12948 crtc_state->hw.active; 12949 12950 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 12951 drm_dbg_kms(&dev_priv->drm, 12952 "BIOS has misprogrammed the hardware. Disabling pipe %c\n", 12953 pipe_name(crtc->pipe)); 12954 has_active_crtc = false; 12955 } 12956 12957 connector = intel_encoder_find_connector(encoder); 12958 if (connector && !has_active_crtc) { 12959 drm_dbg_kms(&dev_priv->drm, 12960 "[ENCODER:%d:%s] has active connectors but no active pipe!\n", 12961 encoder->base.base.id, 12962 encoder->base.name); 12963 12964 /* Connector is active, but has no active pipe. This is 12965 * fallout from our resume register restoring. Disable 12966 * the encoder manually again. */ 12967 if (crtc_state) { 12968 struct drm_encoder *best_encoder; 12969 12970 drm_dbg_kms(&dev_priv->drm, 12971 "[ENCODER:%d:%s] manually disabled\n", 12972 encoder->base.base.id, 12973 encoder->base.name); 12974 12975 /* avoid oopsing in case the hooks consult best_encoder */ 12976 best_encoder = connector->base.state->best_encoder; 12977 connector->base.state->best_encoder = &encoder->base; 12978 12979 /* FIXME NULL atomic state passed! */ 12980 if (encoder->disable) 12981 encoder->disable(NULL, encoder, crtc_state, 12982 connector->base.state); 12983 if (encoder->post_disable) 12984 encoder->post_disable(NULL, encoder, crtc_state, 12985 connector->base.state); 12986 12987 connector->base.state->best_encoder = best_encoder; 12988 } 12989 encoder->base.crtc = NULL; 12990 12991 /* Inconsistent output/port/pipe state happens presumably due to 12992 * a bug in one of the get_hw_state functions. Or someplace else 12993 * in our code, like the register restore mess on resume. Clamp 12994 * things to off as a safer default. */ 12995 12996 connector->base.dpms = DRM_MODE_DPMS_OFF; 12997 connector->base.encoder = NULL; 12998 } 12999 13000 /* notify opregion of the sanitized encoder state */ 13001 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 13002 13003 if (HAS_DDI(dev_priv)) 13004 intel_ddi_sanitize_encoder_pll_mapping(encoder); 13005 } 13006 13007 /* FIXME read out full plane state for all planes */ 13008 static void readout_plane_state(struct drm_i915_private *dev_priv) 13009 { 13010 struct intel_plane *plane; 13011 struct intel_crtc *crtc; 13012 13013 for_each_intel_plane(&dev_priv->drm, plane) { 13014 struct intel_plane_state *plane_state = 13015 to_intel_plane_state(plane->base.state); 13016 struct intel_crtc_state *crtc_state; 13017 enum pipe pipe = PIPE_A; 13018 bool visible; 13019 13020 visible = plane->get_hw_state(plane, &pipe); 13021 13022 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 13023 crtc_state = to_intel_crtc_state(crtc->base.state); 13024 13025 intel_set_plane_visible(crtc_state, plane_state, visible); 13026 13027 drm_dbg_kms(&dev_priv->drm, 13028 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 13029 plane->base.base.id, plane->base.name, 13030 enableddisabled(visible), pipe_name(pipe)); 13031 } 13032 13033 for_each_intel_crtc(&dev_priv->drm, crtc) { 13034 struct intel_crtc_state *crtc_state = 13035 to_intel_crtc_state(crtc->base.state); 13036 13037 fixup_plane_bitmasks(crtc_state); 13038 } 13039 } 13040 13041 static void intel_modeset_readout_hw_state(struct drm_device *dev) 13042 { 13043 struct drm_i915_private *dev_priv = to_i915(dev); 13044 struct intel_cdclk_state *cdclk_state = 13045 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 13046 struct intel_dbuf_state *dbuf_state = 13047 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 13048 enum pipe pipe; 13049 struct intel_crtc *crtc; 13050 struct intel_encoder *encoder; 13051 struct intel_connector *connector; 13052 struct drm_connector_list_iter conn_iter; 13053 u8 active_pipes = 0; 13054 13055 for_each_intel_crtc(dev, crtc) { 13056 struct intel_crtc_state *crtc_state = 13057 to_intel_crtc_state(crtc->base.state); 13058 13059 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi); 13060 intel_crtc_free_hw_state(crtc_state); 13061 intel_crtc_state_reset(crtc_state, crtc); 13062 13063 intel_crtc_get_pipe_config(crtc_state); 13064 13065 crtc_state->hw.enable = crtc_state->hw.active; 13066 13067 crtc->base.enabled = crtc_state->hw.enable; 13068 crtc->active = crtc_state->hw.active; 13069 13070 if (crtc_state->hw.active) 13071 active_pipes |= BIT(crtc->pipe); 13072 13073 drm_dbg_kms(&dev_priv->drm, 13074 "[CRTC:%d:%s] hw state readout: %s\n", 13075 crtc->base.base.id, crtc->base.name, 13076 enableddisabled(crtc_state->hw.active)); 13077 } 13078 13079 dev_priv->active_pipes = cdclk_state->active_pipes = 13080 dbuf_state->active_pipes = active_pipes; 13081 13082 readout_plane_state(dev_priv); 13083 13084 for_each_intel_encoder(dev, encoder) { 13085 struct intel_crtc_state *crtc_state = NULL; 13086 13087 pipe = 0; 13088 13089 if (encoder->get_hw_state(encoder, &pipe)) { 13090 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 13091 crtc_state = to_intel_crtc_state(crtc->base.state); 13092 13093 encoder->base.crtc = &crtc->base; 13094 intel_encoder_get_config(encoder, crtc_state); 13095 13096 /* read out to slave crtc as well for bigjoiner */ 13097 if (crtc_state->bigjoiner) { 13098 /* encoder should read be linked to bigjoiner master */ 13099 WARN_ON(crtc_state->bigjoiner_slave); 13100 13101 crtc = crtc_state->bigjoiner_linked_crtc; 13102 crtc_state = to_intel_crtc_state(crtc->base.state); 13103 intel_encoder_get_config(encoder, crtc_state); 13104 } 13105 } else { 13106 encoder->base.crtc = NULL; 13107 } 13108 13109 if (encoder->sync_state) 13110 encoder->sync_state(encoder, crtc_state); 13111 13112 drm_dbg_kms(&dev_priv->drm, 13113 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 13114 encoder->base.base.id, encoder->base.name, 13115 enableddisabled(encoder->base.crtc), 13116 pipe_name(pipe)); 13117 } 13118 13119 intel_dpll_readout_hw_state(dev_priv); 13120 13121 drm_connector_list_iter_begin(dev, &conn_iter); 13122 for_each_intel_connector_iter(connector, &conn_iter) { 13123 if (connector->get_hw_state(connector)) { 13124 struct intel_crtc_state *crtc_state; 13125 struct intel_crtc *crtc; 13126 13127 connector->base.dpms = DRM_MODE_DPMS_ON; 13128 13129 encoder = intel_attached_encoder(connector); 13130 connector->base.encoder = &encoder->base; 13131 13132 crtc = to_intel_crtc(encoder->base.crtc); 13133 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; 13134 13135 if (crtc_state && crtc_state->hw.active) { 13136 /* 13137 * This has to be done during hardware readout 13138 * because anything calling .crtc_disable may 13139 * rely on the connector_mask being accurate. 13140 */ 13141 crtc_state->uapi.connector_mask |= 13142 drm_connector_mask(&connector->base); 13143 crtc_state->uapi.encoder_mask |= 13144 drm_encoder_mask(&encoder->base); 13145 } 13146 } else { 13147 connector->base.dpms = DRM_MODE_DPMS_OFF; 13148 connector->base.encoder = NULL; 13149 } 13150 drm_dbg_kms(&dev_priv->drm, 13151 "[CONNECTOR:%d:%s] hw state readout: %s\n", 13152 connector->base.base.id, connector->base.name, 13153 enableddisabled(connector->base.encoder)); 13154 } 13155 drm_connector_list_iter_end(&conn_iter); 13156 13157 for_each_intel_crtc(dev, crtc) { 13158 struct intel_bw_state *bw_state = 13159 to_intel_bw_state(dev_priv->bw_obj.state); 13160 struct intel_crtc_state *crtc_state = 13161 to_intel_crtc_state(crtc->base.state); 13162 struct intel_plane *plane; 13163 int min_cdclk = 0; 13164 13165 if (crtc_state->bigjoiner_slave) 13166 continue; 13167 13168 if (crtc_state->hw.active) { 13169 /* 13170 * The initial mode needs to be set in order to keep 13171 * the atomic core happy. It wants a valid mode if the 13172 * crtc's enabled, so we do the above call. 13173 * 13174 * But we don't set all the derived state fully, hence 13175 * set a flag to indicate that a full recalculation is 13176 * needed on the next commit. 13177 */ 13178 crtc_state->inherited = true; 13179 13180 intel_crtc_update_active_timings(crtc_state); 13181 13182 intel_crtc_copy_hw_to_uapi_state(crtc_state); 13183 } 13184 13185 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 13186 const struct intel_plane_state *plane_state = 13187 to_intel_plane_state(plane->base.state); 13188 13189 /* 13190 * FIXME don't have the fb yet, so can't 13191 * use intel_plane_data_rate() :( 13192 */ 13193 if (plane_state->uapi.visible) 13194 crtc_state->data_rate[plane->id] = 13195 4 * crtc_state->pixel_rate; 13196 /* 13197 * FIXME don't have the fb yet, so can't 13198 * use plane->min_cdclk() :( 13199 */ 13200 if (plane_state->uapi.visible && plane->min_cdclk) { 13201 if (crtc_state->double_wide || DISPLAY_VER(dev_priv) >= 10) 13202 crtc_state->min_cdclk[plane->id] = 13203 DIV_ROUND_UP(crtc_state->pixel_rate, 2); 13204 else 13205 crtc_state->min_cdclk[plane->id] = 13206 crtc_state->pixel_rate; 13207 } 13208 drm_dbg_kms(&dev_priv->drm, 13209 "[PLANE:%d:%s] min_cdclk %d kHz\n", 13210 plane->base.base.id, plane->base.name, 13211 crtc_state->min_cdclk[plane->id]); 13212 } 13213 13214 if (crtc_state->hw.active) { 13215 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 13216 if (drm_WARN_ON(dev, min_cdclk < 0)) 13217 min_cdclk = 0; 13218 } 13219 13220 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 13221 cdclk_state->min_voltage_level[crtc->pipe] = 13222 crtc_state->min_voltage_level; 13223 13224 intel_bw_crtc_update(bw_state, crtc_state); 13225 13226 intel_pipe_config_sanity_check(dev_priv, crtc_state); 13227 13228 /* discard our incomplete slave state, copy it from master */ 13229 if (crtc_state->bigjoiner && crtc_state->hw.active) { 13230 struct intel_crtc *slave = crtc_state->bigjoiner_linked_crtc; 13231 struct intel_crtc_state *slave_crtc_state = 13232 to_intel_crtc_state(slave->base.state); 13233 13234 copy_bigjoiner_crtc_state(slave_crtc_state, crtc_state); 13235 slave->base.mode = crtc->base.mode; 13236 13237 cdclk_state->min_cdclk[slave->pipe] = min_cdclk; 13238 cdclk_state->min_voltage_level[slave->pipe] = 13239 crtc_state->min_voltage_level; 13240 13241 for_each_intel_plane_on_crtc(&dev_priv->drm, slave, plane) { 13242 const struct intel_plane_state *plane_state = 13243 to_intel_plane_state(plane->base.state); 13244 13245 /* 13246 * FIXME don't have the fb yet, so can't 13247 * use intel_plane_data_rate() :( 13248 */ 13249 if (plane_state->uapi.visible) 13250 crtc_state->data_rate[plane->id] = 13251 4 * crtc_state->pixel_rate; 13252 else 13253 crtc_state->data_rate[plane->id] = 0; 13254 } 13255 13256 intel_bw_crtc_update(bw_state, slave_crtc_state); 13257 drm_calc_timestamping_constants(&slave->base, 13258 &slave_crtc_state->hw.adjusted_mode); 13259 } 13260 } 13261 } 13262 13263 static void 13264 get_encoder_power_domains(struct drm_i915_private *dev_priv) 13265 { 13266 struct intel_encoder *encoder; 13267 13268 for_each_intel_encoder(&dev_priv->drm, encoder) { 13269 struct intel_crtc_state *crtc_state; 13270 13271 if (!encoder->get_power_domains) 13272 continue; 13273 13274 /* 13275 * MST-primary and inactive encoders don't have a crtc state 13276 * and neither of these require any power domain references. 13277 */ 13278 if (!encoder->base.crtc) 13279 continue; 13280 13281 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 13282 encoder->get_power_domains(encoder, crtc_state); 13283 } 13284 } 13285 13286 static void intel_early_display_was(struct drm_i915_private *dev_priv) 13287 { 13288 /* 13289 * Display WA #1185 WaDisableDARBFClkGating:glk,icl,ehl,tgl 13290 * Also known as Wa_14010480278. 13291 */ 13292 if (IS_DISPLAY_VER(dev_priv, 10, 12)) 13293 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0, 13294 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS); 13295 13296 if (IS_HASWELL(dev_priv)) { 13297 /* 13298 * WaRsPkgCStateDisplayPMReq:hsw 13299 * System hang if this isn't done before disabling all planes! 13300 */ 13301 intel_de_write(dev_priv, CHICKEN_PAR1_1, 13302 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 13303 } 13304 13305 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv)) { 13306 /* Display WA #1142:kbl,cfl,cml */ 13307 intel_de_rmw(dev_priv, CHICKEN_PAR1_1, 13308 KBL_ARB_FILL_SPARE_22, KBL_ARB_FILL_SPARE_22); 13309 intel_de_rmw(dev_priv, CHICKEN_MISC_2, 13310 KBL_ARB_FILL_SPARE_13 | KBL_ARB_FILL_SPARE_14, 13311 KBL_ARB_FILL_SPARE_14); 13312 } 13313 } 13314 13315 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 13316 enum port port, i915_reg_t hdmi_reg) 13317 { 13318 u32 val = intel_de_read(dev_priv, hdmi_reg); 13319 13320 if (val & SDVO_ENABLE || 13321 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 13322 return; 13323 13324 drm_dbg_kms(&dev_priv->drm, 13325 "Sanitizing transcoder select for HDMI %c\n", 13326 port_name(port)); 13327 13328 val &= ~SDVO_PIPE_SEL_MASK; 13329 val |= SDVO_PIPE_SEL(PIPE_A); 13330 13331 intel_de_write(dev_priv, hdmi_reg, val); 13332 } 13333 13334 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 13335 enum port port, i915_reg_t dp_reg) 13336 { 13337 u32 val = intel_de_read(dev_priv, dp_reg); 13338 13339 if (val & DP_PORT_EN || 13340 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 13341 return; 13342 13343 drm_dbg_kms(&dev_priv->drm, 13344 "Sanitizing transcoder select for DP %c\n", 13345 port_name(port)); 13346 13347 val &= ~DP_PIPE_SEL_MASK; 13348 val |= DP_PIPE_SEL(PIPE_A); 13349 13350 intel_de_write(dev_priv, dp_reg, val); 13351 } 13352 13353 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 13354 { 13355 /* 13356 * The BIOS may select transcoder B on some of the PCH 13357 * ports even it doesn't enable the port. This would trip 13358 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 13359 * Sanitize the transcoder select bits to prevent that. We 13360 * assume that the BIOS never actually enabled the port, 13361 * because if it did we'd actually have to toggle the port 13362 * on and back off to make the transcoder A select stick 13363 * (see. intel_dp_link_down(), intel_disable_hdmi(), 13364 * intel_disable_sdvo()). 13365 */ 13366 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 13367 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 13368 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 13369 13370 /* PCH SDVOB multiplex with HDMIB */ 13371 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 13372 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 13373 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 13374 } 13375 13376 /* Scan out the current hw modeset state, 13377 * and sanitizes it to the current state 13378 */ 13379 static void 13380 intel_modeset_setup_hw_state(struct drm_device *dev, 13381 struct drm_modeset_acquire_ctx *ctx) 13382 { 13383 struct drm_i915_private *dev_priv = to_i915(dev); 13384 struct intel_encoder *encoder; 13385 struct intel_crtc *crtc; 13386 intel_wakeref_t wakeref; 13387 13388 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 13389 13390 intel_early_display_was(dev_priv); 13391 intel_modeset_readout_hw_state(dev); 13392 13393 /* HW state is read out, now we need to sanitize this mess. */ 13394 get_encoder_power_domains(dev_priv); 13395 13396 if (HAS_PCH_IBX(dev_priv)) 13397 ibx_sanitize_pch_ports(dev_priv); 13398 13399 /* 13400 * intel_sanitize_plane_mapping() may need to do vblank 13401 * waits, so we need vblank interrupts restored beforehand. 13402 */ 13403 for_each_intel_crtc(&dev_priv->drm, crtc) { 13404 struct intel_crtc_state *crtc_state = 13405 to_intel_crtc_state(crtc->base.state); 13406 13407 drm_crtc_vblank_reset(&crtc->base); 13408 13409 if (crtc_state->hw.active) 13410 intel_crtc_vblank_on(crtc_state); 13411 } 13412 13413 intel_sanitize_plane_mapping(dev_priv); 13414 13415 for_each_intel_encoder(dev, encoder) 13416 intel_sanitize_encoder(encoder); 13417 13418 for_each_intel_crtc(&dev_priv->drm, crtc) { 13419 struct intel_crtc_state *crtc_state = 13420 to_intel_crtc_state(crtc->base.state); 13421 13422 intel_sanitize_crtc(crtc, ctx); 13423 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 13424 } 13425 13426 intel_modeset_update_connector_atomic_state(dev); 13427 13428 intel_dpll_sanitize_state(dev_priv); 13429 13430 if (IS_G4X(dev_priv)) { 13431 g4x_wm_get_hw_state(dev_priv); 13432 g4x_wm_sanitize(dev_priv); 13433 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 13434 vlv_wm_get_hw_state(dev_priv); 13435 vlv_wm_sanitize(dev_priv); 13436 } else if (DISPLAY_VER(dev_priv) >= 9) { 13437 skl_wm_get_hw_state(dev_priv); 13438 } else if (HAS_PCH_SPLIT(dev_priv)) { 13439 ilk_wm_get_hw_state(dev_priv); 13440 } 13441 13442 for_each_intel_crtc(dev, crtc) { 13443 struct intel_crtc_state *crtc_state = 13444 to_intel_crtc_state(crtc->base.state); 13445 u64 put_domains; 13446 13447 put_domains = modeset_get_crtc_power_domains(crtc_state); 13448 if (drm_WARN_ON(dev, put_domains)) 13449 modeset_put_crtc_power_domains(crtc, put_domains); 13450 } 13451 13452 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 13453 } 13454 13455 void intel_display_resume(struct drm_device *dev) 13456 { 13457 struct drm_i915_private *dev_priv = to_i915(dev); 13458 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 13459 struct drm_modeset_acquire_ctx ctx; 13460 int ret; 13461 13462 if (!HAS_DISPLAY(dev_priv)) 13463 return; 13464 13465 dev_priv->modeset_restore_state = NULL; 13466 if (state) 13467 state->acquire_ctx = &ctx; 13468 13469 drm_modeset_acquire_init(&ctx, 0); 13470 13471 while (1) { 13472 ret = drm_modeset_lock_all_ctx(dev, &ctx); 13473 if (ret != -EDEADLK) 13474 break; 13475 13476 drm_modeset_backoff(&ctx); 13477 } 13478 13479 if (!ret) 13480 ret = __intel_display_resume(dev, state, &ctx); 13481 13482 intel_enable_ipc(dev_priv); 13483 drm_modeset_drop_locks(&ctx); 13484 drm_modeset_acquire_fini(&ctx); 13485 13486 if (ret) 13487 drm_err(&dev_priv->drm, 13488 "Restoring old state failed with %i\n", ret); 13489 if (state) 13490 drm_atomic_state_put(state); 13491 } 13492 13493 static void intel_hpd_poll_fini(struct drm_i915_private *i915) 13494 { 13495 struct intel_connector *connector; 13496 struct drm_connector_list_iter conn_iter; 13497 13498 /* Kill all the work that may have been queued by hpd. */ 13499 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 13500 for_each_intel_connector_iter(connector, &conn_iter) { 13501 if (connector->modeset_retry_work.func) 13502 cancel_work_sync(&connector->modeset_retry_work); 13503 if (connector->hdcp.shim) { 13504 cancel_delayed_work_sync(&connector->hdcp.check_work); 13505 cancel_work_sync(&connector->hdcp.prop_work); 13506 } 13507 } 13508 drm_connector_list_iter_end(&conn_iter); 13509 } 13510 13511 /* part #1: call before irq uninstall */ 13512 void intel_modeset_driver_remove(struct drm_i915_private *i915) 13513 { 13514 if (!HAS_DISPLAY(i915)) 13515 return; 13516 13517 flush_workqueue(i915->flip_wq); 13518 flush_workqueue(i915->modeset_wq); 13519 13520 flush_work(&i915->atomic_helper.free_work); 13521 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list)); 13522 } 13523 13524 /* part #2: call after irq uninstall */ 13525 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915) 13526 { 13527 if (!HAS_DISPLAY(i915)) 13528 return; 13529 13530 /* 13531 * Due to the hpd irq storm handling the hotplug work can re-arm the 13532 * poll handlers. Hence disable polling after hpd handling is shut down. 13533 */ 13534 intel_hpd_poll_fini(i915); 13535 13536 /* 13537 * MST topology needs to be suspended so we don't have any calls to 13538 * fbdev after it's finalized. MST will be destroyed later as part of 13539 * drm_mode_config_cleanup() 13540 */ 13541 intel_dp_mst_suspend(i915); 13542 13543 /* poll work can call into fbdev, hence clean that up afterwards */ 13544 intel_fbdev_fini(i915); 13545 13546 intel_unregister_dsm_handler(); 13547 13548 intel_fbc_global_disable(i915); 13549 13550 /* flush any delayed tasks or pending work */ 13551 flush_scheduled_work(); 13552 13553 intel_hdcp_component_fini(i915); 13554 13555 intel_mode_config_cleanup(i915); 13556 13557 intel_overlay_cleanup(i915); 13558 13559 intel_gmbus_teardown(i915); 13560 13561 destroy_workqueue(i915->flip_wq); 13562 destroy_workqueue(i915->modeset_wq); 13563 13564 intel_fbc_cleanup_cfb(i915); 13565 } 13566 13567 /* part #3: call after gem init */ 13568 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915) 13569 { 13570 intel_dmc_ucode_fini(i915); 13571 13572 intel_power_domains_driver_remove(i915); 13573 13574 intel_vga_unregister(i915); 13575 13576 intel_bios_driver_remove(i915); 13577 } 13578 13579 void intel_display_driver_register(struct drm_i915_private *i915) 13580 { 13581 if (!HAS_DISPLAY(i915)) 13582 return; 13583 13584 intel_display_debugfs_register(i915); 13585 13586 /* Must be done after probing outputs */ 13587 intel_opregion_register(i915); 13588 acpi_video_register(); 13589 13590 intel_audio_init(i915); 13591 13592 /* 13593 * Some ports require correctly set-up hpd registers for 13594 * detection to work properly (leading to ghost connected 13595 * connector status), e.g. VGA on gm45. Hence we can only set 13596 * up the initial fbdev config after hpd irqs are fully 13597 * enabled. We do it last so that the async config cannot run 13598 * before the connectors are registered. 13599 */ 13600 intel_fbdev_initial_config_async(&i915->drm); 13601 13602 /* 13603 * We need to coordinate the hotplugs with the asynchronous 13604 * fbdev configuration, for which we use the 13605 * fbdev->async_cookie. 13606 */ 13607 drm_kms_helper_poll_init(&i915->drm); 13608 } 13609 13610 void intel_display_driver_unregister(struct drm_i915_private *i915) 13611 { 13612 if (!HAS_DISPLAY(i915)) 13613 return; 13614 13615 intel_fbdev_unregister(i915); 13616 intel_audio_deinit(i915); 13617 13618 /* 13619 * After flushing the fbdev (incl. a late async config which 13620 * will have delayed queuing of a hotplug event), then flush 13621 * the hotplug events. 13622 */ 13623 drm_kms_helper_poll_fini(&i915->drm); 13624 drm_atomic_helper_shutdown(&i915->drm); 13625 13626 acpi_video_unregister(); 13627 intel_opregion_unregister(i915); 13628 } 13629