1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <acpi/video.h> 28 #include <linux/i2c.h> 29 #include <linux/input.h> 30 #include <linux/intel-iommu.h> 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/dma-resv.h> 34 #include <linux/slab.h> 35 36 #include <drm/drm_atomic.h> 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_atomic_uapi.h> 39 #include <drm/drm_damage_helper.h> 40 #include <drm/drm_dp_helper.h> 41 #include <drm/drm_edid.h> 42 #include <drm/drm_fourcc.h> 43 #include <drm/drm_plane_helper.h> 44 #include <drm/drm_probe_helper.h> 45 #include <drm/drm_rect.h> 46 47 #include "display/intel_audio.h" 48 #include "display/intel_crt.h" 49 #include "display/intel_ddi.h" 50 #include "display/intel_display_debugfs.h" 51 #include "display/intel_dp.h" 52 #include "display/intel_dp_mst.h" 53 #include "display/intel_dpll.h" 54 #include "display/intel_dpll_mgr.h" 55 #include "display/intel_dsi.h" 56 #include "display/intel_dvo.h" 57 #include "display/intel_fb.h" 58 #include "display/intel_gmbus.h" 59 #include "display/intel_hdmi.h" 60 #include "display/intel_lvds.h" 61 #include "display/intel_sdvo.h" 62 #include "display/intel_tv.h" 63 #include "display/intel_vdsc.h" 64 #include "display/intel_vrr.h" 65 66 #include "gem/i915_gem_lmem.h" 67 #include "gem/i915_gem_object.h" 68 69 #include "gt/intel_rps.h" 70 #include "gt/gen8_ppgtt.h" 71 72 #include "g4x_dp.h" 73 #include "g4x_hdmi.h" 74 #include "i915_drv.h" 75 #include "intel_acpi.h" 76 #include "intel_atomic.h" 77 #include "intel_atomic_plane.h" 78 #include "intel_bw.h" 79 #include "intel_cdclk.h" 80 #include "intel_color.h" 81 #include "intel_crtc.h" 82 #include "intel_csr.h" 83 #include "intel_de.h" 84 #include "intel_display_types.h" 85 #include "intel_dp_link_training.h" 86 #include "intel_fbc.h" 87 #include "intel_fdi.h" 88 #include "intel_fbdev.h" 89 #include "intel_fifo_underrun.h" 90 #include "intel_frontbuffer.h" 91 #include "intel_hdcp.h" 92 #include "intel_hotplug.h" 93 #include "intel_overlay.h" 94 #include "intel_pipe_crc.h" 95 #include "intel_pm.h" 96 #include "intel_pps.h" 97 #include "intel_psr.h" 98 #include "intel_quirks.h" 99 #include "intel_sideband.h" 100 #include "intel_sprite.h" 101 #include "intel_tc.h" 102 #include "intel_vga.h" 103 #include "i9xx_plane.h" 104 #include "skl_scaler.h" 105 #include "skl_universal_plane.h" 106 107 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 108 struct intel_crtc_state *pipe_config); 109 static void ilk_pch_clock_get(struct intel_crtc *crtc, 110 struct intel_crtc_state *pipe_config); 111 112 static int intel_framebuffer_init(struct intel_framebuffer *ifb, 113 struct drm_i915_gem_object *obj, 114 struct drm_mode_fb_cmd2 *mode_cmd); 115 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state); 116 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 117 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 118 const struct intel_link_m_n *m_n, 119 const struct intel_link_m_n *m2_n2); 120 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 121 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state); 122 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state); 123 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 124 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); 125 static void intel_modeset_setup_hw_state(struct drm_device *dev, 126 struct drm_modeset_acquire_ctx *ctx); 127 128 struct i915_dpt { 129 struct i915_address_space vm; 130 131 struct drm_i915_gem_object *obj; 132 struct i915_vma *vma; 133 void __iomem *iomem; 134 }; 135 136 #define i915_is_dpt(vm) ((vm)->is_dpt) 137 138 static inline struct i915_dpt * 139 i915_vm_to_dpt(struct i915_address_space *vm) 140 { 141 BUILD_BUG_ON(offsetof(struct i915_dpt, vm)); 142 GEM_BUG_ON(!i915_is_dpt(vm)); 143 return container_of(vm, struct i915_dpt, vm); 144 } 145 146 #define dpt_total_entries(dpt) ((dpt)->vm.total >> PAGE_SHIFT) 147 148 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 149 { 150 writeq(pte, addr); 151 } 152 153 static void dpt_insert_page(struct i915_address_space *vm, 154 dma_addr_t addr, 155 u64 offset, 156 enum i915_cache_level level, 157 u32 flags) 158 { 159 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 160 gen8_pte_t __iomem *base = dpt->iomem; 161 162 gen8_set_pte(base + offset / I915_GTT_PAGE_SIZE, 163 vm->pte_encode(addr, level, flags)); 164 } 165 166 static void dpt_insert_entries(struct i915_address_space *vm, 167 struct i915_vma *vma, 168 enum i915_cache_level level, 169 u32 flags) 170 { 171 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 172 gen8_pte_t __iomem *base = dpt->iomem; 173 const gen8_pte_t pte_encode = vm->pte_encode(0, level, flags); 174 struct sgt_iter sgt_iter; 175 dma_addr_t addr; 176 int i; 177 178 /* 179 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 180 * not to allow the user to override access to a read only page. 181 */ 182 183 i = vma->node.start / I915_GTT_PAGE_SIZE; 184 for_each_sgt_daddr(addr, sgt_iter, vma->pages) 185 gen8_set_pte(&base[i++], pte_encode | addr); 186 } 187 188 static void dpt_clear_range(struct i915_address_space *vm, 189 u64 start, u64 length) 190 { 191 } 192 193 static void dpt_bind_vma(struct i915_address_space *vm, 194 struct i915_vm_pt_stash *stash, 195 struct i915_vma *vma, 196 enum i915_cache_level cache_level, 197 u32 flags) 198 { 199 struct drm_i915_gem_object *obj = vma->obj; 200 u32 pte_flags; 201 202 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 203 pte_flags = 0; 204 if (vma->vm->has_read_only && i915_gem_object_is_readonly(obj)) 205 pte_flags |= PTE_READ_ONLY; 206 if (i915_gem_object_is_lmem(obj)) 207 pte_flags |= PTE_LM; 208 209 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); 210 211 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 212 213 /* 214 * Without aliasing PPGTT there's no difference between 215 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally 216 * upgrade to both bound if we bind either to avoid double-binding. 217 */ 218 atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags); 219 } 220 221 static void dpt_unbind_vma(struct i915_address_space *vm, struct i915_vma *vma) 222 { 223 vm->clear_range(vm, vma->node.start, vma->size); 224 } 225 226 static void dpt_cleanup(struct i915_address_space *vm) 227 { 228 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 229 230 i915_gem_object_put(dpt->obj); 231 } 232 233 static struct i915_address_space * 234 intel_dpt_create(struct intel_framebuffer *fb) 235 { 236 struct drm_gem_object *obj = &intel_fb_obj(&fb->base)->base; 237 struct drm_i915_private *i915 = to_i915(obj->dev); 238 struct drm_i915_gem_object *dpt_obj; 239 struct i915_address_space *vm; 240 struct i915_dpt *dpt; 241 size_t size; 242 int ret; 243 244 if (intel_fb_needs_pot_stride_remap(fb)) 245 size = intel_remapped_info_size(&fb->remapped_view.gtt.remapped); 246 else 247 size = DIV_ROUND_UP_ULL(obj->size, I915_GTT_PAGE_SIZE); 248 249 size = round_up(size * sizeof(gen8_pte_t), I915_GTT_PAGE_SIZE); 250 251 if (HAS_LMEM(i915)) 252 dpt_obj = i915_gem_object_create_lmem(i915, size, 0); 253 else 254 dpt_obj = i915_gem_object_create_stolen(i915, size); 255 if (IS_ERR(dpt_obj)) 256 return ERR_CAST(dpt_obj); 257 258 ret = i915_gem_object_set_cache_level(dpt_obj, I915_CACHE_NONE); 259 if (ret) { 260 i915_gem_object_put(dpt_obj); 261 return ERR_PTR(ret); 262 } 263 264 dpt = kzalloc(sizeof(*dpt), GFP_KERNEL); 265 if (!dpt) { 266 i915_gem_object_put(dpt_obj); 267 return ERR_PTR(-ENOMEM); 268 } 269 270 vm = &dpt->vm; 271 272 vm->gt = &i915->gt; 273 vm->i915 = i915; 274 vm->dma = i915->drm.dev; 275 vm->total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 276 vm->is_dpt = true; 277 278 i915_address_space_init(vm, VM_CLASS_DPT); 279 280 vm->insert_page = dpt_insert_page; 281 vm->clear_range = dpt_clear_range; 282 vm->insert_entries = dpt_insert_entries; 283 vm->cleanup = dpt_cleanup; 284 285 vm->vma_ops.bind_vma = dpt_bind_vma; 286 vm->vma_ops.unbind_vma = dpt_unbind_vma; 287 vm->vma_ops.set_pages = ggtt_set_pages; 288 vm->vma_ops.clear_pages = clear_pages; 289 290 vm->pte_encode = gen8_ggtt_pte_encode; 291 292 dpt->obj = dpt_obj; 293 294 return &dpt->vm; 295 } 296 297 static void intel_dpt_destroy(struct i915_address_space *vm) 298 { 299 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 300 301 i915_vm_close(&dpt->vm); 302 } 303 304 /* returns HPLL frequency in kHz */ 305 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 306 { 307 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 308 309 /* Obtain SKU information */ 310 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 311 CCK_FUSE_HPLL_FREQ_MASK; 312 313 return vco_freq[hpll_freq] * 1000; 314 } 315 316 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 317 const char *name, u32 reg, int ref_freq) 318 { 319 u32 val; 320 int divider; 321 322 val = vlv_cck_read(dev_priv, reg); 323 divider = val & CCK_FREQUENCY_VALUES; 324 325 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != 326 (divider << CCK_FREQUENCY_STATUS_SHIFT), 327 "%s change in progress\n", name); 328 329 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 330 } 331 332 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 333 const char *name, u32 reg) 334 { 335 int hpll; 336 337 vlv_cck_get(dev_priv); 338 339 if (dev_priv->hpll_freq == 0) 340 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 341 342 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 343 344 vlv_cck_put(dev_priv); 345 346 return hpll; 347 } 348 349 static void intel_update_czclk(struct drm_i915_private *dev_priv) 350 { 351 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 352 return; 353 354 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 355 CCK_CZ_CLOCK_CONTROL); 356 357 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n", 358 dev_priv->czclk_freq); 359 } 360 361 /* WA Display #0827: Gen9:all */ 362 static void 363 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) 364 { 365 if (enable) 366 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 367 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); 368 else 369 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 370 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 371 } 372 373 /* Wa_2006604312:icl,ehl */ 374 static void 375 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 376 bool enable) 377 { 378 if (enable) 379 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 380 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 381 else 382 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 383 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 384 } 385 386 static bool 387 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) 388 { 389 return crtc_state->master_transcoder != INVALID_TRANSCODER; 390 } 391 392 static bool 393 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state) 394 { 395 return crtc_state->sync_mode_slaves_mask != 0; 396 } 397 398 bool 399 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 400 { 401 return is_trans_port_sync_master(crtc_state) || 402 is_trans_port_sync_slave(crtc_state); 403 } 404 405 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 406 enum pipe pipe) 407 { 408 i915_reg_t reg = PIPEDSL(pipe); 409 u32 line1, line2; 410 u32 line_mask; 411 412 if (DISPLAY_VER(dev_priv) == 2) 413 line_mask = DSL_LINEMASK_GEN2; 414 else 415 line_mask = DSL_LINEMASK_GEN3; 416 417 line1 = intel_de_read(dev_priv, reg) & line_mask; 418 msleep(5); 419 line2 = intel_de_read(dev_priv, reg) & line_mask; 420 421 return line1 != line2; 422 } 423 424 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 425 { 426 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 427 enum pipe pipe = crtc->pipe; 428 429 /* Wait for the display line to settle/start moving */ 430 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 431 drm_err(&dev_priv->drm, 432 "pipe %c scanline %s wait timed out\n", 433 pipe_name(pipe), onoff(state)); 434 } 435 436 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 437 { 438 wait_for_pipe_scanline_moving(crtc, false); 439 } 440 441 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 442 { 443 wait_for_pipe_scanline_moving(crtc, true); 444 } 445 446 static void 447 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 448 { 449 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 450 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 451 452 if (DISPLAY_VER(dev_priv) >= 4) { 453 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 454 i915_reg_t reg = PIPECONF(cpu_transcoder); 455 456 /* Wait for the Pipe State to go off */ 457 if (intel_de_wait_for_clear(dev_priv, reg, 458 I965_PIPECONF_ACTIVE, 100)) 459 drm_WARN(&dev_priv->drm, 1, 460 "pipe_off wait timed out\n"); 461 } else { 462 intel_wait_for_pipe_scanline_stopped(crtc); 463 } 464 } 465 466 /* Only for pre-ILK configs */ 467 void assert_pll(struct drm_i915_private *dev_priv, 468 enum pipe pipe, bool state) 469 { 470 u32 val; 471 bool cur_state; 472 473 val = intel_de_read(dev_priv, DPLL(pipe)); 474 cur_state = !!(val & DPLL_VCO_ENABLE); 475 I915_STATE_WARN(cur_state != state, 476 "PLL state assertion failure (expected %s, current %s)\n", 477 onoff(state), onoff(cur_state)); 478 } 479 480 /* XXX: the dsi pll is shared between MIPI DSI ports */ 481 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 482 { 483 u32 val; 484 bool cur_state; 485 486 vlv_cck_get(dev_priv); 487 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 488 vlv_cck_put(dev_priv); 489 490 cur_state = val & DSI_PLL_VCO_EN; 491 I915_STATE_WARN(cur_state != state, 492 "DSI PLL state assertion failure (expected %s, current %s)\n", 493 onoff(state), onoff(cur_state)); 494 } 495 496 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 497 enum pipe pipe, bool state) 498 { 499 bool cur_state; 500 501 if (HAS_DDI(dev_priv)) { 502 /* 503 * DDI does not have a specific FDI_TX register. 504 * 505 * FDI is never fed from EDP transcoder 506 * so pipe->transcoder cast is fine here. 507 */ 508 enum transcoder cpu_transcoder = (enum transcoder)pipe; 509 u32 val = intel_de_read(dev_priv, 510 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 511 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 512 } else { 513 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 514 cur_state = !!(val & FDI_TX_ENABLE); 515 } 516 I915_STATE_WARN(cur_state != state, 517 "FDI TX state assertion failure (expected %s, current %s)\n", 518 onoff(state), onoff(cur_state)); 519 } 520 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 521 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 522 523 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 524 enum pipe pipe, bool state) 525 { 526 u32 val; 527 bool cur_state; 528 529 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 530 cur_state = !!(val & FDI_RX_ENABLE); 531 I915_STATE_WARN(cur_state != state, 532 "FDI RX state assertion failure (expected %s, current %s)\n", 533 onoff(state), onoff(cur_state)); 534 } 535 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 536 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 537 538 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 539 enum pipe pipe) 540 { 541 u32 val; 542 543 /* ILK FDI PLL is always enabled */ 544 if (IS_IRONLAKE(dev_priv)) 545 return; 546 547 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 548 if (HAS_DDI(dev_priv)) 549 return; 550 551 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 552 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 553 } 554 555 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 556 enum pipe pipe, bool state) 557 { 558 u32 val; 559 bool cur_state; 560 561 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 562 cur_state = !!(val & FDI_RX_PLL_ENABLE); 563 I915_STATE_WARN(cur_state != state, 564 "FDI RX PLL assertion failure (expected %s, current %s)\n", 565 onoff(state), onoff(cur_state)); 566 } 567 568 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) 569 { 570 i915_reg_t pp_reg; 571 u32 val; 572 enum pipe panel_pipe = INVALID_PIPE; 573 bool locked = true; 574 575 if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv))) 576 return; 577 578 if (HAS_PCH_SPLIT(dev_priv)) { 579 u32 port_sel; 580 581 pp_reg = PP_CONTROL(0); 582 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 583 584 switch (port_sel) { 585 case PANEL_PORT_SELECT_LVDS: 586 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); 587 break; 588 case PANEL_PORT_SELECT_DPA: 589 g4x_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); 590 break; 591 case PANEL_PORT_SELECT_DPC: 592 g4x_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); 593 break; 594 case PANEL_PORT_SELECT_DPD: 595 g4x_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); 596 break; 597 default: 598 MISSING_CASE(port_sel); 599 break; 600 } 601 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 602 /* presumably write lock depends on pipe, not port select */ 603 pp_reg = PP_CONTROL(pipe); 604 panel_pipe = pipe; 605 } else { 606 u32 port_sel; 607 608 pp_reg = PP_CONTROL(0); 609 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 610 611 drm_WARN_ON(&dev_priv->drm, 612 port_sel != PANEL_PORT_SELECT_LVDS); 613 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); 614 } 615 616 val = intel_de_read(dev_priv, pp_reg); 617 if (!(val & PANEL_POWER_ON) || 618 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 619 locked = false; 620 621 I915_STATE_WARN(panel_pipe == pipe && locked, 622 "panel assertion failure, pipe %c regs locked\n", 623 pipe_name(pipe)); 624 } 625 626 void assert_pipe(struct drm_i915_private *dev_priv, 627 enum transcoder cpu_transcoder, bool state) 628 { 629 bool cur_state; 630 enum intel_display_power_domain power_domain; 631 intel_wakeref_t wakeref; 632 633 /* we keep both pipes enabled on 830 */ 634 if (IS_I830(dev_priv)) 635 state = true; 636 637 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 638 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 639 if (wakeref) { 640 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 641 cur_state = !!(val & PIPECONF_ENABLE); 642 643 intel_display_power_put(dev_priv, power_domain, wakeref); 644 } else { 645 cur_state = false; 646 } 647 648 I915_STATE_WARN(cur_state != state, 649 "transcoder %s assertion failure (expected %s, current %s)\n", 650 transcoder_name(cpu_transcoder), 651 onoff(state), onoff(cur_state)); 652 } 653 654 static void assert_plane(struct intel_plane *plane, bool state) 655 { 656 enum pipe pipe; 657 bool cur_state; 658 659 cur_state = plane->get_hw_state(plane, &pipe); 660 661 I915_STATE_WARN(cur_state != state, 662 "%s assertion failure (expected %s, current %s)\n", 663 plane->base.name, onoff(state), onoff(cur_state)); 664 } 665 666 #define assert_plane_enabled(p) assert_plane(p, true) 667 #define assert_plane_disabled(p) assert_plane(p, false) 668 669 static void assert_planes_disabled(struct intel_crtc *crtc) 670 { 671 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 672 struct intel_plane *plane; 673 674 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 675 assert_plane_disabled(plane); 676 } 677 678 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 679 enum pipe pipe) 680 { 681 u32 val; 682 bool enabled; 683 684 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe)); 685 enabled = !!(val & TRANS_ENABLE); 686 I915_STATE_WARN(enabled, 687 "transcoder assertion failed, should be off on pipe %c but is still active\n", 688 pipe_name(pipe)); 689 } 690 691 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 692 enum pipe pipe, enum port port, 693 i915_reg_t dp_reg) 694 { 695 enum pipe port_pipe; 696 bool state; 697 698 state = g4x_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 699 700 I915_STATE_WARN(state && port_pipe == pipe, 701 "PCH DP %c enabled on transcoder %c, should be disabled\n", 702 port_name(port), pipe_name(pipe)); 703 704 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 705 "IBX PCH DP %c still using transcoder B\n", 706 port_name(port)); 707 } 708 709 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 710 enum pipe pipe, enum port port, 711 i915_reg_t hdmi_reg) 712 { 713 enum pipe port_pipe; 714 bool state; 715 716 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 717 718 I915_STATE_WARN(state && port_pipe == pipe, 719 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 720 port_name(port), pipe_name(pipe)); 721 722 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 723 "IBX PCH HDMI %c still using transcoder B\n", 724 port_name(port)); 725 } 726 727 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 728 enum pipe pipe) 729 { 730 enum pipe port_pipe; 731 732 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 733 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 734 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 735 736 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 737 port_pipe == pipe, 738 "PCH VGA enabled on transcoder %c, should be disabled\n", 739 pipe_name(pipe)); 740 741 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 742 port_pipe == pipe, 743 "PCH LVDS enabled on transcoder %c, should be disabled\n", 744 pipe_name(pipe)); 745 746 /* PCH SDVOB multiplex with HDMIB */ 747 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 748 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 749 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 750 } 751 752 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 753 struct intel_digital_port *dig_port, 754 unsigned int expected_mask) 755 { 756 u32 port_mask; 757 i915_reg_t dpll_reg; 758 759 switch (dig_port->base.port) { 760 case PORT_B: 761 port_mask = DPLL_PORTB_READY_MASK; 762 dpll_reg = DPLL(0); 763 break; 764 case PORT_C: 765 port_mask = DPLL_PORTC_READY_MASK; 766 dpll_reg = DPLL(0); 767 expected_mask <<= 4; 768 break; 769 case PORT_D: 770 port_mask = DPLL_PORTD_READY_MASK; 771 dpll_reg = DPIO_PHY_STATUS; 772 break; 773 default: 774 BUG(); 775 } 776 777 if (intel_de_wait_for_register(dev_priv, dpll_reg, 778 port_mask, expected_mask, 1000)) 779 drm_WARN(&dev_priv->drm, 1, 780 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", 781 dig_port->base.base.base.id, dig_port->base.base.name, 782 intel_de_read(dev_priv, dpll_reg) & port_mask, 783 expected_mask); 784 } 785 786 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 787 { 788 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 789 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 790 enum pipe pipe = crtc->pipe; 791 i915_reg_t reg; 792 u32 val, pipeconf_val; 793 794 /* Make sure PCH DPLL is enabled */ 795 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 796 797 /* FDI must be feeding us bits for PCH ports */ 798 assert_fdi_tx_enabled(dev_priv, pipe); 799 assert_fdi_rx_enabled(dev_priv, pipe); 800 801 if (HAS_PCH_CPT(dev_priv)) { 802 reg = TRANS_CHICKEN2(pipe); 803 val = intel_de_read(dev_priv, reg); 804 /* 805 * Workaround: Set the timing override bit 806 * before enabling the pch transcoder. 807 */ 808 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 809 /* Configure frame start delay to match the CPU */ 810 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 811 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 812 intel_de_write(dev_priv, reg, val); 813 } 814 815 reg = PCH_TRANSCONF(pipe); 816 val = intel_de_read(dev_priv, reg); 817 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe)); 818 819 if (HAS_PCH_IBX(dev_priv)) { 820 /* Configure frame start delay to match the CPU */ 821 val &= ~TRANS_FRAME_START_DELAY_MASK; 822 val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 823 824 /* 825 * Make the BPC in transcoder be consistent with 826 * that in pipeconf reg. For HDMI we must use 8bpc 827 * here for both 8bpc and 12bpc. 828 */ 829 val &= ~PIPECONF_BPC_MASK; 830 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 831 val |= PIPECONF_8BPC; 832 else 833 val |= pipeconf_val & PIPECONF_BPC_MASK; 834 } 835 836 val &= ~TRANS_INTERLACE_MASK; 837 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 838 if (HAS_PCH_IBX(dev_priv) && 839 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 840 val |= TRANS_LEGACY_INTERLACED_ILK; 841 else 842 val |= TRANS_INTERLACED; 843 } else { 844 val |= TRANS_PROGRESSIVE; 845 } 846 847 intel_de_write(dev_priv, reg, val | TRANS_ENABLE); 848 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 849 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n", 850 pipe_name(pipe)); 851 } 852 853 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 854 enum transcoder cpu_transcoder) 855 { 856 u32 val, pipeconf_val; 857 858 /* FDI must be feeding us bits for PCH ports */ 859 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 860 assert_fdi_rx_enabled(dev_priv, PIPE_A); 861 862 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 863 /* Workaround: set timing override bit. */ 864 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 865 /* Configure frame start delay to match the CPU */ 866 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 867 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 868 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 869 870 val = TRANS_ENABLE; 871 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 872 873 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 874 PIPECONF_INTERLACED_ILK) 875 val |= TRANS_INTERLACED; 876 else 877 val |= TRANS_PROGRESSIVE; 878 879 intel_de_write(dev_priv, LPT_TRANSCONF, val); 880 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 881 TRANS_STATE_ENABLE, 100)) 882 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n"); 883 } 884 885 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv, 886 enum pipe pipe) 887 { 888 i915_reg_t reg; 889 u32 val; 890 891 /* FDI relies on the transcoder */ 892 assert_fdi_tx_disabled(dev_priv, pipe); 893 assert_fdi_rx_disabled(dev_priv, pipe); 894 895 /* Ports must be off as well */ 896 assert_pch_ports_disabled(dev_priv, pipe); 897 898 reg = PCH_TRANSCONF(pipe); 899 val = intel_de_read(dev_priv, reg); 900 val &= ~TRANS_ENABLE; 901 intel_de_write(dev_priv, reg, val); 902 /* wait for PCH transcoder off, transcoder state */ 903 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 904 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n", 905 pipe_name(pipe)); 906 907 if (HAS_PCH_CPT(dev_priv)) { 908 /* Workaround: Clear the timing override chicken bit again. */ 909 reg = TRANS_CHICKEN2(pipe); 910 val = intel_de_read(dev_priv, reg); 911 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 912 intel_de_write(dev_priv, reg, val); 913 } 914 } 915 916 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 917 { 918 u32 val; 919 920 val = intel_de_read(dev_priv, LPT_TRANSCONF); 921 val &= ~TRANS_ENABLE; 922 intel_de_write(dev_priv, LPT_TRANSCONF, val); 923 /* wait for PCH transcoder off, transcoder state */ 924 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 925 TRANS_STATE_ENABLE, 50)) 926 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n"); 927 928 /* Workaround: clear timing override bit. */ 929 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 930 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 931 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 932 } 933 934 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 935 { 936 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 937 938 if (HAS_PCH_LPT(dev_priv)) 939 return PIPE_A; 940 else 941 return crtc->pipe; 942 } 943 944 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) 945 { 946 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 947 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 948 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 949 enum pipe pipe = crtc->pipe; 950 i915_reg_t reg; 951 u32 val; 952 953 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe)); 954 955 assert_planes_disabled(crtc); 956 957 /* 958 * A pipe without a PLL won't actually be able to drive bits from 959 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 960 * need the check. 961 */ 962 if (HAS_GMCH(dev_priv)) { 963 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 964 assert_dsi_pll_enabled(dev_priv); 965 else 966 assert_pll_enabled(dev_priv, pipe); 967 } else { 968 if (new_crtc_state->has_pch_encoder) { 969 /* if driving the PCH, we need FDI enabled */ 970 assert_fdi_rx_pll_enabled(dev_priv, 971 intel_crtc_pch_transcoder(crtc)); 972 assert_fdi_tx_pll_enabled(dev_priv, 973 (enum pipe) cpu_transcoder); 974 } 975 /* FIXME: assert CPU port conditions for SNB+ */ 976 } 977 978 reg = PIPECONF(cpu_transcoder); 979 val = intel_de_read(dev_priv, reg); 980 if (val & PIPECONF_ENABLE) { 981 /* we keep both pipes enabled on 830 */ 982 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv)); 983 return; 984 } 985 986 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE); 987 intel_de_posting_read(dev_priv, reg); 988 989 /* 990 * Until the pipe starts PIPEDSL reads will return a stale value, 991 * which causes an apparent vblank timestamp jump when PIPEDSL 992 * resets to its proper value. That also messes up the frame count 993 * when it's derived from the timestamps. So let's wait for the 994 * pipe to start properly before we call drm_crtc_vblank_on() 995 */ 996 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 997 intel_wait_for_pipe_scanline_moving(crtc); 998 } 999 1000 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) 1001 { 1002 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1003 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1004 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1005 enum pipe pipe = crtc->pipe; 1006 i915_reg_t reg; 1007 u32 val; 1008 1009 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe)); 1010 1011 /* 1012 * Make sure planes won't keep trying to pump pixels to us, 1013 * or we might hang the display. 1014 */ 1015 assert_planes_disabled(crtc); 1016 1017 reg = PIPECONF(cpu_transcoder); 1018 val = intel_de_read(dev_priv, reg); 1019 if ((val & PIPECONF_ENABLE) == 0) 1020 return; 1021 1022 /* 1023 * Double wide has implications for planes 1024 * so best keep it disabled when not needed. 1025 */ 1026 if (old_crtc_state->double_wide) 1027 val &= ~PIPECONF_DOUBLE_WIDE; 1028 1029 /* Don't disable pipe or pipe PLLs if needed */ 1030 if (!IS_I830(dev_priv)) 1031 val &= ~PIPECONF_ENABLE; 1032 1033 intel_de_write(dev_priv, reg, val); 1034 if ((val & PIPECONF_ENABLE) == 0) 1035 intel_wait_for_pipe_off(old_crtc_state); 1036 } 1037 1038 bool 1039 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info, 1040 u64 modifier) 1041 { 1042 return info->is_yuv && 1043 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2); 1044 } 1045 1046 unsigned int 1047 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) 1048 { 1049 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1050 unsigned int cpp = fb->format->cpp[color_plane]; 1051 1052 switch (fb->modifier) { 1053 case DRM_FORMAT_MOD_LINEAR: 1054 return intel_tile_size(dev_priv); 1055 case I915_FORMAT_MOD_X_TILED: 1056 if (DISPLAY_VER(dev_priv) == 2) 1057 return 128; 1058 else 1059 return 512; 1060 case I915_FORMAT_MOD_Y_TILED_CCS: 1061 if (is_ccs_plane(fb, color_plane)) 1062 return 128; 1063 fallthrough; 1064 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1065 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1066 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1067 if (is_ccs_plane(fb, color_plane)) 1068 return 64; 1069 fallthrough; 1070 case I915_FORMAT_MOD_Y_TILED: 1071 if (DISPLAY_VER(dev_priv) == 2 || HAS_128_BYTE_Y_TILING(dev_priv)) 1072 return 128; 1073 else 1074 return 512; 1075 case I915_FORMAT_MOD_Yf_TILED_CCS: 1076 if (is_ccs_plane(fb, color_plane)) 1077 return 128; 1078 fallthrough; 1079 case I915_FORMAT_MOD_Yf_TILED: 1080 switch (cpp) { 1081 case 1: 1082 return 64; 1083 case 2: 1084 case 4: 1085 return 128; 1086 case 8: 1087 case 16: 1088 return 256; 1089 default: 1090 MISSING_CASE(cpp); 1091 return cpp; 1092 } 1093 break; 1094 default: 1095 MISSING_CASE(fb->modifier); 1096 return cpp; 1097 } 1098 } 1099 1100 unsigned int 1101 intel_fb_align_height(const struct drm_framebuffer *fb, 1102 int color_plane, unsigned int height) 1103 { 1104 unsigned int tile_height = intel_tile_height(fb, color_plane); 1105 1106 return ALIGN(height, tile_height); 1107 } 1108 1109 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 1110 { 1111 unsigned int size = 0; 1112 int i; 1113 1114 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 1115 size += rot_info->plane[i].dst_stride * rot_info->plane[i].width; 1116 1117 return size; 1118 } 1119 1120 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 1121 { 1122 unsigned int size = 0; 1123 int i; 1124 1125 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 1126 size += rem_info->plane[i].dst_stride * rem_info->plane[i].height; 1127 1128 return size; 1129 } 1130 1131 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 1132 { 1133 if (DISPLAY_VER(dev_priv) >= 9) 1134 return 256 * 1024; 1135 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || 1136 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1137 return 128 * 1024; 1138 else if (DISPLAY_VER(dev_priv) >= 4) 1139 return 4 * 1024; 1140 else 1141 return 0; 1142 } 1143 1144 static bool has_async_flips(struct drm_i915_private *i915) 1145 { 1146 return DISPLAY_VER(i915) >= 5; 1147 } 1148 1149 unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, 1150 int color_plane) 1151 { 1152 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1153 1154 if (intel_fb_uses_dpt(fb)) 1155 return 512 * 4096; 1156 1157 /* AUX_DIST needs only 4K alignment */ 1158 if (is_ccs_plane(fb, color_plane)) 1159 return 4096; 1160 1161 if (is_semiplanar_uv_plane(fb, color_plane)) { 1162 /* 1163 * TODO: cross-check wrt. the bspec stride in bytes * 64 bytes 1164 * alignment for linear UV planes on all platforms. 1165 */ 1166 if (DISPLAY_VER(dev_priv) >= 12) { 1167 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) 1168 return intel_linear_alignment(dev_priv); 1169 1170 return intel_tile_row_size(fb, color_plane); 1171 } 1172 1173 return 4096; 1174 } 1175 1176 drm_WARN_ON(&dev_priv->drm, color_plane != 0); 1177 1178 switch (fb->modifier) { 1179 case DRM_FORMAT_MOD_LINEAR: 1180 return intel_linear_alignment(dev_priv); 1181 case I915_FORMAT_MOD_X_TILED: 1182 if (has_async_flips(dev_priv)) 1183 return 256 * 1024; 1184 return 0; 1185 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1186 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1187 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1188 return 16 * 1024; 1189 case I915_FORMAT_MOD_Y_TILED_CCS: 1190 case I915_FORMAT_MOD_Yf_TILED_CCS: 1191 case I915_FORMAT_MOD_Y_TILED: 1192 case I915_FORMAT_MOD_Yf_TILED: 1193 return 1 * 1024 * 1024; 1194 default: 1195 MISSING_CASE(fb->modifier); 1196 return 0; 1197 } 1198 } 1199 1200 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 1201 { 1202 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1203 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 1204 1205 return DISPLAY_VER(dev_priv) < 4 || 1206 (plane->has_fbc && 1207 plane_state->view.gtt.type == I915_GGTT_VIEW_NORMAL); 1208 } 1209 1210 static struct i915_vma * 1211 intel_pin_fb_obj_dpt(struct drm_framebuffer *fb, 1212 const struct i915_ggtt_view *view, 1213 bool uses_fence, 1214 unsigned long *out_flags, 1215 struct i915_address_space *vm) 1216 { 1217 struct drm_device *dev = fb->dev; 1218 struct drm_i915_private *dev_priv = to_i915(dev); 1219 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 1220 struct i915_vma *vma; 1221 u32 alignment; 1222 int ret; 1223 1224 if (WARN_ON(!i915_gem_object_is_framebuffer(obj))) 1225 return ERR_PTR(-EINVAL); 1226 1227 alignment = 4096 * 512; 1228 1229 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 1230 1231 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); 1232 if (ret) { 1233 vma = ERR_PTR(ret); 1234 goto err; 1235 } 1236 1237 vma = i915_vma_instance(obj, vm, view); 1238 if (IS_ERR(vma)) 1239 goto err; 1240 1241 if (i915_vma_misplaced(vma, 0, alignment, 0)) { 1242 ret = i915_vma_unbind(vma); 1243 if (ret) { 1244 vma = ERR_PTR(ret); 1245 goto err; 1246 } 1247 } 1248 1249 ret = i915_vma_pin(vma, 0, alignment, PIN_GLOBAL); 1250 if (ret) { 1251 vma = ERR_PTR(ret); 1252 goto err; 1253 } 1254 1255 vma->display_alignment = max_t(u64, vma->display_alignment, alignment); 1256 1257 i915_gem_object_flush_if_display(obj); 1258 1259 i915_vma_get(vma); 1260 err: 1261 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 1262 1263 return vma; 1264 } 1265 1266 struct i915_vma * 1267 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 1268 bool phys_cursor, 1269 const struct i915_ggtt_view *view, 1270 bool uses_fence, 1271 unsigned long *out_flags) 1272 { 1273 struct drm_device *dev = fb->dev; 1274 struct drm_i915_private *dev_priv = to_i915(dev); 1275 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 1276 intel_wakeref_t wakeref; 1277 struct i915_gem_ww_ctx ww; 1278 struct i915_vma *vma; 1279 unsigned int pinctl; 1280 u32 alignment; 1281 int ret; 1282 1283 if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj))) 1284 return ERR_PTR(-EINVAL); 1285 1286 if (phys_cursor) 1287 alignment = intel_cursor_alignment(dev_priv); 1288 else 1289 alignment = intel_surf_alignment(fb, 0); 1290 if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment))) 1291 return ERR_PTR(-EINVAL); 1292 1293 /* Note that the w/a also requires 64 PTE of padding following the 1294 * bo. We currently fill all unused PTE with the shadow page and so 1295 * we should always have valid PTE following the scanout preventing 1296 * the VT-d warning. 1297 */ 1298 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) 1299 alignment = 256 * 1024; 1300 1301 /* 1302 * Global gtt pte registers are special registers which actually forward 1303 * writes to a chunk of system memory. Which means that there is no risk 1304 * that the register values disappear as soon as we call 1305 * intel_runtime_pm_put(), so it is correct to wrap only the 1306 * pin/unpin/fence and not more. 1307 */ 1308 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 1309 1310 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 1311 1312 /* 1313 * Valleyview is definitely limited to scanning out the first 1314 * 512MiB. Lets presume this behaviour was inherited from the 1315 * g4x display engine and that all earlier gen are similarly 1316 * limited. Testing suggests that it is a little more 1317 * complicated than this. For example, Cherryview appears quite 1318 * happy to scanout from anywhere within its global aperture. 1319 */ 1320 pinctl = 0; 1321 if (HAS_GMCH(dev_priv)) 1322 pinctl |= PIN_MAPPABLE; 1323 1324 i915_gem_ww_ctx_init(&ww, true); 1325 retry: 1326 ret = i915_gem_object_lock(obj, &ww); 1327 if (!ret && phys_cursor) 1328 ret = i915_gem_object_attach_phys(obj, alignment); 1329 if (!ret) 1330 ret = i915_gem_object_pin_pages(obj); 1331 if (ret) 1332 goto err; 1333 1334 if (!ret) { 1335 vma = i915_gem_object_pin_to_display_plane(obj, &ww, alignment, 1336 view, pinctl); 1337 if (IS_ERR(vma)) { 1338 ret = PTR_ERR(vma); 1339 goto err_unpin; 1340 } 1341 } 1342 1343 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { 1344 /* 1345 * Install a fence for tiled scan-out. Pre-i965 always needs a 1346 * fence, whereas 965+ only requires a fence if using 1347 * framebuffer compression. For simplicity, we always, when 1348 * possible, install a fence as the cost is not that onerous. 1349 * 1350 * If we fail to fence the tiled scanout, then either the 1351 * modeset will reject the change (which is highly unlikely as 1352 * the affected systems, all but one, do not have unmappable 1353 * space) or we will not be able to enable full powersaving 1354 * techniques (also likely not to apply due to various limits 1355 * FBC and the like impose on the size of the buffer, which 1356 * presumably we violated anyway with this unmappable buffer). 1357 * Anyway, it is presumably better to stumble onwards with 1358 * something and try to run the system in a "less than optimal" 1359 * mode that matches the user configuration. 1360 */ 1361 ret = i915_vma_pin_fence(vma); 1362 if (ret != 0 && DISPLAY_VER(dev_priv) < 4) { 1363 i915_vma_unpin(vma); 1364 goto err_unpin; 1365 } 1366 ret = 0; 1367 1368 if (vma->fence) 1369 *out_flags |= PLANE_HAS_FENCE; 1370 } 1371 1372 i915_vma_get(vma); 1373 1374 err_unpin: 1375 i915_gem_object_unpin_pages(obj); 1376 err: 1377 if (ret == -EDEADLK) { 1378 ret = i915_gem_ww_ctx_backoff(&ww); 1379 if (!ret) 1380 goto retry; 1381 } 1382 i915_gem_ww_ctx_fini(&ww); 1383 if (ret) 1384 vma = ERR_PTR(ret); 1385 1386 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 1387 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 1388 return vma; 1389 } 1390 1391 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) 1392 { 1393 if (flags & PLANE_HAS_FENCE) 1394 i915_vma_unpin_fence(vma); 1395 i915_vma_unpin(vma); 1396 i915_vma_put(vma); 1397 } 1398 1399 /* 1400 * Convert the x/y offsets into a linear offset. 1401 * Only valid with 0/180 degree rotation, which is fine since linear 1402 * offset is only used with linear buffers on pre-hsw and tiled buffers 1403 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 1404 */ 1405 u32 intel_fb_xy_to_linear(int x, int y, 1406 const struct intel_plane_state *state, 1407 int color_plane) 1408 { 1409 const struct drm_framebuffer *fb = state->hw.fb; 1410 unsigned int cpp = fb->format->cpp[color_plane]; 1411 unsigned int pitch = state->view.color_plane[color_plane].stride; 1412 1413 return y * pitch + x * cpp; 1414 } 1415 1416 /* 1417 * Add the x/y offsets derived from fb->offsets[] to the user 1418 * specified plane src x/y offsets. The resulting x/y offsets 1419 * specify the start of scanout from the beginning of the gtt mapping. 1420 */ 1421 void intel_add_fb_offsets(int *x, int *y, 1422 const struct intel_plane_state *state, 1423 int color_plane) 1424 1425 { 1426 *x += state->view.color_plane[color_plane].x; 1427 *y += state->view.color_plane[color_plane].y; 1428 } 1429 1430 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) 1431 { 1432 switch (fb_modifier) { 1433 case I915_FORMAT_MOD_X_TILED: 1434 return I915_TILING_X; 1435 case I915_FORMAT_MOD_Y_TILED: 1436 case I915_FORMAT_MOD_Y_TILED_CCS: 1437 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1438 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1439 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1440 return I915_TILING_Y; 1441 default: 1442 return I915_TILING_NONE; 1443 } 1444 } 1445 1446 /* 1447 * From the Sky Lake PRM: 1448 * "The Color Control Surface (CCS) contains the compression status of 1449 * the cache-line pairs. The compression state of the cache-line pair 1450 * is specified by 2 bits in the CCS. Each CCS cache-line represents 1451 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 1452 * cache-line-pairs. CCS is always Y tiled." 1453 * 1454 * Since cache line pairs refers to horizontally adjacent cache lines, 1455 * each cache line in the CCS corresponds to an area of 32x16 cache 1456 * lines on the main surface. Since each pixel is 4 bytes, this gives 1457 * us a ratio of one byte in the CCS for each 8x16 pixels in the 1458 * main surface. 1459 */ 1460 static const struct drm_format_info skl_ccs_formats[] = { 1461 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 1462 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 1463 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 1464 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 1465 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 1466 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 1467 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 1468 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 1469 }; 1470 1471 /* 1472 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the 1473 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles 1474 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of 1475 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in 1476 * the main surface. 1477 */ 1478 static const struct drm_format_info gen12_ccs_formats[] = { 1479 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 1480 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1481 .hsub = 1, .vsub = 1, }, 1482 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 1483 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1484 .hsub = 1, .vsub = 1, }, 1485 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 1486 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1487 .hsub = 1, .vsub = 1, .has_alpha = true }, 1488 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 1489 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1490 .hsub = 1, .vsub = 1, .has_alpha = true }, 1491 { .format = DRM_FORMAT_YUYV, .num_planes = 2, 1492 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1493 .hsub = 2, .vsub = 1, .is_yuv = true }, 1494 { .format = DRM_FORMAT_YVYU, .num_planes = 2, 1495 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1496 .hsub = 2, .vsub = 1, .is_yuv = true }, 1497 { .format = DRM_FORMAT_UYVY, .num_planes = 2, 1498 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1499 .hsub = 2, .vsub = 1, .is_yuv = true }, 1500 { .format = DRM_FORMAT_VYUY, .num_planes = 2, 1501 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1502 .hsub = 2, .vsub = 1, .is_yuv = true }, 1503 { .format = DRM_FORMAT_XYUV8888, .num_planes = 2, 1504 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1505 .hsub = 1, .vsub = 1, .is_yuv = true }, 1506 { .format = DRM_FORMAT_NV12, .num_planes = 4, 1507 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 }, 1508 .hsub = 2, .vsub = 2, .is_yuv = true }, 1509 { .format = DRM_FORMAT_P010, .num_planes = 4, 1510 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1511 .hsub = 2, .vsub = 2, .is_yuv = true }, 1512 { .format = DRM_FORMAT_P012, .num_planes = 4, 1513 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1514 .hsub = 2, .vsub = 2, .is_yuv = true }, 1515 { .format = DRM_FORMAT_P016, .num_planes = 4, 1516 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1517 .hsub = 2, .vsub = 2, .is_yuv = true }, 1518 }; 1519 1520 /* 1521 * Same as gen12_ccs_formats[] above, but with additional surface used 1522 * to pass Clear Color information in plane 2 with 64 bits of data. 1523 */ 1524 static const struct drm_format_info gen12_ccs_cc_formats[] = { 1525 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 3, 1526 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1527 .hsub = 1, .vsub = 1, }, 1528 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 3, 1529 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1530 .hsub = 1, .vsub = 1, }, 1531 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 3, 1532 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1533 .hsub = 1, .vsub = 1, .has_alpha = true }, 1534 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 3, 1535 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1536 .hsub = 1, .vsub = 1, .has_alpha = true }, 1537 }; 1538 1539 static const struct drm_format_info * 1540 lookup_format_info(const struct drm_format_info formats[], 1541 int num_formats, u32 format) 1542 { 1543 int i; 1544 1545 for (i = 0; i < num_formats; i++) { 1546 if (formats[i].format == format) 1547 return &formats[i]; 1548 } 1549 1550 return NULL; 1551 } 1552 1553 static const struct drm_format_info * 1554 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 1555 { 1556 switch (cmd->modifier[0]) { 1557 case I915_FORMAT_MOD_Y_TILED_CCS: 1558 case I915_FORMAT_MOD_Yf_TILED_CCS: 1559 return lookup_format_info(skl_ccs_formats, 1560 ARRAY_SIZE(skl_ccs_formats), 1561 cmd->pixel_format); 1562 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1563 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1564 return lookup_format_info(gen12_ccs_formats, 1565 ARRAY_SIZE(gen12_ccs_formats), 1566 cmd->pixel_format); 1567 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1568 return lookup_format_info(gen12_ccs_cc_formats, 1569 ARRAY_SIZE(gen12_ccs_cc_formats), 1570 cmd->pixel_format); 1571 default: 1572 return NULL; 1573 } 1574 } 1575 1576 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane) 1577 { 1578 return DIV_ROUND_UP(fb->pitches[skl_ccs_to_main_plane(fb, ccs_plane)], 1579 512) * 64; 1580 } 1581 1582 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 1583 u32 pixel_format, u64 modifier) 1584 { 1585 struct intel_crtc *crtc; 1586 struct intel_plane *plane; 1587 1588 if (!HAS_DISPLAY(dev_priv)) 1589 return 0; 1590 1591 /* 1592 * We assume the primary plane for pipe A has 1593 * the highest stride limits of them all, 1594 * if in case pipe A is disabled, use the first pipe from pipe_mask. 1595 */ 1596 crtc = intel_get_first_crtc(dev_priv); 1597 if (!crtc) 1598 return 0; 1599 1600 plane = to_intel_plane(crtc->base.primary); 1601 1602 return plane->max_stride(plane, pixel_format, modifier, 1603 DRM_MODE_ROTATE_0); 1604 } 1605 1606 static 1607 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, 1608 u32 pixel_format, u64 modifier) 1609 { 1610 /* 1611 * Arbitrary limit for gen4+ chosen to match the 1612 * render engine max stride. 1613 * 1614 * The new CCS hash mode makes remapping impossible 1615 */ 1616 if (DISPLAY_VER(dev_priv) < 4 || is_ccs_modifier(modifier) || 1617 intel_modifier_uses_dpt(dev_priv, modifier)) 1618 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); 1619 else if (DISPLAY_VER(dev_priv) >= 7) 1620 return 256 * 1024; 1621 else 1622 return 128 * 1024; 1623 } 1624 1625 static u32 1626 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) 1627 { 1628 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1629 u32 tile_width; 1630 1631 if (is_surface_linear(fb, color_plane)) { 1632 u32 max_stride = intel_plane_fb_max_stride(dev_priv, 1633 fb->format->format, 1634 fb->modifier); 1635 1636 /* 1637 * To make remapping with linear generally feasible 1638 * we need the stride to be page aligned. 1639 */ 1640 if (fb->pitches[color_plane] > max_stride && 1641 !is_ccs_modifier(fb->modifier)) 1642 return intel_tile_size(dev_priv); 1643 else 1644 return 64; 1645 } 1646 1647 tile_width = intel_tile_width_bytes(fb, color_plane); 1648 if (is_ccs_modifier(fb->modifier)) { 1649 /* 1650 * Display WA #0531: skl,bxt,kbl,glk 1651 * 1652 * Render decompression and plane width > 3840 1653 * combined with horizontal panning requires the 1654 * plane stride to be a multiple of 4. We'll just 1655 * require the entire fb to accommodate that to avoid 1656 * potential runtime errors at plane configuration time. 1657 */ 1658 if ((DISPLAY_VER(dev_priv) == 9 || IS_GEMINILAKE(dev_priv)) && 1659 color_plane == 0 && fb->width > 3840) 1660 tile_width *= 4; 1661 /* 1662 * The main surface pitch must be padded to a multiple of four 1663 * tile widths. 1664 */ 1665 else if (DISPLAY_VER(dev_priv) >= 12) 1666 tile_width *= 4; 1667 } 1668 return tile_width; 1669 } 1670 1671 static struct i915_vma * 1672 initial_plane_vma(struct drm_i915_private *i915, 1673 struct intel_initial_plane_config *plane_config) 1674 { 1675 struct drm_i915_gem_object *obj; 1676 struct i915_vma *vma; 1677 u32 base, size; 1678 1679 if (plane_config->size == 0) 1680 return NULL; 1681 1682 base = round_down(plane_config->base, 1683 I915_GTT_MIN_ALIGNMENT); 1684 size = round_up(plane_config->base + plane_config->size, 1685 I915_GTT_MIN_ALIGNMENT); 1686 size -= base; 1687 1688 /* 1689 * If the FB is too big, just don't use it since fbdev is not very 1690 * important and we should probably use that space with FBC or other 1691 * features. 1692 */ 1693 if (size * 2 > i915->stolen_usable_size) 1694 return NULL; 1695 1696 obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size); 1697 if (IS_ERR(obj)) 1698 return NULL; 1699 1700 /* 1701 * Mark it WT ahead of time to avoid changing the 1702 * cache_level during fbdev initialization. The 1703 * unbind there would get stuck waiting for rcu. 1704 */ 1705 i915_gem_object_set_cache_coherency(obj, HAS_WT(i915) ? 1706 I915_CACHE_WT : I915_CACHE_NONE); 1707 1708 switch (plane_config->tiling) { 1709 case I915_TILING_NONE: 1710 break; 1711 case I915_TILING_X: 1712 case I915_TILING_Y: 1713 obj->tiling_and_stride = 1714 plane_config->fb->base.pitches[0] | 1715 plane_config->tiling; 1716 break; 1717 default: 1718 MISSING_CASE(plane_config->tiling); 1719 goto err_obj; 1720 } 1721 1722 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); 1723 if (IS_ERR(vma)) 1724 goto err_obj; 1725 1726 if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base)) 1727 goto err_obj; 1728 1729 if (i915_gem_object_is_tiled(obj) && 1730 !i915_vma_is_map_and_fenceable(vma)) 1731 goto err_obj; 1732 1733 return vma; 1734 1735 err_obj: 1736 i915_gem_object_put(obj); 1737 return NULL; 1738 } 1739 1740 static bool 1741 intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 1742 struct intel_initial_plane_config *plane_config) 1743 { 1744 struct drm_device *dev = crtc->base.dev; 1745 struct drm_i915_private *dev_priv = to_i915(dev); 1746 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 1747 struct drm_framebuffer *fb = &plane_config->fb->base; 1748 struct i915_vma *vma; 1749 1750 switch (fb->modifier) { 1751 case DRM_FORMAT_MOD_LINEAR: 1752 case I915_FORMAT_MOD_X_TILED: 1753 case I915_FORMAT_MOD_Y_TILED: 1754 break; 1755 default: 1756 drm_dbg(&dev_priv->drm, 1757 "Unsupported modifier for initial FB: 0x%llx\n", 1758 fb->modifier); 1759 return false; 1760 } 1761 1762 vma = initial_plane_vma(dev_priv, plane_config); 1763 if (!vma) 1764 return false; 1765 1766 mode_cmd.pixel_format = fb->format->format; 1767 mode_cmd.width = fb->width; 1768 mode_cmd.height = fb->height; 1769 mode_cmd.pitches[0] = fb->pitches[0]; 1770 mode_cmd.modifier[0] = fb->modifier; 1771 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 1772 1773 if (intel_framebuffer_init(to_intel_framebuffer(fb), 1774 vma->obj, &mode_cmd)) { 1775 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n"); 1776 goto err_vma; 1777 } 1778 1779 plane_config->vma = vma; 1780 return true; 1781 1782 err_vma: 1783 i915_vma_put(vma); 1784 return false; 1785 } 1786 1787 static void 1788 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 1789 struct intel_plane_state *plane_state, 1790 bool visible) 1791 { 1792 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1793 1794 plane_state->uapi.visible = visible; 1795 1796 if (visible) 1797 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); 1798 else 1799 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); 1800 } 1801 1802 static void fixup_plane_bitmasks(struct intel_crtc_state *crtc_state) 1803 { 1804 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1805 struct drm_plane *plane; 1806 1807 /* 1808 * Active_planes aliases if multiple "primary" or cursor planes 1809 * have been used on the same (or wrong) pipe. plane_mask uses 1810 * unique ids, hence we can use that to reconstruct active_planes. 1811 */ 1812 crtc_state->enabled_planes = 0; 1813 crtc_state->active_planes = 0; 1814 1815 drm_for_each_plane_mask(plane, &dev_priv->drm, 1816 crtc_state->uapi.plane_mask) { 1817 crtc_state->enabled_planes |= BIT(to_intel_plane(plane)->id); 1818 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 1819 } 1820 } 1821 1822 static void intel_plane_disable_noatomic(struct intel_crtc *crtc, 1823 struct intel_plane *plane) 1824 { 1825 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1826 struct intel_crtc_state *crtc_state = 1827 to_intel_crtc_state(crtc->base.state); 1828 struct intel_plane_state *plane_state = 1829 to_intel_plane_state(plane->base.state); 1830 1831 drm_dbg_kms(&dev_priv->drm, 1832 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 1833 plane->base.base.id, plane->base.name, 1834 crtc->base.base.id, crtc->base.name); 1835 1836 intel_set_plane_visible(crtc_state, plane_state, false); 1837 fixup_plane_bitmasks(crtc_state); 1838 crtc_state->data_rate[plane->id] = 0; 1839 crtc_state->min_cdclk[plane->id] = 0; 1840 1841 if (plane->id == PLANE_PRIMARY) 1842 hsw_disable_ips(crtc_state); 1843 1844 /* 1845 * Vblank time updates from the shadow to live plane control register 1846 * are blocked if the memory self-refresh mode is active at that 1847 * moment. So to make sure the plane gets truly disabled, disable 1848 * first the self-refresh mode. The self-refresh enable bit in turn 1849 * will be checked/applied by the HW only at the next frame start 1850 * event which is after the vblank start event, so we need to have a 1851 * wait-for-vblank between disabling the plane and the pipe. 1852 */ 1853 if (HAS_GMCH(dev_priv) && 1854 intel_set_memory_cxsr(dev_priv, false)) 1855 intel_wait_for_vblank(dev_priv, crtc->pipe); 1856 1857 /* 1858 * Gen2 reports pipe underruns whenever all planes are disabled. 1859 * So disable underrun reporting before all the planes get disabled. 1860 */ 1861 if (DISPLAY_VER(dev_priv) == 2 && !crtc_state->active_planes) 1862 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 1863 1864 intel_disable_plane(plane, crtc_state); 1865 intel_wait_for_vblank(dev_priv, crtc->pipe); 1866 } 1867 1868 static struct i915_vma *intel_dpt_pin(struct i915_address_space *vm) 1869 { 1870 struct drm_i915_private *i915 = vm->i915; 1871 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 1872 intel_wakeref_t wakeref; 1873 struct i915_vma *vma; 1874 void __iomem *iomem; 1875 1876 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 1877 atomic_inc(&i915->gpu_error.pending_fb_pin); 1878 1879 vma = i915_gem_object_ggtt_pin(dpt->obj, NULL, 0, 4096, 1880 HAS_LMEM(i915) ? 0 : PIN_MAPPABLE); 1881 if (IS_ERR(vma)) 1882 goto err; 1883 1884 iomem = i915_vma_pin_iomap(vma); 1885 i915_vma_unpin(vma); 1886 if (IS_ERR(iomem)) { 1887 vma = iomem; 1888 goto err; 1889 } 1890 1891 dpt->vma = vma; 1892 dpt->iomem = iomem; 1893 1894 i915_vma_get(vma); 1895 1896 err: 1897 atomic_dec(&i915->gpu_error.pending_fb_pin); 1898 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 1899 1900 return vma; 1901 } 1902 1903 static void intel_dpt_unpin(struct i915_address_space *vm) 1904 { 1905 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 1906 1907 i915_vma_unpin_iomap(dpt->vma); 1908 i915_vma_put(dpt->vma); 1909 } 1910 1911 static void 1912 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, 1913 struct intel_initial_plane_config *plane_config) 1914 { 1915 struct drm_device *dev = intel_crtc->base.dev; 1916 struct drm_i915_private *dev_priv = to_i915(dev); 1917 struct drm_crtc *c; 1918 struct drm_plane *primary = intel_crtc->base.primary; 1919 struct drm_plane_state *plane_state = primary->state; 1920 struct intel_plane *intel_plane = to_intel_plane(primary); 1921 struct intel_plane_state *intel_state = 1922 to_intel_plane_state(plane_state); 1923 struct intel_crtc_state *crtc_state = 1924 to_intel_crtc_state(intel_crtc->base.state); 1925 struct drm_framebuffer *fb; 1926 struct i915_vma *vma; 1927 1928 /* 1929 * TODO: 1930 * Disable planes if get_initial_plane_config() failed. 1931 * Make sure things work if the surface base is not page aligned. 1932 */ 1933 if (!plane_config->fb) 1934 return; 1935 1936 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { 1937 fb = &plane_config->fb->base; 1938 vma = plane_config->vma; 1939 goto valid_fb; 1940 } 1941 1942 /* 1943 * Failed to alloc the obj, check to see if we should share 1944 * an fb with another CRTC instead 1945 */ 1946 for_each_crtc(dev, c) { 1947 struct intel_plane_state *state; 1948 1949 if (c == &intel_crtc->base) 1950 continue; 1951 1952 if (!to_intel_crtc_state(c->state)->uapi.active) 1953 continue; 1954 1955 state = to_intel_plane_state(c->primary->state); 1956 if (!state->ggtt_vma) 1957 continue; 1958 1959 if (intel_plane_ggtt_offset(state) == plane_config->base) { 1960 fb = state->hw.fb; 1961 vma = state->ggtt_vma; 1962 goto valid_fb; 1963 } 1964 } 1965 1966 /* 1967 * We've failed to reconstruct the BIOS FB. Current display state 1968 * indicates that the primary plane is visible, but has a NULL FB, 1969 * which will lead to problems later if we don't fix it up. The 1970 * simplest solution is to just disable the primary plane now and 1971 * pretend the BIOS never had it enabled. 1972 */ 1973 intel_plane_disable_noatomic(intel_crtc, intel_plane); 1974 if (crtc_state->bigjoiner) { 1975 struct intel_crtc *slave = 1976 crtc_state->bigjoiner_linked_crtc; 1977 intel_plane_disable_noatomic(slave, to_intel_plane(slave->base.primary)); 1978 } 1979 1980 return; 1981 1982 valid_fb: 1983 plane_state->rotation = plane_config->rotation; 1984 intel_fb_fill_view(to_intel_framebuffer(fb), plane_state->rotation, 1985 &intel_state->view); 1986 1987 __i915_vma_pin(vma); 1988 intel_state->ggtt_vma = i915_vma_get(vma); 1989 if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0) 1990 if (vma->fence) 1991 intel_state->flags |= PLANE_HAS_FENCE; 1992 1993 plane_state->src_x = 0; 1994 plane_state->src_y = 0; 1995 plane_state->src_w = fb->width << 16; 1996 plane_state->src_h = fb->height << 16; 1997 1998 plane_state->crtc_x = 0; 1999 plane_state->crtc_y = 0; 2000 plane_state->crtc_w = fb->width; 2001 plane_state->crtc_h = fb->height; 2002 2003 if (plane_config->tiling) 2004 dev_priv->preserve_bios_swizzle = true; 2005 2006 plane_state->fb = fb; 2007 drm_framebuffer_get(fb); 2008 2009 plane_state->crtc = &intel_crtc->base; 2010 intel_plane_copy_uapi_to_hw_state(intel_state, intel_state, 2011 intel_crtc); 2012 2013 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 2014 2015 atomic_or(to_intel_plane(primary)->frontbuffer_bit, 2016 &to_intel_frontbuffer(fb)->bits); 2017 } 2018 2019 unsigned int 2020 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state) 2021 { 2022 int x = 0, y = 0; 2023 2024 intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 2025 plane_state->view.color_plane[0].offset, 0); 2026 2027 return y; 2028 } 2029 2030 static int 2031 __intel_display_resume(struct drm_device *dev, 2032 struct drm_atomic_state *state, 2033 struct drm_modeset_acquire_ctx *ctx) 2034 { 2035 struct drm_crtc_state *crtc_state; 2036 struct drm_crtc *crtc; 2037 int i, ret; 2038 2039 intel_modeset_setup_hw_state(dev, ctx); 2040 intel_vga_redisable(to_i915(dev)); 2041 2042 if (!state) 2043 return 0; 2044 2045 /* 2046 * We've duplicated the state, pointers to the old state are invalid. 2047 * 2048 * Don't attempt to use the old state until we commit the duplicated state. 2049 */ 2050 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 2051 /* 2052 * Force recalculation even if we restore 2053 * current state. With fast modeset this may not result 2054 * in a modeset when the state is compatible. 2055 */ 2056 crtc_state->mode_changed = true; 2057 } 2058 2059 /* ignore any reset values/BIOS leftovers in the WM registers */ 2060 if (!HAS_GMCH(to_i915(dev))) 2061 to_intel_atomic_state(state)->skip_intermediate_wm = true; 2062 2063 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 2064 2065 drm_WARN_ON(dev, ret == -EDEADLK); 2066 return ret; 2067 } 2068 2069 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 2070 { 2071 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 2072 intel_has_gpu_reset(&dev_priv->gt)); 2073 } 2074 2075 void intel_display_prepare_reset(struct drm_i915_private *dev_priv) 2076 { 2077 struct drm_device *dev = &dev_priv->drm; 2078 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 2079 struct drm_atomic_state *state; 2080 int ret; 2081 2082 if (!HAS_DISPLAY(dev_priv)) 2083 return; 2084 2085 /* reset doesn't touch the display */ 2086 if (!dev_priv->params.force_reset_modeset_test && 2087 !gpu_reset_clobbers_display(dev_priv)) 2088 return; 2089 2090 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 2091 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 2092 smp_mb__after_atomic(); 2093 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 2094 2095 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 2096 drm_dbg_kms(&dev_priv->drm, 2097 "Modeset potentially stuck, unbreaking through wedging\n"); 2098 intel_gt_set_wedged(&dev_priv->gt); 2099 } 2100 2101 /* 2102 * Need mode_config.mutex so that we don't 2103 * trample ongoing ->detect() and whatnot. 2104 */ 2105 mutex_lock(&dev->mode_config.mutex); 2106 drm_modeset_acquire_init(ctx, 0); 2107 while (1) { 2108 ret = drm_modeset_lock_all_ctx(dev, ctx); 2109 if (ret != -EDEADLK) 2110 break; 2111 2112 drm_modeset_backoff(ctx); 2113 } 2114 /* 2115 * Disabling the crtcs gracefully seems nicer. Also the 2116 * g33 docs say we should at least disable all the planes. 2117 */ 2118 state = drm_atomic_helper_duplicate_state(dev, ctx); 2119 if (IS_ERR(state)) { 2120 ret = PTR_ERR(state); 2121 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n", 2122 ret); 2123 return; 2124 } 2125 2126 ret = drm_atomic_helper_disable_all(dev, ctx); 2127 if (ret) { 2128 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 2129 ret); 2130 drm_atomic_state_put(state); 2131 return; 2132 } 2133 2134 dev_priv->modeset_restore_state = state; 2135 state->acquire_ctx = ctx; 2136 } 2137 2138 void intel_display_finish_reset(struct drm_i915_private *dev_priv) 2139 { 2140 struct drm_device *dev = &dev_priv->drm; 2141 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 2142 struct drm_atomic_state *state; 2143 int ret; 2144 2145 if (!HAS_DISPLAY(dev_priv)) 2146 return; 2147 2148 /* reset doesn't touch the display */ 2149 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 2150 return; 2151 2152 state = fetch_and_zero(&dev_priv->modeset_restore_state); 2153 if (!state) 2154 goto unlock; 2155 2156 /* reset doesn't touch the display */ 2157 if (!gpu_reset_clobbers_display(dev_priv)) { 2158 /* for testing only restore the display */ 2159 ret = __intel_display_resume(dev, state, ctx); 2160 if (ret) 2161 drm_err(&dev_priv->drm, 2162 "Restoring old state failed with %i\n", ret); 2163 } else { 2164 /* 2165 * The display has been reset as well, 2166 * so need a full re-initialization. 2167 */ 2168 intel_pps_unlock_regs_wa(dev_priv); 2169 intel_modeset_init_hw(dev_priv); 2170 intel_init_clock_gating(dev_priv); 2171 intel_hpd_init(dev_priv); 2172 2173 ret = __intel_display_resume(dev, state, ctx); 2174 if (ret) 2175 drm_err(&dev_priv->drm, 2176 "Restoring old state failed with %i\n", ret); 2177 2178 intel_hpd_poll_disable(dev_priv); 2179 } 2180 2181 drm_atomic_state_put(state); 2182 unlock: 2183 drm_modeset_drop_locks(ctx); 2184 drm_modeset_acquire_fini(ctx); 2185 mutex_unlock(&dev->mode_config.mutex); 2186 2187 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 2188 } 2189 2190 static void icl_set_pipe_chicken(struct intel_crtc *crtc) 2191 { 2192 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2193 enum pipe pipe = crtc->pipe; 2194 u32 tmp; 2195 2196 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe)); 2197 2198 /* 2199 * Display WA #1153: icl 2200 * enable hardware to bypass the alpha math 2201 * and rounding for per-pixel values 00 and 0xff 2202 */ 2203 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 2204 /* 2205 * Display WA # 1605353570: icl 2206 * Set the pixel rounding bit to 1 for allowing 2207 * passthrough of Frame buffer pixels unmodified 2208 * across pipe 2209 */ 2210 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 2211 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp); 2212 } 2213 2214 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 2215 { 2216 struct drm_crtc *crtc; 2217 bool cleanup_done; 2218 2219 drm_for_each_crtc(crtc, &dev_priv->drm) { 2220 struct drm_crtc_commit *commit; 2221 spin_lock(&crtc->commit_lock); 2222 commit = list_first_entry_or_null(&crtc->commit_list, 2223 struct drm_crtc_commit, commit_entry); 2224 cleanup_done = commit ? 2225 try_wait_for_completion(&commit->cleanup_done) : true; 2226 spin_unlock(&crtc->commit_lock); 2227 2228 if (cleanup_done) 2229 continue; 2230 2231 drm_crtc_wait_one_vblank(crtc); 2232 2233 return true; 2234 } 2235 2236 return false; 2237 } 2238 2239 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 2240 { 2241 u32 temp; 2242 2243 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE); 2244 2245 mutex_lock(&dev_priv->sb_lock); 2246 2247 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2248 temp |= SBI_SSCCTL_DISABLE; 2249 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 2250 2251 mutex_unlock(&dev_priv->sb_lock); 2252 } 2253 2254 /* Program iCLKIP clock to the desired frequency */ 2255 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 2256 { 2257 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2258 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2259 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 2260 u32 divsel, phaseinc, auxdiv, phasedir = 0; 2261 u32 temp; 2262 2263 lpt_disable_iclkip(dev_priv); 2264 2265 /* The iCLK virtual clock root frequency is in MHz, 2266 * but the adjusted_mode->crtc_clock in in KHz. To get the 2267 * divisors, it is necessary to divide one by another, so we 2268 * convert the virtual clock precision to KHz here for higher 2269 * precision. 2270 */ 2271 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 2272 u32 iclk_virtual_root_freq = 172800 * 1000; 2273 u32 iclk_pi_range = 64; 2274 u32 desired_divisor; 2275 2276 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 2277 clock << auxdiv); 2278 divsel = (desired_divisor / iclk_pi_range) - 2; 2279 phaseinc = desired_divisor % iclk_pi_range; 2280 2281 /* 2282 * Near 20MHz is a corner case which is 2283 * out of range for the 7-bit divisor 2284 */ 2285 if (divsel <= 0x7f) 2286 break; 2287 } 2288 2289 /* This should not happen with any sane values */ 2290 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 2291 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 2292 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) & 2293 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 2294 2295 drm_dbg_kms(&dev_priv->drm, 2296 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 2297 clock, auxdiv, divsel, phasedir, phaseinc); 2298 2299 mutex_lock(&dev_priv->sb_lock); 2300 2301 /* Program SSCDIVINTPHASE6 */ 2302 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 2303 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 2304 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 2305 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 2306 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 2307 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 2308 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 2309 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 2310 2311 /* Program SSCAUXDIV */ 2312 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 2313 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 2314 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 2315 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 2316 2317 /* Enable modulator and associated divider */ 2318 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2319 temp &= ~SBI_SSCCTL_DISABLE; 2320 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 2321 2322 mutex_unlock(&dev_priv->sb_lock); 2323 2324 /* Wait for initialization time */ 2325 udelay(24); 2326 2327 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE); 2328 } 2329 2330 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 2331 { 2332 u32 divsel, phaseinc, auxdiv; 2333 u32 iclk_virtual_root_freq = 172800 * 1000; 2334 u32 iclk_pi_range = 64; 2335 u32 desired_divisor; 2336 u32 temp; 2337 2338 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 2339 return 0; 2340 2341 mutex_lock(&dev_priv->sb_lock); 2342 2343 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2344 if (temp & SBI_SSCCTL_DISABLE) { 2345 mutex_unlock(&dev_priv->sb_lock); 2346 return 0; 2347 } 2348 2349 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 2350 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 2351 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 2352 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 2353 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 2354 2355 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 2356 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 2357 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 2358 2359 mutex_unlock(&dev_priv->sb_lock); 2360 2361 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 2362 2363 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 2364 desired_divisor << auxdiv); 2365 } 2366 2367 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 2368 enum pipe pch_transcoder) 2369 { 2370 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2371 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2372 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2373 2374 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder), 2375 intel_de_read(dev_priv, HTOTAL(cpu_transcoder))); 2376 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder), 2377 intel_de_read(dev_priv, HBLANK(cpu_transcoder))); 2378 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder), 2379 intel_de_read(dev_priv, HSYNC(cpu_transcoder))); 2380 2381 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder), 2382 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 2383 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder), 2384 intel_de_read(dev_priv, VBLANK(cpu_transcoder))); 2385 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder), 2386 intel_de_read(dev_priv, VSYNC(cpu_transcoder))); 2387 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder), 2388 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder))); 2389 } 2390 2391 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) 2392 { 2393 u32 temp; 2394 2395 temp = intel_de_read(dev_priv, SOUTH_CHICKEN1); 2396 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 2397 return; 2398 2399 drm_WARN_ON(&dev_priv->drm, 2400 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) & 2401 FDI_RX_ENABLE); 2402 drm_WARN_ON(&dev_priv->drm, 2403 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) & 2404 FDI_RX_ENABLE); 2405 2406 temp &= ~FDI_BC_BIFURCATION_SELECT; 2407 if (enable) 2408 temp |= FDI_BC_BIFURCATION_SELECT; 2409 2410 drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n", 2411 enable ? "en" : "dis"); 2412 intel_de_write(dev_priv, SOUTH_CHICKEN1, temp); 2413 intel_de_posting_read(dev_priv, SOUTH_CHICKEN1); 2414 } 2415 2416 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) 2417 { 2418 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2419 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2420 2421 switch (crtc->pipe) { 2422 case PIPE_A: 2423 break; 2424 case PIPE_B: 2425 if (crtc_state->fdi_lanes > 2) 2426 cpt_set_fdi_bc_bifurcation(dev_priv, false); 2427 else 2428 cpt_set_fdi_bc_bifurcation(dev_priv, true); 2429 2430 break; 2431 case PIPE_C: 2432 cpt_set_fdi_bc_bifurcation(dev_priv, true); 2433 2434 break; 2435 default: 2436 BUG(); 2437 } 2438 } 2439 2440 /* 2441 * Finds the encoder associated with the given CRTC. This can only be 2442 * used when we know that the CRTC isn't feeding multiple encoders! 2443 */ 2444 struct intel_encoder * 2445 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 2446 const struct intel_crtc_state *crtc_state) 2447 { 2448 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2449 const struct drm_connector_state *connector_state; 2450 const struct drm_connector *connector; 2451 struct intel_encoder *encoder = NULL; 2452 int num_encoders = 0; 2453 int i; 2454 2455 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 2456 if (connector_state->crtc != &crtc->base) 2457 continue; 2458 2459 encoder = to_intel_encoder(connector_state->best_encoder); 2460 num_encoders++; 2461 } 2462 2463 drm_WARN(encoder->base.dev, num_encoders != 1, 2464 "%d encoders for pipe %c\n", 2465 num_encoders, pipe_name(crtc->pipe)); 2466 2467 return encoder; 2468 } 2469 2470 /* 2471 * Enable PCH resources required for PCH ports: 2472 * - PCH PLLs 2473 * - FDI training & RX/TX 2474 * - update transcoder timings 2475 * - DP transcoding bits 2476 * - transcoder 2477 */ 2478 static void ilk_pch_enable(const struct intel_atomic_state *state, 2479 const struct intel_crtc_state *crtc_state) 2480 { 2481 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2482 struct drm_device *dev = crtc->base.dev; 2483 struct drm_i915_private *dev_priv = to_i915(dev); 2484 enum pipe pipe = crtc->pipe; 2485 u32 temp; 2486 2487 assert_pch_transcoder_disabled(dev_priv, pipe); 2488 2489 if (IS_IVYBRIDGE(dev_priv)) 2490 ivb_update_fdi_bc_bifurcation(crtc_state); 2491 2492 /* Write the TU size bits before fdi link training, so that error 2493 * detection works. */ 2494 intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe), 2495 intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 2496 2497 /* For PCH output, training FDI link */ 2498 dev_priv->display.fdi_link_train(crtc, crtc_state); 2499 2500 /* We need to program the right clock selection before writing the pixel 2501 * mutliplier into the DPLL. */ 2502 if (HAS_PCH_CPT(dev_priv)) { 2503 u32 sel; 2504 2505 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 2506 temp |= TRANS_DPLL_ENABLE(pipe); 2507 sel = TRANS_DPLLB_SEL(pipe); 2508 if (crtc_state->shared_dpll == 2509 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 2510 temp |= sel; 2511 else 2512 temp &= ~sel; 2513 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 2514 } 2515 2516 /* XXX: pch pll's can be enabled any time before we enable the PCH 2517 * transcoder, and we actually should do this to not upset any PCH 2518 * transcoder that already use the clock when we share it. 2519 * 2520 * Note that enable_shared_dpll tries to do the right thing, but 2521 * get_shared_dpll unconditionally resets the pll - we need that to have 2522 * the right LVDS enable sequence. */ 2523 intel_enable_shared_dpll(crtc_state); 2524 2525 /* set transcoder timing, panel must allow it */ 2526 assert_panel_unlocked(dev_priv, pipe); 2527 ilk_pch_transcoder_set_timings(crtc_state, pipe); 2528 2529 intel_fdi_normal_train(crtc); 2530 2531 /* For PCH DP, enable TRANS_DP_CTL */ 2532 if (HAS_PCH_CPT(dev_priv) && 2533 intel_crtc_has_dp_encoder(crtc_state)) { 2534 const struct drm_display_mode *adjusted_mode = 2535 &crtc_state->hw.adjusted_mode; 2536 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 2537 i915_reg_t reg = TRANS_DP_CTL(pipe); 2538 enum port port; 2539 2540 temp = intel_de_read(dev_priv, reg); 2541 temp &= ~(TRANS_DP_PORT_SEL_MASK | 2542 TRANS_DP_SYNC_MASK | 2543 TRANS_DP_BPC_MASK); 2544 temp |= TRANS_DP_OUTPUT_ENABLE; 2545 temp |= bpc << 9; /* same format but at 11:9 */ 2546 2547 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2548 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 2549 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2550 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 2551 2552 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 2553 drm_WARN_ON(dev, port < PORT_B || port > PORT_D); 2554 temp |= TRANS_DP_PORT_SEL(port); 2555 2556 intel_de_write(dev_priv, reg, temp); 2557 } 2558 2559 ilk_enable_pch_transcoder(crtc_state); 2560 } 2561 2562 void lpt_pch_enable(const struct intel_crtc_state *crtc_state) 2563 { 2564 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2565 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2566 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2567 2568 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 2569 2570 lpt_program_iclkip(crtc_state); 2571 2572 /* Set transcoder timing. */ 2573 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A); 2574 2575 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 2576 } 2577 2578 static void cpt_verify_modeset(struct drm_i915_private *dev_priv, 2579 enum pipe pipe) 2580 { 2581 i915_reg_t dslreg = PIPEDSL(pipe); 2582 u32 temp; 2583 2584 temp = intel_de_read(dev_priv, dslreg); 2585 udelay(500); 2586 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) { 2587 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) 2588 drm_err(&dev_priv->drm, 2589 "mode set failed: pipe %c stuck\n", 2590 pipe_name(pipe)); 2591 } 2592 } 2593 2594 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state) 2595 { 2596 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2597 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2598 const struct drm_rect *dst = &crtc_state->pch_pfit.dst; 2599 enum pipe pipe = crtc->pipe; 2600 int width = drm_rect_width(dst); 2601 int height = drm_rect_height(dst); 2602 int x = dst->x1; 2603 int y = dst->y1; 2604 2605 if (!crtc_state->pch_pfit.enabled) 2606 return; 2607 2608 /* Force use of hard-coded filter coefficients 2609 * as some pre-programmed values are broken, 2610 * e.g. x201. 2611 */ 2612 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 2613 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 2614 PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); 2615 else 2616 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 2617 PF_FILTER_MED_3x3); 2618 intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y); 2619 intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height); 2620 } 2621 2622 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 2623 { 2624 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2625 struct drm_device *dev = crtc->base.dev; 2626 struct drm_i915_private *dev_priv = to_i915(dev); 2627 2628 if (!crtc_state->ips_enabled) 2629 return; 2630 2631 /* 2632 * We can only enable IPS after we enable a plane and wait for a vblank 2633 * This function is called from post_plane_update, which is run after 2634 * a vblank wait. 2635 */ 2636 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 2637 2638 if (IS_BROADWELL(dev_priv)) { 2639 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 2640 IPS_ENABLE | IPS_PCODE_CONTROL)); 2641 /* Quoting Art Runyan: "its not safe to expect any particular 2642 * value in IPS_CTL bit 31 after enabling IPS through the 2643 * mailbox." Moreover, the mailbox may return a bogus state, 2644 * so we need to just enable it and continue on. 2645 */ 2646 } else { 2647 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE); 2648 /* The bit only becomes 1 in the next vblank, so this wait here 2649 * is essentially intel_wait_for_vblank. If we don't have this 2650 * and don't wait for vblanks until the end of crtc_enable, then 2651 * the HW state readout code will complain that the expected 2652 * IPS_CTL value is not the one we read. */ 2653 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 2654 drm_err(&dev_priv->drm, 2655 "Timed out waiting for IPS enable\n"); 2656 } 2657 } 2658 2659 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 2660 { 2661 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2662 struct drm_device *dev = crtc->base.dev; 2663 struct drm_i915_private *dev_priv = to_i915(dev); 2664 2665 if (!crtc_state->ips_enabled) 2666 return; 2667 2668 if (IS_BROADWELL(dev_priv)) { 2669 drm_WARN_ON(dev, 2670 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 2671 /* 2672 * Wait for PCODE to finish disabling IPS. The BSpec specified 2673 * 42ms timeout value leads to occasional timeouts so use 100ms 2674 * instead. 2675 */ 2676 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 2677 drm_err(&dev_priv->drm, 2678 "Timed out waiting for IPS disable\n"); 2679 } else { 2680 intel_de_write(dev_priv, IPS_CTL, 0); 2681 intel_de_posting_read(dev_priv, IPS_CTL); 2682 } 2683 2684 /* We need to wait for a vblank before we can disable the plane. */ 2685 intel_wait_for_vblank(dev_priv, crtc->pipe); 2686 } 2687 2688 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) 2689 { 2690 if (intel_crtc->overlay) 2691 (void) intel_overlay_switch_off(intel_crtc->overlay); 2692 2693 /* Let userspace switch the overlay on again. In most cases userspace 2694 * has to recompute where to put it anyway. 2695 */ 2696 } 2697 2698 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 2699 const struct intel_crtc_state *new_crtc_state) 2700 { 2701 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 2702 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2703 2704 if (!old_crtc_state->ips_enabled) 2705 return false; 2706 2707 if (intel_crtc_needs_modeset(new_crtc_state)) 2708 return true; 2709 2710 /* 2711 * Workaround : Do not read or write the pipe palette/gamma data while 2712 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 2713 * 2714 * Disable IPS before we program the LUT. 2715 */ 2716 if (IS_HASWELL(dev_priv) && 2717 (new_crtc_state->uapi.color_mgmt_changed || 2718 new_crtc_state->update_pipe) && 2719 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 2720 return true; 2721 2722 return !new_crtc_state->ips_enabled; 2723 } 2724 2725 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 2726 const struct intel_crtc_state *new_crtc_state) 2727 { 2728 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 2729 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2730 2731 if (!new_crtc_state->ips_enabled) 2732 return false; 2733 2734 if (intel_crtc_needs_modeset(new_crtc_state)) 2735 return true; 2736 2737 /* 2738 * Workaround : Do not read or write the pipe palette/gamma data while 2739 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 2740 * 2741 * Re-enable IPS after the LUT has been programmed. 2742 */ 2743 if (IS_HASWELL(dev_priv) && 2744 (new_crtc_state->uapi.color_mgmt_changed || 2745 new_crtc_state->update_pipe) && 2746 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 2747 return true; 2748 2749 /* 2750 * We can't read out IPS on broadwell, assume the worst and 2751 * forcibly enable IPS on the first fastset. 2752 */ 2753 if (new_crtc_state->update_pipe && old_crtc_state->inherited) 2754 return true; 2755 2756 return !old_crtc_state->ips_enabled; 2757 } 2758 2759 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) 2760 { 2761 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 2762 2763 if (!crtc_state->nv12_planes) 2764 return false; 2765 2766 /* WA Display #0827: Gen9:all */ 2767 if (DISPLAY_VER(dev_priv) == 9) 2768 return true; 2769 2770 return false; 2771 } 2772 2773 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) 2774 { 2775 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 2776 2777 /* Wa_2006604312:icl,ehl */ 2778 if (crtc_state->scaler_state.scaler_users > 0 && DISPLAY_VER(dev_priv) == 11) 2779 return true; 2780 2781 return false; 2782 } 2783 2784 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, 2785 const struct intel_crtc_state *new_crtc_state) 2786 { 2787 return (!old_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)) && 2788 new_crtc_state->active_planes; 2789 } 2790 2791 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, 2792 const struct intel_crtc_state *new_crtc_state) 2793 { 2794 return old_crtc_state->active_planes && 2795 (!new_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)); 2796 } 2797 2798 static void intel_post_plane_update(struct intel_atomic_state *state, 2799 struct intel_crtc *crtc) 2800 { 2801 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2802 const struct intel_crtc_state *old_crtc_state = 2803 intel_atomic_get_old_crtc_state(state, crtc); 2804 const struct intel_crtc_state *new_crtc_state = 2805 intel_atomic_get_new_crtc_state(state, crtc); 2806 enum pipe pipe = crtc->pipe; 2807 2808 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); 2809 2810 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) 2811 intel_update_watermarks(crtc); 2812 2813 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state)) 2814 hsw_enable_ips(new_crtc_state); 2815 2816 intel_fbc_post_update(state, crtc); 2817 2818 if (needs_nv12_wa(old_crtc_state) && 2819 !needs_nv12_wa(new_crtc_state)) 2820 skl_wa_827(dev_priv, pipe, false); 2821 2822 if (needs_scalerclk_wa(old_crtc_state) && 2823 !needs_scalerclk_wa(new_crtc_state)) 2824 icl_wa_scalerclkgating(dev_priv, pipe, false); 2825 } 2826 2827 static void intel_crtc_enable_flip_done(struct intel_atomic_state *state, 2828 struct intel_crtc *crtc) 2829 { 2830 const struct intel_crtc_state *crtc_state = 2831 intel_atomic_get_new_crtc_state(state, crtc); 2832 u8 update_planes = crtc_state->update_planes; 2833 const struct intel_plane_state *plane_state; 2834 struct intel_plane *plane; 2835 int i; 2836 2837 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 2838 if (plane->enable_flip_done && 2839 plane->pipe == crtc->pipe && 2840 update_planes & BIT(plane->id)) 2841 plane->enable_flip_done(plane); 2842 } 2843 } 2844 2845 static void intel_crtc_disable_flip_done(struct intel_atomic_state *state, 2846 struct intel_crtc *crtc) 2847 { 2848 const struct intel_crtc_state *crtc_state = 2849 intel_atomic_get_new_crtc_state(state, crtc); 2850 u8 update_planes = crtc_state->update_planes; 2851 const struct intel_plane_state *plane_state; 2852 struct intel_plane *plane; 2853 int i; 2854 2855 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 2856 if (plane->disable_flip_done && 2857 plane->pipe == crtc->pipe && 2858 update_planes & BIT(plane->id)) 2859 plane->disable_flip_done(plane); 2860 } 2861 } 2862 2863 static void intel_crtc_async_flip_disable_wa(struct intel_atomic_state *state, 2864 struct intel_crtc *crtc) 2865 { 2866 struct drm_i915_private *i915 = to_i915(state->base.dev); 2867 const struct intel_crtc_state *old_crtc_state = 2868 intel_atomic_get_old_crtc_state(state, crtc); 2869 const struct intel_crtc_state *new_crtc_state = 2870 intel_atomic_get_new_crtc_state(state, crtc); 2871 u8 update_planes = new_crtc_state->update_planes; 2872 const struct intel_plane_state *old_plane_state; 2873 struct intel_plane *plane; 2874 bool need_vbl_wait = false; 2875 int i; 2876 2877 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 2878 if (plane->need_async_flip_disable_wa && 2879 plane->pipe == crtc->pipe && 2880 update_planes & BIT(plane->id)) { 2881 /* 2882 * Apart from the async flip bit we want to 2883 * preserve the old state for the plane. 2884 */ 2885 plane->async_flip(plane, old_crtc_state, 2886 old_plane_state, false); 2887 need_vbl_wait = true; 2888 } 2889 } 2890 2891 if (need_vbl_wait) 2892 intel_wait_for_vblank(i915, crtc->pipe); 2893 } 2894 2895 static void intel_pre_plane_update(struct intel_atomic_state *state, 2896 struct intel_crtc *crtc) 2897 { 2898 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2899 const struct intel_crtc_state *old_crtc_state = 2900 intel_atomic_get_old_crtc_state(state, crtc); 2901 const struct intel_crtc_state *new_crtc_state = 2902 intel_atomic_get_new_crtc_state(state, crtc); 2903 enum pipe pipe = crtc->pipe; 2904 2905 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state)) 2906 hsw_disable_ips(old_crtc_state); 2907 2908 if (intel_fbc_pre_update(state, crtc)) 2909 intel_wait_for_vblank(dev_priv, pipe); 2910 2911 /* Display WA 827 */ 2912 if (!needs_nv12_wa(old_crtc_state) && 2913 needs_nv12_wa(new_crtc_state)) 2914 skl_wa_827(dev_priv, pipe, true); 2915 2916 /* Wa_2006604312:icl,ehl */ 2917 if (!needs_scalerclk_wa(old_crtc_state) && 2918 needs_scalerclk_wa(new_crtc_state)) 2919 icl_wa_scalerclkgating(dev_priv, pipe, true); 2920 2921 /* 2922 * Vblank time updates from the shadow to live plane control register 2923 * are blocked if the memory self-refresh mode is active at that 2924 * moment. So to make sure the plane gets truly disabled, disable 2925 * first the self-refresh mode. The self-refresh enable bit in turn 2926 * will be checked/applied by the HW only at the next frame start 2927 * event which is after the vblank start event, so we need to have a 2928 * wait-for-vblank between disabling the plane and the pipe. 2929 */ 2930 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active && 2931 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 2932 intel_wait_for_vblank(dev_priv, pipe); 2933 2934 /* 2935 * IVB workaround: must disable low power watermarks for at least 2936 * one frame before enabling scaling. LP watermarks can be re-enabled 2937 * when scaling is disabled. 2938 * 2939 * WaCxSRDisabledForSpriteScaling:ivb 2940 */ 2941 if (old_crtc_state->hw.active && 2942 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv)) 2943 intel_wait_for_vblank(dev_priv, pipe); 2944 2945 /* 2946 * If we're doing a modeset we don't need to do any 2947 * pre-vblank watermark programming here. 2948 */ 2949 if (!intel_crtc_needs_modeset(new_crtc_state)) { 2950 /* 2951 * For platforms that support atomic watermarks, program the 2952 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 2953 * will be the intermediate values that are safe for both pre- and 2954 * post- vblank; when vblank happens, the 'active' values will be set 2955 * to the final 'target' values and we'll do this again to get the 2956 * optimal watermarks. For gen9+ platforms, the values we program here 2957 * will be the final target values which will get automatically latched 2958 * at vblank time; no further programming will be necessary. 2959 * 2960 * If a platform hasn't been transitioned to atomic watermarks yet, 2961 * we'll continue to update watermarks the old way, if flags tell 2962 * us to. 2963 */ 2964 if (dev_priv->display.initial_watermarks) 2965 dev_priv->display.initial_watermarks(state, crtc); 2966 else if (new_crtc_state->update_wm_pre) 2967 intel_update_watermarks(crtc); 2968 } 2969 2970 /* 2971 * Gen2 reports pipe underruns whenever all planes are disabled. 2972 * So disable underrun reporting before all the planes get disabled. 2973 * 2974 * We do this after .initial_watermarks() so that we have a 2975 * chance of catching underruns with the intermediate watermarks 2976 * vs. the old plane configuration. 2977 */ 2978 if (DISPLAY_VER(dev_priv) == 2 && planes_disabling(old_crtc_state, new_crtc_state)) 2979 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 2980 2981 /* 2982 * WA for platforms where async address update enable bit 2983 * is double buffered and only latched at start of vblank. 2984 */ 2985 if (old_crtc_state->uapi.async_flip && !new_crtc_state->uapi.async_flip) 2986 intel_crtc_async_flip_disable_wa(state, crtc); 2987 } 2988 2989 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 2990 struct intel_crtc *crtc) 2991 { 2992 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2993 const struct intel_crtc_state *new_crtc_state = 2994 intel_atomic_get_new_crtc_state(state, crtc); 2995 unsigned int update_mask = new_crtc_state->update_planes; 2996 const struct intel_plane_state *old_plane_state; 2997 struct intel_plane *plane; 2998 unsigned fb_bits = 0; 2999 int i; 3000 3001 intel_crtc_dpms_overlay_disable(crtc); 3002 3003 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 3004 if (crtc->pipe != plane->pipe || 3005 !(update_mask & BIT(plane->id))) 3006 continue; 3007 3008 intel_disable_plane(plane, new_crtc_state); 3009 3010 if (old_plane_state->uapi.visible) 3011 fb_bits |= plane->frontbuffer_bit; 3012 } 3013 3014 intel_frontbuffer_flip(dev_priv, fb_bits); 3015 } 3016 3017 /* 3018 * intel_connector_primary_encoder - get the primary encoder for a connector 3019 * @connector: connector for which to return the encoder 3020 * 3021 * Returns the primary encoder for a connector. There is a 1:1 mapping from 3022 * all connectors to their encoder, except for DP-MST connectors which have 3023 * both a virtual and a primary encoder. These DP-MST primary encoders can be 3024 * pointed to by as many DP-MST connectors as there are pipes. 3025 */ 3026 static struct intel_encoder * 3027 intel_connector_primary_encoder(struct intel_connector *connector) 3028 { 3029 struct intel_encoder *encoder; 3030 3031 if (connector->mst_port) 3032 return &dp_to_dig_port(connector->mst_port)->base; 3033 3034 encoder = intel_attached_encoder(connector); 3035 drm_WARN_ON(connector->base.dev, !encoder); 3036 3037 return encoder; 3038 } 3039 3040 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 3041 { 3042 struct drm_connector_state *new_conn_state; 3043 struct drm_connector *connector; 3044 int i; 3045 3046 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 3047 i) { 3048 struct intel_connector *intel_connector; 3049 struct intel_encoder *encoder; 3050 struct intel_crtc *crtc; 3051 3052 if (!intel_connector_needs_modeset(state, connector)) 3053 continue; 3054 3055 intel_connector = to_intel_connector(connector); 3056 encoder = intel_connector_primary_encoder(intel_connector); 3057 if (!encoder->update_prepare) 3058 continue; 3059 3060 crtc = new_conn_state->crtc ? 3061 to_intel_crtc(new_conn_state->crtc) : NULL; 3062 encoder->update_prepare(state, encoder, crtc); 3063 } 3064 } 3065 3066 static void intel_encoders_update_complete(struct intel_atomic_state *state) 3067 { 3068 struct drm_connector_state *new_conn_state; 3069 struct drm_connector *connector; 3070 int i; 3071 3072 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 3073 i) { 3074 struct intel_connector *intel_connector; 3075 struct intel_encoder *encoder; 3076 struct intel_crtc *crtc; 3077 3078 if (!intel_connector_needs_modeset(state, connector)) 3079 continue; 3080 3081 intel_connector = to_intel_connector(connector); 3082 encoder = intel_connector_primary_encoder(intel_connector); 3083 if (!encoder->update_complete) 3084 continue; 3085 3086 crtc = new_conn_state->crtc ? 3087 to_intel_crtc(new_conn_state->crtc) : NULL; 3088 encoder->update_complete(state, encoder, crtc); 3089 } 3090 } 3091 3092 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, 3093 struct intel_crtc *crtc) 3094 { 3095 const struct intel_crtc_state *crtc_state = 3096 intel_atomic_get_new_crtc_state(state, crtc); 3097 const struct drm_connector_state *conn_state; 3098 struct drm_connector *conn; 3099 int i; 3100 3101 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3102 struct intel_encoder *encoder = 3103 to_intel_encoder(conn_state->best_encoder); 3104 3105 if (conn_state->crtc != &crtc->base) 3106 continue; 3107 3108 if (encoder->pre_pll_enable) 3109 encoder->pre_pll_enable(state, encoder, 3110 crtc_state, conn_state); 3111 } 3112 } 3113 3114 static void intel_encoders_pre_enable(struct intel_atomic_state *state, 3115 struct intel_crtc *crtc) 3116 { 3117 const struct intel_crtc_state *crtc_state = 3118 intel_atomic_get_new_crtc_state(state, crtc); 3119 const struct drm_connector_state *conn_state; 3120 struct drm_connector *conn; 3121 int i; 3122 3123 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3124 struct intel_encoder *encoder = 3125 to_intel_encoder(conn_state->best_encoder); 3126 3127 if (conn_state->crtc != &crtc->base) 3128 continue; 3129 3130 if (encoder->pre_enable) 3131 encoder->pre_enable(state, encoder, 3132 crtc_state, conn_state); 3133 } 3134 } 3135 3136 static void intel_encoders_enable(struct intel_atomic_state *state, 3137 struct intel_crtc *crtc) 3138 { 3139 const struct intel_crtc_state *crtc_state = 3140 intel_atomic_get_new_crtc_state(state, crtc); 3141 const struct drm_connector_state *conn_state; 3142 struct drm_connector *conn; 3143 int i; 3144 3145 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3146 struct intel_encoder *encoder = 3147 to_intel_encoder(conn_state->best_encoder); 3148 3149 if (conn_state->crtc != &crtc->base) 3150 continue; 3151 3152 if (encoder->enable) 3153 encoder->enable(state, encoder, 3154 crtc_state, conn_state); 3155 intel_opregion_notify_encoder(encoder, true); 3156 } 3157 } 3158 3159 static void intel_encoders_disable(struct intel_atomic_state *state, 3160 struct intel_crtc *crtc) 3161 { 3162 const struct intel_crtc_state *old_crtc_state = 3163 intel_atomic_get_old_crtc_state(state, crtc); 3164 const struct drm_connector_state *old_conn_state; 3165 struct drm_connector *conn; 3166 int i; 3167 3168 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3169 struct intel_encoder *encoder = 3170 to_intel_encoder(old_conn_state->best_encoder); 3171 3172 if (old_conn_state->crtc != &crtc->base) 3173 continue; 3174 3175 intel_opregion_notify_encoder(encoder, false); 3176 if (encoder->disable) 3177 encoder->disable(state, encoder, 3178 old_crtc_state, old_conn_state); 3179 } 3180 } 3181 3182 static void intel_encoders_post_disable(struct intel_atomic_state *state, 3183 struct intel_crtc *crtc) 3184 { 3185 const struct intel_crtc_state *old_crtc_state = 3186 intel_atomic_get_old_crtc_state(state, crtc); 3187 const struct drm_connector_state *old_conn_state; 3188 struct drm_connector *conn; 3189 int i; 3190 3191 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3192 struct intel_encoder *encoder = 3193 to_intel_encoder(old_conn_state->best_encoder); 3194 3195 if (old_conn_state->crtc != &crtc->base) 3196 continue; 3197 3198 if (encoder->post_disable) 3199 encoder->post_disable(state, encoder, 3200 old_crtc_state, old_conn_state); 3201 } 3202 } 3203 3204 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, 3205 struct intel_crtc *crtc) 3206 { 3207 const struct intel_crtc_state *old_crtc_state = 3208 intel_atomic_get_old_crtc_state(state, crtc); 3209 const struct drm_connector_state *old_conn_state; 3210 struct drm_connector *conn; 3211 int i; 3212 3213 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3214 struct intel_encoder *encoder = 3215 to_intel_encoder(old_conn_state->best_encoder); 3216 3217 if (old_conn_state->crtc != &crtc->base) 3218 continue; 3219 3220 if (encoder->post_pll_disable) 3221 encoder->post_pll_disable(state, encoder, 3222 old_crtc_state, old_conn_state); 3223 } 3224 } 3225 3226 static void intel_encoders_update_pipe(struct intel_atomic_state *state, 3227 struct intel_crtc *crtc) 3228 { 3229 const struct intel_crtc_state *crtc_state = 3230 intel_atomic_get_new_crtc_state(state, crtc); 3231 const struct drm_connector_state *conn_state; 3232 struct drm_connector *conn; 3233 int i; 3234 3235 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3236 struct intel_encoder *encoder = 3237 to_intel_encoder(conn_state->best_encoder); 3238 3239 if (conn_state->crtc != &crtc->base) 3240 continue; 3241 3242 if (encoder->update_pipe) 3243 encoder->update_pipe(state, encoder, 3244 crtc_state, conn_state); 3245 } 3246 } 3247 3248 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 3249 { 3250 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3251 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 3252 3253 plane->disable_plane(plane, crtc_state); 3254 } 3255 3256 static void ilk_crtc_enable(struct intel_atomic_state *state, 3257 struct intel_crtc *crtc) 3258 { 3259 const struct intel_crtc_state *new_crtc_state = 3260 intel_atomic_get_new_crtc_state(state, crtc); 3261 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3262 enum pipe pipe = crtc->pipe; 3263 3264 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3265 return; 3266 3267 /* 3268 * Sometimes spurious CPU pipe underruns happen during FDI 3269 * training, at least with VGA+HDMI cloning. Suppress them. 3270 * 3271 * On ILK we get an occasional spurious CPU pipe underruns 3272 * between eDP port A enable and vdd enable. Also PCH port 3273 * enable seems to result in the occasional CPU pipe underrun. 3274 * 3275 * Spurious PCH underruns also occur during PCH enabling. 3276 */ 3277 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3278 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 3279 3280 if (new_crtc_state->has_pch_encoder) 3281 intel_prepare_shared_dpll(new_crtc_state); 3282 3283 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3284 intel_dp_set_m_n(new_crtc_state, M1_N1); 3285 3286 intel_set_transcoder_timings(new_crtc_state); 3287 intel_set_pipe_src_size(new_crtc_state); 3288 3289 if (new_crtc_state->has_pch_encoder) 3290 intel_cpu_transcoder_set_m_n(new_crtc_state, 3291 &new_crtc_state->fdi_m_n, NULL); 3292 3293 ilk_set_pipeconf(new_crtc_state); 3294 3295 crtc->active = true; 3296 3297 intel_encoders_pre_enable(state, crtc); 3298 3299 if (new_crtc_state->has_pch_encoder) { 3300 /* Note: FDI PLL enabling _must_ be done before we enable the 3301 * cpu pipes, hence this is separate from all the other fdi/pch 3302 * enabling. */ 3303 ilk_fdi_pll_enable(new_crtc_state); 3304 } else { 3305 assert_fdi_tx_disabled(dev_priv, pipe); 3306 assert_fdi_rx_disabled(dev_priv, pipe); 3307 } 3308 3309 ilk_pfit_enable(new_crtc_state); 3310 3311 /* 3312 * On ILK+ LUT must be loaded before the pipe is running but with 3313 * clocks enabled 3314 */ 3315 intel_color_load_luts(new_crtc_state); 3316 intel_color_commit(new_crtc_state); 3317 /* update DSPCNTR to configure gamma for pipe bottom color */ 3318 intel_disable_primary_plane(new_crtc_state); 3319 3320 if (dev_priv->display.initial_watermarks) 3321 dev_priv->display.initial_watermarks(state, crtc); 3322 intel_enable_pipe(new_crtc_state); 3323 3324 if (new_crtc_state->has_pch_encoder) 3325 ilk_pch_enable(state, new_crtc_state); 3326 3327 intel_crtc_vblank_on(new_crtc_state); 3328 3329 intel_encoders_enable(state, crtc); 3330 3331 if (HAS_PCH_CPT(dev_priv)) 3332 cpt_verify_modeset(dev_priv, pipe); 3333 3334 /* 3335 * Must wait for vblank to avoid spurious PCH FIFO underruns. 3336 * And a second vblank wait is needed at least on ILK with 3337 * some interlaced HDMI modes. Let's do the double wait always 3338 * in case there are more corner cases we don't know about. 3339 */ 3340 if (new_crtc_state->has_pch_encoder) { 3341 intel_wait_for_vblank(dev_priv, pipe); 3342 intel_wait_for_vblank(dev_priv, pipe); 3343 } 3344 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3345 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 3346 } 3347 3348 /* IPS only exists on ULT machines and is tied to pipe A. */ 3349 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 3350 { 3351 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 3352 } 3353 3354 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 3355 enum pipe pipe, bool apply) 3356 { 3357 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)); 3358 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 3359 3360 if (apply) 3361 val |= mask; 3362 else 3363 val &= ~mask; 3364 3365 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val); 3366 } 3367 3368 static void icl_pipe_mbus_enable(struct intel_crtc *crtc) 3369 { 3370 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3371 enum pipe pipe = crtc->pipe; 3372 u32 val; 3373 3374 val = MBUS_DBOX_A_CREDIT(2); 3375 3376 if (DISPLAY_VER(dev_priv) >= 12) { 3377 val |= MBUS_DBOX_BW_CREDIT(2); 3378 val |= MBUS_DBOX_B_CREDIT(12); 3379 } else { 3380 val |= MBUS_DBOX_BW_CREDIT(1); 3381 val |= MBUS_DBOX_B_CREDIT(8); 3382 } 3383 3384 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val); 3385 } 3386 3387 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) 3388 { 3389 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3390 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3391 3392 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe), 3393 HSW_LINETIME(crtc_state->linetime) | 3394 HSW_IPS_LINETIME(crtc_state->ips_linetime)); 3395 } 3396 3397 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) 3398 { 3399 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3400 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3401 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder); 3402 u32 val; 3403 3404 val = intel_de_read(dev_priv, reg); 3405 val &= ~HSW_FRAME_START_DELAY_MASK; 3406 val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 3407 intel_de_write(dev_priv, reg, val); 3408 } 3409 3410 static void icl_ddi_bigjoiner_pre_enable(struct intel_atomic_state *state, 3411 const struct intel_crtc_state *crtc_state) 3412 { 3413 struct intel_crtc *master = to_intel_crtc(crtc_state->uapi.crtc); 3414 struct drm_i915_private *dev_priv = to_i915(master->base.dev); 3415 struct intel_crtc_state *master_crtc_state; 3416 struct drm_connector_state *conn_state; 3417 struct drm_connector *conn; 3418 struct intel_encoder *encoder = NULL; 3419 int i; 3420 3421 if (crtc_state->bigjoiner_slave) 3422 master = crtc_state->bigjoiner_linked_crtc; 3423 3424 master_crtc_state = intel_atomic_get_new_crtc_state(state, master); 3425 3426 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3427 if (conn_state->crtc != &master->base) 3428 continue; 3429 3430 encoder = to_intel_encoder(conn_state->best_encoder); 3431 break; 3432 } 3433 3434 if (!crtc_state->bigjoiner_slave) { 3435 /* need to enable VDSC, which we skipped in pre-enable */ 3436 intel_dsc_enable(encoder, crtc_state); 3437 } else { 3438 /* 3439 * Enable sequence steps 1-7 on bigjoiner master 3440 */ 3441 intel_encoders_pre_pll_enable(state, master); 3442 intel_enable_shared_dpll(master_crtc_state); 3443 intel_encoders_pre_enable(state, master); 3444 3445 /* and DSC on slave */ 3446 intel_dsc_enable(NULL, crtc_state); 3447 } 3448 3449 if (DISPLAY_VER(dev_priv) >= 13) 3450 intel_uncompressed_joiner_enable(crtc_state); 3451 } 3452 3453 static void hsw_crtc_enable(struct intel_atomic_state *state, 3454 struct intel_crtc *crtc) 3455 { 3456 const struct intel_crtc_state *new_crtc_state = 3457 intel_atomic_get_new_crtc_state(state, crtc); 3458 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3459 enum pipe pipe = crtc->pipe, hsw_workaround_pipe; 3460 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 3461 bool psl_clkgate_wa; 3462 3463 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3464 return; 3465 3466 if (!new_crtc_state->bigjoiner) { 3467 intel_encoders_pre_pll_enable(state, crtc); 3468 3469 if (new_crtc_state->shared_dpll) 3470 intel_enable_shared_dpll(new_crtc_state); 3471 3472 intel_encoders_pre_enable(state, crtc); 3473 } else { 3474 icl_ddi_bigjoiner_pre_enable(state, new_crtc_state); 3475 } 3476 3477 intel_set_pipe_src_size(new_crtc_state); 3478 if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 3479 bdw_set_pipemisc(new_crtc_state); 3480 3481 if (!new_crtc_state->bigjoiner_slave && !transcoder_is_dsi(cpu_transcoder)) { 3482 intel_set_transcoder_timings(new_crtc_state); 3483 3484 if (cpu_transcoder != TRANSCODER_EDP) 3485 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder), 3486 new_crtc_state->pixel_multiplier - 1); 3487 3488 if (new_crtc_state->has_pch_encoder) 3489 intel_cpu_transcoder_set_m_n(new_crtc_state, 3490 &new_crtc_state->fdi_m_n, NULL); 3491 3492 hsw_set_frame_start_delay(new_crtc_state); 3493 } 3494 3495 if (!transcoder_is_dsi(cpu_transcoder)) 3496 hsw_set_pipeconf(new_crtc_state); 3497 3498 crtc->active = true; 3499 3500 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */ 3501 psl_clkgate_wa = DISPLAY_VER(dev_priv) == 10 && 3502 new_crtc_state->pch_pfit.enabled; 3503 if (psl_clkgate_wa) 3504 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 3505 3506 if (DISPLAY_VER(dev_priv) >= 9) 3507 skl_pfit_enable(new_crtc_state); 3508 else 3509 ilk_pfit_enable(new_crtc_state); 3510 3511 /* 3512 * On ILK+ LUT must be loaded before the pipe is running but with 3513 * clocks enabled 3514 */ 3515 intel_color_load_luts(new_crtc_state); 3516 intel_color_commit(new_crtc_state); 3517 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 3518 if (DISPLAY_VER(dev_priv) < 9) 3519 intel_disable_primary_plane(new_crtc_state); 3520 3521 hsw_set_linetime_wm(new_crtc_state); 3522 3523 if (DISPLAY_VER(dev_priv) >= 11) 3524 icl_set_pipe_chicken(crtc); 3525 3526 if (dev_priv->display.initial_watermarks) 3527 dev_priv->display.initial_watermarks(state, crtc); 3528 3529 if (DISPLAY_VER(dev_priv) >= 11) 3530 icl_pipe_mbus_enable(crtc); 3531 3532 if (new_crtc_state->bigjoiner_slave) 3533 intel_crtc_vblank_on(new_crtc_state); 3534 3535 intel_encoders_enable(state, crtc); 3536 3537 if (psl_clkgate_wa) { 3538 intel_wait_for_vblank(dev_priv, pipe); 3539 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 3540 } 3541 3542 /* If we change the relative order between pipe/planes enabling, we need 3543 * to change the workaround. */ 3544 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe; 3545 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 3546 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 3547 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 3548 } 3549 } 3550 3551 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state) 3552 { 3553 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 3554 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3555 enum pipe pipe = crtc->pipe; 3556 3557 /* To avoid upsetting the power well on haswell only disable the pfit if 3558 * it's in use. The hw state code will make sure we get this right. */ 3559 if (!old_crtc_state->pch_pfit.enabled) 3560 return; 3561 3562 intel_de_write(dev_priv, PF_CTL(pipe), 0); 3563 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0); 3564 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0); 3565 } 3566 3567 static void ilk_crtc_disable(struct intel_atomic_state *state, 3568 struct intel_crtc *crtc) 3569 { 3570 const struct intel_crtc_state *old_crtc_state = 3571 intel_atomic_get_old_crtc_state(state, crtc); 3572 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3573 enum pipe pipe = crtc->pipe; 3574 3575 /* 3576 * Sometimes spurious CPU pipe underruns happen when the 3577 * pipe is already disabled, but FDI RX/TX is still enabled. 3578 * Happens at least with VGA+HDMI cloning. Suppress them. 3579 */ 3580 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3581 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 3582 3583 intel_encoders_disable(state, crtc); 3584 3585 intel_crtc_vblank_off(old_crtc_state); 3586 3587 intel_disable_pipe(old_crtc_state); 3588 3589 ilk_pfit_disable(old_crtc_state); 3590 3591 if (old_crtc_state->has_pch_encoder) 3592 ilk_fdi_disable(crtc); 3593 3594 intel_encoders_post_disable(state, crtc); 3595 3596 if (old_crtc_state->has_pch_encoder) { 3597 ilk_disable_pch_transcoder(dev_priv, pipe); 3598 3599 if (HAS_PCH_CPT(dev_priv)) { 3600 i915_reg_t reg; 3601 u32 temp; 3602 3603 /* disable TRANS_DP_CTL */ 3604 reg = TRANS_DP_CTL(pipe); 3605 temp = intel_de_read(dev_priv, reg); 3606 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 3607 TRANS_DP_PORT_SEL_MASK); 3608 temp |= TRANS_DP_PORT_SEL_NONE; 3609 intel_de_write(dev_priv, reg, temp); 3610 3611 /* disable DPLL_SEL */ 3612 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 3613 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 3614 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 3615 } 3616 3617 ilk_fdi_pll_disable(crtc); 3618 } 3619 3620 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3621 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 3622 } 3623 3624 static void hsw_crtc_disable(struct intel_atomic_state *state, 3625 struct intel_crtc *crtc) 3626 { 3627 /* 3628 * FIXME collapse everything to one hook. 3629 * Need care with mst->ddi interactions. 3630 */ 3631 intel_encoders_disable(state, crtc); 3632 intel_encoders_post_disable(state, crtc); 3633 } 3634 3635 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 3636 { 3637 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3638 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3639 3640 if (!crtc_state->gmch_pfit.control) 3641 return; 3642 3643 /* 3644 * The panel fitter should only be adjusted whilst the pipe is disabled, 3645 * according to register description and PRM. 3646 */ 3647 drm_WARN_ON(&dev_priv->drm, 3648 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE); 3649 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 3650 3651 intel_de_write(dev_priv, PFIT_PGM_RATIOS, 3652 crtc_state->gmch_pfit.pgm_ratios); 3653 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control); 3654 3655 /* Border color in case we don't scale up to the full screen. Black by 3656 * default, change to something else for debugging. */ 3657 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0); 3658 } 3659 3660 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 3661 { 3662 if (phy == PHY_NONE) 3663 return false; 3664 else if (IS_ALDERLAKE_S(dev_priv)) 3665 return phy <= PHY_E; 3666 else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) 3667 return phy <= PHY_D; 3668 else if (IS_JSL_EHL(dev_priv)) 3669 return phy <= PHY_C; 3670 else if (DISPLAY_VER(dev_priv) >= 11) 3671 return phy <= PHY_B; 3672 else 3673 return false; 3674 } 3675 3676 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 3677 { 3678 if (IS_TIGERLAKE(dev_priv)) 3679 return phy >= PHY_D && phy <= PHY_I; 3680 else if (IS_ICELAKE(dev_priv)) 3681 return phy >= PHY_C && phy <= PHY_F; 3682 else 3683 return false; 3684 } 3685 3686 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 3687 { 3688 if (DISPLAY_VER(i915) >= 13 && port >= PORT_D_XELPD) 3689 return PHY_D + port - PORT_D_XELPD; 3690 else if (DISPLAY_VER(i915) >= 13 && port >= PORT_TC1) 3691 return PHY_F + port - PORT_TC1; 3692 else if (IS_ALDERLAKE_S(i915) && port >= PORT_TC1) 3693 return PHY_B + port - PORT_TC1; 3694 else if ((IS_DG1(i915) || IS_ROCKETLAKE(i915)) && port >= PORT_TC1) 3695 return PHY_C + port - PORT_TC1; 3696 else if (IS_JSL_EHL(i915) && port == PORT_D) 3697 return PHY_A; 3698 3699 return PHY_A + port - PORT_A; 3700 } 3701 3702 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 3703 { 3704 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 3705 return TC_PORT_NONE; 3706 3707 if (DISPLAY_VER(dev_priv) >= 12) 3708 return TC_PORT_1 + port - PORT_TC1; 3709 else 3710 return TC_PORT_1 + port - PORT_C; 3711 } 3712 3713 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 3714 { 3715 switch (port) { 3716 case PORT_A: 3717 return POWER_DOMAIN_PORT_DDI_A_LANES; 3718 case PORT_B: 3719 return POWER_DOMAIN_PORT_DDI_B_LANES; 3720 case PORT_C: 3721 return POWER_DOMAIN_PORT_DDI_C_LANES; 3722 case PORT_D: 3723 return POWER_DOMAIN_PORT_DDI_D_LANES; 3724 case PORT_E: 3725 return POWER_DOMAIN_PORT_DDI_E_LANES; 3726 case PORT_F: 3727 return POWER_DOMAIN_PORT_DDI_F_LANES; 3728 case PORT_G: 3729 return POWER_DOMAIN_PORT_DDI_G_LANES; 3730 case PORT_H: 3731 return POWER_DOMAIN_PORT_DDI_H_LANES; 3732 case PORT_I: 3733 return POWER_DOMAIN_PORT_DDI_I_LANES; 3734 default: 3735 MISSING_CASE(port); 3736 return POWER_DOMAIN_PORT_OTHER; 3737 } 3738 } 3739 3740 enum intel_display_power_domain 3741 intel_aux_power_domain(struct intel_digital_port *dig_port) 3742 { 3743 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 3744 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 3745 3746 if (intel_phy_is_tc(dev_priv, phy) && 3747 dig_port->tc_mode == TC_PORT_TBT_ALT) { 3748 switch (dig_port->aux_ch) { 3749 case AUX_CH_C: 3750 return POWER_DOMAIN_AUX_C_TBT; 3751 case AUX_CH_D: 3752 return POWER_DOMAIN_AUX_D_TBT; 3753 case AUX_CH_E: 3754 return POWER_DOMAIN_AUX_E_TBT; 3755 case AUX_CH_F: 3756 return POWER_DOMAIN_AUX_F_TBT; 3757 case AUX_CH_G: 3758 return POWER_DOMAIN_AUX_G_TBT; 3759 case AUX_CH_H: 3760 return POWER_DOMAIN_AUX_H_TBT; 3761 case AUX_CH_I: 3762 return POWER_DOMAIN_AUX_I_TBT; 3763 default: 3764 MISSING_CASE(dig_port->aux_ch); 3765 return POWER_DOMAIN_AUX_C_TBT; 3766 } 3767 } 3768 3769 return intel_legacy_aux_to_power_domain(dig_port->aux_ch); 3770 } 3771 3772 /* 3773 * Converts aux_ch to power_domain without caring about TBT ports for that use 3774 * intel_aux_power_domain() 3775 */ 3776 enum intel_display_power_domain 3777 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch) 3778 { 3779 switch (aux_ch) { 3780 case AUX_CH_A: 3781 return POWER_DOMAIN_AUX_A; 3782 case AUX_CH_B: 3783 return POWER_DOMAIN_AUX_B; 3784 case AUX_CH_C: 3785 return POWER_DOMAIN_AUX_C; 3786 case AUX_CH_D: 3787 return POWER_DOMAIN_AUX_D; 3788 case AUX_CH_E: 3789 return POWER_DOMAIN_AUX_E; 3790 case AUX_CH_F: 3791 return POWER_DOMAIN_AUX_F; 3792 case AUX_CH_G: 3793 return POWER_DOMAIN_AUX_G; 3794 case AUX_CH_H: 3795 return POWER_DOMAIN_AUX_H; 3796 case AUX_CH_I: 3797 return POWER_DOMAIN_AUX_I; 3798 default: 3799 MISSING_CASE(aux_ch); 3800 return POWER_DOMAIN_AUX_A; 3801 } 3802 } 3803 3804 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 3805 { 3806 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3807 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3808 struct drm_encoder *encoder; 3809 enum pipe pipe = crtc->pipe; 3810 u64 mask; 3811 enum transcoder transcoder = crtc_state->cpu_transcoder; 3812 3813 if (!crtc_state->hw.active) 3814 return 0; 3815 3816 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 3817 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); 3818 if (crtc_state->pch_pfit.enabled || 3819 crtc_state->pch_pfit.force_thru) 3820 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 3821 3822 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 3823 crtc_state->uapi.encoder_mask) { 3824 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 3825 3826 mask |= BIT_ULL(intel_encoder->power_domain); 3827 } 3828 3829 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 3830 mask |= BIT_ULL(POWER_DOMAIN_AUDIO); 3831 3832 if (crtc_state->shared_dpll) 3833 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 3834 3835 if (crtc_state->dsc.compression_enable) 3836 mask |= BIT_ULL(intel_dsc_power_domain(crtc_state)); 3837 3838 return mask; 3839 } 3840 3841 static u64 3842 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 3843 { 3844 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3845 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3846 enum intel_display_power_domain domain; 3847 u64 domains, new_domains, old_domains; 3848 3849 domains = get_crtc_power_domains(crtc_state); 3850 3851 new_domains = domains & ~crtc->enabled_power_domains.mask; 3852 old_domains = crtc->enabled_power_domains.mask & ~domains; 3853 3854 for_each_power_domain(domain, new_domains) 3855 intel_display_power_get_in_set(dev_priv, 3856 &crtc->enabled_power_domains, 3857 domain); 3858 3859 return old_domains; 3860 } 3861 3862 static void modeset_put_crtc_power_domains(struct intel_crtc *crtc, 3863 u64 domains) 3864 { 3865 intel_display_power_put_mask_in_set(to_i915(crtc->base.dev), 3866 &crtc->enabled_power_domains, 3867 domains); 3868 } 3869 3870 static void valleyview_crtc_enable(struct intel_atomic_state *state, 3871 struct intel_crtc *crtc) 3872 { 3873 const struct intel_crtc_state *new_crtc_state = 3874 intel_atomic_get_new_crtc_state(state, crtc); 3875 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3876 enum pipe pipe = crtc->pipe; 3877 3878 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3879 return; 3880 3881 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3882 intel_dp_set_m_n(new_crtc_state, M1_N1); 3883 3884 intel_set_transcoder_timings(new_crtc_state); 3885 intel_set_pipe_src_size(new_crtc_state); 3886 3887 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 3888 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY); 3889 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0); 3890 } 3891 3892 i9xx_set_pipeconf(new_crtc_state); 3893 3894 crtc->active = true; 3895 3896 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3897 3898 intel_encoders_pre_pll_enable(state, crtc); 3899 3900 if (IS_CHERRYVIEW(dev_priv)) { 3901 chv_prepare_pll(crtc, new_crtc_state); 3902 chv_enable_pll(crtc, new_crtc_state); 3903 } else { 3904 vlv_prepare_pll(crtc, new_crtc_state); 3905 vlv_enable_pll(crtc, new_crtc_state); 3906 } 3907 3908 intel_encoders_pre_enable(state, crtc); 3909 3910 i9xx_pfit_enable(new_crtc_state); 3911 3912 intel_color_load_luts(new_crtc_state); 3913 intel_color_commit(new_crtc_state); 3914 /* update DSPCNTR to configure gamma for pipe bottom color */ 3915 intel_disable_primary_plane(new_crtc_state); 3916 3917 dev_priv->display.initial_watermarks(state, crtc); 3918 intel_enable_pipe(new_crtc_state); 3919 3920 intel_crtc_vblank_on(new_crtc_state); 3921 3922 intel_encoders_enable(state, crtc); 3923 } 3924 3925 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) 3926 { 3927 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3928 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3929 3930 intel_de_write(dev_priv, FP0(crtc->pipe), 3931 crtc_state->dpll_hw_state.fp0); 3932 intel_de_write(dev_priv, FP1(crtc->pipe), 3933 crtc_state->dpll_hw_state.fp1); 3934 } 3935 3936 static void i9xx_crtc_enable(struct intel_atomic_state *state, 3937 struct intel_crtc *crtc) 3938 { 3939 const struct intel_crtc_state *new_crtc_state = 3940 intel_atomic_get_new_crtc_state(state, crtc); 3941 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3942 enum pipe pipe = crtc->pipe; 3943 3944 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3945 return; 3946 3947 i9xx_set_pll_dividers(new_crtc_state); 3948 3949 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3950 intel_dp_set_m_n(new_crtc_state, M1_N1); 3951 3952 intel_set_transcoder_timings(new_crtc_state); 3953 intel_set_pipe_src_size(new_crtc_state); 3954 3955 i9xx_set_pipeconf(new_crtc_state); 3956 3957 crtc->active = true; 3958 3959 if (DISPLAY_VER(dev_priv) != 2) 3960 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3961 3962 intel_encoders_pre_enable(state, crtc); 3963 3964 i9xx_enable_pll(crtc, new_crtc_state); 3965 3966 i9xx_pfit_enable(new_crtc_state); 3967 3968 intel_color_load_luts(new_crtc_state); 3969 intel_color_commit(new_crtc_state); 3970 /* update DSPCNTR to configure gamma for pipe bottom color */ 3971 intel_disable_primary_plane(new_crtc_state); 3972 3973 if (dev_priv->display.initial_watermarks) 3974 dev_priv->display.initial_watermarks(state, crtc); 3975 else 3976 intel_update_watermarks(crtc); 3977 intel_enable_pipe(new_crtc_state); 3978 3979 intel_crtc_vblank_on(new_crtc_state); 3980 3981 intel_encoders_enable(state, crtc); 3982 3983 /* prevents spurious underruns */ 3984 if (DISPLAY_VER(dev_priv) == 2) 3985 intel_wait_for_vblank(dev_priv, pipe); 3986 } 3987 3988 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 3989 { 3990 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 3991 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3992 3993 if (!old_crtc_state->gmch_pfit.control) 3994 return; 3995 3996 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 3997 3998 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n", 3999 intel_de_read(dev_priv, PFIT_CONTROL)); 4000 intel_de_write(dev_priv, PFIT_CONTROL, 0); 4001 } 4002 4003 static void i9xx_crtc_disable(struct intel_atomic_state *state, 4004 struct intel_crtc *crtc) 4005 { 4006 struct intel_crtc_state *old_crtc_state = 4007 intel_atomic_get_old_crtc_state(state, crtc); 4008 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4009 enum pipe pipe = crtc->pipe; 4010 4011 /* 4012 * On gen2 planes are double buffered but the pipe isn't, so we must 4013 * wait for planes to fully turn off before disabling the pipe. 4014 */ 4015 if (DISPLAY_VER(dev_priv) == 2) 4016 intel_wait_for_vblank(dev_priv, pipe); 4017 4018 intel_encoders_disable(state, crtc); 4019 4020 intel_crtc_vblank_off(old_crtc_state); 4021 4022 intel_disable_pipe(old_crtc_state); 4023 4024 i9xx_pfit_disable(old_crtc_state); 4025 4026 intel_encoders_post_disable(state, crtc); 4027 4028 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 4029 if (IS_CHERRYVIEW(dev_priv)) 4030 chv_disable_pll(dev_priv, pipe); 4031 else if (IS_VALLEYVIEW(dev_priv)) 4032 vlv_disable_pll(dev_priv, pipe); 4033 else 4034 i9xx_disable_pll(old_crtc_state); 4035 } 4036 4037 intel_encoders_post_pll_disable(state, crtc); 4038 4039 if (DISPLAY_VER(dev_priv) != 2) 4040 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 4041 4042 if (!dev_priv->display.initial_watermarks) 4043 intel_update_watermarks(crtc); 4044 4045 /* clock the pipe down to 640x480@60 to potentially save power */ 4046 if (IS_I830(dev_priv)) 4047 i830_enable_pipe(dev_priv, pipe); 4048 } 4049 4050 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc, 4051 struct drm_modeset_acquire_ctx *ctx) 4052 { 4053 struct intel_encoder *encoder; 4054 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4055 struct intel_bw_state *bw_state = 4056 to_intel_bw_state(dev_priv->bw_obj.state); 4057 struct intel_cdclk_state *cdclk_state = 4058 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 4059 struct intel_dbuf_state *dbuf_state = 4060 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 4061 struct intel_crtc_state *crtc_state = 4062 to_intel_crtc_state(crtc->base.state); 4063 struct intel_plane *plane; 4064 struct drm_atomic_state *state; 4065 struct intel_crtc_state *temp_crtc_state; 4066 enum pipe pipe = crtc->pipe; 4067 int ret; 4068 4069 if (!crtc_state->hw.active) 4070 return; 4071 4072 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 4073 const struct intel_plane_state *plane_state = 4074 to_intel_plane_state(plane->base.state); 4075 4076 if (plane_state->uapi.visible) 4077 intel_plane_disable_noatomic(crtc, plane); 4078 } 4079 4080 state = drm_atomic_state_alloc(&dev_priv->drm); 4081 if (!state) { 4082 drm_dbg_kms(&dev_priv->drm, 4083 "failed to disable [CRTC:%d:%s], out of memory", 4084 crtc->base.base.id, crtc->base.name); 4085 return; 4086 } 4087 4088 state->acquire_ctx = ctx; 4089 4090 /* Everything's already locked, -EDEADLK can't happen. */ 4091 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc); 4092 ret = drm_atomic_add_affected_connectors(state, &crtc->base); 4093 4094 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret); 4095 4096 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc); 4097 4098 drm_atomic_state_put(state); 4099 4100 drm_dbg_kms(&dev_priv->drm, 4101 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 4102 crtc->base.base.id, crtc->base.name); 4103 4104 crtc->active = false; 4105 crtc->base.enabled = false; 4106 4107 drm_WARN_ON(&dev_priv->drm, 4108 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0); 4109 crtc_state->uapi.active = false; 4110 crtc_state->uapi.connector_mask = 0; 4111 crtc_state->uapi.encoder_mask = 0; 4112 intel_crtc_free_hw_state(crtc_state); 4113 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw)); 4114 4115 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder) 4116 encoder->base.crtc = NULL; 4117 4118 intel_fbc_disable(crtc); 4119 intel_update_watermarks(crtc); 4120 intel_disable_shared_dpll(crtc_state); 4121 4122 intel_display_power_put_all_in_set(dev_priv, &crtc->enabled_power_domains); 4123 4124 dev_priv->active_pipes &= ~BIT(pipe); 4125 cdclk_state->min_cdclk[pipe] = 0; 4126 cdclk_state->min_voltage_level[pipe] = 0; 4127 cdclk_state->active_pipes &= ~BIT(pipe); 4128 4129 dbuf_state->active_pipes &= ~BIT(pipe); 4130 4131 bw_state->data_rate[pipe] = 0; 4132 bw_state->num_active_planes[pipe] = 0; 4133 } 4134 4135 /* 4136 * turn all crtc's off, but do not adjust state 4137 * This has to be paired with a call to intel_modeset_setup_hw_state. 4138 */ 4139 int intel_display_suspend(struct drm_device *dev) 4140 { 4141 struct drm_i915_private *dev_priv = to_i915(dev); 4142 struct drm_atomic_state *state; 4143 int ret; 4144 4145 if (!HAS_DISPLAY(dev_priv)) 4146 return 0; 4147 4148 state = drm_atomic_helper_suspend(dev); 4149 ret = PTR_ERR_OR_ZERO(state); 4150 if (ret) 4151 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 4152 ret); 4153 else 4154 dev_priv->modeset_restore_state = state; 4155 return ret; 4156 } 4157 4158 void intel_encoder_destroy(struct drm_encoder *encoder) 4159 { 4160 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 4161 4162 drm_encoder_cleanup(encoder); 4163 kfree(intel_encoder); 4164 } 4165 4166 /* Cross check the actual hw state with our own modeset state tracking (and it's 4167 * internal consistency). */ 4168 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 4169 struct drm_connector_state *conn_state) 4170 { 4171 struct intel_connector *connector = to_intel_connector(conn_state->connector); 4172 struct drm_i915_private *i915 = to_i915(connector->base.dev); 4173 4174 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 4175 connector->base.base.id, connector->base.name); 4176 4177 if (connector->get_hw_state(connector)) { 4178 struct intel_encoder *encoder = intel_attached_encoder(connector); 4179 4180 I915_STATE_WARN(!crtc_state, 4181 "connector enabled without attached crtc\n"); 4182 4183 if (!crtc_state) 4184 return; 4185 4186 I915_STATE_WARN(!crtc_state->hw.active, 4187 "connector is active, but attached crtc isn't\n"); 4188 4189 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 4190 return; 4191 4192 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 4193 "atomic encoder doesn't match attached encoder\n"); 4194 4195 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 4196 "attached encoder crtc differs from connector crtc\n"); 4197 } else { 4198 I915_STATE_WARN(crtc_state && crtc_state->hw.active, 4199 "attached crtc is active, but connector isn't\n"); 4200 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 4201 "best encoder set without crtc!\n"); 4202 } 4203 } 4204 4205 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 4206 { 4207 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4208 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4209 4210 /* IPS only exists on ULT machines and is tied to pipe A. */ 4211 if (!hsw_crtc_supports_ips(crtc)) 4212 return false; 4213 4214 if (!dev_priv->params.enable_ips) 4215 return false; 4216 4217 if (crtc_state->pipe_bpp > 24) 4218 return false; 4219 4220 /* 4221 * We compare against max which means we must take 4222 * the increased cdclk requirement into account when 4223 * calculating the new cdclk. 4224 * 4225 * Should measure whether using a lower cdclk w/o IPS 4226 */ 4227 if (IS_BROADWELL(dev_priv) && 4228 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 4229 return false; 4230 4231 return true; 4232 } 4233 4234 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 4235 { 4236 struct drm_i915_private *dev_priv = 4237 to_i915(crtc_state->uapi.crtc->dev); 4238 struct intel_atomic_state *state = 4239 to_intel_atomic_state(crtc_state->uapi.state); 4240 4241 crtc_state->ips_enabled = false; 4242 4243 if (!hsw_crtc_state_ips_capable(crtc_state)) 4244 return 0; 4245 4246 /* 4247 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 4248 * enabled and disabled dynamically based on package C states, 4249 * user space can't make reliable use of the CRCs, so let's just 4250 * completely disable it. 4251 */ 4252 if (crtc_state->crc_enabled) 4253 return 0; 4254 4255 /* IPS should be fine as long as at least one plane is enabled. */ 4256 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 4257 return 0; 4258 4259 if (IS_BROADWELL(dev_priv)) { 4260 const struct intel_cdclk_state *cdclk_state; 4261 4262 cdclk_state = intel_atomic_get_cdclk_state(state); 4263 if (IS_ERR(cdclk_state)) 4264 return PTR_ERR(cdclk_state); 4265 4266 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 4267 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100) 4268 return 0; 4269 } 4270 4271 crtc_state->ips_enabled = true; 4272 4273 return 0; 4274 } 4275 4276 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 4277 { 4278 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4279 4280 /* GDG double wide on either pipe, otherwise pipe A only */ 4281 return DISPLAY_VER(dev_priv) < 4 && 4282 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 4283 } 4284 4285 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state) 4286 { 4287 u32 pixel_rate = crtc_state->hw.pipe_mode.crtc_clock; 4288 struct drm_rect src; 4289 4290 /* 4291 * We only use IF-ID interlacing. If we ever use 4292 * PF-ID we'll need to adjust the pixel_rate here. 4293 */ 4294 4295 if (!crtc_state->pch_pfit.enabled) 4296 return pixel_rate; 4297 4298 drm_rect_init(&src, 0, 0, 4299 crtc_state->pipe_src_w << 16, 4300 crtc_state->pipe_src_h << 16); 4301 4302 return intel_adjusted_rate(&src, &crtc_state->pch_pfit.dst, 4303 pixel_rate); 4304 } 4305 4306 static void intel_mode_from_crtc_timings(struct drm_display_mode *mode, 4307 const struct drm_display_mode *timings) 4308 { 4309 mode->hdisplay = timings->crtc_hdisplay; 4310 mode->htotal = timings->crtc_htotal; 4311 mode->hsync_start = timings->crtc_hsync_start; 4312 mode->hsync_end = timings->crtc_hsync_end; 4313 4314 mode->vdisplay = timings->crtc_vdisplay; 4315 mode->vtotal = timings->crtc_vtotal; 4316 mode->vsync_start = timings->crtc_vsync_start; 4317 mode->vsync_end = timings->crtc_vsync_end; 4318 4319 mode->flags = timings->flags; 4320 mode->type = DRM_MODE_TYPE_DRIVER; 4321 4322 mode->clock = timings->crtc_clock; 4323 4324 drm_mode_set_name(mode); 4325 } 4326 4327 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 4328 { 4329 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4330 4331 if (HAS_GMCH(dev_priv)) 4332 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 4333 crtc_state->pixel_rate = 4334 crtc_state->hw.pipe_mode.crtc_clock; 4335 else 4336 crtc_state->pixel_rate = 4337 ilk_pipe_pixel_rate(crtc_state); 4338 } 4339 4340 static void intel_crtc_readout_derived_state(struct intel_crtc_state *crtc_state) 4341 { 4342 struct drm_display_mode *mode = &crtc_state->hw.mode; 4343 struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; 4344 struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 4345 4346 drm_mode_copy(pipe_mode, adjusted_mode); 4347 4348 if (crtc_state->bigjoiner) { 4349 /* 4350 * transcoder is programmed to the full mode, 4351 * but pipe timings are half of the transcoder mode 4352 */ 4353 pipe_mode->crtc_hdisplay /= 2; 4354 pipe_mode->crtc_hblank_start /= 2; 4355 pipe_mode->crtc_hblank_end /= 2; 4356 pipe_mode->crtc_hsync_start /= 2; 4357 pipe_mode->crtc_hsync_end /= 2; 4358 pipe_mode->crtc_htotal /= 2; 4359 pipe_mode->crtc_clock /= 2; 4360 } 4361 4362 if (crtc_state->splitter.enable) { 4363 int n = crtc_state->splitter.link_count; 4364 int overlap = crtc_state->splitter.pixel_overlap; 4365 4366 /* 4367 * eDP MSO uses segment timings from EDID for transcoder 4368 * timings, but full mode for everything else. 4369 * 4370 * h_full = (h_segment - pixel_overlap) * link_count 4371 */ 4372 pipe_mode->crtc_hdisplay = (pipe_mode->crtc_hdisplay - overlap) * n; 4373 pipe_mode->crtc_hblank_start = (pipe_mode->crtc_hblank_start - overlap) * n; 4374 pipe_mode->crtc_hblank_end = (pipe_mode->crtc_hblank_end - overlap) * n; 4375 pipe_mode->crtc_hsync_start = (pipe_mode->crtc_hsync_start - overlap) * n; 4376 pipe_mode->crtc_hsync_end = (pipe_mode->crtc_hsync_end - overlap) * n; 4377 pipe_mode->crtc_htotal = (pipe_mode->crtc_htotal - overlap) * n; 4378 pipe_mode->crtc_clock *= n; 4379 4380 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4381 intel_mode_from_crtc_timings(adjusted_mode, pipe_mode); 4382 } else { 4383 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4384 intel_mode_from_crtc_timings(adjusted_mode, adjusted_mode); 4385 } 4386 4387 intel_crtc_compute_pixel_rate(crtc_state); 4388 4389 drm_mode_copy(mode, adjusted_mode); 4390 mode->hdisplay = crtc_state->pipe_src_w << crtc_state->bigjoiner; 4391 mode->vdisplay = crtc_state->pipe_src_h; 4392 } 4393 4394 static void intel_encoder_get_config(struct intel_encoder *encoder, 4395 struct intel_crtc_state *crtc_state) 4396 { 4397 encoder->get_config(encoder, crtc_state); 4398 4399 intel_crtc_readout_derived_state(crtc_state); 4400 } 4401 4402 static int intel_crtc_compute_config(struct intel_crtc *crtc, 4403 struct intel_crtc_state *pipe_config) 4404 { 4405 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4406 struct drm_display_mode *pipe_mode = &pipe_config->hw.pipe_mode; 4407 int clock_limit = dev_priv->max_dotclk_freq; 4408 4409 drm_mode_copy(pipe_mode, &pipe_config->hw.adjusted_mode); 4410 4411 /* Adjust pipe_mode for bigjoiner, with half the horizontal mode */ 4412 if (pipe_config->bigjoiner) { 4413 pipe_mode->crtc_clock /= 2; 4414 pipe_mode->crtc_hdisplay /= 2; 4415 pipe_mode->crtc_hblank_start /= 2; 4416 pipe_mode->crtc_hblank_end /= 2; 4417 pipe_mode->crtc_hsync_start /= 2; 4418 pipe_mode->crtc_hsync_end /= 2; 4419 pipe_mode->crtc_htotal /= 2; 4420 pipe_config->pipe_src_w /= 2; 4421 } 4422 4423 if (pipe_config->splitter.enable) { 4424 int n = pipe_config->splitter.link_count; 4425 int overlap = pipe_config->splitter.pixel_overlap; 4426 4427 pipe_mode->crtc_hdisplay = (pipe_mode->crtc_hdisplay - overlap) * n; 4428 pipe_mode->crtc_hblank_start = (pipe_mode->crtc_hblank_start - overlap) * n; 4429 pipe_mode->crtc_hblank_end = (pipe_mode->crtc_hblank_end - overlap) * n; 4430 pipe_mode->crtc_hsync_start = (pipe_mode->crtc_hsync_start - overlap) * n; 4431 pipe_mode->crtc_hsync_end = (pipe_mode->crtc_hsync_end - overlap) * n; 4432 pipe_mode->crtc_htotal = (pipe_mode->crtc_htotal - overlap) * n; 4433 pipe_mode->crtc_clock *= n; 4434 } 4435 4436 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4437 4438 if (DISPLAY_VER(dev_priv) < 4) { 4439 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 4440 4441 /* 4442 * Enable double wide mode when the dot clock 4443 * is > 90% of the (display) core speed. 4444 */ 4445 if (intel_crtc_supports_double_wide(crtc) && 4446 pipe_mode->crtc_clock > clock_limit) { 4447 clock_limit = dev_priv->max_dotclk_freq; 4448 pipe_config->double_wide = true; 4449 } 4450 } 4451 4452 if (pipe_mode->crtc_clock > clock_limit) { 4453 drm_dbg_kms(&dev_priv->drm, 4454 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 4455 pipe_mode->crtc_clock, clock_limit, 4456 yesno(pipe_config->double_wide)); 4457 return -EINVAL; 4458 } 4459 4460 /* 4461 * Pipe horizontal size must be even in: 4462 * - DVO ganged mode 4463 * - LVDS dual channel mode 4464 * - Double wide pipe 4465 */ 4466 if (pipe_config->pipe_src_w & 1) { 4467 if (pipe_config->double_wide) { 4468 drm_dbg_kms(&dev_priv->drm, 4469 "Odd pipe source width not supported with double wide pipe\n"); 4470 return -EINVAL; 4471 } 4472 4473 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 4474 intel_is_dual_link_lvds(dev_priv)) { 4475 drm_dbg_kms(&dev_priv->drm, 4476 "Odd pipe source width not supported with dual link LVDS\n"); 4477 return -EINVAL; 4478 } 4479 } 4480 4481 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 4482 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 4483 */ 4484 if ((DISPLAY_VER(dev_priv) > 4 || IS_G4X(dev_priv)) && 4485 pipe_mode->crtc_hsync_start == pipe_mode->crtc_hdisplay) 4486 return -EINVAL; 4487 4488 intel_crtc_compute_pixel_rate(pipe_config); 4489 4490 if (pipe_config->has_pch_encoder) 4491 return ilk_fdi_compute_config(crtc, pipe_config); 4492 4493 return 0; 4494 } 4495 4496 static void 4497 intel_reduce_m_n_ratio(u32 *num, u32 *den) 4498 { 4499 while (*num > DATA_LINK_M_N_MASK || 4500 *den > DATA_LINK_M_N_MASK) { 4501 *num >>= 1; 4502 *den >>= 1; 4503 } 4504 } 4505 4506 static void compute_m_n(unsigned int m, unsigned int n, 4507 u32 *ret_m, u32 *ret_n, 4508 bool constant_n) 4509 { 4510 /* 4511 * Several DP dongles in particular seem to be fussy about 4512 * too large link M/N values. Give N value as 0x8000 that 4513 * should be acceptable by specific devices. 0x8000 is the 4514 * specified fixed N value for asynchronous clock mode, 4515 * which the devices expect also in synchronous clock mode. 4516 */ 4517 if (constant_n) 4518 *ret_n = DP_LINK_CONSTANT_N_VALUE; 4519 else 4520 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 4521 4522 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 4523 intel_reduce_m_n_ratio(ret_m, ret_n); 4524 } 4525 4526 void 4527 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 4528 int pixel_clock, int link_clock, 4529 struct intel_link_m_n *m_n, 4530 bool constant_n, bool fec_enable) 4531 { 4532 u32 data_clock = bits_per_pixel * pixel_clock; 4533 4534 if (fec_enable) 4535 data_clock = intel_dp_mode_to_fec_clock(data_clock); 4536 4537 m_n->tu = 64; 4538 compute_m_n(data_clock, 4539 link_clock * nlanes * 8, 4540 &m_n->gmch_m, &m_n->gmch_n, 4541 constant_n); 4542 4543 compute_m_n(pixel_clock, link_clock, 4544 &m_n->link_m, &m_n->link_n, 4545 constant_n); 4546 } 4547 4548 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) 4549 { 4550 /* 4551 * There may be no VBT; and if the BIOS enabled SSC we can 4552 * just keep using it to avoid unnecessary flicker. Whereas if the 4553 * BIOS isn't using it, don't assume it will work even if the VBT 4554 * indicates as much. 4555 */ 4556 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 4557 bool bios_lvds_use_ssc = intel_de_read(dev_priv, 4558 PCH_DREF_CONTROL) & 4559 DREF_SSC1_ENABLE; 4560 4561 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 4562 drm_dbg_kms(&dev_priv->drm, 4563 "SSC %s by BIOS, overriding VBT which says %s\n", 4564 enableddisabled(bios_lvds_use_ssc), 4565 enableddisabled(dev_priv->vbt.lvds_use_ssc)); 4566 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 4567 } 4568 } 4569 } 4570 4571 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 4572 const struct intel_link_m_n *m_n) 4573 { 4574 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4575 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4576 enum pipe pipe = crtc->pipe; 4577 4578 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe), 4579 TU_SIZE(m_n->tu) | m_n->gmch_m); 4580 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 4581 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m); 4582 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n); 4583 } 4584 4585 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 4586 enum transcoder transcoder) 4587 { 4588 if (IS_HASWELL(dev_priv)) 4589 return transcoder == TRANSCODER_EDP; 4590 4591 /* 4592 * Strictly speaking some registers are available before 4593 * gen7, but we only support DRRS on gen7+ 4594 */ 4595 return DISPLAY_VER(dev_priv) == 7 || IS_CHERRYVIEW(dev_priv); 4596 } 4597 4598 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 4599 const struct intel_link_m_n *m_n, 4600 const struct intel_link_m_n *m2_n2) 4601 { 4602 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4603 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4604 enum pipe pipe = crtc->pipe; 4605 enum transcoder transcoder = crtc_state->cpu_transcoder; 4606 4607 if (DISPLAY_VER(dev_priv) >= 5) { 4608 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder), 4609 TU_SIZE(m_n->tu) | m_n->gmch_m); 4610 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder), 4611 m_n->gmch_n); 4612 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder), 4613 m_n->link_m); 4614 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder), 4615 m_n->link_n); 4616 /* 4617 * M2_N2 registers are set only if DRRS is supported 4618 * (to make sure the registers are not unnecessarily accessed). 4619 */ 4620 if (m2_n2 && crtc_state->has_drrs && 4621 transcoder_has_m2_n2(dev_priv, transcoder)) { 4622 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder), 4623 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 4624 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder), 4625 m2_n2->gmch_n); 4626 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder), 4627 m2_n2->link_m); 4628 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder), 4629 m2_n2->link_n); 4630 } 4631 } else { 4632 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe), 4633 TU_SIZE(m_n->tu) | m_n->gmch_m); 4634 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 4635 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m); 4636 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n); 4637 } 4638 } 4639 4640 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 4641 { 4642 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 4643 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 4644 4645 if (m_n == M1_N1) { 4646 dp_m_n = &crtc_state->dp_m_n; 4647 dp_m2_n2 = &crtc_state->dp_m2_n2; 4648 } else if (m_n == M2_N2) { 4649 4650 /* 4651 * M2_N2 registers are not supported. Hence m2_n2 divider value 4652 * needs to be programmed into M1_N1. 4653 */ 4654 dp_m_n = &crtc_state->dp_m2_n2; 4655 } else { 4656 drm_err(&i915->drm, "Unsupported divider value\n"); 4657 return; 4658 } 4659 4660 if (crtc_state->has_pch_encoder) 4661 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 4662 else 4663 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 4664 } 4665 4666 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state) 4667 { 4668 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4669 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4670 enum pipe pipe = crtc->pipe; 4671 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 4672 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 4673 u32 crtc_vtotal, crtc_vblank_end; 4674 int vsyncshift = 0; 4675 4676 /* We need to be careful not to changed the adjusted mode, for otherwise 4677 * the hw state checker will get angry at the mismatch. */ 4678 crtc_vtotal = adjusted_mode->crtc_vtotal; 4679 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 4680 4681 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 4682 /* the chip adds 2 halflines automatically */ 4683 crtc_vtotal -= 1; 4684 crtc_vblank_end -= 1; 4685 4686 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 4687 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 4688 else 4689 vsyncshift = adjusted_mode->crtc_hsync_start - 4690 adjusted_mode->crtc_htotal / 2; 4691 if (vsyncshift < 0) 4692 vsyncshift += adjusted_mode->crtc_htotal; 4693 } 4694 4695 if (DISPLAY_VER(dev_priv) > 3) 4696 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder), 4697 vsyncshift); 4698 4699 intel_de_write(dev_priv, HTOTAL(cpu_transcoder), 4700 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); 4701 intel_de_write(dev_priv, HBLANK(cpu_transcoder), 4702 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); 4703 intel_de_write(dev_priv, HSYNC(cpu_transcoder), 4704 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); 4705 4706 intel_de_write(dev_priv, VTOTAL(cpu_transcoder), 4707 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); 4708 intel_de_write(dev_priv, VBLANK(cpu_transcoder), 4709 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); 4710 intel_de_write(dev_priv, VSYNC(cpu_transcoder), 4711 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); 4712 4713 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 4714 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 4715 * documented on the DDI_FUNC_CTL register description, EDP Input Select 4716 * bits. */ 4717 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 4718 (pipe == PIPE_B || pipe == PIPE_C)) 4719 intel_de_write(dev_priv, VTOTAL(pipe), 4720 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 4721 4722 } 4723 4724 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 4725 { 4726 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4727 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4728 enum pipe pipe = crtc->pipe; 4729 4730 /* pipesrc controls the size that is scaled from, which should 4731 * always be the user's requested size. 4732 */ 4733 intel_de_write(dev_priv, PIPESRC(pipe), 4734 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1)); 4735 } 4736 4737 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 4738 { 4739 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4740 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 4741 4742 if (DISPLAY_VER(dev_priv) == 2) 4743 return false; 4744 4745 if (DISPLAY_VER(dev_priv) >= 9 || 4746 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 4747 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; 4748 else 4749 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; 4750 } 4751 4752 static void intel_get_transcoder_timings(struct intel_crtc *crtc, 4753 struct intel_crtc_state *pipe_config) 4754 { 4755 struct drm_device *dev = crtc->base.dev; 4756 struct drm_i915_private *dev_priv = to_i915(dev); 4757 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 4758 u32 tmp; 4759 4760 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); 4761 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 4762 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 4763 4764 if (!transcoder_is_dsi(cpu_transcoder)) { 4765 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); 4766 pipe_config->hw.adjusted_mode.crtc_hblank_start = 4767 (tmp & 0xffff) + 1; 4768 pipe_config->hw.adjusted_mode.crtc_hblank_end = 4769 ((tmp >> 16) & 0xffff) + 1; 4770 } 4771 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); 4772 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 4773 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 4774 4775 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); 4776 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 4777 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 4778 4779 if (!transcoder_is_dsi(cpu_transcoder)) { 4780 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); 4781 pipe_config->hw.adjusted_mode.crtc_vblank_start = 4782 (tmp & 0xffff) + 1; 4783 pipe_config->hw.adjusted_mode.crtc_vblank_end = 4784 ((tmp >> 16) & 0xffff) + 1; 4785 } 4786 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); 4787 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 4788 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 4789 4790 if (intel_pipe_is_interlaced(pipe_config)) { 4791 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 4792 pipe_config->hw.adjusted_mode.crtc_vtotal += 1; 4793 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1; 4794 } 4795 } 4796 4797 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 4798 struct intel_crtc_state *pipe_config) 4799 { 4800 struct drm_device *dev = crtc->base.dev; 4801 struct drm_i915_private *dev_priv = to_i915(dev); 4802 u32 tmp; 4803 4804 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe)); 4805 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 4806 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 4807 } 4808 4809 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 4810 { 4811 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4812 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4813 u32 pipeconf; 4814 4815 pipeconf = 0; 4816 4817 /* we keep both pipes enabled on 830 */ 4818 if (IS_I830(dev_priv)) 4819 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 4820 4821 if (crtc_state->double_wide) 4822 pipeconf |= PIPECONF_DOUBLE_WIDE; 4823 4824 /* only g4x and later have fancy bpc/dither controls */ 4825 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 4826 IS_CHERRYVIEW(dev_priv)) { 4827 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 4828 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 4829 pipeconf |= PIPECONF_DITHER_EN | 4830 PIPECONF_DITHER_TYPE_SP; 4831 4832 switch (crtc_state->pipe_bpp) { 4833 case 18: 4834 pipeconf |= PIPECONF_6BPC; 4835 break; 4836 case 24: 4837 pipeconf |= PIPECONF_8BPC; 4838 break; 4839 case 30: 4840 pipeconf |= PIPECONF_10BPC; 4841 break; 4842 default: 4843 /* Case prevented by intel_choose_pipe_bpp_dither. */ 4844 BUG(); 4845 } 4846 } 4847 4848 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 4849 if (DISPLAY_VER(dev_priv) < 4 || 4850 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 4851 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 4852 else 4853 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 4854 } else { 4855 pipeconf |= PIPECONF_PROGRESSIVE; 4856 } 4857 4858 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 4859 crtc_state->limited_color_range) 4860 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 4861 4862 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 4863 4864 pipeconf |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 4865 4866 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf); 4867 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); 4868 } 4869 4870 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 4871 { 4872 if (IS_I830(dev_priv)) 4873 return false; 4874 4875 return DISPLAY_VER(dev_priv) >= 4 || 4876 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 4877 } 4878 4879 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state) 4880 { 4881 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4882 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4883 u32 tmp; 4884 4885 if (!i9xx_has_pfit(dev_priv)) 4886 return; 4887 4888 tmp = intel_de_read(dev_priv, PFIT_CONTROL); 4889 if (!(tmp & PFIT_ENABLE)) 4890 return; 4891 4892 /* Check whether the pfit is attached to our pipe. */ 4893 if (DISPLAY_VER(dev_priv) < 4) { 4894 if (crtc->pipe != PIPE_B) 4895 return; 4896 } else { 4897 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 4898 return; 4899 } 4900 4901 crtc_state->gmch_pfit.control = tmp; 4902 crtc_state->gmch_pfit.pgm_ratios = 4903 intel_de_read(dev_priv, PFIT_PGM_RATIOS); 4904 } 4905 4906 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 4907 struct intel_crtc_state *pipe_config) 4908 { 4909 struct drm_device *dev = crtc->base.dev; 4910 struct drm_i915_private *dev_priv = to_i915(dev); 4911 enum pipe pipe = crtc->pipe; 4912 struct dpll clock; 4913 u32 mdiv; 4914 int refclk = 100000; 4915 4916 /* In case of DSI, DPLL will not be used */ 4917 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 4918 return; 4919 4920 vlv_dpio_get(dev_priv); 4921 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 4922 vlv_dpio_put(dev_priv); 4923 4924 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 4925 clock.m2 = mdiv & DPIO_M2DIV_MASK; 4926 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 4927 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 4928 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 4929 4930 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 4931 } 4932 4933 static void chv_crtc_clock_get(struct intel_crtc *crtc, 4934 struct intel_crtc_state *pipe_config) 4935 { 4936 struct drm_device *dev = crtc->base.dev; 4937 struct drm_i915_private *dev_priv = to_i915(dev); 4938 enum pipe pipe = crtc->pipe; 4939 enum dpio_channel port = vlv_pipe_to_channel(pipe); 4940 struct dpll clock; 4941 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 4942 int refclk = 100000; 4943 4944 /* In case of DSI, DPLL will not be used */ 4945 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 4946 return; 4947 4948 vlv_dpio_get(dev_priv); 4949 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 4950 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 4951 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 4952 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 4953 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 4954 vlv_dpio_put(dev_priv); 4955 4956 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 4957 clock.m2 = (pll_dw0 & 0xff) << 22; 4958 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 4959 clock.m2 |= pll_dw2 & 0x3fffff; 4960 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 4961 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 4962 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 4963 4964 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 4965 } 4966 4967 static enum intel_output_format 4968 bdw_get_pipemisc_output_format(struct intel_crtc *crtc) 4969 { 4970 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4971 u32 tmp; 4972 4973 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 4974 4975 if (tmp & PIPEMISC_YUV420_ENABLE) { 4976 /* We support 4:2:0 in full blend mode only */ 4977 drm_WARN_ON(&dev_priv->drm, 4978 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); 4979 4980 return INTEL_OUTPUT_FORMAT_YCBCR420; 4981 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 4982 return INTEL_OUTPUT_FORMAT_YCBCR444; 4983 } else { 4984 return INTEL_OUTPUT_FORMAT_RGB; 4985 } 4986 } 4987 4988 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 4989 { 4990 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4991 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 4992 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4993 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4994 u32 tmp; 4995 4996 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 4997 4998 if (tmp & DISPPLANE_GAMMA_ENABLE) 4999 crtc_state->gamma_enable = true; 5000 5001 if (!HAS_GMCH(dev_priv) && 5002 tmp & DISPPLANE_PIPE_CSC_ENABLE) 5003 crtc_state->csc_enable = true; 5004 } 5005 5006 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 5007 struct intel_crtc_state *pipe_config) 5008 { 5009 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5010 enum intel_display_power_domain power_domain; 5011 intel_wakeref_t wakeref; 5012 u32 tmp; 5013 bool ret; 5014 5015 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 5016 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 5017 if (!wakeref) 5018 return false; 5019 5020 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 5021 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 5022 pipe_config->shared_dpll = NULL; 5023 5024 ret = false; 5025 5026 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 5027 if (!(tmp & PIPECONF_ENABLE)) 5028 goto out; 5029 5030 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 5031 IS_CHERRYVIEW(dev_priv)) { 5032 switch (tmp & PIPECONF_BPC_MASK) { 5033 case PIPECONF_6BPC: 5034 pipe_config->pipe_bpp = 18; 5035 break; 5036 case PIPECONF_8BPC: 5037 pipe_config->pipe_bpp = 24; 5038 break; 5039 case PIPECONF_10BPC: 5040 pipe_config->pipe_bpp = 30; 5041 break; 5042 default: 5043 break; 5044 } 5045 } 5046 5047 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 5048 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 5049 pipe_config->limited_color_range = true; 5050 5051 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 5052 PIPECONF_GAMMA_MODE_SHIFT; 5053 5054 if (IS_CHERRYVIEW(dev_priv)) 5055 pipe_config->cgm_mode = intel_de_read(dev_priv, 5056 CGM_PIPE_MODE(crtc->pipe)); 5057 5058 i9xx_get_pipe_color_config(pipe_config); 5059 intel_color_get_config(pipe_config); 5060 5061 if (DISPLAY_VER(dev_priv) < 4) 5062 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 5063 5064 intel_get_transcoder_timings(crtc, pipe_config); 5065 intel_get_pipe_src_size(crtc, pipe_config); 5066 5067 i9xx_get_pfit_config(pipe_config); 5068 5069 if (DISPLAY_VER(dev_priv) >= 4) { 5070 /* No way to read it out on pipes B and C */ 5071 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 5072 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 5073 else 5074 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); 5075 pipe_config->pixel_multiplier = 5076 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 5077 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 5078 pipe_config->dpll_hw_state.dpll_md = tmp; 5079 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 5080 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 5081 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe)); 5082 pipe_config->pixel_multiplier = 5083 ((tmp & SDVO_MULTIPLIER_MASK) 5084 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 5085 } else { 5086 /* Note that on i915G/GM the pixel multiplier is in the sdvo 5087 * port and will be fixed up in the encoder->get_config 5088 * function. */ 5089 pipe_config->pixel_multiplier = 1; 5090 } 5091 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv, 5092 DPLL(crtc->pipe)); 5093 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 5094 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv, 5095 FP0(crtc->pipe)); 5096 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv, 5097 FP1(crtc->pipe)); 5098 } else { 5099 /* Mask out read-only status bits. */ 5100 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 5101 DPLL_PORTC_READY_MASK | 5102 DPLL_PORTB_READY_MASK); 5103 } 5104 5105 if (IS_CHERRYVIEW(dev_priv)) 5106 chv_crtc_clock_get(crtc, pipe_config); 5107 else if (IS_VALLEYVIEW(dev_priv)) 5108 vlv_crtc_clock_get(crtc, pipe_config); 5109 else 5110 i9xx_crtc_clock_get(crtc, pipe_config); 5111 5112 /* 5113 * Normally the dotclock is filled in by the encoder .get_config() 5114 * but in case the pipe is enabled w/o any ports we need a sane 5115 * default. 5116 */ 5117 pipe_config->hw.adjusted_mode.crtc_clock = 5118 pipe_config->port_clock / pipe_config->pixel_multiplier; 5119 5120 ret = true; 5121 5122 out: 5123 intel_display_power_put(dev_priv, power_domain, wakeref); 5124 5125 return ret; 5126 } 5127 5128 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv) 5129 { 5130 struct intel_encoder *encoder; 5131 int i; 5132 u32 val, final; 5133 bool has_lvds = false; 5134 bool has_cpu_edp = false; 5135 bool has_panel = false; 5136 bool has_ck505 = false; 5137 bool can_ssc = false; 5138 bool using_ssc_source = false; 5139 5140 /* We need to take the global config into account */ 5141 for_each_intel_encoder(&dev_priv->drm, encoder) { 5142 switch (encoder->type) { 5143 case INTEL_OUTPUT_LVDS: 5144 has_panel = true; 5145 has_lvds = true; 5146 break; 5147 case INTEL_OUTPUT_EDP: 5148 has_panel = true; 5149 if (encoder->port == PORT_A) 5150 has_cpu_edp = true; 5151 break; 5152 default: 5153 break; 5154 } 5155 } 5156 5157 if (HAS_PCH_IBX(dev_priv)) { 5158 has_ck505 = dev_priv->vbt.display_clock_mode; 5159 can_ssc = has_ck505; 5160 } else { 5161 has_ck505 = false; 5162 can_ssc = true; 5163 } 5164 5165 /* Check if any DPLLs are using the SSC source */ 5166 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) { 5167 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i)); 5168 5169 if (!(temp & DPLL_VCO_ENABLE)) 5170 continue; 5171 5172 if ((temp & PLL_REF_INPUT_MASK) == 5173 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 5174 using_ssc_source = true; 5175 break; 5176 } 5177 } 5178 5179 drm_dbg_kms(&dev_priv->drm, 5180 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 5181 has_panel, has_lvds, has_ck505, using_ssc_source); 5182 5183 /* Ironlake: try to setup display ref clock before DPLL 5184 * enabling. This is only under driver's control after 5185 * PCH B stepping, previous chipset stepping should be 5186 * ignoring this setting. 5187 */ 5188 val = intel_de_read(dev_priv, PCH_DREF_CONTROL); 5189 5190 /* As we must carefully and slowly disable/enable each source in turn, 5191 * compute the final state we want first and check if we need to 5192 * make any changes at all. 5193 */ 5194 final = val; 5195 final &= ~DREF_NONSPREAD_SOURCE_MASK; 5196 if (has_ck505) 5197 final |= DREF_NONSPREAD_CK505_ENABLE; 5198 else 5199 final |= DREF_NONSPREAD_SOURCE_ENABLE; 5200 5201 final &= ~DREF_SSC_SOURCE_MASK; 5202 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5203 final &= ~DREF_SSC1_ENABLE; 5204 5205 if (has_panel) { 5206 final |= DREF_SSC_SOURCE_ENABLE; 5207 5208 if (intel_panel_use_ssc(dev_priv) && can_ssc) 5209 final |= DREF_SSC1_ENABLE; 5210 5211 if (has_cpu_edp) { 5212 if (intel_panel_use_ssc(dev_priv) && can_ssc) 5213 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 5214 else 5215 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 5216 } else 5217 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5218 } else if (using_ssc_source) { 5219 final |= DREF_SSC_SOURCE_ENABLE; 5220 final |= DREF_SSC1_ENABLE; 5221 } 5222 5223 if (final == val) 5224 return; 5225 5226 /* Always enable nonspread source */ 5227 val &= ~DREF_NONSPREAD_SOURCE_MASK; 5228 5229 if (has_ck505) 5230 val |= DREF_NONSPREAD_CK505_ENABLE; 5231 else 5232 val |= DREF_NONSPREAD_SOURCE_ENABLE; 5233 5234 if (has_panel) { 5235 val &= ~DREF_SSC_SOURCE_MASK; 5236 val |= DREF_SSC_SOURCE_ENABLE; 5237 5238 /* SSC must be turned on before enabling the CPU output */ 5239 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 5240 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n"); 5241 val |= DREF_SSC1_ENABLE; 5242 } else 5243 val &= ~DREF_SSC1_ENABLE; 5244 5245 /* Get SSC going before enabling the outputs */ 5246 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5247 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5248 udelay(200); 5249 5250 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5251 5252 /* Enable CPU source on CPU attached eDP */ 5253 if (has_cpu_edp) { 5254 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 5255 drm_dbg_kms(&dev_priv->drm, 5256 "Using SSC on eDP\n"); 5257 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 5258 } else 5259 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 5260 } else 5261 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5262 5263 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5264 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5265 udelay(200); 5266 } else { 5267 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n"); 5268 5269 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5270 5271 /* Turn off CPU output */ 5272 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5273 5274 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5275 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5276 udelay(200); 5277 5278 if (!using_ssc_source) { 5279 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n"); 5280 5281 /* Turn off the SSC source */ 5282 val &= ~DREF_SSC_SOURCE_MASK; 5283 val |= DREF_SSC_SOURCE_DISABLE; 5284 5285 /* Turn off SSC1 */ 5286 val &= ~DREF_SSC1_ENABLE; 5287 5288 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5289 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5290 udelay(200); 5291 } 5292 } 5293 5294 BUG_ON(val != final); 5295 } 5296 5297 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 5298 { 5299 u32 tmp; 5300 5301 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 5302 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 5303 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 5304 5305 if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) & 5306 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 5307 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n"); 5308 5309 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 5310 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 5311 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 5312 5313 if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) & 5314 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 5315 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n"); 5316 } 5317 5318 /* WaMPhyProgramming:hsw */ 5319 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 5320 { 5321 u32 tmp; 5322 5323 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 5324 tmp &= ~(0xFF << 24); 5325 tmp |= (0x12 << 24); 5326 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 5327 5328 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 5329 tmp |= (1 << 11); 5330 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 5331 5332 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 5333 tmp |= (1 << 11); 5334 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 5335 5336 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 5337 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 5338 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 5339 5340 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 5341 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 5342 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 5343 5344 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 5345 tmp &= ~(7 << 13); 5346 tmp |= (5 << 13); 5347 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 5348 5349 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 5350 tmp &= ~(7 << 13); 5351 tmp |= (5 << 13); 5352 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 5353 5354 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 5355 tmp &= ~0xFF; 5356 tmp |= 0x1C; 5357 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 5358 5359 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 5360 tmp &= ~0xFF; 5361 tmp |= 0x1C; 5362 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 5363 5364 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 5365 tmp &= ~(0xFF << 16); 5366 tmp |= (0x1C << 16); 5367 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 5368 5369 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 5370 tmp &= ~(0xFF << 16); 5371 tmp |= (0x1C << 16); 5372 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 5373 5374 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 5375 tmp |= (1 << 27); 5376 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 5377 5378 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 5379 tmp |= (1 << 27); 5380 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 5381 5382 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 5383 tmp &= ~(0xF << 28); 5384 tmp |= (4 << 28); 5385 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 5386 5387 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 5388 tmp &= ~(0xF << 28); 5389 tmp |= (4 << 28); 5390 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 5391 } 5392 5393 /* Implements 3 different sequences from BSpec chapter "Display iCLK 5394 * Programming" based on the parameters passed: 5395 * - Sequence to enable CLKOUT_DP 5396 * - Sequence to enable CLKOUT_DP without spread 5397 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 5398 */ 5399 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 5400 bool with_spread, bool with_fdi) 5401 { 5402 u32 reg, tmp; 5403 5404 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread, 5405 "FDI requires downspread\n")) 5406 with_spread = true; 5407 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) && 5408 with_fdi, "LP PCH doesn't have FDI\n")) 5409 with_fdi = false; 5410 5411 mutex_lock(&dev_priv->sb_lock); 5412 5413 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5414 tmp &= ~SBI_SSCCTL_DISABLE; 5415 tmp |= SBI_SSCCTL_PATHALT; 5416 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5417 5418 udelay(24); 5419 5420 if (with_spread) { 5421 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5422 tmp &= ~SBI_SSCCTL_PATHALT; 5423 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5424 5425 if (with_fdi) { 5426 lpt_reset_fdi_mphy(dev_priv); 5427 lpt_program_fdi_mphy(dev_priv); 5428 } 5429 } 5430 5431 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 5432 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 5433 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 5434 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 5435 5436 mutex_unlock(&dev_priv->sb_lock); 5437 } 5438 5439 /* Sequence to disable CLKOUT_DP */ 5440 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 5441 { 5442 u32 reg, tmp; 5443 5444 mutex_lock(&dev_priv->sb_lock); 5445 5446 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 5447 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 5448 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 5449 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 5450 5451 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5452 if (!(tmp & SBI_SSCCTL_DISABLE)) { 5453 if (!(tmp & SBI_SSCCTL_PATHALT)) { 5454 tmp |= SBI_SSCCTL_PATHALT; 5455 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5456 udelay(32); 5457 } 5458 tmp |= SBI_SSCCTL_DISABLE; 5459 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5460 } 5461 5462 mutex_unlock(&dev_priv->sb_lock); 5463 } 5464 5465 #define BEND_IDX(steps) ((50 + (steps)) / 5) 5466 5467 static const u16 sscdivintphase[] = { 5468 [BEND_IDX( 50)] = 0x3B23, 5469 [BEND_IDX( 45)] = 0x3B23, 5470 [BEND_IDX( 40)] = 0x3C23, 5471 [BEND_IDX( 35)] = 0x3C23, 5472 [BEND_IDX( 30)] = 0x3D23, 5473 [BEND_IDX( 25)] = 0x3D23, 5474 [BEND_IDX( 20)] = 0x3E23, 5475 [BEND_IDX( 15)] = 0x3E23, 5476 [BEND_IDX( 10)] = 0x3F23, 5477 [BEND_IDX( 5)] = 0x3F23, 5478 [BEND_IDX( 0)] = 0x0025, 5479 [BEND_IDX( -5)] = 0x0025, 5480 [BEND_IDX(-10)] = 0x0125, 5481 [BEND_IDX(-15)] = 0x0125, 5482 [BEND_IDX(-20)] = 0x0225, 5483 [BEND_IDX(-25)] = 0x0225, 5484 [BEND_IDX(-30)] = 0x0325, 5485 [BEND_IDX(-35)] = 0x0325, 5486 [BEND_IDX(-40)] = 0x0425, 5487 [BEND_IDX(-45)] = 0x0425, 5488 [BEND_IDX(-50)] = 0x0525, 5489 }; 5490 5491 /* 5492 * Bend CLKOUT_DP 5493 * steps -50 to 50 inclusive, in steps of 5 5494 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 5495 * change in clock period = -(steps / 10) * 5.787 ps 5496 */ 5497 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 5498 { 5499 u32 tmp; 5500 int idx = BEND_IDX(steps); 5501 5502 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0)) 5503 return; 5504 5505 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase))) 5506 return; 5507 5508 mutex_lock(&dev_priv->sb_lock); 5509 5510 if (steps % 10 != 0) 5511 tmp = 0xAAAAAAAB; 5512 else 5513 tmp = 0x00000000; 5514 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 5515 5516 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 5517 tmp &= 0xffff0000; 5518 tmp |= sscdivintphase[idx]; 5519 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 5520 5521 mutex_unlock(&dev_priv->sb_lock); 5522 } 5523 5524 #undef BEND_IDX 5525 5526 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 5527 { 5528 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 5529 u32 ctl = intel_de_read(dev_priv, SPLL_CTL); 5530 5531 if ((ctl & SPLL_PLL_ENABLE) == 0) 5532 return false; 5533 5534 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 5535 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 5536 return true; 5537 5538 if (IS_BROADWELL(dev_priv) && 5539 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 5540 return true; 5541 5542 return false; 5543 } 5544 5545 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 5546 enum intel_dpll_id id) 5547 { 5548 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 5549 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id)); 5550 5551 if ((ctl & WRPLL_PLL_ENABLE) == 0) 5552 return false; 5553 5554 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 5555 return true; 5556 5557 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 5558 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 5559 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 5560 return true; 5561 5562 return false; 5563 } 5564 5565 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 5566 { 5567 struct intel_encoder *encoder; 5568 bool has_fdi = false; 5569 5570 for_each_intel_encoder(&dev_priv->drm, encoder) { 5571 switch (encoder->type) { 5572 case INTEL_OUTPUT_ANALOG: 5573 has_fdi = true; 5574 break; 5575 default: 5576 break; 5577 } 5578 } 5579 5580 /* 5581 * The BIOS may have decided to use the PCH SSC 5582 * reference so we must not disable it until the 5583 * relevant PLLs have stopped relying on it. We'll 5584 * just leave the PCH SSC reference enabled in case 5585 * any active PLL is using it. It will get disabled 5586 * after runtime suspend if we don't have FDI. 5587 * 5588 * TODO: Move the whole reference clock handling 5589 * to the modeset sequence proper so that we can 5590 * actually enable/disable/reconfigure these things 5591 * safely. To do that we need to introduce a real 5592 * clock hierarchy. That would also allow us to do 5593 * clock bending finally. 5594 */ 5595 dev_priv->pch_ssc_use = 0; 5596 5597 if (spll_uses_pch_ssc(dev_priv)) { 5598 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n"); 5599 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); 5600 } 5601 5602 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 5603 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n"); 5604 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 5605 } 5606 5607 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 5608 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n"); 5609 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 5610 } 5611 5612 if (dev_priv->pch_ssc_use) 5613 return; 5614 5615 if (has_fdi) { 5616 lpt_bend_clkout_dp(dev_priv, 0); 5617 lpt_enable_clkout_dp(dev_priv, true, true); 5618 } else { 5619 lpt_disable_clkout_dp(dev_priv); 5620 } 5621 } 5622 5623 /* 5624 * Initialize reference clocks when the driver loads 5625 */ 5626 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 5627 { 5628 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 5629 ilk_init_pch_refclk(dev_priv); 5630 else if (HAS_PCH_LPT(dev_priv)) 5631 lpt_init_pch_refclk(dev_priv); 5632 } 5633 5634 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) 5635 { 5636 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5637 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5638 enum pipe pipe = crtc->pipe; 5639 u32 val; 5640 5641 val = 0; 5642 5643 switch (crtc_state->pipe_bpp) { 5644 case 18: 5645 val |= PIPECONF_6BPC; 5646 break; 5647 case 24: 5648 val |= PIPECONF_8BPC; 5649 break; 5650 case 30: 5651 val |= PIPECONF_10BPC; 5652 break; 5653 case 36: 5654 val |= PIPECONF_12BPC; 5655 break; 5656 default: 5657 /* Case prevented by intel_choose_pipe_bpp_dither. */ 5658 BUG(); 5659 } 5660 5661 if (crtc_state->dither) 5662 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 5663 5664 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 5665 val |= PIPECONF_INTERLACED_ILK; 5666 else 5667 val |= PIPECONF_PROGRESSIVE; 5668 5669 /* 5670 * This would end up with an odd purple hue over 5671 * the entire display. Make sure we don't do it. 5672 */ 5673 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && 5674 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 5675 5676 if (crtc_state->limited_color_range && 5677 !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 5678 val |= PIPECONF_COLOR_RANGE_SELECT; 5679 5680 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 5681 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; 5682 5683 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 5684 5685 val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 5686 5687 intel_de_write(dev_priv, PIPECONF(pipe), val); 5688 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 5689 } 5690 5691 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state) 5692 { 5693 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5694 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5695 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5696 u32 val = 0; 5697 5698 if (IS_HASWELL(dev_priv) && crtc_state->dither) 5699 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 5700 5701 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 5702 val |= PIPECONF_INTERLACED_ILK; 5703 else 5704 val |= PIPECONF_PROGRESSIVE; 5705 5706 if (IS_HASWELL(dev_priv) && 5707 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 5708 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; 5709 5710 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val); 5711 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder)); 5712 } 5713 5714 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 5715 { 5716 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5717 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5718 u32 val = 0; 5719 5720 switch (crtc_state->pipe_bpp) { 5721 case 18: 5722 val |= PIPEMISC_DITHER_6_BPC; 5723 break; 5724 case 24: 5725 val |= PIPEMISC_DITHER_8_BPC; 5726 break; 5727 case 30: 5728 val |= PIPEMISC_DITHER_10_BPC; 5729 break; 5730 case 36: 5731 val |= PIPEMISC_DITHER_12_BPC; 5732 break; 5733 default: 5734 MISSING_CASE(crtc_state->pipe_bpp); 5735 break; 5736 } 5737 5738 if (crtc_state->dither) 5739 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 5740 5741 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 5742 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 5743 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 5744 5745 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 5746 val |= PIPEMISC_YUV420_ENABLE | 5747 PIPEMISC_YUV420_MODE_FULL_BLEND; 5748 5749 if (DISPLAY_VER(dev_priv) >= 11 && 5750 (crtc_state->active_planes & ~(icl_hdr_plane_mask() | 5751 BIT(PLANE_CURSOR))) == 0) 5752 val |= PIPEMISC_HDR_MODE_PRECISION; 5753 5754 if (DISPLAY_VER(dev_priv) >= 12) 5755 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC; 5756 5757 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val); 5758 } 5759 5760 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 5761 { 5762 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5763 u32 tmp; 5764 5765 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 5766 5767 switch (tmp & PIPEMISC_DITHER_BPC_MASK) { 5768 case PIPEMISC_DITHER_6_BPC: 5769 return 18; 5770 case PIPEMISC_DITHER_8_BPC: 5771 return 24; 5772 case PIPEMISC_DITHER_10_BPC: 5773 return 30; 5774 case PIPEMISC_DITHER_12_BPC: 5775 return 36; 5776 default: 5777 MISSING_CASE(tmp); 5778 return 0; 5779 } 5780 } 5781 5782 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) 5783 { 5784 /* 5785 * Account for spread spectrum to avoid 5786 * oversubscribing the link. Max center spread 5787 * is 2.5%; use 5% for safety's sake. 5788 */ 5789 u32 bps = target_clock * bpp * 21 / 20; 5790 return DIV_ROUND_UP(bps, link_bw * 8); 5791 } 5792 5793 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 5794 struct intel_link_m_n *m_n) 5795 { 5796 struct drm_device *dev = crtc->base.dev; 5797 struct drm_i915_private *dev_priv = to_i915(dev); 5798 enum pipe pipe = crtc->pipe; 5799 5800 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe)); 5801 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe)); 5802 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 5803 & ~TU_SIZE_MASK; 5804 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe)); 5805 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 5806 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5807 } 5808 5809 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 5810 enum transcoder transcoder, 5811 struct intel_link_m_n *m_n, 5812 struct intel_link_m_n *m2_n2) 5813 { 5814 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5815 enum pipe pipe = crtc->pipe; 5816 5817 if (DISPLAY_VER(dev_priv) >= 5) { 5818 m_n->link_m = intel_de_read(dev_priv, 5819 PIPE_LINK_M1(transcoder)); 5820 m_n->link_n = intel_de_read(dev_priv, 5821 PIPE_LINK_N1(transcoder)); 5822 m_n->gmch_m = intel_de_read(dev_priv, 5823 PIPE_DATA_M1(transcoder)) 5824 & ~TU_SIZE_MASK; 5825 m_n->gmch_n = intel_de_read(dev_priv, 5826 PIPE_DATA_N1(transcoder)); 5827 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder)) 5828 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5829 5830 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 5831 m2_n2->link_m = intel_de_read(dev_priv, 5832 PIPE_LINK_M2(transcoder)); 5833 m2_n2->link_n = intel_de_read(dev_priv, 5834 PIPE_LINK_N2(transcoder)); 5835 m2_n2->gmch_m = intel_de_read(dev_priv, 5836 PIPE_DATA_M2(transcoder)) 5837 & ~TU_SIZE_MASK; 5838 m2_n2->gmch_n = intel_de_read(dev_priv, 5839 PIPE_DATA_N2(transcoder)); 5840 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder)) 5841 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5842 } 5843 } else { 5844 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe)); 5845 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe)); 5846 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 5847 & ~TU_SIZE_MASK; 5848 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe)); 5849 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 5850 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5851 } 5852 } 5853 5854 void intel_dp_get_m_n(struct intel_crtc *crtc, 5855 struct intel_crtc_state *pipe_config) 5856 { 5857 if (pipe_config->has_pch_encoder) 5858 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 5859 else 5860 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 5861 &pipe_config->dp_m_n, 5862 &pipe_config->dp_m2_n2); 5863 } 5864 5865 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc, 5866 struct intel_crtc_state *pipe_config) 5867 { 5868 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 5869 &pipe_config->fdi_m_n, NULL); 5870 } 5871 5872 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state, 5873 u32 pos, u32 size) 5874 { 5875 drm_rect_init(&crtc_state->pch_pfit.dst, 5876 pos >> 16, pos & 0xffff, 5877 size >> 16, size & 0xffff); 5878 } 5879 5880 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state) 5881 { 5882 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5883 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5884 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; 5885 int id = -1; 5886 int i; 5887 5888 /* find scaler attached to this pipe */ 5889 for (i = 0; i < crtc->num_scalers; i++) { 5890 u32 ctl, pos, size; 5891 5892 ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i)); 5893 if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN) 5894 continue; 5895 5896 id = i; 5897 crtc_state->pch_pfit.enabled = true; 5898 5899 pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i)); 5900 size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i)); 5901 5902 ilk_get_pfit_pos_size(crtc_state, pos, size); 5903 5904 scaler_state->scalers[i].in_use = true; 5905 break; 5906 } 5907 5908 scaler_state->scaler_id = id; 5909 if (id >= 0) 5910 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 5911 else 5912 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 5913 } 5914 5915 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state) 5916 { 5917 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5918 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5919 u32 ctl, pos, size; 5920 5921 ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe)); 5922 if ((ctl & PF_ENABLE) == 0) 5923 return; 5924 5925 crtc_state->pch_pfit.enabled = true; 5926 5927 pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe)); 5928 size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe)); 5929 5930 ilk_get_pfit_pos_size(crtc_state, pos, size); 5931 5932 /* 5933 * We currently do not free assignements of panel fitters on 5934 * ivb/hsw (since we don't use the higher upscaling modes which 5935 * differentiates them) so just WARN about this case for now. 5936 */ 5937 drm_WARN_ON(&dev_priv->drm, DISPLAY_VER(dev_priv) == 7 && 5938 (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe)); 5939 } 5940 5941 static bool ilk_get_pipe_config(struct intel_crtc *crtc, 5942 struct intel_crtc_state *pipe_config) 5943 { 5944 struct drm_device *dev = crtc->base.dev; 5945 struct drm_i915_private *dev_priv = to_i915(dev); 5946 enum intel_display_power_domain power_domain; 5947 intel_wakeref_t wakeref; 5948 u32 tmp; 5949 bool ret; 5950 5951 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 5952 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 5953 if (!wakeref) 5954 return false; 5955 5956 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 5957 pipe_config->shared_dpll = NULL; 5958 5959 ret = false; 5960 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 5961 if (!(tmp & PIPECONF_ENABLE)) 5962 goto out; 5963 5964 switch (tmp & PIPECONF_BPC_MASK) { 5965 case PIPECONF_6BPC: 5966 pipe_config->pipe_bpp = 18; 5967 break; 5968 case PIPECONF_8BPC: 5969 pipe_config->pipe_bpp = 24; 5970 break; 5971 case PIPECONF_10BPC: 5972 pipe_config->pipe_bpp = 30; 5973 break; 5974 case PIPECONF_12BPC: 5975 pipe_config->pipe_bpp = 36; 5976 break; 5977 default: 5978 break; 5979 } 5980 5981 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 5982 pipe_config->limited_color_range = true; 5983 5984 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { 5985 case PIPECONF_OUTPUT_COLORSPACE_YUV601: 5986 case PIPECONF_OUTPUT_COLORSPACE_YUV709: 5987 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 5988 break; 5989 default: 5990 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 5991 break; 5992 } 5993 5994 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 5995 PIPECONF_GAMMA_MODE_SHIFT; 5996 5997 pipe_config->csc_mode = intel_de_read(dev_priv, 5998 PIPE_CSC_MODE(crtc->pipe)); 5999 6000 i9xx_get_pipe_color_config(pipe_config); 6001 intel_color_get_config(pipe_config); 6002 6003 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 6004 struct intel_shared_dpll *pll; 6005 enum intel_dpll_id pll_id; 6006 bool pll_active; 6007 6008 pipe_config->has_pch_encoder = true; 6009 6010 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe)); 6011 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 6012 FDI_DP_PORT_WIDTH_SHIFT) + 1; 6013 6014 ilk_get_fdi_m_n_config(crtc, pipe_config); 6015 6016 if (HAS_PCH_IBX(dev_priv)) { 6017 /* 6018 * The pipe->pch transcoder and pch transcoder->pll 6019 * mapping is fixed. 6020 */ 6021 pll_id = (enum intel_dpll_id) crtc->pipe; 6022 } else { 6023 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL); 6024 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 6025 pll_id = DPLL_ID_PCH_PLL_B; 6026 else 6027 pll_id= DPLL_ID_PCH_PLL_A; 6028 } 6029 6030 pipe_config->shared_dpll = 6031 intel_get_shared_dpll_by_id(dev_priv, pll_id); 6032 pll = pipe_config->shared_dpll; 6033 6034 pll_active = intel_dpll_get_hw_state(dev_priv, pll, 6035 &pipe_config->dpll_hw_state); 6036 drm_WARN_ON(dev, !pll_active); 6037 6038 tmp = pipe_config->dpll_hw_state.dpll; 6039 pipe_config->pixel_multiplier = 6040 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 6041 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 6042 6043 ilk_pch_clock_get(crtc, pipe_config); 6044 } else { 6045 pipe_config->pixel_multiplier = 1; 6046 } 6047 6048 intel_get_transcoder_timings(crtc, pipe_config); 6049 intel_get_pipe_src_size(crtc, pipe_config); 6050 6051 ilk_get_pfit_config(pipe_config); 6052 6053 ret = true; 6054 6055 out: 6056 intel_display_power_put(dev_priv, power_domain, wakeref); 6057 6058 return ret; 6059 } 6060 6061 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 6062 struct intel_crtc_state *pipe_config, 6063 struct intel_display_power_domain_set *power_domain_set) 6064 { 6065 struct drm_device *dev = crtc->base.dev; 6066 struct drm_i915_private *dev_priv = to_i915(dev); 6067 unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP); 6068 unsigned long enabled_panel_transcoders = 0; 6069 enum transcoder panel_transcoder; 6070 u32 tmp; 6071 6072 if (DISPLAY_VER(dev_priv) >= 11) 6073 panel_transcoder_mask |= 6074 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 6075 6076 /* 6077 * The pipe->transcoder mapping is fixed with the exception of the eDP 6078 * and DSI transcoders handled below. 6079 */ 6080 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 6081 6082 /* 6083 * XXX: Do intel_display_power_get_if_enabled before reading this (for 6084 * consistency and less surprising code; it's in always on power). 6085 */ 6086 for_each_cpu_transcoder_masked(dev_priv, panel_transcoder, 6087 panel_transcoder_mask) { 6088 bool force_thru = false; 6089 enum pipe trans_pipe; 6090 6091 tmp = intel_de_read(dev_priv, 6092 TRANS_DDI_FUNC_CTL(panel_transcoder)); 6093 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 6094 continue; 6095 6096 /* 6097 * Log all enabled ones, only use the first one. 6098 * 6099 * FIXME: This won't work for two separate DSI displays. 6100 */ 6101 enabled_panel_transcoders |= BIT(panel_transcoder); 6102 if (enabled_panel_transcoders != BIT(panel_transcoder)) 6103 continue; 6104 6105 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 6106 default: 6107 drm_WARN(dev, 1, 6108 "unknown pipe linked to transcoder %s\n", 6109 transcoder_name(panel_transcoder)); 6110 fallthrough; 6111 case TRANS_DDI_EDP_INPUT_A_ONOFF: 6112 force_thru = true; 6113 fallthrough; 6114 case TRANS_DDI_EDP_INPUT_A_ON: 6115 trans_pipe = PIPE_A; 6116 break; 6117 case TRANS_DDI_EDP_INPUT_B_ONOFF: 6118 trans_pipe = PIPE_B; 6119 break; 6120 case TRANS_DDI_EDP_INPUT_C_ONOFF: 6121 trans_pipe = PIPE_C; 6122 break; 6123 case TRANS_DDI_EDP_INPUT_D_ONOFF: 6124 trans_pipe = PIPE_D; 6125 break; 6126 } 6127 6128 if (trans_pipe == crtc->pipe) { 6129 pipe_config->cpu_transcoder = panel_transcoder; 6130 pipe_config->pch_pfit.force_thru = force_thru; 6131 } 6132 } 6133 6134 /* 6135 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 6136 */ 6137 drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && 6138 enabled_panel_transcoders != BIT(TRANSCODER_EDP)); 6139 6140 if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, 6141 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder))) 6142 return false; 6143 6144 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); 6145 6146 return tmp & PIPECONF_ENABLE; 6147 } 6148 6149 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 6150 struct intel_crtc_state *pipe_config, 6151 struct intel_display_power_domain_set *power_domain_set) 6152 { 6153 struct drm_device *dev = crtc->base.dev; 6154 struct drm_i915_private *dev_priv = to_i915(dev); 6155 enum transcoder cpu_transcoder; 6156 enum port port; 6157 u32 tmp; 6158 6159 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 6160 if (port == PORT_A) 6161 cpu_transcoder = TRANSCODER_DSI_A; 6162 else 6163 cpu_transcoder = TRANSCODER_DSI_C; 6164 6165 if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, 6166 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) 6167 continue; 6168 6169 /* 6170 * The PLL needs to be enabled with a valid divider 6171 * configuration, otherwise accessing DSI registers will hang 6172 * the machine. See BSpec North Display Engine 6173 * registers/MIPI[BXT]. We can break out here early, since we 6174 * need the same DSI PLL to be enabled for both DSI ports. 6175 */ 6176 if (!bxt_dsi_pll_is_enabled(dev_priv)) 6177 break; 6178 6179 /* XXX: this works for video mode only */ 6180 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); 6181 if (!(tmp & DPI_ENABLE)) 6182 continue; 6183 6184 tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); 6185 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 6186 continue; 6187 6188 pipe_config->cpu_transcoder = cpu_transcoder; 6189 break; 6190 } 6191 6192 return transcoder_is_dsi(pipe_config->cpu_transcoder); 6193 } 6194 6195 static void hsw_get_ddi_port_state(struct intel_crtc *crtc, 6196 struct intel_crtc_state *pipe_config) 6197 { 6198 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6199 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 6200 enum port port; 6201 u32 tmp; 6202 6203 if (transcoder_is_dsi(cpu_transcoder)) { 6204 port = (cpu_transcoder == TRANSCODER_DSI_A) ? 6205 PORT_A : PORT_B; 6206 } else { 6207 tmp = intel_de_read(dev_priv, 6208 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 6209 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 6210 return; 6211 if (DISPLAY_VER(dev_priv) >= 12) 6212 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 6213 else 6214 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 6215 } 6216 6217 /* 6218 * Haswell has only FDI/PCH transcoder A. It is which is connected to 6219 * DDI E. So just check whether this pipe is wired to DDI E and whether 6220 * the PCH transcoder is on. 6221 */ 6222 if (DISPLAY_VER(dev_priv) < 9 && 6223 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) { 6224 pipe_config->has_pch_encoder = true; 6225 6226 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); 6227 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 6228 FDI_DP_PORT_WIDTH_SHIFT) + 1; 6229 6230 ilk_get_fdi_m_n_config(crtc, pipe_config); 6231 } 6232 } 6233 6234 static bool hsw_get_pipe_config(struct intel_crtc *crtc, 6235 struct intel_crtc_state *pipe_config) 6236 { 6237 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6238 struct intel_display_power_domain_set power_domain_set = { }; 6239 bool active; 6240 u32 tmp; 6241 6242 if (!intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, 6243 POWER_DOMAIN_PIPE(crtc->pipe))) 6244 return false; 6245 6246 pipe_config->shared_dpll = NULL; 6247 6248 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_set); 6249 6250 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 6251 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_set)) { 6252 drm_WARN_ON(&dev_priv->drm, active); 6253 active = true; 6254 } 6255 6256 intel_dsc_get_config(pipe_config); 6257 if (DISPLAY_VER(dev_priv) >= 13 && !pipe_config->dsc.compression_enable) 6258 intel_uncompressed_joiner_get_config(pipe_config); 6259 6260 if (!active) { 6261 /* bigjoiner slave doesn't enable transcoder */ 6262 if (!pipe_config->bigjoiner_slave) 6263 goto out; 6264 6265 active = true; 6266 pipe_config->pixel_multiplier = 1; 6267 6268 /* we cannot read out most state, so don't bother.. */ 6269 pipe_config->quirks |= PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE; 6270 } else if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 6271 DISPLAY_VER(dev_priv) >= 11) { 6272 hsw_get_ddi_port_state(crtc, pipe_config); 6273 intel_get_transcoder_timings(crtc, pipe_config); 6274 } 6275 6276 if (HAS_VRR(dev_priv) && !transcoder_is_dsi(pipe_config->cpu_transcoder)) 6277 intel_vrr_get_config(crtc, pipe_config); 6278 6279 intel_get_pipe_src_size(crtc, pipe_config); 6280 6281 if (IS_HASWELL(dev_priv)) { 6282 u32 tmp = intel_de_read(dev_priv, 6283 PIPECONF(pipe_config->cpu_transcoder)); 6284 6285 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) 6286 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 6287 else 6288 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 6289 } else { 6290 pipe_config->output_format = 6291 bdw_get_pipemisc_output_format(crtc); 6292 } 6293 6294 pipe_config->gamma_mode = intel_de_read(dev_priv, 6295 GAMMA_MODE(crtc->pipe)); 6296 6297 pipe_config->csc_mode = intel_de_read(dev_priv, 6298 PIPE_CSC_MODE(crtc->pipe)); 6299 6300 if (DISPLAY_VER(dev_priv) >= 9) { 6301 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe)); 6302 6303 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 6304 pipe_config->gamma_enable = true; 6305 6306 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 6307 pipe_config->csc_enable = true; 6308 } else { 6309 i9xx_get_pipe_color_config(pipe_config); 6310 } 6311 6312 intel_color_get_config(pipe_config); 6313 6314 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe)); 6315 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); 6316 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 6317 pipe_config->ips_linetime = 6318 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); 6319 6320 if (intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, 6321 POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe))) { 6322 if (DISPLAY_VER(dev_priv) >= 9) 6323 skl_get_pfit_config(pipe_config); 6324 else 6325 ilk_get_pfit_config(pipe_config); 6326 } 6327 6328 if (hsw_crtc_supports_ips(crtc)) { 6329 if (IS_HASWELL(dev_priv)) 6330 pipe_config->ips_enabled = intel_de_read(dev_priv, 6331 IPS_CTL) & IPS_ENABLE; 6332 else { 6333 /* 6334 * We cannot readout IPS state on broadwell, set to 6335 * true so we can set it to a defined state on first 6336 * commit. 6337 */ 6338 pipe_config->ips_enabled = true; 6339 } 6340 } 6341 6342 if (pipe_config->bigjoiner_slave) { 6343 /* Cannot be read out as a slave, set to 0. */ 6344 pipe_config->pixel_multiplier = 0; 6345 } else if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 6346 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 6347 pipe_config->pixel_multiplier = 6348 intel_de_read(dev_priv, 6349 PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 6350 } else { 6351 pipe_config->pixel_multiplier = 1; 6352 } 6353 6354 out: 6355 intel_display_power_put_all_in_set(dev_priv, &power_domain_set); 6356 6357 return active; 6358 } 6359 6360 static bool intel_crtc_get_pipe_config(struct intel_crtc_state *crtc_state) 6361 { 6362 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6363 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 6364 6365 if (!i915->display.get_pipe_config(crtc, crtc_state)) 6366 return false; 6367 6368 crtc_state->hw.active = true; 6369 6370 intel_crtc_readout_derived_state(crtc_state); 6371 6372 return true; 6373 } 6374 6375 /* VESA 640x480x72Hz mode to set on the pipe */ 6376 static const struct drm_display_mode load_detect_mode = { 6377 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 6378 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 6379 }; 6380 6381 struct drm_framebuffer * 6382 intel_framebuffer_create(struct drm_i915_gem_object *obj, 6383 struct drm_mode_fb_cmd2 *mode_cmd) 6384 { 6385 struct intel_framebuffer *intel_fb; 6386 int ret; 6387 6388 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 6389 if (!intel_fb) 6390 return ERR_PTR(-ENOMEM); 6391 6392 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); 6393 if (ret) 6394 goto err; 6395 6396 return &intel_fb->base; 6397 6398 err: 6399 kfree(intel_fb); 6400 return ERR_PTR(ret); 6401 } 6402 6403 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 6404 struct drm_crtc *crtc) 6405 { 6406 struct drm_plane *plane; 6407 struct drm_plane_state *plane_state; 6408 int ret, i; 6409 6410 ret = drm_atomic_add_affected_planes(state, crtc); 6411 if (ret) 6412 return ret; 6413 6414 for_each_new_plane_in_state(state, plane, plane_state, i) { 6415 if (plane_state->crtc != crtc) 6416 continue; 6417 6418 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 6419 if (ret) 6420 return ret; 6421 6422 drm_atomic_set_fb_for_plane(plane_state, NULL); 6423 } 6424 6425 return 0; 6426 } 6427 6428 int intel_get_load_detect_pipe(struct drm_connector *connector, 6429 struct intel_load_detect_pipe *old, 6430 struct drm_modeset_acquire_ctx *ctx) 6431 { 6432 struct intel_crtc *intel_crtc; 6433 struct intel_encoder *intel_encoder = 6434 intel_attached_encoder(to_intel_connector(connector)); 6435 struct drm_crtc *possible_crtc; 6436 struct drm_encoder *encoder = &intel_encoder->base; 6437 struct drm_crtc *crtc = NULL; 6438 struct drm_device *dev = encoder->dev; 6439 struct drm_i915_private *dev_priv = to_i915(dev); 6440 struct drm_mode_config *config = &dev->mode_config; 6441 struct drm_atomic_state *state = NULL, *restore_state = NULL; 6442 struct drm_connector_state *connector_state; 6443 struct intel_crtc_state *crtc_state; 6444 int ret, i = -1; 6445 6446 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 6447 connector->base.id, connector->name, 6448 encoder->base.id, encoder->name); 6449 6450 old->restore_state = NULL; 6451 6452 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex)); 6453 6454 /* 6455 * Algorithm gets a little messy: 6456 * 6457 * - if the connector already has an assigned crtc, use it (but make 6458 * sure it's on first) 6459 * 6460 * - try to find the first unused crtc that can drive this connector, 6461 * and use that if we find one 6462 */ 6463 6464 /* See if we already have a CRTC for this connector */ 6465 if (connector->state->crtc) { 6466 crtc = connector->state->crtc; 6467 6468 ret = drm_modeset_lock(&crtc->mutex, ctx); 6469 if (ret) 6470 goto fail; 6471 6472 /* Make sure the crtc and connector are running */ 6473 goto found; 6474 } 6475 6476 /* Find an unused one (if possible) */ 6477 for_each_crtc(dev, possible_crtc) { 6478 i++; 6479 if (!(encoder->possible_crtcs & (1 << i))) 6480 continue; 6481 6482 ret = drm_modeset_lock(&possible_crtc->mutex, ctx); 6483 if (ret) 6484 goto fail; 6485 6486 if (possible_crtc->state->enable) { 6487 drm_modeset_unlock(&possible_crtc->mutex); 6488 continue; 6489 } 6490 6491 crtc = possible_crtc; 6492 break; 6493 } 6494 6495 /* 6496 * If we didn't find an unused CRTC, don't use any. 6497 */ 6498 if (!crtc) { 6499 drm_dbg_kms(&dev_priv->drm, 6500 "no pipe available for load-detect\n"); 6501 ret = -ENODEV; 6502 goto fail; 6503 } 6504 6505 found: 6506 intel_crtc = to_intel_crtc(crtc); 6507 6508 state = drm_atomic_state_alloc(dev); 6509 restore_state = drm_atomic_state_alloc(dev); 6510 if (!state || !restore_state) { 6511 ret = -ENOMEM; 6512 goto fail; 6513 } 6514 6515 state->acquire_ctx = ctx; 6516 restore_state->acquire_ctx = ctx; 6517 6518 connector_state = drm_atomic_get_connector_state(state, connector); 6519 if (IS_ERR(connector_state)) { 6520 ret = PTR_ERR(connector_state); 6521 goto fail; 6522 } 6523 6524 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); 6525 if (ret) 6526 goto fail; 6527 6528 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); 6529 if (IS_ERR(crtc_state)) { 6530 ret = PTR_ERR(crtc_state); 6531 goto fail; 6532 } 6533 6534 crtc_state->uapi.active = true; 6535 6536 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi, 6537 &load_detect_mode); 6538 if (ret) 6539 goto fail; 6540 6541 ret = intel_modeset_disable_planes(state, crtc); 6542 if (ret) 6543 goto fail; 6544 6545 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 6546 if (!ret) 6547 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); 6548 if (!ret) 6549 ret = drm_atomic_add_affected_planes(restore_state, crtc); 6550 if (ret) { 6551 drm_dbg_kms(&dev_priv->drm, 6552 "Failed to create a copy of old state to restore: %i\n", 6553 ret); 6554 goto fail; 6555 } 6556 6557 ret = drm_atomic_commit(state); 6558 if (ret) { 6559 drm_dbg_kms(&dev_priv->drm, 6560 "failed to set mode on load-detect pipe\n"); 6561 goto fail; 6562 } 6563 6564 old->restore_state = restore_state; 6565 drm_atomic_state_put(state); 6566 6567 /* let the connector get through one full cycle before testing */ 6568 intel_wait_for_vblank(dev_priv, intel_crtc->pipe); 6569 return true; 6570 6571 fail: 6572 if (state) { 6573 drm_atomic_state_put(state); 6574 state = NULL; 6575 } 6576 if (restore_state) { 6577 drm_atomic_state_put(restore_state); 6578 restore_state = NULL; 6579 } 6580 6581 if (ret == -EDEADLK) 6582 return ret; 6583 6584 return false; 6585 } 6586 6587 void intel_release_load_detect_pipe(struct drm_connector *connector, 6588 struct intel_load_detect_pipe *old, 6589 struct drm_modeset_acquire_ctx *ctx) 6590 { 6591 struct intel_encoder *intel_encoder = 6592 intel_attached_encoder(to_intel_connector(connector)); 6593 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev); 6594 struct drm_encoder *encoder = &intel_encoder->base; 6595 struct drm_atomic_state *state = old->restore_state; 6596 int ret; 6597 6598 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 6599 connector->base.id, connector->name, 6600 encoder->base.id, encoder->name); 6601 6602 if (!state) 6603 return; 6604 6605 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 6606 if (ret) 6607 drm_dbg_kms(&i915->drm, 6608 "Couldn't release load detect pipe: %i\n", ret); 6609 drm_atomic_state_put(state); 6610 } 6611 6612 static int i9xx_pll_refclk(struct drm_device *dev, 6613 const struct intel_crtc_state *pipe_config) 6614 { 6615 struct drm_i915_private *dev_priv = to_i915(dev); 6616 u32 dpll = pipe_config->dpll_hw_state.dpll; 6617 6618 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 6619 return dev_priv->vbt.lvds_ssc_freq; 6620 else if (HAS_PCH_SPLIT(dev_priv)) 6621 return 120000; 6622 else if (DISPLAY_VER(dev_priv) != 2) 6623 return 96000; 6624 else 6625 return 48000; 6626 } 6627 6628 /* Returns the clock of the currently programmed mode of the given pipe. */ 6629 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 6630 struct intel_crtc_state *pipe_config) 6631 { 6632 struct drm_device *dev = crtc->base.dev; 6633 struct drm_i915_private *dev_priv = to_i915(dev); 6634 enum pipe pipe = crtc->pipe; 6635 u32 dpll = pipe_config->dpll_hw_state.dpll; 6636 u32 fp; 6637 struct dpll clock; 6638 int port_clock; 6639 int refclk = i9xx_pll_refclk(dev, pipe_config); 6640 6641 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 6642 fp = pipe_config->dpll_hw_state.fp0; 6643 else 6644 fp = pipe_config->dpll_hw_state.fp1; 6645 6646 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 6647 if (IS_PINEVIEW(dev_priv)) { 6648 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 6649 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 6650 } else { 6651 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 6652 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 6653 } 6654 6655 if (DISPLAY_VER(dev_priv) != 2) { 6656 if (IS_PINEVIEW(dev_priv)) 6657 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 6658 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 6659 else 6660 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 6661 DPLL_FPA01_P1_POST_DIV_SHIFT); 6662 6663 switch (dpll & DPLL_MODE_MASK) { 6664 case DPLLB_MODE_DAC_SERIAL: 6665 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 6666 5 : 10; 6667 break; 6668 case DPLLB_MODE_LVDS: 6669 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 6670 7 : 14; 6671 break; 6672 default: 6673 drm_dbg_kms(&dev_priv->drm, 6674 "Unknown DPLL mode %08x in programmed " 6675 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 6676 return; 6677 } 6678 6679 if (IS_PINEVIEW(dev_priv)) 6680 port_clock = pnv_calc_dpll_params(refclk, &clock); 6681 else 6682 port_clock = i9xx_calc_dpll_params(refclk, &clock); 6683 } else { 6684 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv, 6685 LVDS); 6686 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 6687 6688 if (is_lvds) { 6689 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 6690 DPLL_FPA01_P1_POST_DIV_SHIFT); 6691 6692 if (lvds & LVDS_CLKB_POWER_UP) 6693 clock.p2 = 7; 6694 else 6695 clock.p2 = 14; 6696 } else { 6697 if (dpll & PLL_P1_DIVIDE_BY_TWO) 6698 clock.p1 = 2; 6699 else { 6700 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 6701 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 6702 } 6703 if (dpll & PLL_P2_DIVIDE_BY_4) 6704 clock.p2 = 4; 6705 else 6706 clock.p2 = 2; 6707 } 6708 6709 port_clock = i9xx_calc_dpll_params(refclk, &clock); 6710 } 6711 6712 /* 6713 * This value includes pixel_multiplier. We will use 6714 * port_clock to compute adjusted_mode.crtc_clock in the 6715 * encoder's get_config() function. 6716 */ 6717 pipe_config->port_clock = port_clock; 6718 } 6719 6720 int intel_dotclock_calculate(int link_freq, 6721 const struct intel_link_m_n *m_n) 6722 { 6723 /* 6724 * The calculation for the data clock is: 6725 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 6726 * But we want to avoid losing precison if possible, so: 6727 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 6728 * 6729 * and the link clock is simpler: 6730 * link_clock = (m * link_clock) / n 6731 */ 6732 6733 if (!m_n->link_n) 6734 return 0; 6735 6736 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 6737 } 6738 6739 static void ilk_pch_clock_get(struct intel_crtc *crtc, 6740 struct intel_crtc_state *pipe_config) 6741 { 6742 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6743 6744 /* read out port_clock from the DPLL */ 6745 i9xx_crtc_clock_get(crtc, pipe_config); 6746 6747 /* 6748 * In case there is an active pipe without active ports, 6749 * we may need some idea for the dotclock anyway. 6750 * Calculate one based on the FDI configuration. 6751 */ 6752 pipe_config->hw.adjusted_mode.crtc_clock = 6753 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 6754 &pipe_config->fdi_m_n); 6755 } 6756 6757 /* Returns the currently programmed mode of the given encoder. */ 6758 struct drm_display_mode * 6759 intel_encoder_current_mode(struct intel_encoder *encoder) 6760 { 6761 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6762 struct intel_crtc_state *crtc_state; 6763 struct drm_display_mode *mode; 6764 struct intel_crtc *crtc; 6765 enum pipe pipe; 6766 6767 if (!encoder->get_hw_state(encoder, &pipe)) 6768 return NULL; 6769 6770 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 6771 6772 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 6773 if (!mode) 6774 return NULL; 6775 6776 crtc_state = intel_crtc_state_alloc(crtc); 6777 if (!crtc_state) { 6778 kfree(mode); 6779 return NULL; 6780 } 6781 6782 if (!intel_crtc_get_pipe_config(crtc_state)) { 6783 kfree(crtc_state); 6784 kfree(mode); 6785 return NULL; 6786 } 6787 6788 intel_encoder_get_config(encoder, crtc_state); 6789 6790 intel_mode_from_crtc_timings(mode, &crtc_state->hw.adjusted_mode); 6791 6792 kfree(crtc_state); 6793 6794 return mode; 6795 } 6796 6797 /** 6798 * intel_wm_need_update - Check whether watermarks need updating 6799 * @cur: current plane state 6800 * @new: new plane state 6801 * 6802 * Check current plane state versus the new one to determine whether 6803 * watermarks need to be recalculated. 6804 * 6805 * Returns true or false. 6806 */ 6807 static bool intel_wm_need_update(const struct intel_plane_state *cur, 6808 struct intel_plane_state *new) 6809 { 6810 /* Update watermarks on tiling or size changes. */ 6811 if (new->uapi.visible != cur->uapi.visible) 6812 return true; 6813 6814 if (!cur->hw.fb || !new->hw.fb) 6815 return false; 6816 6817 if (cur->hw.fb->modifier != new->hw.fb->modifier || 6818 cur->hw.rotation != new->hw.rotation || 6819 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) || 6820 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) || 6821 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) || 6822 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst)) 6823 return true; 6824 6825 return false; 6826 } 6827 6828 static bool needs_scaling(const struct intel_plane_state *state) 6829 { 6830 int src_w = drm_rect_width(&state->uapi.src) >> 16; 6831 int src_h = drm_rect_height(&state->uapi.src) >> 16; 6832 int dst_w = drm_rect_width(&state->uapi.dst); 6833 int dst_h = drm_rect_height(&state->uapi.dst); 6834 6835 return (src_w != dst_w || src_h != dst_h); 6836 } 6837 6838 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 6839 struct intel_crtc_state *crtc_state, 6840 const struct intel_plane_state *old_plane_state, 6841 struct intel_plane_state *plane_state) 6842 { 6843 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6844 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 6845 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6846 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 6847 bool was_crtc_enabled = old_crtc_state->hw.active; 6848 bool is_crtc_enabled = crtc_state->hw.active; 6849 bool turn_off, turn_on, visible, was_visible; 6850 int ret; 6851 6852 if (DISPLAY_VER(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 6853 ret = skl_update_scaler_plane(crtc_state, plane_state); 6854 if (ret) 6855 return ret; 6856 } 6857 6858 was_visible = old_plane_state->uapi.visible; 6859 visible = plane_state->uapi.visible; 6860 6861 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible)) 6862 was_visible = false; 6863 6864 /* 6865 * Visibility is calculated as if the crtc was on, but 6866 * after scaler setup everything depends on it being off 6867 * when the crtc isn't active. 6868 * 6869 * FIXME this is wrong for watermarks. Watermarks should also 6870 * be computed as if the pipe would be active. Perhaps move 6871 * per-plane wm computation to the .check_plane() hook, and 6872 * only combine the results from all planes in the current place? 6873 */ 6874 if (!is_crtc_enabled) { 6875 intel_plane_set_invisible(crtc_state, plane_state); 6876 visible = false; 6877 } 6878 6879 if (!was_visible && !visible) 6880 return 0; 6881 6882 turn_off = was_visible && (!visible || mode_changed); 6883 turn_on = visible && (!was_visible || mode_changed); 6884 6885 drm_dbg_atomic(&dev_priv->drm, 6886 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 6887 crtc->base.base.id, crtc->base.name, 6888 plane->base.base.id, plane->base.name, 6889 was_visible, visible, 6890 turn_off, turn_on, mode_changed); 6891 6892 if (turn_on) { 6893 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) 6894 crtc_state->update_wm_pre = true; 6895 6896 /* must disable cxsr around plane enable/disable */ 6897 if (plane->id != PLANE_CURSOR) 6898 crtc_state->disable_cxsr = true; 6899 } else if (turn_off) { 6900 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) 6901 crtc_state->update_wm_post = true; 6902 6903 /* must disable cxsr around plane enable/disable */ 6904 if (plane->id != PLANE_CURSOR) 6905 crtc_state->disable_cxsr = true; 6906 } else if (intel_wm_need_update(old_plane_state, plane_state)) { 6907 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) { 6908 /* FIXME bollocks */ 6909 crtc_state->update_wm_pre = true; 6910 crtc_state->update_wm_post = true; 6911 } 6912 } 6913 6914 if (visible || was_visible) 6915 crtc_state->fb_bits |= plane->frontbuffer_bit; 6916 6917 /* 6918 * ILK/SNB DVSACNTR/Sprite Enable 6919 * IVB SPR_CTL/Sprite Enable 6920 * "When in Self Refresh Big FIFO mode, a write to enable the 6921 * plane will be internally buffered and delayed while Big FIFO 6922 * mode is exiting." 6923 * 6924 * Which means that enabling the sprite can take an extra frame 6925 * when we start in big FIFO mode (LP1+). Thus we need to drop 6926 * down to LP0 and wait for vblank in order to make sure the 6927 * sprite gets enabled on the next vblank after the register write. 6928 * Doing otherwise would risk enabling the sprite one frame after 6929 * we've already signalled flip completion. We can resume LP1+ 6930 * once the sprite has been enabled. 6931 * 6932 * 6933 * WaCxSRDisabledForSpriteScaling:ivb 6934 * IVB SPR_SCALE/Scaling Enable 6935 * "Low Power watermarks must be disabled for at least one 6936 * frame before enabling sprite scaling, and kept disabled 6937 * until sprite scaling is disabled." 6938 * 6939 * ILK/SNB DVSASCALE/Scaling Enable 6940 * "When in Self Refresh Big FIFO mode, scaling enable will be 6941 * masked off while Big FIFO mode is exiting." 6942 * 6943 * Despite the w/a only being listed for IVB we assume that 6944 * the ILK/SNB note has similar ramifications, hence we apply 6945 * the w/a on all three platforms. 6946 * 6947 * With experimental results seems this is needed also for primary 6948 * plane, not only sprite plane. 6949 */ 6950 if (plane->id != PLANE_CURSOR && 6951 (IS_IRONLAKE(dev_priv) || IS_SANDYBRIDGE(dev_priv) || 6952 IS_IVYBRIDGE(dev_priv)) && 6953 (turn_on || (!needs_scaling(old_plane_state) && 6954 needs_scaling(plane_state)))) 6955 crtc_state->disable_lp_wm = true; 6956 6957 return 0; 6958 } 6959 6960 static bool encoders_cloneable(const struct intel_encoder *a, 6961 const struct intel_encoder *b) 6962 { 6963 /* masks could be asymmetric, so check both ways */ 6964 return a == b || (a->cloneable & (1 << b->type) && 6965 b->cloneable & (1 << a->type)); 6966 } 6967 6968 static bool check_single_encoder_cloning(struct intel_atomic_state *state, 6969 struct intel_crtc *crtc, 6970 struct intel_encoder *encoder) 6971 { 6972 struct intel_encoder *source_encoder; 6973 struct drm_connector *connector; 6974 struct drm_connector_state *connector_state; 6975 int i; 6976 6977 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 6978 if (connector_state->crtc != &crtc->base) 6979 continue; 6980 6981 source_encoder = 6982 to_intel_encoder(connector_state->best_encoder); 6983 if (!encoders_cloneable(encoder, source_encoder)) 6984 return false; 6985 } 6986 6987 return true; 6988 } 6989 6990 static int icl_add_linked_planes(struct intel_atomic_state *state) 6991 { 6992 struct intel_plane *plane, *linked; 6993 struct intel_plane_state *plane_state, *linked_plane_state; 6994 int i; 6995 6996 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 6997 linked = plane_state->planar_linked_plane; 6998 6999 if (!linked) 7000 continue; 7001 7002 linked_plane_state = intel_atomic_get_plane_state(state, linked); 7003 if (IS_ERR(linked_plane_state)) 7004 return PTR_ERR(linked_plane_state); 7005 7006 drm_WARN_ON(state->base.dev, 7007 linked_plane_state->planar_linked_plane != plane); 7008 drm_WARN_ON(state->base.dev, 7009 linked_plane_state->planar_slave == plane_state->planar_slave); 7010 } 7011 7012 return 0; 7013 } 7014 7015 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 7016 { 7017 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7018 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7019 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); 7020 struct intel_plane *plane, *linked; 7021 struct intel_plane_state *plane_state; 7022 int i; 7023 7024 if (DISPLAY_VER(dev_priv) < 11) 7025 return 0; 7026 7027 /* 7028 * Destroy all old plane links and make the slave plane invisible 7029 * in the crtc_state->active_planes mask. 7030 */ 7031 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7032 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) 7033 continue; 7034 7035 plane_state->planar_linked_plane = NULL; 7036 if (plane_state->planar_slave && !plane_state->uapi.visible) { 7037 crtc_state->enabled_planes &= ~BIT(plane->id); 7038 crtc_state->active_planes &= ~BIT(plane->id); 7039 crtc_state->update_planes |= BIT(plane->id); 7040 } 7041 7042 plane_state->planar_slave = false; 7043 } 7044 7045 if (!crtc_state->nv12_planes) 7046 return 0; 7047 7048 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7049 struct intel_plane_state *linked_state = NULL; 7050 7051 if (plane->pipe != crtc->pipe || 7052 !(crtc_state->nv12_planes & BIT(plane->id))) 7053 continue; 7054 7055 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 7056 if (!icl_is_nv12_y_plane(dev_priv, linked->id)) 7057 continue; 7058 7059 if (crtc_state->active_planes & BIT(linked->id)) 7060 continue; 7061 7062 linked_state = intel_atomic_get_plane_state(state, linked); 7063 if (IS_ERR(linked_state)) 7064 return PTR_ERR(linked_state); 7065 7066 break; 7067 } 7068 7069 if (!linked_state) { 7070 drm_dbg_kms(&dev_priv->drm, 7071 "Need %d free Y planes for planar YUV\n", 7072 hweight8(crtc_state->nv12_planes)); 7073 7074 return -EINVAL; 7075 } 7076 7077 plane_state->planar_linked_plane = linked; 7078 7079 linked_state->planar_slave = true; 7080 linked_state->planar_linked_plane = plane; 7081 crtc_state->enabled_planes |= BIT(linked->id); 7082 crtc_state->active_planes |= BIT(linked->id); 7083 crtc_state->update_planes |= BIT(linked->id); 7084 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n", 7085 linked->base.name, plane->base.name); 7086 7087 /* Copy parameters to slave plane */ 7088 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE; 7089 linked_state->color_ctl = plane_state->color_ctl; 7090 linked_state->view = plane_state->view; 7091 7092 intel_plane_copy_hw_state(linked_state, plane_state); 7093 linked_state->uapi.src = plane_state->uapi.src; 7094 linked_state->uapi.dst = plane_state->uapi.dst; 7095 7096 if (icl_is_hdr_plane(dev_priv, plane->id)) { 7097 if (linked->id == PLANE_SPRITE5) 7098 plane_state->cus_ctl |= PLANE_CUS_PLANE_7; 7099 else if (linked->id == PLANE_SPRITE4) 7100 plane_state->cus_ctl |= PLANE_CUS_PLANE_6; 7101 else if (linked->id == PLANE_SPRITE3) 7102 plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL; 7103 else if (linked->id == PLANE_SPRITE2) 7104 plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL; 7105 else 7106 MISSING_CASE(linked->id); 7107 } 7108 } 7109 7110 return 0; 7111 } 7112 7113 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 7114 { 7115 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 7116 struct intel_atomic_state *state = 7117 to_intel_atomic_state(new_crtc_state->uapi.state); 7118 const struct intel_crtc_state *old_crtc_state = 7119 intel_atomic_get_old_crtc_state(state, crtc); 7120 7121 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 7122 } 7123 7124 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) 7125 { 7126 const struct drm_display_mode *pipe_mode = 7127 &crtc_state->hw.pipe_mode; 7128 int linetime_wm; 7129 7130 if (!crtc_state->hw.enable) 7131 return 0; 7132 7133 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 7134 pipe_mode->crtc_clock); 7135 7136 return min(linetime_wm, 0x1ff); 7137 } 7138 7139 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, 7140 const struct intel_cdclk_state *cdclk_state) 7141 { 7142 const struct drm_display_mode *pipe_mode = 7143 &crtc_state->hw.pipe_mode; 7144 int linetime_wm; 7145 7146 if (!crtc_state->hw.enable) 7147 return 0; 7148 7149 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 7150 cdclk_state->logical.cdclk); 7151 7152 return min(linetime_wm, 0x1ff); 7153 } 7154 7155 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) 7156 { 7157 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7158 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7159 const struct drm_display_mode *pipe_mode = 7160 &crtc_state->hw.pipe_mode; 7161 int linetime_wm; 7162 7163 if (!crtc_state->hw.enable) 7164 return 0; 7165 7166 linetime_wm = DIV_ROUND_UP(pipe_mode->crtc_htotal * 1000 * 8, 7167 crtc_state->pixel_rate); 7168 7169 /* Display WA #1135: BXT:ALL GLK:ALL */ 7170 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 7171 dev_priv->ipc_enabled) 7172 linetime_wm /= 2; 7173 7174 return min(linetime_wm, 0x1ff); 7175 } 7176 7177 static int hsw_compute_linetime_wm(struct intel_atomic_state *state, 7178 struct intel_crtc *crtc) 7179 { 7180 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7181 struct intel_crtc_state *crtc_state = 7182 intel_atomic_get_new_crtc_state(state, crtc); 7183 const struct intel_cdclk_state *cdclk_state; 7184 7185 if (DISPLAY_VER(dev_priv) >= 9) 7186 crtc_state->linetime = skl_linetime_wm(crtc_state); 7187 else 7188 crtc_state->linetime = hsw_linetime_wm(crtc_state); 7189 7190 if (!hsw_crtc_supports_ips(crtc)) 7191 return 0; 7192 7193 cdclk_state = intel_atomic_get_cdclk_state(state); 7194 if (IS_ERR(cdclk_state)) 7195 return PTR_ERR(cdclk_state); 7196 7197 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, 7198 cdclk_state); 7199 7200 return 0; 7201 } 7202 7203 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 7204 struct intel_crtc *crtc) 7205 { 7206 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7207 struct intel_crtc_state *crtc_state = 7208 intel_atomic_get_new_crtc_state(state, crtc); 7209 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 7210 int ret; 7211 7212 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv) && 7213 mode_changed && !crtc_state->hw.active) 7214 crtc_state->update_wm_post = true; 7215 7216 if (mode_changed && crtc_state->hw.enable && 7217 dev_priv->display.crtc_compute_clock && 7218 !crtc_state->bigjoiner_slave && 7219 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) { 7220 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state); 7221 if (ret) 7222 return ret; 7223 } 7224 7225 /* 7226 * May need to update pipe gamma enable bits 7227 * when C8 planes are getting enabled/disabled. 7228 */ 7229 if (c8_planes_changed(crtc_state)) 7230 crtc_state->uapi.color_mgmt_changed = true; 7231 7232 if (mode_changed || crtc_state->update_pipe || 7233 crtc_state->uapi.color_mgmt_changed) { 7234 ret = intel_color_check(crtc_state); 7235 if (ret) 7236 return ret; 7237 } 7238 7239 if (dev_priv->display.compute_pipe_wm) { 7240 ret = dev_priv->display.compute_pipe_wm(crtc_state); 7241 if (ret) { 7242 drm_dbg_kms(&dev_priv->drm, 7243 "Target pipe watermarks are invalid\n"); 7244 return ret; 7245 } 7246 } 7247 7248 if (dev_priv->display.compute_intermediate_wm) { 7249 if (drm_WARN_ON(&dev_priv->drm, 7250 !dev_priv->display.compute_pipe_wm)) 7251 return 0; 7252 7253 /* 7254 * Calculate 'intermediate' watermarks that satisfy both the 7255 * old state and the new state. We can program these 7256 * immediately. 7257 */ 7258 ret = dev_priv->display.compute_intermediate_wm(crtc_state); 7259 if (ret) { 7260 drm_dbg_kms(&dev_priv->drm, 7261 "No valid intermediate pipe watermarks are possible\n"); 7262 return ret; 7263 } 7264 } 7265 7266 if (DISPLAY_VER(dev_priv) >= 9) { 7267 if (mode_changed || crtc_state->update_pipe) { 7268 ret = skl_update_scaler_crtc(crtc_state); 7269 if (ret) 7270 return ret; 7271 } 7272 7273 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state); 7274 if (ret) 7275 return ret; 7276 } 7277 7278 if (HAS_IPS(dev_priv)) { 7279 ret = hsw_compute_ips_config(crtc_state); 7280 if (ret) 7281 return ret; 7282 } 7283 7284 if (DISPLAY_VER(dev_priv) >= 9 || 7285 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 7286 ret = hsw_compute_linetime_wm(state, crtc); 7287 if (ret) 7288 return ret; 7289 7290 } 7291 7292 if (!mode_changed) { 7293 ret = intel_psr2_sel_fetch_update(state, crtc); 7294 if (ret) 7295 return ret; 7296 } 7297 7298 return 0; 7299 } 7300 7301 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 7302 { 7303 struct intel_connector *connector; 7304 struct drm_connector_list_iter conn_iter; 7305 7306 drm_connector_list_iter_begin(dev, &conn_iter); 7307 for_each_intel_connector_iter(connector, &conn_iter) { 7308 struct drm_connector_state *conn_state = connector->base.state; 7309 struct intel_encoder *encoder = 7310 to_intel_encoder(connector->base.encoder); 7311 7312 if (conn_state->crtc) 7313 drm_connector_put(&connector->base); 7314 7315 if (encoder) { 7316 struct intel_crtc *crtc = 7317 to_intel_crtc(encoder->base.crtc); 7318 const struct intel_crtc_state *crtc_state = 7319 to_intel_crtc_state(crtc->base.state); 7320 7321 conn_state->best_encoder = &encoder->base; 7322 conn_state->crtc = &crtc->base; 7323 conn_state->max_bpc = (crtc_state->pipe_bpp ?: 24) / 3; 7324 7325 drm_connector_get(&connector->base); 7326 } else { 7327 conn_state->best_encoder = NULL; 7328 conn_state->crtc = NULL; 7329 } 7330 } 7331 drm_connector_list_iter_end(&conn_iter); 7332 } 7333 7334 static int 7335 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 7336 struct intel_crtc_state *pipe_config) 7337 { 7338 struct drm_connector *connector = conn_state->connector; 7339 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7340 const struct drm_display_info *info = &connector->display_info; 7341 int bpp; 7342 7343 switch (conn_state->max_bpc) { 7344 case 6 ... 7: 7345 bpp = 6 * 3; 7346 break; 7347 case 8 ... 9: 7348 bpp = 8 * 3; 7349 break; 7350 case 10 ... 11: 7351 bpp = 10 * 3; 7352 break; 7353 case 12 ... 16: 7354 bpp = 12 * 3; 7355 break; 7356 default: 7357 MISSING_CASE(conn_state->max_bpc); 7358 return -EINVAL; 7359 } 7360 7361 if (bpp < pipe_config->pipe_bpp) { 7362 drm_dbg_kms(&i915->drm, 7363 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 7364 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 7365 connector->base.id, connector->name, 7366 bpp, 3 * info->bpc, 7367 3 * conn_state->max_requested_bpc, 7368 pipe_config->pipe_bpp); 7369 7370 pipe_config->pipe_bpp = bpp; 7371 } 7372 7373 return 0; 7374 } 7375 7376 static int 7377 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 7378 struct intel_crtc_state *pipe_config) 7379 { 7380 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7381 struct drm_atomic_state *state = pipe_config->uapi.state; 7382 struct drm_connector *connector; 7383 struct drm_connector_state *connector_state; 7384 int bpp, i; 7385 7386 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 7387 IS_CHERRYVIEW(dev_priv))) 7388 bpp = 10*3; 7389 else if (DISPLAY_VER(dev_priv) >= 5) 7390 bpp = 12*3; 7391 else 7392 bpp = 8*3; 7393 7394 pipe_config->pipe_bpp = bpp; 7395 7396 /* Clamp display bpp to connector max bpp */ 7397 for_each_new_connector_in_state(state, connector, connector_state, i) { 7398 int ret; 7399 7400 if (connector_state->crtc != &crtc->base) 7401 continue; 7402 7403 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 7404 if (ret) 7405 return ret; 7406 } 7407 7408 return 0; 7409 } 7410 7411 static void intel_dump_crtc_timings(struct drm_i915_private *i915, 7412 const struct drm_display_mode *mode) 7413 { 7414 drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, " 7415 "type: 0x%x flags: 0x%x\n", 7416 mode->crtc_clock, 7417 mode->crtc_hdisplay, mode->crtc_hsync_start, 7418 mode->crtc_hsync_end, mode->crtc_htotal, 7419 mode->crtc_vdisplay, mode->crtc_vsync_start, 7420 mode->crtc_vsync_end, mode->crtc_vtotal, 7421 mode->type, mode->flags); 7422 } 7423 7424 static void 7425 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 7426 const char *id, unsigned int lane_count, 7427 const struct intel_link_m_n *m_n) 7428 { 7429 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7430 7431 drm_dbg_kms(&i915->drm, 7432 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 7433 id, lane_count, 7434 m_n->gmch_m, m_n->gmch_n, 7435 m_n->link_m, m_n->link_n, m_n->tu); 7436 } 7437 7438 static void 7439 intel_dump_infoframe(struct drm_i915_private *dev_priv, 7440 const union hdmi_infoframe *frame) 7441 { 7442 if (!drm_debug_enabled(DRM_UT_KMS)) 7443 return; 7444 7445 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 7446 } 7447 7448 static void 7449 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv, 7450 const struct drm_dp_vsc_sdp *vsc) 7451 { 7452 if (!drm_debug_enabled(DRM_UT_KMS)) 7453 return; 7454 7455 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc); 7456 } 7457 7458 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 7459 7460 static const char * const output_type_str[] = { 7461 OUTPUT_TYPE(UNUSED), 7462 OUTPUT_TYPE(ANALOG), 7463 OUTPUT_TYPE(DVO), 7464 OUTPUT_TYPE(SDVO), 7465 OUTPUT_TYPE(LVDS), 7466 OUTPUT_TYPE(TVOUT), 7467 OUTPUT_TYPE(HDMI), 7468 OUTPUT_TYPE(DP), 7469 OUTPUT_TYPE(EDP), 7470 OUTPUT_TYPE(DSI), 7471 OUTPUT_TYPE(DDI), 7472 OUTPUT_TYPE(DP_MST), 7473 }; 7474 7475 #undef OUTPUT_TYPE 7476 7477 static void snprintf_output_types(char *buf, size_t len, 7478 unsigned int output_types) 7479 { 7480 char *str = buf; 7481 int i; 7482 7483 str[0] = '\0'; 7484 7485 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 7486 int r; 7487 7488 if ((output_types & BIT(i)) == 0) 7489 continue; 7490 7491 r = snprintf(str, len, "%s%s", 7492 str != buf ? "," : "", output_type_str[i]); 7493 if (r >= len) 7494 break; 7495 str += r; 7496 len -= r; 7497 7498 output_types &= ~BIT(i); 7499 } 7500 7501 WARN_ON_ONCE(output_types != 0); 7502 } 7503 7504 static const char * const output_format_str[] = { 7505 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 7506 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 7507 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 7508 }; 7509 7510 static const char *output_formats(enum intel_output_format format) 7511 { 7512 if (format >= ARRAY_SIZE(output_format_str)) 7513 return "invalid"; 7514 return output_format_str[format]; 7515 } 7516 7517 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 7518 { 7519 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 7520 struct drm_i915_private *i915 = to_i915(plane->base.dev); 7521 const struct drm_framebuffer *fb = plane_state->hw.fb; 7522 7523 if (!fb) { 7524 drm_dbg_kms(&i915->drm, 7525 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 7526 plane->base.base.id, plane->base.name, 7527 yesno(plane_state->uapi.visible)); 7528 return; 7529 } 7530 7531 drm_dbg_kms(&i915->drm, 7532 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %p4cc modifier = 0x%llx, visible: %s\n", 7533 plane->base.base.id, plane->base.name, 7534 fb->base.id, fb->width, fb->height, &fb->format->format, 7535 fb->modifier, yesno(plane_state->uapi.visible)); 7536 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n", 7537 plane_state->hw.rotation, plane_state->scaler_id); 7538 if (plane_state->uapi.visible) 7539 drm_dbg_kms(&i915->drm, 7540 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 7541 DRM_RECT_FP_ARG(&plane_state->uapi.src), 7542 DRM_RECT_ARG(&plane_state->uapi.dst)); 7543 } 7544 7545 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 7546 struct intel_atomic_state *state, 7547 const char *context) 7548 { 7549 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 7550 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7551 const struct intel_plane_state *plane_state; 7552 struct intel_plane *plane; 7553 char buf[64]; 7554 int i; 7555 7556 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n", 7557 crtc->base.base.id, crtc->base.name, 7558 yesno(pipe_config->hw.enable), context); 7559 7560 if (!pipe_config->hw.enable) 7561 goto dump_planes; 7562 7563 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 7564 drm_dbg_kms(&dev_priv->drm, 7565 "active: %s, output_types: %s (0x%x), output format: %s\n", 7566 yesno(pipe_config->hw.active), 7567 buf, pipe_config->output_types, 7568 output_formats(pipe_config->output_format)); 7569 7570 drm_dbg_kms(&dev_priv->drm, 7571 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 7572 transcoder_name(pipe_config->cpu_transcoder), 7573 pipe_config->pipe_bpp, pipe_config->dither); 7574 7575 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n", 7576 transcoder_name(pipe_config->mst_master_transcoder)); 7577 7578 drm_dbg_kms(&dev_priv->drm, 7579 "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n", 7580 transcoder_name(pipe_config->master_transcoder), 7581 pipe_config->sync_mode_slaves_mask); 7582 7583 drm_dbg_kms(&dev_priv->drm, "bigjoiner: %s\n", 7584 pipe_config->bigjoiner_slave ? "slave" : 7585 pipe_config->bigjoiner ? "master" : "no"); 7586 7587 drm_dbg_kms(&dev_priv->drm, "splitter: %s, link count %d, overlap %d\n", 7588 enableddisabled(pipe_config->splitter.enable), 7589 pipe_config->splitter.link_count, 7590 pipe_config->splitter.pixel_overlap); 7591 7592 if (pipe_config->has_pch_encoder) 7593 intel_dump_m_n_config(pipe_config, "fdi", 7594 pipe_config->fdi_lanes, 7595 &pipe_config->fdi_m_n); 7596 7597 if (intel_crtc_has_dp_encoder(pipe_config)) { 7598 intel_dump_m_n_config(pipe_config, "dp m_n", 7599 pipe_config->lane_count, &pipe_config->dp_m_n); 7600 if (pipe_config->has_drrs) 7601 intel_dump_m_n_config(pipe_config, "dp m2_n2", 7602 pipe_config->lane_count, 7603 &pipe_config->dp_m2_n2); 7604 } 7605 7606 drm_dbg_kms(&dev_priv->drm, 7607 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 7608 pipe_config->has_audio, pipe_config->has_infoframe, 7609 pipe_config->infoframes.enable); 7610 7611 if (pipe_config->infoframes.enable & 7612 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 7613 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n", 7614 pipe_config->infoframes.gcp); 7615 if (pipe_config->infoframes.enable & 7616 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 7617 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 7618 if (pipe_config->infoframes.enable & 7619 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 7620 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 7621 if (pipe_config->infoframes.enable & 7622 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 7623 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 7624 if (pipe_config->infoframes.enable & 7625 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) 7626 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 7627 if (pipe_config->infoframes.enable & 7628 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA)) 7629 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 7630 if (pipe_config->infoframes.enable & 7631 intel_hdmi_infoframe_enable(DP_SDP_VSC)) 7632 intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc); 7633 7634 drm_dbg_kms(&dev_priv->drm, "vrr: %s, vmin: %d, vmax: %d, pipeline full: %d, flipline: %d, vmin vblank: %d, vmax vblank: %d\n", 7635 yesno(pipe_config->vrr.enable), 7636 pipe_config->vrr.vmin, pipe_config->vrr.vmax, 7637 pipe_config->vrr.pipeline_full, pipe_config->vrr.flipline, 7638 intel_vrr_vmin_vblank_start(pipe_config), 7639 intel_vrr_vmax_vblank_start(pipe_config)); 7640 7641 drm_dbg_kms(&dev_priv->drm, "requested mode:\n"); 7642 drm_mode_debug_printmodeline(&pipe_config->hw.mode); 7643 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n"); 7644 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode); 7645 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode); 7646 drm_dbg_kms(&dev_priv->drm, "pipe mode:\n"); 7647 drm_mode_debug_printmodeline(&pipe_config->hw.pipe_mode); 7648 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.pipe_mode); 7649 drm_dbg_kms(&dev_priv->drm, 7650 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 7651 pipe_config->port_clock, 7652 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 7653 pipe_config->pixel_rate); 7654 7655 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n", 7656 pipe_config->linetime, pipe_config->ips_linetime); 7657 7658 if (DISPLAY_VER(dev_priv) >= 9) 7659 drm_dbg_kms(&dev_priv->drm, 7660 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 7661 crtc->num_scalers, 7662 pipe_config->scaler_state.scaler_users, 7663 pipe_config->scaler_state.scaler_id); 7664 7665 if (HAS_GMCH(dev_priv)) 7666 drm_dbg_kms(&dev_priv->drm, 7667 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 7668 pipe_config->gmch_pfit.control, 7669 pipe_config->gmch_pfit.pgm_ratios, 7670 pipe_config->gmch_pfit.lvds_border_bits); 7671 else 7672 drm_dbg_kms(&dev_priv->drm, 7673 "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n", 7674 DRM_RECT_ARG(&pipe_config->pch_pfit.dst), 7675 enableddisabled(pipe_config->pch_pfit.enabled), 7676 yesno(pipe_config->pch_pfit.force_thru)); 7677 7678 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n", 7679 pipe_config->ips_enabled, pipe_config->double_wide); 7680 7681 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 7682 7683 if (IS_CHERRYVIEW(dev_priv)) 7684 drm_dbg_kms(&dev_priv->drm, 7685 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 7686 pipe_config->cgm_mode, pipe_config->gamma_mode, 7687 pipe_config->gamma_enable, pipe_config->csc_enable); 7688 else 7689 drm_dbg_kms(&dev_priv->drm, 7690 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 7691 pipe_config->csc_mode, pipe_config->gamma_mode, 7692 pipe_config->gamma_enable, pipe_config->csc_enable); 7693 7694 drm_dbg_kms(&dev_priv->drm, "degamma lut: %d entries, gamma lut: %d entries\n", 7695 pipe_config->hw.degamma_lut ? 7696 drm_color_lut_size(pipe_config->hw.degamma_lut) : 0, 7697 pipe_config->hw.gamma_lut ? 7698 drm_color_lut_size(pipe_config->hw.gamma_lut) : 0); 7699 7700 dump_planes: 7701 if (!state) 7702 return; 7703 7704 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7705 if (plane->pipe == crtc->pipe) 7706 intel_dump_plane_state(plane_state); 7707 } 7708 } 7709 7710 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 7711 { 7712 struct drm_device *dev = state->base.dev; 7713 struct drm_connector *connector; 7714 struct drm_connector_list_iter conn_iter; 7715 unsigned int used_ports = 0; 7716 unsigned int used_mst_ports = 0; 7717 bool ret = true; 7718 7719 /* 7720 * We're going to peek into connector->state, 7721 * hence connection_mutex must be held. 7722 */ 7723 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); 7724 7725 /* 7726 * Walk the connector list instead of the encoder 7727 * list to detect the problem on ddi platforms 7728 * where there's just one encoder per digital port. 7729 */ 7730 drm_connector_list_iter_begin(dev, &conn_iter); 7731 drm_for_each_connector_iter(connector, &conn_iter) { 7732 struct drm_connector_state *connector_state; 7733 struct intel_encoder *encoder; 7734 7735 connector_state = 7736 drm_atomic_get_new_connector_state(&state->base, 7737 connector); 7738 if (!connector_state) 7739 connector_state = connector->state; 7740 7741 if (!connector_state->best_encoder) 7742 continue; 7743 7744 encoder = to_intel_encoder(connector_state->best_encoder); 7745 7746 drm_WARN_ON(dev, !connector_state->crtc); 7747 7748 switch (encoder->type) { 7749 case INTEL_OUTPUT_DDI: 7750 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev)))) 7751 break; 7752 fallthrough; 7753 case INTEL_OUTPUT_DP: 7754 case INTEL_OUTPUT_HDMI: 7755 case INTEL_OUTPUT_EDP: 7756 /* the same port mustn't appear more than once */ 7757 if (used_ports & BIT(encoder->port)) 7758 ret = false; 7759 7760 used_ports |= BIT(encoder->port); 7761 break; 7762 case INTEL_OUTPUT_DP_MST: 7763 used_mst_ports |= 7764 1 << encoder->port; 7765 break; 7766 default: 7767 break; 7768 } 7769 } 7770 drm_connector_list_iter_end(&conn_iter); 7771 7772 /* can't mix MST and SST/HDMI on the same port */ 7773 if (used_ports & used_mst_ports) 7774 return false; 7775 7776 return ret; 7777 } 7778 7779 static void 7780 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_atomic_state *state, 7781 struct intel_crtc_state *crtc_state) 7782 { 7783 const struct intel_crtc_state *from_crtc_state = crtc_state; 7784 7785 if (crtc_state->bigjoiner_slave) { 7786 from_crtc_state = intel_atomic_get_new_crtc_state(state, 7787 crtc_state->bigjoiner_linked_crtc); 7788 7789 /* No need to copy state if the master state is unchanged */ 7790 if (!from_crtc_state) 7791 return; 7792 } 7793 7794 intel_crtc_copy_color_blobs(crtc_state, from_crtc_state); 7795 } 7796 7797 static void 7798 intel_crtc_copy_uapi_to_hw_state(struct intel_atomic_state *state, 7799 struct intel_crtc_state *crtc_state) 7800 { 7801 crtc_state->hw.enable = crtc_state->uapi.enable; 7802 crtc_state->hw.active = crtc_state->uapi.active; 7803 crtc_state->hw.mode = crtc_state->uapi.mode; 7804 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode; 7805 crtc_state->hw.scaling_filter = crtc_state->uapi.scaling_filter; 7806 7807 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc_state); 7808 } 7809 7810 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state) 7811 { 7812 if (crtc_state->bigjoiner_slave) 7813 return; 7814 7815 crtc_state->uapi.enable = crtc_state->hw.enable; 7816 crtc_state->uapi.active = crtc_state->hw.active; 7817 drm_WARN_ON(crtc_state->uapi.crtc->dev, 7818 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0); 7819 7820 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode; 7821 crtc_state->uapi.scaling_filter = crtc_state->hw.scaling_filter; 7822 7823 /* copy color blobs to uapi */ 7824 drm_property_replace_blob(&crtc_state->uapi.degamma_lut, 7825 crtc_state->hw.degamma_lut); 7826 drm_property_replace_blob(&crtc_state->uapi.gamma_lut, 7827 crtc_state->hw.gamma_lut); 7828 drm_property_replace_blob(&crtc_state->uapi.ctm, 7829 crtc_state->hw.ctm); 7830 } 7831 7832 static int 7833 copy_bigjoiner_crtc_state(struct intel_crtc_state *crtc_state, 7834 const struct intel_crtc_state *from_crtc_state) 7835 { 7836 struct intel_crtc_state *saved_state; 7837 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7838 7839 saved_state = kmemdup(from_crtc_state, sizeof(*saved_state), GFP_KERNEL); 7840 if (!saved_state) 7841 return -ENOMEM; 7842 7843 saved_state->uapi = crtc_state->uapi; 7844 saved_state->scaler_state = crtc_state->scaler_state; 7845 saved_state->shared_dpll = crtc_state->shared_dpll; 7846 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 7847 saved_state->crc_enabled = crtc_state->crc_enabled; 7848 7849 intel_crtc_free_hw_state(crtc_state); 7850 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 7851 kfree(saved_state); 7852 7853 /* Re-init hw state */ 7854 memset(&crtc_state->hw, 0, sizeof(saved_state->hw)); 7855 crtc_state->hw.enable = from_crtc_state->hw.enable; 7856 crtc_state->hw.active = from_crtc_state->hw.active; 7857 crtc_state->hw.pipe_mode = from_crtc_state->hw.pipe_mode; 7858 crtc_state->hw.adjusted_mode = from_crtc_state->hw.adjusted_mode; 7859 7860 /* Some fixups */ 7861 crtc_state->uapi.mode_changed = from_crtc_state->uapi.mode_changed; 7862 crtc_state->uapi.connectors_changed = from_crtc_state->uapi.connectors_changed; 7863 crtc_state->uapi.active_changed = from_crtc_state->uapi.active_changed; 7864 crtc_state->nv12_planes = crtc_state->c8_planes = crtc_state->update_planes = 0; 7865 crtc_state->bigjoiner_linked_crtc = to_intel_crtc(from_crtc_state->uapi.crtc); 7866 crtc_state->bigjoiner_slave = true; 7867 crtc_state->cpu_transcoder = (enum transcoder)crtc->pipe; 7868 crtc_state->has_audio = false; 7869 7870 return 0; 7871 } 7872 7873 static int 7874 intel_crtc_prepare_cleared_state(struct intel_atomic_state *state, 7875 struct intel_crtc_state *crtc_state) 7876 { 7877 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7878 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7879 struct intel_crtc_state *saved_state; 7880 7881 saved_state = intel_crtc_state_alloc(crtc); 7882 if (!saved_state) 7883 return -ENOMEM; 7884 7885 /* free the old crtc_state->hw members */ 7886 intel_crtc_free_hw_state(crtc_state); 7887 7888 /* FIXME: before the switch to atomic started, a new pipe_config was 7889 * kzalloc'd. Code that depends on any field being zero should be 7890 * fixed, so that the crtc_state can be safely duplicated. For now, 7891 * only fields that are know to not cause problems are preserved. */ 7892 7893 saved_state->uapi = crtc_state->uapi; 7894 saved_state->scaler_state = crtc_state->scaler_state; 7895 saved_state->shared_dpll = crtc_state->shared_dpll; 7896 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 7897 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 7898 sizeof(saved_state->icl_port_dplls)); 7899 saved_state->crc_enabled = crtc_state->crc_enabled; 7900 if (IS_G4X(dev_priv) || 7901 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7902 saved_state->wm = crtc_state->wm; 7903 7904 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 7905 kfree(saved_state); 7906 7907 intel_crtc_copy_uapi_to_hw_state(state, crtc_state); 7908 7909 return 0; 7910 } 7911 7912 static int 7913 intel_modeset_pipe_config(struct intel_atomic_state *state, 7914 struct intel_crtc_state *pipe_config) 7915 { 7916 struct drm_crtc *crtc = pipe_config->uapi.crtc; 7917 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7918 struct drm_connector *connector; 7919 struct drm_connector_state *connector_state; 7920 int base_bpp, ret, i; 7921 bool retry = true; 7922 7923 pipe_config->cpu_transcoder = 7924 (enum transcoder) to_intel_crtc(crtc)->pipe; 7925 7926 /* 7927 * Sanitize sync polarity flags based on requested ones. If neither 7928 * positive or negative polarity is requested, treat this as meaning 7929 * negative polarity. 7930 */ 7931 if (!(pipe_config->hw.adjusted_mode.flags & 7932 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 7933 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 7934 7935 if (!(pipe_config->hw.adjusted_mode.flags & 7936 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 7937 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 7938 7939 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 7940 pipe_config); 7941 if (ret) 7942 return ret; 7943 7944 base_bpp = pipe_config->pipe_bpp; 7945 7946 /* 7947 * Determine the real pipe dimensions. Note that stereo modes can 7948 * increase the actual pipe size due to the frame doubling and 7949 * insertion of additional space for blanks between the frame. This 7950 * is stored in the crtc timings. We use the requested mode to do this 7951 * computation to clearly distinguish it from the adjusted mode, which 7952 * can be changed by the connectors in the below retry loop. 7953 */ 7954 drm_mode_get_hv_timing(&pipe_config->hw.mode, 7955 &pipe_config->pipe_src_w, 7956 &pipe_config->pipe_src_h); 7957 7958 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 7959 struct intel_encoder *encoder = 7960 to_intel_encoder(connector_state->best_encoder); 7961 7962 if (connector_state->crtc != crtc) 7963 continue; 7964 7965 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 7966 drm_dbg_kms(&i915->drm, 7967 "rejecting invalid cloning configuration\n"); 7968 return -EINVAL; 7969 } 7970 7971 /* 7972 * Determine output_types before calling the .compute_config() 7973 * hooks so that the hooks can use this information safely. 7974 */ 7975 if (encoder->compute_output_type) 7976 pipe_config->output_types |= 7977 BIT(encoder->compute_output_type(encoder, pipe_config, 7978 connector_state)); 7979 else 7980 pipe_config->output_types |= BIT(encoder->type); 7981 } 7982 7983 encoder_retry: 7984 /* Ensure the port clock defaults are reset when retrying. */ 7985 pipe_config->port_clock = 0; 7986 pipe_config->pixel_multiplier = 1; 7987 7988 /* Fill in default crtc timings, allow encoders to overwrite them. */ 7989 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode, 7990 CRTC_STEREO_DOUBLE); 7991 7992 /* Pass our mode to the connectors and the CRTC to give them a chance to 7993 * adjust it according to limitations or connector properties, and also 7994 * a chance to reject the mode entirely. 7995 */ 7996 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 7997 struct intel_encoder *encoder = 7998 to_intel_encoder(connector_state->best_encoder); 7999 8000 if (connector_state->crtc != crtc) 8001 continue; 8002 8003 ret = encoder->compute_config(encoder, pipe_config, 8004 connector_state); 8005 if (ret < 0) { 8006 if (ret != -EDEADLK) 8007 drm_dbg_kms(&i915->drm, 8008 "Encoder config failure: %d\n", 8009 ret); 8010 return ret; 8011 } 8012 } 8013 8014 /* Set default port clock if not overwritten by the encoder. Needs to be 8015 * done afterwards in case the encoder adjusts the mode. */ 8016 if (!pipe_config->port_clock) 8017 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock 8018 * pipe_config->pixel_multiplier; 8019 8020 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 8021 if (ret == -EDEADLK) 8022 return ret; 8023 if (ret < 0) { 8024 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n"); 8025 return ret; 8026 } 8027 8028 if (ret == I915_DISPLAY_CONFIG_RETRY) { 8029 if (drm_WARN(&i915->drm, !retry, 8030 "loop in pipe configuration computation\n")) 8031 return -EINVAL; 8032 8033 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n"); 8034 retry = false; 8035 goto encoder_retry; 8036 } 8037 8038 /* Dithering seems to not pass-through bits correctly when it should, so 8039 * only enable it on 6bpc panels and when its not a compliance 8040 * test requesting 6bpc video pattern. 8041 */ 8042 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 8043 !pipe_config->dither_force_disable; 8044 drm_dbg_kms(&i915->drm, 8045 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 8046 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 8047 8048 return 0; 8049 } 8050 8051 static int 8052 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state) 8053 { 8054 struct intel_atomic_state *state = 8055 to_intel_atomic_state(crtc_state->uapi.state); 8056 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8057 struct drm_connector_state *conn_state; 8058 struct drm_connector *connector; 8059 int i; 8060 8061 for_each_new_connector_in_state(&state->base, connector, 8062 conn_state, i) { 8063 struct intel_encoder *encoder = 8064 to_intel_encoder(conn_state->best_encoder); 8065 int ret; 8066 8067 if (conn_state->crtc != &crtc->base || 8068 !encoder->compute_config_late) 8069 continue; 8070 8071 ret = encoder->compute_config_late(encoder, crtc_state, 8072 conn_state); 8073 if (ret) 8074 return ret; 8075 } 8076 8077 return 0; 8078 } 8079 8080 bool intel_fuzzy_clock_check(int clock1, int clock2) 8081 { 8082 int diff; 8083 8084 if (clock1 == clock2) 8085 return true; 8086 8087 if (!clock1 || !clock2) 8088 return false; 8089 8090 diff = abs(clock1 - clock2); 8091 8092 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 8093 return true; 8094 8095 return false; 8096 } 8097 8098 static bool 8099 intel_compare_m_n(unsigned int m, unsigned int n, 8100 unsigned int m2, unsigned int n2, 8101 bool exact) 8102 { 8103 if (m == m2 && n == n2) 8104 return true; 8105 8106 if (exact || !m || !n || !m2 || !n2) 8107 return false; 8108 8109 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 8110 8111 if (n > n2) { 8112 while (n > n2) { 8113 m2 <<= 1; 8114 n2 <<= 1; 8115 } 8116 } else if (n < n2) { 8117 while (n < n2) { 8118 m <<= 1; 8119 n <<= 1; 8120 } 8121 } 8122 8123 if (n != n2) 8124 return false; 8125 8126 return intel_fuzzy_clock_check(m, m2); 8127 } 8128 8129 static bool 8130 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 8131 const struct intel_link_m_n *m2_n2, 8132 bool exact) 8133 { 8134 return m_n->tu == m2_n2->tu && 8135 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 8136 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 8137 intel_compare_m_n(m_n->link_m, m_n->link_n, 8138 m2_n2->link_m, m2_n2->link_n, exact); 8139 } 8140 8141 static bool 8142 intel_compare_infoframe(const union hdmi_infoframe *a, 8143 const union hdmi_infoframe *b) 8144 { 8145 return memcmp(a, b, sizeof(*a)) == 0; 8146 } 8147 8148 static bool 8149 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a, 8150 const struct drm_dp_vsc_sdp *b) 8151 { 8152 return memcmp(a, b, sizeof(*a)) == 0; 8153 } 8154 8155 static void 8156 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 8157 bool fastset, const char *name, 8158 const union hdmi_infoframe *a, 8159 const union hdmi_infoframe *b) 8160 { 8161 if (fastset) { 8162 if (!drm_debug_enabled(DRM_UT_KMS)) 8163 return; 8164 8165 drm_dbg_kms(&dev_priv->drm, 8166 "fastset mismatch in %s infoframe\n", name); 8167 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 8168 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 8169 drm_dbg_kms(&dev_priv->drm, "found:\n"); 8170 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 8171 } else { 8172 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name); 8173 drm_err(&dev_priv->drm, "expected:\n"); 8174 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 8175 drm_err(&dev_priv->drm, "found:\n"); 8176 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 8177 } 8178 } 8179 8180 static void 8181 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv, 8182 bool fastset, const char *name, 8183 const struct drm_dp_vsc_sdp *a, 8184 const struct drm_dp_vsc_sdp *b) 8185 { 8186 if (fastset) { 8187 if (!drm_debug_enabled(DRM_UT_KMS)) 8188 return; 8189 8190 drm_dbg_kms(&dev_priv->drm, 8191 "fastset mismatch in %s dp sdp\n", name); 8192 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 8193 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a); 8194 drm_dbg_kms(&dev_priv->drm, "found:\n"); 8195 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b); 8196 } else { 8197 drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name); 8198 drm_err(&dev_priv->drm, "expected:\n"); 8199 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a); 8200 drm_err(&dev_priv->drm, "found:\n"); 8201 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b); 8202 } 8203 } 8204 8205 static void __printf(4, 5) 8206 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, 8207 const char *name, const char *format, ...) 8208 { 8209 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 8210 struct va_format vaf; 8211 va_list args; 8212 8213 va_start(args, format); 8214 vaf.fmt = format; 8215 vaf.va = &args; 8216 8217 if (fastset) 8218 drm_dbg_kms(&i915->drm, 8219 "[CRTC:%d:%s] fastset mismatch in %s %pV\n", 8220 crtc->base.base.id, crtc->base.name, name, &vaf); 8221 else 8222 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n", 8223 crtc->base.base.id, crtc->base.name, name, &vaf); 8224 8225 va_end(args); 8226 } 8227 8228 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 8229 { 8230 if (dev_priv->params.fastboot != -1) 8231 return dev_priv->params.fastboot; 8232 8233 /* Enable fastboot by default on Skylake and newer */ 8234 if (DISPLAY_VER(dev_priv) >= 9) 8235 return true; 8236 8237 /* Enable fastboot by default on VLV and CHV */ 8238 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8239 return true; 8240 8241 /* Disabled by default on all others */ 8242 return false; 8243 } 8244 8245 static bool 8246 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 8247 const struct intel_crtc_state *pipe_config, 8248 bool fastset) 8249 { 8250 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev); 8251 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 8252 bool ret = true; 8253 u32 bp_gamma = 0; 8254 bool fixup_inherited = fastset && 8255 current_config->inherited && !pipe_config->inherited; 8256 8257 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 8258 drm_dbg_kms(&dev_priv->drm, 8259 "initial modeset and fastboot not set\n"); 8260 ret = false; 8261 } 8262 8263 #define PIPE_CONF_CHECK_X(name) do { \ 8264 if (current_config->name != pipe_config->name) { \ 8265 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8266 "(expected 0x%08x, found 0x%08x)", \ 8267 current_config->name, \ 8268 pipe_config->name); \ 8269 ret = false; \ 8270 } \ 8271 } while (0) 8272 8273 #define PIPE_CONF_CHECK_I(name) do { \ 8274 if (current_config->name != pipe_config->name) { \ 8275 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8276 "(expected %i, found %i)", \ 8277 current_config->name, \ 8278 pipe_config->name); \ 8279 ret = false; \ 8280 } \ 8281 } while (0) 8282 8283 #define PIPE_CONF_CHECK_BOOL(name) do { \ 8284 if (current_config->name != pipe_config->name) { \ 8285 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8286 "(expected %s, found %s)", \ 8287 yesno(current_config->name), \ 8288 yesno(pipe_config->name)); \ 8289 ret = false; \ 8290 } \ 8291 } while (0) 8292 8293 /* 8294 * Checks state where we only read out the enabling, but not the entire 8295 * state itself (like full infoframes or ELD for audio). These states 8296 * require a full modeset on bootup to fix up. 8297 */ 8298 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 8299 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 8300 PIPE_CONF_CHECK_BOOL(name); \ 8301 } else { \ 8302 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8303 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ 8304 yesno(current_config->name), \ 8305 yesno(pipe_config->name)); \ 8306 ret = false; \ 8307 } \ 8308 } while (0) 8309 8310 #define PIPE_CONF_CHECK_P(name) do { \ 8311 if (current_config->name != pipe_config->name) { \ 8312 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8313 "(expected %p, found %p)", \ 8314 current_config->name, \ 8315 pipe_config->name); \ 8316 ret = false; \ 8317 } \ 8318 } while (0) 8319 8320 #define PIPE_CONF_CHECK_M_N(name) do { \ 8321 if (!intel_compare_link_m_n(¤t_config->name, \ 8322 &pipe_config->name,\ 8323 !fastset)) { \ 8324 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8325 "(expected tu %i gmch %i/%i link %i/%i, " \ 8326 "found tu %i, gmch %i/%i link %i/%i)", \ 8327 current_config->name.tu, \ 8328 current_config->name.gmch_m, \ 8329 current_config->name.gmch_n, \ 8330 current_config->name.link_m, \ 8331 current_config->name.link_n, \ 8332 pipe_config->name.tu, \ 8333 pipe_config->name.gmch_m, \ 8334 pipe_config->name.gmch_n, \ 8335 pipe_config->name.link_m, \ 8336 pipe_config->name.link_n); \ 8337 ret = false; \ 8338 } \ 8339 } while (0) 8340 8341 /* This is required for BDW+ where there is only one set of registers for 8342 * switching between high and low RR. 8343 * This macro can be used whenever a comparison has to be made between one 8344 * hw state and multiple sw state variables. 8345 */ 8346 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 8347 if (!intel_compare_link_m_n(¤t_config->name, \ 8348 &pipe_config->name, !fastset) && \ 8349 !intel_compare_link_m_n(¤t_config->alt_name, \ 8350 &pipe_config->name, !fastset)) { \ 8351 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8352 "(expected tu %i gmch %i/%i link %i/%i, " \ 8353 "or tu %i gmch %i/%i link %i/%i, " \ 8354 "found tu %i, gmch %i/%i link %i/%i)", \ 8355 current_config->name.tu, \ 8356 current_config->name.gmch_m, \ 8357 current_config->name.gmch_n, \ 8358 current_config->name.link_m, \ 8359 current_config->name.link_n, \ 8360 current_config->alt_name.tu, \ 8361 current_config->alt_name.gmch_m, \ 8362 current_config->alt_name.gmch_n, \ 8363 current_config->alt_name.link_m, \ 8364 current_config->alt_name.link_n, \ 8365 pipe_config->name.tu, \ 8366 pipe_config->name.gmch_m, \ 8367 pipe_config->name.gmch_n, \ 8368 pipe_config->name.link_m, \ 8369 pipe_config->name.link_n); \ 8370 ret = false; \ 8371 } \ 8372 } while (0) 8373 8374 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 8375 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 8376 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8377 "(%x) (expected %i, found %i)", \ 8378 (mask), \ 8379 current_config->name & (mask), \ 8380 pipe_config->name & (mask)); \ 8381 ret = false; \ 8382 } \ 8383 } while (0) 8384 8385 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 8386 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 8387 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8388 "(expected %i, found %i)", \ 8389 current_config->name, \ 8390 pipe_config->name); \ 8391 ret = false; \ 8392 } \ 8393 } while (0) 8394 8395 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 8396 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 8397 &pipe_config->infoframes.name)) { \ 8398 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 8399 ¤t_config->infoframes.name, \ 8400 &pipe_config->infoframes.name); \ 8401 ret = false; \ 8402 } \ 8403 } while (0) 8404 8405 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \ 8406 if (!current_config->has_psr && !pipe_config->has_psr && \ 8407 !intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \ 8408 &pipe_config->infoframes.name)) { \ 8409 pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \ 8410 ¤t_config->infoframes.name, \ 8411 &pipe_config->infoframes.name); \ 8412 ret = false; \ 8413 } \ 8414 } while (0) 8415 8416 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ 8417 if (current_config->name1 != pipe_config->name1) { \ 8418 pipe_config_mismatch(fastset, crtc, __stringify(name1), \ 8419 "(expected %i, found %i, won't compare lut values)", \ 8420 current_config->name1, \ 8421 pipe_config->name1); \ 8422 ret = false;\ 8423 } else { \ 8424 if (!intel_color_lut_equal(current_config->name2, \ 8425 pipe_config->name2, pipe_config->name1, \ 8426 bit_precision)) { \ 8427 pipe_config_mismatch(fastset, crtc, __stringify(name2), \ 8428 "hw_state doesn't match sw_state"); \ 8429 ret = false; \ 8430 } \ 8431 } \ 8432 } while (0) 8433 8434 #define PIPE_CONF_QUIRK(quirk) \ 8435 ((current_config->quirks | pipe_config->quirks) & (quirk)) 8436 8437 PIPE_CONF_CHECK_I(cpu_transcoder); 8438 8439 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 8440 PIPE_CONF_CHECK_I(fdi_lanes); 8441 PIPE_CONF_CHECK_M_N(fdi_m_n); 8442 8443 PIPE_CONF_CHECK_I(lane_count); 8444 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 8445 8446 if (DISPLAY_VER(dev_priv) < 8) { 8447 PIPE_CONF_CHECK_M_N(dp_m_n); 8448 8449 if (current_config->has_drrs) 8450 PIPE_CONF_CHECK_M_N(dp_m2_n2); 8451 } else 8452 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 8453 8454 PIPE_CONF_CHECK_X(output_types); 8455 8456 /* FIXME do the readout properly and get rid of this quirk */ 8457 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 8458 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hdisplay); 8459 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_htotal); 8460 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_start); 8461 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_end); 8462 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_start); 8463 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_end); 8464 8465 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vdisplay); 8466 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vtotal); 8467 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_start); 8468 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_end); 8469 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_start); 8470 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_end); 8471 8472 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay); 8473 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal); 8474 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start); 8475 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end); 8476 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start); 8477 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end); 8478 8479 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay); 8480 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal); 8481 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start); 8482 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end); 8483 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start); 8484 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end); 8485 8486 PIPE_CONF_CHECK_I(pixel_multiplier); 8487 8488 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8489 DRM_MODE_FLAG_INTERLACE); 8490 8491 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 8492 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8493 DRM_MODE_FLAG_PHSYNC); 8494 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8495 DRM_MODE_FLAG_NHSYNC); 8496 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8497 DRM_MODE_FLAG_PVSYNC); 8498 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8499 DRM_MODE_FLAG_NVSYNC); 8500 } 8501 } 8502 8503 PIPE_CONF_CHECK_I(output_format); 8504 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 8505 if ((DISPLAY_VER(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 8506 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8507 PIPE_CONF_CHECK_BOOL(limited_color_range); 8508 8509 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 8510 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 8511 PIPE_CONF_CHECK_BOOL(has_infoframe); 8512 /* FIXME do the readout properly and get rid of this quirk */ 8513 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) 8514 PIPE_CONF_CHECK_BOOL(fec_enable); 8515 8516 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 8517 8518 PIPE_CONF_CHECK_X(gmch_pfit.control); 8519 /* pfit ratios are autocomputed by the hw on gen4+ */ 8520 if (DISPLAY_VER(dev_priv) < 4) 8521 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 8522 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 8523 8524 /* 8525 * Changing the EDP transcoder input mux 8526 * (A_ONOFF vs. A_ON) requires a full modeset. 8527 */ 8528 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 8529 8530 if (!fastset) { 8531 PIPE_CONF_CHECK_I(pipe_src_w); 8532 PIPE_CONF_CHECK_I(pipe_src_h); 8533 8534 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 8535 if (current_config->pch_pfit.enabled) { 8536 PIPE_CONF_CHECK_I(pch_pfit.dst.x1); 8537 PIPE_CONF_CHECK_I(pch_pfit.dst.y1); 8538 PIPE_CONF_CHECK_I(pch_pfit.dst.x2); 8539 PIPE_CONF_CHECK_I(pch_pfit.dst.y2); 8540 } 8541 8542 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 8543 /* FIXME do the readout properly and get rid of this quirk */ 8544 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) 8545 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 8546 8547 PIPE_CONF_CHECK_X(gamma_mode); 8548 if (IS_CHERRYVIEW(dev_priv)) 8549 PIPE_CONF_CHECK_X(cgm_mode); 8550 else 8551 PIPE_CONF_CHECK_X(csc_mode); 8552 PIPE_CONF_CHECK_BOOL(gamma_enable); 8553 PIPE_CONF_CHECK_BOOL(csc_enable); 8554 8555 PIPE_CONF_CHECK_I(linetime); 8556 PIPE_CONF_CHECK_I(ips_linetime); 8557 8558 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); 8559 if (bp_gamma) 8560 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma); 8561 } 8562 8563 PIPE_CONF_CHECK_BOOL(double_wide); 8564 8565 PIPE_CONF_CHECK_P(shared_dpll); 8566 8567 /* FIXME do the readout properly and get rid of this quirk */ 8568 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 8569 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 8570 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 8571 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 8572 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 8573 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 8574 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 8575 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 8576 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 8577 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 8578 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 8579 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 8580 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 8581 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 8582 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 8583 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 8584 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 8585 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 8586 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 8587 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 8588 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 8589 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 8590 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 8591 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 8592 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 8593 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 8594 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 8595 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 8596 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 8597 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 8598 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 8599 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 8600 8601 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 8602 PIPE_CONF_CHECK_X(dsi_pll.div); 8603 8604 if (IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) >= 5) 8605 PIPE_CONF_CHECK_I(pipe_bpp); 8606 8607 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.pipe_mode.crtc_clock); 8608 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock); 8609 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 8610 8611 PIPE_CONF_CHECK_I(min_voltage_level); 8612 } 8613 8614 PIPE_CONF_CHECK_X(infoframes.enable); 8615 PIPE_CONF_CHECK_X(infoframes.gcp); 8616 PIPE_CONF_CHECK_INFOFRAME(avi); 8617 PIPE_CONF_CHECK_INFOFRAME(spd); 8618 PIPE_CONF_CHECK_INFOFRAME(hdmi); 8619 PIPE_CONF_CHECK_INFOFRAME(drm); 8620 PIPE_CONF_CHECK_DP_VSC_SDP(vsc); 8621 8622 PIPE_CONF_CHECK_X(sync_mode_slaves_mask); 8623 PIPE_CONF_CHECK_I(master_transcoder); 8624 PIPE_CONF_CHECK_BOOL(bigjoiner); 8625 PIPE_CONF_CHECK_BOOL(bigjoiner_slave); 8626 PIPE_CONF_CHECK_P(bigjoiner_linked_crtc); 8627 8628 PIPE_CONF_CHECK_I(dsc.compression_enable); 8629 PIPE_CONF_CHECK_I(dsc.dsc_split); 8630 PIPE_CONF_CHECK_I(dsc.compressed_bpp); 8631 8632 PIPE_CONF_CHECK_BOOL(splitter.enable); 8633 PIPE_CONF_CHECK_I(splitter.link_count); 8634 PIPE_CONF_CHECK_I(splitter.pixel_overlap); 8635 8636 PIPE_CONF_CHECK_I(mst_master_transcoder); 8637 8638 PIPE_CONF_CHECK_BOOL(vrr.enable); 8639 PIPE_CONF_CHECK_I(vrr.vmin); 8640 PIPE_CONF_CHECK_I(vrr.vmax); 8641 PIPE_CONF_CHECK_I(vrr.flipline); 8642 PIPE_CONF_CHECK_I(vrr.pipeline_full); 8643 8644 PIPE_CONF_CHECK_BOOL(has_psr); 8645 PIPE_CONF_CHECK_BOOL(has_psr2); 8646 PIPE_CONF_CHECK_BOOL(enable_psr2_sel_fetch); 8647 PIPE_CONF_CHECK_I(dc3co_exitline); 8648 8649 #undef PIPE_CONF_CHECK_X 8650 #undef PIPE_CONF_CHECK_I 8651 #undef PIPE_CONF_CHECK_BOOL 8652 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 8653 #undef PIPE_CONF_CHECK_P 8654 #undef PIPE_CONF_CHECK_FLAGS 8655 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 8656 #undef PIPE_CONF_CHECK_COLOR_LUT 8657 #undef PIPE_CONF_QUIRK 8658 8659 return ret; 8660 } 8661 8662 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 8663 const struct intel_crtc_state *pipe_config) 8664 { 8665 if (pipe_config->has_pch_encoder) { 8666 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 8667 &pipe_config->fdi_m_n); 8668 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock; 8669 8670 /* 8671 * FDI already provided one idea for the dotclock. 8672 * Yell if the encoder disagrees. 8673 */ 8674 drm_WARN(&dev_priv->drm, 8675 !intel_fuzzy_clock_check(fdi_dotclock, dotclock), 8676 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 8677 fdi_dotclock, dotclock); 8678 } 8679 } 8680 8681 static void verify_wm_state(struct intel_crtc *crtc, 8682 struct intel_crtc_state *new_crtc_state) 8683 { 8684 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8685 struct skl_hw_state { 8686 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 8687 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 8688 struct skl_pipe_wm wm; 8689 } *hw; 8690 const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal; 8691 int level, max_level = ilk_wm_max_level(dev_priv); 8692 struct intel_plane *plane; 8693 u8 hw_enabled_slices; 8694 8695 if (DISPLAY_VER(dev_priv) < 9 || !new_crtc_state->hw.active) 8696 return; 8697 8698 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 8699 if (!hw) 8700 return; 8701 8702 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 8703 8704 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 8705 8706 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv); 8707 8708 if (DISPLAY_VER(dev_priv) >= 11 && 8709 hw_enabled_slices != dev_priv->dbuf.enabled_slices) 8710 drm_err(&dev_priv->drm, 8711 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", 8712 dev_priv->dbuf.enabled_slices, 8713 hw_enabled_slices); 8714 8715 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 8716 const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 8717 const struct skl_wm_level *hw_wm_level, *sw_wm_level; 8718 8719 /* Watermarks */ 8720 for (level = 0; level <= max_level; level++) { 8721 hw_wm_level = &hw->wm.planes[plane->id].wm[level]; 8722 sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level); 8723 8724 if (skl_wm_level_equals(hw_wm_level, sw_wm_level)) 8725 continue; 8726 8727 drm_err(&dev_priv->drm, 8728 "[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8729 plane->base.base.id, plane->base.name, level, 8730 sw_wm_level->enable, 8731 sw_wm_level->blocks, 8732 sw_wm_level->lines, 8733 hw_wm_level->enable, 8734 hw_wm_level->blocks, 8735 hw_wm_level->lines); 8736 } 8737 8738 hw_wm_level = &hw->wm.planes[plane->id].trans_wm; 8739 sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id); 8740 8741 if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8742 drm_err(&dev_priv->drm, 8743 "[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8744 plane->base.base.id, plane->base.name, 8745 sw_wm_level->enable, 8746 sw_wm_level->blocks, 8747 sw_wm_level->lines, 8748 hw_wm_level->enable, 8749 hw_wm_level->blocks, 8750 hw_wm_level->lines); 8751 } 8752 8753 /* DDB */ 8754 hw_ddb_entry = &hw->ddb_y[plane->id]; 8755 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane->id]; 8756 8757 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 8758 drm_err(&dev_priv->drm, 8759 "[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n", 8760 plane->base.base.id, plane->base.name, 8761 sw_ddb_entry->start, sw_ddb_entry->end, 8762 hw_ddb_entry->start, hw_ddb_entry->end); 8763 } 8764 } 8765 8766 kfree(hw); 8767 } 8768 8769 static void 8770 verify_connector_state(struct intel_atomic_state *state, 8771 struct intel_crtc *crtc) 8772 { 8773 struct drm_connector *connector; 8774 struct drm_connector_state *new_conn_state; 8775 int i; 8776 8777 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 8778 struct drm_encoder *encoder = connector->encoder; 8779 struct intel_crtc_state *crtc_state = NULL; 8780 8781 if (new_conn_state->crtc != &crtc->base) 8782 continue; 8783 8784 if (crtc) 8785 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 8786 8787 intel_connector_verify_state(crtc_state, new_conn_state); 8788 8789 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 8790 "connector's atomic encoder doesn't match legacy encoder\n"); 8791 } 8792 } 8793 8794 static void 8795 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 8796 { 8797 struct intel_encoder *encoder; 8798 struct drm_connector *connector; 8799 struct drm_connector_state *old_conn_state, *new_conn_state; 8800 int i; 8801 8802 for_each_intel_encoder(&dev_priv->drm, encoder) { 8803 bool enabled = false, found = false; 8804 enum pipe pipe; 8805 8806 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n", 8807 encoder->base.base.id, 8808 encoder->base.name); 8809 8810 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 8811 new_conn_state, i) { 8812 if (old_conn_state->best_encoder == &encoder->base) 8813 found = true; 8814 8815 if (new_conn_state->best_encoder != &encoder->base) 8816 continue; 8817 found = enabled = true; 8818 8819 I915_STATE_WARN(new_conn_state->crtc != 8820 encoder->base.crtc, 8821 "connector's crtc doesn't match encoder crtc\n"); 8822 } 8823 8824 if (!found) 8825 continue; 8826 8827 I915_STATE_WARN(!!encoder->base.crtc != enabled, 8828 "encoder's enabled state mismatch " 8829 "(expected %i, found %i)\n", 8830 !!encoder->base.crtc, enabled); 8831 8832 if (!encoder->base.crtc) { 8833 bool active; 8834 8835 active = encoder->get_hw_state(encoder, &pipe); 8836 I915_STATE_WARN(active, 8837 "encoder detached but still enabled on pipe %c.\n", 8838 pipe_name(pipe)); 8839 } 8840 } 8841 } 8842 8843 static void 8844 verify_crtc_state(struct intel_crtc *crtc, 8845 struct intel_crtc_state *old_crtc_state, 8846 struct intel_crtc_state *new_crtc_state) 8847 { 8848 struct drm_device *dev = crtc->base.dev; 8849 struct drm_i915_private *dev_priv = to_i915(dev); 8850 struct intel_encoder *encoder; 8851 struct intel_crtc_state *pipe_config = old_crtc_state; 8852 struct drm_atomic_state *state = old_crtc_state->uapi.state; 8853 struct intel_crtc *master = crtc; 8854 8855 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi); 8856 intel_crtc_free_hw_state(old_crtc_state); 8857 intel_crtc_state_reset(old_crtc_state, crtc); 8858 old_crtc_state->uapi.state = state; 8859 8860 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id, 8861 crtc->base.name); 8862 8863 pipe_config->hw.enable = new_crtc_state->hw.enable; 8864 8865 intel_crtc_get_pipe_config(pipe_config); 8866 8867 /* we keep both pipes enabled on 830 */ 8868 if (IS_I830(dev_priv) && pipe_config->hw.active) 8869 pipe_config->hw.active = new_crtc_state->hw.active; 8870 8871 I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active, 8872 "crtc active state doesn't match with hw state " 8873 "(expected %i, found %i)\n", 8874 new_crtc_state->hw.active, pipe_config->hw.active); 8875 8876 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active, 8877 "transitional active state does not match atomic hw state " 8878 "(expected %i, found %i)\n", 8879 new_crtc_state->hw.active, crtc->active); 8880 8881 if (new_crtc_state->bigjoiner_slave) 8882 master = new_crtc_state->bigjoiner_linked_crtc; 8883 8884 for_each_encoder_on_crtc(dev, &master->base, encoder) { 8885 enum pipe pipe; 8886 bool active; 8887 8888 active = encoder->get_hw_state(encoder, &pipe); 8889 I915_STATE_WARN(active != new_crtc_state->hw.active, 8890 "[ENCODER:%i] active %i with crtc active %i\n", 8891 encoder->base.base.id, active, 8892 new_crtc_state->hw.active); 8893 8894 I915_STATE_WARN(active && master->pipe != pipe, 8895 "Encoder connected to wrong pipe %c\n", 8896 pipe_name(pipe)); 8897 8898 if (active) 8899 intel_encoder_get_config(encoder, pipe_config); 8900 } 8901 8902 if (!new_crtc_state->hw.active) 8903 return; 8904 8905 intel_pipe_config_sanity_check(dev_priv, pipe_config); 8906 8907 if (!intel_pipe_config_compare(new_crtc_state, 8908 pipe_config, false)) { 8909 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 8910 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 8911 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 8912 } 8913 } 8914 8915 static void 8916 intel_verify_planes(struct intel_atomic_state *state) 8917 { 8918 struct intel_plane *plane; 8919 const struct intel_plane_state *plane_state; 8920 int i; 8921 8922 for_each_new_intel_plane_in_state(state, plane, 8923 plane_state, i) 8924 assert_plane(plane, plane_state->planar_slave || 8925 plane_state->uapi.visible); 8926 } 8927 8928 static void 8929 verify_single_dpll_state(struct drm_i915_private *dev_priv, 8930 struct intel_shared_dpll *pll, 8931 struct intel_crtc *crtc, 8932 struct intel_crtc_state *new_crtc_state) 8933 { 8934 struct intel_dpll_hw_state dpll_hw_state; 8935 u8 pipe_mask; 8936 bool active; 8937 8938 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 8939 8940 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name); 8941 8942 active = intel_dpll_get_hw_state(dev_priv, pll, &dpll_hw_state); 8943 8944 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 8945 I915_STATE_WARN(!pll->on && pll->active_mask, 8946 "pll in active use but not on in sw tracking\n"); 8947 I915_STATE_WARN(pll->on && !pll->active_mask, 8948 "pll is on but not used by any active pipe\n"); 8949 I915_STATE_WARN(pll->on != active, 8950 "pll on state mismatch (expected %i, found %i)\n", 8951 pll->on, active); 8952 } 8953 8954 if (!crtc) { 8955 I915_STATE_WARN(pll->active_mask & ~pll->state.pipe_mask, 8956 "more active pll users than references: 0x%x vs 0x%x\n", 8957 pll->active_mask, pll->state.pipe_mask); 8958 8959 return; 8960 } 8961 8962 pipe_mask = BIT(crtc->pipe); 8963 8964 if (new_crtc_state->hw.active) 8965 I915_STATE_WARN(!(pll->active_mask & pipe_mask), 8966 "pll active mismatch (expected pipe %c in active mask 0x%x)\n", 8967 pipe_name(crtc->pipe), pll->active_mask); 8968 else 8969 I915_STATE_WARN(pll->active_mask & pipe_mask, 8970 "pll active mismatch (didn't expect pipe %c in active mask 0x%x)\n", 8971 pipe_name(crtc->pipe), pll->active_mask); 8972 8973 I915_STATE_WARN(!(pll->state.pipe_mask & pipe_mask), 8974 "pll enabled crtcs mismatch (expected 0x%x in 0x%x)\n", 8975 pipe_mask, pll->state.pipe_mask); 8976 8977 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 8978 &dpll_hw_state, 8979 sizeof(dpll_hw_state)), 8980 "pll hw state mismatch\n"); 8981 } 8982 8983 static void 8984 verify_shared_dpll_state(struct intel_crtc *crtc, 8985 struct intel_crtc_state *old_crtc_state, 8986 struct intel_crtc_state *new_crtc_state) 8987 { 8988 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8989 8990 if (new_crtc_state->shared_dpll) 8991 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 8992 8993 if (old_crtc_state->shared_dpll && 8994 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 8995 u8 pipe_mask = BIT(crtc->pipe); 8996 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 8997 8998 I915_STATE_WARN(pll->active_mask & pipe_mask, 8999 "pll active mismatch (didn't expect pipe %c in active mask (0x%x))\n", 9000 pipe_name(crtc->pipe), pll->active_mask); 9001 I915_STATE_WARN(pll->state.pipe_mask & pipe_mask, 9002 "pll enabled crtcs mismatch (found %x in enabled mask (0x%x))\n", 9003 pipe_name(crtc->pipe), pll->state.pipe_mask); 9004 } 9005 } 9006 9007 static void 9008 intel_modeset_verify_crtc(struct intel_crtc *crtc, 9009 struct intel_atomic_state *state, 9010 struct intel_crtc_state *old_crtc_state, 9011 struct intel_crtc_state *new_crtc_state) 9012 { 9013 if (!intel_crtc_needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 9014 return; 9015 9016 verify_wm_state(crtc, new_crtc_state); 9017 verify_connector_state(state, crtc); 9018 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 9019 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 9020 } 9021 9022 static void 9023 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 9024 { 9025 int i; 9026 9027 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) 9028 verify_single_dpll_state(dev_priv, 9029 &dev_priv->dpll.shared_dplls[i], 9030 NULL, NULL); 9031 } 9032 9033 static void 9034 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 9035 struct intel_atomic_state *state) 9036 { 9037 verify_encoder_state(dev_priv, state); 9038 verify_connector_state(state, NULL); 9039 verify_disabled_dpll_state(dev_priv); 9040 } 9041 9042 int intel_modeset_all_pipes(struct intel_atomic_state *state) 9043 { 9044 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9045 struct intel_crtc *crtc; 9046 9047 /* 9048 * Add all pipes to the state, and force 9049 * a modeset on all the active ones. 9050 */ 9051 for_each_intel_crtc(&dev_priv->drm, crtc) { 9052 struct intel_crtc_state *crtc_state; 9053 int ret; 9054 9055 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 9056 if (IS_ERR(crtc_state)) 9057 return PTR_ERR(crtc_state); 9058 9059 if (!crtc_state->hw.active || 9060 drm_atomic_crtc_needs_modeset(&crtc_state->uapi)) 9061 continue; 9062 9063 crtc_state->uapi.mode_changed = true; 9064 9065 ret = drm_atomic_add_affected_connectors(&state->base, 9066 &crtc->base); 9067 if (ret) 9068 return ret; 9069 9070 ret = intel_atomic_add_affected_planes(state, crtc); 9071 if (ret) 9072 return ret; 9073 9074 crtc_state->update_planes |= crtc_state->active_planes; 9075 } 9076 9077 return 0; 9078 } 9079 9080 static void 9081 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) 9082 { 9083 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9084 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9085 struct drm_display_mode adjusted_mode = 9086 crtc_state->hw.adjusted_mode; 9087 9088 if (crtc_state->vrr.enable) { 9089 adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax; 9090 adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax; 9091 adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 9092 crtc->vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 9093 } 9094 9095 drm_calc_timestamping_constants(&crtc->base, &adjusted_mode); 9096 9097 crtc->mode_flags = crtc_state->mode_flags; 9098 9099 /* 9100 * The scanline counter increments at the leading edge of hsync. 9101 * 9102 * On most platforms it starts counting from vtotal-1 on the 9103 * first active line. That means the scanline counter value is 9104 * always one less than what we would expect. Ie. just after 9105 * start of vblank, which also occurs at start of hsync (on the 9106 * last active line), the scanline counter will read vblank_start-1. 9107 * 9108 * On gen2 the scanline counter starts counting from 1 instead 9109 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 9110 * to keep the value positive), instead of adding one. 9111 * 9112 * On HSW+ the behaviour of the scanline counter depends on the output 9113 * type. For DP ports it behaves like most other platforms, but on HDMI 9114 * there's an extra 1 line difference. So we need to add two instead of 9115 * one to the value. 9116 * 9117 * On VLV/CHV DSI the scanline counter would appear to increment 9118 * approx. 1/3 of a scanline before start of vblank. Unfortunately 9119 * that means we can't tell whether we're in vblank or not while 9120 * we're on that particular line. We must still set scanline_offset 9121 * to 1 so that the vblank timestamps come out correct when we query 9122 * the scanline counter from within the vblank interrupt handler. 9123 * However if queried just before the start of vblank we'll get an 9124 * answer that's slightly in the future. 9125 */ 9126 if (DISPLAY_VER(dev_priv) == 2) { 9127 int vtotal; 9128 9129 vtotal = adjusted_mode.crtc_vtotal; 9130 if (adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 9131 vtotal /= 2; 9132 9133 crtc->scanline_offset = vtotal - 1; 9134 } else if (HAS_DDI(dev_priv) && 9135 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 9136 crtc->scanline_offset = 2; 9137 } else { 9138 crtc->scanline_offset = 1; 9139 } 9140 } 9141 9142 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 9143 { 9144 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9145 struct intel_crtc_state *new_crtc_state; 9146 struct intel_crtc *crtc; 9147 int i; 9148 9149 if (!dev_priv->display.crtc_compute_clock) 9150 return; 9151 9152 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9153 if (!intel_crtc_needs_modeset(new_crtc_state)) 9154 continue; 9155 9156 intel_release_shared_dplls(state, crtc); 9157 } 9158 } 9159 9160 /* 9161 * This implements the workaround described in the "notes" section of the mode 9162 * set sequence documentation. When going from no pipes or single pipe to 9163 * multiple pipes, and planes are enabled after the pipe, we need to wait at 9164 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 9165 */ 9166 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) 9167 { 9168 struct intel_crtc_state *crtc_state; 9169 struct intel_crtc *crtc; 9170 struct intel_crtc_state *first_crtc_state = NULL; 9171 struct intel_crtc_state *other_crtc_state = NULL; 9172 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 9173 int i; 9174 9175 /* look at all crtc's that are going to be enabled in during modeset */ 9176 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9177 if (!crtc_state->hw.active || 9178 !intel_crtc_needs_modeset(crtc_state)) 9179 continue; 9180 9181 if (first_crtc_state) { 9182 other_crtc_state = crtc_state; 9183 break; 9184 } else { 9185 first_crtc_state = crtc_state; 9186 first_pipe = crtc->pipe; 9187 } 9188 } 9189 9190 /* No workaround needed? */ 9191 if (!first_crtc_state) 9192 return 0; 9193 9194 /* w/a possibly needed, check how many crtc's are already enabled. */ 9195 for_each_intel_crtc(state->base.dev, crtc) { 9196 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 9197 if (IS_ERR(crtc_state)) 9198 return PTR_ERR(crtc_state); 9199 9200 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 9201 9202 if (!crtc_state->hw.active || 9203 intel_crtc_needs_modeset(crtc_state)) 9204 continue; 9205 9206 /* 2 or more enabled crtcs means no need for w/a */ 9207 if (enabled_pipe != INVALID_PIPE) 9208 return 0; 9209 9210 enabled_pipe = crtc->pipe; 9211 } 9212 9213 if (enabled_pipe != INVALID_PIPE) 9214 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 9215 else if (other_crtc_state) 9216 other_crtc_state->hsw_workaround_pipe = first_pipe; 9217 9218 return 0; 9219 } 9220 9221 u8 intel_calc_active_pipes(struct intel_atomic_state *state, 9222 u8 active_pipes) 9223 { 9224 const struct intel_crtc_state *crtc_state; 9225 struct intel_crtc *crtc; 9226 int i; 9227 9228 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9229 if (crtc_state->hw.active) 9230 active_pipes |= BIT(crtc->pipe); 9231 else 9232 active_pipes &= ~BIT(crtc->pipe); 9233 } 9234 9235 return active_pipes; 9236 } 9237 9238 static int intel_modeset_checks(struct intel_atomic_state *state) 9239 { 9240 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9241 9242 state->modeset = true; 9243 9244 if (IS_HASWELL(dev_priv)) 9245 return hsw_mode_set_planes_workaround(state); 9246 9247 return 0; 9248 } 9249 9250 /* 9251 * Handle calculation of various watermark data at the end of the atomic check 9252 * phase. The code here should be run after the per-crtc and per-plane 'check' 9253 * handlers to ensure that all derived state has been updated. 9254 */ 9255 static int calc_watermark_data(struct intel_atomic_state *state) 9256 { 9257 struct drm_device *dev = state->base.dev; 9258 struct drm_i915_private *dev_priv = to_i915(dev); 9259 9260 /* Is there platform-specific watermark information to calculate? */ 9261 if (dev_priv->display.compute_global_watermarks) 9262 return dev_priv->display.compute_global_watermarks(state); 9263 9264 return 0; 9265 } 9266 9267 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 9268 struct intel_crtc_state *new_crtc_state) 9269 { 9270 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 9271 return; 9272 9273 new_crtc_state->uapi.mode_changed = false; 9274 new_crtc_state->update_pipe = true; 9275 } 9276 9277 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state, 9278 struct intel_crtc_state *new_crtc_state) 9279 { 9280 /* 9281 * If we're not doing the full modeset we want to 9282 * keep the current M/N values as they may be 9283 * sufficiently different to the computed values 9284 * to cause problems. 9285 * 9286 * FIXME: should really copy more fuzzy state here 9287 */ 9288 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 9289 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 9290 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 9291 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 9292 } 9293 9294 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, 9295 struct intel_crtc *crtc, 9296 u8 plane_ids_mask) 9297 { 9298 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9299 struct intel_plane *plane; 9300 9301 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 9302 struct intel_plane_state *plane_state; 9303 9304 if ((plane_ids_mask & BIT(plane->id)) == 0) 9305 continue; 9306 9307 plane_state = intel_atomic_get_plane_state(state, plane); 9308 if (IS_ERR(plane_state)) 9309 return PTR_ERR(plane_state); 9310 } 9311 9312 return 0; 9313 } 9314 9315 int intel_atomic_add_affected_planes(struct intel_atomic_state *state, 9316 struct intel_crtc *crtc) 9317 { 9318 const struct intel_crtc_state *old_crtc_state = 9319 intel_atomic_get_old_crtc_state(state, crtc); 9320 const struct intel_crtc_state *new_crtc_state = 9321 intel_atomic_get_new_crtc_state(state, crtc); 9322 9323 return intel_crtc_add_planes_to_state(state, crtc, 9324 old_crtc_state->enabled_planes | 9325 new_crtc_state->enabled_planes); 9326 } 9327 9328 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) 9329 { 9330 /* See {hsw,vlv,ivb}_plane_ratio() */ 9331 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || 9332 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || 9333 IS_IVYBRIDGE(dev_priv); 9334 } 9335 9336 static int intel_crtc_add_bigjoiner_planes(struct intel_atomic_state *state, 9337 struct intel_crtc *crtc, 9338 struct intel_crtc *other) 9339 { 9340 const struct intel_plane_state *plane_state; 9341 struct intel_plane *plane; 9342 u8 plane_ids = 0; 9343 int i; 9344 9345 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9346 if (plane->pipe == crtc->pipe) 9347 plane_ids |= BIT(plane->id); 9348 } 9349 9350 return intel_crtc_add_planes_to_state(state, other, plane_ids); 9351 } 9352 9353 static int intel_bigjoiner_add_affected_planes(struct intel_atomic_state *state) 9354 { 9355 const struct intel_crtc_state *crtc_state; 9356 struct intel_crtc *crtc; 9357 int i; 9358 9359 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9360 int ret; 9361 9362 if (!crtc_state->bigjoiner) 9363 continue; 9364 9365 ret = intel_crtc_add_bigjoiner_planes(state, crtc, 9366 crtc_state->bigjoiner_linked_crtc); 9367 if (ret) 9368 return ret; 9369 } 9370 9371 return 0; 9372 } 9373 9374 static int intel_atomic_check_planes(struct intel_atomic_state *state) 9375 { 9376 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9377 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9378 struct intel_plane_state *plane_state; 9379 struct intel_plane *plane; 9380 struct intel_crtc *crtc; 9381 int i, ret; 9382 9383 ret = icl_add_linked_planes(state); 9384 if (ret) 9385 return ret; 9386 9387 ret = intel_bigjoiner_add_affected_planes(state); 9388 if (ret) 9389 return ret; 9390 9391 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9392 ret = intel_plane_atomic_check(state, plane); 9393 if (ret) { 9394 drm_dbg_atomic(&dev_priv->drm, 9395 "[PLANE:%d:%s] atomic driver check failed\n", 9396 plane->base.base.id, plane->base.name); 9397 return ret; 9398 } 9399 } 9400 9401 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9402 new_crtc_state, i) { 9403 u8 old_active_planes, new_active_planes; 9404 9405 ret = icl_check_nv12_planes(new_crtc_state); 9406 if (ret) 9407 return ret; 9408 9409 /* 9410 * On some platforms the number of active planes affects 9411 * the planes' minimum cdclk calculation. Add such planes 9412 * to the state before we compute the minimum cdclk. 9413 */ 9414 if (!active_planes_affects_min_cdclk(dev_priv)) 9415 continue; 9416 9417 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 9418 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 9419 9420 if (hweight8(old_active_planes) == hweight8(new_active_planes)) 9421 continue; 9422 9423 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); 9424 if (ret) 9425 return ret; 9426 } 9427 9428 return 0; 9429 } 9430 9431 static int intel_atomic_check_cdclk(struct intel_atomic_state *state, 9432 bool *need_cdclk_calc) 9433 { 9434 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9435 const struct intel_cdclk_state *old_cdclk_state; 9436 const struct intel_cdclk_state *new_cdclk_state; 9437 struct intel_plane_state *plane_state; 9438 struct intel_bw_state *new_bw_state; 9439 struct intel_plane *plane; 9440 int min_cdclk = 0; 9441 enum pipe pipe; 9442 int ret; 9443 int i; 9444 /* 9445 * active_planes bitmask has been updated, and potentially 9446 * affected planes are part of the state. We can now 9447 * compute the minimum cdclk for each plane. 9448 */ 9449 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9450 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 9451 if (ret) 9452 return ret; 9453 } 9454 9455 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 9456 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 9457 9458 if (new_cdclk_state && 9459 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk) 9460 *need_cdclk_calc = true; 9461 9462 ret = dev_priv->display.bw_calc_min_cdclk(state); 9463 if (ret) 9464 return ret; 9465 9466 new_bw_state = intel_atomic_get_new_bw_state(state); 9467 9468 if (!new_cdclk_state || !new_bw_state) 9469 return 0; 9470 9471 for_each_pipe(dev_priv, pipe) { 9472 min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk); 9473 9474 /* 9475 * Currently do this change only if we need to increase 9476 */ 9477 if (new_bw_state->min_cdclk > min_cdclk) 9478 *need_cdclk_calc = true; 9479 } 9480 9481 return 0; 9482 } 9483 9484 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 9485 { 9486 struct intel_crtc_state *crtc_state; 9487 struct intel_crtc *crtc; 9488 int i; 9489 9490 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9491 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 9492 int ret; 9493 9494 ret = intel_crtc_atomic_check(state, crtc); 9495 if (ret) { 9496 drm_dbg_atomic(&i915->drm, 9497 "[CRTC:%d:%s] atomic driver check failed\n", 9498 crtc->base.base.id, crtc->base.name); 9499 return ret; 9500 } 9501 } 9502 9503 return 0; 9504 } 9505 9506 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, 9507 u8 transcoders) 9508 { 9509 const struct intel_crtc_state *new_crtc_state; 9510 struct intel_crtc *crtc; 9511 int i; 9512 9513 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9514 if (new_crtc_state->hw.enable && 9515 transcoders & BIT(new_crtc_state->cpu_transcoder) && 9516 intel_crtc_needs_modeset(new_crtc_state)) 9517 return true; 9518 } 9519 9520 return false; 9521 } 9522 9523 static int intel_atomic_check_bigjoiner(struct intel_atomic_state *state, 9524 struct intel_crtc *crtc, 9525 struct intel_crtc_state *old_crtc_state, 9526 struct intel_crtc_state *new_crtc_state) 9527 { 9528 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9529 struct intel_crtc_state *slave_crtc_state, *master_crtc_state; 9530 struct intel_crtc *slave, *master; 9531 9532 /* slave being enabled, is master is still claiming this crtc? */ 9533 if (old_crtc_state->bigjoiner_slave) { 9534 slave = crtc; 9535 master = old_crtc_state->bigjoiner_linked_crtc; 9536 master_crtc_state = intel_atomic_get_new_crtc_state(state, master); 9537 if (!master_crtc_state || !intel_crtc_needs_modeset(master_crtc_state)) 9538 goto claimed; 9539 } 9540 9541 if (!new_crtc_state->bigjoiner) 9542 return 0; 9543 9544 if (1 + crtc->pipe >= INTEL_NUM_PIPES(dev_priv)) { 9545 DRM_DEBUG_KMS("[CRTC:%d:%s] Big joiner configuration requires " 9546 "CRTC + 1 to be used, doesn't exist\n", 9547 crtc->base.base.id, crtc->base.name); 9548 return -EINVAL; 9549 } 9550 9551 slave = new_crtc_state->bigjoiner_linked_crtc = 9552 intel_get_crtc_for_pipe(dev_priv, crtc->pipe + 1); 9553 slave_crtc_state = intel_atomic_get_crtc_state(&state->base, slave); 9554 master = crtc; 9555 if (IS_ERR(slave_crtc_state)) 9556 return PTR_ERR(slave_crtc_state); 9557 9558 /* master being enabled, slave was already configured? */ 9559 if (slave_crtc_state->uapi.enable) 9560 goto claimed; 9561 9562 DRM_DEBUG_KMS("[CRTC:%d:%s] Used as slave for big joiner\n", 9563 slave->base.base.id, slave->base.name); 9564 9565 return copy_bigjoiner_crtc_state(slave_crtc_state, new_crtc_state); 9566 9567 claimed: 9568 DRM_DEBUG_KMS("[CRTC:%d:%s] Slave is enabled as normal CRTC, but " 9569 "[CRTC:%d:%s] claiming this CRTC for bigjoiner.\n", 9570 slave->base.base.id, slave->base.name, 9571 master->base.base.id, master->base.name); 9572 return -EINVAL; 9573 } 9574 9575 static void kill_bigjoiner_slave(struct intel_atomic_state *state, 9576 struct intel_crtc_state *master_crtc_state) 9577 { 9578 struct intel_crtc_state *slave_crtc_state = 9579 intel_atomic_get_new_crtc_state(state, master_crtc_state->bigjoiner_linked_crtc); 9580 9581 slave_crtc_state->bigjoiner = master_crtc_state->bigjoiner = false; 9582 slave_crtc_state->bigjoiner_slave = master_crtc_state->bigjoiner_slave = false; 9583 slave_crtc_state->bigjoiner_linked_crtc = master_crtc_state->bigjoiner_linked_crtc = NULL; 9584 intel_crtc_copy_uapi_to_hw_state(state, slave_crtc_state); 9585 } 9586 9587 /** 9588 * DOC: asynchronous flip implementation 9589 * 9590 * Asynchronous page flip is the implementation for the DRM_MODE_PAGE_FLIP_ASYNC 9591 * flag. Currently async flip is only supported via the drmModePageFlip IOCTL. 9592 * Correspondingly, support is currently added for primary plane only. 9593 * 9594 * Async flip can only change the plane surface address, so anything else 9595 * changing is rejected from the intel_atomic_check_async() function. 9596 * Once this check is cleared, flip done interrupt is enabled using 9597 * the intel_crtc_enable_flip_done() function. 9598 * 9599 * As soon as the surface address register is written, flip done interrupt is 9600 * generated and the requested events are sent to the usersapce in the interrupt 9601 * handler itself. The timestamp and sequence sent during the flip done event 9602 * correspond to the last vblank and have no relation to the actual time when 9603 * the flip done event was sent. 9604 */ 9605 static int intel_atomic_check_async(struct intel_atomic_state *state) 9606 { 9607 struct drm_i915_private *i915 = to_i915(state->base.dev); 9608 const struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9609 const struct intel_plane_state *new_plane_state, *old_plane_state; 9610 struct intel_crtc *crtc; 9611 struct intel_plane *plane; 9612 int i; 9613 9614 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9615 new_crtc_state, i) { 9616 if (intel_crtc_needs_modeset(new_crtc_state)) { 9617 drm_dbg_kms(&i915->drm, "Modeset Required. Async flip not supported\n"); 9618 return -EINVAL; 9619 } 9620 9621 if (!new_crtc_state->hw.active) { 9622 drm_dbg_kms(&i915->drm, "CRTC inactive\n"); 9623 return -EINVAL; 9624 } 9625 if (old_crtc_state->active_planes != new_crtc_state->active_planes) { 9626 drm_dbg_kms(&i915->drm, 9627 "Active planes cannot be changed during async flip\n"); 9628 return -EINVAL; 9629 } 9630 } 9631 9632 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 9633 new_plane_state, i) { 9634 /* 9635 * TODO: Async flip is only supported through the page flip IOCTL 9636 * as of now. So support currently added for primary plane only. 9637 * Support for other planes on platforms on which supports 9638 * this(vlv/chv and icl+) should be added when async flip is 9639 * enabled in the atomic IOCTL path. 9640 */ 9641 if (!plane->async_flip) 9642 return -EINVAL; 9643 9644 /* 9645 * FIXME: This check is kept generic for all platforms. 9646 * Need to verify this for all gen9 and gen10 platforms to enable 9647 * this selectively if required. 9648 */ 9649 switch (new_plane_state->hw.fb->modifier) { 9650 case I915_FORMAT_MOD_X_TILED: 9651 case I915_FORMAT_MOD_Y_TILED: 9652 case I915_FORMAT_MOD_Yf_TILED: 9653 break; 9654 default: 9655 drm_dbg_kms(&i915->drm, 9656 "Linear memory/CCS does not support async flips\n"); 9657 return -EINVAL; 9658 } 9659 9660 if (old_plane_state->view.color_plane[0].stride != 9661 new_plane_state->view.color_plane[0].stride) { 9662 drm_dbg_kms(&i915->drm, "Stride cannot be changed in async flip\n"); 9663 return -EINVAL; 9664 } 9665 9666 if (old_plane_state->hw.fb->modifier != 9667 new_plane_state->hw.fb->modifier) { 9668 drm_dbg_kms(&i915->drm, 9669 "Framebuffer modifiers cannot be changed in async flip\n"); 9670 return -EINVAL; 9671 } 9672 9673 if (old_plane_state->hw.fb->format != 9674 new_plane_state->hw.fb->format) { 9675 drm_dbg_kms(&i915->drm, 9676 "Framebuffer format cannot be changed in async flip\n"); 9677 return -EINVAL; 9678 } 9679 9680 if (old_plane_state->hw.rotation != 9681 new_plane_state->hw.rotation) { 9682 drm_dbg_kms(&i915->drm, "Rotation cannot be changed in async flip\n"); 9683 return -EINVAL; 9684 } 9685 9686 if (!drm_rect_equals(&old_plane_state->uapi.src, &new_plane_state->uapi.src) || 9687 !drm_rect_equals(&old_plane_state->uapi.dst, &new_plane_state->uapi.dst)) { 9688 drm_dbg_kms(&i915->drm, 9689 "Plane size/co-ordinates cannot be changed in async flip\n"); 9690 return -EINVAL; 9691 } 9692 9693 if (old_plane_state->hw.alpha != new_plane_state->hw.alpha) { 9694 drm_dbg_kms(&i915->drm, "Alpha value cannot be changed in async flip\n"); 9695 return -EINVAL; 9696 } 9697 9698 if (old_plane_state->hw.pixel_blend_mode != 9699 new_plane_state->hw.pixel_blend_mode) { 9700 drm_dbg_kms(&i915->drm, 9701 "Pixel blend mode cannot be changed in async flip\n"); 9702 return -EINVAL; 9703 } 9704 9705 if (old_plane_state->hw.color_encoding != new_plane_state->hw.color_encoding) { 9706 drm_dbg_kms(&i915->drm, 9707 "Color encoding cannot be changed in async flip\n"); 9708 return -EINVAL; 9709 } 9710 9711 if (old_plane_state->hw.color_range != new_plane_state->hw.color_range) { 9712 drm_dbg_kms(&i915->drm, "Color range cannot be changed in async flip\n"); 9713 return -EINVAL; 9714 } 9715 } 9716 9717 return 0; 9718 } 9719 9720 static int intel_bigjoiner_add_affected_crtcs(struct intel_atomic_state *state) 9721 { 9722 struct intel_crtc_state *crtc_state; 9723 struct intel_crtc *crtc; 9724 int i; 9725 9726 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9727 struct intel_crtc_state *linked_crtc_state; 9728 struct intel_crtc *linked_crtc; 9729 int ret; 9730 9731 if (!crtc_state->bigjoiner) 9732 continue; 9733 9734 linked_crtc = crtc_state->bigjoiner_linked_crtc; 9735 linked_crtc_state = intel_atomic_get_crtc_state(&state->base, linked_crtc); 9736 if (IS_ERR(linked_crtc_state)) 9737 return PTR_ERR(linked_crtc_state); 9738 9739 if (!intel_crtc_needs_modeset(crtc_state)) 9740 continue; 9741 9742 linked_crtc_state->uapi.mode_changed = true; 9743 9744 ret = drm_atomic_add_affected_connectors(&state->base, 9745 &linked_crtc->base); 9746 if (ret) 9747 return ret; 9748 9749 ret = intel_atomic_add_affected_planes(state, linked_crtc); 9750 if (ret) 9751 return ret; 9752 } 9753 9754 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9755 /* Kill old bigjoiner link, we may re-establish afterwards */ 9756 if (intel_crtc_needs_modeset(crtc_state) && 9757 crtc_state->bigjoiner && !crtc_state->bigjoiner_slave) 9758 kill_bigjoiner_slave(state, crtc_state); 9759 } 9760 9761 return 0; 9762 } 9763 9764 /** 9765 * intel_atomic_check - validate state object 9766 * @dev: drm device 9767 * @_state: state to validate 9768 */ 9769 static int intel_atomic_check(struct drm_device *dev, 9770 struct drm_atomic_state *_state) 9771 { 9772 struct drm_i915_private *dev_priv = to_i915(dev); 9773 struct intel_atomic_state *state = to_intel_atomic_state(_state); 9774 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9775 struct intel_crtc *crtc; 9776 int ret, i; 9777 bool any_ms = false; 9778 9779 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9780 new_crtc_state, i) { 9781 if (new_crtc_state->inherited != old_crtc_state->inherited) 9782 new_crtc_state->uapi.mode_changed = true; 9783 } 9784 9785 intel_vrr_check_modeset(state); 9786 9787 ret = drm_atomic_helper_check_modeset(dev, &state->base); 9788 if (ret) 9789 goto fail; 9790 9791 ret = intel_bigjoiner_add_affected_crtcs(state); 9792 if (ret) 9793 goto fail; 9794 9795 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9796 new_crtc_state, i) { 9797 if (!intel_crtc_needs_modeset(new_crtc_state)) { 9798 /* Light copy */ 9799 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, new_crtc_state); 9800 9801 continue; 9802 } 9803 9804 if (!new_crtc_state->uapi.enable) { 9805 if (!new_crtc_state->bigjoiner_slave) { 9806 intel_crtc_copy_uapi_to_hw_state(state, new_crtc_state); 9807 any_ms = true; 9808 } 9809 continue; 9810 } 9811 9812 ret = intel_crtc_prepare_cleared_state(state, new_crtc_state); 9813 if (ret) 9814 goto fail; 9815 9816 ret = intel_modeset_pipe_config(state, new_crtc_state); 9817 if (ret) 9818 goto fail; 9819 9820 ret = intel_atomic_check_bigjoiner(state, crtc, old_crtc_state, 9821 new_crtc_state); 9822 if (ret) 9823 goto fail; 9824 } 9825 9826 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9827 new_crtc_state, i) { 9828 if (!intel_crtc_needs_modeset(new_crtc_state)) 9829 continue; 9830 9831 ret = intel_modeset_pipe_config_late(new_crtc_state); 9832 if (ret) 9833 goto fail; 9834 9835 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 9836 } 9837 9838 /** 9839 * Check if fastset is allowed by external dependencies like other 9840 * pipes and transcoders. 9841 * 9842 * Right now it only forces a fullmodeset when the MST master 9843 * transcoder did not changed but the pipe of the master transcoder 9844 * needs a fullmodeset so all slaves also needs to do a fullmodeset or 9845 * in case of port synced crtcs, if one of the synced crtcs 9846 * needs a full modeset, all other synced crtcs should be 9847 * forced a full modeset. 9848 */ 9849 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9850 if (!new_crtc_state->hw.enable || intel_crtc_needs_modeset(new_crtc_state)) 9851 continue; 9852 9853 if (intel_dp_mst_is_slave_trans(new_crtc_state)) { 9854 enum transcoder master = new_crtc_state->mst_master_transcoder; 9855 9856 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) { 9857 new_crtc_state->uapi.mode_changed = true; 9858 new_crtc_state->update_pipe = false; 9859 } 9860 } 9861 9862 if (is_trans_port_sync_mode(new_crtc_state)) { 9863 u8 trans = new_crtc_state->sync_mode_slaves_mask; 9864 9865 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) 9866 trans |= BIT(new_crtc_state->master_transcoder); 9867 9868 if (intel_cpu_transcoders_need_modeset(state, trans)) { 9869 new_crtc_state->uapi.mode_changed = true; 9870 new_crtc_state->update_pipe = false; 9871 } 9872 } 9873 9874 if (new_crtc_state->bigjoiner) { 9875 struct intel_crtc_state *linked_crtc_state = 9876 intel_atomic_get_new_crtc_state(state, new_crtc_state->bigjoiner_linked_crtc); 9877 9878 if (intel_crtc_needs_modeset(linked_crtc_state)) { 9879 new_crtc_state->uapi.mode_changed = true; 9880 new_crtc_state->update_pipe = false; 9881 } 9882 } 9883 } 9884 9885 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9886 new_crtc_state, i) { 9887 if (intel_crtc_needs_modeset(new_crtc_state)) { 9888 any_ms = true; 9889 continue; 9890 } 9891 9892 if (!new_crtc_state->update_pipe) 9893 continue; 9894 9895 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state); 9896 } 9897 9898 if (any_ms && !check_digital_port_conflicts(state)) { 9899 drm_dbg_kms(&dev_priv->drm, 9900 "rejecting conflicting digital port configuration\n"); 9901 ret = -EINVAL; 9902 goto fail; 9903 } 9904 9905 ret = drm_dp_mst_atomic_check(&state->base); 9906 if (ret) 9907 goto fail; 9908 9909 ret = intel_atomic_check_planes(state); 9910 if (ret) 9911 goto fail; 9912 9913 intel_fbc_choose_crtc(dev_priv, state); 9914 ret = calc_watermark_data(state); 9915 if (ret) 9916 goto fail; 9917 9918 ret = intel_bw_atomic_check(state); 9919 if (ret) 9920 goto fail; 9921 9922 ret = intel_atomic_check_cdclk(state, &any_ms); 9923 if (ret) 9924 goto fail; 9925 9926 if (any_ms) { 9927 ret = intel_modeset_checks(state); 9928 if (ret) 9929 goto fail; 9930 9931 ret = intel_modeset_calc_cdclk(state); 9932 if (ret) 9933 return ret; 9934 9935 intel_modeset_clear_plls(state); 9936 } 9937 9938 ret = intel_atomic_check_crtcs(state); 9939 if (ret) 9940 goto fail; 9941 9942 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9943 new_crtc_state, i) { 9944 if (new_crtc_state->uapi.async_flip) { 9945 ret = intel_atomic_check_async(state); 9946 if (ret) 9947 goto fail; 9948 } 9949 9950 if (!intel_crtc_needs_modeset(new_crtc_state) && 9951 !new_crtc_state->update_pipe) 9952 continue; 9953 9954 intel_dump_pipe_config(new_crtc_state, state, 9955 intel_crtc_needs_modeset(new_crtc_state) ? 9956 "[modeset]" : "[fastset]"); 9957 } 9958 9959 return 0; 9960 9961 fail: 9962 if (ret == -EDEADLK) 9963 return ret; 9964 9965 /* 9966 * FIXME would probably be nice to know which crtc specifically 9967 * caused the failure, in cases where we can pinpoint it. 9968 */ 9969 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9970 new_crtc_state, i) 9971 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 9972 9973 return ret; 9974 } 9975 9976 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 9977 { 9978 struct intel_crtc_state *crtc_state; 9979 struct intel_crtc *crtc; 9980 int i, ret; 9981 9982 ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base); 9983 if (ret < 0) 9984 return ret; 9985 9986 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9987 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 9988 9989 if (mode_changed || crtc_state->update_pipe || 9990 crtc_state->uapi.color_mgmt_changed) { 9991 intel_dsb_prepare(crtc_state); 9992 } 9993 } 9994 9995 return 0; 9996 } 9997 9998 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 9999 struct intel_crtc_state *crtc_state) 10000 { 10001 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10002 10003 if (DISPLAY_VER(dev_priv) != 2 || crtc_state->active_planes) 10004 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 10005 10006 if (crtc_state->has_pch_encoder) { 10007 enum pipe pch_transcoder = 10008 intel_crtc_pch_transcoder(crtc); 10009 10010 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 10011 } 10012 } 10013 10014 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 10015 const struct intel_crtc_state *new_crtc_state) 10016 { 10017 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 10018 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10019 10020 /* 10021 * Update pipe size and adjust fitter if needed: the reason for this is 10022 * that in compute_mode_changes we check the native mode (not the pfit 10023 * mode) to see if we can flip rather than do a full mode set. In the 10024 * fastboot case, we'll flip, but if we don't update the pipesrc and 10025 * pfit state, we'll end up with a big fb scanned out into the wrong 10026 * sized surface. 10027 */ 10028 intel_set_pipe_src_size(new_crtc_state); 10029 10030 /* on skylake this is done by detaching scalers */ 10031 if (DISPLAY_VER(dev_priv) >= 9) { 10032 if (new_crtc_state->pch_pfit.enabled) 10033 skl_pfit_enable(new_crtc_state); 10034 } else if (HAS_PCH_SPLIT(dev_priv)) { 10035 if (new_crtc_state->pch_pfit.enabled) 10036 ilk_pfit_enable(new_crtc_state); 10037 else if (old_crtc_state->pch_pfit.enabled) 10038 ilk_pfit_disable(old_crtc_state); 10039 } 10040 10041 /* 10042 * The register is supposedly single buffered so perhaps 10043 * not 100% correct to do this here. But SKL+ calculate 10044 * this based on the adjust pixel rate so pfit changes do 10045 * affect it and so it must be updated for fastsets. 10046 * HSW/BDW only really need this here for fastboot, after 10047 * that the value should not change without a full modeset. 10048 */ 10049 if (DISPLAY_VER(dev_priv) >= 9 || 10050 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 10051 hsw_set_linetime_wm(new_crtc_state); 10052 10053 if (DISPLAY_VER(dev_priv) >= 11) 10054 icl_set_pipe_chicken(crtc); 10055 } 10056 10057 static void commit_pipe_pre_planes(struct intel_atomic_state *state, 10058 struct intel_crtc *crtc) 10059 { 10060 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10061 const struct intel_crtc_state *old_crtc_state = 10062 intel_atomic_get_old_crtc_state(state, crtc); 10063 const struct intel_crtc_state *new_crtc_state = 10064 intel_atomic_get_new_crtc_state(state, crtc); 10065 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10066 10067 /* 10068 * During modesets pipe configuration was programmed as the 10069 * CRTC was enabled. 10070 */ 10071 if (!modeset) { 10072 if (new_crtc_state->uapi.color_mgmt_changed || 10073 new_crtc_state->update_pipe) 10074 intel_color_commit(new_crtc_state); 10075 10076 if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 10077 bdw_set_pipemisc(new_crtc_state); 10078 10079 if (new_crtc_state->update_pipe) 10080 intel_pipe_fastset(old_crtc_state, new_crtc_state); 10081 10082 intel_psr2_program_trans_man_trk_ctl(new_crtc_state); 10083 } 10084 10085 if (dev_priv->display.atomic_update_watermarks) 10086 dev_priv->display.atomic_update_watermarks(state, crtc); 10087 } 10088 10089 static void commit_pipe_post_planes(struct intel_atomic_state *state, 10090 struct intel_crtc *crtc) 10091 { 10092 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10093 const struct intel_crtc_state *new_crtc_state = 10094 intel_atomic_get_new_crtc_state(state, crtc); 10095 10096 /* 10097 * Disable the scaler(s) after the plane(s) so that we don't 10098 * get a catastrophic underrun even if the two operations 10099 * end up happening in two different frames. 10100 */ 10101 if (DISPLAY_VER(dev_priv) >= 9 && 10102 !intel_crtc_needs_modeset(new_crtc_state)) 10103 skl_detach_scalers(new_crtc_state); 10104 } 10105 10106 static void intel_enable_crtc(struct intel_atomic_state *state, 10107 struct intel_crtc *crtc) 10108 { 10109 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10110 const struct intel_crtc_state *new_crtc_state = 10111 intel_atomic_get_new_crtc_state(state, crtc); 10112 10113 if (!intel_crtc_needs_modeset(new_crtc_state)) 10114 return; 10115 10116 intel_crtc_update_active_timings(new_crtc_state); 10117 10118 dev_priv->display.crtc_enable(state, crtc); 10119 10120 if (new_crtc_state->bigjoiner_slave) 10121 return; 10122 10123 /* vblanks work again, re-enable pipe CRC. */ 10124 intel_crtc_enable_pipe_crc(crtc); 10125 } 10126 10127 static void intel_update_crtc(struct intel_atomic_state *state, 10128 struct intel_crtc *crtc) 10129 { 10130 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10131 const struct intel_crtc_state *old_crtc_state = 10132 intel_atomic_get_old_crtc_state(state, crtc); 10133 struct intel_crtc_state *new_crtc_state = 10134 intel_atomic_get_new_crtc_state(state, crtc); 10135 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10136 10137 if (!modeset) { 10138 if (new_crtc_state->preload_luts && 10139 (new_crtc_state->uapi.color_mgmt_changed || 10140 new_crtc_state->update_pipe)) 10141 intel_color_load_luts(new_crtc_state); 10142 10143 intel_pre_plane_update(state, crtc); 10144 10145 if (new_crtc_state->update_pipe) 10146 intel_encoders_update_pipe(state, crtc); 10147 } 10148 10149 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 10150 intel_fbc_disable(crtc); 10151 else 10152 intel_fbc_enable(state, crtc); 10153 10154 /* Perform vblank evasion around commit operation */ 10155 intel_pipe_update_start(new_crtc_state); 10156 10157 commit_pipe_pre_planes(state, crtc); 10158 10159 if (DISPLAY_VER(dev_priv) >= 9) 10160 skl_update_planes_on_crtc(state, crtc); 10161 else 10162 i9xx_update_planes_on_crtc(state, crtc); 10163 10164 commit_pipe_post_planes(state, crtc); 10165 10166 intel_pipe_update_end(new_crtc_state); 10167 10168 /* 10169 * We usually enable FIFO underrun interrupts as part of the 10170 * CRTC enable sequence during modesets. But when we inherit a 10171 * valid pipe configuration from the BIOS we need to take care 10172 * of enabling them on the CRTC's first fastset. 10173 */ 10174 if (new_crtc_state->update_pipe && !modeset && 10175 old_crtc_state->inherited) 10176 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 10177 } 10178 10179 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 10180 struct intel_crtc_state *old_crtc_state, 10181 struct intel_crtc_state *new_crtc_state, 10182 struct intel_crtc *crtc) 10183 { 10184 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10185 10186 drm_WARN_ON(&dev_priv->drm, old_crtc_state->bigjoiner_slave); 10187 10188 intel_crtc_disable_planes(state, crtc); 10189 10190 /* 10191 * We still need special handling for disabling bigjoiner master 10192 * and slaves since for slave we do not have encoder or plls 10193 * so we dont need to disable those. 10194 */ 10195 if (old_crtc_state->bigjoiner) { 10196 intel_crtc_disable_planes(state, 10197 old_crtc_state->bigjoiner_linked_crtc); 10198 old_crtc_state->bigjoiner_linked_crtc->active = false; 10199 } 10200 10201 /* 10202 * We need to disable pipe CRC before disabling the pipe, 10203 * or we race against vblank off. 10204 */ 10205 intel_crtc_disable_pipe_crc(crtc); 10206 10207 dev_priv->display.crtc_disable(state, crtc); 10208 crtc->active = false; 10209 intel_fbc_disable(crtc); 10210 intel_disable_shared_dpll(old_crtc_state); 10211 10212 /* FIXME unify this for all platforms */ 10213 if (!new_crtc_state->hw.active && 10214 !HAS_GMCH(dev_priv) && 10215 dev_priv->display.initial_watermarks) 10216 dev_priv->display.initial_watermarks(state, crtc); 10217 } 10218 10219 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 10220 { 10221 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 10222 struct intel_crtc *crtc; 10223 u32 handled = 0; 10224 int i; 10225 10226 /* Only disable port sync and MST slaves */ 10227 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10228 new_crtc_state, i) { 10229 if (!intel_crtc_needs_modeset(new_crtc_state) || old_crtc_state->bigjoiner) 10230 continue; 10231 10232 if (!old_crtc_state->hw.active) 10233 continue; 10234 10235 /* In case of Transcoder port Sync master slave CRTCs can be 10236 * assigned in any order and we need to make sure that 10237 * slave CRTCs are disabled first and then master CRTC since 10238 * Slave vblanks are masked till Master Vblanks. 10239 */ 10240 if (!is_trans_port_sync_slave(old_crtc_state) && 10241 !intel_dp_mst_is_slave_trans(old_crtc_state)) 10242 continue; 10243 10244 intel_pre_plane_update(state, crtc); 10245 intel_old_crtc_state_disables(state, old_crtc_state, 10246 new_crtc_state, crtc); 10247 handled |= BIT(crtc->pipe); 10248 } 10249 10250 /* Disable everything else left on */ 10251 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10252 new_crtc_state, i) { 10253 if (!intel_crtc_needs_modeset(new_crtc_state) || 10254 (handled & BIT(crtc->pipe)) || 10255 old_crtc_state->bigjoiner_slave) 10256 continue; 10257 10258 intel_pre_plane_update(state, crtc); 10259 if (old_crtc_state->bigjoiner) { 10260 struct intel_crtc *slave = 10261 old_crtc_state->bigjoiner_linked_crtc; 10262 10263 intel_pre_plane_update(state, slave); 10264 } 10265 10266 if (old_crtc_state->hw.active) 10267 intel_old_crtc_state_disables(state, old_crtc_state, 10268 new_crtc_state, crtc); 10269 } 10270 } 10271 10272 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 10273 { 10274 struct intel_crtc_state *new_crtc_state; 10275 struct intel_crtc *crtc; 10276 int i; 10277 10278 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10279 if (!new_crtc_state->hw.active) 10280 continue; 10281 10282 intel_enable_crtc(state, crtc); 10283 intel_update_crtc(state, crtc); 10284 } 10285 } 10286 10287 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 10288 { 10289 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10290 struct intel_crtc *crtc; 10291 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10292 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 10293 u8 update_pipes = 0, modeset_pipes = 0; 10294 int i; 10295 10296 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 10297 enum pipe pipe = crtc->pipe; 10298 10299 if (!new_crtc_state->hw.active) 10300 continue; 10301 10302 /* ignore allocations for crtc's that have been turned off. */ 10303 if (!intel_crtc_needs_modeset(new_crtc_state)) { 10304 entries[pipe] = old_crtc_state->wm.skl.ddb; 10305 update_pipes |= BIT(pipe); 10306 } else { 10307 modeset_pipes |= BIT(pipe); 10308 } 10309 } 10310 10311 /* 10312 * Whenever the number of active pipes changes, we need to make sure we 10313 * update the pipes in the right order so that their ddb allocations 10314 * never overlap with each other between CRTC updates. Otherwise we'll 10315 * cause pipe underruns and other bad stuff. 10316 * 10317 * So first lets enable all pipes that do not need a fullmodeset as 10318 * those don't have any external dependency. 10319 */ 10320 while (update_pipes) { 10321 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10322 new_crtc_state, i) { 10323 enum pipe pipe = crtc->pipe; 10324 10325 if ((update_pipes & BIT(pipe)) == 0) 10326 continue; 10327 10328 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 10329 entries, I915_MAX_PIPES, pipe)) 10330 continue; 10331 10332 entries[pipe] = new_crtc_state->wm.skl.ddb; 10333 update_pipes &= ~BIT(pipe); 10334 10335 intel_update_crtc(state, crtc); 10336 10337 /* 10338 * If this is an already active pipe, it's DDB changed, 10339 * and this isn't the last pipe that needs updating 10340 * then we need to wait for a vblank to pass for the 10341 * new ddb allocation to take effect. 10342 */ 10343 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 10344 &old_crtc_state->wm.skl.ddb) && 10345 (update_pipes | modeset_pipes)) 10346 intel_wait_for_vblank(dev_priv, pipe); 10347 } 10348 } 10349 10350 update_pipes = modeset_pipes; 10351 10352 /* 10353 * Enable all pipes that needs a modeset and do not depends on other 10354 * pipes 10355 */ 10356 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10357 enum pipe pipe = crtc->pipe; 10358 10359 if ((modeset_pipes & BIT(pipe)) == 0) 10360 continue; 10361 10362 if (intel_dp_mst_is_slave_trans(new_crtc_state) || 10363 is_trans_port_sync_master(new_crtc_state) || 10364 (new_crtc_state->bigjoiner && !new_crtc_state->bigjoiner_slave)) 10365 continue; 10366 10367 modeset_pipes &= ~BIT(pipe); 10368 10369 intel_enable_crtc(state, crtc); 10370 } 10371 10372 /* 10373 * Then we enable all remaining pipes that depend on other 10374 * pipes: MST slaves and port sync masters, big joiner master 10375 */ 10376 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10377 enum pipe pipe = crtc->pipe; 10378 10379 if ((modeset_pipes & BIT(pipe)) == 0) 10380 continue; 10381 10382 modeset_pipes &= ~BIT(pipe); 10383 10384 intel_enable_crtc(state, crtc); 10385 } 10386 10387 /* 10388 * Finally we do the plane updates/etc. for all pipes that got enabled. 10389 */ 10390 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10391 enum pipe pipe = crtc->pipe; 10392 10393 if ((update_pipes & BIT(pipe)) == 0) 10394 continue; 10395 10396 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 10397 entries, I915_MAX_PIPES, pipe)); 10398 10399 entries[pipe] = new_crtc_state->wm.skl.ddb; 10400 update_pipes &= ~BIT(pipe); 10401 10402 intel_update_crtc(state, crtc); 10403 } 10404 10405 drm_WARN_ON(&dev_priv->drm, modeset_pipes); 10406 drm_WARN_ON(&dev_priv->drm, update_pipes); 10407 } 10408 10409 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 10410 { 10411 struct intel_atomic_state *state, *next; 10412 struct llist_node *freed; 10413 10414 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 10415 llist_for_each_entry_safe(state, next, freed, freed) 10416 drm_atomic_state_put(&state->base); 10417 } 10418 10419 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 10420 { 10421 struct drm_i915_private *dev_priv = 10422 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 10423 10424 intel_atomic_helper_free_state(dev_priv); 10425 } 10426 10427 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 10428 { 10429 struct wait_queue_entry wait_fence, wait_reset; 10430 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 10431 10432 init_wait_entry(&wait_fence, 0); 10433 init_wait_entry(&wait_reset, 0); 10434 for (;;) { 10435 prepare_to_wait(&intel_state->commit_ready.wait, 10436 &wait_fence, TASK_UNINTERRUPTIBLE); 10437 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 10438 I915_RESET_MODESET), 10439 &wait_reset, TASK_UNINTERRUPTIBLE); 10440 10441 10442 if (i915_sw_fence_done(&intel_state->commit_ready) || 10443 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 10444 break; 10445 10446 schedule(); 10447 } 10448 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 10449 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 10450 I915_RESET_MODESET), 10451 &wait_reset); 10452 } 10453 10454 static void intel_cleanup_dsbs(struct intel_atomic_state *state) 10455 { 10456 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10457 struct intel_crtc *crtc; 10458 int i; 10459 10460 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10461 new_crtc_state, i) 10462 intel_dsb_cleanup(old_crtc_state); 10463 } 10464 10465 static void intel_atomic_cleanup_work(struct work_struct *work) 10466 { 10467 struct intel_atomic_state *state = 10468 container_of(work, struct intel_atomic_state, base.commit_work); 10469 struct drm_i915_private *i915 = to_i915(state->base.dev); 10470 10471 intel_cleanup_dsbs(state); 10472 drm_atomic_helper_cleanup_planes(&i915->drm, &state->base); 10473 drm_atomic_helper_commit_cleanup_done(&state->base); 10474 drm_atomic_state_put(&state->base); 10475 10476 intel_atomic_helper_free_state(i915); 10477 } 10478 10479 static void intel_atomic_prepare_plane_clear_colors(struct intel_atomic_state *state) 10480 { 10481 struct drm_i915_private *i915 = to_i915(state->base.dev); 10482 struct intel_plane *plane; 10483 struct intel_plane_state *plane_state; 10484 int i; 10485 10486 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 10487 struct drm_framebuffer *fb = plane_state->hw.fb; 10488 int ret; 10489 10490 if (!fb || 10491 fb->modifier != I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC) 10492 continue; 10493 10494 /* 10495 * The layout of the fast clear color value expected by HW 10496 * (the DRM ABI requiring this value to be located in fb at offset 0 of plane#2): 10497 * - 4 x 4 bytes per-channel value 10498 * (in surface type specific float/int format provided by the fb user) 10499 * - 8 bytes native color value used by the display 10500 * (converted/written by GPU during a fast clear operation using the 10501 * above per-channel values) 10502 * 10503 * The commit's FB prepare hook already ensured that FB obj is pinned and the 10504 * caller made sure that the object is synced wrt. the related color clear value 10505 * GPU write on it. 10506 */ 10507 ret = i915_gem_object_read_from_page(intel_fb_obj(fb), 10508 fb->offsets[2] + 16, 10509 &plane_state->ccval, 10510 sizeof(plane_state->ccval)); 10511 /* The above could only fail if the FB obj has an unexpected backing store type. */ 10512 drm_WARN_ON(&i915->drm, ret); 10513 } 10514 } 10515 10516 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 10517 { 10518 struct drm_device *dev = state->base.dev; 10519 struct drm_i915_private *dev_priv = to_i915(dev); 10520 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 10521 struct intel_crtc *crtc; 10522 u64 put_domains[I915_MAX_PIPES] = {}; 10523 intel_wakeref_t wakeref = 0; 10524 int i; 10525 10526 intel_atomic_commit_fence_wait(state); 10527 10528 drm_atomic_helper_wait_for_dependencies(&state->base); 10529 10530 if (state->modeset) 10531 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 10532 10533 intel_atomic_prepare_plane_clear_colors(state); 10534 10535 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10536 new_crtc_state, i) { 10537 if (intel_crtc_needs_modeset(new_crtc_state) || 10538 new_crtc_state->update_pipe) { 10539 10540 put_domains[crtc->pipe] = 10541 modeset_get_crtc_power_domains(new_crtc_state); 10542 } 10543 } 10544 10545 intel_commit_modeset_disables(state); 10546 10547 /* FIXME: Eventually get rid of our crtc->config pointer */ 10548 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10549 crtc->config = new_crtc_state; 10550 10551 if (state->modeset) { 10552 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 10553 10554 intel_set_cdclk_pre_plane_update(state); 10555 10556 intel_modeset_verify_disabled(dev_priv, state); 10557 } 10558 10559 intel_sagv_pre_plane_update(state); 10560 10561 /* Complete the events for pipes that have now been disabled */ 10562 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10563 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10564 10565 /* Complete events for now disable pipes here. */ 10566 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { 10567 spin_lock_irq(&dev->event_lock); 10568 drm_crtc_send_vblank_event(&crtc->base, 10569 new_crtc_state->uapi.event); 10570 spin_unlock_irq(&dev->event_lock); 10571 10572 new_crtc_state->uapi.event = NULL; 10573 } 10574 } 10575 10576 if (state->modeset) 10577 intel_encoders_update_prepare(state); 10578 10579 intel_dbuf_pre_plane_update(state); 10580 10581 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10582 if (new_crtc_state->uapi.async_flip) 10583 intel_crtc_enable_flip_done(state, crtc); 10584 } 10585 10586 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 10587 dev_priv->display.commit_modeset_enables(state); 10588 10589 if (state->modeset) { 10590 intel_encoders_update_complete(state); 10591 10592 intel_set_cdclk_post_plane_update(state); 10593 } 10594 10595 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 10596 * already, but still need the state for the delayed optimization. To 10597 * fix this: 10598 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 10599 * - schedule that vblank worker _before_ calling hw_done 10600 * - at the start of commit_tail, cancel it _synchrously 10601 * - switch over to the vblank wait helper in the core after that since 10602 * we don't need out special handling any more. 10603 */ 10604 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 10605 10606 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10607 if (new_crtc_state->uapi.async_flip) 10608 intel_crtc_disable_flip_done(state, crtc); 10609 10610 if (new_crtc_state->hw.active && 10611 !intel_crtc_needs_modeset(new_crtc_state) && 10612 !new_crtc_state->preload_luts && 10613 (new_crtc_state->uapi.color_mgmt_changed || 10614 new_crtc_state->update_pipe)) 10615 intel_color_load_luts(new_crtc_state); 10616 } 10617 10618 /* 10619 * Now that the vblank has passed, we can go ahead and program the 10620 * optimal watermarks on platforms that need two-step watermark 10621 * programming. 10622 * 10623 * TODO: Move this (and other cleanup) to an async worker eventually. 10624 */ 10625 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10626 new_crtc_state, i) { 10627 /* 10628 * Gen2 reports pipe underruns whenever all planes are disabled. 10629 * So re-enable underrun reporting after some planes get enabled. 10630 * 10631 * We do this before .optimize_watermarks() so that we have a 10632 * chance of catching underruns with the intermediate watermarks 10633 * vs. the new plane configuration. 10634 */ 10635 if (DISPLAY_VER(dev_priv) == 2 && planes_enabling(old_crtc_state, new_crtc_state)) 10636 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 10637 10638 if (dev_priv->display.optimize_watermarks) 10639 dev_priv->display.optimize_watermarks(state, crtc); 10640 } 10641 10642 intel_dbuf_post_plane_update(state); 10643 10644 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 10645 intel_post_plane_update(state, crtc); 10646 10647 modeset_put_crtc_power_domains(crtc, put_domains[crtc->pipe]); 10648 10649 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 10650 10651 /* 10652 * DSB cleanup is done in cleanup_work aligning with framebuffer 10653 * cleanup. So copy and reset the dsb structure to sync with 10654 * commit_done and later do dsb cleanup in cleanup_work. 10655 */ 10656 old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb); 10657 } 10658 10659 /* Underruns don't always raise interrupts, so check manually */ 10660 intel_check_cpu_fifo_underruns(dev_priv); 10661 intel_check_pch_fifo_underruns(dev_priv); 10662 10663 if (state->modeset) 10664 intel_verify_planes(state); 10665 10666 intel_sagv_post_plane_update(state); 10667 10668 drm_atomic_helper_commit_hw_done(&state->base); 10669 10670 if (state->modeset) { 10671 /* As one of the primary mmio accessors, KMS has a high 10672 * likelihood of triggering bugs in unclaimed access. After we 10673 * finish modesetting, see if an error has been flagged, and if 10674 * so enable debugging for the next modeset - and hope we catch 10675 * the culprit. 10676 */ 10677 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 10678 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 10679 } 10680 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10681 10682 /* 10683 * Defer the cleanup of the old state to a separate worker to not 10684 * impede the current task (userspace for blocking modesets) that 10685 * are executed inline. For out-of-line asynchronous modesets/flips, 10686 * deferring to a new worker seems overkill, but we would place a 10687 * schedule point (cond_resched()) here anyway to keep latencies 10688 * down. 10689 */ 10690 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 10691 queue_work(system_highpri_wq, &state->base.commit_work); 10692 } 10693 10694 static void intel_atomic_commit_work(struct work_struct *work) 10695 { 10696 struct intel_atomic_state *state = 10697 container_of(work, struct intel_atomic_state, base.commit_work); 10698 10699 intel_atomic_commit_tail(state); 10700 } 10701 10702 static int __i915_sw_fence_call 10703 intel_atomic_commit_ready(struct i915_sw_fence *fence, 10704 enum i915_sw_fence_notify notify) 10705 { 10706 struct intel_atomic_state *state = 10707 container_of(fence, struct intel_atomic_state, commit_ready); 10708 10709 switch (notify) { 10710 case FENCE_COMPLETE: 10711 /* we do blocking waits in the worker, nothing to do here */ 10712 break; 10713 case FENCE_FREE: 10714 { 10715 struct intel_atomic_helper *helper = 10716 &to_i915(state->base.dev)->atomic_helper; 10717 10718 if (llist_add(&state->freed, &helper->free_list)) 10719 schedule_work(&helper->free_work); 10720 break; 10721 } 10722 } 10723 10724 return NOTIFY_DONE; 10725 } 10726 10727 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 10728 { 10729 struct intel_plane_state *old_plane_state, *new_plane_state; 10730 struct intel_plane *plane; 10731 int i; 10732 10733 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 10734 new_plane_state, i) 10735 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 10736 to_intel_frontbuffer(new_plane_state->hw.fb), 10737 plane->frontbuffer_bit); 10738 } 10739 10740 static int intel_atomic_commit(struct drm_device *dev, 10741 struct drm_atomic_state *_state, 10742 bool nonblock) 10743 { 10744 struct intel_atomic_state *state = to_intel_atomic_state(_state); 10745 struct drm_i915_private *dev_priv = to_i915(dev); 10746 int ret = 0; 10747 10748 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 10749 10750 drm_atomic_state_get(&state->base); 10751 i915_sw_fence_init(&state->commit_ready, 10752 intel_atomic_commit_ready); 10753 10754 /* 10755 * The intel_legacy_cursor_update() fast path takes care 10756 * of avoiding the vblank waits for simple cursor 10757 * movement and flips. For cursor on/off and size changes, 10758 * we want to perform the vblank waits so that watermark 10759 * updates happen during the correct frames. Gen9+ have 10760 * double buffered watermarks and so shouldn't need this. 10761 * 10762 * Unset state->legacy_cursor_update before the call to 10763 * drm_atomic_helper_setup_commit() because otherwise 10764 * drm_atomic_helper_wait_for_flip_done() is a noop and 10765 * we get FIFO underruns because we didn't wait 10766 * for vblank. 10767 * 10768 * FIXME doing watermarks and fb cleanup from a vblank worker 10769 * (assuming we had any) would solve these problems. 10770 */ 10771 if (DISPLAY_VER(dev_priv) < 9 && state->base.legacy_cursor_update) { 10772 struct intel_crtc_state *new_crtc_state; 10773 struct intel_crtc *crtc; 10774 int i; 10775 10776 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10777 if (new_crtc_state->wm.need_postvbl_update || 10778 new_crtc_state->update_wm_post) 10779 state->base.legacy_cursor_update = false; 10780 } 10781 10782 ret = intel_atomic_prepare_commit(state); 10783 if (ret) { 10784 drm_dbg_atomic(&dev_priv->drm, 10785 "Preparing state failed with %i\n", ret); 10786 i915_sw_fence_commit(&state->commit_ready); 10787 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10788 return ret; 10789 } 10790 10791 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 10792 if (!ret) 10793 ret = drm_atomic_helper_swap_state(&state->base, true); 10794 if (!ret) 10795 intel_atomic_swap_global_state(state); 10796 10797 if (ret) { 10798 struct intel_crtc_state *new_crtc_state; 10799 struct intel_crtc *crtc; 10800 int i; 10801 10802 i915_sw_fence_commit(&state->commit_ready); 10803 10804 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10805 intel_dsb_cleanup(new_crtc_state); 10806 10807 drm_atomic_helper_cleanup_planes(dev, &state->base); 10808 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10809 return ret; 10810 } 10811 intel_shared_dpll_swap_state(state); 10812 intel_atomic_track_fbs(state); 10813 10814 drm_atomic_state_get(&state->base); 10815 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 10816 10817 i915_sw_fence_commit(&state->commit_ready); 10818 if (nonblock && state->modeset) { 10819 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 10820 } else if (nonblock) { 10821 queue_work(dev_priv->flip_wq, &state->base.commit_work); 10822 } else { 10823 if (state->modeset) 10824 flush_workqueue(dev_priv->modeset_wq); 10825 intel_atomic_commit_tail(state); 10826 } 10827 10828 return 0; 10829 } 10830 10831 struct wait_rps_boost { 10832 struct wait_queue_entry wait; 10833 10834 struct drm_crtc *crtc; 10835 struct i915_request *request; 10836 }; 10837 10838 static int do_rps_boost(struct wait_queue_entry *_wait, 10839 unsigned mode, int sync, void *key) 10840 { 10841 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); 10842 struct i915_request *rq = wait->request; 10843 10844 /* 10845 * If we missed the vblank, but the request is already running it 10846 * is reasonable to assume that it will complete before the next 10847 * vblank without our intervention, so leave RPS alone. 10848 */ 10849 if (!i915_request_started(rq)) 10850 intel_rps_boost(rq); 10851 i915_request_put(rq); 10852 10853 drm_crtc_vblank_put(wait->crtc); 10854 10855 list_del(&wait->wait.entry); 10856 kfree(wait); 10857 return 1; 10858 } 10859 10860 static void add_rps_boost_after_vblank(struct drm_crtc *crtc, 10861 struct dma_fence *fence) 10862 { 10863 struct wait_rps_boost *wait; 10864 10865 if (!dma_fence_is_i915(fence)) 10866 return; 10867 10868 if (DISPLAY_VER(to_i915(crtc->dev)) < 6) 10869 return; 10870 10871 if (drm_crtc_vblank_get(crtc)) 10872 return; 10873 10874 wait = kmalloc(sizeof(*wait), GFP_KERNEL); 10875 if (!wait) { 10876 drm_crtc_vblank_put(crtc); 10877 return; 10878 } 10879 10880 wait->request = to_request(dma_fence_get(fence)); 10881 wait->crtc = crtc; 10882 10883 wait->wait.func = do_rps_boost; 10884 wait->wait.flags = 0; 10885 10886 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); 10887 } 10888 10889 int intel_plane_pin_fb(struct intel_plane_state *plane_state) 10890 { 10891 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 10892 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 10893 struct drm_framebuffer *fb = plane_state->hw.fb; 10894 struct i915_vma *vma; 10895 bool phys_cursor = 10896 plane->id == PLANE_CURSOR && 10897 INTEL_INFO(dev_priv)->display.cursor_needs_physical; 10898 10899 if (!intel_fb_uses_dpt(fb)) { 10900 vma = intel_pin_and_fence_fb_obj(fb, phys_cursor, 10901 &plane_state->view.gtt, 10902 intel_plane_uses_fence(plane_state), 10903 &plane_state->flags); 10904 if (IS_ERR(vma)) 10905 return PTR_ERR(vma); 10906 10907 plane_state->ggtt_vma = vma; 10908 } else { 10909 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 10910 10911 vma = intel_dpt_pin(intel_fb->dpt_vm); 10912 if (IS_ERR(vma)) 10913 return PTR_ERR(vma); 10914 10915 plane_state->ggtt_vma = vma; 10916 10917 vma = intel_pin_fb_obj_dpt(fb, &plane_state->view.gtt, false, 10918 &plane_state->flags, intel_fb->dpt_vm); 10919 if (IS_ERR(vma)) { 10920 intel_dpt_unpin(intel_fb->dpt_vm); 10921 plane_state->ggtt_vma = NULL; 10922 return PTR_ERR(vma); 10923 } 10924 10925 plane_state->dpt_vma = vma; 10926 10927 WARN_ON(plane_state->ggtt_vma == plane_state->dpt_vma); 10928 } 10929 10930 return 0; 10931 } 10932 10933 void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) 10934 { 10935 struct drm_framebuffer *fb = old_plane_state->hw.fb; 10936 struct i915_vma *vma; 10937 10938 if (!intel_fb_uses_dpt(fb)) { 10939 vma = fetch_and_zero(&old_plane_state->ggtt_vma); 10940 if (vma) 10941 intel_unpin_fb_vma(vma, old_plane_state->flags); 10942 } else { 10943 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 10944 10945 vma = fetch_and_zero(&old_plane_state->dpt_vma); 10946 if (vma) 10947 intel_unpin_fb_vma(vma, old_plane_state->flags); 10948 10949 vma = fetch_and_zero(&old_plane_state->ggtt_vma); 10950 if (vma) 10951 intel_dpt_unpin(intel_fb->dpt_vm); 10952 } 10953 } 10954 10955 /** 10956 * intel_prepare_plane_fb - Prepare fb for usage on plane 10957 * @_plane: drm plane to prepare for 10958 * @_new_plane_state: the plane state being prepared 10959 * 10960 * Prepares a framebuffer for usage on a display plane. Generally this 10961 * involves pinning the underlying object and updating the frontbuffer tracking 10962 * bits. Some older platforms need special physical address handling for 10963 * cursor planes. 10964 * 10965 * Returns 0 on success, negative error code on failure. 10966 */ 10967 int 10968 intel_prepare_plane_fb(struct drm_plane *_plane, 10969 struct drm_plane_state *_new_plane_state) 10970 { 10971 struct i915_sched_attr attr = { .priority = I915_PRIORITY_DISPLAY }; 10972 struct intel_plane *plane = to_intel_plane(_plane); 10973 struct intel_plane_state *new_plane_state = 10974 to_intel_plane_state(_new_plane_state); 10975 struct intel_atomic_state *state = 10976 to_intel_atomic_state(new_plane_state->uapi.state); 10977 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 10978 const struct intel_plane_state *old_plane_state = 10979 intel_atomic_get_old_plane_state(state, plane); 10980 struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb); 10981 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb); 10982 int ret; 10983 10984 if (old_obj) { 10985 const struct intel_crtc_state *crtc_state = 10986 intel_atomic_get_new_crtc_state(state, 10987 to_intel_crtc(old_plane_state->hw.crtc)); 10988 10989 /* Big Hammer, we also need to ensure that any pending 10990 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 10991 * current scanout is retired before unpinning the old 10992 * framebuffer. Note that we rely on userspace rendering 10993 * into the buffer attached to the pipe they are waiting 10994 * on. If not, userspace generates a GPU hang with IPEHR 10995 * point to the MI_WAIT_FOR_EVENT. 10996 * 10997 * This should only fail upon a hung GPU, in which case we 10998 * can safely continue. 10999 */ 11000 if (intel_crtc_needs_modeset(crtc_state)) { 11001 ret = i915_sw_fence_await_reservation(&state->commit_ready, 11002 old_obj->base.resv, NULL, 11003 false, 0, 11004 GFP_KERNEL); 11005 if (ret < 0) 11006 return ret; 11007 } 11008 } 11009 11010 if (new_plane_state->uapi.fence) { /* explicit fencing */ 11011 i915_gem_fence_wait_priority(new_plane_state->uapi.fence, 11012 &attr); 11013 ret = i915_sw_fence_await_dma_fence(&state->commit_ready, 11014 new_plane_state->uapi.fence, 11015 i915_fence_timeout(dev_priv), 11016 GFP_KERNEL); 11017 if (ret < 0) 11018 return ret; 11019 } 11020 11021 if (!obj) 11022 return 0; 11023 11024 11025 ret = intel_plane_pin_fb(new_plane_state); 11026 if (ret) 11027 return ret; 11028 11029 i915_gem_object_wait_priority(obj, 0, &attr); 11030 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB); 11031 11032 if (!new_plane_state->uapi.fence) { /* implicit fencing */ 11033 struct dma_fence *fence; 11034 11035 ret = i915_sw_fence_await_reservation(&state->commit_ready, 11036 obj->base.resv, NULL, 11037 false, 11038 i915_fence_timeout(dev_priv), 11039 GFP_KERNEL); 11040 if (ret < 0) 11041 goto unpin_fb; 11042 11043 fence = dma_resv_get_excl_rcu(obj->base.resv); 11044 if (fence) { 11045 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 11046 fence); 11047 dma_fence_put(fence); 11048 } 11049 } else { 11050 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 11051 new_plane_state->uapi.fence); 11052 } 11053 11054 /* 11055 * We declare pageflips to be interactive and so merit a small bias 11056 * towards upclocking to deliver the frame on time. By only changing 11057 * the RPS thresholds to sample more regularly and aim for higher 11058 * clocks we can hopefully deliver low power workloads (like kodi) 11059 * that are not quite steady state without resorting to forcing 11060 * maximum clocks following a vblank miss (see do_rps_boost()). 11061 */ 11062 if (!state->rps_interactive) { 11063 intel_rps_mark_interactive(&dev_priv->gt.rps, true); 11064 state->rps_interactive = true; 11065 } 11066 11067 return 0; 11068 11069 unpin_fb: 11070 intel_plane_unpin_fb(new_plane_state); 11071 11072 return ret; 11073 } 11074 11075 /** 11076 * intel_cleanup_plane_fb - Cleans up an fb after plane use 11077 * @plane: drm plane to clean up for 11078 * @_old_plane_state: the state from the previous modeset 11079 * 11080 * Cleans up a framebuffer that has just been removed from a plane. 11081 */ 11082 void 11083 intel_cleanup_plane_fb(struct drm_plane *plane, 11084 struct drm_plane_state *_old_plane_state) 11085 { 11086 struct intel_plane_state *old_plane_state = 11087 to_intel_plane_state(_old_plane_state); 11088 struct intel_atomic_state *state = 11089 to_intel_atomic_state(old_plane_state->uapi.state); 11090 struct drm_i915_private *dev_priv = to_i915(plane->dev); 11091 struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb); 11092 11093 if (!obj) 11094 return; 11095 11096 if (state->rps_interactive) { 11097 intel_rps_mark_interactive(&dev_priv->gt.rps, false); 11098 state->rps_interactive = false; 11099 } 11100 11101 /* Should only be called after a successful intel_prepare_plane_fb()! */ 11102 intel_plane_unpin_fb(old_plane_state); 11103 } 11104 11105 /** 11106 * intel_plane_destroy - destroy a plane 11107 * @plane: plane to destroy 11108 * 11109 * Common destruction function for all types of planes (primary, cursor, 11110 * sprite). 11111 */ 11112 void intel_plane_destroy(struct drm_plane *plane) 11113 { 11114 drm_plane_cleanup(plane); 11115 kfree(to_intel_plane(plane)); 11116 } 11117 11118 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv) 11119 { 11120 struct intel_plane *plane; 11121 11122 for_each_intel_plane(&dev_priv->drm, plane) { 11123 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, 11124 plane->pipe); 11125 11126 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base); 11127 } 11128 } 11129 11130 11131 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 11132 struct drm_file *file) 11133 { 11134 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 11135 struct drm_crtc *drmmode_crtc; 11136 struct intel_crtc *crtc; 11137 11138 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 11139 if (!drmmode_crtc) 11140 return -ENOENT; 11141 11142 crtc = to_intel_crtc(drmmode_crtc); 11143 pipe_from_crtc_id->pipe = crtc->pipe; 11144 11145 return 0; 11146 } 11147 11148 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 11149 { 11150 struct drm_device *dev = encoder->base.dev; 11151 struct intel_encoder *source_encoder; 11152 u32 possible_clones = 0; 11153 11154 for_each_intel_encoder(dev, source_encoder) { 11155 if (encoders_cloneable(encoder, source_encoder)) 11156 possible_clones |= drm_encoder_mask(&source_encoder->base); 11157 } 11158 11159 return possible_clones; 11160 } 11161 11162 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 11163 { 11164 struct drm_device *dev = encoder->base.dev; 11165 struct intel_crtc *crtc; 11166 u32 possible_crtcs = 0; 11167 11168 for_each_intel_crtc(dev, crtc) { 11169 if (encoder->pipe_mask & BIT(crtc->pipe)) 11170 possible_crtcs |= drm_crtc_mask(&crtc->base); 11171 } 11172 11173 return possible_crtcs; 11174 } 11175 11176 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 11177 { 11178 if (!IS_MOBILE(dev_priv)) 11179 return false; 11180 11181 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0) 11182 return false; 11183 11184 if (IS_IRONLAKE(dev_priv) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE)) 11185 return false; 11186 11187 return true; 11188 } 11189 11190 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 11191 { 11192 if (DISPLAY_VER(dev_priv) >= 9) 11193 return false; 11194 11195 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 11196 return false; 11197 11198 if (HAS_PCH_LPT_H(dev_priv) && 11199 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 11200 return false; 11201 11202 /* DDI E can't be used if DDI A requires 4 lanes */ 11203 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 11204 return false; 11205 11206 if (!dev_priv->vbt.int_crt_support) 11207 return false; 11208 11209 return true; 11210 } 11211 11212 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 11213 { 11214 struct intel_encoder *encoder; 11215 bool dpd_is_edp = false; 11216 11217 intel_pps_unlock_regs_wa(dev_priv); 11218 11219 if (!HAS_DISPLAY(dev_priv)) 11220 return; 11221 11222 if (IS_ALDERLAKE_S(dev_priv)) { 11223 intel_ddi_init(dev_priv, PORT_A); 11224 intel_ddi_init(dev_priv, PORT_TC1); 11225 intel_ddi_init(dev_priv, PORT_TC2); 11226 intel_ddi_init(dev_priv, PORT_TC3); 11227 intel_ddi_init(dev_priv, PORT_TC4); 11228 } else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) { 11229 intel_ddi_init(dev_priv, PORT_A); 11230 intel_ddi_init(dev_priv, PORT_B); 11231 intel_ddi_init(dev_priv, PORT_TC1); 11232 intel_ddi_init(dev_priv, PORT_TC2); 11233 } else if (DISPLAY_VER(dev_priv) >= 12) { 11234 intel_ddi_init(dev_priv, PORT_A); 11235 intel_ddi_init(dev_priv, PORT_B); 11236 intel_ddi_init(dev_priv, PORT_TC1); 11237 intel_ddi_init(dev_priv, PORT_TC2); 11238 intel_ddi_init(dev_priv, PORT_TC3); 11239 intel_ddi_init(dev_priv, PORT_TC4); 11240 intel_ddi_init(dev_priv, PORT_TC5); 11241 intel_ddi_init(dev_priv, PORT_TC6); 11242 icl_dsi_init(dev_priv); 11243 } else if (IS_JSL_EHL(dev_priv)) { 11244 intel_ddi_init(dev_priv, PORT_A); 11245 intel_ddi_init(dev_priv, PORT_B); 11246 intel_ddi_init(dev_priv, PORT_C); 11247 intel_ddi_init(dev_priv, PORT_D); 11248 icl_dsi_init(dev_priv); 11249 } else if (DISPLAY_VER(dev_priv) == 11) { 11250 intel_ddi_init(dev_priv, PORT_A); 11251 intel_ddi_init(dev_priv, PORT_B); 11252 intel_ddi_init(dev_priv, PORT_C); 11253 intel_ddi_init(dev_priv, PORT_D); 11254 intel_ddi_init(dev_priv, PORT_E); 11255 intel_ddi_init(dev_priv, PORT_F); 11256 icl_dsi_init(dev_priv); 11257 } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { 11258 intel_ddi_init(dev_priv, PORT_A); 11259 intel_ddi_init(dev_priv, PORT_B); 11260 intel_ddi_init(dev_priv, PORT_C); 11261 vlv_dsi_init(dev_priv); 11262 } else if (DISPLAY_VER(dev_priv) >= 9) { 11263 intel_ddi_init(dev_priv, PORT_A); 11264 intel_ddi_init(dev_priv, PORT_B); 11265 intel_ddi_init(dev_priv, PORT_C); 11266 intel_ddi_init(dev_priv, PORT_D); 11267 intel_ddi_init(dev_priv, PORT_E); 11268 intel_ddi_init(dev_priv, PORT_F); 11269 } else if (HAS_DDI(dev_priv)) { 11270 u32 found; 11271 11272 if (intel_ddi_crt_present(dev_priv)) 11273 intel_crt_init(dev_priv); 11274 11275 /* Haswell uses DDI functions to detect digital outputs. */ 11276 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 11277 if (found) 11278 intel_ddi_init(dev_priv, PORT_A); 11279 11280 found = intel_de_read(dev_priv, SFUSE_STRAP); 11281 if (found & SFUSE_STRAP_DDIB_DETECTED) 11282 intel_ddi_init(dev_priv, PORT_B); 11283 if (found & SFUSE_STRAP_DDIC_DETECTED) 11284 intel_ddi_init(dev_priv, PORT_C); 11285 if (found & SFUSE_STRAP_DDID_DETECTED) 11286 intel_ddi_init(dev_priv, PORT_D); 11287 if (found & SFUSE_STRAP_DDIF_DETECTED) 11288 intel_ddi_init(dev_priv, PORT_F); 11289 } else if (HAS_PCH_SPLIT(dev_priv)) { 11290 int found; 11291 11292 /* 11293 * intel_edp_init_connector() depends on this completing first, 11294 * to prevent the registration of both eDP and LVDS and the 11295 * incorrect sharing of the PPS. 11296 */ 11297 intel_lvds_init(dev_priv); 11298 intel_crt_init(dev_priv); 11299 11300 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 11301 11302 if (ilk_has_edp_a(dev_priv)) 11303 g4x_dp_init(dev_priv, DP_A, PORT_A); 11304 11305 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) { 11306 /* PCH SDVOB multiplex with HDMIB */ 11307 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 11308 if (!found) 11309 g4x_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 11310 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED)) 11311 g4x_dp_init(dev_priv, PCH_DP_B, PORT_B); 11312 } 11313 11314 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED) 11315 g4x_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 11316 11317 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED) 11318 g4x_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 11319 11320 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED) 11321 g4x_dp_init(dev_priv, PCH_DP_C, PORT_C); 11322 11323 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED) 11324 g4x_dp_init(dev_priv, PCH_DP_D, PORT_D); 11325 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 11326 bool has_edp, has_port; 11327 11328 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 11329 intel_crt_init(dev_priv); 11330 11331 /* 11332 * The DP_DETECTED bit is the latched state of the DDC 11333 * SDA pin at boot. However since eDP doesn't require DDC 11334 * (no way to plug in a DP->HDMI dongle) the DDC pins for 11335 * eDP ports may have been muxed to an alternate function. 11336 * Thus we can't rely on the DP_DETECTED bit alone to detect 11337 * eDP ports. Consult the VBT as well as DP_DETECTED to 11338 * detect eDP ports. 11339 * 11340 * Sadly the straps seem to be missing sometimes even for HDMI 11341 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 11342 * and VBT for the presence of the port. Additionally we can't 11343 * trust the port type the VBT declares as we've seen at least 11344 * HDMI ports that the VBT claim are DP or eDP. 11345 */ 11346 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 11347 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 11348 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port) 11349 has_edp &= g4x_dp_init(dev_priv, VLV_DP_B, PORT_B); 11350 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 11351 g4x_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 11352 11353 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 11354 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 11355 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port) 11356 has_edp &= g4x_dp_init(dev_priv, VLV_DP_C, PORT_C); 11357 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 11358 g4x_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 11359 11360 if (IS_CHERRYVIEW(dev_priv)) { 11361 /* 11362 * eDP not supported on port D, 11363 * so no need to worry about it 11364 */ 11365 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 11366 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port) 11367 g4x_dp_init(dev_priv, CHV_DP_D, PORT_D); 11368 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port) 11369 g4x_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 11370 } 11371 11372 vlv_dsi_init(dev_priv); 11373 } else if (IS_PINEVIEW(dev_priv)) { 11374 intel_lvds_init(dev_priv); 11375 intel_crt_init(dev_priv); 11376 } else if (IS_DISPLAY_VER(dev_priv, 3, 4)) { 11377 bool found = false; 11378 11379 if (IS_MOBILE(dev_priv)) 11380 intel_lvds_init(dev_priv); 11381 11382 intel_crt_init(dev_priv); 11383 11384 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 11385 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n"); 11386 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 11387 if (!found && IS_G4X(dev_priv)) { 11388 drm_dbg_kms(&dev_priv->drm, 11389 "probing HDMI on SDVOB\n"); 11390 g4x_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 11391 } 11392 11393 if (!found && IS_G4X(dev_priv)) 11394 g4x_dp_init(dev_priv, DP_B, PORT_B); 11395 } 11396 11397 /* Before G4X SDVOC doesn't have its own detect register */ 11398 11399 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 11400 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n"); 11401 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 11402 } 11403 11404 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) { 11405 11406 if (IS_G4X(dev_priv)) { 11407 drm_dbg_kms(&dev_priv->drm, 11408 "probing HDMI on SDVOC\n"); 11409 g4x_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 11410 } 11411 if (IS_G4X(dev_priv)) 11412 g4x_dp_init(dev_priv, DP_C, PORT_C); 11413 } 11414 11415 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED)) 11416 g4x_dp_init(dev_priv, DP_D, PORT_D); 11417 11418 if (SUPPORTS_TV(dev_priv)) 11419 intel_tv_init(dev_priv); 11420 } else if (DISPLAY_VER(dev_priv) == 2) { 11421 if (IS_I85X(dev_priv)) 11422 intel_lvds_init(dev_priv); 11423 11424 intel_crt_init(dev_priv); 11425 intel_dvo_init(dev_priv); 11426 } 11427 11428 for_each_intel_encoder(&dev_priv->drm, encoder) { 11429 encoder->base.possible_crtcs = 11430 intel_encoder_possible_crtcs(encoder); 11431 encoder->base.possible_clones = 11432 intel_encoder_possible_clones(encoder); 11433 } 11434 11435 intel_init_pch_refclk(dev_priv); 11436 11437 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 11438 } 11439 11440 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 11441 { 11442 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11443 11444 drm_framebuffer_cleanup(fb); 11445 11446 if (intel_fb_uses_dpt(fb)) 11447 intel_dpt_destroy(intel_fb->dpt_vm); 11448 11449 intel_frontbuffer_put(intel_fb->frontbuffer); 11450 11451 kfree(intel_fb); 11452 } 11453 11454 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 11455 struct drm_file *file, 11456 unsigned int *handle) 11457 { 11458 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11459 struct drm_i915_private *i915 = to_i915(obj->base.dev); 11460 11461 if (i915_gem_object_is_userptr(obj)) { 11462 drm_dbg(&i915->drm, 11463 "attempting to use a userptr for a framebuffer, denied\n"); 11464 return -EINVAL; 11465 } 11466 11467 return drm_gem_handle_create(file, &obj->base, handle); 11468 } 11469 11470 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 11471 struct drm_file *file, 11472 unsigned flags, unsigned color, 11473 struct drm_clip_rect *clips, 11474 unsigned num_clips) 11475 { 11476 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11477 11478 i915_gem_object_flush_if_display(obj); 11479 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 11480 11481 return 0; 11482 } 11483 11484 static const struct drm_framebuffer_funcs intel_fb_funcs = { 11485 .destroy = intel_user_framebuffer_destroy, 11486 .create_handle = intel_user_framebuffer_create_handle, 11487 .dirty = intel_user_framebuffer_dirty, 11488 }; 11489 11490 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, 11491 struct drm_i915_gem_object *obj, 11492 struct drm_mode_fb_cmd2 *mode_cmd) 11493 { 11494 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 11495 struct drm_framebuffer *fb = &intel_fb->base; 11496 u32 max_stride; 11497 unsigned int tiling, stride; 11498 int ret = -EINVAL; 11499 int i; 11500 11501 intel_fb->frontbuffer = intel_frontbuffer_get(obj); 11502 if (!intel_fb->frontbuffer) 11503 return -ENOMEM; 11504 11505 i915_gem_object_lock(obj, NULL); 11506 tiling = i915_gem_object_get_tiling(obj); 11507 stride = i915_gem_object_get_stride(obj); 11508 i915_gem_object_unlock(obj); 11509 11510 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 11511 /* 11512 * If there's a fence, enforce that 11513 * the fb modifier and tiling mode match. 11514 */ 11515 if (tiling != I915_TILING_NONE && 11516 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 11517 drm_dbg_kms(&dev_priv->drm, 11518 "tiling_mode doesn't match fb modifier\n"); 11519 goto err; 11520 } 11521 } else { 11522 if (tiling == I915_TILING_X) { 11523 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 11524 } else if (tiling == I915_TILING_Y) { 11525 drm_dbg_kms(&dev_priv->drm, 11526 "No Y tiling for legacy addfb\n"); 11527 goto err; 11528 } 11529 } 11530 11531 if (!drm_any_plane_has_format(&dev_priv->drm, 11532 mode_cmd->pixel_format, 11533 mode_cmd->modifier[0])) { 11534 drm_dbg_kms(&dev_priv->drm, 11535 "unsupported pixel format %p4cc / modifier 0x%llx\n", 11536 &mode_cmd->pixel_format, mode_cmd->modifier[0]); 11537 goto err; 11538 } 11539 11540 /* 11541 * gen2/3 display engine uses the fence if present, 11542 * so the tiling mode must match the fb modifier exactly. 11543 */ 11544 if (DISPLAY_VER(dev_priv) < 4 && 11545 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 11546 drm_dbg_kms(&dev_priv->drm, 11547 "tiling_mode must match fb modifier exactly on gen2/3\n"); 11548 goto err; 11549 } 11550 11551 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, 11552 mode_cmd->modifier[0]); 11553 if (mode_cmd->pitches[0] > max_stride) { 11554 drm_dbg_kms(&dev_priv->drm, 11555 "%s pitch (%u) must be at most %d\n", 11556 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? 11557 "tiled" : "linear", 11558 mode_cmd->pitches[0], max_stride); 11559 goto err; 11560 } 11561 11562 /* 11563 * If there's a fence, enforce that 11564 * the fb pitch and fence stride match. 11565 */ 11566 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { 11567 drm_dbg_kms(&dev_priv->drm, 11568 "pitch (%d) must match tiling stride (%d)\n", 11569 mode_cmd->pitches[0], stride); 11570 goto err; 11571 } 11572 11573 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 11574 if (mode_cmd->offsets[0] != 0) { 11575 drm_dbg_kms(&dev_priv->drm, 11576 "plane 0 offset (0x%08x) must be 0\n", 11577 mode_cmd->offsets[0]); 11578 goto err; 11579 } 11580 11581 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); 11582 11583 for (i = 0; i < fb->format->num_planes; i++) { 11584 u32 stride_alignment; 11585 11586 if (mode_cmd->handles[i] != mode_cmd->handles[0]) { 11587 drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n", 11588 i); 11589 goto err; 11590 } 11591 11592 stride_alignment = intel_fb_stride_alignment(fb, i); 11593 if (fb->pitches[i] & (stride_alignment - 1)) { 11594 drm_dbg_kms(&dev_priv->drm, 11595 "plane %d pitch (%d) must be at least %u byte aligned\n", 11596 i, fb->pitches[i], stride_alignment); 11597 goto err; 11598 } 11599 11600 if (is_gen12_ccs_plane(fb, i) && !is_gen12_ccs_cc_plane(fb, i)) { 11601 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i); 11602 11603 if (fb->pitches[i] != ccs_aux_stride) { 11604 drm_dbg_kms(&dev_priv->drm, 11605 "ccs aux plane %d pitch (%d) must be %d\n", 11606 i, 11607 fb->pitches[i], ccs_aux_stride); 11608 goto err; 11609 } 11610 } 11611 11612 /* TODO: Add POT stride remapping support for CCS formats as well. */ 11613 if (IS_ALDERLAKE_P(dev_priv) && 11614 mode_cmd->modifier[i] != DRM_FORMAT_MOD_LINEAR && 11615 !intel_fb_needs_pot_stride_remap(intel_fb) && 11616 !is_power_of_2(mode_cmd->pitches[i])) { 11617 drm_dbg_kms(&dev_priv->drm, 11618 "plane %d pitch (%d) must be power of two for tiled buffers\n", 11619 i, mode_cmd->pitches[i]); 11620 goto err; 11621 } 11622 11623 fb->obj[i] = &obj->base; 11624 } 11625 11626 ret = intel_fill_fb_info(dev_priv, intel_fb); 11627 if (ret) 11628 goto err; 11629 11630 if (intel_fb_uses_dpt(fb)) { 11631 struct i915_address_space *vm; 11632 11633 vm = intel_dpt_create(intel_fb); 11634 if (IS_ERR(vm)) { 11635 ret = PTR_ERR(vm); 11636 goto err; 11637 } 11638 11639 intel_fb->dpt_vm = vm; 11640 } 11641 11642 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); 11643 if (ret) { 11644 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret); 11645 goto err; 11646 } 11647 11648 return 0; 11649 11650 err: 11651 intel_frontbuffer_put(intel_fb->frontbuffer); 11652 return ret; 11653 } 11654 11655 static struct drm_framebuffer * 11656 intel_user_framebuffer_create(struct drm_device *dev, 11657 struct drm_file *filp, 11658 const struct drm_mode_fb_cmd2 *user_mode_cmd) 11659 { 11660 struct drm_framebuffer *fb; 11661 struct drm_i915_gem_object *obj; 11662 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 11663 struct drm_i915_private *i915; 11664 11665 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); 11666 if (!obj) 11667 return ERR_PTR(-ENOENT); 11668 11669 /* object is backed with LMEM for discrete */ 11670 i915 = to_i915(obj->base.dev); 11671 if (HAS_LMEM(i915) && !i915_gem_object_is_lmem(obj)) { 11672 /* object is "remote", not in local memory */ 11673 i915_gem_object_put(obj); 11674 return ERR_PTR(-EREMOTE); 11675 } 11676 11677 fb = intel_framebuffer_create(obj, &mode_cmd); 11678 i915_gem_object_put(obj); 11679 11680 return fb; 11681 } 11682 11683 static enum drm_mode_status 11684 intel_mode_valid(struct drm_device *dev, 11685 const struct drm_display_mode *mode) 11686 { 11687 struct drm_i915_private *dev_priv = to_i915(dev); 11688 int hdisplay_max, htotal_max; 11689 int vdisplay_max, vtotal_max; 11690 11691 /* 11692 * Can't reject DBLSCAN here because Xorg ddxen can add piles 11693 * of DBLSCAN modes to the output's mode list when they detect 11694 * the scaling mode property on the connector. And they don't 11695 * ask the kernel to validate those modes in any way until 11696 * modeset time at which point the client gets a protocol error. 11697 * So in order to not upset those clients we silently ignore the 11698 * DBLSCAN flag on such connectors. For other connectors we will 11699 * reject modes with the DBLSCAN flag in encoder->compute_config(). 11700 * And we always reject DBLSCAN modes in connector->mode_valid() 11701 * as we never want such modes on the connector's mode list. 11702 */ 11703 11704 if (mode->vscan > 1) 11705 return MODE_NO_VSCAN; 11706 11707 if (mode->flags & DRM_MODE_FLAG_HSKEW) 11708 return MODE_H_ILLEGAL; 11709 11710 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 11711 DRM_MODE_FLAG_NCSYNC | 11712 DRM_MODE_FLAG_PCSYNC)) 11713 return MODE_HSYNC; 11714 11715 if (mode->flags & (DRM_MODE_FLAG_BCAST | 11716 DRM_MODE_FLAG_PIXMUX | 11717 DRM_MODE_FLAG_CLKDIV2)) 11718 return MODE_BAD; 11719 11720 /* Transcoder timing limits */ 11721 if (DISPLAY_VER(dev_priv) >= 11) { 11722 hdisplay_max = 16384; 11723 vdisplay_max = 8192; 11724 htotal_max = 16384; 11725 vtotal_max = 8192; 11726 } else if (DISPLAY_VER(dev_priv) >= 9 || 11727 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 11728 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 11729 vdisplay_max = 4096; 11730 htotal_max = 8192; 11731 vtotal_max = 8192; 11732 } else if (DISPLAY_VER(dev_priv) >= 3) { 11733 hdisplay_max = 4096; 11734 vdisplay_max = 4096; 11735 htotal_max = 8192; 11736 vtotal_max = 8192; 11737 } else { 11738 hdisplay_max = 2048; 11739 vdisplay_max = 2048; 11740 htotal_max = 4096; 11741 vtotal_max = 4096; 11742 } 11743 11744 if (mode->hdisplay > hdisplay_max || 11745 mode->hsync_start > htotal_max || 11746 mode->hsync_end > htotal_max || 11747 mode->htotal > htotal_max) 11748 return MODE_H_ILLEGAL; 11749 11750 if (mode->vdisplay > vdisplay_max || 11751 mode->vsync_start > vtotal_max || 11752 mode->vsync_end > vtotal_max || 11753 mode->vtotal > vtotal_max) 11754 return MODE_V_ILLEGAL; 11755 11756 if (DISPLAY_VER(dev_priv) >= 5) { 11757 if (mode->hdisplay < 64 || 11758 mode->htotal - mode->hdisplay < 32) 11759 return MODE_H_ILLEGAL; 11760 11761 if (mode->vtotal - mode->vdisplay < 5) 11762 return MODE_V_ILLEGAL; 11763 } else { 11764 if (mode->htotal - mode->hdisplay < 32) 11765 return MODE_H_ILLEGAL; 11766 11767 if (mode->vtotal - mode->vdisplay < 3) 11768 return MODE_V_ILLEGAL; 11769 } 11770 11771 return MODE_OK; 11772 } 11773 11774 enum drm_mode_status 11775 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, 11776 const struct drm_display_mode *mode, 11777 bool bigjoiner) 11778 { 11779 int plane_width_max, plane_height_max; 11780 11781 /* 11782 * intel_mode_valid() should be 11783 * sufficient on older platforms. 11784 */ 11785 if (DISPLAY_VER(dev_priv) < 9) 11786 return MODE_OK; 11787 11788 /* 11789 * Most people will probably want a fullscreen 11790 * plane so let's not advertize modes that are 11791 * too big for that. 11792 */ 11793 if (DISPLAY_VER(dev_priv) >= 11) { 11794 plane_width_max = 5120 << bigjoiner; 11795 plane_height_max = 4320; 11796 } else { 11797 plane_width_max = 5120; 11798 plane_height_max = 4096; 11799 } 11800 11801 if (mode->hdisplay > plane_width_max) 11802 return MODE_H_ILLEGAL; 11803 11804 if (mode->vdisplay > plane_height_max) 11805 return MODE_V_ILLEGAL; 11806 11807 return MODE_OK; 11808 } 11809 11810 static const struct drm_mode_config_funcs intel_mode_funcs = { 11811 .fb_create = intel_user_framebuffer_create, 11812 .get_format_info = intel_get_format_info, 11813 .output_poll_changed = intel_fbdev_output_poll_changed, 11814 .mode_valid = intel_mode_valid, 11815 .atomic_check = intel_atomic_check, 11816 .atomic_commit = intel_atomic_commit, 11817 .atomic_state_alloc = intel_atomic_state_alloc, 11818 .atomic_state_clear = intel_atomic_state_clear, 11819 .atomic_state_free = intel_atomic_state_free, 11820 }; 11821 11822 /** 11823 * intel_init_display_hooks - initialize the display modesetting hooks 11824 * @dev_priv: device private 11825 */ 11826 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 11827 { 11828 if (!HAS_DISPLAY(dev_priv)) 11829 return; 11830 11831 intel_init_cdclk_hooks(dev_priv); 11832 intel_init_audio_hooks(dev_priv); 11833 11834 intel_dpll_init_clock_hook(dev_priv); 11835 11836 if (DISPLAY_VER(dev_priv) >= 9) { 11837 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 11838 dev_priv->display.crtc_enable = hsw_crtc_enable; 11839 dev_priv->display.crtc_disable = hsw_crtc_disable; 11840 } else if (HAS_DDI(dev_priv)) { 11841 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 11842 dev_priv->display.crtc_enable = hsw_crtc_enable; 11843 dev_priv->display.crtc_disable = hsw_crtc_disable; 11844 } else if (HAS_PCH_SPLIT(dev_priv)) { 11845 dev_priv->display.get_pipe_config = ilk_get_pipe_config; 11846 dev_priv->display.crtc_enable = ilk_crtc_enable; 11847 dev_priv->display.crtc_disable = ilk_crtc_disable; 11848 } else if (IS_CHERRYVIEW(dev_priv) || 11849 IS_VALLEYVIEW(dev_priv)) { 11850 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 11851 dev_priv->display.crtc_enable = valleyview_crtc_enable; 11852 dev_priv->display.crtc_disable = i9xx_crtc_disable; 11853 } else { 11854 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 11855 dev_priv->display.crtc_enable = i9xx_crtc_enable; 11856 dev_priv->display.crtc_disable = i9xx_crtc_disable; 11857 } 11858 11859 intel_fdi_init_hook(dev_priv); 11860 11861 if (DISPLAY_VER(dev_priv) >= 9) { 11862 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; 11863 dev_priv->display.get_initial_plane_config = skl_get_initial_plane_config; 11864 } else { 11865 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; 11866 dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; 11867 } 11868 11869 } 11870 11871 void intel_modeset_init_hw(struct drm_i915_private *i915) 11872 { 11873 struct intel_cdclk_state *cdclk_state; 11874 11875 if (!HAS_DISPLAY(i915)) 11876 return; 11877 11878 cdclk_state = to_intel_cdclk_state(i915->cdclk.obj.state); 11879 11880 intel_update_cdclk(i915); 11881 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK"); 11882 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw; 11883 } 11884 11885 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state) 11886 { 11887 struct drm_plane *plane; 11888 struct intel_crtc *crtc; 11889 11890 for_each_intel_crtc(state->dev, crtc) { 11891 struct intel_crtc_state *crtc_state; 11892 11893 crtc_state = intel_atomic_get_crtc_state(state, crtc); 11894 if (IS_ERR(crtc_state)) 11895 return PTR_ERR(crtc_state); 11896 11897 if (crtc_state->hw.active) { 11898 /* 11899 * Preserve the inherited flag to avoid 11900 * taking the full modeset path. 11901 */ 11902 crtc_state->inherited = true; 11903 } 11904 } 11905 11906 drm_for_each_plane(plane, state->dev) { 11907 struct drm_plane_state *plane_state; 11908 11909 plane_state = drm_atomic_get_plane_state(state, plane); 11910 if (IS_ERR(plane_state)) 11911 return PTR_ERR(plane_state); 11912 } 11913 11914 return 0; 11915 } 11916 11917 /* 11918 * Calculate what we think the watermarks should be for the state we've read 11919 * out of the hardware and then immediately program those watermarks so that 11920 * we ensure the hardware settings match our internal state. 11921 * 11922 * We can calculate what we think WM's should be by creating a duplicate of the 11923 * current state (which was constructed during hardware readout) and running it 11924 * through the atomic check code to calculate new watermark values in the 11925 * state object. 11926 */ 11927 static void sanitize_watermarks(struct drm_i915_private *dev_priv) 11928 { 11929 struct drm_atomic_state *state; 11930 struct intel_atomic_state *intel_state; 11931 struct intel_crtc *crtc; 11932 struct intel_crtc_state *crtc_state; 11933 struct drm_modeset_acquire_ctx ctx; 11934 int ret; 11935 int i; 11936 11937 /* Only supported on platforms that use atomic watermark design */ 11938 if (!dev_priv->display.optimize_watermarks) 11939 return; 11940 11941 state = drm_atomic_state_alloc(&dev_priv->drm); 11942 if (drm_WARN_ON(&dev_priv->drm, !state)) 11943 return; 11944 11945 intel_state = to_intel_atomic_state(state); 11946 11947 drm_modeset_acquire_init(&ctx, 0); 11948 11949 retry: 11950 state->acquire_ctx = &ctx; 11951 11952 /* 11953 * Hardware readout is the only time we don't want to calculate 11954 * intermediate watermarks (since we don't trust the current 11955 * watermarks). 11956 */ 11957 if (!HAS_GMCH(dev_priv)) 11958 intel_state->skip_intermediate_wm = true; 11959 11960 ret = sanitize_watermarks_add_affected(state); 11961 if (ret) 11962 goto fail; 11963 11964 ret = intel_atomic_check(&dev_priv->drm, state); 11965 if (ret) 11966 goto fail; 11967 11968 /* Write calculated watermark values back */ 11969 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 11970 crtc_state->wm.need_postvbl_update = true; 11971 dev_priv->display.optimize_watermarks(intel_state, crtc); 11972 11973 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 11974 } 11975 11976 fail: 11977 if (ret == -EDEADLK) { 11978 drm_atomic_state_clear(state); 11979 drm_modeset_backoff(&ctx); 11980 goto retry; 11981 } 11982 11983 /* 11984 * If we fail here, it means that the hardware appears to be 11985 * programmed in a way that shouldn't be possible, given our 11986 * understanding of watermark requirements. This might mean a 11987 * mistake in the hardware readout code or a mistake in the 11988 * watermark calculations for a given platform. Raise a WARN 11989 * so that this is noticeable. 11990 * 11991 * If this actually happens, we'll have to just leave the 11992 * BIOS-programmed watermarks untouched and hope for the best. 11993 */ 11994 drm_WARN(&dev_priv->drm, ret, 11995 "Could not determine valid watermarks for inherited state\n"); 11996 11997 drm_atomic_state_put(state); 11998 11999 drm_modeset_drop_locks(&ctx); 12000 drm_modeset_acquire_fini(&ctx); 12001 } 12002 12003 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) 12004 { 12005 if (IS_IRONLAKE(dev_priv)) { 12006 u32 fdi_pll_clk = 12007 intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; 12008 12009 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; 12010 } else if (IS_SANDYBRIDGE(dev_priv) || IS_IVYBRIDGE(dev_priv)) { 12011 dev_priv->fdi_pll_freq = 270000; 12012 } else { 12013 return; 12014 } 12015 12016 drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); 12017 } 12018 12019 static int intel_initial_commit(struct drm_device *dev) 12020 { 12021 struct drm_atomic_state *state = NULL; 12022 struct drm_modeset_acquire_ctx ctx; 12023 struct intel_crtc *crtc; 12024 int ret = 0; 12025 12026 state = drm_atomic_state_alloc(dev); 12027 if (!state) 12028 return -ENOMEM; 12029 12030 drm_modeset_acquire_init(&ctx, 0); 12031 12032 retry: 12033 state->acquire_ctx = &ctx; 12034 12035 for_each_intel_crtc(dev, crtc) { 12036 struct intel_crtc_state *crtc_state = 12037 intel_atomic_get_crtc_state(state, crtc); 12038 12039 if (IS_ERR(crtc_state)) { 12040 ret = PTR_ERR(crtc_state); 12041 goto out; 12042 } 12043 12044 if (crtc_state->hw.active) { 12045 struct intel_encoder *encoder; 12046 12047 /* 12048 * We've not yet detected sink capabilities 12049 * (audio,infoframes,etc.) and thus we don't want to 12050 * force a full state recomputation yet. We want that to 12051 * happen only for the first real commit from userspace. 12052 * So preserve the inherited flag for the time being. 12053 */ 12054 crtc_state->inherited = true; 12055 12056 ret = drm_atomic_add_affected_planes(state, &crtc->base); 12057 if (ret) 12058 goto out; 12059 12060 /* 12061 * FIXME hack to force a LUT update to avoid the 12062 * plane update forcing the pipe gamma on without 12063 * having a proper LUT loaded. Remove once we 12064 * have readout for pipe gamma enable. 12065 */ 12066 crtc_state->uapi.color_mgmt_changed = true; 12067 12068 for_each_intel_encoder_mask(dev, encoder, 12069 crtc_state->uapi.encoder_mask) { 12070 if (encoder->initial_fastset_check && 12071 !encoder->initial_fastset_check(encoder, crtc_state)) { 12072 ret = drm_atomic_add_affected_connectors(state, 12073 &crtc->base); 12074 if (ret) 12075 goto out; 12076 } 12077 } 12078 } 12079 } 12080 12081 ret = drm_atomic_commit(state); 12082 12083 out: 12084 if (ret == -EDEADLK) { 12085 drm_atomic_state_clear(state); 12086 drm_modeset_backoff(&ctx); 12087 goto retry; 12088 } 12089 12090 drm_atomic_state_put(state); 12091 12092 drm_modeset_drop_locks(&ctx); 12093 drm_modeset_acquire_fini(&ctx); 12094 12095 return ret; 12096 } 12097 12098 static void intel_mode_config_init(struct drm_i915_private *i915) 12099 { 12100 struct drm_mode_config *mode_config = &i915->drm.mode_config; 12101 12102 drm_mode_config_init(&i915->drm); 12103 INIT_LIST_HEAD(&i915->global_obj_list); 12104 12105 mode_config->min_width = 0; 12106 mode_config->min_height = 0; 12107 12108 mode_config->preferred_depth = 24; 12109 mode_config->prefer_shadow = 1; 12110 12111 mode_config->funcs = &intel_mode_funcs; 12112 12113 mode_config->async_page_flip = has_async_flips(i915); 12114 12115 /* 12116 * Maximum framebuffer dimensions, chosen to match 12117 * the maximum render engine surface size on gen4+. 12118 */ 12119 if (DISPLAY_VER(i915) >= 7) { 12120 mode_config->max_width = 16384; 12121 mode_config->max_height = 16384; 12122 } else if (DISPLAY_VER(i915) >= 4) { 12123 mode_config->max_width = 8192; 12124 mode_config->max_height = 8192; 12125 } else if (DISPLAY_VER(i915) == 3) { 12126 mode_config->max_width = 4096; 12127 mode_config->max_height = 4096; 12128 } else { 12129 mode_config->max_width = 2048; 12130 mode_config->max_height = 2048; 12131 } 12132 12133 if (IS_I845G(i915) || IS_I865G(i915)) { 12134 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; 12135 mode_config->cursor_height = 1023; 12136 } else if (IS_I830(i915) || IS_I85X(i915) || 12137 IS_I915G(i915) || IS_I915GM(i915)) { 12138 mode_config->cursor_width = 64; 12139 mode_config->cursor_height = 64; 12140 } else { 12141 mode_config->cursor_width = 256; 12142 mode_config->cursor_height = 256; 12143 } 12144 } 12145 12146 static void intel_mode_config_cleanup(struct drm_i915_private *i915) 12147 { 12148 intel_atomic_global_obj_cleanup(i915); 12149 drm_mode_config_cleanup(&i915->drm); 12150 } 12151 12152 static void plane_config_fini(struct intel_initial_plane_config *plane_config) 12153 { 12154 if (plane_config->fb) { 12155 struct drm_framebuffer *fb = &plane_config->fb->base; 12156 12157 /* We may only have the stub and not a full framebuffer */ 12158 if (drm_framebuffer_read_refcount(fb)) 12159 drm_framebuffer_put(fb); 12160 else 12161 kfree(fb); 12162 } 12163 12164 if (plane_config->vma) 12165 i915_vma_put(plane_config->vma); 12166 } 12167 12168 /* part #1: call before irq install */ 12169 int intel_modeset_init_noirq(struct drm_i915_private *i915) 12170 { 12171 int ret; 12172 12173 if (i915_inject_probe_failure(i915)) 12174 return -ENODEV; 12175 12176 if (HAS_DISPLAY(i915)) { 12177 ret = drm_vblank_init(&i915->drm, 12178 INTEL_NUM_PIPES(i915)); 12179 if (ret) 12180 return ret; 12181 } 12182 12183 intel_bios_init(i915); 12184 12185 ret = intel_vga_register(i915); 12186 if (ret) 12187 goto cleanup_bios; 12188 12189 /* FIXME: completely on the wrong abstraction layer */ 12190 intel_power_domains_init_hw(i915, false); 12191 12192 if (!HAS_DISPLAY(i915)) 12193 return 0; 12194 12195 intel_csr_ucode_init(i915); 12196 12197 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 12198 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | 12199 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); 12200 12201 i915->framestart_delay = 1; /* 1-4 */ 12202 12203 intel_mode_config_init(i915); 12204 12205 ret = intel_cdclk_init(i915); 12206 if (ret) 12207 goto cleanup_vga_client_pw_domain_csr; 12208 12209 ret = intel_dbuf_init(i915); 12210 if (ret) 12211 goto cleanup_vga_client_pw_domain_csr; 12212 12213 ret = intel_bw_init(i915); 12214 if (ret) 12215 goto cleanup_vga_client_pw_domain_csr; 12216 12217 init_llist_head(&i915->atomic_helper.free_list); 12218 INIT_WORK(&i915->atomic_helper.free_work, 12219 intel_atomic_helper_free_state_worker); 12220 12221 intel_init_quirks(i915); 12222 12223 intel_fbc_init(i915); 12224 12225 return 0; 12226 12227 cleanup_vga_client_pw_domain_csr: 12228 intel_csr_ucode_fini(i915); 12229 intel_power_domains_driver_remove(i915); 12230 intel_vga_unregister(i915); 12231 cleanup_bios: 12232 intel_bios_driver_remove(i915); 12233 12234 return ret; 12235 } 12236 12237 /* part #2: call after irq install, but before gem init */ 12238 int intel_modeset_init_nogem(struct drm_i915_private *i915) 12239 { 12240 struct drm_device *dev = &i915->drm; 12241 enum pipe pipe; 12242 struct intel_crtc *crtc; 12243 int ret; 12244 12245 if (!HAS_DISPLAY(i915)) 12246 return 0; 12247 12248 intel_init_pm(i915); 12249 12250 intel_panel_sanitize_ssc(i915); 12251 12252 intel_pps_setup(i915); 12253 12254 intel_gmbus_setup(i915); 12255 12256 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n", 12257 INTEL_NUM_PIPES(i915), 12258 INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); 12259 12260 for_each_pipe(i915, pipe) { 12261 ret = intel_crtc_init(i915, pipe); 12262 if (ret) { 12263 intel_mode_config_cleanup(i915); 12264 return ret; 12265 } 12266 } 12267 12268 intel_plane_possible_crtcs_init(i915); 12269 intel_shared_dpll_init(dev); 12270 intel_update_fdi_pll_freq(i915); 12271 12272 intel_update_czclk(i915); 12273 intel_modeset_init_hw(i915); 12274 intel_dpll_update_ref_clks(i915); 12275 12276 intel_hdcp_component_init(i915); 12277 12278 if (i915->max_cdclk_freq == 0) 12279 intel_update_max_cdclk(i915); 12280 12281 /* 12282 * If the platform has HTI, we need to find out whether it has reserved 12283 * any display resources before we create our display outputs. 12284 */ 12285 if (INTEL_INFO(i915)->display.has_hti) 12286 i915->hti_state = intel_de_read(i915, HDPORT_STATE); 12287 12288 /* Just disable it once at startup */ 12289 intel_vga_disable(i915); 12290 intel_setup_outputs(i915); 12291 12292 drm_modeset_lock_all(dev); 12293 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 12294 drm_modeset_unlock_all(dev); 12295 12296 for_each_intel_crtc(dev, crtc) { 12297 struct intel_initial_plane_config plane_config = {}; 12298 12299 if (!to_intel_crtc_state(crtc->base.state)->uapi.active) 12300 continue; 12301 12302 /* 12303 * Note that reserving the BIOS fb up front prevents us 12304 * from stuffing other stolen allocations like the ring 12305 * on top. This prevents some ugliness at boot time, and 12306 * can even allow for smooth boot transitions if the BIOS 12307 * fb is large enough for the active pipe configuration. 12308 */ 12309 i915->display.get_initial_plane_config(crtc, &plane_config); 12310 12311 /* 12312 * If the fb is shared between multiple heads, we'll 12313 * just get the first one. 12314 */ 12315 intel_find_initial_plane_obj(crtc, &plane_config); 12316 12317 plane_config_fini(&plane_config); 12318 } 12319 12320 /* 12321 * Make sure hardware watermarks really match the state we read out. 12322 * Note that we need to do this after reconstructing the BIOS fb's 12323 * since the watermark calculation done here will use pstate->fb. 12324 */ 12325 if (!HAS_GMCH(i915)) 12326 sanitize_watermarks(i915); 12327 12328 return 0; 12329 } 12330 12331 /* part #3: call after gem init */ 12332 int intel_modeset_init(struct drm_i915_private *i915) 12333 { 12334 int ret; 12335 12336 if (!HAS_DISPLAY(i915)) 12337 return 0; 12338 12339 /* 12340 * Force all active planes to recompute their states. So that on 12341 * mode_setcrtc after probe, all the intel_plane_state variables 12342 * are already calculated and there is no assert_plane warnings 12343 * during bootup. 12344 */ 12345 ret = intel_initial_commit(&i915->drm); 12346 if (ret) 12347 drm_dbg_kms(&i915->drm, "Initial modeset failed, %d\n", ret); 12348 12349 intel_overlay_setup(i915); 12350 12351 ret = intel_fbdev_init(&i915->drm); 12352 if (ret) 12353 return ret; 12354 12355 /* Only enable hotplug handling once the fbdev is fully set up. */ 12356 intel_hpd_init(i915); 12357 intel_hpd_poll_disable(i915); 12358 12359 intel_init_ipc(i915); 12360 12361 return 0; 12362 } 12363 12364 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 12365 { 12366 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12367 /* 640x480@60Hz, ~25175 kHz */ 12368 struct dpll clock = { 12369 .m1 = 18, 12370 .m2 = 7, 12371 .p1 = 13, 12372 .p2 = 4, 12373 .n = 2, 12374 }; 12375 u32 dpll, fp; 12376 int i; 12377 12378 drm_WARN_ON(&dev_priv->drm, 12379 i9xx_calc_dpll_params(48000, &clock) != 25154); 12380 12381 drm_dbg_kms(&dev_priv->drm, 12382 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 12383 pipe_name(pipe), clock.vco, clock.dot); 12384 12385 fp = i9xx_dpll_compute_fp(&clock); 12386 dpll = DPLL_DVO_2X_MODE | 12387 DPLL_VGA_MODE_DIS | 12388 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 12389 PLL_P2_DIVIDE_BY_4 | 12390 PLL_REF_INPUT_DREFCLK | 12391 DPLL_VCO_ENABLE; 12392 12393 intel_de_write(dev_priv, FP0(pipe), fp); 12394 intel_de_write(dev_priv, FP1(pipe), fp); 12395 12396 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 12397 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 12398 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 12399 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 12400 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 12401 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 12402 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 12403 12404 /* 12405 * Apparently we need to have VGA mode enabled prior to changing 12406 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 12407 * dividers, even though the register value does change. 12408 */ 12409 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 12410 intel_de_write(dev_priv, DPLL(pipe), dpll); 12411 12412 /* Wait for the clocks to stabilize. */ 12413 intel_de_posting_read(dev_priv, DPLL(pipe)); 12414 udelay(150); 12415 12416 /* The pixel multiplier can only be updated once the 12417 * DPLL is enabled and the clocks are stable. 12418 * 12419 * So write it again. 12420 */ 12421 intel_de_write(dev_priv, DPLL(pipe), dpll); 12422 12423 /* We do this three times for luck */ 12424 for (i = 0; i < 3 ; i++) { 12425 intel_de_write(dev_priv, DPLL(pipe), dpll); 12426 intel_de_posting_read(dev_priv, DPLL(pipe)); 12427 udelay(150); /* wait for warmup */ 12428 } 12429 12430 intel_de_write(dev_priv, PIPECONF(pipe), 12431 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 12432 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 12433 12434 intel_wait_for_pipe_scanline_moving(crtc); 12435 } 12436 12437 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 12438 { 12439 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12440 12441 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n", 12442 pipe_name(pipe)); 12443 12444 drm_WARN_ON(&dev_priv->drm, 12445 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & 12446 DISPLAY_PLANE_ENABLE); 12447 drm_WARN_ON(&dev_priv->drm, 12448 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & 12449 DISPLAY_PLANE_ENABLE); 12450 drm_WARN_ON(&dev_priv->drm, 12451 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & 12452 DISPLAY_PLANE_ENABLE); 12453 drm_WARN_ON(&dev_priv->drm, 12454 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE); 12455 drm_WARN_ON(&dev_priv->drm, 12456 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE); 12457 12458 intel_de_write(dev_priv, PIPECONF(pipe), 0); 12459 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 12460 12461 intel_wait_for_pipe_scanline_stopped(crtc); 12462 12463 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 12464 intel_de_posting_read(dev_priv, DPLL(pipe)); 12465 } 12466 12467 static void 12468 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 12469 { 12470 struct intel_crtc *crtc; 12471 12472 if (DISPLAY_VER(dev_priv) >= 4) 12473 return; 12474 12475 for_each_intel_crtc(&dev_priv->drm, crtc) { 12476 struct intel_plane *plane = 12477 to_intel_plane(crtc->base.primary); 12478 struct intel_crtc *plane_crtc; 12479 enum pipe pipe; 12480 12481 if (!plane->get_hw_state(plane, &pipe)) 12482 continue; 12483 12484 if (pipe == crtc->pipe) 12485 continue; 12486 12487 drm_dbg_kms(&dev_priv->drm, 12488 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 12489 plane->base.base.id, plane->base.name); 12490 12491 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12492 intel_plane_disable_noatomic(plane_crtc, plane); 12493 } 12494 } 12495 12496 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 12497 { 12498 struct drm_device *dev = crtc->base.dev; 12499 struct intel_encoder *encoder; 12500 12501 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 12502 return true; 12503 12504 return false; 12505 } 12506 12507 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 12508 { 12509 struct drm_device *dev = encoder->base.dev; 12510 struct intel_connector *connector; 12511 12512 for_each_connector_on_encoder(dev, &encoder->base, connector) 12513 return connector; 12514 12515 return NULL; 12516 } 12517 12518 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 12519 enum pipe pch_transcoder) 12520 { 12521 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 12522 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 12523 } 12524 12525 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state) 12526 { 12527 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12528 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12529 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 12530 12531 if (DISPLAY_VER(dev_priv) >= 9 || 12532 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 12533 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); 12534 u32 val; 12535 12536 if (transcoder_is_dsi(cpu_transcoder)) 12537 return; 12538 12539 val = intel_de_read(dev_priv, reg); 12540 val &= ~HSW_FRAME_START_DELAY_MASK; 12541 val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12542 intel_de_write(dev_priv, reg, val); 12543 } else { 12544 i915_reg_t reg = PIPECONF(cpu_transcoder); 12545 u32 val; 12546 12547 val = intel_de_read(dev_priv, reg); 12548 val &= ~PIPECONF_FRAME_START_DELAY_MASK; 12549 val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12550 intel_de_write(dev_priv, reg, val); 12551 } 12552 12553 if (!crtc_state->has_pch_encoder) 12554 return; 12555 12556 if (HAS_PCH_IBX(dev_priv)) { 12557 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe); 12558 u32 val; 12559 12560 val = intel_de_read(dev_priv, reg); 12561 val &= ~TRANS_FRAME_START_DELAY_MASK; 12562 val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12563 intel_de_write(dev_priv, reg, val); 12564 } else { 12565 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); 12566 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder); 12567 u32 val; 12568 12569 val = intel_de_read(dev_priv, reg); 12570 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 12571 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12572 intel_de_write(dev_priv, reg, val); 12573 } 12574 } 12575 12576 static void intel_sanitize_crtc(struct intel_crtc *crtc, 12577 struct drm_modeset_acquire_ctx *ctx) 12578 { 12579 struct drm_device *dev = crtc->base.dev; 12580 struct drm_i915_private *dev_priv = to_i915(dev); 12581 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 12582 12583 if (crtc_state->hw.active) { 12584 struct intel_plane *plane; 12585 12586 /* Clear any frame start delays used for debugging left by the BIOS */ 12587 intel_sanitize_frame_start_delay(crtc_state); 12588 12589 /* Disable everything but the primary plane */ 12590 for_each_intel_plane_on_crtc(dev, crtc, plane) { 12591 const struct intel_plane_state *plane_state = 12592 to_intel_plane_state(plane->base.state); 12593 12594 if (plane_state->uapi.visible && 12595 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 12596 intel_plane_disable_noatomic(crtc, plane); 12597 } 12598 12599 /* 12600 * Disable any background color set by the BIOS, but enable the 12601 * gamma and CSC to match how we program our planes. 12602 */ 12603 if (DISPLAY_VER(dev_priv) >= 9) 12604 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe), 12605 SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE); 12606 } 12607 12608 /* Adjust the state of the output pipe according to whether we 12609 * have active connectors/encoders. */ 12610 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc) && 12611 !crtc_state->bigjoiner_slave) 12612 intel_crtc_disable_noatomic(crtc, ctx); 12613 12614 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) { 12615 /* 12616 * We start out with underrun reporting disabled to avoid races. 12617 * For correct bookkeeping mark this on active crtcs. 12618 * 12619 * Also on gmch platforms we dont have any hardware bits to 12620 * disable the underrun reporting. Which means we need to start 12621 * out with underrun reporting disabled also on inactive pipes, 12622 * since otherwise we'll complain about the garbage we read when 12623 * e.g. coming up after runtime pm. 12624 * 12625 * No protection against concurrent access is required - at 12626 * worst a fifo underrun happens which also sets this to false. 12627 */ 12628 crtc->cpu_fifo_underrun_disabled = true; 12629 /* 12630 * We track the PCH trancoder underrun reporting state 12631 * within the crtc. With crtc for pipe A housing the underrun 12632 * reporting state for PCH transcoder A, crtc for pipe B housing 12633 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 12634 * and marking underrun reporting as disabled for the non-existing 12635 * PCH transcoders B and C would prevent enabling the south 12636 * error interrupt (see cpt_can_enable_serr_int()). 12637 */ 12638 if (has_pch_trancoder(dev_priv, crtc->pipe)) 12639 crtc->pch_fifo_underrun_disabled = true; 12640 } 12641 } 12642 12643 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 12644 { 12645 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 12646 12647 /* 12648 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 12649 * the hardware when a high res displays plugged in. DPLL P 12650 * divider is zero, and the pipe timings are bonkers. We'll 12651 * try to disable everything in that case. 12652 * 12653 * FIXME would be nice to be able to sanitize this state 12654 * without several WARNs, but for now let's take the easy 12655 * road. 12656 */ 12657 return IS_SANDYBRIDGE(dev_priv) && 12658 crtc_state->hw.active && 12659 crtc_state->shared_dpll && 12660 crtc_state->port_clock == 0; 12661 } 12662 12663 static void intel_sanitize_encoder(struct intel_encoder *encoder) 12664 { 12665 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 12666 struct intel_connector *connector; 12667 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 12668 struct intel_crtc_state *crtc_state = crtc ? 12669 to_intel_crtc_state(crtc->base.state) : NULL; 12670 12671 /* We need to check both for a crtc link (meaning that the 12672 * encoder is active and trying to read from a pipe) and the 12673 * pipe itself being active. */ 12674 bool has_active_crtc = crtc_state && 12675 crtc_state->hw.active; 12676 12677 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 12678 drm_dbg_kms(&dev_priv->drm, 12679 "BIOS has misprogrammed the hardware. Disabling pipe %c\n", 12680 pipe_name(crtc->pipe)); 12681 has_active_crtc = false; 12682 } 12683 12684 connector = intel_encoder_find_connector(encoder); 12685 if (connector && !has_active_crtc) { 12686 drm_dbg_kms(&dev_priv->drm, 12687 "[ENCODER:%d:%s] has active connectors but no active pipe!\n", 12688 encoder->base.base.id, 12689 encoder->base.name); 12690 12691 /* Connector is active, but has no active pipe. This is 12692 * fallout from our resume register restoring. Disable 12693 * the encoder manually again. */ 12694 if (crtc_state) { 12695 struct drm_encoder *best_encoder; 12696 12697 drm_dbg_kms(&dev_priv->drm, 12698 "[ENCODER:%d:%s] manually disabled\n", 12699 encoder->base.base.id, 12700 encoder->base.name); 12701 12702 /* avoid oopsing in case the hooks consult best_encoder */ 12703 best_encoder = connector->base.state->best_encoder; 12704 connector->base.state->best_encoder = &encoder->base; 12705 12706 /* FIXME NULL atomic state passed! */ 12707 if (encoder->disable) 12708 encoder->disable(NULL, encoder, crtc_state, 12709 connector->base.state); 12710 if (encoder->post_disable) 12711 encoder->post_disable(NULL, encoder, crtc_state, 12712 connector->base.state); 12713 12714 connector->base.state->best_encoder = best_encoder; 12715 } 12716 encoder->base.crtc = NULL; 12717 12718 /* Inconsistent output/port/pipe state happens presumably due to 12719 * a bug in one of the get_hw_state functions. Or someplace else 12720 * in our code, like the register restore mess on resume. Clamp 12721 * things to off as a safer default. */ 12722 12723 connector->base.dpms = DRM_MODE_DPMS_OFF; 12724 connector->base.encoder = NULL; 12725 } 12726 12727 /* notify opregion of the sanitized encoder state */ 12728 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 12729 12730 if (HAS_DDI(dev_priv)) 12731 intel_ddi_sanitize_encoder_pll_mapping(encoder); 12732 } 12733 12734 /* FIXME read out full plane state for all planes */ 12735 static void readout_plane_state(struct drm_i915_private *dev_priv) 12736 { 12737 struct intel_plane *plane; 12738 struct intel_crtc *crtc; 12739 12740 for_each_intel_plane(&dev_priv->drm, plane) { 12741 struct intel_plane_state *plane_state = 12742 to_intel_plane_state(plane->base.state); 12743 struct intel_crtc_state *crtc_state; 12744 enum pipe pipe = PIPE_A; 12745 bool visible; 12746 12747 visible = plane->get_hw_state(plane, &pipe); 12748 12749 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12750 crtc_state = to_intel_crtc_state(crtc->base.state); 12751 12752 intel_set_plane_visible(crtc_state, plane_state, visible); 12753 12754 drm_dbg_kms(&dev_priv->drm, 12755 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 12756 plane->base.base.id, plane->base.name, 12757 enableddisabled(visible), pipe_name(pipe)); 12758 } 12759 12760 for_each_intel_crtc(&dev_priv->drm, crtc) { 12761 struct intel_crtc_state *crtc_state = 12762 to_intel_crtc_state(crtc->base.state); 12763 12764 fixup_plane_bitmasks(crtc_state); 12765 } 12766 } 12767 12768 static void intel_modeset_readout_hw_state(struct drm_device *dev) 12769 { 12770 struct drm_i915_private *dev_priv = to_i915(dev); 12771 struct intel_cdclk_state *cdclk_state = 12772 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 12773 struct intel_dbuf_state *dbuf_state = 12774 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 12775 enum pipe pipe; 12776 struct intel_crtc *crtc; 12777 struct intel_encoder *encoder; 12778 struct intel_connector *connector; 12779 struct drm_connector_list_iter conn_iter; 12780 u8 active_pipes = 0; 12781 12782 for_each_intel_crtc(dev, crtc) { 12783 struct intel_crtc_state *crtc_state = 12784 to_intel_crtc_state(crtc->base.state); 12785 12786 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi); 12787 intel_crtc_free_hw_state(crtc_state); 12788 intel_crtc_state_reset(crtc_state, crtc); 12789 12790 intel_crtc_get_pipe_config(crtc_state); 12791 12792 crtc_state->hw.enable = crtc_state->hw.active; 12793 12794 crtc->base.enabled = crtc_state->hw.enable; 12795 crtc->active = crtc_state->hw.active; 12796 12797 if (crtc_state->hw.active) 12798 active_pipes |= BIT(crtc->pipe); 12799 12800 drm_dbg_kms(&dev_priv->drm, 12801 "[CRTC:%d:%s] hw state readout: %s\n", 12802 crtc->base.base.id, crtc->base.name, 12803 enableddisabled(crtc_state->hw.active)); 12804 } 12805 12806 dev_priv->active_pipes = cdclk_state->active_pipes = 12807 dbuf_state->active_pipes = active_pipes; 12808 12809 readout_plane_state(dev_priv); 12810 12811 for_each_intel_encoder(dev, encoder) { 12812 pipe = 0; 12813 12814 if (encoder->get_hw_state(encoder, &pipe)) { 12815 struct intel_crtc_state *crtc_state; 12816 12817 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12818 crtc_state = to_intel_crtc_state(crtc->base.state); 12819 12820 encoder->base.crtc = &crtc->base; 12821 intel_encoder_get_config(encoder, crtc_state); 12822 if (encoder->sync_state) 12823 encoder->sync_state(encoder, crtc_state); 12824 12825 /* read out to slave crtc as well for bigjoiner */ 12826 if (crtc_state->bigjoiner) { 12827 /* encoder should read be linked to bigjoiner master */ 12828 WARN_ON(crtc_state->bigjoiner_slave); 12829 12830 crtc = crtc_state->bigjoiner_linked_crtc; 12831 crtc_state = to_intel_crtc_state(crtc->base.state); 12832 intel_encoder_get_config(encoder, crtc_state); 12833 } 12834 } else { 12835 encoder->base.crtc = NULL; 12836 } 12837 12838 drm_dbg_kms(&dev_priv->drm, 12839 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 12840 encoder->base.base.id, encoder->base.name, 12841 enableddisabled(encoder->base.crtc), 12842 pipe_name(pipe)); 12843 } 12844 12845 intel_dpll_readout_hw_state(dev_priv); 12846 12847 drm_connector_list_iter_begin(dev, &conn_iter); 12848 for_each_intel_connector_iter(connector, &conn_iter) { 12849 if (connector->get_hw_state(connector)) { 12850 struct intel_crtc_state *crtc_state; 12851 struct intel_crtc *crtc; 12852 12853 connector->base.dpms = DRM_MODE_DPMS_ON; 12854 12855 encoder = intel_attached_encoder(connector); 12856 connector->base.encoder = &encoder->base; 12857 12858 crtc = to_intel_crtc(encoder->base.crtc); 12859 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; 12860 12861 if (crtc_state && crtc_state->hw.active) { 12862 /* 12863 * This has to be done during hardware readout 12864 * because anything calling .crtc_disable may 12865 * rely on the connector_mask being accurate. 12866 */ 12867 crtc_state->uapi.connector_mask |= 12868 drm_connector_mask(&connector->base); 12869 crtc_state->uapi.encoder_mask |= 12870 drm_encoder_mask(&encoder->base); 12871 } 12872 } else { 12873 connector->base.dpms = DRM_MODE_DPMS_OFF; 12874 connector->base.encoder = NULL; 12875 } 12876 drm_dbg_kms(&dev_priv->drm, 12877 "[CONNECTOR:%d:%s] hw state readout: %s\n", 12878 connector->base.base.id, connector->base.name, 12879 enableddisabled(connector->base.encoder)); 12880 } 12881 drm_connector_list_iter_end(&conn_iter); 12882 12883 for_each_intel_crtc(dev, crtc) { 12884 struct intel_bw_state *bw_state = 12885 to_intel_bw_state(dev_priv->bw_obj.state); 12886 struct intel_crtc_state *crtc_state = 12887 to_intel_crtc_state(crtc->base.state); 12888 struct intel_plane *plane; 12889 int min_cdclk = 0; 12890 12891 if (crtc_state->bigjoiner_slave) 12892 continue; 12893 12894 if (crtc_state->hw.active) { 12895 /* 12896 * The initial mode needs to be set in order to keep 12897 * the atomic core happy. It wants a valid mode if the 12898 * crtc's enabled, so we do the above call. 12899 * 12900 * But we don't set all the derived state fully, hence 12901 * set a flag to indicate that a full recalculation is 12902 * needed on the next commit. 12903 */ 12904 crtc_state->inherited = true; 12905 12906 intel_crtc_update_active_timings(crtc_state); 12907 12908 intel_crtc_copy_hw_to_uapi_state(crtc_state); 12909 } 12910 12911 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 12912 const struct intel_plane_state *plane_state = 12913 to_intel_plane_state(plane->base.state); 12914 12915 /* 12916 * FIXME don't have the fb yet, so can't 12917 * use intel_plane_data_rate() :( 12918 */ 12919 if (plane_state->uapi.visible) 12920 crtc_state->data_rate[plane->id] = 12921 4 * crtc_state->pixel_rate; 12922 /* 12923 * FIXME don't have the fb yet, so can't 12924 * use plane->min_cdclk() :( 12925 */ 12926 if (plane_state->uapi.visible && plane->min_cdclk) { 12927 if (crtc_state->double_wide || DISPLAY_VER(dev_priv) >= 10) 12928 crtc_state->min_cdclk[plane->id] = 12929 DIV_ROUND_UP(crtc_state->pixel_rate, 2); 12930 else 12931 crtc_state->min_cdclk[plane->id] = 12932 crtc_state->pixel_rate; 12933 } 12934 drm_dbg_kms(&dev_priv->drm, 12935 "[PLANE:%d:%s] min_cdclk %d kHz\n", 12936 plane->base.base.id, plane->base.name, 12937 crtc_state->min_cdclk[plane->id]); 12938 } 12939 12940 if (crtc_state->hw.active) { 12941 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 12942 if (drm_WARN_ON(dev, min_cdclk < 0)) 12943 min_cdclk = 0; 12944 } 12945 12946 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 12947 cdclk_state->min_voltage_level[crtc->pipe] = 12948 crtc_state->min_voltage_level; 12949 12950 intel_bw_crtc_update(bw_state, crtc_state); 12951 12952 intel_pipe_config_sanity_check(dev_priv, crtc_state); 12953 12954 /* discard our incomplete slave state, copy it from master */ 12955 if (crtc_state->bigjoiner && crtc_state->hw.active) { 12956 struct intel_crtc *slave = crtc_state->bigjoiner_linked_crtc; 12957 struct intel_crtc_state *slave_crtc_state = 12958 to_intel_crtc_state(slave->base.state); 12959 12960 copy_bigjoiner_crtc_state(slave_crtc_state, crtc_state); 12961 slave->base.mode = crtc->base.mode; 12962 12963 cdclk_state->min_cdclk[slave->pipe] = min_cdclk; 12964 cdclk_state->min_voltage_level[slave->pipe] = 12965 crtc_state->min_voltage_level; 12966 12967 for_each_intel_plane_on_crtc(&dev_priv->drm, slave, plane) { 12968 const struct intel_plane_state *plane_state = 12969 to_intel_plane_state(plane->base.state); 12970 12971 /* 12972 * FIXME don't have the fb yet, so can't 12973 * use intel_plane_data_rate() :( 12974 */ 12975 if (plane_state->uapi.visible) 12976 crtc_state->data_rate[plane->id] = 12977 4 * crtc_state->pixel_rate; 12978 else 12979 crtc_state->data_rate[plane->id] = 0; 12980 } 12981 12982 intel_bw_crtc_update(bw_state, slave_crtc_state); 12983 drm_calc_timestamping_constants(&slave->base, 12984 &slave_crtc_state->hw.adjusted_mode); 12985 } 12986 } 12987 } 12988 12989 static void 12990 get_encoder_power_domains(struct drm_i915_private *dev_priv) 12991 { 12992 struct intel_encoder *encoder; 12993 12994 for_each_intel_encoder(&dev_priv->drm, encoder) { 12995 struct intel_crtc_state *crtc_state; 12996 12997 if (!encoder->get_power_domains) 12998 continue; 12999 13000 /* 13001 * MST-primary and inactive encoders don't have a crtc state 13002 * and neither of these require any power domain references. 13003 */ 13004 if (!encoder->base.crtc) 13005 continue; 13006 13007 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 13008 encoder->get_power_domains(encoder, crtc_state); 13009 } 13010 } 13011 13012 static void intel_early_display_was(struct drm_i915_private *dev_priv) 13013 { 13014 /* 13015 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl 13016 * Also known as Wa_14010480278. 13017 */ 13018 if (IS_DISPLAY_VER(dev_priv, 10, 12)) 13019 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0, 13020 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS); 13021 13022 if (IS_HASWELL(dev_priv)) { 13023 /* 13024 * WaRsPkgCStateDisplayPMReq:hsw 13025 * System hang if this isn't done before disabling all planes! 13026 */ 13027 intel_de_write(dev_priv, CHICKEN_PAR1_1, 13028 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 13029 } 13030 13031 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv)) { 13032 /* Display WA #1142:kbl,cfl,cml */ 13033 intel_de_rmw(dev_priv, CHICKEN_PAR1_1, 13034 KBL_ARB_FILL_SPARE_22, KBL_ARB_FILL_SPARE_22); 13035 intel_de_rmw(dev_priv, CHICKEN_MISC_2, 13036 KBL_ARB_FILL_SPARE_13 | KBL_ARB_FILL_SPARE_14, 13037 KBL_ARB_FILL_SPARE_14); 13038 } 13039 } 13040 13041 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 13042 enum port port, i915_reg_t hdmi_reg) 13043 { 13044 u32 val = intel_de_read(dev_priv, hdmi_reg); 13045 13046 if (val & SDVO_ENABLE || 13047 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 13048 return; 13049 13050 drm_dbg_kms(&dev_priv->drm, 13051 "Sanitizing transcoder select for HDMI %c\n", 13052 port_name(port)); 13053 13054 val &= ~SDVO_PIPE_SEL_MASK; 13055 val |= SDVO_PIPE_SEL(PIPE_A); 13056 13057 intel_de_write(dev_priv, hdmi_reg, val); 13058 } 13059 13060 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 13061 enum port port, i915_reg_t dp_reg) 13062 { 13063 u32 val = intel_de_read(dev_priv, dp_reg); 13064 13065 if (val & DP_PORT_EN || 13066 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 13067 return; 13068 13069 drm_dbg_kms(&dev_priv->drm, 13070 "Sanitizing transcoder select for DP %c\n", 13071 port_name(port)); 13072 13073 val &= ~DP_PIPE_SEL_MASK; 13074 val |= DP_PIPE_SEL(PIPE_A); 13075 13076 intel_de_write(dev_priv, dp_reg, val); 13077 } 13078 13079 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 13080 { 13081 /* 13082 * The BIOS may select transcoder B on some of the PCH 13083 * ports even it doesn't enable the port. This would trip 13084 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 13085 * Sanitize the transcoder select bits to prevent that. We 13086 * assume that the BIOS never actually enabled the port, 13087 * because if it did we'd actually have to toggle the port 13088 * on and back off to make the transcoder A select stick 13089 * (see. intel_dp_link_down(), intel_disable_hdmi(), 13090 * intel_disable_sdvo()). 13091 */ 13092 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 13093 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 13094 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 13095 13096 /* PCH SDVOB multiplex with HDMIB */ 13097 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 13098 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 13099 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 13100 } 13101 13102 /* Scan out the current hw modeset state, 13103 * and sanitizes it to the current state 13104 */ 13105 static void 13106 intel_modeset_setup_hw_state(struct drm_device *dev, 13107 struct drm_modeset_acquire_ctx *ctx) 13108 { 13109 struct drm_i915_private *dev_priv = to_i915(dev); 13110 struct intel_encoder *encoder; 13111 struct intel_crtc *crtc; 13112 intel_wakeref_t wakeref; 13113 13114 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 13115 13116 intel_early_display_was(dev_priv); 13117 intel_modeset_readout_hw_state(dev); 13118 13119 /* HW state is read out, now we need to sanitize this mess. */ 13120 13121 /* Sanitize the TypeC port mode upfront, encoders depend on this */ 13122 for_each_intel_encoder(dev, encoder) { 13123 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 13124 13125 /* We need to sanitize only the MST primary port. */ 13126 if (encoder->type != INTEL_OUTPUT_DP_MST && 13127 intel_phy_is_tc(dev_priv, phy)) 13128 intel_tc_port_sanitize(enc_to_dig_port(encoder)); 13129 } 13130 13131 get_encoder_power_domains(dev_priv); 13132 13133 if (HAS_PCH_IBX(dev_priv)) 13134 ibx_sanitize_pch_ports(dev_priv); 13135 13136 /* 13137 * intel_sanitize_plane_mapping() may need to do vblank 13138 * waits, so we need vblank interrupts restored beforehand. 13139 */ 13140 for_each_intel_crtc(&dev_priv->drm, crtc) { 13141 struct intel_crtc_state *crtc_state = 13142 to_intel_crtc_state(crtc->base.state); 13143 13144 drm_crtc_vblank_reset(&crtc->base); 13145 13146 if (crtc_state->hw.active) 13147 intel_crtc_vblank_on(crtc_state); 13148 } 13149 13150 intel_sanitize_plane_mapping(dev_priv); 13151 13152 for_each_intel_encoder(dev, encoder) 13153 intel_sanitize_encoder(encoder); 13154 13155 for_each_intel_crtc(&dev_priv->drm, crtc) { 13156 struct intel_crtc_state *crtc_state = 13157 to_intel_crtc_state(crtc->base.state); 13158 13159 intel_sanitize_crtc(crtc, ctx); 13160 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 13161 } 13162 13163 intel_modeset_update_connector_atomic_state(dev); 13164 13165 intel_dpll_sanitize_state(dev_priv); 13166 13167 if (IS_G4X(dev_priv)) { 13168 g4x_wm_get_hw_state(dev_priv); 13169 g4x_wm_sanitize(dev_priv); 13170 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 13171 vlv_wm_get_hw_state(dev_priv); 13172 vlv_wm_sanitize(dev_priv); 13173 } else if (DISPLAY_VER(dev_priv) >= 9) { 13174 skl_wm_get_hw_state(dev_priv); 13175 } else if (HAS_PCH_SPLIT(dev_priv)) { 13176 ilk_wm_get_hw_state(dev_priv); 13177 } 13178 13179 for_each_intel_crtc(dev, crtc) { 13180 struct intel_crtc_state *crtc_state = 13181 to_intel_crtc_state(crtc->base.state); 13182 u64 put_domains; 13183 13184 put_domains = modeset_get_crtc_power_domains(crtc_state); 13185 if (drm_WARN_ON(dev, put_domains)) 13186 modeset_put_crtc_power_domains(crtc, put_domains); 13187 } 13188 13189 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 13190 } 13191 13192 void intel_display_resume(struct drm_device *dev) 13193 { 13194 struct drm_i915_private *dev_priv = to_i915(dev); 13195 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 13196 struct drm_modeset_acquire_ctx ctx; 13197 int ret; 13198 13199 if (!HAS_DISPLAY(dev_priv)) 13200 return; 13201 13202 dev_priv->modeset_restore_state = NULL; 13203 if (state) 13204 state->acquire_ctx = &ctx; 13205 13206 drm_modeset_acquire_init(&ctx, 0); 13207 13208 while (1) { 13209 ret = drm_modeset_lock_all_ctx(dev, &ctx); 13210 if (ret != -EDEADLK) 13211 break; 13212 13213 drm_modeset_backoff(&ctx); 13214 } 13215 13216 if (!ret) 13217 ret = __intel_display_resume(dev, state, &ctx); 13218 13219 intel_enable_ipc(dev_priv); 13220 drm_modeset_drop_locks(&ctx); 13221 drm_modeset_acquire_fini(&ctx); 13222 13223 if (ret) 13224 drm_err(&dev_priv->drm, 13225 "Restoring old state failed with %i\n", ret); 13226 if (state) 13227 drm_atomic_state_put(state); 13228 } 13229 13230 static void intel_hpd_poll_fini(struct drm_i915_private *i915) 13231 { 13232 struct intel_connector *connector; 13233 struct drm_connector_list_iter conn_iter; 13234 13235 /* Kill all the work that may have been queued by hpd. */ 13236 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 13237 for_each_intel_connector_iter(connector, &conn_iter) { 13238 if (connector->modeset_retry_work.func) 13239 cancel_work_sync(&connector->modeset_retry_work); 13240 if (connector->hdcp.shim) { 13241 cancel_delayed_work_sync(&connector->hdcp.check_work); 13242 cancel_work_sync(&connector->hdcp.prop_work); 13243 } 13244 } 13245 drm_connector_list_iter_end(&conn_iter); 13246 } 13247 13248 /* part #1: call before irq uninstall */ 13249 void intel_modeset_driver_remove(struct drm_i915_private *i915) 13250 { 13251 if (!HAS_DISPLAY(i915)) 13252 return; 13253 13254 flush_workqueue(i915->flip_wq); 13255 flush_workqueue(i915->modeset_wq); 13256 13257 flush_work(&i915->atomic_helper.free_work); 13258 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list)); 13259 } 13260 13261 /* part #2: call after irq uninstall */ 13262 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915) 13263 { 13264 if (!HAS_DISPLAY(i915)) 13265 return; 13266 13267 /* 13268 * Due to the hpd irq storm handling the hotplug work can re-arm the 13269 * poll handlers. Hence disable polling after hpd handling is shut down. 13270 */ 13271 intel_hpd_poll_fini(i915); 13272 13273 /* 13274 * MST topology needs to be suspended so we don't have any calls to 13275 * fbdev after it's finalized. MST will be destroyed later as part of 13276 * drm_mode_config_cleanup() 13277 */ 13278 intel_dp_mst_suspend(i915); 13279 13280 /* poll work can call into fbdev, hence clean that up afterwards */ 13281 intel_fbdev_fini(i915); 13282 13283 intel_unregister_dsm_handler(); 13284 13285 intel_fbc_global_disable(i915); 13286 13287 /* flush any delayed tasks or pending work */ 13288 flush_scheduled_work(); 13289 13290 intel_hdcp_component_fini(i915); 13291 13292 intel_mode_config_cleanup(i915); 13293 13294 intel_overlay_cleanup(i915); 13295 13296 intel_gmbus_teardown(i915); 13297 13298 destroy_workqueue(i915->flip_wq); 13299 destroy_workqueue(i915->modeset_wq); 13300 13301 intel_fbc_cleanup_cfb(i915); 13302 } 13303 13304 /* part #3: call after gem init */ 13305 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915) 13306 { 13307 intel_csr_ucode_fini(i915); 13308 13309 intel_power_domains_driver_remove(i915); 13310 13311 intel_vga_unregister(i915); 13312 13313 intel_bios_driver_remove(i915); 13314 } 13315 13316 void intel_display_driver_register(struct drm_i915_private *i915) 13317 { 13318 if (!HAS_DISPLAY(i915)) 13319 return; 13320 13321 intel_display_debugfs_register(i915); 13322 13323 /* Must be done after probing outputs */ 13324 intel_opregion_register(i915); 13325 acpi_video_register(); 13326 13327 intel_audio_init(i915); 13328 13329 /* 13330 * Some ports require correctly set-up hpd registers for 13331 * detection to work properly (leading to ghost connected 13332 * connector status), e.g. VGA on gm45. Hence we can only set 13333 * up the initial fbdev config after hpd irqs are fully 13334 * enabled. We do it last so that the async config cannot run 13335 * before the connectors are registered. 13336 */ 13337 intel_fbdev_initial_config_async(&i915->drm); 13338 13339 /* 13340 * We need to coordinate the hotplugs with the asynchronous 13341 * fbdev configuration, for which we use the 13342 * fbdev->async_cookie. 13343 */ 13344 drm_kms_helper_poll_init(&i915->drm); 13345 } 13346 13347 void intel_display_driver_unregister(struct drm_i915_private *i915) 13348 { 13349 if (!HAS_DISPLAY(i915)) 13350 return; 13351 13352 intel_fbdev_unregister(i915); 13353 intel_audio_deinit(i915); 13354 13355 /* 13356 * After flushing the fbdev (incl. a late async config which 13357 * will have delayed queuing of a hotplug event), then flush 13358 * the hotplug events. 13359 */ 13360 drm_kms_helper_poll_fini(&i915->drm); 13361 drm_atomic_helper_shutdown(&i915->drm); 13362 13363 acpi_video_unregister(); 13364 intel_opregion_unregister(i915); 13365 } 13366