1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  */
26 
27 #include <linux/i2c.h>
28 #include <linux/input.h>
29 #include <linux/intel-iommu.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/dma-resv.h>
33 #include <linux/slab.h>
34 #include <linux/vgaarb.h>
35 
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fourcc.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_probe_helper.h>
44 #include <drm/drm_rect.h>
45 #include <drm/i915_drm.h>
46 
47 #include "display/intel_crt.h"
48 #include "display/intel_ddi.h"
49 #include "display/intel_dp.h"
50 #include "display/intel_dsi.h"
51 #include "display/intel_dvo.h"
52 #include "display/intel_gmbus.h"
53 #include "display/intel_hdmi.h"
54 #include "display/intel_lvds.h"
55 #include "display/intel_sdvo.h"
56 #include "display/intel_tv.h"
57 #include "display/intel_vdsc.h"
58 
59 #include "i915_drv.h"
60 #include "i915_trace.h"
61 #include "intel_acpi.h"
62 #include "intel_atomic.h"
63 #include "intel_atomic_plane.h"
64 #include "intel_bw.h"
65 #include "intel_cdclk.h"
66 #include "intel_color.h"
67 #include "intel_display_types.h"
68 #include "intel_fbc.h"
69 #include "intel_fbdev.h"
70 #include "intel_fifo_underrun.h"
71 #include "intel_frontbuffer.h"
72 #include "intel_hdcp.h"
73 #include "intel_hotplug.h"
74 #include "intel_overlay.h"
75 #include "intel_pipe_crc.h"
76 #include "intel_pm.h"
77 #include "intel_psr.h"
78 #include "intel_quirks.h"
79 #include "intel_sideband.h"
80 #include "intel_sprite.h"
81 #include "intel_tc.h"
82 
83 /* Primary plane formats for gen <= 3 */
84 static const u32 i8xx_primary_formats[] = {
85 	DRM_FORMAT_C8,
86 	DRM_FORMAT_RGB565,
87 	DRM_FORMAT_XRGB1555,
88 	DRM_FORMAT_XRGB8888,
89 };
90 
91 /* Primary plane formats for gen >= 4 */
92 static const u32 i965_primary_formats[] = {
93 	DRM_FORMAT_C8,
94 	DRM_FORMAT_RGB565,
95 	DRM_FORMAT_XRGB8888,
96 	DRM_FORMAT_XBGR8888,
97 	DRM_FORMAT_XRGB2101010,
98 	DRM_FORMAT_XBGR2101010,
99 };
100 
101 static const u64 i9xx_format_modifiers[] = {
102 	I915_FORMAT_MOD_X_TILED,
103 	DRM_FORMAT_MOD_LINEAR,
104 	DRM_FORMAT_MOD_INVALID
105 };
106 
107 /* Cursor formats */
108 static const u32 intel_cursor_formats[] = {
109 	DRM_FORMAT_ARGB8888,
110 };
111 
112 static const u64 cursor_format_modifiers[] = {
113 	DRM_FORMAT_MOD_LINEAR,
114 	DRM_FORMAT_MOD_INVALID
115 };
116 
117 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
118 				struct intel_crtc_state *pipe_config);
119 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
120 				   struct intel_crtc_state *pipe_config);
121 
122 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
123 				  struct drm_i915_gem_object *obj,
124 				  struct drm_mode_fb_cmd2 *mode_cmd);
125 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state);
126 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
127 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
128 					 const struct intel_link_m_n *m_n,
129 					 const struct intel_link_m_n *m2_n2);
130 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state);
131 static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state);
132 static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state);
133 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state);
134 static void vlv_prepare_pll(struct intel_crtc *crtc,
135 			    const struct intel_crtc_state *pipe_config);
136 static void chv_prepare_pll(struct intel_crtc *crtc,
137 			    const struct intel_crtc_state *pipe_config);
138 static void intel_begin_crtc_commit(struct intel_atomic_state *, struct intel_crtc *);
139 static void intel_finish_crtc_commit(struct intel_atomic_state *, struct intel_crtc *);
140 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
141 				    struct intel_crtc_state *crtc_state);
142 static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state);
143 static void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state);
144 static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state);
145 static void intel_modeset_setup_hw_state(struct drm_device *dev,
146 					 struct drm_modeset_acquire_ctx *ctx);
147 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
148 
149 struct intel_limit {
150 	struct {
151 		int min, max;
152 	} dot, vco, n, m, m1, m2, p, p1;
153 
154 	struct {
155 		int dot_limit;
156 		int p2_slow, p2_fast;
157 	} p2;
158 };
159 
160 /* returns HPLL frequency in kHz */
161 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
162 {
163 	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
164 
165 	/* Obtain SKU information */
166 	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
167 		CCK_FUSE_HPLL_FREQ_MASK;
168 
169 	return vco_freq[hpll_freq] * 1000;
170 }
171 
172 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
173 		      const char *name, u32 reg, int ref_freq)
174 {
175 	u32 val;
176 	int divider;
177 
178 	val = vlv_cck_read(dev_priv, reg);
179 	divider = val & CCK_FREQUENCY_VALUES;
180 
181 	WARN((val & CCK_FREQUENCY_STATUS) !=
182 	     (divider << CCK_FREQUENCY_STATUS_SHIFT),
183 	     "%s change in progress\n", name);
184 
185 	return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
186 }
187 
188 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
189 			   const char *name, u32 reg)
190 {
191 	int hpll;
192 
193 	vlv_cck_get(dev_priv);
194 
195 	if (dev_priv->hpll_freq == 0)
196 		dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
197 
198 	hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq);
199 
200 	vlv_cck_put(dev_priv);
201 
202 	return hpll;
203 }
204 
205 static void intel_update_czclk(struct drm_i915_private *dev_priv)
206 {
207 	if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
208 		return;
209 
210 	dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
211 						      CCK_CZ_CLOCK_CONTROL);
212 
213 	DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
214 }
215 
216 static inline u32 /* units of 100MHz */
217 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
218 		    const struct intel_crtc_state *pipe_config)
219 {
220 	if (HAS_DDI(dev_priv))
221 		return pipe_config->port_clock; /* SPLL */
222 	else
223 		return dev_priv->fdi_pll_freq;
224 }
225 
226 static const struct intel_limit intel_limits_i8xx_dac = {
227 	.dot = { .min = 25000, .max = 350000 },
228 	.vco = { .min = 908000, .max = 1512000 },
229 	.n = { .min = 2, .max = 16 },
230 	.m = { .min = 96, .max = 140 },
231 	.m1 = { .min = 18, .max = 26 },
232 	.m2 = { .min = 6, .max = 16 },
233 	.p = { .min = 4, .max = 128 },
234 	.p1 = { .min = 2, .max = 33 },
235 	.p2 = { .dot_limit = 165000,
236 		.p2_slow = 4, .p2_fast = 2 },
237 };
238 
239 static const struct intel_limit intel_limits_i8xx_dvo = {
240 	.dot = { .min = 25000, .max = 350000 },
241 	.vco = { .min = 908000, .max = 1512000 },
242 	.n = { .min = 2, .max = 16 },
243 	.m = { .min = 96, .max = 140 },
244 	.m1 = { .min = 18, .max = 26 },
245 	.m2 = { .min = 6, .max = 16 },
246 	.p = { .min = 4, .max = 128 },
247 	.p1 = { .min = 2, .max = 33 },
248 	.p2 = { .dot_limit = 165000,
249 		.p2_slow = 4, .p2_fast = 4 },
250 };
251 
252 static const struct intel_limit intel_limits_i8xx_lvds = {
253 	.dot = { .min = 25000, .max = 350000 },
254 	.vco = { .min = 908000, .max = 1512000 },
255 	.n = { .min = 2, .max = 16 },
256 	.m = { .min = 96, .max = 140 },
257 	.m1 = { .min = 18, .max = 26 },
258 	.m2 = { .min = 6, .max = 16 },
259 	.p = { .min = 4, .max = 128 },
260 	.p1 = { .min = 1, .max = 6 },
261 	.p2 = { .dot_limit = 165000,
262 		.p2_slow = 14, .p2_fast = 7 },
263 };
264 
265 static const struct intel_limit intel_limits_i9xx_sdvo = {
266 	.dot = { .min = 20000, .max = 400000 },
267 	.vco = { .min = 1400000, .max = 2800000 },
268 	.n = { .min = 1, .max = 6 },
269 	.m = { .min = 70, .max = 120 },
270 	.m1 = { .min = 8, .max = 18 },
271 	.m2 = { .min = 3, .max = 7 },
272 	.p = { .min = 5, .max = 80 },
273 	.p1 = { .min = 1, .max = 8 },
274 	.p2 = { .dot_limit = 200000,
275 		.p2_slow = 10, .p2_fast = 5 },
276 };
277 
278 static const struct intel_limit intel_limits_i9xx_lvds = {
279 	.dot = { .min = 20000, .max = 400000 },
280 	.vco = { .min = 1400000, .max = 2800000 },
281 	.n = { .min = 1, .max = 6 },
282 	.m = { .min = 70, .max = 120 },
283 	.m1 = { .min = 8, .max = 18 },
284 	.m2 = { .min = 3, .max = 7 },
285 	.p = { .min = 7, .max = 98 },
286 	.p1 = { .min = 1, .max = 8 },
287 	.p2 = { .dot_limit = 112000,
288 		.p2_slow = 14, .p2_fast = 7 },
289 };
290 
291 
292 static const struct intel_limit intel_limits_g4x_sdvo = {
293 	.dot = { .min = 25000, .max = 270000 },
294 	.vco = { .min = 1750000, .max = 3500000},
295 	.n = { .min = 1, .max = 4 },
296 	.m = { .min = 104, .max = 138 },
297 	.m1 = { .min = 17, .max = 23 },
298 	.m2 = { .min = 5, .max = 11 },
299 	.p = { .min = 10, .max = 30 },
300 	.p1 = { .min = 1, .max = 3},
301 	.p2 = { .dot_limit = 270000,
302 		.p2_slow = 10,
303 		.p2_fast = 10
304 	},
305 };
306 
307 static const struct intel_limit intel_limits_g4x_hdmi = {
308 	.dot = { .min = 22000, .max = 400000 },
309 	.vco = { .min = 1750000, .max = 3500000},
310 	.n = { .min = 1, .max = 4 },
311 	.m = { .min = 104, .max = 138 },
312 	.m1 = { .min = 16, .max = 23 },
313 	.m2 = { .min = 5, .max = 11 },
314 	.p = { .min = 5, .max = 80 },
315 	.p1 = { .min = 1, .max = 8},
316 	.p2 = { .dot_limit = 165000,
317 		.p2_slow = 10, .p2_fast = 5 },
318 };
319 
320 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
321 	.dot = { .min = 20000, .max = 115000 },
322 	.vco = { .min = 1750000, .max = 3500000 },
323 	.n = { .min = 1, .max = 3 },
324 	.m = { .min = 104, .max = 138 },
325 	.m1 = { .min = 17, .max = 23 },
326 	.m2 = { .min = 5, .max = 11 },
327 	.p = { .min = 28, .max = 112 },
328 	.p1 = { .min = 2, .max = 8 },
329 	.p2 = { .dot_limit = 0,
330 		.p2_slow = 14, .p2_fast = 14
331 	},
332 };
333 
334 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
335 	.dot = { .min = 80000, .max = 224000 },
336 	.vco = { .min = 1750000, .max = 3500000 },
337 	.n = { .min = 1, .max = 3 },
338 	.m = { .min = 104, .max = 138 },
339 	.m1 = { .min = 17, .max = 23 },
340 	.m2 = { .min = 5, .max = 11 },
341 	.p = { .min = 14, .max = 42 },
342 	.p1 = { .min = 2, .max = 6 },
343 	.p2 = { .dot_limit = 0,
344 		.p2_slow = 7, .p2_fast = 7
345 	},
346 };
347 
348 static const struct intel_limit intel_limits_pineview_sdvo = {
349 	.dot = { .min = 20000, .max = 400000},
350 	.vco = { .min = 1700000, .max = 3500000 },
351 	/* Pineview's Ncounter is a ring counter */
352 	.n = { .min = 3, .max = 6 },
353 	.m = { .min = 2, .max = 256 },
354 	/* Pineview only has one combined m divider, which we treat as m2. */
355 	.m1 = { .min = 0, .max = 0 },
356 	.m2 = { .min = 0, .max = 254 },
357 	.p = { .min = 5, .max = 80 },
358 	.p1 = { .min = 1, .max = 8 },
359 	.p2 = { .dot_limit = 200000,
360 		.p2_slow = 10, .p2_fast = 5 },
361 };
362 
363 static const struct intel_limit intel_limits_pineview_lvds = {
364 	.dot = { .min = 20000, .max = 400000 },
365 	.vco = { .min = 1700000, .max = 3500000 },
366 	.n = { .min = 3, .max = 6 },
367 	.m = { .min = 2, .max = 256 },
368 	.m1 = { .min = 0, .max = 0 },
369 	.m2 = { .min = 0, .max = 254 },
370 	.p = { .min = 7, .max = 112 },
371 	.p1 = { .min = 1, .max = 8 },
372 	.p2 = { .dot_limit = 112000,
373 		.p2_slow = 14, .p2_fast = 14 },
374 };
375 
376 /* Ironlake / Sandybridge
377  *
378  * We calculate clock using (register_value + 2) for N/M1/M2, so here
379  * the range value for them is (actual_value - 2).
380  */
381 static const struct intel_limit intel_limits_ironlake_dac = {
382 	.dot = { .min = 25000, .max = 350000 },
383 	.vco = { .min = 1760000, .max = 3510000 },
384 	.n = { .min = 1, .max = 5 },
385 	.m = { .min = 79, .max = 127 },
386 	.m1 = { .min = 12, .max = 22 },
387 	.m2 = { .min = 5, .max = 9 },
388 	.p = { .min = 5, .max = 80 },
389 	.p1 = { .min = 1, .max = 8 },
390 	.p2 = { .dot_limit = 225000,
391 		.p2_slow = 10, .p2_fast = 5 },
392 };
393 
394 static const struct intel_limit intel_limits_ironlake_single_lvds = {
395 	.dot = { .min = 25000, .max = 350000 },
396 	.vco = { .min = 1760000, .max = 3510000 },
397 	.n = { .min = 1, .max = 3 },
398 	.m = { .min = 79, .max = 118 },
399 	.m1 = { .min = 12, .max = 22 },
400 	.m2 = { .min = 5, .max = 9 },
401 	.p = { .min = 28, .max = 112 },
402 	.p1 = { .min = 2, .max = 8 },
403 	.p2 = { .dot_limit = 225000,
404 		.p2_slow = 14, .p2_fast = 14 },
405 };
406 
407 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
408 	.dot = { .min = 25000, .max = 350000 },
409 	.vco = { .min = 1760000, .max = 3510000 },
410 	.n = { .min = 1, .max = 3 },
411 	.m = { .min = 79, .max = 127 },
412 	.m1 = { .min = 12, .max = 22 },
413 	.m2 = { .min = 5, .max = 9 },
414 	.p = { .min = 14, .max = 56 },
415 	.p1 = { .min = 2, .max = 8 },
416 	.p2 = { .dot_limit = 225000,
417 		.p2_slow = 7, .p2_fast = 7 },
418 };
419 
420 /* LVDS 100mhz refclk limits. */
421 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
422 	.dot = { .min = 25000, .max = 350000 },
423 	.vco = { .min = 1760000, .max = 3510000 },
424 	.n = { .min = 1, .max = 2 },
425 	.m = { .min = 79, .max = 126 },
426 	.m1 = { .min = 12, .max = 22 },
427 	.m2 = { .min = 5, .max = 9 },
428 	.p = { .min = 28, .max = 112 },
429 	.p1 = { .min = 2, .max = 8 },
430 	.p2 = { .dot_limit = 225000,
431 		.p2_slow = 14, .p2_fast = 14 },
432 };
433 
434 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
435 	.dot = { .min = 25000, .max = 350000 },
436 	.vco = { .min = 1760000, .max = 3510000 },
437 	.n = { .min = 1, .max = 3 },
438 	.m = { .min = 79, .max = 126 },
439 	.m1 = { .min = 12, .max = 22 },
440 	.m2 = { .min = 5, .max = 9 },
441 	.p = { .min = 14, .max = 42 },
442 	.p1 = { .min = 2, .max = 6 },
443 	.p2 = { .dot_limit = 225000,
444 		.p2_slow = 7, .p2_fast = 7 },
445 };
446 
447 static const struct intel_limit intel_limits_vlv = {
448 	 /*
449 	  * These are the data rate limits (measured in fast clocks)
450 	  * since those are the strictest limits we have. The fast
451 	  * clock and actual rate limits are more relaxed, so checking
452 	  * them would make no difference.
453 	  */
454 	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
455 	.vco = { .min = 4000000, .max = 6000000 },
456 	.n = { .min = 1, .max = 7 },
457 	.m1 = { .min = 2, .max = 3 },
458 	.m2 = { .min = 11, .max = 156 },
459 	.p1 = { .min = 2, .max = 3 },
460 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
461 };
462 
463 static const struct intel_limit intel_limits_chv = {
464 	/*
465 	 * These are the data rate limits (measured in fast clocks)
466 	 * since those are the strictest limits we have.  The fast
467 	 * clock and actual rate limits are more relaxed, so checking
468 	 * them would make no difference.
469 	 */
470 	.dot = { .min = 25000 * 5, .max = 540000 * 5},
471 	.vco = { .min = 4800000, .max = 6480000 },
472 	.n = { .min = 1, .max = 1 },
473 	.m1 = { .min = 2, .max = 2 },
474 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
475 	.p1 = { .min = 2, .max = 4 },
476 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
477 };
478 
479 static const struct intel_limit intel_limits_bxt = {
480 	/* FIXME: find real dot limits */
481 	.dot = { .min = 0, .max = INT_MAX },
482 	.vco = { .min = 4800000, .max = 6700000 },
483 	.n = { .min = 1, .max = 1 },
484 	.m1 = { .min = 2, .max = 2 },
485 	/* FIXME: find real m2 limits */
486 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
487 	.p1 = { .min = 2, .max = 4 },
488 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
489 };
490 
491 /* WA Display #0827: Gen9:all */
492 static void
493 skl_wa_827(struct drm_i915_private *dev_priv, int pipe, bool enable)
494 {
495 	if (enable)
496 		I915_WRITE(CLKGATE_DIS_PSL(pipe),
497 			   I915_READ(CLKGATE_DIS_PSL(pipe)) |
498 			   DUPS1_GATING_DIS | DUPS2_GATING_DIS);
499 	else
500 		I915_WRITE(CLKGATE_DIS_PSL(pipe),
501 			   I915_READ(CLKGATE_DIS_PSL(pipe)) &
502 			   ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS));
503 }
504 
505 /* Wa_2006604312:icl */
506 static void
507 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
508 		       bool enable)
509 {
510 	if (enable)
511 		I915_WRITE(CLKGATE_DIS_PSL(pipe),
512 			   I915_READ(CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS);
513 	else
514 		I915_WRITE(CLKGATE_DIS_PSL(pipe),
515 			   I915_READ(CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS);
516 }
517 
518 static bool
519 needs_modeset(const struct intel_crtc_state *state)
520 {
521 	return drm_atomic_crtc_needs_modeset(&state->base);
522 }
523 
524 /*
525  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
526  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
527  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
528  * The helpers' return value is the rate of the clock that is fed to the
529  * display engine's pipe which can be the above fast dot clock rate or a
530  * divided-down version of it.
531  */
532 /* m1 is reserved as 0 in Pineview, n is a ring counter */
533 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
534 {
535 	clock->m = clock->m2 + 2;
536 	clock->p = clock->p1 * clock->p2;
537 	if (WARN_ON(clock->n == 0 || clock->p == 0))
538 		return 0;
539 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
540 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
541 
542 	return clock->dot;
543 }
544 
545 static u32 i9xx_dpll_compute_m(struct dpll *dpll)
546 {
547 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
548 }
549 
550 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
551 {
552 	clock->m = i9xx_dpll_compute_m(clock);
553 	clock->p = clock->p1 * clock->p2;
554 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
555 		return 0;
556 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
557 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
558 
559 	return clock->dot;
560 }
561 
562 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
563 {
564 	clock->m = clock->m1 * clock->m2;
565 	clock->p = clock->p1 * clock->p2;
566 	if (WARN_ON(clock->n == 0 || clock->p == 0))
567 		return 0;
568 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
569 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
570 
571 	return clock->dot / 5;
572 }
573 
574 int chv_calc_dpll_params(int refclk, struct dpll *clock)
575 {
576 	clock->m = clock->m1 * clock->m2;
577 	clock->p = clock->p1 * clock->p2;
578 	if (WARN_ON(clock->n == 0 || clock->p == 0))
579 		return 0;
580 	clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
581 					   clock->n << 22);
582 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
583 
584 	return clock->dot / 5;
585 }
586 
587 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
588 
589 /*
590  * Returns whether the given set of divisors are valid for a given refclk with
591  * the given connectors.
592  */
593 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
594 			       const struct intel_limit *limit,
595 			       const struct dpll *clock)
596 {
597 	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
598 		INTELPllInvalid("n out of range\n");
599 	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
600 		INTELPllInvalid("p1 out of range\n");
601 	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
602 		INTELPllInvalid("m2 out of range\n");
603 	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
604 		INTELPllInvalid("m1 out of range\n");
605 
606 	if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
607 	    !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
608 		if (clock->m1 <= clock->m2)
609 			INTELPllInvalid("m1 <= m2\n");
610 
611 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
612 	    !IS_GEN9_LP(dev_priv)) {
613 		if (clock->p < limit->p.min || limit->p.max < clock->p)
614 			INTELPllInvalid("p out of range\n");
615 		if (clock->m < limit->m.min || limit->m.max < clock->m)
616 			INTELPllInvalid("m out of range\n");
617 	}
618 
619 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
620 		INTELPllInvalid("vco out of range\n");
621 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
622 	 * connector, etc., rather than just a single range.
623 	 */
624 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
625 		INTELPllInvalid("dot out of range\n");
626 
627 	return true;
628 }
629 
630 static int
631 i9xx_select_p2_div(const struct intel_limit *limit,
632 		   const struct intel_crtc_state *crtc_state,
633 		   int target)
634 {
635 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
636 
637 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
638 		/*
639 		 * For LVDS just rely on its current settings for dual-channel.
640 		 * We haven't figured out how to reliably set up different
641 		 * single/dual channel state, if we even can.
642 		 */
643 		if (intel_is_dual_link_lvds(dev_priv))
644 			return limit->p2.p2_fast;
645 		else
646 			return limit->p2.p2_slow;
647 	} else {
648 		if (target < limit->p2.dot_limit)
649 			return limit->p2.p2_slow;
650 		else
651 			return limit->p2.p2_fast;
652 	}
653 }
654 
655 /*
656  * Returns a set of divisors for the desired target clock with the given
657  * refclk, or FALSE.  The returned values represent the clock equation:
658  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
659  *
660  * Target and reference clocks are specified in kHz.
661  *
662  * If match_clock is provided, then best_clock P divider must match the P
663  * divider from @match_clock used for LVDS downclocking.
664  */
665 static bool
666 i9xx_find_best_dpll(const struct intel_limit *limit,
667 		    struct intel_crtc_state *crtc_state,
668 		    int target, int refclk, struct dpll *match_clock,
669 		    struct dpll *best_clock)
670 {
671 	struct drm_device *dev = crtc_state->base.crtc->dev;
672 	struct dpll clock;
673 	int err = target;
674 
675 	memset(best_clock, 0, sizeof(*best_clock));
676 
677 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
678 
679 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
680 	     clock.m1++) {
681 		for (clock.m2 = limit->m2.min;
682 		     clock.m2 <= limit->m2.max; clock.m2++) {
683 			if (clock.m2 >= clock.m1)
684 				break;
685 			for (clock.n = limit->n.min;
686 			     clock.n <= limit->n.max; clock.n++) {
687 				for (clock.p1 = limit->p1.min;
688 					clock.p1 <= limit->p1.max; clock.p1++) {
689 					int this_err;
690 
691 					i9xx_calc_dpll_params(refclk, &clock);
692 					if (!intel_PLL_is_valid(to_i915(dev),
693 								limit,
694 								&clock))
695 						continue;
696 					if (match_clock &&
697 					    clock.p != match_clock->p)
698 						continue;
699 
700 					this_err = abs(clock.dot - target);
701 					if (this_err < err) {
702 						*best_clock = clock;
703 						err = this_err;
704 					}
705 				}
706 			}
707 		}
708 	}
709 
710 	return (err != target);
711 }
712 
713 /*
714  * Returns a set of divisors for the desired target clock with the given
715  * refclk, or FALSE.  The returned values represent the clock equation:
716  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
717  *
718  * Target and reference clocks are specified in kHz.
719  *
720  * If match_clock is provided, then best_clock P divider must match the P
721  * divider from @match_clock used for LVDS downclocking.
722  */
723 static bool
724 pnv_find_best_dpll(const struct intel_limit *limit,
725 		   struct intel_crtc_state *crtc_state,
726 		   int target, int refclk, struct dpll *match_clock,
727 		   struct dpll *best_clock)
728 {
729 	struct drm_device *dev = crtc_state->base.crtc->dev;
730 	struct dpll clock;
731 	int err = target;
732 
733 	memset(best_clock, 0, sizeof(*best_clock));
734 
735 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
736 
737 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
738 	     clock.m1++) {
739 		for (clock.m2 = limit->m2.min;
740 		     clock.m2 <= limit->m2.max; clock.m2++) {
741 			for (clock.n = limit->n.min;
742 			     clock.n <= limit->n.max; clock.n++) {
743 				for (clock.p1 = limit->p1.min;
744 					clock.p1 <= limit->p1.max; clock.p1++) {
745 					int this_err;
746 
747 					pnv_calc_dpll_params(refclk, &clock);
748 					if (!intel_PLL_is_valid(to_i915(dev),
749 								limit,
750 								&clock))
751 						continue;
752 					if (match_clock &&
753 					    clock.p != match_clock->p)
754 						continue;
755 
756 					this_err = abs(clock.dot - target);
757 					if (this_err < err) {
758 						*best_clock = clock;
759 						err = this_err;
760 					}
761 				}
762 			}
763 		}
764 	}
765 
766 	return (err != target);
767 }
768 
769 /*
770  * Returns a set of divisors for the desired target clock with the given
771  * refclk, or FALSE.  The returned values represent the clock equation:
772  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
773  *
774  * Target and reference clocks are specified in kHz.
775  *
776  * If match_clock is provided, then best_clock P divider must match the P
777  * divider from @match_clock used for LVDS downclocking.
778  */
779 static bool
780 g4x_find_best_dpll(const struct intel_limit *limit,
781 		   struct intel_crtc_state *crtc_state,
782 		   int target, int refclk, struct dpll *match_clock,
783 		   struct dpll *best_clock)
784 {
785 	struct drm_device *dev = crtc_state->base.crtc->dev;
786 	struct dpll clock;
787 	int max_n;
788 	bool found = false;
789 	/* approximately equals target * 0.00585 */
790 	int err_most = (target >> 8) + (target >> 9);
791 
792 	memset(best_clock, 0, sizeof(*best_clock));
793 
794 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
795 
796 	max_n = limit->n.max;
797 	/* based on hardware requirement, prefer smaller n to precision */
798 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
799 		/* based on hardware requirement, prefere larger m1,m2 */
800 		for (clock.m1 = limit->m1.max;
801 		     clock.m1 >= limit->m1.min; clock.m1--) {
802 			for (clock.m2 = limit->m2.max;
803 			     clock.m2 >= limit->m2.min; clock.m2--) {
804 				for (clock.p1 = limit->p1.max;
805 				     clock.p1 >= limit->p1.min; clock.p1--) {
806 					int this_err;
807 
808 					i9xx_calc_dpll_params(refclk, &clock);
809 					if (!intel_PLL_is_valid(to_i915(dev),
810 								limit,
811 								&clock))
812 						continue;
813 
814 					this_err = abs(clock.dot - target);
815 					if (this_err < err_most) {
816 						*best_clock = clock;
817 						err_most = this_err;
818 						max_n = clock.n;
819 						found = true;
820 					}
821 				}
822 			}
823 		}
824 	}
825 	return found;
826 }
827 
828 /*
829  * Check if the calculated PLL configuration is more optimal compared to the
830  * best configuration and error found so far. Return the calculated error.
831  */
832 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
833 			       const struct dpll *calculated_clock,
834 			       const struct dpll *best_clock,
835 			       unsigned int best_error_ppm,
836 			       unsigned int *error_ppm)
837 {
838 	/*
839 	 * For CHV ignore the error and consider only the P value.
840 	 * Prefer a bigger P value based on HW requirements.
841 	 */
842 	if (IS_CHERRYVIEW(to_i915(dev))) {
843 		*error_ppm = 0;
844 
845 		return calculated_clock->p > best_clock->p;
846 	}
847 
848 	if (WARN_ON_ONCE(!target_freq))
849 		return false;
850 
851 	*error_ppm = div_u64(1000000ULL *
852 				abs(target_freq - calculated_clock->dot),
853 			     target_freq);
854 	/*
855 	 * Prefer a better P value over a better (smaller) error if the error
856 	 * is small. Ensure this preference for future configurations too by
857 	 * setting the error to 0.
858 	 */
859 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
860 		*error_ppm = 0;
861 
862 		return true;
863 	}
864 
865 	return *error_ppm + 10 < best_error_ppm;
866 }
867 
868 /*
869  * Returns a set of divisors for the desired target clock with the given
870  * refclk, or FALSE.  The returned values represent the clock equation:
871  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
872  */
873 static bool
874 vlv_find_best_dpll(const struct intel_limit *limit,
875 		   struct intel_crtc_state *crtc_state,
876 		   int target, int refclk, struct dpll *match_clock,
877 		   struct dpll *best_clock)
878 {
879 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
880 	struct drm_device *dev = crtc->base.dev;
881 	struct dpll clock;
882 	unsigned int bestppm = 1000000;
883 	/* min update 19.2 MHz */
884 	int max_n = min(limit->n.max, refclk / 19200);
885 	bool found = false;
886 
887 	target *= 5; /* fast clock */
888 
889 	memset(best_clock, 0, sizeof(*best_clock));
890 
891 	/* based on hardware requirement, prefer smaller n to precision */
892 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
893 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
894 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
895 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
896 				clock.p = clock.p1 * clock.p2;
897 				/* based on hardware requirement, prefer bigger m1,m2 values */
898 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
899 					unsigned int ppm;
900 
901 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
902 								     refclk * clock.m1);
903 
904 					vlv_calc_dpll_params(refclk, &clock);
905 
906 					if (!intel_PLL_is_valid(to_i915(dev),
907 								limit,
908 								&clock))
909 						continue;
910 
911 					if (!vlv_PLL_is_optimal(dev, target,
912 								&clock,
913 								best_clock,
914 								bestppm, &ppm))
915 						continue;
916 
917 					*best_clock = clock;
918 					bestppm = ppm;
919 					found = true;
920 				}
921 			}
922 		}
923 	}
924 
925 	return found;
926 }
927 
928 /*
929  * Returns a set of divisors for the desired target clock with the given
930  * refclk, or FALSE.  The returned values represent the clock equation:
931  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
932  */
933 static bool
934 chv_find_best_dpll(const struct intel_limit *limit,
935 		   struct intel_crtc_state *crtc_state,
936 		   int target, int refclk, struct dpll *match_clock,
937 		   struct dpll *best_clock)
938 {
939 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
940 	struct drm_device *dev = crtc->base.dev;
941 	unsigned int best_error_ppm;
942 	struct dpll clock;
943 	u64 m2;
944 	int found = false;
945 
946 	memset(best_clock, 0, sizeof(*best_clock));
947 	best_error_ppm = 1000000;
948 
949 	/*
950 	 * Based on hardware doc, the n always set to 1, and m1 always
951 	 * set to 2.  If requires to support 200Mhz refclk, we need to
952 	 * revisit this because n may not 1 anymore.
953 	 */
954 	clock.n = 1, clock.m1 = 2;
955 	target *= 5;	/* fast clock */
956 
957 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
958 		for (clock.p2 = limit->p2.p2_fast;
959 				clock.p2 >= limit->p2.p2_slow;
960 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
961 			unsigned int error_ppm;
962 
963 			clock.p = clock.p1 * clock.p2;
964 
965 			m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
966 						   refclk * clock.m1);
967 
968 			if (m2 > INT_MAX/clock.m1)
969 				continue;
970 
971 			clock.m2 = m2;
972 
973 			chv_calc_dpll_params(refclk, &clock);
974 
975 			if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
976 				continue;
977 
978 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
979 						best_error_ppm, &error_ppm))
980 				continue;
981 
982 			*best_clock = clock;
983 			best_error_ppm = error_ppm;
984 			found = true;
985 		}
986 	}
987 
988 	return found;
989 }
990 
991 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
992 			struct dpll *best_clock)
993 {
994 	int refclk = 100000;
995 	const struct intel_limit *limit = &intel_limits_bxt;
996 
997 	return chv_find_best_dpll(limit, crtc_state,
998 				  crtc_state->port_clock, refclk,
999 				  NULL, best_clock);
1000 }
1001 
1002 bool intel_crtc_active(struct intel_crtc *crtc)
1003 {
1004 	/* Be paranoid as we can arrive here with only partial
1005 	 * state retrieved from the hardware during setup.
1006 	 *
1007 	 * We can ditch the adjusted_mode.crtc_clock check as soon
1008 	 * as Haswell has gained clock readout/fastboot support.
1009 	 *
1010 	 * We can ditch the crtc->primary->state->fb check as soon as we can
1011 	 * properly reconstruct framebuffers.
1012 	 *
1013 	 * FIXME: The intel_crtc->active here should be switched to
1014 	 * crtc->state->active once we have proper CRTC states wired up
1015 	 * for atomic.
1016 	 */
1017 	return crtc->active && crtc->base.primary->state->fb &&
1018 		crtc->config->base.adjusted_mode.crtc_clock;
1019 }
1020 
1021 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1022 					     enum pipe pipe)
1023 {
1024 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1025 
1026 	return crtc->config->cpu_transcoder;
1027 }
1028 
1029 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1030 				    enum pipe pipe)
1031 {
1032 	i915_reg_t reg = PIPEDSL(pipe);
1033 	u32 line1, line2;
1034 	u32 line_mask;
1035 
1036 	if (IS_GEN(dev_priv, 2))
1037 		line_mask = DSL_LINEMASK_GEN2;
1038 	else
1039 		line_mask = DSL_LINEMASK_GEN3;
1040 
1041 	line1 = I915_READ(reg) & line_mask;
1042 	msleep(5);
1043 	line2 = I915_READ(reg) & line_mask;
1044 
1045 	return line1 != line2;
1046 }
1047 
1048 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1049 {
1050 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1051 	enum pipe pipe = crtc->pipe;
1052 
1053 	/* Wait for the display line to settle/start moving */
1054 	if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1055 		DRM_ERROR("pipe %c scanline %s wait timed out\n",
1056 			  pipe_name(pipe), onoff(state));
1057 }
1058 
1059 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1060 {
1061 	wait_for_pipe_scanline_moving(crtc, false);
1062 }
1063 
1064 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1065 {
1066 	wait_for_pipe_scanline_moving(crtc, true);
1067 }
1068 
1069 static void
1070 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
1071 {
1072 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
1073 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1074 
1075 	if (INTEL_GEN(dev_priv) >= 4) {
1076 		enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1077 		i915_reg_t reg = PIPECONF(cpu_transcoder);
1078 
1079 		/* Wait for the Pipe State to go off */
1080 		if (intel_de_wait_for_clear(dev_priv, reg,
1081 					    I965_PIPECONF_ACTIVE, 100))
1082 			WARN(1, "pipe_off wait timed out\n");
1083 	} else {
1084 		intel_wait_for_pipe_scanline_stopped(crtc);
1085 	}
1086 }
1087 
1088 /* Only for pre-ILK configs */
1089 void assert_pll(struct drm_i915_private *dev_priv,
1090 		enum pipe pipe, bool state)
1091 {
1092 	u32 val;
1093 	bool cur_state;
1094 
1095 	val = I915_READ(DPLL(pipe));
1096 	cur_state = !!(val & DPLL_VCO_ENABLE);
1097 	I915_STATE_WARN(cur_state != state,
1098 	     "PLL state assertion failure (expected %s, current %s)\n",
1099 			onoff(state), onoff(cur_state));
1100 }
1101 
1102 /* XXX: the dsi pll is shared between MIPI DSI ports */
1103 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1104 {
1105 	u32 val;
1106 	bool cur_state;
1107 
1108 	vlv_cck_get(dev_priv);
1109 	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1110 	vlv_cck_put(dev_priv);
1111 
1112 	cur_state = val & DSI_PLL_VCO_EN;
1113 	I915_STATE_WARN(cur_state != state,
1114 	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1115 			onoff(state), onoff(cur_state));
1116 }
1117 
1118 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1119 			  enum pipe pipe, bool state)
1120 {
1121 	bool cur_state;
1122 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1123 								      pipe);
1124 
1125 	if (HAS_DDI(dev_priv)) {
1126 		/* DDI does not have a specific FDI_TX register */
1127 		u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1128 		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129 	} else {
1130 		u32 val = I915_READ(FDI_TX_CTL(pipe));
1131 		cur_state = !!(val & FDI_TX_ENABLE);
1132 	}
1133 	I915_STATE_WARN(cur_state != state,
1134 	     "FDI TX state assertion failure (expected %s, current %s)\n",
1135 			onoff(state), onoff(cur_state));
1136 }
1137 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1138 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1139 
1140 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1141 			  enum pipe pipe, bool state)
1142 {
1143 	u32 val;
1144 	bool cur_state;
1145 
1146 	val = I915_READ(FDI_RX_CTL(pipe));
1147 	cur_state = !!(val & FDI_RX_ENABLE);
1148 	I915_STATE_WARN(cur_state != state,
1149 	     "FDI RX state assertion failure (expected %s, current %s)\n",
1150 			onoff(state), onoff(cur_state));
1151 }
1152 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1153 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1154 
1155 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1156 				      enum pipe pipe)
1157 {
1158 	u32 val;
1159 
1160 	/* ILK FDI PLL is always enabled */
1161 	if (IS_GEN(dev_priv, 5))
1162 		return;
1163 
1164 	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
1165 	if (HAS_DDI(dev_priv))
1166 		return;
1167 
1168 	val = I915_READ(FDI_TX_CTL(pipe));
1169 	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1170 }
1171 
1172 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1173 		       enum pipe pipe, bool state)
1174 {
1175 	u32 val;
1176 	bool cur_state;
1177 
1178 	val = I915_READ(FDI_RX_CTL(pipe));
1179 	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1180 	I915_STATE_WARN(cur_state != state,
1181 	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1182 			onoff(state), onoff(cur_state));
1183 }
1184 
1185 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1186 {
1187 	i915_reg_t pp_reg;
1188 	u32 val;
1189 	enum pipe panel_pipe = INVALID_PIPE;
1190 	bool locked = true;
1191 
1192 	if (WARN_ON(HAS_DDI(dev_priv)))
1193 		return;
1194 
1195 	if (HAS_PCH_SPLIT(dev_priv)) {
1196 		u32 port_sel;
1197 
1198 		pp_reg = PP_CONTROL(0);
1199 		port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1200 
1201 		switch (port_sel) {
1202 		case PANEL_PORT_SELECT_LVDS:
1203 			intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe);
1204 			break;
1205 		case PANEL_PORT_SELECT_DPA:
1206 			intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe);
1207 			break;
1208 		case PANEL_PORT_SELECT_DPC:
1209 			intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe);
1210 			break;
1211 		case PANEL_PORT_SELECT_DPD:
1212 			intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe);
1213 			break;
1214 		default:
1215 			MISSING_CASE(port_sel);
1216 			break;
1217 		}
1218 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1219 		/* presumably write lock depends on pipe, not port select */
1220 		pp_reg = PP_CONTROL(pipe);
1221 		panel_pipe = pipe;
1222 	} else {
1223 		u32 port_sel;
1224 
1225 		pp_reg = PP_CONTROL(0);
1226 		port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1227 
1228 		WARN_ON(port_sel != PANEL_PORT_SELECT_LVDS);
1229 		intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe);
1230 	}
1231 
1232 	val = I915_READ(pp_reg);
1233 	if (!(val & PANEL_POWER_ON) ||
1234 	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1235 		locked = false;
1236 
1237 	I915_STATE_WARN(panel_pipe == pipe && locked,
1238 	     "panel assertion failure, pipe %c regs locked\n",
1239 	     pipe_name(pipe));
1240 }
1241 
1242 void assert_pipe(struct drm_i915_private *dev_priv,
1243 		 enum pipe pipe, bool state)
1244 {
1245 	bool cur_state;
1246 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1247 								      pipe);
1248 	enum intel_display_power_domain power_domain;
1249 	intel_wakeref_t wakeref;
1250 
1251 	/* we keep both pipes enabled on 830 */
1252 	if (IS_I830(dev_priv))
1253 		state = true;
1254 
1255 	power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1256 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
1257 	if (wakeref) {
1258 		u32 val = I915_READ(PIPECONF(cpu_transcoder));
1259 		cur_state = !!(val & PIPECONF_ENABLE);
1260 
1261 		intel_display_power_put(dev_priv, power_domain, wakeref);
1262 	} else {
1263 		cur_state = false;
1264 	}
1265 
1266 	I915_STATE_WARN(cur_state != state,
1267 	     "pipe %c assertion failure (expected %s, current %s)\n",
1268 			pipe_name(pipe), onoff(state), onoff(cur_state));
1269 }
1270 
1271 static void assert_plane(struct intel_plane *plane, bool state)
1272 {
1273 	enum pipe pipe;
1274 	bool cur_state;
1275 
1276 	cur_state = plane->get_hw_state(plane, &pipe);
1277 
1278 	I915_STATE_WARN(cur_state != state,
1279 			"%s assertion failure (expected %s, current %s)\n",
1280 			plane->base.name, onoff(state), onoff(cur_state));
1281 }
1282 
1283 #define assert_plane_enabled(p) assert_plane(p, true)
1284 #define assert_plane_disabled(p) assert_plane(p, false)
1285 
1286 static void assert_planes_disabled(struct intel_crtc *crtc)
1287 {
1288 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1289 	struct intel_plane *plane;
1290 
1291 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1292 		assert_plane_disabled(plane);
1293 }
1294 
1295 static void assert_vblank_disabled(struct drm_crtc *crtc)
1296 {
1297 	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1298 		drm_crtc_vblank_put(crtc);
1299 }
1300 
1301 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1302 				    enum pipe pipe)
1303 {
1304 	u32 val;
1305 	bool enabled;
1306 
1307 	val = I915_READ(PCH_TRANSCONF(pipe));
1308 	enabled = !!(val & TRANS_ENABLE);
1309 	I915_STATE_WARN(enabled,
1310 	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1311 	     pipe_name(pipe));
1312 }
1313 
1314 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1315 				   enum pipe pipe, enum port port,
1316 				   i915_reg_t dp_reg)
1317 {
1318 	enum pipe port_pipe;
1319 	bool state;
1320 
1321 	state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe);
1322 
1323 	I915_STATE_WARN(state && port_pipe == pipe,
1324 			"PCH DP %c enabled on transcoder %c, should be disabled\n",
1325 			port_name(port), pipe_name(pipe));
1326 
1327 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1328 			"IBX PCH DP %c still using transcoder B\n",
1329 			port_name(port));
1330 }
1331 
1332 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1333 				     enum pipe pipe, enum port port,
1334 				     i915_reg_t hdmi_reg)
1335 {
1336 	enum pipe port_pipe;
1337 	bool state;
1338 
1339 	state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe);
1340 
1341 	I915_STATE_WARN(state && port_pipe == pipe,
1342 			"PCH HDMI %c enabled on transcoder %c, should be disabled\n",
1343 			port_name(port), pipe_name(pipe));
1344 
1345 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1346 			"IBX PCH HDMI %c still using transcoder B\n",
1347 			port_name(port));
1348 }
1349 
1350 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1351 				      enum pipe pipe)
1352 {
1353 	enum pipe port_pipe;
1354 
1355 	assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B);
1356 	assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C);
1357 	assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D);
1358 
1359 	I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) &&
1360 			port_pipe == pipe,
1361 			"PCH VGA enabled on transcoder %c, should be disabled\n",
1362 			pipe_name(pipe));
1363 
1364 	I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) &&
1365 			port_pipe == pipe,
1366 			"PCH LVDS enabled on transcoder %c, should be disabled\n",
1367 			pipe_name(pipe));
1368 
1369 	/* PCH SDVOB multiplex with HDMIB */
1370 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB);
1371 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC);
1372 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID);
1373 }
1374 
1375 static void _vlv_enable_pll(struct intel_crtc *crtc,
1376 			    const struct intel_crtc_state *pipe_config)
1377 {
1378 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1379 	enum pipe pipe = crtc->pipe;
1380 
1381 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1382 	POSTING_READ(DPLL(pipe));
1383 	udelay(150);
1384 
1385 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1386 		DRM_ERROR("DPLL %d failed to lock\n", pipe);
1387 }
1388 
1389 static void vlv_enable_pll(struct intel_crtc *crtc,
1390 			   const struct intel_crtc_state *pipe_config)
1391 {
1392 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1393 	enum pipe pipe = crtc->pipe;
1394 
1395 	assert_pipe_disabled(dev_priv, pipe);
1396 
1397 	/* PLL is protected by panel, make sure we can write it */
1398 	assert_panel_unlocked(dev_priv, pipe);
1399 
1400 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1401 		_vlv_enable_pll(crtc, pipe_config);
1402 
1403 	I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1404 	POSTING_READ(DPLL_MD(pipe));
1405 }
1406 
1407 
1408 static void _chv_enable_pll(struct intel_crtc *crtc,
1409 			    const struct intel_crtc_state *pipe_config)
1410 {
1411 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1412 	enum pipe pipe = crtc->pipe;
1413 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1414 	u32 tmp;
1415 
1416 	vlv_dpio_get(dev_priv);
1417 
1418 	/* Enable back the 10bit clock to display controller */
1419 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1420 	tmp |= DPIO_DCLKP_EN;
1421 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1422 
1423 	vlv_dpio_put(dev_priv);
1424 
1425 	/*
1426 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1427 	 */
1428 	udelay(1);
1429 
1430 	/* Enable PLL */
1431 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1432 
1433 	/* Check PLL is locked */
1434 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1435 		DRM_ERROR("PLL %d failed to lock\n", pipe);
1436 }
1437 
1438 static void chv_enable_pll(struct intel_crtc *crtc,
1439 			   const struct intel_crtc_state *pipe_config)
1440 {
1441 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1442 	enum pipe pipe = crtc->pipe;
1443 
1444 	assert_pipe_disabled(dev_priv, pipe);
1445 
1446 	/* PLL is protected by panel, make sure we can write it */
1447 	assert_panel_unlocked(dev_priv, pipe);
1448 
1449 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1450 		_chv_enable_pll(crtc, pipe_config);
1451 
1452 	if (pipe != PIPE_A) {
1453 		/*
1454 		 * WaPixelRepeatModeFixForC0:chv
1455 		 *
1456 		 * DPLLCMD is AWOL. Use chicken bits to propagate
1457 		 * the value from DPLLBMD to either pipe B or C.
1458 		 */
1459 		I915_WRITE(CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1460 		I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1461 		I915_WRITE(CBR4_VLV, 0);
1462 		dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1463 
1464 		/*
1465 		 * DPLLB VGA mode also seems to cause problems.
1466 		 * We should always have it disabled.
1467 		 */
1468 		WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1469 	} else {
1470 		I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1471 		POSTING_READ(DPLL_MD(pipe));
1472 	}
1473 }
1474 
1475 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1476 {
1477 	if (IS_I830(dev_priv))
1478 		return false;
1479 
1480 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1481 }
1482 
1483 static void i9xx_enable_pll(struct intel_crtc *crtc,
1484 			    const struct intel_crtc_state *crtc_state)
1485 {
1486 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1487 	i915_reg_t reg = DPLL(crtc->pipe);
1488 	u32 dpll = crtc_state->dpll_hw_state.dpll;
1489 	int i;
1490 
1491 	assert_pipe_disabled(dev_priv, crtc->pipe);
1492 
1493 	/* PLL is protected by panel, make sure we can write it */
1494 	if (i9xx_has_pps(dev_priv))
1495 		assert_panel_unlocked(dev_priv, crtc->pipe);
1496 
1497 	/*
1498 	 * Apparently we need to have VGA mode enabled prior to changing
1499 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1500 	 * dividers, even though the register value does change.
1501 	 */
1502 	I915_WRITE(reg, dpll & ~DPLL_VGA_MODE_DIS);
1503 	I915_WRITE(reg, dpll);
1504 
1505 	/* Wait for the clocks to stabilize. */
1506 	POSTING_READ(reg);
1507 	udelay(150);
1508 
1509 	if (INTEL_GEN(dev_priv) >= 4) {
1510 		I915_WRITE(DPLL_MD(crtc->pipe),
1511 			   crtc_state->dpll_hw_state.dpll_md);
1512 	} else {
1513 		/* The pixel multiplier can only be updated once the
1514 		 * DPLL is enabled and the clocks are stable.
1515 		 *
1516 		 * So write it again.
1517 		 */
1518 		I915_WRITE(reg, dpll);
1519 	}
1520 
1521 	/* We do this three times for luck */
1522 	for (i = 0; i < 3; i++) {
1523 		I915_WRITE(reg, dpll);
1524 		POSTING_READ(reg);
1525 		udelay(150); /* wait for warmup */
1526 	}
1527 }
1528 
1529 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1530 {
1531 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1532 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1533 	enum pipe pipe = crtc->pipe;
1534 
1535 	/* Don't disable pipe or pipe PLLs if needed */
1536 	if (IS_I830(dev_priv))
1537 		return;
1538 
1539 	/* Make sure the pipe isn't still relying on us */
1540 	assert_pipe_disabled(dev_priv, pipe);
1541 
1542 	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1543 	POSTING_READ(DPLL(pipe));
1544 }
1545 
1546 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1547 {
1548 	u32 val;
1549 
1550 	/* Make sure the pipe isn't still relying on us */
1551 	assert_pipe_disabled(dev_priv, pipe);
1552 
1553 	val = DPLL_INTEGRATED_REF_CLK_VLV |
1554 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1555 	if (pipe != PIPE_A)
1556 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1557 
1558 	I915_WRITE(DPLL(pipe), val);
1559 	POSTING_READ(DPLL(pipe));
1560 }
1561 
1562 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1563 {
1564 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1565 	u32 val;
1566 
1567 	/* Make sure the pipe isn't still relying on us */
1568 	assert_pipe_disabled(dev_priv, pipe);
1569 
1570 	val = DPLL_SSC_REF_CLK_CHV |
1571 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1572 	if (pipe != PIPE_A)
1573 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1574 
1575 	I915_WRITE(DPLL(pipe), val);
1576 	POSTING_READ(DPLL(pipe));
1577 
1578 	vlv_dpio_get(dev_priv);
1579 
1580 	/* Disable 10bit clock to display controller */
1581 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1582 	val &= ~DPIO_DCLKP_EN;
1583 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1584 
1585 	vlv_dpio_put(dev_priv);
1586 }
1587 
1588 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1589 			 struct intel_digital_port *dport,
1590 			 unsigned int expected_mask)
1591 {
1592 	u32 port_mask;
1593 	i915_reg_t dpll_reg;
1594 
1595 	switch (dport->base.port) {
1596 	case PORT_B:
1597 		port_mask = DPLL_PORTB_READY_MASK;
1598 		dpll_reg = DPLL(0);
1599 		break;
1600 	case PORT_C:
1601 		port_mask = DPLL_PORTC_READY_MASK;
1602 		dpll_reg = DPLL(0);
1603 		expected_mask <<= 4;
1604 		break;
1605 	case PORT_D:
1606 		port_mask = DPLL_PORTD_READY_MASK;
1607 		dpll_reg = DPIO_PHY_STATUS;
1608 		break;
1609 	default:
1610 		BUG();
1611 	}
1612 
1613 	if (intel_de_wait_for_register(dev_priv, dpll_reg,
1614 				       port_mask, expected_mask, 1000))
1615 		WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1616 		     port_name(dport->base.port),
1617 		     I915_READ(dpll_reg) & port_mask, expected_mask);
1618 }
1619 
1620 static void ironlake_enable_pch_transcoder(const struct intel_crtc_state *crtc_state)
1621 {
1622 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1623 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1624 	enum pipe pipe = crtc->pipe;
1625 	i915_reg_t reg;
1626 	u32 val, pipeconf_val;
1627 
1628 	/* Make sure PCH DPLL is enabled */
1629 	assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll);
1630 
1631 	/* FDI must be feeding us bits for PCH ports */
1632 	assert_fdi_tx_enabled(dev_priv, pipe);
1633 	assert_fdi_rx_enabled(dev_priv, pipe);
1634 
1635 	if (HAS_PCH_CPT(dev_priv)) {
1636 		/* Workaround: Set the timing override bit before enabling the
1637 		 * pch transcoder. */
1638 		reg = TRANS_CHICKEN2(pipe);
1639 		val = I915_READ(reg);
1640 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1641 		I915_WRITE(reg, val);
1642 	}
1643 
1644 	reg = PCH_TRANSCONF(pipe);
1645 	val = I915_READ(reg);
1646 	pipeconf_val = I915_READ(PIPECONF(pipe));
1647 
1648 	if (HAS_PCH_IBX(dev_priv)) {
1649 		/*
1650 		 * Make the BPC in transcoder be consistent with
1651 		 * that in pipeconf reg. For HDMI we must use 8bpc
1652 		 * here for both 8bpc and 12bpc.
1653 		 */
1654 		val &= ~PIPECONF_BPC_MASK;
1655 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1656 			val |= PIPECONF_8BPC;
1657 		else
1658 			val |= pipeconf_val & PIPECONF_BPC_MASK;
1659 	}
1660 
1661 	val &= ~TRANS_INTERLACE_MASK;
1662 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) {
1663 		if (HAS_PCH_IBX(dev_priv) &&
1664 		    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
1665 			val |= TRANS_LEGACY_INTERLACED_ILK;
1666 		else
1667 			val |= TRANS_INTERLACED;
1668 	} else {
1669 		val |= TRANS_PROGRESSIVE;
1670 	}
1671 
1672 	I915_WRITE(reg, val | TRANS_ENABLE);
1673 	if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100))
1674 		DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1675 }
1676 
1677 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1678 				      enum transcoder cpu_transcoder)
1679 {
1680 	u32 val, pipeconf_val;
1681 
1682 	/* FDI must be feeding us bits for PCH ports */
1683 	assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1684 	assert_fdi_rx_enabled(dev_priv, PIPE_A);
1685 
1686 	/* Workaround: set timing override bit. */
1687 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1688 	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1689 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1690 
1691 	val = TRANS_ENABLE;
1692 	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1693 
1694 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1695 	    PIPECONF_INTERLACED_ILK)
1696 		val |= TRANS_INTERLACED;
1697 	else
1698 		val |= TRANS_PROGRESSIVE;
1699 
1700 	I915_WRITE(LPT_TRANSCONF, val);
1701 	if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF,
1702 				  TRANS_STATE_ENABLE, 100))
1703 		DRM_ERROR("Failed to enable PCH transcoder\n");
1704 }
1705 
1706 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1707 					    enum pipe pipe)
1708 {
1709 	i915_reg_t reg;
1710 	u32 val;
1711 
1712 	/* FDI relies on the transcoder */
1713 	assert_fdi_tx_disabled(dev_priv, pipe);
1714 	assert_fdi_rx_disabled(dev_priv, pipe);
1715 
1716 	/* Ports must be off as well */
1717 	assert_pch_ports_disabled(dev_priv, pipe);
1718 
1719 	reg = PCH_TRANSCONF(pipe);
1720 	val = I915_READ(reg);
1721 	val &= ~TRANS_ENABLE;
1722 	I915_WRITE(reg, val);
1723 	/* wait for PCH transcoder off, transcoder state */
1724 	if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50))
1725 		DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1726 
1727 	if (HAS_PCH_CPT(dev_priv)) {
1728 		/* Workaround: Clear the timing override chicken bit again. */
1729 		reg = TRANS_CHICKEN2(pipe);
1730 		val = I915_READ(reg);
1731 		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1732 		I915_WRITE(reg, val);
1733 	}
1734 }
1735 
1736 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1737 {
1738 	u32 val;
1739 
1740 	val = I915_READ(LPT_TRANSCONF);
1741 	val &= ~TRANS_ENABLE;
1742 	I915_WRITE(LPT_TRANSCONF, val);
1743 	/* wait for PCH transcoder off, transcoder state */
1744 	if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF,
1745 				    TRANS_STATE_ENABLE, 50))
1746 		DRM_ERROR("Failed to disable PCH transcoder\n");
1747 
1748 	/* Workaround: clear timing override bit. */
1749 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1750 	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1751 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1752 }
1753 
1754 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1755 {
1756 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1757 
1758 	if (HAS_PCH_LPT(dev_priv))
1759 		return PIPE_A;
1760 	else
1761 		return crtc->pipe;
1762 }
1763 
1764 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
1765 {
1766 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1767 
1768 	/*
1769 	 * On i965gm the hardware frame counter reads
1770 	 * zero when the TV encoder is enabled :(
1771 	 */
1772 	if (IS_I965GM(dev_priv) &&
1773 	    (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
1774 		return 0;
1775 
1776 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1777 		return 0xffffffff; /* full 32 bit counter */
1778 	else if (INTEL_GEN(dev_priv) >= 3)
1779 		return 0xffffff; /* only 24 bits of frame count */
1780 	else
1781 		return 0; /* Gen2 doesn't have a hardware frame counter */
1782 }
1783 
1784 static void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
1785 {
1786 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1787 
1788 	drm_crtc_set_max_vblank_count(&crtc->base,
1789 				      intel_crtc_max_vblank_count(crtc_state));
1790 	drm_crtc_vblank_on(&crtc->base);
1791 }
1792 
1793 static void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state)
1794 {
1795 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1796 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1797 	enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
1798 	enum pipe pipe = crtc->pipe;
1799 	i915_reg_t reg;
1800 	u32 val;
1801 
1802 	DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1803 
1804 	assert_planes_disabled(crtc);
1805 
1806 	/*
1807 	 * A pipe without a PLL won't actually be able to drive bits from
1808 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1809 	 * need the check.
1810 	 */
1811 	if (HAS_GMCH(dev_priv)) {
1812 		if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
1813 			assert_dsi_pll_enabled(dev_priv);
1814 		else
1815 			assert_pll_enabled(dev_priv, pipe);
1816 	} else {
1817 		if (new_crtc_state->has_pch_encoder) {
1818 			/* if driving the PCH, we need FDI enabled */
1819 			assert_fdi_rx_pll_enabled(dev_priv,
1820 						  intel_crtc_pch_transcoder(crtc));
1821 			assert_fdi_tx_pll_enabled(dev_priv,
1822 						  (enum pipe) cpu_transcoder);
1823 		}
1824 		/* FIXME: assert CPU port conditions for SNB+ */
1825 	}
1826 
1827 	trace_intel_pipe_enable(crtc);
1828 
1829 	reg = PIPECONF(cpu_transcoder);
1830 	val = I915_READ(reg);
1831 	if (val & PIPECONF_ENABLE) {
1832 		/* we keep both pipes enabled on 830 */
1833 		WARN_ON(!IS_I830(dev_priv));
1834 		return;
1835 	}
1836 
1837 	I915_WRITE(reg, val | PIPECONF_ENABLE);
1838 	POSTING_READ(reg);
1839 
1840 	/*
1841 	 * Until the pipe starts PIPEDSL reads will return a stale value,
1842 	 * which causes an apparent vblank timestamp jump when PIPEDSL
1843 	 * resets to its proper value. That also messes up the frame count
1844 	 * when it's derived from the timestamps. So let's wait for the
1845 	 * pipe to start properly before we call drm_crtc_vblank_on()
1846 	 */
1847 	if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
1848 		intel_wait_for_pipe_scanline_moving(crtc);
1849 }
1850 
1851 static void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state)
1852 {
1853 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
1854 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1855 	enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1856 	enum pipe pipe = crtc->pipe;
1857 	i915_reg_t reg;
1858 	u32 val;
1859 
1860 	DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1861 
1862 	/*
1863 	 * Make sure planes won't keep trying to pump pixels to us,
1864 	 * or we might hang the display.
1865 	 */
1866 	assert_planes_disabled(crtc);
1867 
1868 	trace_intel_pipe_disable(crtc);
1869 
1870 	reg = PIPECONF(cpu_transcoder);
1871 	val = I915_READ(reg);
1872 	if ((val & PIPECONF_ENABLE) == 0)
1873 		return;
1874 
1875 	/*
1876 	 * Double wide has implications for planes
1877 	 * so best keep it disabled when not needed.
1878 	 */
1879 	if (old_crtc_state->double_wide)
1880 		val &= ~PIPECONF_DOUBLE_WIDE;
1881 
1882 	/* Don't disable pipe or pipe PLLs if needed */
1883 	if (!IS_I830(dev_priv))
1884 		val &= ~PIPECONF_ENABLE;
1885 
1886 	I915_WRITE(reg, val);
1887 	if ((val & PIPECONF_ENABLE) == 0)
1888 		intel_wait_for_pipe_off(old_crtc_state);
1889 }
1890 
1891 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1892 {
1893 	return IS_GEN(dev_priv, 2) ? 2048 : 4096;
1894 }
1895 
1896 static unsigned int
1897 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane)
1898 {
1899 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
1900 	unsigned int cpp = fb->format->cpp[color_plane];
1901 
1902 	switch (fb->modifier) {
1903 	case DRM_FORMAT_MOD_LINEAR:
1904 		return intel_tile_size(dev_priv);
1905 	case I915_FORMAT_MOD_X_TILED:
1906 		if (IS_GEN(dev_priv, 2))
1907 			return 128;
1908 		else
1909 			return 512;
1910 	case I915_FORMAT_MOD_Y_TILED_CCS:
1911 		if (color_plane == 1)
1912 			return 128;
1913 		/* fall through */
1914 	case I915_FORMAT_MOD_Y_TILED:
1915 		if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv))
1916 			return 128;
1917 		else
1918 			return 512;
1919 	case I915_FORMAT_MOD_Yf_TILED_CCS:
1920 		if (color_plane == 1)
1921 			return 128;
1922 		/* fall through */
1923 	case I915_FORMAT_MOD_Yf_TILED:
1924 		switch (cpp) {
1925 		case 1:
1926 			return 64;
1927 		case 2:
1928 		case 4:
1929 			return 128;
1930 		case 8:
1931 		case 16:
1932 			return 256;
1933 		default:
1934 			MISSING_CASE(cpp);
1935 			return cpp;
1936 		}
1937 		break;
1938 	default:
1939 		MISSING_CASE(fb->modifier);
1940 		return cpp;
1941 	}
1942 }
1943 
1944 static unsigned int
1945 intel_tile_height(const struct drm_framebuffer *fb, int color_plane)
1946 {
1947 	return intel_tile_size(to_i915(fb->dev)) /
1948 		intel_tile_width_bytes(fb, color_plane);
1949 }
1950 
1951 /* Return the tile dimensions in pixel units */
1952 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane,
1953 			    unsigned int *tile_width,
1954 			    unsigned int *tile_height)
1955 {
1956 	unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane);
1957 	unsigned int cpp = fb->format->cpp[color_plane];
1958 
1959 	*tile_width = tile_width_bytes / cpp;
1960 	*tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes;
1961 }
1962 
1963 unsigned int
1964 intel_fb_align_height(const struct drm_framebuffer *fb,
1965 		      int color_plane, unsigned int height)
1966 {
1967 	unsigned int tile_height = intel_tile_height(fb, color_plane);
1968 
1969 	return ALIGN(height, tile_height);
1970 }
1971 
1972 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
1973 {
1974 	unsigned int size = 0;
1975 	int i;
1976 
1977 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
1978 		size += rot_info->plane[i].width * rot_info->plane[i].height;
1979 
1980 	return size;
1981 }
1982 
1983 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info)
1984 {
1985 	unsigned int size = 0;
1986 	int i;
1987 
1988 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1989 		size += rem_info->plane[i].width * rem_info->plane[i].height;
1990 
1991 	return size;
1992 }
1993 
1994 static void
1995 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
1996 			const struct drm_framebuffer *fb,
1997 			unsigned int rotation)
1998 {
1999 	view->type = I915_GGTT_VIEW_NORMAL;
2000 	if (drm_rotation_90_or_270(rotation)) {
2001 		view->type = I915_GGTT_VIEW_ROTATED;
2002 		view->rotated = to_intel_framebuffer(fb)->rot_info;
2003 	}
2004 }
2005 
2006 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2007 {
2008 	if (IS_I830(dev_priv))
2009 		return 16 * 1024;
2010 	else if (IS_I85X(dev_priv))
2011 		return 256;
2012 	else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2013 		return 32;
2014 	else
2015 		return 4 * 1024;
2016 }
2017 
2018 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2019 {
2020 	if (INTEL_GEN(dev_priv) >= 9)
2021 		return 256 * 1024;
2022 	else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2023 		 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2024 		return 128 * 1024;
2025 	else if (INTEL_GEN(dev_priv) >= 4)
2026 		return 4 * 1024;
2027 	else
2028 		return 0;
2029 }
2030 
2031 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2032 					 int color_plane)
2033 {
2034 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2035 
2036 	/* AUX_DIST needs only 4K alignment */
2037 	if (color_plane == 1)
2038 		return 4096;
2039 
2040 	switch (fb->modifier) {
2041 	case DRM_FORMAT_MOD_LINEAR:
2042 		return intel_linear_alignment(dev_priv);
2043 	case I915_FORMAT_MOD_X_TILED:
2044 		if (INTEL_GEN(dev_priv) >= 9)
2045 			return 256 * 1024;
2046 		return 0;
2047 	case I915_FORMAT_MOD_Y_TILED_CCS:
2048 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2049 	case I915_FORMAT_MOD_Y_TILED:
2050 	case I915_FORMAT_MOD_Yf_TILED:
2051 		return 1 * 1024 * 1024;
2052 	default:
2053 		MISSING_CASE(fb->modifier);
2054 		return 0;
2055 	}
2056 }
2057 
2058 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state)
2059 {
2060 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2061 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2062 
2063 	return INTEL_GEN(dev_priv) < 4 ||
2064 		(plane->has_fbc &&
2065 		 plane_state->view.type == I915_GGTT_VIEW_NORMAL);
2066 }
2067 
2068 struct i915_vma *
2069 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2070 			   const struct i915_ggtt_view *view,
2071 			   bool uses_fence,
2072 			   unsigned long *out_flags)
2073 {
2074 	struct drm_device *dev = fb->dev;
2075 	struct drm_i915_private *dev_priv = to_i915(dev);
2076 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2077 	intel_wakeref_t wakeref;
2078 	struct i915_vma *vma;
2079 	unsigned int pinctl;
2080 	u32 alignment;
2081 
2082 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2083 
2084 	alignment = intel_surf_alignment(fb, 0);
2085 
2086 	/* Note that the w/a also requires 64 PTE of padding following the
2087 	 * bo. We currently fill all unused PTE with the shadow page and so
2088 	 * we should always have valid PTE following the scanout preventing
2089 	 * the VT-d warning.
2090 	 */
2091 	if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2092 		alignment = 256 * 1024;
2093 
2094 	/*
2095 	 * Global gtt pte registers are special registers which actually forward
2096 	 * writes to a chunk of system memory. Which means that there is no risk
2097 	 * that the register values disappear as soon as we call
2098 	 * intel_runtime_pm_put(), so it is correct to wrap only the
2099 	 * pin/unpin/fence and not more.
2100 	 */
2101 	wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2102 	i915_gem_object_lock(obj);
2103 
2104 	atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2105 
2106 	pinctl = 0;
2107 
2108 	/* Valleyview is definitely limited to scanning out the first
2109 	 * 512MiB. Lets presume this behaviour was inherited from the
2110 	 * g4x display engine and that all earlier gen are similarly
2111 	 * limited. Testing suggests that it is a little more
2112 	 * complicated than this. For example, Cherryview appears quite
2113 	 * happy to scanout from anywhere within its global aperture.
2114 	 */
2115 	if (HAS_GMCH(dev_priv))
2116 		pinctl |= PIN_MAPPABLE;
2117 
2118 	vma = i915_gem_object_pin_to_display_plane(obj,
2119 						   alignment, view, pinctl);
2120 	if (IS_ERR(vma))
2121 		goto err;
2122 
2123 	if (uses_fence && i915_vma_is_map_and_fenceable(vma)) {
2124 		int ret;
2125 
2126 		/* Install a fence for tiled scan-out. Pre-i965 always needs a
2127 		 * fence, whereas 965+ only requires a fence if using
2128 		 * framebuffer compression.  For simplicity, we always, when
2129 		 * possible, install a fence as the cost is not that onerous.
2130 		 *
2131 		 * If we fail to fence the tiled scanout, then either the
2132 		 * modeset will reject the change (which is highly unlikely as
2133 		 * the affected systems, all but one, do not have unmappable
2134 		 * space) or we will not be able to enable full powersaving
2135 		 * techniques (also likely not to apply due to various limits
2136 		 * FBC and the like impose on the size of the buffer, which
2137 		 * presumably we violated anyway with this unmappable buffer).
2138 		 * Anyway, it is presumably better to stumble onwards with
2139 		 * something and try to run the system in a "less than optimal"
2140 		 * mode that matches the user configuration.
2141 		 */
2142 		ret = i915_vma_pin_fence(vma);
2143 		if (ret != 0 && INTEL_GEN(dev_priv) < 4) {
2144 			i915_gem_object_unpin_from_display_plane(vma);
2145 			vma = ERR_PTR(ret);
2146 			goto err;
2147 		}
2148 
2149 		if (ret == 0 && vma->fence)
2150 			*out_flags |= PLANE_HAS_FENCE;
2151 	}
2152 
2153 	i915_vma_get(vma);
2154 err:
2155 	atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2156 
2157 	i915_gem_object_unlock(obj);
2158 	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
2159 	return vma;
2160 }
2161 
2162 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags)
2163 {
2164 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2165 
2166 	i915_gem_object_lock(vma->obj);
2167 	if (flags & PLANE_HAS_FENCE)
2168 		i915_vma_unpin_fence(vma);
2169 	i915_gem_object_unpin_from_display_plane(vma);
2170 	i915_gem_object_unlock(vma->obj);
2171 
2172 	i915_vma_put(vma);
2173 }
2174 
2175 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane,
2176 			  unsigned int rotation)
2177 {
2178 	if (drm_rotation_90_or_270(rotation))
2179 		return to_intel_framebuffer(fb)->rotated[color_plane].pitch;
2180 	else
2181 		return fb->pitches[color_plane];
2182 }
2183 
2184 /*
2185  * Convert the x/y offsets into a linear offset.
2186  * Only valid with 0/180 degree rotation, which is fine since linear
2187  * offset is only used with linear buffers on pre-hsw and tiled buffers
2188  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2189  */
2190 u32 intel_fb_xy_to_linear(int x, int y,
2191 			  const struct intel_plane_state *state,
2192 			  int color_plane)
2193 {
2194 	const struct drm_framebuffer *fb = state->base.fb;
2195 	unsigned int cpp = fb->format->cpp[color_plane];
2196 	unsigned int pitch = state->color_plane[color_plane].stride;
2197 
2198 	return y * pitch + x * cpp;
2199 }
2200 
2201 /*
2202  * Add the x/y offsets derived from fb->offsets[] to the user
2203  * specified plane src x/y offsets. The resulting x/y offsets
2204  * specify the start of scanout from the beginning of the gtt mapping.
2205  */
2206 void intel_add_fb_offsets(int *x, int *y,
2207 			  const struct intel_plane_state *state,
2208 			  int color_plane)
2209 
2210 {
2211 	*x += state->color_plane[color_plane].x;
2212 	*y += state->color_plane[color_plane].y;
2213 }
2214 
2215 static u32 intel_adjust_tile_offset(int *x, int *y,
2216 				    unsigned int tile_width,
2217 				    unsigned int tile_height,
2218 				    unsigned int tile_size,
2219 				    unsigned int pitch_tiles,
2220 				    u32 old_offset,
2221 				    u32 new_offset)
2222 {
2223 	unsigned int pitch_pixels = pitch_tiles * tile_width;
2224 	unsigned int tiles;
2225 
2226 	WARN_ON(old_offset & (tile_size - 1));
2227 	WARN_ON(new_offset & (tile_size - 1));
2228 	WARN_ON(new_offset > old_offset);
2229 
2230 	tiles = (old_offset - new_offset) / tile_size;
2231 
2232 	*y += tiles / pitch_tiles * tile_height;
2233 	*x += tiles % pitch_tiles * tile_width;
2234 
2235 	/* minimize x in case it got needlessly big */
2236 	*y += *x / pitch_pixels * tile_height;
2237 	*x %= pitch_pixels;
2238 
2239 	return new_offset;
2240 }
2241 
2242 static bool is_surface_linear(u64 modifier, int color_plane)
2243 {
2244 	return modifier == DRM_FORMAT_MOD_LINEAR;
2245 }
2246 
2247 static u32 intel_adjust_aligned_offset(int *x, int *y,
2248 				       const struct drm_framebuffer *fb,
2249 				       int color_plane,
2250 				       unsigned int rotation,
2251 				       unsigned int pitch,
2252 				       u32 old_offset, u32 new_offset)
2253 {
2254 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2255 	unsigned int cpp = fb->format->cpp[color_plane];
2256 
2257 	WARN_ON(new_offset > old_offset);
2258 
2259 	if (!is_surface_linear(fb->modifier, color_plane)) {
2260 		unsigned int tile_size, tile_width, tile_height;
2261 		unsigned int pitch_tiles;
2262 
2263 		tile_size = intel_tile_size(dev_priv);
2264 		intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2265 
2266 		if (drm_rotation_90_or_270(rotation)) {
2267 			pitch_tiles = pitch / tile_height;
2268 			swap(tile_width, tile_height);
2269 		} else {
2270 			pitch_tiles = pitch / (tile_width * cpp);
2271 		}
2272 
2273 		intel_adjust_tile_offset(x, y, tile_width, tile_height,
2274 					 tile_size, pitch_tiles,
2275 					 old_offset, new_offset);
2276 	} else {
2277 		old_offset += *y * pitch + *x * cpp;
2278 
2279 		*y = (old_offset - new_offset) / pitch;
2280 		*x = ((old_offset - new_offset) - *y * pitch) / cpp;
2281 	}
2282 
2283 	return new_offset;
2284 }
2285 
2286 /*
2287  * Adjust the tile offset by moving the difference into
2288  * the x/y offsets.
2289  */
2290 static u32 intel_plane_adjust_aligned_offset(int *x, int *y,
2291 					     const struct intel_plane_state *state,
2292 					     int color_plane,
2293 					     u32 old_offset, u32 new_offset)
2294 {
2295 	return intel_adjust_aligned_offset(x, y, state->base.fb, color_plane,
2296 					   state->base.rotation,
2297 					   state->color_plane[color_plane].stride,
2298 					   old_offset, new_offset);
2299 }
2300 
2301 /*
2302  * Computes the aligned offset to the base tile and adjusts
2303  * x, y. bytes per pixel is assumed to be a power-of-two.
2304  *
2305  * In the 90/270 rotated case, x and y are assumed
2306  * to be already rotated to match the rotated GTT view, and
2307  * pitch is the tile_height aligned framebuffer height.
2308  *
2309  * This function is used when computing the derived information
2310  * under intel_framebuffer, so using any of that information
2311  * here is not allowed. Anything under drm_framebuffer can be
2312  * used. This is why the user has to pass in the pitch since it
2313  * is specified in the rotated orientation.
2314  */
2315 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv,
2316 					int *x, int *y,
2317 					const struct drm_framebuffer *fb,
2318 					int color_plane,
2319 					unsigned int pitch,
2320 					unsigned int rotation,
2321 					u32 alignment)
2322 {
2323 	unsigned int cpp = fb->format->cpp[color_plane];
2324 	u32 offset, offset_aligned;
2325 
2326 	if (alignment)
2327 		alignment--;
2328 
2329 	if (!is_surface_linear(fb->modifier, color_plane)) {
2330 		unsigned int tile_size, tile_width, tile_height;
2331 		unsigned int tile_rows, tiles, pitch_tiles;
2332 
2333 		tile_size = intel_tile_size(dev_priv);
2334 		intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2335 
2336 		if (drm_rotation_90_or_270(rotation)) {
2337 			pitch_tiles = pitch / tile_height;
2338 			swap(tile_width, tile_height);
2339 		} else {
2340 			pitch_tiles = pitch / (tile_width * cpp);
2341 		}
2342 
2343 		tile_rows = *y / tile_height;
2344 		*y %= tile_height;
2345 
2346 		tiles = *x / tile_width;
2347 		*x %= tile_width;
2348 
2349 		offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2350 		offset_aligned = offset & ~alignment;
2351 
2352 		intel_adjust_tile_offset(x, y, tile_width, tile_height,
2353 					 tile_size, pitch_tiles,
2354 					 offset, offset_aligned);
2355 	} else {
2356 		offset = *y * pitch + *x * cpp;
2357 		offset_aligned = offset & ~alignment;
2358 
2359 		*y = (offset & alignment) / pitch;
2360 		*x = ((offset & alignment) - *y * pitch) / cpp;
2361 	}
2362 
2363 	return offset_aligned;
2364 }
2365 
2366 static u32 intel_plane_compute_aligned_offset(int *x, int *y,
2367 					      const struct intel_plane_state *state,
2368 					      int color_plane)
2369 {
2370 	struct intel_plane *intel_plane = to_intel_plane(state->base.plane);
2371 	struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2372 	const struct drm_framebuffer *fb = state->base.fb;
2373 	unsigned int rotation = state->base.rotation;
2374 	int pitch = state->color_plane[color_plane].stride;
2375 	u32 alignment;
2376 
2377 	if (intel_plane->id == PLANE_CURSOR)
2378 		alignment = intel_cursor_alignment(dev_priv);
2379 	else
2380 		alignment = intel_surf_alignment(fb, color_plane);
2381 
2382 	return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane,
2383 					    pitch, rotation, alignment);
2384 }
2385 
2386 /* Convert the fb->offset[] into x/y offsets */
2387 static int intel_fb_offset_to_xy(int *x, int *y,
2388 				 const struct drm_framebuffer *fb,
2389 				 int color_plane)
2390 {
2391 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2392 	unsigned int height;
2393 
2394 	if (fb->modifier != DRM_FORMAT_MOD_LINEAR &&
2395 	    fb->offsets[color_plane] % intel_tile_size(dev_priv)) {
2396 		DRM_DEBUG_KMS("Misaligned offset 0x%08x for color plane %d\n",
2397 			      fb->offsets[color_plane], color_plane);
2398 		return -EINVAL;
2399 	}
2400 
2401 	height = drm_framebuffer_plane_height(fb->height, fb, color_plane);
2402 	height = ALIGN(height, intel_tile_height(fb, color_plane));
2403 
2404 	/* Catch potential overflows early */
2405 	if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]),
2406 			    fb->offsets[color_plane])) {
2407 		DRM_DEBUG_KMS("Bad offset 0x%08x or pitch %d for color plane %d\n",
2408 			      fb->offsets[color_plane], fb->pitches[color_plane],
2409 			      color_plane);
2410 		return -ERANGE;
2411 	}
2412 
2413 	*x = 0;
2414 	*y = 0;
2415 
2416 	intel_adjust_aligned_offset(x, y,
2417 				    fb, color_plane, DRM_MODE_ROTATE_0,
2418 				    fb->pitches[color_plane],
2419 				    fb->offsets[color_plane], 0);
2420 
2421 	return 0;
2422 }
2423 
2424 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier)
2425 {
2426 	switch (fb_modifier) {
2427 	case I915_FORMAT_MOD_X_TILED:
2428 		return I915_TILING_X;
2429 	case I915_FORMAT_MOD_Y_TILED:
2430 	case I915_FORMAT_MOD_Y_TILED_CCS:
2431 		return I915_TILING_Y;
2432 	default:
2433 		return I915_TILING_NONE;
2434 	}
2435 }
2436 
2437 /*
2438  * From the Sky Lake PRM:
2439  * "The Color Control Surface (CCS) contains the compression status of
2440  *  the cache-line pairs. The compression state of the cache-line pair
2441  *  is specified by 2 bits in the CCS. Each CCS cache-line represents
2442  *  an area on the main surface of 16 x16 sets of 128 byte Y-tiled
2443  *  cache-line-pairs. CCS is always Y tiled."
2444  *
2445  * Since cache line pairs refers to horizontally adjacent cache lines,
2446  * each cache line in the CCS corresponds to an area of 32x16 cache
2447  * lines on the main surface. Since each pixel is 4 bytes, this gives
2448  * us a ratio of one byte in the CCS for each 8x16 pixels in the
2449  * main surface.
2450  */
2451 static const struct drm_format_info ccs_formats[] = {
2452 	{ .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2453 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2454 	{ .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2455 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2456 	{ .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2457 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2458 	{ .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2459 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2460 };
2461 
2462 static const struct drm_format_info *
2463 lookup_format_info(const struct drm_format_info formats[],
2464 		   int num_formats, u32 format)
2465 {
2466 	int i;
2467 
2468 	for (i = 0; i < num_formats; i++) {
2469 		if (formats[i].format == format)
2470 			return &formats[i];
2471 	}
2472 
2473 	return NULL;
2474 }
2475 
2476 static const struct drm_format_info *
2477 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2478 {
2479 	switch (cmd->modifier[0]) {
2480 	case I915_FORMAT_MOD_Y_TILED_CCS:
2481 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2482 		return lookup_format_info(ccs_formats,
2483 					  ARRAY_SIZE(ccs_formats),
2484 					  cmd->pixel_format);
2485 	default:
2486 		return NULL;
2487 	}
2488 }
2489 
2490 bool is_ccs_modifier(u64 modifier)
2491 {
2492 	return modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2493 	       modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
2494 }
2495 
2496 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv,
2497 			      u32 pixel_format, u64 modifier)
2498 {
2499 	struct intel_crtc *crtc;
2500 	struct intel_plane *plane;
2501 
2502 	/*
2503 	 * We assume the primary plane for pipe A has
2504 	 * the highest stride limits of them all.
2505 	 */
2506 	crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_A);
2507 	plane = to_intel_plane(crtc->base.primary);
2508 
2509 	return plane->max_stride(plane, pixel_format, modifier,
2510 				 DRM_MODE_ROTATE_0);
2511 }
2512 
2513 static
2514 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv,
2515 			u32 pixel_format, u64 modifier)
2516 {
2517 	/*
2518 	 * Arbitrary limit for gen4+ chosen to match the
2519 	 * render engine max stride.
2520 	 *
2521 	 * The new CCS hash mode makes remapping impossible
2522 	 */
2523 	if (!is_ccs_modifier(modifier)) {
2524 		if (INTEL_GEN(dev_priv) >= 7)
2525 			return 256*1024;
2526 		else if (INTEL_GEN(dev_priv) >= 4)
2527 			return 128*1024;
2528 	}
2529 
2530 	return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier);
2531 }
2532 
2533 static u32
2534 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane)
2535 {
2536 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2537 
2538 	if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2539 		u32 max_stride = intel_plane_fb_max_stride(dev_priv,
2540 							   fb->format->format,
2541 							   fb->modifier);
2542 
2543 		/*
2544 		 * To make remapping with linear generally feasible
2545 		 * we need the stride to be page aligned.
2546 		 */
2547 		if (fb->pitches[color_plane] > max_stride)
2548 			return intel_tile_size(dev_priv);
2549 		else
2550 			return 64;
2551 	} else {
2552 		return intel_tile_width_bytes(fb, color_plane);
2553 	}
2554 }
2555 
2556 bool intel_plane_can_remap(const struct intel_plane_state *plane_state)
2557 {
2558 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2559 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2560 	const struct drm_framebuffer *fb = plane_state->base.fb;
2561 	int i;
2562 
2563 	/* We don't want to deal with remapping with cursors */
2564 	if (plane->id == PLANE_CURSOR)
2565 		return false;
2566 
2567 	/*
2568 	 * The display engine limits already match/exceed the
2569 	 * render engine limits, so not much point in remapping.
2570 	 * Would also need to deal with the fence POT alignment
2571 	 * and gen2 2KiB GTT tile size.
2572 	 */
2573 	if (INTEL_GEN(dev_priv) < 4)
2574 		return false;
2575 
2576 	/*
2577 	 * The new CCS hash mode isn't compatible with remapping as
2578 	 * the virtual address of the pages affects the compressed data.
2579 	 */
2580 	if (is_ccs_modifier(fb->modifier))
2581 		return false;
2582 
2583 	/* Linear needs a page aligned stride for remapping */
2584 	if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2585 		unsigned int alignment = intel_tile_size(dev_priv) - 1;
2586 
2587 		for (i = 0; i < fb->format->num_planes; i++) {
2588 			if (fb->pitches[i] & alignment)
2589 				return false;
2590 		}
2591 	}
2592 
2593 	return true;
2594 }
2595 
2596 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state)
2597 {
2598 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2599 	const struct drm_framebuffer *fb = plane_state->base.fb;
2600 	unsigned int rotation = plane_state->base.rotation;
2601 	u32 stride, max_stride;
2602 
2603 	/*
2604 	 * No remapping for invisible planes since we don't have
2605 	 * an actual source viewport to remap.
2606 	 */
2607 	if (!plane_state->base.visible)
2608 		return false;
2609 
2610 	if (!intel_plane_can_remap(plane_state))
2611 		return false;
2612 
2613 	/*
2614 	 * FIXME: aux plane limits on gen9+ are
2615 	 * unclear in Bspec, for now no checking.
2616 	 */
2617 	stride = intel_fb_pitch(fb, 0, rotation);
2618 	max_stride = plane->max_stride(plane, fb->format->format,
2619 				       fb->modifier, rotation);
2620 
2621 	return stride > max_stride;
2622 }
2623 
2624 static int
2625 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2626 		   struct drm_framebuffer *fb)
2627 {
2628 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2629 	struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2630 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2631 	u32 gtt_offset_rotated = 0;
2632 	unsigned int max_size = 0;
2633 	int i, num_planes = fb->format->num_planes;
2634 	unsigned int tile_size = intel_tile_size(dev_priv);
2635 
2636 	for (i = 0; i < num_planes; i++) {
2637 		unsigned int width, height;
2638 		unsigned int cpp, size;
2639 		u32 offset;
2640 		int x, y;
2641 		int ret;
2642 
2643 		cpp = fb->format->cpp[i];
2644 		width = drm_framebuffer_plane_width(fb->width, fb, i);
2645 		height = drm_framebuffer_plane_height(fb->height, fb, i);
2646 
2647 		ret = intel_fb_offset_to_xy(&x, &y, fb, i);
2648 		if (ret) {
2649 			DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2650 				      i, fb->offsets[i]);
2651 			return ret;
2652 		}
2653 
2654 		if (is_ccs_modifier(fb->modifier) && i == 1) {
2655 			int hsub = fb->format->hsub;
2656 			int vsub = fb->format->vsub;
2657 			int tile_width, tile_height;
2658 			int main_x, main_y;
2659 			int ccs_x, ccs_y;
2660 
2661 			intel_tile_dims(fb, i, &tile_width, &tile_height);
2662 			tile_width *= hsub;
2663 			tile_height *= vsub;
2664 
2665 			ccs_x = (x * hsub) % tile_width;
2666 			ccs_y = (y * vsub) % tile_height;
2667 			main_x = intel_fb->normal[0].x % tile_width;
2668 			main_y = intel_fb->normal[0].y % tile_height;
2669 
2670 			/*
2671 			 * CCS doesn't have its own x/y offset register, so the intra CCS tile
2672 			 * x/y offsets must match between CCS and the main surface.
2673 			 */
2674 			if (main_x != ccs_x || main_y != ccs_y) {
2675 				DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2676 					      main_x, main_y,
2677 					      ccs_x, ccs_y,
2678 					      intel_fb->normal[0].x,
2679 					      intel_fb->normal[0].y,
2680 					      x, y);
2681 				return -EINVAL;
2682 			}
2683 		}
2684 
2685 		/*
2686 		 * The fence (if used) is aligned to the start of the object
2687 		 * so having the framebuffer wrap around across the edge of the
2688 		 * fenced region doesn't really work. We have no API to configure
2689 		 * the fence start offset within the object (nor could we probably
2690 		 * on gen2/3). So it's just easier if we just require that the
2691 		 * fb layout agrees with the fence layout. We already check that the
2692 		 * fb stride matches the fence stride elsewhere.
2693 		 */
2694 		if (i == 0 && i915_gem_object_is_tiled(obj) &&
2695 		    (x + width) * cpp > fb->pitches[i]) {
2696 			DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2697 				      i, fb->offsets[i]);
2698 			return -EINVAL;
2699 		}
2700 
2701 		/*
2702 		 * First pixel of the framebuffer from
2703 		 * the start of the normal gtt mapping.
2704 		 */
2705 		intel_fb->normal[i].x = x;
2706 		intel_fb->normal[i].y = y;
2707 
2708 		offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i,
2709 						      fb->pitches[i],
2710 						      DRM_MODE_ROTATE_0,
2711 						      tile_size);
2712 		offset /= tile_size;
2713 
2714 		if (!is_surface_linear(fb->modifier, i)) {
2715 			unsigned int tile_width, tile_height;
2716 			unsigned int pitch_tiles;
2717 			struct drm_rect r;
2718 
2719 			intel_tile_dims(fb, i, &tile_width, &tile_height);
2720 
2721 			rot_info->plane[i].offset = offset;
2722 			rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2723 			rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2724 			rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2725 
2726 			intel_fb->rotated[i].pitch =
2727 				rot_info->plane[i].height * tile_height;
2728 
2729 			/* how many tiles does this plane need */
2730 			size = rot_info->plane[i].stride * rot_info->plane[i].height;
2731 			/*
2732 			 * If the plane isn't horizontally tile aligned,
2733 			 * we need one more tile.
2734 			 */
2735 			if (x != 0)
2736 				size++;
2737 
2738 			/* rotate the x/y offsets to match the GTT view */
2739 			r.x1 = x;
2740 			r.y1 = y;
2741 			r.x2 = x + width;
2742 			r.y2 = y + height;
2743 			drm_rect_rotate(&r,
2744 					rot_info->plane[i].width * tile_width,
2745 					rot_info->plane[i].height * tile_height,
2746 					DRM_MODE_ROTATE_270);
2747 			x = r.x1;
2748 			y = r.y1;
2749 
2750 			/* rotate the tile dimensions to match the GTT view */
2751 			pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2752 			swap(tile_width, tile_height);
2753 
2754 			/*
2755 			 * We only keep the x/y offsets, so push all of the
2756 			 * gtt offset into the x/y offsets.
2757 			 */
2758 			intel_adjust_tile_offset(&x, &y,
2759 						 tile_width, tile_height,
2760 						 tile_size, pitch_tiles,
2761 						 gtt_offset_rotated * tile_size, 0);
2762 
2763 			gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2764 
2765 			/*
2766 			 * First pixel of the framebuffer from
2767 			 * the start of the rotated gtt mapping.
2768 			 */
2769 			intel_fb->rotated[i].x = x;
2770 			intel_fb->rotated[i].y = y;
2771 		} else {
2772 			size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2773 					    x * cpp, tile_size);
2774 		}
2775 
2776 		/* how many tiles in total needed in the bo */
2777 		max_size = max(max_size, offset + size);
2778 	}
2779 
2780 	if (mul_u32_u32(max_size, tile_size) > obj->base.size) {
2781 		DRM_DEBUG_KMS("fb too big for bo (need %llu bytes, have %zu bytes)\n",
2782 			      mul_u32_u32(max_size, tile_size), obj->base.size);
2783 		return -EINVAL;
2784 	}
2785 
2786 	return 0;
2787 }
2788 
2789 static void
2790 intel_plane_remap_gtt(struct intel_plane_state *plane_state)
2791 {
2792 	struct drm_i915_private *dev_priv =
2793 		to_i915(plane_state->base.plane->dev);
2794 	struct drm_framebuffer *fb = plane_state->base.fb;
2795 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2796 	struct intel_rotation_info *info = &plane_state->view.rotated;
2797 	unsigned int rotation = plane_state->base.rotation;
2798 	int i, num_planes = fb->format->num_planes;
2799 	unsigned int tile_size = intel_tile_size(dev_priv);
2800 	unsigned int src_x, src_y;
2801 	unsigned int src_w, src_h;
2802 	u32 gtt_offset = 0;
2803 
2804 	memset(&plane_state->view, 0, sizeof(plane_state->view));
2805 	plane_state->view.type = drm_rotation_90_or_270(rotation) ?
2806 		I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED;
2807 
2808 	src_x = plane_state->base.src.x1 >> 16;
2809 	src_y = plane_state->base.src.y1 >> 16;
2810 	src_w = drm_rect_width(&plane_state->base.src) >> 16;
2811 	src_h = drm_rect_height(&plane_state->base.src) >> 16;
2812 
2813 	WARN_ON(is_ccs_modifier(fb->modifier));
2814 
2815 	/* Make src coordinates relative to the viewport */
2816 	drm_rect_translate(&plane_state->base.src,
2817 			   -(src_x << 16), -(src_y << 16));
2818 
2819 	/* Rotate src coordinates to match rotated GTT view */
2820 	if (drm_rotation_90_or_270(rotation))
2821 		drm_rect_rotate(&plane_state->base.src,
2822 				src_w << 16, src_h << 16,
2823 				DRM_MODE_ROTATE_270);
2824 
2825 	for (i = 0; i < num_planes; i++) {
2826 		unsigned int hsub = i ? fb->format->hsub : 1;
2827 		unsigned int vsub = i ? fb->format->vsub : 1;
2828 		unsigned int cpp = fb->format->cpp[i];
2829 		unsigned int tile_width, tile_height;
2830 		unsigned int width, height;
2831 		unsigned int pitch_tiles;
2832 		unsigned int x, y;
2833 		u32 offset;
2834 
2835 		intel_tile_dims(fb, i, &tile_width, &tile_height);
2836 
2837 		x = src_x / hsub;
2838 		y = src_y / vsub;
2839 		width = src_w / hsub;
2840 		height = src_h / vsub;
2841 
2842 		/*
2843 		 * First pixel of the src viewport from the
2844 		 * start of the normal gtt mapping.
2845 		 */
2846 		x += intel_fb->normal[i].x;
2847 		y += intel_fb->normal[i].y;
2848 
2849 		offset = intel_compute_aligned_offset(dev_priv, &x, &y,
2850 						      fb, i, fb->pitches[i],
2851 						      DRM_MODE_ROTATE_0, tile_size);
2852 		offset /= tile_size;
2853 
2854 		info->plane[i].offset = offset;
2855 		info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i],
2856 						     tile_width * cpp);
2857 		info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2858 		info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2859 
2860 		if (drm_rotation_90_or_270(rotation)) {
2861 			struct drm_rect r;
2862 
2863 			/* rotate the x/y offsets to match the GTT view */
2864 			r.x1 = x;
2865 			r.y1 = y;
2866 			r.x2 = x + width;
2867 			r.y2 = y + height;
2868 			drm_rect_rotate(&r,
2869 					info->plane[i].width * tile_width,
2870 					info->plane[i].height * tile_height,
2871 					DRM_MODE_ROTATE_270);
2872 			x = r.x1;
2873 			y = r.y1;
2874 
2875 			pitch_tiles = info->plane[i].height;
2876 			plane_state->color_plane[i].stride = pitch_tiles * tile_height;
2877 
2878 			/* rotate the tile dimensions to match the GTT view */
2879 			swap(tile_width, tile_height);
2880 		} else {
2881 			pitch_tiles = info->plane[i].width;
2882 			plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp;
2883 		}
2884 
2885 		/*
2886 		 * We only keep the x/y offsets, so push all of the
2887 		 * gtt offset into the x/y offsets.
2888 		 */
2889 		intel_adjust_tile_offset(&x, &y,
2890 					 tile_width, tile_height,
2891 					 tile_size, pitch_tiles,
2892 					 gtt_offset * tile_size, 0);
2893 
2894 		gtt_offset += info->plane[i].width * info->plane[i].height;
2895 
2896 		plane_state->color_plane[i].offset = 0;
2897 		plane_state->color_plane[i].x = x;
2898 		plane_state->color_plane[i].y = y;
2899 	}
2900 }
2901 
2902 static int
2903 intel_plane_compute_gtt(struct intel_plane_state *plane_state)
2904 {
2905 	const struct intel_framebuffer *fb =
2906 		to_intel_framebuffer(plane_state->base.fb);
2907 	unsigned int rotation = plane_state->base.rotation;
2908 	int i, num_planes;
2909 
2910 	if (!fb)
2911 		return 0;
2912 
2913 	num_planes = fb->base.format->num_planes;
2914 
2915 	if (intel_plane_needs_remap(plane_state)) {
2916 		intel_plane_remap_gtt(plane_state);
2917 
2918 		/*
2919 		 * Sometimes even remapping can't overcome
2920 		 * the stride limitations :( Can happen with
2921 		 * big plane sizes and suitably misaligned
2922 		 * offsets.
2923 		 */
2924 		return intel_plane_check_stride(plane_state);
2925 	}
2926 
2927 	intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation);
2928 
2929 	for (i = 0; i < num_planes; i++) {
2930 		plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation);
2931 		plane_state->color_plane[i].offset = 0;
2932 
2933 		if (drm_rotation_90_or_270(rotation)) {
2934 			plane_state->color_plane[i].x = fb->rotated[i].x;
2935 			plane_state->color_plane[i].y = fb->rotated[i].y;
2936 		} else {
2937 			plane_state->color_plane[i].x = fb->normal[i].x;
2938 			plane_state->color_plane[i].y = fb->normal[i].y;
2939 		}
2940 	}
2941 
2942 	/* Rotate src coordinates to match rotated GTT view */
2943 	if (drm_rotation_90_or_270(rotation))
2944 		drm_rect_rotate(&plane_state->base.src,
2945 				fb->base.width << 16, fb->base.height << 16,
2946 				DRM_MODE_ROTATE_270);
2947 
2948 	return intel_plane_check_stride(plane_state);
2949 }
2950 
2951 static int i9xx_format_to_fourcc(int format)
2952 {
2953 	switch (format) {
2954 	case DISPPLANE_8BPP:
2955 		return DRM_FORMAT_C8;
2956 	case DISPPLANE_BGRX555:
2957 		return DRM_FORMAT_XRGB1555;
2958 	case DISPPLANE_BGRX565:
2959 		return DRM_FORMAT_RGB565;
2960 	default:
2961 	case DISPPLANE_BGRX888:
2962 		return DRM_FORMAT_XRGB8888;
2963 	case DISPPLANE_RGBX888:
2964 		return DRM_FORMAT_XBGR8888;
2965 	case DISPPLANE_BGRX101010:
2966 		return DRM_FORMAT_XRGB2101010;
2967 	case DISPPLANE_RGBX101010:
2968 		return DRM_FORMAT_XBGR2101010;
2969 	}
2970 }
2971 
2972 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2973 {
2974 	switch (format) {
2975 	case PLANE_CTL_FORMAT_RGB_565:
2976 		return DRM_FORMAT_RGB565;
2977 	case PLANE_CTL_FORMAT_NV12:
2978 		return DRM_FORMAT_NV12;
2979 	case PLANE_CTL_FORMAT_P010:
2980 		return DRM_FORMAT_P010;
2981 	case PLANE_CTL_FORMAT_P012:
2982 		return DRM_FORMAT_P012;
2983 	case PLANE_CTL_FORMAT_P016:
2984 		return DRM_FORMAT_P016;
2985 	case PLANE_CTL_FORMAT_Y210:
2986 		return DRM_FORMAT_Y210;
2987 	case PLANE_CTL_FORMAT_Y212:
2988 		return DRM_FORMAT_Y212;
2989 	case PLANE_CTL_FORMAT_Y216:
2990 		return DRM_FORMAT_Y216;
2991 	case PLANE_CTL_FORMAT_Y410:
2992 		return DRM_FORMAT_XVYU2101010;
2993 	case PLANE_CTL_FORMAT_Y412:
2994 		return DRM_FORMAT_XVYU12_16161616;
2995 	case PLANE_CTL_FORMAT_Y416:
2996 		return DRM_FORMAT_XVYU16161616;
2997 	default:
2998 	case PLANE_CTL_FORMAT_XRGB_8888:
2999 		if (rgb_order) {
3000 			if (alpha)
3001 				return DRM_FORMAT_ABGR8888;
3002 			else
3003 				return DRM_FORMAT_XBGR8888;
3004 		} else {
3005 			if (alpha)
3006 				return DRM_FORMAT_ARGB8888;
3007 			else
3008 				return DRM_FORMAT_XRGB8888;
3009 		}
3010 	case PLANE_CTL_FORMAT_XRGB_2101010:
3011 		if (rgb_order)
3012 			return DRM_FORMAT_XBGR2101010;
3013 		else
3014 			return DRM_FORMAT_XRGB2101010;
3015 	case PLANE_CTL_FORMAT_XRGB_16161616F:
3016 		if (rgb_order) {
3017 			if (alpha)
3018 				return DRM_FORMAT_ABGR16161616F;
3019 			else
3020 				return DRM_FORMAT_XBGR16161616F;
3021 		} else {
3022 			if (alpha)
3023 				return DRM_FORMAT_ARGB16161616F;
3024 			else
3025 				return DRM_FORMAT_XRGB16161616F;
3026 		}
3027 	}
3028 }
3029 
3030 static bool
3031 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
3032 			      struct intel_initial_plane_config *plane_config)
3033 {
3034 	struct drm_device *dev = crtc->base.dev;
3035 	struct drm_i915_private *dev_priv = to_i915(dev);
3036 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
3037 	struct drm_framebuffer *fb = &plane_config->fb->base;
3038 	u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
3039 	u32 size_aligned = round_up(plane_config->base + plane_config->size,
3040 				    PAGE_SIZE);
3041 	struct drm_i915_gem_object *obj;
3042 	bool ret = false;
3043 
3044 	size_aligned -= base_aligned;
3045 
3046 	if (plane_config->size == 0)
3047 		return false;
3048 
3049 	/* If the FB is too big, just don't use it since fbdev is not very
3050 	 * important and we should probably use that space with FBC or other
3051 	 * features. */
3052 	if (size_aligned * 2 > dev_priv->stolen_usable_size)
3053 		return false;
3054 
3055 	switch (fb->modifier) {
3056 	case DRM_FORMAT_MOD_LINEAR:
3057 	case I915_FORMAT_MOD_X_TILED:
3058 	case I915_FORMAT_MOD_Y_TILED:
3059 		break;
3060 	default:
3061 		DRM_DEBUG_DRIVER("Unsupported modifier for initial FB: 0x%llx\n",
3062 				 fb->modifier);
3063 		return false;
3064 	}
3065 
3066 	mutex_lock(&dev->struct_mutex);
3067 	obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
3068 							     base_aligned,
3069 							     base_aligned,
3070 							     size_aligned);
3071 	mutex_unlock(&dev->struct_mutex);
3072 	if (!obj)
3073 		return false;
3074 
3075 	switch (plane_config->tiling) {
3076 	case I915_TILING_NONE:
3077 		break;
3078 	case I915_TILING_X:
3079 	case I915_TILING_Y:
3080 		obj->tiling_and_stride = fb->pitches[0] | plane_config->tiling;
3081 		break;
3082 	default:
3083 		MISSING_CASE(plane_config->tiling);
3084 		goto out;
3085 	}
3086 
3087 	mode_cmd.pixel_format = fb->format->format;
3088 	mode_cmd.width = fb->width;
3089 	mode_cmd.height = fb->height;
3090 	mode_cmd.pitches[0] = fb->pitches[0];
3091 	mode_cmd.modifier[0] = fb->modifier;
3092 	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
3093 
3094 	if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
3095 		DRM_DEBUG_KMS("intel fb init failed\n");
3096 		goto out;
3097 	}
3098 
3099 
3100 	DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
3101 	ret = true;
3102 out:
3103 	i915_gem_object_put(obj);
3104 	return ret;
3105 }
3106 
3107 static void
3108 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
3109 			struct intel_plane_state *plane_state,
3110 			bool visible)
3111 {
3112 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
3113 
3114 	plane_state->base.visible = visible;
3115 
3116 	if (visible)
3117 		crtc_state->base.plane_mask |= drm_plane_mask(&plane->base);
3118 	else
3119 		crtc_state->base.plane_mask &= ~drm_plane_mask(&plane->base);
3120 }
3121 
3122 static void fixup_active_planes(struct intel_crtc_state *crtc_state)
3123 {
3124 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
3125 	struct drm_plane *plane;
3126 
3127 	/*
3128 	 * Active_planes aliases if multiple "primary" or cursor planes
3129 	 * have been used on the same (or wrong) pipe. plane_mask uses
3130 	 * unique ids, hence we can use that to reconstruct active_planes.
3131 	 */
3132 	crtc_state->active_planes = 0;
3133 
3134 	drm_for_each_plane_mask(plane, &dev_priv->drm,
3135 				crtc_state->base.plane_mask)
3136 		crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
3137 }
3138 
3139 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
3140 					 struct intel_plane *plane)
3141 {
3142 	struct intel_crtc_state *crtc_state =
3143 		to_intel_crtc_state(crtc->base.state);
3144 	struct intel_plane_state *plane_state =
3145 		to_intel_plane_state(plane->base.state);
3146 
3147 	DRM_DEBUG_KMS("Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
3148 		      plane->base.base.id, plane->base.name,
3149 		      crtc->base.base.id, crtc->base.name);
3150 
3151 	intel_set_plane_visible(crtc_state, plane_state, false);
3152 	fixup_active_planes(crtc_state);
3153 	crtc_state->data_rate[plane->id] = 0;
3154 
3155 	if (plane->id == PLANE_PRIMARY)
3156 		intel_pre_disable_primary_noatomic(&crtc->base);
3157 
3158 	intel_disable_plane(plane, crtc_state);
3159 }
3160 
3161 static struct intel_frontbuffer *
3162 to_intel_frontbuffer(struct drm_framebuffer *fb)
3163 {
3164 	return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL;
3165 }
3166 
3167 static void
3168 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
3169 			     struct intel_initial_plane_config *plane_config)
3170 {
3171 	struct drm_device *dev = intel_crtc->base.dev;
3172 	struct drm_i915_private *dev_priv = to_i915(dev);
3173 	struct drm_crtc *c;
3174 	struct drm_plane *primary = intel_crtc->base.primary;
3175 	struct drm_plane_state *plane_state = primary->state;
3176 	struct intel_plane *intel_plane = to_intel_plane(primary);
3177 	struct intel_plane_state *intel_state =
3178 		to_intel_plane_state(plane_state);
3179 	struct drm_framebuffer *fb;
3180 
3181 	if (!plane_config->fb)
3182 		return;
3183 
3184 	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
3185 		fb = &plane_config->fb->base;
3186 		goto valid_fb;
3187 	}
3188 
3189 	kfree(plane_config->fb);
3190 
3191 	/*
3192 	 * Failed to alloc the obj, check to see if we should share
3193 	 * an fb with another CRTC instead
3194 	 */
3195 	for_each_crtc(dev, c) {
3196 		struct intel_plane_state *state;
3197 
3198 		if (c == &intel_crtc->base)
3199 			continue;
3200 
3201 		if (!to_intel_crtc(c)->active)
3202 			continue;
3203 
3204 		state = to_intel_plane_state(c->primary->state);
3205 		if (!state->vma)
3206 			continue;
3207 
3208 		if (intel_plane_ggtt_offset(state) == plane_config->base) {
3209 			fb = state->base.fb;
3210 			drm_framebuffer_get(fb);
3211 			goto valid_fb;
3212 		}
3213 	}
3214 
3215 	/*
3216 	 * We've failed to reconstruct the BIOS FB.  Current display state
3217 	 * indicates that the primary plane is visible, but has a NULL FB,
3218 	 * which will lead to problems later if we don't fix it up.  The
3219 	 * simplest solution is to just disable the primary plane now and
3220 	 * pretend the BIOS never had it enabled.
3221 	 */
3222 	intel_plane_disable_noatomic(intel_crtc, intel_plane);
3223 
3224 	return;
3225 
3226 valid_fb:
3227 	intel_state->base.rotation = plane_config->rotation;
3228 	intel_fill_fb_ggtt_view(&intel_state->view, fb,
3229 				intel_state->base.rotation);
3230 	intel_state->color_plane[0].stride =
3231 		intel_fb_pitch(fb, 0, intel_state->base.rotation);
3232 
3233 	mutex_lock(&dev->struct_mutex);
3234 	intel_state->vma =
3235 		intel_pin_and_fence_fb_obj(fb,
3236 					   &intel_state->view,
3237 					   intel_plane_uses_fence(intel_state),
3238 					   &intel_state->flags);
3239 	mutex_unlock(&dev->struct_mutex);
3240 	if (IS_ERR(intel_state->vma)) {
3241 		DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
3242 			  intel_crtc->pipe, PTR_ERR(intel_state->vma));
3243 
3244 		intel_state->vma = NULL;
3245 		drm_framebuffer_put(fb);
3246 		return;
3247 	}
3248 
3249 	intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
3250 
3251 	plane_state->src_x = 0;
3252 	plane_state->src_y = 0;
3253 	plane_state->src_w = fb->width << 16;
3254 	plane_state->src_h = fb->height << 16;
3255 
3256 	plane_state->crtc_x = 0;
3257 	plane_state->crtc_y = 0;
3258 	plane_state->crtc_w = fb->width;
3259 	plane_state->crtc_h = fb->height;
3260 
3261 	intel_state->base.src = drm_plane_state_src(plane_state);
3262 	intel_state->base.dst = drm_plane_state_dest(plane_state);
3263 
3264 	if (plane_config->tiling)
3265 		dev_priv->preserve_bios_swizzle = true;
3266 
3267 	plane_state->fb = fb;
3268 	plane_state->crtc = &intel_crtc->base;
3269 
3270 	atomic_or(to_intel_plane(primary)->frontbuffer_bit,
3271 		  &to_intel_frontbuffer(fb)->bits);
3272 }
3273 
3274 static int skl_max_plane_width(const struct drm_framebuffer *fb,
3275 			       int color_plane,
3276 			       unsigned int rotation)
3277 {
3278 	int cpp = fb->format->cpp[color_plane];
3279 
3280 	switch (fb->modifier) {
3281 	case DRM_FORMAT_MOD_LINEAR:
3282 	case I915_FORMAT_MOD_X_TILED:
3283 		/*
3284 		 * Validated limit is 4k, but has 5k should
3285 		 * work apart from the following features:
3286 		 * - Ytile (already limited to 4k)
3287 		 * - FP16 (already limited to 4k)
3288 		 * - render compression (already limited to 4k)
3289 		 * - KVMR sprite and cursor (don't care)
3290 		 * - horizontal panning (TODO verify this)
3291 		 * - pipe and plane scaling (TODO verify this)
3292 		 */
3293 		if (cpp == 8)
3294 			return 4096;
3295 		else
3296 			return 5120;
3297 	case I915_FORMAT_MOD_Y_TILED_CCS:
3298 	case I915_FORMAT_MOD_Yf_TILED_CCS:
3299 		/* FIXME AUX plane? */
3300 	case I915_FORMAT_MOD_Y_TILED:
3301 	case I915_FORMAT_MOD_Yf_TILED:
3302 		if (cpp == 8)
3303 			return 2048;
3304 		else
3305 			return 4096;
3306 	default:
3307 		MISSING_CASE(fb->modifier);
3308 		return 2048;
3309 	}
3310 }
3311 
3312 static int glk_max_plane_width(const struct drm_framebuffer *fb,
3313 			       int color_plane,
3314 			       unsigned int rotation)
3315 {
3316 	int cpp = fb->format->cpp[color_plane];
3317 
3318 	switch (fb->modifier) {
3319 	case DRM_FORMAT_MOD_LINEAR:
3320 	case I915_FORMAT_MOD_X_TILED:
3321 		if (cpp == 8)
3322 			return 4096;
3323 		else
3324 			return 5120;
3325 	case I915_FORMAT_MOD_Y_TILED_CCS:
3326 	case I915_FORMAT_MOD_Yf_TILED_CCS:
3327 		/* FIXME AUX plane? */
3328 	case I915_FORMAT_MOD_Y_TILED:
3329 	case I915_FORMAT_MOD_Yf_TILED:
3330 		if (cpp == 8)
3331 			return 2048;
3332 		else
3333 			return 5120;
3334 	default:
3335 		MISSING_CASE(fb->modifier);
3336 		return 2048;
3337 	}
3338 }
3339 
3340 static int icl_max_plane_width(const struct drm_framebuffer *fb,
3341 			       int color_plane,
3342 			       unsigned int rotation)
3343 {
3344 	return 5120;
3345 }
3346 
3347 static bool skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
3348 					   int main_x, int main_y, u32 main_offset)
3349 {
3350 	const struct drm_framebuffer *fb = plane_state->base.fb;
3351 	int hsub = fb->format->hsub;
3352 	int vsub = fb->format->vsub;
3353 	int aux_x = plane_state->color_plane[1].x;
3354 	int aux_y = plane_state->color_plane[1].y;
3355 	u32 aux_offset = plane_state->color_plane[1].offset;
3356 	u32 alignment = intel_surf_alignment(fb, 1);
3357 
3358 	while (aux_offset >= main_offset && aux_y <= main_y) {
3359 		int x, y;
3360 
3361 		if (aux_x == main_x && aux_y == main_y)
3362 			break;
3363 
3364 		if (aux_offset == 0)
3365 			break;
3366 
3367 		x = aux_x / hsub;
3368 		y = aux_y / vsub;
3369 		aux_offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 1,
3370 							       aux_offset, aux_offset - alignment);
3371 		aux_x = x * hsub + aux_x % hsub;
3372 		aux_y = y * vsub + aux_y % vsub;
3373 	}
3374 
3375 	if (aux_x != main_x || aux_y != main_y)
3376 		return false;
3377 
3378 	plane_state->color_plane[1].offset = aux_offset;
3379 	plane_state->color_plane[1].x = aux_x;
3380 	plane_state->color_plane[1].y = aux_y;
3381 
3382 	return true;
3383 }
3384 
3385 static int skl_check_main_surface(struct intel_plane_state *plane_state)
3386 {
3387 	struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
3388 	const struct drm_framebuffer *fb = plane_state->base.fb;
3389 	unsigned int rotation = plane_state->base.rotation;
3390 	int x = plane_state->base.src.x1 >> 16;
3391 	int y = plane_state->base.src.y1 >> 16;
3392 	int w = drm_rect_width(&plane_state->base.src) >> 16;
3393 	int h = drm_rect_height(&plane_state->base.src) >> 16;
3394 	int max_width;
3395 	int max_height = 4096;
3396 	u32 alignment, offset, aux_offset = plane_state->color_plane[1].offset;
3397 
3398 	if (INTEL_GEN(dev_priv) >= 11)
3399 		max_width = icl_max_plane_width(fb, 0, rotation);
3400 	else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
3401 		max_width = glk_max_plane_width(fb, 0, rotation);
3402 	else
3403 		max_width = skl_max_plane_width(fb, 0, rotation);
3404 
3405 	if (w > max_width || h > max_height) {
3406 		DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
3407 			      w, h, max_width, max_height);
3408 		return -EINVAL;
3409 	}
3410 
3411 	intel_add_fb_offsets(&x, &y, plane_state, 0);
3412 	offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0);
3413 	alignment = intel_surf_alignment(fb, 0);
3414 
3415 	/*
3416 	 * AUX surface offset is specified as the distance from the
3417 	 * main surface offset, and it must be non-negative. Make
3418 	 * sure that is what we will get.
3419 	 */
3420 	if (offset > aux_offset)
3421 		offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3422 							   offset, aux_offset & ~(alignment - 1));
3423 
3424 	/*
3425 	 * When using an X-tiled surface, the plane blows up
3426 	 * if the x offset + width exceed the stride.
3427 	 *
3428 	 * TODO: linear and Y-tiled seem fine, Yf untested,
3429 	 */
3430 	if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
3431 		int cpp = fb->format->cpp[0];
3432 
3433 		while ((x + w) * cpp > plane_state->color_plane[0].stride) {
3434 			if (offset == 0) {
3435 				DRM_DEBUG_KMS("Unable to find suitable display surface offset due to X-tiling\n");
3436 				return -EINVAL;
3437 			}
3438 
3439 			offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3440 								   offset, offset - alignment);
3441 		}
3442 	}
3443 
3444 	/*
3445 	 * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3446 	 * they match with the main surface x/y offsets.
3447 	 */
3448 	if (is_ccs_modifier(fb->modifier)) {
3449 		while (!skl_check_main_ccs_coordinates(plane_state, x, y, offset)) {
3450 			if (offset == 0)
3451 				break;
3452 
3453 			offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3454 								   offset, offset - alignment);
3455 		}
3456 
3457 		if (x != plane_state->color_plane[1].x || y != plane_state->color_plane[1].y) {
3458 			DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n");
3459 			return -EINVAL;
3460 		}
3461 	}
3462 
3463 	plane_state->color_plane[0].offset = offset;
3464 	plane_state->color_plane[0].x = x;
3465 	plane_state->color_plane[0].y = y;
3466 
3467 	/*
3468 	 * Put the final coordinates back so that the src
3469 	 * coordinate checks will see the right values.
3470 	 */
3471 	drm_rect_translate(&plane_state->base.src,
3472 			   (x << 16) - plane_state->base.src.x1,
3473 			   (y << 16) - plane_state->base.src.y1);
3474 
3475 	return 0;
3476 }
3477 
3478 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3479 {
3480 	const struct drm_framebuffer *fb = plane_state->base.fb;
3481 	unsigned int rotation = plane_state->base.rotation;
3482 	int max_width = skl_max_plane_width(fb, 1, rotation);
3483 	int max_height = 4096;
3484 	int x = plane_state->base.src.x1 >> 17;
3485 	int y = plane_state->base.src.y1 >> 17;
3486 	int w = drm_rect_width(&plane_state->base.src) >> 17;
3487 	int h = drm_rect_height(&plane_state->base.src) >> 17;
3488 	u32 offset;
3489 
3490 	intel_add_fb_offsets(&x, &y, plane_state, 1);
3491 	offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1);
3492 
3493 	/* FIXME not quite sure how/if these apply to the chroma plane */
3494 	if (w > max_width || h > max_height) {
3495 		DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
3496 			      w, h, max_width, max_height);
3497 		return -EINVAL;
3498 	}
3499 
3500 	plane_state->color_plane[1].offset = offset;
3501 	plane_state->color_plane[1].x = x;
3502 	plane_state->color_plane[1].y = y;
3503 
3504 	return 0;
3505 }
3506 
3507 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
3508 {
3509 	const struct drm_framebuffer *fb = plane_state->base.fb;
3510 	int src_x = plane_state->base.src.x1 >> 16;
3511 	int src_y = plane_state->base.src.y1 >> 16;
3512 	int hsub = fb->format->hsub;
3513 	int vsub = fb->format->vsub;
3514 	int x = src_x / hsub;
3515 	int y = src_y / vsub;
3516 	u32 offset;
3517 
3518 	intel_add_fb_offsets(&x, &y, plane_state, 1);
3519 	offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1);
3520 
3521 	plane_state->color_plane[1].offset = offset;
3522 	plane_state->color_plane[1].x = x * hsub + src_x % hsub;
3523 	plane_state->color_plane[1].y = y * vsub + src_y % vsub;
3524 
3525 	return 0;
3526 }
3527 
3528 int skl_check_plane_surface(struct intel_plane_state *plane_state)
3529 {
3530 	const struct drm_framebuffer *fb = plane_state->base.fb;
3531 	int ret;
3532 
3533 	ret = intel_plane_compute_gtt(plane_state);
3534 	if (ret)
3535 		return ret;
3536 
3537 	if (!plane_state->base.visible)
3538 		return 0;
3539 
3540 	/*
3541 	 * Handle the AUX surface first since
3542 	 * the main surface setup depends on it.
3543 	 */
3544 	if (is_planar_yuv_format(fb->format->format)) {
3545 		ret = skl_check_nv12_aux_surface(plane_state);
3546 		if (ret)
3547 			return ret;
3548 	} else if (is_ccs_modifier(fb->modifier)) {
3549 		ret = skl_check_ccs_aux_surface(plane_state);
3550 		if (ret)
3551 			return ret;
3552 	} else {
3553 		plane_state->color_plane[1].offset = ~0xfff;
3554 		plane_state->color_plane[1].x = 0;
3555 		plane_state->color_plane[1].y = 0;
3556 	}
3557 
3558 	ret = skl_check_main_surface(plane_state);
3559 	if (ret)
3560 		return ret;
3561 
3562 	return 0;
3563 }
3564 
3565 unsigned int
3566 i9xx_plane_max_stride(struct intel_plane *plane,
3567 		      u32 pixel_format, u64 modifier,
3568 		      unsigned int rotation)
3569 {
3570 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3571 
3572 	if (!HAS_GMCH(dev_priv)) {
3573 		return 32*1024;
3574 	} else if (INTEL_GEN(dev_priv) >= 4) {
3575 		if (modifier == I915_FORMAT_MOD_X_TILED)
3576 			return 16*1024;
3577 		else
3578 			return 32*1024;
3579 	} else if (INTEL_GEN(dev_priv) >= 3) {
3580 		if (modifier == I915_FORMAT_MOD_X_TILED)
3581 			return 8*1024;
3582 		else
3583 			return 16*1024;
3584 	} else {
3585 		if (plane->i9xx_plane == PLANE_C)
3586 			return 4*1024;
3587 		else
3588 			return 8*1024;
3589 	}
3590 }
3591 
3592 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
3593 {
3594 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3595 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3596 	u32 dspcntr = 0;
3597 
3598 	if (crtc_state->gamma_enable)
3599 		dspcntr |= DISPPLANE_GAMMA_ENABLE;
3600 
3601 	if (crtc_state->csc_enable)
3602 		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3603 
3604 	if (INTEL_GEN(dev_priv) < 5)
3605 		dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
3606 
3607 	return dspcntr;
3608 }
3609 
3610 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
3611 			  const struct intel_plane_state *plane_state)
3612 {
3613 	struct drm_i915_private *dev_priv =
3614 		to_i915(plane_state->base.plane->dev);
3615 	const struct drm_framebuffer *fb = plane_state->base.fb;
3616 	unsigned int rotation = plane_state->base.rotation;
3617 	u32 dspcntr;
3618 
3619 	dspcntr = DISPLAY_PLANE_ENABLE;
3620 
3621 	if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) ||
3622 	    IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
3623 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3624 
3625 	switch (fb->format->format) {
3626 	case DRM_FORMAT_C8:
3627 		dspcntr |= DISPPLANE_8BPP;
3628 		break;
3629 	case DRM_FORMAT_XRGB1555:
3630 		dspcntr |= DISPPLANE_BGRX555;
3631 		break;
3632 	case DRM_FORMAT_RGB565:
3633 		dspcntr |= DISPPLANE_BGRX565;
3634 		break;
3635 	case DRM_FORMAT_XRGB8888:
3636 		dspcntr |= DISPPLANE_BGRX888;
3637 		break;
3638 	case DRM_FORMAT_XBGR8888:
3639 		dspcntr |= DISPPLANE_RGBX888;
3640 		break;
3641 	case DRM_FORMAT_XRGB2101010:
3642 		dspcntr |= DISPPLANE_BGRX101010;
3643 		break;
3644 	case DRM_FORMAT_XBGR2101010:
3645 		dspcntr |= DISPPLANE_RGBX101010;
3646 		break;
3647 	default:
3648 		MISSING_CASE(fb->format->format);
3649 		return 0;
3650 	}
3651 
3652 	if (INTEL_GEN(dev_priv) >= 4 &&
3653 	    fb->modifier == I915_FORMAT_MOD_X_TILED)
3654 		dspcntr |= DISPPLANE_TILED;
3655 
3656 	if (rotation & DRM_MODE_ROTATE_180)
3657 		dspcntr |= DISPPLANE_ROTATE_180;
3658 
3659 	if (rotation & DRM_MODE_REFLECT_X)
3660 		dspcntr |= DISPPLANE_MIRROR;
3661 
3662 	return dspcntr;
3663 }
3664 
3665 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
3666 {
3667 	struct drm_i915_private *dev_priv =
3668 		to_i915(plane_state->base.plane->dev);
3669 	int src_x, src_y;
3670 	u32 offset;
3671 	int ret;
3672 
3673 	ret = intel_plane_compute_gtt(plane_state);
3674 	if (ret)
3675 		return ret;
3676 
3677 	if (!plane_state->base.visible)
3678 		return 0;
3679 
3680 	src_x = plane_state->base.src.x1 >> 16;
3681 	src_y = plane_state->base.src.y1 >> 16;
3682 
3683 	intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
3684 
3685 	if (INTEL_GEN(dev_priv) >= 4)
3686 		offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
3687 							    plane_state, 0);
3688 	else
3689 		offset = 0;
3690 
3691 	/*
3692 	 * Put the final coordinates back so that the src
3693 	 * coordinate checks will see the right values.
3694 	 */
3695 	drm_rect_translate(&plane_state->base.src,
3696 			   (src_x << 16) - plane_state->base.src.x1,
3697 			   (src_y << 16) - plane_state->base.src.y1);
3698 
3699 	/* HSW/BDW do this automagically in hardware */
3700 	if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3701 		unsigned int rotation = plane_state->base.rotation;
3702 		int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3703 		int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3704 
3705 		if (rotation & DRM_MODE_ROTATE_180) {
3706 			src_x += src_w - 1;
3707 			src_y += src_h - 1;
3708 		} else if (rotation & DRM_MODE_REFLECT_X) {
3709 			src_x += src_w - 1;
3710 		}
3711 	}
3712 
3713 	plane_state->color_plane[0].offset = offset;
3714 	plane_state->color_plane[0].x = src_x;
3715 	plane_state->color_plane[0].y = src_y;
3716 
3717 	return 0;
3718 }
3719 
3720 static bool i9xx_plane_has_windowing(struct intel_plane *plane)
3721 {
3722 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3723 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
3724 
3725 	if (IS_CHERRYVIEW(dev_priv))
3726 		return i9xx_plane == PLANE_B;
3727 	else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
3728 		return false;
3729 	else if (IS_GEN(dev_priv, 4))
3730 		return i9xx_plane == PLANE_C;
3731 	else
3732 		return i9xx_plane == PLANE_B ||
3733 			i9xx_plane == PLANE_C;
3734 }
3735 
3736 static int
3737 i9xx_plane_check(struct intel_crtc_state *crtc_state,
3738 		 struct intel_plane_state *plane_state)
3739 {
3740 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
3741 	int ret;
3742 
3743 	ret = chv_plane_check_rotation(plane_state);
3744 	if (ret)
3745 		return ret;
3746 
3747 	ret = drm_atomic_helper_check_plane_state(&plane_state->base,
3748 						  &crtc_state->base,
3749 						  DRM_PLANE_HELPER_NO_SCALING,
3750 						  DRM_PLANE_HELPER_NO_SCALING,
3751 						  i9xx_plane_has_windowing(plane),
3752 						  true);
3753 	if (ret)
3754 		return ret;
3755 
3756 	ret = i9xx_check_plane_surface(plane_state);
3757 	if (ret)
3758 		return ret;
3759 
3760 	if (!plane_state->base.visible)
3761 		return 0;
3762 
3763 	ret = intel_plane_check_src_coordinates(plane_state);
3764 	if (ret)
3765 		return ret;
3766 
3767 	plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state);
3768 
3769 	return 0;
3770 }
3771 
3772 static void i9xx_update_plane(struct intel_plane *plane,
3773 			      const struct intel_crtc_state *crtc_state,
3774 			      const struct intel_plane_state *plane_state)
3775 {
3776 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3777 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
3778 	u32 linear_offset;
3779 	int x = plane_state->color_plane[0].x;
3780 	int y = plane_state->color_plane[0].y;
3781 	int crtc_x = plane_state->base.dst.x1;
3782 	int crtc_y = plane_state->base.dst.y1;
3783 	int crtc_w = drm_rect_width(&plane_state->base.dst);
3784 	int crtc_h = drm_rect_height(&plane_state->base.dst);
3785 	unsigned long irqflags;
3786 	u32 dspaddr_offset;
3787 	u32 dspcntr;
3788 
3789 	dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state);
3790 
3791 	linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3792 
3793 	if (INTEL_GEN(dev_priv) >= 4)
3794 		dspaddr_offset = plane_state->color_plane[0].offset;
3795 	else
3796 		dspaddr_offset = linear_offset;
3797 
3798 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3799 
3800 	I915_WRITE_FW(DSPSTRIDE(i9xx_plane), plane_state->color_plane[0].stride);
3801 
3802 	if (INTEL_GEN(dev_priv) < 4) {
3803 		/*
3804 		 * PLANE_A doesn't actually have a full window
3805 		 * generator but let's assume we still need to
3806 		 * program whatever is there.
3807 		 */
3808 		I915_WRITE_FW(DSPPOS(i9xx_plane), (crtc_y << 16) | crtc_x);
3809 		I915_WRITE_FW(DSPSIZE(i9xx_plane),
3810 			      ((crtc_h - 1) << 16) | (crtc_w - 1));
3811 	} else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) {
3812 		I915_WRITE_FW(PRIMPOS(i9xx_plane), (crtc_y << 16) | crtc_x);
3813 		I915_WRITE_FW(PRIMSIZE(i9xx_plane),
3814 			      ((crtc_h - 1) << 16) | (crtc_w - 1));
3815 		I915_WRITE_FW(PRIMCNSTALPHA(i9xx_plane), 0);
3816 	}
3817 
3818 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3819 		I915_WRITE_FW(DSPOFFSET(i9xx_plane), (y << 16) | x);
3820 	} else if (INTEL_GEN(dev_priv) >= 4) {
3821 		I915_WRITE_FW(DSPLINOFF(i9xx_plane), linear_offset);
3822 		I915_WRITE_FW(DSPTILEOFF(i9xx_plane), (y << 16) | x);
3823 	}
3824 
3825 	/*
3826 	 * The control register self-arms if the plane was previously
3827 	 * disabled. Try to make the plane enable atomic by writing
3828 	 * the control register just before the surface register.
3829 	 */
3830 	I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr);
3831 	if (INTEL_GEN(dev_priv) >= 4)
3832 		I915_WRITE_FW(DSPSURF(i9xx_plane),
3833 			      intel_plane_ggtt_offset(plane_state) +
3834 			      dspaddr_offset);
3835 	else
3836 		I915_WRITE_FW(DSPADDR(i9xx_plane),
3837 			      intel_plane_ggtt_offset(plane_state) +
3838 			      dspaddr_offset);
3839 
3840 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3841 }
3842 
3843 static void i9xx_disable_plane(struct intel_plane *plane,
3844 			       const struct intel_crtc_state *crtc_state)
3845 {
3846 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3847 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
3848 	unsigned long irqflags;
3849 	u32 dspcntr;
3850 
3851 	/*
3852 	 * DSPCNTR pipe gamma enable on g4x+ and pipe csc
3853 	 * enable on ilk+ affect the pipe bottom color as
3854 	 * well, so we must configure them even if the plane
3855 	 * is disabled.
3856 	 *
3857 	 * On pre-g4x there is no way to gamma correct the
3858 	 * pipe bottom color but we'll keep on doing this
3859 	 * anyway so that the crtc state readout works correctly.
3860 	 */
3861 	dspcntr = i9xx_plane_ctl_crtc(crtc_state);
3862 
3863 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3864 
3865 	I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr);
3866 	if (INTEL_GEN(dev_priv) >= 4)
3867 		I915_WRITE_FW(DSPSURF(i9xx_plane), 0);
3868 	else
3869 		I915_WRITE_FW(DSPADDR(i9xx_plane), 0);
3870 
3871 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3872 }
3873 
3874 static bool i9xx_plane_get_hw_state(struct intel_plane *plane,
3875 				    enum pipe *pipe)
3876 {
3877 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3878 	enum intel_display_power_domain power_domain;
3879 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
3880 	intel_wakeref_t wakeref;
3881 	bool ret;
3882 	u32 val;
3883 
3884 	/*
3885 	 * Not 100% correct for planes that can move between pipes,
3886 	 * but that's only the case for gen2-4 which don't have any
3887 	 * display power wells.
3888 	 */
3889 	power_domain = POWER_DOMAIN_PIPE(plane->pipe);
3890 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
3891 	if (!wakeref)
3892 		return false;
3893 
3894 	val = I915_READ(DSPCNTR(i9xx_plane));
3895 
3896 	ret = val & DISPLAY_PLANE_ENABLE;
3897 
3898 	if (INTEL_GEN(dev_priv) >= 5)
3899 		*pipe = plane->pipe;
3900 	else
3901 		*pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
3902 			DISPPLANE_SEL_PIPE_SHIFT;
3903 
3904 	intel_display_power_put(dev_priv, power_domain, wakeref);
3905 
3906 	return ret;
3907 }
3908 
3909 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3910 {
3911 	struct drm_device *dev = intel_crtc->base.dev;
3912 	struct drm_i915_private *dev_priv = to_i915(dev);
3913 
3914 	I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3915 	I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3916 	I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3917 }
3918 
3919 /*
3920  * This function detaches (aka. unbinds) unused scalers in hardware
3921  */
3922 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state)
3923 {
3924 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3925 	const struct intel_crtc_scaler_state *scaler_state =
3926 		&crtc_state->scaler_state;
3927 	int i;
3928 
3929 	/* loop through and disable scalers that aren't in use */
3930 	for (i = 0; i < intel_crtc->num_scalers; i++) {
3931 		if (!scaler_state->scalers[i].in_use)
3932 			skl_detach_scaler(intel_crtc, i);
3933 	}
3934 }
3935 
3936 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb,
3937 					  int color_plane, unsigned int rotation)
3938 {
3939 	/*
3940 	 * The stride is either expressed as a multiple of 64 bytes chunks for
3941 	 * linear buffers or in number of tiles for tiled buffers.
3942 	 */
3943 	if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
3944 		return 64;
3945 	else if (drm_rotation_90_or_270(rotation))
3946 		return intel_tile_height(fb, color_plane);
3947 	else
3948 		return intel_tile_width_bytes(fb, color_plane);
3949 }
3950 
3951 u32 skl_plane_stride(const struct intel_plane_state *plane_state,
3952 		     int color_plane)
3953 {
3954 	const struct drm_framebuffer *fb = plane_state->base.fb;
3955 	unsigned int rotation = plane_state->base.rotation;
3956 	u32 stride = plane_state->color_plane[color_plane].stride;
3957 
3958 	if (color_plane >= fb->format->num_planes)
3959 		return 0;
3960 
3961 	return stride / skl_plane_stride_mult(fb, color_plane, rotation);
3962 }
3963 
3964 static u32 skl_plane_ctl_format(u32 pixel_format)
3965 {
3966 	switch (pixel_format) {
3967 	case DRM_FORMAT_C8:
3968 		return PLANE_CTL_FORMAT_INDEXED;
3969 	case DRM_FORMAT_RGB565:
3970 		return PLANE_CTL_FORMAT_RGB_565;
3971 	case DRM_FORMAT_XBGR8888:
3972 	case DRM_FORMAT_ABGR8888:
3973 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3974 	case DRM_FORMAT_XRGB8888:
3975 	case DRM_FORMAT_ARGB8888:
3976 		return PLANE_CTL_FORMAT_XRGB_8888;
3977 	case DRM_FORMAT_XBGR2101010:
3978 		return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX;
3979 	case DRM_FORMAT_XRGB2101010:
3980 		return PLANE_CTL_FORMAT_XRGB_2101010;
3981 	case DRM_FORMAT_XBGR16161616F:
3982 	case DRM_FORMAT_ABGR16161616F:
3983 		return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX;
3984 	case DRM_FORMAT_XRGB16161616F:
3985 	case DRM_FORMAT_ARGB16161616F:
3986 		return PLANE_CTL_FORMAT_XRGB_16161616F;
3987 	case DRM_FORMAT_YUYV:
3988 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3989 	case DRM_FORMAT_YVYU:
3990 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3991 	case DRM_FORMAT_UYVY:
3992 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3993 	case DRM_FORMAT_VYUY:
3994 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3995 	case DRM_FORMAT_NV12:
3996 		return PLANE_CTL_FORMAT_NV12;
3997 	case DRM_FORMAT_P010:
3998 		return PLANE_CTL_FORMAT_P010;
3999 	case DRM_FORMAT_P012:
4000 		return PLANE_CTL_FORMAT_P012;
4001 	case DRM_FORMAT_P016:
4002 		return PLANE_CTL_FORMAT_P016;
4003 	case DRM_FORMAT_Y210:
4004 		return PLANE_CTL_FORMAT_Y210;
4005 	case DRM_FORMAT_Y212:
4006 		return PLANE_CTL_FORMAT_Y212;
4007 	case DRM_FORMAT_Y216:
4008 		return PLANE_CTL_FORMAT_Y216;
4009 	case DRM_FORMAT_XVYU2101010:
4010 		return PLANE_CTL_FORMAT_Y410;
4011 	case DRM_FORMAT_XVYU12_16161616:
4012 		return PLANE_CTL_FORMAT_Y412;
4013 	case DRM_FORMAT_XVYU16161616:
4014 		return PLANE_CTL_FORMAT_Y416;
4015 	default:
4016 		MISSING_CASE(pixel_format);
4017 	}
4018 
4019 	return 0;
4020 }
4021 
4022 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state)
4023 {
4024 	if (!plane_state->base.fb->format->has_alpha)
4025 		return PLANE_CTL_ALPHA_DISABLE;
4026 
4027 	switch (plane_state->base.pixel_blend_mode) {
4028 	case DRM_MODE_BLEND_PIXEL_NONE:
4029 		return PLANE_CTL_ALPHA_DISABLE;
4030 	case DRM_MODE_BLEND_PREMULTI:
4031 		return PLANE_CTL_ALPHA_SW_PREMULTIPLY;
4032 	case DRM_MODE_BLEND_COVERAGE:
4033 		return PLANE_CTL_ALPHA_HW_PREMULTIPLY;
4034 	default:
4035 		MISSING_CASE(plane_state->base.pixel_blend_mode);
4036 		return PLANE_CTL_ALPHA_DISABLE;
4037 	}
4038 }
4039 
4040 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state)
4041 {
4042 	if (!plane_state->base.fb->format->has_alpha)
4043 		return PLANE_COLOR_ALPHA_DISABLE;
4044 
4045 	switch (plane_state->base.pixel_blend_mode) {
4046 	case DRM_MODE_BLEND_PIXEL_NONE:
4047 		return PLANE_COLOR_ALPHA_DISABLE;
4048 	case DRM_MODE_BLEND_PREMULTI:
4049 		return PLANE_COLOR_ALPHA_SW_PREMULTIPLY;
4050 	case DRM_MODE_BLEND_COVERAGE:
4051 		return PLANE_COLOR_ALPHA_HW_PREMULTIPLY;
4052 	default:
4053 		MISSING_CASE(plane_state->base.pixel_blend_mode);
4054 		return PLANE_COLOR_ALPHA_DISABLE;
4055 	}
4056 }
4057 
4058 static u32 skl_plane_ctl_tiling(u64 fb_modifier)
4059 {
4060 	switch (fb_modifier) {
4061 	case DRM_FORMAT_MOD_LINEAR:
4062 		break;
4063 	case I915_FORMAT_MOD_X_TILED:
4064 		return PLANE_CTL_TILED_X;
4065 	case I915_FORMAT_MOD_Y_TILED:
4066 		return PLANE_CTL_TILED_Y;
4067 	case I915_FORMAT_MOD_Y_TILED_CCS:
4068 		return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4069 	case I915_FORMAT_MOD_Yf_TILED:
4070 		return PLANE_CTL_TILED_YF;
4071 	case I915_FORMAT_MOD_Yf_TILED_CCS:
4072 		return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4073 	default:
4074 		MISSING_CASE(fb_modifier);
4075 	}
4076 
4077 	return 0;
4078 }
4079 
4080 static u32 skl_plane_ctl_rotate(unsigned int rotate)
4081 {
4082 	switch (rotate) {
4083 	case DRM_MODE_ROTATE_0:
4084 		break;
4085 	/*
4086 	 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
4087 	 * while i915 HW rotation is clockwise, thats why this swapping.
4088 	 */
4089 	case DRM_MODE_ROTATE_90:
4090 		return PLANE_CTL_ROTATE_270;
4091 	case DRM_MODE_ROTATE_180:
4092 		return PLANE_CTL_ROTATE_180;
4093 	case DRM_MODE_ROTATE_270:
4094 		return PLANE_CTL_ROTATE_90;
4095 	default:
4096 		MISSING_CASE(rotate);
4097 	}
4098 
4099 	return 0;
4100 }
4101 
4102 static u32 cnl_plane_ctl_flip(unsigned int reflect)
4103 {
4104 	switch (reflect) {
4105 	case 0:
4106 		break;
4107 	case DRM_MODE_REFLECT_X:
4108 		return PLANE_CTL_FLIP_HORIZONTAL;
4109 	case DRM_MODE_REFLECT_Y:
4110 	default:
4111 		MISSING_CASE(reflect);
4112 	}
4113 
4114 	return 0;
4115 }
4116 
4117 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4118 {
4119 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4120 	u32 plane_ctl = 0;
4121 
4122 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4123 		return plane_ctl;
4124 
4125 	if (crtc_state->gamma_enable)
4126 		plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE;
4127 
4128 	if (crtc_state->csc_enable)
4129 		plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE;
4130 
4131 	return plane_ctl;
4132 }
4133 
4134 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
4135 		  const struct intel_plane_state *plane_state)
4136 {
4137 	struct drm_i915_private *dev_priv =
4138 		to_i915(plane_state->base.plane->dev);
4139 	const struct drm_framebuffer *fb = plane_state->base.fb;
4140 	unsigned int rotation = plane_state->base.rotation;
4141 	const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
4142 	u32 plane_ctl;
4143 
4144 	plane_ctl = PLANE_CTL_ENABLE;
4145 
4146 	if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) {
4147 		plane_ctl |= skl_plane_ctl_alpha(plane_state);
4148 		plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
4149 
4150 		if (plane_state->base.color_encoding == DRM_COLOR_YCBCR_BT709)
4151 			plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709;
4152 
4153 		if (plane_state->base.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4154 			plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE;
4155 	}
4156 
4157 	plane_ctl |= skl_plane_ctl_format(fb->format->format);
4158 	plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
4159 	plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK);
4160 
4161 	if (INTEL_GEN(dev_priv) >= 10)
4162 		plane_ctl |= cnl_plane_ctl_flip(rotation &
4163 						DRM_MODE_REFLECT_MASK);
4164 
4165 	if (key->flags & I915_SET_COLORKEY_DESTINATION)
4166 		plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
4167 	else if (key->flags & I915_SET_COLORKEY_SOURCE)
4168 		plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
4169 
4170 	return plane_ctl;
4171 }
4172 
4173 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state)
4174 {
4175 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4176 	u32 plane_color_ctl = 0;
4177 
4178 	if (INTEL_GEN(dev_priv) >= 11)
4179 		return plane_color_ctl;
4180 
4181 	if (crtc_state->gamma_enable)
4182 		plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE;
4183 
4184 	if (crtc_state->csc_enable)
4185 		plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE;
4186 
4187 	return plane_color_ctl;
4188 }
4189 
4190 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state,
4191 			const struct intel_plane_state *plane_state)
4192 {
4193 	struct drm_i915_private *dev_priv =
4194 		to_i915(plane_state->base.plane->dev);
4195 	const struct drm_framebuffer *fb = plane_state->base.fb;
4196 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
4197 	u32 plane_color_ctl = 0;
4198 
4199 	plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE;
4200 	plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state);
4201 
4202 	if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) {
4203 		if (plane_state->base.color_encoding == DRM_COLOR_YCBCR_BT709)
4204 			plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709;
4205 		else
4206 			plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV601_TO_RGB709;
4207 
4208 		if (plane_state->base.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4209 			plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
4210 	} else if (fb->format->is_yuv) {
4211 		plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE;
4212 	}
4213 
4214 	return plane_color_ctl;
4215 }
4216 
4217 static int
4218 __intel_display_resume(struct drm_device *dev,
4219 		       struct drm_atomic_state *state,
4220 		       struct drm_modeset_acquire_ctx *ctx)
4221 {
4222 	struct drm_crtc_state *crtc_state;
4223 	struct drm_crtc *crtc;
4224 	int i, ret;
4225 
4226 	intel_modeset_setup_hw_state(dev, ctx);
4227 	i915_redisable_vga(to_i915(dev));
4228 
4229 	if (!state)
4230 		return 0;
4231 
4232 	/*
4233 	 * We've duplicated the state, pointers to the old state are invalid.
4234 	 *
4235 	 * Don't attempt to use the old state until we commit the duplicated state.
4236 	 */
4237 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
4238 		/*
4239 		 * Force recalculation even if we restore
4240 		 * current state. With fast modeset this may not result
4241 		 * in a modeset when the state is compatible.
4242 		 */
4243 		crtc_state->mode_changed = true;
4244 	}
4245 
4246 	/* ignore any reset values/BIOS leftovers in the WM registers */
4247 	if (!HAS_GMCH(to_i915(dev)))
4248 		to_intel_atomic_state(state)->skip_intermediate_wm = true;
4249 
4250 	ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
4251 
4252 	WARN_ON(ret == -EDEADLK);
4253 	return ret;
4254 }
4255 
4256 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
4257 {
4258 	return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display &&
4259 		intel_has_gpu_reset(dev_priv));
4260 }
4261 
4262 void intel_prepare_reset(struct drm_i915_private *dev_priv)
4263 {
4264 	struct drm_device *dev = &dev_priv->drm;
4265 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4266 	struct drm_atomic_state *state;
4267 	int ret;
4268 
4269 	/* reset doesn't touch the display */
4270 	if (!i915_modparams.force_reset_modeset_test &&
4271 	    !gpu_reset_clobbers_display(dev_priv))
4272 		return;
4273 
4274 	/* We have a modeset vs reset deadlock, defensively unbreak it. */
4275 	set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4276 	smp_mb__after_atomic();
4277 	wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET);
4278 
4279 	if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
4280 		DRM_DEBUG_KMS("Modeset potentially stuck, unbreaking through wedging\n");
4281 		intel_gt_set_wedged(&dev_priv->gt);
4282 	}
4283 
4284 	/*
4285 	 * Need mode_config.mutex so that we don't
4286 	 * trample ongoing ->detect() and whatnot.
4287 	 */
4288 	mutex_lock(&dev->mode_config.mutex);
4289 	drm_modeset_acquire_init(ctx, 0);
4290 	while (1) {
4291 		ret = drm_modeset_lock_all_ctx(dev, ctx);
4292 		if (ret != -EDEADLK)
4293 			break;
4294 
4295 		drm_modeset_backoff(ctx);
4296 	}
4297 	/*
4298 	 * Disabling the crtcs gracefully seems nicer. Also the
4299 	 * g33 docs say we should at least disable all the planes.
4300 	 */
4301 	state = drm_atomic_helper_duplicate_state(dev, ctx);
4302 	if (IS_ERR(state)) {
4303 		ret = PTR_ERR(state);
4304 		DRM_ERROR("Duplicating state failed with %i\n", ret);
4305 		return;
4306 	}
4307 
4308 	ret = drm_atomic_helper_disable_all(dev, ctx);
4309 	if (ret) {
4310 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
4311 		drm_atomic_state_put(state);
4312 		return;
4313 	}
4314 
4315 	dev_priv->modeset_restore_state = state;
4316 	state->acquire_ctx = ctx;
4317 }
4318 
4319 void intel_finish_reset(struct drm_i915_private *dev_priv)
4320 {
4321 	struct drm_device *dev = &dev_priv->drm;
4322 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4323 	struct drm_atomic_state *state;
4324 	int ret;
4325 
4326 	/* reset doesn't touch the display */
4327 	if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
4328 		return;
4329 
4330 	state = fetch_and_zero(&dev_priv->modeset_restore_state);
4331 	if (!state)
4332 		goto unlock;
4333 
4334 	/* reset doesn't touch the display */
4335 	if (!gpu_reset_clobbers_display(dev_priv)) {
4336 		/* for testing only restore the display */
4337 		ret = __intel_display_resume(dev, state, ctx);
4338 		if (ret)
4339 			DRM_ERROR("Restoring old state failed with %i\n", ret);
4340 	} else {
4341 		/*
4342 		 * The display has been reset as well,
4343 		 * so need a full re-initialization.
4344 		 */
4345 		intel_pps_unlock_regs_wa(dev_priv);
4346 		intel_modeset_init_hw(dev);
4347 		intel_init_clock_gating(dev_priv);
4348 
4349 		spin_lock_irq(&dev_priv->irq_lock);
4350 		if (dev_priv->display.hpd_irq_setup)
4351 			dev_priv->display.hpd_irq_setup(dev_priv);
4352 		spin_unlock_irq(&dev_priv->irq_lock);
4353 
4354 		ret = __intel_display_resume(dev, state, ctx);
4355 		if (ret)
4356 			DRM_ERROR("Restoring old state failed with %i\n", ret);
4357 
4358 		intel_hpd_init(dev_priv);
4359 	}
4360 
4361 	drm_atomic_state_put(state);
4362 unlock:
4363 	drm_modeset_drop_locks(ctx);
4364 	drm_modeset_acquire_fini(ctx);
4365 	mutex_unlock(&dev->mode_config.mutex);
4366 
4367 	clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4368 }
4369 
4370 static void icl_set_pipe_chicken(struct intel_crtc *crtc)
4371 {
4372 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4373 	enum pipe pipe = crtc->pipe;
4374 	u32 tmp;
4375 
4376 	tmp = I915_READ(PIPE_CHICKEN(pipe));
4377 
4378 	/*
4379 	 * Display WA #1153: icl
4380 	 * enable hardware to bypass the alpha math
4381 	 * and rounding for per-pixel values 00 and 0xff
4382 	 */
4383 	tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
4384 	/*
4385 	 * Display WA # 1605353570: icl
4386 	 * Set the pixel rounding bit to 1 for allowing
4387 	 * passthrough of Frame buffer pixels unmodified
4388 	 * across pipe
4389 	 */
4390 	tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
4391 	I915_WRITE(PIPE_CHICKEN(pipe), tmp);
4392 }
4393 
4394 static void intel_update_pipe_config(const struct intel_crtc_state *old_crtc_state,
4395 				     const struct intel_crtc_state *new_crtc_state)
4396 {
4397 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
4398 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4399 
4400 	/* drm_atomic_helper_update_legacy_modeset_state might not be called. */
4401 	crtc->base.mode = new_crtc_state->base.mode;
4402 
4403 	/*
4404 	 * Update pipe size and adjust fitter if needed: the reason for this is
4405 	 * that in compute_mode_changes we check the native mode (not the pfit
4406 	 * mode) to see if we can flip rather than do a full mode set. In the
4407 	 * fastboot case, we'll flip, but if we don't update the pipesrc and
4408 	 * pfit state, we'll end up with a big fb scanned out into the wrong
4409 	 * sized surface.
4410 	 */
4411 
4412 	I915_WRITE(PIPESRC(crtc->pipe),
4413 		   ((new_crtc_state->pipe_src_w - 1) << 16) |
4414 		   (new_crtc_state->pipe_src_h - 1));
4415 
4416 	/* on skylake this is done by detaching scalers */
4417 	if (INTEL_GEN(dev_priv) >= 9) {
4418 		skl_detach_scalers(new_crtc_state);
4419 
4420 		if (new_crtc_state->pch_pfit.enabled)
4421 			skylake_pfit_enable(new_crtc_state);
4422 	} else if (HAS_PCH_SPLIT(dev_priv)) {
4423 		if (new_crtc_state->pch_pfit.enabled)
4424 			ironlake_pfit_enable(new_crtc_state);
4425 		else if (old_crtc_state->pch_pfit.enabled)
4426 			ironlake_pfit_disable(old_crtc_state);
4427 	}
4428 
4429 	if (INTEL_GEN(dev_priv) >= 11)
4430 		icl_set_pipe_chicken(crtc);
4431 }
4432 
4433 static void intel_fdi_normal_train(struct intel_crtc *crtc)
4434 {
4435 	struct drm_device *dev = crtc->base.dev;
4436 	struct drm_i915_private *dev_priv = to_i915(dev);
4437 	int pipe = crtc->pipe;
4438 	i915_reg_t reg;
4439 	u32 temp;
4440 
4441 	/* enable normal train */
4442 	reg = FDI_TX_CTL(pipe);
4443 	temp = I915_READ(reg);
4444 	if (IS_IVYBRIDGE(dev_priv)) {
4445 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4446 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
4447 	} else {
4448 		temp &= ~FDI_LINK_TRAIN_NONE;
4449 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
4450 	}
4451 	I915_WRITE(reg, temp);
4452 
4453 	reg = FDI_RX_CTL(pipe);
4454 	temp = I915_READ(reg);
4455 	if (HAS_PCH_CPT(dev_priv)) {
4456 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4457 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
4458 	} else {
4459 		temp &= ~FDI_LINK_TRAIN_NONE;
4460 		temp |= FDI_LINK_TRAIN_NONE;
4461 	}
4462 	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
4463 
4464 	/* wait one idle pattern time */
4465 	POSTING_READ(reg);
4466 	udelay(1000);
4467 
4468 	/* IVB wants error correction enabled */
4469 	if (IS_IVYBRIDGE(dev_priv))
4470 		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
4471 			   FDI_FE_ERRC_ENABLE);
4472 }
4473 
4474 /* The FDI link training functions for ILK/Ibexpeak. */
4475 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
4476 				    const struct intel_crtc_state *crtc_state)
4477 {
4478 	struct drm_device *dev = crtc->base.dev;
4479 	struct drm_i915_private *dev_priv = to_i915(dev);
4480 	int pipe = crtc->pipe;
4481 	i915_reg_t reg;
4482 	u32 temp, tries;
4483 
4484 	/* FDI needs bits from pipe first */
4485 	assert_pipe_enabled(dev_priv, pipe);
4486 
4487 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4488 	   for train result */
4489 	reg = FDI_RX_IMR(pipe);
4490 	temp = I915_READ(reg);
4491 	temp &= ~FDI_RX_SYMBOL_LOCK;
4492 	temp &= ~FDI_RX_BIT_LOCK;
4493 	I915_WRITE(reg, temp);
4494 	I915_READ(reg);
4495 	udelay(150);
4496 
4497 	/* enable CPU FDI TX and PCH FDI RX */
4498 	reg = FDI_TX_CTL(pipe);
4499 	temp = I915_READ(reg);
4500 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
4501 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4502 	temp &= ~FDI_LINK_TRAIN_NONE;
4503 	temp |= FDI_LINK_TRAIN_PATTERN_1;
4504 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
4505 
4506 	reg = FDI_RX_CTL(pipe);
4507 	temp = I915_READ(reg);
4508 	temp &= ~FDI_LINK_TRAIN_NONE;
4509 	temp |= FDI_LINK_TRAIN_PATTERN_1;
4510 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
4511 
4512 	POSTING_READ(reg);
4513 	udelay(150);
4514 
4515 	/* Ironlake workaround, enable clock pointer after FDI enable*/
4516 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4517 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
4518 		   FDI_RX_PHASE_SYNC_POINTER_EN);
4519 
4520 	reg = FDI_RX_IIR(pipe);
4521 	for (tries = 0; tries < 5; tries++) {
4522 		temp = I915_READ(reg);
4523 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4524 
4525 		if ((temp & FDI_RX_BIT_LOCK)) {
4526 			DRM_DEBUG_KMS("FDI train 1 done.\n");
4527 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4528 			break;
4529 		}
4530 	}
4531 	if (tries == 5)
4532 		DRM_ERROR("FDI train 1 fail!\n");
4533 
4534 	/* Train 2 */
4535 	reg = FDI_TX_CTL(pipe);
4536 	temp = I915_READ(reg);
4537 	temp &= ~FDI_LINK_TRAIN_NONE;
4538 	temp |= FDI_LINK_TRAIN_PATTERN_2;
4539 	I915_WRITE(reg, temp);
4540 
4541 	reg = FDI_RX_CTL(pipe);
4542 	temp = I915_READ(reg);
4543 	temp &= ~FDI_LINK_TRAIN_NONE;
4544 	temp |= FDI_LINK_TRAIN_PATTERN_2;
4545 	I915_WRITE(reg, temp);
4546 
4547 	POSTING_READ(reg);
4548 	udelay(150);
4549 
4550 	reg = FDI_RX_IIR(pipe);
4551 	for (tries = 0; tries < 5; tries++) {
4552 		temp = I915_READ(reg);
4553 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4554 
4555 		if (temp & FDI_RX_SYMBOL_LOCK) {
4556 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4557 			DRM_DEBUG_KMS("FDI train 2 done.\n");
4558 			break;
4559 		}
4560 	}
4561 	if (tries == 5)
4562 		DRM_ERROR("FDI train 2 fail!\n");
4563 
4564 	DRM_DEBUG_KMS("FDI train done\n");
4565 
4566 }
4567 
4568 static const int snb_b_fdi_train_param[] = {
4569 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
4570 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
4571 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
4572 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
4573 };
4574 
4575 /* The FDI link training functions for SNB/Cougarpoint. */
4576 static void gen6_fdi_link_train(struct intel_crtc *crtc,
4577 				const struct intel_crtc_state *crtc_state)
4578 {
4579 	struct drm_device *dev = crtc->base.dev;
4580 	struct drm_i915_private *dev_priv = to_i915(dev);
4581 	int pipe = crtc->pipe;
4582 	i915_reg_t reg;
4583 	u32 temp, i, retry;
4584 
4585 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4586 	   for train result */
4587 	reg = FDI_RX_IMR(pipe);
4588 	temp = I915_READ(reg);
4589 	temp &= ~FDI_RX_SYMBOL_LOCK;
4590 	temp &= ~FDI_RX_BIT_LOCK;
4591 	I915_WRITE(reg, temp);
4592 
4593 	POSTING_READ(reg);
4594 	udelay(150);
4595 
4596 	/* enable CPU FDI TX and PCH FDI RX */
4597 	reg = FDI_TX_CTL(pipe);
4598 	temp = I915_READ(reg);
4599 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
4600 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4601 	temp &= ~FDI_LINK_TRAIN_NONE;
4602 	temp |= FDI_LINK_TRAIN_PATTERN_1;
4603 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4604 	/* SNB-B */
4605 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
4606 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
4607 
4608 	I915_WRITE(FDI_RX_MISC(pipe),
4609 		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4610 
4611 	reg = FDI_RX_CTL(pipe);
4612 	temp = I915_READ(reg);
4613 	if (HAS_PCH_CPT(dev_priv)) {
4614 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4615 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4616 	} else {
4617 		temp &= ~FDI_LINK_TRAIN_NONE;
4618 		temp |= FDI_LINK_TRAIN_PATTERN_1;
4619 	}
4620 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
4621 
4622 	POSTING_READ(reg);
4623 	udelay(150);
4624 
4625 	for (i = 0; i < 4; i++) {
4626 		reg = FDI_TX_CTL(pipe);
4627 		temp = I915_READ(reg);
4628 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4629 		temp |= snb_b_fdi_train_param[i];
4630 		I915_WRITE(reg, temp);
4631 
4632 		POSTING_READ(reg);
4633 		udelay(500);
4634 
4635 		for (retry = 0; retry < 5; retry++) {
4636 			reg = FDI_RX_IIR(pipe);
4637 			temp = I915_READ(reg);
4638 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4639 			if (temp & FDI_RX_BIT_LOCK) {
4640 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4641 				DRM_DEBUG_KMS("FDI train 1 done.\n");
4642 				break;
4643 			}
4644 			udelay(50);
4645 		}
4646 		if (retry < 5)
4647 			break;
4648 	}
4649 	if (i == 4)
4650 		DRM_ERROR("FDI train 1 fail!\n");
4651 
4652 	/* Train 2 */
4653 	reg = FDI_TX_CTL(pipe);
4654 	temp = I915_READ(reg);
4655 	temp &= ~FDI_LINK_TRAIN_NONE;
4656 	temp |= FDI_LINK_TRAIN_PATTERN_2;
4657 	if (IS_GEN(dev_priv, 6)) {
4658 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4659 		/* SNB-B */
4660 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
4661 	}
4662 	I915_WRITE(reg, temp);
4663 
4664 	reg = FDI_RX_CTL(pipe);
4665 	temp = I915_READ(reg);
4666 	if (HAS_PCH_CPT(dev_priv)) {
4667 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4668 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4669 	} else {
4670 		temp &= ~FDI_LINK_TRAIN_NONE;
4671 		temp |= FDI_LINK_TRAIN_PATTERN_2;
4672 	}
4673 	I915_WRITE(reg, temp);
4674 
4675 	POSTING_READ(reg);
4676 	udelay(150);
4677 
4678 	for (i = 0; i < 4; i++) {
4679 		reg = FDI_TX_CTL(pipe);
4680 		temp = I915_READ(reg);
4681 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4682 		temp |= snb_b_fdi_train_param[i];
4683 		I915_WRITE(reg, temp);
4684 
4685 		POSTING_READ(reg);
4686 		udelay(500);
4687 
4688 		for (retry = 0; retry < 5; retry++) {
4689 			reg = FDI_RX_IIR(pipe);
4690 			temp = I915_READ(reg);
4691 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4692 			if (temp & FDI_RX_SYMBOL_LOCK) {
4693 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4694 				DRM_DEBUG_KMS("FDI train 2 done.\n");
4695 				break;
4696 			}
4697 			udelay(50);
4698 		}
4699 		if (retry < 5)
4700 			break;
4701 	}
4702 	if (i == 4)
4703 		DRM_ERROR("FDI train 2 fail!\n");
4704 
4705 	DRM_DEBUG_KMS("FDI train done.\n");
4706 }
4707 
4708 /* Manual link training for Ivy Bridge A0 parts */
4709 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
4710 				      const struct intel_crtc_state *crtc_state)
4711 {
4712 	struct drm_device *dev = crtc->base.dev;
4713 	struct drm_i915_private *dev_priv = to_i915(dev);
4714 	int pipe = crtc->pipe;
4715 	i915_reg_t reg;
4716 	u32 temp, i, j;
4717 
4718 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4719 	   for train result */
4720 	reg = FDI_RX_IMR(pipe);
4721 	temp = I915_READ(reg);
4722 	temp &= ~FDI_RX_SYMBOL_LOCK;
4723 	temp &= ~FDI_RX_BIT_LOCK;
4724 	I915_WRITE(reg, temp);
4725 
4726 	POSTING_READ(reg);
4727 	udelay(150);
4728 
4729 	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4730 		      I915_READ(FDI_RX_IIR(pipe)));
4731 
4732 	/* Try each vswing and preemphasis setting twice before moving on */
4733 	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4734 		/* disable first in case we need to retry */
4735 		reg = FDI_TX_CTL(pipe);
4736 		temp = I915_READ(reg);
4737 		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4738 		temp &= ~FDI_TX_ENABLE;
4739 		I915_WRITE(reg, temp);
4740 
4741 		reg = FDI_RX_CTL(pipe);
4742 		temp = I915_READ(reg);
4743 		temp &= ~FDI_LINK_TRAIN_AUTO;
4744 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4745 		temp &= ~FDI_RX_ENABLE;
4746 		I915_WRITE(reg, temp);
4747 
4748 		/* enable CPU FDI TX and PCH FDI RX */
4749 		reg = FDI_TX_CTL(pipe);
4750 		temp = I915_READ(reg);
4751 		temp &= ~FDI_DP_PORT_WIDTH_MASK;
4752 		temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4753 		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4754 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4755 		temp |= snb_b_fdi_train_param[j/2];
4756 		temp |= FDI_COMPOSITE_SYNC;
4757 		I915_WRITE(reg, temp | FDI_TX_ENABLE);
4758 
4759 		I915_WRITE(FDI_RX_MISC(pipe),
4760 			   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4761 
4762 		reg = FDI_RX_CTL(pipe);
4763 		temp = I915_READ(reg);
4764 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4765 		temp |= FDI_COMPOSITE_SYNC;
4766 		I915_WRITE(reg, temp | FDI_RX_ENABLE);
4767 
4768 		POSTING_READ(reg);
4769 		udelay(1); /* should be 0.5us */
4770 
4771 		for (i = 0; i < 4; i++) {
4772 			reg = FDI_RX_IIR(pipe);
4773 			temp = I915_READ(reg);
4774 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4775 
4776 			if (temp & FDI_RX_BIT_LOCK ||
4777 			    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4778 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4779 				DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4780 					      i);
4781 				break;
4782 			}
4783 			udelay(1); /* should be 0.5us */
4784 		}
4785 		if (i == 4) {
4786 			DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4787 			continue;
4788 		}
4789 
4790 		/* Train 2 */
4791 		reg = FDI_TX_CTL(pipe);
4792 		temp = I915_READ(reg);
4793 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4794 		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4795 		I915_WRITE(reg, temp);
4796 
4797 		reg = FDI_RX_CTL(pipe);
4798 		temp = I915_READ(reg);
4799 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4800 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4801 		I915_WRITE(reg, temp);
4802 
4803 		POSTING_READ(reg);
4804 		udelay(2); /* should be 1.5us */
4805 
4806 		for (i = 0; i < 4; i++) {
4807 			reg = FDI_RX_IIR(pipe);
4808 			temp = I915_READ(reg);
4809 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4810 
4811 			if (temp & FDI_RX_SYMBOL_LOCK ||
4812 			    (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4813 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4814 				DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4815 					      i);
4816 				goto train_done;
4817 			}
4818 			udelay(2); /* should be 1.5us */
4819 		}
4820 		if (i == 4)
4821 			DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4822 	}
4823 
4824 train_done:
4825 	DRM_DEBUG_KMS("FDI train done.\n");
4826 }
4827 
4828 static void ironlake_fdi_pll_enable(const struct intel_crtc_state *crtc_state)
4829 {
4830 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4831 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4832 	int pipe = intel_crtc->pipe;
4833 	i915_reg_t reg;
4834 	u32 temp;
4835 
4836 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4837 	reg = FDI_RX_CTL(pipe);
4838 	temp = I915_READ(reg);
4839 	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4840 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4841 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4842 	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4843 
4844 	POSTING_READ(reg);
4845 	udelay(200);
4846 
4847 	/* Switch from Rawclk to PCDclk */
4848 	temp = I915_READ(reg);
4849 	I915_WRITE(reg, temp | FDI_PCDCLK);
4850 
4851 	POSTING_READ(reg);
4852 	udelay(200);
4853 
4854 	/* Enable CPU FDI TX PLL, always on for Ironlake */
4855 	reg = FDI_TX_CTL(pipe);
4856 	temp = I915_READ(reg);
4857 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4858 		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4859 
4860 		POSTING_READ(reg);
4861 		udelay(100);
4862 	}
4863 }
4864 
4865 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4866 {
4867 	struct drm_device *dev = intel_crtc->base.dev;
4868 	struct drm_i915_private *dev_priv = to_i915(dev);
4869 	int pipe = intel_crtc->pipe;
4870 	i915_reg_t reg;
4871 	u32 temp;
4872 
4873 	/* Switch from PCDclk to Rawclk */
4874 	reg = FDI_RX_CTL(pipe);
4875 	temp = I915_READ(reg);
4876 	I915_WRITE(reg, temp & ~FDI_PCDCLK);
4877 
4878 	/* Disable CPU FDI TX PLL */
4879 	reg = FDI_TX_CTL(pipe);
4880 	temp = I915_READ(reg);
4881 	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4882 
4883 	POSTING_READ(reg);
4884 	udelay(100);
4885 
4886 	reg = FDI_RX_CTL(pipe);
4887 	temp = I915_READ(reg);
4888 	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4889 
4890 	/* Wait for the clocks to turn off. */
4891 	POSTING_READ(reg);
4892 	udelay(100);
4893 }
4894 
4895 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4896 {
4897 	struct drm_device *dev = crtc->dev;
4898 	struct drm_i915_private *dev_priv = to_i915(dev);
4899 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4900 	int pipe = intel_crtc->pipe;
4901 	i915_reg_t reg;
4902 	u32 temp;
4903 
4904 	/* disable CPU FDI tx and PCH FDI rx */
4905 	reg = FDI_TX_CTL(pipe);
4906 	temp = I915_READ(reg);
4907 	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4908 	POSTING_READ(reg);
4909 
4910 	reg = FDI_RX_CTL(pipe);
4911 	temp = I915_READ(reg);
4912 	temp &= ~(0x7 << 16);
4913 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4914 	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4915 
4916 	POSTING_READ(reg);
4917 	udelay(100);
4918 
4919 	/* Ironlake workaround, disable clock pointer after downing FDI */
4920 	if (HAS_PCH_IBX(dev_priv))
4921 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4922 
4923 	/* still set train pattern 1 */
4924 	reg = FDI_TX_CTL(pipe);
4925 	temp = I915_READ(reg);
4926 	temp &= ~FDI_LINK_TRAIN_NONE;
4927 	temp |= FDI_LINK_TRAIN_PATTERN_1;
4928 	I915_WRITE(reg, temp);
4929 
4930 	reg = FDI_RX_CTL(pipe);
4931 	temp = I915_READ(reg);
4932 	if (HAS_PCH_CPT(dev_priv)) {
4933 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4934 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4935 	} else {
4936 		temp &= ~FDI_LINK_TRAIN_NONE;
4937 		temp |= FDI_LINK_TRAIN_PATTERN_1;
4938 	}
4939 	/* BPC in FDI rx is consistent with that in PIPECONF */
4940 	temp &= ~(0x07 << 16);
4941 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4942 	I915_WRITE(reg, temp);
4943 
4944 	POSTING_READ(reg);
4945 	udelay(100);
4946 }
4947 
4948 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4949 {
4950 	struct drm_crtc *crtc;
4951 	bool cleanup_done;
4952 
4953 	drm_for_each_crtc(crtc, &dev_priv->drm) {
4954 		struct drm_crtc_commit *commit;
4955 		spin_lock(&crtc->commit_lock);
4956 		commit = list_first_entry_or_null(&crtc->commit_list,
4957 						  struct drm_crtc_commit, commit_entry);
4958 		cleanup_done = commit ?
4959 			try_wait_for_completion(&commit->cleanup_done) : true;
4960 		spin_unlock(&crtc->commit_lock);
4961 
4962 		if (cleanup_done)
4963 			continue;
4964 
4965 		drm_crtc_wait_one_vblank(crtc);
4966 
4967 		return true;
4968 	}
4969 
4970 	return false;
4971 }
4972 
4973 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4974 {
4975 	u32 temp;
4976 
4977 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4978 
4979 	mutex_lock(&dev_priv->sb_lock);
4980 
4981 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4982 	temp |= SBI_SSCCTL_DISABLE;
4983 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4984 
4985 	mutex_unlock(&dev_priv->sb_lock);
4986 }
4987 
4988 /* Program iCLKIP clock to the desired frequency */
4989 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state)
4990 {
4991 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4992 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4993 	int clock = crtc_state->base.adjusted_mode.crtc_clock;
4994 	u32 divsel, phaseinc, auxdiv, phasedir = 0;
4995 	u32 temp;
4996 
4997 	lpt_disable_iclkip(dev_priv);
4998 
4999 	/* The iCLK virtual clock root frequency is in MHz,
5000 	 * but the adjusted_mode->crtc_clock in in KHz. To get the
5001 	 * divisors, it is necessary to divide one by another, so we
5002 	 * convert the virtual clock precision to KHz here for higher
5003 	 * precision.
5004 	 */
5005 	for (auxdiv = 0; auxdiv < 2; auxdiv++) {
5006 		u32 iclk_virtual_root_freq = 172800 * 1000;
5007 		u32 iclk_pi_range = 64;
5008 		u32 desired_divisor;
5009 
5010 		desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5011 						    clock << auxdiv);
5012 		divsel = (desired_divisor / iclk_pi_range) - 2;
5013 		phaseinc = desired_divisor % iclk_pi_range;
5014 
5015 		/*
5016 		 * Near 20MHz is a corner case which is
5017 		 * out of range for the 7-bit divisor
5018 		 */
5019 		if (divsel <= 0x7f)
5020 			break;
5021 	}
5022 
5023 	/* This should not happen with any sane values */
5024 	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
5025 		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
5026 	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
5027 		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
5028 
5029 	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
5030 			clock,
5031 			auxdiv,
5032 			divsel,
5033 			phasedir,
5034 			phaseinc);
5035 
5036 	mutex_lock(&dev_priv->sb_lock);
5037 
5038 	/* Program SSCDIVINTPHASE6 */
5039 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5040 	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
5041 	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
5042 	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
5043 	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
5044 	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
5045 	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
5046 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
5047 
5048 	/* Program SSCAUXDIV */
5049 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5050 	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
5051 	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
5052 	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
5053 
5054 	/* Enable modulator and associated divider */
5055 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5056 	temp &= ~SBI_SSCCTL_DISABLE;
5057 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5058 
5059 	mutex_unlock(&dev_priv->sb_lock);
5060 
5061 	/* Wait for initialization time */
5062 	udelay(24);
5063 
5064 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
5065 }
5066 
5067 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
5068 {
5069 	u32 divsel, phaseinc, auxdiv;
5070 	u32 iclk_virtual_root_freq = 172800 * 1000;
5071 	u32 iclk_pi_range = 64;
5072 	u32 desired_divisor;
5073 	u32 temp;
5074 
5075 	if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
5076 		return 0;
5077 
5078 	mutex_lock(&dev_priv->sb_lock);
5079 
5080 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5081 	if (temp & SBI_SSCCTL_DISABLE) {
5082 		mutex_unlock(&dev_priv->sb_lock);
5083 		return 0;
5084 	}
5085 
5086 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5087 	divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
5088 		SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
5089 	phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
5090 		SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
5091 
5092 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5093 	auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
5094 		SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
5095 
5096 	mutex_unlock(&dev_priv->sb_lock);
5097 
5098 	desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
5099 
5100 	return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5101 				 desired_divisor << auxdiv);
5102 }
5103 
5104 static void ironlake_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state,
5105 						enum pipe pch_transcoder)
5106 {
5107 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5108 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5109 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5110 
5111 	I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
5112 		   I915_READ(HTOTAL(cpu_transcoder)));
5113 	I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
5114 		   I915_READ(HBLANK(cpu_transcoder)));
5115 	I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
5116 		   I915_READ(HSYNC(cpu_transcoder)));
5117 
5118 	I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
5119 		   I915_READ(VTOTAL(cpu_transcoder)));
5120 	I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
5121 		   I915_READ(VBLANK(cpu_transcoder)));
5122 	I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
5123 		   I915_READ(VSYNC(cpu_transcoder)));
5124 	I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
5125 		   I915_READ(VSYNCSHIFT(cpu_transcoder)));
5126 }
5127 
5128 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable)
5129 {
5130 	u32 temp;
5131 
5132 	temp = I915_READ(SOUTH_CHICKEN1);
5133 	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
5134 		return;
5135 
5136 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5137 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5138 
5139 	temp &= ~FDI_BC_BIFURCATION_SELECT;
5140 	if (enable)
5141 		temp |= FDI_BC_BIFURCATION_SELECT;
5142 
5143 	DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
5144 	I915_WRITE(SOUTH_CHICKEN1, temp);
5145 	POSTING_READ(SOUTH_CHICKEN1);
5146 }
5147 
5148 static void ivybridge_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state)
5149 {
5150 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5151 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5152 
5153 	switch (crtc->pipe) {
5154 	case PIPE_A:
5155 		break;
5156 	case PIPE_B:
5157 		if (crtc_state->fdi_lanes > 2)
5158 			cpt_set_fdi_bc_bifurcation(dev_priv, false);
5159 		else
5160 			cpt_set_fdi_bc_bifurcation(dev_priv, true);
5161 
5162 		break;
5163 	case PIPE_C:
5164 		cpt_set_fdi_bc_bifurcation(dev_priv, true);
5165 
5166 		break;
5167 	default:
5168 		BUG();
5169 	}
5170 }
5171 
5172 /*
5173  * Finds the encoder associated with the given CRTC. This can only be
5174  * used when we know that the CRTC isn't feeding multiple encoders!
5175  */
5176 static struct intel_encoder *
5177 intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
5178 			   const struct intel_crtc_state *crtc_state)
5179 {
5180 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5181 	const struct drm_connector_state *connector_state;
5182 	const struct drm_connector *connector;
5183 	struct intel_encoder *encoder = NULL;
5184 	int num_encoders = 0;
5185 	int i;
5186 
5187 	for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
5188 		if (connector_state->crtc != &crtc->base)
5189 			continue;
5190 
5191 		encoder = to_intel_encoder(connector_state->best_encoder);
5192 		num_encoders++;
5193 	}
5194 
5195 	WARN(num_encoders != 1, "%d encoders for pipe %c\n",
5196 	     num_encoders, pipe_name(crtc->pipe));
5197 
5198 	return encoder;
5199 }
5200 
5201 /*
5202  * Enable PCH resources required for PCH ports:
5203  *   - PCH PLLs
5204  *   - FDI training & RX/TX
5205  *   - update transcoder timings
5206  *   - DP transcoding bits
5207  *   - transcoder
5208  */
5209 static void ironlake_pch_enable(const struct intel_atomic_state *state,
5210 				const struct intel_crtc_state *crtc_state)
5211 {
5212 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5213 	struct drm_device *dev = crtc->base.dev;
5214 	struct drm_i915_private *dev_priv = to_i915(dev);
5215 	int pipe = crtc->pipe;
5216 	u32 temp;
5217 
5218 	assert_pch_transcoder_disabled(dev_priv, pipe);
5219 
5220 	if (IS_IVYBRIDGE(dev_priv))
5221 		ivybridge_update_fdi_bc_bifurcation(crtc_state);
5222 
5223 	/* Write the TU size bits before fdi link training, so that error
5224 	 * detection works. */
5225 	I915_WRITE(FDI_RX_TUSIZE1(pipe),
5226 		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
5227 
5228 	/* For PCH output, training FDI link */
5229 	dev_priv->display.fdi_link_train(crtc, crtc_state);
5230 
5231 	/* We need to program the right clock selection before writing the pixel
5232 	 * mutliplier into the DPLL. */
5233 	if (HAS_PCH_CPT(dev_priv)) {
5234 		u32 sel;
5235 
5236 		temp = I915_READ(PCH_DPLL_SEL);
5237 		temp |= TRANS_DPLL_ENABLE(pipe);
5238 		sel = TRANS_DPLLB_SEL(pipe);
5239 		if (crtc_state->shared_dpll ==
5240 		    intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
5241 			temp |= sel;
5242 		else
5243 			temp &= ~sel;
5244 		I915_WRITE(PCH_DPLL_SEL, temp);
5245 	}
5246 
5247 	/* XXX: pch pll's can be enabled any time before we enable the PCH
5248 	 * transcoder, and we actually should do this to not upset any PCH
5249 	 * transcoder that already use the clock when we share it.
5250 	 *
5251 	 * Note that enable_shared_dpll tries to do the right thing, but
5252 	 * get_shared_dpll unconditionally resets the pll - we need that to have
5253 	 * the right LVDS enable sequence. */
5254 	intel_enable_shared_dpll(crtc_state);
5255 
5256 	/* set transcoder timing, panel must allow it */
5257 	assert_panel_unlocked(dev_priv, pipe);
5258 	ironlake_pch_transcoder_set_timings(crtc_state, pipe);
5259 
5260 	intel_fdi_normal_train(crtc);
5261 
5262 	/* For PCH DP, enable TRANS_DP_CTL */
5263 	if (HAS_PCH_CPT(dev_priv) &&
5264 	    intel_crtc_has_dp_encoder(crtc_state)) {
5265 		const struct drm_display_mode *adjusted_mode =
5266 			&crtc_state->base.adjusted_mode;
5267 		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5268 		i915_reg_t reg = TRANS_DP_CTL(pipe);
5269 		enum port port;
5270 
5271 		temp = I915_READ(reg);
5272 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
5273 			  TRANS_DP_SYNC_MASK |
5274 			  TRANS_DP_BPC_MASK);
5275 		temp |= TRANS_DP_OUTPUT_ENABLE;
5276 		temp |= bpc << 9; /* same format but at 11:9 */
5277 
5278 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5279 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
5280 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5281 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
5282 
5283 		port = intel_get_crtc_new_encoder(state, crtc_state)->port;
5284 		WARN_ON(port < PORT_B || port > PORT_D);
5285 		temp |= TRANS_DP_PORT_SEL(port);
5286 
5287 		I915_WRITE(reg, temp);
5288 	}
5289 
5290 	ironlake_enable_pch_transcoder(crtc_state);
5291 }
5292 
5293 static void lpt_pch_enable(const struct intel_atomic_state *state,
5294 			   const struct intel_crtc_state *crtc_state)
5295 {
5296 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5297 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5298 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5299 
5300 	assert_pch_transcoder_disabled(dev_priv, PIPE_A);
5301 
5302 	lpt_program_iclkip(crtc_state);
5303 
5304 	/* Set transcoder timing. */
5305 	ironlake_pch_transcoder_set_timings(crtc_state, PIPE_A);
5306 
5307 	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
5308 }
5309 
5310 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
5311 {
5312 	struct drm_i915_private *dev_priv = to_i915(dev);
5313 	i915_reg_t dslreg = PIPEDSL(pipe);
5314 	u32 temp;
5315 
5316 	temp = I915_READ(dslreg);
5317 	udelay(500);
5318 	if (wait_for(I915_READ(dslreg) != temp, 5)) {
5319 		if (wait_for(I915_READ(dslreg) != temp, 5))
5320 			DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
5321 	}
5322 }
5323 
5324 /*
5325  * The hardware phase 0.0 refers to the center of the pixel.
5326  * We want to start from the top/left edge which is phase
5327  * -0.5. That matches how the hardware calculates the scaling
5328  * factors (from top-left of the first pixel to bottom-right
5329  * of the last pixel, as opposed to the pixel centers).
5330  *
5331  * For 4:2:0 subsampled chroma planes we obviously have to
5332  * adjust that so that the chroma sample position lands in
5333  * the right spot.
5334  *
5335  * Note that for packed YCbCr 4:2:2 formats there is no way to
5336  * control chroma siting. The hardware simply replicates the
5337  * chroma samples for both of the luma samples, and thus we don't
5338  * actually get the expected MPEG2 chroma siting convention :(
5339  * The same behaviour is observed on pre-SKL platforms as well.
5340  *
5341  * Theory behind the formula (note that we ignore sub-pixel
5342  * source coordinates):
5343  * s = source sample position
5344  * d = destination sample position
5345  *
5346  * Downscaling 4:1:
5347  * -0.5
5348  * | 0.0
5349  * | |     1.5 (initial phase)
5350  * | |     |
5351  * v v     v
5352  * | s | s | s | s |
5353  * |       d       |
5354  *
5355  * Upscaling 1:4:
5356  * -0.5
5357  * | -0.375 (initial phase)
5358  * | |     0.0
5359  * | |     |
5360  * v v     v
5361  * |       s       |
5362  * | d | d | d | d |
5363  */
5364 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
5365 {
5366 	int phase = -0x8000;
5367 	u16 trip = 0;
5368 
5369 	if (chroma_cosited)
5370 		phase += (sub - 1) * 0x8000 / sub;
5371 
5372 	phase += scale / (2 * sub);
5373 
5374 	/*
5375 	 * Hardware initial phase limited to [-0.5:1.5].
5376 	 * Since the max hardware scale factor is 3.0, we
5377 	 * should never actually excdeed 1.0 here.
5378 	 */
5379 	WARN_ON(phase < -0x8000 || phase > 0x18000);
5380 
5381 	if (phase < 0)
5382 		phase = 0x10000 + phase;
5383 	else
5384 		trip = PS_PHASE_TRIP;
5385 
5386 	return ((phase >> 2) & PS_PHASE_MASK) | trip;
5387 }
5388 
5389 #define SKL_MIN_SRC_W 8
5390 #define SKL_MAX_SRC_W 4096
5391 #define SKL_MIN_SRC_H 8
5392 #define SKL_MAX_SRC_H 4096
5393 #define SKL_MIN_DST_W 8
5394 #define SKL_MAX_DST_W 4096
5395 #define SKL_MIN_DST_H 8
5396 #define SKL_MAX_DST_H 4096
5397 #define ICL_MAX_SRC_W 5120
5398 #define ICL_MAX_SRC_H 4096
5399 #define ICL_MAX_DST_W 5120
5400 #define ICL_MAX_DST_H 4096
5401 #define SKL_MIN_YUV_420_SRC_W 16
5402 #define SKL_MIN_YUV_420_SRC_H 16
5403 
5404 static int
5405 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
5406 		  unsigned int scaler_user, int *scaler_id,
5407 		  int src_w, int src_h, int dst_w, int dst_h,
5408 		  const struct drm_format_info *format, bool need_scaler)
5409 {
5410 	struct intel_crtc_scaler_state *scaler_state =
5411 		&crtc_state->scaler_state;
5412 	struct intel_crtc *intel_crtc =
5413 		to_intel_crtc(crtc_state->base.crtc);
5414 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5415 	const struct drm_display_mode *adjusted_mode =
5416 		&crtc_state->base.adjusted_mode;
5417 
5418 	/*
5419 	 * Src coordinates are already rotated by 270 degrees for
5420 	 * the 90/270 degree plane rotation cases (to match the
5421 	 * GTT mapping), hence no need to account for rotation here.
5422 	 */
5423 	if (src_w != dst_w || src_h != dst_h)
5424 		need_scaler = true;
5425 
5426 	/*
5427 	 * Scaling/fitting not supported in IF-ID mode in GEN9+
5428 	 * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
5429 	 * Once NV12 is enabled, handle it here while allocating scaler
5430 	 * for NV12.
5431 	 */
5432 	if (INTEL_GEN(dev_priv) >= 9 && crtc_state->base.enable &&
5433 	    need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5434 		DRM_DEBUG_KMS("Pipe/Plane scaling not supported with IF-ID mode\n");
5435 		return -EINVAL;
5436 	}
5437 
5438 	/*
5439 	 * if plane is being disabled or scaler is no more required or force detach
5440 	 *  - free scaler binded to this plane/crtc
5441 	 *  - in order to do this, update crtc->scaler_usage
5442 	 *
5443 	 * Here scaler state in crtc_state is set free so that
5444 	 * scaler can be assigned to other user. Actual register
5445 	 * update to free the scaler is done in plane/panel-fit programming.
5446 	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
5447 	 */
5448 	if (force_detach || !need_scaler) {
5449 		if (*scaler_id >= 0) {
5450 			scaler_state->scaler_users &= ~(1 << scaler_user);
5451 			scaler_state->scalers[*scaler_id].in_use = 0;
5452 
5453 			DRM_DEBUG_KMS("scaler_user index %u.%u: "
5454 				"Staged freeing scaler id %d scaler_users = 0x%x\n",
5455 				intel_crtc->pipe, scaler_user, *scaler_id,
5456 				scaler_state->scaler_users);
5457 			*scaler_id = -1;
5458 		}
5459 		return 0;
5460 	}
5461 
5462 	if (format && is_planar_yuv_format(format->format) &&
5463 	    (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) {
5464 		DRM_DEBUG_KMS("Planar YUV: src dimensions not met\n");
5465 		return -EINVAL;
5466 	}
5467 
5468 	/* range checks */
5469 	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
5470 	    dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
5471 	    (INTEL_GEN(dev_priv) >= 11 &&
5472 	     (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H ||
5473 	      dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) ||
5474 	    (INTEL_GEN(dev_priv) < 11 &&
5475 	     (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
5476 	      dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H)))	{
5477 		DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
5478 			"size is out of scaler range\n",
5479 			intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
5480 		return -EINVAL;
5481 	}
5482 
5483 	/* mark this plane as a scaler user in crtc_state */
5484 	scaler_state->scaler_users |= (1 << scaler_user);
5485 	DRM_DEBUG_KMS("scaler_user index %u.%u: "
5486 		"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
5487 		intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
5488 		scaler_state->scaler_users);
5489 
5490 	return 0;
5491 }
5492 
5493 /**
5494  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
5495  *
5496  * @state: crtc's scaler state
5497  *
5498  * Return
5499  *     0 - scaler_usage updated successfully
5500  *    error - requested scaling cannot be supported or other error condition
5501  */
5502 int skl_update_scaler_crtc(struct intel_crtc_state *state)
5503 {
5504 	const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
5505 	bool need_scaler = false;
5506 
5507 	if (state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
5508 		need_scaler = true;
5509 
5510 	return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
5511 				 &state->scaler_state.scaler_id,
5512 				 state->pipe_src_w, state->pipe_src_h,
5513 				 adjusted_mode->crtc_hdisplay,
5514 				 adjusted_mode->crtc_vdisplay, NULL, need_scaler);
5515 }
5516 
5517 /**
5518  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
5519  * @crtc_state: crtc's scaler state
5520  * @plane_state: atomic plane state to update
5521  *
5522  * Return
5523  *     0 - scaler_usage updated successfully
5524  *    error - requested scaling cannot be supported or other error condition
5525  */
5526 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
5527 				   struct intel_plane_state *plane_state)
5528 {
5529 	struct intel_plane *intel_plane =
5530 		to_intel_plane(plane_state->base.plane);
5531 	struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
5532 	struct drm_framebuffer *fb = plane_state->base.fb;
5533 	int ret;
5534 	bool force_detach = !fb || !plane_state->base.visible;
5535 	bool need_scaler = false;
5536 
5537 	/* Pre-gen11 and SDR planes always need a scaler for planar formats. */
5538 	if (!icl_is_hdr_plane(dev_priv, intel_plane->id) &&
5539 	    fb && is_planar_yuv_format(fb->format->format))
5540 		need_scaler = true;
5541 
5542 	ret = skl_update_scaler(crtc_state, force_detach,
5543 				drm_plane_index(&intel_plane->base),
5544 				&plane_state->scaler_id,
5545 				drm_rect_width(&plane_state->base.src) >> 16,
5546 				drm_rect_height(&plane_state->base.src) >> 16,
5547 				drm_rect_width(&plane_state->base.dst),
5548 				drm_rect_height(&plane_state->base.dst),
5549 				fb ? fb->format : NULL, need_scaler);
5550 
5551 	if (ret || plane_state->scaler_id < 0)
5552 		return ret;
5553 
5554 	/* check colorkey */
5555 	if (plane_state->ckey.flags) {
5556 		DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
5557 			      intel_plane->base.base.id,
5558 			      intel_plane->base.name);
5559 		return -EINVAL;
5560 	}
5561 
5562 	/* Check src format */
5563 	switch (fb->format->format) {
5564 	case DRM_FORMAT_RGB565:
5565 	case DRM_FORMAT_XBGR8888:
5566 	case DRM_FORMAT_XRGB8888:
5567 	case DRM_FORMAT_ABGR8888:
5568 	case DRM_FORMAT_ARGB8888:
5569 	case DRM_FORMAT_XRGB2101010:
5570 	case DRM_FORMAT_XBGR2101010:
5571 	case DRM_FORMAT_XBGR16161616F:
5572 	case DRM_FORMAT_ABGR16161616F:
5573 	case DRM_FORMAT_XRGB16161616F:
5574 	case DRM_FORMAT_ARGB16161616F:
5575 	case DRM_FORMAT_YUYV:
5576 	case DRM_FORMAT_YVYU:
5577 	case DRM_FORMAT_UYVY:
5578 	case DRM_FORMAT_VYUY:
5579 	case DRM_FORMAT_NV12:
5580 	case DRM_FORMAT_P010:
5581 	case DRM_FORMAT_P012:
5582 	case DRM_FORMAT_P016:
5583 	case DRM_FORMAT_Y210:
5584 	case DRM_FORMAT_Y212:
5585 	case DRM_FORMAT_Y216:
5586 	case DRM_FORMAT_XVYU2101010:
5587 	case DRM_FORMAT_XVYU12_16161616:
5588 	case DRM_FORMAT_XVYU16161616:
5589 		break;
5590 	default:
5591 		DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
5592 			      intel_plane->base.base.id, intel_plane->base.name,
5593 			      fb->base.id, fb->format->format);
5594 		return -EINVAL;
5595 	}
5596 
5597 	return 0;
5598 }
5599 
5600 static void skylake_scaler_disable(struct intel_crtc *crtc)
5601 {
5602 	int i;
5603 
5604 	for (i = 0; i < crtc->num_scalers; i++)
5605 		skl_detach_scaler(crtc, i);
5606 }
5607 
5608 static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state)
5609 {
5610 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5611 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5612 	enum pipe pipe = crtc->pipe;
5613 	const struct intel_crtc_scaler_state *scaler_state =
5614 		&crtc_state->scaler_state;
5615 
5616 	if (crtc_state->pch_pfit.enabled) {
5617 		u16 uv_rgb_hphase, uv_rgb_vphase;
5618 		int pfit_w, pfit_h, hscale, vscale;
5619 		int id;
5620 
5621 		if (WARN_ON(crtc_state->scaler_state.scaler_id < 0))
5622 			return;
5623 
5624 		pfit_w = (crtc_state->pch_pfit.size >> 16) & 0xFFFF;
5625 		pfit_h = crtc_state->pch_pfit.size & 0xFFFF;
5626 
5627 		hscale = (crtc_state->pipe_src_w << 16) / pfit_w;
5628 		vscale = (crtc_state->pipe_src_h << 16) / pfit_h;
5629 
5630 		uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
5631 		uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
5632 
5633 		id = scaler_state->scaler_id;
5634 		I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
5635 			PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
5636 		I915_WRITE_FW(SKL_PS_VPHASE(pipe, id),
5637 			      PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
5638 		I915_WRITE_FW(SKL_PS_HPHASE(pipe, id),
5639 			      PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
5640 		I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc_state->pch_pfit.pos);
5641 		I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc_state->pch_pfit.size);
5642 	}
5643 }
5644 
5645 static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state)
5646 {
5647 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5648 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5649 	int pipe = crtc->pipe;
5650 
5651 	if (crtc_state->pch_pfit.enabled) {
5652 		/* Force use of hard-coded filter coefficients
5653 		 * as some pre-programmed values are broken,
5654 		 * e.g. x201.
5655 		 */
5656 		if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
5657 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
5658 						 PF_PIPE_SEL_IVB(pipe));
5659 		else
5660 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
5661 		I915_WRITE(PF_WIN_POS(pipe), crtc_state->pch_pfit.pos);
5662 		I915_WRITE(PF_WIN_SZ(pipe), crtc_state->pch_pfit.size);
5663 	}
5664 }
5665 
5666 void hsw_enable_ips(const struct intel_crtc_state *crtc_state)
5667 {
5668 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5669 	struct drm_device *dev = crtc->base.dev;
5670 	struct drm_i915_private *dev_priv = to_i915(dev);
5671 
5672 	if (!crtc_state->ips_enabled)
5673 		return;
5674 
5675 	/*
5676 	 * We can only enable IPS after we enable a plane and wait for a vblank
5677 	 * This function is called from post_plane_update, which is run after
5678 	 * a vblank wait.
5679 	 */
5680 	WARN_ON(!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)));
5681 
5682 	if (IS_BROADWELL(dev_priv)) {
5683 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
5684 						IPS_ENABLE | IPS_PCODE_CONTROL));
5685 		/* Quoting Art Runyan: "its not safe to expect any particular
5686 		 * value in IPS_CTL bit 31 after enabling IPS through the
5687 		 * mailbox." Moreover, the mailbox may return a bogus state,
5688 		 * so we need to just enable it and continue on.
5689 		 */
5690 	} else {
5691 		I915_WRITE(IPS_CTL, IPS_ENABLE);
5692 		/* The bit only becomes 1 in the next vblank, so this wait here
5693 		 * is essentially intel_wait_for_vblank. If we don't have this
5694 		 * and don't wait for vblanks until the end of crtc_enable, then
5695 		 * the HW state readout code will complain that the expected
5696 		 * IPS_CTL value is not the one we read. */
5697 		if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50))
5698 			DRM_ERROR("Timed out waiting for IPS enable\n");
5699 	}
5700 }
5701 
5702 void hsw_disable_ips(const struct intel_crtc_state *crtc_state)
5703 {
5704 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5705 	struct drm_device *dev = crtc->base.dev;
5706 	struct drm_i915_private *dev_priv = to_i915(dev);
5707 
5708 	if (!crtc_state->ips_enabled)
5709 		return;
5710 
5711 	if (IS_BROADWELL(dev_priv)) {
5712 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
5713 		/*
5714 		 * Wait for PCODE to finish disabling IPS. The BSpec specified
5715 		 * 42ms timeout value leads to occasional timeouts so use 100ms
5716 		 * instead.
5717 		 */
5718 		if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100))
5719 			DRM_ERROR("Timed out waiting for IPS disable\n");
5720 	} else {
5721 		I915_WRITE(IPS_CTL, 0);
5722 		POSTING_READ(IPS_CTL);
5723 	}
5724 
5725 	/* We need to wait for a vblank before we can disable the plane. */
5726 	intel_wait_for_vblank(dev_priv, crtc->pipe);
5727 }
5728 
5729 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
5730 {
5731 	if (intel_crtc->overlay) {
5732 		struct drm_device *dev = intel_crtc->base.dev;
5733 
5734 		mutex_lock(&dev->struct_mutex);
5735 		(void) intel_overlay_switch_off(intel_crtc->overlay);
5736 		mutex_unlock(&dev->struct_mutex);
5737 	}
5738 
5739 	/* Let userspace switch the overlay on again. In most cases userspace
5740 	 * has to recompute where to put it anyway.
5741 	 */
5742 }
5743 
5744 /**
5745  * intel_post_enable_primary - Perform operations after enabling primary plane
5746  * @crtc: the CRTC whose primary plane was just enabled
5747  * @new_crtc_state: the enabling state
5748  *
5749  * Performs potentially sleeping operations that must be done after the primary
5750  * plane is enabled, such as updating FBC and IPS.  Note that this may be
5751  * called due to an explicit primary plane update, or due to an implicit
5752  * re-enable that is caused when a sprite plane is updated to no longer
5753  * completely hide the primary plane.
5754  */
5755 static void
5756 intel_post_enable_primary(struct drm_crtc *crtc,
5757 			  const struct intel_crtc_state *new_crtc_state)
5758 {
5759 	struct drm_device *dev = crtc->dev;
5760 	struct drm_i915_private *dev_priv = to_i915(dev);
5761 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5762 	int pipe = intel_crtc->pipe;
5763 
5764 	/*
5765 	 * Gen2 reports pipe underruns whenever all planes are disabled.
5766 	 * So don't enable underrun reporting before at least some planes
5767 	 * are enabled.
5768 	 * FIXME: Need to fix the logic to work when we turn off all planes
5769 	 * but leave the pipe running.
5770 	 */
5771 	if (IS_GEN(dev_priv, 2))
5772 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5773 
5774 	/* Underruns don't always raise interrupts, so check manually. */
5775 	intel_check_cpu_fifo_underruns(dev_priv);
5776 	intel_check_pch_fifo_underruns(dev_priv);
5777 }
5778 
5779 /* FIXME get rid of this and use pre_plane_update */
5780 static void
5781 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
5782 {
5783 	struct drm_device *dev = crtc->dev;
5784 	struct drm_i915_private *dev_priv = to_i915(dev);
5785 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5786 	int pipe = intel_crtc->pipe;
5787 
5788 	/*
5789 	 * Gen2 reports pipe underruns whenever all planes are disabled.
5790 	 * So disable underrun reporting before all the planes get disabled.
5791 	 */
5792 	if (IS_GEN(dev_priv, 2))
5793 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5794 
5795 	hsw_disable_ips(to_intel_crtc_state(crtc->state));
5796 
5797 	/*
5798 	 * Vblank time updates from the shadow to live plane control register
5799 	 * are blocked if the memory self-refresh mode is active at that
5800 	 * moment. So to make sure the plane gets truly disabled, disable
5801 	 * first the self-refresh mode. The self-refresh enable bit in turn
5802 	 * will be checked/applied by the HW only at the next frame start
5803 	 * event which is after the vblank start event, so we need to have a
5804 	 * wait-for-vblank between disabling the plane and the pipe.
5805 	 */
5806 	if (HAS_GMCH(dev_priv) &&
5807 	    intel_set_memory_cxsr(dev_priv, false))
5808 		intel_wait_for_vblank(dev_priv, pipe);
5809 }
5810 
5811 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state,
5812 				       const struct intel_crtc_state *new_crtc_state)
5813 {
5814 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
5815 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5816 
5817 	if (!old_crtc_state->ips_enabled)
5818 		return false;
5819 
5820 	if (needs_modeset(new_crtc_state))
5821 		return true;
5822 
5823 	/*
5824 	 * Workaround : Do not read or write the pipe palette/gamma data while
5825 	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
5826 	 *
5827 	 * Disable IPS before we program the LUT.
5828 	 */
5829 	if (IS_HASWELL(dev_priv) &&
5830 	    (new_crtc_state->base.color_mgmt_changed ||
5831 	     new_crtc_state->update_pipe) &&
5832 	    new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
5833 		return true;
5834 
5835 	return !new_crtc_state->ips_enabled;
5836 }
5837 
5838 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state,
5839 				       const struct intel_crtc_state *new_crtc_state)
5840 {
5841 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
5842 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5843 
5844 	if (!new_crtc_state->ips_enabled)
5845 		return false;
5846 
5847 	if (needs_modeset(new_crtc_state))
5848 		return true;
5849 
5850 	/*
5851 	 * Workaround : Do not read or write the pipe palette/gamma data while
5852 	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
5853 	 *
5854 	 * Re-enable IPS after the LUT has been programmed.
5855 	 */
5856 	if (IS_HASWELL(dev_priv) &&
5857 	    (new_crtc_state->base.color_mgmt_changed ||
5858 	     new_crtc_state->update_pipe) &&
5859 	    new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
5860 		return true;
5861 
5862 	/*
5863 	 * We can't read out IPS on broadwell, assume the worst and
5864 	 * forcibly enable IPS on the first fastset.
5865 	 */
5866 	if (new_crtc_state->update_pipe &&
5867 	    old_crtc_state->base.adjusted_mode.private_flags & I915_MODE_FLAG_INHERITED)
5868 		return true;
5869 
5870 	return !old_crtc_state->ips_enabled;
5871 }
5872 
5873 static bool needs_nv12_wa(struct drm_i915_private *dev_priv,
5874 			  const struct intel_crtc_state *crtc_state)
5875 {
5876 	if (!crtc_state->nv12_planes)
5877 		return false;
5878 
5879 	/* WA Display #0827: Gen9:all */
5880 	if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv))
5881 		return true;
5882 
5883 	return false;
5884 }
5885 
5886 static bool needs_scalerclk_wa(struct drm_i915_private *dev_priv,
5887 			       const struct intel_crtc_state *crtc_state)
5888 {
5889 	/* Wa_2006604312:icl */
5890 	if (crtc_state->scaler_state.scaler_users > 0 && IS_ICELAKE(dev_priv))
5891 		return true;
5892 
5893 	return false;
5894 }
5895 
5896 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5897 {
5898 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5899 	struct drm_device *dev = crtc->base.dev;
5900 	struct drm_i915_private *dev_priv = to_i915(dev);
5901 	struct drm_atomic_state *state = old_crtc_state->base.state;
5902 	struct intel_crtc_state *pipe_config =
5903 		intel_atomic_get_new_crtc_state(to_intel_atomic_state(state),
5904 						crtc);
5905 	struct drm_plane *primary = crtc->base.primary;
5906 	struct drm_plane_state *old_primary_state =
5907 		drm_atomic_get_old_plane_state(state, primary);
5908 
5909 	intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5910 
5911 	if (pipe_config->update_wm_post && pipe_config->base.active)
5912 		intel_update_watermarks(crtc);
5913 
5914 	if (hsw_post_update_enable_ips(old_crtc_state, pipe_config))
5915 		hsw_enable_ips(pipe_config);
5916 
5917 	if (old_primary_state) {
5918 		struct drm_plane_state *new_primary_state =
5919 			drm_atomic_get_new_plane_state(state, primary);
5920 
5921 		intel_fbc_post_update(crtc);
5922 
5923 		if (new_primary_state->visible &&
5924 		    (needs_modeset(pipe_config) ||
5925 		     !old_primary_state->visible))
5926 			intel_post_enable_primary(&crtc->base, pipe_config);
5927 	}
5928 
5929 	if (needs_nv12_wa(dev_priv, old_crtc_state) &&
5930 	    !needs_nv12_wa(dev_priv, pipe_config))
5931 		skl_wa_827(dev_priv, crtc->pipe, false);
5932 
5933 	if (needs_scalerclk_wa(dev_priv, old_crtc_state) &&
5934 	    !needs_scalerclk_wa(dev_priv, pipe_config))
5935 		icl_wa_scalerclkgating(dev_priv, crtc->pipe, false);
5936 }
5937 
5938 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state,
5939 				   struct intel_crtc_state *pipe_config)
5940 {
5941 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5942 	struct drm_device *dev = crtc->base.dev;
5943 	struct drm_i915_private *dev_priv = to_i915(dev);
5944 	struct drm_atomic_state *state = old_crtc_state->base.state;
5945 	struct drm_plane *primary = crtc->base.primary;
5946 	struct drm_plane_state *old_primary_state =
5947 		drm_atomic_get_old_plane_state(state, primary);
5948 	bool modeset = needs_modeset(pipe_config);
5949 	struct intel_atomic_state *intel_state =
5950 		to_intel_atomic_state(state);
5951 
5952 	if (hsw_pre_update_disable_ips(old_crtc_state, pipe_config))
5953 		hsw_disable_ips(old_crtc_state);
5954 
5955 	if (old_primary_state) {
5956 		struct intel_plane_state *new_primary_state =
5957 			intel_atomic_get_new_plane_state(intel_state,
5958 							 to_intel_plane(primary));
5959 
5960 		intel_fbc_pre_update(crtc, pipe_config, new_primary_state);
5961 		/*
5962 		 * Gen2 reports pipe underruns whenever all planes are disabled.
5963 		 * So disable underrun reporting before all the planes get disabled.
5964 		 */
5965 		if (IS_GEN(dev_priv, 2) && old_primary_state->visible &&
5966 		    (modeset || !new_primary_state->base.visible))
5967 			intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5968 	}
5969 
5970 	/* Display WA 827 */
5971 	if (!needs_nv12_wa(dev_priv, old_crtc_state) &&
5972 	    needs_nv12_wa(dev_priv, pipe_config))
5973 		skl_wa_827(dev_priv, crtc->pipe, true);
5974 
5975 	/* Wa_2006604312:icl */
5976 	if (!needs_scalerclk_wa(dev_priv, old_crtc_state) &&
5977 	    needs_scalerclk_wa(dev_priv, pipe_config))
5978 		icl_wa_scalerclkgating(dev_priv, crtc->pipe, true);
5979 
5980 	/*
5981 	 * Vblank time updates from the shadow to live plane control register
5982 	 * are blocked if the memory self-refresh mode is active at that
5983 	 * moment. So to make sure the plane gets truly disabled, disable
5984 	 * first the self-refresh mode. The self-refresh enable bit in turn
5985 	 * will be checked/applied by the HW only at the next frame start
5986 	 * event which is after the vblank start event, so we need to have a
5987 	 * wait-for-vblank between disabling the plane and the pipe.
5988 	 */
5989 	if (HAS_GMCH(dev_priv) && old_crtc_state->base.active &&
5990 	    pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
5991 		intel_wait_for_vblank(dev_priv, crtc->pipe);
5992 
5993 	/*
5994 	 * IVB workaround: must disable low power watermarks for at least
5995 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
5996 	 * when scaling is disabled.
5997 	 *
5998 	 * WaCxSRDisabledForSpriteScaling:ivb
5999 	 */
6000 	if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev) &&
6001 	    old_crtc_state->base.active)
6002 		intel_wait_for_vblank(dev_priv, crtc->pipe);
6003 
6004 	/*
6005 	 * If we're doing a modeset, we're done.  No need to do any pre-vblank
6006 	 * watermark programming here.
6007 	 */
6008 	if (needs_modeset(pipe_config))
6009 		return;
6010 
6011 	/*
6012 	 * For platforms that support atomic watermarks, program the
6013 	 * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
6014 	 * will be the intermediate values that are safe for both pre- and
6015 	 * post- vblank; when vblank happens, the 'active' values will be set
6016 	 * to the final 'target' values and we'll do this again to get the
6017 	 * optimal watermarks.  For gen9+ platforms, the values we program here
6018 	 * will be the final target values which will get automatically latched
6019 	 * at vblank time; no further programming will be necessary.
6020 	 *
6021 	 * If a platform hasn't been transitioned to atomic watermarks yet,
6022 	 * we'll continue to update watermarks the old way, if flags tell
6023 	 * us to.
6024 	 */
6025 	if (dev_priv->display.initial_watermarks != NULL)
6026 		dev_priv->display.initial_watermarks(intel_state,
6027 						     pipe_config);
6028 	else if (pipe_config->update_wm_pre)
6029 		intel_update_watermarks(crtc);
6030 }
6031 
6032 static void intel_crtc_disable_planes(struct intel_atomic_state *state,
6033 				      struct intel_crtc *crtc)
6034 {
6035 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6036 	const struct intel_crtc_state *new_crtc_state =
6037 		intel_atomic_get_new_crtc_state(state, crtc);
6038 	unsigned int update_mask = new_crtc_state->update_planes;
6039 	const struct intel_plane_state *old_plane_state;
6040 	struct intel_plane *plane;
6041 	unsigned fb_bits = 0;
6042 	int i;
6043 
6044 	intel_crtc_dpms_overlay_disable(crtc);
6045 
6046 	for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
6047 		if (crtc->pipe != plane->pipe ||
6048 		    !(update_mask & BIT(plane->id)))
6049 			continue;
6050 
6051 		intel_disable_plane(plane, new_crtc_state);
6052 
6053 		if (old_plane_state->base.visible)
6054 			fb_bits |= plane->frontbuffer_bit;
6055 	}
6056 
6057 	intel_frontbuffer_flip(dev_priv, fb_bits);
6058 }
6059 
6060 /*
6061  * intel_connector_primary_encoder - get the primary encoder for a connector
6062  * @connector: connector for which to return the encoder
6063  *
6064  * Returns the primary encoder for a connector. There is a 1:1 mapping from
6065  * all connectors to their encoder, except for DP-MST connectors which have
6066  * both a virtual and a primary encoder. These DP-MST primary encoders can be
6067  * pointed to by as many DP-MST connectors as there are pipes.
6068  */
6069 static struct intel_encoder *
6070 intel_connector_primary_encoder(struct intel_connector *connector)
6071 {
6072 	struct intel_encoder *encoder;
6073 
6074 	if (connector->mst_port)
6075 		return &dp_to_dig_port(connector->mst_port)->base;
6076 
6077 	encoder = intel_attached_encoder(&connector->base);
6078 	WARN_ON(!encoder);
6079 
6080 	return encoder;
6081 }
6082 
6083 static bool
6084 intel_connector_needs_modeset(struct intel_atomic_state *state,
6085 			      const struct drm_connector_state *old_conn_state,
6086 			      const struct drm_connector_state *new_conn_state)
6087 {
6088 	struct intel_crtc *old_crtc = old_conn_state->crtc ?
6089 				      to_intel_crtc(old_conn_state->crtc) : NULL;
6090 	struct intel_crtc *new_crtc = new_conn_state->crtc ?
6091 				      to_intel_crtc(new_conn_state->crtc) : NULL;
6092 
6093 	return new_crtc != old_crtc ||
6094 	       (new_crtc &&
6095 		needs_modeset(intel_atomic_get_new_crtc_state(state, new_crtc)));
6096 }
6097 
6098 static void intel_encoders_update_prepare(struct intel_atomic_state *state)
6099 {
6100 	struct drm_connector_state *old_conn_state;
6101 	struct drm_connector_state *new_conn_state;
6102 	struct drm_connector *conn;
6103 	int i;
6104 
6105 	for_each_oldnew_connector_in_state(&state->base, conn,
6106 					   old_conn_state, new_conn_state, i) {
6107 		struct intel_encoder *encoder;
6108 		struct intel_crtc *crtc;
6109 
6110 		if (!intel_connector_needs_modeset(state,
6111 						   old_conn_state,
6112 						   new_conn_state))
6113 			continue;
6114 
6115 		encoder = intel_connector_primary_encoder(to_intel_connector(conn));
6116 		if (!encoder->update_prepare)
6117 			continue;
6118 
6119 		crtc = new_conn_state->crtc ?
6120 			to_intel_crtc(new_conn_state->crtc) : NULL;
6121 		encoder->update_prepare(state, encoder, crtc);
6122 	}
6123 }
6124 
6125 static void intel_encoders_update_complete(struct intel_atomic_state *state)
6126 {
6127 	struct drm_connector_state *old_conn_state;
6128 	struct drm_connector_state *new_conn_state;
6129 	struct drm_connector *conn;
6130 	int i;
6131 
6132 	for_each_oldnew_connector_in_state(&state->base, conn,
6133 					   old_conn_state, new_conn_state, i) {
6134 		struct intel_encoder *encoder;
6135 		struct intel_crtc *crtc;
6136 
6137 		if (!intel_connector_needs_modeset(state,
6138 						   old_conn_state,
6139 						   new_conn_state))
6140 			continue;
6141 
6142 		encoder = intel_connector_primary_encoder(to_intel_connector(conn));
6143 		if (!encoder->update_complete)
6144 			continue;
6145 
6146 		crtc = new_conn_state->crtc ?
6147 			to_intel_crtc(new_conn_state->crtc) : NULL;
6148 		encoder->update_complete(state, encoder, crtc);
6149 	}
6150 }
6151 
6152 static void intel_encoders_pre_pll_enable(struct intel_crtc *crtc,
6153 					  struct intel_crtc_state *crtc_state,
6154 					  struct intel_atomic_state *state)
6155 {
6156 	struct drm_connector_state *conn_state;
6157 	struct drm_connector *conn;
6158 	int i;
6159 
6160 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6161 		struct intel_encoder *encoder =
6162 			to_intel_encoder(conn_state->best_encoder);
6163 
6164 		if (conn_state->crtc != &crtc->base)
6165 			continue;
6166 
6167 		if (encoder->pre_pll_enable)
6168 			encoder->pre_pll_enable(encoder, crtc_state, conn_state);
6169 	}
6170 }
6171 
6172 static void intel_encoders_pre_enable(struct intel_crtc *crtc,
6173 				      struct intel_crtc_state *crtc_state,
6174 				      struct intel_atomic_state *state)
6175 {
6176 	struct drm_connector_state *conn_state;
6177 	struct drm_connector *conn;
6178 	int i;
6179 
6180 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6181 		struct intel_encoder *encoder =
6182 			to_intel_encoder(conn_state->best_encoder);
6183 
6184 		if (conn_state->crtc != &crtc->base)
6185 			continue;
6186 
6187 		if (encoder->pre_enable)
6188 			encoder->pre_enable(encoder, crtc_state, conn_state);
6189 	}
6190 }
6191 
6192 static void intel_encoders_enable(struct intel_crtc *crtc,
6193 				  struct intel_crtc_state *crtc_state,
6194 				  struct intel_atomic_state *state)
6195 {
6196 	struct drm_connector_state *conn_state;
6197 	struct drm_connector *conn;
6198 	int i;
6199 
6200 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6201 		struct intel_encoder *encoder =
6202 			to_intel_encoder(conn_state->best_encoder);
6203 
6204 		if (conn_state->crtc != &crtc->base)
6205 			continue;
6206 
6207 		if (encoder->enable)
6208 			encoder->enable(encoder, crtc_state, conn_state);
6209 		intel_opregion_notify_encoder(encoder, true);
6210 	}
6211 }
6212 
6213 static void intel_encoders_disable(struct intel_crtc *crtc,
6214 				   struct intel_crtc_state *old_crtc_state,
6215 				   struct intel_atomic_state *state)
6216 {
6217 	struct drm_connector_state *old_conn_state;
6218 	struct drm_connector *conn;
6219 	int i;
6220 
6221 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6222 		struct intel_encoder *encoder =
6223 			to_intel_encoder(old_conn_state->best_encoder);
6224 
6225 		if (old_conn_state->crtc != &crtc->base)
6226 			continue;
6227 
6228 		intel_opregion_notify_encoder(encoder, false);
6229 		if (encoder->disable)
6230 			encoder->disable(encoder, old_crtc_state, old_conn_state);
6231 	}
6232 }
6233 
6234 static void intel_encoders_post_disable(struct intel_crtc *crtc,
6235 					struct intel_crtc_state *old_crtc_state,
6236 					struct intel_atomic_state *state)
6237 {
6238 	struct drm_connector_state *old_conn_state;
6239 	struct drm_connector *conn;
6240 	int i;
6241 
6242 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6243 		struct intel_encoder *encoder =
6244 			to_intel_encoder(old_conn_state->best_encoder);
6245 
6246 		if (old_conn_state->crtc != &crtc->base)
6247 			continue;
6248 
6249 		if (encoder->post_disable)
6250 			encoder->post_disable(encoder, old_crtc_state, old_conn_state);
6251 	}
6252 }
6253 
6254 static void intel_encoders_post_pll_disable(struct intel_crtc *crtc,
6255 					    struct intel_crtc_state *old_crtc_state,
6256 					    struct intel_atomic_state *state)
6257 {
6258 	struct drm_connector_state *old_conn_state;
6259 	struct drm_connector *conn;
6260 	int i;
6261 
6262 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6263 		struct intel_encoder *encoder =
6264 			to_intel_encoder(old_conn_state->best_encoder);
6265 
6266 		if (old_conn_state->crtc != &crtc->base)
6267 			continue;
6268 
6269 		if (encoder->post_pll_disable)
6270 			encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
6271 	}
6272 }
6273 
6274 static void intel_encoders_update_pipe(struct intel_crtc *crtc,
6275 				       struct intel_crtc_state *crtc_state,
6276 				       struct intel_atomic_state *state)
6277 {
6278 	struct drm_connector_state *conn_state;
6279 	struct drm_connector *conn;
6280 	int i;
6281 
6282 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6283 		struct intel_encoder *encoder =
6284 			to_intel_encoder(conn_state->best_encoder);
6285 
6286 		if (conn_state->crtc != &crtc->base)
6287 			continue;
6288 
6289 		if (encoder->update_pipe)
6290 			encoder->update_pipe(encoder, crtc_state, conn_state);
6291 	}
6292 }
6293 
6294 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state)
6295 {
6296 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
6297 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
6298 
6299 	plane->disable_plane(plane, crtc_state);
6300 }
6301 
6302 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
6303 				 struct intel_atomic_state *state)
6304 {
6305 	struct drm_crtc *crtc = pipe_config->base.crtc;
6306 	struct drm_device *dev = crtc->dev;
6307 	struct drm_i915_private *dev_priv = to_i915(dev);
6308 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6309 	int pipe = intel_crtc->pipe;
6310 
6311 	if (WARN_ON(intel_crtc->active))
6312 		return;
6313 
6314 	/*
6315 	 * Sometimes spurious CPU pipe underruns happen during FDI
6316 	 * training, at least with VGA+HDMI cloning. Suppress them.
6317 	 *
6318 	 * On ILK we get an occasional spurious CPU pipe underruns
6319 	 * between eDP port A enable and vdd enable. Also PCH port
6320 	 * enable seems to result in the occasional CPU pipe underrun.
6321 	 *
6322 	 * Spurious PCH underruns also occur during PCH enabling.
6323 	 */
6324 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6325 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6326 
6327 	if (pipe_config->has_pch_encoder)
6328 		intel_prepare_shared_dpll(pipe_config);
6329 
6330 	if (intel_crtc_has_dp_encoder(pipe_config))
6331 		intel_dp_set_m_n(pipe_config, M1_N1);
6332 
6333 	intel_set_pipe_timings(pipe_config);
6334 	intel_set_pipe_src_size(pipe_config);
6335 
6336 	if (pipe_config->has_pch_encoder) {
6337 		intel_cpu_transcoder_set_m_n(pipe_config,
6338 					     &pipe_config->fdi_m_n, NULL);
6339 	}
6340 
6341 	ironlake_set_pipeconf(pipe_config);
6342 
6343 	intel_crtc->active = true;
6344 
6345 	intel_encoders_pre_enable(intel_crtc, pipe_config, state);
6346 
6347 	if (pipe_config->has_pch_encoder) {
6348 		/* Note: FDI PLL enabling _must_ be done before we enable the
6349 		 * cpu pipes, hence this is separate from all the other fdi/pch
6350 		 * enabling. */
6351 		ironlake_fdi_pll_enable(pipe_config);
6352 	} else {
6353 		assert_fdi_tx_disabled(dev_priv, pipe);
6354 		assert_fdi_rx_disabled(dev_priv, pipe);
6355 	}
6356 
6357 	ironlake_pfit_enable(pipe_config);
6358 
6359 	/*
6360 	 * On ILK+ LUT must be loaded before the pipe is running but with
6361 	 * clocks enabled
6362 	 */
6363 	intel_color_load_luts(pipe_config);
6364 	intel_color_commit(pipe_config);
6365 	/* update DSPCNTR to configure gamma for pipe bottom color */
6366 	intel_disable_primary_plane(pipe_config);
6367 
6368 	if (dev_priv->display.initial_watermarks != NULL)
6369 		dev_priv->display.initial_watermarks(state, pipe_config);
6370 	intel_enable_pipe(pipe_config);
6371 
6372 	if (pipe_config->has_pch_encoder)
6373 		ironlake_pch_enable(state, pipe_config);
6374 
6375 	assert_vblank_disabled(crtc);
6376 	intel_crtc_vblank_on(pipe_config);
6377 
6378 	intel_encoders_enable(intel_crtc, pipe_config, state);
6379 
6380 	if (HAS_PCH_CPT(dev_priv))
6381 		cpt_verify_modeset(dev, intel_crtc->pipe);
6382 
6383 	/*
6384 	 * Must wait for vblank to avoid spurious PCH FIFO underruns.
6385 	 * And a second vblank wait is needed at least on ILK with
6386 	 * some interlaced HDMI modes. Let's do the double wait always
6387 	 * in case there are more corner cases we don't know about.
6388 	 */
6389 	if (pipe_config->has_pch_encoder) {
6390 		intel_wait_for_vblank(dev_priv, pipe);
6391 		intel_wait_for_vblank(dev_priv, pipe);
6392 	}
6393 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6394 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6395 }
6396 
6397 /* IPS only exists on ULT machines and is tied to pipe A. */
6398 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
6399 {
6400 	return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
6401 }
6402 
6403 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
6404 					    enum pipe pipe, bool apply)
6405 {
6406 	u32 val = I915_READ(CLKGATE_DIS_PSL(pipe));
6407 	u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
6408 
6409 	if (apply)
6410 		val |= mask;
6411 	else
6412 		val &= ~mask;
6413 
6414 	I915_WRITE(CLKGATE_DIS_PSL(pipe), val);
6415 }
6416 
6417 static void icl_pipe_mbus_enable(struct intel_crtc *crtc)
6418 {
6419 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6420 	enum pipe pipe = crtc->pipe;
6421 	u32 val;
6422 
6423 	val = MBUS_DBOX_A_CREDIT(2);
6424 
6425 	if (INTEL_GEN(dev_priv) >= 12) {
6426 		val |= MBUS_DBOX_BW_CREDIT(2);
6427 		val |= MBUS_DBOX_B_CREDIT(12);
6428 	} else {
6429 		val |= MBUS_DBOX_BW_CREDIT(1);
6430 		val |= MBUS_DBOX_B_CREDIT(8);
6431 	}
6432 
6433 	I915_WRITE(PIPE_MBUS_DBOX_CTL(pipe), val);
6434 }
6435 
6436 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
6437 				struct intel_atomic_state *state)
6438 {
6439 	struct drm_crtc *crtc = pipe_config->base.crtc;
6440 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6441 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6442 	int pipe = intel_crtc->pipe, hsw_workaround_pipe;
6443 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6444 	bool psl_clkgate_wa;
6445 
6446 	if (WARN_ON(intel_crtc->active))
6447 		return;
6448 
6449 	intel_encoders_pre_pll_enable(intel_crtc, pipe_config, state);
6450 
6451 	if (pipe_config->shared_dpll)
6452 		intel_enable_shared_dpll(pipe_config);
6453 
6454 	intel_encoders_pre_enable(intel_crtc, pipe_config, state);
6455 
6456 	if (intel_crtc_has_dp_encoder(pipe_config))
6457 		intel_dp_set_m_n(pipe_config, M1_N1);
6458 
6459 	if (!transcoder_is_dsi(cpu_transcoder))
6460 		intel_set_pipe_timings(pipe_config);
6461 
6462 	intel_set_pipe_src_size(pipe_config);
6463 
6464 	if (cpu_transcoder != TRANSCODER_EDP &&
6465 	    !transcoder_is_dsi(cpu_transcoder)) {
6466 		I915_WRITE(PIPE_MULT(cpu_transcoder),
6467 			   pipe_config->pixel_multiplier - 1);
6468 	}
6469 
6470 	if (pipe_config->has_pch_encoder) {
6471 		intel_cpu_transcoder_set_m_n(pipe_config,
6472 					     &pipe_config->fdi_m_n, NULL);
6473 	}
6474 
6475 	if (!transcoder_is_dsi(cpu_transcoder))
6476 		haswell_set_pipeconf(pipe_config);
6477 
6478 	if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
6479 		bdw_set_pipemisc(pipe_config);
6480 
6481 	intel_crtc->active = true;
6482 
6483 	/* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
6484 	psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
6485 			 pipe_config->pch_pfit.enabled;
6486 	if (psl_clkgate_wa)
6487 		glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
6488 
6489 	if (INTEL_GEN(dev_priv) >= 9)
6490 		skylake_pfit_enable(pipe_config);
6491 	else
6492 		ironlake_pfit_enable(pipe_config);
6493 
6494 	/*
6495 	 * On ILK+ LUT must be loaded before the pipe is running but with
6496 	 * clocks enabled
6497 	 */
6498 	intel_color_load_luts(pipe_config);
6499 	intel_color_commit(pipe_config);
6500 	/* update DSPCNTR to configure gamma/csc for pipe bottom color */
6501 	if (INTEL_GEN(dev_priv) < 9)
6502 		intel_disable_primary_plane(pipe_config);
6503 
6504 	if (INTEL_GEN(dev_priv) >= 11)
6505 		icl_set_pipe_chicken(intel_crtc);
6506 
6507 	intel_ddi_set_pipe_settings(pipe_config);
6508 	if (!transcoder_is_dsi(cpu_transcoder))
6509 		intel_ddi_enable_transcoder_func(pipe_config);
6510 
6511 	if (dev_priv->display.initial_watermarks != NULL)
6512 		dev_priv->display.initial_watermarks(state, pipe_config);
6513 
6514 	if (INTEL_GEN(dev_priv) >= 11)
6515 		icl_pipe_mbus_enable(intel_crtc);
6516 
6517 	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
6518 	if (!transcoder_is_dsi(cpu_transcoder))
6519 		intel_enable_pipe(pipe_config);
6520 
6521 	if (pipe_config->has_pch_encoder)
6522 		lpt_pch_enable(state, pipe_config);
6523 
6524 	if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST))
6525 		intel_ddi_set_vc_payload_alloc(pipe_config, true);
6526 
6527 	assert_vblank_disabled(crtc);
6528 	intel_crtc_vblank_on(pipe_config);
6529 
6530 	intel_encoders_enable(intel_crtc, pipe_config, state);
6531 
6532 	if (psl_clkgate_wa) {
6533 		intel_wait_for_vblank(dev_priv, pipe);
6534 		glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
6535 	}
6536 
6537 	/* If we change the relative order between pipe/planes enabling, we need
6538 	 * to change the workaround. */
6539 	hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
6540 	if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
6541 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
6542 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
6543 	}
6544 }
6545 
6546 static void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state)
6547 {
6548 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
6549 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6550 	enum pipe pipe = crtc->pipe;
6551 
6552 	/* To avoid upsetting the power well on haswell only disable the pfit if
6553 	 * it's in use. The hw state code will make sure we get this right. */
6554 	if (old_crtc_state->pch_pfit.enabled) {
6555 		I915_WRITE(PF_CTL(pipe), 0);
6556 		I915_WRITE(PF_WIN_POS(pipe), 0);
6557 		I915_WRITE(PF_WIN_SZ(pipe), 0);
6558 	}
6559 }
6560 
6561 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
6562 				  struct intel_atomic_state *state)
6563 {
6564 	struct drm_crtc *crtc = old_crtc_state->base.crtc;
6565 	struct drm_device *dev = crtc->dev;
6566 	struct drm_i915_private *dev_priv = to_i915(dev);
6567 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6568 	int pipe = intel_crtc->pipe;
6569 
6570 	/*
6571 	 * Sometimes spurious CPU pipe underruns happen when the
6572 	 * pipe is already disabled, but FDI RX/TX is still enabled.
6573 	 * Happens at least with VGA+HDMI cloning. Suppress them.
6574 	 */
6575 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6576 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6577 
6578 	intel_encoders_disable(intel_crtc, old_crtc_state, state);
6579 
6580 	drm_crtc_vblank_off(crtc);
6581 	assert_vblank_disabled(crtc);
6582 
6583 	intel_disable_pipe(old_crtc_state);
6584 
6585 	ironlake_pfit_disable(old_crtc_state);
6586 
6587 	if (old_crtc_state->has_pch_encoder)
6588 		ironlake_fdi_disable(crtc);
6589 
6590 	intel_encoders_post_disable(intel_crtc, old_crtc_state, state);
6591 
6592 	if (old_crtc_state->has_pch_encoder) {
6593 		ironlake_disable_pch_transcoder(dev_priv, pipe);
6594 
6595 		if (HAS_PCH_CPT(dev_priv)) {
6596 			i915_reg_t reg;
6597 			u32 temp;
6598 
6599 			/* disable TRANS_DP_CTL */
6600 			reg = TRANS_DP_CTL(pipe);
6601 			temp = I915_READ(reg);
6602 			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
6603 				  TRANS_DP_PORT_SEL_MASK);
6604 			temp |= TRANS_DP_PORT_SEL_NONE;
6605 			I915_WRITE(reg, temp);
6606 
6607 			/* disable DPLL_SEL */
6608 			temp = I915_READ(PCH_DPLL_SEL);
6609 			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
6610 			I915_WRITE(PCH_DPLL_SEL, temp);
6611 		}
6612 
6613 		ironlake_fdi_pll_disable(intel_crtc);
6614 	}
6615 
6616 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6617 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6618 }
6619 
6620 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
6621 				 struct intel_atomic_state *state)
6622 {
6623 	struct drm_crtc *crtc = old_crtc_state->base.crtc;
6624 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6625 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6626 	enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
6627 
6628 	intel_encoders_disable(intel_crtc, old_crtc_state, state);
6629 
6630 	drm_crtc_vblank_off(crtc);
6631 	assert_vblank_disabled(crtc);
6632 
6633 	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
6634 	if (!transcoder_is_dsi(cpu_transcoder))
6635 		intel_disable_pipe(old_crtc_state);
6636 
6637 	if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DP_MST))
6638 		intel_ddi_set_vc_payload_alloc(old_crtc_state, false);
6639 
6640 	if (!transcoder_is_dsi(cpu_transcoder))
6641 		intel_ddi_disable_transcoder_func(old_crtc_state);
6642 
6643 	intel_dsc_disable(old_crtc_state);
6644 
6645 	if (INTEL_GEN(dev_priv) >= 9)
6646 		skylake_scaler_disable(intel_crtc);
6647 	else
6648 		ironlake_pfit_disable(old_crtc_state);
6649 
6650 	intel_encoders_post_disable(intel_crtc, old_crtc_state, state);
6651 
6652 	intel_encoders_post_pll_disable(intel_crtc, old_crtc_state, state);
6653 }
6654 
6655 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state)
6656 {
6657 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
6658 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6659 
6660 	if (!crtc_state->gmch_pfit.control)
6661 		return;
6662 
6663 	/*
6664 	 * The panel fitter should only be adjusted whilst the pipe is disabled,
6665 	 * according to register description and PRM.
6666 	 */
6667 	WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
6668 	assert_pipe_disabled(dev_priv, crtc->pipe);
6669 
6670 	I915_WRITE(PFIT_PGM_RATIOS, crtc_state->gmch_pfit.pgm_ratios);
6671 	I915_WRITE(PFIT_CONTROL, crtc_state->gmch_pfit.control);
6672 
6673 	/* Border color in case we don't scale up to the full screen. Black by
6674 	 * default, change to something else for debugging. */
6675 	I915_WRITE(BCLRPAT(crtc->pipe), 0);
6676 }
6677 
6678 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy)
6679 {
6680 	if (phy == PHY_NONE)
6681 		return false;
6682 
6683 	if (IS_ELKHARTLAKE(dev_priv))
6684 		return phy <= PHY_C;
6685 
6686 	if (INTEL_GEN(dev_priv) >= 11)
6687 		return phy <= PHY_B;
6688 
6689 	return false;
6690 }
6691 
6692 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy)
6693 {
6694 	if (INTEL_GEN(dev_priv) >= 12)
6695 		return phy >= PHY_D && phy <= PHY_I;
6696 
6697 	if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv))
6698 		return phy >= PHY_C && phy <= PHY_F;
6699 
6700 	return false;
6701 }
6702 
6703 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port)
6704 {
6705 	if (IS_ELKHARTLAKE(i915) && port == PORT_D)
6706 		return PHY_A;
6707 
6708 	return (enum phy)port;
6709 }
6710 
6711 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port)
6712 {
6713 	if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port)))
6714 		return PORT_TC_NONE;
6715 
6716 	if (INTEL_GEN(dev_priv) >= 12)
6717 		return port - PORT_D;
6718 
6719 	return port - PORT_C;
6720 }
6721 
6722 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
6723 {
6724 	switch (port) {
6725 	case PORT_A:
6726 		return POWER_DOMAIN_PORT_DDI_A_LANES;
6727 	case PORT_B:
6728 		return POWER_DOMAIN_PORT_DDI_B_LANES;
6729 	case PORT_C:
6730 		return POWER_DOMAIN_PORT_DDI_C_LANES;
6731 	case PORT_D:
6732 		return POWER_DOMAIN_PORT_DDI_D_LANES;
6733 	case PORT_E:
6734 		return POWER_DOMAIN_PORT_DDI_E_LANES;
6735 	case PORT_F:
6736 		return POWER_DOMAIN_PORT_DDI_F_LANES;
6737 	default:
6738 		MISSING_CASE(port);
6739 		return POWER_DOMAIN_PORT_OTHER;
6740 	}
6741 }
6742 
6743 enum intel_display_power_domain
6744 intel_aux_power_domain(struct intel_digital_port *dig_port)
6745 {
6746 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
6747 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
6748 
6749 	if (intel_phy_is_tc(dev_priv, phy) &&
6750 	    dig_port->tc_mode == TC_PORT_TBT_ALT) {
6751 		switch (dig_port->aux_ch) {
6752 		case AUX_CH_C:
6753 			return POWER_DOMAIN_AUX_TBT1;
6754 		case AUX_CH_D:
6755 			return POWER_DOMAIN_AUX_TBT2;
6756 		case AUX_CH_E:
6757 			return POWER_DOMAIN_AUX_TBT3;
6758 		case AUX_CH_F:
6759 			return POWER_DOMAIN_AUX_TBT4;
6760 		default:
6761 			MISSING_CASE(dig_port->aux_ch);
6762 			return POWER_DOMAIN_AUX_TBT1;
6763 		}
6764 	}
6765 
6766 	switch (dig_port->aux_ch) {
6767 	case AUX_CH_A:
6768 		return POWER_DOMAIN_AUX_A;
6769 	case AUX_CH_B:
6770 		return POWER_DOMAIN_AUX_B;
6771 	case AUX_CH_C:
6772 		return POWER_DOMAIN_AUX_C;
6773 	case AUX_CH_D:
6774 		return POWER_DOMAIN_AUX_D;
6775 	case AUX_CH_E:
6776 		return POWER_DOMAIN_AUX_E;
6777 	case AUX_CH_F:
6778 		return POWER_DOMAIN_AUX_F;
6779 	default:
6780 		MISSING_CASE(dig_port->aux_ch);
6781 		return POWER_DOMAIN_AUX_A;
6782 	}
6783 }
6784 
6785 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state)
6786 {
6787 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
6788 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6789 	struct drm_encoder *encoder;
6790 	enum pipe pipe = crtc->pipe;
6791 	u64 mask;
6792 	enum transcoder transcoder = crtc_state->cpu_transcoder;
6793 
6794 	if (!crtc_state->base.active)
6795 		return 0;
6796 
6797 	mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe));
6798 	mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder));
6799 	if (crtc_state->pch_pfit.enabled ||
6800 	    crtc_state->pch_pfit.force_thru)
6801 		mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
6802 
6803 	drm_for_each_encoder_mask(encoder, &dev_priv->drm,
6804 				  crtc_state->base.encoder_mask) {
6805 		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6806 
6807 		mask |= BIT_ULL(intel_encoder->power_domain);
6808 	}
6809 
6810 	if (HAS_DDI(dev_priv) && crtc_state->has_audio)
6811 		mask |= BIT_ULL(POWER_DOMAIN_AUDIO);
6812 
6813 	if (crtc_state->shared_dpll)
6814 		mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE);
6815 
6816 	return mask;
6817 }
6818 
6819 static u64
6820 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state)
6821 {
6822 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
6823 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6824 	enum intel_display_power_domain domain;
6825 	u64 domains, new_domains, old_domains;
6826 
6827 	old_domains = crtc->enabled_power_domains;
6828 	crtc->enabled_power_domains = new_domains =
6829 		get_crtc_power_domains(crtc_state);
6830 
6831 	domains = new_domains & ~old_domains;
6832 
6833 	for_each_power_domain(domain, domains)
6834 		intel_display_power_get(dev_priv, domain);
6835 
6836 	return old_domains & ~new_domains;
6837 }
6838 
6839 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
6840 				      u64 domains)
6841 {
6842 	enum intel_display_power_domain domain;
6843 
6844 	for_each_power_domain(domain, domains)
6845 		intel_display_power_put_unchecked(dev_priv, domain);
6846 }
6847 
6848 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6849 				   struct intel_atomic_state *state)
6850 {
6851 	struct drm_crtc *crtc = pipe_config->base.crtc;
6852 	struct drm_device *dev = crtc->dev;
6853 	struct drm_i915_private *dev_priv = to_i915(dev);
6854 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6855 	int pipe = intel_crtc->pipe;
6856 
6857 	if (WARN_ON(intel_crtc->active))
6858 		return;
6859 
6860 	if (intel_crtc_has_dp_encoder(pipe_config))
6861 		intel_dp_set_m_n(pipe_config, M1_N1);
6862 
6863 	intel_set_pipe_timings(pipe_config);
6864 	intel_set_pipe_src_size(pipe_config);
6865 
6866 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
6867 		I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6868 		I915_WRITE(CHV_CANVAS(pipe), 0);
6869 	}
6870 
6871 	i9xx_set_pipeconf(pipe_config);
6872 
6873 	intel_crtc->active = true;
6874 
6875 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6876 
6877 	intel_encoders_pre_pll_enable(intel_crtc, pipe_config, state);
6878 
6879 	if (IS_CHERRYVIEW(dev_priv)) {
6880 		chv_prepare_pll(intel_crtc, pipe_config);
6881 		chv_enable_pll(intel_crtc, pipe_config);
6882 	} else {
6883 		vlv_prepare_pll(intel_crtc, pipe_config);
6884 		vlv_enable_pll(intel_crtc, pipe_config);
6885 	}
6886 
6887 	intel_encoders_pre_enable(intel_crtc, pipe_config, state);
6888 
6889 	i9xx_pfit_enable(pipe_config);
6890 
6891 	intel_color_load_luts(pipe_config);
6892 	intel_color_commit(pipe_config);
6893 	/* update DSPCNTR to configure gamma for pipe bottom color */
6894 	intel_disable_primary_plane(pipe_config);
6895 
6896 	dev_priv->display.initial_watermarks(state, pipe_config);
6897 	intel_enable_pipe(pipe_config);
6898 
6899 	assert_vblank_disabled(crtc);
6900 	intel_crtc_vblank_on(pipe_config);
6901 
6902 	intel_encoders_enable(intel_crtc, pipe_config, state);
6903 }
6904 
6905 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state)
6906 {
6907 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
6908 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6909 
6910 	I915_WRITE(FP0(crtc->pipe), crtc_state->dpll_hw_state.fp0);
6911 	I915_WRITE(FP1(crtc->pipe), crtc_state->dpll_hw_state.fp1);
6912 }
6913 
6914 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6915 			     struct intel_atomic_state *state)
6916 {
6917 	struct drm_crtc *crtc = pipe_config->base.crtc;
6918 	struct drm_device *dev = crtc->dev;
6919 	struct drm_i915_private *dev_priv = to_i915(dev);
6920 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6921 	enum pipe pipe = intel_crtc->pipe;
6922 
6923 	if (WARN_ON(intel_crtc->active))
6924 		return;
6925 
6926 	i9xx_set_pll_dividers(pipe_config);
6927 
6928 	if (intel_crtc_has_dp_encoder(pipe_config))
6929 		intel_dp_set_m_n(pipe_config, M1_N1);
6930 
6931 	intel_set_pipe_timings(pipe_config);
6932 	intel_set_pipe_src_size(pipe_config);
6933 
6934 	i9xx_set_pipeconf(pipe_config);
6935 
6936 	intel_crtc->active = true;
6937 
6938 	if (!IS_GEN(dev_priv, 2))
6939 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6940 
6941 	intel_encoders_pre_enable(intel_crtc, pipe_config, state);
6942 
6943 	i9xx_enable_pll(intel_crtc, pipe_config);
6944 
6945 	i9xx_pfit_enable(pipe_config);
6946 
6947 	intel_color_load_luts(pipe_config);
6948 	intel_color_commit(pipe_config);
6949 	/* update DSPCNTR to configure gamma for pipe bottom color */
6950 	intel_disable_primary_plane(pipe_config);
6951 
6952 	if (dev_priv->display.initial_watermarks != NULL)
6953 		dev_priv->display.initial_watermarks(state,
6954 						     pipe_config);
6955 	else
6956 		intel_update_watermarks(intel_crtc);
6957 	intel_enable_pipe(pipe_config);
6958 
6959 	assert_vblank_disabled(crtc);
6960 	intel_crtc_vblank_on(pipe_config);
6961 
6962 	intel_encoders_enable(intel_crtc, pipe_config, state);
6963 }
6964 
6965 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state)
6966 {
6967 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
6968 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6969 
6970 	if (!old_crtc_state->gmch_pfit.control)
6971 		return;
6972 
6973 	assert_pipe_disabled(dev_priv, crtc->pipe);
6974 
6975 	DRM_DEBUG_KMS("disabling pfit, current: 0x%08x\n",
6976 		      I915_READ(PFIT_CONTROL));
6977 	I915_WRITE(PFIT_CONTROL, 0);
6978 }
6979 
6980 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6981 			      struct intel_atomic_state *state)
6982 {
6983 	struct drm_crtc *crtc = old_crtc_state->base.crtc;
6984 	struct drm_device *dev = crtc->dev;
6985 	struct drm_i915_private *dev_priv = to_i915(dev);
6986 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6987 	int pipe = intel_crtc->pipe;
6988 
6989 	/*
6990 	 * On gen2 planes are double buffered but the pipe isn't, so we must
6991 	 * wait for planes to fully turn off before disabling the pipe.
6992 	 */
6993 	if (IS_GEN(dev_priv, 2))
6994 		intel_wait_for_vblank(dev_priv, pipe);
6995 
6996 	intel_encoders_disable(intel_crtc, old_crtc_state, state);
6997 
6998 	drm_crtc_vblank_off(crtc);
6999 	assert_vblank_disabled(crtc);
7000 
7001 	intel_disable_pipe(old_crtc_state);
7002 
7003 	i9xx_pfit_disable(old_crtc_state);
7004 
7005 	intel_encoders_post_disable(intel_crtc, old_crtc_state, state);
7006 
7007 	if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
7008 		if (IS_CHERRYVIEW(dev_priv))
7009 			chv_disable_pll(dev_priv, pipe);
7010 		else if (IS_VALLEYVIEW(dev_priv))
7011 			vlv_disable_pll(dev_priv, pipe);
7012 		else
7013 			i9xx_disable_pll(old_crtc_state);
7014 	}
7015 
7016 	intel_encoders_post_pll_disable(intel_crtc, old_crtc_state, state);
7017 
7018 	if (!IS_GEN(dev_priv, 2))
7019 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7020 
7021 	if (!dev_priv->display.initial_watermarks)
7022 		intel_update_watermarks(intel_crtc);
7023 
7024 	/* clock the pipe down to 640x480@60 to potentially save power */
7025 	if (IS_I830(dev_priv))
7026 		i830_enable_pipe(dev_priv, pipe);
7027 }
7028 
7029 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc,
7030 					struct drm_modeset_acquire_ctx *ctx)
7031 {
7032 	struct intel_encoder *encoder;
7033 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7034 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
7035 	struct intel_bw_state *bw_state =
7036 		to_intel_bw_state(dev_priv->bw_obj.state);
7037 	enum intel_display_power_domain domain;
7038 	struct intel_plane *plane;
7039 	u64 domains;
7040 	struct drm_atomic_state *state;
7041 	struct intel_crtc_state *crtc_state;
7042 	int ret;
7043 
7044 	if (!intel_crtc->active)
7045 		return;
7046 
7047 	for_each_intel_plane_on_crtc(&dev_priv->drm, intel_crtc, plane) {
7048 		const struct intel_plane_state *plane_state =
7049 			to_intel_plane_state(plane->base.state);
7050 
7051 		if (plane_state->base.visible)
7052 			intel_plane_disable_noatomic(intel_crtc, plane);
7053 	}
7054 
7055 	state = drm_atomic_state_alloc(crtc->dev);
7056 	if (!state) {
7057 		DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
7058 			      crtc->base.id, crtc->name);
7059 		return;
7060 	}
7061 
7062 	state->acquire_ctx = ctx;
7063 
7064 	/* Everything's already locked, -EDEADLK can't happen. */
7065 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
7066 	ret = drm_atomic_add_affected_connectors(state, crtc);
7067 
7068 	WARN_ON(IS_ERR(crtc_state) || ret);
7069 
7070 	dev_priv->display.crtc_disable(crtc_state, to_intel_atomic_state(state));
7071 
7072 	drm_atomic_state_put(state);
7073 
7074 	DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
7075 		      crtc->base.id, crtc->name);
7076 
7077 	WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
7078 	crtc->state->active = false;
7079 	intel_crtc->active = false;
7080 	crtc->enabled = false;
7081 	crtc->state->connector_mask = 0;
7082 	crtc->state->encoder_mask = 0;
7083 
7084 	for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
7085 		encoder->base.crtc = NULL;
7086 
7087 	intel_fbc_disable(intel_crtc);
7088 	intel_update_watermarks(intel_crtc);
7089 	intel_disable_shared_dpll(to_intel_crtc_state(crtc->state));
7090 
7091 	domains = intel_crtc->enabled_power_domains;
7092 	for_each_power_domain(domain, domains)
7093 		intel_display_power_put_unchecked(dev_priv, domain);
7094 	intel_crtc->enabled_power_domains = 0;
7095 
7096 	dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
7097 	dev_priv->min_cdclk[intel_crtc->pipe] = 0;
7098 	dev_priv->min_voltage_level[intel_crtc->pipe] = 0;
7099 
7100 	bw_state->data_rate[intel_crtc->pipe] = 0;
7101 	bw_state->num_active_planes[intel_crtc->pipe] = 0;
7102 }
7103 
7104 /*
7105  * turn all crtc's off, but do not adjust state
7106  * This has to be paired with a call to intel_modeset_setup_hw_state.
7107  */
7108 int intel_display_suspend(struct drm_device *dev)
7109 {
7110 	struct drm_i915_private *dev_priv = to_i915(dev);
7111 	struct drm_atomic_state *state;
7112 	int ret;
7113 
7114 	state = drm_atomic_helper_suspend(dev);
7115 	ret = PTR_ERR_OR_ZERO(state);
7116 	if (ret)
7117 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
7118 	else
7119 		dev_priv->modeset_restore_state = state;
7120 	return ret;
7121 }
7122 
7123 void intel_encoder_destroy(struct drm_encoder *encoder)
7124 {
7125 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7126 
7127 	drm_encoder_cleanup(encoder);
7128 	kfree(intel_encoder);
7129 }
7130 
7131 /* Cross check the actual hw state with our own modeset state tracking (and it's
7132  * internal consistency). */
7133 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state,
7134 					 struct drm_connector_state *conn_state)
7135 {
7136 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
7137 
7138 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
7139 		      connector->base.base.id,
7140 		      connector->base.name);
7141 
7142 	if (connector->get_hw_state(connector)) {
7143 		struct intel_encoder *encoder = connector->encoder;
7144 
7145 		I915_STATE_WARN(!crtc_state,
7146 			 "connector enabled without attached crtc\n");
7147 
7148 		if (!crtc_state)
7149 			return;
7150 
7151 		I915_STATE_WARN(!crtc_state->base.active,
7152 		      "connector is active, but attached crtc isn't\n");
7153 
7154 		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
7155 			return;
7156 
7157 		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
7158 			"atomic encoder doesn't match attached encoder\n");
7159 
7160 		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
7161 			"attached encoder crtc differs from connector crtc\n");
7162 	} else {
7163 		I915_STATE_WARN(crtc_state && crtc_state->base.active,
7164 			"attached crtc is active, but connector isn't\n");
7165 		I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
7166 			"best encoder set without crtc!\n");
7167 	}
7168 }
7169 
7170 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7171 {
7172 	if (crtc_state->base.enable && crtc_state->has_pch_encoder)
7173 		return crtc_state->fdi_lanes;
7174 
7175 	return 0;
7176 }
7177 
7178 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7179 				     struct intel_crtc_state *pipe_config)
7180 {
7181 	struct drm_i915_private *dev_priv = to_i915(dev);
7182 	struct drm_atomic_state *state = pipe_config->base.state;
7183 	struct intel_crtc *other_crtc;
7184 	struct intel_crtc_state *other_crtc_state;
7185 
7186 	DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7187 		      pipe_name(pipe), pipe_config->fdi_lanes);
7188 	if (pipe_config->fdi_lanes > 4) {
7189 		DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7190 			      pipe_name(pipe), pipe_config->fdi_lanes);
7191 		return -EINVAL;
7192 	}
7193 
7194 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7195 		if (pipe_config->fdi_lanes > 2) {
7196 			DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7197 				      pipe_config->fdi_lanes);
7198 			return -EINVAL;
7199 		} else {
7200 			return 0;
7201 		}
7202 	}
7203 
7204 	if (INTEL_INFO(dev_priv)->num_pipes == 2)
7205 		return 0;
7206 
7207 	/* Ivybridge 3 pipe is really complicated */
7208 	switch (pipe) {
7209 	case PIPE_A:
7210 		return 0;
7211 	case PIPE_B:
7212 		if (pipe_config->fdi_lanes <= 2)
7213 			return 0;
7214 
7215 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7216 		other_crtc_state =
7217 			intel_atomic_get_crtc_state(state, other_crtc);
7218 		if (IS_ERR(other_crtc_state))
7219 			return PTR_ERR(other_crtc_state);
7220 
7221 		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7222 			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7223 				      pipe_name(pipe), pipe_config->fdi_lanes);
7224 			return -EINVAL;
7225 		}
7226 		return 0;
7227 	case PIPE_C:
7228 		if (pipe_config->fdi_lanes > 2) {
7229 			DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7230 				      pipe_name(pipe), pipe_config->fdi_lanes);
7231 			return -EINVAL;
7232 		}
7233 
7234 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7235 		other_crtc_state =
7236 			intel_atomic_get_crtc_state(state, other_crtc);
7237 		if (IS_ERR(other_crtc_state))
7238 			return PTR_ERR(other_crtc_state);
7239 
7240 		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7241 			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7242 			return -EINVAL;
7243 		}
7244 		return 0;
7245 	default:
7246 		BUG();
7247 	}
7248 }
7249 
7250 #define RETRY 1
7251 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7252 				       struct intel_crtc_state *pipe_config)
7253 {
7254 	struct drm_device *dev = intel_crtc->base.dev;
7255 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7256 	int lane, link_bw, fdi_dotclock, ret;
7257 	bool needs_recompute = false;
7258 
7259 retry:
7260 	/* FDI is a binary signal running at ~2.7GHz, encoding
7261 	 * each output octet as 10 bits. The actual frequency
7262 	 * is stored as a divider into a 100MHz clock, and the
7263 	 * mode pixel clock is stored in units of 1KHz.
7264 	 * Hence the bw of each lane in terms of the mode signal
7265 	 * is:
7266 	 */
7267 	link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7268 
7269 	fdi_dotclock = adjusted_mode->crtc_clock;
7270 
7271 	lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7272 					   pipe_config->pipe_bpp);
7273 
7274 	pipe_config->fdi_lanes = lane;
7275 
7276 	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7277 			       link_bw, &pipe_config->fdi_m_n, false, false);
7278 
7279 	ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7280 	if (ret == -EDEADLK)
7281 		return ret;
7282 
7283 	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7284 		pipe_config->pipe_bpp -= 2*3;
7285 		DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7286 			      pipe_config->pipe_bpp);
7287 		needs_recompute = true;
7288 		pipe_config->bw_constrained = true;
7289 
7290 		goto retry;
7291 	}
7292 
7293 	if (needs_recompute)
7294 		return RETRY;
7295 
7296 	return ret;
7297 }
7298 
7299 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state)
7300 {
7301 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
7302 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7303 
7304 	/* IPS only exists on ULT machines and is tied to pipe A. */
7305 	if (!hsw_crtc_supports_ips(crtc))
7306 		return false;
7307 
7308 	if (!i915_modparams.enable_ips)
7309 		return false;
7310 
7311 	if (crtc_state->pipe_bpp > 24)
7312 		return false;
7313 
7314 	/*
7315 	 * We compare against max which means we must take
7316 	 * the increased cdclk requirement into account when
7317 	 * calculating the new cdclk.
7318 	 *
7319 	 * Should measure whether using a lower cdclk w/o IPS
7320 	 */
7321 	if (IS_BROADWELL(dev_priv) &&
7322 	    crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100)
7323 		return false;
7324 
7325 	return true;
7326 }
7327 
7328 static bool hsw_compute_ips_config(struct intel_crtc_state *crtc_state)
7329 {
7330 	struct drm_i915_private *dev_priv =
7331 		to_i915(crtc_state->base.crtc->dev);
7332 	struct intel_atomic_state *intel_state =
7333 		to_intel_atomic_state(crtc_state->base.state);
7334 
7335 	if (!hsw_crtc_state_ips_capable(crtc_state))
7336 		return false;
7337 
7338 	/*
7339 	 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
7340 	 * enabled and disabled dynamically based on package C states,
7341 	 * user space can't make reliable use of the CRCs, so let's just
7342 	 * completely disable it.
7343 	 */
7344 	if (crtc_state->crc_enabled)
7345 		return false;
7346 
7347 	/* IPS should be fine as long as at least one plane is enabled. */
7348 	if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)))
7349 		return false;
7350 
7351 	/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
7352 	if (IS_BROADWELL(dev_priv) &&
7353 	    crtc_state->pixel_rate > intel_state->cdclk.logical.cdclk * 95 / 100)
7354 		return false;
7355 
7356 	return true;
7357 }
7358 
7359 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7360 {
7361 	const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7362 
7363 	/* GDG double wide on either pipe, otherwise pipe A only */
7364 	return INTEL_GEN(dev_priv) < 4 &&
7365 		(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7366 }
7367 
7368 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
7369 {
7370 	u32 pixel_rate;
7371 
7372 	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
7373 
7374 	/*
7375 	 * We only use IF-ID interlacing. If we ever use
7376 	 * PF-ID we'll need to adjust the pixel_rate here.
7377 	 */
7378 
7379 	if (pipe_config->pch_pfit.enabled) {
7380 		u64 pipe_w, pipe_h, pfit_w, pfit_h;
7381 		u32 pfit_size = pipe_config->pch_pfit.size;
7382 
7383 		pipe_w = pipe_config->pipe_src_w;
7384 		pipe_h = pipe_config->pipe_src_h;
7385 
7386 		pfit_w = (pfit_size >> 16) & 0xFFFF;
7387 		pfit_h = pfit_size & 0xFFFF;
7388 		if (pipe_w < pfit_w)
7389 			pipe_w = pfit_w;
7390 		if (pipe_h < pfit_h)
7391 			pipe_h = pfit_h;
7392 
7393 		if (WARN_ON(!pfit_w || !pfit_h))
7394 			return pixel_rate;
7395 
7396 		pixel_rate = div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h),
7397 				     pfit_w * pfit_h);
7398 	}
7399 
7400 	return pixel_rate;
7401 }
7402 
7403 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
7404 {
7405 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
7406 
7407 	if (HAS_GMCH(dev_priv))
7408 		/* FIXME calculate proper pipe pixel rate for GMCH pfit */
7409 		crtc_state->pixel_rate =
7410 			crtc_state->base.adjusted_mode.crtc_clock;
7411 	else
7412 		crtc_state->pixel_rate =
7413 			ilk_pipe_pixel_rate(crtc_state);
7414 }
7415 
7416 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7417 				     struct intel_crtc_state *pipe_config)
7418 {
7419 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7420 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7421 	int clock_limit = dev_priv->max_dotclk_freq;
7422 
7423 	if (INTEL_GEN(dev_priv) < 4) {
7424 		clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7425 
7426 		/*
7427 		 * Enable double wide mode when the dot clock
7428 		 * is > 90% of the (display) core speed.
7429 		 */
7430 		if (intel_crtc_supports_double_wide(crtc) &&
7431 		    adjusted_mode->crtc_clock > clock_limit) {
7432 			clock_limit = dev_priv->max_dotclk_freq;
7433 			pipe_config->double_wide = true;
7434 		}
7435 	}
7436 
7437 	if (adjusted_mode->crtc_clock > clock_limit) {
7438 		DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7439 			      adjusted_mode->crtc_clock, clock_limit,
7440 			      yesno(pipe_config->double_wide));
7441 		return -EINVAL;
7442 	}
7443 
7444 	if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
7445 	     pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) &&
7446 	     pipe_config->base.ctm) {
7447 		/*
7448 		 * There is only one pipe CSC unit per pipe, and we need that
7449 		 * for output conversion from RGB->YCBCR. So if CTM is already
7450 		 * applied we can't support YCBCR420 output.
7451 		 */
7452 		DRM_DEBUG_KMS("YCBCR420 and CTM together are not possible\n");
7453 		return -EINVAL;
7454 	}
7455 
7456 	/*
7457 	 * Pipe horizontal size must be even in:
7458 	 * - DVO ganged mode
7459 	 * - LVDS dual channel mode
7460 	 * - Double wide pipe
7461 	 */
7462 	if (pipe_config->pipe_src_w & 1) {
7463 		if (pipe_config->double_wide) {
7464 			DRM_DEBUG_KMS("Odd pipe source width not supported with double wide pipe\n");
7465 			return -EINVAL;
7466 		}
7467 
7468 		if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7469 		    intel_is_dual_link_lvds(dev_priv)) {
7470 			DRM_DEBUG_KMS("Odd pipe source width not supported with dual link LVDS\n");
7471 			return -EINVAL;
7472 		}
7473 	}
7474 
7475 	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
7476 	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7477 	 */
7478 	if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
7479 		adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7480 		return -EINVAL;
7481 
7482 	intel_crtc_compute_pixel_rate(pipe_config);
7483 
7484 	if (pipe_config->has_pch_encoder)
7485 		return ironlake_fdi_compute_config(crtc, pipe_config);
7486 
7487 	return 0;
7488 }
7489 
7490 static void
7491 intel_reduce_m_n_ratio(u32 *num, u32 *den)
7492 {
7493 	while (*num > DATA_LINK_M_N_MASK ||
7494 	       *den > DATA_LINK_M_N_MASK) {
7495 		*num >>= 1;
7496 		*den >>= 1;
7497 	}
7498 }
7499 
7500 static void compute_m_n(unsigned int m, unsigned int n,
7501 			u32 *ret_m, u32 *ret_n,
7502 			bool constant_n)
7503 {
7504 	/*
7505 	 * Several DP dongles in particular seem to be fussy about
7506 	 * too large link M/N values. Give N value as 0x8000 that
7507 	 * should be acceptable by specific devices. 0x8000 is the
7508 	 * specified fixed N value for asynchronous clock mode,
7509 	 * which the devices expect also in synchronous clock mode.
7510 	 */
7511 	if (constant_n)
7512 		*ret_n = 0x8000;
7513 	else
7514 		*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7515 
7516 	*ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
7517 	intel_reduce_m_n_ratio(ret_m, ret_n);
7518 }
7519 
7520 void
7521 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes,
7522 		       int pixel_clock, int link_clock,
7523 		       struct intel_link_m_n *m_n,
7524 		       bool constant_n, bool fec_enable)
7525 {
7526 	u32 data_clock = bits_per_pixel * pixel_clock;
7527 
7528 	if (fec_enable)
7529 		data_clock = intel_dp_mode_to_fec_clock(data_clock);
7530 
7531 	m_n->tu = 64;
7532 	compute_m_n(data_clock,
7533 		    link_clock * nlanes * 8,
7534 		    &m_n->gmch_m, &m_n->gmch_n,
7535 		    constant_n);
7536 
7537 	compute_m_n(pixel_clock, link_clock,
7538 		    &m_n->link_m, &m_n->link_n,
7539 		    constant_n);
7540 }
7541 
7542 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7543 {
7544 	if (i915_modparams.panel_use_ssc >= 0)
7545 		return i915_modparams.panel_use_ssc != 0;
7546 	return dev_priv->vbt.lvds_use_ssc
7547 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7548 }
7549 
7550 static u32 pnv_dpll_compute_fp(struct dpll *dpll)
7551 {
7552 	return (1 << dpll->n) << 16 | dpll->m2;
7553 }
7554 
7555 static u32 i9xx_dpll_compute_fp(struct dpll *dpll)
7556 {
7557 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7558 }
7559 
7560 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7561 				     struct intel_crtc_state *crtc_state,
7562 				     struct dpll *reduced_clock)
7563 {
7564 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7565 	u32 fp, fp2 = 0;
7566 
7567 	if (IS_PINEVIEW(dev_priv)) {
7568 		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7569 		if (reduced_clock)
7570 			fp2 = pnv_dpll_compute_fp(reduced_clock);
7571 	} else {
7572 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7573 		if (reduced_clock)
7574 			fp2 = i9xx_dpll_compute_fp(reduced_clock);
7575 	}
7576 
7577 	crtc_state->dpll_hw_state.fp0 = fp;
7578 
7579 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7580 	    reduced_clock) {
7581 		crtc_state->dpll_hw_state.fp1 = fp2;
7582 	} else {
7583 		crtc_state->dpll_hw_state.fp1 = fp;
7584 	}
7585 }
7586 
7587 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7588 		pipe)
7589 {
7590 	u32 reg_val;
7591 
7592 	/*
7593 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7594 	 * and set it to a reasonable value instead.
7595 	 */
7596 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7597 	reg_val &= 0xffffff00;
7598 	reg_val |= 0x00000030;
7599 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7600 
7601 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7602 	reg_val &= 0x00ffffff;
7603 	reg_val |= 0x8c000000;
7604 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7605 
7606 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7607 	reg_val &= 0xffffff00;
7608 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7609 
7610 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7611 	reg_val &= 0x00ffffff;
7612 	reg_val |= 0xb0000000;
7613 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7614 }
7615 
7616 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
7617 					 const struct intel_link_m_n *m_n)
7618 {
7619 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
7620 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7621 	enum pipe pipe = crtc->pipe;
7622 
7623 	I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7624 	I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7625 	I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7626 	I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7627 }
7628 
7629 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv,
7630 				 enum transcoder transcoder)
7631 {
7632 	if (IS_HASWELL(dev_priv))
7633 		return transcoder == TRANSCODER_EDP;
7634 
7635 	/*
7636 	 * Strictly speaking some registers are available before
7637 	 * gen7, but we only support DRRS on gen7+
7638 	 */
7639 	return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv);
7640 }
7641 
7642 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
7643 					 const struct intel_link_m_n *m_n,
7644 					 const struct intel_link_m_n *m2_n2)
7645 {
7646 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
7647 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7648 	enum pipe pipe = crtc->pipe;
7649 	enum transcoder transcoder = crtc_state->cpu_transcoder;
7650 
7651 	if (INTEL_GEN(dev_priv) >= 5) {
7652 		I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7653 		I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7654 		I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7655 		I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7656 		/*
7657 		 *  M2_N2 registers are set only if DRRS is supported
7658 		 * (to make sure the registers are not unnecessarily accessed).
7659 		 */
7660 		if (m2_n2 && crtc_state->has_drrs &&
7661 		    transcoder_has_m2_n2(dev_priv, transcoder)) {
7662 			I915_WRITE(PIPE_DATA_M2(transcoder),
7663 					TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7664 			I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7665 			I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7666 			I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7667 		}
7668 	} else {
7669 		I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7670 		I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7671 		I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7672 		I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7673 	}
7674 }
7675 
7676 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n)
7677 {
7678 	const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7679 
7680 	if (m_n == M1_N1) {
7681 		dp_m_n = &crtc_state->dp_m_n;
7682 		dp_m2_n2 = &crtc_state->dp_m2_n2;
7683 	} else if (m_n == M2_N2) {
7684 
7685 		/*
7686 		 * M2_N2 registers are not supported. Hence m2_n2 divider value
7687 		 * needs to be programmed into M1_N1.
7688 		 */
7689 		dp_m_n = &crtc_state->dp_m2_n2;
7690 	} else {
7691 		DRM_ERROR("Unsupported divider value\n");
7692 		return;
7693 	}
7694 
7695 	if (crtc_state->has_pch_encoder)
7696 		intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n);
7697 	else
7698 		intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2);
7699 }
7700 
7701 static void vlv_compute_dpll(struct intel_crtc *crtc,
7702 			     struct intel_crtc_state *pipe_config)
7703 {
7704 	pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7705 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7706 	if (crtc->pipe != PIPE_A)
7707 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7708 
7709 	/* DPLL not used with DSI, but still need the rest set up */
7710 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7711 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7712 			DPLL_EXT_BUFFER_ENABLE_VLV;
7713 
7714 	pipe_config->dpll_hw_state.dpll_md =
7715 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7716 }
7717 
7718 static void chv_compute_dpll(struct intel_crtc *crtc,
7719 			     struct intel_crtc_state *pipe_config)
7720 {
7721 	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7722 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7723 	if (crtc->pipe != PIPE_A)
7724 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7725 
7726 	/* DPLL not used with DSI, but still need the rest set up */
7727 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7728 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7729 
7730 	pipe_config->dpll_hw_state.dpll_md =
7731 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7732 }
7733 
7734 static void vlv_prepare_pll(struct intel_crtc *crtc,
7735 			    const struct intel_crtc_state *pipe_config)
7736 {
7737 	struct drm_device *dev = crtc->base.dev;
7738 	struct drm_i915_private *dev_priv = to_i915(dev);
7739 	enum pipe pipe = crtc->pipe;
7740 	u32 mdiv;
7741 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
7742 	u32 coreclk, reg_val;
7743 
7744 	/* Enable Refclk */
7745 	I915_WRITE(DPLL(pipe),
7746 		   pipe_config->dpll_hw_state.dpll &
7747 		   ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7748 
7749 	/* No need to actually set up the DPLL with DSI */
7750 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7751 		return;
7752 
7753 	vlv_dpio_get(dev_priv);
7754 
7755 	bestn = pipe_config->dpll.n;
7756 	bestm1 = pipe_config->dpll.m1;
7757 	bestm2 = pipe_config->dpll.m2;
7758 	bestp1 = pipe_config->dpll.p1;
7759 	bestp2 = pipe_config->dpll.p2;
7760 
7761 	/* See eDP HDMI DPIO driver vbios notes doc */
7762 
7763 	/* PLL B needs special handling */
7764 	if (pipe == PIPE_B)
7765 		vlv_pllb_recal_opamp(dev_priv, pipe);
7766 
7767 	/* Set up Tx target for periodic Rcomp update */
7768 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7769 
7770 	/* Disable target IRef on PLL */
7771 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7772 	reg_val &= 0x00ffffff;
7773 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7774 
7775 	/* Disable fast lock */
7776 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7777 
7778 	/* Set idtafcrecal before PLL is enabled */
7779 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7780 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7781 	mdiv |= ((bestn << DPIO_N_SHIFT));
7782 	mdiv |= (1 << DPIO_K_SHIFT);
7783 
7784 	/*
7785 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7786 	 * but we don't support that).
7787 	 * Note: don't use the DAC post divider as it seems unstable.
7788 	 */
7789 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7790 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7791 
7792 	mdiv |= DPIO_ENABLE_CALIBRATION;
7793 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7794 
7795 	/* Set HBR and RBR LPF coefficients */
7796 	if (pipe_config->port_clock == 162000 ||
7797 	    intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
7798 	    intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
7799 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7800 				 0x009f0003);
7801 	else
7802 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7803 				 0x00d0000f);
7804 
7805 	if (intel_crtc_has_dp_encoder(pipe_config)) {
7806 		/* Use SSC source */
7807 		if (pipe == PIPE_A)
7808 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7809 					 0x0df40000);
7810 		else
7811 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7812 					 0x0df70000);
7813 	} else { /* HDMI or VGA */
7814 		/* Use bend source */
7815 		if (pipe == PIPE_A)
7816 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7817 					 0x0df70000);
7818 		else
7819 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7820 					 0x0df40000);
7821 	}
7822 
7823 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7824 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7825 	if (intel_crtc_has_dp_encoder(pipe_config))
7826 		coreclk |= 0x01000000;
7827 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7828 
7829 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7830 
7831 	vlv_dpio_put(dev_priv);
7832 }
7833 
7834 static void chv_prepare_pll(struct intel_crtc *crtc,
7835 			    const struct intel_crtc_state *pipe_config)
7836 {
7837 	struct drm_device *dev = crtc->base.dev;
7838 	struct drm_i915_private *dev_priv = to_i915(dev);
7839 	enum pipe pipe = crtc->pipe;
7840 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
7841 	u32 loopfilter, tribuf_calcntr;
7842 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7843 	u32 dpio_val;
7844 	int vco;
7845 
7846 	/* Enable Refclk and SSC */
7847 	I915_WRITE(DPLL(pipe),
7848 		   pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7849 
7850 	/* No need to actually set up the DPLL with DSI */
7851 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7852 		return;
7853 
7854 	bestn = pipe_config->dpll.n;
7855 	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7856 	bestm1 = pipe_config->dpll.m1;
7857 	bestm2 = pipe_config->dpll.m2 >> 22;
7858 	bestp1 = pipe_config->dpll.p1;
7859 	bestp2 = pipe_config->dpll.p2;
7860 	vco = pipe_config->dpll.vco;
7861 	dpio_val = 0;
7862 	loopfilter = 0;
7863 
7864 	vlv_dpio_get(dev_priv);
7865 
7866 	/* p1 and p2 divider */
7867 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7868 			5 << DPIO_CHV_S1_DIV_SHIFT |
7869 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7870 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7871 			1 << DPIO_CHV_K_DIV_SHIFT);
7872 
7873 	/* Feedback post-divider - m2 */
7874 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7875 
7876 	/* Feedback refclk divider - n and m1 */
7877 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7878 			DPIO_CHV_M1_DIV_BY_2 |
7879 			1 << DPIO_CHV_N_DIV_SHIFT);
7880 
7881 	/* M2 fraction division */
7882 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7883 
7884 	/* M2 fraction division enable */
7885 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7886 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7887 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7888 	if (bestm2_frac)
7889 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7890 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7891 
7892 	/* Program digital lock detect threshold */
7893 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7894 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7895 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7896 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7897 	if (!bestm2_frac)
7898 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7899 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7900 
7901 	/* Loop filter */
7902 	if (vco == 5400000) {
7903 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7904 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7905 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7906 		tribuf_calcntr = 0x9;
7907 	} else if (vco <= 6200000) {
7908 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7909 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7910 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7911 		tribuf_calcntr = 0x9;
7912 	} else if (vco <= 6480000) {
7913 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7914 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7915 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7916 		tribuf_calcntr = 0x8;
7917 	} else {
7918 		/* Not supported. Apply the same limits as in the max case */
7919 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7920 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7921 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7922 		tribuf_calcntr = 0;
7923 	}
7924 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7925 
7926 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7927 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7928 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7929 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7930 
7931 	/* AFC Recal */
7932 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7933 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7934 			DPIO_AFC_RECAL);
7935 
7936 	vlv_dpio_put(dev_priv);
7937 }
7938 
7939 /**
7940  * vlv_force_pll_on - forcibly enable just the PLL
7941  * @dev_priv: i915 private structure
7942  * @pipe: pipe PLL to enable
7943  * @dpll: PLL configuration
7944  *
7945  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7946  * in cases where we need the PLL enabled even when @pipe is not going to
7947  * be enabled.
7948  */
7949 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
7950 		     const struct dpll *dpll)
7951 {
7952 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
7953 	struct intel_crtc_state *pipe_config;
7954 
7955 	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7956 	if (!pipe_config)
7957 		return -ENOMEM;
7958 
7959 	pipe_config->base.crtc = &crtc->base;
7960 	pipe_config->pixel_multiplier = 1;
7961 	pipe_config->dpll = *dpll;
7962 
7963 	if (IS_CHERRYVIEW(dev_priv)) {
7964 		chv_compute_dpll(crtc, pipe_config);
7965 		chv_prepare_pll(crtc, pipe_config);
7966 		chv_enable_pll(crtc, pipe_config);
7967 	} else {
7968 		vlv_compute_dpll(crtc, pipe_config);
7969 		vlv_prepare_pll(crtc, pipe_config);
7970 		vlv_enable_pll(crtc, pipe_config);
7971 	}
7972 
7973 	kfree(pipe_config);
7974 
7975 	return 0;
7976 }
7977 
7978 /**
7979  * vlv_force_pll_off - forcibly disable just the PLL
7980  * @dev_priv: i915 private structure
7981  * @pipe: pipe PLL to disable
7982  *
7983  * Disable the PLL for @pipe. To be used in cases where we need
7984  * the PLL enabled even when @pipe is not going to be enabled.
7985  */
7986 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
7987 {
7988 	if (IS_CHERRYVIEW(dev_priv))
7989 		chv_disable_pll(dev_priv, pipe);
7990 	else
7991 		vlv_disable_pll(dev_priv, pipe);
7992 }
7993 
7994 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7995 			      struct intel_crtc_state *crtc_state,
7996 			      struct dpll *reduced_clock)
7997 {
7998 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7999 	u32 dpll;
8000 	struct dpll *clock = &crtc_state->dpll;
8001 
8002 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8003 
8004 	dpll = DPLL_VGA_MODE_DIS;
8005 
8006 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8007 		dpll |= DPLLB_MODE_LVDS;
8008 	else
8009 		dpll |= DPLLB_MODE_DAC_SERIAL;
8010 
8011 	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8012 	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8013 		dpll |= (crtc_state->pixel_multiplier - 1)
8014 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
8015 	}
8016 
8017 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8018 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8019 		dpll |= DPLL_SDVO_HIGH_SPEED;
8020 
8021 	if (intel_crtc_has_dp_encoder(crtc_state))
8022 		dpll |= DPLL_SDVO_HIGH_SPEED;
8023 
8024 	/* compute bitmask from p1 value */
8025 	if (IS_PINEVIEW(dev_priv))
8026 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8027 	else {
8028 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8029 		if (IS_G4X(dev_priv) && reduced_clock)
8030 			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8031 	}
8032 	switch (clock->p2) {
8033 	case 5:
8034 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8035 		break;
8036 	case 7:
8037 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8038 		break;
8039 	case 10:
8040 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8041 		break;
8042 	case 14:
8043 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8044 		break;
8045 	}
8046 	if (INTEL_GEN(dev_priv) >= 4)
8047 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8048 
8049 	if (crtc_state->sdvo_tv_clock)
8050 		dpll |= PLL_REF_INPUT_TVCLKINBC;
8051 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8052 		 intel_panel_use_ssc(dev_priv))
8053 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8054 	else
8055 		dpll |= PLL_REF_INPUT_DREFCLK;
8056 
8057 	dpll |= DPLL_VCO_ENABLE;
8058 	crtc_state->dpll_hw_state.dpll = dpll;
8059 
8060 	if (INTEL_GEN(dev_priv) >= 4) {
8061 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8062 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
8063 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
8064 	}
8065 }
8066 
8067 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8068 			      struct intel_crtc_state *crtc_state,
8069 			      struct dpll *reduced_clock)
8070 {
8071 	struct drm_device *dev = crtc->base.dev;
8072 	struct drm_i915_private *dev_priv = to_i915(dev);
8073 	u32 dpll;
8074 	struct dpll *clock = &crtc_state->dpll;
8075 
8076 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8077 
8078 	dpll = DPLL_VGA_MODE_DIS;
8079 
8080 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8081 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8082 	} else {
8083 		if (clock->p1 == 2)
8084 			dpll |= PLL_P1_DIVIDE_BY_TWO;
8085 		else
8086 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8087 		if (clock->p2 == 4)
8088 			dpll |= PLL_P2_DIVIDE_BY_4;
8089 	}
8090 
8091 	/*
8092 	 * Bspec:
8093 	 * "[Almador Errata}: For the correct operation of the muxed DVO pins
8094 	 *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
8095 	 *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
8096 	 *  Enable) must be set to “1” in both the DPLL A Control Register
8097 	 *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
8098 	 *
8099 	 * For simplicity We simply keep both bits always enabled in
8100 	 * both DPLLS. The spec says we should disable the DVO 2X clock
8101 	 * when not needed, but this seems to work fine in practice.
8102 	 */
8103 	if (IS_I830(dev_priv) ||
8104 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8105 		dpll |= DPLL_DVO_2X_MODE;
8106 
8107 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8108 	    intel_panel_use_ssc(dev_priv))
8109 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8110 	else
8111 		dpll |= PLL_REF_INPUT_DREFCLK;
8112 
8113 	dpll |= DPLL_VCO_ENABLE;
8114 	crtc_state->dpll_hw_state.dpll = dpll;
8115 }
8116 
8117 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state)
8118 {
8119 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
8120 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8121 	enum pipe pipe = crtc->pipe;
8122 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8123 	const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode;
8124 	u32 crtc_vtotal, crtc_vblank_end;
8125 	int vsyncshift = 0;
8126 
8127 	/* We need to be careful not to changed the adjusted mode, for otherwise
8128 	 * the hw state checker will get angry at the mismatch. */
8129 	crtc_vtotal = adjusted_mode->crtc_vtotal;
8130 	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8131 
8132 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8133 		/* the chip adds 2 halflines automatically */
8134 		crtc_vtotal -= 1;
8135 		crtc_vblank_end -= 1;
8136 
8137 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8138 			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8139 		else
8140 			vsyncshift = adjusted_mode->crtc_hsync_start -
8141 				adjusted_mode->crtc_htotal / 2;
8142 		if (vsyncshift < 0)
8143 			vsyncshift += adjusted_mode->crtc_htotal;
8144 	}
8145 
8146 	if (INTEL_GEN(dev_priv) > 3)
8147 		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8148 
8149 	I915_WRITE(HTOTAL(cpu_transcoder),
8150 		   (adjusted_mode->crtc_hdisplay - 1) |
8151 		   ((adjusted_mode->crtc_htotal - 1) << 16));
8152 	I915_WRITE(HBLANK(cpu_transcoder),
8153 		   (adjusted_mode->crtc_hblank_start - 1) |
8154 		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
8155 	I915_WRITE(HSYNC(cpu_transcoder),
8156 		   (adjusted_mode->crtc_hsync_start - 1) |
8157 		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
8158 
8159 	I915_WRITE(VTOTAL(cpu_transcoder),
8160 		   (adjusted_mode->crtc_vdisplay - 1) |
8161 		   ((crtc_vtotal - 1) << 16));
8162 	I915_WRITE(VBLANK(cpu_transcoder),
8163 		   (adjusted_mode->crtc_vblank_start - 1) |
8164 		   ((crtc_vblank_end - 1) << 16));
8165 	I915_WRITE(VSYNC(cpu_transcoder),
8166 		   (adjusted_mode->crtc_vsync_start - 1) |
8167 		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
8168 
8169 	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8170 	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8171 	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8172 	 * bits. */
8173 	if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8174 	    (pipe == PIPE_B || pipe == PIPE_C))
8175 		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8176 
8177 }
8178 
8179 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
8180 {
8181 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
8182 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8183 	enum pipe pipe = crtc->pipe;
8184 
8185 	/* pipesrc controls the size that is scaled from, which should
8186 	 * always be the user's requested size.
8187 	 */
8188 	I915_WRITE(PIPESRC(pipe),
8189 		   ((crtc_state->pipe_src_w - 1) << 16) |
8190 		   (crtc_state->pipe_src_h - 1));
8191 }
8192 
8193 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8194 				   struct intel_crtc_state *pipe_config)
8195 {
8196 	struct drm_device *dev = crtc->base.dev;
8197 	struct drm_i915_private *dev_priv = to_i915(dev);
8198 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8199 	u32 tmp;
8200 
8201 	tmp = I915_READ(HTOTAL(cpu_transcoder));
8202 	pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8203 	pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8204 
8205 	if (!transcoder_is_dsi(cpu_transcoder)) {
8206 		tmp = I915_READ(HBLANK(cpu_transcoder));
8207 		pipe_config->base.adjusted_mode.crtc_hblank_start =
8208 							(tmp & 0xffff) + 1;
8209 		pipe_config->base.adjusted_mode.crtc_hblank_end =
8210 						((tmp >> 16) & 0xffff) + 1;
8211 	}
8212 	tmp = I915_READ(HSYNC(cpu_transcoder));
8213 	pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8214 	pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8215 
8216 	tmp = I915_READ(VTOTAL(cpu_transcoder));
8217 	pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8218 	pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8219 
8220 	if (!transcoder_is_dsi(cpu_transcoder)) {
8221 		tmp = I915_READ(VBLANK(cpu_transcoder));
8222 		pipe_config->base.adjusted_mode.crtc_vblank_start =
8223 							(tmp & 0xffff) + 1;
8224 		pipe_config->base.adjusted_mode.crtc_vblank_end =
8225 						((tmp >> 16) & 0xffff) + 1;
8226 	}
8227 	tmp = I915_READ(VSYNC(cpu_transcoder));
8228 	pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8229 	pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8230 
8231 	if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
8232 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8233 		pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8234 		pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8235 	}
8236 }
8237 
8238 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8239 				    struct intel_crtc_state *pipe_config)
8240 {
8241 	struct drm_device *dev = crtc->base.dev;
8242 	struct drm_i915_private *dev_priv = to_i915(dev);
8243 	u32 tmp;
8244 
8245 	tmp = I915_READ(PIPESRC(crtc->pipe));
8246 	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8247 	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8248 
8249 	pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8250 	pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8251 }
8252 
8253 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8254 				 struct intel_crtc_state *pipe_config)
8255 {
8256 	mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8257 	mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8258 	mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8259 	mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8260 
8261 	mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8262 	mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8263 	mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8264 	mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8265 
8266 	mode->flags = pipe_config->base.adjusted_mode.flags;
8267 	mode->type = DRM_MODE_TYPE_DRIVER;
8268 
8269 	mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8270 
8271 	mode->hsync = drm_mode_hsync(mode);
8272 	mode->vrefresh = drm_mode_vrefresh(mode);
8273 	drm_mode_set_name(mode);
8274 }
8275 
8276 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
8277 {
8278 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
8279 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8280 	u32 pipeconf;
8281 
8282 	pipeconf = 0;
8283 
8284 	/* we keep both pipes enabled on 830 */
8285 	if (IS_I830(dev_priv))
8286 		pipeconf |= I915_READ(PIPECONF(crtc->pipe)) & PIPECONF_ENABLE;
8287 
8288 	if (crtc_state->double_wide)
8289 		pipeconf |= PIPECONF_DOUBLE_WIDE;
8290 
8291 	/* only g4x and later have fancy bpc/dither controls */
8292 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8293 	    IS_CHERRYVIEW(dev_priv)) {
8294 		/* Bspec claims that we can't use dithering for 30bpp pipes. */
8295 		if (crtc_state->dither && crtc_state->pipe_bpp != 30)
8296 			pipeconf |= PIPECONF_DITHER_EN |
8297 				    PIPECONF_DITHER_TYPE_SP;
8298 
8299 		switch (crtc_state->pipe_bpp) {
8300 		case 18:
8301 			pipeconf |= PIPECONF_6BPC;
8302 			break;
8303 		case 24:
8304 			pipeconf |= PIPECONF_8BPC;
8305 			break;
8306 		case 30:
8307 			pipeconf |= PIPECONF_10BPC;
8308 			break;
8309 		default:
8310 			/* Case prevented by intel_choose_pipe_bpp_dither. */
8311 			BUG();
8312 		}
8313 	}
8314 
8315 	if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8316 		if (INTEL_GEN(dev_priv) < 4 ||
8317 		    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8318 			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8319 		else
8320 			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8321 	} else {
8322 		pipeconf |= PIPECONF_PROGRESSIVE;
8323 	}
8324 
8325 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8326 	     crtc_state->limited_color_range)
8327 		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8328 
8329 	pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
8330 
8331 	I915_WRITE(PIPECONF(crtc->pipe), pipeconf);
8332 	POSTING_READ(PIPECONF(crtc->pipe));
8333 }
8334 
8335 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8336 				   struct intel_crtc_state *crtc_state)
8337 {
8338 	struct drm_device *dev = crtc->base.dev;
8339 	struct drm_i915_private *dev_priv = to_i915(dev);
8340 	const struct intel_limit *limit;
8341 	int refclk = 48000;
8342 
8343 	memset(&crtc_state->dpll_hw_state, 0,
8344 	       sizeof(crtc_state->dpll_hw_state));
8345 
8346 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8347 		if (intel_panel_use_ssc(dev_priv)) {
8348 			refclk = dev_priv->vbt.lvds_ssc_freq;
8349 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8350 		}
8351 
8352 		limit = &intel_limits_i8xx_lvds;
8353 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8354 		limit = &intel_limits_i8xx_dvo;
8355 	} else {
8356 		limit = &intel_limits_i8xx_dac;
8357 	}
8358 
8359 	if (!crtc_state->clock_set &&
8360 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8361 				 refclk, NULL, &crtc_state->dpll)) {
8362 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8363 		return -EINVAL;
8364 	}
8365 
8366 	i8xx_compute_dpll(crtc, crtc_state, NULL);
8367 
8368 	return 0;
8369 }
8370 
8371 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8372 				  struct intel_crtc_state *crtc_state)
8373 {
8374 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8375 	const struct intel_limit *limit;
8376 	int refclk = 96000;
8377 
8378 	memset(&crtc_state->dpll_hw_state, 0,
8379 	       sizeof(crtc_state->dpll_hw_state));
8380 
8381 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8382 		if (intel_panel_use_ssc(dev_priv)) {
8383 			refclk = dev_priv->vbt.lvds_ssc_freq;
8384 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8385 		}
8386 
8387 		if (intel_is_dual_link_lvds(dev_priv))
8388 			limit = &intel_limits_g4x_dual_channel_lvds;
8389 		else
8390 			limit = &intel_limits_g4x_single_channel_lvds;
8391 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8392 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8393 		limit = &intel_limits_g4x_hdmi;
8394 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8395 		limit = &intel_limits_g4x_sdvo;
8396 	} else {
8397 		/* The option is for other outputs */
8398 		limit = &intel_limits_i9xx_sdvo;
8399 	}
8400 
8401 	if (!crtc_state->clock_set &&
8402 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8403 				refclk, NULL, &crtc_state->dpll)) {
8404 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8405 		return -EINVAL;
8406 	}
8407 
8408 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8409 
8410 	return 0;
8411 }
8412 
8413 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8414 				  struct intel_crtc_state *crtc_state)
8415 {
8416 	struct drm_device *dev = crtc->base.dev;
8417 	struct drm_i915_private *dev_priv = to_i915(dev);
8418 	const struct intel_limit *limit;
8419 	int refclk = 96000;
8420 
8421 	memset(&crtc_state->dpll_hw_state, 0,
8422 	       sizeof(crtc_state->dpll_hw_state));
8423 
8424 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8425 		if (intel_panel_use_ssc(dev_priv)) {
8426 			refclk = dev_priv->vbt.lvds_ssc_freq;
8427 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8428 		}
8429 
8430 		limit = &intel_limits_pineview_lvds;
8431 	} else {
8432 		limit = &intel_limits_pineview_sdvo;
8433 	}
8434 
8435 	if (!crtc_state->clock_set &&
8436 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8437 				refclk, NULL, &crtc_state->dpll)) {
8438 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8439 		return -EINVAL;
8440 	}
8441 
8442 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8443 
8444 	return 0;
8445 }
8446 
8447 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8448 				   struct intel_crtc_state *crtc_state)
8449 {
8450 	struct drm_device *dev = crtc->base.dev;
8451 	struct drm_i915_private *dev_priv = to_i915(dev);
8452 	const struct intel_limit *limit;
8453 	int refclk = 96000;
8454 
8455 	memset(&crtc_state->dpll_hw_state, 0,
8456 	       sizeof(crtc_state->dpll_hw_state));
8457 
8458 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8459 		if (intel_panel_use_ssc(dev_priv)) {
8460 			refclk = dev_priv->vbt.lvds_ssc_freq;
8461 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8462 		}
8463 
8464 		limit = &intel_limits_i9xx_lvds;
8465 	} else {
8466 		limit = &intel_limits_i9xx_sdvo;
8467 	}
8468 
8469 	if (!crtc_state->clock_set &&
8470 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8471 				 refclk, NULL, &crtc_state->dpll)) {
8472 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8473 		return -EINVAL;
8474 	}
8475 
8476 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8477 
8478 	return 0;
8479 }
8480 
8481 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8482 				  struct intel_crtc_state *crtc_state)
8483 {
8484 	int refclk = 100000;
8485 	const struct intel_limit *limit = &intel_limits_chv;
8486 
8487 	memset(&crtc_state->dpll_hw_state, 0,
8488 	       sizeof(crtc_state->dpll_hw_state));
8489 
8490 	if (!crtc_state->clock_set &&
8491 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8492 				refclk, NULL, &crtc_state->dpll)) {
8493 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8494 		return -EINVAL;
8495 	}
8496 
8497 	chv_compute_dpll(crtc, crtc_state);
8498 
8499 	return 0;
8500 }
8501 
8502 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8503 				  struct intel_crtc_state *crtc_state)
8504 {
8505 	int refclk = 100000;
8506 	const struct intel_limit *limit = &intel_limits_vlv;
8507 
8508 	memset(&crtc_state->dpll_hw_state, 0,
8509 	       sizeof(crtc_state->dpll_hw_state));
8510 
8511 	if (!crtc_state->clock_set &&
8512 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8513 				refclk, NULL, &crtc_state->dpll)) {
8514 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8515 		return -EINVAL;
8516 	}
8517 
8518 	vlv_compute_dpll(crtc, crtc_state);
8519 
8520 	return 0;
8521 }
8522 
8523 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv)
8524 {
8525 	if (IS_I830(dev_priv))
8526 		return false;
8527 
8528 	return INTEL_GEN(dev_priv) >= 4 ||
8529 		IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
8530 }
8531 
8532 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8533 				 struct intel_crtc_state *pipe_config)
8534 {
8535 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8536 	u32 tmp;
8537 
8538 	if (!i9xx_has_pfit(dev_priv))
8539 		return;
8540 
8541 	tmp = I915_READ(PFIT_CONTROL);
8542 	if (!(tmp & PFIT_ENABLE))
8543 		return;
8544 
8545 	/* Check whether the pfit is attached to our pipe. */
8546 	if (INTEL_GEN(dev_priv) < 4) {
8547 		if (crtc->pipe != PIPE_B)
8548 			return;
8549 	} else {
8550 		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8551 			return;
8552 	}
8553 
8554 	pipe_config->gmch_pfit.control = tmp;
8555 	pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8556 }
8557 
8558 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8559 			       struct intel_crtc_state *pipe_config)
8560 {
8561 	struct drm_device *dev = crtc->base.dev;
8562 	struct drm_i915_private *dev_priv = to_i915(dev);
8563 	int pipe = pipe_config->cpu_transcoder;
8564 	struct dpll clock;
8565 	u32 mdiv;
8566 	int refclk = 100000;
8567 
8568 	/* In case of DSI, DPLL will not be used */
8569 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8570 		return;
8571 
8572 	vlv_dpio_get(dev_priv);
8573 	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8574 	vlv_dpio_put(dev_priv);
8575 
8576 	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8577 	clock.m2 = mdiv & DPIO_M2DIV_MASK;
8578 	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8579 	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8580 	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8581 
8582 	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8583 }
8584 
8585 static void
8586 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8587 			      struct intel_initial_plane_config *plane_config)
8588 {
8589 	struct drm_device *dev = crtc->base.dev;
8590 	struct drm_i915_private *dev_priv = to_i915(dev);
8591 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
8592 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
8593 	enum pipe pipe;
8594 	u32 val, base, offset;
8595 	int fourcc, pixel_format;
8596 	unsigned int aligned_height;
8597 	struct drm_framebuffer *fb;
8598 	struct intel_framebuffer *intel_fb;
8599 
8600 	if (!plane->get_hw_state(plane, &pipe))
8601 		return;
8602 
8603 	WARN_ON(pipe != crtc->pipe);
8604 
8605 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8606 	if (!intel_fb) {
8607 		DRM_DEBUG_KMS("failed to alloc fb\n");
8608 		return;
8609 	}
8610 
8611 	fb = &intel_fb->base;
8612 
8613 	fb->dev = dev;
8614 
8615 	val = I915_READ(DSPCNTR(i9xx_plane));
8616 
8617 	if (INTEL_GEN(dev_priv) >= 4) {
8618 		if (val & DISPPLANE_TILED) {
8619 			plane_config->tiling = I915_TILING_X;
8620 			fb->modifier = I915_FORMAT_MOD_X_TILED;
8621 		}
8622 
8623 		if (val & DISPPLANE_ROTATE_180)
8624 			plane_config->rotation = DRM_MODE_ROTATE_180;
8625 	}
8626 
8627 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B &&
8628 	    val & DISPPLANE_MIRROR)
8629 		plane_config->rotation |= DRM_MODE_REFLECT_X;
8630 
8631 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8632 	fourcc = i9xx_format_to_fourcc(pixel_format);
8633 	fb->format = drm_format_info(fourcc);
8634 
8635 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
8636 		offset = I915_READ(DSPOFFSET(i9xx_plane));
8637 		base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000;
8638 	} else if (INTEL_GEN(dev_priv) >= 4) {
8639 		if (plane_config->tiling)
8640 			offset = I915_READ(DSPTILEOFF(i9xx_plane));
8641 		else
8642 			offset = I915_READ(DSPLINOFF(i9xx_plane));
8643 		base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000;
8644 	} else {
8645 		base = I915_READ(DSPADDR(i9xx_plane));
8646 	}
8647 	plane_config->base = base;
8648 
8649 	val = I915_READ(PIPESRC(pipe));
8650 	fb->width = ((val >> 16) & 0xfff) + 1;
8651 	fb->height = ((val >> 0) & 0xfff) + 1;
8652 
8653 	val = I915_READ(DSPSTRIDE(i9xx_plane));
8654 	fb->pitches[0] = val & 0xffffffc0;
8655 
8656 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
8657 
8658 	plane_config->size = fb->pitches[0] * aligned_height;
8659 
8660 	DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8661 		      crtc->base.name, plane->base.name, fb->width, fb->height,
8662 		      fb->format->cpp[0] * 8, base, fb->pitches[0],
8663 		      plane_config->size);
8664 
8665 	plane_config->fb = intel_fb;
8666 }
8667 
8668 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8669 			       struct intel_crtc_state *pipe_config)
8670 {
8671 	struct drm_device *dev = crtc->base.dev;
8672 	struct drm_i915_private *dev_priv = to_i915(dev);
8673 	int pipe = pipe_config->cpu_transcoder;
8674 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
8675 	struct dpll clock;
8676 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8677 	int refclk = 100000;
8678 
8679 	/* In case of DSI, DPLL will not be used */
8680 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8681 		return;
8682 
8683 	vlv_dpio_get(dev_priv);
8684 	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8685 	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8686 	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8687 	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8688 	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8689 	vlv_dpio_put(dev_priv);
8690 
8691 	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8692 	clock.m2 = (pll_dw0 & 0xff) << 22;
8693 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8694 		clock.m2 |= pll_dw2 & 0x3fffff;
8695 	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8696 	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8697 	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8698 
8699 	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8700 }
8701 
8702 static void intel_get_crtc_ycbcr_config(struct intel_crtc *crtc,
8703 					struct intel_crtc_state *pipe_config)
8704 {
8705 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8706 	enum intel_output_format output = INTEL_OUTPUT_FORMAT_RGB;
8707 
8708 	pipe_config->lspcon_downsampling = false;
8709 
8710 	if (IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9) {
8711 		u32 tmp = I915_READ(PIPEMISC(crtc->pipe));
8712 
8713 		if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) {
8714 			bool ycbcr420_enabled = tmp & PIPEMISC_YUV420_ENABLE;
8715 			bool blend = tmp & PIPEMISC_YUV420_MODE_FULL_BLEND;
8716 
8717 			if (ycbcr420_enabled) {
8718 				/* We support 4:2:0 in full blend mode only */
8719 				if (!blend)
8720 					output = INTEL_OUTPUT_FORMAT_INVALID;
8721 				else if (!(IS_GEMINILAKE(dev_priv) ||
8722 					   INTEL_GEN(dev_priv) >= 10))
8723 					output = INTEL_OUTPUT_FORMAT_INVALID;
8724 				else
8725 					output = INTEL_OUTPUT_FORMAT_YCBCR420;
8726 			} else {
8727 				/*
8728 				 * Currently there is no interface defined to
8729 				 * check user preference between RGB/YCBCR444
8730 				 * or YCBCR420. So the only possible case for
8731 				 * YCBCR444 usage is driving YCBCR420 output
8732 				 * with LSPCON, when pipe is configured for
8733 				 * YCBCR444 output and LSPCON takes care of
8734 				 * downsampling it.
8735 				 */
8736 				pipe_config->lspcon_downsampling = true;
8737 				output = INTEL_OUTPUT_FORMAT_YCBCR444;
8738 			}
8739 		}
8740 	}
8741 
8742 	pipe_config->output_format = output;
8743 }
8744 
8745 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state)
8746 {
8747 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
8748 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
8749 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8750 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
8751 	u32 tmp;
8752 
8753 	tmp = I915_READ(DSPCNTR(i9xx_plane));
8754 
8755 	if (tmp & DISPPLANE_GAMMA_ENABLE)
8756 		crtc_state->gamma_enable = true;
8757 
8758 	if (!HAS_GMCH(dev_priv) &&
8759 	    tmp & DISPPLANE_PIPE_CSC_ENABLE)
8760 		crtc_state->csc_enable = true;
8761 }
8762 
8763 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8764 				 struct intel_crtc_state *pipe_config)
8765 {
8766 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8767 	enum intel_display_power_domain power_domain;
8768 	intel_wakeref_t wakeref;
8769 	u32 tmp;
8770 	bool ret;
8771 
8772 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8773 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
8774 	if (!wakeref)
8775 		return false;
8776 
8777 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
8778 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8779 	pipe_config->shared_dpll = NULL;
8780 
8781 	ret = false;
8782 
8783 	tmp = I915_READ(PIPECONF(crtc->pipe));
8784 	if (!(tmp & PIPECONF_ENABLE))
8785 		goto out;
8786 
8787 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8788 	    IS_CHERRYVIEW(dev_priv)) {
8789 		switch (tmp & PIPECONF_BPC_MASK) {
8790 		case PIPECONF_6BPC:
8791 			pipe_config->pipe_bpp = 18;
8792 			break;
8793 		case PIPECONF_8BPC:
8794 			pipe_config->pipe_bpp = 24;
8795 			break;
8796 		case PIPECONF_10BPC:
8797 			pipe_config->pipe_bpp = 30;
8798 			break;
8799 		default:
8800 			break;
8801 		}
8802 	}
8803 
8804 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8805 	    (tmp & PIPECONF_COLOR_RANGE_SELECT))
8806 		pipe_config->limited_color_range = true;
8807 
8808 	pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >>
8809 		PIPECONF_GAMMA_MODE_SHIFT;
8810 
8811 	if (IS_CHERRYVIEW(dev_priv))
8812 		pipe_config->cgm_mode = I915_READ(CGM_PIPE_MODE(crtc->pipe));
8813 
8814 	i9xx_get_pipe_color_config(pipe_config);
8815 	intel_color_get_config(pipe_config);
8816 
8817 	if (INTEL_GEN(dev_priv) < 4)
8818 		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8819 
8820 	intel_get_pipe_timings(crtc, pipe_config);
8821 	intel_get_pipe_src_size(crtc, pipe_config);
8822 
8823 	i9xx_get_pfit_config(crtc, pipe_config);
8824 
8825 	if (INTEL_GEN(dev_priv) >= 4) {
8826 		/* No way to read it out on pipes B and C */
8827 		if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
8828 			tmp = dev_priv->chv_dpll_md[crtc->pipe];
8829 		else
8830 			tmp = I915_READ(DPLL_MD(crtc->pipe));
8831 		pipe_config->pixel_multiplier =
8832 			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8833 			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8834 		pipe_config->dpll_hw_state.dpll_md = tmp;
8835 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8836 		   IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8837 		tmp = I915_READ(DPLL(crtc->pipe));
8838 		pipe_config->pixel_multiplier =
8839 			((tmp & SDVO_MULTIPLIER_MASK)
8840 			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8841 	} else {
8842 		/* Note that on i915G/GM the pixel multiplier is in the sdvo
8843 		 * port and will be fixed up in the encoder->get_config
8844 		 * function. */
8845 		pipe_config->pixel_multiplier = 1;
8846 	}
8847 	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8848 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
8849 		pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8850 		pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8851 	} else {
8852 		/* Mask out read-only status bits. */
8853 		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8854 						     DPLL_PORTC_READY_MASK |
8855 						     DPLL_PORTB_READY_MASK);
8856 	}
8857 
8858 	if (IS_CHERRYVIEW(dev_priv))
8859 		chv_crtc_clock_get(crtc, pipe_config);
8860 	else if (IS_VALLEYVIEW(dev_priv))
8861 		vlv_crtc_clock_get(crtc, pipe_config);
8862 	else
8863 		i9xx_crtc_clock_get(crtc, pipe_config);
8864 
8865 	/*
8866 	 * Normally the dotclock is filled in by the encoder .get_config()
8867 	 * but in case the pipe is enabled w/o any ports we need a sane
8868 	 * default.
8869 	 */
8870 	pipe_config->base.adjusted_mode.crtc_clock =
8871 		pipe_config->port_clock / pipe_config->pixel_multiplier;
8872 
8873 	ret = true;
8874 
8875 out:
8876 	intel_display_power_put(dev_priv, power_domain, wakeref);
8877 
8878 	return ret;
8879 }
8880 
8881 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
8882 {
8883 	struct intel_encoder *encoder;
8884 	int i;
8885 	u32 val, final;
8886 	bool has_lvds = false;
8887 	bool has_cpu_edp = false;
8888 	bool has_panel = false;
8889 	bool has_ck505 = false;
8890 	bool can_ssc = false;
8891 	bool using_ssc_source = false;
8892 
8893 	/* We need to take the global config into account */
8894 	for_each_intel_encoder(&dev_priv->drm, encoder) {
8895 		switch (encoder->type) {
8896 		case INTEL_OUTPUT_LVDS:
8897 			has_panel = true;
8898 			has_lvds = true;
8899 			break;
8900 		case INTEL_OUTPUT_EDP:
8901 			has_panel = true;
8902 			if (encoder->port == PORT_A)
8903 				has_cpu_edp = true;
8904 			break;
8905 		default:
8906 			break;
8907 		}
8908 	}
8909 
8910 	if (HAS_PCH_IBX(dev_priv)) {
8911 		has_ck505 = dev_priv->vbt.display_clock_mode;
8912 		can_ssc = has_ck505;
8913 	} else {
8914 		has_ck505 = false;
8915 		can_ssc = true;
8916 	}
8917 
8918 	/* Check if any DPLLs are using the SSC source */
8919 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8920 		u32 temp = I915_READ(PCH_DPLL(i));
8921 
8922 		if (!(temp & DPLL_VCO_ENABLE))
8923 			continue;
8924 
8925 		if ((temp & PLL_REF_INPUT_MASK) ==
8926 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8927 			using_ssc_source = true;
8928 			break;
8929 		}
8930 	}
8931 
8932 	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8933 		      has_panel, has_lvds, has_ck505, using_ssc_source);
8934 
8935 	/* Ironlake: try to setup display ref clock before DPLL
8936 	 * enabling. This is only under driver's control after
8937 	 * PCH B stepping, previous chipset stepping should be
8938 	 * ignoring this setting.
8939 	 */
8940 	val = I915_READ(PCH_DREF_CONTROL);
8941 
8942 	/* As we must carefully and slowly disable/enable each source in turn,
8943 	 * compute the final state we want first and check if we need to
8944 	 * make any changes at all.
8945 	 */
8946 	final = val;
8947 	final &= ~DREF_NONSPREAD_SOURCE_MASK;
8948 	if (has_ck505)
8949 		final |= DREF_NONSPREAD_CK505_ENABLE;
8950 	else
8951 		final |= DREF_NONSPREAD_SOURCE_ENABLE;
8952 
8953 	final &= ~DREF_SSC_SOURCE_MASK;
8954 	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8955 	final &= ~DREF_SSC1_ENABLE;
8956 
8957 	if (has_panel) {
8958 		final |= DREF_SSC_SOURCE_ENABLE;
8959 
8960 		if (intel_panel_use_ssc(dev_priv) && can_ssc)
8961 			final |= DREF_SSC1_ENABLE;
8962 
8963 		if (has_cpu_edp) {
8964 			if (intel_panel_use_ssc(dev_priv) && can_ssc)
8965 				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8966 			else
8967 				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8968 		} else
8969 			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8970 	} else if (using_ssc_source) {
8971 		final |= DREF_SSC_SOURCE_ENABLE;
8972 		final |= DREF_SSC1_ENABLE;
8973 	}
8974 
8975 	if (final == val)
8976 		return;
8977 
8978 	/* Always enable nonspread source */
8979 	val &= ~DREF_NONSPREAD_SOURCE_MASK;
8980 
8981 	if (has_ck505)
8982 		val |= DREF_NONSPREAD_CK505_ENABLE;
8983 	else
8984 		val |= DREF_NONSPREAD_SOURCE_ENABLE;
8985 
8986 	if (has_panel) {
8987 		val &= ~DREF_SSC_SOURCE_MASK;
8988 		val |= DREF_SSC_SOURCE_ENABLE;
8989 
8990 		/* SSC must be turned on before enabling the CPU output  */
8991 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8992 			DRM_DEBUG_KMS("Using SSC on panel\n");
8993 			val |= DREF_SSC1_ENABLE;
8994 		} else
8995 			val &= ~DREF_SSC1_ENABLE;
8996 
8997 		/* Get SSC going before enabling the outputs */
8998 		I915_WRITE(PCH_DREF_CONTROL, val);
8999 		POSTING_READ(PCH_DREF_CONTROL);
9000 		udelay(200);
9001 
9002 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9003 
9004 		/* Enable CPU source on CPU attached eDP */
9005 		if (has_cpu_edp) {
9006 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9007 				DRM_DEBUG_KMS("Using SSC on eDP\n");
9008 				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9009 			} else
9010 				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9011 		} else
9012 			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9013 
9014 		I915_WRITE(PCH_DREF_CONTROL, val);
9015 		POSTING_READ(PCH_DREF_CONTROL);
9016 		udelay(200);
9017 	} else {
9018 		DRM_DEBUG_KMS("Disabling CPU source output\n");
9019 
9020 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9021 
9022 		/* Turn off CPU output */
9023 		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9024 
9025 		I915_WRITE(PCH_DREF_CONTROL, val);
9026 		POSTING_READ(PCH_DREF_CONTROL);
9027 		udelay(200);
9028 
9029 		if (!using_ssc_source) {
9030 			DRM_DEBUG_KMS("Disabling SSC source\n");
9031 
9032 			/* Turn off the SSC source */
9033 			val &= ~DREF_SSC_SOURCE_MASK;
9034 			val |= DREF_SSC_SOURCE_DISABLE;
9035 
9036 			/* Turn off SSC1 */
9037 			val &= ~DREF_SSC1_ENABLE;
9038 
9039 			I915_WRITE(PCH_DREF_CONTROL, val);
9040 			POSTING_READ(PCH_DREF_CONTROL);
9041 			udelay(200);
9042 		}
9043 	}
9044 
9045 	BUG_ON(val != final);
9046 }
9047 
9048 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9049 {
9050 	u32 tmp;
9051 
9052 	tmp = I915_READ(SOUTH_CHICKEN2);
9053 	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9054 	I915_WRITE(SOUTH_CHICKEN2, tmp);
9055 
9056 	if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9057 			FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9058 		DRM_ERROR("FDI mPHY reset assert timeout\n");
9059 
9060 	tmp = I915_READ(SOUTH_CHICKEN2);
9061 	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9062 	I915_WRITE(SOUTH_CHICKEN2, tmp);
9063 
9064 	if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9065 			 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9066 		DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9067 }
9068 
9069 /* WaMPhyProgramming:hsw */
9070 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9071 {
9072 	u32 tmp;
9073 
9074 	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9075 	tmp &= ~(0xFF << 24);
9076 	tmp |= (0x12 << 24);
9077 	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9078 
9079 	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9080 	tmp |= (1 << 11);
9081 	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9082 
9083 	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9084 	tmp |= (1 << 11);
9085 	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9086 
9087 	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9088 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9089 	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9090 
9091 	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9092 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9093 	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9094 
9095 	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9096 	tmp &= ~(7 << 13);
9097 	tmp |= (5 << 13);
9098 	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9099 
9100 	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9101 	tmp &= ~(7 << 13);
9102 	tmp |= (5 << 13);
9103 	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9104 
9105 	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9106 	tmp &= ~0xFF;
9107 	tmp |= 0x1C;
9108 	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9109 
9110 	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9111 	tmp &= ~0xFF;
9112 	tmp |= 0x1C;
9113 	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9114 
9115 	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9116 	tmp &= ~(0xFF << 16);
9117 	tmp |= (0x1C << 16);
9118 	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9119 
9120 	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9121 	tmp &= ~(0xFF << 16);
9122 	tmp |= (0x1C << 16);
9123 	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9124 
9125 	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9126 	tmp |= (1 << 27);
9127 	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9128 
9129 	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9130 	tmp |= (1 << 27);
9131 	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9132 
9133 	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9134 	tmp &= ~(0xF << 28);
9135 	tmp |= (4 << 28);
9136 	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9137 
9138 	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9139 	tmp &= ~(0xF << 28);
9140 	tmp |= (4 << 28);
9141 	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9142 }
9143 
9144 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9145  * Programming" based on the parameters passed:
9146  * - Sequence to enable CLKOUT_DP
9147  * - Sequence to enable CLKOUT_DP without spread
9148  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9149  */
9150 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
9151 				 bool with_spread, bool with_fdi)
9152 {
9153 	u32 reg, tmp;
9154 
9155 	if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9156 		with_spread = true;
9157 	if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
9158 	    with_fdi, "LP PCH doesn't have FDI\n"))
9159 		with_fdi = false;
9160 
9161 	mutex_lock(&dev_priv->sb_lock);
9162 
9163 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9164 	tmp &= ~SBI_SSCCTL_DISABLE;
9165 	tmp |= SBI_SSCCTL_PATHALT;
9166 	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9167 
9168 	udelay(24);
9169 
9170 	if (with_spread) {
9171 		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9172 		tmp &= ~SBI_SSCCTL_PATHALT;
9173 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9174 
9175 		if (with_fdi) {
9176 			lpt_reset_fdi_mphy(dev_priv);
9177 			lpt_program_fdi_mphy(dev_priv);
9178 		}
9179 	}
9180 
9181 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9182 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9183 	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9184 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9185 
9186 	mutex_unlock(&dev_priv->sb_lock);
9187 }
9188 
9189 /* Sequence to disable CLKOUT_DP */
9190 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
9191 {
9192 	u32 reg, tmp;
9193 
9194 	mutex_lock(&dev_priv->sb_lock);
9195 
9196 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9197 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9198 	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9199 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9200 
9201 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9202 	if (!(tmp & SBI_SSCCTL_DISABLE)) {
9203 		if (!(tmp & SBI_SSCCTL_PATHALT)) {
9204 			tmp |= SBI_SSCCTL_PATHALT;
9205 			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9206 			udelay(32);
9207 		}
9208 		tmp |= SBI_SSCCTL_DISABLE;
9209 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9210 	}
9211 
9212 	mutex_unlock(&dev_priv->sb_lock);
9213 }
9214 
9215 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9216 
9217 static const u16 sscdivintphase[] = {
9218 	[BEND_IDX( 50)] = 0x3B23,
9219 	[BEND_IDX( 45)] = 0x3B23,
9220 	[BEND_IDX( 40)] = 0x3C23,
9221 	[BEND_IDX( 35)] = 0x3C23,
9222 	[BEND_IDX( 30)] = 0x3D23,
9223 	[BEND_IDX( 25)] = 0x3D23,
9224 	[BEND_IDX( 20)] = 0x3E23,
9225 	[BEND_IDX( 15)] = 0x3E23,
9226 	[BEND_IDX( 10)] = 0x3F23,
9227 	[BEND_IDX(  5)] = 0x3F23,
9228 	[BEND_IDX(  0)] = 0x0025,
9229 	[BEND_IDX( -5)] = 0x0025,
9230 	[BEND_IDX(-10)] = 0x0125,
9231 	[BEND_IDX(-15)] = 0x0125,
9232 	[BEND_IDX(-20)] = 0x0225,
9233 	[BEND_IDX(-25)] = 0x0225,
9234 	[BEND_IDX(-30)] = 0x0325,
9235 	[BEND_IDX(-35)] = 0x0325,
9236 	[BEND_IDX(-40)] = 0x0425,
9237 	[BEND_IDX(-45)] = 0x0425,
9238 	[BEND_IDX(-50)] = 0x0525,
9239 };
9240 
9241 /*
9242  * Bend CLKOUT_DP
9243  * steps -50 to 50 inclusive, in steps of 5
9244  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9245  * change in clock period = -(steps / 10) * 5.787 ps
9246  */
9247 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9248 {
9249 	u32 tmp;
9250 	int idx = BEND_IDX(steps);
9251 
9252 	if (WARN_ON(steps % 5 != 0))
9253 		return;
9254 
9255 	if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9256 		return;
9257 
9258 	mutex_lock(&dev_priv->sb_lock);
9259 
9260 	if (steps % 10 != 0)
9261 		tmp = 0xAAAAAAAB;
9262 	else
9263 		tmp = 0x00000000;
9264 	intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9265 
9266 	tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9267 	tmp &= 0xffff0000;
9268 	tmp |= sscdivintphase[idx];
9269 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9270 
9271 	mutex_unlock(&dev_priv->sb_lock);
9272 }
9273 
9274 #undef BEND_IDX
9275 
9276 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv)
9277 {
9278 	u32 fuse_strap = I915_READ(FUSE_STRAP);
9279 	u32 ctl = I915_READ(SPLL_CTL);
9280 
9281 	if ((ctl & SPLL_PLL_ENABLE) == 0)
9282 		return false;
9283 
9284 	if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC &&
9285 	    (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9286 		return true;
9287 
9288 	if (IS_BROADWELL(dev_priv) &&
9289 	    (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW)
9290 		return true;
9291 
9292 	return false;
9293 }
9294 
9295 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv,
9296 			       enum intel_dpll_id id)
9297 {
9298 	u32 fuse_strap = I915_READ(FUSE_STRAP);
9299 	u32 ctl = I915_READ(WRPLL_CTL(id));
9300 
9301 	if ((ctl & WRPLL_PLL_ENABLE) == 0)
9302 		return false;
9303 
9304 	if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC)
9305 		return true;
9306 
9307 	if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) &&
9308 	    (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW &&
9309 	    (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9310 		return true;
9311 
9312 	return false;
9313 }
9314 
9315 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
9316 {
9317 	struct intel_encoder *encoder;
9318 	bool has_fdi = false;
9319 
9320 	for_each_intel_encoder(&dev_priv->drm, encoder) {
9321 		switch (encoder->type) {
9322 		case INTEL_OUTPUT_ANALOG:
9323 			has_fdi = true;
9324 			break;
9325 		default:
9326 			break;
9327 		}
9328 	}
9329 
9330 	/*
9331 	 * The BIOS may have decided to use the PCH SSC
9332 	 * reference so we must not disable it until the
9333 	 * relevant PLLs have stopped relying on it. We'll
9334 	 * just leave the PCH SSC reference enabled in case
9335 	 * any active PLL is using it. It will get disabled
9336 	 * after runtime suspend if we don't have FDI.
9337 	 *
9338 	 * TODO: Move the whole reference clock handling
9339 	 * to the modeset sequence proper so that we can
9340 	 * actually enable/disable/reconfigure these things
9341 	 * safely. To do that we need to introduce a real
9342 	 * clock hierarchy. That would also allow us to do
9343 	 * clock bending finally.
9344 	 */
9345 	dev_priv->pch_ssc_use = 0;
9346 
9347 	if (spll_uses_pch_ssc(dev_priv)) {
9348 		DRM_DEBUG_KMS("SPLL using PCH SSC\n");
9349 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL);
9350 	}
9351 
9352 	if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) {
9353 		DRM_DEBUG_KMS("WRPLL1 using PCH SSC\n");
9354 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1);
9355 	}
9356 
9357 	if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) {
9358 		DRM_DEBUG_KMS("WRPLL2 using PCH SSC\n");
9359 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2);
9360 	}
9361 
9362 	if (dev_priv->pch_ssc_use)
9363 		return;
9364 
9365 	if (has_fdi) {
9366 		lpt_bend_clkout_dp(dev_priv, 0);
9367 		lpt_enable_clkout_dp(dev_priv, true, true);
9368 	} else {
9369 		lpt_disable_clkout_dp(dev_priv);
9370 	}
9371 }
9372 
9373 /*
9374  * Initialize reference clocks when the driver loads
9375  */
9376 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
9377 {
9378 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
9379 		ironlake_init_pch_refclk(dev_priv);
9380 	else if (HAS_PCH_LPT(dev_priv))
9381 		lpt_init_pch_refclk(dev_priv);
9382 }
9383 
9384 static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state)
9385 {
9386 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9387 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9388 	enum pipe pipe = crtc->pipe;
9389 	u32 val;
9390 
9391 	val = 0;
9392 
9393 	switch (crtc_state->pipe_bpp) {
9394 	case 18:
9395 		val |= PIPECONF_6BPC;
9396 		break;
9397 	case 24:
9398 		val |= PIPECONF_8BPC;
9399 		break;
9400 	case 30:
9401 		val |= PIPECONF_10BPC;
9402 		break;
9403 	case 36:
9404 		val |= PIPECONF_12BPC;
9405 		break;
9406 	default:
9407 		/* Case prevented by intel_choose_pipe_bpp_dither. */
9408 		BUG();
9409 	}
9410 
9411 	if (crtc_state->dither)
9412 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9413 
9414 	if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9415 		val |= PIPECONF_INTERLACED_ILK;
9416 	else
9417 		val |= PIPECONF_PROGRESSIVE;
9418 
9419 	if (crtc_state->limited_color_range)
9420 		val |= PIPECONF_COLOR_RANGE_SELECT;
9421 
9422 	val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
9423 
9424 	I915_WRITE(PIPECONF(pipe), val);
9425 	POSTING_READ(PIPECONF(pipe));
9426 }
9427 
9428 static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state)
9429 {
9430 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9431 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9432 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
9433 	u32 val = 0;
9434 
9435 	if (IS_HASWELL(dev_priv) && crtc_state->dither)
9436 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9437 
9438 	if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9439 		val |= PIPECONF_INTERLACED_ILK;
9440 	else
9441 		val |= PIPECONF_PROGRESSIVE;
9442 
9443 	I915_WRITE(PIPECONF(cpu_transcoder), val);
9444 	POSTING_READ(PIPECONF(cpu_transcoder));
9445 }
9446 
9447 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state)
9448 {
9449 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9450 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9451 	u32 val = 0;
9452 
9453 	switch (crtc_state->pipe_bpp) {
9454 	case 18:
9455 		val |= PIPEMISC_DITHER_6_BPC;
9456 		break;
9457 	case 24:
9458 		val |= PIPEMISC_DITHER_8_BPC;
9459 		break;
9460 	case 30:
9461 		val |= PIPEMISC_DITHER_10_BPC;
9462 		break;
9463 	case 36:
9464 		val |= PIPEMISC_DITHER_12_BPC;
9465 		break;
9466 	default:
9467 		MISSING_CASE(crtc_state->pipe_bpp);
9468 		break;
9469 	}
9470 
9471 	if (crtc_state->dither)
9472 		val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9473 
9474 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
9475 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
9476 		val |= PIPEMISC_OUTPUT_COLORSPACE_YUV;
9477 
9478 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
9479 		val |= PIPEMISC_YUV420_ENABLE |
9480 			PIPEMISC_YUV420_MODE_FULL_BLEND;
9481 
9482 	if (INTEL_GEN(dev_priv) >= 11 &&
9483 	    (crtc_state->active_planes & ~(icl_hdr_plane_mask() |
9484 					   BIT(PLANE_CURSOR))) == 0)
9485 		val |= PIPEMISC_HDR_MODE_PRECISION;
9486 
9487 	I915_WRITE(PIPEMISC(crtc->pipe), val);
9488 }
9489 
9490 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc)
9491 {
9492 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9493 	u32 tmp;
9494 
9495 	tmp = I915_READ(PIPEMISC(crtc->pipe));
9496 
9497 	switch (tmp & PIPEMISC_DITHER_BPC_MASK) {
9498 	case PIPEMISC_DITHER_6_BPC:
9499 		return 18;
9500 	case PIPEMISC_DITHER_8_BPC:
9501 		return 24;
9502 	case PIPEMISC_DITHER_10_BPC:
9503 		return 30;
9504 	case PIPEMISC_DITHER_12_BPC:
9505 		return 36;
9506 	default:
9507 		MISSING_CASE(tmp);
9508 		return 0;
9509 	}
9510 }
9511 
9512 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9513 {
9514 	/*
9515 	 * Account for spread spectrum to avoid
9516 	 * oversubscribing the link. Max center spread
9517 	 * is 2.5%; use 5% for safety's sake.
9518 	 */
9519 	u32 bps = target_clock * bpp * 21 / 20;
9520 	return DIV_ROUND_UP(bps, link_bw * 8);
9521 }
9522 
9523 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9524 {
9525 	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9526 }
9527 
9528 static void ironlake_compute_dpll(struct intel_crtc *crtc,
9529 				  struct intel_crtc_state *crtc_state,
9530 				  struct dpll *reduced_clock)
9531 {
9532 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9533 	u32 dpll, fp, fp2;
9534 	int factor;
9535 
9536 	/* Enable autotuning of the PLL clock (if permissible) */
9537 	factor = 21;
9538 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9539 		if ((intel_panel_use_ssc(dev_priv) &&
9540 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
9541 		    (HAS_PCH_IBX(dev_priv) &&
9542 		     intel_is_dual_link_lvds(dev_priv)))
9543 			factor = 25;
9544 	} else if (crtc_state->sdvo_tv_clock) {
9545 		factor = 20;
9546 	}
9547 
9548 	fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9549 
9550 	if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9551 		fp |= FP_CB_TUNE;
9552 
9553 	if (reduced_clock) {
9554 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
9555 
9556 		if (reduced_clock->m < factor * reduced_clock->n)
9557 			fp2 |= FP_CB_TUNE;
9558 	} else {
9559 		fp2 = fp;
9560 	}
9561 
9562 	dpll = 0;
9563 
9564 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9565 		dpll |= DPLLB_MODE_LVDS;
9566 	else
9567 		dpll |= DPLLB_MODE_DAC_SERIAL;
9568 
9569 	dpll |= (crtc_state->pixel_multiplier - 1)
9570 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9571 
9572 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9573 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9574 		dpll |= DPLL_SDVO_HIGH_SPEED;
9575 
9576 	if (intel_crtc_has_dp_encoder(crtc_state))
9577 		dpll |= DPLL_SDVO_HIGH_SPEED;
9578 
9579 	/*
9580 	 * The high speed IO clock is only really required for
9581 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
9582 	 * possible to share the DPLL between CRT and HDMI. Enabling
9583 	 * the clock needlessly does no real harm, except use up a
9584 	 * bit of power potentially.
9585 	 *
9586 	 * We'll limit this to IVB with 3 pipes, since it has only two
9587 	 * DPLLs and so DPLL sharing is the only way to get three pipes
9588 	 * driving PCH ports at the same time. On SNB we could do this,
9589 	 * and potentially avoid enabling the second DPLL, but it's not
9590 	 * clear if it''s a win or loss power wise. No point in doing
9591 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9592 	 */
9593 	if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
9594 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9595 		dpll |= DPLL_SDVO_HIGH_SPEED;
9596 
9597 	/* compute bitmask from p1 value */
9598 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9599 	/* also FPA1 */
9600 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9601 
9602 	switch (crtc_state->dpll.p2) {
9603 	case 5:
9604 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9605 		break;
9606 	case 7:
9607 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9608 		break;
9609 	case 10:
9610 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9611 		break;
9612 	case 14:
9613 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9614 		break;
9615 	}
9616 
9617 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9618 	    intel_panel_use_ssc(dev_priv))
9619 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9620 	else
9621 		dpll |= PLL_REF_INPUT_DREFCLK;
9622 
9623 	dpll |= DPLL_VCO_ENABLE;
9624 
9625 	crtc_state->dpll_hw_state.dpll = dpll;
9626 	crtc_state->dpll_hw_state.fp0 = fp;
9627 	crtc_state->dpll_hw_state.fp1 = fp2;
9628 }
9629 
9630 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9631 				       struct intel_crtc_state *crtc_state)
9632 {
9633 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9634 	struct intel_atomic_state *state =
9635 		to_intel_atomic_state(crtc_state->base.state);
9636 	const struct intel_limit *limit;
9637 	int refclk = 120000;
9638 
9639 	memset(&crtc_state->dpll_hw_state, 0,
9640 	       sizeof(crtc_state->dpll_hw_state));
9641 
9642 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9643 	if (!crtc_state->has_pch_encoder)
9644 		return 0;
9645 
9646 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9647 		if (intel_panel_use_ssc(dev_priv)) {
9648 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9649 				      dev_priv->vbt.lvds_ssc_freq);
9650 			refclk = dev_priv->vbt.lvds_ssc_freq;
9651 		}
9652 
9653 		if (intel_is_dual_link_lvds(dev_priv)) {
9654 			if (refclk == 100000)
9655 				limit = &intel_limits_ironlake_dual_lvds_100m;
9656 			else
9657 				limit = &intel_limits_ironlake_dual_lvds;
9658 		} else {
9659 			if (refclk == 100000)
9660 				limit = &intel_limits_ironlake_single_lvds_100m;
9661 			else
9662 				limit = &intel_limits_ironlake_single_lvds;
9663 		}
9664 	} else {
9665 		limit = &intel_limits_ironlake_dac;
9666 	}
9667 
9668 	if (!crtc_state->clock_set &&
9669 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9670 				refclk, NULL, &crtc_state->dpll)) {
9671 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
9672 		return -EINVAL;
9673 	}
9674 
9675 	ironlake_compute_dpll(crtc, crtc_state, NULL);
9676 
9677 	if (!intel_reserve_shared_dplls(state, crtc, NULL)) {
9678 		DRM_DEBUG_KMS("failed to find PLL for pipe %c\n",
9679 			      pipe_name(crtc->pipe));
9680 		return -EINVAL;
9681 	}
9682 
9683 	return 0;
9684 }
9685 
9686 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9687 					 struct intel_link_m_n *m_n)
9688 {
9689 	struct drm_device *dev = crtc->base.dev;
9690 	struct drm_i915_private *dev_priv = to_i915(dev);
9691 	enum pipe pipe = crtc->pipe;
9692 
9693 	m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9694 	m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9695 	m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9696 		& ~TU_SIZE_MASK;
9697 	m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9698 	m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9699 		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9700 }
9701 
9702 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9703 					 enum transcoder transcoder,
9704 					 struct intel_link_m_n *m_n,
9705 					 struct intel_link_m_n *m2_n2)
9706 {
9707 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9708 	enum pipe pipe = crtc->pipe;
9709 
9710 	if (INTEL_GEN(dev_priv) >= 5) {
9711 		m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9712 		m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9713 		m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9714 			& ~TU_SIZE_MASK;
9715 		m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9716 		m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9717 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9718 
9719 		if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) {
9720 			m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9721 			m2_n2->link_n =	I915_READ(PIPE_LINK_N2(transcoder));
9722 			m2_n2->gmch_m =	I915_READ(PIPE_DATA_M2(transcoder))
9723 					& ~TU_SIZE_MASK;
9724 			m2_n2->gmch_n =	I915_READ(PIPE_DATA_N2(transcoder));
9725 			m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9726 					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9727 		}
9728 	} else {
9729 		m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9730 		m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9731 		m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9732 			& ~TU_SIZE_MASK;
9733 		m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9734 		m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9735 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9736 	}
9737 }
9738 
9739 void intel_dp_get_m_n(struct intel_crtc *crtc,
9740 		      struct intel_crtc_state *pipe_config)
9741 {
9742 	if (pipe_config->has_pch_encoder)
9743 		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9744 	else
9745 		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9746 					     &pipe_config->dp_m_n,
9747 					     &pipe_config->dp_m2_n2);
9748 }
9749 
9750 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9751 					struct intel_crtc_state *pipe_config)
9752 {
9753 	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9754 				     &pipe_config->fdi_m_n, NULL);
9755 }
9756 
9757 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9758 				    struct intel_crtc_state *pipe_config)
9759 {
9760 	struct drm_device *dev = crtc->base.dev;
9761 	struct drm_i915_private *dev_priv = to_i915(dev);
9762 	struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9763 	u32 ps_ctrl = 0;
9764 	int id = -1;
9765 	int i;
9766 
9767 	/* find scaler attached to this pipe */
9768 	for (i = 0; i < crtc->num_scalers; i++) {
9769 		ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9770 		if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9771 			id = i;
9772 			pipe_config->pch_pfit.enabled = true;
9773 			pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9774 			pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9775 			scaler_state->scalers[i].in_use = true;
9776 			break;
9777 		}
9778 	}
9779 
9780 	scaler_state->scaler_id = id;
9781 	if (id >= 0) {
9782 		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9783 	} else {
9784 		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9785 	}
9786 }
9787 
9788 static void
9789 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9790 				 struct intel_initial_plane_config *plane_config)
9791 {
9792 	struct drm_device *dev = crtc->base.dev;
9793 	struct drm_i915_private *dev_priv = to_i915(dev);
9794 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9795 	enum plane_id plane_id = plane->id;
9796 	enum pipe pipe;
9797 	u32 val, base, offset, stride_mult, tiling, alpha;
9798 	int fourcc, pixel_format;
9799 	unsigned int aligned_height;
9800 	struct drm_framebuffer *fb;
9801 	struct intel_framebuffer *intel_fb;
9802 
9803 	if (!plane->get_hw_state(plane, &pipe))
9804 		return;
9805 
9806 	WARN_ON(pipe != crtc->pipe);
9807 
9808 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9809 	if (!intel_fb) {
9810 		DRM_DEBUG_KMS("failed to alloc fb\n");
9811 		return;
9812 	}
9813 
9814 	fb = &intel_fb->base;
9815 
9816 	fb->dev = dev;
9817 
9818 	val = I915_READ(PLANE_CTL(pipe, plane_id));
9819 
9820 	if (INTEL_GEN(dev_priv) >= 11)
9821 		pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK;
9822 	else
9823 		pixel_format = val & PLANE_CTL_FORMAT_MASK;
9824 
9825 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
9826 		alpha = I915_READ(PLANE_COLOR_CTL(pipe, plane_id));
9827 		alpha &= PLANE_COLOR_ALPHA_MASK;
9828 	} else {
9829 		alpha = val & PLANE_CTL_ALPHA_MASK;
9830 	}
9831 
9832 	fourcc = skl_format_to_fourcc(pixel_format,
9833 				      val & PLANE_CTL_ORDER_RGBX, alpha);
9834 	fb->format = drm_format_info(fourcc);
9835 
9836 	tiling = val & PLANE_CTL_TILED_MASK;
9837 	switch (tiling) {
9838 	case PLANE_CTL_TILED_LINEAR:
9839 		fb->modifier = DRM_FORMAT_MOD_LINEAR;
9840 		break;
9841 	case PLANE_CTL_TILED_X:
9842 		plane_config->tiling = I915_TILING_X;
9843 		fb->modifier = I915_FORMAT_MOD_X_TILED;
9844 		break;
9845 	case PLANE_CTL_TILED_Y:
9846 		plane_config->tiling = I915_TILING_Y;
9847 		if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
9848 			fb->modifier = I915_FORMAT_MOD_Y_TILED_CCS;
9849 		else
9850 			fb->modifier = I915_FORMAT_MOD_Y_TILED;
9851 		break;
9852 	case PLANE_CTL_TILED_YF:
9853 		if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
9854 			fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
9855 		else
9856 			fb->modifier = I915_FORMAT_MOD_Yf_TILED;
9857 		break;
9858 	default:
9859 		MISSING_CASE(tiling);
9860 		goto error;
9861 	}
9862 
9863 	/*
9864 	 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
9865 	 * while i915 HW rotation is clockwise, thats why this swapping.
9866 	 */
9867 	switch (val & PLANE_CTL_ROTATE_MASK) {
9868 	case PLANE_CTL_ROTATE_0:
9869 		plane_config->rotation = DRM_MODE_ROTATE_0;
9870 		break;
9871 	case PLANE_CTL_ROTATE_90:
9872 		plane_config->rotation = DRM_MODE_ROTATE_270;
9873 		break;
9874 	case PLANE_CTL_ROTATE_180:
9875 		plane_config->rotation = DRM_MODE_ROTATE_180;
9876 		break;
9877 	case PLANE_CTL_ROTATE_270:
9878 		plane_config->rotation = DRM_MODE_ROTATE_90;
9879 		break;
9880 	}
9881 
9882 	if (INTEL_GEN(dev_priv) >= 10 &&
9883 	    val & PLANE_CTL_FLIP_HORIZONTAL)
9884 		plane_config->rotation |= DRM_MODE_REFLECT_X;
9885 
9886 	base = I915_READ(PLANE_SURF(pipe, plane_id)) & 0xfffff000;
9887 	plane_config->base = base;
9888 
9889 	offset = I915_READ(PLANE_OFFSET(pipe, plane_id));
9890 
9891 	val = I915_READ(PLANE_SIZE(pipe, plane_id));
9892 	fb->height = ((val >> 16) & 0xfff) + 1;
9893 	fb->width = ((val >> 0) & 0x1fff) + 1;
9894 
9895 	val = I915_READ(PLANE_STRIDE(pipe, plane_id));
9896 	stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0);
9897 	fb->pitches[0] = (val & 0x3ff) * stride_mult;
9898 
9899 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
9900 
9901 	plane_config->size = fb->pitches[0] * aligned_height;
9902 
9903 	DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9904 		      crtc->base.name, plane->base.name, fb->width, fb->height,
9905 		      fb->format->cpp[0] * 8, base, fb->pitches[0],
9906 		      plane_config->size);
9907 
9908 	plane_config->fb = intel_fb;
9909 	return;
9910 
9911 error:
9912 	kfree(intel_fb);
9913 }
9914 
9915 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9916 				     struct intel_crtc_state *pipe_config)
9917 {
9918 	struct drm_device *dev = crtc->base.dev;
9919 	struct drm_i915_private *dev_priv = to_i915(dev);
9920 	u32 tmp;
9921 
9922 	tmp = I915_READ(PF_CTL(crtc->pipe));
9923 
9924 	if (tmp & PF_ENABLE) {
9925 		pipe_config->pch_pfit.enabled = true;
9926 		pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9927 		pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9928 
9929 		/* We currently do not free assignements of panel fitters on
9930 		 * ivb/hsw (since we don't use the higher upscaling modes which
9931 		 * differentiates them) so just WARN about this case for now. */
9932 		if (IS_GEN(dev_priv, 7)) {
9933 			WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9934 				PF_PIPE_SEL_IVB(crtc->pipe));
9935 		}
9936 	}
9937 }
9938 
9939 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9940 				     struct intel_crtc_state *pipe_config)
9941 {
9942 	struct drm_device *dev = crtc->base.dev;
9943 	struct drm_i915_private *dev_priv = to_i915(dev);
9944 	enum intel_display_power_domain power_domain;
9945 	intel_wakeref_t wakeref;
9946 	u32 tmp;
9947 	bool ret;
9948 
9949 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9950 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
9951 	if (!wakeref)
9952 		return false;
9953 
9954 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
9955 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9956 	pipe_config->shared_dpll = NULL;
9957 
9958 	ret = false;
9959 	tmp = I915_READ(PIPECONF(crtc->pipe));
9960 	if (!(tmp & PIPECONF_ENABLE))
9961 		goto out;
9962 
9963 	switch (tmp & PIPECONF_BPC_MASK) {
9964 	case PIPECONF_6BPC:
9965 		pipe_config->pipe_bpp = 18;
9966 		break;
9967 	case PIPECONF_8BPC:
9968 		pipe_config->pipe_bpp = 24;
9969 		break;
9970 	case PIPECONF_10BPC:
9971 		pipe_config->pipe_bpp = 30;
9972 		break;
9973 	case PIPECONF_12BPC:
9974 		pipe_config->pipe_bpp = 36;
9975 		break;
9976 	default:
9977 		break;
9978 	}
9979 
9980 	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9981 		pipe_config->limited_color_range = true;
9982 
9983 	pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >>
9984 		PIPECONF_GAMMA_MODE_SHIFT;
9985 
9986 	pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe));
9987 
9988 	i9xx_get_pipe_color_config(pipe_config);
9989 	intel_color_get_config(pipe_config);
9990 
9991 	if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9992 		struct intel_shared_dpll *pll;
9993 		enum intel_dpll_id pll_id;
9994 
9995 		pipe_config->has_pch_encoder = true;
9996 
9997 		tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9998 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9999 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
10000 
10001 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
10002 
10003 		if (HAS_PCH_IBX(dev_priv)) {
10004 			/*
10005 			 * The pipe->pch transcoder and pch transcoder->pll
10006 			 * mapping is fixed.
10007 			 */
10008 			pll_id = (enum intel_dpll_id) crtc->pipe;
10009 		} else {
10010 			tmp = I915_READ(PCH_DPLL_SEL);
10011 			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
10012 				pll_id = DPLL_ID_PCH_PLL_B;
10013 			else
10014 				pll_id= DPLL_ID_PCH_PLL_A;
10015 		}
10016 
10017 		pipe_config->shared_dpll =
10018 			intel_get_shared_dpll_by_id(dev_priv, pll_id);
10019 		pll = pipe_config->shared_dpll;
10020 
10021 		WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll,
10022 						&pipe_config->dpll_hw_state));
10023 
10024 		tmp = pipe_config->dpll_hw_state.dpll;
10025 		pipe_config->pixel_multiplier =
10026 			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
10027 			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
10028 
10029 		ironlake_pch_clock_get(crtc, pipe_config);
10030 	} else {
10031 		pipe_config->pixel_multiplier = 1;
10032 	}
10033 
10034 	intel_get_pipe_timings(crtc, pipe_config);
10035 	intel_get_pipe_src_size(crtc, pipe_config);
10036 
10037 	ironlake_get_pfit_config(crtc, pipe_config);
10038 
10039 	ret = true;
10040 
10041 out:
10042 	intel_display_power_put(dev_priv, power_domain, wakeref);
10043 
10044 	return ret;
10045 }
10046 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10047 				      struct intel_crtc_state *crtc_state)
10048 {
10049 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10050 	struct intel_atomic_state *state =
10051 		to_intel_atomic_state(crtc_state->base.state);
10052 
10053 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
10054 	    INTEL_GEN(dev_priv) >= 11) {
10055 		struct intel_encoder *encoder =
10056 			intel_get_crtc_new_encoder(state, crtc_state);
10057 
10058 		if (!intel_reserve_shared_dplls(state, crtc, encoder)) {
10059 			DRM_DEBUG_KMS("failed to find PLL for pipe %c\n",
10060 				      pipe_name(crtc->pipe));
10061 			return -EINVAL;
10062 		}
10063 	}
10064 
10065 	return 0;
10066 }
10067 
10068 static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv,
10069 				   enum port port,
10070 				   struct intel_crtc_state *pipe_config)
10071 {
10072 	enum intel_dpll_id id;
10073 	u32 temp;
10074 
10075 	temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
10076 	id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
10077 
10078 	if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2))
10079 		return;
10080 
10081 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10082 }
10083 
10084 static void icelake_get_ddi_pll(struct drm_i915_private *dev_priv,
10085 				enum port port,
10086 				struct intel_crtc_state *pipe_config)
10087 {
10088 	enum phy phy = intel_port_to_phy(dev_priv, port);
10089 	enum icl_port_dpll_id port_dpll_id;
10090 	enum intel_dpll_id id;
10091 	u32 temp;
10092 
10093 	if (intel_phy_is_combo(dev_priv, phy)) {
10094 		temp = I915_READ(ICL_DPCLKA_CFGCR0) &
10095 			ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10096 		id = temp >> ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10097 		port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10098 	} else if (intel_phy_is_tc(dev_priv, phy)) {
10099 		u32 clk_sel = I915_READ(DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK;
10100 
10101 		if (clk_sel == DDI_CLK_SEL_MG) {
10102 			id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv,
10103 								    port));
10104 			port_dpll_id = ICL_PORT_DPLL_MG_PHY;
10105 		} else {
10106 			WARN_ON(clk_sel < DDI_CLK_SEL_TBT_162);
10107 			id = DPLL_ID_ICL_TBTPLL;
10108 			port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10109 		}
10110 	} else {
10111 		WARN(1, "Invalid port %x\n", port);
10112 		return;
10113 	}
10114 
10115 	pipe_config->icl_port_dplls[port_dpll_id].pll =
10116 		intel_get_shared_dpll_by_id(dev_priv, id);
10117 
10118 	icl_set_active_port_dpll(pipe_config, port_dpll_id);
10119 }
10120 
10121 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10122 				enum port port,
10123 				struct intel_crtc_state *pipe_config)
10124 {
10125 	enum intel_dpll_id id;
10126 
10127 	switch (port) {
10128 	case PORT_A:
10129 		id = DPLL_ID_SKL_DPLL0;
10130 		break;
10131 	case PORT_B:
10132 		id = DPLL_ID_SKL_DPLL1;
10133 		break;
10134 	case PORT_C:
10135 		id = DPLL_ID_SKL_DPLL2;
10136 		break;
10137 	default:
10138 		DRM_ERROR("Incorrect port type\n");
10139 		return;
10140 	}
10141 
10142 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10143 }
10144 
10145 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10146 				enum port port,
10147 				struct intel_crtc_state *pipe_config)
10148 {
10149 	enum intel_dpll_id id;
10150 	u32 temp;
10151 
10152 	temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10153 	id = temp >> (port * 3 + 1);
10154 
10155 	if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10156 		return;
10157 
10158 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10159 }
10160 
10161 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10162 				enum port port,
10163 				struct intel_crtc_state *pipe_config)
10164 {
10165 	enum intel_dpll_id id;
10166 	u32 ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10167 
10168 	switch (ddi_pll_sel) {
10169 	case PORT_CLK_SEL_WRPLL1:
10170 		id = DPLL_ID_WRPLL1;
10171 		break;
10172 	case PORT_CLK_SEL_WRPLL2:
10173 		id = DPLL_ID_WRPLL2;
10174 		break;
10175 	case PORT_CLK_SEL_SPLL:
10176 		id = DPLL_ID_SPLL;
10177 		break;
10178 	case PORT_CLK_SEL_LCPLL_810:
10179 		id = DPLL_ID_LCPLL_810;
10180 		break;
10181 	case PORT_CLK_SEL_LCPLL_1350:
10182 		id = DPLL_ID_LCPLL_1350;
10183 		break;
10184 	case PORT_CLK_SEL_LCPLL_2700:
10185 		id = DPLL_ID_LCPLL_2700;
10186 		break;
10187 	default:
10188 		MISSING_CASE(ddi_pll_sel);
10189 		/* fall through */
10190 	case PORT_CLK_SEL_NONE:
10191 		return;
10192 	}
10193 
10194 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10195 }
10196 
10197 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10198 				     struct intel_crtc_state *pipe_config,
10199 				     u64 *power_domain_mask,
10200 				     intel_wakeref_t *wakerefs)
10201 {
10202 	struct drm_device *dev = crtc->base.dev;
10203 	struct drm_i915_private *dev_priv = to_i915(dev);
10204 	enum intel_display_power_domain power_domain;
10205 	unsigned long panel_transcoder_mask = 0;
10206 	unsigned long enabled_panel_transcoders = 0;
10207 	enum transcoder panel_transcoder;
10208 	intel_wakeref_t wf;
10209 	u32 tmp;
10210 
10211 	if (INTEL_GEN(dev_priv) >= 11)
10212 		panel_transcoder_mask |=
10213 			BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
10214 
10215 	if (HAS_TRANSCODER_EDP(dev_priv))
10216 		panel_transcoder_mask |= BIT(TRANSCODER_EDP);
10217 
10218 	/*
10219 	 * The pipe->transcoder mapping is fixed with the exception of the eDP
10220 	 * and DSI transcoders handled below.
10221 	 */
10222 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10223 
10224 	/*
10225 	 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10226 	 * consistency and less surprising code; it's in always on power).
10227 	 */
10228 	for_each_set_bit(panel_transcoder,
10229 			 &panel_transcoder_mask,
10230 			 ARRAY_SIZE(INTEL_INFO(dev_priv)->trans_offsets)) {
10231 		bool force_thru = false;
10232 		enum pipe trans_pipe;
10233 
10234 		tmp = I915_READ(TRANS_DDI_FUNC_CTL(panel_transcoder));
10235 		if (!(tmp & TRANS_DDI_FUNC_ENABLE))
10236 			continue;
10237 
10238 		/*
10239 		 * Log all enabled ones, only use the first one.
10240 		 *
10241 		 * FIXME: This won't work for two separate DSI displays.
10242 		 */
10243 		enabled_panel_transcoders |= BIT(panel_transcoder);
10244 		if (enabled_panel_transcoders != BIT(panel_transcoder))
10245 			continue;
10246 
10247 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10248 		default:
10249 			WARN(1, "unknown pipe linked to transcoder %s\n",
10250 			     transcoder_name(panel_transcoder));
10251 			/* fall through */
10252 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
10253 			force_thru = true;
10254 			/* fall through */
10255 		case TRANS_DDI_EDP_INPUT_A_ON:
10256 			trans_pipe = PIPE_A;
10257 			break;
10258 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
10259 			trans_pipe = PIPE_B;
10260 			break;
10261 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
10262 			trans_pipe = PIPE_C;
10263 			break;
10264 		}
10265 
10266 		if (trans_pipe == crtc->pipe) {
10267 			pipe_config->cpu_transcoder = panel_transcoder;
10268 			pipe_config->pch_pfit.force_thru = force_thru;
10269 		}
10270 	}
10271 
10272 	/*
10273 	 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1
10274 	 */
10275 	WARN_ON((enabled_panel_transcoders & BIT(TRANSCODER_EDP)) &&
10276 		enabled_panel_transcoders != BIT(TRANSCODER_EDP));
10277 
10278 	power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10279 	WARN_ON(*power_domain_mask & BIT_ULL(power_domain));
10280 
10281 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10282 	if (!wf)
10283 		return false;
10284 
10285 	wakerefs[power_domain] = wf;
10286 	*power_domain_mask |= BIT_ULL(power_domain);
10287 
10288 	tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10289 
10290 	return tmp & PIPECONF_ENABLE;
10291 }
10292 
10293 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10294 					 struct intel_crtc_state *pipe_config,
10295 					 u64 *power_domain_mask,
10296 					 intel_wakeref_t *wakerefs)
10297 {
10298 	struct drm_device *dev = crtc->base.dev;
10299 	struct drm_i915_private *dev_priv = to_i915(dev);
10300 	enum intel_display_power_domain power_domain;
10301 	enum transcoder cpu_transcoder;
10302 	intel_wakeref_t wf;
10303 	enum port port;
10304 	u32 tmp;
10305 
10306 	for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10307 		if (port == PORT_A)
10308 			cpu_transcoder = TRANSCODER_DSI_A;
10309 		else
10310 			cpu_transcoder = TRANSCODER_DSI_C;
10311 
10312 		power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10313 		WARN_ON(*power_domain_mask & BIT_ULL(power_domain));
10314 
10315 		wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10316 		if (!wf)
10317 			continue;
10318 
10319 		wakerefs[power_domain] = wf;
10320 		*power_domain_mask |= BIT_ULL(power_domain);
10321 
10322 		/*
10323 		 * The PLL needs to be enabled with a valid divider
10324 		 * configuration, otherwise accessing DSI registers will hang
10325 		 * the machine. See BSpec North Display Engine
10326 		 * registers/MIPI[BXT]. We can break out here early, since we
10327 		 * need the same DSI PLL to be enabled for both DSI ports.
10328 		 */
10329 		if (!bxt_dsi_pll_is_enabled(dev_priv))
10330 			break;
10331 
10332 		/* XXX: this works for video mode only */
10333 		tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10334 		if (!(tmp & DPI_ENABLE))
10335 			continue;
10336 
10337 		tmp = I915_READ(MIPI_CTRL(port));
10338 		if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10339 			continue;
10340 
10341 		pipe_config->cpu_transcoder = cpu_transcoder;
10342 		break;
10343 	}
10344 
10345 	return transcoder_is_dsi(pipe_config->cpu_transcoder);
10346 }
10347 
10348 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10349 				       struct intel_crtc_state *pipe_config)
10350 {
10351 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10352 	struct intel_shared_dpll *pll;
10353 	enum port port;
10354 	u32 tmp;
10355 
10356 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10357 
10358 	if (INTEL_GEN(dev_priv) >= 12)
10359 		port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
10360 	else
10361 		port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
10362 
10363 	if (INTEL_GEN(dev_priv) >= 11)
10364 		icelake_get_ddi_pll(dev_priv, port, pipe_config);
10365 	else if (IS_CANNONLAKE(dev_priv))
10366 		cannonlake_get_ddi_pll(dev_priv, port, pipe_config);
10367 	else if (IS_GEN9_BC(dev_priv))
10368 		skylake_get_ddi_pll(dev_priv, port, pipe_config);
10369 	else if (IS_GEN9_LP(dev_priv))
10370 		bxt_get_ddi_pll(dev_priv, port, pipe_config);
10371 	else
10372 		haswell_get_ddi_pll(dev_priv, port, pipe_config);
10373 
10374 	pll = pipe_config->shared_dpll;
10375 	if (pll) {
10376 		WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll,
10377 						&pipe_config->dpll_hw_state));
10378 	}
10379 
10380 	/*
10381 	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10382 	 * DDI E. So just check whether this pipe is wired to DDI E and whether
10383 	 * the PCH transcoder is on.
10384 	 */
10385 	if (INTEL_GEN(dev_priv) < 9 &&
10386 	    (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10387 		pipe_config->has_pch_encoder = true;
10388 
10389 		tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10390 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10391 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
10392 
10393 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
10394 	}
10395 }
10396 
10397 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10398 				    struct intel_crtc_state *pipe_config)
10399 {
10400 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10401 	intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf;
10402 	enum intel_display_power_domain power_domain;
10403 	u64 power_domain_mask;
10404 	bool active;
10405 
10406 	intel_crtc_init_scalers(crtc, pipe_config);
10407 
10408 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10409 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10410 	if (!wf)
10411 		return false;
10412 
10413 	wakerefs[power_domain] = wf;
10414 	power_domain_mask = BIT_ULL(power_domain);
10415 
10416 	pipe_config->shared_dpll = NULL;
10417 
10418 	active = hsw_get_transcoder_state(crtc, pipe_config,
10419 					  &power_domain_mask, wakerefs);
10420 
10421 	if (IS_GEN9_LP(dev_priv) &&
10422 	    bxt_get_dsi_transcoder_state(crtc, pipe_config,
10423 					 &power_domain_mask, wakerefs)) {
10424 		WARN_ON(active);
10425 		active = true;
10426 	}
10427 
10428 	if (!active)
10429 		goto out;
10430 
10431 	if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
10432 	    INTEL_GEN(dev_priv) >= 11) {
10433 		haswell_get_ddi_port_state(crtc, pipe_config);
10434 		intel_get_pipe_timings(crtc, pipe_config);
10435 	}
10436 
10437 	intel_get_pipe_src_size(crtc, pipe_config);
10438 	intel_get_crtc_ycbcr_config(crtc, pipe_config);
10439 
10440 	pipe_config->gamma_mode = I915_READ(GAMMA_MODE(crtc->pipe));
10441 
10442 	pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe));
10443 
10444 	if (INTEL_GEN(dev_priv) >= 9) {
10445 		u32 tmp = I915_READ(SKL_BOTTOM_COLOR(crtc->pipe));
10446 
10447 		if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE)
10448 			pipe_config->gamma_enable = true;
10449 
10450 		if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE)
10451 			pipe_config->csc_enable = true;
10452 	} else {
10453 		i9xx_get_pipe_color_config(pipe_config);
10454 	}
10455 
10456 	intel_color_get_config(pipe_config);
10457 
10458 	power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10459 	WARN_ON(power_domain_mask & BIT_ULL(power_domain));
10460 
10461 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10462 	if (wf) {
10463 		wakerefs[power_domain] = wf;
10464 		power_domain_mask |= BIT_ULL(power_domain);
10465 
10466 		if (INTEL_GEN(dev_priv) >= 9)
10467 			skylake_get_pfit_config(crtc, pipe_config);
10468 		else
10469 			ironlake_get_pfit_config(crtc, pipe_config);
10470 	}
10471 
10472 	if (hsw_crtc_supports_ips(crtc)) {
10473 		if (IS_HASWELL(dev_priv))
10474 			pipe_config->ips_enabled = I915_READ(IPS_CTL) & IPS_ENABLE;
10475 		else {
10476 			/*
10477 			 * We cannot readout IPS state on broadwell, set to
10478 			 * true so we can set it to a defined state on first
10479 			 * commit.
10480 			 */
10481 			pipe_config->ips_enabled = true;
10482 		}
10483 	}
10484 
10485 	if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10486 	    !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10487 		pipe_config->pixel_multiplier =
10488 			I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10489 	} else {
10490 		pipe_config->pixel_multiplier = 1;
10491 	}
10492 
10493 out:
10494 	for_each_power_domain(power_domain, power_domain_mask)
10495 		intel_display_power_put(dev_priv,
10496 					power_domain, wakerefs[power_domain]);
10497 
10498 	return active;
10499 }
10500 
10501 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
10502 {
10503 	struct drm_i915_private *dev_priv =
10504 		to_i915(plane_state->base.plane->dev);
10505 	const struct drm_framebuffer *fb = plane_state->base.fb;
10506 	const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10507 	u32 base;
10508 
10509 	if (INTEL_INFO(dev_priv)->display.cursor_needs_physical)
10510 		base = obj->phys_handle->busaddr;
10511 	else
10512 		base = intel_plane_ggtt_offset(plane_state);
10513 
10514 	base += plane_state->color_plane[0].offset;
10515 
10516 	/* ILK+ do this automagically */
10517 	if (HAS_GMCH(dev_priv) &&
10518 	    plane_state->base.rotation & DRM_MODE_ROTATE_180)
10519 		base += (plane_state->base.crtc_h *
10520 			 plane_state->base.crtc_w - 1) * fb->format->cpp[0];
10521 
10522 	return base;
10523 }
10524 
10525 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
10526 {
10527 	int x = plane_state->base.crtc_x;
10528 	int y = plane_state->base.crtc_y;
10529 	u32 pos = 0;
10530 
10531 	if (x < 0) {
10532 		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10533 		x = -x;
10534 	}
10535 	pos |= x << CURSOR_X_SHIFT;
10536 
10537 	if (y < 0) {
10538 		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10539 		y = -y;
10540 	}
10541 	pos |= y << CURSOR_Y_SHIFT;
10542 
10543 	return pos;
10544 }
10545 
10546 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
10547 {
10548 	const struct drm_mode_config *config =
10549 		&plane_state->base.plane->dev->mode_config;
10550 	int width = plane_state->base.crtc_w;
10551 	int height = plane_state->base.crtc_h;
10552 
10553 	return width > 0 && width <= config->cursor_width &&
10554 		height > 0 && height <= config->cursor_height;
10555 }
10556 
10557 static int intel_cursor_check_surface(struct intel_plane_state *plane_state)
10558 {
10559 	int src_x, src_y;
10560 	u32 offset;
10561 	int ret;
10562 
10563 	ret = intel_plane_compute_gtt(plane_state);
10564 	if (ret)
10565 		return ret;
10566 
10567 	if (!plane_state->base.visible)
10568 		return 0;
10569 
10570 	src_x = plane_state->base.src_x >> 16;
10571 	src_y = plane_state->base.src_y >> 16;
10572 
10573 	intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
10574 	offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
10575 						    plane_state, 0);
10576 
10577 	if (src_x != 0 || src_y != 0) {
10578 		DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n");
10579 		return -EINVAL;
10580 	}
10581 
10582 	plane_state->color_plane[0].offset = offset;
10583 
10584 	return 0;
10585 }
10586 
10587 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
10588 			      struct intel_plane_state *plane_state)
10589 {
10590 	const struct drm_framebuffer *fb = plane_state->base.fb;
10591 	int ret;
10592 
10593 	if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) {
10594 		DRM_DEBUG_KMS("cursor cannot be tiled\n");
10595 		return -EINVAL;
10596 	}
10597 
10598 	ret = drm_atomic_helper_check_plane_state(&plane_state->base,
10599 						  &crtc_state->base,
10600 						  DRM_PLANE_HELPER_NO_SCALING,
10601 						  DRM_PLANE_HELPER_NO_SCALING,
10602 						  true, true);
10603 	if (ret)
10604 		return ret;
10605 
10606 	ret = intel_cursor_check_surface(plane_state);
10607 	if (ret)
10608 		return ret;
10609 
10610 	if (!plane_state->base.visible)
10611 		return 0;
10612 
10613 	ret = intel_plane_check_src_coordinates(plane_state);
10614 	if (ret)
10615 		return ret;
10616 
10617 	return 0;
10618 }
10619 
10620 static unsigned int
10621 i845_cursor_max_stride(struct intel_plane *plane,
10622 		       u32 pixel_format, u64 modifier,
10623 		       unsigned int rotation)
10624 {
10625 	return 2048;
10626 }
10627 
10628 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
10629 {
10630 	u32 cntl = 0;
10631 
10632 	if (crtc_state->gamma_enable)
10633 		cntl |= CURSOR_GAMMA_ENABLE;
10634 
10635 	return cntl;
10636 }
10637 
10638 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
10639 			   const struct intel_plane_state *plane_state)
10640 {
10641 	return CURSOR_ENABLE |
10642 		CURSOR_FORMAT_ARGB |
10643 		CURSOR_STRIDE(plane_state->color_plane[0].stride);
10644 }
10645 
10646 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
10647 {
10648 	int width = plane_state->base.crtc_w;
10649 
10650 	/*
10651 	 * 845g/865g are only limited by the width of their cursors,
10652 	 * the height is arbitrary up to the precision of the register.
10653 	 */
10654 	return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
10655 }
10656 
10657 static int i845_check_cursor(struct intel_crtc_state *crtc_state,
10658 			     struct intel_plane_state *plane_state)
10659 {
10660 	const struct drm_framebuffer *fb = plane_state->base.fb;
10661 	int ret;
10662 
10663 	ret = intel_check_cursor(crtc_state, plane_state);
10664 	if (ret)
10665 		return ret;
10666 
10667 	/* if we want to turn off the cursor ignore width and height */
10668 	if (!fb)
10669 		return 0;
10670 
10671 	/* Check for which cursor types we support */
10672 	if (!i845_cursor_size_ok(plane_state)) {
10673 		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
10674 			  plane_state->base.crtc_w,
10675 			  plane_state->base.crtc_h);
10676 		return -EINVAL;
10677 	}
10678 
10679 	WARN_ON(plane_state->base.visible &&
10680 		plane_state->color_plane[0].stride != fb->pitches[0]);
10681 
10682 	switch (fb->pitches[0]) {
10683 	case 256:
10684 	case 512:
10685 	case 1024:
10686 	case 2048:
10687 		break;
10688 	default:
10689 		DRM_DEBUG_KMS("Invalid cursor stride (%u)\n",
10690 			      fb->pitches[0]);
10691 		return -EINVAL;
10692 	}
10693 
10694 	plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
10695 
10696 	return 0;
10697 }
10698 
10699 static void i845_update_cursor(struct intel_plane *plane,
10700 			       const struct intel_crtc_state *crtc_state,
10701 			       const struct intel_plane_state *plane_state)
10702 {
10703 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
10704 	u32 cntl = 0, base = 0, pos = 0, size = 0;
10705 	unsigned long irqflags;
10706 
10707 	if (plane_state && plane_state->base.visible) {
10708 		unsigned int width = plane_state->base.crtc_w;
10709 		unsigned int height = plane_state->base.crtc_h;
10710 
10711 		cntl = plane_state->ctl |
10712 			i845_cursor_ctl_crtc(crtc_state);
10713 
10714 		size = (height << 12) | width;
10715 
10716 		base = intel_cursor_base(plane_state);
10717 		pos = intel_cursor_position(plane_state);
10718 	}
10719 
10720 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
10721 
10722 	/* On these chipsets we can only modify the base/size/stride
10723 	 * whilst the cursor is disabled.
10724 	 */
10725 	if (plane->cursor.base != base ||
10726 	    plane->cursor.size != size ||
10727 	    plane->cursor.cntl != cntl) {
10728 		I915_WRITE_FW(CURCNTR(PIPE_A), 0);
10729 		I915_WRITE_FW(CURBASE(PIPE_A), base);
10730 		I915_WRITE_FW(CURSIZE, size);
10731 		I915_WRITE_FW(CURPOS(PIPE_A), pos);
10732 		I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
10733 
10734 		plane->cursor.base = base;
10735 		plane->cursor.size = size;
10736 		plane->cursor.cntl = cntl;
10737 	} else {
10738 		I915_WRITE_FW(CURPOS(PIPE_A), pos);
10739 	}
10740 
10741 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
10742 }
10743 
10744 static void i845_disable_cursor(struct intel_plane *plane,
10745 				const struct intel_crtc_state *crtc_state)
10746 {
10747 	i845_update_cursor(plane, crtc_state, NULL);
10748 }
10749 
10750 static bool i845_cursor_get_hw_state(struct intel_plane *plane,
10751 				     enum pipe *pipe)
10752 {
10753 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
10754 	enum intel_display_power_domain power_domain;
10755 	intel_wakeref_t wakeref;
10756 	bool ret;
10757 
10758 	power_domain = POWER_DOMAIN_PIPE(PIPE_A);
10759 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
10760 	if (!wakeref)
10761 		return false;
10762 
10763 	ret = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
10764 
10765 	*pipe = PIPE_A;
10766 
10767 	intel_display_power_put(dev_priv, power_domain, wakeref);
10768 
10769 	return ret;
10770 }
10771 
10772 static unsigned int
10773 i9xx_cursor_max_stride(struct intel_plane *plane,
10774 		       u32 pixel_format, u64 modifier,
10775 		       unsigned int rotation)
10776 {
10777 	return plane->base.dev->mode_config.cursor_width * 4;
10778 }
10779 
10780 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
10781 {
10782 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
10783 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10784 	u32 cntl = 0;
10785 
10786 	if (INTEL_GEN(dev_priv) >= 11)
10787 		return cntl;
10788 
10789 	if (crtc_state->gamma_enable)
10790 		cntl = MCURSOR_GAMMA_ENABLE;
10791 
10792 	if (crtc_state->csc_enable)
10793 		cntl |= MCURSOR_PIPE_CSC_ENABLE;
10794 
10795 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
10796 		cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
10797 
10798 	return cntl;
10799 }
10800 
10801 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
10802 			   const struct intel_plane_state *plane_state)
10803 {
10804 	struct drm_i915_private *dev_priv =
10805 		to_i915(plane_state->base.plane->dev);
10806 	u32 cntl = 0;
10807 
10808 	if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
10809 		cntl |= MCURSOR_TRICKLE_FEED_DISABLE;
10810 
10811 	switch (plane_state->base.crtc_w) {
10812 	case 64:
10813 		cntl |= MCURSOR_MODE_64_ARGB_AX;
10814 		break;
10815 	case 128:
10816 		cntl |= MCURSOR_MODE_128_ARGB_AX;
10817 		break;
10818 	case 256:
10819 		cntl |= MCURSOR_MODE_256_ARGB_AX;
10820 		break;
10821 	default:
10822 		MISSING_CASE(plane_state->base.crtc_w);
10823 		return 0;
10824 	}
10825 
10826 	if (plane_state->base.rotation & DRM_MODE_ROTATE_180)
10827 		cntl |= MCURSOR_ROTATE_180;
10828 
10829 	return cntl;
10830 }
10831 
10832 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
10833 {
10834 	struct drm_i915_private *dev_priv =
10835 		to_i915(plane_state->base.plane->dev);
10836 	int width = plane_state->base.crtc_w;
10837 	int height = plane_state->base.crtc_h;
10838 
10839 	if (!intel_cursor_size_ok(plane_state))
10840 		return false;
10841 
10842 	/* Cursor width is limited to a few power-of-two sizes */
10843 	switch (width) {
10844 	case 256:
10845 	case 128:
10846 	case 64:
10847 		break;
10848 	default:
10849 		return false;
10850 	}
10851 
10852 	/*
10853 	 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
10854 	 * height from 8 lines up to the cursor width, when the
10855 	 * cursor is not rotated. Everything else requires square
10856 	 * cursors.
10857 	 */
10858 	if (HAS_CUR_FBC(dev_priv) &&
10859 	    plane_state->base.rotation & DRM_MODE_ROTATE_0) {
10860 		if (height < 8 || height > width)
10861 			return false;
10862 	} else {
10863 		if (height != width)
10864 			return false;
10865 	}
10866 
10867 	return true;
10868 }
10869 
10870 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state,
10871 			     struct intel_plane_state *plane_state)
10872 {
10873 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
10874 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
10875 	const struct drm_framebuffer *fb = plane_state->base.fb;
10876 	enum pipe pipe = plane->pipe;
10877 	int ret;
10878 
10879 	ret = intel_check_cursor(crtc_state, plane_state);
10880 	if (ret)
10881 		return ret;
10882 
10883 	/* if we want to turn off the cursor ignore width and height */
10884 	if (!fb)
10885 		return 0;
10886 
10887 	/* Check for which cursor types we support */
10888 	if (!i9xx_cursor_size_ok(plane_state)) {
10889 		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
10890 			  plane_state->base.crtc_w,
10891 			  plane_state->base.crtc_h);
10892 		return -EINVAL;
10893 	}
10894 
10895 	WARN_ON(plane_state->base.visible &&
10896 		plane_state->color_plane[0].stride != fb->pitches[0]);
10897 
10898 	if (fb->pitches[0] != plane_state->base.crtc_w * fb->format->cpp[0]) {
10899 		DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n",
10900 			      fb->pitches[0], plane_state->base.crtc_w);
10901 		return -EINVAL;
10902 	}
10903 
10904 	/*
10905 	 * There's something wrong with the cursor on CHV pipe C.
10906 	 * If it straddles the left edge of the screen then
10907 	 * moving it away from the edge or disabling it often
10908 	 * results in a pipe underrun, and often that can lead to
10909 	 * dead pipe (constant underrun reported, and it scans
10910 	 * out just a solid color). To recover from that, the
10911 	 * display power well must be turned off and on again.
10912 	 * Refuse the put the cursor into that compromised position.
10913 	 */
10914 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
10915 	    plane_state->base.visible && plane_state->base.crtc_x < 0) {
10916 		DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
10917 		return -EINVAL;
10918 	}
10919 
10920 	plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
10921 
10922 	return 0;
10923 }
10924 
10925 static void i9xx_update_cursor(struct intel_plane *plane,
10926 			       const struct intel_crtc_state *crtc_state,
10927 			       const struct intel_plane_state *plane_state)
10928 {
10929 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
10930 	enum pipe pipe = plane->pipe;
10931 	u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
10932 	unsigned long irqflags;
10933 
10934 	if (plane_state && plane_state->base.visible) {
10935 		cntl = plane_state->ctl |
10936 			i9xx_cursor_ctl_crtc(crtc_state);
10937 
10938 		if (plane_state->base.crtc_h != plane_state->base.crtc_w)
10939 			fbc_ctl = CUR_FBC_CTL_EN | (plane_state->base.crtc_h - 1);
10940 
10941 		base = intel_cursor_base(plane_state);
10942 		pos = intel_cursor_position(plane_state);
10943 	}
10944 
10945 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
10946 
10947 	/*
10948 	 * On some platforms writing CURCNTR first will also
10949 	 * cause CURPOS to be armed by the CURBASE write.
10950 	 * Without the CURCNTR write the CURPOS write would
10951 	 * arm itself. Thus we always update CURCNTR before
10952 	 * CURPOS.
10953 	 *
10954 	 * On other platforms CURPOS always requires the
10955 	 * CURBASE write to arm the update. Additonally
10956 	 * a write to any of the cursor register will cancel
10957 	 * an already armed cursor update. Thus leaving out
10958 	 * the CURBASE write after CURPOS could lead to a
10959 	 * cursor that doesn't appear to move, or even change
10960 	 * shape. Thus we always write CURBASE.
10961 	 *
10962 	 * The other registers are armed by by the CURBASE write
10963 	 * except when the plane is getting enabled at which time
10964 	 * the CURCNTR write arms the update.
10965 	 */
10966 
10967 	if (INTEL_GEN(dev_priv) >= 9)
10968 		skl_write_cursor_wm(plane, crtc_state);
10969 
10970 	if (plane->cursor.base != base ||
10971 	    plane->cursor.size != fbc_ctl ||
10972 	    plane->cursor.cntl != cntl) {
10973 		if (HAS_CUR_FBC(dev_priv))
10974 			I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl);
10975 		I915_WRITE_FW(CURCNTR(pipe), cntl);
10976 		I915_WRITE_FW(CURPOS(pipe), pos);
10977 		I915_WRITE_FW(CURBASE(pipe), base);
10978 
10979 		plane->cursor.base = base;
10980 		plane->cursor.size = fbc_ctl;
10981 		plane->cursor.cntl = cntl;
10982 	} else {
10983 		I915_WRITE_FW(CURPOS(pipe), pos);
10984 		I915_WRITE_FW(CURBASE(pipe), base);
10985 	}
10986 
10987 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
10988 }
10989 
10990 static void i9xx_disable_cursor(struct intel_plane *plane,
10991 				const struct intel_crtc_state *crtc_state)
10992 {
10993 	i9xx_update_cursor(plane, crtc_state, NULL);
10994 }
10995 
10996 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane,
10997 				     enum pipe *pipe)
10998 {
10999 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11000 	enum intel_display_power_domain power_domain;
11001 	intel_wakeref_t wakeref;
11002 	bool ret;
11003 	u32 val;
11004 
11005 	/*
11006 	 * Not 100% correct for planes that can move between pipes,
11007 	 * but that's only the case for gen2-3 which don't have any
11008 	 * display power wells.
11009 	 */
11010 	power_domain = POWER_DOMAIN_PIPE(plane->pipe);
11011 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11012 	if (!wakeref)
11013 		return false;
11014 
11015 	val = I915_READ(CURCNTR(plane->pipe));
11016 
11017 	ret = val & MCURSOR_MODE;
11018 
11019 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
11020 		*pipe = plane->pipe;
11021 	else
11022 		*pipe = (val & MCURSOR_PIPE_SELECT_MASK) >>
11023 			MCURSOR_PIPE_SELECT_SHIFT;
11024 
11025 	intel_display_power_put(dev_priv, power_domain, wakeref);
11026 
11027 	return ret;
11028 }
11029 
11030 /* VESA 640x480x72Hz mode to set on the pipe */
11031 static const struct drm_display_mode load_detect_mode = {
11032 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
11033 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
11034 };
11035 
11036 struct drm_framebuffer *
11037 intel_framebuffer_create(struct drm_i915_gem_object *obj,
11038 			 struct drm_mode_fb_cmd2 *mode_cmd)
11039 {
11040 	struct intel_framebuffer *intel_fb;
11041 	int ret;
11042 
11043 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
11044 	if (!intel_fb)
11045 		return ERR_PTR(-ENOMEM);
11046 
11047 	ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
11048 	if (ret)
11049 		goto err;
11050 
11051 	return &intel_fb->base;
11052 
11053 err:
11054 	kfree(intel_fb);
11055 	return ERR_PTR(ret);
11056 }
11057 
11058 static int intel_modeset_disable_planes(struct drm_atomic_state *state,
11059 					struct drm_crtc *crtc)
11060 {
11061 	struct drm_plane *plane;
11062 	struct drm_plane_state *plane_state;
11063 	int ret, i;
11064 
11065 	ret = drm_atomic_add_affected_planes(state, crtc);
11066 	if (ret)
11067 		return ret;
11068 
11069 	for_each_new_plane_in_state(state, plane, plane_state, i) {
11070 		if (plane_state->crtc != crtc)
11071 			continue;
11072 
11073 		ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
11074 		if (ret)
11075 			return ret;
11076 
11077 		drm_atomic_set_fb_for_plane(plane_state, NULL);
11078 	}
11079 
11080 	return 0;
11081 }
11082 
11083 int intel_get_load_detect_pipe(struct drm_connector *connector,
11084 			       const struct drm_display_mode *mode,
11085 			       struct intel_load_detect_pipe *old,
11086 			       struct drm_modeset_acquire_ctx *ctx)
11087 {
11088 	struct intel_crtc *intel_crtc;
11089 	struct intel_encoder *intel_encoder =
11090 		intel_attached_encoder(connector);
11091 	struct drm_crtc *possible_crtc;
11092 	struct drm_encoder *encoder = &intel_encoder->base;
11093 	struct drm_crtc *crtc = NULL;
11094 	struct drm_device *dev = encoder->dev;
11095 	struct drm_i915_private *dev_priv = to_i915(dev);
11096 	struct drm_mode_config *config = &dev->mode_config;
11097 	struct drm_atomic_state *state = NULL, *restore_state = NULL;
11098 	struct drm_connector_state *connector_state;
11099 	struct intel_crtc_state *crtc_state;
11100 	int ret, i = -1;
11101 
11102 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11103 		      connector->base.id, connector->name,
11104 		      encoder->base.id, encoder->name);
11105 
11106 	old->restore_state = NULL;
11107 
11108 	WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
11109 
11110 	/*
11111 	 * Algorithm gets a little messy:
11112 	 *
11113 	 *   - if the connector already has an assigned crtc, use it (but make
11114 	 *     sure it's on first)
11115 	 *
11116 	 *   - try to find the first unused crtc that can drive this connector,
11117 	 *     and use that if we find one
11118 	 */
11119 
11120 	/* See if we already have a CRTC for this connector */
11121 	if (connector->state->crtc) {
11122 		crtc = connector->state->crtc;
11123 
11124 		ret = drm_modeset_lock(&crtc->mutex, ctx);
11125 		if (ret)
11126 			goto fail;
11127 
11128 		/* Make sure the crtc and connector are running */
11129 		goto found;
11130 	}
11131 
11132 	/* Find an unused one (if possible) */
11133 	for_each_crtc(dev, possible_crtc) {
11134 		i++;
11135 		if (!(encoder->possible_crtcs & (1 << i)))
11136 			continue;
11137 
11138 		ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11139 		if (ret)
11140 			goto fail;
11141 
11142 		if (possible_crtc->state->enable) {
11143 			drm_modeset_unlock(&possible_crtc->mutex);
11144 			continue;
11145 		}
11146 
11147 		crtc = possible_crtc;
11148 		break;
11149 	}
11150 
11151 	/*
11152 	 * If we didn't find an unused CRTC, don't use any.
11153 	 */
11154 	if (!crtc) {
11155 		DRM_DEBUG_KMS("no pipe available for load-detect\n");
11156 		ret = -ENODEV;
11157 		goto fail;
11158 	}
11159 
11160 found:
11161 	intel_crtc = to_intel_crtc(crtc);
11162 
11163 	state = drm_atomic_state_alloc(dev);
11164 	restore_state = drm_atomic_state_alloc(dev);
11165 	if (!state || !restore_state) {
11166 		ret = -ENOMEM;
11167 		goto fail;
11168 	}
11169 
11170 	state->acquire_ctx = ctx;
11171 	restore_state->acquire_ctx = ctx;
11172 
11173 	connector_state = drm_atomic_get_connector_state(state, connector);
11174 	if (IS_ERR(connector_state)) {
11175 		ret = PTR_ERR(connector_state);
11176 		goto fail;
11177 	}
11178 
11179 	ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11180 	if (ret)
11181 		goto fail;
11182 
11183 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11184 	if (IS_ERR(crtc_state)) {
11185 		ret = PTR_ERR(crtc_state);
11186 		goto fail;
11187 	}
11188 
11189 	crtc_state->base.active = crtc_state->base.enable = true;
11190 
11191 	if (!mode)
11192 		mode = &load_detect_mode;
11193 
11194 	ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11195 	if (ret)
11196 		goto fail;
11197 
11198 	ret = intel_modeset_disable_planes(state, crtc);
11199 	if (ret)
11200 		goto fail;
11201 
11202 	ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11203 	if (!ret)
11204 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11205 	if (!ret)
11206 		ret = drm_atomic_add_affected_planes(restore_state, crtc);
11207 	if (ret) {
11208 		DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11209 		goto fail;
11210 	}
11211 
11212 	ret = drm_atomic_commit(state);
11213 	if (ret) {
11214 		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11215 		goto fail;
11216 	}
11217 
11218 	old->restore_state = restore_state;
11219 	drm_atomic_state_put(state);
11220 
11221 	/* let the connector get through one full cycle before testing */
11222 	intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
11223 	return true;
11224 
11225 fail:
11226 	if (state) {
11227 		drm_atomic_state_put(state);
11228 		state = NULL;
11229 	}
11230 	if (restore_state) {
11231 		drm_atomic_state_put(restore_state);
11232 		restore_state = NULL;
11233 	}
11234 
11235 	if (ret == -EDEADLK)
11236 		return ret;
11237 
11238 	return false;
11239 }
11240 
11241 void intel_release_load_detect_pipe(struct drm_connector *connector,
11242 				    struct intel_load_detect_pipe *old,
11243 				    struct drm_modeset_acquire_ctx *ctx)
11244 {
11245 	struct intel_encoder *intel_encoder =
11246 		intel_attached_encoder(connector);
11247 	struct drm_encoder *encoder = &intel_encoder->base;
11248 	struct drm_atomic_state *state = old->restore_state;
11249 	int ret;
11250 
11251 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11252 		      connector->base.id, connector->name,
11253 		      encoder->base.id, encoder->name);
11254 
11255 	if (!state)
11256 		return;
11257 
11258 	ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
11259 	if (ret)
11260 		DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11261 	drm_atomic_state_put(state);
11262 }
11263 
11264 static int i9xx_pll_refclk(struct drm_device *dev,
11265 			   const struct intel_crtc_state *pipe_config)
11266 {
11267 	struct drm_i915_private *dev_priv = to_i915(dev);
11268 	u32 dpll = pipe_config->dpll_hw_state.dpll;
11269 
11270 	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11271 		return dev_priv->vbt.lvds_ssc_freq;
11272 	else if (HAS_PCH_SPLIT(dev_priv))
11273 		return 120000;
11274 	else if (!IS_GEN(dev_priv, 2))
11275 		return 96000;
11276 	else
11277 		return 48000;
11278 }
11279 
11280 /* Returns the clock of the currently programmed mode of the given pipe. */
11281 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11282 				struct intel_crtc_state *pipe_config)
11283 {
11284 	struct drm_device *dev = crtc->base.dev;
11285 	struct drm_i915_private *dev_priv = to_i915(dev);
11286 	int pipe = pipe_config->cpu_transcoder;
11287 	u32 dpll = pipe_config->dpll_hw_state.dpll;
11288 	u32 fp;
11289 	struct dpll clock;
11290 	int port_clock;
11291 	int refclk = i9xx_pll_refclk(dev, pipe_config);
11292 
11293 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11294 		fp = pipe_config->dpll_hw_state.fp0;
11295 	else
11296 		fp = pipe_config->dpll_hw_state.fp1;
11297 
11298 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11299 	if (IS_PINEVIEW(dev_priv)) {
11300 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11301 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11302 	} else {
11303 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11304 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11305 	}
11306 
11307 	if (!IS_GEN(dev_priv, 2)) {
11308 		if (IS_PINEVIEW(dev_priv))
11309 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11310 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11311 		else
11312 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11313 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
11314 
11315 		switch (dpll & DPLL_MODE_MASK) {
11316 		case DPLLB_MODE_DAC_SERIAL:
11317 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11318 				5 : 10;
11319 			break;
11320 		case DPLLB_MODE_LVDS:
11321 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11322 				7 : 14;
11323 			break;
11324 		default:
11325 			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11326 				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
11327 			return;
11328 		}
11329 
11330 		if (IS_PINEVIEW(dev_priv))
11331 			port_clock = pnv_calc_dpll_params(refclk, &clock);
11332 		else
11333 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
11334 	} else {
11335 		u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11336 		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11337 
11338 		if (is_lvds) {
11339 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11340 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
11341 
11342 			if (lvds & LVDS_CLKB_POWER_UP)
11343 				clock.p2 = 7;
11344 			else
11345 				clock.p2 = 14;
11346 		} else {
11347 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
11348 				clock.p1 = 2;
11349 			else {
11350 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11351 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11352 			}
11353 			if (dpll & PLL_P2_DIVIDE_BY_4)
11354 				clock.p2 = 4;
11355 			else
11356 				clock.p2 = 2;
11357 		}
11358 
11359 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
11360 	}
11361 
11362 	/*
11363 	 * This value includes pixel_multiplier. We will use
11364 	 * port_clock to compute adjusted_mode.crtc_clock in the
11365 	 * encoder's get_config() function.
11366 	 */
11367 	pipe_config->port_clock = port_clock;
11368 }
11369 
11370 int intel_dotclock_calculate(int link_freq,
11371 			     const struct intel_link_m_n *m_n)
11372 {
11373 	/*
11374 	 * The calculation for the data clock is:
11375 	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11376 	 * But we want to avoid losing precison if possible, so:
11377 	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11378 	 *
11379 	 * and the link clock is simpler:
11380 	 * link_clock = (m * link_clock) / n
11381 	 */
11382 
11383 	if (!m_n->link_n)
11384 		return 0;
11385 
11386 	return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
11387 }
11388 
11389 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11390 				   struct intel_crtc_state *pipe_config)
11391 {
11392 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11393 
11394 	/* read out port_clock from the DPLL */
11395 	i9xx_crtc_clock_get(crtc, pipe_config);
11396 
11397 	/*
11398 	 * In case there is an active pipe without active ports,
11399 	 * we may need some idea for the dotclock anyway.
11400 	 * Calculate one based on the FDI configuration.
11401 	 */
11402 	pipe_config->base.adjusted_mode.crtc_clock =
11403 		intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11404 					 &pipe_config->fdi_m_n);
11405 }
11406 
11407 /* Returns the currently programmed mode of the given encoder. */
11408 struct drm_display_mode *
11409 intel_encoder_current_mode(struct intel_encoder *encoder)
11410 {
11411 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
11412 	struct intel_crtc_state *crtc_state;
11413 	struct drm_display_mode *mode;
11414 	struct intel_crtc *crtc;
11415 	enum pipe pipe;
11416 
11417 	if (!encoder->get_hw_state(encoder, &pipe))
11418 		return NULL;
11419 
11420 	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11421 
11422 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11423 	if (!mode)
11424 		return NULL;
11425 
11426 	crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
11427 	if (!crtc_state) {
11428 		kfree(mode);
11429 		return NULL;
11430 	}
11431 
11432 	crtc_state->base.crtc = &crtc->base;
11433 
11434 	if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) {
11435 		kfree(crtc_state);
11436 		kfree(mode);
11437 		return NULL;
11438 	}
11439 
11440 	encoder->get_config(encoder, crtc_state);
11441 
11442 	intel_mode_from_pipe_config(mode, crtc_state);
11443 
11444 	kfree(crtc_state);
11445 
11446 	return mode;
11447 }
11448 
11449 static void intel_crtc_destroy(struct drm_crtc *crtc)
11450 {
11451 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11452 
11453 	drm_crtc_cleanup(crtc);
11454 	kfree(intel_crtc);
11455 }
11456 
11457 /**
11458  * intel_wm_need_update - Check whether watermarks need updating
11459  * @cur: current plane state
11460  * @new: new plane state
11461  *
11462  * Check current plane state versus the new one to determine whether
11463  * watermarks need to be recalculated.
11464  *
11465  * Returns true or false.
11466  */
11467 static bool intel_wm_need_update(const struct intel_plane_state *cur,
11468 				 struct intel_plane_state *new)
11469 {
11470 	/* Update watermarks on tiling or size changes. */
11471 	if (new->base.visible != cur->base.visible)
11472 		return true;
11473 
11474 	if (!cur->base.fb || !new->base.fb)
11475 		return false;
11476 
11477 	if (cur->base.fb->modifier != new->base.fb->modifier ||
11478 	    cur->base.rotation != new->base.rotation ||
11479 	    drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
11480 	    drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
11481 	    drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
11482 	    drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
11483 		return true;
11484 
11485 	return false;
11486 }
11487 
11488 static bool needs_scaling(const struct intel_plane_state *state)
11489 {
11490 	int src_w = drm_rect_width(&state->base.src) >> 16;
11491 	int src_h = drm_rect_height(&state->base.src) >> 16;
11492 	int dst_w = drm_rect_width(&state->base.dst);
11493 	int dst_h = drm_rect_height(&state->base.dst);
11494 
11495 	return (src_w != dst_w || src_h != dst_h);
11496 }
11497 
11498 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
11499 				    struct intel_crtc_state *crtc_state,
11500 				    const struct intel_plane_state *old_plane_state,
11501 				    struct intel_plane_state *plane_state)
11502 {
11503 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
11504 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
11505 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11506 	bool mode_changed = needs_modeset(crtc_state);
11507 	bool was_crtc_enabled = old_crtc_state->base.active;
11508 	bool is_crtc_enabled = crtc_state->base.active;
11509 	bool turn_off, turn_on, visible, was_visible;
11510 	struct drm_framebuffer *fb = plane_state->base.fb;
11511 	int ret;
11512 
11513 	if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
11514 		ret = skl_update_scaler_plane(crtc_state, plane_state);
11515 		if (ret)
11516 			return ret;
11517 	}
11518 
11519 	was_visible = old_plane_state->base.visible;
11520 	visible = plane_state->base.visible;
11521 
11522 	if (!was_crtc_enabled && WARN_ON(was_visible))
11523 		was_visible = false;
11524 
11525 	/*
11526 	 * Visibility is calculated as if the crtc was on, but
11527 	 * after scaler setup everything depends on it being off
11528 	 * when the crtc isn't active.
11529 	 *
11530 	 * FIXME this is wrong for watermarks. Watermarks should also
11531 	 * be computed as if the pipe would be active. Perhaps move
11532 	 * per-plane wm computation to the .check_plane() hook, and
11533 	 * only combine the results from all planes in the current place?
11534 	 */
11535 	if (!is_crtc_enabled) {
11536 		plane_state->base.visible = visible = false;
11537 		crtc_state->active_planes &= ~BIT(plane->id);
11538 		crtc_state->data_rate[plane->id] = 0;
11539 	}
11540 
11541 	if (!was_visible && !visible)
11542 		return 0;
11543 
11544 	if (fb != old_plane_state->base.fb)
11545 		crtc_state->fb_changed = true;
11546 
11547 	turn_off = was_visible && (!visible || mode_changed);
11548 	turn_on = visible && (!was_visible || mode_changed);
11549 
11550 	DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
11551 			 crtc->base.base.id, crtc->base.name,
11552 			 plane->base.base.id, plane->base.name,
11553 			 fb ? fb->base.id : -1);
11554 
11555 	DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
11556 			 plane->base.base.id, plane->base.name,
11557 			 was_visible, visible,
11558 			 turn_off, turn_on, mode_changed);
11559 
11560 	if (turn_on) {
11561 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11562 			crtc_state->update_wm_pre = true;
11563 
11564 		/* must disable cxsr around plane enable/disable */
11565 		if (plane->id != PLANE_CURSOR)
11566 			crtc_state->disable_cxsr = true;
11567 	} else if (turn_off) {
11568 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11569 			crtc_state->update_wm_post = true;
11570 
11571 		/* must disable cxsr around plane enable/disable */
11572 		if (plane->id != PLANE_CURSOR)
11573 			crtc_state->disable_cxsr = true;
11574 	} else if (intel_wm_need_update(old_plane_state, plane_state)) {
11575 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
11576 			/* FIXME bollocks */
11577 			crtc_state->update_wm_pre = true;
11578 			crtc_state->update_wm_post = true;
11579 		}
11580 	}
11581 
11582 	if (visible || was_visible)
11583 		crtc_state->fb_bits |= plane->frontbuffer_bit;
11584 
11585 	/*
11586 	 * ILK/SNB DVSACNTR/Sprite Enable
11587 	 * IVB SPR_CTL/Sprite Enable
11588 	 * "When in Self Refresh Big FIFO mode, a write to enable the
11589 	 *  plane will be internally buffered and delayed while Big FIFO
11590 	 *  mode is exiting."
11591 	 *
11592 	 * Which means that enabling the sprite can take an extra frame
11593 	 * when we start in big FIFO mode (LP1+). Thus we need to drop
11594 	 * down to LP0 and wait for vblank in order to make sure the
11595 	 * sprite gets enabled on the next vblank after the register write.
11596 	 * Doing otherwise would risk enabling the sprite one frame after
11597 	 * we've already signalled flip completion. We can resume LP1+
11598 	 * once the sprite has been enabled.
11599 	 *
11600 	 *
11601 	 * WaCxSRDisabledForSpriteScaling:ivb
11602 	 * IVB SPR_SCALE/Scaling Enable
11603 	 * "Low Power watermarks must be disabled for at least one
11604 	 *  frame before enabling sprite scaling, and kept disabled
11605 	 *  until sprite scaling is disabled."
11606 	 *
11607 	 * ILK/SNB DVSASCALE/Scaling Enable
11608 	 * "When in Self Refresh Big FIFO mode, scaling enable will be
11609 	 *  masked off while Big FIFO mode is exiting."
11610 	 *
11611 	 * Despite the w/a only being listed for IVB we assume that
11612 	 * the ILK/SNB note has similar ramifications, hence we apply
11613 	 * the w/a on all three platforms.
11614 	 *
11615 	 * With experimental results seems this is needed also for primary
11616 	 * plane, not only sprite plane.
11617 	 */
11618 	if (plane->id != PLANE_CURSOR &&
11619 	    (IS_GEN_RANGE(dev_priv, 5, 6) ||
11620 	     IS_IVYBRIDGE(dev_priv)) &&
11621 	    (turn_on || (!needs_scaling(old_plane_state) &&
11622 			 needs_scaling(plane_state))))
11623 		crtc_state->disable_lp_wm = true;
11624 
11625 	return 0;
11626 }
11627 
11628 static bool encoders_cloneable(const struct intel_encoder *a,
11629 			       const struct intel_encoder *b)
11630 {
11631 	/* masks could be asymmetric, so check both ways */
11632 	return a == b || (a->cloneable & (1 << b->type) &&
11633 			  b->cloneable & (1 << a->type));
11634 }
11635 
11636 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11637 					 struct intel_crtc *crtc,
11638 					 struct intel_encoder *encoder)
11639 {
11640 	struct intel_encoder *source_encoder;
11641 	struct drm_connector *connector;
11642 	struct drm_connector_state *connector_state;
11643 	int i;
11644 
11645 	for_each_new_connector_in_state(state, connector, connector_state, i) {
11646 		if (connector_state->crtc != &crtc->base)
11647 			continue;
11648 
11649 		source_encoder =
11650 			to_intel_encoder(connector_state->best_encoder);
11651 		if (!encoders_cloneable(encoder, source_encoder))
11652 			return false;
11653 	}
11654 
11655 	return true;
11656 }
11657 
11658 static int icl_add_linked_planes(struct intel_atomic_state *state)
11659 {
11660 	struct intel_plane *plane, *linked;
11661 	struct intel_plane_state *plane_state, *linked_plane_state;
11662 	int i;
11663 
11664 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
11665 		linked = plane_state->linked_plane;
11666 
11667 		if (!linked)
11668 			continue;
11669 
11670 		linked_plane_state = intel_atomic_get_plane_state(state, linked);
11671 		if (IS_ERR(linked_plane_state))
11672 			return PTR_ERR(linked_plane_state);
11673 
11674 		WARN_ON(linked_plane_state->linked_plane != plane);
11675 		WARN_ON(linked_plane_state->slave == plane_state->slave);
11676 	}
11677 
11678 	return 0;
11679 }
11680 
11681 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state)
11682 {
11683 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
11684 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11685 	struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->base.state);
11686 	struct intel_plane *plane, *linked;
11687 	struct intel_plane_state *plane_state;
11688 	int i;
11689 
11690 	if (INTEL_GEN(dev_priv) < 11)
11691 		return 0;
11692 
11693 	/*
11694 	 * Destroy all old plane links and make the slave plane invisible
11695 	 * in the crtc_state->active_planes mask.
11696 	 */
11697 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
11698 		if (plane->pipe != crtc->pipe || !plane_state->linked_plane)
11699 			continue;
11700 
11701 		plane_state->linked_plane = NULL;
11702 		if (plane_state->slave && !plane_state->base.visible) {
11703 			crtc_state->active_planes &= ~BIT(plane->id);
11704 			crtc_state->update_planes |= BIT(plane->id);
11705 		}
11706 
11707 		plane_state->slave = false;
11708 	}
11709 
11710 	if (!crtc_state->nv12_planes)
11711 		return 0;
11712 
11713 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
11714 		struct intel_plane_state *linked_state = NULL;
11715 
11716 		if (plane->pipe != crtc->pipe ||
11717 		    !(crtc_state->nv12_planes & BIT(plane->id)))
11718 			continue;
11719 
11720 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) {
11721 			if (!icl_is_nv12_y_plane(linked->id))
11722 				continue;
11723 
11724 			if (crtc_state->active_planes & BIT(linked->id))
11725 				continue;
11726 
11727 			linked_state = intel_atomic_get_plane_state(state, linked);
11728 			if (IS_ERR(linked_state))
11729 				return PTR_ERR(linked_state);
11730 
11731 			break;
11732 		}
11733 
11734 		if (!linked_state) {
11735 			DRM_DEBUG_KMS("Need %d free Y planes for planar YUV\n",
11736 				      hweight8(crtc_state->nv12_planes));
11737 
11738 			return -EINVAL;
11739 		}
11740 
11741 		plane_state->linked_plane = linked;
11742 
11743 		linked_state->slave = true;
11744 		linked_state->linked_plane = plane;
11745 		crtc_state->active_planes |= BIT(linked->id);
11746 		crtc_state->update_planes |= BIT(linked->id);
11747 		DRM_DEBUG_KMS("Using %s as Y plane for %s\n", linked->base.name, plane->base.name);
11748 	}
11749 
11750 	return 0;
11751 }
11752 
11753 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state)
11754 {
11755 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
11756 	struct intel_atomic_state *state =
11757 		to_intel_atomic_state(new_crtc_state->base.state);
11758 	const struct intel_crtc_state *old_crtc_state =
11759 		intel_atomic_get_old_crtc_state(state, crtc);
11760 
11761 	return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes;
11762 }
11763 
11764 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11765 				   struct drm_crtc_state *crtc_state)
11766 {
11767 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
11768 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11769 	struct intel_crtc_state *pipe_config =
11770 		to_intel_crtc_state(crtc_state);
11771 	int ret;
11772 	bool mode_changed = needs_modeset(pipe_config);
11773 
11774 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) &&
11775 	    mode_changed && !crtc_state->active)
11776 		pipe_config->update_wm_post = true;
11777 
11778 	if (mode_changed && crtc_state->enable &&
11779 	    dev_priv->display.crtc_compute_clock &&
11780 	    !WARN_ON(pipe_config->shared_dpll)) {
11781 		ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11782 							   pipe_config);
11783 		if (ret)
11784 			return ret;
11785 	}
11786 
11787 	/*
11788 	 * May need to update pipe gamma enable bits
11789 	 * when C8 planes are getting enabled/disabled.
11790 	 */
11791 	if (c8_planes_changed(pipe_config))
11792 		crtc_state->color_mgmt_changed = true;
11793 
11794 	if (mode_changed || pipe_config->update_pipe ||
11795 	    crtc_state->color_mgmt_changed) {
11796 		ret = intel_color_check(pipe_config);
11797 		if (ret)
11798 			return ret;
11799 	}
11800 
11801 	ret = 0;
11802 	if (dev_priv->display.compute_pipe_wm) {
11803 		ret = dev_priv->display.compute_pipe_wm(pipe_config);
11804 		if (ret) {
11805 			DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11806 			return ret;
11807 		}
11808 	}
11809 
11810 	if (dev_priv->display.compute_intermediate_wm) {
11811 		if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11812 			return 0;
11813 
11814 		/*
11815 		 * Calculate 'intermediate' watermarks that satisfy both the
11816 		 * old state and the new state.  We can program these
11817 		 * immediately.
11818 		 */
11819 		ret = dev_priv->display.compute_intermediate_wm(pipe_config);
11820 		if (ret) {
11821 			DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
11822 			return ret;
11823 		}
11824 	}
11825 
11826 	if (INTEL_GEN(dev_priv) >= 9) {
11827 		if (mode_changed || pipe_config->update_pipe)
11828 			ret = skl_update_scaler_crtc(pipe_config);
11829 
11830 		if (!ret)
11831 			ret = icl_check_nv12_planes(pipe_config);
11832 		if (!ret)
11833 			ret = skl_check_pipe_max_pixel_rate(intel_crtc,
11834 							    pipe_config);
11835 		if (!ret)
11836 			ret = intel_atomic_setup_scalers(dev_priv, intel_crtc,
11837 							 pipe_config);
11838 	}
11839 
11840 	if (HAS_IPS(dev_priv))
11841 		pipe_config->ips_enabled = hsw_compute_ips_config(pipe_config);
11842 
11843 	return ret;
11844 }
11845 
11846 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11847 	.atomic_check = intel_crtc_atomic_check,
11848 };
11849 
11850 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11851 {
11852 	struct intel_connector *connector;
11853 	struct drm_connector_list_iter conn_iter;
11854 
11855 	drm_connector_list_iter_begin(dev, &conn_iter);
11856 	for_each_intel_connector_iter(connector, &conn_iter) {
11857 		if (connector->base.state->crtc)
11858 			drm_connector_put(&connector->base);
11859 
11860 		if (connector->base.encoder) {
11861 			connector->base.state->best_encoder =
11862 				connector->base.encoder;
11863 			connector->base.state->crtc =
11864 				connector->base.encoder->crtc;
11865 
11866 			drm_connector_get(&connector->base);
11867 		} else {
11868 			connector->base.state->best_encoder = NULL;
11869 			connector->base.state->crtc = NULL;
11870 		}
11871 	}
11872 	drm_connector_list_iter_end(&conn_iter);
11873 }
11874 
11875 static int
11876 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
11877 		      struct intel_crtc_state *pipe_config)
11878 {
11879 	struct drm_connector *connector = conn_state->connector;
11880 	const struct drm_display_info *info = &connector->display_info;
11881 	int bpp;
11882 
11883 	switch (conn_state->max_bpc) {
11884 	case 6 ... 7:
11885 		bpp = 6 * 3;
11886 		break;
11887 	case 8 ... 9:
11888 		bpp = 8 * 3;
11889 		break;
11890 	case 10 ... 11:
11891 		bpp = 10 * 3;
11892 		break;
11893 	case 12:
11894 		bpp = 12 * 3;
11895 		break;
11896 	default:
11897 		return -EINVAL;
11898 	}
11899 
11900 	if (bpp < pipe_config->pipe_bpp) {
11901 		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] Limiting display bpp to %d instead of "
11902 			      "EDID bpp %d, requested bpp %d, max platform bpp %d\n",
11903 			      connector->base.id, connector->name,
11904 			      bpp, 3 * info->bpc, 3 * conn_state->max_requested_bpc,
11905 			      pipe_config->pipe_bpp);
11906 
11907 		pipe_config->pipe_bpp = bpp;
11908 	}
11909 
11910 	return 0;
11911 }
11912 
11913 static int
11914 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11915 			  struct intel_crtc_state *pipe_config)
11916 {
11917 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11918 	struct drm_atomic_state *state = pipe_config->base.state;
11919 	struct drm_connector *connector;
11920 	struct drm_connector_state *connector_state;
11921 	int bpp, i;
11922 
11923 	if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
11924 	    IS_CHERRYVIEW(dev_priv)))
11925 		bpp = 10*3;
11926 	else if (INTEL_GEN(dev_priv) >= 5)
11927 		bpp = 12*3;
11928 	else
11929 		bpp = 8*3;
11930 
11931 	pipe_config->pipe_bpp = bpp;
11932 
11933 	/* Clamp display bpp to connector max bpp */
11934 	for_each_new_connector_in_state(state, connector, connector_state, i) {
11935 		int ret;
11936 
11937 		if (connector_state->crtc != &crtc->base)
11938 			continue;
11939 
11940 		ret = compute_sink_pipe_bpp(connector_state, pipe_config);
11941 		if (ret)
11942 			return ret;
11943 	}
11944 
11945 	return 0;
11946 }
11947 
11948 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11949 {
11950 	DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11951 		      "type: 0x%x flags: 0x%x\n",
11952 		      mode->crtc_clock,
11953 		      mode->crtc_hdisplay, mode->crtc_hsync_start,
11954 		      mode->crtc_hsync_end, mode->crtc_htotal,
11955 		      mode->crtc_vdisplay, mode->crtc_vsync_start,
11956 		      mode->crtc_vsync_end, mode->crtc_vtotal,
11957 		      mode->type, mode->flags);
11958 }
11959 
11960 static inline void
11961 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config,
11962 		      const char *id, unsigned int lane_count,
11963 		      const struct intel_link_m_n *m_n)
11964 {
11965 	DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11966 		      id, lane_count,
11967 		      m_n->gmch_m, m_n->gmch_n,
11968 		      m_n->link_m, m_n->link_n, m_n->tu);
11969 }
11970 
11971 static void
11972 intel_dump_infoframe(struct drm_i915_private *dev_priv,
11973 		     const union hdmi_infoframe *frame)
11974 {
11975 	if ((drm_debug & DRM_UT_KMS) == 0)
11976 		return;
11977 
11978 	hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame);
11979 }
11980 
11981 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
11982 
11983 static const char * const output_type_str[] = {
11984 	OUTPUT_TYPE(UNUSED),
11985 	OUTPUT_TYPE(ANALOG),
11986 	OUTPUT_TYPE(DVO),
11987 	OUTPUT_TYPE(SDVO),
11988 	OUTPUT_TYPE(LVDS),
11989 	OUTPUT_TYPE(TVOUT),
11990 	OUTPUT_TYPE(HDMI),
11991 	OUTPUT_TYPE(DP),
11992 	OUTPUT_TYPE(EDP),
11993 	OUTPUT_TYPE(DSI),
11994 	OUTPUT_TYPE(DDI),
11995 	OUTPUT_TYPE(DP_MST),
11996 };
11997 
11998 #undef OUTPUT_TYPE
11999 
12000 static void snprintf_output_types(char *buf, size_t len,
12001 				  unsigned int output_types)
12002 {
12003 	char *str = buf;
12004 	int i;
12005 
12006 	str[0] = '\0';
12007 
12008 	for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
12009 		int r;
12010 
12011 		if ((output_types & BIT(i)) == 0)
12012 			continue;
12013 
12014 		r = snprintf(str, len, "%s%s",
12015 			     str != buf ? "," : "", output_type_str[i]);
12016 		if (r >= len)
12017 			break;
12018 		str += r;
12019 		len -= r;
12020 
12021 		output_types &= ~BIT(i);
12022 	}
12023 
12024 	WARN_ON_ONCE(output_types != 0);
12025 }
12026 
12027 static const char * const output_format_str[] = {
12028 	[INTEL_OUTPUT_FORMAT_INVALID] = "Invalid",
12029 	[INTEL_OUTPUT_FORMAT_RGB] = "RGB",
12030 	[INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0",
12031 	[INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4",
12032 };
12033 
12034 static const char *output_formats(enum intel_output_format format)
12035 {
12036 	if (format >= ARRAY_SIZE(output_format_str))
12037 		format = INTEL_OUTPUT_FORMAT_INVALID;
12038 	return output_format_str[format];
12039 }
12040 
12041 static void intel_dump_plane_state(const struct intel_plane_state *plane_state)
12042 {
12043 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
12044 	const struct drm_framebuffer *fb = plane_state->base.fb;
12045 	struct drm_format_name_buf format_name;
12046 
12047 	if (!fb) {
12048 		DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [NOFB], visible: %s\n",
12049 			      plane->base.base.id, plane->base.name,
12050 			      yesno(plane_state->base.visible));
12051 		return;
12052 	}
12053 
12054 	DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n",
12055 		      plane->base.base.id, plane->base.name,
12056 		      fb->base.id, fb->width, fb->height,
12057 		      drm_get_format_name(fb->format->format, &format_name),
12058 		      yesno(plane_state->base.visible));
12059 	DRM_DEBUG_KMS("\trotation: 0x%x, scaler: %d\n",
12060 		      plane_state->base.rotation, plane_state->scaler_id);
12061 	if (plane_state->base.visible)
12062 		DRM_DEBUG_KMS("\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n",
12063 			      DRM_RECT_FP_ARG(&plane_state->base.src),
12064 			      DRM_RECT_ARG(&plane_state->base.dst));
12065 }
12066 
12067 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config,
12068 				   struct intel_atomic_state *state,
12069 				   const char *context)
12070 {
12071 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
12072 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12073 	const struct intel_plane_state *plane_state;
12074 	struct intel_plane *plane;
12075 	char buf[64];
12076 	int i;
12077 
12078 	DRM_DEBUG_KMS("[CRTC:%d:%s] enable: %s %s\n",
12079 		      crtc->base.base.id, crtc->base.name,
12080 		      yesno(pipe_config->base.enable), context);
12081 
12082 	if (!pipe_config->base.enable)
12083 		goto dump_planes;
12084 
12085 	snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
12086 	DRM_DEBUG_KMS("active: %s, output_types: %s (0x%x), output format: %s\n",
12087 		      yesno(pipe_config->base.active),
12088 		      buf, pipe_config->output_types,
12089 		      output_formats(pipe_config->output_format));
12090 
12091 	DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
12092 		      transcoder_name(pipe_config->cpu_transcoder),
12093 		      pipe_config->pipe_bpp, pipe_config->dither);
12094 
12095 	if (pipe_config->has_pch_encoder)
12096 		intel_dump_m_n_config(pipe_config, "fdi",
12097 				      pipe_config->fdi_lanes,
12098 				      &pipe_config->fdi_m_n);
12099 
12100 	if (intel_crtc_has_dp_encoder(pipe_config)) {
12101 		intel_dump_m_n_config(pipe_config, "dp m_n",
12102 				pipe_config->lane_count, &pipe_config->dp_m_n);
12103 		if (pipe_config->has_drrs)
12104 			intel_dump_m_n_config(pipe_config, "dp m2_n2",
12105 					      pipe_config->lane_count,
12106 					      &pipe_config->dp_m2_n2);
12107 	}
12108 
12109 	DRM_DEBUG_KMS("audio: %i, infoframes: %i, infoframes enabled: 0x%x\n",
12110 		      pipe_config->has_audio, pipe_config->has_infoframe,
12111 		      pipe_config->infoframes.enable);
12112 
12113 	if (pipe_config->infoframes.enable &
12114 	    intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL))
12115 		DRM_DEBUG_KMS("GCP: 0x%x\n", pipe_config->infoframes.gcp);
12116 	if (pipe_config->infoframes.enable &
12117 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI))
12118 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi);
12119 	if (pipe_config->infoframes.enable &
12120 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD))
12121 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd);
12122 	if (pipe_config->infoframes.enable &
12123 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR))
12124 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi);
12125 
12126 	DRM_DEBUG_KMS("requested mode:\n");
12127 	drm_mode_debug_printmodeline(&pipe_config->base.mode);
12128 	DRM_DEBUG_KMS("adjusted mode:\n");
12129 	drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12130 	intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12131 	DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
12132 		      pipe_config->port_clock,
12133 		      pipe_config->pipe_src_w, pipe_config->pipe_src_h,
12134 		      pipe_config->pixel_rate);
12135 
12136 	if (INTEL_GEN(dev_priv) >= 9)
12137 		DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12138 			      crtc->num_scalers,
12139 			      pipe_config->scaler_state.scaler_users,
12140 		              pipe_config->scaler_state.scaler_id);
12141 
12142 	if (HAS_GMCH(dev_priv))
12143 		DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12144 			      pipe_config->gmch_pfit.control,
12145 			      pipe_config->gmch_pfit.pgm_ratios,
12146 			      pipe_config->gmch_pfit.lvds_border_bits);
12147 	else
12148 		DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s, force thru: %s\n",
12149 			      pipe_config->pch_pfit.pos,
12150 			      pipe_config->pch_pfit.size,
12151 			      enableddisabled(pipe_config->pch_pfit.enabled),
12152 			      yesno(pipe_config->pch_pfit.force_thru));
12153 
12154 	DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
12155 		      pipe_config->ips_enabled, pipe_config->double_wide);
12156 
12157 	intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
12158 
12159 dump_planes:
12160 	if (!state)
12161 		return;
12162 
12163 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12164 		if (plane->pipe == crtc->pipe)
12165 			intel_dump_plane_state(plane_state);
12166 	}
12167 }
12168 
12169 static bool check_digital_port_conflicts(struct intel_atomic_state *state)
12170 {
12171 	struct drm_device *dev = state->base.dev;
12172 	struct drm_connector *connector;
12173 	struct drm_connector_list_iter conn_iter;
12174 	unsigned int used_ports = 0;
12175 	unsigned int used_mst_ports = 0;
12176 	bool ret = true;
12177 
12178 	/*
12179 	 * Walk the connector list instead of the encoder
12180 	 * list to detect the problem on ddi platforms
12181 	 * where there's just one encoder per digital port.
12182 	 */
12183 	drm_connector_list_iter_begin(dev, &conn_iter);
12184 	drm_for_each_connector_iter(connector, &conn_iter) {
12185 		struct drm_connector_state *connector_state;
12186 		struct intel_encoder *encoder;
12187 
12188 		connector_state =
12189 			drm_atomic_get_new_connector_state(&state->base,
12190 							   connector);
12191 		if (!connector_state)
12192 			connector_state = connector->state;
12193 
12194 		if (!connector_state->best_encoder)
12195 			continue;
12196 
12197 		encoder = to_intel_encoder(connector_state->best_encoder);
12198 
12199 		WARN_ON(!connector_state->crtc);
12200 
12201 		switch (encoder->type) {
12202 			unsigned int port_mask;
12203 		case INTEL_OUTPUT_DDI:
12204 			if (WARN_ON(!HAS_DDI(to_i915(dev))))
12205 				break;
12206 			/* else, fall through */
12207 		case INTEL_OUTPUT_DP:
12208 		case INTEL_OUTPUT_HDMI:
12209 		case INTEL_OUTPUT_EDP:
12210 			port_mask = 1 << encoder->port;
12211 
12212 			/* the same port mustn't appear more than once */
12213 			if (used_ports & port_mask)
12214 				ret = false;
12215 
12216 			used_ports |= port_mask;
12217 			break;
12218 		case INTEL_OUTPUT_DP_MST:
12219 			used_mst_ports |=
12220 				1 << encoder->port;
12221 			break;
12222 		default:
12223 			break;
12224 		}
12225 	}
12226 	drm_connector_list_iter_end(&conn_iter);
12227 
12228 	/* can't mix MST and SST/HDMI on the same port */
12229 	if (used_ports & used_mst_ports)
12230 		return false;
12231 
12232 	return ret;
12233 }
12234 
12235 static int
12236 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12237 {
12238 	struct drm_i915_private *dev_priv =
12239 		to_i915(crtc_state->base.crtc->dev);
12240 	struct intel_crtc_state *saved_state;
12241 
12242 	saved_state = kzalloc(sizeof(*saved_state), GFP_KERNEL);
12243 	if (!saved_state)
12244 		return -ENOMEM;
12245 
12246 	/* FIXME: before the switch to atomic started, a new pipe_config was
12247 	 * kzalloc'd. Code that depends on any field being zero should be
12248 	 * fixed, so that the crtc_state can be safely duplicated. For now,
12249 	 * only fields that are know to not cause problems are preserved. */
12250 
12251 	saved_state->scaler_state = crtc_state->scaler_state;
12252 	saved_state->shared_dpll = crtc_state->shared_dpll;
12253 	saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
12254 	memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls,
12255 	       sizeof(saved_state->icl_port_dplls));
12256 	saved_state->crc_enabled = crtc_state->crc_enabled;
12257 	if (IS_G4X(dev_priv) ||
12258 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
12259 		saved_state->wm = crtc_state->wm;
12260 
12261 	/* Keep base drm_crtc_state intact, only clear our extended struct */
12262 	BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
12263 	memcpy(&crtc_state->base + 1, &saved_state->base + 1,
12264 	       sizeof(*crtc_state) - sizeof(crtc_state->base));
12265 
12266 	kfree(saved_state);
12267 	return 0;
12268 }
12269 
12270 static int
12271 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config)
12272 {
12273 	struct drm_crtc *crtc = pipe_config->base.crtc;
12274 	struct drm_atomic_state *state = pipe_config->base.state;
12275 	struct intel_encoder *encoder;
12276 	struct drm_connector *connector;
12277 	struct drm_connector_state *connector_state;
12278 	int base_bpp, ret;
12279 	int i;
12280 	bool retry = true;
12281 
12282 	ret = clear_intel_crtc_state(pipe_config);
12283 	if (ret)
12284 		return ret;
12285 
12286 	pipe_config->cpu_transcoder =
12287 		(enum transcoder) to_intel_crtc(crtc)->pipe;
12288 
12289 	/*
12290 	 * Sanitize sync polarity flags based on requested ones. If neither
12291 	 * positive or negative polarity is requested, treat this as meaning
12292 	 * negative polarity.
12293 	 */
12294 	if (!(pipe_config->base.adjusted_mode.flags &
12295 	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12296 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12297 
12298 	if (!(pipe_config->base.adjusted_mode.flags &
12299 	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12300 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12301 
12302 	ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12303 					pipe_config);
12304 	if (ret)
12305 		return ret;
12306 
12307 	base_bpp = pipe_config->pipe_bpp;
12308 
12309 	/*
12310 	 * Determine the real pipe dimensions. Note that stereo modes can
12311 	 * increase the actual pipe size due to the frame doubling and
12312 	 * insertion of additional space for blanks between the frame. This
12313 	 * is stored in the crtc timings. We use the requested mode to do this
12314 	 * computation to clearly distinguish it from the adjusted mode, which
12315 	 * can be changed by the connectors in the below retry loop.
12316 	 */
12317 	drm_mode_get_hv_timing(&pipe_config->base.mode,
12318 			       &pipe_config->pipe_src_w,
12319 			       &pipe_config->pipe_src_h);
12320 
12321 	for_each_new_connector_in_state(state, connector, connector_state, i) {
12322 		if (connector_state->crtc != crtc)
12323 			continue;
12324 
12325 		encoder = to_intel_encoder(connector_state->best_encoder);
12326 
12327 		if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12328 			DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12329 			return -EINVAL;
12330 		}
12331 
12332 		/*
12333 		 * Determine output_types before calling the .compute_config()
12334 		 * hooks so that the hooks can use this information safely.
12335 		 */
12336 		if (encoder->compute_output_type)
12337 			pipe_config->output_types |=
12338 				BIT(encoder->compute_output_type(encoder, pipe_config,
12339 								 connector_state));
12340 		else
12341 			pipe_config->output_types |= BIT(encoder->type);
12342 	}
12343 
12344 encoder_retry:
12345 	/* Ensure the port clock defaults are reset when retrying. */
12346 	pipe_config->port_clock = 0;
12347 	pipe_config->pixel_multiplier = 1;
12348 
12349 	/* Fill in default crtc timings, allow encoders to overwrite them. */
12350 	drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12351 			      CRTC_STEREO_DOUBLE);
12352 
12353 	/* Pass our mode to the connectors and the CRTC to give them a chance to
12354 	 * adjust it according to limitations or connector properties, and also
12355 	 * a chance to reject the mode entirely.
12356 	 */
12357 	for_each_new_connector_in_state(state, connector, connector_state, i) {
12358 		if (connector_state->crtc != crtc)
12359 			continue;
12360 
12361 		encoder = to_intel_encoder(connector_state->best_encoder);
12362 		ret = encoder->compute_config(encoder, pipe_config,
12363 					      connector_state);
12364 		if (ret < 0) {
12365 			if (ret != -EDEADLK)
12366 				DRM_DEBUG_KMS("Encoder config failure: %d\n",
12367 					      ret);
12368 			return ret;
12369 		}
12370 	}
12371 
12372 	/* Set default port clock if not overwritten by the encoder. Needs to be
12373 	 * done afterwards in case the encoder adjusts the mode. */
12374 	if (!pipe_config->port_clock)
12375 		pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12376 			* pipe_config->pixel_multiplier;
12377 
12378 	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12379 	if (ret == -EDEADLK)
12380 		return ret;
12381 	if (ret < 0) {
12382 		DRM_DEBUG_KMS("CRTC fixup failed\n");
12383 		return ret;
12384 	}
12385 
12386 	if (ret == RETRY) {
12387 		if (WARN(!retry, "loop in pipe configuration computation\n"))
12388 			return -EINVAL;
12389 
12390 		DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12391 		retry = false;
12392 		goto encoder_retry;
12393 	}
12394 
12395 	/* Dithering seems to not pass-through bits correctly when it should, so
12396 	 * only enable it on 6bpc panels and when its not a compliance
12397 	 * test requesting 6bpc video pattern.
12398 	 */
12399 	pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
12400 		!pipe_config->dither_force_disable;
12401 	DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12402 		      base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12403 
12404 	return 0;
12405 }
12406 
12407 bool intel_fuzzy_clock_check(int clock1, int clock2)
12408 {
12409 	int diff;
12410 
12411 	if (clock1 == clock2)
12412 		return true;
12413 
12414 	if (!clock1 || !clock2)
12415 		return false;
12416 
12417 	diff = abs(clock1 - clock2);
12418 
12419 	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12420 		return true;
12421 
12422 	return false;
12423 }
12424 
12425 static bool
12426 intel_compare_m_n(unsigned int m, unsigned int n,
12427 		  unsigned int m2, unsigned int n2,
12428 		  bool exact)
12429 {
12430 	if (m == m2 && n == n2)
12431 		return true;
12432 
12433 	if (exact || !m || !n || !m2 || !n2)
12434 		return false;
12435 
12436 	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12437 
12438 	if (n > n2) {
12439 		while (n > n2) {
12440 			m2 <<= 1;
12441 			n2 <<= 1;
12442 		}
12443 	} else if (n < n2) {
12444 		while (n < n2) {
12445 			m <<= 1;
12446 			n <<= 1;
12447 		}
12448 	}
12449 
12450 	if (n != n2)
12451 		return false;
12452 
12453 	return intel_fuzzy_clock_check(m, m2);
12454 }
12455 
12456 static bool
12457 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12458 		       const struct intel_link_m_n *m2_n2,
12459 		       bool exact)
12460 {
12461 	return m_n->tu == m2_n2->tu &&
12462 		intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12463 				  m2_n2->gmch_m, m2_n2->gmch_n, exact) &&
12464 		intel_compare_m_n(m_n->link_m, m_n->link_n,
12465 				  m2_n2->link_m, m2_n2->link_n, exact);
12466 }
12467 
12468 static bool
12469 intel_compare_infoframe(const union hdmi_infoframe *a,
12470 			const union hdmi_infoframe *b)
12471 {
12472 	return memcmp(a, b, sizeof(*a)) == 0;
12473 }
12474 
12475 static void
12476 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv,
12477 			       bool fastset, const char *name,
12478 			       const union hdmi_infoframe *a,
12479 			       const union hdmi_infoframe *b)
12480 {
12481 	if (fastset) {
12482 		if ((drm_debug & DRM_UT_KMS) == 0)
12483 			return;
12484 
12485 		drm_dbg(DRM_UT_KMS, "fastset mismatch in %s infoframe", name);
12486 		drm_dbg(DRM_UT_KMS, "expected:");
12487 		hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a);
12488 		drm_dbg(DRM_UT_KMS, "found");
12489 		hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b);
12490 	} else {
12491 		drm_err("mismatch in %s infoframe", name);
12492 		drm_err("expected:");
12493 		hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a);
12494 		drm_err("found");
12495 		hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b);
12496 	}
12497 }
12498 
12499 static void __printf(3, 4)
12500 pipe_config_mismatch(bool fastset, const char *name, const char *format, ...)
12501 {
12502 	struct va_format vaf;
12503 	va_list args;
12504 
12505 	va_start(args, format);
12506 	vaf.fmt = format;
12507 	vaf.va = &args;
12508 
12509 	if (fastset)
12510 		drm_dbg(DRM_UT_KMS, "fastset mismatch in %s %pV", name, &vaf);
12511 	else
12512 		drm_err("mismatch in %s %pV", name, &vaf);
12513 
12514 	va_end(args);
12515 }
12516 
12517 static bool fastboot_enabled(struct drm_i915_private *dev_priv)
12518 {
12519 	if (i915_modparams.fastboot != -1)
12520 		return i915_modparams.fastboot;
12521 
12522 	/* Enable fastboot by default on Skylake and newer */
12523 	if (INTEL_GEN(dev_priv) >= 9)
12524 		return true;
12525 
12526 	/* Enable fastboot by default on VLV and CHV */
12527 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
12528 		return true;
12529 
12530 	/* Disabled by default on all others */
12531 	return false;
12532 }
12533 
12534 static bool
12535 intel_pipe_config_compare(const struct intel_crtc_state *current_config,
12536 			  const struct intel_crtc_state *pipe_config,
12537 			  bool fastset)
12538 {
12539 	struct drm_i915_private *dev_priv = to_i915(current_config->base.crtc->dev);
12540 	bool ret = true;
12541 	bool fixup_inherited = fastset &&
12542 		(current_config->base.mode.private_flags & I915_MODE_FLAG_INHERITED) &&
12543 		!(pipe_config->base.mode.private_flags & I915_MODE_FLAG_INHERITED);
12544 
12545 	if (fixup_inherited && !fastboot_enabled(dev_priv)) {
12546 		DRM_DEBUG_KMS("initial modeset and fastboot not set\n");
12547 		ret = false;
12548 	}
12549 
12550 #define PIPE_CONF_CHECK_X(name) do { \
12551 	if (current_config->name != pipe_config->name) { \
12552 		pipe_config_mismatch(fastset, __stringify(name), \
12553 				     "(expected 0x%08x, found 0x%08x)\n", \
12554 				     current_config->name, \
12555 				     pipe_config->name); \
12556 		ret = false; \
12557 	} \
12558 } while (0)
12559 
12560 #define PIPE_CONF_CHECK_I(name) do { \
12561 	if (current_config->name != pipe_config->name) { \
12562 		pipe_config_mismatch(fastset, __stringify(name), \
12563 				     "(expected %i, found %i)\n", \
12564 				     current_config->name, \
12565 				     pipe_config->name); \
12566 		ret = false; \
12567 	} \
12568 } while (0)
12569 
12570 #define PIPE_CONF_CHECK_BOOL(name) do { \
12571 	if (current_config->name != pipe_config->name) { \
12572 		pipe_config_mismatch(fastset, __stringify(name), \
12573 				     "(expected %s, found %s)\n", \
12574 				     yesno(current_config->name), \
12575 				     yesno(pipe_config->name)); \
12576 		ret = false; \
12577 	} \
12578 } while (0)
12579 
12580 /*
12581  * Checks state where we only read out the enabling, but not the entire
12582  * state itself (like full infoframes or ELD for audio). These states
12583  * require a full modeset on bootup to fix up.
12584  */
12585 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \
12586 	if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \
12587 		PIPE_CONF_CHECK_BOOL(name); \
12588 	} else { \
12589 		pipe_config_mismatch(fastset, __stringify(name), \
12590 				     "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)\n", \
12591 				     yesno(current_config->name), \
12592 				     yesno(pipe_config->name)); \
12593 		ret = false; \
12594 	} \
12595 } while (0)
12596 
12597 #define PIPE_CONF_CHECK_P(name) do { \
12598 	if (current_config->name != pipe_config->name) { \
12599 		pipe_config_mismatch(fastset, __stringify(name), \
12600 				     "(expected %p, found %p)\n", \
12601 				     current_config->name, \
12602 				     pipe_config->name); \
12603 		ret = false; \
12604 	} \
12605 } while (0)
12606 
12607 #define PIPE_CONF_CHECK_M_N(name) do { \
12608 	if (!intel_compare_link_m_n(&current_config->name, \
12609 				    &pipe_config->name,\
12610 				    !fastset)) { \
12611 		pipe_config_mismatch(fastset, __stringify(name), \
12612 				     "(expected tu %i gmch %i/%i link %i/%i, " \
12613 				     "found tu %i, gmch %i/%i link %i/%i)\n", \
12614 				     current_config->name.tu, \
12615 				     current_config->name.gmch_m, \
12616 				     current_config->name.gmch_n, \
12617 				     current_config->name.link_m, \
12618 				     current_config->name.link_n, \
12619 				     pipe_config->name.tu, \
12620 				     pipe_config->name.gmch_m, \
12621 				     pipe_config->name.gmch_n, \
12622 				     pipe_config->name.link_m, \
12623 				     pipe_config->name.link_n); \
12624 		ret = false; \
12625 	} \
12626 } while (0)
12627 
12628 /* This is required for BDW+ where there is only one set of registers for
12629  * switching between high and low RR.
12630  * This macro can be used whenever a comparison has to be made between one
12631  * hw state and multiple sw state variables.
12632  */
12633 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \
12634 	if (!intel_compare_link_m_n(&current_config->name, \
12635 				    &pipe_config->name, !fastset) && \
12636 	    !intel_compare_link_m_n(&current_config->alt_name, \
12637 				    &pipe_config->name, !fastset)) { \
12638 		pipe_config_mismatch(fastset, __stringify(name), \
12639 				     "(expected tu %i gmch %i/%i link %i/%i, " \
12640 				     "or tu %i gmch %i/%i link %i/%i, " \
12641 				     "found tu %i, gmch %i/%i link %i/%i)\n", \
12642 				     current_config->name.tu, \
12643 				     current_config->name.gmch_m, \
12644 				     current_config->name.gmch_n, \
12645 				     current_config->name.link_m, \
12646 				     current_config->name.link_n, \
12647 				     current_config->alt_name.tu, \
12648 				     current_config->alt_name.gmch_m, \
12649 				     current_config->alt_name.gmch_n, \
12650 				     current_config->alt_name.link_m, \
12651 				     current_config->alt_name.link_n, \
12652 				     pipe_config->name.tu, \
12653 				     pipe_config->name.gmch_m, \
12654 				     pipe_config->name.gmch_n, \
12655 				     pipe_config->name.link_m, \
12656 				     pipe_config->name.link_n); \
12657 		ret = false; \
12658 	} \
12659 } while (0)
12660 
12661 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
12662 	if ((current_config->name ^ pipe_config->name) & (mask)) { \
12663 		pipe_config_mismatch(fastset, __stringify(name), \
12664 				     "(%x) (expected %i, found %i)\n", \
12665 				     (mask), \
12666 				     current_config->name & (mask), \
12667 				     pipe_config->name & (mask)); \
12668 		ret = false; \
12669 	} \
12670 } while (0)
12671 
12672 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \
12673 	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12674 		pipe_config_mismatch(fastset, __stringify(name), \
12675 				     "(expected %i, found %i)\n", \
12676 				     current_config->name, \
12677 				     pipe_config->name); \
12678 		ret = false; \
12679 	} \
12680 } while (0)
12681 
12682 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \
12683 	if (!intel_compare_infoframe(&current_config->infoframes.name, \
12684 				     &pipe_config->infoframes.name)) { \
12685 		pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \
12686 					       &current_config->infoframes.name, \
12687 					       &pipe_config->infoframes.name); \
12688 		ret = false; \
12689 	} \
12690 } while (0)
12691 
12692 #define PIPE_CONF_QUIRK(quirk) \
12693 	((current_config->quirks | pipe_config->quirks) & (quirk))
12694 
12695 	PIPE_CONF_CHECK_I(cpu_transcoder);
12696 
12697 	PIPE_CONF_CHECK_BOOL(has_pch_encoder);
12698 	PIPE_CONF_CHECK_I(fdi_lanes);
12699 	PIPE_CONF_CHECK_M_N(fdi_m_n);
12700 
12701 	PIPE_CONF_CHECK_I(lane_count);
12702 	PIPE_CONF_CHECK_X(lane_lat_optim_mask);
12703 
12704 	if (INTEL_GEN(dev_priv) < 8) {
12705 		PIPE_CONF_CHECK_M_N(dp_m_n);
12706 
12707 		if (current_config->has_drrs)
12708 			PIPE_CONF_CHECK_M_N(dp_m2_n2);
12709 	} else
12710 		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12711 
12712 	PIPE_CONF_CHECK_X(output_types);
12713 
12714 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12715 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12716 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12717 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12718 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12719 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12720 
12721 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12722 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12723 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12724 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12725 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12726 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12727 
12728 	PIPE_CONF_CHECK_I(pixel_multiplier);
12729 	PIPE_CONF_CHECK_I(output_format);
12730 	PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
12731 	if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
12732 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
12733 		PIPE_CONF_CHECK_BOOL(limited_color_range);
12734 
12735 	PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
12736 	PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
12737 	PIPE_CONF_CHECK_BOOL(has_infoframe);
12738 
12739 	PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio);
12740 
12741 	PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12742 			      DRM_MODE_FLAG_INTERLACE);
12743 
12744 	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12745 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12746 				      DRM_MODE_FLAG_PHSYNC);
12747 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12748 				      DRM_MODE_FLAG_NHSYNC);
12749 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12750 				      DRM_MODE_FLAG_PVSYNC);
12751 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12752 				      DRM_MODE_FLAG_NVSYNC);
12753 	}
12754 
12755 	PIPE_CONF_CHECK_X(gmch_pfit.control);
12756 	/* pfit ratios are autocomputed by the hw on gen4+ */
12757 	if (INTEL_GEN(dev_priv) < 4)
12758 		PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12759 	PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12760 
12761 	/*
12762 	 * Changing the EDP transcoder input mux
12763 	 * (A_ONOFF vs. A_ON) requires a full modeset.
12764 	 */
12765 	PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru);
12766 
12767 	if (!fastset) {
12768 		PIPE_CONF_CHECK_I(pipe_src_w);
12769 		PIPE_CONF_CHECK_I(pipe_src_h);
12770 
12771 		PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
12772 		if (current_config->pch_pfit.enabled) {
12773 			PIPE_CONF_CHECK_X(pch_pfit.pos);
12774 			PIPE_CONF_CHECK_X(pch_pfit.size);
12775 		}
12776 
12777 		PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12778 		PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
12779 
12780 		PIPE_CONF_CHECK_X(gamma_mode);
12781 		if (IS_CHERRYVIEW(dev_priv))
12782 			PIPE_CONF_CHECK_X(cgm_mode);
12783 		else
12784 			PIPE_CONF_CHECK_X(csc_mode);
12785 		PIPE_CONF_CHECK_BOOL(gamma_enable);
12786 		PIPE_CONF_CHECK_BOOL(csc_enable);
12787 	}
12788 
12789 	PIPE_CONF_CHECK_BOOL(double_wide);
12790 
12791 	PIPE_CONF_CHECK_P(shared_dpll);
12792 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12793 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12794 	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12795 	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12796 	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12797 	PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12798 	PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12799 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12800 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12801 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
12802 	PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
12803 	PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
12804 	PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
12805 	PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
12806 	PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
12807 	PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
12808 	PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
12809 	PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
12810 	PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
12811 	PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
12812 	PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
12813 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl);
12814 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1);
12815 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl);
12816 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0);
12817 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1);
12818 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf);
12819 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock);
12820 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc);
12821 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias);
12822 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias);
12823 
12824 	PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12825 	PIPE_CONF_CHECK_X(dsi_pll.div);
12826 
12827 	if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
12828 		PIPE_CONF_CHECK_I(pipe_bpp);
12829 
12830 	PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12831 	PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12832 
12833 	PIPE_CONF_CHECK_I(min_voltage_level);
12834 
12835 	PIPE_CONF_CHECK_X(infoframes.enable);
12836 	PIPE_CONF_CHECK_X(infoframes.gcp);
12837 	PIPE_CONF_CHECK_INFOFRAME(avi);
12838 	PIPE_CONF_CHECK_INFOFRAME(spd);
12839 	PIPE_CONF_CHECK_INFOFRAME(hdmi);
12840 	PIPE_CONF_CHECK_INFOFRAME(drm);
12841 
12842 #undef PIPE_CONF_CHECK_X
12843 #undef PIPE_CONF_CHECK_I
12844 #undef PIPE_CONF_CHECK_BOOL
12845 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE
12846 #undef PIPE_CONF_CHECK_P
12847 #undef PIPE_CONF_CHECK_FLAGS
12848 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12849 #undef PIPE_CONF_QUIRK
12850 
12851 	return ret;
12852 }
12853 
12854 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12855 					   const struct intel_crtc_state *pipe_config)
12856 {
12857 	if (pipe_config->has_pch_encoder) {
12858 		int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12859 							    &pipe_config->fdi_m_n);
12860 		int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12861 
12862 		/*
12863 		 * FDI already provided one idea for the dotclock.
12864 		 * Yell if the encoder disagrees.
12865 		 */
12866 		WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12867 		     "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12868 		     fdi_dotclock, dotclock);
12869 	}
12870 }
12871 
12872 static void verify_wm_state(struct intel_crtc *crtc,
12873 			    struct intel_crtc_state *new_crtc_state)
12874 {
12875 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12876 	struct skl_hw_state {
12877 		struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
12878 		struct skl_ddb_entry ddb_uv[I915_MAX_PLANES];
12879 		struct skl_ddb_allocation ddb;
12880 		struct skl_pipe_wm wm;
12881 	} *hw;
12882 	struct skl_ddb_allocation *sw_ddb;
12883 	struct skl_pipe_wm *sw_wm;
12884 	struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
12885 	const enum pipe pipe = crtc->pipe;
12886 	int plane, level, max_level = ilk_wm_max_level(dev_priv);
12887 
12888 	if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->base.active)
12889 		return;
12890 
12891 	hw = kzalloc(sizeof(*hw), GFP_KERNEL);
12892 	if (!hw)
12893 		return;
12894 
12895 	skl_pipe_wm_get_hw_state(crtc, &hw->wm);
12896 	sw_wm = &new_crtc_state->wm.skl.optimal;
12897 
12898 	skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv);
12899 
12900 	skl_ddb_get_hw_state(dev_priv, &hw->ddb);
12901 	sw_ddb = &dev_priv->wm.skl_hw.ddb;
12902 
12903 	if (INTEL_GEN(dev_priv) >= 11 &&
12904 	    hw->ddb.enabled_slices != sw_ddb->enabled_slices)
12905 		DRM_ERROR("mismatch in DBUF Slices (expected %u, got %u)\n",
12906 			  sw_ddb->enabled_slices,
12907 			  hw->ddb.enabled_slices);
12908 
12909 	/* planes */
12910 	for_each_universal_plane(dev_priv, pipe, plane) {
12911 		struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
12912 
12913 		hw_plane_wm = &hw->wm.planes[plane];
12914 		sw_plane_wm = &sw_wm->planes[plane];
12915 
12916 		/* Watermarks */
12917 		for (level = 0; level <= max_level; level++) {
12918 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
12919 						&sw_plane_wm->wm[level]))
12920 				continue;
12921 
12922 			DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12923 				  pipe_name(pipe), plane + 1, level,
12924 				  sw_plane_wm->wm[level].plane_en,
12925 				  sw_plane_wm->wm[level].plane_res_b,
12926 				  sw_plane_wm->wm[level].plane_res_l,
12927 				  hw_plane_wm->wm[level].plane_en,
12928 				  hw_plane_wm->wm[level].plane_res_b,
12929 				  hw_plane_wm->wm[level].plane_res_l);
12930 		}
12931 
12932 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
12933 					 &sw_plane_wm->trans_wm)) {
12934 			DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12935 				  pipe_name(pipe), plane + 1,
12936 				  sw_plane_wm->trans_wm.plane_en,
12937 				  sw_plane_wm->trans_wm.plane_res_b,
12938 				  sw_plane_wm->trans_wm.plane_res_l,
12939 				  hw_plane_wm->trans_wm.plane_en,
12940 				  hw_plane_wm->trans_wm.plane_res_b,
12941 				  hw_plane_wm->trans_wm.plane_res_l);
12942 		}
12943 
12944 		/* DDB */
12945 		hw_ddb_entry = &hw->ddb_y[plane];
12946 		sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane];
12947 
12948 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
12949 			DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
12950 				  pipe_name(pipe), plane + 1,
12951 				  sw_ddb_entry->start, sw_ddb_entry->end,
12952 				  hw_ddb_entry->start, hw_ddb_entry->end);
12953 		}
12954 	}
12955 
12956 	/*
12957 	 * cursor
12958 	 * If the cursor plane isn't active, we may not have updated it's ddb
12959 	 * allocation. In that case since the ddb allocation will be updated
12960 	 * once the plane becomes visible, we can skip this check
12961 	 */
12962 	if (1) {
12963 		struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
12964 
12965 		hw_plane_wm = &hw->wm.planes[PLANE_CURSOR];
12966 		sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
12967 
12968 		/* Watermarks */
12969 		for (level = 0; level <= max_level; level++) {
12970 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
12971 						&sw_plane_wm->wm[level]))
12972 				continue;
12973 
12974 			DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12975 				  pipe_name(pipe), level,
12976 				  sw_plane_wm->wm[level].plane_en,
12977 				  sw_plane_wm->wm[level].plane_res_b,
12978 				  sw_plane_wm->wm[level].plane_res_l,
12979 				  hw_plane_wm->wm[level].plane_en,
12980 				  hw_plane_wm->wm[level].plane_res_b,
12981 				  hw_plane_wm->wm[level].plane_res_l);
12982 		}
12983 
12984 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
12985 					 &sw_plane_wm->trans_wm)) {
12986 			DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12987 				  pipe_name(pipe),
12988 				  sw_plane_wm->trans_wm.plane_en,
12989 				  sw_plane_wm->trans_wm.plane_res_b,
12990 				  sw_plane_wm->trans_wm.plane_res_l,
12991 				  hw_plane_wm->trans_wm.plane_en,
12992 				  hw_plane_wm->trans_wm.plane_res_b,
12993 				  hw_plane_wm->trans_wm.plane_res_l);
12994 		}
12995 
12996 		/* DDB */
12997 		hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR];
12998 		sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR];
12999 
13000 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13001 			DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13002 				  pipe_name(pipe),
13003 				  sw_ddb_entry->start, sw_ddb_entry->end,
13004 				  hw_ddb_entry->start, hw_ddb_entry->end);
13005 		}
13006 	}
13007 
13008 	kfree(hw);
13009 }
13010 
13011 static void
13012 verify_connector_state(struct intel_atomic_state *state,
13013 		       struct intel_crtc *crtc)
13014 {
13015 	struct drm_connector *connector;
13016 	struct drm_connector_state *new_conn_state;
13017 	int i;
13018 
13019 	for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) {
13020 		struct drm_encoder *encoder = connector->encoder;
13021 		struct intel_crtc_state *crtc_state = NULL;
13022 
13023 		if (new_conn_state->crtc != &crtc->base)
13024 			continue;
13025 
13026 		if (crtc)
13027 			crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
13028 
13029 		intel_connector_verify_state(crtc_state, new_conn_state);
13030 
13031 		I915_STATE_WARN(new_conn_state->best_encoder != encoder,
13032 		     "connector's atomic encoder doesn't match legacy encoder\n");
13033 	}
13034 }
13035 
13036 static void
13037 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state)
13038 {
13039 	struct intel_encoder *encoder;
13040 	struct drm_connector *connector;
13041 	struct drm_connector_state *old_conn_state, *new_conn_state;
13042 	int i;
13043 
13044 	for_each_intel_encoder(&dev_priv->drm, encoder) {
13045 		bool enabled = false, found = false;
13046 		enum pipe pipe;
13047 
13048 		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13049 			      encoder->base.base.id,
13050 			      encoder->base.name);
13051 
13052 		for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state,
13053 						   new_conn_state, i) {
13054 			if (old_conn_state->best_encoder == &encoder->base)
13055 				found = true;
13056 
13057 			if (new_conn_state->best_encoder != &encoder->base)
13058 				continue;
13059 			found = enabled = true;
13060 
13061 			I915_STATE_WARN(new_conn_state->crtc !=
13062 					encoder->base.crtc,
13063 			     "connector's crtc doesn't match encoder crtc\n");
13064 		}
13065 
13066 		if (!found)
13067 			continue;
13068 
13069 		I915_STATE_WARN(!!encoder->base.crtc != enabled,
13070 		     "encoder's enabled state mismatch "
13071 		     "(expected %i, found %i)\n",
13072 		     !!encoder->base.crtc, enabled);
13073 
13074 		if (!encoder->base.crtc) {
13075 			bool active;
13076 
13077 			active = encoder->get_hw_state(encoder, &pipe);
13078 			I915_STATE_WARN(active,
13079 			     "encoder detached but still enabled on pipe %c.\n",
13080 			     pipe_name(pipe));
13081 		}
13082 	}
13083 }
13084 
13085 static void
13086 verify_crtc_state(struct intel_crtc *crtc,
13087 		  struct intel_crtc_state *old_crtc_state,
13088 		  struct intel_crtc_state *new_crtc_state)
13089 {
13090 	struct drm_device *dev = crtc->base.dev;
13091 	struct drm_i915_private *dev_priv = to_i915(dev);
13092 	struct intel_encoder *encoder;
13093 	struct intel_crtc_state *pipe_config;
13094 	struct drm_atomic_state *state;
13095 	bool active;
13096 
13097 	state = old_crtc_state->base.state;
13098 	__drm_atomic_helper_crtc_destroy_state(&old_crtc_state->base);
13099 	pipe_config = old_crtc_state;
13100 	memset(pipe_config, 0, sizeof(*pipe_config));
13101 	pipe_config->base.crtc = &crtc->base;
13102 	pipe_config->base.state = state;
13103 
13104 	DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.base.id, crtc->base.name);
13105 
13106 	active = dev_priv->display.get_pipe_config(crtc, pipe_config);
13107 
13108 	/* we keep both pipes enabled on 830 */
13109 	if (IS_I830(dev_priv))
13110 		active = new_crtc_state->base.active;
13111 
13112 	I915_STATE_WARN(new_crtc_state->base.active != active,
13113 	     "crtc active state doesn't match with hw state "
13114 	     "(expected %i, found %i)\n", new_crtc_state->base.active, active);
13115 
13116 	I915_STATE_WARN(crtc->active != new_crtc_state->base.active,
13117 	     "transitional active state does not match atomic hw state "
13118 	     "(expected %i, found %i)\n", new_crtc_state->base.active, crtc->active);
13119 
13120 	for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13121 		enum pipe pipe;
13122 
13123 		active = encoder->get_hw_state(encoder, &pipe);
13124 		I915_STATE_WARN(active != new_crtc_state->base.active,
13125 			"[ENCODER:%i] active %i with crtc active %i\n",
13126 			encoder->base.base.id, active, new_crtc_state->base.active);
13127 
13128 		I915_STATE_WARN(active && crtc->pipe != pipe,
13129 				"Encoder connected to wrong pipe %c\n",
13130 				pipe_name(pipe));
13131 
13132 		if (active)
13133 			encoder->get_config(encoder, pipe_config);
13134 	}
13135 
13136 	intel_crtc_compute_pixel_rate(pipe_config);
13137 
13138 	if (!new_crtc_state->base.active)
13139 		return;
13140 
13141 	intel_pipe_config_sanity_check(dev_priv, pipe_config);
13142 
13143 	if (!intel_pipe_config_compare(new_crtc_state,
13144 				       pipe_config, false)) {
13145 		I915_STATE_WARN(1, "pipe state doesn't match!\n");
13146 		intel_dump_pipe_config(pipe_config, NULL, "[hw state]");
13147 		intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]");
13148 	}
13149 }
13150 
13151 static void
13152 intel_verify_planes(struct intel_atomic_state *state)
13153 {
13154 	struct intel_plane *plane;
13155 	const struct intel_plane_state *plane_state;
13156 	int i;
13157 
13158 	for_each_new_intel_plane_in_state(state, plane,
13159 					  plane_state, i)
13160 		assert_plane(plane, plane_state->slave ||
13161 			     plane_state->base.visible);
13162 }
13163 
13164 static void
13165 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13166 			 struct intel_shared_dpll *pll,
13167 			 struct intel_crtc *crtc,
13168 			 struct intel_crtc_state *new_crtc_state)
13169 {
13170 	struct intel_dpll_hw_state dpll_hw_state;
13171 	unsigned int crtc_mask;
13172 	bool active;
13173 
13174 	memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13175 
13176 	DRM_DEBUG_KMS("%s\n", pll->info->name);
13177 
13178 	active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state);
13179 
13180 	if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) {
13181 		I915_STATE_WARN(!pll->on && pll->active_mask,
13182 		     "pll in active use but not on in sw tracking\n");
13183 		I915_STATE_WARN(pll->on && !pll->active_mask,
13184 		     "pll is on but not used by any active crtc\n");
13185 		I915_STATE_WARN(pll->on != active,
13186 		     "pll on state mismatch (expected %i, found %i)\n",
13187 		     pll->on, active);
13188 	}
13189 
13190 	if (!crtc) {
13191 		I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
13192 				"more active pll users than references: %x vs %x\n",
13193 				pll->active_mask, pll->state.crtc_mask);
13194 
13195 		return;
13196 	}
13197 
13198 	crtc_mask = drm_crtc_mask(&crtc->base);
13199 
13200 	if (new_crtc_state->base.active)
13201 		I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13202 				"pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13203 				pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask);
13204 	else
13205 		I915_STATE_WARN(pll->active_mask & crtc_mask,
13206 				"pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13207 				pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask);
13208 
13209 	I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
13210 			"pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13211 			crtc_mask, pll->state.crtc_mask);
13212 
13213 	I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
13214 					  &dpll_hw_state,
13215 					  sizeof(dpll_hw_state)),
13216 			"pll hw state mismatch\n");
13217 }
13218 
13219 static void
13220 verify_shared_dpll_state(struct intel_crtc *crtc,
13221 			 struct intel_crtc_state *old_crtc_state,
13222 			 struct intel_crtc_state *new_crtc_state)
13223 {
13224 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13225 
13226 	if (new_crtc_state->shared_dpll)
13227 		verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state);
13228 
13229 	if (old_crtc_state->shared_dpll &&
13230 	    old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) {
13231 		unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
13232 		struct intel_shared_dpll *pll = old_crtc_state->shared_dpll;
13233 
13234 		I915_STATE_WARN(pll->active_mask & crtc_mask,
13235 				"pll active mismatch (didn't expect pipe %c in active mask)\n",
13236 				pipe_name(drm_crtc_index(&crtc->base)));
13237 		I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
13238 				"pll enabled crtcs mismatch (found %x in enabled mask)\n",
13239 				pipe_name(drm_crtc_index(&crtc->base)));
13240 	}
13241 }
13242 
13243 static void
13244 intel_modeset_verify_crtc(struct intel_crtc *crtc,
13245 			  struct intel_atomic_state *state,
13246 			  struct intel_crtc_state *old_crtc_state,
13247 			  struct intel_crtc_state *new_crtc_state)
13248 {
13249 	if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe)
13250 		return;
13251 
13252 	verify_wm_state(crtc, new_crtc_state);
13253 	verify_connector_state(state, crtc);
13254 	verify_crtc_state(crtc, old_crtc_state, new_crtc_state);
13255 	verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state);
13256 }
13257 
13258 static void
13259 verify_disabled_dpll_state(struct drm_i915_private *dev_priv)
13260 {
13261 	int i;
13262 
13263 	for (i = 0; i < dev_priv->num_shared_dpll; i++)
13264 		verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13265 }
13266 
13267 static void
13268 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv,
13269 			      struct intel_atomic_state *state)
13270 {
13271 	verify_encoder_state(dev_priv, state);
13272 	verify_connector_state(state, NULL);
13273 	verify_disabled_dpll_state(dev_priv);
13274 }
13275 
13276 static void update_scanline_offset(const struct intel_crtc_state *crtc_state)
13277 {
13278 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
13279 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13280 
13281 	/*
13282 	 * The scanline counter increments at the leading edge of hsync.
13283 	 *
13284 	 * On most platforms it starts counting from vtotal-1 on the
13285 	 * first active line. That means the scanline counter value is
13286 	 * always one less than what we would expect. Ie. just after
13287 	 * start of vblank, which also occurs at start of hsync (on the
13288 	 * last active line), the scanline counter will read vblank_start-1.
13289 	 *
13290 	 * On gen2 the scanline counter starts counting from 1 instead
13291 	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13292 	 * to keep the value positive), instead of adding one.
13293 	 *
13294 	 * On HSW+ the behaviour of the scanline counter depends on the output
13295 	 * type. For DP ports it behaves like most other platforms, but on HDMI
13296 	 * there's an extra 1 line difference. So we need to add two instead of
13297 	 * one to the value.
13298 	 *
13299 	 * On VLV/CHV DSI the scanline counter would appear to increment
13300 	 * approx. 1/3 of a scanline before start of vblank. Unfortunately
13301 	 * that means we can't tell whether we're in vblank or not while
13302 	 * we're on that particular line. We must still set scanline_offset
13303 	 * to 1 so that the vblank timestamps come out correct when we query
13304 	 * the scanline counter from within the vblank interrupt handler.
13305 	 * However if queried just before the start of vblank we'll get an
13306 	 * answer that's slightly in the future.
13307 	 */
13308 	if (IS_GEN(dev_priv, 2)) {
13309 		const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode;
13310 		int vtotal;
13311 
13312 		vtotal = adjusted_mode->crtc_vtotal;
13313 		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13314 			vtotal /= 2;
13315 
13316 		crtc->scanline_offset = vtotal - 1;
13317 	} else if (HAS_DDI(dev_priv) &&
13318 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
13319 		crtc->scanline_offset = 2;
13320 	} else
13321 		crtc->scanline_offset = 1;
13322 }
13323 
13324 static void intel_modeset_clear_plls(struct intel_atomic_state *state)
13325 {
13326 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
13327 	struct intel_crtc_state *new_crtc_state;
13328 	struct intel_crtc *crtc;
13329 	int i;
13330 
13331 	if (!dev_priv->display.crtc_compute_clock)
13332 		return;
13333 
13334 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
13335 		if (!needs_modeset(new_crtc_state))
13336 			continue;
13337 
13338 		intel_release_shared_dplls(state, crtc);
13339 	}
13340 }
13341 
13342 /*
13343  * This implements the workaround described in the "notes" section of the mode
13344  * set sequence documentation. When going from no pipes or single pipe to
13345  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13346  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13347  */
13348 static int haswell_mode_set_planes_workaround(struct intel_atomic_state *state)
13349 {
13350 	struct intel_crtc_state *crtc_state;
13351 	struct intel_crtc *crtc;
13352 	struct intel_crtc_state *first_crtc_state = NULL;
13353 	struct intel_crtc_state *other_crtc_state = NULL;
13354 	enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13355 	int i;
13356 
13357 	/* look at all crtc's that are going to be enabled in during modeset */
13358 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
13359 		if (!crtc_state->base.active ||
13360 		    !needs_modeset(crtc_state))
13361 			continue;
13362 
13363 		if (first_crtc_state) {
13364 			other_crtc_state = crtc_state;
13365 			break;
13366 		} else {
13367 			first_crtc_state = crtc_state;
13368 			first_pipe = crtc->pipe;
13369 		}
13370 	}
13371 
13372 	/* No workaround needed? */
13373 	if (!first_crtc_state)
13374 		return 0;
13375 
13376 	/* w/a possibly needed, check how many crtc's are already enabled. */
13377 	for_each_intel_crtc(state->base.dev, crtc) {
13378 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
13379 		if (IS_ERR(crtc_state))
13380 			return PTR_ERR(crtc_state);
13381 
13382 		crtc_state->hsw_workaround_pipe = INVALID_PIPE;
13383 
13384 		if (!crtc_state->base.active ||
13385 		    needs_modeset(crtc_state))
13386 			continue;
13387 
13388 		/* 2 or more enabled crtcs means no need for w/a */
13389 		if (enabled_pipe != INVALID_PIPE)
13390 			return 0;
13391 
13392 		enabled_pipe = crtc->pipe;
13393 	}
13394 
13395 	if (enabled_pipe != INVALID_PIPE)
13396 		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13397 	else if (other_crtc_state)
13398 		other_crtc_state->hsw_workaround_pipe = first_pipe;
13399 
13400 	return 0;
13401 }
13402 
13403 static int intel_lock_all_pipes(struct intel_atomic_state *state)
13404 {
13405 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
13406 	struct intel_crtc *crtc;
13407 
13408 	/* Add all pipes to the state */
13409 	for_each_intel_crtc(&dev_priv->drm, crtc) {
13410 		struct intel_crtc_state *crtc_state;
13411 
13412 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
13413 		if (IS_ERR(crtc_state))
13414 			return PTR_ERR(crtc_state);
13415 	}
13416 
13417 	return 0;
13418 }
13419 
13420 static int intel_modeset_all_pipes(struct intel_atomic_state *state)
13421 {
13422 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
13423 	struct intel_crtc *crtc;
13424 
13425 	/*
13426 	 * Add all pipes to the state, and force
13427 	 * a modeset on all the active ones.
13428 	 */
13429 	for_each_intel_crtc(&dev_priv->drm, crtc) {
13430 		struct intel_crtc_state *crtc_state;
13431 		int ret;
13432 
13433 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
13434 		if (IS_ERR(crtc_state))
13435 			return PTR_ERR(crtc_state);
13436 
13437 		if (!crtc_state->base.active || needs_modeset(crtc_state))
13438 			continue;
13439 
13440 		crtc_state->base.mode_changed = true;
13441 
13442 		ret = drm_atomic_add_affected_connectors(&state->base,
13443 							 &crtc->base);
13444 		if (ret)
13445 			return ret;
13446 
13447 		ret = drm_atomic_add_affected_planes(&state->base,
13448 						     &crtc->base);
13449 		if (ret)
13450 			return ret;
13451 	}
13452 
13453 	return 0;
13454 }
13455 
13456 static int intel_modeset_checks(struct intel_atomic_state *state)
13457 {
13458 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
13459 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
13460 	struct intel_crtc *crtc;
13461 	int ret = 0, i;
13462 
13463 	if (!check_digital_port_conflicts(state)) {
13464 		DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13465 		return -EINVAL;
13466 	}
13467 
13468 	/* keep the current setting */
13469 	if (!state->cdclk.force_min_cdclk_changed)
13470 		state->cdclk.force_min_cdclk = dev_priv->cdclk.force_min_cdclk;
13471 
13472 	state->modeset = true;
13473 	state->active_crtcs = dev_priv->active_crtcs;
13474 	state->cdclk.logical = dev_priv->cdclk.logical;
13475 	state->cdclk.actual = dev_priv->cdclk.actual;
13476 	state->cdclk.pipe = INVALID_PIPE;
13477 
13478 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
13479 					    new_crtc_state, i) {
13480 		if (new_crtc_state->base.active)
13481 			state->active_crtcs |= 1 << i;
13482 		else
13483 			state->active_crtcs &= ~(1 << i);
13484 
13485 		if (old_crtc_state->base.active != new_crtc_state->base.active)
13486 			state->active_pipe_changes |= drm_crtc_mask(&crtc->base);
13487 	}
13488 
13489 	/*
13490 	 * See if the config requires any additional preparation, e.g.
13491 	 * to adjust global state with pipes off.  We need to do this
13492 	 * here so we can get the modeset_pipe updated config for the new
13493 	 * mode set on this crtc.  For other crtcs we need to use the
13494 	 * adjusted_mode bits in the crtc directly.
13495 	 */
13496 	if (dev_priv->display.modeset_calc_cdclk) {
13497 		enum pipe pipe;
13498 
13499 		ret = dev_priv->display.modeset_calc_cdclk(state);
13500 		if (ret < 0)
13501 			return ret;
13502 
13503 		/*
13504 		 * Writes to dev_priv->cdclk.logical must protected by
13505 		 * holding all the crtc locks, even if we don't end up
13506 		 * touching the hardware
13507 		 */
13508 		if (intel_cdclk_changed(&dev_priv->cdclk.logical,
13509 					&state->cdclk.logical)) {
13510 			ret = intel_lock_all_pipes(state);
13511 			if (ret < 0)
13512 				return ret;
13513 		}
13514 
13515 		if (is_power_of_2(state->active_crtcs)) {
13516 			struct intel_crtc *crtc;
13517 			struct intel_crtc_state *crtc_state;
13518 
13519 			pipe = ilog2(state->active_crtcs);
13520 			crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
13521 			crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
13522 			if (crtc_state && needs_modeset(crtc_state))
13523 				pipe = INVALID_PIPE;
13524 		} else {
13525 			pipe = INVALID_PIPE;
13526 		}
13527 
13528 		/* All pipes must be switched off while we change the cdclk. */
13529 		if (pipe != INVALID_PIPE &&
13530 		    intel_cdclk_needs_cd2x_update(dev_priv,
13531 						  &dev_priv->cdclk.actual,
13532 						  &state->cdclk.actual)) {
13533 			ret = intel_lock_all_pipes(state);
13534 			if (ret < 0)
13535 				return ret;
13536 
13537 			state->cdclk.pipe = pipe;
13538 		} else if (intel_cdclk_needs_modeset(&dev_priv->cdclk.actual,
13539 						     &state->cdclk.actual)) {
13540 			ret = intel_modeset_all_pipes(state);
13541 			if (ret < 0)
13542 				return ret;
13543 
13544 			state->cdclk.pipe = INVALID_PIPE;
13545 		}
13546 
13547 		DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n",
13548 			      state->cdclk.logical.cdclk,
13549 			      state->cdclk.actual.cdclk);
13550 		DRM_DEBUG_KMS("New voltage level calculated to be logical %u, actual %u\n",
13551 			      state->cdclk.logical.voltage_level,
13552 			      state->cdclk.actual.voltage_level);
13553 	}
13554 
13555 	intel_modeset_clear_plls(state);
13556 
13557 	if (IS_HASWELL(dev_priv))
13558 		return haswell_mode_set_planes_workaround(state);
13559 
13560 	return 0;
13561 }
13562 
13563 /*
13564  * Handle calculation of various watermark data at the end of the atomic check
13565  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13566  * handlers to ensure that all derived state has been updated.
13567  */
13568 static int calc_watermark_data(struct intel_atomic_state *state)
13569 {
13570 	struct drm_device *dev = state->base.dev;
13571 	struct drm_i915_private *dev_priv = to_i915(dev);
13572 
13573 	/* Is there platform-specific watermark information to calculate? */
13574 	if (dev_priv->display.compute_global_watermarks)
13575 		return dev_priv->display.compute_global_watermarks(state);
13576 
13577 	return 0;
13578 }
13579 
13580 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state,
13581 				     struct intel_crtc_state *new_crtc_state)
13582 {
13583 	if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true))
13584 		return;
13585 
13586 	new_crtc_state->base.mode_changed = false;
13587 	new_crtc_state->update_pipe = true;
13588 
13589 	/*
13590 	 * If we're not doing the full modeset we want to
13591 	 * keep the current M/N values as they may be
13592 	 * sufficiently different to the computed values
13593 	 * to cause problems.
13594 	 *
13595 	 * FIXME: should really copy more fuzzy state here
13596 	 */
13597 	new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n;
13598 	new_crtc_state->dp_m_n = old_crtc_state->dp_m_n;
13599 	new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2;
13600 	new_crtc_state->has_drrs = old_crtc_state->has_drrs;
13601 }
13602 
13603 /**
13604  * intel_atomic_check - validate state object
13605  * @dev: drm device
13606  * @_state: state to validate
13607  */
13608 static int intel_atomic_check(struct drm_device *dev,
13609 			      struct drm_atomic_state *_state)
13610 {
13611 	struct drm_i915_private *dev_priv = to_i915(dev);
13612 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
13613 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
13614 	struct intel_crtc *crtc;
13615 	int ret, i;
13616 	bool any_ms = state->cdclk.force_min_cdclk_changed;
13617 
13618 	/* Catch I915_MODE_FLAG_INHERITED */
13619 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
13620 					    new_crtc_state, i) {
13621 		if (new_crtc_state->base.mode.private_flags !=
13622 		    old_crtc_state->base.mode.private_flags)
13623 			new_crtc_state->base.mode_changed = true;
13624 	}
13625 
13626 	ret = drm_atomic_helper_check_modeset(dev, &state->base);
13627 	if (ret)
13628 		goto fail;
13629 
13630 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
13631 					    new_crtc_state, i) {
13632 		if (!needs_modeset(new_crtc_state))
13633 			continue;
13634 
13635 		if (!new_crtc_state->base.enable) {
13636 			any_ms = true;
13637 			continue;
13638 		}
13639 
13640 		ret = intel_modeset_pipe_config(new_crtc_state);
13641 		if (ret)
13642 			goto fail;
13643 
13644 		intel_crtc_check_fastset(old_crtc_state, new_crtc_state);
13645 
13646 		if (needs_modeset(new_crtc_state))
13647 			any_ms = true;
13648 	}
13649 
13650 	ret = drm_dp_mst_atomic_check(&state->base);
13651 	if (ret)
13652 		goto fail;
13653 
13654 	if (any_ms) {
13655 		ret = intel_modeset_checks(state);
13656 		if (ret)
13657 			goto fail;
13658 	} else {
13659 		state->cdclk.logical = dev_priv->cdclk.logical;
13660 	}
13661 
13662 	ret = icl_add_linked_planes(state);
13663 	if (ret)
13664 		goto fail;
13665 
13666 	ret = drm_atomic_helper_check_planes(dev, &state->base);
13667 	if (ret)
13668 		goto fail;
13669 
13670 	intel_fbc_choose_crtc(dev_priv, state);
13671 	ret = calc_watermark_data(state);
13672 	if (ret)
13673 		goto fail;
13674 
13675 	ret = intel_bw_atomic_check(state);
13676 	if (ret)
13677 		goto fail;
13678 
13679 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
13680 					    new_crtc_state, i) {
13681 		if (!needs_modeset(new_crtc_state) &&
13682 		    !new_crtc_state->update_pipe)
13683 			continue;
13684 
13685 		intel_dump_pipe_config(new_crtc_state, state,
13686 				       needs_modeset(new_crtc_state) ?
13687 				       "[modeset]" : "[fastset]");
13688 	}
13689 
13690 	return 0;
13691 
13692  fail:
13693 	if (ret == -EDEADLK)
13694 		return ret;
13695 
13696 	/*
13697 	 * FIXME would probably be nice to know which crtc specifically
13698 	 * caused the failure, in cases where we can pinpoint it.
13699 	 */
13700 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
13701 					    new_crtc_state, i)
13702 		intel_dump_pipe_config(new_crtc_state, state, "[failed]");
13703 
13704 	return ret;
13705 }
13706 
13707 static int intel_atomic_prepare_commit(struct intel_atomic_state *state)
13708 {
13709 	return drm_atomic_helper_prepare_planes(state->base.dev,
13710 						&state->base);
13711 }
13712 
13713 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
13714 {
13715 	struct drm_device *dev = crtc->base.dev;
13716 	struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
13717 
13718 	if (!vblank->max_vblank_count)
13719 		return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
13720 
13721 	return crtc->base.funcs->get_vblank_counter(&crtc->base);
13722 }
13723 
13724 static void intel_update_crtc(struct intel_crtc *crtc,
13725 			      struct intel_atomic_state *state,
13726 			      struct intel_crtc_state *old_crtc_state,
13727 			      struct intel_crtc_state *new_crtc_state)
13728 {
13729 	struct drm_device *dev = state->base.dev;
13730 	struct drm_i915_private *dev_priv = to_i915(dev);
13731 	bool modeset = needs_modeset(new_crtc_state);
13732 	struct intel_plane_state *new_plane_state =
13733 		intel_atomic_get_new_plane_state(state,
13734 						 to_intel_plane(crtc->base.primary));
13735 
13736 	if (modeset) {
13737 		update_scanline_offset(new_crtc_state);
13738 		dev_priv->display.crtc_enable(new_crtc_state, state);
13739 
13740 		/* vblanks work again, re-enable pipe CRC. */
13741 		intel_crtc_enable_pipe_crc(crtc);
13742 	} else {
13743 		intel_pre_plane_update(old_crtc_state, new_crtc_state);
13744 
13745 		if (new_crtc_state->update_pipe)
13746 			intel_encoders_update_pipe(crtc, new_crtc_state, state);
13747 	}
13748 
13749 	if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
13750 		intel_fbc_disable(crtc);
13751 	else if (new_plane_state)
13752 		intel_fbc_enable(crtc, new_crtc_state, new_plane_state);
13753 
13754 	intel_begin_crtc_commit(state, crtc);
13755 
13756 	if (INTEL_GEN(dev_priv) >= 9)
13757 		skl_update_planes_on_crtc(state, crtc);
13758 	else
13759 		i9xx_update_planes_on_crtc(state, crtc);
13760 
13761 	intel_finish_crtc_commit(state, crtc);
13762 }
13763 
13764 static void intel_update_crtcs(struct intel_atomic_state *state)
13765 {
13766 	struct intel_crtc *crtc;
13767 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
13768 	int i;
13769 
13770 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
13771 		if (!new_crtc_state->base.active)
13772 			continue;
13773 
13774 		intel_update_crtc(crtc, state, old_crtc_state,
13775 				  new_crtc_state);
13776 	}
13777 }
13778 
13779 static void skl_update_crtcs(struct intel_atomic_state *state)
13780 {
13781 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
13782 	struct intel_crtc *crtc;
13783 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
13784 	unsigned int updated = 0;
13785 	bool progress;
13786 	enum pipe pipe;
13787 	int i;
13788 	u8 hw_enabled_slices = dev_priv->wm.skl_hw.ddb.enabled_slices;
13789 	u8 required_slices = state->wm_results.ddb.enabled_slices;
13790 	struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
13791 
13792 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i)
13793 		/* ignore allocations for crtc's that have been turned off. */
13794 		if (new_crtc_state->base.active)
13795 			entries[i] = old_crtc_state->wm.skl.ddb;
13796 
13797 	/* If 2nd DBuf slice required, enable it here */
13798 	if (INTEL_GEN(dev_priv) >= 11 && required_slices > hw_enabled_slices)
13799 		icl_dbuf_slices_update(dev_priv, required_slices);
13800 
13801 	/*
13802 	 * Whenever the number of active pipes changes, we need to make sure we
13803 	 * update the pipes in the right order so that their ddb allocations
13804 	 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
13805 	 * cause pipe underruns and other bad stuff.
13806 	 */
13807 	do {
13808 		progress = false;
13809 
13810 		for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
13811 			bool vbl_wait = false;
13812 			unsigned int cmask = drm_crtc_mask(&crtc->base);
13813 
13814 			pipe = crtc->pipe;
13815 
13816 			if (updated & cmask || !new_crtc_state->base.active)
13817 				continue;
13818 
13819 			if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
13820 							entries,
13821 							INTEL_INFO(dev_priv)->num_pipes, i))
13822 				continue;
13823 
13824 			updated |= cmask;
13825 			entries[i] = new_crtc_state->wm.skl.ddb;
13826 
13827 			/*
13828 			 * If this is an already active pipe, it's DDB changed,
13829 			 * and this isn't the last pipe that needs updating
13830 			 * then we need to wait for a vblank to pass for the
13831 			 * new ddb allocation to take effect.
13832 			 */
13833 			if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb,
13834 						 &old_crtc_state->wm.skl.ddb) &&
13835 			    !new_crtc_state->base.active_changed &&
13836 			    state->wm_results.dirty_pipes != updated)
13837 				vbl_wait = true;
13838 
13839 			intel_update_crtc(crtc, state, old_crtc_state,
13840 					  new_crtc_state);
13841 
13842 			if (vbl_wait)
13843 				intel_wait_for_vblank(dev_priv, pipe);
13844 
13845 			progress = true;
13846 		}
13847 	} while (progress);
13848 
13849 	/* If 2nd DBuf slice is no more required disable it */
13850 	if (INTEL_GEN(dev_priv) >= 11 && required_slices < hw_enabled_slices)
13851 		icl_dbuf_slices_update(dev_priv, required_slices);
13852 }
13853 
13854 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
13855 {
13856 	struct intel_atomic_state *state, *next;
13857 	struct llist_node *freed;
13858 
13859 	freed = llist_del_all(&dev_priv->atomic_helper.free_list);
13860 	llist_for_each_entry_safe(state, next, freed, freed)
13861 		drm_atomic_state_put(&state->base);
13862 }
13863 
13864 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
13865 {
13866 	struct drm_i915_private *dev_priv =
13867 		container_of(work, typeof(*dev_priv), atomic_helper.free_work);
13868 
13869 	intel_atomic_helper_free_state(dev_priv);
13870 }
13871 
13872 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
13873 {
13874 	struct wait_queue_entry wait_fence, wait_reset;
13875 	struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
13876 
13877 	init_wait_entry(&wait_fence, 0);
13878 	init_wait_entry(&wait_reset, 0);
13879 	for (;;) {
13880 		prepare_to_wait(&intel_state->commit_ready.wait,
13881 				&wait_fence, TASK_UNINTERRUPTIBLE);
13882 		prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
13883 					      I915_RESET_MODESET),
13884 				&wait_reset, TASK_UNINTERRUPTIBLE);
13885 
13886 
13887 		if (i915_sw_fence_done(&intel_state->commit_ready) ||
13888 		    test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
13889 			break;
13890 
13891 		schedule();
13892 	}
13893 	finish_wait(&intel_state->commit_ready.wait, &wait_fence);
13894 	finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
13895 				  I915_RESET_MODESET),
13896 		    &wait_reset);
13897 }
13898 
13899 static void intel_atomic_cleanup_work(struct work_struct *work)
13900 {
13901 	struct drm_atomic_state *state =
13902 		container_of(work, struct drm_atomic_state, commit_work);
13903 	struct drm_i915_private *i915 = to_i915(state->dev);
13904 
13905 	drm_atomic_helper_cleanup_planes(&i915->drm, state);
13906 	drm_atomic_helper_commit_cleanup_done(state);
13907 	drm_atomic_state_put(state);
13908 
13909 	intel_atomic_helper_free_state(i915);
13910 }
13911 
13912 static void intel_atomic_commit_tail(struct intel_atomic_state *state)
13913 {
13914 	struct drm_device *dev = state->base.dev;
13915 	struct drm_i915_private *dev_priv = to_i915(dev);
13916 	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
13917 	struct intel_crtc *crtc;
13918 	u64 put_domains[I915_MAX_PIPES] = {};
13919 	intel_wakeref_t wakeref = 0;
13920 	int i;
13921 
13922 	intel_atomic_commit_fence_wait(state);
13923 
13924 	drm_atomic_helper_wait_for_dependencies(&state->base);
13925 
13926 	if (state->modeset)
13927 		wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13928 
13929 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
13930 		if (needs_modeset(new_crtc_state) ||
13931 		    new_crtc_state->update_pipe) {
13932 
13933 			put_domains[crtc->pipe] =
13934 				modeset_get_crtc_power_domains(new_crtc_state);
13935 		}
13936 
13937 		if (!needs_modeset(new_crtc_state))
13938 			continue;
13939 
13940 		intel_pre_plane_update(old_crtc_state, new_crtc_state);
13941 
13942 		if (old_crtc_state->base.active) {
13943 			intel_crtc_disable_planes(state, crtc);
13944 
13945 			/*
13946 			 * We need to disable pipe CRC before disabling the pipe,
13947 			 * or we race against vblank off.
13948 			 */
13949 			intel_crtc_disable_pipe_crc(crtc);
13950 
13951 			dev_priv->display.crtc_disable(old_crtc_state, state);
13952 			crtc->active = false;
13953 			intel_fbc_disable(crtc);
13954 			intel_disable_shared_dpll(old_crtc_state);
13955 
13956 			/*
13957 			 * Underruns don't always raise
13958 			 * interrupts, so check manually.
13959 			 */
13960 			intel_check_cpu_fifo_underruns(dev_priv);
13961 			intel_check_pch_fifo_underruns(dev_priv);
13962 
13963 			/* FIXME unify this for all platforms */
13964 			if (!new_crtc_state->base.active &&
13965 			    !HAS_GMCH(dev_priv) &&
13966 			    dev_priv->display.initial_watermarks)
13967 				dev_priv->display.initial_watermarks(state,
13968 								     new_crtc_state);
13969 		}
13970 	}
13971 
13972 	/* FIXME: Eventually get rid of our crtc->config pointer */
13973 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
13974 		crtc->config = new_crtc_state;
13975 
13976 	if (state->modeset) {
13977 		drm_atomic_helper_update_legacy_modeset_state(dev, &state->base);
13978 
13979 		intel_set_cdclk_pre_plane_update(dev_priv,
13980 						 &state->cdclk.actual,
13981 						 &dev_priv->cdclk.actual,
13982 						 state->cdclk.pipe);
13983 
13984 		/*
13985 		 * SKL workaround: bspec recommends we disable the SAGV when we
13986 		 * have more then one pipe enabled
13987 		 */
13988 		if (!intel_can_enable_sagv(state))
13989 			intel_disable_sagv(dev_priv);
13990 
13991 		intel_modeset_verify_disabled(dev_priv, state);
13992 	}
13993 
13994 	/* Complete the events for pipes that have now been disabled */
13995 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
13996 		bool modeset = needs_modeset(new_crtc_state);
13997 
13998 		/* Complete events for now disable pipes here. */
13999 		if (modeset && !new_crtc_state->base.active && new_crtc_state->base.event) {
14000 			spin_lock_irq(&dev->event_lock);
14001 			drm_crtc_send_vblank_event(&crtc->base, new_crtc_state->base.event);
14002 			spin_unlock_irq(&dev->event_lock);
14003 
14004 			new_crtc_state->base.event = NULL;
14005 		}
14006 	}
14007 
14008 	if (state->modeset)
14009 		intel_encoders_update_prepare(state);
14010 
14011 	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
14012 	dev_priv->display.update_crtcs(state);
14013 
14014 	if (state->modeset) {
14015 		intel_encoders_update_complete(state);
14016 
14017 		intel_set_cdclk_post_plane_update(dev_priv,
14018 						  &state->cdclk.actual,
14019 						  &dev_priv->cdclk.actual,
14020 						  state->cdclk.pipe);
14021 	}
14022 
14023 	/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14024 	 * already, but still need the state for the delayed optimization. To
14025 	 * fix this:
14026 	 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14027 	 * - schedule that vblank worker _before_ calling hw_done
14028 	 * - at the start of commit_tail, cancel it _synchrously
14029 	 * - switch over to the vblank wait helper in the core after that since
14030 	 *   we don't need out special handling any more.
14031 	 */
14032 	drm_atomic_helper_wait_for_flip_done(dev, &state->base);
14033 
14034 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14035 		if (new_crtc_state->base.active &&
14036 		    !needs_modeset(new_crtc_state) &&
14037 		    (new_crtc_state->base.color_mgmt_changed ||
14038 		     new_crtc_state->update_pipe))
14039 			intel_color_load_luts(new_crtc_state);
14040 	}
14041 
14042 	/*
14043 	 * Now that the vblank has passed, we can go ahead and program the
14044 	 * optimal watermarks on platforms that need two-step watermark
14045 	 * programming.
14046 	 *
14047 	 * TODO: Move this (and other cleanup) to an async worker eventually.
14048 	 */
14049 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14050 		if (dev_priv->display.optimize_watermarks)
14051 			dev_priv->display.optimize_watermarks(state,
14052 							      new_crtc_state);
14053 	}
14054 
14055 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
14056 		intel_post_plane_update(old_crtc_state);
14057 
14058 		if (put_domains[i])
14059 			modeset_put_power_domains(dev_priv, put_domains[i]);
14060 
14061 		intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
14062 	}
14063 
14064 	if (state->modeset)
14065 		intel_verify_planes(state);
14066 
14067 	if (state->modeset && intel_can_enable_sagv(state))
14068 		intel_enable_sagv(dev_priv);
14069 
14070 	drm_atomic_helper_commit_hw_done(&state->base);
14071 
14072 	if (state->modeset) {
14073 		/* As one of the primary mmio accessors, KMS has a high
14074 		 * likelihood of triggering bugs in unclaimed access. After we
14075 		 * finish modesetting, see if an error has been flagged, and if
14076 		 * so enable debugging for the next modeset - and hope we catch
14077 		 * the culprit.
14078 		 */
14079 		intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
14080 		intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref);
14081 	}
14082 	intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
14083 
14084 	/*
14085 	 * Defer the cleanup of the old state to a separate worker to not
14086 	 * impede the current task (userspace for blocking modesets) that
14087 	 * are executed inline. For out-of-line asynchronous modesets/flips,
14088 	 * deferring to a new worker seems overkill, but we would place a
14089 	 * schedule point (cond_resched()) here anyway to keep latencies
14090 	 * down.
14091 	 */
14092 	INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work);
14093 	queue_work(system_highpri_wq, &state->base.commit_work);
14094 }
14095 
14096 static void intel_atomic_commit_work(struct work_struct *work)
14097 {
14098 	struct intel_atomic_state *state =
14099 		container_of(work, struct intel_atomic_state, base.commit_work);
14100 
14101 	intel_atomic_commit_tail(state);
14102 }
14103 
14104 static int __i915_sw_fence_call
14105 intel_atomic_commit_ready(struct i915_sw_fence *fence,
14106 			  enum i915_sw_fence_notify notify)
14107 {
14108 	struct intel_atomic_state *state =
14109 		container_of(fence, struct intel_atomic_state, commit_ready);
14110 
14111 	switch (notify) {
14112 	case FENCE_COMPLETE:
14113 		/* we do blocking waits in the worker, nothing to do here */
14114 		break;
14115 	case FENCE_FREE:
14116 		{
14117 			struct intel_atomic_helper *helper =
14118 				&to_i915(state->base.dev)->atomic_helper;
14119 
14120 			if (llist_add(&state->freed, &helper->free_list))
14121 				schedule_work(&helper->free_work);
14122 			break;
14123 		}
14124 	}
14125 
14126 	return NOTIFY_DONE;
14127 }
14128 
14129 static void intel_atomic_track_fbs(struct intel_atomic_state *state)
14130 {
14131 	struct intel_plane_state *old_plane_state, *new_plane_state;
14132 	struct intel_plane *plane;
14133 	int i;
14134 
14135 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
14136 					     new_plane_state, i)
14137 		intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->base.fb),
14138 					to_intel_frontbuffer(new_plane_state->base.fb),
14139 					plane->frontbuffer_bit);
14140 }
14141 
14142 static int intel_atomic_commit(struct drm_device *dev,
14143 			       struct drm_atomic_state *_state,
14144 			       bool nonblock)
14145 {
14146 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
14147 	struct drm_i915_private *dev_priv = to_i915(dev);
14148 	int ret = 0;
14149 
14150 	state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
14151 
14152 	drm_atomic_state_get(&state->base);
14153 	i915_sw_fence_init(&state->commit_ready,
14154 			   intel_atomic_commit_ready);
14155 
14156 	/*
14157 	 * The intel_legacy_cursor_update() fast path takes care
14158 	 * of avoiding the vblank waits for simple cursor
14159 	 * movement and flips. For cursor on/off and size changes,
14160 	 * we want to perform the vblank waits so that watermark
14161 	 * updates happen during the correct frames. Gen9+ have
14162 	 * double buffered watermarks and so shouldn't need this.
14163 	 *
14164 	 * Unset state->legacy_cursor_update before the call to
14165 	 * drm_atomic_helper_setup_commit() because otherwise
14166 	 * drm_atomic_helper_wait_for_flip_done() is a noop and
14167 	 * we get FIFO underruns because we didn't wait
14168 	 * for vblank.
14169 	 *
14170 	 * FIXME doing watermarks and fb cleanup from a vblank worker
14171 	 * (assuming we had any) would solve these problems.
14172 	 */
14173 	if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) {
14174 		struct intel_crtc_state *new_crtc_state;
14175 		struct intel_crtc *crtc;
14176 		int i;
14177 
14178 		for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
14179 			if (new_crtc_state->wm.need_postvbl_update ||
14180 			    new_crtc_state->update_wm_post)
14181 				state->base.legacy_cursor_update = false;
14182 	}
14183 
14184 	ret = intel_atomic_prepare_commit(state);
14185 	if (ret) {
14186 		DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14187 		i915_sw_fence_commit(&state->commit_ready);
14188 		intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
14189 		return ret;
14190 	}
14191 
14192 	ret = drm_atomic_helper_setup_commit(&state->base, nonblock);
14193 	if (!ret)
14194 		ret = drm_atomic_helper_swap_state(&state->base, true);
14195 
14196 	if (ret) {
14197 		i915_sw_fence_commit(&state->commit_ready);
14198 
14199 		drm_atomic_helper_cleanup_planes(dev, &state->base);
14200 		intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
14201 		return ret;
14202 	}
14203 	dev_priv->wm.distrust_bios_wm = false;
14204 	intel_shared_dpll_swap_state(state);
14205 	intel_atomic_track_fbs(state);
14206 
14207 	if (state->modeset) {
14208 		memcpy(dev_priv->min_cdclk, state->min_cdclk,
14209 		       sizeof(state->min_cdclk));
14210 		memcpy(dev_priv->min_voltage_level, state->min_voltage_level,
14211 		       sizeof(state->min_voltage_level));
14212 		dev_priv->active_crtcs = state->active_crtcs;
14213 		dev_priv->cdclk.force_min_cdclk = state->cdclk.force_min_cdclk;
14214 
14215 		intel_cdclk_swap_state(state);
14216 	}
14217 
14218 	drm_atomic_state_get(&state->base);
14219 	INIT_WORK(&state->base.commit_work, intel_atomic_commit_work);
14220 
14221 	i915_sw_fence_commit(&state->commit_ready);
14222 	if (nonblock && state->modeset) {
14223 		queue_work(dev_priv->modeset_wq, &state->base.commit_work);
14224 	} else if (nonblock) {
14225 		queue_work(system_unbound_wq, &state->base.commit_work);
14226 	} else {
14227 		if (state->modeset)
14228 			flush_workqueue(dev_priv->modeset_wq);
14229 		intel_atomic_commit_tail(state);
14230 	}
14231 
14232 	return 0;
14233 }
14234 
14235 struct wait_rps_boost {
14236 	struct wait_queue_entry wait;
14237 
14238 	struct drm_crtc *crtc;
14239 	struct i915_request *request;
14240 };
14241 
14242 static int do_rps_boost(struct wait_queue_entry *_wait,
14243 			unsigned mode, int sync, void *key)
14244 {
14245 	struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
14246 	struct i915_request *rq = wait->request;
14247 
14248 	/*
14249 	 * If we missed the vblank, but the request is already running it
14250 	 * is reasonable to assume that it will complete before the next
14251 	 * vblank without our intervention, so leave RPS alone.
14252 	 */
14253 	if (!i915_request_started(rq))
14254 		gen6_rps_boost(rq);
14255 	i915_request_put(rq);
14256 
14257 	drm_crtc_vblank_put(wait->crtc);
14258 
14259 	list_del(&wait->wait.entry);
14260 	kfree(wait);
14261 	return 1;
14262 }
14263 
14264 static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
14265 				       struct dma_fence *fence)
14266 {
14267 	struct wait_rps_boost *wait;
14268 
14269 	if (!dma_fence_is_i915(fence))
14270 		return;
14271 
14272 	if (INTEL_GEN(to_i915(crtc->dev)) < 6)
14273 		return;
14274 
14275 	if (drm_crtc_vblank_get(crtc))
14276 		return;
14277 
14278 	wait = kmalloc(sizeof(*wait), GFP_KERNEL);
14279 	if (!wait) {
14280 		drm_crtc_vblank_put(crtc);
14281 		return;
14282 	}
14283 
14284 	wait->request = to_request(dma_fence_get(fence));
14285 	wait->crtc = crtc;
14286 
14287 	wait->wait.func = do_rps_boost;
14288 	wait->wait.flags = 0;
14289 
14290 	add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
14291 }
14292 
14293 static int intel_plane_pin_fb(struct intel_plane_state *plane_state)
14294 {
14295 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
14296 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
14297 	struct drm_framebuffer *fb = plane_state->base.fb;
14298 	struct i915_vma *vma;
14299 
14300 	if (plane->id == PLANE_CURSOR &&
14301 	    INTEL_INFO(dev_priv)->display.cursor_needs_physical) {
14302 		struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14303 		const int align = intel_cursor_alignment(dev_priv);
14304 		int err;
14305 
14306 		err = i915_gem_object_attach_phys(obj, align);
14307 		if (err)
14308 			return err;
14309 	}
14310 
14311 	vma = intel_pin_and_fence_fb_obj(fb,
14312 					 &plane_state->view,
14313 					 intel_plane_uses_fence(plane_state),
14314 					 &plane_state->flags);
14315 	if (IS_ERR(vma))
14316 		return PTR_ERR(vma);
14317 
14318 	plane_state->vma = vma;
14319 
14320 	return 0;
14321 }
14322 
14323 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state)
14324 {
14325 	struct i915_vma *vma;
14326 
14327 	vma = fetch_and_zero(&old_plane_state->vma);
14328 	if (vma)
14329 		intel_unpin_fb_vma(vma, old_plane_state->flags);
14330 }
14331 
14332 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj)
14333 {
14334 	struct i915_sched_attr attr = {
14335 		.priority = I915_PRIORITY_DISPLAY,
14336 	};
14337 
14338 	i915_gem_object_wait_priority(obj, 0, &attr);
14339 }
14340 
14341 /**
14342  * intel_prepare_plane_fb - Prepare fb for usage on plane
14343  * @plane: drm plane to prepare for
14344  * @new_state: the plane state being prepared
14345  *
14346  * Prepares a framebuffer for usage on a display plane.  Generally this
14347  * involves pinning the underlying object and updating the frontbuffer tracking
14348  * bits.  Some older platforms need special physical address handling for
14349  * cursor planes.
14350  *
14351  * Must be called with struct_mutex held.
14352  *
14353  * Returns 0 on success, negative error code on failure.
14354  */
14355 int
14356 intel_prepare_plane_fb(struct drm_plane *plane,
14357 		       struct drm_plane_state *new_state)
14358 {
14359 	struct intel_atomic_state *intel_state =
14360 		to_intel_atomic_state(new_state->state);
14361 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
14362 	struct drm_framebuffer *fb = new_state->fb;
14363 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14364 	struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14365 	int ret;
14366 
14367 	if (old_obj) {
14368 		struct intel_crtc_state *crtc_state =
14369 			intel_atomic_get_new_crtc_state(intel_state,
14370 							to_intel_crtc(plane->state->crtc));
14371 
14372 		/* Big Hammer, we also need to ensure that any pending
14373 		 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14374 		 * current scanout is retired before unpinning the old
14375 		 * framebuffer. Note that we rely on userspace rendering
14376 		 * into the buffer attached to the pipe they are waiting
14377 		 * on. If not, userspace generates a GPU hang with IPEHR
14378 		 * point to the MI_WAIT_FOR_EVENT.
14379 		 *
14380 		 * This should only fail upon a hung GPU, in which case we
14381 		 * can safely continue.
14382 		 */
14383 		if (needs_modeset(crtc_state)) {
14384 			ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14385 							      old_obj->base.resv, NULL,
14386 							      false, 0,
14387 							      GFP_KERNEL);
14388 			if (ret < 0)
14389 				return ret;
14390 		}
14391 	}
14392 
14393 	if (new_state->fence) { /* explicit fencing */
14394 		ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
14395 						    new_state->fence,
14396 						    I915_FENCE_TIMEOUT,
14397 						    GFP_KERNEL);
14398 		if (ret < 0)
14399 			return ret;
14400 	}
14401 
14402 	if (!obj)
14403 		return 0;
14404 
14405 	ret = i915_gem_object_pin_pages(obj);
14406 	if (ret)
14407 		return ret;
14408 
14409 	ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
14410 	if (ret) {
14411 		i915_gem_object_unpin_pages(obj);
14412 		return ret;
14413 	}
14414 
14415 	ret = intel_plane_pin_fb(to_intel_plane_state(new_state));
14416 
14417 	mutex_unlock(&dev_priv->drm.struct_mutex);
14418 	i915_gem_object_unpin_pages(obj);
14419 	if (ret)
14420 		return ret;
14421 
14422 	fb_obj_bump_render_priority(obj);
14423 	intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_DIRTYFB);
14424 
14425 	if (!new_state->fence) { /* implicit fencing */
14426 		struct dma_fence *fence;
14427 
14428 		ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14429 						      obj->base.resv, NULL,
14430 						      false, I915_FENCE_TIMEOUT,
14431 						      GFP_KERNEL);
14432 		if (ret < 0)
14433 			return ret;
14434 
14435 		fence = dma_resv_get_excl_rcu(obj->base.resv);
14436 		if (fence) {
14437 			add_rps_boost_after_vblank(new_state->crtc, fence);
14438 			dma_fence_put(fence);
14439 		}
14440 	} else {
14441 		add_rps_boost_after_vblank(new_state->crtc, new_state->fence);
14442 	}
14443 
14444 	/*
14445 	 * We declare pageflips to be interactive and so merit a small bias
14446 	 * towards upclocking to deliver the frame on time. By only changing
14447 	 * the RPS thresholds to sample more regularly and aim for higher
14448 	 * clocks we can hopefully deliver low power workloads (like kodi)
14449 	 * that are not quite steady state without resorting to forcing
14450 	 * maximum clocks following a vblank miss (see do_rps_boost()).
14451 	 */
14452 	if (!intel_state->rps_interactive) {
14453 		intel_rps_mark_interactive(dev_priv, true);
14454 		intel_state->rps_interactive = true;
14455 	}
14456 
14457 	return 0;
14458 }
14459 
14460 /**
14461  * intel_cleanup_plane_fb - Cleans up an fb after plane use
14462  * @plane: drm plane to clean up for
14463  * @old_state: the state from the previous modeset
14464  *
14465  * Cleans up a framebuffer that has just been removed from a plane.
14466  *
14467  * Must be called with struct_mutex held.
14468  */
14469 void
14470 intel_cleanup_plane_fb(struct drm_plane *plane,
14471 		       struct drm_plane_state *old_state)
14472 {
14473 	struct intel_atomic_state *intel_state =
14474 		to_intel_atomic_state(old_state->state);
14475 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
14476 
14477 	if (intel_state->rps_interactive) {
14478 		intel_rps_mark_interactive(dev_priv, false);
14479 		intel_state->rps_interactive = false;
14480 	}
14481 
14482 	/* Should only be called after a successful intel_prepare_plane_fb()! */
14483 	mutex_lock(&dev_priv->drm.struct_mutex);
14484 	intel_plane_unpin_fb(to_intel_plane_state(old_state));
14485 	mutex_unlock(&dev_priv->drm.struct_mutex);
14486 }
14487 
14488 int
14489 skl_max_scale(const struct intel_crtc_state *crtc_state,
14490 	      u32 pixel_format)
14491 {
14492 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
14493 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14494 	int max_scale, mult;
14495 	int crtc_clock, max_dotclk, tmpclk1, tmpclk2;
14496 
14497 	if (!crtc_state->base.enable)
14498 		return DRM_PLANE_HELPER_NO_SCALING;
14499 
14500 	crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14501 	max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk;
14502 
14503 	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
14504 		max_dotclk *= 2;
14505 
14506 	if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock))
14507 		return DRM_PLANE_HELPER_NO_SCALING;
14508 
14509 	/*
14510 	 * skl max scale is lower of:
14511 	 *    close to 3 but not 3, -1 is for that purpose
14512 	 *            or
14513 	 *    cdclk/crtc_clock
14514 	 */
14515 	mult = is_planar_yuv_format(pixel_format) ? 2 : 3;
14516 	tmpclk1 = (1 << 16) * mult - 1;
14517 	tmpclk2 = (1 << 8) * ((max_dotclk << 8) / crtc_clock);
14518 	max_scale = min(tmpclk1, tmpclk2);
14519 
14520 	return max_scale;
14521 }
14522 
14523 static void intel_begin_crtc_commit(struct intel_atomic_state *state,
14524 				    struct intel_crtc *crtc)
14525 {
14526 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14527 	struct intel_crtc_state *old_crtc_state =
14528 		intel_atomic_get_old_crtc_state(state, crtc);
14529 	struct intel_crtc_state *new_crtc_state =
14530 		intel_atomic_get_new_crtc_state(state, crtc);
14531 	bool modeset = needs_modeset(new_crtc_state);
14532 
14533 	/* Perform vblank evasion around commit operation */
14534 	intel_pipe_update_start(new_crtc_state);
14535 
14536 	if (modeset)
14537 		goto out;
14538 
14539 	if (new_crtc_state->base.color_mgmt_changed ||
14540 	    new_crtc_state->update_pipe)
14541 		intel_color_commit(new_crtc_state);
14542 
14543 	if (new_crtc_state->update_pipe)
14544 		intel_update_pipe_config(old_crtc_state, new_crtc_state);
14545 	else if (INTEL_GEN(dev_priv) >= 9)
14546 		skl_detach_scalers(new_crtc_state);
14547 
14548 	if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
14549 		bdw_set_pipemisc(new_crtc_state);
14550 
14551 out:
14552 	if (dev_priv->display.atomic_update_watermarks)
14553 		dev_priv->display.atomic_update_watermarks(state,
14554 							   new_crtc_state);
14555 }
14556 
14557 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
14558 				  struct intel_crtc_state *crtc_state)
14559 {
14560 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14561 
14562 	if (!IS_GEN(dev_priv, 2))
14563 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
14564 
14565 	if (crtc_state->has_pch_encoder) {
14566 		enum pipe pch_transcoder =
14567 			intel_crtc_pch_transcoder(crtc);
14568 
14569 		intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true);
14570 	}
14571 }
14572 
14573 static void intel_finish_crtc_commit(struct intel_atomic_state *state,
14574 				     struct intel_crtc *crtc)
14575 {
14576 	struct intel_crtc_state *old_crtc_state =
14577 		intel_atomic_get_old_crtc_state(state, crtc);
14578 	struct intel_crtc_state *new_crtc_state =
14579 		intel_atomic_get_new_crtc_state(state, crtc);
14580 
14581 	intel_pipe_update_end(new_crtc_state);
14582 
14583 	if (new_crtc_state->update_pipe &&
14584 	    !needs_modeset(new_crtc_state) &&
14585 	    old_crtc_state->base.mode.private_flags & I915_MODE_FLAG_INHERITED)
14586 		intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
14587 }
14588 
14589 /**
14590  * intel_plane_destroy - destroy a plane
14591  * @plane: plane to destroy
14592  *
14593  * Common destruction function for all types of planes (primary, cursor,
14594  * sprite).
14595  */
14596 void intel_plane_destroy(struct drm_plane *plane)
14597 {
14598 	drm_plane_cleanup(plane);
14599 	kfree(to_intel_plane(plane));
14600 }
14601 
14602 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane,
14603 					    u32 format, u64 modifier)
14604 {
14605 	switch (modifier) {
14606 	case DRM_FORMAT_MOD_LINEAR:
14607 	case I915_FORMAT_MOD_X_TILED:
14608 		break;
14609 	default:
14610 		return false;
14611 	}
14612 
14613 	switch (format) {
14614 	case DRM_FORMAT_C8:
14615 	case DRM_FORMAT_RGB565:
14616 	case DRM_FORMAT_XRGB1555:
14617 	case DRM_FORMAT_XRGB8888:
14618 		return modifier == DRM_FORMAT_MOD_LINEAR ||
14619 			modifier == I915_FORMAT_MOD_X_TILED;
14620 	default:
14621 		return false;
14622 	}
14623 }
14624 
14625 static bool i965_plane_format_mod_supported(struct drm_plane *_plane,
14626 					    u32 format, u64 modifier)
14627 {
14628 	switch (modifier) {
14629 	case DRM_FORMAT_MOD_LINEAR:
14630 	case I915_FORMAT_MOD_X_TILED:
14631 		break;
14632 	default:
14633 		return false;
14634 	}
14635 
14636 	switch (format) {
14637 	case DRM_FORMAT_C8:
14638 	case DRM_FORMAT_RGB565:
14639 	case DRM_FORMAT_XRGB8888:
14640 	case DRM_FORMAT_XBGR8888:
14641 	case DRM_FORMAT_XRGB2101010:
14642 	case DRM_FORMAT_XBGR2101010:
14643 		return modifier == DRM_FORMAT_MOD_LINEAR ||
14644 			modifier == I915_FORMAT_MOD_X_TILED;
14645 	default:
14646 		return false;
14647 	}
14648 }
14649 
14650 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane,
14651 					      u32 format, u64 modifier)
14652 {
14653 	return modifier == DRM_FORMAT_MOD_LINEAR &&
14654 		format == DRM_FORMAT_ARGB8888;
14655 }
14656 
14657 static const struct drm_plane_funcs i965_plane_funcs = {
14658 	.update_plane = drm_atomic_helper_update_plane,
14659 	.disable_plane = drm_atomic_helper_disable_plane,
14660 	.destroy = intel_plane_destroy,
14661 	.atomic_duplicate_state = intel_plane_duplicate_state,
14662 	.atomic_destroy_state = intel_plane_destroy_state,
14663 	.format_mod_supported = i965_plane_format_mod_supported,
14664 };
14665 
14666 static const struct drm_plane_funcs i8xx_plane_funcs = {
14667 	.update_plane = drm_atomic_helper_update_plane,
14668 	.disable_plane = drm_atomic_helper_disable_plane,
14669 	.destroy = intel_plane_destroy,
14670 	.atomic_duplicate_state = intel_plane_duplicate_state,
14671 	.atomic_destroy_state = intel_plane_destroy_state,
14672 	.format_mod_supported = i8xx_plane_format_mod_supported,
14673 };
14674 
14675 static int
14676 intel_legacy_cursor_update(struct drm_plane *plane,
14677 			   struct drm_crtc *crtc,
14678 			   struct drm_framebuffer *fb,
14679 			   int crtc_x, int crtc_y,
14680 			   unsigned int crtc_w, unsigned int crtc_h,
14681 			   u32 src_x, u32 src_y,
14682 			   u32 src_w, u32 src_h,
14683 			   struct drm_modeset_acquire_ctx *ctx)
14684 {
14685 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
14686 	struct drm_plane_state *old_plane_state, *new_plane_state;
14687 	struct intel_plane *intel_plane = to_intel_plane(plane);
14688 	struct intel_crtc_state *crtc_state =
14689 		to_intel_crtc_state(crtc->state);
14690 	struct intel_crtc_state *new_crtc_state;
14691 	int ret;
14692 
14693 	/*
14694 	 * When crtc is inactive or there is a modeset pending,
14695 	 * wait for it to complete in the slowpath
14696 	 */
14697 	if (!crtc_state->base.active || needs_modeset(crtc_state) ||
14698 	    crtc_state->update_pipe)
14699 		goto slow;
14700 
14701 	old_plane_state = plane->state;
14702 	/*
14703 	 * Don't do an async update if there is an outstanding commit modifying
14704 	 * the plane.  This prevents our async update's changes from getting
14705 	 * overridden by a previous synchronous update's state.
14706 	 */
14707 	if (old_plane_state->commit &&
14708 	    !try_wait_for_completion(&old_plane_state->commit->hw_done))
14709 		goto slow;
14710 
14711 	/*
14712 	 * If any parameters change that may affect watermarks,
14713 	 * take the slowpath. Only changing fb or position should be
14714 	 * in the fastpath.
14715 	 */
14716 	if (old_plane_state->crtc != crtc ||
14717 	    old_plane_state->src_w != src_w ||
14718 	    old_plane_state->src_h != src_h ||
14719 	    old_plane_state->crtc_w != crtc_w ||
14720 	    old_plane_state->crtc_h != crtc_h ||
14721 	    !old_plane_state->fb != !fb)
14722 		goto slow;
14723 
14724 	new_plane_state = intel_plane_duplicate_state(plane);
14725 	if (!new_plane_state)
14726 		return -ENOMEM;
14727 
14728 	new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(crtc));
14729 	if (!new_crtc_state) {
14730 		ret = -ENOMEM;
14731 		goto out_free;
14732 	}
14733 
14734 	drm_atomic_set_fb_for_plane(new_plane_state, fb);
14735 
14736 	new_plane_state->src_x = src_x;
14737 	new_plane_state->src_y = src_y;
14738 	new_plane_state->src_w = src_w;
14739 	new_plane_state->src_h = src_h;
14740 	new_plane_state->crtc_x = crtc_x;
14741 	new_plane_state->crtc_y = crtc_y;
14742 	new_plane_state->crtc_w = crtc_w;
14743 	new_plane_state->crtc_h = crtc_h;
14744 
14745 	ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state,
14746 						  to_intel_plane_state(old_plane_state),
14747 						  to_intel_plane_state(new_plane_state));
14748 	if (ret)
14749 		goto out_free;
14750 
14751 	ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
14752 	if (ret)
14753 		goto out_free;
14754 
14755 	ret = intel_plane_pin_fb(to_intel_plane_state(new_plane_state));
14756 	if (ret)
14757 		goto out_unlock;
14758 
14759 	intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_FLIP);
14760 	intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->fb),
14761 				to_intel_frontbuffer(fb),
14762 				intel_plane->frontbuffer_bit);
14763 
14764 	/* Swap plane state */
14765 	plane->state = new_plane_state;
14766 
14767 	/*
14768 	 * We cannot swap crtc_state as it may be in use by an atomic commit or
14769 	 * page flip that's running simultaneously. If we swap crtc_state and
14770 	 * destroy the old state, we will cause a use-after-free there.
14771 	 *
14772 	 * Only update active_planes, which is needed for our internal
14773 	 * bookkeeping. Either value will do the right thing when updating
14774 	 * planes atomically. If the cursor was part of the atomic update then
14775 	 * we would have taken the slowpath.
14776 	 */
14777 	crtc_state->active_planes = new_crtc_state->active_planes;
14778 
14779 	if (plane->state->visible)
14780 		intel_update_plane(intel_plane, crtc_state,
14781 				   to_intel_plane_state(plane->state));
14782 	else
14783 		intel_disable_plane(intel_plane, crtc_state);
14784 
14785 	intel_plane_unpin_fb(to_intel_plane_state(old_plane_state));
14786 
14787 out_unlock:
14788 	mutex_unlock(&dev_priv->drm.struct_mutex);
14789 out_free:
14790 	if (new_crtc_state)
14791 		intel_crtc_destroy_state(crtc, &new_crtc_state->base);
14792 	if (ret)
14793 		intel_plane_destroy_state(plane, new_plane_state);
14794 	else
14795 		intel_plane_destroy_state(plane, old_plane_state);
14796 	return ret;
14797 
14798 slow:
14799 	return drm_atomic_helper_update_plane(plane, crtc, fb,
14800 					      crtc_x, crtc_y, crtc_w, crtc_h,
14801 					      src_x, src_y, src_w, src_h, ctx);
14802 }
14803 
14804 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
14805 	.update_plane = intel_legacy_cursor_update,
14806 	.disable_plane = drm_atomic_helper_disable_plane,
14807 	.destroy = intel_plane_destroy,
14808 	.atomic_duplicate_state = intel_plane_duplicate_state,
14809 	.atomic_destroy_state = intel_plane_destroy_state,
14810 	.format_mod_supported = intel_cursor_format_mod_supported,
14811 };
14812 
14813 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv,
14814 			       enum i9xx_plane_id i9xx_plane)
14815 {
14816 	if (!HAS_FBC(dev_priv))
14817 		return false;
14818 
14819 	if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
14820 		return i9xx_plane == PLANE_A; /* tied to pipe A */
14821 	else if (IS_IVYBRIDGE(dev_priv))
14822 		return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B ||
14823 			i9xx_plane == PLANE_C;
14824 	else if (INTEL_GEN(dev_priv) >= 4)
14825 		return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B;
14826 	else
14827 		return i9xx_plane == PLANE_A;
14828 }
14829 
14830 static struct intel_plane *
14831 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
14832 {
14833 	struct intel_plane *plane;
14834 	const struct drm_plane_funcs *plane_funcs;
14835 	unsigned int supported_rotations;
14836 	unsigned int possible_crtcs;
14837 	const u64 *modifiers;
14838 	const u32 *formats;
14839 	int num_formats;
14840 	int ret;
14841 
14842 	if (INTEL_GEN(dev_priv) >= 9)
14843 		return skl_universal_plane_create(dev_priv, pipe,
14844 						  PLANE_PRIMARY);
14845 
14846 	plane = intel_plane_alloc();
14847 	if (IS_ERR(plane))
14848 		return plane;
14849 
14850 	plane->pipe = pipe;
14851 	/*
14852 	 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
14853 	 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
14854 	 */
14855 	if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
14856 		plane->i9xx_plane = (enum i9xx_plane_id) !pipe;
14857 	else
14858 		plane->i9xx_plane = (enum i9xx_plane_id) pipe;
14859 	plane->id = PLANE_PRIMARY;
14860 	plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id);
14861 
14862 	plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane);
14863 	if (plane->has_fbc) {
14864 		struct intel_fbc *fbc = &dev_priv->fbc;
14865 
14866 		fbc->possible_framebuffer_bits |= plane->frontbuffer_bit;
14867 	}
14868 
14869 	if (INTEL_GEN(dev_priv) >= 4) {
14870 		formats = i965_primary_formats;
14871 		num_formats = ARRAY_SIZE(i965_primary_formats);
14872 		modifiers = i9xx_format_modifiers;
14873 
14874 		plane->max_stride = i9xx_plane_max_stride;
14875 		plane->update_plane = i9xx_update_plane;
14876 		plane->disable_plane = i9xx_disable_plane;
14877 		plane->get_hw_state = i9xx_plane_get_hw_state;
14878 		plane->check_plane = i9xx_plane_check;
14879 
14880 		plane_funcs = &i965_plane_funcs;
14881 	} else {
14882 		formats = i8xx_primary_formats;
14883 		num_formats = ARRAY_SIZE(i8xx_primary_formats);
14884 		modifiers = i9xx_format_modifiers;
14885 
14886 		plane->max_stride = i9xx_plane_max_stride;
14887 		plane->update_plane = i9xx_update_plane;
14888 		plane->disable_plane = i9xx_disable_plane;
14889 		plane->get_hw_state = i9xx_plane_get_hw_state;
14890 		plane->check_plane = i9xx_plane_check;
14891 
14892 		plane_funcs = &i8xx_plane_funcs;
14893 	}
14894 
14895 	possible_crtcs = BIT(pipe);
14896 
14897 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
14898 		ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
14899 					       possible_crtcs, plane_funcs,
14900 					       formats, num_formats, modifiers,
14901 					       DRM_PLANE_TYPE_PRIMARY,
14902 					       "primary %c", pipe_name(pipe));
14903 	else
14904 		ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
14905 					       possible_crtcs, plane_funcs,
14906 					       formats, num_formats, modifiers,
14907 					       DRM_PLANE_TYPE_PRIMARY,
14908 					       "plane %c",
14909 					       plane_name(plane->i9xx_plane));
14910 	if (ret)
14911 		goto fail;
14912 
14913 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
14914 		supported_rotations =
14915 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
14916 			DRM_MODE_REFLECT_X;
14917 	} else if (INTEL_GEN(dev_priv) >= 4) {
14918 		supported_rotations =
14919 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
14920 	} else {
14921 		supported_rotations = DRM_MODE_ROTATE_0;
14922 	}
14923 
14924 	if (INTEL_GEN(dev_priv) >= 4)
14925 		drm_plane_create_rotation_property(&plane->base,
14926 						   DRM_MODE_ROTATE_0,
14927 						   supported_rotations);
14928 
14929 	drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs);
14930 
14931 	return plane;
14932 
14933 fail:
14934 	intel_plane_free(plane);
14935 
14936 	return ERR_PTR(ret);
14937 }
14938 
14939 static struct intel_plane *
14940 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
14941 			  enum pipe pipe)
14942 {
14943 	unsigned int possible_crtcs;
14944 	struct intel_plane *cursor;
14945 	int ret;
14946 
14947 	cursor = intel_plane_alloc();
14948 	if (IS_ERR(cursor))
14949 		return cursor;
14950 
14951 	cursor->pipe = pipe;
14952 	cursor->i9xx_plane = (enum i9xx_plane_id) pipe;
14953 	cursor->id = PLANE_CURSOR;
14954 	cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id);
14955 
14956 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
14957 		cursor->max_stride = i845_cursor_max_stride;
14958 		cursor->update_plane = i845_update_cursor;
14959 		cursor->disable_plane = i845_disable_cursor;
14960 		cursor->get_hw_state = i845_cursor_get_hw_state;
14961 		cursor->check_plane = i845_check_cursor;
14962 	} else {
14963 		cursor->max_stride = i9xx_cursor_max_stride;
14964 		cursor->update_plane = i9xx_update_cursor;
14965 		cursor->disable_plane = i9xx_disable_cursor;
14966 		cursor->get_hw_state = i9xx_cursor_get_hw_state;
14967 		cursor->check_plane = i9xx_check_cursor;
14968 	}
14969 
14970 	cursor->cursor.base = ~0;
14971 	cursor->cursor.cntl = ~0;
14972 
14973 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
14974 		cursor->cursor.size = ~0;
14975 
14976 	possible_crtcs = BIT(pipe);
14977 
14978 	ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
14979 				       possible_crtcs, &intel_cursor_plane_funcs,
14980 				       intel_cursor_formats,
14981 				       ARRAY_SIZE(intel_cursor_formats),
14982 				       cursor_format_modifiers,
14983 				       DRM_PLANE_TYPE_CURSOR,
14984 				       "cursor %c", pipe_name(pipe));
14985 	if (ret)
14986 		goto fail;
14987 
14988 	if (INTEL_GEN(dev_priv) >= 4)
14989 		drm_plane_create_rotation_property(&cursor->base,
14990 						   DRM_MODE_ROTATE_0,
14991 						   DRM_MODE_ROTATE_0 |
14992 						   DRM_MODE_ROTATE_180);
14993 
14994 	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14995 
14996 	return cursor;
14997 
14998 fail:
14999 	intel_plane_free(cursor);
15000 
15001 	return ERR_PTR(ret);
15002 }
15003 
15004 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
15005 				    struct intel_crtc_state *crtc_state)
15006 {
15007 	struct intel_crtc_scaler_state *scaler_state =
15008 		&crtc_state->scaler_state;
15009 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15010 	int i;
15011 
15012 	crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[crtc->pipe];
15013 	if (!crtc->num_scalers)
15014 		return;
15015 
15016 	for (i = 0; i < crtc->num_scalers; i++) {
15017 		struct intel_scaler *scaler = &scaler_state->scalers[i];
15018 
15019 		scaler->in_use = 0;
15020 		scaler->mode = 0;
15021 	}
15022 
15023 	scaler_state->scaler_id = -1;
15024 }
15025 
15026 #define INTEL_CRTC_FUNCS \
15027 	.gamma_set = drm_atomic_helper_legacy_gamma_set, \
15028 	.set_config = drm_atomic_helper_set_config, \
15029 	.destroy = intel_crtc_destroy, \
15030 	.page_flip = drm_atomic_helper_page_flip, \
15031 	.atomic_duplicate_state = intel_crtc_duplicate_state, \
15032 	.atomic_destroy_state = intel_crtc_destroy_state, \
15033 	.set_crc_source = intel_crtc_set_crc_source, \
15034 	.verify_crc_source = intel_crtc_verify_crc_source, \
15035 	.get_crc_sources = intel_crtc_get_crc_sources
15036 
15037 static const struct drm_crtc_funcs bdw_crtc_funcs = {
15038 	INTEL_CRTC_FUNCS,
15039 
15040 	.get_vblank_counter = g4x_get_vblank_counter,
15041 	.enable_vblank = bdw_enable_vblank,
15042 	.disable_vblank = bdw_disable_vblank,
15043 };
15044 
15045 static const struct drm_crtc_funcs ilk_crtc_funcs = {
15046 	INTEL_CRTC_FUNCS,
15047 
15048 	.get_vblank_counter = g4x_get_vblank_counter,
15049 	.enable_vblank = ilk_enable_vblank,
15050 	.disable_vblank = ilk_disable_vblank,
15051 };
15052 
15053 static const struct drm_crtc_funcs g4x_crtc_funcs = {
15054 	INTEL_CRTC_FUNCS,
15055 
15056 	.get_vblank_counter = g4x_get_vblank_counter,
15057 	.enable_vblank = i965_enable_vblank,
15058 	.disable_vblank = i965_disable_vblank,
15059 };
15060 
15061 static const struct drm_crtc_funcs i965_crtc_funcs = {
15062 	INTEL_CRTC_FUNCS,
15063 
15064 	.get_vblank_counter = i915_get_vblank_counter,
15065 	.enable_vblank = i965_enable_vblank,
15066 	.disable_vblank = i965_disable_vblank,
15067 };
15068 
15069 static const struct drm_crtc_funcs i945gm_crtc_funcs = {
15070 	INTEL_CRTC_FUNCS,
15071 
15072 	.get_vblank_counter = i915_get_vblank_counter,
15073 	.enable_vblank = i945gm_enable_vblank,
15074 	.disable_vblank = i945gm_disable_vblank,
15075 };
15076 
15077 static const struct drm_crtc_funcs i915_crtc_funcs = {
15078 	INTEL_CRTC_FUNCS,
15079 
15080 	.get_vblank_counter = i915_get_vblank_counter,
15081 	.enable_vblank = i8xx_enable_vblank,
15082 	.disable_vblank = i8xx_disable_vblank,
15083 };
15084 
15085 static const struct drm_crtc_funcs i8xx_crtc_funcs = {
15086 	INTEL_CRTC_FUNCS,
15087 
15088 	/* no hw vblank counter */
15089 	.enable_vblank = i8xx_enable_vblank,
15090 	.disable_vblank = i8xx_disable_vblank,
15091 };
15092 
15093 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
15094 {
15095 	const struct drm_crtc_funcs *funcs;
15096 	struct intel_crtc *intel_crtc;
15097 	struct intel_crtc_state *crtc_state = NULL;
15098 	struct intel_plane *primary = NULL;
15099 	struct intel_plane *cursor = NULL;
15100 	int sprite, ret;
15101 
15102 	intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15103 	if (!intel_crtc)
15104 		return -ENOMEM;
15105 
15106 	crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15107 	if (!crtc_state) {
15108 		ret = -ENOMEM;
15109 		goto fail;
15110 	}
15111 	__drm_atomic_helper_crtc_reset(&intel_crtc->base, &crtc_state->base);
15112 	intel_crtc->config = crtc_state;
15113 
15114 	primary = intel_primary_plane_create(dev_priv, pipe);
15115 	if (IS_ERR(primary)) {
15116 		ret = PTR_ERR(primary);
15117 		goto fail;
15118 	}
15119 	intel_crtc->plane_ids_mask |= BIT(primary->id);
15120 
15121 	for_each_sprite(dev_priv, pipe, sprite) {
15122 		struct intel_plane *plane;
15123 
15124 		plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
15125 		if (IS_ERR(plane)) {
15126 			ret = PTR_ERR(plane);
15127 			goto fail;
15128 		}
15129 		intel_crtc->plane_ids_mask |= BIT(plane->id);
15130 	}
15131 
15132 	cursor = intel_cursor_plane_create(dev_priv, pipe);
15133 	if (IS_ERR(cursor)) {
15134 		ret = PTR_ERR(cursor);
15135 		goto fail;
15136 	}
15137 	intel_crtc->plane_ids_mask |= BIT(cursor->id);
15138 
15139 	if (HAS_GMCH(dev_priv)) {
15140 		if (IS_CHERRYVIEW(dev_priv) ||
15141 		    IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
15142 			funcs = &g4x_crtc_funcs;
15143 		else if (IS_GEN(dev_priv, 4))
15144 			funcs = &i965_crtc_funcs;
15145 		else if (IS_I945GM(dev_priv))
15146 			funcs = &i945gm_crtc_funcs;
15147 		else if (IS_GEN(dev_priv, 3))
15148 			funcs = &i915_crtc_funcs;
15149 		else
15150 			funcs = &i8xx_crtc_funcs;
15151 	} else {
15152 		if (INTEL_GEN(dev_priv) >= 8)
15153 			funcs = &bdw_crtc_funcs;
15154 		else
15155 			funcs = &ilk_crtc_funcs;
15156 	}
15157 
15158 	ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
15159 					&primary->base, &cursor->base,
15160 					funcs, "pipe %c", pipe_name(pipe));
15161 	if (ret)
15162 		goto fail;
15163 
15164 	intel_crtc->pipe = pipe;
15165 
15166 	/* initialize shared scalers */
15167 	intel_crtc_init_scalers(intel_crtc, crtc_state);
15168 
15169 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) ||
15170 	       dev_priv->pipe_to_crtc_mapping[pipe] != NULL);
15171 	dev_priv->pipe_to_crtc_mapping[pipe] = intel_crtc;
15172 
15173 	if (INTEL_GEN(dev_priv) < 9) {
15174 		enum i9xx_plane_id i9xx_plane = primary->i9xx_plane;
15175 
15176 		BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15177 		       dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL);
15178 		dev_priv->plane_to_crtc_mapping[i9xx_plane] = intel_crtc;
15179 	}
15180 
15181 	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
15182 
15183 	intel_color_init(intel_crtc);
15184 
15185 	WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15186 
15187 	return 0;
15188 
15189 fail:
15190 	/*
15191 	 * drm_mode_config_cleanup() will free up any
15192 	 * crtcs/planes already initialized.
15193 	 */
15194 	kfree(crtc_state);
15195 	kfree(intel_crtc);
15196 
15197 	return ret;
15198 }
15199 
15200 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
15201 				      struct drm_file *file)
15202 {
15203 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15204 	struct drm_crtc *drmmode_crtc;
15205 	struct intel_crtc *crtc;
15206 
15207 	drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
15208 	if (!drmmode_crtc)
15209 		return -ENOENT;
15210 
15211 	crtc = to_intel_crtc(drmmode_crtc);
15212 	pipe_from_crtc_id->pipe = crtc->pipe;
15213 
15214 	return 0;
15215 }
15216 
15217 static int intel_encoder_clones(struct intel_encoder *encoder)
15218 {
15219 	struct drm_device *dev = encoder->base.dev;
15220 	struct intel_encoder *source_encoder;
15221 	int index_mask = 0;
15222 	int entry = 0;
15223 
15224 	for_each_intel_encoder(dev, source_encoder) {
15225 		if (encoders_cloneable(encoder, source_encoder))
15226 			index_mask |= (1 << entry);
15227 
15228 		entry++;
15229 	}
15230 
15231 	return index_mask;
15232 }
15233 
15234 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv)
15235 {
15236 	if (!IS_MOBILE(dev_priv))
15237 		return false;
15238 
15239 	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15240 		return false;
15241 
15242 	if (IS_GEN(dev_priv, 5) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15243 		return false;
15244 
15245 	return true;
15246 }
15247 
15248 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv)
15249 {
15250 	if (INTEL_GEN(dev_priv) >= 9)
15251 		return false;
15252 
15253 	if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
15254 		return false;
15255 
15256 	if (HAS_PCH_LPT_H(dev_priv) &&
15257 	    I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15258 		return false;
15259 
15260 	/* DDI E can't be used if DDI A requires 4 lanes */
15261 	if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15262 		return false;
15263 
15264 	if (!dev_priv->vbt.int_crt_support)
15265 		return false;
15266 
15267 	return true;
15268 }
15269 
15270 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15271 {
15272 	int pps_num;
15273 	int pps_idx;
15274 
15275 	if (HAS_DDI(dev_priv))
15276 		return;
15277 	/*
15278 	 * This w/a is needed at least on CPT/PPT, but to be sure apply it
15279 	 * everywhere where registers can be write protected.
15280 	 */
15281 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15282 		pps_num = 2;
15283 	else
15284 		pps_num = 1;
15285 
15286 	for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15287 		u32 val = I915_READ(PP_CONTROL(pps_idx));
15288 
15289 		val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15290 		I915_WRITE(PP_CONTROL(pps_idx), val);
15291 	}
15292 }
15293 
15294 static void intel_pps_init(struct drm_i915_private *dev_priv)
15295 {
15296 	if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
15297 		dev_priv->pps_mmio_base = PCH_PPS_BASE;
15298 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15299 		dev_priv->pps_mmio_base = VLV_PPS_BASE;
15300 	else
15301 		dev_priv->pps_mmio_base = PPS_BASE;
15302 
15303 	intel_pps_unlock_regs_wa(dev_priv);
15304 }
15305 
15306 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
15307 {
15308 	struct intel_encoder *encoder;
15309 	bool dpd_is_edp = false;
15310 
15311 	intel_pps_init(dev_priv);
15312 
15313 	if (!HAS_DISPLAY(dev_priv))
15314 		return;
15315 
15316 	if (INTEL_GEN(dev_priv) >= 12) {
15317 		/* TODO: initialize TC ports as well */
15318 		intel_ddi_init(dev_priv, PORT_A);
15319 		intel_ddi_init(dev_priv, PORT_B);
15320 		icl_dsi_init(dev_priv);
15321 	} else if (IS_ELKHARTLAKE(dev_priv)) {
15322 		intel_ddi_init(dev_priv, PORT_A);
15323 		intel_ddi_init(dev_priv, PORT_B);
15324 		intel_ddi_init(dev_priv, PORT_C);
15325 		intel_ddi_init(dev_priv, PORT_D);
15326 		icl_dsi_init(dev_priv);
15327 	} else if (IS_GEN(dev_priv, 11)) {
15328 		intel_ddi_init(dev_priv, PORT_A);
15329 		intel_ddi_init(dev_priv, PORT_B);
15330 		intel_ddi_init(dev_priv, PORT_C);
15331 		intel_ddi_init(dev_priv, PORT_D);
15332 		intel_ddi_init(dev_priv, PORT_E);
15333 		/*
15334 		 * On some ICL SKUs port F is not present. No strap bits for
15335 		 * this, so rely on VBT.
15336 		 * Work around broken VBTs on SKUs known to have no port F.
15337 		 */
15338 		if (IS_ICL_WITH_PORT_F(dev_priv) &&
15339 		    intel_bios_is_port_present(dev_priv, PORT_F))
15340 			intel_ddi_init(dev_priv, PORT_F);
15341 
15342 		icl_dsi_init(dev_priv);
15343 	} else if (IS_GEN9_LP(dev_priv)) {
15344 		/*
15345 		 * FIXME: Broxton doesn't support port detection via the
15346 		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15347 		 * detect the ports.
15348 		 */
15349 		intel_ddi_init(dev_priv, PORT_A);
15350 		intel_ddi_init(dev_priv, PORT_B);
15351 		intel_ddi_init(dev_priv, PORT_C);
15352 
15353 		vlv_dsi_init(dev_priv);
15354 	} else if (HAS_DDI(dev_priv)) {
15355 		int found;
15356 
15357 		if (intel_ddi_crt_present(dev_priv))
15358 			intel_crt_init(dev_priv);
15359 
15360 		/*
15361 		 * Haswell uses DDI functions to detect digital outputs.
15362 		 * On SKL pre-D0 the strap isn't connected, so we assume
15363 		 * it's there.
15364 		 */
15365 		found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15366 		/* WaIgnoreDDIAStrap: skl */
15367 		if (found || IS_GEN9_BC(dev_priv))
15368 			intel_ddi_init(dev_priv, PORT_A);
15369 
15370 		/* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP
15371 		 * register */
15372 		found = I915_READ(SFUSE_STRAP);
15373 
15374 		if (found & SFUSE_STRAP_DDIB_DETECTED)
15375 			intel_ddi_init(dev_priv, PORT_B);
15376 		if (found & SFUSE_STRAP_DDIC_DETECTED)
15377 			intel_ddi_init(dev_priv, PORT_C);
15378 		if (found & SFUSE_STRAP_DDID_DETECTED)
15379 			intel_ddi_init(dev_priv, PORT_D);
15380 		if (found & SFUSE_STRAP_DDIF_DETECTED)
15381 			intel_ddi_init(dev_priv, PORT_F);
15382 		/*
15383 		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15384 		 */
15385 		if (IS_GEN9_BC(dev_priv) &&
15386 		    intel_bios_is_port_present(dev_priv, PORT_E))
15387 			intel_ddi_init(dev_priv, PORT_E);
15388 
15389 	} else if (HAS_PCH_SPLIT(dev_priv)) {
15390 		int found;
15391 
15392 		/*
15393 		 * intel_edp_init_connector() depends on this completing first,
15394 		 * to prevent the registration of both eDP and LVDS and the
15395 		 * incorrect sharing of the PPS.
15396 		 */
15397 		intel_lvds_init(dev_priv);
15398 		intel_crt_init(dev_priv);
15399 
15400 		dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
15401 
15402 		if (ilk_has_edp_a(dev_priv))
15403 			intel_dp_init(dev_priv, DP_A, PORT_A);
15404 
15405 		if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15406 			/* PCH SDVOB multiplex with HDMIB */
15407 			found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
15408 			if (!found)
15409 				intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
15410 			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15411 				intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
15412 		}
15413 
15414 		if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15415 			intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
15416 
15417 		if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15418 			intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
15419 
15420 		if (I915_READ(PCH_DP_C) & DP_DETECTED)
15421 			intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
15422 
15423 		if (I915_READ(PCH_DP_D) & DP_DETECTED)
15424 			intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
15425 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15426 		bool has_edp, has_port;
15427 
15428 		if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support)
15429 			intel_crt_init(dev_priv);
15430 
15431 		/*
15432 		 * The DP_DETECTED bit is the latched state of the DDC
15433 		 * SDA pin at boot. However since eDP doesn't require DDC
15434 		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15435 		 * eDP ports may have been muxed to an alternate function.
15436 		 * Thus we can't rely on the DP_DETECTED bit alone to detect
15437 		 * eDP ports. Consult the VBT as well as DP_DETECTED to
15438 		 * detect eDP ports.
15439 		 *
15440 		 * Sadly the straps seem to be missing sometimes even for HDMI
15441 		 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15442 		 * and VBT for the presence of the port. Additionally we can't
15443 		 * trust the port type the VBT declares as we've seen at least
15444 		 * HDMI ports that the VBT claim are DP or eDP.
15445 		 */
15446 		has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
15447 		has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15448 		if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15449 			has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
15450 		if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15451 			intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
15452 
15453 		has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
15454 		has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15455 		if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15456 			has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
15457 		if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15458 			intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
15459 
15460 		if (IS_CHERRYVIEW(dev_priv)) {
15461 			/*
15462 			 * eDP not supported on port D,
15463 			 * so no need to worry about it
15464 			 */
15465 			has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15466 			if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15467 				intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
15468 			if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15469 				intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
15470 		}
15471 
15472 		vlv_dsi_init(dev_priv);
15473 	} else if (IS_PINEVIEW(dev_priv)) {
15474 		intel_lvds_init(dev_priv);
15475 		intel_crt_init(dev_priv);
15476 	} else if (IS_GEN_RANGE(dev_priv, 3, 4)) {
15477 		bool found = false;
15478 
15479 		if (IS_MOBILE(dev_priv))
15480 			intel_lvds_init(dev_priv);
15481 
15482 		intel_crt_init(dev_priv);
15483 
15484 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15485 			DRM_DEBUG_KMS("probing SDVOB\n");
15486 			found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
15487 			if (!found && IS_G4X(dev_priv)) {
15488 				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15489 				intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
15490 			}
15491 
15492 			if (!found && IS_G4X(dev_priv))
15493 				intel_dp_init(dev_priv, DP_B, PORT_B);
15494 		}
15495 
15496 		/* Before G4X SDVOC doesn't have its own detect register */
15497 
15498 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15499 			DRM_DEBUG_KMS("probing SDVOC\n");
15500 			found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
15501 		}
15502 
15503 		if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15504 
15505 			if (IS_G4X(dev_priv)) {
15506 				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15507 				intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
15508 			}
15509 			if (IS_G4X(dev_priv))
15510 				intel_dp_init(dev_priv, DP_C, PORT_C);
15511 		}
15512 
15513 		if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
15514 			intel_dp_init(dev_priv, DP_D, PORT_D);
15515 
15516 		if (SUPPORTS_TV(dev_priv))
15517 			intel_tv_init(dev_priv);
15518 	} else if (IS_GEN(dev_priv, 2)) {
15519 		if (IS_I85X(dev_priv))
15520 			intel_lvds_init(dev_priv);
15521 
15522 		intel_crt_init(dev_priv);
15523 		intel_dvo_init(dev_priv);
15524 	}
15525 
15526 	intel_psr_init(dev_priv);
15527 
15528 	for_each_intel_encoder(&dev_priv->drm, encoder) {
15529 		encoder->base.possible_crtcs = encoder->crtc_mask;
15530 		encoder->base.possible_clones =
15531 			intel_encoder_clones(encoder);
15532 	}
15533 
15534 	intel_init_pch_refclk(dev_priv);
15535 
15536 	drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
15537 }
15538 
15539 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15540 {
15541 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15542 
15543 	drm_framebuffer_cleanup(fb);
15544 	intel_frontbuffer_put(intel_fb->frontbuffer);
15545 
15546 	kfree(intel_fb);
15547 }
15548 
15549 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15550 						struct drm_file *file,
15551 						unsigned int *handle)
15552 {
15553 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15554 
15555 	if (obj->userptr.mm) {
15556 		DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15557 		return -EINVAL;
15558 	}
15559 
15560 	return drm_gem_handle_create(file, &obj->base, handle);
15561 }
15562 
15563 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15564 					struct drm_file *file,
15565 					unsigned flags, unsigned color,
15566 					struct drm_clip_rect *clips,
15567 					unsigned num_clips)
15568 {
15569 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15570 
15571 	i915_gem_object_flush_if_display(obj);
15572 	intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
15573 
15574 	return 0;
15575 }
15576 
15577 static const struct drm_framebuffer_funcs intel_fb_funcs = {
15578 	.destroy = intel_user_framebuffer_destroy,
15579 	.create_handle = intel_user_framebuffer_create_handle,
15580 	.dirty = intel_user_framebuffer_dirty,
15581 };
15582 
15583 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
15584 				  struct drm_i915_gem_object *obj,
15585 				  struct drm_mode_fb_cmd2 *mode_cmd)
15586 {
15587 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
15588 	struct drm_framebuffer *fb = &intel_fb->base;
15589 	u32 max_stride;
15590 	unsigned int tiling, stride;
15591 	int ret = -EINVAL;
15592 	int i;
15593 
15594 	intel_fb->frontbuffer = intel_frontbuffer_get(obj);
15595 	if (!intel_fb->frontbuffer)
15596 		return -ENOMEM;
15597 
15598 	i915_gem_object_lock(obj);
15599 	tiling = i915_gem_object_get_tiling(obj);
15600 	stride = i915_gem_object_get_stride(obj);
15601 	i915_gem_object_unlock(obj);
15602 
15603 	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15604 		/*
15605 		 * If there's a fence, enforce that
15606 		 * the fb modifier and tiling mode match.
15607 		 */
15608 		if (tiling != I915_TILING_NONE &&
15609 		    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15610 			DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
15611 			goto err;
15612 		}
15613 	} else {
15614 		if (tiling == I915_TILING_X) {
15615 			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15616 		} else if (tiling == I915_TILING_Y) {
15617 			DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
15618 			goto err;
15619 		}
15620 	}
15621 
15622 	if (!drm_any_plane_has_format(&dev_priv->drm,
15623 				      mode_cmd->pixel_format,
15624 				      mode_cmd->modifier[0])) {
15625 		struct drm_format_name_buf format_name;
15626 
15627 		DRM_DEBUG_KMS("unsupported pixel format %s / modifier 0x%llx\n",
15628 			      drm_get_format_name(mode_cmd->pixel_format,
15629 						  &format_name),
15630 			      mode_cmd->modifier[0]);
15631 		goto err;
15632 	}
15633 
15634 	/*
15635 	 * gen2/3 display engine uses the fence if present,
15636 	 * so the tiling mode must match the fb modifier exactly.
15637 	 */
15638 	if (INTEL_GEN(dev_priv) < 4 &&
15639 	    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15640 		DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
15641 		goto err;
15642 	}
15643 
15644 	max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format,
15645 					 mode_cmd->modifier[0]);
15646 	if (mode_cmd->pitches[0] > max_stride) {
15647 		DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
15648 			      mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
15649 			      "tiled" : "linear",
15650 			      mode_cmd->pitches[0], max_stride);
15651 		goto err;
15652 	}
15653 
15654 	/*
15655 	 * If there's a fence, enforce that
15656 	 * the fb pitch and fence stride match.
15657 	 */
15658 	if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
15659 		DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
15660 			      mode_cmd->pitches[0], stride);
15661 		goto err;
15662 	}
15663 
15664 	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15665 	if (mode_cmd->offsets[0] != 0)
15666 		goto err;
15667 
15668 	drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
15669 
15670 	for (i = 0; i < fb->format->num_planes; i++) {
15671 		u32 stride_alignment;
15672 
15673 		if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
15674 			DRM_DEBUG_KMS("bad plane %d handle\n", i);
15675 			goto err;
15676 		}
15677 
15678 		stride_alignment = intel_fb_stride_alignment(fb, i);
15679 
15680 		/*
15681 		 * Display WA #0531: skl,bxt,kbl,glk
15682 		 *
15683 		 * Render decompression and plane width > 3840
15684 		 * combined with horizontal panning requires the
15685 		 * plane stride to be a multiple of 4. We'll just
15686 		 * require the entire fb to accommodate that to avoid
15687 		 * potential runtime errors at plane configuration time.
15688 		 */
15689 		if (IS_GEN(dev_priv, 9) && i == 0 && fb->width > 3840 &&
15690 		    is_ccs_modifier(fb->modifier))
15691 			stride_alignment *= 4;
15692 
15693 		if (fb->pitches[i] & (stride_alignment - 1)) {
15694 			DRM_DEBUG_KMS("plane %d pitch (%d) must be at least %u byte aligned\n",
15695 				      i, fb->pitches[i], stride_alignment);
15696 			goto err;
15697 		}
15698 
15699 		fb->obj[i] = &obj->base;
15700 	}
15701 
15702 	ret = intel_fill_fb_info(dev_priv, fb);
15703 	if (ret)
15704 		goto err;
15705 
15706 	ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
15707 	if (ret) {
15708 		DRM_ERROR("framebuffer init failed %d\n", ret);
15709 		goto err;
15710 	}
15711 
15712 	return 0;
15713 
15714 err:
15715 	intel_frontbuffer_put(intel_fb->frontbuffer);
15716 	return ret;
15717 }
15718 
15719 static struct drm_framebuffer *
15720 intel_user_framebuffer_create(struct drm_device *dev,
15721 			      struct drm_file *filp,
15722 			      const struct drm_mode_fb_cmd2 *user_mode_cmd)
15723 {
15724 	struct drm_framebuffer *fb;
15725 	struct drm_i915_gem_object *obj;
15726 	struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15727 
15728 	obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15729 	if (!obj)
15730 		return ERR_PTR(-ENOENT);
15731 
15732 	fb = intel_framebuffer_create(obj, &mode_cmd);
15733 	i915_gem_object_put(obj);
15734 
15735 	return fb;
15736 }
15737 
15738 static void intel_atomic_state_free(struct drm_atomic_state *state)
15739 {
15740 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
15741 
15742 	drm_atomic_state_default_release(state);
15743 
15744 	i915_sw_fence_fini(&intel_state->commit_ready);
15745 
15746 	kfree(state);
15747 }
15748 
15749 static enum drm_mode_status
15750 intel_mode_valid(struct drm_device *dev,
15751 		 const struct drm_display_mode *mode)
15752 {
15753 	struct drm_i915_private *dev_priv = to_i915(dev);
15754 	int hdisplay_max, htotal_max;
15755 	int vdisplay_max, vtotal_max;
15756 
15757 	/*
15758 	 * Can't reject DBLSCAN here because Xorg ddxen can add piles
15759 	 * of DBLSCAN modes to the output's mode list when they detect
15760 	 * the scaling mode property on the connector. And they don't
15761 	 * ask the kernel to validate those modes in any way until
15762 	 * modeset time at which point the client gets a protocol error.
15763 	 * So in order to not upset those clients we silently ignore the
15764 	 * DBLSCAN flag on such connectors. For other connectors we will
15765 	 * reject modes with the DBLSCAN flag in encoder->compute_config().
15766 	 * And we always reject DBLSCAN modes in connector->mode_valid()
15767 	 * as we never want such modes on the connector's mode list.
15768 	 */
15769 
15770 	if (mode->vscan > 1)
15771 		return MODE_NO_VSCAN;
15772 
15773 	if (mode->flags & DRM_MODE_FLAG_HSKEW)
15774 		return MODE_H_ILLEGAL;
15775 
15776 	if (mode->flags & (DRM_MODE_FLAG_CSYNC |
15777 			   DRM_MODE_FLAG_NCSYNC |
15778 			   DRM_MODE_FLAG_PCSYNC))
15779 		return MODE_HSYNC;
15780 
15781 	if (mode->flags & (DRM_MODE_FLAG_BCAST |
15782 			   DRM_MODE_FLAG_PIXMUX |
15783 			   DRM_MODE_FLAG_CLKDIV2))
15784 		return MODE_BAD;
15785 
15786 	if (INTEL_GEN(dev_priv) >= 9 ||
15787 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
15788 		hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */
15789 		vdisplay_max = 4096;
15790 		htotal_max = 8192;
15791 		vtotal_max = 8192;
15792 	} else if (INTEL_GEN(dev_priv) >= 3) {
15793 		hdisplay_max = 4096;
15794 		vdisplay_max = 4096;
15795 		htotal_max = 8192;
15796 		vtotal_max = 8192;
15797 	} else {
15798 		hdisplay_max = 2048;
15799 		vdisplay_max = 2048;
15800 		htotal_max = 4096;
15801 		vtotal_max = 4096;
15802 	}
15803 
15804 	if (mode->hdisplay > hdisplay_max ||
15805 	    mode->hsync_start > htotal_max ||
15806 	    mode->hsync_end > htotal_max ||
15807 	    mode->htotal > htotal_max)
15808 		return MODE_H_ILLEGAL;
15809 
15810 	if (mode->vdisplay > vdisplay_max ||
15811 	    mode->vsync_start > vtotal_max ||
15812 	    mode->vsync_end > vtotal_max ||
15813 	    mode->vtotal > vtotal_max)
15814 		return MODE_V_ILLEGAL;
15815 
15816 	return MODE_OK;
15817 }
15818 
15819 static const struct drm_mode_config_funcs intel_mode_funcs = {
15820 	.fb_create = intel_user_framebuffer_create,
15821 	.get_format_info = intel_get_format_info,
15822 	.output_poll_changed = intel_fbdev_output_poll_changed,
15823 	.mode_valid = intel_mode_valid,
15824 	.atomic_check = intel_atomic_check,
15825 	.atomic_commit = intel_atomic_commit,
15826 	.atomic_state_alloc = intel_atomic_state_alloc,
15827 	.atomic_state_clear = intel_atomic_state_clear,
15828 	.atomic_state_free = intel_atomic_state_free,
15829 };
15830 
15831 /**
15832  * intel_init_display_hooks - initialize the display modesetting hooks
15833  * @dev_priv: device private
15834  */
15835 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15836 {
15837 	intel_init_cdclk_hooks(dev_priv);
15838 
15839 	if (INTEL_GEN(dev_priv) >= 9) {
15840 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15841 		dev_priv->display.get_initial_plane_config =
15842 			skylake_get_initial_plane_config;
15843 		dev_priv->display.crtc_compute_clock =
15844 			haswell_crtc_compute_clock;
15845 		dev_priv->display.crtc_enable = haswell_crtc_enable;
15846 		dev_priv->display.crtc_disable = haswell_crtc_disable;
15847 	} else if (HAS_DDI(dev_priv)) {
15848 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15849 		dev_priv->display.get_initial_plane_config =
15850 			i9xx_get_initial_plane_config;
15851 		dev_priv->display.crtc_compute_clock =
15852 			haswell_crtc_compute_clock;
15853 		dev_priv->display.crtc_enable = haswell_crtc_enable;
15854 		dev_priv->display.crtc_disable = haswell_crtc_disable;
15855 	} else if (HAS_PCH_SPLIT(dev_priv)) {
15856 		dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15857 		dev_priv->display.get_initial_plane_config =
15858 			i9xx_get_initial_plane_config;
15859 		dev_priv->display.crtc_compute_clock =
15860 			ironlake_crtc_compute_clock;
15861 		dev_priv->display.crtc_enable = ironlake_crtc_enable;
15862 		dev_priv->display.crtc_disable = ironlake_crtc_disable;
15863 	} else if (IS_CHERRYVIEW(dev_priv)) {
15864 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15865 		dev_priv->display.get_initial_plane_config =
15866 			i9xx_get_initial_plane_config;
15867 		dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15868 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
15869 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15870 	} else if (IS_VALLEYVIEW(dev_priv)) {
15871 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15872 		dev_priv->display.get_initial_plane_config =
15873 			i9xx_get_initial_plane_config;
15874 		dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15875 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
15876 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15877 	} else if (IS_G4X(dev_priv)) {
15878 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15879 		dev_priv->display.get_initial_plane_config =
15880 			i9xx_get_initial_plane_config;
15881 		dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15882 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15883 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15884 	} else if (IS_PINEVIEW(dev_priv)) {
15885 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15886 		dev_priv->display.get_initial_plane_config =
15887 			i9xx_get_initial_plane_config;
15888 		dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15889 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15890 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15891 	} else if (!IS_GEN(dev_priv, 2)) {
15892 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15893 		dev_priv->display.get_initial_plane_config =
15894 			i9xx_get_initial_plane_config;
15895 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15896 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15897 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15898 	} else {
15899 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15900 		dev_priv->display.get_initial_plane_config =
15901 			i9xx_get_initial_plane_config;
15902 		dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15903 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15904 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15905 	}
15906 
15907 	if (IS_GEN(dev_priv, 5)) {
15908 		dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15909 	} else if (IS_GEN(dev_priv, 6)) {
15910 		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15911 	} else if (IS_IVYBRIDGE(dev_priv)) {
15912 		/* FIXME: detect B0+ stepping and use auto training */
15913 		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15914 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15915 		dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15916 	}
15917 
15918 	if (INTEL_GEN(dev_priv) >= 9)
15919 		dev_priv->display.update_crtcs = skl_update_crtcs;
15920 	else
15921 		dev_priv->display.update_crtcs = intel_update_crtcs;
15922 }
15923 
15924 static i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
15925 {
15926 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15927 		return VLV_VGACNTRL;
15928 	else if (INTEL_GEN(dev_priv) >= 5)
15929 		return CPU_VGACNTRL;
15930 	else
15931 		return VGACNTRL;
15932 }
15933 
15934 /* Disable the VGA plane that we never use */
15935 static void i915_disable_vga(struct drm_i915_private *dev_priv)
15936 {
15937 	struct pci_dev *pdev = dev_priv->drm.pdev;
15938 	u8 sr1;
15939 	i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
15940 
15941 	/* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15942 	vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
15943 	outb(SR01, VGA_SR_INDEX);
15944 	sr1 = inb(VGA_SR_DATA);
15945 	outb(sr1 | 1<<5, VGA_SR_DATA);
15946 	vga_put(pdev, VGA_RSRC_LEGACY_IO);
15947 	udelay(300);
15948 
15949 	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15950 	POSTING_READ(vga_reg);
15951 }
15952 
15953 void intel_modeset_init_hw(struct drm_device *dev)
15954 {
15955 	struct drm_i915_private *dev_priv = to_i915(dev);
15956 
15957 	intel_update_cdclk(dev_priv);
15958 	intel_dump_cdclk_state(&dev_priv->cdclk.hw, "Current CDCLK");
15959 	dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw;
15960 }
15961 
15962 /*
15963  * Calculate what we think the watermarks should be for the state we've read
15964  * out of the hardware and then immediately program those watermarks so that
15965  * we ensure the hardware settings match our internal state.
15966  *
15967  * We can calculate what we think WM's should be by creating a duplicate of the
15968  * current state (which was constructed during hardware readout) and running it
15969  * through the atomic check code to calculate new watermark values in the
15970  * state object.
15971  */
15972 static void sanitize_watermarks(struct drm_device *dev)
15973 {
15974 	struct drm_i915_private *dev_priv = to_i915(dev);
15975 	struct drm_atomic_state *state;
15976 	struct intel_atomic_state *intel_state;
15977 	struct intel_crtc *crtc;
15978 	struct intel_crtc_state *crtc_state;
15979 	struct drm_modeset_acquire_ctx ctx;
15980 	int ret;
15981 	int i;
15982 
15983 	/* Only supported on platforms that use atomic watermark design */
15984 	if (!dev_priv->display.optimize_watermarks)
15985 		return;
15986 
15987 	/*
15988 	 * We need to hold connection_mutex before calling duplicate_state so
15989 	 * that the connector loop is protected.
15990 	 */
15991 	drm_modeset_acquire_init(&ctx, 0);
15992 retry:
15993 	ret = drm_modeset_lock_all_ctx(dev, &ctx);
15994 	if (ret == -EDEADLK) {
15995 		drm_modeset_backoff(&ctx);
15996 		goto retry;
15997 	} else if (WARN_ON(ret)) {
15998 		goto fail;
15999 	}
16000 
16001 	state = drm_atomic_helper_duplicate_state(dev, &ctx);
16002 	if (WARN_ON(IS_ERR(state)))
16003 		goto fail;
16004 
16005 	intel_state = to_intel_atomic_state(state);
16006 
16007 	/*
16008 	 * Hardware readout is the only time we don't want to calculate
16009 	 * intermediate watermarks (since we don't trust the current
16010 	 * watermarks).
16011 	 */
16012 	if (!HAS_GMCH(dev_priv))
16013 		intel_state->skip_intermediate_wm = true;
16014 
16015 	ret = intel_atomic_check(dev, state);
16016 	if (ret) {
16017 		/*
16018 		 * If we fail here, it means that the hardware appears to be
16019 		 * programmed in a way that shouldn't be possible, given our
16020 		 * understanding of watermark requirements.  This might mean a
16021 		 * mistake in the hardware readout code or a mistake in the
16022 		 * watermark calculations for a given platform.  Raise a WARN
16023 		 * so that this is noticeable.
16024 		 *
16025 		 * If this actually happens, we'll have to just leave the
16026 		 * BIOS-programmed watermarks untouched and hope for the best.
16027 		 */
16028 		WARN(true, "Could not determine valid watermarks for inherited state\n");
16029 		goto put_state;
16030 	}
16031 
16032 	/* Write calculated watermark values back */
16033 	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
16034 		crtc_state->wm.need_postvbl_update = true;
16035 		dev_priv->display.optimize_watermarks(intel_state, crtc_state);
16036 
16037 		to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
16038 	}
16039 
16040 put_state:
16041 	drm_atomic_state_put(state);
16042 fail:
16043 	drm_modeset_drop_locks(&ctx);
16044 	drm_modeset_acquire_fini(&ctx);
16045 }
16046 
16047 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv)
16048 {
16049 	if (IS_GEN(dev_priv, 5)) {
16050 		u32 fdi_pll_clk =
16051 			I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK;
16052 
16053 		dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000;
16054 	} else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) {
16055 		dev_priv->fdi_pll_freq = 270000;
16056 	} else {
16057 		return;
16058 	}
16059 
16060 	DRM_DEBUG_DRIVER("FDI PLL freq=%d\n", dev_priv->fdi_pll_freq);
16061 }
16062 
16063 static int intel_initial_commit(struct drm_device *dev)
16064 {
16065 	struct drm_atomic_state *state = NULL;
16066 	struct drm_modeset_acquire_ctx ctx;
16067 	struct drm_crtc *crtc;
16068 	struct drm_crtc_state *crtc_state;
16069 	int ret = 0;
16070 
16071 	state = drm_atomic_state_alloc(dev);
16072 	if (!state)
16073 		return -ENOMEM;
16074 
16075 	drm_modeset_acquire_init(&ctx, 0);
16076 
16077 retry:
16078 	state->acquire_ctx = &ctx;
16079 
16080 	drm_for_each_crtc(crtc, dev) {
16081 		crtc_state = drm_atomic_get_crtc_state(state, crtc);
16082 		if (IS_ERR(crtc_state)) {
16083 			ret = PTR_ERR(crtc_state);
16084 			goto out;
16085 		}
16086 
16087 		if (crtc_state->active) {
16088 			ret = drm_atomic_add_affected_planes(state, crtc);
16089 			if (ret)
16090 				goto out;
16091 
16092 			/*
16093 			 * FIXME hack to force a LUT update to avoid the
16094 			 * plane update forcing the pipe gamma on without
16095 			 * having a proper LUT loaded. Remove once we
16096 			 * have readout for pipe gamma enable.
16097 			 */
16098 			crtc_state->color_mgmt_changed = true;
16099 		}
16100 	}
16101 
16102 	ret = drm_atomic_commit(state);
16103 
16104 out:
16105 	if (ret == -EDEADLK) {
16106 		drm_atomic_state_clear(state);
16107 		drm_modeset_backoff(&ctx);
16108 		goto retry;
16109 	}
16110 
16111 	drm_atomic_state_put(state);
16112 
16113 	drm_modeset_drop_locks(&ctx);
16114 	drm_modeset_acquire_fini(&ctx);
16115 
16116 	return ret;
16117 }
16118 
16119 int intel_modeset_init(struct drm_device *dev)
16120 {
16121 	struct drm_i915_private *dev_priv = to_i915(dev);
16122 	enum pipe pipe;
16123 	struct intel_crtc *crtc;
16124 	int ret;
16125 
16126 	dev_priv->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
16127 
16128 	drm_mode_config_init(dev);
16129 
16130 	ret = intel_bw_init(dev_priv);
16131 	if (ret)
16132 		return ret;
16133 
16134 	dev->mode_config.min_width = 0;
16135 	dev->mode_config.min_height = 0;
16136 
16137 	dev->mode_config.preferred_depth = 24;
16138 	dev->mode_config.prefer_shadow = 1;
16139 
16140 	dev->mode_config.allow_fb_modifiers = true;
16141 
16142 	dev->mode_config.funcs = &intel_mode_funcs;
16143 
16144 	init_llist_head(&dev_priv->atomic_helper.free_list);
16145 	INIT_WORK(&dev_priv->atomic_helper.free_work,
16146 		  intel_atomic_helper_free_state_worker);
16147 
16148 	intel_init_quirks(dev_priv);
16149 
16150 	intel_fbc_init(dev_priv);
16151 
16152 	intel_init_pm(dev_priv);
16153 
16154 	/*
16155 	 * There may be no VBT; and if the BIOS enabled SSC we can
16156 	 * just keep using it to avoid unnecessary flicker.  Whereas if the
16157 	 * BIOS isn't using it, don't assume it will work even if the VBT
16158 	 * indicates as much.
16159 	 */
16160 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
16161 		bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16162 					    DREF_SSC1_ENABLE);
16163 
16164 		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16165 			DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16166 				     bios_lvds_use_ssc ? "en" : "dis",
16167 				     dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16168 			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16169 		}
16170 	}
16171 
16172 	/*
16173 	 * Maximum framebuffer dimensions, chosen to match
16174 	 * the maximum render engine surface size on gen4+.
16175 	 */
16176 	if (INTEL_GEN(dev_priv) >= 7) {
16177 		dev->mode_config.max_width = 16384;
16178 		dev->mode_config.max_height = 16384;
16179 	} else if (INTEL_GEN(dev_priv) >= 4) {
16180 		dev->mode_config.max_width = 8192;
16181 		dev->mode_config.max_height = 8192;
16182 	} else if (IS_GEN(dev_priv, 3)) {
16183 		dev->mode_config.max_width = 4096;
16184 		dev->mode_config.max_height = 4096;
16185 	} else {
16186 		dev->mode_config.max_width = 2048;
16187 		dev->mode_config.max_height = 2048;
16188 	}
16189 
16190 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
16191 		dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
16192 		dev->mode_config.cursor_height = 1023;
16193 	} else if (IS_GEN(dev_priv, 2)) {
16194 		dev->mode_config.cursor_width = 64;
16195 		dev->mode_config.cursor_height = 64;
16196 	} else {
16197 		dev->mode_config.cursor_width = 256;
16198 		dev->mode_config.cursor_height = 256;
16199 	}
16200 
16201 	DRM_DEBUG_KMS("%d display pipe%s available.\n",
16202 		      INTEL_INFO(dev_priv)->num_pipes,
16203 		      INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
16204 
16205 	for_each_pipe(dev_priv, pipe) {
16206 		ret = intel_crtc_init(dev_priv, pipe);
16207 		if (ret) {
16208 			drm_mode_config_cleanup(dev);
16209 			return ret;
16210 		}
16211 	}
16212 
16213 	intel_shared_dpll_init(dev);
16214 	intel_update_fdi_pll_freq(dev_priv);
16215 
16216 	intel_update_czclk(dev_priv);
16217 	intel_modeset_init_hw(dev);
16218 
16219 	intel_hdcp_component_init(dev_priv);
16220 
16221 	if (dev_priv->max_cdclk_freq == 0)
16222 		intel_update_max_cdclk(dev_priv);
16223 
16224 	/* Just disable it once at startup */
16225 	i915_disable_vga(dev_priv);
16226 	intel_setup_outputs(dev_priv);
16227 
16228 	drm_modeset_lock_all(dev);
16229 	intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
16230 	drm_modeset_unlock_all(dev);
16231 
16232 	for_each_intel_crtc(dev, crtc) {
16233 		struct intel_initial_plane_config plane_config = {};
16234 
16235 		if (!crtc->active)
16236 			continue;
16237 
16238 		/*
16239 		 * Note that reserving the BIOS fb up front prevents us
16240 		 * from stuffing other stolen allocations like the ring
16241 		 * on top.  This prevents some ugliness at boot time, and
16242 		 * can even allow for smooth boot transitions if the BIOS
16243 		 * fb is large enough for the active pipe configuration.
16244 		 */
16245 		dev_priv->display.get_initial_plane_config(crtc,
16246 							   &plane_config);
16247 
16248 		/*
16249 		 * If the fb is shared between multiple heads, we'll
16250 		 * just get the first one.
16251 		 */
16252 		intel_find_initial_plane_obj(crtc, &plane_config);
16253 	}
16254 
16255 	/*
16256 	 * Make sure hardware watermarks really match the state we read out.
16257 	 * Note that we need to do this after reconstructing the BIOS fb's
16258 	 * since the watermark calculation done here will use pstate->fb.
16259 	 */
16260 	if (!HAS_GMCH(dev_priv))
16261 		sanitize_watermarks(dev);
16262 
16263 	/*
16264 	 * Force all active planes to recompute their states. So that on
16265 	 * mode_setcrtc after probe, all the intel_plane_state variables
16266 	 * are already calculated and there is no assert_plane warnings
16267 	 * during bootup.
16268 	 */
16269 	ret = intel_initial_commit(dev);
16270 	if (ret)
16271 		DRM_DEBUG_KMS("Initial commit in probe failed.\n");
16272 
16273 	return 0;
16274 }
16275 
16276 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
16277 {
16278 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16279 	/* 640x480@60Hz, ~25175 kHz */
16280 	struct dpll clock = {
16281 		.m1 = 18,
16282 		.m2 = 7,
16283 		.p1 = 13,
16284 		.p2 = 4,
16285 		.n = 2,
16286 	};
16287 	u32 dpll, fp;
16288 	int i;
16289 
16290 	WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154);
16291 
16292 	DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
16293 		      pipe_name(pipe), clock.vco, clock.dot);
16294 
16295 	fp = i9xx_dpll_compute_fp(&clock);
16296 	dpll = DPLL_DVO_2X_MODE |
16297 		DPLL_VGA_MODE_DIS |
16298 		((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
16299 		PLL_P2_DIVIDE_BY_4 |
16300 		PLL_REF_INPUT_DREFCLK |
16301 		DPLL_VCO_ENABLE;
16302 
16303 	I915_WRITE(FP0(pipe), fp);
16304 	I915_WRITE(FP1(pipe), fp);
16305 
16306 	I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
16307 	I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
16308 	I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
16309 	I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
16310 	I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
16311 	I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
16312 	I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
16313 
16314 	/*
16315 	 * Apparently we need to have VGA mode enabled prior to changing
16316 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
16317 	 * dividers, even though the register value does change.
16318 	 */
16319 	I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
16320 	I915_WRITE(DPLL(pipe), dpll);
16321 
16322 	/* Wait for the clocks to stabilize. */
16323 	POSTING_READ(DPLL(pipe));
16324 	udelay(150);
16325 
16326 	/* The pixel multiplier can only be updated once the
16327 	 * DPLL is enabled and the clocks are stable.
16328 	 *
16329 	 * So write it again.
16330 	 */
16331 	I915_WRITE(DPLL(pipe), dpll);
16332 
16333 	/* We do this three times for luck */
16334 	for (i = 0; i < 3 ; i++) {
16335 		I915_WRITE(DPLL(pipe), dpll);
16336 		POSTING_READ(DPLL(pipe));
16337 		udelay(150); /* wait for warmup */
16338 	}
16339 
16340 	I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
16341 	POSTING_READ(PIPECONF(pipe));
16342 
16343 	intel_wait_for_pipe_scanline_moving(crtc);
16344 }
16345 
16346 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
16347 {
16348 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16349 
16350 	DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n",
16351 		      pipe_name(pipe));
16352 
16353 	WARN_ON(I915_READ(DSPCNTR(PLANE_A)) & DISPLAY_PLANE_ENABLE);
16354 	WARN_ON(I915_READ(DSPCNTR(PLANE_B)) & DISPLAY_PLANE_ENABLE);
16355 	WARN_ON(I915_READ(DSPCNTR(PLANE_C)) & DISPLAY_PLANE_ENABLE);
16356 	WARN_ON(I915_READ(CURCNTR(PIPE_A)) & MCURSOR_MODE);
16357 	WARN_ON(I915_READ(CURCNTR(PIPE_B)) & MCURSOR_MODE);
16358 
16359 	I915_WRITE(PIPECONF(pipe), 0);
16360 	POSTING_READ(PIPECONF(pipe));
16361 
16362 	intel_wait_for_pipe_scanline_stopped(crtc);
16363 
16364 	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
16365 	POSTING_READ(DPLL(pipe));
16366 }
16367 
16368 static void
16369 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
16370 {
16371 	struct intel_crtc *crtc;
16372 
16373 	if (INTEL_GEN(dev_priv) >= 4)
16374 		return;
16375 
16376 	for_each_intel_crtc(&dev_priv->drm, crtc) {
16377 		struct intel_plane *plane =
16378 			to_intel_plane(crtc->base.primary);
16379 		struct intel_crtc *plane_crtc;
16380 		enum pipe pipe;
16381 
16382 		if (!plane->get_hw_state(plane, &pipe))
16383 			continue;
16384 
16385 		if (pipe == crtc->pipe)
16386 			continue;
16387 
16388 		DRM_DEBUG_KMS("[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n",
16389 			      plane->base.base.id, plane->base.name);
16390 
16391 		plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16392 		intel_plane_disable_noatomic(plane_crtc, plane);
16393 	}
16394 }
16395 
16396 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16397 {
16398 	struct drm_device *dev = crtc->base.dev;
16399 	struct intel_encoder *encoder;
16400 
16401 	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16402 		return true;
16403 
16404 	return false;
16405 }
16406 
16407 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16408 {
16409 	struct drm_device *dev = encoder->base.dev;
16410 	struct intel_connector *connector;
16411 
16412 	for_each_connector_on_encoder(dev, &encoder->base, connector)
16413 		return connector;
16414 
16415 	return NULL;
16416 }
16417 
16418 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16419 			      enum pipe pch_transcoder)
16420 {
16421 	return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16422 		(HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
16423 }
16424 
16425 static void intel_sanitize_crtc(struct intel_crtc *crtc,
16426 				struct drm_modeset_acquire_ctx *ctx)
16427 {
16428 	struct drm_device *dev = crtc->base.dev;
16429 	struct drm_i915_private *dev_priv = to_i915(dev);
16430 	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
16431 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
16432 
16433 	/* Clear any frame start delays used for debugging left by the BIOS */
16434 	if (crtc->active && !transcoder_is_dsi(cpu_transcoder)) {
16435 		i915_reg_t reg = PIPECONF(cpu_transcoder);
16436 
16437 		I915_WRITE(reg,
16438 			   I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16439 	}
16440 
16441 	if (crtc_state->base.active) {
16442 		struct intel_plane *plane;
16443 
16444 		/* Disable everything but the primary plane */
16445 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
16446 			const struct intel_plane_state *plane_state =
16447 				to_intel_plane_state(plane->base.state);
16448 
16449 			if (plane_state->base.visible &&
16450 			    plane->base.type != DRM_PLANE_TYPE_PRIMARY)
16451 				intel_plane_disable_noatomic(crtc, plane);
16452 		}
16453 
16454 		/*
16455 		 * Disable any background color set by the BIOS, but enable the
16456 		 * gamma and CSC to match how we program our planes.
16457 		 */
16458 		if (INTEL_GEN(dev_priv) >= 9)
16459 			I915_WRITE(SKL_BOTTOM_COLOR(crtc->pipe),
16460 				   SKL_BOTTOM_COLOR_GAMMA_ENABLE |
16461 				   SKL_BOTTOM_COLOR_CSC_ENABLE);
16462 	}
16463 
16464 	/* Adjust the state of the output pipe according to whether we
16465 	 * have active connectors/encoders. */
16466 	if (crtc_state->base.active && !intel_crtc_has_encoders(crtc))
16467 		intel_crtc_disable_noatomic(&crtc->base, ctx);
16468 
16469 	if (crtc_state->base.active || HAS_GMCH(dev_priv)) {
16470 		/*
16471 		 * We start out with underrun reporting disabled to avoid races.
16472 		 * For correct bookkeeping mark this on active crtcs.
16473 		 *
16474 		 * Also on gmch platforms we dont have any hardware bits to
16475 		 * disable the underrun reporting. Which means we need to start
16476 		 * out with underrun reporting disabled also on inactive pipes,
16477 		 * since otherwise we'll complain about the garbage we read when
16478 		 * e.g. coming up after runtime pm.
16479 		 *
16480 		 * No protection against concurrent access is required - at
16481 		 * worst a fifo underrun happens which also sets this to false.
16482 		 */
16483 		crtc->cpu_fifo_underrun_disabled = true;
16484 		/*
16485 		 * We track the PCH trancoder underrun reporting state
16486 		 * within the crtc. With crtc for pipe A housing the underrun
16487 		 * reporting state for PCH transcoder A, crtc for pipe B housing
16488 		 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16489 		 * and marking underrun reporting as disabled for the non-existing
16490 		 * PCH transcoders B and C would prevent enabling the south
16491 		 * error interrupt (see cpt_can_enable_serr_int()).
16492 		 */
16493 		if (has_pch_trancoder(dev_priv, crtc->pipe))
16494 			crtc->pch_fifo_underrun_disabled = true;
16495 	}
16496 }
16497 
16498 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state)
16499 {
16500 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
16501 
16502 	/*
16503 	 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram
16504 	 * the hardware when a high res displays plugged in. DPLL P
16505 	 * divider is zero, and the pipe timings are bonkers. We'll
16506 	 * try to disable everything in that case.
16507 	 *
16508 	 * FIXME would be nice to be able to sanitize this state
16509 	 * without several WARNs, but for now let's take the easy
16510 	 * road.
16511 	 */
16512 	return IS_GEN(dev_priv, 6) &&
16513 		crtc_state->base.active &&
16514 		crtc_state->shared_dpll &&
16515 		crtc_state->port_clock == 0;
16516 }
16517 
16518 static void intel_sanitize_encoder(struct intel_encoder *encoder)
16519 {
16520 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
16521 	struct intel_connector *connector;
16522 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
16523 	struct intel_crtc_state *crtc_state = crtc ?
16524 		to_intel_crtc_state(crtc->base.state) : NULL;
16525 
16526 	/* We need to check both for a crtc link (meaning that the
16527 	 * encoder is active and trying to read from a pipe) and the
16528 	 * pipe itself being active. */
16529 	bool has_active_crtc = crtc_state &&
16530 		crtc_state->base.active;
16531 
16532 	if (crtc_state && has_bogus_dpll_config(crtc_state)) {
16533 		DRM_DEBUG_KMS("BIOS has misprogrammed the hardware. Disabling pipe %c\n",
16534 			      pipe_name(crtc->pipe));
16535 		has_active_crtc = false;
16536 	}
16537 
16538 	connector = intel_encoder_find_connector(encoder);
16539 	if (connector && !has_active_crtc) {
16540 		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16541 			      encoder->base.base.id,
16542 			      encoder->base.name);
16543 
16544 		/* Connector is active, but has no active pipe. This is
16545 		 * fallout from our resume register restoring. Disable
16546 		 * the encoder manually again. */
16547 		if (crtc_state) {
16548 			struct drm_encoder *best_encoder;
16549 
16550 			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16551 				      encoder->base.base.id,
16552 				      encoder->base.name);
16553 
16554 			/* avoid oopsing in case the hooks consult best_encoder */
16555 			best_encoder = connector->base.state->best_encoder;
16556 			connector->base.state->best_encoder = &encoder->base;
16557 
16558 			if (encoder->disable)
16559 				encoder->disable(encoder, crtc_state,
16560 						 connector->base.state);
16561 			if (encoder->post_disable)
16562 				encoder->post_disable(encoder, crtc_state,
16563 						      connector->base.state);
16564 
16565 			connector->base.state->best_encoder = best_encoder;
16566 		}
16567 		encoder->base.crtc = NULL;
16568 
16569 		/* Inconsistent output/port/pipe state happens presumably due to
16570 		 * a bug in one of the get_hw_state functions. Or someplace else
16571 		 * in our code, like the register restore mess on resume. Clamp
16572 		 * things to off as a safer default. */
16573 
16574 		connector->base.dpms = DRM_MODE_DPMS_OFF;
16575 		connector->base.encoder = NULL;
16576 	}
16577 
16578 	/* notify opregion of the sanitized encoder state */
16579 	intel_opregion_notify_encoder(encoder, connector && has_active_crtc);
16580 
16581 	if (INTEL_GEN(dev_priv) >= 11)
16582 		icl_sanitize_encoder_pll_mapping(encoder);
16583 }
16584 
16585 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
16586 {
16587 	i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16588 
16589 	if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16590 		DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16591 		i915_disable_vga(dev_priv);
16592 	}
16593 }
16594 
16595 void i915_redisable_vga(struct drm_i915_private *dev_priv)
16596 {
16597 	intel_wakeref_t wakeref;
16598 
16599 	/*
16600 	 * This function can be called both from intel_modeset_setup_hw_state or
16601 	 * at a very early point in our resume sequence, where the power well
16602 	 * structures are not yet restored. Since this function is at a very
16603 	 * paranoid "someone might have enabled VGA while we were not looking"
16604 	 * level, just check if the power well is enabled instead of trying to
16605 	 * follow the "don't touch the power well if we don't need it" policy
16606 	 * the rest of the driver uses.
16607 	 */
16608 	wakeref = intel_display_power_get_if_enabled(dev_priv,
16609 						     POWER_DOMAIN_VGA);
16610 	if (!wakeref)
16611 		return;
16612 
16613 	i915_redisable_vga_power_on(dev_priv);
16614 
16615 	intel_display_power_put(dev_priv, POWER_DOMAIN_VGA, wakeref);
16616 }
16617 
16618 /* FIXME read out full plane state for all planes */
16619 static void readout_plane_state(struct drm_i915_private *dev_priv)
16620 {
16621 	struct intel_plane *plane;
16622 	struct intel_crtc *crtc;
16623 
16624 	for_each_intel_plane(&dev_priv->drm, plane) {
16625 		struct intel_plane_state *plane_state =
16626 			to_intel_plane_state(plane->base.state);
16627 		struct intel_crtc_state *crtc_state;
16628 		enum pipe pipe = PIPE_A;
16629 		bool visible;
16630 
16631 		visible = plane->get_hw_state(plane, &pipe);
16632 
16633 		crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16634 		crtc_state = to_intel_crtc_state(crtc->base.state);
16635 
16636 		intel_set_plane_visible(crtc_state, plane_state, visible);
16637 
16638 		DRM_DEBUG_KMS("[PLANE:%d:%s] hw state readout: %s, pipe %c\n",
16639 			      plane->base.base.id, plane->base.name,
16640 			      enableddisabled(visible), pipe_name(pipe));
16641 	}
16642 
16643 	for_each_intel_crtc(&dev_priv->drm, crtc) {
16644 		struct intel_crtc_state *crtc_state =
16645 			to_intel_crtc_state(crtc->base.state);
16646 
16647 		fixup_active_planes(crtc_state);
16648 	}
16649 }
16650 
16651 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16652 {
16653 	struct drm_i915_private *dev_priv = to_i915(dev);
16654 	enum pipe pipe;
16655 	struct intel_crtc *crtc;
16656 	struct intel_encoder *encoder;
16657 	struct intel_connector *connector;
16658 	struct drm_connector_list_iter conn_iter;
16659 	int i;
16660 
16661 	dev_priv->active_crtcs = 0;
16662 
16663 	for_each_intel_crtc(dev, crtc) {
16664 		struct intel_crtc_state *crtc_state =
16665 			to_intel_crtc_state(crtc->base.state);
16666 
16667 		__drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16668 		memset(crtc_state, 0, sizeof(*crtc_state));
16669 		__drm_atomic_helper_crtc_reset(&crtc->base, &crtc_state->base);
16670 
16671 		crtc_state->base.active = crtc_state->base.enable =
16672 			dev_priv->display.get_pipe_config(crtc, crtc_state);
16673 
16674 		crtc->base.enabled = crtc_state->base.enable;
16675 		crtc->active = crtc_state->base.active;
16676 
16677 		if (crtc_state->base.active)
16678 			dev_priv->active_crtcs |= 1 << crtc->pipe;
16679 
16680 		DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16681 			      crtc->base.base.id, crtc->base.name,
16682 			      enableddisabled(crtc_state->base.active));
16683 	}
16684 
16685 	readout_plane_state(dev_priv);
16686 
16687 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16688 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16689 
16690 		pll->on = pll->info->funcs->get_hw_state(dev_priv, pll,
16691 							&pll->state.hw_state);
16692 
16693 		if (IS_ELKHARTLAKE(dev_priv) && pll->on &&
16694 		    pll->info->id == DPLL_ID_EHL_DPLL4) {
16695 			pll->wakeref = intel_display_power_get(dev_priv,
16696 							       POWER_DOMAIN_DPLL_DC_OFF);
16697 		}
16698 
16699 		pll->state.crtc_mask = 0;
16700 		for_each_intel_crtc(dev, crtc) {
16701 			struct intel_crtc_state *crtc_state =
16702 				to_intel_crtc_state(crtc->base.state);
16703 
16704 			if (crtc_state->base.active &&
16705 			    crtc_state->shared_dpll == pll)
16706 				pll->state.crtc_mask |= 1 << crtc->pipe;
16707 		}
16708 		pll->active_mask = pll->state.crtc_mask;
16709 
16710 		DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16711 			      pll->info->name, pll->state.crtc_mask, pll->on);
16712 	}
16713 
16714 	for_each_intel_encoder(dev, encoder) {
16715 		pipe = 0;
16716 
16717 		if (encoder->get_hw_state(encoder, &pipe)) {
16718 			struct intel_crtc_state *crtc_state;
16719 
16720 			crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16721 			crtc_state = to_intel_crtc_state(crtc->base.state);
16722 
16723 			encoder->base.crtc = &crtc->base;
16724 			encoder->get_config(encoder, crtc_state);
16725 		} else {
16726 			encoder->base.crtc = NULL;
16727 		}
16728 
16729 		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16730 			      encoder->base.base.id, encoder->base.name,
16731 			      enableddisabled(encoder->base.crtc),
16732 			      pipe_name(pipe));
16733 	}
16734 
16735 	drm_connector_list_iter_begin(dev, &conn_iter);
16736 	for_each_intel_connector_iter(connector, &conn_iter) {
16737 		if (connector->get_hw_state(connector)) {
16738 			connector->base.dpms = DRM_MODE_DPMS_ON;
16739 
16740 			encoder = connector->encoder;
16741 			connector->base.encoder = &encoder->base;
16742 
16743 			if (encoder->base.crtc &&
16744 			    encoder->base.crtc->state->active) {
16745 				/*
16746 				 * This has to be done during hardware readout
16747 				 * because anything calling .crtc_disable may
16748 				 * rely on the connector_mask being accurate.
16749 				 */
16750 				encoder->base.crtc->state->connector_mask |=
16751 					drm_connector_mask(&connector->base);
16752 				encoder->base.crtc->state->encoder_mask |=
16753 					drm_encoder_mask(&encoder->base);
16754 			}
16755 
16756 		} else {
16757 			connector->base.dpms = DRM_MODE_DPMS_OFF;
16758 			connector->base.encoder = NULL;
16759 		}
16760 		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16761 			      connector->base.base.id, connector->base.name,
16762 			      enableddisabled(connector->base.encoder));
16763 	}
16764 	drm_connector_list_iter_end(&conn_iter);
16765 
16766 	for_each_intel_crtc(dev, crtc) {
16767 		struct intel_bw_state *bw_state =
16768 			to_intel_bw_state(dev_priv->bw_obj.state);
16769 		struct intel_crtc_state *crtc_state =
16770 			to_intel_crtc_state(crtc->base.state);
16771 		struct intel_plane *plane;
16772 		int min_cdclk = 0;
16773 
16774 		memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16775 		if (crtc_state->base.active) {
16776 			intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
16777 			crtc->base.mode.hdisplay = crtc_state->pipe_src_w;
16778 			crtc->base.mode.vdisplay = crtc_state->pipe_src_h;
16779 			intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
16780 			WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16781 
16782 			/*
16783 			 * The initial mode needs to be set in order to keep
16784 			 * the atomic core happy. It wants a valid mode if the
16785 			 * crtc's enabled, so we do the above call.
16786 			 *
16787 			 * But we don't set all the derived state fully, hence
16788 			 * set a flag to indicate that a full recalculation is
16789 			 * needed on the next commit.
16790 			 */
16791 			crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
16792 
16793 			intel_crtc_compute_pixel_rate(crtc_state);
16794 
16795 			if (dev_priv->display.modeset_calc_cdclk) {
16796 				min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
16797 				if (WARN_ON(min_cdclk < 0))
16798 					min_cdclk = 0;
16799 			}
16800 
16801 			drm_calc_timestamping_constants(&crtc->base,
16802 							&crtc_state->base.adjusted_mode);
16803 			update_scanline_offset(crtc_state);
16804 		}
16805 
16806 		dev_priv->min_cdclk[crtc->pipe] = min_cdclk;
16807 		dev_priv->min_voltage_level[crtc->pipe] =
16808 			crtc_state->min_voltage_level;
16809 
16810 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
16811 			const struct intel_plane_state *plane_state =
16812 				to_intel_plane_state(plane->base.state);
16813 
16814 			/*
16815 			 * FIXME don't have the fb yet, so can't
16816 			 * use intel_plane_data_rate() :(
16817 			 */
16818 			if (plane_state->base.visible)
16819 				crtc_state->data_rate[plane->id] =
16820 					4 * crtc_state->pixel_rate;
16821 		}
16822 
16823 		intel_bw_crtc_update(bw_state, crtc_state);
16824 
16825 		intel_pipe_config_sanity_check(dev_priv, crtc_state);
16826 	}
16827 }
16828 
16829 static void
16830 get_encoder_power_domains(struct drm_i915_private *dev_priv)
16831 {
16832 	struct intel_encoder *encoder;
16833 
16834 	for_each_intel_encoder(&dev_priv->drm, encoder) {
16835 		struct intel_crtc_state *crtc_state;
16836 
16837 		if (!encoder->get_power_domains)
16838 			continue;
16839 
16840 		/*
16841 		 * MST-primary and inactive encoders don't have a crtc state
16842 		 * and neither of these require any power domain references.
16843 		 */
16844 		if (!encoder->base.crtc)
16845 			continue;
16846 
16847 		crtc_state = to_intel_crtc_state(encoder->base.crtc->state);
16848 		encoder->get_power_domains(encoder, crtc_state);
16849 	}
16850 }
16851 
16852 static void intel_early_display_was(struct drm_i915_private *dev_priv)
16853 {
16854 	/* Display WA #1185 WaDisableDARBFClkGating:cnl,glk */
16855 	if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
16856 		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
16857 			   DARBF_GATING_DIS);
16858 
16859 	if (IS_HASWELL(dev_priv)) {
16860 		/*
16861 		 * WaRsPkgCStateDisplayPMReq:hsw
16862 		 * System hang if this isn't done before disabling all planes!
16863 		 */
16864 		I915_WRITE(CHICKEN_PAR1_1,
16865 			   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
16866 	}
16867 }
16868 
16869 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv,
16870 				       enum port port, i915_reg_t hdmi_reg)
16871 {
16872 	u32 val = I915_READ(hdmi_reg);
16873 
16874 	if (val & SDVO_ENABLE ||
16875 	    (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A))
16876 		return;
16877 
16878 	DRM_DEBUG_KMS("Sanitizing transcoder select for HDMI %c\n",
16879 		      port_name(port));
16880 
16881 	val &= ~SDVO_PIPE_SEL_MASK;
16882 	val |= SDVO_PIPE_SEL(PIPE_A);
16883 
16884 	I915_WRITE(hdmi_reg, val);
16885 }
16886 
16887 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv,
16888 				     enum port port, i915_reg_t dp_reg)
16889 {
16890 	u32 val = I915_READ(dp_reg);
16891 
16892 	if (val & DP_PORT_EN ||
16893 	    (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A))
16894 		return;
16895 
16896 	DRM_DEBUG_KMS("Sanitizing transcoder select for DP %c\n",
16897 		      port_name(port));
16898 
16899 	val &= ~DP_PIPE_SEL_MASK;
16900 	val |= DP_PIPE_SEL(PIPE_A);
16901 
16902 	I915_WRITE(dp_reg, val);
16903 }
16904 
16905 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv)
16906 {
16907 	/*
16908 	 * The BIOS may select transcoder B on some of the PCH
16909 	 * ports even it doesn't enable the port. This would trip
16910 	 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled().
16911 	 * Sanitize the transcoder select bits to prevent that. We
16912 	 * assume that the BIOS never actually enabled the port,
16913 	 * because if it did we'd actually have to toggle the port
16914 	 * on and back off to make the transcoder A select stick
16915 	 * (see. intel_dp_link_down(), intel_disable_hdmi(),
16916 	 * intel_disable_sdvo()).
16917 	 */
16918 	ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B);
16919 	ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C);
16920 	ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D);
16921 
16922 	/* PCH SDVOB multiplex with HDMIB */
16923 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB);
16924 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC);
16925 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID);
16926 }
16927 
16928 /* Scan out the current hw modeset state,
16929  * and sanitizes it to the current state
16930  */
16931 static void
16932 intel_modeset_setup_hw_state(struct drm_device *dev,
16933 			     struct drm_modeset_acquire_ctx *ctx)
16934 {
16935 	struct drm_i915_private *dev_priv = to_i915(dev);
16936 	struct intel_crtc_state *crtc_state;
16937 	struct intel_encoder *encoder;
16938 	struct intel_crtc *crtc;
16939 	intel_wakeref_t wakeref;
16940 	int i;
16941 
16942 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
16943 
16944 	intel_early_display_was(dev_priv);
16945 	intel_modeset_readout_hw_state(dev);
16946 
16947 	/* HW state is read out, now we need to sanitize this mess. */
16948 
16949 	/* Sanitize the TypeC port mode upfront, encoders depend on this */
16950 	for_each_intel_encoder(dev, encoder) {
16951 		enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
16952 
16953 		/* We need to sanitize only the MST primary port. */
16954 		if (encoder->type != INTEL_OUTPUT_DP_MST &&
16955 		    intel_phy_is_tc(dev_priv, phy))
16956 			intel_tc_port_sanitize(enc_to_dig_port(&encoder->base));
16957 	}
16958 
16959 	get_encoder_power_domains(dev_priv);
16960 
16961 	if (HAS_PCH_IBX(dev_priv))
16962 		ibx_sanitize_pch_ports(dev_priv);
16963 
16964 	/*
16965 	 * intel_sanitize_plane_mapping() may need to do vblank
16966 	 * waits, so we need vblank interrupts restored beforehand.
16967 	 */
16968 	for_each_intel_crtc(&dev_priv->drm, crtc) {
16969 		crtc_state = to_intel_crtc_state(crtc->base.state);
16970 
16971 		drm_crtc_vblank_reset(&crtc->base);
16972 
16973 		if (crtc_state->base.active)
16974 			intel_crtc_vblank_on(crtc_state);
16975 	}
16976 
16977 	intel_sanitize_plane_mapping(dev_priv);
16978 
16979 	for_each_intel_encoder(dev, encoder)
16980 		intel_sanitize_encoder(encoder);
16981 
16982 	for_each_intel_crtc(&dev_priv->drm, crtc) {
16983 		crtc_state = to_intel_crtc_state(crtc->base.state);
16984 		intel_sanitize_crtc(crtc, ctx);
16985 		intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]");
16986 	}
16987 
16988 	intel_modeset_update_connector_atomic_state(dev);
16989 
16990 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16991 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16992 
16993 		if (!pll->on || pll->active_mask)
16994 			continue;
16995 
16996 		DRM_DEBUG_KMS("%s enabled but not in use, disabling\n",
16997 			      pll->info->name);
16998 
16999 		pll->info->funcs->disable(dev_priv, pll);
17000 		pll->on = false;
17001 	}
17002 
17003 	if (IS_G4X(dev_priv)) {
17004 		g4x_wm_get_hw_state(dev_priv);
17005 		g4x_wm_sanitize(dev_priv);
17006 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
17007 		vlv_wm_get_hw_state(dev_priv);
17008 		vlv_wm_sanitize(dev_priv);
17009 	} else if (INTEL_GEN(dev_priv) >= 9) {
17010 		skl_wm_get_hw_state(dev_priv);
17011 	} else if (HAS_PCH_SPLIT(dev_priv)) {
17012 		ilk_wm_get_hw_state(dev_priv);
17013 	}
17014 
17015 	for_each_intel_crtc(dev, crtc) {
17016 		u64 put_domains;
17017 
17018 		crtc_state = to_intel_crtc_state(crtc->base.state);
17019 		put_domains = modeset_get_crtc_power_domains(crtc_state);
17020 		if (WARN_ON(put_domains))
17021 			modeset_put_power_domains(dev_priv, put_domains);
17022 	}
17023 
17024 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref);
17025 
17026 	intel_fbc_init_pipe_state(dev_priv);
17027 }
17028 
17029 void intel_display_resume(struct drm_device *dev)
17030 {
17031 	struct drm_i915_private *dev_priv = to_i915(dev);
17032 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
17033 	struct drm_modeset_acquire_ctx ctx;
17034 	int ret;
17035 
17036 	dev_priv->modeset_restore_state = NULL;
17037 	if (state)
17038 		state->acquire_ctx = &ctx;
17039 
17040 	drm_modeset_acquire_init(&ctx, 0);
17041 
17042 	while (1) {
17043 		ret = drm_modeset_lock_all_ctx(dev, &ctx);
17044 		if (ret != -EDEADLK)
17045 			break;
17046 
17047 		drm_modeset_backoff(&ctx);
17048 	}
17049 
17050 	if (!ret)
17051 		ret = __intel_display_resume(dev, state, &ctx);
17052 
17053 	intel_enable_ipc(dev_priv);
17054 	drm_modeset_drop_locks(&ctx);
17055 	drm_modeset_acquire_fini(&ctx);
17056 
17057 	if (ret)
17058 		DRM_ERROR("Restoring old state failed with %i\n", ret);
17059 	if (state)
17060 		drm_atomic_state_put(state);
17061 }
17062 
17063 static void intel_hpd_poll_fini(struct drm_device *dev)
17064 {
17065 	struct intel_connector *connector;
17066 	struct drm_connector_list_iter conn_iter;
17067 
17068 	/* Kill all the work that may have been queued by hpd. */
17069 	drm_connector_list_iter_begin(dev, &conn_iter);
17070 	for_each_intel_connector_iter(connector, &conn_iter) {
17071 		if (connector->modeset_retry_work.func)
17072 			cancel_work_sync(&connector->modeset_retry_work);
17073 		if (connector->hdcp.shim) {
17074 			cancel_delayed_work_sync(&connector->hdcp.check_work);
17075 			cancel_work_sync(&connector->hdcp.prop_work);
17076 		}
17077 	}
17078 	drm_connector_list_iter_end(&conn_iter);
17079 }
17080 
17081 void intel_modeset_driver_remove(struct drm_device *dev)
17082 {
17083 	struct drm_i915_private *dev_priv = to_i915(dev);
17084 
17085 	flush_workqueue(dev_priv->modeset_wq);
17086 
17087 	flush_work(&dev_priv->atomic_helper.free_work);
17088 	WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
17089 
17090 	/*
17091 	 * Interrupts and polling as the first thing to avoid creating havoc.
17092 	 * Too much stuff here (turning of connectors, ...) would
17093 	 * experience fancy races otherwise.
17094 	 */
17095 	intel_irq_uninstall(dev_priv);
17096 
17097 	/*
17098 	 * Due to the hpd irq storm handling the hotplug work can re-arm the
17099 	 * poll handlers. Hence disable polling after hpd handling is shut down.
17100 	 */
17101 	intel_hpd_poll_fini(dev);
17102 
17103 	/* poll work can call into fbdev, hence clean that up afterwards */
17104 	intel_fbdev_fini(dev_priv);
17105 
17106 	intel_unregister_dsm_handler();
17107 
17108 	intel_fbc_global_disable(dev_priv);
17109 
17110 	/* flush any delayed tasks or pending work */
17111 	flush_scheduled_work();
17112 
17113 	intel_hdcp_component_fini(dev_priv);
17114 
17115 	drm_mode_config_cleanup(dev);
17116 
17117 	intel_overlay_cleanup(dev_priv);
17118 
17119 	intel_gmbus_teardown(dev_priv);
17120 
17121 	destroy_workqueue(dev_priv->modeset_wq);
17122 
17123 	intel_fbc_cleanup_cfb(dev_priv);
17124 }
17125 
17126 /*
17127  * set vga decode state - true == enable VGA decode
17128  */
17129 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
17130 {
17131 	unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
17132 	u16 gmch_ctrl;
17133 
17134 	if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17135 		DRM_ERROR("failed to read control word\n");
17136 		return -EIO;
17137 	}
17138 
17139 	if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17140 		return 0;
17141 
17142 	if (state)
17143 		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17144 	else
17145 		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
17146 
17147 	if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17148 		DRM_ERROR("failed to write control word\n");
17149 		return -EIO;
17150 	}
17151 
17152 	return 0;
17153 }
17154 
17155 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
17156 
17157 struct intel_display_error_state {
17158 
17159 	u32 power_well_driver;
17160 
17161 	struct intel_cursor_error_state {
17162 		u32 control;
17163 		u32 position;
17164 		u32 base;
17165 		u32 size;
17166 	} cursor[I915_MAX_PIPES];
17167 
17168 	struct intel_pipe_error_state {
17169 		bool power_domain_on;
17170 		u32 source;
17171 		u32 stat;
17172 	} pipe[I915_MAX_PIPES];
17173 
17174 	struct intel_plane_error_state {
17175 		u32 control;
17176 		u32 stride;
17177 		u32 size;
17178 		u32 pos;
17179 		u32 addr;
17180 		u32 surface;
17181 		u32 tile_offset;
17182 	} plane[I915_MAX_PIPES];
17183 
17184 	struct intel_transcoder_error_state {
17185 		bool available;
17186 		bool power_domain_on;
17187 		enum transcoder cpu_transcoder;
17188 
17189 		u32 conf;
17190 
17191 		u32 htotal;
17192 		u32 hblank;
17193 		u32 hsync;
17194 		u32 vtotal;
17195 		u32 vblank;
17196 		u32 vsync;
17197 	} transcoder[5];
17198 };
17199 
17200 struct intel_display_error_state *
17201 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17202 {
17203 	struct intel_display_error_state *error;
17204 	int transcoders[] = {
17205 		TRANSCODER_A,
17206 		TRANSCODER_B,
17207 		TRANSCODER_C,
17208 		TRANSCODER_D,
17209 		TRANSCODER_EDP,
17210 	};
17211 	int i;
17212 
17213 	BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder));
17214 
17215 	if (!HAS_DISPLAY(dev_priv))
17216 		return NULL;
17217 
17218 	error = kzalloc(sizeof(*error), GFP_ATOMIC);
17219 	if (error == NULL)
17220 		return NULL;
17221 
17222 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17223 		error->power_well_driver = I915_READ(HSW_PWR_WELL_CTL2);
17224 
17225 	for_each_pipe(dev_priv, i) {
17226 		error->pipe[i].power_domain_on =
17227 			__intel_display_power_is_enabled(dev_priv,
17228 							 POWER_DOMAIN_PIPE(i));
17229 		if (!error->pipe[i].power_domain_on)
17230 			continue;
17231 
17232 		error->cursor[i].control = I915_READ(CURCNTR(i));
17233 		error->cursor[i].position = I915_READ(CURPOS(i));
17234 		error->cursor[i].base = I915_READ(CURBASE(i));
17235 
17236 		error->plane[i].control = I915_READ(DSPCNTR(i));
17237 		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17238 		if (INTEL_GEN(dev_priv) <= 3) {
17239 			error->plane[i].size = I915_READ(DSPSIZE(i));
17240 			error->plane[i].pos = I915_READ(DSPPOS(i));
17241 		}
17242 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17243 			error->plane[i].addr = I915_READ(DSPADDR(i));
17244 		if (INTEL_GEN(dev_priv) >= 4) {
17245 			error->plane[i].surface = I915_READ(DSPSURF(i));
17246 			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17247 		}
17248 
17249 		error->pipe[i].source = I915_READ(PIPESRC(i));
17250 
17251 		if (HAS_GMCH(dev_priv))
17252 			error->pipe[i].stat = I915_READ(PIPESTAT(i));
17253 	}
17254 
17255 	for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
17256 		enum transcoder cpu_transcoder = transcoders[i];
17257 
17258 		if (!INTEL_INFO(dev_priv)->trans_offsets[cpu_transcoder])
17259 			continue;
17260 
17261 		error->transcoder[i].available = true;
17262 		error->transcoder[i].power_domain_on =
17263 			__intel_display_power_is_enabled(dev_priv,
17264 				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17265 		if (!error->transcoder[i].power_domain_on)
17266 			continue;
17267 
17268 		error->transcoder[i].cpu_transcoder = cpu_transcoder;
17269 
17270 		error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17271 		error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17272 		error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17273 		error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17274 		error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17275 		error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17276 		error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17277 	}
17278 
17279 	return error;
17280 }
17281 
17282 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17283 
17284 void
17285 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17286 				struct intel_display_error_state *error)
17287 {
17288 	struct drm_i915_private *dev_priv = m->i915;
17289 	int i;
17290 
17291 	if (!error)
17292 		return;
17293 
17294 	err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
17295 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17296 		err_printf(m, "PWR_WELL_CTL2: %08x\n",
17297 			   error->power_well_driver);
17298 	for_each_pipe(dev_priv, i) {
17299 		err_printf(m, "Pipe [%d]:\n", i);
17300 		err_printf(m, "  Power: %s\n",
17301 			   onoff(error->pipe[i].power_domain_on));
17302 		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
17303 		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
17304 
17305 		err_printf(m, "Plane [%d]:\n", i);
17306 		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
17307 		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
17308 		if (INTEL_GEN(dev_priv) <= 3) {
17309 			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
17310 			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
17311 		}
17312 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17313 			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
17314 		if (INTEL_GEN(dev_priv) >= 4) {
17315 			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
17316 			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
17317 		}
17318 
17319 		err_printf(m, "Cursor [%d]:\n", i);
17320 		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
17321 		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
17322 		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
17323 	}
17324 
17325 	for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
17326 		if (!error->transcoder[i].available)
17327 			continue;
17328 
17329 		err_printf(m, "CPU transcoder: %s\n",
17330 			   transcoder_name(error->transcoder[i].cpu_transcoder));
17331 		err_printf(m, "  Power: %s\n",
17332 			   onoff(error->transcoder[i].power_domain_on));
17333 		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
17334 		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
17335 		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
17336 		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
17337 		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
17338 		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
17339 		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
17340 	}
17341 }
17342 
17343 #endif
17344