1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <acpi/video.h> 28 #include <linux/i2c.h> 29 #include <linux/input.h> 30 #include <linux/intel-iommu.h> 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/dma-resv.h> 34 #include <linux/slab.h> 35 36 #include <drm/drm_atomic.h> 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_atomic_uapi.h> 39 #include <drm/drm_damage_helper.h> 40 #include <drm/drm_dp_helper.h> 41 #include <drm/drm_edid.h> 42 #include <drm/drm_fourcc.h> 43 #include <drm/drm_plane_helper.h> 44 #include <drm/drm_probe_helper.h> 45 #include <drm/drm_rect.h> 46 47 #include "display/intel_audio.h" 48 #include "display/intel_crt.h" 49 #include "display/intel_ddi.h" 50 #include "display/intel_display_debugfs.h" 51 #include "display/intel_dp.h" 52 #include "display/intel_dp_mst.h" 53 #include "display/intel_dpll.h" 54 #include "display/intel_dpll_mgr.h" 55 #include "display/intel_dsi.h" 56 #include "display/intel_dvo.h" 57 #include "display/intel_fb.h" 58 #include "display/intel_gmbus.h" 59 #include "display/intel_hdmi.h" 60 #include "display/intel_lvds.h" 61 #include "display/intel_sdvo.h" 62 #include "display/intel_tv.h" 63 #include "display/intel_vdsc.h" 64 #include "display/intel_vrr.h" 65 66 #include "gem/i915_gem_lmem.h" 67 #include "gem/i915_gem_object.h" 68 69 #include "gt/intel_rps.h" 70 #include "gt/gen8_ppgtt.h" 71 72 #include "g4x_dp.h" 73 #include "g4x_hdmi.h" 74 #include "i915_drv.h" 75 #include "intel_acpi.h" 76 #include "intel_atomic.h" 77 #include "intel_atomic_plane.h" 78 #include "intel_bw.h" 79 #include "intel_cdclk.h" 80 #include "intel_color.h" 81 #include "intel_crtc.h" 82 #include "intel_de.h" 83 #include "intel_display_types.h" 84 #include "intel_dmc.h" 85 #include "intel_dp_link_training.h" 86 #include "intel_fbc.h" 87 #include "intel_fdi.h" 88 #include "intel_fbdev.h" 89 #include "intel_fifo_underrun.h" 90 #include "intel_frontbuffer.h" 91 #include "intel_hdcp.h" 92 #include "intel_hotplug.h" 93 #include "intel_overlay.h" 94 #include "intel_pipe_crc.h" 95 #include "intel_pm.h" 96 #include "intel_pps.h" 97 #include "intel_psr.h" 98 #include "intel_quirks.h" 99 #include "intel_sideband.h" 100 #include "intel_sprite.h" 101 #include "intel_tc.h" 102 #include "intel_vga.h" 103 #include "i9xx_plane.h" 104 #include "skl_scaler.h" 105 #include "skl_universal_plane.h" 106 107 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 108 struct intel_crtc_state *pipe_config); 109 static void ilk_pch_clock_get(struct intel_crtc *crtc, 110 struct intel_crtc_state *pipe_config); 111 112 static int intel_framebuffer_init(struct intel_framebuffer *ifb, 113 struct drm_i915_gem_object *obj, 114 struct drm_mode_fb_cmd2 *mode_cmd); 115 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state); 116 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 117 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 118 const struct intel_link_m_n *m_n, 119 const struct intel_link_m_n *m2_n2); 120 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 121 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state); 122 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state); 123 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 124 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); 125 static void intel_modeset_setup_hw_state(struct drm_device *dev, 126 struct drm_modeset_acquire_ctx *ctx); 127 128 struct i915_dpt { 129 struct i915_address_space vm; 130 131 struct drm_i915_gem_object *obj; 132 struct i915_vma *vma; 133 void __iomem *iomem; 134 }; 135 136 #define i915_is_dpt(vm) ((vm)->is_dpt) 137 138 static inline struct i915_dpt * 139 i915_vm_to_dpt(struct i915_address_space *vm) 140 { 141 BUILD_BUG_ON(offsetof(struct i915_dpt, vm)); 142 GEM_BUG_ON(!i915_is_dpt(vm)); 143 return container_of(vm, struct i915_dpt, vm); 144 } 145 146 #define dpt_total_entries(dpt) ((dpt)->vm.total >> PAGE_SHIFT) 147 148 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 149 { 150 writeq(pte, addr); 151 } 152 153 static void dpt_insert_page(struct i915_address_space *vm, 154 dma_addr_t addr, 155 u64 offset, 156 enum i915_cache_level level, 157 u32 flags) 158 { 159 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 160 gen8_pte_t __iomem *base = dpt->iomem; 161 162 gen8_set_pte(base + offset / I915_GTT_PAGE_SIZE, 163 vm->pte_encode(addr, level, flags)); 164 } 165 166 static void dpt_insert_entries(struct i915_address_space *vm, 167 struct i915_vma *vma, 168 enum i915_cache_level level, 169 u32 flags) 170 { 171 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 172 gen8_pte_t __iomem *base = dpt->iomem; 173 const gen8_pte_t pte_encode = vm->pte_encode(0, level, flags); 174 struct sgt_iter sgt_iter; 175 dma_addr_t addr; 176 int i; 177 178 /* 179 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 180 * not to allow the user to override access to a read only page. 181 */ 182 183 i = vma->node.start / I915_GTT_PAGE_SIZE; 184 for_each_sgt_daddr(addr, sgt_iter, vma->pages) 185 gen8_set_pte(&base[i++], pte_encode | addr); 186 } 187 188 static void dpt_clear_range(struct i915_address_space *vm, 189 u64 start, u64 length) 190 { 191 } 192 193 static void dpt_bind_vma(struct i915_address_space *vm, 194 struct i915_vm_pt_stash *stash, 195 struct i915_vma *vma, 196 enum i915_cache_level cache_level, 197 u32 flags) 198 { 199 struct drm_i915_gem_object *obj = vma->obj; 200 u32 pte_flags; 201 202 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 203 pte_flags = 0; 204 if (vma->vm->has_read_only && i915_gem_object_is_readonly(obj)) 205 pte_flags |= PTE_READ_ONLY; 206 if (i915_gem_object_is_lmem(obj)) 207 pte_flags |= PTE_LM; 208 209 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); 210 211 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 212 213 /* 214 * Without aliasing PPGTT there's no difference between 215 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally 216 * upgrade to both bound if we bind either to avoid double-binding. 217 */ 218 atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags); 219 } 220 221 static void dpt_unbind_vma(struct i915_address_space *vm, struct i915_vma *vma) 222 { 223 vm->clear_range(vm, vma->node.start, vma->size); 224 } 225 226 static void dpt_cleanup(struct i915_address_space *vm) 227 { 228 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 229 230 i915_gem_object_put(dpt->obj); 231 } 232 233 static struct i915_address_space * 234 intel_dpt_create(struct intel_framebuffer *fb) 235 { 236 struct drm_gem_object *obj = &intel_fb_obj(&fb->base)->base; 237 struct drm_i915_private *i915 = to_i915(obj->dev); 238 struct drm_i915_gem_object *dpt_obj; 239 struct i915_address_space *vm; 240 struct i915_dpt *dpt; 241 size_t size; 242 int ret; 243 244 if (intel_fb_needs_pot_stride_remap(fb)) 245 size = intel_remapped_info_size(&fb->remapped_view.gtt.remapped); 246 else 247 size = DIV_ROUND_UP_ULL(obj->size, I915_GTT_PAGE_SIZE); 248 249 size = round_up(size * sizeof(gen8_pte_t), I915_GTT_PAGE_SIZE); 250 251 if (HAS_LMEM(i915)) 252 dpt_obj = i915_gem_object_create_lmem(i915, size, 0); 253 else 254 dpt_obj = i915_gem_object_create_stolen(i915, size); 255 if (IS_ERR(dpt_obj)) 256 return ERR_CAST(dpt_obj); 257 258 ret = i915_gem_object_set_cache_level(dpt_obj, I915_CACHE_NONE); 259 if (ret) { 260 i915_gem_object_put(dpt_obj); 261 return ERR_PTR(ret); 262 } 263 264 dpt = kzalloc(sizeof(*dpt), GFP_KERNEL); 265 if (!dpt) { 266 i915_gem_object_put(dpt_obj); 267 return ERR_PTR(-ENOMEM); 268 } 269 270 vm = &dpt->vm; 271 272 vm->gt = &i915->gt; 273 vm->i915 = i915; 274 vm->dma = i915->drm.dev; 275 vm->total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 276 vm->is_dpt = true; 277 278 i915_address_space_init(vm, VM_CLASS_DPT); 279 280 vm->insert_page = dpt_insert_page; 281 vm->clear_range = dpt_clear_range; 282 vm->insert_entries = dpt_insert_entries; 283 vm->cleanup = dpt_cleanup; 284 285 vm->vma_ops.bind_vma = dpt_bind_vma; 286 vm->vma_ops.unbind_vma = dpt_unbind_vma; 287 vm->vma_ops.set_pages = ggtt_set_pages; 288 vm->vma_ops.clear_pages = clear_pages; 289 290 vm->pte_encode = gen8_ggtt_pte_encode; 291 292 dpt->obj = dpt_obj; 293 294 return &dpt->vm; 295 } 296 297 static void intel_dpt_destroy(struct i915_address_space *vm) 298 { 299 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 300 301 i915_vm_close(&dpt->vm); 302 } 303 304 /* returns HPLL frequency in kHz */ 305 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 306 { 307 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 308 309 /* Obtain SKU information */ 310 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 311 CCK_FUSE_HPLL_FREQ_MASK; 312 313 return vco_freq[hpll_freq] * 1000; 314 } 315 316 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 317 const char *name, u32 reg, int ref_freq) 318 { 319 u32 val; 320 int divider; 321 322 val = vlv_cck_read(dev_priv, reg); 323 divider = val & CCK_FREQUENCY_VALUES; 324 325 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != 326 (divider << CCK_FREQUENCY_STATUS_SHIFT), 327 "%s change in progress\n", name); 328 329 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 330 } 331 332 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 333 const char *name, u32 reg) 334 { 335 int hpll; 336 337 vlv_cck_get(dev_priv); 338 339 if (dev_priv->hpll_freq == 0) 340 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 341 342 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 343 344 vlv_cck_put(dev_priv); 345 346 return hpll; 347 } 348 349 static void intel_update_czclk(struct drm_i915_private *dev_priv) 350 { 351 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 352 return; 353 354 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 355 CCK_CZ_CLOCK_CONTROL); 356 357 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n", 358 dev_priv->czclk_freq); 359 } 360 361 /* WA Display #0827: Gen9:all */ 362 static void 363 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) 364 { 365 if (enable) 366 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 367 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); 368 else 369 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 370 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 371 } 372 373 /* Wa_2006604312:icl,ehl */ 374 static void 375 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 376 bool enable) 377 { 378 if (enable) 379 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 380 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 381 else 382 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 383 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 384 } 385 386 static bool 387 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) 388 { 389 return crtc_state->master_transcoder != INVALID_TRANSCODER; 390 } 391 392 static bool 393 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state) 394 { 395 return crtc_state->sync_mode_slaves_mask != 0; 396 } 397 398 bool 399 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 400 { 401 return is_trans_port_sync_master(crtc_state) || 402 is_trans_port_sync_slave(crtc_state); 403 } 404 405 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 406 enum pipe pipe) 407 { 408 i915_reg_t reg = PIPEDSL(pipe); 409 u32 line1, line2; 410 u32 line_mask; 411 412 if (DISPLAY_VER(dev_priv) == 2) 413 line_mask = DSL_LINEMASK_GEN2; 414 else 415 line_mask = DSL_LINEMASK_GEN3; 416 417 line1 = intel_de_read(dev_priv, reg) & line_mask; 418 msleep(5); 419 line2 = intel_de_read(dev_priv, reg) & line_mask; 420 421 return line1 != line2; 422 } 423 424 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 425 { 426 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 427 enum pipe pipe = crtc->pipe; 428 429 /* Wait for the display line to settle/start moving */ 430 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 431 drm_err(&dev_priv->drm, 432 "pipe %c scanline %s wait timed out\n", 433 pipe_name(pipe), onoff(state)); 434 } 435 436 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 437 { 438 wait_for_pipe_scanline_moving(crtc, false); 439 } 440 441 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 442 { 443 wait_for_pipe_scanline_moving(crtc, true); 444 } 445 446 static void 447 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 448 { 449 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 450 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 451 452 if (DISPLAY_VER(dev_priv) >= 4) { 453 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 454 i915_reg_t reg = PIPECONF(cpu_transcoder); 455 456 /* Wait for the Pipe State to go off */ 457 if (intel_de_wait_for_clear(dev_priv, reg, 458 I965_PIPECONF_ACTIVE, 100)) 459 drm_WARN(&dev_priv->drm, 1, 460 "pipe_off wait timed out\n"); 461 } else { 462 intel_wait_for_pipe_scanline_stopped(crtc); 463 } 464 } 465 466 /* Only for pre-ILK configs */ 467 void assert_pll(struct drm_i915_private *dev_priv, 468 enum pipe pipe, bool state) 469 { 470 u32 val; 471 bool cur_state; 472 473 val = intel_de_read(dev_priv, DPLL(pipe)); 474 cur_state = !!(val & DPLL_VCO_ENABLE); 475 I915_STATE_WARN(cur_state != state, 476 "PLL state assertion failure (expected %s, current %s)\n", 477 onoff(state), onoff(cur_state)); 478 } 479 480 /* XXX: the dsi pll is shared between MIPI DSI ports */ 481 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 482 { 483 u32 val; 484 bool cur_state; 485 486 vlv_cck_get(dev_priv); 487 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 488 vlv_cck_put(dev_priv); 489 490 cur_state = val & DSI_PLL_VCO_EN; 491 I915_STATE_WARN(cur_state != state, 492 "DSI PLL state assertion failure (expected %s, current %s)\n", 493 onoff(state), onoff(cur_state)); 494 } 495 496 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 497 enum pipe pipe, bool state) 498 { 499 bool cur_state; 500 501 if (HAS_DDI(dev_priv)) { 502 /* 503 * DDI does not have a specific FDI_TX register. 504 * 505 * FDI is never fed from EDP transcoder 506 * so pipe->transcoder cast is fine here. 507 */ 508 enum transcoder cpu_transcoder = (enum transcoder)pipe; 509 u32 val = intel_de_read(dev_priv, 510 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 511 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 512 } else { 513 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 514 cur_state = !!(val & FDI_TX_ENABLE); 515 } 516 I915_STATE_WARN(cur_state != state, 517 "FDI TX state assertion failure (expected %s, current %s)\n", 518 onoff(state), onoff(cur_state)); 519 } 520 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 521 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 522 523 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 524 enum pipe pipe, bool state) 525 { 526 u32 val; 527 bool cur_state; 528 529 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 530 cur_state = !!(val & FDI_RX_ENABLE); 531 I915_STATE_WARN(cur_state != state, 532 "FDI RX state assertion failure (expected %s, current %s)\n", 533 onoff(state), onoff(cur_state)); 534 } 535 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 536 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 537 538 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 539 enum pipe pipe) 540 { 541 u32 val; 542 543 /* ILK FDI PLL is always enabled */ 544 if (IS_IRONLAKE(dev_priv)) 545 return; 546 547 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 548 if (HAS_DDI(dev_priv)) 549 return; 550 551 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 552 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 553 } 554 555 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 556 enum pipe pipe, bool state) 557 { 558 u32 val; 559 bool cur_state; 560 561 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 562 cur_state = !!(val & FDI_RX_PLL_ENABLE); 563 I915_STATE_WARN(cur_state != state, 564 "FDI RX PLL assertion failure (expected %s, current %s)\n", 565 onoff(state), onoff(cur_state)); 566 } 567 568 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) 569 { 570 i915_reg_t pp_reg; 571 u32 val; 572 enum pipe panel_pipe = INVALID_PIPE; 573 bool locked = true; 574 575 if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv))) 576 return; 577 578 if (HAS_PCH_SPLIT(dev_priv)) { 579 u32 port_sel; 580 581 pp_reg = PP_CONTROL(0); 582 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 583 584 switch (port_sel) { 585 case PANEL_PORT_SELECT_LVDS: 586 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); 587 break; 588 case PANEL_PORT_SELECT_DPA: 589 g4x_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); 590 break; 591 case PANEL_PORT_SELECT_DPC: 592 g4x_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); 593 break; 594 case PANEL_PORT_SELECT_DPD: 595 g4x_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); 596 break; 597 default: 598 MISSING_CASE(port_sel); 599 break; 600 } 601 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 602 /* presumably write lock depends on pipe, not port select */ 603 pp_reg = PP_CONTROL(pipe); 604 panel_pipe = pipe; 605 } else { 606 u32 port_sel; 607 608 pp_reg = PP_CONTROL(0); 609 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 610 611 drm_WARN_ON(&dev_priv->drm, 612 port_sel != PANEL_PORT_SELECT_LVDS); 613 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); 614 } 615 616 val = intel_de_read(dev_priv, pp_reg); 617 if (!(val & PANEL_POWER_ON) || 618 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 619 locked = false; 620 621 I915_STATE_WARN(panel_pipe == pipe && locked, 622 "panel assertion failure, pipe %c regs locked\n", 623 pipe_name(pipe)); 624 } 625 626 void assert_pipe(struct drm_i915_private *dev_priv, 627 enum transcoder cpu_transcoder, bool state) 628 { 629 bool cur_state; 630 enum intel_display_power_domain power_domain; 631 intel_wakeref_t wakeref; 632 633 /* we keep both pipes enabled on 830 */ 634 if (IS_I830(dev_priv)) 635 state = true; 636 637 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 638 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 639 if (wakeref) { 640 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 641 cur_state = !!(val & PIPECONF_ENABLE); 642 643 intel_display_power_put(dev_priv, power_domain, wakeref); 644 } else { 645 cur_state = false; 646 } 647 648 I915_STATE_WARN(cur_state != state, 649 "transcoder %s assertion failure (expected %s, current %s)\n", 650 transcoder_name(cpu_transcoder), 651 onoff(state), onoff(cur_state)); 652 } 653 654 static void assert_plane(struct intel_plane *plane, bool state) 655 { 656 enum pipe pipe; 657 bool cur_state; 658 659 cur_state = plane->get_hw_state(plane, &pipe); 660 661 I915_STATE_WARN(cur_state != state, 662 "%s assertion failure (expected %s, current %s)\n", 663 plane->base.name, onoff(state), onoff(cur_state)); 664 } 665 666 #define assert_plane_enabled(p) assert_plane(p, true) 667 #define assert_plane_disabled(p) assert_plane(p, false) 668 669 static void assert_planes_disabled(struct intel_crtc *crtc) 670 { 671 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 672 struct intel_plane *plane; 673 674 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 675 assert_plane_disabled(plane); 676 } 677 678 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 679 enum pipe pipe) 680 { 681 u32 val; 682 bool enabled; 683 684 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe)); 685 enabled = !!(val & TRANS_ENABLE); 686 I915_STATE_WARN(enabled, 687 "transcoder assertion failed, should be off on pipe %c but is still active\n", 688 pipe_name(pipe)); 689 } 690 691 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 692 enum pipe pipe, enum port port, 693 i915_reg_t dp_reg) 694 { 695 enum pipe port_pipe; 696 bool state; 697 698 state = g4x_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 699 700 I915_STATE_WARN(state && port_pipe == pipe, 701 "PCH DP %c enabled on transcoder %c, should be disabled\n", 702 port_name(port), pipe_name(pipe)); 703 704 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 705 "IBX PCH DP %c still using transcoder B\n", 706 port_name(port)); 707 } 708 709 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 710 enum pipe pipe, enum port port, 711 i915_reg_t hdmi_reg) 712 { 713 enum pipe port_pipe; 714 bool state; 715 716 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 717 718 I915_STATE_WARN(state && port_pipe == pipe, 719 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 720 port_name(port), pipe_name(pipe)); 721 722 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 723 "IBX PCH HDMI %c still using transcoder B\n", 724 port_name(port)); 725 } 726 727 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 728 enum pipe pipe) 729 { 730 enum pipe port_pipe; 731 732 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 733 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 734 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 735 736 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 737 port_pipe == pipe, 738 "PCH VGA enabled on transcoder %c, should be disabled\n", 739 pipe_name(pipe)); 740 741 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 742 port_pipe == pipe, 743 "PCH LVDS enabled on transcoder %c, should be disabled\n", 744 pipe_name(pipe)); 745 746 /* PCH SDVOB multiplex with HDMIB */ 747 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 748 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 749 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 750 } 751 752 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 753 struct intel_digital_port *dig_port, 754 unsigned int expected_mask) 755 { 756 u32 port_mask; 757 i915_reg_t dpll_reg; 758 759 switch (dig_port->base.port) { 760 case PORT_B: 761 port_mask = DPLL_PORTB_READY_MASK; 762 dpll_reg = DPLL(0); 763 break; 764 case PORT_C: 765 port_mask = DPLL_PORTC_READY_MASK; 766 dpll_reg = DPLL(0); 767 expected_mask <<= 4; 768 break; 769 case PORT_D: 770 port_mask = DPLL_PORTD_READY_MASK; 771 dpll_reg = DPIO_PHY_STATUS; 772 break; 773 default: 774 BUG(); 775 } 776 777 if (intel_de_wait_for_register(dev_priv, dpll_reg, 778 port_mask, expected_mask, 1000)) 779 drm_WARN(&dev_priv->drm, 1, 780 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", 781 dig_port->base.base.base.id, dig_port->base.base.name, 782 intel_de_read(dev_priv, dpll_reg) & port_mask, 783 expected_mask); 784 } 785 786 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 787 { 788 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 789 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 790 enum pipe pipe = crtc->pipe; 791 i915_reg_t reg; 792 u32 val, pipeconf_val; 793 794 /* Make sure PCH DPLL is enabled */ 795 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 796 797 /* FDI must be feeding us bits for PCH ports */ 798 assert_fdi_tx_enabled(dev_priv, pipe); 799 assert_fdi_rx_enabled(dev_priv, pipe); 800 801 if (HAS_PCH_CPT(dev_priv)) { 802 reg = TRANS_CHICKEN2(pipe); 803 val = intel_de_read(dev_priv, reg); 804 /* 805 * Workaround: Set the timing override bit 806 * before enabling the pch transcoder. 807 */ 808 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 809 /* Configure frame start delay to match the CPU */ 810 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 811 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 812 intel_de_write(dev_priv, reg, val); 813 } 814 815 reg = PCH_TRANSCONF(pipe); 816 val = intel_de_read(dev_priv, reg); 817 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe)); 818 819 if (HAS_PCH_IBX(dev_priv)) { 820 /* Configure frame start delay to match the CPU */ 821 val &= ~TRANS_FRAME_START_DELAY_MASK; 822 val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 823 824 /* 825 * Make the BPC in transcoder be consistent with 826 * that in pipeconf reg. For HDMI we must use 8bpc 827 * here for both 8bpc and 12bpc. 828 */ 829 val &= ~PIPECONF_BPC_MASK; 830 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 831 val |= PIPECONF_8BPC; 832 else 833 val |= pipeconf_val & PIPECONF_BPC_MASK; 834 } 835 836 val &= ~TRANS_INTERLACE_MASK; 837 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 838 if (HAS_PCH_IBX(dev_priv) && 839 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 840 val |= TRANS_LEGACY_INTERLACED_ILK; 841 else 842 val |= TRANS_INTERLACED; 843 } else { 844 val |= TRANS_PROGRESSIVE; 845 } 846 847 intel_de_write(dev_priv, reg, val | TRANS_ENABLE); 848 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 849 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n", 850 pipe_name(pipe)); 851 } 852 853 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 854 enum transcoder cpu_transcoder) 855 { 856 u32 val, pipeconf_val; 857 858 /* FDI must be feeding us bits for PCH ports */ 859 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 860 assert_fdi_rx_enabled(dev_priv, PIPE_A); 861 862 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 863 /* Workaround: set timing override bit. */ 864 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 865 /* Configure frame start delay to match the CPU */ 866 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 867 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 868 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 869 870 val = TRANS_ENABLE; 871 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 872 873 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 874 PIPECONF_INTERLACED_ILK) 875 val |= TRANS_INTERLACED; 876 else 877 val |= TRANS_PROGRESSIVE; 878 879 intel_de_write(dev_priv, LPT_TRANSCONF, val); 880 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 881 TRANS_STATE_ENABLE, 100)) 882 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n"); 883 } 884 885 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv, 886 enum pipe pipe) 887 { 888 i915_reg_t reg; 889 u32 val; 890 891 /* FDI relies on the transcoder */ 892 assert_fdi_tx_disabled(dev_priv, pipe); 893 assert_fdi_rx_disabled(dev_priv, pipe); 894 895 /* Ports must be off as well */ 896 assert_pch_ports_disabled(dev_priv, pipe); 897 898 reg = PCH_TRANSCONF(pipe); 899 val = intel_de_read(dev_priv, reg); 900 val &= ~TRANS_ENABLE; 901 intel_de_write(dev_priv, reg, val); 902 /* wait for PCH transcoder off, transcoder state */ 903 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 904 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n", 905 pipe_name(pipe)); 906 907 if (HAS_PCH_CPT(dev_priv)) { 908 /* Workaround: Clear the timing override chicken bit again. */ 909 reg = TRANS_CHICKEN2(pipe); 910 val = intel_de_read(dev_priv, reg); 911 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 912 intel_de_write(dev_priv, reg, val); 913 } 914 } 915 916 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 917 { 918 u32 val; 919 920 val = intel_de_read(dev_priv, LPT_TRANSCONF); 921 val &= ~TRANS_ENABLE; 922 intel_de_write(dev_priv, LPT_TRANSCONF, val); 923 /* wait for PCH transcoder off, transcoder state */ 924 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 925 TRANS_STATE_ENABLE, 50)) 926 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n"); 927 928 /* Workaround: clear timing override bit. */ 929 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 930 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 931 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 932 } 933 934 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 935 { 936 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 937 938 if (HAS_PCH_LPT(dev_priv)) 939 return PIPE_A; 940 else 941 return crtc->pipe; 942 } 943 944 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) 945 { 946 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 947 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 948 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 949 enum pipe pipe = crtc->pipe; 950 i915_reg_t reg; 951 u32 val; 952 953 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe)); 954 955 assert_planes_disabled(crtc); 956 957 /* 958 * A pipe without a PLL won't actually be able to drive bits from 959 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 960 * need the check. 961 */ 962 if (HAS_GMCH(dev_priv)) { 963 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 964 assert_dsi_pll_enabled(dev_priv); 965 else 966 assert_pll_enabled(dev_priv, pipe); 967 } else { 968 if (new_crtc_state->has_pch_encoder) { 969 /* if driving the PCH, we need FDI enabled */ 970 assert_fdi_rx_pll_enabled(dev_priv, 971 intel_crtc_pch_transcoder(crtc)); 972 assert_fdi_tx_pll_enabled(dev_priv, 973 (enum pipe) cpu_transcoder); 974 } 975 /* FIXME: assert CPU port conditions for SNB+ */ 976 } 977 978 /* Wa_22012358565:adlp */ 979 if (DISPLAY_VER(dev_priv) == 13) 980 intel_de_rmw(dev_priv, PIPE_ARB_CTL(pipe), 981 0, PIPE_ARB_USE_PROG_SLOTS); 982 983 reg = PIPECONF(cpu_transcoder); 984 val = intel_de_read(dev_priv, reg); 985 if (val & PIPECONF_ENABLE) { 986 /* we keep both pipes enabled on 830 */ 987 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv)); 988 return; 989 } 990 991 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE); 992 intel_de_posting_read(dev_priv, reg); 993 994 /* 995 * Until the pipe starts PIPEDSL reads will return a stale value, 996 * which causes an apparent vblank timestamp jump when PIPEDSL 997 * resets to its proper value. That also messes up the frame count 998 * when it's derived from the timestamps. So let's wait for the 999 * pipe to start properly before we call drm_crtc_vblank_on() 1000 */ 1001 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 1002 intel_wait_for_pipe_scanline_moving(crtc); 1003 } 1004 1005 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) 1006 { 1007 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1008 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1009 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1010 enum pipe pipe = crtc->pipe; 1011 i915_reg_t reg; 1012 u32 val; 1013 1014 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe)); 1015 1016 /* 1017 * Make sure planes won't keep trying to pump pixels to us, 1018 * or we might hang the display. 1019 */ 1020 assert_planes_disabled(crtc); 1021 1022 reg = PIPECONF(cpu_transcoder); 1023 val = intel_de_read(dev_priv, reg); 1024 if ((val & PIPECONF_ENABLE) == 0) 1025 return; 1026 1027 /* 1028 * Double wide has implications for planes 1029 * so best keep it disabled when not needed. 1030 */ 1031 if (old_crtc_state->double_wide) 1032 val &= ~PIPECONF_DOUBLE_WIDE; 1033 1034 /* Don't disable pipe or pipe PLLs if needed */ 1035 if (!IS_I830(dev_priv)) 1036 val &= ~PIPECONF_ENABLE; 1037 1038 intel_de_write(dev_priv, reg, val); 1039 if ((val & PIPECONF_ENABLE) == 0) 1040 intel_wait_for_pipe_off(old_crtc_state); 1041 } 1042 1043 bool 1044 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info, 1045 u64 modifier) 1046 { 1047 return info->is_yuv && 1048 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2); 1049 } 1050 1051 unsigned int 1052 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) 1053 { 1054 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1055 unsigned int cpp = fb->format->cpp[color_plane]; 1056 1057 switch (fb->modifier) { 1058 case DRM_FORMAT_MOD_LINEAR: 1059 return intel_tile_size(dev_priv); 1060 case I915_FORMAT_MOD_X_TILED: 1061 if (DISPLAY_VER(dev_priv) == 2) 1062 return 128; 1063 else 1064 return 512; 1065 case I915_FORMAT_MOD_Y_TILED_CCS: 1066 if (is_ccs_plane(fb, color_plane)) 1067 return 128; 1068 fallthrough; 1069 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1070 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1071 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1072 if (is_ccs_plane(fb, color_plane)) 1073 return 64; 1074 fallthrough; 1075 case I915_FORMAT_MOD_Y_TILED: 1076 if (DISPLAY_VER(dev_priv) == 2 || HAS_128_BYTE_Y_TILING(dev_priv)) 1077 return 128; 1078 else 1079 return 512; 1080 case I915_FORMAT_MOD_Yf_TILED_CCS: 1081 if (is_ccs_plane(fb, color_plane)) 1082 return 128; 1083 fallthrough; 1084 case I915_FORMAT_MOD_Yf_TILED: 1085 switch (cpp) { 1086 case 1: 1087 return 64; 1088 case 2: 1089 case 4: 1090 return 128; 1091 case 8: 1092 case 16: 1093 return 256; 1094 default: 1095 MISSING_CASE(cpp); 1096 return cpp; 1097 } 1098 break; 1099 default: 1100 MISSING_CASE(fb->modifier); 1101 return cpp; 1102 } 1103 } 1104 1105 unsigned int 1106 intel_fb_align_height(const struct drm_framebuffer *fb, 1107 int color_plane, unsigned int height) 1108 { 1109 unsigned int tile_height = intel_tile_height(fb, color_plane); 1110 1111 return ALIGN(height, tile_height); 1112 } 1113 1114 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 1115 { 1116 unsigned int size = 0; 1117 int i; 1118 1119 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 1120 size += rot_info->plane[i].dst_stride * rot_info->plane[i].width; 1121 1122 return size; 1123 } 1124 1125 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 1126 { 1127 unsigned int size = 0; 1128 int i; 1129 1130 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 1131 size += rem_info->plane[i].dst_stride * rem_info->plane[i].height; 1132 1133 return size; 1134 } 1135 1136 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 1137 { 1138 if (DISPLAY_VER(dev_priv) >= 9) 1139 return 256 * 1024; 1140 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || 1141 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1142 return 128 * 1024; 1143 else if (DISPLAY_VER(dev_priv) >= 4) 1144 return 4 * 1024; 1145 else 1146 return 0; 1147 } 1148 1149 static bool has_async_flips(struct drm_i915_private *i915) 1150 { 1151 return DISPLAY_VER(i915) >= 5; 1152 } 1153 1154 unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, 1155 int color_plane) 1156 { 1157 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1158 1159 if (intel_fb_uses_dpt(fb)) 1160 return 512 * 4096; 1161 1162 /* AUX_DIST needs only 4K alignment */ 1163 if (is_ccs_plane(fb, color_plane)) 1164 return 4096; 1165 1166 if (is_semiplanar_uv_plane(fb, color_plane)) { 1167 /* 1168 * TODO: cross-check wrt. the bspec stride in bytes * 64 bytes 1169 * alignment for linear UV planes on all platforms. 1170 */ 1171 if (DISPLAY_VER(dev_priv) >= 12) { 1172 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) 1173 return intel_linear_alignment(dev_priv); 1174 1175 return intel_tile_row_size(fb, color_plane); 1176 } 1177 1178 return 4096; 1179 } 1180 1181 drm_WARN_ON(&dev_priv->drm, color_plane != 0); 1182 1183 switch (fb->modifier) { 1184 case DRM_FORMAT_MOD_LINEAR: 1185 return intel_linear_alignment(dev_priv); 1186 case I915_FORMAT_MOD_X_TILED: 1187 if (has_async_flips(dev_priv)) 1188 return 256 * 1024; 1189 return 0; 1190 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1191 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1192 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1193 return 16 * 1024; 1194 case I915_FORMAT_MOD_Y_TILED_CCS: 1195 case I915_FORMAT_MOD_Yf_TILED_CCS: 1196 case I915_FORMAT_MOD_Y_TILED: 1197 case I915_FORMAT_MOD_Yf_TILED: 1198 return 1 * 1024 * 1024; 1199 default: 1200 MISSING_CASE(fb->modifier); 1201 return 0; 1202 } 1203 } 1204 1205 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 1206 { 1207 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1208 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 1209 1210 return DISPLAY_VER(dev_priv) < 4 || 1211 (plane->has_fbc && 1212 plane_state->view.gtt.type == I915_GGTT_VIEW_NORMAL); 1213 } 1214 1215 static struct i915_vma * 1216 intel_pin_fb_obj_dpt(struct drm_framebuffer *fb, 1217 const struct i915_ggtt_view *view, 1218 bool uses_fence, 1219 unsigned long *out_flags, 1220 struct i915_address_space *vm) 1221 { 1222 struct drm_device *dev = fb->dev; 1223 struct drm_i915_private *dev_priv = to_i915(dev); 1224 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 1225 struct i915_vma *vma; 1226 u32 alignment; 1227 int ret; 1228 1229 if (WARN_ON(!i915_gem_object_is_framebuffer(obj))) 1230 return ERR_PTR(-EINVAL); 1231 1232 alignment = 4096 * 512; 1233 1234 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 1235 1236 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); 1237 if (ret) { 1238 vma = ERR_PTR(ret); 1239 goto err; 1240 } 1241 1242 vma = i915_vma_instance(obj, vm, view); 1243 if (IS_ERR(vma)) 1244 goto err; 1245 1246 if (i915_vma_misplaced(vma, 0, alignment, 0)) { 1247 ret = i915_vma_unbind(vma); 1248 if (ret) { 1249 vma = ERR_PTR(ret); 1250 goto err; 1251 } 1252 } 1253 1254 ret = i915_vma_pin(vma, 0, alignment, PIN_GLOBAL); 1255 if (ret) { 1256 vma = ERR_PTR(ret); 1257 goto err; 1258 } 1259 1260 vma->display_alignment = max_t(u64, vma->display_alignment, alignment); 1261 1262 i915_gem_object_flush_if_display(obj); 1263 1264 i915_vma_get(vma); 1265 err: 1266 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 1267 1268 return vma; 1269 } 1270 1271 struct i915_vma * 1272 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 1273 bool phys_cursor, 1274 const struct i915_ggtt_view *view, 1275 bool uses_fence, 1276 unsigned long *out_flags) 1277 { 1278 struct drm_device *dev = fb->dev; 1279 struct drm_i915_private *dev_priv = to_i915(dev); 1280 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 1281 intel_wakeref_t wakeref; 1282 struct i915_gem_ww_ctx ww; 1283 struct i915_vma *vma; 1284 unsigned int pinctl; 1285 u32 alignment; 1286 int ret; 1287 1288 if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj))) 1289 return ERR_PTR(-EINVAL); 1290 1291 if (phys_cursor) 1292 alignment = intel_cursor_alignment(dev_priv); 1293 else 1294 alignment = intel_surf_alignment(fb, 0); 1295 if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment))) 1296 return ERR_PTR(-EINVAL); 1297 1298 /* Note that the w/a also requires 64 PTE of padding following the 1299 * bo. We currently fill all unused PTE with the shadow page and so 1300 * we should always have valid PTE following the scanout preventing 1301 * the VT-d warning. 1302 */ 1303 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) 1304 alignment = 256 * 1024; 1305 1306 /* 1307 * Global gtt pte registers are special registers which actually forward 1308 * writes to a chunk of system memory. Which means that there is no risk 1309 * that the register values disappear as soon as we call 1310 * intel_runtime_pm_put(), so it is correct to wrap only the 1311 * pin/unpin/fence and not more. 1312 */ 1313 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 1314 1315 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 1316 1317 /* 1318 * Valleyview is definitely limited to scanning out the first 1319 * 512MiB. Lets presume this behaviour was inherited from the 1320 * g4x display engine and that all earlier gen are similarly 1321 * limited. Testing suggests that it is a little more 1322 * complicated than this. For example, Cherryview appears quite 1323 * happy to scanout from anywhere within its global aperture. 1324 */ 1325 pinctl = 0; 1326 if (HAS_GMCH(dev_priv)) 1327 pinctl |= PIN_MAPPABLE; 1328 1329 i915_gem_ww_ctx_init(&ww, true); 1330 retry: 1331 ret = i915_gem_object_lock(obj, &ww); 1332 if (!ret && phys_cursor) 1333 ret = i915_gem_object_attach_phys(obj, alignment); 1334 if (!ret) 1335 ret = i915_gem_object_pin_pages(obj); 1336 if (ret) 1337 goto err; 1338 1339 if (!ret) { 1340 vma = i915_gem_object_pin_to_display_plane(obj, &ww, alignment, 1341 view, pinctl); 1342 if (IS_ERR(vma)) { 1343 ret = PTR_ERR(vma); 1344 goto err_unpin; 1345 } 1346 } 1347 1348 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { 1349 /* 1350 * Install a fence for tiled scan-out. Pre-i965 always needs a 1351 * fence, whereas 965+ only requires a fence if using 1352 * framebuffer compression. For simplicity, we always, when 1353 * possible, install a fence as the cost is not that onerous. 1354 * 1355 * If we fail to fence the tiled scanout, then either the 1356 * modeset will reject the change (which is highly unlikely as 1357 * the affected systems, all but one, do not have unmappable 1358 * space) or we will not be able to enable full powersaving 1359 * techniques (also likely not to apply due to various limits 1360 * FBC and the like impose on the size of the buffer, which 1361 * presumably we violated anyway with this unmappable buffer). 1362 * Anyway, it is presumably better to stumble onwards with 1363 * something and try to run the system in a "less than optimal" 1364 * mode that matches the user configuration. 1365 */ 1366 ret = i915_vma_pin_fence(vma); 1367 if (ret != 0 && DISPLAY_VER(dev_priv) < 4) { 1368 i915_vma_unpin(vma); 1369 goto err_unpin; 1370 } 1371 ret = 0; 1372 1373 if (vma->fence) 1374 *out_flags |= PLANE_HAS_FENCE; 1375 } 1376 1377 i915_vma_get(vma); 1378 1379 err_unpin: 1380 i915_gem_object_unpin_pages(obj); 1381 err: 1382 if (ret == -EDEADLK) { 1383 ret = i915_gem_ww_ctx_backoff(&ww); 1384 if (!ret) 1385 goto retry; 1386 } 1387 i915_gem_ww_ctx_fini(&ww); 1388 if (ret) 1389 vma = ERR_PTR(ret); 1390 1391 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 1392 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 1393 return vma; 1394 } 1395 1396 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) 1397 { 1398 if (flags & PLANE_HAS_FENCE) 1399 i915_vma_unpin_fence(vma); 1400 i915_vma_unpin(vma); 1401 i915_vma_put(vma); 1402 } 1403 1404 /* 1405 * Convert the x/y offsets into a linear offset. 1406 * Only valid with 0/180 degree rotation, which is fine since linear 1407 * offset is only used with linear buffers on pre-hsw and tiled buffers 1408 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 1409 */ 1410 u32 intel_fb_xy_to_linear(int x, int y, 1411 const struct intel_plane_state *state, 1412 int color_plane) 1413 { 1414 const struct drm_framebuffer *fb = state->hw.fb; 1415 unsigned int cpp = fb->format->cpp[color_plane]; 1416 unsigned int pitch = state->view.color_plane[color_plane].stride; 1417 1418 return y * pitch + x * cpp; 1419 } 1420 1421 /* 1422 * Add the x/y offsets derived from fb->offsets[] to the user 1423 * specified plane src x/y offsets. The resulting x/y offsets 1424 * specify the start of scanout from the beginning of the gtt mapping. 1425 */ 1426 void intel_add_fb_offsets(int *x, int *y, 1427 const struct intel_plane_state *state, 1428 int color_plane) 1429 1430 { 1431 *x += state->view.color_plane[color_plane].x; 1432 *y += state->view.color_plane[color_plane].y; 1433 } 1434 1435 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) 1436 { 1437 switch (fb_modifier) { 1438 case I915_FORMAT_MOD_X_TILED: 1439 return I915_TILING_X; 1440 case I915_FORMAT_MOD_Y_TILED: 1441 case I915_FORMAT_MOD_Y_TILED_CCS: 1442 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1443 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1444 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1445 return I915_TILING_Y; 1446 default: 1447 return I915_TILING_NONE; 1448 } 1449 } 1450 1451 /* 1452 * From the Sky Lake PRM: 1453 * "The Color Control Surface (CCS) contains the compression status of 1454 * the cache-line pairs. The compression state of the cache-line pair 1455 * is specified by 2 bits in the CCS. Each CCS cache-line represents 1456 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 1457 * cache-line-pairs. CCS is always Y tiled." 1458 * 1459 * Since cache line pairs refers to horizontally adjacent cache lines, 1460 * each cache line in the CCS corresponds to an area of 32x16 cache 1461 * lines on the main surface. Since each pixel is 4 bytes, this gives 1462 * us a ratio of one byte in the CCS for each 8x16 pixels in the 1463 * main surface. 1464 */ 1465 static const struct drm_format_info skl_ccs_formats[] = { 1466 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 1467 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 1468 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 1469 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 1470 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 1471 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 1472 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 1473 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 1474 }; 1475 1476 /* 1477 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the 1478 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles 1479 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of 1480 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in 1481 * the main surface. 1482 */ 1483 static const struct drm_format_info gen12_ccs_formats[] = { 1484 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 1485 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1486 .hsub = 1, .vsub = 1, }, 1487 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 1488 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1489 .hsub = 1, .vsub = 1, }, 1490 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 1491 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1492 .hsub = 1, .vsub = 1, .has_alpha = true }, 1493 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 1494 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1495 .hsub = 1, .vsub = 1, .has_alpha = true }, 1496 { .format = DRM_FORMAT_YUYV, .num_planes = 2, 1497 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1498 .hsub = 2, .vsub = 1, .is_yuv = true }, 1499 { .format = DRM_FORMAT_YVYU, .num_planes = 2, 1500 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1501 .hsub = 2, .vsub = 1, .is_yuv = true }, 1502 { .format = DRM_FORMAT_UYVY, .num_planes = 2, 1503 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1504 .hsub = 2, .vsub = 1, .is_yuv = true }, 1505 { .format = DRM_FORMAT_VYUY, .num_planes = 2, 1506 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1507 .hsub = 2, .vsub = 1, .is_yuv = true }, 1508 { .format = DRM_FORMAT_XYUV8888, .num_planes = 2, 1509 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1510 .hsub = 1, .vsub = 1, .is_yuv = true }, 1511 { .format = DRM_FORMAT_NV12, .num_planes = 4, 1512 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 }, 1513 .hsub = 2, .vsub = 2, .is_yuv = true }, 1514 { .format = DRM_FORMAT_P010, .num_planes = 4, 1515 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1516 .hsub = 2, .vsub = 2, .is_yuv = true }, 1517 { .format = DRM_FORMAT_P012, .num_planes = 4, 1518 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1519 .hsub = 2, .vsub = 2, .is_yuv = true }, 1520 { .format = DRM_FORMAT_P016, .num_planes = 4, 1521 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1522 .hsub = 2, .vsub = 2, .is_yuv = true }, 1523 }; 1524 1525 /* 1526 * Same as gen12_ccs_formats[] above, but with additional surface used 1527 * to pass Clear Color information in plane 2 with 64 bits of data. 1528 */ 1529 static const struct drm_format_info gen12_ccs_cc_formats[] = { 1530 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 3, 1531 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1532 .hsub = 1, .vsub = 1, }, 1533 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 3, 1534 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1535 .hsub = 1, .vsub = 1, }, 1536 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 3, 1537 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1538 .hsub = 1, .vsub = 1, .has_alpha = true }, 1539 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 3, 1540 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1541 .hsub = 1, .vsub = 1, .has_alpha = true }, 1542 }; 1543 1544 static const struct drm_format_info * 1545 lookup_format_info(const struct drm_format_info formats[], 1546 int num_formats, u32 format) 1547 { 1548 int i; 1549 1550 for (i = 0; i < num_formats; i++) { 1551 if (formats[i].format == format) 1552 return &formats[i]; 1553 } 1554 1555 return NULL; 1556 } 1557 1558 static const struct drm_format_info * 1559 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 1560 { 1561 switch (cmd->modifier[0]) { 1562 case I915_FORMAT_MOD_Y_TILED_CCS: 1563 case I915_FORMAT_MOD_Yf_TILED_CCS: 1564 return lookup_format_info(skl_ccs_formats, 1565 ARRAY_SIZE(skl_ccs_formats), 1566 cmd->pixel_format); 1567 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1568 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1569 return lookup_format_info(gen12_ccs_formats, 1570 ARRAY_SIZE(gen12_ccs_formats), 1571 cmd->pixel_format); 1572 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1573 return lookup_format_info(gen12_ccs_cc_formats, 1574 ARRAY_SIZE(gen12_ccs_cc_formats), 1575 cmd->pixel_format); 1576 default: 1577 return NULL; 1578 } 1579 } 1580 1581 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane) 1582 { 1583 return DIV_ROUND_UP(fb->pitches[skl_ccs_to_main_plane(fb, ccs_plane)], 1584 512) * 64; 1585 } 1586 1587 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 1588 u32 pixel_format, u64 modifier) 1589 { 1590 struct intel_crtc *crtc; 1591 struct intel_plane *plane; 1592 1593 if (!HAS_DISPLAY(dev_priv)) 1594 return 0; 1595 1596 /* 1597 * We assume the primary plane for pipe A has 1598 * the highest stride limits of them all, 1599 * if in case pipe A is disabled, use the first pipe from pipe_mask. 1600 */ 1601 crtc = intel_get_first_crtc(dev_priv); 1602 if (!crtc) 1603 return 0; 1604 1605 plane = to_intel_plane(crtc->base.primary); 1606 1607 return plane->max_stride(plane, pixel_format, modifier, 1608 DRM_MODE_ROTATE_0); 1609 } 1610 1611 static 1612 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, 1613 u32 pixel_format, u64 modifier) 1614 { 1615 /* 1616 * Arbitrary limit for gen4+ chosen to match the 1617 * render engine max stride. 1618 * 1619 * The new CCS hash mode makes remapping impossible 1620 */ 1621 if (DISPLAY_VER(dev_priv) < 4 || is_ccs_modifier(modifier) || 1622 intel_modifier_uses_dpt(dev_priv, modifier)) 1623 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); 1624 else if (DISPLAY_VER(dev_priv) >= 7) 1625 return 256 * 1024; 1626 else 1627 return 128 * 1024; 1628 } 1629 1630 static u32 1631 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) 1632 { 1633 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1634 u32 tile_width; 1635 1636 if (is_surface_linear(fb, color_plane)) { 1637 u32 max_stride = intel_plane_fb_max_stride(dev_priv, 1638 fb->format->format, 1639 fb->modifier); 1640 1641 /* 1642 * To make remapping with linear generally feasible 1643 * we need the stride to be page aligned. 1644 */ 1645 if (fb->pitches[color_plane] > max_stride && 1646 !is_ccs_modifier(fb->modifier)) 1647 return intel_tile_size(dev_priv); 1648 else 1649 return 64; 1650 } 1651 1652 tile_width = intel_tile_width_bytes(fb, color_plane); 1653 if (is_ccs_modifier(fb->modifier)) { 1654 /* 1655 * Display WA #0531: skl,bxt,kbl,glk 1656 * 1657 * Render decompression and plane width > 3840 1658 * combined with horizontal panning requires the 1659 * plane stride to be a multiple of 4. We'll just 1660 * require the entire fb to accommodate that to avoid 1661 * potential runtime errors at plane configuration time. 1662 */ 1663 if ((DISPLAY_VER(dev_priv) == 9 || IS_GEMINILAKE(dev_priv)) && 1664 color_plane == 0 && fb->width > 3840) 1665 tile_width *= 4; 1666 /* 1667 * The main surface pitch must be padded to a multiple of four 1668 * tile widths. 1669 */ 1670 else if (DISPLAY_VER(dev_priv) >= 12) 1671 tile_width *= 4; 1672 } 1673 return tile_width; 1674 } 1675 1676 static struct i915_vma * 1677 initial_plane_vma(struct drm_i915_private *i915, 1678 struct intel_initial_plane_config *plane_config) 1679 { 1680 struct drm_i915_gem_object *obj; 1681 struct i915_vma *vma; 1682 u32 base, size; 1683 1684 if (plane_config->size == 0) 1685 return NULL; 1686 1687 base = round_down(plane_config->base, 1688 I915_GTT_MIN_ALIGNMENT); 1689 size = round_up(plane_config->base + plane_config->size, 1690 I915_GTT_MIN_ALIGNMENT); 1691 size -= base; 1692 1693 /* 1694 * If the FB is too big, just don't use it since fbdev is not very 1695 * important and we should probably use that space with FBC or other 1696 * features. 1697 */ 1698 if (IS_ENABLED(CONFIG_FRAMEBUFFER_CONSOLE) && 1699 size * 2 > i915->stolen_usable_size) 1700 return NULL; 1701 1702 obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size); 1703 if (IS_ERR(obj)) 1704 return NULL; 1705 1706 /* 1707 * Mark it WT ahead of time to avoid changing the 1708 * cache_level during fbdev initialization. The 1709 * unbind there would get stuck waiting for rcu. 1710 */ 1711 i915_gem_object_set_cache_coherency(obj, HAS_WT(i915) ? 1712 I915_CACHE_WT : I915_CACHE_NONE); 1713 1714 switch (plane_config->tiling) { 1715 case I915_TILING_NONE: 1716 break; 1717 case I915_TILING_X: 1718 case I915_TILING_Y: 1719 obj->tiling_and_stride = 1720 plane_config->fb->base.pitches[0] | 1721 plane_config->tiling; 1722 break; 1723 default: 1724 MISSING_CASE(plane_config->tiling); 1725 goto err_obj; 1726 } 1727 1728 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); 1729 if (IS_ERR(vma)) 1730 goto err_obj; 1731 1732 if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base)) 1733 goto err_obj; 1734 1735 if (i915_gem_object_is_tiled(obj) && 1736 !i915_vma_is_map_and_fenceable(vma)) 1737 goto err_obj; 1738 1739 return vma; 1740 1741 err_obj: 1742 i915_gem_object_put(obj); 1743 return NULL; 1744 } 1745 1746 static bool 1747 intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 1748 struct intel_initial_plane_config *plane_config) 1749 { 1750 struct drm_device *dev = crtc->base.dev; 1751 struct drm_i915_private *dev_priv = to_i915(dev); 1752 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 1753 struct drm_framebuffer *fb = &plane_config->fb->base; 1754 struct i915_vma *vma; 1755 1756 switch (fb->modifier) { 1757 case DRM_FORMAT_MOD_LINEAR: 1758 case I915_FORMAT_MOD_X_TILED: 1759 case I915_FORMAT_MOD_Y_TILED: 1760 break; 1761 default: 1762 drm_dbg(&dev_priv->drm, 1763 "Unsupported modifier for initial FB: 0x%llx\n", 1764 fb->modifier); 1765 return false; 1766 } 1767 1768 vma = initial_plane_vma(dev_priv, plane_config); 1769 if (!vma) 1770 return false; 1771 1772 mode_cmd.pixel_format = fb->format->format; 1773 mode_cmd.width = fb->width; 1774 mode_cmd.height = fb->height; 1775 mode_cmd.pitches[0] = fb->pitches[0]; 1776 mode_cmd.modifier[0] = fb->modifier; 1777 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 1778 1779 if (intel_framebuffer_init(to_intel_framebuffer(fb), 1780 vma->obj, &mode_cmd)) { 1781 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n"); 1782 goto err_vma; 1783 } 1784 1785 plane_config->vma = vma; 1786 return true; 1787 1788 err_vma: 1789 i915_vma_put(vma); 1790 return false; 1791 } 1792 1793 static void 1794 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 1795 struct intel_plane_state *plane_state, 1796 bool visible) 1797 { 1798 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1799 1800 plane_state->uapi.visible = visible; 1801 1802 if (visible) 1803 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); 1804 else 1805 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); 1806 } 1807 1808 static void fixup_plane_bitmasks(struct intel_crtc_state *crtc_state) 1809 { 1810 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1811 struct drm_plane *plane; 1812 1813 /* 1814 * Active_planes aliases if multiple "primary" or cursor planes 1815 * have been used on the same (or wrong) pipe. plane_mask uses 1816 * unique ids, hence we can use that to reconstruct active_planes. 1817 */ 1818 crtc_state->enabled_planes = 0; 1819 crtc_state->active_planes = 0; 1820 1821 drm_for_each_plane_mask(plane, &dev_priv->drm, 1822 crtc_state->uapi.plane_mask) { 1823 crtc_state->enabled_planes |= BIT(to_intel_plane(plane)->id); 1824 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 1825 } 1826 } 1827 1828 static void intel_plane_disable_noatomic(struct intel_crtc *crtc, 1829 struct intel_plane *plane) 1830 { 1831 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1832 struct intel_crtc_state *crtc_state = 1833 to_intel_crtc_state(crtc->base.state); 1834 struct intel_plane_state *plane_state = 1835 to_intel_plane_state(plane->base.state); 1836 1837 drm_dbg_kms(&dev_priv->drm, 1838 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 1839 plane->base.base.id, plane->base.name, 1840 crtc->base.base.id, crtc->base.name); 1841 1842 intel_set_plane_visible(crtc_state, plane_state, false); 1843 fixup_plane_bitmasks(crtc_state); 1844 crtc_state->data_rate[plane->id] = 0; 1845 crtc_state->min_cdclk[plane->id] = 0; 1846 1847 if (plane->id == PLANE_PRIMARY) 1848 hsw_disable_ips(crtc_state); 1849 1850 /* 1851 * Vblank time updates from the shadow to live plane control register 1852 * are blocked if the memory self-refresh mode is active at that 1853 * moment. So to make sure the plane gets truly disabled, disable 1854 * first the self-refresh mode. The self-refresh enable bit in turn 1855 * will be checked/applied by the HW only at the next frame start 1856 * event which is after the vblank start event, so we need to have a 1857 * wait-for-vblank between disabling the plane and the pipe. 1858 */ 1859 if (HAS_GMCH(dev_priv) && 1860 intel_set_memory_cxsr(dev_priv, false)) 1861 intel_wait_for_vblank(dev_priv, crtc->pipe); 1862 1863 /* 1864 * Gen2 reports pipe underruns whenever all planes are disabled. 1865 * So disable underrun reporting before all the planes get disabled. 1866 */ 1867 if (DISPLAY_VER(dev_priv) == 2 && !crtc_state->active_planes) 1868 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 1869 1870 intel_disable_plane(plane, crtc_state); 1871 intel_wait_for_vblank(dev_priv, crtc->pipe); 1872 } 1873 1874 static struct i915_vma *intel_dpt_pin(struct i915_address_space *vm) 1875 { 1876 struct drm_i915_private *i915 = vm->i915; 1877 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 1878 intel_wakeref_t wakeref; 1879 struct i915_vma *vma; 1880 void __iomem *iomem; 1881 1882 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 1883 atomic_inc(&i915->gpu_error.pending_fb_pin); 1884 1885 vma = i915_gem_object_ggtt_pin(dpt->obj, NULL, 0, 4096, 1886 HAS_LMEM(i915) ? 0 : PIN_MAPPABLE); 1887 if (IS_ERR(vma)) 1888 goto err; 1889 1890 iomem = i915_vma_pin_iomap(vma); 1891 i915_vma_unpin(vma); 1892 if (IS_ERR(iomem)) { 1893 vma = iomem; 1894 goto err; 1895 } 1896 1897 dpt->vma = vma; 1898 dpt->iomem = iomem; 1899 1900 i915_vma_get(vma); 1901 1902 err: 1903 atomic_dec(&i915->gpu_error.pending_fb_pin); 1904 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 1905 1906 return vma; 1907 } 1908 1909 static void intel_dpt_unpin(struct i915_address_space *vm) 1910 { 1911 struct i915_dpt *dpt = i915_vm_to_dpt(vm); 1912 1913 i915_vma_unpin_iomap(dpt->vma); 1914 i915_vma_put(dpt->vma); 1915 } 1916 1917 static void 1918 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, 1919 struct intel_initial_plane_config *plane_config) 1920 { 1921 struct drm_device *dev = intel_crtc->base.dev; 1922 struct drm_i915_private *dev_priv = to_i915(dev); 1923 struct drm_crtc *c; 1924 struct drm_plane *primary = intel_crtc->base.primary; 1925 struct drm_plane_state *plane_state = primary->state; 1926 struct intel_plane *intel_plane = to_intel_plane(primary); 1927 struct intel_plane_state *intel_state = 1928 to_intel_plane_state(plane_state); 1929 struct intel_crtc_state *crtc_state = 1930 to_intel_crtc_state(intel_crtc->base.state); 1931 struct drm_framebuffer *fb; 1932 struct i915_vma *vma; 1933 1934 /* 1935 * TODO: 1936 * Disable planes if get_initial_plane_config() failed. 1937 * Make sure things work if the surface base is not page aligned. 1938 */ 1939 if (!plane_config->fb) 1940 return; 1941 1942 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { 1943 fb = &plane_config->fb->base; 1944 vma = plane_config->vma; 1945 goto valid_fb; 1946 } 1947 1948 /* 1949 * Failed to alloc the obj, check to see if we should share 1950 * an fb with another CRTC instead 1951 */ 1952 for_each_crtc(dev, c) { 1953 struct intel_plane_state *state; 1954 1955 if (c == &intel_crtc->base) 1956 continue; 1957 1958 if (!to_intel_crtc_state(c->state)->uapi.active) 1959 continue; 1960 1961 state = to_intel_plane_state(c->primary->state); 1962 if (!state->ggtt_vma) 1963 continue; 1964 1965 if (intel_plane_ggtt_offset(state) == plane_config->base) { 1966 fb = state->hw.fb; 1967 vma = state->ggtt_vma; 1968 goto valid_fb; 1969 } 1970 } 1971 1972 /* 1973 * We've failed to reconstruct the BIOS FB. Current display state 1974 * indicates that the primary plane is visible, but has a NULL FB, 1975 * which will lead to problems later if we don't fix it up. The 1976 * simplest solution is to just disable the primary plane now and 1977 * pretend the BIOS never had it enabled. 1978 */ 1979 intel_plane_disable_noatomic(intel_crtc, intel_plane); 1980 if (crtc_state->bigjoiner) { 1981 struct intel_crtc *slave = 1982 crtc_state->bigjoiner_linked_crtc; 1983 intel_plane_disable_noatomic(slave, to_intel_plane(slave->base.primary)); 1984 } 1985 1986 return; 1987 1988 valid_fb: 1989 plane_state->rotation = plane_config->rotation; 1990 intel_fb_fill_view(to_intel_framebuffer(fb), plane_state->rotation, 1991 &intel_state->view); 1992 1993 __i915_vma_pin(vma); 1994 intel_state->ggtt_vma = i915_vma_get(vma); 1995 if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0) 1996 if (vma->fence) 1997 intel_state->flags |= PLANE_HAS_FENCE; 1998 1999 plane_state->src_x = 0; 2000 plane_state->src_y = 0; 2001 plane_state->src_w = fb->width << 16; 2002 plane_state->src_h = fb->height << 16; 2003 2004 plane_state->crtc_x = 0; 2005 plane_state->crtc_y = 0; 2006 plane_state->crtc_w = fb->width; 2007 plane_state->crtc_h = fb->height; 2008 2009 if (plane_config->tiling) 2010 dev_priv->preserve_bios_swizzle = true; 2011 2012 plane_state->fb = fb; 2013 drm_framebuffer_get(fb); 2014 2015 plane_state->crtc = &intel_crtc->base; 2016 intel_plane_copy_uapi_to_hw_state(intel_state, intel_state, 2017 intel_crtc); 2018 2019 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 2020 2021 atomic_or(to_intel_plane(primary)->frontbuffer_bit, 2022 &to_intel_frontbuffer(fb)->bits); 2023 } 2024 2025 unsigned int 2026 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state) 2027 { 2028 int x = 0, y = 0; 2029 2030 intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 2031 plane_state->view.color_plane[0].offset, 0); 2032 2033 return y; 2034 } 2035 2036 static int 2037 __intel_display_resume(struct drm_device *dev, 2038 struct drm_atomic_state *state, 2039 struct drm_modeset_acquire_ctx *ctx) 2040 { 2041 struct drm_crtc_state *crtc_state; 2042 struct drm_crtc *crtc; 2043 int i, ret; 2044 2045 intel_modeset_setup_hw_state(dev, ctx); 2046 intel_vga_redisable(to_i915(dev)); 2047 2048 if (!state) 2049 return 0; 2050 2051 /* 2052 * We've duplicated the state, pointers to the old state are invalid. 2053 * 2054 * Don't attempt to use the old state until we commit the duplicated state. 2055 */ 2056 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 2057 /* 2058 * Force recalculation even if we restore 2059 * current state. With fast modeset this may not result 2060 * in a modeset when the state is compatible. 2061 */ 2062 crtc_state->mode_changed = true; 2063 } 2064 2065 /* ignore any reset values/BIOS leftovers in the WM registers */ 2066 if (!HAS_GMCH(to_i915(dev))) 2067 to_intel_atomic_state(state)->skip_intermediate_wm = true; 2068 2069 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 2070 2071 drm_WARN_ON(dev, ret == -EDEADLK); 2072 return ret; 2073 } 2074 2075 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 2076 { 2077 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 2078 intel_has_gpu_reset(&dev_priv->gt)); 2079 } 2080 2081 void intel_display_prepare_reset(struct drm_i915_private *dev_priv) 2082 { 2083 struct drm_device *dev = &dev_priv->drm; 2084 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 2085 struct drm_atomic_state *state; 2086 int ret; 2087 2088 if (!HAS_DISPLAY(dev_priv)) 2089 return; 2090 2091 /* reset doesn't touch the display */ 2092 if (!dev_priv->params.force_reset_modeset_test && 2093 !gpu_reset_clobbers_display(dev_priv)) 2094 return; 2095 2096 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 2097 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 2098 smp_mb__after_atomic(); 2099 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 2100 2101 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 2102 drm_dbg_kms(&dev_priv->drm, 2103 "Modeset potentially stuck, unbreaking through wedging\n"); 2104 intel_gt_set_wedged(&dev_priv->gt); 2105 } 2106 2107 /* 2108 * Need mode_config.mutex so that we don't 2109 * trample ongoing ->detect() and whatnot. 2110 */ 2111 mutex_lock(&dev->mode_config.mutex); 2112 drm_modeset_acquire_init(ctx, 0); 2113 while (1) { 2114 ret = drm_modeset_lock_all_ctx(dev, ctx); 2115 if (ret != -EDEADLK) 2116 break; 2117 2118 drm_modeset_backoff(ctx); 2119 } 2120 /* 2121 * Disabling the crtcs gracefully seems nicer. Also the 2122 * g33 docs say we should at least disable all the planes. 2123 */ 2124 state = drm_atomic_helper_duplicate_state(dev, ctx); 2125 if (IS_ERR(state)) { 2126 ret = PTR_ERR(state); 2127 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n", 2128 ret); 2129 return; 2130 } 2131 2132 ret = drm_atomic_helper_disable_all(dev, ctx); 2133 if (ret) { 2134 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 2135 ret); 2136 drm_atomic_state_put(state); 2137 return; 2138 } 2139 2140 dev_priv->modeset_restore_state = state; 2141 state->acquire_ctx = ctx; 2142 } 2143 2144 void intel_display_finish_reset(struct drm_i915_private *dev_priv) 2145 { 2146 struct drm_device *dev = &dev_priv->drm; 2147 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 2148 struct drm_atomic_state *state; 2149 int ret; 2150 2151 if (!HAS_DISPLAY(dev_priv)) 2152 return; 2153 2154 /* reset doesn't touch the display */ 2155 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 2156 return; 2157 2158 state = fetch_and_zero(&dev_priv->modeset_restore_state); 2159 if (!state) 2160 goto unlock; 2161 2162 /* reset doesn't touch the display */ 2163 if (!gpu_reset_clobbers_display(dev_priv)) { 2164 /* for testing only restore the display */ 2165 ret = __intel_display_resume(dev, state, ctx); 2166 if (ret) 2167 drm_err(&dev_priv->drm, 2168 "Restoring old state failed with %i\n", ret); 2169 } else { 2170 /* 2171 * The display has been reset as well, 2172 * so need a full re-initialization. 2173 */ 2174 intel_pps_unlock_regs_wa(dev_priv); 2175 intel_modeset_init_hw(dev_priv); 2176 intel_init_clock_gating(dev_priv); 2177 intel_hpd_init(dev_priv); 2178 2179 ret = __intel_display_resume(dev, state, ctx); 2180 if (ret) 2181 drm_err(&dev_priv->drm, 2182 "Restoring old state failed with %i\n", ret); 2183 2184 intel_hpd_poll_disable(dev_priv); 2185 } 2186 2187 drm_atomic_state_put(state); 2188 unlock: 2189 drm_modeset_drop_locks(ctx); 2190 drm_modeset_acquire_fini(ctx); 2191 mutex_unlock(&dev->mode_config.mutex); 2192 2193 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 2194 } 2195 2196 static void icl_set_pipe_chicken(struct intel_crtc *crtc) 2197 { 2198 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2199 enum pipe pipe = crtc->pipe; 2200 u32 tmp; 2201 2202 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe)); 2203 2204 /* 2205 * Display WA #1153: icl 2206 * enable hardware to bypass the alpha math 2207 * and rounding for per-pixel values 00 and 0xff 2208 */ 2209 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 2210 /* 2211 * Display WA # 1605353570: icl 2212 * Set the pixel rounding bit to 1 for allowing 2213 * passthrough of Frame buffer pixels unmodified 2214 * across pipe 2215 */ 2216 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 2217 2218 /* 2219 * "The underrun recovery mechanism should be disabled 2220 * when the following is enabled for this pipe: 2221 * WiDi 2222 * Downscaling (this includes YUV420 fullblend) 2223 * COG 2224 * DSC 2225 * PSR2" 2226 * 2227 * FIXME: enable whenever possible... 2228 */ 2229 if (IS_ALDERLAKE_P(dev_priv)) 2230 tmp |= UNDERRUN_RECOVERY_DISABLE; 2231 2232 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp); 2233 } 2234 2235 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 2236 { 2237 struct drm_crtc *crtc; 2238 bool cleanup_done; 2239 2240 drm_for_each_crtc(crtc, &dev_priv->drm) { 2241 struct drm_crtc_commit *commit; 2242 spin_lock(&crtc->commit_lock); 2243 commit = list_first_entry_or_null(&crtc->commit_list, 2244 struct drm_crtc_commit, commit_entry); 2245 cleanup_done = commit ? 2246 try_wait_for_completion(&commit->cleanup_done) : true; 2247 spin_unlock(&crtc->commit_lock); 2248 2249 if (cleanup_done) 2250 continue; 2251 2252 drm_crtc_wait_one_vblank(crtc); 2253 2254 return true; 2255 } 2256 2257 return false; 2258 } 2259 2260 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 2261 { 2262 u32 temp; 2263 2264 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE); 2265 2266 mutex_lock(&dev_priv->sb_lock); 2267 2268 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2269 temp |= SBI_SSCCTL_DISABLE; 2270 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 2271 2272 mutex_unlock(&dev_priv->sb_lock); 2273 } 2274 2275 /* Program iCLKIP clock to the desired frequency */ 2276 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 2277 { 2278 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2279 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2280 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 2281 u32 divsel, phaseinc, auxdiv, phasedir = 0; 2282 u32 temp; 2283 2284 lpt_disable_iclkip(dev_priv); 2285 2286 /* The iCLK virtual clock root frequency is in MHz, 2287 * but the adjusted_mode->crtc_clock in in KHz. To get the 2288 * divisors, it is necessary to divide one by another, so we 2289 * convert the virtual clock precision to KHz here for higher 2290 * precision. 2291 */ 2292 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 2293 u32 iclk_virtual_root_freq = 172800 * 1000; 2294 u32 iclk_pi_range = 64; 2295 u32 desired_divisor; 2296 2297 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 2298 clock << auxdiv); 2299 divsel = (desired_divisor / iclk_pi_range) - 2; 2300 phaseinc = desired_divisor % iclk_pi_range; 2301 2302 /* 2303 * Near 20MHz is a corner case which is 2304 * out of range for the 7-bit divisor 2305 */ 2306 if (divsel <= 0x7f) 2307 break; 2308 } 2309 2310 /* This should not happen with any sane values */ 2311 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 2312 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 2313 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) & 2314 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 2315 2316 drm_dbg_kms(&dev_priv->drm, 2317 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 2318 clock, auxdiv, divsel, phasedir, phaseinc); 2319 2320 mutex_lock(&dev_priv->sb_lock); 2321 2322 /* Program SSCDIVINTPHASE6 */ 2323 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 2324 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 2325 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 2326 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 2327 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 2328 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 2329 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 2330 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 2331 2332 /* Program SSCAUXDIV */ 2333 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 2334 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 2335 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 2336 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 2337 2338 /* Enable modulator and associated divider */ 2339 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2340 temp &= ~SBI_SSCCTL_DISABLE; 2341 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 2342 2343 mutex_unlock(&dev_priv->sb_lock); 2344 2345 /* Wait for initialization time */ 2346 udelay(24); 2347 2348 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE); 2349 } 2350 2351 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 2352 { 2353 u32 divsel, phaseinc, auxdiv; 2354 u32 iclk_virtual_root_freq = 172800 * 1000; 2355 u32 iclk_pi_range = 64; 2356 u32 desired_divisor; 2357 u32 temp; 2358 2359 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 2360 return 0; 2361 2362 mutex_lock(&dev_priv->sb_lock); 2363 2364 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2365 if (temp & SBI_SSCCTL_DISABLE) { 2366 mutex_unlock(&dev_priv->sb_lock); 2367 return 0; 2368 } 2369 2370 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 2371 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 2372 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 2373 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 2374 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 2375 2376 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 2377 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 2378 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 2379 2380 mutex_unlock(&dev_priv->sb_lock); 2381 2382 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 2383 2384 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 2385 desired_divisor << auxdiv); 2386 } 2387 2388 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 2389 enum pipe pch_transcoder) 2390 { 2391 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2392 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2393 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2394 2395 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder), 2396 intel_de_read(dev_priv, HTOTAL(cpu_transcoder))); 2397 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder), 2398 intel_de_read(dev_priv, HBLANK(cpu_transcoder))); 2399 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder), 2400 intel_de_read(dev_priv, HSYNC(cpu_transcoder))); 2401 2402 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder), 2403 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 2404 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder), 2405 intel_de_read(dev_priv, VBLANK(cpu_transcoder))); 2406 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder), 2407 intel_de_read(dev_priv, VSYNC(cpu_transcoder))); 2408 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder), 2409 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder))); 2410 } 2411 2412 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) 2413 { 2414 u32 temp; 2415 2416 temp = intel_de_read(dev_priv, SOUTH_CHICKEN1); 2417 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 2418 return; 2419 2420 drm_WARN_ON(&dev_priv->drm, 2421 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) & 2422 FDI_RX_ENABLE); 2423 drm_WARN_ON(&dev_priv->drm, 2424 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) & 2425 FDI_RX_ENABLE); 2426 2427 temp &= ~FDI_BC_BIFURCATION_SELECT; 2428 if (enable) 2429 temp |= FDI_BC_BIFURCATION_SELECT; 2430 2431 drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n", 2432 enable ? "en" : "dis"); 2433 intel_de_write(dev_priv, SOUTH_CHICKEN1, temp); 2434 intel_de_posting_read(dev_priv, SOUTH_CHICKEN1); 2435 } 2436 2437 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) 2438 { 2439 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2440 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2441 2442 switch (crtc->pipe) { 2443 case PIPE_A: 2444 break; 2445 case PIPE_B: 2446 if (crtc_state->fdi_lanes > 2) 2447 cpt_set_fdi_bc_bifurcation(dev_priv, false); 2448 else 2449 cpt_set_fdi_bc_bifurcation(dev_priv, true); 2450 2451 break; 2452 case PIPE_C: 2453 cpt_set_fdi_bc_bifurcation(dev_priv, true); 2454 2455 break; 2456 default: 2457 BUG(); 2458 } 2459 } 2460 2461 /* 2462 * Finds the encoder associated with the given CRTC. This can only be 2463 * used when we know that the CRTC isn't feeding multiple encoders! 2464 */ 2465 struct intel_encoder * 2466 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 2467 const struct intel_crtc_state *crtc_state) 2468 { 2469 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2470 const struct drm_connector_state *connector_state; 2471 const struct drm_connector *connector; 2472 struct intel_encoder *encoder = NULL; 2473 int num_encoders = 0; 2474 int i; 2475 2476 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 2477 if (connector_state->crtc != &crtc->base) 2478 continue; 2479 2480 encoder = to_intel_encoder(connector_state->best_encoder); 2481 num_encoders++; 2482 } 2483 2484 drm_WARN(encoder->base.dev, num_encoders != 1, 2485 "%d encoders for pipe %c\n", 2486 num_encoders, pipe_name(crtc->pipe)); 2487 2488 return encoder; 2489 } 2490 2491 /* 2492 * Enable PCH resources required for PCH ports: 2493 * - PCH PLLs 2494 * - FDI training & RX/TX 2495 * - update transcoder timings 2496 * - DP transcoding bits 2497 * - transcoder 2498 */ 2499 static void ilk_pch_enable(const struct intel_atomic_state *state, 2500 const struct intel_crtc_state *crtc_state) 2501 { 2502 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2503 struct drm_device *dev = crtc->base.dev; 2504 struct drm_i915_private *dev_priv = to_i915(dev); 2505 enum pipe pipe = crtc->pipe; 2506 u32 temp; 2507 2508 assert_pch_transcoder_disabled(dev_priv, pipe); 2509 2510 if (IS_IVYBRIDGE(dev_priv)) 2511 ivb_update_fdi_bc_bifurcation(crtc_state); 2512 2513 /* Write the TU size bits before fdi link training, so that error 2514 * detection works. */ 2515 intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe), 2516 intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 2517 2518 /* For PCH output, training FDI link */ 2519 dev_priv->display.fdi_link_train(crtc, crtc_state); 2520 2521 /* We need to program the right clock selection before writing the pixel 2522 * mutliplier into the DPLL. */ 2523 if (HAS_PCH_CPT(dev_priv)) { 2524 u32 sel; 2525 2526 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 2527 temp |= TRANS_DPLL_ENABLE(pipe); 2528 sel = TRANS_DPLLB_SEL(pipe); 2529 if (crtc_state->shared_dpll == 2530 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 2531 temp |= sel; 2532 else 2533 temp &= ~sel; 2534 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 2535 } 2536 2537 /* XXX: pch pll's can be enabled any time before we enable the PCH 2538 * transcoder, and we actually should do this to not upset any PCH 2539 * transcoder that already use the clock when we share it. 2540 * 2541 * Note that enable_shared_dpll tries to do the right thing, but 2542 * get_shared_dpll unconditionally resets the pll - we need that to have 2543 * the right LVDS enable sequence. */ 2544 intel_enable_shared_dpll(crtc_state); 2545 2546 /* set transcoder timing, panel must allow it */ 2547 assert_panel_unlocked(dev_priv, pipe); 2548 ilk_pch_transcoder_set_timings(crtc_state, pipe); 2549 2550 intel_fdi_normal_train(crtc); 2551 2552 /* For PCH DP, enable TRANS_DP_CTL */ 2553 if (HAS_PCH_CPT(dev_priv) && 2554 intel_crtc_has_dp_encoder(crtc_state)) { 2555 const struct drm_display_mode *adjusted_mode = 2556 &crtc_state->hw.adjusted_mode; 2557 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 2558 i915_reg_t reg = TRANS_DP_CTL(pipe); 2559 enum port port; 2560 2561 temp = intel_de_read(dev_priv, reg); 2562 temp &= ~(TRANS_DP_PORT_SEL_MASK | 2563 TRANS_DP_SYNC_MASK | 2564 TRANS_DP_BPC_MASK); 2565 temp |= TRANS_DP_OUTPUT_ENABLE; 2566 temp |= bpc << 9; /* same format but at 11:9 */ 2567 2568 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2569 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 2570 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2571 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 2572 2573 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 2574 drm_WARN_ON(dev, port < PORT_B || port > PORT_D); 2575 temp |= TRANS_DP_PORT_SEL(port); 2576 2577 intel_de_write(dev_priv, reg, temp); 2578 } 2579 2580 ilk_enable_pch_transcoder(crtc_state); 2581 } 2582 2583 void lpt_pch_enable(const struct intel_crtc_state *crtc_state) 2584 { 2585 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2586 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2587 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2588 2589 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 2590 2591 lpt_program_iclkip(crtc_state); 2592 2593 /* Set transcoder timing. */ 2594 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A); 2595 2596 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 2597 } 2598 2599 static void cpt_verify_modeset(struct drm_i915_private *dev_priv, 2600 enum pipe pipe) 2601 { 2602 i915_reg_t dslreg = PIPEDSL(pipe); 2603 u32 temp; 2604 2605 temp = intel_de_read(dev_priv, dslreg); 2606 udelay(500); 2607 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) { 2608 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) 2609 drm_err(&dev_priv->drm, 2610 "mode set failed: pipe %c stuck\n", 2611 pipe_name(pipe)); 2612 } 2613 } 2614 2615 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state) 2616 { 2617 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2618 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2619 const struct drm_rect *dst = &crtc_state->pch_pfit.dst; 2620 enum pipe pipe = crtc->pipe; 2621 int width = drm_rect_width(dst); 2622 int height = drm_rect_height(dst); 2623 int x = dst->x1; 2624 int y = dst->y1; 2625 2626 if (!crtc_state->pch_pfit.enabled) 2627 return; 2628 2629 /* Force use of hard-coded filter coefficients 2630 * as some pre-programmed values are broken, 2631 * e.g. x201. 2632 */ 2633 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 2634 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 2635 PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); 2636 else 2637 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 2638 PF_FILTER_MED_3x3); 2639 intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y); 2640 intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height); 2641 } 2642 2643 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 2644 { 2645 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2646 struct drm_device *dev = crtc->base.dev; 2647 struct drm_i915_private *dev_priv = to_i915(dev); 2648 2649 if (!crtc_state->ips_enabled) 2650 return; 2651 2652 /* 2653 * We can only enable IPS after we enable a plane and wait for a vblank 2654 * This function is called from post_plane_update, which is run after 2655 * a vblank wait. 2656 */ 2657 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 2658 2659 if (IS_BROADWELL(dev_priv)) { 2660 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 2661 IPS_ENABLE | IPS_PCODE_CONTROL)); 2662 /* Quoting Art Runyan: "its not safe to expect any particular 2663 * value in IPS_CTL bit 31 after enabling IPS through the 2664 * mailbox." Moreover, the mailbox may return a bogus state, 2665 * so we need to just enable it and continue on. 2666 */ 2667 } else { 2668 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE); 2669 /* The bit only becomes 1 in the next vblank, so this wait here 2670 * is essentially intel_wait_for_vblank. If we don't have this 2671 * and don't wait for vblanks until the end of crtc_enable, then 2672 * the HW state readout code will complain that the expected 2673 * IPS_CTL value is not the one we read. */ 2674 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 2675 drm_err(&dev_priv->drm, 2676 "Timed out waiting for IPS enable\n"); 2677 } 2678 } 2679 2680 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 2681 { 2682 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2683 struct drm_device *dev = crtc->base.dev; 2684 struct drm_i915_private *dev_priv = to_i915(dev); 2685 2686 if (!crtc_state->ips_enabled) 2687 return; 2688 2689 if (IS_BROADWELL(dev_priv)) { 2690 drm_WARN_ON(dev, 2691 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 2692 /* 2693 * Wait for PCODE to finish disabling IPS. The BSpec specified 2694 * 42ms timeout value leads to occasional timeouts so use 100ms 2695 * instead. 2696 */ 2697 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 2698 drm_err(&dev_priv->drm, 2699 "Timed out waiting for IPS disable\n"); 2700 } else { 2701 intel_de_write(dev_priv, IPS_CTL, 0); 2702 intel_de_posting_read(dev_priv, IPS_CTL); 2703 } 2704 2705 /* We need to wait for a vblank before we can disable the plane. */ 2706 intel_wait_for_vblank(dev_priv, crtc->pipe); 2707 } 2708 2709 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) 2710 { 2711 if (intel_crtc->overlay) 2712 (void) intel_overlay_switch_off(intel_crtc->overlay); 2713 2714 /* Let userspace switch the overlay on again. In most cases userspace 2715 * has to recompute where to put it anyway. 2716 */ 2717 } 2718 2719 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 2720 const struct intel_crtc_state *new_crtc_state) 2721 { 2722 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 2723 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2724 2725 if (!old_crtc_state->ips_enabled) 2726 return false; 2727 2728 if (intel_crtc_needs_modeset(new_crtc_state)) 2729 return true; 2730 2731 /* 2732 * Workaround : Do not read or write the pipe palette/gamma data while 2733 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 2734 * 2735 * Disable IPS before we program the LUT. 2736 */ 2737 if (IS_HASWELL(dev_priv) && 2738 (new_crtc_state->uapi.color_mgmt_changed || 2739 new_crtc_state->update_pipe) && 2740 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 2741 return true; 2742 2743 return !new_crtc_state->ips_enabled; 2744 } 2745 2746 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 2747 const struct intel_crtc_state *new_crtc_state) 2748 { 2749 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 2750 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2751 2752 if (!new_crtc_state->ips_enabled) 2753 return false; 2754 2755 if (intel_crtc_needs_modeset(new_crtc_state)) 2756 return true; 2757 2758 /* 2759 * Workaround : Do not read or write the pipe palette/gamma data while 2760 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 2761 * 2762 * Re-enable IPS after the LUT has been programmed. 2763 */ 2764 if (IS_HASWELL(dev_priv) && 2765 (new_crtc_state->uapi.color_mgmt_changed || 2766 new_crtc_state->update_pipe) && 2767 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 2768 return true; 2769 2770 /* 2771 * We can't read out IPS on broadwell, assume the worst and 2772 * forcibly enable IPS on the first fastset. 2773 */ 2774 if (new_crtc_state->update_pipe && old_crtc_state->inherited) 2775 return true; 2776 2777 return !old_crtc_state->ips_enabled; 2778 } 2779 2780 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) 2781 { 2782 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 2783 2784 if (!crtc_state->nv12_planes) 2785 return false; 2786 2787 /* WA Display #0827: Gen9:all */ 2788 if (DISPLAY_VER(dev_priv) == 9) 2789 return true; 2790 2791 return false; 2792 } 2793 2794 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) 2795 { 2796 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 2797 2798 /* Wa_2006604312:icl,ehl */ 2799 if (crtc_state->scaler_state.scaler_users > 0 && DISPLAY_VER(dev_priv) == 11) 2800 return true; 2801 2802 return false; 2803 } 2804 2805 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, 2806 const struct intel_crtc_state *new_crtc_state) 2807 { 2808 return (!old_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)) && 2809 new_crtc_state->active_planes; 2810 } 2811 2812 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, 2813 const struct intel_crtc_state *new_crtc_state) 2814 { 2815 return old_crtc_state->active_planes && 2816 (!new_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)); 2817 } 2818 2819 static void intel_post_plane_update(struct intel_atomic_state *state, 2820 struct intel_crtc *crtc) 2821 { 2822 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2823 const struct intel_crtc_state *old_crtc_state = 2824 intel_atomic_get_old_crtc_state(state, crtc); 2825 const struct intel_crtc_state *new_crtc_state = 2826 intel_atomic_get_new_crtc_state(state, crtc); 2827 enum pipe pipe = crtc->pipe; 2828 2829 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); 2830 2831 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) 2832 intel_update_watermarks(crtc); 2833 2834 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state)) 2835 hsw_enable_ips(new_crtc_state); 2836 2837 intel_fbc_post_update(state, crtc); 2838 2839 if (needs_nv12_wa(old_crtc_state) && 2840 !needs_nv12_wa(new_crtc_state)) 2841 skl_wa_827(dev_priv, pipe, false); 2842 2843 if (needs_scalerclk_wa(old_crtc_state) && 2844 !needs_scalerclk_wa(new_crtc_state)) 2845 icl_wa_scalerclkgating(dev_priv, pipe, false); 2846 } 2847 2848 static void intel_crtc_enable_flip_done(struct intel_atomic_state *state, 2849 struct intel_crtc *crtc) 2850 { 2851 const struct intel_crtc_state *crtc_state = 2852 intel_atomic_get_new_crtc_state(state, crtc); 2853 u8 update_planes = crtc_state->update_planes; 2854 const struct intel_plane_state *plane_state; 2855 struct intel_plane *plane; 2856 int i; 2857 2858 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 2859 if (plane->enable_flip_done && 2860 plane->pipe == crtc->pipe && 2861 update_planes & BIT(plane->id)) 2862 plane->enable_flip_done(plane); 2863 } 2864 } 2865 2866 static void intel_crtc_disable_flip_done(struct intel_atomic_state *state, 2867 struct intel_crtc *crtc) 2868 { 2869 const struct intel_crtc_state *crtc_state = 2870 intel_atomic_get_new_crtc_state(state, crtc); 2871 u8 update_planes = crtc_state->update_planes; 2872 const struct intel_plane_state *plane_state; 2873 struct intel_plane *plane; 2874 int i; 2875 2876 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 2877 if (plane->disable_flip_done && 2878 plane->pipe == crtc->pipe && 2879 update_planes & BIT(plane->id)) 2880 plane->disable_flip_done(plane); 2881 } 2882 } 2883 2884 static void intel_crtc_async_flip_disable_wa(struct intel_atomic_state *state, 2885 struct intel_crtc *crtc) 2886 { 2887 struct drm_i915_private *i915 = to_i915(state->base.dev); 2888 const struct intel_crtc_state *old_crtc_state = 2889 intel_atomic_get_old_crtc_state(state, crtc); 2890 const struct intel_crtc_state *new_crtc_state = 2891 intel_atomic_get_new_crtc_state(state, crtc); 2892 u8 update_planes = new_crtc_state->update_planes; 2893 const struct intel_plane_state *old_plane_state; 2894 struct intel_plane *plane; 2895 bool need_vbl_wait = false; 2896 int i; 2897 2898 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 2899 if (plane->need_async_flip_disable_wa && 2900 plane->pipe == crtc->pipe && 2901 update_planes & BIT(plane->id)) { 2902 /* 2903 * Apart from the async flip bit we want to 2904 * preserve the old state for the plane. 2905 */ 2906 plane->async_flip(plane, old_crtc_state, 2907 old_plane_state, false); 2908 need_vbl_wait = true; 2909 } 2910 } 2911 2912 if (need_vbl_wait) 2913 intel_wait_for_vblank(i915, crtc->pipe); 2914 } 2915 2916 static void intel_pre_plane_update(struct intel_atomic_state *state, 2917 struct intel_crtc *crtc) 2918 { 2919 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2920 const struct intel_crtc_state *old_crtc_state = 2921 intel_atomic_get_old_crtc_state(state, crtc); 2922 const struct intel_crtc_state *new_crtc_state = 2923 intel_atomic_get_new_crtc_state(state, crtc); 2924 enum pipe pipe = crtc->pipe; 2925 2926 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state)) 2927 hsw_disable_ips(old_crtc_state); 2928 2929 if (intel_fbc_pre_update(state, crtc)) 2930 intel_wait_for_vblank(dev_priv, pipe); 2931 2932 /* Display WA 827 */ 2933 if (!needs_nv12_wa(old_crtc_state) && 2934 needs_nv12_wa(new_crtc_state)) 2935 skl_wa_827(dev_priv, pipe, true); 2936 2937 /* Wa_2006604312:icl,ehl */ 2938 if (!needs_scalerclk_wa(old_crtc_state) && 2939 needs_scalerclk_wa(new_crtc_state)) 2940 icl_wa_scalerclkgating(dev_priv, pipe, true); 2941 2942 /* 2943 * Vblank time updates from the shadow to live plane control register 2944 * are blocked if the memory self-refresh mode is active at that 2945 * moment. So to make sure the plane gets truly disabled, disable 2946 * first the self-refresh mode. The self-refresh enable bit in turn 2947 * will be checked/applied by the HW only at the next frame start 2948 * event which is after the vblank start event, so we need to have a 2949 * wait-for-vblank between disabling the plane and the pipe. 2950 */ 2951 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active && 2952 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 2953 intel_wait_for_vblank(dev_priv, pipe); 2954 2955 /* 2956 * IVB workaround: must disable low power watermarks for at least 2957 * one frame before enabling scaling. LP watermarks can be re-enabled 2958 * when scaling is disabled. 2959 * 2960 * WaCxSRDisabledForSpriteScaling:ivb 2961 */ 2962 if (old_crtc_state->hw.active && 2963 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv)) 2964 intel_wait_for_vblank(dev_priv, pipe); 2965 2966 /* 2967 * If we're doing a modeset we don't need to do any 2968 * pre-vblank watermark programming here. 2969 */ 2970 if (!intel_crtc_needs_modeset(new_crtc_state)) { 2971 /* 2972 * For platforms that support atomic watermarks, program the 2973 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 2974 * will be the intermediate values that are safe for both pre- and 2975 * post- vblank; when vblank happens, the 'active' values will be set 2976 * to the final 'target' values and we'll do this again to get the 2977 * optimal watermarks. For gen9+ platforms, the values we program here 2978 * will be the final target values which will get automatically latched 2979 * at vblank time; no further programming will be necessary. 2980 * 2981 * If a platform hasn't been transitioned to atomic watermarks yet, 2982 * we'll continue to update watermarks the old way, if flags tell 2983 * us to. 2984 */ 2985 if (dev_priv->display.initial_watermarks) 2986 dev_priv->display.initial_watermarks(state, crtc); 2987 else if (new_crtc_state->update_wm_pre) 2988 intel_update_watermarks(crtc); 2989 } 2990 2991 /* 2992 * Gen2 reports pipe underruns whenever all planes are disabled. 2993 * So disable underrun reporting before all the planes get disabled. 2994 * 2995 * We do this after .initial_watermarks() so that we have a 2996 * chance of catching underruns with the intermediate watermarks 2997 * vs. the old plane configuration. 2998 */ 2999 if (DISPLAY_VER(dev_priv) == 2 && planes_disabling(old_crtc_state, new_crtc_state)) 3000 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3001 3002 /* 3003 * WA for platforms where async address update enable bit 3004 * is double buffered and only latched at start of vblank. 3005 */ 3006 if (old_crtc_state->uapi.async_flip && !new_crtc_state->uapi.async_flip) 3007 intel_crtc_async_flip_disable_wa(state, crtc); 3008 } 3009 3010 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 3011 struct intel_crtc *crtc) 3012 { 3013 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3014 const struct intel_crtc_state *new_crtc_state = 3015 intel_atomic_get_new_crtc_state(state, crtc); 3016 unsigned int update_mask = new_crtc_state->update_planes; 3017 const struct intel_plane_state *old_plane_state; 3018 struct intel_plane *plane; 3019 unsigned fb_bits = 0; 3020 int i; 3021 3022 intel_crtc_dpms_overlay_disable(crtc); 3023 3024 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 3025 if (crtc->pipe != plane->pipe || 3026 !(update_mask & BIT(plane->id))) 3027 continue; 3028 3029 intel_disable_plane(plane, new_crtc_state); 3030 3031 if (old_plane_state->uapi.visible) 3032 fb_bits |= plane->frontbuffer_bit; 3033 } 3034 3035 intel_frontbuffer_flip(dev_priv, fb_bits); 3036 } 3037 3038 /* 3039 * intel_connector_primary_encoder - get the primary encoder for a connector 3040 * @connector: connector for which to return the encoder 3041 * 3042 * Returns the primary encoder for a connector. There is a 1:1 mapping from 3043 * all connectors to their encoder, except for DP-MST connectors which have 3044 * both a virtual and a primary encoder. These DP-MST primary encoders can be 3045 * pointed to by as many DP-MST connectors as there are pipes. 3046 */ 3047 static struct intel_encoder * 3048 intel_connector_primary_encoder(struct intel_connector *connector) 3049 { 3050 struct intel_encoder *encoder; 3051 3052 if (connector->mst_port) 3053 return &dp_to_dig_port(connector->mst_port)->base; 3054 3055 encoder = intel_attached_encoder(connector); 3056 drm_WARN_ON(connector->base.dev, !encoder); 3057 3058 return encoder; 3059 } 3060 3061 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 3062 { 3063 struct drm_connector_state *new_conn_state; 3064 struct drm_connector *connector; 3065 int i; 3066 3067 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 3068 i) { 3069 struct intel_connector *intel_connector; 3070 struct intel_encoder *encoder; 3071 struct intel_crtc *crtc; 3072 3073 if (!intel_connector_needs_modeset(state, connector)) 3074 continue; 3075 3076 intel_connector = to_intel_connector(connector); 3077 encoder = intel_connector_primary_encoder(intel_connector); 3078 if (!encoder->update_prepare) 3079 continue; 3080 3081 crtc = new_conn_state->crtc ? 3082 to_intel_crtc(new_conn_state->crtc) : NULL; 3083 encoder->update_prepare(state, encoder, crtc); 3084 } 3085 } 3086 3087 static void intel_encoders_update_complete(struct intel_atomic_state *state) 3088 { 3089 struct drm_connector_state *new_conn_state; 3090 struct drm_connector *connector; 3091 int i; 3092 3093 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 3094 i) { 3095 struct intel_connector *intel_connector; 3096 struct intel_encoder *encoder; 3097 struct intel_crtc *crtc; 3098 3099 if (!intel_connector_needs_modeset(state, connector)) 3100 continue; 3101 3102 intel_connector = to_intel_connector(connector); 3103 encoder = intel_connector_primary_encoder(intel_connector); 3104 if (!encoder->update_complete) 3105 continue; 3106 3107 crtc = new_conn_state->crtc ? 3108 to_intel_crtc(new_conn_state->crtc) : NULL; 3109 encoder->update_complete(state, encoder, crtc); 3110 } 3111 } 3112 3113 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, 3114 struct intel_crtc *crtc) 3115 { 3116 const struct intel_crtc_state *crtc_state = 3117 intel_atomic_get_new_crtc_state(state, crtc); 3118 const struct drm_connector_state *conn_state; 3119 struct drm_connector *conn; 3120 int i; 3121 3122 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3123 struct intel_encoder *encoder = 3124 to_intel_encoder(conn_state->best_encoder); 3125 3126 if (conn_state->crtc != &crtc->base) 3127 continue; 3128 3129 if (encoder->pre_pll_enable) 3130 encoder->pre_pll_enable(state, encoder, 3131 crtc_state, conn_state); 3132 } 3133 } 3134 3135 static void intel_encoders_pre_enable(struct intel_atomic_state *state, 3136 struct intel_crtc *crtc) 3137 { 3138 const struct intel_crtc_state *crtc_state = 3139 intel_atomic_get_new_crtc_state(state, crtc); 3140 const struct drm_connector_state *conn_state; 3141 struct drm_connector *conn; 3142 int i; 3143 3144 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3145 struct intel_encoder *encoder = 3146 to_intel_encoder(conn_state->best_encoder); 3147 3148 if (conn_state->crtc != &crtc->base) 3149 continue; 3150 3151 if (encoder->pre_enable) 3152 encoder->pre_enable(state, encoder, 3153 crtc_state, conn_state); 3154 } 3155 } 3156 3157 static void intel_encoders_enable(struct intel_atomic_state *state, 3158 struct intel_crtc *crtc) 3159 { 3160 const struct intel_crtc_state *crtc_state = 3161 intel_atomic_get_new_crtc_state(state, crtc); 3162 const struct drm_connector_state *conn_state; 3163 struct drm_connector *conn; 3164 int i; 3165 3166 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3167 struct intel_encoder *encoder = 3168 to_intel_encoder(conn_state->best_encoder); 3169 3170 if (conn_state->crtc != &crtc->base) 3171 continue; 3172 3173 if (encoder->enable) 3174 encoder->enable(state, encoder, 3175 crtc_state, conn_state); 3176 intel_opregion_notify_encoder(encoder, true); 3177 } 3178 } 3179 3180 static void intel_encoders_disable(struct intel_atomic_state *state, 3181 struct intel_crtc *crtc) 3182 { 3183 const struct intel_crtc_state *old_crtc_state = 3184 intel_atomic_get_old_crtc_state(state, crtc); 3185 const struct drm_connector_state *old_conn_state; 3186 struct drm_connector *conn; 3187 int i; 3188 3189 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3190 struct intel_encoder *encoder = 3191 to_intel_encoder(old_conn_state->best_encoder); 3192 3193 if (old_conn_state->crtc != &crtc->base) 3194 continue; 3195 3196 intel_opregion_notify_encoder(encoder, false); 3197 if (encoder->disable) 3198 encoder->disable(state, encoder, 3199 old_crtc_state, old_conn_state); 3200 } 3201 } 3202 3203 static void intel_encoders_post_disable(struct intel_atomic_state *state, 3204 struct intel_crtc *crtc) 3205 { 3206 const struct intel_crtc_state *old_crtc_state = 3207 intel_atomic_get_old_crtc_state(state, crtc); 3208 const struct drm_connector_state *old_conn_state; 3209 struct drm_connector *conn; 3210 int i; 3211 3212 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3213 struct intel_encoder *encoder = 3214 to_intel_encoder(old_conn_state->best_encoder); 3215 3216 if (old_conn_state->crtc != &crtc->base) 3217 continue; 3218 3219 if (encoder->post_disable) 3220 encoder->post_disable(state, encoder, 3221 old_crtc_state, old_conn_state); 3222 } 3223 } 3224 3225 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, 3226 struct intel_crtc *crtc) 3227 { 3228 const struct intel_crtc_state *old_crtc_state = 3229 intel_atomic_get_old_crtc_state(state, crtc); 3230 const struct drm_connector_state *old_conn_state; 3231 struct drm_connector *conn; 3232 int i; 3233 3234 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3235 struct intel_encoder *encoder = 3236 to_intel_encoder(old_conn_state->best_encoder); 3237 3238 if (old_conn_state->crtc != &crtc->base) 3239 continue; 3240 3241 if (encoder->post_pll_disable) 3242 encoder->post_pll_disable(state, encoder, 3243 old_crtc_state, old_conn_state); 3244 } 3245 } 3246 3247 static void intel_encoders_update_pipe(struct intel_atomic_state *state, 3248 struct intel_crtc *crtc) 3249 { 3250 const struct intel_crtc_state *crtc_state = 3251 intel_atomic_get_new_crtc_state(state, crtc); 3252 const struct drm_connector_state *conn_state; 3253 struct drm_connector *conn; 3254 int i; 3255 3256 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3257 struct intel_encoder *encoder = 3258 to_intel_encoder(conn_state->best_encoder); 3259 3260 if (conn_state->crtc != &crtc->base) 3261 continue; 3262 3263 if (encoder->update_pipe) 3264 encoder->update_pipe(state, encoder, 3265 crtc_state, conn_state); 3266 } 3267 } 3268 3269 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 3270 { 3271 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3272 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 3273 3274 plane->disable_plane(plane, crtc_state); 3275 } 3276 3277 static void ilk_crtc_enable(struct intel_atomic_state *state, 3278 struct intel_crtc *crtc) 3279 { 3280 const struct intel_crtc_state *new_crtc_state = 3281 intel_atomic_get_new_crtc_state(state, crtc); 3282 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3283 enum pipe pipe = crtc->pipe; 3284 3285 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3286 return; 3287 3288 /* 3289 * Sometimes spurious CPU pipe underruns happen during FDI 3290 * training, at least with VGA+HDMI cloning. Suppress them. 3291 * 3292 * On ILK we get an occasional spurious CPU pipe underruns 3293 * between eDP port A enable and vdd enable. Also PCH port 3294 * enable seems to result in the occasional CPU pipe underrun. 3295 * 3296 * Spurious PCH underruns also occur during PCH enabling. 3297 */ 3298 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3299 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 3300 3301 if (new_crtc_state->has_pch_encoder) 3302 intel_prepare_shared_dpll(new_crtc_state); 3303 3304 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3305 intel_dp_set_m_n(new_crtc_state, M1_N1); 3306 3307 intel_set_transcoder_timings(new_crtc_state); 3308 intel_set_pipe_src_size(new_crtc_state); 3309 3310 if (new_crtc_state->has_pch_encoder) 3311 intel_cpu_transcoder_set_m_n(new_crtc_state, 3312 &new_crtc_state->fdi_m_n, NULL); 3313 3314 ilk_set_pipeconf(new_crtc_state); 3315 3316 crtc->active = true; 3317 3318 intel_encoders_pre_enable(state, crtc); 3319 3320 if (new_crtc_state->has_pch_encoder) { 3321 /* Note: FDI PLL enabling _must_ be done before we enable the 3322 * cpu pipes, hence this is separate from all the other fdi/pch 3323 * enabling. */ 3324 ilk_fdi_pll_enable(new_crtc_state); 3325 } else { 3326 assert_fdi_tx_disabled(dev_priv, pipe); 3327 assert_fdi_rx_disabled(dev_priv, pipe); 3328 } 3329 3330 ilk_pfit_enable(new_crtc_state); 3331 3332 /* 3333 * On ILK+ LUT must be loaded before the pipe is running but with 3334 * clocks enabled 3335 */ 3336 intel_color_load_luts(new_crtc_state); 3337 intel_color_commit(new_crtc_state); 3338 /* update DSPCNTR to configure gamma for pipe bottom color */ 3339 intel_disable_primary_plane(new_crtc_state); 3340 3341 if (dev_priv->display.initial_watermarks) 3342 dev_priv->display.initial_watermarks(state, crtc); 3343 intel_enable_pipe(new_crtc_state); 3344 3345 if (new_crtc_state->has_pch_encoder) 3346 ilk_pch_enable(state, new_crtc_state); 3347 3348 intel_crtc_vblank_on(new_crtc_state); 3349 3350 intel_encoders_enable(state, crtc); 3351 3352 if (HAS_PCH_CPT(dev_priv)) 3353 cpt_verify_modeset(dev_priv, pipe); 3354 3355 /* 3356 * Must wait for vblank to avoid spurious PCH FIFO underruns. 3357 * And a second vblank wait is needed at least on ILK with 3358 * some interlaced HDMI modes. Let's do the double wait always 3359 * in case there are more corner cases we don't know about. 3360 */ 3361 if (new_crtc_state->has_pch_encoder) { 3362 intel_wait_for_vblank(dev_priv, pipe); 3363 intel_wait_for_vblank(dev_priv, pipe); 3364 } 3365 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3366 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 3367 } 3368 3369 /* IPS only exists on ULT machines and is tied to pipe A. */ 3370 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 3371 { 3372 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 3373 } 3374 3375 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 3376 enum pipe pipe, bool apply) 3377 { 3378 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)); 3379 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 3380 3381 if (apply) 3382 val |= mask; 3383 else 3384 val &= ~mask; 3385 3386 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val); 3387 } 3388 3389 static void icl_pipe_mbus_enable(struct intel_crtc *crtc) 3390 { 3391 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3392 enum pipe pipe = crtc->pipe; 3393 u32 val; 3394 3395 val = MBUS_DBOX_A_CREDIT(2); 3396 3397 if (DISPLAY_VER(dev_priv) >= 12) { 3398 val |= MBUS_DBOX_BW_CREDIT(2); 3399 val |= MBUS_DBOX_B_CREDIT(12); 3400 } else { 3401 val |= MBUS_DBOX_BW_CREDIT(1); 3402 val |= MBUS_DBOX_B_CREDIT(8); 3403 } 3404 3405 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val); 3406 } 3407 3408 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) 3409 { 3410 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3411 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3412 3413 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe), 3414 HSW_LINETIME(crtc_state->linetime) | 3415 HSW_IPS_LINETIME(crtc_state->ips_linetime)); 3416 } 3417 3418 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) 3419 { 3420 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3421 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3422 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder); 3423 u32 val; 3424 3425 val = intel_de_read(dev_priv, reg); 3426 val &= ~HSW_FRAME_START_DELAY_MASK; 3427 val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 3428 intel_de_write(dev_priv, reg, val); 3429 } 3430 3431 static void icl_ddi_bigjoiner_pre_enable(struct intel_atomic_state *state, 3432 const struct intel_crtc_state *crtc_state) 3433 { 3434 struct intel_crtc *master = to_intel_crtc(crtc_state->uapi.crtc); 3435 struct drm_i915_private *dev_priv = to_i915(master->base.dev); 3436 struct intel_crtc_state *master_crtc_state; 3437 struct drm_connector_state *conn_state; 3438 struct drm_connector *conn; 3439 struct intel_encoder *encoder = NULL; 3440 int i; 3441 3442 if (crtc_state->bigjoiner_slave) 3443 master = crtc_state->bigjoiner_linked_crtc; 3444 3445 master_crtc_state = intel_atomic_get_new_crtc_state(state, master); 3446 3447 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3448 if (conn_state->crtc != &master->base) 3449 continue; 3450 3451 encoder = to_intel_encoder(conn_state->best_encoder); 3452 break; 3453 } 3454 3455 if (!crtc_state->bigjoiner_slave) { 3456 /* need to enable VDSC, which we skipped in pre-enable */ 3457 intel_dsc_enable(encoder, crtc_state); 3458 } else { 3459 /* 3460 * Enable sequence steps 1-7 on bigjoiner master 3461 */ 3462 intel_encoders_pre_pll_enable(state, master); 3463 intel_enable_shared_dpll(master_crtc_state); 3464 intel_encoders_pre_enable(state, master); 3465 3466 /* and DSC on slave */ 3467 intel_dsc_enable(NULL, crtc_state); 3468 } 3469 3470 if (DISPLAY_VER(dev_priv) >= 13) 3471 intel_uncompressed_joiner_enable(crtc_state); 3472 } 3473 3474 static void hsw_crtc_enable(struct intel_atomic_state *state, 3475 struct intel_crtc *crtc) 3476 { 3477 const struct intel_crtc_state *new_crtc_state = 3478 intel_atomic_get_new_crtc_state(state, crtc); 3479 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3480 enum pipe pipe = crtc->pipe, hsw_workaround_pipe; 3481 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 3482 bool psl_clkgate_wa; 3483 3484 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3485 return; 3486 3487 if (!new_crtc_state->bigjoiner) { 3488 intel_encoders_pre_pll_enable(state, crtc); 3489 3490 if (new_crtc_state->shared_dpll) 3491 intel_enable_shared_dpll(new_crtc_state); 3492 3493 intel_encoders_pre_enable(state, crtc); 3494 } else { 3495 icl_ddi_bigjoiner_pre_enable(state, new_crtc_state); 3496 } 3497 3498 intel_set_pipe_src_size(new_crtc_state); 3499 if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 3500 bdw_set_pipemisc(new_crtc_state); 3501 3502 if (!new_crtc_state->bigjoiner_slave && !transcoder_is_dsi(cpu_transcoder)) { 3503 intel_set_transcoder_timings(new_crtc_state); 3504 3505 if (cpu_transcoder != TRANSCODER_EDP) 3506 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder), 3507 new_crtc_state->pixel_multiplier - 1); 3508 3509 if (new_crtc_state->has_pch_encoder) 3510 intel_cpu_transcoder_set_m_n(new_crtc_state, 3511 &new_crtc_state->fdi_m_n, NULL); 3512 3513 hsw_set_frame_start_delay(new_crtc_state); 3514 } 3515 3516 if (!transcoder_is_dsi(cpu_transcoder)) 3517 hsw_set_pipeconf(new_crtc_state); 3518 3519 crtc->active = true; 3520 3521 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */ 3522 psl_clkgate_wa = DISPLAY_VER(dev_priv) == 10 && 3523 new_crtc_state->pch_pfit.enabled; 3524 if (psl_clkgate_wa) 3525 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 3526 3527 if (DISPLAY_VER(dev_priv) >= 9) 3528 skl_pfit_enable(new_crtc_state); 3529 else 3530 ilk_pfit_enable(new_crtc_state); 3531 3532 /* 3533 * On ILK+ LUT must be loaded before the pipe is running but with 3534 * clocks enabled 3535 */ 3536 intel_color_load_luts(new_crtc_state); 3537 intel_color_commit(new_crtc_state); 3538 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 3539 if (DISPLAY_VER(dev_priv) < 9) 3540 intel_disable_primary_plane(new_crtc_state); 3541 3542 hsw_set_linetime_wm(new_crtc_state); 3543 3544 if (DISPLAY_VER(dev_priv) >= 11) 3545 icl_set_pipe_chicken(crtc); 3546 3547 if (dev_priv->display.initial_watermarks) 3548 dev_priv->display.initial_watermarks(state, crtc); 3549 3550 if (DISPLAY_VER(dev_priv) >= 11) 3551 icl_pipe_mbus_enable(crtc); 3552 3553 if (new_crtc_state->bigjoiner_slave) 3554 intel_crtc_vblank_on(new_crtc_state); 3555 3556 intel_encoders_enable(state, crtc); 3557 3558 if (psl_clkgate_wa) { 3559 intel_wait_for_vblank(dev_priv, pipe); 3560 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 3561 } 3562 3563 /* If we change the relative order between pipe/planes enabling, we need 3564 * to change the workaround. */ 3565 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe; 3566 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 3567 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 3568 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 3569 } 3570 } 3571 3572 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state) 3573 { 3574 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 3575 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3576 enum pipe pipe = crtc->pipe; 3577 3578 /* To avoid upsetting the power well on haswell only disable the pfit if 3579 * it's in use. The hw state code will make sure we get this right. */ 3580 if (!old_crtc_state->pch_pfit.enabled) 3581 return; 3582 3583 intel_de_write(dev_priv, PF_CTL(pipe), 0); 3584 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0); 3585 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0); 3586 } 3587 3588 static void ilk_crtc_disable(struct intel_atomic_state *state, 3589 struct intel_crtc *crtc) 3590 { 3591 const struct intel_crtc_state *old_crtc_state = 3592 intel_atomic_get_old_crtc_state(state, crtc); 3593 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3594 enum pipe pipe = crtc->pipe; 3595 3596 /* 3597 * Sometimes spurious CPU pipe underruns happen when the 3598 * pipe is already disabled, but FDI RX/TX is still enabled. 3599 * Happens at least with VGA+HDMI cloning. Suppress them. 3600 */ 3601 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3602 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 3603 3604 intel_encoders_disable(state, crtc); 3605 3606 intel_crtc_vblank_off(old_crtc_state); 3607 3608 intel_disable_pipe(old_crtc_state); 3609 3610 ilk_pfit_disable(old_crtc_state); 3611 3612 if (old_crtc_state->has_pch_encoder) 3613 ilk_fdi_disable(crtc); 3614 3615 intel_encoders_post_disable(state, crtc); 3616 3617 if (old_crtc_state->has_pch_encoder) { 3618 ilk_disable_pch_transcoder(dev_priv, pipe); 3619 3620 if (HAS_PCH_CPT(dev_priv)) { 3621 i915_reg_t reg; 3622 u32 temp; 3623 3624 /* disable TRANS_DP_CTL */ 3625 reg = TRANS_DP_CTL(pipe); 3626 temp = intel_de_read(dev_priv, reg); 3627 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 3628 TRANS_DP_PORT_SEL_MASK); 3629 temp |= TRANS_DP_PORT_SEL_NONE; 3630 intel_de_write(dev_priv, reg, temp); 3631 3632 /* disable DPLL_SEL */ 3633 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 3634 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 3635 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 3636 } 3637 3638 ilk_fdi_pll_disable(crtc); 3639 } 3640 3641 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3642 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 3643 } 3644 3645 static void hsw_crtc_disable(struct intel_atomic_state *state, 3646 struct intel_crtc *crtc) 3647 { 3648 /* 3649 * FIXME collapse everything to one hook. 3650 * Need care with mst->ddi interactions. 3651 */ 3652 intel_encoders_disable(state, crtc); 3653 intel_encoders_post_disable(state, crtc); 3654 } 3655 3656 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 3657 { 3658 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3659 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3660 3661 if (!crtc_state->gmch_pfit.control) 3662 return; 3663 3664 /* 3665 * The panel fitter should only be adjusted whilst the pipe is disabled, 3666 * according to register description and PRM. 3667 */ 3668 drm_WARN_ON(&dev_priv->drm, 3669 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE); 3670 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 3671 3672 intel_de_write(dev_priv, PFIT_PGM_RATIOS, 3673 crtc_state->gmch_pfit.pgm_ratios); 3674 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control); 3675 3676 /* Border color in case we don't scale up to the full screen. Black by 3677 * default, change to something else for debugging. */ 3678 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0); 3679 } 3680 3681 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 3682 { 3683 if (phy == PHY_NONE) 3684 return false; 3685 else if (IS_ALDERLAKE_S(dev_priv)) 3686 return phy <= PHY_E; 3687 else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) 3688 return phy <= PHY_D; 3689 else if (IS_JSL_EHL(dev_priv)) 3690 return phy <= PHY_C; 3691 else if (DISPLAY_VER(dev_priv) >= 11) 3692 return phy <= PHY_B; 3693 else 3694 return false; 3695 } 3696 3697 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 3698 { 3699 if (IS_ALDERLAKE_P(dev_priv)) 3700 return phy >= PHY_F && phy <= PHY_I; 3701 else if (IS_TIGERLAKE(dev_priv)) 3702 return phy >= PHY_D && phy <= PHY_I; 3703 else if (IS_ICELAKE(dev_priv)) 3704 return phy >= PHY_C && phy <= PHY_F; 3705 else 3706 return false; 3707 } 3708 3709 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 3710 { 3711 if (DISPLAY_VER(i915) >= 13 && port >= PORT_D_XELPD) 3712 return PHY_D + port - PORT_D_XELPD; 3713 else if (DISPLAY_VER(i915) >= 13 && port >= PORT_TC1) 3714 return PHY_F + port - PORT_TC1; 3715 else if (IS_ALDERLAKE_S(i915) && port >= PORT_TC1) 3716 return PHY_B + port - PORT_TC1; 3717 else if ((IS_DG1(i915) || IS_ROCKETLAKE(i915)) && port >= PORT_TC1) 3718 return PHY_C + port - PORT_TC1; 3719 else if (IS_JSL_EHL(i915) && port == PORT_D) 3720 return PHY_A; 3721 3722 return PHY_A + port - PORT_A; 3723 } 3724 3725 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 3726 { 3727 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 3728 return TC_PORT_NONE; 3729 3730 if (DISPLAY_VER(dev_priv) >= 12) 3731 return TC_PORT_1 + port - PORT_TC1; 3732 else 3733 return TC_PORT_1 + port - PORT_C; 3734 } 3735 3736 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 3737 { 3738 switch (port) { 3739 case PORT_A: 3740 return POWER_DOMAIN_PORT_DDI_A_LANES; 3741 case PORT_B: 3742 return POWER_DOMAIN_PORT_DDI_B_LANES; 3743 case PORT_C: 3744 return POWER_DOMAIN_PORT_DDI_C_LANES; 3745 case PORT_D: 3746 return POWER_DOMAIN_PORT_DDI_D_LANES; 3747 case PORT_E: 3748 return POWER_DOMAIN_PORT_DDI_E_LANES; 3749 case PORT_F: 3750 return POWER_DOMAIN_PORT_DDI_F_LANES; 3751 case PORT_G: 3752 return POWER_DOMAIN_PORT_DDI_G_LANES; 3753 case PORT_H: 3754 return POWER_DOMAIN_PORT_DDI_H_LANES; 3755 case PORT_I: 3756 return POWER_DOMAIN_PORT_DDI_I_LANES; 3757 default: 3758 MISSING_CASE(port); 3759 return POWER_DOMAIN_PORT_OTHER; 3760 } 3761 } 3762 3763 enum intel_display_power_domain 3764 intel_aux_power_domain(struct intel_digital_port *dig_port) 3765 { 3766 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 3767 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 3768 3769 if (intel_phy_is_tc(dev_priv, phy) && 3770 dig_port->tc_mode == TC_PORT_TBT_ALT) { 3771 switch (dig_port->aux_ch) { 3772 case AUX_CH_C: 3773 return POWER_DOMAIN_AUX_C_TBT; 3774 case AUX_CH_D: 3775 return POWER_DOMAIN_AUX_D_TBT; 3776 case AUX_CH_E: 3777 return POWER_DOMAIN_AUX_E_TBT; 3778 case AUX_CH_F: 3779 return POWER_DOMAIN_AUX_F_TBT; 3780 case AUX_CH_G: 3781 return POWER_DOMAIN_AUX_G_TBT; 3782 case AUX_CH_H: 3783 return POWER_DOMAIN_AUX_H_TBT; 3784 case AUX_CH_I: 3785 return POWER_DOMAIN_AUX_I_TBT; 3786 default: 3787 MISSING_CASE(dig_port->aux_ch); 3788 return POWER_DOMAIN_AUX_C_TBT; 3789 } 3790 } 3791 3792 return intel_legacy_aux_to_power_domain(dig_port->aux_ch); 3793 } 3794 3795 /* 3796 * Converts aux_ch to power_domain without caring about TBT ports for that use 3797 * intel_aux_power_domain() 3798 */ 3799 enum intel_display_power_domain 3800 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch) 3801 { 3802 switch (aux_ch) { 3803 case AUX_CH_A: 3804 return POWER_DOMAIN_AUX_A; 3805 case AUX_CH_B: 3806 return POWER_DOMAIN_AUX_B; 3807 case AUX_CH_C: 3808 return POWER_DOMAIN_AUX_C; 3809 case AUX_CH_D: 3810 return POWER_DOMAIN_AUX_D; 3811 case AUX_CH_E: 3812 return POWER_DOMAIN_AUX_E; 3813 case AUX_CH_F: 3814 return POWER_DOMAIN_AUX_F; 3815 case AUX_CH_G: 3816 return POWER_DOMAIN_AUX_G; 3817 case AUX_CH_H: 3818 return POWER_DOMAIN_AUX_H; 3819 case AUX_CH_I: 3820 return POWER_DOMAIN_AUX_I; 3821 default: 3822 MISSING_CASE(aux_ch); 3823 return POWER_DOMAIN_AUX_A; 3824 } 3825 } 3826 3827 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 3828 { 3829 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3830 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3831 struct drm_encoder *encoder; 3832 enum pipe pipe = crtc->pipe; 3833 u64 mask; 3834 enum transcoder transcoder = crtc_state->cpu_transcoder; 3835 3836 if (!crtc_state->hw.active) 3837 return 0; 3838 3839 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 3840 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); 3841 if (crtc_state->pch_pfit.enabled || 3842 crtc_state->pch_pfit.force_thru) 3843 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 3844 3845 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 3846 crtc_state->uapi.encoder_mask) { 3847 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 3848 3849 mask |= BIT_ULL(intel_encoder->power_domain); 3850 } 3851 3852 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 3853 mask |= BIT_ULL(POWER_DOMAIN_AUDIO); 3854 3855 if (crtc_state->shared_dpll) 3856 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 3857 3858 if (crtc_state->dsc.compression_enable) 3859 mask |= BIT_ULL(intel_dsc_power_domain(crtc_state)); 3860 3861 return mask; 3862 } 3863 3864 static u64 3865 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 3866 { 3867 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3868 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3869 enum intel_display_power_domain domain; 3870 u64 domains, new_domains, old_domains; 3871 3872 domains = get_crtc_power_domains(crtc_state); 3873 3874 new_domains = domains & ~crtc->enabled_power_domains.mask; 3875 old_domains = crtc->enabled_power_domains.mask & ~domains; 3876 3877 for_each_power_domain(domain, new_domains) 3878 intel_display_power_get_in_set(dev_priv, 3879 &crtc->enabled_power_domains, 3880 domain); 3881 3882 return old_domains; 3883 } 3884 3885 static void modeset_put_crtc_power_domains(struct intel_crtc *crtc, 3886 u64 domains) 3887 { 3888 intel_display_power_put_mask_in_set(to_i915(crtc->base.dev), 3889 &crtc->enabled_power_domains, 3890 domains); 3891 } 3892 3893 static void valleyview_crtc_enable(struct intel_atomic_state *state, 3894 struct intel_crtc *crtc) 3895 { 3896 const struct intel_crtc_state *new_crtc_state = 3897 intel_atomic_get_new_crtc_state(state, crtc); 3898 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3899 enum pipe pipe = crtc->pipe; 3900 3901 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3902 return; 3903 3904 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3905 intel_dp_set_m_n(new_crtc_state, M1_N1); 3906 3907 intel_set_transcoder_timings(new_crtc_state); 3908 intel_set_pipe_src_size(new_crtc_state); 3909 3910 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 3911 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY); 3912 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0); 3913 } 3914 3915 i9xx_set_pipeconf(new_crtc_state); 3916 3917 crtc->active = true; 3918 3919 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3920 3921 intel_encoders_pre_pll_enable(state, crtc); 3922 3923 if (IS_CHERRYVIEW(dev_priv)) { 3924 chv_prepare_pll(crtc, new_crtc_state); 3925 chv_enable_pll(crtc, new_crtc_state); 3926 } else { 3927 vlv_prepare_pll(crtc, new_crtc_state); 3928 vlv_enable_pll(crtc, new_crtc_state); 3929 } 3930 3931 intel_encoders_pre_enable(state, crtc); 3932 3933 i9xx_pfit_enable(new_crtc_state); 3934 3935 intel_color_load_luts(new_crtc_state); 3936 intel_color_commit(new_crtc_state); 3937 /* update DSPCNTR to configure gamma for pipe bottom color */ 3938 intel_disable_primary_plane(new_crtc_state); 3939 3940 dev_priv->display.initial_watermarks(state, crtc); 3941 intel_enable_pipe(new_crtc_state); 3942 3943 intel_crtc_vblank_on(new_crtc_state); 3944 3945 intel_encoders_enable(state, crtc); 3946 } 3947 3948 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) 3949 { 3950 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3951 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3952 3953 intel_de_write(dev_priv, FP0(crtc->pipe), 3954 crtc_state->dpll_hw_state.fp0); 3955 intel_de_write(dev_priv, FP1(crtc->pipe), 3956 crtc_state->dpll_hw_state.fp1); 3957 } 3958 3959 static void i9xx_crtc_enable(struct intel_atomic_state *state, 3960 struct intel_crtc *crtc) 3961 { 3962 const struct intel_crtc_state *new_crtc_state = 3963 intel_atomic_get_new_crtc_state(state, crtc); 3964 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3965 enum pipe pipe = crtc->pipe; 3966 3967 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3968 return; 3969 3970 i9xx_set_pll_dividers(new_crtc_state); 3971 3972 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3973 intel_dp_set_m_n(new_crtc_state, M1_N1); 3974 3975 intel_set_transcoder_timings(new_crtc_state); 3976 intel_set_pipe_src_size(new_crtc_state); 3977 3978 i9xx_set_pipeconf(new_crtc_state); 3979 3980 crtc->active = true; 3981 3982 if (DISPLAY_VER(dev_priv) != 2) 3983 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3984 3985 intel_encoders_pre_enable(state, crtc); 3986 3987 i9xx_enable_pll(crtc, new_crtc_state); 3988 3989 i9xx_pfit_enable(new_crtc_state); 3990 3991 intel_color_load_luts(new_crtc_state); 3992 intel_color_commit(new_crtc_state); 3993 /* update DSPCNTR to configure gamma for pipe bottom color */ 3994 intel_disable_primary_plane(new_crtc_state); 3995 3996 if (dev_priv->display.initial_watermarks) 3997 dev_priv->display.initial_watermarks(state, crtc); 3998 else 3999 intel_update_watermarks(crtc); 4000 intel_enable_pipe(new_crtc_state); 4001 4002 intel_crtc_vblank_on(new_crtc_state); 4003 4004 intel_encoders_enable(state, crtc); 4005 4006 /* prevents spurious underruns */ 4007 if (DISPLAY_VER(dev_priv) == 2) 4008 intel_wait_for_vblank(dev_priv, pipe); 4009 } 4010 4011 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 4012 { 4013 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 4014 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4015 4016 if (!old_crtc_state->gmch_pfit.control) 4017 return; 4018 4019 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 4020 4021 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n", 4022 intel_de_read(dev_priv, PFIT_CONTROL)); 4023 intel_de_write(dev_priv, PFIT_CONTROL, 0); 4024 } 4025 4026 static void i9xx_crtc_disable(struct intel_atomic_state *state, 4027 struct intel_crtc *crtc) 4028 { 4029 struct intel_crtc_state *old_crtc_state = 4030 intel_atomic_get_old_crtc_state(state, crtc); 4031 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4032 enum pipe pipe = crtc->pipe; 4033 4034 /* 4035 * On gen2 planes are double buffered but the pipe isn't, so we must 4036 * wait for planes to fully turn off before disabling the pipe. 4037 */ 4038 if (DISPLAY_VER(dev_priv) == 2) 4039 intel_wait_for_vblank(dev_priv, pipe); 4040 4041 intel_encoders_disable(state, crtc); 4042 4043 intel_crtc_vblank_off(old_crtc_state); 4044 4045 intel_disable_pipe(old_crtc_state); 4046 4047 i9xx_pfit_disable(old_crtc_state); 4048 4049 intel_encoders_post_disable(state, crtc); 4050 4051 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 4052 if (IS_CHERRYVIEW(dev_priv)) 4053 chv_disable_pll(dev_priv, pipe); 4054 else if (IS_VALLEYVIEW(dev_priv)) 4055 vlv_disable_pll(dev_priv, pipe); 4056 else 4057 i9xx_disable_pll(old_crtc_state); 4058 } 4059 4060 intel_encoders_post_pll_disable(state, crtc); 4061 4062 if (DISPLAY_VER(dev_priv) != 2) 4063 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 4064 4065 if (!dev_priv->display.initial_watermarks) 4066 intel_update_watermarks(crtc); 4067 4068 /* clock the pipe down to 640x480@60 to potentially save power */ 4069 if (IS_I830(dev_priv)) 4070 i830_enable_pipe(dev_priv, pipe); 4071 } 4072 4073 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc, 4074 struct drm_modeset_acquire_ctx *ctx) 4075 { 4076 struct intel_encoder *encoder; 4077 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4078 struct intel_bw_state *bw_state = 4079 to_intel_bw_state(dev_priv->bw_obj.state); 4080 struct intel_cdclk_state *cdclk_state = 4081 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 4082 struct intel_dbuf_state *dbuf_state = 4083 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 4084 struct intel_crtc_state *crtc_state = 4085 to_intel_crtc_state(crtc->base.state); 4086 struct intel_plane *plane; 4087 struct drm_atomic_state *state; 4088 struct intel_crtc_state *temp_crtc_state; 4089 enum pipe pipe = crtc->pipe; 4090 int ret; 4091 4092 if (!crtc_state->hw.active) 4093 return; 4094 4095 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 4096 const struct intel_plane_state *plane_state = 4097 to_intel_plane_state(plane->base.state); 4098 4099 if (plane_state->uapi.visible) 4100 intel_plane_disable_noatomic(crtc, plane); 4101 } 4102 4103 state = drm_atomic_state_alloc(&dev_priv->drm); 4104 if (!state) { 4105 drm_dbg_kms(&dev_priv->drm, 4106 "failed to disable [CRTC:%d:%s], out of memory", 4107 crtc->base.base.id, crtc->base.name); 4108 return; 4109 } 4110 4111 state->acquire_ctx = ctx; 4112 4113 /* Everything's already locked, -EDEADLK can't happen. */ 4114 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc); 4115 ret = drm_atomic_add_affected_connectors(state, &crtc->base); 4116 4117 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret); 4118 4119 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc); 4120 4121 drm_atomic_state_put(state); 4122 4123 drm_dbg_kms(&dev_priv->drm, 4124 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 4125 crtc->base.base.id, crtc->base.name); 4126 4127 crtc->active = false; 4128 crtc->base.enabled = false; 4129 4130 drm_WARN_ON(&dev_priv->drm, 4131 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0); 4132 crtc_state->uapi.active = false; 4133 crtc_state->uapi.connector_mask = 0; 4134 crtc_state->uapi.encoder_mask = 0; 4135 intel_crtc_free_hw_state(crtc_state); 4136 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw)); 4137 4138 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder) 4139 encoder->base.crtc = NULL; 4140 4141 intel_fbc_disable(crtc); 4142 intel_update_watermarks(crtc); 4143 intel_disable_shared_dpll(crtc_state); 4144 4145 intel_display_power_put_all_in_set(dev_priv, &crtc->enabled_power_domains); 4146 4147 dev_priv->active_pipes &= ~BIT(pipe); 4148 cdclk_state->min_cdclk[pipe] = 0; 4149 cdclk_state->min_voltage_level[pipe] = 0; 4150 cdclk_state->active_pipes &= ~BIT(pipe); 4151 4152 dbuf_state->active_pipes &= ~BIT(pipe); 4153 4154 bw_state->data_rate[pipe] = 0; 4155 bw_state->num_active_planes[pipe] = 0; 4156 } 4157 4158 /* 4159 * turn all crtc's off, but do not adjust state 4160 * This has to be paired with a call to intel_modeset_setup_hw_state. 4161 */ 4162 int intel_display_suspend(struct drm_device *dev) 4163 { 4164 struct drm_i915_private *dev_priv = to_i915(dev); 4165 struct drm_atomic_state *state; 4166 int ret; 4167 4168 if (!HAS_DISPLAY(dev_priv)) 4169 return 0; 4170 4171 state = drm_atomic_helper_suspend(dev); 4172 ret = PTR_ERR_OR_ZERO(state); 4173 if (ret) 4174 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 4175 ret); 4176 else 4177 dev_priv->modeset_restore_state = state; 4178 return ret; 4179 } 4180 4181 void intel_encoder_destroy(struct drm_encoder *encoder) 4182 { 4183 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 4184 4185 drm_encoder_cleanup(encoder); 4186 kfree(intel_encoder); 4187 } 4188 4189 /* Cross check the actual hw state with our own modeset state tracking (and it's 4190 * internal consistency). */ 4191 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 4192 struct drm_connector_state *conn_state) 4193 { 4194 struct intel_connector *connector = to_intel_connector(conn_state->connector); 4195 struct drm_i915_private *i915 = to_i915(connector->base.dev); 4196 4197 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 4198 connector->base.base.id, connector->base.name); 4199 4200 if (connector->get_hw_state(connector)) { 4201 struct intel_encoder *encoder = intel_attached_encoder(connector); 4202 4203 I915_STATE_WARN(!crtc_state, 4204 "connector enabled without attached crtc\n"); 4205 4206 if (!crtc_state) 4207 return; 4208 4209 I915_STATE_WARN(!crtc_state->hw.active, 4210 "connector is active, but attached crtc isn't\n"); 4211 4212 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 4213 return; 4214 4215 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 4216 "atomic encoder doesn't match attached encoder\n"); 4217 4218 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 4219 "attached encoder crtc differs from connector crtc\n"); 4220 } else { 4221 I915_STATE_WARN(crtc_state && crtc_state->hw.active, 4222 "attached crtc is active, but connector isn't\n"); 4223 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 4224 "best encoder set without crtc!\n"); 4225 } 4226 } 4227 4228 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 4229 { 4230 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4231 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4232 4233 /* IPS only exists on ULT machines and is tied to pipe A. */ 4234 if (!hsw_crtc_supports_ips(crtc)) 4235 return false; 4236 4237 if (!dev_priv->params.enable_ips) 4238 return false; 4239 4240 if (crtc_state->pipe_bpp > 24) 4241 return false; 4242 4243 /* 4244 * We compare against max which means we must take 4245 * the increased cdclk requirement into account when 4246 * calculating the new cdclk. 4247 * 4248 * Should measure whether using a lower cdclk w/o IPS 4249 */ 4250 if (IS_BROADWELL(dev_priv) && 4251 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 4252 return false; 4253 4254 return true; 4255 } 4256 4257 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 4258 { 4259 struct drm_i915_private *dev_priv = 4260 to_i915(crtc_state->uapi.crtc->dev); 4261 struct intel_atomic_state *state = 4262 to_intel_atomic_state(crtc_state->uapi.state); 4263 4264 crtc_state->ips_enabled = false; 4265 4266 if (!hsw_crtc_state_ips_capable(crtc_state)) 4267 return 0; 4268 4269 /* 4270 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 4271 * enabled and disabled dynamically based on package C states, 4272 * user space can't make reliable use of the CRCs, so let's just 4273 * completely disable it. 4274 */ 4275 if (crtc_state->crc_enabled) 4276 return 0; 4277 4278 /* IPS should be fine as long as at least one plane is enabled. */ 4279 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 4280 return 0; 4281 4282 if (IS_BROADWELL(dev_priv)) { 4283 const struct intel_cdclk_state *cdclk_state; 4284 4285 cdclk_state = intel_atomic_get_cdclk_state(state); 4286 if (IS_ERR(cdclk_state)) 4287 return PTR_ERR(cdclk_state); 4288 4289 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 4290 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100) 4291 return 0; 4292 } 4293 4294 crtc_state->ips_enabled = true; 4295 4296 return 0; 4297 } 4298 4299 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 4300 { 4301 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4302 4303 /* GDG double wide on either pipe, otherwise pipe A only */ 4304 return DISPLAY_VER(dev_priv) < 4 && 4305 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 4306 } 4307 4308 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state) 4309 { 4310 u32 pixel_rate = crtc_state->hw.pipe_mode.crtc_clock; 4311 struct drm_rect src; 4312 4313 /* 4314 * We only use IF-ID interlacing. If we ever use 4315 * PF-ID we'll need to adjust the pixel_rate here. 4316 */ 4317 4318 if (!crtc_state->pch_pfit.enabled) 4319 return pixel_rate; 4320 4321 drm_rect_init(&src, 0, 0, 4322 crtc_state->pipe_src_w << 16, 4323 crtc_state->pipe_src_h << 16); 4324 4325 return intel_adjusted_rate(&src, &crtc_state->pch_pfit.dst, 4326 pixel_rate); 4327 } 4328 4329 static void intel_mode_from_crtc_timings(struct drm_display_mode *mode, 4330 const struct drm_display_mode *timings) 4331 { 4332 mode->hdisplay = timings->crtc_hdisplay; 4333 mode->htotal = timings->crtc_htotal; 4334 mode->hsync_start = timings->crtc_hsync_start; 4335 mode->hsync_end = timings->crtc_hsync_end; 4336 4337 mode->vdisplay = timings->crtc_vdisplay; 4338 mode->vtotal = timings->crtc_vtotal; 4339 mode->vsync_start = timings->crtc_vsync_start; 4340 mode->vsync_end = timings->crtc_vsync_end; 4341 4342 mode->flags = timings->flags; 4343 mode->type = DRM_MODE_TYPE_DRIVER; 4344 4345 mode->clock = timings->crtc_clock; 4346 4347 drm_mode_set_name(mode); 4348 } 4349 4350 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 4351 { 4352 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4353 4354 if (HAS_GMCH(dev_priv)) 4355 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 4356 crtc_state->pixel_rate = 4357 crtc_state->hw.pipe_mode.crtc_clock; 4358 else 4359 crtc_state->pixel_rate = 4360 ilk_pipe_pixel_rate(crtc_state); 4361 } 4362 4363 static void intel_crtc_readout_derived_state(struct intel_crtc_state *crtc_state) 4364 { 4365 struct drm_display_mode *mode = &crtc_state->hw.mode; 4366 struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; 4367 struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 4368 4369 drm_mode_copy(pipe_mode, adjusted_mode); 4370 4371 if (crtc_state->bigjoiner) { 4372 /* 4373 * transcoder is programmed to the full mode, 4374 * but pipe timings are half of the transcoder mode 4375 */ 4376 pipe_mode->crtc_hdisplay /= 2; 4377 pipe_mode->crtc_hblank_start /= 2; 4378 pipe_mode->crtc_hblank_end /= 2; 4379 pipe_mode->crtc_hsync_start /= 2; 4380 pipe_mode->crtc_hsync_end /= 2; 4381 pipe_mode->crtc_htotal /= 2; 4382 pipe_mode->crtc_clock /= 2; 4383 } 4384 4385 if (crtc_state->splitter.enable) { 4386 int n = crtc_state->splitter.link_count; 4387 int overlap = crtc_state->splitter.pixel_overlap; 4388 4389 /* 4390 * eDP MSO uses segment timings from EDID for transcoder 4391 * timings, but full mode for everything else. 4392 * 4393 * h_full = (h_segment - pixel_overlap) * link_count 4394 */ 4395 pipe_mode->crtc_hdisplay = (pipe_mode->crtc_hdisplay - overlap) * n; 4396 pipe_mode->crtc_hblank_start = (pipe_mode->crtc_hblank_start - overlap) * n; 4397 pipe_mode->crtc_hblank_end = (pipe_mode->crtc_hblank_end - overlap) * n; 4398 pipe_mode->crtc_hsync_start = (pipe_mode->crtc_hsync_start - overlap) * n; 4399 pipe_mode->crtc_hsync_end = (pipe_mode->crtc_hsync_end - overlap) * n; 4400 pipe_mode->crtc_htotal = (pipe_mode->crtc_htotal - overlap) * n; 4401 pipe_mode->crtc_clock *= n; 4402 4403 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4404 intel_mode_from_crtc_timings(adjusted_mode, pipe_mode); 4405 } else { 4406 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4407 intel_mode_from_crtc_timings(adjusted_mode, adjusted_mode); 4408 } 4409 4410 intel_crtc_compute_pixel_rate(crtc_state); 4411 4412 drm_mode_copy(mode, adjusted_mode); 4413 mode->hdisplay = crtc_state->pipe_src_w << crtc_state->bigjoiner; 4414 mode->vdisplay = crtc_state->pipe_src_h; 4415 } 4416 4417 static void intel_encoder_get_config(struct intel_encoder *encoder, 4418 struct intel_crtc_state *crtc_state) 4419 { 4420 encoder->get_config(encoder, crtc_state); 4421 4422 intel_crtc_readout_derived_state(crtc_state); 4423 } 4424 4425 static int intel_crtc_compute_config(struct intel_crtc *crtc, 4426 struct intel_crtc_state *pipe_config) 4427 { 4428 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4429 struct drm_display_mode *pipe_mode = &pipe_config->hw.pipe_mode; 4430 int clock_limit = dev_priv->max_dotclk_freq; 4431 4432 drm_mode_copy(pipe_mode, &pipe_config->hw.adjusted_mode); 4433 4434 /* Adjust pipe_mode for bigjoiner, with half the horizontal mode */ 4435 if (pipe_config->bigjoiner) { 4436 pipe_mode->crtc_clock /= 2; 4437 pipe_mode->crtc_hdisplay /= 2; 4438 pipe_mode->crtc_hblank_start /= 2; 4439 pipe_mode->crtc_hblank_end /= 2; 4440 pipe_mode->crtc_hsync_start /= 2; 4441 pipe_mode->crtc_hsync_end /= 2; 4442 pipe_mode->crtc_htotal /= 2; 4443 pipe_config->pipe_src_w /= 2; 4444 } 4445 4446 if (pipe_config->splitter.enable) { 4447 int n = pipe_config->splitter.link_count; 4448 int overlap = pipe_config->splitter.pixel_overlap; 4449 4450 pipe_mode->crtc_hdisplay = (pipe_mode->crtc_hdisplay - overlap) * n; 4451 pipe_mode->crtc_hblank_start = (pipe_mode->crtc_hblank_start - overlap) * n; 4452 pipe_mode->crtc_hblank_end = (pipe_mode->crtc_hblank_end - overlap) * n; 4453 pipe_mode->crtc_hsync_start = (pipe_mode->crtc_hsync_start - overlap) * n; 4454 pipe_mode->crtc_hsync_end = (pipe_mode->crtc_hsync_end - overlap) * n; 4455 pipe_mode->crtc_htotal = (pipe_mode->crtc_htotal - overlap) * n; 4456 pipe_mode->crtc_clock *= n; 4457 } 4458 4459 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4460 4461 if (DISPLAY_VER(dev_priv) < 4) { 4462 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 4463 4464 /* 4465 * Enable double wide mode when the dot clock 4466 * is > 90% of the (display) core speed. 4467 */ 4468 if (intel_crtc_supports_double_wide(crtc) && 4469 pipe_mode->crtc_clock > clock_limit) { 4470 clock_limit = dev_priv->max_dotclk_freq; 4471 pipe_config->double_wide = true; 4472 } 4473 } 4474 4475 if (pipe_mode->crtc_clock > clock_limit) { 4476 drm_dbg_kms(&dev_priv->drm, 4477 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 4478 pipe_mode->crtc_clock, clock_limit, 4479 yesno(pipe_config->double_wide)); 4480 return -EINVAL; 4481 } 4482 4483 /* 4484 * Pipe horizontal size must be even in: 4485 * - DVO ganged mode 4486 * - LVDS dual channel mode 4487 * - Double wide pipe 4488 */ 4489 if (pipe_config->pipe_src_w & 1) { 4490 if (pipe_config->double_wide) { 4491 drm_dbg_kms(&dev_priv->drm, 4492 "Odd pipe source width not supported with double wide pipe\n"); 4493 return -EINVAL; 4494 } 4495 4496 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 4497 intel_is_dual_link_lvds(dev_priv)) { 4498 drm_dbg_kms(&dev_priv->drm, 4499 "Odd pipe source width not supported with dual link LVDS\n"); 4500 return -EINVAL; 4501 } 4502 } 4503 4504 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 4505 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 4506 */ 4507 if ((DISPLAY_VER(dev_priv) > 4 || IS_G4X(dev_priv)) && 4508 pipe_mode->crtc_hsync_start == pipe_mode->crtc_hdisplay) 4509 return -EINVAL; 4510 4511 intel_crtc_compute_pixel_rate(pipe_config); 4512 4513 if (pipe_config->has_pch_encoder) 4514 return ilk_fdi_compute_config(crtc, pipe_config); 4515 4516 return 0; 4517 } 4518 4519 static void 4520 intel_reduce_m_n_ratio(u32 *num, u32 *den) 4521 { 4522 while (*num > DATA_LINK_M_N_MASK || 4523 *den > DATA_LINK_M_N_MASK) { 4524 *num >>= 1; 4525 *den >>= 1; 4526 } 4527 } 4528 4529 static void compute_m_n(unsigned int m, unsigned int n, 4530 u32 *ret_m, u32 *ret_n, 4531 bool constant_n) 4532 { 4533 /* 4534 * Several DP dongles in particular seem to be fussy about 4535 * too large link M/N values. Give N value as 0x8000 that 4536 * should be acceptable by specific devices. 0x8000 is the 4537 * specified fixed N value for asynchronous clock mode, 4538 * which the devices expect also in synchronous clock mode. 4539 */ 4540 if (constant_n) 4541 *ret_n = DP_LINK_CONSTANT_N_VALUE; 4542 else 4543 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 4544 4545 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 4546 intel_reduce_m_n_ratio(ret_m, ret_n); 4547 } 4548 4549 void 4550 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 4551 int pixel_clock, int link_clock, 4552 struct intel_link_m_n *m_n, 4553 bool constant_n, bool fec_enable) 4554 { 4555 u32 data_clock = bits_per_pixel * pixel_clock; 4556 4557 if (fec_enable) 4558 data_clock = intel_dp_mode_to_fec_clock(data_clock); 4559 4560 m_n->tu = 64; 4561 compute_m_n(data_clock, 4562 link_clock * nlanes * 8, 4563 &m_n->gmch_m, &m_n->gmch_n, 4564 constant_n); 4565 4566 compute_m_n(pixel_clock, link_clock, 4567 &m_n->link_m, &m_n->link_n, 4568 constant_n); 4569 } 4570 4571 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) 4572 { 4573 /* 4574 * There may be no VBT; and if the BIOS enabled SSC we can 4575 * just keep using it to avoid unnecessary flicker. Whereas if the 4576 * BIOS isn't using it, don't assume it will work even if the VBT 4577 * indicates as much. 4578 */ 4579 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 4580 bool bios_lvds_use_ssc = intel_de_read(dev_priv, 4581 PCH_DREF_CONTROL) & 4582 DREF_SSC1_ENABLE; 4583 4584 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 4585 drm_dbg_kms(&dev_priv->drm, 4586 "SSC %s by BIOS, overriding VBT which says %s\n", 4587 enableddisabled(bios_lvds_use_ssc), 4588 enableddisabled(dev_priv->vbt.lvds_use_ssc)); 4589 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 4590 } 4591 } 4592 } 4593 4594 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 4595 const struct intel_link_m_n *m_n) 4596 { 4597 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4598 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4599 enum pipe pipe = crtc->pipe; 4600 4601 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe), 4602 TU_SIZE(m_n->tu) | m_n->gmch_m); 4603 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 4604 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m); 4605 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n); 4606 } 4607 4608 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 4609 enum transcoder transcoder) 4610 { 4611 if (IS_HASWELL(dev_priv)) 4612 return transcoder == TRANSCODER_EDP; 4613 4614 /* 4615 * Strictly speaking some registers are available before 4616 * gen7, but we only support DRRS on gen7+ 4617 */ 4618 return DISPLAY_VER(dev_priv) == 7 || IS_CHERRYVIEW(dev_priv); 4619 } 4620 4621 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 4622 const struct intel_link_m_n *m_n, 4623 const struct intel_link_m_n *m2_n2) 4624 { 4625 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4626 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4627 enum pipe pipe = crtc->pipe; 4628 enum transcoder transcoder = crtc_state->cpu_transcoder; 4629 4630 if (DISPLAY_VER(dev_priv) >= 5) { 4631 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder), 4632 TU_SIZE(m_n->tu) | m_n->gmch_m); 4633 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder), 4634 m_n->gmch_n); 4635 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder), 4636 m_n->link_m); 4637 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder), 4638 m_n->link_n); 4639 /* 4640 * M2_N2 registers are set only if DRRS is supported 4641 * (to make sure the registers are not unnecessarily accessed). 4642 */ 4643 if (m2_n2 && crtc_state->has_drrs && 4644 transcoder_has_m2_n2(dev_priv, transcoder)) { 4645 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder), 4646 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 4647 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder), 4648 m2_n2->gmch_n); 4649 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder), 4650 m2_n2->link_m); 4651 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder), 4652 m2_n2->link_n); 4653 } 4654 } else { 4655 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe), 4656 TU_SIZE(m_n->tu) | m_n->gmch_m); 4657 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 4658 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m); 4659 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n); 4660 } 4661 } 4662 4663 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 4664 { 4665 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 4666 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 4667 4668 if (m_n == M1_N1) { 4669 dp_m_n = &crtc_state->dp_m_n; 4670 dp_m2_n2 = &crtc_state->dp_m2_n2; 4671 } else if (m_n == M2_N2) { 4672 4673 /* 4674 * M2_N2 registers are not supported. Hence m2_n2 divider value 4675 * needs to be programmed into M1_N1. 4676 */ 4677 dp_m_n = &crtc_state->dp_m2_n2; 4678 } else { 4679 drm_err(&i915->drm, "Unsupported divider value\n"); 4680 return; 4681 } 4682 4683 if (crtc_state->has_pch_encoder) 4684 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 4685 else 4686 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 4687 } 4688 4689 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state) 4690 { 4691 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4692 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4693 enum pipe pipe = crtc->pipe; 4694 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 4695 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 4696 u32 crtc_vtotal, crtc_vblank_end; 4697 int vsyncshift = 0; 4698 4699 /* We need to be careful not to changed the adjusted mode, for otherwise 4700 * the hw state checker will get angry at the mismatch. */ 4701 crtc_vtotal = adjusted_mode->crtc_vtotal; 4702 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 4703 4704 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 4705 /* the chip adds 2 halflines automatically */ 4706 crtc_vtotal -= 1; 4707 crtc_vblank_end -= 1; 4708 4709 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 4710 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 4711 else 4712 vsyncshift = adjusted_mode->crtc_hsync_start - 4713 adjusted_mode->crtc_htotal / 2; 4714 if (vsyncshift < 0) 4715 vsyncshift += adjusted_mode->crtc_htotal; 4716 } 4717 4718 if (DISPLAY_VER(dev_priv) > 3) 4719 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder), 4720 vsyncshift); 4721 4722 intel_de_write(dev_priv, HTOTAL(cpu_transcoder), 4723 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); 4724 intel_de_write(dev_priv, HBLANK(cpu_transcoder), 4725 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); 4726 intel_de_write(dev_priv, HSYNC(cpu_transcoder), 4727 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); 4728 4729 intel_de_write(dev_priv, VTOTAL(cpu_transcoder), 4730 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); 4731 intel_de_write(dev_priv, VBLANK(cpu_transcoder), 4732 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); 4733 intel_de_write(dev_priv, VSYNC(cpu_transcoder), 4734 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); 4735 4736 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 4737 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 4738 * documented on the DDI_FUNC_CTL register description, EDP Input Select 4739 * bits. */ 4740 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 4741 (pipe == PIPE_B || pipe == PIPE_C)) 4742 intel_de_write(dev_priv, VTOTAL(pipe), 4743 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 4744 4745 } 4746 4747 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 4748 { 4749 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4750 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4751 enum pipe pipe = crtc->pipe; 4752 4753 /* pipesrc controls the size that is scaled from, which should 4754 * always be the user's requested size. 4755 */ 4756 intel_de_write(dev_priv, PIPESRC(pipe), 4757 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1)); 4758 } 4759 4760 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 4761 { 4762 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4763 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 4764 4765 if (DISPLAY_VER(dev_priv) == 2) 4766 return false; 4767 4768 if (DISPLAY_VER(dev_priv) >= 9 || 4769 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 4770 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; 4771 else 4772 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; 4773 } 4774 4775 static void intel_get_transcoder_timings(struct intel_crtc *crtc, 4776 struct intel_crtc_state *pipe_config) 4777 { 4778 struct drm_device *dev = crtc->base.dev; 4779 struct drm_i915_private *dev_priv = to_i915(dev); 4780 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 4781 u32 tmp; 4782 4783 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); 4784 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 4785 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 4786 4787 if (!transcoder_is_dsi(cpu_transcoder)) { 4788 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); 4789 pipe_config->hw.adjusted_mode.crtc_hblank_start = 4790 (tmp & 0xffff) + 1; 4791 pipe_config->hw.adjusted_mode.crtc_hblank_end = 4792 ((tmp >> 16) & 0xffff) + 1; 4793 } 4794 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); 4795 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 4796 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 4797 4798 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); 4799 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 4800 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 4801 4802 if (!transcoder_is_dsi(cpu_transcoder)) { 4803 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); 4804 pipe_config->hw.adjusted_mode.crtc_vblank_start = 4805 (tmp & 0xffff) + 1; 4806 pipe_config->hw.adjusted_mode.crtc_vblank_end = 4807 ((tmp >> 16) & 0xffff) + 1; 4808 } 4809 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); 4810 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 4811 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 4812 4813 if (intel_pipe_is_interlaced(pipe_config)) { 4814 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 4815 pipe_config->hw.adjusted_mode.crtc_vtotal += 1; 4816 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1; 4817 } 4818 } 4819 4820 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 4821 struct intel_crtc_state *pipe_config) 4822 { 4823 struct drm_device *dev = crtc->base.dev; 4824 struct drm_i915_private *dev_priv = to_i915(dev); 4825 u32 tmp; 4826 4827 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe)); 4828 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 4829 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 4830 } 4831 4832 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 4833 { 4834 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4835 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4836 u32 pipeconf; 4837 4838 pipeconf = 0; 4839 4840 /* we keep both pipes enabled on 830 */ 4841 if (IS_I830(dev_priv)) 4842 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 4843 4844 if (crtc_state->double_wide) 4845 pipeconf |= PIPECONF_DOUBLE_WIDE; 4846 4847 /* only g4x and later have fancy bpc/dither controls */ 4848 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 4849 IS_CHERRYVIEW(dev_priv)) { 4850 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 4851 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 4852 pipeconf |= PIPECONF_DITHER_EN | 4853 PIPECONF_DITHER_TYPE_SP; 4854 4855 switch (crtc_state->pipe_bpp) { 4856 case 18: 4857 pipeconf |= PIPECONF_6BPC; 4858 break; 4859 case 24: 4860 pipeconf |= PIPECONF_8BPC; 4861 break; 4862 case 30: 4863 pipeconf |= PIPECONF_10BPC; 4864 break; 4865 default: 4866 /* Case prevented by intel_choose_pipe_bpp_dither. */ 4867 BUG(); 4868 } 4869 } 4870 4871 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 4872 if (DISPLAY_VER(dev_priv) < 4 || 4873 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 4874 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 4875 else 4876 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 4877 } else { 4878 pipeconf |= PIPECONF_PROGRESSIVE; 4879 } 4880 4881 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 4882 crtc_state->limited_color_range) 4883 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 4884 4885 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 4886 4887 pipeconf |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 4888 4889 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf); 4890 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); 4891 } 4892 4893 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 4894 { 4895 if (IS_I830(dev_priv)) 4896 return false; 4897 4898 return DISPLAY_VER(dev_priv) >= 4 || 4899 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 4900 } 4901 4902 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state) 4903 { 4904 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4905 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4906 u32 tmp; 4907 4908 if (!i9xx_has_pfit(dev_priv)) 4909 return; 4910 4911 tmp = intel_de_read(dev_priv, PFIT_CONTROL); 4912 if (!(tmp & PFIT_ENABLE)) 4913 return; 4914 4915 /* Check whether the pfit is attached to our pipe. */ 4916 if (DISPLAY_VER(dev_priv) < 4) { 4917 if (crtc->pipe != PIPE_B) 4918 return; 4919 } else { 4920 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 4921 return; 4922 } 4923 4924 crtc_state->gmch_pfit.control = tmp; 4925 crtc_state->gmch_pfit.pgm_ratios = 4926 intel_de_read(dev_priv, PFIT_PGM_RATIOS); 4927 } 4928 4929 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 4930 struct intel_crtc_state *pipe_config) 4931 { 4932 struct drm_device *dev = crtc->base.dev; 4933 struct drm_i915_private *dev_priv = to_i915(dev); 4934 enum pipe pipe = crtc->pipe; 4935 struct dpll clock; 4936 u32 mdiv; 4937 int refclk = 100000; 4938 4939 /* In case of DSI, DPLL will not be used */ 4940 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 4941 return; 4942 4943 vlv_dpio_get(dev_priv); 4944 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 4945 vlv_dpio_put(dev_priv); 4946 4947 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 4948 clock.m2 = mdiv & DPIO_M2DIV_MASK; 4949 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 4950 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 4951 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 4952 4953 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 4954 } 4955 4956 static void chv_crtc_clock_get(struct intel_crtc *crtc, 4957 struct intel_crtc_state *pipe_config) 4958 { 4959 struct drm_device *dev = crtc->base.dev; 4960 struct drm_i915_private *dev_priv = to_i915(dev); 4961 enum pipe pipe = crtc->pipe; 4962 enum dpio_channel port = vlv_pipe_to_channel(pipe); 4963 struct dpll clock; 4964 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 4965 int refclk = 100000; 4966 4967 /* In case of DSI, DPLL will not be used */ 4968 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 4969 return; 4970 4971 vlv_dpio_get(dev_priv); 4972 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 4973 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 4974 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 4975 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 4976 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 4977 vlv_dpio_put(dev_priv); 4978 4979 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 4980 clock.m2 = (pll_dw0 & 0xff) << 22; 4981 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 4982 clock.m2 |= pll_dw2 & 0x3fffff; 4983 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 4984 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 4985 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 4986 4987 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 4988 } 4989 4990 static enum intel_output_format 4991 bdw_get_pipemisc_output_format(struct intel_crtc *crtc) 4992 { 4993 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4994 u32 tmp; 4995 4996 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 4997 4998 if (tmp & PIPEMISC_YUV420_ENABLE) { 4999 /* We support 4:2:0 in full blend mode only */ 5000 drm_WARN_ON(&dev_priv->drm, 5001 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); 5002 5003 return INTEL_OUTPUT_FORMAT_YCBCR420; 5004 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 5005 return INTEL_OUTPUT_FORMAT_YCBCR444; 5006 } else { 5007 return INTEL_OUTPUT_FORMAT_RGB; 5008 } 5009 } 5010 5011 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 5012 { 5013 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5014 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 5015 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5016 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 5017 u32 tmp; 5018 5019 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 5020 5021 if (tmp & DISPPLANE_GAMMA_ENABLE) 5022 crtc_state->gamma_enable = true; 5023 5024 if (!HAS_GMCH(dev_priv) && 5025 tmp & DISPPLANE_PIPE_CSC_ENABLE) 5026 crtc_state->csc_enable = true; 5027 } 5028 5029 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 5030 struct intel_crtc_state *pipe_config) 5031 { 5032 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5033 enum intel_display_power_domain power_domain; 5034 intel_wakeref_t wakeref; 5035 u32 tmp; 5036 bool ret; 5037 5038 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 5039 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 5040 if (!wakeref) 5041 return false; 5042 5043 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 5044 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 5045 pipe_config->shared_dpll = NULL; 5046 5047 ret = false; 5048 5049 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 5050 if (!(tmp & PIPECONF_ENABLE)) 5051 goto out; 5052 5053 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 5054 IS_CHERRYVIEW(dev_priv)) { 5055 switch (tmp & PIPECONF_BPC_MASK) { 5056 case PIPECONF_6BPC: 5057 pipe_config->pipe_bpp = 18; 5058 break; 5059 case PIPECONF_8BPC: 5060 pipe_config->pipe_bpp = 24; 5061 break; 5062 case PIPECONF_10BPC: 5063 pipe_config->pipe_bpp = 30; 5064 break; 5065 default: 5066 break; 5067 } 5068 } 5069 5070 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 5071 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 5072 pipe_config->limited_color_range = true; 5073 5074 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 5075 PIPECONF_GAMMA_MODE_SHIFT; 5076 5077 if (IS_CHERRYVIEW(dev_priv)) 5078 pipe_config->cgm_mode = intel_de_read(dev_priv, 5079 CGM_PIPE_MODE(crtc->pipe)); 5080 5081 i9xx_get_pipe_color_config(pipe_config); 5082 intel_color_get_config(pipe_config); 5083 5084 if (DISPLAY_VER(dev_priv) < 4) 5085 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 5086 5087 intel_get_transcoder_timings(crtc, pipe_config); 5088 intel_get_pipe_src_size(crtc, pipe_config); 5089 5090 i9xx_get_pfit_config(pipe_config); 5091 5092 if (DISPLAY_VER(dev_priv) >= 4) { 5093 /* No way to read it out on pipes B and C */ 5094 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 5095 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 5096 else 5097 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); 5098 pipe_config->pixel_multiplier = 5099 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 5100 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 5101 pipe_config->dpll_hw_state.dpll_md = tmp; 5102 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 5103 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 5104 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe)); 5105 pipe_config->pixel_multiplier = 5106 ((tmp & SDVO_MULTIPLIER_MASK) 5107 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 5108 } else { 5109 /* Note that on i915G/GM the pixel multiplier is in the sdvo 5110 * port and will be fixed up in the encoder->get_config 5111 * function. */ 5112 pipe_config->pixel_multiplier = 1; 5113 } 5114 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv, 5115 DPLL(crtc->pipe)); 5116 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 5117 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv, 5118 FP0(crtc->pipe)); 5119 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv, 5120 FP1(crtc->pipe)); 5121 } else { 5122 /* Mask out read-only status bits. */ 5123 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 5124 DPLL_PORTC_READY_MASK | 5125 DPLL_PORTB_READY_MASK); 5126 } 5127 5128 if (IS_CHERRYVIEW(dev_priv)) 5129 chv_crtc_clock_get(crtc, pipe_config); 5130 else if (IS_VALLEYVIEW(dev_priv)) 5131 vlv_crtc_clock_get(crtc, pipe_config); 5132 else 5133 i9xx_crtc_clock_get(crtc, pipe_config); 5134 5135 /* 5136 * Normally the dotclock is filled in by the encoder .get_config() 5137 * but in case the pipe is enabled w/o any ports we need a sane 5138 * default. 5139 */ 5140 pipe_config->hw.adjusted_mode.crtc_clock = 5141 pipe_config->port_clock / pipe_config->pixel_multiplier; 5142 5143 ret = true; 5144 5145 out: 5146 intel_display_power_put(dev_priv, power_domain, wakeref); 5147 5148 return ret; 5149 } 5150 5151 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv) 5152 { 5153 struct intel_encoder *encoder; 5154 int i; 5155 u32 val, final; 5156 bool has_lvds = false; 5157 bool has_cpu_edp = false; 5158 bool has_panel = false; 5159 bool has_ck505 = false; 5160 bool can_ssc = false; 5161 bool using_ssc_source = false; 5162 5163 /* We need to take the global config into account */ 5164 for_each_intel_encoder(&dev_priv->drm, encoder) { 5165 switch (encoder->type) { 5166 case INTEL_OUTPUT_LVDS: 5167 has_panel = true; 5168 has_lvds = true; 5169 break; 5170 case INTEL_OUTPUT_EDP: 5171 has_panel = true; 5172 if (encoder->port == PORT_A) 5173 has_cpu_edp = true; 5174 break; 5175 default: 5176 break; 5177 } 5178 } 5179 5180 if (HAS_PCH_IBX(dev_priv)) { 5181 has_ck505 = dev_priv->vbt.display_clock_mode; 5182 can_ssc = has_ck505; 5183 } else { 5184 has_ck505 = false; 5185 can_ssc = true; 5186 } 5187 5188 /* Check if any DPLLs are using the SSC source */ 5189 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) { 5190 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i)); 5191 5192 if (!(temp & DPLL_VCO_ENABLE)) 5193 continue; 5194 5195 if ((temp & PLL_REF_INPUT_MASK) == 5196 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 5197 using_ssc_source = true; 5198 break; 5199 } 5200 } 5201 5202 drm_dbg_kms(&dev_priv->drm, 5203 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 5204 has_panel, has_lvds, has_ck505, using_ssc_source); 5205 5206 /* Ironlake: try to setup display ref clock before DPLL 5207 * enabling. This is only under driver's control after 5208 * PCH B stepping, previous chipset stepping should be 5209 * ignoring this setting. 5210 */ 5211 val = intel_de_read(dev_priv, PCH_DREF_CONTROL); 5212 5213 /* As we must carefully and slowly disable/enable each source in turn, 5214 * compute the final state we want first and check if we need to 5215 * make any changes at all. 5216 */ 5217 final = val; 5218 final &= ~DREF_NONSPREAD_SOURCE_MASK; 5219 if (has_ck505) 5220 final |= DREF_NONSPREAD_CK505_ENABLE; 5221 else 5222 final |= DREF_NONSPREAD_SOURCE_ENABLE; 5223 5224 final &= ~DREF_SSC_SOURCE_MASK; 5225 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5226 final &= ~DREF_SSC1_ENABLE; 5227 5228 if (has_panel) { 5229 final |= DREF_SSC_SOURCE_ENABLE; 5230 5231 if (intel_panel_use_ssc(dev_priv) && can_ssc) 5232 final |= DREF_SSC1_ENABLE; 5233 5234 if (has_cpu_edp) { 5235 if (intel_panel_use_ssc(dev_priv) && can_ssc) 5236 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 5237 else 5238 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 5239 } else 5240 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5241 } else if (using_ssc_source) { 5242 final |= DREF_SSC_SOURCE_ENABLE; 5243 final |= DREF_SSC1_ENABLE; 5244 } 5245 5246 if (final == val) 5247 return; 5248 5249 /* Always enable nonspread source */ 5250 val &= ~DREF_NONSPREAD_SOURCE_MASK; 5251 5252 if (has_ck505) 5253 val |= DREF_NONSPREAD_CK505_ENABLE; 5254 else 5255 val |= DREF_NONSPREAD_SOURCE_ENABLE; 5256 5257 if (has_panel) { 5258 val &= ~DREF_SSC_SOURCE_MASK; 5259 val |= DREF_SSC_SOURCE_ENABLE; 5260 5261 /* SSC must be turned on before enabling the CPU output */ 5262 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 5263 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n"); 5264 val |= DREF_SSC1_ENABLE; 5265 } else 5266 val &= ~DREF_SSC1_ENABLE; 5267 5268 /* Get SSC going before enabling the outputs */ 5269 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5270 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5271 udelay(200); 5272 5273 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5274 5275 /* Enable CPU source on CPU attached eDP */ 5276 if (has_cpu_edp) { 5277 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 5278 drm_dbg_kms(&dev_priv->drm, 5279 "Using SSC on eDP\n"); 5280 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 5281 } else 5282 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 5283 } else 5284 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5285 5286 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5287 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5288 udelay(200); 5289 } else { 5290 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n"); 5291 5292 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5293 5294 /* Turn off CPU output */ 5295 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5296 5297 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5298 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5299 udelay(200); 5300 5301 if (!using_ssc_source) { 5302 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n"); 5303 5304 /* Turn off the SSC source */ 5305 val &= ~DREF_SSC_SOURCE_MASK; 5306 val |= DREF_SSC_SOURCE_DISABLE; 5307 5308 /* Turn off SSC1 */ 5309 val &= ~DREF_SSC1_ENABLE; 5310 5311 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5312 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5313 udelay(200); 5314 } 5315 } 5316 5317 BUG_ON(val != final); 5318 } 5319 5320 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 5321 { 5322 u32 tmp; 5323 5324 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 5325 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 5326 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 5327 5328 if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) & 5329 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 5330 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n"); 5331 5332 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 5333 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 5334 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 5335 5336 if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) & 5337 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 5338 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n"); 5339 } 5340 5341 /* WaMPhyProgramming:hsw */ 5342 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 5343 { 5344 u32 tmp; 5345 5346 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 5347 tmp &= ~(0xFF << 24); 5348 tmp |= (0x12 << 24); 5349 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 5350 5351 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 5352 tmp |= (1 << 11); 5353 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 5354 5355 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 5356 tmp |= (1 << 11); 5357 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 5358 5359 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 5360 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 5361 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 5362 5363 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 5364 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 5365 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 5366 5367 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 5368 tmp &= ~(7 << 13); 5369 tmp |= (5 << 13); 5370 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 5371 5372 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 5373 tmp &= ~(7 << 13); 5374 tmp |= (5 << 13); 5375 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 5376 5377 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 5378 tmp &= ~0xFF; 5379 tmp |= 0x1C; 5380 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 5381 5382 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 5383 tmp &= ~0xFF; 5384 tmp |= 0x1C; 5385 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 5386 5387 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 5388 tmp &= ~(0xFF << 16); 5389 tmp |= (0x1C << 16); 5390 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 5391 5392 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 5393 tmp &= ~(0xFF << 16); 5394 tmp |= (0x1C << 16); 5395 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 5396 5397 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 5398 tmp |= (1 << 27); 5399 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 5400 5401 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 5402 tmp |= (1 << 27); 5403 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 5404 5405 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 5406 tmp &= ~(0xF << 28); 5407 tmp |= (4 << 28); 5408 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 5409 5410 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 5411 tmp &= ~(0xF << 28); 5412 tmp |= (4 << 28); 5413 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 5414 } 5415 5416 /* Implements 3 different sequences from BSpec chapter "Display iCLK 5417 * Programming" based on the parameters passed: 5418 * - Sequence to enable CLKOUT_DP 5419 * - Sequence to enable CLKOUT_DP without spread 5420 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 5421 */ 5422 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 5423 bool with_spread, bool with_fdi) 5424 { 5425 u32 reg, tmp; 5426 5427 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread, 5428 "FDI requires downspread\n")) 5429 with_spread = true; 5430 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) && 5431 with_fdi, "LP PCH doesn't have FDI\n")) 5432 with_fdi = false; 5433 5434 mutex_lock(&dev_priv->sb_lock); 5435 5436 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5437 tmp &= ~SBI_SSCCTL_DISABLE; 5438 tmp |= SBI_SSCCTL_PATHALT; 5439 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5440 5441 udelay(24); 5442 5443 if (with_spread) { 5444 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5445 tmp &= ~SBI_SSCCTL_PATHALT; 5446 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5447 5448 if (with_fdi) { 5449 lpt_reset_fdi_mphy(dev_priv); 5450 lpt_program_fdi_mphy(dev_priv); 5451 } 5452 } 5453 5454 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 5455 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 5456 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 5457 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 5458 5459 mutex_unlock(&dev_priv->sb_lock); 5460 } 5461 5462 /* Sequence to disable CLKOUT_DP */ 5463 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 5464 { 5465 u32 reg, tmp; 5466 5467 mutex_lock(&dev_priv->sb_lock); 5468 5469 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 5470 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 5471 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 5472 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 5473 5474 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5475 if (!(tmp & SBI_SSCCTL_DISABLE)) { 5476 if (!(tmp & SBI_SSCCTL_PATHALT)) { 5477 tmp |= SBI_SSCCTL_PATHALT; 5478 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5479 udelay(32); 5480 } 5481 tmp |= SBI_SSCCTL_DISABLE; 5482 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5483 } 5484 5485 mutex_unlock(&dev_priv->sb_lock); 5486 } 5487 5488 #define BEND_IDX(steps) ((50 + (steps)) / 5) 5489 5490 static const u16 sscdivintphase[] = { 5491 [BEND_IDX( 50)] = 0x3B23, 5492 [BEND_IDX( 45)] = 0x3B23, 5493 [BEND_IDX( 40)] = 0x3C23, 5494 [BEND_IDX( 35)] = 0x3C23, 5495 [BEND_IDX( 30)] = 0x3D23, 5496 [BEND_IDX( 25)] = 0x3D23, 5497 [BEND_IDX( 20)] = 0x3E23, 5498 [BEND_IDX( 15)] = 0x3E23, 5499 [BEND_IDX( 10)] = 0x3F23, 5500 [BEND_IDX( 5)] = 0x3F23, 5501 [BEND_IDX( 0)] = 0x0025, 5502 [BEND_IDX( -5)] = 0x0025, 5503 [BEND_IDX(-10)] = 0x0125, 5504 [BEND_IDX(-15)] = 0x0125, 5505 [BEND_IDX(-20)] = 0x0225, 5506 [BEND_IDX(-25)] = 0x0225, 5507 [BEND_IDX(-30)] = 0x0325, 5508 [BEND_IDX(-35)] = 0x0325, 5509 [BEND_IDX(-40)] = 0x0425, 5510 [BEND_IDX(-45)] = 0x0425, 5511 [BEND_IDX(-50)] = 0x0525, 5512 }; 5513 5514 /* 5515 * Bend CLKOUT_DP 5516 * steps -50 to 50 inclusive, in steps of 5 5517 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 5518 * change in clock period = -(steps / 10) * 5.787 ps 5519 */ 5520 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 5521 { 5522 u32 tmp; 5523 int idx = BEND_IDX(steps); 5524 5525 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0)) 5526 return; 5527 5528 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase))) 5529 return; 5530 5531 mutex_lock(&dev_priv->sb_lock); 5532 5533 if (steps % 10 != 0) 5534 tmp = 0xAAAAAAAB; 5535 else 5536 tmp = 0x00000000; 5537 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 5538 5539 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 5540 tmp &= 0xffff0000; 5541 tmp |= sscdivintphase[idx]; 5542 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 5543 5544 mutex_unlock(&dev_priv->sb_lock); 5545 } 5546 5547 #undef BEND_IDX 5548 5549 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 5550 { 5551 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 5552 u32 ctl = intel_de_read(dev_priv, SPLL_CTL); 5553 5554 if ((ctl & SPLL_PLL_ENABLE) == 0) 5555 return false; 5556 5557 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 5558 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 5559 return true; 5560 5561 if (IS_BROADWELL(dev_priv) && 5562 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 5563 return true; 5564 5565 return false; 5566 } 5567 5568 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 5569 enum intel_dpll_id id) 5570 { 5571 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 5572 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id)); 5573 5574 if ((ctl & WRPLL_PLL_ENABLE) == 0) 5575 return false; 5576 5577 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 5578 return true; 5579 5580 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 5581 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 5582 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 5583 return true; 5584 5585 return false; 5586 } 5587 5588 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 5589 { 5590 struct intel_encoder *encoder; 5591 bool has_fdi = false; 5592 5593 for_each_intel_encoder(&dev_priv->drm, encoder) { 5594 switch (encoder->type) { 5595 case INTEL_OUTPUT_ANALOG: 5596 has_fdi = true; 5597 break; 5598 default: 5599 break; 5600 } 5601 } 5602 5603 /* 5604 * The BIOS may have decided to use the PCH SSC 5605 * reference so we must not disable it until the 5606 * relevant PLLs have stopped relying on it. We'll 5607 * just leave the PCH SSC reference enabled in case 5608 * any active PLL is using it. It will get disabled 5609 * after runtime suspend if we don't have FDI. 5610 * 5611 * TODO: Move the whole reference clock handling 5612 * to the modeset sequence proper so that we can 5613 * actually enable/disable/reconfigure these things 5614 * safely. To do that we need to introduce a real 5615 * clock hierarchy. That would also allow us to do 5616 * clock bending finally. 5617 */ 5618 dev_priv->pch_ssc_use = 0; 5619 5620 if (spll_uses_pch_ssc(dev_priv)) { 5621 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n"); 5622 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); 5623 } 5624 5625 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 5626 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n"); 5627 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 5628 } 5629 5630 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 5631 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n"); 5632 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 5633 } 5634 5635 if (dev_priv->pch_ssc_use) 5636 return; 5637 5638 if (has_fdi) { 5639 lpt_bend_clkout_dp(dev_priv, 0); 5640 lpt_enable_clkout_dp(dev_priv, true, true); 5641 } else { 5642 lpt_disable_clkout_dp(dev_priv); 5643 } 5644 } 5645 5646 /* 5647 * Initialize reference clocks when the driver loads 5648 */ 5649 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 5650 { 5651 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 5652 ilk_init_pch_refclk(dev_priv); 5653 else if (HAS_PCH_LPT(dev_priv)) 5654 lpt_init_pch_refclk(dev_priv); 5655 } 5656 5657 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) 5658 { 5659 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5660 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5661 enum pipe pipe = crtc->pipe; 5662 u32 val; 5663 5664 val = 0; 5665 5666 switch (crtc_state->pipe_bpp) { 5667 case 18: 5668 val |= PIPECONF_6BPC; 5669 break; 5670 case 24: 5671 val |= PIPECONF_8BPC; 5672 break; 5673 case 30: 5674 val |= PIPECONF_10BPC; 5675 break; 5676 case 36: 5677 val |= PIPECONF_12BPC; 5678 break; 5679 default: 5680 /* Case prevented by intel_choose_pipe_bpp_dither. */ 5681 BUG(); 5682 } 5683 5684 if (crtc_state->dither) 5685 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 5686 5687 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 5688 val |= PIPECONF_INTERLACED_ILK; 5689 else 5690 val |= PIPECONF_PROGRESSIVE; 5691 5692 /* 5693 * This would end up with an odd purple hue over 5694 * the entire display. Make sure we don't do it. 5695 */ 5696 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && 5697 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 5698 5699 if (crtc_state->limited_color_range && 5700 !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 5701 val |= PIPECONF_COLOR_RANGE_SELECT; 5702 5703 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 5704 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; 5705 5706 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 5707 5708 val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 5709 5710 intel_de_write(dev_priv, PIPECONF(pipe), val); 5711 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 5712 } 5713 5714 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state) 5715 { 5716 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5717 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5718 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5719 u32 val = 0; 5720 5721 if (IS_HASWELL(dev_priv) && crtc_state->dither) 5722 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 5723 5724 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 5725 val |= PIPECONF_INTERLACED_ILK; 5726 else 5727 val |= PIPECONF_PROGRESSIVE; 5728 5729 if (IS_HASWELL(dev_priv) && 5730 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 5731 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; 5732 5733 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val); 5734 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder)); 5735 } 5736 5737 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 5738 { 5739 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5740 const struct intel_crtc_scaler_state *scaler_state = 5741 &crtc_state->scaler_state; 5742 5743 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5744 u32 val = 0; 5745 int i; 5746 5747 switch (crtc_state->pipe_bpp) { 5748 case 18: 5749 val |= PIPEMISC_6_BPC; 5750 break; 5751 case 24: 5752 val |= PIPEMISC_8_BPC; 5753 break; 5754 case 30: 5755 val |= PIPEMISC_10_BPC; 5756 break; 5757 case 36: 5758 /* Port output 12BPC defined for ADLP+ */ 5759 if (DISPLAY_VER(dev_priv) > 12) 5760 val |= PIPEMISC_12_BPC_ADLP; 5761 break; 5762 default: 5763 MISSING_CASE(crtc_state->pipe_bpp); 5764 break; 5765 } 5766 5767 if (crtc_state->dither) 5768 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 5769 5770 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 5771 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 5772 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 5773 5774 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 5775 val |= PIPEMISC_YUV420_ENABLE | 5776 PIPEMISC_YUV420_MODE_FULL_BLEND; 5777 5778 if (DISPLAY_VER(dev_priv) >= 11 && 5779 (crtc_state->active_planes & ~(icl_hdr_plane_mask() | 5780 BIT(PLANE_CURSOR))) == 0) 5781 val |= PIPEMISC_HDR_MODE_PRECISION; 5782 5783 if (DISPLAY_VER(dev_priv) >= 12) 5784 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC; 5785 5786 if (IS_ALDERLAKE_P(dev_priv)) { 5787 bool scaler_in_use = false; 5788 5789 for (i = 0; i < crtc->num_scalers; i++) { 5790 if (!scaler_state->scalers[i].in_use) 5791 continue; 5792 5793 scaler_in_use = true; 5794 break; 5795 } 5796 5797 intel_de_rmw(dev_priv, PIPE_MISC2(crtc->pipe), 5798 PIPE_MISC2_UNDERRUN_BUBBLE_COUNTER_MASK, 5799 scaler_in_use ? PIPE_MISC2_BUBBLE_COUNTER_SCALER_EN : 5800 PIPE_MISC2_BUBBLE_COUNTER_SCALER_DIS); 5801 } 5802 5803 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val); 5804 } 5805 5806 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 5807 { 5808 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5809 u32 tmp; 5810 5811 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 5812 5813 switch (tmp & PIPEMISC_BPC_MASK) { 5814 case PIPEMISC_6_BPC: 5815 return 18; 5816 case PIPEMISC_8_BPC: 5817 return 24; 5818 case PIPEMISC_10_BPC: 5819 return 30; 5820 /* 5821 * PORT OUTPUT 12 BPC defined for ADLP+. 5822 * 5823 * TODO: 5824 * For previous platforms with DSI interface, bits 5:7 5825 * are used for storing pipe_bpp irrespective of dithering. 5826 * Since the value of 12 BPC is not defined for these bits 5827 * on older platforms, need to find a workaround for 12 BPC 5828 * MIPI DSI HW readout. 5829 */ 5830 case PIPEMISC_12_BPC_ADLP: 5831 if (DISPLAY_VER(dev_priv) > 12) 5832 return 36; 5833 fallthrough; 5834 default: 5835 MISSING_CASE(tmp); 5836 return 0; 5837 } 5838 } 5839 5840 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) 5841 { 5842 /* 5843 * Account for spread spectrum to avoid 5844 * oversubscribing the link. Max center spread 5845 * is 2.5%; use 5% for safety's sake. 5846 */ 5847 u32 bps = target_clock * bpp * 21 / 20; 5848 return DIV_ROUND_UP(bps, link_bw * 8); 5849 } 5850 5851 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 5852 struct intel_link_m_n *m_n) 5853 { 5854 struct drm_device *dev = crtc->base.dev; 5855 struct drm_i915_private *dev_priv = to_i915(dev); 5856 enum pipe pipe = crtc->pipe; 5857 5858 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe)); 5859 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe)); 5860 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 5861 & ~TU_SIZE_MASK; 5862 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe)); 5863 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 5864 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5865 } 5866 5867 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 5868 enum transcoder transcoder, 5869 struct intel_link_m_n *m_n, 5870 struct intel_link_m_n *m2_n2) 5871 { 5872 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5873 enum pipe pipe = crtc->pipe; 5874 5875 if (DISPLAY_VER(dev_priv) >= 5) { 5876 m_n->link_m = intel_de_read(dev_priv, 5877 PIPE_LINK_M1(transcoder)); 5878 m_n->link_n = intel_de_read(dev_priv, 5879 PIPE_LINK_N1(transcoder)); 5880 m_n->gmch_m = intel_de_read(dev_priv, 5881 PIPE_DATA_M1(transcoder)) 5882 & ~TU_SIZE_MASK; 5883 m_n->gmch_n = intel_de_read(dev_priv, 5884 PIPE_DATA_N1(transcoder)); 5885 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder)) 5886 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5887 5888 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 5889 m2_n2->link_m = intel_de_read(dev_priv, 5890 PIPE_LINK_M2(transcoder)); 5891 m2_n2->link_n = intel_de_read(dev_priv, 5892 PIPE_LINK_N2(transcoder)); 5893 m2_n2->gmch_m = intel_de_read(dev_priv, 5894 PIPE_DATA_M2(transcoder)) 5895 & ~TU_SIZE_MASK; 5896 m2_n2->gmch_n = intel_de_read(dev_priv, 5897 PIPE_DATA_N2(transcoder)); 5898 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder)) 5899 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5900 } 5901 } else { 5902 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe)); 5903 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe)); 5904 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 5905 & ~TU_SIZE_MASK; 5906 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe)); 5907 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 5908 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 5909 } 5910 } 5911 5912 void intel_dp_get_m_n(struct intel_crtc *crtc, 5913 struct intel_crtc_state *pipe_config) 5914 { 5915 if (pipe_config->has_pch_encoder) 5916 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 5917 else 5918 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 5919 &pipe_config->dp_m_n, 5920 &pipe_config->dp_m2_n2); 5921 } 5922 5923 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc, 5924 struct intel_crtc_state *pipe_config) 5925 { 5926 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 5927 &pipe_config->fdi_m_n, NULL); 5928 } 5929 5930 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state, 5931 u32 pos, u32 size) 5932 { 5933 drm_rect_init(&crtc_state->pch_pfit.dst, 5934 pos >> 16, pos & 0xffff, 5935 size >> 16, size & 0xffff); 5936 } 5937 5938 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state) 5939 { 5940 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5941 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5942 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; 5943 int id = -1; 5944 int i; 5945 5946 /* find scaler attached to this pipe */ 5947 for (i = 0; i < crtc->num_scalers; i++) { 5948 u32 ctl, pos, size; 5949 5950 ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i)); 5951 if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN) 5952 continue; 5953 5954 id = i; 5955 crtc_state->pch_pfit.enabled = true; 5956 5957 pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i)); 5958 size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i)); 5959 5960 ilk_get_pfit_pos_size(crtc_state, pos, size); 5961 5962 scaler_state->scalers[i].in_use = true; 5963 break; 5964 } 5965 5966 scaler_state->scaler_id = id; 5967 if (id >= 0) 5968 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 5969 else 5970 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 5971 } 5972 5973 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state) 5974 { 5975 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5976 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5977 u32 ctl, pos, size; 5978 5979 ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe)); 5980 if ((ctl & PF_ENABLE) == 0) 5981 return; 5982 5983 crtc_state->pch_pfit.enabled = true; 5984 5985 pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe)); 5986 size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe)); 5987 5988 ilk_get_pfit_pos_size(crtc_state, pos, size); 5989 5990 /* 5991 * We currently do not free assignements of panel fitters on 5992 * ivb/hsw (since we don't use the higher upscaling modes which 5993 * differentiates them) so just WARN about this case for now. 5994 */ 5995 drm_WARN_ON(&dev_priv->drm, DISPLAY_VER(dev_priv) == 7 && 5996 (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe)); 5997 } 5998 5999 static bool ilk_get_pipe_config(struct intel_crtc *crtc, 6000 struct intel_crtc_state *pipe_config) 6001 { 6002 struct drm_device *dev = crtc->base.dev; 6003 struct drm_i915_private *dev_priv = to_i915(dev); 6004 enum intel_display_power_domain power_domain; 6005 intel_wakeref_t wakeref; 6006 u32 tmp; 6007 bool ret; 6008 6009 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 6010 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 6011 if (!wakeref) 6012 return false; 6013 6014 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 6015 pipe_config->shared_dpll = NULL; 6016 6017 ret = false; 6018 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 6019 if (!(tmp & PIPECONF_ENABLE)) 6020 goto out; 6021 6022 switch (tmp & PIPECONF_BPC_MASK) { 6023 case PIPECONF_6BPC: 6024 pipe_config->pipe_bpp = 18; 6025 break; 6026 case PIPECONF_8BPC: 6027 pipe_config->pipe_bpp = 24; 6028 break; 6029 case PIPECONF_10BPC: 6030 pipe_config->pipe_bpp = 30; 6031 break; 6032 case PIPECONF_12BPC: 6033 pipe_config->pipe_bpp = 36; 6034 break; 6035 default: 6036 break; 6037 } 6038 6039 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 6040 pipe_config->limited_color_range = true; 6041 6042 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { 6043 case PIPECONF_OUTPUT_COLORSPACE_YUV601: 6044 case PIPECONF_OUTPUT_COLORSPACE_YUV709: 6045 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 6046 break; 6047 default: 6048 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 6049 break; 6050 } 6051 6052 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 6053 PIPECONF_GAMMA_MODE_SHIFT; 6054 6055 pipe_config->csc_mode = intel_de_read(dev_priv, 6056 PIPE_CSC_MODE(crtc->pipe)); 6057 6058 i9xx_get_pipe_color_config(pipe_config); 6059 intel_color_get_config(pipe_config); 6060 6061 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 6062 struct intel_shared_dpll *pll; 6063 enum intel_dpll_id pll_id; 6064 bool pll_active; 6065 6066 pipe_config->has_pch_encoder = true; 6067 6068 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe)); 6069 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 6070 FDI_DP_PORT_WIDTH_SHIFT) + 1; 6071 6072 ilk_get_fdi_m_n_config(crtc, pipe_config); 6073 6074 if (HAS_PCH_IBX(dev_priv)) { 6075 /* 6076 * The pipe->pch transcoder and pch transcoder->pll 6077 * mapping is fixed. 6078 */ 6079 pll_id = (enum intel_dpll_id) crtc->pipe; 6080 } else { 6081 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL); 6082 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 6083 pll_id = DPLL_ID_PCH_PLL_B; 6084 else 6085 pll_id= DPLL_ID_PCH_PLL_A; 6086 } 6087 6088 pipe_config->shared_dpll = 6089 intel_get_shared_dpll_by_id(dev_priv, pll_id); 6090 pll = pipe_config->shared_dpll; 6091 6092 pll_active = intel_dpll_get_hw_state(dev_priv, pll, 6093 &pipe_config->dpll_hw_state); 6094 drm_WARN_ON(dev, !pll_active); 6095 6096 tmp = pipe_config->dpll_hw_state.dpll; 6097 pipe_config->pixel_multiplier = 6098 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 6099 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 6100 6101 ilk_pch_clock_get(crtc, pipe_config); 6102 } else { 6103 pipe_config->pixel_multiplier = 1; 6104 } 6105 6106 intel_get_transcoder_timings(crtc, pipe_config); 6107 intel_get_pipe_src_size(crtc, pipe_config); 6108 6109 ilk_get_pfit_config(pipe_config); 6110 6111 ret = true; 6112 6113 out: 6114 intel_display_power_put(dev_priv, power_domain, wakeref); 6115 6116 return ret; 6117 } 6118 6119 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 6120 struct intel_crtc_state *pipe_config, 6121 struct intel_display_power_domain_set *power_domain_set) 6122 { 6123 struct drm_device *dev = crtc->base.dev; 6124 struct drm_i915_private *dev_priv = to_i915(dev); 6125 unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP); 6126 unsigned long enabled_panel_transcoders = 0; 6127 enum transcoder panel_transcoder; 6128 u32 tmp; 6129 6130 if (DISPLAY_VER(dev_priv) >= 11) 6131 panel_transcoder_mask |= 6132 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 6133 6134 /* 6135 * The pipe->transcoder mapping is fixed with the exception of the eDP 6136 * and DSI transcoders handled below. 6137 */ 6138 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 6139 6140 /* 6141 * XXX: Do intel_display_power_get_if_enabled before reading this (for 6142 * consistency and less surprising code; it's in always on power). 6143 */ 6144 for_each_cpu_transcoder_masked(dev_priv, panel_transcoder, 6145 panel_transcoder_mask) { 6146 bool force_thru = false; 6147 enum pipe trans_pipe; 6148 6149 tmp = intel_de_read(dev_priv, 6150 TRANS_DDI_FUNC_CTL(panel_transcoder)); 6151 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 6152 continue; 6153 6154 /* 6155 * Log all enabled ones, only use the first one. 6156 * 6157 * FIXME: This won't work for two separate DSI displays. 6158 */ 6159 enabled_panel_transcoders |= BIT(panel_transcoder); 6160 if (enabled_panel_transcoders != BIT(panel_transcoder)) 6161 continue; 6162 6163 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 6164 default: 6165 drm_WARN(dev, 1, 6166 "unknown pipe linked to transcoder %s\n", 6167 transcoder_name(panel_transcoder)); 6168 fallthrough; 6169 case TRANS_DDI_EDP_INPUT_A_ONOFF: 6170 force_thru = true; 6171 fallthrough; 6172 case TRANS_DDI_EDP_INPUT_A_ON: 6173 trans_pipe = PIPE_A; 6174 break; 6175 case TRANS_DDI_EDP_INPUT_B_ONOFF: 6176 trans_pipe = PIPE_B; 6177 break; 6178 case TRANS_DDI_EDP_INPUT_C_ONOFF: 6179 trans_pipe = PIPE_C; 6180 break; 6181 case TRANS_DDI_EDP_INPUT_D_ONOFF: 6182 trans_pipe = PIPE_D; 6183 break; 6184 } 6185 6186 if (trans_pipe == crtc->pipe) { 6187 pipe_config->cpu_transcoder = panel_transcoder; 6188 pipe_config->pch_pfit.force_thru = force_thru; 6189 } 6190 } 6191 6192 /* 6193 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 6194 */ 6195 drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && 6196 enabled_panel_transcoders != BIT(TRANSCODER_EDP)); 6197 6198 if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, 6199 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder))) 6200 return false; 6201 6202 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); 6203 6204 return tmp & PIPECONF_ENABLE; 6205 } 6206 6207 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 6208 struct intel_crtc_state *pipe_config, 6209 struct intel_display_power_domain_set *power_domain_set) 6210 { 6211 struct drm_device *dev = crtc->base.dev; 6212 struct drm_i915_private *dev_priv = to_i915(dev); 6213 enum transcoder cpu_transcoder; 6214 enum port port; 6215 u32 tmp; 6216 6217 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 6218 if (port == PORT_A) 6219 cpu_transcoder = TRANSCODER_DSI_A; 6220 else 6221 cpu_transcoder = TRANSCODER_DSI_C; 6222 6223 if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, 6224 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) 6225 continue; 6226 6227 /* 6228 * The PLL needs to be enabled with a valid divider 6229 * configuration, otherwise accessing DSI registers will hang 6230 * the machine. See BSpec North Display Engine 6231 * registers/MIPI[BXT]. We can break out here early, since we 6232 * need the same DSI PLL to be enabled for both DSI ports. 6233 */ 6234 if (!bxt_dsi_pll_is_enabled(dev_priv)) 6235 break; 6236 6237 /* XXX: this works for video mode only */ 6238 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); 6239 if (!(tmp & DPI_ENABLE)) 6240 continue; 6241 6242 tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); 6243 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 6244 continue; 6245 6246 pipe_config->cpu_transcoder = cpu_transcoder; 6247 break; 6248 } 6249 6250 return transcoder_is_dsi(pipe_config->cpu_transcoder); 6251 } 6252 6253 static void hsw_get_ddi_port_state(struct intel_crtc *crtc, 6254 struct intel_crtc_state *pipe_config) 6255 { 6256 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6257 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 6258 enum port port; 6259 u32 tmp; 6260 6261 if (transcoder_is_dsi(cpu_transcoder)) { 6262 port = (cpu_transcoder == TRANSCODER_DSI_A) ? 6263 PORT_A : PORT_B; 6264 } else { 6265 tmp = intel_de_read(dev_priv, 6266 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 6267 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 6268 return; 6269 if (DISPLAY_VER(dev_priv) >= 12) 6270 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 6271 else 6272 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 6273 } 6274 6275 /* 6276 * Haswell has only FDI/PCH transcoder A. It is which is connected to 6277 * DDI E. So just check whether this pipe is wired to DDI E and whether 6278 * the PCH transcoder is on. 6279 */ 6280 if (DISPLAY_VER(dev_priv) < 9 && 6281 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) { 6282 pipe_config->has_pch_encoder = true; 6283 6284 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); 6285 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 6286 FDI_DP_PORT_WIDTH_SHIFT) + 1; 6287 6288 ilk_get_fdi_m_n_config(crtc, pipe_config); 6289 } 6290 } 6291 6292 static bool hsw_get_pipe_config(struct intel_crtc *crtc, 6293 struct intel_crtc_state *pipe_config) 6294 { 6295 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6296 struct intel_display_power_domain_set power_domain_set = { }; 6297 bool active; 6298 u32 tmp; 6299 6300 if (!intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, 6301 POWER_DOMAIN_PIPE(crtc->pipe))) 6302 return false; 6303 6304 pipe_config->shared_dpll = NULL; 6305 6306 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_set); 6307 6308 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 6309 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_set)) { 6310 drm_WARN_ON(&dev_priv->drm, active); 6311 active = true; 6312 } 6313 6314 intel_dsc_get_config(pipe_config); 6315 if (DISPLAY_VER(dev_priv) >= 13 && !pipe_config->dsc.compression_enable) 6316 intel_uncompressed_joiner_get_config(pipe_config); 6317 6318 if (!active) { 6319 /* bigjoiner slave doesn't enable transcoder */ 6320 if (!pipe_config->bigjoiner_slave) 6321 goto out; 6322 6323 active = true; 6324 pipe_config->pixel_multiplier = 1; 6325 6326 /* we cannot read out most state, so don't bother.. */ 6327 pipe_config->quirks |= PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE; 6328 } else if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 6329 DISPLAY_VER(dev_priv) >= 11) { 6330 hsw_get_ddi_port_state(crtc, pipe_config); 6331 intel_get_transcoder_timings(crtc, pipe_config); 6332 } 6333 6334 if (HAS_VRR(dev_priv) && !transcoder_is_dsi(pipe_config->cpu_transcoder)) 6335 intel_vrr_get_config(crtc, pipe_config); 6336 6337 intel_get_pipe_src_size(crtc, pipe_config); 6338 6339 if (IS_HASWELL(dev_priv)) { 6340 u32 tmp = intel_de_read(dev_priv, 6341 PIPECONF(pipe_config->cpu_transcoder)); 6342 6343 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) 6344 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 6345 else 6346 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 6347 } else { 6348 pipe_config->output_format = 6349 bdw_get_pipemisc_output_format(crtc); 6350 } 6351 6352 pipe_config->gamma_mode = intel_de_read(dev_priv, 6353 GAMMA_MODE(crtc->pipe)); 6354 6355 pipe_config->csc_mode = intel_de_read(dev_priv, 6356 PIPE_CSC_MODE(crtc->pipe)); 6357 6358 if (DISPLAY_VER(dev_priv) >= 9) { 6359 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe)); 6360 6361 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 6362 pipe_config->gamma_enable = true; 6363 6364 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 6365 pipe_config->csc_enable = true; 6366 } else { 6367 i9xx_get_pipe_color_config(pipe_config); 6368 } 6369 6370 intel_color_get_config(pipe_config); 6371 6372 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe)); 6373 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); 6374 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 6375 pipe_config->ips_linetime = 6376 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); 6377 6378 if (intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, 6379 POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe))) { 6380 if (DISPLAY_VER(dev_priv) >= 9) 6381 skl_get_pfit_config(pipe_config); 6382 else 6383 ilk_get_pfit_config(pipe_config); 6384 } 6385 6386 if (hsw_crtc_supports_ips(crtc)) { 6387 if (IS_HASWELL(dev_priv)) 6388 pipe_config->ips_enabled = intel_de_read(dev_priv, 6389 IPS_CTL) & IPS_ENABLE; 6390 else { 6391 /* 6392 * We cannot readout IPS state on broadwell, set to 6393 * true so we can set it to a defined state on first 6394 * commit. 6395 */ 6396 pipe_config->ips_enabled = true; 6397 } 6398 } 6399 6400 if (pipe_config->bigjoiner_slave) { 6401 /* Cannot be read out as a slave, set to 0. */ 6402 pipe_config->pixel_multiplier = 0; 6403 } else if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 6404 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 6405 pipe_config->pixel_multiplier = 6406 intel_de_read(dev_priv, 6407 PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 6408 } else { 6409 pipe_config->pixel_multiplier = 1; 6410 } 6411 6412 out: 6413 intel_display_power_put_all_in_set(dev_priv, &power_domain_set); 6414 6415 return active; 6416 } 6417 6418 static bool intel_crtc_get_pipe_config(struct intel_crtc_state *crtc_state) 6419 { 6420 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6421 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 6422 6423 if (!i915->display.get_pipe_config(crtc, crtc_state)) 6424 return false; 6425 6426 crtc_state->hw.active = true; 6427 6428 intel_crtc_readout_derived_state(crtc_state); 6429 6430 return true; 6431 } 6432 6433 /* VESA 640x480x72Hz mode to set on the pipe */ 6434 static const struct drm_display_mode load_detect_mode = { 6435 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 6436 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 6437 }; 6438 6439 struct drm_framebuffer * 6440 intel_framebuffer_create(struct drm_i915_gem_object *obj, 6441 struct drm_mode_fb_cmd2 *mode_cmd) 6442 { 6443 struct intel_framebuffer *intel_fb; 6444 int ret; 6445 6446 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 6447 if (!intel_fb) 6448 return ERR_PTR(-ENOMEM); 6449 6450 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); 6451 if (ret) 6452 goto err; 6453 6454 return &intel_fb->base; 6455 6456 err: 6457 kfree(intel_fb); 6458 return ERR_PTR(ret); 6459 } 6460 6461 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 6462 struct drm_crtc *crtc) 6463 { 6464 struct drm_plane *plane; 6465 struct drm_plane_state *plane_state; 6466 int ret, i; 6467 6468 ret = drm_atomic_add_affected_planes(state, crtc); 6469 if (ret) 6470 return ret; 6471 6472 for_each_new_plane_in_state(state, plane, plane_state, i) { 6473 if (plane_state->crtc != crtc) 6474 continue; 6475 6476 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 6477 if (ret) 6478 return ret; 6479 6480 drm_atomic_set_fb_for_plane(plane_state, NULL); 6481 } 6482 6483 return 0; 6484 } 6485 6486 int intel_get_load_detect_pipe(struct drm_connector *connector, 6487 struct intel_load_detect_pipe *old, 6488 struct drm_modeset_acquire_ctx *ctx) 6489 { 6490 struct intel_crtc *intel_crtc; 6491 struct intel_encoder *intel_encoder = 6492 intel_attached_encoder(to_intel_connector(connector)); 6493 struct drm_crtc *possible_crtc; 6494 struct drm_encoder *encoder = &intel_encoder->base; 6495 struct drm_crtc *crtc = NULL; 6496 struct drm_device *dev = encoder->dev; 6497 struct drm_i915_private *dev_priv = to_i915(dev); 6498 struct drm_mode_config *config = &dev->mode_config; 6499 struct drm_atomic_state *state = NULL, *restore_state = NULL; 6500 struct drm_connector_state *connector_state; 6501 struct intel_crtc_state *crtc_state; 6502 int ret, i = -1; 6503 6504 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 6505 connector->base.id, connector->name, 6506 encoder->base.id, encoder->name); 6507 6508 old->restore_state = NULL; 6509 6510 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex)); 6511 6512 /* 6513 * Algorithm gets a little messy: 6514 * 6515 * - if the connector already has an assigned crtc, use it (but make 6516 * sure it's on first) 6517 * 6518 * - try to find the first unused crtc that can drive this connector, 6519 * and use that if we find one 6520 */ 6521 6522 /* See if we already have a CRTC for this connector */ 6523 if (connector->state->crtc) { 6524 crtc = connector->state->crtc; 6525 6526 ret = drm_modeset_lock(&crtc->mutex, ctx); 6527 if (ret) 6528 goto fail; 6529 6530 /* Make sure the crtc and connector are running */ 6531 goto found; 6532 } 6533 6534 /* Find an unused one (if possible) */ 6535 for_each_crtc(dev, possible_crtc) { 6536 i++; 6537 if (!(encoder->possible_crtcs & (1 << i))) 6538 continue; 6539 6540 ret = drm_modeset_lock(&possible_crtc->mutex, ctx); 6541 if (ret) 6542 goto fail; 6543 6544 if (possible_crtc->state->enable) { 6545 drm_modeset_unlock(&possible_crtc->mutex); 6546 continue; 6547 } 6548 6549 crtc = possible_crtc; 6550 break; 6551 } 6552 6553 /* 6554 * If we didn't find an unused CRTC, don't use any. 6555 */ 6556 if (!crtc) { 6557 drm_dbg_kms(&dev_priv->drm, 6558 "no pipe available for load-detect\n"); 6559 ret = -ENODEV; 6560 goto fail; 6561 } 6562 6563 found: 6564 intel_crtc = to_intel_crtc(crtc); 6565 6566 state = drm_atomic_state_alloc(dev); 6567 restore_state = drm_atomic_state_alloc(dev); 6568 if (!state || !restore_state) { 6569 ret = -ENOMEM; 6570 goto fail; 6571 } 6572 6573 state->acquire_ctx = ctx; 6574 restore_state->acquire_ctx = ctx; 6575 6576 connector_state = drm_atomic_get_connector_state(state, connector); 6577 if (IS_ERR(connector_state)) { 6578 ret = PTR_ERR(connector_state); 6579 goto fail; 6580 } 6581 6582 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); 6583 if (ret) 6584 goto fail; 6585 6586 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); 6587 if (IS_ERR(crtc_state)) { 6588 ret = PTR_ERR(crtc_state); 6589 goto fail; 6590 } 6591 6592 crtc_state->uapi.active = true; 6593 6594 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi, 6595 &load_detect_mode); 6596 if (ret) 6597 goto fail; 6598 6599 ret = intel_modeset_disable_planes(state, crtc); 6600 if (ret) 6601 goto fail; 6602 6603 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 6604 if (!ret) 6605 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); 6606 if (!ret) 6607 ret = drm_atomic_add_affected_planes(restore_state, crtc); 6608 if (ret) { 6609 drm_dbg_kms(&dev_priv->drm, 6610 "Failed to create a copy of old state to restore: %i\n", 6611 ret); 6612 goto fail; 6613 } 6614 6615 ret = drm_atomic_commit(state); 6616 if (ret) { 6617 drm_dbg_kms(&dev_priv->drm, 6618 "failed to set mode on load-detect pipe\n"); 6619 goto fail; 6620 } 6621 6622 old->restore_state = restore_state; 6623 drm_atomic_state_put(state); 6624 6625 /* let the connector get through one full cycle before testing */ 6626 intel_wait_for_vblank(dev_priv, intel_crtc->pipe); 6627 return true; 6628 6629 fail: 6630 if (state) { 6631 drm_atomic_state_put(state); 6632 state = NULL; 6633 } 6634 if (restore_state) { 6635 drm_atomic_state_put(restore_state); 6636 restore_state = NULL; 6637 } 6638 6639 if (ret == -EDEADLK) 6640 return ret; 6641 6642 return false; 6643 } 6644 6645 void intel_release_load_detect_pipe(struct drm_connector *connector, 6646 struct intel_load_detect_pipe *old, 6647 struct drm_modeset_acquire_ctx *ctx) 6648 { 6649 struct intel_encoder *intel_encoder = 6650 intel_attached_encoder(to_intel_connector(connector)); 6651 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev); 6652 struct drm_encoder *encoder = &intel_encoder->base; 6653 struct drm_atomic_state *state = old->restore_state; 6654 int ret; 6655 6656 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 6657 connector->base.id, connector->name, 6658 encoder->base.id, encoder->name); 6659 6660 if (!state) 6661 return; 6662 6663 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 6664 if (ret) 6665 drm_dbg_kms(&i915->drm, 6666 "Couldn't release load detect pipe: %i\n", ret); 6667 drm_atomic_state_put(state); 6668 } 6669 6670 static int i9xx_pll_refclk(struct drm_device *dev, 6671 const struct intel_crtc_state *pipe_config) 6672 { 6673 struct drm_i915_private *dev_priv = to_i915(dev); 6674 u32 dpll = pipe_config->dpll_hw_state.dpll; 6675 6676 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 6677 return dev_priv->vbt.lvds_ssc_freq; 6678 else if (HAS_PCH_SPLIT(dev_priv)) 6679 return 120000; 6680 else if (DISPLAY_VER(dev_priv) != 2) 6681 return 96000; 6682 else 6683 return 48000; 6684 } 6685 6686 /* Returns the clock of the currently programmed mode of the given pipe. */ 6687 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 6688 struct intel_crtc_state *pipe_config) 6689 { 6690 struct drm_device *dev = crtc->base.dev; 6691 struct drm_i915_private *dev_priv = to_i915(dev); 6692 enum pipe pipe = crtc->pipe; 6693 u32 dpll = pipe_config->dpll_hw_state.dpll; 6694 u32 fp; 6695 struct dpll clock; 6696 int port_clock; 6697 int refclk = i9xx_pll_refclk(dev, pipe_config); 6698 6699 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 6700 fp = pipe_config->dpll_hw_state.fp0; 6701 else 6702 fp = pipe_config->dpll_hw_state.fp1; 6703 6704 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 6705 if (IS_PINEVIEW(dev_priv)) { 6706 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 6707 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 6708 } else { 6709 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 6710 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 6711 } 6712 6713 if (DISPLAY_VER(dev_priv) != 2) { 6714 if (IS_PINEVIEW(dev_priv)) 6715 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 6716 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 6717 else 6718 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 6719 DPLL_FPA01_P1_POST_DIV_SHIFT); 6720 6721 switch (dpll & DPLL_MODE_MASK) { 6722 case DPLLB_MODE_DAC_SERIAL: 6723 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 6724 5 : 10; 6725 break; 6726 case DPLLB_MODE_LVDS: 6727 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 6728 7 : 14; 6729 break; 6730 default: 6731 drm_dbg_kms(&dev_priv->drm, 6732 "Unknown DPLL mode %08x in programmed " 6733 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 6734 return; 6735 } 6736 6737 if (IS_PINEVIEW(dev_priv)) 6738 port_clock = pnv_calc_dpll_params(refclk, &clock); 6739 else 6740 port_clock = i9xx_calc_dpll_params(refclk, &clock); 6741 } else { 6742 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv, 6743 LVDS); 6744 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 6745 6746 if (is_lvds) { 6747 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 6748 DPLL_FPA01_P1_POST_DIV_SHIFT); 6749 6750 if (lvds & LVDS_CLKB_POWER_UP) 6751 clock.p2 = 7; 6752 else 6753 clock.p2 = 14; 6754 } else { 6755 if (dpll & PLL_P1_DIVIDE_BY_TWO) 6756 clock.p1 = 2; 6757 else { 6758 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 6759 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 6760 } 6761 if (dpll & PLL_P2_DIVIDE_BY_4) 6762 clock.p2 = 4; 6763 else 6764 clock.p2 = 2; 6765 } 6766 6767 port_clock = i9xx_calc_dpll_params(refclk, &clock); 6768 } 6769 6770 /* 6771 * This value includes pixel_multiplier. We will use 6772 * port_clock to compute adjusted_mode.crtc_clock in the 6773 * encoder's get_config() function. 6774 */ 6775 pipe_config->port_clock = port_clock; 6776 } 6777 6778 int intel_dotclock_calculate(int link_freq, 6779 const struct intel_link_m_n *m_n) 6780 { 6781 /* 6782 * The calculation for the data clock is: 6783 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 6784 * But we want to avoid losing precison if possible, so: 6785 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 6786 * 6787 * and the link clock is simpler: 6788 * link_clock = (m * link_clock) / n 6789 */ 6790 6791 if (!m_n->link_n) 6792 return 0; 6793 6794 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 6795 } 6796 6797 static void ilk_pch_clock_get(struct intel_crtc *crtc, 6798 struct intel_crtc_state *pipe_config) 6799 { 6800 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6801 6802 /* read out port_clock from the DPLL */ 6803 i9xx_crtc_clock_get(crtc, pipe_config); 6804 6805 /* 6806 * In case there is an active pipe without active ports, 6807 * we may need some idea for the dotclock anyway. 6808 * Calculate one based on the FDI configuration. 6809 */ 6810 pipe_config->hw.adjusted_mode.crtc_clock = 6811 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 6812 &pipe_config->fdi_m_n); 6813 } 6814 6815 /* Returns the currently programmed mode of the given encoder. */ 6816 struct drm_display_mode * 6817 intel_encoder_current_mode(struct intel_encoder *encoder) 6818 { 6819 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 6820 struct intel_crtc_state *crtc_state; 6821 struct drm_display_mode *mode; 6822 struct intel_crtc *crtc; 6823 enum pipe pipe; 6824 6825 if (!encoder->get_hw_state(encoder, &pipe)) 6826 return NULL; 6827 6828 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 6829 6830 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 6831 if (!mode) 6832 return NULL; 6833 6834 crtc_state = intel_crtc_state_alloc(crtc); 6835 if (!crtc_state) { 6836 kfree(mode); 6837 return NULL; 6838 } 6839 6840 if (!intel_crtc_get_pipe_config(crtc_state)) { 6841 kfree(crtc_state); 6842 kfree(mode); 6843 return NULL; 6844 } 6845 6846 intel_encoder_get_config(encoder, crtc_state); 6847 6848 intel_mode_from_crtc_timings(mode, &crtc_state->hw.adjusted_mode); 6849 6850 kfree(crtc_state); 6851 6852 return mode; 6853 } 6854 6855 /** 6856 * intel_wm_need_update - Check whether watermarks need updating 6857 * @cur: current plane state 6858 * @new: new plane state 6859 * 6860 * Check current plane state versus the new one to determine whether 6861 * watermarks need to be recalculated. 6862 * 6863 * Returns true or false. 6864 */ 6865 static bool intel_wm_need_update(const struct intel_plane_state *cur, 6866 struct intel_plane_state *new) 6867 { 6868 /* Update watermarks on tiling or size changes. */ 6869 if (new->uapi.visible != cur->uapi.visible) 6870 return true; 6871 6872 if (!cur->hw.fb || !new->hw.fb) 6873 return false; 6874 6875 if (cur->hw.fb->modifier != new->hw.fb->modifier || 6876 cur->hw.rotation != new->hw.rotation || 6877 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) || 6878 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) || 6879 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) || 6880 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst)) 6881 return true; 6882 6883 return false; 6884 } 6885 6886 static bool needs_scaling(const struct intel_plane_state *state) 6887 { 6888 int src_w = drm_rect_width(&state->uapi.src) >> 16; 6889 int src_h = drm_rect_height(&state->uapi.src) >> 16; 6890 int dst_w = drm_rect_width(&state->uapi.dst); 6891 int dst_h = drm_rect_height(&state->uapi.dst); 6892 6893 return (src_w != dst_w || src_h != dst_h); 6894 } 6895 6896 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 6897 struct intel_crtc_state *crtc_state, 6898 const struct intel_plane_state *old_plane_state, 6899 struct intel_plane_state *plane_state) 6900 { 6901 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6902 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 6903 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6904 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 6905 bool was_crtc_enabled = old_crtc_state->hw.active; 6906 bool is_crtc_enabled = crtc_state->hw.active; 6907 bool turn_off, turn_on, visible, was_visible; 6908 int ret; 6909 6910 if (DISPLAY_VER(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 6911 ret = skl_update_scaler_plane(crtc_state, plane_state); 6912 if (ret) 6913 return ret; 6914 } 6915 6916 was_visible = old_plane_state->uapi.visible; 6917 visible = plane_state->uapi.visible; 6918 6919 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible)) 6920 was_visible = false; 6921 6922 /* 6923 * Visibility is calculated as if the crtc was on, but 6924 * after scaler setup everything depends on it being off 6925 * when the crtc isn't active. 6926 * 6927 * FIXME this is wrong for watermarks. Watermarks should also 6928 * be computed as if the pipe would be active. Perhaps move 6929 * per-plane wm computation to the .check_plane() hook, and 6930 * only combine the results from all planes in the current place? 6931 */ 6932 if (!is_crtc_enabled) { 6933 intel_plane_set_invisible(crtc_state, plane_state); 6934 visible = false; 6935 } 6936 6937 if (!was_visible && !visible) 6938 return 0; 6939 6940 turn_off = was_visible && (!visible || mode_changed); 6941 turn_on = visible && (!was_visible || mode_changed); 6942 6943 drm_dbg_atomic(&dev_priv->drm, 6944 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 6945 crtc->base.base.id, crtc->base.name, 6946 plane->base.base.id, plane->base.name, 6947 was_visible, visible, 6948 turn_off, turn_on, mode_changed); 6949 6950 if (turn_on) { 6951 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) 6952 crtc_state->update_wm_pre = true; 6953 6954 /* must disable cxsr around plane enable/disable */ 6955 if (plane->id != PLANE_CURSOR) 6956 crtc_state->disable_cxsr = true; 6957 } else if (turn_off) { 6958 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) 6959 crtc_state->update_wm_post = true; 6960 6961 /* must disable cxsr around plane enable/disable */ 6962 if (plane->id != PLANE_CURSOR) 6963 crtc_state->disable_cxsr = true; 6964 } else if (intel_wm_need_update(old_plane_state, plane_state)) { 6965 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv)) { 6966 /* FIXME bollocks */ 6967 crtc_state->update_wm_pre = true; 6968 crtc_state->update_wm_post = true; 6969 } 6970 } 6971 6972 if (visible || was_visible) 6973 crtc_state->fb_bits |= plane->frontbuffer_bit; 6974 6975 /* 6976 * ILK/SNB DVSACNTR/Sprite Enable 6977 * IVB SPR_CTL/Sprite Enable 6978 * "When in Self Refresh Big FIFO mode, a write to enable the 6979 * plane will be internally buffered and delayed while Big FIFO 6980 * mode is exiting." 6981 * 6982 * Which means that enabling the sprite can take an extra frame 6983 * when we start in big FIFO mode (LP1+). Thus we need to drop 6984 * down to LP0 and wait for vblank in order to make sure the 6985 * sprite gets enabled on the next vblank after the register write. 6986 * Doing otherwise would risk enabling the sprite one frame after 6987 * we've already signalled flip completion. We can resume LP1+ 6988 * once the sprite has been enabled. 6989 * 6990 * 6991 * WaCxSRDisabledForSpriteScaling:ivb 6992 * IVB SPR_SCALE/Scaling Enable 6993 * "Low Power watermarks must be disabled for at least one 6994 * frame before enabling sprite scaling, and kept disabled 6995 * until sprite scaling is disabled." 6996 * 6997 * ILK/SNB DVSASCALE/Scaling Enable 6998 * "When in Self Refresh Big FIFO mode, scaling enable will be 6999 * masked off while Big FIFO mode is exiting." 7000 * 7001 * Despite the w/a only being listed for IVB we assume that 7002 * the ILK/SNB note has similar ramifications, hence we apply 7003 * the w/a on all three platforms. 7004 * 7005 * With experimental results seems this is needed also for primary 7006 * plane, not only sprite plane. 7007 */ 7008 if (plane->id != PLANE_CURSOR && 7009 (IS_IRONLAKE(dev_priv) || IS_SANDYBRIDGE(dev_priv) || 7010 IS_IVYBRIDGE(dev_priv)) && 7011 (turn_on || (!needs_scaling(old_plane_state) && 7012 needs_scaling(plane_state)))) 7013 crtc_state->disable_lp_wm = true; 7014 7015 return 0; 7016 } 7017 7018 static bool encoders_cloneable(const struct intel_encoder *a, 7019 const struct intel_encoder *b) 7020 { 7021 /* masks could be asymmetric, so check both ways */ 7022 return a == b || (a->cloneable & (1 << b->type) && 7023 b->cloneable & (1 << a->type)); 7024 } 7025 7026 static bool check_single_encoder_cloning(struct intel_atomic_state *state, 7027 struct intel_crtc *crtc, 7028 struct intel_encoder *encoder) 7029 { 7030 struct intel_encoder *source_encoder; 7031 struct drm_connector *connector; 7032 struct drm_connector_state *connector_state; 7033 int i; 7034 7035 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 7036 if (connector_state->crtc != &crtc->base) 7037 continue; 7038 7039 source_encoder = 7040 to_intel_encoder(connector_state->best_encoder); 7041 if (!encoders_cloneable(encoder, source_encoder)) 7042 return false; 7043 } 7044 7045 return true; 7046 } 7047 7048 static int icl_add_linked_planes(struct intel_atomic_state *state) 7049 { 7050 struct intel_plane *plane, *linked; 7051 struct intel_plane_state *plane_state, *linked_plane_state; 7052 int i; 7053 7054 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7055 linked = plane_state->planar_linked_plane; 7056 7057 if (!linked) 7058 continue; 7059 7060 linked_plane_state = intel_atomic_get_plane_state(state, linked); 7061 if (IS_ERR(linked_plane_state)) 7062 return PTR_ERR(linked_plane_state); 7063 7064 drm_WARN_ON(state->base.dev, 7065 linked_plane_state->planar_linked_plane != plane); 7066 drm_WARN_ON(state->base.dev, 7067 linked_plane_state->planar_slave == plane_state->planar_slave); 7068 } 7069 7070 return 0; 7071 } 7072 7073 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 7074 { 7075 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7076 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7077 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); 7078 struct intel_plane *plane, *linked; 7079 struct intel_plane_state *plane_state; 7080 int i; 7081 7082 if (DISPLAY_VER(dev_priv) < 11) 7083 return 0; 7084 7085 /* 7086 * Destroy all old plane links and make the slave plane invisible 7087 * in the crtc_state->active_planes mask. 7088 */ 7089 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7090 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) 7091 continue; 7092 7093 plane_state->planar_linked_plane = NULL; 7094 if (plane_state->planar_slave && !plane_state->uapi.visible) { 7095 crtc_state->enabled_planes &= ~BIT(plane->id); 7096 crtc_state->active_planes &= ~BIT(plane->id); 7097 crtc_state->update_planes |= BIT(plane->id); 7098 } 7099 7100 plane_state->planar_slave = false; 7101 } 7102 7103 if (!crtc_state->nv12_planes) 7104 return 0; 7105 7106 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7107 struct intel_plane_state *linked_state = NULL; 7108 7109 if (plane->pipe != crtc->pipe || 7110 !(crtc_state->nv12_planes & BIT(plane->id))) 7111 continue; 7112 7113 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 7114 if (!icl_is_nv12_y_plane(dev_priv, linked->id)) 7115 continue; 7116 7117 if (crtc_state->active_planes & BIT(linked->id)) 7118 continue; 7119 7120 linked_state = intel_atomic_get_plane_state(state, linked); 7121 if (IS_ERR(linked_state)) 7122 return PTR_ERR(linked_state); 7123 7124 break; 7125 } 7126 7127 if (!linked_state) { 7128 drm_dbg_kms(&dev_priv->drm, 7129 "Need %d free Y planes for planar YUV\n", 7130 hweight8(crtc_state->nv12_planes)); 7131 7132 return -EINVAL; 7133 } 7134 7135 plane_state->planar_linked_plane = linked; 7136 7137 linked_state->planar_slave = true; 7138 linked_state->planar_linked_plane = plane; 7139 crtc_state->enabled_planes |= BIT(linked->id); 7140 crtc_state->active_planes |= BIT(linked->id); 7141 crtc_state->update_planes |= BIT(linked->id); 7142 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n", 7143 linked->base.name, plane->base.name); 7144 7145 /* Copy parameters to slave plane */ 7146 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE; 7147 linked_state->color_ctl = plane_state->color_ctl; 7148 linked_state->view = plane_state->view; 7149 7150 intel_plane_copy_hw_state(linked_state, plane_state); 7151 linked_state->uapi.src = plane_state->uapi.src; 7152 linked_state->uapi.dst = plane_state->uapi.dst; 7153 7154 if (icl_is_hdr_plane(dev_priv, plane->id)) { 7155 if (linked->id == PLANE_SPRITE5) 7156 plane_state->cus_ctl |= PLANE_CUS_PLANE_7; 7157 else if (linked->id == PLANE_SPRITE4) 7158 plane_state->cus_ctl |= PLANE_CUS_PLANE_6; 7159 else if (linked->id == PLANE_SPRITE3) 7160 plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL; 7161 else if (linked->id == PLANE_SPRITE2) 7162 plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL; 7163 else 7164 MISSING_CASE(linked->id); 7165 } 7166 } 7167 7168 return 0; 7169 } 7170 7171 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 7172 { 7173 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 7174 struct intel_atomic_state *state = 7175 to_intel_atomic_state(new_crtc_state->uapi.state); 7176 const struct intel_crtc_state *old_crtc_state = 7177 intel_atomic_get_old_crtc_state(state, crtc); 7178 7179 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 7180 } 7181 7182 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) 7183 { 7184 const struct drm_display_mode *pipe_mode = 7185 &crtc_state->hw.pipe_mode; 7186 int linetime_wm; 7187 7188 if (!crtc_state->hw.enable) 7189 return 0; 7190 7191 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 7192 pipe_mode->crtc_clock); 7193 7194 return min(linetime_wm, 0x1ff); 7195 } 7196 7197 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, 7198 const struct intel_cdclk_state *cdclk_state) 7199 { 7200 const struct drm_display_mode *pipe_mode = 7201 &crtc_state->hw.pipe_mode; 7202 int linetime_wm; 7203 7204 if (!crtc_state->hw.enable) 7205 return 0; 7206 7207 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 7208 cdclk_state->logical.cdclk); 7209 7210 return min(linetime_wm, 0x1ff); 7211 } 7212 7213 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) 7214 { 7215 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7216 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7217 const struct drm_display_mode *pipe_mode = 7218 &crtc_state->hw.pipe_mode; 7219 int linetime_wm; 7220 7221 if (!crtc_state->hw.enable) 7222 return 0; 7223 7224 linetime_wm = DIV_ROUND_UP(pipe_mode->crtc_htotal * 1000 * 8, 7225 crtc_state->pixel_rate); 7226 7227 /* Display WA #1135: BXT:ALL GLK:ALL */ 7228 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 7229 dev_priv->ipc_enabled) 7230 linetime_wm /= 2; 7231 7232 return min(linetime_wm, 0x1ff); 7233 } 7234 7235 static int hsw_compute_linetime_wm(struct intel_atomic_state *state, 7236 struct intel_crtc *crtc) 7237 { 7238 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7239 struct intel_crtc_state *crtc_state = 7240 intel_atomic_get_new_crtc_state(state, crtc); 7241 const struct intel_cdclk_state *cdclk_state; 7242 7243 if (DISPLAY_VER(dev_priv) >= 9) 7244 crtc_state->linetime = skl_linetime_wm(crtc_state); 7245 else 7246 crtc_state->linetime = hsw_linetime_wm(crtc_state); 7247 7248 if (!hsw_crtc_supports_ips(crtc)) 7249 return 0; 7250 7251 cdclk_state = intel_atomic_get_cdclk_state(state); 7252 if (IS_ERR(cdclk_state)) 7253 return PTR_ERR(cdclk_state); 7254 7255 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, 7256 cdclk_state); 7257 7258 return 0; 7259 } 7260 7261 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 7262 struct intel_crtc *crtc) 7263 { 7264 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7265 struct intel_crtc_state *crtc_state = 7266 intel_atomic_get_new_crtc_state(state, crtc); 7267 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 7268 int ret; 7269 7270 if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv) && 7271 mode_changed && !crtc_state->hw.active) 7272 crtc_state->update_wm_post = true; 7273 7274 if (mode_changed && crtc_state->hw.enable && 7275 dev_priv->display.crtc_compute_clock && 7276 !crtc_state->bigjoiner_slave && 7277 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) { 7278 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state); 7279 if (ret) 7280 return ret; 7281 } 7282 7283 /* 7284 * May need to update pipe gamma enable bits 7285 * when C8 planes are getting enabled/disabled. 7286 */ 7287 if (c8_planes_changed(crtc_state)) 7288 crtc_state->uapi.color_mgmt_changed = true; 7289 7290 if (mode_changed || crtc_state->update_pipe || 7291 crtc_state->uapi.color_mgmt_changed) { 7292 ret = intel_color_check(crtc_state); 7293 if (ret) 7294 return ret; 7295 } 7296 7297 if (dev_priv->display.compute_pipe_wm) { 7298 ret = dev_priv->display.compute_pipe_wm(crtc_state); 7299 if (ret) { 7300 drm_dbg_kms(&dev_priv->drm, 7301 "Target pipe watermarks are invalid\n"); 7302 return ret; 7303 } 7304 } 7305 7306 if (dev_priv->display.compute_intermediate_wm) { 7307 if (drm_WARN_ON(&dev_priv->drm, 7308 !dev_priv->display.compute_pipe_wm)) 7309 return 0; 7310 7311 /* 7312 * Calculate 'intermediate' watermarks that satisfy both the 7313 * old state and the new state. We can program these 7314 * immediately. 7315 */ 7316 ret = dev_priv->display.compute_intermediate_wm(crtc_state); 7317 if (ret) { 7318 drm_dbg_kms(&dev_priv->drm, 7319 "No valid intermediate pipe watermarks are possible\n"); 7320 return ret; 7321 } 7322 } 7323 7324 if (DISPLAY_VER(dev_priv) >= 9) { 7325 if (mode_changed || crtc_state->update_pipe) { 7326 ret = skl_update_scaler_crtc(crtc_state); 7327 if (ret) 7328 return ret; 7329 } 7330 7331 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state); 7332 if (ret) 7333 return ret; 7334 } 7335 7336 if (HAS_IPS(dev_priv)) { 7337 ret = hsw_compute_ips_config(crtc_state); 7338 if (ret) 7339 return ret; 7340 } 7341 7342 if (DISPLAY_VER(dev_priv) >= 9 || 7343 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 7344 ret = hsw_compute_linetime_wm(state, crtc); 7345 if (ret) 7346 return ret; 7347 7348 } 7349 7350 if (!mode_changed) { 7351 ret = intel_psr2_sel_fetch_update(state, crtc); 7352 if (ret) 7353 return ret; 7354 } 7355 7356 return 0; 7357 } 7358 7359 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 7360 { 7361 struct intel_connector *connector; 7362 struct drm_connector_list_iter conn_iter; 7363 7364 drm_connector_list_iter_begin(dev, &conn_iter); 7365 for_each_intel_connector_iter(connector, &conn_iter) { 7366 struct drm_connector_state *conn_state = connector->base.state; 7367 struct intel_encoder *encoder = 7368 to_intel_encoder(connector->base.encoder); 7369 7370 if (conn_state->crtc) 7371 drm_connector_put(&connector->base); 7372 7373 if (encoder) { 7374 struct intel_crtc *crtc = 7375 to_intel_crtc(encoder->base.crtc); 7376 const struct intel_crtc_state *crtc_state = 7377 to_intel_crtc_state(crtc->base.state); 7378 7379 conn_state->best_encoder = &encoder->base; 7380 conn_state->crtc = &crtc->base; 7381 conn_state->max_bpc = (crtc_state->pipe_bpp ?: 24) / 3; 7382 7383 drm_connector_get(&connector->base); 7384 } else { 7385 conn_state->best_encoder = NULL; 7386 conn_state->crtc = NULL; 7387 } 7388 } 7389 drm_connector_list_iter_end(&conn_iter); 7390 } 7391 7392 static int 7393 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 7394 struct intel_crtc_state *pipe_config) 7395 { 7396 struct drm_connector *connector = conn_state->connector; 7397 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7398 const struct drm_display_info *info = &connector->display_info; 7399 int bpp; 7400 7401 switch (conn_state->max_bpc) { 7402 case 6 ... 7: 7403 bpp = 6 * 3; 7404 break; 7405 case 8 ... 9: 7406 bpp = 8 * 3; 7407 break; 7408 case 10 ... 11: 7409 bpp = 10 * 3; 7410 break; 7411 case 12 ... 16: 7412 bpp = 12 * 3; 7413 break; 7414 default: 7415 MISSING_CASE(conn_state->max_bpc); 7416 return -EINVAL; 7417 } 7418 7419 if (bpp < pipe_config->pipe_bpp) { 7420 drm_dbg_kms(&i915->drm, 7421 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 7422 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 7423 connector->base.id, connector->name, 7424 bpp, 3 * info->bpc, 7425 3 * conn_state->max_requested_bpc, 7426 pipe_config->pipe_bpp); 7427 7428 pipe_config->pipe_bpp = bpp; 7429 } 7430 7431 return 0; 7432 } 7433 7434 static int 7435 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 7436 struct intel_crtc_state *pipe_config) 7437 { 7438 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7439 struct drm_atomic_state *state = pipe_config->uapi.state; 7440 struct drm_connector *connector; 7441 struct drm_connector_state *connector_state; 7442 int bpp, i; 7443 7444 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 7445 IS_CHERRYVIEW(dev_priv))) 7446 bpp = 10*3; 7447 else if (DISPLAY_VER(dev_priv) >= 5) 7448 bpp = 12*3; 7449 else 7450 bpp = 8*3; 7451 7452 pipe_config->pipe_bpp = bpp; 7453 7454 /* Clamp display bpp to connector max bpp */ 7455 for_each_new_connector_in_state(state, connector, connector_state, i) { 7456 int ret; 7457 7458 if (connector_state->crtc != &crtc->base) 7459 continue; 7460 7461 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 7462 if (ret) 7463 return ret; 7464 } 7465 7466 return 0; 7467 } 7468 7469 static void intel_dump_crtc_timings(struct drm_i915_private *i915, 7470 const struct drm_display_mode *mode) 7471 { 7472 drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, " 7473 "type: 0x%x flags: 0x%x\n", 7474 mode->crtc_clock, 7475 mode->crtc_hdisplay, mode->crtc_hsync_start, 7476 mode->crtc_hsync_end, mode->crtc_htotal, 7477 mode->crtc_vdisplay, mode->crtc_vsync_start, 7478 mode->crtc_vsync_end, mode->crtc_vtotal, 7479 mode->type, mode->flags); 7480 } 7481 7482 static void 7483 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 7484 const char *id, unsigned int lane_count, 7485 const struct intel_link_m_n *m_n) 7486 { 7487 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7488 7489 drm_dbg_kms(&i915->drm, 7490 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 7491 id, lane_count, 7492 m_n->gmch_m, m_n->gmch_n, 7493 m_n->link_m, m_n->link_n, m_n->tu); 7494 } 7495 7496 static void 7497 intel_dump_infoframe(struct drm_i915_private *dev_priv, 7498 const union hdmi_infoframe *frame) 7499 { 7500 if (!drm_debug_enabled(DRM_UT_KMS)) 7501 return; 7502 7503 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 7504 } 7505 7506 static void 7507 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv, 7508 const struct drm_dp_vsc_sdp *vsc) 7509 { 7510 if (!drm_debug_enabled(DRM_UT_KMS)) 7511 return; 7512 7513 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc); 7514 } 7515 7516 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 7517 7518 static const char * const output_type_str[] = { 7519 OUTPUT_TYPE(UNUSED), 7520 OUTPUT_TYPE(ANALOG), 7521 OUTPUT_TYPE(DVO), 7522 OUTPUT_TYPE(SDVO), 7523 OUTPUT_TYPE(LVDS), 7524 OUTPUT_TYPE(TVOUT), 7525 OUTPUT_TYPE(HDMI), 7526 OUTPUT_TYPE(DP), 7527 OUTPUT_TYPE(EDP), 7528 OUTPUT_TYPE(DSI), 7529 OUTPUT_TYPE(DDI), 7530 OUTPUT_TYPE(DP_MST), 7531 }; 7532 7533 #undef OUTPUT_TYPE 7534 7535 static void snprintf_output_types(char *buf, size_t len, 7536 unsigned int output_types) 7537 { 7538 char *str = buf; 7539 int i; 7540 7541 str[0] = '\0'; 7542 7543 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 7544 int r; 7545 7546 if ((output_types & BIT(i)) == 0) 7547 continue; 7548 7549 r = snprintf(str, len, "%s%s", 7550 str != buf ? "," : "", output_type_str[i]); 7551 if (r >= len) 7552 break; 7553 str += r; 7554 len -= r; 7555 7556 output_types &= ~BIT(i); 7557 } 7558 7559 WARN_ON_ONCE(output_types != 0); 7560 } 7561 7562 static const char * const output_format_str[] = { 7563 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 7564 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 7565 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 7566 }; 7567 7568 static const char *output_formats(enum intel_output_format format) 7569 { 7570 if (format >= ARRAY_SIZE(output_format_str)) 7571 return "invalid"; 7572 return output_format_str[format]; 7573 } 7574 7575 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 7576 { 7577 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 7578 struct drm_i915_private *i915 = to_i915(plane->base.dev); 7579 const struct drm_framebuffer *fb = plane_state->hw.fb; 7580 7581 if (!fb) { 7582 drm_dbg_kms(&i915->drm, 7583 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 7584 plane->base.base.id, plane->base.name, 7585 yesno(plane_state->uapi.visible)); 7586 return; 7587 } 7588 7589 drm_dbg_kms(&i915->drm, 7590 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %p4cc modifier = 0x%llx, visible: %s\n", 7591 plane->base.base.id, plane->base.name, 7592 fb->base.id, fb->width, fb->height, &fb->format->format, 7593 fb->modifier, yesno(plane_state->uapi.visible)); 7594 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n", 7595 plane_state->hw.rotation, plane_state->scaler_id); 7596 if (plane_state->uapi.visible) 7597 drm_dbg_kms(&i915->drm, 7598 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 7599 DRM_RECT_FP_ARG(&plane_state->uapi.src), 7600 DRM_RECT_ARG(&plane_state->uapi.dst)); 7601 } 7602 7603 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 7604 struct intel_atomic_state *state, 7605 const char *context) 7606 { 7607 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 7608 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7609 const struct intel_plane_state *plane_state; 7610 struct intel_plane *plane; 7611 char buf[64]; 7612 int i; 7613 7614 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n", 7615 crtc->base.base.id, crtc->base.name, 7616 yesno(pipe_config->hw.enable), context); 7617 7618 if (!pipe_config->hw.enable) 7619 goto dump_planes; 7620 7621 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 7622 drm_dbg_kms(&dev_priv->drm, 7623 "active: %s, output_types: %s (0x%x), output format: %s\n", 7624 yesno(pipe_config->hw.active), 7625 buf, pipe_config->output_types, 7626 output_formats(pipe_config->output_format)); 7627 7628 drm_dbg_kms(&dev_priv->drm, 7629 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 7630 transcoder_name(pipe_config->cpu_transcoder), 7631 pipe_config->pipe_bpp, pipe_config->dither); 7632 7633 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n", 7634 transcoder_name(pipe_config->mst_master_transcoder)); 7635 7636 drm_dbg_kms(&dev_priv->drm, 7637 "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n", 7638 transcoder_name(pipe_config->master_transcoder), 7639 pipe_config->sync_mode_slaves_mask); 7640 7641 drm_dbg_kms(&dev_priv->drm, "bigjoiner: %s\n", 7642 pipe_config->bigjoiner_slave ? "slave" : 7643 pipe_config->bigjoiner ? "master" : "no"); 7644 7645 drm_dbg_kms(&dev_priv->drm, "splitter: %s, link count %d, overlap %d\n", 7646 enableddisabled(pipe_config->splitter.enable), 7647 pipe_config->splitter.link_count, 7648 pipe_config->splitter.pixel_overlap); 7649 7650 if (pipe_config->has_pch_encoder) 7651 intel_dump_m_n_config(pipe_config, "fdi", 7652 pipe_config->fdi_lanes, 7653 &pipe_config->fdi_m_n); 7654 7655 if (intel_crtc_has_dp_encoder(pipe_config)) { 7656 intel_dump_m_n_config(pipe_config, "dp m_n", 7657 pipe_config->lane_count, &pipe_config->dp_m_n); 7658 if (pipe_config->has_drrs) 7659 intel_dump_m_n_config(pipe_config, "dp m2_n2", 7660 pipe_config->lane_count, 7661 &pipe_config->dp_m2_n2); 7662 } 7663 7664 drm_dbg_kms(&dev_priv->drm, 7665 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 7666 pipe_config->has_audio, pipe_config->has_infoframe, 7667 pipe_config->infoframes.enable); 7668 7669 if (pipe_config->infoframes.enable & 7670 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 7671 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n", 7672 pipe_config->infoframes.gcp); 7673 if (pipe_config->infoframes.enable & 7674 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 7675 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 7676 if (pipe_config->infoframes.enable & 7677 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 7678 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 7679 if (pipe_config->infoframes.enable & 7680 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 7681 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 7682 if (pipe_config->infoframes.enable & 7683 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) 7684 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 7685 if (pipe_config->infoframes.enable & 7686 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA)) 7687 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 7688 if (pipe_config->infoframes.enable & 7689 intel_hdmi_infoframe_enable(DP_SDP_VSC)) 7690 intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc); 7691 7692 drm_dbg_kms(&dev_priv->drm, "vrr: %s, vmin: %d, vmax: %d, pipeline full: %d, guardband: %d flipline: %d, vmin vblank: %d, vmax vblank: %d\n", 7693 yesno(pipe_config->vrr.enable), 7694 pipe_config->vrr.vmin, pipe_config->vrr.vmax, 7695 pipe_config->vrr.pipeline_full, pipe_config->vrr.guardband, 7696 pipe_config->vrr.flipline, 7697 intel_vrr_vmin_vblank_start(pipe_config), 7698 intel_vrr_vmax_vblank_start(pipe_config)); 7699 7700 drm_dbg_kms(&dev_priv->drm, "requested mode:\n"); 7701 drm_mode_debug_printmodeline(&pipe_config->hw.mode); 7702 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n"); 7703 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode); 7704 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode); 7705 drm_dbg_kms(&dev_priv->drm, "pipe mode:\n"); 7706 drm_mode_debug_printmodeline(&pipe_config->hw.pipe_mode); 7707 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.pipe_mode); 7708 drm_dbg_kms(&dev_priv->drm, 7709 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 7710 pipe_config->port_clock, 7711 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 7712 pipe_config->pixel_rate); 7713 7714 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n", 7715 pipe_config->linetime, pipe_config->ips_linetime); 7716 7717 if (DISPLAY_VER(dev_priv) >= 9) 7718 drm_dbg_kms(&dev_priv->drm, 7719 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 7720 crtc->num_scalers, 7721 pipe_config->scaler_state.scaler_users, 7722 pipe_config->scaler_state.scaler_id); 7723 7724 if (HAS_GMCH(dev_priv)) 7725 drm_dbg_kms(&dev_priv->drm, 7726 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 7727 pipe_config->gmch_pfit.control, 7728 pipe_config->gmch_pfit.pgm_ratios, 7729 pipe_config->gmch_pfit.lvds_border_bits); 7730 else 7731 drm_dbg_kms(&dev_priv->drm, 7732 "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n", 7733 DRM_RECT_ARG(&pipe_config->pch_pfit.dst), 7734 enableddisabled(pipe_config->pch_pfit.enabled), 7735 yesno(pipe_config->pch_pfit.force_thru)); 7736 7737 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n", 7738 pipe_config->ips_enabled, pipe_config->double_wide); 7739 7740 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 7741 7742 if (IS_CHERRYVIEW(dev_priv)) 7743 drm_dbg_kms(&dev_priv->drm, 7744 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 7745 pipe_config->cgm_mode, pipe_config->gamma_mode, 7746 pipe_config->gamma_enable, pipe_config->csc_enable); 7747 else 7748 drm_dbg_kms(&dev_priv->drm, 7749 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 7750 pipe_config->csc_mode, pipe_config->gamma_mode, 7751 pipe_config->gamma_enable, pipe_config->csc_enable); 7752 7753 drm_dbg_kms(&dev_priv->drm, "degamma lut: %d entries, gamma lut: %d entries\n", 7754 pipe_config->hw.degamma_lut ? 7755 drm_color_lut_size(pipe_config->hw.degamma_lut) : 0, 7756 pipe_config->hw.gamma_lut ? 7757 drm_color_lut_size(pipe_config->hw.gamma_lut) : 0); 7758 7759 dump_planes: 7760 if (!state) 7761 return; 7762 7763 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7764 if (plane->pipe == crtc->pipe) 7765 intel_dump_plane_state(plane_state); 7766 } 7767 } 7768 7769 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 7770 { 7771 struct drm_device *dev = state->base.dev; 7772 struct drm_connector *connector; 7773 struct drm_connector_list_iter conn_iter; 7774 unsigned int used_ports = 0; 7775 unsigned int used_mst_ports = 0; 7776 bool ret = true; 7777 7778 /* 7779 * We're going to peek into connector->state, 7780 * hence connection_mutex must be held. 7781 */ 7782 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); 7783 7784 /* 7785 * Walk the connector list instead of the encoder 7786 * list to detect the problem on ddi platforms 7787 * where there's just one encoder per digital port. 7788 */ 7789 drm_connector_list_iter_begin(dev, &conn_iter); 7790 drm_for_each_connector_iter(connector, &conn_iter) { 7791 struct drm_connector_state *connector_state; 7792 struct intel_encoder *encoder; 7793 7794 connector_state = 7795 drm_atomic_get_new_connector_state(&state->base, 7796 connector); 7797 if (!connector_state) 7798 connector_state = connector->state; 7799 7800 if (!connector_state->best_encoder) 7801 continue; 7802 7803 encoder = to_intel_encoder(connector_state->best_encoder); 7804 7805 drm_WARN_ON(dev, !connector_state->crtc); 7806 7807 switch (encoder->type) { 7808 case INTEL_OUTPUT_DDI: 7809 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev)))) 7810 break; 7811 fallthrough; 7812 case INTEL_OUTPUT_DP: 7813 case INTEL_OUTPUT_HDMI: 7814 case INTEL_OUTPUT_EDP: 7815 /* the same port mustn't appear more than once */ 7816 if (used_ports & BIT(encoder->port)) 7817 ret = false; 7818 7819 used_ports |= BIT(encoder->port); 7820 break; 7821 case INTEL_OUTPUT_DP_MST: 7822 used_mst_ports |= 7823 1 << encoder->port; 7824 break; 7825 default: 7826 break; 7827 } 7828 } 7829 drm_connector_list_iter_end(&conn_iter); 7830 7831 /* can't mix MST and SST/HDMI on the same port */ 7832 if (used_ports & used_mst_ports) 7833 return false; 7834 7835 return ret; 7836 } 7837 7838 static void 7839 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_atomic_state *state, 7840 struct intel_crtc_state *crtc_state) 7841 { 7842 const struct intel_crtc_state *from_crtc_state = crtc_state; 7843 7844 if (crtc_state->bigjoiner_slave) { 7845 from_crtc_state = intel_atomic_get_new_crtc_state(state, 7846 crtc_state->bigjoiner_linked_crtc); 7847 7848 /* No need to copy state if the master state is unchanged */ 7849 if (!from_crtc_state) 7850 return; 7851 } 7852 7853 intel_crtc_copy_color_blobs(crtc_state, from_crtc_state); 7854 } 7855 7856 static void 7857 intel_crtc_copy_uapi_to_hw_state(struct intel_atomic_state *state, 7858 struct intel_crtc_state *crtc_state) 7859 { 7860 crtc_state->hw.enable = crtc_state->uapi.enable; 7861 crtc_state->hw.active = crtc_state->uapi.active; 7862 crtc_state->hw.mode = crtc_state->uapi.mode; 7863 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode; 7864 crtc_state->hw.scaling_filter = crtc_state->uapi.scaling_filter; 7865 7866 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc_state); 7867 } 7868 7869 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state) 7870 { 7871 if (crtc_state->bigjoiner_slave) 7872 return; 7873 7874 crtc_state->uapi.enable = crtc_state->hw.enable; 7875 crtc_state->uapi.active = crtc_state->hw.active; 7876 drm_WARN_ON(crtc_state->uapi.crtc->dev, 7877 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0); 7878 7879 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode; 7880 crtc_state->uapi.scaling_filter = crtc_state->hw.scaling_filter; 7881 7882 /* copy color blobs to uapi */ 7883 drm_property_replace_blob(&crtc_state->uapi.degamma_lut, 7884 crtc_state->hw.degamma_lut); 7885 drm_property_replace_blob(&crtc_state->uapi.gamma_lut, 7886 crtc_state->hw.gamma_lut); 7887 drm_property_replace_blob(&crtc_state->uapi.ctm, 7888 crtc_state->hw.ctm); 7889 } 7890 7891 static int 7892 copy_bigjoiner_crtc_state(struct intel_crtc_state *crtc_state, 7893 const struct intel_crtc_state *from_crtc_state) 7894 { 7895 struct intel_crtc_state *saved_state; 7896 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7897 7898 saved_state = kmemdup(from_crtc_state, sizeof(*saved_state), GFP_KERNEL); 7899 if (!saved_state) 7900 return -ENOMEM; 7901 7902 saved_state->uapi = crtc_state->uapi; 7903 saved_state->scaler_state = crtc_state->scaler_state; 7904 saved_state->shared_dpll = crtc_state->shared_dpll; 7905 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 7906 saved_state->crc_enabled = crtc_state->crc_enabled; 7907 7908 intel_crtc_free_hw_state(crtc_state); 7909 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 7910 kfree(saved_state); 7911 7912 /* Re-init hw state */ 7913 memset(&crtc_state->hw, 0, sizeof(saved_state->hw)); 7914 crtc_state->hw.enable = from_crtc_state->hw.enable; 7915 crtc_state->hw.active = from_crtc_state->hw.active; 7916 crtc_state->hw.pipe_mode = from_crtc_state->hw.pipe_mode; 7917 crtc_state->hw.adjusted_mode = from_crtc_state->hw.adjusted_mode; 7918 7919 /* Some fixups */ 7920 crtc_state->uapi.mode_changed = from_crtc_state->uapi.mode_changed; 7921 crtc_state->uapi.connectors_changed = from_crtc_state->uapi.connectors_changed; 7922 crtc_state->uapi.active_changed = from_crtc_state->uapi.active_changed; 7923 crtc_state->nv12_planes = crtc_state->c8_planes = crtc_state->update_planes = 0; 7924 crtc_state->bigjoiner_linked_crtc = to_intel_crtc(from_crtc_state->uapi.crtc); 7925 crtc_state->bigjoiner_slave = true; 7926 crtc_state->cpu_transcoder = (enum transcoder)crtc->pipe; 7927 crtc_state->has_audio = false; 7928 7929 return 0; 7930 } 7931 7932 static int 7933 intel_crtc_prepare_cleared_state(struct intel_atomic_state *state, 7934 struct intel_crtc_state *crtc_state) 7935 { 7936 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7937 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7938 struct intel_crtc_state *saved_state; 7939 7940 saved_state = intel_crtc_state_alloc(crtc); 7941 if (!saved_state) 7942 return -ENOMEM; 7943 7944 /* free the old crtc_state->hw members */ 7945 intel_crtc_free_hw_state(crtc_state); 7946 7947 /* FIXME: before the switch to atomic started, a new pipe_config was 7948 * kzalloc'd. Code that depends on any field being zero should be 7949 * fixed, so that the crtc_state can be safely duplicated. For now, 7950 * only fields that are know to not cause problems are preserved. */ 7951 7952 saved_state->uapi = crtc_state->uapi; 7953 saved_state->scaler_state = crtc_state->scaler_state; 7954 saved_state->shared_dpll = crtc_state->shared_dpll; 7955 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 7956 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 7957 sizeof(saved_state->icl_port_dplls)); 7958 saved_state->crc_enabled = crtc_state->crc_enabled; 7959 if (IS_G4X(dev_priv) || 7960 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7961 saved_state->wm = crtc_state->wm; 7962 7963 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 7964 kfree(saved_state); 7965 7966 intel_crtc_copy_uapi_to_hw_state(state, crtc_state); 7967 7968 return 0; 7969 } 7970 7971 static int 7972 intel_modeset_pipe_config(struct intel_atomic_state *state, 7973 struct intel_crtc_state *pipe_config) 7974 { 7975 struct drm_crtc *crtc = pipe_config->uapi.crtc; 7976 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7977 struct drm_connector *connector; 7978 struct drm_connector_state *connector_state; 7979 int base_bpp, ret, i; 7980 bool retry = true; 7981 7982 pipe_config->cpu_transcoder = 7983 (enum transcoder) to_intel_crtc(crtc)->pipe; 7984 7985 /* 7986 * Sanitize sync polarity flags based on requested ones. If neither 7987 * positive or negative polarity is requested, treat this as meaning 7988 * negative polarity. 7989 */ 7990 if (!(pipe_config->hw.adjusted_mode.flags & 7991 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 7992 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 7993 7994 if (!(pipe_config->hw.adjusted_mode.flags & 7995 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 7996 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 7997 7998 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 7999 pipe_config); 8000 if (ret) 8001 return ret; 8002 8003 base_bpp = pipe_config->pipe_bpp; 8004 8005 /* 8006 * Determine the real pipe dimensions. Note that stereo modes can 8007 * increase the actual pipe size due to the frame doubling and 8008 * insertion of additional space for blanks between the frame. This 8009 * is stored in the crtc timings. We use the requested mode to do this 8010 * computation to clearly distinguish it from the adjusted mode, which 8011 * can be changed by the connectors in the below retry loop. 8012 */ 8013 drm_mode_get_hv_timing(&pipe_config->hw.mode, 8014 &pipe_config->pipe_src_w, 8015 &pipe_config->pipe_src_h); 8016 8017 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 8018 struct intel_encoder *encoder = 8019 to_intel_encoder(connector_state->best_encoder); 8020 8021 if (connector_state->crtc != crtc) 8022 continue; 8023 8024 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 8025 drm_dbg_kms(&i915->drm, 8026 "rejecting invalid cloning configuration\n"); 8027 return -EINVAL; 8028 } 8029 8030 /* 8031 * Determine output_types before calling the .compute_config() 8032 * hooks so that the hooks can use this information safely. 8033 */ 8034 if (encoder->compute_output_type) 8035 pipe_config->output_types |= 8036 BIT(encoder->compute_output_type(encoder, pipe_config, 8037 connector_state)); 8038 else 8039 pipe_config->output_types |= BIT(encoder->type); 8040 } 8041 8042 encoder_retry: 8043 /* Ensure the port clock defaults are reset when retrying. */ 8044 pipe_config->port_clock = 0; 8045 pipe_config->pixel_multiplier = 1; 8046 8047 /* Fill in default crtc timings, allow encoders to overwrite them. */ 8048 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode, 8049 CRTC_STEREO_DOUBLE); 8050 8051 /* Pass our mode to the connectors and the CRTC to give them a chance to 8052 * adjust it according to limitations or connector properties, and also 8053 * a chance to reject the mode entirely. 8054 */ 8055 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 8056 struct intel_encoder *encoder = 8057 to_intel_encoder(connector_state->best_encoder); 8058 8059 if (connector_state->crtc != crtc) 8060 continue; 8061 8062 ret = encoder->compute_config(encoder, pipe_config, 8063 connector_state); 8064 if (ret < 0) { 8065 if (ret != -EDEADLK) 8066 drm_dbg_kms(&i915->drm, 8067 "Encoder config failure: %d\n", 8068 ret); 8069 return ret; 8070 } 8071 } 8072 8073 /* Set default port clock if not overwritten by the encoder. Needs to be 8074 * done afterwards in case the encoder adjusts the mode. */ 8075 if (!pipe_config->port_clock) 8076 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock 8077 * pipe_config->pixel_multiplier; 8078 8079 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 8080 if (ret == -EDEADLK) 8081 return ret; 8082 if (ret < 0) { 8083 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n"); 8084 return ret; 8085 } 8086 8087 if (ret == I915_DISPLAY_CONFIG_RETRY) { 8088 if (drm_WARN(&i915->drm, !retry, 8089 "loop in pipe configuration computation\n")) 8090 return -EINVAL; 8091 8092 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n"); 8093 retry = false; 8094 goto encoder_retry; 8095 } 8096 8097 /* Dithering seems to not pass-through bits correctly when it should, so 8098 * only enable it on 6bpc panels and when its not a compliance 8099 * test requesting 6bpc video pattern. 8100 */ 8101 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 8102 !pipe_config->dither_force_disable; 8103 drm_dbg_kms(&i915->drm, 8104 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 8105 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 8106 8107 return 0; 8108 } 8109 8110 static int 8111 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state) 8112 { 8113 struct intel_atomic_state *state = 8114 to_intel_atomic_state(crtc_state->uapi.state); 8115 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8116 struct drm_connector_state *conn_state; 8117 struct drm_connector *connector; 8118 int i; 8119 8120 for_each_new_connector_in_state(&state->base, connector, 8121 conn_state, i) { 8122 struct intel_encoder *encoder = 8123 to_intel_encoder(conn_state->best_encoder); 8124 int ret; 8125 8126 if (conn_state->crtc != &crtc->base || 8127 !encoder->compute_config_late) 8128 continue; 8129 8130 ret = encoder->compute_config_late(encoder, crtc_state, 8131 conn_state); 8132 if (ret) 8133 return ret; 8134 } 8135 8136 return 0; 8137 } 8138 8139 bool intel_fuzzy_clock_check(int clock1, int clock2) 8140 { 8141 int diff; 8142 8143 if (clock1 == clock2) 8144 return true; 8145 8146 if (!clock1 || !clock2) 8147 return false; 8148 8149 diff = abs(clock1 - clock2); 8150 8151 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 8152 return true; 8153 8154 return false; 8155 } 8156 8157 static bool 8158 intel_compare_m_n(unsigned int m, unsigned int n, 8159 unsigned int m2, unsigned int n2, 8160 bool exact) 8161 { 8162 if (m == m2 && n == n2) 8163 return true; 8164 8165 if (exact || !m || !n || !m2 || !n2) 8166 return false; 8167 8168 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 8169 8170 if (n > n2) { 8171 while (n > n2) { 8172 m2 <<= 1; 8173 n2 <<= 1; 8174 } 8175 } else if (n < n2) { 8176 while (n < n2) { 8177 m <<= 1; 8178 n <<= 1; 8179 } 8180 } 8181 8182 if (n != n2) 8183 return false; 8184 8185 return intel_fuzzy_clock_check(m, m2); 8186 } 8187 8188 static bool 8189 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 8190 const struct intel_link_m_n *m2_n2, 8191 bool exact) 8192 { 8193 return m_n->tu == m2_n2->tu && 8194 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 8195 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 8196 intel_compare_m_n(m_n->link_m, m_n->link_n, 8197 m2_n2->link_m, m2_n2->link_n, exact); 8198 } 8199 8200 static bool 8201 intel_compare_infoframe(const union hdmi_infoframe *a, 8202 const union hdmi_infoframe *b) 8203 { 8204 return memcmp(a, b, sizeof(*a)) == 0; 8205 } 8206 8207 static bool 8208 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a, 8209 const struct drm_dp_vsc_sdp *b) 8210 { 8211 return memcmp(a, b, sizeof(*a)) == 0; 8212 } 8213 8214 static void 8215 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 8216 bool fastset, const char *name, 8217 const union hdmi_infoframe *a, 8218 const union hdmi_infoframe *b) 8219 { 8220 if (fastset) { 8221 if (!drm_debug_enabled(DRM_UT_KMS)) 8222 return; 8223 8224 drm_dbg_kms(&dev_priv->drm, 8225 "fastset mismatch in %s infoframe\n", name); 8226 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 8227 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 8228 drm_dbg_kms(&dev_priv->drm, "found:\n"); 8229 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 8230 } else { 8231 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name); 8232 drm_err(&dev_priv->drm, "expected:\n"); 8233 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 8234 drm_err(&dev_priv->drm, "found:\n"); 8235 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 8236 } 8237 } 8238 8239 static void 8240 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv, 8241 bool fastset, const char *name, 8242 const struct drm_dp_vsc_sdp *a, 8243 const struct drm_dp_vsc_sdp *b) 8244 { 8245 if (fastset) { 8246 if (!drm_debug_enabled(DRM_UT_KMS)) 8247 return; 8248 8249 drm_dbg_kms(&dev_priv->drm, 8250 "fastset mismatch in %s dp sdp\n", name); 8251 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 8252 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a); 8253 drm_dbg_kms(&dev_priv->drm, "found:\n"); 8254 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b); 8255 } else { 8256 drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name); 8257 drm_err(&dev_priv->drm, "expected:\n"); 8258 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a); 8259 drm_err(&dev_priv->drm, "found:\n"); 8260 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b); 8261 } 8262 } 8263 8264 static void __printf(4, 5) 8265 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, 8266 const char *name, const char *format, ...) 8267 { 8268 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 8269 struct va_format vaf; 8270 va_list args; 8271 8272 va_start(args, format); 8273 vaf.fmt = format; 8274 vaf.va = &args; 8275 8276 if (fastset) 8277 drm_dbg_kms(&i915->drm, 8278 "[CRTC:%d:%s] fastset mismatch in %s %pV\n", 8279 crtc->base.base.id, crtc->base.name, name, &vaf); 8280 else 8281 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n", 8282 crtc->base.base.id, crtc->base.name, name, &vaf); 8283 8284 va_end(args); 8285 } 8286 8287 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 8288 { 8289 if (dev_priv->params.fastboot != -1) 8290 return dev_priv->params.fastboot; 8291 8292 /* Enable fastboot by default on Skylake and newer */ 8293 if (DISPLAY_VER(dev_priv) >= 9) 8294 return true; 8295 8296 /* Enable fastboot by default on VLV and CHV */ 8297 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8298 return true; 8299 8300 /* Disabled by default on all others */ 8301 return false; 8302 } 8303 8304 static bool 8305 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 8306 const struct intel_crtc_state *pipe_config, 8307 bool fastset) 8308 { 8309 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev); 8310 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 8311 bool ret = true; 8312 u32 bp_gamma = 0; 8313 bool fixup_inherited = fastset && 8314 current_config->inherited && !pipe_config->inherited; 8315 8316 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 8317 drm_dbg_kms(&dev_priv->drm, 8318 "initial modeset and fastboot not set\n"); 8319 ret = false; 8320 } 8321 8322 #define PIPE_CONF_CHECK_X(name) do { \ 8323 if (current_config->name != pipe_config->name) { \ 8324 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8325 "(expected 0x%08x, found 0x%08x)", \ 8326 current_config->name, \ 8327 pipe_config->name); \ 8328 ret = false; \ 8329 } \ 8330 } while (0) 8331 8332 #define PIPE_CONF_CHECK_X_WITH_MASK(name, mask) do { \ 8333 if ((current_config->name & (mask)) != (pipe_config->name & (mask))) { \ 8334 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8335 "(expected 0x%08x, found 0x%08x)", \ 8336 current_config->name & (mask), \ 8337 pipe_config->name & (mask)); \ 8338 ret = false; \ 8339 } \ 8340 } while (0) 8341 8342 #define PIPE_CONF_CHECK_I(name) do { \ 8343 if (current_config->name != pipe_config->name) { \ 8344 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8345 "(expected %i, found %i)", \ 8346 current_config->name, \ 8347 pipe_config->name); \ 8348 ret = false; \ 8349 } \ 8350 } while (0) 8351 8352 #define PIPE_CONF_CHECK_BOOL(name) do { \ 8353 if (current_config->name != pipe_config->name) { \ 8354 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8355 "(expected %s, found %s)", \ 8356 yesno(current_config->name), \ 8357 yesno(pipe_config->name)); \ 8358 ret = false; \ 8359 } \ 8360 } while (0) 8361 8362 /* 8363 * Checks state where we only read out the enabling, but not the entire 8364 * state itself (like full infoframes or ELD for audio). These states 8365 * require a full modeset on bootup to fix up. 8366 */ 8367 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 8368 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 8369 PIPE_CONF_CHECK_BOOL(name); \ 8370 } else { \ 8371 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8372 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ 8373 yesno(current_config->name), \ 8374 yesno(pipe_config->name)); \ 8375 ret = false; \ 8376 } \ 8377 } while (0) 8378 8379 #define PIPE_CONF_CHECK_P(name) do { \ 8380 if (current_config->name != pipe_config->name) { \ 8381 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8382 "(expected %p, found %p)", \ 8383 current_config->name, \ 8384 pipe_config->name); \ 8385 ret = false; \ 8386 } \ 8387 } while (0) 8388 8389 #define PIPE_CONF_CHECK_M_N(name) do { \ 8390 if (!intel_compare_link_m_n(¤t_config->name, \ 8391 &pipe_config->name,\ 8392 !fastset)) { \ 8393 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8394 "(expected tu %i gmch %i/%i link %i/%i, " \ 8395 "found tu %i, gmch %i/%i link %i/%i)", \ 8396 current_config->name.tu, \ 8397 current_config->name.gmch_m, \ 8398 current_config->name.gmch_n, \ 8399 current_config->name.link_m, \ 8400 current_config->name.link_n, \ 8401 pipe_config->name.tu, \ 8402 pipe_config->name.gmch_m, \ 8403 pipe_config->name.gmch_n, \ 8404 pipe_config->name.link_m, \ 8405 pipe_config->name.link_n); \ 8406 ret = false; \ 8407 } \ 8408 } while (0) 8409 8410 /* This is required for BDW+ where there is only one set of registers for 8411 * switching between high and low RR. 8412 * This macro can be used whenever a comparison has to be made between one 8413 * hw state and multiple sw state variables. 8414 */ 8415 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 8416 if (!intel_compare_link_m_n(¤t_config->name, \ 8417 &pipe_config->name, !fastset) && \ 8418 !intel_compare_link_m_n(¤t_config->alt_name, \ 8419 &pipe_config->name, !fastset)) { \ 8420 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8421 "(expected tu %i gmch %i/%i link %i/%i, " \ 8422 "or tu %i gmch %i/%i link %i/%i, " \ 8423 "found tu %i, gmch %i/%i link %i/%i)", \ 8424 current_config->name.tu, \ 8425 current_config->name.gmch_m, \ 8426 current_config->name.gmch_n, \ 8427 current_config->name.link_m, \ 8428 current_config->name.link_n, \ 8429 current_config->alt_name.tu, \ 8430 current_config->alt_name.gmch_m, \ 8431 current_config->alt_name.gmch_n, \ 8432 current_config->alt_name.link_m, \ 8433 current_config->alt_name.link_n, \ 8434 pipe_config->name.tu, \ 8435 pipe_config->name.gmch_m, \ 8436 pipe_config->name.gmch_n, \ 8437 pipe_config->name.link_m, \ 8438 pipe_config->name.link_n); \ 8439 ret = false; \ 8440 } \ 8441 } while (0) 8442 8443 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 8444 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 8445 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8446 "(%x) (expected %i, found %i)", \ 8447 (mask), \ 8448 current_config->name & (mask), \ 8449 pipe_config->name & (mask)); \ 8450 ret = false; \ 8451 } \ 8452 } while (0) 8453 8454 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 8455 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 8456 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8457 "(expected %i, found %i)", \ 8458 current_config->name, \ 8459 pipe_config->name); \ 8460 ret = false; \ 8461 } \ 8462 } while (0) 8463 8464 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 8465 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 8466 &pipe_config->infoframes.name)) { \ 8467 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 8468 ¤t_config->infoframes.name, \ 8469 &pipe_config->infoframes.name); \ 8470 ret = false; \ 8471 } \ 8472 } while (0) 8473 8474 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \ 8475 if (!current_config->has_psr && !pipe_config->has_psr && \ 8476 !intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \ 8477 &pipe_config->infoframes.name)) { \ 8478 pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \ 8479 ¤t_config->infoframes.name, \ 8480 &pipe_config->infoframes.name); \ 8481 ret = false; \ 8482 } \ 8483 } while (0) 8484 8485 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ 8486 if (current_config->name1 != pipe_config->name1) { \ 8487 pipe_config_mismatch(fastset, crtc, __stringify(name1), \ 8488 "(expected %i, found %i, won't compare lut values)", \ 8489 current_config->name1, \ 8490 pipe_config->name1); \ 8491 ret = false;\ 8492 } else { \ 8493 if (!intel_color_lut_equal(current_config->name2, \ 8494 pipe_config->name2, pipe_config->name1, \ 8495 bit_precision)) { \ 8496 pipe_config_mismatch(fastset, crtc, __stringify(name2), \ 8497 "hw_state doesn't match sw_state"); \ 8498 ret = false; \ 8499 } \ 8500 } \ 8501 } while (0) 8502 8503 #define PIPE_CONF_QUIRK(quirk) \ 8504 ((current_config->quirks | pipe_config->quirks) & (quirk)) 8505 8506 PIPE_CONF_CHECK_I(cpu_transcoder); 8507 8508 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 8509 PIPE_CONF_CHECK_I(fdi_lanes); 8510 PIPE_CONF_CHECK_M_N(fdi_m_n); 8511 8512 PIPE_CONF_CHECK_I(lane_count); 8513 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 8514 8515 if (DISPLAY_VER(dev_priv) < 8) { 8516 PIPE_CONF_CHECK_M_N(dp_m_n); 8517 8518 if (current_config->has_drrs) 8519 PIPE_CONF_CHECK_M_N(dp_m2_n2); 8520 } else 8521 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 8522 8523 PIPE_CONF_CHECK_X(output_types); 8524 8525 /* FIXME do the readout properly and get rid of this quirk */ 8526 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 8527 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hdisplay); 8528 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_htotal); 8529 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_start); 8530 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_end); 8531 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_start); 8532 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_end); 8533 8534 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vdisplay); 8535 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vtotal); 8536 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_start); 8537 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_end); 8538 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_start); 8539 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_end); 8540 8541 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay); 8542 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal); 8543 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start); 8544 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end); 8545 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start); 8546 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end); 8547 8548 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay); 8549 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal); 8550 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start); 8551 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end); 8552 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start); 8553 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end); 8554 8555 PIPE_CONF_CHECK_I(pixel_multiplier); 8556 8557 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8558 DRM_MODE_FLAG_INTERLACE); 8559 8560 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 8561 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8562 DRM_MODE_FLAG_PHSYNC); 8563 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8564 DRM_MODE_FLAG_NHSYNC); 8565 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8566 DRM_MODE_FLAG_PVSYNC); 8567 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8568 DRM_MODE_FLAG_NVSYNC); 8569 } 8570 } 8571 8572 PIPE_CONF_CHECK_I(output_format); 8573 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 8574 if ((DISPLAY_VER(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 8575 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8576 PIPE_CONF_CHECK_BOOL(limited_color_range); 8577 8578 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 8579 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 8580 PIPE_CONF_CHECK_BOOL(has_infoframe); 8581 /* FIXME do the readout properly and get rid of this quirk */ 8582 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) 8583 PIPE_CONF_CHECK_BOOL(fec_enable); 8584 8585 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 8586 8587 PIPE_CONF_CHECK_X(gmch_pfit.control); 8588 /* pfit ratios are autocomputed by the hw on gen4+ */ 8589 if (DISPLAY_VER(dev_priv) < 4) 8590 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 8591 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 8592 8593 /* 8594 * Changing the EDP transcoder input mux 8595 * (A_ONOFF vs. A_ON) requires a full modeset. 8596 */ 8597 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 8598 8599 if (!fastset) { 8600 PIPE_CONF_CHECK_I(pipe_src_w); 8601 PIPE_CONF_CHECK_I(pipe_src_h); 8602 8603 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 8604 if (current_config->pch_pfit.enabled) { 8605 PIPE_CONF_CHECK_I(pch_pfit.dst.x1); 8606 PIPE_CONF_CHECK_I(pch_pfit.dst.y1); 8607 PIPE_CONF_CHECK_I(pch_pfit.dst.x2); 8608 PIPE_CONF_CHECK_I(pch_pfit.dst.y2); 8609 } 8610 8611 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 8612 /* FIXME do the readout properly and get rid of this quirk */ 8613 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) 8614 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 8615 8616 PIPE_CONF_CHECK_X(gamma_mode); 8617 if (IS_CHERRYVIEW(dev_priv)) 8618 PIPE_CONF_CHECK_X(cgm_mode); 8619 else 8620 PIPE_CONF_CHECK_X(csc_mode); 8621 PIPE_CONF_CHECK_BOOL(gamma_enable); 8622 PIPE_CONF_CHECK_BOOL(csc_enable); 8623 8624 PIPE_CONF_CHECK_I(linetime); 8625 PIPE_CONF_CHECK_I(ips_linetime); 8626 8627 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); 8628 if (bp_gamma) 8629 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma); 8630 8631 PIPE_CONF_CHECK_BOOL(has_psr); 8632 PIPE_CONF_CHECK_BOOL(has_psr2); 8633 PIPE_CONF_CHECK_BOOL(enable_psr2_sel_fetch); 8634 PIPE_CONF_CHECK_I(dc3co_exitline); 8635 } 8636 8637 PIPE_CONF_CHECK_BOOL(double_wide); 8638 8639 PIPE_CONF_CHECK_P(shared_dpll); 8640 8641 /* FIXME do the readout properly and get rid of this quirk */ 8642 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 8643 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 8644 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 8645 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 8646 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 8647 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 8648 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 8649 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 8650 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 8651 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 8652 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 8653 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 8654 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 8655 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 8656 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 8657 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 8658 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 8659 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 8660 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 8661 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 8662 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 8663 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 8664 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 8665 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 8666 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 8667 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 8668 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 8669 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 8670 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 8671 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 8672 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 8673 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 8674 8675 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 8676 PIPE_CONF_CHECK_X(dsi_pll.div); 8677 8678 if (IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) >= 5) 8679 PIPE_CONF_CHECK_I(pipe_bpp); 8680 8681 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.pipe_mode.crtc_clock); 8682 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock); 8683 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 8684 8685 PIPE_CONF_CHECK_I(min_voltage_level); 8686 } 8687 8688 if (fastset && (current_config->has_psr || pipe_config->has_psr)) 8689 PIPE_CONF_CHECK_X_WITH_MASK(infoframes.enable, 8690 ~intel_hdmi_infoframe_enable(DP_SDP_VSC)); 8691 else 8692 PIPE_CONF_CHECK_X(infoframes.enable); 8693 8694 PIPE_CONF_CHECK_X(infoframes.gcp); 8695 PIPE_CONF_CHECK_INFOFRAME(avi); 8696 PIPE_CONF_CHECK_INFOFRAME(spd); 8697 PIPE_CONF_CHECK_INFOFRAME(hdmi); 8698 PIPE_CONF_CHECK_INFOFRAME(drm); 8699 PIPE_CONF_CHECK_DP_VSC_SDP(vsc); 8700 8701 PIPE_CONF_CHECK_X(sync_mode_slaves_mask); 8702 PIPE_CONF_CHECK_I(master_transcoder); 8703 PIPE_CONF_CHECK_BOOL(bigjoiner); 8704 PIPE_CONF_CHECK_BOOL(bigjoiner_slave); 8705 PIPE_CONF_CHECK_P(bigjoiner_linked_crtc); 8706 8707 PIPE_CONF_CHECK_I(dsc.compression_enable); 8708 PIPE_CONF_CHECK_I(dsc.dsc_split); 8709 PIPE_CONF_CHECK_I(dsc.compressed_bpp); 8710 8711 PIPE_CONF_CHECK_BOOL(splitter.enable); 8712 PIPE_CONF_CHECK_I(splitter.link_count); 8713 PIPE_CONF_CHECK_I(splitter.pixel_overlap); 8714 8715 PIPE_CONF_CHECK_I(mst_master_transcoder); 8716 8717 PIPE_CONF_CHECK_BOOL(vrr.enable); 8718 PIPE_CONF_CHECK_I(vrr.vmin); 8719 PIPE_CONF_CHECK_I(vrr.vmax); 8720 PIPE_CONF_CHECK_I(vrr.flipline); 8721 PIPE_CONF_CHECK_I(vrr.pipeline_full); 8722 PIPE_CONF_CHECK_I(vrr.guardband); 8723 8724 #undef PIPE_CONF_CHECK_X 8725 #undef PIPE_CONF_CHECK_I 8726 #undef PIPE_CONF_CHECK_BOOL 8727 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 8728 #undef PIPE_CONF_CHECK_P 8729 #undef PIPE_CONF_CHECK_FLAGS 8730 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 8731 #undef PIPE_CONF_CHECK_COLOR_LUT 8732 #undef PIPE_CONF_QUIRK 8733 8734 return ret; 8735 } 8736 8737 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 8738 const struct intel_crtc_state *pipe_config) 8739 { 8740 if (pipe_config->has_pch_encoder) { 8741 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 8742 &pipe_config->fdi_m_n); 8743 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock; 8744 8745 /* 8746 * FDI already provided one idea for the dotclock. 8747 * Yell if the encoder disagrees. 8748 */ 8749 drm_WARN(&dev_priv->drm, 8750 !intel_fuzzy_clock_check(fdi_dotclock, dotclock), 8751 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 8752 fdi_dotclock, dotclock); 8753 } 8754 } 8755 8756 static void verify_wm_state(struct intel_crtc *crtc, 8757 struct intel_crtc_state *new_crtc_state) 8758 { 8759 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8760 struct skl_hw_state { 8761 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 8762 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 8763 struct skl_pipe_wm wm; 8764 } *hw; 8765 const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal; 8766 int level, max_level = ilk_wm_max_level(dev_priv); 8767 struct intel_plane *plane; 8768 u8 hw_enabled_slices; 8769 8770 if (DISPLAY_VER(dev_priv) < 9 || !new_crtc_state->hw.active) 8771 return; 8772 8773 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 8774 if (!hw) 8775 return; 8776 8777 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 8778 8779 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 8780 8781 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv); 8782 8783 if (DISPLAY_VER(dev_priv) >= 11 && 8784 hw_enabled_slices != dev_priv->dbuf.enabled_slices) 8785 drm_err(&dev_priv->drm, 8786 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", 8787 dev_priv->dbuf.enabled_slices, 8788 hw_enabled_slices); 8789 8790 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 8791 const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 8792 const struct skl_wm_level *hw_wm_level, *sw_wm_level; 8793 8794 /* Watermarks */ 8795 for (level = 0; level <= max_level; level++) { 8796 hw_wm_level = &hw->wm.planes[plane->id].wm[level]; 8797 sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level); 8798 8799 if (skl_wm_level_equals(hw_wm_level, sw_wm_level)) 8800 continue; 8801 8802 drm_err(&dev_priv->drm, 8803 "[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8804 plane->base.base.id, plane->base.name, level, 8805 sw_wm_level->enable, 8806 sw_wm_level->blocks, 8807 sw_wm_level->lines, 8808 hw_wm_level->enable, 8809 hw_wm_level->blocks, 8810 hw_wm_level->lines); 8811 } 8812 8813 hw_wm_level = &hw->wm.planes[plane->id].trans_wm; 8814 sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id); 8815 8816 if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8817 drm_err(&dev_priv->drm, 8818 "[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8819 plane->base.base.id, plane->base.name, 8820 sw_wm_level->enable, 8821 sw_wm_level->blocks, 8822 sw_wm_level->lines, 8823 hw_wm_level->enable, 8824 hw_wm_level->blocks, 8825 hw_wm_level->lines); 8826 } 8827 8828 hw_wm_level = &hw->wm.planes[plane->id].sagv.wm0; 8829 sw_wm_level = &sw_wm->planes[plane->id].sagv.wm0; 8830 8831 if (HAS_HW_SAGV_WM(dev_priv) && 8832 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8833 drm_err(&dev_priv->drm, 8834 "[PLANE:%d:%s] mismatch in SAGV WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8835 plane->base.base.id, plane->base.name, 8836 sw_wm_level->enable, 8837 sw_wm_level->blocks, 8838 sw_wm_level->lines, 8839 hw_wm_level->enable, 8840 hw_wm_level->blocks, 8841 hw_wm_level->lines); 8842 } 8843 8844 hw_wm_level = &hw->wm.planes[plane->id].sagv.trans_wm; 8845 sw_wm_level = &sw_wm->planes[plane->id].sagv.trans_wm; 8846 8847 if (HAS_HW_SAGV_WM(dev_priv) && 8848 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 8849 drm_err(&dev_priv->drm, 8850 "[PLANE:%d:%s] mismatch in SAGV trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 8851 plane->base.base.id, plane->base.name, 8852 sw_wm_level->enable, 8853 sw_wm_level->blocks, 8854 sw_wm_level->lines, 8855 hw_wm_level->enable, 8856 hw_wm_level->blocks, 8857 hw_wm_level->lines); 8858 } 8859 8860 /* DDB */ 8861 hw_ddb_entry = &hw->ddb_y[plane->id]; 8862 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane->id]; 8863 8864 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 8865 drm_err(&dev_priv->drm, 8866 "[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n", 8867 plane->base.base.id, plane->base.name, 8868 sw_ddb_entry->start, sw_ddb_entry->end, 8869 hw_ddb_entry->start, hw_ddb_entry->end); 8870 } 8871 } 8872 8873 kfree(hw); 8874 } 8875 8876 static void 8877 verify_connector_state(struct intel_atomic_state *state, 8878 struct intel_crtc *crtc) 8879 { 8880 struct drm_connector *connector; 8881 struct drm_connector_state *new_conn_state; 8882 int i; 8883 8884 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 8885 struct drm_encoder *encoder = connector->encoder; 8886 struct intel_crtc_state *crtc_state = NULL; 8887 8888 if (new_conn_state->crtc != &crtc->base) 8889 continue; 8890 8891 if (crtc) 8892 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 8893 8894 intel_connector_verify_state(crtc_state, new_conn_state); 8895 8896 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 8897 "connector's atomic encoder doesn't match legacy encoder\n"); 8898 } 8899 } 8900 8901 static void 8902 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 8903 { 8904 struct intel_encoder *encoder; 8905 struct drm_connector *connector; 8906 struct drm_connector_state *old_conn_state, *new_conn_state; 8907 int i; 8908 8909 for_each_intel_encoder(&dev_priv->drm, encoder) { 8910 bool enabled = false, found = false; 8911 enum pipe pipe; 8912 8913 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n", 8914 encoder->base.base.id, 8915 encoder->base.name); 8916 8917 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 8918 new_conn_state, i) { 8919 if (old_conn_state->best_encoder == &encoder->base) 8920 found = true; 8921 8922 if (new_conn_state->best_encoder != &encoder->base) 8923 continue; 8924 found = enabled = true; 8925 8926 I915_STATE_WARN(new_conn_state->crtc != 8927 encoder->base.crtc, 8928 "connector's crtc doesn't match encoder crtc\n"); 8929 } 8930 8931 if (!found) 8932 continue; 8933 8934 I915_STATE_WARN(!!encoder->base.crtc != enabled, 8935 "encoder's enabled state mismatch " 8936 "(expected %i, found %i)\n", 8937 !!encoder->base.crtc, enabled); 8938 8939 if (!encoder->base.crtc) { 8940 bool active; 8941 8942 active = encoder->get_hw_state(encoder, &pipe); 8943 I915_STATE_WARN(active, 8944 "encoder detached but still enabled on pipe %c.\n", 8945 pipe_name(pipe)); 8946 } 8947 } 8948 } 8949 8950 static void 8951 verify_crtc_state(struct intel_crtc *crtc, 8952 struct intel_crtc_state *old_crtc_state, 8953 struct intel_crtc_state *new_crtc_state) 8954 { 8955 struct drm_device *dev = crtc->base.dev; 8956 struct drm_i915_private *dev_priv = to_i915(dev); 8957 struct intel_encoder *encoder; 8958 struct intel_crtc_state *pipe_config = old_crtc_state; 8959 struct drm_atomic_state *state = old_crtc_state->uapi.state; 8960 struct intel_crtc *master = crtc; 8961 8962 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi); 8963 intel_crtc_free_hw_state(old_crtc_state); 8964 intel_crtc_state_reset(old_crtc_state, crtc); 8965 old_crtc_state->uapi.state = state; 8966 8967 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id, 8968 crtc->base.name); 8969 8970 pipe_config->hw.enable = new_crtc_state->hw.enable; 8971 8972 intel_crtc_get_pipe_config(pipe_config); 8973 8974 /* we keep both pipes enabled on 830 */ 8975 if (IS_I830(dev_priv) && pipe_config->hw.active) 8976 pipe_config->hw.active = new_crtc_state->hw.active; 8977 8978 I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active, 8979 "crtc active state doesn't match with hw state " 8980 "(expected %i, found %i)\n", 8981 new_crtc_state->hw.active, pipe_config->hw.active); 8982 8983 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active, 8984 "transitional active state does not match atomic hw state " 8985 "(expected %i, found %i)\n", 8986 new_crtc_state->hw.active, crtc->active); 8987 8988 if (new_crtc_state->bigjoiner_slave) 8989 master = new_crtc_state->bigjoiner_linked_crtc; 8990 8991 for_each_encoder_on_crtc(dev, &master->base, encoder) { 8992 enum pipe pipe; 8993 bool active; 8994 8995 active = encoder->get_hw_state(encoder, &pipe); 8996 I915_STATE_WARN(active != new_crtc_state->hw.active, 8997 "[ENCODER:%i] active %i with crtc active %i\n", 8998 encoder->base.base.id, active, 8999 new_crtc_state->hw.active); 9000 9001 I915_STATE_WARN(active && master->pipe != pipe, 9002 "Encoder connected to wrong pipe %c\n", 9003 pipe_name(pipe)); 9004 9005 if (active) 9006 intel_encoder_get_config(encoder, pipe_config); 9007 } 9008 9009 if (!new_crtc_state->hw.active) 9010 return; 9011 9012 intel_pipe_config_sanity_check(dev_priv, pipe_config); 9013 9014 if (!intel_pipe_config_compare(new_crtc_state, 9015 pipe_config, false)) { 9016 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 9017 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 9018 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 9019 } 9020 } 9021 9022 static void 9023 intel_verify_planes(struct intel_atomic_state *state) 9024 { 9025 struct intel_plane *plane; 9026 const struct intel_plane_state *plane_state; 9027 int i; 9028 9029 for_each_new_intel_plane_in_state(state, plane, 9030 plane_state, i) 9031 assert_plane(plane, plane_state->planar_slave || 9032 plane_state->uapi.visible); 9033 } 9034 9035 static void 9036 verify_single_dpll_state(struct drm_i915_private *dev_priv, 9037 struct intel_shared_dpll *pll, 9038 struct intel_crtc *crtc, 9039 struct intel_crtc_state *new_crtc_state) 9040 { 9041 struct intel_dpll_hw_state dpll_hw_state; 9042 u8 pipe_mask; 9043 bool active; 9044 9045 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 9046 9047 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name); 9048 9049 active = intel_dpll_get_hw_state(dev_priv, pll, &dpll_hw_state); 9050 9051 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 9052 I915_STATE_WARN(!pll->on && pll->active_mask, 9053 "pll in active use but not on in sw tracking\n"); 9054 I915_STATE_WARN(pll->on && !pll->active_mask, 9055 "pll is on but not used by any active pipe\n"); 9056 I915_STATE_WARN(pll->on != active, 9057 "pll on state mismatch (expected %i, found %i)\n", 9058 pll->on, active); 9059 } 9060 9061 if (!crtc) { 9062 I915_STATE_WARN(pll->active_mask & ~pll->state.pipe_mask, 9063 "more active pll users than references: 0x%x vs 0x%x\n", 9064 pll->active_mask, pll->state.pipe_mask); 9065 9066 return; 9067 } 9068 9069 pipe_mask = BIT(crtc->pipe); 9070 9071 if (new_crtc_state->hw.active) 9072 I915_STATE_WARN(!(pll->active_mask & pipe_mask), 9073 "pll active mismatch (expected pipe %c in active mask 0x%x)\n", 9074 pipe_name(crtc->pipe), pll->active_mask); 9075 else 9076 I915_STATE_WARN(pll->active_mask & pipe_mask, 9077 "pll active mismatch (didn't expect pipe %c in active mask 0x%x)\n", 9078 pipe_name(crtc->pipe), pll->active_mask); 9079 9080 I915_STATE_WARN(!(pll->state.pipe_mask & pipe_mask), 9081 "pll enabled crtcs mismatch (expected 0x%x in 0x%x)\n", 9082 pipe_mask, pll->state.pipe_mask); 9083 9084 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 9085 &dpll_hw_state, 9086 sizeof(dpll_hw_state)), 9087 "pll hw state mismatch\n"); 9088 } 9089 9090 static void 9091 verify_shared_dpll_state(struct intel_crtc *crtc, 9092 struct intel_crtc_state *old_crtc_state, 9093 struct intel_crtc_state *new_crtc_state) 9094 { 9095 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9096 9097 if (new_crtc_state->shared_dpll) 9098 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 9099 9100 if (old_crtc_state->shared_dpll && 9101 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 9102 u8 pipe_mask = BIT(crtc->pipe); 9103 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 9104 9105 I915_STATE_WARN(pll->active_mask & pipe_mask, 9106 "pll active mismatch (didn't expect pipe %c in active mask (0x%x))\n", 9107 pipe_name(crtc->pipe), pll->active_mask); 9108 I915_STATE_WARN(pll->state.pipe_mask & pipe_mask, 9109 "pll enabled crtcs mismatch (found %x in enabled mask (0x%x))\n", 9110 pipe_name(crtc->pipe), pll->state.pipe_mask); 9111 } 9112 } 9113 9114 static void 9115 intel_modeset_verify_crtc(struct intel_crtc *crtc, 9116 struct intel_atomic_state *state, 9117 struct intel_crtc_state *old_crtc_state, 9118 struct intel_crtc_state *new_crtc_state) 9119 { 9120 if (!intel_crtc_needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 9121 return; 9122 9123 verify_wm_state(crtc, new_crtc_state); 9124 verify_connector_state(state, crtc); 9125 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 9126 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 9127 } 9128 9129 static void 9130 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 9131 { 9132 int i; 9133 9134 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) 9135 verify_single_dpll_state(dev_priv, 9136 &dev_priv->dpll.shared_dplls[i], 9137 NULL, NULL); 9138 } 9139 9140 static void 9141 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 9142 struct intel_atomic_state *state) 9143 { 9144 verify_encoder_state(dev_priv, state); 9145 verify_connector_state(state, NULL); 9146 verify_disabled_dpll_state(dev_priv); 9147 } 9148 9149 int intel_modeset_all_pipes(struct intel_atomic_state *state) 9150 { 9151 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9152 struct intel_crtc *crtc; 9153 9154 /* 9155 * Add all pipes to the state, and force 9156 * a modeset on all the active ones. 9157 */ 9158 for_each_intel_crtc(&dev_priv->drm, crtc) { 9159 struct intel_crtc_state *crtc_state; 9160 int ret; 9161 9162 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 9163 if (IS_ERR(crtc_state)) 9164 return PTR_ERR(crtc_state); 9165 9166 if (!crtc_state->hw.active || 9167 drm_atomic_crtc_needs_modeset(&crtc_state->uapi)) 9168 continue; 9169 9170 crtc_state->uapi.mode_changed = true; 9171 9172 ret = drm_atomic_add_affected_connectors(&state->base, 9173 &crtc->base); 9174 if (ret) 9175 return ret; 9176 9177 ret = intel_atomic_add_affected_planes(state, crtc); 9178 if (ret) 9179 return ret; 9180 9181 crtc_state->update_planes |= crtc_state->active_planes; 9182 } 9183 9184 return 0; 9185 } 9186 9187 static void 9188 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) 9189 { 9190 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9191 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9192 struct drm_display_mode adjusted_mode = 9193 crtc_state->hw.adjusted_mode; 9194 9195 if (crtc_state->vrr.enable) { 9196 adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax; 9197 adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax; 9198 adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 9199 crtc->vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 9200 } 9201 9202 drm_calc_timestamping_constants(&crtc->base, &adjusted_mode); 9203 9204 crtc->mode_flags = crtc_state->mode_flags; 9205 9206 /* 9207 * The scanline counter increments at the leading edge of hsync. 9208 * 9209 * On most platforms it starts counting from vtotal-1 on the 9210 * first active line. That means the scanline counter value is 9211 * always one less than what we would expect. Ie. just after 9212 * start of vblank, which also occurs at start of hsync (on the 9213 * last active line), the scanline counter will read vblank_start-1. 9214 * 9215 * On gen2 the scanline counter starts counting from 1 instead 9216 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 9217 * to keep the value positive), instead of adding one. 9218 * 9219 * On HSW+ the behaviour of the scanline counter depends on the output 9220 * type. For DP ports it behaves like most other platforms, but on HDMI 9221 * there's an extra 1 line difference. So we need to add two instead of 9222 * one to the value. 9223 * 9224 * On VLV/CHV DSI the scanline counter would appear to increment 9225 * approx. 1/3 of a scanline before start of vblank. Unfortunately 9226 * that means we can't tell whether we're in vblank or not while 9227 * we're on that particular line. We must still set scanline_offset 9228 * to 1 so that the vblank timestamps come out correct when we query 9229 * the scanline counter from within the vblank interrupt handler. 9230 * However if queried just before the start of vblank we'll get an 9231 * answer that's slightly in the future. 9232 */ 9233 if (DISPLAY_VER(dev_priv) == 2) { 9234 int vtotal; 9235 9236 vtotal = adjusted_mode.crtc_vtotal; 9237 if (adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 9238 vtotal /= 2; 9239 9240 crtc->scanline_offset = vtotal - 1; 9241 } else if (HAS_DDI(dev_priv) && 9242 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 9243 crtc->scanline_offset = 2; 9244 } else { 9245 crtc->scanline_offset = 1; 9246 } 9247 } 9248 9249 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 9250 { 9251 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9252 struct intel_crtc_state *new_crtc_state; 9253 struct intel_crtc *crtc; 9254 int i; 9255 9256 if (!dev_priv->display.crtc_compute_clock) 9257 return; 9258 9259 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9260 if (!intel_crtc_needs_modeset(new_crtc_state)) 9261 continue; 9262 9263 intel_release_shared_dplls(state, crtc); 9264 } 9265 } 9266 9267 /* 9268 * This implements the workaround described in the "notes" section of the mode 9269 * set sequence documentation. When going from no pipes or single pipe to 9270 * multiple pipes, and planes are enabled after the pipe, we need to wait at 9271 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 9272 */ 9273 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) 9274 { 9275 struct intel_crtc_state *crtc_state; 9276 struct intel_crtc *crtc; 9277 struct intel_crtc_state *first_crtc_state = NULL; 9278 struct intel_crtc_state *other_crtc_state = NULL; 9279 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 9280 int i; 9281 9282 /* look at all crtc's that are going to be enabled in during modeset */ 9283 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9284 if (!crtc_state->hw.active || 9285 !intel_crtc_needs_modeset(crtc_state)) 9286 continue; 9287 9288 if (first_crtc_state) { 9289 other_crtc_state = crtc_state; 9290 break; 9291 } else { 9292 first_crtc_state = crtc_state; 9293 first_pipe = crtc->pipe; 9294 } 9295 } 9296 9297 /* No workaround needed? */ 9298 if (!first_crtc_state) 9299 return 0; 9300 9301 /* w/a possibly needed, check how many crtc's are already enabled. */ 9302 for_each_intel_crtc(state->base.dev, crtc) { 9303 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 9304 if (IS_ERR(crtc_state)) 9305 return PTR_ERR(crtc_state); 9306 9307 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 9308 9309 if (!crtc_state->hw.active || 9310 intel_crtc_needs_modeset(crtc_state)) 9311 continue; 9312 9313 /* 2 or more enabled crtcs means no need for w/a */ 9314 if (enabled_pipe != INVALID_PIPE) 9315 return 0; 9316 9317 enabled_pipe = crtc->pipe; 9318 } 9319 9320 if (enabled_pipe != INVALID_PIPE) 9321 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 9322 else if (other_crtc_state) 9323 other_crtc_state->hsw_workaround_pipe = first_pipe; 9324 9325 return 0; 9326 } 9327 9328 u8 intel_calc_active_pipes(struct intel_atomic_state *state, 9329 u8 active_pipes) 9330 { 9331 const struct intel_crtc_state *crtc_state; 9332 struct intel_crtc *crtc; 9333 int i; 9334 9335 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9336 if (crtc_state->hw.active) 9337 active_pipes |= BIT(crtc->pipe); 9338 else 9339 active_pipes &= ~BIT(crtc->pipe); 9340 } 9341 9342 return active_pipes; 9343 } 9344 9345 static int intel_modeset_checks(struct intel_atomic_state *state) 9346 { 9347 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9348 9349 state->modeset = true; 9350 9351 if (IS_HASWELL(dev_priv)) 9352 return hsw_mode_set_planes_workaround(state); 9353 9354 return 0; 9355 } 9356 9357 /* 9358 * Handle calculation of various watermark data at the end of the atomic check 9359 * phase. The code here should be run after the per-crtc and per-plane 'check' 9360 * handlers to ensure that all derived state has been updated. 9361 */ 9362 static int calc_watermark_data(struct intel_atomic_state *state) 9363 { 9364 struct drm_device *dev = state->base.dev; 9365 struct drm_i915_private *dev_priv = to_i915(dev); 9366 9367 /* Is there platform-specific watermark information to calculate? */ 9368 if (dev_priv->display.compute_global_watermarks) 9369 return dev_priv->display.compute_global_watermarks(state); 9370 9371 return 0; 9372 } 9373 9374 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 9375 struct intel_crtc_state *new_crtc_state) 9376 { 9377 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 9378 return; 9379 9380 new_crtc_state->uapi.mode_changed = false; 9381 new_crtc_state->update_pipe = true; 9382 } 9383 9384 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state, 9385 struct intel_crtc_state *new_crtc_state) 9386 { 9387 /* 9388 * If we're not doing the full modeset we want to 9389 * keep the current M/N values as they may be 9390 * sufficiently different to the computed values 9391 * to cause problems. 9392 * 9393 * FIXME: should really copy more fuzzy state here 9394 */ 9395 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 9396 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 9397 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 9398 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 9399 } 9400 9401 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, 9402 struct intel_crtc *crtc, 9403 u8 plane_ids_mask) 9404 { 9405 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9406 struct intel_plane *plane; 9407 9408 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 9409 struct intel_plane_state *plane_state; 9410 9411 if ((plane_ids_mask & BIT(plane->id)) == 0) 9412 continue; 9413 9414 plane_state = intel_atomic_get_plane_state(state, plane); 9415 if (IS_ERR(plane_state)) 9416 return PTR_ERR(plane_state); 9417 } 9418 9419 return 0; 9420 } 9421 9422 int intel_atomic_add_affected_planes(struct intel_atomic_state *state, 9423 struct intel_crtc *crtc) 9424 { 9425 const struct intel_crtc_state *old_crtc_state = 9426 intel_atomic_get_old_crtc_state(state, crtc); 9427 const struct intel_crtc_state *new_crtc_state = 9428 intel_atomic_get_new_crtc_state(state, crtc); 9429 9430 return intel_crtc_add_planes_to_state(state, crtc, 9431 old_crtc_state->enabled_planes | 9432 new_crtc_state->enabled_planes); 9433 } 9434 9435 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) 9436 { 9437 /* See {hsw,vlv,ivb}_plane_ratio() */ 9438 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || 9439 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || 9440 IS_IVYBRIDGE(dev_priv); 9441 } 9442 9443 static int intel_crtc_add_bigjoiner_planes(struct intel_atomic_state *state, 9444 struct intel_crtc *crtc, 9445 struct intel_crtc *other) 9446 { 9447 const struct intel_plane_state *plane_state; 9448 struct intel_plane *plane; 9449 u8 plane_ids = 0; 9450 int i; 9451 9452 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9453 if (plane->pipe == crtc->pipe) 9454 plane_ids |= BIT(plane->id); 9455 } 9456 9457 return intel_crtc_add_planes_to_state(state, other, plane_ids); 9458 } 9459 9460 static int intel_bigjoiner_add_affected_planes(struct intel_atomic_state *state) 9461 { 9462 const struct intel_crtc_state *crtc_state; 9463 struct intel_crtc *crtc; 9464 int i; 9465 9466 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9467 int ret; 9468 9469 if (!crtc_state->bigjoiner) 9470 continue; 9471 9472 ret = intel_crtc_add_bigjoiner_planes(state, crtc, 9473 crtc_state->bigjoiner_linked_crtc); 9474 if (ret) 9475 return ret; 9476 } 9477 9478 return 0; 9479 } 9480 9481 static int intel_atomic_check_planes(struct intel_atomic_state *state) 9482 { 9483 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9484 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9485 struct intel_plane_state *plane_state; 9486 struct intel_plane *plane; 9487 struct intel_crtc *crtc; 9488 int i, ret; 9489 9490 ret = icl_add_linked_planes(state); 9491 if (ret) 9492 return ret; 9493 9494 ret = intel_bigjoiner_add_affected_planes(state); 9495 if (ret) 9496 return ret; 9497 9498 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9499 ret = intel_plane_atomic_check(state, plane); 9500 if (ret) { 9501 drm_dbg_atomic(&dev_priv->drm, 9502 "[PLANE:%d:%s] atomic driver check failed\n", 9503 plane->base.base.id, plane->base.name); 9504 return ret; 9505 } 9506 } 9507 9508 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9509 new_crtc_state, i) { 9510 u8 old_active_planes, new_active_planes; 9511 9512 ret = icl_check_nv12_planes(new_crtc_state); 9513 if (ret) 9514 return ret; 9515 9516 /* 9517 * On some platforms the number of active planes affects 9518 * the planes' minimum cdclk calculation. Add such planes 9519 * to the state before we compute the minimum cdclk. 9520 */ 9521 if (!active_planes_affects_min_cdclk(dev_priv)) 9522 continue; 9523 9524 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 9525 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 9526 9527 if (hweight8(old_active_planes) == hweight8(new_active_planes)) 9528 continue; 9529 9530 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); 9531 if (ret) 9532 return ret; 9533 } 9534 9535 return 0; 9536 } 9537 9538 static int intel_atomic_check_cdclk(struct intel_atomic_state *state, 9539 bool *need_cdclk_calc) 9540 { 9541 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9542 const struct intel_cdclk_state *old_cdclk_state; 9543 const struct intel_cdclk_state *new_cdclk_state; 9544 struct intel_plane_state *plane_state; 9545 struct intel_bw_state *new_bw_state; 9546 struct intel_plane *plane; 9547 int min_cdclk = 0; 9548 enum pipe pipe; 9549 int ret; 9550 int i; 9551 /* 9552 * active_planes bitmask has been updated, and potentially 9553 * affected planes are part of the state. We can now 9554 * compute the minimum cdclk for each plane. 9555 */ 9556 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9557 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 9558 if (ret) 9559 return ret; 9560 } 9561 9562 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 9563 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 9564 9565 if (new_cdclk_state && 9566 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk) 9567 *need_cdclk_calc = true; 9568 9569 ret = dev_priv->display.bw_calc_min_cdclk(state); 9570 if (ret) 9571 return ret; 9572 9573 new_bw_state = intel_atomic_get_new_bw_state(state); 9574 9575 if (!new_cdclk_state || !new_bw_state) 9576 return 0; 9577 9578 for_each_pipe(dev_priv, pipe) { 9579 min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk); 9580 9581 /* 9582 * Currently do this change only if we need to increase 9583 */ 9584 if (new_bw_state->min_cdclk > min_cdclk) 9585 *need_cdclk_calc = true; 9586 } 9587 9588 return 0; 9589 } 9590 9591 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 9592 { 9593 struct intel_crtc_state *crtc_state; 9594 struct intel_crtc *crtc; 9595 int i; 9596 9597 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9598 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 9599 int ret; 9600 9601 ret = intel_crtc_atomic_check(state, crtc); 9602 if (ret) { 9603 drm_dbg_atomic(&i915->drm, 9604 "[CRTC:%d:%s] atomic driver check failed\n", 9605 crtc->base.base.id, crtc->base.name); 9606 return ret; 9607 } 9608 } 9609 9610 return 0; 9611 } 9612 9613 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, 9614 u8 transcoders) 9615 { 9616 const struct intel_crtc_state *new_crtc_state; 9617 struct intel_crtc *crtc; 9618 int i; 9619 9620 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9621 if (new_crtc_state->hw.enable && 9622 transcoders & BIT(new_crtc_state->cpu_transcoder) && 9623 intel_crtc_needs_modeset(new_crtc_state)) 9624 return true; 9625 } 9626 9627 return false; 9628 } 9629 9630 static int intel_atomic_check_bigjoiner(struct intel_atomic_state *state, 9631 struct intel_crtc *crtc, 9632 struct intel_crtc_state *old_crtc_state, 9633 struct intel_crtc_state *new_crtc_state) 9634 { 9635 struct intel_crtc_state *slave_crtc_state, *master_crtc_state; 9636 struct intel_crtc *slave, *master; 9637 9638 /* slave being enabled, is master is still claiming this crtc? */ 9639 if (old_crtc_state->bigjoiner_slave) { 9640 slave = crtc; 9641 master = old_crtc_state->bigjoiner_linked_crtc; 9642 master_crtc_state = intel_atomic_get_new_crtc_state(state, master); 9643 if (!master_crtc_state || !intel_crtc_needs_modeset(master_crtc_state)) 9644 goto claimed; 9645 } 9646 9647 if (!new_crtc_state->bigjoiner) 9648 return 0; 9649 9650 slave = intel_dsc_get_bigjoiner_secondary(crtc); 9651 if (!slave) { 9652 DRM_DEBUG_KMS("[CRTC:%d:%s] Big joiner configuration requires " 9653 "CRTC + 1 to be used, doesn't exist\n", 9654 crtc->base.base.id, crtc->base.name); 9655 return -EINVAL; 9656 } 9657 9658 new_crtc_state->bigjoiner_linked_crtc = slave; 9659 slave_crtc_state = intel_atomic_get_crtc_state(&state->base, slave); 9660 master = crtc; 9661 if (IS_ERR(slave_crtc_state)) 9662 return PTR_ERR(slave_crtc_state); 9663 9664 /* master being enabled, slave was already configured? */ 9665 if (slave_crtc_state->uapi.enable) 9666 goto claimed; 9667 9668 DRM_DEBUG_KMS("[CRTC:%d:%s] Used as slave for big joiner\n", 9669 slave->base.base.id, slave->base.name); 9670 9671 return copy_bigjoiner_crtc_state(slave_crtc_state, new_crtc_state); 9672 9673 claimed: 9674 DRM_DEBUG_KMS("[CRTC:%d:%s] Slave is enabled as normal CRTC, but " 9675 "[CRTC:%d:%s] claiming this CRTC for bigjoiner.\n", 9676 slave->base.base.id, slave->base.name, 9677 master->base.base.id, master->base.name); 9678 return -EINVAL; 9679 } 9680 9681 static void kill_bigjoiner_slave(struct intel_atomic_state *state, 9682 struct intel_crtc_state *master_crtc_state) 9683 { 9684 struct intel_crtc_state *slave_crtc_state = 9685 intel_atomic_get_new_crtc_state(state, master_crtc_state->bigjoiner_linked_crtc); 9686 9687 slave_crtc_state->bigjoiner = master_crtc_state->bigjoiner = false; 9688 slave_crtc_state->bigjoiner_slave = master_crtc_state->bigjoiner_slave = false; 9689 slave_crtc_state->bigjoiner_linked_crtc = master_crtc_state->bigjoiner_linked_crtc = NULL; 9690 intel_crtc_copy_uapi_to_hw_state(state, slave_crtc_state); 9691 } 9692 9693 /** 9694 * DOC: asynchronous flip implementation 9695 * 9696 * Asynchronous page flip is the implementation for the DRM_MODE_PAGE_FLIP_ASYNC 9697 * flag. Currently async flip is only supported via the drmModePageFlip IOCTL. 9698 * Correspondingly, support is currently added for primary plane only. 9699 * 9700 * Async flip can only change the plane surface address, so anything else 9701 * changing is rejected from the intel_atomic_check_async() function. 9702 * Once this check is cleared, flip done interrupt is enabled using 9703 * the intel_crtc_enable_flip_done() function. 9704 * 9705 * As soon as the surface address register is written, flip done interrupt is 9706 * generated and the requested events are sent to the usersapce in the interrupt 9707 * handler itself. The timestamp and sequence sent during the flip done event 9708 * correspond to the last vblank and have no relation to the actual time when 9709 * the flip done event was sent. 9710 */ 9711 static int intel_atomic_check_async(struct intel_atomic_state *state) 9712 { 9713 struct drm_i915_private *i915 = to_i915(state->base.dev); 9714 const struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9715 const struct intel_plane_state *new_plane_state, *old_plane_state; 9716 struct intel_crtc *crtc; 9717 struct intel_plane *plane; 9718 int i; 9719 9720 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9721 new_crtc_state, i) { 9722 if (intel_crtc_needs_modeset(new_crtc_state)) { 9723 drm_dbg_kms(&i915->drm, "Modeset Required. Async flip not supported\n"); 9724 return -EINVAL; 9725 } 9726 9727 if (!new_crtc_state->hw.active) { 9728 drm_dbg_kms(&i915->drm, "CRTC inactive\n"); 9729 return -EINVAL; 9730 } 9731 if (old_crtc_state->active_planes != new_crtc_state->active_planes) { 9732 drm_dbg_kms(&i915->drm, 9733 "Active planes cannot be changed during async flip\n"); 9734 return -EINVAL; 9735 } 9736 } 9737 9738 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 9739 new_plane_state, i) { 9740 /* 9741 * TODO: Async flip is only supported through the page flip IOCTL 9742 * as of now. So support currently added for primary plane only. 9743 * Support for other planes on platforms on which supports 9744 * this(vlv/chv and icl+) should be added when async flip is 9745 * enabled in the atomic IOCTL path. 9746 */ 9747 if (!plane->async_flip) 9748 return -EINVAL; 9749 9750 /* 9751 * FIXME: This check is kept generic for all platforms. 9752 * Need to verify this for all gen9 and gen10 platforms to enable 9753 * this selectively if required. 9754 */ 9755 switch (new_plane_state->hw.fb->modifier) { 9756 case I915_FORMAT_MOD_X_TILED: 9757 case I915_FORMAT_MOD_Y_TILED: 9758 case I915_FORMAT_MOD_Yf_TILED: 9759 break; 9760 default: 9761 drm_dbg_kms(&i915->drm, 9762 "Linear memory/CCS does not support async flips\n"); 9763 return -EINVAL; 9764 } 9765 9766 if (old_plane_state->view.color_plane[0].stride != 9767 new_plane_state->view.color_plane[0].stride) { 9768 drm_dbg_kms(&i915->drm, "Stride cannot be changed in async flip\n"); 9769 return -EINVAL; 9770 } 9771 9772 if (old_plane_state->hw.fb->modifier != 9773 new_plane_state->hw.fb->modifier) { 9774 drm_dbg_kms(&i915->drm, 9775 "Framebuffer modifiers cannot be changed in async flip\n"); 9776 return -EINVAL; 9777 } 9778 9779 if (old_plane_state->hw.fb->format != 9780 new_plane_state->hw.fb->format) { 9781 drm_dbg_kms(&i915->drm, 9782 "Framebuffer format cannot be changed in async flip\n"); 9783 return -EINVAL; 9784 } 9785 9786 if (old_plane_state->hw.rotation != 9787 new_plane_state->hw.rotation) { 9788 drm_dbg_kms(&i915->drm, "Rotation cannot be changed in async flip\n"); 9789 return -EINVAL; 9790 } 9791 9792 if (!drm_rect_equals(&old_plane_state->uapi.src, &new_plane_state->uapi.src) || 9793 !drm_rect_equals(&old_plane_state->uapi.dst, &new_plane_state->uapi.dst)) { 9794 drm_dbg_kms(&i915->drm, 9795 "Plane size/co-ordinates cannot be changed in async flip\n"); 9796 return -EINVAL; 9797 } 9798 9799 if (old_plane_state->hw.alpha != new_plane_state->hw.alpha) { 9800 drm_dbg_kms(&i915->drm, "Alpha value cannot be changed in async flip\n"); 9801 return -EINVAL; 9802 } 9803 9804 if (old_plane_state->hw.pixel_blend_mode != 9805 new_plane_state->hw.pixel_blend_mode) { 9806 drm_dbg_kms(&i915->drm, 9807 "Pixel blend mode cannot be changed in async flip\n"); 9808 return -EINVAL; 9809 } 9810 9811 if (old_plane_state->hw.color_encoding != new_plane_state->hw.color_encoding) { 9812 drm_dbg_kms(&i915->drm, 9813 "Color encoding cannot be changed in async flip\n"); 9814 return -EINVAL; 9815 } 9816 9817 if (old_plane_state->hw.color_range != new_plane_state->hw.color_range) { 9818 drm_dbg_kms(&i915->drm, "Color range cannot be changed in async flip\n"); 9819 return -EINVAL; 9820 } 9821 } 9822 9823 return 0; 9824 } 9825 9826 static int intel_bigjoiner_add_affected_crtcs(struct intel_atomic_state *state) 9827 { 9828 struct intel_crtc_state *crtc_state; 9829 struct intel_crtc *crtc; 9830 int i; 9831 9832 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9833 struct intel_crtc_state *linked_crtc_state; 9834 struct intel_crtc *linked_crtc; 9835 int ret; 9836 9837 if (!crtc_state->bigjoiner) 9838 continue; 9839 9840 linked_crtc = crtc_state->bigjoiner_linked_crtc; 9841 linked_crtc_state = intel_atomic_get_crtc_state(&state->base, linked_crtc); 9842 if (IS_ERR(linked_crtc_state)) 9843 return PTR_ERR(linked_crtc_state); 9844 9845 if (!intel_crtc_needs_modeset(crtc_state)) 9846 continue; 9847 9848 linked_crtc_state->uapi.mode_changed = true; 9849 9850 ret = drm_atomic_add_affected_connectors(&state->base, 9851 &linked_crtc->base); 9852 if (ret) 9853 return ret; 9854 9855 ret = intel_atomic_add_affected_planes(state, linked_crtc); 9856 if (ret) 9857 return ret; 9858 } 9859 9860 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9861 /* Kill old bigjoiner link, we may re-establish afterwards */ 9862 if (intel_crtc_needs_modeset(crtc_state) && 9863 crtc_state->bigjoiner && !crtc_state->bigjoiner_slave) 9864 kill_bigjoiner_slave(state, crtc_state); 9865 } 9866 9867 return 0; 9868 } 9869 9870 /** 9871 * intel_atomic_check - validate state object 9872 * @dev: drm device 9873 * @_state: state to validate 9874 */ 9875 static int intel_atomic_check(struct drm_device *dev, 9876 struct drm_atomic_state *_state) 9877 { 9878 struct drm_i915_private *dev_priv = to_i915(dev); 9879 struct intel_atomic_state *state = to_intel_atomic_state(_state); 9880 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9881 struct intel_crtc *crtc; 9882 int ret, i; 9883 bool any_ms = false; 9884 9885 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9886 new_crtc_state, i) { 9887 if (new_crtc_state->inherited != old_crtc_state->inherited) 9888 new_crtc_state->uapi.mode_changed = true; 9889 } 9890 9891 intel_vrr_check_modeset(state); 9892 9893 ret = drm_atomic_helper_check_modeset(dev, &state->base); 9894 if (ret) 9895 goto fail; 9896 9897 ret = intel_bigjoiner_add_affected_crtcs(state); 9898 if (ret) 9899 goto fail; 9900 9901 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9902 new_crtc_state, i) { 9903 if (!intel_crtc_needs_modeset(new_crtc_state)) { 9904 /* Light copy */ 9905 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, new_crtc_state); 9906 9907 continue; 9908 } 9909 9910 if (!new_crtc_state->uapi.enable) { 9911 if (!new_crtc_state->bigjoiner_slave) { 9912 intel_crtc_copy_uapi_to_hw_state(state, new_crtc_state); 9913 any_ms = true; 9914 } 9915 continue; 9916 } 9917 9918 ret = intel_crtc_prepare_cleared_state(state, new_crtc_state); 9919 if (ret) 9920 goto fail; 9921 9922 ret = intel_modeset_pipe_config(state, new_crtc_state); 9923 if (ret) 9924 goto fail; 9925 9926 ret = intel_atomic_check_bigjoiner(state, crtc, old_crtc_state, 9927 new_crtc_state); 9928 if (ret) 9929 goto fail; 9930 } 9931 9932 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9933 new_crtc_state, i) { 9934 if (!intel_crtc_needs_modeset(new_crtc_state)) 9935 continue; 9936 9937 ret = intel_modeset_pipe_config_late(new_crtc_state); 9938 if (ret) 9939 goto fail; 9940 9941 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 9942 } 9943 9944 /** 9945 * Check if fastset is allowed by external dependencies like other 9946 * pipes and transcoders. 9947 * 9948 * Right now it only forces a fullmodeset when the MST master 9949 * transcoder did not changed but the pipe of the master transcoder 9950 * needs a fullmodeset so all slaves also needs to do a fullmodeset or 9951 * in case of port synced crtcs, if one of the synced crtcs 9952 * needs a full modeset, all other synced crtcs should be 9953 * forced a full modeset. 9954 */ 9955 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9956 if (!new_crtc_state->hw.enable || intel_crtc_needs_modeset(new_crtc_state)) 9957 continue; 9958 9959 if (intel_dp_mst_is_slave_trans(new_crtc_state)) { 9960 enum transcoder master = new_crtc_state->mst_master_transcoder; 9961 9962 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) { 9963 new_crtc_state->uapi.mode_changed = true; 9964 new_crtc_state->update_pipe = false; 9965 } 9966 } 9967 9968 if (is_trans_port_sync_mode(new_crtc_state)) { 9969 u8 trans = new_crtc_state->sync_mode_slaves_mask; 9970 9971 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) 9972 trans |= BIT(new_crtc_state->master_transcoder); 9973 9974 if (intel_cpu_transcoders_need_modeset(state, trans)) { 9975 new_crtc_state->uapi.mode_changed = true; 9976 new_crtc_state->update_pipe = false; 9977 } 9978 } 9979 9980 if (new_crtc_state->bigjoiner) { 9981 struct intel_crtc_state *linked_crtc_state = 9982 intel_atomic_get_new_crtc_state(state, new_crtc_state->bigjoiner_linked_crtc); 9983 9984 if (intel_crtc_needs_modeset(linked_crtc_state)) { 9985 new_crtc_state->uapi.mode_changed = true; 9986 new_crtc_state->update_pipe = false; 9987 } 9988 } 9989 } 9990 9991 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9992 new_crtc_state, i) { 9993 if (intel_crtc_needs_modeset(new_crtc_state)) { 9994 any_ms = true; 9995 continue; 9996 } 9997 9998 if (!new_crtc_state->update_pipe) 9999 continue; 10000 10001 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state); 10002 } 10003 10004 if (any_ms && !check_digital_port_conflicts(state)) { 10005 drm_dbg_kms(&dev_priv->drm, 10006 "rejecting conflicting digital port configuration\n"); 10007 ret = -EINVAL; 10008 goto fail; 10009 } 10010 10011 ret = drm_dp_mst_atomic_check(&state->base); 10012 if (ret) 10013 goto fail; 10014 10015 ret = intel_atomic_check_planes(state); 10016 if (ret) 10017 goto fail; 10018 10019 intel_fbc_choose_crtc(dev_priv, state); 10020 ret = calc_watermark_data(state); 10021 if (ret) 10022 goto fail; 10023 10024 ret = intel_bw_atomic_check(state); 10025 if (ret) 10026 goto fail; 10027 10028 ret = intel_atomic_check_cdclk(state, &any_ms); 10029 if (ret) 10030 goto fail; 10031 10032 if (intel_any_crtc_needs_modeset(state)) 10033 any_ms = true; 10034 10035 if (any_ms) { 10036 ret = intel_modeset_checks(state); 10037 if (ret) 10038 goto fail; 10039 10040 ret = intel_modeset_calc_cdclk(state); 10041 if (ret) 10042 return ret; 10043 10044 intel_modeset_clear_plls(state); 10045 } 10046 10047 ret = intel_atomic_check_crtcs(state); 10048 if (ret) 10049 goto fail; 10050 10051 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10052 new_crtc_state, i) { 10053 if (new_crtc_state->uapi.async_flip) { 10054 ret = intel_atomic_check_async(state); 10055 if (ret) 10056 goto fail; 10057 } 10058 10059 if (!intel_crtc_needs_modeset(new_crtc_state) && 10060 !new_crtc_state->update_pipe) 10061 continue; 10062 10063 intel_dump_pipe_config(new_crtc_state, state, 10064 intel_crtc_needs_modeset(new_crtc_state) ? 10065 "[modeset]" : "[fastset]"); 10066 } 10067 10068 return 0; 10069 10070 fail: 10071 if (ret == -EDEADLK) 10072 return ret; 10073 10074 /* 10075 * FIXME would probably be nice to know which crtc specifically 10076 * caused the failure, in cases where we can pinpoint it. 10077 */ 10078 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10079 new_crtc_state, i) 10080 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 10081 10082 return ret; 10083 } 10084 10085 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 10086 { 10087 struct intel_crtc_state *crtc_state; 10088 struct intel_crtc *crtc; 10089 int i, ret; 10090 10091 ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base); 10092 if (ret < 0) 10093 return ret; 10094 10095 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 10096 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 10097 10098 if (mode_changed || crtc_state->update_pipe || 10099 crtc_state->uapi.color_mgmt_changed) { 10100 intel_dsb_prepare(crtc_state); 10101 } 10102 } 10103 10104 return 0; 10105 } 10106 10107 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 10108 struct intel_crtc_state *crtc_state) 10109 { 10110 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10111 10112 if (DISPLAY_VER(dev_priv) != 2 || crtc_state->active_planes) 10113 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 10114 10115 if (crtc_state->has_pch_encoder) { 10116 enum pipe pch_transcoder = 10117 intel_crtc_pch_transcoder(crtc); 10118 10119 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 10120 } 10121 } 10122 10123 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 10124 const struct intel_crtc_state *new_crtc_state) 10125 { 10126 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 10127 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10128 10129 /* 10130 * Update pipe size and adjust fitter if needed: the reason for this is 10131 * that in compute_mode_changes we check the native mode (not the pfit 10132 * mode) to see if we can flip rather than do a full mode set. In the 10133 * fastboot case, we'll flip, but if we don't update the pipesrc and 10134 * pfit state, we'll end up with a big fb scanned out into the wrong 10135 * sized surface. 10136 */ 10137 intel_set_pipe_src_size(new_crtc_state); 10138 10139 /* on skylake this is done by detaching scalers */ 10140 if (DISPLAY_VER(dev_priv) >= 9) { 10141 if (new_crtc_state->pch_pfit.enabled) 10142 skl_pfit_enable(new_crtc_state); 10143 } else if (HAS_PCH_SPLIT(dev_priv)) { 10144 if (new_crtc_state->pch_pfit.enabled) 10145 ilk_pfit_enable(new_crtc_state); 10146 else if (old_crtc_state->pch_pfit.enabled) 10147 ilk_pfit_disable(old_crtc_state); 10148 } 10149 10150 /* 10151 * The register is supposedly single buffered so perhaps 10152 * not 100% correct to do this here. But SKL+ calculate 10153 * this based on the adjust pixel rate so pfit changes do 10154 * affect it and so it must be updated for fastsets. 10155 * HSW/BDW only really need this here for fastboot, after 10156 * that the value should not change without a full modeset. 10157 */ 10158 if (DISPLAY_VER(dev_priv) >= 9 || 10159 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 10160 hsw_set_linetime_wm(new_crtc_state); 10161 10162 if (DISPLAY_VER(dev_priv) >= 11) 10163 icl_set_pipe_chicken(crtc); 10164 } 10165 10166 static void commit_pipe_pre_planes(struct intel_atomic_state *state, 10167 struct intel_crtc *crtc) 10168 { 10169 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10170 const struct intel_crtc_state *old_crtc_state = 10171 intel_atomic_get_old_crtc_state(state, crtc); 10172 const struct intel_crtc_state *new_crtc_state = 10173 intel_atomic_get_new_crtc_state(state, crtc); 10174 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10175 10176 /* 10177 * During modesets pipe configuration was programmed as the 10178 * CRTC was enabled. 10179 */ 10180 if (!modeset) { 10181 if (new_crtc_state->uapi.color_mgmt_changed || 10182 new_crtc_state->update_pipe) 10183 intel_color_commit(new_crtc_state); 10184 10185 if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 10186 bdw_set_pipemisc(new_crtc_state); 10187 10188 if (new_crtc_state->update_pipe) 10189 intel_pipe_fastset(old_crtc_state, new_crtc_state); 10190 10191 intel_psr2_program_trans_man_trk_ctl(new_crtc_state); 10192 } 10193 10194 if (dev_priv->display.atomic_update_watermarks) 10195 dev_priv->display.atomic_update_watermarks(state, crtc); 10196 } 10197 10198 static void commit_pipe_post_planes(struct intel_atomic_state *state, 10199 struct intel_crtc *crtc) 10200 { 10201 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10202 const struct intel_crtc_state *new_crtc_state = 10203 intel_atomic_get_new_crtc_state(state, crtc); 10204 10205 /* 10206 * Disable the scaler(s) after the plane(s) so that we don't 10207 * get a catastrophic underrun even if the two operations 10208 * end up happening in two different frames. 10209 */ 10210 if (DISPLAY_VER(dev_priv) >= 9 && 10211 !intel_crtc_needs_modeset(new_crtc_state)) 10212 skl_detach_scalers(new_crtc_state); 10213 } 10214 10215 static void intel_enable_crtc(struct intel_atomic_state *state, 10216 struct intel_crtc *crtc) 10217 { 10218 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10219 const struct intel_crtc_state *new_crtc_state = 10220 intel_atomic_get_new_crtc_state(state, crtc); 10221 10222 if (!intel_crtc_needs_modeset(new_crtc_state)) 10223 return; 10224 10225 intel_crtc_update_active_timings(new_crtc_state); 10226 10227 dev_priv->display.crtc_enable(state, crtc); 10228 10229 if (new_crtc_state->bigjoiner_slave) 10230 return; 10231 10232 /* vblanks work again, re-enable pipe CRC. */ 10233 intel_crtc_enable_pipe_crc(crtc); 10234 } 10235 10236 static void intel_update_crtc(struct intel_atomic_state *state, 10237 struct intel_crtc *crtc) 10238 { 10239 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10240 const struct intel_crtc_state *old_crtc_state = 10241 intel_atomic_get_old_crtc_state(state, crtc); 10242 struct intel_crtc_state *new_crtc_state = 10243 intel_atomic_get_new_crtc_state(state, crtc); 10244 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10245 10246 if (!modeset) { 10247 if (new_crtc_state->preload_luts && 10248 (new_crtc_state->uapi.color_mgmt_changed || 10249 new_crtc_state->update_pipe)) 10250 intel_color_load_luts(new_crtc_state); 10251 10252 intel_pre_plane_update(state, crtc); 10253 10254 if (new_crtc_state->update_pipe) 10255 intel_encoders_update_pipe(state, crtc); 10256 } 10257 10258 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 10259 intel_fbc_disable(crtc); 10260 else 10261 intel_fbc_enable(state, crtc); 10262 10263 /* Perform vblank evasion around commit operation */ 10264 intel_pipe_update_start(new_crtc_state); 10265 10266 commit_pipe_pre_planes(state, crtc); 10267 10268 if (DISPLAY_VER(dev_priv) >= 9) 10269 skl_update_planes_on_crtc(state, crtc); 10270 else 10271 i9xx_update_planes_on_crtc(state, crtc); 10272 10273 commit_pipe_post_planes(state, crtc); 10274 10275 intel_pipe_update_end(new_crtc_state); 10276 10277 /* 10278 * We usually enable FIFO underrun interrupts as part of the 10279 * CRTC enable sequence during modesets. But when we inherit a 10280 * valid pipe configuration from the BIOS we need to take care 10281 * of enabling them on the CRTC's first fastset. 10282 */ 10283 if (new_crtc_state->update_pipe && !modeset && 10284 old_crtc_state->inherited) 10285 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 10286 } 10287 10288 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 10289 struct intel_crtc_state *old_crtc_state, 10290 struct intel_crtc_state *new_crtc_state, 10291 struct intel_crtc *crtc) 10292 { 10293 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10294 10295 drm_WARN_ON(&dev_priv->drm, old_crtc_state->bigjoiner_slave); 10296 10297 intel_crtc_disable_planes(state, crtc); 10298 10299 /* 10300 * We still need special handling for disabling bigjoiner master 10301 * and slaves since for slave we do not have encoder or plls 10302 * so we dont need to disable those. 10303 */ 10304 if (old_crtc_state->bigjoiner) { 10305 intel_crtc_disable_planes(state, 10306 old_crtc_state->bigjoiner_linked_crtc); 10307 old_crtc_state->bigjoiner_linked_crtc->active = false; 10308 } 10309 10310 /* 10311 * We need to disable pipe CRC before disabling the pipe, 10312 * or we race against vblank off. 10313 */ 10314 intel_crtc_disable_pipe_crc(crtc); 10315 10316 dev_priv->display.crtc_disable(state, crtc); 10317 crtc->active = false; 10318 intel_fbc_disable(crtc); 10319 intel_disable_shared_dpll(old_crtc_state); 10320 10321 /* FIXME unify this for all platforms */ 10322 if (!new_crtc_state->hw.active && 10323 !HAS_GMCH(dev_priv) && 10324 dev_priv->display.initial_watermarks) 10325 dev_priv->display.initial_watermarks(state, crtc); 10326 } 10327 10328 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 10329 { 10330 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 10331 struct intel_crtc *crtc; 10332 u32 handled = 0; 10333 int i; 10334 10335 /* Only disable port sync and MST slaves */ 10336 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10337 new_crtc_state, i) { 10338 if (!intel_crtc_needs_modeset(new_crtc_state) || old_crtc_state->bigjoiner) 10339 continue; 10340 10341 if (!old_crtc_state->hw.active) 10342 continue; 10343 10344 /* In case of Transcoder port Sync master slave CRTCs can be 10345 * assigned in any order and we need to make sure that 10346 * slave CRTCs are disabled first and then master CRTC since 10347 * Slave vblanks are masked till Master Vblanks. 10348 */ 10349 if (!is_trans_port_sync_slave(old_crtc_state) && 10350 !intel_dp_mst_is_slave_trans(old_crtc_state)) 10351 continue; 10352 10353 intel_pre_plane_update(state, crtc); 10354 intel_old_crtc_state_disables(state, old_crtc_state, 10355 new_crtc_state, crtc); 10356 handled |= BIT(crtc->pipe); 10357 } 10358 10359 /* Disable everything else left on */ 10360 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10361 new_crtc_state, i) { 10362 if (!intel_crtc_needs_modeset(new_crtc_state) || 10363 (handled & BIT(crtc->pipe)) || 10364 old_crtc_state->bigjoiner_slave) 10365 continue; 10366 10367 intel_pre_plane_update(state, crtc); 10368 if (old_crtc_state->bigjoiner) { 10369 struct intel_crtc *slave = 10370 old_crtc_state->bigjoiner_linked_crtc; 10371 10372 intel_pre_plane_update(state, slave); 10373 } 10374 10375 if (old_crtc_state->hw.active) 10376 intel_old_crtc_state_disables(state, old_crtc_state, 10377 new_crtc_state, crtc); 10378 } 10379 } 10380 10381 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 10382 { 10383 struct intel_crtc_state *new_crtc_state; 10384 struct intel_crtc *crtc; 10385 int i; 10386 10387 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10388 if (!new_crtc_state->hw.active) 10389 continue; 10390 10391 intel_enable_crtc(state, crtc); 10392 intel_update_crtc(state, crtc); 10393 } 10394 } 10395 10396 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 10397 { 10398 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10399 struct intel_crtc *crtc; 10400 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10401 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 10402 u8 update_pipes = 0, modeset_pipes = 0; 10403 int i; 10404 10405 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 10406 enum pipe pipe = crtc->pipe; 10407 10408 if (!new_crtc_state->hw.active) 10409 continue; 10410 10411 /* ignore allocations for crtc's that have been turned off. */ 10412 if (!intel_crtc_needs_modeset(new_crtc_state)) { 10413 entries[pipe] = old_crtc_state->wm.skl.ddb; 10414 update_pipes |= BIT(pipe); 10415 } else { 10416 modeset_pipes |= BIT(pipe); 10417 } 10418 } 10419 10420 /* 10421 * Whenever the number of active pipes changes, we need to make sure we 10422 * update the pipes in the right order so that their ddb allocations 10423 * never overlap with each other between CRTC updates. Otherwise we'll 10424 * cause pipe underruns and other bad stuff. 10425 * 10426 * So first lets enable all pipes that do not need a fullmodeset as 10427 * those don't have any external dependency. 10428 */ 10429 while (update_pipes) { 10430 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10431 new_crtc_state, i) { 10432 enum pipe pipe = crtc->pipe; 10433 10434 if ((update_pipes & BIT(pipe)) == 0) 10435 continue; 10436 10437 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 10438 entries, I915_MAX_PIPES, pipe)) 10439 continue; 10440 10441 entries[pipe] = new_crtc_state->wm.skl.ddb; 10442 update_pipes &= ~BIT(pipe); 10443 10444 intel_update_crtc(state, crtc); 10445 10446 /* 10447 * If this is an already active pipe, it's DDB changed, 10448 * and this isn't the last pipe that needs updating 10449 * then we need to wait for a vblank to pass for the 10450 * new ddb allocation to take effect. 10451 */ 10452 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 10453 &old_crtc_state->wm.skl.ddb) && 10454 (update_pipes | modeset_pipes)) 10455 intel_wait_for_vblank(dev_priv, pipe); 10456 } 10457 } 10458 10459 update_pipes = modeset_pipes; 10460 10461 /* 10462 * Enable all pipes that needs a modeset and do not depends on other 10463 * pipes 10464 */ 10465 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10466 enum pipe pipe = crtc->pipe; 10467 10468 if ((modeset_pipes & BIT(pipe)) == 0) 10469 continue; 10470 10471 if (intel_dp_mst_is_slave_trans(new_crtc_state) || 10472 is_trans_port_sync_master(new_crtc_state) || 10473 (new_crtc_state->bigjoiner && !new_crtc_state->bigjoiner_slave)) 10474 continue; 10475 10476 modeset_pipes &= ~BIT(pipe); 10477 10478 intel_enable_crtc(state, crtc); 10479 } 10480 10481 /* 10482 * Then we enable all remaining pipes that depend on other 10483 * pipes: MST slaves and port sync masters, big joiner master 10484 */ 10485 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10486 enum pipe pipe = crtc->pipe; 10487 10488 if ((modeset_pipes & BIT(pipe)) == 0) 10489 continue; 10490 10491 modeset_pipes &= ~BIT(pipe); 10492 10493 intel_enable_crtc(state, crtc); 10494 } 10495 10496 /* 10497 * Finally we do the plane updates/etc. for all pipes that got enabled. 10498 */ 10499 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10500 enum pipe pipe = crtc->pipe; 10501 10502 if ((update_pipes & BIT(pipe)) == 0) 10503 continue; 10504 10505 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 10506 entries, I915_MAX_PIPES, pipe)); 10507 10508 entries[pipe] = new_crtc_state->wm.skl.ddb; 10509 update_pipes &= ~BIT(pipe); 10510 10511 intel_update_crtc(state, crtc); 10512 } 10513 10514 drm_WARN_ON(&dev_priv->drm, modeset_pipes); 10515 drm_WARN_ON(&dev_priv->drm, update_pipes); 10516 } 10517 10518 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 10519 { 10520 struct intel_atomic_state *state, *next; 10521 struct llist_node *freed; 10522 10523 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 10524 llist_for_each_entry_safe(state, next, freed, freed) 10525 drm_atomic_state_put(&state->base); 10526 } 10527 10528 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 10529 { 10530 struct drm_i915_private *dev_priv = 10531 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 10532 10533 intel_atomic_helper_free_state(dev_priv); 10534 } 10535 10536 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 10537 { 10538 struct wait_queue_entry wait_fence, wait_reset; 10539 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 10540 10541 init_wait_entry(&wait_fence, 0); 10542 init_wait_entry(&wait_reset, 0); 10543 for (;;) { 10544 prepare_to_wait(&intel_state->commit_ready.wait, 10545 &wait_fence, TASK_UNINTERRUPTIBLE); 10546 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 10547 I915_RESET_MODESET), 10548 &wait_reset, TASK_UNINTERRUPTIBLE); 10549 10550 10551 if (i915_sw_fence_done(&intel_state->commit_ready) || 10552 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 10553 break; 10554 10555 schedule(); 10556 } 10557 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 10558 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 10559 I915_RESET_MODESET), 10560 &wait_reset); 10561 } 10562 10563 static void intel_cleanup_dsbs(struct intel_atomic_state *state) 10564 { 10565 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10566 struct intel_crtc *crtc; 10567 int i; 10568 10569 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10570 new_crtc_state, i) 10571 intel_dsb_cleanup(old_crtc_state); 10572 } 10573 10574 static void intel_atomic_cleanup_work(struct work_struct *work) 10575 { 10576 struct intel_atomic_state *state = 10577 container_of(work, struct intel_atomic_state, base.commit_work); 10578 struct drm_i915_private *i915 = to_i915(state->base.dev); 10579 10580 intel_cleanup_dsbs(state); 10581 drm_atomic_helper_cleanup_planes(&i915->drm, &state->base); 10582 drm_atomic_helper_commit_cleanup_done(&state->base); 10583 drm_atomic_state_put(&state->base); 10584 10585 intel_atomic_helper_free_state(i915); 10586 } 10587 10588 static void intel_atomic_prepare_plane_clear_colors(struct intel_atomic_state *state) 10589 { 10590 struct drm_i915_private *i915 = to_i915(state->base.dev); 10591 struct intel_plane *plane; 10592 struct intel_plane_state *plane_state; 10593 int i; 10594 10595 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 10596 struct drm_framebuffer *fb = plane_state->hw.fb; 10597 int ret; 10598 10599 if (!fb || 10600 fb->modifier != I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC) 10601 continue; 10602 10603 /* 10604 * The layout of the fast clear color value expected by HW 10605 * (the DRM ABI requiring this value to be located in fb at offset 0 of plane#2): 10606 * - 4 x 4 bytes per-channel value 10607 * (in surface type specific float/int format provided by the fb user) 10608 * - 8 bytes native color value used by the display 10609 * (converted/written by GPU during a fast clear operation using the 10610 * above per-channel values) 10611 * 10612 * The commit's FB prepare hook already ensured that FB obj is pinned and the 10613 * caller made sure that the object is synced wrt. the related color clear value 10614 * GPU write on it. 10615 */ 10616 ret = i915_gem_object_read_from_page(intel_fb_obj(fb), 10617 fb->offsets[2] + 16, 10618 &plane_state->ccval, 10619 sizeof(plane_state->ccval)); 10620 /* The above could only fail if the FB obj has an unexpected backing store type. */ 10621 drm_WARN_ON(&i915->drm, ret); 10622 } 10623 } 10624 10625 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 10626 { 10627 struct drm_device *dev = state->base.dev; 10628 struct drm_i915_private *dev_priv = to_i915(dev); 10629 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 10630 struct intel_crtc *crtc; 10631 u64 put_domains[I915_MAX_PIPES] = {}; 10632 intel_wakeref_t wakeref = 0; 10633 int i; 10634 10635 intel_atomic_commit_fence_wait(state); 10636 10637 drm_atomic_helper_wait_for_dependencies(&state->base); 10638 10639 if (state->modeset) 10640 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 10641 10642 intel_atomic_prepare_plane_clear_colors(state); 10643 10644 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10645 new_crtc_state, i) { 10646 if (intel_crtc_needs_modeset(new_crtc_state) || 10647 new_crtc_state->update_pipe) { 10648 10649 put_domains[crtc->pipe] = 10650 modeset_get_crtc_power_domains(new_crtc_state); 10651 } 10652 } 10653 10654 intel_commit_modeset_disables(state); 10655 10656 /* FIXME: Eventually get rid of our crtc->config pointer */ 10657 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10658 crtc->config = new_crtc_state; 10659 10660 if (state->modeset) { 10661 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 10662 10663 intel_set_cdclk_pre_plane_update(state); 10664 10665 intel_modeset_verify_disabled(dev_priv, state); 10666 } 10667 10668 intel_sagv_pre_plane_update(state); 10669 10670 /* Complete the events for pipes that have now been disabled */ 10671 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10672 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10673 10674 /* Complete events for now disable pipes here. */ 10675 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { 10676 spin_lock_irq(&dev->event_lock); 10677 drm_crtc_send_vblank_event(&crtc->base, 10678 new_crtc_state->uapi.event); 10679 spin_unlock_irq(&dev->event_lock); 10680 10681 new_crtc_state->uapi.event = NULL; 10682 } 10683 } 10684 10685 if (state->modeset) 10686 intel_encoders_update_prepare(state); 10687 10688 intel_dbuf_pre_plane_update(state); 10689 10690 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10691 if (new_crtc_state->uapi.async_flip) 10692 intel_crtc_enable_flip_done(state, crtc); 10693 } 10694 10695 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 10696 dev_priv->display.commit_modeset_enables(state); 10697 10698 if (state->modeset) { 10699 intel_encoders_update_complete(state); 10700 10701 intel_set_cdclk_post_plane_update(state); 10702 } 10703 10704 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 10705 * already, but still need the state for the delayed optimization. To 10706 * fix this: 10707 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 10708 * - schedule that vblank worker _before_ calling hw_done 10709 * - at the start of commit_tail, cancel it _synchrously 10710 * - switch over to the vblank wait helper in the core after that since 10711 * we don't need out special handling any more. 10712 */ 10713 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 10714 10715 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10716 if (new_crtc_state->uapi.async_flip) 10717 intel_crtc_disable_flip_done(state, crtc); 10718 10719 if (new_crtc_state->hw.active && 10720 !intel_crtc_needs_modeset(new_crtc_state) && 10721 !new_crtc_state->preload_luts && 10722 (new_crtc_state->uapi.color_mgmt_changed || 10723 new_crtc_state->update_pipe)) 10724 intel_color_load_luts(new_crtc_state); 10725 } 10726 10727 /* 10728 * Now that the vblank has passed, we can go ahead and program the 10729 * optimal watermarks on platforms that need two-step watermark 10730 * programming. 10731 * 10732 * TODO: Move this (and other cleanup) to an async worker eventually. 10733 */ 10734 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10735 new_crtc_state, i) { 10736 /* 10737 * Gen2 reports pipe underruns whenever all planes are disabled. 10738 * So re-enable underrun reporting after some planes get enabled. 10739 * 10740 * We do this before .optimize_watermarks() so that we have a 10741 * chance of catching underruns with the intermediate watermarks 10742 * vs. the new plane configuration. 10743 */ 10744 if (DISPLAY_VER(dev_priv) == 2 && planes_enabling(old_crtc_state, new_crtc_state)) 10745 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 10746 10747 if (dev_priv->display.optimize_watermarks) 10748 dev_priv->display.optimize_watermarks(state, crtc); 10749 } 10750 10751 intel_dbuf_post_plane_update(state); 10752 10753 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 10754 intel_post_plane_update(state, crtc); 10755 10756 modeset_put_crtc_power_domains(crtc, put_domains[crtc->pipe]); 10757 10758 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 10759 10760 /* 10761 * DSB cleanup is done in cleanup_work aligning with framebuffer 10762 * cleanup. So copy and reset the dsb structure to sync with 10763 * commit_done and later do dsb cleanup in cleanup_work. 10764 */ 10765 old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb); 10766 } 10767 10768 /* Underruns don't always raise interrupts, so check manually */ 10769 intel_check_cpu_fifo_underruns(dev_priv); 10770 intel_check_pch_fifo_underruns(dev_priv); 10771 10772 if (state->modeset) 10773 intel_verify_planes(state); 10774 10775 intel_sagv_post_plane_update(state); 10776 10777 drm_atomic_helper_commit_hw_done(&state->base); 10778 10779 if (state->modeset) { 10780 /* As one of the primary mmio accessors, KMS has a high 10781 * likelihood of triggering bugs in unclaimed access. After we 10782 * finish modesetting, see if an error has been flagged, and if 10783 * so enable debugging for the next modeset - and hope we catch 10784 * the culprit. 10785 */ 10786 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 10787 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 10788 } 10789 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10790 10791 /* 10792 * Defer the cleanup of the old state to a separate worker to not 10793 * impede the current task (userspace for blocking modesets) that 10794 * are executed inline. For out-of-line asynchronous modesets/flips, 10795 * deferring to a new worker seems overkill, but we would place a 10796 * schedule point (cond_resched()) here anyway to keep latencies 10797 * down. 10798 */ 10799 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 10800 queue_work(system_highpri_wq, &state->base.commit_work); 10801 } 10802 10803 static void intel_atomic_commit_work(struct work_struct *work) 10804 { 10805 struct intel_atomic_state *state = 10806 container_of(work, struct intel_atomic_state, base.commit_work); 10807 10808 intel_atomic_commit_tail(state); 10809 } 10810 10811 static int __i915_sw_fence_call 10812 intel_atomic_commit_ready(struct i915_sw_fence *fence, 10813 enum i915_sw_fence_notify notify) 10814 { 10815 struct intel_atomic_state *state = 10816 container_of(fence, struct intel_atomic_state, commit_ready); 10817 10818 switch (notify) { 10819 case FENCE_COMPLETE: 10820 /* we do blocking waits in the worker, nothing to do here */ 10821 break; 10822 case FENCE_FREE: 10823 { 10824 struct intel_atomic_helper *helper = 10825 &to_i915(state->base.dev)->atomic_helper; 10826 10827 if (llist_add(&state->freed, &helper->free_list)) 10828 schedule_work(&helper->free_work); 10829 break; 10830 } 10831 } 10832 10833 return NOTIFY_DONE; 10834 } 10835 10836 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 10837 { 10838 struct intel_plane_state *old_plane_state, *new_plane_state; 10839 struct intel_plane *plane; 10840 int i; 10841 10842 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 10843 new_plane_state, i) 10844 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 10845 to_intel_frontbuffer(new_plane_state->hw.fb), 10846 plane->frontbuffer_bit); 10847 } 10848 10849 static int intel_atomic_commit(struct drm_device *dev, 10850 struct drm_atomic_state *_state, 10851 bool nonblock) 10852 { 10853 struct intel_atomic_state *state = to_intel_atomic_state(_state); 10854 struct drm_i915_private *dev_priv = to_i915(dev); 10855 int ret = 0; 10856 10857 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 10858 10859 drm_atomic_state_get(&state->base); 10860 i915_sw_fence_init(&state->commit_ready, 10861 intel_atomic_commit_ready); 10862 10863 /* 10864 * The intel_legacy_cursor_update() fast path takes care 10865 * of avoiding the vblank waits for simple cursor 10866 * movement and flips. For cursor on/off and size changes, 10867 * we want to perform the vblank waits so that watermark 10868 * updates happen during the correct frames. Gen9+ have 10869 * double buffered watermarks and so shouldn't need this. 10870 * 10871 * Unset state->legacy_cursor_update before the call to 10872 * drm_atomic_helper_setup_commit() because otherwise 10873 * drm_atomic_helper_wait_for_flip_done() is a noop and 10874 * we get FIFO underruns because we didn't wait 10875 * for vblank. 10876 * 10877 * FIXME doing watermarks and fb cleanup from a vblank worker 10878 * (assuming we had any) would solve these problems. 10879 */ 10880 if (DISPLAY_VER(dev_priv) < 9 && state->base.legacy_cursor_update) { 10881 struct intel_crtc_state *new_crtc_state; 10882 struct intel_crtc *crtc; 10883 int i; 10884 10885 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10886 if (new_crtc_state->wm.need_postvbl_update || 10887 new_crtc_state->update_wm_post) 10888 state->base.legacy_cursor_update = false; 10889 } 10890 10891 ret = intel_atomic_prepare_commit(state); 10892 if (ret) { 10893 drm_dbg_atomic(&dev_priv->drm, 10894 "Preparing state failed with %i\n", ret); 10895 i915_sw_fence_commit(&state->commit_ready); 10896 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10897 return ret; 10898 } 10899 10900 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 10901 if (!ret) 10902 ret = drm_atomic_helper_swap_state(&state->base, true); 10903 if (!ret) 10904 intel_atomic_swap_global_state(state); 10905 10906 if (ret) { 10907 struct intel_crtc_state *new_crtc_state; 10908 struct intel_crtc *crtc; 10909 int i; 10910 10911 i915_sw_fence_commit(&state->commit_ready); 10912 10913 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10914 intel_dsb_cleanup(new_crtc_state); 10915 10916 drm_atomic_helper_cleanup_planes(dev, &state->base); 10917 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 10918 return ret; 10919 } 10920 intel_shared_dpll_swap_state(state); 10921 intel_atomic_track_fbs(state); 10922 10923 drm_atomic_state_get(&state->base); 10924 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 10925 10926 i915_sw_fence_commit(&state->commit_ready); 10927 if (nonblock && state->modeset) { 10928 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 10929 } else if (nonblock) { 10930 queue_work(dev_priv->flip_wq, &state->base.commit_work); 10931 } else { 10932 if (state->modeset) 10933 flush_workqueue(dev_priv->modeset_wq); 10934 intel_atomic_commit_tail(state); 10935 } 10936 10937 return 0; 10938 } 10939 10940 struct wait_rps_boost { 10941 struct wait_queue_entry wait; 10942 10943 struct drm_crtc *crtc; 10944 struct i915_request *request; 10945 }; 10946 10947 static int do_rps_boost(struct wait_queue_entry *_wait, 10948 unsigned mode, int sync, void *key) 10949 { 10950 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); 10951 struct i915_request *rq = wait->request; 10952 10953 /* 10954 * If we missed the vblank, but the request is already running it 10955 * is reasonable to assume that it will complete before the next 10956 * vblank without our intervention, so leave RPS alone. 10957 */ 10958 if (!i915_request_started(rq)) 10959 intel_rps_boost(rq); 10960 i915_request_put(rq); 10961 10962 drm_crtc_vblank_put(wait->crtc); 10963 10964 list_del(&wait->wait.entry); 10965 kfree(wait); 10966 return 1; 10967 } 10968 10969 static void add_rps_boost_after_vblank(struct drm_crtc *crtc, 10970 struct dma_fence *fence) 10971 { 10972 struct wait_rps_boost *wait; 10973 10974 if (!dma_fence_is_i915(fence)) 10975 return; 10976 10977 if (DISPLAY_VER(to_i915(crtc->dev)) < 6) 10978 return; 10979 10980 if (drm_crtc_vblank_get(crtc)) 10981 return; 10982 10983 wait = kmalloc(sizeof(*wait), GFP_KERNEL); 10984 if (!wait) { 10985 drm_crtc_vblank_put(crtc); 10986 return; 10987 } 10988 10989 wait->request = to_request(dma_fence_get(fence)); 10990 wait->crtc = crtc; 10991 10992 wait->wait.func = do_rps_boost; 10993 wait->wait.flags = 0; 10994 10995 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); 10996 } 10997 10998 int intel_plane_pin_fb(struct intel_plane_state *plane_state) 10999 { 11000 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 11001 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11002 struct drm_framebuffer *fb = plane_state->hw.fb; 11003 struct i915_vma *vma; 11004 bool phys_cursor = 11005 plane->id == PLANE_CURSOR && 11006 INTEL_INFO(dev_priv)->display.cursor_needs_physical; 11007 11008 if (!intel_fb_uses_dpt(fb)) { 11009 vma = intel_pin_and_fence_fb_obj(fb, phys_cursor, 11010 &plane_state->view.gtt, 11011 intel_plane_uses_fence(plane_state), 11012 &plane_state->flags); 11013 if (IS_ERR(vma)) 11014 return PTR_ERR(vma); 11015 11016 plane_state->ggtt_vma = vma; 11017 } else { 11018 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11019 11020 vma = intel_dpt_pin(intel_fb->dpt_vm); 11021 if (IS_ERR(vma)) 11022 return PTR_ERR(vma); 11023 11024 plane_state->ggtt_vma = vma; 11025 11026 vma = intel_pin_fb_obj_dpt(fb, &plane_state->view.gtt, false, 11027 &plane_state->flags, intel_fb->dpt_vm); 11028 if (IS_ERR(vma)) { 11029 intel_dpt_unpin(intel_fb->dpt_vm); 11030 plane_state->ggtt_vma = NULL; 11031 return PTR_ERR(vma); 11032 } 11033 11034 plane_state->dpt_vma = vma; 11035 11036 WARN_ON(plane_state->ggtt_vma == plane_state->dpt_vma); 11037 } 11038 11039 return 0; 11040 } 11041 11042 void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) 11043 { 11044 struct drm_framebuffer *fb = old_plane_state->hw.fb; 11045 struct i915_vma *vma; 11046 11047 if (!intel_fb_uses_dpt(fb)) { 11048 vma = fetch_and_zero(&old_plane_state->ggtt_vma); 11049 if (vma) 11050 intel_unpin_fb_vma(vma, old_plane_state->flags); 11051 } else { 11052 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11053 11054 vma = fetch_and_zero(&old_plane_state->dpt_vma); 11055 if (vma) 11056 intel_unpin_fb_vma(vma, old_plane_state->flags); 11057 11058 vma = fetch_and_zero(&old_plane_state->ggtt_vma); 11059 if (vma) 11060 intel_dpt_unpin(intel_fb->dpt_vm); 11061 } 11062 } 11063 11064 /** 11065 * intel_prepare_plane_fb - Prepare fb for usage on plane 11066 * @_plane: drm plane to prepare for 11067 * @_new_plane_state: the plane state being prepared 11068 * 11069 * Prepares a framebuffer for usage on a display plane. Generally this 11070 * involves pinning the underlying object and updating the frontbuffer tracking 11071 * bits. Some older platforms need special physical address handling for 11072 * cursor planes. 11073 * 11074 * Returns 0 on success, negative error code on failure. 11075 */ 11076 int 11077 intel_prepare_plane_fb(struct drm_plane *_plane, 11078 struct drm_plane_state *_new_plane_state) 11079 { 11080 struct i915_sched_attr attr = { .priority = I915_PRIORITY_DISPLAY }; 11081 struct intel_plane *plane = to_intel_plane(_plane); 11082 struct intel_plane_state *new_plane_state = 11083 to_intel_plane_state(_new_plane_state); 11084 struct intel_atomic_state *state = 11085 to_intel_atomic_state(new_plane_state->uapi.state); 11086 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11087 const struct intel_plane_state *old_plane_state = 11088 intel_atomic_get_old_plane_state(state, plane); 11089 struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb); 11090 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb); 11091 int ret; 11092 11093 if (old_obj) { 11094 const struct intel_crtc_state *crtc_state = 11095 intel_atomic_get_new_crtc_state(state, 11096 to_intel_crtc(old_plane_state->hw.crtc)); 11097 11098 /* Big Hammer, we also need to ensure that any pending 11099 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 11100 * current scanout is retired before unpinning the old 11101 * framebuffer. Note that we rely on userspace rendering 11102 * into the buffer attached to the pipe they are waiting 11103 * on. If not, userspace generates a GPU hang with IPEHR 11104 * point to the MI_WAIT_FOR_EVENT. 11105 * 11106 * This should only fail upon a hung GPU, in which case we 11107 * can safely continue. 11108 */ 11109 if (intel_crtc_needs_modeset(crtc_state)) { 11110 ret = i915_sw_fence_await_reservation(&state->commit_ready, 11111 old_obj->base.resv, NULL, 11112 false, 0, 11113 GFP_KERNEL); 11114 if (ret < 0) 11115 return ret; 11116 } 11117 } 11118 11119 if (new_plane_state->uapi.fence) { /* explicit fencing */ 11120 i915_gem_fence_wait_priority(new_plane_state->uapi.fence, 11121 &attr); 11122 ret = i915_sw_fence_await_dma_fence(&state->commit_ready, 11123 new_plane_state->uapi.fence, 11124 i915_fence_timeout(dev_priv), 11125 GFP_KERNEL); 11126 if (ret < 0) 11127 return ret; 11128 } 11129 11130 if (!obj) 11131 return 0; 11132 11133 11134 ret = intel_plane_pin_fb(new_plane_state); 11135 if (ret) 11136 return ret; 11137 11138 i915_gem_object_wait_priority(obj, 0, &attr); 11139 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB); 11140 11141 if (!new_plane_state->uapi.fence) { /* implicit fencing */ 11142 struct dma_fence *fence; 11143 11144 ret = i915_sw_fence_await_reservation(&state->commit_ready, 11145 obj->base.resv, NULL, 11146 false, 11147 i915_fence_timeout(dev_priv), 11148 GFP_KERNEL); 11149 if (ret < 0) 11150 goto unpin_fb; 11151 11152 fence = dma_resv_get_excl_unlocked(obj->base.resv); 11153 if (fence) { 11154 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 11155 fence); 11156 dma_fence_put(fence); 11157 } 11158 } else { 11159 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 11160 new_plane_state->uapi.fence); 11161 } 11162 11163 /* 11164 * We declare pageflips to be interactive and so merit a small bias 11165 * towards upclocking to deliver the frame on time. By only changing 11166 * the RPS thresholds to sample more regularly and aim for higher 11167 * clocks we can hopefully deliver low power workloads (like kodi) 11168 * that are not quite steady state without resorting to forcing 11169 * maximum clocks following a vblank miss (see do_rps_boost()). 11170 */ 11171 if (!state->rps_interactive) { 11172 intel_rps_mark_interactive(&dev_priv->gt.rps, true); 11173 state->rps_interactive = true; 11174 } 11175 11176 return 0; 11177 11178 unpin_fb: 11179 intel_plane_unpin_fb(new_plane_state); 11180 11181 return ret; 11182 } 11183 11184 /** 11185 * intel_cleanup_plane_fb - Cleans up an fb after plane use 11186 * @plane: drm plane to clean up for 11187 * @_old_plane_state: the state from the previous modeset 11188 * 11189 * Cleans up a framebuffer that has just been removed from a plane. 11190 */ 11191 void 11192 intel_cleanup_plane_fb(struct drm_plane *plane, 11193 struct drm_plane_state *_old_plane_state) 11194 { 11195 struct intel_plane_state *old_plane_state = 11196 to_intel_plane_state(_old_plane_state); 11197 struct intel_atomic_state *state = 11198 to_intel_atomic_state(old_plane_state->uapi.state); 11199 struct drm_i915_private *dev_priv = to_i915(plane->dev); 11200 struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb); 11201 11202 if (!obj) 11203 return; 11204 11205 if (state->rps_interactive) { 11206 intel_rps_mark_interactive(&dev_priv->gt.rps, false); 11207 state->rps_interactive = false; 11208 } 11209 11210 /* Should only be called after a successful intel_prepare_plane_fb()! */ 11211 intel_plane_unpin_fb(old_plane_state); 11212 } 11213 11214 /** 11215 * intel_plane_destroy - destroy a plane 11216 * @plane: plane to destroy 11217 * 11218 * Common destruction function for all types of planes (primary, cursor, 11219 * sprite). 11220 */ 11221 void intel_plane_destroy(struct drm_plane *plane) 11222 { 11223 drm_plane_cleanup(plane); 11224 kfree(to_intel_plane(plane)); 11225 } 11226 11227 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv) 11228 { 11229 struct intel_plane *plane; 11230 11231 for_each_intel_plane(&dev_priv->drm, plane) { 11232 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, 11233 plane->pipe); 11234 11235 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base); 11236 } 11237 } 11238 11239 11240 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 11241 struct drm_file *file) 11242 { 11243 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 11244 struct drm_crtc *drmmode_crtc; 11245 struct intel_crtc *crtc; 11246 11247 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 11248 if (!drmmode_crtc) 11249 return -ENOENT; 11250 11251 crtc = to_intel_crtc(drmmode_crtc); 11252 pipe_from_crtc_id->pipe = crtc->pipe; 11253 11254 return 0; 11255 } 11256 11257 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 11258 { 11259 struct drm_device *dev = encoder->base.dev; 11260 struct intel_encoder *source_encoder; 11261 u32 possible_clones = 0; 11262 11263 for_each_intel_encoder(dev, source_encoder) { 11264 if (encoders_cloneable(encoder, source_encoder)) 11265 possible_clones |= drm_encoder_mask(&source_encoder->base); 11266 } 11267 11268 return possible_clones; 11269 } 11270 11271 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 11272 { 11273 struct drm_device *dev = encoder->base.dev; 11274 struct intel_crtc *crtc; 11275 u32 possible_crtcs = 0; 11276 11277 for_each_intel_crtc(dev, crtc) { 11278 if (encoder->pipe_mask & BIT(crtc->pipe)) 11279 possible_crtcs |= drm_crtc_mask(&crtc->base); 11280 } 11281 11282 return possible_crtcs; 11283 } 11284 11285 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 11286 { 11287 if (!IS_MOBILE(dev_priv)) 11288 return false; 11289 11290 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0) 11291 return false; 11292 11293 if (IS_IRONLAKE(dev_priv) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE)) 11294 return false; 11295 11296 return true; 11297 } 11298 11299 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 11300 { 11301 if (DISPLAY_VER(dev_priv) >= 9) 11302 return false; 11303 11304 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 11305 return false; 11306 11307 if (HAS_PCH_LPT_H(dev_priv) && 11308 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 11309 return false; 11310 11311 /* DDI E can't be used if DDI A requires 4 lanes */ 11312 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 11313 return false; 11314 11315 if (!dev_priv->vbt.int_crt_support) 11316 return false; 11317 11318 return true; 11319 } 11320 11321 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 11322 { 11323 struct intel_encoder *encoder; 11324 bool dpd_is_edp = false; 11325 11326 intel_pps_unlock_regs_wa(dev_priv); 11327 11328 if (!HAS_DISPLAY(dev_priv)) 11329 return; 11330 11331 if (IS_ALDERLAKE_P(dev_priv)) { 11332 intel_ddi_init(dev_priv, PORT_A); 11333 intel_ddi_init(dev_priv, PORT_B); 11334 intel_ddi_init(dev_priv, PORT_TC1); 11335 intel_ddi_init(dev_priv, PORT_TC2); 11336 intel_ddi_init(dev_priv, PORT_TC3); 11337 intel_ddi_init(dev_priv, PORT_TC4); 11338 } else if (IS_ALDERLAKE_S(dev_priv)) { 11339 intel_ddi_init(dev_priv, PORT_A); 11340 intel_ddi_init(dev_priv, PORT_TC1); 11341 intel_ddi_init(dev_priv, PORT_TC2); 11342 intel_ddi_init(dev_priv, PORT_TC3); 11343 intel_ddi_init(dev_priv, PORT_TC4); 11344 } else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) { 11345 intel_ddi_init(dev_priv, PORT_A); 11346 intel_ddi_init(dev_priv, PORT_B); 11347 intel_ddi_init(dev_priv, PORT_TC1); 11348 intel_ddi_init(dev_priv, PORT_TC2); 11349 } else if (DISPLAY_VER(dev_priv) >= 12) { 11350 intel_ddi_init(dev_priv, PORT_A); 11351 intel_ddi_init(dev_priv, PORT_B); 11352 intel_ddi_init(dev_priv, PORT_TC1); 11353 intel_ddi_init(dev_priv, PORT_TC2); 11354 intel_ddi_init(dev_priv, PORT_TC3); 11355 intel_ddi_init(dev_priv, PORT_TC4); 11356 intel_ddi_init(dev_priv, PORT_TC5); 11357 intel_ddi_init(dev_priv, PORT_TC6); 11358 icl_dsi_init(dev_priv); 11359 } else if (IS_JSL_EHL(dev_priv)) { 11360 intel_ddi_init(dev_priv, PORT_A); 11361 intel_ddi_init(dev_priv, PORT_B); 11362 intel_ddi_init(dev_priv, PORT_C); 11363 intel_ddi_init(dev_priv, PORT_D); 11364 icl_dsi_init(dev_priv); 11365 } else if (DISPLAY_VER(dev_priv) == 11) { 11366 intel_ddi_init(dev_priv, PORT_A); 11367 intel_ddi_init(dev_priv, PORT_B); 11368 intel_ddi_init(dev_priv, PORT_C); 11369 intel_ddi_init(dev_priv, PORT_D); 11370 intel_ddi_init(dev_priv, PORT_E); 11371 intel_ddi_init(dev_priv, PORT_F); 11372 icl_dsi_init(dev_priv); 11373 } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { 11374 intel_ddi_init(dev_priv, PORT_A); 11375 intel_ddi_init(dev_priv, PORT_B); 11376 intel_ddi_init(dev_priv, PORT_C); 11377 vlv_dsi_init(dev_priv); 11378 } else if (DISPLAY_VER(dev_priv) == 10) { 11379 intel_ddi_init(dev_priv, PORT_A); 11380 intel_ddi_init(dev_priv, PORT_B); 11381 intel_ddi_init(dev_priv, PORT_C); 11382 intel_ddi_init(dev_priv, PORT_D); 11383 intel_ddi_init(dev_priv, PORT_E); 11384 intel_ddi_init(dev_priv, PORT_F); 11385 } else if (DISPLAY_VER(dev_priv) >= 9) { 11386 intel_ddi_init(dev_priv, PORT_A); 11387 intel_ddi_init(dev_priv, PORT_B); 11388 intel_ddi_init(dev_priv, PORT_C); 11389 intel_ddi_init(dev_priv, PORT_D); 11390 intel_ddi_init(dev_priv, PORT_E); 11391 } else if (HAS_DDI(dev_priv)) { 11392 u32 found; 11393 11394 if (intel_ddi_crt_present(dev_priv)) 11395 intel_crt_init(dev_priv); 11396 11397 /* Haswell uses DDI functions to detect digital outputs. */ 11398 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 11399 if (found) 11400 intel_ddi_init(dev_priv, PORT_A); 11401 11402 found = intel_de_read(dev_priv, SFUSE_STRAP); 11403 if (found & SFUSE_STRAP_DDIB_DETECTED) 11404 intel_ddi_init(dev_priv, PORT_B); 11405 if (found & SFUSE_STRAP_DDIC_DETECTED) 11406 intel_ddi_init(dev_priv, PORT_C); 11407 if (found & SFUSE_STRAP_DDID_DETECTED) 11408 intel_ddi_init(dev_priv, PORT_D); 11409 if (found & SFUSE_STRAP_DDIF_DETECTED) 11410 intel_ddi_init(dev_priv, PORT_F); 11411 } else if (HAS_PCH_SPLIT(dev_priv)) { 11412 int found; 11413 11414 /* 11415 * intel_edp_init_connector() depends on this completing first, 11416 * to prevent the registration of both eDP and LVDS and the 11417 * incorrect sharing of the PPS. 11418 */ 11419 intel_lvds_init(dev_priv); 11420 intel_crt_init(dev_priv); 11421 11422 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 11423 11424 if (ilk_has_edp_a(dev_priv)) 11425 g4x_dp_init(dev_priv, DP_A, PORT_A); 11426 11427 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) { 11428 /* PCH SDVOB multiplex with HDMIB */ 11429 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 11430 if (!found) 11431 g4x_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 11432 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED)) 11433 g4x_dp_init(dev_priv, PCH_DP_B, PORT_B); 11434 } 11435 11436 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED) 11437 g4x_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 11438 11439 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED) 11440 g4x_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 11441 11442 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED) 11443 g4x_dp_init(dev_priv, PCH_DP_C, PORT_C); 11444 11445 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED) 11446 g4x_dp_init(dev_priv, PCH_DP_D, PORT_D); 11447 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 11448 bool has_edp, has_port; 11449 11450 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 11451 intel_crt_init(dev_priv); 11452 11453 /* 11454 * The DP_DETECTED bit is the latched state of the DDC 11455 * SDA pin at boot. However since eDP doesn't require DDC 11456 * (no way to plug in a DP->HDMI dongle) the DDC pins for 11457 * eDP ports may have been muxed to an alternate function. 11458 * Thus we can't rely on the DP_DETECTED bit alone to detect 11459 * eDP ports. Consult the VBT as well as DP_DETECTED to 11460 * detect eDP ports. 11461 * 11462 * Sadly the straps seem to be missing sometimes even for HDMI 11463 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 11464 * and VBT for the presence of the port. Additionally we can't 11465 * trust the port type the VBT declares as we've seen at least 11466 * HDMI ports that the VBT claim are DP or eDP. 11467 */ 11468 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 11469 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 11470 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port) 11471 has_edp &= g4x_dp_init(dev_priv, VLV_DP_B, PORT_B); 11472 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 11473 g4x_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 11474 11475 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 11476 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 11477 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port) 11478 has_edp &= g4x_dp_init(dev_priv, VLV_DP_C, PORT_C); 11479 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 11480 g4x_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 11481 11482 if (IS_CHERRYVIEW(dev_priv)) { 11483 /* 11484 * eDP not supported on port D, 11485 * so no need to worry about it 11486 */ 11487 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 11488 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port) 11489 g4x_dp_init(dev_priv, CHV_DP_D, PORT_D); 11490 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port) 11491 g4x_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 11492 } 11493 11494 vlv_dsi_init(dev_priv); 11495 } else if (IS_PINEVIEW(dev_priv)) { 11496 intel_lvds_init(dev_priv); 11497 intel_crt_init(dev_priv); 11498 } else if (IS_DISPLAY_VER(dev_priv, 3, 4)) { 11499 bool found = false; 11500 11501 if (IS_MOBILE(dev_priv)) 11502 intel_lvds_init(dev_priv); 11503 11504 intel_crt_init(dev_priv); 11505 11506 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 11507 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n"); 11508 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 11509 if (!found && IS_G4X(dev_priv)) { 11510 drm_dbg_kms(&dev_priv->drm, 11511 "probing HDMI on SDVOB\n"); 11512 g4x_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 11513 } 11514 11515 if (!found && IS_G4X(dev_priv)) 11516 g4x_dp_init(dev_priv, DP_B, PORT_B); 11517 } 11518 11519 /* Before G4X SDVOC doesn't have its own detect register */ 11520 11521 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 11522 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n"); 11523 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 11524 } 11525 11526 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) { 11527 11528 if (IS_G4X(dev_priv)) { 11529 drm_dbg_kms(&dev_priv->drm, 11530 "probing HDMI on SDVOC\n"); 11531 g4x_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 11532 } 11533 if (IS_G4X(dev_priv)) 11534 g4x_dp_init(dev_priv, DP_C, PORT_C); 11535 } 11536 11537 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED)) 11538 g4x_dp_init(dev_priv, DP_D, PORT_D); 11539 11540 if (SUPPORTS_TV(dev_priv)) 11541 intel_tv_init(dev_priv); 11542 } else if (DISPLAY_VER(dev_priv) == 2) { 11543 if (IS_I85X(dev_priv)) 11544 intel_lvds_init(dev_priv); 11545 11546 intel_crt_init(dev_priv); 11547 intel_dvo_init(dev_priv); 11548 } 11549 11550 for_each_intel_encoder(&dev_priv->drm, encoder) { 11551 encoder->base.possible_crtcs = 11552 intel_encoder_possible_crtcs(encoder); 11553 encoder->base.possible_clones = 11554 intel_encoder_possible_clones(encoder); 11555 } 11556 11557 intel_init_pch_refclk(dev_priv); 11558 11559 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 11560 } 11561 11562 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 11563 { 11564 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11565 11566 drm_framebuffer_cleanup(fb); 11567 11568 if (intel_fb_uses_dpt(fb)) 11569 intel_dpt_destroy(intel_fb->dpt_vm); 11570 11571 intel_frontbuffer_put(intel_fb->frontbuffer); 11572 11573 kfree(intel_fb); 11574 } 11575 11576 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 11577 struct drm_file *file, 11578 unsigned int *handle) 11579 { 11580 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11581 struct drm_i915_private *i915 = to_i915(obj->base.dev); 11582 11583 if (i915_gem_object_is_userptr(obj)) { 11584 drm_dbg(&i915->drm, 11585 "attempting to use a userptr for a framebuffer, denied\n"); 11586 return -EINVAL; 11587 } 11588 11589 return drm_gem_handle_create(file, &obj->base, handle); 11590 } 11591 11592 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 11593 struct drm_file *file, 11594 unsigned flags, unsigned color, 11595 struct drm_clip_rect *clips, 11596 unsigned num_clips) 11597 { 11598 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11599 11600 i915_gem_object_flush_if_display(obj); 11601 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 11602 11603 return 0; 11604 } 11605 11606 static const struct drm_framebuffer_funcs intel_fb_funcs = { 11607 .destroy = intel_user_framebuffer_destroy, 11608 .create_handle = intel_user_framebuffer_create_handle, 11609 .dirty = intel_user_framebuffer_dirty, 11610 }; 11611 11612 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, 11613 struct drm_i915_gem_object *obj, 11614 struct drm_mode_fb_cmd2 *mode_cmd) 11615 { 11616 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 11617 struct drm_framebuffer *fb = &intel_fb->base; 11618 u32 max_stride; 11619 unsigned int tiling, stride; 11620 int ret = -EINVAL; 11621 int i; 11622 11623 intel_fb->frontbuffer = intel_frontbuffer_get(obj); 11624 if (!intel_fb->frontbuffer) 11625 return -ENOMEM; 11626 11627 i915_gem_object_lock(obj, NULL); 11628 tiling = i915_gem_object_get_tiling(obj); 11629 stride = i915_gem_object_get_stride(obj); 11630 i915_gem_object_unlock(obj); 11631 11632 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 11633 /* 11634 * If there's a fence, enforce that 11635 * the fb modifier and tiling mode match. 11636 */ 11637 if (tiling != I915_TILING_NONE && 11638 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 11639 drm_dbg_kms(&dev_priv->drm, 11640 "tiling_mode doesn't match fb modifier\n"); 11641 goto err; 11642 } 11643 } else { 11644 if (tiling == I915_TILING_X) { 11645 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 11646 } else if (tiling == I915_TILING_Y) { 11647 drm_dbg_kms(&dev_priv->drm, 11648 "No Y tiling for legacy addfb\n"); 11649 goto err; 11650 } 11651 } 11652 11653 if (!drm_any_plane_has_format(&dev_priv->drm, 11654 mode_cmd->pixel_format, 11655 mode_cmd->modifier[0])) { 11656 drm_dbg_kms(&dev_priv->drm, 11657 "unsupported pixel format %p4cc / modifier 0x%llx\n", 11658 &mode_cmd->pixel_format, mode_cmd->modifier[0]); 11659 goto err; 11660 } 11661 11662 /* 11663 * gen2/3 display engine uses the fence if present, 11664 * so the tiling mode must match the fb modifier exactly. 11665 */ 11666 if (DISPLAY_VER(dev_priv) < 4 && 11667 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 11668 drm_dbg_kms(&dev_priv->drm, 11669 "tiling_mode must match fb modifier exactly on gen2/3\n"); 11670 goto err; 11671 } 11672 11673 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, 11674 mode_cmd->modifier[0]); 11675 if (mode_cmd->pitches[0] > max_stride) { 11676 drm_dbg_kms(&dev_priv->drm, 11677 "%s pitch (%u) must be at most %d\n", 11678 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? 11679 "tiled" : "linear", 11680 mode_cmd->pitches[0], max_stride); 11681 goto err; 11682 } 11683 11684 /* 11685 * If there's a fence, enforce that 11686 * the fb pitch and fence stride match. 11687 */ 11688 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { 11689 drm_dbg_kms(&dev_priv->drm, 11690 "pitch (%d) must match tiling stride (%d)\n", 11691 mode_cmd->pitches[0], stride); 11692 goto err; 11693 } 11694 11695 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 11696 if (mode_cmd->offsets[0] != 0) { 11697 drm_dbg_kms(&dev_priv->drm, 11698 "plane 0 offset (0x%08x) must be 0\n", 11699 mode_cmd->offsets[0]); 11700 goto err; 11701 } 11702 11703 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); 11704 11705 for (i = 0; i < fb->format->num_planes; i++) { 11706 u32 stride_alignment; 11707 11708 if (mode_cmd->handles[i] != mode_cmd->handles[0]) { 11709 drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n", 11710 i); 11711 goto err; 11712 } 11713 11714 stride_alignment = intel_fb_stride_alignment(fb, i); 11715 if (fb->pitches[i] & (stride_alignment - 1)) { 11716 drm_dbg_kms(&dev_priv->drm, 11717 "plane %d pitch (%d) must be at least %u byte aligned\n", 11718 i, fb->pitches[i], stride_alignment); 11719 goto err; 11720 } 11721 11722 if (is_gen12_ccs_plane(fb, i) && !is_gen12_ccs_cc_plane(fb, i)) { 11723 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i); 11724 11725 if (fb->pitches[i] != ccs_aux_stride) { 11726 drm_dbg_kms(&dev_priv->drm, 11727 "ccs aux plane %d pitch (%d) must be %d\n", 11728 i, 11729 fb->pitches[i], ccs_aux_stride); 11730 goto err; 11731 } 11732 } 11733 11734 /* TODO: Add POT stride remapping support for CCS formats as well. */ 11735 if (IS_ALDERLAKE_P(dev_priv) && 11736 mode_cmd->modifier[i] != DRM_FORMAT_MOD_LINEAR && 11737 !intel_fb_needs_pot_stride_remap(intel_fb) && 11738 !is_power_of_2(mode_cmd->pitches[i])) { 11739 drm_dbg_kms(&dev_priv->drm, 11740 "plane %d pitch (%d) must be power of two for tiled buffers\n", 11741 i, mode_cmd->pitches[i]); 11742 goto err; 11743 } 11744 11745 fb->obj[i] = &obj->base; 11746 } 11747 11748 ret = intel_fill_fb_info(dev_priv, intel_fb); 11749 if (ret) 11750 goto err; 11751 11752 if (intel_fb_uses_dpt(fb)) { 11753 struct i915_address_space *vm; 11754 11755 vm = intel_dpt_create(intel_fb); 11756 if (IS_ERR(vm)) { 11757 ret = PTR_ERR(vm); 11758 goto err; 11759 } 11760 11761 intel_fb->dpt_vm = vm; 11762 } 11763 11764 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); 11765 if (ret) { 11766 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret); 11767 goto err; 11768 } 11769 11770 return 0; 11771 11772 err: 11773 intel_frontbuffer_put(intel_fb->frontbuffer); 11774 return ret; 11775 } 11776 11777 static struct drm_framebuffer * 11778 intel_user_framebuffer_create(struct drm_device *dev, 11779 struct drm_file *filp, 11780 const struct drm_mode_fb_cmd2 *user_mode_cmd) 11781 { 11782 struct drm_framebuffer *fb; 11783 struct drm_i915_gem_object *obj; 11784 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 11785 struct drm_i915_private *i915; 11786 11787 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); 11788 if (!obj) 11789 return ERR_PTR(-ENOENT); 11790 11791 /* object is backed with LMEM for discrete */ 11792 i915 = to_i915(obj->base.dev); 11793 if (HAS_LMEM(i915) && !i915_gem_object_is_lmem(obj)) { 11794 /* object is "remote", not in local memory */ 11795 i915_gem_object_put(obj); 11796 return ERR_PTR(-EREMOTE); 11797 } 11798 11799 fb = intel_framebuffer_create(obj, &mode_cmd); 11800 i915_gem_object_put(obj); 11801 11802 return fb; 11803 } 11804 11805 static enum drm_mode_status 11806 intel_mode_valid(struct drm_device *dev, 11807 const struct drm_display_mode *mode) 11808 { 11809 struct drm_i915_private *dev_priv = to_i915(dev); 11810 int hdisplay_max, htotal_max; 11811 int vdisplay_max, vtotal_max; 11812 11813 /* 11814 * Can't reject DBLSCAN here because Xorg ddxen can add piles 11815 * of DBLSCAN modes to the output's mode list when they detect 11816 * the scaling mode property on the connector. And they don't 11817 * ask the kernel to validate those modes in any way until 11818 * modeset time at which point the client gets a protocol error. 11819 * So in order to not upset those clients we silently ignore the 11820 * DBLSCAN flag on such connectors. For other connectors we will 11821 * reject modes with the DBLSCAN flag in encoder->compute_config(). 11822 * And we always reject DBLSCAN modes in connector->mode_valid() 11823 * as we never want such modes on the connector's mode list. 11824 */ 11825 11826 if (mode->vscan > 1) 11827 return MODE_NO_VSCAN; 11828 11829 if (mode->flags & DRM_MODE_FLAG_HSKEW) 11830 return MODE_H_ILLEGAL; 11831 11832 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 11833 DRM_MODE_FLAG_NCSYNC | 11834 DRM_MODE_FLAG_PCSYNC)) 11835 return MODE_HSYNC; 11836 11837 if (mode->flags & (DRM_MODE_FLAG_BCAST | 11838 DRM_MODE_FLAG_PIXMUX | 11839 DRM_MODE_FLAG_CLKDIV2)) 11840 return MODE_BAD; 11841 11842 /* Transcoder timing limits */ 11843 if (DISPLAY_VER(dev_priv) >= 11) { 11844 hdisplay_max = 16384; 11845 vdisplay_max = 8192; 11846 htotal_max = 16384; 11847 vtotal_max = 8192; 11848 } else if (DISPLAY_VER(dev_priv) >= 9 || 11849 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 11850 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 11851 vdisplay_max = 4096; 11852 htotal_max = 8192; 11853 vtotal_max = 8192; 11854 } else if (DISPLAY_VER(dev_priv) >= 3) { 11855 hdisplay_max = 4096; 11856 vdisplay_max = 4096; 11857 htotal_max = 8192; 11858 vtotal_max = 8192; 11859 } else { 11860 hdisplay_max = 2048; 11861 vdisplay_max = 2048; 11862 htotal_max = 4096; 11863 vtotal_max = 4096; 11864 } 11865 11866 if (mode->hdisplay > hdisplay_max || 11867 mode->hsync_start > htotal_max || 11868 mode->hsync_end > htotal_max || 11869 mode->htotal > htotal_max) 11870 return MODE_H_ILLEGAL; 11871 11872 if (mode->vdisplay > vdisplay_max || 11873 mode->vsync_start > vtotal_max || 11874 mode->vsync_end > vtotal_max || 11875 mode->vtotal > vtotal_max) 11876 return MODE_V_ILLEGAL; 11877 11878 if (DISPLAY_VER(dev_priv) >= 5) { 11879 if (mode->hdisplay < 64 || 11880 mode->htotal - mode->hdisplay < 32) 11881 return MODE_H_ILLEGAL; 11882 11883 if (mode->vtotal - mode->vdisplay < 5) 11884 return MODE_V_ILLEGAL; 11885 } else { 11886 if (mode->htotal - mode->hdisplay < 32) 11887 return MODE_H_ILLEGAL; 11888 11889 if (mode->vtotal - mode->vdisplay < 3) 11890 return MODE_V_ILLEGAL; 11891 } 11892 11893 return MODE_OK; 11894 } 11895 11896 enum drm_mode_status 11897 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, 11898 const struct drm_display_mode *mode, 11899 bool bigjoiner) 11900 { 11901 int plane_width_max, plane_height_max; 11902 11903 /* 11904 * intel_mode_valid() should be 11905 * sufficient on older platforms. 11906 */ 11907 if (DISPLAY_VER(dev_priv) < 9) 11908 return MODE_OK; 11909 11910 /* 11911 * Most people will probably want a fullscreen 11912 * plane so let's not advertize modes that are 11913 * too big for that. 11914 */ 11915 if (DISPLAY_VER(dev_priv) >= 11) { 11916 plane_width_max = 5120 << bigjoiner; 11917 plane_height_max = 4320; 11918 } else { 11919 plane_width_max = 5120; 11920 plane_height_max = 4096; 11921 } 11922 11923 if (mode->hdisplay > plane_width_max) 11924 return MODE_H_ILLEGAL; 11925 11926 if (mode->vdisplay > plane_height_max) 11927 return MODE_V_ILLEGAL; 11928 11929 return MODE_OK; 11930 } 11931 11932 static const struct drm_mode_config_funcs intel_mode_funcs = { 11933 .fb_create = intel_user_framebuffer_create, 11934 .get_format_info = intel_get_format_info, 11935 .output_poll_changed = intel_fbdev_output_poll_changed, 11936 .mode_valid = intel_mode_valid, 11937 .atomic_check = intel_atomic_check, 11938 .atomic_commit = intel_atomic_commit, 11939 .atomic_state_alloc = intel_atomic_state_alloc, 11940 .atomic_state_clear = intel_atomic_state_clear, 11941 .atomic_state_free = intel_atomic_state_free, 11942 }; 11943 11944 /** 11945 * intel_init_display_hooks - initialize the display modesetting hooks 11946 * @dev_priv: device private 11947 */ 11948 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 11949 { 11950 if (!HAS_DISPLAY(dev_priv)) 11951 return; 11952 11953 intel_init_cdclk_hooks(dev_priv); 11954 intel_init_audio_hooks(dev_priv); 11955 11956 intel_dpll_init_clock_hook(dev_priv); 11957 11958 if (DISPLAY_VER(dev_priv) >= 9) { 11959 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 11960 dev_priv->display.crtc_enable = hsw_crtc_enable; 11961 dev_priv->display.crtc_disable = hsw_crtc_disable; 11962 } else if (HAS_DDI(dev_priv)) { 11963 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 11964 dev_priv->display.crtc_enable = hsw_crtc_enable; 11965 dev_priv->display.crtc_disable = hsw_crtc_disable; 11966 } else if (HAS_PCH_SPLIT(dev_priv)) { 11967 dev_priv->display.get_pipe_config = ilk_get_pipe_config; 11968 dev_priv->display.crtc_enable = ilk_crtc_enable; 11969 dev_priv->display.crtc_disable = ilk_crtc_disable; 11970 } else if (IS_CHERRYVIEW(dev_priv) || 11971 IS_VALLEYVIEW(dev_priv)) { 11972 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 11973 dev_priv->display.crtc_enable = valleyview_crtc_enable; 11974 dev_priv->display.crtc_disable = i9xx_crtc_disable; 11975 } else { 11976 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 11977 dev_priv->display.crtc_enable = i9xx_crtc_enable; 11978 dev_priv->display.crtc_disable = i9xx_crtc_disable; 11979 } 11980 11981 intel_fdi_init_hook(dev_priv); 11982 11983 if (DISPLAY_VER(dev_priv) >= 9) { 11984 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; 11985 dev_priv->display.get_initial_plane_config = skl_get_initial_plane_config; 11986 } else { 11987 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; 11988 dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; 11989 } 11990 11991 } 11992 11993 void intel_modeset_init_hw(struct drm_i915_private *i915) 11994 { 11995 struct intel_cdclk_state *cdclk_state; 11996 11997 if (!HAS_DISPLAY(i915)) 11998 return; 11999 12000 cdclk_state = to_intel_cdclk_state(i915->cdclk.obj.state); 12001 12002 intel_update_cdclk(i915); 12003 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK"); 12004 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw; 12005 } 12006 12007 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state) 12008 { 12009 struct drm_plane *plane; 12010 struct intel_crtc *crtc; 12011 12012 for_each_intel_crtc(state->dev, crtc) { 12013 struct intel_crtc_state *crtc_state; 12014 12015 crtc_state = intel_atomic_get_crtc_state(state, crtc); 12016 if (IS_ERR(crtc_state)) 12017 return PTR_ERR(crtc_state); 12018 12019 if (crtc_state->hw.active) { 12020 /* 12021 * Preserve the inherited flag to avoid 12022 * taking the full modeset path. 12023 */ 12024 crtc_state->inherited = true; 12025 } 12026 } 12027 12028 drm_for_each_plane(plane, state->dev) { 12029 struct drm_plane_state *plane_state; 12030 12031 plane_state = drm_atomic_get_plane_state(state, plane); 12032 if (IS_ERR(plane_state)) 12033 return PTR_ERR(plane_state); 12034 } 12035 12036 return 0; 12037 } 12038 12039 /* 12040 * Calculate what we think the watermarks should be for the state we've read 12041 * out of the hardware and then immediately program those watermarks so that 12042 * we ensure the hardware settings match our internal state. 12043 * 12044 * We can calculate what we think WM's should be by creating a duplicate of the 12045 * current state (which was constructed during hardware readout) and running it 12046 * through the atomic check code to calculate new watermark values in the 12047 * state object. 12048 */ 12049 static void sanitize_watermarks(struct drm_i915_private *dev_priv) 12050 { 12051 struct drm_atomic_state *state; 12052 struct intel_atomic_state *intel_state; 12053 struct intel_crtc *crtc; 12054 struct intel_crtc_state *crtc_state; 12055 struct drm_modeset_acquire_ctx ctx; 12056 int ret; 12057 int i; 12058 12059 /* Only supported on platforms that use atomic watermark design */ 12060 if (!dev_priv->display.optimize_watermarks) 12061 return; 12062 12063 state = drm_atomic_state_alloc(&dev_priv->drm); 12064 if (drm_WARN_ON(&dev_priv->drm, !state)) 12065 return; 12066 12067 intel_state = to_intel_atomic_state(state); 12068 12069 drm_modeset_acquire_init(&ctx, 0); 12070 12071 retry: 12072 state->acquire_ctx = &ctx; 12073 12074 /* 12075 * Hardware readout is the only time we don't want to calculate 12076 * intermediate watermarks (since we don't trust the current 12077 * watermarks). 12078 */ 12079 if (!HAS_GMCH(dev_priv)) 12080 intel_state->skip_intermediate_wm = true; 12081 12082 ret = sanitize_watermarks_add_affected(state); 12083 if (ret) 12084 goto fail; 12085 12086 ret = intel_atomic_check(&dev_priv->drm, state); 12087 if (ret) 12088 goto fail; 12089 12090 /* Write calculated watermark values back */ 12091 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 12092 crtc_state->wm.need_postvbl_update = true; 12093 dev_priv->display.optimize_watermarks(intel_state, crtc); 12094 12095 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 12096 } 12097 12098 fail: 12099 if (ret == -EDEADLK) { 12100 drm_atomic_state_clear(state); 12101 drm_modeset_backoff(&ctx); 12102 goto retry; 12103 } 12104 12105 /* 12106 * If we fail here, it means that the hardware appears to be 12107 * programmed in a way that shouldn't be possible, given our 12108 * understanding of watermark requirements. This might mean a 12109 * mistake in the hardware readout code or a mistake in the 12110 * watermark calculations for a given platform. Raise a WARN 12111 * so that this is noticeable. 12112 * 12113 * If this actually happens, we'll have to just leave the 12114 * BIOS-programmed watermarks untouched and hope for the best. 12115 */ 12116 drm_WARN(&dev_priv->drm, ret, 12117 "Could not determine valid watermarks for inherited state\n"); 12118 12119 drm_atomic_state_put(state); 12120 12121 drm_modeset_drop_locks(&ctx); 12122 drm_modeset_acquire_fini(&ctx); 12123 } 12124 12125 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) 12126 { 12127 if (IS_IRONLAKE(dev_priv)) { 12128 u32 fdi_pll_clk = 12129 intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; 12130 12131 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; 12132 } else if (IS_SANDYBRIDGE(dev_priv) || IS_IVYBRIDGE(dev_priv)) { 12133 dev_priv->fdi_pll_freq = 270000; 12134 } else { 12135 return; 12136 } 12137 12138 drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); 12139 } 12140 12141 static int intel_initial_commit(struct drm_device *dev) 12142 { 12143 struct drm_atomic_state *state = NULL; 12144 struct drm_modeset_acquire_ctx ctx; 12145 struct intel_crtc *crtc; 12146 int ret = 0; 12147 12148 state = drm_atomic_state_alloc(dev); 12149 if (!state) 12150 return -ENOMEM; 12151 12152 drm_modeset_acquire_init(&ctx, 0); 12153 12154 retry: 12155 state->acquire_ctx = &ctx; 12156 12157 for_each_intel_crtc(dev, crtc) { 12158 struct intel_crtc_state *crtc_state = 12159 intel_atomic_get_crtc_state(state, crtc); 12160 12161 if (IS_ERR(crtc_state)) { 12162 ret = PTR_ERR(crtc_state); 12163 goto out; 12164 } 12165 12166 if (crtc_state->hw.active) { 12167 struct intel_encoder *encoder; 12168 12169 /* 12170 * We've not yet detected sink capabilities 12171 * (audio,infoframes,etc.) and thus we don't want to 12172 * force a full state recomputation yet. We want that to 12173 * happen only for the first real commit from userspace. 12174 * So preserve the inherited flag for the time being. 12175 */ 12176 crtc_state->inherited = true; 12177 12178 ret = drm_atomic_add_affected_planes(state, &crtc->base); 12179 if (ret) 12180 goto out; 12181 12182 /* 12183 * FIXME hack to force a LUT update to avoid the 12184 * plane update forcing the pipe gamma on without 12185 * having a proper LUT loaded. Remove once we 12186 * have readout for pipe gamma enable. 12187 */ 12188 crtc_state->uapi.color_mgmt_changed = true; 12189 12190 for_each_intel_encoder_mask(dev, encoder, 12191 crtc_state->uapi.encoder_mask) { 12192 if (encoder->initial_fastset_check && 12193 !encoder->initial_fastset_check(encoder, crtc_state)) { 12194 ret = drm_atomic_add_affected_connectors(state, 12195 &crtc->base); 12196 if (ret) 12197 goto out; 12198 } 12199 } 12200 } 12201 } 12202 12203 ret = drm_atomic_commit(state); 12204 12205 out: 12206 if (ret == -EDEADLK) { 12207 drm_atomic_state_clear(state); 12208 drm_modeset_backoff(&ctx); 12209 goto retry; 12210 } 12211 12212 drm_atomic_state_put(state); 12213 12214 drm_modeset_drop_locks(&ctx); 12215 drm_modeset_acquire_fini(&ctx); 12216 12217 return ret; 12218 } 12219 12220 static void intel_mode_config_init(struct drm_i915_private *i915) 12221 { 12222 struct drm_mode_config *mode_config = &i915->drm.mode_config; 12223 12224 drm_mode_config_init(&i915->drm); 12225 INIT_LIST_HEAD(&i915->global_obj_list); 12226 12227 mode_config->min_width = 0; 12228 mode_config->min_height = 0; 12229 12230 mode_config->preferred_depth = 24; 12231 mode_config->prefer_shadow = 1; 12232 12233 mode_config->funcs = &intel_mode_funcs; 12234 12235 mode_config->async_page_flip = has_async_flips(i915); 12236 12237 /* 12238 * Maximum framebuffer dimensions, chosen to match 12239 * the maximum render engine surface size on gen4+. 12240 */ 12241 if (DISPLAY_VER(i915) >= 7) { 12242 mode_config->max_width = 16384; 12243 mode_config->max_height = 16384; 12244 } else if (DISPLAY_VER(i915) >= 4) { 12245 mode_config->max_width = 8192; 12246 mode_config->max_height = 8192; 12247 } else if (DISPLAY_VER(i915) == 3) { 12248 mode_config->max_width = 4096; 12249 mode_config->max_height = 4096; 12250 } else { 12251 mode_config->max_width = 2048; 12252 mode_config->max_height = 2048; 12253 } 12254 12255 if (IS_I845G(i915) || IS_I865G(i915)) { 12256 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; 12257 mode_config->cursor_height = 1023; 12258 } else if (IS_I830(i915) || IS_I85X(i915) || 12259 IS_I915G(i915) || IS_I915GM(i915)) { 12260 mode_config->cursor_width = 64; 12261 mode_config->cursor_height = 64; 12262 } else { 12263 mode_config->cursor_width = 256; 12264 mode_config->cursor_height = 256; 12265 } 12266 } 12267 12268 static void intel_mode_config_cleanup(struct drm_i915_private *i915) 12269 { 12270 intel_atomic_global_obj_cleanup(i915); 12271 drm_mode_config_cleanup(&i915->drm); 12272 } 12273 12274 static void plane_config_fini(struct intel_initial_plane_config *plane_config) 12275 { 12276 if (plane_config->fb) { 12277 struct drm_framebuffer *fb = &plane_config->fb->base; 12278 12279 /* We may only have the stub and not a full framebuffer */ 12280 if (drm_framebuffer_read_refcount(fb)) 12281 drm_framebuffer_put(fb); 12282 else 12283 kfree(fb); 12284 } 12285 12286 if (plane_config->vma) 12287 i915_vma_put(plane_config->vma); 12288 } 12289 12290 /* part #1: call before irq install */ 12291 int intel_modeset_init_noirq(struct drm_i915_private *i915) 12292 { 12293 int ret; 12294 12295 if (i915_inject_probe_failure(i915)) 12296 return -ENODEV; 12297 12298 if (HAS_DISPLAY(i915)) { 12299 ret = drm_vblank_init(&i915->drm, 12300 INTEL_NUM_PIPES(i915)); 12301 if (ret) 12302 return ret; 12303 } 12304 12305 intel_bios_init(i915); 12306 12307 ret = intel_vga_register(i915); 12308 if (ret) 12309 goto cleanup_bios; 12310 12311 /* FIXME: completely on the wrong abstraction layer */ 12312 intel_power_domains_init_hw(i915, false); 12313 12314 if (!HAS_DISPLAY(i915)) 12315 return 0; 12316 12317 intel_dmc_ucode_init(i915); 12318 12319 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 12320 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | 12321 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); 12322 12323 i915->framestart_delay = 1; /* 1-4 */ 12324 12325 i915->window2_delay = 0; /* No DSB so no window2 delay */ 12326 12327 intel_mode_config_init(i915); 12328 12329 ret = intel_cdclk_init(i915); 12330 if (ret) 12331 goto cleanup_vga_client_pw_domain_dmc; 12332 12333 ret = intel_dbuf_init(i915); 12334 if (ret) 12335 goto cleanup_vga_client_pw_domain_dmc; 12336 12337 ret = intel_bw_init(i915); 12338 if (ret) 12339 goto cleanup_vga_client_pw_domain_dmc; 12340 12341 init_llist_head(&i915->atomic_helper.free_list); 12342 INIT_WORK(&i915->atomic_helper.free_work, 12343 intel_atomic_helper_free_state_worker); 12344 12345 intel_init_quirks(i915); 12346 12347 intel_fbc_init(i915); 12348 12349 return 0; 12350 12351 cleanup_vga_client_pw_domain_dmc: 12352 intel_dmc_ucode_fini(i915); 12353 intel_power_domains_driver_remove(i915); 12354 intel_vga_unregister(i915); 12355 cleanup_bios: 12356 intel_bios_driver_remove(i915); 12357 12358 return ret; 12359 } 12360 12361 /* part #2: call after irq install, but before gem init */ 12362 int intel_modeset_init_nogem(struct drm_i915_private *i915) 12363 { 12364 struct drm_device *dev = &i915->drm; 12365 enum pipe pipe; 12366 struct intel_crtc *crtc; 12367 int ret; 12368 12369 if (!HAS_DISPLAY(i915)) 12370 return 0; 12371 12372 intel_init_pm(i915); 12373 12374 intel_panel_sanitize_ssc(i915); 12375 12376 intel_pps_setup(i915); 12377 12378 intel_gmbus_setup(i915); 12379 12380 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n", 12381 INTEL_NUM_PIPES(i915), 12382 INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); 12383 12384 for_each_pipe(i915, pipe) { 12385 ret = intel_crtc_init(i915, pipe); 12386 if (ret) { 12387 intel_mode_config_cleanup(i915); 12388 return ret; 12389 } 12390 } 12391 12392 intel_plane_possible_crtcs_init(i915); 12393 intel_shared_dpll_init(dev); 12394 intel_update_fdi_pll_freq(i915); 12395 12396 intel_update_czclk(i915); 12397 intel_modeset_init_hw(i915); 12398 intel_dpll_update_ref_clks(i915); 12399 12400 intel_hdcp_component_init(i915); 12401 12402 if (i915->max_cdclk_freq == 0) 12403 intel_update_max_cdclk(i915); 12404 12405 /* 12406 * If the platform has HTI, we need to find out whether it has reserved 12407 * any display resources before we create our display outputs. 12408 */ 12409 if (INTEL_INFO(i915)->display.has_hti) 12410 i915->hti_state = intel_de_read(i915, HDPORT_STATE); 12411 12412 /* Just disable it once at startup */ 12413 intel_vga_disable(i915); 12414 intel_setup_outputs(i915); 12415 12416 drm_modeset_lock_all(dev); 12417 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 12418 drm_modeset_unlock_all(dev); 12419 12420 for_each_intel_crtc(dev, crtc) { 12421 struct intel_initial_plane_config plane_config = {}; 12422 12423 if (!to_intel_crtc_state(crtc->base.state)->uapi.active) 12424 continue; 12425 12426 /* 12427 * Note that reserving the BIOS fb up front prevents us 12428 * from stuffing other stolen allocations like the ring 12429 * on top. This prevents some ugliness at boot time, and 12430 * can even allow for smooth boot transitions if the BIOS 12431 * fb is large enough for the active pipe configuration. 12432 */ 12433 i915->display.get_initial_plane_config(crtc, &plane_config); 12434 12435 /* 12436 * If the fb is shared between multiple heads, we'll 12437 * just get the first one. 12438 */ 12439 intel_find_initial_plane_obj(crtc, &plane_config); 12440 12441 plane_config_fini(&plane_config); 12442 } 12443 12444 /* 12445 * Make sure hardware watermarks really match the state we read out. 12446 * Note that we need to do this after reconstructing the BIOS fb's 12447 * since the watermark calculation done here will use pstate->fb. 12448 */ 12449 if (!HAS_GMCH(i915)) 12450 sanitize_watermarks(i915); 12451 12452 return 0; 12453 } 12454 12455 /* part #3: call after gem init */ 12456 int intel_modeset_init(struct drm_i915_private *i915) 12457 { 12458 int ret; 12459 12460 if (!HAS_DISPLAY(i915)) 12461 return 0; 12462 12463 /* 12464 * Force all active planes to recompute their states. So that on 12465 * mode_setcrtc after probe, all the intel_plane_state variables 12466 * are already calculated and there is no assert_plane warnings 12467 * during bootup. 12468 */ 12469 ret = intel_initial_commit(&i915->drm); 12470 if (ret) 12471 drm_dbg_kms(&i915->drm, "Initial modeset failed, %d\n", ret); 12472 12473 intel_overlay_setup(i915); 12474 12475 ret = intel_fbdev_init(&i915->drm); 12476 if (ret) 12477 return ret; 12478 12479 /* Only enable hotplug handling once the fbdev is fully set up. */ 12480 intel_hpd_init(i915); 12481 intel_hpd_poll_disable(i915); 12482 12483 intel_init_ipc(i915); 12484 12485 return 0; 12486 } 12487 12488 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 12489 { 12490 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12491 /* 640x480@60Hz, ~25175 kHz */ 12492 struct dpll clock = { 12493 .m1 = 18, 12494 .m2 = 7, 12495 .p1 = 13, 12496 .p2 = 4, 12497 .n = 2, 12498 }; 12499 u32 dpll, fp; 12500 int i; 12501 12502 drm_WARN_ON(&dev_priv->drm, 12503 i9xx_calc_dpll_params(48000, &clock) != 25154); 12504 12505 drm_dbg_kms(&dev_priv->drm, 12506 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 12507 pipe_name(pipe), clock.vco, clock.dot); 12508 12509 fp = i9xx_dpll_compute_fp(&clock); 12510 dpll = DPLL_DVO_2X_MODE | 12511 DPLL_VGA_MODE_DIS | 12512 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 12513 PLL_P2_DIVIDE_BY_4 | 12514 PLL_REF_INPUT_DREFCLK | 12515 DPLL_VCO_ENABLE; 12516 12517 intel_de_write(dev_priv, FP0(pipe), fp); 12518 intel_de_write(dev_priv, FP1(pipe), fp); 12519 12520 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 12521 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 12522 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 12523 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 12524 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 12525 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 12526 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 12527 12528 /* 12529 * Apparently we need to have VGA mode enabled prior to changing 12530 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 12531 * dividers, even though the register value does change. 12532 */ 12533 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 12534 intel_de_write(dev_priv, DPLL(pipe), dpll); 12535 12536 /* Wait for the clocks to stabilize. */ 12537 intel_de_posting_read(dev_priv, DPLL(pipe)); 12538 udelay(150); 12539 12540 /* The pixel multiplier can only be updated once the 12541 * DPLL is enabled and the clocks are stable. 12542 * 12543 * So write it again. 12544 */ 12545 intel_de_write(dev_priv, DPLL(pipe), dpll); 12546 12547 /* We do this three times for luck */ 12548 for (i = 0; i < 3 ; i++) { 12549 intel_de_write(dev_priv, DPLL(pipe), dpll); 12550 intel_de_posting_read(dev_priv, DPLL(pipe)); 12551 udelay(150); /* wait for warmup */ 12552 } 12553 12554 intel_de_write(dev_priv, PIPECONF(pipe), 12555 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 12556 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 12557 12558 intel_wait_for_pipe_scanline_moving(crtc); 12559 } 12560 12561 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 12562 { 12563 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12564 12565 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n", 12566 pipe_name(pipe)); 12567 12568 drm_WARN_ON(&dev_priv->drm, 12569 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & 12570 DISPLAY_PLANE_ENABLE); 12571 drm_WARN_ON(&dev_priv->drm, 12572 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & 12573 DISPLAY_PLANE_ENABLE); 12574 drm_WARN_ON(&dev_priv->drm, 12575 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & 12576 DISPLAY_PLANE_ENABLE); 12577 drm_WARN_ON(&dev_priv->drm, 12578 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE); 12579 drm_WARN_ON(&dev_priv->drm, 12580 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE); 12581 12582 intel_de_write(dev_priv, PIPECONF(pipe), 0); 12583 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 12584 12585 intel_wait_for_pipe_scanline_stopped(crtc); 12586 12587 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 12588 intel_de_posting_read(dev_priv, DPLL(pipe)); 12589 } 12590 12591 static void 12592 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 12593 { 12594 struct intel_crtc *crtc; 12595 12596 if (DISPLAY_VER(dev_priv) >= 4) 12597 return; 12598 12599 for_each_intel_crtc(&dev_priv->drm, crtc) { 12600 struct intel_plane *plane = 12601 to_intel_plane(crtc->base.primary); 12602 struct intel_crtc *plane_crtc; 12603 enum pipe pipe; 12604 12605 if (!plane->get_hw_state(plane, &pipe)) 12606 continue; 12607 12608 if (pipe == crtc->pipe) 12609 continue; 12610 12611 drm_dbg_kms(&dev_priv->drm, 12612 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 12613 plane->base.base.id, plane->base.name); 12614 12615 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12616 intel_plane_disable_noatomic(plane_crtc, plane); 12617 } 12618 } 12619 12620 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 12621 { 12622 struct drm_device *dev = crtc->base.dev; 12623 struct intel_encoder *encoder; 12624 12625 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 12626 return true; 12627 12628 return false; 12629 } 12630 12631 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 12632 { 12633 struct drm_device *dev = encoder->base.dev; 12634 struct intel_connector *connector; 12635 12636 for_each_connector_on_encoder(dev, &encoder->base, connector) 12637 return connector; 12638 12639 return NULL; 12640 } 12641 12642 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 12643 enum pipe pch_transcoder) 12644 { 12645 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 12646 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 12647 } 12648 12649 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state) 12650 { 12651 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12652 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12653 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 12654 12655 if (DISPLAY_VER(dev_priv) >= 9 || 12656 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 12657 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); 12658 u32 val; 12659 12660 if (transcoder_is_dsi(cpu_transcoder)) 12661 return; 12662 12663 val = intel_de_read(dev_priv, reg); 12664 val &= ~HSW_FRAME_START_DELAY_MASK; 12665 val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12666 intel_de_write(dev_priv, reg, val); 12667 } else { 12668 i915_reg_t reg = PIPECONF(cpu_transcoder); 12669 u32 val; 12670 12671 val = intel_de_read(dev_priv, reg); 12672 val &= ~PIPECONF_FRAME_START_DELAY_MASK; 12673 val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12674 intel_de_write(dev_priv, reg, val); 12675 } 12676 12677 if (!crtc_state->has_pch_encoder) 12678 return; 12679 12680 if (HAS_PCH_IBX(dev_priv)) { 12681 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe); 12682 u32 val; 12683 12684 val = intel_de_read(dev_priv, reg); 12685 val &= ~TRANS_FRAME_START_DELAY_MASK; 12686 val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12687 intel_de_write(dev_priv, reg, val); 12688 } else { 12689 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); 12690 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder); 12691 u32 val; 12692 12693 val = intel_de_read(dev_priv, reg); 12694 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 12695 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12696 intel_de_write(dev_priv, reg, val); 12697 } 12698 } 12699 12700 static void intel_sanitize_crtc(struct intel_crtc *crtc, 12701 struct drm_modeset_acquire_ctx *ctx) 12702 { 12703 struct drm_device *dev = crtc->base.dev; 12704 struct drm_i915_private *dev_priv = to_i915(dev); 12705 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 12706 12707 if (crtc_state->hw.active) { 12708 struct intel_plane *plane; 12709 12710 /* Clear any frame start delays used for debugging left by the BIOS */ 12711 intel_sanitize_frame_start_delay(crtc_state); 12712 12713 /* Disable everything but the primary plane */ 12714 for_each_intel_plane_on_crtc(dev, crtc, plane) { 12715 const struct intel_plane_state *plane_state = 12716 to_intel_plane_state(plane->base.state); 12717 12718 if (plane_state->uapi.visible && 12719 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 12720 intel_plane_disable_noatomic(crtc, plane); 12721 } 12722 12723 /* 12724 * Disable any background color set by the BIOS, but enable the 12725 * gamma and CSC to match how we program our planes. 12726 */ 12727 if (DISPLAY_VER(dev_priv) >= 9) 12728 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe), 12729 SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE); 12730 } 12731 12732 /* Adjust the state of the output pipe according to whether we 12733 * have active connectors/encoders. */ 12734 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc) && 12735 !crtc_state->bigjoiner_slave) 12736 intel_crtc_disable_noatomic(crtc, ctx); 12737 12738 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) { 12739 /* 12740 * We start out with underrun reporting disabled to avoid races. 12741 * For correct bookkeeping mark this on active crtcs. 12742 * 12743 * Also on gmch platforms we dont have any hardware bits to 12744 * disable the underrun reporting. Which means we need to start 12745 * out with underrun reporting disabled also on inactive pipes, 12746 * since otherwise we'll complain about the garbage we read when 12747 * e.g. coming up after runtime pm. 12748 * 12749 * No protection against concurrent access is required - at 12750 * worst a fifo underrun happens which also sets this to false. 12751 */ 12752 crtc->cpu_fifo_underrun_disabled = true; 12753 /* 12754 * We track the PCH trancoder underrun reporting state 12755 * within the crtc. With crtc for pipe A housing the underrun 12756 * reporting state for PCH transcoder A, crtc for pipe B housing 12757 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 12758 * and marking underrun reporting as disabled for the non-existing 12759 * PCH transcoders B and C would prevent enabling the south 12760 * error interrupt (see cpt_can_enable_serr_int()). 12761 */ 12762 if (has_pch_trancoder(dev_priv, crtc->pipe)) 12763 crtc->pch_fifo_underrun_disabled = true; 12764 } 12765 } 12766 12767 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 12768 { 12769 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 12770 12771 /* 12772 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 12773 * the hardware when a high res displays plugged in. DPLL P 12774 * divider is zero, and the pipe timings are bonkers. We'll 12775 * try to disable everything in that case. 12776 * 12777 * FIXME would be nice to be able to sanitize this state 12778 * without several WARNs, but for now let's take the easy 12779 * road. 12780 */ 12781 return IS_SANDYBRIDGE(dev_priv) && 12782 crtc_state->hw.active && 12783 crtc_state->shared_dpll && 12784 crtc_state->port_clock == 0; 12785 } 12786 12787 static void intel_sanitize_encoder(struct intel_encoder *encoder) 12788 { 12789 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 12790 struct intel_connector *connector; 12791 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 12792 struct intel_crtc_state *crtc_state = crtc ? 12793 to_intel_crtc_state(crtc->base.state) : NULL; 12794 12795 /* We need to check both for a crtc link (meaning that the 12796 * encoder is active and trying to read from a pipe) and the 12797 * pipe itself being active. */ 12798 bool has_active_crtc = crtc_state && 12799 crtc_state->hw.active; 12800 12801 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 12802 drm_dbg_kms(&dev_priv->drm, 12803 "BIOS has misprogrammed the hardware. Disabling pipe %c\n", 12804 pipe_name(crtc->pipe)); 12805 has_active_crtc = false; 12806 } 12807 12808 connector = intel_encoder_find_connector(encoder); 12809 if (connector && !has_active_crtc) { 12810 drm_dbg_kms(&dev_priv->drm, 12811 "[ENCODER:%d:%s] has active connectors but no active pipe!\n", 12812 encoder->base.base.id, 12813 encoder->base.name); 12814 12815 /* Connector is active, but has no active pipe. This is 12816 * fallout from our resume register restoring. Disable 12817 * the encoder manually again. */ 12818 if (crtc_state) { 12819 struct drm_encoder *best_encoder; 12820 12821 drm_dbg_kms(&dev_priv->drm, 12822 "[ENCODER:%d:%s] manually disabled\n", 12823 encoder->base.base.id, 12824 encoder->base.name); 12825 12826 /* avoid oopsing in case the hooks consult best_encoder */ 12827 best_encoder = connector->base.state->best_encoder; 12828 connector->base.state->best_encoder = &encoder->base; 12829 12830 /* FIXME NULL atomic state passed! */ 12831 if (encoder->disable) 12832 encoder->disable(NULL, encoder, crtc_state, 12833 connector->base.state); 12834 if (encoder->post_disable) 12835 encoder->post_disable(NULL, encoder, crtc_state, 12836 connector->base.state); 12837 12838 connector->base.state->best_encoder = best_encoder; 12839 } 12840 encoder->base.crtc = NULL; 12841 12842 /* Inconsistent output/port/pipe state happens presumably due to 12843 * a bug in one of the get_hw_state functions. Or someplace else 12844 * in our code, like the register restore mess on resume. Clamp 12845 * things to off as a safer default. */ 12846 12847 connector->base.dpms = DRM_MODE_DPMS_OFF; 12848 connector->base.encoder = NULL; 12849 } 12850 12851 /* notify opregion of the sanitized encoder state */ 12852 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 12853 12854 if (HAS_DDI(dev_priv)) 12855 intel_ddi_sanitize_encoder_pll_mapping(encoder); 12856 } 12857 12858 /* FIXME read out full plane state for all planes */ 12859 static void readout_plane_state(struct drm_i915_private *dev_priv) 12860 { 12861 struct intel_plane *plane; 12862 struct intel_crtc *crtc; 12863 12864 for_each_intel_plane(&dev_priv->drm, plane) { 12865 struct intel_plane_state *plane_state = 12866 to_intel_plane_state(plane->base.state); 12867 struct intel_crtc_state *crtc_state; 12868 enum pipe pipe = PIPE_A; 12869 bool visible; 12870 12871 visible = plane->get_hw_state(plane, &pipe); 12872 12873 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12874 crtc_state = to_intel_crtc_state(crtc->base.state); 12875 12876 intel_set_plane_visible(crtc_state, plane_state, visible); 12877 12878 drm_dbg_kms(&dev_priv->drm, 12879 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 12880 plane->base.base.id, plane->base.name, 12881 enableddisabled(visible), pipe_name(pipe)); 12882 } 12883 12884 for_each_intel_crtc(&dev_priv->drm, crtc) { 12885 struct intel_crtc_state *crtc_state = 12886 to_intel_crtc_state(crtc->base.state); 12887 12888 fixup_plane_bitmasks(crtc_state); 12889 } 12890 } 12891 12892 static void intel_modeset_readout_hw_state(struct drm_device *dev) 12893 { 12894 struct drm_i915_private *dev_priv = to_i915(dev); 12895 struct intel_cdclk_state *cdclk_state = 12896 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 12897 struct intel_dbuf_state *dbuf_state = 12898 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 12899 enum pipe pipe; 12900 struct intel_crtc *crtc; 12901 struct intel_encoder *encoder; 12902 struct intel_connector *connector; 12903 struct drm_connector_list_iter conn_iter; 12904 u8 active_pipes = 0; 12905 12906 for_each_intel_crtc(dev, crtc) { 12907 struct intel_crtc_state *crtc_state = 12908 to_intel_crtc_state(crtc->base.state); 12909 12910 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi); 12911 intel_crtc_free_hw_state(crtc_state); 12912 intel_crtc_state_reset(crtc_state, crtc); 12913 12914 intel_crtc_get_pipe_config(crtc_state); 12915 12916 crtc_state->hw.enable = crtc_state->hw.active; 12917 12918 crtc->base.enabled = crtc_state->hw.enable; 12919 crtc->active = crtc_state->hw.active; 12920 12921 if (crtc_state->hw.active) 12922 active_pipes |= BIT(crtc->pipe); 12923 12924 drm_dbg_kms(&dev_priv->drm, 12925 "[CRTC:%d:%s] hw state readout: %s\n", 12926 crtc->base.base.id, crtc->base.name, 12927 enableddisabled(crtc_state->hw.active)); 12928 } 12929 12930 dev_priv->active_pipes = cdclk_state->active_pipes = 12931 dbuf_state->active_pipes = active_pipes; 12932 12933 readout_plane_state(dev_priv); 12934 12935 for_each_intel_encoder(dev, encoder) { 12936 pipe = 0; 12937 12938 if (encoder->get_hw_state(encoder, &pipe)) { 12939 struct intel_crtc_state *crtc_state; 12940 12941 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12942 crtc_state = to_intel_crtc_state(crtc->base.state); 12943 12944 encoder->base.crtc = &crtc->base; 12945 intel_encoder_get_config(encoder, crtc_state); 12946 if (encoder->sync_state) 12947 encoder->sync_state(encoder, crtc_state); 12948 12949 /* read out to slave crtc as well for bigjoiner */ 12950 if (crtc_state->bigjoiner) { 12951 /* encoder should read be linked to bigjoiner master */ 12952 WARN_ON(crtc_state->bigjoiner_slave); 12953 12954 crtc = crtc_state->bigjoiner_linked_crtc; 12955 crtc_state = to_intel_crtc_state(crtc->base.state); 12956 intel_encoder_get_config(encoder, crtc_state); 12957 } 12958 } else { 12959 encoder->base.crtc = NULL; 12960 } 12961 12962 drm_dbg_kms(&dev_priv->drm, 12963 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 12964 encoder->base.base.id, encoder->base.name, 12965 enableddisabled(encoder->base.crtc), 12966 pipe_name(pipe)); 12967 } 12968 12969 intel_dpll_readout_hw_state(dev_priv); 12970 12971 drm_connector_list_iter_begin(dev, &conn_iter); 12972 for_each_intel_connector_iter(connector, &conn_iter) { 12973 if (connector->get_hw_state(connector)) { 12974 struct intel_crtc_state *crtc_state; 12975 struct intel_crtc *crtc; 12976 12977 connector->base.dpms = DRM_MODE_DPMS_ON; 12978 12979 encoder = intel_attached_encoder(connector); 12980 connector->base.encoder = &encoder->base; 12981 12982 crtc = to_intel_crtc(encoder->base.crtc); 12983 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; 12984 12985 if (crtc_state && crtc_state->hw.active) { 12986 /* 12987 * This has to be done during hardware readout 12988 * because anything calling .crtc_disable may 12989 * rely on the connector_mask being accurate. 12990 */ 12991 crtc_state->uapi.connector_mask |= 12992 drm_connector_mask(&connector->base); 12993 crtc_state->uapi.encoder_mask |= 12994 drm_encoder_mask(&encoder->base); 12995 } 12996 } else { 12997 connector->base.dpms = DRM_MODE_DPMS_OFF; 12998 connector->base.encoder = NULL; 12999 } 13000 drm_dbg_kms(&dev_priv->drm, 13001 "[CONNECTOR:%d:%s] hw state readout: %s\n", 13002 connector->base.base.id, connector->base.name, 13003 enableddisabled(connector->base.encoder)); 13004 } 13005 drm_connector_list_iter_end(&conn_iter); 13006 13007 for_each_intel_crtc(dev, crtc) { 13008 struct intel_bw_state *bw_state = 13009 to_intel_bw_state(dev_priv->bw_obj.state); 13010 struct intel_crtc_state *crtc_state = 13011 to_intel_crtc_state(crtc->base.state); 13012 struct intel_plane *plane; 13013 int min_cdclk = 0; 13014 13015 if (crtc_state->bigjoiner_slave) 13016 continue; 13017 13018 if (crtc_state->hw.active) { 13019 /* 13020 * The initial mode needs to be set in order to keep 13021 * the atomic core happy. It wants a valid mode if the 13022 * crtc's enabled, so we do the above call. 13023 * 13024 * But we don't set all the derived state fully, hence 13025 * set a flag to indicate that a full recalculation is 13026 * needed on the next commit. 13027 */ 13028 crtc_state->inherited = true; 13029 13030 intel_crtc_update_active_timings(crtc_state); 13031 13032 intel_crtc_copy_hw_to_uapi_state(crtc_state); 13033 } 13034 13035 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 13036 const struct intel_plane_state *plane_state = 13037 to_intel_plane_state(plane->base.state); 13038 13039 /* 13040 * FIXME don't have the fb yet, so can't 13041 * use intel_plane_data_rate() :( 13042 */ 13043 if (plane_state->uapi.visible) 13044 crtc_state->data_rate[plane->id] = 13045 4 * crtc_state->pixel_rate; 13046 /* 13047 * FIXME don't have the fb yet, so can't 13048 * use plane->min_cdclk() :( 13049 */ 13050 if (plane_state->uapi.visible && plane->min_cdclk) { 13051 if (crtc_state->double_wide || DISPLAY_VER(dev_priv) >= 10) 13052 crtc_state->min_cdclk[plane->id] = 13053 DIV_ROUND_UP(crtc_state->pixel_rate, 2); 13054 else 13055 crtc_state->min_cdclk[plane->id] = 13056 crtc_state->pixel_rate; 13057 } 13058 drm_dbg_kms(&dev_priv->drm, 13059 "[PLANE:%d:%s] min_cdclk %d kHz\n", 13060 plane->base.base.id, plane->base.name, 13061 crtc_state->min_cdclk[plane->id]); 13062 } 13063 13064 if (crtc_state->hw.active) { 13065 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 13066 if (drm_WARN_ON(dev, min_cdclk < 0)) 13067 min_cdclk = 0; 13068 } 13069 13070 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 13071 cdclk_state->min_voltage_level[crtc->pipe] = 13072 crtc_state->min_voltage_level; 13073 13074 intel_bw_crtc_update(bw_state, crtc_state); 13075 13076 intel_pipe_config_sanity_check(dev_priv, crtc_state); 13077 13078 /* discard our incomplete slave state, copy it from master */ 13079 if (crtc_state->bigjoiner && crtc_state->hw.active) { 13080 struct intel_crtc *slave = crtc_state->bigjoiner_linked_crtc; 13081 struct intel_crtc_state *slave_crtc_state = 13082 to_intel_crtc_state(slave->base.state); 13083 13084 copy_bigjoiner_crtc_state(slave_crtc_state, crtc_state); 13085 slave->base.mode = crtc->base.mode; 13086 13087 cdclk_state->min_cdclk[slave->pipe] = min_cdclk; 13088 cdclk_state->min_voltage_level[slave->pipe] = 13089 crtc_state->min_voltage_level; 13090 13091 for_each_intel_plane_on_crtc(&dev_priv->drm, slave, plane) { 13092 const struct intel_plane_state *plane_state = 13093 to_intel_plane_state(plane->base.state); 13094 13095 /* 13096 * FIXME don't have the fb yet, so can't 13097 * use intel_plane_data_rate() :( 13098 */ 13099 if (plane_state->uapi.visible) 13100 crtc_state->data_rate[plane->id] = 13101 4 * crtc_state->pixel_rate; 13102 else 13103 crtc_state->data_rate[plane->id] = 0; 13104 } 13105 13106 intel_bw_crtc_update(bw_state, slave_crtc_state); 13107 drm_calc_timestamping_constants(&slave->base, 13108 &slave_crtc_state->hw.adjusted_mode); 13109 } 13110 } 13111 } 13112 13113 static void 13114 get_encoder_power_domains(struct drm_i915_private *dev_priv) 13115 { 13116 struct intel_encoder *encoder; 13117 13118 for_each_intel_encoder(&dev_priv->drm, encoder) { 13119 struct intel_crtc_state *crtc_state; 13120 13121 if (!encoder->get_power_domains) 13122 continue; 13123 13124 /* 13125 * MST-primary and inactive encoders don't have a crtc state 13126 * and neither of these require any power domain references. 13127 */ 13128 if (!encoder->base.crtc) 13129 continue; 13130 13131 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 13132 encoder->get_power_domains(encoder, crtc_state); 13133 } 13134 } 13135 13136 static void intel_early_display_was(struct drm_i915_private *dev_priv) 13137 { 13138 /* 13139 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl 13140 * Also known as Wa_14010480278. 13141 */ 13142 if (IS_DISPLAY_VER(dev_priv, 10, 12)) 13143 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0, 13144 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS); 13145 13146 if (IS_HASWELL(dev_priv)) { 13147 /* 13148 * WaRsPkgCStateDisplayPMReq:hsw 13149 * System hang if this isn't done before disabling all planes! 13150 */ 13151 intel_de_write(dev_priv, CHICKEN_PAR1_1, 13152 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 13153 } 13154 13155 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv)) { 13156 /* Display WA #1142:kbl,cfl,cml */ 13157 intel_de_rmw(dev_priv, CHICKEN_PAR1_1, 13158 KBL_ARB_FILL_SPARE_22, KBL_ARB_FILL_SPARE_22); 13159 intel_de_rmw(dev_priv, CHICKEN_MISC_2, 13160 KBL_ARB_FILL_SPARE_13 | KBL_ARB_FILL_SPARE_14, 13161 KBL_ARB_FILL_SPARE_14); 13162 } 13163 } 13164 13165 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 13166 enum port port, i915_reg_t hdmi_reg) 13167 { 13168 u32 val = intel_de_read(dev_priv, hdmi_reg); 13169 13170 if (val & SDVO_ENABLE || 13171 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 13172 return; 13173 13174 drm_dbg_kms(&dev_priv->drm, 13175 "Sanitizing transcoder select for HDMI %c\n", 13176 port_name(port)); 13177 13178 val &= ~SDVO_PIPE_SEL_MASK; 13179 val |= SDVO_PIPE_SEL(PIPE_A); 13180 13181 intel_de_write(dev_priv, hdmi_reg, val); 13182 } 13183 13184 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 13185 enum port port, i915_reg_t dp_reg) 13186 { 13187 u32 val = intel_de_read(dev_priv, dp_reg); 13188 13189 if (val & DP_PORT_EN || 13190 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 13191 return; 13192 13193 drm_dbg_kms(&dev_priv->drm, 13194 "Sanitizing transcoder select for DP %c\n", 13195 port_name(port)); 13196 13197 val &= ~DP_PIPE_SEL_MASK; 13198 val |= DP_PIPE_SEL(PIPE_A); 13199 13200 intel_de_write(dev_priv, dp_reg, val); 13201 } 13202 13203 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 13204 { 13205 /* 13206 * The BIOS may select transcoder B on some of the PCH 13207 * ports even it doesn't enable the port. This would trip 13208 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 13209 * Sanitize the transcoder select bits to prevent that. We 13210 * assume that the BIOS never actually enabled the port, 13211 * because if it did we'd actually have to toggle the port 13212 * on and back off to make the transcoder A select stick 13213 * (see. intel_dp_link_down(), intel_disable_hdmi(), 13214 * intel_disable_sdvo()). 13215 */ 13216 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 13217 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 13218 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 13219 13220 /* PCH SDVOB multiplex with HDMIB */ 13221 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 13222 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 13223 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 13224 } 13225 13226 /* Scan out the current hw modeset state, 13227 * and sanitizes it to the current state 13228 */ 13229 static void 13230 intel_modeset_setup_hw_state(struct drm_device *dev, 13231 struct drm_modeset_acquire_ctx *ctx) 13232 { 13233 struct drm_i915_private *dev_priv = to_i915(dev); 13234 struct intel_encoder *encoder; 13235 struct intel_crtc *crtc; 13236 intel_wakeref_t wakeref; 13237 13238 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 13239 13240 intel_early_display_was(dev_priv); 13241 intel_modeset_readout_hw_state(dev); 13242 13243 /* HW state is read out, now we need to sanitize this mess. */ 13244 13245 /* Sanitize the TypeC port mode upfront, encoders depend on this */ 13246 for_each_intel_encoder(dev, encoder) { 13247 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 13248 13249 /* We need to sanitize only the MST primary port. */ 13250 if (encoder->type != INTEL_OUTPUT_DP_MST && 13251 intel_phy_is_tc(dev_priv, phy)) 13252 intel_tc_port_sanitize(enc_to_dig_port(encoder)); 13253 } 13254 13255 get_encoder_power_domains(dev_priv); 13256 13257 if (HAS_PCH_IBX(dev_priv)) 13258 ibx_sanitize_pch_ports(dev_priv); 13259 13260 /* 13261 * intel_sanitize_plane_mapping() may need to do vblank 13262 * waits, so we need vblank interrupts restored beforehand. 13263 */ 13264 for_each_intel_crtc(&dev_priv->drm, crtc) { 13265 struct intel_crtc_state *crtc_state = 13266 to_intel_crtc_state(crtc->base.state); 13267 13268 drm_crtc_vblank_reset(&crtc->base); 13269 13270 if (crtc_state->hw.active) 13271 intel_crtc_vblank_on(crtc_state); 13272 } 13273 13274 intel_sanitize_plane_mapping(dev_priv); 13275 13276 for_each_intel_encoder(dev, encoder) 13277 intel_sanitize_encoder(encoder); 13278 13279 for_each_intel_crtc(&dev_priv->drm, crtc) { 13280 struct intel_crtc_state *crtc_state = 13281 to_intel_crtc_state(crtc->base.state); 13282 13283 intel_sanitize_crtc(crtc, ctx); 13284 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 13285 } 13286 13287 intel_modeset_update_connector_atomic_state(dev); 13288 13289 intel_dpll_sanitize_state(dev_priv); 13290 13291 if (IS_G4X(dev_priv)) { 13292 g4x_wm_get_hw_state(dev_priv); 13293 g4x_wm_sanitize(dev_priv); 13294 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 13295 vlv_wm_get_hw_state(dev_priv); 13296 vlv_wm_sanitize(dev_priv); 13297 } else if (DISPLAY_VER(dev_priv) >= 9) { 13298 skl_wm_get_hw_state(dev_priv); 13299 } else if (HAS_PCH_SPLIT(dev_priv)) { 13300 ilk_wm_get_hw_state(dev_priv); 13301 } 13302 13303 for_each_intel_crtc(dev, crtc) { 13304 struct intel_crtc_state *crtc_state = 13305 to_intel_crtc_state(crtc->base.state); 13306 u64 put_domains; 13307 13308 put_domains = modeset_get_crtc_power_domains(crtc_state); 13309 if (drm_WARN_ON(dev, put_domains)) 13310 modeset_put_crtc_power_domains(crtc, put_domains); 13311 } 13312 13313 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 13314 } 13315 13316 void intel_display_resume(struct drm_device *dev) 13317 { 13318 struct drm_i915_private *dev_priv = to_i915(dev); 13319 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 13320 struct drm_modeset_acquire_ctx ctx; 13321 int ret; 13322 13323 if (!HAS_DISPLAY(dev_priv)) 13324 return; 13325 13326 dev_priv->modeset_restore_state = NULL; 13327 if (state) 13328 state->acquire_ctx = &ctx; 13329 13330 drm_modeset_acquire_init(&ctx, 0); 13331 13332 while (1) { 13333 ret = drm_modeset_lock_all_ctx(dev, &ctx); 13334 if (ret != -EDEADLK) 13335 break; 13336 13337 drm_modeset_backoff(&ctx); 13338 } 13339 13340 if (!ret) 13341 ret = __intel_display_resume(dev, state, &ctx); 13342 13343 intel_enable_ipc(dev_priv); 13344 drm_modeset_drop_locks(&ctx); 13345 drm_modeset_acquire_fini(&ctx); 13346 13347 if (ret) 13348 drm_err(&dev_priv->drm, 13349 "Restoring old state failed with %i\n", ret); 13350 if (state) 13351 drm_atomic_state_put(state); 13352 } 13353 13354 static void intel_hpd_poll_fini(struct drm_i915_private *i915) 13355 { 13356 struct intel_connector *connector; 13357 struct drm_connector_list_iter conn_iter; 13358 13359 /* Kill all the work that may have been queued by hpd. */ 13360 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 13361 for_each_intel_connector_iter(connector, &conn_iter) { 13362 if (connector->modeset_retry_work.func) 13363 cancel_work_sync(&connector->modeset_retry_work); 13364 if (connector->hdcp.shim) { 13365 cancel_delayed_work_sync(&connector->hdcp.check_work); 13366 cancel_work_sync(&connector->hdcp.prop_work); 13367 } 13368 } 13369 drm_connector_list_iter_end(&conn_iter); 13370 } 13371 13372 /* part #1: call before irq uninstall */ 13373 void intel_modeset_driver_remove(struct drm_i915_private *i915) 13374 { 13375 if (!HAS_DISPLAY(i915)) 13376 return; 13377 13378 flush_workqueue(i915->flip_wq); 13379 flush_workqueue(i915->modeset_wq); 13380 13381 flush_work(&i915->atomic_helper.free_work); 13382 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list)); 13383 } 13384 13385 /* part #2: call after irq uninstall */ 13386 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915) 13387 { 13388 if (!HAS_DISPLAY(i915)) 13389 return; 13390 13391 /* 13392 * Due to the hpd irq storm handling the hotplug work can re-arm the 13393 * poll handlers. Hence disable polling after hpd handling is shut down. 13394 */ 13395 intel_hpd_poll_fini(i915); 13396 13397 /* 13398 * MST topology needs to be suspended so we don't have any calls to 13399 * fbdev after it's finalized. MST will be destroyed later as part of 13400 * drm_mode_config_cleanup() 13401 */ 13402 intel_dp_mst_suspend(i915); 13403 13404 /* poll work can call into fbdev, hence clean that up afterwards */ 13405 intel_fbdev_fini(i915); 13406 13407 intel_unregister_dsm_handler(); 13408 13409 intel_fbc_global_disable(i915); 13410 13411 /* flush any delayed tasks or pending work */ 13412 flush_scheduled_work(); 13413 13414 intel_hdcp_component_fini(i915); 13415 13416 intel_mode_config_cleanup(i915); 13417 13418 intel_overlay_cleanup(i915); 13419 13420 intel_gmbus_teardown(i915); 13421 13422 destroy_workqueue(i915->flip_wq); 13423 destroy_workqueue(i915->modeset_wq); 13424 13425 intel_fbc_cleanup_cfb(i915); 13426 } 13427 13428 /* part #3: call after gem init */ 13429 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915) 13430 { 13431 intel_dmc_ucode_fini(i915); 13432 13433 intel_power_domains_driver_remove(i915); 13434 13435 intel_vga_unregister(i915); 13436 13437 intel_bios_driver_remove(i915); 13438 } 13439 13440 void intel_display_driver_register(struct drm_i915_private *i915) 13441 { 13442 if (!HAS_DISPLAY(i915)) 13443 return; 13444 13445 intel_display_debugfs_register(i915); 13446 13447 /* Must be done after probing outputs */ 13448 intel_opregion_register(i915); 13449 acpi_video_register(); 13450 13451 intel_audio_init(i915); 13452 13453 /* 13454 * Some ports require correctly set-up hpd registers for 13455 * detection to work properly (leading to ghost connected 13456 * connector status), e.g. VGA on gm45. Hence we can only set 13457 * up the initial fbdev config after hpd irqs are fully 13458 * enabled. We do it last so that the async config cannot run 13459 * before the connectors are registered. 13460 */ 13461 intel_fbdev_initial_config_async(&i915->drm); 13462 13463 /* 13464 * We need to coordinate the hotplugs with the asynchronous 13465 * fbdev configuration, for which we use the 13466 * fbdev->async_cookie. 13467 */ 13468 drm_kms_helper_poll_init(&i915->drm); 13469 } 13470 13471 void intel_display_driver_unregister(struct drm_i915_private *i915) 13472 { 13473 if (!HAS_DISPLAY(i915)) 13474 return; 13475 13476 intel_fbdev_unregister(i915); 13477 intel_audio_deinit(i915); 13478 13479 /* 13480 * After flushing the fbdev (incl. a late async config which 13481 * will have delayed queuing of a hotplug event), then flush 13482 * the hotplug events. 13483 */ 13484 drm_kms_helper_poll_fini(&i915->drm); 13485 drm_atomic_helper_shutdown(&i915->drm); 13486 13487 acpi_video_unregister(); 13488 intel_opregion_unregister(i915); 13489 } 13490