xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_display.c (revision 817396dc9f6ab2481b94071de2e586aae876e89c)
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  */
26 
27 #include <linux/i2c.h>
28 #include <linux/input.h>
29 #include <linux/intel-iommu.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/dma-resv.h>
33 #include <linux/slab.h>
34 
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_atomic_uapi.h>
38 #include <drm/drm_dp_helper.h>
39 #include <drm/drm_edid.h>
40 #include <drm/drm_fourcc.h>
41 #include <drm/drm_plane_helper.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_rect.h>
44 #include <drm/i915_drm.h>
45 
46 #include "display/intel_crt.h"
47 #include "display/intel_ddi.h"
48 #include "display/intel_dp.h"
49 #include "display/intel_dsi.h"
50 #include "display/intel_dvo.h"
51 #include "display/intel_gmbus.h"
52 #include "display/intel_hdmi.h"
53 #include "display/intel_lvds.h"
54 #include "display/intel_sdvo.h"
55 #include "display/intel_tv.h"
56 #include "display/intel_vdsc.h"
57 
58 #include "gt/intel_rps.h"
59 
60 #include "i915_drv.h"
61 #include "i915_trace.h"
62 #include "intel_acpi.h"
63 #include "intel_atomic.h"
64 #include "intel_atomic_plane.h"
65 #include "intel_bw.h"
66 #include "intel_cdclk.h"
67 #include "intel_color.h"
68 #include "intel_display_types.h"
69 #include "intel_dp_link_training.h"
70 #include "intel_fbc.h"
71 #include "intel_fbdev.h"
72 #include "intel_fifo_underrun.h"
73 #include "intel_frontbuffer.h"
74 #include "intel_hdcp.h"
75 #include "intel_hotplug.h"
76 #include "intel_overlay.h"
77 #include "intel_pipe_crc.h"
78 #include "intel_pm.h"
79 #include "intel_psr.h"
80 #include "intel_quirks.h"
81 #include "intel_sideband.h"
82 #include "intel_sprite.h"
83 #include "intel_tc.h"
84 #include "intel_vga.h"
85 
86 /* Primary plane formats for gen <= 3 */
87 static const u32 i8xx_primary_formats[] = {
88 	DRM_FORMAT_C8,
89 	DRM_FORMAT_XRGB1555,
90 	DRM_FORMAT_RGB565,
91 	DRM_FORMAT_XRGB8888,
92 };
93 
94 /* Primary plane formats for ivb (no fp16 due to hw issue) */
95 static const u32 ivb_primary_formats[] = {
96 	DRM_FORMAT_C8,
97 	DRM_FORMAT_RGB565,
98 	DRM_FORMAT_XRGB8888,
99 	DRM_FORMAT_XBGR8888,
100 	DRM_FORMAT_XRGB2101010,
101 	DRM_FORMAT_XBGR2101010,
102 };
103 
104 /* Primary plane formats for gen >= 4, except ivb */
105 static const u32 i965_primary_formats[] = {
106 	DRM_FORMAT_C8,
107 	DRM_FORMAT_RGB565,
108 	DRM_FORMAT_XRGB8888,
109 	DRM_FORMAT_XBGR8888,
110 	DRM_FORMAT_XRGB2101010,
111 	DRM_FORMAT_XBGR2101010,
112 	DRM_FORMAT_XBGR16161616F,
113 };
114 
115 /* Primary plane formats for vlv/chv */
116 static const u32 vlv_primary_formats[] = {
117 	DRM_FORMAT_C8,
118 	DRM_FORMAT_RGB565,
119 	DRM_FORMAT_XRGB8888,
120 	DRM_FORMAT_XBGR8888,
121 	DRM_FORMAT_ARGB8888,
122 	DRM_FORMAT_ABGR8888,
123 	DRM_FORMAT_XRGB2101010,
124 	DRM_FORMAT_XBGR2101010,
125 	DRM_FORMAT_ARGB2101010,
126 	DRM_FORMAT_ABGR2101010,
127 	DRM_FORMAT_XBGR16161616F,
128 };
129 
130 static const u64 i9xx_format_modifiers[] = {
131 	I915_FORMAT_MOD_X_TILED,
132 	DRM_FORMAT_MOD_LINEAR,
133 	DRM_FORMAT_MOD_INVALID
134 };
135 
136 /* Cursor formats */
137 static const u32 intel_cursor_formats[] = {
138 	DRM_FORMAT_ARGB8888,
139 };
140 
141 static const u64 cursor_format_modifiers[] = {
142 	DRM_FORMAT_MOD_LINEAR,
143 	DRM_FORMAT_MOD_INVALID
144 };
145 
146 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
147 				struct intel_crtc_state *pipe_config);
148 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
149 				   struct intel_crtc_state *pipe_config);
150 
151 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
152 				  struct drm_i915_gem_object *obj,
153 				  struct drm_mode_fb_cmd2 *mode_cmd);
154 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state);
155 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
156 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
157 					 const struct intel_link_m_n *m_n,
158 					 const struct intel_link_m_n *m2_n2);
159 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state);
160 static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state);
161 static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state);
162 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state);
163 static void vlv_prepare_pll(struct intel_crtc *crtc,
164 			    const struct intel_crtc_state *pipe_config);
165 static void chv_prepare_pll(struct intel_crtc *crtc,
166 			    const struct intel_crtc_state *pipe_config);
167 static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state);
168 static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state);
169 static void intel_modeset_setup_hw_state(struct drm_device *dev,
170 					 struct drm_modeset_acquire_ctx *ctx);
171 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc);
172 
173 struct intel_limit {
174 	struct {
175 		int min, max;
176 	} dot, vco, n, m, m1, m2, p, p1;
177 
178 	struct {
179 		int dot_limit;
180 		int p2_slow, p2_fast;
181 	} p2;
182 };
183 
184 /* returns HPLL frequency in kHz */
185 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
186 {
187 	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
188 
189 	/* Obtain SKU information */
190 	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
191 		CCK_FUSE_HPLL_FREQ_MASK;
192 
193 	return vco_freq[hpll_freq] * 1000;
194 }
195 
196 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
197 		      const char *name, u32 reg, int ref_freq)
198 {
199 	u32 val;
200 	int divider;
201 
202 	val = vlv_cck_read(dev_priv, reg);
203 	divider = val & CCK_FREQUENCY_VALUES;
204 
205 	WARN((val & CCK_FREQUENCY_STATUS) !=
206 	     (divider << CCK_FREQUENCY_STATUS_SHIFT),
207 	     "%s change in progress\n", name);
208 
209 	return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
210 }
211 
212 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
213 			   const char *name, u32 reg)
214 {
215 	int hpll;
216 
217 	vlv_cck_get(dev_priv);
218 
219 	if (dev_priv->hpll_freq == 0)
220 		dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
221 
222 	hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq);
223 
224 	vlv_cck_put(dev_priv);
225 
226 	return hpll;
227 }
228 
229 static void intel_update_czclk(struct drm_i915_private *dev_priv)
230 {
231 	if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
232 		return;
233 
234 	dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
235 						      CCK_CZ_CLOCK_CONTROL);
236 
237 	DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
238 }
239 
240 static inline u32 /* units of 100MHz */
241 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
242 		    const struct intel_crtc_state *pipe_config)
243 {
244 	if (HAS_DDI(dev_priv))
245 		return pipe_config->port_clock; /* SPLL */
246 	else
247 		return dev_priv->fdi_pll_freq;
248 }
249 
250 static const struct intel_limit intel_limits_i8xx_dac = {
251 	.dot = { .min = 25000, .max = 350000 },
252 	.vco = { .min = 908000, .max = 1512000 },
253 	.n = { .min = 2, .max = 16 },
254 	.m = { .min = 96, .max = 140 },
255 	.m1 = { .min = 18, .max = 26 },
256 	.m2 = { .min = 6, .max = 16 },
257 	.p = { .min = 4, .max = 128 },
258 	.p1 = { .min = 2, .max = 33 },
259 	.p2 = { .dot_limit = 165000,
260 		.p2_slow = 4, .p2_fast = 2 },
261 };
262 
263 static const struct intel_limit intel_limits_i8xx_dvo = {
264 	.dot = { .min = 25000, .max = 350000 },
265 	.vco = { .min = 908000, .max = 1512000 },
266 	.n = { .min = 2, .max = 16 },
267 	.m = { .min = 96, .max = 140 },
268 	.m1 = { .min = 18, .max = 26 },
269 	.m2 = { .min = 6, .max = 16 },
270 	.p = { .min = 4, .max = 128 },
271 	.p1 = { .min = 2, .max = 33 },
272 	.p2 = { .dot_limit = 165000,
273 		.p2_slow = 4, .p2_fast = 4 },
274 };
275 
276 static const struct intel_limit intel_limits_i8xx_lvds = {
277 	.dot = { .min = 25000, .max = 350000 },
278 	.vco = { .min = 908000, .max = 1512000 },
279 	.n = { .min = 2, .max = 16 },
280 	.m = { .min = 96, .max = 140 },
281 	.m1 = { .min = 18, .max = 26 },
282 	.m2 = { .min = 6, .max = 16 },
283 	.p = { .min = 4, .max = 128 },
284 	.p1 = { .min = 1, .max = 6 },
285 	.p2 = { .dot_limit = 165000,
286 		.p2_slow = 14, .p2_fast = 7 },
287 };
288 
289 static const struct intel_limit intel_limits_i9xx_sdvo = {
290 	.dot = { .min = 20000, .max = 400000 },
291 	.vco = { .min = 1400000, .max = 2800000 },
292 	.n = { .min = 1, .max = 6 },
293 	.m = { .min = 70, .max = 120 },
294 	.m1 = { .min = 8, .max = 18 },
295 	.m2 = { .min = 3, .max = 7 },
296 	.p = { .min = 5, .max = 80 },
297 	.p1 = { .min = 1, .max = 8 },
298 	.p2 = { .dot_limit = 200000,
299 		.p2_slow = 10, .p2_fast = 5 },
300 };
301 
302 static const struct intel_limit intel_limits_i9xx_lvds = {
303 	.dot = { .min = 20000, .max = 400000 },
304 	.vco = { .min = 1400000, .max = 2800000 },
305 	.n = { .min = 1, .max = 6 },
306 	.m = { .min = 70, .max = 120 },
307 	.m1 = { .min = 8, .max = 18 },
308 	.m2 = { .min = 3, .max = 7 },
309 	.p = { .min = 7, .max = 98 },
310 	.p1 = { .min = 1, .max = 8 },
311 	.p2 = { .dot_limit = 112000,
312 		.p2_slow = 14, .p2_fast = 7 },
313 };
314 
315 
316 static const struct intel_limit intel_limits_g4x_sdvo = {
317 	.dot = { .min = 25000, .max = 270000 },
318 	.vco = { .min = 1750000, .max = 3500000},
319 	.n = { .min = 1, .max = 4 },
320 	.m = { .min = 104, .max = 138 },
321 	.m1 = { .min = 17, .max = 23 },
322 	.m2 = { .min = 5, .max = 11 },
323 	.p = { .min = 10, .max = 30 },
324 	.p1 = { .min = 1, .max = 3},
325 	.p2 = { .dot_limit = 270000,
326 		.p2_slow = 10,
327 		.p2_fast = 10
328 	},
329 };
330 
331 static const struct intel_limit intel_limits_g4x_hdmi = {
332 	.dot = { .min = 22000, .max = 400000 },
333 	.vco = { .min = 1750000, .max = 3500000},
334 	.n = { .min = 1, .max = 4 },
335 	.m = { .min = 104, .max = 138 },
336 	.m1 = { .min = 16, .max = 23 },
337 	.m2 = { .min = 5, .max = 11 },
338 	.p = { .min = 5, .max = 80 },
339 	.p1 = { .min = 1, .max = 8},
340 	.p2 = { .dot_limit = 165000,
341 		.p2_slow = 10, .p2_fast = 5 },
342 };
343 
344 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
345 	.dot = { .min = 20000, .max = 115000 },
346 	.vco = { .min = 1750000, .max = 3500000 },
347 	.n = { .min = 1, .max = 3 },
348 	.m = { .min = 104, .max = 138 },
349 	.m1 = { .min = 17, .max = 23 },
350 	.m2 = { .min = 5, .max = 11 },
351 	.p = { .min = 28, .max = 112 },
352 	.p1 = { .min = 2, .max = 8 },
353 	.p2 = { .dot_limit = 0,
354 		.p2_slow = 14, .p2_fast = 14
355 	},
356 };
357 
358 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
359 	.dot = { .min = 80000, .max = 224000 },
360 	.vco = { .min = 1750000, .max = 3500000 },
361 	.n = { .min = 1, .max = 3 },
362 	.m = { .min = 104, .max = 138 },
363 	.m1 = { .min = 17, .max = 23 },
364 	.m2 = { .min = 5, .max = 11 },
365 	.p = { .min = 14, .max = 42 },
366 	.p1 = { .min = 2, .max = 6 },
367 	.p2 = { .dot_limit = 0,
368 		.p2_slow = 7, .p2_fast = 7
369 	},
370 };
371 
372 static const struct intel_limit intel_limits_pineview_sdvo = {
373 	.dot = { .min = 20000, .max = 400000},
374 	.vco = { .min = 1700000, .max = 3500000 },
375 	/* Pineview's Ncounter is a ring counter */
376 	.n = { .min = 3, .max = 6 },
377 	.m = { .min = 2, .max = 256 },
378 	/* Pineview only has one combined m divider, which we treat as m2. */
379 	.m1 = { .min = 0, .max = 0 },
380 	.m2 = { .min = 0, .max = 254 },
381 	.p = { .min = 5, .max = 80 },
382 	.p1 = { .min = 1, .max = 8 },
383 	.p2 = { .dot_limit = 200000,
384 		.p2_slow = 10, .p2_fast = 5 },
385 };
386 
387 static const struct intel_limit intel_limits_pineview_lvds = {
388 	.dot = { .min = 20000, .max = 400000 },
389 	.vco = { .min = 1700000, .max = 3500000 },
390 	.n = { .min = 3, .max = 6 },
391 	.m = { .min = 2, .max = 256 },
392 	.m1 = { .min = 0, .max = 0 },
393 	.m2 = { .min = 0, .max = 254 },
394 	.p = { .min = 7, .max = 112 },
395 	.p1 = { .min = 1, .max = 8 },
396 	.p2 = { .dot_limit = 112000,
397 		.p2_slow = 14, .p2_fast = 14 },
398 };
399 
400 /* Ironlake / Sandybridge
401  *
402  * We calculate clock using (register_value + 2) for N/M1/M2, so here
403  * the range value for them is (actual_value - 2).
404  */
405 static const struct intel_limit intel_limits_ironlake_dac = {
406 	.dot = { .min = 25000, .max = 350000 },
407 	.vco = { .min = 1760000, .max = 3510000 },
408 	.n = { .min = 1, .max = 5 },
409 	.m = { .min = 79, .max = 127 },
410 	.m1 = { .min = 12, .max = 22 },
411 	.m2 = { .min = 5, .max = 9 },
412 	.p = { .min = 5, .max = 80 },
413 	.p1 = { .min = 1, .max = 8 },
414 	.p2 = { .dot_limit = 225000,
415 		.p2_slow = 10, .p2_fast = 5 },
416 };
417 
418 static const struct intel_limit intel_limits_ironlake_single_lvds = {
419 	.dot = { .min = 25000, .max = 350000 },
420 	.vco = { .min = 1760000, .max = 3510000 },
421 	.n = { .min = 1, .max = 3 },
422 	.m = { .min = 79, .max = 118 },
423 	.m1 = { .min = 12, .max = 22 },
424 	.m2 = { .min = 5, .max = 9 },
425 	.p = { .min = 28, .max = 112 },
426 	.p1 = { .min = 2, .max = 8 },
427 	.p2 = { .dot_limit = 225000,
428 		.p2_slow = 14, .p2_fast = 14 },
429 };
430 
431 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
432 	.dot = { .min = 25000, .max = 350000 },
433 	.vco = { .min = 1760000, .max = 3510000 },
434 	.n = { .min = 1, .max = 3 },
435 	.m = { .min = 79, .max = 127 },
436 	.m1 = { .min = 12, .max = 22 },
437 	.m2 = { .min = 5, .max = 9 },
438 	.p = { .min = 14, .max = 56 },
439 	.p1 = { .min = 2, .max = 8 },
440 	.p2 = { .dot_limit = 225000,
441 		.p2_slow = 7, .p2_fast = 7 },
442 };
443 
444 /* LVDS 100mhz refclk limits. */
445 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
446 	.dot = { .min = 25000, .max = 350000 },
447 	.vco = { .min = 1760000, .max = 3510000 },
448 	.n = { .min = 1, .max = 2 },
449 	.m = { .min = 79, .max = 126 },
450 	.m1 = { .min = 12, .max = 22 },
451 	.m2 = { .min = 5, .max = 9 },
452 	.p = { .min = 28, .max = 112 },
453 	.p1 = { .min = 2, .max = 8 },
454 	.p2 = { .dot_limit = 225000,
455 		.p2_slow = 14, .p2_fast = 14 },
456 };
457 
458 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
459 	.dot = { .min = 25000, .max = 350000 },
460 	.vco = { .min = 1760000, .max = 3510000 },
461 	.n = { .min = 1, .max = 3 },
462 	.m = { .min = 79, .max = 126 },
463 	.m1 = { .min = 12, .max = 22 },
464 	.m2 = { .min = 5, .max = 9 },
465 	.p = { .min = 14, .max = 42 },
466 	.p1 = { .min = 2, .max = 6 },
467 	.p2 = { .dot_limit = 225000,
468 		.p2_slow = 7, .p2_fast = 7 },
469 };
470 
471 static const struct intel_limit intel_limits_vlv = {
472 	 /*
473 	  * These are the data rate limits (measured in fast clocks)
474 	  * since those are the strictest limits we have. The fast
475 	  * clock and actual rate limits are more relaxed, so checking
476 	  * them would make no difference.
477 	  */
478 	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
479 	.vco = { .min = 4000000, .max = 6000000 },
480 	.n = { .min = 1, .max = 7 },
481 	.m1 = { .min = 2, .max = 3 },
482 	.m2 = { .min = 11, .max = 156 },
483 	.p1 = { .min = 2, .max = 3 },
484 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
485 };
486 
487 static const struct intel_limit intel_limits_chv = {
488 	/*
489 	 * These are the data rate limits (measured in fast clocks)
490 	 * since those are the strictest limits we have.  The fast
491 	 * clock and actual rate limits are more relaxed, so checking
492 	 * them would make no difference.
493 	 */
494 	.dot = { .min = 25000 * 5, .max = 540000 * 5},
495 	.vco = { .min = 4800000, .max = 6480000 },
496 	.n = { .min = 1, .max = 1 },
497 	.m1 = { .min = 2, .max = 2 },
498 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
499 	.p1 = { .min = 2, .max = 4 },
500 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
501 };
502 
503 static const struct intel_limit intel_limits_bxt = {
504 	/* FIXME: find real dot limits */
505 	.dot = { .min = 0, .max = INT_MAX },
506 	.vco = { .min = 4800000, .max = 6700000 },
507 	.n = { .min = 1, .max = 1 },
508 	.m1 = { .min = 2, .max = 2 },
509 	/* FIXME: find real m2 limits */
510 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
511 	.p1 = { .min = 2, .max = 4 },
512 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
513 };
514 
515 /* WA Display #0827: Gen9:all */
516 static void
517 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable)
518 {
519 	if (enable)
520 		I915_WRITE(CLKGATE_DIS_PSL(pipe),
521 			   I915_READ(CLKGATE_DIS_PSL(pipe)) |
522 			   DUPS1_GATING_DIS | DUPS2_GATING_DIS);
523 	else
524 		I915_WRITE(CLKGATE_DIS_PSL(pipe),
525 			   I915_READ(CLKGATE_DIS_PSL(pipe)) &
526 			   ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS));
527 }
528 
529 /* Wa_2006604312:icl */
530 static void
531 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
532 		       bool enable)
533 {
534 	if (enable)
535 		I915_WRITE(CLKGATE_DIS_PSL(pipe),
536 			   I915_READ(CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS);
537 	else
538 		I915_WRITE(CLKGATE_DIS_PSL(pipe),
539 			   I915_READ(CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS);
540 }
541 
542 static bool
543 needs_modeset(const struct intel_crtc_state *state)
544 {
545 	return drm_atomic_crtc_needs_modeset(&state->uapi);
546 }
547 
548 bool
549 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state)
550 {
551 	return (crtc_state->master_transcoder != INVALID_TRANSCODER ||
552 		crtc_state->sync_mode_slaves_mask);
553 }
554 
555 static bool
556 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state)
557 {
558 	return (crtc_state->master_transcoder == INVALID_TRANSCODER &&
559 		crtc_state->sync_mode_slaves_mask);
560 }
561 
562 static bool
563 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state)
564 {
565 	return crtc_state->master_transcoder != INVALID_TRANSCODER;
566 }
567 
568 /*
569  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
570  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
571  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
572  * The helpers' return value is the rate of the clock that is fed to the
573  * display engine's pipe which can be the above fast dot clock rate or a
574  * divided-down version of it.
575  */
576 /* m1 is reserved as 0 in Pineview, n is a ring counter */
577 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
578 {
579 	clock->m = clock->m2 + 2;
580 	clock->p = clock->p1 * clock->p2;
581 	if (WARN_ON(clock->n == 0 || clock->p == 0))
582 		return 0;
583 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
584 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
585 
586 	return clock->dot;
587 }
588 
589 static u32 i9xx_dpll_compute_m(struct dpll *dpll)
590 {
591 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
592 }
593 
594 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
595 {
596 	clock->m = i9xx_dpll_compute_m(clock);
597 	clock->p = clock->p1 * clock->p2;
598 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
599 		return 0;
600 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
601 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
602 
603 	return clock->dot;
604 }
605 
606 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
607 {
608 	clock->m = clock->m1 * clock->m2;
609 	clock->p = clock->p1 * clock->p2;
610 	if (WARN_ON(clock->n == 0 || clock->p == 0))
611 		return 0;
612 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
613 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
614 
615 	return clock->dot / 5;
616 }
617 
618 int chv_calc_dpll_params(int refclk, struct dpll *clock)
619 {
620 	clock->m = clock->m1 * clock->m2;
621 	clock->p = clock->p1 * clock->p2;
622 	if (WARN_ON(clock->n == 0 || clock->p == 0))
623 		return 0;
624 	clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
625 					   clock->n << 22);
626 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
627 
628 	return clock->dot / 5;
629 }
630 
631 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
632 
633 /*
634  * Returns whether the given set of divisors are valid for a given refclk with
635  * the given connectors.
636  */
637 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
638 			       const struct intel_limit *limit,
639 			       const struct dpll *clock)
640 {
641 	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
642 		INTELPllInvalid("n out of range\n");
643 	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
644 		INTELPllInvalid("p1 out of range\n");
645 	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
646 		INTELPllInvalid("m2 out of range\n");
647 	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
648 		INTELPllInvalid("m1 out of range\n");
649 
650 	if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
651 	    !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
652 		if (clock->m1 <= clock->m2)
653 			INTELPllInvalid("m1 <= m2\n");
654 
655 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
656 	    !IS_GEN9_LP(dev_priv)) {
657 		if (clock->p < limit->p.min || limit->p.max < clock->p)
658 			INTELPllInvalid("p out of range\n");
659 		if (clock->m < limit->m.min || limit->m.max < clock->m)
660 			INTELPllInvalid("m out of range\n");
661 	}
662 
663 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
664 		INTELPllInvalid("vco out of range\n");
665 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
666 	 * connector, etc., rather than just a single range.
667 	 */
668 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
669 		INTELPllInvalid("dot out of range\n");
670 
671 	return true;
672 }
673 
674 static int
675 i9xx_select_p2_div(const struct intel_limit *limit,
676 		   const struct intel_crtc_state *crtc_state,
677 		   int target)
678 {
679 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
680 
681 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
682 		/*
683 		 * For LVDS just rely on its current settings for dual-channel.
684 		 * We haven't figured out how to reliably set up different
685 		 * single/dual channel state, if we even can.
686 		 */
687 		if (intel_is_dual_link_lvds(dev_priv))
688 			return limit->p2.p2_fast;
689 		else
690 			return limit->p2.p2_slow;
691 	} else {
692 		if (target < limit->p2.dot_limit)
693 			return limit->p2.p2_slow;
694 		else
695 			return limit->p2.p2_fast;
696 	}
697 }
698 
699 /*
700  * Returns a set of divisors for the desired target clock with the given
701  * refclk, or FALSE.  The returned values represent the clock equation:
702  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
703  *
704  * Target and reference clocks are specified in kHz.
705  *
706  * If match_clock is provided, then best_clock P divider must match the P
707  * divider from @match_clock used for LVDS downclocking.
708  */
709 static bool
710 i9xx_find_best_dpll(const struct intel_limit *limit,
711 		    struct intel_crtc_state *crtc_state,
712 		    int target, int refclk, struct dpll *match_clock,
713 		    struct dpll *best_clock)
714 {
715 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
716 	struct dpll clock;
717 	int err = target;
718 
719 	memset(best_clock, 0, sizeof(*best_clock));
720 
721 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
722 
723 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
724 	     clock.m1++) {
725 		for (clock.m2 = limit->m2.min;
726 		     clock.m2 <= limit->m2.max; clock.m2++) {
727 			if (clock.m2 >= clock.m1)
728 				break;
729 			for (clock.n = limit->n.min;
730 			     clock.n <= limit->n.max; clock.n++) {
731 				for (clock.p1 = limit->p1.min;
732 					clock.p1 <= limit->p1.max; clock.p1++) {
733 					int this_err;
734 
735 					i9xx_calc_dpll_params(refclk, &clock);
736 					if (!intel_PLL_is_valid(to_i915(dev),
737 								limit,
738 								&clock))
739 						continue;
740 					if (match_clock &&
741 					    clock.p != match_clock->p)
742 						continue;
743 
744 					this_err = abs(clock.dot - target);
745 					if (this_err < err) {
746 						*best_clock = clock;
747 						err = this_err;
748 					}
749 				}
750 			}
751 		}
752 	}
753 
754 	return (err != target);
755 }
756 
757 /*
758  * Returns a set of divisors for the desired target clock with the given
759  * refclk, or FALSE.  The returned values represent the clock equation:
760  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
761  *
762  * Target and reference clocks are specified in kHz.
763  *
764  * If match_clock is provided, then best_clock P divider must match the P
765  * divider from @match_clock used for LVDS downclocking.
766  */
767 static bool
768 pnv_find_best_dpll(const struct intel_limit *limit,
769 		   struct intel_crtc_state *crtc_state,
770 		   int target, int refclk, struct dpll *match_clock,
771 		   struct dpll *best_clock)
772 {
773 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
774 	struct dpll clock;
775 	int err = target;
776 
777 	memset(best_clock, 0, sizeof(*best_clock));
778 
779 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
780 
781 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
782 	     clock.m1++) {
783 		for (clock.m2 = limit->m2.min;
784 		     clock.m2 <= limit->m2.max; clock.m2++) {
785 			for (clock.n = limit->n.min;
786 			     clock.n <= limit->n.max; clock.n++) {
787 				for (clock.p1 = limit->p1.min;
788 					clock.p1 <= limit->p1.max; clock.p1++) {
789 					int this_err;
790 
791 					pnv_calc_dpll_params(refclk, &clock);
792 					if (!intel_PLL_is_valid(to_i915(dev),
793 								limit,
794 								&clock))
795 						continue;
796 					if (match_clock &&
797 					    clock.p != match_clock->p)
798 						continue;
799 
800 					this_err = abs(clock.dot - target);
801 					if (this_err < err) {
802 						*best_clock = clock;
803 						err = this_err;
804 					}
805 				}
806 			}
807 		}
808 	}
809 
810 	return (err != target);
811 }
812 
813 /*
814  * Returns a set of divisors for the desired target clock with the given
815  * refclk, or FALSE.  The returned values represent the clock equation:
816  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
817  *
818  * Target and reference clocks are specified in kHz.
819  *
820  * If match_clock is provided, then best_clock P divider must match the P
821  * divider from @match_clock used for LVDS downclocking.
822  */
823 static bool
824 g4x_find_best_dpll(const struct intel_limit *limit,
825 		   struct intel_crtc_state *crtc_state,
826 		   int target, int refclk, struct dpll *match_clock,
827 		   struct dpll *best_clock)
828 {
829 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
830 	struct dpll clock;
831 	int max_n;
832 	bool found = false;
833 	/* approximately equals target * 0.00585 */
834 	int err_most = (target >> 8) + (target >> 9);
835 
836 	memset(best_clock, 0, sizeof(*best_clock));
837 
838 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
839 
840 	max_n = limit->n.max;
841 	/* based on hardware requirement, prefer smaller n to precision */
842 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
843 		/* based on hardware requirement, prefere larger m1,m2 */
844 		for (clock.m1 = limit->m1.max;
845 		     clock.m1 >= limit->m1.min; clock.m1--) {
846 			for (clock.m2 = limit->m2.max;
847 			     clock.m2 >= limit->m2.min; clock.m2--) {
848 				for (clock.p1 = limit->p1.max;
849 				     clock.p1 >= limit->p1.min; clock.p1--) {
850 					int this_err;
851 
852 					i9xx_calc_dpll_params(refclk, &clock);
853 					if (!intel_PLL_is_valid(to_i915(dev),
854 								limit,
855 								&clock))
856 						continue;
857 
858 					this_err = abs(clock.dot - target);
859 					if (this_err < err_most) {
860 						*best_clock = clock;
861 						err_most = this_err;
862 						max_n = clock.n;
863 						found = true;
864 					}
865 				}
866 			}
867 		}
868 	}
869 	return found;
870 }
871 
872 /*
873  * Check if the calculated PLL configuration is more optimal compared to the
874  * best configuration and error found so far. Return the calculated error.
875  */
876 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
877 			       const struct dpll *calculated_clock,
878 			       const struct dpll *best_clock,
879 			       unsigned int best_error_ppm,
880 			       unsigned int *error_ppm)
881 {
882 	/*
883 	 * For CHV ignore the error and consider only the P value.
884 	 * Prefer a bigger P value based on HW requirements.
885 	 */
886 	if (IS_CHERRYVIEW(to_i915(dev))) {
887 		*error_ppm = 0;
888 
889 		return calculated_clock->p > best_clock->p;
890 	}
891 
892 	if (WARN_ON_ONCE(!target_freq))
893 		return false;
894 
895 	*error_ppm = div_u64(1000000ULL *
896 				abs(target_freq - calculated_clock->dot),
897 			     target_freq);
898 	/*
899 	 * Prefer a better P value over a better (smaller) error if the error
900 	 * is small. Ensure this preference for future configurations too by
901 	 * setting the error to 0.
902 	 */
903 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
904 		*error_ppm = 0;
905 
906 		return true;
907 	}
908 
909 	return *error_ppm + 10 < best_error_ppm;
910 }
911 
912 /*
913  * Returns a set of divisors for the desired target clock with the given
914  * refclk, or FALSE.  The returned values represent the clock equation:
915  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
916  */
917 static bool
918 vlv_find_best_dpll(const struct intel_limit *limit,
919 		   struct intel_crtc_state *crtc_state,
920 		   int target, int refclk, struct dpll *match_clock,
921 		   struct dpll *best_clock)
922 {
923 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
924 	struct drm_device *dev = crtc->base.dev;
925 	struct dpll clock;
926 	unsigned int bestppm = 1000000;
927 	/* min update 19.2 MHz */
928 	int max_n = min(limit->n.max, refclk / 19200);
929 	bool found = false;
930 
931 	target *= 5; /* fast clock */
932 
933 	memset(best_clock, 0, sizeof(*best_clock));
934 
935 	/* based on hardware requirement, prefer smaller n to precision */
936 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
937 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
938 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
939 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
940 				clock.p = clock.p1 * clock.p2;
941 				/* based on hardware requirement, prefer bigger m1,m2 values */
942 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
943 					unsigned int ppm;
944 
945 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
946 								     refclk * clock.m1);
947 
948 					vlv_calc_dpll_params(refclk, &clock);
949 
950 					if (!intel_PLL_is_valid(to_i915(dev),
951 								limit,
952 								&clock))
953 						continue;
954 
955 					if (!vlv_PLL_is_optimal(dev, target,
956 								&clock,
957 								best_clock,
958 								bestppm, &ppm))
959 						continue;
960 
961 					*best_clock = clock;
962 					bestppm = ppm;
963 					found = true;
964 				}
965 			}
966 		}
967 	}
968 
969 	return found;
970 }
971 
972 /*
973  * Returns a set of divisors for the desired target clock with the given
974  * refclk, or FALSE.  The returned values represent the clock equation:
975  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
976  */
977 static bool
978 chv_find_best_dpll(const struct intel_limit *limit,
979 		   struct intel_crtc_state *crtc_state,
980 		   int target, int refclk, struct dpll *match_clock,
981 		   struct dpll *best_clock)
982 {
983 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
984 	struct drm_device *dev = crtc->base.dev;
985 	unsigned int best_error_ppm;
986 	struct dpll clock;
987 	u64 m2;
988 	int found = false;
989 
990 	memset(best_clock, 0, sizeof(*best_clock));
991 	best_error_ppm = 1000000;
992 
993 	/*
994 	 * Based on hardware doc, the n always set to 1, and m1 always
995 	 * set to 2.  If requires to support 200Mhz refclk, we need to
996 	 * revisit this because n may not 1 anymore.
997 	 */
998 	clock.n = 1, clock.m1 = 2;
999 	target *= 5;	/* fast clock */
1000 
1001 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1002 		for (clock.p2 = limit->p2.p2_fast;
1003 				clock.p2 >= limit->p2.p2_slow;
1004 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1005 			unsigned int error_ppm;
1006 
1007 			clock.p = clock.p1 * clock.p2;
1008 
1009 			m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
1010 						   refclk * clock.m1);
1011 
1012 			if (m2 > INT_MAX/clock.m1)
1013 				continue;
1014 
1015 			clock.m2 = m2;
1016 
1017 			chv_calc_dpll_params(refclk, &clock);
1018 
1019 			if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
1020 				continue;
1021 
1022 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1023 						best_error_ppm, &error_ppm))
1024 				continue;
1025 
1026 			*best_clock = clock;
1027 			best_error_ppm = error_ppm;
1028 			found = true;
1029 		}
1030 	}
1031 
1032 	return found;
1033 }
1034 
1035 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
1036 			struct dpll *best_clock)
1037 {
1038 	int refclk = 100000;
1039 	const struct intel_limit *limit = &intel_limits_bxt;
1040 
1041 	return chv_find_best_dpll(limit, crtc_state,
1042 				  crtc_state->port_clock, refclk,
1043 				  NULL, best_clock);
1044 }
1045 
1046 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1047 				    enum pipe pipe)
1048 {
1049 	i915_reg_t reg = PIPEDSL(pipe);
1050 	u32 line1, line2;
1051 	u32 line_mask;
1052 
1053 	if (IS_GEN(dev_priv, 2))
1054 		line_mask = DSL_LINEMASK_GEN2;
1055 	else
1056 		line_mask = DSL_LINEMASK_GEN3;
1057 
1058 	line1 = I915_READ(reg) & line_mask;
1059 	msleep(5);
1060 	line2 = I915_READ(reg) & line_mask;
1061 
1062 	return line1 != line2;
1063 }
1064 
1065 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1066 {
1067 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1068 	enum pipe pipe = crtc->pipe;
1069 
1070 	/* Wait for the display line to settle/start moving */
1071 	if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1072 		DRM_ERROR("pipe %c scanline %s wait timed out\n",
1073 			  pipe_name(pipe), onoff(state));
1074 }
1075 
1076 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1077 {
1078 	wait_for_pipe_scanline_moving(crtc, false);
1079 }
1080 
1081 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1082 {
1083 	wait_for_pipe_scanline_moving(crtc, true);
1084 }
1085 
1086 static void
1087 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
1088 {
1089 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1090 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1091 
1092 	if (INTEL_GEN(dev_priv) >= 4) {
1093 		enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1094 		i915_reg_t reg = PIPECONF(cpu_transcoder);
1095 
1096 		/* Wait for the Pipe State to go off */
1097 		if (intel_de_wait_for_clear(dev_priv, reg,
1098 					    I965_PIPECONF_ACTIVE, 100))
1099 			WARN(1, "pipe_off wait timed out\n");
1100 	} else {
1101 		intel_wait_for_pipe_scanline_stopped(crtc);
1102 	}
1103 }
1104 
1105 /* Only for pre-ILK configs */
1106 void assert_pll(struct drm_i915_private *dev_priv,
1107 		enum pipe pipe, bool state)
1108 {
1109 	u32 val;
1110 	bool cur_state;
1111 
1112 	val = I915_READ(DPLL(pipe));
1113 	cur_state = !!(val & DPLL_VCO_ENABLE);
1114 	I915_STATE_WARN(cur_state != state,
1115 	     "PLL state assertion failure (expected %s, current %s)\n",
1116 			onoff(state), onoff(cur_state));
1117 }
1118 
1119 /* XXX: the dsi pll is shared between MIPI DSI ports */
1120 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1121 {
1122 	u32 val;
1123 	bool cur_state;
1124 
1125 	vlv_cck_get(dev_priv);
1126 	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1127 	vlv_cck_put(dev_priv);
1128 
1129 	cur_state = val & DSI_PLL_VCO_EN;
1130 	I915_STATE_WARN(cur_state != state,
1131 	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1132 			onoff(state), onoff(cur_state));
1133 }
1134 
1135 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1136 			  enum pipe pipe, bool state)
1137 {
1138 	bool cur_state;
1139 
1140 	if (HAS_DDI(dev_priv)) {
1141 		/*
1142 		 * DDI does not have a specific FDI_TX register.
1143 		 *
1144 		 * FDI is never fed from EDP transcoder
1145 		 * so pipe->transcoder cast is fine here.
1146 		 */
1147 		enum transcoder cpu_transcoder = (enum transcoder)pipe;
1148 		u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1149 		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1150 	} else {
1151 		u32 val = I915_READ(FDI_TX_CTL(pipe));
1152 		cur_state = !!(val & FDI_TX_ENABLE);
1153 	}
1154 	I915_STATE_WARN(cur_state != state,
1155 	     "FDI TX state assertion failure (expected %s, current %s)\n",
1156 			onoff(state), onoff(cur_state));
1157 }
1158 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1159 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1160 
1161 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1162 			  enum pipe pipe, bool state)
1163 {
1164 	u32 val;
1165 	bool cur_state;
1166 
1167 	val = I915_READ(FDI_RX_CTL(pipe));
1168 	cur_state = !!(val & FDI_RX_ENABLE);
1169 	I915_STATE_WARN(cur_state != state,
1170 	     "FDI RX state assertion failure (expected %s, current %s)\n",
1171 			onoff(state), onoff(cur_state));
1172 }
1173 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1174 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1175 
1176 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1177 				      enum pipe pipe)
1178 {
1179 	u32 val;
1180 
1181 	/* ILK FDI PLL is always enabled */
1182 	if (IS_GEN(dev_priv, 5))
1183 		return;
1184 
1185 	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
1186 	if (HAS_DDI(dev_priv))
1187 		return;
1188 
1189 	val = I915_READ(FDI_TX_CTL(pipe));
1190 	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1191 }
1192 
1193 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1194 		       enum pipe pipe, bool state)
1195 {
1196 	u32 val;
1197 	bool cur_state;
1198 
1199 	val = I915_READ(FDI_RX_CTL(pipe));
1200 	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1201 	I915_STATE_WARN(cur_state != state,
1202 	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1203 			onoff(state), onoff(cur_state));
1204 }
1205 
1206 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1207 {
1208 	i915_reg_t pp_reg;
1209 	u32 val;
1210 	enum pipe panel_pipe = INVALID_PIPE;
1211 	bool locked = true;
1212 
1213 	if (WARN_ON(HAS_DDI(dev_priv)))
1214 		return;
1215 
1216 	if (HAS_PCH_SPLIT(dev_priv)) {
1217 		u32 port_sel;
1218 
1219 		pp_reg = PP_CONTROL(0);
1220 		port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1221 
1222 		switch (port_sel) {
1223 		case PANEL_PORT_SELECT_LVDS:
1224 			intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe);
1225 			break;
1226 		case PANEL_PORT_SELECT_DPA:
1227 			intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe);
1228 			break;
1229 		case PANEL_PORT_SELECT_DPC:
1230 			intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe);
1231 			break;
1232 		case PANEL_PORT_SELECT_DPD:
1233 			intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe);
1234 			break;
1235 		default:
1236 			MISSING_CASE(port_sel);
1237 			break;
1238 		}
1239 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1240 		/* presumably write lock depends on pipe, not port select */
1241 		pp_reg = PP_CONTROL(pipe);
1242 		panel_pipe = pipe;
1243 	} else {
1244 		u32 port_sel;
1245 
1246 		pp_reg = PP_CONTROL(0);
1247 		port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1248 
1249 		WARN_ON(port_sel != PANEL_PORT_SELECT_LVDS);
1250 		intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe);
1251 	}
1252 
1253 	val = I915_READ(pp_reg);
1254 	if (!(val & PANEL_POWER_ON) ||
1255 	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1256 		locked = false;
1257 
1258 	I915_STATE_WARN(panel_pipe == pipe && locked,
1259 	     "panel assertion failure, pipe %c regs locked\n",
1260 	     pipe_name(pipe));
1261 }
1262 
1263 void assert_pipe(struct drm_i915_private *dev_priv,
1264 		 enum transcoder cpu_transcoder, bool state)
1265 {
1266 	bool cur_state;
1267 	enum intel_display_power_domain power_domain;
1268 	intel_wakeref_t wakeref;
1269 
1270 	/* we keep both pipes enabled on 830 */
1271 	if (IS_I830(dev_priv))
1272 		state = true;
1273 
1274 	power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1275 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
1276 	if (wakeref) {
1277 		u32 val = I915_READ(PIPECONF(cpu_transcoder));
1278 		cur_state = !!(val & PIPECONF_ENABLE);
1279 
1280 		intel_display_power_put(dev_priv, power_domain, wakeref);
1281 	} else {
1282 		cur_state = false;
1283 	}
1284 
1285 	I915_STATE_WARN(cur_state != state,
1286 			"transcoder %s assertion failure (expected %s, current %s)\n",
1287 			transcoder_name(cpu_transcoder),
1288 			onoff(state), onoff(cur_state));
1289 }
1290 
1291 static void assert_plane(struct intel_plane *plane, bool state)
1292 {
1293 	enum pipe pipe;
1294 	bool cur_state;
1295 
1296 	cur_state = plane->get_hw_state(plane, &pipe);
1297 
1298 	I915_STATE_WARN(cur_state != state,
1299 			"%s assertion failure (expected %s, current %s)\n",
1300 			plane->base.name, onoff(state), onoff(cur_state));
1301 }
1302 
1303 #define assert_plane_enabled(p) assert_plane(p, true)
1304 #define assert_plane_disabled(p) assert_plane(p, false)
1305 
1306 static void assert_planes_disabled(struct intel_crtc *crtc)
1307 {
1308 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1309 	struct intel_plane *plane;
1310 
1311 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1312 		assert_plane_disabled(plane);
1313 }
1314 
1315 static void assert_vblank_disabled(struct drm_crtc *crtc)
1316 {
1317 	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1318 		drm_crtc_vblank_put(crtc);
1319 }
1320 
1321 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1322 				    enum pipe pipe)
1323 {
1324 	u32 val;
1325 	bool enabled;
1326 
1327 	val = I915_READ(PCH_TRANSCONF(pipe));
1328 	enabled = !!(val & TRANS_ENABLE);
1329 	I915_STATE_WARN(enabled,
1330 	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1331 	     pipe_name(pipe));
1332 }
1333 
1334 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1335 				   enum pipe pipe, enum port port,
1336 				   i915_reg_t dp_reg)
1337 {
1338 	enum pipe port_pipe;
1339 	bool state;
1340 
1341 	state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe);
1342 
1343 	I915_STATE_WARN(state && port_pipe == pipe,
1344 			"PCH DP %c enabled on transcoder %c, should be disabled\n",
1345 			port_name(port), pipe_name(pipe));
1346 
1347 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1348 			"IBX PCH DP %c still using transcoder B\n",
1349 			port_name(port));
1350 }
1351 
1352 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1353 				     enum pipe pipe, enum port port,
1354 				     i915_reg_t hdmi_reg)
1355 {
1356 	enum pipe port_pipe;
1357 	bool state;
1358 
1359 	state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe);
1360 
1361 	I915_STATE_WARN(state && port_pipe == pipe,
1362 			"PCH HDMI %c enabled on transcoder %c, should be disabled\n",
1363 			port_name(port), pipe_name(pipe));
1364 
1365 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1366 			"IBX PCH HDMI %c still using transcoder B\n",
1367 			port_name(port));
1368 }
1369 
1370 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1371 				      enum pipe pipe)
1372 {
1373 	enum pipe port_pipe;
1374 
1375 	assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B);
1376 	assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C);
1377 	assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D);
1378 
1379 	I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) &&
1380 			port_pipe == pipe,
1381 			"PCH VGA enabled on transcoder %c, should be disabled\n",
1382 			pipe_name(pipe));
1383 
1384 	I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) &&
1385 			port_pipe == pipe,
1386 			"PCH LVDS enabled on transcoder %c, should be disabled\n",
1387 			pipe_name(pipe));
1388 
1389 	/* PCH SDVOB multiplex with HDMIB */
1390 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB);
1391 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC);
1392 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID);
1393 }
1394 
1395 static void _vlv_enable_pll(struct intel_crtc *crtc,
1396 			    const struct intel_crtc_state *pipe_config)
1397 {
1398 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1399 	enum pipe pipe = crtc->pipe;
1400 
1401 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1402 	POSTING_READ(DPLL(pipe));
1403 	udelay(150);
1404 
1405 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1406 		DRM_ERROR("DPLL %d failed to lock\n", pipe);
1407 }
1408 
1409 static void vlv_enable_pll(struct intel_crtc *crtc,
1410 			   const struct intel_crtc_state *pipe_config)
1411 {
1412 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1413 	enum pipe pipe = crtc->pipe;
1414 
1415 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1416 
1417 	/* PLL is protected by panel, make sure we can write it */
1418 	assert_panel_unlocked(dev_priv, pipe);
1419 
1420 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1421 		_vlv_enable_pll(crtc, pipe_config);
1422 
1423 	I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1424 	POSTING_READ(DPLL_MD(pipe));
1425 }
1426 
1427 
1428 static void _chv_enable_pll(struct intel_crtc *crtc,
1429 			    const struct intel_crtc_state *pipe_config)
1430 {
1431 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1432 	enum pipe pipe = crtc->pipe;
1433 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1434 	u32 tmp;
1435 
1436 	vlv_dpio_get(dev_priv);
1437 
1438 	/* Enable back the 10bit clock to display controller */
1439 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1440 	tmp |= DPIO_DCLKP_EN;
1441 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1442 
1443 	vlv_dpio_put(dev_priv);
1444 
1445 	/*
1446 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1447 	 */
1448 	udelay(1);
1449 
1450 	/* Enable PLL */
1451 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1452 
1453 	/* Check PLL is locked */
1454 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1455 		DRM_ERROR("PLL %d failed to lock\n", pipe);
1456 }
1457 
1458 static void chv_enable_pll(struct intel_crtc *crtc,
1459 			   const struct intel_crtc_state *pipe_config)
1460 {
1461 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1462 	enum pipe pipe = crtc->pipe;
1463 
1464 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1465 
1466 	/* PLL is protected by panel, make sure we can write it */
1467 	assert_panel_unlocked(dev_priv, pipe);
1468 
1469 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1470 		_chv_enable_pll(crtc, pipe_config);
1471 
1472 	if (pipe != PIPE_A) {
1473 		/*
1474 		 * WaPixelRepeatModeFixForC0:chv
1475 		 *
1476 		 * DPLLCMD is AWOL. Use chicken bits to propagate
1477 		 * the value from DPLLBMD to either pipe B or C.
1478 		 */
1479 		I915_WRITE(CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1480 		I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1481 		I915_WRITE(CBR4_VLV, 0);
1482 		dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1483 
1484 		/*
1485 		 * DPLLB VGA mode also seems to cause problems.
1486 		 * We should always have it disabled.
1487 		 */
1488 		WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1489 	} else {
1490 		I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1491 		POSTING_READ(DPLL_MD(pipe));
1492 	}
1493 }
1494 
1495 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1496 {
1497 	if (IS_I830(dev_priv))
1498 		return false;
1499 
1500 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1501 }
1502 
1503 static void i9xx_enable_pll(struct intel_crtc *crtc,
1504 			    const struct intel_crtc_state *crtc_state)
1505 {
1506 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1507 	i915_reg_t reg = DPLL(crtc->pipe);
1508 	u32 dpll = crtc_state->dpll_hw_state.dpll;
1509 	int i;
1510 
1511 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1512 
1513 	/* PLL is protected by panel, make sure we can write it */
1514 	if (i9xx_has_pps(dev_priv))
1515 		assert_panel_unlocked(dev_priv, crtc->pipe);
1516 
1517 	/*
1518 	 * Apparently we need to have VGA mode enabled prior to changing
1519 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1520 	 * dividers, even though the register value does change.
1521 	 */
1522 	I915_WRITE(reg, dpll & ~DPLL_VGA_MODE_DIS);
1523 	I915_WRITE(reg, dpll);
1524 
1525 	/* Wait for the clocks to stabilize. */
1526 	POSTING_READ(reg);
1527 	udelay(150);
1528 
1529 	if (INTEL_GEN(dev_priv) >= 4) {
1530 		I915_WRITE(DPLL_MD(crtc->pipe),
1531 			   crtc_state->dpll_hw_state.dpll_md);
1532 	} else {
1533 		/* The pixel multiplier can only be updated once the
1534 		 * DPLL is enabled and the clocks are stable.
1535 		 *
1536 		 * So write it again.
1537 		 */
1538 		I915_WRITE(reg, dpll);
1539 	}
1540 
1541 	/* We do this three times for luck */
1542 	for (i = 0; i < 3; i++) {
1543 		I915_WRITE(reg, dpll);
1544 		POSTING_READ(reg);
1545 		udelay(150); /* wait for warmup */
1546 	}
1547 }
1548 
1549 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1550 {
1551 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1552 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1553 	enum pipe pipe = crtc->pipe;
1554 
1555 	/* Don't disable pipe or pipe PLLs if needed */
1556 	if (IS_I830(dev_priv))
1557 		return;
1558 
1559 	/* Make sure the pipe isn't still relying on us */
1560 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1561 
1562 	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1563 	POSTING_READ(DPLL(pipe));
1564 }
1565 
1566 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1567 {
1568 	u32 val;
1569 
1570 	/* Make sure the pipe isn't still relying on us */
1571 	assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1572 
1573 	val = DPLL_INTEGRATED_REF_CLK_VLV |
1574 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1575 	if (pipe != PIPE_A)
1576 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1577 
1578 	I915_WRITE(DPLL(pipe), val);
1579 	POSTING_READ(DPLL(pipe));
1580 }
1581 
1582 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1583 {
1584 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1585 	u32 val;
1586 
1587 	/* Make sure the pipe isn't still relying on us */
1588 	assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1589 
1590 	val = DPLL_SSC_REF_CLK_CHV |
1591 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1592 	if (pipe != PIPE_A)
1593 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1594 
1595 	I915_WRITE(DPLL(pipe), val);
1596 	POSTING_READ(DPLL(pipe));
1597 
1598 	vlv_dpio_get(dev_priv);
1599 
1600 	/* Disable 10bit clock to display controller */
1601 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1602 	val &= ~DPIO_DCLKP_EN;
1603 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1604 
1605 	vlv_dpio_put(dev_priv);
1606 }
1607 
1608 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1609 			 struct intel_digital_port *dport,
1610 			 unsigned int expected_mask)
1611 {
1612 	u32 port_mask;
1613 	i915_reg_t dpll_reg;
1614 
1615 	switch (dport->base.port) {
1616 	case PORT_B:
1617 		port_mask = DPLL_PORTB_READY_MASK;
1618 		dpll_reg = DPLL(0);
1619 		break;
1620 	case PORT_C:
1621 		port_mask = DPLL_PORTC_READY_MASK;
1622 		dpll_reg = DPLL(0);
1623 		expected_mask <<= 4;
1624 		break;
1625 	case PORT_D:
1626 		port_mask = DPLL_PORTD_READY_MASK;
1627 		dpll_reg = DPIO_PHY_STATUS;
1628 		break;
1629 	default:
1630 		BUG();
1631 	}
1632 
1633 	if (intel_de_wait_for_register(dev_priv, dpll_reg,
1634 				       port_mask, expected_mask, 1000))
1635 		WARN(1, "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n",
1636 		     dport->base.base.base.id, dport->base.base.name,
1637 		     I915_READ(dpll_reg) & port_mask, expected_mask);
1638 }
1639 
1640 static void ironlake_enable_pch_transcoder(const struct intel_crtc_state *crtc_state)
1641 {
1642 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1643 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1644 	enum pipe pipe = crtc->pipe;
1645 	i915_reg_t reg;
1646 	u32 val, pipeconf_val;
1647 
1648 	/* Make sure PCH DPLL is enabled */
1649 	assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll);
1650 
1651 	/* FDI must be feeding us bits for PCH ports */
1652 	assert_fdi_tx_enabled(dev_priv, pipe);
1653 	assert_fdi_rx_enabled(dev_priv, pipe);
1654 
1655 	if (HAS_PCH_CPT(dev_priv)) {
1656 		reg = TRANS_CHICKEN2(pipe);
1657 		val = I915_READ(reg);
1658 		/*
1659 		 * Workaround: Set the timing override bit
1660 		 * before enabling the pch transcoder.
1661 		 */
1662 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1663 		/* Configure frame start delay to match the CPU */
1664 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1665 		val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1666 		I915_WRITE(reg, val);
1667 	}
1668 
1669 	reg = PCH_TRANSCONF(pipe);
1670 	val = I915_READ(reg);
1671 	pipeconf_val = I915_READ(PIPECONF(pipe));
1672 
1673 	if (HAS_PCH_IBX(dev_priv)) {
1674 		/* Configure frame start delay to match the CPU */
1675 		val &= ~TRANS_FRAME_START_DELAY_MASK;
1676 		val |= TRANS_FRAME_START_DELAY(0);
1677 
1678 		/*
1679 		 * Make the BPC in transcoder be consistent with
1680 		 * that in pipeconf reg. For HDMI we must use 8bpc
1681 		 * here for both 8bpc and 12bpc.
1682 		 */
1683 		val &= ~PIPECONF_BPC_MASK;
1684 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1685 			val |= PIPECONF_8BPC;
1686 		else
1687 			val |= pipeconf_val & PIPECONF_BPC_MASK;
1688 	}
1689 
1690 	val &= ~TRANS_INTERLACE_MASK;
1691 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) {
1692 		if (HAS_PCH_IBX(dev_priv) &&
1693 		    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
1694 			val |= TRANS_LEGACY_INTERLACED_ILK;
1695 		else
1696 			val |= TRANS_INTERLACED;
1697 	} else {
1698 		val |= TRANS_PROGRESSIVE;
1699 	}
1700 
1701 	I915_WRITE(reg, val | TRANS_ENABLE);
1702 	if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100))
1703 		DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1704 }
1705 
1706 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1707 				      enum transcoder cpu_transcoder)
1708 {
1709 	u32 val, pipeconf_val;
1710 
1711 	/* FDI must be feeding us bits for PCH ports */
1712 	assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1713 	assert_fdi_rx_enabled(dev_priv, PIPE_A);
1714 
1715 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1716 	/* Workaround: set timing override bit. */
1717 	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1718 	/* Configure frame start delay to match the CPU */
1719 	val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1720 	val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1721 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1722 
1723 	val = TRANS_ENABLE;
1724 	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1725 
1726 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1727 	    PIPECONF_INTERLACED_ILK)
1728 		val |= TRANS_INTERLACED;
1729 	else
1730 		val |= TRANS_PROGRESSIVE;
1731 
1732 	I915_WRITE(LPT_TRANSCONF, val);
1733 	if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF,
1734 				  TRANS_STATE_ENABLE, 100))
1735 		DRM_ERROR("Failed to enable PCH transcoder\n");
1736 }
1737 
1738 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1739 					    enum pipe pipe)
1740 {
1741 	i915_reg_t reg;
1742 	u32 val;
1743 
1744 	/* FDI relies on the transcoder */
1745 	assert_fdi_tx_disabled(dev_priv, pipe);
1746 	assert_fdi_rx_disabled(dev_priv, pipe);
1747 
1748 	/* Ports must be off as well */
1749 	assert_pch_ports_disabled(dev_priv, pipe);
1750 
1751 	reg = PCH_TRANSCONF(pipe);
1752 	val = I915_READ(reg);
1753 	val &= ~TRANS_ENABLE;
1754 	I915_WRITE(reg, val);
1755 	/* wait for PCH transcoder off, transcoder state */
1756 	if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50))
1757 		DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1758 
1759 	if (HAS_PCH_CPT(dev_priv)) {
1760 		/* Workaround: Clear the timing override chicken bit again. */
1761 		reg = TRANS_CHICKEN2(pipe);
1762 		val = I915_READ(reg);
1763 		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1764 		I915_WRITE(reg, val);
1765 	}
1766 }
1767 
1768 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1769 {
1770 	u32 val;
1771 
1772 	val = I915_READ(LPT_TRANSCONF);
1773 	val &= ~TRANS_ENABLE;
1774 	I915_WRITE(LPT_TRANSCONF, val);
1775 	/* wait for PCH transcoder off, transcoder state */
1776 	if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF,
1777 				    TRANS_STATE_ENABLE, 50))
1778 		DRM_ERROR("Failed to disable PCH transcoder\n");
1779 
1780 	/* Workaround: clear timing override bit. */
1781 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1782 	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1783 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1784 }
1785 
1786 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1787 {
1788 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1789 
1790 	if (HAS_PCH_LPT(dev_priv))
1791 		return PIPE_A;
1792 	else
1793 		return crtc->pipe;
1794 }
1795 
1796 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
1797 {
1798 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1799 
1800 	/*
1801 	 * On i965gm the hardware frame counter reads
1802 	 * zero when the TV encoder is enabled :(
1803 	 */
1804 	if (IS_I965GM(dev_priv) &&
1805 	    (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
1806 		return 0;
1807 
1808 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1809 		return 0xffffffff; /* full 32 bit counter */
1810 	else if (INTEL_GEN(dev_priv) >= 3)
1811 		return 0xffffff; /* only 24 bits of frame count */
1812 	else
1813 		return 0; /* Gen2 doesn't have a hardware frame counter */
1814 }
1815 
1816 static void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
1817 {
1818 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1819 
1820 	assert_vblank_disabled(&crtc->base);
1821 	drm_crtc_set_max_vblank_count(&crtc->base,
1822 				      intel_crtc_max_vblank_count(crtc_state));
1823 	drm_crtc_vblank_on(&crtc->base);
1824 }
1825 
1826 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state)
1827 {
1828 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1829 
1830 	drm_crtc_vblank_off(&crtc->base);
1831 	assert_vblank_disabled(&crtc->base);
1832 }
1833 
1834 static void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state)
1835 {
1836 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1837 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1838 	enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
1839 	enum pipe pipe = crtc->pipe;
1840 	i915_reg_t reg;
1841 	u32 val;
1842 
1843 	DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1844 
1845 	assert_planes_disabled(crtc);
1846 
1847 	/*
1848 	 * A pipe without a PLL won't actually be able to drive bits from
1849 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1850 	 * need the check.
1851 	 */
1852 	if (HAS_GMCH(dev_priv)) {
1853 		if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
1854 			assert_dsi_pll_enabled(dev_priv);
1855 		else
1856 			assert_pll_enabled(dev_priv, pipe);
1857 	} else {
1858 		if (new_crtc_state->has_pch_encoder) {
1859 			/* if driving the PCH, we need FDI enabled */
1860 			assert_fdi_rx_pll_enabled(dev_priv,
1861 						  intel_crtc_pch_transcoder(crtc));
1862 			assert_fdi_tx_pll_enabled(dev_priv,
1863 						  (enum pipe) cpu_transcoder);
1864 		}
1865 		/* FIXME: assert CPU port conditions for SNB+ */
1866 	}
1867 
1868 	trace_intel_pipe_enable(crtc);
1869 
1870 	reg = PIPECONF(cpu_transcoder);
1871 	val = I915_READ(reg);
1872 	if (val & PIPECONF_ENABLE) {
1873 		/* we keep both pipes enabled on 830 */
1874 		WARN_ON(!IS_I830(dev_priv));
1875 		return;
1876 	}
1877 
1878 	I915_WRITE(reg, val | PIPECONF_ENABLE);
1879 	POSTING_READ(reg);
1880 
1881 	/*
1882 	 * Until the pipe starts PIPEDSL reads will return a stale value,
1883 	 * which causes an apparent vblank timestamp jump when PIPEDSL
1884 	 * resets to its proper value. That also messes up the frame count
1885 	 * when it's derived from the timestamps. So let's wait for the
1886 	 * pipe to start properly before we call drm_crtc_vblank_on()
1887 	 */
1888 	if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
1889 		intel_wait_for_pipe_scanline_moving(crtc);
1890 }
1891 
1892 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state)
1893 {
1894 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1895 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1896 	enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1897 	enum pipe pipe = crtc->pipe;
1898 	i915_reg_t reg;
1899 	u32 val;
1900 
1901 	DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1902 
1903 	/*
1904 	 * Make sure planes won't keep trying to pump pixels to us,
1905 	 * or we might hang the display.
1906 	 */
1907 	assert_planes_disabled(crtc);
1908 
1909 	trace_intel_pipe_disable(crtc);
1910 
1911 	reg = PIPECONF(cpu_transcoder);
1912 	val = I915_READ(reg);
1913 	if ((val & PIPECONF_ENABLE) == 0)
1914 		return;
1915 
1916 	/*
1917 	 * Double wide has implications for planes
1918 	 * so best keep it disabled when not needed.
1919 	 */
1920 	if (old_crtc_state->double_wide)
1921 		val &= ~PIPECONF_DOUBLE_WIDE;
1922 
1923 	/* Don't disable pipe or pipe PLLs if needed */
1924 	if (!IS_I830(dev_priv))
1925 		val &= ~PIPECONF_ENABLE;
1926 
1927 	I915_WRITE(reg, val);
1928 	if ((val & PIPECONF_ENABLE) == 0)
1929 		intel_wait_for_pipe_off(old_crtc_state);
1930 }
1931 
1932 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1933 {
1934 	return IS_GEN(dev_priv, 2) ? 2048 : 4096;
1935 }
1936 
1937 static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane)
1938 {
1939 	if (!is_ccs_modifier(fb->modifier))
1940 		return false;
1941 
1942 	return plane >= fb->format->num_planes / 2;
1943 }
1944 
1945 static bool is_gen12_ccs_modifier(u64 modifier)
1946 {
1947 	return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS;
1948 }
1949 
1950 static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane)
1951 {
1952 	return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane);
1953 }
1954 
1955 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane)
1956 {
1957 	if (is_ccs_modifier(fb->modifier))
1958 		return is_ccs_plane(fb, plane);
1959 
1960 	return plane == 1;
1961 }
1962 
1963 static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane)
1964 {
1965 	WARN_ON(!is_ccs_modifier(fb->modifier) ||
1966 		(main_plane && main_plane >= fb->format->num_planes / 2));
1967 
1968 	return fb->format->num_planes / 2 + main_plane;
1969 }
1970 
1971 static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane)
1972 {
1973 	WARN_ON(!is_ccs_modifier(fb->modifier) ||
1974 		ccs_plane < fb->format->num_planes / 2);
1975 
1976 	return ccs_plane - fb->format->num_planes / 2;
1977 }
1978 
1979 /* Return either the main plane's CCS or - if not a CCS FB - UV plane */
1980 static int
1981 intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane)
1982 {
1983 	if (is_ccs_modifier(fb->modifier))
1984 		return main_to_ccs_plane(fb, main_plane);
1985 
1986 	return 1;
1987 }
1988 
1989 bool
1990 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info,
1991 				    uint64_t modifier)
1992 {
1993 	return info->is_yuv &&
1994 	       info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2);
1995 }
1996 
1997 static unsigned int
1998 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane)
1999 {
2000 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2001 	unsigned int cpp = fb->format->cpp[color_plane];
2002 
2003 	switch (fb->modifier) {
2004 	case DRM_FORMAT_MOD_LINEAR:
2005 		return intel_tile_size(dev_priv);
2006 	case I915_FORMAT_MOD_X_TILED:
2007 		if (IS_GEN(dev_priv, 2))
2008 			return 128;
2009 		else
2010 			return 512;
2011 	case I915_FORMAT_MOD_Y_TILED_CCS:
2012 		if (is_ccs_plane(fb, color_plane))
2013 			return 128;
2014 		/* fall through */
2015 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2016 		if (is_ccs_plane(fb, color_plane))
2017 			return 64;
2018 		/* fall through */
2019 	case I915_FORMAT_MOD_Y_TILED:
2020 		if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv))
2021 			return 128;
2022 		else
2023 			return 512;
2024 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2025 		if (is_ccs_plane(fb, color_plane))
2026 			return 128;
2027 		/* fall through */
2028 	case I915_FORMAT_MOD_Yf_TILED:
2029 		switch (cpp) {
2030 		case 1:
2031 			return 64;
2032 		case 2:
2033 		case 4:
2034 			return 128;
2035 		case 8:
2036 		case 16:
2037 			return 256;
2038 		default:
2039 			MISSING_CASE(cpp);
2040 			return cpp;
2041 		}
2042 		break;
2043 	default:
2044 		MISSING_CASE(fb->modifier);
2045 		return cpp;
2046 	}
2047 }
2048 
2049 static unsigned int
2050 intel_tile_height(const struct drm_framebuffer *fb, int color_plane)
2051 {
2052 	if (is_gen12_ccs_plane(fb, color_plane))
2053 		return 1;
2054 
2055 	return intel_tile_size(to_i915(fb->dev)) /
2056 		intel_tile_width_bytes(fb, color_plane);
2057 }
2058 
2059 /* Return the tile dimensions in pixel units */
2060 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane,
2061 			    unsigned int *tile_width,
2062 			    unsigned int *tile_height)
2063 {
2064 	unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane);
2065 	unsigned int cpp = fb->format->cpp[color_plane];
2066 
2067 	*tile_width = tile_width_bytes / cpp;
2068 	*tile_height = intel_tile_height(fb, color_plane);
2069 }
2070 
2071 unsigned int
2072 intel_fb_align_height(const struct drm_framebuffer *fb,
2073 		      int color_plane, unsigned int height)
2074 {
2075 	unsigned int tile_height = intel_tile_height(fb, color_plane);
2076 
2077 	return ALIGN(height, tile_height);
2078 }
2079 
2080 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2081 {
2082 	unsigned int size = 0;
2083 	int i;
2084 
2085 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2086 		size += rot_info->plane[i].width * rot_info->plane[i].height;
2087 
2088 	return size;
2089 }
2090 
2091 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info)
2092 {
2093 	unsigned int size = 0;
2094 	int i;
2095 
2096 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
2097 		size += rem_info->plane[i].width * rem_info->plane[i].height;
2098 
2099 	return size;
2100 }
2101 
2102 static void
2103 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2104 			const struct drm_framebuffer *fb,
2105 			unsigned int rotation)
2106 {
2107 	view->type = I915_GGTT_VIEW_NORMAL;
2108 	if (drm_rotation_90_or_270(rotation)) {
2109 		view->type = I915_GGTT_VIEW_ROTATED;
2110 		view->rotated = to_intel_framebuffer(fb)->rot_info;
2111 	}
2112 }
2113 
2114 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2115 {
2116 	if (IS_I830(dev_priv))
2117 		return 16 * 1024;
2118 	else if (IS_I85X(dev_priv))
2119 		return 256;
2120 	else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2121 		return 32;
2122 	else
2123 		return 4 * 1024;
2124 }
2125 
2126 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2127 {
2128 	if (INTEL_GEN(dev_priv) >= 9)
2129 		return 256 * 1024;
2130 	else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2131 		 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2132 		return 128 * 1024;
2133 	else if (INTEL_GEN(dev_priv) >= 4)
2134 		return 4 * 1024;
2135 	else
2136 		return 0;
2137 }
2138 
2139 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2140 					 int color_plane)
2141 {
2142 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2143 
2144 	/* AUX_DIST needs only 4K alignment */
2145 	if (is_aux_plane(fb, color_plane))
2146 		return 4096;
2147 
2148 	switch (fb->modifier) {
2149 	case DRM_FORMAT_MOD_LINEAR:
2150 		return intel_linear_alignment(dev_priv);
2151 	case I915_FORMAT_MOD_X_TILED:
2152 		if (INTEL_GEN(dev_priv) >= 9)
2153 			return 256 * 1024;
2154 		return 0;
2155 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2156 		return 16 * 1024;
2157 	case I915_FORMAT_MOD_Y_TILED_CCS:
2158 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2159 	case I915_FORMAT_MOD_Y_TILED:
2160 	case I915_FORMAT_MOD_Yf_TILED:
2161 		return 1 * 1024 * 1024;
2162 	default:
2163 		MISSING_CASE(fb->modifier);
2164 		return 0;
2165 	}
2166 }
2167 
2168 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state)
2169 {
2170 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2171 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2172 
2173 	return INTEL_GEN(dev_priv) < 4 ||
2174 		(plane->has_fbc &&
2175 		 plane_state->view.type == I915_GGTT_VIEW_NORMAL);
2176 }
2177 
2178 struct i915_vma *
2179 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2180 			   const struct i915_ggtt_view *view,
2181 			   bool uses_fence,
2182 			   unsigned long *out_flags)
2183 {
2184 	struct drm_device *dev = fb->dev;
2185 	struct drm_i915_private *dev_priv = to_i915(dev);
2186 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2187 	intel_wakeref_t wakeref;
2188 	struct i915_vma *vma;
2189 	unsigned int pinctl;
2190 	u32 alignment;
2191 
2192 	if (WARN_ON(!i915_gem_object_is_framebuffer(obj)))
2193 		return ERR_PTR(-EINVAL);
2194 
2195 	alignment = intel_surf_alignment(fb, 0);
2196 
2197 	/* Note that the w/a also requires 64 PTE of padding following the
2198 	 * bo. We currently fill all unused PTE with the shadow page and so
2199 	 * we should always have valid PTE following the scanout preventing
2200 	 * the VT-d warning.
2201 	 */
2202 	if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2203 		alignment = 256 * 1024;
2204 
2205 	/*
2206 	 * Global gtt pte registers are special registers which actually forward
2207 	 * writes to a chunk of system memory. Which means that there is no risk
2208 	 * that the register values disappear as soon as we call
2209 	 * intel_runtime_pm_put(), so it is correct to wrap only the
2210 	 * pin/unpin/fence and not more.
2211 	 */
2212 	wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2213 
2214 	atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2215 
2216 	/*
2217 	 * Valleyview is definitely limited to scanning out the first
2218 	 * 512MiB. Lets presume this behaviour was inherited from the
2219 	 * g4x display engine and that all earlier gen are similarly
2220 	 * limited. Testing suggests that it is a little more
2221 	 * complicated than this. For example, Cherryview appears quite
2222 	 * happy to scanout from anywhere within its global aperture.
2223 	 */
2224 	pinctl = 0;
2225 	if (HAS_GMCH(dev_priv))
2226 		pinctl |= PIN_MAPPABLE;
2227 
2228 	vma = i915_gem_object_pin_to_display_plane(obj,
2229 						   alignment, view, pinctl);
2230 	if (IS_ERR(vma))
2231 		goto err;
2232 
2233 	if (uses_fence && i915_vma_is_map_and_fenceable(vma)) {
2234 		int ret;
2235 
2236 		/*
2237 		 * Install a fence for tiled scan-out. Pre-i965 always needs a
2238 		 * fence, whereas 965+ only requires a fence if using
2239 		 * framebuffer compression.  For simplicity, we always, when
2240 		 * possible, install a fence as the cost is not that onerous.
2241 		 *
2242 		 * If we fail to fence the tiled scanout, then either the
2243 		 * modeset will reject the change (which is highly unlikely as
2244 		 * the affected systems, all but one, do not have unmappable
2245 		 * space) or we will not be able to enable full powersaving
2246 		 * techniques (also likely not to apply due to various limits
2247 		 * FBC and the like impose on the size of the buffer, which
2248 		 * presumably we violated anyway with this unmappable buffer).
2249 		 * Anyway, it is presumably better to stumble onwards with
2250 		 * something and try to run the system in a "less than optimal"
2251 		 * mode that matches the user configuration.
2252 		 */
2253 		ret = i915_vma_pin_fence(vma);
2254 		if (ret != 0 && INTEL_GEN(dev_priv) < 4) {
2255 			i915_gem_object_unpin_from_display_plane(vma);
2256 			vma = ERR_PTR(ret);
2257 			goto err;
2258 		}
2259 
2260 		if (ret == 0 && vma->fence)
2261 			*out_flags |= PLANE_HAS_FENCE;
2262 	}
2263 
2264 	i915_vma_get(vma);
2265 err:
2266 	atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2267 	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
2268 	return vma;
2269 }
2270 
2271 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags)
2272 {
2273 	i915_gem_object_lock(vma->obj);
2274 	if (flags & PLANE_HAS_FENCE)
2275 		i915_vma_unpin_fence(vma);
2276 	i915_gem_object_unpin_from_display_plane(vma);
2277 	i915_gem_object_unlock(vma->obj);
2278 
2279 	i915_vma_put(vma);
2280 }
2281 
2282 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane,
2283 			  unsigned int rotation)
2284 {
2285 	if (drm_rotation_90_or_270(rotation))
2286 		return to_intel_framebuffer(fb)->rotated[color_plane].pitch;
2287 	else
2288 		return fb->pitches[color_plane];
2289 }
2290 
2291 /*
2292  * Convert the x/y offsets into a linear offset.
2293  * Only valid with 0/180 degree rotation, which is fine since linear
2294  * offset is only used with linear buffers on pre-hsw and tiled buffers
2295  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2296  */
2297 u32 intel_fb_xy_to_linear(int x, int y,
2298 			  const struct intel_plane_state *state,
2299 			  int color_plane)
2300 {
2301 	const struct drm_framebuffer *fb = state->hw.fb;
2302 	unsigned int cpp = fb->format->cpp[color_plane];
2303 	unsigned int pitch = state->color_plane[color_plane].stride;
2304 
2305 	return y * pitch + x * cpp;
2306 }
2307 
2308 /*
2309  * Add the x/y offsets derived from fb->offsets[] to the user
2310  * specified plane src x/y offsets. The resulting x/y offsets
2311  * specify the start of scanout from the beginning of the gtt mapping.
2312  */
2313 void intel_add_fb_offsets(int *x, int *y,
2314 			  const struct intel_plane_state *state,
2315 			  int color_plane)
2316 
2317 {
2318 	*x += state->color_plane[color_plane].x;
2319 	*y += state->color_plane[color_plane].y;
2320 }
2321 
2322 static u32 intel_adjust_tile_offset(int *x, int *y,
2323 				    unsigned int tile_width,
2324 				    unsigned int tile_height,
2325 				    unsigned int tile_size,
2326 				    unsigned int pitch_tiles,
2327 				    u32 old_offset,
2328 				    u32 new_offset)
2329 {
2330 	unsigned int pitch_pixels = pitch_tiles * tile_width;
2331 	unsigned int tiles;
2332 
2333 	WARN_ON(old_offset & (tile_size - 1));
2334 	WARN_ON(new_offset & (tile_size - 1));
2335 	WARN_ON(new_offset > old_offset);
2336 
2337 	tiles = (old_offset - new_offset) / tile_size;
2338 
2339 	*y += tiles / pitch_tiles * tile_height;
2340 	*x += tiles % pitch_tiles * tile_width;
2341 
2342 	/* minimize x in case it got needlessly big */
2343 	*y += *x / pitch_pixels * tile_height;
2344 	*x %= pitch_pixels;
2345 
2346 	return new_offset;
2347 }
2348 
2349 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane)
2350 {
2351 	return fb->modifier == DRM_FORMAT_MOD_LINEAR ||
2352 	       is_gen12_ccs_plane(fb, color_plane);
2353 }
2354 
2355 static u32 intel_adjust_aligned_offset(int *x, int *y,
2356 				       const struct drm_framebuffer *fb,
2357 				       int color_plane,
2358 				       unsigned int rotation,
2359 				       unsigned int pitch,
2360 				       u32 old_offset, u32 new_offset)
2361 {
2362 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2363 	unsigned int cpp = fb->format->cpp[color_plane];
2364 
2365 	WARN_ON(new_offset > old_offset);
2366 
2367 	if (!is_surface_linear(fb, color_plane)) {
2368 		unsigned int tile_size, tile_width, tile_height;
2369 		unsigned int pitch_tiles;
2370 
2371 		tile_size = intel_tile_size(dev_priv);
2372 		intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2373 
2374 		if (drm_rotation_90_or_270(rotation)) {
2375 			pitch_tiles = pitch / tile_height;
2376 			swap(tile_width, tile_height);
2377 		} else {
2378 			pitch_tiles = pitch / (tile_width * cpp);
2379 		}
2380 
2381 		intel_adjust_tile_offset(x, y, tile_width, tile_height,
2382 					 tile_size, pitch_tiles,
2383 					 old_offset, new_offset);
2384 	} else {
2385 		old_offset += *y * pitch + *x * cpp;
2386 
2387 		*y = (old_offset - new_offset) / pitch;
2388 		*x = ((old_offset - new_offset) - *y * pitch) / cpp;
2389 	}
2390 
2391 	return new_offset;
2392 }
2393 
2394 /*
2395  * Adjust the tile offset by moving the difference into
2396  * the x/y offsets.
2397  */
2398 static u32 intel_plane_adjust_aligned_offset(int *x, int *y,
2399 					     const struct intel_plane_state *state,
2400 					     int color_plane,
2401 					     u32 old_offset, u32 new_offset)
2402 {
2403 	return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane,
2404 					   state->hw.rotation,
2405 					   state->color_plane[color_plane].stride,
2406 					   old_offset, new_offset);
2407 }
2408 
2409 /*
2410  * Computes the aligned offset to the base tile and adjusts
2411  * x, y. bytes per pixel is assumed to be a power-of-two.
2412  *
2413  * In the 90/270 rotated case, x and y are assumed
2414  * to be already rotated to match the rotated GTT view, and
2415  * pitch is the tile_height aligned framebuffer height.
2416  *
2417  * This function is used when computing the derived information
2418  * under intel_framebuffer, so using any of that information
2419  * here is not allowed. Anything under drm_framebuffer can be
2420  * used. This is why the user has to pass in the pitch since it
2421  * is specified in the rotated orientation.
2422  */
2423 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv,
2424 					int *x, int *y,
2425 					const struct drm_framebuffer *fb,
2426 					int color_plane,
2427 					unsigned int pitch,
2428 					unsigned int rotation,
2429 					u32 alignment)
2430 {
2431 	unsigned int cpp = fb->format->cpp[color_plane];
2432 	u32 offset, offset_aligned;
2433 
2434 	if (alignment)
2435 		alignment--;
2436 
2437 	if (!is_surface_linear(fb, color_plane)) {
2438 		unsigned int tile_size, tile_width, tile_height;
2439 		unsigned int tile_rows, tiles, pitch_tiles;
2440 
2441 		tile_size = intel_tile_size(dev_priv);
2442 		intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2443 
2444 		if (drm_rotation_90_or_270(rotation)) {
2445 			pitch_tiles = pitch / tile_height;
2446 			swap(tile_width, tile_height);
2447 		} else {
2448 			pitch_tiles = pitch / (tile_width * cpp);
2449 		}
2450 
2451 		tile_rows = *y / tile_height;
2452 		*y %= tile_height;
2453 
2454 		tiles = *x / tile_width;
2455 		*x %= tile_width;
2456 
2457 		offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2458 		offset_aligned = offset & ~alignment;
2459 
2460 		intel_adjust_tile_offset(x, y, tile_width, tile_height,
2461 					 tile_size, pitch_tiles,
2462 					 offset, offset_aligned);
2463 	} else {
2464 		offset = *y * pitch + *x * cpp;
2465 		offset_aligned = offset & ~alignment;
2466 
2467 		*y = (offset & alignment) / pitch;
2468 		*x = ((offset & alignment) - *y * pitch) / cpp;
2469 	}
2470 
2471 	return offset_aligned;
2472 }
2473 
2474 static u32 intel_plane_compute_aligned_offset(int *x, int *y,
2475 					      const struct intel_plane_state *state,
2476 					      int color_plane)
2477 {
2478 	struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane);
2479 	struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2480 	const struct drm_framebuffer *fb = state->hw.fb;
2481 	unsigned int rotation = state->hw.rotation;
2482 	int pitch = state->color_plane[color_plane].stride;
2483 	u32 alignment;
2484 
2485 	if (intel_plane->id == PLANE_CURSOR)
2486 		alignment = intel_cursor_alignment(dev_priv);
2487 	else
2488 		alignment = intel_surf_alignment(fb, color_plane);
2489 
2490 	return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane,
2491 					    pitch, rotation, alignment);
2492 }
2493 
2494 /* Convert the fb->offset[] into x/y offsets */
2495 static int intel_fb_offset_to_xy(int *x, int *y,
2496 				 const struct drm_framebuffer *fb,
2497 				 int color_plane)
2498 {
2499 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2500 	unsigned int height;
2501 
2502 	if (fb->modifier != DRM_FORMAT_MOD_LINEAR &&
2503 	    fb->offsets[color_plane] % intel_tile_size(dev_priv)) {
2504 		DRM_DEBUG_KMS("Misaligned offset 0x%08x for color plane %d\n",
2505 			      fb->offsets[color_plane], color_plane);
2506 		return -EINVAL;
2507 	}
2508 
2509 	height = drm_framebuffer_plane_height(fb->height, fb, color_plane);
2510 	height = ALIGN(height, intel_tile_height(fb, color_plane));
2511 
2512 	/* Catch potential overflows early */
2513 	if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]),
2514 			    fb->offsets[color_plane])) {
2515 		DRM_DEBUG_KMS("Bad offset 0x%08x or pitch %d for color plane %d\n",
2516 			      fb->offsets[color_plane], fb->pitches[color_plane],
2517 			      color_plane);
2518 		return -ERANGE;
2519 	}
2520 
2521 	*x = 0;
2522 	*y = 0;
2523 
2524 	intel_adjust_aligned_offset(x, y,
2525 				    fb, color_plane, DRM_MODE_ROTATE_0,
2526 				    fb->pitches[color_plane],
2527 				    fb->offsets[color_plane], 0);
2528 
2529 	return 0;
2530 }
2531 
2532 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier)
2533 {
2534 	switch (fb_modifier) {
2535 	case I915_FORMAT_MOD_X_TILED:
2536 		return I915_TILING_X;
2537 	case I915_FORMAT_MOD_Y_TILED:
2538 	case I915_FORMAT_MOD_Y_TILED_CCS:
2539 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2540 		return I915_TILING_Y;
2541 	default:
2542 		return I915_TILING_NONE;
2543 	}
2544 }
2545 
2546 /*
2547  * From the Sky Lake PRM:
2548  * "The Color Control Surface (CCS) contains the compression status of
2549  *  the cache-line pairs. The compression state of the cache-line pair
2550  *  is specified by 2 bits in the CCS. Each CCS cache-line represents
2551  *  an area on the main surface of 16 x16 sets of 128 byte Y-tiled
2552  *  cache-line-pairs. CCS is always Y tiled."
2553  *
2554  * Since cache line pairs refers to horizontally adjacent cache lines,
2555  * each cache line in the CCS corresponds to an area of 32x16 cache
2556  * lines on the main surface. Since each pixel is 4 bytes, this gives
2557  * us a ratio of one byte in the CCS for each 8x16 pixels in the
2558  * main surface.
2559  */
2560 static const struct drm_format_info skl_ccs_formats[] = {
2561 	{ .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2562 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2563 	{ .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2564 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2565 	{ .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2566 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2567 	{ .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2568 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2569 };
2570 
2571 /*
2572  * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the
2573  * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles
2574  * in the main surface. With 4 byte pixels and each Y-tile having dimensions of
2575  * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in
2576  * the main surface.
2577  */
2578 static const struct drm_format_info gen12_ccs_formats[] = {
2579 	{ .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2580 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2581 	  .hsub = 1, .vsub = 1, },
2582 	{ .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2583 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2584 	  .hsub = 1, .vsub = 1, },
2585 	{ .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2586 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2587 	  .hsub = 1, .vsub = 1, .has_alpha = true },
2588 	{ .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2589 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2590 	  .hsub = 1, .vsub = 1, .has_alpha = true },
2591 };
2592 
2593 static const struct drm_format_info *
2594 lookup_format_info(const struct drm_format_info formats[],
2595 		   int num_formats, u32 format)
2596 {
2597 	int i;
2598 
2599 	for (i = 0; i < num_formats; i++) {
2600 		if (formats[i].format == format)
2601 			return &formats[i];
2602 	}
2603 
2604 	return NULL;
2605 }
2606 
2607 static const struct drm_format_info *
2608 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2609 {
2610 	switch (cmd->modifier[0]) {
2611 	case I915_FORMAT_MOD_Y_TILED_CCS:
2612 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2613 		return lookup_format_info(skl_ccs_formats,
2614 					  ARRAY_SIZE(skl_ccs_formats),
2615 					  cmd->pixel_format);
2616 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2617 		return lookup_format_info(gen12_ccs_formats,
2618 					  ARRAY_SIZE(gen12_ccs_formats),
2619 					  cmd->pixel_format);
2620 	default:
2621 		return NULL;
2622 	}
2623 }
2624 
2625 bool is_ccs_modifier(u64 modifier)
2626 {
2627 	return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
2628 	       modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2629 	       modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
2630 }
2631 
2632 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane)
2633 {
2634 	return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)],
2635 			    512) * 64;
2636 }
2637 
2638 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv,
2639 			      u32 pixel_format, u64 modifier)
2640 {
2641 	struct intel_crtc *crtc;
2642 	struct intel_plane *plane;
2643 
2644 	/*
2645 	 * We assume the primary plane for pipe A has
2646 	 * the highest stride limits of them all.
2647 	 */
2648 	crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_A);
2649 	if (!crtc)
2650 		return 0;
2651 
2652 	plane = to_intel_plane(crtc->base.primary);
2653 
2654 	return plane->max_stride(plane, pixel_format, modifier,
2655 				 DRM_MODE_ROTATE_0);
2656 }
2657 
2658 static
2659 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv,
2660 			u32 pixel_format, u64 modifier)
2661 {
2662 	/*
2663 	 * Arbitrary limit for gen4+ chosen to match the
2664 	 * render engine max stride.
2665 	 *
2666 	 * The new CCS hash mode makes remapping impossible
2667 	 */
2668 	if (!is_ccs_modifier(modifier)) {
2669 		if (INTEL_GEN(dev_priv) >= 7)
2670 			return 256*1024;
2671 		else if (INTEL_GEN(dev_priv) >= 4)
2672 			return 128*1024;
2673 	}
2674 
2675 	return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier);
2676 }
2677 
2678 static u32
2679 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane)
2680 {
2681 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2682 	u32 tile_width;
2683 
2684 	if (is_surface_linear(fb, color_plane)) {
2685 		u32 max_stride = intel_plane_fb_max_stride(dev_priv,
2686 							   fb->format->format,
2687 							   fb->modifier);
2688 
2689 		/*
2690 		 * To make remapping with linear generally feasible
2691 		 * we need the stride to be page aligned.
2692 		 */
2693 		if (fb->pitches[color_plane] > max_stride &&
2694 		    !is_ccs_modifier(fb->modifier))
2695 			return intel_tile_size(dev_priv);
2696 		else
2697 			return 64;
2698 	}
2699 
2700 	tile_width = intel_tile_width_bytes(fb, color_plane);
2701 	if (is_ccs_modifier(fb->modifier) && color_plane == 0) {
2702 		/*
2703 		 * Display WA #0531: skl,bxt,kbl,glk
2704 		 *
2705 		 * Render decompression and plane width > 3840
2706 		 * combined with horizontal panning requires the
2707 		 * plane stride to be a multiple of 4. We'll just
2708 		 * require the entire fb to accommodate that to avoid
2709 		 * potential runtime errors at plane configuration time.
2710 		 */
2711 		if (IS_GEN(dev_priv, 9) && fb->width > 3840)
2712 			tile_width *= 4;
2713 		/*
2714 		 * The main surface pitch must be padded to a multiple of four
2715 		 * tile widths.
2716 		 */
2717 		else if (INTEL_GEN(dev_priv) >= 12)
2718 			tile_width *= 4;
2719 	}
2720 	return tile_width;
2721 }
2722 
2723 bool intel_plane_can_remap(const struct intel_plane_state *plane_state)
2724 {
2725 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2726 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2727 	const struct drm_framebuffer *fb = plane_state->hw.fb;
2728 	int i;
2729 
2730 	/* We don't want to deal with remapping with cursors */
2731 	if (plane->id == PLANE_CURSOR)
2732 		return false;
2733 
2734 	/*
2735 	 * The display engine limits already match/exceed the
2736 	 * render engine limits, so not much point in remapping.
2737 	 * Would also need to deal with the fence POT alignment
2738 	 * and gen2 2KiB GTT tile size.
2739 	 */
2740 	if (INTEL_GEN(dev_priv) < 4)
2741 		return false;
2742 
2743 	/*
2744 	 * The new CCS hash mode isn't compatible with remapping as
2745 	 * the virtual address of the pages affects the compressed data.
2746 	 */
2747 	if (is_ccs_modifier(fb->modifier))
2748 		return false;
2749 
2750 	/* Linear needs a page aligned stride for remapping */
2751 	if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2752 		unsigned int alignment = intel_tile_size(dev_priv) - 1;
2753 
2754 		for (i = 0; i < fb->format->num_planes; i++) {
2755 			if (fb->pitches[i] & alignment)
2756 				return false;
2757 		}
2758 	}
2759 
2760 	return true;
2761 }
2762 
2763 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state)
2764 {
2765 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2766 	const struct drm_framebuffer *fb = plane_state->hw.fb;
2767 	unsigned int rotation = plane_state->hw.rotation;
2768 	u32 stride, max_stride;
2769 
2770 	/*
2771 	 * No remapping for invisible planes since we don't have
2772 	 * an actual source viewport to remap.
2773 	 */
2774 	if (!plane_state->uapi.visible)
2775 		return false;
2776 
2777 	if (!intel_plane_can_remap(plane_state))
2778 		return false;
2779 
2780 	/*
2781 	 * FIXME: aux plane limits on gen9+ are
2782 	 * unclear in Bspec, for now no checking.
2783 	 */
2784 	stride = intel_fb_pitch(fb, 0, rotation);
2785 	max_stride = plane->max_stride(plane, fb->format->format,
2786 				       fb->modifier, rotation);
2787 
2788 	return stride > max_stride;
2789 }
2790 
2791 static void
2792 intel_fb_plane_get_subsampling(int *hsub, int *vsub,
2793 			       const struct drm_framebuffer *fb,
2794 			       int color_plane)
2795 {
2796 	int main_plane;
2797 
2798 	if (color_plane == 0) {
2799 		*hsub = 1;
2800 		*vsub = 1;
2801 
2802 		return;
2803 	}
2804 
2805 	/*
2806 	 * TODO: Deduct the subsampling from the char block for all CCS
2807 	 * formats and planes.
2808 	 */
2809 	if (!is_gen12_ccs_plane(fb, color_plane)) {
2810 		*hsub = fb->format->hsub;
2811 		*vsub = fb->format->vsub;
2812 
2813 		return;
2814 	}
2815 
2816 	main_plane = ccs_to_main_plane(fb, color_plane);
2817 	*hsub = drm_format_info_block_width(fb->format, color_plane) /
2818 		drm_format_info_block_width(fb->format, main_plane);
2819 
2820 	/*
2821 	 * The min stride check in the core framebuffer_check() function
2822 	 * assumes that format->hsub applies to every plane except for the
2823 	 * first plane. That's incorrect for the CCS AUX plane of the first
2824 	 * plane, but for the above check to pass we must define the block
2825 	 * width with that subsampling applied to it. Adjust the width here
2826 	 * accordingly, so we can calculate the actual subsampling factor.
2827 	 */
2828 	if (main_plane == 0)
2829 		*hsub *= fb->format->hsub;
2830 
2831 	*vsub = 32;
2832 }
2833 static int
2834 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y)
2835 {
2836 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2837 	int main_plane;
2838 	int hsub, vsub;
2839 	int tile_width, tile_height;
2840 	int ccs_x, ccs_y;
2841 	int main_x, main_y;
2842 
2843 	if (!is_ccs_plane(fb, ccs_plane))
2844 		return 0;
2845 
2846 	intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height);
2847 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
2848 
2849 	tile_width *= hsub;
2850 	tile_height *= vsub;
2851 
2852 	ccs_x = (x * hsub) % tile_width;
2853 	ccs_y = (y * vsub) % tile_height;
2854 
2855 	main_plane = ccs_to_main_plane(fb, ccs_plane);
2856 	main_x = intel_fb->normal[main_plane].x % tile_width;
2857 	main_y = intel_fb->normal[main_plane].y % tile_height;
2858 
2859 	/*
2860 	 * CCS doesn't have its own x/y offset register, so the intra CCS tile
2861 	 * x/y offsets must match between CCS and the main surface.
2862 	 */
2863 	if (main_x != ccs_x || main_y != ccs_y) {
2864 		DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2865 			      main_x, main_y,
2866 			      ccs_x, ccs_y,
2867 			      intel_fb->normal[main_plane].x,
2868 			      intel_fb->normal[main_plane].y,
2869 			      x, y);
2870 		return -EINVAL;
2871 	}
2872 
2873 	return 0;
2874 }
2875 
2876 static void
2877 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane)
2878 {
2879 	int hsub, vsub;
2880 
2881 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane);
2882 	*w = fb->width / hsub;
2883 	*h = fb->height / vsub;
2884 }
2885 
2886 /*
2887  * Setup the rotated view for an FB plane and return the size the GTT mapping
2888  * requires for this view.
2889  */
2890 static u32
2891 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info,
2892 		  u32 gtt_offset_rotated, int x, int y,
2893 		  unsigned int width, unsigned int height,
2894 		  unsigned int tile_size,
2895 		  unsigned int tile_width, unsigned int tile_height,
2896 		  struct drm_framebuffer *fb)
2897 {
2898 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2899 	struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2900 	unsigned int pitch_tiles;
2901 	struct drm_rect r;
2902 
2903 	/* Y or Yf modifiers required for 90/270 rotation */
2904 	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
2905 	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
2906 		return 0;
2907 
2908 	if (WARN_ON(plane >= ARRAY_SIZE(rot_info->plane)))
2909 		return 0;
2910 
2911 	rot_info->plane[plane] = *plane_info;
2912 
2913 	intel_fb->rotated[plane].pitch = plane_info->height * tile_height;
2914 
2915 	/* rotate the x/y offsets to match the GTT view */
2916 	drm_rect_init(&r, x, y, width, height);
2917 	drm_rect_rotate(&r,
2918 			plane_info->width * tile_width,
2919 			plane_info->height * tile_height,
2920 			DRM_MODE_ROTATE_270);
2921 	x = r.x1;
2922 	y = r.y1;
2923 
2924 	/* rotate the tile dimensions to match the GTT view */
2925 	pitch_tiles = intel_fb->rotated[plane].pitch / tile_height;
2926 	swap(tile_width, tile_height);
2927 
2928 	/*
2929 	 * We only keep the x/y offsets, so push all of the
2930 	 * gtt offset into the x/y offsets.
2931 	 */
2932 	intel_adjust_tile_offset(&x, &y,
2933 				 tile_width, tile_height,
2934 				 tile_size, pitch_tiles,
2935 				 gtt_offset_rotated * tile_size, 0);
2936 
2937 	/*
2938 	 * First pixel of the framebuffer from
2939 	 * the start of the rotated gtt mapping.
2940 	 */
2941 	intel_fb->rotated[plane].x = x;
2942 	intel_fb->rotated[plane].y = y;
2943 
2944 	return plane_info->width * plane_info->height;
2945 }
2946 
2947 static int
2948 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2949 		   struct drm_framebuffer *fb)
2950 {
2951 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2952 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2953 	u32 gtt_offset_rotated = 0;
2954 	unsigned int max_size = 0;
2955 	int i, num_planes = fb->format->num_planes;
2956 	unsigned int tile_size = intel_tile_size(dev_priv);
2957 
2958 	for (i = 0; i < num_planes; i++) {
2959 		unsigned int width, height;
2960 		unsigned int cpp, size;
2961 		u32 offset;
2962 		int x, y;
2963 		int ret;
2964 
2965 		cpp = fb->format->cpp[i];
2966 		intel_fb_plane_dims(&width, &height, fb, i);
2967 
2968 		ret = intel_fb_offset_to_xy(&x, &y, fb, i);
2969 		if (ret) {
2970 			DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2971 				      i, fb->offsets[i]);
2972 			return ret;
2973 		}
2974 
2975 		ret = intel_fb_check_ccs_xy(fb, i, x, y);
2976 		if (ret)
2977 			return ret;
2978 
2979 		/*
2980 		 * The fence (if used) is aligned to the start of the object
2981 		 * so having the framebuffer wrap around across the edge of the
2982 		 * fenced region doesn't really work. We have no API to configure
2983 		 * the fence start offset within the object (nor could we probably
2984 		 * on gen2/3). So it's just easier if we just require that the
2985 		 * fb layout agrees with the fence layout. We already check that the
2986 		 * fb stride matches the fence stride elsewhere.
2987 		 */
2988 		if (i == 0 && i915_gem_object_is_tiled(obj) &&
2989 		    (x + width) * cpp > fb->pitches[i]) {
2990 			DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2991 				      i, fb->offsets[i]);
2992 			return -EINVAL;
2993 		}
2994 
2995 		/*
2996 		 * First pixel of the framebuffer from
2997 		 * the start of the normal gtt mapping.
2998 		 */
2999 		intel_fb->normal[i].x = x;
3000 		intel_fb->normal[i].y = y;
3001 
3002 		offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i,
3003 						      fb->pitches[i],
3004 						      DRM_MODE_ROTATE_0,
3005 						      tile_size);
3006 		offset /= tile_size;
3007 
3008 		if (!is_surface_linear(fb, i)) {
3009 			struct intel_remapped_plane_info plane_info;
3010 			unsigned int tile_width, tile_height;
3011 
3012 			intel_tile_dims(fb, i, &tile_width, &tile_height);
3013 
3014 			plane_info.offset = offset;
3015 			plane_info.stride = DIV_ROUND_UP(fb->pitches[i],
3016 							 tile_width * cpp);
3017 			plane_info.width = DIV_ROUND_UP(x + width, tile_width);
3018 			plane_info.height = DIV_ROUND_UP(y + height,
3019 							 tile_height);
3020 
3021 			/* how many tiles does this plane need */
3022 			size = plane_info.stride * plane_info.height;
3023 			/*
3024 			 * If the plane isn't horizontally tile aligned,
3025 			 * we need one more tile.
3026 			 */
3027 			if (x != 0)
3028 				size++;
3029 
3030 			gtt_offset_rotated +=
3031 				setup_fb_rotation(i, &plane_info,
3032 						  gtt_offset_rotated,
3033 						  x, y, width, height,
3034 						  tile_size,
3035 						  tile_width, tile_height,
3036 						  fb);
3037 		} else {
3038 			size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
3039 					    x * cpp, tile_size);
3040 		}
3041 
3042 		/* how many tiles in total needed in the bo */
3043 		max_size = max(max_size, offset + size);
3044 	}
3045 
3046 	if (mul_u32_u32(max_size, tile_size) > obj->base.size) {
3047 		DRM_DEBUG_KMS("fb too big for bo (need %llu bytes, have %zu bytes)\n",
3048 			      mul_u32_u32(max_size, tile_size), obj->base.size);
3049 		return -EINVAL;
3050 	}
3051 
3052 	return 0;
3053 }
3054 
3055 static void
3056 intel_plane_remap_gtt(struct intel_plane_state *plane_state)
3057 {
3058 	struct drm_i915_private *dev_priv =
3059 		to_i915(plane_state->uapi.plane->dev);
3060 	struct drm_framebuffer *fb = plane_state->hw.fb;
3061 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3062 	struct intel_rotation_info *info = &plane_state->view.rotated;
3063 	unsigned int rotation = plane_state->hw.rotation;
3064 	int i, num_planes = fb->format->num_planes;
3065 	unsigned int tile_size = intel_tile_size(dev_priv);
3066 	unsigned int src_x, src_y;
3067 	unsigned int src_w, src_h;
3068 	u32 gtt_offset = 0;
3069 
3070 	memset(&plane_state->view, 0, sizeof(plane_state->view));
3071 	plane_state->view.type = drm_rotation_90_or_270(rotation) ?
3072 		I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED;
3073 
3074 	src_x = plane_state->uapi.src.x1 >> 16;
3075 	src_y = plane_state->uapi.src.y1 >> 16;
3076 	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
3077 	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
3078 
3079 	WARN_ON(is_ccs_modifier(fb->modifier));
3080 
3081 	/* Make src coordinates relative to the viewport */
3082 	drm_rect_translate(&plane_state->uapi.src,
3083 			   -(src_x << 16), -(src_y << 16));
3084 
3085 	/* Rotate src coordinates to match rotated GTT view */
3086 	if (drm_rotation_90_or_270(rotation))
3087 		drm_rect_rotate(&plane_state->uapi.src,
3088 				src_w << 16, src_h << 16,
3089 				DRM_MODE_ROTATE_270);
3090 
3091 	for (i = 0; i < num_planes; i++) {
3092 		unsigned int hsub = i ? fb->format->hsub : 1;
3093 		unsigned int vsub = i ? fb->format->vsub : 1;
3094 		unsigned int cpp = fb->format->cpp[i];
3095 		unsigned int tile_width, tile_height;
3096 		unsigned int width, height;
3097 		unsigned int pitch_tiles;
3098 		unsigned int x, y;
3099 		u32 offset;
3100 
3101 		intel_tile_dims(fb, i, &tile_width, &tile_height);
3102 
3103 		x = src_x / hsub;
3104 		y = src_y / vsub;
3105 		width = src_w / hsub;
3106 		height = src_h / vsub;
3107 
3108 		/*
3109 		 * First pixel of the src viewport from the
3110 		 * start of the normal gtt mapping.
3111 		 */
3112 		x += intel_fb->normal[i].x;
3113 		y += intel_fb->normal[i].y;
3114 
3115 		offset = intel_compute_aligned_offset(dev_priv, &x, &y,
3116 						      fb, i, fb->pitches[i],
3117 						      DRM_MODE_ROTATE_0, tile_size);
3118 		offset /= tile_size;
3119 
3120 		WARN_ON(i >= ARRAY_SIZE(info->plane));
3121 		info->plane[i].offset = offset;
3122 		info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i],
3123 						     tile_width * cpp);
3124 		info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
3125 		info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
3126 
3127 		if (drm_rotation_90_or_270(rotation)) {
3128 			struct drm_rect r;
3129 
3130 			/* rotate the x/y offsets to match the GTT view */
3131 			drm_rect_init(&r, x, y, width, height);
3132 			drm_rect_rotate(&r,
3133 					info->plane[i].width * tile_width,
3134 					info->plane[i].height * tile_height,
3135 					DRM_MODE_ROTATE_270);
3136 			x = r.x1;
3137 			y = r.y1;
3138 
3139 			pitch_tiles = info->plane[i].height;
3140 			plane_state->color_plane[i].stride = pitch_tiles * tile_height;
3141 
3142 			/* rotate the tile dimensions to match the GTT view */
3143 			swap(tile_width, tile_height);
3144 		} else {
3145 			pitch_tiles = info->plane[i].width;
3146 			plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp;
3147 		}
3148 
3149 		/*
3150 		 * We only keep the x/y offsets, so push all of the
3151 		 * gtt offset into the x/y offsets.
3152 		 */
3153 		intel_adjust_tile_offset(&x, &y,
3154 					 tile_width, tile_height,
3155 					 tile_size, pitch_tiles,
3156 					 gtt_offset * tile_size, 0);
3157 
3158 		gtt_offset += info->plane[i].width * info->plane[i].height;
3159 
3160 		plane_state->color_plane[i].offset = 0;
3161 		plane_state->color_plane[i].x = x;
3162 		plane_state->color_plane[i].y = y;
3163 	}
3164 }
3165 
3166 static int
3167 intel_plane_compute_gtt(struct intel_plane_state *plane_state)
3168 {
3169 	const struct intel_framebuffer *fb =
3170 		to_intel_framebuffer(plane_state->hw.fb);
3171 	unsigned int rotation = plane_state->hw.rotation;
3172 	int i, num_planes;
3173 
3174 	if (!fb)
3175 		return 0;
3176 
3177 	num_planes = fb->base.format->num_planes;
3178 
3179 	if (intel_plane_needs_remap(plane_state)) {
3180 		intel_plane_remap_gtt(plane_state);
3181 
3182 		/*
3183 		 * Sometimes even remapping can't overcome
3184 		 * the stride limitations :( Can happen with
3185 		 * big plane sizes and suitably misaligned
3186 		 * offsets.
3187 		 */
3188 		return intel_plane_check_stride(plane_state);
3189 	}
3190 
3191 	intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation);
3192 
3193 	for (i = 0; i < num_planes; i++) {
3194 		plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation);
3195 		plane_state->color_plane[i].offset = 0;
3196 
3197 		if (drm_rotation_90_or_270(rotation)) {
3198 			plane_state->color_plane[i].x = fb->rotated[i].x;
3199 			plane_state->color_plane[i].y = fb->rotated[i].y;
3200 		} else {
3201 			plane_state->color_plane[i].x = fb->normal[i].x;
3202 			plane_state->color_plane[i].y = fb->normal[i].y;
3203 		}
3204 	}
3205 
3206 	/* Rotate src coordinates to match rotated GTT view */
3207 	if (drm_rotation_90_or_270(rotation))
3208 		drm_rect_rotate(&plane_state->uapi.src,
3209 				fb->base.width << 16, fb->base.height << 16,
3210 				DRM_MODE_ROTATE_270);
3211 
3212 	return intel_plane_check_stride(plane_state);
3213 }
3214 
3215 static int i9xx_format_to_fourcc(int format)
3216 {
3217 	switch (format) {
3218 	case DISPPLANE_8BPP:
3219 		return DRM_FORMAT_C8;
3220 	case DISPPLANE_BGRA555:
3221 		return DRM_FORMAT_ARGB1555;
3222 	case DISPPLANE_BGRX555:
3223 		return DRM_FORMAT_XRGB1555;
3224 	case DISPPLANE_BGRX565:
3225 		return DRM_FORMAT_RGB565;
3226 	default:
3227 	case DISPPLANE_BGRX888:
3228 		return DRM_FORMAT_XRGB8888;
3229 	case DISPPLANE_RGBX888:
3230 		return DRM_FORMAT_XBGR8888;
3231 	case DISPPLANE_BGRA888:
3232 		return DRM_FORMAT_ARGB8888;
3233 	case DISPPLANE_RGBA888:
3234 		return DRM_FORMAT_ABGR8888;
3235 	case DISPPLANE_BGRX101010:
3236 		return DRM_FORMAT_XRGB2101010;
3237 	case DISPPLANE_RGBX101010:
3238 		return DRM_FORMAT_XBGR2101010;
3239 	case DISPPLANE_BGRA101010:
3240 		return DRM_FORMAT_ARGB2101010;
3241 	case DISPPLANE_RGBA101010:
3242 		return DRM_FORMAT_ABGR2101010;
3243 	case DISPPLANE_RGBX161616:
3244 		return DRM_FORMAT_XBGR16161616F;
3245 	}
3246 }
3247 
3248 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
3249 {
3250 	switch (format) {
3251 	case PLANE_CTL_FORMAT_RGB_565:
3252 		return DRM_FORMAT_RGB565;
3253 	case PLANE_CTL_FORMAT_NV12:
3254 		return DRM_FORMAT_NV12;
3255 	case PLANE_CTL_FORMAT_P010:
3256 		return DRM_FORMAT_P010;
3257 	case PLANE_CTL_FORMAT_P012:
3258 		return DRM_FORMAT_P012;
3259 	case PLANE_CTL_FORMAT_P016:
3260 		return DRM_FORMAT_P016;
3261 	case PLANE_CTL_FORMAT_Y210:
3262 		return DRM_FORMAT_Y210;
3263 	case PLANE_CTL_FORMAT_Y212:
3264 		return DRM_FORMAT_Y212;
3265 	case PLANE_CTL_FORMAT_Y216:
3266 		return DRM_FORMAT_Y216;
3267 	case PLANE_CTL_FORMAT_Y410:
3268 		return DRM_FORMAT_XVYU2101010;
3269 	case PLANE_CTL_FORMAT_Y412:
3270 		return DRM_FORMAT_XVYU12_16161616;
3271 	case PLANE_CTL_FORMAT_Y416:
3272 		return DRM_FORMAT_XVYU16161616;
3273 	default:
3274 	case PLANE_CTL_FORMAT_XRGB_8888:
3275 		if (rgb_order) {
3276 			if (alpha)
3277 				return DRM_FORMAT_ABGR8888;
3278 			else
3279 				return DRM_FORMAT_XBGR8888;
3280 		} else {
3281 			if (alpha)
3282 				return DRM_FORMAT_ARGB8888;
3283 			else
3284 				return DRM_FORMAT_XRGB8888;
3285 		}
3286 	case PLANE_CTL_FORMAT_XRGB_2101010:
3287 		if (rgb_order) {
3288 			if (alpha)
3289 				return DRM_FORMAT_ABGR2101010;
3290 			else
3291 				return DRM_FORMAT_XBGR2101010;
3292 		} else {
3293 			if (alpha)
3294 				return DRM_FORMAT_ARGB2101010;
3295 			else
3296 				return DRM_FORMAT_XRGB2101010;
3297 		}
3298 	case PLANE_CTL_FORMAT_XRGB_16161616F:
3299 		if (rgb_order) {
3300 			if (alpha)
3301 				return DRM_FORMAT_ABGR16161616F;
3302 			else
3303 				return DRM_FORMAT_XBGR16161616F;
3304 		} else {
3305 			if (alpha)
3306 				return DRM_FORMAT_ARGB16161616F;
3307 			else
3308 				return DRM_FORMAT_XRGB16161616F;
3309 		}
3310 	}
3311 }
3312 
3313 static bool
3314 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
3315 			      struct intel_initial_plane_config *plane_config)
3316 {
3317 	struct drm_device *dev = crtc->base.dev;
3318 	struct drm_i915_private *dev_priv = to_i915(dev);
3319 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
3320 	struct drm_framebuffer *fb = &plane_config->fb->base;
3321 	u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
3322 	u32 size_aligned = round_up(plane_config->base + plane_config->size,
3323 				    PAGE_SIZE);
3324 	struct drm_i915_gem_object *obj;
3325 	bool ret = false;
3326 
3327 	size_aligned -= base_aligned;
3328 
3329 	if (plane_config->size == 0)
3330 		return false;
3331 
3332 	/* If the FB is too big, just don't use it since fbdev is not very
3333 	 * important and we should probably use that space with FBC or other
3334 	 * features. */
3335 	if (size_aligned * 2 > dev_priv->stolen_usable_size)
3336 		return false;
3337 
3338 	switch (fb->modifier) {
3339 	case DRM_FORMAT_MOD_LINEAR:
3340 	case I915_FORMAT_MOD_X_TILED:
3341 	case I915_FORMAT_MOD_Y_TILED:
3342 		break;
3343 	default:
3344 		DRM_DEBUG_DRIVER("Unsupported modifier for initial FB: 0x%llx\n",
3345 				 fb->modifier);
3346 		return false;
3347 	}
3348 
3349 	obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
3350 							     base_aligned,
3351 							     base_aligned,
3352 							     size_aligned);
3353 	if (IS_ERR(obj))
3354 		return false;
3355 
3356 	switch (plane_config->tiling) {
3357 	case I915_TILING_NONE:
3358 		break;
3359 	case I915_TILING_X:
3360 	case I915_TILING_Y:
3361 		obj->tiling_and_stride = fb->pitches[0] | plane_config->tiling;
3362 		break;
3363 	default:
3364 		MISSING_CASE(plane_config->tiling);
3365 		goto out;
3366 	}
3367 
3368 	mode_cmd.pixel_format = fb->format->format;
3369 	mode_cmd.width = fb->width;
3370 	mode_cmd.height = fb->height;
3371 	mode_cmd.pitches[0] = fb->pitches[0];
3372 	mode_cmd.modifier[0] = fb->modifier;
3373 	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
3374 
3375 	if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
3376 		DRM_DEBUG_KMS("intel fb init failed\n");
3377 		goto out;
3378 	}
3379 
3380 
3381 	DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
3382 	ret = true;
3383 out:
3384 	i915_gem_object_put(obj);
3385 	return ret;
3386 }
3387 
3388 static void
3389 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
3390 			struct intel_plane_state *plane_state,
3391 			bool visible)
3392 {
3393 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
3394 
3395 	plane_state->uapi.visible = visible;
3396 
3397 	if (visible)
3398 		crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base);
3399 	else
3400 		crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base);
3401 }
3402 
3403 static void fixup_active_planes(struct intel_crtc_state *crtc_state)
3404 {
3405 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3406 	struct drm_plane *plane;
3407 
3408 	/*
3409 	 * Active_planes aliases if multiple "primary" or cursor planes
3410 	 * have been used on the same (or wrong) pipe. plane_mask uses
3411 	 * unique ids, hence we can use that to reconstruct active_planes.
3412 	 */
3413 	crtc_state->active_planes = 0;
3414 
3415 	drm_for_each_plane_mask(plane, &dev_priv->drm,
3416 				crtc_state->uapi.plane_mask)
3417 		crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
3418 }
3419 
3420 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
3421 					 struct intel_plane *plane)
3422 {
3423 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3424 	struct intel_crtc_state *crtc_state =
3425 		to_intel_crtc_state(crtc->base.state);
3426 	struct intel_plane_state *plane_state =
3427 		to_intel_plane_state(plane->base.state);
3428 
3429 	DRM_DEBUG_KMS("Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
3430 		      plane->base.base.id, plane->base.name,
3431 		      crtc->base.base.id, crtc->base.name);
3432 
3433 	intel_set_plane_visible(crtc_state, plane_state, false);
3434 	fixup_active_planes(crtc_state);
3435 	crtc_state->data_rate[plane->id] = 0;
3436 	crtc_state->min_cdclk[plane->id] = 0;
3437 
3438 	if (plane->id == PLANE_PRIMARY)
3439 		hsw_disable_ips(crtc_state);
3440 
3441 	/*
3442 	 * Vblank time updates from the shadow to live plane control register
3443 	 * are blocked if the memory self-refresh mode is active at that
3444 	 * moment. So to make sure the plane gets truly disabled, disable
3445 	 * first the self-refresh mode. The self-refresh enable bit in turn
3446 	 * will be checked/applied by the HW only at the next frame start
3447 	 * event which is after the vblank start event, so we need to have a
3448 	 * wait-for-vblank between disabling the plane and the pipe.
3449 	 */
3450 	if (HAS_GMCH(dev_priv) &&
3451 	    intel_set_memory_cxsr(dev_priv, false))
3452 		intel_wait_for_vblank(dev_priv, crtc->pipe);
3453 
3454 	/*
3455 	 * Gen2 reports pipe underruns whenever all planes are disabled.
3456 	 * So disable underrun reporting before all the planes get disabled.
3457 	 */
3458 	if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes)
3459 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
3460 
3461 	intel_disable_plane(plane, crtc_state);
3462 }
3463 
3464 static struct intel_frontbuffer *
3465 to_intel_frontbuffer(struct drm_framebuffer *fb)
3466 {
3467 	return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL;
3468 }
3469 
3470 static void
3471 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
3472 			     struct intel_initial_plane_config *plane_config)
3473 {
3474 	struct drm_device *dev = intel_crtc->base.dev;
3475 	struct drm_i915_private *dev_priv = to_i915(dev);
3476 	struct drm_crtc *c;
3477 	struct drm_plane *primary = intel_crtc->base.primary;
3478 	struct drm_plane_state *plane_state = primary->state;
3479 	struct intel_plane *intel_plane = to_intel_plane(primary);
3480 	struct intel_plane_state *intel_state =
3481 		to_intel_plane_state(plane_state);
3482 	struct drm_framebuffer *fb;
3483 
3484 	if (!plane_config->fb)
3485 		return;
3486 
3487 	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
3488 		fb = &plane_config->fb->base;
3489 		goto valid_fb;
3490 	}
3491 
3492 	kfree(plane_config->fb);
3493 
3494 	/*
3495 	 * Failed to alloc the obj, check to see if we should share
3496 	 * an fb with another CRTC instead
3497 	 */
3498 	for_each_crtc(dev, c) {
3499 		struct intel_plane_state *state;
3500 
3501 		if (c == &intel_crtc->base)
3502 			continue;
3503 
3504 		if (!to_intel_crtc(c)->active)
3505 			continue;
3506 
3507 		state = to_intel_plane_state(c->primary->state);
3508 		if (!state->vma)
3509 			continue;
3510 
3511 		if (intel_plane_ggtt_offset(state) == plane_config->base) {
3512 			fb = state->hw.fb;
3513 			drm_framebuffer_get(fb);
3514 			goto valid_fb;
3515 		}
3516 	}
3517 
3518 	/*
3519 	 * We've failed to reconstruct the BIOS FB.  Current display state
3520 	 * indicates that the primary plane is visible, but has a NULL FB,
3521 	 * which will lead to problems later if we don't fix it up.  The
3522 	 * simplest solution is to just disable the primary plane now and
3523 	 * pretend the BIOS never had it enabled.
3524 	 */
3525 	intel_plane_disable_noatomic(intel_crtc, intel_plane);
3526 
3527 	return;
3528 
3529 valid_fb:
3530 	intel_state->hw.rotation = plane_config->rotation;
3531 	intel_fill_fb_ggtt_view(&intel_state->view, fb,
3532 				intel_state->hw.rotation);
3533 	intel_state->color_plane[0].stride =
3534 		intel_fb_pitch(fb, 0, intel_state->hw.rotation);
3535 
3536 	intel_state->vma =
3537 		intel_pin_and_fence_fb_obj(fb,
3538 					   &intel_state->view,
3539 					   intel_plane_uses_fence(intel_state),
3540 					   &intel_state->flags);
3541 	if (IS_ERR(intel_state->vma)) {
3542 		DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
3543 			  intel_crtc->pipe, PTR_ERR(intel_state->vma));
3544 
3545 		intel_state->vma = NULL;
3546 		drm_framebuffer_put(fb);
3547 		return;
3548 	}
3549 
3550 	intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
3551 
3552 	plane_state->src_x = 0;
3553 	plane_state->src_y = 0;
3554 	plane_state->src_w = fb->width << 16;
3555 	plane_state->src_h = fb->height << 16;
3556 
3557 	plane_state->crtc_x = 0;
3558 	plane_state->crtc_y = 0;
3559 	plane_state->crtc_w = fb->width;
3560 	plane_state->crtc_h = fb->height;
3561 
3562 	intel_state->uapi.src = drm_plane_state_src(plane_state);
3563 	intel_state->uapi.dst = drm_plane_state_dest(plane_state);
3564 
3565 	if (plane_config->tiling)
3566 		dev_priv->preserve_bios_swizzle = true;
3567 
3568 	plane_state->fb = fb;
3569 	plane_state->crtc = &intel_crtc->base;
3570 	intel_plane_copy_uapi_to_hw_state(intel_state, intel_state);
3571 
3572 	atomic_or(to_intel_plane(primary)->frontbuffer_bit,
3573 		  &to_intel_frontbuffer(fb)->bits);
3574 }
3575 
3576 static int skl_max_plane_width(const struct drm_framebuffer *fb,
3577 			       int color_plane,
3578 			       unsigned int rotation)
3579 {
3580 	int cpp = fb->format->cpp[color_plane];
3581 
3582 	switch (fb->modifier) {
3583 	case DRM_FORMAT_MOD_LINEAR:
3584 	case I915_FORMAT_MOD_X_TILED:
3585 		/*
3586 		 * Validated limit is 4k, but has 5k should
3587 		 * work apart from the following features:
3588 		 * - Ytile (already limited to 4k)
3589 		 * - FP16 (already limited to 4k)
3590 		 * - render compression (already limited to 4k)
3591 		 * - KVMR sprite and cursor (don't care)
3592 		 * - horizontal panning (TODO verify this)
3593 		 * - pipe and plane scaling (TODO verify this)
3594 		 */
3595 		if (cpp == 8)
3596 			return 4096;
3597 		else
3598 			return 5120;
3599 	case I915_FORMAT_MOD_Y_TILED_CCS:
3600 	case I915_FORMAT_MOD_Yf_TILED_CCS:
3601 		/* FIXME AUX plane? */
3602 	case I915_FORMAT_MOD_Y_TILED:
3603 	case I915_FORMAT_MOD_Yf_TILED:
3604 		if (cpp == 8)
3605 			return 2048;
3606 		else
3607 			return 4096;
3608 	default:
3609 		MISSING_CASE(fb->modifier);
3610 		return 2048;
3611 	}
3612 }
3613 
3614 static int glk_max_plane_width(const struct drm_framebuffer *fb,
3615 			       int color_plane,
3616 			       unsigned int rotation)
3617 {
3618 	int cpp = fb->format->cpp[color_plane];
3619 
3620 	switch (fb->modifier) {
3621 	case DRM_FORMAT_MOD_LINEAR:
3622 	case I915_FORMAT_MOD_X_TILED:
3623 		if (cpp == 8)
3624 			return 4096;
3625 		else
3626 			return 5120;
3627 	case I915_FORMAT_MOD_Y_TILED_CCS:
3628 	case I915_FORMAT_MOD_Yf_TILED_CCS:
3629 		/* FIXME AUX plane? */
3630 	case I915_FORMAT_MOD_Y_TILED:
3631 	case I915_FORMAT_MOD_Yf_TILED:
3632 		if (cpp == 8)
3633 			return 2048;
3634 		else
3635 			return 5120;
3636 	default:
3637 		MISSING_CASE(fb->modifier);
3638 		return 2048;
3639 	}
3640 }
3641 
3642 static int icl_max_plane_width(const struct drm_framebuffer *fb,
3643 			       int color_plane,
3644 			       unsigned int rotation)
3645 {
3646 	return 5120;
3647 }
3648 
3649 static int skl_max_plane_height(void)
3650 {
3651 	return 4096;
3652 }
3653 
3654 static int icl_max_plane_height(void)
3655 {
3656 	return 4320;
3657 }
3658 
3659 static bool skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
3660 					   int main_x, int main_y, u32 main_offset)
3661 {
3662 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3663 	int ccs_plane = main_to_ccs_plane(fb, 0);
3664 	int aux_x = plane_state->color_plane[ccs_plane].x;
3665 	int aux_y = plane_state->color_plane[ccs_plane].y;
3666 	u32 aux_offset = plane_state->color_plane[ccs_plane].offset;
3667 	u32 alignment = intel_surf_alignment(fb, ccs_plane);
3668 	int hsub;
3669 	int vsub;
3670 
3671 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
3672 	while (aux_offset >= main_offset && aux_y <= main_y) {
3673 		int x, y;
3674 
3675 		if (aux_x == main_x && aux_y == main_y)
3676 			break;
3677 
3678 		if (aux_offset == 0)
3679 			break;
3680 
3681 		x = aux_x / hsub;
3682 		y = aux_y / vsub;
3683 		aux_offset = intel_plane_adjust_aligned_offset(&x, &y,
3684 							       plane_state,
3685 							       ccs_plane,
3686 							       aux_offset,
3687 							       aux_offset -
3688 								alignment);
3689 		aux_x = x * hsub + aux_x % hsub;
3690 		aux_y = y * vsub + aux_y % vsub;
3691 	}
3692 
3693 	if (aux_x != main_x || aux_y != main_y)
3694 		return false;
3695 
3696 	plane_state->color_plane[ccs_plane].offset = aux_offset;
3697 	plane_state->color_plane[ccs_plane].x = aux_x;
3698 	plane_state->color_plane[ccs_plane].y = aux_y;
3699 
3700 	return true;
3701 }
3702 
3703 static int skl_check_main_surface(struct intel_plane_state *plane_state)
3704 {
3705 	struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev);
3706 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3707 	unsigned int rotation = plane_state->hw.rotation;
3708 	int x = plane_state->uapi.src.x1 >> 16;
3709 	int y = plane_state->uapi.src.y1 >> 16;
3710 	int w = drm_rect_width(&plane_state->uapi.src) >> 16;
3711 	int h = drm_rect_height(&plane_state->uapi.src) >> 16;
3712 	int max_width;
3713 	int max_height;
3714 	u32 alignment;
3715 	u32 offset;
3716 	int aux_plane = intel_main_to_aux_plane(fb, 0);
3717 	u32 aux_offset = plane_state->color_plane[aux_plane].offset;
3718 
3719 	if (INTEL_GEN(dev_priv) >= 11)
3720 		max_width = icl_max_plane_width(fb, 0, rotation);
3721 	else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
3722 		max_width = glk_max_plane_width(fb, 0, rotation);
3723 	else
3724 		max_width = skl_max_plane_width(fb, 0, rotation);
3725 
3726 	if (INTEL_GEN(dev_priv) >= 11)
3727 		max_height = icl_max_plane_height();
3728 	else
3729 		max_height = skl_max_plane_height();
3730 
3731 	if (w > max_width || h > max_height) {
3732 		DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
3733 			      w, h, max_width, max_height);
3734 		return -EINVAL;
3735 	}
3736 
3737 	intel_add_fb_offsets(&x, &y, plane_state, 0);
3738 	offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0);
3739 	alignment = intel_surf_alignment(fb, 0);
3740 
3741 	/*
3742 	 * AUX surface offset is specified as the distance from the
3743 	 * main surface offset, and it must be non-negative. Make
3744 	 * sure that is what we will get.
3745 	 */
3746 	if (offset > aux_offset)
3747 		offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3748 							   offset, aux_offset & ~(alignment - 1));
3749 
3750 	/*
3751 	 * When using an X-tiled surface, the plane blows up
3752 	 * if the x offset + width exceed the stride.
3753 	 *
3754 	 * TODO: linear and Y-tiled seem fine, Yf untested,
3755 	 */
3756 	if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
3757 		int cpp = fb->format->cpp[0];
3758 
3759 		while ((x + w) * cpp > plane_state->color_plane[0].stride) {
3760 			if (offset == 0) {
3761 				DRM_DEBUG_KMS("Unable to find suitable display surface offset due to X-tiling\n");
3762 				return -EINVAL;
3763 			}
3764 
3765 			offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3766 								   offset, offset - alignment);
3767 		}
3768 	}
3769 
3770 	/*
3771 	 * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3772 	 * they match with the main surface x/y offsets.
3773 	 */
3774 	if (is_ccs_modifier(fb->modifier)) {
3775 		while (!skl_check_main_ccs_coordinates(plane_state, x, y, offset)) {
3776 			if (offset == 0)
3777 				break;
3778 
3779 			offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3780 								   offset, offset - alignment);
3781 		}
3782 
3783 		if (x != plane_state->color_plane[aux_plane].x ||
3784 		    y != plane_state->color_plane[aux_plane].y) {
3785 			DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n");
3786 			return -EINVAL;
3787 		}
3788 	}
3789 
3790 	plane_state->color_plane[0].offset = offset;
3791 	plane_state->color_plane[0].x = x;
3792 	plane_state->color_plane[0].y = y;
3793 
3794 	/*
3795 	 * Put the final coordinates back so that the src
3796 	 * coordinate checks will see the right values.
3797 	 */
3798 	drm_rect_translate_to(&plane_state->uapi.src,
3799 			      x << 16, y << 16);
3800 
3801 	return 0;
3802 }
3803 
3804 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3805 {
3806 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3807 	unsigned int rotation = plane_state->hw.rotation;
3808 	int max_width = skl_max_plane_width(fb, 1, rotation);
3809 	int max_height = 4096;
3810 	int x = plane_state->uapi.src.x1 >> 17;
3811 	int y = plane_state->uapi.src.y1 >> 17;
3812 	int w = drm_rect_width(&plane_state->uapi.src) >> 17;
3813 	int h = drm_rect_height(&plane_state->uapi.src) >> 17;
3814 	u32 offset;
3815 
3816 	intel_add_fb_offsets(&x, &y, plane_state, 1);
3817 	offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1);
3818 
3819 	/* FIXME not quite sure how/if these apply to the chroma plane */
3820 	if (w > max_width || h > max_height) {
3821 		DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
3822 			      w, h, max_width, max_height);
3823 		return -EINVAL;
3824 	}
3825 
3826 	plane_state->color_plane[1].offset = offset;
3827 	plane_state->color_plane[1].x = x;
3828 	plane_state->color_plane[1].y = y;
3829 
3830 	return 0;
3831 }
3832 
3833 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
3834 {
3835 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3836 	int src_x = plane_state->uapi.src.x1 >> 16;
3837 	int src_y = plane_state->uapi.src.y1 >> 16;
3838 	int hsub;
3839 	int vsub;
3840 	int x;
3841 	int y;
3842 	u32 offset;
3843 
3844 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, 1);
3845 	x = src_x / hsub;
3846 	y = src_y / vsub;
3847 	intel_add_fb_offsets(&x, &y, plane_state, 1);
3848 	offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1);
3849 
3850 	plane_state->color_plane[1].offset = offset;
3851 	plane_state->color_plane[1].x = x * hsub + src_x % hsub;
3852 	plane_state->color_plane[1].y = y * vsub + src_y % vsub;
3853 
3854 	return 0;
3855 }
3856 
3857 int skl_check_plane_surface(struct intel_plane_state *plane_state)
3858 {
3859 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3860 	int ret;
3861 
3862 	ret = intel_plane_compute_gtt(plane_state);
3863 	if (ret)
3864 		return ret;
3865 
3866 	if (!plane_state->uapi.visible)
3867 		return 0;
3868 
3869 	/*
3870 	 * Handle the AUX surface first since
3871 	 * the main surface setup depends on it.
3872 	 */
3873 	if (intel_format_info_is_yuv_semiplanar(fb->format,
3874 						fb->modifier)) {
3875 		ret = skl_check_nv12_aux_surface(plane_state);
3876 		if (ret)
3877 			return ret;
3878 	} else if (is_ccs_modifier(fb->modifier)) {
3879 		ret = skl_check_ccs_aux_surface(plane_state);
3880 		if (ret)
3881 			return ret;
3882 	} else {
3883 		plane_state->color_plane[1].offset = ~0xfff;
3884 		plane_state->color_plane[1].x = 0;
3885 		plane_state->color_plane[1].y = 0;
3886 	}
3887 
3888 	ret = skl_check_main_surface(plane_state);
3889 	if (ret)
3890 		return ret;
3891 
3892 	return 0;
3893 }
3894 
3895 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state,
3896 			     const struct intel_plane_state *plane_state,
3897 			     unsigned int *num, unsigned int *den)
3898 {
3899 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3900 	unsigned int cpp = fb->format->cpp[0];
3901 
3902 	/*
3903 	 * g4x bspec says 64bpp pixel rate can't exceed 80%
3904 	 * of cdclk when the sprite plane is enabled on the
3905 	 * same pipe. ilk/snb bspec says 64bpp pixel rate is
3906 	 * never allowed to exceed 80% of cdclk. Let's just go
3907 	 * with the ilk/snb limit always.
3908 	 */
3909 	if (cpp == 8) {
3910 		*num = 10;
3911 		*den = 8;
3912 	} else {
3913 		*num = 1;
3914 		*den = 1;
3915 	}
3916 }
3917 
3918 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state,
3919 				const struct intel_plane_state *plane_state)
3920 {
3921 	unsigned int pixel_rate;
3922 	unsigned int num, den;
3923 
3924 	/*
3925 	 * Note that crtc_state->pixel_rate accounts for both
3926 	 * horizontal and vertical panel fitter downscaling factors.
3927 	 * Pre-HSW bspec tells us to only consider the horizontal
3928 	 * downscaling factor here. We ignore that and just consider
3929 	 * both for simplicity.
3930 	 */
3931 	pixel_rate = crtc_state->pixel_rate;
3932 
3933 	i9xx_plane_ratio(crtc_state, plane_state, &num, &den);
3934 
3935 	/* two pixels per clock with double wide pipe */
3936 	if (crtc_state->double_wide)
3937 		den *= 2;
3938 
3939 	return DIV_ROUND_UP(pixel_rate * num, den);
3940 }
3941 
3942 unsigned int
3943 i9xx_plane_max_stride(struct intel_plane *plane,
3944 		      u32 pixel_format, u64 modifier,
3945 		      unsigned int rotation)
3946 {
3947 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3948 
3949 	if (!HAS_GMCH(dev_priv)) {
3950 		return 32*1024;
3951 	} else if (INTEL_GEN(dev_priv) >= 4) {
3952 		if (modifier == I915_FORMAT_MOD_X_TILED)
3953 			return 16*1024;
3954 		else
3955 			return 32*1024;
3956 	} else if (INTEL_GEN(dev_priv) >= 3) {
3957 		if (modifier == I915_FORMAT_MOD_X_TILED)
3958 			return 8*1024;
3959 		else
3960 			return 16*1024;
3961 	} else {
3962 		if (plane->i9xx_plane == PLANE_C)
3963 			return 4*1024;
3964 		else
3965 			return 8*1024;
3966 	}
3967 }
3968 
3969 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
3970 {
3971 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3972 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3973 	u32 dspcntr = 0;
3974 
3975 	if (crtc_state->gamma_enable)
3976 		dspcntr |= DISPPLANE_GAMMA_ENABLE;
3977 
3978 	if (crtc_state->csc_enable)
3979 		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3980 
3981 	if (INTEL_GEN(dev_priv) < 5)
3982 		dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
3983 
3984 	return dspcntr;
3985 }
3986 
3987 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
3988 			  const struct intel_plane_state *plane_state)
3989 {
3990 	struct drm_i915_private *dev_priv =
3991 		to_i915(plane_state->uapi.plane->dev);
3992 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3993 	unsigned int rotation = plane_state->hw.rotation;
3994 	u32 dspcntr;
3995 
3996 	dspcntr = DISPLAY_PLANE_ENABLE;
3997 
3998 	if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) ||
3999 	    IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
4000 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
4001 
4002 	switch (fb->format->format) {
4003 	case DRM_FORMAT_C8:
4004 		dspcntr |= DISPPLANE_8BPP;
4005 		break;
4006 	case DRM_FORMAT_XRGB1555:
4007 		dspcntr |= DISPPLANE_BGRX555;
4008 		break;
4009 	case DRM_FORMAT_ARGB1555:
4010 		dspcntr |= DISPPLANE_BGRA555;
4011 		break;
4012 	case DRM_FORMAT_RGB565:
4013 		dspcntr |= DISPPLANE_BGRX565;
4014 		break;
4015 	case DRM_FORMAT_XRGB8888:
4016 		dspcntr |= DISPPLANE_BGRX888;
4017 		break;
4018 	case DRM_FORMAT_XBGR8888:
4019 		dspcntr |= DISPPLANE_RGBX888;
4020 		break;
4021 	case DRM_FORMAT_ARGB8888:
4022 		dspcntr |= DISPPLANE_BGRA888;
4023 		break;
4024 	case DRM_FORMAT_ABGR8888:
4025 		dspcntr |= DISPPLANE_RGBA888;
4026 		break;
4027 	case DRM_FORMAT_XRGB2101010:
4028 		dspcntr |= DISPPLANE_BGRX101010;
4029 		break;
4030 	case DRM_FORMAT_XBGR2101010:
4031 		dspcntr |= DISPPLANE_RGBX101010;
4032 		break;
4033 	case DRM_FORMAT_ARGB2101010:
4034 		dspcntr |= DISPPLANE_BGRA101010;
4035 		break;
4036 	case DRM_FORMAT_ABGR2101010:
4037 		dspcntr |= DISPPLANE_RGBA101010;
4038 		break;
4039 	case DRM_FORMAT_XBGR16161616F:
4040 		dspcntr |= DISPPLANE_RGBX161616;
4041 		break;
4042 	default:
4043 		MISSING_CASE(fb->format->format);
4044 		return 0;
4045 	}
4046 
4047 	if (INTEL_GEN(dev_priv) >= 4 &&
4048 	    fb->modifier == I915_FORMAT_MOD_X_TILED)
4049 		dspcntr |= DISPPLANE_TILED;
4050 
4051 	if (rotation & DRM_MODE_ROTATE_180)
4052 		dspcntr |= DISPPLANE_ROTATE_180;
4053 
4054 	if (rotation & DRM_MODE_REFLECT_X)
4055 		dspcntr |= DISPPLANE_MIRROR;
4056 
4057 	return dspcntr;
4058 }
4059 
4060 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
4061 {
4062 	struct drm_i915_private *dev_priv =
4063 		to_i915(plane_state->uapi.plane->dev);
4064 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4065 	int src_x, src_y, src_w;
4066 	u32 offset;
4067 	int ret;
4068 
4069 	ret = intel_plane_compute_gtt(plane_state);
4070 	if (ret)
4071 		return ret;
4072 
4073 	if (!plane_state->uapi.visible)
4074 		return 0;
4075 
4076 	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4077 	src_x = plane_state->uapi.src.x1 >> 16;
4078 	src_y = plane_state->uapi.src.y1 >> 16;
4079 
4080 	/* Undocumented hardware limit on i965/g4x/vlv/chv */
4081 	if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048)
4082 		return -EINVAL;
4083 
4084 	intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
4085 
4086 	if (INTEL_GEN(dev_priv) >= 4)
4087 		offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
4088 							    plane_state, 0);
4089 	else
4090 		offset = 0;
4091 
4092 	/*
4093 	 * Put the final coordinates back so that the src
4094 	 * coordinate checks will see the right values.
4095 	 */
4096 	drm_rect_translate_to(&plane_state->uapi.src,
4097 			      src_x << 16, src_y << 16);
4098 
4099 	/* HSW/BDW do this automagically in hardware */
4100 	if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
4101 		unsigned int rotation = plane_state->hw.rotation;
4102 		int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4103 		int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4104 
4105 		if (rotation & DRM_MODE_ROTATE_180) {
4106 			src_x += src_w - 1;
4107 			src_y += src_h - 1;
4108 		} else if (rotation & DRM_MODE_REFLECT_X) {
4109 			src_x += src_w - 1;
4110 		}
4111 	}
4112 
4113 	plane_state->color_plane[0].offset = offset;
4114 	plane_state->color_plane[0].x = src_x;
4115 	plane_state->color_plane[0].y = src_y;
4116 
4117 	return 0;
4118 }
4119 
4120 static bool i9xx_plane_has_windowing(struct intel_plane *plane)
4121 {
4122 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4123 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4124 
4125 	if (IS_CHERRYVIEW(dev_priv))
4126 		return i9xx_plane == PLANE_B;
4127 	else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
4128 		return false;
4129 	else if (IS_GEN(dev_priv, 4))
4130 		return i9xx_plane == PLANE_C;
4131 	else
4132 		return i9xx_plane == PLANE_B ||
4133 			i9xx_plane == PLANE_C;
4134 }
4135 
4136 static int
4137 i9xx_plane_check(struct intel_crtc_state *crtc_state,
4138 		 struct intel_plane_state *plane_state)
4139 {
4140 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4141 	int ret;
4142 
4143 	ret = chv_plane_check_rotation(plane_state);
4144 	if (ret)
4145 		return ret;
4146 
4147 	ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
4148 						  &crtc_state->uapi,
4149 						  DRM_PLANE_HELPER_NO_SCALING,
4150 						  DRM_PLANE_HELPER_NO_SCALING,
4151 						  i9xx_plane_has_windowing(plane),
4152 						  true);
4153 	if (ret)
4154 		return ret;
4155 
4156 	ret = i9xx_check_plane_surface(plane_state);
4157 	if (ret)
4158 		return ret;
4159 
4160 	if (!plane_state->uapi.visible)
4161 		return 0;
4162 
4163 	ret = intel_plane_check_src_coordinates(plane_state);
4164 	if (ret)
4165 		return ret;
4166 
4167 	plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state);
4168 
4169 	return 0;
4170 }
4171 
4172 static void i9xx_update_plane(struct intel_plane *plane,
4173 			      const struct intel_crtc_state *crtc_state,
4174 			      const struct intel_plane_state *plane_state)
4175 {
4176 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4177 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4178 	u32 linear_offset;
4179 	int x = plane_state->color_plane[0].x;
4180 	int y = plane_state->color_plane[0].y;
4181 	int crtc_x = plane_state->uapi.dst.x1;
4182 	int crtc_y = plane_state->uapi.dst.y1;
4183 	int crtc_w = drm_rect_width(&plane_state->uapi.dst);
4184 	int crtc_h = drm_rect_height(&plane_state->uapi.dst);
4185 	unsigned long irqflags;
4186 	u32 dspaddr_offset;
4187 	u32 dspcntr;
4188 
4189 	dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state);
4190 
4191 	linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
4192 
4193 	if (INTEL_GEN(dev_priv) >= 4)
4194 		dspaddr_offset = plane_state->color_plane[0].offset;
4195 	else
4196 		dspaddr_offset = linear_offset;
4197 
4198 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4199 
4200 	I915_WRITE_FW(DSPSTRIDE(i9xx_plane), plane_state->color_plane[0].stride);
4201 
4202 	if (INTEL_GEN(dev_priv) < 4) {
4203 		/*
4204 		 * PLANE_A doesn't actually have a full window
4205 		 * generator but let's assume we still need to
4206 		 * program whatever is there.
4207 		 */
4208 		I915_WRITE_FW(DSPPOS(i9xx_plane), (crtc_y << 16) | crtc_x);
4209 		I915_WRITE_FW(DSPSIZE(i9xx_plane),
4210 			      ((crtc_h - 1) << 16) | (crtc_w - 1));
4211 	} else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) {
4212 		I915_WRITE_FW(PRIMPOS(i9xx_plane), (crtc_y << 16) | crtc_x);
4213 		I915_WRITE_FW(PRIMSIZE(i9xx_plane),
4214 			      ((crtc_h - 1) << 16) | (crtc_w - 1));
4215 		I915_WRITE_FW(PRIMCNSTALPHA(i9xx_plane), 0);
4216 	}
4217 
4218 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
4219 		I915_WRITE_FW(DSPOFFSET(i9xx_plane), (y << 16) | x);
4220 	} else if (INTEL_GEN(dev_priv) >= 4) {
4221 		I915_WRITE_FW(DSPLINOFF(i9xx_plane), linear_offset);
4222 		I915_WRITE_FW(DSPTILEOFF(i9xx_plane), (y << 16) | x);
4223 	}
4224 
4225 	/*
4226 	 * The control register self-arms if the plane was previously
4227 	 * disabled. Try to make the plane enable atomic by writing
4228 	 * the control register just before the surface register.
4229 	 */
4230 	I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr);
4231 	if (INTEL_GEN(dev_priv) >= 4)
4232 		I915_WRITE_FW(DSPSURF(i9xx_plane),
4233 			      intel_plane_ggtt_offset(plane_state) +
4234 			      dspaddr_offset);
4235 	else
4236 		I915_WRITE_FW(DSPADDR(i9xx_plane),
4237 			      intel_plane_ggtt_offset(plane_state) +
4238 			      dspaddr_offset);
4239 
4240 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4241 }
4242 
4243 static void i9xx_disable_plane(struct intel_plane *plane,
4244 			       const struct intel_crtc_state *crtc_state)
4245 {
4246 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4247 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4248 	unsigned long irqflags;
4249 	u32 dspcntr;
4250 
4251 	/*
4252 	 * DSPCNTR pipe gamma enable on g4x+ and pipe csc
4253 	 * enable on ilk+ affect the pipe bottom color as
4254 	 * well, so we must configure them even if the plane
4255 	 * is disabled.
4256 	 *
4257 	 * On pre-g4x there is no way to gamma correct the
4258 	 * pipe bottom color but we'll keep on doing this
4259 	 * anyway so that the crtc state readout works correctly.
4260 	 */
4261 	dspcntr = i9xx_plane_ctl_crtc(crtc_state);
4262 
4263 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4264 
4265 	I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr);
4266 	if (INTEL_GEN(dev_priv) >= 4)
4267 		I915_WRITE_FW(DSPSURF(i9xx_plane), 0);
4268 	else
4269 		I915_WRITE_FW(DSPADDR(i9xx_plane), 0);
4270 
4271 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4272 }
4273 
4274 static bool i9xx_plane_get_hw_state(struct intel_plane *plane,
4275 				    enum pipe *pipe)
4276 {
4277 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4278 	enum intel_display_power_domain power_domain;
4279 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4280 	intel_wakeref_t wakeref;
4281 	bool ret;
4282 	u32 val;
4283 
4284 	/*
4285 	 * Not 100% correct for planes that can move between pipes,
4286 	 * but that's only the case for gen2-4 which don't have any
4287 	 * display power wells.
4288 	 */
4289 	power_domain = POWER_DOMAIN_PIPE(plane->pipe);
4290 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4291 	if (!wakeref)
4292 		return false;
4293 
4294 	val = I915_READ(DSPCNTR(i9xx_plane));
4295 
4296 	ret = val & DISPLAY_PLANE_ENABLE;
4297 
4298 	if (INTEL_GEN(dev_priv) >= 5)
4299 		*pipe = plane->pipe;
4300 	else
4301 		*pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
4302 			DISPPLANE_SEL_PIPE_SHIFT;
4303 
4304 	intel_display_power_put(dev_priv, power_domain, wakeref);
4305 
4306 	return ret;
4307 }
4308 
4309 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
4310 {
4311 	struct drm_device *dev = intel_crtc->base.dev;
4312 	struct drm_i915_private *dev_priv = to_i915(dev);
4313 
4314 	I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
4315 	I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
4316 	I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
4317 }
4318 
4319 /*
4320  * This function detaches (aka. unbinds) unused scalers in hardware
4321  */
4322 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state)
4323 {
4324 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
4325 	const struct intel_crtc_scaler_state *scaler_state =
4326 		&crtc_state->scaler_state;
4327 	int i;
4328 
4329 	/* loop through and disable scalers that aren't in use */
4330 	for (i = 0; i < intel_crtc->num_scalers; i++) {
4331 		if (!scaler_state->scalers[i].in_use)
4332 			skl_detach_scaler(intel_crtc, i);
4333 	}
4334 }
4335 
4336 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb,
4337 					  int color_plane, unsigned int rotation)
4338 {
4339 	/*
4340 	 * The stride is either expressed as a multiple of 64 bytes chunks for
4341 	 * linear buffers or in number of tiles for tiled buffers.
4342 	 */
4343 	if (is_surface_linear(fb, color_plane))
4344 		return 64;
4345 	else if (drm_rotation_90_or_270(rotation))
4346 		return intel_tile_height(fb, color_plane);
4347 	else
4348 		return intel_tile_width_bytes(fb, color_plane);
4349 }
4350 
4351 u32 skl_plane_stride(const struct intel_plane_state *plane_state,
4352 		     int color_plane)
4353 {
4354 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4355 	unsigned int rotation = plane_state->hw.rotation;
4356 	u32 stride = plane_state->color_plane[color_plane].stride;
4357 
4358 	if (color_plane >= fb->format->num_planes)
4359 		return 0;
4360 
4361 	return stride / skl_plane_stride_mult(fb, color_plane, rotation);
4362 }
4363 
4364 static u32 skl_plane_ctl_format(u32 pixel_format)
4365 {
4366 	switch (pixel_format) {
4367 	case DRM_FORMAT_C8:
4368 		return PLANE_CTL_FORMAT_INDEXED;
4369 	case DRM_FORMAT_RGB565:
4370 		return PLANE_CTL_FORMAT_RGB_565;
4371 	case DRM_FORMAT_XBGR8888:
4372 	case DRM_FORMAT_ABGR8888:
4373 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
4374 	case DRM_FORMAT_XRGB8888:
4375 	case DRM_FORMAT_ARGB8888:
4376 		return PLANE_CTL_FORMAT_XRGB_8888;
4377 	case DRM_FORMAT_XBGR2101010:
4378 	case DRM_FORMAT_ABGR2101010:
4379 		return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX;
4380 	case DRM_FORMAT_XRGB2101010:
4381 	case DRM_FORMAT_ARGB2101010:
4382 		return PLANE_CTL_FORMAT_XRGB_2101010;
4383 	case DRM_FORMAT_XBGR16161616F:
4384 	case DRM_FORMAT_ABGR16161616F:
4385 		return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX;
4386 	case DRM_FORMAT_XRGB16161616F:
4387 	case DRM_FORMAT_ARGB16161616F:
4388 		return PLANE_CTL_FORMAT_XRGB_16161616F;
4389 	case DRM_FORMAT_YUYV:
4390 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
4391 	case DRM_FORMAT_YVYU:
4392 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
4393 	case DRM_FORMAT_UYVY:
4394 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
4395 	case DRM_FORMAT_VYUY:
4396 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
4397 	case DRM_FORMAT_NV12:
4398 		return PLANE_CTL_FORMAT_NV12;
4399 	case DRM_FORMAT_P010:
4400 		return PLANE_CTL_FORMAT_P010;
4401 	case DRM_FORMAT_P012:
4402 		return PLANE_CTL_FORMAT_P012;
4403 	case DRM_FORMAT_P016:
4404 		return PLANE_CTL_FORMAT_P016;
4405 	case DRM_FORMAT_Y210:
4406 		return PLANE_CTL_FORMAT_Y210;
4407 	case DRM_FORMAT_Y212:
4408 		return PLANE_CTL_FORMAT_Y212;
4409 	case DRM_FORMAT_Y216:
4410 		return PLANE_CTL_FORMAT_Y216;
4411 	case DRM_FORMAT_XVYU2101010:
4412 		return PLANE_CTL_FORMAT_Y410;
4413 	case DRM_FORMAT_XVYU12_16161616:
4414 		return PLANE_CTL_FORMAT_Y412;
4415 	case DRM_FORMAT_XVYU16161616:
4416 		return PLANE_CTL_FORMAT_Y416;
4417 	default:
4418 		MISSING_CASE(pixel_format);
4419 	}
4420 
4421 	return 0;
4422 }
4423 
4424 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state)
4425 {
4426 	if (!plane_state->hw.fb->format->has_alpha)
4427 		return PLANE_CTL_ALPHA_DISABLE;
4428 
4429 	switch (plane_state->hw.pixel_blend_mode) {
4430 	case DRM_MODE_BLEND_PIXEL_NONE:
4431 		return PLANE_CTL_ALPHA_DISABLE;
4432 	case DRM_MODE_BLEND_PREMULTI:
4433 		return PLANE_CTL_ALPHA_SW_PREMULTIPLY;
4434 	case DRM_MODE_BLEND_COVERAGE:
4435 		return PLANE_CTL_ALPHA_HW_PREMULTIPLY;
4436 	default:
4437 		MISSING_CASE(plane_state->hw.pixel_blend_mode);
4438 		return PLANE_CTL_ALPHA_DISABLE;
4439 	}
4440 }
4441 
4442 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state)
4443 {
4444 	if (!plane_state->hw.fb->format->has_alpha)
4445 		return PLANE_COLOR_ALPHA_DISABLE;
4446 
4447 	switch (plane_state->hw.pixel_blend_mode) {
4448 	case DRM_MODE_BLEND_PIXEL_NONE:
4449 		return PLANE_COLOR_ALPHA_DISABLE;
4450 	case DRM_MODE_BLEND_PREMULTI:
4451 		return PLANE_COLOR_ALPHA_SW_PREMULTIPLY;
4452 	case DRM_MODE_BLEND_COVERAGE:
4453 		return PLANE_COLOR_ALPHA_HW_PREMULTIPLY;
4454 	default:
4455 		MISSING_CASE(plane_state->hw.pixel_blend_mode);
4456 		return PLANE_COLOR_ALPHA_DISABLE;
4457 	}
4458 }
4459 
4460 static u32 skl_plane_ctl_tiling(u64 fb_modifier)
4461 {
4462 	switch (fb_modifier) {
4463 	case DRM_FORMAT_MOD_LINEAR:
4464 		break;
4465 	case I915_FORMAT_MOD_X_TILED:
4466 		return PLANE_CTL_TILED_X;
4467 	case I915_FORMAT_MOD_Y_TILED:
4468 		return PLANE_CTL_TILED_Y;
4469 	case I915_FORMAT_MOD_Y_TILED_CCS:
4470 		return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4471 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
4472 		return PLANE_CTL_TILED_Y |
4473 		       PLANE_CTL_RENDER_DECOMPRESSION_ENABLE |
4474 		       PLANE_CTL_CLEAR_COLOR_DISABLE;
4475 	case I915_FORMAT_MOD_Yf_TILED:
4476 		return PLANE_CTL_TILED_YF;
4477 	case I915_FORMAT_MOD_Yf_TILED_CCS:
4478 		return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4479 	default:
4480 		MISSING_CASE(fb_modifier);
4481 	}
4482 
4483 	return 0;
4484 }
4485 
4486 static u32 skl_plane_ctl_rotate(unsigned int rotate)
4487 {
4488 	switch (rotate) {
4489 	case DRM_MODE_ROTATE_0:
4490 		break;
4491 	/*
4492 	 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
4493 	 * while i915 HW rotation is clockwise, thats why this swapping.
4494 	 */
4495 	case DRM_MODE_ROTATE_90:
4496 		return PLANE_CTL_ROTATE_270;
4497 	case DRM_MODE_ROTATE_180:
4498 		return PLANE_CTL_ROTATE_180;
4499 	case DRM_MODE_ROTATE_270:
4500 		return PLANE_CTL_ROTATE_90;
4501 	default:
4502 		MISSING_CASE(rotate);
4503 	}
4504 
4505 	return 0;
4506 }
4507 
4508 static u32 cnl_plane_ctl_flip(unsigned int reflect)
4509 {
4510 	switch (reflect) {
4511 	case 0:
4512 		break;
4513 	case DRM_MODE_REFLECT_X:
4514 		return PLANE_CTL_FLIP_HORIZONTAL;
4515 	case DRM_MODE_REFLECT_Y:
4516 	default:
4517 		MISSING_CASE(reflect);
4518 	}
4519 
4520 	return 0;
4521 }
4522 
4523 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4524 {
4525 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4526 	u32 plane_ctl = 0;
4527 
4528 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4529 		return plane_ctl;
4530 
4531 	if (crtc_state->gamma_enable)
4532 		plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE;
4533 
4534 	if (crtc_state->csc_enable)
4535 		plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE;
4536 
4537 	return plane_ctl;
4538 }
4539 
4540 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
4541 		  const struct intel_plane_state *plane_state)
4542 {
4543 	struct drm_i915_private *dev_priv =
4544 		to_i915(plane_state->uapi.plane->dev);
4545 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4546 	unsigned int rotation = plane_state->hw.rotation;
4547 	const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
4548 	u32 plane_ctl;
4549 
4550 	plane_ctl = PLANE_CTL_ENABLE;
4551 
4552 	if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) {
4553 		plane_ctl |= skl_plane_ctl_alpha(plane_state);
4554 		plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
4555 
4556 		if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709)
4557 			plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709;
4558 
4559 		if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4560 			plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE;
4561 	}
4562 
4563 	plane_ctl |= skl_plane_ctl_format(fb->format->format);
4564 	plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
4565 	plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK);
4566 
4567 	if (INTEL_GEN(dev_priv) >= 10)
4568 		plane_ctl |= cnl_plane_ctl_flip(rotation &
4569 						DRM_MODE_REFLECT_MASK);
4570 
4571 	if (key->flags & I915_SET_COLORKEY_DESTINATION)
4572 		plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
4573 	else if (key->flags & I915_SET_COLORKEY_SOURCE)
4574 		plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
4575 
4576 	return plane_ctl;
4577 }
4578 
4579 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state)
4580 {
4581 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4582 	u32 plane_color_ctl = 0;
4583 
4584 	if (INTEL_GEN(dev_priv) >= 11)
4585 		return plane_color_ctl;
4586 
4587 	if (crtc_state->gamma_enable)
4588 		plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE;
4589 
4590 	if (crtc_state->csc_enable)
4591 		plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE;
4592 
4593 	return plane_color_ctl;
4594 }
4595 
4596 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state,
4597 			const struct intel_plane_state *plane_state)
4598 {
4599 	struct drm_i915_private *dev_priv =
4600 		to_i915(plane_state->uapi.plane->dev);
4601 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4602 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4603 	u32 plane_color_ctl = 0;
4604 
4605 	plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE;
4606 	plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state);
4607 
4608 	if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) {
4609 		if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709)
4610 			plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709;
4611 		else
4612 			plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV601_TO_RGB709;
4613 
4614 		if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4615 			plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
4616 	} else if (fb->format->is_yuv) {
4617 		plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE;
4618 	}
4619 
4620 	return plane_color_ctl;
4621 }
4622 
4623 static int
4624 __intel_display_resume(struct drm_device *dev,
4625 		       struct drm_atomic_state *state,
4626 		       struct drm_modeset_acquire_ctx *ctx)
4627 {
4628 	struct drm_crtc_state *crtc_state;
4629 	struct drm_crtc *crtc;
4630 	int i, ret;
4631 
4632 	intel_modeset_setup_hw_state(dev, ctx);
4633 	intel_vga_redisable(to_i915(dev));
4634 
4635 	if (!state)
4636 		return 0;
4637 
4638 	/*
4639 	 * We've duplicated the state, pointers to the old state are invalid.
4640 	 *
4641 	 * Don't attempt to use the old state until we commit the duplicated state.
4642 	 */
4643 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
4644 		/*
4645 		 * Force recalculation even if we restore
4646 		 * current state. With fast modeset this may not result
4647 		 * in a modeset when the state is compatible.
4648 		 */
4649 		crtc_state->mode_changed = true;
4650 	}
4651 
4652 	/* ignore any reset values/BIOS leftovers in the WM registers */
4653 	if (!HAS_GMCH(to_i915(dev)))
4654 		to_intel_atomic_state(state)->skip_intermediate_wm = true;
4655 
4656 	ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
4657 
4658 	WARN_ON(ret == -EDEADLK);
4659 	return ret;
4660 }
4661 
4662 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
4663 {
4664 	return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display &&
4665 		intel_has_gpu_reset(&dev_priv->gt));
4666 }
4667 
4668 void intel_prepare_reset(struct drm_i915_private *dev_priv)
4669 {
4670 	struct drm_device *dev = &dev_priv->drm;
4671 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4672 	struct drm_atomic_state *state;
4673 	int ret;
4674 
4675 	/* reset doesn't touch the display */
4676 	if (!i915_modparams.force_reset_modeset_test &&
4677 	    !gpu_reset_clobbers_display(dev_priv))
4678 		return;
4679 
4680 	/* We have a modeset vs reset deadlock, defensively unbreak it. */
4681 	set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4682 	smp_mb__after_atomic();
4683 	wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET);
4684 
4685 	if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
4686 		DRM_DEBUG_KMS("Modeset potentially stuck, unbreaking through wedging\n");
4687 		intel_gt_set_wedged(&dev_priv->gt);
4688 	}
4689 
4690 	/*
4691 	 * Need mode_config.mutex so that we don't
4692 	 * trample ongoing ->detect() and whatnot.
4693 	 */
4694 	mutex_lock(&dev->mode_config.mutex);
4695 	drm_modeset_acquire_init(ctx, 0);
4696 	while (1) {
4697 		ret = drm_modeset_lock_all_ctx(dev, ctx);
4698 		if (ret != -EDEADLK)
4699 			break;
4700 
4701 		drm_modeset_backoff(ctx);
4702 	}
4703 	/*
4704 	 * Disabling the crtcs gracefully seems nicer. Also the
4705 	 * g33 docs say we should at least disable all the planes.
4706 	 */
4707 	state = drm_atomic_helper_duplicate_state(dev, ctx);
4708 	if (IS_ERR(state)) {
4709 		ret = PTR_ERR(state);
4710 		DRM_ERROR("Duplicating state failed with %i\n", ret);
4711 		return;
4712 	}
4713 
4714 	ret = drm_atomic_helper_disable_all(dev, ctx);
4715 	if (ret) {
4716 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
4717 		drm_atomic_state_put(state);
4718 		return;
4719 	}
4720 
4721 	dev_priv->modeset_restore_state = state;
4722 	state->acquire_ctx = ctx;
4723 }
4724 
4725 void intel_finish_reset(struct drm_i915_private *dev_priv)
4726 {
4727 	struct drm_device *dev = &dev_priv->drm;
4728 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4729 	struct drm_atomic_state *state;
4730 	int ret;
4731 
4732 	/* reset doesn't touch the display */
4733 	if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
4734 		return;
4735 
4736 	state = fetch_and_zero(&dev_priv->modeset_restore_state);
4737 	if (!state)
4738 		goto unlock;
4739 
4740 	/* reset doesn't touch the display */
4741 	if (!gpu_reset_clobbers_display(dev_priv)) {
4742 		/* for testing only restore the display */
4743 		ret = __intel_display_resume(dev, state, ctx);
4744 		if (ret)
4745 			DRM_ERROR("Restoring old state failed with %i\n", ret);
4746 	} else {
4747 		/*
4748 		 * The display has been reset as well,
4749 		 * so need a full re-initialization.
4750 		 */
4751 		intel_pps_unlock_regs_wa(dev_priv);
4752 		intel_modeset_init_hw(dev_priv);
4753 		intel_init_clock_gating(dev_priv);
4754 
4755 		spin_lock_irq(&dev_priv->irq_lock);
4756 		if (dev_priv->display.hpd_irq_setup)
4757 			dev_priv->display.hpd_irq_setup(dev_priv);
4758 		spin_unlock_irq(&dev_priv->irq_lock);
4759 
4760 		ret = __intel_display_resume(dev, state, ctx);
4761 		if (ret)
4762 			DRM_ERROR("Restoring old state failed with %i\n", ret);
4763 
4764 		intel_hpd_init(dev_priv);
4765 	}
4766 
4767 	drm_atomic_state_put(state);
4768 unlock:
4769 	drm_modeset_drop_locks(ctx);
4770 	drm_modeset_acquire_fini(ctx);
4771 	mutex_unlock(&dev->mode_config.mutex);
4772 
4773 	clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4774 }
4775 
4776 static void icl_set_pipe_chicken(struct intel_crtc *crtc)
4777 {
4778 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4779 	enum pipe pipe = crtc->pipe;
4780 	u32 tmp;
4781 
4782 	tmp = I915_READ(PIPE_CHICKEN(pipe));
4783 
4784 	/*
4785 	 * Display WA #1153: icl
4786 	 * enable hardware to bypass the alpha math
4787 	 * and rounding for per-pixel values 00 and 0xff
4788 	 */
4789 	tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
4790 	/*
4791 	 * Display WA # 1605353570: icl
4792 	 * Set the pixel rounding bit to 1 for allowing
4793 	 * passthrough of Frame buffer pixels unmodified
4794 	 * across pipe
4795 	 */
4796 	tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
4797 	I915_WRITE(PIPE_CHICKEN(pipe), tmp);
4798 }
4799 
4800 static void icl_enable_trans_port_sync(const struct intel_crtc_state *crtc_state)
4801 {
4802 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4803 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4804 	u32 trans_ddi_func_ctl2_val;
4805 	u8 master_select;
4806 
4807 	/*
4808 	 * Configure the master select and enable Transcoder Port Sync for
4809 	 * Slave CRTCs transcoder.
4810 	 */
4811 	if (crtc_state->master_transcoder == INVALID_TRANSCODER)
4812 		return;
4813 
4814 	if (crtc_state->master_transcoder == TRANSCODER_EDP)
4815 		master_select = 0;
4816 	else
4817 		master_select = crtc_state->master_transcoder + 1;
4818 
4819 	/* Set the master select bits for Tranascoder Port Sync */
4820 	trans_ddi_func_ctl2_val = (PORT_SYNC_MODE_MASTER_SELECT(master_select) &
4821 				   PORT_SYNC_MODE_MASTER_SELECT_MASK) <<
4822 		PORT_SYNC_MODE_MASTER_SELECT_SHIFT;
4823 	/* Enable Transcoder Port Sync */
4824 	trans_ddi_func_ctl2_val |= PORT_SYNC_MODE_ENABLE;
4825 
4826 	I915_WRITE(TRANS_DDI_FUNC_CTL2(crtc_state->cpu_transcoder),
4827 		   trans_ddi_func_ctl2_val);
4828 }
4829 
4830 static void intel_fdi_normal_train(struct intel_crtc *crtc)
4831 {
4832 	struct drm_device *dev = crtc->base.dev;
4833 	struct drm_i915_private *dev_priv = to_i915(dev);
4834 	enum pipe pipe = crtc->pipe;
4835 	i915_reg_t reg;
4836 	u32 temp;
4837 
4838 	/* enable normal train */
4839 	reg = FDI_TX_CTL(pipe);
4840 	temp = I915_READ(reg);
4841 	if (IS_IVYBRIDGE(dev_priv)) {
4842 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4843 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
4844 	} else {
4845 		temp &= ~FDI_LINK_TRAIN_NONE;
4846 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
4847 	}
4848 	I915_WRITE(reg, temp);
4849 
4850 	reg = FDI_RX_CTL(pipe);
4851 	temp = I915_READ(reg);
4852 	if (HAS_PCH_CPT(dev_priv)) {
4853 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4854 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
4855 	} else {
4856 		temp &= ~FDI_LINK_TRAIN_NONE;
4857 		temp |= FDI_LINK_TRAIN_NONE;
4858 	}
4859 	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
4860 
4861 	/* wait one idle pattern time */
4862 	POSTING_READ(reg);
4863 	udelay(1000);
4864 
4865 	/* IVB wants error correction enabled */
4866 	if (IS_IVYBRIDGE(dev_priv))
4867 		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
4868 			   FDI_FE_ERRC_ENABLE);
4869 }
4870 
4871 /* The FDI link training functions for ILK/Ibexpeak. */
4872 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
4873 				    const struct intel_crtc_state *crtc_state)
4874 {
4875 	struct drm_device *dev = crtc->base.dev;
4876 	struct drm_i915_private *dev_priv = to_i915(dev);
4877 	enum pipe pipe = crtc->pipe;
4878 	i915_reg_t reg;
4879 	u32 temp, tries;
4880 
4881 	/* FDI needs bits from pipe first */
4882 	assert_pipe_enabled(dev_priv, crtc_state->cpu_transcoder);
4883 
4884 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4885 	   for train result */
4886 	reg = FDI_RX_IMR(pipe);
4887 	temp = I915_READ(reg);
4888 	temp &= ~FDI_RX_SYMBOL_LOCK;
4889 	temp &= ~FDI_RX_BIT_LOCK;
4890 	I915_WRITE(reg, temp);
4891 	I915_READ(reg);
4892 	udelay(150);
4893 
4894 	/* enable CPU FDI TX and PCH FDI RX */
4895 	reg = FDI_TX_CTL(pipe);
4896 	temp = I915_READ(reg);
4897 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
4898 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4899 	temp &= ~FDI_LINK_TRAIN_NONE;
4900 	temp |= FDI_LINK_TRAIN_PATTERN_1;
4901 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
4902 
4903 	reg = FDI_RX_CTL(pipe);
4904 	temp = I915_READ(reg);
4905 	temp &= ~FDI_LINK_TRAIN_NONE;
4906 	temp |= FDI_LINK_TRAIN_PATTERN_1;
4907 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
4908 
4909 	POSTING_READ(reg);
4910 	udelay(150);
4911 
4912 	/* Ironlake workaround, enable clock pointer after FDI enable*/
4913 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4914 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
4915 		   FDI_RX_PHASE_SYNC_POINTER_EN);
4916 
4917 	reg = FDI_RX_IIR(pipe);
4918 	for (tries = 0; tries < 5; tries++) {
4919 		temp = I915_READ(reg);
4920 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4921 
4922 		if ((temp & FDI_RX_BIT_LOCK)) {
4923 			DRM_DEBUG_KMS("FDI train 1 done.\n");
4924 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4925 			break;
4926 		}
4927 	}
4928 	if (tries == 5)
4929 		DRM_ERROR("FDI train 1 fail!\n");
4930 
4931 	/* Train 2 */
4932 	reg = FDI_TX_CTL(pipe);
4933 	temp = I915_READ(reg);
4934 	temp &= ~FDI_LINK_TRAIN_NONE;
4935 	temp |= FDI_LINK_TRAIN_PATTERN_2;
4936 	I915_WRITE(reg, temp);
4937 
4938 	reg = FDI_RX_CTL(pipe);
4939 	temp = I915_READ(reg);
4940 	temp &= ~FDI_LINK_TRAIN_NONE;
4941 	temp |= FDI_LINK_TRAIN_PATTERN_2;
4942 	I915_WRITE(reg, temp);
4943 
4944 	POSTING_READ(reg);
4945 	udelay(150);
4946 
4947 	reg = FDI_RX_IIR(pipe);
4948 	for (tries = 0; tries < 5; tries++) {
4949 		temp = I915_READ(reg);
4950 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4951 
4952 		if (temp & FDI_RX_SYMBOL_LOCK) {
4953 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4954 			DRM_DEBUG_KMS("FDI train 2 done.\n");
4955 			break;
4956 		}
4957 	}
4958 	if (tries == 5)
4959 		DRM_ERROR("FDI train 2 fail!\n");
4960 
4961 	DRM_DEBUG_KMS("FDI train done\n");
4962 
4963 }
4964 
4965 static const int snb_b_fdi_train_param[] = {
4966 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
4967 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
4968 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
4969 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
4970 };
4971 
4972 /* The FDI link training functions for SNB/Cougarpoint. */
4973 static void gen6_fdi_link_train(struct intel_crtc *crtc,
4974 				const struct intel_crtc_state *crtc_state)
4975 {
4976 	struct drm_device *dev = crtc->base.dev;
4977 	struct drm_i915_private *dev_priv = to_i915(dev);
4978 	enum pipe pipe = crtc->pipe;
4979 	i915_reg_t reg;
4980 	u32 temp, i, retry;
4981 
4982 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4983 	   for train result */
4984 	reg = FDI_RX_IMR(pipe);
4985 	temp = I915_READ(reg);
4986 	temp &= ~FDI_RX_SYMBOL_LOCK;
4987 	temp &= ~FDI_RX_BIT_LOCK;
4988 	I915_WRITE(reg, temp);
4989 
4990 	POSTING_READ(reg);
4991 	udelay(150);
4992 
4993 	/* enable CPU FDI TX and PCH FDI RX */
4994 	reg = FDI_TX_CTL(pipe);
4995 	temp = I915_READ(reg);
4996 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
4997 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4998 	temp &= ~FDI_LINK_TRAIN_NONE;
4999 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5000 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5001 	/* SNB-B */
5002 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5003 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
5004 
5005 	I915_WRITE(FDI_RX_MISC(pipe),
5006 		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5007 
5008 	reg = FDI_RX_CTL(pipe);
5009 	temp = I915_READ(reg);
5010 	if (HAS_PCH_CPT(dev_priv)) {
5011 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5012 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5013 	} else {
5014 		temp &= ~FDI_LINK_TRAIN_NONE;
5015 		temp |= FDI_LINK_TRAIN_PATTERN_1;
5016 	}
5017 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
5018 
5019 	POSTING_READ(reg);
5020 	udelay(150);
5021 
5022 	for (i = 0; i < 4; i++) {
5023 		reg = FDI_TX_CTL(pipe);
5024 		temp = I915_READ(reg);
5025 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5026 		temp |= snb_b_fdi_train_param[i];
5027 		I915_WRITE(reg, temp);
5028 
5029 		POSTING_READ(reg);
5030 		udelay(500);
5031 
5032 		for (retry = 0; retry < 5; retry++) {
5033 			reg = FDI_RX_IIR(pipe);
5034 			temp = I915_READ(reg);
5035 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
5036 			if (temp & FDI_RX_BIT_LOCK) {
5037 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
5038 				DRM_DEBUG_KMS("FDI train 1 done.\n");
5039 				break;
5040 			}
5041 			udelay(50);
5042 		}
5043 		if (retry < 5)
5044 			break;
5045 	}
5046 	if (i == 4)
5047 		DRM_ERROR("FDI train 1 fail!\n");
5048 
5049 	/* Train 2 */
5050 	reg = FDI_TX_CTL(pipe);
5051 	temp = I915_READ(reg);
5052 	temp &= ~FDI_LINK_TRAIN_NONE;
5053 	temp |= FDI_LINK_TRAIN_PATTERN_2;
5054 	if (IS_GEN(dev_priv, 6)) {
5055 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5056 		/* SNB-B */
5057 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5058 	}
5059 	I915_WRITE(reg, temp);
5060 
5061 	reg = FDI_RX_CTL(pipe);
5062 	temp = I915_READ(reg);
5063 	if (HAS_PCH_CPT(dev_priv)) {
5064 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5065 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5066 	} else {
5067 		temp &= ~FDI_LINK_TRAIN_NONE;
5068 		temp |= FDI_LINK_TRAIN_PATTERN_2;
5069 	}
5070 	I915_WRITE(reg, temp);
5071 
5072 	POSTING_READ(reg);
5073 	udelay(150);
5074 
5075 	for (i = 0; i < 4; i++) {
5076 		reg = FDI_TX_CTL(pipe);
5077 		temp = I915_READ(reg);
5078 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5079 		temp |= snb_b_fdi_train_param[i];
5080 		I915_WRITE(reg, temp);
5081 
5082 		POSTING_READ(reg);
5083 		udelay(500);
5084 
5085 		for (retry = 0; retry < 5; retry++) {
5086 			reg = FDI_RX_IIR(pipe);
5087 			temp = I915_READ(reg);
5088 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
5089 			if (temp & FDI_RX_SYMBOL_LOCK) {
5090 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
5091 				DRM_DEBUG_KMS("FDI train 2 done.\n");
5092 				break;
5093 			}
5094 			udelay(50);
5095 		}
5096 		if (retry < 5)
5097 			break;
5098 	}
5099 	if (i == 4)
5100 		DRM_ERROR("FDI train 2 fail!\n");
5101 
5102 	DRM_DEBUG_KMS("FDI train done.\n");
5103 }
5104 
5105 /* Manual link training for Ivy Bridge A0 parts */
5106 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
5107 				      const struct intel_crtc_state *crtc_state)
5108 {
5109 	struct drm_device *dev = crtc->base.dev;
5110 	struct drm_i915_private *dev_priv = to_i915(dev);
5111 	enum pipe pipe = crtc->pipe;
5112 	i915_reg_t reg;
5113 	u32 temp, i, j;
5114 
5115 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5116 	   for train result */
5117 	reg = FDI_RX_IMR(pipe);
5118 	temp = I915_READ(reg);
5119 	temp &= ~FDI_RX_SYMBOL_LOCK;
5120 	temp &= ~FDI_RX_BIT_LOCK;
5121 	I915_WRITE(reg, temp);
5122 
5123 	POSTING_READ(reg);
5124 	udelay(150);
5125 
5126 	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
5127 		      I915_READ(FDI_RX_IIR(pipe)));
5128 
5129 	/* Try each vswing and preemphasis setting twice before moving on */
5130 	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
5131 		/* disable first in case we need to retry */
5132 		reg = FDI_TX_CTL(pipe);
5133 		temp = I915_READ(reg);
5134 		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
5135 		temp &= ~FDI_TX_ENABLE;
5136 		I915_WRITE(reg, temp);
5137 
5138 		reg = FDI_RX_CTL(pipe);
5139 		temp = I915_READ(reg);
5140 		temp &= ~FDI_LINK_TRAIN_AUTO;
5141 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5142 		temp &= ~FDI_RX_ENABLE;
5143 		I915_WRITE(reg, temp);
5144 
5145 		/* enable CPU FDI TX and PCH FDI RX */
5146 		reg = FDI_TX_CTL(pipe);
5147 		temp = I915_READ(reg);
5148 		temp &= ~FDI_DP_PORT_WIDTH_MASK;
5149 		temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5150 		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
5151 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5152 		temp |= snb_b_fdi_train_param[j/2];
5153 		temp |= FDI_COMPOSITE_SYNC;
5154 		I915_WRITE(reg, temp | FDI_TX_ENABLE);
5155 
5156 		I915_WRITE(FDI_RX_MISC(pipe),
5157 			   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5158 
5159 		reg = FDI_RX_CTL(pipe);
5160 		temp = I915_READ(reg);
5161 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5162 		temp |= FDI_COMPOSITE_SYNC;
5163 		I915_WRITE(reg, temp | FDI_RX_ENABLE);
5164 
5165 		POSTING_READ(reg);
5166 		udelay(1); /* should be 0.5us */
5167 
5168 		for (i = 0; i < 4; i++) {
5169 			reg = FDI_RX_IIR(pipe);
5170 			temp = I915_READ(reg);
5171 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
5172 
5173 			if (temp & FDI_RX_BIT_LOCK ||
5174 			    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
5175 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
5176 				DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
5177 					      i);
5178 				break;
5179 			}
5180 			udelay(1); /* should be 0.5us */
5181 		}
5182 		if (i == 4) {
5183 			DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
5184 			continue;
5185 		}
5186 
5187 		/* Train 2 */
5188 		reg = FDI_TX_CTL(pipe);
5189 		temp = I915_READ(reg);
5190 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5191 		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
5192 		I915_WRITE(reg, temp);
5193 
5194 		reg = FDI_RX_CTL(pipe);
5195 		temp = I915_READ(reg);
5196 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5197 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5198 		I915_WRITE(reg, temp);
5199 
5200 		POSTING_READ(reg);
5201 		udelay(2); /* should be 1.5us */
5202 
5203 		for (i = 0; i < 4; i++) {
5204 			reg = FDI_RX_IIR(pipe);
5205 			temp = I915_READ(reg);
5206 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
5207 
5208 			if (temp & FDI_RX_SYMBOL_LOCK ||
5209 			    (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
5210 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
5211 				DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
5212 					      i);
5213 				goto train_done;
5214 			}
5215 			udelay(2); /* should be 1.5us */
5216 		}
5217 		if (i == 4)
5218 			DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
5219 	}
5220 
5221 train_done:
5222 	DRM_DEBUG_KMS("FDI train done.\n");
5223 }
5224 
5225 static void ironlake_fdi_pll_enable(const struct intel_crtc_state *crtc_state)
5226 {
5227 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
5228 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5229 	enum pipe pipe = intel_crtc->pipe;
5230 	i915_reg_t reg;
5231 	u32 temp;
5232 
5233 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5234 	reg = FDI_RX_CTL(pipe);
5235 	temp = I915_READ(reg);
5236 	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
5237 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5238 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5239 	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
5240 
5241 	POSTING_READ(reg);
5242 	udelay(200);
5243 
5244 	/* Switch from Rawclk to PCDclk */
5245 	temp = I915_READ(reg);
5246 	I915_WRITE(reg, temp | FDI_PCDCLK);
5247 
5248 	POSTING_READ(reg);
5249 	udelay(200);
5250 
5251 	/* Enable CPU FDI TX PLL, always on for Ironlake */
5252 	reg = FDI_TX_CTL(pipe);
5253 	temp = I915_READ(reg);
5254 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
5255 		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5256 
5257 		POSTING_READ(reg);
5258 		udelay(100);
5259 	}
5260 }
5261 
5262 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
5263 {
5264 	struct drm_device *dev = intel_crtc->base.dev;
5265 	struct drm_i915_private *dev_priv = to_i915(dev);
5266 	enum pipe pipe = intel_crtc->pipe;
5267 	i915_reg_t reg;
5268 	u32 temp;
5269 
5270 	/* Switch from PCDclk to Rawclk */
5271 	reg = FDI_RX_CTL(pipe);
5272 	temp = I915_READ(reg);
5273 	I915_WRITE(reg, temp & ~FDI_PCDCLK);
5274 
5275 	/* Disable CPU FDI TX PLL */
5276 	reg = FDI_TX_CTL(pipe);
5277 	temp = I915_READ(reg);
5278 	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
5279 
5280 	POSTING_READ(reg);
5281 	udelay(100);
5282 
5283 	reg = FDI_RX_CTL(pipe);
5284 	temp = I915_READ(reg);
5285 	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
5286 
5287 	/* Wait for the clocks to turn off. */
5288 	POSTING_READ(reg);
5289 	udelay(100);
5290 }
5291 
5292 static void ironlake_fdi_disable(struct intel_crtc *crtc)
5293 {
5294 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5295 	enum pipe pipe = crtc->pipe;
5296 	i915_reg_t reg;
5297 	u32 temp;
5298 
5299 	/* disable CPU FDI tx and PCH FDI rx */
5300 	reg = FDI_TX_CTL(pipe);
5301 	temp = I915_READ(reg);
5302 	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
5303 	POSTING_READ(reg);
5304 
5305 	reg = FDI_RX_CTL(pipe);
5306 	temp = I915_READ(reg);
5307 	temp &= ~(0x7 << 16);
5308 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5309 	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
5310 
5311 	POSTING_READ(reg);
5312 	udelay(100);
5313 
5314 	/* Ironlake workaround, disable clock pointer after downing FDI */
5315 	if (HAS_PCH_IBX(dev_priv))
5316 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
5317 
5318 	/* still set train pattern 1 */
5319 	reg = FDI_TX_CTL(pipe);
5320 	temp = I915_READ(reg);
5321 	temp &= ~FDI_LINK_TRAIN_NONE;
5322 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5323 	I915_WRITE(reg, temp);
5324 
5325 	reg = FDI_RX_CTL(pipe);
5326 	temp = I915_READ(reg);
5327 	if (HAS_PCH_CPT(dev_priv)) {
5328 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5329 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5330 	} else {
5331 		temp &= ~FDI_LINK_TRAIN_NONE;
5332 		temp |= FDI_LINK_TRAIN_PATTERN_1;
5333 	}
5334 	/* BPC in FDI rx is consistent with that in PIPECONF */
5335 	temp &= ~(0x07 << 16);
5336 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5337 	I915_WRITE(reg, temp);
5338 
5339 	POSTING_READ(reg);
5340 	udelay(100);
5341 }
5342 
5343 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
5344 {
5345 	struct drm_crtc *crtc;
5346 	bool cleanup_done;
5347 
5348 	drm_for_each_crtc(crtc, &dev_priv->drm) {
5349 		struct drm_crtc_commit *commit;
5350 		spin_lock(&crtc->commit_lock);
5351 		commit = list_first_entry_or_null(&crtc->commit_list,
5352 						  struct drm_crtc_commit, commit_entry);
5353 		cleanup_done = commit ?
5354 			try_wait_for_completion(&commit->cleanup_done) : true;
5355 		spin_unlock(&crtc->commit_lock);
5356 
5357 		if (cleanup_done)
5358 			continue;
5359 
5360 		drm_crtc_wait_one_vblank(crtc);
5361 
5362 		return true;
5363 	}
5364 
5365 	return false;
5366 }
5367 
5368 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
5369 {
5370 	u32 temp;
5371 
5372 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
5373 
5374 	mutex_lock(&dev_priv->sb_lock);
5375 
5376 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5377 	temp |= SBI_SSCCTL_DISABLE;
5378 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5379 
5380 	mutex_unlock(&dev_priv->sb_lock);
5381 }
5382 
5383 /* Program iCLKIP clock to the desired frequency */
5384 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state)
5385 {
5386 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5387 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5388 	int clock = crtc_state->hw.adjusted_mode.crtc_clock;
5389 	u32 divsel, phaseinc, auxdiv, phasedir = 0;
5390 	u32 temp;
5391 
5392 	lpt_disable_iclkip(dev_priv);
5393 
5394 	/* The iCLK virtual clock root frequency is in MHz,
5395 	 * but the adjusted_mode->crtc_clock in in KHz. To get the
5396 	 * divisors, it is necessary to divide one by another, so we
5397 	 * convert the virtual clock precision to KHz here for higher
5398 	 * precision.
5399 	 */
5400 	for (auxdiv = 0; auxdiv < 2; auxdiv++) {
5401 		u32 iclk_virtual_root_freq = 172800 * 1000;
5402 		u32 iclk_pi_range = 64;
5403 		u32 desired_divisor;
5404 
5405 		desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5406 						    clock << auxdiv);
5407 		divsel = (desired_divisor / iclk_pi_range) - 2;
5408 		phaseinc = desired_divisor % iclk_pi_range;
5409 
5410 		/*
5411 		 * Near 20MHz is a corner case which is
5412 		 * out of range for the 7-bit divisor
5413 		 */
5414 		if (divsel <= 0x7f)
5415 			break;
5416 	}
5417 
5418 	/* This should not happen with any sane values */
5419 	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
5420 		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
5421 	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
5422 		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
5423 
5424 	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
5425 			clock,
5426 			auxdiv,
5427 			divsel,
5428 			phasedir,
5429 			phaseinc);
5430 
5431 	mutex_lock(&dev_priv->sb_lock);
5432 
5433 	/* Program SSCDIVINTPHASE6 */
5434 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5435 	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
5436 	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
5437 	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
5438 	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
5439 	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
5440 	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
5441 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
5442 
5443 	/* Program SSCAUXDIV */
5444 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5445 	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
5446 	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
5447 	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
5448 
5449 	/* Enable modulator and associated divider */
5450 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5451 	temp &= ~SBI_SSCCTL_DISABLE;
5452 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5453 
5454 	mutex_unlock(&dev_priv->sb_lock);
5455 
5456 	/* Wait for initialization time */
5457 	udelay(24);
5458 
5459 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
5460 }
5461 
5462 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
5463 {
5464 	u32 divsel, phaseinc, auxdiv;
5465 	u32 iclk_virtual_root_freq = 172800 * 1000;
5466 	u32 iclk_pi_range = 64;
5467 	u32 desired_divisor;
5468 	u32 temp;
5469 
5470 	if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
5471 		return 0;
5472 
5473 	mutex_lock(&dev_priv->sb_lock);
5474 
5475 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5476 	if (temp & SBI_SSCCTL_DISABLE) {
5477 		mutex_unlock(&dev_priv->sb_lock);
5478 		return 0;
5479 	}
5480 
5481 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5482 	divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
5483 		SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
5484 	phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
5485 		SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
5486 
5487 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5488 	auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
5489 		SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
5490 
5491 	mutex_unlock(&dev_priv->sb_lock);
5492 
5493 	desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
5494 
5495 	return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5496 				 desired_divisor << auxdiv);
5497 }
5498 
5499 static void ironlake_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state,
5500 						enum pipe pch_transcoder)
5501 {
5502 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5503 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5504 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5505 
5506 	I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
5507 		   I915_READ(HTOTAL(cpu_transcoder)));
5508 	I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
5509 		   I915_READ(HBLANK(cpu_transcoder)));
5510 	I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
5511 		   I915_READ(HSYNC(cpu_transcoder)));
5512 
5513 	I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
5514 		   I915_READ(VTOTAL(cpu_transcoder)));
5515 	I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
5516 		   I915_READ(VBLANK(cpu_transcoder)));
5517 	I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
5518 		   I915_READ(VSYNC(cpu_transcoder)));
5519 	I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
5520 		   I915_READ(VSYNCSHIFT(cpu_transcoder)));
5521 }
5522 
5523 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable)
5524 {
5525 	u32 temp;
5526 
5527 	temp = I915_READ(SOUTH_CHICKEN1);
5528 	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
5529 		return;
5530 
5531 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5532 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5533 
5534 	temp &= ~FDI_BC_BIFURCATION_SELECT;
5535 	if (enable)
5536 		temp |= FDI_BC_BIFURCATION_SELECT;
5537 
5538 	DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
5539 	I915_WRITE(SOUTH_CHICKEN1, temp);
5540 	POSTING_READ(SOUTH_CHICKEN1);
5541 }
5542 
5543 static void ivybridge_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state)
5544 {
5545 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5546 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5547 
5548 	switch (crtc->pipe) {
5549 	case PIPE_A:
5550 		break;
5551 	case PIPE_B:
5552 		if (crtc_state->fdi_lanes > 2)
5553 			cpt_set_fdi_bc_bifurcation(dev_priv, false);
5554 		else
5555 			cpt_set_fdi_bc_bifurcation(dev_priv, true);
5556 
5557 		break;
5558 	case PIPE_C:
5559 		cpt_set_fdi_bc_bifurcation(dev_priv, true);
5560 
5561 		break;
5562 	default:
5563 		BUG();
5564 	}
5565 }
5566 
5567 /*
5568  * Finds the encoder associated with the given CRTC. This can only be
5569  * used when we know that the CRTC isn't feeding multiple encoders!
5570  */
5571 static struct intel_encoder *
5572 intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
5573 			   const struct intel_crtc_state *crtc_state)
5574 {
5575 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5576 	const struct drm_connector_state *connector_state;
5577 	const struct drm_connector *connector;
5578 	struct intel_encoder *encoder = NULL;
5579 	int num_encoders = 0;
5580 	int i;
5581 
5582 	for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
5583 		if (connector_state->crtc != &crtc->base)
5584 			continue;
5585 
5586 		encoder = to_intel_encoder(connector_state->best_encoder);
5587 		num_encoders++;
5588 	}
5589 
5590 	WARN(num_encoders != 1, "%d encoders for pipe %c\n",
5591 	     num_encoders, pipe_name(crtc->pipe));
5592 
5593 	return encoder;
5594 }
5595 
5596 /*
5597  * Enable PCH resources required for PCH ports:
5598  *   - PCH PLLs
5599  *   - FDI training & RX/TX
5600  *   - update transcoder timings
5601  *   - DP transcoding bits
5602  *   - transcoder
5603  */
5604 static void ironlake_pch_enable(const struct intel_atomic_state *state,
5605 				const struct intel_crtc_state *crtc_state)
5606 {
5607 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5608 	struct drm_device *dev = crtc->base.dev;
5609 	struct drm_i915_private *dev_priv = to_i915(dev);
5610 	enum pipe pipe = crtc->pipe;
5611 	u32 temp;
5612 
5613 	assert_pch_transcoder_disabled(dev_priv, pipe);
5614 
5615 	if (IS_IVYBRIDGE(dev_priv))
5616 		ivybridge_update_fdi_bc_bifurcation(crtc_state);
5617 
5618 	/* Write the TU size bits before fdi link training, so that error
5619 	 * detection works. */
5620 	I915_WRITE(FDI_RX_TUSIZE1(pipe),
5621 		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
5622 
5623 	/* For PCH output, training FDI link */
5624 	dev_priv->display.fdi_link_train(crtc, crtc_state);
5625 
5626 	/* We need to program the right clock selection before writing the pixel
5627 	 * mutliplier into the DPLL. */
5628 	if (HAS_PCH_CPT(dev_priv)) {
5629 		u32 sel;
5630 
5631 		temp = I915_READ(PCH_DPLL_SEL);
5632 		temp |= TRANS_DPLL_ENABLE(pipe);
5633 		sel = TRANS_DPLLB_SEL(pipe);
5634 		if (crtc_state->shared_dpll ==
5635 		    intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
5636 			temp |= sel;
5637 		else
5638 			temp &= ~sel;
5639 		I915_WRITE(PCH_DPLL_SEL, temp);
5640 	}
5641 
5642 	/* XXX: pch pll's can be enabled any time before we enable the PCH
5643 	 * transcoder, and we actually should do this to not upset any PCH
5644 	 * transcoder that already use the clock when we share it.
5645 	 *
5646 	 * Note that enable_shared_dpll tries to do the right thing, but
5647 	 * get_shared_dpll unconditionally resets the pll - we need that to have
5648 	 * the right LVDS enable sequence. */
5649 	intel_enable_shared_dpll(crtc_state);
5650 
5651 	/* set transcoder timing, panel must allow it */
5652 	assert_panel_unlocked(dev_priv, pipe);
5653 	ironlake_pch_transcoder_set_timings(crtc_state, pipe);
5654 
5655 	intel_fdi_normal_train(crtc);
5656 
5657 	/* For PCH DP, enable TRANS_DP_CTL */
5658 	if (HAS_PCH_CPT(dev_priv) &&
5659 	    intel_crtc_has_dp_encoder(crtc_state)) {
5660 		const struct drm_display_mode *adjusted_mode =
5661 			&crtc_state->hw.adjusted_mode;
5662 		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5663 		i915_reg_t reg = TRANS_DP_CTL(pipe);
5664 		enum port port;
5665 
5666 		temp = I915_READ(reg);
5667 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
5668 			  TRANS_DP_SYNC_MASK |
5669 			  TRANS_DP_BPC_MASK);
5670 		temp |= TRANS_DP_OUTPUT_ENABLE;
5671 		temp |= bpc << 9; /* same format but at 11:9 */
5672 
5673 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5674 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
5675 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5676 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
5677 
5678 		port = intel_get_crtc_new_encoder(state, crtc_state)->port;
5679 		WARN_ON(port < PORT_B || port > PORT_D);
5680 		temp |= TRANS_DP_PORT_SEL(port);
5681 
5682 		I915_WRITE(reg, temp);
5683 	}
5684 
5685 	ironlake_enable_pch_transcoder(crtc_state);
5686 }
5687 
5688 static void lpt_pch_enable(const struct intel_atomic_state *state,
5689 			   const struct intel_crtc_state *crtc_state)
5690 {
5691 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5692 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5693 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5694 
5695 	assert_pch_transcoder_disabled(dev_priv, PIPE_A);
5696 
5697 	lpt_program_iclkip(crtc_state);
5698 
5699 	/* Set transcoder timing. */
5700 	ironlake_pch_transcoder_set_timings(crtc_state, PIPE_A);
5701 
5702 	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
5703 }
5704 
5705 static void cpt_verify_modeset(struct drm_i915_private *dev_priv,
5706 			       enum pipe pipe)
5707 {
5708 	i915_reg_t dslreg = PIPEDSL(pipe);
5709 	u32 temp;
5710 
5711 	temp = I915_READ(dslreg);
5712 	udelay(500);
5713 	if (wait_for(I915_READ(dslreg) != temp, 5)) {
5714 		if (wait_for(I915_READ(dslreg) != temp, 5))
5715 			DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
5716 	}
5717 }
5718 
5719 /*
5720  * The hardware phase 0.0 refers to the center of the pixel.
5721  * We want to start from the top/left edge which is phase
5722  * -0.5. That matches how the hardware calculates the scaling
5723  * factors (from top-left of the first pixel to bottom-right
5724  * of the last pixel, as opposed to the pixel centers).
5725  *
5726  * For 4:2:0 subsampled chroma planes we obviously have to
5727  * adjust that so that the chroma sample position lands in
5728  * the right spot.
5729  *
5730  * Note that for packed YCbCr 4:2:2 formats there is no way to
5731  * control chroma siting. The hardware simply replicates the
5732  * chroma samples for both of the luma samples, and thus we don't
5733  * actually get the expected MPEG2 chroma siting convention :(
5734  * The same behaviour is observed on pre-SKL platforms as well.
5735  *
5736  * Theory behind the formula (note that we ignore sub-pixel
5737  * source coordinates):
5738  * s = source sample position
5739  * d = destination sample position
5740  *
5741  * Downscaling 4:1:
5742  * -0.5
5743  * | 0.0
5744  * | |     1.5 (initial phase)
5745  * | |     |
5746  * v v     v
5747  * | s | s | s | s |
5748  * |       d       |
5749  *
5750  * Upscaling 1:4:
5751  * -0.5
5752  * | -0.375 (initial phase)
5753  * | |     0.0
5754  * | |     |
5755  * v v     v
5756  * |       s       |
5757  * | d | d | d | d |
5758  */
5759 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
5760 {
5761 	int phase = -0x8000;
5762 	u16 trip = 0;
5763 
5764 	if (chroma_cosited)
5765 		phase += (sub - 1) * 0x8000 / sub;
5766 
5767 	phase += scale / (2 * sub);
5768 
5769 	/*
5770 	 * Hardware initial phase limited to [-0.5:1.5].
5771 	 * Since the max hardware scale factor is 3.0, we
5772 	 * should never actually excdeed 1.0 here.
5773 	 */
5774 	WARN_ON(phase < -0x8000 || phase > 0x18000);
5775 
5776 	if (phase < 0)
5777 		phase = 0x10000 + phase;
5778 	else
5779 		trip = PS_PHASE_TRIP;
5780 
5781 	return ((phase >> 2) & PS_PHASE_MASK) | trip;
5782 }
5783 
5784 #define SKL_MIN_SRC_W 8
5785 #define SKL_MAX_SRC_W 4096
5786 #define SKL_MIN_SRC_H 8
5787 #define SKL_MAX_SRC_H 4096
5788 #define SKL_MIN_DST_W 8
5789 #define SKL_MAX_DST_W 4096
5790 #define SKL_MIN_DST_H 8
5791 #define SKL_MAX_DST_H 4096
5792 #define ICL_MAX_SRC_W 5120
5793 #define ICL_MAX_SRC_H 4096
5794 #define ICL_MAX_DST_W 5120
5795 #define ICL_MAX_DST_H 4096
5796 #define SKL_MIN_YUV_420_SRC_W 16
5797 #define SKL_MIN_YUV_420_SRC_H 16
5798 
5799 static int
5800 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
5801 		  unsigned int scaler_user, int *scaler_id,
5802 		  int src_w, int src_h, int dst_w, int dst_h,
5803 		  const struct drm_format_info *format,
5804 		  u64 modifier, bool need_scaler)
5805 {
5806 	struct intel_crtc_scaler_state *scaler_state =
5807 		&crtc_state->scaler_state;
5808 	struct intel_crtc *intel_crtc =
5809 		to_intel_crtc(crtc_state->uapi.crtc);
5810 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5811 	const struct drm_display_mode *adjusted_mode =
5812 		&crtc_state->hw.adjusted_mode;
5813 
5814 	/*
5815 	 * Src coordinates are already rotated by 270 degrees for
5816 	 * the 90/270 degree plane rotation cases (to match the
5817 	 * GTT mapping), hence no need to account for rotation here.
5818 	 */
5819 	if (src_w != dst_w || src_h != dst_h)
5820 		need_scaler = true;
5821 
5822 	/*
5823 	 * Scaling/fitting not supported in IF-ID mode in GEN9+
5824 	 * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
5825 	 * Once NV12 is enabled, handle it here while allocating scaler
5826 	 * for NV12.
5827 	 */
5828 	if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable &&
5829 	    need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5830 		DRM_DEBUG_KMS("Pipe/Plane scaling not supported with IF-ID mode\n");
5831 		return -EINVAL;
5832 	}
5833 
5834 	/*
5835 	 * if plane is being disabled or scaler is no more required or force detach
5836 	 *  - free scaler binded to this plane/crtc
5837 	 *  - in order to do this, update crtc->scaler_usage
5838 	 *
5839 	 * Here scaler state in crtc_state is set free so that
5840 	 * scaler can be assigned to other user. Actual register
5841 	 * update to free the scaler is done in plane/panel-fit programming.
5842 	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
5843 	 */
5844 	if (force_detach || !need_scaler) {
5845 		if (*scaler_id >= 0) {
5846 			scaler_state->scaler_users &= ~(1 << scaler_user);
5847 			scaler_state->scalers[*scaler_id].in_use = 0;
5848 
5849 			DRM_DEBUG_KMS("scaler_user index %u.%u: "
5850 				"Staged freeing scaler id %d scaler_users = 0x%x\n",
5851 				intel_crtc->pipe, scaler_user, *scaler_id,
5852 				scaler_state->scaler_users);
5853 			*scaler_id = -1;
5854 		}
5855 		return 0;
5856 	}
5857 
5858 	if (format && intel_format_info_is_yuv_semiplanar(format, modifier) &&
5859 	    (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) {
5860 		DRM_DEBUG_KMS("Planar YUV: src dimensions not met\n");
5861 		return -EINVAL;
5862 	}
5863 
5864 	/* range checks */
5865 	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
5866 	    dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
5867 	    (INTEL_GEN(dev_priv) >= 11 &&
5868 	     (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H ||
5869 	      dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) ||
5870 	    (INTEL_GEN(dev_priv) < 11 &&
5871 	     (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
5872 	      dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H)))	{
5873 		DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
5874 			"size is out of scaler range\n",
5875 			intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
5876 		return -EINVAL;
5877 	}
5878 
5879 	/* mark this plane as a scaler user in crtc_state */
5880 	scaler_state->scaler_users |= (1 << scaler_user);
5881 	DRM_DEBUG_KMS("scaler_user index %u.%u: "
5882 		"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
5883 		intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
5884 		scaler_state->scaler_users);
5885 
5886 	return 0;
5887 }
5888 
5889 /**
5890  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
5891  *
5892  * @state: crtc's scaler state
5893  *
5894  * Return
5895  *     0 - scaler_usage updated successfully
5896  *    error - requested scaling cannot be supported or other error condition
5897  */
5898 int skl_update_scaler_crtc(struct intel_crtc_state *state)
5899 {
5900 	const struct drm_display_mode *adjusted_mode = &state->hw.adjusted_mode;
5901 	bool need_scaler = false;
5902 
5903 	if (state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
5904 		need_scaler = true;
5905 
5906 	return skl_update_scaler(state, !state->hw.active, SKL_CRTC_INDEX,
5907 				 &state->scaler_state.scaler_id,
5908 				 state->pipe_src_w, state->pipe_src_h,
5909 				 adjusted_mode->crtc_hdisplay,
5910 				 adjusted_mode->crtc_vdisplay, NULL, 0,
5911 				 need_scaler);
5912 }
5913 
5914 /**
5915  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
5916  * @crtc_state: crtc's scaler state
5917  * @plane_state: atomic plane state to update
5918  *
5919  * Return
5920  *     0 - scaler_usage updated successfully
5921  *    error - requested scaling cannot be supported or other error condition
5922  */
5923 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
5924 				   struct intel_plane_state *plane_state)
5925 {
5926 	struct intel_plane *intel_plane =
5927 		to_intel_plane(plane_state->uapi.plane);
5928 	struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
5929 	struct drm_framebuffer *fb = plane_state->hw.fb;
5930 	int ret;
5931 	bool force_detach = !fb || !plane_state->uapi.visible;
5932 	bool need_scaler = false;
5933 
5934 	/* Pre-gen11 and SDR planes always need a scaler for planar formats. */
5935 	if (!icl_is_hdr_plane(dev_priv, intel_plane->id) &&
5936 	    fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
5937 		need_scaler = true;
5938 
5939 	ret = skl_update_scaler(crtc_state, force_detach,
5940 				drm_plane_index(&intel_plane->base),
5941 				&plane_state->scaler_id,
5942 				drm_rect_width(&plane_state->uapi.src) >> 16,
5943 				drm_rect_height(&plane_state->uapi.src) >> 16,
5944 				drm_rect_width(&plane_state->uapi.dst),
5945 				drm_rect_height(&plane_state->uapi.dst),
5946 				fb ? fb->format : NULL,
5947 				fb ? fb->modifier : 0,
5948 				need_scaler);
5949 
5950 	if (ret || plane_state->scaler_id < 0)
5951 		return ret;
5952 
5953 	/* check colorkey */
5954 	if (plane_state->ckey.flags) {
5955 		DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
5956 			      intel_plane->base.base.id,
5957 			      intel_plane->base.name);
5958 		return -EINVAL;
5959 	}
5960 
5961 	/* Check src format */
5962 	switch (fb->format->format) {
5963 	case DRM_FORMAT_RGB565:
5964 	case DRM_FORMAT_XBGR8888:
5965 	case DRM_FORMAT_XRGB8888:
5966 	case DRM_FORMAT_ABGR8888:
5967 	case DRM_FORMAT_ARGB8888:
5968 	case DRM_FORMAT_XRGB2101010:
5969 	case DRM_FORMAT_XBGR2101010:
5970 	case DRM_FORMAT_ARGB2101010:
5971 	case DRM_FORMAT_ABGR2101010:
5972 	case DRM_FORMAT_YUYV:
5973 	case DRM_FORMAT_YVYU:
5974 	case DRM_FORMAT_UYVY:
5975 	case DRM_FORMAT_VYUY:
5976 	case DRM_FORMAT_NV12:
5977 	case DRM_FORMAT_P010:
5978 	case DRM_FORMAT_P012:
5979 	case DRM_FORMAT_P016:
5980 	case DRM_FORMAT_Y210:
5981 	case DRM_FORMAT_Y212:
5982 	case DRM_FORMAT_Y216:
5983 	case DRM_FORMAT_XVYU2101010:
5984 	case DRM_FORMAT_XVYU12_16161616:
5985 	case DRM_FORMAT_XVYU16161616:
5986 		break;
5987 	case DRM_FORMAT_XBGR16161616F:
5988 	case DRM_FORMAT_ABGR16161616F:
5989 	case DRM_FORMAT_XRGB16161616F:
5990 	case DRM_FORMAT_ARGB16161616F:
5991 		if (INTEL_GEN(dev_priv) >= 11)
5992 			break;
5993 		/* fall through */
5994 	default:
5995 		DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
5996 			      intel_plane->base.base.id, intel_plane->base.name,
5997 			      fb->base.id, fb->format->format);
5998 		return -EINVAL;
5999 	}
6000 
6001 	return 0;
6002 }
6003 
6004 void skylake_scaler_disable(const struct intel_crtc_state *old_crtc_state)
6005 {
6006 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
6007 	int i;
6008 
6009 	for (i = 0; i < crtc->num_scalers; i++)
6010 		skl_detach_scaler(crtc, i);
6011 }
6012 
6013 static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state)
6014 {
6015 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6016 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6017 	enum pipe pipe = crtc->pipe;
6018 	const struct intel_crtc_scaler_state *scaler_state =
6019 		&crtc_state->scaler_state;
6020 
6021 	if (crtc_state->pch_pfit.enabled) {
6022 		u16 uv_rgb_hphase, uv_rgb_vphase;
6023 		int pfit_w, pfit_h, hscale, vscale;
6024 		int id;
6025 
6026 		if (WARN_ON(crtc_state->scaler_state.scaler_id < 0))
6027 			return;
6028 
6029 		pfit_w = (crtc_state->pch_pfit.size >> 16) & 0xFFFF;
6030 		pfit_h = crtc_state->pch_pfit.size & 0xFFFF;
6031 
6032 		hscale = (crtc_state->pipe_src_w << 16) / pfit_w;
6033 		vscale = (crtc_state->pipe_src_h << 16) / pfit_h;
6034 
6035 		uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
6036 		uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
6037 
6038 		id = scaler_state->scaler_id;
6039 		I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
6040 			PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
6041 		I915_WRITE_FW(SKL_PS_VPHASE(pipe, id),
6042 			      PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
6043 		I915_WRITE_FW(SKL_PS_HPHASE(pipe, id),
6044 			      PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
6045 		I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc_state->pch_pfit.pos);
6046 		I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc_state->pch_pfit.size);
6047 	}
6048 }
6049 
6050 static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state)
6051 {
6052 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6053 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6054 	enum pipe pipe = crtc->pipe;
6055 
6056 	if (crtc_state->pch_pfit.enabled) {
6057 		/* Force use of hard-coded filter coefficients
6058 		 * as some pre-programmed values are broken,
6059 		 * e.g. x201.
6060 		 */
6061 		if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
6062 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
6063 						 PF_PIPE_SEL_IVB(pipe));
6064 		else
6065 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6066 		I915_WRITE(PF_WIN_POS(pipe), crtc_state->pch_pfit.pos);
6067 		I915_WRITE(PF_WIN_SZ(pipe), crtc_state->pch_pfit.size);
6068 	}
6069 }
6070 
6071 void hsw_enable_ips(const struct intel_crtc_state *crtc_state)
6072 {
6073 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6074 	struct drm_device *dev = crtc->base.dev;
6075 	struct drm_i915_private *dev_priv = to_i915(dev);
6076 
6077 	if (!crtc_state->ips_enabled)
6078 		return;
6079 
6080 	/*
6081 	 * We can only enable IPS after we enable a plane and wait for a vblank
6082 	 * This function is called from post_plane_update, which is run after
6083 	 * a vblank wait.
6084 	 */
6085 	WARN_ON(!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)));
6086 
6087 	if (IS_BROADWELL(dev_priv)) {
6088 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
6089 						IPS_ENABLE | IPS_PCODE_CONTROL));
6090 		/* Quoting Art Runyan: "its not safe to expect any particular
6091 		 * value in IPS_CTL bit 31 after enabling IPS through the
6092 		 * mailbox." Moreover, the mailbox may return a bogus state,
6093 		 * so we need to just enable it and continue on.
6094 		 */
6095 	} else {
6096 		I915_WRITE(IPS_CTL, IPS_ENABLE);
6097 		/* The bit only becomes 1 in the next vblank, so this wait here
6098 		 * is essentially intel_wait_for_vblank. If we don't have this
6099 		 * and don't wait for vblanks until the end of crtc_enable, then
6100 		 * the HW state readout code will complain that the expected
6101 		 * IPS_CTL value is not the one we read. */
6102 		if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50))
6103 			DRM_ERROR("Timed out waiting for IPS enable\n");
6104 	}
6105 }
6106 
6107 void hsw_disable_ips(const struct intel_crtc_state *crtc_state)
6108 {
6109 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6110 	struct drm_device *dev = crtc->base.dev;
6111 	struct drm_i915_private *dev_priv = to_i915(dev);
6112 
6113 	if (!crtc_state->ips_enabled)
6114 		return;
6115 
6116 	if (IS_BROADWELL(dev_priv)) {
6117 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
6118 		/*
6119 		 * Wait for PCODE to finish disabling IPS. The BSpec specified
6120 		 * 42ms timeout value leads to occasional timeouts so use 100ms
6121 		 * instead.
6122 		 */
6123 		if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100))
6124 			DRM_ERROR("Timed out waiting for IPS disable\n");
6125 	} else {
6126 		I915_WRITE(IPS_CTL, 0);
6127 		POSTING_READ(IPS_CTL);
6128 	}
6129 
6130 	/* We need to wait for a vblank before we can disable the plane. */
6131 	intel_wait_for_vblank(dev_priv, crtc->pipe);
6132 }
6133 
6134 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
6135 {
6136 	if (intel_crtc->overlay)
6137 		(void) intel_overlay_switch_off(intel_crtc->overlay);
6138 
6139 	/* Let userspace switch the overlay on again. In most cases userspace
6140 	 * has to recompute where to put it anyway.
6141 	 */
6142 }
6143 
6144 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state,
6145 				       const struct intel_crtc_state *new_crtc_state)
6146 {
6147 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6148 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6149 
6150 	if (!old_crtc_state->ips_enabled)
6151 		return false;
6152 
6153 	if (needs_modeset(new_crtc_state))
6154 		return true;
6155 
6156 	/*
6157 	 * Workaround : Do not read or write the pipe palette/gamma data while
6158 	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6159 	 *
6160 	 * Disable IPS before we program the LUT.
6161 	 */
6162 	if (IS_HASWELL(dev_priv) &&
6163 	    (new_crtc_state->uapi.color_mgmt_changed ||
6164 	     new_crtc_state->update_pipe) &&
6165 	    new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6166 		return true;
6167 
6168 	return !new_crtc_state->ips_enabled;
6169 }
6170 
6171 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state,
6172 				       const struct intel_crtc_state *new_crtc_state)
6173 {
6174 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6175 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6176 
6177 	if (!new_crtc_state->ips_enabled)
6178 		return false;
6179 
6180 	if (needs_modeset(new_crtc_state))
6181 		return true;
6182 
6183 	/*
6184 	 * Workaround : Do not read or write the pipe palette/gamma data while
6185 	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6186 	 *
6187 	 * Re-enable IPS after the LUT has been programmed.
6188 	 */
6189 	if (IS_HASWELL(dev_priv) &&
6190 	    (new_crtc_state->uapi.color_mgmt_changed ||
6191 	     new_crtc_state->update_pipe) &&
6192 	    new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6193 		return true;
6194 
6195 	/*
6196 	 * We can't read out IPS on broadwell, assume the worst and
6197 	 * forcibly enable IPS on the first fastset.
6198 	 */
6199 	if (new_crtc_state->update_pipe &&
6200 	    old_crtc_state->hw.adjusted_mode.private_flags & I915_MODE_FLAG_INHERITED)
6201 		return true;
6202 
6203 	return !old_crtc_state->ips_enabled;
6204 }
6205 
6206 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state)
6207 {
6208 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6209 
6210 	if (!crtc_state->nv12_planes)
6211 		return false;
6212 
6213 	/* WA Display #0827: Gen9:all */
6214 	if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv))
6215 		return true;
6216 
6217 	return false;
6218 }
6219 
6220 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state)
6221 {
6222 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6223 
6224 	/* Wa_2006604312:icl */
6225 	if (crtc_state->scaler_state.scaler_users > 0 && IS_ICELAKE(dev_priv))
6226 		return true;
6227 
6228 	return false;
6229 }
6230 
6231 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state,
6232 			    const struct intel_crtc_state *new_crtc_state)
6233 {
6234 	return (!old_crtc_state->active_planes || needs_modeset(new_crtc_state)) &&
6235 		new_crtc_state->active_planes;
6236 }
6237 
6238 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state,
6239 			     const struct intel_crtc_state *new_crtc_state)
6240 {
6241 	return old_crtc_state->active_planes &&
6242 		(!new_crtc_state->active_planes || needs_modeset(new_crtc_state));
6243 }
6244 
6245 static void intel_post_plane_update(struct intel_atomic_state *state,
6246 				    struct intel_crtc *crtc)
6247 {
6248 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6249 	struct intel_plane *primary = to_intel_plane(crtc->base.primary);
6250 	const struct intel_crtc_state *old_crtc_state =
6251 		intel_atomic_get_old_crtc_state(state, crtc);
6252 	const struct intel_crtc_state *new_crtc_state =
6253 		intel_atomic_get_new_crtc_state(state, crtc);
6254 	const struct intel_plane_state *new_primary_state =
6255 		intel_atomic_get_new_plane_state(state, primary);
6256 	enum pipe pipe = crtc->pipe;
6257 
6258 	intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits);
6259 
6260 	if (new_crtc_state->update_wm_post && new_crtc_state->hw.active)
6261 		intel_update_watermarks(crtc);
6262 
6263 	if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state))
6264 		hsw_enable_ips(new_crtc_state);
6265 
6266 	if (new_primary_state)
6267 		intel_fbc_post_update(crtc);
6268 
6269 	if (needs_nv12_wa(old_crtc_state) &&
6270 	    !needs_nv12_wa(new_crtc_state))
6271 		skl_wa_827(dev_priv, pipe, false);
6272 
6273 	if (needs_scalerclk_wa(old_crtc_state) &&
6274 	    !needs_scalerclk_wa(new_crtc_state))
6275 		icl_wa_scalerclkgating(dev_priv, pipe, false);
6276 }
6277 
6278 static void intel_pre_plane_update(struct intel_atomic_state *state,
6279 				   struct intel_crtc *crtc)
6280 {
6281 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6282 	struct intel_plane *primary = to_intel_plane(crtc->base.primary);
6283 	const struct intel_crtc_state *old_crtc_state =
6284 		intel_atomic_get_old_crtc_state(state, crtc);
6285 	const struct intel_crtc_state *new_crtc_state =
6286 		intel_atomic_get_new_crtc_state(state, crtc);
6287 	const struct intel_plane_state *new_primary_state =
6288 		intel_atomic_get_new_plane_state(state, primary);
6289 	enum pipe pipe = crtc->pipe;
6290 
6291 	if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state))
6292 		hsw_disable_ips(old_crtc_state);
6293 
6294 	if (new_primary_state &&
6295 	    intel_fbc_pre_update(crtc, new_crtc_state, new_primary_state))
6296 		intel_wait_for_vblank(dev_priv, pipe);
6297 
6298 	/* Display WA 827 */
6299 	if (!needs_nv12_wa(old_crtc_state) &&
6300 	    needs_nv12_wa(new_crtc_state))
6301 		skl_wa_827(dev_priv, pipe, true);
6302 
6303 	/* Wa_2006604312:icl */
6304 	if (!needs_scalerclk_wa(old_crtc_state) &&
6305 	    needs_scalerclk_wa(new_crtc_state))
6306 		icl_wa_scalerclkgating(dev_priv, pipe, true);
6307 
6308 	/*
6309 	 * Vblank time updates from the shadow to live plane control register
6310 	 * are blocked if the memory self-refresh mode is active at that
6311 	 * moment. So to make sure the plane gets truly disabled, disable
6312 	 * first the self-refresh mode. The self-refresh enable bit in turn
6313 	 * will be checked/applied by the HW only at the next frame start
6314 	 * event which is after the vblank start event, so we need to have a
6315 	 * wait-for-vblank between disabling the plane and the pipe.
6316 	 */
6317 	if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active &&
6318 	    new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
6319 		intel_wait_for_vblank(dev_priv, pipe);
6320 
6321 	/*
6322 	 * IVB workaround: must disable low power watermarks for at least
6323 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
6324 	 * when scaling is disabled.
6325 	 *
6326 	 * WaCxSRDisabledForSpriteScaling:ivb
6327 	 */
6328 	if (old_crtc_state->hw.active &&
6329 	    new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv))
6330 		intel_wait_for_vblank(dev_priv, pipe);
6331 
6332 	/*
6333 	 * If we're doing a modeset we don't need to do any
6334 	 * pre-vblank watermark programming here.
6335 	 */
6336 	if (!needs_modeset(new_crtc_state)) {
6337 		/*
6338 		 * For platforms that support atomic watermarks, program the
6339 		 * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
6340 		 * will be the intermediate values that are safe for both pre- and
6341 		 * post- vblank; when vblank happens, the 'active' values will be set
6342 		 * to the final 'target' values and we'll do this again to get the
6343 		 * optimal watermarks.  For gen9+ platforms, the values we program here
6344 		 * will be the final target values which will get automatically latched
6345 		 * at vblank time; no further programming will be necessary.
6346 		 *
6347 		 * If a platform hasn't been transitioned to atomic watermarks yet,
6348 		 * we'll continue to update watermarks the old way, if flags tell
6349 		 * us to.
6350 		 */
6351 		if (dev_priv->display.initial_watermarks)
6352 			dev_priv->display.initial_watermarks(state, crtc);
6353 		else if (new_crtc_state->update_wm_pre)
6354 			intel_update_watermarks(crtc);
6355 	}
6356 
6357 	/*
6358 	 * Gen2 reports pipe underruns whenever all planes are disabled.
6359 	 * So disable underrun reporting before all the planes get disabled.
6360 	 *
6361 	 * We do this after .initial_watermarks() so that we have a
6362 	 * chance of catching underruns with the intermediate watermarks
6363 	 * vs. the old plane configuration.
6364 	 */
6365 	if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state))
6366 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6367 }
6368 
6369 static void intel_crtc_disable_planes(struct intel_atomic_state *state,
6370 				      struct intel_crtc *crtc)
6371 {
6372 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6373 	const struct intel_crtc_state *new_crtc_state =
6374 		intel_atomic_get_new_crtc_state(state, crtc);
6375 	unsigned int update_mask = new_crtc_state->update_planes;
6376 	const struct intel_plane_state *old_plane_state;
6377 	struct intel_plane *plane;
6378 	unsigned fb_bits = 0;
6379 	int i;
6380 
6381 	intel_crtc_dpms_overlay_disable(crtc);
6382 
6383 	for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
6384 		if (crtc->pipe != plane->pipe ||
6385 		    !(update_mask & BIT(plane->id)))
6386 			continue;
6387 
6388 		intel_disable_plane(plane, new_crtc_state);
6389 
6390 		if (old_plane_state->uapi.visible)
6391 			fb_bits |= plane->frontbuffer_bit;
6392 	}
6393 
6394 	intel_frontbuffer_flip(dev_priv, fb_bits);
6395 }
6396 
6397 /*
6398  * intel_connector_primary_encoder - get the primary encoder for a connector
6399  * @connector: connector for which to return the encoder
6400  *
6401  * Returns the primary encoder for a connector. There is a 1:1 mapping from
6402  * all connectors to their encoder, except for DP-MST connectors which have
6403  * both a virtual and a primary encoder. These DP-MST primary encoders can be
6404  * pointed to by as many DP-MST connectors as there are pipes.
6405  */
6406 static struct intel_encoder *
6407 intel_connector_primary_encoder(struct intel_connector *connector)
6408 {
6409 	struct intel_encoder *encoder;
6410 
6411 	if (connector->mst_port)
6412 		return &dp_to_dig_port(connector->mst_port)->base;
6413 
6414 	encoder = intel_attached_encoder(&connector->base);
6415 	WARN_ON(!encoder);
6416 
6417 	return encoder;
6418 }
6419 
6420 static bool
6421 intel_connector_needs_modeset(struct intel_atomic_state *state,
6422 			      const struct drm_connector_state *old_conn_state,
6423 			      const struct drm_connector_state *new_conn_state)
6424 {
6425 	struct intel_crtc *old_crtc = old_conn_state->crtc ?
6426 				      to_intel_crtc(old_conn_state->crtc) : NULL;
6427 	struct intel_crtc *new_crtc = new_conn_state->crtc ?
6428 				      to_intel_crtc(new_conn_state->crtc) : NULL;
6429 
6430 	return new_crtc != old_crtc ||
6431 	       (new_crtc &&
6432 		needs_modeset(intel_atomic_get_new_crtc_state(state, new_crtc)));
6433 }
6434 
6435 static void intel_encoders_update_prepare(struct intel_atomic_state *state)
6436 {
6437 	struct drm_connector_state *old_conn_state;
6438 	struct drm_connector_state *new_conn_state;
6439 	struct drm_connector *conn;
6440 	int i;
6441 
6442 	for_each_oldnew_connector_in_state(&state->base, conn,
6443 					   old_conn_state, new_conn_state, i) {
6444 		struct intel_encoder *encoder;
6445 		struct intel_crtc *crtc;
6446 
6447 		if (!intel_connector_needs_modeset(state,
6448 						   old_conn_state,
6449 						   new_conn_state))
6450 			continue;
6451 
6452 		encoder = intel_connector_primary_encoder(to_intel_connector(conn));
6453 		if (!encoder->update_prepare)
6454 			continue;
6455 
6456 		crtc = new_conn_state->crtc ?
6457 			to_intel_crtc(new_conn_state->crtc) : NULL;
6458 		encoder->update_prepare(state, encoder, crtc);
6459 	}
6460 }
6461 
6462 static void intel_encoders_update_complete(struct intel_atomic_state *state)
6463 {
6464 	struct drm_connector_state *old_conn_state;
6465 	struct drm_connector_state *new_conn_state;
6466 	struct drm_connector *conn;
6467 	int i;
6468 
6469 	for_each_oldnew_connector_in_state(&state->base, conn,
6470 					   old_conn_state, new_conn_state, i) {
6471 		struct intel_encoder *encoder;
6472 		struct intel_crtc *crtc;
6473 
6474 		if (!intel_connector_needs_modeset(state,
6475 						   old_conn_state,
6476 						   new_conn_state))
6477 			continue;
6478 
6479 		encoder = intel_connector_primary_encoder(to_intel_connector(conn));
6480 		if (!encoder->update_complete)
6481 			continue;
6482 
6483 		crtc = new_conn_state->crtc ?
6484 			to_intel_crtc(new_conn_state->crtc) : NULL;
6485 		encoder->update_complete(state, encoder, crtc);
6486 	}
6487 }
6488 
6489 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state,
6490 					  struct intel_crtc *crtc)
6491 {
6492 	const struct intel_crtc_state *crtc_state =
6493 		intel_atomic_get_new_crtc_state(state, crtc);
6494 	const struct drm_connector_state *conn_state;
6495 	struct drm_connector *conn;
6496 	int i;
6497 
6498 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6499 		struct intel_encoder *encoder =
6500 			to_intel_encoder(conn_state->best_encoder);
6501 
6502 		if (conn_state->crtc != &crtc->base)
6503 			continue;
6504 
6505 		if (encoder->pre_pll_enable)
6506 			encoder->pre_pll_enable(encoder, crtc_state, conn_state);
6507 	}
6508 }
6509 
6510 static void intel_encoders_pre_enable(struct intel_atomic_state *state,
6511 				      struct intel_crtc *crtc)
6512 {
6513 	const struct intel_crtc_state *crtc_state =
6514 		intel_atomic_get_new_crtc_state(state, crtc);
6515 	const struct drm_connector_state *conn_state;
6516 	struct drm_connector *conn;
6517 	int i;
6518 
6519 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6520 		struct intel_encoder *encoder =
6521 			to_intel_encoder(conn_state->best_encoder);
6522 
6523 		if (conn_state->crtc != &crtc->base)
6524 			continue;
6525 
6526 		if (encoder->pre_enable)
6527 			encoder->pre_enable(encoder, crtc_state, conn_state);
6528 	}
6529 }
6530 
6531 static void intel_encoders_enable(struct intel_atomic_state *state,
6532 				  struct intel_crtc *crtc)
6533 {
6534 	const struct intel_crtc_state *crtc_state =
6535 		intel_atomic_get_new_crtc_state(state, crtc);
6536 	const struct drm_connector_state *conn_state;
6537 	struct drm_connector *conn;
6538 	int i;
6539 
6540 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6541 		struct intel_encoder *encoder =
6542 			to_intel_encoder(conn_state->best_encoder);
6543 
6544 		if (conn_state->crtc != &crtc->base)
6545 			continue;
6546 
6547 		if (encoder->enable)
6548 			encoder->enable(encoder, crtc_state, conn_state);
6549 		intel_opregion_notify_encoder(encoder, true);
6550 	}
6551 }
6552 
6553 static void intel_encoders_disable(struct intel_atomic_state *state,
6554 				   struct intel_crtc *crtc)
6555 {
6556 	const struct intel_crtc_state *old_crtc_state =
6557 		intel_atomic_get_old_crtc_state(state, crtc);
6558 	const struct drm_connector_state *old_conn_state;
6559 	struct drm_connector *conn;
6560 	int i;
6561 
6562 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6563 		struct intel_encoder *encoder =
6564 			to_intel_encoder(old_conn_state->best_encoder);
6565 
6566 		if (old_conn_state->crtc != &crtc->base)
6567 			continue;
6568 
6569 		intel_opregion_notify_encoder(encoder, false);
6570 		if (encoder->disable)
6571 			encoder->disable(encoder, old_crtc_state, old_conn_state);
6572 	}
6573 }
6574 
6575 static void intel_encoders_post_disable(struct intel_atomic_state *state,
6576 					struct intel_crtc *crtc)
6577 {
6578 	const struct intel_crtc_state *old_crtc_state =
6579 		intel_atomic_get_old_crtc_state(state, crtc);
6580 	const struct drm_connector_state *old_conn_state;
6581 	struct drm_connector *conn;
6582 	int i;
6583 
6584 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6585 		struct intel_encoder *encoder =
6586 			to_intel_encoder(old_conn_state->best_encoder);
6587 
6588 		if (old_conn_state->crtc != &crtc->base)
6589 			continue;
6590 
6591 		if (encoder->post_disable)
6592 			encoder->post_disable(encoder, old_crtc_state, old_conn_state);
6593 	}
6594 }
6595 
6596 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state,
6597 					    struct intel_crtc *crtc)
6598 {
6599 	const struct intel_crtc_state *old_crtc_state =
6600 		intel_atomic_get_old_crtc_state(state, crtc);
6601 	const struct drm_connector_state *old_conn_state;
6602 	struct drm_connector *conn;
6603 	int i;
6604 
6605 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6606 		struct intel_encoder *encoder =
6607 			to_intel_encoder(old_conn_state->best_encoder);
6608 
6609 		if (old_conn_state->crtc != &crtc->base)
6610 			continue;
6611 
6612 		if (encoder->post_pll_disable)
6613 			encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
6614 	}
6615 }
6616 
6617 static void intel_encoders_update_pipe(struct intel_atomic_state *state,
6618 				       struct intel_crtc *crtc)
6619 {
6620 	const struct intel_crtc_state *crtc_state =
6621 		intel_atomic_get_new_crtc_state(state, crtc);
6622 	const struct drm_connector_state *conn_state;
6623 	struct drm_connector *conn;
6624 	int i;
6625 
6626 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6627 		struct intel_encoder *encoder =
6628 			to_intel_encoder(conn_state->best_encoder);
6629 
6630 		if (conn_state->crtc != &crtc->base)
6631 			continue;
6632 
6633 		if (encoder->update_pipe)
6634 			encoder->update_pipe(encoder, crtc_state, conn_state);
6635 	}
6636 }
6637 
6638 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state)
6639 {
6640 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6641 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
6642 
6643 	plane->disable_plane(plane, crtc_state);
6644 }
6645 
6646 static void ironlake_crtc_enable(struct intel_atomic_state *state,
6647 				 struct intel_crtc *crtc)
6648 {
6649 	const struct intel_crtc_state *new_crtc_state =
6650 		intel_atomic_get_new_crtc_state(state, crtc);
6651 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6652 	enum pipe pipe = crtc->pipe;
6653 
6654 	if (WARN_ON(crtc->active))
6655 		return;
6656 
6657 	/*
6658 	 * Sometimes spurious CPU pipe underruns happen during FDI
6659 	 * training, at least with VGA+HDMI cloning. Suppress them.
6660 	 *
6661 	 * On ILK we get an occasional spurious CPU pipe underruns
6662 	 * between eDP port A enable and vdd enable. Also PCH port
6663 	 * enable seems to result in the occasional CPU pipe underrun.
6664 	 *
6665 	 * Spurious PCH underruns also occur during PCH enabling.
6666 	 */
6667 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6668 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6669 
6670 	if (new_crtc_state->has_pch_encoder)
6671 		intel_prepare_shared_dpll(new_crtc_state);
6672 
6673 	if (intel_crtc_has_dp_encoder(new_crtc_state))
6674 		intel_dp_set_m_n(new_crtc_state, M1_N1);
6675 
6676 	intel_set_pipe_timings(new_crtc_state);
6677 	intel_set_pipe_src_size(new_crtc_state);
6678 
6679 	if (new_crtc_state->has_pch_encoder)
6680 		intel_cpu_transcoder_set_m_n(new_crtc_state,
6681 					     &new_crtc_state->fdi_m_n, NULL);
6682 
6683 	ironlake_set_pipeconf(new_crtc_state);
6684 
6685 	crtc->active = true;
6686 
6687 	intel_encoders_pre_enable(state, crtc);
6688 
6689 	if (new_crtc_state->has_pch_encoder) {
6690 		/* Note: FDI PLL enabling _must_ be done before we enable the
6691 		 * cpu pipes, hence this is separate from all the other fdi/pch
6692 		 * enabling. */
6693 		ironlake_fdi_pll_enable(new_crtc_state);
6694 	} else {
6695 		assert_fdi_tx_disabled(dev_priv, pipe);
6696 		assert_fdi_rx_disabled(dev_priv, pipe);
6697 	}
6698 
6699 	ironlake_pfit_enable(new_crtc_state);
6700 
6701 	/*
6702 	 * On ILK+ LUT must be loaded before the pipe is running but with
6703 	 * clocks enabled
6704 	 */
6705 	intel_color_load_luts(new_crtc_state);
6706 	intel_color_commit(new_crtc_state);
6707 	/* update DSPCNTR to configure gamma for pipe bottom color */
6708 	intel_disable_primary_plane(new_crtc_state);
6709 
6710 	if (dev_priv->display.initial_watermarks)
6711 		dev_priv->display.initial_watermarks(state, crtc);
6712 	intel_enable_pipe(new_crtc_state);
6713 
6714 	if (new_crtc_state->has_pch_encoder)
6715 		ironlake_pch_enable(state, new_crtc_state);
6716 
6717 	intel_crtc_vblank_on(new_crtc_state);
6718 
6719 	intel_encoders_enable(state, crtc);
6720 
6721 	if (HAS_PCH_CPT(dev_priv))
6722 		cpt_verify_modeset(dev_priv, pipe);
6723 
6724 	/*
6725 	 * Must wait for vblank to avoid spurious PCH FIFO underruns.
6726 	 * And a second vblank wait is needed at least on ILK with
6727 	 * some interlaced HDMI modes. Let's do the double wait always
6728 	 * in case there are more corner cases we don't know about.
6729 	 */
6730 	if (new_crtc_state->has_pch_encoder) {
6731 		intel_wait_for_vblank(dev_priv, pipe);
6732 		intel_wait_for_vblank(dev_priv, pipe);
6733 	}
6734 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6735 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6736 }
6737 
6738 /* IPS only exists on ULT machines and is tied to pipe A. */
6739 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
6740 {
6741 	return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
6742 }
6743 
6744 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
6745 					    enum pipe pipe, bool apply)
6746 {
6747 	u32 val = I915_READ(CLKGATE_DIS_PSL(pipe));
6748 	u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
6749 
6750 	if (apply)
6751 		val |= mask;
6752 	else
6753 		val &= ~mask;
6754 
6755 	I915_WRITE(CLKGATE_DIS_PSL(pipe), val);
6756 }
6757 
6758 static void icl_pipe_mbus_enable(struct intel_crtc *crtc)
6759 {
6760 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6761 	enum pipe pipe = crtc->pipe;
6762 	u32 val;
6763 
6764 	val = MBUS_DBOX_A_CREDIT(2);
6765 
6766 	if (INTEL_GEN(dev_priv) >= 12) {
6767 		val |= MBUS_DBOX_BW_CREDIT(2);
6768 		val |= MBUS_DBOX_B_CREDIT(12);
6769 	} else {
6770 		val |= MBUS_DBOX_BW_CREDIT(1);
6771 		val |= MBUS_DBOX_B_CREDIT(8);
6772 	}
6773 
6774 	I915_WRITE(PIPE_MBUS_DBOX_CTL(pipe), val);
6775 }
6776 
6777 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state)
6778 {
6779 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6780 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6781 	i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder);
6782 	u32 val;
6783 
6784 	val = I915_READ(reg);
6785 	val &= ~HSW_FRAME_START_DELAY_MASK;
6786 	val |= HSW_FRAME_START_DELAY(0);
6787 	I915_WRITE(reg, val);
6788 }
6789 
6790 static void haswell_crtc_enable(struct intel_atomic_state *state,
6791 				struct intel_crtc *crtc)
6792 {
6793 	const struct intel_crtc_state *new_crtc_state =
6794 		intel_atomic_get_new_crtc_state(state, crtc);
6795 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6796 	enum pipe pipe = crtc->pipe, hsw_workaround_pipe;
6797 	enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
6798 	bool psl_clkgate_wa;
6799 
6800 	if (WARN_ON(crtc->active))
6801 		return;
6802 
6803 	intel_encoders_pre_pll_enable(state, crtc);
6804 
6805 	if (new_crtc_state->shared_dpll)
6806 		intel_enable_shared_dpll(new_crtc_state);
6807 
6808 	intel_encoders_pre_enable(state, crtc);
6809 
6810 	if (intel_crtc_has_dp_encoder(new_crtc_state))
6811 		intel_dp_set_m_n(new_crtc_state, M1_N1);
6812 
6813 	if (!transcoder_is_dsi(cpu_transcoder))
6814 		intel_set_pipe_timings(new_crtc_state);
6815 
6816 	if (INTEL_GEN(dev_priv) >= 11)
6817 		icl_enable_trans_port_sync(new_crtc_state);
6818 
6819 	intel_set_pipe_src_size(new_crtc_state);
6820 
6821 	if (cpu_transcoder != TRANSCODER_EDP &&
6822 	    !transcoder_is_dsi(cpu_transcoder))
6823 		I915_WRITE(PIPE_MULT(cpu_transcoder),
6824 			   new_crtc_state->pixel_multiplier - 1);
6825 
6826 	if (new_crtc_state->has_pch_encoder)
6827 		intel_cpu_transcoder_set_m_n(new_crtc_state,
6828 					     &new_crtc_state->fdi_m_n, NULL);
6829 
6830 	if (!transcoder_is_dsi(cpu_transcoder)) {
6831 		hsw_set_frame_start_delay(new_crtc_state);
6832 		haswell_set_pipeconf(new_crtc_state);
6833 	}
6834 
6835 	if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
6836 		bdw_set_pipemisc(new_crtc_state);
6837 
6838 	crtc->active = true;
6839 
6840 	/* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
6841 	psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
6842 		new_crtc_state->pch_pfit.enabled;
6843 	if (psl_clkgate_wa)
6844 		glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
6845 
6846 	if (INTEL_GEN(dev_priv) >= 9)
6847 		skylake_pfit_enable(new_crtc_state);
6848 	else
6849 		ironlake_pfit_enable(new_crtc_state);
6850 
6851 	/*
6852 	 * On ILK+ LUT must be loaded before the pipe is running but with
6853 	 * clocks enabled
6854 	 */
6855 	intel_color_load_luts(new_crtc_state);
6856 	intel_color_commit(new_crtc_state);
6857 	/* update DSPCNTR to configure gamma/csc for pipe bottom color */
6858 	if (INTEL_GEN(dev_priv) < 9)
6859 		intel_disable_primary_plane(new_crtc_state);
6860 
6861 	if (INTEL_GEN(dev_priv) >= 11)
6862 		icl_set_pipe_chicken(crtc);
6863 
6864 	if (!transcoder_is_dsi(cpu_transcoder))
6865 		intel_ddi_enable_transcoder_func(new_crtc_state);
6866 
6867 	if (dev_priv->display.initial_watermarks)
6868 		dev_priv->display.initial_watermarks(state, crtc);
6869 
6870 	if (INTEL_GEN(dev_priv) >= 11)
6871 		icl_pipe_mbus_enable(crtc);
6872 
6873 	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
6874 	if (!transcoder_is_dsi(cpu_transcoder))
6875 		intel_enable_pipe(new_crtc_state);
6876 
6877 	if (new_crtc_state->has_pch_encoder)
6878 		lpt_pch_enable(state, new_crtc_state);
6879 
6880 	intel_crtc_vblank_on(new_crtc_state);
6881 
6882 	intel_encoders_enable(state, crtc);
6883 
6884 	if (psl_clkgate_wa) {
6885 		intel_wait_for_vblank(dev_priv, pipe);
6886 		glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
6887 	}
6888 
6889 	/* If we change the relative order between pipe/planes enabling, we need
6890 	 * to change the workaround. */
6891 	hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe;
6892 	if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
6893 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
6894 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
6895 	}
6896 }
6897 
6898 void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state)
6899 {
6900 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
6901 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6902 	enum pipe pipe = crtc->pipe;
6903 
6904 	/* To avoid upsetting the power well on haswell only disable the pfit if
6905 	 * it's in use. The hw state code will make sure we get this right. */
6906 	if (old_crtc_state->pch_pfit.enabled) {
6907 		I915_WRITE(PF_CTL(pipe), 0);
6908 		I915_WRITE(PF_WIN_POS(pipe), 0);
6909 		I915_WRITE(PF_WIN_SZ(pipe), 0);
6910 	}
6911 }
6912 
6913 static void ironlake_crtc_disable(struct intel_atomic_state *state,
6914 				  struct intel_crtc *crtc)
6915 {
6916 	const struct intel_crtc_state *old_crtc_state =
6917 		intel_atomic_get_old_crtc_state(state, crtc);
6918 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6919 	enum pipe pipe = crtc->pipe;
6920 
6921 	/*
6922 	 * Sometimes spurious CPU pipe underruns happen when the
6923 	 * pipe is already disabled, but FDI RX/TX is still enabled.
6924 	 * Happens at least with VGA+HDMI cloning. Suppress them.
6925 	 */
6926 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6927 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6928 
6929 	intel_encoders_disable(state, crtc);
6930 
6931 	intel_crtc_vblank_off(old_crtc_state);
6932 
6933 	intel_disable_pipe(old_crtc_state);
6934 
6935 	ironlake_pfit_disable(old_crtc_state);
6936 
6937 	if (old_crtc_state->has_pch_encoder)
6938 		ironlake_fdi_disable(crtc);
6939 
6940 	intel_encoders_post_disable(state, crtc);
6941 
6942 	if (old_crtc_state->has_pch_encoder) {
6943 		ironlake_disable_pch_transcoder(dev_priv, pipe);
6944 
6945 		if (HAS_PCH_CPT(dev_priv)) {
6946 			i915_reg_t reg;
6947 			u32 temp;
6948 
6949 			/* disable TRANS_DP_CTL */
6950 			reg = TRANS_DP_CTL(pipe);
6951 			temp = I915_READ(reg);
6952 			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
6953 				  TRANS_DP_PORT_SEL_MASK);
6954 			temp |= TRANS_DP_PORT_SEL_NONE;
6955 			I915_WRITE(reg, temp);
6956 
6957 			/* disable DPLL_SEL */
6958 			temp = I915_READ(PCH_DPLL_SEL);
6959 			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
6960 			I915_WRITE(PCH_DPLL_SEL, temp);
6961 		}
6962 
6963 		ironlake_fdi_pll_disable(crtc);
6964 	}
6965 
6966 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6967 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6968 }
6969 
6970 static void haswell_crtc_disable(struct intel_atomic_state *state,
6971 				 struct intel_crtc *crtc)
6972 {
6973 	/*
6974 	 * FIXME collapse everything to one hook.
6975 	 * Need care with mst->ddi interactions.
6976 	 */
6977 	intel_encoders_disable(state, crtc);
6978 	intel_encoders_post_disable(state, crtc);
6979 }
6980 
6981 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state)
6982 {
6983 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6984 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6985 
6986 	if (!crtc_state->gmch_pfit.control)
6987 		return;
6988 
6989 	/*
6990 	 * The panel fitter should only be adjusted whilst the pipe is disabled,
6991 	 * according to register description and PRM.
6992 	 */
6993 	WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
6994 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
6995 
6996 	I915_WRITE(PFIT_PGM_RATIOS, crtc_state->gmch_pfit.pgm_ratios);
6997 	I915_WRITE(PFIT_CONTROL, crtc_state->gmch_pfit.control);
6998 
6999 	/* Border color in case we don't scale up to the full screen. Black by
7000 	 * default, change to something else for debugging. */
7001 	I915_WRITE(BCLRPAT(crtc->pipe), 0);
7002 }
7003 
7004 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy)
7005 {
7006 	if (phy == PHY_NONE)
7007 		return false;
7008 
7009 	if (IS_ELKHARTLAKE(dev_priv))
7010 		return phy <= PHY_C;
7011 
7012 	if (INTEL_GEN(dev_priv) >= 11)
7013 		return phy <= PHY_B;
7014 
7015 	return false;
7016 }
7017 
7018 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy)
7019 {
7020 	if (INTEL_GEN(dev_priv) >= 12)
7021 		return phy >= PHY_D && phy <= PHY_I;
7022 
7023 	if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv))
7024 		return phy >= PHY_C && phy <= PHY_F;
7025 
7026 	return false;
7027 }
7028 
7029 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port)
7030 {
7031 	if (IS_ELKHARTLAKE(i915) && port == PORT_D)
7032 		return PHY_A;
7033 
7034 	return (enum phy)port;
7035 }
7036 
7037 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port)
7038 {
7039 	if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port)))
7040 		return PORT_TC_NONE;
7041 
7042 	if (INTEL_GEN(dev_priv) >= 12)
7043 		return port - PORT_D;
7044 
7045 	return port - PORT_C;
7046 }
7047 
7048 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
7049 {
7050 	switch (port) {
7051 	case PORT_A:
7052 		return POWER_DOMAIN_PORT_DDI_A_LANES;
7053 	case PORT_B:
7054 		return POWER_DOMAIN_PORT_DDI_B_LANES;
7055 	case PORT_C:
7056 		return POWER_DOMAIN_PORT_DDI_C_LANES;
7057 	case PORT_D:
7058 		return POWER_DOMAIN_PORT_DDI_D_LANES;
7059 	case PORT_E:
7060 		return POWER_DOMAIN_PORT_DDI_E_LANES;
7061 	case PORT_F:
7062 		return POWER_DOMAIN_PORT_DDI_F_LANES;
7063 	case PORT_G:
7064 		return POWER_DOMAIN_PORT_DDI_G_LANES;
7065 	default:
7066 		MISSING_CASE(port);
7067 		return POWER_DOMAIN_PORT_OTHER;
7068 	}
7069 }
7070 
7071 enum intel_display_power_domain
7072 intel_aux_power_domain(struct intel_digital_port *dig_port)
7073 {
7074 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
7075 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
7076 
7077 	if (intel_phy_is_tc(dev_priv, phy) &&
7078 	    dig_port->tc_mode == TC_PORT_TBT_ALT) {
7079 		switch (dig_port->aux_ch) {
7080 		case AUX_CH_C:
7081 			return POWER_DOMAIN_AUX_C_TBT;
7082 		case AUX_CH_D:
7083 			return POWER_DOMAIN_AUX_D_TBT;
7084 		case AUX_CH_E:
7085 			return POWER_DOMAIN_AUX_E_TBT;
7086 		case AUX_CH_F:
7087 			return POWER_DOMAIN_AUX_F_TBT;
7088 		case AUX_CH_G:
7089 			return POWER_DOMAIN_AUX_G_TBT;
7090 		default:
7091 			MISSING_CASE(dig_port->aux_ch);
7092 			return POWER_DOMAIN_AUX_C_TBT;
7093 		}
7094 	}
7095 
7096 	switch (dig_port->aux_ch) {
7097 	case AUX_CH_A:
7098 		return POWER_DOMAIN_AUX_A;
7099 	case AUX_CH_B:
7100 		return POWER_DOMAIN_AUX_B;
7101 	case AUX_CH_C:
7102 		return POWER_DOMAIN_AUX_C;
7103 	case AUX_CH_D:
7104 		return POWER_DOMAIN_AUX_D;
7105 	case AUX_CH_E:
7106 		return POWER_DOMAIN_AUX_E;
7107 	case AUX_CH_F:
7108 		return POWER_DOMAIN_AUX_F;
7109 	case AUX_CH_G:
7110 		return POWER_DOMAIN_AUX_G;
7111 	default:
7112 		MISSING_CASE(dig_port->aux_ch);
7113 		return POWER_DOMAIN_AUX_A;
7114 	}
7115 }
7116 
7117 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7118 {
7119 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7120 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7121 	struct drm_encoder *encoder;
7122 	enum pipe pipe = crtc->pipe;
7123 	u64 mask;
7124 	enum transcoder transcoder = crtc_state->cpu_transcoder;
7125 
7126 	if (!crtc_state->hw.active)
7127 		return 0;
7128 
7129 	mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe));
7130 	mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder));
7131 	if (crtc_state->pch_pfit.enabled ||
7132 	    crtc_state->pch_pfit.force_thru)
7133 		mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
7134 
7135 	drm_for_each_encoder_mask(encoder, &dev_priv->drm,
7136 				  crtc_state->uapi.encoder_mask) {
7137 		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7138 
7139 		mask |= BIT_ULL(intel_encoder->power_domain);
7140 	}
7141 
7142 	if (HAS_DDI(dev_priv) && crtc_state->has_audio)
7143 		mask |= BIT_ULL(POWER_DOMAIN_AUDIO);
7144 
7145 	if (crtc_state->shared_dpll)
7146 		mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE);
7147 
7148 	return mask;
7149 }
7150 
7151 static u64
7152 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7153 {
7154 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7155 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7156 	enum intel_display_power_domain domain;
7157 	u64 domains, new_domains, old_domains;
7158 
7159 	old_domains = crtc->enabled_power_domains;
7160 	crtc->enabled_power_domains = new_domains =
7161 		get_crtc_power_domains(crtc_state);
7162 
7163 	domains = new_domains & ~old_domains;
7164 
7165 	for_each_power_domain(domain, domains)
7166 		intel_display_power_get(dev_priv, domain);
7167 
7168 	return old_domains & ~new_domains;
7169 }
7170 
7171 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
7172 				      u64 domains)
7173 {
7174 	enum intel_display_power_domain domain;
7175 
7176 	for_each_power_domain(domain, domains)
7177 		intel_display_power_put_unchecked(dev_priv, domain);
7178 }
7179 
7180 static void valleyview_crtc_enable(struct intel_atomic_state *state,
7181 				   struct intel_crtc *crtc)
7182 {
7183 	const struct intel_crtc_state *new_crtc_state =
7184 		intel_atomic_get_new_crtc_state(state, crtc);
7185 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7186 	enum pipe pipe = crtc->pipe;
7187 
7188 	if (WARN_ON(crtc->active))
7189 		return;
7190 
7191 	if (intel_crtc_has_dp_encoder(new_crtc_state))
7192 		intel_dp_set_m_n(new_crtc_state, M1_N1);
7193 
7194 	intel_set_pipe_timings(new_crtc_state);
7195 	intel_set_pipe_src_size(new_crtc_state);
7196 
7197 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
7198 		I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
7199 		I915_WRITE(CHV_CANVAS(pipe), 0);
7200 	}
7201 
7202 	i9xx_set_pipeconf(new_crtc_state);
7203 
7204 	crtc->active = true;
7205 
7206 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7207 
7208 	intel_encoders_pre_pll_enable(state, crtc);
7209 
7210 	if (IS_CHERRYVIEW(dev_priv)) {
7211 		chv_prepare_pll(crtc, new_crtc_state);
7212 		chv_enable_pll(crtc, new_crtc_state);
7213 	} else {
7214 		vlv_prepare_pll(crtc, new_crtc_state);
7215 		vlv_enable_pll(crtc, new_crtc_state);
7216 	}
7217 
7218 	intel_encoders_pre_enable(state, crtc);
7219 
7220 	i9xx_pfit_enable(new_crtc_state);
7221 
7222 	intel_color_load_luts(new_crtc_state);
7223 	intel_color_commit(new_crtc_state);
7224 	/* update DSPCNTR to configure gamma for pipe bottom color */
7225 	intel_disable_primary_plane(new_crtc_state);
7226 
7227 	dev_priv->display.initial_watermarks(state, crtc);
7228 	intel_enable_pipe(new_crtc_state);
7229 
7230 	intel_crtc_vblank_on(new_crtc_state);
7231 
7232 	intel_encoders_enable(state, crtc);
7233 }
7234 
7235 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state)
7236 {
7237 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7238 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7239 
7240 	I915_WRITE(FP0(crtc->pipe), crtc_state->dpll_hw_state.fp0);
7241 	I915_WRITE(FP1(crtc->pipe), crtc_state->dpll_hw_state.fp1);
7242 }
7243 
7244 static void i9xx_crtc_enable(struct intel_atomic_state *state,
7245 			     struct intel_crtc *crtc)
7246 {
7247 	const struct intel_crtc_state *new_crtc_state =
7248 		intel_atomic_get_new_crtc_state(state, crtc);
7249 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7250 	enum pipe pipe = crtc->pipe;
7251 
7252 	if (WARN_ON(crtc->active))
7253 		return;
7254 
7255 	i9xx_set_pll_dividers(new_crtc_state);
7256 
7257 	if (intel_crtc_has_dp_encoder(new_crtc_state))
7258 		intel_dp_set_m_n(new_crtc_state, M1_N1);
7259 
7260 	intel_set_pipe_timings(new_crtc_state);
7261 	intel_set_pipe_src_size(new_crtc_state);
7262 
7263 	i9xx_set_pipeconf(new_crtc_state);
7264 
7265 	crtc->active = true;
7266 
7267 	if (!IS_GEN(dev_priv, 2))
7268 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7269 
7270 	intel_encoders_pre_enable(state, crtc);
7271 
7272 	i9xx_enable_pll(crtc, new_crtc_state);
7273 
7274 	i9xx_pfit_enable(new_crtc_state);
7275 
7276 	intel_color_load_luts(new_crtc_state);
7277 	intel_color_commit(new_crtc_state);
7278 	/* update DSPCNTR to configure gamma for pipe bottom color */
7279 	intel_disable_primary_plane(new_crtc_state);
7280 
7281 	if (dev_priv->display.initial_watermarks)
7282 		dev_priv->display.initial_watermarks(state, crtc);
7283 	else
7284 		intel_update_watermarks(crtc);
7285 	intel_enable_pipe(new_crtc_state);
7286 
7287 	intel_crtc_vblank_on(new_crtc_state);
7288 
7289 	intel_encoders_enable(state, crtc);
7290 }
7291 
7292 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7293 {
7294 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7295 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7296 
7297 	if (!old_crtc_state->gmch_pfit.control)
7298 		return;
7299 
7300 	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
7301 
7302 	DRM_DEBUG_KMS("disabling pfit, current: 0x%08x\n",
7303 		      I915_READ(PFIT_CONTROL));
7304 	I915_WRITE(PFIT_CONTROL, 0);
7305 }
7306 
7307 static void i9xx_crtc_disable(struct intel_atomic_state *state,
7308 			      struct intel_crtc *crtc)
7309 {
7310 	struct intel_crtc_state *old_crtc_state =
7311 		intel_atomic_get_old_crtc_state(state, crtc);
7312 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7313 	enum pipe pipe = crtc->pipe;
7314 
7315 	/*
7316 	 * On gen2 planes are double buffered but the pipe isn't, so we must
7317 	 * wait for planes to fully turn off before disabling the pipe.
7318 	 */
7319 	if (IS_GEN(dev_priv, 2))
7320 		intel_wait_for_vblank(dev_priv, pipe);
7321 
7322 	intel_encoders_disable(state, crtc);
7323 
7324 	intel_crtc_vblank_off(old_crtc_state);
7325 
7326 	intel_disable_pipe(old_crtc_state);
7327 
7328 	i9xx_pfit_disable(old_crtc_state);
7329 
7330 	intel_encoders_post_disable(state, crtc);
7331 
7332 	if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
7333 		if (IS_CHERRYVIEW(dev_priv))
7334 			chv_disable_pll(dev_priv, pipe);
7335 		else if (IS_VALLEYVIEW(dev_priv))
7336 			vlv_disable_pll(dev_priv, pipe);
7337 		else
7338 			i9xx_disable_pll(old_crtc_state);
7339 	}
7340 
7341 	intel_encoders_post_pll_disable(state, crtc);
7342 
7343 	if (!IS_GEN(dev_priv, 2))
7344 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7345 
7346 	if (!dev_priv->display.initial_watermarks)
7347 		intel_update_watermarks(crtc);
7348 
7349 	/* clock the pipe down to 640x480@60 to potentially save power */
7350 	if (IS_I830(dev_priv))
7351 		i830_enable_pipe(dev_priv, pipe);
7352 }
7353 
7354 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc,
7355 					struct drm_modeset_acquire_ctx *ctx)
7356 {
7357 	struct intel_encoder *encoder;
7358 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7359 	struct intel_bw_state *bw_state =
7360 		to_intel_bw_state(dev_priv->bw_obj.state);
7361 	struct intel_crtc_state *crtc_state =
7362 		to_intel_crtc_state(crtc->base.state);
7363 	enum intel_display_power_domain domain;
7364 	struct intel_plane *plane;
7365 	struct drm_atomic_state *state;
7366 	struct intel_crtc_state *temp_crtc_state;
7367 	enum pipe pipe = crtc->pipe;
7368 	u64 domains;
7369 	int ret;
7370 
7371 	if (!crtc_state->hw.active)
7372 		return;
7373 
7374 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
7375 		const struct intel_plane_state *plane_state =
7376 			to_intel_plane_state(plane->base.state);
7377 
7378 		if (plane_state->uapi.visible)
7379 			intel_plane_disable_noatomic(crtc, plane);
7380 	}
7381 
7382 	state = drm_atomic_state_alloc(&dev_priv->drm);
7383 	if (!state) {
7384 		DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
7385 			      crtc->base.base.id, crtc->base.name);
7386 		return;
7387 	}
7388 
7389 	state->acquire_ctx = ctx;
7390 
7391 	/* Everything's already locked, -EDEADLK can't happen. */
7392 	temp_crtc_state = intel_atomic_get_crtc_state(state, crtc);
7393 	ret = drm_atomic_add_affected_connectors(state, &crtc->base);
7394 
7395 	WARN_ON(IS_ERR(temp_crtc_state) || ret);
7396 
7397 	dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc);
7398 
7399 	drm_atomic_state_put(state);
7400 
7401 	DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
7402 		      crtc->base.base.id, crtc->base.name);
7403 
7404 	crtc->active = false;
7405 	crtc->base.enabled = false;
7406 
7407 	WARN_ON(drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0);
7408 	crtc_state->uapi.active = false;
7409 	crtc_state->uapi.connector_mask = 0;
7410 	crtc_state->uapi.encoder_mask = 0;
7411 	intel_crtc_free_hw_state(crtc_state);
7412 	memset(&crtc_state->hw, 0, sizeof(crtc_state->hw));
7413 
7414 	for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder)
7415 		encoder->base.crtc = NULL;
7416 
7417 	intel_fbc_disable(crtc);
7418 	intel_update_watermarks(crtc);
7419 	intel_disable_shared_dpll(crtc_state);
7420 
7421 	domains = crtc->enabled_power_domains;
7422 	for_each_power_domain(domain, domains)
7423 		intel_display_power_put_unchecked(dev_priv, domain);
7424 	crtc->enabled_power_domains = 0;
7425 
7426 	dev_priv->active_pipes &= ~BIT(pipe);
7427 	dev_priv->min_cdclk[pipe] = 0;
7428 	dev_priv->min_voltage_level[pipe] = 0;
7429 
7430 	bw_state->data_rate[pipe] = 0;
7431 	bw_state->num_active_planes[pipe] = 0;
7432 }
7433 
7434 /*
7435  * turn all crtc's off, but do not adjust state
7436  * This has to be paired with a call to intel_modeset_setup_hw_state.
7437  */
7438 int intel_display_suspend(struct drm_device *dev)
7439 {
7440 	struct drm_i915_private *dev_priv = to_i915(dev);
7441 	struct drm_atomic_state *state;
7442 	int ret;
7443 
7444 	state = drm_atomic_helper_suspend(dev);
7445 	ret = PTR_ERR_OR_ZERO(state);
7446 	if (ret)
7447 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
7448 	else
7449 		dev_priv->modeset_restore_state = state;
7450 	return ret;
7451 }
7452 
7453 void intel_encoder_destroy(struct drm_encoder *encoder)
7454 {
7455 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7456 
7457 	drm_encoder_cleanup(encoder);
7458 	kfree(intel_encoder);
7459 }
7460 
7461 /* Cross check the actual hw state with our own modeset state tracking (and it's
7462  * internal consistency). */
7463 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state,
7464 					 struct drm_connector_state *conn_state)
7465 {
7466 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
7467 
7468 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
7469 		      connector->base.base.id,
7470 		      connector->base.name);
7471 
7472 	if (connector->get_hw_state(connector)) {
7473 		struct intel_encoder *encoder = connector->encoder;
7474 
7475 		I915_STATE_WARN(!crtc_state,
7476 			 "connector enabled without attached crtc\n");
7477 
7478 		if (!crtc_state)
7479 			return;
7480 
7481 		I915_STATE_WARN(!crtc_state->hw.active,
7482 				"connector is active, but attached crtc isn't\n");
7483 
7484 		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
7485 			return;
7486 
7487 		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
7488 			"atomic encoder doesn't match attached encoder\n");
7489 
7490 		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
7491 			"attached encoder crtc differs from connector crtc\n");
7492 	} else {
7493 		I915_STATE_WARN(crtc_state && crtc_state->hw.active,
7494 				"attached crtc is active, but connector isn't\n");
7495 		I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
7496 			"best encoder set without crtc!\n");
7497 	}
7498 }
7499 
7500 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7501 {
7502 	if (crtc_state->hw.enable && crtc_state->has_pch_encoder)
7503 		return crtc_state->fdi_lanes;
7504 
7505 	return 0;
7506 }
7507 
7508 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7509 				     struct intel_crtc_state *pipe_config)
7510 {
7511 	struct drm_i915_private *dev_priv = to_i915(dev);
7512 	struct drm_atomic_state *state = pipe_config->uapi.state;
7513 	struct intel_crtc *other_crtc;
7514 	struct intel_crtc_state *other_crtc_state;
7515 
7516 	DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7517 		      pipe_name(pipe), pipe_config->fdi_lanes);
7518 	if (pipe_config->fdi_lanes > 4) {
7519 		DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7520 			      pipe_name(pipe), pipe_config->fdi_lanes);
7521 		return -EINVAL;
7522 	}
7523 
7524 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7525 		if (pipe_config->fdi_lanes > 2) {
7526 			DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7527 				      pipe_config->fdi_lanes);
7528 			return -EINVAL;
7529 		} else {
7530 			return 0;
7531 		}
7532 	}
7533 
7534 	if (INTEL_NUM_PIPES(dev_priv) == 2)
7535 		return 0;
7536 
7537 	/* Ivybridge 3 pipe is really complicated */
7538 	switch (pipe) {
7539 	case PIPE_A:
7540 		return 0;
7541 	case PIPE_B:
7542 		if (pipe_config->fdi_lanes <= 2)
7543 			return 0;
7544 
7545 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7546 		other_crtc_state =
7547 			intel_atomic_get_crtc_state(state, other_crtc);
7548 		if (IS_ERR(other_crtc_state))
7549 			return PTR_ERR(other_crtc_state);
7550 
7551 		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7552 			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7553 				      pipe_name(pipe), pipe_config->fdi_lanes);
7554 			return -EINVAL;
7555 		}
7556 		return 0;
7557 	case PIPE_C:
7558 		if (pipe_config->fdi_lanes > 2) {
7559 			DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7560 				      pipe_name(pipe), pipe_config->fdi_lanes);
7561 			return -EINVAL;
7562 		}
7563 
7564 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7565 		other_crtc_state =
7566 			intel_atomic_get_crtc_state(state, other_crtc);
7567 		if (IS_ERR(other_crtc_state))
7568 			return PTR_ERR(other_crtc_state);
7569 
7570 		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7571 			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7572 			return -EINVAL;
7573 		}
7574 		return 0;
7575 	default:
7576 		BUG();
7577 	}
7578 }
7579 
7580 #define RETRY 1
7581 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7582 				       struct intel_crtc_state *pipe_config)
7583 {
7584 	struct drm_device *dev = intel_crtc->base.dev;
7585 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
7586 	int lane, link_bw, fdi_dotclock, ret;
7587 	bool needs_recompute = false;
7588 
7589 retry:
7590 	/* FDI is a binary signal running at ~2.7GHz, encoding
7591 	 * each output octet as 10 bits. The actual frequency
7592 	 * is stored as a divider into a 100MHz clock, and the
7593 	 * mode pixel clock is stored in units of 1KHz.
7594 	 * Hence the bw of each lane in terms of the mode signal
7595 	 * is:
7596 	 */
7597 	link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7598 
7599 	fdi_dotclock = adjusted_mode->crtc_clock;
7600 
7601 	lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7602 					   pipe_config->pipe_bpp);
7603 
7604 	pipe_config->fdi_lanes = lane;
7605 
7606 	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7607 			       link_bw, &pipe_config->fdi_m_n, false, false);
7608 
7609 	ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7610 	if (ret == -EDEADLK)
7611 		return ret;
7612 
7613 	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7614 		pipe_config->pipe_bpp -= 2*3;
7615 		DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7616 			      pipe_config->pipe_bpp);
7617 		needs_recompute = true;
7618 		pipe_config->bw_constrained = true;
7619 
7620 		goto retry;
7621 	}
7622 
7623 	if (needs_recompute)
7624 		return RETRY;
7625 
7626 	return ret;
7627 }
7628 
7629 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state)
7630 {
7631 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7632 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7633 
7634 	/* IPS only exists on ULT machines and is tied to pipe A. */
7635 	if (!hsw_crtc_supports_ips(crtc))
7636 		return false;
7637 
7638 	if (!i915_modparams.enable_ips)
7639 		return false;
7640 
7641 	if (crtc_state->pipe_bpp > 24)
7642 		return false;
7643 
7644 	/*
7645 	 * We compare against max which means we must take
7646 	 * the increased cdclk requirement into account when
7647 	 * calculating the new cdclk.
7648 	 *
7649 	 * Should measure whether using a lower cdclk w/o IPS
7650 	 */
7651 	if (IS_BROADWELL(dev_priv) &&
7652 	    crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100)
7653 		return false;
7654 
7655 	return true;
7656 }
7657 
7658 static bool hsw_compute_ips_config(struct intel_crtc_state *crtc_state)
7659 {
7660 	struct drm_i915_private *dev_priv =
7661 		to_i915(crtc_state->uapi.crtc->dev);
7662 	struct intel_atomic_state *intel_state =
7663 		to_intel_atomic_state(crtc_state->uapi.state);
7664 
7665 	if (!hsw_crtc_state_ips_capable(crtc_state))
7666 		return false;
7667 
7668 	/*
7669 	 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
7670 	 * enabled and disabled dynamically based on package C states,
7671 	 * user space can't make reliable use of the CRCs, so let's just
7672 	 * completely disable it.
7673 	 */
7674 	if (crtc_state->crc_enabled)
7675 		return false;
7676 
7677 	/* IPS should be fine as long as at least one plane is enabled. */
7678 	if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)))
7679 		return false;
7680 
7681 	/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
7682 	if (IS_BROADWELL(dev_priv) &&
7683 	    crtc_state->pixel_rate > intel_state->cdclk.logical.cdclk * 95 / 100)
7684 		return false;
7685 
7686 	return true;
7687 }
7688 
7689 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7690 {
7691 	const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7692 
7693 	/* GDG double wide on either pipe, otherwise pipe A only */
7694 	return INTEL_GEN(dev_priv) < 4 &&
7695 		(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7696 }
7697 
7698 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
7699 {
7700 	u32 pixel_rate;
7701 
7702 	pixel_rate = pipe_config->hw.adjusted_mode.crtc_clock;
7703 
7704 	/*
7705 	 * We only use IF-ID interlacing. If we ever use
7706 	 * PF-ID we'll need to adjust the pixel_rate here.
7707 	 */
7708 
7709 	if (pipe_config->pch_pfit.enabled) {
7710 		u64 pipe_w, pipe_h, pfit_w, pfit_h;
7711 		u32 pfit_size = pipe_config->pch_pfit.size;
7712 
7713 		pipe_w = pipe_config->pipe_src_w;
7714 		pipe_h = pipe_config->pipe_src_h;
7715 
7716 		pfit_w = (pfit_size >> 16) & 0xFFFF;
7717 		pfit_h = pfit_size & 0xFFFF;
7718 		if (pipe_w < pfit_w)
7719 			pipe_w = pfit_w;
7720 		if (pipe_h < pfit_h)
7721 			pipe_h = pfit_h;
7722 
7723 		if (WARN_ON(!pfit_w || !pfit_h))
7724 			return pixel_rate;
7725 
7726 		pixel_rate = div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h),
7727 				     pfit_w * pfit_h);
7728 	}
7729 
7730 	return pixel_rate;
7731 }
7732 
7733 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
7734 {
7735 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
7736 
7737 	if (HAS_GMCH(dev_priv))
7738 		/* FIXME calculate proper pipe pixel rate for GMCH pfit */
7739 		crtc_state->pixel_rate =
7740 			crtc_state->hw.adjusted_mode.crtc_clock;
7741 	else
7742 		crtc_state->pixel_rate =
7743 			ilk_pipe_pixel_rate(crtc_state);
7744 }
7745 
7746 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7747 				     struct intel_crtc_state *pipe_config)
7748 {
7749 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7750 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
7751 	int clock_limit = dev_priv->max_dotclk_freq;
7752 
7753 	if (INTEL_GEN(dev_priv) < 4) {
7754 		clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7755 
7756 		/*
7757 		 * Enable double wide mode when the dot clock
7758 		 * is > 90% of the (display) core speed.
7759 		 */
7760 		if (intel_crtc_supports_double_wide(crtc) &&
7761 		    adjusted_mode->crtc_clock > clock_limit) {
7762 			clock_limit = dev_priv->max_dotclk_freq;
7763 			pipe_config->double_wide = true;
7764 		}
7765 	}
7766 
7767 	if (adjusted_mode->crtc_clock > clock_limit) {
7768 		DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7769 			      adjusted_mode->crtc_clock, clock_limit,
7770 			      yesno(pipe_config->double_wide));
7771 		return -EINVAL;
7772 	}
7773 
7774 	if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
7775 	     pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) &&
7776 	     pipe_config->hw.ctm) {
7777 		/*
7778 		 * There is only one pipe CSC unit per pipe, and we need that
7779 		 * for output conversion from RGB->YCBCR. So if CTM is already
7780 		 * applied we can't support YCBCR420 output.
7781 		 */
7782 		DRM_DEBUG_KMS("YCBCR420 and CTM together are not possible\n");
7783 		return -EINVAL;
7784 	}
7785 
7786 	/*
7787 	 * Pipe horizontal size must be even in:
7788 	 * - DVO ganged mode
7789 	 * - LVDS dual channel mode
7790 	 * - Double wide pipe
7791 	 */
7792 	if (pipe_config->pipe_src_w & 1) {
7793 		if (pipe_config->double_wide) {
7794 			DRM_DEBUG_KMS("Odd pipe source width not supported with double wide pipe\n");
7795 			return -EINVAL;
7796 		}
7797 
7798 		if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7799 		    intel_is_dual_link_lvds(dev_priv)) {
7800 			DRM_DEBUG_KMS("Odd pipe source width not supported with dual link LVDS\n");
7801 			return -EINVAL;
7802 		}
7803 	}
7804 
7805 	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
7806 	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7807 	 */
7808 	if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
7809 		adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7810 		return -EINVAL;
7811 
7812 	intel_crtc_compute_pixel_rate(pipe_config);
7813 
7814 	if (pipe_config->has_pch_encoder)
7815 		return ironlake_fdi_compute_config(crtc, pipe_config);
7816 
7817 	return 0;
7818 }
7819 
7820 static void
7821 intel_reduce_m_n_ratio(u32 *num, u32 *den)
7822 {
7823 	while (*num > DATA_LINK_M_N_MASK ||
7824 	       *den > DATA_LINK_M_N_MASK) {
7825 		*num >>= 1;
7826 		*den >>= 1;
7827 	}
7828 }
7829 
7830 static void compute_m_n(unsigned int m, unsigned int n,
7831 			u32 *ret_m, u32 *ret_n,
7832 			bool constant_n)
7833 {
7834 	/*
7835 	 * Several DP dongles in particular seem to be fussy about
7836 	 * too large link M/N values. Give N value as 0x8000 that
7837 	 * should be acceptable by specific devices. 0x8000 is the
7838 	 * specified fixed N value for asynchronous clock mode,
7839 	 * which the devices expect also in synchronous clock mode.
7840 	 */
7841 	if (constant_n)
7842 		*ret_n = 0x8000;
7843 	else
7844 		*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7845 
7846 	*ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
7847 	intel_reduce_m_n_ratio(ret_m, ret_n);
7848 }
7849 
7850 void
7851 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes,
7852 		       int pixel_clock, int link_clock,
7853 		       struct intel_link_m_n *m_n,
7854 		       bool constant_n, bool fec_enable)
7855 {
7856 	u32 data_clock = bits_per_pixel * pixel_clock;
7857 
7858 	if (fec_enable)
7859 		data_clock = intel_dp_mode_to_fec_clock(data_clock);
7860 
7861 	m_n->tu = 64;
7862 	compute_m_n(data_clock,
7863 		    link_clock * nlanes * 8,
7864 		    &m_n->gmch_m, &m_n->gmch_n,
7865 		    constant_n);
7866 
7867 	compute_m_n(pixel_clock, link_clock,
7868 		    &m_n->link_m, &m_n->link_n,
7869 		    constant_n);
7870 }
7871 
7872 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv)
7873 {
7874 	/*
7875 	 * There may be no VBT; and if the BIOS enabled SSC we can
7876 	 * just keep using it to avoid unnecessary flicker.  Whereas if the
7877 	 * BIOS isn't using it, don't assume it will work even if the VBT
7878 	 * indicates as much.
7879 	 */
7880 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7881 		bool bios_lvds_use_ssc = I915_READ(PCH_DREF_CONTROL) &
7882 			DREF_SSC1_ENABLE;
7883 
7884 		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
7885 			DRM_DEBUG_KMS("SSC %s by BIOS, overriding VBT which says %s\n",
7886 				      enableddisabled(bios_lvds_use_ssc),
7887 				      enableddisabled(dev_priv->vbt.lvds_use_ssc));
7888 			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
7889 		}
7890 	}
7891 }
7892 
7893 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7894 {
7895 	if (i915_modparams.panel_use_ssc >= 0)
7896 		return i915_modparams.panel_use_ssc != 0;
7897 	return dev_priv->vbt.lvds_use_ssc
7898 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7899 }
7900 
7901 static u32 pnv_dpll_compute_fp(struct dpll *dpll)
7902 {
7903 	return (1 << dpll->n) << 16 | dpll->m2;
7904 }
7905 
7906 static u32 i9xx_dpll_compute_fp(struct dpll *dpll)
7907 {
7908 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7909 }
7910 
7911 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7912 				     struct intel_crtc_state *crtc_state,
7913 				     struct dpll *reduced_clock)
7914 {
7915 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7916 	u32 fp, fp2 = 0;
7917 
7918 	if (IS_PINEVIEW(dev_priv)) {
7919 		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7920 		if (reduced_clock)
7921 			fp2 = pnv_dpll_compute_fp(reduced_clock);
7922 	} else {
7923 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7924 		if (reduced_clock)
7925 			fp2 = i9xx_dpll_compute_fp(reduced_clock);
7926 	}
7927 
7928 	crtc_state->dpll_hw_state.fp0 = fp;
7929 
7930 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7931 	    reduced_clock) {
7932 		crtc_state->dpll_hw_state.fp1 = fp2;
7933 	} else {
7934 		crtc_state->dpll_hw_state.fp1 = fp;
7935 	}
7936 }
7937 
7938 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7939 		pipe)
7940 {
7941 	u32 reg_val;
7942 
7943 	/*
7944 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7945 	 * and set it to a reasonable value instead.
7946 	 */
7947 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7948 	reg_val &= 0xffffff00;
7949 	reg_val |= 0x00000030;
7950 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7951 
7952 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7953 	reg_val &= 0x00ffffff;
7954 	reg_val |= 0x8c000000;
7955 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7956 
7957 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7958 	reg_val &= 0xffffff00;
7959 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7960 
7961 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7962 	reg_val &= 0x00ffffff;
7963 	reg_val |= 0xb0000000;
7964 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7965 }
7966 
7967 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
7968 					 const struct intel_link_m_n *m_n)
7969 {
7970 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7971 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7972 	enum pipe pipe = crtc->pipe;
7973 
7974 	I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7975 	I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7976 	I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7977 	I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7978 }
7979 
7980 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv,
7981 				 enum transcoder transcoder)
7982 {
7983 	if (IS_HASWELL(dev_priv))
7984 		return transcoder == TRANSCODER_EDP;
7985 
7986 	/*
7987 	 * Strictly speaking some registers are available before
7988 	 * gen7, but we only support DRRS on gen7+
7989 	 */
7990 	return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv);
7991 }
7992 
7993 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
7994 					 const struct intel_link_m_n *m_n,
7995 					 const struct intel_link_m_n *m2_n2)
7996 {
7997 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7998 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7999 	enum pipe pipe = crtc->pipe;
8000 	enum transcoder transcoder = crtc_state->cpu_transcoder;
8001 
8002 	if (INTEL_GEN(dev_priv) >= 5) {
8003 		I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
8004 		I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
8005 		I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
8006 		I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
8007 		/*
8008 		 *  M2_N2 registers are set only if DRRS is supported
8009 		 * (to make sure the registers are not unnecessarily accessed).
8010 		 */
8011 		if (m2_n2 && crtc_state->has_drrs &&
8012 		    transcoder_has_m2_n2(dev_priv, transcoder)) {
8013 			I915_WRITE(PIPE_DATA_M2(transcoder),
8014 					TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
8015 			I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
8016 			I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
8017 			I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
8018 		}
8019 	} else {
8020 		I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
8021 		I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
8022 		I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
8023 		I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
8024 	}
8025 }
8026 
8027 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n)
8028 {
8029 	const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
8030 
8031 	if (m_n == M1_N1) {
8032 		dp_m_n = &crtc_state->dp_m_n;
8033 		dp_m2_n2 = &crtc_state->dp_m2_n2;
8034 	} else if (m_n == M2_N2) {
8035 
8036 		/*
8037 		 * M2_N2 registers are not supported. Hence m2_n2 divider value
8038 		 * needs to be programmed into M1_N1.
8039 		 */
8040 		dp_m_n = &crtc_state->dp_m2_n2;
8041 	} else {
8042 		DRM_ERROR("Unsupported divider value\n");
8043 		return;
8044 	}
8045 
8046 	if (crtc_state->has_pch_encoder)
8047 		intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n);
8048 	else
8049 		intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2);
8050 }
8051 
8052 static void vlv_compute_dpll(struct intel_crtc *crtc,
8053 			     struct intel_crtc_state *pipe_config)
8054 {
8055 	pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
8056 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8057 	if (crtc->pipe != PIPE_A)
8058 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8059 
8060 	/* DPLL not used with DSI, but still need the rest set up */
8061 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8062 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
8063 			DPLL_EXT_BUFFER_ENABLE_VLV;
8064 
8065 	pipe_config->dpll_hw_state.dpll_md =
8066 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8067 }
8068 
8069 static void chv_compute_dpll(struct intel_crtc *crtc,
8070 			     struct intel_crtc_state *pipe_config)
8071 {
8072 	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
8073 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8074 	if (crtc->pipe != PIPE_A)
8075 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8076 
8077 	/* DPLL not used with DSI, but still need the rest set up */
8078 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8079 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
8080 
8081 	pipe_config->dpll_hw_state.dpll_md =
8082 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8083 }
8084 
8085 static void vlv_prepare_pll(struct intel_crtc *crtc,
8086 			    const struct intel_crtc_state *pipe_config)
8087 {
8088 	struct drm_device *dev = crtc->base.dev;
8089 	struct drm_i915_private *dev_priv = to_i915(dev);
8090 	enum pipe pipe = crtc->pipe;
8091 	u32 mdiv;
8092 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
8093 	u32 coreclk, reg_val;
8094 
8095 	/* Enable Refclk */
8096 	I915_WRITE(DPLL(pipe),
8097 		   pipe_config->dpll_hw_state.dpll &
8098 		   ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
8099 
8100 	/* No need to actually set up the DPLL with DSI */
8101 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8102 		return;
8103 
8104 	vlv_dpio_get(dev_priv);
8105 
8106 	bestn = pipe_config->dpll.n;
8107 	bestm1 = pipe_config->dpll.m1;
8108 	bestm2 = pipe_config->dpll.m2;
8109 	bestp1 = pipe_config->dpll.p1;
8110 	bestp2 = pipe_config->dpll.p2;
8111 
8112 	/* See eDP HDMI DPIO driver vbios notes doc */
8113 
8114 	/* PLL B needs special handling */
8115 	if (pipe == PIPE_B)
8116 		vlv_pllb_recal_opamp(dev_priv, pipe);
8117 
8118 	/* Set up Tx target for periodic Rcomp update */
8119 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
8120 
8121 	/* Disable target IRef on PLL */
8122 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
8123 	reg_val &= 0x00ffffff;
8124 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
8125 
8126 	/* Disable fast lock */
8127 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
8128 
8129 	/* Set idtafcrecal before PLL is enabled */
8130 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
8131 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
8132 	mdiv |= ((bestn << DPIO_N_SHIFT));
8133 	mdiv |= (1 << DPIO_K_SHIFT);
8134 
8135 	/*
8136 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
8137 	 * but we don't support that).
8138 	 * Note: don't use the DAC post divider as it seems unstable.
8139 	 */
8140 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
8141 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8142 
8143 	mdiv |= DPIO_ENABLE_CALIBRATION;
8144 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8145 
8146 	/* Set HBR and RBR LPF coefficients */
8147 	if (pipe_config->port_clock == 162000 ||
8148 	    intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
8149 	    intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
8150 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8151 				 0x009f0003);
8152 	else
8153 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8154 				 0x00d0000f);
8155 
8156 	if (intel_crtc_has_dp_encoder(pipe_config)) {
8157 		/* Use SSC source */
8158 		if (pipe == PIPE_A)
8159 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8160 					 0x0df40000);
8161 		else
8162 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8163 					 0x0df70000);
8164 	} else { /* HDMI or VGA */
8165 		/* Use bend source */
8166 		if (pipe == PIPE_A)
8167 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8168 					 0x0df70000);
8169 		else
8170 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8171 					 0x0df40000);
8172 	}
8173 
8174 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
8175 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
8176 	if (intel_crtc_has_dp_encoder(pipe_config))
8177 		coreclk |= 0x01000000;
8178 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
8179 
8180 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
8181 
8182 	vlv_dpio_put(dev_priv);
8183 }
8184 
8185 static void chv_prepare_pll(struct intel_crtc *crtc,
8186 			    const struct intel_crtc_state *pipe_config)
8187 {
8188 	struct drm_device *dev = crtc->base.dev;
8189 	struct drm_i915_private *dev_priv = to_i915(dev);
8190 	enum pipe pipe = crtc->pipe;
8191 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
8192 	u32 loopfilter, tribuf_calcntr;
8193 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
8194 	u32 dpio_val;
8195 	int vco;
8196 
8197 	/* Enable Refclk and SSC */
8198 	I915_WRITE(DPLL(pipe),
8199 		   pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
8200 
8201 	/* No need to actually set up the DPLL with DSI */
8202 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8203 		return;
8204 
8205 	bestn = pipe_config->dpll.n;
8206 	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
8207 	bestm1 = pipe_config->dpll.m1;
8208 	bestm2 = pipe_config->dpll.m2 >> 22;
8209 	bestp1 = pipe_config->dpll.p1;
8210 	bestp2 = pipe_config->dpll.p2;
8211 	vco = pipe_config->dpll.vco;
8212 	dpio_val = 0;
8213 	loopfilter = 0;
8214 
8215 	vlv_dpio_get(dev_priv);
8216 
8217 	/* p1 and p2 divider */
8218 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8219 			5 << DPIO_CHV_S1_DIV_SHIFT |
8220 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8221 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8222 			1 << DPIO_CHV_K_DIV_SHIFT);
8223 
8224 	/* Feedback post-divider - m2 */
8225 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8226 
8227 	/* Feedback refclk divider - n and m1 */
8228 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8229 			DPIO_CHV_M1_DIV_BY_2 |
8230 			1 << DPIO_CHV_N_DIV_SHIFT);
8231 
8232 	/* M2 fraction division */
8233 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8234 
8235 	/* M2 fraction division enable */
8236 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8237 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8238 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8239 	if (bestm2_frac)
8240 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8241 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8242 
8243 	/* Program digital lock detect threshold */
8244 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8245 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8246 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8247 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8248 	if (!bestm2_frac)
8249 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8250 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8251 
8252 	/* Loop filter */
8253 	if (vco == 5400000) {
8254 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8255 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8256 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8257 		tribuf_calcntr = 0x9;
8258 	} else if (vco <= 6200000) {
8259 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8260 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8261 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8262 		tribuf_calcntr = 0x9;
8263 	} else if (vco <= 6480000) {
8264 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8265 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8266 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8267 		tribuf_calcntr = 0x8;
8268 	} else {
8269 		/* Not supported. Apply the same limits as in the max case */
8270 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8271 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8272 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8273 		tribuf_calcntr = 0;
8274 	}
8275 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8276 
8277 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8278 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8279 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8280 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8281 
8282 	/* AFC Recal */
8283 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8284 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8285 			DPIO_AFC_RECAL);
8286 
8287 	vlv_dpio_put(dev_priv);
8288 }
8289 
8290 /**
8291  * vlv_force_pll_on - forcibly enable just the PLL
8292  * @dev_priv: i915 private structure
8293  * @pipe: pipe PLL to enable
8294  * @dpll: PLL configuration
8295  *
8296  * Enable the PLL for @pipe using the supplied @dpll config. To be used
8297  * in cases where we need the PLL enabled even when @pipe is not going to
8298  * be enabled.
8299  */
8300 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8301 		     const struct dpll *dpll)
8302 {
8303 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8304 	struct intel_crtc_state *pipe_config;
8305 
8306 	pipe_config = intel_crtc_state_alloc(crtc);
8307 	if (!pipe_config)
8308 		return -ENOMEM;
8309 
8310 	pipe_config->cpu_transcoder = (enum transcoder)pipe;
8311 	pipe_config->pixel_multiplier = 1;
8312 	pipe_config->dpll = *dpll;
8313 
8314 	if (IS_CHERRYVIEW(dev_priv)) {
8315 		chv_compute_dpll(crtc, pipe_config);
8316 		chv_prepare_pll(crtc, pipe_config);
8317 		chv_enable_pll(crtc, pipe_config);
8318 	} else {
8319 		vlv_compute_dpll(crtc, pipe_config);
8320 		vlv_prepare_pll(crtc, pipe_config);
8321 		vlv_enable_pll(crtc, pipe_config);
8322 	}
8323 
8324 	kfree(pipe_config);
8325 
8326 	return 0;
8327 }
8328 
8329 /**
8330  * vlv_force_pll_off - forcibly disable just the PLL
8331  * @dev_priv: i915 private structure
8332  * @pipe: pipe PLL to disable
8333  *
8334  * Disable the PLL for @pipe. To be used in cases where we need
8335  * the PLL enabled even when @pipe is not going to be enabled.
8336  */
8337 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8338 {
8339 	if (IS_CHERRYVIEW(dev_priv))
8340 		chv_disable_pll(dev_priv, pipe);
8341 	else
8342 		vlv_disable_pll(dev_priv, pipe);
8343 }
8344 
8345 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8346 			      struct intel_crtc_state *crtc_state,
8347 			      struct dpll *reduced_clock)
8348 {
8349 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8350 	u32 dpll;
8351 	struct dpll *clock = &crtc_state->dpll;
8352 
8353 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8354 
8355 	dpll = DPLL_VGA_MODE_DIS;
8356 
8357 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8358 		dpll |= DPLLB_MODE_LVDS;
8359 	else
8360 		dpll |= DPLLB_MODE_DAC_SERIAL;
8361 
8362 	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8363 	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8364 		dpll |= (crtc_state->pixel_multiplier - 1)
8365 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
8366 	}
8367 
8368 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8369 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8370 		dpll |= DPLL_SDVO_HIGH_SPEED;
8371 
8372 	if (intel_crtc_has_dp_encoder(crtc_state))
8373 		dpll |= DPLL_SDVO_HIGH_SPEED;
8374 
8375 	/* compute bitmask from p1 value */
8376 	if (IS_PINEVIEW(dev_priv))
8377 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8378 	else {
8379 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8380 		if (IS_G4X(dev_priv) && reduced_clock)
8381 			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8382 	}
8383 	switch (clock->p2) {
8384 	case 5:
8385 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8386 		break;
8387 	case 7:
8388 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8389 		break;
8390 	case 10:
8391 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8392 		break;
8393 	case 14:
8394 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8395 		break;
8396 	}
8397 	if (INTEL_GEN(dev_priv) >= 4)
8398 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8399 
8400 	if (crtc_state->sdvo_tv_clock)
8401 		dpll |= PLL_REF_INPUT_TVCLKINBC;
8402 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8403 		 intel_panel_use_ssc(dev_priv))
8404 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8405 	else
8406 		dpll |= PLL_REF_INPUT_DREFCLK;
8407 
8408 	dpll |= DPLL_VCO_ENABLE;
8409 	crtc_state->dpll_hw_state.dpll = dpll;
8410 
8411 	if (INTEL_GEN(dev_priv) >= 4) {
8412 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8413 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
8414 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
8415 	}
8416 }
8417 
8418 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8419 			      struct intel_crtc_state *crtc_state,
8420 			      struct dpll *reduced_clock)
8421 {
8422 	struct drm_device *dev = crtc->base.dev;
8423 	struct drm_i915_private *dev_priv = to_i915(dev);
8424 	u32 dpll;
8425 	struct dpll *clock = &crtc_state->dpll;
8426 
8427 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8428 
8429 	dpll = DPLL_VGA_MODE_DIS;
8430 
8431 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8432 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8433 	} else {
8434 		if (clock->p1 == 2)
8435 			dpll |= PLL_P1_DIVIDE_BY_TWO;
8436 		else
8437 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8438 		if (clock->p2 == 4)
8439 			dpll |= PLL_P2_DIVIDE_BY_4;
8440 	}
8441 
8442 	/*
8443 	 * Bspec:
8444 	 * "[Almador Errata}: For the correct operation of the muxed DVO pins
8445 	 *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
8446 	 *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
8447 	 *  Enable) must be set to “1” in both the DPLL A Control Register
8448 	 *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
8449 	 *
8450 	 * For simplicity We simply keep both bits always enabled in
8451 	 * both DPLLS. The spec says we should disable the DVO 2X clock
8452 	 * when not needed, but this seems to work fine in practice.
8453 	 */
8454 	if (IS_I830(dev_priv) ||
8455 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8456 		dpll |= DPLL_DVO_2X_MODE;
8457 
8458 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8459 	    intel_panel_use_ssc(dev_priv))
8460 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8461 	else
8462 		dpll |= PLL_REF_INPUT_DREFCLK;
8463 
8464 	dpll |= DPLL_VCO_ENABLE;
8465 	crtc_state->dpll_hw_state.dpll = dpll;
8466 }
8467 
8468 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state)
8469 {
8470 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8471 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8472 	enum pipe pipe = crtc->pipe;
8473 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8474 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
8475 	u32 crtc_vtotal, crtc_vblank_end;
8476 	int vsyncshift = 0;
8477 
8478 	/* We need to be careful not to changed the adjusted mode, for otherwise
8479 	 * the hw state checker will get angry at the mismatch. */
8480 	crtc_vtotal = adjusted_mode->crtc_vtotal;
8481 	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8482 
8483 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8484 		/* the chip adds 2 halflines automatically */
8485 		crtc_vtotal -= 1;
8486 		crtc_vblank_end -= 1;
8487 
8488 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8489 			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8490 		else
8491 			vsyncshift = adjusted_mode->crtc_hsync_start -
8492 				adjusted_mode->crtc_htotal / 2;
8493 		if (vsyncshift < 0)
8494 			vsyncshift += adjusted_mode->crtc_htotal;
8495 	}
8496 
8497 	if (INTEL_GEN(dev_priv) > 3)
8498 		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8499 
8500 	I915_WRITE(HTOTAL(cpu_transcoder),
8501 		   (adjusted_mode->crtc_hdisplay - 1) |
8502 		   ((adjusted_mode->crtc_htotal - 1) << 16));
8503 	I915_WRITE(HBLANK(cpu_transcoder),
8504 		   (adjusted_mode->crtc_hblank_start - 1) |
8505 		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
8506 	I915_WRITE(HSYNC(cpu_transcoder),
8507 		   (adjusted_mode->crtc_hsync_start - 1) |
8508 		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
8509 
8510 	I915_WRITE(VTOTAL(cpu_transcoder),
8511 		   (adjusted_mode->crtc_vdisplay - 1) |
8512 		   ((crtc_vtotal - 1) << 16));
8513 	I915_WRITE(VBLANK(cpu_transcoder),
8514 		   (adjusted_mode->crtc_vblank_start - 1) |
8515 		   ((crtc_vblank_end - 1) << 16));
8516 	I915_WRITE(VSYNC(cpu_transcoder),
8517 		   (adjusted_mode->crtc_vsync_start - 1) |
8518 		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
8519 
8520 	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8521 	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8522 	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8523 	 * bits. */
8524 	if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8525 	    (pipe == PIPE_B || pipe == PIPE_C))
8526 		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8527 
8528 }
8529 
8530 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
8531 {
8532 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8533 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8534 	enum pipe pipe = crtc->pipe;
8535 
8536 	/* pipesrc controls the size that is scaled from, which should
8537 	 * always be the user's requested size.
8538 	 */
8539 	I915_WRITE(PIPESRC(pipe),
8540 		   ((crtc_state->pipe_src_w - 1) << 16) |
8541 		   (crtc_state->pipe_src_h - 1));
8542 }
8543 
8544 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state)
8545 {
8546 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
8547 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8548 
8549 	if (IS_GEN(dev_priv, 2))
8550 		return false;
8551 
8552 	if (INTEL_GEN(dev_priv) >= 9 ||
8553 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
8554 		return I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW;
8555 	else
8556 		return I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK;
8557 }
8558 
8559 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8560 				   struct intel_crtc_state *pipe_config)
8561 {
8562 	struct drm_device *dev = crtc->base.dev;
8563 	struct drm_i915_private *dev_priv = to_i915(dev);
8564 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8565 	u32 tmp;
8566 
8567 	tmp = I915_READ(HTOTAL(cpu_transcoder));
8568 	pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8569 	pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8570 
8571 	if (!transcoder_is_dsi(cpu_transcoder)) {
8572 		tmp = I915_READ(HBLANK(cpu_transcoder));
8573 		pipe_config->hw.adjusted_mode.crtc_hblank_start =
8574 							(tmp & 0xffff) + 1;
8575 		pipe_config->hw.adjusted_mode.crtc_hblank_end =
8576 						((tmp >> 16) & 0xffff) + 1;
8577 	}
8578 	tmp = I915_READ(HSYNC(cpu_transcoder));
8579 	pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8580 	pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8581 
8582 	tmp = I915_READ(VTOTAL(cpu_transcoder));
8583 	pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8584 	pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8585 
8586 	if (!transcoder_is_dsi(cpu_transcoder)) {
8587 		tmp = I915_READ(VBLANK(cpu_transcoder));
8588 		pipe_config->hw.adjusted_mode.crtc_vblank_start =
8589 							(tmp & 0xffff) + 1;
8590 		pipe_config->hw.adjusted_mode.crtc_vblank_end =
8591 						((tmp >> 16) & 0xffff) + 1;
8592 	}
8593 	tmp = I915_READ(VSYNC(cpu_transcoder));
8594 	pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8595 	pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8596 
8597 	if (intel_pipe_is_interlaced(pipe_config)) {
8598 		pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8599 		pipe_config->hw.adjusted_mode.crtc_vtotal += 1;
8600 		pipe_config->hw.adjusted_mode.crtc_vblank_end += 1;
8601 	}
8602 }
8603 
8604 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8605 				    struct intel_crtc_state *pipe_config)
8606 {
8607 	struct drm_device *dev = crtc->base.dev;
8608 	struct drm_i915_private *dev_priv = to_i915(dev);
8609 	u32 tmp;
8610 
8611 	tmp = I915_READ(PIPESRC(crtc->pipe));
8612 	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8613 	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8614 
8615 	pipe_config->hw.mode.vdisplay = pipe_config->pipe_src_h;
8616 	pipe_config->hw.mode.hdisplay = pipe_config->pipe_src_w;
8617 }
8618 
8619 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8620 				 struct intel_crtc_state *pipe_config)
8621 {
8622 	mode->hdisplay = pipe_config->hw.adjusted_mode.crtc_hdisplay;
8623 	mode->htotal = pipe_config->hw.adjusted_mode.crtc_htotal;
8624 	mode->hsync_start = pipe_config->hw.adjusted_mode.crtc_hsync_start;
8625 	mode->hsync_end = pipe_config->hw.adjusted_mode.crtc_hsync_end;
8626 
8627 	mode->vdisplay = pipe_config->hw.adjusted_mode.crtc_vdisplay;
8628 	mode->vtotal = pipe_config->hw.adjusted_mode.crtc_vtotal;
8629 	mode->vsync_start = pipe_config->hw.adjusted_mode.crtc_vsync_start;
8630 	mode->vsync_end = pipe_config->hw.adjusted_mode.crtc_vsync_end;
8631 
8632 	mode->flags = pipe_config->hw.adjusted_mode.flags;
8633 	mode->type = DRM_MODE_TYPE_DRIVER;
8634 
8635 	mode->clock = pipe_config->hw.adjusted_mode.crtc_clock;
8636 
8637 	mode->hsync = drm_mode_hsync(mode);
8638 	mode->vrefresh = drm_mode_vrefresh(mode);
8639 	drm_mode_set_name(mode);
8640 }
8641 
8642 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
8643 {
8644 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8645 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8646 	u32 pipeconf;
8647 
8648 	pipeconf = 0;
8649 
8650 	/* we keep both pipes enabled on 830 */
8651 	if (IS_I830(dev_priv))
8652 		pipeconf |= I915_READ(PIPECONF(crtc->pipe)) & PIPECONF_ENABLE;
8653 
8654 	if (crtc_state->double_wide)
8655 		pipeconf |= PIPECONF_DOUBLE_WIDE;
8656 
8657 	/* only g4x and later have fancy bpc/dither controls */
8658 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8659 	    IS_CHERRYVIEW(dev_priv)) {
8660 		/* Bspec claims that we can't use dithering for 30bpp pipes. */
8661 		if (crtc_state->dither && crtc_state->pipe_bpp != 30)
8662 			pipeconf |= PIPECONF_DITHER_EN |
8663 				    PIPECONF_DITHER_TYPE_SP;
8664 
8665 		switch (crtc_state->pipe_bpp) {
8666 		case 18:
8667 			pipeconf |= PIPECONF_6BPC;
8668 			break;
8669 		case 24:
8670 			pipeconf |= PIPECONF_8BPC;
8671 			break;
8672 		case 30:
8673 			pipeconf |= PIPECONF_10BPC;
8674 			break;
8675 		default:
8676 			/* Case prevented by intel_choose_pipe_bpp_dither. */
8677 			BUG();
8678 		}
8679 	}
8680 
8681 	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8682 		if (INTEL_GEN(dev_priv) < 4 ||
8683 		    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8684 			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8685 		else
8686 			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8687 	} else {
8688 		pipeconf |= PIPECONF_PROGRESSIVE;
8689 	}
8690 
8691 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8692 	     crtc_state->limited_color_range)
8693 		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8694 
8695 	pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
8696 
8697 	pipeconf |= PIPECONF_FRAME_START_DELAY(0);
8698 
8699 	I915_WRITE(PIPECONF(crtc->pipe), pipeconf);
8700 	POSTING_READ(PIPECONF(crtc->pipe));
8701 }
8702 
8703 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8704 				   struct intel_crtc_state *crtc_state)
8705 {
8706 	struct drm_device *dev = crtc->base.dev;
8707 	struct drm_i915_private *dev_priv = to_i915(dev);
8708 	const struct intel_limit *limit;
8709 	int refclk = 48000;
8710 
8711 	memset(&crtc_state->dpll_hw_state, 0,
8712 	       sizeof(crtc_state->dpll_hw_state));
8713 
8714 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8715 		if (intel_panel_use_ssc(dev_priv)) {
8716 			refclk = dev_priv->vbt.lvds_ssc_freq;
8717 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8718 		}
8719 
8720 		limit = &intel_limits_i8xx_lvds;
8721 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8722 		limit = &intel_limits_i8xx_dvo;
8723 	} else {
8724 		limit = &intel_limits_i8xx_dac;
8725 	}
8726 
8727 	if (!crtc_state->clock_set &&
8728 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8729 				 refclk, NULL, &crtc_state->dpll)) {
8730 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8731 		return -EINVAL;
8732 	}
8733 
8734 	i8xx_compute_dpll(crtc, crtc_state, NULL);
8735 
8736 	return 0;
8737 }
8738 
8739 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8740 				  struct intel_crtc_state *crtc_state)
8741 {
8742 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8743 	const struct intel_limit *limit;
8744 	int refclk = 96000;
8745 
8746 	memset(&crtc_state->dpll_hw_state, 0,
8747 	       sizeof(crtc_state->dpll_hw_state));
8748 
8749 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8750 		if (intel_panel_use_ssc(dev_priv)) {
8751 			refclk = dev_priv->vbt.lvds_ssc_freq;
8752 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8753 		}
8754 
8755 		if (intel_is_dual_link_lvds(dev_priv))
8756 			limit = &intel_limits_g4x_dual_channel_lvds;
8757 		else
8758 			limit = &intel_limits_g4x_single_channel_lvds;
8759 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8760 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8761 		limit = &intel_limits_g4x_hdmi;
8762 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8763 		limit = &intel_limits_g4x_sdvo;
8764 	} else {
8765 		/* The option is for other outputs */
8766 		limit = &intel_limits_i9xx_sdvo;
8767 	}
8768 
8769 	if (!crtc_state->clock_set &&
8770 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8771 				refclk, NULL, &crtc_state->dpll)) {
8772 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8773 		return -EINVAL;
8774 	}
8775 
8776 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8777 
8778 	return 0;
8779 }
8780 
8781 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8782 				  struct intel_crtc_state *crtc_state)
8783 {
8784 	struct drm_device *dev = crtc->base.dev;
8785 	struct drm_i915_private *dev_priv = to_i915(dev);
8786 	const struct intel_limit *limit;
8787 	int refclk = 96000;
8788 
8789 	memset(&crtc_state->dpll_hw_state, 0,
8790 	       sizeof(crtc_state->dpll_hw_state));
8791 
8792 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8793 		if (intel_panel_use_ssc(dev_priv)) {
8794 			refclk = dev_priv->vbt.lvds_ssc_freq;
8795 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8796 		}
8797 
8798 		limit = &intel_limits_pineview_lvds;
8799 	} else {
8800 		limit = &intel_limits_pineview_sdvo;
8801 	}
8802 
8803 	if (!crtc_state->clock_set &&
8804 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8805 				refclk, NULL, &crtc_state->dpll)) {
8806 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8807 		return -EINVAL;
8808 	}
8809 
8810 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8811 
8812 	return 0;
8813 }
8814 
8815 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8816 				   struct intel_crtc_state *crtc_state)
8817 {
8818 	struct drm_device *dev = crtc->base.dev;
8819 	struct drm_i915_private *dev_priv = to_i915(dev);
8820 	const struct intel_limit *limit;
8821 	int refclk = 96000;
8822 
8823 	memset(&crtc_state->dpll_hw_state, 0,
8824 	       sizeof(crtc_state->dpll_hw_state));
8825 
8826 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8827 		if (intel_panel_use_ssc(dev_priv)) {
8828 			refclk = dev_priv->vbt.lvds_ssc_freq;
8829 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8830 		}
8831 
8832 		limit = &intel_limits_i9xx_lvds;
8833 	} else {
8834 		limit = &intel_limits_i9xx_sdvo;
8835 	}
8836 
8837 	if (!crtc_state->clock_set &&
8838 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8839 				 refclk, NULL, &crtc_state->dpll)) {
8840 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8841 		return -EINVAL;
8842 	}
8843 
8844 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8845 
8846 	return 0;
8847 }
8848 
8849 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8850 				  struct intel_crtc_state *crtc_state)
8851 {
8852 	int refclk = 100000;
8853 	const struct intel_limit *limit = &intel_limits_chv;
8854 
8855 	memset(&crtc_state->dpll_hw_state, 0,
8856 	       sizeof(crtc_state->dpll_hw_state));
8857 
8858 	if (!crtc_state->clock_set &&
8859 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8860 				refclk, NULL, &crtc_state->dpll)) {
8861 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8862 		return -EINVAL;
8863 	}
8864 
8865 	chv_compute_dpll(crtc, crtc_state);
8866 
8867 	return 0;
8868 }
8869 
8870 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8871 				  struct intel_crtc_state *crtc_state)
8872 {
8873 	int refclk = 100000;
8874 	const struct intel_limit *limit = &intel_limits_vlv;
8875 
8876 	memset(&crtc_state->dpll_hw_state, 0,
8877 	       sizeof(crtc_state->dpll_hw_state));
8878 
8879 	if (!crtc_state->clock_set &&
8880 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8881 				refclk, NULL, &crtc_state->dpll)) {
8882 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8883 		return -EINVAL;
8884 	}
8885 
8886 	vlv_compute_dpll(crtc, crtc_state);
8887 
8888 	return 0;
8889 }
8890 
8891 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv)
8892 {
8893 	if (IS_I830(dev_priv))
8894 		return false;
8895 
8896 	return INTEL_GEN(dev_priv) >= 4 ||
8897 		IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
8898 }
8899 
8900 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8901 				 struct intel_crtc_state *pipe_config)
8902 {
8903 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8904 	u32 tmp;
8905 
8906 	if (!i9xx_has_pfit(dev_priv))
8907 		return;
8908 
8909 	tmp = I915_READ(PFIT_CONTROL);
8910 	if (!(tmp & PFIT_ENABLE))
8911 		return;
8912 
8913 	/* Check whether the pfit is attached to our pipe. */
8914 	if (INTEL_GEN(dev_priv) < 4) {
8915 		if (crtc->pipe != PIPE_B)
8916 			return;
8917 	} else {
8918 		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8919 			return;
8920 	}
8921 
8922 	pipe_config->gmch_pfit.control = tmp;
8923 	pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8924 }
8925 
8926 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8927 			       struct intel_crtc_state *pipe_config)
8928 {
8929 	struct drm_device *dev = crtc->base.dev;
8930 	struct drm_i915_private *dev_priv = to_i915(dev);
8931 	enum pipe pipe = crtc->pipe;
8932 	struct dpll clock;
8933 	u32 mdiv;
8934 	int refclk = 100000;
8935 
8936 	/* In case of DSI, DPLL will not be used */
8937 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8938 		return;
8939 
8940 	vlv_dpio_get(dev_priv);
8941 	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8942 	vlv_dpio_put(dev_priv);
8943 
8944 	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8945 	clock.m2 = mdiv & DPIO_M2DIV_MASK;
8946 	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8947 	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8948 	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8949 
8950 	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8951 }
8952 
8953 static void
8954 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8955 			      struct intel_initial_plane_config *plane_config)
8956 {
8957 	struct drm_device *dev = crtc->base.dev;
8958 	struct drm_i915_private *dev_priv = to_i915(dev);
8959 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
8960 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
8961 	enum pipe pipe;
8962 	u32 val, base, offset;
8963 	int fourcc, pixel_format;
8964 	unsigned int aligned_height;
8965 	struct drm_framebuffer *fb;
8966 	struct intel_framebuffer *intel_fb;
8967 
8968 	if (!plane->get_hw_state(plane, &pipe))
8969 		return;
8970 
8971 	WARN_ON(pipe != crtc->pipe);
8972 
8973 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8974 	if (!intel_fb) {
8975 		DRM_DEBUG_KMS("failed to alloc fb\n");
8976 		return;
8977 	}
8978 
8979 	fb = &intel_fb->base;
8980 
8981 	fb->dev = dev;
8982 
8983 	val = I915_READ(DSPCNTR(i9xx_plane));
8984 
8985 	if (INTEL_GEN(dev_priv) >= 4) {
8986 		if (val & DISPPLANE_TILED) {
8987 			plane_config->tiling = I915_TILING_X;
8988 			fb->modifier = I915_FORMAT_MOD_X_TILED;
8989 		}
8990 
8991 		if (val & DISPPLANE_ROTATE_180)
8992 			plane_config->rotation = DRM_MODE_ROTATE_180;
8993 	}
8994 
8995 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B &&
8996 	    val & DISPPLANE_MIRROR)
8997 		plane_config->rotation |= DRM_MODE_REFLECT_X;
8998 
8999 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9000 	fourcc = i9xx_format_to_fourcc(pixel_format);
9001 	fb->format = drm_format_info(fourcc);
9002 
9003 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9004 		offset = I915_READ(DSPOFFSET(i9xx_plane));
9005 		base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000;
9006 	} else if (INTEL_GEN(dev_priv) >= 4) {
9007 		if (plane_config->tiling)
9008 			offset = I915_READ(DSPTILEOFF(i9xx_plane));
9009 		else
9010 			offset = I915_READ(DSPLINOFF(i9xx_plane));
9011 		base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000;
9012 	} else {
9013 		base = I915_READ(DSPADDR(i9xx_plane));
9014 	}
9015 	plane_config->base = base;
9016 
9017 	val = I915_READ(PIPESRC(pipe));
9018 	fb->width = ((val >> 16) & 0xfff) + 1;
9019 	fb->height = ((val >> 0) & 0xfff) + 1;
9020 
9021 	val = I915_READ(DSPSTRIDE(i9xx_plane));
9022 	fb->pitches[0] = val & 0xffffffc0;
9023 
9024 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
9025 
9026 	plane_config->size = fb->pitches[0] * aligned_height;
9027 
9028 	DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9029 		      crtc->base.name, plane->base.name, fb->width, fb->height,
9030 		      fb->format->cpp[0] * 8, base, fb->pitches[0],
9031 		      plane_config->size);
9032 
9033 	plane_config->fb = intel_fb;
9034 }
9035 
9036 static void chv_crtc_clock_get(struct intel_crtc *crtc,
9037 			       struct intel_crtc_state *pipe_config)
9038 {
9039 	struct drm_device *dev = crtc->base.dev;
9040 	struct drm_i915_private *dev_priv = to_i915(dev);
9041 	enum pipe pipe = crtc->pipe;
9042 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
9043 	struct dpll clock;
9044 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
9045 	int refclk = 100000;
9046 
9047 	/* In case of DSI, DPLL will not be used */
9048 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9049 		return;
9050 
9051 	vlv_dpio_get(dev_priv);
9052 	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
9053 	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
9054 	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
9055 	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
9056 	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
9057 	vlv_dpio_put(dev_priv);
9058 
9059 	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
9060 	clock.m2 = (pll_dw0 & 0xff) << 22;
9061 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
9062 		clock.m2 |= pll_dw2 & 0x3fffff;
9063 	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
9064 	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
9065 	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
9066 
9067 	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
9068 }
9069 
9070 static enum intel_output_format
9071 bdw_get_pipemisc_output_format(struct intel_crtc *crtc)
9072 {
9073 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9074 	u32 tmp;
9075 
9076 	tmp = I915_READ(PIPEMISC(crtc->pipe));
9077 
9078 	if (tmp & PIPEMISC_YUV420_ENABLE) {
9079 		/* We support 4:2:0 in full blend mode only */
9080 		WARN_ON((tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0);
9081 
9082 		return INTEL_OUTPUT_FORMAT_YCBCR420;
9083 	} else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) {
9084 		return INTEL_OUTPUT_FORMAT_YCBCR444;
9085 	} else {
9086 		return INTEL_OUTPUT_FORMAT_RGB;
9087 	}
9088 }
9089 
9090 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state)
9091 {
9092 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9093 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9094 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9095 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9096 	u32 tmp;
9097 
9098 	tmp = I915_READ(DSPCNTR(i9xx_plane));
9099 
9100 	if (tmp & DISPPLANE_GAMMA_ENABLE)
9101 		crtc_state->gamma_enable = true;
9102 
9103 	if (!HAS_GMCH(dev_priv) &&
9104 	    tmp & DISPPLANE_PIPE_CSC_ENABLE)
9105 		crtc_state->csc_enable = true;
9106 }
9107 
9108 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
9109 				 struct intel_crtc_state *pipe_config)
9110 {
9111 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9112 	enum intel_display_power_domain power_domain;
9113 	intel_wakeref_t wakeref;
9114 	u32 tmp;
9115 	bool ret;
9116 
9117 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9118 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
9119 	if (!wakeref)
9120 		return false;
9121 
9122 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
9123 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9124 	pipe_config->shared_dpll = NULL;
9125 	pipe_config->master_transcoder = INVALID_TRANSCODER;
9126 
9127 	ret = false;
9128 
9129 	tmp = I915_READ(PIPECONF(crtc->pipe));
9130 	if (!(tmp & PIPECONF_ENABLE))
9131 		goto out;
9132 
9133 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
9134 	    IS_CHERRYVIEW(dev_priv)) {
9135 		switch (tmp & PIPECONF_BPC_MASK) {
9136 		case PIPECONF_6BPC:
9137 			pipe_config->pipe_bpp = 18;
9138 			break;
9139 		case PIPECONF_8BPC:
9140 			pipe_config->pipe_bpp = 24;
9141 			break;
9142 		case PIPECONF_10BPC:
9143 			pipe_config->pipe_bpp = 30;
9144 			break;
9145 		default:
9146 			break;
9147 		}
9148 	}
9149 
9150 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
9151 	    (tmp & PIPECONF_COLOR_RANGE_SELECT))
9152 		pipe_config->limited_color_range = true;
9153 
9154 	pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >>
9155 		PIPECONF_GAMMA_MODE_SHIFT;
9156 
9157 	if (IS_CHERRYVIEW(dev_priv))
9158 		pipe_config->cgm_mode = I915_READ(CGM_PIPE_MODE(crtc->pipe));
9159 
9160 	i9xx_get_pipe_color_config(pipe_config);
9161 	intel_color_get_config(pipe_config);
9162 
9163 	if (INTEL_GEN(dev_priv) < 4)
9164 		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
9165 
9166 	intel_get_pipe_timings(crtc, pipe_config);
9167 	intel_get_pipe_src_size(crtc, pipe_config);
9168 
9169 	i9xx_get_pfit_config(crtc, pipe_config);
9170 
9171 	if (INTEL_GEN(dev_priv) >= 4) {
9172 		/* No way to read it out on pipes B and C */
9173 		if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
9174 			tmp = dev_priv->chv_dpll_md[crtc->pipe];
9175 		else
9176 			tmp = I915_READ(DPLL_MD(crtc->pipe));
9177 		pipe_config->pixel_multiplier =
9178 			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
9179 			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
9180 		pipe_config->dpll_hw_state.dpll_md = tmp;
9181 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
9182 		   IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
9183 		tmp = I915_READ(DPLL(crtc->pipe));
9184 		pipe_config->pixel_multiplier =
9185 			((tmp & SDVO_MULTIPLIER_MASK)
9186 			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
9187 	} else {
9188 		/* Note that on i915G/GM the pixel multiplier is in the sdvo
9189 		 * port and will be fixed up in the encoder->get_config
9190 		 * function. */
9191 		pipe_config->pixel_multiplier = 1;
9192 	}
9193 	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
9194 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
9195 		pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
9196 		pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
9197 	} else {
9198 		/* Mask out read-only status bits. */
9199 		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
9200 						     DPLL_PORTC_READY_MASK |
9201 						     DPLL_PORTB_READY_MASK);
9202 	}
9203 
9204 	if (IS_CHERRYVIEW(dev_priv))
9205 		chv_crtc_clock_get(crtc, pipe_config);
9206 	else if (IS_VALLEYVIEW(dev_priv))
9207 		vlv_crtc_clock_get(crtc, pipe_config);
9208 	else
9209 		i9xx_crtc_clock_get(crtc, pipe_config);
9210 
9211 	/*
9212 	 * Normally the dotclock is filled in by the encoder .get_config()
9213 	 * but in case the pipe is enabled w/o any ports we need a sane
9214 	 * default.
9215 	 */
9216 	pipe_config->hw.adjusted_mode.crtc_clock =
9217 		pipe_config->port_clock / pipe_config->pixel_multiplier;
9218 
9219 	ret = true;
9220 
9221 out:
9222 	intel_display_power_put(dev_priv, power_domain, wakeref);
9223 
9224 	return ret;
9225 }
9226 
9227 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
9228 {
9229 	struct intel_encoder *encoder;
9230 	int i;
9231 	u32 val, final;
9232 	bool has_lvds = false;
9233 	bool has_cpu_edp = false;
9234 	bool has_panel = false;
9235 	bool has_ck505 = false;
9236 	bool can_ssc = false;
9237 	bool using_ssc_source = false;
9238 
9239 	/* We need to take the global config into account */
9240 	for_each_intel_encoder(&dev_priv->drm, encoder) {
9241 		switch (encoder->type) {
9242 		case INTEL_OUTPUT_LVDS:
9243 			has_panel = true;
9244 			has_lvds = true;
9245 			break;
9246 		case INTEL_OUTPUT_EDP:
9247 			has_panel = true;
9248 			if (encoder->port == PORT_A)
9249 				has_cpu_edp = true;
9250 			break;
9251 		default:
9252 			break;
9253 		}
9254 	}
9255 
9256 	if (HAS_PCH_IBX(dev_priv)) {
9257 		has_ck505 = dev_priv->vbt.display_clock_mode;
9258 		can_ssc = has_ck505;
9259 	} else {
9260 		has_ck505 = false;
9261 		can_ssc = true;
9262 	}
9263 
9264 	/* Check if any DPLLs are using the SSC source */
9265 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9266 		u32 temp = I915_READ(PCH_DPLL(i));
9267 
9268 		if (!(temp & DPLL_VCO_ENABLE))
9269 			continue;
9270 
9271 		if ((temp & PLL_REF_INPUT_MASK) ==
9272 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
9273 			using_ssc_source = true;
9274 			break;
9275 		}
9276 	}
9277 
9278 	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
9279 		      has_panel, has_lvds, has_ck505, using_ssc_source);
9280 
9281 	/* Ironlake: try to setup display ref clock before DPLL
9282 	 * enabling. This is only under driver's control after
9283 	 * PCH B stepping, previous chipset stepping should be
9284 	 * ignoring this setting.
9285 	 */
9286 	val = I915_READ(PCH_DREF_CONTROL);
9287 
9288 	/* As we must carefully and slowly disable/enable each source in turn,
9289 	 * compute the final state we want first and check if we need to
9290 	 * make any changes at all.
9291 	 */
9292 	final = val;
9293 	final &= ~DREF_NONSPREAD_SOURCE_MASK;
9294 	if (has_ck505)
9295 		final |= DREF_NONSPREAD_CK505_ENABLE;
9296 	else
9297 		final |= DREF_NONSPREAD_SOURCE_ENABLE;
9298 
9299 	final &= ~DREF_SSC_SOURCE_MASK;
9300 	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9301 	final &= ~DREF_SSC1_ENABLE;
9302 
9303 	if (has_panel) {
9304 		final |= DREF_SSC_SOURCE_ENABLE;
9305 
9306 		if (intel_panel_use_ssc(dev_priv) && can_ssc)
9307 			final |= DREF_SSC1_ENABLE;
9308 
9309 		if (has_cpu_edp) {
9310 			if (intel_panel_use_ssc(dev_priv) && can_ssc)
9311 				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9312 			else
9313 				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9314 		} else
9315 			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9316 	} else if (using_ssc_source) {
9317 		final |= DREF_SSC_SOURCE_ENABLE;
9318 		final |= DREF_SSC1_ENABLE;
9319 	}
9320 
9321 	if (final == val)
9322 		return;
9323 
9324 	/* Always enable nonspread source */
9325 	val &= ~DREF_NONSPREAD_SOURCE_MASK;
9326 
9327 	if (has_ck505)
9328 		val |= DREF_NONSPREAD_CK505_ENABLE;
9329 	else
9330 		val |= DREF_NONSPREAD_SOURCE_ENABLE;
9331 
9332 	if (has_panel) {
9333 		val &= ~DREF_SSC_SOURCE_MASK;
9334 		val |= DREF_SSC_SOURCE_ENABLE;
9335 
9336 		/* SSC must be turned on before enabling the CPU output  */
9337 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9338 			DRM_DEBUG_KMS("Using SSC on panel\n");
9339 			val |= DREF_SSC1_ENABLE;
9340 		} else
9341 			val &= ~DREF_SSC1_ENABLE;
9342 
9343 		/* Get SSC going before enabling the outputs */
9344 		I915_WRITE(PCH_DREF_CONTROL, val);
9345 		POSTING_READ(PCH_DREF_CONTROL);
9346 		udelay(200);
9347 
9348 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9349 
9350 		/* Enable CPU source on CPU attached eDP */
9351 		if (has_cpu_edp) {
9352 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9353 				DRM_DEBUG_KMS("Using SSC on eDP\n");
9354 				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9355 			} else
9356 				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9357 		} else
9358 			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9359 
9360 		I915_WRITE(PCH_DREF_CONTROL, val);
9361 		POSTING_READ(PCH_DREF_CONTROL);
9362 		udelay(200);
9363 	} else {
9364 		DRM_DEBUG_KMS("Disabling CPU source output\n");
9365 
9366 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9367 
9368 		/* Turn off CPU output */
9369 		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9370 
9371 		I915_WRITE(PCH_DREF_CONTROL, val);
9372 		POSTING_READ(PCH_DREF_CONTROL);
9373 		udelay(200);
9374 
9375 		if (!using_ssc_source) {
9376 			DRM_DEBUG_KMS("Disabling SSC source\n");
9377 
9378 			/* Turn off the SSC source */
9379 			val &= ~DREF_SSC_SOURCE_MASK;
9380 			val |= DREF_SSC_SOURCE_DISABLE;
9381 
9382 			/* Turn off SSC1 */
9383 			val &= ~DREF_SSC1_ENABLE;
9384 
9385 			I915_WRITE(PCH_DREF_CONTROL, val);
9386 			POSTING_READ(PCH_DREF_CONTROL);
9387 			udelay(200);
9388 		}
9389 	}
9390 
9391 	BUG_ON(val != final);
9392 }
9393 
9394 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9395 {
9396 	u32 tmp;
9397 
9398 	tmp = I915_READ(SOUTH_CHICKEN2);
9399 	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9400 	I915_WRITE(SOUTH_CHICKEN2, tmp);
9401 
9402 	if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9403 			FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9404 		DRM_ERROR("FDI mPHY reset assert timeout\n");
9405 
9406 	tmp = I915_READ(SOUTH_CHICKEN2);
9407 	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9408 	I915_WRITE(SOUTH_CHICKEN2, tmp);
9409 
9410 	if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9411 			 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9412 		DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9413 }
9414 
9415 /* WaMPhyProgramming:hsw */
9416 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9417 {
9418 	u32 tmp;
9419 
9420 	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9421 	tmp &= ~(0xFF << 24);
9422 	tmp |= (0x12 << 24);
9423 	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9424 
9425 	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9426 	tmp |= (1 << 11);
9427 	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9428 
9429 	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9430 	tmp |= (1 << 11);
9431 	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9432 
9433 	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9434 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9435 	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9436 
9437 	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9438 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9439 	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9440 
9441 	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9442 	tmp &= ~(7 << 13);
9443 	tmp |= (5 << 13);
9444 	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9445 
9446 	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9447 	tmp &= ~(7 << 13);
9448 	tmp |= (5 << 13);
9449 	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9450 
9451 	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9452 	tmp &= ~0xFF;
9453 	tmp |= 0x1C;
9454 	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9455 
9456 	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9457 	tmp &= ~0xFF;
9458 	tmp |= 0x1C;
9459 	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9460 
9461 	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9462 	tmp &= ~(0xFF << 16);
9463 	tmp |= (0x1C << 16);
9464 	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9465 
9466 	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9467 	tmp &= ~(0xFF << 16);
9468 	tmp |= (0x1C << 16);
9469 	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9470 
9471 	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9472 	tmp |= (1 << 27);
9473 	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9474 
9475 	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9476 	tmp |= (1 << 27);
9477 	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9478 
9479 	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9480 	tmp &= ~(0xF << 28);
9481 	tmp |= (4 << 28);
9482 	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9483 
9484 	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9485 	tmp &= ~(0xF << 28);
9486 	tmp |= (4 << 28);
9487 	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9488 }
9489 
9490 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9491  * Programming" based on the parameters passed:
9492  * - Sequence to enable CLKOUT_DP
9493  * - Sequence to enable CLKOUT_DP without spread
9494  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9495  */
9496 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
9497 				 bool with_spread, bool with_fdi)
9498 {
9499 	u32 reg, tmp;
9500 
9501 	if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9502 		with_spread = true;
9503 	if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
9504 	    with_fdi, "LP PCH doesn't have FDI\n"))
9505 		with_fdi = false;
9506 
9507 	mutex_lock(&dev_priv->sb_lock);
9508 
9509 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9510 	tmp &= ~SBI_SSCCTL_DISABLE;
9511 	tmp |= SBI_SSCCTL_PATHALT;
9512 	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9513 
9514 	udelay(24);
9515 
9516 	if (with_spread) {
9517 		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9518 		tmp &= ~SBI_SSCCTL_PATHALT;
9519 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9520 
9521 		if (with_fdi) {
9522 			lpt_reset_fdi_mphy(dev_priv);
9523 			lpt_program_fdi_mphy(dev_priv);
9524 		}
9525 	}
9526 
9527 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9528 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9529 	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9530 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9531 
9532 	mutex_unlock(&dev_priv->sb_lock);
9533 }
9534 
9535 /* Sequence to disable CLKOUT_DP */
9536 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
9537 {
9538 	u32 reg, tmp;
9539 
9540 	mutex_lock(&dev_priv->sb_lock);
9541 
9542 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9543 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9544 	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9545 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9546 
9547 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9548 	if (!(tmp & SBI_SSCCTL_DISABLE)) {
9549 		if (!(tmp & SBI_SSCCTL_PATHALT)) {
9550 			tmp |= SBI_SSCCTL_PATHALT;
9551 			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9552 			udelay(32);
9553 		}
9554 		tmp |= SBI_SSCCTL_DISABLE;
9555 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9556 	}
9557 
9558 	mutex_unlock(&dev_priv->sb_lock);
9559 }
9560 
9561 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9562 
9563 static const u16 sscdivintphase[] = {
9564 	[BEND_IDX( 50)] = 0x3B23,
9565 	[BEND_IDX( 45)] = 0x3B23,
9566 	[BEND_IDX( 40)] = 0x3C23,
9567 	[BEND_IDX( 35)] = 0x3C23,
9568 	[BEND_IDX( 30)] = 0x3D23,
9569 	[BEND_IDX( 25)] = 0x3D23,
9570 	[BEND_IDX( 20)] = 0x3E23,
9571 	[BEND_IDX( 15)] = 0x3E23,
9572 	[BEND_IDX( 10)] = 0x3F23,
9573 	[BEND_IDX(  5)] = 0x3F23,
9574 	[BEND_IDX(  0)] = 0x0025,
9575 	[BEND_IDX( -5)] = 0x0025,
9576 	[BEND_IDX(-10)] = 0x0125,
9577 	[BEND_IDX(-15)] = 0x0125,
9578 	[BEND_IDX(-20)] = 0x0225,
9579 	[BEND_IDX(-25)] = 0x0225,
9580 	[BEND_IDX(-30)] = 0x0325,
9581 	[BEND_IDX(-35)] = 0x0325,
9582 	[BEND_IDX(-40)] = 0x0425,
9583 	[BEND_IDX(-45)] = 0x0425,
9584 	[BEND_IDX(-50)] = 0x0525,
9585 };
9586 
9587 /*
9588  * Bend CLKOUT_DP
9589  * steps -50 to 50 inclusive, in steps of 5
9590  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9591  * change in clock period = -(steps / 10) * 5.787 ps
9592  */
9593 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9594 {
9595 	u32 tmp;
9596 	int idx = BEND_IDX(steps);
9597 
9598 	if (WARN_ON(steps % 5 != 0))
9599 		return;
9600 
9601 	if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9602 		return;
9603 
9604 	mutex_lock(&dev_priv->sb_lock);
9605 
9606 	if (steps % 10 != 0)
9607 		tmp = 0xAAAAAAAB;
9608 	else
9609 		tmp = 0x00000000;
9610 	intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9611 
9612 	tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9613 	tmp &= 0xffff0000;
9614 	tmp |= sscdivintphase[idx];
9615 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9616 
9617 	mutex_unlock(&dev_priv->sb_lock);
9618 }
9619 
9620 #undef BEND_IDX
9621 
9622 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv)
9623 {
9624 	u32 fuse_strap = I915_READ(FUSE_STRAP);
9625 	u32 ctl = I915_READ(SPLL_CTL);
9626 
9627 	if ((ctl & SPLL_PLL_ENABLE) == 0)
9628 		return false;
9629 
9630 	if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC &&
9631 	    (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9632 		return true;
9633 
9634 	if (IS_BROADWELL(dev_priv) &&
9635 	    (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW)
9636 		return true;
9637 
9638 	return false;
9639 }
9640 
9641 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv,
9642 			       enum intel_dpll_id id)
9643 {
9644 	u32 fuse_strap = I915_READ(FUSE_STRAP);
9645 	u32 ctl = I915_READ(WRPLL_CTL(id));
9646 
9647 	if ((ctl & WRPLL_PLL_ENABLE) == 0)
9648 		return false;
9649 
9650 	if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC)
9651 		return true;
9652 
9653 	if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) &&
9654 	    (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW &&
9655 	    (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9656 		return true;
9657 
9658 	return false;
9659 }
9660 
9661 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
9662 {
9663 	struct intel_encoder *encoder;
9664 	bool has_fdi = false;
9665 
9666 	for_each_intel_encoder(&dev_priv->drm, encoder) {
9667 		switch (encoder->type) {
9668 		case INTEL_OUTPUT_ANALOG:
9669 			has_fdi = true;
9670 			break;
9671 		default:
9672 			break;
9673 		}
9674 	}
9675 
9676 	/*
9677 	 * The BIOS may have decided to use the PCH SSC
9678 	 * reference so we must not disable it until the
9679 	 * relevant PLLs have stopped relying on it. We'll
9680 	 * just leave the PCH SSC reference enabled in case
9681 	 * any active PLL is using it. It will get disabled
9682 	 * after runtime suspend if we don't have FDI.
9683 	 *
9684 	 * TODO: Move the whole reference clock handling
9685 	 * to the modeset sequence proper so that we can
9686 	 * actually enable/disable/reconfigure these things
9687 	 * safely. To do that we need to introduce a real
9688 	 * clock hierarchy. That would also allow us to do
9689 	 * clock bending finally.
9690 	 */
9691 	dev_priv->pch_ssc_use = 0;
9692 
9693 	if (spll_uses_pch_ssc(dev_priv)) {
9694 		DRM_DEBUG_KMS("SPLL using PCH SSC\n");
9695 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL);
9696 	}
9697 
9698 	if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) {
9699 		DRM_DEBUG_KMS("WRPLL1 using PCH SSC\n");
9700 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1);
9701 	}
9702 
9703 	if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) {
9704 		DRM_DEBUG_KMS("WRPLL2 using PCH SSC\n");
9705 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2);
9706 	}
9707 
9708 	if (dev_priv->pch_ssc_use)
9709 		return;
9710 
9711 	if (has_fdi) {
9712 		lpt_bend_clkout_dp(dev_priv, 0);
9713 		lpt_enable_clkout_dp(dev_priv, true, true);
9714 	} else {
9715 		lpt_disable_clkout_dp(dev_priv);
9716 	}
9717 }
9718 
9719 /*
9720  * Initialize reference clocks when the driver loads
9721  */
9722 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
9723 {
9724 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
9725 		ironlake_init_pch_refclk(dev_priv);
9726 	else if (HAS_PCH_LPT(dev_priv))
9727 		lpt_init_pch_refclk(dev_priv);
9728 }
9729 
9730 static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state)
9731 {
9732 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9733 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9734 	enum pipe pipe = crtc->pipe;
9735 	u32 val;
9736 
9737 	val = 0;
9738 
9739 	switch (crtc_state->pipe_bpp) {
9740 	case 18:
9741 		val |= PIPECONF_6BPC;
9742 		break;
9743 	case 24:
9744 		val |= PIPECONF_8BPC;
9745 		break;
9746 	case 30:
9747 		val |= PIPECONF_10BPC;
9748 		break;
9749 	case 36:
9750 		val |= PIPECONF_12BPC;
9751 		break;
9752 	default:
9753 		/* Case prevented by intel_choose_pipe_bpp_dither. */
9754 		BUG();
9755 	}
9756 
9757 	if (crtc_state->dither)
9758 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9759 
9760 	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9761 		val |= PIPECONF_INTERLACED_ILK;
9762 	else
9763 		val |= PIPECONF_PROGRESSIVE;
9764 
9765 	/*
9766 	 * This would end up with an odd purple hue over
9767 	 * the entire display. Make sure we don't do it.
9768 	 */
9769 	WARN_ON(crtc_state->limited_color_range &&
9770 		crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
9771 
9772 	if (crtc_state->limited_color_range)
9773 		val |= PIPECONF_COLOR_RANGE_SELECT;
9774 
9775 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
9776 		val |= PIPECONF_OUTPUT_COLORSPACE_YUV709;
9777 
9778 	val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
9779 
9780 	val |= PIPECONF_FRAME_START_DELAY(0);
9781 
9782 	I915_WRITE(PIPECONF(pipe), val);
9783 	POSTING_READ(PIPECONF(pipe));
9784 }
9785 
9786 static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state)
9787 {
9788 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9789 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9790 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
9791 	u32 val = 0;
9792 
9793 	if (IS_HASWELL(dev_priv) && crtc_state->dither)
9794 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9795 
9796 	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9797 		val |= PIPECONF_INTERLACED_ILK;
9798 	else
9799 		val |= PIPECONF_PROGRESSIVE;
9800 
9801 	if (IS_HASWELL(dev_priv) &&
9802 	    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
9803 		val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW;
9804 
9805 	I915_WRITE(PIPECONF(cpu_transcoder), val);
9806 	POSTING_READ(PIPECONF(cpu_transcoder));
9807 }
9808 
9809 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state)
9810 {
9811 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9812 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9813 	u32 val = 0;
9814 
9815 	switch (crtc_state->pipe_bpp) {
9816 	case 18:
9817 		val |= PIPEMISC_DITHER_6_BPC;
9818 		break;
9819 	case 24:
9820 		val |= PIPEMISC_DITHER_8_BPC;
9821 		break;
9822 	case 30:
9823 		val |= PIPEMISC_DITHER_10_BPC;
9824 		break;
9825 	case 36:
9826 		val |= PIPEMISC_DITHER_12_BPC;
9827 		break;
9828 	default:
9829 		MISSING_CASE(crtc_state->pipe_bpp);
9830 		break;
9831 	}
9832 
9833 	if (crtc_state->dither)
9834 		val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9835 
9836 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
9837 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
9838 		val |= PIPEMISC_OUTPUT_COLORSPACE_YUV;
9839 
9840 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
9841 		val |= PIPEMISC_YUV420_ENABLE |
9842 			PIPEMISC_YUV420_MODE_FULL_BLEND;
9843 
9844 	if (INTEL_GEN(dev_priv) >= 11 &&
9845 	    (crtc_state->active_planes & ~(icl_hdr_plane_mask() |
9846 					   BIT(PLANE_CURSOR))) == 0)
9847 		val |= PIPEMISC_HDR_MODE_PRECISION;
9848 
9849 	I915_WRITE(PIPEMISC(crtc->pipe), val);
9850 }
9851 
9852 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc)
9853 {
9854 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9855 	u32 tmp;
9856 
9857 	tmp = I915_READ(PIPEMISC(crtc->pipe));
9858 
9859 	switch (tmp & PIPEMISC_DITHER_BPC_MASK) {
9860 	case PIPEMISC_DITHER_6_BPC:
9861 		return 18;
9862 	case PIPEMISC_DITHER_8_BPC:
9863 		return 24;
9864 	case PIPEMISC_DITHER_10_BPC:
9865 		return 30;
9866 	case PIPEMISC_DITHER_12_BPC:
9867 		return 36;
9868 	default:
9869 		MISSING_CASE(tmp);
9870 		return 0;
9871 	}
9872 }
9873 
9874 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9875 {
9876 	/*
9877 	 * Account for spread spectrum to avoid
9878 	 * oversubscribing the link. Max center spread
9879 	 * is 2.5%; use 5% for safety's sake.
9880 	 */
9881 	u32 bps = target_clock * bpp * 21 / 20;
9882 	return DIV_ROUND_UP(bps, link_bw * 8);
9883 }
9884 
9885 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9886 {
9887 	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9888 }
9889 
9890 static void ironlake_compute_dpll(struct intel_crtc *crtc,
9891 				  struct intel_crtc_state *crtc_state,
9892 				  struct dpll *reduced_clock)
9893 {
9894 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9895 	u32 dpll, fp, fp2;
9896 	int factor;
9897 
9898 	/* Enable autotuning of the PLL clock (if permissible) */
9899 	factor = 21;
9900 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9901 		if ((intel_panel_use_ssc(dev_priv) &&
9902 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
9903 		    (HAS_PCH_IBX(dev_priv) &&
9904 		     intel_is_dual_link_lvds(dev_priv)))
9905 			factor = 25;
9906 	} else if (crtc_state->sdvo_tv_clock) {
9907 		factor = 20;
9908 	}
9909 
9910 	fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9911 
9912 	if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9913 		fp |= FP_CB_TUNE;
9914 
9915 	if (reduced_clock) {
9916 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
9917 
9918 		if (reduced_clock->m < factor * reduced_clock->n)
9919 			fp2 |= FP_CB_TUNE;
9920 	} else {
9921 		fp2 = fp;
9922 	}
9923 
9924 	dpll = 0;
9925 
9926 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9927 		dpll |= DPLLB_MODE_LVDS;
9928 	else
9929 		dpll |= DPLLB_MODE_DAC_SERIAL;
9930 
9931 	dpll |= (crtc_state->pixel_multiplier - 1)
9932 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9933 
9934 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9935 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9936 		dpll |= DPLL_SDVO_HIGH_SPEED;
9937 
9938 	if (intel_crtc_has_dp_encoder(crtc_state))
9939 		dpll |= DPLL_SDVO_HIGH_SPEED;
9940 
9941 	/*
9942 	 * The high speed IO clock is only really required for
9943 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
9944 	 * possible to share the DPLL between CRT and HDMI. Enabling
9945 	 * the clock needlessly does no real harm, except use up a
9946 	 * bit of power potentially.
9947 	 *
9948 	 * We'll limit this to IVB with 3 pipes, since it has only two
9949 	 * DPLLs and so DPLL sharing is the only way to get three pipes
9950 	 * driving PCH ports at the same time. On SNB we could do this,
9951 	 * and potentially avoid enabling the second DPLL, but it's not
9952 	 * clear if it''s a win or loss power wise. No point in doing
9953 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9954 	 */
9955 	if (INTEL_NUM_PIPES(dev_priv) == 3 &&
9956 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9957 		dpll |= DPLL_SDVO_HIGH_SPEED;
9958 
9959 	/* compute bitmask from p1 value */
9960 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9961 	/* also FPA1 */
9962 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9963 
9964 	switch (crtc_state->dpll.p2) {
9965 	case 5:
9966 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9967 		break;
9968 	case 7:
9969 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9970 		break;
9971 	case 10:
9972 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9973 		break;
9974 	case 14:
9975 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9976 		break;
9977 	}
9978 
9979 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9980 	    intel_panel_use_ssc(dev_priv))
9981 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9982 	else
9983 		dpll |= PLL_REF_INPUT_DREFCLK;
9984 
9985 	dpll |= DPLL_VCO_ENABLE;
9986 
9987 	crtc_state->dpll_hw_state.dpll = dpll;
9988 	crtc_state->dpll_hw_state.fp0 = fp;
9989 	crtc_state->dpll_hw_state.fp1 = fp2;
9990 }
9991 
9992 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9993 				       struct intel_crtc_state *crtc_state)
9994 {
9995 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9996 	struct intel_atomic_state *state =
9997 		to_intel_atomic_state(crtc_state->uapi.state);
9998 	const struct intel_limit *limit;
9999 	int refclk = 120000;
10000 
10001 	memset(&crtc_state->dpll_hw_state, 0,
10002 	       sizeof(crtc_state->dpll_hw_state));
10003 
10004 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
10005 	if (!crtc_state->has_pch_encoder)
10006 		return 0;
10007 
10008 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10009 		if (intel_panel_use_ssc(dev_priv)) {
10010 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
10011 				      dev_priv->vbt.lvds_ssc_freq);
10012 			refclk = dev_priv->vbt.lvds_ssc_freq;
10013 		}
10014 
10015 		if (intel_is_dual_link_lvds(dev_priv)) {
10016 			if (refclk == 100000)
10017 				limit = &intel_limits_ironlake_dual_lvds_100m;
10018 			else
10019 				limit = &intel_limits_ironlake_dual_lvds;
10020 		} else {
10021 			if (refclk == 100000)
10022 				limit = &intel_limits_ironlake_single_lvds_100m;
10023 			else
10024 				limit = &intel_limits_ironlake_single_lvds;
10025 		}
10026 	} else {
10027 		limit = &intel_limits_ironlake_dac;
10028 	}
10029 
10030 	if (!crtc_state->clock_set &&
10031 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
10032 				refclk, NULL, &crtc_state->dpll)) {
10033 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
10034 		return -EINVAL;
10035 	}
10036 
10037 	ironlake_compute_dpll(crtc, crtc_state, NULL);
10038 
10039 	if (!intel_reserve_shared_dplls(state, crtc, NULL)) {
10040 		DRM_DEBUG_KMS("failed to find PLL for pipe %c\n",
10041 			      pipe_name(crtc->pipe));
10042 		return -EINVAL;
10043 	}
10044 
10045 	return 0;
10046 }
10047 
10048 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
10049 					 struct intel_link_m_n *m_n)
10050 {
10051 	struct drm_device *dev = crtc->base.dev;
10052 	struct drm_i915_private *dev_priv = to_i915(dev);
10053 	enum pipe pipe = crtc->pipe;
10054 
10055 	m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
10056 	m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
10057 	m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
10058 		& ~TU_SIZE_MASK;
10059 	m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
10060 	m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
10061 		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10062 }
10063 
10064 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
10065 					 enum transcoder transcoder,
10066 					 struct intel_link_m_n *m_n,
10067 					 struct intel_link_m_n *m2_n2)
10068 {
10069 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10070 	enum pipe pipe = crtc->pipe;
10071 
10072 	if (INTEL_GEN(dev_priv) >= 5) {
10073 		m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
10074 		m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
10075 		m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
10076 			& ~TU_SIZE_MASK;
10077 		m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
10078 		m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
10079 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10080 
10081 		if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) {
10082 			m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
10083 			m2_n2->link_n =	I915_READ(PIPE_LINK_N2(transcoder));
10084 			m2_n2->gmch_m =	I915_READ(PIPE_DATA_M2(transcoder))
10085 					& ~TU_SIZE_MASK;
10086 			m2_n2->gmch_n =	I915_READ(PIPE_DATA_N2(transcoder));
10087 			m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
10088 					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10089 		}
10090 	} else {
10091 		m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
10092 		m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
10093 		m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
10094 			& ~TU_SIZE_MASK;
10095 		m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
10096 		m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
10097 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10098 	}
10099 }
10100 
10101 void intel_dp_get_m_n(struct intel_crtc *crtc,
10102 		      struct intel_crtc_state *pipe_config)
10103 {
10104 	if (pipe_config->has_pch_encoder)
10105 		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
10106 	else
10107 		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10108 					     &pipe_config->dp_m_n,
10109 					     &pipe_config->dp_m2_n2);
10110 }
10111 
10112 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
10113 					struct intel_crtc_state *pipe_config)
10114 {
10115 	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10116 				     &pipe_config->fdi_m_n, NULL);
10117 }
10118 
10119 static void skylake_get_pfit_config(struct intel_crtc *crtc,
10120 				    struct intel_crtc_state *pipe_config)
10121 {
10122 	struct drm_device *dev = crtc->base.dev;
10123 	struct drm_i915_private *dev_priv = to_i915(dev);
10124 	struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
10125 	u32 ps_ctrl = 0;
10126 	int id = -1;
10127 	int i;
10128 
10129 	/* find scaler attached to this pipe */
10130 	for (i = 0; i < crtc->num_scalers; i++) {
10131 		ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
10132 		if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
10133 			id = i;
10134 			pipe_config->pch_pfit.enabled = true;
10135 			pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
10136 			pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
10137 			scaler_state->scalers[i].in_use = true;
10138 			break;
10139 		}
10140 	}
10141 
10142 	scaler_state->scaler_id = id;
10143 	if (id >= 0) {
10144 		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
10145 	} else {
10146 		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
10147 	}
10148 }
10149 
10150 static void
10151 skylake_get_initial_plane_config(struct intel_crtc *crtc,
10152 				 struct intel_initial_plane_config *plane_config)
10153 {
10154 	struct drm_device *dev = crtc->base.dev;
10155 	struct drm_i915_private *dev_priv = to_i915(dev);
10156 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
10157 	enum plane_id plane_id = plane->id;
10158 	enum pipe pipe;
10159 	u32 val, base, offset, stride_mult, tiling, alpha;
10160 	int fourcc, pixel_format;
10161 	unsigned int aligned_height;
10162 	struct drm_framebuffer *fb;
10163 	struct intel_framebuffer *intel_fb;
10164 
10165 	if (!plane->get_hw_state(plane, &pipe))
10166 		return;
10167 
10168 	WARN_ON(pipe != crtc->pipe);
10169 
10170 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10171 	if (!intel_fb) {
10172 		DRM_DEBUG_KMS("failed to alloc fb\n");
10173 		return;
10174 	}
10175 
10176 	fb = &intel_fb->base;
10177 
10178 	fb->dev = dev;
10179 
10180 	val = I915_READ(PLANE_CTL(pipe, plane_id));
10181 
10182 	if (INTEL_GEN(dev_priv) >= 11)
10183 		pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK;
10184 	else
10185 		pixel_format = val & PLANE_CTL_FORMAT_MASK;
10186 
10187 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
10188 		alpha = I915_READ(PLANE_COLOR_CTL(pipe, plane_id));
10189 		alpha &= PLANE_COLOR_ALPHA_MASK;
10190 	} else {
10191 		alpha = val & PLANE_CTL_ALPHA_MASK;
10192 	}
10193 
10194 	fourcc = skl_format_to_fourcc(pixel_format,
10195 				      val & PLANE_CTL_ORDER_RGBX, alpha);
10196 	fb->format = drm_format_info(fourcc);
10197 
10198 	tiling = val & PLANE_CTL_TILED_MASK;
10199 	switch (tiling) {
10200 	case PLANE_CTL_TILED_LINEAR:
10201 		fb->modifier = DRM_FORMAT_MOD_LINEAR;
10202 		break;
10203 	case PLANE_CTL_TILED_X:
10204 		plane_config->tiling = I915_TILING_X;
10205 		fb->modifier = I915_FORMAT_MOD_X_TILED;
10206 		break;
10207 	case PLANE_CTL_TILED_Y:
10208 		plane_config->tiling = I915_TILING_Y;
10209 		if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10210 			fb->modifier = INTEL_GEN(dev_priv) >= 12 ?
10211 				I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS :
10212 				I915_FORMAT_MOD_Y_TILED_CCS;
10213 		else
10214 			fb->modifier = I915_FORMAT_MOD_Y_TILED;
10215 		break;
10216 	case PLANE_CTL_TILED_YF:
10217 		if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10218 			fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
10219 		else
10220 			fb->modifier = I915_FORMAT_MOD_Yf_TILED;
10221 		break;
10222 	default:
10223 		MISSING_CASE(tiling);
10224 		goto error;
10225 	}
10226 
10227 	/*
10228 	 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
10229 	 * while i915 HW rotation is clockwise, thats why this swapping.
10230 	 */
10231 	switch (val & PLANE_CTL_ROTATE_MASK) {
10232 	case PLANE_CTL_ROTATE_0:
10233 		plane_config->rotation = DRM_MODE_ROTATE_0;
10234 		break;
10235 	case PLANE_CTL_ROTATE_90:
10236 		plane_config->rotation = DRM_MODE_ROTATE_270;
10237 		break;
10238 	case PLANE_CTL_ROTATE_180:
10239 		plane_config->rotation = DRM_MODE_ROTATE_180;
10240 		break;
10241 	case PLANE_CTL_ROTATE_270:
10242 		plane_config->rotation = DRM_MODE_ROTATE_90;
10243 		break;
10244 	}
10245 
10246 	if (INTEL_GEN(dev_priv) >= 10 &&
10247 	    val & PLANE_CTL_FLIP_HORIZONTAL)
10248 		plane_config->rotation |= DRM_MODE_REFLECT_X;
10249 
10250 	base = I915_READ(PLANE_SURF(pipe, plane_id)) & 0xfffff000;
10251 	plane_config->base = base;
10252 
10253 	offset = I915_READ(PLANE_OFFSET(pipe, plane_id));
10254 
10255 	val = I915_READ(PLANE_SIZE(pipe, plane_id));
10256 	fb->height = ((val >> 16) & 0xffff) + 1;
10257 	fb->width = ((val >> 0) & 0xffff) + 1;
10258 
10259 	val = I915_READ(PLANE_STRIDE(pipe, plane_id));
10260 	stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0);
10261 	fb->pitches[0] = (val & 0x3ff) * stride_mult;
10262 
10263 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
10264 
10265 	plane_config->size = fb->pitches[0] * aligned_height;
10266 
10267 	DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
10268 		      crtc->base.name, plane->base.name, fb->width, fb->height,
10269 		      fb->format->cpp[0] * 8, base, fb->pitches[0],
10270 		      plane_config->size);
10271 
10272 	plane_config->fb = intel_fb;
10273 	return;
10274 
10275 error:
10276 	kfree(intel_fb);
10277 }
10278 
10279 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
10280 				     struct intel_crtc_state *pipe_config)
10281 {
10282 	struct drm_device *dev = crtc->base.dev;
10283 	struct drm_i915_private *dev_priv = to_i915(dev);
10284 	u32 tmp;
10285 
10286 	tmp = I915_READ(PF_CTL(crtc->pipe));
10287 
10288 	if (tmp & PF_ENABLE) {
10289 		pipe_config->pch_pfit.enabled = true;
10290 		pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
10291 		pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
10292 
10293 		/* We currently do not free assignements of panel fitters on
10294 		 * ivb/hsw (since we don't use the higher upscaling modes which
10295 		 * differentiates them) so just WARN about this case for now. */
10296 		if (IS_GEN(dev_priv, 7)) {
10297 			WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
10298 				PF_PIPE_SEL_IVB(crtc->pipe));
10299 		}
10300 	}
10301 }
10302 
10303 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
10304 				     struct intel_crtc_state *pipe_config)
10305 {
10306 	struct drm_device *dev = crtc->base.dev;
10307 	struct drm_i915_private *dev_priv = to_i915(dev);
10308 	enum intel_display_power_domain power_domain;
10309 	intel_wakeref_t wakeref;
10310 	u32 tmp;
10311 	bool ret;
10312 
10313 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10314 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
10315 	if (!wakeref)
10316 		return false;
10317 
10318 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10319 	pipe_config->shared_dpll = NULL;
10320 	pipe_config->master_transcoder = INVALID_TRANSCODER;
10321 
10322 	ret = false;
10323 	tmp = I915_READ(PIPECONF(crtc->pipe));
10324 	if (!(tmp & PIPECONF_ENABLE))
10325 		goto out;
10326 
10327 	switch (tmp & PIPECONF_BPC_MASK) {
10328 	case PIPECONF_6BPC:
10329 		pipe_config->pipe_bpp = 18;
10330 		break;
10331 	case PIPECONF_8BPC:
10332 		pipe_config->pipe_bpp = 24;
10333 		break;
10334 	case PIPECONF_10BPC:
10335 		pipe_config->pipe_bpp = 30;
10336 		break;
10337 	case PIPECONF_12BPC:
10338 		pipe_config->pipe_bpp = 36;
10339 		break;
10340 	default:
10341 		break;
10342 	}
10343 
10344 	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
10345 		pipe_config->limited_color_range = true;
10346 
10347 	switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) {
10348 	case PIPECONF_OUTPUT_COLORSPACE_YUV601:
10349 	case PIPECONF_OUTPUT_COLORSPACE_YUV709:
10350 		pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
10351 		break;
10352 	default:
10353 		pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
10354 		break;
10355 	}
10356 
10357 	pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >>
10358 		PIPECONF_GAMMA_MODE_SHIFT;
10359 
10360 	pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe));
10361 
10362 	i9xx_get_pipe_color_config(pipe_config);
10363 	intel_color_get_config(pipe_config);
10364 
10365 	if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
10366 		struct intel_shared_dpll *pll;
10367 		enum intel_dpll_id pll_id;
10368 
10369 		pipe_config->has_pch_encoder = true;
10370 
10371 		tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
10372 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10373 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
10374 
10375 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
10376 
10377 		if (HAS_PCH_IBX(dev_priv)) {
10378 			/*
10379 			 * The pipe->pch transcoder and pch transcoder->pll
10380 			 * mapping is fixed.
10381 			 */
10382 			pll_id = (enum intel_dpll_id) crtc->pipe;
10383 		} else {
10384 			tmp = I915_READ(PCH_DPLL_SEL);
10385 			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
10386 				pll_id = DPLL_ID_PCH_PLL_B;
10387 			else
10388 				pll_id= DPLL_ID_PCH_PLL_A;
10389 		}
10390 
10391 		pipe_config->shared_dpll =
10392 			intel_get_shared_dpll_by_id(dev_priv, pll_id);
10393 		pll = pipe_config->shared_dpll;
10394 
10395 		WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll,
10396 						&pipe_config->dpll_hw_state));
10397 
10398 		tmp = pipe_config->dpll_hw_state.dpll;
10399 		pipe_config->pixel_multiplier =
10400 			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
10401 			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
10402 
10403 		ironlake_pch_clock_get(crtc, pipe_config);
10404 	} else {
10405 		pipe_config->pixel_multiplier = 1;
10406 	}
10407 
10408 	intel_get_pipe_timings(crtc, pipe_config);
10409 	intel_get_pipe_src_size(crtc, pipe_config);
10410 
10411 	ironlake_get_pfit_config(crtc, pipe_config);
10412 
10413 	ret = true;
10414 
10415 out:
10416 	intel_display_power_put(dev_priv, power_domain, wakeref);
10417 
10418 	return ret;
10419 }
10420 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10421 				      struct intel_crtc_state *crtc_state)
10422 {
10423 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10424 	struct intel_atomic_state *state =
10425 		to_intel_atomic_state(crtc_state->uapi.state);
10426 
10427 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
10428 	    INTEL_GEN(dev_priv) >= 11) {
10429 		struct intel_encoder *encoder =
10430 			intel_get_crtc_new_encoder(state, crtc_state);
10431 
10432 		if (!intel_reserve_shared_dplls(state, crtc, encoder)) {
10433 			DRM_DEBUG_KMS("failed to find PLL for pipe %c\n",
10434 				      pipe_name(crtc->pipe));
10435 			return -EINVAL;
10436 		}
10437 	}
10438 
10439 	return 0;
10440 }
10441 
10442 static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv,
10443 				   enum port port,
10444 				   struct intel_crtc_state *pipe_config)
10445 {
10446 	enum intel_dpll_id id;
10447 	u32 temp;
10448 
10449 	temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
10450 	id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
10451 
10452 	if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2))
10453 		return;
10454 
10455 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10456 }
10457 
10458 static void icelake_get_ddi_pll(struct drm_i915_private *dev_priv,
10459 				enum port port,
10460 				struct intel_crtc_state *pipe_config)
10461 {
10462 	enum phy phy = intel_port_to_phy(dev_priv, port);
10463 	enum icl_port_dpll_id port_dpll_id;
10464 	enum intel_dpll_id id;
10465 	u32 temp;
10466 
10467 	if (intel_phy_is_combo(dev_priv, phy)) {
10468 		temp = I915_READ(ICL_DPCLKA_CFGCR0) &
10469 			ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10470 		id = temp >> ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10471 		port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10472 	} else if (intel_phy_is_tc(dev_priv, phy)) {
10473 		u32 clk_sel = I915_READ(DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK;
10474 
10475 		if (clk_sel == DDI_CLK_SEL_MG) {
10476 			id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv,
10477 								    port));
10478 			port_dpll_id = ICL_PORT_DPLL_MG_PHY;
10479 		} else {
10480 			WARN_ON(clk_sel < DDI_CLK_SEL_TBT_162);
10481 			id = DPLL_ID_ICL_TBTPLL;
10482 			port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10483 		}
10484 	} else {
10485 		WARN(1, "Invalid port %x\n", port);
10486 		return;
10487 	}
10488 
10489 	pipe_config->icl_port_dplls[port_dpll_id].pll =
10490 		intel_get_shared_dpll_by_id(dev_priv, id);
10491 
10492 	icl_set_active_port_dpll(pipe_config, port_dpll_id);
10493 }
10494 
10495 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10496 				enum port port,
10497 				struct intel_crtc_state *pipe_config)
10498 {
10499 	enum intel_dpll_id id;
10500 
10501 	switch (port) {
10502 	case PORT_A:
10503 		id = DPLL_ID_SKL_DPLL0;
10504 		break;
10505 	case PORT_B:
10506 		id = DPLL_ID_SKL_DPLL1;
10507 		break;
10508 	case PORT_C:
10509 		id = DPLL_ID_SKL_DPLL2;
10510 		break;
10511 	default:
10512 		DRM_ERROR("Incorrect port type\n");
10513 		return;
10514 	}
10515 
10516 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10517 }
10518 
10519 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10520 				enum port port,
10521 				struct intel_crtc_state *pipe_config)
10522 {
10523 	enum intel_dpll_id id;
10524 	u32 temp;
10525 
10526 	temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10527 	id = temp >> (port * 3 + 1);
10528 
10529 	if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10530 		return;
10531 
10532 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10533 }
10534 
10535 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10536 				enum port port,
10537 				struct intel_crtc_state *pipe_config)
10538 {
10539 	enum intel_dpll_id id;
10540 	u32 ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10541 
10542 	switch (ddi_pll_sel) {
10543 	case PORT_CLK_SEL_WRPLL1:
10544 		id = DPLL_ID_WRPLL1;
10545 		break;
10546 	case PORT_CLK_SEL_WRPLL2:
10547 		id = DPLL_ID_WRPLL2;
10548 		break;
10549 	case PORT_CLK_SEL_SPLL:
10550 		id = DPLL_ID_SPLL;
10551 		break;
10552 	case PORT_CLK_SEL_LCPLL_810:
10553 		id = DPLL_ID_LCPLL_810;
10554 		break;
10555 	case PORT_CLK_SEL_LCPLL_1350:
10556 		id = DPLL_ID_LCPLL_1350;
10557 		break;
10558 	case PORT_CLK_SEL_LCPLL_2700:
10559 		id = DPLL_ID_LCPLL_2700;
10560 		break;
10561 	default:
10562 		MISSING_CASE(ddi_pll_sel);
10563 		/* fall through */
10564 	case PORT_CLK_SEL_NONE:
10565 		return;
10566 	}
10567 
10568 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10569 }
10570 
10571 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10572 				     struct intel_crtc_state *pipe_config,
10573 				     u64 *power_domain_mask,
10574 				     intel_wakeref_t *wakerefs)
10575 {
10576 	struct drm_device *dev = crtc->base.dev;
10577 	struct drm_i915_private *dev_priv = to_i915(dev);
10578 	enum intel_display_power_domain power_domain;
10579 	unsigned long panel_transcoder_mask = 0;
10580 	unsigned long enabled_panel_transcoders = 0;
10581 	enum transcoder panel_transcoder;
10582 	intel_wakeref_t wf;
10583 	u32 tmp;
10584 
10585 	if (INTEL_GEN(dev_priv) >= 11)
10586 		panel_transcoder_mask |=
10587 			BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
10588 
10589 	if (HAS_TRANSCODER_EDP(dev_priv))
10590 		panel_transcoder_mask |= BIT(TRANSCODER_EDP);
10591 
10592 	/*
10593 	 * The pipe->transcoder mapping is fixed with the exception of the eDP
10594 	 * and DSI transcoders handled below.
10595 	 */
10596 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10597 
10598 	/*
10599 	 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10600 	 * consistency and less surprising code; it's in always on power).
10601 	 */
10602 	for_each_set_bit(panel_transcoder,
10603 			 &panel_transcoder_mask,
10604 			 ARRAY_SIZE(INTEL_INFO(dev_priv)->trans_offsets)) {
10605 		bool force_thru = false;
10606 		enum pipe trans_pipe;
10607 
10608 		tmp = I915_READ(TRANS_DDI_FUNC_CTL(panel_transcoder));
10609 		if (!(tmp & TRANS_DDI_FUNC_ENABLE))
10610 			continue;
10611 
10612 		/*
10613 		 * Log all enabled ones, only use the first one.
10614 		 *
10615 		 * FIXME: This won't work for two separate DSI displays.
10616 		 */
10617 		enabled_panel_transcoders |= BIT(panel_transcoder);
10618 		if (enabled_panel_transcoders != BIT(panel_transcoder))
10619 			continue;
10620 
10621 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10622 		default:
10623 			WARN(1, "unknown pipe linked to transcoder %s\n",
10624 			     transcoder_name(panel_transcoder));
10625 			/* fall through */
10626 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
10627 			force_thru = true;
10628 			/* fall through */
10629 		case TRANS_DDI_EDP_INPUT_A_ON:
10630 			trans_pipe = PIPE_A;
10631 			break;
10632 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
10633 			trans_pipe = PIPE_B;
10634 			break;
10635 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
10636 			trans_pipe = PIPE_C;
10637 			break;
10638 		case TRANS_DDI_EDP_INPUT_D_ONOFF:
10639 			trans_pipe = PIPE_D;
10640 			break;
10641 		}
10642 
10643 		if (trans_pipe == crtc->pipe) {
10644 			pipe_config->cpu_transcoder = panel_transcoder;
10645 			pipe_config->pch_pfit.force_thru = force_thru;
10646 		}
10647 	}
10648 
10649 	/*
10650 	 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1
10651 	 */
10652 	WARN_ON((enabled_panel_transcoders & BIT(TRANSCODER_EDP)) &&
10653 		enabled_panel_transcoders != BIT(TRANSCODER_EDP));
10654 
10655 	power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10656 	WARN_ON(*power_domain_mask & BIT_ULL(power_domain));
10657 
10658 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10659 	if (!wf)
10660 		return false;
10661 
10662 	wakerefs[power_domain] = wf;
10663 	*power_domain_mask |= BIT_ULL(power_domain);
10664 
10665 	tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10666 
10667 	return tmp & PIPECONF_ENABLE;
10668 }
10669 
10670 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10671 					 struct intel_crtc_state *pipe_config,
10672 					 u64 *power_domain_mask,
10673 					 intel_wakeref_t *wakerefs)
10674 {
10675 	struct drm_device *dev = crtc->base.dev;
10676 	struct drm_i915_private *dev_priv = to_i915(dev);
10677 	enum intel_display_power_domain power_domain;
10678 	enum transcoder cpu_transcoder;
10679 	intel_wakeref_t wf;
10680 	enum port port;
10681 	u32 tmp;
10682 
10683 	for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10684 		if (port == PORT_A)
10685 			cpu_transcoder = TRANSCODER_DSI_A;
10686 		else
10687 			cpu_transcoder = TRANSCODER_DSI_C;
10688 
10689 		power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10690 		WARN_ON(*power_domain_mask & BIT_ULL(power_domain));
10691 
10692 		wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10693 		if (!wf)
10694 			continue;
10695 
10696 		wakerefs[power_domain] = wf;
10697 		*power_domain_mask |= BIT_ULL(power_domain);
10698 
10699 		/*
10700 		 * The PLL needs to be enabled with a valid divider
10701 		 * configuration, otherwise accessing DSI registers will hang
10702 		 * the machine. See BSpec North Display Engine
10703 		 * registers/MIPI[BXT]. We can break out here early, since we
10704 		 * need the same DSI PLL to be enabled for both DSI ports.
10705 		 */
10706 		if (!bxt_dsi_pll_is_enabled(dev_priv))
10707 			break;
10708 
10709 		/* XXX: this works for video mode only */
10710 		tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10711 		if (!(tmp & DPI_ENABLE))
10712 			continue;
10713 
10714 		tmp = I915_READ(MIPI_CTRL(port));
10715 		if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10716 			continue;
10717 
10718 		pipe_config->cpu_transcoder = cpu_transcoder;
10719 		break;
10720 	}
10721 
10722 	return transcoder_is_dsi(pipe_config->cpu_transcoder);
10723 }
10724 
10725 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10726 				       struct intel_crtc_state *pipe_config)
10727 {
10728 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10729 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
10730 	struct intel_shared_dpll *pll;
10731 	enum port port;
10732 	u32 tmp;
10733 
10734 	if (transcoder_is_dsi(cpu_transcoder)) {
10735 		port = (cpu_transcoder == TRANSCODER_DSI_A) ?
10736 						PORT_A : PORT_B;
10737 	} else {
10738 		tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
10739 		if (INTEL_GEN(dev_priv) >= 12)
10740 			port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
10741 		else
10742 			port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
10743 	}
10744 
10745 	if (INTEL_GEN(dev_priv) >= 11)
10746 		icelake_get_ddi_pll(dev_priv, port, pipe_config);
10747 	else if (IS_CANNONLAKE(dev_priv))
10748 		cannonlake_get_ddi_pll(dev_priv, port, pipe_config);
10749 	else if (IS_GEN9_BC(dev_priv))
10750 		skylake_get_ddi_pll(dev_priv, port, pipe_config);
10751 	else if (IS_GEN9_LP(dev_priv))
10752 		bxt_get_ddi_pll(dev_priv, port, pipe_config);
10753 	else
10754 		haswell_get_ddi_pll(dev_priv, port, pipe_config);
10755 
10756 	pll = pipe_config->shared_dpll;
10757 	if (pll) {
10758 		WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll,
10759 						&pipe_config->dpll_hw_state));
10760 	}
10761 
10762 	/*
10763 	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10764 	 * DDI E. So just check whether this pipe is wired to DDI E and whether
10765 	 * the PCH transcoder is on.
10766 	 */
10767 	if (INTEL_GEN(dev_priv) < 9 &&
10768 	    (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10769 		pipe_config->has_pch_encoder = true;
10770 
10771 		tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10772 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10773 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
10774 
10775 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
10776 	}
10777 }
10778 
10779 static enum transcoder transcoder_master_readout(struct drm_i915_private *dev_priv,
10780 						 enum transcoder cpu_transcoder)
10781 {
10782 	u32 trans_port_sync, master_select;
10783 
10784 	trans_port_sync = I915_READ(TRANS_DDI_FUNC_CTL2(cpu_transcoder));
10785 
10786 	if ((trans_port_sync & PORT_SYNC_MODE_ENABLE) == 0)
10787 		return INVALID_TRANSCODER;
10788 
10789 	master_select = trans_port_sync &
10790 			PORT_SYNC_MODE_MASTER_SELECT_MASK;
10791 	if (master_select == 0)
10792 		return TRANSCODER_EDP;
10793 	else
10794 		return master_select - 1;
10795 }
10796 
10797 static void icelake_get_trans_port_sync_config(struct intel_crtc_state *crtc_state)
10798 {
10799 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
10800 	u32 transcoders;
10801 	enum transcoder cpu_transcoder;
10802 
10803 	crtc_state->master_transcoder = transcoder_master_readout(dev_priv,
10804 								  crtc_state->cpu_transcoder);
10805 
10806 	transcoders = BIT(TRANSCODER_A) |
10807 		BIT(TRANSCODER_B) |
10808 		BIT(TRANSCODER_C) |
10809 		BIT(TRANSCODER_D);
10810 	for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
10811 		enum intel_display_power_domain power_domain;
10812 		intel_wakeref_t trans_wakeref;
10813 
10814 		power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10815 		trans_wakeref = intel_display_power_get_if_enabled(dev_priv,
10816 								   power_domain);
10817 
10818 		if (!trans_wakeref)
10819 			continue;
10820 
10821 		if (transcoder_master_readout(dev_priv, cpu_transcoder) ==
10822 		    crtc_state->cpu_transcoder)
10823 			crtc_state->sync_mode_slaves_mask |= BIT(cpu_transcoder);
10824 
10825 		intel_display_power_put(dev_priv, power_domain, trans_wakeref);
10826 	}
10827 
10828 	WARN_ON(crtc_state->master_transcoder != INVALID_TRANSCODER &&
10829 		crtc_state->sync_mode_slaves_mask);
10830 }
10831 
10832 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10833 				    struct intel_crtc_state *pipe_config)
10834 {
10835 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10836 	intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf;
10837 	enum intel_display_power_domain power_domain;
10838 	u64 power_domain_mask;
10839 	bool active;
10840 
10841 	pipe_config->master_transcoder = INVALID_TRANSCODER;
10842 
10843 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10844 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10845 	if (!wf)
10846 		return false;
10847 
10848 	wakerefs[power_domain] = wf;
10849 	power_domain_mask = BIT_ULL(power_domain);
10850 
10851 	pipe_config->shared_dpll = NULL;
10852 
10853 	active = hsw_get_transcoder_state(crtc, pipe_config,
10854 					  &power_domain_mask, wakerefs);
10855 
10856 	if (IS_GEN9_LP(dev_priv) &&
10857 	    bxt_get_dsi_transcoder_state(crtc, pipe_config,
10858 					 &power_domain_mask, wakerefs)) {
10859 		WARN_ON(active);
10860 		active = true;
10861 	}
10862 
10863 	if (!active)
10864 		goto out;
10865 
10866 	if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
10867 	    INTEL_GEN(dev_priv) >= 11) {
10868 		haswell_get_ddi_port_state(crtc, pipe_config);
10869 		intel_get_pipe_timings(crtc, pipe_config);
10870 	}
10871 
10872 	intel_get_pipe_src_size(crtc, pipe_config);
10873 
10874 	if (IS_HASWELL(dev_priv)) {
10875 		u32 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10876 
10877 		if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW)
10878 			pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
10879 		else
10880 			pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
10881 	} else {
10882 		pipe_config->output_format =
10883 			bdw_get_pipemisc_output_format(crtc);
10884 
10885 		/*
10886 		 * Currently there is no interface defined to
10887 		 * check user preference between RGB/YCBCR444
10888 		 * or YCBCR420. So the only possible case for
10889 		 * YCBCR444 usage is driving YCBCR420 output
10890 		 * with LSPCON, when pipe is configured for
10891 		 * YCBCR444 output and LSPCON takes care of
10892 		 * downsampling it.
10893 		 */
10894 		pipe_config->lspcon_downsampling =
10895 			pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444;
10896 	}
10897 
10898 	pipe_config->gamma_mode = I915_READ(GAMMA_MODE(crtc->pipe));
10899 
10900 	pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe));
10901 
10902 	if (INTEL_GEN(dev_priv) >= 9) {
10903 		u32 tmp = I915_READ(SKL_BOTTOM_COLOR(crtc->pipe));
10904 
10905 		if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE)
10906 			pipe_config->gamma_enable = true;
10907 
10908 		if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE)
10909 			pipe_config->csc_enable = true;
10910 	} else {
10911 		i9xx_get_pipe_color_config(pipe_config);
10912 	}
10913 
10914 	intel_color_get_config(pipe_config);
10915 
10916 	power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10917 	WARN_ON(power_domain_mask & BIT_ULL(power_domain));
10918 
10919 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10920 	if (wf) {
10921 		wakerefs[power_domain] = wf;
10922 		power_domain_mask |= BIT_ULL(power_domain);
10923 
10924 		if (INTEL_GEN(dev_priv) >= 9)
10925 			skylake_get_pfit_config(crtc, pipe_config);
10926 		else
10927 			ironlake_get_pfit_config(crtc, pipe_config);
10928 	}
10929 
10930 	if (hsw_crtc_supports_ips(crtc)) {
10931 		if (IS_HASWELL(dev_priv))
10932 			pipe_config->ips_enabled = I915_READ(IPS_CTL) & IPS_ENABLE;
10933 		else {
10934 			/*
10935 			 * We cannot readout IPS state on broadwell, set to
10936 			 * true so we can set it to a defined state on first
10937 			 * commit.
10938 			 */
10939 			pipe_config->ips_enabled = true;
10940 		}
10941 	}
10942 
10943 	if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10944 	    !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10945 		pipe_config->pixel_multiplier =
10946 			I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10947 	} else {
10948 		pipe_config->pixel_multiplier = 1;
10949 	}
10950 
10951 	if (INTEL_GEN(dev_priv) >= 11 &&
10952 	    !transcoder_is_dsi(pipe_config->cpu_transcoder))
10953 		icelake_get_trans_port_sync_config(pipe_config);
10954 
10955 out:
10956 	for_each_power_domain(power_domain, power_domain_mask)
10957 		intel_display_power_put(dev_priv,
10958 					power_domain, wakerefs[power_domain]);
10959 
10960 	return active;
10961 }
10962 
10963 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
10964 {
10965 	struct drm_i915_private *dev_priv =
10966 		to_i915(plane_state->uapi.plane->dev);
10967 	const struct drm_framebuffer *fb = plane_state->hw.fb;
10968 	const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10969 	u32 base;
10970 
10971 	if (INTEL_INFO(dev_priv)->display.cursor_needs_physical)
10972 		base = obj->phys_handle->busaddr;
10973 	else
10974 		base = intel_plane_ggtt_offset(plane_state);
10975 
10976 	return base + plane_state->color_plane[0].offset;
10977 }
10978 
10979 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
10980 {
10981 	int x = plane_state->uapi.dst.x1;
10982 	int y = plane_state->uapi.dst.y1;
10983 	u32 pos = 0;
10984 
10985 	if (x < 0) {
10986 		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10987 		x = -x;
10988 	}
10989 	pos |= x << CURSOR_X_SHIFT;
10990 
10991 	if (y < 0) {
10992 		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10993 		y = -y;
10994 	}
10995 	pos |= y << CURSOR_Y_SHIFT;
10996 
10997 	return pos;
10998 }
10999 
11000 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
11001 {
11002 	const struct drm_mode_config *config =
11003 		&plane_state->uapi.plane->dev->mode_config;
11004 	int width = drm_rect_width(&plane_state->uapi.dst);
11005 	int height = drm_rect_height(&plane_state->uapi.dst);
11006 
11007 	return width > 0 && width <= config->cursor_width &&
11008 		height > 0 && height <= config->cursor_height;
11009 }
11010 
11011 static int intel_cursor_check_surface(struct intel_plane_state *plane_state)
11012 {
11013 	struct drm_i915_private *dev_priv =
11014 		to_i915(plane_state->uapi.plane->dev);
11015 	unsigned int rotation = plane_state->hw.rotation;
11016 	int src_x, src_y;
11017 	u32 offset;
11018 	int ret;
11019 
11020 	ret = intel_plane_compute_gtt(plane_state);
11021 	if (ret)
11022 		return ret;
11023 
11024 	if (!plane_state->uapi.visible)
11025 		return 0;
11026 
11027 	src_x = plane_state->uapi.src.x1 >> 16;
11028 	src_y = plane_state->uapi.src.y1 >> 16;
11029 
11030 	intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
11031 	offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
11032 						    plane_state, 0);
11033 
11034 	if (src_x != 0 || src_y != 0) {
11035 		DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n");
11036 		return -EINVAL;
11037 	}
11038 
11039 	/*
11040 	 * Put the final coordinates back so that the src
11041 	 * coordinate checks will see the right values.
11042 	 */
11043 	drm_rect_translate_to(&plane_state->uapi.src,
11044 			      src_x << 16, src_y << 16);
11045 
11046 	/* ILK+ do this automagically in hardware */
11047 	if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) {
11048 		const struct drm_framebuffer *fb = plane_state->hw.fb;
11049 		int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
11050 		int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
11051 
11052 		offset += (src_h * src_w - 1) * fb->format->cpp[0];
11053 	}
11054 
11055 	plane_state->color_plane[0].offset = offset;
11056 	plane_state->color_plane[0].x = src_x;
11057 	plane_state->color_plane[0].y = src_y;
11058 
11059 	return 0;
11060 }
11061 
11062 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
11063 			      struct intel_plane_state *plane_state)
11064 {
11065 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11066 	int ret;
11067 
11068 	if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) {
11069 		DRM_DEBUG_KMS("cursor cannot be tiled\n");
11070 		return -EINVAL;
11071 	}
11072 
11073 	ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
11074 						  &crtc_state->uapi,
11075 						  DRM_PLANE_HELPER_NO_SCALING,
11076 						  DRM_PLANE_HELPER_NO_SCALING,
11077 						  true, true);
11078 	if (ret)
11079 		return ret;
11080 
11081 	/* Use the unclipped src/dst rectangles, which we program to hw */
11082 	plane_state->uapi.src = drm_plane_state_src(&plane_state->uapi);
11083 	plane_state->uapi.dst = drm_plane_state_dest(&plane_state->uapi);
11084 
11085 	ret = intel_cursor_check_surface(plane_state);
11086 	if (ret)
11087 		return ret;
11088 
11089 	if (!plane_state->uapi.visible)
11090 		return 0;
11091 
11092 	ret = intel_plane_check_src_coordinates(plane_state);
11093 	if (ret)
11094 		return ret;
11095 
11096 	return 0;
11097 }
11098 
11099 static unsigned int
11100 i845_cursor_max_stride(struct intel_plane *plane,
11101 		       u32 pixel_format, u64 modifier,
11102 		       unsigned int rotation)
11103 {
11104 	return 2048;
11105 }
11106 
11107 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11108 {
11109 	u32 cntl = 0;
11110 
11111 	if (crtc_state->gamma_enable)
11112 		cntl |= CURSOR_GAMMA_ENABLE;
11113 
11114 	return cntl;
11115 }
11116 
11117 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
11118 			   const struct intel_plane_state *plane_state)
11119 {
11120 	return CURSOR_ENABLE |
11121 		CURSOR_FORMAT_ARGB |
11122 		CURSOR_STRIDE(plane_state->color_plane[0].stride);
11123 }
11124 
11125 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
11126 {
11127 	int width = drm_rect_width(&plane_state->uapi.dst);
11128 
11129 	/*
11130 	 * 845g/865g are only limited by the width of their cursors,
11131 	 * the height is arbitrary up to the precision of the register.
11132 	 */
11133 	return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
11134 }
11135 
11136 static int i845_check_cursor(struct intel_crtc_state *crtc_state,
11137 			     struct intel_plane_state *plane_state)
11138 {
11139 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11140 	int ret;
11141 
11142 	ret = intel_check_cursor(crtc_state, plane_state);
11143 	if (ret)
11144 		return ret;
11145 
11146 	/* if we want to turn off the cursor ignore width and height */
11147 	if (!fb)
11148 		return 0;
11149 
11150 	/* Check for which cursor types we support */
11151 	if (!i845_cursor_size_ok(plane_state)) {
11152 		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
11153 			  drm_rect_width(&plane_state->uapi.dst),
11154 			  drm_rect_height(&plane_state->uapi.dst));
11155 		return -EINVAL;
11156 	}
11157 
11158 	WARN_ON(plane_state->uapi.visible &&
11159 		plane_state->color_plane[0].stride != fb->pitches[0]);
11160 
11161 	switch (fb->pitches[0]) {
11162 	case 256:
11163 	case 512:
11164 	case 1024:
11165 	case 2048:
11166 		break;
11167 	default:
11168 		DRM_DEBUG_KMS("Invalid cursor stride (%u)\n",
11169 			      fb->pitches[0]);
11170 		return -EINVAL;
11171 	}
11172 
11173 	plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
11174 
11175 	return 0;
11176 }
11177 
11178 static void i845_update_cursor(struct intel_plane *plane,
11179 			       const struct intel_crtc_state *crtc_state,
11180 			       const struct intel_plane_state *plane_state)
11181 {
11182 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11183 	u32 cntl = 0, base = 0, pos = 0, size = 0;
11184 	unsigned long irqflags;
11185 
11186 	if (plane_state && plane_state->uapi.visible) {
11187 		unsigned int width = drm_rect_width(&plane_state->uapi.dst);
11188 		unsigned int height = drm_rect_height(&plane_state->uapi.dst);
11189 
11190 		cntl = plane_state->ctl |
11191 			i845_cursor_ctl_crtc(crtc_state);
11192 
11193 		size = (height << 12) | width;
11194 
11195 		base = intel_cursor_base(plane_state);
11196 		pos = intel_cursor_position(plane_state);
11197 	}
11198 
11199 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11200 
11201 	/* On these chipsets we can only modify the base/size/stride
11202 	 * whilst the cursor is disabled.
11203 	 */
11204 	if (plane->cursor.base != base ||
11205 	    plane->cursor.size != size ||
11206 	    plane->cursor.cntl != cntl) {
11207 		I915_WRITE_FW(CURCNTR(PIPE_A), 0);
11208 		I915_WRITE_FW(CURBASE(PIPE_A), base);
11209 		I915_WRITE_FW(CURSIZE, size);
11210 		I915_WRITE_FW(CURPOS(PIPE_A), pos);
11211 		I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
11212 
11213 		plane->cursor.base = base;
11214 		plane->cursor.size = size;
11215 		plane->cursor.cntl = cntl;
11216 	} else {
11217 		I915_WRITE_FW(CURPOS(PIPE_A), pos);
11218 	}
11219 
11220 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11221 }
11222 
11223 static void i845_disable_cursor(struct intel_plane *plane,
11224 				const struct intel_crtc_state *crtc_state)
11225 {
11226 	i845_update_cursor(plane, crtc_state, NULL);
11227 }
11228 
11229 static bool i845_cursor_get_hw_state(struct intel_plane *plane,
11230 				     enum pipe *pipe)
11231 {
11232 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11233 	enum intel_display_power_domain power_domain;
11234 	intel_wakeref_t wakeref;
11235 	bool ret;
11236 
11237 	power_domain = POWER_DOMAIN_PIPE(PIPE_A);
11238 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11239 	if (!wakeref)
11240 		return false;
11241 
11242 	ret = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
11243 
11244 	*pipe = PIPE_A;
11245 
11246 	intel_display_power_put(dev_priv, power_domain, wakeref);
11247 
11248 	return ret;
11249 }
11250 
11251 static unsigned int
11252 i9xx_cursor_max_stride(struct intel_plane *plane,
11253 		       u32 pixel_format, u64 modifier,
11254 		       unsigned int rotation)
11255 {
11256 	return plane->base.dev->mode_config.cursor_width * 4;
11257 }
11258 
11259 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11260 {
11261 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
11262 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11263 	u32 cntl = 0;
11264 
11265 	if (INTEL_GEN(dev_priv) >= 11)
11266 		return cntl;
11267 
11268 	if (crtc_state->gamma_enable)
11269 		cntl = MCURSOR_GAMMA_ENABLE;
11270 
11271 	if (crtc_state->csc_enable)
11272 		cntl |= MCURSOR_PIPE_CSC_ENABLE;
11273 
11274 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11275 		cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
11276 
11277 	return cntl;
11278 }
11279 
11280 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
11281 			   const struct intel_plane_state *plane_state)
11282 {
11283 	struct drm_i915_private *dev_priv =
11284 		to_i915(plane_state->uapi.plane->dev);
11285 	u32 cntl = 0;
11286 
11287 	if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
11288 		cntl |= MCURSOR_TRICKLE_FEED_DISABLE;
11289 
11290 	switch (drm_rect_width(&plane_state->uapi.dst)) {
11291 	case 64:
11292 		cntl |= MCURSOR_MODE_64_ARGB_AX;
11293 		break;
11294 	case 128:
11295 		cntl |= MCURSOR_MODE_128_ARGB_AX;
11296 		break;
11297 	case 256:
11298 		cntl |= MCURSOR_MODE_256_ARGB_AX;
11299 		break;
11300 	default:
11301 		MISSING_CASE(drm_rect_width(&plane_state->uapi.dst));
11302 		return 0;
11303 	}
11304 
11305 	if (plane_state->hw.rotation & DRM_MODE_ROTATE_180)
11306 		cntl |= MCURSOR_ROTATE_180;
11307 
11308 	return cntl;
11309 }
11310 
11311 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
11312 {
11313 	struct drm_i915_private *dev_priv =
11314 		to_i915(plane_state->uapi.plane->dev);
11315 	int width = drm_rect_width(&plane_state->uapi.dst);
11316 	int height = drm_rect_height(&plane_state->uapi.dst);
11317 
11318 	if (!intel_cursor_size_ok(plane_state))
11319 		return false;
11320 
11321 	/* Cursor width is limited to a few power-of-two sizes */
11322 	switch (width) {
11323 	case 256:
11324 	case 128:
11325 	case 64:
11326 		break;
11327 	default:
11328 		return false;
11329 	}
11330 
11331 	/*
11332 	 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
11333 	 * height from 8 lines up to the cursor width, when the
11334 	 * cursor is not rotated. Everything else requires square
11335 	 * cursors.
11336 	 */
11337 	if (HAS_CUR_FBC(dev_priv) &&
11338 	    plane_state->hw.rotation & DRM_MODE_ROTATE_0) {
11339 		if (height < 8 || height > width)
11340 			return false;
11341 	} else {
11342 		if (height != width)
11343 			return false;
11344 	}
11345 
11346 	return true;
11347 }
11348 
11349 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state,
11350 			     struct intel_plane_state *plane_state)
11351 {
11352 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
11353 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11354 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11355 	enum pipe pipe = plane->pipe;
11356 	int ret;
11357 
11358 	ret = intel_check_cursor(crtc_state, plane_state);
11359 	if (ret)
11360 		return ret;
11361 
11362 	/* if we want to turn off the cursor ignore width and height */
11363 	if (!fb)
11364 		return 0;
11365 
11366 	/* Check for which cursor types we support */
11367 	if (!i9xx_cursor_size_ok(plane_state)) {
11368 		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
11369 			  drm_rect_width(&plane_state->uapi.dst),
11370 			  drm_rect_height(&plane_state->uapi.dst));
11371 		return -EINVAL;
11372 	}
11373 
11374 	WARN_ON(plane_state->uapi.visible &&
11375 		plane_state->color_plane[0].stride != fb->pitches[0]);
11376 
11377 	if (fb->pitches[0] !=
11378 	    drm_rect_width(&plane_state->uapi.dst) * fb->format->cpp[0]) {
11379 		DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n",
11380 			      fb->pitches[0],
11381 			      drm_rect_width(&plane_state->uapi.dst));
11382 		return -EINVAL;
11383 	}
11384 
11385 	/*
11386 	 * There's something wrong with the cursor on CHV pipe C.
11387 	 * If it straddles the left edge of the screen then
11388 	 * moving it away from the edge or disabling it often
11389 	 * results in a pipe underrun, and often that can lead to
11390 	 * dead pipe (constant underrun reported, and it scans
11391 	 * out just a solid color). To recover from that, the
11392 	 * display power well must be turned off and on again.
11393 	 * Refuse the put the cursor into that compromised position.
11394 	 */
11395 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
11396 	    plane_state->uapi.visible && plane_state->uapi.dst.x1 < 0) {
11397 		DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
11398 		return -EINVAL;
11399 	}
11400 
11401 	plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
11402 
11403 	return 0;
11404 }
11405 
11406 static void i9xx_update_cursor(struct intel_plane *plane,
11407 			       const struct intel_crtc_state *crtc_state,
11408 			       const struct intel_plane_state *plane_state)
11409 {
11410 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11411 	enum pipe pipe = plane->pipe;
11412 	u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
11413 	unsigned long irqflags;
11414 
11415 	if (plane_state && plane_state->uapi.visible) {
11416 		unsigned width = drm_rect_width(&plane_state->uapi.dst);
11417 		unsigned height = drm_rect_height(&plane_state->uapi.dst);
11418 
11419 		cntl = plane_state->ctl |
11420 			i9xx_cursor_ctl_crtc(crtc_state);
11421 
11422 		if (width != height)
11423 			fbc_ctl = CUR_FBC_CTL_EN | (height - 1);
11424 
11425 		base = intel_cursor_base(plane_state);
11426 		pos = intel_cursor_position(plane_state);
11427 	}
11428 
11429 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11430 
11431 	/*
11432 	 * On some platforms writing CURCNTR first will also
11433 	 * cause CURPOS to be armed by the CURBASE write.
11434 	 * Without the CURCNTR write the CURPOS write would
11435 	 * arm itself. Thus we always update CURCNTR before
11436 	 * CURPOS.
11437 	 *
11438 	 * On other platforms CURPOS always requires the
11439 	 * CURBASE write to arm the update. Additonally
11440 	 * a write to any of the cursor register will cancel
11441 	 * an already armed cursor update. Thus leaving out
11442 	 * the CURBASE write after CURPOS could lead to a
11443 	 * cursor that doesn't appear to move, or even change
11444 	 * shape. Thus we always write CURBASE.
11445 	 *
11446 	 * The other registers are armed by by the CURBASE write
11447 	 * except when the plane is getting enabled at which time
11448 	 * the CURCNTR write arms the update.
11449 	 */
11450 
11451 	if (INTEL_GEN(dev_priv) >= 9)
11452 		skl_write_cursor_wm(plane, crtc_state);
11453 
11454 	if (plane->cursor.base != base ||
11455 	    plane->cursor.size != fbc_ctl ||
11456 	    plane->cursor.cntl != cntl) {
11457 		if (HAS_CUR_FBC(dev_priv))
11458 			I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl);
11459 		I915_WRITE_FW(CURCNTR(pipe), cntl);
11460 		I915_WRITE_FW(CURPOS(pipe), pos);
11461 		I915_WRITE_FW(CURBASE(pipe), base);
11462 
11463 		plane->cursor.base = base;
11464 		plane->cursor.size = fbc_ctl;
11465 		plane->cursor.cntl = cntl;
11466 	} else {
11467 		I915_WRITE_FW(CURPOS(pipe), pos);
11468 		I915_WRITE_FW(CURBASE(pipe), base);
11469 	}
11470 
11471 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11472 }
11473 
11474 static void i9xx_disable_cursor(struct intel_plane *plane,
11475 				const struct intel_crtc_state *crtc_state)
11476 {
11477 	i9xx_update_cursor(plane, crtc_state, NULL);
11478 }
11479 
11480 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane,
11481 				     enum pipe *pipe)
11482 {
11483 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11484 	enum intel_display_power_domain power_domain;
11485 	intel_wakeref_t wakeref;
11486 	bool ret;
11487 	u32 val;
11488 
11489 	/*
11490 	 * Not 100% correct for planes that can move between pipes,
11491 	 * but that's only the case for gen2-3 which don't have any
11492 	 * display power wells.
11493 	 */
11494 	power_domain = POWER_DOMAIN_PIPE(plane->pipe);
11495 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11496 	if (!wakeref)
11497 		return false;
11498 
11499 	val = I915_READ(CURCNTR(plane->pipe));
11500 
11501 	ret = val & MCURSOR_MODE;
11502 
11503 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
11504 		*pipe = plane->pipe;
11505 	else
11506 		*pipe = (val & MCURSOR_PIPE_SELECT_MASK) >>
11507 			MCURSOR_PIPE_SELECT_SHIFT;
11508 
11509 	intel_display_power_put(dev_priv, power_domain, wakeref);
11510 
11511 	return ret;
11512 }
11513 
11514 /* VESA 640x480x72Hz mode to set on the pipe */
11515 static const struct drm_display_mode load_detect_mode = {
11516 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
11517 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
11518 };
11519 
11520 struct drm_framebuffer *
11521 intel_framebuffer_create(struct drm_i915_gem_object *obj,
11522 			 struct drm_mode_fb_cmd2 *mode_cmd)
11523 {
11524 	struct intel_framebuffer *intel_fb;
11525 	int ret;
11526 
11527 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
11528 	if (!intel_fb)
11529 		return ERR_PTR(-ENOMEM);
11530 
11531 	ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
11532 	if (ret)
11533 		goto err;
11534 
11535 	return &intel_fb->base;
11536 
11537 err:
11538 	kfree(intel_fb);
11539 	return ERR_PTR(ret);
11540 }
11541 
11542 static int intel_modeset_disable_planes(struct drm_atomic_state *state,
11543 					struct drm_crtc *crtc)
11544 {
11545 	struct drm_plane *plane;
11546 	struct drm_plane_state *plane_state;
11547 	int ret, i;
11548 
11549 	ret = drm_atomic_add_affected_planes(state, crtc);
11550 	if (ret)
11551 		return ret;
11552 
11553 	for_each_new_plane_in_state(state, plane, plane_state, i) {
11554 		if (plane_state->crtc != crtc)
11555 			continue;
11556 
11557 		ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
11558 		if (ret)
11559 			return ret;
11560 
11561 		drm_atomic_set_fb_for_plane(plane_state, NULL);
11562 	}
11563 
11564 	return 0;
11565 }
11566 
11567 int intel_get_load_detect_pipe(struct drm_connector *connector,
11568 			       struct intel_load_detect_pipe *old,
11569 			       struct drm_modeset_acquire_ctx *ctx)
11570 {
11571 	struct intel_crtc *intel_crtc;
11572 	struct intel_encoder *intel_encoder =
11573 		intel_attached_encoder(connector);
11574 	struct drm_crtc *possible_crtc;
11575 	struct drm_encoder *encoder = &intel_encoder->base;
11576 	struct drm_crtc *crtc = NULL;
11577 	struct drm_device *dev = encoder->dev;
11578 	struct drm_i915_private *dev_priv = to_i915(dev);
11579 	struct drm_mode_config *config = &dev->mode_config;
11580 	struct drm_atomic_state *state = NULL, *restore_state = NULL;
11581 	struct drm_connector_state *connector_state;
11582 	struct intel_crtc_state *crtc_state;
11583 	int ret, i = -1;
11584 
11585 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11586 		      connector->base.id, connector->name,
11587 		      encoder->base.id, encoder->name);
11588 
11589 	old->restore_state = NULL;
11590 
11591 	WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
11592 
11593 	/*
11594 	 * Algorithm gets a little messy:
11595 	 *
11596 	 *   - if the connector already has an assigned crtc, use it (but make
11597 	 *     sure it's on first)
11598 	 *
11599 	 *   - try to find the first unused crtc that can drive this connector,
11600 	 *     and use that if we find one
11601 	 */
11602 
11603 	/* See if we already have a CRTC for this connector */
11604 	if (connector->state->crtc) {
11605 		crtc = connector->state->crtc;
11606 
11607 		ret = drm_modeset_lock(&crtc->mutex, ctx);
11608 		if (ret)
11609 			goto fail;
11610 
11611 		/* Make sure the crtc and connector are running */
11612 		goto found;
11613 	}
11614 
11615 	/* Find an unused one (if possible) */
11616 	for_each_crtc(dev, possible_crtc) {
11617 		i++;
11618 		if (!(encoder->possible_crtcs & (1 << i)))
11619 			continue;
11620 
11621 		ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11622 		if (ret)
11623 			goto fail;
11624 
11625 		if (possible_crtc->state->enable) {
11626 			drm_modeset_unlock(&possible_crtc->mutex);
11627 			continue;
11628 		}
11629 
11630 		crtc = possible_crtc;
11631 		break;
11632 	}
11633 
11634 	/*
11635 	 * If we didn't find an unused CRTC, don't use any.
11636 	 */
11637 	if (!crtc) {
11638 		DRM_DEBUG_KMS("no pipe available for load-detect\n");
11639 		ret = -ENODEV;
11640 		goto fail;
11641 	}
11642 
11643 found:
11644 	intel_crtc = to_intel_crtc(crtc);
11645 
11646 	state = drm_atomic_state_alloc(dev);
11647 	restore_state = drm_atomic_state_alloc(dev);
11648 	if (!state || !restore_state) {
11649 		ret = -ENOMEM;
11650 		goto fail;
11651 	}
11652 
11653 	state->acquire_ctx = ctx;
11654 	restore_state->acquire_ctx = ctx;
11655 
11656 	connector_state = drm_atomic_get_connector_state(state, connector);
11657 	if (IS_ERR(connector_state)) {
11658 		ret = PTR_ERR(connector_state);
11659 		goto fail;
11660 	}
11661 
11662 	ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11663 	if (ret)
11664 		goto fail;
11665 
11666 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11667 	if (IS_ERR(crtc_state)) {
11668 		ret = PTR_ERR(crtc_state);
11669 		goto fail;
11670 	}
11671 
11672 	crtc_state->uapi.active = true;
11673 
11674 	ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi,
11675 					   &load_detect_mode);
11676 	if (ret)
11677 		goto fail;
11678 
11679 	ret = intel_modeset_disable_planes(state, crtc);
11680 	if (ret)
11681 		goto fail;
11682 
11683 	ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11684 	if (!ret)
11685 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11686 	if (!ret)
11687 		ret = drm_atomic_add_affected_planes(restore_state, crtc);
11688 	if (ret) {
11689 		DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11690 		goto fail;
11691 	}
11692 
11693 	ret = drm_atomic_commit(state);
11694 	if (ret) {
11695 		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11696 		goto fail;
11697 	}
11698 
11699 	old->restore_state = restore_state;
11700 	drm_atomic_state_put(state);
11701 
11702 	/* let the connector get through one full cycle before testing */
11703 	intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
11704 	return true;
11705 
11706 fail:
11707 	if (state) {
11708 		drm_atomic_state_put(state);
11709 		state = NULL;
11710 	}
11711 	if (restore_state) {
11712 		drm_atomic_state_put(restore_state);
11713 		restore_state = NULL;
11714 	}
11715 
11716 	if (ret == -EDEADLK)
11717 		return ret;
11718 
11719 	return false;
11720 }
11721 
11722 void intel_release_load_detect_pipe(struct drm_connector *connector,
11723 				    struct intel_load_detect_pipe *old,
11724 				    struct drm_modeset_acquire_ctx *ctx)
11725 {
11726 	struct intel_encoder *intel_encoder =
11727 		intel_attached_encoder(connector);
11728 	struct drm_encoder *encoder = &intel_encoder->base;
11729 	struct drm_atomic_state *state = old->restore_state;
11730 	int ret;
11731 
11732 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11733 		      connector->base.id, connector->name,
11734 		      encoder->base.id, encoder->name);
11735 
11736 	if (!state)
11737 		return;
11738 
11739 	ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
11740 	if (ret)
11741 		DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11742 	drm_atomic_state_put(state);
11743 }
11744 
11745 static int i9xx_pll_refclk(struct drm_device *dev,
11746 			   const struct intel_crtc_state *pipe_config)
11747 {
11748 	struct drm_i915_private *dev_priv = to_i915(dev);
11749 	u32 dpll = pipe_config->dpll_hw_state.dpll;
11750 
11751 	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11752 		return dev_priv->vbt.lvds_ssc_freq;
11753 	else if (HAS_PCH_SPLIT(dev_priv))
11754 		return 120000;
11755 	else if (!IS_GEN(dev_priv, 2))
11756 		return 96000;
11757 	else
11758 		return 48000;
11759 }
11760 
11761 /* Returns the clock of the currently programmed mode of the given pipe. */
11762 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11763 				struct intel_crtc_state *pipe_config)
11764 {
11765 	struct drm_device *dev = crtc->base.dev;
11766 	struct drm_i915_private *dev_priv = to_i915(dev);
11767 	enum pipe pipe = crtc->pipe;
11768 	u32 dpll = pipe_config->dpll_hw_state.dpll;
11769 	u32 fp;
11770 	struct dpll clock;
11771 	int port_clock;
11772 	int refclk = i9xx_pll_refclk(dev, pipe_config);
11773 
11774 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11775 		fp = pipe_config->dpll_hw_state.fp0;
11776 	else
11777 		fp = pipe_config->dpll_hw_state.fp1;
11778 
11779 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11780 	if (IS_PINEVIEW(dev_priv)) {
11781 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11782 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11783 	} else {
11784 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11785 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11786 	}
11787 
11788 	if (!IS_GEN(dev_priv, 2)) {
11789 		if (IS_PINEVIEW(dev_priv))
11790 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11791 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11792 		else
11793 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11794 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
11795 
11796 		switch (dpll & DPLL_MODE_MASK) {
11797 		case DPLLB_MODE_DAC_SERIAL:
11798 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11799 				5 : 10;
11800 			break;
11801 		case DPLLB_MODE_LVDS:
11802 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11803 				7 : 14;
11804 			break;
11805 		default:
11806 			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11807 				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
11808 			return;
11809 		}
11810 
11811 		if (IS_PINEVIEW(dev_priv))
11812 			port_clock = pnv_calc_dpll_params(refclk, &clock);
11813 		else
11814 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
11815 	} else {
11816 		u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11817 		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11818 
11819 		if (is_lvds) {
11820 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11821 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
11822 
11823 			if (lvds & LVDS_CLKB_POWER_UP)
11824 				clock.p2 = 7;
11825 			else
11826 				clock.p2 = 14;
11827 		} else {
11828 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
11829 				clock.p1 = 2;
11830 			else {
11831 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11832 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11833 			}
11834 			if (dpll & PLL_P2_DIVIDE_BY_4)
11835 				clock.p2 = 4;
11836 			else
11837 				clock.p2 = 2;
11838 		}
11839 
11840 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
11841 	}
11842 
11843 	/*
11844 	 * This value includes pixel_multiplier. We will use
11845 	 * port_clock to compute adjusted_mode.crtc_clock in the
11846 	 * encoder's get_config() function.
11847 	 */
11848 	pipe_config->port_clock = port_clock;
11849 }
11850 
11851 int intel_dotclock_calculate(int link_freq,
11852 			     const struct intel_link_m_n *m_n)
11853 {
11854 	/*
11855 	 * The calculation for the data clock is:
11856 	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11857 	 * But we want to avoid losing precison if possible, so:
11858 	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11859 	 *
11860 	 * and the link clock is simpler:
11861 	 * link_clock = (m * link_clock) / n
11862 	 */
11863 
11864 	if (!m_n->link_n)
11865 		return 0;
11866 
11867 	return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
11868 }
11869 
11870 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11871 				   struct intel_crtc_state *pipe_config)
11872 {
11873 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11874 
11875 	/* read out port_clock from the DPLL */
11876 	i9xx_crtc_clock_get(crtc, pipe_config);
11877 
11878 	/*
11879 	 * In case there is an active pipe without active ports,
11880 	 * we may need some idea for the dotclock anyway.
11881 	 * Calculate one based on the FDI configuration.
11882 	 */
11883 	pipe_config->hw.adjusted_mode.crtc_clock =
11884 		intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11885 					 &pipe_config->fdi_m_n);
11886 }
11887 
11888 static void intel_crtc_state_reset(struct intel_crtc_state *crtc_state,
11889 				   struct intel_crtc *crtc)
11890 {
11891 	memset(crtc_state, 0, sizeof(*crtc_state));
11892 
11893 	__drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base);
11894 
11895 	crtc_state->cpu_transcoder = INVALID_TRANSCODER;
11896 	crtc_state->master_transcoder = INVALID_TRANSCODER;
11897 	crtc_state->hsw_workaround_pipe = INVALID_PIPE;
11898 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_INVALID;
11899 	crtc_state->scaler_state.scaler_id = -1;
11900 }
11901 
11902 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc)
11903 {
11904 	struct intel_crtc_state *crtc_state;
11905 
11906 	crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL);
11907 
11908 	if (crtc_state)
11909 		intel_crtc_state_reset(crtc_state, crtc);
11910 
11911 	return crtc_state;
11912 }
11913 
11914 /* Returns the currently programmed mode of the given encoder. */
11915 struct drm_display_mode *
11916 intel_encoder_current_mode(struct intel_encoder *encoder)
11917 {
11918 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
11919 	struct intel_crtc_state *crtc_state;
11920 	struct drm_display_mode *mode;
11921 	struct intel_crtc *crtc;
11922 	enum pipe pipe;
11923 
11924 	if (!encoder->get_hw_state(encoder, &pipe))
11925 		return NULL;
11926 
11927 	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11928 
11929 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11930 	if (!mode)
11931 		return NULL;
11932 
11933 	crtc_state = intel_crtc_state_alloc(crtc);
11934 	if (!crtc_state) {
11935 		kfree(mode);
11936 		return NULL;
11937 	}
11938 
11939 	if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) {
11940 		kfree(crtc_state);
11941 		kfree(mode);
11942 		return NULL;
11943 	}
11944 
11945 	encoder->get_config(encoder, crtc_state);
11946 
11947 	intel_mode_from_pipe_config(mode, crtc_state);
11948 
11949 	kfree(crtc_state);
11950 
11951 	return mode;
11952 }
11953 
11954 static void intel_crtc_destroy(struct drm_crtc *crtc)
11955 {
11956 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11957 
11958 	drm_crtc_cleanup(crtc);
11959 	kfree(intel_crtc);
11960 }
11961 
11962 /**
11963  * intel_wm_need_update - Check whether watermarks need updating
11964  * @cur: current plane state
11965  * @new: new plane state
11966  *
11967  * Check current plane state versus the new one to determine whether
11968  * watermarks need to be recalculated.
11969  *
11970  * Returns true or false.
11971  */
11972 static bool intel_wm_need_update(const struct intel_plane_state *cur,
11973 				 struct intel_plane_state *new)
11974 {
11975 	/* Update watermarks on tiling or size changes. */
11976 	if (new->uapi.visible != cur->uapi.visible)
11977 		return true;
11978 
11979 	if (!cur->hw.fb || !new->hw.fb)
11980 		return false;
11981 
11982 	if (cur->hw.fb->modifier != new->hw.fb->modifier ||
11983 	    cur->hw.rotation != new->hw.rotation ||
11984 	    drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) ||
11985 	    drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) ||
11986 	    drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) ||
11987 	    drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst))
11988 		return true;
11989 
11990 	return false;
11991 }
11992 
11993 static bool needs_scaling(const struct intel_plane_state *state)
11994 {
11995 	int src_w = drm_rect_width(&state->uapi.src) >> 16;
11996 	int src_h = drm_rect_height(&state->uapi.src) >> 16;
11997 	int dst_w = drm_rect_width(&state->uapi.dst);
11998 	int dst_h = drm_rect_height(&state->uapi.dst);
11999 
12000 	return (src_w != dst_w || src_h != dst_h);
12001 }
12002 
12003 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
12004 				    struct intel_crtc_state *crtc_state,
12005 				    const struct intel_plane_state *old_plane_state,
12006 				    struct intel_plane_state *plane_state)
12007 {
12008 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12009 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
12010 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12011 	bool mode_changed = needs_modeset(crtc_state);
12012 	bool was_crtc_enabled = old_crtc_state->hw.active;
12013 	bool is_crtc_enabled = crtc_state->hw.active;
12014 	bool turn_off, turn_on, visible, was_visible;
12015 	int ret;
12016 
12017 	if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
12018 		ret = skl_update_scaler_plane(crtc_state, plane_state);
12019 		if (ret)
12020 			return ret;
12021 	}
12022 
12023 	was_visible = old_plane_state->uapi.visible;
12024 	visible = plane_state->uapi.visible;
12025 
12026 	if (!was_crtc_enabled && WARN_ON(was_visible))
12027 		was_visible = false;
12028 
12029 	/*
12030 	 * Visibility is calculated as if the crtc was on, but
12031 	 * after scaler setup everything depends on it being off
12032 	 * when the crtc isn't active.
12033 	 *
12034 	 * FIXME this is wrong for watermarks. Watermarks should also
12035 	 * be computed as if the pipe would be active. Perhaps move
12036 	 * per-plane wm computation to the .check_plane() hook, and
12037 	 * only combine the results from all planes in the current place?
12038 	 */
12039 	if (!is_crtc_enabled) {
12040 		plane_state->uapi.visible = visible = false;
12041 		crtc_state->active_planes &= ~BIT(plane->id);
12042 		crtc_state->data_rate[plane->id] = 0;
12043 		crtc_state->min_cdclk[plane->id] = 0;
12044 	}
12045 
12046 	if (!was_visible && !visible)
12047 		return 0;
12048 
12049 	turn_off = was_visible && (!visible || mode_changed);
12050 	turn_on = visible && (!was_visible || mode_changed);
12051 
12052 	DRM_DEBUG_ATOMIC("[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12053 			 crtc->base.base.id, crtc->base.name,
12054 			 plane->base.base.id, plane->base.name,
12055 			 was_visible, visible,
12056 			 turn_off, turn_on, mode_changed);
12057 
12058 	if (turn_on) {
12059 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12060 			crtc_state->update_wm_pre = true;
12061 
12062 		/* must disable cxsr around plane enable/disable */
12063 		if (plane->id != PLANE_CURSOR)
12064 			crtc_state->disable_cxsr = true;
12065 	} else if (turn_off) {
12066 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12067 			crtc_state->update_wm_post = true;
12068 
12069 		/* must disable cxsr around plane enable/disable */
12070 		if (plane->id != PLANE_CURSOR)
12071 			crtc_state->disable_cxsr = true;
12072 	} else if (intel_wm_need_update(old_plane_state, plane_state)) {
12073 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
12074 			/* FIXME bollocks */
12075 			crtc_state->update_wm_pre = true;
12076 			crtc_state->update_wm_post = true;
12077 		}
12078 	}
12079 
12080 	if (visible || was_visible)
12081 		crtc_state->fb_bits |= plane->frontbuffer_bit;
12082 
12083 	/*
12084 	 * ILK/SNB DVSACNTR/Sprite Enable
12085 	 * IVB SPR_CTL/Sprite Enable
12086 	 * "When in Self Refresh Big FIFO mode, a write to enable the
12087 	 *  plane will be internally buffered and delayed while Big FIFO
12088 	 *  mode is exiting."
12089 	 *
12090 	 * Which means that enabling the sprite can take an extra frame
12091 	 * when we start in big FIFO mode (LP1+). Thus we need to drop
12092 	 * down to LP0 and wait for vblank in order to make sure the
12093 	 * sprite gets enabled on the next vblank after the register write.
12094 	 * Doing otherwise would risk enabling the sprite one frame after
12095 	 * we've already signalled flip completion. We can resume LP1+
12096 	 * once the sprite has been enabled.
12097 	 *
12098 	 *
12099 	 * WaCxSRDisabledForSpriteScaling:ivb
12100 	 * IVB SPR_SCALE/Scaling Enable
12101 	 * "Low Power watermarks must be disabled for at least one
12102 	 *  frame before enabling sprite scaling, and kept disabled
12103 	 *  until sprite scaling is disabled."
12104 	 *
12105 	 * ILK/SNB DVSASCALE/Scaling Enable
12106 	 * "When in Self Refresh Big FIFO mode, scaling enable will be
12107 	 *  masked off while Big FIFO mode is exiting."
12108 	 *
12109 	 * Despite the w/a only being listed for IVB we assume that
12110 	 * the ILK/SNB note has similar ramifications, hence we apply
12111 	 * the w/a on all three platforms.
12112 	 *
12113 	 * With experimental results seems this is needed also for primary
12114 	 * plane, not only sprite plane.
12115 	 */
12116 	if (plane->id != PLANE_CURSOR &&
12117 	    (IS_GEN_RANGE(dev_priv, 5, 6) ||
12118 	     IS_IVYBRIDGE(dev_priv)) &&
12119 	    (turn_on || (!needs_scaling(old_plane_state) &&
12120 			 needs_scaling(plane_state))))
12121 		crtc_state->disable_lp_wm = true;
12122 
12123 	return 0;
12124 }
12125 
12126 static bool encoders_cloneable(const struct intel_encoder *a,
12127 			       const struct intel_encoder *b)
12128 {
12129 	/* masks could be asymmetric, so check both ways */
12130 	return a == b || (a->cloneable & (1 << b->type) &&
12131 			  b->cloneable & (1 << a->type));
12132 }
12133 
12134 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12135 					 struct intel_crtc *crtc,
12136 					 struct intel_encoder *encoder)
12137 {
12138 	struct intel_encoder *source_encoder;
12139 	struct drm_connector *connector;
12140 	struct drm_connector_state *connector_state;
12141 	int i;
12142 
12143 	for_each_new_connector_in_state(state, connector, connector_state, i) {
12144 		if (connector_state->crtc != &crtc->base)
12145 			continue;
12146 
12147 		source_encoder =
12148 			to_intel_encoder(connector_state->best_encoder);
12149 		if (!encoders_cloneable(encoder, source_encoder))
12150 			return false;
12151 	}
12152 
12153 	return true;
12154 }
12155 
12156 static int icl_add_linked_planes(struct intel_atomic_state *state)
12157 {
12158 	struct intel_plane *plane, *linked;
12159 	struct intel_plane_state *plane_state, *linked_plane_state;
12160 	int i;
12161 
12162 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12163 		linked = plane_state->planar_linked_plane;
12164 
12165 		if (!linked)
12166 			continue;
12167 
12168 		linked_plane_state = intel_atomic_get_plane_state(state, linked);
12169 		if (IS_ERR(linked_plane_state))
12170 			return PTR_ERR(linked_plane_state);
12171 
12172 		WARN_ON(linked_plane_state->planar_linked_plane != plane);
12173 		WARN_ON(linked_plane_state->planar_slave == plane_state->planar_slave);
12174 	}
12175 
12176 	return 0;
12177 }
12178 
12179 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state)
12180 {
12181 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12182 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12183 	struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
12184 	struct intel_plane *plane, *linked;
12185 	struct intel_plane_state *plane_state;
12186 	int i;
12187 
12188 	if (INTEL_GEN(dev_priv) < 11)
12189 		return 0;
12190 
12191 	/*
12192 	 * Destroy all old plane links and make the slave plane invisible
12193 	 * in the crtc_state->active_planes mask.
12194 	 */
12195 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12196 		if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane)
12197 			continue;
12198 
12199 		plane_state->planar_linked_plane = NULL;
12200 		if (plane_state->planar_slave && !plane_state->uapi.visible) {
12201 			crtc_state->active_planes &= ~BIT(plane->id);
12202 			crtc_state->update_planes |= BIT(plane->id);
12203 		}
12204 
12205 		plane_state->planar_slave = false;
12206 	}
12207 
12208 	if (!crtc_state->nv12_planes)
12209 		return 0;
12210 
12211 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12212 		struct intel_plane_state *linked_state = NULL;
12213 
12214 		if (plane->pipe != crtc->pipe ||
12215 		    !(crtc_state->nv12_planes & BIT(plane->id)))
12216 			continue;
12217 
12218 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) {
12219 			if (!icl_is_nv12_y_plane(linked->id))
12220 				continue;
12221 
12222 			if (crtc_state->active_planes & BIT(linked->id))
12223 				continue;
12224 
12225 			linked_state = intel_atomic_get_plane_state(state, linked);
12226 			if (IS_ERR(linked_state))
12227 				return PTR_ERR(linked_state);
12228 
12229 			break;
12230 		}
12231 
12232 		if (!linked_state) {
12233 			DRM_DEBUG_KMS("Need %d free Y planes for planar YUV\n",
12234 				      hweight8(crtc_state->nv12_planes));
12235 
12236 			return -EINVAL;
12237 		}
12238 
12239 		plane_state->planar_linked_plane = linked;
12240 
12241 		linked_state->planar_slave = true;
12242 		linked_state->planar_linked_plane = plane;
12243 		crtc_state->active_planes |= BIT(linked->id);
12244 		crtc_state->update_planes |= BIT(linked->id);
12245 		DRM_DEBUG_KMS("Using %s as Y plane for %s\n", linked->base.name, plane->base.name);
12246 
12247 		/* Copy parameters to slave plane */
12248 		linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE;
12249 		linked_state->color_ctl = plane_state->color_ctl;
12250 		memcpy(linked_state->color_plane, plane_state->color_plane,
12251 		       sizeof(linked_state->color_plane));
12252 
12253 		intel_plane_copy_uapi_to_hw_state(linked_state, plane_state);
12254 		linked_state->uapi.src = plane_state->uapi.src;
12255 		linked_state->uapi.dst = plane_state->uapi.dst;
12256 
12257 		if (icl_is_hdr_plane(dev_priv, plane->id)) {
12258 			if (linked->id == PLANE_SPRITE5)
12259 				plane_state->cus_ctl |= PLANE_CUS_PLANE_7;
12260 			else if (linked->id == PLANE_SPRITE4)
12261 				plane_state->cus_ctl |= PLANE_CUS_PLANE_6;
12262 			else
12263 				MISSING_CASE(linked->id);
12264 		}
12265 	}
12266 
12267 	return 0;
12268 }
12269 
12270 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state)
12271 {
12272 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
12273 	struct intel_atomic_state *state =
12274 		to_intel_atomic_state(new_crtc_state->uapi.state);
12275 	const struct intel_crtc_state *old_crtc_state =
12276 		intel_atomic_get_old_crtc_state(state, crtc);
12277 
12278 	return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes;
12279 }
12280 
12281 static int icl_add_sync_mode_crtcs(struct intel_crtc_state *crtc_state)
12282 {
12283 	struct drm_crtc *crtc = crtc_state->uapi.crtc;
12284 	struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
12285 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
12286 	struct drm_connector *master_connector, *connector;
12287 	struct drm_connector_state *connector_state;
12288 	struct drm_connector_list_iter conn_iter;
12289 	struct drm_crtc *master_crtc = NULL;
12290 	struct drm_crtc_state *master_crtc_state;
12291 	struct intel_crtc_state *master_pipe_config;
12292 	int i, tile_group_id;
12293 
12294 	if (INTEL_GEN(dev_priv) < 11)
12295 		return 0;
12296 
12297 	/*
12298 	 * In case of tiled displays there could be one or more slaves but there is
12299 	 * only one master. Lets make the CRTC used by the connector corresponding
12300 	 * to the last horizonal and last vertical tile a master/genlock CRTC.
12301 	 * All the other CRTCs corresponding to other tiles of the same Tile group
12302 	 * are the slave CRTCs and hold a pointer to their genlock CRTC.
12303 	 */
12304 	for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
12305 		if (connector_state->crtc != crtc)
12306 			continue;
12307 		if (!connector->has_tile)
12308 			continue;
12309 		if (crtc_state->hw.mode.hdisplay != connector->tile_h_size ||
12310 		    crtc_state->hw.mode.vdisplay != connector->tile_v_size)
12311 			return 0;
12312 		if (connector->tile_h_loc == connector->num_h_tile - 1 &&
12313 		    connector->tile_v_loc == connector->num_v_tile - 1)
12314 			continue;
12315 		crtc_state->sync_mode_slaves_mask = 0;
12316 		tile_group_id = connector->tile_group->id;
12317 		drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
12318 		drm_for_each_connector_iter(master_connector, &conn_iter) {
12319 			struct drm_connector_state *master_conn_state = NULL;
12320 
12321 			if (!master_connector->has_tile)
12322 				continue;
12323 			if (master_connector->tile_h_loc != master_connector->num_h_tile - 1 ||
12324 			    master_connector->tile_v_loc != master_connector->num_v_tile - 1)
12325 				continue;
12326 			if (master_connector->tile_group->id != tile_group_id)
12327 				continue;
12328 
12329 			master_conn_state = drm_atomic_get_connector_state(&state->base,
12330 									   master_connector);
12331 			if (IS_ERR(master_conn_state)) {
12332 				drm_connector_list_iter_end(&conn_iter);
12333 				return PTR_ERR(master_conn_state);
12334 			}
12335 			if (master_conn_state->crtc) {
12336 				master_crtc = master_conn_state->crtc;
12337 				break;
12338 			}
12339 		}
12340 		drm_connector_list_iter_end(&conn_iter);
12341 
12342 		if (!master_crtc) {
12343 			DRM_DEBUG_KMS("Could not find Master CRTC for Slave CRTC %d\n",
12344 				      connector_state->crtc->base.id);
12345 			return -EINVAL;
12346 		}
12347 
12348 		master_crtc_state = drm_atomic_get_crtc_state(&state->base,
12349 							      master_crtc);
12350 		if (IS_ERR(master_crtc_state))
12351 			return PTR_ERR(master_crtc_state);
12352 
12353 		master_pipe_config = to_intel_crtc_state(master_crtc_state);
12354 		crtc_state->master_transcoder = master_pipe_config->cpu_transcoder;
12355 		master_pipe_config->sync_mode_slaves_mask |=
12356 			BIT(crtc_state->cpu_transcoder);
12357 		DRM_DEBUG_KMS("Master Transcoder = %s added for Slave CRTC = %d, slave transcoder bitmask = %d\n",
12358 			      transcoder_name(crtc_state->master_transcoder),
12359 			      crtc_state->uapi.crtc->base.id,
12360 			      master_pipe_config->sync_mode_slaves_mask);
12361 	}
12362 
12363 	return 0;
12364 }
12365 
12366 static int intel_crtc_atomic_check(struct intel_atomic_state *state,
12367 				   struct intel_crtc *crtc)
12368 {
12369 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12370 	struct intel_crtc_state *crtc_state =
12371 		intel_atomic_get_new_crtc_state(state, crtc);
12372 	bool mode_changed = needs_modeset(crtc_state);
12373 	int ret;
12374 
12375 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) &&
12376 	    mode_changed && !crtc_state->hw.active)
12377 		crtc_state->update_wm_post = true;
12378 
12379 	if (mode_changed && crtc_state->hw.enable &&
12380 	    dev_priv->display.crtc_compute_clock &&
12381 	    !WARN_ON(crtc_state->shared_dpll)) {
12382 		ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state);
12383 		if (ret)
12384 			return ret;
12385 	}
12386 
12387 	/*
12388 	 * May need to update pipe gamma enable bits
12389 	 * when C8 planes are getting enabled/disabled.
12390 	 */
12391 	if (c8_planes_changed(crtc_state))
12392 		crtc_state->uapi.color_mgmt_changed = true;
12393 
12394 	if (mode_changed || crtc_state->update_pipe ||
12395 	    crtc_state->uapi.color_mgmt_changed) {
12396 		ret = intel_color_check(crtc_state);
12397 		if (ret)
12398 			return ret;
12399 	}
12400 
12401 	ret = 0;
12402 	if (dev_priv->display.compute_pipe_wm) {
12403 		ret = dev_priv->display.compute_pipe_wm(crtc_state);
12404 		if (ret) {
12405 			DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12406 			return ret;
12407 		}
12408 	}
12409 
12410 	if (dev_priv->display.compute_intermediate_wm) {
12411 		if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12412 			return 0;
12413 
12414 		/*
12415 		 * Calculate 'intermediate' watermarks that satisfy both the
12416 		 * old state and the new state.  We can program these
12417 		 * immediately.
12418 		 */
12419 		ret = dev_priv->display.compute_intermediate_wm(crtc_state);
12420 		if (ret) {
12421 			DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12422 			return ret;
12423 		}
12424 	}
12425 
12426 	if (INTEL_GEN(dev_priv) >= 9) {
12427 		if (mode_changed || crtc_state->update_pipe)
12428 			ret = skl_update_scaler_crtc(crtc_state);
12429 		if (!ret)
12430 			ret = intel_atomic_setup_scalers(dev_priv, crtc,
12431 							 crtc_state);
12432 	}
12433 
12434 	if (HAS_IPS(dev_priv))
12435 		crtc_state->ips_enabled = hsw_compute_ips_config(crtc_state);
12436 
12437 	return ret;
12438 }
12439 
12440 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12441 {
12442 	struct intel_connector *connector;
12443 	struct drm_connector_list_iter conn_iter;
12444 
12445 	drm_connector_list_iter_begin(dev, &conn_iter);
12446 	for_each_intel_connector_iter(connector, &conn_iter) {
12447 		if (connector->base.state->crtc)
12448 			drm_connector_put(&connector->base);
12449 
12450 		if (connector->base.encoder) {
12451 			connector->base.state->best_encoder =
12452 				connector->base.encoder;
12453 			connector->base.state->crtc =
12454 				connector->base.encoder->crtc;
12455 
12456 			drm_connector_get(&connector->base);
12457 		} else {
12458 			connector->base.state->best_encoder = NULL;
12459 			connector->base.state->crtc = NULL;
12460 		}
12461 	}
12462 	drm_connector_list_iter_end(&conn_iter);
12463 }
12464 
12465 static int
12466 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
12467 		      struct intel_crtc_state *pipe_config)
12468 {
12469 	struct drm_connector *connector = conn_state->connector;
12470 	const struct drm_display_info *info = &connector->display_info;
12471 	int bpp;
12472 
12473 	switch (conn_state->max_bpc) {
12474 	case 6 ... 7:
12475 		bpp = 6 * 3;
12476 		break;
12477 	case 8 ... 9:
12478 		bpp = 8 * 3;
12479 		break;
12480 	case 10 ... 11:
12481 		bpp = 10 * 3;
12482 		break;
12483 	case 12:
12484 		bpp = 12 * 3;
12485 		break;
12486 	default:
12487 		return -EINVAL;
12488 	}
12489 
12490 	if (bpp < pipe_config->pipe_bpp) {
12491 		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] Limiting display bpp to %d instead of "
12492 			      "EDID bpp %d, requested bpp %d, max platform bpp %d\n",
12493 			      connector->base.id, connector->name,
12494 			      bpp, 3 * info->bpc, 3 * conn_state->max_requested_bpc,
12495 			      pipe_config->pipe_bpp);
12496 
12497 		pipe_config->pipe_bpp = bpp;
12498 	}
12499 
12500 	return 0;
12501 }
12502 
12503 static int
12504 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12505 			  struct intel_crtc_state *pipe_config)
12506 {
12507 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12508 	struct drm_atomic_state *state = pipe_config->uapi.state;
12509 	struct drm_connector *connector;
12510 	struct drm_connector_state *connector_state;
12511 	int bpp, i;
12512 
12513 	if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12514 	    IS_CHERRYVIEW(dev_priv)))
12515 		bpp = 10*3;
12516 	else if (INTEL_GEN(dev_priv) >= 5)
12517 		bpp = 12*3;
12518 	else
12519 		bpp = 8*3;
12520 
12521 	pipe_config->pipe_bpp = bpp;
12522 
12523 	/* Clamp display bpp to connector max bpp */
12524 	for_each_new_connector_in_state(state, connector, connector_state, i) {
12525 		int ret;
12526 
12527 		if (connector_state->crtc != &crtc->base)
12528 			continue;
12529 
12530 		ret = compute_sink_pipe_bpp(connector_state, pipe_config);
12531 		if (ret)
12532 			return ret;
12533 	}
12534 
12535 	return 0;
12536 }
12537 
12538 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12539 {
12540 	DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12541 		      "type: 0x%x flags: 0x%x\n",
12542 		      mode->crtc_clock,
12543 		      mode->crtc_hdisplay, mode->crtc_hsync_start,
12544 		      mode->crtc_hsync_end, mode->crtc_htotal,
12545 		      mode->crtc_vdisplay, mode->crtc_vsync_start,
12546 		      mode->crtc_vsync_end, mode->crtc_vtotal,
12547 		      mode->type, mode->flags);
12548 }
12549 
12550 static inline void
12551 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config,
12552 		      const char *id, unsigned int lane_count,
12553 		      const struct intel_link_m_n *m_n)
12554 {
12555 	DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12556 		      id, lane_count,
12557 		      m_n->gmch_m, m_n->gmch_n,
12558 		      m_n->link_m, m_n->link_n, m_n->tu);
12559 }
12560 
12561 static void
12562 intel_dump_infoframe(struct drm_i915_private *dev_priv,
12563 		     const union hdmi_infoframe *frame)
12564 {
12565 	if (!drm_debug_enabled(DRM_UT_KMS))
12566 		return;
12567 
12568 	hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame);
12569 }
12570 
12571 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
12572 
12573 static const char * const output_type_str[] = {
12574 	OUTPUT_TYPE(UNUSED),
12575 	OUTPUT_TYPE(ANALOG),
12576 	OUTPUT_TYPE(DVO),
12577 	OUTPUT_TYPE(SDVO),
12578 	OUTPUT_TYPE(LVDS),
12579 	OUTPUT_TYPE(TVOUT),
12580 	OUTPUT_TYPE(HDMI),
12581 	OUTPUT_TYPE(DP),
12582 	OUTPUT_TYPE(EDP),
12583 	OUTPUT_TYPE(DSI),
12584 	OUTPUT_TYPE(DDI),
12585 	OUTPUT_TYPE(DP_MST),
12586 };
12587 
12588 #undef OUTPUT_TYPE
12589 
12590 static void snprintf_output_types(char *buf, size_t len,
12591 				  unsigned int output_types)
12592 {
12593 	char *str = buf;
12594 	int i;
12595 
12596 	str[0] = '\0';
12597 
12598 	for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
12599 		int r;
12600 
12601 		if ((output_types & BIT(i)) == 0)
12602 			continue;
12603 
12604 		r = snprintf(str, len, "%s%s",
12605 			     str != buf ? "," : "", output_type_str[i]);
12606 		if (r >= len)
12607 			break;
12608 		str += r;
12609 		len -= r;
12610 
12611 		output_types &= ~BIT(i);
12612 	}
12613 
12614 	WARN_ON_ONCE(output_types != 0);
12615 }
12616 
12617 static const char * const output_format_str[] = {
12618 	[INTEL_OUTPUT_FORMAT_INVALID] = "Invalid",
12619 	[INTEL_OUTPUT_FORMAT_RGB] = "RGB",
12620 	[INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0",
12621 	[INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4",
12622 };
12623 
12624 static const char *output_formats(enum intel_output_format format)
12625 {
12626 	if (format >= ARRAY_SIZE(output_format_str))
12627 		format = INTEL_OUTPUT_FORMAT_INVALID;
12628 	return output_format_str[format];
12629 }
12630 
12631 static void intel_dump_plane_state(const struct intel_plane_state *plane_state)
12632 {
12633 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
12634 	const struct drm_framebuffer *fb = plane_state->hw.fb;
12635 	struct drm_format_name_buf format_name;
12636 
12637 	if (!fb) {
12638 		DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [NOFB], visible: %s\n",
12639 			      plane->base.base.id, plane->base.name,
12640 			      yesno(plane_state->uapi.visible));
12641 		return;
12642 	}
12643 
12644 	DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n",
12645 		      plane->base.base.id, plane->base.name,
12646 		      fb->base.id, fb->width, fb->height,
12647 		      drm_get_format_name(fb->format->format, &format_name),
12648 		      yesno(plane_state->uapi.visible));
12649 	DRM_DEBUG_KMS("\trotation: 0x%x, scaler: %d\n",
12650 		      plane_state->hw.rotation, plane_state->scaler_id);
12651 	if (plane_state->uapi.visible)
12652 		DRM_DEBUG_KMS("\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n",
12653 			      DRM_RECT_FP_ARG(&plane_state->uapi.src),
12654 			      DRM_RECT_ARG(&plane_state->uapi.dst));
12655 }
12656 
12657 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config,
12658 				   struct intel_atomic_state *state,
12659 				   const char *context)
12660 {
12661 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
12662 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12663 	const struct intel_plane_state *plane_state;
12664 	struct intel_plane *plane;
12665 	char buf[64];
12666 	int i;
12667 
12668 	DRM_DEBUG_KMS("[CRTC:%d:%s] enable: %s %s\n",
12669 		      crtc->base.base.id, crtc->base.name,
12670 		      yesno(pipe_config->hw.enable), context);
12671 
12672 	if (!pipe_config->hw.enable)
12673 		goto dump_planes;
12674 
12675 	snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
12676 	DRM_DEBUG_KMS("active: %s, output_types: %s (0x%x), output format: %s\n",
12677 		      yesno(pipe_config->hw.active),
12678 		      buf, pipe_config->output_types,
12679 		      output_formats(pipe_config->output_format));
12680 
12681 	DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
12682 		      transcoder_name(pipe_config->cpu_transcoder),
12683 		      pipe_config->pipe_bpp, pipe_config->dither);
12684 
12685 	if (pipe_config->has_pch_encoder)
12686 		intel_dump_m_n_config(pipe_config, "fdi",
12687 				      pipe_config->fdi_lanes,
12688 				      &pipe_config->fdi_m_n);
12689 
12690 	if (intel_crtc_has_dp_encoder(pipe_config)) {
12691 		intel_dump_m_n_config(pipe_config, "dp m_n",
12692 				pipe_config->lane_count, &pipe_config->dp_m_n);
12693 		if (pipe_config->has_drrs)
12694 			intel_dump_m_n_config(pipe_config, "dp m2_n2",
12695 					      pipe_config->lane_count,
12696 					      &pipe_config->dp_m2_n2);
12697 	}
12698 
12699 	DRM_DEBUG_KMS("audio: %i, infoframes: %i, infoframes enabled: 0x%x\n",
12700 		      pipe_config->has_audio, pipe_config->has_infoframe,
12701 		      pipe_config->infoframes.enable);
12702 
12703 	if (pipe_config->infoframes.enable &
12704 	    intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL))
12705 		DRM_DEBUG_KMS("GCP: 0x%x\n", pipe_config->infoframes.gcp);
12706 	if (pipe_config->infoframes.enable &
12707 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI))
12708 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi);
12709 	if (pipe_config->infoframes.enable &
12710 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD))
12711 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd);
12712 	if (pipe_config->infoframes.enable &
12713 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR))
12714 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi);
12715 
12716 	DRM_DEBUG_KMS("requested mode:\n");
12717 	drm_mode_debug_printmodeline(&pipe_config->hw.mode);
12718 	DRM_DEBUG_KMS("adjusted mode:\n");
12719 	drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode);
12720 	intel_dump_crtc_timings(&pipe_config->hw.adjusted_mode);
12721 	DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
12722 		      pipe_config->port_clock,
12723 		      pipe_config->pipe_src_w, pipe_config->pipe_src_h,
12724 		      pipe_config->pixel_rate);
12725 
12726 	if (INTEL_GEN(dev_priv) >= 9)
12727 		DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12728 			      crtc->num_scalers,
12729 			      pipe_config->scaler_state.scaler_users,
12730 		              pipe_config->scaler_state.scaler_id);
12731 
12732 	if (HAS_GMCH(dev_priv))
12733 		DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12734 			      pipe_config->gmch_pfit.control,
12735 			      pipe_config->gmch_pfit.pgm_ratios,
12736 			      pipe_config->gmch_pfit.lvds_border_bits);
12737 	else
12738 		DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s, force thru: %s\n",
12739 			      pipe_config->pch_pfit.pos,
12740 			      pipe_config->pch_pfit.size,
12741 			      enableddisabled(pipe_config->pch_pfit.enabled),
12742 			      yesno(pipe_config->pch_pfit.force_thru));
12743 
12744 	DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
12745 		      pipe_config->ips_enabled, pipe_config->double_wide);
12746 
12747 	intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
12748 
12749 	if (IS_CHERRYVIEW(dev_priv))
12750 		DRM_DEBUG_KMS("cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
12751 			      pipe_config->cgm_mode, pipe_config->gamma_mode,
12752 			      pipe_config->gamma_enable, pipe_config->csc_enable);
12753 	else
12754 		DRM_DEBUG_KMS("csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
12755 			      pipe_config->csc_mode, pipe_config->gamma_mode,
12756 			      pipe_config->gamma_enable, pipe_config->csc_enable);
12757 
12758 dump_planes:
12759 	if (!state)
12760 		return;
12761 
12762 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12763 		if (plane->pipe == crtc->pipe)
12764 			intel_dump_plane_state(plane_state);
12765 	}
12766 }
12767 
12768 static bool check_digital_port_conflicts(struct intel_atomic_state *state)
12769 {
12770 	struct drm_device *dev = state->base.dev;
12771 	struct drm_connector *connector;
12772 	struct drm_connector_list_iter conn_iter;
12773 	unsigned int used_ports = 0;
12774 	unsigned int used_mst_ports = 0;
12775 	bool ret = true;
12776 
12777 	/*
12778 	 * We're going to peek into connector->state,
12779 	 * hence connection_mutex must be held.
12780 	 */
12781 	drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex);
12782 
12783 	/*
12784 	 * Walk the connector list instead of the encoder
12785 	 * list to detect the problem on ddi platforms
12786 	 * where there's just one encoder per digital port.
12787 	 */
12788 	drm_connector_list_iter_begin(dev, &conn_iter);
12789 	drm_for_each_connector_iter(connector, &conn_iter) {
12790 		struct drm_connector_state *connector_state;
12791 		struct intel_encoder *encoder;
12792 
12793 		connector_state =
12794 			drm_atomic_get_new_connector_state(&state->base,
12795 							   connector);
12796 		if (!connector_state)
12797 			connector_state = connector->state;
12798 
12799 		if (!connector_state->best_encoder)
12800 			continue;
12801 
12802 		encoder = to_intel_encoder(connector_state->best_encoder);
12803 
12804 		WARN_ON(!connector_state->crtc);
12805 
12806 		switch (encoder->type) {
12807 			unsigned int port_mask;
12808 		case INTEL_OUTPUT_DDI:
12809 			if (WARN_ON(!HAS_DDI(to_i915(dev))))
12810 				break;
12811 			/* else, fall through */
12812 		case INTEL_OUTPUT_DP:
12813 		case INTEL_OUTPUT_HDMI:
12814 		case INTEL_OUTPUT_EDP:
12815 			port_mask = 1 << encoder->port;
12816 
12817 			/* the same port mustn't appear more than once */
12818 			if (used_ports & port_mask)
12819 				ret = false;
12820 
12821 			used_ports |= port_mask;
12822 			break;
12823 		case INTEL_OUTPUT_DP_MST:
12824 			used_mst_ports |=
12825 				1 << encoder->port;
12826 			break;
12827 		default:
12828 			break;
12829 		}
12830 	}
12831 	drm_connector_list_iter_end(&conn_iter);
12832 
12833 	/* can't mix MST and SST/HDMI on the same port */
12834 	if (used_ports & used_mst_ports)
12835 		return false;
12836 
12837 	return ret;
12838 }
12839 
12840 static void
12841 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state *crtc_state)
12842 {
12843 	intel_crtc_copy_color_blobs(crtc_state);
12844 }
12845 
12846 static void
12847 intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state *crtc_state)
12848 {
12849 	crtc_state->hw.enable = crtc_state->uapi.enable;
12850 	crtc_state->hw.active = crtc_state->uapi.active;
12851 	crtc_state->hw.mode = crtc_state->uapi.mode;
12852 	crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode;
12853 	intel_crtc_copy_uapi_to_hw_state_nomodeset(crtc_state);
12854 }
12855 
12856 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state)
12857 {
12858 	crtc_state->uapi.enable = crtc_state->hw.enable;
12859 	crtc_state->uapi.active = crtc_state->hw.active;
12860 	WARN_ON(drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0);
12861 
12862 	crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode;
12863 
12864 	/* copy color blobs to uapi */
12865 	drm_property_replace_blob(&crtc_state->uapi.degamma_lut,
12866 				  crtc_state->hw.degamma_lut);
12867 	drm_property_replace_blob(&crtc_state->uapi.gamma_lut,
12868 				  crtc_state->hw.gamma_lut);
12869 	drm_property_replace_blob(&crtc_state->uapi.ctm,
12870 				  crtc_state->hw.ctm);
12871 }
12872 
12873 static int
12874 intel_crtc_prepare_cleared_state(struct intel_crtc_state *crtc_state)
12875 {
12876 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12877 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12878 	struct intel_crtc_state *saved_state;
12879 
12880 	saved_state = intel_crtc_state_alloc(crtc);
12881 	if (!saved_state)
12882 		return -ENOMEM;
12883 
12884 	/* free the old crtc_state->hw members */
12885 	intel_crtc_free_hw_state(crtc_state);
12886 
12887 	/* FIXME: before the switch to atomic started, a new pipe_config was
12888 	 * kzalloc'd. Code that depends on any field being zero should be
12889 	 * fixed, so that the crtc_state can be safely duplicated. For now,
12890 	 * only fields that are know to not cause problems are preserved. */
12891 
12892 	saved_state->uapi = crtc_state->uapi;
12893 	saved_state->scaler_state = crtc_state->scaler_state;
12894 	saved_state->shared_dpll = crtc_state->shared_dpll;
12895 	saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
12896 	memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls,
12897 	       sizeof(saved_state->icl_port_dplls));
12898 	saved_state->crc_enabled = crtc_state->crc_enabled;
12899 	if (IS_G4X(dev_priv) ||
12900 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
12901 		saved_state->wm = crtc_state->wm;
12902 	/*
12903 	 * Save the slave bitmask which gets filled for master crtc state during
12904 	 * slave atomic check call.
12905 	 */
12906 	if (is_trans_port_sync_master(crtc_state))
12907 		saved_state->sync_mode_slaves_mask =
12908 			crtc_state->sync_mode_slaves_mask;
12909 
12910 	memcpy(crtc_state, saved_state, sizeof(*crtc_state));
12911 	kfree(saved_state);
12912 
12913 	intel_crtc_copy_uapi_to_hw_state(crtc_state);
12914 
12915 	return 0;
12916 }
12917 
12918 static int
12919 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config)
12920 {
12921 	struct drm_crtc *crtc = pipe_config->uapi.crtc;
12922 	struct drm_atomic_state *state = pipe_config->uapi.state;
12923 	struct intel_encoder *encoder;
12924 	struct drm_connector *connector;
12925 	struct drm_connector_state *connector_state;
12926 	int base_bpp, ret;
12927 	int i;
12928 	bool retry = true;
12929 
12930 	pipe_config->cpu_transcoder =
12931 		(enum transcoder) to_intel_crtc(crtc)->pipe;
12932 
12933 	/*
12934 	 * Sanitize sync polarity flags based on requested ones. If neither
12935 	 * positive or negative polarity is requested, treat this as meaning
12936 	 * negative polarity.
12937 	 */
12938 	if (!(pipe_config->hw.adjusted_mode.flags &
12939 	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12940 		pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12941 
12942 	if (!(pipe_config->hw.adjusted_mode.flags &
12943 	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12944 		pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12945 
12946 	ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12947 					pipe_config);
12948 	if (ret)
12949 		return ret;
12950 
12951 	base_bpp = pipe_config->pipe_bpp;
12952 
12953 	/*
12954 	 * Determine the real pipe dimensions. Note that stereo modes can
12955 	 * increase the actual pipe size due to the frame doubling and
12956 	 * insertion of additional space for blanks between the frame. This
12957 	 * is stored in the crtc timings. We use the requested mode to do this
12958 	 * computation to clearly distinguish it from the adjusted mode, which
12959 	 * can be changed by the connectors in the below retry loop.
12960 	 */
12961 	drm_mode_get_hv_timing(&pipe_config->hw.mode,
12962 			       &pipe_config->pipe_src_w,
12963 			       &pipe_config->pipe_src_h);
12964 
12965 	for_each_new_connector_in_state(state, connector, connector_state, i) {
12966 		if (connector_state->crtc != crtc)
12967 			continue;
12968 
12969 		encoder = to_intel_encoder(connector_state->best_encoder);
12970 
12971 		if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12972 			DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12973 			return -EINVAL;
12974 		}
12975 
12976 		/*
12977 		 * Determine output_types before calling the .compute_config()
12978 		 * hooks so that the hooks can use this information safely.
12979 		 */
12980 		if (encoder->compute_output_type)
12981 			pipe_config->output_types |=
12982 				BIT(encoder->compute_output_type(encoder, pipe_config,
12983 								 connector_state));
12984 		else
12985 			pipe_config->output_types |= BIT(encoder->type);
12986 	}
12987 
12988 encoder_retry:
12989 	/* Ensure the port clock defaults are reset when retrying. */
12990 	pipe_config->port_clock = 0;
12991 	pipe_config->pixel_multiplier = 1;
12992 
12993 	/* Fill in default crtc timings, allow encoders to overwrite them. */
12994 	drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode,
12995 			      CRTC_STEREO_DOUBLE);
12996 
12997 	/* Set the crtc_state defaults for trans_port_sync */
12998 	pipe_config->master_transcoder = INVALID_TRANSCODER;
12999 	ret = icl_add_sync_mode_crtcs(pipe_config);
13000 	if (ret) {
13001 		DRM_DEBUG_KMS("Cannot assign Sync Mode CRTCs: %d\n",
13002 			      ret);
13003 		return ret;
13004 	}
13005 
13006 	/* Pass our mode to the connectors and the CRTC to give them a chance to
13007 	 * adjust it according to limitations or connector properties, and also
13008 	 * a chance to reject the mode entirely.
13009 	 */
13010 	for_each_new_connector_in_state(state, connector, connector_state, i) {
13011 		if (connector_state->crtc != crtc)
13012 			continue;
13013 
13014 		encoder = to_intel_encoder(connector_state->best_encoder);
13015 		ret = encoder->compute_config(encoder, pipe_config,
13016 					      connector_state);
13017 		if (ret < 0) {
13018 			if (ret != -EDEADLK)
13019 				DRM_DEBUG_KMS("Encoder config failure: %d\n",
13020 					      ret);
13021 			return ret;
13022 		}
13023 	}
13024 
13025 	/* Set default port clock if not overwritten by the encoder. Needs to be
13026 	 * done afterwards in case the encoder adjusts the mode. */
13027 	if (!pipe_config->port_clock)
13028 		pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock
13029 			* pipe_config->pixel_multiplier;
13030 
13031 	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13032 	if (ret == -EDEADLK)
13033 		return ret;
13034 	if (ret < 0) {
13035 		DRM_DEBUG_KMS("CRTC fixup failed\n");
13036 		return ret;
13037 	}
13038 
13039 	if (ret == RETRY) {
13040 		if (WARN(!retry, "loop in pipe configuration computation\n"))
13041 			return -EINVAL;
13042 
13043 		DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13044 		retry = false;
13045 		goto encoder_retry;
13046 	}
13047 
13048 	/* Dithering seems to not pass-through bits correctly when it should, so
13049 	 * only enable it on 6bpc panels and when its not a compliance
13050 	 * test requesting 6bpc video pattern.
13051 	 */
13052 	pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
13053 		!pipe_config->dither_force_disable;
13054 	DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13055 		      base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13056 
13057 	/*
13058 	 * Make drm_calc_timestamping_constants in
13059 	 * drm_atomic_helper_update_legacy_modeset_state() happy
13060 	 */
13061 	pipe_config->uapi.adjusted_mode = pipe_config->hw.adjusted_mode;
13062 
13063 	return 0;
13064 }
13065 
13066 bool intel_fuzzy_clock_check(int clock1, int clock2)
13067 {
13068 	int diff;
13069 
13070 	if (clock1 == clock2)
13071 		return true;
13072 
13073 	if (!clock1 || !clock2)
13074 		return false;
13075 
13076 	diff = abs(clock1 - clock2);
13077 
13078 	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13079 		return true;
13080 
13081 	return false;
13082 }
13083 
13084 static bool
13085 intel_compare_m_n(unsigned int m, unsigned int n,
13086 		  unsigned int m2, unsigned int n2,
13087 		  bool exact)
13088 {
13089 	if (m == m2 && n == n2)
13090 		return true;
13091 
13092 	if (exact || !m || !n || !m2 || !n2)
13093 		return false;
13094 
13095 	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13096 
13097 	if (n > n2) {
13098 		while (n > n2) {
13099 			m2 <<= 1;
13100 			n2 <<= 1;
13101 		}
13102 	} else if (n < n2) {
13103 		while (n < n2) {
13104 			m <<= 1;
13105 			n <<= 1;
13106 		}
13107 	}
13108 
13109 	if (n != n2)
13110 		return false;
13111 
13112 	return intel_fuzzy_clock_check(m, m2);
13113 }
13114 
13115 static bool
13116 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13117 		       const struct intel_link_m_n *m2_n2,
13118 		       bool exact)
13119 {
13120 	return m_n->tu == m2_n2->tu &&
13121 		intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13122 				  m2_n2->gmch_m, m2_n2->gmch_n, exact) &&
13123 		intel_compare_m_n(m_n->link_m, m_n->link_n,
13124 				  m2_n2->link_m, m2_n2->link_n, exact);
13125 }
13126 
13127 static bool
13128 intel_compare_infoframe(const union hdmi_infoframe *a,
13129 			const union hdmi_infoframe *b)
13130 {
13131 	return memcmp(a, b, sizeof(*a)) == 0;
13132 }
13133 
13134 static void
13135 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv,
13136 			       bool fastset, const char *name,
13137 			       const union hdmi_infoframe *a,
13138 			       const union hdmi_infoframe *b)
13139 {
13140 	if (fastset) {
13141 		if (!drm_debug_enabled(DRM_UT_KMS))
13142 			return;
13143 
13144 		DRM_DEBUG_KMS("fastset mismatch in %s infoframe\n", name);
13145 		DRM_DEBUG_KMS("expected:\n");
13146 		hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a);
13147 		DRM_DEBUG_KMS("found:\n");
13148 		hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b);
13149 	} else {
13150 		DRM_ERROR("mismatch in %s infoframe\n", name);
13151 		DRM_ERROR("expected:\n");
13152 		hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a);
13153 		DRM_ERROR("found:\n");
13154 		hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b);
13155 	}
13156 }
13157 
13158 static void __printf(4, 5)
13159 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc,
13160 		     const char *name, const char *format, ...)
13161 {
13162 	struct va_format vaf;
13163 	va_list args;
13164 
13165 	va_start(args, format);
13166 	vaf.fmt = format;
13167 	vaf.va = &args;
13168 
13169 	if (fastset)
13170 		DRM_DEBUG_KMS("[CRTC:%d:%s] fastset mismatch in %s %pV\n",
13171 			      crtc->base.base.id, crtc->base.name, name, &vaf);
13172 	else
13173 		DRM_ERROR("[CRTC:%d:%s] mismatch in %s %pV\n",
13174 			  crtc->base.base.id, crtc->base.name, name, &vaf);
13175 
13176 	va_end(args);
13177 }
13178 
13179 static bool fastboot_enabled(struct drm_i915_private *dev_priv)
13180 {
13181 	if (i915_modparams.fastboot != -1)
13182 		return i915_modparams.fastboot;
13183 
13184 	/* Enable fastboot by default on Skylake and newer */
13185 	if (INTEL_GEN(dev_priv) >= 9)
13186 		return true;
13187 
13188 	/* Enable fastboot by default on VLV and CHV */
13189 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13190 		return true;
13191 
13192 	/* Disabled by default on all others */
13193 	return false;
13194 }
13195 
13196 static bool
13197 intel_pipe_config_compare(const struct intel_crtc_state *current_config,
13198 			  const struct intel_crtc_state *pipe_config,
13199 			  bool fastset)
13200 {
13201 	struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev);
13202 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
13203 	bool ret = true;
13204 	u32 bp_gamma = 0;
13205 	bool fixup_inherited = fastset &&
13206 		(current_config->hw.mode.private_flags & I915_MODE_FLAG_INHERITED) &&
13207 		!(pipe_config->hw.mode.private_flags & I915_MODE_FLAG_INHERITED);
13208 
13209 	if (fixup_inherited && !fastboot_enabled(dev_priv)) {
13210 		DRM_DEBUG_KMS("initial modeset and fastboot not set\n");
13211 		ret = false;
13212 	}
13213 
13214 #define PIPE_CONF_CHECK_X(name) do { \
13215 	if (current_config->name != pipe_config->name) { \
13216 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13217 				     "(expected 0x%08x, found 0x%08x)", \
13218 				     current_config->name, \
13219 				     pipe_config->name); \
13220 		ret = false; \
13221 	} \
13222 } while (0)
13223 
13224 #define PIPE_CONF_CHECK_I(name) do { \
13225 	if (current_config->name != pipe_config->name) { \
13226 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13227 				     "(expected %i, found %i)", \
13228 				     current_config->name, \
13229 				     pipe_config->name); \
13230 		ret = false; \
13231 	} \
13232 } while (0)
13233 
13234 #define PIPE_CONF_CHECK_BOOL(name) do { \
13235 	if (current_config->name != pipe_config->name) { \
13236 		pipe_config_mismatch(fastset, crtc,  __stringify(name), \
13237 				     "(expected %s, found %s)", \
13238 				     yesno(current_config->name), \
13239 				     yesno(pipe_config->name)); \
13240 		ret = false; \
13241 	} \
13242 } while (0)
13243 
13244 /*
13245  * Checks state where we only read out the enabling, but not the entire
13246  * state itself (like full infoframes or ELD for audio). These states
13247  * require a full modeset on bootup to fix up.
13248  */
13249 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \
13250 	if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \
13251 		PIPE_CONF_CHECK_BOOL(name); \
13252 	} else { \
13253 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13254 				     "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \
13255 				     yesno(current_config->name), \
13256 				     yesno(pipe_config->name)); \
13257 		ret = false; \
13258 	} \
13259 } while (0)
13260 
13261 #define PIPE_CONF_CHECK_P(name) do { \
13262 	if (current_config->name != pipe_config->name) { \
13263 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13264 				     "(expected %p, found %p)", \
13265 				     current_config->name, \
13266 				     pipe_config->name); \
13267 		ret = false; \
13268 	} \
13269 } while (0)
13270 
13271 #define PIPE_CONF_CHECK_M_N(name) do { \
13272 	if (!intel_compare_link_m_n(&current_config->name, \
13273 				    &pipe_config->name,\
13274 				    !fastset)) { \
13275 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13276 				     "(expected tu %i gmch %i/%i link %i/%i, " \
13277 				     "found tu %i, gmch %i/%i link %i/%i)", \
13278 				     current_config->name.tu, \
13279 				     current_config->name.gmch_m, \
13280 				     current_config->name.gmch_n, \
13281 				     current_config->name.link_m, \
13282 				     current_config->name.link_n, \
13283 				     pipe_config->name.tu, \
13284 				     pipe_config->name.gmch_m, \
13285 				     pipe_config->name.gmch_n, \
13286 				     pipe_config->name.link_m, \
13287 				     pipe_config->name.link_n); \
13288 		ret = false; \
13289 	} \
13290 } while (0)
13291 
13292 /* This is required for BDW+ where there is only one set of registers for
13293  * switching between high and low RR.
13294  * This macro can be used whenever a comparison has to be made between one
13295  * hw state and multiple sw state variables.
13296  */
13297 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \
13298 	if (!intel_compare_link_m_n(&current_config->name, \
13299 				    &pipe_config->name, !fastset) && \
13300 	    !intel_compare_link_m_n(&current_config->alt_name, \
13301 				    &pipe_config->name, !fastset)) { \
13302 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13303 				     "(expected tu %i gmch %i/%i link %i/%i, " \
13304 				     "or tu %i gmch %i/%i link %i/%i, " \
13305 				     "found tu %i, gmch %i/%i link %i/%i)", \
13306 				     current_config->name.tu, \
13307 				     current_config->name.gmch_m, \
13308 				     current_config->name.gmch_n, \
13309 				     current_config->name.link_m, \
13310 				     current_config->name.link_n, \
13311 				     current_config->alt_name.tu, \
13312 				     current_config->alt_name.gmch_m, \
13313 				     current_config->alt_name.gmch_n, \
13314 				     current_config->alt_name.link_m, \
13315 				     current_config->alt_name.link_n, \
13316 				     pipe_config->name.tu, \
13317 				     pipe_config->name.gmch_m, \
13318 				     pipe_config->name.gmch_n, \
13319 				     pipe_config->name.link_m, \
13320 				     pipe_config->name.link_n); \
13321 		ret = false; \
13322 	} \
13323 } while (0)
13324 
13325 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
13326 	if ((current_config->name ^ pipe_config->name) & (mask)) { \
13327 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13328 				     "(%x) (expected %i, found %i)", \
13329 				     (mask), \
13330 				     current_config->name & (mask), \
13331 				     pipe_config->name & (mask)); \
13332 		ret = false; \
13333 	} \
13334 } while (0)
13335 
13336 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \
13337 	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13338 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13339 				     "(expected %i, found %i)", \
13340 				     current_config->name, \
13341 				     pipe_config->name); \
13342 		ret = false; \
13343 	} \
13344 } while (0)
13345 
13346 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \
13347 	if (!intel_compare_infoframe(&current_config->infoframes.name, \
13348 				     &pipe_config->infoframes.name)) { \
13349 		pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \
13350 					       &current_config->infoframes.name, \
13351 					       &pipe_config->infoframes.name); \
13352 		ret = false; \
13353 	} \
13354 } while (0)
13355 
13356 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \
13357 	if (current_config->name1 != pipe_config->name1) { \
13358 		pipe_config_mismatch(fastset, crtc, __stringify(name1), \
13359 				"(expected %i, found %i, won't compare lut values)", \
13360 				current_config->name1, \
13361 				pipe_config->name1); \
13362 		ret = false;\
13363 	} else { \
13364 		if (!intel_color_lut_equal(current_config->name2, \
13365 					pipe_config->name2, pipe_config->name1, \
13366 					bit_precision)) { \
13367 			pipe_config_mismatch(fastset, crtc, __stringify(name2), \
13368 					"hw_state doesn't match sw_state"); \
13369 			ret = false; \
13370 		} \
13371 	} \
13372 } while (0)
13373 
13374 #define PIPE_CONF_QUIRK(quirk) \
13375 	((current_config->quirks | pipe_config->quirks) & (quirk))
13376 
13377 	PIPE_CONF_CHECK_I(cpu_transcoder);
13378 
13379 	PIPE_CONF_CHECK_BOOL(has_pch_encoder);
13380 	PIPE_CONF_CHECK_I(fdi_lanes);
13381 	PIPE_CONF_CHECK_M_N(fdi_m_n);
13382 
13383 	PIPE_CONF_CHECK_I(lane_count);
13384 	PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13385 
13386 	if (INTEL_GEN(dev_priv) < 8) {
13387 		PIPE_CONF_CHECK_M_N(dp_m_n);
13388 
13389 		if (current_config->has_drrs)
13390 			PIPE_CONF_CHECK_M_N(dp_m2_n2);
13391 	} else
13392 		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13393 
13394 	PIPE_CONF_CHECK_X(output_types);
13395 
13396 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay);
13397 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal);
13398 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start);
13399 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end);
13400 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start);
13401 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end);
13402 
13403 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay);
13404 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal);
13405 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start);
13406 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end);
13407 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start);
13408 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end);
13409 
13410 	PIPE_CONF_CHECK_I(pixel_multiplier);
13411 	PIPE_CONF_CHECK_I(output_format);
13412 	PIPE_CONF_CHECK_I(dc3co_exitline);
13413 	PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
13414 	if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13415 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13416 		PIPE_CONF_CHECK_BOOL(limited_color_range);
13417 
13418 	PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
13419 	PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
13420 	PIPE_CONF_CHECK_BOOL(has_infoframe);
13421 	PIPE_CONF_CHECK_BOOL(fec_enable);
13422 
13423 	PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio);
13424 
13425 	PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13426 			      DRM_MODE_FLAG_INTERLACE);
13427 
13428 	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13429 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13430 				      DRM_MODE_FLAG_PHSYNC);
13431 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13432 				      DRM_MODE_FLAG_NHSYNC);
13433 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13434 				      DRM_MODE_FLAG_PVSYNC);
13435 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13436 				      DRM_MODE_FLAG_NVSYNC);
13437 	}
13438 
13439 	PIPE_CONF_CHECK_X(gmch_pfit.control);
13440 	/* pfit ratios are autocomputed by the hw on gen4+ */
13441 	if (INTEL_GEN(dev_priv) < 4)
13442 		PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13443 	PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13444 
13445 	/*
13446 	 * Changing the EDP transcoder input mux
13447 	 * (A_ONOFF vs. A_ON) requires a full modeset.
13448 	 */
13449 	PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru);
13450 
13451 	if (!fastset) {
13452 		PIPE_CONF_CHECK_I(pipe_src_w);
13453 		PIPE_CONF_CHECK_I(pipe_src_h);
13454 
13455 		PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
13456 		if (current_config->pch_pfit.enabled) {
13457 			PIPE_CONF_CHECK_X(pch_pfit.pos);
13458 			PIPE_CONF_CHECK_X(pch_pfit.size);
13459 		}
13460 
13461 		PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13462 		PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
13463 
13464 		PIPE_CONF_CHECK_X(gamma_mode);
13465 		if (IS_CHERRYVIEW(dev_priv))
13466 			PIPE_CONF_CHECK_X(cgm_mode);
13467 		else
13468 			PIPE_CONF_CHECK_X(csc_mode);
13469 		PIPE_CONF_CHECK_BOOL(gamma_enable);
13470 		PIPE_CONF_CHECK_BOOL(csc_enable);
13471 
13472 		bp_gamma = intel_color_get_gamma_bit_precision(pipe_config);
13473 		if (bp_gamma)
13474 			PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma);
13475 
13476 	}
13477 
13478 	PIPE_CONF_CHECK_BOOL(double_wide);
13479 
13480 	PIPE_CONF_CHECK_P(shared_dpll);
13481 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13482 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13483 	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13484 	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13485 	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13486 	PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13487 	PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13488 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13489 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13490 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
13491 	PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
13492 	PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
13493 	PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
13494 	PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
13495 	PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
13496 	PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
13497 	PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
13498 	PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
13499 	PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
13500 	PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
13501 	PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
13502 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl);
13503 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1);
13504 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl);
13505 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0);
13506 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1);
13507 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf);
13508 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock);
13509 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc);
13510 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias);
13511 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias);
13512 
13513 	PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13514 	PIPE_CONF_CHECK_X(dsi_pll.div);
13515 
13516 	if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
13517 		PIPE_CONF_CHECK_I(pipe_bpp);
13518 
13519 	PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock);
13520 	PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13521 
13522 	PIPE_CONF_CHECK_I(min_voltage_level);
13523 
13524 	PIPE_CONF_CHECK_X(infoframes.enable);
13525 	PIPE_CONF_CHECK_X(infoframes.gcp);
13526 	PIPE_CONF_CHECK_INFOFRAME(avi);
13527 	PIPE_CONF_CHECK_INFOFRAME(spd);
13528 	PIPE_CONF_CHECK_INFOFRAME(hdmi);
13529 	PIPE_CONF_CHECK_INFOFRAME(drm);
13530 
13531 	PIPE_CONF_CHECK_I(sync_mode_slaves_mask);
13532 	PIPE_CONF_CHECK_I(master_transcoder);
13533 
13534 	PIPE_CONF_CHECK_I(dsc.compression_enable);
13535 	PIPE_CONF_CHECK_I(dsc.dsc_split);
13536 	PIPE_CONF_CHECK_I(dsc.compressed_bpp);
13537 
13538 #undef PIPE_CONF_CHECK_X
13539 #undef PIPE_CONF_CHECK_I
13540 #undef PIPE_CONF_CHECK_BOOL
13541 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE
13542 #undef PIPE_CONF_CHECK_P
13543 #undef PIPE_CONF_CHECK_FLAGS
13544 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13545 #undef PIPE_CONF_CHECK_COLOR_LUT
13546 #undef PIPE_CONF_QUIRK
13547 
13548 	return ret;
13549 }
13550 
13551 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13552 					   const struct intel_crtc_state *pipe_config)
13553 {
13554 	if (pipe_config->has_pch_encoder) {
13555 		int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13556 							    &pipe_config->fdi_m_n);
13557 		int dotclock = pipe_config->hw.adjusted_mode.crtc_clock;
13558 
13559 		/*
13560 		 * FDI already provided one idea for the dotclock.
13561 		 * Yell if the encoder disagrees.
13562 		 */
13563 		WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13564 		     "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13565 		     fdi_dotclock, dotclock);
13566 	}
13567 }
13568 
13569 static void verify_wm_state(struct intel_crtc *crtc,
13570 			    struct intel_crtc_state *new_crtc_state)
13571 {
13572 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13573 	struct skl_hw_state {
13574 		struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
13575 		struct skl_ddb_entry ddb_uv[I915_MAX_PLANES];
13576 		struct skl_ddb_allocation ddb;
13577 		struct skl_pipe_wm wm;
13578 	} *hw;
13579 	struct skl_ddb_allocation *sw_ddb;
13580 	struct skl_pipe_wm *sw_wm;
13581 	struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
13582 	const enum pipe pipe = crtc->pipe;
13583 	int plane, level, max_level = ilk_wm_max_level(dev_priv);
13584 
13585 	if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active)
13586 		return;
13587 
13588 	hw = kzalloc(sizeof(*hw), GFP_KERNEL);
13589 	if (!hw)
13590 		return;
13591 
13592 	skl_pipe_wm_get_hw_state(crtc, &hw->wm);
13593 	sw_wm = &new_crtc_state->wm.skl.optimal;
13594 
13595 	skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv);
13596 
13597 	skl_ddb_get_hw_state(dev_priv, &hw->ddb);
13598 	sw_ddb = &dev_priv->wm.skl_hw.ddb;
13599 
13600 	if (INTEL_GEN(dev_priv) >= 11 &&
13601 	    hw->ddb.enabled_slices != sw_ddb->enabled_slices)
13602 		DRM_ERROR("mismatch in DBUF Slices (expected %u, got %u)\n",
13603 			  sw_ddb->enabled_slices,
13604 			  hw->ddb.enabled_slices);
13605 
13606 	/* planes */
13607 	for_each_universal_plane(dev_priv, pipe, plane) {
13608 		struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13609 
13610 		hw_plane_wm = &hw->wm.planes[plane];
13611 		sw_plane_wm = &sw_wm->planes[plane];
13612 
13613 		/* Watermarks */
13614 		for (level = 0; level <= max_level; level++) {
13615 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13616 						&sw_plane_wm->wm[level]))
13617 				continue;
13618 
13619 			DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13620 				  pipe_name(pipe), plane + 1, level,
13621 				  sw_plane_wm->wm[level].plane_en,
13622 				  sw_plane_wm->wm[level].plane_res_b,
13623 				  sw_plane_wm->wm[level].plane_res_l,
13624 				  hw_plane_wm->wm[level].plane_en,
13625 				  hw_plane_wm->wm[level].plane_res_b,
13626 				  hw_plane_wm->wm[level].plane_res_l);
13627 		}
13628 
13629 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13630 					 &sw_plane_wm->trans_wm)) {
13631 			DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13632 				  pipe_name(pipe), plane + 1,
13633 				  sw_plane_wm->trans_wm.plane_en,
13634 				  sw_plane_wm->trans_wm.plane_res_b,
13635 				  sw_plane_wm->trans_wm.plane_res_l,
13636 				  hw_plane_wm->trans_wm.plane_en,
13637 				  hw_plane_wm->trans_wm.plane_res_b,
13638 				  hw_plane_wm->trans_wm.plane_res_l);
13639 		}
13640 
13641 		/* DDB */
13642 		hw_ddb_entry = &hw->ddb_y[plane];
13643 		sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane];
13644 
13645 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13646 			DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
13647 				  pipe_name(pipe), plane + 1,
13648 				  sw_ddb_entry->start, sw_ddb_entry->end,
13649 				  hw_ddb_entry->start, hw_ddb_entry->end);
13650 		}
13651 	}
13652 
13653 	/*
13654 	 * cursor
13655 	 * If the cursor plane isn't active, we may not have updated it's ddb
13656 	 * allocation. In that case since the ddb allocation will be updated
13657 	 * once the plane becomes visible, we can skip this check
13658 	 */
13659 	if (1) {
13660 		struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13661 
13662 		hw_plane_wm = &hw->wm.planes[PLANE_CURSOR];
13663 		sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
13664 
13665 		/* Watermarks */
13666 		for (level = 0; level <= max_level; level++) {
13667 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13668 						&sw_plane_wm->wm[level]))
13669 				continue;
13670 
13671 			DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13672 				  pipe_name(pipe), level,
13673 				  sw_plane_wm->wm[level].plane_en,
13674 				  sw_plane_wm->wm[level].plane_res_b,
13675 				  sw_plane_wm->wm[level].plane_res_l,
13676 				  hw_plane_wm->wm[level].plane_en,
13677 				  hw_plane_wm->wm[level].plane_res_b,
13678 				  hw_plane_wm->wm[level].plane_res_l);
13679 		}
13680 
13681 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13682 					 &sw_plane_wm->trans_wm)) {
13683 			DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13684 				  pipe_name(pipe),
13685 				  sw_plane_wm->trans_wm.plane_en,
13686 				  sw_plane_wm->trans_wm.plane_res_b,
13687 				  sw_plane_wm->trans_wm.plane_res_l,
13688 				  hw_plane_wm->trans_wm.plane_en,
13689 				  hw_plane_wm->trans_wm.plane_res_b,
13690 				  hw_plane_wm->trans_wm.plane_res_l);
13691 		}
13692 
13693 		/* DDB */
13694 		hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR];
13695 		sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR];
13696 
13697 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13698 			DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13699 				  pipe_name(pipe),
13700 				  sw_ddb_entry->start, sw_ddb_entry->end,
13701 				  hw_ddb_entry->start, hw_ddb_entry->end);
13702 		}
13703 	}
13704 
13705 	kfree(hw);
13706 }
13707 
13708 static void
13709 verify_connector_state(struct intel_atomic_state *state,
13710 		       struct intel_crtc *crtc)
13711 {
13712 	struct drm_connector *connector;
13713 	struct drm_connector_state *new_conn_state;
13714 	int i;
13715 
13716 	for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) {
13717 		struct drm_encoder *encoder = connector->encoder;
13718 		struct intel_crtc_state *crtc_state = NULL;
13719 
13720 		if (new_conn_state->crtc != &crtc->base)
13721 			continue;
13722 
13723 		if (crtc)
13724 			crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
13725 
13726 		intel_connector_verify_state(crtc_state, new_conn_state);
13727 
13728 		I915_STATE_WARN(new_conn_state->best_encoder != encoder,
13729 		     "connector's atomic encoder doesn't match legacy encoder\n");
13730 	}
13731 }
13732 
13733 static void
13734 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state)
13735 {
13736 	struct intel_encoder *encoder;
13737 	struct drm_connector *connector;
13738 	struct drm_connector_state *old_conn_state, *new_conn_state;
13739 	int i;
13740 
13741 	for_each_intel_encoder(&dev_priv->drm, encoder) {
13742 		bool enabled = false, found = false;
13743 		enum pipe pipe;
13744 
13745 		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13746 			      encoder->base.base.id,
13747 			      encoder->base.name);
13748 
13749 		for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state,
13750 						   new_conn_state, i) {
13751 			if (old_conn_state->best_encoder == &encoder->base)
13752 				found = true;
13753 
13754 			if (new_conn_state->best_encoder != &encoder->base)
13755 				continue;
13756 			found = enabled = true;
13757 
13758 			I915_STATE_WARN(new_conn_state->crtc !=
13759 					encoder->base.crtc,
13760 			     "connector's crtc doesn't match encoder crtc\n");
13761 		}
13762 
13763 		if (!found)
13764 			continue;
13765 
13766 		I915_STATE_WARN(!!encoder->base.crtc != enabled,
13767 		     "encoder's enabled state mismatch "
13768 		     "(expected %i, found %i)\n",
13769 		     !!encoder->base.crtc, enabled);
13770 
13771 		if (!encoder->base.crtc) {
13772 			bool active;
13773 
13774 			active = encoder->get_hw_state(encoder, &pipe);
13775 			I915_STATE_WARN(active,
13776 			     "encoder detached but still enabled on pipe %c.\n",
13777 			     pipe_name(pipe));
13778 		}
13779 	}
13780 }
13781 
13782 static void
13783 verify_crtc_state(struct intel_crtc *crtc,
13784 		  struct intel_crtc_state *old_crtc_state,
13785 		  struct intel_crtc_state *new_crtc_state)
13786 {
13787 	struct drm_device *dev = crtc->base.dev;
13788 	struct drm_i915_private *dev_priv = to_i915(dev);
13789 	struct intel_encoder *encoder;
13790 	struct intel_crtc_state *pipe_config = old_crtc_state;
13791 	struct drm_atomic_state *state = old_crtc_state->uapi.state;
13792 	bool active;
13793 
13794 	__drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi);
13795 	intel_crtc_free_hw_state(old_crtc_state);
13796 	intel_crtc_state_reset(old_crtc_state, crtc);
13797 	old_crtc_state->uapi.state = state;
13798 
13799 	DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.base.id, crtc->base.name);
13800 
13801 	active = dev_priv->display.get_pipe_config(crtc, pipe_config);
13802 
13803 	/* we keep both pipes enabled on 830 */
13804 	if (IS_I830(dev_priv))
13805 		active = new_crtc_state->hw.active;
13806 
13807 	I915_STATE_WARN(new_crtc_state->hw.active != active,
13808 			"crtc active state doesn't match with hw state "
13809 			"(expected %i, found %i)\n",
13810 			new_crtc_state->hw.active, active);
13811 
13812 	I915_STATE_WARN(crtc->active != new_crtc_state->hw.active,
13813 			"transitional active state does not match atomic hw state "
13814 			"(expected %i, found %i)\n",
13815 			new_crtc_state->hw.active, crtc->active);
13816 
13817 	for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13818 		enum pipe pipe;
13819 
13820 		active = encoder->get_hw_state(encoder, &pipe);
13821 		I915_STATE_WARN(active != new_crtc_state->hw.active,
13822 				"[ENCODER:%i] active %i with crtc active %i\n",
13823 				encoder->base.base.id, active,
13824 				new_crtc_state->hw.active);
13825 
13826 		I915_STATE_WARN(active && crtc->pipe != pipe,
13827 				"Encoder connected to wrong pipe %c\n",
13828 				pipe_name(pipe));
13829 
13830 		if (active)
13831 			encoder->get_config(encoder, pipe_config);
13832 	}
13833 
13834 	intel_crtc_compute_pixel_rate(pipe_config);
13835 
13836 	if (!new_crtc_state->hw.active)
13837 		return;
13838 
13839 	intel_pipe_config_sanity_check(dev_priv, pipe_config);
13840 
13841 	if (!intel_pipe_config_compare(new_crtc_state,
13842 				       pipe_config, false)) {
13843 		I915_STATE_WARN(1, "pipe state doesn't match!\n");
13844 		intel_dump_pipe_config(pipe_config, NULL, "[hw state]");
13845 		intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]");
13846 	}
13847 }
13848 
13849 static void
13850 intel_verify_planes(struct intel_atomic_state *state)
13851 {
13852 	struct intel_plane *plane;
13853 	const struct intel_plane_state *plane_state;
13854 	int i;
13855 
13856 	for_each_new_intel_plane_in_state(state, plane,
13857 					  plane_state, i)
13858 		assert_plane(plane, plane_state->planar_slave ||
13859 			     plane_state->uapi.visible);
13860 }
13861 
13862 static void
13863 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13864 			 struct intel_shared_dpll *pll,
13865 			 struct intel_crtc *crtc,
13866 			 struct intel_crtc_state *new_crtc_state)
13867 {
13868 	struct intel_dpll_hw_state dpll_hw_state;
13869 	unsigned int crtc_mask;
13870 	bool active;
13871 
13872 	memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13873 
13874 	DRM_DEBUG_KMS("%s\n", pll->info->name);
13875 
13876 	active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state);
13877 
13878 	if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) {
13879 		I915_STATE_WARN(!pll->on && pll->active_mask,
13880 		     "pll in active use but not on in sw tracking\n");
13881 		I915_STATE_WARN(pll->on && !pll->active_mask,
13882 		     "pll is on but not used by any active crtc\n");
13883 		I915_STATE_WARN(pll->on != active,
13884 		     "pll on state mismatch (expected %i, found %i)\n",
13885 		     pll->on, active);
13886 	}
13887 
13888 	if (!crtc) {
13889 		I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
13890 				"more active pll users than references: %x vs %x\n",
13891 				pll->active_mask, pll->state.crtc_mask);
13892 
13893 		return;
13894 	}
13895 
13896 	crtc_mask = drm_crtc_mask(&crtc->base);
13897 
13898 	if (new_crtc_state->hw.active)
13899 		I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13900 				"pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13901 				pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask);
13902 	else
13903 		I915_STATE_WARN(pll->active_mask & crtc_mask,
13904 				"pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13905 				pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask);
13906 
13907 	I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
13908 			"pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13909 			crtc_mask, pll->state.crtc_mask);
13910 
13911 	I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
13912 					  &dpll_hw_state,
13913 					  sizeof(dpll_hw_state)),
13914 			"pll hw state mismatch\n");
13915 }
13916 
13917 static void
13918 verify_shared_dpll_state(struct intel_crtc *crtc,
13919 			 struct intel_crtc_state *old_crtc_state,
13920 			 struct intel_crtc_state *new_crtc_state)
13921 {
13922 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13923 
13924 	if (new_crtc_state->shared_dpll)
13925 		verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state);
13926 
13927 	if (old_crtc_state->shared_dpll &&
13928 	    old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) {
13929 		unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
13930 		struct intel_shared_dpll *pll = old_crtc_state->shared_dpll;
13931 
13932 		I915_STATE_WARN(pll->active_mask & crtc_mask,
13933 				"pll active mismatch (didn't expect pipe %c in active mask)\n",
13934 				pipe_name(drm_crtc_index(&crtc->base)));
13935 		I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
13936 				"pll enabled crtcs mismatch (found %x in enabled mask)\n",
13937 				pipe_name(drm_crtc_index(&crtc->base)));
13938 	}
13939 }
13940 
13941 static void
13942 intel_modeset_verify_crtc(struct intel_crtc *crtc,
13943 			  struct intel_atomic_state *state,
13944 			  struct intel_crtc_state *old_crtc_state,
13945 			  struct intel_crtc_state *new_crtc_state)
13946 {
13947 	if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe)
13948 		return;
13949 
13950 	verify_wm_state(crtc, new_crtc_state);
13951 	verify_connector_state(state, crtc);
13952 	verify_crtc_state(crtc, old_crtc_state, new_crtc_state);
13953 	verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state);
13954 }
13955 
13956 static void
13957 verify_disabled_dpll_state(struct drm_i915_private *dev_priv)
13958 {
13959 	int i;
13960 
13961 	for (i = 0; i < dev_priv->num_shared_dpll; i++)
13962 		verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13963 }
13964 
13965 static void
13966 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv,
13967 			      struct intel_atomic_state *state)
13968 {
13969 	verify_encoder_state(dev_priv, state);
13970 	verify_connector_state(state, NULL);
13971 	verify_disabled_dpll_state(dev_priv);
13972 }
13973 
13974 static void
13975 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state)
13976 {
13977 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13978 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13979 	const struct drm_display_mode *adjusted_mode =
13980 		&crtc_state->hw.adjusted_mode;
13981 
13982 	drm_calc_timestamping_constants(&crtc->base, adjusted_mode);
13983 
13984 	/*
13985 	 * The scanline counter increments at the leading edge of hsync.
13986 	 *
13987 	 * On most platforms it starts counting from vtotal-1 on the
13988 	 * first active line. That means the scanline counter value is
13989 	 * always one less than what we would expect. Ie. just after
13990 	 * start of vblank, which also occurs at start of hsync (on the
13991 	 * last active line), the scanline counter will read vblank_start-1.
13992 	 *
13993 	 * On gen2 the scanline counter starts counting from 1 instead
13994 	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13995 	 * to keep the value positive), instead of adding one.
13996 	 *
13997 	 * On HSW+ the behaviour of the scanline counter depends on the output
13998 	 * type. For DP ports it behaves like most other platforms, but on HDMI
13999 	 * there's an extra 1 line difference. So we need to add two instead of
14000 	 * one to the value.
14001 	 *
14002 	 * On VLV/CHV DSI the scanline counter would appear to increment
14003 	 * approx. 1/3 of a scanline before start of vblank. Unfortunately
14004 	 * that means we can't tell whether we're in vblank or not while
14005 	 * we're on that particular line. We must still set scanline_offset
14006 	 * to 1 so that the vblank timestamps come out correct when we query
14007 	 * the scanline counter from within the vblank interrupt handler.
14008 	 * However if queried just before the start of vblank we'll get an
14009 	 * answer that's slightly in the future.
14010 	 */
14011 	if (IS_GEN(dev_priv, 2)) {
14012 		int vtotal;
14013 
14014 		vtotal = adjusted_mode->crtc_vtotal;
14015 		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
14016 			vtotal /= 2;
14017 
14018 		crtc->scanline_offset = vtotal - 1;
14019 	} else if (HAS_DDI(dev_priv) &&
14020 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
14021 		crtc->scanline_offset = 2;
14022 	} else {
14023 		crtc->scanline_offset = 1;
14024 	}
14025 }
14026 
14027 static void intel_modeset_clear_plls(struct intel_atomic_state *state)
14028 {
14029 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14030 	struct intel_crtc_state *new_crtc_state;
14031 	struct intel_crtc *crtc;
14032 	int i;
14033 
14034 	if (!dev_priv->display.crtc_compute_clock)
14035 		return;
14036 
14037 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14038 		if (!needs_modeset(new_crtc_state))
14039 			continue;
14040 
14041 		intel_release_shared_dplls(state, crtc);
14042 	}
14043 }
14044 
14045 /*
14046  * This implements the workaround described in the "notes" section of the mode
14047  * set sequence documentation. When going from no pipes or single pipe to
14048  * multiple pipes, and planes are enabled after the pipe, we need to wait at
14049  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
14050  */
14051 static int haswell_mode_set_planes_workaround(struct intel_atomic_state *state)
14052 {
14053 	struct intel_crtc_state *crtc_state;
14054 	struct intel_crtc *crtc;
14055 	struct intel_crtc_state *first_crtc_state = NULL;
14056 	struct intel_crtc_state *other_crtc_state = NULL;
14057 	enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
14058 	int i;
14059 
14060 	/* look at all crtc's that are going to be enabled in during modeset */
14061 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14062 		if (!crtc_state->hw.active ||
14063 		    !needs_modeset(crtc_state))
14064 			continue;
14065 
14066 		if (first_crtc_state) {
14067 			other_crtc_state = crtc_state;
14068 			break;
14069 		} else {
14070 			first_crtc_state = crtc_state;
14071 			first_pipe = crtc->pipe;
14072 		}
14073 	}
14074 
14075 	/* No workaround needed? */
14076 	if (!first_crtc_state)
14077 		return 0;
14078 
14079 	/* w/a possibly needed, check how many crtc's are already enabled. */
14080 	for_each_intel_crtc(state->base.dev, crtc) {
14081 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
14082 		if (IS_ERR(crtc_state))
14083 			return PTR_ERR(crtc_state);
14084 
14085 		crtc_state->hsw_workaround_pipe = INVALID_PIPE;
14086 
14087 		if (!crtc_state->hw.active ||
14088 		    needs_modeset(crtc_state))
14089 			continue;
14090 
14091 		/* 2 or more enabled crtcs means no need for w/a */
14092 		if (enabled_pipe != INVALID_PIPE)
14093 			return 0;
14094 
14095 		enabled_pipe = crtc->pipe;
14096 	}
14097 
14098 	if (enabled_pipe != INVALID_PIPE)
14099 		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
14100 	else if (other_crtc_state)
14101 		other_crtc_state->hsw_workaround_pipe = first_pipe;
14102 
14103 	return 0;
14104 }
14105 
14106 static int intel_modeset_checks(struct intel_atomic_state *state)
14107 {
14108 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14109 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14110 	struct intel_crtc *crtc;
14111 	int ret, i;
14112 
14113 	/* keep the current setting */
14114 	if (!state->cdclk.force_min_cdclk_changed)
14115 		state->cdclk.force_min_cdclk = dev_priv->cdclk.force_min_cdclk;
14116 
14117 	state->modeset = true;
14118 	state->active_pipes = dev_priv->active_pipes;
14119 	state->cdclk.logical = dev_priv->cdclk.logical;
14120 	state->cdclk.actual = dev_priv->cdclk.actual;
14121 
14122 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14123 					    new_crtc_state, i) {
14124 		if (new_crtc_state->hw.active)
14125 			state->active_pipes |= BIT(crtc->pipe);
14126 		else
14127 			state->active_pipes &= ~BIT(crtc->pipe);
14128 
14129 		if (old_crtc_state->hw.active != new_crtc_state->hw.active)
14130 			state->active_pipe_changes |= BIT(crtc->pipe);
14131 	}
14132 
14133 	if (state->active_pipe_changes) {
14134 		ret = intel_atomic_lock_global_state(state);
14135 		if (ret)
14136 			return ret;
14137 	}
14138 
14139 	ret = intel_modeset_calc_cdclk(state);
14140 	if (ret)
14141 		return ret;
14142 
14143 	intel_modeset_clear_plls(state);
14144 
14145 	if (IS_HASWELL(dev_priv))
14146 		return haswell_mode_set_planes_workaround(state);
14147 
14148 	return 0;
14149 }
14150 
14151 /*
14152  * Handle calculation of various watermark data at the end of the atomic check
14153  * phase.  The code here should be run after the per-crtc and per-plane 'check'
14154  * handlers to ensure that all derived state has been updated.
14155  */
14156 static int calc_watermark_data(struct intel_atomic_state *state)
14157 {
14158 	struct drm_device *dev = state->base.dev;
14159 	struct drm_i915_private *dev_priv = to_i915(dev);
14160 
14161 	/* Is there platform-specific watermark information to calculate? */
14162 	if (dev_priv->display.compute_global_watermarks)
14163 		return dev_priv->display.compute_global_watermarks(state);
14164 
14165 	return 0;
14166 }
14167 
14168 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state,
14169 				     struct intel_crtc_state *new_crtc_state)
14170 {
14171 	if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true))
14172 		return;
14173 
14174 	new_crtc_state->uapi.mode_changed = false;
14175 	new_crtc_state->update_pipe = true;
14176 
14177 	/*
14178 	 * If we're not doing the full modeset we want to
14179 	 * keep the current M/N values as they may be
14180 	 * sufficiently different to the computed values
14181 	 * to cause problems.
14182 	 *
14183 	 * FIXME: should really copy more fuzzy state here
14184 	 */
14185 	new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n;
14186 	new_crtc_state->dp_m_n = old_crtc_state->dp_m_n;
14187 	new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2;
14188 	new_crtc_state->has_drrs = old_crtc_state->has_drrs;
14189 }
14190 
14191 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state,
14192 					  struct intel_crtc *crtc,
14193 					  u8 plane_ids_mask)
14194 {
14195 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14196 	struct intel_plane *plane;
14197 
14198 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
14199 		struct intel_plane_state *plane_state;
14200 
14201 		if ((plane_ids_mask & BIT(plane->id)) == 0)
14202 			continue;
14203 
14204 		plane_state = intel_atomic_get_plane_state(state, plane);
14205 		if (IS_ERR(plane_state))
14206 			return PTR_ERR(plane_state);
14207 	}
14208 
14209 	return 0;
14210 }
14211 
14212 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv)
14213 {
14214 	/* See {hsw,vlv,ivb}_plane_ratio() */
14215 	return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) ||
14216 		IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
14217 		IS_IVYBRIDGE(dev_priv);
14218 }
14219 
14220 static int intel_atomic_check_planes(struct intel_atomic_state *state,
14221 				     bool *need_modeset)
14222 {
14223 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14224 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14225 	struct intel_plane_state *plane_state;
14226 	struct intel_plane *plane;
14227 	struct intel_crtc *crtc;
14228 	int i, ret;
14229 
14230 	ret = icl_add_linked_planes(state);
14231 	if (ret)
14232 		return ret;
14233 
14234 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
14235 		ret = intel_plane_atomic_check(state, plane);
14236 		if (ret) {
14237 			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] atomic driver check failed\n",
14238 					 plane->base.base.id, plane->base.name);
14239 			return ret;
14240 		}
14241 	}
14242 
14243 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14244 					    new_crtc_state, i) {
14245 		u8 old_active_planes, new_active_planes;
14246 
14247 		ret = icl_check_nv12_planes(new_crtc_state);
14248 		if (ret)
14249 			return ret;
14250 
14251 		/*
14252 		 * On some platforms the number of active planes affects
14253 		 * the planes' minimum cdclk calculation. Add such planes
14254 		 * to the state before we compute the minimum cdclk.
14255 		 */
14256 		if (!active_planes_affects_min_cdclk(dev_priv))
14257 			continue;
14258 
14259 		old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14260 		new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14261 
14262 		if (hweight8(old_active_planes) == hweight8(new_active_planes))
14263 			continue;
14264 
14265 		ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes);
14266 		if (ret)
14267 			return ret;
14268 	}
14269 
14270 	/*
14271 	 * active_planes bitmask has been updated, and potentially
14272 	 * affected planes are part of the state. We can now
14273 	 * compute the minimum cdclk for each plane.
14274 	 */
14275 	for_each_new_intel_plane_in_state(state, plane, plane_state, i)
14276 		*need_modeset |= intel_plane_calc_min_cdclk(state, plane);
14277 
14278 	return 0;
14279 }
14280 
14281 static int intel_atomic_check_crtcs(struct intel_atomic_state *state)
14282 {
14283 	struct intel_crtc_state *crtc_state;
14284 	struct intel_crtc *crtc;
14285 	int i;
14286 
14287 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14288 		int ret = intel_crtc_atomic_check(state, crtc);
14289 		if (ret) {
14290 			DRM_DEBUG_ATOMIC("[CRTC:%d:%s] atomic driver check failed\n",
14291 					 crtc->base.base.id, crtc->base.name);
14292 			return ret;
14293 		}
14294 	}
14295 
14296 	return 0;
14297 }
14298 
14299 /**
14300  * intel_atomic_check - validate state object
14301  * @dev: drm device
14302  * @_state: state to validate
14303  */
14304 static int intel_atomic_check(struct drm_device *dev,
14305 			      struct drm_atomic_state *_state)
14306 {
14307 	struct drm_i915_private *dev_priv = to_i915(dev);
14308 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
14309 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14310 	struct intel_crtc *crtc;
14311 	int ret, i;
14312 	bool any_ms = false;
14313 
14314 	/* Catch I915_MODE_FLAG_INHERITED */
14315 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14316 					    new_crtc_state, i) {
14317 		if (new_crtc_state->hw.mode.private_flags !=
14318 		    old_crtc_state->hw.mode.private_flags)
14319 			new_crtc_state->uapi.mode_changed = true;
14320 	}
14321 
14322 	ret = drm_atomic_helper_check_modeset(dev, &state->base);
14323 	if (ret)
14324 		goto fail;
14325 
14326 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14327 					    new_crtc_state, i) {
14328 		if (!needs_modeset(new_crtc_state)) {
14329 			/* Light copy */
14330 			intel_crtc_copy_uapi_to_hw_state_nomodeset(new_crtc_state);
14331 
14332 			continue;
14333 		}
14334 
14335 		if (!new_crtc_state->uapi.enable) {
14336 			intel_crtc_copy_uapi_to_hw_state(new_crtc_state);
14337 
14338 			any_ms = true;
14339 			continue;
14340 		}
14341 
14342 		ret = intel_crtc_prepare_cleared_state(new_crtc_state);
14343 		if (ret)
14344 			goto fail;
14345 
14346 		ret = intel_modeset_pipe_config(new_crtc_state);
14347 		if (ret)
14348 			goto fail;
14349 
14350 		intel_crtc_check_fastset(old_crtc_state, new_crtc_state);
14351 
14352 		if (needs_modeset(new_crtc_state))
14353 			any_ms = true;
14354 	}
14355 
14356 	if (any_ms && !check_digital_port_conflicts(state)) {
14357 		DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
14358 		ret = EINVAL;
14359 		goto fail;
14360 	}
14361 
14362 	ret = drm_dp_mst_atomic_check(&state->base);
14363 	if (ret)
14364 		goto fail;
14365 
14366 	any_ms |= state->cdclk.force_min_cdclk_changed;
14367 
14368 	ret = intel_atomic_check_planes(state, &any_ms);
14369 	if (ret)
14370 		goto fail;
14371 
14372 	if (any_ms) {
14373 		ret = intel_modeset_checks(state);
14374 		if (ret)
14375 			goto fail;
14376 	} else {
14377 		state->cdclk.logical = dev_priv->cdclk.logical;
14378 	}
14379 
14380 	ret = intel_atomic_check_crtcs(state);
14381 	if (ret)
14382 		goto fail;
14383 
14384 	intel_fbc_choose_crtc(dev_priv, state);
14385 	ret = calc_watermark_data(state);
14386 	if (ret)
14387 		goto fail;
14388 
14389 	ret = intel_bw_atomic_check(state);
14390 	if (ret)
14391 		goto fail;
14392 
14393 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14394 					    new_crtc_state, i) {
14395 		if (!needs_modeset(new_crtc_state) &&
14396 		    !new_crtc_state->update_pipe)
14397 			continue;
14398 
14399 		intel_dump_pipe_config(new_crtc_state, state,
14400 				       needs_modeset(new_crtc_state) ?
14401 				       "[modeset]" : "[fastset]");
14402 	}
14403 
14404 	return 0;
14405 
14406  fail:
14407 	if (ret == -EDEADLK)
14408 		return ret;
14409 
14410 	/*
14411 	 * FIXME would probably be nice to know which crtc specifically
14412 	 * caused the failure, in cases where we can pinpoint it.
14413 	 */
14414 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14415 					    new_crtc_state, i)
14416 		intel_dump_pipe_config(new_crtc_state, state, "[failed]");
14417 
14418 	return ret;
14419 }
14420 
14421 static int intel_atomic_prepare_commit(struct intel_atomic_state *state)
14422 {
14423 	return drm_atomic_helper_prepare_planes(state->base.dev,
14424 						&state->base);
14425 }
14426 
14427 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14428 {
14429 	struct drm_device *dev = crtc->base.dev;
14430 	struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
14431 
14432 	if (!vblank->max_vblank_count)
14433 		return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
14434 
14435 	return crtc->base.funcs->get_vblank_counter(&crtc->base);
14436 }
14437 
14438 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
14439 				  struct intel_crtc_state *crtc_state)
14440 {
14441 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14442 
14443 	if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes)
14444 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
14445 
14446 	if (crtc_state->has_pch_encoder) {
14447 		enum pipe pch_transcoder =
14448 			intel_crtc_pch_transcoder(crtc);
14449 
14450 		intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true);
14451 	}
14452 }
14453 
14454 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state,
14455 			       const struct intel_crtc_state *new_crtc_state)
14456 {
14457 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
14458 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14459 
14460 	/*
14461 	 * Update pipe size and adjust fitter if needed: the reason for this is
14462 	 * that in compute_mode_changes we check the native mode (not the pfit
14463 	 * mode) to see if we can flip rather than do a full mode set. In the
14464 	 * fastboot case, we'll flip, but if we don't update the pipesrc and
14465 	 * pfit state, we'll end up with a big fb scanned out into the wrong
14466 	 * sized surface.
14467 	 */
14468 	intel_set_pipe_src_size(new_crtc_state);
14469 
14470 	/* on skylake this is done by detaching scalers */
14471 	if (INTEL_GEN(dev_priv) >= 9) {
14472 		skl_detach_scalers(new_crtc_state);
14473 
14474 		if (new_crtc_state->pch_pfit.enabled)
14475 			skylake_pfit_enable(new_crtc_state);
14476 	} else if (HAS_PCH_SPLIT(dev_priv)) {
14477 		if (new_crtc_state->pch_pfit.enabled)
14478 			ironlake_pfit_enable(new_crtc_state);
14479 		else if (old_crtc_state->pch_pfit.enabled)
14480 			ironlake_pfit_disable(old_crtc_state);
14481 	}
14482 
14483 	if (INTEL_GEN(dev_priv) >= 11)
14484 		icl_set_pipe_chicken(crtc);
14485 }
14486 
14487 static void commit_pipe_config(struct intel_atomic_state *state,
14488 			       struct intel_crtc_state *old_crtc_state,
14489 			       struct intel_crtc_state *new_crtc_state)
14490 {
14491 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
14492 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14493 	bool modeset = needs_modeset(new_crtc_state);
14494 
14495 	/*
14496 	 * During modesets pipe configuration was programmed as the
14497 	 * CRTC was enabled.
14498 	 */
14499 	if (!modeset) {
14500 		if (new_crtc_state->uapi.color_mgmt_changed ||
14501 		    new_crtc_state->update_pipe)
14502 			intel_color_commit(new_crtc_state);
14503 
14504 		if (INTEL_GEN(dev_priv) >= 9)
14505 			skl_detach_scalers(new_crtc_state);
14506 
14507 		if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
14508 			bdw_set_pipemisc(new_crtc_state);
14509 
14510 		if (new_crtc_state->update_pipe)
14511 			intel_pipe_fastset(old_crtc_state, new_crtc_state);
14512 	}
14513 
14514 	if (dev_priv->display.atomic_update_watermarks)
14515 		dev_priv->display.atomic_update_watermarks(state, crtc);
14516 }
14517 
14518 static void intel_update_crtc(struct intel_crtc *crtc,
14519 			      struct intel_atomic_state *state,
14520 			      struct intel_crtc_state *old_crtc_state,
14521 			      struct intel_crtc_state *new_crtc_state)
14522 {
14523 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14524 	bool modeset = needs_modeset(new_crtc_state);
14525 	struct intel_plane_state *new_plane_state =
14526 		intel_atomic_get_new_plane_state(state,
14527 						 to_intel_plane(crtc->base.primary));
14528 
14529 	if (modeset) {
14530 		intel_crtc_update_active_timings(new_crtc_state);
14531 
14532 		dev_priv->display.crtc_enable(state, crtc);
14533 
14534 		/* vblanks work again, re-enable pipe CRC. */
14535 		intel_crtc_enable_pipe_crc(crtc);
14536 	} else {
14537 		if (new_crtc_state->preload_luts &&
14538 		    (new_crtc_state->uapi.color_mgmt_changed ||
14539 		     new_crtc_state->update_pipe))
14540 			intel_color_load_luts(new_crtc_state);
14541 
14542 		intel_pre_plane_update(state, crtc);
14543 
14544 		if (new_crtc_state->update_pipe)
14545 			intel_encoders_update_pipe(state, crtc);
14546 	}
14547 
14548 	if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
14549 		intel_fbc_disable(crtc);
14550 	else if (new_plane_state)
14551 		intel_fbc_enable(crtc, new_crtc_state, new_plane_state);
14552 
14553 	/* Perform vblank evasion around commit operation */
14554 	intel_pipe_update_start(new_crtc_state);
14555 
14556 	commit_pipe_config(state, old_crtc_state, new_crtc_state);
14557 
14558 	if (INTEL_GEN(dev_priv) >= 9)
14559 		skl_update_planes_on_crtc(state, crtc);
14560 	else
14561 		i9xx_update_planes_on_crtc(state, crtc);
14562 
14563 	intel_pipe_update_end(new_crtc_state);
14564 
14565 	/*
14566 	 * We usually enable FIFO underrun interrupts as part of the
14567 	 * CRTC enable sequence during modesets.  But when we inherit a
14568 	 * valid pipe configuration from the BIOS we need to take care
14569 	 * of enabling them on the CRTC's first fastset.
14570 	 */
14571 	if (new_crtc_state->update_pipe && !modeset &&
14572 	    old_crtc_state->hw.mode.private_flags & I915_MODE_FLAG_INHERITED)
14573 		intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
14574 }
14575 
14576 static struct intel_crtc *intel_get_slave_crtc(const struct intel_crtc_state *new_crtc_state)
14577 {
14578 	struct drm_i915_private *dev_priv = to_i915(new_crtc_state->uapi.crtc->dev);
14579 	enum transcoder slave_transcoder;
14580 
14581 	WARN_ON(!is_power_of_2(new_crtc_state->sync_mode_slaves_mask));
14582 
14583 	slave_transcoder = ffs(new_crtc_state->sync_mode_slaves_mask) - 1;
14584 	return intel_get_crtc_for_pipe(dev_priv,
14585 				       (enum pipe)slave_transcoder);
14586 }
14587 
14588 static void intel_old_crtc_state_disables(struct intel_atomic_state *state,
14589 					  struct intel_crtc_state *old_crtc_state,
14590 					  struct intel_crtc_state *new_crtc_state,
14591 					  struct intel_crtc *crtc)
14592 {
14593 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14594 
14595 	intel_crtc_disable_planes(state, crtc);
14596 
14597 	/*
14598 	 * We need to disable pipe CRC before disabling the pipe,
14599 	 * or we race against vblank off.
14600 	 */
14601 	intel_crtc_disable_pipe_crc(crtc);
14602 
14603 	dev_priv->display.crtc_disable(state, crtc);
14604 	crtc->active = false;
14605 	intel_fbc_disable(crtc);
14606 	intel_disable_shared_dpll(old_crtc_state);
14607 
14608 	/* FIXME unify this for all platforms */
14609 	if (!new_crtc_state->hw.active &&
14610 	    !HAS_GMCH(dev_priv) &&
14611 	    dev_priv->display.initial_watermarks)
14612 		dev_priv->display.initial_watermarks(state, crtc);
14613 }
14614 
14615 static void intel_commit_modeset_disables(struct intel_atomic_state *state)
14616 {
14617 	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
14618 	struct intel_crtc *crtc;
14619 	u32 handled = 0;
14620 	int i;
14621 
14622 	/* Only disable port sync slaves */
14623 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14624 					    new_crtc_state, i) {
14625 		if (!needs_modeset(new_crtc_state))
14626 			continue;
14627 
14628 		if (!old_crtc_state->hw.active)
14629 			continue;
14630 
14631 		/* In case of Transcoder port Sync master slave CRTCs can be
14632 		 * assigned in any order and we need to make sure that
14633 		 * slave CRTCs are disabled first and then master CRTC since
14634 		 * Slave vblanks are masked till Master Vblanks.
14635 		 */
14636 		if (!is_trans_port_sync_slave(old_crtc_state))
14637 			continue;
14638 
14639 		intel_pre_plane_update(state, crtc);
14640 		intel_old_crtc_state_disables(state, old_crtc_state,
14641 					      new_crtc_state, crtc);
14642 		handled |= BIT(crtc->pipe);
14643 	}
14644 
14645 	/* Disable everything else left on */
14646 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14647 					    new_crtc_state, i) {
14648 		if (!needs_modeset(new_crtc_state) ||
14649 		    (handled & BIT(crtc->pipe)))
14650 			continue;
14651 
14652 		intel_pre_plane_update(state, crtc);
14653 		if (old_crtc_state->hw.active)
14654 			intel_old_crtc_state_disables(state, old_crtc_state,
14655 						      new_crtc_state, crtc);
14656 	}
14657 }
14658 
14659 static void intel_commit_modeset_enables(struct intel_atomic_state *state)
14660 {
14661 	struct intel_crtc *crtc;
14662 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14663 	int i;
14664 
14665 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
14666 		if (!new_crtc_state->hw.active)
14667 			continue;
14668 
14669 		intel_update_crtc(crtc, state, old_crtc_state,
14670 				  new_crtc_state);
14671 	}
14672 }
14673 
14674 static void intel_crtc_enable_trans_port_sync(struct intel_crtc *crtc,
14675 					      struct intel_atomic_state *state,
14676 					      struct intel_crtc_state *new_crtc_state)
14677 {
14678 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14679 
14680 	intel_crtc_update_active_timings(new_crtc_state);
14681 	dev_priv->display.crtc_enable(state, crtc);
14682 	intel_crtc_enable_pipe_crc(crtc);
14683 }
14684 
14685 static void intel_set_dp_tp_ctl_normal(struct intel_crtc *crtc,
14686 				       struct intel_atomic_state *state)
14687 {
14688 	struct drm_connector *uninitialized_var(conn);
14689 	struct drm_connector_state *conn_state;
14690 	struct intel_dp *intel_dp;
14691 	int i;
14692 
14693 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
14694 		if (conn_state->crtc == &crtc->base)
14695 			break;
14696 	}
14697 	intel_dp = enc_to_intel_dp(&intel_attached_encoder(conn)->base);
14698 	intel_dp_stop_link_train(intel_dp);
14699 }
14700 
14701 static void intel_post_crtc_enable_updates(struct intel_crtc *crtc,
14702 					   struct intel_atomic_state *state)
14703 {
14704 	struct intel_crtc_state *new_crtc_state =
14705 		intel_atomic_get_new_crtc_state(state, crtc);
14706 	struct intel_crtc_state *old_crtc_state =
14707 		intel_atomic_get_old_crtc_state(state, crtc);
14708 	struct intel_plane_state *new_plane_state =
14709 		intel_atomic_get_new_plane_state(state,
14710 						 to_intel_plane(crtc->base.primary));
14711 	bool modeset = needs_modeset(new_crtc_state);
14712 
14713 	if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
14714 		intel_fbc_disable(crtc);
14715 	else if (new_plane_state)
14716 		intel_fbc_enable(crtc, new_crtc_state, new_plane_state);
14717 
14718 	/* Perform vblank evasion around commit operation */
14719 	intel_pipe_update_start(new_crtc_state);
14720 	commit_pipe_config(state, old_crtc_state, new_crtc_state);
14721 	skl_update_planes_on_crtc(state, crtc);
14722 	intel_pipe_update_end(new_crtc_state);
14723 
14724 	/*
14725 	 * We usually enable FIFO underrun interrupts as part of the
14726 	 * CRTC enable sequence during modesets.  But when we inherit a
14727 	 * valid pipe configuration from the BIOS we need to take care
14728 	 * of enabling them on the CRTC's first fastset.
14729 	 */
14730 	if (new_crtc_state->update_pipe && !modeset &&
14731 	    old_crtc_state->hw.mode.private_flags & I915_MODE_FLAG_INHERITED)
14732 		intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
14733 }
14734 
14735 static void intel_update_trans_port_sync_crtcs(struct intel_crtc *crtc,
14736 					       struct intel_atomic_state *state,
14737 					       struct intel_crtc_state *old_crtc_state,
14738 					       struct intel_crtc_state *new_crtc_state)
14739 {
14740 	struct intel_crtc *slave_crtc = intel_get_slave_crtc(new_crtc_state);
14741 	struct intel_crtc_state *new_slave_crtc_state =
14742 		intel_atomic_get_new_crtc_state(state, slave_crtc);
14743 	struct intel_crtc_state *old_slave_crtc_state =
14744 		intel_atomic_get_old_crtc_state(state, slave_crtc);
14745 
14746 	WARN_ON(!slave_crtc || !new_slave_crtc_state ||
14747 		!old_slave_crtc_state);
14748 
14749 	DRM_DEBUG_KMS("Updating Transcoder Port Sync Master CRTC = %d %s and Slave CRTC %d %s\n",
14750 		      crtc->base.base.id, crtc->base.name, slave_crtc->base.base.id,
14751 		      slave_crtc->base.name);
14752 
14753 	/* Enable seq for slave with with DP_TP_CTL left Idle until the
14754 	 * master is ready
14755 	 */
14756 	intel_crtc_enable_trans_port_sync(slave_crtc,
14757 					  state,
14758 					  new_slave_crtc_state);
14759 
14760 	/* Enable seq for master with with DP_TP_CTL left Idle */
14761 	intel_crtc_enable_trans_port_sync(crtc,
14762 					  state,
14763 					  new_crtc_state);
14764 
14765 	/* Set Slave's DP_TP_CTL to Normal */
14766 	intel_set_dp_tp_ctl_normal(slave_crtc,
14767 				   state);
14768 
14769 	/* Set Master's DP_TP_CTL To Normal */
14770 	usleep_range(200, 400);
14771 	intel_set_dp_tp_ctl_normal(crtc,
14772 				   state);
14773 
14774 	/* Now do the post crtc enable for all master and slaves */
14775 	intel_post_crtc_enable_updates(slave_crtc,
14776 				       state);
14777 	intel_post_crtc_enable_updates(crtc,
14778 				       state);
14779 }
14780 
14781 static void skl_commit_modeset_enables(struct intel_atomic_state *state)
14782 {
14783 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14784 	struct intel_crtc *crtc;
14785 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14786 	u8 hw_enabled_slices = dev_priv->wm.skl_hw.ddb.enabled_slices;
14787 	u8 required_slices = state->wm_results.ddb.enabled_slices;
14788 	struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
14789 	u8 dirty_pipes = 0;
14790 	int i;
14791 
14792 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
14793 		/* ignore allocations for crtc's that have been turned off. */
14794 		if (!needs_modeset(new_crtc_state) && new_crtc_state->hw.active)
14795 			entries[i] = old_crtc_state->wm.skl.ddb;
14796 		if (new_crtc_state->hw.active)
14797 			dirty_pipes |= BIT(crtc->pipe);
14798 	}
14799 
14800 	/* If 2nd DBuf slice required, enable it here */
14801 	if (INTEL_GEN(dev_priv) >= 11 && required_slices > hw_enabled_slices)
14802 		icl_dbuf_slices_update(dev_priv, required_slices);
14803 
14804 	/*
14805 	 * Whenever the number of active pipes changes, we need to make sure we
14806 	 * update the pipes in the right order so that their ddb allocations
14807 	 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14808 	 * cause pipe underruns and other bad stuff.
14809 	 */
14810 	while (dirty_pipes) {
14811 		for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14812 						    new_crtc_state, i) {
14813 			enum pipe pipe = crtc->pipe;
14814 			bool modeset = needs_modeset(new_crtc_state);
14815 
14816 			if ((dirty_pipes & BIT(pipe)) == 0)
14817 				continue;
14818 
14819 			if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
14820 							entries,
14821 							INTEL_NUM_PIPES(dev_priv), i))
14822 				continue;
14823 
14824 			entries[i] = new_crtc_state->wm.skl.ddb;
14825 			dirty_pipes &= ~BIT(pipe);
14826 
14827 			if (modeset && is_trans_port_sync_mode(new_crtc_state)) {
14828 				if (is_trans_port_sync_master(new_crtc_state))
14829 					intel_update_trans_port_sync_crtcs(crtc,
14830 									   state,
14831 									   old_crtc_state,
14832 									   new_crtc_state);
14833 				else
14834 					continue;
14835 			} else {
14836 				intel_update_crtc(crtc, state, old_crtc_state,
14837 						  new_crtc_state);
14838 			}
14839 
14840 			/*
14841 			 * If this is an already active pipe, it's DDB changed,
14842 			 * and this isn't the last pipe that needs updating
14843 			 * then we need to wait for a vblank to pass for the
14844 			 * new ddb allocation to take effect.
14845 			 */
14846 			if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb,
14847 						 &old_crtc_state->wm.skl.ddb) &&
14848 			    !modeset && dirty_pipes)
14849 				intel_wait_for_vblank(dev_priv, pipe);
14850 		}
14851 	}
14852 
14853 	/* If 2nd DBuf slice is no more required disable it */
14854 	if (INTEL_GEN(dev_priv) >= 11 && required_slices < hw_enabled_slices)
14855 		icl_dbuf_slices_update(dev_priv, required_slices);
14856 }
14857 
14858 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
14859 {
14860 	struct intel_atomic_state *state, *next;
14861 	struct llist_node *freed;
14862 
14863 	freed = llist_del_all(&dev_priv->atomic_helper.free_list);
14864 	llist_for_each_entry_safe(state, next, freed, freed)
14865 		drm_atomic_state_put(&state->base);
14866 }
14867 
14868 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
14869 {
14870 	struct drm_i915_private *dev_priv =
14871 		container_of(work, typeof(*dev_priv), atomic_helper.free_work);
14872 
14873 	intel_atomic_helper_free_state(dev_priv);
14874 }
14875 
14876 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
14877 {
14878 	struct wait_queue_entry wait_fence, wait_reset;
14879 	struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
14880 
14881 	init_wait_entry(&wait_fence, 0);
14882 	init_wait_entry(&wait_reset, 0);
14883 	for (;;) {
14884 		prepare_to_wait(&intel_state->commit_ready.wait,
14885 				&wait_fence, TASK_UNINTERRUPTIBLE);
14886 		prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
14887 					      I915_RESET_MODESET),
14888 				&wait_reset, TASK_UNINTERRUPTIBLE);
14889 
14890 
14891 		if (i915_sw_fence_done(&intel_state->commit_ready) ||
14892 		    test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
14893 			break;
14894 
14895 		schedule();
14896 	}
14897 	finish_wait(&intel_state->commit_ready.wait, &wait_fence);
14898 	finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
14899 				  I915_RESET_MODESET),
14900 		    &wait_reset);
14901 }
14902 
14903 static void intel_atomic_cleanup_work(struct work_struct *work)
14904 {
14905 	struct drm_atomic_state *state =
14906 		container_of(work, struct drm_atomic_state, commit_work);
14907 	struct drm_i915_private *i915 = to_i915(state->dev);
14908 
14909 	drm_atomic_helper_cleanup_planes(&i915->drm, state);
14910 	drm_atomic_helper_commit_cleanup_done(state);
14911 	drm_atomic_state_put(state);
14912 
14913 	intel_atomic_helper_free_state(i915);
14914 }
14915 
14916 static void intel_atomic_commit_tail(struct intel_atomic_state *state)
14917 {
14918 	struct drm_device *dev = state->base.dev;
14919 	struct drm_i915_private *dev_priv = to_i915(dev);
14920 	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
14921 	struct intel_crtc *crtc;
14922 	u64 put_domains[I915_MAX_PIPES] = {};
14923 	intel_wakeref_t wakeref = 0;
14924 	int i;
14925 
14926 	intel_atomic_commit_fence_wait(state);
14927 
14928 	drm_atomic_helper_wait_for_dependencies(&state->base);
14929 
14930 	if (state->modeset)
14931 		wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14932 
14933 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14934 					    new_crtc_state, i) {
14935 		if (needs_modeset(new_crtc_state) ||
14936 		    new_crtc_state->update_pipe) {
14937 
14938 			put_domains[crtc->pipe] =
14939 				modeset_get_crtc_power_domains(new_crtc_state);
14940 		}
14941 	}
14942 
14943 	intel_commit_modeset_disables(state);
14944 
14945 	/* FIXME: Eventually get rid of our crtc->config pointer */
14946 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
14947 		crtc->config = new_crtc_state;
14948 
14949 	if (state->modeset) {
14950 		drm_atomic_helper_update_legacy_modeset_state(dev, &state->base);
14951 
14952 		intel_set_cdclk_pre_plane_update(dev_priv,
14953 						 &state->cdclk.actual,
14954 						 &dev_priv->cdclk.actual,
14955 						 state->cdclk.pipe);
14956 
14957 		/*
14958 		 * SKL workaround: bspec recommends we disable the SAGV when we
14959 		 * have more then one pipe enabled
14960 		 */
14961 		if (!intel_can_enable_sagv(state))
14962 			intel_disable_sagv(dev_priv);
14963 
14964 		intel_modeset_verify_disabled(dev_priv, state);
14965 	}
14966 
14967 	/* Complete the events for pipes that have now been disabled */
14968 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14969 		bool modeset = needs_modeset(new_crtc_state);
14970 
14971 		/* Complete events for now disable pipes here. */
14972 		if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) {
14973 			spin_lock_irq(&dev->event_lock);
14974 			drm_crtc_send_vblank_event(&crtc->base,
14975 						   new_crtc_state->uapi.event);
14976 			spin_unlock_irq(&dev->event_lock);
14977 
14978 			new_crtc_state->uapi.event = NULL;
14979 		}
14980 	}
14981 
14982 	if (state->modeset)
14983 		intel_encoders_update_prepare(state);
14984 
14985 	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
14986 	dev_priv->display.commit_modeset_enables(state);
14987 
14988 	if (state->modeset) {
14989 		intel_encoders_update_complete(state);
14990 
14991 		intel_set_cdclk_post_plane_update(dev_priv,
14992 						  &state->cdclk.actual,
14993 						  &dev_priv->cdclk.actual,
14994 						  state->cdclk.pipe);
14995 	}
14996 
14997 	/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14998 	 * already, but still need the state for the delayed optimization. To
14999 	 * fix this:
15000 	 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
15001 	 * - schedule that vblank worker _before_ calling hw_done
15002 	 * - at the start of commit_tail, cancel it _synchrously
15003 	 * - switch over to the vblank wait helper in the core after that since
15004 	 *   we don't need out special handling any more.
15005 	 */
15006 	drm_atomic_helper_wait_for_flip_done(dev, &state->base);
15007 
15008 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15009 		if (new_crtc_state->hw.active &&
15010 		    !needs_modeset(new_crtc_state) &&
15011 		    !new_crtc_state->preload_luts &&
15012 		    (new_crtc_state->uapi.color_mgmt_changed ||
15013 		     new_crtc_state->update_pipe))
15014 			intel_color_load_luts(new_crtc_state);
15015 	}
15016 
15017 	/*
15018 	 * Now that the vblank has passed, we can go ahead and program the
15019 	 * optimal watermarks on platforms that need two-step watermark
15020 	 * programming.
15021 	 *
15022 	 * TODO: Move this (and other cleanup) to an async worker eventually.
15023 	 */
15024 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15025 					    new_crtc_state, i) {
15026 		/*
15027 		 * Gen2 reports pipe underruns whenever all planes are disabled.
15028 		 * So re-enable underrun reporting after some planes get enabled.
15029 		 *
15030 		 * We do this before .optimize_watermarks() so that we have a
15031 		 * chance of catching underruns with the intermediate watermarks
15032 		 * vs. the new plane configuration.
15033 		 */
15034 		if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state))
15035 			intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
15036 
15037 		if (dev_priv->display.optimize_watermarks)
15038 			dev_priv->display.optimize_watermarks(state, crtc);
15039 	}
15040 
15041 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15042 		intel_post_plane_update(state, crtc);
15043 
15044 		if (put_domains[i])
15045 			modeset_put_power_domains(dev_priv, put_domains[i]);
15046 
15047 		intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
15048 	}
15049 
15050 	/* Underruns don't always raise interrupts, so check manually */
15051 	intel_check_cpu_fifo_underruns(dev_priv);
15052 	intel_check_pch_fifo_underruns(dev_priv);
15053 
15054 	if (state->modeset)
15055 		intel_verify_planes(state);
15056 
15057 	if (state->modeset && intel_can_enable_sagv(state))
15058 		intel_enable_sagv(dev_priv);
15059 
15060 	drm_atomic_helper_commit_hw_done(&state->base);
15061 
15062 	if (state->modeset) {
15063 		/* As one of the primary mmio accessors, KMS has a high
15064 		 * likelihood of triggering bugs in unclaimed access. After we
15065 		 * finish modesetting, see if an error has been flagged, and if
15066 		 * so enable debugging for the next modeset - and hope we catch
15067 		 * the culprit.
15068 		 */
15069 		intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
15070 		intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref);
15071 	}
15072 	intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15073 
15074 	/*
15075 	 * Defer the cleanup of the old state to a separate worker to not
15076 	 * impede the current task (userspace for blocking modesets) that
15077 	 * are executed inline. For out-of-line asynchronous modesets/flips,
15078 	 * deferring to a new worker seems overkill, but we would place a
15079 	 * schedule point (cond_resched()) here anyway to keep latencies
15080 	 * down.
15081 	 */
15082 	INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work);
15083 	queue_work(system_highpri_wq, &state->base.commit_work);
15084 }
15085 
15086 static void intel_atomic_commit_work(struct work_struct *work)
15087 {
15088 	struct intel_atomic_state *state =
15089 		container_of(work, struct intel_atomic_state, base.commit_work);
15090 
15091 	intel_atomic_commit_tail(state);
15092 }
15093 
15094 static int __i915_sw_fence_call
15095 intel_atomic_commit_ready(struct i915_sw_fence *fence,
15096 			  enum i915_sw_fence_notify notify)
15097 {
15098 	struct intel_atomic_state *state =
15099 		container_of(fence, struct intel_atomic_state, commit_ready);
15100 
15101 	switch (notify) {
15102 	case FENCE_COMPLETE:
15103 		/* we do blocking waits in the worker, nothing to do here */
15104 		break;
15105 	case FENCE_FREE:
15106 		{
15107 			struct intel_atomic_helper *helper =
15108 				&to_i915(state->base.dev)->atomic_helper;
15109 
15110 			if (llist_add(&state->freed, &helper->free_list))
15111 				schedule_work(&helper->free_work);
15112 			break;
15113 		}
15114 	}
15115 
15116 	return NOTIFY_DONE;
15117 }
15118 
15119 static void intel_atomic_track_fbs(struct intel_atomic_state *state)
15120 {
15121 	struct intel_plane_state *old_plane_state, *new_plane_state;
15122 	struct intel_plane *plane;
15123 	int i;
15124 
15125 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
15126 					     new_plane_state, i)
15127 		intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
15128 					to_intel_frontbuffer(new_plane_state->hw.fb),
15129 					plane->frontbuffer_bit);
15130 }
15131 
15132 static void assert_global_state_locked(struct drm_i915_private *dev_priv)
15133 {
15134 	struct intel_crtc *crtc;
15135 
15136 	for_each_intel_crtc(&dev_priv->drm, crtc)
15137 		drm_modeset_lock_assert_held(&crtc->base.mutex);
15138 }
15139 
15140 static int intel_atomic_commit(struct drm_device *dev,
15141 			       struct drm_atomic_state *_state,
15142 			       bool nonblock)
15143 {
15144 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
15145 	struct drm_i915_private *dev_priv = to_i915(dev);
15146 	int ret = 0;
15147 
15148 	state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
15149 
15150 	drm_atomic_state_get(&state->base);
15151 	i915_sw_fence_init(&state->commit_ready,
15152 			   intel_atomic_commit_ready);
15153 
15154 	/*
15155 	 * The intel_legacy_cursor_update() fast path takes care
15156 	 * of avoiding the vblank waits for simple cursor
15157 	 * movement and flips. For cursor on/off and size changes,
15158 	 * we want to perform the vblank waits so that watermark
15159 	 * updates happen during the correct frames. Gen9+ have
15160 	 * double buffered watermarks and so shouldn't need this.
15161 	 *
15162 	 * Unset state->legacy_cursor_update before the call to
15163 	 * drm_atomic_helper_setup_commit() because otherwise
15164 	 * drm_atomic_helper_wait_for_flip_done() is a noop and
15165 	 * we get FIFO underruns because we didn't wait
15166 	 * for vblank.
15167 	 *
15168 	 * FIXME doing watermarks and fb cleanup from a vblank worker
15169 	 * (assuming we had any) would solve these problems.
15170 	 */
15171 	if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) {
15172 		struct intel_crtc_state *new_crtc_state;
15173 		struct intel_crtc *crtc;
15174 		int i;
15175 
15176 		for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15177 			if (new_crtc_state->wm.need_postvbl_update ||
15178 			    new_crtc_state->update_wm_post)
15179 				state->base.legacy_cursor_update = false;
15180 	}
15181 
15182 	ret = intel_atomic_prepare_commit(state);
15183 	if (ret) {
15184 		DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
15185 		i915_sw_fence_commit(&state->commit_ready);
15186 		intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15187 		return ret;
15188 	}
15189 
15190 	ret = drm_atomic_helper_setup_commit(&state->base, nonblock);
15191 	if (!ret)
15192 		ret = drm_atomic_helper_swap_state(&state->base, true);
15193 
15194 	if (ret) {
15195 		i915_sw_fence_commit(&state->commit_ready);
15196 
15197 		drm_atomic_helper_cleanup_planes(dev, &state->base);
15198 		intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15199 		return ret;
15200 	}
15201 	dev_priv->wm.distrust_bios_wm = false;
15202 	intel_shared_dpll_swap_state(state);
15203 	intel_atomic_track_fbs(state);
15204 
15205 	if (state->global_state_changed) {
15206 		assert_global_state_locked(dev_priv);
15207 
15208 		memcpy(dev_priv->min_cdclk, state->min_cdclk,
15209 		       sizeof(state->min_cdclk));
15210 		memcpy(dev_priv->min_voltage_level, state->min_voltage_level,
15211 		       sizeof(state->min_voltage_level));
15212 		dev_priv->active_pipes = state->active_pipes;
15213 		dev_priv->cdclk.force_min_cdclk = state->cdclk.force_min_cdclk;
15214 
15215 		intel_cdclk_swap_state(state);
15216 	}
15217 
15218 	drm_atomic_state_get(&state->base);
15219 	INIT_WORK(&state->base.commit_work, intel_atomic_commit_work);
15220 
15221 	i915_sw_fence_commit(&state->commit_ready);
15222 	if (nonblock && state->modeset) {
15223 		queue_work(dev_priv->modeset_wq, &state->base.commit_work);
15224 	} else if (nonblock) {
15225 		queue_work(dev_priv->flip_wq, &state->base.commit_work);
15226 	} else {
15227 		if (state->modeset)
15228 			flush_workqueue(dev_priv->modeset_wq);
15229 		intel_atomic_commit_tail(state);
15230 	}
15231 
15232 	return 0;
15233 }
15234 
15235 struct wait_rps_boost {
15236 	struct wait_queue_entry wait;
15237 
15238 	struct drm_crtc *crtc;
15239 	struct i915_request *request;
15240 };
15241 
15242 static int do_rps_boost(struct wait_queue_entry *_wait,
15243 			unsigned mode, int sync, void *key)
15244 {
15245 	struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
15246 	struct i915_request *rq = wait->request;
15247 
15248 	/*
15249 	 * If we missed the vblank, but the request is already running it
15250 	 * is reasonable to assume that it will complete before the next
15251 	 * vblank without our intervention, so leave RPS alone.
15252 	 */
15253 	if (!i915_request_started(rq))
15254 		intel_rps_boost(rq);
15255 	i915_request_put(rq);
15256 
15257 	drm_crtc_vblank_put(wait->crtc);
15258 
15259 	list_del(&wait->wait.entry);
15260 	kfree(wait);
15261 	return 1;
15262 }
15263 
15264 static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
15265 				       struct dma_fence *fence)
15266 {
15267 	struct wait_rps_boost *wait;
15268 
15269 	if (!dma_fence_is_i915(fence))
15270 		return;
15271 
15272 	if (INTEL_GEN(to_i915(crtc->dev)) < 6)
15273 		return;
15274 
15275 	if (drm_crtc_vblank_get(crtc))
15276 		return;
15277 
15278 	wait = kmalloc(sizeof(*wait), GFP_KERNEL);
15279 	if (!wait) {
15280 		drm_crtc_vblank_put(crtc);
15281 		return;
15282 	}
15283 
15284 	wait->request = to_request(dma_fence_get(fence));
15285 	wait->crtc = crtc;
15286 
15287 	wait->wait.func = do_rps_boost;
15288 	wait->wait.flags = 0;
15289 
15290 	add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
15291 }
15292 
15293 static int intel_plane_pin_fb(struct intel_plane_state *plane_state)
15294 {
15295 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
15296 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15297 	struct drm_framebuffer *fb = plane_state->hw.fb;
15298 	struct i915_vma *vma;
15299 
15300 	if (plane->id == PLANE_CURSOR &&
15301 	    INTEL_INFO(dev_priv)->display.cursor_needs_physical) {
15302 		struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15303 		const int align = intel_cursor_alignment(dev_priv);
15304 		int err;
15305 
15306 		err = i915_gem_object_attach_phys(obj, align);
15307 		if (err)
15308 			return err;
15309 	}
15310 
15311 	vma = intel_pin_and_fence_fb_obj(fb,
15312 					 &plane_state->view,
15313 					 intel_plane_uses_fence(plane_state),
15314 					 &plane_state->flags);
15315 	if (IS_ERR(vma))
15316 		return PTR_ERR(vma);
15317 
15318 	plane_state->vma = vma;
15319 
15320 	return 0;
15321 }
15322 
15323 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state)
15324 {
15325 	struct i915_vma *vma;
15326 
15327 	vma = fetch_and_zero(&old_plane_state->vma);
15328 	if (vma)
15329 		intel_unpin_fb_vma(vma, old_plane_state->flags);
15330 }
15331 
15332 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj)
15333 {
15334 	struct i915_sched_attr attr = {
15335 		.priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY),
15336 	};
15337 
15338 	i915_gem_object_wait_priority(obj, 0, &attr);
15339 }
15340 
15341 /**
15342  * intel_prepare_plane_fb - Prepare fb for usage on plane
15343  * @plane: drm plane to prepare for
15344  * @_new_plane_state: the plane state being prepared
15345  *
15346  * Prepares a framebuffer for usage on a display plane.  Generally this
15347  * involves pinning the underlying object and updating the frontbuffer tracking
15348  * bits.  Some older platforms need special physical address handling for
15349  * cursor planes.
15350  *
15351  * Returns 0 on success, negative error code on failure.
15352  */
15353 int
15354 intel_prepare_plane_fb(struct drm_plane *plane,
15355 		       struct drm_plane_state *_new_plane_state)
15356 {
15357 	struct intel_plane_state *new_plane_state =
15358 		to_intel_plane_state(_new_plane_state);
15359 	struct intel_atomic_state *intel_state =
15360 		to_intel_atomic_state(new_plane_state->uapi.state);
15361 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
15362 	struct drm_framebuffer *fb = new_plane_state->hw.fb;
15363 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15364 	struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
15365 	int ret;
15366 
15367 	if (old_obj) {
15368 		struct intel_crtc_state *crtc_state =
15369 			intel_atomic_get_new_crtc_state(intel_state,
15370 							to_intel_crtc(plane->state->crtc));
15371 
15372 		/* Big Hammer, we also need to ensure that any pending
15373 		 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
15374 		 * current scanout is retired before unpinning the old
15375 		 * framebuffer. Note that we rely on userspace rendering
15376 		 * into the buffer attached to the pipe they are waiting
15377 		 * on. If not, userspace generates a GPU hang with IPEHR
15378 		 * point to the MI_WAIT_FOR_EVENT.
15379 		 *
15380 		 * This should only fail upon a hung GPU, in which case we
15381 		 * can safely continue.
15382 		 */
15383 		if (needs_modeset(crtc_state)) {
15384 			ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
15385 							      old_obj->base.resv, NULL,
15386 							      false, 0,
15387 							      GFP_KERNEL);
15388 			if (ret < 0)
15389 				return ret;
15390 		}
15391 	}
15392 
15393 	if (new_plane_state->uapi.fence) { /* explicit fencing */
15394 		ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
15395 						    new_plane_state->uapi.fence,
15396 						    I915_FENCE_TIMEOUT,
15397 						    GFP_KERNEL);
15398 		if (ret < 0)
15399 			return ret;
15400 	}
15401 
15402 	if (!obj)
15403 		return 0;
15404 
15405 	ret = i915_gem_object_pin_pages(obj);
15406 	if (ret)
15407 		return ret;
15408 
15409 	ret = intel_plane_pin_fb(new_plane_state);
15410 
15411 	i915_gem_object_unpin_pages(obj);
15412 	if (ret)
15413 		return ret;
15414 
15415 	fb_obj_bump_render_priority(obj);
15416 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB);
15417 
15418 	if (!new_plane_state->uapi.fence) { /* implicit fencing */
15419 		struct dma_fence *fence;
15420 
15421 		ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
15422 						      obj->base.resv, NULL,
15423 						      false, I915_FENCE_TIMEOUT,
15424 						      GFP_KERNEL);
15425 		if (ret < 0)
15426 			return ret;
15427 
15428 		fence = dma_resv_get_excl_rcu(obj->base.resv);
15429 		if (fence) {
15430 			add_rps_boost_after_vblank(new_plane_state->hw.crtc,
15431 						   fence);
15432 			dma_fence_put(fence);
15433 		}
15434 	} else {
15435 		add_rps_boost_after_vblank(new_plane_state->hw.crtc,
15436 					   new_plane_state->uapi.fence);
15437 	}
15438 
15439 	/*
15440 	 * We declare pageflips to be interactive and so merit a small bias
15441 	 * towards upclocking to deliver the frame on time. By only changing
15442 	 * the RPS thresholds to sample more regularly and aim for higher
15443 	 * clocks we can hopefully deliver low power workloads (like kodi)
15444 	 * that are not quite steady state without resorting to forcing
15445 	 * maximum clocks following a vblank miss (see do_rps_boost()).
15446 	 */
15447 	if (!intel_state->rps_interactive) {
15448 		intel_rps_mark_interactive(&dev_priv->gt.rps, true);
15449 		intel_state->rps_interactive = true;
15450 	}
15451 
15452 	return 0;
15453 }
15454 
15455 /**
15456  * intel_cleanup_plane_fb - Cleans up an fb after plane use
15457  * @plane: drm plane to clean up for
15458  * @_old_plane_state: the state from the previous modeset
15459  *
15460  * Cleans up a framebuffer that has just been removed from a plane.
15461  */
15462 void
15463 intel_cleanup_plane_fb(struct drm_plane *plane,
15464 		       struct drm_plane_state *_old_plane_state)
15465 {
15466 	struct intel_plane_state *old_plane_state =
15467 		to_intel_plane_state(_old_plane_state);
15468 	struct intel_atomic_state *intel_state =
15469 		to_intel_atomic_state(old_plane_state->uapi.state);
15470 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
15471 
15472 	if (intel_state->rps_interactive) {
15473 		intel_rps_mark_interactive(&dev_priv->gt.rps, false);
15474 		intel_state->rps_interactive = false;
15475 	}
15476 
15477 	/* Should only be called after a successful intel_prepare_plane_fb()! */
15478 	intel_plane_unpin_fb(old_plane_state);
15479 }
15480 
15481 /**
15482  * intel_plane_destroy - destroy a plane
15483  * @plane: plane to destroy
15484  *
15485  * Common destruction function for all types of planes (primary, cursor,
15486  * sprite).
15487  */
15488 void intel_plane_destroy(struct drm_plane *plane)
15489 {
15490 	drm_plane_cleanup(plane);
15491 	kfree(to_intel_plane(plane));
15492 }
15493 
15494 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane,
15495 					    u32 format, u64 modifier)
15496 {
15497 	switch (modifier) {
15498 	case DRM_FORMAT_MOD_LINEAR:
15499 	case I915_FORMAT_MOD_X_TILED:
15500 		break;
15501 	default:
15502 		return false;
15503 	}
15504 
15505 	switch (format) {
15506 	case DRM_FORMAT_C8:
15507 	case DRM_FORMAT_RGB565:
15508 	case DRM_FORMAT_XRGB1555:
15509 	case DRM_FORMAT_XRGB8888:
15510 		return modifier == DRM_FORMAT_MOD_LINEAR ||
15511 			modifier == I915_FORMAT_MOD_X_TILED;
15512 	default:
15513 		return false;
15514 	}
15515 }
15516 
15517 static bool i965_plane_format_mod_supported(struct drm_plane *_plane,
15518 					    u32 format, u64 modifier)
15519 {
15520 	switch (modifier) {
15521 	case DRM_FORMAT_MOD_LINEAR:
15522 	case I915_FORMAT_MOD_X_TILED:
15523 		break;
15524 	default:
15525 		return false;
15526 	}
15527 
15528 	switch (format) {
15529 	case DRM_FORMAT_C8:
15530 	case DRM_FORMAT_RGB565:
15531 	case DRM_FORMAT_XRGB8888:
15532 	case DRM_FORMAT_XBGR8888:
15533 	case DRM_FORMAT_ARGB8888:
15534 	case DRM_FORMAT_ABGR8888:
15535 	case DRM_FORMAT_XRGB2101010:
15536 	case DRM_FORMAT_XBGR2101010:
15537 	case DRM_FORMAT_ARGB2101010:
15538 	case DRM_FORMAT_ABGR2101010:
15539 	case DRM_FORMAT_XBGR16161616F:
15540 		return modifier == DRM_FORMAT_MOD_LINEAR ||
15541 			modifier == I915_FORMAT_MOD_X_TILED;
15542 	default:
15543 		return false;
15544 	}
15545 }
15546 
15547 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane,
15548 					      u32 format, u64 modifier)
15549 {
15550 	return modifier == DRM_FORMAT_MOD_LINEAR &&
15551 		format == DRM_FORMAT_ARGB8888;
15552 }
15553 
15554 static const struct drm_plane_funcs i965_plane_funcs = {
15555 	.update_plane = drm_atomic_helper_update_plane,
15556 	.disable_plane = drm_atomic_helper_disable_plane,
15557 	.destroy = intel_plane_destroy,
15558 	.atomic_duplicate_state = intel_plane_duplicate_state,
15559 	.atomic_destroy_state = intel_plane_destroy_state,
15560 	.format_mod_supported = i965_plane_format_mod_supported,
15561 };
15562 
15563 static const struct drm_plane_funcs i8xx_plane_funcs = {
15564 	.update_plane = drm_atomic_helper_update_plane,
15565 	.disable_plane = drm_atomic_helper_disable_plane,
15566 	.destroy = intel_plane_destroy,
15567 	.atomic_duplicate_state = intel_plane_duplicate_state,
15568 	.atomic_destroy_state = intel_plane_destroy_state,
15569 	.format_mod_supported = i8xx_plane_format_mod_supported,
15570 };
15571 
15572 static int
15573 intel_legacy_cursor_update(struct drm_plane *_plane,
15574 			   struct drm_crtc *_crtc,
15575 			   struct drm_framebuffer *fb,
15576 			   int crtc_x, int crtc_y,
15577 			   unsigned int crtc_w, unsigned int crtc_h,
15578 			   u32 src_x, u32 src_y,
15579 			   u32 src_w, u32 src_h,
15580 			   struct drm_modeset_acquire_ctx *ctx)
15581 {
15582 	struct intel_plane *plane = to_intel_plane(_plane);
15583 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
15584 	struct intel_plane_state *old_plane_state =
15585 		to_intel_plane_state(plane->base.state);
15586 	struct intel_plane_state *new_plane_state;
15587 	struct intel_crtc_state *crtc_state =
15588 		to_intel_crtc_state(crtc->base.state);
15589 	struct intel_crtc_state *new_crtc_state;
15590 	int ret;
15591 
15592 	/*
15593 	 * When crtc is inactive or there is a modeset pending,
15594 	 * wait for it to complete in the slowpath
15595 	 */
15596 	if (!crtc_state->hw.active || needs_modeset(crtc_state) ||
15597 	    crtc_state->update_pipe)
15598 		goto slow;
15599 
15600 	/*
15601 	 * Don't do an async update if there is an outstanding commit modifying
15602 	 * the plane.  This prevents our async update's changes from getting
15603 	 * overridden by a previous synchronous update's state.
15604 	 */
15605 	if (old_plane_state->uapi.commit &&
15606 	    !try_wait_for_completion(&old_plane_state->uapi.commit->hw_done))
15607 		goto slow;
15608 
15609 	/*
15610 	 * If any parameters change that may affect watermarks,
15611 	 * take the slowpath. Only changing fb or position should be
15612 	 * in the fastpath.
15613 	 */
15614 	if (old_plane_state->uapi.crtc != &crtc->base ||
15615 	    old_plane_state->uapi.src_w != src_w ||
15616 	    old_plane_state->uapi.src_h != src_h ||
15617 	    old_plane_state->uapi.crtc_w != crtc_w ||
15618 	    old_plane_state->uapi.crtc_h != crtc_h ||
15619 	    !old_plane_state->uapi.fb != !fb)
15620 		goto slow;
15621 
15622 	new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base));
15623 	if (!new_plane_state)
15624 		return -ENOMEM;
15625 
15626 	new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base));
15627 	if (!new_crtc_state) {
15628 		ret = -ENOMEM;
15629 		goto out_free;
15630 	}
15631 
15632 	drm_atomic_set_fb_for_plane(&new_plane_state->uapi, fb);
15633 
15634 	new_plane_state->uapi.src_x = src_x;
15635 	new_plane_state->uapi.src_y = src_y;
15636 	new_plane_state->uapi.src_w = src_w;
15637 	new_plane_state->uapi.src_h = src_h;
15638 	new_plane_state->uapi.crtc_x = crtc_x;
15639 	new_plane_state->uapi.crtc_y = crtc_y;
15640 	new_plane_state->uapi.crtc_w = crtc_w;
15641 	new_plane_state->uapi.crtc_h = crtc_h;
15642 
15643 	ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state,
15644 						  old_plane_state, new_plane_state);
15645 	if (ret)
15646 		goto out_free;
15647 
15648 	ret = intel_plane_pin_fb(new_plane_state);
15649 	if (ret)
15650 		goto out_free;
15651 
15652 	intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->hw.fb),
15653 				ORIGIN_FLIP);
15654 	intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
15655 				to_intel_frontbuffer(new_plane_state->hw.fb),
15656 				plane->frontbuffer_bit);
15657 
15658 	/* Swap plane state */
15659 	plane->base.state = &new_plane_state->uapi;
15660 
15661 	/*
15662 	 * We cannot swap crtc_state as it may be in use by an atomic commit or
15663 	 * page flip that's running simultaneously. If we swap crtc_state and
15664 	 * destroy the old state, we will cause a use-after-free there.
15665 	 *
15666 	 * Only update active_planes, which is needed for our internal
15667 	 * bookkeeping. Either value will do the right thing when updating
15668 	 * planes atomically. If the cursor was part of the atomic update then
15669 	 * we would have taken the slowpath.
15670 	 */
15671 	crtc_state->active_planes = new_crtc_state->active_planes;
15672 
15673 	if (new_plane_state->uapi.visible)
15674 		intel_update_plane(plane, crtc_state, new_plane_state);
15675 	else
15676 		intel_disable_plane(plane, crtc_state);
15677 
15678 	intel_plane_unpin_fb(old_plane_state);
15679 
15680 out_free:
15681 	if (new_crtc_state)
15682 		intel_crtc_destroy_state(&crtc->base, &new_crtc_state->uapi);
15683 	if (ret)
15684 		intel_plane_destroy_state(&plane->base, &new_plane_state->uapi);
15685 	else
15686 		intel_plane_destroy_state(&plane->base, &old_plane_state->uapi);
15687 	return ret;
15688 
15689 slow:
15690 	return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb,
15691 					      crtc_x, crtc_y, crtc_w, crtc_h,
15692 					      src_x, src_y, src_w, src_h, ctx);
15693 }
15694 
15695 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
15696 	.update_plane = intel_legacy_cursor_update,
15697 	.disable_plane = drm_atomic_helper_disable_plane,
15698 	.destroy = intel_plane_destroy,
15699 	.atomic_duplicate_state = intel_plane_duplicate_state,
15700 	.atomic_destroy_state = intel_plane_destroy_state,
15701 	.format_mod_supported = intel_cursor_format_mod_supported,
15702 };
15703 
15704 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv,
15705 			       enum i9xx_plane_id i9xx_plane)
15706 {
15707 	if (!HAS_FBC(dev_priv))
15708 		return false;
15709 
15710 	if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
15711 		return i9xx_plane == PLANE_A; /* tied to pipe A */
15712 	else if (IS_IVYBRIDGE(dev_priv))
15713 		return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B ||
15714 			i9xx_plane == PLANE_C;
15715 	else if (INTEL_GEN(dev_priv) >= 4)
15716 		return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B;
15717 	else
15718 		return i9xx_plane == PLANE_A;
15719 }
15720 
15721 static struct intel_plane *
15722 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
15723 {
15724 	struct intel_plane *plane;
15725 	const struct drm_plane_funcs *plane_funcs;
15726 	unsigned int supported_rotations;
15727 	unsigned int possible_crtcs;
15728 	const u32 *formats;
15729 	int num_formats;
15730 	int ret, zpos;
15731 
15732 	if (INTEL_GEN(dev_priv) >= 9)
15733 		return skl_universal_plane_create(dev_priv, pipe,
15734 						  PLANE_PRIMARY);
15735 
15736 	plane = intel_plane_alloc();
15737 	if (IS_ERR(plane))
15738 		return plane;
15739 
15740 	plane->pipe = pipe;
15741 	/*
15742 	 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
15743 	 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
15744 	 */
15745 	if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
15746 		plane->i9xx_plane = (enum i9xx_plane_id) !pipe;
15747 	else
15748 		plane->i9xx_plane = (enum i9xx_plane_id) pipe;
15749 	plane->id = PLANE_PRIMARY;
15750 	plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id);
15751 
15752 	plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane);
15753 	if (plane->has_fbc) {
15754 		struct intel_fbc *fbc = &dev_priv->fbc;
15755 
15756 		fbc->possible_framebuffer_bits |= plane->frontbuffer_bit;
15757 	}
15758 
15759 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15760 		formats = vlv_primary_formats;
15761 		num_formats = ARRAY_SIZE(vlv_primary_formats);
15762 	} else if (INTEL_GEN(dev_priv) >= 4) {
15763 		/*
15764 		 * WaFP16GammaEnabling:ivb
15765 		 * "Workaround : When using the 64-bit format, the plane
15766 		 *  output on each color channel has one quarter amplitude.
15767 		 *  It can be brought up to full amplitude by using pipe
15768 		 *  gamma correction or pipe color space conversion to
15769 		 *  multiply the plane output by four."
15770 		 *
15771 		 * There is no dedicated plane gamma for the primary plane,
15772 		 * and using the pipe gamma/csc could conflict with other
15773 		 * planes, so we choose not to expose fp16 on IVB primary
15774 		 * planes. HSW primary planes no longer have this problem.
15775 		 */
15776 		if (IS_IVYBRIDGE(dev_priv)) {
15777 			formats = ivb_primary_formats;
15778 			num_formats = ARRAY_SIZE(ivb_primary_formats);
15779 		} else {
15780 			formats = i965_primary_formats;
15781 			num_formats = ARRAY_SIZE(i965_primary_formats);
15782 		}
15783 	} else {
15784 		formats = i8xx_primary_formats;
15785 		num_formats = ARRAY_SIZE(i8xx_primary_formats);
15786 	}
15787 
15788 	if (INTEL_GEN(dev_priv) >= 4)
15789 		plane_funcs = &i965_plane_funcs;
15790 	else
15791 		plane_funcs = &i8xx_plane_funcs;
15792 
15793 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15794 		plane->min_cdclk = vlv_plane_min_cdclk;
15795 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
15796 		plane->min_cdclk = hsw_plane_min_cdclk;
15797 	else if (IS_IVYBRIDGE(dev_priv))
15798 		plane->min_cdclk = ivb_plane_min_cdclk;
15799 	else
15800 		plane->min_cdclk = i9xx_plane_min_cdclk;
15801 
15802 	plane->max_stride = i9xx_plane_max_stride;
15803 	plane->update_plane = i9xx_update_plane;
15804 	plane->disable_plane = i9xx_disable_plane;
15805 	plane->get_hw_state = i9xx_plane_get_hw_state;
15806 	plane->check_plane = i9xx_plane_check;
15807 
15808 	possible_crtcs = BIT(pipe);
15809 
15810 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
15811 		ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
15812 					       possible_crtcs, plane_funcs,
15813 					       formats, num_formats,
15814 					       i9xx_format_modifiers,
15815 					       DRM_PLANE_TYPE_PRIMARY,
15816 					       "primary %c", pipe_name(pipe));
15817 	else
15818 		ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
15819 					       possible_crtcs, plane_funcs,
15820 					       formats, num_formats,
15821 					       i9xx_format_modifiers,
15822 					       DRM_PLANE_TYPE_PRIMARY,
15823 					       "plane %c",
15824 					       plane_name(plane->i9xx_plane));
15825 	if (ret)
15826 		goto fail;
15827 
15828 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
15829 		supported_rotations =
15830 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
15831 			DRM_MODE_REFLECT_X;
15832 	} else if (INTEL_GEN(dev_priv) >= 4) {
15833 		supported_rotations =
15834 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
15835 	} else {
15836 		supported_rotations = DRM_MODE_ROTATE_0;
15837 	}
15838 
15839 	if (INTEL_GEN(dev_priv) >= 4)
15840 		drm_plane_create_rotation_property(&plane->base,
15841 						   DRM_MODE_ROTATE_0,
15842 						   supported_rotations);
15843 
15844 	zpos = 0;
15845 	drm_plane_create_zpos_immutable_property(&plane->base, zpos);
15846 
15847 	drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs);
15848 
15849 	return plane;
15850 
15851 fail:
15852 	intel_plane_free(plane);
15853 
15854 	return ERR_PTR(ret);
15855 }
15856 
15857 static struct intel_plane *
15858 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
15859 			  enum pipe pipe)
15860 {
15861 	unsigned int possible_crtcs;
15862 	struct intel_plane *cursor;
15863 	int ret, zpos;
15864 
15865 	cursor = intel_plane_alloc();
15866 	if (IS_ERR(cursor))
15867 		return cursor;
15868 
15869 	cursor->pipe = pipe;
15870 	cursor->i9xx_plane = (enum i9xx_plane_id) pipe;
15871 	cursor->id = PLANE_CURSOR;
15872 	cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id);
15873 
15874 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
15875 		cursor->max_stride = i845_cursor_max_stride;
15876 		cursor->update_plane = i845_update_cursor;
15877 		cursor->disable_plane = i845_disable_cursor;
15878 		cursor->get_hw_state = i845_cursor_get_hw_state;
15879 		cursor->check_plane = i845_check_cursor;
15880 	} else {
15881 		cursor->max_stride = i9xx_cursor_max_stride;
15882 		cursor->update_plane = i9xx_update_cursor;
15883 		cursor->disable_plane = i9xx_disable_cursor;
15884 		cursor->get_hw_state = i9xx_cursor_get_hw_state;
15885 		cursor->check_plane = i9xx_check_cursor;
15886 	}
15887 
15888 	cursor->cursor.base = ~0;
15889 	cursor->cursor.cntl = ~0;
15890 
15891 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
15892 		cursor->cursor.size = ~0;
15893 
15894 	possible_crtcs = BIT(pipe);
15895 
15896 	ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
15897 				       possible_crtcs, &intel_cursor_plane_funcs,
15898 				       intel_cursor_formats,
15899 				       ARRAY_SIZE(intel_cursor_formats),
15900 				       cursor_format_modifiers,
15901 				       DRM_PLANE_TYPE_CURSOR,
15902 				       "cursor %c", pipe_name(pipe));
15903 	if (ret)
15904 		goto fail;
15905 
15906 	if (INTEL_GEN(dev_priv) >= 4)
15907 		drm_plane_create_rotation_property(&cursor->base,
15908 						   DRM_MODE_ROTATE_0,
15909 						   DRM_MODE_ROTATE_0 |
15910 						   DRM_MODE_ROTATE_180);
15911 
15912 	zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1;
15913 	drm_plane_create_zpos_immutable_property(&cursor->base, zpos);
15914 
15915 	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15916 
15917 	return cursor;
15918 
15919 fail:
15920 	intel_plane_free(cursor);
15921 
15922 	return ERR_PTR(ret);
15923 }
15924 
15925 #define INTEL_CRTC_FUNCS \
15926 	.gamma_set = drm_atomic_helper_legacy_gamma_set, \
15927 	.set_config = drm_atomic_helper_set_config, \
15928 	.destroy = intel_crtc_destroy, \
15929 	.page_flip = drm_atomic_helper_page_flip, \
15930 	.atomic_duplicate_state = intel_crtc_duplicate_state, \
15931 	.atomic_destroy_state = intel_crtc_destroy_state, \
15932 	.set_crc_source = intel_crtc_set_crc_source, \
15933 	.verify_crc_source = intel_crtc_verify_crc_source, \
15934 	.get_crc_sources = intel_crtc_get_crc_sources
15935 
15936 static const struct drm_crtc_funcs bdw_crtc_funcs = {
15937 	INTEL_CRTC_FUNCS,
15938 
15939 	.get_vblank_counter = g4x_get_vblank_counter,
15940 	.enable_vblank = bdw_enable_vblank,
15941 	.disable_vblank = bdw_disable_vblank,
15942 };
15943 
15944 static const struct drm_crtc_funcs ilk_crtc_funcs = {
15945 	INTEL_CRTC_FUNCS,
15946 
15947 	.get_vblank_counter = g4x_get_vblank_counter,
15948 	.enable_vblank = ilk_enable_vblank,
15949 	.disable_vblank = ilk_disable_vblank,
15950 };
15951 
15952 static const struct drm_crtc_funcs g4x_crtc_funcs = {
15953 	INTEL_CRTC_FUNCS,
15954 
15955 	.get_vblank_counter = g4x_get_vblank_counter,
15956 	.enable_vblank = i965_enable_vblank,
15957 	.disable_vblank = i965_disable_vblank,
15958 };
15959 
15960 static const struct drm_crtc_funcs i965_crtc_funcs = {
15961 	INTEL_CRTC_FUNCS,
15962 
15963 	.get_vblank_counter = i915_get_vblank_counter,
15964 	.enable_vblank = i965_enable_vblank,
15965 	.disable_vblank = i965_disable_vblank,
15966 };
15967 
15968 static const struct drm_crtc_funcs i915gm_crtc_funcs = {
15969 	INTEL_CRTC_FUNCS,
15970 
15971 	.get_vblank_counter = i915_get_vblank_counter,
15972 	.enable_vblank = i915gm_enable_vblank,
15973 	.disable_vblank = i915gm_disable_vblank,
15974 };
15975 
15976 static const struct drm_crtc_funcs i915_crtc_funcs = {
15977 	INTEL_CRTC_FUNCS,
15978 
15979 	.get_vblank_counter = i915_get_vblank_counter,
15980 	.enable_vblank = i8xx_enable_vblank,
15981 	.disable_vblank = i8xx_disable_vblank,
15982 };
15983 
15984 static const struct drm_crtc_funcs i8xx_crtc_funcs = {
15985 	INTEL_CRTC_FUNCS,
15986 
15987 	/* no hw vblank counter */
15988 	.enable_vblank = i8xx_enable_vblank,
15989 	.disable_vblank = i8xx_disable_vblank,
15990 };
15991 
15992 static struct intel_crtc *intel_crtc_alloc(void)
15993 {
15994 	struct intel_crtc_state *crtc_state;
15995 	struct intel_crtc *crtc;
15996 
15997 	crtc = kzalloc(sizeof(*crtc), GFP_KERNEL);
15998 	if (!crtc)
15999 		return ERR_PTR(-ENOMEM);
16000 
16001 	crtc_state = intel_crtc_state_alloc(crtc);
16002 	if (!crtc_state) {
16003 		kfree(crtc);
16004 		return ERR_PTR(-ENOMEM);
16005 	}
16006 
16007 	crtc->base.state = &crtc_state->uapi;
16008 	crtc->config = crtc_state;
16009 
16010 	return crtc;
16011 }
16012 
16013 static void intel_crtc_free(struct intel_crtc *crtc)
16014 {
16015 	intel_crtc_destroy_state(&crtc->base, crtc->base.state);
16016 	kfree(crtc);
16017 }
16018 
16019 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
16020 {
16021 	struct intel_plane *primary, *cursor;
16022 	const struct drm_crtc_funcs *funcs;
16023 	struct intel_crtc *crtc;
16024 	int sprite, ret;
16025 
16026 	crtc = intel_crtc_alloc();
16027 	if (IS_ERR(crtc))
16028 		return PTR_ERR(crtc);
16029 
16030 	crtc->pipe = pipe;
16031 	crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe];
16032 
16033 	primary = intel_primary_plane_create(dev_priv, pipe);
16034 	if (IS_ERR(primary)) {
16035 		ret = PTR_ERR(primary);
16036 		goto fail;
16037 	}
16038 	crtc->plane_ids_mask |= BIT(primary->id);
16039 
16040 	for_each_sprite(dev_priv, pipe, sprite) {
16041 		struct intel_plane *plane;
16042 
16043 		plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
16044 		if (IS_ERR(plane)) {
16045 			ret = PTR_ERR(plane);
16046 			goto fail;
16047 		}
16048 		crtc->plane_ids_mask |= BIT(plane->id);
16049 	}
16050 
16051 	cursor = intel_cursor_plane_create(dev_priv, pipe);
16052 	if (IS_ERR(cursor)) {
16053 		ret = PTR_ERR(cursor);
16054 		goto fail;
16055 	}
16056 	crtc->plane_ids_mask |= BIT(cursor->id);
16057 
16058 	if (HAS_GMCH(dev_priv)) {
16059 		if (IS_CHERRYVIEW(dev_priv) ||
16060 		    IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
16061 			funcs = &g4x_crtc_funcs;
16062 		else if (IS_GEN(dev_priv, 4))
16063 			funcs = &i965_crtc_funcs;
16064 		else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv))
16065 			funcs = &i915gm_crtc_funcs;
16066 		else if (IS_GEN(dev_priv, 3))
16067 			funcs = &i915_crtc_funcs;
16068 		else
16069 			funcs = &i8xx_crtc_funcs;
16070 	} else {
16071 		if (INTEL_GEN(dev_priv) >= 8)
16072 			funcs = &bdw_crtc_funcs;
16073 		else
16074 			funcs = &ilk_crtc_funcs;
16075 	}
16076 
16077 	ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base,
16078 					&primary->base, &cursor->base,
16079 					funcs, "pipe %c", pipe_name(pipe));
16080 	if (ret)
16081 		goto fail;
16082 
16083 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) ||
16084 	       dev_priv->pipe_to_crtc_mapping[pipe] != NULL);
16085 	dev_priv->pipe_to_crtc_mapping[pipe] = crtc;
16086 
16087 	if (INTEL_GEN(dev_priv) < 9) {
16088 		enum i9xx_plane_id i9xx_plane = primary->i9xx_plane;
16089 
16090 		BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
16091 		       dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL);
16092 		dev_priv->plane_to_crtc_mapping[i9xx_plane] = crtc;
16093 	}
16094 
16095 	intel_color_init(crtc);
16096 
16097 	WARN_ON(drm_crtc_index(&crtc->base) != crtc->pipe);
16098 
16099 	return 0;
16100 
16101 fail:
16102 	intel_crtc_free(crtc);
16103 
16104 	return ret;
16105 }
16106 
16107 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
16108 				      struct drm_file *file)
16109 {
16110 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
16111 	struct drm_crtc *drmmode_crtc;
16112 	struct intel_crtc *crtc;
16113 
16114 	drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
16115 	if (!drmmode_crtc)
16116 		return -ENOENT;
16117 
16118 	crtc = to_intel_crtc(drmmode_crtc);
16119 	pipe_from_crtc_id->pipe = crtc->pipe;
16120 
16121 	return 0;
16122 }
16123 
16124 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder)
16125 {
16126 	struct drm_device *dev = encoder->base.dev;
16127 	struct intel_encoder *source_encoder;
16128 	u32 possible_clones = 0;
16129 
16130 	for_each_intel_encoder(dev, source_encoder) {
16131 		if (encoders_cloneable(encoder, source_encoder))
16132 			possible_clones |= drm_encoder_mask(&source_encoder->base);
16133 	}
16134 
16135 	return possible_clones;
16136 }
16137 
16138 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder)
16139 {
16140 	struct drm_device *dev = encoder->base.dev;
16141 	struct intel_crtc *crtc;
16142 	u32 possible_crtcs = 0;
16143 
16144 	for_each_intel_crtc(dev, crtc) {
16145 		if (encoder->pipe_mask & BIT(crtc->pipe))
16146 			possible_crtcs |= drm_crtc_mask(&crtc->base);
16147 	}
16148 
16149 	return possible_crtcs;
16150 }
16151 
16152 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv)
16153 {
16154 	if (!IS_MOBILE(dev_priv))
16155 		return false;
16156 
16157 	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
16158 		return false;
16159 
16160 	if (IS_GEN(dev_priv, 5) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
16161 		return false;
16162 
16163 	return true;
16164 }
16165 
16166 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv)
16167 {
16168 	if (INTEL_GEN(dev_priv) >= 9)
16169 		return false;
16170 
16171 	if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
16172 		return false;
16173 
16174 	if (HAS_PCH_LPT_H(dev_priv) &&
16175 	    I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
16176 		return false;
16177 
16178 	/* DDI E can't be used if DDI A requires 4 lanes */
16179 	if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
16180 		return false;
16181 
16182 	if (!dev_priv->vbt.int_crt_support)
16183 		return false;
16184 
16185 	return true;
16186 }
16187 
16188 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
16189 {
16190 	int pps_num;
16191 	int pps_idx;
16192 
16193 	if (HAS_DDI(dev_priv))
16194 		return;
16195 	/*
16196 	 * This w/a is needed at least on CPT/PPT, but to be sure apply it
16197 	 * everywhere where registers can be write protected.
16198 	 */
16199 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16200 		pps_num = 2;
16201 	else
16202 		pps_num = 1;
16203 
16204 	for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
16205 		u32 val = I915_READ(PP_CONTROL(pps_idx));
16206 
16207 		val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
16208 		I915_WRITE(PP_CONTROL(pps_idx), val);
16209 	}
16210 }
16211 
16212 static void intel_pps_init(struct drm_i915_private *dev_priv)
16213 {
16214 	if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
16215 		dev_priv->pps_mmio_base = PCH_PPS_BASE;
16216 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16217 		dev_priv->pps_mmio_base = VLV_PPS_BASE;
16218 	else
16219 		dev_priv->pps_mmio_base = PPS_BASE;
16220 
16221 	intel_pps_unlock_regs_wa(dev_priv);
16222 }
16223 
16224 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
16225 {
16226 	struct intel_encoder *encoder;
16227 	bool dpd_is_edp = false;
16228 
16229 	intel_pps_init(dev_priv);
16230 
16231 	if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv))
16232 		return;
16233 
16234 	if (INTEL_GEN(dev_priv) >= 12) {
16235 		intel_ddi_init(dev_priv, PORT_A);
16236 		intel_ddi_init(dev_priv, PORT_B);
16237 		intel_ddi_init(dev_priv, PORT_D);
16238 		intel_ddi_init(dev_priv, PORT_E);
16239 		intel_ddi_init(dev_priv, PORT_F);
16240 		intel_ddi_init(dev_priv, PORT_G);
16241 		intel_ddi_init(dev_priv, PORT_H);
16242 		intel_ddi_init(dev_priv, PORT_I);
16243 		icl_dsi_init(dev_priv);
16244 	} else if (IS_ELKHARTLAKE(dev_priv)) {
16245 		intel_ddi_init(dev_priv, PORT_A);
16246 		intel_ddi_init(dev_priv, PORT_B);
16247 		intel_ddi_init(dev_priv, PORT_C);
16248 		intel_ddi_init(dev_priv, PORT_D);
16249 		icl_dsi_init(dev_priv);
16250 	} else if (IS_GEN(dev_priv, 11)) {
16251 		intel_ddi_init(dev_priv, PORT_A);
16252 		intel_ddi_init(dev_priv, PORT_B);
16253 		intel_ddi_init(dev_priv, PORT_C);
16254 		intel_ddi_init(dev_priv, PORT_D);
16255 		intel_ddi_init(dev_priv, PORT_E);
16256 		/*
16257 		 * On some ICL SKUs port F is not present. No strap bits for
16258 		 * this, so rely on VBT.
16259 		 * Work around broken VBTs on SKUs known to have no port F.
16260 		 */
16261 		if (IS_ICL_WITH_PORT_F(dev_priv) &&
16262 		    intel_bios_is_port_present(dev_priv, PORT_F))
16263 			intel_ddi_init(dev_priv, PORT_F);
16264 
16265 		icl_dsi_init(dev_priv);
16266 	} else if (IS_GEN9_LP(dev_priv)) {
16267 		/*
16268 		 * FIXME: Broxton doesn't support port detection via the
16269 		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
16270 		 * detect the ports.
16271 		 */
16272 		intel_ddi_init(dev_priv, PORT_A);
16273 		intel_ddi_init(dev_priv, PORT_B);
16274 		intel_ddi_init(dev_priv, PORT_C);
16275 
16276 		vlv_dsi_init(dev_priv);
16277 	} else if (HAS_DDI(dev_priv)) {
16278 		int found;
16279 
16280 		if (intel_ddi_crt_present(dev_priv))
16281 			intel_crt_init(dev_priv);
16282 
16283 		/*
16284 		 * Haswell uses DDI functions to detect digital outputs.
16285 		 * On SKL pre-D0 the strap isn't connected, so we assume
16286 		 * it's there.
16287 		 */
16288 		found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
16289 		/* WaIgnoreDDIAStrap: skl */
16290 		if (found || IS_GEN9_BC(dev_priv))
16291 			intel_ddi_init(dev_priv, PORT_A);
16292 
16293 		/* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP
16294 		 * register */
16295 		found = I915_READ(SFUSE_STRAP);
16296 
16297 		if (found & SFUSE_STRAP_DDIB_DETECTED)
16298 			intel_ddi_init(dev_priv, PORT_B);
16299 		if (found & SFUSE_STRAP_DDIC_DETECTED)
16300 			intel_ddi_init(dev_priv, PORT_C);
16301 		if (found & SFUSE_STRAP_DDID_DETECTED)
16302 			intel_ddi_init(dev_priv, PORT_D);
16303 		if (found & SFUSE_STRAP_DDIF_DETECTED)
16304 			intel_ddi_init(dev_priv, PORT_F);
16305 		/*
16306 		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
16307 		 */
16308 		if (IS_GEN9_BC(dev_priv) &&
16309 		    intel_bios_is_port_present(dev_priv, PORT_E))
16310 			intel_ddi_init(dev_priv, PORT_E);
16311 
16312 	} else if (HAS_PCH_SPLIT(dev_priv)) {
16313 		int found;
16314 
16315 		/*
16316 		 * intel_edp_init_connector() depends on this completing first,
16317 		 * to prevent the registration of both eDP and LVDS and the
16318 		 * incorrect sharing of the PPS.
16319 		 */
16320 		intel_lvds_init(dev_priv);
16321 		intel_crt_init(dev_priv);
16322 
16323 		dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
16324 
16325 		if (ilk_has_edp_a(dev_priv))
16326 			intel_dp_init(dev_priv, DP_A, PORT_A);
16327 
16328 		if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
16329 			/* PCH SDVOB multiplex with HDMIB */
16330 			found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
16331 			if (!found)
16332 				intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
16333 			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
16334 				intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
16335 		}
16336 
16337 		if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
16338 			intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
16339 
16340 		if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
16341 			intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
16342 
16343 		if (I915_READ(PCH_DP_C) & DP_DETECTED)
16344 			intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
16345 
16346 		if (I915_READ(PCH_DP_D) & DP_DETECTED)
16347 			intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
16348 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16349 		bool has_edp, has_port;
16350 
16351 		if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support)
16352 			intel_crt_init(dev_priv);
16353 
16354 		/*
16355 		 * The DP_DETECTED bit is the latched state of the DDC
16356 		 * SDA pin at boot. However since eDP doesn't require DDC
16357 		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
16358 		 * eDP ports may have been muxed to an alternate function.
16359 		 * Thus we can't rely on the DP_DETECTED bit alone to detect
16360 		 * eDP ports. Consult the VBT as well as DP_DETECTED to
16361 		 * detect eDP ports.
16362 		 *
16363 		 * Sadly the straps seem to be missing sometimes even for HDMI
16364 		 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
16365 		 * and VBT for the presence of the port. Additionally we can't
16366 		 * trust the port type the VBT declares as we've seen at least
16367 		 * HDMI ports that the VBT claim are DP or eDP.
16368 		 */
16369 		has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
16370 		has_port = intel_bios_is_port_present(dev_priv, PORT_B);
16371 		if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
16372 			has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
16373 		if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
16374 			intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
16375 
16376 		has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
16377 		has_port = intel_bios_is_port_present(dev_priv, PORT_C);
16378 		if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
16379 			has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
16380 		if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
16381 			intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
16382 
16383 		if (IS_CHERRYVIEW(dev_priv)) {
16384 			/*
16385 			 * eDP not supported on port D,
16386 			 * so no need to worry about it
16387 			 */
16388 			has_port = intel_bios_is_port_present(dev_priv, PORT_D);
16389 			if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
16390 				intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
16391 			if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
16392 				intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
16393 		}
16394 
16395 		vlv_dsi_init(dev_priv);
16396 	} else if (IS_PINEVIEW(dev_priv)) {
16397 		intel_lvds_init(dev_priv);
16398 		intel_crt_init(dev_priv);
16399 	} else if (IS_GEN_RANGE(dev_priv, 3, 4)) {
16400 		bool found = false;
16401 
16402 		if (IS_MOBILE(dev_priv))
16403 			intel_lvds_init(dev_priv);
16404 
16405 		intel_crt_init(dev_priv);
16406 
16407 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
16408 			DRM_DEBUG_KMS("probing SDVOB\n");
16409 			found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
16410 			if (!found && IS_G4X(dev_priv)) {
16411 				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
16412 				intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
16413 			}
16414 
16415 			if (!found && IS_G4X(dev_priv))
16416 				intel_dp_init(dev_priv, DP_B, PORT_B);
16417 		}
16418 
16419 		/* Before G4X SDVOC doesn't have its own detect register */
16420 
16421 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
16422 			DRM_DEBUG_KMS("probing SDVOC\n");
16423 			found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
16424 		}
16425 
16426 		if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
16427 
16428 			if (IS_G4X(dev_priv)) {
16429 				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
16430 				intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
16431 			}
16432 			if (IS_G4X(dev_priv))
16433 				intel_dp_init(dev_priv, DP_C, PORT_C);
16434 		}
16435 
16436 		if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
16437 			intel_dp_init(dev_priv, DP_D, PORT_D);
16438 
16439 		if (SUPPORTS_TV(dev_priv))
16440 			intel_tv_init(dev_priv);
16441 	} else if (IS_GEN(dev_priv, 2)) {
16442 		if (IS_I85X(dev_priv))
16443 			intel_lvds_init(dev_priv);
16444 
16445 		intel_crt_init(dev_priv);
16446 		intel_dvo_init(dev_priv);
16447 	}
16448 
16449 	intel_psr_init(dev_priv);
16450 
16451 	for_each_intel_encoder(&dev_priv->drm, encoder) {
16452 		encoder->base.possible_crtcs =
16453 			intel_encoder_possible_crtcs(encoder);
16454 		encoder->base.possible_clones =
16455 			intel_encoder_possible_clones(encoder);
16456 	}
16457 
16458 	intel_init_pch_refclk(dev_priv);
16459 
16460 	drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
16461 }
16462 
16463 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
16464 {
16465 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
16466 
16467 	drm_framebuffer_cleanup(fb);
16468 	intel_frontbuffer_put(intel_fb->frontbuffer);
16469 
16470 	kfree(intel_fb);
16471 }
16472 
16473 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
16474 						struct drm_file *file,
16475 						unsigned int *handle)
16476 {
16477 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
16478 
16479 	if (obj->userptr.mm) {
16480 		DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
16481 		return -EINVAL;
16482 	}
16483 
16484 	return drm_gem_handle_create(file, &obj->base, handle);
16485 }
16486 
16487 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
16488 					struct drm_file *file,
16489 					unsigned flags, unsigned color,
16490 					struct drm_clip_rect *clips,
16491 					unsigned num_clips)
16492 {
16493 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
16494 
16495 	i915_gem_object_flush_if_display(obj);
16496 	intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
16497 
16498 	return 0;
16499 }
16500 
16501 static const struct drm_framebuffer_funcs intel_fb_funcs = {
16502 	.destroy = intel_user_framebuffer_destroy,
16503 	.create_handle = intel_user_framebuffer_create_handle,
16504 	.dirty = intel_user_framebuffer_dirty,
16505 };
16506 
16507 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
16508 				  struct drm_i915_gem_object *obj,
16509 				  struct drm_mode_fb_cmd2 *mode_cmd)
16510 {
16511 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
16512 	struct drm_framebuffer *fb = &intel_fb->base;
16513 	u32 max_stride;
16514 	unsigned int tiling, stride;
16515 	int ret = -EINVAL;
16516 	int i;
16517 
16518 	intel_fb->frontbuffer = intel_frontbuffer_get(obj);
16519 	if (!intel_fb->frontbuffer)
16520 		return -ENOMEM;
16521 
16522 	i915_gem_object_lock(obj);
16523 	tiling = i915_gem_object_get_tiling(obj);
16524 	stride = i915_gem_object_get_stride(obj);
16525 	i915_gem_object_unlock(obj);
16526 
16527 	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
16528 		/*
16529 		 * If there's a fence, enforce that
16530 		 * the fb modifier and tiling mode match.
16531 		 */
16532 		if (tiling != I915_TILING_NONE &&
16533 		    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
16534 			DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
16535 			goto err;
16536 		}
16537 	} else {
16538 		if (tiling == I915_TILING_X) {
16539 			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
16540 		} else if (tiling == I915_TILING_Y) {
16541 			DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
16542 			goto err;
16543 		}
16544 	}
16545 
16546 	if (!drm_any_plane_has_format(&dev_priv->drm,
16547 				      mode_cmd->pixel_format,
16548 				      mode_cmd->modifier[0])) {
16549 		struct drm_format_name_buf format_name;
16550 
16551 		DRM_DEBUG_KMS("unsupported pixel format %s / modifier 0x%llx\n",
16552 			      drm_get_format_name(mode_cmd->pixel_format,
16553 						  &format_name),
16554 			      mode_cmd->modifier[0]);
16555 		goto err;
16556 	}
16557 
16558 	/*
16559 	 * gen2/3 display engine uses the fence if present,
16560 	 * so the tiling mode must match the fb modifier exactly.
16561 	 */
16562 	if (INTEL_GEN(dev_priv) < 4 &&
16563 	    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
16564 		DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
16565 		goto err;
16566 	}
16567 
16568 	max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format,
16569 					 mode_cmd->modifier[0]);
16570 	if (mode_cmd->pitches[0] > max_stride) {
16571 		DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
16572 			      mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
16573 			      "tiled" : "linear",
16574 			      mode_cmd->pitches[0], max_stride);
16575 		goto err;
16576 	}
16577 
16578 	/*
16579 	 * If there's a fence, enforce that
16580 	 * the fb pitch and fence stride match.
16581 	 */
16582 	if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
16583 		DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
16584 			      mode_cmd->pitches[0], stride);
16585 		goto err;
16586 	}
16587 
16588 	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
16589 	if (mode_cmd->offsets[0] != 0)
16590 		goto err;
16591 
16592 	drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
16593 
16594 	for (i = 0; i < fb->format->num_planes; i++) {
16595 		u32 stride_alignment;
16596 
16597 		if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
16598 			DRM_DEBUG_KMS("bad plane %d handle\n", i);
16599 			goto err;
16600 		}
16601 
16602 		stride_alignment = intel_fb_stride_alignment(fb, i);
16603 		if (fb->pitches[i] & (stride_alignment - 1)) {
16604 			DRM_DEBUG_KMS("plane %d pitch (%d) must be at least %u byte aligned\n",
16605 				      i, fb->pitches[i], stride_alignment);
16606 			goto err;
16607 		}
16608 
16609 		if (is_gen12_ccs_plane(fb, i)) {
16610 			int ccs_aux_stride = gen12_ccs_aux_stride(fb, i);
16611 
16612 			if (fb->pitches[i] != ccs_aux_stride) {
16613 				DRM_DEBUG_KMS("ccs aux plane %d pitch (%d) must be %d\n",
16614 					      i,
16615 					      fb->pitches[i], ccs_aux_stride);
16616 				goto err;
16617 			}
16618 		}
16619 
16620 		fb->obj[i] = &obj->base;
16621 	}
16622 
16623 	ret = intel_fill_fb_info(dev_priv, fb);
16624 	if (ret)
16625 		goto err;
16626 
16627 	ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
16628 	if (ret) {
16629 		DRM_ERROR("framebuffer init failed %d\n", ret);
16630 		goto err;
16631 	}
16632 
16633 	return 0;
16634 
16635 err:
16636 	intel_frontbuffer_put(intel_fb->frontbuffer);
16637 	return ret;
16638 }
16639 
16640 static struct drm_framebuffer *
16641 intel_user_framebuffer_create(struct drm_device *dev,
16642 			      struct drm_file *filp,
16643 			      const struct drm_mode_fb_cmd2 *user_mode_cmd)
16644 {
16645 	struct drm_framebuffer *fb;
16646 	struct drm_i915_gem_object *obj;
16647 	struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
16648 
16649 	obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
16650 	if (!obj)
16651 		return ERR_PTR(-ENOENT);
16652 
16653 	fb = intel_framebuffer_create(obj, &mode_cmd);
16654 	i915_gem_object_put(obj);
16655 
16656 	return fb;
16657 }
16658 
16659 static void intel_atomic_state_free(struct drm_atomic_state *state)
16660 {
16661 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
16662 
16663 	drm_atomic_state_default_release(state);
16664 
16665 	i915_sw_fence_fini(&intel_state->commit_ready);
16666 
16667 	kfree(state);
16668 }
16669 
16670 static enum drm_mode_status
16671 intel_mode_valid(struct drm_device *dev,
16672 		 const struct drm_display_mode *mode)
16673 {
16674 	struct drm_i915_private *dev_priv = to_i915(dev);
16675 	int hdisplay_max, htotal_max;
16676 	int vdisplay_max, vtotal_max;
16677 
16678 	/*
16679 	 * Can't reject DBLSCAN here because Xorg ddxen can add piles
16680 	 * of DBLSCAN modes to the output's mode list when they detect
16681 	 * the scaling mode property on the connector. And they don't
16682 	 * ask the kernel to validate those modes in any way until
16683 	 * modeset time at which point the client gets a protocol error.
16684 	 * So in order to not upset those clients we silently ignore the
16685 	 * DBLSCAN flag on such connectors. For other connectors we will
16686 	 * reject modes with the DBLSCAN flag in encoder->compute_config().
16687 	 * And we always reject DBLSCAN modes in connector->mode_valid()
16688 	 * as we never want such modes on the connector's mode list.
16689 	 */
16690 
16691 	if (mode->vscan > 1)
16692 		return MODE_NO_VSCAN;
16693 
16694 	if (mode->flags & DRM_MODE_FLAG_HSKEW)
16695 		return MODE_H_ILLEGAL;
16696 
16697 	if (mode->flags & (DRM_MODE_FLAG_CSYNC |
16698 			   DRM_MODE_FLAG_NCSYNC |
16699 			   DRM_MODE_FLAG_PCSYNC))
16700 		return MODE_HSYNC;
16701 
16702 	if (mode->flags & (DRM_MODE_FLAG_BCAST |
16703 			   DRM_MODE_FLAG_PIXMUX |
16704 			   DRM_MODE_FLAG_CLKDIV2))
16705 		return MODE_BAD;
16706 
16707 	/* Transcoder timing limits */
16708 	if (INTEL_GEN(dev_priv) >= 11) {
16709 		hdisplay_max = 16384;
16710 		vdisplay_max = 8192;
16711 		htotal_max = 16384;
16712 		vtotal_max = 8192;
16713 	} else if (INTEL_GEN(dev_priv) >= 9 ||
16714 		   IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
16715 		hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */
16716 		vdisplay_max = 4096;
16717 		htotal_max = 8192;
16718 		vtotal_max = 8192;
16719 	} else if (INTEL_GEN(dev_priv) >= 3) {
16720 		hdisplay_max = 4096;
16721 		vdisplay_max = 4096;
16722 		htotal_max = 8192;
16723 		vtotal_max = 8192;
16724 	} else {
16725 		hdisplay_max = 2048;
16726 		vdisplay_max = 2048;
16727 		htotal_max = 4096;
16728 		vtotal_max = 4096;
16729 	}
16730 
16731 	if (mode->hdisplay > hdisplay_max ||
16732 	    mode->hsync_start > htotal_max ||
16733 	    mode->hsync_end > htotal_max ||
16734 	    mode->htotal > htotal_max)
16735 		return MODE_H_ILLEGAL;
16736 
16737 	if (mode->vdisplay > vdisplay_max ||
16738 	    mode->vsync_start > vtotal_max ||
16739 	    mode->vsync_end > vtotal_max ||
16740 	    mode->vtotal > vtotal_max)
16741 		return MODE_V_ILLEGAL;
16742 
16743 	if (INTEL_GEN(dev_priv) >= 5) {
16744 		if (mode->hdisplay < 64 ||
16745 		    mode->htotal - mode->hdisplay < 32)
16746 			return MODE_H_ILLEGAL;
16747 
16748 		if (mode->vtotal - mode->vdisplay < 5)
16749 			return MODE_V_ILLEGAL;
16750 	} else {
16751 		if (mode->htotal - mode->hdisplay < 32)
16752 			return MODE_H_ILLEGAL;
16753 
16754 		if (mode->vtotal - mode->vdisplay < 3)
16755 			return MODE_V_ILLEGAL;
16756 	}
16757 
16758 	return MODE_OK;
16759 }
16760 
16761 enum drm_mode_status
16762 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv,
16763 				const struct drm_display_mode *mode)
16764 {
16765 	int plane_width_max, plane_height_max;
16766 
16767 	/*
16768 	 * intel_mode_valid() should be
16769 	 * sufficient on older platforms.
16770 	 */
16771 	if (INTEL_GEN(dev_priv) < 9)
16772 		return MODE_OK;
16773 
16774 	/*
16775 	 * Most people will probably want a fullscreen
16776 	 * plane so let's not advertize modes that are
16777 	 * too big for that.
16778 	 */
16779 	if (INTEL_GEN(dev_priv) >= 11) {
16780 		plane_width_max = 5120;
16781 		plane_height_max = 4320;
16782 	} else {
16783 		plane_width_max = 5120;
16784 		plane_height_max = 4096;
16785 	}
16786 
16787 	if (mode->hdisplay > plane_width_max)
16788 		return MODE_H_ILLEGAL;
16789 
16790 	if (mode->vdisplay > plane_height_max)
16791 		return MODE_V_ILLEGAL;
16792 
16793 	return MODE_OK;
16794 }
16795 
16796 static const struct drm_mode_config_funcs intel_mode_funcs = {
16797 	.fb_create = intel_user_framebuffer_create,
16798 	.get_format_info = intel_get_format_info,
16799 	.output_poll_changed = intel_fbdev_output_poll_changed,
16800 	.mode_valid = intel_mode_valid,
16801 	.atomic_check = intel_atomic_check,
16802 	.atomic_commit = intel_atomic_commit,
16803 	.atomic_state_alloc = intel_atomic_state_alloc,
16804 	.atomic_state_clear = intel_atomic_state_clear,
16805 	.atomic_state_free = intel_atomic_state_free,
16806 };
16807 
16808 /**
16809  * intel_init_display_hooks - initialize the display modesetting hooks
16810  * @dev_priv: device private
16811  */
16812 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
16813 {
16814 	intel_init_cdclk_hooks(dev_priv);
16815 
16816 	if (INTEL_GEN(dev_priv) >= 9) {
16817 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
16818 		dev_priv->display.get_initial_plane_config =
16819 			skylake_get_initial_plane_config;
16820 		dev_priv->display.crtc_compute_clock =
16821 			haswell_crtc_compute_clock;
16822 		dev_priv->display.crtc_enable = haswell_crtc_enable;
16823 		dev_priv->display.crtc_disable = haswell_crtc_disable;
16824 	} else if (HAS_DDI(dev_priv)) {
16825 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
16826 		dev_priv->display.get_initial_plane_config =
16827 			i9xx_get_initial_plane_config;
16828 		dev_priv->display.crtc_compute_clock =
16829 			haswell_crtc_compute_clock;
16830 		dev_priv->display.crtc_enable = haswell_crtc_enable;
16831 		dev_priv->display.crtc_disable = haswell_crtc_disable;
16832 	} else if (HAS_PCH_SPLIT(dev_priv)) {
16833 		dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
16834 		dev_priv->display.get_initial_plane_config =
16835 			i9xx_get_initial_plane_config;
16836 		dev_priv->display.crtc_compute_clock =
16837 			ironlake_crtc_compute_clock;
16838 		dev_priv->display.crtc_enable = ironlake_crtc_enable;
16839 		dev_priv->display.crtc_disable = ironlake_crtc_disable;
16840 	} else if (IS_CHERRYVIEW(dev_priv)) {
16841 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16842 		dev_priv->display.get_initial_plane_config =
16843 			i9xx_get_initial_plane_config;
16844 		dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
16845 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
16846 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
16847 	} else if (IS_VALLEYVIEW(dev_priv)) {
16848 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16849 		dev_priv->display.get_initial_plane_config =
16850 			i9xx_get_initial_plane_config;
16851 		dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
16852 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
16853 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
16854 	} else if (IS_G4X(dev_priv)) {
16855 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16856 		dev_priv->display.get_initial_plane_config =
16857 			i9xx_get_initial_plane_config;
16858 		dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
16859 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
16860 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
16861 	} else if (IS_PINEVIEW(dev_priv)) {
16862 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16863 		dev_priv->display.get_initial_plane_config =
16864 			i9xx_get_initial_plane_config;
16865 		dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
16866 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
16867 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
16868 	} else if (!IS_GEN(dev_priv, 2)) {
16869 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16870 		dev_priv->display.get_initial_plane_config =
16871 			i9xx_get_initial_plane_config;
16872 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
16873 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
16874 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
16875 	} else {
16876 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16877 		dev_priv->display.get_initial_plane_config =
16878 			i9xx_get_initial_plane_config;
16879 		dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
16880 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
16881 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
16882 	}
16883 
16884 	if (IS_GEN(dev_priv, 5)) {
16885 		dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
16886 	} else if (IS_GEN(dev_priv, 6)) {
16887 		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
16888 	} else if (IS_IVYBRIDGE(dev_priv)) {
16889 		/* FIXME: detect B0+ stepping and use auto training */
16890 		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
16891 	}
16892 
16893 	if (INTEL_GEN(dev_priv) >= 9)
16894 		dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables;
16895 	else
16896 		dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables;
16897 
16898 }
16899 
16900 void intel_modeset_init_hw(struct drm_i915_private *i915)
16901 {
16902 	intel_update_cdclk(i915);
16903 	intel_dump_cdclk_state(&i915->cdclk.hw, "Current CDCLK");
16904 	i915->cdclk.logical = i915->cdclk.actual = i915->cdclk.hw;
16905 }
16906 
16907 /*
16908  * Calculate what we think the watermarks should be for the state we've read
16909  * out of the hardware and then immediately program those watermarks so that
16910  * we ensure the hardware settings match our internal state.
16911  *
16912  * We can calculate what we think WM's should be by creating a duplicate of the
16913  * current state (which was constructed during hardware readout) and running it
16914  * through the atomic check code to calculate new watermark values in the
16915  * state object.
16916  */
16917 static void sanitize_watermarks(struct drm_device *dev)
16918 {
16919 	struct drm_i915_private *dev_priv = to_i915(dev);
16920 	struct drm_atomic_state *state;
16921 	struct intel_atomic_state *intel_state;
16922 	struct intel_crtc *crtc;
16923 	struct intel_crtc_state *crtc_state;
16924 	struct drm_modeset_acquire_ctx ctx;
16925 	int ret;
16926 	int i;
16927 
16928 	/* Only supported on platforms that use atomic watermark design */
16929 	if (!dev_priv->display.optimize_watermarks)
16930 		return;
16931 
16932 	/*
16933 	 * We need to hold connection_mutex before calling duplicate_state so
16934 	 * that the connector loop is protected.
16935 	 */
16936 	drm_modeset_acquire_init(&ctx, 0);
16937 retry:
16938 	ret = drm_modeset_lock_all_ctx(dev, &ctx);
16939 	if (ret == -EDEADLK) {
16940 		drm_modeset_backoff(&ctx);
16941 		goto retry;
16942 	} else if (WARN_ON(ret)) {
16943 		goto fail;
16944 	}
16945 
16946 	state = drm_atomic_helper_duplicate_state(dev, &ctx);
16947 	if (WARN_ON(IS_ERR(state)))
16948 		goto fail;
16949 
16950 	intel_state = to_intel_atomic_state(state);
16951 
16952 	/*
16953 	 * Hardware readout is the only time we don't want to calculate
16954 	 * intermediate watermarks (since we don't trust the current
16955 	 * watermarks).
16956 	 */
16957 	if (!HAS_GMCH(dev_priv))
16958 		intel_state->skip_intermediate_wm = true;
16959 
16960 	ret = intel_atomic_check(dev, state);
16961 	if (ret) {
16962 		/*
16963 		 * If we fail here, it means that the hardware appears to be
16964 		 * programmed in a way that shouldn't be possible, given our
16965 		 * understanding of watermark requirements.  This might mean a
16966 		 * mistake in the hardware readout code or a mistake in the
16967 		 * watermark calculations for a given platform.  Raise a WARN
16968 		 * so that this is noticeable.
16969 		 *
16970 		 * If this actually happens, we'll have to just leave the
16971 		 * BIOS-programmed watermarks untouched and hope for the best.
16972 		 */
16973 		WARN(true, "Could not determine valid watermarks for inherited state\n");
16974 		goto put_state;
16975 	}
16976 
16977 	/* Write calculated watermark values back */
16978 	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
16979 		crtc_state->wm.need_postvbl_update = true;
16980 		dev_priv->display.optimize_watermarks(intel_state, crtc);
16981 
16982 		to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
16983 	}
16984 
16985 put_state:
16986 	drm_atomic_state_put(state);
16987 fail:
16988 	drm_modeset_drop_locks(&ctx);
16989 	drm_modeset_acquire_fini(&ctx);
16990 }
16991 
16992 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv)
16993 {
16994 	if (IS_GEN(dev_priv, 5)) {
16995 		u32 fdi_pll_clk =
16996 			I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK;
16997 
16998 		dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000;
16999 	} else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) {
17000 		dev_priv->fdi_pll_freq = 270000;
17001 	} else {
17002 		return;
17003 	}
17004 
17005 	DRM_DEBUG_DRIVER("FDI PLL freq=%d\n", dev_priv->fdi_pll_freq);
17006 }
17007 
17008 static int intel_initial_commit(struct drm_device *dev)
17009 {
17010 	struct drm_atomic_state *state = NULL;
17011 	struct drm_modeset_acquire_ctx ctx;
17012 	struct intel_crtc *crtc;
17013 	int ret = 0;
17014 
17015 	state = drm_atomic_state_alloc(dev);
17016 	if (!state)
17017 		return -ENOMEM;
17018 
17019 	drm_modeset_acquire_init(&ctx, 0);
17020 
17021 retry:
17022 	state->acquire_ctx = &ctx;
17023 
17024 	for_each_intel_crtc(dev, crtc) {
17025 		struct intel_crtc_state *crtc_state =
17026 			intel_atomic_get_crtc_state(state, crtc);
17027 
17028 		if (IS_ERR(crtc_state)) {
17029 			ret = PTR_ERR(crtc_state);
17030 			goto out;
17031 		}
17032 
17033 		if (crtc_state->hw.active) {
17034 			ret = drm_atomic_add_affected_planes(state, &crtc->base);
17035 			if (ret)
17036 				goto out;
17037 
17038 			/*
17039 			 * FIXME hack to force a LUT update to avoid the
17040 			 * plane update forcing the pipe gamma on without
17041 			 * having a proper LUT loaded. Remove once we
17042 			 * have readout for pipe gamma enable.
17043 			 */
17044 			crtc_state->uapi.color_mgmt_changed = true;
17045 		}
17046 	}
17047 
17048 	ret = drm_atomic_commit(state);
17049 
17050 out:
17051 	if (ret == -EDEADLK) {
17052 		drm_atomic_state_clear(state);
17053 		drm_modeset_backoff(&ctx);
17054 		goto retry;
17055 	}
17056 
17057 	drm_atomic_state_put(state);
17058 
17059 	drm_modeset_drop_locks(&ctx);
17060 	drm_modeset_acquire_fini(&ctx);
17061 
17062 	return ret;
17063 }
17064 
17065 static void intel_mode_config_init(struct drm_i915_private *i915)
17066 {
17067 	struct drm_mode_config *mode_config = &i915->drm.mode_config;
17068 
17069 	drm_mode_config_init(&i915->drm);
17070 
17071 	mode_config->min_width = 0;
17072 	mode_config->min_height = 0;
17073 
17074 	mode_config->preferred_depth = 24;
17075 	mode_config->prefer_shadow = 1;
17076 
17077 	mode_config->allow_fb_modifiers = true;
17078 
17079 	mode_config->funcs = &intel_mode_funcs;
17080 
17081 	/*
17082 	 * Maximum framebuffer dimensions, chosen to match
17083 	 * the maximum render engine surface size on gen4+.
17084 	 */
17085 	if (INTEL_GEN(i915) >= 7) {
17086 		mode_config->max_width = 16384;
17087 		mode_config->max_height = 16384;
17088 	} else if (INTEL_GEN(i915) >= 4) {
17089 		mode_config->max_width = 8192;
17090 		mode_config->max_height = 8192;
17091 	} else if (IS_GEN(i915, 3)) {
17092 		mode_config->max_width = 4096;
17093 		mode_config->max_height = 4096;
17094 	} else {
17095 		mode_config->max_width = 2048;
17096 		mode_config->max_height = 2048;
17097 	}
17098 
17099 	if (IS_I845G(i915) || IS_I865G(i915)) {
17100 		mode_config->cursor_width = IS_I845G(i915) ? 64 : 512;
17101 		mode_config->cursor_height = 1023;
17102 	} else if (IS_GEN(i915, 2)) {
17103 		mode_config->cursor_width = 64;
17104 		mode_config->cursor_height = 64;
17105 	} else {
17106 		mode_config->cursor_width = 256;
17107 		mode_config->cursor_height = 256;
17108 	}
17109 }
17110 
17111 int intel_modeset_init(struct drm_i915_private *i915)
17112 {
17113 	struct drm_device *dev = &i915->drm;
17114 	enum pipe pipe;
17115 	struct intel_crtc *crtc;
17116 	int ret;
17117 
17118 	i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
17119 	i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI |
17120 					WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE);
17121 
17122 	intel_mode_config_init(i915);
17123 
17124 	ret = intel_bw_init(i915);
17125 	if (ret)
17126 		return ret;
17127 
17128 	init_llist_head(&i915->atomic_helper.free_list);
17129 	INIT_WORK(&i915->atomic_helper.free_work,
17130 		  intel_atomic_helper_free_state_worker);
17131 
17132 	intel_init_quirks(i915);
17133 
17134 	intel_fbc_init(i915);
17135 
17136 	intel_init_pm(i915);
17137 
17138 	intel_panel_sanitize_ssc(i915);
17139 
17140 	intel_gmbus_setup(i915);
17141 
17142 	DRM_DEBUG_KMS("%d display pipe%s available.\n",
17143 		      INTEL_NUM_PIPES(i915),
17144 		      INTEL_NUM_PIPES(i915) > 1 ? "s" : "");
17145 
17146 	if (HAS_DISPLAY(i915) && INTEL_DISPLAY_ENABLED(i915)) {
17147 		for_each_pipe(i915, pipe) {
17148 			ret = intel_crtc_init(i915, pipe);
17149 			if (ret) {
17150 				drm_mode_config_cleanup(dev);
17151 				return ret;
17152 			}
17153 		}
17154 	}
17155 
17156 	intel_shared_dpll_init(dev);
17157 	intel_update_fdi_pll_freq(i915);
17158 
17159 	intel_update_czclk(i915);
17160 	intel_modeset_init_hw(i915);
17161 
17162 	intel_hdcp_component_init(i915);
17163 
17164 	if (i915->max_cdclk_freq == 0)
17165 		intel_update_max_cdclk(i915);
17166 
17167 	/* Just disable it once at startup */
17168 	intel_vga_disable(i915);
17169 	intel_setup_outputs(i915);
17170 
17171 	drm_modeset_lock_all(dev);
17172 	intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
17173 	drm_modeset_unlock_all(dev);
17174 
17175 	for_each_intel_crtc(dev, crtc) {
17176 		struct intel_initial_plane_config plane_config = {};
17177 
17178 		if (!crtc->active)
17179 			continue;
17180 
17181 		/*
17182 		 * Note that reserving the BIOS fb up front prevents us
17183 		 * from stuffing other stolen allocations like the ring
17184 		 * on top.  This prevents some ugliness at boot time, and
17185 		 * can even allow for smooth boot transitions if the BIOS
17186 		 * fb is large enough for the active pipe configuration.
17187 		 */
17188 		i915->display.get_initial_plane_config(crtc, &plane_config);
17189 
17190 		/*
17191 		 * If the fb is shared between multiple heads, we'll
17192 		 * just get the first one.
17193 		 */
17194 		intel_find_initial_plane_obj(crtc, &plane_config);
17195 	}
17196 
17197 	/*
17198 	 * Make sure hardware watermarks really match the state we read out.
17199 	 * Note that we need to do this after reconstructing the BIOS fb's
17200 	 * since the watermark calculation done here will use pstate->fb.
17201 	 */
17202 	if (!HAS_GMCH(i915))
17203 		sanitize_watermarks(dev);
17204 
17205 	/*
17206 	 * Force all active planes to recompute their states. So that on
17207 	 * mode_setcrtc after probe, all the intel_plane_state variables
17208 	 * are already calculated and there is no assert_plane warnings
17209 	 * during bootup.
17210 	 */
17211 	ret = intel_initial_commit(dev);
17212 	if (ret)
17213 		DRM_DEBUG_KMS("Initial commit in probe failed.\n");
17214 
17215 	return 0;
17216 }
17217 
17218 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
17219 {
17220 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17221 	/* 640x480@60Hz, ~25175 kHz */
17222 	struct dpll clock = {
17223 		.m1 = 18,
17224 		.m2 = 7,
17225 		.p1 = 13,
17226 		.p2 = 4,
17227 		.n = 2,
17228 	};
17229 	u32 dpll, fp;
17230 	int i;
17231 
17232 	WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154);
17233 
17234 	DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
17235 		      pipe_name(pipe), clock.vco, clock.dot);
17236 
17237 	fp = i9xx_dpll_compute_fp(&clock);
17238 	dpll = DPLL_DVO_2X_MODE |
17239 		DPLL_VGA_MODE_DIS |
17240 		((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
17241 		PLL_P2_DIVIDE_BY_4 |
17242 		PLL_REF_INPUT_DREFCLK |
17243 		DPLL_VCO_ENABLE;
17244 
17245 	I915_WRITE(FP0(pipe), fp);
17246 	I915_WRITE(FP1(pipe), fp);
17247 
17248 	I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
17249 	I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
17250 	I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
17251 	I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
17252 	I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
17253 	I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
17254 	I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
17255 
17256 	/*
17257 	 * Apparently we need to have VGA mode enabled prior to changing
17258 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
17259 	 * dividers, even though the register value does change.
17260 	 */
17261 	I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
17262 	I915_WRITE(DPLL(pipe), dpll);
17263 
17264 	/* Wait for the clocks to stabilize. */
17265 	POSTING_READ(DPLL(pipe));
17266 	udelay(150);
17267 
17268 	/* The pixel multiplier can only be updated once the
17269 	 * DPLL is enabled and the clocks are stable.
17270 	 *
17271 	 * So write it again.
17272 	 */
17273 	I915_WRITE(DPLL(pipe), dpll);
17274 
17275 	/* We do this three times for luck */
17276 	for (i = 0; i < 3 ; i++) {
17277 		I915_WRITE(DPLL(pipe), dpll);
17278 		POSTING_READ(DPLL(pipe));
17279 		udelay(150); /* wait for warmup */
17280 	}
17281 
17282 	I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
17283 	POSTING_READ(PIPECONF(pipe));
17284 
17285 	intel_wait_for_pipe_scanline_moving(crtc);
17286 }
17287 
17288 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
17289 {
17290 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17291 
17292 	DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n",
17293 		      pipe_name(pipe));
17294 
17295 	WARN_ON(I915_READ(DSPCNTR(PLANE_A)) & DISPLAY_PLANE_ENABLE);
17296 	WARN_ON(I915_READ(DSPCNTR(PLANE_B)) & DISPLAY_PLANE_ENABLE);
17297 	WARN_ON(I915_READ(DSPCNTR(PLANE_C)) & DISPLAY_PLANE_ENABLE);
17298 	WARN_ON(I915_READ(CURCNTR(PIPE_A)) & MCURSOR_MODE);
17299 	WARN_ON(I915_READ(CURCNTR(PIPE_B)) & MCURSOR_MODE);
17300 
17301 	I915_WRITE(PIPECONF(pipe), 0);
17302 	POSTING_READ(PIPECONF(pipe));
17303 
17304 	intel_wait_for_pipe_scanline_stopped(crtc);
17305 
17306 	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
17307 	POSTING_READ(DPLL(pipe));
17308 }
17309 
17310 static void
17311 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
17312 {
17313 	struct intel_crtc *crtc;
17314 
17315 	if (INTEL_GEN(dev_priv) >= 4)
17316 		return;
17317 
17318 	for_each_intel_crtc(&dev_priv->drm, crtc) {
17319 		struct intel_plane *plane =
17320 			to_intel_plane(crtc->base.primary);
17321 		struct intel_crtc *plane_crtc;
17322 		enum pipe pipe;
17323 
17324 		if (!plane->get_hw_state(plane, &pipe))
17325 			continue;
17326 
17327 		if (pipe == crtc->pipe)
17328 			continue;
17329 
17330 		DRM_DEBUG_KMS("[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n",
17331 			      plane->base.base.id, plane->base.name);
17332 
17333 		plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17334 		intel_plane_disable_noatomic(plane_crtc, plane);
17335 	}
17336 }
17337 
17338 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
17339 {
17340 	struct drm_device *dev = crtc->base.dev;
17341 	struct intel_encoder *encoder;
17342 
17343 	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
17344 		return true;
17345 
17346 	return false;
17347 }
17348 
17349 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
17350 {
17351 	struct drm_device *dev = encoder->base.dev;
17352 	struct intel_connector *connector;
17353 
17354 	for_each_connector_on_encoder(dev, &encoder->base, connector)
17355 		return connector;
17356 
17357 	return NULL;
17358 }
17359 
17360 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
17361 			      enum pipe pch_transcoder)
17362 {
17363 	return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
17364 		(HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
17365 }
17366 
17367 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state)
17368 {
17369 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
17370 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
17371 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
17372 
17373 	if (INTEL_GEN(dev_priv) >= 9 ||
17374 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
17375 		i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
17376 		u32 val;
17377 
17378 		if (transcoder_is_dsi(cpu_transcoder))
17379 			return;
17380 
17381 		val = I915_READ(reg);
17382 		val &= ~HSW_FRAME_START_DELAY_MASK;
17383 		val |= HSW_FRAME_START_DELAY(0);
17384 		I915_WRITE(reg, val);
17385 	} else {
17386 		i915_reg_t reg = PIPECONF(cpu_transcoder);
17387 		u32 val;
17388 
17389 		val = I915_READ(reg);
17390 		val &= ~PIPECONF_FRAME_START_DELAY_MASK;
17391 		val |= PIPECONF_FRAME_START_DELAY(0);
17392 		I915_WRITE(reg, val);
17393 	}
17394 
17395 	if (!crtc_state->has_pch_encoder)
17396 		return;
17397 
17398 	if (HAS_PCH_IBX(dev_priv)) {
17399 		i915_reg_t reg = PCH_TRANSCONF(crtc->pipe);
17400 		u32 val;
17401 
17402 		val = I915_READ(reg);
17403 		val &= ~TRANS_FRAME_START_DELAY_MASK;
17404 		val |= TRANS_FRAME_START_DELAY(0);
17405 		I915_WRITE(reg, val);
17406 	} else {
17407 		enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc);
17408 		i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder);
17409 		u32 val;
17410 
17411 		val = I915_READ(reg);
17412 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
17413 		val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
17414 		I915_WRITE(reg, val);
17415 	}
17416 }
17417 
17418 static void intel_sanitize_crtc(struct intel_crtc *crtc,
17419 				struct drm_modeset_acquire_ctx *ctx)
17420 {
17421 	struct drm_device *dev = crtc->base.dev;
17422 	struct drm_i915_private *dev_priv = to_i915(dev);
17423 	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
17424 
17425 	if (crtc_state->hw.active) {
17426 		struct intel_plane *plane;
17427 
17428 		/* Clear any frame start delays used for debugging left by the BIOS */
17429 		intel_sanitize_frame_start_delay(crtc_state);
17430 
17431 		/* Disable everything but the primary plane */
17432 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
17433 			const struct intel_plane_state *plane_state =
17434 				to_intel_plane_state(plane->base.state);
17435 
17436 			if (plane_state->uapi.visible &&
17437 			    plane->base.type != DRM_PLANE_TYPE_PRIMARY)
17438 				intel_plane_disable_noatomic(crtc, plane);
17439 		}
17440 
17441 		/*
17442 		 * Disable any background color set by the BIOS, but enable the
17443 		 * gamma and CSC to match how we program our planes.
17444 		 */
17445 		if (INTEL_GEN(dev_priv) >= 9)
17446 			I915_WRITE(SKL_BOTTOM_COLOR(crtc->pipe),
17447 				   SKL_BOTTOM_COLOR_GAMMA_ENABLE |
17448 				   SKL_BOTTOM_COLOR_CSC_ENABLE);
17449 	}
17450 
17451 	/* Adjust the state of the output pipe according to whether we
17452 	 * have active connectors/encoders. */
17453 	if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc))
17454 		intel_crtc_disable_noatomic(crtc, ctx);
17455 
17456 	if (crtc_state->hw.active || HAS_GMCH(dev_priv)) {
17457 		/*
17458 		 * We start out with underrun reporting disabled to avoid races.
17459 		 * For correct bookkeeping mark this on active crtcs.
17460 		 *
17461 		 * Also on gmch platforms we dont have any hardware bits to
17462 		 * disable the underrun reporting. Which means we need to start
17463 		 * out with underrun reporting disabled also on inactive pipes,
17464 		 * since otherwise we'll complain about the garbage we read when
17465 		 * e.g. coming up after runtime pm.
17466 		 *
17467 		 * No protection against concurrent access is required - at
17468 		 * worst a fifo underrun happens which also sets this to false.
17469 		 */
17470 		crtc->cpu_fifo_underrun_disabled = true;
17471 		/*
17472 		 * We track the PCH trancoder underrun reporting state
17473 		 * within the crtc. With crtc for pipe A housing the underrun
17474 		 * reporting state for PCH transcoder A, crtc for pipe B housing
17475 		 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
17476 		 * and marking underrun reporting as disabled for the non-existing
17477 		 * PCH transcoders B and C would prevent enabling the south
17478 		 * error interrupt (see cpt_can_enable_serr_int()).
17479 		 */
17480 		if (has_pch_trancoder(dev_priv, crtc->pipe))
17481 			crtc->pch_fifo_underrun_disabled = true;
17482 	}
17483 }
17484 
17485 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state)
17486 {
17487 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
17488 
17489 	/*
17490 	 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram
17491 	 * the hardware when a high res displays plugged in. DPLL P
17492 	 * divider is zero, and the pipe timings are bonkers. We'll
17493 	 * try to disable everything in that case.
17494 	 *
17495 	 * FIXME would be nice to be able to sanitize this state
17496 	 * without several WARNs, but for now let's take the easy
17497 	 * road.
17498 	 */
17499 	return IS_GEN(dev_priv, 6) &&
17500 		crtc_state->hw.active &&
17501 		crtc_state->shared_dpll &&
17502 		crtc_state->port_clock == 0;
17503 }
17504 
17505 static void intel_sanitize_encoder(struct intel_encoder *encoder)
17506 {
17507 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
17508 	struct intel_connector *connector;
17509 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
17510 	struct intel_crtc_state *crtc_state = crtc ?
17511 		to_intel_crtc_state(crtc->base.state) : NULL;
17512 
17513 	/* We need to check both for a crtc link (meaning that the
17514 	 * encoder is active and trying to read from a pipe) and the
17515 	 * pipe itself being active. */
17516 	bool has_active_crtc = crtc_state &&
17517 		crtc_state->hw.active;
17518 
17519 	if (crtc_state && has_bogus_dpll_config(crtc_state)) {
17520 		DRM_DEBUG_KMS("BIOS has misprogrammed the hardware. Disabling pipe %c\n",
17521 			      pipe_name(crtc->pipe));
17522 		has_active_crtc = false;
17523 	}
17524 
17525 	connector = intel_encoder_find_connector(encoder);
17526 	if (connector && !has_active_crtc) {
17527 		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
17528 			      encoder->base.base.id,
17529 			      encoder->base.name);
17530 
17531 		/* Connector is active, but has no active pipe. This is
17532 		 * fallout from our resume register restoring. Disable
17533 		 * the encoder manually again. */
17534 		if (crtc_state) {
17535 			struct drm_encoder *best_encoder;
17536 
17537 			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
17538 				      encoder->base.base.id,
17539 				      encoder->base.name);
17540 
17541 			/* avoid oopsing in case the hooks consult best_encoder */
17542 			best_encoder = connector->base.state->best_encoder;
17543 			connector->base.state->best_encoder = &encoder->base;
17544 
17545 			if (encoder->disable)
17546 				encoder->disable(encoder, crtc_state,
17547 						 connector->base.state);
17548 			if (encoder->post_disable)
17549 				encoder->post_disable(encoder, crtc_state,
17550 						      connector->base.state);
17551 
17552 			connector->base.state->best_encoder = best_encoder;
17553 		}
17554 		encoder->base.crtc = NULL;
17555 
17556 		/* Inconsistent output/port/pipe state happens presumably due to
17557 		 * a bug in one of the get_hw_state functions. Or someplace else
17558 		 * in our code, like the register restore mess on resume. Clamp
17559 		 * things to off as a safer default. */
17560 
17561 		connector->base.dpms = DRM_MODE_DPMS_OFF;
17562 		connector->base.encoder = NULL;
17563 	}
17564 
17565 	/* notify opregion of the sanitized encoder state */
17566 	intel_opregion_notify_encoder(encoder, connector && has_active_crtc);
17567 
17568 	if (INTEL_GEN(dev_priv) >= 11)
17569 		icl_sanitize_encoder_pll_mapping(encoder);
17570 }
17571 
17572 /* FIXME read out full plane state for all planes */
17573 static void readout_plane_state(struct drm_i915_private *dev_priv)
17574 {
17575 	struct intel_plane *plane;
17576 	struct intel_crtc *crtc;
17577 
17578 	for_each_intel_plane(&dev_priv->drm, plane) {
17579 		struct intel_plane_state *plane_state =
17580 			to_intel_plane_state(plane->base.state);
17581 		struct intel_crtc_state *crtc_state;
17582 		enum pipe pipe = PIPE_A;
17583 		bool visible;
17584 
17585 		visible = plane->get_hw_state(plane, &pipe);
17586 
17587 		crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17588 		crtc_state = to_intel_crtc_state(crtc->base.state);
17589 
17590 		intel_set_plane_visible(crtc_state, plane_state, visible);
17591 
17592 		DRM_DEBUG_KMS("[PLANE:%d:%s] hw state readout: %s, pipe %c\n",
17593 			      plane->base.base.id, plane->base.name,
17594 			      enableddisabled(visible), pipe_name(pipe));
17595 	}
17596 
17597 	for_each_intel_crtc(&dev_priv->drm, crtc) {
17598 		struct intel_crtc_state *crtc_state =
17599 			to_intel_crtc_state(crtc->base.state);
17600 
17601 		fixup_active_planes(crtc_state);
17602 	}
17603 }
17604 
17605 static void intel_modeset_readout_hw_state(struct drm_device *dev)
17606 {
17607 	struct drm_i915_private *dev_priv = to_i915(dev);
17608 	enum pipe pipe;
17609 	struct intel_crtc *crtc;
17610 	struct intel_encoder *encoder;
17611 	struct intel_connector *connector;
17612 	struct drm_connector_list_iter conn_iter;
17613 	int i;
17614 
17615 	dev_priv->active_pipes = 0;
17616 
17617 	for_each_intel_crtc(dev, crtc) {
17618 		struct intel_crtc_state *crtc_state =
17619 			to_intel_crtc_state(crtc->base.state);
17620 
17621 		__drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi);
17622 		intel_crtc_free_hw_state(crtc_state);
17623 		intel_crtc_state_reset(crtc_state, crtc);
17624 
17625 		crtc_state->hw.active = crtc_state->hw.enable =
17626 			dev_priv->display.get_pipe_config(crtc, crtc_state);
17627 
17628 		crtc->base.enabled = crtc_state->hw.enable;
17629 		crtc->active = crtc_state->hw.active;
17630 
17631 		if (crtc_state->hw.active)
17632 			dev_priv->active_pipes |= BIT(crtc->pipe);
17633 
17634 		DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
17635 			      crtc->base.base.id, crtc->base.name,
17636 			      enableddisabled(crtc_state->hw.active));
17637 	}
17638 
17639 	readout_plane_state(dev_priv);
17640 
17641 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
17642 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
17643 
17644 		pll->on = pll->info->funcs->get_hw_state(dev_priv, pll,
17645 							&pll->state.hw_state);
17646 
17647 		if (IS_ELKHARTLAKE(dev_priv) && pll->on &&
17648 		    pll->info->id == DPLL_ID_EHL_DPLL4) {
17649 			pll->wakeref = intel_display_power_get(dev_priv,
17650 							       POWER_DOMAIN_DPLL_DC_OFF);
17651 		}
17652 
17653 		pll->state.crtc_mask = 0;
17654 		for_each_intel_crtc(dev, crtc) {
17655 			struct intel_crtc_state *crtc_state =
17656 				to_intel_crtc_state(crtc->base.state);
17657 
17658 			if (crtc_state->hw.active &&
17659 			    crtc_state->shared_dpll == pll)
17660 				pll->state.crtc_mask |= 1 << crtc->pipe;
17661 		}
17662 		pll->active_mask = pll->state.crtc_mask;
17663 
17664 		DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
17665 			      pll->info->name, pll->state.crtc_mask, pll->on);
17666 	}
17667 
17668 	for_each_intel_encoder(dev, encoder) {
17669 		pipe = 0;
17670 
17671 		if (encoder->get_hw_state(encoder, &pipe)) {
17672 			struct intel_crtc_state *crtc_state;
17673 
17674 			crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17675 			crtc_state = to_intel_crtc_state(crtc->base.state);
17676 
17677 			encoder->base.crtc = &crtc->base;
17678 			encoder->get_config(encoder, crtc_state);
17679 		} else {
17680 			encoder->base.crtc = NULL;
17681 		}
17682 
17683 		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
17684 			      encoder->base.base.id, encoder->base.name,
17685 			      enableddisabled(encoder->base.crtc),
17686 			      pipe_name(pipe));
17687 	}
17688 
17689 	drm_connector_list_iter_begin(dev, &conn_iter);
17690 	for_each_intel_connector_iter(connector, &conn_iter) {
17691 		if (connector->get_hw_state(connector)) {
17692 			struct intel_crtc_state *crtc_state;
17693 			struct intel_crtc *crtc;
17694 
17695 			connector->base.dpms = DRM_MODE_DPMS_ON;
17696 
17697 			encoder = connector->encoder;
17698 			connector->base.encoder = &encoder->base;
17699 
17700 			crtc = to_intel_crtc(encoder->base.crtc);
17701 			crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL;
17702 
17703 			if (crtc_state && crtc_state->hw.active) {
17704 				/*
17705 				 * This has to be done during hardware readout
17706 				 * because anything calling .crtc_disable may
17707 				 * rely on the connector_mask being accurate.
17708 				 */
17709 				crtc_state->uapi.connector_mask |=
17710 					drm_connector_mask(&connector->base);
17711 				crtc_state->uapi.encoder_mask |=
17712 					drm_encoder_mask(&encoder->base);
17713 			}
17714 		} else {
17715 			connector->base.dpms = DRM_MODE_DPMS_OFF;
17716 			connector->base.encoder = NULL;
17717 		}
17718 		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
17719 			      connector->base.base.id, connector->base.name,
17720 			      enableddisabled(connector->base.encoder));
17721 	}
17722 	drm_connector_list_iter_end(&conn_iter);
17723 
17724 	for_each_intel_crtc(dev, crtc) {
17725 		struct intel_bw_state *bw_state =
17726 			to_intel_bw_state(dev_priv->bw_obj.state);
17727 		struct intel_crtc_state *crtc_state =
17728 			to_intel_crtc_state(crtc->base.state);
17729 		struct intel_plane *plane;
17730 		int min_cdclk = 0;
17731 
17732 		if (crtc_state->hw.active) {
17733 			struct drm_display_mode *mode = &crtc_state->hw.mode;
17734 
17735 			intel_mode_from_pipe_config(&crtc_state->hw.adjusted_mode,
17736 						    crtc_state);
17737 
17738 			*mode = crtc_state->hw.adjusted_mode;
17739 			mode->hdisplay = crtc_state->pipe_src_w;
17740 			mode->vdisplay = crtc_state->pipe_src_h;
17741 
17742 			/*
17743 			 * The initial mode needs to be set in order to keep
17744 			 * the atomic core happy. It wants a valid mode if the
17745 			 * crtc's enabled, so we do the above call.
17746 			 *
17747 			 * But we don't set all the derived state fully, hence
17748 			 * set a flag to indicate that a full recalculation is
17749 			 * needed on the next commit.
17750 			 */
17751 			mode->private_flags = I915_MODE_FLAG_INHERITED;
17752 
17753 			intel_crtc_compute_pixel_rate(crtc_state);
17754 
17755 			intel_crtc_update_active_timings(crtc_state);
17756 
17757 			intel_crtc_copy_hw_to_uapi_state(crtc_state);
17758 		}
17759 
17760 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
17761 			const struct intel_plane_state *plane_state =
17762 				to_intel_plane_state(plane->base.state);
17763 
17764 			/*
17765 			 * FIXME don't have the fb yet, so can't
17766 			 * use intel_plane_data_rate() :(
17767 			 */
17768 			if (plane_state->uapi.visible)
17769 				crtc_state->data_rate[plane->id] =
17770 					4 * crtc_state->pixel_rate;
17771 			/*
17772 			 * FIXME don't have the fb yet, so can't
17773 			 * use plane->min_cdclk() :(
17774 			 */
17775 			if (plane_state->uapi.visible && plane->min_cdclk) {
17776 				if (crtc_state->double_wide ||
17777 				    INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
17778 					crtc_state->min_cdclk[plane->id] =
17779 						DIV_ROUND_UP(crtc_state->pixel_rate, 2);
17780 				else
17781 					crtc_state->min_cdclk[plane->id] =
17782 						crtc_state->pixel_rate;
17783 			}
17784 			DRM_DEBUG_KMS("[PLANE:%d:%s] min_cdclk %d kHz\n",
17785 				      plane->base.base.id, plane->base.name,
17786 				      crtc_state->min_cdclk[plane->id]);
17787 		}
17788 
17789 		if (crtc_state->hw.active) {
17790 			min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
17791 			if (WARN_ON(min_cdclk < 0))
17792 				min_cdclk = 0;
17793 		}
17794 
17795 		dev_priv->min_cdclk[crtc->pipe] = min_cdclk;
17796 		dev_priv->min_voltage_level[crtc->pipe] =
17797 			crtc_state->min_voltage_level;
17798 
17799 		intel_bw_crtc_update(bw_state, crtc_state);
17800 
17801 		intel_pipe_config_sanity_check(dev_priv, crtc_state);
17802 	}
17803 }
17804 
17805 static void
17806 get_encoder_power_domains(struct drm_i915_private *dev_priv)
17807 {
17808 	struct intel_encoder *encoder;
17809 
17810 	for_each_intel_encoder(&dev_priv->drm, encoder) {
17811 		struct intel_crtc_state *crtc_state;
17812 
17813 		if (!encoder->get_power_domains)
17814 			continue;
17815 
17816 		/*
17817 		 * MST-primary and inactive encoders don't have a crtc state
17818 		 * and neither of these require any power domain references.
17819 		 */
17820 		if (!encoder->base.crtc)
17821 			continue;
17822 
17823 		crtc_state = to_intel_crtc_state(encoder->base.crtc->state);
17824 		encoder->get_power_domains(encoder, crtc_state);
17825 	}
17826 }
17827 
17828 static void intel_early_display_was(struct drm_i915_private *dev_priv)
17829 {
17830 	/* Display WA #1185 WaDisableDARBFClkGating:cnl,glk */
17831 	if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
17832 		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
17833 			   DARBF_GATING_DIS);
17834 
17835 	if (IS_HASWELL(dev_priv)) {
17836 		/*
17837 		 * WaRsPkgCStateDisplayPMReq:hsw
17838 		 * System hang if this isn't done before disabling all planes!
17839 		 */
17840 		I915_WRITE(CHICKEN_PAR1_1,
17841 			   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
17842 	}
17843 }
17844 
17845 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv,
17846 				       enum port port, i915_reg_t hdmi_reg)
17847 {
17848 	u32 val = I915_READ(hdmi_reg);
17849 
17850 	if (val & SDVO_ENABLE ||
17851 	    (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A))
17852 		return;
17853 
17854 	DRM_DEBUG_KMS("Sanitizing transcoder select for HDMI %c\n",
17855 		      port_name(port));
17856 
17857 	val &= ~SDVO_PIPE_SEL_MASK;
17858 	val |= SDVO_PIPE_SEL(PIPE_A);
17859 
17860 	I915_WRITE(hdmi_reg, val);
17861 }
17862 
17863 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv,
17864 				     enum port port, i915_reg_t dp_reg)
17865 {
17866 	u32 val = I915_READ(dp_reg);
17867 
17868 	if (val & DP_PORT_EN ||
17869 	    (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A))
17870 		return;
17871 
17872 	DRM_DEBUG_KMS("Sanitizing transcoder select for DP %c\n",
17873 		      port_name(port));
17874 
17875 	val &= ~DP_PIPE_SEL_MASK;
17876 	val |= DP_PIPE_SEL(PIPE_A);
17877 
17878 	I915_WRITE(dp_reg, val);
17879 }
17880 
17881 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv)
17882 {
17883 	/*
17884 	 * The BIOS may select transcoder B on some of the PCH
17885 	 * ports even it doesn't enable the port. This would trip
17886 	 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled().
17887 	 * Sanitize the transcoder select bits to prevent that. We
17888 	 * assume that the BIOS never actually enabled the port,
17889 	 * because if it did we'd actually have to toggle the port
17890 	 * on and back off to make the transcoder A select stick
17891 	 * (see. intel_dp_link_down(), intel_disable_hdmi(),
17892 	 * intel_disable_sdvo()).
17893 	 */
17894 	ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B);
17895 	ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C);
17896 	ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D);
17897 
17898 	/* PCH SDVOB multiplex with HDMIB */
17899 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB);
17900 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC);
17901 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID);
17902 }
17903 
17904 /* Scan out the current hw modeset state,
17905  * and sanitizes it to the current state
17906  */
17907 static void
17908 intel_modeset_setup_hw_state(struct drm_device *dev,
17909 			     struct drm_modeset_acquire_ctx *ctx)
17910 {
17911 	struct drm_i915_private *dev_priv = to_i915(dev);
17912 	struct intel_encoder *encoder;
17913 	struct intel_crtc *crtc;
17914 	intel_wakeref_t wakeref;
17915 	int i;
17916 
17917 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
17918 
17919 	intel_early_display_was(dev_priv);
17920 	intel_modeset_readout_hw_state(dev);
17921 
17922 	/* HW state is read out, now we need to sanitize this mess. */
17923 
17924 	/* Sanitize the TypeC port mode upfront, encoders depend on this */
17925 	for_each_intel_encoder(dev, encoder) {
17926 		enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
17927 
17928 		/* We need to sanitize only the MST primary port. */
17929 		if (encoder->type != INTEL_OUTPUT_DP_MST &&
17930 		    intel_phy_is_tc(dev_priv, phy))
17931 			intel_tc_port_sanitize(enc_to_dig_port(&encoder->base));
17932 	}
17933 
17934 	get_encoder_power_domains(dev_priv);
17935 
17936 	if (HAS_PCH_IBX(dev_priv))
17937 		ibx_sanitize_pch_ports(dev_priv);
17938 
17939 	/*
17940 	 * intel_sanitize_plane_mapping() may need to do vblank
17941 	 * waits, so we need vblank interrupts restored beforehand.
17942 	 */
17943 	for_each_intel_crtc(&dev_priv->drm, crtc) {
17944 		struct intel_crtc_state *crtc_state =
17945 			to_intel_crtc_state(crtc->base.state);
17946 
17947 		drm_crtc_vblank_reset(&crtc->base);
17948 
17949 		if (crtc_state->hw.active)
17950 			intel_crtc_vblank_on(crtc_state);
17951 	}
17952 
17953 	intel_sanitize_plane_mapping(dev_priv);
17954 
17955 	for_each_intel_encoder(dev, encoder)
17956 		intel_sanitize_encoder(encoder);
17957 
17958 	for_each_intel_crtc(&dev_priv->drm, crtc) {
17959 		struct intel_crtc_state *crtc_state =
17960 			to_intel_crtc_state(crtc->base.state);
17961 
17962 		intel_sanitize_crtc(crtc, ctx);
17963 		intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]");
17964 	}
17965 
17966 	intel_modeset_update_connector_atomic_state(dev);
17967 
17968 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
17969 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
17970 
17971 		if (!pll->on || pll->active_mask)
17972 			continue;
17973 
17974 		DRM_DEBUG_KMS("%s enabled but not in use, disabling\n",
17975 			      pll->info->name);
17976 
17977 		pll->info->funcs->disable(dev_priv, pll);
17978 		pll->on = false;
17979 	}
17980 
17981 	if (IS_G4X(dev_priv)) {
17982 		g4x_wm_get_hw_state(dev_priv);
17983 		g4x_wm_sanitize(dev_priv);
17984 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
17985 		vlv_wm_get_hw_state(dev_priv);
17986 		vlv_wm_sanitize(dev_priv);
17987 	} else if (INTEL_GEN(dev_priv) >= 9) {
17988 		skl_wm_get_hw_state(dev_priv);
17989 	} else if (HAS_PCH_SPLIT(dev_priv)) {
17990 		ilk_wm_get_hw_state(dev_priv);
17991 	}
17992 
17993 	for_each_intel_crtc(dev, crtc) {
17994 		struct intel_crtc_state *crtc_state =
17995 			to_intel_crtc_state(crtc->base.state);
17996 		u64 put_domains;
17997 
17998 		put_domains = modeset_get_crtc_power_domains(crtc_state);
17999 		if (WARN_ON(put_domains))
18000 			modeset_put_power_domains(dev_priv, put_domains);
18001 	}
18002 
18003 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref);
18004 }
18005 
18006 void intel_display_resume(struct drm_device *dev)
18007 {
18008 	struct drm_i915_private *dev_priv = to_i915(dev);
18009 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
18010 	struct drm_modeset_acquire_ctx ctx;
18011 	int ret;
18012 
18013 	dev_priv->modeset_restore_state = NULL;
18014 	if (state)
18015 		state->acquire_ctx = &ctx;
18016 
18017 	drm_modeset_acquire_init(&ctx, 0);
18018 
18019 	while (1) {
18020 		ret = drm_modeset_lock_all_ctx(dev, &ctx);
18021 		if (ret != -EDEADLK)
18022 			break;
18023 
18024 		drm_modeset_backoff(&ctx);
18025 	}
18026 
18027 	if (!ret)
18028 		ret = __intel_display_resume(dev, state, &ctx);
18029 
18030 	intel_enable_ipc(dev_priv);
18031 	drm_modeset_drop_locks(&ctx);
18032 	drm_modeset_acquire_fini(&ctx);
18033 
18034 	if (ret)
18035 		DRM_ERROR("Restoring old state failed with %i\n", ret);
18036 	if (state)
18037 		drm_atomic_state_put(state);
18038 }
18039 
18040 static void intel_hpd_poll_fini(struct drm_i915_private *i915)
18041 {
18042 	struct intel_connector *connector;
18043 	struct drm_connector_list_iter conn_iter;
18044 
18045 	/* Kill all the work that may have been queued by hpd. */
18046 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
18047 	for_each_intel_connector_iter(connector, &conn_iter) {
18048 		if (connector->modeset_retry_work.func)
18049 			cancel_work_sync(&connector->modeset_retry_work);
18050 		if (connector->hdcp.shim) {
18051 			cancel_delayed_work_sync(&connector->hdcp.check_work);
18052 			cancel_work_sync(&connector->hdcp.prop_work);
18053 		}
18054 	}
18055 	drm_connector_list_iter_end(&conn_iter);
18056 }
18057 
18058 void intel_modeset_driver_remove(struct drm_i915_private *i915)
18059 {
18060 	flush_workqueue(i915->flip_wq);
18061 	flush_workqueue(i915->modeset_wq);
18062 
18063 	flush_work(&i915->atomic_helper.free_work);
18064 	WARN_ON(!llist_empty(&i915->atomic_helper.free_list));
18065 
18066 	/*
18067 	 * Interrupts and polling as the first thing to avoid creating havoc.
18068 	 * Too much stuff here (turning of connectors, ...) would
18069 	 * experience fancy races otherwise.
18070 	 */
18071 	intel_irq_uninstall(i915);
18072 
18073 	/*
18074 	 * Due to the hpd irq storm handling the hotplug work can re-arm the
18075 	 * poll handlers. Hence disable polling after hpd handling is shut down.
18076 	 */
18077 	intel_hpd_poll_fini(i915);
18078 
18079 	/*
18080 	 * MST topology needs to be suspended so we don't have any calls to
18081 	 * fbdev after it's finalized. MST will be destroyed later as part of
18082 	 * drm_mode_config_cleanup()
18083 	 */
18084 	intel_dp_mst_suspend(i915);
18085 
18086 	/* poll work can call into fbdev, hence clean that up afterwards */
18087 	intel_fbdev_fini(i915);
18088 
18089 	intel_unregister_dsm_handler();
18090 
18091 	intel_fbc_global_disable(i915);
18092 
18093 	/* flush any delayed tasks or pending work */
18094 	flush_scheduled_work();
18095 
18096 	intel_hdcp_component_fini(i915);
18097 
18098 	drm_mode_config_cleanup(&i915->drm);
18099 
18100 	intel_overlay_cleanup(i915);
18101 
18102 	intel_gmbus_teardown(i915);
18103 
18104 	destroy_workqueue(i915->flip_wq);
18105 	destroy_workqueue(i915->modeset_wq);
18106 
18107 	intel_fbc_cleanup_cfb(i915);
18108 }
18109 
18110 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
18111 
18112 struct intel_display_error_state {
18113 
18114 	u32 power_well_driver;
18115 
18116 	struct intel_cursor_error_state {
18117 		u32 control;
18118 		u32 position;
18119 		u32 base;
18120 		u32 size;
18121 	} cursor[I915_MAX_PIPES];
18122 
18123 	struct intel_pipe_error_state {
18124 		bool power_domain_on;
18125 		u32 source;
18126 		u32 stat;
18127 	} pipe[I915_MAX_PIPES];
18128 
18129 	struct intel_plane_error_state {
18130 		u32 control;
18131 		u32 stride;
18132 		u32 size;
18133 		u32 pos;
18134 		u32 addr;
18135 		u32 surface;
18136 		u32 tile_offset;
18137 	} plane[I915_MAX_PIPES];
18138 
18139 	struct intel_transcoder_error_state {
18140 		bool available;
18141 		bool power_domain_on;
18142 		enum transcoder cpu_transcoder;
18143 
18144 		u32 conf;
18145 
18146 		u32 htotal;
18147 		u32 hblank;
18148 		u32 hsync;
18149 		u32 vtotal;
18150 		u32 vblank;
18151 		u32 vsync;
18152 	} transcoder[5];
18153 };
18154 
18155 struct intel_display_error_state *
18156 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
18157 {
18158 	struct intel_display_error_state *error;
18159 	int transcoders[] = {
18160 		TRANSCODER_A,
18161 		TRANSCODER_B,
18162 		TRANSCODER_C,
18163 		TRANSCODER_D,
18164 		TRANSCODER_EDP,
18165 	};
18166 	int i;
18167 
18168 	BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder));
18169 
18170 	if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv))
18171 		return NULL;
18172 
18173 	error = kzalloc(sizeof(*error), GFP_ATOMIC);
18174 	if (error == NULL)
18175 		return NULL;
18176 
18177 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
18178 		error->power_well_driver = I915_READ(HSW_PWR_WELL_CTL2);
18179 
18180 	for_each_pipe(dev_priv, i) {
18181 		error->pipe[i].power_domain_on =
18182 			__intel_display_power_is_enabled(dev_priv,
18183 							 POWER_DOMAIN_PIPE(i));
18184 		if (!error->pipe[i].power_domain_on)
18185 			continue;
18186 
18187 		error->cursor[i].control = I915_READ(CURCNTR(i));
18188 		error->cursor[i].position = I915_READ(CURPOS(i));
18189 		error->cursor[i].base = I915_READ(CURBASE(i));
18190 
18191 		error->plane[i].control = I915_READ(DSPCNTR(i));
18192 		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
18193 		if (INTEL_GEN(dev_priv) <= 3) {
18194 			error->plane[i].size = I915_READ(DSPSIZE(i));
18195 			error->plane[i].pos = I915_READ(DSPPOS(i));
18196 		}
18197 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
18198 			error->plane[i].addr = I915_READ(DSPADDR(i));
18199 		if (INTEL_GEN(dev_priv) >= 4) {
18200 			error->plane[i].surface = I915_READ(DSPSURF(i));
18201 			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
18202 		}
18203 
18204 		error->pipe[i].source = I915_READ(PIPESRC(i));
18205 
18206 		if (HAS_GMCH(dev_priv))
18207 			error->pipe[i].stat = I915_READ(PIPESTAT(i));
18208 	}
18209 
18210 	for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
18211 		enum transcoder cpu_transcoder = transcoders[i];
18212 
18213 		if (!INTEL_INFO(dev_priv)->trans_offsets[cpu_transcoder])
18214 			continue;
18215 
18216 		error->transcoder[i].available = true;
18217 		error->transcoder[i].power_domain_on =
18218 			__intel_display_power_is_enabled(dev_priv,
18219 				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
18220 		if (!error->transcoder[i].power_domain_on)
18221 			continue;
18222 
18223 		error->transcoder[i].cpu_transcoder = cpu_transcoder;
18224 
18225 		error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
18226 		error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
18227 		error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
18228 		error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
18229 		error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
18230 		error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
18231 		error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
18232 	}
18233 
18234 	return error;
18235 }
18236 
18237 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
18238 
18239 void
18240 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
18241 				struct intel_display_error_state *error)
18242 {
18243 	struct drm_i915_private *dev_priv = m->i915;
18244 	int i;
18245 
18246 	if (!error)
18247 		return;
18248 
18249 	err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv));
18250 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
18251 		err_printf(m, "PWR_WELL_CTL2: %08x\n",
18252 			   error->power_well_driver);
18253 	for_each_pipe(dev_priv, i) {
18254 		err_printf(m, "Pipe [%d]:\n", i);
18255 		err_printf(m, "  Power: %s\n",
18256 			   onoff(error->pipe[i].power_domain_on));
18257 		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
18258 		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
18259 
18260 		err_printf(m, "Plane [%d]:\n", i);
18261 		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
18262 		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
18263 		if (INTEL_GEN(dev_priv) <= 3) {
18264 			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
18265 			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
18266 		}
18267 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
18268 			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
18269 		if (INTEL_GEN(dev_priv) >= 4) {
18270 			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
18271 			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
18272 		}
18273 
18274 		err_printf(m, "Cursor [%d]:\n", i);
18275 		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
18276 		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
18277 		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
18278 	}
18279 
18280 	for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
18281 		if (!error->transcoder[i].available)
18282 			continue;
18283 
18284 		err_printf(m, "CPU transcoder: %s\n",
18285 			   transcoder_name(error->transcoder[i].cpu_transcoder));
18286 		err_printf(m, "  Power: %s\n",
18287 			   onoff(error->transcoder[i].power_domain_on));
18288 		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
18289 		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
18290 		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
18291 		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
18292 		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
18293 		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
18294 		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
18295 	}
18296 }
18297 
18298 #endif
18299