1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <linux/i2c.h> 28 #include <linux/input.h> 29 #include <linux/intel-iommu.h> 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/dma-resv.h> 33 #include <linux/slab.h> 34 35 #include <drm/drm_atomic.h> 36 #include <drm/drm_atomic_helper.h> 37 #include <drm/drm_atomic_uapi.h> 38 #include <drm/drm_damage_helper.h> 39 #include <drm/drm_dp_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_fourcc.h> 42 #include <drm/drm_plane_helper.h> 43 #include <drm/drm_probe_helper.h> 44 #include <drm/drm_rect.h> 45 46 #include "display/intel_crt.h" 47 #include "display/intel_ddi.h" 48 #include "display/intel_dp.h" 49 #include "display/intel_dp_mst.h" 50 #include "display/intel_dpll_mgr.h" 51 #include "display/intel_dsi.h" 52 #include "display/intel_dvo.h" 53 #include "display/intel_gmbus.h" 54 #include "display/intel_hdmi.h" 55 #include "display/intel_lvds.h" 56 #include "display/intel_sdvo.h" 57 #include "display/intel_tv.h" 58 #include "display/intel_vdsc.h" 59 60 #include "gt/intel_rps.h" 61 62 #include "i915_drv.h" 63 #include "i915_trace.h" 64 #include "intel_acpi.h" 65 #include "intel_atomic.h" 66 #include "intel_atomic_plane.h" 67 #include "intel_bw.h" 68 #include "intel_cdclk.h" 69 #include "intel_color.h" 70 #include "intel_csr.h" 71 #include "intel_display_types.h" 72 #include "intel_dp_link_training.h" 73 #include "intel_fbc.h" 74 #include "intel_fbdev.h" 75 #include "intel_fifo_underrun.h" 76 #include "intel_frontbuffer.h" 77 #include "intel_hdcp.h" 78 #include "intel_hotplug.h" 79 #include "intel_overlay.h" 80 #include "intel_pipe_crc.h" 81 #include "intel_pm.h" 82 #include "intel_psr.h" 83 #include "intel_quirks.h" 84 #include "intel_sideband.h" 85 #include "intel_sprite.h" 86 #include "intel_tc.h" 87 #include "intel_vga.h" 88 89 /* Primary plane formats for gen <= 3 */ 90 static const u32 i8xx_primary_formats[] = { 91 DRM_FORMAT_C8, 92 DRM_FORMAT_XRGB1555, 93 DRM_FORMAT_RGB565, 94 DRM_FORMAT_XRGB8888, 95 }; 96 97 /* Primary plane formats for ivb (no fp16 due to hw issue) */ 98 static const u32 ivb_primary_formats[] = { 99 DRM_FORMAT_C8, 100 DRM_FORMAT_RGB565, 101 DRM_FORMAT_XRGB8888, 102 DRM_FORMAT_XBGR8888, 103 DRM_FORMAT_XRGB2101010, 104 DRM_FORMAT_XBGR2101010, 105 }; 106 107 /* Primary plane formats for gen >= 4, except ivb */ 108 static const u32 i965_primary_formats[] = { 109 DRM_FORMAT_C8, 110 DRM_FORMAT_RGB565, 111 DRM_FORMAT_XRGB8888, 112 DRM_FORMAT_XBGR8888, 113 DRM_FORMAT_XRGB2101010, 114 DRM_FORMAT_XBGR2101010, 115 DRM_FORMAT_XBGR16161616F, 116 }; 117 118 /* Primary plane formats for vlv/chv */ 119 static const u32 vlv_primary_formats[] = { 120 DRM_FORMAT_C8, 121 DRM_FORMAT_RGB565, 122 DRM_FORMAT_XRGB8888, 123 DRM_FORMAT_XBGR8888, 124 DRM_FORMAT_ARGB8888, 125 DRM_FORMAT_ABGR8888, 126 DRM_FORMAT_XRGB2101010, 127 DRM_FORMAT_XBGR2101010, 128 DRM_FORMAT_ARGB2101010, 129 DRM_FORMAT_ABGR2101010, 130 DRM_FORMAT_XBGR16161616F, 131 }; 132 133 static const u64 i9xx_format_modifiers[] = { 134 I915_FORMAT_MOD_X_TILED, 135 DRM_FORMAT_MOD_LINEAR, 136 DRM_FORMAT_MOD_INVALID 137 }; 138 139 /* Cursor formats */ 140 static const u32 intel_cursor_formats[] = { 141 DRM_FORMAT_ARGB8888, 142 }; 143 144 static const u64 cursor_format_modifiers[] = { 145 DRM_FORMAT_MOD_LINEAR, 146 DRM_FORMAT_MOD_INVALID 147 }; 148 149 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 150 struct intel_crtc_state *pipe_config); 151 static void ilk_pch_clock_get(struct intel_crtc *crtc, 152 struct intel_crtc_state *pipe_config); 153 154 static int intel_framebuffer_init(struct intel_framebuffer *ifb, 155 struct drm_i915_gem_object *obj, 156 struct drm_mode_fb_cmd2 *mode_cmd); 157 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state); 158 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 159 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 160 const struct intel_link_m_n *m_n, 161 const struct intel_link_m_n *m2_n2); 162 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 163 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state); 164 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state); 165 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 166 static void vlv_prepare_pll(struct intel_crtc *crtc, 167 const struct intel_crtc_state *pipe_config); 168 static void chv_prepare_pll(struct intel_crtc *crtc, 169 const struct intel_crtc_state *pipe_config); 170 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state); 171 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); 172 static void intel_modeset_setup_hw_state(struct drm_device *dev, 173 struct drm_modeset_acquire_ctx *ctx); 174 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc); 175 176 struct intel_limit { 177 struct { 178 int min, max; 179 } dot, vco, n, m, m1, m2, p, p1; 180 181 struct { 182 int dot_limit; 183 int p2_slow, p2_fast; 184 } p2; 185 }; 186 187 /* returns HPLL frequency in kHz */ 188 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 189 { 190 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 191 192 /* Obtain SKU information */ 193 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 194 CCK_FUSE_HPLL_FREQ_MASK; 195 196 return vco_freq[hpll_freq] * 1000; 197 } 198 199 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 200 const char *name, u32 reg, int ref_freq) 201 { 202 u32 val; 203 int divider; 204 205 val = vlv_cck_read(dev_priv, reg); 206 divider = val & CCK_FREQUENCY_VALUES; 207 208 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != 209 (divider << CCK_FREQUENCY_STATUS_SHIFT), 210 "%s change in progress\n", name); 211 212 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 213 } 214 215 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 216 const char *name, u32 reg) 217 { 218 int hpll; 219 220 vlv_cck_get(dev_priv); 221 222 if (dev_priv->hpll_freq == 0) 223 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 224 225 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 226 227 vlv_cck_put(dev_priv); 228 229 return hpll; 230 } 231 232 static void intel_update_czclk(struct drm_i915_private *dev_priv) 233 { 234 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 235 return; 236 237 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 238 CCK_CZ_CLOCK_CONTROL); 239 240 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n", 241 dev_priv->czclk_freq); 242 } 243 244 /* units of 100MHz */ 245 static u32 intel_fdi_link_freq(struct drm_i915_private *dev_priv, 246 const struct intel_crtc_state *pipe_config) 247 { 248 if (HAS_DDI(dev_priv)) 249 return pipe_config->port_clock; /* SPLL */ 250 else 251 return dev_priv->fdi_pll_freq; 252 } 253 254 static const struct intel_limit intel_limits_i8xx_dac = { 255 .dot = { .min = 25000, .max = 350000 }, 256 .vco = { .min = 908000, .max = 1512000 }, 257 .n = { .min = 2, .max = 16 }, 258 .m = { .min = 96, .max = 140 }, 259 .m1 = { .min = 18, .max = 26 }, 260 .m2 = { .min = 6, .max = 16 }, 261 .p = { .min = 4, .max = 128 }, 262 .p1 = { .min = 2, .max = 33 }, 263 .p2 = { .dot_limit = 165000, 264 .p2_slow = 4, .p2_fast = 2 }, 265 }; 266 267 static const struct intel_limit intel_limits_i8xx_dvo = { 268 .dot = { .min = 25000, .max = 350000 }, 269 .vco = { .min = 908000, .max = 1512000 }, 270 .n = { .min = 2, .max = 16 }, 271 .m = { .min = 96, .max = 140 }, 272 .m1 = { .min = 18, .max = 26 }, 273 .m2 = { .min = 6, .max = 16 }, 274 .p = { .min = 4, .max = 128 }, 275 .p1 = { .min = 2, .max = 33 }, 276 .p2 = { .dot_limit = 165000, 277 .p2_slow = 4, .p2_fast = 4 }, 278 }; 279 280 static const struct intel_limit intel_limits_i8xx_lvds = { 281 .dot = { .min = 25000, .max = 350000 }, 282 .vco = { .min = 908000, .max = 1512000 }, 283 .n = { .min = 2, .max = 16 }, 284 .m = { .min = 96, .max = 140 }, 285 .m1 = { .min = 18, .max = 26 }, 286 .m2 = { .min = 6, .max = 16 }, 287 .p = { .min = 4, .max = 128 }, 288 .p1 = { .min = 1, .max = 6 }, 289 .p2 = { .dot_limit = 165000, 290 .p2_slow = 14, .p2_fast = 7 }, 291 }; 292 293 static const struct intel_limit intel_limits_i9xx_sdvo = { 294 .dot = { .min = 20000, .max = 400000 }, 295 .vco = { .min = 1400000, .max = 2800000 }, 296 .n = { .min = 1, .max = 6 }, 297 .m = { .min = 70, .max = 120 }, 298 .m1 = { .min = 8, .max = 18 }, 299 .m2 = { .min = 3, .max = 7 }, 300 .p = { .min = 5, .max = 80 }, 301 .p1 = { .min = 1, .max = 8 }, 302 .p2 = { .dot_limit = 200000, 303 .p2_slow = 10, .p2_fast = 5 }, 304 }; 305 306 static const struct intel_limit intel_limits_i9xx_lvds = { 307 .dot = { .min = 20000, .max = 400000 }, 308 .vco = { .min = 1400000, .max = 2800000 }, 309 .n = { .min = 1, .max = 6 }, 310 .m = { .min = 70, .max = 120 }, 311 .m1 = { .min = 8, .max = 18 }, 312 .m2 = { .min = 3, .max = 7 }, 313 .p = { .min = 7, .max = 98 }, 314 .p1 = { .min = 1, .max = 8 }, 315 .p2 = { .dot_limit = 112000, 316 .p2_slow = 14, .p2_fast = 7 }, 317 }; 318 319 320 static const struct intel_limit intel_limits_g4x_sdvo = { 321 .dot = { .min = 25000, .max = 270000 }, 322 .vco = { .min = 1750000, .max = 3500000}, 323 .n = { .min = 1, .max = 4 }, 324 .m = { .min = 104, .max = 138 }, 325 .m1 = { .min = 17, .max = 23 }, 326 .m2 = { .min = 5, .max = 11 }, 327 .p = { .min = 10, .max = 30 }, 328 .p1 = { .min = 1, .max = 3}, 329 .p2 = { .dot_limit = 270000, 330 .p2_slow = 10, 331 .p2_fast = 10 332 }, 333 }; 334 335 static const struct intel_limit intel_limits_g4x_hdmi = { 336 .dot = { .min = 22000, .max = 400000 }, 337 .vco = { .min = 1750000, .max = 3500000}, 338 .n = { .min = 1, .max = 4 }, 339 .m = { .min = 104, .max = 138 }, 340 .m1 = { .min = 16, .max = 23 }, 341 .m2 = { .min = 5, .max = 11 }, 342 .p = { .min = 5, .max = 80 }, 343 .p1 = { .min = 1, .max = 8}, 344 .p2 = { .dot_limit = 165000, 345 .p2_slow = 10, .p2_fast = 5 }, 346 }; 347 348 static const struct intel_limit intel_limits_g4x_single_channel_lvds = { 349 .dot = { .min = 20000, .max = 115000 }, 350 .vco = { .min = 1750000, .max = 3500000 }, 351 .n = { .min = 1, .max = 3 }, 352 .m = { .min = 104, .max = 138 }, 353 .m1 = { .min = 17, .max = 23 }, 354 .m2 = { .min = 5, .max = 11 }, 355 .p = { .min = 28, .max = 112 }, 356 .p1 = { .min = 2, .max = 8 }, 357 .p2 = { .dot_limit = 0, 358 .p2_slow = 14, .p2_fast = 14 359 }, 360 }; 361 362 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { 363 .dot = { .min = 80000, .max = 224000 }, 364 .vco = { .min = 1750000, .max = 3500000 }, 365 .n = { .min = 1, .max = 3 }, 366 .m = { .min = 104, .max = 138 }, 367 .m1 = { .min = 17, .max = 23 }, 368 .m2 = { .min = 5, .max = 11 }, 369 .p = { .min = 14, .max = 42 }, 370 .p1 = { .min = 2, .max = 6 }, 371 .p2 = { .dot_limit = 0, 372 .p2_slow = 7, .p2_fast = 7 373 }, 374 }; 375 376 static const struct intel_limit pnv_limits_sdvo = { 377 .dot = { .min = 20000, .max = 400000}, 378 .vco = { .min = 1700000, .max = 3500000 }, 379 /* Pineview's Ncounter is a ring counter */ 380 .n = { .min = 3, .max = 6 }, 381 .m = { .min = 2, .max = 256 }, 382 /* Pineview only has one combined m divider, which we treat as m2. */ 383 .m1 = { .min = 0, .max = 0 }, 384 .m2 = { .min = 0, .max = 254 }, 385 .p = { .min = 5, .max = 80 }, 386 .p1 = { .min = 1, .max = 8 }, 387 .p2 = { .dot_limit = 200000, 388 .p2_slow = 10, .p2_fast = 5 }, 389 }; 390 391 static const struct intel_limit pnv_limits_lvds = { 392 .dot = { .min = 20000, .max = 400000 }, 393 .vco = { .min = 1700000, .max = 3500000 }, 394 .n = { .min = 3, .max = 6 }, 395 .m = { .min = 2, .max = 256 }, 396 .m1 = { .min = 0, .max = 0 }, 397 .m2 = { .min = 0, .max = 254 }, 398 .p = { .min = 7, .max = 112 }, 399 .p1 = { .min = 1, .max = 8 }, 400 .p2 = { .dot_limit = 112000, 401 .p2_slow = 14, .p2_fast = 14 }, 402 }; 403 404 /* Ironlake / Sandybridge 405 * 406 * We calculate clock using (register_value + 2) for N/M1/M2, so here 407 * the range value for them is (actual_value - 2). 408 */ 409 static const struct intel_limit ilk_limits_dac = { 410 .dot = { .min = 25000, .max = 350000 }, 411 .vco = { .min = 1760000, .max = 3510000 }, 412 .n = { .min = 1, .max = 5 }, 413 .m = { .min = 79, .max = 127 }, 414 .m1 = { .min = 12, .max = 22 }, 415 .m2 = { .min = 5, .max = 9 }, 416 .p = { .min = 5, .max = 80 }, 417 .p1 = { .min = 1, .max = 8 }, 418 .p2 = { .dot_limit = 225000, 419 .p2_slow = 10, .p2_fast = 5 }, 420 }; 421 422 static const struct intel_limit ilk_limits_single_lvds = { 423 .dot = { .min = 25000, .max = 350000 }, 424 .vco = { .min = 1760000, .max = 3510000 }, 425 .n = { .min = 1, .max = 3 }, 426 .m = { .min = 79, .max = 118 }, 427 .m1 = { .min = 12, .max = 22 }, 428 .m2 = { .min = 5, .max = 9 }, 429 .p = { .min = 28, .max = 112 }, 430 .p1 = { .min = 2, .max = 8 }, 431 .p2 = { .dot_limit = 225000, 432 .p2_slow = 14, .p2_fast = 14 }, 433 }; 434 435 static const struct intel_limit ilk_limits_dual_lvds = { 436 .dot = { .min = 25000, .max = 350000 }, 437 .vco = { .min = 1760000, .max = 3510000 }, 438 .n = { .min = 1, .max = 3 }, 439 .m = { .min = 79, .max = 127 }, 440 .m1 = { .min = 12, .max = 22 }, 441 .m2 = { .min = 5, .max = 9 }, 442 .p = { .min = 14, .max = 56 }, 443 .p1 = { .min = 2, .max = 8 }, 444 .p2 = { .dot_limit = 225000, 445 .p2_slow = 7, .p2_fast = 7 }, 446 }; 447 448 /* LVDS 100mhz refclk limits. */ 449 static const struct intel_limit ilk_limits_single_lvds_100m = { 450 .dot = { .min = 25000, .max = 350000 }, 451 .vco = { .min = 1760000, .max = 3510000 }, 452 .n = { .min = 1, .max = 2 }, 453 .m = { .min = 79, .max = 126 }, 454 .m1 = { .min = 12, .max = 22 }, 455 .m2 = { .min = 5, .max = 9 }, 456 .p = { .min = 28, .max = 112 }, 457 .p1 = { .min = 2, .max = 8 }, 458 .p2 = { .dot_limit = 225000, 459 .p2_slow = 14, .p2_fast = 14 }, 460 }; 461 462 static const struct intel_limit ilk_limits_dual_lvds_100m = { 463 .dot = { .min = 25000, .max = 350000 }, 464 .vco = { .min = 1760000, .max = 3510000 }, 465 .n = { .min = 1, .max = 3 }, 466 .m = { .min = 79, .max = 126 }, 467 .m1 = { .min = 12, .max = 22 }, 468 .m2 = { .min = 5, .max = 9 }, 469 .p = { .min = 14, .max = 42 }, 470 .p1 = { .min = 2, .max = 6 }, 471 .p2 = { .dot_limit = 225000, 472 .p2_slow = 7, .p2_fast = 7 }, 473 }; 474 475 static const struct intel_limit intel_limits_vlv = { 476 /* 477 * These are the data rate limits (measured in fast clocks) 478 * since those are the strictest limits we have. The fast 479 * clock and actual rate limits are more relaxed, so checking 480 * them would make no difference. 481 */ 482 .dot = { .min = 25000 * 5, .max = 270000 * 5 }, 483 .vco = { .min = 4000000, .max = 6000000 }, 484 .n = { .min = 1, .max = 7 }, 485 .m1 = { .min = 2, .max = 3 }, 486 .m2 = { .min = 11, .max = 156 }, 487 .p1 = { .min = 2, .max = 3 }, 488 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ 489 }; 490 491 static const struct intel_limit intel_limits_chv = { 492 /* 493 * These are the data rate limits (measured in fast clocks) 494 * since those are the strictest limits we have. The fast 495 * clock and actual rate limits are more relaxed, so checking 496 * them would make no difference. 497 */ 498 .dot = { .min = 25000 * 5, .max = 540000 * 5}, 499 .vco = { .min = 4800000, .max = 6480000 }, 500 .n = { .min = 1, .max = 1 }, 501 .m1 = { .min = 2, .max = 2 }, 502 .m2 = { .min = 24 << 22, .max = 175 << 22 }, 503 .p1 = { .min = 2, .max = 4 }, 504 .p2 = { .p2_slow = 1, .p2_fast = 14 }, 505 }; 506 507 static const struct intel_limit intel_limits_bxt = { 508 /* FIXME: find real dot limits */ 509 .dot = { .min = 0, .max = INT_MAX }, 510 .vco = { .min = 4800000, .max = 6700000 }, 511 .n = { .min = 1, .max = 1 }, 512 .m1 = { .min = 2, .max = 2 }, 513 /* FIXME: find real m2 limits */ 514 .m2 = { .min = 2 << 22, .max = 255 << 22 }, 515 .p1 = { .min = 2, .max = 4 }, 516 .p2 = { .p2_slow = 1, .p2_fast = 20 }, 517 }; 518 519 /* WA Display #0827: Gen9:all */ 520 static void 521 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) 522 { 523 if (enable) 524 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 525 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); 526 else 527 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 528 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 529 } 530 531 /* Wa_2006604312:icl,ehl */ 532 static void 533 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 534 bool enable) 535 { 536 if (enable) 537 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 538 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 539 else 540 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 541 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 542 } 543 544 static bool 545 needs_modeset(const struct intel_crtc_state *state) 546 { 547 return drm_atomic_crtc_needs_modeset(&state->uapi); 548 } 549 550 static bool 551 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) 552 { 553 return crtc_state->master_transcoder != INVALID_TRANSCODER; 554 } 555 556 static bool 557 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state) 558 { 559 return crtc_state->sync_mode_slaves_mask != 0; 560 } 561 562 bool 563 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 564 { 565 return is_trans_port_sync_master(crtc_state) || 566 is_trans_port_sync_slave(crtc_state); 567 } 568 569 /* 570 * Platform specific helpers to calculate the port PLL loopback- (clock.m), 571 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast 572 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. 573 * The helpers' return value is the rate of the clock that is fed to the 574 * display engine's pipe which can be the above fast dot clock rate or a 575 * divided-down version of it. 576 */ 577 /* m1 is reserved as 0 in Pineview, n is a ring counter */ 578 static int pnv_calc_dpll_params(int refclk, struct dpll *clock) 579 { 580 clock->m = clock->m2 + 2; 581 clock->p = clock->p1 * clock->p2; 582 if (WARN_ON(clock->n == 0 || clock->p == 0)) 583 return 0; 584 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 585 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 586 587 return clock->dot; 588 } 589 590 static u32 i9xx_dpll_compute_m(struct dpll *dpll) 591 { 592 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); 593 } 594 595 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock) 596 { 597 clock->m = i9xx_dpll_compute_m(clock); 598 clock->p = clock->p1 * clock->p2; 599 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) 600 return 0; 601 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); 602 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 603 604 return clock->dot; 605 } 606 607 static int vlv_calc_dpll_params(int refclk, struct dpll *clock) 608 { 609 clock->m = clock->m1 * clock->m2; 610 clock->p = clock->p1 * clock->p2; 611 if (WARN_ON(clock->n == 0 || clock->p == 0)) 612 return 0; 613 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 614 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 615 616 return clock->dot / 5; 617 } 618 619 int chv_calc_dpll_params(int refclk, struct dpll *clock) 620 { 621 clock->m = clock->m1 * clock->m2; 622 clock->p = clock->p1 * clock->p2; 623 if (WARN_ON(clock->n == 0 || clock->p == 0)) 624 return 0; 625 clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), 626 clock->n << 22); 627 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 628 629 return clock->dot / 5; 630 } 631 632 /* 633 * Returns whether the given set of divisors are valid for a given refclk with 634 * the given connectors. 635 */ 636 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv, 637 const struct intel_limit *limit, 638 const struct dpll *clock) 639 { 640 if (clock->n < limit->n.min || limit->n.max < clock->n) 641 return false; 642 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) 643 return false; 644 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) 645 return false; 646 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) 647 return false; 648 649 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) && 650 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv)) 651 if (clock->m1 <= clock->m2) 652 return false; 653 654 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 655 !IS_GEN9_LP(dev_priv)) { 656 if (clock->p < limit->p.min || limit->p.max < clock->p) 657 return false; 658 if (clock->m < limit->m.min || limit->m.max < clock->m) 659 return false; 660 } 661 662 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) 663 return false; 664 /* XXX: We may need to be checking "Dot clock" depending on the multiplier, 665 * connector, etc., rather than just a single range. 666 */ 667 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) 668 return false; 669 670 return true; 671 } 672 673 static int 674 i9xx_select_p2_div(const struct intel_limit *limit, 675 const struct intel_crtc_state *crtc_state, 676 int target) 677 { 678 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 679 680 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 681 /* 682 * For LVDS just rely on its current settings for dual-channel. 683 * We haven't figured out how to reliably set up different 684 * single/dual channel state, if we even can. 685 */ 686 if (intel_is_dual_link_lvds(dev_priv)) 687 return limit->p2.p2_fast; 688 else 689 return limit->p2.p2_slow; 690 } else { 691 if (target < limit->p2.dot_limit) 692 return limit->p2.p2_slow; 693 else 694 return limit->p2.p2_fast; 695 } 696 } 697 698 /* 699 * Returns a set of divisors for the desired target clock with the given 700 * refclk, or FALSE. The returned values represent the clock equation: 701 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 702 * 703 * Target and reference clocks are specified in kHz. 704 * 705 * If match_clock is provided, then best_clock P divider must match the P 706 * divider from @match_clock used for LVDS downclocking. 707 */ 708 static bool 709 i9xx_find_best_dpll(const struct intel_limit *limit, 710 struct intel_crtc_state *crtc_state, 711 int target, int refclk, struct dpll *match_clock, 712 struct dpll *best_clock) 713 { 714 struct drm_device *dev = crtc_state->uapi.crtc->dev; 715 struct dpll clock; 716 int err = target; 717 718 memset(best_clock, 0, sizeof(*best_clock)); 719 720 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 721 722 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 723 clock.m1++) { 724 for (clock.m2 = limit->m2.min; 725 clock.m2 <= limit->m2.max; clock.m2++) { 726 if (clock.m2 >= clock.m1) 727 break; 728 for (clock.n = limit->n.min; 729 clock.n <= limit->n.max; clock.n++) { 730 for (clock.p1 = limit->p1.min; 731 clock.p1 <= limit->p1.max; clock.p1++) { 732 int this_err; 733 734 i9xx_calc_dpll_params(refclk, &clock); 735 if (!intel_pll_is_valid(to_i915(dev), 736 limit, 737 &clock)) 738 continue; 739 if (match_clock && 740 clock.p != match_clock->p) 741 continue; 742 743 this_err = abs(clock.dot - target); 744 if (this_err < err) { 745 *best_clock = clock; 746 err = this_err; 747 } 748 } 749 } 750 } 751 } 752 753 return (err != target); 754 } 755 756 /* 757 * Returns a set of divisors for the desired target clock with the given 758 * refclk, or FALSE. The returned values represent the clock equation: 759 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 760 * 761 * Target and reference clocks are specified in kHz. 762 * 763 * If match_clock is provided, then best_clock P divider must match the P 764 * divider from @match_clock used for LVDS downclocking. 765 */ 766 static bool 767 pnv_find_best_dpll(const struct intel_limit *limit, 768 struct intel_crtc_state *crtc_state, 769 int target, int refclk, struct dpll *match_clock, 770 struct dpll *best_clock) 771 { 772 struct drm_device *dev = crtc_state->uapi.crtc->dev; 773 struct dpll clock; 774 int err = target; 775 776 memset(best_clock, 0, sizeof(*best_clock)); 777 778 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 779 780 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 781 clock.m1++) { 782 for (clock.m2 = limit->m2.min; 783 clock.m2 <= limit->m2.max; clock.m2++) { 784 for (clock.n = limit->n.min; 785 clock.n <= limit->n.max; clock.n++) { 786 for (clock.p1 = limit->p1.min; 787 clock.p1 <= limit->p1.max; clock.p1++) { 788 int this_err; 789 790 pnv_calc_dpll_params(refclk, &clock); 791 if (!intel_pll_is_valid(to_i915(dev), 792 limit, 793 &clock)) 794 continue; 795 if (match_clock && 796 clock.p != match_clock->p) 797 continue; 798 799 this_err = abs(clock.dot - target); 800 if (this_err < err) { 801 *best_clock = clock; 802 err = this_err; 803 } 804 } 805 } 806 } 807 } 808 809 return (err != target); 810 } 811 812 /* 813 * Returns a set of divisors for the desired target clock with the given 814 * refclk, or FALSE. The returned values represent the clock equation: 815 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 816 * 817 * Target and reference clocks are specified in kHz. 818 * 819 * If match_clock is provided, then best_clock P divider must match the P 820 * divider from @match_clock used for LVDS downclocking. 821 */ 822 static bool 823 g4x_find_best_dpll(const struct intel_limit *limit, 824 struct intel_crtc_state *crtc_state, 825 int target, int refclk, struct dpll *match_clock, 826 struct dpll *best_clock) 827 { 828 struct drm_device *dev = crtc_state->uapi.crtc->dev; 829 struct dpll clock; 830 int max_n; 831 bool found = false; 832 /* approximately equals target * 0.00585 */ 833 int err_most = (target >> 8) + (target >> 9); 834 835 memset(best_clock, 0, sizeof(*best_clock)); 836 837 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 838 839 max_n = limit->n.max; 840 /* based on hardware requirement, prefer smaller n to precision */ 841 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 842 /* based on hardware requirement, prefere larger m1,m2 */ 843 for (clock.m1 = limit->m1.max; 844 clock.m1 >= limit->m1.min; clock.m1--) { 845 for (clock.m2 = limit->m2.max; 846 clock.m2 >= limit->m2.min; clock.m2--) { 847 for (clock.p1 = limit->p1.max; 848 clock.p1 >= limit->p1.min; clock.p1--) { 849 int this_err; 850 851 i9xx_calc_dpll_params(refclk, &clock); 852 if (!intel_pll_is_valid(to_i915(dev), 853 limit, 854 &clock)) 855 continue; 856 857 this_err = abs(clock.dot - target); 858 if (this_err < err_most) { 859 *best_clock = clock; 860 err_most = this_err; 861 max_n = clock.n; 862 found = true; 863 } 864 } 865 } 866 } 867 } 868 return found; 869 } 870 871 /* 872 * Check if the calculated PLL configuration is more optimal compared to the 873 * best configuration and error found so far. Return the calculated error. 874 */ 875 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, 876 const struct dpll *calculated_clock, 877 const struct dpll *best_clock, 878 unsigned int best_error_ppm, 879 unsigned int *error_ppm) 880 { 881 /* 882 * For CHV ignore the error and consider only the P value. 883 * Prefer a bigger P value based on HW requirements. 884 */ 885 if (IS_CHERRYVIEW(to_i915(dev))) { 886 *error_ppm = 0; 887 888 return calculated_clock->p > best_clock->p; 889 } 890 891 if (drm_WARN_ON_ONCE(dev, !target_freq)) 892 return false; 893 894 *error_ppm = div_u64(1000000ULL * 895 abs(target_freq - calculated_clock->dot), 896 target_freq); 897 /* 898 * Prefer a better P value over a better (smaller) error if the error 899 * is small. Ensure this preference for future configurations too by 900 * setting the error to 0. 901 */ 902 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { 903 *error_ppm = 0; 904 905 return true; 906 } 907 908 return *error_ppm + 10 < best_error_ppm; 909 } 910 911 /* 912 * Returns a set of divisors for the desired target clock with the given 913 * refclk, or FALSE. The returned values represent the clock equation: 914 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 915 */ 916 static bool 917 vlv_find_best_dpll(const struct intel_limit *limit, 918 struct intel_crtc_state *crtc_state, 919 int target, int refclk, struct dpll *match_clock, 920 struct dpll *best_clock) 921 { 922 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 923 struct drm_device *dev = crtc->base.dev; 924 struct dpll clock; 925 unsigned int bestppm = 1000000; 926 /* min update 19.2 MHz */ 927 int max_n = min(limit->n.max, refclk / 19200); 928 bool found = false; 929 930 target *= 5; /* fast clock */ 931 932 memset(best_clock, 0, sizeof(*best_clock)); 933 934 /* based on hardware requirement, prefer smaller n to precision */ 935 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 936 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 937 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; 938 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 939 clock.p = clock.p1 * clock.p2; 940 /* based on hardware requirement, prefer bigger m1,m2 values */ 941 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { 942 unsigned int ppm; 943 944 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, 945 refclk * clock.m1); 946 947 vlv_calc_dpll_params(refclk, &clock); 948 949 if (!intel_pll_is_valid(to_i915(dev), 950 limit, 951 &clock)) 952 continue; 953 954 if (!vlv_PLL_is_optimal(dev, target, 955 &clock, 956 best_clock, 957 bestppm, &ppm)) 958 continue; 959 960 *best_clock = clock; 961 bestppm = ppm; 962 found = true; 963 } 964 } 965 } 966 } 967 968 return found; 969 } 970 971 /* 972 * Returns a set of divisors for the desired target clock with the given 973 * refclk, or FALSE. The returned values represent the clock equation: 974 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 975 */ 976 static bool 977 chv_find_best_dpll(const struct intel_limit *limit, 978 struct intel_crtc_state *crtc_state, 979 int target, int refclk, struct dpll *match_clock, 980 struct dpll *best_clock) 981 { 982 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 983 struct drm_device *dev = crtc->base.dev; 984 unsigned int best_error_ppm; 985 struct dpll clock; 986 u64 m2; 987 int found = false; 988 989 memset(best_clock, 0, sizeof(*best_clock)); 990 best_error_ppm = 1000000; 991 992 /* 993 * Based on hardware doc, the n always set to 1, and m1 always 994 * set to 2. If requires to support 200Mhz refclk, we need to 995 * revisit this because n may not 1 anymore. 996 */ 997 clock.n = 1, clock.m1 = 2; 998 target *= 5; /* fast clock */ 999 1000 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 1001 for (clock.p2 = limit->p2.p2_fast; 1002 clock.p2 >= limit->p2.p2_slow; 1003 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 1004 unsigned int error_ppm; 1005 1006 clock.p = clock.p1 * clock.p2; 1007 1008 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, 1009 refclk * clock.m1); 1010 1011 if (m2 > INT_MAX/clock.m1) 1012 continue; 1013 1014 clock.m2 = m2; 1015 1016 chv_calc_dpll_params(refclk, &clock); 1017 1018 if (!intel_pll_is_valid(to_i915(dev), limit, &clock)) 1019 continue; 1020 1021 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, 1022 best_error_ppm, &error_ppm)) 1023 continue; 1024 1025 *best_clock = clock; 1026 best_error_ppm = error_ppm; 1027 found = true; 1028 } 1029 } 1030 1031 return found; 1032 } 1033 1034 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, 1035 struct dpll *best_clock) 1036 { 1037 int refclk = 100000; 1038 const struct intel_limit *limit = &intel_limits_bxt; 1039 1040 return chv_find_best_dpll(limit, crtc_state, 1041 crtc_state->port_clock, refclk, 1042 NULL, best_clock); 1043 } 1044 1045 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 1046 enum pipe pipe) 1047 { 1048 i915_reg_t reg = PIPEDSL(pipe); 1049 u32 line1, line2; 1050 u32 line_mask; 1051 1052 if (IS_GEN(dev_priv, 2)) 1053 line_mask = DSL_LINEMASK_GEN2; 1054 else 1055 line_mask = DSL_LINEMASK_GEN3; 1056 1057 line1 = intel_de_read(dev_priv, reg) & line_mask; 1058 msleep(5); 1059 line2 = intel_de_read(dev_priv, reg) & line_mask; 1060 1061 return line1 != line2; 1062 } 1063 1064 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 1065 { 1066 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1067 enum pipe pipe = crtc->pipe; 1068 1069 /* Wait for the display line to settle/start moving */ 1070 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 1071 drm_err(&dev_priv->drm, 1072 "pipe %c scanline %s wait timed out\n", 1073 pipe_name(pipe), onoff(state)); 1074 } 1075 1076 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 1077 { 1078 wait_for_pipe_scanline_moving(crtc, false); 1079 } 1080 1081 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 1082 { 1083 wait_for_pipe_scanline_moving(crtc, true); 1084 } 1085 1086 static void 1087 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 1088 { 1089 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1090 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1091 1092 if (INTEL_GEN(dev_priv) >= 4) { 1093 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1094 i915_reg_t reg = PIPECONF(cpu_transcoder); 1095 1096 /* Wait for the Pipe State to go off */ 1097 if (intel_de_wait_for_clear(dev_priv, reg, 1098 I965_PIPECONF_ACTIVE, 100)) 1099 drm_WARN(&dev_priv->drm, 1, 1100 "pipe_off wait timed out\n"); 1101 } else { 1102 intel_wait_for_pipe_scanline_stopped(crtc); 1103 } 1104 } 1105 1106 /* Only for pre-ILK configs */ 1107 void assert_pll(struct drm_i915_private *dev_priv, 1108 enum pipe pipe, bool state) 1109 { 1110 u32 val; 1111 bool cur_state; 1112 1113 val = intel_de_read(dev_priv, DPLL(pipe)); 1114 cur_state = !!(val & DPLL_VCO_ENABLE); 1115 I915_STATE_WARN(cur_state != state, 1116 "PLL state assertion failure (expected %s, current %s)\n", 1117 onoff(state), onoff(cur_state)); 1118 } 1119 1120 /* XXX: the dsi pll is shared between MIPI DSI ports */ 1121 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 1122 { 1123 u32 val; 1124 bool cur_state; 1125 1126 vlv_cck_get(dev_priv); 1127 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 1128 vlv_cck_put(dev_priv); 1129 1130 cur_state = val & DSI_PLL_VCO_EN; 1131 I915_STATE_WARN(cur_state != state, 1132 "DSI PLL state assertion failure (expected %s, current %s)\n", 1133 onoff(state), onoff(cur_state)); 1134 } 1135 1136 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 1137 enum pipe pipe, bool state) 1138 { 1139 bool cur_state; 1140 1141 if (HAS_DDI(dev_priv)) { 1142 /* 1143 * DDI does not have a specific FDI_TX register. 1144 * 1145 * FDI is never fed from EDP transcoder 1146 * so pipe->transcoder cast is fine here. 1147 */ 1148 enum transcoder cpu_transcoder = (enum transcoder)pipe; 1149 u32 val = intel_de_read(dev_priv, 1150 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 1151 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 1152 } else { 1153 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 1154 cur_state = !!(val & FDI_TX_ENABLE); 1155 } 1156 I915_STATE_WARN(cur_state != state, 1157 "FDI TX state assertion failure (expected %s, current %s)\n", 1158 onoff(state), onoff(cur_state)); 1159 } 1160 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 1161 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 1162 1163 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 1164 enum pipe pipe, bool state) 1165 { 1166 u32 val; 1167 bool cur_state; 1168 1169 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 1170 cur_state = !!(val & FDI_RX_ENABLE); 1171 I915_STATE_WARN(cur_state != state, 1172 "FDI RX state assertion failure (expected %s, current %s)\n", 1173 onoff(state), onoff(cur_state)); 1174 } 1175 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 1176 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 1177 1178 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 1179 enum pipe pipe) 1180 { 1181 u32 val; 1182 1183 /* ILK FDI PLL is always enabled */ 1184 if (IS_GEN(dev_priv, 5)) 1185 return; 1186 1187 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 1188 if (HAS_DDI(dev_priv)) 1189 return; 1190 1191 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 1192 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 1193 } 1194 1195 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 1196 enum pipe pipe, bool state) 1197 { 1198 u32 val; 1199 bool cur_state; 1200 1201 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 1202 cur_state = !!(val & FDI_RX_PLL_ENABLE); 1203 I915_STATE_WARN(cur_state != state, 1204 "FDI RX PLL assertion failure (expected %s, current %s)\n", 1205 onoff(state), onoff(cur_state)); 1206 } 1207 1208 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) 1209 { 1210 i915_reg_t pp_reg; 1211 u32 val; 1212 enum pipe panel_pipe = INVALID_PIPE; 1213 bool locked = true; 1214 1215 if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv))) 1216 return; 1217 1218 if (HAS_PCH_SPLIT(dev_priv)) { 1219 u32 port_sel; 1220 1221 pp_reg = PP_CONTROL(0); 1222 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1223 1224 switch (port_sel) { 1225 case PANEL_PORT_SELECT_LVDS: 1226 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); 1227 break; 1228 case PANEL_PORT_SELECT_DPA: 1229 intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); 1230 break; 1231 case PANEL_PORT_SELECT_DPC: 1232 intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); 1233 break; 1234 case PANEL_PORT_SELECT_DPD: 1235 intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); 1236 break; 1237 default: 1238 MISSING_CASE(port_sel); 1239 break; 1240 } 1241 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1242 /* presumably write lock depends on pipe, not port select */ 1243 pp_reg = PP_CONTROL(pipe); 1244 panel_pipe = pipe; 1245 } else { 1246 u32 port_sel; 1247 1248 pp_reg = PP_CONTROL(0); 1249 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1250 1251 drm_WARN_ON(&dev_priv->drm, 1252 port_sel != PANEL_PORT_SELECT_LVDS); 1253 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); 1254 } 1255 1256 val = intel_de_read(dev_priv, pp_reg); 1257 if (!(val & PANEL_POWER_ON) || 1258 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 1259 locked = false; 1260 1261 I915_STATE_WARN(panel_pipe == pipe && locked, 1262 "panel assertion failure, pipe %c regs locked\n", 1263 pipe_name(pipe)); 1264 } 1265 1266 void assert_pipe(struct drm_i915_private *dev_priv, 1267 enum transcoder cpu_transcoder, bool state) 1268 { 1269 bool cur_state; 1270 enum intel_display_power_domain power_domain; 1271 intel_wakeref_t wakeref; 1272 1273 /* we keep both pipes enabled on 830 */ 1274 if (IS_I830(dev_priv)) 1275 state = true; 1276 1277 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 1278 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 1279 if (wakeref) { 1280 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 1281 cur_state = !!(val & PIPECONF_ENABLE); 1282 1283 intel_display_power_put(dev_priv, power_domain, wakeref); 1284 } else { 1285 cur_state = false; 1286 } 1287 1288 I915_STATE_WARN(cur_state != state, 1289 "transcoder %s assertion failure (expected %s, current %s)\n", 1290 transcoder_name(cpu_transcoder), 1291 onoff(state), onoff(cur_state)); 1292 } 1293 1294 static void assert_plane(struct intel_plane *plane, bool state) 1295 { 1296 enum pipe pipe; 1297 bool cur_state; 1298 1299 cur_state = plane->get_hw_state(plane, &pipe); 1300 1301 I915_STATE_WARN(cur_state != state, 1302 "%s assertion failure (expected %s, current %s)\n", 1303 plane->base.name, onoff(state), onoff(cur_state)); 1304 } 1305 1306 #define assert_plane_enabled(p) assert_plane(p, true) 1307 #define assert_plane_disabled(p) assert_plane(p, false) 1308 1309 static void assert_planes_disabled(struct intel_crtc *crtc) 1310 { 1311 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1312 struct intel_plane *plane; 1313 1314 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 1315 assert_plane_disabled(plane); 1316 } 1317 1318 static void assert_vblank_disabled(struct drm_crtc *crtc) 1319 { 1320 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0)) 1321 drm_crtc_vblank_put(crtc); 1322 } 1323 1324 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 1325 enum pipe pipe) 1326 { 1327 u32 val; 1328 bool enabled; 1329 1330 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe)); 1331 enabled = !!(val & TRANS_ENABLE); 1332 I915_STATE_WARN(enabled, 1333 "transcoder assertion failed, should be off on pipe %c but is still active\n", 1334 pipe_name(pipe)); 1335 } 1336 1337 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 1338 enum pipe pipe, enum port port, 1339 i915_reg_t dp_reg) 1340 { 1341 enum pipe port_pipe; 1342 bool state; 1343 1344 state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 1345 1346 I915_STATE_WARN(state && port_pipe == pipe, 1347 "PCH DP %c enabled on transcoder %c, should be disabled\n", 1348 port_name(port), pipe_name(pipe)); 1349 1350 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1351 "IBX PCH DP %c still using transcoder B\n", 1352 port_name(port)); 1353 } 1354 1355 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 1356 enum pipe pipe, enum port port, 1357 i915_reg_t hdmi_reg) 1358 { 1359 enum pipe port_pipe; 1360 bool state; 1361 1362 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 1363 1364 I915_STATE_WARN(state && port_pipe == pipe, 1365 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 1366 port_name(port), pipe_name(pipe)); 1367 1368 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1369 "IBX PCH HDMI %c still using transcoder B\n", 1370 port_name(port)); 1371 } 1372 1373 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 1374 enum pipe pipe) 1375 { 1376 enum pipe port_pipe; 1377 1378 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 1379 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 1380 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 1381 1382 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 1383 port_pipe == pipe, 1384 "PCH VGA enabled on transcoder %c, should be disabled\n", 1385 pipe_name(pipe)); 1386 1387 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 1388 port_pipe == pipe, 1389 "PCH LVDS enabled on transcoder %c, should be disabled\n", 1390 pipe_name(pipe)); 1391 1392 /* PCH SDVOB multiplex with HDMIB */ 1393 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 1394 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 1395 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 1396 } 1397 1398 static void _vlv_enable_pll(struct intel_crtc *crtc, 1399 const struct intel_crtc_state *pipe_config) 1400 { 1401 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1402 enum pipe pipe = crtc->pipe; 1403 1404 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1405 intel_de_posting_read(dev_priv, DPLL(pipe)); 1406 udelay(150); 1407 1408 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1409 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe); 1410 } 1411 1412 static void vlv_enable_pll(struct intel_crtc *crtc, 1413 const struct intel_crtc_state *pipe_config) 1414 { 1415 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1416 enum pipe pipe = crtc->pipe; 1417 1418 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 1419 1420 /* PLL is protected by panel, make sure we can write it */ 1421 assert_panel_unlocked(dev_priv, pipe); 1422 1423 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1424 _vlv_enable_pll(crtc, pipe_config); 1425 1426 intel_de_write(dev_priv, DPLL_MD(pipe), 1427 pipe_config->dpll_hw_state.dpll_md); 1428 intel_de_posting_read(dev_priv, DPLL_MD(pipe)); 1429 } 1430 1431 1432 static void _chv_enable_pll(struct intel_crtc *crtc, 1433 const struct intel_crtc_state *pipe_config) 1434 { 1435 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1436 enum pipe pipe = crtc->pipe; 1437 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1438 u32 tmp; 1439 1440 vlv_dpio_get(dev_priv); 1441 1442 /* Enable back the 10bit clock to display controller */ 1443 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1444 tmp |= DPIO_DCLKP_EN; 1445 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp); 1446 1447 vlv_dpio_put(dev_priv); 1448 1449 /* 1450 * Need to wait > 100ns between dclkp clock enable bit and PLL enable. 1451 */ 1452 udelay(1); 1453 1454 /* Enable PLL */ 1455 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1456 1457 /* Check PLL is locked */ 1458 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1459 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe); 1460 } 1461 1462 static void chv_enable_pll(struct intel_crtc *crtc, 1463 const struct intel_crtc_state *pipe_config) 1464 { 1465 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1466 enum pipe pipe = crtc->pipe; 1467 1468 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 1469 1470 /* PLL is protected by panel, make sure we can write it */ 1471 assert_panel_unlocked(dev_priv, pipe); 1472 1473 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1474 _chv_enable_pll(crtc, pipe_config); 1475 1476 if (pipe != PIPE_A) { 1477 /* 1478 * WaPixelRepeatModeFixForC0:chv 1479 * 1480 * DPLLCMD is AWOL. Use chicken bits to propagate 1481 * the value from DPLLBMD to either pipe B or C. 1482 */ 1483 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); 1484 intel_de_write(dev_priv, DPLL_MD(PIPE_B), 1485 pipe_config->dpll_hw_state.dpll_md); 1486 intel_de_write(dev_priv, CBR4_VLV, 0); 1487 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md; 1488 1489 /* 1490 * DPLLB VGA mode also seems to cause problems. 1491 * We should always have it disabled. 1492 */ 1493 drm_WARN_ON(&dev_priv->drm, 1494 (intel_de_read(dev_priv, DPLL(PIPE_B)) & 1495 DPLL_VGA_MODE_DIS) == 0); 1496 } else { 1497 intel_de_write(dev_priv, DPLL_MD(pipe), 1498 pipe_config->dpll_hw_state.dpll_md); 1499 intel_de_posting_read(dev_priv, DPLL_MD(pipe)); 1500 } 1501 } 1502 1503 static bool i9xx_has_pps(struct drm_i915_private *dev_priv) 1504 { 1505 if (IS_I830(dev_priv)) 1506 return false; 1507 1508 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 1509 } 1510 1511 static void i9xx_enable_pll(struct intel_crtc *crtc, 1512 const struct intel_crtc_state *crtc_state) 1513 { 1514 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1515 i915_reg_t reg = DPLL(crtc->pipe); 1516 u32 dpll = crtc_state->dpll_hw_state.dpll; 1517 int i; 1518 1519 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 1520 1521 /* PLL is protected by panel, make sure we can write it */ 1522 if (i9xx_has_pps(dev_priv)) 1523 assert_panel_unlocked(dev_priv, crtc->pipe); 1524 1525 /* 1526 * Apparently we need to have VGA mode enabled prior to changing 1527 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 1528 * dividers, even though the register value does change. 1529 */ 1530 intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS); 1531 intel_de_write(dev_priv, reg, dpll); 1532 1533 /* Wait for the clocks to stabilize. */ 1534 intel_de_posting_read(dev_priv, reg); 1535 udelay(150); 1536 1537 if (INTEL_GEN(dev_priv) >= 4) { 1538 intel_de_write(dev_priv, DPLL_MD(crtc->pipe), 1539 crtc_state->dpll_hw_state.dpll_md); 1540 } else { 1541 /* The pixel multiplier can only be updated once the 1542 * DPLL is enabled and the clocks are stable. 1543 * 1544 * So write it again. 1545 */ 1546 intel_de_write(dev_priv, reg, dpll); 1547 } 1548 1549 /* We do this three times for luck */ 1550 for (i = 0; i < 3; i++) { 1551 intel_de_write(dev_priv, reg, dpll); 1552 intel_de_posting_read(dev_priv, reg); 1553 udelay(150); /* wait for warmup */ 1554 } 1555 } 1556 1557 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) 1558 { 1559 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1560 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1561 enum pipe pipe = crtc->pipe; 1562 1563 /* Don't disable pipe or pipe PLLs if needed */ 1564 if (IS_I830(dev_priv)) 1565 return; 1566 1567 /* Make sure the pipe isn't still relying on us */ 1568 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 1569 1570 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 1571 intel_de_posting_read(dev_priv, DPLL(pipe)); 1572 } 1573 1574 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1575 { 1576 u32 val; 1577 1578 /* Make sure the pipe isn't still relying on us */ 1579 assert_pipe_disabled(dev_priv, (enum transcoder)pipe); 1580 1581 val = DPLL_INTEGRATED_REF_CLK_VLV | 1582 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1583 if (pipe != PIPE_A) 1584 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1585 1586 intel_de_write(dev_priv, DPLL(pipe), val); 1587 intel_de_posting_read(dev_priv, DPLL(pipe)); 1588 } 1589 1590 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1591 { 1592 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1593 u32 val; 1594 1595 /* Make sure the pipe isn't still relying on us */ 1596 assert_pipe_disabled(dev_priv, (enum transcoder)pipe); 1597 1598 val = DPLL_SSC_REF_CLK_CHV | 1599 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1600 if (pipe != PIPE_A) 1601 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1602 1603 intel_de_write(dev_priv, DPLL(pipe), val); 1604 intel_de_posting_read(dev_priv, DPLL(pipe)); 1605 1606 vlv_dpio_get(dev_priv); 1607 1608 /* Disable 10bit clock to display controller */ 1609 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1610 val &= ~DPIO_DCLKP_EN; 1611 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val); 1612 1613 vlv_dpio_put(dev_priv); 1614 } 1615 1616 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 1617 struct intel_digital_port *dig_port, 1618 unsigned int expected_mask) 1619 { 1620 u32 port_mask; 1621 i915_reg_t dpll_reg; 1622 1623 switch (dig_port->base.port) { 1624 case PORT_B: 1625 port_mask = DPLL_PORTB_READY_MASK; 1626 dpll_reg = DPLL(0); 1627 break; 1628 case PORT_C: 1629 port_mask = DPLL_PORTC_READY_MASK; 1630 dpll_reg = DPLL(0); 1631 expected_mask <<= 4; 1632 break; 1633 case PORT_D: 1634 port_mask = DPLL_PORTD_READY_MASK; 1635 dpll_reg = DPIO_PHY_STATUS; 1636 break; 1637 default: 1638 BUG(); 1639 } 1640 1641 if (intel_de_wait_for_register(dev_priv, dpll_reg, 1642 port_mask, expected_mask, 1000)) 1643 drm_WARN(&dev_priv->drm, 1, 1644 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", 1645 dig_port->base.base.base.id, dig_port->base.base.name, 1646 intel_de_read(dev_priv, dpll_reg) & port_mask, 1647 expected_mask); 1648 } 1649 1650 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 1651 { 1652 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1653 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1654 enum pipe pipe = crtc->pipe; 1655 i915_reg_t reg; 1656 u32 val, pipeconf_val; 1657 1658 /* Make sure PCH DPLL is enabled */ 1659 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 1660 1661 /* FDI must be feeding us bits for PCH ports */ 1662 assert_fdi_tx_enabled(dev_priv, pipe); 1663 assert_fdi_rx_enabled(dev_priv, pipe); 1664 1665 if (HAS_PCH_CPT(dev_priv)) { 1666 reg = TRANS_CHICKEN2(pipe); 1667 val = intel_de_read(dev_priv, reg); 1668 /* 1669 * Workaround: Set the timing override bit 1670 * before enabling the pch transcoder. 1671 */ 1672 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1673 /* Configure frame start delay to match the CPU */ 1674 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 1675 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 1676 intel_de_write(dev_priv, reg, val); 1677 } 1678 1679 reg = PCH_TRANSCONF(pipe); 1680 val = intel_de_read(dev_priv, reg); 1681 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe)); 1682 1683 if (HAS_PCH_IBX(dev_priv)) { 1684 /* Configure frame start delay to match the CPU */ 1685 val &= ~TRANS_FRAME_START_DELAY_MASK; 1686 val |= TRANS_FRAME_START_DELAY(0); 1687 1688 /* 1689 * Make the BPC in transcoder be consistent with 1690 * that in pipeconf reg. For HDMI we must use 8bpc 1691 * here for both 8bpc and 12bpc. 1692 */ 1693 val &= ~PIPECONF_BPC_MASK; 1694 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1695 val |= PIPECONF_8BPC; 1696 else 1697 val |= pipeconf_val & PIPECONF_BPC_MASK; 1698 } 1699 1700 val &= ~TRANS_INTERLACE_MASK; 1701 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 1702 if (HAS_PCH_IBX(dev_priv) && 1703 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 1704 val |= TRANS_LEGACY_INTERLACED_ILK; 1705 else 1706 val |= TRANS_INTERLACED; 1707 } else { 1708 val |= TRANS_PROGRESSIVE; 1709 } 1710 1711 intel_de_write(dev_priv, reg, val | TRANS_ENABLE); 1712 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 1713 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n", 1714 pipe_name(pipe)); 1715 } 1716 1717 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 1718 enum transcoder cpu_transcoder) 1719 { 1720 u32 val, pipeconf_val; 1721 1722 /* FDI must be feeding us bits for PCH ports */ 1723 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 1724 assert_fdi_rx_enabled(dev_priv, PIPE_A); 1725 1726 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 1727 /* Workaround: set timing override bit. */ 1728 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1729 /* Configure frame start delay to match the CPU */ 1730 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 1731 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 1732 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 1733 1734 val = TRANS_ENABLE; 1735 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 1736 1737 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 1738 PIPECONF_INTERLACED_ILK) 1739 val |= TRANS_INTERLACED; 1740 else 1741 val |= TRANS_PROGRESSIVE; 1742 1743 intel_de_write(dev_priv, LPT_TRANSCONF, val); 1744 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 1745 TRANS_STATE_ENABLE, 100)) 1746 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n"); 1747 } 1748 1749 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv, 1750 enum pipe pipe) 1751 { 1752 i915_reg_t reg; 1753 u32 val; 1754 1755 /* FDI relies on the transcoder */ 1756 assert_fdi_tx_disabled(dev_priv, pipe); 1757 assert_fdi_rx_disabled(dev_priv, pipe); 1758 1759 /* Ports must be off as well */ 1760 assert_pch_ports_disabled(dev_priv, pipe); 1761 1762 reg = PCH_TRANSCONF(pipe); 1763 val = intel_de_read(dev_priv, reg); 1764 val &= ~TRANS_ENABLE; 1765 intel_de_write(dev_priv, reg, val); 1766 /* wait for PCH transcoder off, transcoder state */ 1767 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 1768 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n", 1769 pipe_name(pipe)); 1770 1771 if (HAS_PCH_CPT(dev_priv)) { 1772 /* Workaround: Clear the timing override chicken bit again. */ 1773 reg = TRANS_CHICKEN2(pipe); 1774 val = intel_de_read(dev_priv, reg); 1775 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1776 intel_de_write(dev_priv, reg, val); 1777 } 1778 } 1779 1780 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 1781 { 1782 u32 val; 1783 1784 val = intel_de_read(dev_priv, LPT_TRANSCONF); 1785 val &= ~TRANS_ENABLE; 1786 intel_de_write(dev_priv, LPT_TRANSCONF, val); 1787 /* wait for PCH transcoder off, transcoder state */ 1788 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 1789 TRANS_STATE_ENABLE, 50)) 1790 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n"); 1791 1792 /* Workaround: clear timing override bit. */ 1793 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 1794 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1795 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 1796 } 1797 1798 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 1799 { 1800 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1801 1802 if (HAS_PCH_LPT(dev_priv)) 1803 return PIPE_A; 1804 else 1805 return crtc->pipe; 1806 } 1807 1808 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state) 1809 { 1810 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1811 1812 /* 1813 * On i965gm the hardware frame counter reads 1814 * zero when the TV encoder is enabled :( 1815 */ 1816 if (IS_I965GM(dev_priv) && 1817 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT))) 1818 return 0; 1819 1820 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1821 return 0xffffffff; /* full 32 bit counter */ 1822 else if (INTEL_GEN(dev_priv) >= 3) 1823 return 0xffffff; /* only 24 bits of frame count */ 1824 else 1825 return 0; /* Gen2 doesn't have a hardware frame counter */ 1826 } 1827 1828 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state) 1829 { 1830 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1831 1832 assert_vblank_disabled(&crtc->base); 1833 drm_crtc_set_max_vblank_count(&crtc->base, 1834 intel_crtc_max_vblank_count(crtc_state)); 1835 drm_crtc_vblank_on(&crtc->base); 1836 } 1837 1838 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state) 1839 { 1840 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1841 1842 drm_crtc_vblank_off(&crtc->base); 1843 assert_vblank_disabled(&crtc->base); 1844 } 1845 1846 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) 1847 { 1848 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 1849 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1850 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 1851 enum pipe pipe = crtc->pipe; 1852 i915_reg_t reg; 1853 u32 val; 1854 1855 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe)); 1856 1857 assert_planes_disabled(crtc); 1858 1859 /* 1860 * A pipe without a PLL won't actually be able to drive bits from 1861 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 1862 * need the check. 1863 */ 1864 if (HAS_GMCH(dev_priv)) { 1865 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 1866 assert_dsi_pll_enabled(dev_priv); 1867 else 1868 assert_pll_enabled(dev_priv, pipe); 1869 } else { 1870 if (new_crtc_state->has_pch_encoder) { 1871 /* if driving the PCH, we need FDI enabled */ 1872 assert_fdi_rx_pll_enabled(dev_priv, 1873 intel_crtc_pch_transcoder(crtc)); 1874 assert_fdi_tx_pll_enabled(dev_priv, 1875 (enum pipe) cpu_transcoder); 1876 } 1877 /* FIXME: assert CPU port conditions for SNB+ */ 1878 } 1879 1880 trace_intel_pipe_enable(crtc); 1881 1882 reg = PIPECONF(cpu_transcoder); 1883 val = intel_de_read(dev_priv, reg); 1884 if (val & PIPECONF_ENABLE) { 1885 /* we keep both pipes enabled on 830 */ 1886 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv)); 1887 return; 1888 } 1889 1890 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE); 1891 intel_de_posting_read(dev_priv, reg); 1892 1893 /* 1894 * Until the pipe starts PIPEDSL reads will return a stale value, 1895 * which causes an apparent vblank timestamp jump when PIPEDSL 1896 * resets to its proper value. That also messes up the frame count 1897 * when it's derived from the timestamps. So let's wait for the 1898 * pipe to start properly before we call drm_crtc_vblank_on() 1899 */ 1900 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 1901 intel_wait_for_pipe_scanline_moving(crtc); 1902 } 1903 1904 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) 1905 { 1906 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1907 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1908 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1909 enum pipe pipe = crtc->pipe; 1910 i915_reg_t reg; 1911 u32 val; 1912 1913 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe)); 1914 1915 /* 1916 * Make sure planes won't keep trying to pump pixels to us, 1917 * or we might hang the display. 1918 */ 1919 assert_planes_disabled(crtc); 1920 1921 trace_intel_pipe_disable(crtc); 1922 1923 reg = PIPECONF(cpu_transcoder); 1924 val = intel_de_read(dev_priv, reg); 1925 if ((val & PIPECONF_ENABLE) == 0) 1926 return; 1927 1928 /* 1929 * Double wide has implications for planes 1930 * so best keep it disabled when not needed. 1931 */ 1932 if (old_crtc_state->double_wide) 1933 val &= ~PIPECONF_DOUBLE_WIDE; 1934 1935 /* Don't disable pipe or pipe PLLs if needed */ 1936 if (!IS_I830(dev_priv)) 1937 val &= ~PIPECONF_ENABLE; 1938 1939 intel_de_write(dev_priv, reg, val); 1940 if ((val & PIPECONF_ENABLE) == 0) 1941 intel_wait_for_pipe_off(old_crtc_state); 1942 } 1943 1944 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv) 1945 { 1946 return IS_GEN(dev_priv, 2) ? 2048 : 4096; 1947 } 1948 1949 static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane) 1950 { 1951 if (!is_ccs_modifier(fb->modifier)) 1952 return false; 1953 1954 return plane >= fb->format->num_planes / 2; 1955 } 1956 1957 static bool is_gen12_ccs_modifier(u64 modifier) 1958 { 1959 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS || 1960 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS; 1961 1962 } 1963 1964 static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane) 1965 { 1966 return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane); 1967 } 1968 1969 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane) 1970 { 1971 if (is_ccs_modifier(fb->modifier)) 1972 return is_ccs_plane(fb, plane); 1973 1974 return plane == 1; 1975 } 1976 1977 static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane) 1978 { 1979 drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) || 1980 (main_plane && main_plane >= fb->format->num_planes / 2)); 1981 1982 return fb->format->num_planes / 2 + main_plane; 1983 } 1984 1985 static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane) 1986 { 1987 drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) || 1988 ccs_plane < fb->format->num_planes / 2); 1989 1990 return ccs_plane - fb->format->num_planes / 2; 1991 } 1992 1993 /* Return either the main plane's CCS or - if not a CCS FB - UV plane */ 1994 int intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane) 1995 { 1996 if (is_ccs_modifier(fb->modifier)) 1997 return main_to_ccs_plane(fb, main_plane); 1998 1999 return 1; 2000 } 2001 2002 bool 2003 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info, 2004 uint64_t modifier) 2005 { 2006 return info->is_yuv && 2007 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2); 2008 } 2009 2010 static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb, 2011 int color_plane) 2012 { 2013 return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) && 2014 color_plane == 1; 2015 } 2016 2017 static unsigned int 2018 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) 2019 { 2020 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2021 unsigned int cpp = fb->format->cpp[color_plane]; 2022 2023 switch (fb->modifier) { 2024 case DRM_FORMAT_MOD_LINEAR: 2025 return intel_tile_size(dev_priv); 2026 case I915_FORMAT_MOD_X_TILED: 2027 if (IS_GEN(dev_priv, 2)) 2028 return 128; 2029 else 2030 return 512; 2031 case I915_FORMAT_MOD_Y_TILED_CCS: 2032 if (is_ccs_plane(fb, color_plane)) 2033 return 128; 2034 fallthrough; 2035 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2036 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2037 if (is_ccs_plane(fb, color_plane)) 2038 return 64; 2039 fallthrough; 2040 case I915_FORMAT_MOD_Y_TILED: 2041 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv)) 2042 return 128; 2043 else 2044 return 512; 2045 case I915_FORMAT_MOD_Yf_TILED_CCS: 2046 if (is_ccs_plane(fb, color_plane)) 2047 return 128; 2048 fallthrough; 2049 case I915_FORMAT_MOD_Yf_TILED: 2050 switch (cpp) { 2051 case 1: 2052 return 64; 2053 case 2: 2054 case 4: 2055 return 128; 2056 case 8: 2057 case 16: 2058 return 256; 2059 default: 2060 MISSING_CASE(cpp); 2061 return cpp; 2062 } 2063 break; 2064 default: 2065 MISSING_CASE(fb->modifier); 2066 return cpp; 2067 } 2068 } 2069 2070 static unsigned int 2071 intel_tile_height(const struct drm_framebuffer *fb, int color_plane) 2072 { 2073 if (is_gen12_ccs_plane(fb, color_plane)) 2074 return 1; 2075 2076 return intel_tile_size(to_i915(fb->dev)) / 2077 intel_tile_width_bytes(fb, color_plane); 2078 } 2079 2080 /* Return the tile dimensions in pixel units */ 2081 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane, 2082 unsigned int *tile_width, 2083 unsigned int *tile_height) 2084 { 2085 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane); 2086 unsigned int cpp = fb->format->cpp[color_plane]; 2087 2088 *tile_width = tile_width_bytes / cpp; 2089 *tile_height = intel_tile_height(fb, color_plane); 2090 } 2091 2092 static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb, 2093 int color_plane) 2094 { 2095 unsigned int tile_width, tile_height; 2096 2097 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2098 2099 return fb->pitches[color_plane] * tile_height; 2100 } 2101 2102 unsigned int 2103 intel_fb_align_height(const struct drm_framebuffer *fb, 2104 int color_plane, unsigned int height) 2105 { 2106 unsigned int tile_height = intel_tile_height(fb, color_plane); 2107 2108 return ALIGN(height, tile_height); 2109 } 2110 2111 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 2112 { 2113 unsigned int size = 0; 2114 int i; 2115 2116 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 2117 size += rot_info->plane[i].width * rot_info->plane[i].height; 2118 2119 return size; 2120 } 2121 2122 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 2123 { 2124 unsigned int size = 0; 2125 int i; 2126 2127 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 2128 size += rem_info->plane[i].width * rem_info->plane[i].height; 2129 2130 return size; 2131 } 2132 2133 static void 2134 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, 2135 const struct drm_framebuffer *fb, 2136 unsigned int rotation) 2137 { 2138 view->type = I915_GGTT_VIEW_NORMAL; 2139 if (drm_rotation_90_or_270(rotation)) { 2140 view->type = I915_GGTT_VIEW_ROTATED; 2141 view->rotated = to_intel_framebuffer(fb)->rot_info; 2142 } 2143 } 2144 2145 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv) 2146 { 2147 if (IS_I830(dev_priv)) 2148 return 16 * 1024; 2149 else if (IS_I85X(dev_priv)) 2150 return 256; 2151 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) 2152 return 32; 2153 else 2154 return 4 * 1024; 2155 } 2156 2157 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 2158 { 2159 if (INTEL_GEN(dev_priv) >= 9) 2160 return 256 * 1024; 2161 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || 2162 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 2163 return 128 * 1024; 2164 else if (INTEL_GEN(dev_priv) >= 4) 2165 return 4 * 1024; 2166 else 2167 return 0; 2168 } 2169 2170 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, 2171 int color_plane) 2172 { 2173 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2174 2175 /* AUX_DIST needs only 4K alignment */ 2176 if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) || 2177 is_ccs_plane(fb, color_plane)) 2178 return 4096; 2179 2180 switch (fb->modifier) { 2181 case DRM_FORMAT_MOD_LINEAR: 2182 return intel_linear_alignment(dev_priv); 2183 case I915_FORMAT_MOD_X_TILED: 2184 if (INTEL_GEN(dev_priv) >= 9) 2185 return 256 * 1024; 2186 return 0; 2187 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2188 if (is_semiplanar_uv_plane(fb, color_plane)) 2189 return intel_tile_row_size(fb, color_plane); 2190 fallthrough; 2191 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2192 return 16 * 1024; 2193 case I915_FORMAT_MOD_Y_TILED_CCS: 2194 case I915_FORMAT_MOD_Yf_TILED_CCS: 2195 case I915_FORMAT_MOD_Y_TILED: 2196 if (INTEL_GEN(dev_priv) >= 12 && 2197 is_semiplanar_uv_plane(fb, color_plane)) 2198 return intel_tile_row_size(fb, color_plane); 2199 fallthrough; 2200 case I915_FORMAT_MOD_Yf_TILED: 2201 return 1 * 1024 * 1024; 2202 default: 2203 MISSING_CASE(fb->modifier); 2204 return 0; 2205 } 2206 } 2207 2208 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 2209 { 2210 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2211 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2212 2213 return INTEL_GEN(dev_priv) < 4 || 2214 (plane->has_fbc && 2215 plane_state->view.type == I915_GGTT_VIEW_NORMAL); 2216 } 2217 2218 struct i915_vma * 2219 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 2220 const struct i915_ggtt_view *view, 2221 bool uses_fence, 2222 unsigned long *out_flags) 2223 { 2224 struct drm_device *dev = fb->dev; 2225 struct drm_i915_private *dev_priv = to_i915(dev); 2226 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 2227 intel_wakeref_t wakeref; 2228 struct i915_vma *vma; 2229 unsigned int pinctl; 2230 u32 alignment; 2231 2232 if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj))) 2233 return ERR_PTR(-EINVAL); 2234 2235 alignment = intel_surf_alignment(fb, 0); 2236 if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment))) 2237 return ERR_PTR(-EINVAL); 2238 2239 /* Note that the w/a also requires 64 PTE of padding following the 2240 * bo. We currently fill all unused PTE with the shadow page and so 2241 * we should always have valid PTE following the scanout preventing 2242 * the VT-d warning. 2243 */ 2244 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) 2245 alignment = 256 * 1024; 2246 2247 /* 2248 * Global gtt pte registers are special registers which actually forward 2249 * writes to a chunk of system memory. Which means that there is no risk 2250 * that the register values disappear as soon as we call 2251 * intel_runtime_pm_put(), so it is correct to wrap only the 2252 * pin/unpin/fence and not more. 2253 */ 2254 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 2255 2256 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 2257 2258 /* 2259 * Valleyview is definitely limited to scanning out the first 2260 * 512MiB. Lets presume this behaviour was inherited from the 2261 * g4x display engine and that all earlier gen are similarly 2262 * limited. Testing suggests that it is a little more 2263 * complicated than this. For example, Cherryview appears quite 2264 * happy to scanout from anywhere within its global aperture. 2265 */ 2266 pinctl = 0; 2267 if (HAS_GMCH(dev_priv)) 2268 pinctl |= PIN_MAPPABLE; 2269 2270 vma = i915_gem_object_pin_to_display_plane(obj, 2271 alignment, view, pinctl); 2272 if (IS_ERR(vma)) 2273 goto err; 2274 2275 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { 2276 int ret; 2277 2278 /* 2279 * Install a fence for tiled scan-out. Pre-i965 always needs a 2280 * fence, whereas 965+ only requires a fence if using 2281 * framebuffer compression. For simplicity, we always, when 2282 * possible, install a fence as the cost is not that onerous. 2283 * 2284 * If we fail to fence the tiled scanout, then either the 2285 * modeset will reject the change (which is highly unlikely as 2286 * the affected systems, all but one, do not have unmappable 2287 * space) or we will not be able to enable full powersaving 2288 * techniques (also likely not to apply due to various limits 2289 * FBC and the like impose on the size of the buffer, which 2290 * presumably we violated anyway with this unmappable buffer). 2291 * Anyway, it is presumably better to stumble onwards with 2292 * something and try to run the system in a "less than optimal" 2293 * mode that matches the user configuration. 2294 */ 2295 ret = i915_vma_pin_fence(vma); 2296 if (ret != 0 && INTEL_GEN(dev_priv) < 4) { 2297 i915_gem_object_unpin_from_display_plane(vma); 2298 vma = ERR_PTR(ret); 2299 goto err; 2300 } 2301 2302 if (ret == 0 && vma->fence) 2303 *out_flags |= PLANE_HAS_FENCE; 2304 } 2305 2306 i915_vma_get(vma); 2307 err: 2308 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 2309 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 2310 return vma; 2311 } 2312 2313 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) 2314 { 2315 i915_gem_object_lock(vma->obj, NULL); 2316 if (flags & PLANE_HAS_FENCE) 2317 i915_vma_unpin_fence(vma); 2318 i915_gem_object_unpin_from_display_plane(vma); 2319 i915_gem_object_unlock(vma->obj); 2320 2321 i915_vma_put(vma); 2322 } 2323 2324 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane, 2325 unsigned int rotation) 2326 { 2327 if (drm_rotation_90_or_270(rotation)) 2328 return to_intel_framebuffer(fb)->rotated[color_plane].pitch; 2329 else 2330 return fb->pitches[color_plane]; 2331 } 2332 2333 /* 2334 * Convert the x/y offsets into a linear offset. 2335 * Only valid with 0/180 degree rotation, which is fine since linear 2336 * offset is only used with linear buffers on pre-hsw and tiled buffers 2337 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 2338 */ 2339 u32 intel_fb_xy_to_linear(int x, int y, 2340 const struct intel_plane_state *state, 2341 int color_plane) 2342 { 2343 const struct drm_framebuffer *fb = state->hw.fb; 2344 unsigned int cpp = fb->format->cpp[color_plane]; 2345 unsigned int pitch = state->color_plane[color_plane].stride; 2346 2347 return y * pitch + x * cpp; 2348 } 2349 2350 /* 2351 * Add the x/y offsets derived from fb->offsets[] to the user 2352 * specified plane src x/y offsets. The resulting x/y offsets 2353 * specify the start of scanout from the beginning of the gtt mapping. 2354 */ 2355 void intel_add_fb_offsets(int *x, int *y, 2356 const struct intel_plane_state *state, 2357 int color_plane) 2358 2359 { 2360 *x += state->color_plane[color_plane].x; 2361 *y += state->color_plane[color_plane].y; 2362 } 2363 2364 static u32 intel_adjust_tile_offset(int *x, int *y, 2365 unsigned int tile_width, 2366 unsigned int tile_height, 2367 unsigned int tile_size, 2368 unsigned int pitch_tiles, 2369 u32 old_offset, 2370 u32 new_offset) 2371 { 2372 unsigned int pitch_pixels = pitch_tiles * tile_width; 2373 unsigned int tiles; 2374 2375 WARN_ON(old_offset & (tile_size - 1)); 2376 WARN_ON(new_offset & (tile_size - 1)); 2377 WARN_ON(new_offset > old_offset); 2378 2379 tiles = (old_offset - new_offset) / tile_size; 2380 2381 *y += tiles / pitch_tiles * tile_height; 2382 *x += tiles % pitch_tiles * tile_width; 2383 2384 /* minimize x in case it got needlessly big */ 2385 *y += *x / pitch_pixels * tile_height; 2386 *x %= pitch_pixels; 2387 2388 return new_offset; 2389 } 2390 2391 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane) 2392 { 2393 return fb->modifier == DRM_FORMAT_MOD_LINEAR || 2394 is_gen12_ccs_plane(fb, color_plane); 2395 } 2396 2397 static u32 intel_adjust_aligned_offset(int *x, int *y, 2398 const struct drm_framebuffer *fb, 2399 int color_plane, 2400 unsigned int rotation, 2401 unsigned int pitch, 2402 u32 old_offset, u32 new_offset) 2403 { 2404 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2405 unsigned int cpp = fb->format->cpp[color_plane]; 2406 2407 drm_WARN_ON(&dev_priv->drm, new_offset > old_offset); 2408 2409 if (!is_surface_linear(fb, color_plane)) { 2410 unsigned int tile_size, tile_width, tile_height; 2411 unsigned int pitch_tiles; 2412 2413 tile_size = intel_tile_size(dev_priv); 2414 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2415 2416 if (drm_rotation_90_or_270(rotation)) { 2417 pitch_tiles = pitch / tile_height; 2418 swap(tile_width, tile_height); 2419 } else { 2420 pitch_tiles = pitch / (tile_width * cpp); 2421 } 2422 2423 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2424 tile_size, pitch_tiles, 2425 old_offset, new_offset); 2426 } else { 2427 old_offset += *y * pitch + *x * cpp; 2428 2429 *y = (old_offset - new_offset) / pitch; 2430 *x = ((old_offset - new_offset) - *y * pitch) / cpp; 2431 } 2432 2433 return new_offset; 2434 } 2435 2436 /* 2437 * Adjust the tile offset by moving the difference into 2438 * the x/y offsets. 2439 */ 2440 static u32 intel_plane_adjust_aligned_offset(int *x, int *y, 2441 const struct intel_plane_state *state, 2442 int color_plane, 2443 u32 old_offset, u32 new_offset) 2444 { 2445 return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane, 2446 state->hw.rotation, 2447 state->color_plane[color_plane].stride, 2448 old_offset, new_offset); 2449 } 2450 2451 /* 2452 * Computes the aligned offset to the base tile and adjusts 2453 * x, y. bytes per pixel is assumed to be a power-of-two. 2454 * 2455 * In the 90/270 rotated case, x and y are assumed 2456 * to be already rotated to match the rotated GTT view, and 2457 * pitch is the tile_height aligned framebuffer height. 2458 * 2459 * This function is used when computing the derived information 2460 * under intel_framebuffer, so using any of that information 2461 * here is not allowed. Anything under drm_framebuffer can be 2462 * used. This is why the user has to pass in the pitch since it 2463 * is specified in the rotated orientation. 2464 */ 2465 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv, 2466 int *x, int *y, 2467 const struct drm_framebuffer *fb, 2468 int color_plane, 2469 unsigned int pitch, 2470 unsigned int rotation, 2471 u32 alignment) 2472 { 2473 unsigned int cpp = fb->format->cpp[color_plane]; 2474 u32 offset, offset_aligned; 2475 2476 if (!is_surface_linear(fb, color_plane)) { 2477 unsigned int tile_size, tile_width, tile_height; 2478 unsigned int tile_rows, tiles, pitch_tiles; 2479 2480 tile_size = intel_tile_size(dev_priv); 2481 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2482 2483 if (drm_rotation_90_or_270(rotation)) { 2484 pitch_tiles = pitch / tile_height; 2485 swap(tile_width, tile_height); 2486 } else { 2487 pitch_tiles = pitch / (tile_width * cpp); 2488 } 2489 2490 tile_rows = *y / tile_height; 2491 *y %= tile_height; 2492 2493 tiles = *x / tile_width; 2494 *x %= tile_width; 2495 2496 offset = (tile_rows * pitch_tiles + tiles) * tile_size; 2497 2498 offset_aligned = offset; 2499 if (alignment) 2500 offset_aligned = rounddown(offset_aligned, alignment); 2501 2502 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2503 tile_size, pitch_tiles, 2504 offset, offset_aligned); 2505 } else { 2506 offset = *y * pitch + *x * cpp; 2507 offset_aligned = offset; 2508 if (alignment) { 2509 offset_aligned = rounddown(offset_aligned, alignment); 2510 *y = (offset % alignment) / pitch; 2511 *x = ((offset % alignment) - *y * pitch) / cpp; 2512 } else { 2513 *y = *x = 0; 2514 } 2515 } 2516 2517 return offset_aligned; 2518 } 2519 2520 static u32 intel_plane_compute_aligned_offset(int *x, int *y, 2521 const struct intel_plane_state *state, 2522 int color_plane) 2523 { 2524 struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane); 2525 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 2526 const struct drm_framebuffer *fb = state->hw.fb; 2527 unsigned int rotation = state->hw.rotation; 2528 int pitch = state->color_plane[color_plane].stride; 2529 u32 alignment; 2530 2531 if (intel_plane->id == PLANE_CURSOR) 2532 alignment = intel_cursor_alignment(dev_priv); 2533 else 2534 alignment = intel_surf_alignment(fb, color_plane); 2535 2536 return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane, 2537 pitch, rotation, alignment); 2538 } 2539 2540 /* Convert the fb->offset[] into x/y offsets */ 2541 static int intel_fb_offset_to_xy(int *x, int *y, 2542 const struct drm_framebuffer *fb, 2543 int color_plane) 2544 { 2545 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2546 unsigned int height; 2547 u32 alignment; 2548 2549 if (INTEL_GEN(dev_priv) >= 12 && 2550 is_semiplanar_uv_plane(fb, color_plane)) 2551 alignment = intel_tile_row_size(fb, color_plane); 2552 else if (fb->modifier != DRM_FORMAT_MOD_LINEAR) 2553 alignment = intel_tile_size(dev_priv); 2554 else 2555 alignment = 0; 2556 2557 if (alignment != 0 && fb->offsets[color_plane] % alignment) { 2558 drm_dbg_kms(&dev_priv->drm, 2559 "Misaligned offset 0x%08x for color plane %d\n", 2560 fb->offsets[color_plane], color_plane); 2561 return -EINVAL; 2562 } 2563 2564 height = drm_framebuffer_plane_height(fb->height, fb, color_plane); 2565 height = ALIGN(height, intel_tile_height(fb, color_plane)); 2566 2567 /* Catch potential overflows early */ 2568 if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]), 2569 fb->offsets[color_plane])) { 2570 drm_dbg_kms(&dev_priv->drm, 2571 "Bad offset 0x%08x or pitch %d for color plane %d\n", 2572 fb->offsets[color_plane], fb->pitches[color_plane], 2573 color_plane); 2574 return -ERANGE; 2575 } 2576 2577 *x = 0; 2578 *y = 0; 2579 2580 intel_adjust_aligned_offset(x, y, 2581 fb, color_plane, DRM_MODE_ROTATE_0, 2582 fb->pitches[color_plane], 2583 fb->offsets[color_plane], 0); 2584 2585 return 0; 2586 } 2587 2588 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) 2589 { 2590 switch (fb_modifier) { 2591 case I915_FORMAT_MOD_X_TILED: 2592 return I915_TILING_X; 2593 case I915_FORMAT_MOD_Y_TILED: 2594 case I915_FORMAT_MOD_Y_TILED_CCS: 2595 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2596 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2597 return I915_TILING_Y; 2598 default: 2599 return I915_TILING_NONE; 2600 } 2601 } 2602 2603 /* 2604 * From the Sky Lake PRM: 2605 * "The Color Control Surface (CCS) contains the compression status of 2606 * the cache-line pairs. The compression state of the cache-line pair 2607 * is specified by 2 bits in the CCS. Each CCS cache-line represents 2608 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 2609 * cache-line-pairs. CCS is always Y tiled." 2610 * 2611 * Since cache line pairs refers to horizontally adjacent cache lines, 2612 * each cache line in the CCS corresponds to an area of 32x16 cache 2613 * lines on the main surface. Since each pixel is 4 bytes, this gives 2614 * us a ratio of one byte in the CCS for each 8x16 pixels in the 2615 * main surface. 2616 */ 2617 static const struct drm_format_info skl_ccs_formats[] = { 2618 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 2619 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2620 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 2621 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2622 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 2623 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2624 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 2625 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2626 }; 2627 2628 /* 2629 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the 2630 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles 2631 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of 2632 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in 2633 * the main surface. 2634 */ 2635 static const struct drm_format_info gen12_ccs_formats[] = { 2636 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 2637 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2638 .hsub = 1, .vsub = 1, }, 2639 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 2640 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2641 .hsub = 1, .vsub = 1, }, 2642 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 2643 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2644 .hsub = 1, .vsub = 1, .has_alpha = true }, 2645 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 2646 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2647 .hsub = 1, .vsub = 1, .has_alpha = true }, 2648 { .format = DRM_FORMAT_YUYV, .num_planes = 2, 2649 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2650 .hsub = 2, .vsub = 1, .is_yuv = true }, 2651 { .format = DRM_FORMAT_YVYU, .num_planes = 2, 2652 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2653 .hsub = 2, .vsub = 1, .is_yuv = true }, 2654 { .format = DRM_FORMAT_UYVY, .num_planes = 2, 2655 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2656 .hsub = 2, .vsub = 1, .is_yuv = true }, 2657 { .format = DRM_FORMAT_VYUY, .num_planes = 2, 2658 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2659 .hsub = 2, .vsub = 1, .is_yuv = true }, 2660 { .format = DRM_FORMAT_NV12, .num_planes = 4, 2661 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 }, 2662 .hsub = 2, .vsub = 2, .is_yuv = true }, 2663 { .format = DRM_FORMAT_P010, .num_planes = 4, 2664 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2665 .hsub = 2, .vsub = 2, .is_yuv = true }, 2666 { .format = DRM_FORMAT_P012, .num_planes = 4, 2667 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2668 .hsub = 2, .vsub = 2, .is_yuv = true }, 2669 { .format = DRM_FORMAT_P016, .num_planes = 4, 2670 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2671 .hsub = 2, .vsub = 2, .is_yuv = true }, 2672 }; 2673 2674 static const struct drm_format_info * 2675 lookup_format_info(const struct drm_format_info formats[], 2676 int num_formats, u32 format) 2677 { 2678 int i; 2679 2680 for (i = 0; i < num_formats; i++) { 2681 if (formats[i].format == format) 2682 return &formats[i]; 2683 } 2684 2685 return NULL; 2686 } 2687 2688 static const struct drm_format_info * 2689 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 2690 { 2691 switch (cmd->modifier[0]) { 2692 case I915_FORMAT_MOD_Y_TILED_CCS: 2693 case I915_FORMAT_MOD_Yf_TILED_CCS: 2694 return lookup_format_info(skl_ccs_formats, 2695 ARRAY_SIZE(skl_ccs_formats), 2696 cmd->pixel_format); 2697 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2698 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2699 return lookup_format_info(gen12_ccs_formats, 2700 ARRAY_SIZE(gen12_ccs_formats), 2701 cmd->pixel_format); 2702 default: 2703 return NULL; 2704 } 2705 } 2706 2707 bool is_ccs_modifier(u64 modifier) 2708 { 2709 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS || 2710 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS || 2711 modifier == I915_FORMAT_MOD_Y_TILED_CCS || 2712 modifier == I915_FORMAT_MOD_Yf_TILED_CCS; 2713 } 2714 2715 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane) 2716 { 2717 return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)], 2718 512) * 64; 2719 } 2720 2721 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 2722 u32 pixel_format, u64 modifier) 2723 { 2724 struct intel_crtc *crtc; 2725 struct intel_plane *plane; 2726 2727 /* 2728 * We assume the primary plane for pipe A has 2729 * the highest stride limits of them all, 2730 * if in case pipe A is disabled, use the first pipe from pipe_mask. 2731 */ 2732 crtc = intel_get_first_crtc(dev_priv); 2733 if (!crtc) 2734 return 0; 2735 2736 plane = to_intel_plane(crtc->base.primary); 2737 2738 return plane->max_stride(plane, pixel_format, modifier, 2739 DRM_MODE_ROTATE_0); 2740 } 2741 2742 static 2743 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, 2744 u32 pixel_format, u64 modifier) 2745 { 2746 /* 2747 * Arbitrary limit for gen4+ chosen to match the 2748 * render engine max stride. 2749 * 2750 * The new CCS hash mode makes remapping impossible 2751 */ 2752 if (!is_ccs_modifier(modifier)) { 2753 if (INTEL_GEN(dev_priv) >= 7) 2754 return 256*1024; 2755 else if (INTEL_GEN(dev_priv) >= 4) 2756 return 128*1024; 2757 } 2758 2759 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); 2760 } 2761 2762 static u32 2763 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) 2764 { 2765 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2766 u32 tile_width; 2767 2768 if (is_surface_linear(fb, color_plane)) { 2769 u32 max_stride = intel_plane_fb_max_stride(dev_priv, 2770 fb->format->format, 2771 fb->modifier); 2772 2773 /* 2774 * To make remapping with linear generally feasible 2775 * we need the stride to be page aligned. 2776 */ 2777 if (fb->pitches[color_plane] > max_stride && 2778 !is_ccs_modifier(fb->modifier)) 2779 return intel_tile_size(dev_priv); 2780 else 2781 return 64; 2782 } 2783 2784 tile_width = intel_tile_width_bytes(fb, color_plane); 2785 if (is_ccs_modifier(fb->modifier)) { 2786 /* 2787 * Display WA #0531: skl,bxt,kbl,glk 2788 * 2789 * Render decompression and plane width > 3840 2790 * combined with horizontal panning requires the 2791 * plane stride to be a multiple of 4. We'll just 2792 * require the entire fb to accommodate that to avoid 2793 * potential runtime errors at plane configuration time. 2794 */ 2795 if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840) 2796 tile_width *= 4; 2797 /* 2798 * The main surface pitch must be padded to a multiple of four 2799 * tile widths. 2800 */ 2801 else if (INTEL_GEN(dev_priv) >= 12) 2802 tile_width *= 4; 2803 } 2804 return tile_width; 2805 } 2806 2807 bool intel_plane_can_remap(const struct intel_plane_state *plane_state) 2808 { 2809 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2810 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2811 const struct drm_framebuffer *fb = plane_state->hw.fb; 2812 int i; 2813 2814 /* We don't want to deal with remapping with cursors */ 2815 if (plane->id == PLANE_CURSOR) 2816 return false; 2817 2818 /* 2819 * The display engine limits already match/exceed the 2820 * render engine limits, so not much point in remapping. 2821 * Would also need to deal with the fence POT alignment 2822 * and gen2 2KiB GTT tile size. 2823 */ 2824 if (INTEL_GEN(dev_priv) < 4) 2825 return false; 2826 2827 /* 2828 * The new CCS hash mode isn't compatible with remapping as 2829 * the virtual address of the pages affects the compressed data. 2830 */ 2831 if (is_ccs_modifier(fb->modifier)) 2832 return false; 2833 2834 /* Linear needs a page aligned stride for remapping */ 2835 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) { 2836 unsigned int alignment = intel_tile_size(dev_priv) - 1; 2837 2838 for (i = 0; i < fb->format->num_planes; i++) { 2839 if (fb->pitches[i] & alignment) 2840 return false; 2841 } 2842 } 2843 2844 return true; 2845 } 2846 2847 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state) 2848 { 2849 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2850 const struct drm_framebuffer *fb = plane_state->hw.fb; 2851 unsigned int rotation = plane_state->hw.rotation; 2852 u32 stride, max_stride; 2853 2854 /* 2855 * No remapping for invisible planes since we don't have 2856 * an actual source viewport to remap. 2857 */ 2858 if (!plane_state->uapi.visible) 2859 return false; 2860 2861 if (!intel_plane_can_remap(plane_state)) 2862 return false; 2863 2864 /* 2865 * FIXME: aux plane limits on gen9+ are 2866 * unclear in Bspec, for now no checking. 2867 */ 2868 stride = intel_fb_pitch(fb, 0, rotation); 2869 max_stride = plane->max_stride(plane, fb->format->format, 2870 fb->modifier, rotation); 2871 2872 return stride > max_stride; 2873 } 2874 2875 static void 2876 intel_fb_plane_get_subsampling(int *hsub, int *vsub, 2877 const struct drm_framebuffer *fb, 2878 int color_plane) 2879 { 2880 int main_plane; 2881 2882 if (color_plane == 0) { 2883 *hsub = 1; 2884 *vsub = 1; 2885 2886 return; 2887 } 2888 2889 /* 2890 * TODO: Deduct the subsampling from the char block for all CCS 2891 * formats and planes. 2892 */ 2893 if (!is_gen12_ccs_plane(fb, color_plane)) { 2894 *hsub = fb->format->hsub; 2895 *vsub = fb->format->vsub; 2896 2897 return; 2898 } 2899 2900 main_plane = ccs_to_main_plane(fb, color_plane); 2901 *hsub = drm_format_info_block_width(fb->format, color_plane) / 2902 drm_format_info_block_width(fb->format, main_plane); 2903 2904 /* 2905 * The min stride check in the core framebuffer_check() function 2906 * assumes that format->hsub applies to every plane except for the 2907 * first plane. That's incorrect for the CCS AUX plane of the first 2908 * plane, but for the above check to pass we must define the block 2909 * width with that subsampling applied to it. Adjust the width here 2910 * accordingly, so we can calculate the actual subsampling factor. 2911 */ 2912 if (main_plane == 0) 2913 *hsub *= fb->format->hsub; 2914 2915 *vsub = 32; 2916 } 2917 static int 2918 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y) 2919 { 2920 struct drm_i915_private *i915 = to_i915(fb->dev); 2921 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2922 int main_plane; 2923 int hsub, vsub; 2924 int tile_width, tile_height; 2925 int ccs_x, ccs_y; 2926 int main_x, main_y; 2927 2928 if (!is_ccs_plane(fb, ccs_plane)) 2929 return 0; 2930 2931 intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height); 2932 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 2933 2934 tile_width *= hsub; 2935 tile_height *= vsub; 2936 2937 ccs_x = (x * hsub) % tile_width; 2938 ccs_y = (y * vsub) % tile_height; 2939 2940 main_plane = ccs_to_main_plane(fb, ccs_plane); 2941 main_x = intel_fb->normal[main_plane].x % tile_width; 2942 main_y = intel_fb->normal[main_plane].y % tile_height; 2943 2944 /* 2945 * CCS doesn't have its own x/y offset register, so the intra CCS tile 2946 * x/y offsets must match between CCS and the main surface. 2947 */ 2948 if (main_x != ccs_x || main_y != ccs_y) { 2949 drm_dbg_kms(&i915->drm, 2950 "Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n", 2951 main_x, main_y, 2952 ccs_x, ccs_y, 2953 intel_fb->normal[main_plane].x, 2954 intel_fb->normal[main_plane].y, 2955 x, y); 2956 return -EINVAL; 2957 } 2958 2959 return 0; 2960 } 2961 2962 static void 2963 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane) 2964 { 2965 int main_plane = is_ccs_plane(fb, color_plane) ? 2966 ccs_to_main_plane(fb, color_plane) : 0; 2967 int main_hsub, main_vsub; 2968 int hsub, vsub; 2969 2970 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane); 2971 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane); 2972 *w = fb->width / main_hsub / hsub; 2973 *h = fb->height / main_vsub / vsub; 2974 } 2975 2976 /* 2977 * Setup the rotated view for an FB plane and return the size the GTT mapping 2978 * requires for this view. 2979 */ 2980 static u32 2981 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info, 2982 u32 gtt_offset_rotated, int x, int y, 2983 unsigned int width, unsigned int height, 2984 unsigned int tile_size, 2985 unsigned int tile_width, unsigned int tile_height, 2986 struct drm_framebuffer *fb) 2987 { 2988 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2989 struct intel_rotation_info *rot_info = &intel_fb->rot_info; 2990 unsigned int pitch_tiles; 2991 struct drm_rect r; 2992 2993 /* Y or Yf modifiers required for 90/270 rotation */ 2994 if (fb->modifier != I915_FORMAT_MOD_Y_TILED && 2995 fb->modifier != I915_FORMAT_MOD_Yf_TILED) 2996 return 0; 2997 2998 if (drm_WARN_ON(fb->dev, plane >= ARRAY_SIZE(rot_info->plane))) 2999 return 0; 3000 3001 rot_info->plane[plane] = *plane_info; 3002 3003 intel_fb->rotated[plane].pitch = plane_info->height * tile_height; 3004 3005 /* rotate the x/y offsets to match the GTT view */ 3006 drm_rect_init(&r, x, y, width, height); 3007 drm_rect_rotate(&r, 3008 plane_info->width * tile_width, 3009 plane_info->height * tile_height, 3010 DRM_MODE_ROTATE_270); 3011 x = r.x1; 3012 y = r.y1; 3013 3014 /* rotate the tile dimensions to match the GTT view */ 3015 pitch_tiles = intel_fb->rotated[plane].pitch / tile_height; 3016 swap(tile_width, tile_height); 3017 3018 /* 3019 * We only keep the x/y offsets, so push all of the 3020 * gtt offset into the x/y offsets. 3021 */ 3022 intel_adjust_tile_offset(&x, &y, 3023 tile_width, tile_height, 3024 tile_size, pitch_tiles, 3025 gtt_offset_rotated * tile_size, 0); 3026 3027 /* 3028 * First pixel of the framebuffer from 3029 * the start of the rotated gtt mapping. 3030 */ 3031 intel_fb->rotated[plane].x = x; 3032 intel_fb->rotated[plane].y = y; 3033 3034 return plane_info->width * plane_info->height; 3035 } 3036 3037 static int 3038 intel_fill_fb_info(struct drm_i915_private *dev_priv, 3039 struct drm_framebuffer *fb) 3040 { 3041 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 3042 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 3043 u32 gtt_offset_rotated = 0; 3044 unsigned int max_size = 0; 3045 int i, num_planes = fb->format->num_planes; 3046 unsigned int tile_size = intel_tile_size(dev_priv); 3047 3048 for (i = 0; i < num_planes; i++) { 3049 unsigned int width, height; 3050 unsigned int cpp, size; 3051 u32 offset; 3052 int x, y; 3053 int ret; 3054 3055 cpp = fb->format->cpp[i]; 3056 intel_fb_plane_dims(&width, &height, fb, i); 3057 3058 ret = intel_fb_offset_to_xy(&x, &y, fb, i); 3059 if (ret) { 3060 drm_dbg_kms(&dev_priv->drm, 3061 "bad fb plane %d offset: 0x%x\n", 3062 i, fb->offsets[i]); 3063 return ret; 3064 } 3065 3066 ret = intel_fb_check_ccs_xy(fb, i, x, y); 3067 if (ret) 3068 return ret; 3069 3070 /* 3071 * The fence (if used) is aligned to the start of the object 3072 * so having the framebuffer wrap around across the edge of the 3073 * fenced region doesn't really work. We have no API to configure 3074 * the fence start offset within the object (nor could we probably 3075 * on gen2/3). So it's just easier if we just require that the 3076 * fb layout agrees with the fence layout. We already check that the 3077 * fb stride matches the fence stride elsewhere. 3078 */ 3079 if (i == 0 && i915_gem_object_is_tiled(obj) && 3080 (x + width) * cpp > fb->pitches[i]) { 3081 drm_dbg_kms(&dev_priv->drm, 3082 "bad fb plane %d offset: 0x%x\n", 3083 i, fb->offsets[i]); 3084 return -EINVAL; 3085 } 3086 3087 /* 3088 * First pixel of the framebuffer from 3089 * the start of the normal gtt mapping. 3090 */ 3091 intel_fb->normal[i].x = x; 3092 intel_fb->normal[i].y = y; 3093 3094 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i, 3095 fb->pitches[i], 3096 DRM_MODE_ROTATE_0, 3097 tile_size); 3098 offset /= tile_size; 3099 3100 if (!is_surface_linear(fb, i)) { 3101 struct intel_remapped_plane_info plane_info; 3102 unsigned int tile_width, tile_height; 3103 3104 intel_tile_dims(fb, i, &tile_width, &tile_height); 3105 3106 plane_info.offset = offset; 3107 plane_info.stride = DIV_ROUND_UP(fb->pitches[i], 3108 tile_width * cpp); 3109 plane_info.width = DIV_ROUND_UP(x + width, tile_width); 3110 plane_info.height = DIV_ROUND_UP(y + height, 3111 tile_height); 3112 3113 /* how many tiles does this plane need */ 3114 size = plane_info.stride * plane_info.height; 3115 /* 3116 * If the plane isn't horizontally tile aligned, 3117 * we need one more tile. 3118 */ 3119 if (x != 0) 3120 size++; 3121 3122 gtt_offset_rotated += 3123 setup_fb_rotation(i, &plane_info, 3124 gtt_offset_rotated, 3125 x, y, width, height, 3126 tile_size, 3127 tile_width, tile_height, 3128 fb); 3129 } else { 3130 size = DIV_ROUND_UP((y + height) * fb->pitches[i] + 3131 x * cpp, tile_size); 3132 } 3133 3134 /* how many tiles in total needed in the bo */ 3135 max_size = max(max_size, offset + size); 3136 } 3137 3138 if (mul_u32_u32(max_size, tile_size) > obj->base.size) { 3139 drm_dbg_kms(&dev_priv->drm, 3140 "fb too big for bo (need %llu bytes, have %zu bytes)\n", 3141 mul_u32_u32(max_size, tile_size), obj->base.size); 3142 return -EINVAL; 3143 } 3144 3145 return 0; 3146 } 3147 3148 static void 3149 intel_plane_remap_gtt(struct intel_plane_state *plane_state) 3150 { 3151 struct drm_i915_private *dev_priv = 3152 to_i915(plane_state->uapi.plane->dev); 3153 struct drm_framebuffer *fb = plane_state->hw.fb; 3154 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 3155 struct intel_rotation_info *info = &plane_state->view.rotated; 3156 unsigned int rotation = plane_state->hw.rotation; 3157 int i, num_planes = fb->format->num_planes; 3158 unsigned int tile_size = intel_tile_size(dev_priv); 3159 unsigned int src_x, src_y; 3160 unsigned int src_w, src_h; 3161 u32 gtt_offset = 0; 3162 3163 memset(&plane_state->view, 0, sizeof(plane_state->view)); 3164 plane_state->view.type = drm_rotation_90_or_270(rotation) ? 3165 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED; 3166 3167 src_x = plane_state->uapi.src.x1 >> 16; 3168 src_y = plane_state->uapi.src.y1 >> 16; 3169 src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 3170 src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 3171 3172 drm_WARN_ON(&dev_priv->drm, is_ccs_modifier(fb->modifier)); 3173 3174 /* Make src coordinates relative to the viewport */ 3175 drm_rect_translate(&plane_state->uapi.src, 3176 -(src_x << 16), -(src_y << 16)); 3177 3178 /* Rotate src coordinates to match rotated GTT view */ 3179 if (drm_rotation_90_or_270(rotation)) 3180 drm_rect_rotate(&plane_state->uapi.src, 3181 src_w << 16, src_h << 16, 3182 DRM_MODE_ROTATE_270); 3183 3184 for (i = 0; i < num_planes; i++) { 3185 unsigned int hsub = i ? fb->format->hsub : 1; 3186 unsigned int vsub = i ? fb->format->vsub : 1; 3187 unsigned int cpp = fb->format->cpp[i]; 3188 unsigned int tile_width, tile_height; 3189 unsigned int width, height; 3190 unsigned int pitch_tiles; 3191 unsigned int x, y; 3192 u32 offset; 3193 3194 intel_tile_dims(fb, i, &tile_width, &tile_height); 3195 3196 x = src_x / hsub; 3197 y = src_y / vsub; 3198 width = src_w / hsub; 3199 height = src_h / vsub; 3200 3201 /* 3202 * First pixel of the src viewport from the 3203 * start of the normal gtt mapping. 3204 */ 3205 x += intel_fb->normal[i].x; 3206 y += intel_fb->normal[i].y; 3207 3208 offset = intel_compute_aligned_offset(dev_priv, &x, &y, 3209 fb, i, fb->pitches[i], 3210 DRM_MODE_ROTATE_0, tile_size); 3211 offset /= tile_size; 3212 3213 drm_WARN_ON(&dev_priv->drm, i >= ARRAY_SIZE(info->plane)); 3214 info->plane[i].offset = offset; 3215 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], 3216 tile_width * cpp); 3217 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width); 3218 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height); 3219 3220 if (drm_rotation_90_or_270(rotation)) { 3221 struct drm_rect r; 3222 3223 /* rotate the x/y offsets to match the GTT view */ 3224 drm_rect_init(&r, x, y, width, height); 3225 drm_rect_rotate(&r, 3226 info->plane[i].width * tile_width, 3227 info->plane[i].height * tile_height, 3228 DRM_MODE_ROTATE_270); 3229 x = r.x1; 3230 y = r.y1; 3231 3232 pitch_tiles = info->plane[i].height; 3233 plane_state->color_plane[i].stride = pitch_tiles * tile_height; 3234 3235 /* rotate the tile dimensions to match the GTT view */ 3236 swap(tile_width, tile_height); 3237 } else { 3238 pitch_tiles = info->plane[i].width; 3239 plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp; 3240 } 3241 3242 /* 3243 * We only keep the x/y offsets, so push all of the 3244 * gtt offset into the x/y offsets. 3245 */ 3246 intel_adjust_tile_offset(&x, &y, 3247 tile_width, tile_height, 3248 tile_size, pitch_tiles, 3249 gtt_offset * tile_size, 0); 3250 3251 gtt_offset += info->plane[i].width * info->plane[i].height; 3252 3253 plane_state->color_plane[i].offset = 0; 3254 plane_state->color_plane[i].x = x; 3255 plane_state->color_plane[i].y = y; 3256 } 3257 } 3258 3259 static int 3260 intel_plane_compute_gtt(struct intel_plane_state *plane_state) 3261 { 3262 const struct intel_framebuffer *fb = 3263 to_intel_framebuffer(plane_state->hw.fb); 3264 unsigned int rotation = plane_state->hw.rotation; 3265 int i, num_planes; 3266 3267 if (!fb) 3268 return 0; 3269 3270 num_planes = fb->base.format->num_planes; 3271 3272 if (intel_plane_needs_remap(plane_state)) { 3273 intel_plane_remap_gtt(plane_state); 3274 3275 /* 3276 * Sometimes even remapping can't overcome 3277 * the stride limitations :( Can happen with 3278 * big plane sizes and suitably misaligned 3279 * offsets. 3280 */ 3281 return intel_plane_check_stride(plane_state); 3282 } 3283 3284 intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation); 3285 3286 for (i = 0; i < num_planes; i++) { 3287 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation); 3288 plane_state->color_plane[i].offset = 0; 3289 3290 if (drm_rotation_90_or_270(rotation)) { 3291 plane_state->color_plane[i].x = fb->rotated[i].x; 3292 plane_state->color_plane[i].y = fb->rotated[i].y; 3293 } else { 3294 plane_state->color_plane[i].x = fb->normal[i].x; 3295 plane_state->color_plane[i].y = fb->normal[i].y; 3296 } 3297 } 3298 3299 /* Rotate src coordinates to match rotated GTT view */ 3300 if (drm_rotation_90_or_270(rotation)) 3301 drm_rect_rotate(&plane_state->uapi.src, 3302 fb->base.width << 16, fb->base.height << 16, 3303 DRM_MODE_ROTATE_270); 3304 3305 return intel_plane_check_stride(plane_state); 3306 } 3307 3308 static int i9xx_format_to_fourcc(int format) 3309 { 3310 switch (format) { 3311 case DISPPLANE_8BPP: 3312 return DRM_FORMAT_C8; 3313 case DISPPLANE_BGRA555: 3314 return DRM_FORMAT_ARGB1555; 3315 case DISPPLANE_BGRX555: 3316 return DRM_FORMAT_XRGB1555; 3317 case DISPPLANE_BGRX565: 3318 return DRM_FORMAT_RGB565; 3319 default: 3320 case DISPPLANE_BGRX888: 3321 return DRM_FORMAT_XRGB8888; 3322 case DISPPLANE_RGBX888: 3323 return DRM_FORMAT_XBGR8888; 3324 case DISPPLANE_BGRA888: 3325 return DRM_FORMAT_ARGB8888; 3326 case DISPPLANE_RGBA888: 3327 return DRM_FORMAT_ABGR8888; 3328 case DISPPLANE_BGRX101010: 3329 return DRM_FORMAT_XRGB2101010; 3330 case DISPPLANE_RGBX101010: 3331 return DRM_FORMAT_XBGR2101010; 3332 case DISPPLANE_BGRA101010: 3333 return DRM_FORMAT_ARGB2101010; 3334 case DISPPLANE_RGBA101010: 3335 return DRM_FORMAT_ABGR2101010; 3336 case DISPPLANE_RGBX161616: 3337 return DRM_FORMAT_XBGR16161616F; 3338 } 3339 } 3340 3341 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha) 3342 { 3343 switch (format) { 3344 case PLANE_CTL_FORMAT_RGB_565: 3345 return DRM_FORMAT_RGB565; 3346 case PLANE_CTL_FORMAT_NV12: 3347 return DRM_FORMAT_NV12; 3348 case PLANE_CTL_FORMAT_XYUV: 3349 return DRM_FORMAT_XYUV8888; 3350 case PLANE_CTL_FORMAT_P010: 3351 return DRM_FORMAT_P010; 3352 case PLANE_CTL_FORMAT_P012: 3353 return DRM_FORMAT_P012; 3354 case PLANE_CTL_FORMAT_P016: 3355 return DRM_FORMAT_P016; 3356 case PLANE_CTL_FORMAT_Y210: 3357 return DRM_FORMAT_Y210; 3358 case PLANE_CTL_FORMAT_Y212: 3359 return DRM_FORMAT_Y212; 3360 case PLANE_CTL_FORMAT_Y216: 3361 return DRM_FORMAT_Y216; 3362 case PLANE_CTL_FORMAT_Y410: 3363 return DRM_FORMAT_XVYU2101010; 3364 case PLANE_CTL_FORMAT_Y412: 3365 return DRM_FORMAT_XVYU12_16161616; 3366 case PLANE_CTL_FORMAT_Y416: 3367 return DRM_FORMAT_XVYU16161616; 3368 default: 3369 case PLANE_CTL_FORMAT_XRGB_8888: 3370 if (rgb_order) { 3371 if (alpha) 3372 return DRM_FORMAT_ABGR8888; 3373 else 3374 return DRM_FORMAT_XBGR8888; 3375 } else { 3376 if (alpha) 3377 return DRM_FORMAT_ARGB8888; 3378 else 3379 return DRM_FORMAT_XRGB8888; 3380 } 3381 case PLANE_CTL_FORMAT_XRGB_2101010: 3382 if (rgb_order) { 3383 if (alpha) 3384 return DRM_FORMAT_ABGR2101010; 3385 else 3386 return DRM_FORMAT_XBGR2101010; 3387 } else { 3388 if (alpha) 3389 return DRM_FORMAT_ARGB2101010; 3390 else 3391 return DRM_FORMAT_XRGB2101010; 3392 } 3393 case PLANE_CTL_FORMAT_XRGB_16161616F: 3394 if (rgb_order) { 3395 if (alpha) 3396 return DRM_FORMAT_ABGR16161616F; 3397 else 3398 return DRM_FORMAT_XBGR16161616F; 3399 } else { 3400 if (alpha) 3401 return DRM_FORMAT_ARGB16161616F; 3402 else 3403 return DRM_FORMAT_XRGB16161616F; 3404 } 3405 } 3406 } 3407 3408 static struct i915_vma * 3409 initial_plane_vma(struct drm_i915_private *i915, 3410 struct intel_initial_plane_config *plane_config) 3411 { 3412 struct drm_i915_gem_object *obj; 3413 struct i915_vma *vma; 3414 u32 base, size; 3415 3416 if (plane_config->size == 0) 3417 return NULL; 3418 3419 base = round_down(plane_config->base, 3420 I915_GTT_MIN_ALIGNMENT); 3421 size = round_up(plane_config->base + plane_config->size, 3422 I915_GTT_MIN_ALIGNMENT); 3423 size -= base; 3424 3425 /* 3426 * If the FB is too big, just don't use it since fbdev is not very 3427 * important and we should probably use that space with FBC or other 3428 * features. 3429 */ 3430 if (size * 2 > i915->stolen_usable_size) 3431 return NULL; 3432 3433 obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size); 3434 if (IS_ERR(obj)) 3435 return NULL; 3436 3437 /* 3438 * Mark it WT ahead of time to avoid changing the 3439 * cache_level during fbdev initialization. The 3440 * unbind there would get stuck waiting for rcu. 3441 */ 3442 i915_gem_object_set_cache_coherency(obj, HAS_WT(i915) ? 3443 I915_CACHE_WT : I915_CACHE_NONE); 3444 3445 switch (plane_config->tiling) { 3446 case I915_TILING_NONE: 3447 break; 3448 case I915_TILING_X: 3449 case I915_TILING_Y: 3450 obj->tiling_and_stride = 3451 plane_config->fb->base.pitches[0] | 3452 plane_config->tiling; 3453 break; 3454 default: 3455 MISSING_CASE(plane_config->tiling); 3456 goto err_obj; 3457 } 3458 3459 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); 3460 if (IS_ERR(vma)) 3461 goto err_obj; 3462 3463 if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base)) 3464 goto err_obj; 3465 3466 if (i915_gem_object_is_tiled(obj) && 3467 !i915_vma_is_map_and_fenceable(vma)) 3468 goto err_obj; 3469 3470 return vma; 3471 3472 err_obj: 3473 i915_gem_object_put(obj); 3474 return NULL; 3475 } 3476 3477 static bool 3478 intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 3479 struct intel_initial_plane_config *plane_config) 3480 { 3481 struct drm_device *dev = crtc->base.dev; 3482 struct drm_i915_private *dev_priv = to_i915(dev); 3483 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 3484 struct drm_framebuffer *fb = &plane_config->fb->base; 3485 struct i915_vma *vma; 3486 3487 switch (fb->modifier) { 3488 case DRM_FORMAT_MOD_LINEAR: 3489 case I915_FORMAT_MOD_X_TILED: 3490 case I915_FORMAT_MOD_Y_TILED: 3491 break; 3492 default: 3493 drm_dbg(&dev_priv->drm, 3494 "Unsupported modifier for initial FB: 0x%llx\n", 3495 fb->modifier); 3496 return false; 3497 } 3498 3499 vma = initial_plane_vma(dev_priv, plane_config); 3500 if (!vma) 3501 return false; 3502 3503 mode_cmd.pixel_format = fb->format->format; 3504 mode_cmd.width = fb->width; 3505 mode_cmd.height = fb->height; 3506 mode_cmd.pitches[0] = fb->pitches[0]; 3507 mode_cmd.modifier[0] = fb->modifier; 3508 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 3509 3510 if (intel_framebuffer_init(to_intel_framebuffer(fb), 3511 vma->obj, &mode_cmd)) { 3512 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n"); 3513 goto err_vma; 3514 } 3515 3516 plane_config->vma = vma; 3517 return true; 3518 3519 err_vma: 3520 i915_vma_put(vma); 3521 return false; 3522 } 3523 3524 static void 3525 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 3526 struct intel_plane_state *plane_state, 3527 bool visible) 3528 { 3529 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 3530 3531 plane_state->uapi.visible = visible; 3532 3533 if (visible) 3534 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); 3535 else 3536 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); 3537 } 3538 3539 static void fixup_active_planes(struct intel_crtc_state *crtc_state) 3540 { 3541 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 3542 struct drm_plane *plane; 3543 3544 /* 3545 * Active_planes aliases if multiple "primary" or cursor planes 3546 * have been used on the same (or wrong) pipe. plane_mask uses 3547 * unique ids, hence we can use that to reconstruct active_planes. 3548 */ 3549 crtc_state->active_planes = 0; 3550 3551 drm_for_each_plane_mask(plane, &dev_priv->drm, 3552 crtc_state->uapi.plane_mask) 3553 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 3554 } 3555 3556 static void intel_plane_disable_noatomic(struct intel_crtc *crtc, 3557 struct intel_plane *plane) 3558 { 3559 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3560 struct intel_crtc_state *crtc_state = 3561 to_intel_crtc_state(crtc->base.state); 3562 struct intel_plane_state *plane_state = 3563 to_intel_plane_state(plane->base.state); 3564 3565 drm_dbg_kms(&dev_priv->drm, 3566 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 3567 plane->base.base.id, plane->base.name, 3568 crtc->base.base.id, crtc->base.name); 3569 3570 intel_set_plane_visible(crtc_state, plane_state, false); 3571 fixup_active_planes(crtc_state); 3572 crtc_state->data_rate[plane->id] = 0; 3573 crtc_state->min_cdclk[plane->id] = 0; 3574 3575 if (plane->id == PLANE_PRIMARY) 3576 hsw_disable_ips(crtc_state); 3577 3578 /* 3579 * Vblank time updates from the shadow to live plane control register 3580 * are blocked if the memory self-refresh mode is active at that 3581 * moment. So to make sure the plane gets truly disabled, disable 3582 * first the self-refresh mode. The self-refresh enable bit in turn 3583 * will be checked/applied by the HW only at the next frame start 3584 * event which is after the vblank start event, so we need to have a 3585 * wait-for-vblank between disabling the plane and the pipe. 3586 */ 3587 if (HAS_GMCH(dev_priv) && 3588 intel_set_memory_cxsr(dev_priv, false)) 3589 intel_wait_for_vblank(dev_priv, crtc->pipe); 3590 3591 /* 3592 * Gen2 reports pipe underruns whenever all planes are disabled. 3593 * So disable underrun reporting before all the planes get disabled. 3594 */ 3595 if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes) 3596 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 3597 3598 intel_disable_plane(plane, crtc_state); 3599 } 3600 3601 static struct intel_frontbuffer * 3602 to_intel_frontbuffer(struct drm_framebuffer *fb) 3603 { 3604 return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL; 3605 } 3606 3607 static void 3608 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, 3609 struct intel_initial_plane_config *plane_config) 3610 { 3611 struct drm_device *dev = intel_crtc->base.dev; 3612 struct drm_i915_private *dev_priv = to_i915(dev); 3613 struct drm_crtc *c; 3614 struct drm_plane *primary = intel_crtc->base.primary; 3615 struct drm_plane_state *plane_state = primary->state; 3616 struct intel_plane *intel_plane = to_intel_plane(primary); 3617 struct intel_plane_state *intel_state = 3618 to_intel_plane_state(plane_state); 3619 struct drm_framebuffer *fb; 3620 struct i915_vma *vma; 3621 3622 if (!plane_config->fb) 3623 return; 3624 3625 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { 3626 fb = &plane_config->fb->base; 3627 vma = plane_config->vma; 3628 goto valid_fb; 3629 } 3630 3631 /* 3632 * Failed to alloc the obj, check to see if we should share 3633 * an fb with another CRTC instead 3634 */ 3635 for_each_crtc(dev, c) { 3636 struct intel_plane_state *state; 3637 3638 if (c == &intel_crtc->base) 3639 continue; 3640 3641 if (!to_intel_crtc(c)->active) 3642 continue; 3643 3644 state = to_intel_plane_state(c->primary->state); 3645 if (!state->vma) 3646 continue; 3647 3648 if (intel_plane_ggtt_offset(state) == plane_config->base) { 3649 fb = state->hw.fb; 3650 vma = state->vma; 3651 goto valid_fb; 3652 } 3653 } 3654 3655 /* 3656 * We've failed to reconstruct the BIOS FB. Current display state 3657 * indicates that the primary plane is visible, but has a NULL FB, 3658 * which will lead to problems later if we don't fix it up. The 3659 * simplest solution is to just disable the primary plane now and 3660 * pretend the BIOS never had it enabled. 3661 */ 3662 intel_plane_disable_noatomic(intel_crtc, intel_plane); 3663 3664 return; 3665 3666 valid_fb: 3667 intel_state->hw.rotation = plane_config->rotation; 3668 intel_fill_fb_ggtt_view(&intel_state->view, fb, 3669 intel_state->hw.rotation); 3670 intel_state->color_plane[0].stride = 3671 intel_fb_pitch(fb, 0, intel_state->hw.rotation); 3672 3673 __i915_vma_pin(vma); 3674 intel_state->vma = i915_vma_get(vma); 3675 if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0) 3676 if (vma->fence) 3677 intel_state->flags |= PLANE_HAS_FENCE; 3678 3679 plane_state->src_x = 0; 3680 plane_state->src_y = 0; 3681 plane_state->src_w = fb->width << 16; 3682 plane_state->src_h = fb->height << 16; 3683 3684 plane_state->crtc_x = 0; 3685 plane_state->crtc_y = 0; 3686 plane_state->crtc_w = fb->width; 3687 plane_state->crtc_h = fb->height; 3688 3689 intel_state->uapi.src = drm_plane_state_src(plane_state); 3690 intel_state->uapi.dst = drm_plane_state_dest(plane_state); 3691 3692 if (plane_config->tiling) 3693 dev_priv->preserve_bios_swizzle = true; 3694 3695 plane_state->fb = fb; 3696 drm_framebuffer_get(fb); 3697 3698 plane_state->crtc = &intel_crtc->base; 3699 intel_plane_copy_uapi_to_hw_state(intel_state, intel_state); 3700 3701 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 3702 3703 atomic_or(to_intel_plane(primary)->frontbuffer_bit, 3704 &to_intel_frontbuffer(fb)->bits); 3705 } 3706 3707 static int skl_max_plane_width(const struct drm_framebuffer *fb, 3708 int color_plane, 3709 unsigned int rotation) 3710 { 3711 int cpp = fb->format->cpp[color_plane]; 3712 3713 switch (fb->modifier) { 3714 case DRM_FORMAT_MOD_LINEAR: 3715 case I915_FORMAT_MOD_X_TILED: 3716 /* 3717 * Validated limit is 4k, but has 5k should 3718 * work apart from the following features: 3719 * - Ytile (already limited to 4k) 3720 * - FP16 (already limited to 4k) 3721 * - render compression (already limited to 4k) 3722 * - KVMR sprite and cursor (don't care) 3723 * - horizontal panning (TODO verify this) 3724 * - pipe and plane scaling (TODO verify this) 3725 */ 3726 if (cpp == 8) 3727 return 4096; 3728 else 3729 return 5120; 3730 case I915_FORMAT_MOD_Y_TILED_CCS: 3731 case I915_FORMAT_MOD_Yf_TILED_CCS: 3732 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 3733 /* FIXME AUX plane? */ 3734 case I915_FORMAT_MOD_Y_TILED: 3735 case I915_FORMAT_MOD_Yf_TILED: 3736 if (cpp == 8) 3737 return 2048; 3738 else 3739 return 4096; 3740 default: 3741 MISSING_CASE(fb->modifier); 3742 return 2048; 3743 } 3744 } 3745 3746 static int glk_max_plane_width(const struct drm_framebuffer *fb, 3747 int color_plane, 3748 unsigned int rotation) 3749 { 3750 int cpp = fb->format->cpp[color_plane]; 3751 3752 switch (fb->modifier) { 3753 case DRM_FORMAT_MOD_LINEAR: 3754 case I915_FORMAT_MOD_X_TILED: 3755 if (cpp == 8) 3756 return 4096; 3757 else 3758 return 5120; 3759 case I915_FORMAT_MOD_Y_TILED_CCS: 3760 case I915_FORMAT_MOD_Yf_TILED_CCS: 3761 /* FIXME AUX plane? */ 3762 case I915_FORMAT_MOD_Y_TILED: 3763 case I915_FORMAT_MOD_Yf_TILED: 3764 if (cpp == 8) 3765 return 2048; 3766 else 3767 return 5120; 3768 default: 3769 MISSING_CASE(fb->modifier); 3770 return 2048; 3771 } 3772 } 3773 3774 static int icl_min_plane_width(const struct drm_framebuffer *fb) 3775 { 3776 /* Wa_14011264657, Wa_14011050563: gen11+ */ 3777 switch (fb->format->format) { 3778 case DRM_FORMAT_C8: 3779 return 18; 3780 case DRM_FORMAT_RGB565: 3781 return 10; 3782 case DRM_FORMAT_XRGB8888: 3783 case DRM_FORMAT_XBGR8888: 3784 case DRM_FORMAT_ARGB8888: 3785 case DRM_FORMAT_ABGR8888: 3786 case DRM_FORMAT_XRGB2101010: 3787 case DRM_FORMAT_XBGR2101010: 3788 case DRM_FORMAT_ARGB2101010: 3789 case DRM_FORMAT_ABGR2101010: 3790 case DRM_FORMAT_XVYU2101010: 3791 case DRM_FORMAT_Y212: 3792 case DRM_FORMAT_Y216: 3793 return 6; 3794 case DRM_FORMAT_NV12: 3795 return 20; 3796 case DRM_FORMAT_P010: 3797 case DRM_FORMAT_P012: 3798 case DRM_FORMAT_P016: 3799 return 12; 3800 case DRM_FORMAT_XRGB16161616F: 3801 case DRM_FORMAT_XBGR16161616F: 3802 case DRM_FORMAT_ARGB16161616F: 3803 case DRM_FORMAT_ABGR16161616F: 3804 case DRM_FORMAT_XVYU12_16161616: 3805 case DRM_FORMAT_XVYU16161616: 3806 return 4; 3807 default: 3808 return 1; 3809 } 3810 } 3811 3812 static int icl_max_plane_width(const struct drm_framebuffer *fb, 3813 int color_plane, 3814 unsigned int rotation) 3815 { 3816 return 5120; 3817 } 3818 3819 static int skl_max_plane_height(void) 3820 { 3821 return 4096; 3822 } 3823 3824 static int icl_max_plane_height(void) 3825 { 3826 return 4320; 3827 } 3828 3829 static bool 3830 skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state, 3831 int main_x, int main_y, u32 main_offset, 3832 int ccs_plane) 3833 { 3834 const struct drm_framebuffer *fb = plane_state->hw.fb; 3835 int aux_x = plane_state->color_plane[ccs_plane].x; 3836 int aux_y = plane_state->color_plane[ccs_plane].y; 3837 u32 aux_offset = plane_state->color_plane[ccs_plane].offset; 3838 u32 alignment = intel_surf_alignment(fb, ccs_plane); 3839 int hsub; 3840 int vsub; 3841 3842 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 3843 while (aux_offset >= main_offset && aux_y <= main_y) { 3844 int x, y; 3845 3846 if (aux_x == main_x && aux_y == main_y) 3847 break; 3848 3849 if (aux_offset == 0) 3850 break; 3851 3852 x = aux_x / hsub; 3853 y = aux_y / vsub; 3854 aux_offset = intel_plane_adjust_aligned_offset(&x, &y, 3855 plane_state, 3856 ccs_plane, 3857 aux_offset, 3858 aux_offset - 3859 alignment); 3860 aux_x = x * hsub + aux_x % hsub; 3861 aux_y = y * vsub + aux_y % vsub; 3862 } 3863 3864 if (aux_x != main_x || aux_y != main_y) 3865 return false; 3866 3867 plane_state->color_plane[ccs_plane].offset = aux_offset; 3868 plane_state->color_plane[ccs_plane].x = aux_x; 3869 plane_state->color_plane[ccs_plane].y = aux_y; 3870 3871 return true; 3872 } 3873 3874 unsigned int 3875 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state) 3876 { 3877 int x = 0, y = 0; 3878 3879 intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3880 plane_state->color_plane[0].offset, 0); 3881 3882 return y; 3883 } 3884 3885 static int skl_check_main_surface(struct intel_plane_state *plane_state) 3886 { 3887 struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev); 3888 const struct drm_framebuffer *fb = plane_state->hw.fb; 3889 unsigned int rotation = plane_state->hw.rotation; 3890 int x = plane_state->uapi.src.x1 >> 16; 3891 int y = plane_state->uapi.src.y1 >> 16; 3892 int w = drm_rect_width(&plane_state->uapi.src) >> 16; 3893 int h = drm_rect_height(&plane_state->uapi.src) >> 16; 3894 int max_width, min_width, max_height; 3895 u32 alignment, offset; 3896 int aux_plane = intel_main_to_aux_plane(fb, 0); 3897 u32 aux_offset = plane_state->color_plane[aux_plane].offset; 3898 3899 if (INTEL_GEN(dev_priv) >= 11) { 3900 max_width = icl_max_plane_width(fb, 0, rotation); 3901 min_width = icl_min_plane_width(fb); 3902 } else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { 3903 max_width = glk_max_plane_width(fb, 0, rotation); 3904 min_width = 1; 3905 } else { 3906 max_width = skl_max_plane_width(fb, 0, rotation); 3907 min_width = 1; 3908 } 3909 3910 if (INTEL_GEN(dev_priv) >= 11) 3911 max_height = icl_max_plane_height(); 3912 else 3913 max_height = skl_max_plane_height(); 3914 3915 if (w > max_width || w < min_width || h > max_height) { 3916 drm_dbg_kms(&dev_priv->drm, 3917 "requested Y/RGB source size %dx%d outside limits (min: %dx1 max: %dx%d)\n", 3918 w, h, min_width, max_width, max_height); 3919 return -EINVAL; 3920 } 3921 3922 intel_add_fb_offsets(&x, &y, plane_state, 0); 3923 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0); 3924 alignment = intel_surf_alignment(fb, 0); 3925 if (drm_WARN_ON(&dev_priv->drm, alignment && !is_power_of_2(alignment))) 3926 return -EINVAL; 3927 3928 /* 3929 * AUX surface offset is specified as the distance from the 3930 * main surface offset, and it must be non-negative. Make 3931 * sure that is what we will get. 3932 */ 3933 if (offset > aux_offset) 3934 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3935 offset, aux_offset & ~(alignment - 1)); 3936 3937 /* 3938 * When using an X-tiled surface, the plane blows up 3939 * if the x offset + width exceed the stride. 3940 * 3941 * TODO: linear and Y-tiled seem fine, Yf untested, 3942 */ 3943 if (fb->modifier == I915_FORMAT_MOD_X_TILED) { 3944 int cpp = fb->format->cpp[0]; 3945 3946 while ((x + w) * cpp > plane_state->color_plane[0].stride) { 3947 if (offset == 0) { 3948 drm_dbg_kms(&dev_priv->drm, 3949 "Unable to find suitable display surface offset due to X-tiling\n"); 3950 return -EINVAL; 3951 } 3952 3953 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3954 offset, offset - alignment); 3955 } 3956 } 3957 3958 /* 3959 * CCS AUX surface doesn't have its own x/y offsets, we must make sure 3960 * they match with the main surface x/y offsets. 3961 */ 3962 if (is_ccs_modifier(fb->modifier)) { 3963 while (!skl_check_main_ccs_coordinates(plane_state, x, y, 3964 offset, aux_plane)) { 3965 if (offset == 0) 3966 break; 3967 3968 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3969 offset, offset - alignment); 3970 } 3971 3972 if (x != plane_state->color_plane[aux_plane].x || 3973 y != plane_state->color_plane[aux_plane].y) { 3974 drm_dbg_kms(&dev_priv->drm, 3975 "Unable to find suitable display surface offset due to CCS\n"); 3976 return -EINVAL; 3977 } 3978 } 3979 3980 plane_state->color_plane[0].offset = offset; 3981 plane_state->color_plane[0].x = x; 3982 plane_state->color_plane[0].y = y; 3983 3984 /* 3985 * Put the final coordinates back so that the src 3986 * coordinate checks will see the right values. 3987 */ 3988 drm_rect_translate_to(&plane_state->uapi.src, 3989 x << 16, y << 16); 3990 3991 return 0; 3992 } 3993 3994 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state) 3995 { 3996 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 3997 const struct drm_framebuffer *fb = plane_state->hw.fb; 3998 unsigned int rotation = plane_state->hw.rotation; 3999 int uv_plane = 1; 4000 int max_width = skl_max_plane_width(fb, uv_plane, rotation); 4001 int max_height = 4096; 4002 int x = plane_state->uapi.src.x1 >> 17; 4003 int y = plane_state->uapi.src.y1 >> 17; 4004 int w = drm_rect_width(&plane_state->uapi.src) >> 17; 4005 int h = drm_rect_height(&plane_state->uapi.src) >> 17; 4006 u32 offset; 4007 4008 intel_add_fb_offsets(&x, &y, plane_state, uv_plane); 4009 offset = intel_plane_compute_aligned_offset(&x, &y, 4010 plane_state, uv_plane); 4011 4012 /* FIXME not quite sure how/if these apply to the chroma plane */ 4013 if (w > max_width || h > max_height) { 4014 drm_dbg_kms(&i915->drm, 4015 "CbCr source size %dx%d too big (limit %dx%d)\n", 4016 w, h, max_width, max_height); 4017 return -EINVAL; 4018 } 4019 4020 if (is_ccs_modifier(fb->modifier)) { 4021 int ccs_plane = main_to_ccs_plane(fb, uv_plane); 4022 int aux_offset = plane_state->color_plane[ccs_plane].offset; 4023 int alignment = intel_surf_alignment(fb, uv_plane); 4024 4025 if (offset > aux_offset) 4026 offset = intel_plane_adjust_aligned_offset(&x, &y, 4027 plane_state, 4028 uv_plane, 4029 offset, 4030 aux_offset & ~(alignment - 1)); 4031 4032 while (!skl_check_main_ccs_coordinates(plane_state, x, y, 4033 offset, ccs_plane)) { 4034 if (offset == 0) 4035 break; 4036 4037 offset = intel_plane_adjust_aligned_offset(&x, &y, 4038 plane_state, 4039 uv_plane, 4040 offset, offset - alignment); 4041 } 4042 4043 if (x != plane_state->color_plane[ccs_plane].x || 4044 y != plane_state->color_plane[ccs_plane].y) { 4045 drm_dbg_kms(&i915->drm, 4046 "Unable to find suitable display surface offset due to CCS\n"); 4047 return -EINVAL; 4048 } 4049 } 4050 4051 plane_state->color_plane[uv_plane].offset = offset; 4052 plane_state->color_plane[uv_plane].x = x; 4053 plane_state->color_plane[uv_plane].y = y; 4054 4055 return 0; 4056 } 4057 4058 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state) 4059 { 4060 const struct drm_framebuffer *fb = plane_state->hw.fb; 4061 int src_x = plane_state->uapi.src.x1 >> 16; 4062 int src_y = plane_state->uapi.src.y1 >> 16; 4063 u32 offset; 4064 int ccs_plane; 4065 4066 for (ccs_plane = 0; ccs_plane < fb->format->num_planes; ccs_plane++) { 4067 int main_hsub, main_vsub; 4068 int hsub, vsub; 4069 int x, y; 4070 4071 if (!is_ccs_plane(fb, ccs_plane)) 4072 continue; 4073 4074 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, 4075 ccs_to_main_plane(fb, ccs_plane)); 4076 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 4077 4078 hsub *= main_hsub; 4079 vsub *= main_vsub; 4080 x = src_x / hsub; 4081 y = src_y / vsub; 4082 4083 intel_add_fb_offsets(&x, &y, plane_state, ccs_plane); 4084 4085 offset = intel_plane_compute_aligned_offset(&x, &y, 4086 plane_state, 4087 ccs_plane); 4088 4089 plane_state->color_plane[ccs_plane].offset = offset; 4090 plane_state->color_plane[ccs_plane].x = (x * hsub + 4091 src_x % hsub) / 4092 main_hsub; 4093 plane_state->color_plane[ccs_plane].y = (y * vsub + 4094 src_y % vsub) / 4095 main_vsub; 4096 } 4097 4098 return 0; 4099 } 4100 4101 int skl_check_plane_surface(struct intel_plane_state *plane_state) 4102 { 4103 const struct drm_framebuffer *fb = plane_state->hw.fb; 4104 int ret, i; 4105 4106 ret = intel_plane_compute_gtt(plane_state); 4107 if (ret) 4108 return ret; 4109 4110 if (!plane_state->uapi.visible) 4111 return 0; 4112 4113 /* 4114 * Handle the AUX surface first since the main surface setup depends on 4115 * it. 4116 */ 4117 if (is_ccs_modifier(fb->modifier)) { 4118 ret = skl_check_ccs_aux_surface(plane_state); 4119 if (ret) 4120 return ret; 4121 } 4122 4123 if (intel_format_info_is_yuv_semiplanar(fb->format, 4124 fb->modifier)) { 4125 ret = skl_check_nv12_aux_surface(plane_state); 4126 if (ret) 4127 return ret; 4128 } 4129 4130 for (i = fb->format->num_planes; i < ARRAY_SIZE(plane_state->color_plane); i++) { 4131 plane_state->color_plane[i].offset = ~0xfff; 4132 plane_state->color_plane[i].x = 0; 4133 plane_state->color_plane[i].y = 0; 4134 } 4135 4136 ret = skl_check_main_surface(plane_state); 4137 if (ret) 4138 return ret; 4139 4140 return 0; 4141 } 4142 4143 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state, 4144 const struct intel_plane_state *plane_state, 4145 unsigned int *num, unsigned int *den) 4146 { 4147 const struct drm_framebuffer *fb = plane_state->hw.fb; 4148 unsigned int cpp = fb->format->cpp[0]; 4149 4150 /* 4151 * g4x bspec says 64bpp pixel rate can't exceed 80% 4152 * of cdclk when the sprite plane is enabled on the 4153 * same pipe. ilk/snb bspec says 64bpp pixel rate is 4154 * never allowed to exceed 80% of cdclk. Let's just go 4155 * with the ilk/snb limit always. 4156 */ 4157 if (cpp == 8) { 4158 *num = 10; 4159 *den = 8; 4160 } else { 4161 *num = 1; 4162 *den = 1; 4163 } 4164 } 4165 4166 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state, 4167 const struct intel_plane_state *plane_state) 4168 { 4169 unsigned int pixel_rate; 4170 unsigned int num, den; 4171 4172 /* 4173 * Note that crtc_state->pixel_rate accounts for both 4174 * horizontal and vertical panel fitter downscaling factors. 4175 * Pre-HSW bspec tells us to only consider the horizontal 4176 * downscaling factor here. We ignore that and just consider 4177 * both for simplicity. 4178 */ 4179 pixel_rate = crtc_state->pixel_rate; 4180 4181 i9xx_plane_ratio(crtc_state, plane_state, &num, &den); 4182 4183 /* two pixels per clock with double wide pipe */ 4184 if (crtc_state->double_wide) 4185 den *= 2; 4186 4187 return DIV_ROUND_UP(pixel_rate * num, den); 4188 } 4189 4190 unsigned int 4191 i9xx_plane_max_stride(struct intel_plane *plane, 4192 u32 pixel_format, u64 modifier, 4193 unsigned int rotation) 4194 { 4195 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4196 4197 if (!HAS_GMCH(dev_priv)) { 4198 return 32*1024; 4199 } else if (INTEL_GEN(dev_priv) >= 4) { 4200 if (modifier == I915_FORMAT_MOD_X_TILED) 4201 return 16*1024; 4202 else 4203 return 32*1024; 4204 } else if (INTEL_GEN(dev_priv) >= 3) { 4205 if (modifier == I915_FORMAT_MOD_X_TILED) 4206 return 8*1024; 4207 else 4208 return 16*1024; 4209 } else { 4210 if (plane->i9xx_plane == PLANE_C) 4211 return 4*1024; 4212 else 4213 return 8*1024; 4214 } 4215 } 4216 4217 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 4218 { 4219 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4220 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4221 u32 dspcntr = 0; 4222 4223 if (crtc_state->gamma_enable) 4224 dspcntr |= DISPPLANE_GAMMA_ENABLE; 4225 4226 if (crtc_state->csc_enable) 4227 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE; 4228 4229 if (INTEL_GEN(dev_priv) < 5) 4230 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe); 4231 4232 return dspcntr; 4233 } 4234 4235 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state, 4236 const struct intel_plane_state *plane_state) 4237 { 4238 struct drm_i915_private *dev_priv = 4239 to_i915(plane_state->uapi.plane->dev); 4240 const struct drm_framebuffer *fb = plane_state->hw.fb; 4241 unsigned int rotation = plane_state->hw.rotation; 4242 u32 dspcntr; 4243 4244 dspcntr = DISPLAY_PLANE_ENABLE; 4245 4246 if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) || 4247 IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 4248 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; 4249 4250 switch (fb->format->format) { 4251 case DRM_FORMAT_C8: 4252 dspcntr |= DISPPLANE_8BPP; 4253 break; 4254 case DRM_FORMAT_XRGB1555: 4255 dspcntr |= DISPPLANE_BGRX555; 4256 break; 4257 case DRM_FORMAT_ARGB1555: 4258 dspcntr |= DISPPLANE_BGRA555; 4259 break; 4260 case DRM_FORMAT_RGB565: 4261 dspcntr |= DISPPLANE_BGRX565; 4262 break; 4263 case DRM_FORMAT_XRGB8888: 4264 dspcntr |= DISPPLANE_BGRX888; 4265 break; 4266 case DRM_FORMAT_XBGR8888: 4267 dspcntr |= DISPPLANE_RGBX888; 4268 break; 4269 case DRM_FORMAT_ARGB8888: 4270 dspcntr |= DISPPLANE_BGRA888; 4271 break; 4272 case DRM_FORMAT_ABGR8888: 4273 dspcntr |= DISPPLANE_RGBA888; 4274 break; 4275 case DRM_FORMAT_XRGB2101010: 4276 dspcntr |= DISPPLANE_BGRX101010; 4277 break; 4278 case DRM_FORMAT_XBGR2101010: 4279 dspcntr |= DISPPLANE_RGBX101010; 4280 break; 4281 case DRM_FORMAT_ARGB2101010: 4282 dspcntr |= DISPPLANE_BGRA101010; 4283 break; 4284 case DRM_FORMAT_ABGR2101010: 4285 dspcntr |= DISPPLANE_RGBA101010; 4286 break; 4287 case DRM_FORMAT_XBGR16161616F: 4288 dspcntr |= DISPPLANE_RGBX161616; 4289 break; 4290 default: 4291 MISSING_CASE(fb->format->format); 4292 return 0; 4293 } 4294 4295 if (INTEL_GEN(dev_priv) >= 4 && 4296 fb->modifier == I915_FORMAT_MOD_X_TILED) 4297 dspcntr |= DISPPLANE_TILED; 4298 4299 if (rotation & DRM_MODE_ROTATE_180) 4300 dspcntr |= DISPPLANE_ROTATE_180; 4301 4302 if (rotation & DRM_MODE_REFLECT_X) 4303 dspcntr |= DISPPLANE_MIRROR; 4304 4305 return dspcntr; 4306 } 4307 4308 int i9xx_check_plane_surface(struct intel_plane_state *plane_state) 4309 { 4310 struct drm_i915_private *dev_priv = 4311 to_i915(plane_state->uapi.plane->dev); 4312 const struct drm_framebuffer *fb = plane_state->hw.fb; 4313 int src_x, src_y, src_w; 4314 u32 offset; 4315 int ret; 4316 4317 ret = intel_plane_compute_gtt(plane_state); 4318 if (ret) 4319 return ret; 4320 4321 if (!plane_state->uapi.visible) 4322 return 0; 4323 4324 src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 4325 src_x = plane_state->uapi.src.x1 >> 16; 4326 src_y = plane_state->uapi.src.y1 >> 16; 4327 4328 /* Undocumented hardware limit on i965/g4x/vlv/chv */ 4329 if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048) 4330 return -EINVAL; 4331 4332 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 4333 4334 if (INTEL_GEN(dev_priv) >= 4) 4335 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 4336 plane_state, 0); 4337 else 4338 offset = 0; 4339 4340 /* 4341 * Put the final coordinates back so that the src 4342 * coordinate checks will see the right values. 4343 */ 4344 drm_rect_translate_to(&plane_state->uapi.src, 4345 src_x << 16, src_y << 16); 4346 4347 /* HSW/BDW do this automagically in hardware */ 4348 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) { 4349 unsigned int rotation = plane_state->hw.rotation; 4350 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 4351 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 4352 4353 if (rotation & DRM_MODE_ROTATE_180) { 4354 src_x += src_w - 1; 4355 src_y += src_h - 1; 4356 } else if (rotation & DRM_MODE_REFLECT_X) { 4357 src_x += src_w - 1; 4358 } 4359 } 4360 4361 plane_state->color_plane[0].offset = offset; 4362 plane_state->color_plane[0].x = src_x; 4363 plane_state->color_plane[0].y = src_y; 4364 4365 return 0; 4366 } 4367 4368 static bool i9xx_plane_has_windowing(struct intel_plane *plane) 4369 { 4370 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4371 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4372 4373 if (IS_CHERRYVIEW(dev_priv)) 4374 return i9xx_plane == PLANE_B; 4375 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 4376 return false; 4377 else if (IS_GEN(dev_priv, 4)) 4378 return i9xx_plane == PLANE_C; 4379 else 4380 return i9xx_plane == PLANE_B || 4381 i9xx_plane == PLANE_C; 4382 } 4383 4384 static int 4385 i9xx_plane_check(struct intel_crtc_state *crtc_state, 4386 struct intel_plane_state *plane_state) 4387 { 4388 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 4389 int ret; 4390 4391 ret = chv_plane_check_rotation(plane_state); 4392 if (ret) 4393 return ret; 4394 4395 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi, 4396 &crtc_state->uapi, 4397 DRM_PLANE_HELPER_NO_SCALING, 4398 DRM_PLANE_HELPER_NO_SCALING, 4399 i9xx_plane_has_windowing(plane), 4400 true); 4401 if (ret) 4402 return ret; 4403 4404 ret = i9xx_check_plane_surface(plane_state); 4405 if (ret) 4406 return ret; 4407 4408 if (!plane_state->uapi.visible) 4409 return 0; 4410 4411 ret = intel_plane_check_src_coordinates(plane_state); 4412 if (ret) 4413 return ret; 4414 4415 plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state); 4416 4417 return 0; 4418 } 4419 4420 static void i9xx_update_plane(struct intel_plane *plane, 4421 const struct intel_crtc_state *crtc_state, 4422 const struct intel_plane_state *plane_state) 4423 { 4424 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4425 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4426 u32 linear_offset; 4427 int x = plane_state->color_plane[0].x; 4428 int y = plane_state->color_plane[0].y; 4429 int crtc_x = plane_state->uapi.dst.x1; 4430 int crtc_y = plane_state->uapi.dst.y1; 4431 int crtc_w = drm_rect_width(&plane_state->uapi.dst); 4432 int crtc_h = drm_rect_height(&plane_state->uapi.dst); 4433 unsigned long irqflags; 4434 u32 dspaddr_offset; 4435 u32 dspcntr; 4436 4437 dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state); 4438 4439 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0); 4440 4441 if (INTEL_GEN(dev_priv) >= 4) 4442 dspaddr_offset = plane_state->color_plane[0].offset; 4443 else 4444 dspaddr_offset = linear_offset; 4445 4446 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4447 4448 intel_de_write_fw(dev_priv, DSPSTRIDE(i9xx_plane), 4449 plane_state->color_plane[0].stride); 4450 4451 if (INTEL_GEN(dev_priv) < 4) { 4452 /* 4453 * PLANE_A doesn't actually have a full window 4454 * generator but let's assume we still need to 4455 * program whatever is there. 4456 */ 4457 intel_de_write_fw(dev_priv, DSPPOS(i9xx_plane), 4458 (crtc_y << 16) | crtc_x); 4459 intel_de_write_fw(dev_priv, DSPSIZE(i9xx_plane), 4460 ((crtc_h - 1) << 16) | (crtc_w - 1)); 4461 } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) { 4462 intel_de_write_fw(dev_priv, PRIMPOS(i9xx_plane), 4463 (crtc_y << 16) | crtc_x); 4464 intel_de_write_fw(dev_priv, PRIMSIZE(i9xx_plane), 4465 ((crtc_h - 1) << 16) | (crtc_w - 1)); 4466 intel_de_write_fw(dev_priv, PRIMCNSTALPHA(i9xx_plane), 0); 4467 } 4468 4469 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 4470 intel_de_write_fw(dev_priv, DSPOFFSET(i9xx_plane), 4471 (y << 16) | x); 4472 } else if (INTEL_GEN(dev_priv) >= 4) { 4473 intel_de_write_fw(dev_priv, DSPLINOFF(i9xx_plane), 4474 linear_offset); 4475 intel_de_write_fw(dev_priv, DSPTILEOFF(i9xx_plane), 4476 (y << 16) | x); 4477 } 4478 4479 /* 4480 * The control register self-arms if the plane was previously 4481 * disabled. Try to make the plane enable atomic by writing 4482 * the control register just before the surface register. 4483 */ 4484 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr); 4485 if (INTEL_GEN(dev_priv) >= 4) 4486 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 4487 intel_plane_ggtt_offset(plane_state) + dspaddr_offset); 4488 else 4489 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 4490 intel_plane_ggtt_offset(plane_state) + dspaddr_offset); 4491 4492 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4493 } 4494 4495 static void i9xx_disable_plane(struct intel_plane *plane, 4496 const struct intel_crtc_state *crtc_state) 4497 { 4498 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4499 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4500 unsigned long irqflags; 4501 u32 dspcntr; 4502 4503 /* 4504 * DSPCNTR pipe gamma enable on g4x+ and pipe csc 4505 * enable on ilk+ affect the pipe bottom color as 4506 * well, so we must configure them even if the plane 4507 * is disabled. 4508 * 4509 * On pre-g4x there is no way to gamma correct the 4510 * pipe bottom color but we'll keep on doing this 4511 * anyway so that the crtc state readout works correctly. 4512 */ 4513 dspcntr = i9xx_plane_ctl_crtc(crtc_state); 4514 4515 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4516 4517 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr); 4518 if (INTEL_GEN(dev_priv) >= 4) 4519 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 0); 4520 else 4521 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 0); 4522 4523 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4524 } 4525 4526 static bool i9xx_plane_get_hw_state(struct intel_plane *plane, 4527 enum pipe *pipe) 4528 { 4529 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4530 enum intel_display_power_domain power_domain; 4531 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4532 intel_wakeref_t wakeref; 4533 bool ret; 4534 u32 val; 4535 4536 /* 4537 * Not 100% correct for planes that can move between pipes, 4538 * but that's only the case for gen2-4 which don't have any 4539 * display power wells. 4540 */ 4541 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 4542 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 4543 if (!wakeref) 4544 return false; 4545 4546 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 4547 4548 ret = val & DISPLAY_PLANE_ENABLE; 4549 4550 if (INTEL_GEN(dev_priv) >= 5) 4551 *pipe = plane->pipe; 4552 else 4553 *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> 4554 DISPPLANE_SEL_PIPE_SHIFT; 4555 4556 intel_display_power_put(dev_priv, power_domain, wakeref); 4557 4558 return ret; 4559 } 4560 4561 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id) 4562 { 4563 struct drm_device *dev = intel_crtc->base.dev; 4564 struct drm_i915_private *dev_priv = to_i915(dev); 4565 unsigned long irqflags; 4566 4567 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4568 4569 intel_de_write_fw(dev_priv, SKL_PS_CTRL(intel_crtc->pipe, id), 0); 4570 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(intel_crtc->pipe, id), 0); 4571 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0); 4572 4573 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4574 } 4575 4576 /* 4577 * This function detaches (aka. unbinds) unused scalers in hardware 4578 */ 4579 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state) 4580 { 4581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 4582 const struct intel_crtc_scaler_state *scaler_state = 4583 &crtc_state->scaler_state; 4584 int i; 4585 4586 /* loop through and disable scalers that aren't in use */ 4587 for (i = 0; i < intel_crtc->num_scalers; i++) { 4588 if (!scaler_state->scalers[i].in_use) 4589 skl_detach_scaler(intel_crtc, i); 4590 } 4591 } 4592 4593 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb, 4594 int color_plane, unsigned int rotation) 4595 { 4596 /* 4597 * The stride is either expressed as a multiple of 64 bytes chunks for 4598 * linear buffers or in number of tiles for tiled buffers. 4599 */ 4600 if (is_surface_linear(fb, color_plane)) 4601 return 64; 4602 else if (drm_rotation_90_or_270(rotation)) 4603 return intel_tile_height(fb, color_plane); 4604 else 4605 return intel_tile_width_bytes(fb, color_plane); 4606 } 4607 4608 u32 skl_plane_stride(const struct intel_plane_state *plane_state, 4609 int color_plane) 4610 { 4611 const struct drm_framebuffer *fb = plane_state->hw.fb; 4612 unsigned int rotation = plane_state->hw.rotation; 4613 u32 stride = plane_state->color_plane[color_plane].stride; 4614 4615 if (color_plane >= fb->format->num_planes) 4616 return 0; 4617 4618 return stride / skl_plane_stride_mult(fb, color_plane, rotation); 4619 } 4620 4621 static u32 skl_plane_ctl_format(u32 pixel_format) 4622 { 4623 switch (pixel_format) { 4624 case DRM_FORMAT_C8: 4625 return PLANE_CTL_FORMAT_INDEXED; 4626 case DRM_FORMAT_RGB565: 4627 return PLANE_CTL_FORMAT_RGB_565; 4628 case DRM_FORMAT_XBGR8888: 4629 case DRM_FORMAT_ABGR8888: 4630 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX; 4631 case DRM_FORMAT_XRGB8888: 4632 case DRM_FORMAT_ARGB8888: 4633 return PLANE_CTL_FORMAT_XRGB_8888; 4634 case DRM_FORMAT_XBGR2101010: 4635 case DRM_FORMAT_ABGR2101010: 4636 return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX; 4637 case DRM_FORMAT_XRGB2101010: 4638 case DRM_FORMAT_ARGB2101010: 4639 return PLANE_CTL_FORMAT_XRGB_2101010; 4640 case DRM_FORMAT_XBGR16161616F: 4641 case DRM_FORMAT_ABGR16161616F: 4642 return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX; 4643 case DRM_FORMAT_XRGB16161616F: 4644 case DRM_FORMAT_ARGB16161616F: 4645 return PLANE_CTL_FORMAT_XRGB_16161616F; 4646 case DRM_FORMAT_XYUV8888: 4647 return PLANE_CTL_FORMAT_XYUV; 4648 case DRM_FORMAT_YUYV: 4649 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV; 4650 case DRM_FORMAT_YVYU: 4651 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU; 4652 case DRM_FORMAT_UYVY: 4653 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY; 4654 case DRM_FORMAT_VYUY: 4655 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY; 4656 case DRM_FORMAT_NV12: 4657 return PLANE_CTL_FORMAT_NV12; 4658 case DRM_FORMAT_P010: 4659 return PLANE_CTL_FORMAT_P010; 4660 case DRM_FORMAT_P012: 4661 return PLANE_CTL_FORMAT_P012; 4662 case DRM_FORMAT_P016: 4663 return PLANE_CTL_FORMAT_P016; 4664 case DRM_FORMAT_Y210: 4665 return PLANE_CTL_FORMAT_Y210; 4666 case DRM_FORMAT_Y212: 4667 return PLANE_CTL_FORMAT_Y212; 4668 case DRM_FORMAT_Y216: 4669 return PLANE_CTL_FORMAT_Y216; 4670 case DRM_FORMAT_XVYU2101010: 4671 return PLANE_CTL_FORMAT_Y410; 4672 case DRM_FORMAT_XVYU12_16161616: 4673 return PLANE_CTL_FORMAT_Y412; 4674 case DRM_FORMAT_XVYU16161616: 4675 return PLANE_CTL_FORMAT_Y416; 4676 default: 4677 MISSING_CASE(pixel_format); 4678 } 4679 4680 return 0; 4681 } 4682 4683 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state) 4684 { 4685 if (!plane_state->hw.fb->format->has_alpha) 4686 return PLANE_CTL_ALPHA_DISABLE; 4687 4688 switch (plane_state->hw.pixel_blend_mode) { 4689 case DRM_MODE_BLEND_PIXEL_NONE: 4690 return PLANE_CTL_ALPHA_DISABLE; 4691 case DRM_MODE_BLEND_PREMULTI: 4692 return PLANE_CTL_ALPHA_SW_PREMULTIPLY; 4693 case DRM_MODE_BLEND_COVERAGE: 4694 return PLANE_CTL_ALPHA_HW_PREMULTIPLY; 4695 default: 4696 MISSING_CASE(plane_state->hw.pixel_blend_mode); 4697 return PLANE_CTL_ALPHA_DISABLE; 4698 } 4699 } 4700 4701 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state) 4702 { 4703 if (!plane_state->hw.fb->format->has_alpha) 4704 return PLANE_COLOR_ALPHA_DISABLE; 4705 4706 switch (plane_state->hw.pixel_blend_mode) { 4707 case DRM_MODE_BLEND_PIXEL_NONE: 4708 return PLANE_COLOR_ALPHA_DISABLE; 4709 case DRM_MODE_BLEND_PREMULTI: 4710 return PLANE_COLOR_ALPHA_SW_PREMULTIPLY; 4711 case DRM_MODE_BLEND_COVERAGE: 4712 return PLANE_COLOR_ALPHA_HW_PREMULTIPLY; 4713 default: 4714 MISSING_CASE(plane_state->hw.pixel_blend_mode); 4715 return PLANE_COLOR_ALPHA_DISABLE; 4716 } 4717 } 4718 4719 static u32 skl_plane_ctl_tiling(u64 fb_modifier) 4720 { 4721 switch (fb_modifier) { 4722 case DRM_FORMAT_MOD_LINEAR: 4723 break; 4724 case I915_FORMAT_MOD_X_TILED: 4725 return PLANE_CTL_TILED_X; 4726 case I915_FORMAT_MOD_Y_TILED: 4727 return PLANE_CTL_TILED_Y; 4728 case I915_FORMAT_MOD_Y_TILED_CCS: 4729 return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4730 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 4731 return PLANE_CTL_TILED_Y | 4732 PLANE_CTL_RENDER_DECOMPRESSION_ENABLE | 4733 PLANE_CTL_CLEAR_COLOR_DISABLE; 4734 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 4735 return PLANE_CTL_TILED_Y | PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE; 4736 case I915_FORMAT_MOD_Yf_TILED: 4737 return PLANE_CTL_TILED_YF; 4738 case I915_FORMAT_MOD_Yf_TILED_CCS: 4739 return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4740 default: 4741 MISSING_CASE(fb_modifier); 4742 } 4743 4744 return 0; 4745 } 4746 4747 static u32 skl_plane_ctl_rotate(unsigned int rotate) 4748 { 4749 switch (rotate) { 4750 case DRM_MODE_ROTATE_0: 4751 break; 4752 /* 4753 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 4754 * while i915 HW rotation is clockwise, thats why this swapping. 4755 */ 4756 case DRM_MODE_ROTATE_90: 4757 return PLANE_CTL_ROTATE_270; 4758 case DRM_MODE_ROTATE_180: 4759 return PLANE_CTL_ROTATE_180; 4760 case DRM_MODE_ROTATE_270: 4761 return PLANE_CTL_ROTATE_90; 4762 default: 4763 MISSING_CASE(rotate); 4764 } 4765 4766 return 0; 4767 } 4768 4769 static u32 cnl_plane_ctl_flip(unsigned int reflect) 4770 { 4771 switch (reflect) { 4772 case 0: 4773 break; 4774 case DRM_MODE_REFLECT_X: 4775 return PLANE_CTL_FLIP_HORIZONTAL; 4776 case DRM_MODE_REFLECT_Y: 4777 default: 4778 MISSING_CASE(reflect); 4779 } 4780 4781 return 0; 4782 } 4783 4784 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 4785 { 4786 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4787 u32 plane_ctl = 0; 4788 4789 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4790 return plane_ctl; 4791 4792 if (crtc_state->gamma_enable) 4793 plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE; 4794 4795 if (crtc_state->csc_enable) 4796 plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE; 4797 4798 return plane_ctl; 4799 } 4800 4801 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state, 4802 const struct intel_plane_state *plane_state) 4803 { 4804 struct drm_i915_private *dev_priv = 4805 to_i915(plane_state->uapi.plane->dev); 4806 const struct drm_framebuffer *fb = plane_state->hw.fb; 4807 unsigned int rotation = plane_state->hw.rotation; 4808 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey; 4809 u32 plane_ctl; 4810 4811 plane_ctl = PLANE_CTL_ENABLE; 4812 4813 if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) { 4814 plane_ctl |= skl_plane_ctl_alpha(plane_state); 4815 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE; 4816 4817 if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709) 4818 plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709; 4819 4820 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4821 plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE; 4822 } 4823 4824 plane_ctl |= skl_plane_ctl_format(fb->format->format); 4825 plane_ctl |= skl_plane_ctl_tiling(fb->modifier); 4826 plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK); 4827 4828 if (INTEL_GEN(dev_priv) >= 10) 4829 plane_ctl |= cnl_plane_ctl_flip(rotation & 4830 DRM_MODE_REFLECT_MASK); 4831 4832 if (key->flags & I915_SET_COLORKEY_DESTINATION) 4833 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION; 4834 else if (key->flags & I915_SET_COLORKEY_SOURCE) 4835 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE; 4836 4837 return plane_ctl; 4838 } 4839 4840 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state) 4841 { 4842 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4843 u32 plane_color_ctl = 0; 4844 4845 if (INTEL_GEN(dev_priv) >= 11) 4846 return plane_color_ctl; 4847 4848 if (crtc_state->gamma_enable) 4849 plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE; 4850 4851 if (crtc_state->csc_enable) 4852 plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE; 4853 4854 return plane_color_ctl; 4855 } 4856 4857 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state, 4858 const struct intel_plane_state *plane_state) 4859 { 4860 struct drm_i915_private *dev_priv = 4861 to_i915(plane_state->uapi.plane->dev); 4862 const struct drm_framebuffer *fb = plane_state->hw.fb; 4863 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 4864 u32 plane_color_ctl = 0; 4865 4866 plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE; 4867 plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state); 4868 4869 if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) { 4870 switch (plane_state->hw.color_encoding) { 4871 case DRM_COLOR_YCBCR_BT709: 4872 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709; 4873 break; 4874 case DRM_COLOR_YCBCR_BT2020: 4875 plane_color_ctl |= 4876 PLANE_COLOR_CSC_MODE_YUV2020_TO_RGB2020; 4877 break; 4878 default: 4879 plane_color_ctl |= 4880 PLANE_COLOR_CSC_MODE_YUV601_TO_RGB601; 4881 } 4882 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4883 plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE; 4884 } else if (fb->format->is_yuv) { 4885 plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE; 4886 } 4887 4888 return plane_color_ctl; 4889 } 4890 4891 static int 4892 __intel_display_resume(struct drm_device *dev, 4893 struct drm_atomic_state *state, 4894 struct drm_modeset_acquire_ctx *ctx) 4895 { 4896 struct drm_crtc_state *crtc_state; 4897 struct drm_crtc *crtc; 4898 int i, ret; 4899 4900 intel_modeset_setup_hw_state(dev, ctx); 4901 intel_vga_redisable(to_i915(dev)); 4902 4903 if (!state) 4904 return 0; 4905 4906 /* 4907 * We've duplicated the state, pointers to the old state are invalid. 4908 * 4909 * Don't attempt to use the old state until we commit the duplicated state. 4910 */ 4911 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 4912 /* 4913 * Force recalculation even if we restore 4914 * current state. With fast modeset this may not result 4915 * in a modeset when the state is compatible. 4916 */ 4917 crtc_state->mode_changed = true; 4918 } 4919 4920 /* ignore any reset values/BIOS leftovers in the WM registers */ 4921 if (!HAS_GMCH(to_i915(dev))) 4922 to_intel_atomic_state(state)->skip_intermediate_wm = true; 4923 4924 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 4925 4926 drm_WARN_ON(dev, ret == -EDEADLK); 4927 return ret; 4928 } 4929 4930 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 4931 { 4932 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 4933 intel_has_gpu_reset(&dev_priv->gt)); 4934 } 4935 4936 void intel_prepare_reset(struct drm_i915_private *dev_priv) 4937 { 4938 struct drm_device *dev = &dev_priv->drm; 4939 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4940 struct drm_atomic_state *state; 4941 int ret; 4942 4943 /* reset doesn't touch the display */ 4944 if (!dev_priv->params.force_reset_modeset_test && 4945 !gpu_reset_clobbers_display(dev_priv)) 4946 return; 4947 4948 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 4949 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 4950 smp_mb__after_atomic(); 4951 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 4952 4953 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 4954 drm_dbg_kms(&dev_priv->drm, 4955 "Modeset potentially stuck, unbreaking through wedging\n"); 4956 intel_gt_set_wedged(&dev_priv->gt); 4957 } 4958 4959 /* 4960 * Need mode_config.mutex so that we don't 4961 * trample ongoing ->detect() and whatnot. 4962 */ 4963 mutex_lock(&dev->mode_config.mutex); 4964 drm_modeset_acquire_init(ctx, 0); 4965 while (1) { 4966 ret = drm_modeset_lock_all_ctx(dev, ctx); 4967 if (ret != -EDEADLK) 4968 break; 4969 4970 drm_modeset_backoff(ctx); 4971 } 4972 /* 4973 * Disabling the crtcs gracefully seems nicer. Also the 4974 * g33 docs say we should at least disable all the planes. 4975 */ 4976 state = drm_atomic_helper_duplicate_state(dev, ctx); 4977 if (IS_ERR(state)) { 4978 ret = PTR_ERR(state); 4979 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n", 4980 ret); 4981 return; 4982 } 4983 4984 ret = drm_atomic_helper_disable_all(dev, ctx); 4985 if (ret) { 4986 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 4987 ret); 4988 drm_atomic_state_put(state); 4989 return; 4990 } 4991 4992 dev_priv->modeset_restore_state = state; 4993 state->acquire_ctx = ctx; 4994 } 4995 4996 void intel_finish_reset(struct drm_i915_private *dev_priv) 4997 { 4998 struct drm_device *dev = &dev_priv->drm; 4999 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 5000 struct drm_atomic_state *state; 5001 int ret; 5002 5003 /* reset doesn't touch the display */ 5004 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 5005 return; 5006 5007 state = fetch_and_zero(&dev_priv->modeset_restore_state); 5008 if (!state) 5009 goto unlock; 5010 5011 /* reset doesn't touch the display */ 5012 if (!gpu_reset_clobbers_display(dev_priv)) { 5013 /* for testing only restore the display */ 5014 ret = __intel_display_resume(dev, state, ctx); 5015 if (ret) 5016 drm_err(&dev_priv->drm, 5017 "Restoring old state failed with %i\n", ret); 5018 } else { 5019 /* 5020 * The display has been reset as well, 5021 * so need a full re-initialization. 5022 */ 5023 intel_pps_unlock_regs_wa(dev_priv); 5024 intel_modeset_init_hw(dev_priv); 5025 intel_init_clock_gating(dev_priv); 5026 5027 spin_lock_irq(&dev_priv->irq_lock); 5028 if (dev_priv->display.hpd_irq_setup) 5029 dev_priv->display.hpd_irq_setup(dev_priv); 5030 spin_unlock_irq(&dev_priv->irq_lock); 5031 5032 ret = __intel_display_resume(dev, state, ctx); 5033 if (ret) 5034 drm_err(&dev_priv->drm, 5035 "Restoring old state failed with %i\n", ret); 5036 5037 intel_hpd_init(dev_priv); 5038 } 5039 5040 drm_atomic_state_put(state); 5041 unlock: 5042 drm_modeset_drop_locks(ctx); 5043 drm_modeset_acquire_fini(ctx); 5044 mutex_unlock(&dev->mode_config.mutex); 5045 5046 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 5047 } 5048 5049 static void icl_set_pipe_chicken(struct intel_crtc *crtc) 5050 { 5051 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5052 enum pipe pipe = crtc->pipe; 5053 u32 tmp; 5054 5055 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe)); 5056 5057 /* 5058 * Display WA #1153: icl 5059 * enable hardware to bypass the alpha math 5060 * and rounding for per-pixel values 00 and 0xff 5061 */ 5062 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 5063 /* 5064 * Display WA # 1605353570: icl 5065 * Set the pixel rounding bit to 1 for allowing 5066 * passthrough of Frame buffer pixels unmodified 5067 * across pipe 5068 */ 5069 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 5070 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp); 5071 } 5072 5073 static void intel_fdi_normal_train(struct intel_crtc *crtc) 5074 { 5075 struct drm_device *dev = crtc->base.dev; 5076 struct drm_i915_private *dev_priv = to_i915(dev); 5077 enum pipe pipe = crtc->pipe; 5078 i915_reg_t reg; 5079 u32 temp; 5080 5081 /* enable normal train */ 5082 reg = FDI_TX_CTL(pipe); 5083 temp = intel_de_read(dev_priv, reg); 5084 if (IS_IVYBRIDGE(dev_priv)) { 5085 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 5086 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; 5087 } else { 5088 temp &= ~FDI_LINK_TRAIN_NONE; 5089 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; 5090 } 5091 intel_de_write(dev_priv, reg, temp); 5092 5093 reg = FDI_RX_CTL(pipe); 5094 temp = intel_de_read(dev_priv, reg); 5095 if (HAS_PCH_CPT(dev_priv)) { 5096 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5097 temp |= FDI_LINK_TRAIN_NORMAL_CPT; 5098 } else { 5099 temp &= ~FDI_LINK_TRAIN_NONE; 5100 temp |= FDI_LINK_TRAIN_NONE; 5101 } 5102 intel_de_write(dev_priv, reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); 5103 5104 /* wait one idle pattern time */ 5105 intel_de_posting_read(dev_priv, reg); 5106 udelay(1000); 5107 5108 /* IVB wants error correction enabled */ 5109 if (IS_IVYBRIDGE(dev_priv)) 5110 intel_de_write(dev_priv, reg, 5111 intel_de_read(dev_priv, reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE); 5112 } 5113 5114 /* The FDI link training functions for ILK/Ibexpeak. */ 5115 static void ilk_fdi_link_train(struct intel_crtc *crtc, 5116 const struct intel_crtc_state *crtc_state) 5117 { 5118 struct drm_device *dev = crtc->base.dev; 5119 struct drm_i915_private *dev_priv = to_i915(dev); 5120 enum pipe pipe = crtc->pipe; 5121 i915_reg_t reg; 5122 u32 temp, tries; 5123 5124 /* FDI needs bits from pipe first */ 5125 assert_pipe_enabled(dev_priv, crtc_state->cpu_transcoder); 5126 5127 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5128 for train result */ 5129 reg = FDI_RX_IMR(pipe); 5130 temp = intel_de_read(dev_priv, reg); 5131 temp &= ~FDI_RX_SYMBOL_LOCK; 5132 temp &= ~FDI_RX_BIT_LOCK; 5133 intel_de_write(dev_priv, reg, temp); 5134 intel_de_read(dev_priv, reg); 5135 udelay(150); 5136 5137 /* enable CPU FDI TX and PCH FDI RX */ 5138 reg = FDI_TX_CTL(pipe); 5139 temp = intel_de_read(dev_priv, reg); 5140 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5141 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5142 temp &= ~FDI_LINK_TRAIN_NONE; 5143 temp |= FDI_LINK_TRAIN_PATTERN_1; 5144 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5145 5146 reg = FDI_RX_CTL(pipe); 5147 temp = intel_de_read(dev_priv, reg); 5148 temp &= ~FDI_LINK_TRAIN_NONE; 5149 temp |= FDI_LINK_TRAIN_PATTERN_1; 5150 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5151 5152 intel_de_posting_read(dev_priv, reg); 5153 udelay(150); 5154 5155 /* Ironlake workaround, enable clock pointer after FDI enable*/ 5156 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5157 FDI_RX_PHASE_SYNC_POINTER_OVR); 5158 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5159 FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN); 5160 5161 reg = FDI_RX_IIR(pipe); 5162 for (tries = 0; tries < 5; tries++) { 5163 temp = intel_de_read(dev_priv, reg); 5164 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5165 5166 if ((temp & FDI_RX_BIT_LOCK)) { 5167 drm_dbg_kms(&dev_priv->drm, "FDI train 1 done.\n"); 5168 intel_de_write(dev_priv, reg, temp | FDI_RX_BIT_LOCK); 5169 break; 5170 } 5171 } 5172 if (tries == 5) 5173 drm_err(&dev_priv->drm, "FDI train 1 fail!\n"); 5174 5175 /* Train 2 */ 5176 reg = FDI_TX_CTL(pipe); 5177 temp = intel_de_read(dev_priv, reg); 5178 temp &= ~FDI_LINK_TRAIN_NONE; 5179 temp |= FDI_LINK_TRAIN_PATTERN_2; 5180 intel_de_write(dev_priv, reg, temp); 5181 5182 reg = FDI_RX_CTL(pipe); 5183 temp = intel_de_read(dev_priv, reg); 5184 temp &= ~FDI_LINK_TRAIN_NONE; 5185 temp |= FDI_LINK_TRAIN_PATTERN_2; 5186 intel_de_write(dev_priv, reg, temp); 5187 5188 intel_de_posting_read(dev_priv, reg); 5189 udelay(150); 5190 5191 reg = FDI_RX_IIR(pipe); 5192 for (tries = 0; tries < 5; tries++) { 5193 temp = intel_de_read(dev_priv, reg); 5194 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5195 5196 if (temp & FDI_RX_SYMBOL_LOCK) { 5197 intel_de_write(dev_priv, reg, 5198 temp | FDI_RX_SYMBOL_LOCK); 5199 drm_dbg_kms(&dev_priv->drm, "FDI train 2 done.\n"); 5200 break; 5201 } 5202 } 5203 if (tries == 5) 5204 drm_err(&dev_priv->drm, "FDI train 2 fail!\n"); 5205 5206 drm_dbg_kms(&dev_priv->drm, "FDI train done\n"); 5207 5208 } 5209 5210 static const int snb_b_fdi_train_param[] = { 5211 FDI_LINK_TRAIN_400MV_0DB_SNB_B, 5212 FDI_LINK_TRAIN_400MV_6DB_SNB_B, 5213 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, 5214 FDI_LINK_TRAIN_800MV_0DB_SNB_B, 5215 }; 5216 5217 /* The FDI link training functions for SNB/Cougarpoint. */ 5218 static void gen6_fdi_link_train(struct intel_crtc *crtc, 5219 const struct intel_crtc_state *crtc_state) 5220 { 5221 struct drm_device *dev = crtc->base.dev; 5222 struct drm_i915_private *dev_priv = to_i915(dev); 5223 enum pipe pipe = crtc->pipe; 5224 i915_reg_t reg; 5225 u32 temp, i, retry; 5226 5227 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5228 for train result */ 5229 reg = FDI_RX_IMR(pipe); 5230 temp = intel_de_read(dev_priv, reg); 5231 temp &= ~FDI_RX_SYMBOL_LOCK; 5232 temp &= ~FDI_RX_BIT_LOCK; 5233 intel_de_write(dev_priv, reg, temp); 5234 5235 intel_de_posting_read(dev_priv, reg); 5236 udelay(150); 5237 5238 /* enable CPU FDI TX and PCH FDI RX */ 5239 reg = FDI_TX_CTL(pipe); 5240 temp = intel_de_read(dev_priv, reg); 5241 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5242 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5243 temp &= ~FDI_LINK_TRAIN_NONE; 5244 temp |= FDI_LINK_TRAIN_PATTERN_1; 5245 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5246 /* SNB-B */ 5247 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 5248 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5249 5250 intel_de_write(dev_priv, FDI_RX_MISC(pipe), 5251 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 5252 5253 reg = FDI_RX_CTL(pipe); 5254 temp = intel_de_read(dev_priv, reg); 5255 if (HAS_PCH_CPT(dev_priv)) { 5256 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5257 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5258 } else { 5259 temp &= ~FDI_LINK_TRAIN_NONE; 5260 temp |= FDI_LINK_TRAIN_PATTERN_1; 5261 } 5262 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5263 5264 intel_de_posting_read(dev_priv, reg); 5265 udelay(150); 5266 5267 for (i = 0; i < 4; i++) { 5268 reg = FDI_TX_CTL(pipe); 5269 temp = intel_de_read(dev_priv, reg); 5270 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5271 temp |= snb_b_fdi_train_param[i]; 5272 intel_de_write(dev_priv, reg, temp); 5273 5274 intel_de_posting_read(dev_priv, reg); 5275 udelay(500); 5276 5277 for (retry = 0; retry < 5; retry++) { 5278 reg = FDI_RX_IIR(pipe); 5279 temp = intel_de_read(dev_priv, reg); 5280 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5281 if (temp & FDI_RX_BIT_LOCK) { 5282 intel_de_write(dev_priv, reg, 5283 temp | FDI_RX_BIT_LOCK); 5284 drm_dbg_kms(&dev_priv->drm, 5285 "FDI train 1 done.\n"); 5286 break; 5287 } 5288 udelay(50); 5289 } 5290 if (retry < 5) 5291 break; 5292 } 5293 if (i == 4) 5294 drm_err(&dev_priv->drm, "FDI train 1 fail!\n"); 5295 5296 /* Train 2 */ 5297 reg = FDI_TX_CTL(pipe); 5298 temp = intel_de_read(dev_priv, reg); 5299 temp &= ~FDI_LINK_TRAIN_NONE; 5300 temp |= FDI_LINK_TRAIN_PATTERN_2; 5301 if (IS_GEN(dev_priv, 6)) { 5302 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5303 /* SNB-B */ 5304 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 5305 } 5306 intel_de_write(dev_priv, reg, temp); 5307 5308 reg = FDI_RX_CTL(pipe); 5309 temp = intel_de_read(dev_priv, reg); 5310 if (HAS_PCH_CPT(dev_priv)) { 5311 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5312 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 5313 } else { 5314 temp &= ~FDI_LINK_TRAIN_NONE; 5315 temp |= FDI_LINK_TRAIN_PATTERN_2; 5316 } 5317 intel_de_write(dev_priv, reg, temp); 5318 5319 intel_de_posting_read(dev_priv, reg); 5320 udelay(150); 5321 5322 for (i = 0; i < 4; i++) { 5323 reg = FDI_TX_CTL(pipe); 5324 temp = intel_de_read(dev_priv, reg); 5325 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5326 temp |= snb_b_fdi_train_param[i]; 5327 intel_de_write(dev_priv, reg, temp); 5328 5329 intel_de_posting_read(dev_priv, reg); 5330 udelay(500); 5331 5332 for (retry = 0; retry < 5; retry++) { 5333 reg = FDI_RX_IIR(pipe); 5334 temp = intel_de_read(dev_priv, reg); 5335 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5336 if (temp & FDI_RX_SYMBOL_LOCK) { 5337 intel_de_write(dev_priv, reg, 5338 temp | FDI_RX_SYMBOL_LOCK); 5339 drm_dbg_kms(&dev_priv->drm, 5340 "FDI train 2 done.\n"); 5341 break; 5342 } 5343 udelay(50); 5344 } 5345 if (retry < 5) 5346 break; 5347 } 5348 if (i == 4) 5349 drm_err(&dev_priv->drm, "FDI train 2 fail!\n"); 5350 5351 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n"); 5352 } 5353 5354 /* Manual link training for Ivy Bridge A0 parts */ 5355 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc, 5356 const struct intel_crtc_state *crtc_state) 5357 { 5358 struct drm_device *dev = crtc->base.dev; 5359 struct drm_i915_private *dev_priv = to_i915(dev); 5360 enum pipe pipe = crtc->pipe; 5361 i915_reg_t reg; 5362 u32 temp, i, j; 5363 5364 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5365 for train result */ 5366 reg = FDI_RX_IMR(pipe); 5367 temp = intel_de_read(dev_priv, reg); 5368 temp &= ~FDI_RX_SYMBOL_LOCK; 5369 temp &= ~FDI_RX_BIT_LOCK; 5370 intel_de_write(dev_priv, reg, temp); 5371 5372 intel_de_posting_read(dev_priv, reg); 5373 udelay(150); 5374 5375 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR before link train 0x%x\n", 5376 intel_de_read(dev_priv, FDI_RX_IIR(pipe))); 5377 5378 /* Try each vswing and preemphasis setting twice before moving on */ 5379 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) { 5380 /* disable first in case we need to retry */ 5381 reg = FDI_TX_CTL(pipe); 5382 temp = intel_de_read(dev_priv, reg); 5383 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); 5384 temp &= ~FDI_TX_ENABLE; 5385 intel_de_write(dev_priv, reg, temp); 5386 5387 reg = FDI_RX_CTL(pipe); 5388 temp = intel_de_read(dev_priv, reg); 5389 temp &= ~FDI_LINK_TRAIN_AUTO; 5390 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5391 temp &= ~FDI_RX_ENABLE; 5392 intel_de_write(dev_priv, reg, temp); 5393 5394 /* enable CPU FDI TX and PCH FDI RX */ 5395 reg = FDI_TX_CTL(pipe); 5396 temp = intel_de_read(dev_priv, reg); 5397 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5398 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5399 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; 5400 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5401 temp |= snb_b_fdi_train_param[j/2]; 5402 temp |= FDI_COMPOSITE_SYNC; 5403 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5404 5405 intel_de_write(dev_priv, FDI_RX_MISC(pipe), 5406 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 5407 5408 reg = FDI_RX_CTL(pipe); 5409 temp = intel_de_read(dev_priv, reg); 5410 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5411 temp |= FDI_COMPOSITE_SYNC; 5412 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5413 5414 intel_de_posting_read(dev_priv, reg); 5415 udelay(1); /* should be 0.5us */ 5416 5417 for (i = 0; i < 4; i++) { 5418 reg = FDI_RX_IIR(pipe); 5419 temp = intel_de_read(dev_priv, reg); 5420 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5421 5422 if (temp & FDI_RX_BIT_LOCK || 5423 (intel_de_read(dev_priv, reg) & FDI_RX_BIT_LOCK)) { 5424 intel_de_write(dev_priv, reg, 5425 temp | FDI_RX_BIT_LOCK); 5426 drm_dbg_kms(&dev_priv->drm, 5427 "FDI train 1 done, level %i.\n", 5428 i); 5429 break; 5430 } 5431 udelay(1); /* should be 0.5us */ 5432 } 5433 if (i == 4) { 5434 drm_dbg_kms(&dev_priv->drm, 5435 "FDI train 1 fail on vswing %d\n", j / 2); 5436 continue; 5437 } 5438 5439 /* Train 2 */ 5440 reg = FDI_TX_CTL(pipe); 5441 temp = intel_de_read(dev_priv, reg); 5442 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 5443 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; 5444 intel_de_write(dev_priv, reg, temp); 5445 5446 reg = FDI_RX_CTL(pipe); 5447 temp = intel_de_read(dev_priv, reg); 5448 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5449 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 5450 intel_de_write(dev_priv, reg, temp); 5451 5452 intel_de_posting_read(dev_priv, reg); 5453 udelay(2); /* should be 1.5us */ 5454 5455 for (i = 0; i < 4; i++) { 5456 reg = FDI_RX_IIR(pipe); 5457 temp = intel_de_read(dev_priv, reg); 5458 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5459 5460 if (temp & FDI_RX_SYMBOL_LOCK || 5461 (intel_de_read(dev_priv, reg) & FDI_RX_SYMBOL_LOCK)) { 5462 intel_de_write(dev_priv, reg, 5463 temp | FDI_RX_SYMBOL_LOCK); 5464 drm_dbg_kms(&dev_priv->drm, 5465 "FDI train 2 done, level %i.\n", 5466 i); 5467 goto train_done; 5468 } 5469 udelay(2); /* should be 1.5us */ 5470 } 5471 if (i == 4) 5472 drm_dbg_kms(&dev_priv->drm, 5473 "FDI train 2 fail on vswing %d\n", j / 2); 5474 } 5475 5476 train_done: 5477 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n"); 5478 } 5479 5480 static void ilk_fdi_pll_enable(const struct intel_crtc_state *crtc_state) 5481 { 5482 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 5483 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 5484 enum pipe pipe = intel_crtc->pipe; 5485 i915_reg_t reg; 5486 u32 temp; 5487 5488 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ 5489 reg = FDI_RX_CTL(pipe); 5490 temp = intel_de_read(dev_priv, reg); 5491 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16)); 5492 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5493 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5494 intel_de_write(dev_priv, reg, temp | FDI_RX_PLL_ENABLE); 5495 5496 intel_de_posting_read(dev_priv, reg); 5497 udelay(200); 5498 5499 /* Switch from Rawclk to PCDclk */ 5500 temp = intel_de_read(dev_priv, reg); 5501 intel_de_write(dev_priv, reg, temp | FDI_PCDCLK); 5502 5503 intel_de_posting_read(dev_priv, reg); 5504 udelay(200); 5505 5506 /* Enable CPU FDI TX PLL, always on for Ironlake */ 5507 reg = FDI_TX_CTL(pipe); 5508 temp = intel_de_read(dev_priv, reg); 5509 if ((temp & FDI_TX_PLL_ENABLE) == 0) { 5510 intel_de_write(dev_priv, reg, temp | FDI_TX_PLL_ENABLE); 5511 5512 intel_de_posting_read(dev_priv, reg); 5513 udelay(100); 5514 } 5515 } 5516 5517 static void ilk_fdi_pll_disable(struct intel_crtc *intel_crtc) 5518 { 5519 struct drm_device *dev = intel_crtc->base.dev; 5520 struct drm_i915_private *dev_priv = to_i915(dev); 5521 enum pipe pipe = intel_crtc->pipe; 5522 i915_reg_t reg; 5523 u32 temp; 5524 5525 /* Switch from PCDclk to Rawclk */ 5526 reg = FDI_RX_CTL(pipe); 5527 temp = intel_de_read(dev_priv, reg); 5528 intel_de_write(dev_priv, reg, temp & ~FDI_PCDCLK); 5529 5530 /* Disable CPU FDI TX PLL */ 5531 reg = FDI_TX_CTL(pipe); 5532 temp = intel_de_read(dev_priv, reg); 5533 intel_de_write(dev_priv, reg, temp & ~FDI_TX_PLL_ENABLE); 5534 5535 intel_de_posting_read(dev_priv, reg); 5536 udelay(100); 5537 5538 reg = FDI_RX_CTL(pipe); 5539 temp = intel_de_read(dev_priv, reg); 5540 intel_de_write(dev_priv, reg, temp & ~FDI_RX_PLL_ENABLE); 5541 5542 /* Wait for the clocks to turn off. */ 5543 intel_de_posting_read(dev_priv, reg); 5544 udelay(100); 5545 } 5546 5547 static void ilk_fdi_disable(struct intel_crtc *crtc) 5548 { 5549 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5550 enum pipe pipe = crtc->pipe; 5551 i915_reg_t reg; 5552 u32 temp; 5553 5554 /* disable CPU FDI tx and PCH FDI rx */ 5555 reg = FDI_TX_CTL(pipe); 5556 temp = intel_de_read(dev_priv, reg); 5557 intel_de_write(dev_priv, reg, temp & ~FDI_TX_ENABLE); 5558 intel_de_posting_read(dev_priv, reg); 5559 5560 reg = FDI_RX_CTL(pipe); 5561 temp = intel_de_read(dev_priv, reg); 5562 temp &= ~(0x7 << 16); 5563 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5564 intel_de_write(dev_priv, reg, temp & ~FDI_RX_ENABLE); 5565 5566 intel_de_posting_read(dev_priv, reg); 5567 udelay(100); 5568 5569 /* Ironlake workaround, disable clock pointer after downing FDI */ 5570 if (HAS_PCH_IBX(dev_priv)) 5571 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5572 FDI_RX_PHASE_SYNC_POINTER_OVR); 5573 5574 /* still set train pattern 1 */ 5575 reg = FDI_TX_CTL(pipe); 5576 temp = intel_de_read(dev_priv, reg); 5577 temp &= ~FDI_LINK_TRAIN_NONE; 5578 temp |= FDI_LINK_TRAIN_PATTERN_1; 5579 intel_de_write(dev_priv, reg, temp); 5580 5581 reg = FDI_RX_CTL(pipe); 5582 temp = intel_de_read(dev_priv, reg); 5583 if (HAS_PCH_CPT(dev_priv)) { 5584 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5585 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5586 } else { 5587 temp &= ~FDI_LINK_TRAIN_NONE; 5588 temp |= FDI_LINK_TRAIN_PATTERN_1; 5589 } 5590 /* BPC in FDI rx is consistent with that in PIPECONF */ 5591 temp &= ~(0x07 << 16); 5592 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5593 intel_de_write(dev_priv, reg, temp); 5594 5595 intel_de_posting_read(dev_priv, reg); 5596 udelay(100); 5597 } 5598 5599 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 5600 { 5601 struct drm_crtc *crtc; 5602 bool cleanup_done; 5603 5604 drm_for_each_crtc(crtc, &dev_priv->drm) { 5605 struct drm_crtc_commit *commit; 5606 spin_lock(&crtc->commit_lock); 5607 commit = list_first_entry_or_null(&crtc->commit_list, 5608 struct drm_crtc_commit, commit_entry); 5609 cleanup_done = commit ? 5610 try_wait_for_completion(&commit->cleanup_done) : true; 5611 spin_unlock(&crtc->commit_lock); 5612 5613 if (cleanup_done) 5614 continue; 5615 5616 drm_crtc_wait_one_vblank(crtc); 5617 5618 return true; 5619 } 5620 5621 return false; 5622 } 5623 5624 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 5625 { 5626 u32 temp; 5627 5628 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE); 5629 5630 mutex_lock(&dev_priv->sb_lock); 5631 5632 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5633 temp |= SBI_SSCCTL_DISABLE; 5634 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5635 5636 mutex_unlock(&dev_priv->sb_lock); 5637 } 5638 5639 /* Program iCLKIP clock to the desired frequency */ 5640 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 5641 { 5642 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5643 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5644 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 5645 u32 divsel, phaseinc, auxdiv, phasedir = 0; 5646 u32 temp; 5647 5648 lpt_disable_iclkip(dev_priv); 5649 5650 /* The iCLK virtual clock root frequency is in MHz, 5651 * but the adjusted_mode->crtc_clock in in KHz. To get the 5652 * divisors, it is necessary to divide one by another, so we 5653 * convert the virtual clock precision to KHz here for higher 5654 * precision. 5655 */ 5656 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 5657 u32 iclk_virtual_root_freq = 172800 * 1000; 5658 u32 iclk_pi_range = 64; 5659 u32 desired_divisor; 5660 5661 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5662 clock << auxdiv); 5663 divsel = (desired_divisor / iclk_pi_range) - 2; 5664 phaseinc = desired_divisor % iclk_pi_range; 5665 5666 /* 5667 * Near 20MHz is a corner case which is 5668 * out of range for the 7-bit divisor 5669 */ 5670 if (divsel <= 0x7f) 5671 break; 5672 } 5673 5674 /* This should not happen with any sane values */ 5675 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 5676 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 5677 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) & 5678 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 5679 5680 drm_dbg_kms(&dev_priv->drm, 5681 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 5682 clock, auxdiv, divsel, phasedir, phaseinc); 5683 5684 mutex_lock(&dev_priv->sb_lock); 5685 5686 /* Program SSCDIVINTPHASE6 */ 5687 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5688 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 5689 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 5690 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 5691 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 5692 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 5693 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 5694 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 5695 5696 /* Program SSCAUXDIV */ 5697 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5698 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 5699 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 5700 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 5701 5702 /* Enable modulator and associated divider */ 5703 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5704 temp &= ~SBI_SSCCTL_DISABLE; 5705 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5706 5707 mutex_unlock(&dev_priv->sb_lock); 5708 5709 /* Wait for initialization time */ 5710 udelay(24); 5711 5712 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE); 5713 } 5714 5715 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 5716 { 5717 u32 divsel, phaseinc, auxdiv; 5718 u32 iclk_virtual_root_freq = 172800 * 1000; 5719 u32 iclk_pi_range = 64; 5720 u32 desired_divisor; 5721 u32 temp; 5722 5723 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 5724 return 0; 5725 5726 mutex_lock(&dev_priv->sb_lock); 5727 5728 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5729 if (temp & SBI_SSCCTL_DISABLE) { 5730 mutex_unlock(&dev_priv->sb_lock); 5731 return 0; 5732 } 5733 5734 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5735 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 5736 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 5737 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 5738 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 5739 5740 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5741 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 5742 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 5743 5744 mutex_unlock(&dev_priv->sb_lock); 5745 5746 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 5747 5748 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5749 desired_divisor << auxdiv); 5750 } 5751 5752 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 5753 enum pipe pch_transcoder) 5754 { 5755 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5756 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5757 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5758 5759 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder), 5760 intel_de_read(dev_priv, HTOTAL(cpu_transcoder))); 5761 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder), 5762 intel_de_read(dev_priv, HBLANK(cpu_transcoder))); 5763 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder), 5764 intel_de_read(dev_priv, HSYNC(cpu_transcoder))); 5765 5766 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder), 5767 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 5768 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder), 5769 intel_de_read(dev_priv, VBLANK(cpu_transcoder))); 5770 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder), 5771 intel_de_read(dev_priv, VSYNC(cpu_transcoder))); 5772 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder), 5773 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder))); 5774 } 5775 5776 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) 5777 { 5778 u32 temp; 5779 5780 temp = intel_de_read(dev_priv, SOUTH_CHICKEN1); 5781 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 5782 return; 5783 5784 drm_WARN_ON(&dev_priv->drm, 5785 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) & 5786 FDI_RX_ENABLE); 5787 drm_WARN_ON(&dev_priv->drm, 5788 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) & 5789 FDI_RX_ENABLE); 5790 5791 temp &= ~FDI_BC_BIFURCATION_SELECT; 5792 if (enable) 5793 temp |= FDI_BC_BIFURCATION_SELECT; 5794 5795 drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n", 5796 enable ? "en" : "dis"); 5797 intel_de_write(dev_priv, SOUTH_CHICKEN1, temp); 5798 intel_de_posting_read(dev_priv, SOUTH_CHICKEN1); 5799 } 5800 5801 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) 5802 { 5803 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5804 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5805 5806 switch (crtc->pipe) { 5807 case PIPE_A: 5808 break; 5809 case PIPE_B: 5810 if (crtc_state->fdi_lanes > 2) 5811 cpt_set_fdi_bc_bifurcation(dev_priv, false); 5812 else 5813 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5814 5815 break; 5816 case PIPE_C: 5817 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5818 5819 break; 5820 default: 5821 BUG(); 5822 } 5823 } 5824 5825 /* 5826 * Finds the encoder associated with the given CRTC. This can only be 5827 * used when we know that the CRTC isn't feeding multiple encoders! 5828 */ 5829 static struct intel_encoder * 5830 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 5831 const struct intel_crtc_state *crtc_state) 5832 { 5833 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5834 const struct drm_connector_state *connector_state; 5835 const struct drm_connector *connector; 5836 struct intel_encoder *encoder = NULL; 5837 int num_encoders = 0; 5838 int i; 5839 5840 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 5841 if (connector_state->crtc != &crtc->base) 5842 continue; 5843 5844 encoder = to_intel_encoder(connector_state->best_encoder); 5845 num_encoders++; 5846 } 5847 5848 drm_WARN(encoder->base.dev, num_encoders != 1, 5849 "%d encoders for pipe %c\n", 5850 num_encoders, pipe_name(crtc->pipe)); 5851 5852 return encoder; 5853 } 5854 5855 /* 5856 * Enable PCH resources required for PCH ports: 5857 * - PCH PLLs 5858 * - FDI training & RX/TX 5859 * - update transcoder timings 5860 * - DP transcoding bits 5861 * - transcoder 5862 */ 5863 static void ilk_pch_enable(const struct intel_atomic_state *state, 5864 const struct intel_crtc_state *crtc_state) 5865 { 5866 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5867 struct drm_device *dev = crtc->base.dev; 5868 struct drm_i915_private *dev_priv = to_i915(dev); 5869 enum pipe pipe = crtc->pipe; 5870 u32 temp; 5871 5872 assert_pch_transcoder_disabled(dev_priv, pipe); 5873 5874 if (IS_IVYBRIDGE(dev_priv)) 5875 ivb_update_fdi_bc_bifurcation(crtc_state); 5876 5877 /* Write the TU size bits before fdi link training, so that error 5878 * detection works. */ 5879 intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe), 5880 intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 5881 5882 /* For PCH output, training FDI link */ 5883 dev_priv->display.fdi_link_train(crtc, crtc_state); 5884 5885 /* We need to program the right clock selection before writing the pixel 5886 * mutliplier into the DPLL. */ 5887 if (HAS_PCH_CPT(dev_priv)) { 5888 u32 sel; 5889 5890 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 5891 temp |= TRANS_DPLL_ENABLE(pipe); 5892 sel = TRANS_DPLLB_SEL(pipe); 5893 if (crtc_state->shared_dpll == 5894 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 5895 temp |= sel; 5896 else 5897 temp &= ~sel; 5898 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 5899 } 5900 5901 /* XXX: pch pll's can be enabled any time before we enable the PCH 5902 * transcoder, and we actually should do this to not upset any PCH 5903 * transcoder that already use the clock when we share it. 5904 * 5905 * Note that enable_shared_dpll tries to do the right thing, but 5906 * get_shared_dpll unconditionally resets the pll - we need that to have 5907 * the right LVDS enable sequence. */ 5908 intel_enable_shared_dpll(crtc_state); 5909 5910 /* set transcoder timing, panel must allow it */ 5911 assert_panel_unlocked(dev_priv, pipe); 5912 ilk_pch_transcoder_set_timings(crtc_state, pipe); 5913 5914 intel_fdi_normal_train(crtc); 5915 5916 /* For PCH DP, enable TRANS_DP_CTL */ 5917 if (HAS_PCH_CPT(dev_priv) && 5918 intel_crtc_has_dp_encoder(crtc_state)) { 5919 const struct drm_display_mode *adjusted_mode = 5920 &crtc_state->hw.adjusted_mode; 5921 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 5922 i915_reg_t reg = TRANS_DP_CTL(pipe); 5923 enum port port; 5924 5925 temp = intel_de_read(dev_priv, reg); 5926 temp &= ~(TRANS_DP_PORT_SEL_MASK | 5927 TRANS_DP_SYNC_MASK | 5928 TRANS_DP_BPC_MASK); 5929 temp |= TRANS_DP_OUTPUT_ENABLE; 5930 temp |= bpc << 9; /* same format but at 11:9 */ 5931 5932 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 5933 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 5934 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 5935 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 5936 5937 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 5938 drm_WARN_ON(dev, port < PORT_B || port > PORT_D); 5939 temp |= TRANS_DP_PORT_SEL(port); 5940 5941 intel_de_write(dev_priv, reg, temp); 5942 } 5943 5944 ilk_enable_pch_transcoder(crtc_state); 5945 } 5946 5947 void lpt_pch_enable(const struct intel_crtc_state *crtc_state) 5948 { 5949 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5950 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5951 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5952 5953 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 5954 5955 lpt_program_iclkip(crtc_state); 5956 5957 /* Set transcoder timing. */ 5958 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A); 5959 5960 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 5961 } 5962 5963 static void cpt_verify_modeset(struct drm_i915_private *dev_priv, 5964 enum pipe pipe) 5965 { 5966 i915_reg_t dslreg = PIPEDSL(pipe); 5967 u32 temp; 5968 5969 temp = intel_de_read(dev_priv, dslreg); 5970 udelay(500); 5971 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) { 5972 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) 5973 drm_err(&dev_priv->drm, 5974 "mode set failed: pipe %c stuck\n", 5975 pipe_name(pipe)); 5976 } 5977 } 5978 5979 /* 5980 * The hardware phase 0.0 refers to the center of the pixel. 5981 * We want to start from the top/left edge which is phase 5982 * -0.5. That matches how the hardware calculates the scaling 5983 * factors (from top-left of the first pixel to bottom-right 5984 * of the last pixel, as opposed to the pixel centers). 5985 * 5986 * For 4:2:0 subsampled chroma planes we obviously have to 5987 * adjust that so that the chroma sample position lands in 5988 * the right spot. 5989 * 5990 * Note that for packed YCbCr 4:2:2 formats there is no way to 5991 * control chroma siting. The hardware simply replicates the 5992 * chroma samples for both of the luma samples, and thus we don't 5993 * actually get the expected MPEG2 chroma siting convention :( 5994 * The same behaviour is observed on pre-SKL platforms as well. 5995 * 5996 * Theory behind the formula (note that we ignore sub-pixel 5997 * source coordinates): 5998 * s = source sample position 5999 * d = destination sample position 6000 * 6001 * Downscaling 4:1: 6002 * -0.5 6003 * | 0.0 6004 * | | 1.5 (initial phase) 6005 * | | | 6006 * v v v 6007 * | s | s | s | s | 6008 * | d | 6009 * 6010 * Upscaling 1:4: 6011 * -0.5 6012 * | -0.375 (initial phase) 6013 * | | 0.0 6014 * | | | 6015 * v v v 6016 * | s | 6017 * | d | d | d | d | 6018 */ 6019 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited) 6020 { 6021 int phase = -0x8000; 6022 u16 trip = 0; 6023 6024 if (chroma_cosited) 6025 phase += (sub - 1) * 0x8000 / sub; 6026 6027 phase += scale / (2 * sub); 6028 6029 /* 6030 * Hardware initial phase limited to [-0.5:1.5]. 6031 * Since the max hardware scale factor is 3.0, we 6032 * should never actually excdeed 1.0 here. 6033 */ 6034 WARN_ON(phase < -0x8000 || phase > 0x18000); 6035 6036 if (phase < 0) 6037 phase = 0x10000 + phase; 6038 else 6039 trip = PS_PHASE_TRIP; 6040 6041 return ((phase >> 2) & PS_PHASE_MASK) | trip; 6042 } 6043 6044 #define SKL_MIN_SRC_W 8 6045 #define SKL_MAX_SRC_W 4096 6046 #define SKL_MIN_SRC_H 8 6047 #define SKL_MAX_SRC_H 4096 6048 #define SKL_MIN_DST_W 8 6049 #define SKL_MAX_DST_W 4096 6050 #define SKL_MIN_DST_H 8 6051 #define SKL_MAX_DST_H 4096 6052 #define ICL_MAX_SRC_W 5120 6053 #define ICL_MAX_SRC_H 4096 6054 #define ICL_MAX_DST_W 5120 6055 #define ICL_MAX_DST_H 4096 6056 #define SKL_MIN_YUV_420_SRC_W 16 6057 #define SKL_MIN_YUV_420_SRC_H 16 6058 6059 static int 6060 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach, 6061 unsigned int scaler_user, int *scaler_id, 6062 int src_w, int src_h, int dst_w, int dst_h, 6063 const struct drm_format_info *format, 6064 u64 modifier, bool need_scaler) 6065 { 6066 struct intel_crtc_scaler_state *scaler_state = 6067 &crtc_state->scaler_state; 6068 struct intel_crtc *intel_crtc = 6069 to_intel_crtc(crtc_state->uapi.crtc); 6070 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 6071 const struct drm_display_mode *adjusted_mode = 6072 &crtc_state->hw.adjusted_mode; 6073 6074 /* 6075 * Src coordinates are already rotated by 270 degrees for 6076 * the 90/270 degree plane rotation cases (to match the 6077 * GTT mapping), hence no need to account for rotation here. 6078 */ 6079 if (src_w != dst_w || src_h != dst_h) 6080 need_scaler = true; 6081 6082 /* 6083 * Scaling/fitting not supported in IF-ID mode in GEN9+ 6084 * TODO: Interlace fetch mode doesn't support YUV420 planar formats. 6085 * Once NV12 is enabled, handle it here while allocating scaler 6086 * for NV12. 6087 */ 6088 if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable && 6089 need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 6090 drm_dbg_kms(&dev_priv->drm, 6091 "Pipe/Plane scaling not supported with IF-ID mode\n"); 6092 return -EINVAL; 6093 } 6094 6095 /* 6096 * if plane is being disabled or scaler is no more required or force detach 6097 * - free scaler binded to this plane/crtc 6098 * - in order to do this, update crtc->scaler_usage 6099 * 6100 * Here scaler state in crtc_state is set free so that 6101 * scaler can be assigned to other user. Actual register 6102 * update to free the scaler is done in plane/panel-fit programming. 6103 * For this purpose crtc/plane_state->scaler_id isn't reset here. 6104 */ 6105 if (force_detach || !need_scaler) { 6106 if (*scaler_id >= 0) { 6107 scaler_state->scaler_users &= ~(1 << scaler_user); 6108 scaler_state->scalers[*scaler_id].in_use = 0; 6109 6110 drm_dbg_kms(&dev_priv->drm, 6111 "scaler_user index %u.%u: " 6112 "Staged freeing scaler id %d scaler_users = 0x%x\n", 6113 intel_crtc->pipe, scaler_user, *scaler_id, 6114 scaler_state->scaler_users); 6115 *scaler_id = -1; 6116 } 6117 return 0; 6118 } 6119 6120 if (format && intel_format_info_is_yuv_semiplanar(format, modifier) && 6121 (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) { 6122 drm_dbg_kms(&dev_priv->drm, 6123 "Planar YUV: src dimensions not met\n"); 6124 return -EINVAL; 6125 } 6126 6127 /* range checks */ 6128 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H || 6129 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H || 6130 (INTEL_GEN(dev_priv) >= 11 && 6131 (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H || 6132 dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) || 6133 (INTEL_GEN(dev_priv) < 11 && 6134 (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H || 6135 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) { 6136 drm_dbg_kms(&dev_priv->drm, 6137 "scaler_user index %u.%u: src %ux%u dst %ux%u " 6138 "size is out of scaler range\n", 6139 intel_crtc->pipe, scaler_user, src_w, src_h, 6140 dst_w, dst_h); 6141 return -EINVAL; 6142 } 6143 6144 /* mark this plane as a scaler user in crtc_state */ 6145 scaler_state->scaler_users |= (1 << scaler_user); 6146 drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: " 6147 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n", 6148 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h, 6149 scaler_state->scaler_users); 6150 6151 return 0; 6152 } 6153 6154 static int skl_update_scaler_crtc(struct intel_crtc_state *crtc_state) 6155 { 6156 const struct drm_display_mode *adjusted_mode = 6157 &crtc_state->hw.adjusted_mode; 6158 int width, height; 6159 6160 if (crtc_state->pch_pfit.enabled) { 6161 width = drm_rect_width(&crtc_state->pch_pfit.dst); 6162 height = drm_rect_height(&crtc_state->pch_pfit.dst); 6163 } else { 6164 width = adjusted_mode->crtc_hdisplay; 6165 height = adjusted_mode->crtc_vdisplay; 6166 } 6167 6168 return skl_update_scaler(crtc_state, !crtc_state->hw.active, 6169 SKL_CRTC_INDEX, 6170 &crtc_state->scaler_state.scaler_id, 6171 crtc_state->pipe_src_w, crtc_state->pipe_src_h, 6172 width, height, NULL, 0, 6173 crtc_state->pch_pfit.enabled); 6174 } 6175 6176 /** 6177 * skl_update_scaler_plane - Stages update to scaler state for a given plane. 6178 * @crtc_state: crtc's scaler state 6179 * @plane_state: atomic plane state to update 6180 * 6181 * Return 6182 * 0 - scaler_usage updated successfully 6183 * error - requested scaling cannot be supported or other error condition 6184 */ 6185 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state, 6186 struct intel_plane_state *plane_state) 6187 { 6188 struct intel_plane *intel_plane = 6189 to_intel_plane(plane_state->uapi.plane); 6190 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 6191 struct drm_framebuffer *fb = plane_state->hw.fb; 6192 int ret; 6193 bool force_detach = !fb || !plane_state->uapi.visible; 6194 bool need_scaler = false; 6195 6196 /* Pre-gen11 and SDR planes always need a scaler for planar formats. */ 6197 if (!icl_is_hdr_plane(dev_priv, intel_plane->id) && 6198 fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier)) 6199 need_scaler = true; 6200 6201 ret = skl_update_scaler(crtc_state, force_detach, 6202 drm_plane_index(&intel_plane->base), 6203 &plane_state->scaler_id, 6204 drm_rect_width(&plane_state->uapi.src) >> 16, 6205 drm_rect_height(&plane_state->uapi.src) >> 16, 6206 drm_rect_width(&plane_state->uapi.dst), 6207 drm_rect_height(&plane_state->uapi.dst), 6208 fb ? fb->format : NULL, 6209 fb ? fb->modifier : 0, 6210 need_scaler); 6211 6212 if (ret || plane_state->scaler_id < 0) 6213 return ret; 6214 6215 /* check colorkey */ 6216 if (plane_state->ckey.flags) { 6217 drm_dbg_kms(&dev_priv->drm, 6218 "[PLANE:%d:%s] scaling with color key not allowed", 6219 intel_plane->base.base.id, 6220 intel_plane->base.name); 6221 return -EINVAL; 6222 } 6223 6224 /* Check src format */ 6225 switch (fb->format->format) { 6226 case DRM_FORMAT_RGB565: 6227 case DRM_FORMAT_XBGR8888: 6228 case DRM_FORMAT_XRGB8888: 6229 case DRM_FORMAT_ABGR8888: 6230 case DRM_FORMAT_ARGB8888: 6231 case DRM_FORMAT_XRGB2101010: 6232 case DRM_FORMAT_XBGR2101010: 6233 case DRM_FORMAT_ARGB2101010: 6234 case DRM_FORMAT_ABGR2101010: 6235 case DRM_FORMAT_YUYV: 6236 case DRM_FORMAT_YVYU: 6237 case DRM_FORMAT_UYVY: 6238 case DRM_FORMAT_VYUY: 6239 case DRM_FORMAT_NV12: 6240 case DRM_FORMAT_XYUV8888: 6241 case DRM_FORMAT_P010: 6242 case DRM_FORMAT_P012: 6243 case DRM_FORMAT_P016: 6244 case DRM_FORMAT_Y210: 6245 case DRM_FORMAT_Y212: 6246 case DRM_FORMAT_Y216: 6247 case DRM_FORMAT_XVYU2101010: 6248 case DRM_FORMAT_XVYU12_16161616: 6249 case DRM_FORMAT_XVYU16161616: 6250 break; 6251 case DRM_FORMAT_XBGR16161616F: 6252 case DRM_FORMAT_ABGR16161616F: 6253 case DRM_FORMAT_XRGB16161616F: 6254 case DRM_FORMAT_ARGB16161616F: 6255 if (INTEL_GEN(dev_priv) >= 11) 6256 break; 6257 fallthrough; 6258 default: 6259 drm_dbg_kms(&dev_priv->drm, 6260 "[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n", 6261 intel_plane->base.base.id, intel_plane->base.name, 6262 fb->base.id, fb->format->format); 6263 return -EINVAL; 6264 } 6265 6266 return 0; 6267 } 6268 6269 void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state) 6270 { 6271 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 6272 int i; 6273 6274 for (i = 0; i < crtc->num_scalers; i++) 6275 skl_detach_scaler(crtc, i); 6276 } 6277 6278 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state) 6279 { 6280 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6281 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6282 const struct intel_crtc_scaler_state *scaler_state = 6283 &crtc_state->scaler_state; 6284 struct drm_rect src = { 6285 .x2 = crtc_state->pipe_src_w << 16, 6286 .y2 = crtc_state->pipe_src_h << 16, 6287 }; 6288 const struct drm_rect *dst = &crtc_state->pch_pfit.dst; 6289 u16 uv_rgb_hphase, uv_rgb_vphase; 6290 enum pipe pipe = crtc->pipe; 6291 int width = drm_rect_width(dst); 6292 int height = drm_rect_height(dst); 6293 int x = dst->x1; 6294 int y = dst->y1; 6295 int hscale, vscale; 6296 unsigned long irqflags; 6297 int id; 6298 6299 if (!crtc_state->pch_pfit.enabled) 6300 return; 6301 6302 if (drm_WARN_ON(&dev_priv->drm, 6303 crtc_state->scaler_state.scaler_id < 0)) 6304 return; 6305 6306 hscale = drm_rect_calc_hscale(&src, dst, 0, INT_MAX); 6307 vscale = drm_rect_calc_vscale(&src, dst, 0, INT_MAX); 6308 6309 uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false); 6310 uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false); 6311 6312 id = scaler_state->scaler_id; 6313 6314 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 6315 6316 intel_de_write_fw(dev_priv, SKL_PS_CTRL(pipe, id), PS_SCALER_EN | 6317 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode); 6318 intel_de_write_fw(dev_priv, SKL_PS_VPHASE(pipe, id), 6319 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase)); 6320 intel_de_write_fw(dev_priv, SKL_PS_HPHASE(pipe, id), 6321 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase)); 6322 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(pipe, id), 6323 x << 16 | y); 6324 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(pipe, id), 6325 width << 16 | height); 6326 6327 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 6328 } 6329 6330 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state) 6331 { 6332 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6333 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6334 const struct drm_rect *dst = &crtc_state->pch_pfit.dst; 6335 enum pipe pipe = crtc->pipe; 6336 int width = drm_rect_width(dst); 6337 int height = drm_rect_height(dst); 6338 int x = dst->x1; 6339 int y = dst->y1; 6340 6341 if (!crtc_state->pch_pfit.enabled) 6342 return; 6343 6344 /* Force use of hard-coded filter coefficients 6345 * as some pre-programmed values are broken, 6346 * e.g. x201. 6347 */ 6348 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 6349 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 6350 PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); 6351 else 6352 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 6353 PF_FILTER_MED_3x3); 6354 intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y); 6355 intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height); 6356 } 6357 6358 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 6359 { 6360 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6361 struct drm_device *dev = crtc->base.dev; 6362 struct drm_i915_private *dev_priv = to_i915(dev); 6363 6364 if (!crtc_state->ips_enabled) 6365 return; 6366 6367 /* 6368 * We can only enable IPS after we enable a plane and wait for a vblank 6369 * This function is called from post_plane_update, which is run after 6370 * a vblank wait. 6371 */ 6372 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 6373 6374 if (IS_BROADWELL(dev_priv)) { 6375 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 6376 IPS_ENABLE | IPS_PCODE_CONTROL)); 6377 /* Quoting Art Runyan: "its not safe to expect any particular 6378 * value in IPS_CTL bit 31 after enabling IPS through the 6379 * mailbox." Moreover, the mailbox may return a bogus state, 6380 * so we need to just enable it and continue on. 6381 */ 6382 } else { 6383 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE); 6384 /* The bit only becomes 1 in the next vblank, so this wait here 6385 * is essentially intel_wait_for_vblank. If we don't have this 6386 * and don't wait for vblanks until the end of crtc_enable, then 6387 * the HW state readout code will complain that the expected 6388 * IPS_CTL value is not the one we read. */ 6389 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 6390 drm_err(&dev_priv->drm, 6391 "Timed out waiting for IPS enable\n"); 6392 } 6393 } 6394 6395 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 6396 { 6397 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6398 struct drm_device *dev = crtc->base.dev; 6399 struct drm_i915_private *dev_priv = to_i915(dev); 6400 6401 if (!crtc_state->ips_enabled) 6402 return; 6403 6404 if (IS_BROADWELL(dev_priv)) { 6405 drm_WARN_ON(dev, 6406 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 6407 /* 6408 * Wait for PCODE to finish disabling IPS. The BSpec specified 6409 * 42ms timeout value leads to occasional timeouts so use 100ms 6410 * instead. 6411 */ 6412 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 6413 drm_err(&dev_priv->drm, 6414 "Timed out waiting for IPS disable\n"); 6415 } else { 6416 intel_de_write(dev_priv, IPS_CTL, 0); 6417 intel_de_posting_read(dev_priv, IPS_CTL); 6418 } 6419 6420 /* We need to wait for a vblank before we can disable the plane. */ 6421 intel_wait_for_vblank(dev_priv, crtc->pipe); 6422 } 6423 6424 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) 6425 { 6426 if (intel_crtc->overlay) 6427 (void) intel_overlay_switch_off(intel_crtc->overlay); 6428 6429 /* Let userspace switch the overlay on again. In most cases userspace 6430 * has to recompute where to put it anyway. 6431 */ 6432 } 6433 6434 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 6435 const struct intel_crtc_state *new_crtc_state) 6436 { 6437 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 6438 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6439 6440 if (!old_crtc_state->ips_enabled) 6441 return false; 6442 6443 if (needs_modeset(new_crtc_state)) 6444 return true; 6445 6446 /* 6447 * Workaround : Do not read or write the pipe palette/gamma data while 6448 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 6449 * 6450 * Disable IPS before we program the LUT. 6451 */ 6452 if (IS_HASWELL(dev_priv) && 6453 (new_crtc_state->uapi.color_mgmt_changed || 6454 new_crtc_state->update_pipe) && 6455 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 6456 return true; 6457 6458 return !new_crtc_state->ips_enabled; 6459 } 6460 6461 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 6462 const struct intel_crtc_state *new_crtc_state) 6463 { 6464 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 6465 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6466 6467 if (!new_crtc_state->ips_enabled) 6468 return false; 6469 6470 if (needs_modeset(new_crtc_state)) 6471 return true; 6472 6473 /* 6474 * Workaround : Do not read or write the pipe palette/gamma data while 6475 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 6476 * 6477 * Re-enable IPS after the LUT has been programmed. 6478 */ 6479 if (IS_HASWELL(dev_priv) && 6480 (new_crtc_state->uapi.color_mgmt_changed || 6481 new_crtc_state->update_pipe) && 6482 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 6483 return true; 6484 6485 /* 6486 * We can't read out IPS on broadwell, assume the worst and 6487 * forcibly enable IPS on the first fastset. 6488 */ 6489 if (new_crtc_state->update_pipe && old_crtc_state->inherited) 6490 return true; 6491 6492 return !old_crtc_state->ips_enabled; 6493 } 6494 6495 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) 6496 { 6497 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 6498 6499 if (!crtc_state->nv12_planes) 6500 return false; 6501 6502 /* WA Display #0827: Gen9:all */ 6503 if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv)) 6504 return true; 6505 6506 return false; 6507 } 6508 6509 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) 6510 { 6511 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 6512 6513 /* Wa_2006604312:icl,ehl */ 6514 if (crtc_state->scaler_state.scaler_users > 0 && IS_GEN(dev_priv, 11)) 6515 return true; 6516 6517 return false; 6518 } 6519 6520 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, 6521 const struct intel_crtc_state *new_crtc_state) 6522 { 6523 return (!old_crtc_state->active_planes || needs_modeset(new_crtc_state)) && 6524 new_crtc_state->active_planes; 6525 } 6526 6527 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, 6528 const struct intel_crtc_state *new_crtc_state) 6529 { 6530 return old_crtc_state->active_planes && 6531 (!new_crtc_state->active_planes || needs_modeset(new_crtc_state)); 6532 } 6533 6534 static void intel_post_plane_update(struct intel_atomic_state *state, 6535 struct intel_crtc *crtc) 6536 { 6537 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6538 const struct intel_crtc_state *old_crtc_state = 6539 intel_atomic_get_old_crtc_state(state, crtc); 6540 const struct intel_crtc_state *new_crtc_state = 6541 intel_atomic_get_new_crtc_state(state, crtc); 6542 enum pipe pipe = crtc->pipe; 6543 6544 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); 6545 6546 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) 6547 intel_update_watermarks(crtc); 6548 6549 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state)) 6550 hsw_enable_ips(new_crtc_state); 6551 6552 intel_fbc_post_update(state, crtc); 6553 6554 if (needs_nv12_wa(old_crtc_state) && 6555 !needs_nv12_wa(new_crtc_state)) 6556 skl_wa_827(dev_priv, pipe, false); 6557 6558 if (needs_scalerclk_wa(old_crtc_state) && 6559 !needs_scalerclk_wa(new_crtc_state)) 6560 icl_wa_scalerclkgating(dev_priv, pipe, false); 6561 } 6562 6563 static void intel_pre_plane_update(struct intel_atomic_state *state, 6564 struct intel_crtc *crtc) 6565 { 6566 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6567 const struct intel_crtc_state *old_crtc_state = 6568 intel_atomic_get_old_crtc_state(state, crtc); 6569 const struct intel_crtc_state *new_crtc_state = 6570 intel_atomic_get_new_crtc_state(state, crtc); 6571 enum pipe pipe = crtc->pipe; 6572 6573 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state)) 6574 hsw_disable_ips(old_crtc_state); 6575 6576 if (intel_fbc_pre_update(state, crtc)) 6577 intel_wait_for_vblank(dev_priv, pipe); 6578 6579 /* Display WA 827 */ 6580 if (!needs_nv12_wa(old_crtc_state) && 6581 needs_nv12_wa(new_crtc_state)) 6582 skl_wa_827(dev_priv, pipe, true); 6583 6584 /* Wa_2006604312:icl,ehl */ 6585 if (!needs_scalerclk_wa(old_crtc_state) && 6586 needs_scalerclk_wa(new_crtc_state)) 6587 icl_wa_scalerclkgating(dev_priv, pipe, true); 6588 6589 /* 6590 * Vblank time updates from the shadow to live plane control register 6591 * are blocked if the memory self-refresh mode is active at that 6592 * moment. So to make sure the plane gets truly disabled, disable 6593 * first the self-refresh mode. The self-refresh enable bit in turn 6594 * will be checked/applied by the HW only at the next frame start 6595 * event which is after the vblank start event, so we need to have a 6596 * wait-for-vblank between disabling the plane and the pipe. 6597 */ 6598 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active && 6599 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 6600 intel_wait_for_vblank(dev_priv, pipe); 6601 6602 /* 6603 * IVB workaround: must disable low power watermarks for at least 6604 * one frame before enabling scaling. LP watermarks can be re-enabled 6605 * when scaling is disabled. 6606 * 6607 * WaCxSRDisabledForSpriteScaling:ivb 6608 */ 6609 if (old_crtc_state->hw.active && 6610 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv)) 6611 intel_wait_for_vblank(dev_priv, pipe); 6612 6613 /* 6614 * If we're doing a modeset we don't need to do any 6615 * pre-vblank watermark programming here. 6616 */ 6617 if (!needs_modeset(new_crtc_state)) { 6618 /* 6619 * For platforms that support atomic watermarks, program the 6620 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 6621 * will be the intermediate values that are safe for both pre- and 6622 * post- vblank; when vblank happens, the 'active' values will be set 6623 * to the final 'target' values and we'll do this again to get the 6624 * optimal watermarks. For gen9+ platforms, the values we program here 6625 * will be the final target values which will get automatically latched 6626 * at vblank time; no further programming will be necessary. 6627 * 6628 * If a platform hasn't been transitioned to atomic watermarks yet, 6629 * we'll continue to update watermarks the old way, if flags tell 6630 * us to. 6631 */ 6632 if (dev_priv->display.initial_watermarks) 6633 dev_priv->display.initial_watermarks(state, crtc); 6634 else if (new_crtc_state->update_wm_pre) 6635 intel_update_watermarks(crtc); 6636 } 6637 6638 /* 6639 * Gen2 reports pipe underruns whenever all planes are disabled. 6640 * So disable underrun reporting before all the planes get disabled. 6641 * 6642 * We do this after .initial_watermarks() so that we have a 6643 * chance of catching underruns with the intermediate watermarks 6644 * vs. the old plane configuration. 6645 */ 6646 if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state)) 6647 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6648 } 6649 6650 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 6651 struct intel_crtc *crtc) 6652 { 6653 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6654 const struct intel_crtc_state *new_crtc_state = 6655 intel_atomic_get_new_crtc_state(state, crtc); 6656 unsigned int update_mask = new_crtc_state->update_planes; 6657 const struct intel_plane_state *old_plane_state; 6658 struct intel_plane *plane; 6659 unsigned fb_bits = 0; 6660 int i; 6661 6662 intel_crtc_dpms_overlay_disable(crtc); 6663 6664 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 6665 if (crtc->pipe != plane->pipe || 6666 !(update_mask & BIT(plane->id))) 6667 continue; 6668 6669 intel_disable_plane(plane, new_crtc_state); 6670 6671 if (old_plane_state->uapi.visible) 6672 fb_bits |= plane->frontbuffer_bit; 6673 } 6674 6675 intel_frontbuffer_flip(dev_priv, fb_bits); 6676 } 6677 6678 /* 6679 * intel_connector_primary_encoder - get the primary encoder for a connector 6680 * @connector: connector for which to return the encoder 6681 * 6682 * Returns the primary encoder for a connector. There is a 1:1 mapping from 6683 * all connectors to their encoder, except for DP-MST connectors which have 6684 * both a virtual and a primary encoder. These DP-MST primary encoders can be 6685 * pointed to by as many DP-MST connectors as there are pipes. 6686 */ 6687 static struct intel_encoder * 6688 intel_connector_primary_encoder(struct intel_connector *connector) 6689 { 6690 struct intel_encoder *encoder; 6691 6692 if (connector->mst_port) 6693 return &dp_to_dig_port(connector->mst_port)->base; 6694 6695 encoder = intel_attached_encoder(connector); 6696 drm_WARN_ON(connector->base.dev, !encoder); 6697 6698 return encoder; 6699 } 6700 6701 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 6702 { 6703 struct drm_connector_state *new_conn_state; 6704 struct drm_connector *connector; 6705 int i; 6706 6707 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 6708 i) { 6709 struct intel_connector *intel_connector; 6710 struct intel_encoder *encoder; 6711 struct intel_crtc *crtc; 6712 6713 if (!intel_connector_needs_modeset(state, connector)) 6714 continue; 6715 6716 intel_connector = to_intel_connector(connector); 6717 encoder = intel_connector_primary_encoder(intel_connector); 6718 if (!encoder->update_prepare) 6719 continue; 6720 6721 crtc = new_conn_state->crtc ? 6722 to_intel_crtc(new_conn_state->crtc) : NULL; 6723 encoder->update_prepare(state, encoder, crtc); 6724 } 6725 } 6726 6727 static void intel_encoders_update_complete(struct intel_atomic_state *state) 6728 { 6729 struct drm_connector_state *new_conn_state; 6730 struct drm_connector *connector; 6731 int i; 6732 6733 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 6734 i) { 6735 struct intel_connector *intel_connector; 6736 struct intel_encoder *encoder; 6737 struct intel_crtc *crtc; 6738 6739 if (!intel_connector_needs_modeset(state, connector)) 6740 continue; 6741 6742 intel_connector = to_intel_connector(connector); 6743 encoder = intel_connector_primary_encoder(intel_connector); 6744 if (!encoder->update_complete) 6745 continue; 6746 6747 crtc = new_conn_state->crtc ? 6748 to_intel_crtc(new_conn_state->crtc) : NULL; 6749 encoder->update_complete(state, encoder, crtc); 6750 } 6751 } 6752 6753 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, 6754 struct intel_crtc *crtc) 6755 { 6756 const struct intel_crtc_state *crtc_state = 6757 intel_atomic_get_new_crtc_state(state, crtc); 6758 const struct drm_connector_state *conn_state; 6759 struct drm_connector *conn; 6760 int i; 6761 6762 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6763 struct intel_encoder *encoder = 6764 to_intel_encoder(conn_state->best_encoder); 6765 6766 if (conn_state->crtc != &crtc->base) 6767 continue; 6768 6769 if (encoder->pre_pll_enable) 6770 encoder->pre_pll_enable(state, encoder, 6771 crtc_state, conn_state); 6772 } 6773 } 6774 6775 static void intel_encoders_pre_enable(struct intel_atomic_state *state, 6776 struct intel_crtc *crtc) 6777 { 6778 const struct intel_crtc_state *crtc_state = 6779 intel_atomic_get_new_crtc_state(state, crtc); 6780 const struct drm_connector_state *conn_state; 6781 struct drm_connector *conn; 6782 int i; 6783 6784 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6785 struct intel_encoder *encoder = 6786 to_intel_encoder(conn_state->best_encoder); 6787 6788 if (conn_state->crtc != &crtc->base) 6789 continue; 6790 6791 if (encoder->pre_enable) 6792 encoder->pre_enable(state, encoder, 6793 crtc_state, conn_state); 6794 } 6795 } 6796 6797 static void intel_encoders_enable(struct intel_atomic_state *state, 6798 struct intel_crtc *crtc) 6799 { 6800 const struct intel_crtc_state *crtc_state = 6801 intel_atomic_get_new_crtc_state(state, crtc); 6802 const struct drm_connector_state *conn_state; 6803 struct drm_connector *conn; 6804 int i; 6805 6806 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6807 struct intel_encoder *encoder = 6808 to_intel_encoder(conn_state->best_encoder); 6809 6810 if (conn_state->crtc != &crtc->base) 6811 continue; 6812 6813 if (encoder->enable) 6814 encoder->enable(state, encoder, 6815 crtc_state, conn_state); 6816 intel_opregion_notify_encoder(encoder, true); 6817 } 6818 } 6819 6820 static void intel_encoders_disable(struct intel_atomic_state *state, 6821 struct intel_crtc *crtc) 6822 { 6823 const struct intel_crtc_state *old_crtc_state = 6824 intel_atomic_get_old_crtc_state(state, crtc); 6825 const struct drm_connector_state *old_conn_state; 6826 struct drm_connector *conn; 6827 int i; 6828 6829 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6830 struct intel_encoder *encoder = 6831 to_intel_encoder(old_conn_state->best_encoder); 6832 6833 if (old_conn_state->crtc != &crtc->base) 6834 continue; 6835 6836 intel_opregion_notify_encoder(encoder, false); 6837 if (encoder->disable) 6838 encoder->disable(state, encoder, 6839 old_crtc_state, old_conn_state); 6840 } 6841 } 6842 6843 static void intel_encoders_post_disable(struct intel_atomic_state *state, 6844 struct intel_crtc *crtc) 6845 { 6846 const struct intel_crtc_state *old_crtc_state = 6847 intel_atomic_get_old_crtc_state(state, crtc); 6848 const struct drm_connector_state *old_conn_state; 6849 struct drm_connector *conn; 6850 int i; 6851 6852 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6853 struct intel_encoder *encoder = 6854 to_intel_encoder(old_conn_state->best_encoder); 6855 6856 if (old_conn_state->crtc != &crtc->base) 6857 continue; 6858 6859 if (encoder->post_disable) 6860 encoder->post_disable(state, encoder, 6861 old_crtc_state, old_conn_state); 6862 } 6863 } 6864 6865 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, 6866 struct intel_crtc *crtc) 6867 { 6868 const struct intel_crtc_state *old_crtc_state = 6869 intel_atomic_get_old_crtc_state(state, crtc); 6870 const struct drm_connector_state *old_conn_state; 6871 struct drm_connector *conn; 6872 int i; 6873 6874 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6875 struct intel_encoder *encoder = 6876 to_intel_encoder(old_conn_state->best_encoder); 6877 6878 if (old_conn_state->crtc != &crtc->base) 6879 continue; 6880 6881 if (encoder->post_pll_disable) 6882 encoder->post_pll_disable(state, encoder, 6883 old_crtc_state, old_conn_state); 6884 } 6885 } 6886 6887 static void intel_encoders_update_pipe(struct intel_atomic_state *state, 6888 struct intel_crtc *crtc) 6889 { 6890 const struct intel_crtc_state *crtc_state = 6891 intel_atomic_get_new_crtc_state(state, crtc); 6892 const struct drm_connector_state *conn_state; 6893 struct drm_connector *conn; 6894 int i; 6895 6896 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6897 struct intel_encoder *encoder = 6898 to_intel_encoder(conn_state->best_encoder); 6899 6900 if (conn_state->crtc != &crtc->base) 6901 continue; 6902 6903 if (encoder->update_pipe) 6904 encoder->update_pipe(state, encoder, 6905 crtc_state, conn_state); 6906 } 6907 } 6908 6909 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 6910 { 6911 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6912 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 6913 6914 plane->disable_plane(plane, crtc_state); 6915 } 6916 6917 static void ilk_crtc_enable(struct intel_atomic_state *state, 6918 struct intel_crtc *crtc) 6919 { 6920 const struct intel_crtc_state *new_crtc_state = 6921 intel_atomic_get_new_crtc_state(state, crtc); 6922 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6923 enum pipe pipe = crtc->pipe; 6924 6925 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 6926 return; 6927 6928 /* 6929 * Sometimes spurious CPU pipe underruns happen during FDI 6930 * training, at least with VGA+HDMI cloning. Suppress them. 6931 * 6932 * On ILK we get an occasional spurious CPU pipe underruns 6933 * between eDP port A enable and vdd enable. Also PCH port 6934 * enable seems to result in the occasional CPU pipe underrun. 6935 * 6936 * Spurious PCH underruns also occur during PCH enabling. 6937 */ 6938 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6939 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 6940 6941 if (new_crtc_state->has_pch_encoder) 6942 intel_prepare_shared_dpll(new_crtc_state); 6943 6944 if (intel_crtc_has_dp_encoder(new_crtc_state)) 6945 intel_dp_set_m_n(new_crtc_state, M1_N1); 6946 6947 intel_set_pipe_timings(new_crtc_state); 6948 intel_set_pipe_src_size(new_crtc_state); 6949 6950 if (new_crtc_state->has_pch_encoder) 6951 intel_cpu_transcoder_set_m_n(new_crtc_state, 6952 &new_crtc_state->fdi_m_n, NULL); 6953 6954 ilk_set_pipeconf(new_crtc_state); 6955 6956 crtc->active = true; 6957 6958 intel_encoders_pre_enable(state, crtc); 6959 6960 if (new_crtc_state->has_pch_encoder) { 6961 /* Note: FDI PLL enabling _must_ be done before we enable the 6962 * cpu pipes, hence this is separate from all the other fdi/pch 6963 * enabling. */ 6964 ilk_fdi_pll_enable(new_crtc_state); 6965 } else { 6966 assert_fdi_tx_disabled(dev_priv, pipe); 6967 assert_fdi_rx_disabled(dev_priv, pipe); 6968 } 6969 6970 ilk_pfit_enable(new_crtc_state); 6971 6972 /* 6973 * On ILK+ LUT must be loaded before the pipe is running but with 6974 * clocks enabled 6975 */ 6976 intel_color_load_luts(new_crtc_state); 6977 intel_color_commit(new_crtc_state); 6978 /* update DSPCNTR to configure gamma for pipe bottom color */ 6979 intel_disable_primary_plane(new_crtc_state); 6980 6981 if (dev_priv->display.initial_watermarks) 6982 dev_priv->display.initial_watermarks(state, crtc); 6983 intel_enable_pipe(new_crtc_state); 6984 6985 if (new_crtc_state->has_pch_encoder) 6986 ilk_pch_enable(state, new_crtc_state); 6987 6988 intel_crtc_vblank_on(new_crtc_state); 6989 6990 intel_encoders_enable(state, crtc); 6991 6992 if (HAS_PCH_CPT(dev_priv)) 6993 cpt_verify_modeset(dev_priv, pipe); 6994 6995 /* 6996 * Must wait for vblank to avoid spurious PCH FIFO underruns. 6997 * And a second vblank wait is needed at least on ILK with 6998 * some interlaced HDMI modes. Let's do the double wait always 6999 * in case there are more corner cases we don't know about. 7000 */ 7001 if (new_crtc_state->has_pch_encoder) { 7002 intel_wait_for_vblank(dev_priv, pipe); 7003 intel_wait_for_vblank(dev_priv, pipe); 7004 } 7005 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7006 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 7007 } 7008 7009 /* IPS only exists on ULT machines and is tied to pipe A. */ 7010 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 7011 { 7012 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 7013 } 7014 7015 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 7016 enum pipe pipe, bool apply) 7017 { 7018 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)); 7019 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 7020 7021 if (apply) 7022 val |= mask; 7023 else 7024 val &= ~mask; 7025 7026 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val); 7027 } 7028 7029 static void icl_pipe_mbus_enable(struct intel_crtc *crtc) 7030 { 7031 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7032 enum pipe pipe = crtc->pipe; 7033 u32 val; 7034 7035 val = MBUS_DBOX_A_CREDIT(2); 7036 7037 if (INTEL_GEN(dev_priv) >= 12) { 7038 val |= MBUS_DBOX_BW_CREDIT(2); 7039 val |= MBUS_DBOX_B_CREDIT(12); 7040 } else { 7041 val |= MBUS_DBOX_BW_CREDIT(1); 7042 val |= MBUS_DBOX_B_CREDIT(8); 7043 } 7044 7045 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val); 7046 } 7047 7048 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) 7049 { 7050 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7051 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7052 7053 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe), 7054 HSW_LINETIME(crtc_state->linetime) | 7055 HSW_IPS_LINETIME(crtc_state->ips_linetime)); 7056 } 7057 7058 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) 7059 { 7060 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7061 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7062 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder); 7063 u32 val; 7064 7065 val = intel_de_read(dev_priv, reg); 7066 val &= ~HSW_FRAME_START_DELAY_MASK; 7067 val |= HSW_FRAME_START_DELAY(0); 7068 intel_de_write(dev_priv, reg, val); 7069 } 7070 7071 static void hsw_crtc_enable(struct intel_atomic_state *state, 7072 struct intel_crtc *crtc) 7073 { 7074 const struct intel_crtc_state *new_crtc_state = 7075 intel_atomic_get_new_crtc_state(state, crtc); 7076 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7077 enum pipe pipe = crtc->pipe, hsw_workaround_pipe; 7078 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 7079 bool psl_clkgate_wa; 7080 7081 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7082 return; 7083 7084 intel_encoders_pre_pll_enable(state, crtc); 7085 7086 if (new_crtc_state->shared_dpll) 7087 intel_enable_shared_dpll(new_crtc_state); 7088 7089 intel_encoders_pre_enable(state, crtc); 7090 7091 if (!transcoder_is_dsi(cpu_transcoder)) 7092 intel_set_pipe_timings(new_crtc_state); 7093 7094 intel_set_pipe_src_size(new_crtc_state); 7095 7096 if (cpu_transcoder != TRANSCODER_EDP && 7097 !transcoder_is_dsi(cpu_transcoder)) 7098 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder), 7099 new_crtc_state->pixel_multiplier - 1); 7100 7101 if (new_crtc_state->has_pch_encoder) 7102 intel_cpu_transcoder_set_m_n(new_crtc_state, 7103 &new_crtc_state->fdi_m_n, NULL); 7104 7105 if (!transcoder_is_dsi(cpu_transcoder)) { 7106 hsw_set_frame_start_delay(new_crtc_state); 7107 hsw_set_pipeconf(new_crtc_state); 7108 } 7109 7110 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 7111 bdw_set_pipemisc(new_crtc_state); 7112 7113 crtc->active = true; 7114 7115 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */ 7116 psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) && 7117 new_crtc_state->pch_pfit.enabled; 7118 if (psl_clkgate_wa) 7119 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 7120 7121 if (INTEL_GEN(dev_priv) >= 9) 7122 skl_pfit_enable(new_crtc_state); 7123 else 7124 ilk_pfit_enable(new_crtc_state); 7125 7126 /* 7127 * On ILK+ LUT must be loaded before the pipe is running but with 7128 * clocks enabled 7129 */ 7130 intel_color_load_luts(new_crtc_state); 7131 intel_color_commit(new_crtc_state); 7132 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 7133 if (INTEL_GEN(dev_priv) < 9) 7134 intel_disable_primary_plane(new_crtc_state); 7135 7136 hsw_set_linetime_wm(new_crtc_state); 7137 7138 if (INTEL_GEN(dev_priv) >= 11) 7139 icl_set_pipe_chicken(crtc); 7140 7141 if (dev_priv->display.initial_watermarks) 7142 dev_priv->display.initial_watermarks(state, crtc); 7143 7144 if (INTEL_GEN(dev_priv) >= 11) 7145 icl_pipe_mbus_enable(crtc); 7146 7147 intel_encoders_enable(state, crtc); 7148 7149 if (psl_clkgate_wa) { 7150 intel_wait_for_vblank(dev_priv, pipe); 7151 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 7152 } 7153 7154 /* If we change the relative order between pipe/planes enabling, we need 7155 * to change the workaround. */ 7156 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe; 7157 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 7158 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 7159 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 7160 } 7161 } 7162 7163 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state) 7164 { 7165 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 7166 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7167 enum pipe pipe = crtc->pipe; 7168 7169 /* To avoid upsetting the power well on haswell only disable the pfit if 7170 * it's in use. The hw state code will make sure we get this right. */ 7171 if (!old_crtc_state->pch_pfit.enabled) 7172 return; 7173 7174 intel_de_write(dev_priv, PF_CTL(pipe), 0); 7175 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0); 7176 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0); 7177 } 7178 7179 static void ilk_crtc_disable(struct intel_atomic_state *state, 7180 struct intel_crtc *crtc) 7181 { 7182 const struct intel_crtc_state *old_crtc_state = 7183 intel_atomic_get_old_crtc_state(state, crtc); 7184 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7185 enum pipe pipe = crtc->pipe; 7186 7187 /* 7188 * Sometimes spurious CPU pipe underruns happen when the 7189 * pipe is already disabled, but FDI RX/TX is still enabled. 7190 * Happens at least with VGA+HDMI cloning. Suppress them. 7191 */ 7192 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 7193 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 7194 7195 intel_encoders_disable(state, crtc); 7196 7197 intel_crtc_vblank_off(old_crtc_state); 7198 7199 intel_disable_pipe(old_crtc_state); 7200 7201 ilk_pfit_disable(old_crtc_state); 7202 7203 if (old_crtc_state->has_pch_encoder) 7204 ilk_fdi_disable(crtc); 7205 7206 intel_encoders_post_disable(state, crtc); 7207 7208 if (old_crtc_state->has_pch_encoder) { 7209 ilk_disable_pch_transcoder(dev_priv, pipe); 7210 7211 if (HAS_PCH_CPT(dev_priv)) { 7212 i915_reg_t reg; 7213 u32 temp; 7214 7215 /* disable TRANS_DP_CTL */ 7216 reg = TRANS_DP_CTL(pipe); 7217 temp = intel_de_read(dev_priv, reg); 7218 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 7219 TRANS_DP_PORT_SEL_MASK); 7220 temp |= TRANS_DP_PORT_SEL_NONE; 7221 intel_de_write(dev_priv, reg, temp); 7222 7223 /* disable DPLL_SEL */ 7224 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 7225 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 7226 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 7227 } 7228 7229 ilk_fdi_pll_disable(crtc); 7230 } 7231 7232 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7233 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 7234 } 7235 7236 static void hsw_crtc_disable(struct intel_atomic_state *state, 7237 struct intel_crtc *crtc) 7238 { 7239 /* 7240 * FIXME collapse everything to one hook. 7241 * Need care with mst->ddi interactions. 7242 */ 7243 intel_encoders_disable(state, crtc); 7244 intel_encoders_post_disable(state, crtc); 7245 } 7246 7247 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 7248 { 7249 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7250 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7251 7252 if (!crtc_state->gmch_pfit.control) 7253 return; 7254 7255 /* 7256 * The panel fitter should only be adjusted whilst the pipe is disabled, 7257 * according to register description and PRM. 7258 */ 7259 drm_WARN_ON(&dev_priv->drm, 7260 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE); 7261 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 7262 7263 intel_de_write(dev_priv, PFIT_PGM_RATIOS, 7264 crtc_state->gmch_pfit.pgm_ratios); 7265 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control); 7266 7267 /* Border color in case we don't scale up to the full screen. Black by 7268 * default, change to something else for debugging. */ 7269 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0); 7270 } 7271 7272 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 7273 { 7274 if (phy == PHY_NONE) 7275 return false; 7276 else if (IS_ROCKETLAKE(dev_priv)) 7277 return phy <= PHY_D; 7278 else if (IS_ELKHARTLAKE(dev_priv)) 7279 return phy <= PHY_C; 7280 else if (INTEL_GEN(dev_priv) >= 11) 7281 return phy <= PHY_B; 7282 else 7283 return false; 7284 } 7285 7286 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 7287 { 7288 if (IS_ROCKETLAKE(dev_priv)) 7289 return false; 7290 else if (INTEL_GEN(dev_priv) >= 12) 7291 return phy >= PHY_D && phy <= PHY_I; 7292 else if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv)) 7293 return phy >= PHY_C && phy <= PHY_F; 7294 else 7295 return false; 7296 } 7297 7298 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 7299 { 7300 if (IS_ROCKETLAKE(i915) && port >= PORT_D) 7301 return (enum phy)port - 1; 7302 else if (IS_ELKHARTLAKE(i915) && port == PORT_D) 7303 return PHY_A; 7304 7305 return (enum phy)port; 7306 } 7307 7308 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 7309 { 7310 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 7311 return PORT_TC_NONE; 7312 7313 if (INTEL_GEN(dev_priv) >= 12) 7314 return port - PORT_D; 7315 7316 return port - PORT_C; 7317 } 7318 7319 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 7320 { 7321 switch (port) { 7322 case PORT_A: 7323 return POWER_DOMAIN_PORT_DDI_A_LANES; 7324 case PORT_B: 7325 return POWER_DOMAIN_PORT_DDI_B_LANES; 7326 case PORT_C: 7327 return POWER_DOMAIN_PORT_DDI_C_LANES; 7328 case PORT_D: 7329 return POWER_DOMAIN_PORT_DDI_D_LANES; 7330 case PORT_E: 7331 return POWER_DOMAIN_PORT_DDI_E_LANES; 7332 case PORT_F: 7333 return POWER_DOMAIN_PORT_DDI_F_LANES; 7334 case PORT_G: 7335 return POWER_DOMAIN_PORT_DDI_G_LANES; 7336 case PORT_H: 7337 return POWER_DOMAIN_PORT_DDI_H_LANES; 7338 case PORT_I: 7339 return POWER_DOMAIN_PORT_DDI_I_LANES; 7340 default: 7341 MISSING_CASE(port); 7342 return POWER_DOMAIN_PORT_OTHER; 7343 } 7344 } 7345 7346 enum intel_display_power_domain 7347 intel_aux_power_domain(struct intel_digital_port *dig_port) 7348 { 7349 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 7350 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 7351 7352 if (intel_phy_is_tc(dev_priv, phy) && 7353 dig_port->tc_mode == TC_PORT_TBT_ALT) { 7354 switch (dig_port->aux_ch) { 7355 case AUX_CH_C: 7356 return POWER_DOMAIN_AUX_C_TBT; 7357 case AUX_CH_D: 7358 return POWER_DOMAIN_AUX_D_TBT; 7359 case AUX_CH_E: 7360 return POWER_DOMAIN_AUX_E_TBT; 7361 case AUX_CH_F: 7362 return POWER_DOMAIN_AUX_F_TBT; 7363 case AUX_CH_G: 7364 return POWER_DOMAIN_AUX_G_TBT; 7365 case AUX_CH_H: 7366 return POWER_DOMAIN_AUX_H_TBT; 7367 case AUX_CH_I: 7368 return POWER_DOMAIN_AUX_I_TBT; 7369 default: 7370 MISSING_CASE(dig_port->aux_ch); 7371 return POWER_DOMAIN_AUX_C_TBT; 7372 } 7373 } 7374 7375 return intel_legacy_aux_to_power_domain(dig_port->aux_ch); 7376 } 7377 7378 /* 7379 * Converts aux_ch to power_domain without caring about TBT ports for that use 7380 * intel_aux_power_domain() 7381 */ 7382 enum intel_display_power_domain 7383 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch) 7384 { 7385 switch (aux_ch) { 7386 case AUX_CH_A: 7387 return POWER_DOMAIN_AUX_A; 7388 case AUX_CH_B: 7389 return POWER_DOMAIN_AUX_B; 7390 case AUX_CH_C: 7391 return POWER_DOMAIN_AUX_C; 7392 case AUX_CH_D: 7393 return POWER_DOMAIN_AUX_D; 7394 case AUX_CH_E: 7395 return POWER_DOMAIN_AUX_E; 7396 case AUX_CH_F: 7397 return POWER_DOMAIN_AUX_F; 7398 case AUX_CH_G: 7399 return POWER_DOMAIN_AUX_G; 7400 case AUX_CH_H: 7401 return POWER_DOMAIN_AUX_H; 7402 case AUX_CH_I: 7403 return POWER_DOMAIN_AUX_I; 7404 default: 7405 MISSING_CASE(aux_ch); 7406 return POWER_DOMAIN_AUX_A; 7407 } 7408 } 7409 7410 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 7411 { 7412 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7413 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7414 struct drm_encoder *encoder; 7415 enum pipe pipe = crtc->pipe; 7416 u64 mask; 7417 enum transcoder transcoder = crtc_state->cpu_transcoder; 7418 7419 if (!crtc_state->hw.active) 7420 return 0; 7421 7422 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 7423 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); 7424 if (crtc_state->pch_pfit.enabled || 7425 crtc_state->pch_pfit.force_thru) 7426 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 7427 7428 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 7429 crtc_state->uapi.encoder_mask) { 7430 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 7431 7432 mask |= BIT_ULL(intel_encoder->power_domain); 7433 } 7434 7435 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 7436 mask |= BIT_ULL(POWER_DOMAIN_AUDIO); 7437 7438 if (crtc_state->shared_dpll) 7439 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 7440 7441 return mask; 7442 } 7443 7444 static u64 7445 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 7446 { 7447 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7448 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7449 enum intel_display_power_domain domain; 7450 u64 domains, new_domains, old_domains; 7451 7452 old_domains = crtc->enabled_power_domains; 7453 crtc->enabled_power_domains = new_domains = 7454 get_crtc_power_domains(crtc_state); 7455 7456 domains = new_domains & ~old_domains; 7457 7458 for_each_power_domain(domain, domains) 7459 intel_display_power_get(dev_priv, domain); 7460 7461 return old_domains & ~new_domains; 7462 } 7463 7464 static void modeset_put_power_domains(struct drm_i915_private *dev_priv, 7465 u64 domains) 7466 { 7467 enum intel_display_power_domain domain; 7468 7469 for_each_power_domain(domain, domains) 7470 intel_display_power_put_unchecked(dev_priv, domain); 7471 } 7472 7473 static void valleyview_crtc_enable(struct intel_atomic_state *state, 7474 struct intel_crtc *crtc) 7475 { 7476 const struct intel_crtc_state *new_crtc_state = 7477 intel_atomic_get_new_crtc_state(state, crtc); 7478 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7479 enum pipe pipe = crtc->pipe; 7480 7481 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7482 return; 7483 7484 if (intel_crtc_has_dp_encoder(new_crtc_state)) 7485 intel_dp_set_m_n(new_crtc_state, M1_N1); 7486 7487 intel_set_pipe_timings(new_crtc_state); 7488 intel_set_pipe_src_size(new_crtc_state); 7489 7490 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 7491 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY); 7492 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0); 7493 } 7494 7495 i9xx_set_pipeconf(new_crtc_state); 7496 7497 crtc->active = true; 7498 7499 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7500 7501 intel_encoders_pre_pll_enable(state, crtc); 7502 7503 if (IS_CHERRYVIEW(dev_priv)) { 7504 chv_prepare_pll(crtc, new_crtc_state); 7505 chv_enable_pll(crtc, new_crtc_state); 7506 } else { 7507 vlv_prepare_pll(crtc, new_crtc_state); 7508 vlv_enable_pll(crtc, new_crtc_state); 7509 } 7510 7511 intel_encoders_pre_enable(state, crtc); 7512 7513 i9xx_pfit_enable(new_crtc_state); 7514 7515 intel_color_load_luts(new_crtc_state); 7516 intel_color_commit(new_crtc_state); 7517 /* update DSPCNTR to configure gamma for pipe bottom color */ 7518 intel_disable_primary_plane(new_crtc_state); 7519 7520 dev_priv->display.initial_watermarks(state, crtc); 7521 intel_enable_pipe(new_crtc_state); 7522 7523 intel_crtc_vblank_on(new_crtc_state); 7524 7525 intel_encoders_enable(state, crtc); 7526 } 7527 7528 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) 7529 { 7530 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7531 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7532 7533 intel_de_write(dev_priv, FP0(crtc->pipe), 7534 crtc_state->dpll_hw_state.fp0); 7535 intel_de_write(dev_priv, FP1(crtc->pipe), 7536 crtc_state->dpll_hw_state.fp1); 7537 } 7538 7539 static void i9xx_crtc_enable(struct intel_atomic_state *state, 7540 struct intel_crtc *crtc) 7541 { 7542 const struct intel_crtc_state *new_crtc_state = 7543 intel_atomic_get_new_crtc_state(state, crtc); 7544 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7545 enum pipe pipe = crtc->pipe; 7546 7547 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7548 return; 7549 7550 i9xx_set_pll_dividers(new_crtc_state); 7551 7552 if (intel_crtc_has_dp_encoder(new_crtc_state)) 7553 intel_dp_set_m_n(new_crtc_state, M1_N1); 7554 7555 intel_set_pipe_timings(new_crtc_state); 7556 intel_set_pipe_src_size(new_crtc_state); 7557 7558 i9xx_set_pipeconf(new_crtc_state); 7559 7560 crtc->active = true; 7561 7562 if (!IS_GEN(dev_priv, 2)) 7563 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7564 7565 intel_encoders_pre_enable(state, crtc); 7566 7567 i9xx_enable_pll(crtc, new_crtc_state); 7568 7569 i9xx_pfit_enable(new_crtc_state); 7570 7571 intel_color_load_luts(new_crtc_state); 7572 intel_color_commit(new_crtc_state); 7573 /* update DSPCNTR to configure gamma for pipe bottom color */ 7574 intel_disable_primary_plane(new_crtc_state); 7575 7576 if (dev_priv->display.initial_watermarks) 7577 dev_priv->display.initial_watermarks(state, crtc); 7578 else 7579 intel_update_watermarks(crtc); 7580 intel_enable_pipe(new_crtc_state); 7581 7582 intel_crtc_vblank_on(new_crtc_state); 7583 7584 intel_encoders_enable(state, crtc); 7585 7586 /* prevents spurious underruns */ 7587 if (IS_GEN(dev_priv, 2)) 7588 intel_wait_for_vblank(dev_priv, pipe); 7589 } 7590 7591 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 7592 { 7593 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 7594 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7595 7596 if (!old_crtc_state->gmch_pfit.control) 7597 return; 7598 7599 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 7600 7601 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n", 7602 intel_de_read(dev_priv, PFIT_CONTROL)); 7603 intel_de_write(dev_priv, PFIT_CONTROL, 0); 7604 } 7605 7606 static void i9xx_crtc_disable(struct intel_atomic_state *state, 7607 struct intel_crtc *crtc) 7608 { 7609 struct intel_crtc_state *old_crtc_state = 7610 intel_atomic_get_old_crtc_state(state, crtc); 7611 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7612 enum pipe pipe = crtc->pipe; 7613 7614 /* 7615 * On gen2 planes are double buffered but the pipe isn't, so we must 7616 * wait for planes to fully turn off before disabling the pipe. 7617 */ 7618 if (IS_GEN(dev_priv, 2)) 7619 intel_wait_for_vblank(dev_priv, pipe); 7620 7621 intel_encoders_disable(state, crtc); 7622 7623 intel_crtc_vblank_off(old_crtc_state); 7624 7625 intel_disable_pipe(old_crtc_state); 7626 7627 i9xx_pfit_disable(old_crtc_state); 7628 7629 intel_encoders_post_disable(state, crtc); 7630 7631 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 7632 if (IS_CHERRYVIEW(dev_priv)) 7633 chv_disable_pll(dev_priv, pipe); 7634 else if (IS_VALLEYVIEW(dev_priv)) 7635 vlv_disable_pll(dev_priv, pipe); 7636 else 7637 i9xx_disable_pll(old_crtc_state); 7638 } 7639 7640 intel_encoders_post_pll_disable(state, crtc); 7641 7642 if (!IS_GEN(dev_priv, 2)) 7643 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 7644 7645 if (!dev_priv->display.initial_watermarks) 7646 intel_update_watermarks(crtc); 7647 7648 /* clock the pipe down to 640x480@60 to potentially save power */ 7649 if (IS_I830(dev_priv)) 7650 i830_enable_pipe(dev_priv, pipe); 7651 } 7652 7653 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc, 7654 struct drm_modeset_acquire_ctx *ctx) 7655 { 7656 struct intel_encoder *encoder; 7657 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7658 struct intel_bw_state *bw_state = 7659 to_intel_bw_state(dev_priv->bw_obj.state); 7660 struct intel_cdclk_state *cdclk_state = 7661 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 7662 struct intel_dbuf_state *dbuf_state = 7663 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 7664 struct intel_crtc_state *crtc_state = 7665 to_intel_crtc_state(crtc->base.state); 7666 enum intel_display_power_domain domain; 7667 struct intel_plane *plane; 7668 struct drm_atomic_state *state; 7669 struct intel_crtc_state *temp_crtc_state; 7670 enum pipe pipe = crtc->pipe; 7671 u64 domains; 7672 int ret; 7673 7674 if (!crtc_state->hw.active) 7675 return; 7676 7677 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 7678 const struct intel_plane_state *plane_state = 7679 to_intel_plane_state(plane->base.state); 7680 7681 if (plane_state->uapi.visible) 7682 intel_plane_disable_noatomic(crtc, plane); 7683 } 7684 7685 state = drm_atomic_state_alloc(&dev_priv->drm); 7686 if (!state) { 7687 drm_dbg_kms(&dev_priv->drm, 7688 "failed to disable [CRTC:%d:%s], out of memory", 7689 crtc->base.base.id, crtc->base.name); 7690 return; 7691 } 7692 7693 state->acquire_ctx = ctx; 7694 7695 /* Everything's already locked, -EDEADLK can't happen. */ 7696 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc); 7697 ret = drm_atomic_add_affected_connectors(state, &crtc->base); 7698 7699 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret); 7700 7701 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc); 7702 7703 drm_atomic_state_put(state); 7704 7705 drm_dbg_kms(&dev_priv->drm, 7706 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 7707 crtc->base.base.id, crtc->base.name); 7708 7709 crtc->active = false; 7710 crtc->base.enabled = false; 7711 7712 drm_WARN_ON(&dev_priv->drm, 7713 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0); 7714 crtc_state->uapi.active = false; 7715 crtc_state->uapi.connector_mask = 0; 7716 crtc_state->uapi.encoder_mask = 0; 7717 intel_crtc_free_hw_state(crtc_state); 7718 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw)); 7719 7720 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder) 7721 encoder->base.crtc = NULL; 7722 7723 intel_fbc_disable(crtc); 7724 intel_update_watermarks(crtc); 7725 intel_disable_shared_dpll(crtc_state); 7726 7727 domains = crtc->enabled_power_domains; 7728 for_each_power_domain(domain, domains) 7729 intel_display_power_put_unchecked(dev_priv, domain); 7730 crtc->enabled_power_domains = 0; 7731 7732 dev_priv->active_pipes &= ~BIT(pipe); 7733 cdclk_state->min_cdclk[pipe] = 0; 7734 cdclk_state->min_voltage_level[pipe] = 0; 7735 cdclk_state->active_pipes &= ~BIT(pipe); 7736 7737 dbuf_state->active_pipes &= ~BIT(pipe); 7738 7739 bw_state->data_rate[pipe] = 0; 7740 bw_state->num_active_planes[pipe] = 0; 7741 } 7742 7743 /* 7744 * turn all crtc's off, but do not adjust state 7745 * This has to be paired with a call to intel_modeset_setup_hw_state. 7746 */ 7747 int intel_display_suspend(struct drm_device *dev) 7748 { 7749 struct drm_i915_private *dev_priv = to_i915(dev); 7750 struct drm_atomic_state *state; 7751 int ret; 7752 7753 state = drm_atomic_helper_suspend(dev); 7754 ret = PTR_ERR_OR_ZERO(state); 7755 if (ret) 7756 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 7757 ret); 7758 else 7759 dev_priv->modeset_restore_state = state; 7760 return ret; 7761 } 7762 7763 void intel_encoder_destroy(struct drm_encoder *encoder) 7764 { 7765 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 7766 7767 drm_encoder_cleanup(encoder); 7768 kfree(intel_encoder); 7769 } 7770 7771 /* Cross check the actual hw state with our own modeset state tracking (and it's 7772 * internal consistency). */ 7773 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 7774 struct drm_connector_state *conn_state) 7775 { 7776 struct intel_connector *connector = to_intel_connector(conn_state->connector); 7777 struct drm_i915_private *i915 = to_i915(connector->base.dev); 7778 7779 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 7780 connector->base.base.id, connector->base.name); 7781 7782 if (connector->get_hw_state(connector)) { 7783 struct intel_encoder *encoder = intel_attached_encoder(connector); 7784 7785 I915_STATE_WARN(!crtc_state, 7786 "connector enabled without attached crtc\n"); 7787 7788 if (!crtc_state) 7789 return; 7790 7791 I915_STATE_WARN(!crtc_state->hw.active, 7792 "connector is active, but attached crtc isn't\n"); 7793 7794 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 7795 return; 7796 7797 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 7798 "atomic encoder doesn't match attached encoder\n"); 7799 7800 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 7801 "attached encoder crtc differs from connector crtc\n"); 7802 } else { 7803 I915_STATE_WARN(crtc_state && crtc_state->hw.active, 7804 "attached crtc is active, but connector isn't\n"); 7805 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 7806 "best encoder set without crtc!\n"); 7807 } 7808 } 7809 7810 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state) 7811 { 7812 if (crtc_state->hw.enable && crtc_state->has_pch_encoder) 7813 return crtc_state->fdi_lanes; 7814 7815 return 0; 7816 } 7817 7818 static int ilk_check_fdi_lanes(struct drm_device *dev, enum pipe pipe, 7819 struct intel_crtc_state *pipe_config) 7820 { 7821 struct drm_i915_private *dev_priv = to_i915(dev); 7822 struct drm_atomic_state *state = pipe_config->uapi.state; 7823 struct intel_crtc *other_crtc; 7824 struct intel_crtc_state *other_crtc_state; 7825 7826 drm_dbg_kms(&dev_priv->drm, 7827 "checking fdi config on pipe %c, lanes %i\n", 7828 pipe_name(pipe), pipe_config->fdi_lanes); 7829 if (pipe_config->fdi_lanes > 4) { 7830 drm_dbg_kms(&dev_priv->drm, 7831 "invalid fdi lane config on pipe %c: %i lanes\n", 7832 pipe_name(pipe), pipe_config->fdi_lanes); 7833 return -EINVAL; 7834 } 7835 7836 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 7837 if (pipe_config->fdi_lanes > 2) { 7838 drm_dbg_kms(&dev_priv->drm, 7839 "only 2 lanes on haswell, required: %i lanes\n", 7840 pipe_config->fdi_lanes); 7841 return -EINVAL; 7842 } else { 7843 return 0; 7844 } 7845 } 7846 7847 if (INTEL_NUM_PIPES(dev_priv) == 2) 7848 return 0; 7849 7850 /* Ivybridge 3 pipe is really complicated */ 7851 switch (pipe) { 7852 case PIPE_A: 7853 return 0; 7854 case PIPE_B: 7855 if (pipe_config->fdi_lanes <= 2) 7856 return 0; 7857 7858 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C); 7859 other_crtc_state = 7860 intel_atomic_get_crtc_state(state, other_crtc); 7861 if (IS_ERR(other_crtc_state)) 7862 return PTR_ERR(other_crtc_state); 7863 7864 if (pipe_required_fdi_lanes(other_crtc_state) > 0) { 7865 drm_dbg_kms(&dev_priv->drm, 7866 "invalid shared fdi lane config on pipe %c: %i lanes\n", 7867 pipe_name(pipe), pipe_config->fdi_lanes); 7868 return -EINVAL; 7869 } 7870 return 0; 7871 case PIPE_C: 7872 if (pipe_config->fdi_lanes > 2) { 7873 drm_dbg_kms(&dev_priv->drm, 7874 "only 2 lanes on pipe %c: required %i lanes\n", 7875 pipe_name(pipe), pipe_config->fdi_lanes); 7876 return -EINVAL; 7877 } 7878 7879 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B); 7880 other_crtc_state = 7881 intel_atomic_get_crtc_state(state, other_crtc); 7882 if (IS_ERR(other_crtc_state)) 7883 return PTR_ERR(other_crtc_state); 7884 7885 if (pipe_required_fdi_lanes(other_crtc_state) > 2) { 7886 drm_dbg_kms(&dev_priv->drm, 7887 "fdi link B uses too many lanes to enable link C\n"); 7888 return -EINVAL; 7889 } 7890 return 0; 7891 default: 7892 BUG(); 7893 } 7894 } 7895 7896 #define RETRY 1 7897 static int ilk_fdi_compute_config(struct intel_crtc *intel_crtc, 7898 struct intel_crtc_state *pipe_config) 7899 { 7900 struct drm_device *dev = intel_crtc->base.dev; 7901 struct drm_i915_private *i915 = to_i915(dev); 7902 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 7903 int lane, link_bw, fdi_dotclock, ret; 7904 bool needs_recompute = false; 7905 7906 retry: 7907 /* FDI is a binary signal running at ~2.7GHz, encoding 7908 * each output octet as 10 bits. The actual frequency 7909 * is stored as a divider into a 100MHz clock, and the 7910 * mode pixel clock is stored in units of 1KHz. 7911 * Hence the bw of each lane in terms of the mode signal 7912 * is: 7913 */ 7914 link_bw = intel_fdi_link_freq(i915, pipe_config); 7915 7916 fdi_dotclock = adjusted_mode->crtc_clock; 7917 7918 lane = ilk_get_lanes_required(fdi_dotclock, link_bw, 7919 pipe_config->pipe_bpp); 7920 7921 pipe_config->fdi_lanes = lane; 7922 7923 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock, 7924 link_bw, &pipe_config->fdi_m_n, false, false); 7925 7926 ret = ilk_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config); 7927 if (ret == -EDEADLK) 7928 return ret; 7929 7930 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) { 7931 pipe_config->pipe_bpp -= 2*3; 7932 drm_dbg_kms(&i915->drm, 7933 "fdi link bw constraint, reducing pipe bpp to %i\n", 7934 pipe_config->pipe_bpp); 7935 needs_recompute = true; 7936 pipe_config->bw_constrained = true; 7937 7938 goto retry; 7939 } 7940 7941 if (needs_recompute) 7942 return RETRY; 7943 7944 return ret; 7945 } 7946 7947 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 7948 { 7949 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7950 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7951 7952 /* IPS only exists on ULT machines and is tied to pipe A. */ 7953 if (!hsw_crtc_supports_ips(crtc)) 7954 return false; 7955 7956 if (!dev_priv->params.enable_ips) 7957 return false; 7958 7959 if (crtc_state->pipe_bpp > 24) 7960 return false; 7961 7962 /* 7963 * We compare against max which means we must take 7964 * the increased cdclk requirement into account when 7965 * calculating the new cdclk. 7966 * 7967 * Should measure whether using a lower cdclk w/o IPS 7968 */ 7969 if (IS_BROADWELL(dev_priv) && 7970 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 7971 return false; 7972 7973 return true; 7974 } 7975 7976 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 7977 { 7978 struct drm_i915_private *dev_priv = 7979 to_i915(crtc_state->uapi.crtc->dev); 7980 struct intel_atomic_state *state = 7981 to_intel_atomic_state(crtc_state->uapi.state); 7982 7983 crtc_state->ips_enabled = false; 7984 7985 if (!hsw_crtc_state_ips_capable(crtc_state)) 7986 return 0; 7987 7988 /* 7989 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 7990 * enabled and disabled dynamically based on package C states, 7991 * user space can't make reliable use of the CRCs, so let's just 7992 * completely disable it. 7993 */ 7994 if (crtc_state->crc_enabled) 7995 return 0; 7996 7997 /* IPS should be fine as long as at least one plane is enabled. */ 7998 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 7999 return 0; 8000 8001 if (IS_BROADWELL(dev_priv)) { 8002 const struct intel_cdclk_state *cdclk_state; 8003 8004 cdclk_state = intel_atomic_get_cdclk_state(state); 8005 if (IS_ERR(cdclk_state)) 8006 return PTR_ERR(cdclk_state); 8007 8008 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 8009 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100) 8010 return 0; 8011 } 8012 8013 crtc_state->ips_enabled = true; 8014 8015 return 0; 8016 } 8017 8018 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 8019 { 8020 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8021 8022 /* GDG double wide on either pipe, otherwise pipe A only */ 8023 return INTEL_GEN(dev_priv) < 4 && 8024 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 8025 } 8026 8027 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state) 8028 { 8029 u32 pixel_rate = crtc_state->hw.adjusted_mode.crtc_clock; 8030 unsigned int pipe_w, pipe_h, pfit_w, pfit_h; 8031 8032 /* 8033 * We only use IF-ID interlacing. If we ever use 8034 * PF-ID we'll need to adjust the pixel_rate here. 8035 */ 8036 8037 if (!crtc_state->pch_pfit.enabled) 8038 return pixel_rate; 8039 8040 pipe_w = crtc_state->pipe_src_w; 8041 pipe_h = crtc_state->pipe_src_h; 8042 8043 pfit_w = drm_rect_width(&crtc_state->pch_pfit.dst); 8044 pfit_h = drm_rect_height(&crtc_state->pch_pfit.dst); 8045 8046 if (pipe_w < pfit_w) 8047 pipe_w = pfit_w; 8048 if (pipe_h < pfit_h) 8049 pipe_h = pfit_h; 8050 8051 if (drm_WARN_ON(crtc_state->uapi.crtc->dev, 8052 !pfit_w || !pfit_h)) 8053 return pixel_rate; 8054 8055 return div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h), 8056 pfit_w * pfit_h); 8057 } 8058 8059 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 8060 { 8061 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 8062 8063 if (HAS_GMCH(dev_priv)) 8064 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 8065 crtc_state->pixel_rate = 8066 crtc_state->hw.adjusted_mode.crtc_clock; 8067 else 8068 crtc_state->pixel_rate = 8069 ilk_pipe_pixel_rate(crtc_state); 8070 } 8071 8072 static int intel_crtc_compute_config(struct intel_crtc *crtc, 8073 struct intel_crtc_state *pipe_config) 8074 { 8075 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8076 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 8077 int clock_limit = dev_priv->max_dotclk_freq; 8078 8079 if (INTEL_GEN(dev_priv) < 4) { 8080 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 8081 8082 /* 8083 * Enable double wide mode when the dot clock 8084 * is > 90% of the (display) core speed. 8085 */ 8086 if (intel_crtc_supports_double_wide(crtc) && 8087 adjusted_mode->crtc_clock > clock_limit) { 8088 clock_limit = dev_priv->max_dotclk_freq; 8089 pipe_config->double_wide = true; 8090 } 8091 } 8092 8093 if (adjusted_mode->crtc_clock > clock_limit) { 8094 drm_dbg_kms(&dev_priv->drm, 8095 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 8096 adjusted_mode->crtc_clock, clock_limit, 8097 yesno(pipe_config->double_wide)); 8098 return -EINVAL; 8099 } 8100 8101 if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 8102 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) && 8103 pipe_config->hw.ctm) { 8104 /* 8105 * There is only one pipe CSC unit per pipe, and we need that 8106 * for output conversion from RGB->YCBCR. So if CTM is already 8107 * applied we can't support YCBCR420 output. 8108 */ 8109 drm_dbg_kms(&dev_priv->drm, 8110 "YCBCR420 and CTM together are not possible\n"); 8111 return -EINVAL; 8112 } 8113 8114 /* 8115 * Pipe horizontal size must be even in: 8116 * - DVO ganged mode 8117 * - LVDS dual channel mode 8118 * - Double wide pipe 8119 */ 8120 if (pipe_config->pipe_src_w & 1) { 8121 if (pipe_config->double_wide) { 8122 drm_dbg_kms(&dev_priv->drm, 8123 "Odd pipe source width not supported with double wide pipe\n"); 8124 return -EINVAL; 8125 } 8126 8127 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 8128 intel_is_dual_link_lvds(dev_priv)) { 8129 drm_dbg_kms(&dev_priv->drm, 8130 "Odd pipe source width not supported with dual link LVDS\n"); 8131 return -EINVAL; 8132 } 8133 } 8134 8135 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 8136 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 8137 */ 8138 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) && 8139 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay) 8140 return -EINVAL; 8141 8142 intel_crtc_compute_pixel_rate(pipe_config); 8143 8144 if (pipe_config->has_pch_encoder) 8145 return ilk_fdi_compute_config(crtc, pipe_config); 8146 8147 return 0; 8148 } 8149 8150 static void 8151 intel_reduce_m_n_ratio(u32 *num, u32 *den) 8152 { 8153 while (*num > DATA_LINK_M_N_MASK || 8154 *den > DATA_LINK_M_N_MASK) { 8155 *num >>= 1; 8156 *den >>= 1; 8157 } 8158 } 8159 8160 static void compute_m_n(unsigned int m, unsigned int n, 8161 u32 *ret_m, u32 *ret_n, 8162 bool constant_n) 8163 { 8164 /* 8165 * Several DP dongles in particular seem to be fussy about 8166 * too large link M/N values. Give N value as 0x8000 that 8167 * should be acceptable by specific devices. 0x8000 is the 8168 * specified fixed N value for asynchronous clock mode, 8169 * which the devices expect also in synchronous clock mode. 8170 */ 8171 if (constant_n) 8172 *ret_n = DP_LINK_CONSTANT_N_VALUE; 8173 else 8174 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 8175 8176 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 8177 intel_reduce_m_n_ratio(ret_m, ret_n); 8178 } 8179 8180 void 8181 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 8182 int pixel_clock, int link_clock, 8183 struct intel_link_m_n *m_n, 8184 bool constant_n, bool fec_enable) 8185 { 8186 u32 data_clock = bits_per_pixel * pixel_clock; 8187 8188 if (fec_enable) 8189 data_clock = intel_dp_mode_to_fec_clock(data_clock); 8190 8191 m_n->tu = 64; 8192 compute_m_n(data_clock, 8193 link_clock * nlanes * 8, 8194 &m_n->gmch_m, &m_n->gmch_n, 8195 constant_n); 8196 8197 compute_m_n(pixel_clock, link_clock, 8198 &m_n->link_m, &m_n->link_n, 8199 constant_n); 8200 } 8201 8202 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) 8203 { 8204 /* 8205 * There may be no VBT; and if the BIOS enabled SSC we can 8206 * just keep using it to avoid unnecessary flicker. Whereas if the 8207 * BIOS isn't using it, don't assume it will work even if the VBT 8208 * indicates as much. 8209 */ 8210 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 8211 bool bios_lvds_use_ssc = intel_de_read(dev_priv, 8212 PCH_DREF_CONTROL) & 8213 DREF_SSC1_ENABLE; 8214 8215 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 8216 drm_dbg_kms(&dev_priv->drm, 8217 "SSC %s by BIOS, overriding VBT which says %s\n", 8218 enableddisabled(bios_lvds_use_ssc), 8219 enableddisabled(dev_priv->vbt.lvds_use_ssc)); 8220 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 8221 } 8222 } 8223 } 8224 8225 static bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) 8226 { 8227 if (dev_priv->params.panel_use_ssc >= 0) 8228 return dev_priv->params.panel_use_ssc != 0; 8229 return dev_priv->vbt.lvds_use_ssc 8230 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); 8231 } 8232 8233 static u32 pnv_dpll_compute_fp(struct dpll *dpll) 8234 { 8235 return (1 << dpll->n) << 16 | dpll->m2; 8236 } 8237 8238 static u32 i9xx_dpll_compute_fp(struct dpll *dpll) 8239 { 8240 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; 8241 } 8242 8243 static void i9xx_update_pll_dividers(struct intel_crtc *crtc, 8244 struct intel_crtc_state *crtc_state, 8245 struct dpll *reduced_clock) 8246 { 8247 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8248 u32 fp, fp2 = 0; 8249 8250 if (IS_PINEVIEW(dev_priv)) { 8251 fp = pnv_dpll_compute_fp(&crtc_state->dpll); 8252 if (reduced_clock) 8253 fp2 = pnv_dpll_compute_fp(reduced_clock); 8254 } else { 8255 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 8256 if (reduced_clock) 8257 fp2 = i9xx_dpll_compute_fp(reduced_clock); 8258 } 8259 8260 crtc_state->dpll_hw_state.fp0 = fp; 8261 8262 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8263 reduced_clock) { 8264 crtc_state->dpll_hw_state.fp1 = fp2; 8265 } else { 8266 crtc_state->dpll_hw_state.fp1 = fp; 8267 } 8268 } 8269 8270 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe 8271 pipe) 8272 { 8273 u32 reg_val; 8274 8275 /* 8276 * PLLB opamp always calibrates to max value of 0x3f, force enable it 8277 * and set it to a reasonable value instead. 8278 */ 8279 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 8280 reg_val &= 0xffffff00; 8281 reg_val |= 0x00000030; 8282 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 8283 8284 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 8285 reg_val &= 0x00ffffff; 8286 reg_val |= 0x8c000000; 8287 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 8288 8289 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 8290 reg_val &= 0xffffff00; 8291 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 8292 8293 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 8294 reg_val &= 0x00ffffff; 8295 reg_val |= 0xb0000000; 8296 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 8297 } 8298 8299 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 8300 const struct intel_link_m_n *m_n) 8301 { 8302 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8303 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8304 enum pipe pipe = crtc->pipe; 8305 8306 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe), 8307 TU_SIZE(m_n->tu) | m_n->gmch_m); 8308 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 8309 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m); 8310 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n); 8311 } 8312 8313 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 8314 enum transcoder transcoder) 8315 { 8316 if (IS_HASWELL(dev_priv)) 8317 return transcoder == TRANSCODER_EDP; 8318 8319 /* 8320 * Strictly speaking some registers are available before 8321 * gen7, but we only support DRRS on gen7+ 8322 */ 8323 return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv); 8324 } 8325 8326 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 8327 const struct intel_link_m_n *m_n, 8328 const struct intel_link_m_n *m2_n2) 8329 { 8330 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8331 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8332 enum pipe pipe = crtc->pipe; 8333 enum transcoder transcoder = crtc_state->cpu_transcoder; 8334 8335 if (INTEL_GEN(dev_priv) >= 5) { 8336 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder), 8337 TU_SIZE(m_n->tu) | m_n->gmch_m); 8338 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder), 8339 m_n->gmch_n); 8340 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder), 8341 m_n->link_m); 8342 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder), 8343 m_n->link_n); 8344 /* 8345 * M2_N2 registers are set only if DRRS is supported 8346 * (to make sure the registers are not unnecessarily accessed). 8347 */ 8348 if (m2_n2 && crtc_state->has_drrs && 8349 transcoder_has_m2_n2(dev_priv, transcoder)) { 8350 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder), 8351 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 8352 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder), 8353 m2_n2->gmch_n); 8354 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder), 8355 m2_n2->link_m); 8356 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder), 8357 m2_n2->link_n); 8358 } 8359 } else { 8360 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe), 8361 TU_SIZE(m_n->tu) | m_n->gmch_m); 8362 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 8363 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m); 8364 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n); 8365 } 8366 } 8367 8368 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 8369 { 8370 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 8371 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 8372 8373 if (m_n == M1_N1) { 8374 dp_m_n = &crtc_state->dp_m_n; 8375 dp_m2_n2 = &crtc_state->dp_m2_n2; 8376 } else if (m_n == M2_N2) { 8377 8378 /* 8379 * M2_N2 registers are not supported. Hence m2_n2 divider value 8380 * needs to be programmed into M1_N1. 8381 */ 8382 dp_m_n = &crtc_state->dp_m2_n2; 8383 } else { 8384 drm_err(&i915->drm, "Unsupported divider value\n"); 8385 return; 8386 } 8387 8388 if (crtc_state->has_pch_encoder) 8389 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 8390 else 8391 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 8392 } 8393 8394 static void vlv_compute_dpll(struct intel_crtc *crtc, 8395 struct intel_crtc_state *pipe_config) 8396 { 8397 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV | 8398 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 8399 if (crtc->pipe != PIPE_A) 8400 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 8401 8402 /* DPLL not used with DSI, but still need the rest set up */ 8403 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 8404 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE | 8405 DPLL_EXT_BUFFER_ENABLE_VLV; 8406 8407 pipe_config->dpll_hw_state.dpll_md = 8408 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8409 } 8410 8411 static void chv_compute_dpll(struct intel_crtc *crtc, 8412 struct intel_crtc_state *pipe_config) 8413 { 8414 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV | 8415 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 8416 if (crtc->pipe != PIPE_A) 8417 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 8418 8419 /* DPLL not used with DSI, but still need the rest set up */ 8420 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 8421 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE; 8422 8423 pipe_config->dpll_hw_state.dpll_md = 8424 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8425 } 8426 8427 static void vlv_prepare_pll(struct intel_crtc *crtc, 8428 const struct intel_crtc_state *pipe_config) 8429 { 8430 struct drm_device *dev = crtc->base.dev; 8431 struct drm_i915_private *dev_priv = to_i915(dev); 8432 enum pipe pipe = crtc->pipe; 8433 u32 mdiv; 8434 u32 bestn, bestm1, bestm2, bestp1, bestp2; 8435 u32 coreclk, reg_val; 8436 8437 /* Enable Refclk */ 8438 intel_de_write(dev_priv, DPLL(pipe), 8439 pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); 8440 8441 /* No need to actually set up the DPLL with DSI */ 8442 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8443 return; 8444 8445 vlv_dpio_get(dev_priv); 8446 8447 bestn = pipe_config->dpll.n; 8448 bestm1 = pipe_config->dpll.m1; 8449 bestm2 = pipe_config->dpll.m2; 8450 bestp1 = pipe_config->dpll.p1; 8451 bestp2 = pipe_config->dpll.p2; 8452 8453 /* See eDP HDMI DPIO driver vbios notes doc */ 8454 8455 /* PLL B needs special handling */ 8456 if (pipe == PIPE_B) 8457 vlv_pllb_recal_opamp(dev_priv, pipe); 8458 8459 /* Set up Tx target for periodic Rcomp update */ 8460 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f); 8461 8462 /* Disable target IRef on PLL */ 8463 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe)); 8464 reg_val &= 0x00ffffff; 8465 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val); 8466 8467 /* Disable fast lock */ 8468 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610); 8469 8470 /* Set idtafcrecal before PLL is enabled */ 8471 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); 8472 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); 8473 mdiv |= ((bestn << DPIO_N_SHIFT)); 8474 mdiv |= (1 << DPIO_K_SHIFT); 8475 8476 /* 8477 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, 8478 * but we don't support that). 8479 * Note: don't use the DAC post divider as it seems unstable. 8480 */ 8481 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); 8482 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 8483 8484 mdiv |= DPIO_ENABLE_CALIBRATION; 8485 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 8486 8487 /* Set HBR and RBR LPF coefficients */ 8488 if (pipe_config->port_clock == 162000 || 8489 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) || 8490 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI)) 8491 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 8492 0x009f0003); 8493 else 8494 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 8495 0x00d0000f); 8496 8497 if (intel_crtc_has_dp_encoder(pipe_config)) { 8498 /* Use SSC source */ 8499 if (pipe == PIPE_A) 8500 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8501 0x0df40000); 8502 else 8503 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8504 0x0df70000); 8505 } else { /* HDMI or VGA */ 8506 /* Use bend source */ 8507 if (pipe == PIPE_A) 8508 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8509 0x0df70000); 8510 else 8511 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8512 0x0df40000); 8513 } 8514 8515 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe)); 8516 coreclk = (coreclk & 0x0000ff00) | 0x01c00000; 8517 if (intel_crtc_has_dp_encoder(pipe_config)) 8518 coreclk |= 0x01000000; 8519 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk); 8520 8521 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000); 8522 8523 vlv_dpio_put(dev_priv); 8524 } 8525 8526 static void chv_prepare_pll(struct intel_crtc *crtc, 8527 const struct intel_crtc_state *pipe_config) 8528 { 8529 struct drm_device *dev = crtc->base.dev; 8530 struct drm_i915_private *dev_priv = to_i915(dev); 8531 enum pipe pipe = crtc->pipe; 8532 enum dpio_channel port = vlv_pipe_to_channel(pipe); 8533 u32 loopfilter, tribuf_calcntr; 8534 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac; 8535 u32 dpio_val; 8536 int vco; 8537 8538 /* Enable Refclk and SSC */ 8539 intel_de_write(dev_priv, DPLL(pipe), 8540 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); 8541 8542 /* No need to actually set up the DPLL with DSI */ 8543 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8544 return; 8545 8546 bestn = pipe_config->dpll.n; 8547 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff; 8548 bestm1 = pipe_config->dpll.m1; 8549 bestm2 = pipe_config->dpll.m2 >> 22; 8550 bestp1 = pipe_config->dpll.p1; 8551 bestp2 = pipe_config->dpll.p2; 8552 vco = pipe_config->dpll.vco; 8553 dpio_val = 0; 8554 loopfilter = 0; 8555 8556 vlv_dpio_get(dev_priv); 8557 8558 /* p1 and p2 divider */ 8559 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port), 8560 5 << DPIO_CHV_S1_DIV_SHIFT | 8561 bestp1 << DPIO_CHV_P1_DIV_SHIFT | 8562 bestp2 << DPIO_CHV_P2_DIV_SHIFT | 8563 1 << DPIO_CHV_K_DIV_SHIFT); 8564 8565 /* Feedback post-divider - m2 */ 8566 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2); 8567 8568 /* Feedback refclk divider - n and m1 */ 8569 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port), 8570 DPIO_CHV_M1_DIV_BY_2 | 8571 1 << DPIO_CHV_N_DIV_SHIFT); 8572 8573 /* M2 fraction division */ 8574 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac); 8575 8576 /* M2 fraction division enable */ 8577 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 8578 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); 8579 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT); 8580 if (bestm2_frac) 8581 dpio_val |= DPIO_CHV_FRAC_DIV_EN; 8582 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val); 8583 8584 /* Program digital lock detect threshold */ 8585 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port)); 8586 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | 8587 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); 8588 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT); 8589 if (!bestm2_frac) 8590 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; 8591 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val); 8592 8593 /* Loop filter */ 8594 if (vco == 5400000) { 8595 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT); 8596 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT); 8597 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT); 8598 tribuf_calcntr = 0x9; 8599 } else if (vco <= 6200000) { 8600 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT); 8601 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT); 8602 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8603 tribuf_calcntr = 0x9; 8604 } else if (vco <= 6480000) { 8605 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 8606 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 8607 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8608 tribuf_calcntr = 0x8; 8609 } else { 8610 /* Not supported. Apply the same limits as in the max case */ 8611 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 8612 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 8613 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8614 tribuf_calcntr = 0; 8615 } 8616 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter); 8617 8618 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port)); 8619 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; 8620 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT); 8621 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val); 8622 8623 /* AFC Recal */ 8624 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), 8625 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) | 8626 DPIO_AFC_RECAL); 8627 8628 vlv_dpio_put(dev_priv); 8629 } 8630 8631 /** 8632 * vlv_force_pll_on - forcibly enable just the PLL 8633 * @dev_priv: i915 private structure 8634 * @pipe: pipe PLL to enable 8635 * @dpll: PLL configuration 8636 * 8637 * Enable the PLL for @pipe using the supplied @dpll config. To be used 8638 * in cases where we need the PLL enabled even when @pipe is not going to 8639 * be enabled. 8640 */ 8641 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe, 8642 const struct dpll *dpll) 8643 { 8644 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 8645 struct intel_crtc_state *pipe_config; 8646 8647 pipe_config = intel_crtc_state_alloc(crtc); 8648 if (!pipe_config) 8649 return -ENOMEM; 8650 8651 pipe_config->cpu_transcoder = (enum transcoder)pipe; 8652 pipe_config->pixel_multiplier = 1; 8653 pipe_config->dpll = *dpll; 8654 8655 if (IS_CHERRYVIEW(dev_priv)) { 8656 chv_compute_dpll(crtc, pipe_config); 8657 chv_prepare_pll(crtc, pipe_config); 8658 chv_enable_pll(crtc, pipe_config); 8659 } else { 8660 vlv_compute_dpll(crtc, pipe_config); 8661 vlv_prepare_pll(crtc, pipe_config); 8662 vlv_enable_pll(crtc, pipe_config); 8663 } 8664 8665 kfree(pipe_config); 8666 8667 return 0; 8668 } 8669 8670 /** 8671 * vlv_force_pll_off - forcibly disable just the PLL 8672 * @dev_priv: i915 private structure 8673 * @pipe: pipe PLL to disable 8674 * 8675 * Disable the PLL for @pipe. To be used in cases where we need 8676 * the PLL enabled even when @pipe is not going to be enabled. 8677 */ 8678 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe) 8679 { 8680 if (IS_CHERRYVIEW(dev_priv)) 8681 chv_disable_pll(dev_priv, pipe); 8682 else 8683 vlv_disable_pll(dev_priv, pipe); 8684 } 8685 8686 static void i9xx_compute_dpll(struct intel_crtc *crtc, 8687 struct intel_crtc_state *crtc_state, 8688 struct dpll *reduced_clock) 8689 { 8690 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8691 u32 dpll; 8692 struct dpll *clock = &crtc_state->dpll; 8693 8694 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8695 8696 dpll = DPLL_VGA_MODE_DIS; 8697 8698 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 8699 dpll |= DPLLB_MODE_LVDS; 8700 else 8701 dpll |= DPLLB_MODE_DAC_SERIAL; 8702 8703 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 8704 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 8705 dpll |= (crtc_state->pixel_multiplier - 1) 8706 << SDVO_MULTIPLIER_SHIFT_HIRES; 8707 } 8708 8709 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 8710 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 8711 dpll |= DPLL_SDVO_HIGH_SPEED; 8712 8713 if (intel_crtc_has_dp_encoder(crtc_state)) 8714 dpll |= DPLL_SDVO_HIGH_SPEED; 8715 8716 /* compute bitmask from p1 value */ 8717 if (IS_PINEVIEW(dev_priv)) 8718 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; 8719 else { 8720 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8721 if (IS_G4X(dev_priv) && reduced_clock) 8722 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 8723 } 8724 switch (clock->p2) { 8725 case 5: 8726 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 8727 break; 8728 case 7: 8729 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 8730 break; 8731 case 10: 8732 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 8733 break; 8734 case 14: 8735 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 8736 break; 8737 } 8738 if (INTEL_GEN(dev_priv) >= 4) 8739 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); 8740 8741 if (crtc_state->sdvo_tv_clock) 8742 dpll |= PLL_REF_INPUT_TVCLKINBC; 8743 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8744 intel_panel_use_ssc(dev_priv)) 8745 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8746 else 8747 dpll |= PLL_REF_INPUT_DREFCLK; 8748 8749 dpll |= DPLL_VCO_ENABLE; 8750 crtc_state->dpll_hw_state.dpll = dpll; 8751 8752 if (INTEL_GEN(dev_priv) >= 4) { 8753 u32 dpll_md = (crtc_state->pixel_multiplier - 1) 8754 << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8755 crtc_state->dpll_hw_state.dpll_md = dpll_md; 8756 } 8757 } 8758 8759 static void i8xx_compute_dpll(struct intel_crtc *crtc, 8760 struct intel_crtc_state *crtc_state, 8761 struct dpll *reduced_clock) 8762 { 8763 struct drm_device *dev = crtc->base.dev; 8764 struct drm_i915_private *dev_priv = to_i915(dev); 8765 u32 dpll; 8766 struct dpll *clock = &crtc_state->dpll; 8767 8768 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8769 8770 dpll = DPLL_VGA_MODE_DIS; 8771 8772 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8773 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8774 } else { 8775 if (clock->p1 == 2) 8776 dpll |= PLL_P1_DIVIDE_BY_TWO; 8777 else 8778 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8779 if (clock->p2 == 4) 8780 dpll |= PLL_P2_DIVIDE_BY_4; 8781 } 8782 8783 /* 8784 * Bspec: 8785 * "[Almador Errata}: For the correct operation of the muxed DVO pins 8786 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, 8787 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock 8788 * Enable) must be set to “1” in both the DPLL A Control Register 8789 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." 8790 * 8791 * For simplicity We simply keep both bits always enabled in 8792 * both DPLLS. The spec says we should disable the DVO 2X clock 8793 * when not needed, but this seems to work fine in practice. 8794 */ 8795 if (IS_I830(dev_priv) || 8796 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) 8797 dpll |= DPLL_DVO_2X_MODE; 8798 8799 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8800 intel_panel_use_ssc(dev_priv)) 8801 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8802 else 8803 dpll |= PLL_REF_INPUT_DREFCLK; 8804 8805 dpll |= DPLL_VCO_ENABLE; 8806 crtc_state->dpll_hw_state.dpll = dpll; 8807 } 8808 8809 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state) 8810 { 8811 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8812 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8813 enum pipe pipe = crtc->pipe; 8814 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8815 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 8816 u32 crtc_vtotal, crtc_vblank_end; 8817 int vsyncshift = 0; 8818 8819 /* We need to be careful not to changed the adjusted mode, for otherwise 8820 * the hw state checker will get angry at the mismatch. */ 8821 crtc_vtotal = adjusted_mode->crtc_vtotal; 8822 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 8823 8824 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 8825 /* the chip adds 2 halflines automatically */ 8826 crtc_vtotal -= 1; 8827 crtc_vblank_end -= 1; 8828 8829 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 8830 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 8831 else 8832 vsyncshift = adjusted_mode->crtc_hsync_start - 8833 adjusted_mode->crtc_htotal / 2; 8834 if (vsyncshift < 0) 8835 vsyncshift += adjusted_mode->crtc_htotal; 8836 } 8837 8838 if (INTEL_GEN(dev_priv) > 3) 8839 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder), 8840 vsyncshift); 8841 8842 intel_de_write(dev_priv, HTOTAL(cpu_transcoder), 8843 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); 8844 intel_de_write(dev_priv, HBLANK(cpu_transcoder), 8845 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); 8846 intel_de_write(dev_priv, HSYNC(cpu_transcoder), 8847 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); 8848 8849 intel_de_write(dev_priv, VTOTAL(cpu_transcoder), 8850 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); 8851 intel_de_write(dev_priv, VBLANK(cpu_transcoder), 8852 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); 8853 intel_de_write(dev_priv, VSYNC(cpu_transcoder), 8854 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); 8855 8856 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 8857 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 8858 * documented on the DDI_FUNC_CTL register description, EDP Input Select 8859 * bits. */ 8860 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 8861 (pipe == PIPE_B || pipe == PIPE_C)) 8862 intel_de_write(dev_priv, VTOTAL(pipe), 8863 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 8864 8865 } 8866 8867 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 8868 { 8869 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8870 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8871 enum pipe pipe = crtc->pipe; 8872 8873 /* pipesrc controls the size that is scaled from, which should 8874 * always be the user's requested size. 8875 */ 8876 intel_de_write(dev_priv, PIPESRC(pipe), 8877 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1)); 8878 } 8879 8880 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 8881 { 8882 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 8883 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8884 8885 if (IS_GEN(dev_priv, 2)) 8886 return false; 8887 8888 if (INTEL_GEN(dev_priv) >= 9 || 8889 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 8890 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; 8891 else 8892 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; 8893 } 8894 8895 static void intel_get_pipe_timings(struct intel_crtc *crtc, 8896 struct intel_crtc_state *pipe_config) 8897 { 8898 struct drm_device *dev = crtc->base.dev; 8899 struct drm_i915_private *dev_priv = to_i915(dev); 8900 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 8901 u32 tmp; 8902 8903 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); 8904 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 8905 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 8906 8907 if (!transcoder_is_dsi(cpu_transcoder)) { 8908 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); 8909 pipe_config->hw.adjusted_mode.crtc_hblank_start = 8910 (tmp & 0xffff) + 1; 8911 pipe_config->hw.adjusted_mode.crtc_hblank_end = 8912 ((tmp >> 16) & 0xffff) + 1; 8913 } 8914 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); 8915 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 8916 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 8917 8918 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); 8919 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 8920 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 8921 8922 if (!transcoder_is_dsi(cpu_transcoder)) { 8923 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); 8924 pipe_config->hw.adjusted_mode.crtc_vblank_start = 8925 (tmp & 0xffff) + 1; 8926 pipe_config->hw.adjusted_mode.crtc_vblank_end = 8927 ((tmp >> 16) & 0xffff) + 1; 8928 } 8929 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); 8930 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 8931 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 8932 8933 if (intel_pipe_is_interlaced(pipe_config)) { 8934 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 8935 pipe_config->hw.adjusted_mode.crtc_vtotal += 1; 8936 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1; 8937 } 8938 } 8939 8940 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 8941 struct intel_crtc_state *pipe_config) 8942 { 8943 struct drm_device *dev = crtc->base.dev; 8944 struct drm_i915_private *dev_priv = to_i915(dev); 8945 u32 tmp; 8946 8947 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe)); 8948 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 8949 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 8950 8951 pipe_config->hw.mode.vdisplay = pipe_config->pipe_src_h; 8952 pipe_config->hw.mode.hdisplay = pipe_config->pipe_src_w; 8953 } 8954 8955 void intel_mode_from_pipe_config(struct drm_display_mode *mode, 8956 struct intel_crtc_state *pipe_config) 8957 { 8958 mode->hdisplay = pipe_config->hw.adjusted_mode.crtc_hdisplay; 8959 mode->htotal = pipe_config->hw.adjusted_mode.crtc_htotal; 8960 mode->hsync_start = pipe_config->hw.adjusted_mode.crtc_hsync_start; 8961 mode->hsync_end = pipe_config->hw.adjusted_mode.crtc_hsync_end; 8962 8963 mode->vdisplay = pipe_config->hw.adjusted_mode.crtc_vdisplay; 8964 mode->vtotal = pipe_config->hw.adjusted_mode.crtc_vtotal; 8965 mode->vsync_start = pipe_config->hw.adjusted_mode.crtc_vsync_start; 8966 mode->vsync_end = pipe_config->hw.adjusted_mode.crtc_vsync_end; 8967 8968 mode->flags = pipe_config->hw.adjusted_mode.flags; 8969 mode->type = DRM_MODE_TYPE_DRIVER; 8970 8971 mode->clock = pipe_config->hw.adjusted_mode.crtc_clock; 8972 8973 drm_mode_set_name(mode); 8974 } 8975 8976 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 8977 { 8978 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8979 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8980 u32 pipeconf; 8981 8982 pipeconf = 0; 8983 8984 /* we keep both pipes enabled on 830 */ 8985 if (IS_I830(dev_priv)) 8986 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 8987 8988 if (crtc_state->double_wide) 8989 pipeconf |= PIPECONF_DOUBLE_WIDE; 8990 8991 /* only g4x and later have fancy bpc/dither controls */ 8992 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 8993 IS_CHERRYVIEW(dev_priv)) { 8994 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 8995 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 8996 pipeconf |= PIPECONF_DITHER_EN | 8997 PIPECONF_DITHER_TYPE_SP; 8998 8999 switch (crtc_state->pipe_bpp) { 9000 case 18: 9001 pipeconf |= PIPECONF_6BPC; 9002 break; 9003 case 24: 9004 pipeconf |= PIPECONF_8BPC; 9005 break; 9006 case 30: 9007 pipeconf |= PIPECONF_10BPC; 9008 break; 9009 default: 9010 /* Case prevented by intel_choose_pipe_bpp_dither. */ 9011 BUG(); 9012 } 9013 } 9014 9015 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 9016 if (INTEL_GEN(dev_priv) < 4 || 9017 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 9018 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 9019 else 9020 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 9021 } else { 9022 pipeconf |= PIPECONF_PROGRESSIVE; 9023 } 9024 9025 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 9026 crtc_state->limited_color_range) 9027 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 9028 9029 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 9030 9031 pipeconf |= PIPECONF_FRAME_START_DELAY(0); 9032 9033 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf); 9034 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); 9035 } 9036 9037 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc, 9038 struct intel_crtc_state *crtc_state) 9039 { 9040 struct drm_device *dev = crtc->base.dev; 9041 struct drm_i915_private *dev_priv = to_i915(dev); 9042 const struct intel_limit *limit; 9043 int refclk = 48000; 9044 9045 memset(&crtc_state->dpll_hw_state, 0, 9046 sizeof(crtc_state->dpll_hw_state)); 9047 9048 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9049 if (intel_panel_use_ssc(dev_priv)) { 9050 refclk = dev_priv->vbt.lvds_ssc_freq; 9051 drm_dbg_kms(&dev_priv->drm, 9052 "using SSC reference clock of %d kHz\n", 9053 refclk); 9054 } 9055 9056 limit = &intel_limits_i8xx_lvds; 9057 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { 9058 limit = &intel_limits_i8xx_dvo; 9059 } else { 9060 limit = &intel_limits_i8xx_dac; 9061 } 9062 9063 if (!crtc_state->clock_set && 9064 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9065 refclk, NULL, &crtc_state->dpll)) { 9066 drm_err(&dev_priv->drm, 9067 "Couldn't find PLL settings for mode!\n"); 9068 return -EINVAL; 9069 } 9070 9071 i8xx_compute_dpll(crtc, crtc_state, NULL); 9072 9073 return 0; 9074 } 9075 9076 static int g4x_crtc_compute_clock(struct intel_crtc *crtc, 9077 struct intel_crtc_state *crtc_state) 9078 { 9079 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9080 const struct intel_limit *limit; 9081 int refclk = 96000; 9082 9083 memset(&crtc_state->dpll_hw_state, 0, 9084 sizeof(crtc_state->dpll_hw_state)); 9085 9086 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9087 if (intel_panel_use_ssc(dev_priv)) { 9088 refclk = dev_priv->vbt.lvds_ssc_freq; 9089 drm_dbg_kms(&dev_priv->drm, 9090 "using SSC reference clock of %d kHz\n", 9091 refclk); 9092 } 9093 9094 if (intel_is_dual_link_lvds(dev_priv)) 9095 limit = &intel_limits_g4x_dual_channel_lvds; 9096 else 9097 limit = &intel_limits_g4x_single_channel_lvds; 9098 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || 9099 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { 9100 limit = &intel_limits_g4x_hdmi; 9101 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { 9102 limit = &intel_limits_g4x_sdvo; 9103 } else { 9104 /* The option is for other outputs */ 9105 limit = &intel_limits_i9xx_sdvo; 9106 } 9107 9108 if (!crtc_state->clock_set && 9109 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9110 refclk, NULL, &crtc_state->dpll)) { 9111 drm_err(&dev_priv->drm, 9112 "Couldn't find PLL settings for mode!\n"); 9113 return -EINVAL; 9114 } 9115 9116 i9xx_compute_dpll(crtc, crtc_state, NULL); 9117 9118 return 0; 9119 } 9120 9121 static int pnv_crtc_compute_clock(struct intel_crtc *crtc, 9122 struct intel_crtc_state *crtc_state) 9123 { 9124 struct drm_device *dev = crtc->base.dev; 9125 struct drm_i915_private *dev_priv = to_i915(dev); 9126 const struct intel_limit *limit; 9127 int refclk = 96000; 9128 9129 memset(&crtc_state->dpll_hw_state, 0, 9130 sizeof(crtc_state->dpll_hw_state)); 9131 9132 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9133 if (intel_panel_use_ssc(dev_priv)) { 9134 refclk = dev_priv->vbt.lvds_ssc_freq; 9135 drm_dbg_kms(&dev_priv->drm, 9136 "using SSC reference clock of %d kHz\n", 9137 refclk); 9138 } 9139 9140 limit = &pnv_limits_lvds; 9141 } else { 9142 limit = &pnv_limits_sdvo; 9143 } 9144 9145 if (!crtc_state->clock_set && 9146 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9147 refclk, NULL, &crtc_state->dpll)) { 9148 drm_err(&dev_priv->drm, 9149 "Couldn't find PLL settings for mode!\n"); 9150 return -EINVAL; 9151 } 9152 9153 i9xx_compute_dpll(crtc, crtc_state, NULL); 9154 9155 return 0; 9156 } 9157 9158 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc, 9159 struct intel_crtc_state *crtc_state) 9160 { 9161 struct drm_device *dev = crtc->base.dev; 9162 struct drm_i915_private *dev_priv = to_i915(dev); 9163 const struct intel_limit *limit; 9164 int refclk = 96000; 9165 9166 memset(&crtc_state->dpll_hw_state, 0, 9167 sizeof(crtc_state->dpll_hw_state)); 9168 9169 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9170 if (intel_panel_use_ssc(dev_priv)) { 9171 refclk = dev_priv->vbt.lvds_ssc_freq; 9172 drm_dbg_kms(&dev_priv->drm, 9173 "using SSC reference clock of %d kHz\n", 9174 refclk); 9175 } 9176 9177 limit = &intel_limits_i9xx_lvds; 9178 } else { 9179 limit = &intel_limits_i9xx_sdvo; 9180 } 9181 9182 if (!crtc_state->clock_set && 9183 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9184 refclk, NULL, &crtc_state->dpll)) { 9185 drm_err(&dev_priv->drm, 9186 "Couldn't find PLL settings for mode!\n"); 9187 return -EINVAL; 9188 } 9189 9190 i9xx_compute_dpll(crtc, crtc_state, NULL); 9191 9192 return 0; 9193 } 9194 9195 static int chv_crtc_compute_clock(struct intel_crtc *crtc, 9196 struct intel_crtc_state *crtc_state) 9197 { 9198 int refclk = 100000; 9199 const struct intel_limit *limit = &intel_limits_chv; 9200 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 9201 9202 memset(&crtc_state->dpll_hw_state, 0, 9203 sizeof(crtc_state->dpll_hw_state)); 9204 9205 if (!crtc_state->clock_set && 9206 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9207 refclk, NULL, &crtc_state->dpll)) { 9208 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n"); 9209 return -EINVAL; 9210 } 9211 9212 chv_compute_dpll(crtc, crtc_state); 9213 9214 return 0; 9215 } 9216 9217 static int vlv_crtc_compute_clock(struct intel_crtc *crtc, 9218 struct intel_crtc_state *crtc_state) 9219 { 9220 int refclk = 100000; 9221 const struct intel_limit *limit = &intel_limits_vlv; 9222 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 9223 9224 memset(&crtc_state->dpll_hw_state, 0, 9225 sizeof(crtc_state->dpll_hw_state)); 9226 9227 if (!crtc_state->clock_set && 9228 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9229 refclk, NULL, &crtc_state->dpll)) { 9230 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n"); 9231 return -EINVAL; 9232 } 9233 9234 vlv_compute_dpll(crtc, crtc_state); 9235 9236 return 0; 9237 } 9238 9239 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 9240 { 9241 if (IS_I830(dev_priv)) 9242 return false; 9243 9244 return INTEL_GEN(dev_priv) >= 4 || 9245 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 9246 } 9247 9248 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state) 9249 { 9250 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9251 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9252 u32 tmp; 9253 9254 if (!i9xx_has_pfit(dev_priv)) 9255 return; 9256 9257 tmp = intel_de_read(dev_priv, PFIT_CONTROL); 9258 if (!(tmp & PFIT_ENABLE)) 9259 return; 9260 9261 /* Check whether the pfit is attached to our pipe. */ 9262 if (INTEL_GEN(dev_priv) < 4) { 9263 if (crtc->pipe != PIPE_B) 9264 return; 9265 } else { 9266 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 9267 return; 9268 } 9269 9270 crtc_state->gmch_pfit.control = tmp; 9271 crtc_state->gmch_pfit.pgm_ratios = 9272 intel_de_read(dev_priv, PFIT_PGM_RATIOS); 9273 } 9274 9275 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 9276 struct intel_crtc_state *pipe_config) 9277 { 9278 struct drm_device *dev = crtc->base.dev; 9279 struct drm_i915_private *dev_priv = to_i915(dev); 9280 enum pipe pipe = crtc->pipe; 9281 struct dpll clock; 9282 u32 mdiv; 9283 int refclk = 100000; 9284 9285 /* In case of DSI, DPLL will not be used */ 9286 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 9287 return; 9288 9289 vlv_dpio_get(dev_priv); 9290 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 9291 vlv_dpio_put(dev_priv); 9292 9293 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 9294 clock.m2 = mdiv & DPIO_M2DIV_MASK; 9295 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 9296 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 9297 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 9298 9299 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 9300 } 9301 9302 static void 9303 i9xx_get_initial_plane_config(struct intel_crtc *crtc, 9304 struct intel_initial_plane_config *plane_config) 9305 { 9306 struct drm_device *dev = crtc->base.dev; 9307 struct drm_i915_private *dev_priv = to_i915(dev); 9308 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 9309 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 9310 enum pipe pipe; 9311 u32 val, base, offset; 9312 int fourcc, pixel_format; 9313 unsigned int aligned_height; 9314 struct drm_framebuffer *fb; 9315 struct intel_framebuffer *intel_fb; 9316 9317 if (!plane->get_hw_state(plane, &pipe)) 9318 return; 9319 9320 drm_WARN_ON(dev, pipe != crtc->pipe); 9321 9322 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 9323 if (!intel_fb) { 9324 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n"); 9325 return; 9326 } 9327 9328 fb = &intel_fb->base; 9329 9330 fb->dev = dev; 9331 9332 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 9333 9334 if (INTEL_GEN(dev_priv) >= 4) { 9335 if (val & DISPPLANE_TILED) { 9336 plane_config->tiling = I915_TILING_X; 9337 fb->modifier = I915_FORMAT_MOD_X_TILED; 9338 } 9339 9340 if (val & DISPPLANE_ROTATE_180) 9341 plane_config->rotation = DRM_MODE_ROTATE_180; 9342 } 9343 9344 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B && 9345 val & DISPPLANE_MIRROR) 9346 plane_config->rotation |= DRM_MODE_REFLECT_X; 9347 9348 pixel_format = val & DISPPLANE_PIXFORMAT_MASK; 9349 fourcc = i9xx_format_to_fourcc(pixel_format); 9350 fb->format = drm_format_info(fourcc); 9351 9352 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 9353 offset = intel_de_read(dev_priv, DSPOFFSET(i9xx_plane)); 9354 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000; 9355 } else if (INTEL_GEN(dev_priv) >= 4) { 9356 if (plane_config->tiling) 9357 offset = intel_de_read(dev_priv, 9358 DSPTILEOFF(i9xx_plane)); 9359 else 9360 offset = intel_de_read(dev_priv, 9361 DSPLINOFF(i9xx_plane)); 9362 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000; 9363 } else { 9364 base = intel_de_read(dev_priv, DSPADDR(i9xx_plane)); 9365 } 9366 plane_config->base = base; 9367 9368 val = intel_de_read(dev_priv, PIPESRC(pipe)); 9369 fb->width = ((val >> 16) & 0xfff) + 1; 9370 fb->height = ((val >> 0) & 0xfff) + 1; 9371 9372 val = intel_de_read(dev_priv, DSPSTRIDE(i9xx_plane)); 9373 fb->pitches[0] = val & 0xffffffc0; 9374 9375 aligned_height = intel_fb_align_height(fb, 0, fb->height); 9376 9377 plane_config->size = fb->pitches[0] * aligned_height; 9378 9379 drm_dbg_kms(&dev_priv->drm, 9380 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 9381 crtc->base.name, plane->base.name, fb->width, fb->height, 9382 fb->format->cpp[0] * 8, base, fb->pitches[0], 9383 plane_config->size); 9384 9385 plane_config->fb = intel_fb; 9386 } 9387 9388 static void chv_crtc_clock_get(struct intel_crtc *crtc, 9389 struct intel_crtc_state *pipe_config) 9390 { 9391 struct drm_device *dev = crtc->base.dev; 9392 struct drm_i915_private *dev_priv = to_i915(dev); 9393 enum pipe pipe = crtc->pipe; 9394 enum dpio_channel port = vlv_pipe_to_channel(pipe); 9395 struct dpll clock; 9396 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 9397 int refclk = 100000; 9398 9399 /* In case of DSI, DPLL will not be used */ 9400 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 9401 return; 9402 9403 vlv_dpio_get(dev_priv); 9404 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 9405 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 9406 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 9407 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 9408 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 9409 vlv_dpio_put(dev_priv); 9410 9411 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 9412 clock.m2 = (pll_dw0 & 0xff) << 22; 9413 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 9414 clock.m2 |= pll_dw2 & 0x3fffff; 9415 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 9416 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 9417 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 9418 9419 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 9420 } 9421 9422 static enum intel_output_format 9423 bdw_get_pipemisc_output_format(struct intel_crtc *crtc) 9424 { 9425 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9426 u32 tmp; 9427 9428 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 9429 9430 if (tmp & PIPEMISC_YUV420_ENABLE) { 9431 /* We support 4:2:0 in full blend mode only */ 9432 drm_WARN_ON(&dev_priv->drm, 9433 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); 9434 9435 return INTEL_OUTPUT_FORMAT_YCBCR420; 9436 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 9437 return INTEL_OUTPUT_FORMAT_YCBCR444; 9438 } else { 9439 return INTEL_OUTPUT_FORMAT_RGB; 9440 } 9441 } 9442 9443 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 9444 { 9445 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9446 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 9447 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9448 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 9449 u32 tmp; 9450 9451 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 9452 9453 if (tmp & DISPPLANE_GAMMA_ENABLE) 9454 crtc_state->gamma_enable = true; 9455 9456 if (!HAS_GMCH(dev_priv) && 9457 tmp & DISPPLANE_PIPE_CSC_ENABLE) 9458 crtc_state->csc_enable = true; 9459 } 9460 9461 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 9462 struct intel_crtc_state *pipe_config) 9463 { 9464 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9465 enum intel_display_power_domain power_domain; 9466 intel_wakeref_t wakeref; 9467 u32 tmp; 9468 bool ret; 9469 9470 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 9471 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 9472 if (!wakeref) 9473 return false; 9474 9475 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 9476 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 9477 pipe_config->shared_dpll = NULL; 9478 9479 ret = false; 9480 9481 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 9482 if (!(tmp & PIPECONF_ENABLE)) 9483 goto out; 9484 9485 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 9486 IS_CHERRYVIEW(dev_priv)) { 9487 switch (tmp & PIPECONF_BPC_MASK) { 9488 case PIPECONF_6BPC: 9489 pipe_config->pipe_bpp = 18; 9490 break; 9491 case PIPECONF_8BPC: 9492 pipe_config->pipe_bpp = 24; 9493 break; 9494 case PIPECONF_10BPC: 9495 pipe_config->pipe_bpp = 30; 9496 break; 9497 default: 9498 break; 9499 } 9500 } 9501 9502 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 9503 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 9504 pipe_config->limited_color_range = true; 9505 9506 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 9507 PIPECONF_GAMMA_MODE_SHIFT; 9508 9509 if (IS_CHERRYVIEW(dev_priv)) 9510 pipe_config->cgm_mode = intel_de_read(dev_priv, 9511 CGM_PIPE_MODE(crtc->pipe)); 9512 9513 i9xx_get_pipe_color_config(pipe_config); 9514 intel_color_get_config(pipe_config); 9515 9516 if (INTEL_GEN(dev_priv) < 4) 9517 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 9518 9519 intel_get_pipe_timings(crtc, pipe_config); 9520 intel_get_pipe_src_size(crtc, pipe_config); 9521 9522 i9xx_get_pfit_config(pipe_config); 9523 9524 if (INTEL_GEN(dev_priv) >= 4) { 9525 /* No way to read it out on pipes B and C */ 9526 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 9527 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 9528 else 9529 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); 9530 pipe_config->pixel_multiplier = 9531 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 9532 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 9533 pipe_config->dpll_hw_state.dpll_md = tmp; 9534 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 9535 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 9536 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe)); 9537 pipe_config->pixel_multiplier = 9538 ((tmp & SDVO_MULTIPLIER_MASK) 9539 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 9540 } else { 9541 /* Note that on i915G/GM the pixel multiplier is in the sdvo 9542 * port and will be fixed up in the encoder->get_config 9543 * function. */ 9544 pipe_config->pixel_multiplier = 1; 9545 } 9546 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv, 9547 DPLL(crtc->pipe)); 9548 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 9549 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv, 9550 FP0(crtc->pipe)); 9551 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv, 9552 FP1(crtc->pipe)); 9553 } else { 9554 /* Mask out read-only status bits. */ 9555 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 9556 DPLL_PORTC_READY_MASK | 9557 DPLL_PORTB_READY_MASK); 9558 } 9559 9560 if (IS_CHERRYVIEW(dev_priv)) 9561 chv_crtc_clock_get(crtc, pipe_config); 9562 else if (IS_VALLEYVIEW(dev_priv)) 9563 vlv_crtc_clock_get(crtc, pipe_config); 9564 else 9565 i9xx_crtc_clock_get(crtc, pipe_config); 9566 9567 /* 9568 * Normally the dotclock is filled in by the encoder .get_config() 9569 * but in case the pipe is enabled w/o any ports we need a sane 9570 * default. 9571 */ 9572 pipe_config->hw.adjusted_mode.crtc_clock = 9573 pipe_config->port_clock / pipe_config->pixel_multiplier; 9574 9575 ret = true; 9576 9577 out: 9578 intel_display_power_put(dev_priv, power_domain, wakeref); 9579 9580 return ret; 9581 } 9582 9583 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv) 9584 { 9585 struct intel_encoder *encoder; 9586 int i; 9587 u32 val, final; 9588 bool has_lvds = false; 9589 bool has_cpu_edp = false; 9590 bool has_panel = false; 9591 bool has_ck505 = false; 9592 bool can_ssc = false; 9593 bool using_ssc_source = false; 9594 9595 /* We need to take the global config into account */ 9596 for_each_intel_encoder(&dev_priv->drm, encoder) { 9597 switch (encoder->type) { 9598 case INTEL_OUTPUT_LVDS: 9599 has_panel = true; 9600 has_lvds = true; 9601 break; 9602 case INTEL_OUTPUT_EDP: 9603 has_panel = true; 9604 if (encoder->port == PORT_A) 9605 has_cpu_edp = true; 9606 break; 9607 default: 9608 break; 9609 } 9610 } 9611 9612 if (HAS_PCH_IBX(dev_priv)) { 9613 has_ck505 = dev_priv->vbt.display_clock_mode; 9614 can_ssc = has_ck505; 9615 } else { 9616 has_ck505 = false; 9617 can_ssc = true; 9618 } 9619 9620 /* Check if any DPLLs are using the SSC source */ 9621 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) { 9622 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i)); 9623 9624 if (!(temp & DPLL_VCO_ENABLE)) 9625 continue; 9626 9627 if ((temp & PLL_REF_INPUT_MASK) == 9628 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 9629 using_ssc_source = true; 9630 break; 9631 } 9632 } 9633 9634 drm_dbg_kms(&dev_priv->drm, 9635 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 9636 has_panel, has_lvds, has_ck505, using_ssc_source); 9637 9638 /* Ironlake: try to setup display ref clock before DPLL 9639 * enabling. This is only under driver's control after 9640 * PCH B stepping, previous chipset stepping should be 9641 * ignoring this setting. 9642 */ 9643 val = intel_de_read(dev_priv, PCH_DREF_CONTROL); 9644 9645 /* As we must carefully and slowly disable/enable each source in turn, 9646 * compute the final state we want first and check if we need to 9647 * make any changes at all. 9648 */ 9649 final = val; 9650 final &= ~DREF_NONSPREAD_SOURCE_MASK; 9651 if (has_ck505) 9652 final |= DREF_NONSPREAD_CK505_ENABLE; 9653 else 9654 final |= DREF_NONSPREAD_SOURCE_ENABLE; 9655 9656 final &= ~DREF_SSC_SOURCE_MASK; 9657 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9658 final &= ~DREF_SSC1_ENABLE; 9659 9660 if (has_panel) { 9661 final |= DREF_SSC_SOURCE_ENABLE; 9662 9663 if (intel_panel_use_ssc(dev_priv) && can_ssc) 9664 final |= DREF_SSC1_ENABLE; 9665 9666 if (has_cpu_edp) { 9667 if (intel_panel_use_ssc(dev_priv) && can_ssc) 9668 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9669 else 9670 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9671 } else 9672 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9673 } else if (using_ssc_source) { 9674 final |= DREF_SSC_SOURCE_ENABLE; 9675 final |= DREF_SSC1_ENABLE; 9676 } 9677 9678 if (final == val) 9679 return; 9680 9681 /* Always enable nonspread source */ 9682 val &= ~DREF_NONSPREAD_SOURCE_MASK; 9683 9684 if (has_ck505) 9685 val |= DREF_NONSPREAD_CK505_ENABLE; 9686 else 9687 val |= DREF_NONSPREAD_SOURCE_ENABLE; 9688 9689 if (has_panel) { 9690 val &= ~DREF_SSC_SOURCE_MASK; 9691 val |= DREF_SSC_SOURCE_ENABLE; 9692 9693 /* SSC must be turned on before enabling the CPU output */ 9694 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9695 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n"); 9696 val |= DREF_SSC1_ENABLE; 9697 } else 9698 val &= ~DREF_SSC1_ENABLE; 9699 9700 /* Get SSC going before enabling the outputs */ 9701 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9702 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9703 udelay(200); 9704 9705 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9706 9707 /* Enable CPU source on CPU attached eDP */ 9708 if (has_cpu_edp) { 9709 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9710 drm_dbg_kms(&dev_priv->drm, 9711 "Using SSC on eDP\n"); 9712 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9713 } else 9714 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9715 } else 9716 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9717 9718 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9719 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9720 udelay(200); 9721 } else { 9722 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n"); 9723 9724 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9725 9726 /* Turn off CPU output */ 9727 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9728 9729 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9730 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9731 udelay(200); 9732 9733 if (!using_ssc_source) { 9734 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n"); 9735 9736 /* Turn off the SSC source */ 9737 val &= ~DREF_SSC_SOURCE_MASK; 9738 val |= DREF_SSC_SOURCE_DISABLE; 9739 9740 /* Turn off SSC1 */ 9741 val &= ~DREF_SSC1_ENABLE; 9742 9743 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9744 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9745 udelay(200); 9746 } 9747 } 9748 9749 BUG_ON(val != final); 9750 } 9751 9752 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 9753 { 9754 u32 tmp; 9755 9756 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 9757 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 9758 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 9759 9760 if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) & 9761 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 9762 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n"); 9763 9764 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 9765 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 9766 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 9767 9768 if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) & 9769 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 9770 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n"); 9771 } 9772 9773 /* WaMPhyProgramming:hsw */ 9774 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 9775 { 9776 u32 tmp; 9777 9778 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 9779 tmp &= ~(0xFF << 24); 9780 tmp |= (0x12 << 24); 9781 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 9782 9783 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 9784 tmp |= (1 << 11); 9785 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 9786 9787 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 9788 tmp |= (1 << 11); 9789 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 9790 9791 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 9792 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9793 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 9794 9795 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 9796 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9797 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 9798 9799 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 9800 tmp &= ~(7 << 13); 9801 tmp |= (5 << 13); 9802 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 9803 9804 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 9805 tmp &= ~(7 << 13); 9806 tmp |= (5 << 13); 9807 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 9808 9809 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 9810 tmp &= ~0xFF; 9811 tmp |= 0x1C; 9812 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 9813 9814 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 9815 tmp &= ~0xFF; 9816 tmp |= 0x1C; 9817 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 9818 9819 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 9820 tmp &= ~(0xFF << 16); 9821 tmp |= (0x1C << 16); 9822 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 9823 9824 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 9825 tmp &= ~(0xFF << 16); 9826 tmp |= (0x1C << 16); 9827 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 9828 9829 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 9830 tmp |= (1 << 27); 9831 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 9832 9833 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 9834 tmp |= (1 << 27); 9835 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 9836 9837 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 9838 tmp &= ~(0xF << 28); 9839 tmp |= (4 << 28); 9840 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 9841 9842 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 9843 tmp &= ~(0xF << 28); 9844 tmp |= (4 << 28); 9845 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 9846 } 9847 9848 /* Implements 3 different sequences from BSpec chapter "Display iCLK 9849 * Programming" based on the parameters passed: 9850 * - Sequence to enable CLKOUT_DP 9851 * - Sequence to enable CLKOUT_DP without spread 9852 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 9853 */ 9854 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 9855 bool with_spread, bool with_fdi) 9856 { 9857 u32 reg, tmp; 9858 9859 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread, 9860 "FDI requires downspread\n")) 9861 with_spread = true; 9862 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) && 9863 with_fdi, "LP PCH doesn't have FDI\n")) 9864 with_fdi = false; 9865 9866 mutex_lock(&dev_priv->sb_lock); 9867 9868 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9869 tmp &= ~SBI_SSCCTL_DISABLE; 9870 tmp |= SBI_SSCCTL_PATHALT; 9871 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9872 9873 udelay(24); 9874 9875 if (with_spread) { 9876 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9877 tmp &= ~SBI_SSCCTL_PATHALT; 9878 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9879 9880 if (with_fdi) { 9881 lpt_reset_fdi_mphy(dev_priv); 9882 lpt_program_fdi_mphy(dev_priv); 9883 } 9884 } 9885 9886 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9887 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9888 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9889 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9890 9891 mutex_unlock(&dev_priv->sb_lock); 9892 } 9893 9894 /* Sequence to disable CLKOUT_DP */ 9895 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 9896 { 9897 u32 reg, tmp; 9898 9899 mutex_lock(&dev_priv->sb_lock); 9900 9901 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9902 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9903 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9904 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9905 9906 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9907 if (!(tmp & SBI_SSCCTL_DISABLE)) { 9908 if (!(tmp & SBI_SSCCTL_PATHALT)) { 9909 tmp |= SBI_SSCCTL_PATHALT; 9910 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9911 udelay(32); 9912 } 9913 tmp |= SBI_SSCCTL_DISABLE; 9914 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9915 } 9916 9917 mutex_unlock(&dev_priv->sb_lock); 9918 } 9919 9920 #define BEND_IDX(steps) ((50 + (steps)) / 5) 9921 9922 static const u16 sscdivintphase[] = { 9923 [BEND_IDX( 50)] = 0x3B23, 9924 [BEND_IDX( 45)] = 0x3B23, 9925 [BEND_IDX( 40)] = 0x3C23, 9926 [BEND_IDX( 35)] = 0x3C23, 9927 [BEND_IDX( 30)] = 0x3D23, 9928 [BEND_IDX( 25)] = 0x3D23, 9929 [BEND_IDX( 20)] = 0x3E23, 9930 [BEND_IDX( 15)] = 0x3E23, 9931 [BEND_IDX( 10)] = 0x3F23, 9932 [BEND_IDX( 5)] = 0x3F23, 9933 [BEND_IDX( 0)] = 0x0025, 9934 [BEND_IDX( -5)] = 0x0025, 9935 [BEND_IDX(-10)] = 0x0125, 9936 [BEND_IDX(-15)] = 0x0125, 9937 [BEND_IDX(-20)] = 0x0225, 9938 [BEND_IDX(-25)] = 0x0225, 9939 [BEND_IDX(-30)] = 0x0325, 9940 [BEND_IDX(-35)] = 0x0325, 9941 [BEND_IDX(-40)] = 0x0425, 9942 [BEND_IDX(-45)] = 0x0425, 9943 [BEND_IDX(-50)] = 0x0525, 9944 }; 9945 9946 /* 9947 * Bend CLKOUT_DP 9948 * steps -50 to 50 inclusive, in steps of 5 9949 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 9950 * change in clock period = -(steps / 10) * 5.787 ps 9951 */ 9952 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 9953 { 9954 u32 tmp; 9955 int idx = BEND_IDX(steps); 9956 9957 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0)) 9958 return; 9959 9960 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase))) 9961 return; 9962 9963 mutex_lock(&dev_priv->sb_lock); 9964 9965 if (steps % 10 != 0) 9966 tmp = 0xAAAAAAAB; 9967 else 9968 tmp = 0x00000000; 9969 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 9970 9971 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 9972 tmp &= 0xffff0000; 9973 tmp |= sscdivintphase[idx]; 9974 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 9975 9976 mutex_unlock(&dev_priv->sb_lock); 9977 } 9978 9979 #undef BEND_IDX 9980 9981 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 9982 { 9983 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 9984 u32 ctl = intel_de_read(dev_priv, SPLL_CTL); 9985 9986 if ((ctl & SPLL_PLL_ENABLE) == 0) 9987 return false; 9988 9989 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 9990 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 9991 return true; 9992 9993 if (IS_BROADWELL(dev_priv) && 9994 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 9995 return true; 9996 9997 return false; 9998 } 9999 10000 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 10001 enum intel_dpll_id id) 10002 { 10003 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 10004 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id)); 10005 10006 if ((ctl & WRPLL_PLL_ENABLE) == 0) 10007 return false; 10008 10009 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 10010 return true; 10011 10012 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 10013 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 10014 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 10015 return true; 10016 10017 return false; 10018 } 10019 10020 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 10021 { 10022 struct intel_encoder *encoder; 10023 bool has_fdi = false; 10024 10025 for_each_intel_encoder(&dev_priv->drm, encoder) { 10026 switch (encoder->type) { 10027 case INTEL_OUTPUT_ANALOG: 10028 has_fdi = true; 10029 break; 10030 default: 10031 break; 10032 } 10033 } 10034 10035 /* 10036 * The BIOS may have decided to use the PCH SSC 10037 * reference so we must not disable it until the 10038 * relevant PLLs have stopped relying on it. We'll 10039 * just leave the PCH SSC reference enabled in case 10040 * any active PLL is using it. It will get disabled 10041 * after runtime suspend if we don't have FDI. 10042 * 10043 * TODO: Move the whole reference clock handling 10044 * to the modeset sequence proper so that we can 10045 * actually enable/disable/reconfigure these things 10046 * safely. To do that we need to introduce a real 10047 * clock hierarchy. That would also allow us to do 10048 * clock bending finally. 10049 */ 10050 dev_priv->pch_ssc_use = 0; 10051 10052 if (spll_uses_pch_ssc(dev_priv)) { 10053 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n"); 10054 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); 10055 } 10056 10057 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 10058 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n"); 10059 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 10060 } 10061 10062 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 10063 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n"); 10064 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 10065 } 10066 10067 if (dev_priv->pch_ssc_use) 10068 return; 10069 10070 if (has_fdi) { 10071 lpt_bend_clkout_dp(dev_priv, 0); 10072 lpt_enable_clkout_dp(dev_priv, true, true); 10073 } else { 10074 lpt_disable_clkout_dp(dev_priv); 10075 } 10076 } 10077 10078 /* 10079 * Initialize reference clocks when the driver loads 10080 */ 10081 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 10082 { 10083 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 10084 ilk_init_pch_refclk(dev_priv); 10085 else if (HAS_PCH_LPT(dev_priv)) 10086 lpt_init_pch_refclk(dev_priv); 10087 } 10088 10089 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) 10090 { 10091 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10092 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10093 enum pipe pipe = crtc->pipe; 10094 u32 val; 10095 10096 val = 0; 10097 10098 switch (crtc_state->pipe_bpp) { 10099 case 18: 10100 val |= PIPECONF_6BPC; 10101 break; 10102 case 24: 10103 val |= PIPECONF_8BPC; 10104 break; 10105 case 30: 10106 val |= PIPECONF_10BPC; 10107 break; 10108 case 36: 10109 val |= PIPECONF_12BPC; 10110 break; 10111 default: 10112 /* Case prevented by intel_choose_pipe_bpp_dither. */ 10113 BUG(); 10114 } 10115 10116 if (crtc_state->dither) 10117 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 10118 10119 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 10120 val |= PIPECONF_INTERLACED_ILK; 10121 else 10122 val |= PIPECONF_PROGRESSIVE; 10123 10124 /* 10125 * This would end up with an odd purple hue over 10126 * the entire display. Make sure we don't do it. 10127 */ 10128 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && 10129 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 10130 10131 if (crtc_state->limited_color_range && 10132 !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 10133 val |= PIPECONF_COLOR_RANGE_SELECT; 10134 10135 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 10136 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; 10137 10138 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 10139 10140 val |= PIPECONF_FRAME_START_DELAY(0); 10141 10142 intel_de_write(dev_priv, PIPECONF(pipe), val); 10143 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 10144 } 10145 10146 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state) 10147 { 10148 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10149 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10150 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 10151 u32 val = 0; 10152 10153 if (IS_HASWELL(dev_priv) && crtc_state->dither) 10154 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 10155 10156 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 10157 val |= PIPECONF_INTERLACED_ILK; 10158 else 10159 val |= PIPECONF_PROGRESSIVE; 10160 10161 if (IS_HASWELL(dev_priv) && 10162 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 10163 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; 10164 10165 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val); 10166 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder)); 10167 } 10168 10169 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 10170 { 10171 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10172 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10173 u32 val = 0; 10174 10175 switch (crtc_state->pipe_bpp) { 10176 case 18: 10177 val |= PIPEMISC_DITHER_6_BPC; 10178 break; 10179 case 24: 10180 val |= PIPEMISC_DITHER_8_BPC; 10181 break; 10182 case 30: 10183 val |= PIPEMISC_DITHER_10_BPC; 10184 break; 10185 case 36: 10186 val |= PIPEMISC_DITHER_12_BPC; 10187 break; 10188 default: 10189 MISSING_CASE(crtc_state->pipe_bpp); 10190 break; 10191 } 10192 10193 if (crtc_state->dither) 10194 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 10195 10196 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 10197 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 10198 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 10199 10200 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 10201 val |= PIPEMISC_YUV420_ENABLE | 10202 PIPEMISC_YUV420_MODE_FULL_BLEND; 10203 10204 if (INTEL_GEN(dev_priv) >= 11 && 10205 (crtc_state->active_planes & ~(icl_hdr_plane_mask() | 10206 BIT(PLANE_CURSOR))) == 0) 10207 val |= PIPEMISC_HDR_MODE_PRECISION; 10208 10209 if (INTEL_GEN(dev_priv) >= 12) 10210 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC; 10211 10212 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val); 10213 } 10214 10215 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 10216 { 10217 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10218 u32 tmp; 10219 10220 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 10221 10222 switch (tmp & PIPEMISC_DITHER_BPC_MASK) { 10223 case PIPEMISC_DITHER_6_BPC: 10224 return 18; 10225 case PIPEMISC_DITHER_8_BPC: 10226 return 24; 10227 case PIPEMISC_DITHER_10_BPC: 10228 return 30; 10229 case PIPEMISC_DITHER_12_BPC: 10230 return 36; 10231 default: 10232 MISSING_CASE(tmp); 10233 return 0; 10234 } 10235 } 10236 10237 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) 10238 { 10239 /* 10240 * Account for spread spectrum to avoid 10241 * oversubscribing the link. Max center spread 10242 * is 2.5%; use 5% for safety's sake. 10243 */ 10244 u32 bps = target_clock * bpp * 21 / 20; 10245 return DIV_ROUND_UP(bps, link_bw * 8); 10246 } 10247 10248 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor) 10249 { 10250 return i9xx_dpll_compute_m(dpll) < factor * dpll->n; 10251 } 10252 10253 static void ilk_compute_dpll(struct intel_crtc *crtc, 10254 struct intel_crtc_state *crtc_state, 10255 struct dpll *reduced_clock) 10256 { 10257 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10258 u32 dpll, fp, fp2; 10259 int factor; 10260 10261 /* Enable autotuning of the PLL clock (if permissible) */ 10262 factor = 21; 10263 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 10264 if ((intel_panel_use_ssc(dev_priv) && 10265 dev_priv->vbt.lvds_ssc_freq == 100000) || 10266 (HAS_PCH_IBX(dev_priv) && 10267 intel_is_dual_link_lvds(dev_priv))) 10268 factor = 25; 10269 } else if (crtc_state->sdvo_tv_clock) { 10270 factor = 20; 10271 } 10272 10273 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 10274 10275 if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor)) 10276 fp |= FP_CB_TUNE; 10277 10278 if (reduced_clock) { 10279 fp2 = i9xx_dpll_compute_fp(reduced_clock); 10280 10281 if (reduced_clock->m < factor * reduced_clock->n) 10282 fp2 |= FP_CB_TUNE; 10283 } else { 10284 fp2 = fp; 10285 } 10286 10287 dpll = 0; 10288 10289 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 10290 dpll |= DPLLB_MODE_LVDS; 10291 else 10292 dpll |= DPLLB_MODE_DAC_SERIAL; 10293 10294 dpll |= (crtc_state->pixel_multiplier - 1) 10295 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; 10296 10297 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 10298 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 10299 dpll |= DPLL_SDVO_HIGH_SPEED; 10300 10301 if (intel_crtc_has_dp_encoder(crtc_state)) 10302 dpll |= DPLL_SDVO_HIGH_SPEED; 10303 10304 /* 10305 * The high speed IO clock is only really required for 10306 * SDVO/HDMI/DP, but we also enable it for CRT to make it 10307 * possible to share the DPLL between CRT and HDMI. Enabling 10308 * the clock needlessly does no real harm, except use up a 10309 * bit of power potentially. 10310 * 10311 * We'll limit this to IVB with 3 pipes, since it has only two 10312 * DPLLs and so DPLL sharing is the only way to get three pipes 10313 * driving PCH ports at the same time. On SNB we could do this, 10314 * and potentially avoid enabling the second DPLL, but it's not 10315 * clear if it''s a win or loss power wise. No point in doing 10316 * this on ILK at all since it has a fixed DPLL<->pipe mapping. 10317 */ 10318 if (INTEL_NUM_PIPES(dev_priv) == 3 && 10319 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) 10320 dpll |= DPLL_SDVO_HIGH_SPEED; 10321 10322 /* compute bitmask from p1 value */ 10323 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 10324 /* also FPA1 */ 10325 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 10326 10327 switch (crtc_state->dpll.p2) { 10328 case 5: 10329 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 10330 break; 10331 case 7: 10332 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 10333 break; 10334 case 10: 10335 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 10336 break; 10337 case 14: 10338 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 10339 break; 10340 } 10341 10342 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 10343 intel_panel_use_ssc(dev_priv)) 10344 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 10345 else 10346 dpll |= PLL_REF_INPUT_DREFCLK; 10347 10348 dpll |= DPLL_VCO_ENABLE; 10349 10350 crtc_state->dpll_hw_state.dpll = dpll; 10351 crtc_state->dpll_hw_state.fp0 = fp; 10352 crtc_state->dpll_hw_state.fp1 = fp2; 10353 } 10354 10355 static int ilk_crtc_compute_clock(struct intel_crtc *crtc, 10356 struct intel_crtc_state *crtc_state) 10357 { 10358 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10359 struct intel_atomic_state *state = 10360 to_intel_atomic_state(crtc_state->uapi.state); 10361 const struct intel_limit *limit; 10362 int refclk = 120000; 10363 10364 memset(&crtc_state->dpll_hw_state, 0, 10365 sizeof(crtc_state->dpll_hw_state)); 10366 10367 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 10368 if (!crtc_state->has_pch_encoder) 10369 return 0; 10370 10371 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 10372 if (intel_panel_use_ssc(dev_priv)) { 10373 drm_dbg_kms(&dev_priv->drm, 10374 "using SSC reference clock of %d kHz\n", 10375 dev_priv->vbt.lvds_ssc_freq); 10376 refclk = dev_priv->vbt.lvds_ssc_freq; 10377 } 10378 10379 if (intel_is_dual_link_lvds(dev_priv)) { 10380 if (refclk == 100000) 10381 limit = &ilk_limits_dual_lvds_100m; 10382 else 10383 limit = &ilk_limits_dual_lvds; 10384 } else { 10385 if (refclk == 100000) 10386 limit = &ilk_limits_single_lvds_100m; 10387 else 10388 limit = &ilk_limits_single_lvds; 10389 } 10390 } else { 10391 limit = &ilk_limits_dac; 10392 } 10393 10394 if (!crtc_state->clock_set && 10395 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 10396 refclk, NULL, &crtc_state->dpll)) { 10397 drm_err(&dev_priv->drm, 10398 "Couldn't find PLL settings for mode!\n"); 10399 return -EINVAL; 10400 } 10401 10402 ilk_compute_dpll(crtc, crtc_state, NULL); 10403 10404 if (!intel_reserve_shared_dplls(state, crtc, NULL)) { 10405 drm_dbg_kms(&dev_priv->drm, 10406 "failed to find PLL for pipe %c\n", 10407 pipe_name(crtc->pipe)); 10408 return -EINVAL; 10409 } 10410 10411 return 0; 10412 } 10413 10414 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 10415 struct intel_link_m_n *m_n) 10416 { 10417 struct drm_device *dev = crtc->base.dev; 10418 struct drm_i915_private *dev_priv = to_i915(dev); 10419 enum pipe pipe = crtc->pipe; 10420 10421 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe)); 10422 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe)); 10423 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 10424 & ~TU_SIZE_MASK; 10425 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe)); 10426 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 10427 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10428 } 10429 10430 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 10431 enum transcoder transcoder, 10432 struct intel_link_m_n *m_n, 10433 struct intel_link_m_n *m2_n2) 10434 { 10435 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10436 enum pipe pipe = crtc->pipe; 10437 10438 if (INTEL_GEN(dev_priv) >= 5) { 10439 m_n->link_m = intel_de_read(dev_priv, 10440 PIPE_LINK_M1(transcoder)); 10441 m_n->link_n = intel_de_read(dev_priv, 10442 PIPE_LINK_N1(transcoder)); 10443 m_n->gmch_m = intel_de_read(dev_priv, 10444 PIPE_DATA_M1(transcoder)) 10445 & ~TU_SIZE_MASK; 10446 m_n->gmch_n = intel_de_read(dev_priv, 10447 PIPE_DATA_N1(transcoder)); 10448 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder)) 10449 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10450 10451 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 10452 m2_n2->link_m = intel_de_read(dev_priv, 10453 PIPE_LINK_M2(transcoder)); 10454 m2_n2->link_n = intel_de_read(dev_priv, 10455 PIPE_LINK_N2(transcoder)); 10456 m2_n2->gmch_m = intel_de_read(dev_priv, 10457 PIPE_DATA_M2(transcoder)) 10458 & ~TU_SIZE_MASK; 10459 m2_n2->gmch_n = intel_de_read(dev_priv, 10460 PIPE_DATA_N2(transcoder)); 10461 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder)) 10462 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10463 } 10464 } else { 10465 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe)); 10466 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe)); 10467 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 10468 & ~TU_SIZE_MASK; 10469 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe)); 10470 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 10471 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10472 } 10473 } 10474 10475 void intel_dp_get_m_n(struct intel_crtc *crtc, 10476 struct intel_crtc_state *pipe_config) 10477 { 10478 if (pipe_config->has_pch_encoder) 10479 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 10480 else 10481 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 10482 &pipe_config->dp_m_n, 10483 &pipe_config->dp_m2_n2); 10484 } 10485 10486 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc, 10487 struct intel_crtc_state *pipe_config) 10488 { 10489 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 10490 &pipe_config->fdi_m_n, NULL); 10491 } 10492 10493 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state, 10494 u32 pos, u32 size) 10495 { 10496 drm_rect_init(&crtc_state->pch_pfit.dst, 10497 pos >> 16, pos & 0xffff, 10498 size >> 16, size & 0xffff); 10499 } 10500 10501 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state) 10502 { 10503 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10504 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10505 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; 10506 int id = -1; 10507 int i; 10508 10509 /* find scaler attached to this pipe */ 10510 for (i = 0; i < crtc->num_scalers; i++) { 10511 u32 ctl, pos, size; 10512 10513 ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i)); 10514 if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN) 10515 continue; 10516 10517 id = i; 10518 crtc_state->pch_pfit.enabled = true; 10519 10520 pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i)); 10521 size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i)); 10522 10523 ilk_get_pfit_pos_size(crtc_state, pos, size); 10524 10525 scaler_state->scalers[i].in_use = true; 10526 break; 10527 } 10528 10529 scaler_state->scaler_id = id; 10530 if (id >= 0) 10531 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 10532 else 10533 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 10534 } 10535 10536 static void 10537 skl_get_initial_plane_config(struct intel_crtc *crtc, 10538 struct intel_initial_plane_config *plane_config) 10539 { 10540 struct drm_device *dev = crtc->base.dev; 10541 struct drm_i915_private *dev_priv = to_i915(dev); 10542 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 10543 enum plane_id plane_id = plane->id; 10544 enum pipe pipe; 10545 u32 val, base, offset, stride_mult, tiling, alpha; 10546 int fourcc, pixel_format; 10547 unsigned int aligned_height; 10548 struct drm_framebuffer *fb; 10549 struct intel_framebuffer *intel_fb; 10550 10551 if (!plane->get_hw_state(plane, &pipe)) 10552 return; 10553 10554 drm_WARN_ON(dev, pipe != crtc->pipe); 10555 10556 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 10557 if (!intel_fb) { 10558 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n"); 10559 return; 10560 } 10561 10562 fb = &intel_fb->base; 10563 10564 fb->dev = dev; 10565 10566 val = intel_de_read(dev_priv, PLANE_CTL(pipe, plane_id)); 10567 10568 if (INTEL_GEN(dev_priv) >= 11) 10569 pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK; 10570 else 10571 pixel_format = val & PLANE_CTL_FORMAT_MASK; 10572 10573 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { 10574 alpha = intel_de_read(dev_priv, 10575 PLANE_COLOR_CTL(pipe, plane_id)); 10576 alpha &= PLANE_COLOR_ALPHA_MASK; 10577 } else { 10578 alpha = val & PLANE_CTL_ALPHA_MASK; 10579 } 10580 10581 fourcc = skl_format_to_fourcc(pixel_format, 10582 val & PLANE_CTL_ORDER_RGBX, alpha); 10583 fb->format = drm_format_info(fourcc); 10584 10585 tiling = val & PLANE_CTL_TILED_MASK; 10586 switch (tiling) { 10587 case PLANE_CTL_TILED_LINEAR: 10588 fb->modifier = DRM_FORMAT_MOD_LINEAR; 10589 break; 10590 case PLANE_CTL_TILED_X: 10591 plane_config->tiling = I915_TILING_X; 10592 fb->modifier = I915_FORMAT_MOD_X_TILED; 10593 break; 10594 case PLANE_CTL_TILED_Y: 10595 plane_config->tiling = I915_TILING_Y; 10596 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 10597 fb->modifier = INTEL_GEN(dev_priv) >= 12 ? 10598 I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS : 10599 I915_FORMAT_MOD_Y_TILED_CCS; 10600 else if (val & PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE) 10601 fb->modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS; 10602 else 10603 fb->modifier = I915_FORMAT_MOD_Y_TILED; 10604 break; 10605 case PLANE_CTL_TILED_YF: 10606 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 10607 fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS; 10608 else 10609 fb->modifier = I915_FORMAT_MOD_Yf_TILED; 10610 break; 10611 default: 10612 MISSING_CASE(tiling); 10613 goto error; 10614 } 10615 10616 /* 10617 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 10618 * while i915 HW rotation is clockwise, thats why this swapping. 10619 */ 10620 switch (val & PLANE_CTL_ROTATE_MASK) { 10621 case PLANE_CTL_ROTATE_0: 10622 plane_config->rotation = DRM_MODE_ROTATE_0; 10623 break; 10624 case PLANE_CTL_ROTATE_90: 10625 plane_config->rotation = DRM_MODE_ROTATE_270; 10626 break; 10627 case PLANE_CTL_ROTATE_180: 10628 plane_config->rotation = DRM_MODE_ROTATE_180; 10629 break; 10630 case PLANE_CTL_ROTATE_270: 10631 plane_config->rotation = DRM_MODE_ROTATE_90; 10632 break; 10633 } 10634 10635 if (INTEL_GEN(dev_priv) >= 10 && 10636 val & PLANE_CTL_FLIP_HORIZONTAL) 10637 plane_config->rotation |= DRM_MODE_REFLECT_X; 10638 10639 base = intel_de_read(dev_priv, PLANE_SURF(pipe, plane_id)) & 0xfffff000; 10640 plane_config->base = base; 10641 10642 offset = intel_de_read(dev_priv, PLANE_OFFSET(pipe, plane_id)); 10643 10644 val = intel_de_read(dev_priv, PLANE_SIZE(pipe, plane_id)); 10645 fb->height = ((val >> 16) & 0xffff) + 1; 10646 fb->width = ((val >> 0) & 0xffff) + 1; 10647 10648 val = intel_de_read(dev_priv, PLANE_STRIDE(pipe, plane_id)); 10649 stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0); 10650 fb->pitches[0] = (val & 0x3ff) * stride_mult; 10651 10652 aligned_height = intel_fb_align_height(fb, 0, fb->height); 10653 10654 plane_config->size = fb->pitches[0] * aligned_height; 10655 10656 drm_dbg_kms(&dev_priv->drm, 10657 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 10658 crtc->base.name, plane->base.name, fb->width, fb->height, 10659 fb->format->cpp[0] * 8, base, fb->pitches[0], 10660 plane_config->size); 10661 10662 plane_config->fb = intel_fb; 10663 return; 10664 10665 error: 10666 kfree(intel_fb); 10667 } 10668 10669 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state) 10670 { 10671 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10672 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10673 u32 ctl, pos, size; 10674 10675 ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe)); 10676 if ((ctl & PF_ENABLE) == 0) 10677 return; 10678 10679 crtc_state->pch_pfit.enabled = true; 10680 10681 pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe)); 10682 size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe)); 10683 10684 ilk_get_pfit_pos_size(crtc_state, pos, size); 10685 10686 /* 10687 * We currently do not free assignements of panel fitters on 10688 * ivb/hsw (since we don't use the higher upscaling modes which 10689 * differentiates them) so just WARN about this case for now. 10690 */ 10691 drm_WARN_ON(&dev_priv->drm, IS_GEN(dev_priv, 7) && 10692 (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe)); 10693 } 10694 10695 static bool ilk_get_pipe_config(struct intel_crtc *crtc, 10696 struct intel_crtc_state *pipe_config) 10697 { 10698 struct drm_device *dev = crtc->base.dev; 10699 struct drm_i915_private *dev_priv = to_i915(dev); 10700 enum intel_display_power_domain power_domain; 10701 intel_wakeref_t wakeref; 10702 u32 tmp; 10703 bool ret; 10704 10705 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 10706 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 10707 if (!wakeref) 10708 return false; 10709 10710 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10711 pipe_config->shared_dpll = NULL; 10712 10713 ret = false; 10714 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 10715 if (!(tmp & PIPECONF_ENABLE)) 10716 goto out; 10717 10718 switch (tmp & PIPECONF_BPC_MASK) { 10719 case PIPECONF_6BPC: 10720 pipe_config->pipe_bpp = 18; 10721 break; 10722 case PIPECONF_8BPC: 10723 pipe_config->pipe_bpp = 24; 10724 break; 10725 case PIPECONF_10BPC: 10726 pipe_config->pipe_bpp = 30; 10727 break; 10728 case PIPECONF_12BPC: 10729 pipe_config->pipe_bpp = 36; 10730 break; 10731 default: 10732 break; 10733 } 10734 10735 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 10736 pipe_config->limited_color_range = true; 10737 10738 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { 10739 case PIPECONF_OUTPUT_COLORSPACE_YUV601: 10740 case PIPECONF_OUTPUT_COLORSPACE_YUV709: 10741 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 10742 break; 10743 default: 10744 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 10745 break; 10746 } 10747 10748 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 10749 PIPECONF_GAMMA_MODE_SHIFT; 10750 10751 pipe_config->csc_mode = intel_de_read(dev_priv, 10752 PIPE_CSC_MODE(crtc->pipe)); 10753 10754 i9xx_get_pipe_color_config(pipe_config); 10755 intel_color_get_config(pipe_config); 10756 10757 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 10758 struct intel_shared_dpll *pll; 10759 enum intel_dpll_id pll_id; 10760 10761 pipe_config->has_pch_encoder = true; 10762 10763 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe)); 10764 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 10765 FDI_DP_PORT_WIDTH_SHIFT) + 1; 10766 10767 ilk_get_fdi_m_n_config(crtc, pipe_config); 10768 10769 if (HAS_PCH_IBX(dev_priv)) { 10770 /* 10771 * The pipe->pch transcoder and pch transcoder->pll 10772 * mapping is fixed. 10773 */ 10774 pll_id = (enum intel_dpll_id) crtc->pipe; 10775 } else { 10776 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL); 10777 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 10778 pll_id = DPLL_ID_PCH_PLL_B; 10779 else 10780 pll_id= DPLL_ID_PCH_PLL_A; 10781 } 10782 10783 pipe_config->shared_dpll = 10784 intel_get_shared_dpll_by_id(dev_priv, pll_id); 10785 pll = pipe_config->shared_dpll; 10786 10787 drm_WARN_ON(dev, !pll->info->funcs->get_hw_state(dev_priv, pll, 10788 &pipe_config->dpll_hw_state)); 10789 10790 tmp = pipe_config->dpll_hw_state.dpll; 10791 pipe_config->pixel_multiplier = 10792 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 10793 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 10794 10795 ilk_pch_clock_get(crtc, pipe_config); 10796 } else { 10797 pipe_config->pixel_multiplier = 1; 10798 } 10799 10800 intel_get_pipe_timings(crtc, pipe_config); 10801 intel_get_pipe_src_size(crtc, pipe_config); 10802 10803 ilk_get_pfit_config(pipe_config); 10804 10805 ret = true; 10806 10807 out: 10808 intel_display_power_put(dev_priv, power_domain, wakeref); 10809 10810 return ret; 10811 } 10812 10813 static int hsw_crtc_compute_clock(struct intel_crtc *crtc, 10814 struct intel_crtc_state *crtc_state) 10815 { 10816 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10817 struct intel_atomic_state *state = 10818 to_intel_atomic_state(crtc_state->uapi.state); 10819 10820 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) || 10821 INTEL_GEN(dev_priv) >= 11) { 10822 struct intel_encoder *encoder = 10823 intel_get_crtc_new_encoder(state, crtc_state); 10824 10825 if (!intel_reserve_shared_dplls(state, crtc, encoder)) { 10826 drm_dbg_kms(&dev_priv->drm, 10827 "failed to find PLL for pipe %c\n", 10828 pipe_name(crtc->pipe)); 10829 return -EINVAL; 10830 } 10831 } 10832 10833 return 0; 10834 } 10835 10836 static void cnl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10837 struct intel_crtc_state *pipe_config) 10838 { 10839 enum intel_dpll_id id; 10840 u32 temp; 10841 10842 temp = intel_de_read(dev_priv, DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port); 10843 id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port); 10844 10845 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL2)) 10846 return; 10847 10848 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10849 } 10850 10851 static void icl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10852 struct intel_crtc_state *pipe_config) 10853 { 10854 enum phy phy = intel_port_to_phy(dev_priv, port); 10855 enum icl_port_dpll_id port_dpll_id; 10856 enum intel_dpll_id id; 10857 u32 temp; 10858 10859 if (intel_phy_is_combo(dev_priv, phy)) { 10860 u32 mask, shift; 10861 10862 if (IS_ROCKETLAKE(dev_priv)) { 10863 mask = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); 10864 shift = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy); 10865 } else { 10866 mask = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); 10867 shift = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy); 10868 } 10869 10870 temp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0) & mask; 10871 id = temp >> shift; 10872 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10873 } else if (intel_phy_is_tc(dev_priv, phy)) { 10874 u32 clk_sel = intel_de_read(dev_priv, DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK; 10875 10876 if (clk_sel == DDI_CLK_SEL_MG) { 10877 id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv, 10878 port)); 10879 port_dpll_id = ICL_PORT_DPLL_MG_PHY; 10880 } else { 10881 drm_WARN_ON(&dev_priv->drm, 10882 clk_sel < DDI_CLK_SEL_TBT_162); 10883 id = DPLL_ID_ICL_TBTPLL; 10884 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10885 } 10886 } else { 10887 drm_WARN(&dev_priv->drm, 1, "Invalid port %x\n", port); 10888 return; 10889 } 10890 10891 pipe_config->icl_port_dplls[port_dpll_id].pll = 10892 intel_get_shared_dpll_by_id(dev_priv, id); 10893 10894 icl_set_active_port_dpll(pipe_config, port_dpll_id); 10895 } 10896 10897 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv, 10898 enum port port, 10899 struct intel_crtc_state *pipe_config) 10900 { 10901 enum intel_dpll_id id; 10902 10903 switch (port) { 10904 case PORT_A: 10905 id = DPLL_ID_SKL_DPLL0; 10906 break; 10907 case PORT_B: 10908 id = DPLL_ID_SKL_DPLL1; 10909 break; 10910 case PORT_C: 10911 id = DPLL_ID_SKL_DPLL2; 10912 break; 10913 default: 10914 drm_err(&dev_priv->drm, "Incorrect port type\n"); 10915 return; 10916 } 10917 10918 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10919 } 10920 10921 static void skl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10922 struct intel_crtc_state *pipe_config) 10923 { 10924 enum intel_dpll_id id; 10925 u32 temp; 10926 10927 temp = intel_de_read(dev_priv, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port); 10928 id = temp >> (port * 3 + 1); 10929 10930 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL3)) 10931 return; 10932 10933 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10934 } 10935 10936 static void hsw_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10937 struct intel_crtc_state *pipe_config) 10938 { 10939 enum intel_dpll_id id; 10940 u32 ddi_pll_sel = intel_de_read(dev_priv, PORT_CLK_SEL(port)); 10941 10942 switch (ddi_pll_sel) { 10943 case PORT_CLK_SEL_WRPLL1: 10944 id = DPLL_ID_WRPLL1; 10945 break; 10946 case PORT_CLK_SEL_WRPLL2: 10947 id = DPLL_ID_WRPLL2; 10948 break; 10949 case PORT_CLK_SEL_SPLL: 10950 id = DPLL_ID_SPLL; 10951 break; 10952 case PORT_CLK_SEL_LCPLL_810: 10953 id = DPLL_ID_LCPLL_810; 10954 break; 10955 case PORT_CLK_SEL_LCPLL_1350: 10956 id = DPLL_ID_LCPLL_1350; 10957 break; 10958 case PORT_CLK_SEL_LCPLL_2700: 10959 id = DPLL_ID_LCPLL_2700; 10960 break; 10961 default: 10962 MISSING_CASE(ddi_pll_sel); 10963 fallthrough; 10964 case PORT_CLK_SEL_NONE: 10965 return; 10966 } 10967 10968 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10969 } 10970 10971 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 10972 struct intel_crtc_state *pipe_config, 10973 u64 *power_domain_mask, 10974 intel_wakeref_t *wakerefs) 10975 { 10976 struct drm_device *dev = crtc->base.dev; 10977 struct drm_i915_private *dev_priv = to_i915(dev); 10978 enum intel_display_power_domain power_domain; 10979 unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP); 10980 unsigned long enabled_panel_transcoders = 0; 10981 enum transcoder panel_transcoder; 10982 intel_wakeref_t wf; 10983 u32 tmp; 10984 10985 if (INTEL_GEN(dev_priv) >= 11) 10986 panel_transcoder_mask |= 10987 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 10988 10989 /* 10990 * The pipe->transcoder mapping is fixed with the exception of the eDP 10991 * and DSI transcoders handled below. 10992 */ 10993 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10994 10995 /* 10996 * XXX: Do intel_display_power_get_if_enabled before reading this (for 10997 * consistency and less surprising code; it's in always on power). 10998 */ 10999 for_each_cpu_transcoder_masked(dev_priv, panel_transcoder, 11000 panel_transcoder_mask) { 11001 bool force_thru = false; 11002 enum pipe trans_pipe; 11003 11004 tmp = intel_de_read(dev_priv, 11005 TRANS_DDI_FUNC_CTL(panel_transcoder)); 11006 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 11007 continue; 11008 11009 /* 11010 * Log all enabled ones, only use the first one. 11011 * 11012 * FIXME: This won't work for two separate DSI displays. 11013 */ 11014 enabled_panel_transcoders |= BIT(panel_transcoder); 11015 if (enabled_panel_transcoders != BIT(panel_transcoder)) 11016 continue; 11017 11018 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 11019 default: 11020 drm_WARN(dev, 1, 11021 "unknown pipe linked to transcoder %s\n", 11022 transcoder_name(panel_transcoder)); 11023 fallthrough; 11024 case TRANS_DDI_EDP_INPUT_A_ONOFF: 11025 force_thru = true; 11026 fallthrough; 11027 case TRANS_DDI_EDP_INPUT_A_ON: 11028 trans_pipe = PIPE_A; 11029 break; 11030 case TRANS_DDI_EDP_INPUT_B_ONOFF: 11031 trans_pipe = PIPE_B; 11032 break; 11033 case TRANS_DDI_EDP_INPUT_C_ONOFF: 11034 trans_pipe = PIPE_C; 11035 break; 11036 case TRANS_DDI_EDP_INPUT_D_ONOFF: 11037 trans_pipe = PIPE_D; 11038 break; 11039 } 11040 11041 if (trans_pipe == crtc->pipe) { 11042 pipe_config->cpu_transcoder = panel_transcoder; 11043 pipe_config->pch_pfit.force_thru = force_thru; 11044 } 11045 } 11046 11047 /* 11048 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 11049 */ 11050 drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && 11051 enabled_panel_transcoders != BIT(TRANSCODER_EDP)); 11052 11053 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder); 11054 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain)); 11055 11056 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11057 if (!wf) 11058 return false; 11059 11060 wakerefs[power_domain] = wf; 11061 *power_domain_mask |= BIT_ULL(power_domain); 11062 11063 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); 11064 11065 return tmp & PIPECONF_ENABLE; 11066 } 11067 11068 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 11069 struct intel_crtc_state *pipe_config, 11070 u64 *power_domain_mask, 11071 intel_wakeref_t *wakerefs) 11072 { 11073 struct drm_device *dev = crtc->base.dev; 11074 struct drm_i915_private *dev_priv = to_i915(dev); 11075 enum intel_display_power_domain power_domain; 11076 enum transcoder cpu_transcoder; 11077 intel_wakeref_t wf; 11078 enum port port; 11079 u32 tmp; 11080 11081 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 11082 if (port == PORT_A) 11083 cpu_transcoder = TRANSCODER_DSI_A; 11084 else 11085 cpu_transcoder = TRANSCODER_DSI_C; 11086 11087 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 11088 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain)); 11089 11090 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11091 if (!wf) 11092 continue; 11093 11094 wakerefs[power_domain] = wf; 11095 *power_domain_mask |= BIT_ULL(power_domain); 11096 11097 /* 11098 * The PLL needs to be enabled with a valid divider 11099 * configuration, otherwise accessing DSI registers will hang 11100 * the machine. See BSpec North Display Engine 11101 * registers/MIPI[BXT]. We can break out here early, since we 11102 * need the same DSI PLL to be enabled for both DSI ports. 11103 */ 11104 if (!bxt_dsi_pll_is_enabled(dev_priv)) 11105 break; 11106 11107 /* XXX: this works for video mode only */ 11108 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); 11109 if (!(tmp & DPI_ENABLE)) 11110 continue; 11111 11112 tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); 11113 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 11114 continue; 11115 11116 pipe_config->cpu_transcoder = cpu_transcoder; 11117 break; 11118 } 11119 11120 return transcoder_is_dsi(pipe_config->cpu_transcoder); 11121 } 11122 11123 static void hsw_get_ddi_port_state(struct intel_crtc *crtc, 11124 struct intel_crtc_state *pipe_config) 11125 { 11126 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11127 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 11128 struct intel_shared_dpll *pll; 11129 enum port port; 11130 u32 tmp; 11131 11132 if (transcoder_is_dsi(cpu_transcoder)) { 11133 port = (cpu_transcoder == TRANSCODER_DSI_A) ? 11134 PORT_A : PORT_B; 11135 } else { 11136 tmp = intel_de_read(dev_priv, 11137 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 11138 if (INTEL_GEN(dev_priv) >= 12) 11139 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 11140 else 11141 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 11142 } 11143 11144 if (INTEL_GEN(dev_priv) >= 11) 11145 icl_get_ddi_pll(dev_priv, port, pipe_config); 11146 else if (IS_CANNONLAKE(dev_priv)) 11147 cnl_get_ddi_pll(dev_priv, port, pipe_config); 11148 else if (IS_GEN9_BC(dev_priv)) 11149 skl_get_ddi_pll(dev_priv, port, pipe_config); 11150 else if (IS_GEN9_LP(dev_priv)) 11151 bxt_get_ddi_pll(dev_priv, port, pipe_config); 11152 else 11153 hsw_get_ddi_pll(dev_priv, port, pipe_config); 11154 11155 pll = pipe_config->shared_dpll; 11156 if (pll) { 11157 drm_WARN_ON(&dev_priv->drm, 11158 !pll->info->funcs->get_hw_state(dev_priv, pll, 11159 &pipe_config->dpll_hw_state)); 11160 } 11161 11162 /* 11163 * Haswell has only FDI/PCH transcoder A. It is which is connected to 11164 * DDI E. So just check whether this pipe is wired to DDI E and whether 11165 * the PCH transcoder is on. 11166 */ 11167 if (INTEL_GEN(dev_priv) < 9 && 11168 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) { 11169 pipe_config->has_pch_encoder = true; 11170 11171 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); 11172 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 11173 FDI_DP_PORT_WIDTH_SHIFT) + 1; 11174 11175 ilk_get_fdi_m_n_config(crtc, pipe_config); 11176 } 11177 } 11178 11179 static bool hsw_get_pipe_config(struct intel_crtc *crtc, 11180 struct intel_crtc_state *pipe_config) 11181 { 11182 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11183 intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf; 11184 enum intel_display_power_domain power_domain; 11185 u64 power_domain_mask; 11186 bool active; 11187 u32 tmp; 11188 11189 pipe_config->master_transcoder = INVALID_TRANSCODER; 11190 11191 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 11192 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11193 if (!wf) 11194 return false; 11195 11196 wakerefs[power_domain] = wf; 11197 power_domain_mask = BIT_ULL(power_domain); 11198 11199 pipe_config->shared_dpll = NULL; 11200 11201 active = hsw_get_transcoder_state(crtc, pipe_config, 11202 &power_domain_mask, wakerefs); 11203 11204 if (IS_GEN9_LP(dev_priv) && 11205 bxt_get_dsi_transcoder_state(crtc, pipe_config, 11206 &power_domain_mask, wakerefs)) { 11207 drm_WARN_ON(&dev_priv->drm, active); 11208 active = true; 11209 } 11210 11211 if (!active) 11212 goto out; 11213 11214 if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 11215 INTEL_GEN(dev_priv) >= 11) { 11216 hsw_get_ddi_port_state(crtc, pipe_config); 11217 intel_get_pipe_timings(crtc, pipe_config); 11218 } 11219 11220 intel_get_pipe_src_size(crtc, pipe_config); 11221 11222 if (IS_HASWELL(dev_priv)) { 11223 u32 tmp = intel_de_read(dev_priv, 11224 PIPECONF(pipe_config->cpu_transcoder)); 11225 11226 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) 11227 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 11228 else 11229 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 11230 } else { 11231 pipe_config->output_format = 11232 bdw_get_pipemisc_output_format(crtc); 11233 11234 /* 11235 * Currently there is no interface defined to 11236 * check user preference between RGB/YCBCR444 11237 * or YCBCR420. So the only possible case for 11238 * YCBCR444 usage is driving YCBCR420 output 11239 * with LSPCON, when pipe is configured for 11240 * YCBCR444 output and LSPCON takes care of 11241 * downsampling it. 11242 */ 11243 pipe_config->lspcon_downsampling = 11244 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444; 11245 } 11246 11247 pipe_config->gamma_mode = intel_de_read(dev_priv, 11248 GAMMA_MODE(crtc->pipe)); 11249 11250 pipe_config->csc_mode = intel_de_read(dev_priv, 11251 PIPE_CSC_MODE(crtc->pipe)); 11252 11253 if (INTEL_GEN(dev_priv) >= 9) { 11254 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe)); 11255 11256 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 11257 pipe_config->gamma_enable = true; 11258 11259 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 11260 pipe_config->csc_enable = true; 11261 } else { 11262 i9xx_get_pipe_color_config(pipe_config); 11263 } 11264 11265 intel_color_get_config(pipe_config); 11266 11267 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe)); 11268 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); 11269 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 11270 pipe_config->ips_linetime = 11271 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); 11272 11273 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe); 11274 drm_WARN_ON(&dev_priv->drm, power_domain_mask & BIT_ULL(power_domain)); 11275 11276 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11277 if (wf) { 11278 wakerefs[power_domain] = wf; 11279 power_domain_mask |= BIT_ULL(power_domain); 11280 11281 if (INTEL_GEN(dev_priv) >= 9) 11282 skl_get_pfit_config(pipe_config); 11283 else 11284 ilk_get_pfit_config(pipe_config); 11285 } 11286 11287 if (hsw_crtc_supports_ips(crtc)) { 11288 if (IS_HASWELL(dev_priv)) 11289 pipe_config->ips_enabled = intel_de_read(dev_priv, 11290 IPS_CTL) & IPS_ENABLE; 11291 else { 11292 /* 11293 * We cannot readout IPS state on broadwell, set to 11294 * true so we can set it to a defined state on first 11295 * commit. 11296 */ 11297 pipe_config->ips_enabled = true; 11298 } 11299 } 11300 11301 if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 11302 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 11303 pipe_config->pixel_multiplier = 11304 intel_de_read(dev_priv, 11305 PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 11306 } else { 11307 pipe_config->pixel_multiplier = 1; 11308 } 11309 11310 out: 11311 for_each_power_domain(power_domain, power_domain_mask) 11312 intel_display_power_put(dev_priv, 11313 power_domain, wakerefs[power_domain]); 11314 11315 return active; 11316 } 11317 11318 static u32 intel_cursor_base(const struct intel_plane_state *plane_state) 11319 { 11320 struct drm_i915_private *dev_priv = 11321 to_i915(plane_state->uapi.plane->dev); 11322 const struct drm_framebuffer *fb = plane_state->hw.fb; 11323 const struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11324 u32 base; 11325 11326 if (INTEL_INFO(dev_priv)->display.cursor_needs_physical) 11327 base = sg_dma_address(obj->mm.pages->sgl); 11328 else 11329 base = intel_plane_ggtt_offset(plane_state); 11330 11331 return base + plane_state->color_plane[0].offset; 11332 } 11333 11334 static u32 intel_cursor_position(const struct intel_plane_state *plane_state) 11335 { 11336 int x = plane_state->uapi.dst.x1; 11337 int y = plane_state->uapi.dst.y1; 11338 u32 pos = 0; 11339 11340 if (x < 0) { 11341 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; 11342 x = -x; 11343 } 11344 pos |= x << CURSOR_X_SHIFT; 11345 11346 if (y < 0) { 11347 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; 11348 y = -y; 11349 } 11350 pos |= y << CURSOR_Y_SHIFT; 11351 11352 return pos; 11353 } 11354 11355 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state) 11356 { 11357 const struct drm_mode_config *config = 11358 &plane_state->uapi.plane->dev->mode_config; 11359 int width = drm_rect_width(&plane_state->uapi.dst); 11360 int height = drm_rect_height(&plane_state->uapi.dst); 11361 11362 return width > 0 && width <= config->cursor_width && 11363 height > 0 && height <= config->cursor_height; 11364 } 11365 11366 static int intel_cursor_check_surface(struct intel_plane_state *plane_state) 11367 { 11368 struct drm_i915_private *dev_priv = 11369 to_i915(plane_state->uapi.plane->dev); 11370 unsigned int rotation = plane_state->hw.rotation; 11371 int src_x, src_y; 11372 u32 offset; 11373 int ret; 11374 11375 ret = intel_plane_compute_gtt(plane_state); 11376 if (ret) 11377 return ret; 11378 11379 if (!plane_state->uapi.visible) 11380 return 0; 11381 11382 src_x = plane_state->uapi.src.x1 >> 16; 11383 src_y = plane_state->uapi.src.y1 >> 16; 11384 11385 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 11386 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 11387 plane_state, 0); 11388 11389 if (src_x != 0 || src_y != 0) { 11390 drm_dbg_kms(&dev_priv->drm, 11391 "Arbitrary cursor panning not supported\n"); 11392 return -EINVAL; 11393 } 11394 11395 /* 11396 * Put the final coordinates back so that the src 11397 * coordinate checks will see the right values. 11398 */ 11399 drm_rect_translate_to(&plane_state->uapi.src, 11400 src_x << 16, src_y << 16); 11401 11402 /* ILK+ do this automagically in hardware */ 11403 if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) { 11404 const struct drm_framebuffer *fb = plane_state->hw.fb; 11405 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 11406 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 11407 11408 offset += (src_h * src_w - 1) * fb->format->cpp[0]; 11409 } 11410 11411 plane_state->color_plane[0].offset = offset; 11412 plane_state->color_plane[0].x = src_x; 11413 plane_state->color_plane[0].y = src_y; 11414 11415 return 0; 11416 } 11417 11418 static int intel_check_cursor(struct intel_crtc_state *crtc_state, 11419 struct intel_plane_state *plane_state) 11420 { 11421 const struct drm_framebuffer *fb = plane_state->hw.fb; 11422 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 11423 int ret; 11424 11425 if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) { 11426 drm_dbg_kms(&i915->drm, "cursor cannot be tiled\n"); 11427 return -EINVAL; 11428 } 11429 11430 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi, 11431 &crtc_state->uapi, 11432 DRM_PLANE_HELPER_NO_SCALING, 11433 DRM_PLANE_HELPER_NO_SCALING, 11434 true, true); 11435 if (ret) 11436 return ret; 11437 11438 /* Use the unclipped src/dst rectangles, which we program to hw */ 11439 plane_state->uapi.src = drm_plane_state_src(&plane_state->uapi); 11440 plane_state->uapi.dst = drm_plane_state_dest(&plane_state->uapi); 11441 11442 ret = intel_cursor_check_surface(plane_state); 11443 if (ret) 11444 return ret; 11445 11446 if (!plane_state->uapi.visible) 11447 return 0; 11448 11449 ret = intel_plane_check_src_coordinates(plane_state); 11450 if (ret) 11451 return ret; 11452 11453 return 0; 11454 } 11455 11456 static unsigned int 11457 i845_cursor_max_stride(struct intel_plane *plane, 11458 u32 pixel_format, u64 modifier, 11459 unsigned int rotation) 11460 { 11461 return 2048; 11462 } 11463 11464 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 11465 { 11466 u32 cntl = 0; 11467 11468 if (crtc_state->gamma_enable) 11469 cntl |= CURSOR_GAMMA_ENABLE; 11470 11471 return cntl; 11472 } 11473 11474 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state, 11475 const struct intel_plane_state *plane_state) 11476 { 11477 return CURSOR_ENABLE | 11478 CURSOR_FORMAT_ARGB | 11479 CURSOR_STRIDE(plane_state->color_plane[0].stride); 11480 } 11481 11482 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state) 11483 { 11484 int width = drm_rect_width(&plane_state->uapi.dst); 11485 11486 /* 11487 * 845g/865g are only limited by the width of their cursors, 11488 * the height is arbitrary up to the precision of the register. 11489 */ 11490 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64); 11491 } 11492 11493 static int i845_check_cursor(struct intel_crtc_state *crtc_state, 11494 struct intel_plane_state *plane_state) 11495 { 11496 const struct drm_framebuffer *fb = plane_state->hw.fb; 11497 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 11498 int ret; 11499 11500 ret = intel_check_cursor(crtc_state, plane_state); 11501 if (ret) 11502 return ret; 11503 11504 /* if we want to turn off the cursor ignore width and height */ 11505 if (!fb) 11506 return 0; 11507 11508 /* Check for which cursor types we support */ 11509 if (!i845_cursor_size_ok(plane_state)) { 11510 drm_dbg_kms(&i915->drm, 11511 "Cursor dimension %dx%d not supported\n", 11512 drm_rect_width(&plane_state->uapi.dst), 11513 drm_rect_height(&plane_state->uapi.dst)); 11514 return -EINVAL; 11515 } 11516 11517 drm_WARN_ON(&i915->drm, plane_state->uapi.visible && 11518 plane_state->color_plane[0].stride != fb->pitches[0]); 11519 11520 switch (fb->pitches[0]) { 11521 case 256: 11522 case 512: 11523 case 1024: 11524 case 2048: 11525 break; 11526 default: 11527 drm_dbg_kms(&i915->drm, "Invalid cursor stride (%u)\n", 11528 fb->pitches[0]); 11529 return -EINVAL; 11530 } 11531 11532 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state); 11533 11534 return 0; 11535 } 11536 11537 static void i845_update_cursor(struct intel_plane *plane, 11538 const struct intel_crtc_state *crtc_state, 11539 const struct intel_plane_state *plane_state) 11540 { 11541 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11542 u32 cntl = 0, base = 0, pos = 0, size = 0; 11543 unsigned long irqflags; 11544 11545 if (plane_state && plane_state->uapi.visible) { 11546 unsigned int width = drm_rect_width(&plane_state->uapi.dst); 11547 unsigned int height = drm_rect_height(&plane_state->uapi.dst); 11548 11549 cntl = plane_state->ctl | 11550 i845_cursor_ctl_crtc(crtc_state); 11551 11552 size = (height << 12) | width; 11553 11554 base = intel_cursor_base(plane_state); 11555 pos = intel_cursor_position(plane_state); 11556 } 11557 11558 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 11559 11560 /* On these chipsets we can only modify the base/size/stride 11561 * whilst the cursor is disabled. 11562 */ 11563 if (plane->cursor.base != base || 11564 plane->cursor.size != size || 11565 plane->cursor.cntl != cntl) { 11566 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), 0); 11567 intel_de_write_fw(dev_priv, CURBASE(PIPE_A), base); 11568 intel_de_write_fw(dev_priv, CURSIZE, size); 11569 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos); 11570 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), cntl); 11571 11572 plane->cursor.base = base; 11573 plane->cursor.size = size; 11574 plane->cursor.cntl = cntl; 11575 } else { 11576 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos); 11577 } 11578 11579 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 11580 } 11581 11582 static void i845_disable_cursor(struct intel_plane *plane, 11583 const struct intel_crtc_state *crtc_state) 11584 { 11585 i845_update_cursor(plane, crtc_state, NULL); 11586 } 11587 11588 static bool i845_cursor_get_hw_state(struct intel_plane *plane, 11589 enum pipe *pipe) 11590 { 11591 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11592 enum intel_display_power_domain power_domain; 11593 intel_wakeref_t wakeref; 11594 bool ret; 11595 11596 power_domain = POWER_DOMAIN_PIPE(PIPE_A); 11597 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11598 if (!wakeref) 11599 return false; 11600 11601 ret = intel_de_read(dev_priv, CURCNTR(PIPE_A)) & CURSOR_ENABLE; 11602 11603 *pipe = PIPE_A; 11604 11605 intel_display_power_put(dev_priv, power_domain, wakeref); 11606 11607 return ret; 11608 } 11609 11610 static unsigned int 11611 i9xx_cursor_max_stride(struct intel_plane *plane, 11612 u32 pixel_format, u64 modifier, 11613 unsigned int rotation) 11614 { 11615 return plane->base.dev->mode_config.cursor_width * 4; 11616 } 11617 11618 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 11619 { 11620 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 11621 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11622 u32 cntl = 0; 11623 11624 if (INTEL_GEN(dev_priv) >= 11) 11625 return cntl; 11626 11627 if (crtc_state->gamma_enable) 11628 cntl = MCURSOR_GAMMA_ENABLE; 11629 11630 if (crtc_state->csc_enable) 11631 cntl |= MCURSOR_PIPE_CSC_ENABLE; 11632 11633 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 11634 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe); 11635 11636 return cntl; 11637 } 11638 11639 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state, 11640 const struct intel_plane_state *plane_state) 11641 { 11642 struct drm_i915_private *dev_priv = 11643 to_i915(plane_state->uapi.plane->dev); 11644 u32 cntl = 0; 11645 11646 if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 11647 cntl |= MCURSOR_TRICKLE_FEED_DISABLE; 11648 11649 switch (drm_rect_width(&plane_state->uapi.dst)) { 11650 case 64: 11651 cntl |= MCURSOR_MODE_64_ARGB_AX; 11652 break; 11653 case 128: 11654 cntl |= MCURSOR_MODE_128_ARGB_AX; 11655 break; 11656 case 256: 11657 cntl |= MCURSOR_MODE_256_ARGB_AX; 11658 break; 11659 default: 11660 MISSING_CASE(drm_rect_width(&plane_state->uapi.dst)); 11661 return 0; 11662 } 11663 11664 if (plane_state->hw.rotation & DRM_MODE_ROTATE_180) 11665 cntl |= MCURSOR_ROTATE_180; 11666 11667 return cntl; 11668 } 11669 11670 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state) 11671 { 11672 struct drm_i915_private *dev_priv = 11673 to_i915(plane_state->uapi.plane->dev); 11674 int width = drm_rect_width(&plane_state->uapi.dst); 11675 int height = drm_rect_height(&plane_state->uapi.dst); 11676 11677 if (!intel_cursor_size_ok(plane_state)) 11678 return false; 11679 11680 /* Cursor width is limited to a few power-of-two sizes */ 11681 switch (width) { 11682 case 256: 11683 case 128: 11684 case 64: 11685 break; 11686 default: 11687 return false; 11688 } 11689 11690 /* 11691 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor 11692 * height from 8 lines up to the cursor width, when the 11693 * cursor is not rotated. Everything else requires square 11694 * cursors. 11695 */ 11696 if (HAS_CUR_FBC(dev_priv) && 11697 plane_state->hw.rotation & DRM_MODE_ROTATE_0) { 11698 if (height < 8 || height > width) 11699 return false; 11700 } else { 11701 if (height != width) 11702 return false; 11703 } 11704 11705 return true; 11706 } 11707 11708 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state, 11709 struct intel_plane_state *plane_state) 11710 { 11711 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 11712 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11713 const struct drm_framebuffer *fb = plane_state->hw.fb; 11714 enum pipe pipe = plane->pipe; 11715 int ret; 11716 11717 ret = intel_check_cursor(crtc_state, plane_state); 11718 if (ret) 11719 return ret; 11720 11721 /* if we want to turn off the cursor ignore width and height */ 11722 if (!fb) 11723 return 0; 11724 11725 /* Check for which cursor types we support */ 11726 if (!i9xx_cursor_size_ok(plane_state)) { 11727 drm_dbg(&dev_priv->drm, 11728 "Cursor dimension %dx%d not supported\n", 11729 drm_rect_width(&plane_state->uapi.dst), 11730 drm_rect_height(&plane_state->uapi.dst)); 11731 return -EINVAL; 11732 } 11733 11734 drm_WARN_ON(&dev_priv->drm, plane_state->uapi.visible && 11735 plane_state->color_plane[0].stride != fb->pitches[0]); 11736 11737 if (fb->pitches[0] != 11738 drm_rect_width(&plane_state->uapi.dst) * fb->format->cpp[0]) { 11739 drm_dbg_kms(&dev_priv->drm, 11740 "Invalid cursor stride (%u) (cursor width %d)\n", 11741 fb->pitches[0], 11742 drm_rect_width(&plane_state->uapi.dst)); 11743 return -EINVAL; 11744 } 11745 11746 /* 11747 * There's something wrong with the cursor on CHV pipe C. 11748 * If it straddles the left edge of the screen then 11749 * moving it away from the edge or disabling it often 11750 * results in a pipe underrun, and often that can lead to 11751 * dead pipe (constant underrun reported, and it scans 11752 * out just a solid color). To recover from that, the 11753 * display power well must be turned off and on again. 11754 * Refuse the put the cursor into that compromised position. 11755 */ 11756 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C && 11757 plane_state->uapi.visible && plane_state->uapi.dst.x1 < 0) { 11758 drm_dbg_kms(&dev_priv->drm, 11759 "CHV cursor C not allowed to straddle the left screen edge\n"); 11760 return -EINVAL; 11761 } 11762 11763 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state); 11764 11765 return 0; 11766 } 11767 11768 static void i9xx_update_cursor(struct intel_plane *plane, 11769 const struct intel_crtc_state *crtc_state, 11770 const struct intel_plane_state *plane_state) 11771 { 11772 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11773 enum pipe pipe = plane->pipe; 11774 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0; 11775 unsigned long irqflags; 11776 11777 if (plane_state && plane_state->uapi.visible) { 11778 unsigned width = drm_rect_width(&plane_state->uapi.dst); 11779 unsigned height = drm_rect_height(&plane_state->uapi.dst); 11780 11781 cntl = plane_state->ctl | 11782 i9xx_cursor_ctl_crtc(crtc_state); 11783 11784 if (width != height) 11785 fbc_ctl = CUR_FBC_CTL_EN | (height - 1); 11786 11787 base = intel_cursor_base(plane_state); 11788 pos = intel_cursor_position(plane_state); 11789 } 11790 11791 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 11792 11793 /* 11794 * On some platforms writing CURCNTR first will also 11795 * cause CURPOS to be armed by the CURBASE write. 11796 * Without the CURCNTR write the CURPOS write would 11797 * arm itself. Thus we always update CURCNTR before 11798 * CURPOS. 11799 * 11800 * On other platforms CURPOS always requires the 11801 * CURBASE write to arm the update. Additonally 11802 * a write to any of the cursor register will cancel 11803 * an already armed cursor update. Thus leaving out 11804 * the CURBASE write after CURPOS could lead to a 11805 * cursor that doesn't appear to move, or even change 11806 * shape. Thus we always write CURBASE. 11807 * 11808 * The other registers are armed by by the CURBASE write 11809 * except when the plane is getting enabled at which time 11810 * the CURCNTR write arms the update. 11811 */ 11812 11813 if (INTEL_GEN(dev_priv) >= 9) 11814 skl_write_cursor_wm(plane, crtc_state); 11815 11816 if (plane->cursor.base != base || 11817 plane->cursor.size != fbc_ctl || 11818 plane->cursor.cntl != cntl) { 11819 if (HAS_CUR_FBC(dev_priv)) 11820 intel_de_write_fw(dev_priv, CUR_FBC_CTL(pipe), 11821 fbc_ctl); 11822 intel_de_write_fw(dev_priv, CURCNTR(pipe), cntl); 11823 intel_de_write_fw(dev_priv, CURPOS(pipe), pos); 11824 intel_de_write_fw(dev_priv, CURBASE(pipe), base); 11825 11826 plane->cursor.base = base; 11827 plane->cursor.size = fbc_ctl; 11828 plane->cursor.cntl = cntl; 11829 } else { 11830 intel_de_write_fw(dev_priv, CURPOS(pipe), pos); 11831 intel_de_write_fw(dev_priv, CURBASE(pipe), base); 11832 } 11833 11834 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 11835 } 11836 11837 static void i9xx_disable_cursor(struct intel_plane *plane, 11838 const struct intel_crtc_state *crtc_state) 11839 { 11840 i9xx_update_cursor(plane, crtc_state, NULL); 11841 } 11842 11843 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane, 11844 enum pipe *pipe) 11845 { 11846 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11847 enum intel_display_power_domain power_domain; 11848 intel_wakeref_t wakeref; 11849 bool ret; 11850 u32 val; 11851 11852 /* 11853 * Not 100% correct for planes that can move between pipes, 11854 * but that's only the case for gen2-3 which don't have any 11855 * display power wells. 11856 */ 11857 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 11858 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11859 if (!wakeref) 11860 return false; 11861 11862 val = intel_de_read(dev_priv, CURCNTR(plane->pipe)); 11863 11864 ret = val & MCURSOR_MODE; 11865 11866 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 11867 *pipe = plane->pipe; 11868 else 11869 *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >> 11870 MCURSOR_PIPE_SELECT_SHIFT; 11871 11872 intel_display_power_put(dev_priv, power_domain, wakeref); 11873 11874 return ret; 11875 } 11876 11877 /* VESA 640x480x72Hz mode to set on the pipe */ 11878 static const struct drm_display_mode load_detect_mode = { 11879 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 11880 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 11881 }; 11882 11883 struct drm_framebuffer * 11884 intel_framebuffer_create(struct drm_i915_gem_object *obj, 11885 struct drm_mode_fb_cmd2 *mode_cmd) 11886 { 11887 struct intel_framebuffer *intel_fb; 11888 int ret; 11889 11890 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 11891 if (!intel_fb) 11892 return ERR_PTR(-ENOMEM); 11893 11894 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); 11895 if (ret) 11896 goto err; 11897 11898 return &intel_fb->base; 11899 11900 err: 11901 kfree(intel_fb); 11902 return ERR_PTR(ret); 11903 } 11904 11905 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 11906 struct drm_crtc *crtc) 11907 { 11908 struct drm_plane *plane; 11909 struct drm_plane_state *plane_state; 11910 int ret, i; 11911 11912 ret = drm_atomic_add_affected_planes(state, crtc); 11913 if (ret) 11914 return ret; 11915 11916 for_each_new_plane_in_state(state, plane, plane_state, i) { 11917 if (plane_state->crtc != crtc) 11918 continue; 11919 11920 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 11921 if (ret) 11922 return ret; 11923 11924 drm_atomic_set_fb_for_plane(plane_state, NULL); 11925 } 11926 11927 return 0; 11928 } 11929 11930 int intel_get_load_detect_pipe(struct drm_connector *connector, 11931 struct intel_load_detect_pipe *old, 11932 struct drm_modeset_acquire_ctx *ctx) 11933 { 11934 struct intel_crtc *intel_crtc; 11935 struct intel_encoder *intel_encoder = 11936 intel_attached_encoder(to_intel_connector(connector)); 11937 struct drm_crtc *possible_crtc; 11938 struct drm_encoder *encoder = &intel_encoder->base; 11939 struct drm_crtc *crtc = NULL; 11940 struct drm_device *dev = encoder->dev; 11941 struct drm_i915_private *dev_priv = to_i915(dev); 11942 struct drm_mode_config *config = &dev->mode_config; 11943 struct drm_atomic_state *state = NULL, *restore_state = NULL; 11944 struct drm_connector_state *connector_state; 11945 struct intel_crtc_state *crtc_state; 11946 int ret, i = -1; 11947 11948 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 11949 connector->base.id, connector->name, 11950 encoder->base.id, encoder->name); 11951 11952 old->restore_state = NULL; 11953 11954 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex)); 11955 11956 /* 11957 * Algorithm gets a little messy: 11958 * 11959 * - if the connector already has an assigned crtc, use it (but make 11960 * sure it's on first) 11961 * 11962 * - try to find the first unused crtc that can drive this connector, 11963 * and use that if we find one 11964 */ 11965 11966 /* See if we already have a CRTC for this connector */ 11967 if (connector->state->crtc) { 11968 crtc = connector->state->crtc; 11969 11970 ret = drm_modeset_lock(&crtc->mutex, ctx); 11971 if (ret) 11972 goto fail; 11973 11974 /* Make sure the crtc and connector are running */ 11975 goto found; 11976 } 11977 11978 /* Find an unused one (if possible) */ 11979 for_each_crtc(dev, possible_crtc) { 11980 i++; 11981 if (!(encoder->possible_crtcs & (1 << i))) 11982 continue; 11983 11984 ret = drm_modeset_lock(&possible_crtc->mutex, ctx); 11985 if (ret) 11986 goto fail; 11987 11988 if (possible_crtc->state->enable) { 11989 drm_modeset_unlock(&possible_crtc->mutex); 11990 continue; 11991 } 11992 11993 crtc = possible_crtc; 11994 break; 11995 } 11996 11997 /* 11998 * If we didn't find an unused CRTC, don't use any. 11999 */ 12000 if (!crtc) { 12001 drm_dbg_kms(&dev_priv->drm, 12002 "no pipe available for load-detect\n"); 12003 ret = -ENODEV; 12004 goto fail; 12005 } 12006 12007 found: 12008 intel_crtc = to_intel_crtc(crtc); 12009 12010 state = drm_atomic_state_alloc(dev); 12011 restore_state = drm_atomic_state_alloc(dev); 12012 if (!state || !restore_state) { 12013 ret = -ENOMEM; 12014 goto fail; 12015 } 12016 12017 state->acquire_ctx = ctx; 12018 restore_state->acquire_ctx = ctx; 12019 12020 connector_state = drm_atomic_get_connector_state(state, connector); 12021 if (IS_ERR(connector_state)) { 12022 ret = PTR_ERR(connector_state); 12023 goto fail; 12024 } 12025 12026 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); 12027 if (ret) 12028 goto fail; 12029 12030 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); 12031 if (IS_ERR(crtc_state)) { 12032 ret = PTR_ERR(crtc_state); 12033 goto fail; 12034 } 12035 12036 crtc_state->uapi.active = true; 12037 12038 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi, 12039 &load_detect_mode); 12040 if (ret) 12041 goto fail; 12042 12043 ret = intel_modeset_disable_planes(state, crtc); 12044 if (ret) 12045 goto fail; 12046 12047 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 12048 if (!ret) 12049 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); 12050 if (!ret) 12051 ret = drm_atomic_add_affected_planes(restore_state, crtc); 12052 if (ret) { 12053 drm_dbg_kms(&dev_priv->drm, 12054 "Failed to create a copy of old state to restore: %i\n", 12055 ret); 12056 goto fail; 12057 } 12058 12059 ret = drm_atomic_commit(state); 12060 if (ret) { 12061 drm_dbg_kms(&dev_priv->drm, 12062 "failed to set mode on load-detect pipe\n"); 12063 goto fail; 12064 } 12065 12066 old->restore_state = restore_state; 12067 drm_atomic_state_put(state); 12068 12069 /* let the connector get through one full cycle before testing */ 12070 intel_wait_for_vblank(dev_priv, intel_crtc->pipe); 12071 return true; 12072 12073 fail: 12074 if (state) { 12075 drm_atomic_state_put(state); 12076 state = NULL; 12077 } 12078 if (restore_state) { 12079 drm_atomic_state_put(restore_state); 12080 restore_state = NULL; 12081 } 12082 12083 if (ret == -EDEADLK) 12084 return ret; 12085 12086 return false; 12087 } 12088 12089 void intel_release_load_detect_pipe(struct drm_connector *connector, 12090 struct intel_load_detect_pipe *old, 12091 struct drm_modeset_acquire_ctx *ctx) 12092 { 12093 struct intel_encoder *intel_encoder = 12094 intel_attached_encoder(to_intel_connector(connector)); 12095 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev); 12096 struct drm_encoder *encoder = &intel_encoder->base; 12097 struct drm_atomic_state *state = old->restore_state; 12098 int ret; 12099 12100 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 12101 connector->base.id, connector->name, 12102 encoder->base.id, encoder->name); 12103 12104 if (!state) 12105 return; 12106 12107 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 12108 if (ret) 12109 drm_dbg_kms(&i915->drm, 12110 "Couldn't release load detect pipe: %i\n", ret); 12111 drm_atomic_state_put(state); 12112 } 12113 12114 static int i9xx_pll_refclk(struct drm_device *dev, 12115 const struct intel_crtc_state *pipe_config) 12116 { 12117 struct drm_i915_private *dev_priv = to_i915(dev); 12118 u32 dpll = pipe_config->dpll_hw_state.dpll; 12119 12120 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 12121 return dev_priv->vbt.lvds_ssc_freq; 12122 else if (HAS_PCH_SPLIT(dev_priv)) 12123 return 120000; 12124 else if (!IS_GEN(dev_priv, 2)) 12125 return 96000; 12126 else 12127 return 48000; 12128 } 12129 12130 /* Returns the clock of the currently programmed mode of the given pipe. */ 12131 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 12132 struct intel_crtc_state *pipe_config) 12133 { 12134 struct drm_device *dev = crtc->base.dev; 12135 struct drm_i915_private *dev_priv = to_i915(dev); 12136 enum pipe pipe = crtc->pipe; 12137 u32 dpll = pipe_config->dpll_hw_state.dpll; 12138 u32 fp; 12139 struct dpll clock; 12140 int port_clock; 12141 int refclk = i9xx_pll_refclk(dev, pipe_config); 12142 12143 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 12144 fp = pipe_config->dpll_hw_state.fp0; 12145 else 12146 fp = pipe_config->dpll_hw_state.fp1; 12147 12148 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 12149 if (IS_PINEVIEW(dev_priv)) { 12150 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 12151 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 12152 } else { 12153 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 12154 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 12155 } 12156 12157 if (!IS_GEN(dev_priv, 2)) { 12158 if (IS_PINEVIEW(dev_priv)) 12159 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 12160 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 12161 else 12162 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 12163 DPLL_FPA01_P1_POST_DIV_SHIFT); 12164 12165 switch (dpll & DPLL_MODE_MASK) { 12166 case DPLLB_MODE_DAC_SERIAL: 12167 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 12168 5 : 10; 12169 break; 12170 case DPLLB_MODE_LVDS: 12171 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 12172 7 : 14; 12173 break; 12174 default: 12175 drm_dbg_kms(&dev_priv->drm, 12176 "Unknown DPLL mode %08x in programmed " 12177 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 12178 return; 12179 } 12180 12181 if (IS_PINEVIEW(dev_priv)) 12182 port_clock = pnv_calc_dpll_params(refclk, &clock); 12183 else 12184 port_clock = i9xx_calc_dpll_params(refclk, &clock); 12185 } else { 12186 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv, 12187 LVDS); 12188 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 12189 12190 if (is_lvds) { 12191 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 12192 DPLL_FPA01_P1_POST_DIV_SHIFT); 12193 12194 if (lvds & LVDS_CLKB_POWER_UP) 12195 clock.p2 = 7; 12196 else 12197 clock.p2 = 14; 12198 } else { 12199 if (dpll & PLL_P1_DIVIDE_BY_TWO) 12200 clock.p1 = 2; 12201 else { 12202 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 12203 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 12204 } 12205 if (dpll & PLL_P2_DIVIDE_BY_4) 12206 clock.p2 = 4; 12207 else 12208 clock.p2 = 2; 12209 } 12210 12211 port_clock = i9xx_calc_dpll_params(refclk, &clock); 12212 } 12213 12214 /* 12215 * This value includes pixel_multiplier. We will use 12216 * port_clock to compute adjusted_mode.crtc_clock in the 12217 * encoder's get_config() function. 12218 */ 12219 pipe_config->port_clock = port_clock; 12220 } 12221 12222 int intel_dotclock_calculate(int link_freq, 12223 const struct intel_link_m_n *m_n) 12224 { 12225 /* 12226 * The calculation for the data clock is: 12227 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 12228 * But we want to avoid losing precison if possible, so: 12229 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 12230 * 12231 * and the link clock is simpler: 12232 * link_clock = (m * link_clock) / n 12233 */ 12234 12235 if (!m_n->link_n) 12236 return 0; 12237 12238 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 12239 } 12240 12241 static void ilk_pch_clock_get(struct intel_crtc *crtc, 12242 struct intel_crtc_state *pipe_config) 12243 { 12244 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12245 12246 /* read out port_clock from the DPLL */ 12247 i9xx_crtc_clock_get(crtc, pipe_config); 12248 12249 /* 12250 * In case there is an active pipe without active ports, 12251 * we may need some idea for the dotclock anyway. 12252 * Calculate one based on the FDI configuration. 12253 */ 12254 pipe_config->hw.adjusted_mode.crtc_clock = 12255 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 12256 &pipe_config->fdi_m_n); 12257 } 12258 12259 static void intel_crtc_state_reset(struct intel_crtc_state *crtc_state, 12260 struct intel_crtc *crtc) 12261 { 12262 memset(crtc_state, 0, sizeof(*crtc_state)); 12263 12264 __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base); 12265 12266 crtc_state->cpu_transcoder = INVALID_TRANSCODER; 12267 crtc_state->master_transcoder = INVALID_TRANSCODER; 12268 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 12269 crtc_state->output_format = INTEL_OUTPUT_FORMAT_INVALID; 12270 crtc_state->scaler_state.scaler_id = -1; 12271 crtc_state->mst_master_transcoder = INVALID_TRANSCODER; 12272 } 12273 12274 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc) 12275 { 12276 struct intel_crtc_state *crtc_state; 12277 12278 crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL); 12279 12280 if (crtc_state) 12281 intel_crtc_state_reset(crtc_state, crtc); 12282 12283 return crtc_state; 12284 } 12285 12286 /* Returns the currently programmed mode of the given encoder. */ 12287 struct drm_display_mode * 12288 intel_encoder_current_mode(struct intel_encoder *encoder) 12289 { 12290 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 12291 struct intel_crtc_state *crtc_state; 12292 struct drm_display_mode *mode; 12293 struct intel_crtc *crtc; 12294 enum pipe pipe; 12295 12296 if (!encoder->get_hw_state(encoder, &pipe)) 12297 return NULL; 12298 12299 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12300 12301 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 12302 if (!mode) 12303 return NULL; 12304 12305 crtc_state = intel_crtc_state_alloc(crtc); 12306 if (!crtc_state) { 12307 kfree(mode); 12308 return NULL; 12309 } 12310 12311 if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) { 12312 kfree(crtc_state); 12313 kfree(mode); 12314 return NULL; 12315 } 12316 12317 encoder->get_config(encoder, crtc_state); 12318 12319 intel_mode_from_pipe_config(mode, crtc_state); 12320 12321 kfree(crtc_state); 12322 12323 return mode; 12324 } 12325 12326 static void intel_crtc_destroy(struct drm_crtc *crtc) 12327 { 12328 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 12329 12330 drm_crtc_cleanup(crtc); 12331 kfree(intel_crtc); 12332 } 12333 12334 /** 12335 * intel_wm_need_update - Check whether watermarks need updating 12336 * @cur: current plane state 12337 * @new: new plane state 12338 * 12339 * Check current plane state versus the new one to determine whether 12340 * watermarks need to be recalculated. 12341 * 12342 * Returns true or false. 12343 */ 12344 static bool intel_wm_need_update(const struct intel_plane_state *cur, 12345 struct intel_plane_state *new) 12346 { 12347 /* Update watermarks on tiling or size changes. */ 12348 if (new->uapi.visible != cur->uapi.visible) 12349 return true; 12350 12351 if (!cur->hw.fb || !new->hw.fb) 12352 return false; 12353 12354 if (cur->hw.fb->modifier != new->hw.fb->modifier || 12355 cur->hw.rotation != new->hw.rotation || 12356 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) || 12357 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) || 12358 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) || 12359 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst)) 12360 return true; 12361 12362 return false; 12363 } 12364 12365 static bool needs_scaling(const struct intel_plane_state *state) 12366 { 12367 int src_w = drm_rect_width(&state->uapi.src) >> 16; 12368 int src_h = drm_rect_height(&state->uapi.src) >> 16; 12369 int dst_w = drm_rect_width(&state->uapi.dst); 12370 int dst_h = drm_rect_height(&state->uapi.dst); 12371 12372 return (src_w != dst_w || src_h != dst_h); 12373 } 12374 12375 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 12376 struct intel_crtc_state *crtc_state, 12377 const struct intel_plane_state *old_plane_state, 12378 struct intel_plane_state *plane_state) 12379 { 12380 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12381 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 12382 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12383 bool mode_changed = needs_modeset(crtc_state); 12384 bool was_crtc_enabled = old_crtc_state->hw.active; 12385 bool is_crtc_enabled = crtc_state->hw.active; 12386 bool turn_off, turn_on, visible, was_visible; 12387 int ret; 12388 12389 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 12390 ret = skl_update_scaler_plane(crtc_state, plane_state); 12391 if (ret) 12392 return ret; 12393 } 12394 12395 was_visible = old_plane_state->uapi.visible; 12396 visible = plane_state->uapi.visible; 12397 12398 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible)) 12399 was_visible = false; 12400 12401 /* 12402 * Visibility is calculated as if the crtc was on, but 12403 * after scaler setup everything depends on it being off 12404 * when the crtc isn't active. 12405 * 12406 * FIXME this is wrong for watermarks. Watermarks should also 12407 * be computed as if the pipe would be active. Perhaps move 12408 * per-plane wm computation to the .check_plane() hook, and 12409 * only combine the results from all planes in the current place? 12410 */ 12411 if (!is_crtc_enabled) { 12412 intel_plane_set_invisible(crtc_state, plane_state); 12413 visible = false; 12414 } 12415 12416 if (!was_visible && !visible) 12417 return 0; 12418 12419 turn_off = was_visible && (!visible || mode_changed); 12420 turn_on = visible && (!was_visible || mode_changed); 12421 12422 drm_dbg_atomic(&dev_priv->drm, 12423 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 12424 crtc->base.base.id, crtc->base.name, 12425 plane->base.base.id, plane->base.name, 12426 was_visible, visible, 12427 turn_off, turn_on, mode_changed); 12428 12429 if (turn_on) { 12430 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 12431 crtc_state->update_wm_pre = true; 12432 12433 /* must disable cxsr around plane enable/disable */ 12434 if (plane->id != PLANE_CURSOR) 12435 crtc_state->disable_cxsr = true; 12436 } else if (turn_off) { 12437 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 12438 crtc_state->update_wm_post = true; 12439 12440 /* must disable cxsr around plane enable/disable */ 12441 if (plane->id != PLANE_CURSOR) 12442 crtc_state->disable_cxsr = true; 12443 } else if (intel_wm_need_update(old_plane_state, plane_state)) { 12444 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) { 12445 /* FIXME bollocks */ 12446 crtc_state->update_wm_pre = true; 12447 crtc_state->update_wm_post = true; 12448 } 12449 } 12450 12451 if (visible || was_visible) 12452 crtc_state->fb_bits |= plane->frontbuffer_bit; 12453 12454 /* 12455 * ILK/SNB DVSACNTR/Sprite Enable 12456 * IVB SPR_CTL/Sprite Enable 12457 * "When in Self Refresh Big FIFO mode, a write to enable the 12458 * plane will be internally buffered and delayed while Big FIFO 12459 * mode is exiting." 12460 * 12461 * Which means that enabling the sprite can take an extra frame 12462 * when we start in big FIFO mode (LP1+). Thus we need to drop 12463 * down to LP0 and wait for vblank in order to make sure the 12464 * sprite gets enabled on the next vblank after the register write. 12465 * Doing otherwise would risk enabling the sprite one frame after 12466 * we've already signalled flip completion. We can resume LP1+ 12467 * once the sprite has been enabled. 12468 * 12469 * 12470 * WaCxSRDisabledForSpriteScaling:ivb 12471 * IVB SPR_SCALE/Scaling Enable 12472 * "Low Power watermarks must be disabled for at least one 12473 * frame before enabling sprite scaling, and kept disabled 12474 * until sprite scaling is disabled." 12475 * 12476 * ILK/SNB DVSASCALE/Scaling Enable 12477 * "When in Self Refresh Big FIFO mode, scaling enable will be 12478 * masked off while Big FIFO mode is exiting." 12479 * 12480 * Despite the w/a only being listed for IVB we assume that 12481 * the ILK/SNB note has similar ramifications, hence we apply 12482 * the w/a on all three platforms. 12483 * 12484 * With experimental results seems this is needed also for primary 12485 * plane, not only sprite plane. 12486 */ 12487 if (plane->id != PLANE_CURSOR && 12488 (IS_GEN_RANGE(dev_priv, 5, 6) || 12489 IS_IVYBRIDGE(dev_priv)) && 12490 (turn_on || (!needs_scaling(old_plane_state) && 12491 needs_scaling(plane_state)))) 12492 crtc_state->disable_lp_wm = true; 12493 12494 return 0; 12495 } 12496 12497 static bool encoders_cloneable(const struct intel_encoder *a, 12498 const struct intel_encoder *b) 12499 { 12500 /* masks could be asymmetric, so check both ways */ 12501 return a == b || (a->cloneable & (1 << b->type) && 12502 b->cloneable & (1 << a->type)); 12503 } 12504 12505 static bool check_single_encoder_cloning(struct drm_atomic_state *state, 12506 struct intel_crtc *crtc, 12507 struct intel_encoder *encoder) 12508 { 12509 struct intel_encoder *source_encoder; 12510 struct drm_connector *connector; 12511 struct drm_connector_state *connector_state; 12512 int i; 12513 12514 for_each_new_connector_in_state(state, connector, connector_state, i) { 12515 if (connector_state->crtc != &crtc->base) 12516 continue; 12517 12518 source_encoder = 12519 to_intel_encoder(connector_state->best_encoder); 12520 if (!encoders_cloneable(encoder, source_encoder)) 12521 return false; 12522 } 12523 12524 return true; 12525 } 12526 12527 static int icl_add_linked_planes(struct intel_atomic_state *state) 12528 { 12529 struct intel_plane *plane, *linked; 12530 struct intel_plane_state *plane_state, *linked_plane_state; 12531 int i; 12532 12533 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12534 linked = plane_state->planar_linked_plane; 12535 12536 if (!linked) 12537 continue; 12538 12539 linked_plane_state = intel_atomic_get_plane_state(state, linked); 12540 if (IS_ERR(linked_plane_state)) 12541 return PTR_ERR(linked_plane_state); 12542 12543 drm_WARN_ON(state->base.dev, 12544 linked_plane_state->planar_linked_plane != plane); 12545 drm_WARN_ON(state->base.dev, 12546 linked_plane_state->planar_slave == plane_state->planar_slave); 12547 } 12548 12549 return 0; 12550 } 12551 12552 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 12553 { 12554 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12555 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12556 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); 12557 struct intel_plane *plane, *linked; 12558 struct intel_plane_state *plane_state; 12559 int i; 12560 12561 if (INTEL_GEN(dev_priv) < 11) 12562 return 0; 12563 12564 /* 12565 * Destroy all old plane links and make the slave plane invisible 12566 * in the crtc_state->active_planes mask. 12567 */ 12568 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12569 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) 12570 continue; 12571 12572 plane_state->planar_linked_plane = NULL; 12573 if (plane_state->planar_slave && !plane_state->uapi.visible) { 12574 crtc_state->active_planes &= ~BIT(plane->id); 12575 crtc_state->update_planes |= BIT(plane->id); 12576 } 12577 12578 plane_state->planar_slave = false; 12579 } 12580 12581 if (!crtc_state->nv12_planes) 12582 return 0; 12583 12584 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12585 struct intel_plane_state *linked_state = NULL; 12586 12587 if (plane->pipe != crtc->pipe || 12588 !(crtc_state->nv12_planes & BIT(plane->id))) 12589 continue; 12590 12591 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 12592 if (!icl_is_nv12_y_plane(dev_priv, linked->id)) 12593 continue; 12594 12595 if (crtc_state->active_planes & BIT(linked->id)) 12596 continue; 12597 12598 linked_state = intel_atomic_get_plane_state(state, linked); 12599 if (IS_ERR(linked_state)) 12600 return PTR_ERR(linked_state); 12601 12602 break; 12603 } 12604 12605 if (!linked_state) { 12606 drm_dbg_kms(&dev_priv->drm, 12607 "Need %d free Y planes for planar YUV\n", 12608 hweight8(crtc_state->nv12_planes)); 12609 12610 return -EINVAL; 12611 } 12612 12613 plane_state->planar_linked_plane = linked; 12614 12615 linked_state->planar_slave = true; 12616 linked_state->planar_linked_plane = plane; 12617 crtc_state->active_planes |= BIT(linked->id); 12618 crtc_state->update_planes |= BIT(linked->id); 12619 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n", 12620 linked->base.name, plane->base.name); 12621 12622 /* Copy parameters to slave plane */ 12623 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE; 12624 linked_state->color_ctl = plane_state->color_ctl; 12625 linked_state->view = plane_state->view; 12626 memcpy(linked_state->color_plane, plane_state->color_plane, 12627 sizeof(linked_state->color_plane)); 12628 12629 intel_plane_copy_uapi_to_hw_state(linked_state, plane_state); 12630 linked_state->uapi.src = plane_state->uapi.src; 12631 linked_state->uapi.dst = plane_state->uapi.dst; 12632 12633 if (icl_is_hdr_plane(dev_priv, plane->id)) { 12634 if (linked->id == PLANE_SPRITE5) 12635 plane_state->cus_ctl |= PLANE_CUS_PLANE_7; 12636 else if (linked->id == PLANE_SPRITE4) 12637 plane_state->cus_ctl |= PLANE_CUS_PLANE_6; 12638 else if (linked->id == PLANE_SPRITE3) 12639 plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL; 12640 else if (linked->id == PLANE_SPRITE2) 12641 plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL; 12642 else 12643 MISSING_CASE(linked->id); 12644 } 12645 } 12646 12647 return 0; 12648 } 12649 12650 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 12651 { 12652 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 12653 struct intel_atomic_state *state = 12654 to_intel_atomic_state(new_crtc_state->uapi.state); 12655 const struct intel_crtc_state *old_crtc_state = 12656 intel_atomic_get_old_crtc_state(state, crtc); 12657 12658 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 12659 } 12660 12661 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) 12662 { 12663 const struct drm_display_mode *adjusted_mode = 12664 &crtc_state->hw.adjusted_mode; 12665 int linetime_wm; 12666 12667 if (!crtc_state->hw.enable) 12668 return 0; 12669 12670 linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, 12671 adjusted_mode->crtc_clock); 12672 12673 return min(linetime_wm, 0x1ff); 12674 } 12675 12676 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, 12677 const struct intel_cdclk_state *cdclk_state) 12678 { 12679 const struct drm_display_mode *adjusted_mode = 12680 &crtc_state->hw.adjusted_mode; 12681 int linetime_wm; 12682 12683 if (!crtc_state->hw.enable) 12684 return 0; 12685 12686 linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, 12687 cdclk_state->logical.cdclk); 12688 12689 return min(linetime_wm, 0x1ff); 12690 } 12691 12692 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) 12693 { 12694 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12695 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12696 const struct drm_display_mode *adjusted_mode = 12697 &crtc_state->hw.adjusted_mode; 12698 int linetime_wm; 12699 12700 if (!crtc_state->hw.enable) 12701 return 0; 12702 12703 linetime_wm = DIV_ROUND_UP(adjusted_mode->crtc_htotal * 1000 * 8, 12704 crtc_state->pixel_rate); 12705 12706 /* Display WA #1135: BXT:ALL GLK:ALL */ 12707 if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled) 12708 linetime_wm /= 2; 12709 12710 return min(linetime_wm, 0x1ff); 12711 } 12712 12713 static int hsw_compute_linetime_wm(struct intel_atomic_state *state, 12714 struct intel_crtc *crtc) 12715 { 12716 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12717 struct intel_crtc_state *crtc_state = 12718 intel_atomic_get_new_crtc_state(state, crtc); 12719 const struct intel_cdclk_state *cdclk_state; 12720 12721 if (INTEL_GEN(dev_priv) >= 9) 12722 crtc_state->linetime = skl_linetime_wm(crtc_state); 12723 else 12724 crtc_state->linetime = hsw_linetime_wm(crtc_state); 12725 12726 if (!hsw_crtc_supports_ips(crtc)) 12727 return 0; 12728 12729 cdclk_state = intel_atomic_get_cdclk_state(state); 12730 if (IS_ERR(cdclk_state)) 12731 return PTR_ERR(cdclk_state); 12732 12733 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, 12734 cdclk_state); 12735 12736 return 0; 12737 } 12738 12739 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 12740 struct intel_crtc *crtc) 12741 { 12742 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12743 struct intel_crtc_state *crtc_state = 12744 intel_atomic_get_new_crtc_state(state, crtc); 12745 bool mode_changed = needs_modeset(crtc_state); 12746 int ret; 12747 12748 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) && 12749 mode_changed && !crtc_state->hw.active) 12750 crtc_state->update_wm_post = true; 12751 12752 if (mode_changed && crtc_state->hw.enable && 12753 dev_priv->display.crtc_compute_clock && 12754 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) { 12755 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state); 12756 if (ret) 12757 return ret; 12758 } 12759 12760 /* 12761 * May need to update pipe gamma enable bits 12762 * when C8 planes are getting enabled/disabled. 12763 */ 12764 if (c8_planes_changed(crtc_state)) 12765 crtc_state->uapi.color_mgmt_changed = true; 12766 12767 if (mode_changed || crtc_state->update_pipe || 12768 crtc_state->uapi.color_mgmt_changed) { 12769 ret = intel_color_check(crtc_state); 12770 if (ret) 12771 return ret; 12772 } 12773 12774 if (dev_priv->display.compute_pipe_wm) { 12775 ret = dev_priv->display.compute_pipe_wm(crtc_state); 12776 if (ret) { 12777 drm_dbg_kms(&dev_priv->drm, 12778 "Target pipe watermarks are invalid\n"); 12779 return ret; 12780 } 12781 } 12782 12783 if (dev_priv->display.compute_intermediate_wm) { 12784 if (drm_WARN_ON(&dev_priv->drm, 12785 !dev_priv->display.compute_pipe_wm)) 12786 return 0; 12787 12788 /* 12789 * Calculate 'intermediate' watermarks that satisfy both the 12790 * old state and the new state. We can program these 12791 * immediately. 12792 */ 12793 ret = dev_priv->display.compute_intermediate_wm(crtc_state); 12794 if (ret) { 12795 drm_dbg_kms(&dev_priv->drm, 12796 "No valid intermediate pipe watermarks are possible\n"); 12797 return ret; 12798 } 12799 } 12800 12801 if (INTEL_GEN(dev_priv) >= 9) { 12802 if (mode_changed || crtc_state->update_pipe) { 12803 ret = skl_update_scaler_crtc(crtc_state); 12804 if (ret) 12805 return ret; 12806 } 12807 12808 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state); 12809 if (ret) 12810 return ret; 12811 } 12812 12813 if (HAS_IPS(dev_priv)) { 12814 ret = hsw_compute_ips_config(crtc_state); 12815 if (ret) 12816 return ret; 12817 } 12818 12819 if (INTEL_GEN(dev_priv) >= 9 || 12820 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 12821 ret = hsw_compute_linetime_wm(state, crtc); 12822 if (ret) 12823 return ret; 12824 12825 } 12826 12827 if (!mode_changed) 12828 intel_psr2_sel_fetch_update(state, crtc); 12829 12830 return 0; 12831 } 12832 12833 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 12834 { 12835 struct intel_connector *connector; 12836 struct drm_connector_list_iter conn_iter; 12837 12838 drm_connector_list_iter_begin(dev, &conn_iter); 12839 for_each_intel_connector_iter(connector, &conn_iter) { 12840 if (connector->base.state->crtc) 12841 drm_connector_put(&connector->base); 12842 12843 if (connector->base.encoder) { 12844 connector->base.state->best_encoder = 12845 connector->base.encoder; 12846 connector->base.state->crtc = 12847 connector->base.encoder->crtc; 12848 12849 drm_connector_get(&connector->base); 12850 } else { 12851 connector->base.state->best_encoder = NULL; 12852 connector->base.state->crtc = NULL; 12853 } 12854 } 12855 drm_connector_list_iter_end(&conn_iter); 12856 } 12857 12858 static int 12859 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 12860 struct intel_crtc_state *pipe_config) 12861 { 12862 struct drm_connector *connector = conn_state->connector; 12863 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 12864 const struct drm_display_info *info = &connector->display_info; 12865 int bpp; 12866 12867 switch (conn_state->max_bpc) { 12868 case 6 ... 7: 12869 bpp = 6 * 3; 12870 break; 12871 case 8 ... 9: 12872 bpp = 8 * 3; 12873 break; 12874 case 10 ... 11: 12875 bpp = 10 * 3; 12876 break; 12877 case 12: 12878 bpp = 12 * 3; 12879 break; 12880 default: 12881 return -EINVAL; 12882 } 12883 12884 if (bpp < pipe_config->pipe_bpp) { 12885 drm_dbg_kms(&i915->drm, 12886 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 12887 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 12888 connector->base.id, connector->name, 12889 bpp, 3 * info->bpc, 12890 3 * conn_state->max_requested_bpc, 12891 pipe_config->pipe_bpp); 12892 12893 pipe_config->pipe_bpp = bpp; 12894 } 12895 12896 return 0; 12897 } 12898 12899 static int 12900 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 12901 struct intel_crtc_state *pipe_config) 12902 { 12903 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12904 struct drm_atomic_state *state = pipe_config->uapi.state; 12905 struct drm_connector *connector; 12906 struct drm_connector_state *connector_state; 12907 int bpp, i; 12908 12909 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 12910 IS_CHERRYVIEW(dev_priv))) 12911 bpp = 10*3; 12912 else if (INTEL_GEN(dev_priv) >= 5) 12913 bpp = 12*3; 12914 else 12915 bpp = 8*3; 12916 12917 pipe_config->pipe_bpp = bpp; 12918 12919 /* Clamp display bpp to connector max bpp */ 12920 for_each_new_connector_in_state(state, connector, connector_state, i) { 12921 int ret; 12922 12923 if (connector_state->crtc != &crtc->base) 12924 continue; 12925 12926 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 12927 if (ret) 12928 return ret; 12929 } 12930 12931 return 0; 12932 } 12933 12934 static void intel_dump_crtc_timings(struct drm_i915_private *i915, 12935 const struct drm_display_mode *mode) 12936 { 12937 drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, " 12938 "type: 0x%x flags: 0x%x\n", 12939 mode->crtc_clock, 12940 mode->crtc_hdisplay, mode->crtc_hsync_start, 12941 mode->crtc_hsync_end, mode->crtc_htotal, 12942 mode->crtc_vdisplay, mode->crtc_vsync_start, 12943 mode->crtc_vsync_end, mode->crtc_vtotal, 12944 mode->type, mode->flags); 12945 } 12946 12947 static void 12948 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 12949 const char *id, unsigned int lane_count, 12950 const struct intel_link_m_n *m_n) 12951 { 12952 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 12953 12954 drm_dbg_kms(&i915->drm, 12955 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 12956 id, lane_count, 12957 m_n->gmch_m, m_n->gmch_n, 12958 m_n->link_m, m_n->link_n, m_n->tu); 12959 } 12960 12961 static void 12962 intel_dump_infoframe(struct drm_i915_private *dev_priv, 12963 const union hdmi_infoframe *frame) 12964 { 12965 if (!drm_debug_enabled(DRM_UT_KMS)) 12966 return; 12967 12968 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 12969 } 12970 12971 static void 12972 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv, 12973 const struct drm_dp_vsc_sdp *vsc) 12974 { 12975 if (!drm_debug_enabled(DRM_UT_KMS)) 12976 return; 12977 12978 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc); 12979 } 12980 12981 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 12982 12983 static const char * const output_type_str[] = { 12984 OUTPUT_TYPE(UNUSED), 12985 OUTPUT_TYPE(ANALOG), 12986 OUTPUT_TYPE(DVO), 12987 OUTPUT_TYPE(SDVO), 12988 OUTPUT_TYPE(LVDS), 12989 OUTPUT_TYPE(TVOUT), 12990 OUTPUT_TYPE(HDMI), 12991 OUTPUT_TYPE(DP), 12992 OUTPUT_TYPE(EDP), 12993 OUTPUT_TYPE(DSI), 12994 OUTPUT_TYPE(DDI), 12995 OUTPUT_TYPE(DP_MST), 12996 }; 12997 12998 #undef OUTPUT_TYPE 12999 13000 static void snprintf_output_types(char *buf, size_t len, 13001 unsigned int output_types) 13002 { 13003 char *str = buf; 13004 int i; 13005 13006 str[0] = '\0'; 13007 13008 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 13009 int r; 13010 13011 if ((output_types & BIT(i)) == 0) 13012 continue; 13013 13014 r = snprintf(str, len, "%s%s", 13015 str != buf ? "," : "", output_type_str[i]); 13016 if (r >= len) 13017 break; 13018 str += r; 13019 len -= r; 13020 13021 output_types &= ~BIT(i); 13022 } 13023 13024 WARN_ON_ONCE(output_types != 0); 13025 } 13026 13027 static const char * const output_format_str[] = { 13028 [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid", 13029 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 13030 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 13031 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 13032 }; 13033 13034 static const char *output_formats(enum intel_output_format format) 13035 { 13036 if (format >= ARRAY_SIZE(output_format_str)) 13037 format = INTEL_OUTPUT_FORMAT_INVALID; 13038 return output_format_str[format]; 13039 } 13040 13041 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 13042 { 13043 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 13044 struct drm_i915_private *i915 = to_i915(plane->base.dev); 13045 const struct drm_framebuffer *fb = plane_state->hw.fb; 13046 struct drm_format_name_buf format_name; 13047 13048 if (!fb) { 13049 drm_dbg_kms(&i915->drm, 13050 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 13051 plane->base.base.id, plane->base.name, 13052 yesno(plane_state->uapi.visible)); 13053 return; 13054 } 13055 13056 drm_dbg_kms(&i915->drm, 13057 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n", 13058 plane->base.base.id, plane->base.name, 13059 fb->base.id, fb->width, fb->height, 13060 drm_get_format_name(fb->format->format, &format_name), 13061 yesno(plane_state->uapi.visible)); 13062 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n", 13063 plane_state->hw.rotation, plane_state->scaler_id); 13064 if (plane_state->uapi.visible) 13065 drm_dbg_kms(&i915->drm, 13066 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 13067 DRM_RECT_FP_ARG(&plane_state->uapi.src), 13068 DRM_RECT_ARG(&plane_state->uapi.dst)); 13069 } 13070 13071 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 13072 struct intel_atomic_state *state, 13073 const char *context) 13074 { 13075 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 13076 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13077 const struct intel_plane_state *plane_state; 13078 struct intel_plane *plane; 13079 char buf[64]; 13080 int i; 13081 13082 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n", 13083 crtc->base.base.id, crtc->base.name, 13084 yesno(pipe_config->hw.enable), context); 13085 13086 if (!pipe_config->hw.enable) 13087 goto dump_planes; 13088 13089 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 13090 drm_dbg_kms(&dev_priv->drm, 13091 "active: %s, output_types: %s (0x%x), output format: %s\n", 13092 yesno(pipe_config->hw.active), 13093 buf, pipe_config->output_types, 13094 output_formats(pipe_config->output_format)); 13095 13096 drm_dbg_kms(&dev_priv->drm, 13097 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 13098 transcoder_name(pipe_config->cpu_transcoder), 13099 pipe_config->pipe_bpp, pipe_config->dither); 13100 13101 drm_dbg_kms(&dev_priv->drm, 13102 "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n", 13103 transcoder_name(pipe_config->master_transcoder), 13104 pipe_config->sync_mode_slaves_mask); 13105 13106 if (pipe_config->has_pch_encoder) 13107 intel_dump_m_n_config(pipe_config, "fdi", 13108 pipe_config->fdi_lanes, 13109 &pipe_config->fdi_m_n); 13110 13111 if (intel_crtc_has_dp_encoder(pipe_config)) { 13112 intel_dump_m_n_config(pipe_config, "dp m_n", 13113 pipe_config->lane_count, &pipe_config->dp_m_n); 13114 if (pipe_config->has_drrs) 13115 intel_dump_m_n_config(pipe_config, "dp m2_n2", 13116 pipe_config->lane_count, 13117 &pipe_config->dp_m2_n2); 13118 } 13119 13120 drm_dbg_kms(&dev_priv->drm, 13121 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 13122 pipe_config->has_audio, pipe_config->has_infoframe, 13123 pipe_config->infoframes.enable); 13124 13125 if (pipe_config->infoframes.enable & 13126 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 13127 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n", 13128 pipe_config->infoframes.gcp); 13129 if (pipe_config->infoframes.enable & 13130 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 13131 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 13132 if (pipe_config->infoframes.enable & 13133 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 13134 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 13135 if (pipe_config->infoframes.enable & 13136 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 13137 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 13138 if (pipe_config->infoframes.enable & 13139 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) 13140 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 13141 if (pipe_config->infoframes.enable & 13142 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA)) 13143 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 13144 if (pipe_config->infoframes.enable & 13145 intel_hdmi_infoframe_enable(DP_SDP_VSC)) 13146 intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc); 13147 13148 drm_dbg_kms(&dev_priv->drm, "requested mode:\n"); 13149 drm_mode_debug_printmodeline(&pipe_config->hw.mode); 13150 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n"); 13151 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode); 13152 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode); 13153 drm_dbg_kms(&dev_priv->drm, 13154 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 13155 pipe_config->port_clock, 13156 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 13157 pipe_config->pixel_rate); 13158 13159 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n", 13160 pipe_config->linetime, pipe_config->ips_linetime); 13161 13162 if (INTEL_GEN(dev_priv) >= 9) 13163 drm_dbg_kms(&dev_priv->drm, 13164 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 13165 crtc->num_scalers, 13166 pipe_config->scaler_state.scaler_users, 13167 pipe_config->scaler_state.scaler_id); 13168 13169 if (HAS_GMCH(dev_priv)) 13170 drm_dbg_kms(&dev_priv->drm, 13171 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 13172 pipe_config->gmch_pfit.control, 13173 pipe_config->gmch_pfit.pgm_ratios, 13174 pipe_config->gmch_pfit.lvds_border_bits); 13175 else 13176 drm_dbg_kms(&dev_priv->drm, 13177 "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n", 13178 DRM_RECT_ARG(&pipe_config->pch_pfit.dst), 13179 enableddisabled(pipe_config->pch_pfit.enabled), 13180 yesno(pipe_config->pch_pfit.force_thru)); 13181 13182 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n", 13183 pipe_config->ips_enabled, pipe_config->double_wide); 13184 13185 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 13186 13187 if (IS_CHERRYVIEW(dev_priv)) 13188 drm_dbg_kms(&dev_priv->drm, 13189 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 13190 pipe_config->cgm_mode, pipe_config->gamma_mode, 13191 pipe_config->gamma_enable, pipe_config->csc_enable); 13192 else 13193 drm_dbg_kms(&dev_priv->drm, 13194 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 13195 pipe_config->csc_mode, pipe_config->gamma_mode, 13196 pipe_config->gamma_enable, pipe_config->csc_enable); 13197 13198 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n", 13199 transcoder_name(pipe_config->mst_master_transcoder)); 13200 13201 dump_planes: 13202 if (!state) 13203 return; 13204 13205 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 13206 if (plane->pipe == crtc->pipe) 13207 intel_dump_plane_state(plane_state); 13208 } 13209 } 13210 13211 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 13212 { 13213 struct drm_device *dev = state->base.dev; 13214 struct drm_connector *connector; 13215 struct drm_connector_list_iter conn_iter; 13216 unsigned int used_ports = 0; 13217 unsigned int used_mst_ports = 0; 13218 bool ret = true; 13219 13220 /* 13221 * We're going to peek into connector->state, 13222 * hence connection_mutex must be held. 13223 */ 13224 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); 13225 13226 /* 13227 * Walk the connector list instead of the encoder 13228 * list to detect the problem on ddi platforms 13229 * where there's just one encoder per digital port. 13230 */ 13231 drm_connector_list_iter_begin(dev, &conn_iter); 13232 drm_for_each_connector_iter(connector, &conn_iter) { 13233 struct drm_connector_state *connector_state; 13234 struct intel_encoder *encoder; 13235 13236 connector_state = 13237 drm_atomic_get_new_connector_state(&state->base, 13238 connector); 13239 if (!connector_state) 13240 connector_state = connector->state; 13241 13242 if (!connector_state->best_encoder) 13243 continue; 13244 13245 encoder = to_intel_encoder(connector_state->best_encoder); 13246 13247 drm_WARN_ON(dev, !connector_state->crtc); 13248 13249 switch (encoder->type) { 13250 case INTEL_OUTPUT_DDI: 13251 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev)))) 13252 break; 13253 fallthrough; 13254 case INTEL_OUTPUT_DP: 13255 case INTEL_OUTPUT_HDMI: 13256 case INTEL_OUTPUT_EDP: 13257 /* the same port mustn't appear more than once */ 13258 if (used_ports & BIT(encoder->port)) 13259 ret = false; 13260 13261 used_ports |= BIT(encoder->port); 13262 break; 13263 case INTEL_OUTPUT_DP_MST: 13264 used_mst_ports |= 13265 1 << encoder->port; 13266 break; 13267 default: 13268 break; 13269 } 13270 } 13271 drm_connector_list_iter_end(&conn_iter); 13272 13273 /* can't mix MST and SST/HDMI on the same port */ 13274 if (used_ports & used_mst_ports) 13275 return false; 13276 13277 return ret; 13278 } 13279 13280 static void 13281 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state *crtc_state) 13282 { 13283 intel_crtc_copy_color_blobs(crtc_state); 13284 } 13285 13286 static void 13287 intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state *crtc_state) 13288 { 13289 crtc_state->hw.enable = crtc_state->uapi.enable; 13290 crtc_state->hw.active = crtc_state->uapi.active; 13291 crtc_state->hw.mode = crtc_state->uapi.mode; 13292 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode; 13293 intel_crtc_copy_uapi_to_hw_state_nomodeset(crtc_state); 13294 } 13295 13296 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state) 13297 { 13298 crtc_state->uapi.enable = crtc_state->hw.enable; 13299 crtc_state->uapi.active = crtc_state->hw.active; 13300 drm_WARN_ON(crtc_state->uapi.crtc->dev, 13301 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0); 13302 13303 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode; 13304 13305 /* copy color blobs to uapi */ 13306 drm_property_replace_blob(&crtc_state->uapi.degamma_lut, 13307 crtc_state->hw.degamma_lut); 13308 drm_property_replace_blob(&crtc_state->uapi.gamma_lut, 13309 crtc_state->hw.gamma_lut); 13310 drm_property_replace_blob(&crtc_state->uapi.ctm, 13311 crtc_state->hw.ctm); 13312 } 13313 13314 static int 13315 intel_crtc_prepare_cleared_state(struct intel_crtc_state *crtc_state) 13316 { 13317 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 13318 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13319 struct intel_crtc_state *saved_state; 13320 13321 saved_state = intel_crtc_state_alloc(crtc); 13322 if (!saved_state) 13323 return -ENOMEM; 13324 13325 /* free the old crtc_state->hw members */ 13326 intel_crtc_free_hw_state(crtc_state); 13327 13328 /* FIXME: before the switch to atomic started, a new pipe_config was 13329 * kzalloc'd. Code that depends on any field being zero should be 13330 * fixed, so that the crtc_state can be safely duplicated. For now, 13331 * only fields that are know to not cause problems are preserved. */ 13332 13333 saved_state->uapi = crtc_state->uapi; 13334 saved_state->scaler_state = crtc_state->scaler_state; 13335 saved_state->shared_dpll = crtc_state->shared_dpll; 13336 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 13337 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 13338 sizeof(saved_state->icl_port_dplls)); 13339 saved_state->crc_enabled = crtc_state->crc_enabled; 13340 if (IS_G4X(dev_priv) || 13341 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13342 saved_state->wm = crtc_state->wm; 13343 13344 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 13345 kfree(saved_state); 13346 13347 intel_crtc_copy_uapi_to_hw_state(crtc_state); 13348 13349 return 0; 13350 } 13351 13352 static int 13353 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config) 13354 { 13355 struct drm_crtc *crtc = pipe_config->uapi.crtc; 13356 struct drm_atomic_state *state = pipe_config->uapi.state; 13357 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 13358 struct drm_connector *connector; 13359 struct drm_connector_state *connector_state; 13360 int base_bpp, ret, i; 13361 bool retry = true; 13362 13363 pipe_config->cpu_transcoder = 13364 (enum transcoder) to_intel_crtc(crtc)->pipe; 13365 13366 /* 13367 * Sanitize sync polarity flags based on requested ones. If neither 13368 * positive or negative polarity is requested, treat this as meaning 13369 * negative polarity. 13370 */ 13371 if (!(pipe_config->hw.adjusted_mode.flags & 13372 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 13373 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 13374 13375 if (!(pipe_config->hw.adjusted_mode.flags & 13376 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 13377 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 13378 13379 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 13380 pipe_config); 13381 if (ret) 13382 return ret; 13383 13384 base_bpp = pipe_config->pipe_bpp; 13385 13386 /* 13387 * Determine the real pipe dimensions. Note that stereo modes can 13388 * increase the actual pipe size due to the frame doubling and 13389 * insertion of additional space for blanks between the frame. This 13390 * is stored in the crtc timings. We use the requested mode to do this 13391 * computation to clearly distinguish it from the adjusted mode, which 13392 * can be changed by the connectors in the below retry loop. 13393 */ 13394 drm_mode_get_hv_timing(&pipe_config->hw.mode, 13395 &pipe_config->pipe_src_w, 13396 &pipe_config->pipe_src_h); 13397 13398 for_each_new_connector_in_state(state, connector, connector_state, i) { 13399 struct intel_encoder *encoder = 13400 to_intel_encoder(connector_state->best_encoder); 13401 13402 if (connector_state->crtc != crtc) 13403 continue; 13404 13405 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 13406 drm_dbg_kms(&i915->drm, 13407 "rejecting invalid cloning configuration\n"); 13408 return -EINVAL; 13409 } 13410 13411 /* 13412 * Determine output_types before calling the .compute_config() 13413 * hooks so that the hooks can use this information safely. 13414 */ 13415 if (encoder->compute_output_type) 13416 pipe_config->output_types |= 13417 BIT(encoder->compute_output_type(encoder, pipe_config, 13418 connector_state)); 13419 else 13420 pipe_config->output_types |= BIT(encoder->type); 13421 } 13422 13423 encoder_retry: 13424 /* Ensure the port clock defaults are reset when retrying. */ 13425 pipe_config->port_clock = 0; 13426 pipe_config->pixel_multiplier = 1; 13427 13428 /* Fill in default crtc timings, allow encoders to overwrite them. */ 13429 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode, 13430 CRTC_STEREO_DOUBLE); 13431 13432 /* Pass our mode to the connectors and the CRTC to give them a chance to 13433 * adjust it according to limitations or connector properties, and also 13434 * a chance to reject the mode entirely. 13435 */ 13436 for_each_new_connector_in_state(state, connector, connector_state, i) { 13437 struct intel_encoder *encoder = 13438 to_intel_encoder(connector_state->best_encoder); 13439 13440 if (connector_state->crtc != crtc) 13441 continue; 13442 13443 ret = encoder->compute_config(encoder, pipe_config, 13444 connector_state); 13445 if (ret < 0) { 13446 if (ret != -EDEADLK) 13447 drm_dbg_kms(&i915->drm, 13448 "Encoder config failure: %d\n", 13449 ret); 13450 return ret; 13451 } 13452 } 13453 13454 /* Set default port clock if not overwritten by the encoder. Needs to be 13455 * done afterwards in case the encoder adjusts the mode. */ 13456 if (!pipe_config->port_clock) 13457 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock 13458 * pipe_config->pixel_multiplier; 13459 13460 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 13461 if (ret == -EDEADLK) 13462 return ret; 13463 if (ret < 0) { 13464 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n"); 13465 return ret; 13466 } 13467 13468 if (ret == RETRY) { 13469 if (drm_WARN(&i915->drm, !retry, 13470 "loop in pipe configuration computation\n")) 13471 return -EINVAL; 13472 13473 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n"); 13474 retry = false; 13475 goto encoder_retry; 13476 } 13477 13478 /* Dithering seems to not pass-through bits correctly when it should, so 13479 * only enable it on 6bpc panels and when its not a compliance 13480 * test requesting 6bpc video pattern. 13481 */ 13482 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 13483 !pipe_config->dither_force_disable; 13484 drm_dbg_kms(&i915->drm, 13485 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 13486 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 13487 13488 return 0; 13489 } 13490 13491 static int 13492 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state) 13493 { 13494 struct intel_atomic_state *state = 13495 to_intel_atomic_state(crtc_state->uapi.state); 13496 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 13497 struct drm_connector_state *conn_state; 13498 struct drm_connector *connector; 13499 int i; 13500 13501 for_each_new_connector_in_state(&state->base, connector, 13502 conn_state, i) { 13503 struct intel_encoder *encoder = 13504 to_intel_encoder(conn_state->best_encoder); 13505 int ret; 13506 13507 if (conn_state->crtc != &crtc->base || 13508 !encoder->compute_config_late) 13509 continue; 13510 13511 ret = encoder->compute_config_late(encoder, crtc_state, 13512 conn_state); 13513 if (ret) 13514 return ret; 13515 } 13516 13517 return 0; 13518 } 13519 13520 bool intel_fuzzy_clock_check(int clock1, int clock2) 13521 { 13522 int diff; 13523 13524 if (clock1 == clock2) 13525 return true; 13526 13527 if (!clock1 || !clock2) 13528 return false; 13529 13530 diff = abs(clock1 - clock2); 13531 13532 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 13533 return true; 13534 13535 return false; 13536 } 13537 13538 static bool 13539 intel_compare_m_n(unsigned int m, unsigned int n, 13540 unsigned int m2, unsigned int n2, 13541 bool exact) 13542 { 13543 if (m == m2 && n == n2) 13544 return true; 13545 13546 if (exact || !m || !n || !m2 || !n2) 13547 return false; 13548 13549 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 13550 13551 if (n > n2) { 13552 while (n > n2) { 13553 m2 <<= 1; 13554 n2 <<= 1; 13555 } 13556 } else if (n < n2) { 13557 while (n < n2) { 13558 m <<= 1; 13559 n <<= 1; 13560 } 13561 } 13562 13563 if (n != n2) 13564 return false; 13565 13566 return intel_fuzzy_clock_check(m, m2); 13567 } 13568 13569 static bool 13570 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 13571 const struct intel_link_m_n *m2_n2, 13572 bool exact) 13573 { 13574 return m_n->tu == m2_n2->tu && 13575 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 13576 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 13577 intel_compare_m_n(m_n->link_m, m_n->link_n, 13578 m2_n2->link_m, m2_n2->link_n, exact); 13579 } 13580 13581 static bool 13582 intel_compare_infoframe(const union hdmi_infoframe *a, 13583 const union hdmi_infoframe *b) 13584 { 13585 return memcmp(a, b, sizeof(*a)) == 0; 13586 } 13587 13588 static bool 13589 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a, 13590 const struct drm_dp_vsc_sdp *b) 13591 { 13592 return memcmp(a, b, sizeof(*a)) == 0; 13593 } 13594 13595 static void 13596 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 13597 bool fastset, const char *name, 13598 const union hdmi_infoframe *a, 13599 const union hdmi_infoframe *b) 13600 { 13601 if (fastset) { 13602 if (!drm_debug_enabled(DRM_UT_KMS)) 13603 return; 13604 13605 drm_dbg_kms(&dev_priv->drm, 13606 "fastset mismatch in %s infoframe\n", name); 13607 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 13608 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 13609 drm_dbg_kms(&dev_priv->drm, "found:\n"); 13610 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 13611 } else { 13612 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name); 13613 drm_err(&dev_priv->drm, "expected:\n"); 13614 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 13615 drm_err(&dev_priv->drm, "found:\n"); 13616 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 13617 } 13618 } 13619 13620 static void 13621 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv, 13622 bool fastset, const char *name, 13623 const struct drm_dp_vsc_sdp *a, 13624 const struct drm_dp_vsc_sdp *b) 13625 { 13626 if (fastset) { 13627 if (!drm_debug_enabled(DRM_UT_KMS)) 13628 return; 13629 13630 drm_dbg_kms(&dev_priv->drm, 13631 "fastset mismatch in %s dp sdp\n", name); 13632 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 13633 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a); 13634 drm_dbg_kms(&dev_priv->drm, "found:\n"); 13635 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b); 13636 } else { 13637 drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name); 13638 drm_err(&dev_priv->drm, "expected:\n"); 13639 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a); 13640 drm_err(&dev_priv->drm, "found:\n"); 13641 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b); 13642 } 13643 } 13644 13645 static void __printf(4, 5) 13646 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, 13647 const char *name, const char *format, ...) 13648 { 13649 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 13650 struct va_format vaf; 13651 va_list args; 13652 13653 va_start(args, format); 13654 vaf.fmt = format; 13655 vaf.va = &args; 13656 13657 if (fastset) 13658 drm_dbg_kms(&i915->drm, 13659 "[CRTC:%d:%s] fastset mismatch in %s %pV\n", 13660 crtc->base.base.id, crtc->base.name, name, &vaf); 13661 else 13662 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n", 13663 crtc->base.base.id, crtc->base.name, name, &vaf); 13664 13665 va_end(args); 13666 } 13667 13668 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 13669 { 13670 if (dev_priv->params.fastboot != -1) 13671 return dev_priv->params.fastboot; 13672 13673 /* Enable fastboot by default on Skylake and newer */ 13674 if (INTEL_GEN(dev_priv) >= 9) 13675 return true; 13676 13677 /* Enable fastboot by default on VLV and CHV */ 13678 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13679 return true; 13680 13681 /* Disabled by default on all others */ 13682 return false; 13683 } 13684 13685 static bool 13686 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 13687 const struct intel_crtc_state *pipe_config, 13688 bool fastset) 13689 { 13690 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev); 13691 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 13692 bool ret = true; 13693 u32 bp_gamma = 0; 13694 bool fixup_inherited = fastset && 13695 current_config->inherited && !pipe_config->inherited; 13696 13697 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 13698 drm_dbg_kms(&dev_priv->drm, 13699 "initial modeset and fastboot not set\n"); 13700 ret = false; 13701 } 13702 13703 #define PIPE_CONF_CHECK_X(name) do { \ 13704 if (current_config->name != pipe_config->name) { \ 13705 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13706 "(expected 0x%08x, found 0x%08x)", \ 13707 current_config->name, \ 13708 pipe_config->name); \ 13709 ret = false; \ 13710 } \ 13711 } while (0) 13712 13713 #define PIPE_CONF_CHECK_I(name) do { \ 13714 if (current_config->name != pipe_config->name) { \ 13715 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13716 "(expected %i, found %i)", \ 13717 current_config->name, \ 13718 pipe_config->name); \ 13719 ret = false; \ 13720 } \ 13721 } while (0) 13722 13723 #define PIPE_CONF_CHECK_BOOL(name) do { \ 13724 if (current_config->name != pipe_config->name) { \ 13725 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13726 "(expected %s, found %s)", \ 13727 yesno(current_config->name), \ 13728 yesno(pipe_config->name)); \ 13729 ret = false; \ 13730 } \ 13731 } while (0) 13732 13733 /* 13734 * Checks state where we only read out the enabling, but not the entire 13735 * state itself (like full infoframes or ELD for audio). These states 13736 * require a full modeset on bootup to fix up. 13737 */ 13738 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 13739 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 13740 PIPE_CONF_CHECK_BOOL(name); \ 13741 } else { \ 13742 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13743 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ 13744 yesno(current_config->name), \ 13745 yesno(pipe_config->name)); \ 13746 ret = false; \ 13747 } \ 13748 } while (0) 13749 13750 #define PIPE_CONF_CHECK_P(name) do { \ 13751 if (current_config->name != pipe_config->name) { \ 13752 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13753 "(expected %p, found %p)", \ 13754 current_config->name, \ 13755 pipe_config->name); \ 13756 ret = false; \ 13757 } \ 13758 } while (0) 13759 13760 #define PIPE_CONF_CHECK_M_N(name) do { \ 13761 if (!intel_compare_link_m_n(¤t_config->name, \ 13762 &pipe_config->name,\ 13763 !fastset)) { \ 13764 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13765 "(expected tu %i gmch %i/%i link %i/%i, " \ 13766 "found tu %i, gmch %i/%i link %i/%i)", \ 13767 current_config->name.tu, \ 13768 current_config->name.gmch_m, \ 13769 current_config->name.gmch_n, \ 13770 current_config->name.link_m, \ 13771 current_config->name.link_n, \ 13772 pipe_config->name.tu, \ 13773 pipe_config->name.gmch_m, \ 13774 pipe_config->name.gmch_n, \ 13775 pipe_config->name.link_m, \ 13776 pipe_config->name.link_n); \ 13777 ret = false; \ 13778 } \ 13779 } while (0) 13780 13781 /* This is required for BDW+ where there is only one set of registers for 13782 * switching between high and low RR. 13783 * This macro can be used whenever a comparison has to be made between one 13784 * hw state and multiple sw state variables. 13785 */ 13786 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 13787 if (!intel_compare_link_m_n(¤t_config->name, \ 13788 &pipe_config->name, !fastset) && \ 13789 !intel_compare_link_m_n(¤t_config->alt_name, \ 13790 &pipe_config->name, !fastset)) { \ 13791 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13792 "(expected tu %i gmch %i/%i link %i/%i, " \ 13793 "or tu %i gmch %i/%i link %i/%i, " \ 13794 "found tu %i, gmch %i/%i link %i/%i)", \ 13795 current_config->name.tu, \ 13796 current_config->name.gmch_m, \ 13797 current_config->name.gmch_n, \ 13798 current_config->name.link_m, \ 13799 current_config->name.link_n, \ 13800 current_config->alt_name.tu, \ 13801 current_config->alt_name.gmch_m, \ 13802 current_config->alt_name.gmch_n, \ 13803 current_config->alt_name.link_m, \ 13804 current_config->alt_name.link_n, \ 13805 pipe_config->name.tu, \ 13806 pipe_config->name.gmch_m, \ 13807 pipe_config->name.gmch_n, \ 13808 pipe_config->name.link_m, \ 13809 pipe_config->name.link_n); \ 13810 ret = false; \ 13811 } \ 13812 } while (0) 13813 13814 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 13815 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 13816 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13817 "(%x) (expected %i, found %i)", \ 13818 (mask), \ 13819 current_config->name & (mask), \ 13820 pipe_config->name & (mask)); \ 13821 ret = false; \ 13822 } \ 13823 } while (0) 13824 13825 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 13826 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 13827 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13828 "(expected %i, found %i)", \ 13829 current_config->name, \ 13830 pipe_config->name); \ 13831 ret = false; \ 13832 } \ 13833 } while (0) 13834 13835 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 13836 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 13837 &pipe_config->infoframes.name)) { \ 13838 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 13839 ¤t_config->infoframes.name, \ 13840 &pipe_config->infoframes.name); \ 13841 ret = false; \ 13842 } \ 13843 } while (0) 13844 13845 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \ 13846 if (!current_config->has_psr && !pipe_config->has_psr && \ 13847 !intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \ 13848 &pipe_config->infoframes.name)) { \ 13849 pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \ 13850 ¤t_config->infoframes.name, \ 13851 &pipe_config->infoframes.name); \ 13852 ret = false; \ 13853 } \ 13854 } while (0) 13855 13856 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ 13857 if (current_config->name1 != pipe_config->name1) { \ 13858 pipe_config_mismatch(fastset, crtc, __stringify(name1), \ 13859 "(expected %i, found %i, won't compare lut values)", \ 13860 current_config->name1, \ 13861 pipe_config->name1); \ 13862 ret = false;\ 13863 } else { \ 13864 if (!intel_color_lut_equal(current_config->name2, \ 13865 pipe_config->name2, pipe_config->name1, \ 13866 bit_precision)) { \ 13867 pipe_config_mismatch(fastset, crtc, __stringify(name2), \ 13868 "hw_state doesn't match sw_state"); \ 13869 ret = false; \ 13870 } \ 13871 } \ 13872 } while (0) 13873 13874 #define PIPE_CONF_QUIRK(quirk) \ 13875 ((current_config->quirks | pipe_config->quirks) & (quirk)) 13876 13877 PIPE_CONF_CHECK_I(cpu_transcoder); 13878 13879 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 13880 PIPE_CONF_CHECK_I(fdi_lanes); 13881 PIPE_CONF_CHECK_M_N(fdi_m_n); 13882 13883 PIPE_CONF_CHECK_I(lane_count); 13884 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 13885 13886 if (INTEL_GEN(dev_priv) < 8) { 13887 PIPE_CONF_CHECK_M_N(dp_m_n); 13888 13889 if (current_config->has_drrs) 13890 PIPE_CONF_CHECK_M_N(dp_m2_n2); 13891 } else 13892 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 13893 13894 PIPE_CONF_CHECK_X(output_types); 13895 13896 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay); 13897 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal); 13898 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start); 13899 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end); 13900 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start); 13901 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end); 13902 13903 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay); 13904 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal); 13905 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start); 13906 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end); 13907 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start); 13908 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end); 13909 13910 PIPE_CONF_CHECK_I(pixel_multiplier); 13911 PIPE_CONF_CHECK_I(output_format); 13912 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 13913 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 13914 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13915 PIPE_CONF_CHECK_BOOL(limited_color_range); 13916 13917 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 13918 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 13919 PIPE_CONF_CHECK_BOOL(has_infoframe); 13920 PIPE_CONF_CHECK_BOOL(fec_enable); 13921 13922 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 13923 13924 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13925 DRM_MODE_FLAG_INTERLACE); 13926 13927 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 13928 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13929 DRM_MODE_FLAG_PHSYNC); 13930 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13931 DRM_MODE_FLAG_NHSYNC); 13932 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13933 DRM_MODE_FLAG_PVSYNC); 13934 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13935 DRM_MODE_FLAG_NVSYNC); 13936 } 13937 13938 PIPE_CONF_CHECK_X(gmch_pfit.control); 13939 /* pfit ratios are autocomputed by the hw on gen4+ */ 13940 if (INTEL_GEN(dev_priv) < 4) 13941 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 13942 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 13943 13944 /* 13945 * Changing the EDP transcoder input mux 13946 * (A_ONOFF vs. A_ON) requires a full modeset. 13947 */ 13948 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 13949 13950 if (!fastset) { 13951 PIPE_CONF_CHECK_I(pipe_src_w); 13952 PIPE_CONF_CHECK_I(pipe_src_h); 13953 13954 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 13955 if (current_config->pch_pfit.enabled) { 13956 PIPE_CONF_CHECK_I(pch_pfit.dst.x1); 13957 PIPE_CONF_CHECK_I(pch_pfit.dst.y1); 13958 PIPE_CONF_CHECK_I(pch_pfit.dst.x2); 13959 PIPE_CONF_CHECK_I(pch_pfit.dst.y2); 13960 } 13961 13962 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 13963 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 13964 13965 PIPE_CONF_CHECK_X(gamma_mode); 13966 if (IS_CHERRYVIEW(dev_priv)) 13967 PIPE_CONF_CHECK_X(cgm_mode); 13968 else 13969 PIPE_CONF_CHECK_X(csc_mode); 13970 PIPE_CONF_CHECK_BOOL(gamma_enable); 13971 PIPE_CONF_CHECK_BOOL(csc_enable); 13972 13973 PIPE_CONF_CHECK_I(linetime); 13974 PIPE_CONF_CHECK_I(ips_linetime); 13975 13976 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); 13977 if (bp_gamma) 13978 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma); 13979 } 13980 13981 PIPE_CONF_CHECK_BOOL(double_wide); 13982 13983 PIPE_CONF_CHECK_P(shared_dpll); 13984 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 13985 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 13986 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 13987 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 13988 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 13989 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 13990 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 13991 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 13992 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 13993 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 13994 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 13995 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 13996 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 13997 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 13998 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 13999 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 14000 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 14001 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 14002 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 14003 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 14004 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 14005 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 14006 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 14007 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 14008 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 14009 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 14010 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 14011 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 14012 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 14013 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 14014 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 14015 14016 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 14017 PIPE_CONF_CHECK_X(dsi_pll.div); 14018 14019 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) 14020 PIPE_CONF_CHECK_I(pipe_bpp); 14021 14022 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock); 14023 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 14024 14025 PIPE_CONF_CHECK_I(min_voltage_level); 14026 14027 PIPE_CONF_CHECK_X(infoframes.enable); 14028 PIPE_CONF_CHECK_X(infoframes.gcp); 14029 PIPE_CONF_CHECK_INFOFRAME(avi); 14030 PIPE_CONF_CHECK_INFOFRAME(spd); 14031 PIPE_CONF_CHECK_INFOFRAME(hdmi); 14032 PIPE_CONF_CHECK_INFOFRAME(drm); 14033 PIPE_CONF_CHECK_DP_VSC_SDP(vsc); 14034 14035 PIPE_CONF_CHECK_X(sync_mode_slaves_mask); 14036 PIPE_CONF_CHECK_I(master_transcoder); 14037 14038 PIPE_CONF_CHECK_I(dsc.compression_enable); 14039 PIPE_CONF_CHECK_I(dsc.dsc_split); 14040 PIPE_CONF_CHECK_I(dsc.compressed_bpp); 14041 14042 PIPE_CONF_CHECK_I(mst_master_transcoder); 14043 14044 #undef PIPE_CONF_CHECK_X 14045 #undef PIPE_CONF_CHECK_I 14046 #undef PIPE_CONF_CHECK_BOOL 14047 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 14048 #undef PIPE_CONF_CHECK_P 14049 #undef PIPE_CONF_CHECK_FLAGS 14050 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 14051 #undef PIPE_CONF_CHECK_COLOR_LUT 14052 #undef PIPE_CONF_QUIRK 14053 14054 return ret; 14055 } 14056 14057 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 14058 const struct intel_crtc_state *pipe_config) 14059 { 14060 if (pipe_config->has_pch_encoder) { 14061 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 14062 &pipe_config->fdi_m_n); 14063 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock; 14064 14065 /* 14066 * FDI already provided one idea for the dotclock. 14067 * Yell if the encoder disagrees. 14068 */ 14069 drm_WARN(&dev_priv->drm, 14070 !intel_fuzzy_clock_check(fdi_dotclock, dotclock), 14071 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 14072 fdi_dotclock, dotclock); 14073 } 14074 } 14075 14076 static void verify_wm_state(struct intel_crtc *crtc, 14077 struct intel_crtc_state *new_crtc_state) 14078 { 14079 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14080 struct skl_hw_state { 14081 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 14082 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 14083 struct skl_pipe_wm wm; 14084 } *hw; 14085 struct skl_pipe_wm *sw_wm; 14086 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 14087 u8 hw_enabled_slices; 14088 const enum pipe pipe = crtc->pipe; 14089 int plane, level, max_level = ilk_wm_max_level(dev_priv); 14090 14091 if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active) 14092 return; 14093 14094 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 14095 if (!hw) 14096 return; 14097 14098 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 14099 sw_wm = &new_crtc_state->wm.skl.optimal; 14100 14101 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 14102 14103 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv); 14104 14105 if (INTEL_GEN(dev_priv) >= 11 && 14106 hw_enabled_slices != dev_priv->dbuf.enabled_slices) 14107 drm_err(&dev_priv->drm, 14108 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", 14109 dev_priv->dbuf.enabled_slices, 14110 hw_enabled_slices); 14111 14112 /* planes */ 14113 for_each_universal_plane(dev_priv, pipe, plane) { 14114 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 14115 14116 hw_plane_wm = &hw->wm.planes[plane]; 14117 sw_plane_wm = &sw_wm->planes[plane]; 14118 14119 /* Watermarks */ 14120 for (level = 0; level <= max_level; level++) { 14121 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 14122 &sw_plane_wm->wm[level]) || 14123 (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level], 14124 &sw_plane_wm->sagv_wm0))) 14125 continue; 14126 14127 drm_err(&dev_priv->drm, 14128 "mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14129 pipe_name(pipe), plane + 1, level, 14130 sw_plane_wm->wm[level].plane_en, 14131 sw_plane_wm->wm[level].plane_res_b, 14132 sw_plane_wm->wm[level].plane_res_l, 14133 hw_plane_wm->wm[level].plane_en, 14134 hw_plane_wm->wm[level].plane_res_b, 14135 hw_plane_wm->wm[level].plane_res_l); 14136 } 14137 14138 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 14139 &sw_plane_wm->trans_wm)) { 14140 drm_err(&dev_priv->drm, 14141 "mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14142 pipe_name(pipe), plane + 1, 14143 sw_plane_wm->trans_wm.plane_en, 14144 sw_plane_wm->trans_wm.plane_res_b, 14145 sw_plane_wm->trans_wm.plane_res_l, 14146 hw_plane_wm->trans_wm.plane_en, 14147 hw_plane_wm->trans_wm.plane_res_b, 14148 hw_plane_wm->trans_wm.plane_res_l); 14149 } 14150 14151 /* DDB */ 14152 hw_ddb_entry = &hw->ddb_y[plane]; 14153 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane]; 14154 14155 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 14156 drm_err(&dev_priv->drm, 14157 "mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n", 14158 pipe_name(pipe), plane + 1, 14159 sw_ddb_entry->start, sw_ddb_entry->end, 14160 hw_ddb_entry->start, hw_ddb_entry->end); 14161 } 14162 } 14163 14164 /* 14165 * cursor 14166 * If the cursor plane isn't active, we may not have updated it's ddb 14167 * allocation. In that case since the ddb allocation will be updated 14168 * once the plane becomes visible, we can skip this check 14169 */ 14170 if (1) { 14171 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 14172 14173 hw_plane_wm = &hw->wm.planes[PLANE_CURSOR]; 14174 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR]; 14175 14176 /* Watermarks */ 14177 for (level = 0; level <= max_level; level++) { 14178 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 14179 &sw_plane_wm->wm[level]) || 14180 (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level], 14181 &sw_plane_wm->sagv_wm0))) 14182 continue; 14183 14184 drm_err(&dev_priv->drm, 14185 "mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14186 pipe_name(pipe), level, 14187 sw_plane_wm->wm[level].plane_en, 14188 sw_plane_wm->wm[level].plane_res_b, 14189 sw_plane_wm->wm[level].plane_res_l, 14190 hw_plane_wm->wm[level].plane_en, 14191 hw_plane_wm->wm[level].plane_res_b, 14192 hw_plane_wm->wm[level].plane_res_l); 14193 } 14194 14195 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 14196 &sw_plane_wm->trans_wm)) { 14197 drm_err(&dev_priv->drm, 14198 "mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14199 pipe_name(pipe), 14200 sw_plane_wm->trans_wm.plane_en, 14201 sw_plane_wm->trans_wm.plane_res_b, 14202 sw_plane_wm->trans_wm.plane_res_l, 14203 hw_plane_wm->trans_wm.plane_en, 14204 hw_plane_wm->trans_wm.plane_res_b, 14205 hw_plane_wm->trans_wm.plane_res_l); 14206 } 14207 14208 /* DDB */ 14209 hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR]; 14210 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR]; 14211 14212 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 14213 drm_err(&dev_priv->drm, 14214 "mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n", 14215 pipe_name(pipe), 14216 sw_ddb_entry->start, sw_ddb_entry->end, 14217 hw_ddb_entry->start, hw_ddb_entry->end); 14218 } 14219 } 14220 14221 kfree(hw); 14222 } 14223 14224 static void 14225 verify_connector_state(struct intel_atomic_state *state, 14226 struct intel_crtc *crtc) 14227 { 14228 struct drm_connector *connector; 14229 struct drm_connector_state *new_conn_state; 14230 int i; 14231 14232 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 14233 struct drm_encoder *encoder = connector->encoder; 14234 struct intel_crtc_state *crtc_state = NULL; 14235 14236 if (new_conn_state->crtc != &crtc->base) 14237 continue; 14238 14239 if (crtc) 14240 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 14241 14242 intel_connector_verify_state(crtc_state, new_conn_state); 14243 14244 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 14245 "connector's atomic encoder doesn't match legacy encoder\n"); 14246 } 14247 } 14248 14249 static void 14250 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 14251 { 14252 struct intel_encoder *encoder; 14253 struct drm_connector *connector; 14254 struct drm_connector_state *old_conn_state, *new_conn_state; 14255 int i; 14256 14257 for_each_intel_encoder(&dev_priv->drm, encoder) { 14258 bool enabled = false, found = false; 14259 enum pipe pipe; 14260 14261 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n", 14262 encoder->base.base.id, 14263 encoder->base.name); 14264 14265 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 14266 new_conn_state, i) { 14267 if (old_conn_state->best_encoder == &encoder->base) 14268 found = true; 14269 14270 if (new_conn_state->best_encoder != &encoder->base) 14271 continue; 14272 found = enabled = true; 14273 14274 I915_STATE_WARN(new_conn_state->crtc != 14275 encoder->base.crtc, 14276 "connector's crtc doesn't match encoder crtc\n"); 14277 } 14278 14279 if (!found) 14280 continue; 14281 14282 I915_STATE_WARN(!!encoder->base.crtc != enabled, 14283 "encoder's enabled state mismatch " 14284 "(expected %i, found %i)\n", 14285 !!encoder->base.crtc, enabled); 14286 14287 if (!encoder->base.crtc) { 14288 bool active; 14289 14290 active = encoder->get_hw_state(encoder, &pipe); 14291 I915_STATE_WARN(active, 14292 "encoder detached but still enabled on pipe %c.\n", 14293 pipe_name(pipe)); 14294 } 14295 } 14296 } 14297 14298 static void 14299 verify_crtc_state(struct intel_crtc *crtc, 14300 struct intel_crtc_state *old_crtc_state, 14301 struct intel_crtc_state *new_crtc_state) 14302 { 14303 struct drm_device *dev = crtc->base.dev; 14304 struct drm_i915_private *dev_priv = to_i915(dev); 14305 struct intel_encoder *encoder; 14306 struct intel_crtc_state *pipe_config = old_crtc_state; 14307 struct drm_atomic_state *state = old_crtc_state->uapi.state; 14308 14309 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi); 14310 intel_crtc_free_hw_state(old_crtc_state); 14311 intel_crtc_state_reset(old_crtc_state, crtc); 14312 old_crtc_state->uapi.state = state; 14313 14314 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id, 14315 crtc->base.name); 14316 14317 pipe_config->hw.enable = new_crtc_state->hw.enable; 14318 14319 pipe_config->hw.active = 14320 dev_priv->display.get_pipe_config(crtc, pipe_config); 14321 14322 /* we keep both pipes enabled on 830 */ 14323 if (IS_I830(dev_priv) && pipe_config->hw.active) 14324 pipe_config->hw.active = new_crtc_state->hw.active; 14325 14326 I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active, 14327 "crtc active state doesn't match with hw state " 14328 "(expected %i, found %i)\n", 14329 new_crtc_state->hw.active, pipe_config->hw.active); 14330 14331 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active, 14332 "transitional active state does not match atomic hw state " 14333 "(expected %i, found %i)\n", 14334 new_crtc_state->hw.active, crtc->active); 14335 14336 for_each_encoder_on_crtc(dev, &crtc->base, encoder) { 14337 enum pipe pipe; 14338 bool active; 14339 14340 active = encoder->get_hw_state(encoder, &pipe); 14341 I915_STATE_WARN(active != new_crtc_state->hw.active, 14342 "[ENCODER:%i] active %i with crtc active %i\n", 14343 encoder->base.base.id, active, 14344 new_crtc_state->hw.active); 14345 14346 I915_STATE_WARN(active && crtc->pipe != pipe, 14347 "Encoder connected to wrong pipe %c\n", 14348 pipe_name(pipe)); 14349 14350 if (active) 14351 encoder->get_config(encoder, pipe_config); 14352 } 14353 14354 intel_crtc_compute_pixel_rate(pipe_config); 14355 14356 if (!new_crtc_state->hw.active) 14357 return; 14358 14359 intel_pipe_config_sanity_check(dev_priv, pipe_config); 14360 14361 if (!intel_pipe_config_compare(new_crtc_state, 14362 pipe_config, false)) { 14363 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 14364 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 14365 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 14366 } 14367 } 14368 14369 static void 14370 intel_verify_planes(struct intel_atomic_state *state) 14371 { 14372 struct intel_plane *plane; 14373 const struct intel_plane_state *plane_state; 14374 int i; 14375 14376 for_each_new_intel_plane_in_state(state, plane, 14377 plane_state, i) 14378 assert_plane(plane, plane_state->planar_slave || 14379 plane_state->uapi.visible); 14380 } 14381 14382 static void 14383 verify_single_dpll_state(struct drm_i915_private *dev_priv, 14384 struct intel_shared_dpll *pll, 14385 struct intel_crtc *crtc, 14386 struct intel_crtc_state *new_crtc_state) 14387 { 14388 struct intel_dpll_hw_state dpll_hw_state; 14389 unsigned int crtc_mask; 14390 bool active; 14391 14392 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 14393 14394 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name); 14395 14396 active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state); 14397 14398 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 14399 I915_STATE_WARN(!pll->on && pll->active_mask, 14400 "pll in active use but not on in sw tracking\n"); 14401 I915_STATE_WARN(pll->on && !pll->active_mask, 14402 "pll is on but not used by any active crtc\n"); 14403 I915_STATE_WARN(pll->on != active, 14404 "pll on state mismatch (expected %i, found %i)\n", 14405 pll->on, active); 14406 } 14407 14408 if (!crtc) { 14409 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask, 14410 "more active pll users than references: %x vs %x\n", 14411 pll->active_mask, pll->state.crtc_mask); 14412 14413 return; 14414 } 14415 14416 crtc_mask = drm_crtc_mask(&crtc->base); 14417 14418 if (new_crtc_state->hw.active) 14419 I915_STATE_WARN(!(pll->active_mask & crtc_mask), 14420 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n", 14421 pipe_name(crtc->pipe), pll->active_mask); 14422 else 14423 I915_STATE_WARN(pll->active_mask & crtc_mask, 14424 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n", 14425 pipe_name(crtc->pipe), pll->active_mask); 14426 14427 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask), 14428 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n", 14429 crtc_mask, pll->state.crtc_mask); 14430 14431 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 14432 &dpll_hw_state, 14433 sizeof(dpll_hw_state)), 14434 "pll hw state mismatch\n"); 14435 } 14436 14437 static void 14438 verify_shared_dpll_state(struct intel_crtc *crtc, 14439 struct intel_crtc_state *old_crtc_state, 14440 struct intel_crtc_state *new_crtc_state) 14441 { 14442 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14443 14444 if (new_crtc_state->shared_dpll) 14445 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 14446 14447 if (old_crtc_state->shared_dpll && 14448 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 14449 unsigned int crtc_mask = drm_crtc_mask(&crtc->base); 14450 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 14451 14452 I915_STATE_WARN(pll->active_mask & crtc_mask, 14453 "pll active mismatch (didn't expect pipe %c in active mask)\n", 14454 pipe_name(crtc->pipe)); 14455 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask, 14456 "pll enabled crtcs mismatch (found %x in enabled mask)\n", 14457 pipe_name(crtc->pipe)); 14458 } 14459 } 14460 14461 static void 14462 intel_modeset_verify_crtc(struct intel_crtc *crtc, 14463 struct intel_atomic_state *state, 14464 struct intel_crtc_state *old_crtc_state, 14465 struct intel_crtc_state *new_crtc_state) 14466 { 14467 if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 14468 return; 14469 14470 verify_wm_state(crtc, new_crtc_state); 14471 verify_connector_state(state, crtc); 14472 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 14473 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 14474 } 14475 14476 static void 14477 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 14478 { 14479 int i; 14480 14481 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) 14482 verify_single_dpll_state(dev_priv, 14483 &dev_priv->dpll.shared_dplls[i], 14484 NULL, NULL); 14485 } 14486 14487 static void 14488 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 14489 struct intel_atomic_state *state) 14490 { 14491 verify_encoder_state(dev_priv, state); 14492 verify_connector_state(state, NULL); 14493 verify_disabled_dpll_state(dev_priv); 14494 } 14495 14496 static void 14497 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) 14498 { 14499 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 14500 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14501 const struct drm_display_mode *adjusted_mode = 14502 &crtc_state->hw.adjusted_mode; 14503 14504 drm_calc_timestamping_constants(&crtc->base, adjusted_mode); 14505 14506 crtc->mode_flags = crtc_state->mode_flags; 14507 14508 /* 14509 * The scanline counter increments at the leading edge of hsync. 14510 * 14511 * On most platforms it starts counting from vtotal-1 on the 14512 * first active line. That means the scanline counter value is 14513 * always one less than what we would expect. Ie. just after 14514 * start of vblank, which also occurs at start of hsync (on the 14515 * last active line), the scanline counter will read vblank_start-1. 14516 * 14517 * On gen2 the scanline counter starts counting from 1 instead 14518 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 14519 * to keep the value positive), instead of adding one. 14520 * 14521 * On HSW+ the behaviour of the scanline counter depends on the output 14522 * type. For DP ports it behaves like most other platforms, but on HDMI 14523 * there's an extra 1 line difference. So we need to add two instead of 14524 * one to the value. 14525 * 14526 * On VLV/CHV DSI the scanline counter would appear to increment 14527 * approx. 1/3 of a scanline before start of vblank. Unfortunately 14528 * that means we can't tell whether we're in vblank or not while 14529 * we're on that particular line. We must still set scanline_offset 14530 * to 1 so that the vblank timestamps come out correct when we query 14531 * the scanline counter from within the vblank interrupt handler. 14532 * However if queried just before the start of vblank we'll get an 14533 * answer that's slightly in the future. 14534 */ 14535 if (IS_GEN(dev_priv, 2)) { 14536 int vtotal; 14537 14538 vtotal = adjusted_mode->crtc_vtotal; 14539 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 14540 vtotal /= 2; 14541 14542 crtc->scanline_offset = vtotal - 1; 14543 } else if (HAS_DDI(dev_priv) && 14544 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 14545 crtc->scanline_offset = 2; 14546 } else { 14547 crtc->scanline_offset = 1; 14548 } 14549 } 14550 14551 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 14552 { 14553 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14554 struct intel_crtc_state *new_crtc_state; 14555 struct intel_crtc *crtc; 14556 int i; 14557 14558 if (!dev_priv->display.crtc_compute_clock) 14559 return; 14560 14561 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14562 if (!needs_modeset(new_crtc_state)) 14563 continue; 14564 14565 intel_release_shared_dplls(state, crtc); 14566 } 14567 } 14568 14569 /* 14570 * This implements the workaround described in the "notes" section of the mode 14571 * set sequence documentation. When going from no pipes or single pipe to 14572 * multiple pipes, and planes are enabled after the pipe, we need to wait at 14573 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 14574 */ 14575 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) 14576 { 14577 struct intel_crtc_state *crtc_state; 14578 struct intel_crtc *crtc; 14579 struct intel_crtc_state *first_crtc_state = NULL; 14580 struct intel_crtc_state *other_crtc_state = NULL; 14581 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 14582 int i; 14583 14584 /* look at all crtc's that are going to be enabled in during modeset */ 14585 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14586 if (!crtc_state->hw.active || 14587 !needs_modeset(crtc_state)) 14588 continue; 14589 14590 if (first_crtc_state) { 14591 other_crtc_state = crtc_state; 14592 break; 14593 } else { 14594 first_crtc_state = crtc_state; 14595 first_pipe = crtc->pipe; 14596 } 14597 } 14598 14599 /* No workaround needed? */ 14600 if (!first_crtc_state) 14601 return 0; 14602 14603 /* w/a possibly needed, check how many crtc's are already enabled. */ 14604 for_each_intel_crtc(state->base.dev, crtc) { 14605 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 14606 if (IS_ERR(crtc_state)) 14607 return PTR_ERR(crtc_state); 14608 14609 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 14610 14611 if (!crtc_state->hw.active || 14612 needs_modeset(crtc_state)) 14613 continue; 14614 14615 /* 2 or more enabled crtcs means no need for w/a */ 14616 if (enabled_pipe != INVALID_PIPE) 14617 return 0; 14618 14619 enabled_pipe = crtc->pipe; 14620 } 14621 14622 if (enabled_pipe != INVALID_PIPE) 14623 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 14624 else if (other_crtc_state) 14625 other_crtc_state->hsw_workaround_pipe = first_pipe; 14626 14627 return 0; 14628 } 14629 14630 u8 intel_calc_active_pipes(struct intel_atomic_state *state, 14631 u8 active_pipes) 14632 { 14633 const struct intel_crtc_state *crtc_state; 14634 struct intel_crtc *crtc; 14635 int i; 14636 14637 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14638 if (crtc_state->hw.active) 14639 active_pipes |= BIT(crtc->pipe); 14640 else 14641 active_pipes &= ~BIT(crtc->pipe); 14642 } 14643 14644 return active_pipes; 14645 } 14646 14647 static int intel_modeset_checks(struct intel_atomic_state *state) 14648 { 14649 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14650 14651 state->modeset = true; 14652 14653 if (IS_HASWELL(dev_priv)) 14654 return hsw_mode_set_planes_workaround(state); 14655 14656 return 0; 14657 } 14658 14659 /* 14660 * Handle calculation of various watermark data at the end of the atomic check 14661 * phase. The code here should be run after the per-crtc and per-plane 'check' 14662 * handlers to ensure that all derived state has been updated. 14663 */ 14664 static int calc_watermark_data(struct intel_atomic_state *state) 14665 { 14666 struct drm_device *dev = state->base.dev; 14667 struct drm_i915_private *dev_priv = to_i915(dev); 14668 14669 /* Is there platform-specific watermark information to calculate? */ 14670 if (dev_priv->display.compute_global_watermarks) 14671 return dev_priv->display.compute_global_watermarks(state); 14672 14673 return 0; 14674 } 14675 14676 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 14677 struct intel_crtc_state *new_crtc_state) 14678 { 14679 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 14680 return; 14681 14682 new_crtc_state->uapi.mode_changed = false; 14683 new_crtc_state->update_pipe = true; 14684 } 14685 14686 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state, 14687 struct intel_crtc_state *new_crtc_state) 14688 { 14689 /* 14690 * If we're not doing the full modeset we want to 14691 * keep the current M/N values as they may be 14692 * sufficiently different to the computed values 14693 * to cause problems. 14694 * 14695 * FIXME: should really copy more fuzzy state here 14696 */ 14697 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 14698 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 14699 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 14700 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 14701 } 14702 14703 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, 14704 struct intel_crtc *crtc, 14705 u8 plane_ids_mask) 14706 { 14707 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14708 struct intel_plane *plane; 14709 14710 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 14711 struct intel_plane_state *plane_state; 14712 14713 if ((plane_ids_mask & BIT(plane->id)) == 0) 14714 continue; 14715 14716 plane_state = intel_atomic_get_plane_state(state, plane); 14717 if (IS_ERR(plane_state)) 14718 return PTR_ERR(plane_state); 14719 } 14720 14721 return 0; 14722 } 14723 14724 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) 14725 { 14726 /* See {hsw,vlv,ivb}_plane_ratio() */ 14727 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || 14728 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || 14729 IS_IVYBRIDGE(dev_priv) || (INTEL_GEN(dev_priv) >= 11); 14730 } 14731 14732 static int intel_atomic_check_planes(struct intel_atomic_state *state) 14733 { 14734 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14735 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 14736 struct intel_plane_state *plane_state; 14737 struct intel_plane *plane; 14738 struct intel_crtc *crtc; 14739 int i, ret; 14740 14741 ret = icl_add_linked_planes(state); 14742 if (ret) 14743 return ret; 14744 14745 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 14746 ret = intel_plane_atomic_check(state, plane); 14747 if (ret) { 14748 drm_dbg_atomic(&dev_priv->drm, 14749 "[PLANE:%d:%s] atomic driver check failed\n", 14750 plane->base.base.id, plane->base.name); 14751 return ret; 14752 } 14753 } 14754 14755 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14756 new_crtc_state, i) { 14757 u8 old_active_planes, new_active_planes; 14758 14759 ret = icl_check_nv12_planes(new_crtc_state); 14760 if (ret) 14761 return ret; 14762 14763 /* 14764 * On some platforms the number of active planes affects 14765 * the planes' minimum cdclk calculation. Add such planes 14766 * to the state before we compute the minimum cdclk. 14767 */ 14768 if (!active_planes_affects_min_cdclk(dev_priv)) 14769 continue; 14770 14771 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 14772 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 14773 14774 /* 14775 * Not only the number of planes, but if the plane configuration had 14776 * changed might already mean we need to recompute min CDCLK, 14777 * because different planes might consume different amount of Dbuf bandwidth 14778 * according to formula: Bw per plane = Pixel rate * bpp * pipe/plane scale factor 14779 */ 14780 if (old_active_planes == new_active_planes) 14781 continue; 14782 14783 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); 14784 if (ret) 14785 return ret; 14786 } 14787 14788 return 0; 14789 } 14790 14791 static int intel_atomic_check_cdclk(struct intel_atomic_state *state, 14792 bool *need_cdclk_calc) 14793 { 14794 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14795 const struct intel_cdclk_state *old_cdclk_state; 14796 const struct intel_cdclk_state *new_cdclk_state; 14797 struct intel_plane_state *plane_state; 14798 struct intel_bw_state *new_bw_state; 14799 struct intel_plane *plane; 14800 int min_cdclk = 0; 14801 enum pipe pipe; 14802 int ret; 14803 int i; 14804 /* 14805 * active_planes bitmask has been updated, and potentially 14806 * affected planes are part of the state. We can now 14807 * compute the minimum cdclk for each plane. 14808 */ 14809 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 14810 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 14811 if (ret) 14812 return ret; 14813 } 14814 14815 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 14816 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 14817 14818 if (new_cdclk_state && 14819 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk) 14820 *need_cdclk_calc = true; 14821 14822 ret = dev_priv->display.bw_calc_min_cdclk(state); 14823 if (ret) 14824 return ret; 14825 14826 new_bw_state = intel_atomic_get_new_bw_state(state); 14827 14828 if (!new_cdclk_state || !new_bw_state) 14829 return 0; 14830 14831 for_each_pipe(dev_priv, pipe) { 14832 min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk); 14833 14834 /* 14835 * Currently do this change only if we need to increase 14836 */ 14837 if (new_bw_state->min_cdclk > min_cdclk) 14838 *need_cdclk_calc = true; 14839 } 14840 14841 return 0; 14842 } 14843 14844 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 14845 { 14846 struct intel_crtc_state *crtc_state; 14847 struct intel_crtc *crtc; 14848 int i; 14849 14850 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14851 int ret = intel_crtc_atomic_check(state, crtc); 14852 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 14853 if (ret) { 14854 drm_dbg_atomic(&i915->drm, 14855 "[CRTC:%d:%s] atomic driver check failed\n", 14856 crtc->base.base.id, crtc->base.name); 14857 return ret; 14858 } 14859 } 14860 14861 return 0; 14862 } 14863 14864 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, 14865 u8 transcoders) 14866 { 14867 const struct intel_crtc_state *new_crtc_state; 14868 struct intel_crtc *crtc; 14869 int i; 14870 14871 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14872 if (new_crtc_state->hw.enable && 14873 transcoders & BIT(new_crtc_state->cpu_transcoder) && 14874 needs_modeset(new_crtc_state)) 14875 return true; 14876 } 14877 14878 return false; 14879 } 14880 14881 /** 14882 * intel_atomic_check - validate state object 14883 * @dev: drm device 14884 * @_state: state to validate 14885 */ 14886 static int intel_atomic_check(struct drm_device *dev, 14887 struct drm_atomic_state *_state) 14888 { 14889 struct drm_i915_private *dev_priv = to_i915(dev); 14890 struct intel_atomic_state *state = to_intel_atomic_state(_state); 14891 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 14892 struct intel_crtc *crtc; 14893 int ret, i; 14894 bool any_ms = false; 14895 14896 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14897 new_crtc_state, i) { 14898 if (new_crtc_state->inherited != old_crtc_state->inherited) 14899 new_crtc_state->uapi.mode_changed = true; 14900 } 14901 14902 ret = drm_atomic_helper_check_modeset(dev, &state->base); 14903 if (ret) 14904 goto fail; 14905 14906 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14907 new_crtc_state, i) { 14908 if (!needs_modeset(new_crtc_state)) { 14909 /* Light copy */ 14910 intel_crtc_copy_uapi_to_hw_state_nomodeset(new_crtc_state); 14911 14912 continue; 14913 } 14914 14915 ret = intel_crtc_prepare_cleared_state(new_crtc_state); 14916 if (ret) 14917 goto fail; 14918 14919 if (!new_crtc_state->hw.enable) 14920 continue; 14921 14922 ret = intel_modeset_pipe_config(new_crtc_state); 14923 if (ret) 14924 goto fail; 14925 } 14926 14927 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14928 new_crtc_state, i) { 14929 if (!needs_modeset(new_crtc_state)) 14930 continue; 14931 14932 ret = intel_modeset_pipe_config_late(new_crtc_state); 14933 if (ret) 14934 goto fail; 14935 14936 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 14937 } 14938 14939 /** 14940 * Check if fastset is allowed by external dependencies like other 14941 * pipes and transcoders. 14942 * 14943 * Right now it only forces a fullmodeset when the MST master 14944 * transcoder did not changed but the pipe of the master transcoder 14945 * needs a fullmodeset so all slaves also needs to do a fullmodeset or 14946 * in case of port synced crtcs, if one of the synced crtcs 14947 * needs a full modeset, all other synced crtcs should be 14948 * forced a full modeset. 14949 */ 14950 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14951 if (!new_crtc_state->hw.enable || needs_modeset(new_crtc_state)) 14952 continue; 14953 14954 if (intel_dp_mst_is_slave_trans(new_crtc_state)) { 14955 enum transcoder master = new_crtc_state->mst_master_transcoder; 14956 14957 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) { 14958 new_crtc_state->uapi.mode_changed = true; 14959 new_crtc_state->update_pipe = false; 14960 } 14961 } 14962 14963 if (is_trans_port_sync_mode(new_crtc_state)) { 14964 u8 trans = new_crtc_state->sync_mode_slaves_mask; 14965 14966 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) 14967 trans |= BIT(new_crtc_state->master_transcoder); 14968 14969 if (intel_cpu_transcoders_need_modeset(state, trans)) { 14970 new_crtc_state->uapi.mode_changed = true; 14971 new_crtc_state->update_pipe = false; 14972 } 14973 } 14974 } 14975 14976 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14977 new_crtc_state, i) { 14978 if (needs_modeset(new_crtc_state)) { 14979 any_ms = true; 14980 continue; 14981 } 14982 14983 if (!new_crtc_state->update_pipe) 14984 continue; 14985 14986 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state); 14987 } 14988 14989 if (any_ms && !check_digital_port_conflicts(state)) { 14990 drm_dbg_kms(&dev_priv->drm, 14991 "rejecting conflicting digital port configuration\n"); 14992 ret = -EINVAL; 14993 goto fail; 14994 } 14995 14996 ret = drm_dp_mst_atomic_check(&state->base); 14997 if (ret) 14998 goto fail; 14999 15000 ret = intel_atomic_check_planes(state); 15001 if (ret) 15002 goto fail; 15003 15004 /* 15005 * distrust_bios_wm will force a full dbuf recomputation 15006 * but the hardware state will only get updated accordingly 15007 * if state->modeset==true. Hence distrust_bios_wm==true && 15008 * state->modeset==false is an invalid combination which 15009 * would cause the hardware and software dbuf state to get 15010 * out of sync. We must prevent that. 15011 * 15012 * FIXME clean up this mess and introduce better 15013 * state tracking for dbuf. 15014 */ 15015 if (dev_priv->wm.distrust_bios_wm) 15016 any_ms = true; 15017 15018 intel_fbc_choose_crtc(dev_priv, state); 15019 ret = calc_watermark_data(state); 15020 if (ret) 15021 goto fail; 15022 15023 ret = intel_bw_atomic_check(state); 15024 if (ret) 15025 goto fail; 15026 15027 ret = intel_atomic_check_cdclk(state, &any_ms); 15028 if (ret) 15029 goto fail; 15030 15031 if (any_ms) { 15032 ret = intel_modeset_checks(state); 15033 if (ret) 15034 goto fail; 15035 15036 ret = intel_modeset_calc_cdclk(state); 15037 if (ret) 15038 return ret; 15039 15040 intel_modeset_clear_plls(state); 15041 } 15042 15043 ret = intel_atomic_check_crtcs(state); 15044 if (ret) 15045 goto fail; 15046 15047 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15048 new_crtc_state, i) { 15049 if (!needs_modeset(new_crtc_state) && 15050 !new_crtc_state->update_pipe) 15051 continue; 15052 15053 intel_dump_pipe_config(new_crtc_state, state, 15054 needs_modeset(new_crtc_state) ? 15055 "[modeset]" : "[fastset]"); 15056 } 15057 15058 return 0; 15059 15060 fail: 15061 if (ret == -EDEADLK) 15062 return ret; 15063 15064 /* 15065 * FIXME would probably be nice to know which crtc specifically 15066 * caused the failure, in cases where we can pinpoint it. 15067 */ 15068 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15069 new_crtc_state, i) 15070 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 15071 15072 return ret; 15073 } 15074 15075 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 15076 { 15077 struct intel_crtc_state *crtc_state; 15078 struct intel_crtc *crtc; 15079 int i, ret; 15080 15081 ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base); 15082 if (ret < 0) 15083 return ret; 15084 15085 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 15086 bool mode_changed = needs_modeset(crtc_state); 15087 15088 if (mode_changed || crtc_state->update_pipe || 15089 crtc_state->uapi.color_mgmt_changed) { 15090 intel_dsb_prepare(crtc_state); 15091 } 15092 } 15093 15094 return 0; 15095 } 15096 15097 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc) 15098 { 15099 struct drm_device *dev = crtc->base.dev; 15100 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)]; 15101 15102 if (!vblank->max_vblank_count) 15103 return (u32)drm_crtc_accurate_vblank_count(&crtc->base); 15104 15105 return crtc->base.funcs->get_vblank_counter(&crtc->base); 15106 } 15107 15108 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 15109 struct intel_crtc_state *crtc_state) 15110 { 15111 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 15112 15113 if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes) 15114 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 15115 15116 if (crtc_state->has_pch_encoder) { 15117 enum pipe pch_transcoder = 15118 intel_crtc_pch_transcoder(crtc); 15119 15120 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 15121 } 15122 } 15123 15124 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 15125 const struct intel_crtc_state *new_crtc_state) 15126 { 15127 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 15128 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 15129 15130 /* 15131 * Update pipe size and adjust fitter if needed: the reason for this is 15132 * that in compute_mode_changes we check the native mode (not the pfit 15133 * mode) to see if we can flip rather than do a full mode set. In the 15134 * fastboot case, we'll flip, but if we don't update the pipesrc and 15135 * pfit state, we'll end up with a big fb scanned out into the wrong 15136 * sized surface. 15137 */ 15138 intel_set_pipe_src_size(new_crtc_state); 15139 15140 /* on skylake this is done by detaching scalers */ 15141 if (INTEL_GEN(dev_priv) >= 9) { 15142 skl_detach_scalers(new_crtc_state); 15143 15144 if (new_crtc_state->pch_pfit.enabled) 15145 skl_pfit_enable(new_crtc_state); 15146 } else if (HAS_PCH_SPLIT(dev_priv)) { 15147 if (new_crtc_state->pch_pfit.enabled) 15148 ilk_pfit_enable(new_crtc_state); 15149 else if (old_crtc_state->pch_pfit.enabled) 15150 ilk_pfit_disable(old_crtc_state); 15151 } 15152 15153 /* 15154 * The register is supposedly single buffered so perhaps 15155 * not 100% correct to do this here. But SKL+ calculate 15156 * this based on the adjust pixel rate so pfit changes do 15157 * affect it and so it must be updated for fastsets. 15158 * HSW/BDW only really need this here for fastboot, after 15159 * that the value should not change without a full modeset. 15160 */ 15161 if (INTEL_GEN(dev_priv) >= 9 || 15162 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 15163 hsw_set_linetime_wm(new_crtc_state); 15164 15165 if (INTEL_GEN(dev_priv) >= 11) 15166 icl_set_pipe_chicken(crtc); 15167 } 15168 15169 static void commit_pipe_config(struct intel_atomic_state *state, 15170 struct intel_crtc *crtc) 15171 { 15172 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15173 const struct intel_crtc_state *old_crtc_state = 15174 intel_atomic_get_old_crtc_state(state, crtc); 15175 const struct intel_crtc_state *new_crtc_state = 15176 intel_atomic_get_new_crtc_state(state, crtc); 15177 bool modeset = needs_modeset(new_crtc_state); 15178 15179 /* 15180 * During modesets pipe configuration was programmed as the 15181 * CRTC was enabled. 15182 */ 15183 if (!modeset) { 15184 if (new_crtc_state->uapi.color_mgmt_changed || 15185 new_crtc_state->update_pipe) 15186 intel_color_commit(new_crtc_state); 15187 15188 if (INTEL_GEN(dev_priv) >= 9) 15189 skl_detach_scalers(new_crtc_state); 15190 15191 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 15192 bdw_set_pipemisc(new_crtc_state); 15193 15194 if (new_crtc_state->update_pipe) 15195 intel_pipe_fastset(old_crtc_state, new_crtc_state); 15196 15197 intel_psr2_program_trans_man_trk_ctl(new_crtc_state); 15198 } 15199 15200 if (dev_priv->display.atomic_update_watermarks) 15201 dev_priv->display.atomic_update_watermarks(state, crtc); 15202 } 15203 15204 static void intel_enable_crtc(struct intel_atomic_state *state, 15205 struct intel_crtc *crtc) 15206 { 15207 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15208 const struct intel_crtc_state *new_crtc_state = 15209 intel_atomic_get_new_crtc_state(state, crtc); 15210 15211 if (!needs_modeset(new_crtc_state)) 15212 return; 15213 15214 intel_crtc_update_active_timings(new_crtc_state); 15215 15216 dev_priv->display.crtc_enable(state, crtc); 15217 15218 /* vblanks work again, re-enable pipe CRC. */ 15219 intel_crtc_enable_pipe_crc(crtc); 15220 } 15221 15222 static void intel_update_crtc(struct intel_atomic_state *state, 15223 struct intel_crtc *crtc) 15224 { 15225 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15226 const struct intel_crtc_state *old_crtc_state = 15227 intel_atomic_get_old_crtc_state(state, crtc); 15228 struct intel_crtc_state *new_crtc_state = 15229 intel_atomic_get_new_crtc_state(state, crtc); 15230 bool modeset = needs_modeset(new_crtc_state); 15231 15232 if (!modeset) { 15233 if (new_crtc_state->preload_luts && 15234 (new_crtc_state->uapi.color_mgmt_changed || 15235 new_crtc_state->update_pipe)) 15236 intel_color_load_luts(new_crtc_state); 15237 15238 intel_pre_plane_update(state, crtc); 15239 15240 if (new_crtc_state->update_pipe) 15241 intel_encoders_update_pipe(state, crtc); 15242 } 15243 15244 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 15245 intel_fbc_disable(crtc); 15246 else 15247 intel_fbc_enable(state, crtc); 15248 15249 /* Perform vblank evasion around commit operation */ 15250 intel_pipe_update_start(new_crtc_state); 15251 15252 commit_pipe_config(state, crtc); 15253 15254 if (INTEL_GEN(dev_priv) >= 9) 15255 skl_update_planes_on_crtc(state, crtc); 15256 else 15257 i9xx_update_planes_on_crtc(state, crtc); 15258 15259 intel_pipe_update_end(new_crtc_state); 15260 15261 /* 15262 * We usually enable FIFO underrun interrupts as part of the 15263 * CRTC enable sequence during modesets. But when we inherit a 15264 * valid pipe configuration from the BIOS we need to take care 15265 * of enabling them on the CRTC's first fastset. 15266 */ 15267 if (new_crtc_state->update_pipe && !modeset && 15268 old_crtc_state->inherited) 15269 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 15270 } 15271 15272 15273 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 15274 struct intel_crtc_state *old_crtc_state, 15275 struct intel_crtc_state *new_crtc_state, 15276 struct intel_crtc *crtc) 15277 { 15278 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15279 15280 intel_crtc_disable_planes(state, crtc); 15281 15282 /* 15283 * We need to disable pipe CRC before disabling the pipe, 15284 * or we race against vblank off. 15285 */ 15286 intel_crtc_disable_pipe_crc(crtc); 15287 15288 dev_priv->display.crtc_disable(state, crtc); 15289 crtc->active = false; 15290 intel_fbc_disable(crtc); 15291 intel_disable_shared_dpll(old_crtc_state); 15292 15293 /* FIXME unify this for all platforms */ 15294 if (!new_crtc_state->hw.active && 15295 !HAS_GMCH(dev_priv) && 15296 dev_priv->display.initial_watermarks) 15297 dev_priv->display.initial_watermarks(state, crtc); 15298 } 15299 15300 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 15301 { 15302 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 15303 struct intel_crtc *crtc; 15304 u32 handled = 0; 15305 int i; 15306 15307 /* Only disable port sync and MST slaves */ 15308 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15309 new_crtc_state, i) { 15310 if (!needs_modeset(new_crtc_state)) 15311 continue; 15312 15313 if (!old_crtc_state->hw.active) 15314 continue; 15315 15316 /* In case of Transcoder port Sync master slave CRTCs can be 15317 * assigned in any order and we need to make sure that 15318 * slave CRTCs are disabled first and then master CRTC since 15319 * Slave vblanks are masked till Master Vblanks. 15320 */ 15321 if (!is_trans_port_sync_slave(old_crtc_state) && 15322 !intel_dp_mst_is_slave_trans(old_crtc_state)) 15323 continue; 15324 15325 intel_pre_plane_update(state, crtc); 15326 intel_old_crtc_state_disables(state, old_crtc_state, 15327 new_crtc_state, crtc); 15328 handled |= BIT(crtc->pipe); 15329 } 15330 15331 /* Disable everything else left on */ 15332 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15333 new_crtc_state, i) { 15334 if (!needs_modeset(new_crtc_state) || 15335 (handled & BIT(crtc->pipe))) 15336 continue; 15337 15338 intel_pre_plane_update(state, crtc); 15339 if (old_crtc_state->hw.active) 15340 intel_old_crtc_state_disables(state, old_crtc_state, 15341 new_crtc_state, crtc); 15342 } 15343 } 15344 15345 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 15346 { 15347 struct intel_crtc_state *new_crtc_state; 15348 struct intel_crtc *crtc; 15349 int i; 15350 15351 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15352 if (!new_crtc_state->hw.active) 15353 continue; 15354 15355 intel_enable_crtc(state, crtc); 15356 intel_update_crtc(state, crtc); 15357 } 15358 } 15359 15360 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 15361 { 15362 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15363 struct intel_crtc *crtc; 15364 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 15365 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 15366 u8 update_pipes = 0, modeset_pipes = 0; 15367 int i; 15368 15369 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 15370 enum pipe pipe = crtc->pipe; 15371 15372 if (!new_crtc_state->hw.active) 15373 continue; 15374 15375 /* ignore allocations for crtc's that have been turned off. */ 15376 if (!needs_modeset(new_crtc_state)) { 15377 entries[pipe] = old_crtc_state->wm.skl.ddb; 15378 update_pipes |= BIT(pipe); 15379 } else { 15380 modeset_pipes |= BIT(pipe); 15381 } 15382 } 15383 15384 /* 15385 * Whenever the number of active pipes changes, we need to make sure we 15386 * update the pipes in the right order so that their ddb allocations 15387 * never overlap with each other between CRTC updates. Otherwise we'll 15388 * cause pipe underruns and other bad stuff. 15389 * 15390 * So first lets enable all pipes that do not need a fullmodeset as 15391 * those don't have any external dependency. 15392 */ 15393 while (update_pipes) { 15394 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15395 new_crtc_state, i) { 15396 enum pipe pipe = crtc->pipe; 15397 15398 if ((update_pipes & BIT(pipe)) == 0) 15399 continue; 15400 15401 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 15402 entries, I915_MAX_PIPES, pipe)) 15403 continue; 15404 15405 entries[pipe] = new_crtc_state->wm.skl.ddb; 15406 update_pipes &= ~BIT(pipe); 15407 15408 intel_update_crtc(state, crtc); 15409 15410 /* 15411 * If this is an already active pipe, it's DDB changed, 15412 * and this isn't the last pipe that needs updating 15413 * then we need to wait for a vblank to pass for the 15414 * new ddb allocation to take effect. 15415 */ 15416 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 15417 &old_crtc_state->wm.skl.ddb) && 15418 (update_pipes | modeset_pipes)) 15419 intel_wait_for_vblank(dev_priv, pipe); 15420 } 15421 } 15422 15423 update_pipes = modeset_pipes; 15424 15425 /* 15426 * Enable all pipes that needs a modeset and do not depends on other 15427 * pipes 15428 */ 15429 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15430 enum pipe pipe = crtc->pipe; 15431 15432 if ((modeset_pipes & BIT(pipe)) == 0) 15433 continue; 15434 15435 if (intel_dp_mst_is_slave_trans(new_crtc_state) || 15436 is_trans_port_sync_master(new_crtc_state)) 15437 continue; 15438 15439 modeset_pipes &= ~BIT(pipe); 15440 15441 intel_enable_crtc(state, crtc); 15442 } 15443 15444 /* 15445 * Then we enable all remaining pipes that depend on other 15446 * pipes: MST slaves and port sync masters. 15447 */ 15448 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15449 enum pipe pipe = crtc->pipe; 15450 15451 if ((modeset_pipes & BIT(pipe)) == 0) 15452 continue; 15453 15454 modeset_pipes &= ~BIT(pipe); 15455 15456 intel_enable_crtc(state, crtc); 15457 } 15458 15459 /* 15460 * Finally we do the plane updates/etc. for all pipes that got enabled. 15461 */ 15462 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15463 enum pipe pipe = crtc->pipe; 15464 15465 if ((update_pipes & BIT(pipe)) == 0) 15466 continue; 15467 15468 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 15469 entries, I915_MAX_PIPES, pipe)); 15470 15471 entries[pipe] = new_crtc_state->wm.skl.ddb; 15472 update_pipes &= ~BIT(pipe); 15473 15474 intel_update_crtc(state, crtc); 15475 } 15476 15477 drm_WARN_ON(&dev_priv->drm, modeset_pipes); 15478 drm_WARN_ON(&dev_priv->drm, update_pipes); 15479 } 15480 15481 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 15482 { 15483 struct intel_atomic_state *state, *next; 15484 struct llist_node *freed; 15485 15486 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 15487 llist_for_each_entry_safe(state, next, freed, freed) 15488 drm_atomic_state_put(&state->base); 15489 } 15490 15491 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 15492 { 15493 struct drm_i915_private *dev_priv = 15494 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 15495 15496 intel_atomic_helper_free_state(dev_priv); 15497 } 15498 15499 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 15500 { 15501 struct wait_queue_entry wait_fence, wait_reset; 15502 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 15503 15504 init_wait_entry(&wait_fence, 0); 15505 init_wait_entry(&wait_reset, 0); 15506 for (;;) { 15507 prepare_to_wait(&intel_state->commit_ready.wait, 15508 &wait_fence, TASK_UNINTERRUPTIBLE); 15509 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 15510 I915_RESET_MODESET), 15511 &wait_reset, TASK_UNINTERRUPTIBLE); 15512 15513 15514 if (i915_sw_fence_done(&intel_state->commit_ready) || 15515 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 15516 break; 15517 15518 schedule(); 15519 } 15520 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 15521 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 15522 I915_RESET_MODESET), 15523 &wait_reset); 15524 } 15525 15526 static void intel_cleanup_dsbs(struct intel_atomic_state *state) 15527 { 15528 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 15529 struct intel_crtc *crtc; 15530 int i; 15531 15532 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15533 new_crtc_state, i) 15534 intel_dsb_cleanup(old_crtc_state); 15535 } 15536 15537 static void intel_atomic_cleanup_work(struct work_struct *work) 15538 { 15539 struct intel_atomic_state *state = 15540 container_of(work, struct intel_atomic_state, base.commit_work); 15541 struct drm_i915_private *i915 = to_i915(state->base.dev); 15542 15543 intel_cleanup_dsbs(state); 15544 drm_atomic_helper_cleanup_planes(&i915->drm, &state->base); 15545 drm_atomic_helper_commit_cleanup_done(&state->base); 15546 drm_atomic_state_put(&state->base); 15547 15548 intel_atomic_helper_free_state(i915); 15549 } 15550 15551 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 15552 { 15553 struct drm_device *dev = state->base.dev; 15554 struct drm_i915_private *dev_priv = to_i915(dev); 15555 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 15556 struct intel_crtc *crtc; 15557 u64 put_domains[I915_MAX_PIPES] = {}; 15558 intel_wakeref_t wakeref = 0; 15559 int i; 15560 15561 intel_atomic_commit_fence_wait(state); 15562 15563 drm_atomic_helper_wait_for_dependencies(&state->base); 15564 15565 if (state->modeset) 15566 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 15567 15568 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15569 new_crtc_state, i) { 15570 if (needs_modeset(new_crtc_state) || 15571 new_crtc_state->update_pipe) { 15572 15573 put_domains[crtc->pipe] = 15574 modeset_get_crtc_power_domains(new_crtc_state); 15575 } 15576 } 15577 15578 intel_commit_modeset_disables(state); 15579 15580 /* FIXME: Eventually get rid of our crtc->config pointer */ 15581 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 15582 crtc->config = new_crtc_state; 15583 15584 if (state->modeset) { 15585 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 15586 15587 intel_set_cdclk_pre_plane_update(state); 15588 15589 intel_modeset_verify_disabled(dev_priv, state); 15590 } 15591 15592 intel_sagv_pre_plane_update(state); 15593 15594 /* Complete the events for pipes that have now been disabled */ 15595 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15596 bool modeset = needs_modeset(new_crtc_state); 15597 15598 /* Complete events for now disable pipes here. */ 15599 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { 15600 spin_lock_irq(&dev->event_lock); 15601 drm_crtc_send_vblank_event(&crtc->base, 15602 new_crtc_state->uapi.event); 15603 spin_unlock_irq(&dev->event_lock); 15604 15605 new_crtc_state->uapi.event = NULL; 15606 } 15607 } 15608 15609 if (state->modeset) 15610 intel_encoders_update_prepare(state); 15611 15612 intel_dbuf_pre_plane_update(state); 15613 15614 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 15615 dev_priv->display.commit_modeset_enables(state); 15616 15617 if (state->modeset) { 15618 intel_encoders_update_complete(state); 15619 15620 intel_set_cdclk_post_plane_update(state); 15621 } 15622 15623 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 15624 * already, but still need the state for the delayed optimization. To 15625 * fix this: 15626 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 15627 * - schedule that vblank worker _before_ calling hw_done 15628 * - at the start of commit_tail, cancel it _synchrously 15629 * - switch over to the vblank wait helper in the core after that since 15630 * we don't need out special handling any more. 15631 */ 15632 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 15633 15634 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15635 if (new_crtc_state->hw.active && 15636 !needs_modeset(new_crtc_state) && 15637 !new_crtc_state->preload_luts && 15638 (new_crtc_state->uapi.color_mgmt_changed || 15639 new_crtc_state->update_pipe)) 15640 intel_color_load_luts(new_crtc_state); 15641 } 15642 15643 /* 15644 * Now that the vblank has passed, we can go ahead and program the 15645 * optimal watermarks on platforms that need two-step watermark 15646 * programming. 15647 * 15648 * TODO: Move this (and other cleanup) to an async worker eventually. 15649 */ 15650 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15651 new_crtc_state, i) { 15652 /* 15653 * Gen2 reports pipe underruns whenever all planes are disabled. 15654 * So re-enable underrun reporting after some planes get enabled. 15655 * 15656 * We do this before .optimize_watermarks() so that we have a 15657 * chance of catching underruns with the intermediate watermarks 15658 * vs. the new plane configuration. 15659 */ 15660 if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state)) 15661 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 15662 15663 if (dev_priv->display.optimize_watermarks) 15664 dev_priv->display.optimize_watermarks(state, crtc); 15665 } 15666 15667 intel_dbuf_post_plane_update(state); 15668 15669 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 15670 intel_post_plane_update(state, crtc); 15671 15672 if (put_domains[i]) 15673 modeset_put_power_domains(dev_priv, put_domains[i]); 15674 15675 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 15676 15677 /* 15678 * DSB cleanup is done in cleanup_work aligning with framebuffer 15679 * cleanup. So copy and reset the dsb structure to sync with 15680 * commit_done and later do dsb cleanup in cleanup_work. 15681 */ 15682 old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb); 15683 } 15684 15685 /* Underruns don't always raise interrupts, so check manually */ 15686 intel_check_cpu_fifo_underruns(dev_priv); 15687 intel_check_pch_fifo_underruns(dev_priv); 15688 15689 if (state->modeset) 15690 intel_verify_planes(state); 15691 15692 intel_sagv_post_plane_update(state); 15693 15694 drm_atomic_helper_commit_hw_done(&state->base); 15695 15696 if (state->modeset) { 15697 /* As one of the primary mmio accessors, KMS has a high 15698 * likelihood of triggering bugs in unclaimed access. After we 15699 * finish modesetting, see if an error has been flagged, and if 15700 * so enable debugging for the next modeset - and hope we catch 15701 * the culprit. 15702 */ 15703 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 15704 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 15705 } 15706 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15707 15708 /* 15709 * Defer the cleanup of the old state to a separate worker to not 15710 * impede the current task (userspace for blocking modesets) that 15711 * are executed inline. For out-of-line asynchronous modesets/flips, 15712 * deferring to a new worker seems overkill, but we would place a 15713 * schedule point (cond_resched()) here anyway to keep latencies 15714 * down. 15715 */ 15716 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 15717 queue_work(system_highpri_wq, &state->base.commit_work); 15718 } 15719 15720 static void intel_atomic_commit_work(struct work_struct *work) 15721 { 15722 struct intel_atomic_state *state = 15723 container_of(work, struct intel_atomic_state, base.commit_work); 15724 15725 intel_atomic_commit_tail(state); 15726 } 15727 15728 static int __i915_sw_fence_call 15729 intel_atomic_commit_ready(struct i915_sw_fence *fence, 15730 enum i915_sw_fence_notify notify) 15731 { 15732 struct intel_atomic_state *state = 15733 container_of(fence, struct intel_atomic_state, commit_ready); 15734 15735 switch (notify) { 15736 case FENCE_COMPLETE: 15737 /* we do blocking waits in the worker, nothing to do here */ 15738 break; 15739 case FENCE_FREE: 15740 { 15741 struct intel_atomic_helper *helper = 15742 &to_i915(state->base.dev)->atomic_helper; 15743 15744 if (llist_add(&state->freed, &helper->free_list)) 15745 schedule_work(&helper->free_work); 15746 break; 15747 } 15748 } 15749 15750 return NOTIFY_DONE; 15751 } 15752 15753 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 15754 { 15755 struct intel_plane_state *old_plane_state, *new_plane_state; 15756 struct intel_plane *plane; 15757 int i; 15758 15759 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 15760 new_plane_state, i) 15761 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 15762 to_intel_frontbuffer(new_plane_state->hw.fb), 15763 plane->frontbuffer_bit); 15764 } 15765 15766 static int intel_atomic_commit(struct drm_device *dev, 15767 struct drm_atomic_state *_state, 15768 bool nonblock) 15769 { 15770 struct intel_atomic_state *state = to_intel_atomic_state(_state); 15771 struct drm_i915_private *dev_priv = to_i915(dev); 15772 int ret = 0; 15773 15774 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 15775 15776 drm_atomic_state_get(&state->base); 15777 i915_sw_fence_init(&state->commit_ready, 15778 intel_atomic_commit_ready); 15779 15780 /* 15781 * The intel_legacy_cursor_update() fast path takes care 15782 * of avoiding the vblank waits for simple cursor 15783 * movement and flips. For cursor on/off and size changes, 15784 * we want to perform the vblank waits so that watermark 15785 * updates happen during the correct frames. Gen9+ have 15786 * double buffered watermarks and so shouldn't need this. 15787 * 15788 * Unset state->legacy_cursor_update before the call to 15789 * drm_atomic_helper_setup_commit() because otherwise 15790 * drm_atomic_helper_wait_for_flip_done() is a noop and 15791 * we get FIFO underruns because we didn't wait 15792 * for vblank. 15793 * 15794 * FIXME doing watermarks and fb cleanup from a vblank worker 15795 * (assuming we had any) would solve these problems. 15796 */ 15797 if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) { 15798 struct intel_crtc_state *new_crtc_state; 15799 struct intel_crtc *crtc; 15800 int i; 15801 15802 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 15803 if (new_crtc_state->wm.need_postvbl_update || 15804 new_crtc_state->update_wm_post) 15805 state->base.legacy_cursor_update = false; 15806 } 15807 15808 ret = intel_atomic_prepare_commit(state); 15809 if (ret) { 15810 drm_dbg_atomic(&dev_priv->drm, 15811 "Preparing state failed with %i\n", ret); 15812 i915_sw_fence_commit(&state->commit_ready); 15813 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15814 return ret; 15815 } 15816 15817 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 15818 if (!ret) 15819 ret = drm_atomic_helper_swap_state(&state->base, true); 15820 if (!ret) 15821 intel_atomic_swap_global_state(state); 15822 15823 if (ret) { 15824 struct intel_crtc_state *new_crtc_state; 15825 struct intel_crtc *crtc; 15826 int i; 15827 15828 i915_sw_fence_commit(&state->commit_ready); 15829 15830 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 15831 intel_dsb_cleanup(new_crtc_state); 15832 15833 drm_atomic_helper_cleanup_planes(dev, &state->base); 15834 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15835 return ret; 15836 } 15837 dev_priv->wm.distrust_bios_wm = false; 15838 intel_shared_dpll_swap_state(state); 15839 intel_atomic_track_fbs(state); 15840 15841 drm_atomic_state_get(&state->base); 15842 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 15843 15844 i915_sw_fence_commit(&state->commit_ready); 15845 if (nonblock && state->modeset) { 15846 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 15847 } else if (nonblock) { 15848 queue_work(dev_priv->flip_wq, &state->base.commit_work); 15849 } else { 15850 if (state->modeset) 15851 flush_workqueue(dev_priv->modeset_wq); 15852 intel_atomic_commit_tail(state); 15853 } 15854 15855 return 0; 15856 } 15857 15858 struct wait_rps_boost { 15859 struct wait_queue_entry wait; 15860 15861 struct drm_crtc *crtc; 15862 struct i915_request *request; 15863 }; 15864 15865 static int do_rps_boost(struct wait_queue_entry *_wait, 15866 unsigned mode, int sync, void *key) 15867 { 15868 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); 15869 struct i915_request *rq = wait->request; 15870 15871 /* 15872 * If we missed the vblank, but the request is already running it 15873 * is reasonable to assume that it will complete before the next 15874 * vblank without our intervention, so leave RPS alone. 15875 */ 15876 if (!i915_request_started(rq)) 15877 intel_rps_boost(rq); 15878 i915_request_put(rq); 15879 15880 drm_crtc_vblank_put(wait->crtc); 15881 15882 list_del(&wait->wait.entry); 15883 kfree(wait); 15884 return 1; 15885 } 15886 15887 static void add_rps_boost_after_vblank(struct drm_crtc *crtc, 15888 struct dma_fence *fence) 15889 { 15890 struct wait_rps_boost *wait; 15891 15892 if (!dma_fence_is_i915(fence)) 15893 return; 15894 15895 if (INTEL_GEN(to_i915(crtc->dev)) < 6) 15896 return; 15897 15898 if (drm_crtc_vblank_get(crtc)) 15899 return; 15900 15901 wait = kmalloc(sizeof(*wait), GFP_KERNEL); 15902 if (!wait) { 15903 drm_crtc_vblank_put(crtc); 15904 return; 15905 } 15906 15907 wait->request = to_request(dma_fence_get(fence)); 15908 wait->crtc = crtc; 15909 15910 wait->wait.func = do_rps_boost; 15911 wait->wait.flags = 0; 15912 15913 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); 15914 } 15915 15916 static int intel_plane_pin_fb(struct intel_plane_state *plane_state) 15917 { 15918 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 15919 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 15920 struct drm_framebuffer *fb = plane_state->hw.fb; 15921 struct i915_vma *vma; 15922 15923 if (plane->id == PLANE_CURSOR && 15924 INTEL_INFO(dev_priv)->display.cursor_needs_physical) { 15925 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 15926 const int align = intel_cursor_alignment(dev_priv); 15927 int err; 15928 15929 err = i915_gem_object_attach_phys(obj, align); 15930 if (err) 15931 return err; 15932 } 15933 15934 vma = intel_pin_and_fence_fb_obj(fb, 15935 &plane_state->view, 15936 intel_plane_uses_fence(plane_state), 15937 &plane_state->flags); 15938 if (IS_ERR(vma)) 15939 return PTR_ERR(vma); 15940 15941 plane_state->vma = vma; 15942 15943 return 0; 15944 } 15945 15946 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) 15947 { 15948 struct i915_vma *vma; 15949 15950 vma = fetch_and_zero(&old_plane_state->vma); 15951 if (vma) 15952 intel_unpin_fb_vma(vma, old_plane_state->flags); 15953 } 15954 15955 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj) 15956 { 15957 struct i915_sched_attr attr = { 15958 .priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY), 15959 }; 15960 15961 i915_gem_object_wait_priority(obj, 0, &attr); 15962 } 15963 15964 /** 15965 * intel_prepare_plane_fb - Prepare fb for usage on plane 15966 * @_plane: drm plane to prepare for 15967 * @_new_plane_state: the plane state being prepared 15968 * 15969 * Prepares a framebuffer for usage on a display plane. Generally this 15970 * involves pinning the underlying object and updating the frontbuffer tracking 15971 * bits. Some older platforms need special physical address handling for 15972 * cursor planes. 15973 * 15974 * Returns 0 on success, negative error code on failure. 15975 */ 15976 int 15977 intel_prepare_plane_fb(struct drm_plane *_plane, 15978 struct drm_plane_state *_new_plane_state) 15979 { 15980 struct intel_plane *plane = to_intel_plane(_plane); 15981 struct intel_plane_state *new_plane_state = 15982 to_intel_plane_state(_new_plane_state); 15983 struct intel_atomic_state *state = 15984 to_intel_atomic_state(new_plane_state->uapi.state); 15985 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 15986 const struct intel_plane_state *old_plane_state = 15987 intel_atomic_get_old_plane_state(state, plane); 15988 struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb); 15989 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb); 15990 int ret; 15991 15992 if (old_obj) { 15993 const struct intel_crtc_state *crtc_state = 15994 intel_atomic_get_new_crtc_state(state, 15995 to_intel_crtc(old_plane_state->hw.crtc)); 15996 15997 /* Big Hammer, we also need to ensure that any pending 15998 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 15999 * current scanout is retired before unpinning the old 16000 * framebuffer. Note that we rely on userspace rendering 16001 * into the buffer attached to the pipe they are waiting 16002 * on. If not, userspace generates a GPU hang with IPEHR 16003 * point to the MI_WAIT_FOR_EVENT. 16004 * 16005 * This should only fail upon a hung GPU, in which case we 16006 * can safely continue. 16007 */ 16008 if (needs_modeset(crtc_state)) { 16009 ret = i915_sw_fence_await_reservation(&state->commit_ready, 16010 old_obj->base.resv, NULL, 16011 false, 0, 16012 GFP_KERNEL); 16013 if (ret < 0) 16014 return ret; 16015 } 16016 } 16017 16018 if (new_plane_state->uapi.fence) { /* explicit fencing */ 16019 ret = i915_sw_fence_await_dma_fence(&state->commit_ready, 16020 new_plane_state->uapi.fence, 16021 i915_fence_timeout(dev_priv), 16022 GFP_KERNEL); 16023 if (ret < 0) 16024 return ret; 16025 } 16026 16027 if (!obj) 16028 return 0; 16029 16030 ret = i915_gem_object_pin_pages(obj); 16031 if (ret) 16032 return ret; 16033 16034 ret = intel_plane_pin_fb(new_plane_state); 16035 16036 i915_gem_object_unpin_pages(obj); 16037 if (ret) 16038 return ret; 16039 16040 fb_obj_bump_render_priority(obj); 16041 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB); 16042 16043 if (!new_plane_state->uapi.fence) { /* implicit fencing */ 16044 struct dma_fence *fence; 16045 16046 ret = i915_sw_fence_await_reservation(&state->commit_ready, 16047 obj->base.resv, NULL, 16048 false, 16049 i915_fence_timeout(dev_priv), 16050 GFP_KERNEL); 16051 if (ret < 0) 16052 goto unpin_fb; 16053 16054 fence = dma_resv_get_excl_rcu(obj->base.resv); 16055 if (fence) { 16056 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 16057 fence); 16058 dma_fence_put(fence); 16059 } 16060 } else { 16061 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 16062 new_plane_state->uapi.fence); 16063 } 16064 16065 /* 16066 * We declare pageflips to be interactive and so merit a small bias 16067 * towards upclocking to deliver the frame on time. By only changing 16068 * the RPS thresholds to sample more regularly and aim for higher 16069 * clocks we can hopefully deliver low power workloads (like kodi) 16070 * that are not quite steady state without resorting to forcing 16071 * maximum clocks following a vblank miss (see do_rps_boost()). 16072 */ 16073 if (!state->rps_interactive) { 16074 intel_rps_mark_interactive(&dev_priv->gt.rps, true); 16075 state->rps_interactive = true; 16076 } 16077 16078 return 0; 16079 16080 unpin_fb: 16081 intel_plane_unpin_fb(new_plane_state); 16082 16083 return ret; 16084 } 16085 16086 /** 16087 * intel_cleanup_plane_fb - Cleans up an fb after plane use 16088 * @plane: drm plane to clean up for 16089 * @_old_plane_state: the state from the previous modeset 16090 * 16091 * Cleans up a framebuffer that has just been removed from a plane. 16092 */ 16093 void 16094 intel_cleanup_plane_fb(struct drm_plane *plane, 16095 struct drm_plane_state *_old_plane_state) 16096 { 16097 struct intel_plane_state *old_plane_state = 16098 to_intel_plane_state(_old_plane_state); 16099 struct intel_atomic_state *state = 16100 to_intel_atomic_state(old_plane_state->uapi.state); 16101 struct drm_i915_private *dev_priv = to_i915(plane->dev); 16102 struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb); 16103 16104 if (!obj) 16105 return; 16106 16107 if (state->rps_interactive) { 16108 intel_rps_mark_interactive(&dev_priv->gt.rps, false); 16109 state->rps_interactive = false; 16110 } 16111 16112 /* Should only be called after a successful intel_prepare_plane_fb()! */ 16113 intel_plane_unpin_fb(old_plane_state); 16114 } 16115 16116 /** 16117 * intel_plane_destroy - destroy a plane 16118 * @plane: plane to destroy 16119 * 16120 * Common destruction function for all types of planes (primary, cursor, 16121 * sprite). 16122 */ 16123 void intel_plane_destroy(struct drm_plane *plane) 16124 { 16125 drm_plane_cleanup(plane); 16126 kfree(to_intel_plane(plane)); 16127 } 16128 16129 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane, 16130 u32 format, u64 modifier) 16131 { 16132 switch (modifier) { 16133 case DRM_FORMAT_MOD_LINEAR: 16134 case I915_FORMAT_MOD_X_TILED: 16135 break; 16136 default: 16137 return false; 16138 } 16139 16140 switch (format) { 16141 case DRM_FORMAT_C8: 16142 case DRM_FORMAT_RGB565: 16143 case DRM_FORMAT_XRGB1555: 16144 case DRM_FORMAT_XRGB8888: 16145 return modifier == DRM_FORMAT_MOD_LINEAR || 16146 modifier == I915_FORMAT_MOD_X_TILED; 16147 default: 16148 return false; 16149 } 16150 } 16151 16152 static bool i965_plane_format_mod_supported(struct drm_plane *_plane, 16153 u32 format, u64 modifier) 16154 { 16155 switch (modifier) { 16156 case DRM_FORMAT_MOD_LINEAR: 16157 case I915_FORMAT_MOD_X_TILED: 16158 break; 16159 default: 16160 return false; 16161 } 16162 16163 switch (format) { 16164 case DRM_FORMAT_C8: 16165 case DRM_FORMAT_RGB565: 16166 case DRM_FORMAT_XRGB8888: 16167 case DRM_FORMAT_XBGR8888: 16168 case DRM_FORMAT_ARGB8888: 16169 case DRM_FORMAT_ABGR8888: 16170 case DRM_FORMAT_XRGB2101010: 16171 case DRM_FORMAT_XBGR2101010: 16172 case DRM_FORMAT_ARGB2101010: 16173 case DRM_FORMAT_ABGR2101010: 16174 case DRM_FORMAT_XBGR16161616F: 16175 return modifier == DRM_FORMAT_MOD_LINEAR || 16176 modifier == I915_FORMAT_MOD_X_TILED; 16177 default: 16178 return false; 16179 } 16180 } 16181 16182 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane, 16183 u32 format, u64 modifier) 16184 { 16185 return modifier == DRM_FORMAT_MOD_LINEAR && 16186 format == DRM_FORMAT_ARGB8888; 16187 } 16188 16189 static const struct drm_plane_funcs i965_plane_funcs = { 16190 .update_plane = drm_atomic_helper_update_plane, 16191 .disable_plane = drm_atomic_helper_disable_plane, 16192 .destroy = intel_plane_destroy, 16193 .atomic_duplicate_state = intel_plane_duplicate_state, 16194 .atomic_destroy_state = intel_plane_destroy_state, 16195 .format_mod_supported = i965_plane_format_mod_supported, 16196 }; 16197 16198 static const struct drm_plane_funcs i8xx_plane_funcs = { 16199 .update_plane = drm_atomic_helper_update_plane, 16200 .disable_plane = drm_atomic_helper_disable_plane, 16201 .destroy = intel_plane_destroy, 16202 .atomic_duplicate_state = intel_plane_duplicate_state, 16203 .atomic_destroy_state = intel_plane_destroy_state, 16204 .format_mod_supported = i8xx_plane_format_mod_supported, 16205 }; 16206 16207 static int 16208 intel_legacy_cursor_update(struct drm_plane *_plane, 16209 struct drm_crtc *_crtc, 16210 struct drm_framebuffer *fb, 16211 int crtc_x, int crtc_y, 16212 unsigned int crtc_w, unsigned int crtc_h, 16213 u32 src_x, u32 src_y, 16214 u32 src_w, u32 src_h, 16215 struct drm_modeset_acquire_ctx *ctx) 16216 { 16217 struct intel_plane *plane = to_intel_plane(_plane); 16218 struct intel_crtc *crtc = to_intel_crtc(_crtc); 16219 struct intel_plane_state *old_plane_state = 16220 to_intel_plane_state(plane->base.state); 16221 struct intel_plane_state *new_plane_state; 16222 struct intel_crtc_state *crtc_state = 16223 to_intel_crtc_state(crtc->base.state); 16224 struct intel_crtc_state *new_crtc_state; 16225 int ret; 16226 16227 /* 16228 * When crtc is inactive or there is a modeset pending, 16229 * wait for it to complete in the slowpath 16230 */ 16231 if (!crtc_state->hw.active || needs_modeset(crtc_state) || 16232 crtc_state->update_pipe) 16233 goto slow; 16234 16235 /* 16236 * Don't do an async update if there is an outstanding commit modifying 16237 * the plane. This prevents our async update's changes from getting 16238 * overridden by a previous synchronous update's state. 16239 */ 16240 if (old_plane_state->uapi.commit && 16241 !try_wait_for_completion(&old_plane_state->uapi.commit->hw_done)) 16242 goto slow; 16243 16244 /* 16245 * If any parameters change that may affect watermarks, 16246 * take the slowpath. Only changing fb or position should be 16247 * in the fastpath. 16248 */ 16249 if (old_plane_state->uapi.crtc != &crtc->base || 16250 old_plane_state->uapi.src_w != src_w || 16251 old_plane_state->uapi.src_h != src_h || 16252 old_plane_state->uapi.crtc_w != crtc_w || 16253 old_plane_state->uapi.crtc_h != crtc_h || 16254 !old_plane_state->uapi.fb != !fb) 16255 goto slow; 16256 16257 new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base)); 16258 if (!new_plane_state) 16259 return -ENOMEM; 16260 16261 new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base)); 16262 if (!new_crtc_state) { 16263 ret = -ENOMEM; 16264 goto out_free; 16265 } 16266 16267 drm_atomic_set_fb_for_plane(&new_plane_state->uapi, fb); 16268 16269 new_plane_state->uapi.src_x = src_x; 16270 new_plane_state->uapi.src_y = src_y; 16271 new_plane_state->uapi.src_w = src_w; 16272 new_plane_state->uapi.src_h = src_h; 16273 new_plane_state->uapi.crtc_x = crtc_x; 16274 new_plane_state->uapi.crtc_y = crtc_y; 16275 new_plane_state->uapi.crtc_w = crtc_w; 16276 new_plane_state->uapi.crtc_h = crtc_h; 16277 16278 intel_plane_copy_uapi_to_hw_state(new_plane_state, new_plane_state); 16279 16280 ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state, 16281 old_plane_state, new_plane_state); 16282 if (ret) 16283 goto out_free; 16284 16285 ret = intel_plane_pin_fb(new_plane_state); 16286 if (ret) 16287 goto out_free; 16288 16289 intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->hw.fb), 16290 ORIGIN_FLIP); 16291 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 16292 to_intel_frontbuffer(new_plane_state->hw.fb), 16293 plane->frontbuffer_bit); 16294 16295 /* Swap plane state */ 16296 plane->base.state = &new_plane_state->uapi; 16297 16298 /* 16299 * We cannot swap crtc_state as it may be in use by an atomic commit or 16300 * page flip that's running simultaneously. If we swap crtc_state and 16301 * destroy the old state, we will cause a use-after-free there. 16302 * 16303 * Only update active_planes, which is needed for our internal 16304 * bookkeeping. Either value will do the right thing when updating 16305 * planes atomically. If the cursor was part of the atomic update then 16306 * we would have taken the slowpath. 16307 */ 16308 crtc_state->active_planes = new_crtc_state->active_planes; 16309 16310 if (new_plane_state->uapi.visible) 16311 intel_update_plane(plane, crtc_state, new_plane_state); 16312 else 16313 intel_disable_plane(plane, crtc_state); 16314 16315 intel_plane_unpin_fb(old_plane_state); 16316 16317 out_free: 16318 if (new_crtc_state) 16319 intel_crtc_destroy_state(&crtc->base, &new_crtc_state->uapi); 16320 if (ret) 16321 intel_plane_destroy_state(&plane->base, &new_plane_state->uapi); 16322 else 16323 intel_plane_destroy_state(&plane->base, &old_plane_state->uapi); 16324 return ret; 16325 16326 slow: 16327 return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb, 16328 crtc_x, crtc_y, crtc_w, crtc_h, 16329 src_x, src_y, src_w, src_h, ctx); 16330 } 16331 16332 static const struct drm_plane_funcs intel_cursor_plane_funcs = { 16333 .update_plane = intel_legacy_cursor_update, 16334 .disable_plane = drm_atomic_helper_disable_plane, 16335 .destroy = intel_plane_destroy, 16336 .atomic_duplicate_state = intel_plane_duplicate_state, 16337 .atomic_destroy_state = intel_plane_destroy_state, 16338 .format_mod_supported = intel_cursor_format_mod_supported, 16339 }; 16340 16341 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv, 16342 enum i9xx_plane_id i9xx_plane) 16343 { 16344 if (!HAS_FBC(dev_priv)) 16345 return false; 16346 16347 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 16348 return i9xx_plane == PLANE_A; /* tied to pipe A */ 16349 else if (IS_IVYBRIDGE(dev_priv)) 16350 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B || 16351 i9xx_plane == PLANE_C; 16352 else if (INTEL_GEN(dev_priv) >= 4) 16353 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B; 16354 else 16355 return i9xx_plane == PLANE_A; 16356 } 16357 16358 static struct intel_plane * 16359 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe) 16360 { 16361 struct intel_plane *plane; 16362 const struct drm_plane_funcs *plane_funcs; 16363 unsigned int supported_rotations; 16364 const u32 *formats; 16365 int num_formats; 16366 int ret, zpos; 16367 16368 if (INTEL_GEN(dev_priv) >= 9) 16369 return skl_universal_plane_create(dev_priv, pipe, 16370 PLANE_PRIMARY); 16371 16372 plane = intel_plane_alloc(); 16373 if (IS_ERR(plane)) 16374 return plane; 16375 16376 plane->pipe = pipe; 16377 /* 16378 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS 16379 * port is hooked to pipe B. Hence we want plane A feeding pipe B. 16380 */ 16381 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4 && 16382 INTEL_NUM_PIPES(dev_priv) == 2) 16383 plane->i9xx_plane = (enum i9xx_plane_id) !pipe; 16384 else 16385 plane->i9xx_plane = (enum i9xx_plane_id) pipe; 16386 plane->id = PLANE_PRIMARY; 16387 plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id); 16388 16389 plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane); 16390 if (plane->has_fbc) { 16391 struct intel_fbc *fbc = &dev_priv->fbc; 16392 16393 fbc->possible_framebuffer_bits |= plane->frontbuffer_bit; 16394 } 16395 16396 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 16397 formats = vlv_primary_formats; 16398 num_formats = ARRAY_SIZE(vlv_primary_formats); 16399 } else if (INTEL_GEN(dev_priv) >= 4) { 16400 /* 16401 * WaFP16GammaEnabling:ivb 16402 * "Workaround : When using the 64-bit format, the plane 16403 * output on each color channel has one quarter amplitude. 16404 * It can be brought up to full amplitude by using pipe 16405 * gamma correction or pipe color space conversion to 16406 * multiply the plane output by four." 16407 * 16408 * There is no dedicated plane gamma for the primary plane, 16409 * and using the pipe gamma/csc could conflict with other 16410 * planes, so we choose not to expose fp16 on IVB primary 16411 * planes. HSW primary planes no longer have this problem. 16412 */ 16413 if (IS_IVYBRIDGE(dev_priv)) { 16414 formats = ivb_primary_formats; 16415 num_formats = ARRAY_SIZE(ivb_primary_formats); 16416 } else { 16417 formats = i965_primary_formats; 16418 num_formats = ARRAY_SIZE(i965_primary_formats); 16419 } 16420 } else { 16421 formats = i8xx_primary_formats; 16422 num_formats = ARRAY_SIZE(i8xx_primary_formats); 16423 } 16424 16425 if (INTEL_GEN(dev_priv) >= 4) 16426 plane_funcs = &i965_plane_funcs; 16427 else 16428 plane_funcs = &i8xx_plane_funcs; 16429 16430 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16431 plane->min_cdclk = vlv_plane_min_cdclk; 16432 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 16433 plane->min_cdclk = hsw_plane_min_cdclk; 16434 else if (IS_IVYBRIDGE(dev_priv)) 16435 plane->min_cdclk = ivb_plane_min_cdclk; 16436 else 16437 plane->min_cdclk = i9xx_plane_min_cdclk; 16438 16439 plane->max_stride = i9xx_plane_max_stride; 16440 plane->update_plane = i9xx_update_plane; 16441 plane->disable_plane = i9xx_disable_plane; 16442 plane->get_hw_state = i9xx_plane_get_hw_state; 16443 plane->check_plane = i9xx_plane_check; 16444 16445 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 16446 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 16447 0, plane_funcs, 16448 formats, num_formats, 16449 i9xx_format_modifiers, 16450 DRM_PLANE_TYPE_PRIMARY, 16451 "primary %c", pipe_name(pipe)); 16452 else 16453 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 16454 0, plane_funcs, 16455 formats, num_formats, 16456 i9xx_format_modifiers, 16457 DRM_PLANE_TYPE_PRIMARY, 16458 "plane %c", 16459 plane_name(plane->i9xx_plane)); 16460 if (ret) 16461 goto fail; 16462 16463 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 16464 supported_rotations = 16465 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 | 16466 DRM_MODE_REFLECT_X; 16467 } else if (INTEL_GEN(dev_priv) >= 4) { 16468 supported_rotations = 16469 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180; 16470 } else { 16471 supported_rotations = DRM_MODE_ROTATE_0; 16472 } 16473 16474 if (INTEL_GEN(dev_priv) >= 4) 16475 drm_plane_create_rotation_property(&plane->base, 16476 DRM_MODE_ROTATE_0, 16477 supported_rotations); 16478 16479 zpos = 0; 16480 drm_plane_create_zpos_immutable_property(&plane->base, zpos); 16481 16482 drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs); 16483 16484 return plane; 16485 16486 fail: 16487 intel_plane_free(plane); 16488 16489 return ERR_PTR(ret); 16490 } 16491 16492 static struct intel_plane * 16493 intel_cursor_plane_create(struct drm_i915_private *dev_priv, 16494 enum pipe pipe) 16495 { 16496 struct intel_plane *cursor; 16497 int ret, zpos; 16498 16499 cursor = intel_plane_alloc(); 16500 if (IS_ERR(cursor)) 16501 return cursor; 16502 16503 cursor->pipe = pipe; 16504 cursor->i9xx_plane = (enum i9xx_plane_id) pipe; 16505 cursor->id = PLANE_CURSOR; 16506 cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id); 16507 16508 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) { 16509 cursor->max_stride = i845_cursor_max_stride; 16510 cursor->update_plane = i845_update_cursor; 16511 cursor->disable_plane = i845_disable_cursor; 16512 cursor->get_hw_state = i845_cursor_get_hw_state; 16513 cursor->check_plane = i845_check_cursor; 16514 } else { 16515 cursor->max_stride = i9xx_cursor_max_stride; 16516 cursor->update_plane = i9xx_update_cursor; 16517 cursor->disable_plane = i9xx_disable_cursor; 16518 cursor->get_hw_state = i9xx_cursor_get_hw_state; 16519 cursor->check_plane = i9xx_check_cursor; 16520 } 16521 16522 cursor->cursor.base = ~0; 16523 cursor->cursor.cntl = ~0; 16524 16525 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv)) 16526 cursor->cursor.size = ~0; 16527 16528 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base, 16529 0, &intel_cursor_plane_funcs, 16530 intel_cursor_formats, 16531 ARRAY_SIZE(intel_cursor_formats), 16532 cursor_format_modifiers, 16533 DRM_PLANE_TYPE_CURSOR, 16534 "cursor %c", pipe_name(pipe)); 16535 if (ret) 16536 goto fail; 16537 16538 if (INTEL_GEN(dev_priv) >= 4) 16539 drm_plane_create_rotation_property(&cursor->base, 16540 DRM_MODE_ROTATE_0, 16541 DRM_MODE_ROTATE_0 | 16542 DRM_MODE_ROTATE_180); 16543 16544 zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1; 16545 drm_plane_create_zpos_immutable_property(&cursor->base, zpos); 16546 16547 if (INTEL_GEN(dev_priv) >= 12) 16548 drm_plane_enable_fb_damage_clips(&cursor->base); 16549 16550 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs); 16551 16552 return cursor; 16553 16554 fail: 16555 intel_plane_free(cursor); 16556 16557 return ERR_PTR(ret); 16558 } 16559 16560 #define INTEL_CRTC_FUNCS \ 16561 .gamma_set = drm_atomic_helper_legacy_gamma_set, \ 16562 .set_config = drm_atomic_helper_set_config, \ 16563 .destroy = intel_crtc_destroy, \ 16564 .page_flip = drm_atomic_helper_page_flip, \ 16565 .atomic_duplicate_state = intel_crtc_duplicate_state, \ 16566 .atomic_destroy_state = intel_crtc_destroy_state, \ 16567 .set_crc_source = intel_crtc_set_crc_source, \ 16568 .verify_crc_source = intel_crtc_verify_crc_source, \ 16569 .get_crc_sources = intel_crtc_get_crc_sources 16570 16571 static const struct drm_crtc_funcs bdw_crtc_funcs = { 16572 INTEL_CRTC_FUNCS, 16573 16574 .get_vblank_counter = g4x_get_vblank_counter, 16575 .enable_vblank = bdw_enable_vblank, 16576 .disable_vblank = bdw_disable_vblank, 16577 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16578 }; 16579 16580 static const struct drm_crtc_funcs ilk_crtc_funcs = { 16581 INTEL_CRTC_FUNCS, 16582 16583 .get_vblank_counter = g4x_get_vblank_counter, 16584 .enable_vblank = ilk_enable_vblank, 16585 .disable_vblank = ilk_disable_vblank, 16586 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16587 }; 16588 16589 static const struct drm_crtc_funcs g4x_crtc_funcs = { 16590 INTEL_CRTC_FUNCS, 16591 16592 .get_vblank_counter = g4x_get_vblank_counter, 16593 .enable_vblank = i965_enable_vblank, 16594 .disable_vblank = i965_disable_vblank, 16595 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16596 }; 16597 16598 static const struct drm_crtc_funcs i965_crtc_funcs = { 16599 INTEL_CRTC_FUNCS, 16600 16601 .get_vblank_counter = i915_get_vblank_counter, 16602 .enable_vblank = i965_enable_vblank, 16603 .disable_vblank = i965_disable_vblank, 16604 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16605 }; 16606 16607 static const struct drm_crtc_funcs i915gm_crtc_funcs = { 16608 INTEL_CRTC_FUNCS, 16609 16610 .get_vblank_counter = i915_get_vblank_counter, 16611 .enable_vblank = i915gm_enable_vblank, 16612 .disable_vblank = i915gm_disable_vblank, 16613 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16614 }; 16615 16616 static const struct drm_crtc_funcs i915_crtc_funcs = { 16617 INTEL_CRTC_FUNCS, 16618 16619 .get_vblank_counter = i915_get_vblank_counter, 16620 .enable_vblank = i8xx_enable_vblank, 16621 .disable_vblank = i8xx_disable_vblank, 16622 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16623 }; 16624 16625 static const struct drm_crtc_funcs i8xx_crtc_funcs = { 16626 INTEL_CRTC_FUNCS, 16627 16628 /* no hw vblank counter */ 16629 .enable_vblank = i8xx_enable_vblank, 16630 .disable_vblank = i8xx_disable_vblank, 16631 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16632 }; 16633 16634 static struct intel_crtc *intel_crtc_alloc(void) 16635 { 16636 struct intel_crtc_state *crtc_state; 16637 struct intel_crtc *crtc; 16638 16639 crtc = kzalloc(sizeof(*crtc), GFP_KERNEL); 16640 if (!crtc) 16641 return ERR_PTR(-ENOMEM); 16642 16643 crtc_state = intel_crtc_state_alloc(crtc); 16644 if (!crtc_state) { 16645 kfree(crtc); 16646 return ERR_PTR(-ENOMEM); 16647 } 16648 16649 crtc->base.state = &crtc_state->uapi; 16650 crtc->config = crtc_state; 16651 16652 return crtc; 16653 } 16654 16655 static void intel_crtc_free(struct intel_crtc *crtc) 16656 { 16657 intel_crtc_destroy_state(&crtc->base, crtc->base.state); 16658 kfree(crtc); 16659 } 16660 16661 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv) 16662 { 16663 struct intel_plane *plane; 16664 16665 for_each_intel_plane(&dev_priv->drm, plane) { 16666 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, 16667 plane->pipe); 16668 16669 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base); 16670 } 16671 } 16672 16673 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe) 16674 { 16675 struct intel_plane *primary, *cursor; 16676 const struct drm_crtc_funcs *funcs; 16677 struct intel_crtc *crtc; 16678 int sprite, ret; 16679 16680 crtc = intel_crtc_alloc(); 16681 if (IS_ERR(crtc)) 16682 return PTR_ERR(crtc); 16683 16684 crtc->pipe = pipe; 16685 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe]; 16686 16687 primary = intel_primary_plane_create(dev_priv, pipe); 16688 if (IS_ERR(primary)) { 16689 ret = PTR_ERR(primary); 16690 goto fail; 16691 } 16692 crtc->plane_ids_mask |= BIT(primary->id); 16693 16694 for_each_sprite(dev_priv, pipe, sprite) { 16695 struct intel_plane *plane; 16696 16697 plane = intel_sprite_plane_create(dev_priv, pipe, sprite); 16698 if (IS_ERR(plane)) { 16699 ret = PTR_ERR(plane); 16700 goto fail; 16701 } 16702 crtc->plane_ids_mask |= BIT(plane->id); 16703 } 16704 16705 cursor = intel_cursor_plane_create(dev_priv, pipe); 16706 if (IS_ERR(cursor)) { 16707 ret = PTR_ERR(cursor); 16708 goto fail; 16709 } 16710 crtc->plane_ids_mask |= BIT(cursor->id); 16711 16712 if (HAS_GMCH(dev_priv)) { 16713 if (IS_CHERRYVIEW(dev_priv) || 16714 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv)) 16715 funcs = &g4x_crtc_funcs; 16716 else if (IS_GEN(dev_priv, 4)) 16717 funcs = &i965_crtc_funcs; 16718 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv)) 16719 funcs = &i915gm_crtc_funcs; 16720 else if (IS_GEN(dev_priv, 3)) 16721 funcs = &i915_crtc_funcs; 16722 else 16723 funcs = &i8xx_crtc_funcs; 16724 } else { 16725 if (INTEL_GEN(dev_priv) >= 8) 16726 funcs = &bdw_crtc_funcs; 16727 else 16728 funcs = &ilk_crtc_funcs; 16729 } 16730 16731 ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base, 16732 &primary->base, &cursor->base, 16733 funcs, "pipe %c", pipe_name(pipe)); 16734 if (ret) 16735 goto fail; 16736 16737 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) || 16738 dev_priv->pipe_to_crtc_mapping[pipe] != NULL); 16739 dev_priv->pipe_to_crtc_mapping[pipe] = crtc; 16740 16741 if (INTEL_GEN(dev_priv) < 9) { 16742 enum i9xx_plane_id i9xx_plane = primary->i9xx_plane; 16743 16744 BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || 16745 dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL); 16746 dev_priv->plane_to_crtc_mapping[i9xx_plane] = crtc; 16747 } 16748 16749 intel_color_init(crtc); 16750 16751 intel_crtc_crc_init(crtc); 16752 16753 drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe); 16754 16755 return 0; 16756 16757 fail: 16758 intel_crtc_free(crtc); 16759 16760 return ret; 16761 } 16762 16763 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 16764 struct drm_file *file) 16765 { 16766 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 16767 struct drm_crtc *drmmode_crtc; 16768 struct intel_crtc *crtc; 16769 16770 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 16771 if (!drmmode_crtc) 16772 return -ENOENT; 16773 16774 crtc = to_intel_crtc(drmmode_crtc); 16775 pipe_from_crtc_id->pipe = crtc->pipe; 16776 16777 return 0; 16778 } 16779 16780 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 16781 { 16782 struct drm_device *dev = encoder->base.dev; 16783 struct intel_encoder *source_encoder; 16784 u32 possible_clones = 0; 16785 16786 for_each_intel_encoder(dev, source_encoder) { 16787 if (encoders_cloneable(encoder, source_encoder)) 16788 possible_clones |= drm_encoder_mask(&source_encoder->base); 16789 } 16790 16791 return possible_clones; 16792 } 16793 16794 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 16795 { 16796 struct drm_device *dev = encoder->base.dev; 16797 struct intel_crtc *crtc; 16798 u32 possible_crtcs = 0; 16799 16800 for_each_intel_crtc(dev, crtc) { 16801 if (encoder->pipe_mask & BIT(crtc->pipe)) 16802 possible_crtcs |= drm_crtc_mask(&crtc->base); 16803 } 16804 16805 return possible_crtcs; 16806 } 16807 16808 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 16809 { 16810 if (!IS_MOBILE(dev_priv)) 16811 return false; 16812 16813 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0) 16814 return false; 16815 16816 if (IS_GEN(dev_priv, 5) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE)) 16817 return false; 16818 16819 return true; 16820 } 16821 16822 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 16823 { 16824 if (INTEL_GEN(dev_priv) >= 9) 16825 return false; 16826 16827 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 16828 return false; 16829 16830 if (HAS_PCH_LPT_H(dev_priv) && 16831 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 16832 return false; 16833 16834 /* DDI E can't be used if DDI A requires 4 lanes */ 16835 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 16836 return false; 16837 16838 if (!dev_priv->vbt.int_crt_support) 16839 return false; 16840 16841 return true; 16842 } 16843 16844 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv) 16845 { 16846 int pps_num; 16847 int pps_idx; 16848 16849 if (HAS_DDI(dev_priv)) 16850 return; 16851 /* 16852 * This w/a is needed at least on CPT/PPT, but to be sure apply it 16853 * everywhere where registers can be write protected. 16854 */ 16855 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16856 pps_num = 2; 16857 else 16858 pps_num = 1; 16859 16860 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) { 16861 u32 val = intel_de_read(dev_priv, PP_CONTROL(pps_idx)); 16862 16863 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS; 16864 intel_de_write(dev_priv, PP_CONTROL(pps_idx), val); 16865 } 16866 } 16867 16868 static void intel_pps_init(struct drm_i915_private *dev_priv) 16869 { 16870 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv)) 16871 dev_priv->pps_mmio_base = PCH_PPS_BASE; 16872 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16873 dev_priv->pps_mmio_base = VLV_PPS_BASE; 16874 else 16875 dev_priv->pps_mmio_base = PPS_BASE; 16876 16877 intel_pps_unlock_regs_wa(dev_priv); 16878 } 16879 16880 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 16881 { 16882 struct intel_encoder *encoder; 16883 bool dpd_is_edp = false; 16884 16885 intel_pps_init(dev_priv); 16886 16887 if (!HAS_DISPLAY(dev_priv)) 16888 return; 16889 16890 if (IS_ROCKETLAKE(dev_priv)) { 16891 intel_ddi_init(dev_priv, PORT_A); 16892 intel_ddi_init(dev_priv, PORT_B); 16893 intel_ddi_init(dev_priv, PORT_D); /* DDI TC1 */ 16894 intel_ddi_init(dev_priv, PORT_E); /* DDI TC2 */ 16895 } else if (INTEL_GEN(dev_priv) >= 12) { 16896 intel_ddi_init(dev_priv, PORT_A); 16897 intel_ddi_init(dev_priv, PORT_B); 16898 intel_ddi_init(dev_priv, PORT_D); 16899 intel_ddi_init(dev_priv, PORT_E); 16900 intel_ddi_init(dev_priv, PORT_F); 16901 intel_ddi_init(dev_priv, PORT_G); 16902 intel_ddi_init(dev_priv, PORT_H); 16903 intel_ddi_init(dev_priv, PORT_I); 16904 icl_dsi_init(dev_priv); 16905 } else if (IS_ELKHARTLAKE(dev_priv)) { 16906 intel_ddi_init(dev_priv, PORT_A); 16907 intel_ddi_init(dev_priv, PORT_B); 16908 intel_ddi_init(dev_priv, PORT_C); 16909 intel_ddi_init(dev_priv, PORT_D); 16910 icl_dsi_init(dev_priv); 16911 } else if (IS_GEN(dev_priv, 11)) { 16912 intel_ddi_init(dev_priv, PORT_A); 16913 intel_ddi_init(dev_priv, PORT_B); 16914 intel_ddi_init(dev_priv, PORT_C); 16915 intel_ddi_init(dev_priv, PORT_D); 16916 intel_ddi_init(dev_priv, PORT_E); 16917 /* 16918 * On some ICL SKUs port F is not present. No strap bits for 16919 * this, so rely on VBT. 16920 * Work around broken VBTs on SKUs known to have no port F. 16921 */ 16922 if (IS_ICL_WITH_PORT_F(dev_priv) && 16923 intel_bios_is_port_present(dev_priv, PORT_F)) 16924 intel_ddi_init(dev_priv, PORT_F); 16925 16926 icl_dsi_init(dev_priv); 16927 } else if (IS_GEN9_LP(dev_priv)) { 16928 /* 16929 * FIXME: Broxton doesn't support port detection via the 16930 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to 16931 * detect the ports. 16932 */ 16933 intel_ddi_init(dev_priv, PORT_A); 16934 intel_ddi_init(dev_priv, PORT_B); 16935 intel_ddi_init(dev_priv, PORT_C); 16936 16937 vlv_dsi_init(dev_priv); 16938 } else if (HAS_DDI(dev_priv)) { 16939 int found; 16940 16941 if (intel_ddi_crt_present(dev_priv)) 16942 intel_crt_init(dev_priv); 16943 16944 /* 16945 * Haswell uses DDI functions to detect digital outputs. 16946 * On SKL pre-D0 the strap isn't connected, so we assume 16947 * it's there. 16948 */ 16949 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 16950 /* WaIgnoreDDIAStrap: skl */ 16951 if (found || IS_GEN9_BC(dev_priv)) 16952 intel_ddi_init(dev_priv, PORT_A); 16953 16954 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP 16955 * register */ 16956 found = intel_de_read(dev_priv, SFUSE_STRAP); 16957 16958 if (found & SFUSE_STRAP_DDIB_DETECTED) 16959 intel_ddi_init(dev_priv, PORT_B); 16960 if (found & SFUSE_STRAP_DDIC_DETECTED) 16961 intel_ddi_init(dev_priv, PORT_C); 16962 if (found & SFUSE_STRAP_DDID_DETECTED) 16963 intel_ddi_init(dev_priv, PORT_D); 16964 if (found & SFUSE_STRAP_DDIF_DETECTED) 16965 intel_ddi_init(dev_priv, PORT_F); 16966 /* 16967 * On SKL we don't have a way to detect DDI-E so we rely on VBT. 16968 */ 16969 if (IS_GEN9_BC(dev_priv) && 16970 intel_bios_is_port_present(dev_priv, PORT_E)) 16971 intel_ddi_init(dev_priv, PORT_E); 16972 16973 } else if (HAS_PCH_SPLIT(dev_priv)) { 16974 int found; 16975 16976 /* 16977 * intel_edp_init_connector() depends on this completing first, 16978 * to prevent the registration of both eDP and LVDS and the 16979 * incorrect sharing of the PPS. 16980 */ 16981 intel_lvds_init(dev_priv); 16982 intel_crt_init(dev_priv); 16983 16984 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 16985 16986 if (ilk_has_edp_a(dev_priv)) 16987 intel_dp_init(dev_priv, DP_A, PORT_A); 16988 16989 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) { 16990 /* PCH SDVOB multiplex with HDMIB */ 16991 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 16992 if (!found) 16993 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 16994 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED)) 16995 intel_dp_init(dev_priv, PCH_DP_B, PORT_B); 16996 } 16997 16998 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED) 16999 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 17000 17001 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED) 17002 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 17003 17004 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED) 17005 intel_dp_init(dev_priv, PCH_DP_C, PORT_C); 17006 17007 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED) 17008 intel_dp_init(dev_priv, PCH_DP_D, PORT_D); 17009 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 17010 bool has_edp, has_port; 17011 17012 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 17013 intel_crt_init(dev_priv); 17014 17015 /* 17016 * The DP_DETECTED bit is the latched state of the DDC 17017 * SDA pin at boot. However since eDP doesn't require DDC 17018 * (no way to plug in a DP->HDMI dongle) the DDC pins for 17019 * eDP ports may have been muxed to an alternate function. 17020 * Thus we can't rely on the DP_DETECTED bit alone to detect 17021 * eDP ports. Consult the VBT as well as DP_DETECTED to 17022 * detect eDP ports. 17023 * 17024 * Sadly the straps seem to be missing sometimes even for HDMI 17025 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 17026 * and VBT for the presence of the port. Additionally we can't 17027 * trust the port type the VBT declares as we've seen at least 17028 * HDMI ports that the VBT claim are DP or eDP. 17029 */ 17030 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 17031 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 17032 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port) 17033 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B); 17034 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 17035 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 17036 17037 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 17038 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 17039 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port) 17040 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C); 17041 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 17042 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 17043 17044 if (IS_CHERRYVIEW(dev_priv)) { 17045 /* 17046 * eDP not supported on port D, 17047 * so no need to worry about it 17048 */ 17049 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 17050 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port) 17051 intel_dp_init(dev_priv, CHV_DP_D, PORT_D); 17052 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port) 17053 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 17054 } 17055 17056 vlv_dsi_init(dev_priv); 17057 } else if (IS_PINEVIEW(dev_priv)) { 17058 intel_lvds_init(dev_priv); 17059 intel_crt_init(dev_priv); 17060 } else if (IS_GEN_RANGE(dev_priv, 3, 4)) { 17061 bool found = false; 17062 17063 if (IS_MOBILE(dev_priv)) 17064 intel_lvds_init(dev_priv); 17065 17066 intel_crt_init(dev_priv); 17067 17068 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 17069 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n"); 17070 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 17071 if (!found && IS_G4X(dev_priv)) { 17072 drm_dbg_kms(&dev_priv->drm, 17073 "probing HDMI on SDVOB\n"); 17074 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 17075 } 17076 17077 if (!found && IS_G4X(dev_priv)) 17078 intel_dp_init(dev_priv, DP_B, PORT_B); 17079 } 17080 17081 /* Before G4X SDVOC doesn't have its own detect register */ 17082 17083 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 17084 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n"); 17085 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 17086 } 17087 17088 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) { 17089 17090 if (IS_G4X(dev_priv)) { 17091 drm_dbg_kms(&dev_priv->drm, 17092 "probing HDMI on SDVOC\n"); 17093 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 17094 } 17095 if (IS_G4X(dev_priv)) 17096 intel_dp_init(dev_priv, DP_C, PORT_C); 17097 } 17098 17099 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED)) 17100 intel_dp_init(dev_priv, DP_D, PORT_D); 17101 17102 if (SUPPORTS_TV(dev_priv)) 17103 intel_tv_init(dev_priv); 17104 } else if (IS_GEN(dev_priv, 2)) { 17105 if (IS_I85X(dev_priv)) 17106 intel_lvds_init(dev_priv); 17107 17108 intel_crt_init(dev_priv); 17109 intel_dvo_init(dev_priv); 17110 } 17111 17112 intel_psr_init(dev_priv); 17113 17114 for_each_intel_encoder(&dev_priv->drm, encoder) { 17115 encoder->base.possible_crtcs = 17116 intel_encoder_possible_crtcs(encoder); 17117 encoder->base.possible_clones = 17118 intel_encoder_possible_clones(encoder); 17119 } 17120 17121 intel_init_pch_refclk(dev_priv); 17122 17123 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 17124 } 17125 17126 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 17127 { 17128 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 17129 17130 drm_framebuffer_cleanup(fb); 17131 intel_frontbuffer_put(intel_fb->frontbuffer); 17132 17133 kfree(intel_fb); 17134 } 17135 17136 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 17137 struct drm_file *file, 17138 unsigned int *handle) 17139 { 17140 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 17141 struct drm_i915_private *i915 = to_i915(obj->base.dev); 17142 17143 if (obj->userptr.mm) { 17144 drm_dbg(&i915->drm, 17145 "attempting to use a userptr for a framebuffer, denied\n"); 17146 return -EINVAL; 17147 } 17148 17149 return drm_gem_handle_create(file, &obj->base, handle); 17150 } 17151 17152 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 17153 struct drm_file *file, 17154 unsigned flags, unsigned color, 17155 struct drm_clip_rect *clips, 17156 unsigned num_clips) 17157 { 17158 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 17159 17160 i915_gem_object_flush_if_display(obj); 17161 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 17162 17163 return 0; 17164 } 17165 17166 static const struct drm_framebuffer_funcs intel_fb_funcs = { 17167 .destroy = intel_user_framebuffer_destroy, 17168 .create_handle = intel_user_framebuffer_create_handle, 17169 .dirty = intel_user_framebuffer_dirty, 17170 }; 17171 17172 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, 17173 struct drm_i915_gem_object *obj, 17174 struct drm_mode_fb_cmd2 *mode_cmd) 17175 { 17176 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 17177 struct drm_framebuffer *fb = &intel_fb->base; 17178 u32 max_stride; 17179 unsigned int tiling, stride; 17180 int ret = -EINVAL; 17181 int i; 17182 17183 intel_fb->frontbuffer = intel_frontbuffer_get(obj); 17184 if (!intel_fb->frontbuffer) 17185 return -ENOMEM; 17186 17187 i915_gem_object_lock(obj, NULL); 17188 tiling = i915_gem_object_get_tiling(obj); 17189 stride = i915_gem_object_get_stride(obj); 17190 i915_gem_object_unlock(obj); 17191 17192 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 17193 /* 17194 * If there's a fence, enforce that 17195 * the fb modifier and tiling mode match. 17196 */ 17197 if (tiling != I915_TILING_NONE && 17198 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 17199 drm_dbg_kms(&dev_priv->drm, 17200 "tiling_mode doesn't match fb modifier\n"); 17201 goto err; 17202 } 17203 } else { 17204 if (tiling == I915_TILING_X) { 17205 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 17206 } else if (tiling == I915_TILING_Y) { 17207 drm_dbg_kms(&dev_priv->drm, 17208 "No Y tiling for legacy addfb\n"); 17209 goto err; 17210 } 17211 } 17212 17213 if (!drm_any_plane_has_format(&dev_priv->drm, 17214 mode_cmd->pixel_format, 17215 mode_cmd->modifier[0])) { 17216 struct drm_format_name_buf format_name; 17217 17218 drm_dbg_kms(&dev_priv->drm, 17219 "unsupported pixel format %s / modifier 0x%llx\n", 17220 drm_get_format_name(mode_cmd->pixel_format, 17221 &format_name), 17222 mode_cmd->modifier[0]); 17223 goto err; 17224 } 17225 17226 /* 17227 * gen2/3 display engine uses the fence if present, 17228 * so the tiling mode must match the fb modifier exactly. 17229 */ 17230 if (INTEL_GEN(dev_priv) < 4 && 17231 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 17232 drm_dbg_kms(&dev_priv->drm, 17233 "tiling_mode must match fb modifier exactly on gen2/3\n"); 17234 goto err; 17235 } 17236 17237 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, 17238 mode_cmd->modifier[0]); 17239 if (mode_cmd->pitches[0] > max_stride) { 17240 drm_dbg_kms(&dev_priv->drm, 17241 "%s pitch (%u) must be at most %d\n", 17242 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? 17243 "tiled" : "linear", 17244 mode_cmd->pitches[0], max_stride); 17245 goto err; 17246 } 17247 17248 /* 17249 * If there's a fence, enforce that 17250 * the fb pitch and fence stride match. 17251 */ 17252 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { 17253 drm_dbg_kms(&dev_priv->drm, 17254 "pitch (%d) must match tiling stride (%d)\n", 17255 mode_cmd->pitches[0], stride); 17256 goto err; 17257 } 17258 17259 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 17260 if (mode_cmd->offsets[0] != 0) { 17261 drm_dbg_kms(&dev_priv->drm, 17262 "plane 0 offset (0x%08x) must be 0\n", 17263 mode_cmd->offsets[0]); 17264 goto err; 17265 } 17266 17267 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); 17268 17269 for (i = 0; i < fb->format->num_planes; i++) { 17270 u32 stride_alignment; 17271 17272 if (mode_cmd->handles[i] != mode_cmd->handles[0]) { 17273 drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n", 17274 i); 17275 goto err; 17276 } 17277 17278 stride_alignment = intel_fb_stride_alignment(fb, i); 17279 if (fb->pitches[i] & (stride_alignment - 1)) { 17280 drm_dbg_kms(&dev_priv->drm, 17281 "plane %d pitch (%d) must be at least %u byte aligned\n", 17282 i, fb->pitches[i], stride_alignment); 17283 goto err; 17284 } 17285 17286 if (is_gen12_ccs_plane(fb, i)) { 17287 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i); 17288 17289 if (fb->pitches[i] != ccs_aux_stride) { 17290 drm_dbg_kms(&dev_priv->drm, 17291 "ccs aux plane %d pitch (%d) must be %d\n", 17292 i, 17293 fb->pitches[i], ccs_aux_stride); 17294 goto err; 17295 } 17296 } 17297 17298 fb->obj[i] = &obj->base; 17299 } 17300 17301 ret = intel_fill_fb_info(dev_priv, fb); 17302 if (ret) 17303 goto err; 17304 17305 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); 17306 if (ret) { 17307 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret); 17308 goto err; 17309 } 17310 17311 return 0; 17312 17313 err: 17314 intel_frontbuffer_put(intel_fb->frontbuffer); 17315 return ret; 17316 } 17317 17318 static struct drm_framebuffer * 17319 intel_user_framebuffer_create(struct drm_device *dev, 17320 struct drm_file *filp, 17321 const struct drm_mode_fb_cmd2 *user_mode_cmd) 17322 { 17323 struct drm_framebuffer *fb; 17324 struct drm_i915_gem_object *obj; 17325 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 17326 17327 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); 17328 if (!obj) 17329 return ERR_PTR(-ENOENT); 17330 17331 fb = intel_framebuffer_create(obj, &mode_cmd); 17332 i915_gem_object_put(obj); 17333 17334 return fb; 17335 } 17336 17337 static enum drm_mode_status 17338 intel_mode_valid(struct drm_device *dev, 17339 const struct drm_display_mode *mode) 17340 { 17341 struct drm_i915_private *dev_priv = to_i915(dev); 17342 int hdisplay_max, htotal_max; 17343 int vdisplay_max, vtotal_max; 17344 17345 /* 17346 * Can't reject DBLSCAN here because Xorg ddxen can add piles 17347 * of DBLSCAN modes to the output's mode list when they detect 17348 * the scaling mode property on the connector. And they don't 17349 * ask the kernel to validate those modes in any way until 17350 * modeset time at which point the client gets a protocol error. 17351 * So in order to not upset those clients we silently ignore the 17352 * DBLSCAN flag on such connectors. For other connectors we will 17353 * reject modes with the DBLSCAN flag in encoder->compute_config(). 17354 * And we always reject DBLSCAN modes in connector->mode_valid() 17355 * as we never want such modes on the connector's mode list. 17356 */ 17357 17358 if (mode->vscan > 1) 17359 return MODE_NO_VSCAN; 17360 17361 if (mode->flags & DRM_MODE_FLAG_HSKEW) 17362 return MODE_H_ILLEGAL; 17363 17364 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 17365 DRM_MODE_FLAG_NCSYNC | 17366 DRM_MODE_FLAG_PCSYNC)) 17367 return MODE_HSYNC; 17368 17369 if (mode->flags & (DRM_MODE_FLAG_BCAST | 17370 DRM_MODE_FLAG_PIXMUX | 17371 DRM_MODE_FLAG_CLKDIV2)) 17372 return MODE_BAD; 17373 17374 /* Transcoder timing limits */ 17375 if (INTEL_GEN(dev_priv) >= 11) { 17376 hdisplay_max = 16384; 17377 vdisplay_max = 8192; 17378 htotal_max = 16384; 17379 vtotal_max = 8192; 17380 } else if (INTEL_GEN(dev_priv) >= 9 || 17381 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 17382 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 17383 vdisplay_max = 4096; 17384 htotal_max = 8192; 17385 vtotal_max = 8192; 17386 } else if (INTEL_GEN(dev_priv) >= 3) { 17387 hdisplay_max = 4096; 17388 vdisplay_max = 4096; 17389 htotal_max = 8192; 17390 vtotal_max = 8192; 17391 } else { 17392 hdisplay_max = 2048; 17393 vdisplay_max = 2048; 17394 htotal_max = 4096; 17395 vtotal_max = 4096; 17396 } 17397 17398 if (mode->hdisplay > hdisplay_max || 17399 mode->hsync_start > htotal_max || 17400 mode->hsync_end > htotal_max || 17401 mode->htotal > htotal_max) 17402 return MODE_H_ILLEGAL; 17403 17404 if (mode->vdisplay > vdisplay_max || 17405 mode->vsync_start > vtotal_max || 17406 mode->vsync_end > vtotal_max || 17407 mode->vtotal > vtotal_max) 17408 return MODE_V_ILLEGAL; 17409 17410 if (INTEL_GEN(dev_priv) >= 5) { 17411 if (mode->hdisplay < 64 || 17412 mode->htotal - mode->hdisplay < 32) 17413 return MODE_H_ILLEGAL; 17414 17415 if (mode->vtotal - mode->vdisplay < 5) 17416 return MODE_V_ILLEGAL; 17417 } else { 17418 if (mode->htotal - mode->hdisplay < 32) 17419 return MODE_H_ILLEGAL; 17420 17421 if (mode->vtotal - mode->vdisplay < 3) 17422 return MODE_V_ILLEGAL; 17423 } 17424 17425 return MODE_OK; 17426 } 17427 17428 enum drm_mode_status 17429 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, 17430 const struct drm_display_mode *mode) 17431 { 17432 int plane_width_max, plane_height_max; 17433 17434 /* 17435 * intel_mode_valid() should be 17436 * sufficient on older platforms. 17437 */ 17438 if (INTEL_GEN(dev_priv) < 9) 17439 return MODE_OK; 17440 17441 /* 17442 * Most people will probably want a fullscreen 17443 * plane so let's not advertize modes that are 17444 * too big for that. 17445 */ 17446 if (INTEL_GEN(dev_priv) >= 11) { 17447 plane_width_max = 5120; 17448 plane_height_max = 4320; 17449 } else { 17450 plane_width_max = 5120; 17451 plane_height_max = 4096; 17452 } 17453 17454 if (mode->hdisplay > plane_width_max) 17455 return MODE_H_ILLEGAL; 17456 17457 if (mode->vdisplay > plane_height_max) 17458 return MODE_V_ILLEGAL; 17459 17460 return MODE_OK; 17461 } 17462 17463 static const struct drm_mode_config_funcs intel_mode_funcs = { 17464 .fb_create = intel_user_framebuffer_create, 17465 .get_format_info = intel_get_format_info, 17466 .output_poll_changed = intel_fbdev_output_poll_changed, 17467 .mode_valid = intel_mode_valid, 17468 .atomic_check = intel_atomic_check, 17469 .atomic_commit = intel_atomic_commit, 17470 .atomic_state_alloc = intel_atomic_state_alloc, 17471 .atomic_state_clear = intel_atomic_state_clear, 17472 .atomic_state_free = intel_atomic_state_free, 17473 }; 17474 17475 /** 17476 * intel_init_display_hooks - initialize the display modesetting hooks 17477 * @dev_priv: device private 17478 */ 17479 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 17480 { 17481 intel_init_cdclk_hooks(dev_priv); 17482 17483 if (INTEL_GEN(dev_priv) >= 9) { 17484 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 17485 dev_priv->display.get_initial_plane_config = 17486 skl_get_initial_plane_config; 17487 dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock; 17488 dev_priv->display.crtc_enable = hsw_crtc_enable; 17489 dev_priv->display.crtc_disable = hsw_crtc_disable; 17490 } else if (HAS_DDI(dev_priv)) { 17491 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 17492 dev_priv->display.get_initial_plane_config = 17493 i9xx_get_initial_plane_config; 17494 dev_priv->display.crtc_compute_clock = 17495 hsw_crtc_compute_clock; 17496 dev_priv->display.crtc_enable = hsw_crtc_enable; 17497 dev_priv->display.crtc_disable = hsw_crtc_disable; 17498 } else if (HAS_PCH_SPLIT(dev_priv)) { 17499 dev_priv->display.get_pipe_config = ilk_get_pipe_config; 17500 dev_priv->display.get_initial_plane_config = 17501 i9xx_get_initial_plane_config; 17502 dev_priv->display.crtc_compute_clock = 17503 ilk_crtc_compute_clock; 17504 dev_priv->display.crtc_enable = ilk_crtc_enable; 17505 dev_priv->display.crtc_disable = ilk_crtc_disable; 17506 } else if (IS_CHERRYVIEW(dev_priv)) { 17507 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17508 dev_priv->display.get_initial_plane_config = 17509 i9xx_get_initial_plane_config; 17510 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock; 17511 dev_priv->display.crtc_enable = valleyview_crtc_enable; 17512 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17513 } else if (IS_VALLEYVIEW(dev_priv)) { 17514 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17515 dev_priv->display.get_initial_plane_config = 17516 i9xx_get_initial_plane_config; 17517 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock; 17518 dev_priv->display.crtc_enable = valleyview_crtc_enable; 17519 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17520 } else if (IS_G4X(dev_priv)) { 17521 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17522 dev_priv->display.get_initial_plane_config = 17523 i9xx_get_initial_plane_config; 17524 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock; 17525 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17526 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17527 } else if (IS_PINEVIEW(dev_priv)) { 17528 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17529 dev_priv->display.get_initial_plane_config = 17530 i9xx_get_initial_plane_config; 17531 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock; 17532 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17533 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17534 } else if (!IS_GEN(dev_priv, 2)) { 17535 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17536 dev_priv->display.get_initial_plane_config = 17537 i9xx_get_initial_plane_config; 17538 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock; 17539 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17540 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17541 } else { 17542 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17543 dev_priv->display.get_initial_plane_config = 17544 i9xx_get_initial_plane_config; 17545 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock; 17546 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17547 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17548 } 17549 17550 if (IS_GEN(dev_priv, 5)) { 17551 dev_priv->display.fdi_link_train = ilk_fdi_link_train; 17552 } else if (IS_GEN(dev_priv, 6)) { 17553 dev_priv->display.fdi_link_train = gen6_fdi_link_train; 17554 } else if (IS_IVYBRIDGE(dev_priv)) { 17555 /* FIXME: detect B0+ stepping and use auto training */ 17556 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; 17557 } 17558 17559 if (INTEL_GEN(dev_priv) >= 9) 17560 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; 17561 else 17562 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; 17563 17564 } 17565 17566 void intel_modeset_init_hw(struct drm_i915_private *i915) 17567 { 17568 struct intel_cdclk_state *cdclk_state = 17569 to_intel_cdclk_state(i915->cdclk.obj.state); 17570 struct intel_dbuf_state *dbuf_state = 17571 to_intel_dbuf_state(i915->dbuf.obj.state); 17572 17573 intel_update_cdclk(i915); 17574 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK"); 17575 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw; 17576 17577 dbuf_state->enabled_slices = i915->dbuf.enabled_slices; 17578 } 17579 17580 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state) 17581 { 17582 struct drm_plane *plane; 17583 struct intel_crtc *crtc; 17584 17585 for_each_intel_crtc(state->dev, crtc) { 17586 struct intel_crtc_state *crtc_state; 17587 17588 crtc_state = intel_atomic_get_crtc_state(state, crtc); 17589 if (IS_ERR(crtc_state)) 17590 return PTR_ERR(crtc_state); 17591 17592 if (crtc_state->hw.active) { 17593 /* 17594 * Preserve the inherited flag to avoid 17595 * taking the full modeset path. 17596 */ 17597 crtc_state->inherited = true; 17598 } 17599 } 17600 17601 drm_for_each_plane(plane, state->dev) { 17602 struct drm_plane_state *plane_state; 17603 17604 plane_state = drm_atomic_get_plane_state(state, plane); 17605 if (IS_ERR(plane_state)) 17606 return PTR_ERR(plane_state); 17607 } 17608 17609 return 0; 17610 } 17611 17612 /* 17613 * Calculate what we think the watermarks should be for the state we've read 17614 * out of the hardware and then immediately program those watermarks so that 17615 * we ensure the hardware settings match our internal state. 17616 * 17617 * We can calculate what we think WM's should be by creating a duplicate of the 17618 * current state (which was constructed during hardware readout) and running it 17619 * through the atomic check code to calculate new watermark values in the 17620 * state object. 17621 */ 17622 static void sanitize_watermarks(struct drm_i915_private *dev_priv) 17623 { 17624 struct drm_atomic_state *state; 17625 struct intel_atomic_state *intel_state; 17626 struct intel_crtc *crtc; 17627 struct intel_crtc_state *crtc_state; 17628 struct drm_modeset_acquire_ctx ctx; 17629 int ret; 17630 int i; 17631 17632 /* Only supported on platforms that use atomic watermark design */ 17633 if (!dev_priv->display.optimize_watermarks) 17634 return; 17635 17636 state = drm_atomic_state_alloc(&dev_priv->drm); 17637 if (drm_WARN_ON(&dev_priv->drm, !state)) 17638 return; 17639 17640 intel_state = to_intel_atomic_state(state); 17641 17642 drm_modeset_acquire_init(&ctx, 0); 17643 17644 retry: 17645 state->acquire_ctx = &ctx; 17646 17647 /* 17648 * Hardware readout is the only time we don't want to calculate 17649 * intermediate watermarks (since we don't trust the current 17650 * watermarks). 17651 */ 17652 if (!HAS_GMCH(dev_priv)) 17653 intel_state->skip_intermediate_wm = true; 17654 17655 ret = sanitize_watermarks_add_affected(state); 17656 if (ret) 17657 goto fail; 17658 17659 ret = intel_atomic_check(&dev_priv->drm, state); 17660 if (ret) 17661 goto fail; 17662 17663 /* Write calculated watermark values back */ 17664 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 17665 crtc_state->wm.need_postvbl_update = true; 17666 dev_priv->display.optimize_watermarks(intel_state, crtc); 17667 17668 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 17669 } 17670 17671 fail: 17672 if (ret == -EDEADLK) { 17673 drm_atomic_state_clear(state); 17674 drm_modeset_backoff(&ctx); 17675 goto retry; 17676 } 17677 17678 /* 17679 * If we fail here, it means that the hardware appears to be 17680 * programmed in a way that shouldn't be possible, given our 17681 * understanding of watermark requirements. This might mean a 17682 * mistake in the hardware readout code or a mistake in the 17683 * watermark calculations for a given platform. Raise a WARN 17684 * so that this is noticeable. 17685 * 17686 * If this actually happens, we'll have to just leave the 17687 * BIOS-programmed watermarks untouched and hope for the best. 17688 */ 17689 drm_WARN(&dev_priv->drm, ret, 17690 "Could not determine valid watermarks for inherited state\n"); 17691 17692 drm_atomic_state_put(state); 17693 17694 drm_modeset_drop_locks(&ctx); 17695 drm_modeset_acquire_fini(&ctx); 17696 } 17697 17698 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) 17699 { 17700 if (IS_GEN(dev_priv, 5)) { 17701 u32 fdi_pll_clk = 17702 intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; 17703 17704 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; 17705 } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) { 17706 dev_priv->fdi_pll_freq = 270000; 17707 } else { 17708 return; 17709 } 17710 17711 drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); 17712 } 17713 17714 static int intel_initial_commit(struct drm_device *dev) 17715 { 17716 struct drm_atomic_state *state = NULL; 17717 struct drm_modeset_acquire_ctx ctx; 17718 struct intel_crtc *crtc; 17719 int ret = 0; 17720 17721 state = drm_atomic_state_alloc(dev); 17722 if (!state) 17723 return -ENOMEM; 17724 17725 drm_modeset_acquire_init(&ctx, 0); 17726 17727 retry: 17728 state->acquire_ctx = &ctx; 17729 17730 for_each_intel_crtc(dev, crtc) { 17731 struct intel_crtc_state *crtc_state = 17732 intel_atomic_get_crtc_state(state, crtc); 17733 17734 if (IS_ERR(crtc_state)) { 17735 ret = PTR_ERR(crtc_state); 17736 goto out; 17737 } 17738 17739 if (crtc_state->hw.active) { 17740 /* 17741 * We've not yet detected sink capabilities 17742 * (audio,infoframes,etc.) and thus we don't want to 17743 * force a full state recomputation yet. We want that to 17744 * happen only for the first real commit from userspace. 17745 * So preserve the inherited flag for the time being. 17746 */ 17747 crtc_state->inherited = true; 17748 17749 ret = drm_atomic_add_affected_planes(state, &crtc->base); 17750 if (ret) 17751 goto out; 17752 17753 /* 17754 * FIXME hack to force a LUT update to avoid the 17755 * plane update forcing the pipe gamma on without 17756 * having a proper LUT loaded. Remove once we 17757 * have readout for pipe gamma enable. 17758 */ 17759 crtc_state->uapi.color_mgmt_changed = true; 17760 17761 /* 17762 * FIXME hack to force full modeset when DSC is being 17763 * used. 17764 * 17765 * As long as we do not have full state readout and 17766 * config comparison of crtc_state->dsc, we have no way 17767 * to ensure reliable fastset. Remove once we have 17768 * readout for DSC. 17769 */ 17770 if (crtc_state->dsc.compression_enable) { 17771 ret = drm_atomic_add_affected_connectors(state, 17772 &crtc->base); 17773 if (ret) 17774 goto out; 17775 crtc_state->uapi.mode_changed = true; 17776 drm_dbg_kms(dev, "Force full modeset for DSC\n"); 17777 } 17778 } 17779 } 17780 17781 ret = drm_atomic_commit(state); 17782 17783 out: 17784 if (ret == -EDEADLK) { 17785 drm_atomic_state_clear(state); 17786 drm_modeset_backoff(&ctx); 17787 goto retry; 17788 } 17789 17790 drm_atomic_state_put(state); 17791 17792 drm_modeset_drop_locks(&ctx); 17793 drm_modeset_acquire_fini(&ctx); 17794 17795 return ret; 17796 } 17797 17798 static void intel_mode_config_init(struct drm_i915_private *i915) 17799 { 17800 struct drm_mode_config *mode_config = &i915->drm.mode_config; 17801 17802 drm_mode_config_init(&i915->drm); 17803 INIT_LIST_HEAD(&i915->global_obj_list); 17804 17805 mode_config->min_width = 0; 17806 mode_config->min_height = 0; 17807 17808 mode_config->preferred_depth = 24; 17809 mode_config->prefer_shadow = 1; 17810 17811 mode_config->allow_fb_modifiers = true; 17812 17813 mode_config->funcs = &intel_mode_funcs; 17814 17815 /* 17816 * Maximum framebuffer dimensions, chosen to match 17817 * the maximum render engine surface size on gen4+. 17818 */ 17819 if (INTEL_GEN(i915) >= 7) { 17820 mode_config->max_width = 16384; 17821 mode_config->max_height = 16384; 17822 } else if (INTEL_GEN(i915) >= 4) { 17823 mode_config->max_width = 8192; 17824 mode_config->max_height = 8192; 17825 } else if (IS_GEN(i915, 3)) { 17826 mode_config->max_width = 4096; 17827 mode_config->max_height = 4096; 17828 } else { 17829 mode_config->max_width = 2048; 17830 mode_config->max_height = 2048; 17831 } 17832 17833 if (IS_I845G(i915) || IS_I865G(i915)) { 17834 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; 17835 mode_config->cursor_height = 1023; 17836 } else if (IS_I830(i915) || IS_I85X(i915) || 17837 IS_I915G(i915) || IS_I915GM(i915)) { 17838 mode_config->cursor_width = 64; 17839 mode_config->cursor_height = 64; 17840 } else { 17841 mode_config->cursor_width = 256; 17842 mode_config->cursor_height = 256; 17843 } 17844 } 17845 17846 static void intel_mode_config_cleanup(struct drm_i915_private *i915) 17847 { 17848 intel_atomic_global_obj_cleanup(i915); 17849 drm_mode_config_cleanup(&i915->drm); 17850 } 17851 17852 static void plane_config_fini(struct intel_initial_plane_config *plane_config) 17853 { 17854 if (plane_config->fb) { 17855 struct drm_framebuffer *fb = &plane_config->fb->base; 17856 17857 /* We may only have the stub and not a full framebuffer */ 17858 if (drm_framebuffer_read_refcount(fb)) 17859 drm_framebuffer_put(fb); 17860 else 17861 kfree(fb); 17862 } 17863 17864 if (plane_config->vma) 17865 i915_vma_put(plane_config->vma); 17866 } 17867 17868 /* part #1: call before irq install */ 17869 int intel_modeset_init_noirq(struct drm_i915_private *i915) 17870 { 17871 int ret; 17872 17873 if (i915_inject_probe_failure(i915)) 17874 return -ENODEV; 17875 17876 if (HAS_DISPLAY(i915)) { 17877 ret = drm_vblank_init(&i915->drm, 17878 INTEL_NUM_PIPES(i915)); 17879 if (ret) 17880 return ret; 17881 } 17882 17883 intel_bios_init(i915); 17884 17885 ret = intel_vga_register(i915); 17886 if (ret) 17887 goto cleanup_bios; 17888 17889 /* FIXME: completely on the wrong abstraction layer */ 17890 intel_power_domains_init_hw(i915, false); 17891 17892 intel_csr_ucode_init(i915); 17893 17894 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 17895 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | 17896 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); 17897 17898 intel_mode_config_init(i915); 17899 17900 ret = intel_cdclk_init(i915); 17901 if (ret) 17902 goto cleanup_vga_client_pw_domain_csr; 17903 17904 ret = intel_dbuf_init(i915); 17905 if (ret) 17906 goto cleanup_vga_client_pw_domain_csr; 17907 17908 ret = intel_bw_init(i915); 17909 if (ret) 17910 goto cleanup_vga_client_pw_domain_csr; 17911 17912 init_llist_head(&i915->atomic_helper.free_list); 17913 INIT_WORK(&i915->atomic_helper.free_work, 17914 intel_atomic_helper_free_state_worker); 17915 17916 intel_init_quirks(i915); 17917 17918 intel_fbc_init(i915); 17919 17920 return 0; 17921 17922 cleanup_vga_client_pw_domain_csr: 17923 intel_csr_ucode_fini(i915); 17924 intel_power_domains_driver_remove(i915); 17925 intel_vga_unregister(i915); 17926 cleanup_bios: 17927 intel_bios_driver_remove(i915); 17928 17929 return ret; 17930 } 17931 17932 /* part #2: call after irq install, but before gem init */ 17933 int intel_modeset_init_nogem(struct drm_i915_private *i915) 17934 { 17935 struct drm_device *dev = &i915->drm; 17936 enum pipe pipe; 17937 struct intel_crtc *crtc; 17938 int ret; 17939 17940 intel_init_pm(i915); 17941 17942 intel_panel_sanitize_ssc(i915); 17943 17944 intel_gmbus_setup(i915); 17945 17946 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n", 17947 INTEL_NUM_PIPES(i915), 17948 INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); 17949 17950 if (HAS_DISPLAY(i915)) { 17951 for_each_pipe(i915, pipe) { 17952 ret = intel_crtc_init(i915, pipe); 17953 if (ret) { 17954 intel_mode_config_cleanup(i915); 17955 return ret; 17956 } 17957 } 17958 } 17959 17960 intel_plane_possible_crtcs_init(i915); 17961 intel_shared_dpll_init(dev); 17962 intel_update_fdi_pll_freq(i915); 17963 17964 intel_update_czclk(i915); 17965 intel_modeset_init_hw(i915); 17966 17967 intel_hdcp_component_init(i915); 17968 17969 if (i915->max_cdclk_freq == 0) 17970 intel_update_max_cdclk(i915); 17971 17972 /* 17973 * If the platform has HTI, we need to find out whether it has reserved 17974 * any display resources before we create our display outputs. 17975 */ 17976 if (INTEL_INFO(i915)->display.has_hti) 17977 i915->hti_state = intel_de_read(i915, HDPORT_STATE); 17978 17979 /* Just disable it once at startup */ 17980 intel_vga_disable(i915); 17981 intel_setup_outputs(i915); 17982 17983 drm_modeset_lock_all(dev); 17984 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 17985 drm_modeset_unlock_all(dev); 17986 17987 for_each_intel_crtc(dev, crtc) { 17988 struct intel_initial_plane_config plane_config = {}; 17989 17990 if (!crtc->active) 17991 continue; 17992 17993 /* 17994 * Note that reserving the BIOS fb up front prevents us 17995 * from stuffing other stolen allocations like the ring 17996 * on top. This prevents some ugliness at boot time, and 17997 * can even allow for smooth boot transitions if the BIOS 17998 * fb is large enough for the active pipe configuration. 17999 */ 18000 i915->display.get_initial_plane_config(crtc, &plane_config); 18001 18002 /* 18003 * If the fb is shared between multiple heads, we'll 18004 * just get the first one. 18005 */ 18006 intel_find_initial_plane_obj(crtc, &plane_config); 18007 18008 plane_config_fini(&plane_config); 18009 } 18010 18011 /* 18012 * Make sure hardware watermarks really match the state we read out. 18013 * Note that we need to do this after reconstructing the BIOS fb's 18014 * since the watermark calculation done here will use pstate->fb. 18015 */ 18016 if (!HAS_GMCH(i915)) 18017 sanitize_watermarks(i915); 18018 18019 /* 18020 * Force all active planes to recompute their states. So that on 18021 * mode_setcrtc after probe, all the intel_plane_state variables 18022 * are already calculated and there is no assert_plane warnings 18023 * during bootup. 18024 */ 18025 ret = intel_initial_commit(dev); 18026 if (ret) 18027 drm_dbg_kms(&i915->drm, "Initial commit in probe failed.\n"); 18028 18029 return 0; 18030 } 18031 18032 /* part #3: call after gem init */ 18033 int intel_modeset_init(struct drm_i915_private *i915) 18034 { 18035 int ret; 18036 18037 intel_overlay_setup(i915); 18038 18039 if (!HAS_DISPLAY(i915)) 18040 return 0; 18041 18042 ret = intel_fbdev_init(&i915->drm); 18043 if (ret) 18044 return ret; 18045 18046 /* Only enable hotplug handling once the fbdev is fully set up. */ 18047 intel_hpd_init(i915); 18048 18049 intel_init_ipc(i915); 18050 18051 intel_psr_set_force_mode_changed(i915->psr.dp); 18052 18053 return 0; 18054 } 18055 18056 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 18057 { 18058 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18059 /* 640x480@60Hz, ~25175 kHz */ 18060 struct dpll clock = { 18061 .m1 = 18, 18062 .m2 = 7, 18063 .p1 = 13, 18064 .p2 = 4, 18065 .n = 2, 18066 }; 18067 u32 dpll, fp; 18068 int i; 18069 18070 drm_WARN_ON(&dev_priv->drm, 18071 i9xx_calc_dpll_params(48000, &clock) != 25154); 18072 18073 drm_dbg_kms(&dev_priv->drm, 18074 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 18075 pipe_name(pipe), clock.vco, clock.dot); 18076 18077 fp = i9xx_dpll_compute_fp(&clock); 18078 dpll = DPLL_DVO_2X_MODE | 18079 DPLL_VGA_MODE_DIS | 18080 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 18081 PLL_P2_DIVIDE_BY_4 | 18082 PLL_REF_INPUT_DREFCLK | 18083 DPLL_VCO_ENABLE; 18084 18085 intel_de_write(dev_priv, FP0(pipe), fp); 18086 intel_de_write(dev_priv, FP1(pipe), fp); 18087 18088 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 18089 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 18090 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 18091 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 18092 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 18093 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 18094 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 18095 18096 /* 18097 * Apparently we need to have VGA mode enabled prior to changing 18098 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 18099 * dividers, even though the register value does change. 18100 */ 18101 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 18102 intel_de_write(dev_priv, DPLL(pipe), dpll); 18103 18104 /* Wait for the clocks to stabilize. */ 18105 intel_de_posting_read(dev_priv, DPLL(pipe)); 18106 udelay(150); 18107 18108 /* The pixel multiplier can only be updated once the 18109 * DPLL is enabled and the clocks are stable. 18110 * 18111 * So write it again. 18112 */ 18113 intel_de_write(dev_priv, DPLL(pipe), dpll); 18114 18115 /* We do this three times for luck */ 18116 for (i = 0; i < 3 ; i++) { 18117 intel_de_write(dev_priv, DPLL(pipe), dpll); 18118 intel_de_posting_read(dev_priv, DPLL(pipe)); 18119 udelay(150); /* wait for warmup */ 18120 } 18121 18122 intel_de_write(dev_priv, PIPECONF(pipe), 18123 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 18124 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 18125 18126 intel_wait_for_pipe_scanline_moving(crtc); 18127 } 18128 18129 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 18130 { 18131 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18132 18133 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n", 18134 pipe_name(pipe)); 18135 18136 drm_WARN_ON(&dev_priv->drm, 18137 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & 18138 DISPLAY_PLANE_ENABLE); 18139 drm_WARN_ON(&dev_priv->drm, 18140 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & 18141 DISPLAY_PLANE_ENABLE); 18142 drm_WARN_ON(&dev_priv->drm, 18143 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & 18144 DISPLAY_PLANE_ENABLE); 18145 drm_WARN_ON(&dev_priv->drm, 18146 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE); 18147 drm_WARN_ON(&dev_priv->drm, 18148 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE); 18149 18150 intel_de_write(dev_priv, PIPECONF(pipe), 0); 18151 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 18152 18153 intel_wait_for_pipe_scanline_stopped(crtc); 18154 18155 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 18156 intel_de_posting_read(dev_priv, DPLL(pipe)); 18157 } 18158 18159 static void 18160 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 18161 { 18162 struct intel_crtc *crtc; 18163 18164 if (INTEL_GEN(dev_priv) >= 4) 18165 return; 18166 18167 for_each_intel_crtc(&dev_priv->drm, crtc) { 18168 struct intel_plane *plane = 18169 to_intel_plane(crtc->base.primary); 18170 struct intel_crtc *plane_crtc; 18171 enum pipe pipe; 18172 18173 if (!plane->get_hw_state(plane, &pipe)) 18174 continue; 18175 18176 if (pipe == crtc->pipe) 18177 continue; 18178 18179 drm_dbg_kms(&dev_priv->drm, 18180 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 18181 plane->base.base.id, plane->base.name); 18182 18183 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18184 intel_plane_disable_noatomic(plane_crtc, plane); 18185 } 18186 } 18187 18188 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 18189 { 18190 struct drm_device *dev = crtc->base.dev; 18191 struct intel_encoder *encoder; 18192 18193 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 18194 return true; 18195 18196 return false; 18197 } 18198 18199 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 18200 { 18201 struct drm_device *dev = encoder->base.dev; 18202 struct intel_connector *connector; 18203 18204 for_each_connector_on_encoder(dev, &encoder->base, connector) 18205 return connector; 18206 18207 return NULL; 18208 } 18209 18210 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 18211 enum pipe pch_transcoder) 18212 { 18213 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 18214 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 18215 } 18216 18217 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state) 18218 { 18219 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 18220 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 18221 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 18222 18223 if (INTEL_GEN(dev_priv) >= 9 || 18224 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 18225 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); 18226 u32 val; 18227 18228 if (transcoder_is_dsi(cpu_transcoder)) 18229 return; 18230 18231 val = intel_de_read(dev_priv, reg); 18232 val &= ~HSW_FRAME_START_DELAY_MASK; 18233 val |= HSW_FRAME_START_DELAY(0); 18234 intel_de_write(dev_priv, reg, val); 18235 } else { 18236 i915_reg_t reg = PIPECONF(cpu_transcoder); 18237 u32 val; 18238 18239 val = intel_de_read(dev_priv, reg); 18240 val &= ~PIPECONF_FRAME_START_DELAY_MASK; 18241 val |= PIPECONF_FRAME_START_DELAY(0); 18242 intel_de_write(dev_priv, reg, val); 18243 } 18244 18245 if (!crtc_state->has_pch_encoder) 18246 return; 18247 18248 if (HAS_PCH_IBX(dev_priv)) { 18249 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe); 18250 u32 val; 18251 18252 val = intel_de_read(dev_priv, reg); 18253 val &= ~TRANS_FRAME_START_DELAY_MASK; 18254 val |= TRANS_FRAME_START_DELAY(0); 18255 intel_de_write(dev_priv, reg, val); 18256 } else { 18257 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); 18258 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder); 18259 u32 val; 18260 18261 val = intel_de_read(dev_priv, reg); 18262 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 18263 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 18264 intel_de_write(dev_priv, reg, val); 18265 } 18266 } 18267 18268 static void intel_sanitize_crtc(struct intel_crtc *crtc, 18269 struct drm_modeset_acquire_ctx *ctx) 18270 { 18271 struct drm_device *dev = crtc->base.dev; 18272 struct drm_i915_private *dev_priv = to_i915(dev); 18273 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 18274 18275 if (crtc_state->hw.active) { 18276 struct intel_plane *plane; 18277 18278 /* Clear any frame start delays used for debugging left by the BIOS */ 18279 intel_sanitize_frame_start_delay(crtc_state); 18280 18281 /* Disable everything but the primary plane */ 18282 for_each_intel_plane_on_crtc(dev, crtc, plane) { 18283 const struct intel_plane_state *plane_state = 18284 to_intel_plane_state(plane->base.state); 18285 18286 if (plane_state->uapi.visible && 18287 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 18288 intel_plane_disable_noatomic(crtc, plane); 18289 } 18290 18291 /* 18292 * Disable any background color set by the BIOS, but enable the 18293 * gamma and CSC to match how we program our planes. 18294 */ 18295 if (INTEL_GEN(dev_priv) >= 9) 18296 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe), 18297 SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE); 18298 } 18299 18300 /* Adjust the state of the output pipe according to whether we 18301 * have active connectors/encoders. */ 18302 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc)) 18303 intel_crtc_disable_noatomic(crtc, ctx); 18304 18305 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) { 18306 /* 18307 * We start out with underrun reporting disabled to avoid races. 18308 * For correct bookkeeping mark this on active crtcs. 18309 * 18310 * Also on gmch platforms we dont have any hardware bits to 18311 * disable the underrun reporting. Which means we need to start 18312 * out with underrun reporting disabled also on inactive pipes, 18313 * since otherwise we'll complain about the garbage we read when 18314 * e.g. coming up after runtime pm. 18315 * 18316 * No protection against concurrent access is required - at 18317 * worst a fifo underrun happens which also sets this to false. 18318 */ 18319 crtc->cpu_fifo_underrun_disabled = true; 18320 /* 18321 * We track the PCH trancoder underrun reporting state 18322 * within the crtc. With crtc for pipe A housing the underrun 18323 * reporting state for PCH transcoder A, crtc for pipe B housing 18324 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 18325 * and marking underrun reporting as disabled for the non-existing 18326 * PCH transcoders B and C would prevent enabling the south 18327 * error interrupt (see cpt_can_enable_serr_int()). 18328 */ 18329 if (has_pch_trancoder(dev_priv, crtc->pipe)) 18330 crtc->pch_fifo_underrun_disabled = true; 18331 } 18332 } 18333 18334 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 18335 { 18336 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 18337 18338 /* 18339 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 18340 * the hardware when a high res displays plugged in. DPLL P 18341 * divider is zero, and the pipe timings are bonkers. We'll 18342 * try to disable everything in that case. 18343 * 18344 * FIXME would be nice to be able to sanitize this state 18345 * without several WARNs, but for now let's take the easy 18346 * road. 18347 */ 18348 return IS_GEN(dev_priv, 6) && 18349 crtc_state->hw.active && 18350 crtc_state->shared_dpll && 18351 crtc_state->port_clock == 0; 18352 } 18353 18354 static void intel_sanitize_encoder(struct intel_encoder *encoder) 18355 { 18356 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 18357 struct intel_connector *connector; 18358 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 18359 struct intel_crtc_state *crtc_state = crtc ? 18360 to_intel_crtc_state(crtc->base.state) : NULL; 18361 18362 /* We need to check both for a crtc link (meaning that the 18363 * encoder is active and trying to read from a pipe) and the 18364 * pipe itself being active. */ 18365 bool has_active_crtc = crtc_state && 18366 crtc_state->hw.active; 18367 18368 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 18369 drm_dbg_kms(&dev_priv->drm, 18370 "BIOS has misprogrammed the hardware. Disabling pipe %c\n", 18371 pipe_name(crtc->pipe)); 18372 has_active_crtc = false; 18373 } 18374 18375 connector = intel_encoder_find_connector(encoder); 18376 if (connector && !has_active_crtc) { 18377 drm_dbg_kms(&dev_priv->drm, 18378 "[ENCODER:%d:%s] has active connectors but no active pipe!\n", 18379 encoder->base.base.id, 18380 encoder->base.name); 18381 18382 /* Connector is active, but has no active pipe. This is 18383 * fallout from our resume register restoring. Disable 18384 * the encoder manually again. */ 18385 if (crtc_state) { 18386 struct drm_encoder *best_encoder; 18387 18388 drm_dbg_kms(&dev_priv->drm, 18389 "[ENCODER:%d:%s] manually disabled\n", 18390 encoder->base.base.id, 18391 encoder->base.name); 18392 18393 /* avoid oopsing in case the hooks consult best_encoder */ 18394 best_encoder = connector->base.state->best_encoder; 18395 connector->base.state->best_encoder = &encoder->base; 18396 18397 /* FIXME NULL atomic state passed! */ 18398 if (encoder->disable) 18399 encoder->disable(NULL, encoder, crtc_state, 18400 connector->base.state); 18401 if (encoder->post_disable) 18402 encoder->post_disable(NULL, encoder, crtc_state, 18403 connector->base.state); 18404 18405 connector->base.state->best_encoder = best_encoder; 18406 } 18407 encoder->base.crtc = NULL; 18408 18409 /* Inconsistent output/port/pipe state happens presumably due to 18410 * a bug in one of the get_hw_state functions. Or someplace else 18411 * in our code, like the register restore mess on resume. Clamp 18412 * things to off as a safer default. */ 18413 18414 connector->base.dpms = DRM_MODE_DPMS_OFF; 18415 connector->base.encoder = NULL; 18416 } 18417 18418 /* notify opregion of the sanitized encoder state */ 18419 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 18420 18421 if (INTEL_GEN(dev_priv) >= 11) 18422 icl_sanitize_encoder_pll_mapping(encoder); 18423 } 18424 18425 /* FIXME read out full plane state for all planes */ 18426 static void readout_plane_state(struct drm_i915_private *dev_priv) 18427 { 18428 struct intel_plane *plane; 18429 struct intel_crtc *crtc; 18430 18431 for_each_intel_plane(&dev_priv->drm, plane) { 18432 struct intel_plane_state *plane_state = 18433 to_intel_plane_state(plane->base.state); 18434 struct intel_crtc_state *crtc_state; 18435 enum pipe pipe = PIPE_A; 18436 bool visible; 18437 18438 visible = plane->get_hw_state(plane, &pipe); 18439 18440 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18441 crtc_state = to_intel_crtc_state(crtc->base.state); 18442 18443 intel_set_plane_visible(crtc_state, plane_state, visible); 18444 18445 drm_dbg_kms(&dev_priv->drm, 18446 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 18447 plane->base.base.id, plane->base.name, 18448 enableddisabled(visible), pipe_name(pipe)); 18449 } 18450 18451 for_each_intel_crtc(&dev_priv->drm, crtc) { 18452 struct intel_crtc_state *crtc_state = 18453 to_intel_crtc_state(crtc->base.state); 18454 18455 fixup_active_planes(crtc_state); 18456 } 18457 } 18458 18459 static void intel_modeset_readout_hw_state(struct drm_device *dev) 18460 { 18461 struct drm_i915_private *dev_priv = to_i915(dev); 18462 struct intel_cdclk_state *cdclk_state = 18463 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 18464 struct intel_dbuf_state *dbuf_state = 18465 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 18466 enum pipe pipe; 18467 struct intel_crtc *crtc; 18468 struct intel_encoder *encoder; 18469 struct intel_connector *connector; 18470 struct drm_connector_list_iter conn_iter; 18471 u8 active_pipes = 0; 18472 18473 for_each_intel_crtc(dev, crtc) { 18474 struct intel_crtc_state *crtc_state = 18475 to_intel_crtc_state(crtc->base.state); 18476 18477 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi); 18478 intel_crtc_free_hw_state(crtc_state); 18479 intel_crtc_state_reset(crtc_state, crtc); 18480 18481 crtc_state->hw.active = crtc_state->hw.enable = 18482 dev_priv->display.get_pipe_config(crtc, crtc_state); 18483 18484 crtc->base.enabled = crtc_state->hw.enable; 18485 crtc->active = crtc_state->hw.active; 18486 18487 if (crtc_state->hw.active) 18488 active_pipes |= BIT(crtc->pipe); 18489 18490 drm_dbg_kms(&dev_priv->drm, 18491 "[CRTC:%d:%s] hw state readout: %s\n", 18492 crtc->base.base.id, crtc->base.name, 18493 enableddisabled(crtc_state->hw.active)); 18494 } 18495 18496 dev_priv->active_pipes = cdclk_state->active_pipes = 18497 dbuf_state->active_pipes = active_pipes; 18498 18499 readout_plane_state(dev_priv); 18500 18501 intel_dpll_readout_hw_state(dev_priv); 18502 18503 for_each_intel_encoder(dev, encoder) { 18504 pipe = 0; 18505 18506 if (encoder->get_hw_state(encoder, &pipe)) { 18507 struct intel_crtc_state *crtc_state; 18508 18509 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18510 crtc_state = to_intel_crtc_state(crtc->base.state); 18511 18512 encoder->base.crtc = &crtc->base; 18513 encoder->get_config(encoder, crtc_state); 18514 } else { 18515 encoder->base.crtc = NULL; 18516 } 18517 18518 drm_dbg_kms(&dev_priv->drm, 18519 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 18520 encoder->base.base.id, encoder->base.name, 18521 enableddisabled(encoder->base.crtc), 18522 pipe_name(pipe)); 18523 } 18524 18525 drm_connector_list_iter_begin(dev, &conn_iter); 18526 for_each_intel_connector_iter(connector, &conn_iter) { 18527 if (connector->get_hw_state(connector)) { 18528 struct intel_crtc_state *crtc_state; 18529 struct intel_crtc *crtc; 18530 18531 connector->base.dpms = DRM_MODE_DPMS_ON; 18532 18533 encoder = intel_attached_encoder(connector); 18534 connector->base.encoder = &encoder->base; 18535 18536 crtc = to_intel_crtc(encoder->base.crtc); 18537 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; 18538 18539 if (crtc_state && crtc_state->hw.active) { 18540 /* 18541 * This has to be done during hardware readout 18542 * because anything calling .crtc_disable may 18543 * rely on the connector_mask being accurate. 18544 */ 18545 crtc_state->uapi.connector_mask |= 18546 drm_connector_mask(&connector->base); 18547 crtc_state->uapi.encoder_mask |= 18548 drm_encoder_mask(&encoder->base); 18549 } 18550 } else { 18551 connector->base.dpms = DRM_MODE_DPMS_OFF; 18552 connector->base.encoder = NULL; 18553 } 18554 drm_dbg_kms(&dev_priv->drm, 18555 "[CONNECTOR:%d:%s] hw state readout: %s\n", 18556 connector->base.base.id, connector->base.name, 18557 enableddisabled(connector->base.encoder)); 18558 } 18559 drm_connector_list_iter_end(&conn_iter); 18560 18561 for_each_intel_crtc(dev, crtc) { 18562 struct intel_bw_state *bw_state = 18563 to_intel_bw_state(dev_priv->bw_obj.state); 18564 struct intel_crtc_state *crtc_state = 18565 to_intel_crtc_state(crtc->base.state); 18566 struct intel_plane *plane; 18567 int min_cdclk = 0; 18568 18569 if (crtc_state->hw.active) { 18570 struct drm_display_mode *mode = &crtc_state->hw.mode; 18571 18572 intel_mode_from_pipe_config(&crtc_state->hw.adjusted_mode, 18573 crtc_state); 18574 18575 *mode = crtc_state->hw.adjusted_mode; 18576 mode->hdisplay = crtc_state->pipe_src_w; 18577 mode->vdisplay = crtc_state->pipe_src_h; 18578 18579 /* 18580 * The initial mode needs to be set in order to keep 18581 * the atomic core happy. It wants a valid mode if the 18582 * crtc's enabled, so we do the above call. 18583 * 18584 * But we don't set all the derived state fully, hence 18585 * set a flag to indicate that a full recalculation is 18586 * needed on the next commit. 18587 */ 18588 crtc_state->inherited = true; 18589 18590 intel_crtc_compute_pixel_rate(crtc_state); 18591 18592 intel_crtc_update_active_timings(crtc_state); 18593 18594 intel_crtc_copy_hw_to_uapi_state(crtc_state); 18595 } 18596 18597 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 18598 const struct intel_plane_state *plane_state = 18599 to_intel_plane_state(plane->base.state); 18600 18601 /* 18602 * FIXME don't have the fb yet, so can't 18603 * use intel_plane_data_rate() :( 18604 */ 18605 if (plane_state->uapi.visible) 18606 crtc_state->data_rate[plane->id] = 18607 4 * crtc_state->pixel_rate; 18608 /* 18609 * FIXME don't have the fb yet, so can't 18610 * use plane->min_cdclk() :( 18611 */ 18612 if (plane_state->uapi.visible && plane->min_cdclk) { 18613 if (crtc_state->double_wide || 18614 INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 18615 crtc_state->min_cdclk[plane->id] = 18616 DIV_ROUND_UP(crtc_state->pixel_rate, 2); 18617 else 18618 crtc_state->min_cdclk[plane->id] = 18619 crtc_state->pixel_rate; 18620 } 18621 drm_dbg_kms(&dev_priv->drm, 18622 "[PLANE:%d:%s] min_cdclk %d kHz\n", 18623 plane->base.base.id, plane->base.name, 18624 crtc_state->min_cdclk[plane->id]); 18625 } 18626 18627 if (crtc_state->hw.active) { 18628 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 18629 if (drm_WARN_ON(dev, min_cdclk < 0)) 18630 min_cdclk = 0; 18631 } 18632 18633 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 18634 cdclk_state->min_voltage_level[crtc->pipe] = 18635 crtc_state->min_voltage_level; 18636 18637 intel_bw_crtc_update(bw_state, crtc_state); 18638 18639 intel_pipe_config_sanity_check(dev_priv, crtc_state); 18640 } 18641 } 18642 18643 static void 18644 get_encoder_power_domains(struct drm_i915_private *dev_priv) 18645 { 18646 struct intel_encoder *encoder; 18647 18648 for_each_intel_encoder(&dev_priv->drm, encoder) { 18649 struct intel_crtc_state *crtc_state; 18650 18651 if (!encoder->get_power_domains) 18652 continue; 18653 18654 /* 18655 * MST-primary and inactive encoders don't have a crtc state 18656 * and neither of these require any power domain references. 18657 */ 18658 if (!encoder->base.crtc) 18659 continue; 18660 18661 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 18662 encoder->get_power_domains(encoder, crtc_state); 18663 } 18664 } 18665 18666 static void intel_early_display_was(struct drm_i915_private *dev_priv) 18667 { 18668 /* 18669 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl 18670 * Also known as Wa_14010480278. 18671 */ 18672 if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv)) 18673 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0, 18674 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS); 18675 18676 if (IS_HASWELL(dev_priv)) { 18677 /* 18678 * WaRsPkgCStateDisplayPMReq:hsw 18679 * System hang if this isn't done before disabling all planes! 18680 */ 18681 intel_de_write(dev_priv, CHICKEN_PAR1_1, 18682 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 18683 } 18684 } 18685 18686 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 18687 enum port port, i915_reg_t hdmi_reg) 18688 { 18689 u32 val = intel_de_read(dev_priv, hdmi_reg); 18690 18691 if (val & SDVO_ENABLE || 18692 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 18693 return; 18694 18695 drm_dbg_kms(&dev_priv->drm, 18696 "Sanitizing transcoder select for HDMI %c\n", 18697 port_name(port)); 18698 18699 val &= ~SDVO_PIPE_SEL_MASK; 18700 val |= SDVO_PIPE_SEL(PIPE_A); 18701 18702 intel_de_write(dev_priv, hdmi_reg, val); 18703 } 18704 18705 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 18706 enum port port, i915_reg_t dp_reg) 18707 { 18708 u32 val = intel_de_read(dev_priv, dp_reg); 18709 18710 if (val & DP_PORT_EN || 18711 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 18712 return; 18713 18714 drm_dbg_kms(&dev_priv->drm, 18715 "Sanitizing transcoder select for DP %c\n", 18716 port_name(port)); 18717 18718 val &= ~DP_PIPE_SEL_MASK; 18719 val |= DP_PIPE_SEL(PIPE_A); 18720 18721 intel_de_write(dev_priv, dp_reg, val); 18722 } 18723 18724 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 18725 { 18726 /* 18727 * The BIOS may select transcoder B on some of the PCH 18728 * ports even it doesn't enable the port. This would trip 18729 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 18730 * Sanitize the transcoder select bits to prevent that. We 18731 * assume that the BIOS never actually enabled the port, 18732 * because if it did we'd actually have to toggle the port 18733 * on and back off to make the transcoder A select stick 18734 * (see. intel_dp_link_down(), intel_disable_hdmi(), 18735 * intel_disable_sdvo()). 18736 */ 18737 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 18738 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 18739 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 18740 18741 /* PCH SDVOB multiplex with HDMIB */ 18742 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 18743 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 18744 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 18745 } 18746 18747 /* Scan out the current hw modeset state, 18748 * and sanitizes it to the current state 18749 */ 18750 static void 18751 intel_modeset_setup_hw_state(struct drm_device *dev, 18752 struct drm_modeset_acquire_ctx *ctx) 18753 { 18754 struct drm_i915_private *dev_priv = to_i915(dev); 18755 struct intel_encoder *encoder; 18756 struct intel_crtc *crtc; 18757 intel_wakeref_t wakeref; 18758 18759 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 18760 18761 intel_early_display_was(dev_priv); 18762 intel_modeset_readout_hw_state(dev); 18763 18764 /* HW state is read out, now we need to sanitize this mess. */ 18765 18766 /* Sanitize the TypeC port mode upfront, encoders depend on this */ 18767 for_each_intel_encoder(dev, encoder) { 18768 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 18769 18770 /* We need to sanitize only the MST primary port. */ 18771 if (encoder->type != INTEL_OUTPUT_DP_MST && 18772 intel_phy_is_tc(dev_priv, phy)) 18773 intel_tc_port_sanitize(enc_to_dig_port(encoder)); 18774 } 18775 18776 get_encoder_power_domains(dev_priv); 18777 18778 if (HAS_PCH_IBX(dev_priv)) 18779 ibx_sanitize_pch_ports(dev_priv); 18780 18781 /* 18782 * intel_sanitize_plane_mapping() may need to do vblank 18783 * waits, so we need vblank interrupts restored beforehand. 18784 */ 18785 for_each_intel_crtc(&dev_priv->drm, crtc) { 18786 struct intel_crtc_state *crtc_state = 18787 to_intel_crtc_state(crtc->base.state); 18788 18789 drm_crtc_vblank_reset(&crtc->base); 18790 18791 if (crtc_state->hw.active) 18792 intel_crtc_vblank_on(crtc_state); 18793 } 18794 18795 intel_sanitize_plane_mapping(dev_priv); 18796 18797 for_each_intel_encoder(dev, encoder) 18798 intel_sanitize_encoder(encoder); 18799 18800 for_each_intel_crtc(&dev_priv->drm, crtc) { 18801 struct intel_crtc_state *crtc_state = 18802 to_intel_crtc_state(crtc->base.state); 18803 18804 intel_sanitize_crtc(crtc, ctx); 18805 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 18806 } 18807 18808 intel_modeset_update_connector_atomic_state(dev); 18809 18810 intel_dpll_sanitize_state(dev_priv); 18811 18812 if (IS_G4X(dev_priv)) { 18813 g4x_wm_get_hw_state(dev_priv); 18814 g4x_wm_sanitize(dev_priv); 18815 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 18816 vlv_wm_get_hw_state(dev_priv); 18817 vlv_wm_sanitize(dev_priv); 18818 } else if (INTEL_GEN(dev_priv) >= 9) { 18819 skl_wm_get_hw_state(dev_priv); 18820 } else if (HAS_PCH_SPLIT(dev_priv)) { 18821 ilk_wm_get_hw_state(dev_priv); 18822 } 18823 18824 for_each_intel_crtc(dev, crtc) { 18825 struct intel_crtc_state *crtc_state = 18826 to_intel_crtc_state(crtc->base.state); 18827 u64 put_domains; 18828 18829 put_domains = modeset_get_crtc_power_domains(crtc_state); 18830 if (drm_WARN_ON(dev, put_domains)) 18831 modeset_put_power_domains(dev_priv, put_domains); 18832 } 18833 18834 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 18835 } 18836 18837 void intel_display_resume(struct drm_device *dev) 18838 { 18839 struct drm_i915_private *dev_priv = to_i915(dev); 18840 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 18841 struct drm_modeset_acquire_ctx ctx; 18842 int ret; 18843 18844 dev_priv->modeset_restore_state = NULL; 18845 if (state) 18846 state->acquire_ctx = &ctx; 18847 18848 drm_modeset_acquire_init(&ctx, 0); 18849 18850 while (1) { 18851 ret = drm_modeset_lock_all_ctx(dev, &ctx); 18852 if (ret != -EDEADLK) 18853 break; 18854 18855 drm_modeset_backoff(&ctx); 18856 } 18857 18858 if (!ret) 18859 ret = __intel_display_resume(dev, state, &ctx); 18860 18861 intel_enable_ipc(dev_priv); 18862 drm_modeset_drop_locks(&ctx); 18863 drm_modeset_acquire_fini(&ctx); 18864 18865 if (ret) 18866 drm_err(&dev_priv->drm, 18867 "Restoring old state failed with %i\n", ret); 18868 if (state) 18869 drm_atomic_state_put(state); 18870 } 18871 18872 static void intel_hpd_poll_fini(struct drm_i915_private *i915) 18873 { 18874 struct intel_connector *connector; 18875 struct drm_connector_list_iter conn_iter; 18876 18877 /* Kill all the work that may have been queued by hpd. */ 18878 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 18879 for_each_intel_connector_iter(connector, &conn_iter) { 18880 if (connector->modeset_retry_work.func) 18881 cancel_work_sync(&connector->modeset_retry_work); 18882 if (connector->hdcp.shim) { 18883 cancel_delayed_work_sync(&connector->hdcp.check_work); 18884 cancel_work_sync(&connector->hdcp.prop_work); 18885 } 18886 } 18887 drm_connector_list_iter_end(&conn_iter); 18888 } 18889 18890 /* part #1: call before irq uninstall */ 18891 void intel_modeset_driver_remove(struct drm_i915_private *i915) 18892 { 18893 flush_workqueue(i915->flip_wq); 18894 flush_workqueue(i915->modeset_wq); 18895 18896 flush_work(&i915->atomic_helper.free_work); 18897 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list)); 18898 } 18899 18900 /* part #2: call after irq uninstall */ 18901 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915) 18902 { 18903 /* 18904 * Due to the hpd irq storm handling the hotplug work can re-arm the 18905 * poll handlers. Hence disable polling after hpd handling is shut down. 18906 */ 18907 intel_hpd_poll_fini(i915); 18908 18909 /* 18910 * MST topology needs to be suspended so we don't have any calls to 18911 * fbdev after it's finalized. MST will be destroyed later as part of 18912 * drm_mode_config_cleanup() 18913 */ 18914 intel_dp_mst_suspend(i915); 18915 18916 /* poll work can call into fbdev, hence clean that up afterwards */ 18917 intel_fbdev_fini(i915); 18918 18919 intel_unregister_dsm_handler(); 18920 18921 intel_fbc_global_disable(i915); 18922 18923 /* flush any delayed tasks or pending work */ 18924 flush_scheduled_work(); 18925 18926 intel_hdcp_component_fini(i915); 18927 18928 intel_mode_config_cleanup(i915); 18929 18930 intel_overlay_cleanup(i915); 18931 18932 intel_gmbus_teardown(i915); 18933 18934 destroy_workqueue(i915->flip_wq); 18935 destroy_workqueue(i915->modeset_wq); 18936 18937 intel_fbc_cleanup_cfb(i915); 18938 } 18939 18940 /* part #3: call after gem init */ 18941 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915) 18942 { 18943 intel_csr_ucode_fini(i915); 18944 18945 intel_power_domains_driver_remove(i915); 18946 18947 intel_vga_unregister(i915); 18948 18949 intel_bios_driver_remove(i915); 18950 } 18951 18952 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 18953 18954 struct intel_display_error_state { 18955 18956 u32 power_well_driver; 18957 18958 struct intel_cursor_error_state { 18959 u32 control; 18960 u32 position; 18961 u32 base; 18962 u32 size; 18963 } cursor[I915_MAX_PIPES]; 18964 18965 struct intel_pipe_error_state { 18966 bool power_domain_on; 18967 u32 source; 18968 u32 stat; 18969 } pipe[I915_MAX_PIPES]; 18970 18971 struct intel_plane_error_state { 18972 u32 control; 18973 u32 stride; 18974 u32 size; 18975 u32 pos; 18976 u32 addr; 18977 u32 surface; 18978 u32 tile_offset; 18979 } plane[I915_MAX_PIPES]; 18980 18981 struct intel_transcoder_error_state { 18982 bool available; 18983 bool power_domain_on; 18984 enum transcoder cpu_transcoder; 18985 18986 u32 conf; 18987 18988 u32 htotal; 18989 u32 hblank; 18990 u32 hsync; 18991 u32 vtotal; 18992 u32 vblank; 18993 u32 vsync; 18994 } transcoder[5]; 18995 }; 18996 18997 struct intel_display_error_state * 18998 intel_display_capture_error_state(struct drm_i915_private *dev_priv) 18999 { 19000 struct intel_display_error_state *error; 19001 int transcoders[] = { 19002 TRANSCODER_A, 19003 TRANSCODER_B, 19004 TRANSCODER_C, 19005 TRANSCODER_D, 19006 TRANSCODER_EDP, 19007 }; 19008 int i; 19009 19010 BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder)); 19011 19012 if (!HAS_DISPLAY(dev_priv)) 19013 return NULL; 19014 19015 error = kzalloc(sizeof(*error), GFP_ATOMIC); 19016 if (error == NULL) 19017 return NULL; 19018 19019 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 19020 error->power_well_driver = intel_de_read(dev_priv, 19021 HSW_PWR_WELL_CTL2); 19022 19023 for_each_pipe(dev_priv, i) { 19024 error->pipe[i].power_domain_on = 19025 __intel_display_power_is_enabled(dev_priv, 19026 POWER_DOMAIN_PIPE(i)); 19027 if (!error->pipe[i].power_domain_on) 19028 continue; 19029 19030 error->cursor[i].control = intel_de_read(dev_priv, CURCNTR(i)); 19031 error->cursor[i].position = intel_de_read(dev_priv, CURPOS(i)); 19032 error->cursor[i].base = intel_de_read(dev_priv, CURBASE(i)); 19033 19034 error->plane[i].control = intel_de_read(dev_priv, DSPCNTR(i)); 19035 error->plane[i].stride = intel_de_read(dev_priv, DSPSTRIDE(i)); 19036 if (INTEL_GEN(dev_priv) <= 3) { 19037 error->plane[i].size = intel_de_read(dev_priv, 19038 DSPSIZE(i)); 19039 error->plane[i].pos = intel_de_read(dev_priv, 19040 DSPPOS(i)); 19041 } 19042 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 19043 error->plane[i].addr = intel_de_read(dev_priv, 19044 DSPADDR(i)); 19045 if (INTEL_GEN(dev_priv) >= 4) { 19046 error->plane[i].surface = intel_de_read(dev_priv, 19047 DSPSURF(i)); 19048 error->plane[i].tile_offset = intel_de_read(dev_priv, 19049 DSPTILEOFF(i)); 19050 } 19051 19052 error->pipe[i].source = intel_de_read(dev_priv, PIPESRC(i)); 19053 19054 if (HAS_GMCH(dev_priv)) 19055 error->pipe[i].stat = intel_de_read(dev_priv, 19056 PIPESTAT(i)); 19057 } 19058 19059 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 19060 enum transcoder cpu_transcoder = transcoders[i]; 19061 19062 if (!HAS_TRANSCODER(dev_priv, cpu_transcoder)) 19063 continue; 19064 19065 error->transcoder[i].available = true; 19066 error->transcoder[i].power_domain_on = 19067 __intel_display_power_is_enabled(dev_priv, 19068 POWER_DOMAIN_TRANSCODER(cpu_transcoder)); 19069 if (!error->transcoder[i].power_domain_on) 19070 continue; 19071 19072 error->transcoder[i].cpu_transcoder = cpu_transcoder; 19073 19074 error->transcoder[i].conf = intel_de_read(dev_priv, 19075 PIPECONF(cpu_transcoder)); 19076 error->transcoder[i].htotal = intel_de_read(dev_priv, 19077 HTOTAL(cpu_transcoder)); 19078 error->transcoder[i].hblank = intel_de_read(dev_priv, 19079 HBLANK(cpu_transcoder)); 19080 error->transcoder[i].hsync = intel_de_read(dev_priv, 19081 HSYNC(cpu_transcoder)); 19082 error->transcoder[i].vtotal = intel_de_read(dev_priv, 19083 VTOTAL(cpu_transcoder)); 19084 error->transcoder[i].vblank = intel_de_read(dev_priv, 19085 VBLANK(cpu_transcoder)); 19086 error->transcoder[i].vsync = intel_de_read(dev_priv, 19087 VSYNC(cpu_transcoder)); 19088 } 19089 19090 return error; 19091 } 19092 19093 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) 19094 19095 void 19096 intel_display_print_error_state(struct drm_i915_error_state_buf *m, 19097 struct intel_display_error_state *error) 19098 { 19099 struct drm_i915_private *dev_priv = m->i915; 19100 int i; 19101 19102 if (!error) 19103 return; 19104 19105 err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv)); 19106 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 19107 err_printf(m, "PWR_WELL_CTL2: %08x\n", 19108 error->power_well_driver); 19109 for_each_pipe(dev_priv, i) { 19110 err_printf(m, "Pipe [%d]:\n", i); 19111 err_printf(m, " Power: %s\n", 19112 onoff(error->pipe[i].power_domain_on)); 19113 err_printf(m, " SRC: %08x\n", error->pipe[i].source); 19114 err_printf(m, " STAT: %08x\n", error->pipe[i].stat); 19115 19116 err_printf(m, "Plane [%d]:\n", i); 19117 err_printf(m, " CNTR: %08x\n", error->plane[i].control); 19118 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride); 19119 if (INTEL_GEN(dev_priv) <= 3) { 19120 err_printf(m, " SIZE: %08x\n", error->plane[i].size); 19121 err_printf(m, " POS: %08x\n", error->plane[i].pos); 19122 } 19123 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 19124 err_printf(m, " ADDR: %08x\n", error->plane[i].addr); 19125 if (INTEL_GEN(dev_priv) >= 4) { 19126 err_printf(m, " SURF: %08x\n", error->plane[i].surface); 19127 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); 19128 } 19129 19130 err_printf(m, "Cursor [%d]:\n", i); 19131 err_printf(m, " CNTR: %08x\n", error->cursor[i].control); 19132 err_printf(m, " POS: %08x\n", error->cursor[i].position); 19133 err_printf(m, " BASE: %08x\n", error->cursor[i].base); 19134 } 19135 19136 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 19137 if (!error->transcoder[i].available) 19138 continue; 19139 19140 err_printf(m, "CPU transcoder: %s\n", 19141 transcoder_name(error->transcoder[i].cpu_transcoder)); 19142 err_printf(m, " Power: %s\n", 19143 onoff(error->transcoder[i].power_domain_on)); 19144 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf); 19145 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal); 19146 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank); 19147 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync); 19148 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal); 19149 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank); 19150 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync); 19151 } 19152 } 19153 19154 #endif 19155