1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  */
26 
27 #include <linux/i2c.h>
28 #include <linux/input.h>
29 #include <linux/intel-iommu.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/dma-resv.h>
33 #include <linux/slab.h>
34 
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_atomic_uapi.h>
38 #include <drm/drm_damage_helper.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fourcc.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_probe_helper.h>
44 #include <drm/drm_rect.h>
45 
46 #include "display/intel_crt.h"
47 #include "display/intel_ddi.h"
48 #include "display/intel_dp.h"
49 #include "display/intel_dp_mst.h"
50 #include "display/intel_dpll_mgr.h"
51 #include "display/intel_dsi.h"
52 #include "display/intel_dvo.h"
53 #include "display/intel_gmbus.h"
54 #include "display/intel_hdmi.h"
55 #include "display/intel_lvds.h"
56 #include "display/intel_sdvo.h"
57 #include "display/intel_tv.h"
58 #include "display/intel_vdsc.h"
59 
60 #include "gt/intel_rps.h"
61 
62 #include "i915_drv.h"
63 #include "i915_trace.h"
64 #include "intel_acpi.h"
65 #include "intel_atomic.h"
66 #include "intel_atomic_plane.h"
67 #include "intel_bw.h"
68 #include "intel_cdclk.h"
69 #include "intel_color.h"
70 #include "intel_csr.h"
71 #include "intel_display_types.h"
72 #include "intel_dp_link_training.h"
73 #include "intel_fbc.h"
74 #include "intel_fbdev.h"
75 #include "intel_fifo_underrun.h"
76 #include "intel_frontbuffer.h"
77 #include "intel_hdcp.h"
78 #include "intel_hotplug.h"
79 #include "intel_overlay.h"
80 #include "intel_pipe_crc.h"
81 #include "intel_pm.h"
82 #include "intel_psr.h"
83 #include "intel_quirks.h"
84 #include "intel_sideband.h"
85 #include "intel_sprite.h"
86 #include "intel_tc.h"
87 #include "intel_vga.h"
88 
89 /* Primary plane formats for gen <= 3 */
90 static const u32 i8xx_primary_formats[] = {
91 	DRM_FORMAT_C8,
92 	DRM_FORMAT_XRGB1555,
93 	DRM_FORMAT_RGB565,
94 	DRM_FORMAT_XRGB8888,
95 };
96 
97 /* Primary plane formats for ivb (no fp16 due to hw issue) */
98 static const u32 ivb_primary_formats[] = {
99 	DRM_FORMAT_C8,
100 	DRM_FORMAT_RGB565,
101 	DRM_FORMAT_XRGB8888,
102 	DRM_FORMAT_XBGR8888,
103 	DRM_FORMAT_XRGB2101010,
104 	DRM_FORMAT_XBGR2101010,
105 };
106 
107 /* Primary plane formats for gen >= 4, except ivb */
108 static const u32 i965_primary_formats[] = {
109 	DRM_FORMAT_C8,
110 	DRM_FORMAT_RGB565,
111 	DRM_FORMAT_XRGB8888,
112 	DRM_FORMAT_XBGR8888,
113 	DRM_FORMAT_XRGB2101010,
114 	DRM_FORMAT_XBGR2101010,
115 	DRM_FORMAT_XBGR16161616F,
116 };
117 
118 /* Primary plane formats for vlv/chv */
119 static const u32 vlv_primary_formats[] = {
120 	DRM_FORMAT_C8,
121 	DRM_FORMAT_RGB565,
122 	DRM_FORMAT_XRGB8888,
123 	DRM_FORMAT_XBGR8888,
124 	DRM_FORMAT_ARGB8888,
125 	DRM_FORMAT_ABGR8888,
126 	DRM_FORMAT_XRGB2101010,
127 	DRM_FORMAT_XBGR2101010,
128 	DRM_FORMAT_ARGB2101010,
129 	DRM_FORMAT_ABGR2101010,
130 	DRM_FORMAT_XBGR16161616F,
131 };
132 
133 static const u64 i9xx_format_modifiers[] = {
134 	I915_FORMAT_MOD_X_TILED,
135 	DRM_FORMAT_MOD_LINEAR,
136 	DRM_FORMAT_MOD_INVALID
137 };
138 
139 /* Cursor formats */
140 static const u32 intel_cursor_formats[] = {
141 	DRM_FORMAT_ARGB8888,
142 };
143 
144 static const u64 cursor_format_modifiers[] = {
145 	DRM_FORMAT_MOD_LINEAR,
146 	DRM_FORMAT_MOD_INVALID
147 };
148 
149 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
150 				struct intel_crtc_state *pipe_config);
151 static void ilk_pch_clock_get(struct intel_crtc *crtc,
152 			      struct intel_crtc_state *pipe_config);
153 
154 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
155 				  struct drm_i915_gem_object *obj,
156 				  struct drm_mode_fb_cmd2 *mode_cmd);
157 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state);
158 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
159 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
160 					 const struct intel_link_m_n *m_n,
161 					 const struct intel_link_m_n *m2_n2);
162 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state);
163 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state);
164 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state);
165 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state);
166 static void vlv_prepare_pll(struct intel_crtc *crtc,
167 			    const struct intel_crtc_state *pipe_config);
168 static void chv_prepare_pll(struct intel_crtc *crtc,
169 			    const struct intel_crtc_state *pipe_config);
170 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state);
171 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state);
172 static void intel_modeset_setup_hw_state(struct drm_device *dev,
173 					 struct drm_modeset_acquire_ctx *ctx);
174 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc);
175 
176 struct intel_limit {
177 	struct {
178 		int min, max;
179 	} dot, vco, n, m, m1, m2, p, p1;
180 
181 	struct {
182 		int dot_limit;
183 		int p2_slow, p2_fast;
184 	} p2;
185 };
186 
187 /* returns HPLL frequency in kHz */
188 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
189 {
190 	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
191 
192 	/* Obtain SKU information */
193 	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
194 		CCK_FUSE_HPLL_FREQ_MASK;
195 
196 	return vco_freq[hpll_freq] * 1000;
197 }
198 
199 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
200 		      const char *name, u32 reg, int ref_freq)
201 {
202 	u32 val;
203 	int divider;
204 
205 	val = vlv_cck_read(dev_priv, reg);
206 	divider = val & CCK_FREQUENCY_VALUES;
207 
208 	drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) !=
209 		 (divider << CCK_FREQUENCY_STATUS_SHIFT),
210 		 "%s change in progress\n", name);
211 
212 	return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
213 }
214 
215 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
216 			   const char *name, u32 reg)
217 {
218 	int hpll;
219 
220 	vlv_cck_get(dev_priv);
221 
222 	if (dev_priv->hpll_freq == 0)
223 		dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
224 
225 	hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq);
226 
227 	vlv_cck_put(dev_priv);
228 
229 	return hpll;
230 }
231 
232 static void intel_update_czclk(struct drm_i915_private *dev_priv)
233 {
234 	if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
235 		return;
236 
237 	dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
238 						      CCK_CZ_CLOCK_CONTROL);
239 
240 	drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n",
241 		dev_priv->czclk_freq);
242 }
243 
244 /* units of 100MHz */
245 static u32 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
246 			       const struct intel_crtc_state *pipe_config)
247 {
248 	if (HAS_DDI(dev_priv))
249 		return pipe_config->port_clock; /* SPLL */
250 	else
251 		return dev_priv->fdi_pll_freq;
252 }
253 
254 static const struct intel_limit intel_limits_i8xx_dac = {
255 	.dot = { .min = 25000, .max = 350000 },
256 	.vco = { .min = 908000, .max = 1512000 },
257 	.n = { .min = 2, .max = 16 },
258 	.m = { .min = 96, .max = 140 },
259 	.m1 = { .min = 18, .max = 26 },
260 	.m2 = { .min = 6, .max = 16 },
261 	.p = { .min = 4, .max = 128 },
262 	.p1 = { .min = 2, .max = 33 },
263 	.p2 = { .dot_limit = 165000,
264 		.p2_slow = 4, .p2_fast = 2 },
265 };
266 
267 static const struct intel_limit intel_limits_i8xx_dvo = {
268 	.dot = { .min = 25000, .max = 350000 },
269 	.vco = { .min = 908000, .max = 1512000 },
270 	.n = { .min = 2, .max = 16 },
271 	.m = { .min = 96, .max = 140 },
272 	.m1 = { .min = 18, .max = 26 },
273 	.m2 = { .min = 6, .max = 16 },
274 	.p = { .min = 4, .max = 128 },
275 	.p1 = { .min = 2, .max = 33 },
276 	.p2 = { .dot_limit = 165000,
277 		.p2_slow = 4, .p2_fast = 4 },
278 };
279 
280 static const struct intel_limit intel_limits_i8xx_lvds = {
281 	.dot = { .min = 25000, .max = 350000 },
282 	.vco = { .min = 908000, .max = 1512000 },
283 	.n = { .min = 2, .max = 16 },
284 	.m = { .min = 96, .max = 140 },
285 	.m1 = { .min = 18, .max = 26 },
286 	.m2 = { .min = 6, .max = 16 },
287 	.p = { .min = 4, .max = 128 },
288 	.p1 = { .min = 1, .max = 6 },
289 	.p2 = { .dot_limit = 165000,
290 		.p2_slow = 14, .p2_fast = 7 },
291 };
292 
293 static const struct intel_limit intel_limits_i9xx_sdvo = {
294 	.dot = { .min = 20000, .max = 400000 },
295 	.vco = { .min = 1400000, .max = 2800000 },
296 	.n = { .min = 1, .max = 6 },
297 	.m = { .min = 70, .max = 120 },
298 	.m1 = { .min = 8, .max = 18 },
299 	.m2 = { .min = 3, .max = 7 },
300 	.p = { .min = 5, .max = 80 },
301 	.p1 = { .min = 1, .max = 8 },
302 	.p2 = { .dot_limit = 200000,
303 		.p2_slow = 10, .p2_fast = 5 },
304 };
305 
306 static const struct intel_limit intel_limits_i9xx_lvds = {
307 	.dot = { .min = 20000, .max = 400000 },
308 	.vco = { .min = 1400000, .max = 2800000 },
309 	.n = { .min = 1, .max = 6 },
310 	.m = { .min = 70, .max = 120 },
311 	.m1 = { .min = 8, .max = 18 },
312 	.m2 = { .min = 3, .max = 7 },
313 	.p = { .min = 7, .max = 98 },
314 	.p1 = { .min = 1, .max = 8 },
315 	.p2 = { .dot_limit = 112000,
316 		.p2_slow = 14, .p2_fast = 7 },
317 };
318 
319 
320 static const struct intel_limit intel_limits_g4x_sdvo = {
321 	.dot = { .min = 25000, .max = 270000 },
322 	.vco = { .min = 1750000, .max = 3500000},
323 	.n = { .min = 1, .max = 4 },
324 	.m = { .min = 104, .max = 138 },
325 	.m1 = { .min = 17, .max = 23 },
326 	.m2 = { .min = 5, .max = 11 },
327 	.p = { .min = 10, .max = 30 },
328 	.p1 = { .min = 1, .max = 3},
329 	.p2 = { .dot_limit = 270000,
330 		.p2_slow = 10,
331 		.p2_fast = 10
332 	},
333 };
334 
335 static const struct intel_limit intel_limits_g4x_hdmi = {
336 	.dot = { .min = 22000, .max = 400000 },
337 	.vco = { .min = 1750000, .max = 3500000},
338 	.n = { .min = 1, .max = 4 },
339 	.m = { .min = 104, .max = 138 },
340 	.m1 = { .min = 16, .max = 23 },
341 	.m2 = { .min = 5, .max = 11 },
342 	.p = { .min = 5, .max = 80 },
343 	.p1 = { .min = 1, .max = 8},
344 	.p2 = { .dot_limit = 165000,
345 		.p2_slow = 10, .p2_fast = 5 },
346 };
347 
348 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
349 	.dot = { .min = 20000, .max = 115000 },
350 	.vco = { .min = 1750000, .max = 3500000 },
351 	.n = { .min = 1, .max = 3 },
352 	.m = { .min = 104, .max = 138 },
353 	.m1 = { .min = 17, .max = 23 },
354 	.m2 = { .min = 5, .max = 11 },
355 	.p = { .min = 28, .max = 112 },
356 	.p1 = { .min = 2, .max = 8 },
357 	.p2 = { .dot_limit = 0,
358 		.p2_slow = 14, .p2_fast = 14
359 	},
360 };
361 
362 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
363 	.dot = { .min = 80000, .max = 224000 },
364 	.vco = { .min = 1750000, .max = 3500000 },
365 	.n = { .min = 1, .max = 3 },
366 	.m = { .min = 104, .max = 138 },
367 	.m1 = { .min = 17, .max = 23 },
368 	.m2 = { .min = 5, .max = 11 },
369 	.p = { .min = 14, .max = 42 },
370 	.p1 = { .min = 2, .max = 6 },
371 	.p2 = { .dot_limit = 0,
372 		.p2_slow = 7, .p2_fast = 7
373 	},
374 };
375 
376 static const struct intel_limit pnv_limits_sdvo = {
377 	.dot = { .min = 20000, .max = 400000},
378 	.vco = { .min = 1700000, .max = 3500000 },
379 	/* Pineview's Ncounter is a ring counter */
380 	.n = { .min = 3, .max = 6 },
381 	.m = { .min = 2, .max = 256 },
382 	/* Pineview only has one combined m divider, which we treat as m2. */
383 	.m1 = { .min = 0, .max = 0 },
384 	.m2 = { .min = 0, .max = 254 },
385 	.p = { .min = 5, .max = 80 },
386 	.p1 = { .min = 1, .max = 8 },
387 	.p2 = { .dot_limit = 200000,
388 		.p2_slow = 10, .p2_fast = 5 },
389 };
390 
391 static const struct intel_limit pnv_limits_lvds = {
392 	.dot = { .min = 20000, .max = 400000 },
393 	.vco = { .min = 1700000, .max = 3500000 },
394 	.n = { .min = 3, .max = 6 },
395 	.m = { .min = 2, .max = 256 },
396 	.m1 = { .min = 0, .max = 0 },
397 	.m2 = { .min = 0, .max = 254 },
398 	.p = { .min = 7, .max = 112 },
399 	.p1 = { .min = 1, .max = 8 },
400 	.p2 = { .dot_limit = 112000,
401 		.p2_slow = 14, .p2_fast = 14 },
402 };
403 
404 /* Ironlake / Sandybridge
405  *
406  * We calculate clock using (register_value + 2) for N/M1/M2, so here
407  * the range value for them is (actual_value - 2).
408  */
409 static const struct intel_limit ilk_limits_dac = {
410 	.dot = { .min = 25000, .max = 350000 },
411 	.vco = { .min = 1760000, .max = 3510000 },
412 	.n = { .min = 1, .max = 5 },
413 	.m = { .min = 79, .max = 127 },
414 	.m1 = { .min = 12, .max = 22 },
415 	.m2 = { .min = 5, .max = 9 },
416 	.p = { .min = 5, .max = 80 },
417 	.p1 = { .min = 1, .max = 8 },
418 	.p2 = { .dot_limit = 225000,
419 		.p2_slow = 10, .p2_fast = 5 },
420 };
421 
422 static const struct intel_limit ilk_limits_single_lvds = {
423 	.dot = { .min = 25000, .max = 350000 },
424 	.vco = { .min = 1760000, .max = 3510000 },
425 	.n = { .min = 1, .max = 3 },
426 	.m = { .min = 79, .max = 118 },
427 	.m1 = { .min = 12, .max = 22 },
428 	.m2 = { .min = 5, .max = 9 },
429 	.p = { .min = 28, .max = 112 },
430 	.p1 = { .min = 2, .max = 8 },
431 	.p2 = { .dot_limit = 225000,
432 		.p2_slow = 14, .p2_fast = 14 },
433 };
434 
435 static const struct intel_limit ilk_limits_dual_lvds = {
436 	.dot = { .min = 25000, .max = 350000 },
437 	.vco = { .min = 1760000, .max = 3510000 },
438 	.n = { .min = 1, .max = 3 },
439 	.m = { .min = 79, .max = 127 },
440 	.m1 = { .min = 12, .max = 22 },
441 	.m2 = { .min = 5, .max = 9 },
442 	.p = { .min = 14, .max = 56 },
443 	.p1 = { .min = 2, .max = 8 },
444 	.p2 = { .dot_limit = 225000,
445 		.p2_slow = 7, .p2_fast = 7 },
446 };
447 
448 /* LVDS 100mhz refclk limits. */
449 static const struct intel_limit ilk_limits_single_lvds_100m = {
450 	.dot = { .min = 25000, .max = 350000 },
451 	.vco = { .min = 1760000, .max = 3510000 },
452 	.n = { .min = 1, .max = 2 },
453 	.m = { .min = 79, .max = 126 },
454 	.m1 = { .min = 12, .max = 22 },
455 	.m2 = { .min = 5, .max = 9 },
456 	.p = { .min = 28, .max = 112 },
457 	.p1 = { .min = 2, .max = 8 },
458 	.p2 = { .dot_limit = 225000,
459 		.p2_slow = 14, .p2_fast = 14 },
460 };
461 
462 static const struct intel_limit ilk_limits_dual_lvds_100m = {
463 	.dot = { .min = 25000, .max = 350000 },
464 	.vco = { .min = 1760000, .max = 3510000 },
465 	.n = { .min = 1, .max = 3 },
466 	.m = { .min = 79, .max = 126 },
467 	.m1 = { .min = 12, .max = 22 },
468 	.m2 = { .min = 5, .max = 9 },
469 	.p = { .min = 14, .max = 42 },
470 	.p1 = { .min = 2, .max = 6 },
471 	.p2 = { .dot_limit = 225000,
472 		.p2_slow = 7, .p2_fast = 7 },
473 };
474 
475 static const struct intel_limit intel_limits_vlv = {
476 	 /*
477 	  * These are the data rate limits (measured in fast clocks)
478 	  * since those are the strictest limits we have. The fast
479 	  * clock and actual rate limits are more relaxed, so checking
480 	  * them would make no difference.
481 	  */
482 	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
483 	.vco = { .min = 4000000, .max = 6000000 },
484 	.n = { .min = 1, .max = 7 },
485 	.m1 = { .min = 2, .max = 3 },
486 	.m2 = { .min = 11, .max = 156 },
487 	.p1 = { .min = 2, .max = 3 },
488 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
489 };
490 
491 static const struct intel_limit intel_limits_chv = {
492 	/*
493 	 * These are the data rate limits (measured in fast clocks)
494 	 * since those are the strictest limits we have.  The fast
495 	 * clock and actual rate limits are more relaxed, so checking
496 	 * them would make no difference.
497 	 */
498 	.dot = { .min = 25000 * 5, .max = 540000 * 5},
499 	.vco = { .min = 4800000, .max = 6480000 },
500 	.n = { .min = 1, .max = 1 },
501 	.m1 = { .min = 2, .max = 2 },
502 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
503 	.p1 = { .min = 2, .max = 4 },
504 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
505 };
506 
507 static const struct intel_limit intel_limits_bxt = {
508 	/* FIXME: find real dot limits */
509 	.dot = { .min = 0, .max = INT_MAX },
510 	.vco = { .min = 4800000, .max = 6700000 },
511 	.n = { .min = 1, .max = 1 },
512 	.m1 = { .min = 2, .max = 2 },
513 	/* FIXME: find real m2 limits */
514 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
515 	.p1 = { .min = 2, .max = 4 },
516 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
517 };
518 
519 /* WA Display #0827: Gen9:all */
520 static void
521 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable)
522 {
523 	if (enable)
524 		intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
525 		               intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS);
526 	else
527 		intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
528 		               intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS));
529 }
530 
531 /* Wa_2006604312:icl,ehl */
532 static void
533 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
534 		       bool enable)
535 {
536 	if (enable)
537 		intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
538 		               intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS);
539 	else
540 		intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
541 		               intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS);
542 }
543 
544 static bool
545 needs_modeset(const struct intel_crtc_state *state)
546 {
547 	return drm_atomic_crtc_needs_modeset(&state->uapi);
548 }
549 
550 static bool
551 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state)
552 {
553 	return crtc_state->master_transcoder != INVALID_TRANSCODER;
554 }
555 
556 static bool
557 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state)
558 {
559 	return crtc_state->sync_mode_slaves_mask != 0;
560 }
561 
562 bool
563 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state)
564 {
565 	return is_trans_port_sync_master(crtc_state) ||
566 		is_trans_port_sync_slave(crtc_state);
567 }
568 
569 /*
570  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
571  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
572  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
573  * The helpers' return value is the rate of the clock that is fed to the
574  * display engine's pipe which can be the above fast dot clock rate or a
575  * divided-down version of it.
576  */
577 /* m1 is reserved as 0 in Pineview, n is a ring counter */
578 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
579 {
580 	clock->m = clock->m2 + 2;
581 	clock->p = clock->p1 * clock->p2;
582 	if (WARN_ON(clock->n == 0 || clock->p == 0))
583 		return 0;
584 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
585 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
586 
587 	return clock->dot;
588 }
589 
590 static u32 i9xx_dpll_compute_m(struct dpll *dpll)
591 {
592 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
593 }
594 
595 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
596 {
597 	clock->m = i9xx_dpll_compute_m(clock);
598 	clock->p = clock->p1 * clock->p2;
599 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
600 		return 0;
601 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
602 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
603 
604 	return clock->dot;
605 }
606 
607 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
608 {
609 	clock->m = clock->m1 * clock->m2;
610 	clock->p = clock->p1 * clock->p2;
611 	if (WARN_ON(clock->n == 0 || clock->p == 0))
612 		return 0;
613 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
614 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
615 
616 	return clock->dot / 5;
617 }
618 
619 int chv_calc_dpll_params(int refclk, struct dpll *clock)
620 {
621 	clock->m = clock->m1 * clock->m2;
622 	clock->p = clock->p1 * clock->p2;
623 	if (WARN_ON(clock->n == 0 || clock->p == 0))
624 		return 0;
625 	clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
626 					   clock->n << 22);
627 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
628 
629 	return clock->dot / 5;
630 }
631 
632 /*
633  * Returns whether the given set of divisors are valid for a given refclk with
634  * the given connectors.
635  */
636 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
637 			       const struct intel_limit *limit,
638 			       const struct dpll *clock)
639 {
640 	if (clock->n < limit->n.min || limit->n.max < clock->n)
641 		return false;
642 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
643 		return false;
644 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
645 		return false;
646 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
647 		return false;
648 
649 	if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
650 	    !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
651 		if (clock->m1 <= clock->m2)
652 			return false;
653 
654 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
655 	    !IS_GEN9_LP(dev_priv)) {
656 		if (clock->p < limit->p.min || limit->p.max < clock->p)
657 			return false;
658 		if (clock->m < limit->m.min || limit->m.max < clock->m)
659 			return false;
660 	}
661 
662 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
663 		return false;
664 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
665 	 * connector, etc., rather than just a single range.
666 	 */
667 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
668 		return false;
669 
670 	return true;
671 }
672 
673 static int
674 i9xx_select_p2_div(const struct intel_limit *limit,
675 		   const struct intel_crtc_state *crtc_state,
676 		   int target)
677 {
678 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
679 
680 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
681 		/*
682 		 * For LVDS just rely on its current settings for dual-channel.
683 		 * We haven't figured out how to reliably set up different
684 		 * single/dual channel state, if we even can.
685 		 */
686 		if (intel_is_dual_link_lvds(dev_priv))
687 			return limit->p2.p2_fast;
688 		else
689 			return limit->p2.p2_slow;
690 	} else {
691 		if (target < limit->p2.dot_limit)
692 			return limit->p2.p2_slow;
693 		else
694 			return limit->p2.p2_fast;
695 	}
696 }
697 
698 /*
699  * Returns a set of divisors for the desired target clock with the given
700  * refclk, or FALSE.  The returned values represent the clock equation:
701  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
702  *
703  * Target and reference clocks are specified in kHz.
704  *
705  * If match_clock is provided, then best_clock P divider must match the P
706  * divider from @match_clock used for LVDS downclocking.
707  */
708 static bool
709 i9xx_find_best_dpll(const struct intel_limit *limit,
710 		    struct intel_crtc_state *crtc_state,
711 		    int target, int refclk, struct dpll *match_clock,
712 		    struct dpll *best_clock)
713 {
714 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
715 	struct dpll clock;
716 	int err = target;
717 
718 	memset(best_clock, 0, sizeof(*best_clock));
719 
720 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
721 
722 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
723 	     clock.m1++) {
724 		for (clock.m2 = limit->m2.min;
725 		     clock.m2 <= limit->m2.max; clock.m2++) {
726 			if (clock.m2 >= clock.m1)
727 				break;
728 			for (clock.n = limit->n.min;
729 			     clock.n <= limit->n.max; clock.n++) {
730 				for (clock.p1 = limit->p1.min;
731 					clock.p1 <= limit->p1.max; clock.p1++) {
732 					int this_err;
733 
734 					i9xx_calc_dpll_params(refclk, &clock);
735 					if (!intel_pll_is_valid(to_i915(dev),
736 								limit,
737 								&clock))
738 						continue;
739 					if (match_clock &&
740 					    clock.p != match_clock->p)
741 						continue;
742 
743 					this_err = abs(clock.dot - target);
744 					if (this_err < err) {
745 						*best_clock = clock;
746 						err = this_err;
747 					}
748 				}
749 			}
750 		}
751 	}
752 
753 	return (err != target);
754 }
755 
756 /*
757  * Returns a set of divisors for the desired target clock with the given
758  * refclk, or FALSE.  The returned values represent the clock equation:
759  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
760  *
761  * Target and reference clocks are specified in kHz.
762  *
763  * If match_clock is provided, then best_clock P divider must match the P
764  * divider from @match_clock used for LVDS downclocking.
765  */
766 static bool
767 pnv_find_best_dpll(const struct intel_limit *limit,
768 		   struct intel_crtc_state *crtc_state,
769 		   int target, int refclk, struct dpll *match_clock,
770 		   struct dpll *best_clock)
771 {
772 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
773 	struct dpll clock;
774 	int err = target;
775 
776 	memset(best_clock, 0, sizeof(*best_clock));
777 
778 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779 
780 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
781 	     clock.m1++) {
782 		for (clock.m2 = limit->m2.min;
783 		     clock.m2 <= limit->m2.max; clock.m2++) {
784 			for (clock.n = limit->n.min;
785 			     clock.n <= limit->n.max; clock.n++) {
786 				for (clock.p1 = limit->p1.min;
787 					clock.p1 <= limit->p1.max; clock.p1++) {
788 					int this_err;
789 
790 					pnv_calc_dpll_params(refclk, &clock);
791 					if (!intel_pll_is_valid(to_i915(dev),
792 								limit,
793 								&clock))
794 						continue;
795 					if (match_clock &&
796 					    clock.p != match_clock->p)
797 						continue;
798 
799 					this_err = abs(clock.dot - target);
800 					if (this_err < err) {
801 						*best_clock = clock;
802 						err = this_err;
803 					}
804 				}
805 			}
806 		}
807 	}
808 
809 	return (err != target);
810 }
811 
812 /*
813  * Returns a set of divisors for the desired target clock with the given
814  * refclk, or FALSE.  The returned values represent the clock equation:
815  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
816  *
817  * Target and reference clocks are specified in kHz.
818  *
819  * If match_clock is provided, then best_clock P divider must match the P
820  * divider from @match_clock used for LVDS downclocking.
821  */
822 static bool
823 g4x_find_best_dpll(const struct intel_limit *limit,
824 		   struct intel_crtc_state *crtc_state,
825 		   int target, int refclk, struct dpll *match_clock,
826 		   struct dpll *best_clock)
827 {
828 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
829 	struct dpll clock;
830 	int max_n;
831 	bool found = false;
832 	/* approximately equals target * 0.00585 */
833 	int err_most = (target >> 8) + (target >> 9);
834 
835 	memset(best_clock, 0, sizeof(*best_clock));
836 
837 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
838 
839 	max_n = limit->n.max;
840 	/* based on hardware requirement, prefer smaller n to precision */
841 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
842 		/* based on hardware requirement, prefere larger m1,m2 */
843 		for (clock.m1 = limit->m1.max;
844 		     clock.m1 >= limit->m1.min; clock.m1--) {
845 			for (clock.m2 = limit->m2.max;
846 			     clock.m2 >= limit->m2.min; clock.m2--) {
847 				for (clock.p1 = limit->p1.max;
848 				     clock.p1 >= limit->p1.min; clock.p1--) {
849 					int this_err;
850 
851 					i9xx_calc_dpll_params(refclk, &clock);
852 					if (!intel_pll_is_valid(to_i915(dev),
853 								limit,
854 								&clock))
855 						continue;
856 
857 					this_err = abs(clock.dot - target);
858 					if (this_err < err_most) {
859 						*best_clock = clock;
860 						err_most = this_err;
861 						max_n = clock.n;
862 						found = true;
863 					}
864 				}
865 			}
866 		}
867 	}
868 	return found;
869 }
870 
871 /*
872  * Check if the calculated PLL configuration is more optimal compared to the
873  * best configuration and error found so far. Return the calculated error.
874  */
875 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
876 			       const struct dpll *calculated_clock,
877 			       const struct dpll *best_clock,
878 			       unsigned int best_error_ppm,
879 			       unsigned int *error_ppm)
880 {
881 	/*
882 	 * For CHV ignore the error and consider only the P value.
883 	 * Prefer a bigger P value based on HW requirements.
884 	 */
885 	if (IS_CHERRYVIEW(to_i915(dev))) {
886 		*error_ppm = 0;
887 
888 		return calculated_clock->p > best_clock->p;
889 	}
890 
891 	if (drm_WARN_ON_ONCE(dev, !target_freq))
892 		return false;
893 
894 	*error_ppm = div_u64(1000000ULL *
895 				abs(target_freq - calculated_clock->dot),
896 			     target_freq);
897 	/*
898 	 * Prefer a better P value over a better (smaller) error if the error
899 	 * is small. Ensure this preference for future configurations too by
900 	 * setting the error to 0.
901 	 */
902 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
903 		*error_ppm = 0;
904 
905 		return true;
906 	}
907 
908 	return *error_ppm + 10 < best_error_ppm;
909 }
910 
911 /*
912  * Returns a set of divisors for the desired target clock with the given
913  * refclk, or FALSE.  The returned values represent the clock equation:
914  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
915  */
916 static bool
917 vlv_find_best_dpll(const struct intel_limit *limit,
918 		   struct intel_crtc_state *crtc_state,
919 		   int target, int refclk, struct dpll *match_clock,
920 		   struct dpll *best_clock)
921 {
922 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
923 	struct drm_device *dev = crtc->base.dev;
924 	struct dpll clock;
925 	unsigned int bestppm = 1000000;
926 	/* min update 19.2 MHz */
927 	int max_n = min(limit->n.max, refclk / 19200);
928 	bool found = false;
929 
930 	target *= 5; /* fast clock */
931 
932 	memset(best_clock, 0, sizeof(*best_clock));
933 
934 	/* based on hardware requirement, prefer smaller n to precision */
935 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
936 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
937 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
938 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
939 				clock.p = clock.p1 * clock.p2;
940 				/* based on hardware requirement, prefer bigger m1,m2 values */
941 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
942 					unsigned int ppm;
943 
944 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
945 								     refclk * clock.m1);
946 
947 					vlv_calc_dpll_params(refclk, &clock);
948 
949 					if (!intel_pll_is_valid(to_i915(dev),
950 								limit,
951 								&clock))
952 						continue;
953 
954 					if (!vlv_PLL_is_optimal(dev, target,
955 								&clock,
956 								best_clock,
957 								bestppm, &ppm))
958 						continue;
959 
960 					*best_clock = clock;
961 					bestppm = ppm;
962 					found = true;
963 				}
964 			}
965 		}
966 	}
967 
968 	return found;
969 }
970 
971 /*
972  * Returns a set of divisors for the desired target clock with the given
973  * refclk, or FALSE.  The returned values represent the clock equation:
974  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
975  */
976 static bool
977 chv_find_best_dpll(const struct intel_limit *limit,
978 		   struct intel_crtc_state *crtc_state,
979 		   int target, int refclk, struct dpll *match_clock,
980 		   struct dpll *best_clock)
981 {
982 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
983 	struct drm_device *dev = crtc->base.dev;
984 	unsigned int best_error_ppm;
985 	struct dpll clock;
986 	u64 m2;
987 	int found = false;
988 
989 	memset(best_clock, 0, sizeof(*best_clock));
990 	best_error_ppm = 1000000;
991 
992 	/*
993 	 * Based on hardware doc, the n always set to 1, and m1 always
994 	 * set to 2.  If requires to support 200Mhz refclk, we need to
995 	 * revisit this because n may not 1 anymore.
996 	 */
997 	clock.n = 1, clock.m1 = 2;
998 	target *= 5;	/* fast clock */
999 
1000 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1001 		for (clock.p2 = limit->p2.p2_fast;
1002 				clock.p2 >= limit->p2.p2_slow;
1003 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1004 			unsigned int error_ppm;
1005 
1006 			clock.p = clock.p1 * clock.p2;
1007 
1008 			m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
1009 						   refclk * clock.m1);
1010 
1011 			if (m2 > INT_MAX/clock.m1)
1012 				continue;
1013 
1014 			clock.m2 = m2;
1015 
1016 			chv_calc_dpll_params(refclk, &clock);
1017 
1018 			if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
1019 				continue;
1020 
1021 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1022 						best_error_ppm, &error_ppm))
1023 				continue;
1024 
1025 			*best_clock = clock;
1026 			best_error_ppm = error_ppm;
1027 			found = true;
1028 		}
1029 	}
1030 
1031 	return found;
1032 }
1033 
1034 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
1035 			struct dpll *best_clock)
1036 {
1037 	int refclk = 100000;
1038 	const struct intel_limit *limit = &intel_limits_bxt;
1039 
1040 	return chv_find_best_dpll(limit, crtc_state,
1041 				  crtc_state->port_clock, refclk,
1042 				  NULL, best_clock);
1043 }
1044 
1045 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1046 				    enum pipe pipe)
1047 {
1048 	i915_reg_t reg = PIPEDSL(pipe);
1049 	u32 line1, line2;
1050 	u32 line_mask;
1051 
1052 	if (IS_GEN(dev_priv, 2))
1053 		line_mask = DSL_LINEMASK_GEN2;
1054 	else
1055 		line_mask = DSL_LINEMASK_GEN3;
1056 
1057 	line1 = intel_de_read(dev_priv, reg) & line_mask;
1058 	msleep(5);
1059 	line2 = intel_de_read(dev_priv, reg) & line_mask;
1060 
1061 	return line1 != line2;
1062 }
1063 
1064 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1065 {
1066 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1067 	enum pipe pipe = crtc->pipe;
1068 
1069 	/* Wait for the display line to settle/start moving */
1070 	if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1071 		drm_err(&dev_priv->drm,
1072 			"pipe %c scanline %s wait timed out\n",
1073 			pipe_name(pipe), onoff(state));
1074 }
1075 
1076 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1077 {
1078 	wait_for_pipe_scanline_moving(crtc, false);
1079 }
1080 
1081 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1082 {
1083 	wait_for_pipe_scanline_moving(crtc, true);
1084 }
1085 
1086 static void
1087 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
1088 {
1089 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1090 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1091 
1092 	if (INTEL_GEN(dev_priv) >= 4) {
1093 		enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1094 		i915_reg_t reg = PIPECONF(cpu_transcoder);
1095 
1096 		/* Wait for the Pipe State to go off */
1097 		if (intel_de_wait_for_clear(dev_priv, reg,
1098 					    I965_PIPECONF_ACTIVE, 100))
1099 			drm_WARN(&dev_priv->drm, 1,
1100 				 "pipe_off wait timed out\n");
1101 	} else {
1102 		intel_wait_for_pipe_scanline_stopped(crtc);
1103 	}
1104 }
1105 
1106 /* Only for pre-ILK configs */
1107 void assert_pll(struct drm_i915_private *dev_priv,
1108 		enum pipe pipe, bool state)
1109 {
1110 	u32 val;
1111 	bool cur_state;
1112 
1113 	val = intel_de_read(dev_priv, DPLL(pipe));
1114 	cur_state = !!(val & DPLL_VCO_ENABLE);
1115 	I915_STATE_WARN(cur_state != state,
1116 	     "PLL state assertion failure (expected %s, current %s)\n",
1117 			onoff(state), onoff(cur_state));
1118 }
1119 
1120 /* XXX: the dsi pll is shared between MIPI DSI ports */
1121 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1122 {
1123 	u32 val;
1124 	bool cur_state;
1125 
1126 	vlv_cck_get(dev_priv);
1127 	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1128 	vlv_cck_put(dev_priv);
1129 
1130 	cur_state = val & DSI_PLL_VCO_EN;
1131 	I915_STATE_WARN(cur_state != state,
1132 	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1133 			onoff(state), onoff(cur_state));
1134 }
1135 
1136 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1137 			  enum pipe pipe, bool state)
1138 {
1139 	bool cur_state;
1140 
1141 	if (HAS_DDI(dev_priv)) {
1142 		/*
1143 		 * DDI does not have a specific FDI_TX register.
1144 		 *
1145 		 * FDI is never fed from EDP transcoder
1146 		 * so pipe->transcoder cast is fine here.
1147 		 */
1148 		enum transcoder cpu_transcoder = (enum transcoder)pipe;
1149 		u32 val = intel_de_read(dev_priv,
1150 					TRANS_DDI_FUNC_CTL(cpu_transcoder));
1151 		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1152 	} else {
1153 		u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe));
1154 		cur_state = !!(val & FDI_TX_ENABLE);
1155 	}
1156 	I915_STATE_WARN(cur_state != state,
1157 	     "FDI TX state assertion failure (expected %s, current %s)\n",
1158 			onoff(state), onoff(cur_state));
1159 }
1160 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1161 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1162 
1163 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1164 			  enum pipe pipe, bool state)
1165 {
1166 	u32 val;
1167 	bool cur_state;
1168 
1169 	val = intel_de_read(dev_priv, FDI_RX_CTL(pipe));
1170 	cur_state = !!(val & FDI_RX_ENABLE);
1171 	I915_STATE_WARN(cur_state != state,
1172 	     "FDI RX state assertion failure (expected %s, current %s)\n",
1173 			onoff(state), onoff(cur_state));
1174 }
1175 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1176 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1177 
1178 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1179 				      enum pipe pipe)
1180 {
1181 	u32 val;
1182 
1183 	/* ILK FDI PLL is always enabled */
1184 	if (IS_GEN(dev_priv, 5))
1185 		return;
1186 
1187 	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
1188 	if (HAS_DDI(dev_priv))
1189 		return;
1190 
1191 	val = intel_de_read(dev_priv, FDI_TX_CTL(pipe));
1192 	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1193 }
1194 
1195 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1196 		       enum pipe pipe, bool state)
1197 {
1198 	u32 val;
1199 	bool cur_state;
1200 
1201 	val = intel_de_read(dev_priv, FDI_RX_CTL(pipe));
1202 	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1203 	I915_STATE_WARN(cur_state != state,
1204 	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1205 			onoff(state), onoff(cur_state));
1206 }
1207 
1208 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1209 {
1210 	i915_reg_t pp_reg;
1211 	u32 val;
1212 	enum pipe panel_pipe = INVALID_PIPE;
1213 	bool locked = true;
1214 
1215 	if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv)))
1216 		return;
1217 
1218 	if (HAS_PCH_SPLIT(dev_priv)) {
1219 		u32 port_sel;
1220 
1221 		pp_reg = PP_CONTROL(0);
1222 		port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1223 
1224 		switch (port_sel) {
1225 		case PANEL_PORT_SELECT_LVDS:
1226 			intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe);
1227 			break;
1228 		case PANEL_PORT_SELECT_DPA:
1229 			intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe);
1230 			break;
1231 		case PANEL_PORT_SELECT_DPC:
1232 			intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe);
1233 			break;
1234 		case PANEL_PORT_SELECT_DPD:
1235 			intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe);
1236 			break;
1237 		default:
1238 			MISSING_CASE(port_sel);
1239 			break;
1240 		}
1241 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1242 		/* presumably write lock depends on pipe, not port select */
1243 		pp_reg = PP_CONTROL(pipe);
1244 		panel_pipe = pipe;
1245 	} else {
1246 		u32 port_sel;
1247 
1248 		pp_reg = PP_CONTROL(0);
1249 		port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1250 
1251 		drm_WARN_ON(&dev_priv->drm,
1252 			    port_sel != PANEL_PORT_SELECT_LVDS);
1253 		intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe);
1254 	}
1255 
1256 	val = intel_de_read(dev_priv, pp_reg);
1257 	if (!(val & PANEL_POWER_ON) ||
1258 	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1259 		locked = false;
1260 
1261 	I915_STATE_WARN(panel_pipe == pipe && locked,
1262 	     "panel assertion failure, pipe %c regs locked\n",
1263 	     pipe_name(pipe));
1264 }
1265 
1266 void assert_pipe(struct drm_i915_private *dev_priv,
1267 		 enum transcoder cpu_transcoder, bool state)
1268 {
1269 	bool cur_state;
1270 	enum intel_display_power_domain power_domain;
1271 	intel_wakeref_t wakeref;
1272 
1273 	/* we keep both pipes enabled on 830 */
1274 	if (IS_I830(dev_priv))
1275 		state = true;
1276 
1277 	power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1278 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
1279 	if (wakeref) {
1280 		u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder));
1281 		cur_state = !!(val & PIPECONF_ENABLE);
1282 
1283 		intel_display_power_put(dev_priv, power_domain, wakeref);
1284 	} else {
1285 		cur_state = false;
1286 	}
1287 
1288 	I915_STATE_WARN(cur_state != state,
1289 			"transcoder %s assertion failure (expected %s, current %s)\n",
1290 			transcoder_name(cpu_transcoder),
1291 			onoff(state), onoff(cur_state));
1292 }
1293 
1294 static void assert_plane(struct intel_plane *plane, bool state)
1295 {
1296 	enum pipe pipe;
1297 	bool cur_state;
1298 
1299 	cur_state = plane->get_hw_state(plane, &pipe);
1300 
1301 	I915_STATE_WARN(cur_state != state,
1302 			"%s assertion failure (expected %s, current %s)\n",
1303 			plane->base.name, onoff(state), onoff(cur_state));
1304 }
1305 
1306 #define assert_plane_enabled(p) assert_plane(p, true)
1307 #define assert_plane_disabled(p) assert_plane(p, false)
1308 
1309 static void assert_planes_disabled(struct intel_crtc *crtc)
1310 {
1311 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1312 	struct intel_plane *plane;
1313 
1314 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1315 		assert_plane_disabled(plane);
1316 }
1317 
1318 static void assert_vblank_disabled(struct drm_crtc *crtc)
1319 {
1320 	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1321 		drm_crtc_vblank_put(crtc);
1322 }
1323 
1324 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1325 				    enum pipe pipe)
1326 {
1327 	u32 val;
1328 	bool enabled;
1329 
1330 	val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe));
1331 	enabled = !!(val & TRANS_ENABLE);
1332 	I915_STATE_WARN(enabled,
1333 	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1334 	     pipe_name(pipe));
1335 }
1336 
1337 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1338 				   enum pipe pipe, enum port port,
1339 				   i915_reg_t dp_reg)
1340 {
1341 	enum pipe port_pipe;
1342 	bool state;
1343 
1344 	state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe);
1345 
1346 	I915_STATE_WARN(state && port_pipe == pipe,
1347 			"PCH DP %c enabled on transcoder %c, should be disabled\n",
1348 			port_name(port), pipe_name(pipe));
1349 
1350 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1351 			"IBX PCH DP %c still using transcoder B\n",
1352 			port_name(port));
1353 }
1354 
1355 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1356 				     enum pipe pipe, enum port port,
1357 				     i915_reg_t hdmi_reg)
1358 {
1359 	enum pipe port_pipe;
1360 	bool state;
1361 
1362 	state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe);
1363 
1364 	I915_STATE_WARN(state && port_pipe == pipe,
1365 			"PCH HDMI %c enabled on transcoder %c, should be disabled\n",
1366 			port_name(port), pipe_name(pipe));
1367 
1368 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1369 			"IBX PCH HDMI %c still using transcoder B\n",
1370 			port_name(port));
1371 }
1372 
1373 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1374 				      enum pipe pipe)
1375 {
1376 	enum pipe port_pipe;
1377 
1378 	assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B);
1379 	assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C);
1380 	assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D);
1381 
1382 	I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) &&
1383 			port_pipe == pipe,
1384 			"PCH VGA enabled on transcoder %c, should be disabled\n",
1385 			pipe_name(pipe));
1386 
1387 	I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) &&
1388 			port_pipe == pipe,
1389 			"PCH LVDS enabled on transcoder %c, should be disabled\n",
1390 			pipe_name(pipe));
1391 
1392 	/* PCH SDVOB multiplex with HDMIB */
1393 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB);
1394 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC);
1395 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID);
1396 }
1397 
1398 static void _vlv_enable_pll(struct intel_crtc *crtc,
1399 			    const struct intel_crtc_state *pipe_config)
1400 {
1401 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1402 	enum pipe pipe = crtc->pipe;
1403 
1404 	intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1405 	intel_de_posting_read(dev_priv, DPLL(pipe));
1406 	udelay(150);
1407 
1408 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1409 		drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
1410 }
1411 
1412 static void vlv_enable_pll(struct intel_crtc *crtc,
1413 			   const struct intel_crtc_state *pipe_config)
1414 {
1415 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1416 	enum pipe pipe = crtc->pipe;
1417 
1418 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1419 
1420 	/* PLL is protected by panel, make sure we can write it */
1421 	assert_panel_unlocked(dev_priv, pipe);
1422 
1423 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1424 		_vlv_enable_pll(crtc, pipe_config);
1425 
1426 	intel_de_write(dev_priv, DPLL_MD(pipe),
1427 		       pipe_config->dpll_hw_state.dpll_md);
1428 	intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1429 }
1430 
1431 
1432 static void _chv_enable_pll(struct intel_crtc *crtc,
1433 			    const struct intel_crtc_state *pipe_config)
1434 {
1435 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1436 	enum pipe pipe = crtc->pipe;
1437 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1438 	u32 tmp;
1439 
1440 	vlv_dpio_get(dev_priv);
1441 
1442 	/* Enable back the 10bit clock to display controller */
1443 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1444 	tmp |= DPIO_DCLKP_EN;
1445 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1446 
1447 	vlv_dpio_put(dev_priv);
1448 
1449 	/*
1450 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1451 	 */
1452 	udelay(1);
1453 
1454 	/* Enable PLL */
1455 	intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1456 
1457 	/* Check PLL is locked */
1458 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1459 		drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
1460 }
1461 
1462 static void chv_enable_pll(struct intel_crtc *crtc,
1463 			   const struct intel_crtc_state *pipe_config)
1464 {
1465 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1466 	enum pipe pipe = crtc->pipe;
1467 
1468 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1469 
1470 	/* PLL is protected by panel, make sure we can write it */
1471 	assert_panel_unlocked(dev_priv, pipe);
1472 
1473 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1474 		_chv_enable_pll(crtc, pipe_config);
1475 
1476 	if (pipe != PIPE_A) {
1477 		/*
1478 		 * WaPixelRepeatModeFixForC0:chv
1479 		 *
1480 		 * DPLLCMD is AWOL. Use chicken bits to propagate
1481 		 * the value from DPLLBMD to either pipe B or C.
1482 		 */
1483 		intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1484 		intel_de_write(dev_priv, DPLL_MD(PIPE_B),
1485 			       pipe_config->dpll_hw_state.dpll_md);
1486 		intel_de_write(dev_priv, CBR4_VLV, 0);
1487 		dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1488 
1489 		/*
1490 		 * DPLLB VGA mode also seems to cause problems.
1491 		 * We should always have it disabled.
1492 		 */
1493 		drm_WARN_ON(&dev_priv->drm,
1494 			    (intel_de_read(dev_priv, DPLL(PIPE_B)) &
1495 			     DPLL_VGA_MODE_DIS) == 0);
1496 	} else {
1497 		intel_de_write(dev_priv, DPLL_MD(pipe),
1498 			       pipe_config->dpll_hw_state.dpll_md);
1499 		intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1500 	}
1501 }
1502 
1503 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1504 {
1505 	if (IS_I830(dev_priv))
1506 		return false;
1507 
1508 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1509 }
1510 
1511 static void i9xx_enable_pll(struct intel_crtc *crtc,
1512 			    const struct intel_crtc_state *crtc_state)
1513 {
1514 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1515 	i915_reg_t reg = DPLL(crtc->pipe);
1516 	u32 dpll = crtc_state->dpll_hw_state.dpll;
1517 	int i;
1518 
1519 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1520 
1521 	/* PLL is protected by panel, make sure we can write it */
1522 	if (i9xx_has_pps(dev_priv))
1523 		assert_panel_unlocked(dev_priv, crtc->pipe);
1524 
1525 	/*
1526 	 * Apparently we need to have VGA mode enabled prior to changing
1527 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1528 	 * dividers, even though the register value does change.
1529 	 */
1530 	intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS);
1531 	intel_de_write(dev_priv, reg, dpll);
1532 
1533 	/* Wait for the clocks to stabilize. */
1534 	intel_de_posting_read(dev_priv, reg);
1535 	udelay(150);
1536 
1537 	if (INTEL_GEN(dev_priv) >= 4) {
1538 		intel_de_write(dev_priv, DPLL_MD(crtc->pipe),
1539 			       crtc_state->dpll_hw_state.dpll_md);
1540 	} else {
1541 		/* The pixel multiplier can only be updated once the
1542 		 * DPLL is enabled and the clocks are stable.
1543 		 *
1544 		 * So write it again.
1545 		 */
1546 		intel_de_write(dev_priv, reg, dpll);
1547 	}
1548 
1549 	/* We do this three times for luck */
1550 	for (i = 0; i < 3; i++) {
1551 		intel_de_write(dev_priv, reg, dpll);
1552 		intel_de_posting_read(dev_priv, reg);
1553 		udelay(150); /* wait for warmup */
1554 	}
1555 }
1556 
1557 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1558 {
1559 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1560 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1561 	enum pipe pipe = crtc->pipe;
1562 
1563 	/* Don't disable pipe or pipe PLLs if needed */
1564 	if (IS_I830(dev_priv))
1565 		return;
1566 
1567 	/* Make sure the pipe isn't still relying on us */
1568 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1569 
1570 	intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
1571 	intel_de_posting_read(dev_priv, DPLL(pipe));
1572 }
1573 
1574 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1575 {
1576 	u32 val;
1577 
1578 	/* Make sure the pipe isn't still relying on us */
1579 	assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1580 
1581 	val = DPLL_INTEGRATED_REF_CLK_VLV |
1582 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1583 	if (pipe != PIPE_A)
1584 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1585 
1586 	intel_de_write(dev_priv, DPLL(pipe), val);
1587 	intel_de_posting_read(dev_priv, DPLL(pipe));
1588 }
1589 
1590 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1591 {
1592 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1593 	u32 val;
1594 
1595 	/* Make sure the pipe isn't still relying on us */
1596 	assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1597 
1598 	val = DPLL_SSC_REF_CLK_CHV |
1599 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1600 	if (pipe != PIPE_A)
1601 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1602 
1603 	intel_de_write(dev_priv, DPLL(pipe), val);
1604 	intel_de_posting_read(dev_priv, DPLL(pipe));
1605 
1606 	vlv_dpio_get(dev_priv);
1607 
1608 	/* Disable 10bit clock to display controller */
1609 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1610 	val &= ~DPIO_DCLKP_EN;
1611 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1612 
1613 	vlv_dpio_put(dev_priv);
1614 }
1615 
1616 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1617 			 struct intel_digital_port *dig_port,
1618 			 unsigned int expected_mask)
1619 {
1620 	u32 port_mask;
1621 	i915_reg_t dpll_reg;
1622 
1623 	switch (dig_port->base.port) {
1624 	case PORT_B:
1625 		port_mask = DPLL_PORTB_READY_MASK;
1626 		dpll_reg = DPLL(0);
1627 		break;
1628 	case PORT_C:
1629 		port_mask = DPLL_PORTC_READY_MASK;
1630 		dpll_reg = DPLL(0);
1631 		expected_mask <<= 4;
1632 		break;
1633 	case PORT_D:
1634 		port_mask = DPLL_PORTD_READY_MASK;
1635 		dpll_reg = DPIO_PHY_STATUS;
1636 		break;
1637 	default:
1638 		BUG();
1639 	}
1640 
1641 	if (intel_de_wait_for_register(dev_priv, dpll_reg,
1642 				       port_mask, expected_mask, 1000))
1643 		drm_WARN(&dev_priv->drm, 1,
1644 			 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n",
1645 			 dig_port->base.base.base.id, dig_port->base.base.name,
1646 			 intel_de_read(dev_priv, dpll_reg) & port_mask,
1647 			 expected_mask);
1648 }
1649 
1650 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state)
1651 {
1652 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1653 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1654 	enum pipe pipe = crtc->pipe;
1655 	i915_reg_t reg;
1656 	u32 val, pipeconf_val;
1657 
1658 	/* Make sure PCH DPLL is enabled */
1659 	assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll);
1660 
1661 	/* FDI must be feeding us bits for PCH ports */
1662 	assert_fdi_tx_enabled(dev_priv, pipe);
1663 	assert_fdi_rx_enabled(dev_priv, pipe);
1664 
1665 	if (HAS_PCH_CPT(dev_priv)) {
1666 		reg = TRANS_CHICKEN2(pipe);
1667 		val = intel_de_read(dev_priv, reg);
1668 		/*
1669 		 * Workaround: Set the timing override bit
1670 		 * before enabling the pch transcoder.
1671 		 */
1672 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1673 		/* Configure frame start delay to match the CPU */
1674 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1675 		val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1676 		intel_de_write(dev_priv, reg, val);
1677 	}
1678 
1679 	reg = PCH_TRANSCONF(pipe);
1680 	val = intel_de_read(dev_priv, reg);
1681 	pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe));
1682 
1683 	if (HAS_PCH_IBX(dev_priv)) {
1684 		/* Configure frame start delay to match the CPU */
1685 		val &= ~TRANS_FRAME_START_DELAY_MASK;
1686 		val |= TRANS_FRAME_START_DELAY(0);
1687 
1688 		/*
1689 		 * Make the BPC in transcoder be consistent with
1690 		 * that in pipeconf reg. For HDMI we must use 8bpc
1691 		 * here for both 8bpc and 12bpc.
1692 		 */
1693 		val &= ~PIPECONF_BPC_MASK;
1694 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1695 			val |= PIPECONF_8BPC;
1696 		else
1697 			val |= pipeconf_val & PIPECONF_BPC_MASK;
1698 	}
1699 
1700 	val &= ~TRANS_INTERLACE_MASK;
1701 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) {
1702 		if (HAS_PCH_IBX(dev_priv) &&
1703 		    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
1704 			val |= TRANS_LEGACY_INTERLACED_ILK;
1705 		else
1706 			val |= TRANS_INTERLACED;
1707 	} else {
1708 		val |= TRANS_PROGRESSIVE;
1709 	}
1710 
1711 	intel_de_write(dev_priv, reg, val | TRANS_ENABLE);
1712 	if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100))
1713 		drm_err(&dev_priv->drm, "failed to enable transcoder %c\n",
1714 			pipe_name(pipe));
1715 }
1716 
1717 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1718 				      enum transcoder cpu_transcoder)
1719 {
1720 	u32 val, pipeconf_val;
1721 
1722 	/* FDI must be feeding us bits for PCH ports */
1723 	assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1724 	assert_fdi_rx_enabled(dev_priv, PIPE_A);
1725 
1726 	val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A));
1727 	/* Workaround: set timing override bit. */
1728 	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1729 	/* Configure frame start delay to match the CPU */
1730 	val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1731 	val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1732 	intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val);
1733 
1734 	val = TRANS_ENABLE;
1735 	pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder));
1736 
1737 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1738 	    PIPECONF_INTERLACED_ILK)
1739 		val |= TRANS_INTERLACED;
1740 	else
1741 		val |= TRANS_PROGRESSIVE;
1742 
1743 	intel_de_write(dev_priv, LPT_TRANSCONF, val);
1744 	if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF,
1745 				  TRANS_STATE_ENABLE, 100))
1746 		drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n");
1747 }
1748 
1749 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1750 				       enum pipe pipe)
1751 {
1752 	i915_reg_t reg;
1753 	u32 val;
1754 
1755 	/* FDI relies on the transcoder */
1756 	assert_fdi_tx_disabled(dev_priv, pipe);
1757 	assert_fdi_rx_disabled(dev_priv, pipe);
1758 
1759 	/* Ports must be off as well */
1760 	assert_pch_ports_disabled(dev_priv, pipe);
1761 
1762 	reg = PCH_TRANSCONF(pipe);
1763 	val = intel_de_read(dev_priv, reg);
1764 	val &= ~TRANS_ENABLE;
1765 	intel_de_write(dev_priv, reg, val);
1766 	/* wait for PCH transcoder off, transcoder state */
1767 	if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50))
1768 		drm_err(&dev_priv->drm, "failed to disable transcoder %c\n",
1769 			pipe_name(pipe));
1770 
1771 	if (HAS_PCH_CPT(dev_priv)) {
1772 		/* Workaround: Clear the timing override chicken bit again. */
1773 		reg = TRANS_CHICKEN2(pipe);
1774 		val = intel_de_read(dev_priv, reg);
1775 		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1776 		intel_de_write(dev_priv, reg, val);
1777 	}
1778 }
1779 
1780 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1781 {
1782 	u32 val;
1783 
1784 	val = intel_de_read(dev_priv, LPT_TRANSCONF);
1785 	val &= ~TRANS_ENABLE;
1786 	intel_de_write(dev_priv, LPT_TRANSCONF, val);
1787 	/* wait for PCH transcoder off, transcoder state */
1788 	if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF,
1789 				    TRANS_STATE_ENABLE, 50))
1790 		drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n");
1791 
1792 	/* Workaround: clear timing override bit. */
1793 	val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A));
1794 	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1795 	intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val);
1796 }
1797 
1798 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1799 {
1800 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1801 
1802 	if (HAS_PCH_LPT(dev_priv))
1803 		return PIPE_A;
1804 	else
1805 		return crtc->pipe;
1806 }
1807 
1808 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
1809 {
1810 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1811 
1812 	/*
1813 	 * On i965gm the hardware frame counter reads
1814 	 * zero when the TV encoder is enabled :(
1815 	 */
1816 	if (IS_I965GM(dev_priv) &&
1817 	    (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
1818 		return 0;
1819 
1820 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1821 		return 0xffffffff; /* full 32 bit counter */
1822 	else if (INTEL_GEN(dev_priv) >= 3)
1823 		return 0xffffff; /* only 24 bits of frame count */
1824 	else
1825 		return 0; /* Gen2 doesn't have a hardware frame counter */
1826 }
1827 
1828 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
1829 {
1830 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1831 
1832 	assert_vblank_disabled(&crtc->base);
1833 	drm_crtc_set_max_vblank_count(&crtc->base,
1834 				      intel_crtc_max_vblank_count(crtc_state));
1835 	drm_crtc_vblank_on(&crtc->base);
1836 }
1837 
1838 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state)
1839 {
1840 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1841 
1842 	drm_crtc_vblank_off(&crtc->base);
1843 	assert_vblank_disabled(&crtc->base);
1844 }
1845 
1846 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state)
1847 {
1848 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1849 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1850 	enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
1851 	enum pipe pipe = crtc->pipe;
1852 	i915_reg_t reg;
1853 	u32 val;
1854 
1855 	drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe));
1856 
1857 	assert_planes_disabled(crtc);
1858 
1859 	/*
1860 	 * A pipe without a PLL won't actually be able to drive bits from
1861 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1862 	 * need the check.
1863 	 */
1864 	if (HAS_GMCH(dev_priv)) {
1865 		if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
1866 			assert_dsi_pll_enabled(dev_priv);
1867 		else
1868 			assert_pll_enabled(dev_priv, pipe);
1869 	} else {
1870 		if (new_crtc_state->has_pch_encoder) {
1871 			/* if driving the PCH, we need FDI enabled */
1872 			assert_fdi_rx_pll_enabled(dev_priv,
1873 						  intel_crtc_pch_transcoder(crtc));
1874 			assert_fdi_tx_pll_enabled(dev_priv,
1875 						  (enum pipe) cpu_transcoder);
1876 		}
1877 		/* FIXME: assert CPU port conditions for SNB+ */
1878 	}
1879 
1880 	trace_intel_pipe_enable(crtc);
1881 
1882 	reg = PIPECONF(cpu_transcoder);
1883 	val = intel_de_read(dev_priv, reg);
1884 	if (val & PIPECONF_ENABLE) {
1885 		/* we keep both pipes enabled on 830 */
1886 		drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv));
1887 		return;
1888 	}
1889 
1890 	intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE);
1891 	intel_de_posting_read(dev_priv, reg);
1892 
1893 	/*
1894 	 * Until the pipe starts PIPEDSL reads will return a stale value,
1895 	 * which causes an apparent vblank timestamp jump when PIPEDSL
1896 	 * resets to its proper value. That also messes up the frame count
1897 	 * when it's derived from the timestamps. So let's wait for the
1898 	 * pipe to start properly before we call drm_crtc_vblank_on()
1899 	 */
1900 	if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
1901 		intel_wait_for_pipe_scanline_moving(crtc);
1902 }
1903 
1904 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state)
1905 {
1906 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1907 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1908 	enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1909 	enum pipe pipe = crtc->pipe;
1910 	i915_reg_t reg;
1911 	u32 val;
1912 
1913 	drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe));
1914 
1915 	/*
1916 	 * Make sure planes won't keep trying to pump pixels to us,
1917 	 * or we might hang the display.
1918 	 */
1919 	assert_planes_disabled(crtc);
1920 
1921 	trace_intel_pipe_disable(crtc);
1922 
1923 	reg = PIPECONF(cpu_transcoder);
1924 	val = intel_de_read(dev_priv, reg);
1925 	if ((val & PIPECONF_ENABLE) == 0)
1926 		return;
1927 
1928 	/*
1929 	 * Double wide has implications for planes
1930 	 * so best keep it disabled when not needed.
1931 	 */
1932 	if (old_crtc_state->double_wide)
1933 		val &= ~PIPECONF_DOUBLE_WIDE;
1934 
1935 	/* Don't disable pipe or pipe PLLs if needed */
1936 	if (!IS_I830(dev_priv))
1937 		val &= ~PIPECONF_ENABLE;
1938 
1939 	intel_de_write(dev_priv, reg, val);
1940 	if ((val & PIPECONF_ENABLE) == 0)
1941 		intel_wait_for_pipe_off(old_crtc_state);
1942 }
1943 
1944 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1945 {
1946 	return IS_GEN(dev_priv, 2) ? 2048 : 4096;
1947 }
1948 
1949 static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane)
1950 {
1951 	if (!is_ccs_modifier(fb->modifier))
1952 		return false;
1953 
1954 	return plane >= fb->format->num_planes / 2;
1955 }
1956 
1957 static bool is_gen12_ccs_modifier(u64 modifier)
1958 {
1959 	return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
1960 	       modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
1961 
1962 }
1963 
1964 static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane)
1965 {
1966 	return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane);
1967 }
1968 
1969 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane)
1970 {
1971 	if (is_ccs_modifier(fb->modifier))
1972 		return is_ccs_plane(fb, plane);
1973 
1974 	return plane == 1;
1975 }
1976 
1977 static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane)
1978 {
1979 	drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) ||
1980 		    (main_plane && main_plane >= fb->format->num_planes / 2));
1981 
1982 	return fb->format->num_planes / 2 + main_plane;
1983 }
1984 
1985 static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane)
1986 {
1987 	drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) ||
1988 		    ccs_plane < fb->format->num_planes / 2);
1989 
1990 	return ccs_plane - fb->format->num_planes / 2;
1991 }
1992 
1993 /* Return either the main plane's CCS or - if not a CCS FB - UV plane */
1994 int intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane)
1995 {
1996 	if (is_ccs_modifier(fb->modifier))
1997 		return main_to_ccs_plane(fb, main_plane);
1998 
1999 	return 1;
2000 }
2001 
2002 bool
2003 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info,
2004 				    uint64_t modifier)
2005 {
2006 	return info->is_yuv &&
2007 	       info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2);
2008 }
2009 
2010 static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb,
2011 				   int color_plane)
2012 {
2013 	return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) &&
2014 	       color_plane == 1;
2015 }
2016 
2017 static unsigned int
2018 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane)
2019 {
2020 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2021 	unsigned int cpp = fb->format->cpp[color_plane];
2022 
2023 	switch (fb->modifier) {
2024 	case DRM_FORMAT_MOD_LINEAR:
2025 		return intel_tile_size(dev_priv);
2026 	case I915_FORMAT_MOD_X_TILED:
2027 		if (IS_GEN(dev_priv, 2))
2028 			return 128;
2029 		else
2030 			return 512;
2031 	case I915_FORMAT_MOD_Y_TILED_CCS:
2032 		if (is_ccs_plane(fb, color_plane))
2033 			return 128;
2034 		fallthrough;
2035 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2036 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2037 		if (is_ccs_plane(fb, color_plane))
2038 			return 64;
2039 		fallthrough;
2040 	case I915_FORMAT_MOD_Y_TILED:
2041 		if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv))
2042 			return 128;
2043 		else
2044 			return 512;
2045 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2046 		if (is_ccs_plane(fb, color_plane))
2047 			return 128;
2048 		fallthrough;
2049 	case I915_FORMAT_MOD_Yf_TILED:
2050 		switch (cpp) {
2051 		case 1:
2052 			return 64;
2053 		case 2:
2054 		case 4:
2055 			return 128;
2056 		case 8:
2057 		case 16:
2058 			return 256;
2059 		default:
2060 			MISSING_CASE(cpp);
2061 			return cpp;
2062 		}
2063 		break;
2064 	default:
2065 		MISSING_CASE(fb->modifier);
2066 		return cpp;
2067 	}
2068 }
2069 
2070 static unsigned int
2071 intel_tile_height(const struct drm_framebuffer *fb, int color_plane)
2072 {
2073 	if (is_gen12_ccs_plane(fb, color_plane))
2074 		return 1;
2075 
2076 	return intel_tile_size(to_i915(fb->dev)) /
2077 		intel_tile_width_bytes(fb, color_plane);
2078 }
2079 
2080 /* Return the tile dimensions in pixel units */
2081 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane,
2082 			    unsigned int *tile_width,
2083 			    unsigned int *tile_height)
2084 {
2085 	unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane);
2086 	unsigned int cpp = fb->format->cpp[color_plane];
2087 
2088 	*tile_width = tile_width_bytes / cpp;
2089 	*tile_height = intel_tile_height(fb, color_plane);
2090 }
2091 
2092 static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb,
2093 					int color_plane)
2094 {
2095 	unsigned int tile_width, tile_height;
2096 
2097 	intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2098 
2099 	return fb->pitches[color_plane] * tile_height;
2100 }
2101 
2102 unsigned int
2103 intel_fb_align_height(const struct drm_framebuffer *fb,
2104 		      int color_plane, unsigned int height)
2105 {
2106 	unsigned int tile_height = intel_tile_height(fb, color_plane);
2107 
2108 	return ALIGN(height, tile_height);
2109 }
2110 
2111 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2112 {
2113 	unsigned int size = 0;
2114 	int i;
2115 
2116 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2117 		size += rot_info->plane[i].width * rot_info->plane[i].height;
2118 
2119 	return size;
2120 }
2121 
2122 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info)
2123 {
2124 	unsigned int size = 0;
2125 	int i;
2126 
2127 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
2128 		size += rem_info->plane[i].width * rem_info->plane[i].height;
2129 
2130 	return size;
2131 }
2132 
2133 static void
2134 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2135 			const struct drm_framebuffer *fb,
2136 			unsigned int rotation)
2137 {
2138 	view->type = I915_GGTT_VIEW_NORMAL;
2139 	if (drm_rotation_90_or_270(rotation)) {
2140 		view->type = I915_GGTT_VIEW_ROTATED;
2141 		view->rotated = to_intel_framebuffer(fb)->rot_info;
2142 	}
2143 }
2144 
2145 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2146 {
2147 	if (IS_I830(dev_priv))
2148 		return 16 * 1024;
2149 	else if (IS_I85X(dev_priv))
2150 		return 256;
2151 	else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2152 		return 32;
2153 	else
2154 		return 4 * 1024;
2155 }
2156 
2157 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2158 {
2159 	if (INTEL_GEN(dev_priv) >= 9)
2160 		return 256 * 1024;
2161 	else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2162 		 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2163 		return 128 * 1024;
2164 	else if (INTEL_GEN(dev_priv) >= 4)
2165 		return 4 * 1024;
2166 	else
2167 		return 0;
2168 }
2169 
2170 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2171 					 int color_plane)
2172 {
2173 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2174 
2175 	/* AUX_DIST needs only 4K alignment */
2176 	if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) ||
2177 	    is_ccs_plane(fb, color_plane))
2178 		return 4096;
2179 
2180 	switch (fb->modifier) {
2181 	case DRM_FORMAT_MOD_LINEAR:
2182 		return intel_linear_alignment(dev_priv);
2183 	case I915_FORMAT_MOD_X_TILED:
2184 		if (INTEL_GEN(dev_priv) >= 9)
2185 			return 256 * 1024;
2186 		return 0;
2187 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2188 		if (is_semiplanar_uv_plane(fb, color_plane))
2189 			return intel_tile_row_size(fb, color_plane);
2190 		fallthrough;
2191 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2192 		return 16 * 1024;
2193 	case I915_FORMAT_MOD_Y_TILED_CCS:
2194 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2195 	case I915_FORMAT_MOD_Y_TILED:
2196 		if (INTEL_GEN(dev_priv) >= 12 &&
2197 		    is_semiplanar_uv_plane(fb, color_plane))
2198 			return intel_tile_row_size(fb, color_plane);
2199 		fallthrough;
2200 	case I915_FORMAT_MOD_Yf_TILED:
2201 		return 1 * 1024 * 1024;
2202 	default:
2203 		MISSING_CASE(fb->modifier);
2204 		return 0;
2205 	}
2206 }
2207 
2208 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state)
2209 {
2210 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2211 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2212 
2213 	return INTEL_GEN(dev_priv) < 4 ||
2214 		(plane->has_fbc &&
2215 		 plane_state->view.type == I915_GGTT_VIEW_NORMAL);
2216 }
2217 
2218 struct i915_vma *
2219 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2220 			   const struct i915_ggtt_view *view,
2221 			   bool uses_fence,
2222 			   unsigned long *out_flags)
2223 {
2224 	struct drm_device *dev = fb->dev;
2225 	struct drm_i915_private *dev_priv = to_i915(dev);
2226 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2227 	intel_wakeref_t wakeref;
2228 	struct i915_vma *vma;
2229 	unsigned int pinctl;
2230 	u32 alignment;
2231 
2232 	if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj)))
2233 		return ERR_PTR(-EINVAL);
2234 
2235 	alignment = intel_surf_alignment(fb, 0);
2236 	if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment)))
2237 		return ERR_PTR(-EINVAL);
2238 
2239 	/* Note that the w/a also requires 64 PTE of padding following the
2240 	 * bo. We currently fill all unused PTE with the shadow page and so
2241 	 * we should always have valid PTE following the scanout preventing
2242 	 * the VT-d warning.
2243 	 */
2244 	if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2245 		alignment = 256 * 1024;
2246 
2247 	/*
2248 	 * Global gtt pte registers are special registers which actually forward
2249 	 * writes to a chunk of system memory. Which means that there is no risk
2250 	 * that the register values disappear as soon as we call
2251 	 * intel_runtime_pm_put(), so it is correct to wrap only the
2252 	 * pin/unpin/fence and not more.
2253 	 */
2254 	wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2255 
2256 	atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2257 
2258 	/*
2259 	 * Valleyview is definitely limited to scanning out the first
2260 	 * 512MiB. Lets presume this behaviour was inherited from the
2261 	 * g4x display engine and that all earlier gen are similarly
2262 	 * limited. Testing suggests that it is a little more
2263 	 * complicated than this. For example, Cherryview appears quite
2264 	 * happy to scanout from anywhere within its global aperture.
2265 	 */
2266 	pinctl = 0;
2267 	if (HAS_GMCH(dev_priv))
2268 		pinctl |= PIN_MAPPABLE;
2269 
2270 	vma = i915_gem_object_pin_to_display_plane(obj,
2271 						   alignment, view, pinctl);
2272 	if (IS_ERR(vma))
2273 		goto err;
2274 
2275 	if (uses_fence && i915_vma_is_map_and_fenceable(vma)) {
2276 		int ret;
2277 
2278 		/*
2279 		 * Install a fence for tiled scan-out. Pre-i965 always needs a
2280 		 * fence, whereas 965+ only requires a fence if using
2281 		 * framebuffer compression.  For simplicity, we always, when
2282 		 * possible, install a fence as the cost is not that onerous.
2283 		 *
2284 		 * If we fail to fence the tiled scanout, then either the
2285 		 * modeset will reject the change (which is highly unlikely as
2286 		 * the affected systems, all but one, do not have unmappable
2287 		 * space) or we will not be able to enable full powersaving
2288 		 * techniques (also likely not to apply due to various limits
2289 		 * FBC and the like impose on the size of the buffer, which
2290 		 * presumably we violated anyway with this unmappable buffer).
2291 		 * Anyway, it is presumably better to stumble onwards with
2292 		 * something and try to run the system in a "less than optimal"
2293 		 * mode that matches the user configuration.
2294 		 */
2295 		ret = i915_vma_pin_fence(vma);
2296 		if (ret != 0 && INTEL_GEN(dev_priv) < 4) {
2297 			i915_gem_object_unpin_from_display_plane(vma);
2298 			vma = ERR_PTR(ret);
2299 			goto err;
2300 		}
2301 
2302 		if (ret == 0 && vma->fence)
2303 			*out_flags |= PLANE_HAS_FENCE;
2304 	}
2305 
2306 	i915_vma_get(vma);
2307 err:
2308 	atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2309 	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
2310 	return vma;
2311 }
2312 
2313 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags)
2314 {
2315 	i915_gem_object_lock(vma->obj, NULL);
2316 	if (flags & PLANE_HAS_FENCE)
2317 		i915_vma_unpin_fence(vma);
2318 	i915_gem_object_unpin_from_display_plane(vma);
2319 	i915_gem_object_unlock(vma->obj);
2320 
2321 	i915_vma_put(vma);
2322 }
2323 
2324 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane,
2325 			  unsigned int rotation)
2326 {
2327 	if (drm_rotation_90_or_270(rotation))
2328 		return to_intel_framebuffer(fb)->rotated[color_plane].pitch;
2329 	else
2330 		return fb->pitches[color_plane];
2331 }
2332 
2333 /*
2334  * Convert the x/y offsets into a linear offset.
2335  * Only valid with 0/180 degree rotation, which is fine since linear
2336  * offset is only used with linear buffers on pre-hsw and tiled buffers
2337  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2338  */
2339 u32 intel_fb_xy_to_linear(int x, int y,
2340 			  const struct intel_plane_state *state,
2341 			  int color_plane)
2342 {
2343 	const struct drm_framebuffer *fb = state->hw.fb;
2344 	unsigned int cpp = fb->format->cpp[color_plane];
2345 	unsigned int pitch = state->color_plane[color_plane].stride;
2346 
2347 	return y * pitch + x * cpp;
2348 }
2349 
2350 /*
2351  * Add the x/y offsets derived from fb->offsets[] to the user
2352  * specified plane src x/y offsets. The resulting x/y offsets
2353  * specify the start of scanout from the beginning of the gtt mapping.
2354  */
2355 void intel_add_fb_offsets(int *x, int *y,
2356 			  const struct intel_plane_state *state,
2357 			  int color_plane)
2358 
2359 {
2360 	*x += state->color_plane[color_plane].x;
2361 	*y += state->color_plane[color_plane].y;
2362 }
2363 
2364 static u32 intel_adjust_tile_offset(int *x, int *y,
2365 				    unsigned int tile_width,
2366 				    unsigned int tile_height,
2367 				    unsigned int tile_size,
2368 				    unsigned int pitch_tiles,
2369 				    u32 old_offset,
2370 				    u32 new_offset)
2371 {
2372 	unsigned int pitch_pixels = pitch_tiles * tile_width;
2373 	unsigned int tiles;
2374 
2375 	WARN_ON(old_offset & (tile_size - 1));
2376 	WARN_ON(new_offset & (tile_size - 1));
2377 	WARN_ON(new_offset > old_offset);
2378 
2379 	tiles = (old_offset - new_offset) / tile_size;
2380 
2381 	*y += tiles / pitch_tiles * tile_height;
2382 	*x += tiles % pitch_tiles * tile_width;
2383 
2384 	/* minimize x in case it got needlessly big */
2385 	*y += *x / pitch_pixels * tile_height;
2386 	*x %= pitch_pixels;
2387 
2388 	return new_offset;
2389 }
2390 
2391 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane)
2392 {
2393 	return fb->modifier == DRM_FORMAT_MOD_LINEAR ||
2394 	       is_gen12_ccs_plane(fb, color_plane);
2395 }
2396 
2397 static u32 intel_adjust_aligned_offset(int *x, int *y,
2398 				       const struct drm_framebuffer *fb,
2399 				       int color_plane,
2400 				       unsigned int rotation,
2401 				       unsigned int pitch,
2402 				       u32 old_offset, u32 new_offset)
2403 {
2404 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2405 	unsigned int cpp = fb->format->cpp[color_plane];
2406 
2407 	drm_WARN_ON(&dev_priv->drm, new_offset > old_offset);
2408 
2409 	if (!is_surface_linear(fb, color_plane)) {
2410 		unsigned int tile_size, tile_width, tile_height;
2411 		unsigned int pitch_tiles;
2412 
2413 		tile_size = intel_tile_size(dev_priv);
2414 		intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2415 
2416 		if (drm_rotation_90_or_270(rotation)) {
2417 			pitch_tiles = pitch / tile_height;
2418 			swap(tile_width, tile_height);
2419 		} else {
2420 			pitch_tiles = pitch / (tile_width * cpp);
2421 		}
2422 
2423 		intel_adjust_tile_offset(x, y, tile_width, tile_height,
2424 					 tile_size, pitch_tiles,
2425 					 old_offset, new_offset);
2426 	} else {
2427 		old_offset += *y * pitch + *x * cpp;
2428 
2429 		*y = (old_offset - new_offset) / pitch;
2430 		*x = ((old_offset - new_offset) - *y * pitch) / cpp;
2431 	}
2432 
2433 	return new_offset;
2434 }
2435 
2436 /*
2437  * Adjust the tile offset by moving the difference into
2438  * the x/y offsets.
2439  */
2440 static u32 intel_plane_adjust_aligned_offset(int *x, int *y,
2441 					     const struct intel_plane_state *state,
2442 					     int color_plane,
2443 					     u32 old_offset, u32 new_offset)
2444 {
2445 	return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane,
2446 					   state->hw.rotation,
2447 					   state->color_plane[color_plane].stride,
2448 					   old_offset, new_offset);
2449 }
2450 
2451 /*
2452  * Computes the aligned offset to the base tile and adjusts
2453  * x, y. bytes per pixel is assumed to be a power-of-two.
2454  *
2455  * In the 90/270 rotated case, x and y are assumed
2456  * to be already rotated to match the rotated GTT view, and
2457  * pitch is the tile_height aligned framebuffer height.
2458  *
2459  * This function is used when computing the derived information
2460  * under intel_framebuffer, so using any of that information
2461  * here is not allowed. Anything under drm_framebuffer can be
2462  * used. This is why the user has to pass in the pitch since it
2463  * is specified in the rotated orientation.
2464  */
2465 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv,
2466 					int *x, int *y,
2467 					const struct drm_framebuffer *fb,
2468 					int color_plane,
2469 					unsigned int pitch,
2470 					unsigned int rotation,
2471 					u32 alignment)
2472 {
2473 	unsigned int cpp = fb->format->cpp[color_plane];
2474 	u32 offset, offset_aligned;
2475 
2476 	if (!is_surface_linear(fb, color_plane)) {
2477 		unsigned int tile_size, tile_width, tile_height;
2478 		unsigned int tile_rows, tiles, pitch_tiles;
2479 
2480 		tile_size = intel_tile_size(dev_priv);
2481 		intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2482 
2483 		if (drm_rotation_90_or_270(rotation)) {
2484 			pitch_tiles = pitch / tile_height;
2485 			swap(tile_width, tile_height);
2486 		} else {
2487 			pitch_tiles = pitch / (tile_width * cpp);
2488 		}
2489 
2490 		tile_rows = *y / tile_height;
2491 		*y %= tile_height;
2492 
2493 		tiles = *x / tile_width;
2494 		*x %= tile_width;
2495 
2496 		offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2497 
2498 		offset_aligned = offset;
2499 		if (alignment)
2500 			offset_aligned = rounddown(offset_aligned, alignment);
2501 
2502 		intel_adjust_tile_offset(x, y, tile_width, tile_height,
2503 					 tile_size, pitch_tiles,
2504 					 offset, offset_aligned);
2505 	} else {
2506 		offset = *y * pitch + *x * cpp;
2507 		offset_aligned = offset;
2508 		if (alignment) {
2509 			offset_aligned = rounddown(offset_aligned, alignment);
2510 			*y = (offset % alignment) / pitch;
2511 			*x = ((offset % alignment) - *y * pitch) / cpp;
2512 		} else {
2513 			*y = *x = 0;
2514 		}
2515 	}
2516 
2517 	return offset_aligned;
2518 }
2519 
2520 static u32 intel_plane_compute_aligned_offset(int *x, int *y,
2521 					      const struct intel_plane_state *state,
2522 					      int color_plane)
2523 {
2524 	struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane);
2525 	struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2526 	const struct drm_framebuffer *fb = state->hw.fb;
2527 	unsigned int rotation = state->hw.rotation;
2528 	int pitch = state->color_plane[color_plane].stride;
2529 	u32 alignment;
2530 
2531 	if (intel_plane->id == PLANE_CURSOR)
2532 		alignment = intel_cursor_alignment(dev_priv);
2533 	else
2534 		alignment = intel_surf_alignment(fb, color_plane);
2535 
2536 	return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane,
2537 					    pitch, rotation, alignment);
2538 }
2539 
2540 /* Convert the fb->offset[] into x/y offsets */
2541 static int intel_fb_offset_to_xy(int *x, int *y,
2542 				 const struct drm_framebuffer *fb,
2543 				 int color_plane)
2544 {
2545 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2546 	unsigned int height;
2547 	u32 alignment;
2548 
2549 	if (INTEL_GEN(dev_priv) >= 12 &&
2550 	    is_semiplanar_uv_plane(fb, color_plane))
2551 		alignment = intel_tile_row_size(fb, color_plane);
2552 	else if (fb->modifier != DRM_FORMAT_MOD_LINEAR)
2553 		alignment = intel_tile_size(dev_priv);
2554 	else
2555 		alignment = 0;
2556 
2557 	if (alignment != 0 && fb->offsets[color_plane] % alignment) {
2558 		drm_dbg_kms(&dev_priv->drm,
2559 			    "Misaligned offset 0x%08x for color plane %d\n",
2560 			    fb->offsets[color_plane], color_plane);
2561 		return -EINVAL;
2562 	}
2563 
2564 	height = drm_framebuffer_plane_height(fb->height, fb, color_plane);
2565 	height = ALIGN(height, intel_tile_height(fb, color_plane));
2566 
2567 	/* Catch potential overflows early */
2568 	if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]),
2569 			    fb->offsets[color_plane])) {
2570 		drm_dbg_kms(&dev_priv->drm,
2571 			    "Bad offset 0x%08x or pitch %d for color plane %d\n",
2572 			    fb->offsets[color_plane], fb->pitches[color_plane],
2573 			    color_plane);
2574 		return -ERANGE;
2575 	}
2576 
2577 	*x = 0;
2578 	*y = 0;
2579 
2580 	intel_adjust_aligned_offset(x, y,
2581 				    fb, color_plane, DRM_MODE_ROTATE_0,
2582 				    fb->pitches[color_plane],
2583 				    fb->offsets[color_plane], 0);
2584 
2585 	return 0;
2586 }
2587 
2588 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier)
2589 {
2590 	switch (fb_modifier) {
2591 	case I915_FORMAT_MOD_X_TILED:
2592 		return I915_TILING_X;
2593 	case I915_FORMAT_MOD_Y_TILED:
2594 	case I915_FORMAT_MOD_Y_TILED_CCS:
2595 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2596 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2597 		return I915_TILING_Y;
2598 	default:
2599 		return I915_TILING_NONE;
2600 	}
2601 }
2602 
2603 /*
2604  * From the Sky Lake PRM:
2605  * "The Color Control Surface (CCS) contains the compression status of
2606  *  the cache-line pairs. The compression state of the cache-line pair
2607  *  is specified by 2 bits in the CCS. Each CCS cache-line represents
2608  *  an area on the main surface of 16 x16 sets of 128 byte Y-tiled
2609  *  cache-line-pairs. CCS is always Y tiled."
2610  *
2611  * Since cache line pairs refers to horizontally adjacent cache lines,
2612  * each cache line in the CCS corresponds to an area of 32x16 cache
2613  * lines on the main surface. Since each pixel is 4 bytes, this gives
2614  * us a ratio of one byte in the CCS for each 8x16 pixels in the
2615  * main surface.
2616  */
2617 static const struct drm_format_info skl_ccs_formats[] = {
2618 	{ .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2619 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2620 	{ .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2621 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2622 	{ .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2623 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2624 	{ .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2625 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2626 };
2627 
2628 /*
2629  * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the
2630  * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles
2631  * in the main surface. With 4 byte pixels and each Y-tile having dimensions of
2632  * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in
2633  * the main surface.
2634  */
2635 static const struct drm_format_info gen12_ccs_formats[] = {
2636 	{ .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2637 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2638 	  .hsub = 1, .vsub = 1, },
2639 	{ .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2640 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2641 	  .hsub = 1, .vsub = 1, },
2642 	{ .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2643 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2644 	  .hsub = 1, .vsub = 1, .has_alpha = true },
2645 	{ .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2646 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2647 	  .hsub = 1, .vsub = 1, .has_alpha = true },
2648 	{ .format = DRM_FORMAT_YUYV, .num_planes = 2,
2649 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2650 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2651 	{ .format = DRM_FORMAT_YVYU, .num_planes = 2,
2652 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2653 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2654 	{ .format = DRM_FORMAT_UYVY, .num_planes = 2,
2655 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2656 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2657 	{ .format = DRM_FORMAT_VYUY, .num_planes = 2,
2658 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2659 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2660 	{ .format = DRM_FORMAT_NV12, .num_planes = 4,
2661 	  .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 },
2662 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2663 	{ .format = DRM_FORMAT_P010, .num_planes = 4,
2664 	  .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2665 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2666 	{ .format = DRM_FORMAT_P012, .num_planes = 4,
2667 	  .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2668 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2669 	{ .format = DRM_FORMAT_P016, .num_planes = 4,
2670 	  .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2671 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2672 };
2673 
2674 static const struct drm_format_info *
2675 lookup_format_info(const struct drm_format_info formats[],
2676 		   int num_formats, u32 format)
2677 {
2678 	int i;
2679 
2680 	for (i = 0; i < num_formats; i++) {
2681 		if (formats[i].format == format)
2682 			return &formats[i];
2683 	}
2684 
2685 	return NULL;
2686 }
2687 
2688 static const struct drm_format_info *
2689 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2690 {
2691 	switch (cmd->modifier[0]) {
2692 	case I915_FORMAT_MOD_Y_TILED_CCS:
2693 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2694 		return lookup_format_info(skl_ccs_formats,
2695 					  ARRAY_SIZE(skl_ccs_formats),
2696 					  cmd->pixel_format);
2697 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2698 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2699 		return lookup_format_info(gen12_ccs_formats,
2700 					  ARRAY_SIZE(gen12_ccs_formats),
2701 					  cmd->pixel_format);
2702 	default:
2703 		return NULL;
2704 	}
2705 }
2706 
2707 bool is_ccs_modifier(u64 modifier)
2708 {
2709 	return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
2710 	       modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS ||
2711 	       modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2712 	       modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
2713 }
2714 
2715 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane)
2716 {
2717 	return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)],
2718 			    512) * 64;
2719 }
2720 
2721 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv,
2722 			      u32 pixel_format, u64 modifier)
2723 {
2724 	struct intel_crtc *crtc;
2725 	struct intel_plane *plane;
2726 
2727 	/*
2728 	 * We assume the primary plane for pipe A has
2729 	 * the highest stride limits of them all,
2730 	 * if in case pipe A is disabled, use the first pipe from pipe_mask.
2731 	 */
2732 	crtc = intel_get_first_crtc(dev_priv);
2733 	if (!crtc)
2734 		return 0;
2735 
2736 	plane = to_intel_plane(crtc->base.primary);
2737 
2738 	return plane->max_stride(plane, pixel_format, modifier,
2739 				 DRM_MODE_ROTATE_0);
2740 }
2741 
2742 static
2743 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv,
2744 			u32 pixel_format, u64 modifier)
2745 {
2746 	/*
2747 	 * Arbitrary limit for gen4+ chosen to match the
2748 	 * render engine max stride.
2749 	 *
2750 	 * The new CCS hash mode makes remapping impossible
2751 	 */
2752 	if (!is_ccs_modifier(modifier)) {
2753 		if (INTEL_GEN(dev_priv) >= 7)
2754 			return 256*1024;
2755 		else if (INTEL_GEN(dev_priv) >= 4)
2756 			return 128*1024;
2757 	}
2758 
2759 	return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier);
2760 }
2761 
2762 static u32
2763 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane)
2764 {
2765 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2766 	u32 tile_width;
2767 
2768 	if (is_surface_linear(fb, color_plane)) {
2769 		u32 max_stride = intel_plane_fb_max_stride(dev_priv,
2770 							   fb->format->format,
2771 							   fb->modifier);
2772 
2773 		/*
2774 		 * To make remapping with linear generally feasible
2775 		 * we need the stride to be page aligned.
2776 		 */
2777 		if (fb->pitches[color_plane] > max_stride &&
2778 		    !is_ccs_modifier(fb->modifier))
2779 			return intel_tile_size(dev_priv);
2780 		else
2781 			return 64;
2782 	}
2783 
2784 	tile_width = intel_tile_width_bytes(fb, color_plane);
2785 	if (is_ccs_modifier(fb->modifier)) {
2786 		/*
2787 		 * Display WA #0531: skl,bxt,kbl,glk
2788 		 *
2789 		 * Render decompression and plane width > 3840
2790 		 * combined with horizontal panning requires the
2791 		 * plane stride to be a multiple of 4. We'll just
2792 		 * require the entire fb to accommodate that to avoid
2793 		 * potential runtime errors at plane configuration time.
2794 		 */
2795 		if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840)
2796 			tile_width *= 4;
2797 		/*
2798 		 * The main surface pitch must be padded to a multiple of four
2799 		 * tile widths.
2800 		 */
2801 		else if (INTEL_GEN(dev_priv) >= 12)
2802 			tile_width *= 4;
2803 	}
2804 	return tile_width;
2805 }
2806 
2807 bool intel_plane_can_remap(const struct intel_plane_state *plane_state)
2808 {
2809 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2810 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2811 	const struct drm_framebuffer *fb = plane_state->hw.fb;
2812 	int i;
2813 
2814 	/* We don't want to deal with remapping with cursors */
2815 	if (plane->id == PLANE_CURSOR)
2816 		return false;
2817 
2818 	/*
2819 	 * The display engine limits already match/exceed the
2820 	 * render engine limits, so not much point in remapping.
2821 	 * Would also need to deal with the fence POT alignment
2822 	 * and gen2 2KiB GTT tile size.
2823 	 */
2824 	if (INTEL_GEN(dev_priv) < 4)
2825 		return false;
2826 
2827 	/*
2828 	 * The new CCS hash mode isn't compatible with remapping as
2829 	 * the virtual address of the pages affects the compressed data.
2830 	 */
2831 	if (is_ccs_modifier(fb->modifier))
2832 		return false;
2833 
2834 	/* Linear needs a page aligned stride for remapping */
2835 	if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2836 		unsigned int alignment = intel_tile_size(dev_priv) - 1;
2837 
2838 		for (i = 0; i < fb->format->num_planes; i++) {
2839 			if (fb->pitches[i] & alignment)
2840 				return false;
2841 		}
2842 	}
2843 
2844 	return true;
2845 }
2846 
2847 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state)
2848 {
2849 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2850 	const struct drm_framebuffer *fb = plane_state->hw.fb;
2851 	unsigned int rotation = plane_state->hw.rotation;
2852 	u32 stride, max_stride;
2853 
2854 	/*
2855 	 * No remapping for invisible planes since we don't have
2856 	 * an actual source viewport to remap.
2857 	 */
2858 	if (!plane_state->uapi.visible)
2859 		return false;
2860 
2861 	if (!intel_plane_can_remap(plane_state))
2862 		return false;
2863 
2864 	/*
2865 	 * FIXME: aux plane limits on gen9+ are
2866 	 * unclear in Bspec, for now no checking.
2867 	 */
2868 	stride = intel_fb_pitch(fb, 0, rotation);
2869 	max_stride = plane->max_stride(plane, fb->format->format,
2870 				       fb->modifier, rotation);
2871 
2872 	return stride > max_stride;
2873 }
2874 
2875 static void
2876 intel_fb_plane_get_subsampling(int *hsub, int *vsub,
2877 			       const struct drm_framebuffer *fb,
2878 			       int color_plane)
2879 {
2880 	int main_plane;
2881 
2882 	if (color_plane == 0) {
2883 		*hsub = 1;
2884 		*vsub = 1;
2885 
2886 		return;
2887 	}
2888 
2889 	/*
2890 	 * TODO: Deduct the subsampling from the char block for all CCS
2891 	 * formats and planes.
2892 	 */
2893 	if (!is_gen12_ccs_plane(fb, color_plane)) {
2894 		*hsub = fb->format->hsub;
2895 		*vsub = fb->format->vsub;
2896 
2897 		return;
2898 	}
2899 
2900 	main_plane = ccs_to_main_plane(fb, color_plane);
2901 	*hsub = drm_format_info_block_width(fb->format, color_plane) /
2902 		drm_format_info_block_width(fb->format, main_plane);
2903 
2904 	/*
2905 	 * The min stride check in the core framebuffer_check() function
2906 	 * assumes that format->hsub applies to every plane except for the
2907 	 * first plane. That's incorrect for the CCS AUX plane of the first
2908 	 * plane, but for the above check to pass we must define the block
2909 	 * width with that subsampling applied to it. Adjust the width here
2910 	 * accordingly, so we can calculate the actual subsampling factor.
2911 	 */
2912 	if (main_plane == 0)
2913 		*hsub *= fb->format->hsub;
2914 
2915 	*vsub = 32;
2916 }
2917 static int
2918 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y)
2919 {
2920 	struct drm_i915_private *i915 = to_i915(fb->dev);
2921 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2922 	int main_plane;
2923 	int hsub, vsub;
2924 	int tile_width, tile_height;
2925 	int ccs_x, ccs_y;
2926 	int main_x, main_y;
2927 
2928 	if (!is_ccs_plane(fb, ccs_plane))
2929 		return 0;
2930 
2931 	intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height);
2932 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
2933 
2934 	tile_width *= hsub;
2935 	tile_height *= vsub;
2936 
2937 	ccs_x = (x * hsub) % tile_width;
2938 	ccs_y = (y * vsub) % tile_height;
2939 
2940 	main_plane = ccs_to_main_plane(fb, ccs_plane);
2941 	main_x = intel_fb->normal[main_plane].x % tile_width;
2942 	main_y = intel_fb->normal[main_plane].y % tile_height;
2943 
2944 	/*
2945 	 * CCS doesn't have its own x/y offset register, so the intra CCS tile
2946 	 * x/y offsets must match between CCS and the main surface.
2947 	 */
2948 	if (main_x != ccs_x || main_y != ccs_y) {
2949 		drm_dbg_kms(&i915->drm,
2950 			      "Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2951 			      main_x, main_y,
2952 			      ccs_x, ccs_y,
2953 			      intel_fb->normal[main_plane].x,
2954 			      intel_fb->normal[main_plane].y,
2955 			      x, y);
2956 		return -EINVAL;
2957 	}
2958 
2959 	return 0;
2960 }
2961 
2962 static void
2963 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane)
2964 {
2965 	int main_plane = is_ccs_plane(fb, color_plane) ?
2966 			 ccs_to_main_plane(fb, color_plane) : 0;
2967 	int main_hsub, main_vsub;
2968 	int hsub, vsub;
2969 
2970 	intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane);
2971 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane);
2972 	*w = fb->width / main_hsub / hsub;
2973 	*h = fb->height / main_vsub / vsub;
2974 }
2975 
2976 /*
2977  * Setup the rotated view for an FB plane and return the size the GTT mapping
2978  * requires for this view.
2979  */
2980 static u32
2981 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info,
2982 		  u32 gtt_offset_rotated, int x, int y,
2983 		  unsigned int width, unsigned int height,
2984 		  unsigned int tile_size,
2985 		  unsigned int tile_width, unsigned int tile_height,
2986 		  struct drm_framebuffer *fb)
2987 {
2988 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2989 	struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2990 	unsigned int pitch_tiles;
2991 	struct drm_rect r;
2992 
2993 	/* Y or Yf modifiers required for 90/270 rotation */
2994 	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
2995 	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
2996 		return 0;
2997 
2998 	if (drm_WARN_ON(fb->dev, plane >= ARRAY_SIZE(rot_info->plane)))
2999 		return 0;
3000 
3001 	rot_info->plane[plane] = *plane_info;
3002 
3003 	intel_fb->rotated[plane].pitch = plane_info->height * tile_height;
3004 
3005 	/* rotate the x/y offsets to match the GTT view */
3006 	drm_rect_init(&r, x, y, width, height);
3007 	drm_rect_rotate(&r,
3008 			plane_info->width * tile_width,
3009 			plane_info->height * tile_height,
3010 			DRM_MODE_ROTATE_270);
3011 	x = r.x1;
3012 	y = r.y1;
3013 
3014 	/* rotate the tile dimensions to match the GTT view */
3015 	pitch_tiles = intel_fb->rotated[plane].pitch / tile_height;
3016 	swap(tile_width, tile_height);
3017 
3018 	/*
3019 	 * We only keep the x/y offsets, so push all of the
3020 	 * gtt offset into the x/y offsets.
3021 	 */
3022 	intel_adjust_tile_offset(&x, &y,
3023 				 tile_width, tile_height,
3024 				 tile_size, pitch_tiles,
3025 				 gtt_offset_rotated * tile_size, 0);
3026 
3027 	/*
3028 	 * First pixel of the framebuffer from
3029 	 * the start of the rotated gtt mapping.
3030 	 */
3031 	intel_fb->rotated[plane].x = x;
3032 	intel_fb->rotated[plane].y = y;
3033 
3034 	return plane_info->width * plane_info->height;
3035 }
3036 
3037 static int
3038 intel_fill_fb_info(struct drm_i915_private *dev_priv,
3039 		   struct drm_framebuffer *fb)
3040 {
3041 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3042 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3043 	u32 gtt_offset_rotated = 0;
3044 	unsigned int max_size = 0;
3045 	int i, num_planes = fb->format->num_planes;
3046 	unsigned int tile_size = intel_tile_size(dev_priv);
3047 
3048 	for (i = 0; i < num_planes; i++) {
3049 		unsigned int width, height;
3050 		unsigned int cpp, size;
3051 		u32 offset;
3052 		int x, y;
3053 		int ret;
3054 
3055 		cpp = fb->format->cpp[i];
3056 		intel_fb_plane_dims(&width, &height, fb, i);
3057 
3058 		ret = intel_fb_offset_to_xy(&x, &y, fb, i);
3059 		if (ret) {
3060 			drm_dbg_kms(&dev_priv->drm,
3061 				    "bad fb plane %d offset: 0x%x\n",
3062 				    i, fb->offsets[i]);
3063 			return ret;
3064 		}
3065 
3066 		ret = intel_fb_check_ccs_xy(fb, i, x, y);
3067 		if (ret)
3068 			return ret;
3069 
3070 		/*
3071 		 * The fence (if used) is aligned to the start of the object
3072 		 * so having the framebuffer wrap around across the edge of the
3073 		 * fenced region doesn't really work. We have no API to configure
3074 		 * the fence start offset within the object (nor could we probably
3075 		 * on gen2/3). So it's just easier if we just require that the
3076 		 * fb layout agrees with the fence layout. We already check that the
3077 		 * fb stride matches the fence stride elsewhere.
3078 		 */
3079 		if (i == 0 && i915_gem_object_is_tiled(obj) &&
3080 		    (x + width) * cpp > fb->pitches[i]) {
3081 			drm_dbg_kms(&dev_priv->drm,
3082 				    "bad fb plane %d offset: 0x%x\n",
3083 				     i, fb->offsets[i]);
3084 			return -EINVAL;
3085 		}
3086 
3087 		/*
3088 		 * First pixel of the framebuffer from
3089 		 * the start of the normal gtt mapping.
3090 		 */
3091 		intel_fb->normal[i].x = x;
3092 		intel_fb->normal[i].y = y;
3093 
3094 		offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i,
3095 						      fb->pitches[i],
3096 						      DRM_MODE_ROTATE_0,
3097 						      tile_size);
3098 		offset /= tile_size;
3099 
3100 		if (!is_surface_linear(fb, i)) {
3101 			struct intel_remapped_plane_info plane_info;
3102 			unsigned int tile_width, tile_height;
3103 
3104 			intel_tile_dims(fb, i, &tile_width, &tile_height);
3105 
3106 			plane_info.offset = offset;
3107 			plane_info.stride = DIV_ROUND_UP(fb->pitches[i],
3108 							 tile_width * cpp);
3109 			plane_info.width = DIV_ROUND_UP(x + width, tile_width);
3110 			plane_info.height = DIV_ROUND_UP(y + height,
3111 							 tile_height);
3112 
3113 			/* how many tiles does this plane need */
3114 			size = plane_info.stride * plane_info.height;
3115 			/*
3116 			 * If the plane isn't horizontally tile aligned,
3117 			 * we need one more tile.
3118 			 */
3119 			if (x != 0)
3120 				size++;
3121 
3122 			gtt_offset_rotated +=
3123 				setup_fb_rotation(i, &plane_info,
3124 						  gtt_offset_rotated,
3125 						  x, y, width, height,
3126 						  tile_size,
3127 						  tile_width, tile_height,
3128 						  fb);
3129 		} else {
3130 			size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
3131 					    x * cpp, tile_size);
3132 		}
3133 
3134 		/* how many tiles in total needed in the bo */
3135 		max_size = max(max_size, offset + size);
3136 	}
3137 
3138 	if (mul_u32_u32(max_size, tile_size) > obj->base.size) {
3139 		drm_dbg_kms(&dev_priv->drm,
3140 			    "fb too big for bo (need %llu bytes, have %zu bytes)\n",
3141 			    mul_u32_u32(max_size, tile_size), obj->base.size);
3142 		return -EINVAL;
3143 	}
3144 
3145 	return 0;
3146 }
3147 
3148 static void
3149 intel_plane_remap_gtt(struct intel_plane_state *plane_state)
3150 {
3151 	struct drm_i915_private *dev_priv =
3152 		to_i915(plane_state->uapi.plane->dev);
3153 	struct drm_framebuffer *fb = plane_state->hw.fb;
3154 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3155 	struct intel_rotation_info *info = &plane_state->view.rotated;
3156 	unsigned int rotation = plane_state->hw.rotation;
3157 	int i, num_planes = fb->format->num_planes;
3158 	unsigned int tile_size = intel_tile_size(dev_priv);
3159 	unsigned int src_x, src_y;
3160 	unsigned int src_w, src_h;
3161 	u32 gtt_offset = 0;
3162 
3163 	memset(&plane_state->view, 0, sizeof(plane_state->view));
3164 	plane_state->view.type = drm_rotation_90_or_270(rotation) ?
3165 		I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED;
3166 
3167 	src_x = plane_state->uapi.src.x1 >> 16;
3168 	src_y = plane_state->uapi.src.y1 >> 16;
3169 	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
3170 	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
3171 
3172 	drm_WARN_ON(&dev_priv->drm, is_ccs_modifier(fb->modifier));
3173 
3174 	/* Make src coordinates relative to the viewport */
3175 	drm_rect_translate(&plane_state->uapi.src,
3176 			   -(src_x << 16), -(src_y << 16));
3177 
3178 	/* Rotate src coordinates to match rotated GTT view */
3179 	if (drm_rotation_90_or_270(rotation))
3180 		drm_rect_rotate(&plane_state->uapi.src,
3181 				src_w << 16, src_h << 16,
3182 				DRM_MODE_ROTATE_270);
3183 
3184 	for (i = 0; i < num_planes; i++) {
3185 		unsigned int hsub = i ? fb->format->hsub : 1;
3186 		unsigned int vsub = i ? fb->format->vsub : 1;
3187 		unsigned int cpp = fb->format->cpp[i];
3188 		unsigned int tile_width, tile_height;
3189 		unsigned int width, height;
3190 		unsigned int pitch_tiles;
3191 		unsigned int x, y;
3192 		u32 offset;
3193 
3194 		intel_tile_dims(fb, i, &tile_width, &tile_height);
3195 
3196 		x = src_x / hsub;
3197 		y = src_y / vsub;
3198 		width = src_w / hsub;
3199 		height = src_h / vsub;
3200 
3201 		/*
3202 		 * First pixel of the src viewport from the
3203 		 * start of the normal gtt mapping.
3204 		 */
3205 		x += intel_fb->normal[i].x;
3206 		y += intel_fb->normal[i].y;
3207 
3208 		offset = intel_compute_aligned_offset(dev_priv, &x, &y,
3209 						      fb, i, fb->pitches[i],
3210 						      DRM_MODE_ROTATE_0, tile_size);
3211 		offset /= tile_size;
3212 
3213 		drm_WARN_ON(&dev_priv->drm, i >= ARRAY_SIZE(info->plane));
3214 		info->plane[i].offset = offset;
3215 		info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i],
3216 						     tile_width * cpp);
3217 		info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
3218 		info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
3219 
3220 		if (drm_rotation_90_or_270(rotation)) {
3221 			struct drm_rect r;
3222 
3223 			/* rotate the x/y offsets to match the GTT view */
3224 			drm_rect_init(&r, x, y, width, height);
3225 			drm_rect_rotate(&r,
3226 					info->plane[i].width * tile_width,
3227 					info->plane[i].height * tile_height,
3228 					DRM_MODE_ROTATE_270);
3229 			x = r.x1;
3230 			y = r.y1;
3231 
3232 			pitch_tiles = info->plane[i].height;
3233 			plane_state->color_plane[i].stride = pitch_tiles * tile_height;
3234 
3235 			/* rotate the tile dimensions to match the GTT view */
3236 			swap(tile_width, tile_height);
3237 		} else {
3238 			pitch_tiles = info->plane[i].width;
3239 			plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp;
3240 		}
3241 
3242 		/*
3243 		 * We only keep the x/y offsets, so push all of the
3244 		 * gtt offset into the x/y offsets.
3245 		 */
3246 		intel_adjust_tile_offset(&x, &y,
3247 					 tile_width, tile_height,
3248 					 tile_size, pitch_tiles,
3249 					 gtt_offset * tile_size, 0);
3250 
3251 		gtt_offset += info->plane[i].width * info->plane[i].height;
3252 
3253 		plane_state->color_plane[i].offset = 0;
3254 		plane_state->color_plane[i].x = x;
3255 		plane_state->color_plane[i].y = y;
3256 	}
3257 }
3258 
3259 static int
3260 intel_plane_compute_gtt(struct intel_plane_state *plane_state)
3261 {
3262 	const struct intel_framebuffer *fb =
3263 		to_intel_framebuffer(plane_state->hw.fb);
3264 	unsigned int rotation = plane_state->hw.rotation;
3265 	int i, num_planes;
3266 
3267 	if (!fb)
3268 		return 0;
3269 
3270 	num_planes = fb->base.format->num_planes;
3271 
3272 	if (intel_plane_needs_remap(plane_state)) {
3273 		intel_plane_remap_gtt(plane_state);
3274 
3275 		/*
3276 		 * Sometimes even remapping can't overcome
3277 		 * the stride limitations :( Can happen with
3278 		 * big plane sizes and suitably misaligned
3279 		 * offsets.
3280 		 */
3281 		return intel_plane_check_stride(plane_state);
3282 	}
3283 
3284 	intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation);
3285 
3286 	for (i = 0; i < num_planes; i++) {
3287 		plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation);
3288 		plane_state->color_plane[i].offset = 0;
3289 
3290 		if (drm_rotation_90_or_270(rotation)) {
3291 			plane_state->color_plane[i].x = fb->rotated[i].x;
3292 			plane_state->color_plane[i].y = fb->rotated[i].y;
3293 		} else {
3294 			plane_state->color_plane[i].x = fb->normal[i].x;
3295 			plane_state->color_plane[i].y = fb->normal[i].y;
3296 		}
3297 	}
3298 
3299 	/* Rotate src coordinates to match rotated GTT view */
3300 	if (drm_rotation_90_or_270(rotation))
3301 		drm_rect_rotate(&plane_state->uapi.src,
3302 				fb->base.width << 16, fb->base.height << 16,
3303 				DRM_MODE_ROTATE_270);
3304 
3305 	return intel_plane_check_stride(plane_state);
3306 }
3307 
3308 static int i9xx_format_to_fourcc(int format)
3309 {
3310 	switch (format) {
3311 	case DISPPLANE_8BPP:
3312 		return DRM_FORMAT_C8;
3313 	case DISPPLANE_BGRA555:
3314 		return DRM_FORMAT_ARGB1555;
3315 	case DISPPLANE_BGRX555:
3316 		return DRM_FORMAT_XRGB1555;
3317 	case DISPPLANE_BGRX565:
3318 		return DRM_FORMAT_RGB565;
3319 	default:
3320 	case DISPPLANE_BGRX888:
3321 		return DRM_FORMAT_XRGB8888;
3322 	case DISPPLANE_RGBX888:
3323 		return DRM_FORMAT_XBGR8888;
3324 	case DISPPLANE_BGRA888:
3325 		return DRM_FORMAT_ARGB8888;
3326 	case DISPPLANE_RGBA888:
3327 		return DRM_FORMAT_ABGR8888;
3328 	case DISPPLANE_BGRX101010:
3329 		return DRM_FORMAT_XRGB2101010;
3330 	case DISPPLANE_RGBX101010:
3331 		return DRM_FORMAT_XBGR2101010;
3332 	case DISPPLANE_BGRA101010:
3333 		return DRM_FORMAT_ARGB2101010;
3334 	case DISPPLANE_RGBA101010:
3335 		return DRM_FORMAT_ABGR2101010;
3336 	case DISPPLANE_RGBX161616:
3337 		return DRM_FORMAT_XBGR16161616F;
3338 	}
3339 }
3340 
3341 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
3342 {
3343 	switch (format) {
3344 	case PLANE_CTL_FORMAT_RGB_565:
3345 		return DRM_FORMAT_RGB565;
3346 	case PLANE_CTL_FORMAT_NV12:
3347 		return DRM_FORMAT_NV12;
3348 	case PLANE_CTL_FORMAT_XYUV:
3349 		return DRM_FORMAT_XYUV8888;
3350 	case PLANE_CTL_FORMAT_P010:
3351 		return DRM_FORMAT_P010;
3352 	case PLANE_CTL_FORMAT_P012:
3353 		return DRM_FORMAT_P012;
3354 	case PLANE_CTL_FORMAT_P016:
3355 		return DRM_FORMAT_P016;
3356 	case PLANE_CTL_FORMAT_Y210:
3357 		return DRM_FORMAT_Y210;
3358 	case PLANE_CTL_FORMAT_Y212:
3359 		return DRM_FORMAT_Y212;
3360 	case PLANE_CTL_FORMAT_Y216:
3361 		return DRM_FORMAT_Y216;
3362 	case PLANE_CTL_FORMAT_Y410:
3363 		return DRM_FORMAT_XVYU2101010;
3364 	case PLANE_CTL_FORMAT_Y412:
3365 		return DRM_FORMAT_XVYU12_16161616;
3366 	case PLANE_CTL_FORMAT_Y416:
3367 		return DRM_FORMAT_XVYU16161616;
3368 	default:
3369 	case PLANE_CTL_FORMAT_XRGB_8888:
3370 		if (rgb_order) {
3371 			if (alpha)
3372 				return DRM_FORMAT_ABGR8888;
3373 			else
3374 				return DRM_FORMAT_XBGR8888;
3375 		} else {
3376 			if (alpha)
3377 				return DRM_FORMAT_ARGB8888;
3378 			else
3379 				return DRM_FORMAT_XRGB8888;
3380 		}
3381 	case PLANE_CTL_FORMAT_XRGB_2101010:
3382 		if (rgb_order) {
3383 			if (alpha)
3384 				return DRM_FORMAT_ABGR2101010;
3385 			else
3386 				return DRM_FORMAT_XBGR2101010;
3387 		} else {
3388 			if (alpha)
3389 				return DRM_FORMAT_ARGB2101010;
3390 			else
3391 				return DRM_FORMAT_XRGB2101010;
3392 		}
3393 	case PLANE_CTL_FORMAT_XRGB_16161616F:
3394 		if (rgb_order) {
3395 			if (alpha)
3396 				return DRM_FORMAT_ABGR16161616F;
3397 			else
3398 				return DRM_FORMAT_XBGR16161616F;
3399 		} else {
3400 			if (alpha)
3401 				return DRM_FORMAT_ARGB16161616F;
3402 			else
3403 				return DRM_FORMAT_XRGB16161616F;
3404 		}
3405 	}
3406 }
3407 
3408 static struct i915_vma *
3409 initial_plane_vma(struct drm_i915_private *i915,
3410 		  struct intel_initial_plane_config *plane_config)
3411 {
3412 	struct drm_i915_gem_object *obj;
3413 	struct i915_vma *vma;
3414 	u32 base, size;
3415 
3416 	if (plane_config->size == 0)
3417 		return NULL;
3418 
3419 	base = round_down(plane_config->base,
3420 			  I915_GTT_MIN_ALIGNMENT);
3421 	size = round_up(plane_config->base + plane_config->size,
3422 			I915_GTT_MIN_ALIGNMENT);
3423 	size -= base;
3424 
3425 	/*
3426 	 * If the FB is too big, just don't use it since fbdev is not very
3427 	 * important and we should probably use that space with FBC or other
3428 	 * features.
3429 	 */
3430 	if (size * 2 > i915->stolen_usable_size)
3431 		return NULL;
3432 
3433 	obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size);
3434 	if (IS_ERR(obj))
3435 		return NULL;
3436 
3437 	/*
3438 	 * Mark it WT ahead of time to avoid changing the
3439 	 * cache_level during fbdev initialization. The
3440 	 * unbind there would get stuck waiting for rcu.
3441 	 */
3442 	i915_gem_object_set_cache_coherency(obj, HAS_WT(i915) ?
3443 					    I915_CACHE_WT : I915_CACHE_NONE);
3444 
3445 	switch (plane_config->tiling) {
3446 	case I915_TILING_NONE:
3447 		break;
3448 	case I915_TILING_X:
3449 	case I915_TILING_Y:
3450 		obj->tiling_and_stride =
3451 			plane_config->fb->base.pitches[0] |
3452 			plane_config->tiling;
3453 		break;
3454 	default:
3455 		MISSING_CASE(plane_config->tiling);
3456 		goto err_obj;
3457 	}
3458 
3459 	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
3460 	if (IS_ERR(vma))
3461 		goto err_obj;
3462 
3463 	if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base))
3464 		goto err_obj;
3465 
3466 	if (i915_gem_object_is_tiled(obj) &&
3467 	    !i915_vma_is_map_and_fenceable(vma))
3468 		goto err_obj;
3469 
3470 	return vma;
3471 
3472 err_obj:
3473 	i915_gem_object_put(obj);
3474 	return NULL;
3475 }
3476 
3477 static bool
3478 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
3479 			      struct intel_initial_plane_config *plane_config)
3480 {
3481 	struct drm_device *dev = crtc->base.dev;
3482 	struct drm_i915_private *dev_priv = to_i915(dev);
3483 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
3484 	struct drm_framebuffer *fb = &plane_config->fb->base;
3485 	struct i915_vma *vma;
3486 
3487 	switch (fb->modifier) {
3488 	case DRM_FORMAT_MOD_LINEAR:
3489 	case I915_FORMAT_MOD_X_TILED:
3490 	case I915_FORMAT_MOD_Y_TILED:
3491 		break;
3492 	default:
3493 		drm_dbg(&dev_priv->drm,
3494 			"Unsupported modifier for initial FB: 0x%llx\n",
3495 			fb->modifier);
3496 		return false;
3497 	}
3498 
3499 	vma = initial_plane_vma(dev_priv, plane_config);
3500 	if (!vma)
3501 		return false;
3502 
3503 	mode_cmd.pixel_format = fb->format->format;
3504 	mode_cmd.width = fb->width;
3505 	mode_cmd.height = fb->height;
3506 	mode_cmd.pitches[0] = fb->pitches[0];
3507 	mode_cmd.modifier[0] = fb->modifier;
3508 	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
3509 
3510 	if (intel_framebuffer_init(to_intel_framebuffer(fb),
3511 				   vma->obj, &mode_cmd)) {
3512 		drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n");
3513 		goto err_vma;
3514 	}
3515 
3516 	plane_config->vma = vma;
3517 	return true;
3518 
3519 err_vma:
3520 	i915_vma_put(vma);
3521 	return false;
3522 }
3523 
3524 static void
3525 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
3526 			struct intel_plane_state *plane_state,
3527 			bool visible)
3528 {
3529 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
3530 
3531 	plane_state->uapi.visible = visible;
3532 
3533 	if (visible)
3534 		crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base);
3535 	else
3536 		crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base);
3537 }
3538 
3539 static void fixup_active_planes(struct intel_crtc_state *crtc_state)
3540 {
3541 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3542 	struct drm_plane *plane;
3543 
3544 	/*
3545 	 * Active_planes aliases if multiple "primary" or cursor planes
3546 	 * have been used on the same (or wrong) pipe. plane_mask uses
3547 	 * unique ids, hence we can use that to reconstruct active_planes.
3548 	 */
3549 	crtc_state->active_planes = 0;
3550 
3551 	drm_for_each_plane_mask(plane, &dev_priv->drm,
3552 				crtc_state->uapi.plane_mask)
3553 		crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
3554 }
3555 
3556 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
3557 					 struct intel_plane *plane)
3558 {
3559 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3560 	struct intel_crtc_state *crtc_state =
3561 		to_intel_crtc_state(crtc->base.state);
3562 	struct intel_plane_state *plane_state =
3563 		to_intel_plane_state(plane->base.state);
3564 
3565 	drm_dbg_kms(&dev_priv->drm,
3566 		    "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
3567 		    plane->base.base.id, plane->base.name,
3568 		    crtc->base.base.id, crtc->base.name);
3569 
3570 	intel_set_plane_visible(crtc_state, plane_state, false);
3571 	fixup_active_planes(crtc_state);
3572 	crtc_state->data_rate[plane->id] = 0;
3573 	crtc_state->min_cdclk[plane->id] = 0;
3574 
3575 	if (plane->id == PLANE_PRIMARY)
3576 		hsw_disable_ips(crtc_state);
3577 
3578 	/*
3579 	 * Vblank time updates from the shadow to live plane control register
3580 	 * are blocked if the memory self-refresh mode is active at that
3581 	 * moment. So to make sure the plane gets truly disabled, disable
3582 	 * first the self-refresh mode. The self-refresh enable bit in turn
3583 	 * will be checked/applied by the HW only at the next frame start
3584 	 * event which is after the vblank start event, so we need to have a
3585 	 * wait-for-vblank between disabling the plane and the pipe.
3586 	 */
3587 	if (HAS_GMCH(dev_priv) &&
3588 	    intel_set_memory_cxsr(dev_priv, false))
3589 		intel_wait_for_vblank(dev_priv, crtc->pipe);
3590 
3591 	/*
3592 	 * Gen2 reports pipe underruns whenever all planes are disabled.
3593 	 * So disable underrun reporting before all the planes get disabled.
3594 	 */
3595 	if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes)
3596 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
3597 
3598 	intel_disable_plane(plane, crtc_state);
3599 }
3600 
3601 static struct intel_frontbuffer *
3602 to_intel_frontbuffer(struct drm_framebuffer *fb)
3603 {
3604 	return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL;
3605 }
3606 
3607 static void
3608 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
3609 			     struct intel_initial_plane_config *plane_config)
3610 {
3611 	struct drm_device *dev = intel_crtc->base.dev;
3612 	struct drm_i915_private *dev_priv = to_i915(dev);
3613 	struct drm_crtc *c;
3614 	struct drm_plane *primary = intel_crtc->base.primary;
3615 	struct drm_plane_state *plane_state = primary->state;
3616 	struct intel_plane *intel_plane = to_intel_plane(primary);
3617 	struct intel_plane_state *intel_state =
3618 		to_intel_plane_state(plane_state);
3619 	struct drm_framebuffer *fb;
3620 	struct i915_vma *vma;
3621 
3622 	if (!plane_config->fb)
3623 		return;
3624 
3625 	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
3626 		fb = &plane_config->fb->base;
3627 		vma = plane_config->vma;
3628 		goto valid_fb;
3629 	}
3630 
3631 	/*
3632 	 * Failed to alloc the obj, check to see if we should share
3633 	 * an fb with another CRTC instead
3634 	 */
3635 	for_each_crtc(dev, c) {
3636 		struct intel_plane_state *state;
3637 
3638 		if (c == &intel_crtc->base)
3639 			continue;
3640 
3641 		if (!to_intel_crtc(c)->active)
3642 			continue;
3643 
3644 		state = to_intel_plane_state(c->primary->state);
3645 		if (!state->vma)
3646 			continue;
3647 
3648 		if (intel_plane_ggtt_offset(state) == plane_config->base) {
3649 			fb = state->hw.fb;
3650 			vma = state->vma;
3651 			goto valid_fb;
3652 		}
3653 	}
3654 
3655 	/*
3656 	 * We've failed to reconstruct the BIOS FB.  Current display state
3657 	 * indicates that the primary plane is visible, but has a NULL FB,
3658 	 * which will lead to problems later if we don't fix it up.  The
3659 	 * simplest solution is to just disable the primary plane now and
3660 	 * pretend the BIOS never had it enabled.
3661 	 */
3662 	intel_plane_disable_noatomic(intel_crtc, intel_plane);
3663 
3664 	return;
3665 
3666 valid_fb:
3667 	intel_state->hw.rotation = plane_config->rotation;
3668 	intel_fill_fb_ggtt_view(&intel_state->view, fb,
3669 				intel_state->hw.rotation);
3670 	intel_state->color_plane[0].stride =
3671 		intel_fb_pitch(fb, 0, intel_state->hw.rotation);
3672 
3673 	__i915_vma_pin(vma);
3674 	intel_state->vma = i915_vma_get(vma);
3675 	if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0)
3676 		if (vma->fence)
3677 			intel_state->flags |= PLANE_HAS_FENCE;
3678 
3679 	plane_state->src_x = 0;
3680 	plane_state->src_y = 0;
3681 	plane_state->src_w = fb->width << 16;
3682 	plane_state->src_h = fb->height << 16;
3683 
3684 	plane_state->crtc_x = 0;
3685 	plane_state->crtc_y = 0;
3686 	plane_state->crtc_w = fb->width;
3687 	plane_state->crtc_h = fb->height;
3688 
3689 	intel_state->uapi.src = drm_plane_state_src(plane_state);
3690 	intel_state->uapi.dst = drm_plane_state_dest(plane_state);
3691 
3692 	if (plane_config->tiling)
3693 		dev_priv->preserve_bios_swizzle = true;
3694 
3695 	plane_state->fb = fb;
3696 	drm_framebuffer_get(fb);
3697 
3698 	plane_state->crtc = &intel_crtc->base;
3699 	intel_plane_copy_uapi_to_hw_state(intel_state, intel_state);
3700 
3701 	intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
3702 
3703 	atomic_or(to_intel_plane(primary)->frontbuffer_bit,
3704 		  &to_intel_frontbuffer(fb)->bits);
3705 }
3706 
3707 static int skl_max_plane_width(const struct drm_framebuffer *fb,
3708 			       int color_plane,
3709 			       unsigned int rotation)
3710 {
3711 	int cpp = fb->format->cpp[color_plane];
3712 
3713 	switch (fb->modifier) {
3714 	case DRM_FORMAT_MOD_LINEAR:
3715 	case I915_FORMAT_MOD_X_TILED:
3716 		/*
3717 		 * Validated limit is 4k, but has 5k should
3718 		 * work apart from the following features:
3719 		 * - Ytile (already limited to 4k)
3720 		 * - FP16 (already limited to 4k)
3721 		 * - render compression (already limited to 4k)
3722 		 * - KVMR sprite and cursor (don't care)
3723 		 * - horizontal panning (TODO verify this)
3724 		 * - pipe and plane scaling (TODO verify this)
3725 		 */
3726 		if (cpp == 8)
3727 			return 4096;
3728 		else
3729 			return 5120;
3730 	case I915_FORMAT_MOD_Y_TILED_CCS:
3731 	case I915_FORMAT_MOD_Yf_TILED_CCS:
3732 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
3733 		/* FIXME AUX plane? */
3734 	case I915_FORMAT_MOD_Y_TILED:
3735 	case I915_FORMAT_MOD_Yf_TILED:
3736 		if (cpp == 8)
3737 			return 2048;
3738 		else
3739 			return 4096;
3740 	default:
3741 		MISSING_CASE(fb->modifier);
3742 		return 2048;
3743 	}
3744 }
3745 
3746 static int glk_max_plane_width(const struct drm_framebuffer *fb,
3747 			       int color_plane,
3748 			       unsigned int rotation)
3749 {
3750 	int cpp = fb->format->cpp[color_plane];
3751 
3752 	switch (fb->modifier) {
3753 	case DRM_FORMAT_MOD_LINEAR:
3754 	case I915_FORMAT_MOD_X_TILED:
3755 		if (cpp == 8)
3756 			return 4096;
3757 		else
3758 			return 5120;
3759 	case I915_FORMAT_MOD_Y_TILED_CCS:
3760 	case I915_FORMAT_MOD_Yf_TILED_CCS:
3761 		/* FIXME AUX plane? */
3762 	case I915_FORMAT_MOD_Y_TILED:
3763 	case I915_FORMAT_MOD_Yf_TILED:
3764 		if (cpp == 8)
3765 			return 2048;
3766 		else
3767 			return 5120;
3768 	default:
3769 		MISSING_CASE(fb->modifier);
3770 		return 2048;
3771 	}
3772 }
3773 
3774 static int icl_min_plane_width(const struct drm_framebuffer *fb)
3775 {
3776 	/* Wa_14011264657, Wa_14011050563: gen11+ */
3777 	switch (fb->format->format) {
3778 	case DRM_FORMAT_C8:
3779 		return 18;
3780 	case DRM_FORMAT_RGB565:
3781 		return 10;
3782 	case DRM_FORMAT_XRGB8888:
3783 	case DRM_FORMAT_XBGR8888:
3784 	case DRM_FORMAT_ARGB8888:
3785 	case DRM_FORMAT_ABGR8888:
3786 	case DRM_FORMAT_XRGB2101010:
3787 	case DRM_FORMAT_XBGR2101010:
3788 	case DRM_FORMAT_ARGB2101010:
3789 	case DRM_FORMAT_ABGR2101010:
3790 	case DRM_FORMAT_XVYU2101010:
3791 	case DRM_FORMAT_Y212:
3792 	case DRM_FORMAT_Y216:
3793 		return 6;
3794 	case DRM_FORMAT_NV12:
3795 		return 20;
3796 	case DRM_FORMAT_P010:
3797 	case DRM_FORMAT_P012:
3798 	case DRM_FORMAT_P016:
3799 		return 12;
3800 	case DRM_FORMAT_XRGB16161616F:
3801 	case DRM_FORMAT_XBGR16161616F:
3802 	case DRM_FORMAT_ARGB16161616F:
3803 	case DRM_FORMAT_ABGR16161616F:
3804 	case DRM_FORMAT_XVYU12_16161616:
3805 	case DRM_FORMAT_XVYU16161616:
3806 		return 4;
3807 	default:
3808 		return 1;
3809 	}
3810 }
3811 
3812 static int icl_max_plane_width(const struct drm_framebuffer *fb,
3813 			       int color_plane,
3814 			       unsigned int rotation)
3815 {
3816 	return 5120;
3817 }
3818 
3819 static int skl_max_plane_height(void)
3820 {
3821 	return 4096;
3822 }
3823 
3824 static int icl_max_plane_height(void)
3825 {
3826 	return 4320;
3827 }
3828 
3829 static bool
3830 skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
3831 			       int main_x, int main_y, u32 main_offset,
3832 			       int ccs_plane)
3833 {
3834 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3835 	int aux_x = plane_state->color_plane[ccs_plane].x;
3836 	int aux_y = plane_state->color_plane[ccs_plane].y;
3837 	u32 aux_offset = plane_state->color_plane[ccs_plane].offset;
3838 	u32 alignment = intel_surf_alignment(fb, ccs_plane);
3839 	int hsub;
3840 	int vsub;
3841 
3842 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
3843 	while (aux_offset >= main_offset && aux_y <= main_y) {
3844 		int x, y;
3845 
3846 		if (aux_x == main_x && aux_y == main_y)
3847 			break;
3848 
3849 		if (aux_offset == 0)
3850 			break;
3851 
3852 		x = aux_x / hsub;
3853 		y = aux_y / vsub;
3854 		aux_offset = intel_plane_adjust_aligned_offset(&x, &y,
3855 							       plane_state,
3856 							       ccs_plane,
3857 							       aux_offset,
3858 							       aux_offset -
3859 								alignment);
3860 		aux_x = x * hsub + aux_x % hsub;
3861 		aux_y = y * vsub + aux_y % vsub;
3862 	}
3863 
3864 	if (aux_x != main_x || aux_y != main_y)
3865 		return false;
3866 
3867 	plane_state->color_plane[ccs_plane].offset = aux_offset;
3868 	plane_state->color_plane[ccs_plane].x = aux_x;
3869 	plane_state->color_plane[ccs_plane].y = aux_y;
3870 
3871 	return true;
3872 }
3873 
3874 unsigned int
3875 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state)
3876 {
3877 	int x = 0, y = 0;
3878 
3879 	intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3880 					  plane_state->color_plane[0].offset, 0);
3881 
3882 	return y;
3883 }
3884 
3885 static int skl_check_main_surface(struct intel_plane_state *plane_state)
3886 {
3887 	struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev);
3888 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3889 	unsigned int rotation = plane_state->hw.rotation;
3890 	int x = plane_state->uapi.src.x1 >> 16;
3891 	int y = plane_state->uapi.src.y1 >> 16;
3892 	int w = drm_rect_width(&plane_state->uapi.src) >> 16;
3893 	int h = drm_rect_height(&plane_state->uapi.src) >> 16;
3894 	int max_width, min_width, max_height;
3895 	u32 alignment, offset;
3896 	int aux_plane = intel_main_to_aux_plane(fb, 0);
3897 	u32 aux_offset = plane_state->color_plane[aux_plane].offset;
3898 
3899 	if (INTEL_GEN(dev_priv) >= 11) {
3900 		max_width = icl_max_plane_width(fb, 0, rotation);
3901 		min_width = icl_min_plane_width(fb);
3902 	} else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
3903 		max_width = glk_max_plane_width(fb, 0, rotation);
3904 		min_width = 1;
3905 	} else {
3906 		max_width = skl_max_plane_width(fb, 0, rotation);
3907 		min_width = 1;
3908 	}
3909 
3910 	if (INTEL_GEN(dev_priv) >= 11)
3911 		max_height = icl_max_plane_height();
3912 	else
3913 		max_height = skl_max_plane_height();
3914 
3915 	if (w > max_width || w < min_width || h > max_height) {
3916 		drm_dbg_kms(&dev_priv->drm,
3917 			    "requested Y/RGB source size %dx%d outside limits (min: %dx1 max: %dx%d)\n",
3918 			    w, h, min_width, max_width, max_height);
3919 		return -EINVAL;
3920 	}
3921 
3922 	intel_add_fb_offsets(&x, &y, plane_state, 0);
3923 	offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0);
3924 	alignment = intel_surf_alignment(fb, 0);
3925 	if (drm_WARN_ON(&dev_priv->drm, alignment && !is_power_of_2(alignment)))
3926 		return -EINVAL;
3927 
3928 	/*
3929 	 * AUX surface offset is specified as the distance from the
3930 	 * main surface offset, and it must be non-negative. Make
3931 	 * sure that is what we will get.
3932 	 */
3933 	if (offset > aux_offset)
3934 		offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3935 							   offset, aux_offset & ~(alignment - 1));
3936 
3937 	/*
3938 	 * When using an X-tiled surface, the plane blows up
3939 	 * if the x offset + width exceed the stride.
3940 	 *
3941 	 * TODO: linear and Y-tiled seem fine, Yf untested,
3942 	 */
3943 	if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
3944 		int cpp = fb->format->cpp[0];
3945 
3946 		while ((x + w) * cpp > plane_state->color_plane[0].stride) {
3947 			if (offset == 0) {
3948 				drm_dbg_kms(&dev_priv->drm,
3949 					    "Unable to find suitable display surface offset due to X-tiling\n");
3950 				return -EINVAL;
3951 			}
3952 
3953 			offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3954 								   offset, offset - alignment);
3955 		}
3956 	}
3957 
3958 	/*
3959 	 * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3960 	 * they match with the main surface x/y offsets.
3961 	 */
3962 	if (is_ccs_modifier(fb->modifier)) {
3963 		while (!skl_check_main_ccs_coordinates(plane_state, x, y,
3964 						       offset, aux_plane)) {
3965 			if (offset == 0)
3966 				break;
3967 
3968 			offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3969 								   offset, offset - alignment);
3970 		}
3971 
3972 		if (x != plane_state->color_plane[aux_plane].x ||
3973 		    y != plane_state->color_plane[aux_plane].y) {
3974 			drm_dbg_kms(&dev_priv->drm,
3975 				    "Unable to find suitable display surface offset due to CCS\n");
3976 			return -EINVAL;
3977 		}
3978 	}
3979 
3980 	plane_state->color_plane[0].offset = offset;
3981 	plane_state->color_plane[0].x = x;
3982 	plane_state->color_plane[0].y = y;
3983 
3984 	/*
3985 	 * Put the final coordinates back so that the src
3986 	 * coordinate checks will see the right values.
3987 	 */
3988 	drm_rect_translate_to(&plane_state->uapi.src,
3989 			      x << 16, y << 16);
3990 
3991 	return 0;
3992 }
3993 
3994 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3995 {
3996 	struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
3997 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3998 	unsigned int rotation = plane_state->hw.rotation;
3999 	int uv_plane = 1;
4000 	int max_width = skl_max_plane_width(fb, uv_plane, rotation);
4001 	int max_height = 4096;
4002 	int x = plane_state->uapi.src.x1 >> 17;
4003 	int y = plane_state->uapi.src.y1 >> 17;
4004 	int w = drm_rect_width(&plane_state->uapi.src) >> 17;
4005 	int h = drm_rect_height(&plane_state->uapi.src) >> 17;
4006 	u32 offset;
4007 
4008 	intel_add_fb_offsets(&x, &y, plane_state, uv_plane);
4009 	offset = intel_plane_compute_aligned_offset(&x, &y,
4010 						    plane_state, uv_plane);
4011 
4012 	/* FIXME not quite sure how/if these apply to the chroma plane */
4013 	if (w > max_width || h > max_height) {
4014 		drm_dbg_kms(&i915->drm,
4015 			    "CbCr source size %dx%d too big (limit %dx%d)\n",
4016 			    w, h, max_width, max_height);
4017 		return -EINVAL;
4018 	}
4019 
4020 	if (is_ccs_modifier(fb->modifier)) {
4021 		int ccs_plane = main_to_ccs_plane(fb, uv_plane);
4022 		int aux_offset = plane_state->color_plane[ccs_plane].offset;
4023 		int alignment = intel_surf_alignment(fb, uv_plane);
4024 
4025 		if (offset > aux_offset)
4026 			offset = intel_plane_adjust_aligned_offset(&x, &y,
4027 								   plane_state,
4028 								   uv_plane,
4029 								   offset,
4030 								   aux_offset & ~(alignment - 1));
4031 
4032 		while (!skl_check_main_ccs_coordinates(plane_state, x, y,
4033 						       offset, ccs_plane)) {
4034 			if (offset == 0)
4035 				break;
4036 
4037 			offset = intel_plane_adjust_aligned_offset(&x, &y,
4038 								   plane_state,
4039 								   uv_plane,
4040 								   offset, offset - alignment);
4041 		}
4042 
4043 		if (x != plane_state->color_plane[ccs_plane].x ||
4044 		    y != plane_state->color_plane[ccs_plane].y) {
4045 			drm_dbg_kms(&i915->drm,
4046 				    "Unable to find suitable display surface offset due to CCS\n");
4047 			return -EINVAL;
4048 		}
4049 	}
4050 
4051 	plane_state->color_plane[uv_plane].offset = offset;
4052 	plane_state->color_plane[uv_plane].x = x;
4053 	plane_state->color_plane[uv_plane].y = y;
4054 
4055 	return 0;
4056 }
4057 
4058 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
4059 {
4060 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4061 	int src_x = plane_state->uapi.src.x1 >> 16;
4062 	int src_y = plane_state->uapi.src.y1 >> 16;
4063 	u32 offset;
4064 	int ccs_plane;
4065 
4066 	for (ccs_plane = 0; ccs_plane < fb->format->num_planes; ccs_plane++) {
4067 		int main_hsub, main_vsub;
4068 		int hsub, vsub;
4069 		int x, y;
4070 
4071 		if (!is_ccs_plane(fb, ccs_plane))
4072 			continue;
4073 
4074 		intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb,
4075 					       ccs_to_main_plane(fb, ccs_plane));
4076 		intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
4077 
4078 		hsub *= main_hsub;
4079 		vsub *= main_vsub;
4080 		x = src_x / hsub;
4081 		y = src_y / vsub;
4082 
4083 		intel_add_fb_offsets(&x, &y, plane_state, ccs_plane);
4084 
4085 		offset = intel_plane_compute_aligned_offset(&x, &y,
4086 							    plane_state,
4087 							    ccs_plane);
4088 
4089 		plane_state->color_plane[ccs_plane].offset = offset;
4090 		plane_state->color_plane[ccs_plane].x = (x * hsub +
4091 							 src_x % hsub) /
4092 							main_hsub;
4093 		plane_state->color_plane[ccs_plane].y = (y * vsub +
4094 							 src_y % vsub) /
4095 							main_vsub;
4096 	}
4097 
4098 	return 0;
4099 }
4100 
4101 int skl_check_plane_surface(struct intel_plane_state *plane_state)
4102 {
4103 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4104 	int ret, i;
4105 
4106 	ret = intel_plane_compute_gtt(plane_state);
4107 	if (ret)
4108 		return ret;
4109 
4110 	if (!plane_state->uapi.visible)
4111 		return 0;
4112 
4113 	/*
4114 	 * Handle the AUX surface first since the main surface setup depends on
4115 	 * it.
4116 	 */
4117 	if (is_ccs_modifier(fb->modifier)) {
4118 		ret = skl_check_ccs_aux_surface(plane_state);
4119 		if (ret)
4120 			return ret;
4121 	}
4122 
4123 	if (intel_format_info_is_yuv_semiplanar(fb->format,
4124 						fb->modifier)) {
4125 		ret = skl_check_nv12_aux_surface(plane_state);
4126 		if (ret)
4127 			return ret;
4128 	}
4129 
4130 	for (i = fb->format->num_planes; i < ARRAY_SIZE(plane_state->color_plane); i++) {
4131 		plane_state->color_plane[i].offset = ~0xfff;
4132 		plane_state->color_plane[i].x = 0;
4133 		plane_state->color_plane[i].y = 0;
4134 	}
4135 
4136 	ret = skl_check_main_surface(plane_state);
4137 	if (ret)
4138 		return ret;
4139 
4140 	return 0;
4141 }
4142 
4143 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state,
4144 			     const struct intel_plane_state *plane_state,
4145 			     unsigned int *num, unsigned int *den)
4146 {
4147 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4148 	unsigned int cpp = fb->format->cpp[0];
4149 
4150 	/*
4151 	 * g4x bspec says 64bpp pixel rate can't exceed 80%
4152 	 * of cdclk when the sprite plane is enabled on the
4153 	 * same pipe. ilk/snb bspec says 64bpp pixel rate is
4154 	 * never allowed to exceed 80% of cdclk. Let's just go
4155 	 * with the ilk/snb limit always.
4156 	 */
4157 	if (cpp == 8) {
4158 		*num = 10;
4159 		*den = 8;
4160 	} else {
4161 		*num = 1;
4162 		*den = 1;
4163 	}
4164 }
4165 
4166 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state,
4167 				const struct intel_plane_state *plane_state)
4168 {
4169 	unsigned int pixel_rate;
4170 	unsigned int num, den;
4171 
4172 	/*
4173 	 * Note that crtc_state->pixel_rate accounts for both
4174 	 * horizontal and vertical panel fitter downscaling factors.
4175 	 * Pre-HSW bspec tells us to only consider the horizontal
4176 	 * downscaling factor here. We ignore that and just consider
4177 	 * both for simplicity.
4178 	 */
4179 	pixel_rate = crtc_state->pixel_rate;
4180 
4181 	i9xx_plane_ratio(crtc_state, plane_state, &num, &den);
4182 
4183 	/* two pixels per clock with double wide pipe */
4184 	if (crtc_state->double_wide)
4185 		den *= 2;
4186 
4187 	return DIV_ROUND_UP(pixel_rate * num, den);
4188 }
4189 
4190 unsigned int
4191 i9xx_plane_max_stride(struct intel_plane *plane,
4192 		      u32 pixel_format, u64 modifier,
4193 		      unsigned int rotation)
4194 {
4195 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4196 
4197 	if (!HAS_GMCH(dev_priv)) {
4198 		return 32*1024;
4199 	} else if (INTEL_GEN(dev_priv) >= 4) {
4200 		if (modifier == I915_FORMAT_MOD_X_TILED)
4201 			return 16*1024;
4202 		else
4203 			return 32*1024;
4204 	} else if (INTEL_GEN(dev_priv) >= 3) {
4205 		if (modifier == I915_FORMAT_MOD_X_TILED)
4206 			return 8*1024;
4207 		else
4208 			return 16*1024;
4209 	} else {
4210 		if (plane->i9xx_plane == PLANE_C)
4211 			return 4*1024;
4212 		else
4213 			return 8*1024;
4214 	}
4215 }
4216 
4217 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4218 {
4219 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4220 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4221 	u32 dspcntr = 0;
4222 
4223 	if (crtc_state->gamma_enable)
4224 		dspcntr |= DISPPLANE_GAMMA_ENABLE;
4225 
4226 	if (crtc_state->csc_enable)
4227 		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
4228 
4229 	if (INTEL_GEN(dev_priv) < 5)
4230 		dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
4231 
4232 	return dspcntr;
4233 }
4234 
4235 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
4236 			  const struct intel_plane_state *plane_state)
4237 {
4238 	struct drm_i915_private *dev_priv =
4239 		to_i915(plane_state->uapi.plane->dev);
4240 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4241 	unsigned int rotation = plane_state->hw.rotation;
4242 	u32 dspcntr;
4243 
4244 	dspcntr = DISPLAY_PLANE_ENABLE;
4245 
4246 	if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) ||
4247 	    IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
4248 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
4249 
4250 	switch (fb->format->format) {
4251 	case DRM_FORMAT_C8:
4252 		dspcntr |= DISPPLANE_8BPP;
4253 		break;
4254 	case DRM_FORMAT_XRGB1555:
4255 		dspcntr |= DISPPLANE_BGRX555;
4256 		break;
4257 	case DRM_FORMAT_ARGB1555:
4258 		dspcntr |= DISPPLANE_BGRA555;
4259 		break;
4260 	case DRM_FORMAT_RGB565:
4261 		dspcntr |= DISPPLANE_BGRX565;
4262 		break;
4263 	case DRM_FORMAT_XRGB8888:
4264 		dspcntr |= DISPPLANE_BGRX888;
4265 		break;
4266 	case DRM_FORMAT_XBGR8888:
4267 		dspcntr |= DISPPLANE_RGBX888;
4268 		break;
4269 	case DRM_FORMAT_ARGB8888:
4270 		dspcntr |= DISPPLANE_BGRA888;
4271 		break;
4272 	case DRM_FORMAT_ABGR8888:
4273 		dspcntr |= DISPPLANE_RGBA888;
4274 		break;
4275 	case DRM_FORMAT_XRGB2101010:
4276 		dspcntr |= DISPPLANE_BGRX101010;
4277 		break;
4278 	case DRM_FORMAT_XBGR2101010:
4279 		dspcntr |= DISPPLANE_RGBX101010;
4280 		break;
4281 	case DRM_FORMAT_ARGB2101010:
4282 		dspcntr |= DISPPLANE_BGRA101010;
4283 		break;
4284 	case DRM_FORMAT_ABGR2101010:
4285 		dspcntr |= DISPPLANE_RGBA101010;
4286 		break;
4287 	case DRM_FORMAT_XBGR16161616F:
4288 		dspcntr |= DISPPLANE_RGBX161616;
4289 		break;
4290 	default:
4291 		MISSING_CASE(fb->format->format);
4292 		return 0;
4293 	}
4294 
4295 	if (INTEL_GEN(dev_priv) >= 4 &&
4296 	    fb->modifier == I915_FORMAT_MOD_X_TILED)
4297 		dspcntr |= DISPPLANE_TILED;
4298 
4299 	if (rotation & DRM_MODE_ROTATE_180)
4300 		dspcntr |= DISPPLANE_ROTATE_180;
4301 
4302 	if (rotation & DRM_MODE_REFLECT_X)
4303 		dspcntr |= DISPPLANE_MIRROR;
4304 
4305 	return dspcntr;
4306 }
4307 
4308 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
4309 {
4310 	struct drm_i915_private *dev_priv =
4311 		to_i915(plane_state->uapi.plane->dev);
4312 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4313 	int src_x, src_y, src_w;
4314 	u32 offset;
4315 	int ret;
4316 
4317 	ret = intel_plane_compute_gtt(plane_state);
4318 	if (ret)
4319 		return ret;
4320 
4321 	if (!plane_state->uapi.visible)
4322 		return 0;
4323 
4324 	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4325 	src_x = plane_state->uapi.src.x1 >> 16;
4326 	src_y = plane_state->uapi.src.y1 >> 16;
4327 
4328 	/* Undocumented hardware limit on i965/g4x/vlv/chv */
4329 	if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048)
4330 		return -EINVAL;
4331 
4332 	intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
4333 
4334 	if (INTEL_GEN(dev_priv) >= 4)
4335 		offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
4336 							    plane_state, 0);
4337 	else
4338 		offset = 0;
4339 
4340 	/*
4341 	 * Put the final coordinates back so that the src
4342 	 * coordinate checks will see the right values.
4343 	 */
4344 	drm_rect_translate_to(&plane_state->uapi.src,
4345 			      src_x << 16, src_y << 16);
4346 
4347 	/* HSW/BDW do this automagically in hardware */
4348 	if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
4349 		unsigned int rotation = plane_state->hw.rotation;
4350 		int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4351 		int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4352 
4353 		if (rotation & DRM_MODE_ROTATE_180) {
4354 			src_x += src_w - 1;
4355 			src_y += src_h - 1;
4356 		} else if (rotation & DRM_MODE_REFLECT_X) {
4357 			src_x += src_w - 1;
4358 		}
4359 	}
4360 
4361 	plane_state->color_plane[0].offset = offset;
4362 	plane_state->color_plane[0].x = src_x;
4363 	plane_state->color_plane[0].y = src_y;
4364 
4365 	return 0;
4366 }
4367 
4368 static bool i9xx_plane_has_windowing(struct intel_plane *plane)
4369 {
4370 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4371 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4372 
4373 	if (IS_CHERRYVIEW(dev_priv))
4374 		return i9xx_plane == PLANE_B;
4375 	else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
4376 		return false;
4377 	else if (IS_GEN(dev_priv, 4))
4378 		return i9xx_plane == PLANE_C;
4379 	else
4380 		return i9xx_plane == PLANE_B ||
4381 			i9xx_plane == PLANE_C;
4382 }
4383 
4384 static int
4385 i9xx_plane_check(struct intel_crtc_state *crtc_state,
4386 		 struct intel_plane_state *plane_state)
4387 {
4388 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4389 	int ret;
4390 
4391 	ret = chv_plane_check_rotation(plane_state);
4392 	if (ret)
4393 		return ret;
4394 
4395 	ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
4396 						  &crtc_state->uapi,
4397 						  DRM_PLANE_HELPER_NO_SCALING,
4398 						  DRM_PLANE_HELPER_NO_SCALING,
4399 						  i9xx_plane_has_windowing(plane),
4400 						  true);
4401 	if (ret)
4402 		return ret;
4403 
4404 	ret = i9xx_check_plane_surface(plane_state);
4405 	if (ret)
4406 		return ret;
4407 
4408 	if (!plane_state->uapi.visible)
4409 		return 0;
4410 
4411 	ret = intel_plane_check_src_coordinates(plane_state);
4412 	if (ret)
4413 		return ret;
4414 
4415 	plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state);
4416 
4417 	return 0;
4418 }
4419 
4420 static void i9xx_update_plane(struct intel_plane *plane,
4421 			      const struct intel_crtc_state *crtc_state,
4422 			      const struct intel_plane_state *plane_state)
4423 {
4424 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4425 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4426 	u32 linear_offset;
4427 	int x = plane_state->color_plane[0].x;
4428 	int y = plane_state->color_plane[0].y;
4429 	int crtc_x = plane_state->uapi.dst.x1;
4430 	int crtc_y = plane_state->uapi.dst.y1;
4431 	int crtc_w = drm_rect_width(&plane_state->uapi.dst);
4432 	int crtc_h = drm_rect_height(&plane_state->uapi.dst);
4433 	unsigned long irqflags;
4434 	u32 dspaddr_offset;
4435 	u32 dspcntr;
4436 
4437 	dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state);
4438 
4439 	linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
4440 
4441 	if (INTEL_GEN(dev_priv) >= 4)
4442 		dspaddr_offset = plane_state->color_plane[0].offset;
4443 	else
4444 		dspaddr_offset = linear_offset;
4445 
4446 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4447 
4448 	intel_de_write_fw(dev_priv, DSPSTRIDE(i9xx_plane),
4449 			  plane_state->color_plane[0].stride);
4450 
4451 	if (INTEL_GEN(dev_priv) < 4) {
4452 		/*
4453 		 * PLANE_A doesn't actually have a full window
4454 		 * generator but let's assume we still need to
4455 		 * program whatever is there.
4456 		 */
4457 		intel_de_write_fw(dev_priv, DSPPOS(i9xx_plane),
4458 				  (crtc_y << 16) | crtc_x);
4459 		intel_de_write_fw(dev_priv, DSPSIZE(i9xx_plane),
4460 				  ((crtc_h - 1) << 16) | (crtc_w - 1));
4461 	} else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) {
4462 		intel_de_write_fw(dev_priv, PRIMPOS(i9xx_plane),
4463 				  (crtc_y << 16) | crtc_x);
4464 		intel_de_write_fw(dev_priv, PRIMSIZE(i9xx_plane),
4465 				  ((crtc_h - 1) << 16) | (crtc_w - 1));
4466 		intel_de_write_fw(dev_priv, PRIMCNSTALPHA(i9xx_plane), 0);
4467 	}
4468 
4469 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
4470 		intel_de_write_fw(dev_priv, DSPOFFSET(i9xx_plane),
4471 				  (y << 16) | x);
4472 	} else if (INTEL_GEN(dev_priv) >= 4) {
4473 		intel_de_write_fw(dev_priv, DSPLINOFF(i9xx_plane),
4474 				  linear_offset);
4475 		intel_de_write_fw(dev_priv, DSPTILEOFF(i9xx_plane),
4476 				  (y << 16) | x);
4477 	}
4478 
4479 	/*
4480 	 * The control register self-arms if the plane was previously
4481 	 * disabled. Try to make the plane enable atomic by writing
4482 	 * the control register just before the surface register.
4483 	 */
4484 	intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr);
4485 	if (INTEL_GEN(dev_priv) >= 4)
4486 		intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane),
4487 				  intel_plane_ggtt_offset(plane_state) + dspaddr_offset);
4488 	else
4489 		intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane),
4490 				  intel_plane_ggtt_offset(plane_state) + dspaddr_offset);
4491 
4492 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4493 }
4494 
4495 static void i9xx_disable_plane(struct intel_plane *plane,
4496 			       const struct intel_crtc_state *crtc_state)
4497 {
4498 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4499 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4500 	unsigned long irqflags;
4501 	u32 dspcntr;
4502 
4503 	/*
4504 	 * DSPCNTR pipe gamma enable on g4x+ and pipe csc
4505 	 * enable on ilk+ affect the pipe bottom color as
4506 	 * well, so we must configure them even if the plane
4507 	 * is disabled.
4508 	 *
4509 	 * On pre-g4x there is no way to gamma correct the
4510 	 * pipe bottom color but we'll keep on doing this
4511 	 * anyway so that the crtc state readout works correctly.
4512 	 */
4513 	dspcntr = i9xx_plane_ctl_crtc(crtc_state);
4514 
4515 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4516 
4517 	intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr);
4518 	if (INTEL_GEN(dev_priv) >= 4)
4519 		intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 0);
4520 	else
4521 		intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 0);
4522 
4523 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4524 }
4525 
4526 static bool i9xx_plane_get_hw_state(struct intel_plane *plane,
4527 				    enum pipe *pipe)
4528 {
4529 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4530 	enum intel_display_power_domain power_domain;
4531 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4532 	intel_wakeref_t wakeref;
4533 	bool ret;
4534 	u32 val;
4535 
4536 	/*
4537 	 * Not 100% correct for planes that can move between pipes,
4538 	 * but that's only the case for gen2-4 which don't have any
4539 	 * display power wells.
4540 	 */
4541 	power_domain = POWER_DOMAIN_PIPE(plane->pipe);
4542 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4543 	if (!wakeref)
4544 		return false;
4545 
4546 	val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
4547 
4548 	ret = val & DISPLAY_PLANE_ENABLE;
4549 
4550 	if (INTEL_GEN(dev_priv) >= 5)
4551 		*pipe = plane->pipe;
4552 	else
4553 		*pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
4554 			DISPPLANE_SEL_PIPE_SHIFT;
4555 
4556 	intel_display_power_put(dev_priv, power_domain, wakeref);
4557 
4558 	return ret;
4559 }
4560 
4561 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
4562 {
4563 	struct drm_device *dev = intel_crtc->base.dev;
4564 	struct drm_i915_private *dev_priv = to_i915(dev);
4565 	unsigned long irqflags;
4566 
4567 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4568 
4569 	intel_de_write_fw(dev_priv, SKL_PS_CTRL(intel_crtc->pipe, id), 0);
4570 	intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
4571 	intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
4572 
4573 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4574 }
4575 
4576 /*
4577  * This function detaches (aka. unbinds) unused scalers in hardware
4578  */
4579 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state)
4580 {
4581 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
4582 	const struct intel_crtc_scaler_state *scaler_state =
4583 		&crtc_state->scaler_state;
4584 	int i;
4585 
4586 	/* loop through and disable scalers that aren't in use */
4587 	for (i = 0; i < intel_crtc->num_scalers; i++) {
4588 		if (!scaler_state->scalers[i].in_use)
4589 			skl_detach_scaler(intel_crtc, i);
4590 	}
4591 }
4592 
4593 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb,
4594 					  int color_plane, unsigned int rotation)
4595 {
4596 	/*
4597 	 * The stride is either expressed as a multiple of 64 bytes chunks for
4598 	 * linear buffers or in number of tiles for tiled buffers.
4599 	 */
4600 	if (is_surface_linear(fb, color_plane))
4601 		return 64;
4602 	else if (drm_rotation_90_or_270(rotation))
4603 		return intel_tile_height(fb, color_plane);
4604 	else
4605 		return intel_tile_width_bytes(fb, color_plane);
4606 }
4607 
4608 u32 skl_plane_stride(const struct intel_plane_state *plane_state,
4609 		     int color_plane)
4610 {
4611 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4612 	unsigned int rotation = plane_state->hw.rotation;
4613 	u32 stride = plane_state->color_plane[color_plane].stride;
4614 
4615 	if (color_plane >= fb->format->num_planes)
4616 		return 0;
4617 
4618 	return stride / skl_plane_stride_mult(fb, color_plane, rotation);
4619 }
4620 
4621 static u32 skl_plane_ctl_format(u32 pixel_format)
4622 {
4623 	switch (pixel_format) {
4624 	case DRM_FORMAT_C8:
4625 		return PLANE_CTL_FORMAT_INDEXED;
4626 	case DRM_FORMAT_RGB565:
4627 		return PLANE_CTL_FORMAT_RGB_565;
4628 	case DRM_FORMAT_XBGR8888:
4629 	case DRM_FORMAT_ABGR8888:
4630 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
4631 	case DRM_FORMAT_XRGB8888:
4632 	case DRM_FORMAT_ARGB8888:
4633 		return PLANE_CTL_FORMAT_XRGB_8888;
4634 	case DRM_FORMAT_XBGR2101010:
4635 	case DRM_FORMAT_ABGR2101010:
4636 		return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX;
4637 	case DRM_FORMAT_XRGB2101010:
4638 	case DRM_FORMAT_ARGB2101010:
4639 		return PLANE_CTL_FORMAT_XRGB_2101010;
4640 	case DRM_FORMAT_XBGR16161616F:
4641 	case DRM_FORMAT_ABGR16161616F:
4642 		return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX;
4643 	case DRM_FORMAT_XRGB16161616F:
4644 	case DRM_FORMAT_ARGB16161616F:
4645 		return PLANE_CTL_FORMAT_XRGB_16161616F;
4646 	case DRM_FORMAT_XYUV8888:
4647 		return PLANE_CTL_FORMAT_XYUV;
4648 	case DRM_FORMAT_YUYV:
4649 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
4650 	case DRM_FORMAT_YVYU:
4651 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
4652 	case DRM_FORMAT_UYVY:
4653 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
4654 	case DRM_FORMAT_VYUY:
4655 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
4656 	case DRM_FORMAT_NV12:
4657 		return PLANE_CTL_FORMAT_NV12;
4658 	case DRM_FORMAT_P010:
4659 		return PLANE_CTL_FORMAT_P010;
4660 	case DRM_FORMAT_P012:
4661 		return PLANE_CTL_FORMAT_P012;
4662 	case DRM_FORMAT_P016:
4663 		return PLANE_CTL_FORMAT_P016;
4664 	case DRM_FORMAT_Y210:
4665 		return PLANE_CTL_FORMAT_Y210;
4666 	case DRM_FORMAT_Y212:
4667 		return PLANE_CTL_FORMAT_Y212;
4668 	case DRM_FORMAT_Y216:
4669 		return PLANE_CTL_FORMAT_Y216;
4670 	case DRM_FORMAT_XVYU2101010:
4671 		return PLANE_CTL_FORMAT_Y410;
4672 	case DRM_FORMAT_XVYU12_16161616:
4673 		return PLANE_CTL_FORMAT_Y412;
4674 	case DRM_FORMAT_XVYU16161616:
4675 		return PLANE_CTL_FORMAT_Y416;
4676 	default:
4677 		MISSING_CASE(pixel_format);
4678 	}
4679 
4680 	return 0;
4681 }
4682 
4683 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state)
4684 {
4685 	if (!plane_state->hw.fb->format->has_alpha)
4686 		return PLANE_CTL_ALPHA_DISABLE;
4687 
4688 	switch (plane_state->hw.pixel_blend_mode) {
4689 	case DRM_MODE_BLEND_PIXEL_NONE:
4690 		return PLANE_CTL_ALPHA_DISABLE;
4691 	case DRM_MODE_BLEND_PREMULTI:
4692 		return PLANE_CTL_ALPHA_SW_PREMULTIPLY;
4693 	case DRM_MODE_BLEND_COVERAGE:
4694 		return PLANE_CTL_ALPHA_HW_PREMULTIPLY;
4695 	default:
4696 		MISSING_CASE(plane_state->hw.pixel_blend_mode);
4697 		return PLANE_CTL_ALPHA_DISABLE;
4698 	}
4699 }
4700 
4701 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state)
4702 {
4703 	if (!plane_state->hw.fb->format->has_alpha)
4704 		return PLANE_COLOR_ALPHA_DISABLE;
4705 
4706 	switch (plane_state->hw.pixel_blend_mode) {
4707 	case DRM_MODE_BLEND_PIXEL_NONE:
4708 		return PLANE_COLOR_ALPHA_DISABLE;
4709 	case DRM_MODE_BLEND_PREMULTI:
4710 		return PLANE_COLOR_ALPHA_SW_PREMULTIPLY;
4711 	case DRM_MODE_BLEND_COVERAGE:
4712 		return PLANE_COLOR_ALPHA_HW_PREMULTIPLY;
4713 	default:
4714 		MISSING_CASE(plane_state->hw.pixel_blend_mode);
4715 		return PLANE_COLOR_ALPHA_DISABLE;
4716 	}
4717 }
4718 
4719 static u32 skl_plane_ctl_tiling(u64 fb_modifier)
4720 {
4721 	switch (fb_modifier) {
4722 	case DRM_FORMAT_MOD_LINEAR:
4723 		break;
4724 	case I915_FORMAT_MOD_X_TILED:
4725 		return PLANE_CTL_TILED_X;
4726 	case I915_FORMAT_MOD_Y_TILED:
4727 		return PLANE_CTL_TILED_Y;
4728 	case I915_FORMAT_MOD_Y_TILED_CCS:
4729 		return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4730 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
4731 		return PLANE_CTL_TILED_Y |
4732 		       PLANE_CTL_RENDER_DECOMPRESSION_ENABLE |
4733 		       PLANE_CTL_CLEAR_COLOR_DISABLE;
4734 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
4735 		return PLANE_CTL_TILED_Y | PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE;
4736 	case I915_FORMAT_MOD_Yf_TILED:
4737 		return PLANE_CTL_TILED_YF;
4738 	case I915_FORMAT_MOD_Yf_TILED_CCS:
4739 		return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4740 	default:
4741 		MISSING_CASE(fb_modifier);
4742 	}
4743 
4744 	return 0;
4745 }
4746 
4747 static u32 skl_plane_ctl_rotate(unsigned int rotate)
4748 {
4749 	switch (rotate) {
4750 	case DRM_MODE_ROTATE_0:
4751 		break;
4752 	/*
4753 	 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
4754 	 * while i915 HW rotation is clockwise, thats why this swapping.
4755 	 */
4756 	case DRM_MODE_ROTATE_90:
4757 		return PLANE_CTL_ROTATE_270;
4758 	case DRM_MODE_ROTATE_180:
4759 		return PLANE_CTL_ROTATE_180;
4760 	case DRM_MODE_ROTATE_270:
4761 		return PLANE_CTL_ROTATE_90;
4762 	default:
4763 		MISSING_CASE(rotate);
4764 	}
4765 
4766 	return 0;
4767 }
4768 
4769 static u32 cnl_plane_ctl_flip(unsigned int reflect)
4770 {
4771 	switch (reflect) {
4772 	case 0:
4773 		break;
4774 	case DRM_MODE_REFLECT_X:
4775 		return PLANE_CTL_FLIP_HORIZONTAL;
4776 	case DRM_MODE_REFLECT_Y:
4777 	default:
4778 		MISSING_CASE(reflect);
4779 	}
4780 
4781 	return 0;
4782 }
4783 
4784 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4785 {
4786 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4787 	u32 plane_ctl = 0;
4788 
4789 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4790 		return plane_ctl;
4791 
4792 	if (crtc_state->gamma_enable)
4793 		plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE;
4794 
4795 	if (crtc_state->csc_enable)
4796 		plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE;
4797 
4798 	return plane_ctl;
4799 }
4800 
4801 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
4802 		  const struct intel_plane_state *plane_state)
4803 {
4804 	struct drm_i915_private *dev_priv =
4805 		to_i915(plane_state->uapi.plane->dev);
4806 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4807 	unsigned int rotation = plane_state->hw.rotation;
4808 	const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
4809 	u32 plane_ctl;
4810 
4811 	plane_ctl = PLANE_CTL_ENABLE;
4812 
4813 	if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) {
4814 		plane_ctl |= skl_plane_ctl_alpha(plane_state);
4815 		plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
4816 
4817 		if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709)
4818 			plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709;
4819 
4820 		if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4821 			plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE;
4822 	}
4823 
4824 	plane_ctl |= skl_plane_ctl_format(fb->format->format);
4825 	plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
4826 	plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK);
4827 
4828 	if (INTEL_GEN(dev_priv) >= 10)
4829 		plane_ctl |= cnl_plane_ctl_flip(rotation &
4830 						DRM_MODE_REFLECT_MASK);
4831 
4832 	if (key->flags & I915_SET_COLORKEY_DESTINATION)
4833 		plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
4834 	else if (key->flags & I915_SET_COLORKEY_SOURCE)
4835 		plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
4836 
4837 	return plane_ctl;
4838 }
4839 
4840 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state)
4841 {
4842 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4843 	u32 plane_color_ctl = 0;
4844 
4845 	if (INTEL_GEN(dev_priv) >= 11)
4846 		return plane_color_ctl;
4847 
4848 	if (crtc_state->gamma_enable)
4849 		plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE;
4850 
4851 	if (crtc_state->csc_enable)
4852 		plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE;
4853 
4854 	return plane_color_ctl;
4855 }
4856 
4857 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state,
4858 			const struct intel_plane_state *plane_state)
4859 {
4860 	struct drm_i915_private *dev_priv =
4861 		to_i915(plane_state->uapi.plane->dev);
4862 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4863 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4864 	u32 plane_color_ctl = 0;
4865 
4866 	plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE;
4867 	plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state);
4868 
4869 	if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) {
4870 		switch (plane_state->hw.color_encoding) {
4871 		case DRM_COLOR_YCBCR_BT709:
4872 			plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709;
4873 			break;
4874 		case DRM_COLOR_YCBCR_BT2020:
4875 			plane_color_ctl |=
4876 				PLANE_COLOR_CSC_MODE_YUV2020_TO_RGB2020;
4877 			break;
4878 		default:
4879 			plane_color_ctl |=
4880 				PLANE_COLOR_CSC_MODE_YUV601_TO_RGB601;
4881 		}
4882 		if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4883 			plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
4884 	} else if (fb->format->is_yuv) {
4885 		plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE;
4886 	}
4887 
4888 	return plane_color_ctl;
4889 }
4890 
4891 static int
4892 __intel_display_resume(struct drm_device *dev,
4893 		       struct drm_atomic_state *state,
4894 		       struct drm_modeset_acquire_ctx *ctx)
4895 {
4896 	struct drm_crtc_state *crtc_state;
4897 	struct drm_crtc *crtc;
4898 	int i, ret;
4899 
4900 	intel_modeset_setup_hw_state(dev, ctx);
4901 	intel_vga_redisable(to_i915(dev));
4902 
4903 	if (!state)
4904 		return 0;
4905 
4906 	/*
4907 	 * We've duplicated the state, pointers to the old state are invalid.
4908 	 *
4909 	 * Don't attempt to use the old state until we commit the duplicated state.
4910 	 */
4911 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
4912 		/*
4913 		 * Force recalculation even if we restore
4914 		 * current state. With fast modeset this may not result
4915 		 * in a modeset when the state is compatible.
4916 		 */
4917 		crtc_state->mode_changed = true;
4918 	}
4919 
4920 	/* ignore any reset values/BIOS leftovers in the WM registers */
4921 	if (!HAS_GMCH(to_i915(dev)))
4922 		to_intel_atomic_state(state)->skip_intermediate_wm = true;
4923 
4924 	ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
4925 
4926 	drm_WARN_ON(dev, ret == -EDEADLK);
4927 	return ret;
4928 }
4929 
4930 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
4931 {
4932 	return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display &&
4933 		intel_has_gpu_reset(&dev_priv->gt));
4934 }
4935 
4936 void intel_prepare_reset(struct drm_i915_private *dev_priv)
4937 {
4938 	struct drm_device *dev = &dev_priv->drm;
4939 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4940 	struct drm_atomic_state *state;
4941 	int ret;
4942 
4943 	/* reset doesn't touch the display */
4944 	if (!dev_priv->params.force_reset_modeset_test &&
4945 	    !gpu_reset_clobbers_display(dev_priv))
4946 		return;
4947 
4948 	/* We have a modeset vs reset deadlock, defensively unbreak it. */
4949 	set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4950 	smp_mb__after_atomic();
4951 	wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET);
4952 
4953 	if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
4954 		drm_dbg_kms(&dev_priv->drm,
4955 			    "Modeset potentially stuck, unbreaking through wedging\n");
4956 		intel_gt_set_wedged(&dev_priv->gt);
4957 	}
4958 
4959 	/*
4960 	 * Need mode_config.mutex so that we don't
4961 	 * trample ongoing ->detect() and whatnot.
4962 	 */
4963 	mutex_lock(&dev->mode_config.mutex);
4964 	drm_modeset_acquire_init(ctx, 0);
4965 	while (1) {
4966 		ret = drm_modeset_lock_all_ctx(dev, ctx);
4967 		if (ret != -EDEADLK)
4968 			break;
4969 
4970 		drm_modeset_backoff(ctx);
4971 	}
4972 	/*
4973 	 * Disabling the crtcs gracefully seems nicer. Also the
4974 	 * g33 docs say we should at least disable all the planes.
4975 	 */
4976 	state = drm_atomic_helper_duplicate_state(dev, ctx);
4977 	if (IS_ERR(state)) {
4978 		ret = PTR_ERR(state);
4979 		drm_err(&dev_priv->drm, "Duplicating state failed with %i\n",
4980 			ret);
4981 		return;
4982 	}
4983 
4984 	ret = drm_atomic_helper_disable_all(dev, ctx);
4985 	if (ret) {
4986 		drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n",
4987 			ret);
4988 		drm_atomic_state_put(state);
4989 		return;
4990 	}
4991 
4992 	dev_priv->modeset_restore_state = state;
4993 	state->acquire_ctx = ctx;
4994 }
4995 
4996 void intel_finish_reset(struct drm_i915_private *dev_priv)
4997 {
4998 	struct drm_device *dev = &dev_priv->drm;
4999 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
5000 	struct drm_atomic_state *state;
5001 	int ret;
5002 
5003 	/* reset doesn't touch the display */
5004 	if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
5005 		return;
5006 
5007 	state = fetch_and_zero(&dev_priv->modeset_restore_state);
5008 	if (!state)
5009 		goto unlock;
5010 
5011 	/* reset doesn't touch the display */
5012 	if (!gpu_reset_clobbers_display(dev_priv)) {
5013 		/* for testing only restore the display */
5014 		ret = __intel_display_resume(dev, state, ctx);
5015 		if (ret)
5016 			drm_err(&dev_priv->drm,
5017 				"Restoring old state failed with %i\n", ret);
5018 	} else {
5019 		/*
5020 		 * The display has been reset as well,
5021 		 * so need a full re-initialization.
5022 		 */
5023 		intel_pps_unlock_regs_wa(dev_priv);
5024 		intel_modeset_init_hw(dev_priv);
5025 		intel_init_clock_gating(dev_priv);
5026 
5027 		spin_lock_irq(&dev_priv->irq_lock);
5028 		if (dev_priv->display.hpd_irq_setup)
5029 			dev_priv->display.hpd_irq_setup(dev_priv);
5030 		spin_unlock_irq(&dev_priv->irq_lock);
5031 
5032 		ret = __intel_display_resume(dev, state, ctx);
5033 		if (ret)
5034 			drm_err(&dev_priv->drm,
5035 				"Restoring old state failed with %i\n", ret);
5036 
5037 		intel_hpd_init(dev_priv);
5038 	}
5039 
5040 	drm_atomic_state_put(state);
5041 unlock:
5042 	drm_modeset_drop_locks(ctx);
5043 	drm_modeset_acquire_fini(ctx);
5044 	mutex_unlock(&dev->mode_config.mutex);
5045 
5046 	clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
5047 }
5048 
5049 static void icl_set_pipe_chicken(struct intel_crtc *crtc)
5050 {
5051 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5052 	enum pipe pipe = crtc->pipe;
5053 	u32 tmp;
5054 
5055 	tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe));
5056 
5057 	/*
5058 	 * Display WA #1153: icl
5059 	 * enable hardware to bypass the alpha math
5060 	 * and rounding for per-pixel values 00 and 0xff
5061 	 */
5062 	tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
5063 	/*
5064 	 * Display WA # 1605353570: icl
5065 	 * Set the pixel rounding bit to 1 for allowing
5066 	 * passthrough of Frame buffer pixels unmodified
5067 	 * across pipe
5068 	 */
5069 	tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
5070 	intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp);
5071 }
5072 
5073 static void intel_fdi_normal_train(struct intel_crtc *crtc)
5074 {
5075 	struct drm_device *dev = crtc->base.dev;
5076 	struct drm_i915_private *dev_priv = to_i915(dev);
5077 	enum pipe pipe = crtc->pipe;
5078 	i915_reg_t reg;
5079 	u32 temp;
5080 
5081 	/* enable normal train */
5082 	reg = FDI_TX_CTL(pipe);
5083 	temp = intel_de_read(dev_priv, reg);
5084 	if (IS_IVYBRIDGE(dev_priv)) {
5085 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5086 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
5087 	} else {
5088 		temp &= ~FDI_LINK_TRAIN_NONE;
5089 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
5090 	}
5091 	intel_de_write(dev_priv, reg, temp);
5092 
5093 	reg = FDI_RX_CTL(pipe);
5094 	temp = intel_de_read(dev_priv, reg);
5095 	if (HAS_PCH_CPT(dev_priv)) {
5096 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5097 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
5098 	} else {
5099 		temp &= ~FDI_LINK_TRAIN_NONE;
5100 		temp |= FDI_LINK_TRAIN_NONE;
5101 	}
5102 	intel_de_write(dev_priv, reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
5103 
5104 	/* wait one idle pattern time */
5105 	intel_de_posting_read(dev_priv, reg);
5106 	udelay(1000);
5107 
5108 	/* IVB wants error correction enabled */
5109 	if (IS_IVYBRIDGE(dev_priv))
5110 		intel_de_write(dev_priv, reg,
5111 		               intel_de_read(dev_priv, reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE);
5112 }
5113 
5114 /* The FDI link training functions for ILK/Ibexpeak. */
5115 static void ilk_fdi_link_train(struct intel_crtc *crtc,
5116 			       const struct intel_crtc_state *crtc_state)
5117 {
5118 	struct drm_device *dev = crtc->base.dev;
5119 	struct drm_i915_private *dev_priv = to_i915(dev);
5120 	enum pipe pipe = crtc->pipe;
5121 	i915_reg_t reg;
5122 	u32 temp, tries;
5123 
5124 	/* FDI needs bits from pipe first */
5125 	assert_pipe_enabled(dev_priv, crtc_state->cpu_transcoder);
5126 
5127 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5128 	   for train result */
5129 	reg = FDI_RX_IMR(pipe);
5130 	temp = intel_de_read(dev_priv, reg);
5131 	temp &= ~FDI_RX_SYMBOL_LOCK;
5132 	temp &= ~FDI_RX_BIT_LOCK;
5133 	intel_de_write(dev_priv, reg, temp);
5134 	intel_de_read(dev_priv, reg);
5135 	udelay(150);
5136 
5137 	/* enable CPU FDI TX and PCH FDI RX */
5138 	reg = FDI_TX_CTL(pipe);
5139 	temp = intel_de_read(dev_priv, reg);
5140 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
5141 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5142 	temp &= ~FDI_LINK_TRAIN_NONE;
5143 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5144 	intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5145 
5146 	reg = FDI_RX_CTL(pipe);
5147 	temp = intel_de_read(dev_priv, reg);
5148 	temp &= ~FDI_LINK_TRAIN_NONE;
5149 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5150 	intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5151 
5152 	intel_de_posting_read(dev_priv, reg);
5153 	udelay(150);
5154 
5155 	/* Ironlake workaround, enable clock pointer after FDI enable*/
5156 	intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5157 		       FDI_RX_PHASE_SYNC_POINTER_OVR);
5158 	intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5159 		       FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN);
5160 
5161 	reg = FDI_RX_IIR(pipe);
5162 	for (tries = 0; tries < 5; tries++) {
5163 		temp = intel_de_read(dev_priv, reg);
5164 		drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5165 
5166 		if ((temp & FDI_RX_BIT_LOCK)) {
5167 			drm_dbg_kms(&dev_priv->drm, "FDI train 1 done.\n");
5168 			intel_de_write(dev_priv, reg, temp | FDI_RX_BIT_LOCK);
5169 			break;
5170 		}
5171 	}
5172 	if (tries == 5)
5173 		drm_err(&dev_priv->drm, "FDI train 1 fail!\n");
5174 
5175 	/* Train 2 */
5176 	reg = FDI_TX_CTL(pipe);
5177 	temp = intel_de_read(dev_priv, reg);
5178 	temp &= ~FDI_LINK_TRAIN_NONE;
5179 	temp |= FDI_LINK_TRAIN_PATTERN_2;
5180 	intel_de_write(dev_priv, reg, temp);
5181 
5182 	reg = FDI_RX_CTL(pipe);
5183 	temp = intel_de_read(dev_priv, reg);
5184 	temp &= ~FDI_LINK_TRAIN_NONE;
5185 	temp |= FDI_LINK_TRAIN_PATTERN_2;
5186 	intel_de_write(dev_priv, reg, temp);
5187 
5188 	intel_de_posting_read(dev_priv, reg);
5189 	udelay(150);
5190 
5191 	reg = FDI_RX_IIR(pipe);
5192 	for (tries = 0; tries < 5; tries++) {
5193 		temp = intel_de_read(dev_priv, reg);
5194 		drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5195 
5196 		if (temp & FDI_RX_SYMBOL_LOCK) {
5197 			intel_de_write(dev_priv, reg,
5198 				       temp | FDI_RX_SYMBOL_LOCK);
5199 			drm_dbg_kms(&dev_priv->drm, "FDI train 2 done.\n");
5200 			break;
5201 		}
5202 	}
5203 	if (tries == 5)
5204 		drm_err(&dev_priv->drm, "FDI train 2 fail!\n");
5205 
5206 	drm_dbg_kms(&dev_priv->drm, "FDI train done\n");
5207 
5208 }
5209 
5210 static const int snb_b_fdi_train_param[] = {
5211 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
5212 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
5213 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
5214 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
5215 };
5216 
5217 /* The FDI link training functions for SNB/Cougarpoint. */
5218 static void gen6_fdi_link_train(struct intel_crtc *crtc,
5219 				const struct intel_crtc_state *crtc_state)
5220 {
5221 	struct drm_device *dev = crtc->base.dev;
5222 	struct drm_i915_private *dev_priv = to_i915(dev);
5223 	enum pipe pipe = crtc->pipe;
5224 	i915_reg_t reg;
5225 	u32 temp, i, retry;
5226 
5227 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5228 	   for train result */
5229 	reg = FDI_RX_IMR(pipe);
5230 	temp = intel_de_read(dev_priv, reg);
5231 	temp &= ~FDI_RX_SYMBOL_LOCK;
5232 	temp &= ~FDI_RX_BIT_LOCK;
5233 	intel_de_write(dev_priv, reg, temp);
5234 
5235 	intel_de_posting_read(dev_priv, reg);
5236 	udelay(150);
5237 
5238 	/* enable CPU FDI TX and PCH FDI RX */
5239 	reg = FDI_TX_CTL(pipe);
5240 	temp = intel_de_read(dev_priv, reg);
5241 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
5242 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5243 	temp &= ~FDI_LINK_TRAIN_NONE;
5244 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5245 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5246 	/* SNB-B */
5247 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5248 	intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5249 
5250 	intel_de_write(dev_priv, FDI_RX_MISC(pipe),
5251 		       FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5252 
5253 	reg = FDI_RX_CTL(pipe);
5254 	temp = intel_de_read(dev_priv, reg);
5255 	if (HAS_PCH_CPT(dev_priv)) {
5256 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5257 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5258 	} else {
5259 		temp &= ~FDI_LINK_TRAIN_NONE;
5260 		temp |= FDI_LINK_TRAIN_PATTERN_1;
5261 	}
5262 	intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5263 
5264 	intel_de_posting_read(dev_priv, reg);
5265 	udelay(150);
5266 
5267 	for (i = 0; i < 4; i++) {
5268 		reg = FDI_TX_CTL(pipe);
5269 		temp = intel_de_read(dev_priv, reg);
5270 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5271 		temp |= snb_b_fdi_train_param[i];
5272 		intel_de_write(dev_priv, reg, temp);
5273 
5274 		intel_de_posting_read(dev_priv, reg);
5275 		udelay(500);
5276 
5277 		for (retry = 0; retry < 5; retry++) {
5278 			reg = FDI_RX_IIR(pipe);
5279 			temp = intel_de_read(dev_priv, reg);
5280 			drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5281 			if (temp & FDI_RX_BIT_LOCK) {
5282 				intel_de_write(dev_priv, reg,
5283 					       temp | FDI_RX_BIT_LOCK);
5284 				drm_dbg_kms(&dev_priv->drm,
5285 					    "FDI train 1 done.\n");
5286 				break;
5287 			}
5288 			udelay(50);
5289 		}
5290 		if (retry < 5)
5291 			break;
5292 	}
5293 	if (i == 4)
5294 		drm_err(&dev_priv->drm, "FDI train 1 fail!\n");
5295 
5296 	/* Train 2 */
5297 	reg = FDI_TX_CTL(pipe);
5298 	temp = intel_de_read(dev_priv, reg);
5299 	temp &= ~FDI_LINK_TRAIN_NONE;
5300 	temp |= FDI_LINK_TRAIN_PATTERN_2;
5301 	if (IS_GEN(dev_priv, 6)) {
5302 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5303 		/* SNB-B */
5304 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5305 	}
5306 	intel_de_write(dev_priv, reg, temp);
5307 
5308 	reg = FDI_RX_CTL(pipe);
5309 	temp = intel_de_read(dev_priv, reg);
5310 	if (HAS_PCH_CPT(dev_priv)) {
5311 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5312 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5313 	} else {
5314 		temp &= ~FDI_LINK_TRAIN_NONE;
5315 		temp |= FDI_LINK_TRAIN_PATTERN_2;
5316 	}
5317 	intel_de_write(dev_priv, reg, temp);
5318 
5319 	intel_de_posting_read(dev_priv, reg);
5320 	udelay(150);
5321 
5322 	for (i = 0; i < 4; i++) {
5323 		reg = FDI_TX_CTL(pipe);
5324 		temp = intel_de_read(dev_priv, reg);
5325 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5326 		temp |= snb_b_fdi_train_param[i];
5327 		intel_de_write(dev_priv, reg, temp);
5328 
5329 		intel_de_posting_read(dev_priv, reg);
5330 		udelay(500);
5331 
5332 		for (retry = 0; retry < 5; retry++) {
5333 			reg = FDI_RX_IIR(pipe);
5334 			temp = intel_de_read(dev_priv, reg);
5335 			drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5336 			if (temp & FDI_RX_SYMBOL_LOCK) {
5337 				intel_de_write(dev_priv, reg,
5338 					       temp | FDI_RX_SYMBOL_LOCK);
5339 				drm_dbg_kms(&dev_priv->drm,
5340 					    "FDI train 2 done.\n");
5341 				break;
5342 			}
5343 			udelay(50);
5344 		}
5345 		if (retry < 5)
5346 			break;
5347 	}
5348 	if (i == 4)
5349 		drm_err(&dev_priv->drm, "FDI train 2 fail!\n");
5350 
5351 	drm_dbg_kms(&dev_priv->drm, "FDI train done.\n");
5352 }
5353 
5354 /* Manual link training for Ivy Bridge A0 parts */
5355 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
5356 				      const struct intel_crtc_state *crtc_state)
5357 {
5358 	struct drm_device *dev = crtc->base.dev;
5359 	struct drm_i915_private *dev_priv = to_i915(dev);
5360 	enum pipe pipe = crtc->pipe;
5361 	i915_reg_t reg;
5362 	u32 temp, i, j;
5363 
5364 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5365 	   for train result */
5366 	reg = FDI_RX_IMR(pipe);
5367 	temp = intel_de_read(dev_priv, reg);
5368 	temp &= ~FDI_RX_SYMBOL_LOCK;
5369 	temp &= ~FDI_RX_BIT_LOCK;
5370 	intel_de_write(dev_priv, reg, temp);
5371 
5372 	intel_de_posting_read(dev_priv, reg);
5373 	udelay(150);
5374 
5375 	drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR before link train 0x%x\n",
5376 		    intel_de_read(dev_priv, FDI_RX_IIR(pipe)));
5377 
5378 	/* Try each vswing and preemphasis setting twice before moving on */
5379 	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
5380 		/* disable first in case we need to retry */
5381 		reg = FDI_TX_CTL(pipe);
5382 		temp = intel_de_read(dev_priv, reg);
5383 		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
5384 		temp &= ~FDI_TX_ENABLE;
5385 		intel_de_write(dev_priv, reg, temp);
5386 
5387 		reg = FDI_RX_CTL(pipe);
5388 		temp = intel_de_read(dev_priv, reg);
5389 		temp &= ~FDI_LINK_TRAIN_AUTO;
5390 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5391 		temp &= ~FDI_RX_ENABLE;
5392 		intel_de_write(dev_priv, reg, temp);
5393 
5394 		/* enable CPU FDI TX and PCH FDI RX */
5395 		reg = FDI_TX_CTL(pipe);
5396 		temp = intel_de_read(dev_priv, reg);
5397 		temp &= ~FDI_DP_PORT_WIDTH_MASK;
5398 		temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5399 		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
5400 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5401 		temp |= snb_b_fdi_train_param[j/2];
5402 		temp |= FDI_COMPOSITE_SYNC;
5403 		intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5404 
5405 		intel_de_write(dev_priv, FDI_RX_MISC(pipe),
5406 			       FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5407 
5408 		reg = FDI_RX_CTL(pipe);
5409 		temp = intel_de_read(dev_priv, reg);
5410 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5411 		temp |= FDI_COMPOSITE_SYNC;
5412 		intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5413 
5414 		intel_de_posting_read(dev_priv, reg);
5415 		udelay(1); /* should be 0.5us */
5416 
5417 		for (i = 0; i < 4; i++) {
5418 			reg = FDI_RX_IIR(pipe);
5419 			temp = intel_de_read(dev_priv, reg);
5420 			drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5421 
5422 			if (temp & FDI_RX_BIT_LOCK ||
5423 			    (intel_de_read(dev_priv, reg) & FDI_RX_BIT_LOCK)) {
5424 				intel_de_write(dev_priv, reg,
5425 					       temp | FDI_RX_BIT_LOCK);
5426 				drm_dbg_kms(&dev_priv->drm,
5427 					    "FDI train 1 done, level %i.\n",
5428 					    i);
5429 				break;
5430 			}
5431 			udelay(1); /* should be 0.5us */
5432 		}
5433 		if (i == 4) {
5434 			drm_dbg_kms(&dev_priv->drm,
5435 				    "FDI train 1 fail on vswing %d\n", j / 2);
5436 			continue;
5437 		}
5438 
5439 		/* Train 2 */
5440 		reg = FDI_TX_CTL(pipe);
5441 		temp = intel_de_read(dev_priv, reg);
5442 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5443 		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
5444 		intel_de_write(dev_priv, reg, temp);
5445 
5446 		reg = FDI_RX_CTL(pipe);
5447 		temp = intel_de_read(dev_priv, reg);
5448 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5449 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5450 		intel_de_write(dev_priv, reg, temp);
5451 
5452 		intel_de_posting_read(dev_priv, reg);
5453 		udelay(2); /* should be 1.5us */
5454 
5455 		for (i = 0; i < 4; i++) {
5456 			reg = FDI_RX_IIR(pipe);
5457 			temp = intel_de_read(dev_priv, reg);
5458 			drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5459 
5460 			if (temp & FDI_RX_SYMBOL_LOCK ||
5461 			    (intel_de_read(dev_priv, reg) & FDI_RX_SYMBOL_LOCK)) {
5462 				intel_de_write(dev_priv, reg,
5463 					       temp | FDI_RX_SYMBOL_LOCK);
5464 				drm_dbg_kms(&dev_priv->drm,
5465 					    "FDI train 2 done, level %i.\n",
5466 					    i);
5467 				goto train_done;
5468 			}
5469 			udelay(2); /* should be 1.5us */
5470 		}
5471 		if (i == 4)
5472 			drm_dbg_kms(&dev_priv->drm,
5473 				    "FDI train 2 fail on vswing %d\n", j / 2);
5474 	}
5475 
5476 train_done:
5477 	drm_dbg_kms(&dev_priv->drm, "FDI train done.\n");
5478 }
5479 
5480 static void ilk_fdi_pll_enable(const struct intel_crtc_state *crtc_state)
5481 {
5482 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
5483 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5484 	enum pipe pipe = intel_crtc->pipe;
5485 	i915_reg_t reg;
5486 	u32 temp;
5487 
5488 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5489 	reg = FDI_RX_CTL(pipe);
5490 	temp = intel_de_read(dev_priv, reg);
5491 	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
5492 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5493 	temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5494 	intel_de_write(dev_priv, reg, temp | FDI_RX_PLL_ENABLE);
5495 
5496 	intel_de_posting_read(dev_priv, reg);
5497 	udelay(200);
5498 
5499 	/* Switch from Rawclk to PCDclk */
5500 	temp = intel_de_read(dev_priv, reg);
5501 	intel_de_write(dev_priv, reg, temp | FDI_PCDCLK);
5502 
5503 	intel_de_posting_read(dev_priv, reg);
5504 	udelay(200);
5505 
5506 	/* Enable CPU FDI TX PLL, always on for Ironlake */
5507 	reg = FDI_TX_CTL(pipe);
5508 	temp = intel_de_read(dev_priv, reg);
5509 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
5510 		intel_de_write(dev_priv, reg, temp | FDI_TX_PLL_ENABLE);
5511 
5512 		intel_de_posting_read(dev_priv, reg);
5513 		udelay(100);
5514 	}
5515 }
5516 
5517 static void ilk_fdi_pll_disable(struct intel_crtc *intel_crtc)
5518 {
5519 	struct drm_device *dev = intel_crtc->base.dev;
5520 	struct drm_i915_private *dev_priv = to_i915(dev);
5521 	enum pipe pipe = intel_crtc->pipe;
5522 	i915_reg_t reg;
5523 	u32 temp;
5524 
5525 	/* Switch from PCDclk to Rawclk */
5526 	reg = FDI_RX_CTL(pipe);
5527 	temp = intel_de_read(dev_priv, reg);
5528 	intel_de_write(dev_priv, reg, temp & ~FDI_PCDCLK);
5529 
5530 	/* Disable CPU FDI TX PLL */
5531 	reg = FDI_TX_CTL(pipe);
5532 	temp = intel_de_read(dev_priv, reg);
5533 	intel_de_write(dev_priv, reg, temp & ~FDI_TX_PLL_ENABLE);
5534 
5535 	intel_de_posting_read(dev_priv, reg);
5536 	udelay(100);
5537 
5538 	reg = FDI_RX_CTL(pipe);
5539 	temp = intel_de_read(dev_priv, reg);
5540 	intel_de_write(dev_priv, reg, temp & ~FDI_RX_PLL_ENABLE);
5541 
5542 	/* Wait for the clocks to turn off. */
5543 	intel_de_posting_read(dev_priv, reg);
5544 	udelay(100);
5545 }
5546 
5547 static void ilk_fdi_disable(struct intel_crtc *crtc)
5548 {
5549 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5550 	enum pipe pipe = crtc->pipe;
5551 	i915_reg_t reg;
5552 	u32 temp;
5553 
5554 	/* disable CPU FDI tx and PCH FDI rx */
5555 	reg = FDI_TX_CTL(pipe);
5556 	temp = intel_de_read(dev_priv, reg);
5557 	intel_de_write(dev_priv, reg, temp & ~FDI_TX_ENABLE);
5558 	intel_de_posting_read(dev_priv, reg);
5559 
5560 	reg = FDI_RX_CTL(pipe);
5561 	temp = intel_de_read(dev_priv, reg);
5562 	temp &= ~(0x7 << 16);
5563 	temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5564 	intel_de_write(dev_priv, reg, temp & ~FDI_RX_ENABLE);
5565 
5566 	intel_de_posting_read(dev_priv, reg);
5567 	udelay(100);
5568 
5569 	/* Ironlake workaround, disable clock pointer after downing FDI */
5570 	if (HAS_PCH_IBX(dev_priv))
5571 		intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5572 			       FDI_RX_PHASE_SYNC_POINTER_OVR);
5573 
5574 	/* still set train pattern 1 */
5575 	reg = FDI_TX_CTL(pipe);
5576 	temp = intel_de_read(dev_priv, reg);
5577 	temp &= ~FDI_LINK_TRAIN_NONE;
5578 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5579 	intel_de_write(dev_priv, reg, temp);
5580 
5581 	reg = FDI_RX_CTL(pipe);
5582 	temp = intel_de_read(dev_priv, reg);
5583 	if (HAS_PCH_CPT(dev_priv)) {
5584 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5585 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5586 	} else {
5587 		temp &= ~FDI_LINK_TRAIN_NONE;
5588 		temp |= FDI_LINK_TRAIN_PATTERN_1;
5589 	}
5590 	/* BPC in FDI rx is consistent with that in PIPECONF */
5591 	temp &= ~(0x07 << 16);
5592 	temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5593 	intel_de_write(dev_priv, reg, temp);
5594 
5595 	intel_de_posting_read(dev_priv, reg);
5596 	udelay(100);
5597 }
5598 
5599 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
5600 {
5601 	struct drm_crtc *crtc;
5602 	bool cleanup_done;
5603 
5604 	drm_for_each_crtc(crtc, &dev_priv->drm) {
5605 		struct drm_crtc_commit *commit;
5606 		spin_lock(&crtc->commit_lock);
5607 		commit = list_first_entry_or_null(&crtc->commit_list,
5608 						  struct drm_crtc_commit, commit_entry);
5609 		cleanup_done = commit ?
5610 			try_wait_for_completion(&commit->cleanup_done) : true;
5611 		spin_unlock(&crtc->commit_lock);
5612 
5613 		if (cleanup_done)
5614 			continue;
5615 
5616 		drm_crtc_wait_one_vblank(crtc);
5617 
5618 		return true;
5619 	}
5620 
5621 	return false;
5622 }
5623 
5624 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
5625 {
5626 	u32 temp;
5627 
5628 	intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE);
5629 
5630 	mutex_lock(&dev_priv->sb_lock);
5631 
5632 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5633 	temp |= SBI_SSCCTL_DISABLE;
5634 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5635 
5636 	mutex_unlock(&dev_priv->sb_lock);
5637 }
5638 
5639 /* Program iCLKIP clock to the desired frequency */
5640 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state)
5641 {
5642 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5643 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5644 	int clock = crtc_state->hw.adjusted_mode.crtc_clock;
5645 	u32 divsel, phaseinc, auxdiv, phasedir = 0;
5646 	u32 temp;
5647 
5648 	lpt_disable_iclkip(dev_priv);
5649 
5650 	/* The iCLK virtual clock root frequency is in MHz,
5651 	 * but the adjusted_mode->crtc_clock in in KHz. To get the
5652 	 * divisors, it is necessary to divide one by another, so we
5653 	 * convert the virtual clock precision to KHz here for higher
5654 	 * precision.
5655 	 */
5656 	for (auxdiv = 0; auxdiv < 2; auxdiv++) {
5657 		u32 iclk_virtual_root_freq = 172800 * 1000;
5658 		u32 iclk_pi_range = 64;
5659 		u32 desired_divisor;
5660 
5661 		desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5662 						    clock << auxdiv);
5663 		divsel = (desired_divisor / iclk_pi_range) - 2;
5664 		phaseinc = desired_divisor % iclk_pi_range;
5665 
5666 		/*
5667 		 * Near 20MHz is a corner case which is
5668 		 * out of range for the 7-bit divisor
5669 		 */
5670 		if (divsel <= 0x7f)
5671 			break;
5672 	}
5673 
5674 	/* This should not happen with any sane values */
5675 	drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
5676 		    ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
5677 	drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) &
5678 		    ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
5679 
5680 	drm_dbg_kms(&dev_priv->drm,
5681 		    "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
5682 		    clock, auxdiv, divsel, phasedir, phaseinc);
5683 
5684 	mutex_lock(&dev_priv->sb_lock);
5685 
5686 	/* Program SSCDIVINTPHASE6 */
5687 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5688 	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
5689 	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
5690 	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
5691 	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
5692 	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
5693 	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
5694 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
5695 
5696 	/* Program SSCAUXDIV */
5697 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5698 	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
5699 	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
5700 	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
5701 
5702 	/* Enable modulator and associated divider */
5703 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5704 	temp &= ~SBI_SSCCTL_DISABLE;
5705 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5706 
5707 	mutex_unlock(&dev_priv->sb_lock);
5708 
5709 	/* Wait for initialization time */
5710 	udelay(24);
5711 
5712 	intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE);
5713 }
5714 
5715 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
5716 {
5717 	u32 divsel, phaseinc, auxdiv;
5718 	u32 iclk_virtual_root_freq = 172800 * 1000;
5719 	u32 iclk_pi_range = 64;
5720 	u32 desired_divisor;
5721 	u32 temp;
5722 
5723 	if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
5724 		return 0;
5725 
5726 	mutex_lock(&dev_priv->sb_lock);
5727 
5728 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5729 	if (temp & SBI_SSCCTL_DISABLE) {
5730 		mutex_unlock(&dev_priv->sb_lock);
5731 		return 0;
5732 	}
5733 
5734 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5735 	divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
5736 		SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
5737 	phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
5738 		SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
5739 
5740 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5741 	auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
5742 		SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
5743 
5744 	mutex_unlock(&dev_priv->sb_lock);
5745 
5746 	desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
5747 
5748 	return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5749 				 desired_divisor << auxdiv);
5750 }
5751 
5752 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state,
5753 					   enum pipe pch_transcoder)
5754 {
5755 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5756 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5757 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5758 
5759 	intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder),
5760 		       intel_de_read(dev_priv, HTOTAL(cpu_transcoder)));
5761 	intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder),
5762 		       intel_de_read(dev_priv, HBLANK(cpu_transcoder)));
5763 	intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder),
5764 		       intel_de_read(dev_priv, HSYNC(cpu_transcoder)));
5765 
5766 	intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder),
5767 		       intel_de_read(dev_priv, VTOTAL(cpu_transcoder)));
5768 	intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder),
5769 		       intel_de_read(dev_priv, VBLANK(cpu_transcoder)));
5770 	intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder),
5771 		       intel_de_read(dev_priv, VSYNC(cpu_transcoder)));
5772 	intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder),
5773 		       intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder)));
5774 }
5775 
5776 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable)
5777 {
5778 	u32 temp;
5779 
5780 	temp = intel_de_read(dev_priv, SOUTH_CHICKEN1);
5781 	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
5782 		return;
5783 
5784 	drm_WARN_ON(&dev_priv->drm,
5785 		    intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) &
5786 		    FDI_RX_ENABLE);
5787 	drm_WARN_ON(&dev_priv->drm,
5788 		    intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) &
5789 		    FDI_RX_ENABLE);
5790 
5791 	temp &= ~FDI_BC_BIFURCATION_SELECT;
5792 	if (enable)
5793 		temp |= FDI_BC_BIFURCATION_SELECT;
5794 
5795 	drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n",
5796 		    enable ? "en" : "dis");
5797 	intel_de_write(dev_priv, SOUTH_CHICKEN1, temp);
5798 	intel_de_posting_read(dev_priv, SOUTH_CHICKEN1);
5799 }
5800 
5801 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state)
5802 {
5803 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5804 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5805 
5806 	switch (crtc->pipe) {
5807 	case PIPE_A:
5808 		break;
5809 	case PIPE_B:
5810 		if (crtc_state->fdi_lanes > 2)
5811 			cpt_set_fdi_bc_bifurcation(dev_priv, false);
5812 		else
5813 			cpt_set_fdi_bc_bifurcation(dev_priv, true);
5814 
5815 		break;
5816 	case PIPE_C:
5817 		cpt_set_fdi_bc_bifurcation(dev_priv, true);
5818 
5819 		break;
5820 	default:
5821 		BUG();
5822 	}
5823 }
5824 
5825 /*
5826  * Finds the encoder associated with the given CRTC. This can only be
5827  * used when we know that the CRTC isn't feeding multiple encoders!
5828  */
5829 static struct intel_encoder *
5830 intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
5831 			   const struct intel_crtc_state *crtc_state)
5832 {
5833 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5834 	const struct drm_connector_state *connector_state;
5835 	const struct drm_connector *connector;
5836 	struct intel_encoder *encoder = NULL;
5837 	int num_encoders = 0;
5838 	int i;
5839 
5840 	for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
5841 		if (connector_state->crtc != &crtc->base)
5842 			continue;
5843 
5844 		encoder = to_intel_encoder(connector_state->best_encoder);
5845 		num_encoders++;
5846 	}
5847 
5848 	drm_WARN(encoder->base.dev, num_encoders != 1,
5849 		 "%d encoders for pipe %c\n",
5850 		 num_encoders, pipe_name(crtc->pipe));
5851 
5852 	return encoder;
5853 }
5854 
5855 /*
5856  * Enable PCH resources required for PCH ports:
5857  *   - PCH PLLs
5858  *   - FDI training & RX/TX
5859  *   - update transcoder timings
5860  *   - DP transcoding bits
5861  *   - transcoder
5862  */
5863 static void ilk_pch_enable(const struct intel_atomic_state *state,
5864 			   const struct intel_crtc_state *crtc_state)
5865 {
5866 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5867 	struct drm_device *dev = crtc->base.dev;
5868 	struct drm_i915_private *dev_priv = to_i915(dev);
5869 	enum pipe pipe = crtc->pipe;
5870 	u32 temp;
5871 
5872 	assert_pch_transcoder_disabled(dev_priv, pipe);
5873 
5874 	if (IS_IVYBRIDGE(dev_priv))
5875 		ivb_update_fdi_bc_bifurcation(crtc_state);
5876 
5877 	/* Write the TU size bits before fdi link training, so that error
5878 	 * detection works. */
5879 	intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe),
5880 		       intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
5881 
5882 	/* For PCH output, training FDI link */
5883 	dev_priv->display.fdi_link_train(crtc, crtc_state);
5884 
5885 	/* We need to program the right clock selection before writing the pixel
5886 	 * mutliplier into the DPLL. */
5887 	if (HAS_PCH_CPT(dev_priv)) {
5888 		u32 sel;
5889 
5890 		temp = intel_de_read(dev_priv, PCH_DPLL_SEL);
5891 		temp |= TRANS_DPLL_ENABLE(pipe);
5892 		sel = TRANS_DPLLB_SEL(pipe);
5893 		if (crtc_state->shared_dpll ==
5894 		    intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
5895 			temp |= sel;
5896 		else
5897 			temp &= ~sel;
5898 		intel_de_write(dev_priv, PCH_DPLL_SEL, temp);
5899 	}
5900 
5901 	/* XXX: pch pll's can be enabled any time before we enable the PCH
5902 	 * transcoder, and we actually should do this to not upset any PCH
5903 	 * transcoder that already use the clock when we share it.
5904 	 *
5905 	 * Note that enable_shared_dpll tries to do the right thing, but
5906 	 * get_shared_dpll unconditionally resets the pll - we need that to have
5907 	 * the right LVDS enable sequence. */
5908 	intel_enable_shared_dpll(crtc_state);
5909 
5910 	/* set transcoder timing, panel must allow it */
5911 	assert_panel_unlocked(dev_priv, pipe);
5912 	ilk_pch_transcoder_set_timings(crtc_state, pipe);
5913 
5914 	intel_fdi_normal_train(crtc);
5915 
5916 	/* For PCH DP, enable TRANS_DP_CTL */
5917 	if (HAS_PCH_CPT(dev_priv) &&
5918 	    intel_crtc_has_dp_encoder(crtc_state)) {
5919 		const struct drm_display_mode *adjusted_mode =
5920 			&crtc_state->hw.adjusted_mode;
5921 		u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5922 		i915_reg_t reg = TRANS_DP_CTL(pipe);
5923 		enum port port;
5924 
5925 		temp = intel_de_read(dev_priv, reg);
5926 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
5927 			  TRANS_DP_SYNC_MASK |
5928 			  TRANS_DP_BPC_MASK);
5929 		temp |= TRANS_DP_OUTPUT_ENABLE;
5930 		temp |= bpc << 9; /* same format but at 11:9 */
5931 
5932 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5933 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
5934 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5935 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
5936 
5937 		port = intel_get_crtc_new_encoder(state, crtc_state)->port;
5938 		drm_WARN_ON(dev, port < PORT_B || port > PORT_D);
5939 		temp |= TRANS_DP_PORT_SEL(port);
5940 
5941 		intel_de_write(dev_priv, reg, temp);
5942 	}
5943 
5944 	ilk_enable_pch_transcoder(crtc_state);
5945 }
5946 
5947 void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
5948 {
5949 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5950 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5951 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5952 
5953 	assert_pch_transcoder_disabled(dev_priv, PIPE_A);
5954 
5955 	lpt_program_iclkip(crtc_state);
5956 
5957 	/* Set transcoder timing. */
5958 	ilk_pch_transcoder_set_timings(crtc_state, PIPE_A);
5959 
5960 	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
5961 }
5962 
5963 static void cpt_verify_modeset(struct drm_i915_private *dev_priv,
5964 			       enum pipe pipe)
5965 {
5966 	i915_reg_t dslreg = PIPEDSL(pipe);
5967 	u32 temp;
5968 
5969 	temp = intel_de_read(dev_priv, dslreg);
5970 	udelay(500);
5971 	if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) {
5972 		if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5))
5973 			drm_err(&dev_priv->drm,
5974 				"mode set failed: pipe %c stuck\n",
5975 				pipe_name(pipe));
5976 	}
5977 }
5978 
5979 /*
5980  * The hardware phase 0.0 refers to the center of the pixel.
5981  * We want to start from the top/left edge which is phase
5982  * -0.5. That matches how the hardware calculates the scaling
5983  * factors (from top-left of the first pixel to bottom-right
5984  * of the last pixel, as opposed to the pixel centers).
5985  *
5986  * For 4:2:0 subsampled chroma planes we obviously have to
5987  * adjust that so that the chroma sample position lands in
5988  * the right spot.
5989  *
5990  * Note that for packed YCbCr 4:2:2 formats there is no way to
5991  * control chroma siting. The hardware simply replicates the
5992  * chroma samples for both of the luma samples, and thus we don't
5993  * actually get the expected MPEG2 chroma siting convention :(
5994  * The same behaviour is observed on pre-SKL platforms as well.
5995  *
5996  * Theory behind the formula (note that we ignore sub-pixel
5997  * source coordinates):
5998  * s = source sample position
5999  * d = destination sample position
6000  *
6001  * Downscaling 4:1:
6002  * -0.5
6003  * | 0.0
6004  * | |     1.5 (initial phase)
6005  * | |     |
6006  * v v     v
6007  * | s | s | s | s |
6008  * |       d       |
6009  *
6010  * Upscaling 1:4:
6011  * -0.5
6012  * | -0.375 (initial phase)
6013  * | |     0.0
6014  * | |     |
6015  * v v     v
6016  * |       s       |
6017  * | d | d | d | d |
6018  */
6019 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
6020 {
6021 	int phase = -0x8000;
6022 	u16 trip = 0;
6023 
6024 	if (chroma_cosited)
6025 		phase += (sub - 1) * 0x8000 / sub;
6026 
6027 	phase += scale / (2 * sub);
6028 
6029 	/*
6030 	 * Hardware initial phase limited to [-0.5:1.5].
6031 	 * Since the max hardware scale factor is 3.0, we
6032 	 * should never actually excdeed 1.0 here.
6033 	 */
6034 	WARN_ON(phase < -0x8000 || phase > 0x18000);
6035 
6036 	if (phase < 0)
6037 		phase = 0x10000 + phase;
6038 	else
6039 		trip = PS_PHASE_TRIP;
6040 
6041 	return ((phase >> 2) & PS_PHASE_MASK) | trip;
6042 }
6043 
6044 #define SKL_MIN_SRC_W 8
6045 #define SKL_MAX_SRC_W 4096
6046 #define SKL_MIN_SRC_H 8
6047 #define SKL_MAX_SRC_H 4096
6048 #define SKL_MIN_DST_W 8
6049 #define SKL_MAX_DST_W 4096
6050 #define SKL_MIN_DST_H 8
6051 #define SKL_MAX_DST_H 4096
6052 #define ICL_MAX_SRC_W 5120
6053 #define ICL_MAX_SRC_H 4096
6054 #define ICL_MAX_DST_W 5120
6055 #define ICL_MAX_DST_H 4096
6056 #define SKL_MIN_YUV_420_SRC_W 16
6057 #define SKL_MIN_YUV_420_SRC_H 16
6058 
6059 static int
6060 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
6061 		  unsigned int scaler_user, int *scaler_id,
6062 		  int src_w, int src_h, int dst_w, int dst_h,
6063 		  const struct drm_format_info *format,
6064 		  u64 modifier, bool need_scaler)
6065 {
6066 	struct intel_crtc_scaler_state *scaler_state =
6067 		&crtc_state->scaler_state;
6068 	struct intel_crtc *intel_crtc =
6069 		to_intel_crtc(crtc_state->uapi.crtc);
6070 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6071 	const struct drm_display_mode *adjusted_mode =
6072 		&crtc_state->hw.adjusted_mode;
6073 
6074 	/*
6075 	 * Src coordinates are already rotated by 270 degrees for
6076 	 * the 90/270 degree plane rotation cases (to match the
6077 	 * GTT mapping), hence no need to account for rotation here.
6078 	 */
6079 	if (src_w != dst_w || src_h != dst_h)
6080 		need_scaler = true;
6081 
6082 	/*
6083 	 * Scaling/fitting not supported in IF-ID mode in GEN9+
6084 	 * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
6085 	 * Once NV12 is enabled, handle it here while allocating scaler
6086 	 * for NV12.
6087 	 */
6088 	if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable &&
6089 	    need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6090 		drm_dbg_kms(&dev_priv->drm,
6091 			    "Pipe/Plane scaling not supported with IF-ID mode\n");
6092 		return -EINVAL;
6093 	}
6094 
6095 	/*
6096 	 * if plane is being disabled or scaler is no more required or force detach
6097 	 *  - free scaler binded to this plane/crtc
6098 	 *  - in order to do this, update crtc->scaler_usage
6099 	 *
6100 	 * Here scaler state in crtc_state is set free so that
6101 	 * scaler can be assigned to other user. Actual register
6102 	 * update to free the scaler is done in plane/panel-fit programming.
6103 	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
6104 	 */
6105 	if (force_detach || !need_scaler) {
6106 		if (*scaler_id >= 0) {
6107 			scaler_state->scaler_users &= ~(1 << scaler_user);
6108 			scaler_state->scalers[*scaler_id].in_use = 0;
6109 
6110 			drm_dbg_kms(&dev_priv->drm,
6111 				    "scaler_user index %u.%u: "
6112 				    "Staged freeing scaler id %d scaler_users = 0x%x\n",
6113 				    intel_crtc->pipe, scaler_user, *scaler_id,
6114 				    scaler_state->scaler_users);
6115 			*scaler_id = -1;
6116 		}
6117 		return 0;
6118 	}
6119 
6120 	if (format && intel_format_info_is_yuv_semiplanar(format, modifier) &&
6121 	    (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) {
6122 		drm_dbg_kms(&dev_priv->drm,
6123 			    "Planar YUV: src dimensions not met\n");
6124 		return -EINVAL;
6125 	}
6126 
6127 	/* range checks */
6128 	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
6129 	    dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
6130 	    (INTEL_GEN(dev_priv) >= 11 &&
6131 	     (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H ||
6132 	      dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) ||
6133 	    (INTEL_GEN(dev_priv) < 11 &&
6134 	     (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
6135 	      dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H)))	{
6136 		drm_dbg_kms(&dev_priv->drm,
6137 			    "scaler_user index %u.%u: src %ux%u dst %ux%u "
6138 			    "size is out of scaler range\n",
6139 			    intel_crtc->pipe, scaler_user, src_w, src_h,
6140 			    dst_w, dst_h);
6141 		return -EINVAL;
6142 	}
6143 
6144 	/* mark this plane as a scaler user in crtc_state */
6145 	scaler_state->scaler_users |= (1 << scaler_user);
6146 	drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: "
6147 		    "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
6148 		    intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
6149 		    scaler_state->scaler_users);
6150 
6151 	return 0;
6152 }
6153 
6154 static int skl_update_scaler_crtc(struct intel_crtc_state *crtc_state)
6155 {
6156 	const struct drm_display_mode *adjusted_mode =
6157 		&crtc_state->hw.adjusted_mode;
6158 	int width, height;
6159 
6160 	if (crtc_state->pch_pfit.enabled) {
6161 		width = drm_rect_width(&crtc_state->pch_pfit.dst);
6162 		height = drm_rect_height(&crtc_state->pch_pfit.dst);
6163 	} else {
6164 		width = adjusted_mode->crtc_hdisplay;
6165 		height = adjusted_mode->crtc_vdisplay;
6166 	}
6167 
6168 	return skl_update_scaler(crtc_state, !crtc_state->hw.active,
6169 				 SKL_CRTC_INDEX,
6170 				 &crtc_state->scaler_state.scaler_id,
6171 				 crtc_state->pipe_src_w, crtc_state->pipe_src_h,
6172 				 width, height, NULL, 0,
6173 				 crtc_state->pch_pfit.enabled);
6174 }
6175 
6176 /**
6177  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
6178  * @crtc_state: crtc's scaler state
6179  * @plane_state: atomic plane state to update
6180  *
6181  * Return
6182  *     0 - scaler_usage updated successfully
6183  *    error - requested scaling cannot be supported or other error condition
6184  */
6185 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
6186 				   struct intel_plane_state *plane_state)
6187 {
6188 	struct intel_plane *intel_plane =
6189 		to_intel_plane(plane_state->uapi.plane);
6190 	struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
6191 	struct drm_framebuffer *fb = plane_state->hw.fb;
6192 	int ret;
6193 	bool force_detach = !fb || !plane_state->uapi.visible;
6194 	bool need_scaler = false;
6195 
6196 	/* Pre-gen11 and SDR planes always need a scaler for planar formats. */
6197 	if (!icl_is_hdr_plane(dev_priv, intel_plane->id) &&
6198 	    fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
6199 		need_scaler = true;
6200 
6201 	ret = skl_update_scaler(crtc_state, force_detach,
6202 				drm_plane_index(&intel_plane->base),
6203 				&plane_state->scaler_id,
6204 				drm_rect_width(&plane_state->uapi.src) >> 16,
6205 				drm_rect_height(&plane_state->uapi.src) >> 16,
6206 				drm_rect_width(&plane_state->uapi.dst),
6207 				drm_rect_height(&plane_state->uapi.dst),
6208 				fb ? fb->format : NULL,
6209 				fb ? fb->modifier : 0,
6210 				need_scaler);
6211 
6212 	if (ret || plane_state->scaler_id < 0)
6213 		return ret;
6214 
6215 	/* check colorkey */
6216 	if (plane_state->ckey.flags) {
6217 		drm_dbg_kms(&dev_priv->drm,
6218 			    "[PLANE:%d:%s] scaling with color key not allowed",
6219 			    intel_plane->base.base.id,
6220 			    intel_plane->base.name);
6221 		return -EINVAL;
6222 	}
6223 
6224 	/* Check src format */
6225 	switch (fb->format->format) {
6226 	case DRM_FORMAT_RGB565:
6227 	case DRM_FORMAT_XBGR8888:
6228 	case DRM_FORMAT_XRGB8888:
6229 	case DRM_FORMAT_ABGR8888:
6230 	case DRM_FORMAT_ARGB8888:
6231 	case DRM_FORMAT_XRGB2101010:
6232 	case DRM_FORMAT_XBGR2101010:
6233 	case DRM_FORMAT_ARGB2101010:
6234 	case DRM_FORMAT_ABGR2101010:
6235 	case DRM_FORMAT_YUYV:
6236 	case DRM_FORMAT_YVYU:
6237 	case DRM_FORMAT_UYVY:
6238 	case DRM_FORMAT_VYUY:
6239 	case DRM_FORMAT_NV12:
6240 	case DRM_FORMAT_XYUV8888:
6241 	case DRM_FORMAT_P010:
6242 	case DRM_FORMAT_P012:
6243 	case DRM_FORMAT_P016:
6244 	case DRM_FORMAT_Y210:
6245 	case DRM_FORMAT_Y212:
6246 	case DRM_FORMAT_Y216:
6247 	case DRM_FORMAT_XVYU2101010:
6248 	case DRM_FORMAT_XVYU12_16161616:
6249 	case DRM_FORMAT_XVYU16161616:
6250 		break;
6251 	case DRM_FORMAT_XBGR16161616F:
6252 	case DRM_FORMAT_ABGR16161616F:
6253 	case DRM_FORMAT_XRGB16161616F:
6254 	case DRM_FORMAT_ARGB16161616F:
6255 		if (INTEL_GEN(dev_priv) >= 11)
6256 			break;
6257 		fallthrough;
6258 	default:
6259 		drm_dbg_kms(&dev_priv->drm,
6260 			    "[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
6261 			    intel_plane->base.base.id, intel_plane->base.name,
6262 			    fb->base.id, fb->format->format);
6263 		return -EINVAL;
6264 	}
6265 
6266 	return 0;
6267 }
6268 
6269 void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state)
6270 {
6271 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
6272 	int i;
6273 
6274 	for (i = 0; i < crtc->num_scalers; i++)
6275 		skl_detach_scaler(crtc, i);
6276 }
6277 
6278 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state)
6279 {
6280 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6281 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6282 	const struct intel_crtc_scaler_state *scaler_state =
6283 		&crtc_state->scaler_state;
6284 	struct drm_rect src = {
6285 		.x2 = crtc_state->pipe_src_w << 16,
6286 		.y2 = crtc_state->pipe_src_h << 16,
6287 	};
6288 	const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
6289 	u16 uv_rgb_hphase, uv_rgb_vphase;
6290 	enum pipe pipe = crtc->pipe;
6291 	int width = drm_rect_width(dst);
6292 	int height = drm_rect_height(dst);
6293 	int x = dst->x1;
6294 	int y = dst->y1;
6295 	int hscale, vscale;
6296 	unsigned long irqflags;
6297 	int id;
6298 
6299 	if (!crtc_state->pch_pfit.enabled)
6300 		return;
6301 
6302 	if (drm_WARN_ON(&dev_priv->drm,
6303 			crtc_state->scaler_state.scaler_id < 0))
6304 		return;
6305 
6306 	hscale = drm_rect_calc_hscale(&src, dst, 0, INT_MAX);
6307 	vscale = drm_rect_calc_vscale(&src, dst, 0, INT_MAX);
6308 
6309 	uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
6310 	uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
6311 
6312 	id = scaler_state->scaler_id;
6313 
6314 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
6315 
6316 	intel_de_write_fw(dev_priv, SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
6317 			  PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
6318 	intel_de_write_fw(dev_priv, SKL_PS_VPHASE(pipe, id),
6319 			  PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
6320 	intel_de_write_fw(dev_priv, SKL_PS_HPHASE(pipe, id),
6321 			  PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
6322 	intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(pipe, id),
6323 			  x << 16 | y);
6324 	intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(pipe, id),
6325 			  width << 16 | height);
6326 
6327 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
6328 }
6329 
6330 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state)
6331 {
6332 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6333 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6334 	const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
6335 	enum pipe pipe = crtc->pipe;
6336 	int width = drm_rect_width(dst);
6337 	int height = drm_rect_height(dst);
6338 	int x = dst->x1;
6339 	int y = dst->y1;
6340 
6341 	if (!crtc_state->pch_pfit.enabled)
6342 		return;
6343 
6344 	/* Force use of hard-coded filter coefficients
6345 	 * as some pre-programmed values are broken,
6346 	 * e.g. x201.
6347 	 */
6348 	if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
6349 		intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE |
6350 			       PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe));
6351 	else
6352 		intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE |
6353 			       PF_FILTER_MED_3x3);
6354 	intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y);
6355 	intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height);
6356 }
6357 
6358 void hsw_enable_ips(const struct intel_crtc_state *crtc_state)
6359 {
6360 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6361 	struct drm_device *dev = crtc->base.dev;
6362 	struct drm_i915_private *dev_priv = to_i915(dev);
6363 
6364 	if (!crtc_state->ips_enabled)
6365 		return;
6366 
6367 	/*
6368 	 * We can only enable IPS after we enable a plane and wait for a vblank
6369 	 * This function is called from post_plane_update, which is run after
6370 	 * a vblank wait.
6371 	 */
6372 	drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR)));
6373 
6374 	if (IS_BROADWELL(dev_priv)) {
6375 		drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
6376 							 IPS_ENABLE | IPS_PCODE_CONTROL));
6377 		/* Quoting Art Runyan: "its not safe to expect any particular
6378 		 * value in IPS_CTL bit 31 after enabling IPS through the
6379 		 * mailbox." Moreover, the mailbox may return a bogus state,
6380 		 * so we need to just enable it and continue on.
6381 		 */
6382 	} else {
6383 		intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE);
6384 		/* The bit only becomes 1 in the next vblank, so this wait here
6385 		 * is essentially intel_wait_for_vblank. If we don't have this
6386 		 * and don't wait for vblanks until the end of crtc_enable, then
6387 		 * the HW state readout code will complain that the expected
6388 		 * IPS_CTL value is not the one we read. */
6389 		if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50))
6390 			drm_err(&dev_priv->drm,
6391 				"Timed out waiting for IPS enable\n");
6392 	}
6393 }
6394 
6395 void hsw_disable_ips(const struct intel_crtc_state *crtc_state)
6396 {
6397 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6398 	struct drm_device *dev = crtc->base.dev;
6399 	struct drm_i915_private *dev_priv = to_i915(dev);
6400 
6401 	if (!crtc_state->ips_enabled)
6402 		return;
6403 
6404 	if (IS_BROADWELL(dev_priv)) {
6405 		drm_WARN_ON(dev,
6406 			    sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
6407 		/*
6408 		 * Wait for PCODE to finish disabling IPS. The BSpec specified
6409 		 * 42ms timeout value leads to occasional timeouts so use 100ms
6410 		 * instead.
6411 		 */
6412 		if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100))
6413 			drm_err(&dev_priv->drm,
6414 				"Timed out waiting for IPS disable\n");
6415 	} else {
6416 		intel_de_write(dev_priv, IPS_CTL, 0);
6417 		intel_de_posting_read(dev_priv, IPS_CTL);
6418 	}
6419 
6420 	/* We need to wait for a vblank before we can disable the plane. */
6421 	intel_wait_for_vblank(dev_priv, crtc->pipe);
6422 }
6423 
6424 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
6425 {
6426 	if (intel_crtc->overlay)
6427 		(void) intel_overlay_switch_off(intel_crtc->overlay);
6428 
6429 	/* Let userspace switch the overlay on again. In most cases userspace
6430 	 * has to recompute where to put it anyway.
6431 	 */
6432 }
6433 
6434 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state,
6435 				       const struct intel_crtc_state *new_crtc_state)
6436 {
6437 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6438 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6439 
6440 	if (!old_crtc_state->ips_enabled)
6441 		return false;
6442 
6443 	if (needs_modeset(new_crtc_state))
6444 		return true;
6445 
6446 	/*
6447 	 * Workaround : Do not read or write the pipe palette/gamma data while
6448 	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6449 	 *
6450 	 * Disable IPS before we program the LUT.
6451 	 */
6452 	if (IS_HASWELL(dev_priv) &&
6453 	    (new_crtc_state->uapi.color_mgmt_changed ||
6454 	     new_crtc_state->update_pipe) &&
6455 	    new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6456 		return true;
6457 
6458 	return !new_crtc_state->ips_enabled;
6459 }
6460 
6461 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state,
6462 				       const struct intel_crtc_state *new_crtc_state)
6463 {
6464 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6465 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6466 
6467 	if (!new_crtc_state->ips_enabled)
6468 		return false;
6469 
6470 	if (needs_modeset(new_crtc_state))
6471 		return true;
6472 
6473 	/*
6474 	 * Workaround : Do not read or write the pipe palette/gamma data while
6475 	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6476 	 *
6477 	 * Re-enable IPS after the LUT has been programmed.
6478 	 */
6479 	if (IS_HASWELL(dev_priv) &&
6480 	    (new_crtc_state->uapi.color_mgmt_changed ||
6481 	     new_crtc_state->update_pipe) &&
6482 	    new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6483 		return true;
6484 
6485 	/*
6486 	 * We can't read out IPS on broadwell, assume the worst and
6487 	 * forcibly enable IPS on the first fastset.
6488 	 */
6489 	if (new_crtc_state->update_pipe && old_crtc_state->inherited)
6490 		return true;
6491 
6492 	return !old_crtc_state->ips_enabled;
6493 }
6494 
6495 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state)
6496 {
6497 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6498 
6499 	if (!crtc_state->nv12_planes)
6500 		return false;
6501 
6502 	/* WA Display #0827: Gen9:all */
6503 	if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv))
6504 		return true;
6505 
6506 	return false;
6507 }
6508 
6509 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state)
6510 {
6511 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6512 
6513 	/* Wa_2006604312:icl,ehl */
6514 	if (crtc_state->scaler_state.scaler_users > 0 && IS_GEN(dev_priv, 11))
6515 		return true;
6516 
6517 	return false;
6518 }
6519 
6520 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state,
6521 			    const struct intel_crtc_state *new_crtc_state)
6522 {
6523 	return (!old_crtc_state->active_planes || needs_modeset(new_crtc_state)) &&
6524 		new_crtc_state->active_planes;
6525 }
6526 
6527 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state,
6528 			     const struct intel_crtc_state *new_crtc_state)
6529 {
6530 	return old_crtc_state->active_planes &&
6531 		(!new_crtc_state->active_planes || needs_modeset(new_crtc_state));
6532 }
6533 
6534 static void intel_post_plane_update(struct intel_atomic_state *state,
6535 				    struct intel_crtc *crtc)
6536 {
6537 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6538 	const struct intel_crtc_state *old_crtc_state =
6539 		intel_atomic_get_old_crtc_state(state, crtc);
6540 	const struct intel_crtc_state *new_crtc_state =
6541 		intel_atomic_get_new_crtc_state(state, crtc);
6542 	enum pipe pipe = crtc->pipe;
6543 
6544 	intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits);
6545 
6546 	if (new_crtc_state->update_wm_post && new_crtc_state->hw.active)
6547 		intel_update_watermarks(crtc);
6548 
6549 	if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state))
6550 		hsw_enable_ips(new_crtc_state);
6551 
6552 	intel_fbc_post_update(state, crtc);
6553 
6554 	if (needs_nv12_wa(old_crtc_state) &&
6555 	    !needs_nv12_wa(new_crtc_state))
6556 		skl_wa_827(dev_priv, pipe, false);
6557 
6558 	if (needs_scalerclk_wa(old_crtc_state) &&
6559 	    !needs_scalerclk_wa(new_crtc_state))
6560 		icl_wa_scalerclkgating(dev_priv, pipe, false);
6561 }
6562 
6563 static void intel_pre_plane_update(struct intel_atomic_state *state,
6564 				   struct intel_crtc *crtc)
6565 {
6566 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6567 	const struct intel_crtc_state *old_crtc_state =
6568 		intel_atomic_get_old_crtc_state(state, crtc);
6569 	const struct intel_crtc_state *new_crtc_state =
6570 		intel_atomic_get_new_crtc_state(state, crtc);
6571 	enum pipe pipe = crtc->pipe;
6572 
6573 	if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state))
6574 		hsw_disable_ips(old_crtc_state);
6575 
6576 	if (intel_fbc_pre_update(state, crtc))
6577 		intel_wait_for_vblank(dev_priv, pipe);
6578 
6579 	/* Display WA 827 */
6580 	if (!needs_nv12_wa(old_crtc_state) &&
6581 	    needs_nv12_wa(new_crtc_state))
6582 		skl_wa_827(dev_priv, pipe, true);
6583 
6584 	/* Wa_2006604312:icl,ehl */
6585 	if (!needs_scalerclk_wa(old_crtc_state) &&
6586 	    needs_scalerclk_wa(new_crtc_state))
6587 		icl_wa_scalerclkgating(dev_priv, pipe, true);
6588 
6589 	/*
6590 	 * Vblank time updates from the shadow to live plane control register
6591 	 * are blocked if the memory self-refresh mode is active at that
6592 	 * moment. So to make sure the plane gets truly disabled, disable
6593 	 * first the self-refresh mode. The self-refresh enable bit in turn
6594 	 * will be checked/applied by the HW only at the next frame start
6595 	 * event which is after the vblank start event, so we need to have a
6596 	 * wait-for-vblank between disabling the plane and the pipe.
6597 	 */
6598 	if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active &&
6599 	    new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
6600 		intel_wait_for_vblank(dev_priv, pipe);
6601 
6602 	/*
6603 	 * IVB workaround: must disable low power watermarks for at least
6604 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
6605 	 * when scaling is disabled.
6606 	 *
6607 	 * WaCxSRDisabledForSpriteScaling:ivb
6608 	 */
6609 	if (old_crtc_state->hw.active &&
6610 	    new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv))
6611 		intel_wait_for_vblank(dev_priv, pipe);
6612 
6613 	/*
6614 	 * If we're doing a modeset we don't need to do any
6615 	 * pre-vblank watermark programming here.
6616 	 */
6617 	if (!needs_modeset(new_crtc_state)) {
6618 		/*
6619 		 * For platforms that support atomic watermarks, program the
6620 		 * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
6621 		 * will be the intermediate values that are safe for both pre- and
6622 		 * post- vblank; when vblank happens, the 'active' values will be set
6623 		 * to the final 'target' values and we'll do this again to get the
6624 		 * optimal watermarks.  For gen9+ platforms, the values we program here
6625 		 * will be the final target values which will get automatically latched
6626 		 * at vblank time; no further programming will be necessary.
6627 		 *
6628 		 * If a platform hasn't been transitioned to atomic watermarks yet,
6629 		 * we'll continue to update watermarks the old way, if flags tell
6630 		 * us to.
6631 		 */
6632 		if (dev_priv->display.initial_watermarks)
6633 			dev_priv->display.initial_watermarks(state, crtc);
6634 		else if (new_crtc_state->update_wm_pre)
6635 			intel_update_watermarks(crtc);
6636 	}
6637 
6638 	/*
6639 	 * Gen2 reports pipe underruns whenever all planes are disabled.
6640 	 * So disable underrun reporting before all the planes get disabled.
6641 	 *
6642 	 * We do this after .initial_watermarks() so that we have a
6643 	 * chance of catching underruns with the intermediate watermarks
6644 	 * vs. the old plane configuration.
6645 	 */
6646 	if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state))
6647 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6648 }
6649 
6650 static void intel_crtc_disable_planes(struct intel_atomic_state *state,
6651 				      struct intel_crtc *crtc)
6652 {
6653 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6654 	const struct intel_crtc_state *new_crtc_state =
6655 		intel_atomic_get_new_crtc_state(state, crtc);
6656 	unsigned int update_mask = new_crtc_state->update_planes;
6657 	const struct intel_plane_state *old_plane_state;
6658 	struct intel_plane *plane;
6659 	unsigned fb_bits = 0;
6660 	int i;
6661 
6662 	intel_crtc_dpms_overlay_disable(crtc);
6663 
6664 	for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
6665 		if (crtc->pipe != plane->pipe ||
6666 		    !(update_mask & BIT(plane->id)))
6667 			continue;
6668 
6669 		intel_disable_plane(plane, new_crtc_state);
6670 
6671 		if (old_plane_state->uapi.visible)
6672 			fb_bits |= plane->frontbuffer_bit;
6673 	}
6674 
6675 	intel_frontbuffer_flip(dev_priv, fb_bits);
6676 }
6677 
6678 /*
6679  * intel_connector_primary_encoder - get the primary encoder for a connector
6680  * @connector: connector for which to return the encoder
6681  *
6682  * Returns the primary encoder for a connector. There is a 1:1 mapping from
6683  * all connectors to their encoder, except for DP-MST connectors which have
6684  * both a virtual and a primary encoder. These DP-MST primary encoders can be
6685  * pointed to by as many DP-MST connectors as there are pipes.
6686  */
6687 static struct intel_encoder *
6688 intel_connector_primary_encoder(struct intel_connector *connector)
6689 {
6690 	struct intel_encoder *encoder;
6691 
6692 	if (connector->mst_port)
6693 		return &dp_to_dig_port(connector->mst_port)->base;
6694 
6695 	encoder = intel_attached_encoder(connector);
6696 	drm_WARN_ON(connector->base.dev, !encoder);
6697 
6698 	return encoder;
6699 }
6700 
6701 static void intel_encoders_update_prepare(struct intel_atomic_state *state)
6702 {
6703 	struct drm_connector_state *new_conn_state;
6704 	struct drm_connector *connector;
6705 	int i;
6706 
6707 	for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6708 					i) {
6709 		struct intel_connector *intel_connector;
6710 		struct intel_encoder *encoder;
6711 		struct intel_crtc *crtc;
6712 
6713 		if (!intel_connector_needs_modeset(state, connector))
6714 			continue;
6715 
6716 		intel_connector = to_intel_connector(connector);
6717 		encoder = intel_connector_primary_encoder(intel_connector);
6718 		if (!encoder->update_prepare)
6719 			continue;
6720 
6721 		crtc = new_conn_state->crtc ?
6722 			to_intel_crtc(new_conn_state->crtc) : NULL;
6723 		encoder->update_prepare(state, encoder, crtc);
6724 	}
6725 }
6726 
6727 static void intel_encoders_update_complete(struct intel_atomic_state *state)
6728 {
6729 	struct drm_connector_state *new_conn_state;
6730 	struct drm_connector *connector;
6731 	int i;
6732 
6733 	for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6734 					i) {
6735 		struct intel_connector *intel_connector;
6736 		struct intel_encoder *encoder;
6737 		struct intel_crtc *crtc;
6738 
6739 		if (!intel_connector_needs_modeset(state, connector))
6740 			continue;
6741 
6742 		intel_connector = to_intel_connector(connector);
6743 		encoder = intel_connector_primary_encoder(intel_connector);
6744 		if (!encoder->update_complete)
6745 			continue;
6746 
6747 		crtc = new_conn_state->crtc ?
6748 			to_intel_crtc(new_conn_state->crtc) : NULL;
6749 		encoder->update_complete(state, encoder, crtc);
6750 	}
6751 }
6752 
6753 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state,
6754 					  struct intel_crtc *crtc)
6755 {
6756 	const struct intel_crtc_state *crtc_state =
6757 		intel_atomic_get_new_crtc_state(state, crtc);
6758 	const struct drm_connector_state *conn_state;
6759 	struct drm_connector *conn;
6760 	int i;
6761 
6762 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6763 		struct intel_encoder *encoder =
6764 			to_intel_encoder(conn_state->best_encoder);
6765 
6766 		if (conn_state->crtc != &crtc->base)
6767 			continue;
6768 
6769 		if (encoder->pre_pll_enable)
6770 			encoder->pre_pll_enable(state, encoder,
6771 						crtc_state, conn_state);
6772 	}
6773 }
6774 
6775 static void intel_encoders_pre_enable(struct intel_atomic_state *state,
6776 				      struct intel_crtc *crtc)
6777 {
6778 	const struct intel_crtc_state *crtc_state =
6779 		intel_atomic_get_new_crtc_state(state, crtc);
6780 	const struct drm_connector_state *conn_state;
6781 	struct drm_connector *conn;
6782 	int i;
6783 
6784 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6785 		struct intel_encoder *encoder =
6786 			to_intel_encoder(conn_state->best_encoder);
6787 
6788 		if (conn_state->crtc != &crtc->base)
6789 			continue;
6790 
6791 		if (encoder->pre_enable)
6792 			encoder->pre_enable(state, encoder,
6793 					    crtc_state, conn_state);
6794 	}
6795 }
6796 
6797 static void intel_encoders_enable(struct intel_atomic_state *state,
6798 				  struct intel_crtc *crtc)
6799 {
6800 	const struct intel_crtc_state *crtc_state =
6801 		intel_atomic_get_new_crtc_state(state, crtc);
6802 	const struct drm_connector_state *conn_state;
6803 	struct drm_connector *conn;
6804 	int i;
6805 
6806 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6807 		struct intel_encoder *encoder =
6808 			to_intel_encoder(conn_state->best_encoder);
6809 
6810 		if (conn_state->crtc != &crtc->base)
6811 			continue;
6812 
6813 		if (encoder->enable)
6814 			encoder->enable(state, encoder,
6815 					crtc_state, conn_state);
6816 		intel_opregion_notify_encoder(encoder, true);
6817 	}
6818 }
6819 
6820 static void intel_encoders_disable(struct intel_atomic_state *state,
6821 				   struct intel_crtc *crtc)
6822 {
6823 	const struct intel_crtc_state *old_crtc_state =
6824 		intel_atomic_get_old_crtc_state(state, crtc);
6825 	const struct drm_connector_state *old_conn_state;
6826 	struct drm_connector *conn;
6827 	int i;
6828 
6829 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6830 		struct intel_encoder *encoder =
6831 			to_intel_encoder(old_conn_state->best_encoder);
6832 
6833 		if (old_conn_state->crtc != &crtc->base)
6834 			continue;
6835 
6836 		intel_opregion_notify_encoder(encoder, false);
6837 		if (encoder->disable)
6838 			encoder->disable(state, encoder,
6839 					 old_crtc_state, old_conn_state);
6840 	}
6841 }
6842 
6843 static void intel_encoders_post_disable(struct intel_atomic_state *state,
6844 					struct intel_crtc *crtc)
6845 {
6846 	const struct intel_crtc_state *old_crtc_state =
6847 		intel_atomic_get_old_crtc_state(state, crtc);
6848 	const struct drm_connector_state *old_conn_state;
6849 	struct drm_connector *conn;
6850 	int i;
6851 
6852 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6853 		struct intel_encoder *encoder =
6854 			to_intel_encoder(old_conn_state->best_encoder);
6855 
6856 		if (old_conn_state->crtc != &crtc->base)
6857 			continue;
6858 
6859 		if (encoder->post_disable)
6860 			encoder->post_disable(state, encoder,
6861 					      old_crtc_state, old_conn_state);
6862 	}
6863 }
6864 
6865 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state,
6866 					    struct intel_crtc *crtc)
6867 {
6868 	const struct intel_crtc_state *old_crtc_state =
6869 		intel_atomic_get_old_crtc_state(state, crtc);
6870 	const struct drm_connector_state *old_conn_state;
6871 	struct drm_connector *conn;
6872 	int i;
6873 
6874 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6875 		struct intel_encoder *encoder =
6876 			to_intel_encoder(old_conn_state->best_encoder);
6877 
6878 		if (old_conn_state->crtc != &crtc->base)
6879 			continue;
6880 
6881 		if (encoder->post_pll_disable)
6882 			encoder->post_pll_disable(state, encoder,
6883 						  old_crtc_state, old_conn_state);
6884 	}
6885 }
6886 
6887 static void intel_encoders_update_pipe(struct intel_atomic_state *state,
6888 				       struct intel_crtc *crtc)
6889 {
6890 	const struct intel_crtc_state *crtc_state =
6891 		intel_atomic_get_new_crtc_state(state, crtc);
6892 	const struct drm_connector_state *conn_state;
6893 	struct drm_connector *conn;
6894 	int i;
6895 
6896 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6897 		struct intel_encoder *encoder =
6898 			to_intel_encoder(conn_state->best_encoder);
6899 
6900 		if (conn_state->crtc != &crtc->base)
6901 			continue;
6902 
6903 		if (encoder->update_pipe)
6904 			encoder->update_pipe(state, encoder,
6905 					     crtc_state, conn_state);
6906 	}
6907 }
6908 
6909 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state)
6910 {
6911 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6912 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
6913 
6914 	plane->disable_plane(plane, crtc_state);
6915 }
6916 
6917 static void ilk_crtc_enable(struct intel_atomic_state *state,
6918 			    struct intel_crtc *crtc)
6919 {
6920 	const struct intel_crtc_state *new_crtc_state =
6921 		intel_atomic_get_new_crtc_state(state, crtc);
6922 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6923 	enum pipe pipe = crtc->pipe;
6924 
6925 	if (drm_WARN_ON(&dev_priv->drm, crtc->active))
6926 		return;
6927 
6928 	/*
6929 	 * Sometimes spurious CPU pipe underruns happen during FDI
6930 	 * training, at least with VGA+HDMI cloning. Suppress them.
6931 	 *
6932 	 * On ILK we get an occasional spurious CPU pipe underruns
6933 	 * between eDP port A enable and vdd enable. Also PCH port
6934 	 * enable seems to result in the occasional CPU pipe underrun.
6935 	 *
6936 	 * Spurious PCH underruns also occur during PCH enabling.
6937 	 */
6938 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6939 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6940 
6941 	if (new_crtc_state->has_pch_encoder)
6942 		intel_prepare_shared_dpll(new_crtc_state);
6943 
6944 	if (intel_crtc_has_dp_encoder(new_crtc_state))
6945 		intel_dp_set_m_n(new_crtc_state, M1_N1);
6946 
6947 	intel_set_pipe_timings(new_crtc_state);
6948 	intel_set_pipe_src_size(new_crtc_state);
6949 
6950 	if (new_crtc_state->has_pch_encoder)
6951 		intel_cpu_transcoder_set_m_n(new_crtc_state,
6952 					     &new_crtc_state->fdi_m_n, NULL);
6953 
6954 	ilk_set_pipeconf(new_crtc_state);
6955 
6956 	crtc->active = true;
6957 
6958 	intel_encoders_pre_enable(state, crtc);
6959 
6960 	if (new_crtc_state->has_pch_encoder) {
6961 		/* Note: FDI PLL enabling _must_ be done before we enable the
6962 		 * cpu pipes, hence this is separate from all the other fdi/pch
6963 		 * enabling. */
6964 		ilk_fdi_pll_enable(new_crtc_state);
6965 	} else {
6966 		assert_fdi_tx_disabled(dev_priv, pipe);
6967 		assert_fdi_rx_disabled(dev_priv, pipe);
6968 	}
6969 
6970 	ilk_pfit_enable(new_crtc_state);
6971 
6972 	/*
6973 	 * On ILK+ LUT must be loaded before the pipe is running but with
6974 	 * clocks enabled
6975 	 */
6976 	intel_color_load_luts(new_crtc_state);
6977 	intel_color_commit(new_crtc_state);
6978 	/* update DSPCNTR to configure gamma for pipe bottom color */
6979 	intel_disable_primary_plane(new_crtc_state);
6980 
6981 	if (dev_priv->display.initial_watermarks)
6982 		dev_priv->display.initial_watermarks(state, crtc);
6983 	intel_enable_pipe(new_crtc_state);
6984 
6985 	if (new_crtc_state->has_pch_encoder)
6986 		ilk_pch_enable(state, new_crtc_state);
6987 
6988 	intel_crtc_vblank_on(new_crtc_state);
6989 
6990 	intel_encoders_enable(state, crtc);
6991 
6992 	if (HAS_PCH_CPT(dev_priv))
6993 		cpt_verify_modeset(dev_priv, pipe);
6994 
6995 	/*
6996 	 * Must wait for vblank to avoid spurious PCH FIFO underruns.
6997 	 * And a second vblank wait is needed at least on ILK with
6998 	 * some interlaced HDMI modes. Let's do the double wait always
6999 	 * in case there are more corner cases we don't know about.
7000 	 */
7001 	if (new_crtc_state->has_pch_encoder) {
7002 		intel_wait_for_vblank(dev_priv, pipe);
7003 		intel_wait_for_vblank(dev_priv, pipe);
7004 	}
7005 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7006 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
7007 }
7008 
7009 /* IPS only exists on ULT machines and is tied to pipe A. */
7010 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
7011 {
7012 	return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
7013 }
7014 
7015 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
7016 					    enum pipe pipe, bool apply)
7017 {
7018 	u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe));
7019 	u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
7020 
7021 	if (apply)
7022 		val |= mask;
7023 	else
7024 		val &= ~mask;
7025 
7026 	intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val);
7027 }
7028 
7029 static void icl_pipe_mbus_enable(struct intel_crtc *crtc)
7030 {
7031 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7032 	enum pipe pipe = crtc->pipe;
7033 	u32 val;
7034 
7035 	val = MBUS_DBOX_A_CREDIT(2);
7036 
7037 	if (INTEL_GEN(dev_priv) >= 12) {
7038 		val |= MBUS_DBOX_BW_CREDIT(2);
7039 		val |= MBUS_DBOX_B_CREDIT(12);
7040 	} else {
7041 		val |= MBUS_DBOX_BW_CREDIT(1);
7042 		val |= MBUS_DBOX_B_CREDIT(8);
7043 	}
7044 
7045 	intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val);
7046 }
7047 
7048 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state)
7049 {
7050 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7051 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7052 
7053 	intel_de_write(dev_priv, WM_LINETIME(crtc->pipe),
7054 		       HSW_LINETIME(crtc_state->linetime) |
7055 		       HSW_IPS_LINETIME(crtc_state->ips_linetime));
7056 }
7057 
7058 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state)
7059 {
7060 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7061 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7062 	i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder);
7063 	u32 val;
7064 
7065 	val = intel_de_read(dev_priv, reg);
7066 	val &= ~HSW_FRAME_START_DELAY_MASK;
7067 	val |= HSW_FRAME_START_DELAY(0);
7068 	intel_de_write(dev_priv, reg, val);
7069 }
7070 
7071 static void hsw_crtc_enable(struct intel_atomic_state *state,
7072 			    struct intel_crtc *crtc)
7073 {
7074 	const struct intel_crtc_state *new_crtc_state =
7075 		intel_atomic_get_new_crtc_state(state, crtc);
7076 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7077 	enum pipe pipe = crtc->pipe, hsw_workaround_pipe;
7078 	enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
7079 	bool psl_clkgate_wa;
7080 
7081 	if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7082 		return;
7083 
7084 	intel_encoders_pre_pll_enable(state, crtc);
7085 
7086 	if (new_crtc_state->shared_dpll)
7087 		intel_enable_shared_dpll(new_crtc_state);
7088 
7089 	intel_encoders_pre_enable(state, crtc);
7090 
7091 	if (!transcoder_is_dsi(cpu_transcoder))
7092 		intel_set_pipe_timings(new_crtc_state);
7093 
7094 	intel_set_pipe_src_size(new_crtc_state);
7095 
7096 	if (cpu_transcoder != TRANSCODER_EDP &&
7097 	    !transcoder_is_dsi(cpu_transcoder))
7098 		intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder),
7099 			       new_crtc_state->pixel_multiplier - 1);
7100 
7101 	if (new_crtc_state->has_pch_encoder)
7102 		intel_cpu_transcoder_set_m_n(new_crtc_state,
7103 					     &new_crtc_state->fdi_m_n, NULL);
7104 
7105 	if (!transcoder_is_dsi(cpu_transcoder)) {
7106 		hsw_set_frame_start_delay(new_crtc_state);
7107 		hsw_set_pipeconf(new_crtc_state);
7108 	}
7109 
7110 	if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
7111 		bdw_set_pipemisc(new_crtc_state);
7112 
7113 	crtc->active = true;
7114 
7115 	/* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
7116 	psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
7117 		new_crtc_state->pch_pfit.enabled;
7118 	if (psl_clkgate_wa)
7119 		glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
7120 
7121 	if (INTEL_GEN(dev_priv) >= 9)
7122 		skl_pfit_enable(new_crtc_state);
7123 	else
7124 		ilk_pfit_enable(new_crtc_state);
7125 
7126 	/*
7127 	 * On ILK+ LUT must be loaded before the pipe is running but with
7128 	 * clocks enabled
7129 	 */
7130 	intel_color_load_luts(new_crtc_state);
7131 	intel_color_commit(new_crtc_state);
7132 	/* update DSPCNTR to configure gamma/csc for pipe bottom color */
7133 	if (INTEL_GEN(dev_priv) < 9)
7134 		intel_disable_primary_plane(new_crtc_state);
7135 
7136 	hsw_set_linetime_wm(new_crtc_state);
7137 
7138 	if (INTEL_GEN(dev_priv) >= 11)
7139 		icl_set_pipe_chicken(crtc);
7140 
7141 	if (dev_priv->display.initial_watermarks)
7142 		dev_priv->display.initial_watermarks(state, crtc);
7143 
7144 	if (INTEL_GEN(dev_priv) >= 11)
7145 		icl_pipe_mbus_enable(crtc);
7146 
7147 	intel_encoders_enable(state, crtc);
7148 
7149 	if (psl_clkgate_wa) {
7150 		intel_wait_for_vblank(dev_priv, pipe);
7151 		glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
7152 	}
7153 
7154 	/* If we change the relative order between pipe/planes enabling, we need
7155 	 * to change the workaround. */
7156 	hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe;
7157 	if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
7158 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7159 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7160 	}
7161 }
7162 
7163 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7164 {
7165 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7166 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7167 	enum pipe pipe = crtc->pipe;
7168 
7169 	/* To avoid upsetting the power well on haswell only disable the pfit if
7170 	 * it's in use. The hw state code will make sure we get this right. */
7171 	if (!old_crtc_state->pch_pfit.enabled)
7172 		return;
7173 
7174 	intel_de_write(dev_priv, PF_CTL(pipe), 0);
7175 	intel_de_write(dev_priv, PF_WIN_POS(pipe), 0);
7176 	intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0);
7177 }
7178 
7179 static void ilk_crtc_disable(struct intel_atomic_state *state,
7180 			     struct intel_crtc *crtc)
7181 {
7182 	const struct intel_crtc_state *old_crtc_state =
7183 		intel_atomic_get_old_crtc_state(state, crtc);
7184 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7185 	enum pipe pipe = crtc->pipe;
7186 
7187 	/*
7188 	 * Sometimes spurious CPU pipe underruns happen when the
7189 	 * pipe is already disabled, but FDI RX/TX is still enabled.
7190 	 * Happens at least with VGA+HDMI cloning. Suppress them.
7191 	 */
7192 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7193 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
7194 
7195 	intel_encoders_disable(state, crtc);
7196 
7197 	intel_crtc_vblank_off(old_crtc_state);
7198 
7199 	intel_disable_pipe(old_crtc_state);
7200 
7201 	ilk_pfit_disable(old_crtc_state);
7202 
7203 	if (old_crtc_state->has_pch_encoder)
7204 		ilk_fdi_disable(crtc);
7205 
7206 	intel_encoders_post_disable(state, crtc);
7207 
7208 	if (old_crtc_state->has_pch_encoder) {
7209 		ilk_disable_pch_transcoder(dev_priv, pipe);
7210 
7211 		if (HAS_PCH_CPT(dev_priv)) {
7212 			i915_reg_t reg;
7213 			u32 temp;
7214 
7215 			/* disable TRANS_DP_CTL */
7216 			reg = TRANS_DP_CTL(pipe);
7217 			temp = intel_de_read(dev_priv, reg);
7218 			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
7219 				  TRANS_DP_PORT_SEL_MASK);
7220 			temp |= TRANS_DP_PORT_SEL_NONE;
7221 			intel_de_write(dev_priv, reg, temp);
7222 
7223 			/* disable DPLL_SEL */
7224 			temp = intel_de_read(dev_priv, PCH_DPLL_SEL);
7225 			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
7226 			intel_de_write(dev_priv, PCH_DPLL_SEL, temp);
7227 		}
7228 
7229 		ilk_fdi_pll_disable(crtc);
7230 	}
7231 
7232 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7233 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
7234 }
7235 
7236 static void hsw_crtc_disable(struct intel_atomic_state *state,
7237 			     struct intel_crtc *crtc)
7238 {
7239 	/*
7240 	 * FIXME collapse everything to one hook.
7241 	 * Need care with mst->ddi interactions.
7242 	 */
7243 	intel_encoders_disable(state, crtc);
7244 	intel_encoders_post_disable(state, crtc);
7245 }
7246 
7247 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state)
7248 {
7249 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7250 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7251 
7252 	if (!crtc_state->gmch_pfit.control)
7253 		return;
7254 
7255 	/*
7256 	 * The panel fitter should only be adjusted whilst the pipe is disabled,
7257 	 * according to register description and PRM.
7258 	 */
7259 	drm_WARN_ON(&dev_priv->drm,
7260 		    intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE);
7261 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
7262 
7263 	intel_de_write(dev_priv, PFIT_PGM_RATIOS,
7264 		       crtc_state->gmch_pfit.pgm_ratios);
7265 	intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control);
7266 
7267 	/* Border color in case we don't scale up to the full screen. Black by
7268 	 * default, change to something else for debugging. */
7269 	intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0);
7270 }
7271 
7272 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy)
7273 {
7274 	if (phy == PHY_NONE)
7275 		return false;
7276 	else if (IS_ROCKETLAKE(dev_priv))
7277 		return phy <= PHY_D;
7278 	else if (IS_ELKHARTLAKE(dev_priv))
7279 		return phy <= PHY_C;
7280 	else if (INTEL_GEN(dev_priv) >= 11)
7281 		return phy <= PHY_B;
7282 	else
7283 		return false;
7284 }
7285 
7286 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy)
7287 {
7288 	if (IS_ROCKETLAKE(dev_priv))
7289 		return false;
7290 	else if (INTEL_GEN(dev_priv) >= 12)
7291 		return phy >= PHY_D && phy <= PHY_I;
7292 	else if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv))
7293 		return phy >= PHY_C && phy <= PHY_F;
7294 	else
7295 		return false;
7296 }
7297 
7298 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port)
7299 {
7300 	if (IS_ROCKETLAKE(i915) && port >= PORT_D)
7301 		return (enum phy)port - 1;
7302 	else if (IS_ELKHARTLAKE(i915) && port == PORT_D)
7303 		return PHY_A;
7304 
7305 	return (enum phy)port;
7306 }
7307 
7308 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port)
7309 {
7310 	if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port)))
7311 		return PORT_TC_NONE;
7312 
7313 	if (INTEL_GEN(dev_priv) >= 12)
7314 		return port - PORT_D;
7315 
7316 	return port - PORT_C;
7317 }
7318 
7319 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
7320 {
7321 	switch (port) {
7322 	case PORT_A:
7323 		return POWER_DOMAIN_PORT_DDI_A_LANES;
7324 	case PORT_B:
7325 		return POWER_DOMAIN_PORT_DDI_B_LANES;
7326 	case PORT_C:
7327 		return POWER_DOMAIN_PORT_DDI_C_LANES;
7328 	case PORT_D:
7329 		return POWER_DOMAIN_PORT_DDI_D_LANES;
7330 	case PORT_E:
7331 		return POWER_DOMAIN_PORT_DDI_E_LANES;
7332 	case PORT_F:
7333 		return POWER_DOMAIN_PORT_DDI_F_LANES;
7334 	case PORT_G:
7335 		return POWER_DOMAIN_PORT_DDI_G_LANES;
7336 	case PORT_H:
7337 		return POWER_DOMAIN_PORT_DDI_H_LANES;
7338 	case PORT_I:
7339 		return POWER_DOMAIN_PORT_DDI_I_LANES;
7340 	default:
7341 		MISSING_CASE(port);
7342 		return POWER_DOMAIN_PORT_OTHER;
7343 	}
7344 }
7345 
7346 enum intel_display_power_domain
7347 intel_aux_power_domain(struct intel_digital_port *dig_port)
7348 {
7349 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
7350 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
7351 
7352 	if (intel_phy_is_tc(dev_priv, phy) &&
7353 	    dig_port->tc_mode == TC_PORT_TBT_ALT) {
7354 		switch (dig_port->aux_ch) {
7355 		case AUX_CH_C:
7356 			return POWER_DOMAIN_AUX_C_TBT;
7357 		case AUX_CH_D:
7358 			return POWER_DOMAIN_AUX_D_TBT;
7359 		case AUX_CH_E:
7360 			return POWER_DOMAIN_AUX_E_TBT;
7361 		case AUX_CH_F:
7362 			return POWER_DOMAIN_AUX_F_TBT;
7363 		case AUX_CH_G:
7364 			return POWER_DOMAIN_AUX_G_TBT;
7365 		case AUX_CH_H:
7366 			return POWER_DOMAIN_AUX_H_TBT;
7367 		case AUX_CH_I:
7368 			return POWER_DOMAIN_AUX_I_TBT;
7369 		default:
7370 			MISSING_CASE(dig_port->aux_ch);
7371 			return POWER_DOMAIN_AUX_C_TBT;
7372 		}
7373 	}
7374 
7375 	return intel_legacy_aux_to_power_domain(dig_port->aux_ch);
7376 }
7377 
7378 /*
7379  * Converts aux_ch to power_domain without caring about TBT ports for that use
7380  * intel_aux_power_domain()
7381  */
7382 enum intel_display_power_domain
7383 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch)
7384 {
7385 	switch (aux_ch) {
7386 	case AUX_CH_A:
7387 		return POWER_DOMAIN_AUX_A;
7388 	case AUX_CH_B:
7389 		return POWER_DOMAIN_AUX_B;
7390 	case AUX_CH_C:
7391 		return POWER_DOMAIN_AUX_C;
7392 	case AUX_CH_D:
7393 		return POWER_DOMAIN_AUX_D;
7394 	case AUX_CH_E:
7395 		return POWER_DOMAIN_AUX_E;
7396 	case AUX_CH_F:
7397 		return POWER_DOMAIN_AUX_F;
7398 	case AUX_CH_G:
7399 		return POWER_DOMAIN_AUX_G;
7400 	case AUX_CH_H:
7401 		return POWER_DOMAIN_AUX_H;
7402 	case AUX_CH_I:
7403 		return POWER_DOMAIN_AUX_I;
7404 	default:
7405 		MISSING_CASE(aux_ch);
7406 		return POWER_DOMAIN_AUX_A;
7407 	}
7408 }
7409 
7410 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7411 {
7412 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7413 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7414 	struct drm_encoder *encoder;
7415 	enum pipe pipe = crtc->pipe;
7416 	u64 mask;
7417 	enum transcoder transcoder = crtc_state->cpu_transcoder;
7418 
7419 	if (!crtc_state->hw.active)
7420 		return 0;
7421 
7422 	mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe));
7423 	mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder));
7424 	if (crtc_state->pch_pfit.enabled ||
7425 	    crtc_state->pch_pfit.force_thru)
7426 		mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
7427 
7428 	drm_for_each_encoder_mask(encoder, &dev_priv->drm,
7429 				  crtc_state->uapi.encoder_mask) {
7430 		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7431 
7432 		mask |= BIT_ULL(intel_encoder->power_domain);
7433 	}
7434 
7435 	if (HAS_DDI(dev_priv) && crtc_state->has_audio)
7436 		mask |= BIT_ULL(POWER_DOMAIN_AUDIO);
7437 
7438 	if (crtc_state->shared_dpll)
7439 		mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE);
7440 
7441 	return mask;
7442 }
7443 
7444 static u64
7445 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7446 {
7447 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7448 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7449 	enum intel_display_power_domain domain;
7450 	u64 domains, new_domains, old_domains;
7451 
7452 	old_domains = crtc->enabled_power_domains;
7453 	crtc->enabled_power_domains = new_domains =
7454 		get_crtc_power_domains(crtc_state);
7455 
7456 	domains = new_domains & ~old_domains;
7457 
7458 	for_each_power_domain(domain, domains)
7459 		intel_display_power_get(dev_priv, domain);
7460 
7461 	return old_domains & ~new_domains;
7462 }
7463 
7464 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
7465 				      u64 domains)
7466 {
7467 	enum intel_display_power_domain domain;
7468 
7469 	for_each_power_domain(domain, domains)
7470 		intel_display_power_put_unchecked(dev_priv, domain);
7471 }
7472 
7473 static void valleyview_crtc_enable(struct intel_atomic_state *state,
7474 				   struct intel_crtc *crtc)
7475 {
7476 	const struct intel_crtc_state *new_crtc_state =
7477 		intel_atomic_get_new_crtc_state(state, crtc);
7478 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7479 	enum pipe pipe = crtc->pipe;
7480 
7481 	if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7482 		return;
7483 
7484 	if (intel_crtc_has_dp_encoder(new_crtc_state))
7485 		intel_dp_set_m_n(new_crtc_state, M1_N1);
7486 
7487 	intel_set_pipe_timings(new_crtc_state);
7488 	intel_set_pipe_src_size(new_crtc_state);
7489 
7490 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
7491 		intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY);
7492 		intel_de_write(dev_priv, CHV_CANVAS(pipe), 0);
7493 	}
7494 
7495 	i9xx_set_pipeconf(new_crtc_state);
7496 
7497 	crtc->active = true;
7498 
7499 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7500 
7501 	intel_encoders_pre_pll_enable(state, crtc);
7502 
7503 	if (IS_CHERRYVIEW(dev_priv)) {
7504 		chv_prepare_pll(crtc, new_crtc_state);
7505 		chv_enable_pll(crtc, new_crtc_state);
7506 	} else {
7507 		vlv_prepare_pll(crtc, new_crtc_state);
7508 		vlv_enable_pll(crtc, new_crtc_state);
7509 	}
7510 
7511 	intel_encoders_pre_enable(state, crtc);
7512 
7513 	i9xx_pfit_enable(new_crtc_state);
7514 
7515 	intel_color_load_luts(new_crtc_state);
7516 	intel_color_commit(new_crtc_state);
7517 	/* update DSPCNTR to configure gamma for pipe bottom color */
7518 	intel_disable_primary_plane(new_crtc_state);
7519 
7520 	dev_priv->display.initial_watermarks(state, crtc);
7521 	intel_enable_pipe(new_crtc_state);
7522 
7523 	intel_crtc_vblank_on(new_crtc_state);
7524 
7525 	intel_encoders_enable(state, crtc);
7526 }
7527 
7528 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state)
7529 {
7530 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7531 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7532 
7533 	intel_de_write(dev_priv, FP0(crtc->pipe),
7534 		       crtc_state->dpll_hw_state.fp0);
7535 	intel_de_write(dev_priv, FP1(crtc->pipe),
7536 		       crtc_state->dpll_hw_state.fp1);
7537 }
7538 
7539 static void i9xx_crtc_enable(struct intel_atomic_state *state,
7540 			     struct intel_crtc *crtc)
7541 {
7542 	const struct intel_crtc_state *new_crtc_state =
7543 		intel_atomic_get_new_crtc_state(state, crtc);
7544 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7545 	enum pipe pipe = crtc->pipe;
7546 
7547 	if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7548 		return;
7549 
7550 	i9xx_set_pll_dividers(new_crtc_state);
7551 
7552 	if (intel_crtc_has_dp_encoder(new_crtc_state))
7553 		intel_dp_set_m_n(new_crtc_state, M1_N1);
7554 
7555 	intel_set_pipe_timings(new_crtc_state);
7556 	intel_set_pipe_src_size(new_crtc_state);
7557 
7558 	i9xx_set_pipeconf(new_crtc_state);
7559 
7560 	crtc->active = true;
7561 
7562 	if (!IS_GEN(dev_priv, 2))
7563 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7564 
7565 	intel_encoders_pre_enable(state, crtc);
7566 
7567 	i9xx_enable_pll(crtc, new_crtc_state);
7568 
7569 	i9xx_pfit_enable(new_crtc_state);
7570 
7571 	intel_color_load_luts(new_crtc_state);
7572 	intel_color_commit(new_crtc_state);
7573 	/* update DSPCNTR to configure gamma for pipe bottom color */
7574 	intel_disable_primary_plane(new_crtc_state);
7575 
7576 	if (dev_priv->display.initial_watermarks)
7577 		dev_priv->display.initial_watermarks(state, crtc);
7578 	else
7579 		intel_update_watermarks(crtc);
7580 	intel_enable_pipe(new_crtc_state);
7581 
7582 	intel_crtc_vblank_on(new_crtc_state);
7583 
7584 	intel_encoders_enable(state, crtc);
7585 
7586 	/* prevents spurious underruns */
7587 	if (IS_GEN(dev_priv, 2))
7588 		intel_wait_for_vblank(dev_priv, pipe);
7589 }
7590 
7591 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7592 {
7593 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7594 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7595 
7596 	if (!old_crtc_state->gmch_pfit.control)
7597 		return;
7598 
7599 	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
7600 
7601 	drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n",
7602 		    intel_de_read(dev_priv, PFIT_CONTROL));
7603 	intel_de_write(dev_priv, PFIT_CONTROL, 0);
7604 }
7605 
7606 static void i9xx_crtc_disable(struct intel_atomic_state *state,
7607 			      struct intel_crtc *crtc)
7608 {
7609 	struct intel_crtc_state *old_crtc_state =
7610 		intel_atomic_get_old_crtc_state(state, crtc);
7611 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7612 	enum pipe pipe = crtc->pipe;
7613 
7614 	/*
7615 	 * On gen2 planes are double buffered but the pipe isn't, so we must
7616 	 * wait for planes to fully turn off before disabling the pipe.
7617 	 */
7618 	if (IS_GEN(dev_priv, 2))
7619 		intel_wait_for_vblank(dev_priv, pipe);
7620 
7621 	intel_encoders_disable(state, crtc);
7622 
7623 	intel_crtc_vblank_off(old_crtc_state);
7624 
7625 	intel_disable_pipe(old_crtc_state);
7626 
7627 	i9xx_pfit_disable(old_crtc_state);
7628 
7629 	intel_encoders_post_disable(state, crtc);
7630 
7631 	if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
7632 		if (IS_CHERRYVIEW(dev_priv))
7633 			chv_disable_pll(dev_priv, pipe);
7634 		else if (IS_VALLEYVIEW(dev_priv))
7635 			vlv_disable_pll(dev_priv, pipe);
7636 		else
7637 			i9xx_disable_pll(old_crtc_state);
7638 	}
7639 
7640 	intel_encoders_post_pll_disable(state, crtc);
7641 
7642 	if (!IS_GEN(dev_priv, 2))
7643 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7644 
7645 	if (!dev_priv->display.initial_watermarks)
7646 		intel_update_watermarks(crtc);
7647 
7648 	/* clock the pipe down to 640x480@60 to potentially save power */
7649 	if (IS_I830(dev_priv))
7650 		i830_enable_pipe(dev_priv, pipe);
7651 }
7652 
7653 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc,
7654 					struct drm_modeset_acquire_ctx *ctx)
7655 {
7656 	struct intel_encoder *encoder;
7657 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7658 	struct intel_bw_state *bw_state =
7659 		to_intel_bw_state(dev_priv->bw_obj.state);
7660 	struct intel_cdclk_state *cdclk_state =
7661 		to_intel_cdclk_state(dev_priv->cdclk.obj.state);
7662 	struct intel_dbuf_state *dbuf_state =
7663 		to_intel_dbuf_state(dev_priv->dbuf.obj.state);
7664 	struct intel_crtc_state *crtc_state =
7665 		to_intel_crtc_state(crtc->base.state);
7666 	enum intel_display_power_domain domain;
7667 	struct intel_plane *plane;
7668 	struct drm_atomic_state *state;
7669 	struct intel_crtc_state *temp_crtc_state;
7670 	enum pipe pipe = crtc->pipe;
7671 	u64 domains;
7672 	int ret;
7673 
7674 	if (!crtc_state->hw.active)
7675 		return;
7676 
7677 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
7678 		const struct intel_plane_state *plane_state =
7679 			to_intel_plane_state(plane->base.state);
7680 
7681 		if (plane_state->uapi.visible)
7682 			intel_plane_disable_noatomic(crtc, plane);
7683 	}
7684 
7685 	state = drm_atomic_state_alloc(&dev_priv->drm);
7686 	if (!state) {
7687 		drm_dbg_kms(&dev_priv->drm,
7688 			    "failed to disable [CRTC:%d:%s], out of memory",
7689 			    crtc->base.base.id, crtc->base.name);
7690 		return;
7691 	}
7692 
7693 	state->acquire_ctx = ctx;
7694 
7695 	/* Everything's already locked, -EDEADLK can't happen. */
7696 	temp_crtc_state = intel_atomic_get_crtc_state(state, crtc);
7697 	ret = drm_atomic_add_affected_connectors(state, &crtc->base);
7698 
7699 	drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret);
7700 
7701 	dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc);
7702 
7703 	drm_atomic_state_put(state);
7704 
7705 	drm_dbg_kms(&dev_priv->drm,
7706 		    "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
7707 		    crtc->base.base.id, crtc->base.name);
7708 
7709 	crtc->active = false;
7710 	crtc->base.enabled = false;
7711 
7712 	drm_WARN_ON(&dev_priv->drm,
7713 		    drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0);
7714 	crtc_state->uapi.active = false;
7715 	crtc_state->uapi.connector_mask = 0;
7716 	crtc_state->uapi.encoder_mask = 0;
7717 	intel_crtc_free_hw_state(crtc_state);
7718 	memset(&crtc_state->hw, 0, sizeof(crtc_state->hw));
7719 
7720 	for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder)
7721 		encoder->base.crtc = NULL;
7722 
7723 	intel_fbc_disable(crtc);
7724 	intel_update_watermarks(crtc);
7725 	intel_disable_shared_dpll(crtc_state);
7726 
7727 	domains = crtc->enabled_power_domains;
7728 	for_each_power_domain(domain, domains)
7729 		intel_display_power_put_unchecked(dev_priv, domain);
7730 	crtc->enabled_power_domains = 0;
7731 
7732 	dev_priv->active_pipes &= ~BIT(pipe);
7733 	cdclk_state->min_cdclk[pipe] = 0;
7734 	cdclk_state->min_voltage_level[pipe] = 0;
7735 	cdclk_state->active_pipes &= ~BIT(pipe);
7736 
7737 	dbuf_state->active_pipes &= ~BIT(pipe);
7738 
7739 	bw_state->data_rate[pipe] = 0;
7740 	bw_state->num_active_planes[pipe] = 0;
7741 }
7742 
7743 /*
7744  * turn all crtc's off, but do not adjust state
7745  * This has to be paired with a call to intel_modeset_setup_hw_state.
7746  */
7747 int intel_display_suspend(struct drm_device *dev)
7748 {
7749 	struct drm_i915_private *dev_priv = to_i915(dev);
7750 	struct drm_atomic_state *state;
7751 	int ret;
7752 
7753 	state = drm_atomic_helper_suspend(dev);
7754 	ret = PTR_ERR_OR_ZERO(state);
7755 	if (ret)
7756 		drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n",
7757 			ret);
7758 	else
7759 		dev_priv->modeset_restore_state = state;
7760 	return ret;
7761 }
7762 
7763 void intel_encoder_destroy(struct drm_encoder *encoder)
7764 {
7765 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7766 
7767 	drm_encoder_cleanup(encoder);
7768 	kfree(intel_encoder);
7769 }
7770 
7771 /* Cross check the actual hw state with our own modeset state tracking (and it's
7772  * internal consistency). */
7773 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state,
7774 					 struct drm_connector_state *conn_state)
7775 {
7776 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
7777 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
7778 
7779 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
7780 		    connector->base.base.id, connector->base.name);
7781 
7782 	if (connector->get_hw_state(connector)) {
7783 		struct intel_encoder *encoder = intel_attached_encoder(connector);
7784 
7785 		I915_STATE_WARN(!crtc_state,
7786 			 "connector enabled without attached crtc\n");
7787 
7788 		if (!crtc_state)
7789 			return;
7790 
7791 		I915_STATE_WARN(!crtc_state->hw.active,
7792 				"connector is active, but attached crtc isn't\n");
7793 
7794 		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
7795 			return;
7796 
7797 		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
7798 			"atomic encoder doesn't match attached encoder\n");
7799 
7800 		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
7801 			"attached encoder crtc differs from connector crtc\n");
7802 	} else {
7803 		I915_STATE_WARN(crtc_state && crtc_state->hw.active,
7804 				"attached crtc is active, but connector isn't\n");
7805 		I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
7806 			"best encoder set without crtc!\n");
7807 	}
7808 }
7809 
7810 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7811 {
7812 	if (crtc_state->hw.enable && crtc_state->has_pch_encoder)
7813 		return crtc_state->fdi_lanes;
7814 
7815 	return 0;
7816 }
7817 
7818 static int ilk_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7819 			       struct intel_crtc_state *pipe_config)
7820 {
7821 	struct drm_i915_private *dev_priv = to_i915(dev);
7822 	struct drm_atomic_state *state = pipe_config->uapi.state;
7823 	struct intel_crtc *other_crtc;
7824 	struct intel_crtc_state *other_crtc_state;
7825 
7826 	drm_dbg_kms(&dev_priv->drm,
7827 		    "checking fdi config on pipe %c, lanes %i\n",
7828 		    pipe_name(pipe), pipe_config->fdi_lanes);
7829 	if (pipe_config->fdi_lanes > 4) {
7830 		drm_dbg_kms(&dev_priv->drm,
7831 			    "invalid fdi lane config on pipe %c: %i lanes\n",
7832 			    pipe_name(pipe), pipe_config->fdi_lanes);
7833 		return -EINVAL;
7834 	}
7835 
7836 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7837 		if (pipe_config->fdi_lanes > 2) {
7838 			drm_dbg_kms(&dev_priv->drm,
7839 				    "only 2 lanes on haswell, required: %i lanes\n",
7840 				    pipe_config->fdi_lanes);
7841 			return -EINVAL;
7842 		} else {
7843 			return 0;
7844 		}
7845 	}
7846 
7847 	if (INTEL_NUM_PIPES(dev_priv) == 2)
7848 		return 0;
7849 
7850 	/* Ivybridge 3 pipe is really complicated */
7851 	switch (pipe) {
7852 	case PIPE_A:
7853 		return 0;
7854 	case PIPE_B:
7855 		if (pipe_config->fdi_lanes <= 2)
7856 			return 0;
7857 
7858 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7859 		other_crtc_state =
7860 			intel_atomic_get_crtc_state(state, other_crtc);
7861 		if (IS_ERR(other_crtc_state))
7862 			return PTR_ERR(other_crtc_state);
7863 
7864 		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7865 			drm_dbg_kms(&dev_priv->drm,
7866 				    "invalid shared fdi lane config on pipe %c: %i lanes\n",
7867 				    pipe_name(pipe), pipe_config->fdi_lanes);
7868 			return -EINVAL;
7869 		}
7870 		return 0;
7871 	case PIPE_C:
7872 		if (pipe_config->fdi_lanes > 2) {
7873 			drm_dbg_kms(&dev_priv->drm,
7874 				    "only 2 lanes on pipe %c: required %i lanes\n",
7875 				    pipe_name(pipe), pipe_config->fdi_lanes);
7876 			return -EINVAL;
7877 		}
7878 
7879 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7880 		other_crtc_state =
7881 			intel_atomic_get_crtc_state(state, other_crtc);
7882 		if (IS_ERR(other_crtc_state))
7883 			return PTR_ERR(other_crtc_state);
7884 
7885 		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7886 			drm_dbg_kms(&dev_priv->drm,
7887 				    "fdi link B uses too many lanes to enable link C\n");
7888 			return -EINVAL;
7889 		}
7890 		return 0;
7891 	default:
7892 		BUG();
7893 	}
7894 }
7895 
7896 #define RETRY 1
7897 static int ilk_fdi_compute_config(struct intel_crtc *intel_crtc,
7898 				  struct intel_crtc_state *pipe_config)
7899 {
7900 	struct drm_device *dev = intel_crtc->base.dev;
7901 	struct drm_i915_private *i915 = to_i915(dev);
7902 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
7903 	int lane, link_bw, fdi_dotclock, ret;
7904 	bool needs_recompute = false;
7905 
7906 retry:
7907 	/* FDI is a binary signal running at ~2.7GHz, encoding
7908 	 * each output octet as 10 bits. The actual frequency
7909 	 * is stored as a divider into a 100MHz clock, and the
7910 	 * mode pixel clock is stored in units of 1KHz.
7911 	 * Hence the bw of each lane in terms of the mode signal
7912 	 * is:
7913 	 */
7914 	link_bw = intel_fdi_link_freq(i915, pipe_config);
7915 
7916 	fdi_dotclock = adjusted_mode->crtc_clock;
7917 
7918 	lane = ilk_get_lanes_required(fdi_dotclock, link_bw,
7919 				      pipe_config->pipe_bpp);
7920 
7921 	pipe_config->fdi_lanes = lane;
7922 
7923 	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7924 			       link_bw, &pipe_config->fdi_m_n, false, false);
7925 
7926 	ret = ilk_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7927 	if (ret == -EDEADLK)
7928 		return ret;
7929 
7930 	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7931 		pipe_config->pipe_bpp -= 2*3;
7932 		drm_dbg_kms(&i915->drm,
7933 			    "fdi link bw constraint, reducing pipe bpp to %i\n",
7934 			    pipe_config->pipe_bpp);
7935 		needs_recompute = true;
7936 		pipe_config->bw_constrained = true;
7937 
7938 		goto retry;
7939 	}
7940 
7941 	if (needs_recompute)
7942 		return RETRY;
7943 
7944 	return ret;
7945 }
7946 
7947 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state)
7948 {
7949 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7950 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7951 
7952 	/* IPS only exists on ULT machines and is tied to pipe A. */
7953 	if (!hsw_crtc_supports_ips(crtc))
7954 		return false;
7955 
7956 	if (!dev_priv->params.enable_ips)
7957 		return false;
7958 
7959 	if (crtc_state->pipe_bpp > 24)
7960 		return false;
7961 
7962 	/*
7963 	 * We compare against max which means we must take
7964 	 * the increased cdclk requirement into account when
7965 	 * calculating the new cdclk.
7966 	 *
7967 	 * Should measure whether using a lower cdclk w/o IPS
7968 	 */
7969 	if (IS_BROADWELL(dev_priv) &&
7970 	    crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100)
7971 		return false;
7972 
7973 	return true;
7974 }
7975 
7976 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state)
7977 {
7978 	struct drm_i915_private *dev_priv =
7979 		to_i915(crtc_state->uapi.crtc->dev);
7980 	struct intel_atomic_state *state =
7981 		to_intel_atomic_state(crtc_state->uapi.state);
7982 
7983 	crtc_state->ips_enabled = false;
7984 
7985 	if (!hsw_crtc_state_ips_capable(crtc_state))
7986 		return 0;
7987 
7988 	/*
7989 	 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
7990 	 * enabled and disabled dynamically based on package C states,
7991 	 * user space can't make reliable use of the CRCs, so let's just
7992 	 * completely disable it.
7993 	 */
7994 	if (crtc_state->crc_enabled)
7995 		return 0;
7996 
7997 	/* IPS should be fine as long as at least one plane is enabled. */
7998 	if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)))
7999 		return 0;
8000 
8001 	if (IS_BROADWELL(dev_priv)) {
8002 		const struct intel_cdclk_state *cdclk_state;
8003 
8004 		cdclk_state = intel_atomic_get_cdclk_state(state);
8005 		if (IS_ERR(cdclk_state))
8006 			return PTR_ERR(cdclk_state);
8007 
8008 		/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
8009 		if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100)
8010 			return 0;
8011 	}
8012 
8013 	crtc_state->ips_enabled = true;
8014 
8015 	return 0;
8016 }
8017 
8018 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
8019 {
8020 	const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8021 
8022 	/* GDG double wide on either pipe, otherwise pipe A only */
8023 	return INTEL_GEN(dev_priv) < 4 &&
8024 		(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
8025 }
8026 
8027 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state)
8028 {
8029 	u32 pixel_rate = crtc_state->hw.adjusted_mode.crtc_clock;
8030 	unsigned int pipe_w, pipe_h, pfit_w, pfit_h;
8031 
8032 	/*
8033 	 * We only use IF-ID interlacing. If we ever use
8034 	 * PF-ID we'll need to adjust the pixel_rate here.
8035 	 */
8036 
8037 	if (!crtc_state->pch_pfit.enabled)
8038 		return pixel_rate;
8039 
8040 	pipe_w = crtc_state->pipe_src_w;
8041 	pipe_h = crtc_state->pipe_src_h;
8042 
8043 	pfit_w = drm_rect_width(&crtc_state->pch_pfit.dst);
8044 	pfit_h = drm_rect_height(&crtc_state->pch_pfit.dst);
8045 
8046 	if (pipe_w < pfit_w)
8047 		pipe_w = pfit_w;
8048 	if (pipe_h < pfit_h)
8049 		pipe_h = pfit_h;
8050 
8051 	if (drm_WARN_ON(crtc_state->uapi.crtc->dev,
8052 			!pfit_w || !pfit_h))
8053 		return pixel_rate;
8054 
8055 	return div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h),
8056 		       pfit_w * pfit_h);
8057 }
8058 
8059 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
8060 {
8061 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
8062 
8063 	if (HAS_GMCH(dev_priv))
8064 		/* FIXME calculate proper pipe pixel rate for GMCH pfit */
8065 		crtc_state->pixel_rate =
8066 			crtc_state->hw.adjusted_mode.crtc_clock;
8067 	else
8068 		crtc_state->pixel_rate =
8069 			ilk_pipe_pixel_rate(crtc_state);
8070 }
8071 
8072 static int intel_crtc_compute_config(struct intel_crtc *crtc,
8073 				     struct intel_crtc_state *pipe_config)
8074 {
8075 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8076 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
8077 	int clock_limit = dev_priv->max_dotclk_freq;
8078 
8079 	if (INTEL_GEN(dev_priv) < 4) {
8080 		clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
8081 
8082 		/*
8083 		 * Enable double wide mode when the dot clock
8084 		 * is > 90% of the (display) core speed.
8085 		 */
8086 		if (intel_crtc_supports_double_wide(crtc) &&
8087 		    adjusted_mode->crtc_clock > clock_limit) {
8088 			clock_limit = dev_priv->max_dotclk_freq;
8089 			pipe_config->double_wide = true;
8090 		}
8091 	}
8092 
8093 	if (adjusted_mode->crtc_clock > clock_limit) {
8094 		drm_dbg_kms(&dev_priv->drm,
8095 			    "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
8096 			    adjusted_mode->crtc_clock, clock_limit,
8097 			    yesno(pipe_config->double_wide));
8098 		return -EINVAL;
8099 	}
8100 
8101 	if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
8102 	     pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) &&
8103 	     pipe_config->hw.ctm) {
8104 		/*
8105 		 * There is only one pipe CSC unit per pipe, and we need that
8106 		 * for output conversion from RGB->YCBCR. So if CTM is already
8107 		 * applied we can't support YCBCR420 output.
8108 		 */
8109 		drm_dbg_kms(&dev_priv->drm,
8110 			    "YCBCR420 and CTM together are not possible\n");
8111 		return -EINVAL;
8112 	}
8113 
8114 	/*
8115 	 * Pipe horizontal size must be even in:
8116 	 * - DVO ganged mode
8117 	 * - LVDS dual channel mode
8118 	 * - Double wide pipe
8119 	 */
8120 	if (pipe_config->pipe_src_w & 1) {
8121 		if (pipe_config->double_wide) {
8122 			drm_dbg_kms(&dev_priv->drm,
8123 				    "Odd pipe source width not supported with double wide pipe\n");
8124 			return -EINVAL;
8125 		}
8126 
8127 		if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
8128 		    intel_is_dual_link_lvds(dev_priv)) {
8129 			drm_dbg_kms(&dev_priv->drm,
8130 				    "Odd pipe source width not supported with dual link LVDS\n");
8131 			return -EINVAL;
8132 		}
8133 	}
8134 
8135 	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
8136 	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
8137 	 */
8138 	if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
8139 		adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
8140 		return -EINVAL;
8141 
8142 	intel_crtc_compute_pixel_rate(pipe_config);
8143 
8144 	if (pipe_config->has_pch_encoder)
8145 		return ilk_fdi_compute_config(crtc, pipe_config);
8146 
8147 	return 0;
8148 }
8149 
8150 static void
8151 intel_reduce_m_n_ratio(u32 *num, u32 *den)
8152 {
8153 	while (*num > DATA_LINK_M_N_MASK ||
8154 	       *den > DATA_LINK_M_N_MASK) {
8155 		*num >>= 1;
8156 		*den >>= 1;
8157 	}
8158 }
8159 
8160 static void compute_m_n(unsigned int m, unsigned int n,
8161 			u32 *ret_m, u32 *ret_n,
8162 			bool constant_n)
8163 {
8164 	/*
8165 	 * Several DP dongles in particular seem to be fussy about
8166 	 * too large link M/N values. Give N value as 0x8000 that
8167 	 * should be acceptable by specific devices. 0x8000 is the
8168 	 * specified fixed N value for asynchronous clock mode,
8169 	 * which the devices expect also in synchronous clock mode.
8170 	 */
8171 	if (constant_n)
8172 		*ret_n = DP_LINK_CONSTANT_N_VALUE;
8173 	else
8174 		*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
8175 
8176 	*ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
8177 	intel_reduce_m_n_ratio(ret_m, ret_n);
8178 }
8179 
8180 void
8181 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes,
8182 		       int pixel_clock, int link_clock,
8183 		       struct intel_link_m_n *m_n,
8184 		       bool constant_n, bool fec_enable)
8185 {
8186 	u32 data_clock = bits_per_pixel * pixel_clock;
8187 
8188 	if (fec_enable)
8189 		data_clock = intel_dp_mode_to_fec_clock(data_clock);
8190 
8191 	m_n->tu = 64;
8192 	compute_m_n(data_clock,
8193 		    link_clock * nlanes * 8,
8194 		    &m_n->gmch_m, &m_n->gmch_n,
8195 		    constant_n);
8196 
8197 	compute_m_n(pixel_clock, link_clock,
8198 		    &m_n->link_m, &m_n->link_n,
8199 		    constant_n);
8200 }
8201 
8202 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv)
8203 {
8204 	/*
8205 	 * There may be no VBT; and if the BIOS enabled SSC we can
8206 	 * just keep using it to avoid unnecessary flicker.  Whereas if the
8207 	 * BIOS isn't using it, don't assume it will work even if the VBT
8208 	 * indicates as much.
8209 	 */
8210 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
8211 		bool bios_lvds_use_ssc = intel_de_read(dev_priv,
8212 						       PCH_DREF_CONTROL) &
8213 			DREF_SSC1_ENABLE;
8214 
8215 		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
8216 			drm_dbg_kms(&dev_priv->drm,
8217 				    "SSC %s by BIOS, overriding VBT which says %s\n",
8218 				    enableddisabled(bios_lvds_use_ssc),
8219 				    enableddisabled(dev_priv->vbt.lvds_use_ssc));
8220 			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
8221 		}
8222 	}
8223 }
8224 
8225 static bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
8226 {
8227 	if (dev_priv->params.panel_use_ssc >= 0)
8228 		return dev_priv->params.panel_use_ssc != 0;
8229 	return dev_priv->vbt.lvds_use_ssc
8230 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
8231 }
8232 
8233 static u32 pnv_dpll_compute_fp(struct dpll *dpll)
8234 {
8235 	return (1 << dpll->n) << 16 | dpll->m2;
8236 }
8237 
8238 static u32 i9xx_dpll_compute_fp(struct dpll *dpll)
8239 {
8240 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
8241 }
8242 
8243 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
8244 				     struct intel_crtc_state *crtc_state,
8245 				     struct dpll *reduced_clock)
8246 {
8247 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8248 	u32 fp, fp2 = 0;
8249 
8250 	if (IS_PINEVIEW(dev_priv)) {
8251 		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
8252 		if (reduced_clock)
8253 			fp2 = pnv_dpll_compute_fp(reduced_clock);
8254 	} else {
8255 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8256 		if (reduced_clock)
8257 			fp2 = i9xx_dpll_compute_fp(reduced_clock);
8258 	}
8259 
8260 	crtc_state->dpll_hw_state.fp0 = fp;
8261 
8262 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8263 	    reduced_clock) {
8264 		crtc_state->dpll_hw_state.fp1 = fp2;
8265 	} else {
8266 		crtc_state->dpll_hw_state.fp1 = fp;
8267 	}
8268 }
8269 
8270 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
8271 		pipe)
8272 {
8273 	u32 reg_val;
8274 
8275 	/*
8276 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
8277 	 * and set it to a reasonable value instead.
8278 	 */
8279 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8280 	reg_val &= 0xffffff00;
8281 	reg_val |= 0x00000030;
8282 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8283 
8284 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8285 	reg_val &= 0x00ffffff;
8286 	reg_val |= 0x8c000000;
8287 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8288 
8289 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8290 	reg_val &= 0xffffff00;
8291 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8292 
8293 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8294 	reg_val &= 0x00ffffff;
8295 	reg_val |= 0xb0000000;
8296 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8297 }
8298 
8299 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8300 					 const struct intel_link_m_n *m_n)
8301 {
8302 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8303 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8304 	enum pipe pipe = crtc->pipe;
8305 
8306 	intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe),
8307 		       TU_SIZE(m_n->tu) | m_n->gmch_m);
8308 	intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
8309 	intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m);
8310 	intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n);
8311 }
8312 
8313 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv,
8314 				 enum transcoder transcoder)
8315 {
8316 	if (IS_HASWELL(dev_priv))
8317 		return transcoder == TRANSCODER_EDP;
8318 
8319 	/*
8320 	 * Strictly speaking some registers are available before
8321 	 * gen7, but we only support DRRS on gen7+
8322 	 */
8323 	return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv);
8324 }
8325 
8326 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8327 					 const struct intel_link_m_n *m_n,
8328 					 const struct intel_link_m_n *m2_n2)
8329 {
8330 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8331 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8332 	enum pipe pipe = crtc->pipe;
8333 	enum transcoder transcoder = crtc_state->cpu_transcoder;
8334 
8335 	if (INTEL_GEN(dev_priv) >= 5) {
8336 		intel_de_write(dev_priv, PIPE_DATA_M1(transcoder),
8337 			       TU_SIZE(m_n->tu) | m_n->gmch_m);
8338 		intel_de_write(dev_priv, PIPE_DATA_N1(transcoder),
8339 			       m_n->gmch_n);
8340 		intel_de_write(dev_priv, PIPE_LINK_M1(transcoder),
8341 			       m_n->link_m);
8342 		intel_de_write(dev_priv, PIPE_LINK_N1(transcoder),
8343 			       m_n->link_n);
8344 		/*
8345 		 *  M2_N2 registers are set only if DRRS is supported
8346 		 * (to make sure the registers are not unnecessarily accessed).
8347 		 */
8348 		if (m2_n2 && crtc_state->has_drrs &&
8349 		    transcoder_has_m2_n2(dev_priv, transcoder)) {
8350 			intel_de_write(dev_priv, PIPE_DATA_M2(transcoder),
8351 				       TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
8352 			intel_de_write(dev_priv, PIPE_DATA_N2(transcoder),
8353 				       m2_n2->gmch_n);
8354 			intel_de_write(dev_priv, PIPE_LINK_M2(transcoder),
8355 				       m2_n2->link_m);
8356 			intel_de_write(dev_priv, PIPE_LINK_N2(transcoder),
8357 				       m2_n2->link_n);
8358 		}
8359 	} else {
8360 		intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe),
8361 			       TU_SIZE(m_n->tu) | m_n->gmch_m);
8362 		intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
8363 		intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m);
8364 		intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n);
8365 	}
8366 }
8367 
8368 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n)
8369 {
8370 	const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
8371 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
8372 
8373 	if (m_n == M1_N1) {
8374 		dp_m_n = &crtc_state->dp_m_n;
8375 		dp_m2_n2 = &crtc_state->dp_m2_n2;
8376 	} else if (m_n == M2_N2) {
8377 
8378 		/*
8379 		 * M2_N2 registers are not supported. Hence m2_n2 divider value
8380 		 * needs to be programmed into M1_N1.
8381 		 */
8382 		dp_m_n = &crtc_state->dp_m2_n2;
8383 	} else {
8384 		drm_err(&i915->drm, "Unsupported divider value\n");
8385 		return;
8386 	}
8387 
8388 	if (crtc_state->has_pch_encoder)
8389 		intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n);
8390 	else
8391 		intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2);
8392 }
8393 
8394 static void vlv_compute_dpll(struct intel_crtc *crtc,
8395 			     struct intel_crtc_state *pipe_config)
8396 {
8397 	pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
8398 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8399 	if (crtc->pipe != PIPE_A)
8400 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8401 
8402 	/* DPLL not used with DSI, but still need the rest set up */
8403 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8404 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
8405 			DPLL_EXT_BUFFER_ENABLE_VLV;
8406 
8407 	pipe_config->dpll_hw_state.dpll_md =
8408 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8409 }
8410 
8411 static void chv_compute_dpll(struct intel_crtc *crtc,
8412 			     struct intel_crtc_state *pipe_config)
8413 {
8414 	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
8415 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8416 	if (crtc->pipe != PIPE_A)
8417 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8418 
8419 	/* DPLL not used with DSI, but still need the rest set up */
8420 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8421 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
8422 
8423 	pipe_config->dpll_hw_state.dpll_md =
8424 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8425 }
8426 
8427 static void vlv_prepare_pll(struct intel_crtc *crtc,
8428 			    const struct intel_crtc_state *pipe_config)
8429 {
8430 	struct drm_device *dev = crtc->base.dev;
8431 	struct drm_i915_private *dev_priv = to_i915(dev);
8432 	enum pipe pipe = crtc->pipe;
8433 	u32 mdiv;
8434 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
8435 	u32 coreclk, reg_val;
8436 
8437 	/* Enable Refclk */
8438 	intel_de_write(dev_priv, DPLL(pipe),
8439 		       pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
8440 
8441 	/* No need to actually set up the DPLL with DSI */
8442 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8443 		return;
8444 
8445 	vlv_dpio_get(dev_priv);
8446 
8447 	bestn = pipe_config->dpll.n;
8448 	bestm1 = pipe_config->dpll.m1;
8449 	bestm2 = pipe_config->dpll.m2;
8450 	bestp1 = pipe_config->dpll.p1;
8451 	bestp2 = pipe_config->dpll.p2;
8452 
8453 	/* See eDP HDMI DPIO driver vbios notes doc */
8454 
8455 	/* PLL B needs special handling */
8456 	if (pipe == PIPE_B)
8457 		vlv_pllb_recal_opamp(dev_priv, pipe);
8458 
8459 	/* Set up Tx target for periodic Rcomp update */
8460 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
8461 
8462 	/* Disable target IRef on PLL */
8463 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
8464 	reg_val &= 0x00ffffff;
8465 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
8466 
8467 	/* Disable fast lock */
8468 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
8469 
8470 	/* Set idtafcrecal before PLL is enabled */
8471 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
8472 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
8473 	mdiv |= ((bestn << DPIO_N_SHIFT));
8474 	mdiv |= (1 << DPIO_K_SHIFT);
8475 
8476 	/*
8477 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
8478 	 * but we don't support that).
8479 	 * Note: don't use the DAC post divider as it seems unstable.
8480 	 */
8481 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
8482 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8483 
8484 	mdiv |= DPIO_ENABLE_CALIBRATION;
8485 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8486 
8487 	/* Set HBR and RBR LPF coefficients */
8488 	if (pipe_config->port_clock == 162000 ||
8489 	    intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
8490 	    intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
8491 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8492 				 0x009f0003);
8493 	else
8494 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8495 				 0x00d0000f);
8496 
8497 	if (intel_crtc_has_dp_encoder(pipe_config)) {
8498 		/* Use SSC source */
8499 		if (pipe == PIPE_A)
8500 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8501 					 0x0df40000);
8502 		else
8503 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8504 					 0x0df70000);
8505 	} else { /* HDMI or VGA */
8506 		/* Use bend source */
8507 		if (pipe == PIPE_A)
8508 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8509 					 0x0df70000);
8510 		else
8511 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8512 					 0x0df40000);
8513 	}
8514 
8515 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
8516 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
8517 	if (intel_crtc_has_dp_encoder(pipe_config))
8518 		coreclk |= 0x01000000;
8519 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
8520 
8521 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
8522 
8523 	vlv_dpio_put(dev_priv);
8524 }
8525 
8526 static void chv_prepare_pll(struct intel_crtc *crtc,
8527 			    const struct intel_crtc_state *pipe_config)
8528 {
8529 	struct drm_device *dev = crtc->base.dev;
8530 	struct drm_i915_private *dev_priv = to_i915(dev);
8531 	enum pipe pipe = crtc->pipe;
8532 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
8533 	u32 loopfilter, tribuf_calcntr;
8534 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
8535 	u32 dpio_val;
8536 	int vco;
8537 
8538 	/* Enable Refclk and SSC */
8539 	intel_de_write(dev_priv, DPLL(pipe),
8540 		       pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
8541 
8542 	/* No need to actually set up the DPLL with DSI */
8543 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8544 		return;
8545 
8546 	bestn = pipe_config->dpll.n;
8547 	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
8548 	bestm1 = pipe_config->dpll.m1;
8549 	bestm2 = pipe_config->dpll.m2 >> 22;
8550 	bestp1 = pipe_config->dpll.p1;
8551 	bestp2 = pipe_config->dpll.p2;
8552 	vco = pipe_config->dpll.vco;
8553 	dpio_val = 0;
8554 	loopfilter = 0;
8555 
8556 	vlv_dpio_get(dev_priv);
8557 
8558 	/* p1 and p2 divider */
8559 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8560 			5 << DPIO_CHV_S1_DIV_SHIFT |
8561 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8562 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8563 			1 << DPIO_CHV_K_DIV_SHIFT);
8564 
8565 	/* Feedback post-divider - m2 */
8566 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8567 
8568 	/* Feedback refclk divider - n and m1 */
8569 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8570 			DPIO_CHV_M1_DIV_BY_2 |
8571 			1 << DPIO_CHV_N_DIV_SHIFT);
8572 
8573 	/* M2 fraction division */
8574 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8575 
8576 	/* M2 fraction division enable */
8577 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8578 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8579 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8580 	if (bestm2_frac)
8581 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8582 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8583 
8584 	/* Program digital lock detect threshold */
8585 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8586 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8587 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8588 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8589 	if (!bestm2_frac)
8590 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8591 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8592 
8593 	/* Loop filter */
8594 	if (vco == 5400000) {
8595 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8596 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8597 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8598 		tribuf_calcntr = 0x9;
8599 	} else if (vco <= 6200000) {
8600 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8601 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8602 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8603 		tribuf_calcntr = 0x9;
8604 	} else if (vco <= 6480000) {
8605 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8606 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8607 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8608 		tribuf_calcntr = 0x8;
8609 	} else {
8610 		/* Not supported. Apply the same limits as in the max case */
8611 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8612 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8613 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8614 		tribuf_calcntr = 0;
8615 	}
8616 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8617 
8618 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8619 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8620 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8621 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8622 
8623 	/* AFC Recal */
8624 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8625 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8626 			DPIO_AFC_RECAL);
8627 
8628 	vlv_dpio_put(dev_priv);
8629 }
8630 
8631 /**
8632  * vlv_force_pll_on - forcibly enable just the PLL
8633  * @dev_priv: i915 private structure
8634  * @pipe: pipe PLL to enable
8635  * @dpll: PLL configuration
8636  *
8637  * Enable the PLL for @pipe using the supplied @dpll config. To be used
8638  * in cases where we need the PLL enabled even when @pipe is not going to
8639  * be enabled.
8640  */
8641 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8642 		     const struct dpll *dpll)
8643 {
8644 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8645 	struct intel_crtc_state *pipe_config;
8646 
8647 	pipe_config = intel_crtc_state_alloc(crtc);
8648 	if (!pipe_config)
8649 		return -ENOMEM;
8650 
8651 	pipe_config->cpu_transcoder = (enum transcoder)pipe;
8652 	pipe_config->pixel_multiplier = 1;
8653 	pipe_config->dpll = *dpll;
8654 
8655 	if (IS_CHERRYVIEW(dev_priv)) {
8656 		chv_compute_dpll(crtc, pipe_config);
8657 		chv_prepare_pll(crtc, pipe_config);
8658 		chv_enable_pll(crtc, pipe_config);
8659 	} else {
8660 		vlv_compute_dpll(crtc, pipe_config);
8661 		vlv_prepare_pll(crtc, pipe_config);
8662 		vlv_enable_pll(crtc, pipe_config);
8663 	}
8664 
8665 	kfree(pipe_config);
8666 
8667 	return 0;
8668 }
8669 
8670 /**
8671  * vlv_force_pll_off - forcibly disable just the PLL
8672  * @dev_priv: i915 private structure
8673  * @pipe: pipe PLL to disable
8674  *
8675  * Disable the PLL for @pipe. To be used in cases where we need
8676  * the PLL enabled even when @pipe is not going to be enabled.
8677  */
8678 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8679 {
8680 	if (IS_CHERRYVIEW(dev_priv))
8681 		chv_disable_pll(dev_priv, pipe);
8682 	else
8683 		vlv_disable_pll(dev_priv, pipe);
8684 }
8685 
8686 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8687 			      struct intel_crtc_state *crtc_state,
8688 			      struct dpll *reduced_clock)
8689 {
8690 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8691 	u32 dpll;
8692 	struct dpll *clock = &crtc_state->dpll;
8693 
8694 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8695 
8696 	dpll = DPLL_VGA_MODE_DIS;
8697 
8698 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8699 		dpll |= DPLLB_MODE_LVDS;
8700 	else
8701 		dpll |= DPLLB_MODE_DAC_SERIAL;
8702 
8703 	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8704 	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8705 		dpll |= (crtc_state->pixel_multiplier - 1)
8706 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
8707 	}
8708 
8709 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8710 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8711 		dpll |= DPLL_SDVO_HIGH_SPEED;
8712 
8713 	if (intel_crtc_has_dp_encoder(crtc_state))
8714 		dpll |= DPLL_SDVO_HIGH_SPEED;
8715 
8716 	/* compute bitmask from p1 value */
8717 	if (IS_PINEVIEW(dev_priv))
8718 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8719 	else {
8720 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8721 		if (IS_G4X(dev_priv) && reduced_clock)
8722 			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8723 	}
8724 	switch (clock->p2) {
8725 	case 5:
8726 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8727 		break;
8728 	case 7:
8729 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8730 		break;
8731 	case 10:
8732 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8733 		break;
8734 	case 14:
8735 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8736 		break;
8737 	}
8738 	if (INTEL_GEN(dev_priv) >= 4)
8739 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8740 
8741 	if (crtc_state->sdvo_tv_clock)
8742 		dpll |= PLL_REF_INPUT_TVCLKINBC;
8743 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8744 		 intel_panel_use_ssc(dev_priv))
8745 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8746 	else
8747 		dpll |= PLL_REF_INPUT_DREFCLK;
8748 
8749 	dpll |= DPLL_VCO_ENABLE;
8750 	crtc_state->dpll_hw_state.dpll = dpll;
8751 
8752 	if (INTEL_GEN(dev_priv) >= 4) {
8753 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8754 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
8755 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
8756 	}
8757 }
8758 
8759 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8760 			      struct intel_crtc_state *crtc_state,
8761 			      struct dpll *reduced_clock)
8762 {
8763 	struct drm_device *dev = crtc->base.dev;
8764 	struct drm_i915_private *dev_priv = to_i915(dev);
8765 	u32 dpll;
8766 	struct dpll *clock = &crtc_state->dpll;
8767 
8768 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8769 
8770 	dpll = DPLL_VGA_MODE_DIS;
8771 
8772 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8773 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8774 	} else {
8775 		if (clock->p1 == 2)
8776 			dpll |= PLL_P1_DIVIDE_BY_TWO;
8777 		else
8778 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8779 		if (clock->p2 == 4)
8780 			dpll |= PLL_P2_DIVIDE_BY_4;
8781 	}
8782 
8783 	/*
8784 	 * Bspec:
8785 	 * "[Almador Errata}: For the correct operation of the muxed DVO pins
8786 	 *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
8787 	 *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
8788 	 *  Enable) must be set to “1” in both the DPLL A Control Register
8789 	 *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
8790 	 *
8791 	 * For simplicity We simply keep both bits always enabled in
8792 	 * both DPLLS. The spec says we should disable the DVO 2X clock
8793 	 * when not needed, but this seems to work fine in practice.
8794 	 */
8795 	if (IS_I830(dev_priv) ||
8796 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8797 		dpll |= DPLL_DVO_2X_MODE;
8798 
8799 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8800 	    intel_panel_use_ssc(dev_priv))
8801 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8802 	else
8803 		dpll |= PLL_REF_INPUT_DREFCLK;
8804 
8805 	dpll |= DPLL_VCO_ENABLE;
8806 	crtc_state->dpll_hw_state.dpll = dpll;
8807 }
8808 
8809 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state)
8810 {
8811 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8812 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8813 	enum pipe pipe = crtc->pipe;
8814 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8815 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
8816 	u32 crtc_vtotal, crtc_vblank_end;
8817 	int vsyncshift = 0;
8818 
8819 	/* We need to be careful not to changed the adjusted mode, for otherwise
8820 	 * the hw state checker will get angry at the mismatch. */
8821 	crtc_vtotal = adjusted_mode->crtc_vtotal;
8822 	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8823 
8824 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8825 		/* the chip adds 2 halflines automatically */
8826 		crtc_vtotal -= 1;
8827 		crtc_vblank_end -= 1;
8828 
8829 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8830 			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8831 		else
8832 			vsyncshift = adjusted_mode->crtc_hsync_start -
8833 				adjusted_mode->crtc_htotal / 2;
8834 		if (vsyncshift < 0)
8835 			vsyncshift += adjusted_mode->crtc_htotal;
8836 	}
8837 
8838 	if (INTEL_GEN(dev_priv) > 3)
8839 		intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder),
8840 		               vsyncshift);
8841 
8842 	intel_de_write(dev_priv, HTOTAL(cpu_transcoder),
8843 		       (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16));
8844 	intel_de_write(dev_priv, HBLANK(cpu_transcoder),
8845 		       (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16));
8846 	intel_de_write(dev_priv, HSYNC(cpu_transcoder),
8847 		       (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16));
8848 
8849 	intel_de_write(dev_priv, VTOTAL(cpu_transcoder),
8850 		       (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16));
8851 	intel_de_write(dev_priv, VBLANK(cpu_transcoder),
8852 		       (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16));
8853 	intel_de_write(dev_priv, VSYNC(cpu_transcoder),
8854 		       (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16));
8855 
8856 	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8857 	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8858 	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8859 	 * bits. */
8860 	if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8861 	    (pipe == PIPE_B || pipe == PIPE_C))
8862 		intel_de_write(dev_priv, VTOTAL(pipe),
8863 		               intel_de_read(dev_priv, VTOTAL(cpu_transcoder)));
8864 
8865 }
8866 
8867 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
8868 {
8869 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8870 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8871 	enum pipe pipe = crtc->pipe;
8872 
8873 	/* pipesrc controls the size that is scaled from, which should
8874 	 * always be the user's requested size.
8875 	 */
8876 	intel_de_write(dev_priv, PIPESRC(pipe),
8877 		       ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1));
8878 }
8879 
8880 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state)
8881 {
8882 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
8883 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8884 
8885 	if (IS_GEN(dev_priv, 2))
8886 		return false;
8887 
8888 	if (INTEL_GEN(dev_priv) >= 9 ||
8889 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
8890 		return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW;
8891 	else
8892 		return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK;
8893 }
8894 
8895 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8896 				   struct intel_crtc_state *pipe_config)
8897 {
8898 	struct drm_device *dev = crtc->base.dev;
8899 	struct drm_i915_private *dev_priv = to_i915(dev);
8900 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8901 	u32 tmp;
8902 
8903 	tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder));
8904 	pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8905 	pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8906 
8907 	if (!transcoder_is_dsi(cpu_transcoder)) {
8908 		tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder));
8909 		pipe_config->hw.adjusted_mode.crtc_hblank_start =
8910 							(tmp & 0xffff) + 1;
8911 		pipe_config->hw.adjusted_mode.crtc_hblank_end =
8912 						((tmp >> 16) & 0xffff) + 1;
8913 	}
8914 	tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder));
8915 	pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8916 	pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8917 
8918 	tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder));
8919 	pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8920 	pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8921 
8922 	if (!transcoder_is_dsi(cpu_transcoder)) {
8923 		tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder));
8924 		pipe_config->hw.adjusted_mode.crtc_vblank_start =
8925 							(tmp & 0xffff) + 1;
8926 		pipe_config->hw.adjusted_mode.crtc_vblank_end =
8927 						((tmp >> 16) & 0xffff) + 1;
8928 	}
8929 	tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder));
8930 	pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8931 	pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8932 
8933 	if (intel_pipe_is_interlaced(pipe_config)) {
8934 		pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8935 		pipe_config->hw.adjusted_mode.crtc_vtotal += 1;
8936 		pipe_config->hw.adjusted_mode.crtc_vblank_end += 1;
8937 	}
8938 }
8939 
8940 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8941 				    struct intel_crtc_state *pipe_config)
8942 {
8943 	struct drm_device *dev = crtc->base.dev;
8944 	struct drm_i915_private *dev_priv = to_i915(dev);
8945 	u32 tmp;
8946 
8947 	tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe));
8948 	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8949 	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8950 
8951 	pipe_config->hw.mode.vdisplay = pipe_config->pipe_src_h;
8952 	pipe_config->hw.mode.hdisplay = pipe_config->pipe_src_w;
8953 }
8954 
8955 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8956 				 struct intel_crtc_state *pipe_config)
8957 {
8958 	mode->hdisplay = pipe_config->hw.adjusted_mode.crtc_hdisplay;
8959 	mode->htotal = pipe_config->hw.adjusted_mode.crtc_htotal;
8960 	mode->hsync_start = pipe_config->hw.adjusted_mode.crtc_hsync_start;
8961 	mode->hsync_end = pipe_config->hw.adjusted_mode.crtc_hsync_end;
8962 
8963 	mode->vdisplay = pipe_config->hw.adjusted_mode.crtc_vdisplay;
8964 	mode->vtotal = pipe_config->hw.adjusted_mode.crtc_vtotal;
8965 	mode->vsync_start = pipe_config->hw.adjusted_mode.crtc_vsync_start;
8966 	mode->vsync_end = pipe_config->hw.adjusted_mode.crtc_vsync_end;
8967 
8968 	mode->flags = pipe_config->hw.adjusted_mode.flags;
8969 	mode->type = DRM_MODE_TYPE_DRIVER;
8970 
8971 	mode->clock = pipe_config->hw.adjusted_mode.crtc_clock;
8972 
8973 	drm_mode_set_name(mode);
8974 }
8975 
8976 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
8977 {
8978 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8979 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8980 	u32 pipeconf;
8981 
8982 	pipeconf = 0;
8983 
8984 	/* we keep both pipes enabled on 830 */
8985 	if (IS_I830(dev_priv))
8986 		pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE;
8987 
8988 	if (crtc_state->double_wide)
8989 		pipeconf |= PIPECONF_DOUBLE_WIDE;
8990 
8991 	/* only g4x and later have fancy bpc/dither controls */
8992 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8993 	    IS_CHERRYVIEW(dev_priv)) {
8994 		/* Bspec claims that we can't use dithering for 30bpp pipes. */
8995 		if (crtc_state->dither && crtc_state->pipe_bpp != 30)
8996 			pipeconf |= PIPECONF_DITHER_EN |
8997 				    PIPECONF_DITHER_TYPE_SP;
8998 
8999 		switch (crtc_state->pipe_bpp) {
9000 		case 18:
9001 			pipeconf |= PIPECONF_6BPC;
9002 			break;
9003 		case 24:
9004 			pipeconf |= PIPECONF_8BPC;
9005 			break;
9006 		case 30:
9007 			pipeconf |= PIPECONF_10BPC;
9008 			break;
9009 		default:
9010 			/* Case prevented by intel_choose_pipe_bpp_dither. */
9011 			BUG();
9012 		}
9013 	}
9014 
9015 	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
9016 		if (INTEL_GEN(dev_priv) < 4 ||
9017 		    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
9018 			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
9019 		else
9020 			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
9021 	} else {
9022 		pipeconf |= PIPECONF_PROGRESSIVE;
9023 	}
9024 
9025 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
9026 	     crtc_state->limited_color_range)
9027 		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9028 
9029 	pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
9030 
9031 	pipeconf |= PIPECONF_FRAME_START_DELAY(0);
9032 
9033 	intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf);
9034 	intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe));
9035 }
9036 
9037 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
9038 				   struct intel_crtc_state *crtc_state)
9039 {
9040 	struct drm_device *dev = crtc->base.dev;
9041 	struct drm_i915_private *dev_priv = to_i915(dev);
9042 	const struct intel_limit *limit;
9043 	int refclk = 48000;
9044 
9045 	memset(&crtc_state->dpll_hw_state, 0,
9046 	       sizeof(crtc_state->dpll_hw_state));
9047 
9048 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9049 		if (intel_panel_use_ssc(dev_priv)) {
9050 			refclk = dev_priv->vbt.lvds_ssc_freq;
9051 			drm_dbg_kms(&dev_priv->drm,
9052 				    "using SSC reference clock of %d kHz\n",
9053 				    refclk);
9054 		}
9055 
9056 		limit = &intel_limits_i8xx_lvds;
9057 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
9058 		limit = &intel_limits_i8xx_dvo;
9059 	} else {
9060 		limit = &intel_limits_i8xx_dac;
9061 	}
9062 
9063 	if (!crtc_state->clock_set &&
9064 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9065 				 refclk, NULL, &crtc_state->dpll)) {
9066 		drm_err(&dev_priv->drm,
9067 			"Couldn't find PLL settings for mode!\n");
9068 		return -EINVAL;
9069 	}
9070 
9071 	i8xx_compute_dpll(crtc, crtc_state, NULL);
9072 
9073 	return 0;
9074 }
9075 
9076 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
9077 				  struct intel_crtc_state *crtc_state)
9078 {
9079 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9080 	const struct intel_limit *limit;
9081 	int refclk = 96000;
9082 
9083 	memset(&crtc_state->dpll_hw_state, 0,
9084 	       sizeof(crtc_state->dpll_hw_state));
9085 
9086 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9087 		if (intel_panel_use_ssc(dev_priv)) {
9088 			refclk = dev_priv->vbt.lvds_ssc_freq;
9089 			drm_dbg_kms(&dev_priv->drm,
9090 				    "using SSC reference clock of %d kHz\n",
9091 				    refclk);
9092 		}
9093 
9094 		if (intel_is_dual_link_lvds(dev_priv))
9095 			limit = &intel_limits_g4x_dual_channel_lvds;
9096 		else
9097 			limit = &intel_limits_g4x_single_channel_lvds;
9098 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
9099 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
9100 		limit = &intel_limits_g4x_hdmi;
9101 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
9102 		limit = &intel_limits_g4x_sdvo;
9103 	} else {
9104 		/* The option is for other outputs */
9105 		limit = &intel_limits_i9xx_sdvo;
9106 	}
9107 
9108 	if (!crtc_state->clock_set &&
9109 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9110 				refclk, NULL, &crtc_state->dpll)) {
9111 		drm_err(&dev_priv->drm,
9112 			"Couldn't find PLL settings for mode!\n");
9113 		return -EINVAL;
9114 	}
9115 
9116 	i9xx_compute_dpll(crtc, crtc_state, NULL);
9117 
9118 	return 0;
9119 }
9120 
9121 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
9122 				  struct intel_crtc_state *crtc_state)
9123 {
9124 	struct drm_device *dev = crtc->base.dev;
9125 	struct drm_i915_private *dev_priv = to_i915(dev);
9126 	const struct intel_limit *limit;
9127 	int refclk = 96000;
9128 
9129 	memset(&crtc_state->dpll_hw_state, 0,
9130 	       sizeof(crtc_state->dpll_hw_state));
9131 
9132 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9133 		if (intel_panel_use_ssc(dev_priv)) {
9134 			refclk = dev_priv->vbt.lvds_ssc_freq;
9135 			drm_dbg_kms(&dev_priv->drm,
9136 				    "using SSC reference clock of %d kHz\n",
9137 				    refclk);
9138 		}
9139 
9140 		limit = &pnv_limits_lvds;
9141 	} else {
9142 		limit = &pnv_limits_sdvo;
9143 	}
9144 
9145 	if (!crtc_state->clock_set &&
9146 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9147 				refclk, NULL, &crtc_state->dpll)) {
9148 		drm_err(&dev_priv->drm,
9149 			"Couldn't find PLL settings for mode!\n");
9150 		return -EINVAL;
9151 	}
9152 
9153 	i9xx_compute_dpll(crtc, crtc_state, NULL);
9154 
9155 	return 0;
9156 }
9157 
9158 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
9159 				   struct intel_crtc_state *crtc_state)
9160 {
9161 	struct drm_device *dev = crtc->base.dev;
9162 	struct drm_i915_private *dev_priv = to_i915(dev);
9163 	const struct intel_limit *limit;
9164 	int refclk = 96000;
9165 
9166 	memset(&crtc_state->dpll_hw_state, 0,
9167 	       sizeof(crtc_state->dpll_hw_state));
9168 
9169 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9170 		if (intel_panel_use_ssc(dev_priv)) {
9171 			refclk = dev_priv->vbt.lvds_ssc_freq;
9172 			drm_dbg_kms(&dev_priv->drm,
9173 				    "using SSC reference clock of %d kHz\n",
9174 				    refclk);
9175 		}
9176 
9177 		limit = &intel_limits_i9xx_lvds;
9178 	} else {
9179 		limit = &intel_limits_i9xx_sdvo;
9180 	}
9181 
9182 	if (!crtc_state->clock_set &&
9183 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9184 				 refclk, NULL, &crtc_state->dpll)) {
9185 		drm_err(&dev_priv->drm,
9186 			"Couldn't find PLL settings for mode!\n");
9187 		return -EINVAL;
9188 	}
9189 
9190 	i9xx_compute_dpll(crtc, crtc_state, NULL);
9191 
9192 	return 0;
9193 }
9194 
9195 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
9196 				  struct intel_crtc_state *crtc_state)
9197 {
9198 	int refclk = 100000;
9199 	const struct intel_limit *limit = &intel_limits_chv;
9200 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
9201 
9202 	memset(&crtc_state->dpll_hw_state, 0,
9203 	       sizeof(crtc_state->dpll_hw_state));
9204 
9205 	if (!crtc_state->clock_set &&
9206 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9207 				refclk, NULL, &crtc_state->dpll)) {
9208 		drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n");
9209 		return -EINVAL;
9210 	}
9211 
9212 	chv_compute_dpll(crtc, crtc_state);
9213 
9214 	return 0;
9215 }
9216 
9217 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
9218 				  struct intel_crtc_state *crtc_state)
9219 {
9220 	int refclk = 100000;
9221 	const struct intel_limit *limit = &intel_limits_vlv;
9222 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
9223 
9224 	memset(&crtc_state->dpll_hw_state, 0,
9225 	       sizeof(crtc_state->dpll_hw_state));
9226 
9227 	if (!crtc_state->clock_set &&
9228 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9229 				refclk, NULL, &crtc_state->dpll)) {
9230 		drm_err(&i915->drm,  "Couldn't find PLL settings for mode!\n");
9231 		return -EINVAL;
9232 	}
9233 
9234 	vlv_compute_dpll(crtc, crtc_state);
9235 
9236 	return 0;
9237 }
9238 
9239 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv)
9240 {
9241 	if (IS_I830(dev_priv))
9242 		return false;
9243 
9244 	return INTEL_GEN(dev_priv) >= 4 ||
9245 		IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
9246 }
9247 
9248 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state)
9249 {
9250 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9251 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9252 	u32 tmp;
9253 
9254 	if (!i9xx_has_pfit(dev_priv))
9255 		return;
9256 
9257 	tmp = intel_de_read(dev_priv, PFIT_CONTROL);
9258 	if (!(tmp & PFIT_ENABLE))
9259 		return;
9260 
9261 	/* Check whether the pfit is attached to our pipe. */
9262 	if (INTEL_GEN(dev_priv) < 4) {
9263 		if (crtc->pipe != PIPE_B)
9264 			return;
9265 	} else {
9266 		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
9267 			return;
9268 	}
9269 
9270 	crtc_state->gmch_pfit.control = tmp;
9271 	crtc_state->gmch_pfit.pgm_ratios =
9272 		intel_de_read(dev_priv, PFIT_PGM_RATIOS);
9273 }
9274 
9275 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
9276 			       struct intel_crtc_state *pipe_config)
9277 {
9278 	struct drm_device *dev = crtc->base.dev;
9279 	struct drm_i915_private *dev_priv = to_i915(dev);
9280 	enum pipe pipe = crtc->pipe;
9281 	struct dpll clock;
9282 	u32 mdiv;
9283 	int refclk = 100000;
9284 
9285 	/* In case of DSI, DPLL will not be used */
9286 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9287 		return;
9288 
9289 	vlv_dpio_get(dev_priv);
9290 	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
9291 	vlv_dpio_put(dev_priv);
9292 
9293 	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
9294 	clock.m2 = mdiv & DPIO_M2DIV_MASK;
9295 	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
9296 	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
9297 	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
9298 
9299 	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
9300 }
9301 
9302 static void
9303 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
9304 			      struct intel_initial_plane_config *plane_config)
9305 {
9306 	struct drm_device *dev = crtc->base.dev;
9307 	struct drm_i915_private *dev_priv = to_i915(dev);
9308 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9309 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9310 	enum pipe pipe;
9311 	u32 val, base, offset;
9312 	int fourcc, pixel_format;
9313 	unsigned int aligned_height;
9314 	struct drm_framebuffer *fb;
9315 	struct intel_framebuffer *intel_fb;
9316 
9317 	if (!plane->get_hw_state(plane, &pipe))
9318 		return;
9319 
9320 	drm_WARN_ON(dev, pipe != crtc->pipe);
9321 
9322 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9323 	if (!intel_fb) {
9324 		drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n");
9325 		return;
9326 	}
9327 
9328 	fb = &intel_fb->base;
9329 
9330 	fb->dev = dev;
9331 
9332 	val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
9333 
9334 	if (INTEL_GEN(dev_priv) >= 4) {
9335 		if (val & DISPPLANE_TILED) {
9336 			plane_config->tiling = I915_TILING_X;
9337 			fb->modifier = I915_FORMAT_MOD_X_TILED;
9338 		}
9339 
9340 		if (val & DISPPLANE_ROTATE_180)
9341 			plane_config->rotation = DRM_MODE_ROTATE_180;
9342 	}
9343 
9344 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B &&
9345 	    val & DISPPLANE_MIRROR)
9346 		plane_config->rotation |= DRM_MODE_REFLECT_X;
9347 
9348 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9349 	fourcc = i9xx_format_to_fourcc(pixel_format);
9350 	fb->format = drm_format_info(fourcc);
9351 
9352 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9353 		offset = intel_de_read(dev_priv, DSPOFFSET(i9xx_plane));
9354 		base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000;
9355 	} else if (INTEL_GEN(dev_priv) >= 4) {
9356 		if (plane_config->tiling)
9357 			offset = intel_de_read(dev_priv,
9358 					       DSPTILEOFF(i9xx_plane));
9359 		else
9360 			offset = intel_de_read(dev_priv,
9361 					       DSPLINOFF(i9xx_plane));
9362 		base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000;
9363 	} else {
9364 		base = intel_de_read(dev_priv, DSPADDR(i9xx_plane));
9365 	}
9366 	plane_config->base = base;
9367 
9368 	val = intel_de_read(dev_priv, PIPESRC(pipe));
9369 	fb->width = ((val >> 16) & 0xfff) + 1;
9370 	fb->height = ((val >> 0) & 0xfff) + 1;
9371 
9372 	val = intel_de_read(dev_priv, DSPSTRIDE(i9xx_plane));
9373 	fb->pitches[0] = val & 0xffffffc0;
9374 
9375 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
9376 
9377 	plane_config->size = fb->pitches[0] * aligned_height;
9378 
9379 	drm_dbg_kms(&dev_priv->drm,
9380 		    "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9381 		    crtc->base.name, plane->base.name, fb->width, fb->height,
9382 		    fb->format->cpp[0] * 8, base, fb->pitches[0],
9383 		    plane_config->size);
9384 
9385 	plane_config->fb = intel_fb;
9386 }
9387 
9388 static void chv_crtc_clock_get(struct intel_crtc *crtc,
9389 			       struct intel_crtc_state *pipe_config)
9390 {
9391 	struct drm_device *dev = crtc->base.dev;
9392 	struct drm_i915_private *dev_priv = to_i915(dev);
9393 	enum pipe pipe = crtc->pipe;
9394 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
9395 	struct dpll clock;
9396 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
9397 	int refclk = 100000;
9398 
9399 	/* In case of DSI, DPLL will not be used */
9400 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9401 		return;
9402 
9403 	vlv_dpio_get(dev_priv);
9404 	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
9405 	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
9406 	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
9407 	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
9408 	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
9409 	vlv_dpio_put(dev_priv);
9410 
9411 	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
9412 	clock.m2 = (pll_dw0 & 0xff) << 22;
9413 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
9414 		clock.m2 |= pll_dw2 & 0x3fffff;
9415 	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
9416 	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
9417 	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
9418 
9419 	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
9420 }
9421 
9422 static enum intel_output_format
9423 bdw_get_pipemisc_output_format(struct intel_crtc *crtc)
9424 {
9425 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9426 	u32 tmp;
9427 
9428 	tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe));
9429 
9430 	if (tmp & PIPEMISC_YUV420_ENABLE) {
9431 		/* We support 4:2:0 in full blend mode only */
9432 		drm_WARN_ON(&dev_priv->drm,
9433 			    (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0);
9434 
9435 		return INTEL_OUTPUT_FORMAT_YCBCR420;
9436 	} else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) {
9437 		return INTEL_OUTPUT_FORMAT_YCBCR444;
9438 	} else {
9439 		return INTEL_OUTPUT_FORMAT_RGB;
9440 	}
9441 }
9442 
9443 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state)
9444 {
9445 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9446 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9447 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9448 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9449 	u32 tmp;
9450 
9451 	tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
9452 
9453 	if (tmp & DISPPLANE_GAMMA_ENABLE)
9454 		crtc_state->gamma_enable = true;
9455 
9456 	if (!HAS_GMCH(dev_priv) &&
9457 	    tmp & DISPPLANE_PIPE_CSC_ENABLE)
9458 		crtc_state->csc_enable = true;
9459 }
9460 
9461 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
9462 				 struct intel_crtc_state *pipe_config)
9463 {
9464 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9465 	enum intel_display_power_domain power_domain;
9466 	intel_wakeref_t wakeref;
9467 	u32 tmp;
9468 	bool ret;
9469 
9470 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9471 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
9472 	if (!wakeref)
9473 		return false;
9474 
9475 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
9476 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9477 	pipe_config->shared_dpll = NULL;
9478 
9479 	ret = false;
9480 
9481 	tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe));
9482 	if (!(tmp & PIPECONF_ENABLE))
9483 		goto out;
9484 
9485 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
9486 	    IS_CHERRYVIEW(dev_priv)) {
9487 		switch (tmp & PIPECONF_BPC_MASK) {
9488 		case PIPECONF_6BPC:
9489 			pipe_config->pipe_bpp = 18;
9490 			break;
9491 		case PIPECONF_8BPC:
9492 			pipe_config->pipe_bpp = 24;
9493 			break;
9494 		case PIPECONF_10BPC:
9495 			pipe_config->pipe_bpp = 30;
9496 			break;
9497 		default:
9498 			break;
9499 		}
9500 	}
9501 
9502 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
9503 	    (tmp & PIPECONF_COLOR_RANGE_SELECT))
9504 		pipe_config->limited_color_range = true;
9505 
9506 	pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >>
9507 		PIPECONF_GAMMA_MODE_SHIFT;
9508 
9509 	if (IS_CHERRYVIEW(dev_priv))
9510 		pipe_config->cgm_mode = intel_de_read(dev_priv,
9511 						      CGM_PIPE_MODE(crtc->pipe));
9512 
9513 	i9xx_get_pipe_color_config(pipe_config);
9514 	intel_color_get_config(pipe_config);
9515 
9516 	if (INTEL_GEN(dev_priv) < 4)
9517 		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
9518 
9519 	intel_get_pipe_timings(crtc, pipe_config);
9520 	intel_get_pipe_src_size(crtc, pipe_config);
9521 
9522 	i9xx_get_pfit_config(pipe_config);
9523 
9524 	if (INTEL_GEN(dev_priv) >= 4) {
9525 		/* No way to read it out on pipes B and C */
9526 		if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
9527 			tmp = dev_priv->chv_dpll_md[crtc->pipe];
9528 		else
9529 			tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe));
9530 		pipe_config->pixel_multiplier =
9531 			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
9532 			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
9533 		pipe_config->dpll_hw_state.dpll_md = tmp;
9534 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
9535 		   IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
9536 		tmp = intel_de_read(dev_priv, DPLL(crtc->pipe));
9537 		pipe_config->pixel_multiplier =
9538 			((tmp & SDVO_MULTIPLIER_MASK)
9539 			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
9540 	} else {
9541 		/* Note that on i915G/GM the pixel multiplier is in the sdvo
9542 		 * port and will be fixed up in the encoder->get_config
9543 		 * function. */
9544 		pipe_config->pixel_multiplier = 1;
9545 	}
9546 	pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv,
9547 							DPLL(crtc->pipe));
9548 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
9549 		pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv,
9550 							       FP0(crtc->pipe));
9551 		pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv,
9552 							       FP1(crtc->pipe));
9553 	} else {
9554 		/* Mask out read-only status bits. */
9555 		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
9556 						     DPLL_PORTC_READY_MASK |
9557 						     DPLL_PORTB_READY_MASK);
9558 	}
9559 
9560 	if (IS_CHERRYVIEW(dev_priv))
9561 		chv_crtc_clock_get(crtc, pipe_config);
9562 	else if (IS_VALLEYVIEW(dev_priv))
9563 		vlv_crtc_clock_get(crtc, pipe_config);
9564 	else
9565 		i9xx_crtc_clock_get(crtc, pipe_config);
9566 
9567 	/*
9568 	 * Normally the dotclock is filled in by the encoder .get_config()
9569 	 * but in case the pipe is enabled w/o any ports we need a sane
9570 	 * default.
9571 	 */
9572 	pipe_config->hw.adjusted_mode.crtc_clock =
9573 		pipe_config->port_clock / pipe_config->pixel_multiplier;
9574 
9575 	ret = true;
9576 
9577 out:
9578 	intel_display_power_put(dev_priv, power_domain, wakeref);
9579 
9580 	return ret;
9581 }
9582 
9583 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv)
9584 {
9585 	struct intel_encoder *encoder;
9586 	int i;
9587 	u32 val, final;
9588 	bool has_lvds = false;
9589 	bool has_cpu_edp = false;
9590 	bool has_panel = false;
9591 	bool has_ck505 = false;
9592 	bool can_ssc = false;
9593 	bool using_ssc_source = false;
9594 
9595 	/* We need to take the global config into account */
9596 	for_each_intel_encoder(&dev_priv->drm, encoder) {
9597 		switch (encoder->type) {
9598 		case INTEL_OUTPUT_LVDS:
9599 			has_panel = true;
9600 			has_lvds = true;
9601 			break;
9602 		case INTEL_OUTPUT_EDP:
9603 			has_panel = true;
9604 			if (encoder->port == PORT_A)
9605 				has_cpu_edp = true;
9606 			break;
9607 		default:
9608 			break;
9609 		}
9610 	}
9611 
9612 	if (HAS_PCH_IBX(dev_priv)) {
9613 		has_ck505 = dev_priv->vbt.display_clock_mode;
9614 		can_ssc = has_ck505;
9615 	} else {
9616 		has_ck505 = false;
9617 		can_ssc = true;
9618 	}
9619 
9620 	/* Check if any DPLLs are using the SSC source */
9621 	for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) {
9622 		u32 temp = intel_de_read(dev_priv, PCH_DPLL(i));
9623 
9624 		if (!(temp & DPLL_VCO_ENABLE))
9625 			continue;
9626 
9627 		if ((temp & PLL_REF_INPUT_MASK) ==
9628 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
9629 			using_ssc_source = true;
9630 			break;
9631 		}
9632 	}
9633 
9634 	drm_dbg_kms(&dev_priv->drm,
9635 		    "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
9636 		    has_panel, has_lvds, has_ck505, using_ssc_source);
9637 
9638 	/* Ironlake: try to setup display ref clock before DPLL
9639 	 * enabling. This is only under driver's control after
9640 	 * PCH B stepping, previous chipset stepping should be
9641 	 * ignoring this setting.
9642 	 */
9643 	val = intel_de_read(dev_priv, PCH_DREF_CONTROL);
9644 
9645 	/* As we must carefully and slowly disable/enable each source in turn,
9646 	 * compute the final state we want first and check if we need to
9647 	 * make any changes at all.
9648 	 */
9649 	final = val;
9650 	final &= ~DREF_NONSPREAD_SOURCE_MASK;
9651 	if (has_ck505)
9652 		final |= DREF_NONSPREAD_CK505_ENABLE;
9653 	else
9654 		final |= DREF_NONSPREAD_SOURCE_ENABLE;
9655 
9656 	final &= ~DREF_SSC_SOURCE_MASK;
9657 	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9658 	final &= ~DREF_SSC1_ENABLE;
9659 
9660 	if (has_panel) {
9661 		final |= DREF_SSC_SOURCE_ENABLE;
9662 
9663 		if (intel_panel_use_ssc(dev_priv) && can_ssc)
9664 			final |= DREF_SSC1_ENABLE;
9665 
9666 		if (has_cpu_edp) {
9667 			if (intel_panel_use_ssc(dev_priv) && can_ssc)
9668 				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9669 			else
9670 				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9671 		} else
9672 			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9673 	} else if (using_ssc_source) {
9674 		final |= DREF_SSC_SOURCE_ENABLE;
9675 		final |= DREF_SSC1_ENABLE;
9676 	}
9677 
9678 	if (final == val)
9679 		return;
9680 
9681 	/* Always enable nonspread source */
9682 	val &= ~DREF_NONSPREAD_SOURCE_MASK;
9683 
9684 	if (has_ck505)
9685 		val |= DREF_NONSPREAD_CK505_ENABLE;
9686 	else
9687 		val |= DREF_NONSPREAD_SOURCE_ENABLE;
9688 
9689 	if (has_panel) {
9690 		val &= ~DREF_SSC_SOURCE_MASK;
9691 		val |= DREF_SSC_SOURCE_ENABLE;
9692 
9693 		/* SSC must be turned on before enabling the CPU output  */
9694 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9695 			drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n");
9696 			val |= DREF_SSC1_ENABLE;
9697 		} else
9698 			val &= ~DREF_SSC1_ENABLE;
9699 
9700 		/* Get SSC going before enabling the outputs */
9701 		intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9702 		intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9703 		udelay(200);
9704 
9705 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9706 
9707 		/* Enable CPU source on CPU attached eDP */
9708 		if (has_cpu_edp) {
9709 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9710 				drm_dbg_kms(&dev_priv->drm,
9711 					    "Using SSC on eDP\n");
9712 				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9713 			} else
9714 				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9715 		} else
9716 			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9717 
9718 		intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9719 		intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9720 		udelay(200);
9721 	} else {
9722 		drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n");
9723 
9724 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9725 
9726 		/* Turn off CPU output */
9727 		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9728 
9729 		intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9730 		intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9731 		udelay(200);
9732 
9733 		if (!using_ssc_source) {
9734 			drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n");
9735 
9736 			/* Turn off the SSC source */
9737 			val &= ~DREF_SSC_SOURCE_MASK;
9738 			val |= DREF_SSC_SOURCE_DISABLE;
9739 
9740 			/* Turn off SSC1 */
9741 			val &= ~DREF_SSC1_ENABLE;
9742 
9743 			intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9744 			intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9745 			udelay(200);
9746 		}
9747 	}
9748 
9749 	BUG_ON(val != final);
9750 }
9751 
9752 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9753 {
9754 	u32 tmp;
9755 
9756 	tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2);
9757 	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9758 	intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp);
9759 
9760 	if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) &
9761 			FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9762 		drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n");
9763 
9764 	tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2);
9765 	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9766 	intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp);
9767 
9768 	if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) &
9769 			 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9770 		drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n");
9771 }
9772 
9773 /* WaMPhyProgramming:hsw */
9774 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9775 {
9776 	u32 tmp;
9777 
9778 	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9779 	tmp &= ~(0xFF << 24);
9780 	tmp |= (0x12 << 24);
9781 	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9782 
9783 	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9784 	tmp |= (1 << 11);
9785 	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9786 
9787 	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9788 	tmp |= (1 << 11);
9789 	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9790 
9791 	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9792 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9793 	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9794 
9795 	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9796 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9797 	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9798 
9799 	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9800 	tmp &= ~(7 << 13);
9801 	tmp |= (5 << 13);
9802 	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9803 
9804 	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9805 	tmp &= ~(7 << 13);
9806 	tmp |= (5 << 13);
9807 	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9808 
9809 	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9810 	tmp &= ~0xFF;
9811 	tmp |= 0x1C;
9812 	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9813 
9814 	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9815 	tmp &= ~0xFF;
9816 	tmp |= 0x1C;
9817 	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9818 
9819 	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9820 	tmp &= ~(0xFF << 16);
9821 	tmp |= (0x1C << 16);
9822 	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9823 
9824 	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9825 	tmp &= ~(0xFF << 16);
9826 	tmp |= (0x1C << 16);
9827 	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9828 
9829 	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9830 	tmp |= (1 << 27);
9831 	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9832 
9833 	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9834 	tmp |= (1 << 27);
9835 	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9836 
9837 	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9838 	tmp &= ~(0xF << 28);
9839 	tmp |= (4 << 28);
9840 	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9841 
9842 	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9843 	tmp &= ~(0xF << 28);
9844 	tmp |= (4 << 28);
9845 	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9846 }
9847 
9848 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9849  * Programming" based on the parameters passed:
9850  * - Sequence to enable CLKOUT_DP
9851  * - Sequence to enable CLKOUT_DP without spread
9852  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9853  */
9854 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
9855 				 bool with_spread, bool with_fdi)
9856 {
9857 	u32 reg, tmp;
9858 
9859 	if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread,
9860 		     "FDI requires downspread\n"))
9861 		with_spread = true;
9862 	if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) &&
9863 		     with_fdi, "LP PCH doesn't have FDI\n"))
9864 		with_fdi = false;
9865 
9866 	mutex_lock(&dev_priv->sb_lock);
9867 
9868 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9869 	tmp &= ~SBI_SSCCTL_DISABLE;
9870 	tmp |= SBI_SSCCTL_PATHALT;
9871 	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9872 
9873 	udelay(24);
9874 
9875 	if (with_spread) {
9876 		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9877 		tmp &= ~SBI_SSCCTL_PATHALT;
9878 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9879 
9880 		if (with_fdi) {
9881 			lpt_reset_fdi_mphy(dev_priv);
9882 			lpt_program_fdi_mphy(dev_priv);
9883 		}
9884 	}
9885 
9886 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9887 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9888 	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9889 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9890 
9891 	mutex_unlock(&dev_priv->sb_lock);
9892 }
9893 
9894 /* Sequence to disable CLKOUT_DP */
9895 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
9896 {
9897 	u32 reg, tmp;
9898 
9899 	mutex_lock(&dev_priv->sb_lock);
9900 
9901 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9902 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9903 	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9904 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9905 
9906 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9907 	if (!(tmp & SBI_SSCCTL_DISABLE)) {
9908 		if (!(tmp & SBI_SSCCTL_PATHALT)) {
9909 			tmp |= SBI_SSCCTL_PATHALT;
9910 			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9911 			udelay(32);
9912 		}
9913 		tmp |= SBI_SSCCTL_DISABLE;
9914 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9915 	}
9916 
9917 	mutex_unlock(&dev_priv->sb_lock);
9918 }
9919 
9920 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9921 
9922 static const u16 sscdivintphase[] = {
9923 	[BEND_IDX( 50)] = 0x3B23,
9924 	[BEND_IDX( 45)] = 0x3B23,
9925 	[BEND_IDX( 40)] = 0x3C23,
9926 	[BEND_IDX( 35)] = 0x3C23,
9927 	[BEND_IDX( 30)] = 0x3D23,
9928 	[BEND_IDX( 25)] = 0x3D23,
9929 	[BEND_IDX( 20)] = 0x3E23,
9930 	[BEND_IDX( 15)] = 0x3E23,
9931 	[BEND_IDX( 10)] = 0x3F23,
9932 	[BEND_IDX(  5)] = 0x3F23,
9933 	[BEND_IDX(  0)] = 0x0025,
9934 	[BEND_IDX( -5)] = 0x0025,
9935 	[BEND_IDX(-10)] = 0x0125,
9936 	[BEND_IDX(-15)] = 0x0125,
9937 	[BEND_IDX(-20)] = 0x0225,
9938 	[BEND_IDX(-25)] = 0x0225,
9939 	[BEND_IDX(-30)] = 0x0325,
9940 	[BEND_IDX(-35)] = 0x0325,
9941 	[BEND_IDX(-40)] = 0x0425,
9942 	[BEND_IDX(-45)] = 0x0425,
9943 	[BEND_IDX(-50)] = 0x0525,
9944 };
9945 
9946 /*
9947  * Bend CLKOUT_DP
9948  * steps -50 to 50 inclusive, in steps of 5
9949  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9950  * change in clock period = -(steps / 10) * 5.787 ps
9951  */
9952 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9953 {
9954 	u32 tmp;
9955 	int idx = BEND_IDX(steps);
9956 
9957 	if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0))
9958 		return;
9959 
9960 	if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase)))
9961 		return;
9962 
9963 	mutex_lock(&dev_priv->sb_lock);
9964 
9965 	if (steps % 10 != 0)
9966 		tmp = 0xAAAAAAAB;
9967 	else
9968 		tmp = 0x00000000;
9969 	intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9970 
9971 	tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9972 	tmp &= 0xffff0000;
9973 	tmp |= sscdivintphase[idx];
9974 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9975 
9976 	mutex_unlock(&dev_priv->sb_lock);
9977 }
9978 
9979 #undef BEND_IDX
9980 
9981 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv)
9982 {
9983 	u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
9984 	u32 ctl = intel_de_read(dev_priv, SPLL_CTL);
9985 
9986 	if ((ctl & SPLL_PLL_ENABLE) == 0)
9987 		return false;
9988 
9989 	if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC &&
9990 	    (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9991 		return true;
9992 
9993 	if (IS_BROADWELL(dev_priv) &&
9994 	    (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW)
9995 		return true;
9996 
9997 	return false;
9998 }
9999 
10000 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv,
10001 			       enum intel_dpll_id id)
10002 {
10003 	u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
10004 	u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id));
10005 
10006 	if ((ctl & WRPLL_PLL_ENABLE) == 0)
10007 		return false;
10008 
10009 	if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC)
10010 		return true;
10011 
10012 	if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) &&
10013 	    (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW &&
10014 	    (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
10015 		return true;
10016 
10017 	return false;
10018 }
10019 
10020 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
10021 {
10022 	struct intel_encoder *encoder;
10023 	bool has_fdi = false;
10024 
10025 	for_each_intel_encoder(&dev_priv->drm, encoder) {
10026 		switch (encoder->type) {
10027 		case INTEL_OUTPUT_ANALOG:
10028 			has_fdi = true;
10029 			break;
10030 		default:
10031 			break;
10032 		}
10033 	}
10034 
10035 	/*
10036 	 * The BIOS may have decided to use the PCH SSC
10037 	 * reference so we must not disable it until the
10038 	 * relevant PLLs have stopped relying on it. We'll
10039 	 * just leave the PCH SSC reference enabled in case
10040 	 * any active PLL is using it. It will get disabled
10041 	 * after runtime suspend if we don't have FDI.
10042 	 *
10043 	 * TODO: Move the whole reference clock handling
10044 	 * to the modeset sequence proper so that we can
10045 	 * actually enable/disable/reconfigure these things
10046 	 * safely. To do that we need to introduce a real
10047 	 * clock hierarchy. That would also allow us to do
10048 	 * clock bending finally.
10049 	 */
10050 	dev_priv->pch_ssc_use = 0;
10051 
10052 	if (spll_uses_pch_ssc(dev_priv)) {
10053 		drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n");
10054 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL);
10055 	}
10056 
10057 	if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) {
10058 		drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n");
10059 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1);
10060 	}
10061 
10062 	if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) {
10063 		drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n");
10064 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2);
10065 	}
10066 
10067 	if (dev_priv->pch_ssc_use)
10068 		return;
10069 
10070 	if (has_fdi) {
10071 		lpt_bend_clkout_dp(dev_priv, 0);
10072 		lpt_enable_clkout_dp(dev_priv, true, true);
10073 	} else {
10074 		lpt_disable_clkout_dp(dev_priv);
10075 	}
10076 }
10077 
10078 /*
10079  * Initialize reference clocks when the driver loads
10080  */
10081 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
10082 {
10083 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
10084 		ilk_init_pch_refclk(dev_priv);
10085 	else if (HAS_PCH_LPT(dev_priv))
10086 		lpt_init_pch_refclk(dev_priv);
10087 }
10088 
10089 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state)
10090 {
10091 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10092 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10093 	enum pipe pipe = crtc->pipe;
10094 	u32 val;
10095 
10096 	val = 0;
10097 
10098 	switch (crtc_state->pipe_bpp) {
10099 	case 18:
10100 		val |= PIPECONF_6BPC;
10101 		break;
10102 	case 24:
10103 		val |= PIPECONF_8BPC;
10104 		break;
10105 	case 30:
10106 		val |= PIPECONF_10BPC;
10107 		break;
10108 	case 36:
10109 		val |= PIPECONF_12BPC;
10110 		break;
10111 	default:
10112 		/* Case prevented by intel_choose_pipe_bpp_dither. */
10113 		BUG();
10114 	}
10115 
10116 	if (crtc_state->dither)
10117 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
10118 
10119 	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
10120 		val |= PIPECONF_INTERLACED_ILK;
10121 	else
10122 		val |= PIPECONF_PROGRESSIVE;
10123 
10124 	/*
10125 	 * This would end up with an odd purple hue over
10126 	 * the entire display. Make sure we don't do it.
10127 	 */
10128 	drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range &&
10129 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
10130 
10131 	if (crtc_state->limited_color_range &&
10132 	    !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
10133 		val |= PIPECONF_COLOR_RANGE_SELECT;
10134 
10135 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
10136 		val |= PIPECONF_OUTPUT_COLORSPACE_YUV709;
10137 
10138 	val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
10139 
10140 	val |= PIPECONF_FRAME_START_DELAY(0);
10141 
10142 	intel_de_write(dev_priv, PIPECONF(pipe), val);
10143 	intel_de_posting_read(dev_priv, PIPECONF(pipe));
10144 }
10145 
10146 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state)
10147 {
10148 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10149 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10150 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
10151 	u32 val = 0;
10152 
10153 	if (IS_HASWELL(dev_priv) && crtc_state->dither)
10154 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
10155 
10156 	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
10157 		val |= PIPECONF_INTERLACED_ILK;
10158 	else
10159 		val |= PIPECONF_PROGRESSIVE;
10160 
10161 	if (IS_HASWELL(dev_priv) &&
10162 	    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
10163 		val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW;
10164 
10165 	intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val);
10166 	intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder));
10167 }
10168 
10169 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state)
10170 {
10171 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10172 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10173 	u32 val = 0;
10174 
10175 	switch (crtc_state->pipe_bpp) {
10176 	case 18:
10177 		val |= PIPEMISC_DITHER_6_BPC;
10178 		break;
10179 	case 24:
10180 		val |= PIPEMISC_DITHER_8_BPC;
10181 		break;
10182 	case 30:
10183 		val |= PIPEMISC_DITHER_10_BPC;
10184 		break;
10185 	case 36:
10186 		val |= PIPEMISC_DITHER_12_BPC;
10187 		break;
10188 	default:
10189 		MISSING_CASE(crtc_state->pipe_bpp);
10190 		break;
10191 	}
10192 
10193 	if (crtc_state->dither)
10194 		val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
10195 
10196 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
10197 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
10198 		val |= PIPEMISC_OUTPUT_COLORSPACE_YUV;
10199 
10200 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
10201 		val |= PIPEMISC_YUV420_ENABLE |
10202 			PIPEMISC_YUV420_MODE_FULL_BLEND;
10203 
10204 	if (INTEL_GEN(dev_priv) >= 11 &&
10205 	    (crtc_state->active_planes & ~(icl_hdr_plane_mask() |
10206 					   BIT(PLANE_CURSOR))) == 0)
10207 		val |= PIPEMISC_HDR_MODE_PRECISION;
10208 
10209 	if (INTEL_GEN(dev_priv) >= 12)
10210 		val |= PIPEMISC_PIXEL_ROUNDING_TRUNC;
10211 
10212 	intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val);
10213 }
10214 
10215 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc)
10216 {
10217 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10218 	u32 tmp;
10219 
10220 	tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe));
10221 
10222 	switch (tmp & PIPEMISC_DITHER_BPC_MASK) {
10223 	case PIPEMISC_DITHER_6_BPC:
10224 		return 18;
10225 	case PIPEMISC_DITHER_8_BPC:
10226 		return 24;
10227 	case PIPEMISC_DITHER_10_BPC:
10228 		return 30;
10229 	case PIPEMISC_DITHER_12_BPC:
10230 		return 36;
10231 	default:
10232 		MISSING_CASE(tmp);
10233 		return 0;
10234 	}
10235 }
10236 
10237 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp)
10238 {
10239 	/*
10240 	 * Account for spread spectrum to avoid
10241 	 * oversubscribing the link. Max center spread
10242 	 * is 2.5%; use 5% for safety's sake.
10243 	 */
10244 	u32 bps = target_clock * bpp * 21 / 20;
10245 	return DIV_ROUND_UP(bps, link_bw * 8);
10246 }
10247 
10248 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor)
10249 {
10250 	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
10251 }
10252 
10253 static void ilk_compute_dpll(struct intel_crtc *crtc,
10254 			     struct intel_crtc_state *crtc_state,
10255 			     struct dpll *reduced_clock)
10256 {
10257 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10258 	u32 dpll, fp, fp2;
10259 	int factor;
10260 
10261 	/* Enable autotuning of the PLL clock (if permissible) */
10262 	factor = 21;
10263 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10264 		if ((intel_panel_use_ssc(dev_priv) &&
10265 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
10266 		    (HAS_PCH_IBX(dev_priv) &&
10267 		     intel_is_dual_link_lvds(dev_priv)))
10268 			factor = 25;
10269 	} else if (crtc_state->sdvo_tv_clock) {
10270 		factor = 20;
10271 	}
10272 
10273 	fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
10274 
10275 	if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor))
10276 		fp |= FP_CB_TUNE;
10277 
10278 	if (reduced_clock) {
10279 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
10280 
10281 		if (reduced_clock->m < factor * reduced_clock->n)
10282 			fp2 |= FP_CB_TUNE;
10283 	} else {
10284 		fp2 = fp;
10285 	}
10286 
10287 	dpll = 0;
10288 
10289 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
10290 		dpll |= DPLLB_MODE_LVDS;
10291 	else
10292 		dpll |= DPLLB_MODE_DAC_SERIAL;
10293 
10294 	dpll |= (crtc_state->pixel_multiplier - 1)
10295 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
10296 
10297 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
10298 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
10299 		dpll |= DPLL_SDVO_HIGH_SPEED;
10300 
10301 	if (intel_crtc_has_dp_encoder(crtc_state))
10302 		dpll |= DPLL_SDVO_HIGH_SPEED;
10303 
10304 	/*
10305 	 * The high speed IO clock is only really required for
10306 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
10307 	 * possible to share the DPLL between CRT and HDMI. Enabling
10308 	 * the clock needlessly does no real harm, except use up a
10309 	 * bit of power potentially.
10310 	 *
10311 	 * We'll limit this to IVB with 3 pipes, since it has only two
10312 	 * DPLLs and so DPLL sharing is the only way to get three pipes
10313 	 * driving PCH ports at the same time. On SNB we could do this,
10314 	 * and potentially avoid enabling the second DPLL, but it's not
10315 	 * clear if it''s a win or loss power wise. No point in doing
10316 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
10317 	 */
10318 	if (INTEL_NUM_PIPES(dev_priv) == 3 &&
10319 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
10320 		dpll |= DPLL_SDVO_HIGH_SPEED;
10321 
10322 	/* compute bitmask from p1 value */
10323 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
10324 	/* also FPA1 */
10325 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
10326 
10327 	switch (crtc_state->dpll.p2) {
10328 	case 5:
10329 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
10330 		break;
10331 	case 7:
10332 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
10333 		break;
10334 	case 10:
10335 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
10336 		break;
10337 	case 14:
10338 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
10339 		break;
10340 	}
10341 
10342 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
10343 	    intel_panel_use_ssc(dev_priv))
10344 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
10345 	else
10346 		dpll |= PLL_REF_INPUT_DREFCLK;
10347 
10348 	dpll |= DPLL_VCO_ENABLE;
10349 
10350 	crtc_state->dpll_hw_state.dpll = dpll;
10351 	crtc_state->dpll_hw_state.fp0 = fp;
10352 	crtc_state->dpll_hw_state.fp1 = fp2;
10353 }
10354 
10355 static int ilk_crtc_compute_clock(struct intel_crtc *crtc,
10356 				  struct intel_crtc_state *crtc_state)
10357 {
10358 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10359 	struct intel_atomic_state *state =
10360 		to_intel_atomic_state(crtc_state->uapi.state);
10361 	const struct intel_limit *limit;
10362 	int refclk = 120000;
10363 
10364 	memset(&crtc_state->dpll_hw_state, 0,
10365 	       sizeof(crtc_state->dpll_hw_state));
10366 
10367 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
10368 	if (!crtc_state->has_pch_encoder)
10369 		return 0;
10370 
10371 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10372 		if (intel_panel_use_ssc(dev_priv)) {
10373 			drm_dbg_kms(&dev_priv->drm,
10374 				    "using SSC reference clock of %d kHz\n",
10375 				    dev_priv->vbt.lvds_ssc_freq);
10376 			refclk = dev_priv->vbt.lvds_ssc_freq;
10377 		}
10378 
10379 		if (intel_is_dual_link_lvds(dev_priv)) {
10380 			if (refclk == 100000)
10381 				limit = &ilk_limits_dual_lvds_100m;
10382 			else
10383 				limit = &ilk_limits_dual_lvds;
10384 		} else {
10385 			if (refclk == 100000)
10386 				limit = &ilk_limits_single_lvds_100m;
10387 			else
10388 				limit = &ilk_limits_single_lvds;
10389 		}
10390 	} else {
10391 		limit = &ilk_limits_dac;
10392 	}
10393 
10394 	if (!crtc_state->clock_set &&
10395 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
10396 				refclk, NULL, &crtc_state->dpll)) {
10397 		drm_err(&dev_priv->drm,
10398 			"Couldn't find PLL settings for mode!\n");
10399 		return -EINVAL;
10400 	}
10401 
10402 	ilk_compute_dpll(crtc, crtc_state, NULL);
10403 
10404 	if (!intel_reserve_shared_dplls(state, crtc, NULL)) {
10405 		drm_dbg_kms(&dev_priv->drm,
10406 			    "failed to find PLL for pipe %c\n",
10407 			    pipe_name(crtc->pipe));
10408 		return -EINVAL;
10409 	}
10410 
10411 	return 0;
10412 }
10413 
10414 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
10415 					 struct intel_link_m_n *m_n)
10416 {
10417 	struct drm_device *dev = crtc->base.dev;
10418 	struct drm_i915_private *dev_priv = to_i915(dev);
10419 	enum pipe pipe = crtc->pipe;
10420 
10421 	m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe));
10422 	m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe));
10423 	m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe))
10424 		& ~TU_SIZE_MASK;
10425 	m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe));
10426 	m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe))
10427 		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10428 }
10429 
10430 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
10431 					 enum transcoder transcoder,
10432 					 struct intel_link_m_n *m_n,
10433 					 struct intel_link_m_n *m2_n2)
10434 {
10435 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10436 	enum pipe pipe = crtc->pipe;
10437 
10438 	if (INTEL_GEN(dev_priv) >= 5) {
10439 		m_n->link_m = intel_de_read(dev_priv,
10440 					    PIPE_LINK_M1(transcoder));
10441 		m_n->link_n = intel_de_read(dev_priv,
10442 					    PIPE_LINK_N1(transcoder));
10443 		m_n->gmch_m = intel_de_read(dev_priv,
10444 					    PIPE_DATA_M1(transcoder))
10445 			& ~TU_SIZE_MASK;
10446 		m_n->gmch_n = intel_de_read(dev_priv,
10447 					    PIPE_DATA_N1(transcoder));
10448 		m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder))
10449 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10450 
10451 		if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) {
10452 			m2_n2->link_m = intel_de_read(dev_priv,
10453 						      PIPE_LINK_M2(transcoder));
10454 			m2_n2->link_n =	intel_de_read(dev_priv,
10455 							     PIPE_LINK_N2(transcoder));
10456 			m2_n2->gmch_m =	intel_de_read(dev_priv,
10457 							     PIPE_DATA_M2(transcoder))
10458 					& ~TU_SIZE_MASK;
10459 			m2_n2->gmch_n =	intel_de_read(dev_priv,
10460 							     PIPE_DATA_N2(transcoder));
10461 			m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder))
10462 					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10463 		}
10464 	} else {
10465 		m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe));
10466 		m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe));
10467 		m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe))
10468 			& ~TU_SIZE_MASK;
10469 		m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe));
10470 		m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe))
10471 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10472 	}
10473 }
10474 
10475 void intel_dp_get_m_n(struct intel_crtc *crtc,
10476 		      struct intel_crtc_state *pipe_config)
10477 {
10478 	if (pipe_config->has_pch_encoder)
10479 		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
10480 	else
10481 		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10482 					     &pipe_config->dp_m_n,
10483 					     &pipe_config->dp_m2_n2);
10484 }
10485 
10486 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc,
10487 				   struct intel_crtc_state *pipe_config)
10488 {
10489 	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10490 				     &pipe_config->fdi_m_n, NULL);
10491 }
10492 
10493 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state,
10494 				  u32 pos, u32 size)
10495 {
10496 	drm_rect_init(&crtc_state->pch_pfit.dst,
10497 		      pos >> 16, pos & 0xffff,
10498 		      size >> 16, size & 0xffff);
10499 }
10500 
10501 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state)
10502 {
10503 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10504 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10505 	struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
10506 	int id = -1;
10507 	int i;
10508 
10509 	/* find scaler attached to this pipe */
10510 	for (i = 0; i < crtc->num_scalers; i++) {
10511 		u32 ctl, pos, size;
10512 
10513 		ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i));
10514 		if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN)
10515 			continue;
10516 
10517 		id = i;
10518 		crtc_state->pch_pfit.enabled = true;
10519 
10520 		pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i));
10521 		size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i));
10522 
10523 		ilk_get_pfit_pos_size(crtc_state, pos, size);
10524 
10525 		scaler_state->scalers[i].in_use = true;
10526 		break;
10527 	}
10528 
10529 	scaler_state->scaler_id = id;
10530 	if (id >= 0)
10531 		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
10532 	else
10533 		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
10534 }
10535 
10536 static void
10537 skl_get_initial_plane_config(struct intel_crtc *crtc,
10538 			     struct intel_initial_plane_config *plane_config)
10539 {
10540 	struct drm_device *dev = crtc->base.dev;
10541 	struct drm_i915_private *dev_priv = to_i915(dev);
10542 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
10543 	enum plane_id plane_id = plane->id;
10544 	enum pipe pipe;
10545 	u32 val, base, offset, stride_mult, tiling, alpha;
10546 	int fourcc, pixel_format;
10547 	unsigned int aligned_height;
10548 	struct drm_framebuffer *fb;
10549 	struct intel_framebuffer *intel_fb;
10550 
10551 	if (!plane->get_hw_state(plane, &pipe))
10552 		return;
10553 
10554 	drm_WARN_ON(dev, pipe != crtc->pipe);
10555 
10556 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10557 	if (!intel_fb) {
10558 		drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n");
10559 		return;
10560 	}
10561 
10562 	fb = &intel_fb->base;
10563 
10564 	fb->dev = dev;
10565 
10566 	val = intel_de_read(dev_priv, PLANE_CTL(pipe, plane_id));
10567 
10568 	if (INTEL_GEN(dev_priv) >= 11)
10569 		pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK;
10570 	else
10571 		pixel_format = val & PLANE_CTL_FORMAT_MASK;
10572 
10573 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
10574 		alpha = intel_de_read(dev_priv,
10575 				      PLANE_COLOR_CTL(pipe, plane_id));
10576 		alpha &= PLANE_COLOR_ALPHA_MASK;
10577 	} else {
10578 		alpha = val & PLANE_CTL_ALPHA_MASK;
10579 	}
10580 
10581 	fourcc = skl_format_to_fourcc(pixel_format,
10582 				      val & PLANE_CTL_ORDER_RGBX, alpha);
10583 	fb->format = drm_format_info(fourcc);
10584 
10585 	tiling = val & PLANE_CTL_TILED_MASK;
10586 	switch (tiling) {
10587 	case PLANE_CTL_TILED_LINEAR:
10588 		fb->modifier = DRM_FORMAT_MOD_LINEAR;
10589 		break;
10590 	case PLANE_CTL_TILED_X:
10591 		plane_config->tiling = I915_TILING_X;
10592 		fb->modifier = I915_FORMAT_MOD_X_TILED;
10593 		break;
10594 	case PLANE_CTL_TILED_Y:
10595 		plane_config->tiling = I915_TILING_Y;
10596 		if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10597 			fb->modifier = INTEL_GEN(dev_priv) >= 12 ?
10598 				I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS :
10599 				I915_FORMAT_MOD_Y_TILED_CCS;
10600 		else if (val & PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE)
10601 			fb->modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
10602 		else
10603 			fb->modifier = I915_FORMAT_MOD_Y_TILED;
10604 		break;
10605 	case PLANE_CTL_TILED_YF:
10606 		if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10607 			fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
10608 		else
10609 			fb->modifier = I915_FORMAT_MOD_Yf_TILED;
10610 		break;
10611 	default:
10612 		MISSING_CASE(tiling);
10613 		goto error;
10614 	}
10615 
10616 	/*
10617 	 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
10618 	 * while i915 HW rotation is clockwise, thats why this swapping.
10619 	 */
10620 	switch (val & PLANE_CTL_ROTATE_MASK) {
10621 	case PLANE_CTL_ROTATE_0:
10622 		plane_config->rotation = DRM_MODE_ROTATE_0;
10623 		break;
10624 	case PLANE_CTL_ROTATE_90:
10625 		plane_config->rotation = DRM_MODE_ROTATE_270;
10626 		break;
10627 	case PLANE_CTL_ROTATE_180:
10628 		plane_config->rotation = DRM_MODE_ROTATE_180;
10629 		break;
10630 	case PLANE_CTL_ROTATE_270:
10631 		plane_config->rotation = DRM_MODE_ROTATE_90;
10632 		break;
10633 	}
10634 
10635 	if (INTEL_GEN(dev_priv) >= 10 &&
10636 	    val & PLANE_CTL_FLIP_HORIZONTAL)
10637 		plane_config->rotation |= DRM_MODE_REFLECT_X;
10638 
10639 	base = intel_de_read(dev_priv, PLANE_SURF(pipe, plane_id)) & 0xfffff000;
10640 	plane_config->base = base;
10641 
10642 	offset = intel_de_read(dev_priv, PLANE_OFFSET(pipe, plane_id));
10643 
10644 	val = intel_de_read(dev_priv, PLANE_SIZE(pipe, plane_id));
10645 	fb->height = ((val >> 16) & 0xffff) + 1;
10646 	fb->width = ((val >> 0) & 0xffff) + 1;
10647 
10648 	val = intel_de_read(dev_priv, PLANE_STRIDE(pipe, plane_id));
10649 	stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0);
10650 	fb->pitches[0] = (val & 0x3ff) * stride_mult;
10651 
10652 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
10653 
10654 	plane_config->size = fb->pitches[0] * aligned_height;
10655 
10656 	drm_dbg_kms(&dev_priv->drm,
10657 		    "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
10658 		    crtc->base.name, plane->base.name, fb->width, fb->height,
10659 		    fb->format->cpp[0] * 8, base, fb->pitches[0],
10660 		    plane_config->size);
10661 
10662 	plane_config->fb = intel_fb;
10663 	return;
10664 
10665 error:
10666 	kfree(intel_fb);
10667 }
10668 
10669 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state)
10670 {
10671 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10672 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10673 	u32 ctl, pos, size;
10674 
10675 	ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe));
10676 	if ((ctl & PF_ENABLE) == 0)
10677 		return;
10678 
10679 	crtc_state->pch_pfit.enabled = true;
10680 
10681 	pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe));
10682 	size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe));
10683 
10684 	ilk_get_pfit_pos_size(crtc_state, pos, size);
10685 
10686 	/*
10687 	 * We currently do not free assignements of panel fitters on
10688 	 * ivb/hsw (since we don't use the higher upscaling modes which
10689 	 * differentiates them) so just WARN about this case for now.
10690 	 */
10691 	drm_WARN_ON(&dev_priv->drm, IS_GEN(dev_priv, 7) &&
10692 		    (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe));
10693 }
10694 
10695 static bool ilk_get_pipe_config(struct intel_crtc *crtc,
10696 				struct intel_crtc_state *pipe_config)
10697 {
10698 	struct drm_device *dev = crtc->base.dev;
10699 	struct drm_i915_private *dev_priv = to_i915(dev);
10700 	enum intel_display_power_domain power_domain;
10701 	intel_wakeref_t wakeref;
10702 	u32 tmp;
10703 	bool ret;
10704 
10705 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10706 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
10707 	if (!wakeref)
10708 		return false;
10709 
10710 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10711 	pipe_config->shared_dpll = NULL;
10712 
10713 	ret = false;
10714 	tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe));
10715 	if (!(tmp & PIPECONF_ENABLE))
10716 		goto out;
10717 
10718 	switch (tmp & PIPECONF_BPC_MASK) {
10719 	case PIPECONF_6BPC:
10720 		pipe_config->pipe_bpp = 18;
10721 		break;
10722 	case PIPECONF_8BPC:
10723 		pipe_config->pipe_bpp = 24;
10724 		break;
10725 	case PIPECONF_10BPC:
10726 		pipe_config->pipe_bpp = 30;
10727 		break;
10728 	case PIPECONF_12BPC:
10729 		pipe_config->pipe_bpp = 36;
10730 		break;
10731 	default:
10732 		break;
10733 	}
10734 
10735 	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
10736 		pipe_config->limited_color_range = true;
10737 
10738 	switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) {
10739 	case PIPECONF_OUTPUT_COLORSPACE_YUV601:
10740 	case PIPECONF_OUTPUT_COLORSPACE_YUV709:
10741 		pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
10742 		break;
10743 	default:
10744 		pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
10745 		break;
10746 	}
10747 
10748 	pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >>
10749 		PIPECONF_GAMMA_MODE_SHIFT;
10750 
10751 	pipe_config->csc_mode = intel_de_read(dev_priv,
10752 					      PIPE_CSC_MODE(crtc->pipe));
10753 
10754 	i9xx_get_pipe_color_config(pipe_config);
10755 	intel_color_get_config(pipe_config);
10756 
10757 	if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
10758 		struct intel_shared_dpll *pll;
10759 		enum intel_dpll_id pll_id;
10760 
10761 		pipe_config->has_pch_encoder = true;
10762 
10763 		tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe));
10764 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10765 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
10766 
10767 		ilk_get_fdi_m_n_config(crtc, pipe_config);
10768 
10769 		if (HAS_PCH_IBX(dev_priv)) {
10770 			/*
10771 			 * The pipe->pch transcoder and pch transcoder->pll
10772 			 * mapping is fixed.
10773 			 */
10774 			pll_id = (enum intel_dpll_id) crtc->pipe;
10775 		} else {
10776 			tmp = intel_de_read(dev_priv, PCH_DPLL_SEL);
10777 			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
10778 				pll_id = DPLL_ID_PCH_PLL_B;
10779 			else
10780 				pll_id= DPLL_ID_PCH_PLL_A;
10781 		}
10782 
10783 		pipe_config->shared_dpll =
10784 			intel_get_shared_dpll_by_id(dev_priv, pll_id);
10785 		pll = pipe_config->shared_dpll;
10786 
10787 		drm_WARN_ON(dev, !pll->info->funcs->get_hw_state(dev_priv, pll,
10788 						 &pipe_config->dpll_hw_state));
10789 
10790 		tmp = pipe_config->dpll_hw_state.dpll;
10791 		pipe_config->pixel_multiplier =
10792 			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
10793 			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
10794 
10795 		ilk_pch_clock_get(crtc, pipe_config);
10796 	} else {
10797 		pipe_config->pixel_multiplier = 1;
10798 	}
10799 
10800 	intel_get_pipe_timings(crtc, pipe_config);
10801 	intel_get_pipe_src_size(crtc, pipe_config);
10802 
10803 	ilk_get_pfit_config(pipe_config);
10804 
10805 	ret = true;
10806 
10807 out:
10808 	intel_display_power_put(dev_priv, power_domain, wakeref);
10809 
10810 	return ret;
10811 }
10812 
10813 static int hsw_crtc_compute_clock(struct intel_crtc *crtc,
10814 				  struct intel_crtc_state *crtc_state)
10815 {
10816 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10817 	struct intel_atomic_state *state =
10818 		to_intel_atomic_state(crtc_state->uapi.state);
10819 
10820 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
10821 	    INTEL_GEN(dev_priv) >= 11) {
10822 		struct intel_encoder *encoder =
10823 			intel_get_crtc_new_encoder(state, crtc_state);
10824 
10825 		if (!intel_reserve_shared_dplls(state, crtc, encoder)) {
10826 			drm_dbg_kms(&dev_priv->drm,
10827 				    "failed to find PLL for pipe %c\n",
10828 				    pipe_name(crtc->pipe));
10829 			return -EINVAL;
10830 		}
10831 	}
10832 
10833 	return 0;
10834 }
10835 
10836 static void cnl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10837 			    struct intel_crtc_state *pipe_config)
10838 {
10839 	enum intel_dpll_id id;
10840 	u32 temp;
10841 
10842 	temp = intel_de_read(dev_priv, DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
10843 	id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
10844 
10845 	if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL2))
10846 		return;
10847 
10848 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10849 }
10850 
10851 static void icl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10852 			    struct intel_crtc_state *pipe_config)
10853 {
10854 	enum phy phy = intel_port_to_phy(dev_priv, port);
10855 	enum icl_port_dpll_id port_dpll_id;
10856 	enum intel_dpll_id id;
10857 	u32 temp;
10858 
10859 	if (intel_phy_is_combo(dev_priv, phy)) {
10860 		u32 mask, shift;
10861 
10862 		if (IS_ROCKETLAKE(dev_priv)) {
10863 			mask = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10864 			shift = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10865 		} else {
10866 			mask = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10867 			shift = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10868 		}
10869 
10870 		temp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0) & mask;
10871 		id = temp >> shift;
10872 		port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10873 	} else if (intel_phy_is_tc(dev_priv, phy)) {
10874 		u32 clk_sel = intel_de_read(dev_priv, DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK;
10875 
10876 		if (clk_sel == DDI_CLK_SEL_MG) {
10877 			id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv,
10878 								    port));
10879 			port_dpll_id = ICL_PORT_DPLL_MG_PHY;
10880 		} else {
10881 			drm_WARN_ON(&dev_priv->drm,
10882 				    clk_sel < DDI_CLK_SEL_TBT_162);
10883 			id = DPLL_ID_ICL_TBTPLL;
10884 			port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10885 		}
10886 	} else {
10887 		drm_WARN(&dev_priv->drm, 1, "Invalid port %x\n", port);
10888 		return;
10889 	}
10890 
10891 	pipe_config->icl_port_dplls[port_dpll_id].pll =
10892 		intel_get_shared_dpll_by_id(dev_priv, id);
10893 
10894 	icl_set_active_port_dpll(pipe_config, port_dpll_id);
10895 }
10896 
10897 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10898 				enum port port,
10899 				struct intel_crtc_state *pipe_config)
10900 {
10901 	enum intel_dpll_id id;
10902 
10903 	switch (port) {
10904 	case PORT_A:
10905 		id = DPLL_ID_SKL_DPLL0;
10906 		break;
10907 	case PORT_B:
10908 		id = DPLL_ID_SKL_DPLL1;
10909 		break;
10910 	case PORT_C:
10911 		id = DPLL_ID_SKL_DPLL2;
10912 		break;
10913 	default:
10914 		drm_err(&dev_priv->drm, "Incorrect port type\n");
10915 		return;
10916 	}
10917 
10918 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10919 }
10920 
10921 static void skl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10922 			    struct intel_crtc_state *pipe_config)
10923 {
10924 	enum intel_dpll_id id;
10925 	u32 temp;
10926 
10927 	temp = intel_de_read(dev_priv, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10928 	id = temp >> (port * 3 + 1);
10929 
10930 	if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL3))
10931 		return;
10932 
10933 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10934 }
10935 
10936 static void hsw_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10937 			    struct intel_crtc_state *pipe_config)
10938 {
10939 	enum intel_dpll_id id;
10940 	u32 ddi_pll_sel = intel_de_read(dev_priv, PORT_CLK_SEL(port));
10941 
10942 	switch (ddi_pll_sel) {
10943 	case PORT_CLK_SEL_WRPLL1:
10944 		id = DPLL_ID_WRPLL1;
10945 		break;
10946 	case PORT_CLK_SEL_WRPLL2:
10947 		id = DPLL_ID_WRPLL2;
10948 		break;
10949 	case PORT_CLK_SEL_SPLL:
10950 		id = DPLL_ID_SPLL;
10951 		break;
10952 	case PORT_CLK_SEL_LCPLL_810:
10953 		id = DPLL_ID_LCPLL_810;
10954 		break;
10955 	case PORT_CLK_SEL_LCPLL_1350:
10956 		id = DPLL_ID_LCPLL_1350;
10957 		break;
10958 	case PORT_CLK_SEL_LCPLL_2700:
10959 		id = DPLL_ID_LCPLL_2700;
10960 		break;
10961 	default:
10962 		MISSING_CASE(ddi_pll_sel);
10963 		fallthrough;
10964 	case PORT_CLK_SEL_NONE:
10965 		return;
10966 	}
10967 
10968 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10969 }
10970 
10971 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10972 				     struct intel_crtc_state *pipe_config,
10973 				     u64 *power_domain_mask,
10974 				     intel_wakeref_t *wakerefs)
10975 {
10976 	struct drm_device *dev = crtc->base.dev;
10977 	struct drm_i915_private *dev_priv = to_i915(dev);
10978 	enum intel_display_power_domain power_domain;
10979 	unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP);
10980 	unsigned long enabled_panel_transcoders = 0;
10981 	enum transcoder panel_transcoder;
10982 	intel_wakeref_t wf;
10983 	u32 tmp;
10984 
10985 	if (INTEL_GEN(dev_priv) >= 11)
10986 		panel_transcoder_mask |=
10987 			BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
10988 
10989 	/*
10990 	 * The pipe->transcoder mapping is fixed with the exception of the eDP
10991 	 * and DSI transcoders handled below.
10992 	 */
10993 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10994 
10995 	/*
10996 	 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10997 	 * consistency and less surprising code; it's in always on power).
10998 	 */
10999 	for_each_cpu_transcoder_masked(dev_priv, panel_transcoder,
11000 				       panel_transcoder_mask) {
11001 		bool force_thru = false;
11002 		enum pipe trans_pipe;
11003 
11004 		tmp = intel_de_read(dev_priv,
11005 				    TRANS_DDI_FUNC_CTL(panel_transcoder));
11006 		if (!(tmp & TRANS_DDI_FUNC_ENABLE))
11007 			continue;
11008 
11009 		/*
11010 		 * Log all enabled ones, only use the first one.
11011 		 *
11012 		 * FIXME: This won't work for two separate DSI displays.
11013 		 */
11014 		enabled_panel_transcoders |= BIT(panel_transcoder);
11015 		if (enabled_panel_transcoders != BIT(panel_transcoder))
11016 			continue;
11017 
11018 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
11019 		default:
11020 			drm_WARN(dev, 1,
11021 				 "unknown pipe linked to transcoder %s\n",
11022 				 transcoder_name(panel_transcoder));
11023 			fallthrough;
11024 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
11025 			force_thru = true;
11026 			fallthrough;
11027 		case TRANS_DDI_EDP_INPUT_A_ON:
11028 			trans_pipe = PIPE_A;
11029 			break;
11030 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
11031 			trans_pipe = PIPE_B;
11032 			break;
11033 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
11034 			trans_pipe = PIPE_C;
11035 			break;
11036 		case TRANS_DDI_EDP_INPUT_D_ONOFF:
11037 			trans_pipe = PIPE_D;
11038 			break;
11039 		}
11040 
11041 		if (trans_pipe == crtc->pipe) {
11042 			pipe_config->cpu_transcoder = panel_transcoder;
11043 			pipe_config->pch_pfit.force_thru = force_thru;
11044 		}
11045 	}
11046 
11047 	/*
11048 	 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1
11049 	 */
11050 	drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) &&
11051 		    enabled_panel_transcoders != BIT(TRANSCODER_EDP));
11052 
11053 	power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
11054 	drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain));
11055 
11056 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11057 	if (!wf)
11058 		return false;
11059 
11060 	wakerefs[power_domain] = wf;
11061 	*power_domain_mask |= BIT_ULL(power_domain);
11062 
11063 	tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder));
11064 
11065 	return tmp & PIPECONF_ENABLE;
11066 }
11067 
11068 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
11069 					 struct intel_crtc_state *pipe_config,
11070 					 u64 *power_domain_mask,
11071 					 intel_wakeref_t *wakerefs)
11072 {
11073 	struct drm_device *dev = crtc->base.dev;
11074 	struct drm_i915_private *dev_priv = to_i915(dev);
11075 	enum intel_display_power_domain power_domain;
11076 	enum transcoder cpu_transcoder;
11077 	intel_wakeref_t wf;
11078 	enum port port;
11079 	u32 tmp;
11080 
11081 	for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
11082 		if (port == PORT_A)
11083 			cpu_transcoder = TRANSCODER_DSI_A;
11084 		else
11085 			cpu_transcoder = TRANSCODER_DSI_C;
11086 
11087 		power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
11088 		drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain));
11089 
11090 		wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11091 		if (!wf)
11092 			continue;
11093 
11094 		wakerefs[power_domain] = wf;
11095 		*power_domain_mask |= BIT_ULL(power_domain);
11096 
11097 		/*
11098 		 * The PLL needs to be enabled with a valid divider
11099 		 * configuration, otherwise accessing DSI registers will hang
11100 		 * the machine. See BSpec North Display Engine
11101 		 * registers/MIPI[BXT]. We can break out here early, since we
11102 		 * need the same DSI PLL to be enabled for both DSI ports.
11103 		 */
11104 		if (!bxt_dsi_pll_is_enabled(dev_priv))
11105 			break;
11106 
11107 		/* XXX: this works for video mode only */
11108 		tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port));
11109 		if (!(tmp & DPI_ENABLE))
11110 			continue;
11111 
11112 		tmp = intel_de_read(dev_priv, MIPI_CTRL(port));
11113 		if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
11114 			continue;
11115 
11116 		pipe_config->cpu_transcoder = cpu_transcoder;
11117 		break;
11118 	}
11119 
11120 	return transcoder_is_dsi(pipe_config->cpu_transcoder);
11121 }
11122 
11123 static void hsw_get_ddi_port_state(struct intel_crtc *crtc,
11124 				   struct intel_crtc_state *pipe_config)
11125 {
11126 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11127 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
11128 	struct intel_shared_dpll *pll;
11129 	enum port port;
11130 	u32 tmp;
11131 
11132 	if (transcoder_is_dsi(cpu_transcoder)) {
11133 		port = (cpu_transcoder == TRANSCODER_DSI_A) ?
11134 						PORT_A : PORT_B;
11135 	} else {
11136 		tmp = intel_de_read(dev_priv,
11137 				    TRANS_DDI_FUNC_CTL(cpu_transcoder));
11138 		if (INTEL_GEN(dev_priv) >= 12)
11139 			port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
11140 		else
11141 			port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
11142 	}
11143 
11144 	if (INTEL_GEN(dev_priv) >= 11)
11145 		icl_get_ddi_pll(dev_priv, port, pipe_config);
11146 	else if (IS_CANNONLAKE(dev_priv))
11147 		cnl_get_ddi_pll(dev_priv, port, pipe_config);
11148 	else if (IS_GEN9_BC(dev_priv))
11149 		skl_get_ddi_pll(dev_priv, port, pipe_config);
11150 	else if (IS_GEN9_LP(dev_priv))
11151 		bxt_get_ddi_pll(dev_priv, port, pipe_config);
11152 	else
11153 		hsw_get_ddi_pll(dev_priv, port, pipe_config);
11154 
11155 	pll = pipe_config->shared_dpll;
11156 	if (pll) {
11157 		drm_WARN_ON(&dev_priv->drm,
11158 			    !pll->info->funcs->get_hw_state(dev_priv, pll,
11159 						&pipe_config->dpll_hw_state));
11160 	}
11161 
11162 	/*
11163 	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
11164 	 * DDI E. So just check whether this pipe is wired to DDI E and whether
11165 	 * the PCH transcoder is on.
11166 	 */
11167 	if (INTEL_GEN(dev_priv) < 9 &&
11168 	    (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) {
11169 		pipe_config->has_pch_encoder = true;
11170 
11171 		tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A));
11172 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
11173 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
11174 
11175 		ilk_get_fdi_m_n_config(crtc, pipe_config);
11176 	}
11177 }
11178 
11179 static bool hsw_get_pipe_config(struct intel_crtc *crtc,
11180 				struct intel_crtc_state *pipe_config)
11181 {
11182 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11183 	intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf;
11184 	enum intel_display_power_domain power_domain;
11185 	u64 power_domain_mask;
11186 	bool active;
11187 	u32 tmp;
11188 
11189 	pipe_config->master_transcoder = INVALID_TRANSCODER;
11190 
11191 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
11192 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11193 	if (!wf)
11194 		return false;
11195 
11196 	wakerefs[power_domain] = wf;
11197 	power_domain_mask = BIT_ULL(power_domain);
11198 
11199 	pipe_config->shared_dpll = NULL;
11200 
11201 	active = hsw_get_transcoder_state(crtc, pipe_config,
11202 					  &power_domain_mask, wakerefs);
11203 
11204 	if (IS_GEN9_LP(dev_priv) &&
11205 	    bxt_get_dsi_transcoder_state(crtc, pipe_config,
11206 					 &power_domain_mask, wakerefs)) {
11207 		drm_WARN_ON(&dev_priv->drm, active);
11208 		active = true;
11209 	}
11210 
11211 	if (!active)
11212 		goto out;
11213 
11214 	if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
11215 	    INTEL_GEN(dev_priv) >= 11) {
11216 		hsw_get_ddi_port_state(crtc, pipe_config);
11217 		intel_get_pipe_timings(crtc, pipe_config);
11218 	}
11219 
11220 	intel_get_pipe_src_size(crtc, pipe_config);
11221 
11222 	if (IS_HASWELL(dev_priv)) {
11223 		u32 tmp = intel_de_read(dev_priv,
11224 					PIPECONF(pipe_config->cpu_transcoder));
11225 
11226 		if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW)
11227 			pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
11228 		else
11229 			pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
11230 	} else {
11231 		pipe_config->output_format =
11232 			bdw_get_pipemisc_output_format(crtc);
11233 
11234 		/*
11235 		 * Currently there is no interface defined to
11236 		 * check user preference between RGB/YCBCR444
11237 		 * or YCBCR420. So the only possible case for
11238 		 * YCBCR444 usage is driving YCBCR420 output
11239 		 * with LSPCON, when pipe is configured for
11240 		 * YCBCR444 output and LSPCON takes care of
11241 		 * downsampling it.
11242 		 */
11243 		pipe_config->lspcon_downsampling =
11244 			pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444;
11245 	}
11246 
11247 	pipe_config->gamma_mode = intel_de_read(dev_priv,
11248 						GAMMA_MODE(crtc->pipe));
11249 
11250 	pipe_config->csc_mode = intel_de_read(dev_priv,
11251 					      PIPE_CSC_MODE(crtc->pipe));
11252 
11253 	if (INTEL_GEN(dev_priv) >= 9) {
11254 		tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe));
11255 
11256 		if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE)
11257 			pipe_config->gamma_enable = true;
11258 
11259 		if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE)
11260 			pipe_config->csc_enable = true;
11261 	} else {
11262 		i9xx_get_pipe_color_config(pipe_config);
11263 	}
11264 
11265 	intel_color_get_config(pipe_config);
11266 
11267 	tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe));
11268 	pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp);
11269 	if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
11270 		pipe_config->ips_linetime =
11271 			REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp);
11272 
11273 	power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
11274 	drm_WARN_ON(&dev_priv->drm, power_domain_mask & BIT_ULL(power_domain));
11275 
11276 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11277 	if (wf) {
11278 		wakerefs[power_domain] = wf;
11279 		power_domain_mask |= BIT_ULL(power_domain);
11280 
11281 		if (INTEL_GEN(dev_priv) >= 9)
11282 			skl_get_pfit_config(pipe_config);
11283 		else
11284 			ilk_get_pfit_config(pipe_config);
11285 	}
11286 
11287 	if (hsw_crtc_supports_ips(crtc)) {
11288 		if (IS_HASWELL(dev_priv))
11289 			pipe_config->ips_enabled = intel_de_read(dev_priv,
11290 								 IPS_CTL) & IPS_ENABLE;
11291 		else {
11292 			/*
11293 			 * We cannot readout IPS state on broadwell, set to
11294 			 * true so we can set it to a defined state on first
11295 			 * commit.
11296 			 */
11297 			pipe_config->ips_enabled = true;
11298 		}
11299 	}
11300 
11301 	if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
11302 	    !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
11303 		pipe_config->pixel_multiplier =
11304 			intel_de_read(dev_priv,
11305 				      PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
11306 	} else {
11307 		pipe_config->pixel_multiplier = 1;
11308 	}
11309 
11310 out:
11311 	for_each_power_domain(power_domain, power_domain_mask)
11312 		intel_display_power_put(dev_priv,
11313 					power_domain, wakerefs[power_domain]);
11314 
11315 	return active;
11316 }
11317 
11318 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
11319 {
11320 	struct drm_i915_private *dev_priv =
11321 		to_i915(plane_state->uapi.plane->dev);
11322 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11323 	const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11324 	u32 base;
11325 
11326 	if (INTEL_INFO(dev_priv)->display.cursor_needs_physical)
11327 		base = sg_dma_address(obj->mm.pages->sgl);
11328 	else
11329 		base = intel_plane_ggtt_offset(plane_state);
11330 
11331 	return base + plane_state->color_plane[0].offset;
11332 }
11333 
11334 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
11335 {
11336 	int x = plane_state->uapi.dst.x1;
11337 	int y = plane_state->uapi.dst.y1;
11338 	u32 pos = 0;
11339 
11340 	if (x < 0) {
11341 		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
11342 		x = -x;
11343 	}
11344 	pos |= x << CURSOR_X_SHIFT;
11345 
11346 	if (y < 0) {
11347 		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
11348 		y = -y;
11349 	}
11350 	pos |= y << CURSOR_Y_SHIFT;
11351 
11352 	return pos;
11353 }
11354 
11355 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
11356 {
11357 	const struct drm_mode_config *config =
11358 		&plane_state->uapi.plane->dev->mode_config;
11359 	int width = drm_rect_width(&plane_state->uapi.dst);
11360 	int height = drm_rect_height(&plane_state->uapi.dst);
11361 
11362 	return width > 0 && width <= config->cursor_width &&
11363 		height > 0 && height <= config->cursor_height;
11364 }
11365 
11366 static int intel_cursor_check_surface(struct intel_plane_state *plane_state)
11367 {
11368 	struct drm_i915_private *dev_priv =
11369 		to_i915(plane_state->uapi.plane->dev);
11370 	unsigned int rotation = plane_state->hw.rotation;
11371 	int src_x, src_y;
11372 	u32 offset;
11373 	int ret;
11374 
11375 	ret = intel_plane_compute_gtt(plane_state);
11376 	if (ret)
11377 		return ret;
11378 
11379 	if (!plane_state->uapi.visible)
11380 		return 0;
11381 
11382 	src_x = plane_state->uapi.src.x1 >> 16;
11383 	src_y = plane_state->uapi.src.y1 >> 16;
11384 
11385 	intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
11386 	offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
11387 						    plane_state, 0);
11388 
11389 	if (src_x != 0 || src_y != 0) {
11390 		drm_dbg_kms(&dev_priv->drm,
11391 			    "Arbitrary cursor panning not supported\n");
11392 		return -EINVAL;
11393 	}
11394 
11395 	/*
11396 	 * Put the final coordinates back so that the src
11397 	 * coordinate checks will see the right values.
11398 	 */
11399 	drm_rect_translate_to(&plane_state->uapi.src,
11400 			      src_x << 16, src_y << 16);
11401 
11402 	/* ILK+ do this automagically in hardware */
11403 	if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) {
11404 		const struct drm_framebuffer *fb = plane_state->hw.fb;
11405 		int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
11406 		int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
11407 
11408 		offset += (src_h * src_w - 1) * fb->format->cpp[0];
11409 	}
11410 
11411 	plane_state->color_plane[0].offset = offset;
11412 	plane_state->color_plane[0].x = src_x;
11413 	plane_state->color_plane[0].y = src_y;
11414 
11415 	return 0;
11416 }
11417 
11418 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
11419 			      struct intel_plane_state *plane_state)
11420 {
11421 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11422 	struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
11423 	int ret;
11424 
11425 	if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) {
11426 		drm_dbg_kms(&i915->drm, "cursor cannot be tiled\n");
11427 		return -EINVAL;
11428 	}
11429 
11430 	ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
11431 						  &crtc_state->uapi,
11432 						  DRM_PLANE_HELPER_NO_SCALING,
11433 						  DRM_PLANE_HELPER_NO_SCALING,
11434 						  true, true);
11435 	if (ret)
11436 		return ret;
11437 
11438 	/* Use the unclipped src/dst rectangles, which we program to hw */
11439 	plane_state->uapi.src = drm_plane_state_src(&plane_state->uapi);
11440 	plane_state->uapi.dst = drm_plane_state_dest(&plane_state->uapi);
11441 
11442 	ret = intel_cursor_check_surface(plane_state);
11443 	if (ret)
11444 		return ret;
11445 
11446 	if (!plane_state->uapi.visible)
11447 		return 0;
11448 
11449 	ret = intel_plane_check_src_coordinates(plane_state);
11450 	if (ret)
11451 		return ret;
11452 
11453 	return 0;
11454 }
11455 
11456 static unsigned int
11457 i845_cursor_max_stride(struct intel_plane *plane,
11458 		       u32 pixel_format, u64 modifier,
11459 		       unsigned int rotation)
11460 {
11461 	return 2048;
11462 }
11463 
11464 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11465 {
11466 	u32 cntl = 0;
11467 
11468 	if (crtc_state->gamma_enable)
11469 		cntl |= CURSOR_GAMMA_ENABLE;
11470 
11471 	return cntl;
11472 }
11473 
11474 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
11475 			   const struct intel_plane_state *plane_state)
11476 {
11477 	return CURSOR_ENABLE |
11478 		CURSOR_FORMAT_ARGB |
11479 		CURSOR_STRIDE(plane_state->color_plane[0].stride);
11480 }
11481 
11482 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
11483 {
11484 	int width = drm_rect_width(&plane_state->uapi.dst);
11485 
11486 	/*
11487 	 * 845g/865g are only limited by the width of their cursors,
11488 	 * the height is arbitrary up to the precision of the register.
11489 	 */
11490 	return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
11491 }
11492 
11493 static int i845_check_cursor(struct intel_crtc_state *crtc_state,
11494 			     struct intel_plane_state *plane_state)
11495 {
11496 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11497 	struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
11498 	int ret;
11499 
11500 	ret = intel_check_cursor(crtc_state, plane_state);
11501 	if (ret)
11502 		return ret;
11503 
11504 	/* if we want to turn off the cursor ignore width and height */
11505 	if (!fb)
11506 		return 0;
11507 
11508 	/* Check for which cursor types we support */
11509 	if (!i845_cursor_size_ok(plane_state)) {
11510 		drm_dbg_kms(&i915->drm,
11511 			    "Cursor dimension %dx%d not supported\n",
11512 			    drm_rect_width(&plane_state->uapi.dst),
11513 			    drm_rect_height(&plane_state->uapi.dst));
11514 		return -EINVAL;
11515 	}
11516 
11517 	drm_WARN_ON(&i915->drm, plane_state->uapi.visible &&
11518 		    plane_state->color_plane[0].stride != fb->pitches[0]);
11519 
11520 	switch (fb->pitches[0]) {
11521 	case 256:
11522 	case 512:
11523 	case 1024:
11524 	case 2048:
11525 		break;
11526 	default:
11527 		 drm_dbg_kms(&i915->drm, "Invalid cursor stride (%u)\n",
11528 			     fb->pitches[0]);
11529 		return -EINVAL;
11530 	}
11531 
11532 	plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
11533 
11534 	return 0;
11535 }
11536 
11537 static void i845_update_cursor(struct intel_plane *plane,
11538 			       const struct intel_crtc_state *crtc_state,
11539 			       const struct intel_plane_state *plane_state)
11540 {
11541 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11542 	u32 cntl = 0, base = 0, pos = 0, size = 0;
11543 	unsigned long irqflags;
11544 
11545 	if (plane_state && plane_state->uapi.visible) {
11546 		unsigned int width = drm_rect_width(&plane_state->uapi.dst);
11547 		unsigned int height = drm_rect_height(&plane_state->uapi.dst);
11548 
11549 		cntl = plane_state->ctl |
11550 			i845_cursor_ctl_crtc(crtc_state);
11551 
11552 		size = (height << 12) | width;
11553 
11554 		base = intel_cursor_base(plane_state);
11555 		pos = intel_cursor_position(plane_state);
11556 	}
11557 
11558 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11559 
11560 	/* On these chipsets we can only modify the base/size/stride
11561 	 * whilst the cursor is disabled.
11562 	 */
11563 	if (plane->cursor.base != base ||
11564 	    plane->cursor.size != size ||
11565 	    plane->cursor.cntl != cntl) {
11566 		intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), 0);
11567 		intel_de_write_fw(dev_priv, CURBASE(PIPE_A), base);
11568 		intel_de_write_fw(dev_priv, CURSIZE, size);
11569 		intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos);
11570 		intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), cntl);
11571 
11572 		plane->cursor.base = base;
11573 		plane->cursor.size = size;
11574 		plane->cursor.cntl = cntl;
11575 	} else {
11576 		intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos);
11577 	}
11578 
11579 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11580 }
11581 
11582 static void i845_disable_cursor(struct intel_plane *plane,
11583 				const struct intel_crtc_state *crtc_state)
11584 {
11585 	i845_update_cursor(plane, crtc_state, NULL);
11586 }
11587 
11588 static bool i845_cursor_get_hw_state(struct intel_plane *plane,
11589 				     enum pipe *pipe)
11590 {
11591 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11592 	enum intel_display_power_domain power_domain;
11593 	intel_wakeref_t wakeref;
11594 	bool ret;
11595 
11596 	power_domain = POWER_DOMAIN_PIPE(PIPE_A);
11597 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11598 	if (!wakeref)
11599 		return false;
11600 
11601 	ret = intel_de_read(dev_priv, CURCNTR(PIPE_A)) & CURSOR_ENABLE;
11602 
11603 	*pipe = PIPE_A;
11604 
11605 	intel_display_power_put(dev_priv, power_domain, wakeref);
11606 
11607 	return ret;
11608 }
11609 
11610 static unsigned int
11611 i9xx_cursor_max_stride(struct intel_plane *plane,
11612 		       u32 pixel_format, u64 modifier,
11613 		       unsigned int rotation)
11614 {
11615 	return plane->base.dev->mode_config.cursor_width * 4;
11616 }
11617 
11618 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11619 {
11620 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
11621 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11622 	u32 cntl = 0;
11623 
11624 	if (INTEL_GEN(dev_priv) >= 11)
11625 		return cntl;
11626 
11627 	if (crtc_state->gamma_enable)
11628 		cntl = MCURSOR_GAMMA_ENABLE;
11629 
11630 	if (crtc_state->csc_enable)
11631 		cntl |= MCURSOR_PIPE_CSC_ENABLE;
11632 
11633 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11634 		cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
11635 
11636 	return cntl;
11637 }
11638 
11639 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
11640 			   const struct intel_plane_state *plane_state)
11641 {
11642 	struct drm_i915_private *dev_priv =
11643 		to_i915(plane_state->uapi.plane->dev);
11644 	u32 cntl = 0;
11645 
11646 	if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
11647 		cntl |= MCURSOR_TRICKLE_FEED_DISABLE;
11648 
11649 	switch (drm_rect_width(&plane_state->uapi.dst)) {
11650 	case 64:
11651 		cntl |= MCURSOR_MODE_64_ARGB_AX;
11652 		break;
11653 	case 128:
11654 		cntl |= MCURSOR_MODE_128_ARGB_AX;
11655 		break;
11656 	case 256:
11657 		cntl |= MCURSOR_MODE_256_ARGB_AX;
11658 		break;
11659 	default:
11660 		MISSING_CASE(drm_rect_width(&plane_state->uapi.dst));
11661 		return 0;
11662 	}
11663 
11664 	if (plane_state->hw.rotation & DRM_MODE_ROTATE_180)
11665 		cntl |= MCURSOR_ROTATE_180;
11666 
11667 	return cntl;
11668 }
11669 
11670 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
11671 {
11672 	struct drm_i915_private *dev_priv =
11673 		to_i915(plane_state->uapi.plane->dev);
11674 	int width = drm_rect_width(&plane_state->uapi.dst);
11675 	int height = drm_rect_height(&plane_state->uapi.dst);
11676 
11677 	if (!intel_cursor_size_ok(plane_state))
11678 		return false;
11679 
11680 	/* Cursor width is limited to a few power-of-two sizes */
11681 	switch (width) {
11682 	case 256:
11683 	case 128:
11684 	case 64:
11685 		break;
11686 	default:
11687 		return false;
11688 	}
11689 
11690 	/*
11691 	 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
11692 	 * height from 8 lines up to the cursor width, when the
11693 	 * cursor is not rotated. Everything else requires square
11694 	 * cursors.
11695 	 */
11696 	if (HAS_CUR_FBC(dev_priv) &&
11697 	    plane_state->hw.rotation & DRM_MODE_ROTATE_0) {
11698 		if (height < 8 || height > width)
11699 			return false;
11700 	} else {
11701 		if (height != width)
11702 			return false;
11703 	}
11704 
11705 	return true;
11706 }
11707 
11708 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state,
11709 			     struct intel_plane_state *plane_state)
11710 {
11711 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
11712 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11713 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11714 	enum pipe pipe = plane->pipe;
11715 	int ret;
11716 
11717 	ret = intel_check_cursor(crtc_state, plane_state);
11718 	if (ret)
11719 		return ret;
11720 
11721 	/* if we want to turn off the cursor ignore width and height */
11722 	if (!fb)
11723 		return 0;
11724 
11725 	/* Check for which cursor types we support */
11726 	if (!i9xx_cursor_size_ok(plane_state)) {
11727 		drm_dbg(&dev_priv->drm,
11728 			"Cursor dimension %dx%d not supported\n",
11729 			drm_rect_width(&plane_state->uapi.dst),
11730 			drm_rect_height(&plane_state->uapi.dst));
11731 		return -EINVAL;
11732 	}
11733 
11734 	drm_WARN_ON(&dev_priv->drm, plane_state->uapi.visible &&
11735 		    plane_state->color_plane[0].stride != fb->pitches[0]);
11736 
11737 	if (fb->pitches[0] !=
11738 	    drm_rect_width(&plane_state->uapi.dst) * fb->format->cpp[0]) {
11739 		drm_dbg_kms(&dev_priv->drm,
11740 			    "Invalid cursor stride (%u) (cursor width %d)\n",
11741 			    fb->pitches[0],
11742 			    drm_rect_width(&plane_state->uapi.dst));
11743 		return -EINVAL;
11744 	}
11745 
11746 	/*
11747 	 * There's something wrong with the cursor on CHV pipe C.
11748 	 * If it straddles the left edge of the screen then
11749 	 * moving it away from the edge or disabling it often
11750 	 * results in a pipe underrun, and often that can lead to
11751 	 * dead pipe (constant underrun reported, and it scans
11752 	 * out just a solid color). To recover from that, the
11753 	 * display power well must be turned off and on again.
11754 	 * Refuse the put the cursor into that compromised position.
11755 	 */
11756 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
11757 	    plane_state->uapi.visible && plane_state->uapi.dst.x1 < 0) {
11758 		drm_dbg_kms(&dev_priv->drm,
11759 			    "CHV cursor C not allowed to straddle the left screen edge\n");
11760 		return -EINVAL;
11761 	}
11762 
11763 	plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
11764 
11765 	return 0;
11766 }
11767 
11768 static void i9xx_update_cursor(struct intel_plane *plane,
11769 			       const struct intel_crtc_state *crtc_state,
11770 			       const struct intel_plane_state *plane_state)
11771 {
11772 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11773 	enum pipe pipe = plane->pipe;
11774 	u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
11775 	unsigned long irqflags;
11776 
11777 	if (plane_state && plane_state->uapi.visible) {
11778 		unsigned width = drm_rect_width(&plane_state->uapi.dst);
11779 		unsigned height = drm_rect_height(&plane_state->uapi.dst);
11780 
11781 		cntl = plane_state->ctl |
11782 			i9xx_cursor_ctl_crtc(crtc_state);
11783 
11784 		if (width != height)
11785 			fbc_ctl = CUR_FBC_CTL_EN | (height - 1);
11786 
11787 		base = intel_cursor_base(plane_state);
11788 		pos = intel_cursor_position(plane_state);
11789 	}
11790 
11791 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11792 
11793 	/*
11794 	 * On some platforms writing CURCNTR first will also
11795 	 * cause CURPOS to be armed by the CURBASE write.
11796 	 * Without the CURCNTR write the CURPOS write would
11797 	 * arm itself. Thus we always update CURCNTR before
11798 	 * CURPOS.
11799 	 *
11800 	 * On other platforms CURPOS always requires the
11801 	 * CURBASE write to arm the update. Additonally
11802 	 * a write to any of the cursor register will cancel
11803 	 * an already armed cursor update. Thus leaving out
11804 	 * the CURBASE write after CURPOS could lead to a
11805 	 * cursor that doesn't appear to move, or even change
11806 	 * shape. Thus we always write CURBASE.
11807 	 *
11808 	 * The other registers are armed by by the CURBASE write
11809 	 * except when the plane is getting enabled at which time
11810 	 * the CURCNTR write arms the update.
11811 	 */
11812 
11813 	if (INTEL_GEN(dev_priv) >= 9)
11814 		skl_write_cursor_wm(plane, crtc_state);
11815 
11816 	if (plane->cursor.base != base ||
11817 	    plane->cursor.size != fbc_ctl ||
11818 	    plane->cursor.cntl != cntl) {
11819 		if (HAS_CUR_FBC(dev_priv))
11820 			intel_de_write_fw(dev_priv, CUR_FBC_CTL(pipe),
11821 					  fbc_ctl);
11822 		intel_de_write_fw(dev_priv, CURCNTR(pipe), cntl);
11823 		intel_de_write_fw(dev_priv, CURPOS(pipe), pos);
11824 		intel_de_write_fw(dev_priv, CURBASE(pipe), base);
11825 
11826 		plane->cursor.base = base;
11827 		plane->cursor.size = fbc_ctl;
11828 		plane->cursor.cntl = cntl;
11829 	} else {
11830 		intel_de_write_fw(dev_priv, CURPOS(pipe), pos);
11831 		intel_de_write_fw(dev_priv, CURBASE(pipe), base);
11832 	}
11833 
11834 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11835 }
11836 
11837 static void i9xx_disable_cursor(struct intel_plane *plane,
11838 				const struct intel_crtc_state *crtc_state)
11839 {
11840 	i9xx_update_cursor(plane, crtc_state, NULL);
11841 }
11842 
11843 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane,
11844 				     enum pipe *pipe)
11845 {
11846 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11847 	enum intel_display_power_domain power_domain;
11848 	intel_wakeref_t wakeref;
11849 	bool ret;
11850 	u32 val;
11851 
11852 	/*
11853 	 * Not 100% correct for planes that can move between pipes,
11854 	 * but that's only the case for gen2-3 which don't have any
11855 	 * display power wells.
11856 	 */
11857 	power_domain = POWER_DOMAIN_PIPE(plane->pipe);
11858 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11859 	if (!wakeref)
11860 		return false;
11861 
11862 	val = intel_de_read(dev_priv, CURCNTR(plane->pipe));
11863 
11864 	ret = val & MCURSOR_MODE;
11865 
11866 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
11867 		*pipe = plane->pipe;
11868 	else
11869 		*pipe = (val & MCURSOR_PIPE_SELECT_MASK) >>
11870 			MCURSOR_PIPE_SELECT_SHIFT;
11871 
11872 	intel_display_power_put(dev_priv, power_domain, wakeref);
11873 
11874 	return ret;
11875 }
11876 
11877 /* VESA 640x480x72Hz mode to set on the pipe */
11878 static const struct drm_display_mode load_detect_mode = {
11879 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
11880 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
11881 };
11882 
11883 struct drm_framebuffer *
11884 intel_framebuffer_create(struct drm_i915_gem_object *obj,
11885 			 struct drm_mode_fb_cmd2 *mode_cmd)
11886 {
11887 	struct intel_framebuffer *intel_fb;
11888 	int ret;
11889 
11890 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
11891 	if (!intel_fb)
11892 		return ERR_PTR(-ENOMEM);
11893 
11894 	ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
11895 	if (ret)
11896 		goto err;
11897 
11898 	return &intel_fb->base;
11899 
11900 err:
11901 	kfree(intel_fb);
11902 	return ERR_PTR(ret);
11903 }
11904 
11905 static int intel_modeset_disable_planes(struct drm_atomic_state *state,
11906 					struct drm_crtc *crtc)
11907 {
11908 	struct drm_plane *plane;
11909 	struct drm_plane_state *plane_state;
11910 	int ret, i;
11911 
11912 	ret = drm_atomic_add_affected_planes(state, crtc);
11913 	if (ret)
11914 		return ret;
11915 
11916 	for_each_new_plane_in_state(state, plane, plane_state, i) {
11917 		if (plane_state->crtc != crtc)
11918 			continue;
11919 
11920 		ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
11921 		if (ret)
11922 			return ret;
11923 
11924 		drm_atomic_set_fb_for_plane(plane_state, NULL);
11925 	}
11926 
11927 	return 0;
11928 }
11929 
11930 int intel_get_load_detect_pipe(struct drm_connector *connector,
11931 			       struct intel_load_detect_pipe *old,
11932 			       struct drm_modeset_acquire_ctx *ctx)
11933 {
11934 	struct intel_crtc *intel_crtc;
11935 	struct intel_encoder *intel_encoder =
11936 		intel_attached_encoder(to_intel_connector(connector));
11937 	struct drm_crtc *possible_crtc;
11938 	struct drm_encoder *encoder = &intel_encoder->base;
11939 	struct drm_crtc *crtc = NULL;
11940 	struct drm_device *dev = encoder->dev;
11941 	struct drm_i915_private *dev_priv = to_i915(dev);
11942 	struct drm_mode_config *config = &dev->mode_config;
11943 	struct drm_atomic_state *state = NULL, *restore_state = NULL;
11944 	struct drm_connector_state *connector_state;
11945 	struct intel_crtc_state *crtc_state;
11946 	int ret, i = -1;
11947 
11948 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11949 		    connector->base.id, connector->name,
11950 		    encoder->base.id, encoder->name);
11951 
11952 	old->restore_state = NULL;
11953 
11954 	drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex));
11955 
11956 	/*
11957 	 * Algorithm gets a little messy:
11958 	 *
11959 	 *   - if the connector already has an assigned crtc, use it (but make
11960 	 *     sure it's on first)
11961 	 *
11962 	 *   - try to find the first unused crtc that can drive this connector,
11963 	 *     and use that if we find one
11964 	 */
11965 
11966 	/* See if we already have a CRTC for this connector */
11967 	if (connector->state->crtc) {
11968 		crtc = connector->state->crtc;
11969 
11970 		ret = drm_modeset_lock(&crtc->mutex, ctx);
11971 		if (ret)
11972 			goto fail;
11973 
11974 		/* Make sure the crtc and connector are running */
11975 		goto found;
11976 	}
11977 
11978 	/* Find an unused one (if possible) */
11979 	for_each_crtc(dev, possible_crtc) {
11980 		i++;
11981 		if (!(encoder->possible_crtcs & (1 << i)))
11982 			continue;
11983 
11984 		ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11985 		if (ret)
11986 			goto fail;
11987 
11988 		if (possible_crtc->state->enable) {
11989 			drm_modeset_unlock(&possible_crtc->mutex);
11990 			continue;
11991 		}
11992 
11993 		crtc = possible_crtc;
11994 		break;
11995 	}
11996 
11997 	/*
11998 	 * If we didn't find an unused CRTC, don't use any.
11999 	 */
12000 	if (!crtc) {
12001 		drm_dbg_kms(&dev_priv->drm,
12002 			    "no pipe available for load-detect\n");
12003 		ret = -ENODEV;
12004 		goto fail;
12005 	}
12006 
12007 found:
12008 	intel_crtc = to_intel_crtc(crtc);
12009 
12010 	state = drm_atomic_state_alloc(dev);
12011 	restore_state = drm_atomic_state_alloc(dev);
12012 	if (!state || !restore_state) {
12013 		ret = -ENOMEM;
12014 		goto fail;
12015 	}
12016 
12017 	state->acquire_ctx = ctx;
12018 	restore_state->acquire_ctx = ctx;
12019 
12020 	connector_state = drm_atomic_get_connector_state(state, connector);
12021 	if (IS_ERR(connector_state)) {
12022 		ret = PTR_ERR(connector_state);
12023 		goto fail;
12024 	}
12025 
12026 	ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
12027 	if (ret)
12028 		goto fail;
12029 
12030 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
12031 	if (IS_ERR(crtc_state)) {
12032 		ret = PTR_ERR(crtc_state);
12033 		goto fail;
12034 	}
12035 
12036 	crtc_state->uapi.active = true;
12037 
12038 	ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi,
12039 					   &load_detect_mode);
12040 	if (ret)
12041 		goto fail;
12042 
12043 	ret = intel_modeset_disable_planes(state, crtc);
12044 	if (ret)
12045 		goto fail;
12046 
12047 	ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
12048 	if (!ret)
12049 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
12050 	if (!ret)
12051 		ret = drm_atomic_add_affected_planes(restore_state, crtc);
12052 	if (ret) {
12053 		drm_dbg_kms(&dev_priv->drm,
12054 			    "Failed to create a copy of old state to restore: %i\n",
12055 			    ret);
12056 		goto fail;
12057 	}
12058 
12059 	ret = drm_atomic_commit(state);
12060 	if (ret) {
12061 		drm_dbg_kms(&dev_priv->drm,
12062 			    "failed to set mode on load-detect pipe\n");
12063 		goto fail;
12064 	}
12065 
12066 	old->restore_state = restore_state;
12067 	drm_atomic_state_put(state);
12068 
12069 	/* let the connector get through one full cycle before testing */
12070 	intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
12071 	return true;
12072 
12073 fail:
12074 	if (state) {
12075 		drm_atomic_state_put(state);
12076 		state = NULL;
12077 	}
12078 	if (restore_state) {
12079 		drm_atomic_state_put(restore_state);
12080 		restore_state = NULL;
12081 	}
12082 
12083 	if (ret == -EDEADLK)
12084 		return ret;
12085 
12086 	return false;
12087 }
12088 
12089 void intel_release_load_detect_pipe(struct drm_connector *connector,
12090 				    struct intel_load_detect_pipe *old,
12091 				    struct drm_modeset_acquire_ctx *ctx)
12092 {
12093 	struct intel_encoder *intel_encoder =
12094 		intel_attached_encoder(to_intel_connector(connector));
12095 	struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev);
12096 	struct drm_encoder *encoder = &intel_encoder->base;
12097 	struct drm_atomic_state *state = old->restore_state;
12098 	int ret;
12099 
12100 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
12101 		    connector->base.id, connector->name,
12102 		    encoder->base.id, encoder->name);
12103 
12104 	if (!state)
12105 		return;
12106 
12107 	ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
12108 	if (ret)
12109 		drm_dbg_kms(&i915->drm,
12110 			    "Couldn't release load detect pipe: %i\n", ret);
12111 	drm_atomic_state_put(state);
12112 }
12113 
12114 static int i9xx_pll_refclk(struct drm_device *dev,
12115 			   const struct intel_crtc_state *pipe_config)
12116 {
12117 	struct drm_i915_private *dev_priv = to_i915(dev);
12118 	u32 dpll = pipe_config->dpll_hw_state.dpll;
12119 
12120 	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
12121 		return dev_priv->vbt.lvds_ssc_freq;
12122 	else if (HAS_PCH_SPLIT(dev_priv))
12123 		return 120000;
12124 	else if (!IS_GEN(dev_priv, 2))
12125 		return 96000;
12126 	else
12127 		return 48000;
12128 }
12129 
12130 /* Returns the clock of the currently programmed mode of the given pipe. */
12131 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
12132 				struct intel_crtc_state *pipe_config)
12133 {
12134 	struct drm_device *dev = crtc->base.dev;
12135 	struct drm_i915_private *dev_priv = to_i915(dev);
12136 	enum pipe pipe = crtc->pipe;
12137 	u32 dpll = pipe_config->dpll_hw_state.dpll;
12138 	u32 fp;
12139 	struct dpll clock;
12140 	int port_clock;
12141 	int refclk = i9xx_pll_refclk(dev, pipe_config);
12142 
12143 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
12144 		fp = pipe_config->dpll_hw_state.fp0;
12145 	else
12146 		fp = pipe_config->dpll_hw_state.fp1;
12147 
12148 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
12149 	if (IS_PINEVIEW(dev_priv)) {
12150 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
12151 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
12152 	} else {
12153 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
12154 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
12155 	}
12156 
12157 	if (!IS_GEN(dev_priv, 2)) {
12158 		if (IS_PINEVIEW(dev_priv))
12159 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
12160 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
12161 		else
12162 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
12163 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
12164 
12165 		switch (dpll & DPLL_MODE_MASK) {
12166 		case DPLLB_MODE_DAC_SERIAL:
12167 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
12168 				5 : 10;
12169 			break;
12170 		case DPLLB_MODE_LVDS:
12171 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
12172 				7 : 14;
12173 			break;
12174 		default:
12175 			drm_dbg_kms(&dev_priv->drm,
12176 				    "Unknown DPLL mode %08x in programmed "
12177 				    "mode\n", (int)(dpll & DPLL_MODE_MASK));
12178 			return;
12179 		}
12180 
12181 		if (IS_PINEVIEW(dev_priv))
12182 			port_clock = pnv_calc_dpll_params(refclk, &clock);
12183 		else
12184 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
12185 	} else {
12186 		u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv,
12187 								 LVDS);
12188 		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
12189 
12190 		if (is_lvds) {
12191 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
12192 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
12193 
12194 			if (lvds & LVDS_CLKB_POWER_UP)
12195 				clock.p2 = 7;
12196 			else
12197 				clock.p2 = 14;
12198 		} else {
12199 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
12200 				clock.p1 = 2;
12201 			else {
12202 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
12203 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
12204 			}
12205 			if (dpll & PLL_P2_DIVIDE_BY_4)
12206 				clock.p2 = 4;
12207 			else
12208 				clock.p2 = 2;
12209 		}
12210 
12211 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
12212 	}
12213 
12214 	/*
12215 	 * This value includes pixel_multiplier. We will use
12216 	 * port_clock to compute adjusted_mode.crtc_clock in the
12217 	 * encoder's get_config() function.
12218 	 */
12219 	pipe_config->port_clock = port_clock;
12220 }
12221 
12222 int intel_dotclock_calculate(int link_freq,
12223 			     const struct intel_link_m_n *m_n)
12224 {
12225 	/*
12226 	 * The calculation for the data clock is:
12227 	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
12228 	 * But we want to avoid losing precison if possible, so:
12229 	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
12230 	 *
12231 	 * and the link clock is simpler:
12232 	 * link_clock = (m * link_clock) / n
12233 	 */
12234 
12235 	if (!m_n->link_n)
12236 		return 0;
12237 
12238 	return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
12239 }
12240 
12241 static void ilk_pch_clock_get(struct intel_crtc *crtc,
12242 			      struct intel_crtc_state *pipe_config)
12243 {
12244 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12245 
12246 	/* read out port_clock from the DPLL */
12247 	i9xx_crtc_clock_get(crtc, pipe_config);
12248 
12249 	/*
12250 	 * In case there is an active pipe without active ports,
12251 	 * we may need some idea for the dotclock anyway.
12252 	 * Calculate one based on the FDI configuration.
12253 	 */
12254 	pipe_config->hw.adjusted_mode.crtc_clock =
12255 		intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12256 					 &pipe_config->fdi_m_n);
12257 }
12258 
12259 static void intel_crtc_state_reset(struct intel_crtc_state *crtc_state,
12260 				   struct intel_crtc *crtc)
12261 {
12262 	memset(crtc_state, 0, sizeof(*crtc_state));
12263 
12264 	__drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base);
12265 
12266 	crtc_state->cpu_transcoder = INVALID_TRANSCODER;
12267 	crtc_state->master_transcoder = INVALID_TRANSCODER;
12268 	crtc_state->hsw_workaround_pipe = INVALID_PIPE;
12269 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_INVALID;
12270 	crtc_state->scaler_state.scaler_id = -1;
12271 	crtc_state->mst_master_transcoder = INVALID_TRANSCODER;
12272 }
12273 
12274 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc)
12275 {
12276 	struct intel_crtc_state *crtc_state;
12277 
12278 	crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL);
12279 
12280 	if (crtc_state)
12281 		intel_crtc_state_reset(crtc_state, crtc);
12282 
12283 	return crtc_state;
12284 }
12285 
12286 /* Returns the currently programmed mode of the given encoder. */
12287 struct drm_display_mode *
12288 intel_encoder_current_mode(struct intel_encoder *encoder)
12289 {
12290 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
12291 	struct intel_crtc_state *crtc_state;
12292 	struct drm_display_mode *mode;
12293 	struct intel_crtc *crtc;
12294 	enum pipe pipe;
12295 
12296 	if (!encoder->get_hw_state(encoder, &pipe))
12297 		return NULL;
12298 
12299 	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12300 
12301 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
12302 	if (!mode)
12303 		return NULL;
12304 
12305 	crtc_state = intel_crtc_state_alloc(crtc);
12306 	if (!crtc_state) {
12307 		kfree(mode);
12308 		return NULL;
12309 	}
12310 
12311 	if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) {
12312 		kfree(crtc_state);
12313 		kfree(mode);
12314 		return NULL;
12315 	}
12316 
12317 	encoder->get_config(encoder, crtc_state);
12318 
12319 	intel_mode_from_pipe_config(mode, crtc_state);
12320 
12321 	kfree(crtc_state);
12322 
12323 	return mode;
12324 }
12325 
12326 static void intel_crtc_destroy(struct drm_crtc *crtc)
12327 {
12328 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12329 
12330 	drm_crtc_cleanup(crtc);
12331 	kfree(intel_crtc);
12332 }
12333 
12334 /**
12335  * intel_wm_need_update - Check whether watermarks need updating
12336  * @cur: current plane state
12337  * @new: new plane state
12338  *
12339  * Check current plane state versus the new one to determine whether
12340  * watermarks need to be recalculated.
12341  *
12342  * Returns true or false.
12343  */
12344 static bool intel_wm_need_update(const struct intel_plane_state *cur,
12345 				 struct intel_plane_state *new)
12346 {
12347 	/* Update watermarks on tiling or size changes. */
12348 	if (new->uapi.visible != cur->uapi.visible)
12349 		return true;
12350 
12351 	if (!cur->hw.fb || !new->hw.fb)
12352 		return false;
12353 
12354 	if (cur->hw.fb->modifier != new->hw.fb->modifier ||
12355 	    cur->hw.rotation != new->hw.rotation ||
12356 	    drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) ||
12357 	    drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) ||
12358 	    drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) ||
12359 	    drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst))
12360 		return true;
12361 
12362 	return false;
12363 }
12364 
12365 static bool needs_scaling(const struct intel_plane_state *state)
12366 {
12367 	int src_w = drm_rect_width(&state->uapi.src) >> 16;
12368 	int src_h = drm_rect_height(&state->uapi.src) >> 16;
12369 	int dst_w = drm_rect_width(&state->uapi.dst);
12370 	int dst_h = drm_rect_height(&state->uapi.dst);
12371 
12372 	return (src_w != dst_w || src_h != dst_h);
12373 }
12374 
12375 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
12376 				    struct intel_crtc_state *crtc_state,
12377 				    const struct intel_plane_state *old_plane_state,
12378 				    struct intel_plane_state *plane_state)
12379 {
12380 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12381 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
12382 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12383 	bool mode_changed = needs_modeset(crtc_state);
12384 	bool was_crtc_enabled = old_crtc_state->hw.active;
12385 	bool is_crtc_enabled = crtc_state->hw.active;
12386 	bool turn_off, turn_on, visible, was_visible;
12387 	int ret;
12388 
12389 	if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
12390 		ret = skl_update_scaler_plane(crtc_state, plane_state);
12391 		if (ret)
12392 			return ret;
12393 	}
12394 
12395 	was_visible = old_plane_state->uapi.visible;
12396 	visible = plane_state->uapi.visible;
12397 
12398 	if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible))
12399 		was_visible = false;
12400 
12401 	/*
12402 	 * Visibility is calculated as if the crtc was on, but
12403 	 * after scaler setup everything depends on it being off
12404 	 * when the crtc isn't active.
12405 	 *
12406 	 * FIXME this is wrong for watermarks. Watermarks should also
12407 	 * be computed as if the pipe would be active. Perhaps move
12408 	 * per-plane wm computation to the .check_plane() hook, and
12409 	 * only combine the results from all planes in the current place?
12410 	 */
12411 	if (!is_crtc_enabled) {
12412 		intel_plane_set_invisible(crtc_state, plane_state);
12413 		visible = false;
12414 	}
12415 
12416 	if (!was_visible && !visible)
12417 		return 0;
12418 
12419 	turn_off = was_visible && (!visible || mode_changed);
12420 	turn_on = visible && (!was_visible || mode_changed);
12421 
12422 	drm_dbg_atomic(&dev_priv->drm,
12423 		       "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12424 		       crtc->base.base.id, crtc->base.name,
12425 		       plane->base.base.id, plane->base.name,
12426 		       was_visible, visible,
12427 		       turn_off, turn_on, mode_changed);
12428 
12429 	if (turn_on) {
12430 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12431 			crtc_state->update_wm_pre = true;
12432 
12433 		/* must disable cxsr around plane enable/disable */
12434 		if (plane->id != PLANE_CURSOR)
12435 			crtc_state->disable_cxsr = true;
12436 	} else if (turn_off) {
12437 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12438 			crtc_state->update_wm_post = true;
12439 
12440 		/* must disable cxsr around plane enable/disable */
12441 		if (plane->id != PLANE_CURSOR)
12442 			crtc_state->disable_cxsr = true;
12443 	} else if (intel_wm_need_update(old_plane_state, plane_state)) {
12444 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
12445 			/* FIXME bollocks */
12446 			crtc_state->update_wm_pre = true;
12447 			crtc_state->update_wm_post = true;
12448 		}
12449 	}
12450 
12451 	if (visible || was_visible)
12452 		crtc_state->fb_bits |= plane->frontbuffer_bit;
12453 
12454 	/*
12455 	 * ILK/SNB DVSACNTR/Sprite Enable
12456 	 * IVB SPR_CTL/Sprite Enable
12457 	 * "When in Self Refresh Big FIFO mode, a write to enable the
12458 	 *  plane will be internally buffered and delayed while Big FIFO
12459 	 *  mode is exiting."
12460 	 *
12461 	 * Which means that enabling the sprite can take an extra frame
12462 	 * when we start in big FIFO mode (LP1+). Thus we need to drop
12463 	 * down to LP0 and wait for vblank in order to make sure the
12464 	 * sprite gets enabled on the next vblank after the register write.
12465 	 * Doing otherwise would risk enabling the sprite one frame after
12466 	 * we've already signalled flip completion. We can resume LP1+
12467 	 * once the sprite has been enabled.
12468 	 *
12469 	 *
12470 	 * WaCxSRDisabledForSpriteScaling:ivb
12471 	 * IVB SPR_SCALE/Scaling Enable
12472 	 * "Low Power watermarks must be disabled for at least one
12473 	 *  frame before enabling sprite scaling, and kept disabled
12474 	 *  until sprite scaling is disabled."
12475 	 *
12476 	 * ILK/SNB DVSASCALE/Scaling Enable
12477 	 * "When in Self Refresh Big FIFO mode, scaling enable will be
12478 	 *  masked off while Big FIFO mode is exiting."
12479 	 *
12480 	 * Despite the w/a only being listed for IVB we assume that
12481 	 * the ILK/SNB note has similar ramifications, hence we apply
12482 	 * the w/a on all three platforms.
12483 	 *
12484 	 * With experimental results seems this is needed also for primary
12485 	 * plane, not only sprite plane.
12486 	 */
12487 	if (plane->id != PLANE_CURSOR &&
12488 	    (IS_GEN_RANGE(dev_priv, 5, 6) ||
12489 	     IS_IVYBRIDGE(dev_priv)) &&
12490 	    (turn_on || (!needs_scaling(old_plane_state) &&
12491 			 needs_scaling(plane_state))))
12492 		crtc_state->disable_lp_wm = true;
12493 
12494 	return 0;
12495 }
12496 
12497 static bool encoders_cloneable(const struct intel_encoder *a,
12498 			       const struct intel_encoder *b)
12499 {
12500 	/* masks could be asymmetric, so check both ways */
12501 	return a == b || (a->cloneable & (1 << b->type) &&
12502 			  b->cloneable & (1 << a->type));
12503 }
12504 
12505 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12506 					 struct intel_crtc *crtc,
12507 					 struct intel_encoder *encoder)
12508 {
12509 	struct intel_encoder *source_encoder;
12510 	struct drm_connector *connector;
12511 	struct drm_connector_state *connector_state;
12512 	int i;
12513 
12514 	for_each_new_connector_in_state(state, connector, connector_state, i) {
12515 		if (connector_state->crtc != &crtc->base)
12516 			continue;
12517 
12518 		source_encoder =
12519 			to_intel_encoder(connector_state->best_encoder);
12520 		if (!encoders_cloneable(encoder, source_encoder))
12521 			return false;
12522 	}
12523 
12524 	return true;
12525 }
12526 
12527 static int icl_add_linked_planes(struct intel_atomic_state *state)
12528 {
12529 	struct intel_plane *plane, *linked;
12530 	struct intel_plane_state *plane_state, *linked_plane_state;
12531 	int i;
12532 
12533 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12534 		linked = plane_state->planar_linked_plane;
12535 
12536 		if (!linked)
12537 			continue;
12538 
12539 		linked_plane_state = intel_atomic_get_plane_state(state, linked);
12540 		if (IS_ERR(linked_plane_state))
12541 			return PTR_ERR(linked_plane_state);
12542 
12543 		drm_WARN_ON(state->base.dev,
12544 			    linked_plane_state->planar_linked_plane != plane);
12545 		drm_WARN_ON(state->base.dev,
12546 			    linked_plane_state->planar_slave == plane_state->planar_slave);
12547 	}
12548 
12549 	return 0;
12550 }
12551 
12552 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state)
12553 {
12554 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12555 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12556 	struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
12557 	struct intel_plane *plane, *linked;
12558 	struct intel_plane_state *plane_state;
12559 	int i;
12560 
12561 	if (INTEL_GEN(dev_priv) < 11)
12562 		return 0;
12563 
12564 	/*
12565 	 * Destroy all old plane links and make the slave plane invisible
12566 	 * in the crtc_state->active_planes mask.
12567 	 */
12568 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12569 		if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane)
12570 			continue;
12571 
12572 		plane_state->planar_linked_plane = NULL;
12573 		if (plane_state->planar_slave && !plane_state->uapi.visible) {
12574 			crtc_state->active_planes &= ~BIT(plane->id);
12575 			crtc_state->update_planes |= BIT(plane->id);
12576 		}
12577 
12578 		plane_state->planar_slave = false;
12579 	}
12580 
12581 	if (!crtc_state->nv12_planes)
12582 		return 0;
12583 
12584 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12585 		struct intel_plane_state *linked_state = NULL;
12586 
12587 		if (plane->pipe != crtc->pipe ||
12588 		    !(crtc_state->nv12_planes & BIT(plane->id)))
12589 			continue;
12590 
12591 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) {
12592 			if (!icl_is_nv12_y_plane(dev_priv, linked->id))
12593 				continue;
12594 
12595 			if (crtc_state->active_planes & BIT(linked->id))
12596 				continue;
12597 
12598 			linked_state = intel_atomic_get_plane_state(state, linked);
12599 			if (IS_ERR(linked_state))
12600 				return PTR_ERR(linked_state);
12601 
12602 			break;
12603 		}
12604 
12605 		if (!linked_state) {
12606 			drm_dbg_kms(&dev_priv->drm,
12607 				    "Need %d free Y planes for planar YUV\n",
12608 				    hweight8(crtc_state->nv12_planes));
12609 
12610 			return -EINVAL;
12611 		}
12612 
12613 		plane_state->planar_linked_plane = linked;
12614 
12615 		linked_state->planar_slave = true;
12616 		linked_state->planar_linked_plane = plane;
12617 		crtc_state->active_planes |= BIT(linked->id);
12618 		crtc_state->update_planes |= BIT(linked->id);
12619 		drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n",
12620 			    linked->base.name, plane->base.name);
12621 
12622 		/* Copy parameters to slave plane */
12623 		linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE;
12624 		linked_state->color_ctl = plane_state->color_ctl;
12625 		linked_state->view = plane_state->view;
12626 		memcpy(linked_state->color_plane, plane_state->color_plane,
12627 		       sizeof(linked_state->color_plane));
12628 
12629 		intel_plane_copy_uapi_to_hw_state(linked_state, plane_state);
12630 		linked_state->uapi.src = plane_state->uapi.src;
12631 		linked_state->uapi.dst = plane_state->uapi.dst;
12632 
12633 		if (icl_is_hdr_plane(dev_priv, plane->id)) {
12634 			if (linked->id == PLANE_SPRITE5)
12635 				plane_state->cus_ctl |= PLANE_CUS_PLANE_7;
12636 			else if (linked->id == PLANE_SPRITE4)
12637 				plane_state->cus_ctl |= PLANE_CUS_PLANE_6;
12638 			else if (linked->id == PLANE_SPRITE3)
12639 				plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL;
12640 			else if (linked->id == PLANE_SPRITE2)
12641 				plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL;
12642 			else
12643 				MISSING_CASE(linked->id);
12644 		}
12645 	}
12646 
12647 	return 0;
12648 }
12649 
12650 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state)
12651 {
12652 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
12653 	struct intel_atomic_state *state =
12654 		to_intel_atomic_state(new_crtc_state->uapi.state);
12655 	const struct intel_crtc_state *old_crtc_state =
12656 		intel_atomic_get_old_crtc_state(state, crtc);
12657 
12658 	return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes;
12659 }
12660 
12661 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state)
12662 {
12663 	const struct drm_display_mode *adjusted_mode =
12664 		&crtc_state->hw.adjusted_mode;
12665 	int linetime_wm;
12666 
12667 	if (!crtc_state->hw.enable)
12668 		return 0;
12669 
12670 	linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
12671 					adjusted_mode->crtc_clock);
12672 
12673 	return min(linetime_wm, 0x1ff);
12674 }
12675 
12676 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state,
12677 			       const struct intel_cdclk_state *cdclk_state)
12678 {
12679 	const struct drm_display_mode *adjusted_mode =
12680 		&crtc_state->hw.adjusted_mode;
12681 	int linetime_wm;
12682 
12683 	if (!crtc_state->hw.enable)
12684 		return 0;
12685 
12686 	linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
12687 					cdclk_state->logical.cdclk);
12688 
12689 	return min(linetime_wm, 0x1ff);
12690 }
12691 
12692 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state)
12693 {
12694 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12695 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12696 	const struct drm_display_mode *adjusted_mode =
12697 		&crtc_state->hw.adjusted_mode;
12698 	int linetime_wm;
12699 
12700 	if (!crtc_state->hw.enable)
12701 		return 0;
12702 
12703 	linetime_wm = DIV_ROUND_UP(adjusted_mode->crtc_htotal * 1000 * 8,
12704 				   crtc_state->pixel_rate);
12705 
12706 	/* Display WA #1135: BXT:ALL GLK:ALL */
12707 	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
12708 		linetime_wm /= 2;
12709 
12710 	return min(linetime_wm, 0x1ff);
12711 }
12712 
12713 static int hsw_compute_linetime_wm(struct intel_atomic_state *state,
12714 				   struct intel_crtc *crtc)
12715 {
12716 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12717 	struct intel_crtc_state *crtc_state =
12718 		intel_atomic_get_new_crtc_state(state, crtc);
12719 	const struct intel_cdclk_state *cdclk_state;
12720 
12721 	if (INTEL_GEN(dev_priv) >= 9)
12722 		crtc_state->linetime = skl_linetime_wm(crtc_state);
12723 	else
12724 		crtc_state->linetime = hsw_linetime_wm(crtc_state);
12725 
12726 	if (!hsw_crtc_supports_ips(crtc))
12727 		return 0;
12728 
12729 	cdclk_state = intel_atomic_get_cdclk_state(state);
12730 	if (IS_ERR(cdclk_state))
12731 		return PTR_ERR(cdclk_state);
12732 
12733 	crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state,
12734 						       cdclk_state);
12735 
12736 	return 0;
12737 }
12738 
12739 static int intel_crtc_atomic_check(struct intel_atomic_state *state,
12740 				   struct intel_crtc *crtc)
12741 {
12742 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12743 	struct intel_crtc_state *crtc_state =
12744 		intel_atomic_get_new_crtc_state(state, crtc);
12745 	bool mode_changed = needs_modeset(crtc_state);
12746 	int ret;
12747 
12748 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) &&
12749 	    mode_changed && !crtc_state->hw.active)
12750 		crtc_state->update_wm_post = true;
12751 
12752 	if (mode_changed && crtc_state->hw.enable &&
12753 	    dev_priv->display.crtc_compute_clock &&
12754 	    !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) {
12755 		ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state);
12756 		if (ret)
12757 			return ret;
12758 	}
12759 
12760 	/*
12761 	 * May need to update pipe gamma enable bits
12762 	 * when C8 planes are getting enabled/disabled.
12763 	 */
12764 	if (c8_planes_changed(crtc_state))
12765 		crtc_state->uapi.color_mgmt_changed = true;
12766 
12767 	if (mode_changed || crtc_state->update_pipe ||
12768 	    crtc_state->uapi.color_mgmt_changed) {
12769 		ret = intel_color_check(crtc_state);
12770 		if (ret)
12771 			return ret;
12772 	}
12773 
12774 	if (dev_priv->display.compute_pipe_wm) {
12775 		ret = dev_priv->display.compute_pipe_wm(crtc_state);
12776 		if (ret) {
12777 			drm_dbg_kms(&dev_priv->drm,
12778 				    "Target pipe watermarks are invalid\n");
12779 			return ret;
12780 		}
12781 	}
12782 
12783 	if (dev_priv->display.compute_intermediate_wm) {
12784 		if (drm_WARN_ON(&dev_priv->drm,
12785 				!dev_priv->display.compute_pipe_wm))
12786 			return 0;
12787 
12788 		/*
12789 		 * Calculate 'intermediate' watermarks that satisfy both the
12790 		 * old state and the new state.  We can program these
12791 		 * immediately.
12792 		 */
12793 		ret = dev_priv->display.compute_intermediate_wm(crtc_state);
12794 		if (ret) {
12795 			drm_dbg_kms(&dev_priv->drm,
12796 				    "No valid intermediate pipe watermarks are possible\n");
12797 			return ret;
12798 		}
12799 	}
12800 
12801 	if (INTEL_GEN(dev_priv) >= 9) {
12802 		if (mode_changed || crtc_state->update_pipe) {
12803 			ret = skl_update_scaler_crtc(crtc_state);
12804 			if (ret)
12805 				return ret;
12806 		}
12807 
12808 		ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state);
12809 		if (ret)
12810 			return ret;
12811 	}
12812 
12813 	if (HAS_IPS(dev_priv)) {
12814 		ret = hsw_compute_ips_config(crtc_state);
12815 		if (ret)
12816 			return ret;
12817 	}
12818 
12819 	if (INTEL_GEN(dev_priv) >= 9 ||
12820 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
12821 		ret = hsw_compute_linetime_wm(state, crtc);
12822 		if (ret)
12823 			return ret;
12824 
12825 	}
12826 
12827 	if (!mode_changed)
12828 		intel_psr2_sel_fetch_update(state, crtc);
12829 
12830 	return 0;
12831 }
12832 
12833 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12834 {
12835 	struct intel_connector *connector;
12836 	struct drm_connector_list_iter conn_iter;
12837 
12838 	drm_connector_list_iter_begin(dev, &conn_iter);
12839 	for_each_intel_connector_iter(connector, &conn_iter) {
12840 		if (connector->base.state->crtc)
12841 			drm_connector_put(&connector->base);
12842 
12843 		if (connector->base.encoder) {
12844 			connector->base.state->best_encoder =
12845 				connector->base.encoder;
12846 			connector->base.state->crtc =
12847 				connector->base.encoder->crtc;
12848 
12849 			drm_connector_get(&connector->base);
12850 		} else {
12851 			connector->base.state->best_encoder = NULL;
12852 			connector->base.state->crtc = NULL;
12853 		}
12854 	}
12855 	drm_connector_list_iter_end(&conn_iter);
12856 }
12857 
12858 static int
12859 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
12860 		      struct intel_crtc_state *pipe_config)
12861 {
12862 	struct drm_connector *connector = conn_state->connector;
12863 	struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
12864 	const struct drm_display_info *info = &connector->display_info;
12865 	int bpp;
12866 
12867 	switch (conn_state->max_bpc) {
12868 	case 6 ... 7:
12869 		bpp = 6 * 3;
12870 		break;
12871 	case 8 ... 9:
12872 		bpp = 8 * 3;
12873 		break;
12874 	case 10 ... 11:
12875 		bpp = 10 * 3;
12876 		break;
12877 	case 12:
12878 		bpp = 12 * 3;
12879 		break;
12880 	default:
12881 		return -EINVAL;
12882 	}
12883 
12884 	if (bpp < pipe_config->pipe_bpp) {
12885 		drm_dbg_kms(&i915->drm,
12886 			    "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of "
12887 			    "EDID bpp %d, requested bpp %d, max platform bpp %d\n",
12888 			    connector->base.id, connector->name,
12889 			    bpp, 3 * info->bpc,
12890 			    3 * conn_state->max_requested_bpc,
12891 			    pipe_config->pipe_bpp);
12892 
12893 		pipe_config->pipe_bpp = bpp;
12894 	}
12895 
12896 	return 0;
12897 }
12898 
12899 static int
12900 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12901 			  struct intel_crtc_state *pipe_config)
12902 {
12903 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12904 	struct drm_atomic_state *state = pipe_config->uapi.state;
12905 	struct drm_connector *connector;
12906 	struct drm_connector_state *connector_state;
12907 	int bpp, i;
12908 
12909 	if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12910 	    IS_CHERRYVIEW(dev_priv)))
12911 		bpp = 10*3;
12912 	else if (INTEL_GEN(dev_priv) >= 5)
12913 		bpp = 12*3;
12914 	else
12915 		bpp = 8*3;
12916 
12917 	pipe_config->pipe_bpp = bpp;
12918 
12919 	/* Clamp display bpp to connector max bpp */
12920 	for_each_new_connector_in_state(state, connector, connector_state, i) {
12921 		int ret;
12922 
12923 		if (connector_state->crtc != &crtc->base)
12924 			continue;
12925 
12926 		ret = compute_sink_pipe_bpp(connector_state, pipe_config);
12927 		if (ret)
12928 			return ret;
12929 	}
12930 
12931 	return 0;
12932 }
12933 
12934 static void intel_dump_crtc_timings(struct drm_i915_private *i915,
12935 				    const struct drm_display_mode *mode)
12936 {
12937 	drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, "
12938 		    "type: 0x%x flags: 0x%x\n",
12939 		    mode->crtc_clock,
12940 		    mode->crtc_hdisplay, mode->crtc_hsync_start,
12941 		    mode->crtc_hsync_end, mode->crtc_htotal,
12942 		    mode->crtc_vdisplay, mode->crtc_vsync_start,
12943 		    mode->crtc_vsync_end, mode->crtc_vtotal,
12944 		    mode->type, mode->flags);
12945 }
12946 
12947 static void
12948 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config,
12949 		      const char *id, unsigned int lane_count,
12950 		      const struct intel_link_m_n *m_n)
12951 {
12952 	struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
12953 
12954 	drm_dbg_kms(&i915->drm,
12955 		    "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12956 		    id, lane_count,
12957 		    m_n->gmch_m, m_n->gmch_n,
12958 		    m_n->link_m, m_n->link_n, m_n->tu);
12959 }
12960 
12961 static void
12962 intel_dump_infoframe(struct drm_i915_private *dev_priv,
12963 		     const union hdmi_infoframe *frame)
12964 {
12965 	if (!drm_debug_enabled(DRM_UT_KMS))
12966 		return;
12967 
12968 	hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame);
12969 }
12970 
12971 static void
12972 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv,
12973 		      const struct drm_dp_vsc_sdp *vsc)
12974 {
12975 	if (!drm_debug_enabled(DRM_UT_KMS))
12976 		return;
12977 
12978 	drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc);
12979 }
12980 
12981 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
12982 
12983 static const char * const output_type_str[] = {
12984 	OUTPUT_TYPE(UNUSED),
12985 	OUTPUT_TYPE(ANALOG),
12986 	OUTPUT_TYPE(DVO),
12987 	OUTPUT_TYPE(SDVO),
12988 	OUTPUT_TYPE(LVDS),
12989 	OUTPUT_TYPE(TVOUT),
12990 	OUTPUT_TYPE(HDMI),
12991 	OUTPUT_TYPE(DP),
12992 	OUTPUT_TYPE(EDP),
12993 	OUTPUT_TYPE(DSI),
12994 	OUTPUT_TYPE(DDI),
12995 	OUTPUT_TYPE(DP_MST),
12996 };
12997 
12998 #undef OUTPUT_TYPE
12999 
13000 static void snprintf_output_types(char *buf, size_t len,
13001 				  unsigned int output_types)
13002 {
13003 	char *str = buf;
13004 	int i;
13005 
13006 	str[0] = '\0';
13007 
13008 	for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
13009 		int r;
13010 
13011 		if ((output_types & BIT(i)) == 0)
13012 			continue;
13013 
13014 		r = snprintf(str, len, "%s%s",
13015 			     str != buf ? "," : "", output_type_str[i]);
13016 		if (r >= len)
13017 			break;
13018 		str += r;
13019 		len -= r;
13020 
13021 		output_types &= ~BIT(i);
13022 	}
13023 
13024 	WARN_ON_ONCE(output_types != 0);
13025 }
13026 
13027 static const char * const output_format_str[] = {
13028 	[INTEL_OUTPUT_FORMAT_INVALID] = "Invalid",
13029 	[INTEL_OUTPUT_FORMAT_RGB] = "RGB",
13030 	[INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0",
13031 	[INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4",
13032 };
13033 
13034 static const char *output_formats(enum intel_output_format format)
13035 {
13036 	if (format >= ARRAY_SIZE(output_format_str))
13037 		format = INTEL_OUTPUT_FORMAT_INVALID;
13038 	return output_format_str[format];
13039 }
13040 
13041 static void intel_dump_plane_state(const struct intel_plane_state *plane_state)
13042 {
13043 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
13044 	struct drm_i915_private *i915 = to_i915(plane->base.dev);
13045 	const struct drm_framebuffer *fb = plane_state->hw.fb;
13046 	struct drm_format_name_buf format_name;
13047 
13048 	if (!fb) {
13049 		drm_dbg_kms(&i915->drm,
13050 			    "[PLANE:%d:%s] fb: [NOFB], visible: %s\n",
13051 			    plane->base.base.id, plane->base.name,
13052 			    yesno(plane_state->uapi.visible));
13053 		return;
13054 	}
13055 
13056 	drm_dbg_kms(&i915->drm,
13057 		    "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n",
13058 		    plane->base.base.id, plane->base.name,
13059 		    fb->base.id, fb->width, fb->height,
13060 		    drm_get_format_name(fb->format->format, &format_name),
13061 		    yesno(plane_state->uapi.visible));
13062 	drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n",
13063 		    plane_state->hw.rotation, plane_state->scaler_id);
13064 	if (plane_state->uapi.visible)
13065 		drm_dbg_kms(&i915->drm,
13066 			    "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n",
13067 			    DRM_RECT_FP_ARG(&plane_state->uapi.src),
13068 			    DRM_RECT_ARG(&plane_state->uapi.dst));
13069 }
13070 
13071 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config,
13072 				   struct intel_atomic_state *state,
13073 				   const char *context)
13074 {
13075 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
13076 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13077 	const struct intel_plane_state *plane_state;
13078 	struct intel_plane *plane;
13079 	char buf[64];
13080 	int i;
13081 
13082 	drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n",
13083 		    crtc->base.base.id, crtc->base.name,
13084 		    yesno(pipe_config->hw.enable), context);
13085 
13086 	if (!pipe_config->hw.enable)
13087 		goto dump_planes;
13088 
13089 	snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
13090 	drm_dbg_kms(&dev_priv->drm,
13091 		    "active: %s, output_types: %s (0x%x), output format: %s\n",
13092 		    yesno(pipe_config->hw.active),
13093 		    buf, pipe_config->output_types,
13094 		    output_formats(pipe_config->output_format));
13095 
13096 	drm_dbg_kms(&dev_priv->drm,
13097 		    "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
13098 		    transcoder_name(pipe_config->cpu_transcoder),
13099 		    pipe_config->pipe_bpp, pipe_config->dither);
13100 
13101 	drm_dbg_kms(&dev_priv->drm,
13102 		    "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n",
13103 		    transcoder_name(pipe_config->master_transcoder),
13104 		    pipe_config->sync_mode_slaves_mask);
13105 
13106 	if (pipe_config->has_pch_encoder)
13107 		intel_dump_m_n_config(pipe_config, "fdi",
13108 				      pipe_config->fdi_lanes,
13109 				      &pipe_config->fdi_m_n);
13110 
13111 	if (intel_crtc_has_dp_encoder(pipe_config)) {
13112 		intel_dump_m_n_config(pipe_config, "dp m_n",
13113 				pipe_config->lane_count, &pipe_config->dp_m_n);
13114 		if (pipe_config->has_drrs)
13115 			intel_dump_m_n_config(pipe_config, "dp m2_n2",
13116 					      pipe_config->lane_count,
13117 					      &pipe_config->dp_m2_n2);
13118 	}
13119 
13120 	drm_dbg_kms(&dev_priv->drm,
13121 		    "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n",
13122 		    pipe_config->has_audio, pipe_config->has_infoframe,
13123 		    pipe_config->infoframes.enable);
13124 
13125 	if (pipe_config->infoframes.enable &
13126 	    intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL))
13127 		drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n",
13128 			    pipe_config->infoframes.gcp);
13129 	if (pipe_config->infoframes.enable &
13130 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI))
13131 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi);
13132 	if (pipe_config->infoframes.enable &
13133 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD))
13134 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd);
13135 	if (pipe_config->infoframes.enable &
13136 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR))
13137 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi);
13138 	if (pipe_config->infoframes.enable &
13139 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM))
13140 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm);
13141 	if (pipe_config->infoframes.enable &
13142 	    intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA))
13143 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm);
13144 	if (pipe_config->infoframes.enable &
13145 	    intel_hdmi_infoframe_enable(DP_SDP_VSC))
13146 		intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc);
13147 
13148 	drm_dbg_kms(&dev_priv->drm, "requested mode:\n");
13149 	drm_mode_debug_printmodeline(&pipe_config->hw.mode);
13150 	drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n");
13151 	drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode);
13152 	intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode);
13153 	drm_dbg_kms(&dev_priv->drm,
13154 		    "port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
13155 		    pipe_config->port_clock,
13156 		    pipe_config->pipe_src_w, pipe_config->pipe_src_h,
13157 		    pipe_config->pixel_rate);
13158 
13159 	drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n",
13160 		    pipe_config->linetime, pipe_config->ips_linetime);
13161 
13162 	if (INTEL_GEN(dev_priv) >= 9)
13163 		drm_dbg_kms(&dev_priv->drm,
13164 			    "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
13165 			    crtc->num_scalers,
13166 			    pipe_config->scaler_state.scaler_users,
13167 			    pipe_config->scaler_state.scaler_id);
13168 
13169 	if (HAS_GMCH(dev_priv))
13170 		drm_dbg_kms(&dev_priv->drm,
13171 			    "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
13172 			    pipe_config->gmch_pfit.control,
13173 			    pipe_config->gmch_pfit.pgm_ratios,
13174 			    pipe_config->gmch_pfit.lvds_border_bits);
13175 	else
13176 		drm_dbg_kms(&dev_priv->drm,
13177 			    "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n",
13178 			    DRM_RECT_ARG(&pipe_config->pch_pfit.dst),
13179 			    enableddisabled(pipe_config->pch_pfit.enabled),
13180 			    yesno(pipe_config->pch_pfit.force_thru));
13181 
13182 	drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n",
13183 		    pipe_config->ips_enabled, pipe_config->double_wide);
13184 
13185 	intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
13186 
13187 	if (IS_CHERRYVIEW(dev_priv))
13188 		drm_dbg_kms(&dev_priv->drm,
13189 			    "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
13190 			    pipe_config->cgm_mode, pipe_config->gamma_mode,
13191 			    pipe_config->gamma_enable, pipe_config->csc_enable);
13192 	else
13193 		drm_dbg_kms(&dev_priv->drm,
13194 			    "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
13195 			    pipe_config->csc_mode, pipe_config->gamma_mode,
13196 			    pipe_config->gamma_enable, pipe_config->csc_enable);
13197 
13198 	drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n",
13199 		    transcoder_name(pipe_config->mst_master_transcoder));
13200 
13201 dump_planes:
13202 	if (!state)
13203 		return;
13204 
13205 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
13206 		if (plane->pipe == crtc->pipe)
13207 			intel_dump_plane_state(plane_state);
13208 	}
13209 }
13210 
13211 static bool check_digital_port_conflicts(struct intel_atomic_state *state)
13212 {
13213 	struct drm_device *dev = state->base.dev;
13214 	struct drm_connector *connector;
13215 	struct drm_connector_list_iter conn_iter;
13216 	unsigned int used_ports = 0;
13217 	unsigned int used_mst_ports = 0;
13218 	bool ret = true;
13219 
13220 	/*
13221 	 * We're going to peek into connector->state,
13222 	 * hence connection_mutex must be held.
13223 	 */
13224 	drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex);
13225 
13226 	/*
13227 	 * Walk the connector list instead of the encoder
13228 	 * list to detect the problem on ddi platforms
13229 	 * where there's just one encoder per digital port.
13230 	 */
13231 	drm_connector_list_iter_begin(dev, &conn_iter);
13232 	drm_for_each_connector_iter(connector, &conn_iter) {
13233 		struct drm_connector_state *connector_state;
13234 		struct intel_encoder *encoder;
13235 
13236 		connector_state =
13237 			drm_atomic_get_new_connector_state(&state->base,
13238 							   connector);
13239 		if (!connector_state)
13240 			connector_state = connector->state;
13241 
13242 		if (!connector_state->best_encoder)
13243 			continue;
13244 
13245 		encoder = to_intel_encoder(connector_state->best_encoder);
13246 
13247 		drm_WARN_ON(dev, !connector_state->crtc);
13248 
13249 		switch (encoder->type) {
13250 		case INTEL_OUTPUT_DDI:
13251 			if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev))))
13252 				break;
13253 			fallthrough;
13254 		case INTEL_OUTPUT_DP:
13255 		case INTEL_OUTPUT_HDMI:
13256 		case INTEL_OUTPUT_EDP:
13257 			/* the same port mustn't appear more than once */
13258 			if (used_ports & BIT(encoder->port))
13259 				ret = false;
13260 
13261 			used_ports |= BIT(encoder->port);
13262 			break;
13263 		case INTEL_OUTPUT_DP_MST:
13264 			used_mst_ports |=
13265 				1 << encoder->port;
13266 			break;
13267 		default:
13268 			break;
13269 		}
13270 	}
13271 	drm_connector_list_iter_end(&conn_iter);
13272 
13273 	/* can't mix MST and SST/HDMI on the same port */
13274 	if (used_ports & used_mst_ports)
13275 		return false;
13276 
13277 	return ret;
13278 }
13279 
13280 static void
13281 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state *crtc_state)
13282 {
13283 	intel_crtc_copy_color_blobs(crtc_state);
13284 }
13285 
13286 static void
13287 intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state *crtc_state)
13288 {
13289 	crtc_state->hw.enable = crtc_state->uapi.enable;
13290 	crtc_state->hw.active = crtc_state->uapi.active;
13291 	crtc_state->hw.mode = crtc_state->uapi.mode;
13292 	crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode;
13293 	intel_crtc_copy_uapi_to_hw_state_nomodeset(crtc_state);
13294 }
13295 
13296 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state)
13297 {
13298 	crtc_state->uapi.enable = crtc_state->hw.enable;
13299 	crtc_state->uapi.active = crtc_state->hw.active;
13300 	drm_WARN_ON(crtc_state->uapi.crtc->dev,
13301 		    drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0);
13302 
13303 	crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode;
13304 
13305 	/* copy color blobs to uapi */
13306 	drm_property_replace_blob(&crtc_state->uapi.degamma_lut,
13307 				  crtc_state->hw.degamma_lut);
13308 	drm_property_replace_blob(&crtc_state->uapi.gamma_lut,
13309 				  crtc_state->hw.gamma_lut);
13310 	drm_property_replace_blob(&crtc_state->uapi.ctm,
13311 				  crtc_state->hw.ctm);
13312 }
13313 
13314 static int
13315 intel_crtc_prepare_cleared_state(struct intel_crtc_state *crtc_state)
13316 {
13317 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13318 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13319 	struct intel_crtc_state *saved_state;
13320 
13321 	saved_state = intel_crtc_state_alloc(crtc);
13322 	if (!saved_state)
13323 		return -ENOMEM;
13324 
13325 	/* free the old crtc_state->hw members */
13326 	intel_crtc_free_hw_state(crtc_state);
13327 
13328 	/* FIXME: before the switch to atomic started, a new pipe_config was
13329 	 * kzalloc'd. Code that depends on any field being zero should be
13330 	 * fixed, so that the crtc_state can be safely duplicated. For now,
13331 	 * only fields that are know to not cause problems are preserved. */
13332 
13333 	saved_state->uapi = crtc_state->uapi;
13334 	saved_state->scaler_state = crtc_state->scaler_state;
13335 	saved_state->shared_dpll = crtc_state->shared_dpll;
13336 	saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
13337 	memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls,
13338 	       sizeof(saved_state->icl_port_dplls));
13339 	saved_state->crc_enabled = crtc_state->crc_enabled;
13340 	if (IS_G4X(dev_priv) ||
13341 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13342 		saved_state->wm = crtc_state->wm;
13343 
13344 	memcpy(crtc_state, saved_state, sizeof(*crtc_state));
13345 	kfree(saved_state);
13346 
13347 	intel_crtc_copy_uapi_to_hw_state(crtc_state);
13348 
13349 	return 0;
13350 }
13351 
13352 static int
13353 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config)
13354 {
13355 	struct drm_crtc *crtc = pipe_config->uapi.crtc;
13356 	struct drm_atomic_state *state = pipe_config->uapi.state;
13357 	struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
13358 	struct drm_connector *connector;
13359 	struct drm_connector_state *connector_state;
13360 	int base_bpp, ret, i;
13361 	bool retry = true;
13362 
13363 	pipe_config->cpu_transcoder =
13364 		(enum transcoder) to_intel_crtc(crtc)->pipe;
13365 
13366 	/*
13367 	 * Sanitize sync polarity flags based on requested ones. If neither
13368 	 * positive or negative polarity is requested, treat this as meaning
13369 	 * negative polarity.
13370 	 */
13371 	if (!(pipe_config->hw.adjusted_mode.flags &
13372 	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
13373 		pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
13374 
13375 	if (!(pipe_config->hw.adjusted_mode.flags &
13376 	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
13377 		pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
13378 
13379 	ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
13380 					pipe_config);
13381 	if (ret)
13382 		return ret;
13383 
13384 	base_bpp = pipe_config->pipe_bpp;
13385 
13386 	/*
13387 	 * Determine the real pipe dimensions. Note that stereo modes can
13388 	 * increase the actual pipe size due to the frame doubling and
13389 	 * insertion of additional space for blanks between the frame. This
13390 	 * is stored in the crtc timings. We use the requested mode to do this
13391 	 * computation to clearly distinguish it from the adjusted mode, which
13392 	 * can be changed by the connectors in the below retry loop.
13393 	 */
13394 	drm_mode_get_hv_timing(&pipe_config->hw.mode,
13395 			       &pipe_config->pipe_src_w,
13396 			       &pipe_config->pipe_src_h);
13397 
13398 	for_each_new_connector_in_state(state, connector, connector_state, i) {
13399 		struct intel_encoder *encoder =
13400 			to_intel_encoder(connector_state->best_encoder);
13401 
13402 		if (connector_state->crtc != crtc)
13403 			continue;
13404 
13405 		if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13406 			drm_dbg_kms(&i915->drm,
13407 				    "rejecting invalid cloning configuration\n");
13408 			return -EINVAL;
13409 		}
13410 
13411 		/*
13412 		 * Determine output_types before calling the .compute_config()
13413 		 * hooks so that the hooks can use this information safely.
13414 		 */
13415 		if (encoder->compute_output_type)
13416 			pipe_config->output_types |=
13417 				BIT(encoder->compute_output_type(encoder, pipe_config,
13418 								 connector_state));
13419 		else
13420 			pipe_config->output_types |= BIT(encoder->type);
13421 	}
13422 
13423 encoder_retry:
13424 	/* Ensure the port clock defaults are reset when retrying. */
13425 	pipe_config->port_clock = 0;
13426 	pipe_config->pixel_multiplier = 1;
13427 
13428 	/* Fill in default crtc timings, allow encoders to overwrite them. */
13429 	drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode,
13430 			      CRTC_STEREO_DOUBLE);
13431 
13432 	/* Pass our mode to the connectors and the CRTC to give them a chance to
13433 	 * adjust it according to limitations or connector properties, and also
13434 	 * a chance to reject the mode entirely.
13435 	 */
13436 	for_each_new_connector_in_state(state, connector, connector_state, i) {
13437 		struct intel_encoder *encoder =
13438 			to_intel_encoder(connector_state->best_encoder);
13439 
13440 		if (connector_state->crtc != crtc)
13441 			continue;
13442 
13443 		ret = encoder->compute_config(encoder, pipe_config,
13444 					      connector_state);
13445 		if (ret < 0) {
13446 			if (ret != -EDEADLK)
13447 				drm_dbg_kms(&i915->drm,
13448 					    "Encoder config failure: %d\n",
13449 					    ret);
13450 			return ret;
13451 		}
13452 	}
13453 
13454 	/* Set default port clock if not overwritten by the encoder. Needs to be
13455 	 * done afterwards in case the encoder adjusts the mode. */
13456 	if (!pipe_config->port_clock)
13457 		pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock
13458 			* pipe_config->pixel_multiplier;
13459 
13460 	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13461 	if (ret == -EDEADLK)
13462 		return ret;
13463 	if (ret < 0) {
13464 		drm_dbg_kms(&i915->drm, "CRTC fixup failed\n");
13465 		return ret;
13466 	}
13467 
13468 	if (ret == RETRY) {
13469 		if (drm_WARN(&i915->drm, !retry,
13470 			     "loop in pipe configuration computation\n"))
13471 			return -EINVAL;
13472 
13473 		drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n");
13474 		retry = false;
13475 		goto encoder_retry;
13476 	}
13477 
13478 	/* Dithering seems to not pass-through bits correctly when it should, so
13479 	 * only enable it on 6bpc panels and when its not a compliance
13480 	 * test requesting 6bpc video pattern.
13481 	 */
13482 	pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
13483 		!pipe_config->dither_force_disable;
13484 	drm_dbg_kms(&i915->drm,
13485 		    "hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13486 		    base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13487 
13488 	return 0;
13489 }
13490 
13491 static int
13492 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state)
13493 {
13494 	struct intel_atomic_state *state =
13495 		to_intel_atomic_state(crtc_state->uapi.state);
13496 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13497 	struct drm_connector_state *conn_state;
13498 	struct drm_connector *connector;
13499 	int i;
13500 
13501 	for_each_new_connector_in_state(&state->base, connector,
13502 					conn_state, i) {
13503 		struct intel_encoder *encoder =
13504 			to_intel_encoder(conn_state->best_encoder);
13505 		int ret;
13506 
13507 		if (conn_state->crtc != &crtc->base ||
13508 		    !encoder->compute_config_late)
13509 			continue;
13510 
13511 		ret = encoder->compute_config_late(encoder, crtc_state,
13512 						   conn_state);
13513 		if (ret)
13514 			return ret;
13515 	}
13516 
13517 	return 0;
13518 }
13519 
13520 bool intel_fuzzy_clock_check(int clock1, int clock2)
13521 {
13522 	int diff;
13523 
13524 	if (clock1 == clock2)
13525 		return true;
13526 
13527 	if (!clock1 || !clock2)
13528 		return false;
13529 
13530 	diff = abs(clock1 - clock2);
13531 
13532 	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13533 		return true;
13534 
13535 	return false;
13536 }
13537 
13538 static bool
13539 intel_compare_m_n(unsigned int m, unsigned int n,
13540 		  unsigned int m2, unsigned int n2,
13541 		  bool exact)
13542 {
13543 	if (m == m2 && n == n2)
13544 		return true;
13545 
13546 	if (exact || !m || !n || !m2 || !n2)
13547 		return false;
13548 
13549 	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13550 
13551 	if (n > n2) {
13552 		while (n > n2) {
13553 			m2 <<= 1;
13554 			n2 <<= 1;
13555 		}
13556 	} else if (n < n2) {
13557 		while (n < n2) {
13558 			m <<= 1;
13559 			n <<= 1;
13560 		}
13561 	}
13562 
13563 	if (n != n2)
13564 		return false;
13565 
13566 	return intel_fuzzy_clock_check(m, m2);
13567 }
13568 
13569 static bool
13570 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13571 		       const struct intel_link_m_n *m2_n2,
13572 		       bool exact)
13573 {
13574 	return m_n->tu == m2_n2->tu &&
13575 		intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13576 				  m2_n2->gmch_m, m2_n2->gmch_n, exact) &&
13577 		intel_compare_m_n(m_n->link_m, m_n->link_n,
13578 				  m2_n2->link_m, m2_n2->link_n, exact);
13579 }
13580 
13581 static bool
13582 intel_compare_infoframe(const union hdmi_infoframe *a,
13583 			const union hdmi_infoframe *b)
13584 {
13585 	return memcmp(a, b, sizeof(*a)) == 0;
13586 }
13587 
13588 static bool
13589 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a,
13590 			 const struct drm_dp_vsc_sdp *b)
13591 {
13592 	return memcmp(a, b, sizeof(*a)) == 0;
13593 }
13594 
13595 static void
13596 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv,
13597 			       bool fastset, const char *name,
13598 			       const union hdmi_infoframe *a,
13599 			       const union hdmi_infoframe *b)
13600 {
13601 	if (fastset) {
13602 		if (!drm_debug_enabled(DRM_UT_KMS))
13603 			return;
13604 
13605 		drm_dbg_kms(&dev_priv->drm,
13606 			    "fastset mismatch in %s infoframe\n", name);
13607 		drm_dbg_kms(&dev_priv->drm, "expected:\n");
13608 		hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a);
13609 		drm_dbg_kms(&dev_priv->drm, "found:\n");
13610 		hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b);
13611 	} else {
13612 		drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name);
13613 		drm_err(&dev_priv->drm, "expected:\n");
13614 		hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a);
13615 		drm_err(&dev_priv->drm, "found:\n");
13616 		hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b);
13617 	}
13618 }
13619 
13620 static void
13621 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv,
13622 				bool fastset, const char *name,
13623 				const struct drm_dp_vsc_sdp *a,
13624 				const struct drm_dp_vsc_sdp *b)
13625 {
13626 	if (fastset) {
13627 		if (!drm_debug_enabled(DRM_UT_KMS))
13628 			return;
13629 
13630 		drm_dbg_kms(&dev_priv->drm,
13631 			    "fastset mismatch in %s dp sdp\n", name);
13632 		drm_dbg_kms(&dev_priv->drm, "expected:\n");
13633 		drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a);
13634 		drm_dbg_kms(&dev_priv->drm, "found:\n");
13635 		drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b);
13636 	} else {
13637 		drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name);
13638 		drm_err(&dev_priv->drm, "expected:\n");
13639 		drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a);
13640 		drm_err(&dev_priv->drm, "found:\n");
13641 		drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b);
13642 	}
13643 }
13644 
13645 static void __printf(4, 5)
13646 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc,
13647 		     const char *name, const char *format, ...)
13648 {
13649 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
13650 	struct va_format vaf;
13651 	va_list args;
13652 
13653 	va_start(args, format);
13654 	vaf.fmt = format;
13655 	vaf.va = &args;
13656 
13657 	if (fastset)
13658 		drm_dbg_kms(&i915->drm,
13659 			    "[CRTC:%d:%s] fastset mismatch in %s %pV\n",
13660 			    crtc->base.base.id, crtc->base.name, name, &vaf);
13661 	else
13662 		drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n",
13663 			crtc->base.base.id, crtc->base.name, name, &vaf);
13664 
13665 	va_end(args);
13666 }
13667 
13668 static bool fastboot_enabled(struct drm_i915_private *dev_priv)
13669 {
13670 	if (dev_priv->params.fastboot != -1)
13671 		return dev_priv->params.fastboot;
13672 
13673 	/* Enable fastboot by default on Skylake and newer */
13674 	if (INTEL_GEN(dev_priv) >= 9)
13675 		return true;
13676 
13677 	/* Enable fastboot by default on VLV and CHV */
13678 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13679 		return true;
13680 
13681 	/* Disabled by default on all others */
13682 	return false;
13683 }
13684 
13685 static bool
13686 intel_pipe_config_compare(const struct intel_crtc_state *current_config,
13687 			  const struct intel_crtc_state *pipe_config,
13688 			  bool fastset)
13689 {
13690 	struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev);
13691 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
13692 	bool ret = true;
13693 	u32 bp_gamma = 0;
13694 	bool fixup_inherited = fastset &&
13695 		current_config->inherited && !pipe_config->inherited;
13696 
13697 	if (fixup_inherited && !fastboot_enabled(dev_priv)) {
13698 		drm_dbg_kms(&dev_priv->drm,
13699 			    "initial modeset and fastboot not set\n");
13700 		ret = false;
13701 	}
13702 
13703 #define PIPE_CONF_CHECK_X(name) do { \
13704 	if (current_config->name != pipe_config->name) { \
13705 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13706 				     "(expected 0x%08x, found 0x%08x)", \
13707 				     current_config->name, \
13708 				     pipe_config->name); \
13709 		ret = false; \
13710 	} \
13711 } while (0)
13712 
13713 #define PIPE_CONF_CHECK_I(name) do { \
13714 	if (current_config->name != pipe_config->name) { \
13715 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13716 				     "(expected %i, found %i)", \
13717 				     current_config->name, \
13718 				     pipe_config->name); \
13719 		ret = false; \
13720 	} \
13721 } while (0)
13722 
13723 #define PIPE_CONF_CHECK_BOOL(name) do { \
13724 	if (current_config->name != pipe_config->name) { \
13725 		pipe_config_mismatch(fastset, crtc,  __stringify(name), \
13726 				     "(expected %s, found %s)", \
13727 				     yesno(current_config->name), \
13728 				     yesno(pipe_config->name)); \
13729 		ret = false; \
13730 	} \
13731 } while (0)
13732 
13733 /*
13734  * Checks state where we only read out the enabling, but not the entire
13735  * state itself (like full infoframes or ELD for audio). These states
13736  * require a full modeset on bootup to fix up.
13737  */
13738 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \
13739 	if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \
13740 		PIPE_CONF_CHECK_BOOL(name); \
13741 	} else { \
13742 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13743 				     "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \
13744 				     yesno(current_config->name), \
13745 				     yesno(pipe_config->name)); \
13746 		ret = false; \
13747 	} \
13748 } while (0)
13749 
13750 #define PIPE_CONF_CHECK_P(name) do { \
13751 	if (current_config->name != pipe_config->name) { \
13752 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13753 				     "(expected %p, found %p)", \
13754 				     current_config->name, \
13755 				     pipe_config->name); \
13756 		ret = false; \
13757 	} \
13758 } while (0)
13759 
13760 #define PIPE_CONF_CHECK_M_N(name) do { \
13761 	if (!intel_compare_link_m_n(&current_config->name, \
13762 				    &pipe_config->name,\
13763 				    !fastset)) { \
13764 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13765 				     "(expected tu %i gmch %i/%i link %i/%i, " \
13766 				     "found tu %i, gmch %i/%i link %i/%i)", \
13767 				     current_config->name.tu, \
13768 				     current_config->name.gmch_m, \
13769 				     current_config->name.gmch_n, \
13770 				     current_config->name.link_m, \
13771 				     current_config->name.link_n, \
13772 				     pipe_config->name.tu, \
13773 				     pipe_config->name.gmch_m, \
13774 				     pipe_config->name.gmch_n, \
13775 				     pipe_config->name.link_m, \
13776 				     pipe_config->name.link_n); \
13777 		ret = false; \
13778 	} \
13779 } while (0)
13780 
13781 /* This is required for BDW+ where there is only one set of registers for
13782  * switching between high and low RR.
13783  * This macro can be used whenever a comparison has to be made between one
13784  * hw state and multiple sw state variables.
13785  */
13786 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \
13787 	if (!intel_compare_link_m_n(&current_config->name, \
13788 				    &pipe_config->name, !fastset) && \
13789 	    !intel_compare_link_m_n(&current_config->alt_name, \
13790 				    &pipe_config->name, !fastset)) { \
13791 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13792 				     "(expected tu %i gmch %i/%i link %i/%i, " \
13793 				     "or tu %i gmch %i/%i link %i/%i, " \
13794 				     "found tu %i, gmch %i/%i link %i/%i)", \
13795 				     current_config->name.tu, \
13796 				     current_config->name.gmch_m, \
13797 				     current_config->name.gmch_n, \
13798 				     current_config->name.link_m, \
13799 				     current_config->name.link_n, \
13800 				     current_config->alt_name.tu, \
13801 				     current_config->alt_name.gmch_m, \
13802 				     current_config->alt_name.gmch_n, \
13803 				     current_config->alt_name.link_m, \
13804 				     current_config->alt_name.link_n, \
13805 				     pipe_config->name.tu, \
13806 				     pipe_config->name.gmch_m, \
13807 				     pipe_config->name.gmch_n, \
13808 				     pipe_config->name.link_m, \
13809 				     pipe_config->name.link_n); \
13810 		ret = false; \
13811 	} \
13812 } while (0)
13813 
13814 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
13815 	if ((current_config->name ^ pipe_config->name) & (mask)) { \
13816 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13817 				     "(%x) (expected %i, found %i)", \
13818 				     (mask), \
13819 				     current_config->name & (mask), \
13820 				     pipe_config->name & (mask)); \
13821 		ret = false; \
13822 	} \
13823 } while (0)
13824 
13825 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \
13826 	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13827 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13828 				     "(expected %i, found %i)", \
13829 				     current_config->name, \
13830 				     pipe_config->name); \
13831 		ret = false; \
13832 	} \
13833 } while (0)
13834 
13835 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \
13836 	if (!intel_compare_infoframe(&current_config->infoframes.name, \
13837 				     &pipe_config->infoframes.name)) { \
13838 		pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \
13839 					       &current_config->infoframes.name, \
13840 					       &pipe_config->infoframes.name); \
13841 		ret = false; \
13842 	} \
13843 } while (0)
13844 
13845 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \
13846 	if (!current_config->has_psr && !pipe_config->has_psr && \
13847 	    !intel_compare_dp_vsc_sdp(&current_config->infoframes.name, \
13848 				      &pipe_config->infoframes.name)) { \
13849 		pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \
13850 						&current_config->infoframes.name, \
13851 						&pipe_config->infoframes.name); \
13852 		ret = false; \
13853 	} \
13854 } while (0)
13855 
13856 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \
13857 	if (current_config->name1 != pipe_config->name1) { \
13858 		pipe_config_mismatch(fastset, crtc, __stringify(name1), \
13859 				"(expected %i, found %i, won't compare lut values)", \
13860 				current_config->name1, \
13861 				pipe_config->name1); \
13862 		ret = false;\
13863 	} else { \
13864 		if (!intel_color_lut_equal(current_config->name2, \
13865 					pipe_config->name2, pipe_config->name1, \
13866 					bit_precision)) { \
13867 			pipe_config_mismatch(fastset, crtc, __stringify(name2), \
13868 					"hw_state doesn't match sw_state"); \
13869 			ret = false; \
13870 		} \
13871 	} \
13872 } while (0)
13873 
13874 #define PIPE_CONF_QUIRK(quirk) \
13875 	((current_config->quirks | pipe_config->quirks) & (quirk))
13876 
13877 	PIPE_CONF_CHECK_I(cpu_transcoder);
13878 
13879 	PIPE_CONF_CHECK_BOOL(has_pch_encoder);
13880 	PIPE_CONF_CHECK_I(fdi_lanes);
13881 	PIPE_CONF_CHECK_M_N(fdi_m_n);
13882 
13883 	PIPE_CONF_CHECK_I(lane_count);
13884 	PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13885 
13886 	if (INTEL_GEN(dev_priv) < 8) {
13887 		PIPE_CONF_CHECK_M_N(dp_m_n);
13888 
13889 		if (current_config->has_drrs)
13890 			PIPE_CONF_CHECK_M_N(dp_m2_n2);
13891 	} else
13892 		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13893 
13894 	PIPE_CONF_CHECK_X(output_types);
13895 
13896 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay);
13897 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal);
13898 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start);
13899 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end);
13900 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start);
13901 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end);
13902 
13903 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay);
13904 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal);
13905 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start);
13906 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end);
13907 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start);
13908 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end);
13909 
13910 	PIPE_CONF_CHECK_I(pixel_multiplier);
13911 	PIPE_CONF_CHECK_I(output_format);
13912 	PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
13913 	if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13914 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13915 		PIPE_CONF_CHECK_BOOL(limited_color_range);
13916 
13917 	PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
13918 	PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
13919 	PIPE_CONF_CHECK_BOOL(has_infoframe);
13920 	PIPE_CONF_CHECK_BOOL(fec_enable);
13921 
13922 	PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio);
13923 
13924 	PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13925 			      DRM_MODE_FLAG_INTERLACE);
13926 
13927 	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13928 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13929 				      DRM_MODE_FLAG_PHSYNC);
13930 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13931 				      DRM_MODE_FLAG_NHSYNC);
13932 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13933 				      DRM_MODE_FLAG_PVSYNC);
13934 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13935 				      DRM_MODE_FLAG_NVSYNC);
13936 	}
13937 
13938 	PIPE_CONF_CHECK_X(gmch_pfit.control);
13939 	/* pfit ratios are autocomputed by the hw on gen4+ */
13940 	if (INTEL_GEN(dev_priv) < 4)
13941 		PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13942 	PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13943 
13944 	/*
13945 	 * Changing the EDP transcoder input mux
13946 	 * (A_ONOFF vs. A_ON) requires a full modeset.
13947 	 */
13948 	PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru);
13949 
13950 	if (!fastset) {
13951 		PIPE_CONF_CHECK_I(pipe_src_w);
13952 		PIPE_CONF_CHECK_I(pipe_src_h);
13953 
13954 		PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
13955 		if (current_config->pch_pfit.enabled) {
13956 			PIPE_CONF_CHECK_I(pch_pfit.dst.x1);
13957 			PIPE_CONF_CHECK_I(pch_pfit.dst.y1);
13958 			PIPE_CONF_CHECK_I(pch_pfit.dst.x2);
13959 			PIPE_CONF_CHECK_I(pch_pfit.dst.y2);
13960 		}
13961 
13962 		PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13963 		PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
13964 
13965 		PIPE_CONF_CHECK_X(gamma_mode);
13966 		if (IS_CHERRYVIEW(dev_priv))
13967 			PIPE_CONF_CHECK_X(cgm_mode);
13968 		else
13969 			PIPE_CONF_CHECK_X(csc_mode);
13970 		PIPE_CONF_CHECK_BOOL(gamma_enable);
13971 		PIPE_CONF_CHECK_BOOL(csc_enable);
13972 
13973 		PIPE_CONF_CHECK_I(linetime);
13974 		PIPE_CONF_CHECK_I(ips_linetime);
13975 
13976 		bp_gamma = intel_color_get_gamma_bit_precision(pipe_config);
13977 		if (bp_gamma)
13978 			PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma);
13979 	}
13980 
13981 	PIPE_CONF_CHECK_BOOL(double_wide);
13982 
13983 	PIPE_CONF_CHECK_P(shared_dpll);
13984 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13985 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13986 	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13987 	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13988 	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13989 	PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13990 	PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13991 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13992 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13993 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
13994 	PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
13995 	PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
13996 	PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
13997 	PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
13998 	PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
13999 	PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
14000 	PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
14001 	PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
14002 	PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
14003 	PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
14004 	PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
14005 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl);
14006 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1);
14007 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl);
14008 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0);
14009 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1);
14010 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf);
14011 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock);
14012 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc);
14013 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias);
14014 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias);
14015 
14016 	PIPE_CONF_CHECK_X(dsi_pll.ctrl);
14017 	PIPE_CONF_CHECK_X(dsi_pll.div);
14018 
14019 	if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
14020 		PIPE_CONF_CHECK_I(pipe_bpp);
14021 
14022 	PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock);
14023 	PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
14024 
14025 	PIPE_CONF_CHECK_I(min_voltage_level);
14026 
14027 	PIPE_CONF_CHECK_X(infoframes.enable);
14028 	PIPE_CONF_CHECK_X(infoframes.gcp);
14029 	PIPE_CONF_CHECK_INFOFRAME(avi);
14030 	PIPE_CONF_CHECK_INFOFRAME(spd);
14031 	PIPE_CONF_CHECK_INFOFRAME(hdmi);
14032 	PIPE_CONF_CHECK_INFOFRAME(drm);
14033 	PIPE_CONF_CHECK_DP_VSC_SDP(vsc);
14034 
14035 	PIPE_CONF_CHECK_X(sync_mode_slaves_mask);
14036 	PIPE_CONF_CHECK_I(master_transcoder);
14037 
14038 	PIPE_CONF_CHECK_I(dsc.compression_enable);
14039 	PIPE_CONF_CHECK_I(dsc.dsc_split);
14040 	PIPE_CONF_CHECK_I(dsc.compressed_bpp);
14041 
14042 	PIPE_CONF_CHECK_I(mst_master_transcoder);
14043 
14044 #undef PIPE_CONF_CHECK_X
14045 #undef PIPE_CONF_CHECK_I
14046 #undef PIPE_CONF_CHECK_BOOL
14047 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE
14048 #undef PIPE_CONF_CHECK_P
14049 #undef PIPE_CONF_CHECK_FLAGS
14050 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
14051 #undef PIPE_CONF_CHECK_COLOR_LUT
14052 #undef PIPE_CONF_QUIRK
14053 
14054 	return ret;
14055 }
14056 
14057 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
14058 					   const struct intel_crtc_state *pipe_config)
14059 {
14060 	if (pipe_config->has_pch_encoder) {
14061 		int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
14062 							    &pipe_config->fdi_m_n);
14063 		int dotclock = pipe_config->hw.adjusted_mode.crtc_clock;
14064 
14065 		/*
14066 		 * FDI already provided one idea for the dotclock.
14067 		 * Yell if the encoder disagrees.
14068 		 */
14069 		drm_WARN(&dev_priv->drm,
14070 			 !intel_fuzzy_clock_check(fdi_dotclock, dotclock),
14071 			 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
14072 			 fdi_dotclock, dotclock);
14073 	}
14074 }
14075 
14076 static void verify_wm_state(struct intel_crtc *crtc,
14077 			    struct intel_crtc_state *new_crtc_state)
14078 {
14079 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14080 	struct skl_hw_state {
14081 		struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
14082 		struct skl_ddb_entry ddb_uv[I915_MAX_PLANES];
14083 		struct skl_pipe_wm wm;
14084 	} *hw;
14085 	struct skl_pipe_wm *sw_wm;
14086 	struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
14087 	u8 hw_enabled_slices;
14088 	const enum pipe pipe = crtc->pipe;
14089 	int plane, level, max_level = ilk_wm_max_level(dev_priv);
14090 
14091 	if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active)
14092 		return;
14093 
14094 	hw = kzalloc(sizeof(*hw), GFP_KERNEL);
14095 	if (!hw)
14096 		return;
14097 
14098 	skl_pipe_wm_get_hw_state(crtc, &hw->wm);
14099 	sw_wm = &new_crtc_state->wm.skl.optimal;
14100 
14101 	skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv);
14102 
14103 	hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv);
14104 
14105 	if (INTEL_GEN(dev_priv) >= 11 &&
14106 	    hw_enabled_slices != dev_priv->dbuf.enabled_slices)
14107 		drm_err(&dev_priv->drm,
14108 			"mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n",
14109 			dev_priv->dbuf.enabled_slices,
14110 			hw_enabled_slices);
14111 
14112 	/* planes */
14113 	for_each_universal_plane(dev_priv, pipe, plane) {
14114 		struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
14115 
14116 		hw_plane_wm = &hw->wm.planes[plane];
14117 		sw_plane_wm = &sw_wm->planes[plane];
14118 
14119 		/* Watermarks */
14120 		for (level = 0; level <= max_level; level++) {
14121 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
14122 						&sw_plane_wm->wm[level]) ||
14123 			    (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level],
14124 							       &sw_plane_wm->sagv_wm0)))
14125 				continue;
14126 
14127 			drm_err(&dev_priv->drm,
14128 				"mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14129 				pipe_name(pipe), plane + 1, level,
14130 				sw_plane_wm->wm[level].plane_en,
14131 				sw_plane_wm->wm[level].plane_res_b,
14132 				sw_plane_wm->wm[level].plane_res_l,
14133 				hw_plane_wm->wm[level].plane_en,
14134 				hw_plane_wm->wm[level].plane_res_b,
14135 				hw_plane_wm->wm[level].plane_res_l);
14136 		}
14137 
14138 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
14139 					 &sw_plane_wm->trans_wm)) {
14140 			drm_err(&dev_priv->drm,
14141 				"mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14142 				pipe_name(pipe), plane + 1,
14143 				sw_plane_wm->trans_wm.plane_en,
14144 				sw_plane_wm->trans_wm.plane_res_b,
14145 				sw_plane_wm->trans_wm.plane_res_l,
14146 				hw_plane_wm->trans_wm.plane_en,
14147 				hw_plane_wm->trans_wm.plane_res_b,
14148 				hw_plane_wm->trans_wm.plane_res_l);
14149 		}
14150 
14151 		/* DDB */
14152 		hw_ddb_entry = &hw->ddb_y[plane];
14153 		sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane];
14154 
14155 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
14156 			drm_err(&dev_priv->drm,
14157 				"mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
14158 				pipe_name(pipe), plane + 1,
14159 				sw_ddb_entry->start, sw_ddb_entry->end,
14160 				hw_ddb_entry->start, hw_ddb_entry->end);
14161 		}
14162 	}
14163 
14164 	/*
14165 	 * cursor
14166 	 * If the cursor plane isn't active, we may not have updated it's ddb
14167 	 * allocation. In that case since the ddb allocation will be updated
14168 	 * once the plane becomes visible, we can skip this check
14169 	 */
14170 	if (1) {
14171 		struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
14172 
14173 		hw_plane_wm = &hw->wm.planes[PLANE_CURSOR];
14174 		sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
14175 
14176 		/* Watermarks */
14177 		for (level = 0; level <= max_level; level++) {
14178 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
14179 						&sw_plane_wm->wm[level]) ||
14180 			    (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level],
14181 							       &sw_plane_wm->sagv_wm0)))
14182 				continue;
14183 
14184 			drm_err(&dev_priv->drm,
14185 				"mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14186 				pipe_name(pipe), level,
14187 				sw_plane_wm->wm[level].plane_en,
14188 				sw_plane_wm->wm[level].plane_res_b,
14189 				sw_plane_wm->wm[level].plane_res_l,
14190 				hw_plane_wm->wm[level].plane_en,
14191 				hw_plane_wm->wm[level].plane_res_b,
14192 				hw_plane_wm->wm[level].plane_res_l);
14193 		}
14194 
14195 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
14196 					 &sw_plane_wm->trans_wm)) {
14197 			drm_err(&dev_priv->drm,
14198 				"mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14199 				pipe_name(pipe),
14200 				sw_plane_wm->trans_wm.plane_en,
14201 				sw_plane_wm->trans_wm.plane_res_b,
14202 				sw_plane_wm->trans_wm.plane_res_l,
14203 				hw_plane_wm->trans_wm.plane_en,
14204 				hw_plane_wm->trans_wm.plane_res_b,
14205 				hw_plane_wm->trans_wm.plane_res_l);
14206 		}
14207 
14208 		/* DDB */
14209 		hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR];
14210 		sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR];
14211 
14212 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
14213 			drm_err(&dev_priv->drm,
14214 				"mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
14215 				pipe_name(pipe),
14216 				sw_ddb_entry->start, sw_ddb_entry->end,
14217 				hw_ddb_entry->start, hw_ddb_entry->end);
14218 		}
14219 	}
14220 
14221 	kfree(hw);
14222 }
14223 
14224 static void
14225 verify_connector_state(struct intel_atomic_state *state,
14226 		       struct intel_crtc *crtc)
14227 {
14228 	struct drm_connector *connector;
14229 	struct drm_connector_state *new_conn_state;
14230 	int i;
14231 
14232 	for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) {
14233 		struct drm_encoder *encoder = connector->encoder;
14234 		struct intel_crtc_state *crtc_state = NULL;
14235 
14236 		if (new_conn_state->crtc != &crtc->base)
14237 			continue;
14238 
14239 		if (crtc)
14240 			crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
14241 
14242 		intel_connector_verify_state(crtc_state, new_conn_state);
14243 
14244 		I915_STATE_WARN(new_conn_state->best_encoder != encoder,
14245 		     "connector's atomic encoder doesn't match legacy encoder\n");
14246 	}
14247 }
14248 
14249 static void
14250 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state)
14251 {
14252 	struct intel_encoder *encoder;
14253 	struct drm_connector *connector;
14254 	struct drm_connector_state *old_conn_state, *new_conn_state;
14255 	int i;
14256 
14257 	for_each_intel_encoder(&dev_priv->drm, encoder) {
14258 		bool enabled = false, found = false;
14259 		enum pipe pipe;
14260 
14261 		drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n",
14262 			    encoder->base.base.id,
14263 			    encoder->base.name);
14264 
14265 		for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state,
14266 						   new_conn_state, i) {
14267 			if (old_conn_state->best_encoder == &encoder->base)
14268 				found = true;
14269 
14270 			if (new_conn_state->best_encoder != &encoder->base)
14271 				continue;
14272 			found = enabled = true;
14273 
14274 			I915_STATE_WARN(new_conn_state->crtc !=
14275 					encoder->base.crtc,
14276 			     "connector's crtc doesn't match encoder crtc\n");
14277 		}
14278 
14279 		if (!found)
14280 			continue;
14281 
14282 		I915_STATE_WARN(!!encoder->base.crtc != enabled,
14283 		     "encoder's enabled state mismatch "
14284 		     "(expected %i, found %i)\n",
14285 		     !!encoder->base.crtc, enabled);
14286 
14287 		if (!encoder->base.crtc) {
14288 			bool active;
14289 
14290 			active = encoder->get_hw_state(encoder, &pipe);
14291 			I915_STATE_WARN(active,
14292 			     "encoder detached but still enabled on pipe %c.\n",
14293 			     pipe_name(pipe));
14294 		}
14295 	}
14296 }
14297 
14298 static void
14299 verify_crtc_state(struct intel_crtc *crtc,
14300 		  struct intel_crtc_state *old_crtc_state,
14301 		  struct intel_crtc_state *new_crtc_state)
14302 {
14303 	struct drm_device *dev = crtc->base.dev;
14304 	struct drm_i915_private *dev_priv = to_i915(dev);
14305 	struct intel_encoder *encoder;
14306 	struct intel_crtc_state *pipe_config = old_crtc_state;
14307 	struct drm_atomic_state *state = old_crtc_state->uapi.state;
14308 
14309 	__drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi);
14310 	intel_crtc_free_hw_state(old_crtc_state);
14311 	intel_crtc_state_reset(old_crtc_state, crtc);
14312 	old_crtc_state->uapi.state = state;
14313 
14314 	drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id,
14315 		    crtc->base.name);
14316 
14317 	pipe_config->hw.enable = new_crtc_state->hw.enable;
14318 
14319 	pipe_config->hw.active =
14320 		dev_priv->display.get_pipe_config(crtc, pipe_config);
14321 
14322 	/* we keep both pipes enabled on 830 */
14323 	if (IS_I830(dev_priv) && pipe_config->hw.active)
14324 		pipe_config->hw.active = new_crtc_state->hw.active;
14325 
14326 	I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active,
14327 			"crtc active state doesn't match with hw state "
14328 			"(expected %i, found %i)\n",
14329 			new_crtc_state->hw.active, pipe_config->hw.active);
14330 
14331 	I915_STATE_WARN(crtc->active != new_crtc_state->hw.active,
14332 			"transitional active state does not match atomic hw state "
14333 			"(expected %i, found %i)\n",
14334 			new_crtc_state->hw.active, crtc->active);
14335 
14336 	for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14337 		enum pipe pipe;
14338 		bool active;
14339 
14340 		active = encoder->get_hw_state(encoder, &pipe);
14341 		I915_STATE_WARN(active != new_crtc_state->hw.active,
14342 				"[ENCODER:%i] active %i with crtc active %i\n",
14343 				encoder->base.base.id, active,
14344 				new_crtc_state->hw.active);
14345 
14346 		I915_STATE_WARN(active && crtc->pipe != pipe,
14347 				"Encoder connected to wrong pipe %c\n",
14348 				pipe_name(pipe));
14349 
14350 		if (active)
14351 			encoder->get_config(encoder, pipe_config);
14352 	}
14353 
14354 	intel_crtc_compute_pixel_rate(pipe_config);
14355 
14356 	if (!new_crtc_state->hw.active)
14357 		return;
14358 
14359 	intel_pipe_config_sanity_check(dev_priv, pipe_config);
14360 
14361 	if (!intel_pipe_config_compare(new_crtc_state,
14362 				       pipe_config, false)) {
14363 		I915_STATE_WARN(1, "pipe state doesn't match!\n");
14364 		intel_dump_pipe_config(pipe_config, NULL, "[hw state]");
14365 		intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]");
14366 	}
14367 }
14368 
14369 static void
14370 intel_verify_planes(struct intel_atomic_state *state)
14371 {
14372 	struct intel_plane *plane;
14373 	const struct intel_plane_state *plane_state;
14374 	int i;
14375 
14376 	for_each_new_intel_plane_in_state(state, plane,
14377 					  plane_state, i)
14378 		assert_plane(plane, plane_state->planar_slave ||
14379 			     plane_state->uapi.visible);
14380 }
14381 
14382 static void
14383 verify_single_dpll_state(struct drm_i915_private *dev_priv,
14384 			 struct intel_shared_dpll *pll,
14385 			 struct intel_crtc *crtc,
14386 			 struct intel_crtc_state *new_crtc_state)
14387 {
14388 	struct intel_dpll_hw_state dpll_hw_state;
14389 	unsigned int crtc_mask;
14390 	bool active;
14391 
14392 	memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
14393 
14394 	drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name);
14395 
14396 	active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state);
14397 
14398 	if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) {
14399 		I915_STATE_WARN(!pll->on && pll->active_mask,
14400 		     "pll in active use but not on in sw tracking\n");
14401 		I915_STATE_WARN(pll->on && !pll->active_mask,
14402 		     "pll is on but not used by any active crtc\n");
14403 		I915_STATE_WARN(pll->on != active,
14404 		     "pll on state mismatch (expected %i, found %i)\n",
14405 		     pll->on, active);
14406 	}
14407 
14408 	if (!crtc) {
14409 		I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
14410 				"more active pll users than references: %x vs %x\n",
14411 				pll->active_mask, pll->state.crtc_mask);
14412 
14413 		return;
14414 	}
14415 
14416 	crtc_mask = drm_crtc_mask(&crtc->base);
14417 
14418 	if (new_crtc_state->hw.active)
14419 		I915_STATE_WARN(!(pll->active_mask & crtc_mask),
14420 				"pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
14421 				pipe_name(crtc->pipe), pll->active_mask);
14422 	else
14423 		I915_STATE_WARN(pll->active_mask & crtc_mask,
14424 				"pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
14425 				pipe_name(crtc->pipe), pll->active_mask);
14426 
14427 	I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
14428 			"pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
14429 			crtc_mask, pll->state.crtc_mask);
14430 
14431 	I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
14432 					  &dpll_hw_state,
14433 					  sizeof(dpll_hw_state)),
14434 			"pll hw state mismatch\n");
14435 }
14436 
14437 static void
14438 verify_shared_dpll_state(struct intel_crtc *crtc,
14439 			 struct intel_crtc_state *old_crtc_state,
14440 			 struct intel_crtc_state *new_crtc_state)
14441 {
14442 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14443 
14444 	if (new_crtc_state->shared_dpll)
14445 		verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state);
14446 
14447 	if (old_crtc_state->shared_dpll &&
14448 	    old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) {
14449 		unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
14450 		struct intel_shared_dpll *pll = old_crtc_state->shared_dpll;
14451 
14452 		I915_STATE_WARN(pll->active_mask & crtc_mask,
14453 				"pll active mismatch (didn't expect pipe %c in active mask)\n",
14454 				pipe_name(crtc->pipe));
14455 		I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
14456 				"pll enabled crtcs mismatch (found %x in enabled mask)\n",
14457 				pipe_name(crtc->pipe));
14458 	}
14459 }
14460 
14461 static void
14462 intel_modeset_verify_crtc(struct intel_crtc *crtc,
14463 			  struct intel_atomic_state *state,
14464 			  struct intel_crtc_state *old_crtc_state,
14465 			  struct intel_crtc_state *new_crtc_state)
14466 {
14467 	if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe)
14468 		return;
14469 
14470 	verify_wm_state(crtc, new_crtc_state);
14471 	verify_connector_state(state, crtc);
14472 	verify_crtc_state(crtc, old_crtc_state, new_crtc_state);
14473 	verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state);
14474 }
14475 
14476 static void
14477 verify_disabled_dpll_state(struct drm_i915_private *dev_priv)
14478 {
14479 	int i;
14480 
14481 	for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++)
14482 		verify_single_dpll_state(dev_priv,
14483 					 &dev_priv->dpll.shared_dplls[i],
14484 					 NULL, NULL);
14485 }
14486 
14487 static void
14488 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv,
14489 			      struct intel_atomic_state *state)
14490 {
14491 	verify_encoder_state(dev_priv, state);
14492 	verify_connector_state(state, NULL);
14493 	verify_disabled_dpll_state(dev_priv);
14494 }
14495 
14496 static void
14497 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state)
14498 {
14499 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
14500 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14501 	const struct drm_display_mode *adjusted_mode =
14502 		&crtc_state->hw.adjusted_mode;
14503 
14504 	drm_calc_timestamping_constants(&crtc->base, adjusted_mode);
14505 
14506 	crtc->mode_flags = crtc_state->mode_flags;
14507 
14508 	/*
14509 	 * The scanline counter increments at the leading edge of hsync.
14510 	 *
14511 	 * On most platforms it starts counting from vtotal-1 on the
14512 	 * first active line. That means the scanline counter value is
14513 	 * always one less than what we would expect. Ie. just after
14514 	 * start of vblank, which also occurs at start of hsync (on the
14515 	 * last active line), the scanline counter will read vblank_start-1.
14516 	 *
14517 	 * On gen2 the scanline counter starts counting from 1 instead
14518 	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
14519 	 * to keep the value positive), instead of adding one.
14520 	 *
14521 	 * On HSW+ the behaviour of the scanline counter depends on the output
14522 	 * type. For DP ports it behaves like most other platforms, but on HDMI
14523 	 * there's an extra 1 line difference. So we need to add two instead of
14524 	 * one to the value.
14525 	 *
14526 	 * On VLV/CHV DSI the scanline counter would appear to increment
14527 	 * approx. 1/3 of a scanline before start of vblank. Unfortunately
14528 	 * that means we can't tell whether we're in vblank or not while
14529 	 * we're on that particular line. We must still set scanline_offset
14530 	 * to 1 so that the vblank timestamps come out correct when we query
14531 	 * the scanline counter from within the vblank interrupt handler.
14532 	 * However if queried just before the start of vblank we'll get an
14533 	 * answer that's slightly in the future.
14534 	 */
14535 	if (IS_GEN(dev_priv, 2)) {
14536 		int vtotal;
14537 
14538 		vtotal = adjusted_mode->crtc_vtotal;
14539 		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
14540 			vtotal /= 2;
14541 
14542 		crtc->scanline_offset = vtotal - 1;
14543 	} else if (HAS_DDI(dev_priv) &&
14544 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
14545 		crtc->scanline_offset = 2;
14546 	} else {
14547 		crtc->scanline_offset = 1;
14548 	}
14549 }
14550 
14551 static void intel_modeset_clear_plls(struct intel_atomic_state *state)
14552 {
14553 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14554 	struct intel_crtc_state *new_crtc_state;
14555 	struct intel_crtc *crtc;
14556 	int i;
14557 
14558 	if (!dev_priv->display.crtc_compute_clock)
14559 		return;
14560 
14561 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14562 		if (!needs_modeset(new_crtc_state))
14563 			continue;
14564 
14565 		intel_release_shared_dplls(state, crtc);
14566 	}
14567 }
14568 
14569 /*
14570  * This implements the workaround described in the "notes" section of the mode
14571  * set sequence documentation. When going from no pipes or single pipe to
14572  * multiple pipes, and planes are enabled after the pipe, we need to wait at
14573  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
14574  */
14575 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state)
14576 {
14577 	struct intel_crtc_state *crtc_state;
14578 	struct intel_crtc *crtc;
14579 	struct intel_crtc_state *first_crtc_state = NULL;
14580 	struct intel_crtc_state *other_crtc_state = NULL;
14581 	enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
14582 	int i;
14583 
14584 	/* look at all crtc's that are going to be enabled in during modeset */
14585 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14586 		if (!crtc_state->hw.active ||
14587 		    !needs_modeset(crtc_state))
14588 			continue;
14589 
14590 		if (first_crtc_state) {
14591 			other_crtc_state = crtc_state;
14592 			break;
14593 		} else {
14594 			first_crtc_state = crtc_state;
14595 			first_pipe = crtc->pipe;
14596 		}
14597 	}
14598 
14599 	/* No workaround needed? */
14600 	if (!first_crtc_state)
14601 		return 0;
14602 
14603 	/* w/a possibly needed, check how many crtc's are already enabled. */
14604 	for_each_intel_crtc(state->base.dev, crtc) {
14605 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
14606 		if (IS_ERR(crtc_state))
14607 			return PTR_ERR(crtc_state);
14608 
14609 		crtc_state->hsw_workaround_pipe = INVALID_PIPE;
14610 
14611 		if (!crtc_state->hw.active ||
14612 		    needs_modeset(crtc_state))
14613 			continue;
14614 
14615 		/* 2 or more enabled crtcs means no need for w/a */
14616 		if (enabled_pipe != INVALID_PIPE)
14617 			return 0;
14618 
14619 		enabled_pipe = crtc->pipe;
14620 	}
14621 
14622 	if (enabled_pipe != INVALID_PIPE)
14623 		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
14624 	else if (other_crtc_state)
14625 		other_crtc_state->hsw_workaround_pipe = first_pipe;
14626 
14627 	return 0;
14628 }
14629 
14630 u8 intel_calc_active_pipes(struct intel_atomic_state *state,
14631 			   u8 active_pipes)
14632 {
14633 	const struct intel_crtc_state *crtc_state;
14634 	struct intel_crtc *crtc;
14635 	int i;
14636 
14637 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14638 		if (crtc_state->hw.active)
14639 			active_pipes |= BIT(crtc->pipe);
14640 		else
14641 			active_pipes &= ~BIT(crtc->pipe);
14642 	}
14643 
14644 	return active_pipes;
14645 }
14646 
14647 static int intel_modeset_checks(struct intel_atomic_state *state)
14648 {
14649 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14650 
14651 	state->modeset = true;
14652 
14653 	if (IS_HASWELL(dev_priv))
14654 		return hsw_mode_set_planes_workaround(state);
14655 
14656 	return 0;
14657 }
14658 
14659 /*
14660  * Handle calculation of various watermark data at the end of the atomic check
14661  * phase.  The code here should be run after the per-crtc and per-plane 'check'
14662  * handlers to ensure that all derived state has been updated.
14663  */
14664 static int calc_watermark_data(struct intel_atomic_state *state)
14665 {
14666 	struct drm_device *dev = state->base.dev;
14667 	struct drm_i915_private *dev_priv = to_i915(dev);
14668 
14669 	/* Is there platform-specific watermark information to calculate? */
14670 	if (dev_priv->display.compute_global_watermarks)
14671 		return dev_priv->display.compute_global_watermarks(state);
14672 
14673 	return 0;
14674 }
14675 
14676 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state,
14677 				     struct intel_crtc_state *new_crtc_state)
14678 {
14679 	if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true))
14680 		return;
14681 
14682 	new_crtc_state->uapi.mode_changed = false;
14683 	new_crtc_state->update_pipe = true;
14684 }
14685 
14686 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state,
14687 				    struct intel_crtc_state *new_crtc_state)
14688 {
14689 	/*
14690 	 * If we're not doing the full modeset we want to
14691 	 * keep the current M/N values as they may be
14692 	 * sufficiently different to the computed values
14693 	 * to cause problems.
14694 	 *
14695 	 * FIXME: should really copy more fuzzy state here
14696 	 */
14697 	new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n;
14698 	new_crtc_state->dp_m_n = old_crtc_state->dp_m_n;
14699 	new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2;
14700 	new_crtc_state->has_drrs = old_crtc_state->has_drrs;
14701 }
14702 
14703 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state,
14704 					  struct intel_crtc *crtc,
14705 					  u8 plane_ids_mask)
14706 {
14707 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14708 	struct intel_plane *plane;
14709 
14710 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
14711 		struct intel_plane_state *plane_state;
14712 
14713 		if ((plane_ids_mask & BIT(plane->id)) == 0)
14714 			continue;
14715 
14716 		plane_state = intel_atomic_get_plane_state(state, plane);
14717 		if (IS_ERR(plane_state))
14718 			return PTR_ERR(plane_state);
14719 	}
14720 
14721 	return 0;
14722 }
14723 
14724 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv)
14725 {
14726 	/* See {hsw,vlv,ivb}_plane_ratio() */
14727 	return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) ||
14728 		IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
14729 		IS_IVYBRIDGE(dev_priv) || (INTEL_GEN(dev_priv) >= 11);
14730 }
14731 
14732 static int intel_atomic_check_planes(struct intel_atomic_state *state)
14733 {
14734 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14735 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14736 	struct intel_plane_state *plane_state;
14737 	struct intel_plane *plane;
14738 	struct intel_crtc *crtc;
14739 	int i, ret;
14740 
14741 	ret = icl_add_linked_planes(state);
14742 	if (ret)
14743 		return ret;
14744 
14745 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
14746 		ret = intel_plane_atomic_check(state, plane);
14747 		if (ret) {
14748 			drm_dbg_atomic(&dev_priv->drm,
14749 				       "[PLANE:%d:%s] atomic driver check failed\n",
14750 				       plane->base.base.id, plane->base.name);
14751 			return ret;
14752 		}
14753 	}
14754 
14755 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14756 					    new_crtc_state, i) {
14757 		u8 old_active_planes, new_active_planes;
14758 
14759 		ret = icl_check_nv12_planes(new_crtc_state);
14760 		if (ret)
14761 			return ret;
14762 
14763 		/*
14764 		 * On some platforms the number of active planes affects
14765 		 * the planes' minimum cdclk calculation. Add such planes
14766 		 * to the state before we compute the minimum cdclk.
14767 		 */
14768 		if (!active_planes_affects_min_cdclk(dev_priv))
14769 			continue;
14770 
14771 		old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14772 		new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14773 
14774 		/*
14775 		 * Not only the number of planes, but if the plane configuration had
14776 		 * changed might already mean we need to recompute min CDCLK,
14777 		 * because different planes might consume different amount of Dbuf bandwidth
14778 		 * according to formula: Bw per plane = Pixel rate * bpp * pipe/plane scale factor
14779 		 */
14780 		if (old_active_planes == new_active_planes)
14781 			continue;
14782 
14783 		ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes);
14784 		if (ret)
14785 			return ret;
14786 	}
14787 
14788 	return 0;
14789 }
14790 
14791 static int intel_atomic_check_cdclk(struct intel_atomic_state *state,
14792 				    bool *need_cdclk_calc)
14793 {
14794 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14795 	const struct intel_cdclk_state *old_cdclk_state;
14796 	const struct intel_cdclk_state *new_cdclk_state;
14797 	struct intel_plane_state *plane_state;
14798 	struct intel_bw_state *new_bw_state;
14799 	struct intel_plane *plane;
14800 	int min_cdclk = 0;
14801 	enum pipe pipe;
14802 	int ret;
14803 	int i;
14804 	/*
14805 	 * active_planes bitmask has been updated, and potentially
14806 	 * affected planes are part of the state. We can now
14807 	 * compute the minimum cdclk for each plane.
14808 	 */
14809 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
14810 		ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc);
14811 		if (ret)
14812 			return ret;
14813 	}
14814 
14815 	old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
14816 	new_cdclk_state = intel_atomic_get_new_cdclk_state(state);
14817 
14818 	if (new_cdclk_state &&
14819 	    old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk)
14820 		*need_cdclk_calc = true;
14821 
14822 	ret = dev_priv->display.bw_calc_min_cdclk(state);
14823 	if (ret)
14824 		return ret;
14825 
14826 	new_bw_state = intel_atomic_get_new_bw_state(state);
14827 
14828 	if (!new_cdclk_state || !new_bw_state)
14829 		return 0;
14830 
14831 	for_each_pipe(dev_priv, pipe) {
14832 		min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk);
14833 
14834 		/*
14835 		 * Currently do this change only if we need to increase
14836 		 */
14837 		if (new_bw_state->min_cdclk > min_cdclk)
14838 			*need_cdclk_calc = true;
14839 	}
14840 
14841 	return 0;
14842 }
14843 
14844 static int intel_atomic_check_crtcs(struct intel_atomic_state *state)
14845 {
14846 	struct intel_crtc_state *crtc_state;
14847 	struct intel_crtc *crtc;
14848 	int i;
14849 
14850 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14851 		int ret = intel_crtc_atomic_check(state, crtc);
14852 		struct drm_i915_private *i915 = to_i915(crtc->base.dev);
14853 		if (ret) {
14854 			drm_dbg_atomic(&i915->drm,
14855 				       "[CRTC:%d:%s] atomic driver check failed\n",
14856 				       crtc->base.base.id, crtc->base.name);
14857 			return ret;
14858 		}
14859 	}
14860 
14861 	return 0;
14862 }
14863 
14864 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state,
14865 					       u8 transcoders)
14866 {
14867 	const struct intel_crtc_state *new_crtc_state;
14868 	struct intel_crtc *crtc;
14869 	int i;
14870 
14871 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14872 		if (new_crtc_state->hw.enable &&
14873 		    transcoders & BIT(new_crtc_state->cpu_transcoder) &&
14874 		    needs_modeset(new_crtc_state))
14875 			return true;
14876 	}
14877 
14878 	return false;
14879 }
14880 
14881 /**
14882  * intel_atomic_check - validate state object
14883  * @dev: drm device
14884  * @_state: state to validate
14885  */
14886 static int intel_atomic_check(struct drm_device *dev,
14887 			      struct drm_atomic_state *_state)
14888 {
14889 	struct drm_i915_private *dev_priv = to_i915(dev);
14890 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
14891 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14892 	struct intel_crtc *crtc;
14893 	int ret, i;
14894 	bool any_ms = false;
14895 
14896 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14897 					    new_crtc_state, i) {
14898 		if (new_crtc_state->inherited != old_crtc_state->inherited)
14899 			new_crtc_state->uapi.mode_changed = true;
14900 	}
14901 
14902 	ret = drm_atomic_helper_check_modeset(dev, &state->base);
14903 	if (ret)
14904 		goto fail;
14905 
14906 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14907 					    new_crtc_state, i) {
14908 		if (!needs_modeset(new_crtc_state)) {
14909 			/* Light copy */
14910 			intel_crtc_copy_uapi_to_hw_state_nomodeset(new_crtc_state);
14911 
14912 			continue;
14913 		}
14914 
14915 		ret = intel_crtc_prepare_cleared_state(new_crtc_state);
14916 		if (ret)
14917 			goto fail;
14918 
14919 		if (!new_crtc_state->hw.enable)
14920 			continue;
14921 
14922 		ret = intel_modeset_pipe_config(new_crtc_state);
14923 		if (ret)
14924 			goto fail;
14925 	}
14926 
14927 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14928 					    new_crtc_state, i) {
14929 		if (!needs_modeset(new_crtc_state))
14930 			continue;
14931 
14932 		ret = intel_modeset_pipe_config_late(new_crtc_state);
14933 		if (ret)
14934 			goto fail;
14935 
14936 		intel_crtc_check_fastset(old_crtc_state, new_crtc_state);
14937 	}
14938 
14939 	/**
14940 	 * Check if fastset is allowed by external dependencies like other
14941 	 * pipes and transcoders.
14942 	 *
14943 	 * Right now it only forces a fullmodeset when the MST master
14944 	 * transcoder did not changed but the pipe of the master transcoder
14945 	 * needs a fullmodeset so all slaves also needs to do a fullmodeset or
14946 	 * in case of port synced crtcs, if one of the synced crtcs
14947 	 * needs a full modeset, all other synced crtcs should be
14948 	 * forced a full modeset.
14949 	 */
14950 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14951 		if (!new_crtc_state->hw.enable || needs_modeset(new_crtc_state))
14952 			continue;
14953 
14954 		if (intel_dp_mst_is_slave_trans(new_crtc_state)) {
14955 			enum transcoder master = new_crtc_state->mst_master_transcoder;
14956 
14957 			if (intel_cpu_transcoders_need_modeset(state, BIT(master))) {
14958 				new_crtc_state->uapi.mode_changed = true;
14959 				new_crtc_state->update_pipe = false;
14960 			}
14961 		}
14962 
14963 		if (is_trans_port_sync_mode(new_crtc_state)) {
14964 			u8 trans = new_crtc_state->sync_mode_slaves_mask;
14965 
14966 			if (new_crtc_state->master_transcoder != INVALID_TRANSCODER)
14967 				trans |= BIT(new_crtc_state->master_transcoder);
14968 
14969 			if (intel_cpu_transcoders_need_modeset(state, trans)) {
14970 				new_crtc_state->uapi.mode_changed = true;
14971 				new_crtc_state->update_pipe = false;
14972 			}
14973 		}
14974 	}
14975 
14976 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14977 					    new_crtc_state, i) {
14978 		if (needs_modeset(new_crtc_state)) {
14979 			any_ms = true;
14980 			continue;
14981 		}
14982 
14983 		if (!new_crtc_state->update_pipe)
14984 			continue;
14985 
14986 		intel_crtc_copy_fastset(old_crtc_state, new_crtc_state);
14987 	}
14988 
14989 	if (any_ms && !check_digital_port_conflicts(state)) {
14990 		drm_dbg_kms(&dev_priv->drm,
14991 			    "rejecting conflicting digital port configuration\n");
14992 		ret = -EINVAL;
14993 		goto fail;
14994 	}
14995 
14996 	ret = drm_dp_mst_atomic_check(&state->base);
14997 	if (ret)
14998 		goto fail;
14999 
15000 	ret = intel_atomic_check_planes(state);
15001 	if (ret)
15002 		goto fail;
15003 
15004 	/*
15005 	 * distrust_bios_wm will force a full dbuf recomputation
15006 	 * but the hardware state will only get updated accordingly
15007 	 * if state->modeset==true. Hence distrust_bios_wm==true &&
15008 	 * state->modeset==false is an invalid combination which
15009 	 * would cause the hardware and software dbuf state to get
15010 	 * out of sync. We must prevent that.
15011 	 *
15012 	 * FIXME clean up this mess and introduce better
15013 	 * state tracking for dbuf.
15014 	 */
15015 	if (dev_priv->wm.distrust_bios_wm)
15016 		any_ms = true;
15017 
15018 	intel_fbc_choose_crtc(dev_priv, state);
15019 	ret = calc_watermark_data(state);
15020 	if (ret)
15021 		goto fail;
15022 
15023 	ret = intel_bw_atomic_check(state);
15024 	if (ret)
15025 		goto fail;
15026 
15027 	ret = intel_atomic_check_cdclk(state, &any_ms);
15028 	if (ret)
15029 		goto fail;
15030 
15031 	if (any_ms) {
15032 		ret = intel_modeset_checks(state);
15033 		if (ret)
15034 			goto fail;
15035 
15036 		ret = intel_modeset_calc_cdclk(state);
15037 		if (ret)
15038 			return ret;
15039 
15040 		intel_modeset_clear_plls(state);
15041 	}
15042 
15043 	ret = intel_atomic_check_crtcs(state);
15044 	if (ret)
15045 		goto fail;
15046 
15047 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15048 					    new_crtc_state, i) {
15049 		if (!needs_modeset(new_crtc_state) &&
15050 		    !new_crtc_state->update_pipe)
15051 			continue;
15052 
15053 		intel_dump_pipe_config(new_crtc_state, state,
15054 				       needs_modeset(new_crtc_state) ?
15055 				       "[modeset]" : "[fastset]");
15056 	}
15057 
15058 	return 0;
15059 
15060  fail:
15061 	if (ret == -EDEADLK)
15062 		return ret;
15063 
15064 	/*
15065 	 * FIXME would probably be nice to know which crtc specifically
15066 	 * caused the failure, in cases where we can pinpoint it.
15067 	 */
15068 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15069 					    new_crtc_state, i)
15070 		intel_dump_pipe_config(new_crtc_state, state, "[failed]");
15071 
15072 	return ret;
15073 }
15074 
15075 static int intel_atomic_prepare_commit(struct intel_atomic_state *state)
15076 {
15077 	struct intel_crtc_state *crtc_state;
15078 	struct intel_crtc *crtc;
15079 	int i, ret;
15080 
15081 	ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base);
15082 	if (ret < 0)
15083 		return ret;
15084 
15085 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
15086 		bool mode_changed = needs_modeset(crtc_state);
15087 
15088 		if (mode_changed || crtc_state->update_pipe ||
15089 		    crtc_state->uapi.color_mgmt_changed) {
15090 			intel_dsb_prepare(crtc_state);
15091 		}
15092 	}
15093 
15094 	return 0;
15095 }
15096 
15097 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
15098 {
15099 	struct drm_device *dev = crtc->base.dev;
15100 	struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
15101 
15102 	if (!vblank->max_vblank_count)
15103 		return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
15104 
15105 	return crtc->base.funcs->get_vblank_counter(&crtc->base);
15106 }
15107 
15108 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
15109 				  struct intel_crtc_state *crtc_state)
15110 {
15111 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15112 
15113 	if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes)
15114 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
15115 
15116 	if (crtc_state->has_pch_encoder) {
15117 		enum pipe pch_transcoder =
15118 			intel_crtc_pch_transcoder(crtc);
15119 
15120 		intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true);
15121 	}
15122 }
15123 
15124 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state,
15125 			       const struct intel_crtc_state *new_crtc_state)
15126 {
15127 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
15128 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15129 
15130 	/*
15131 	 * Update pipe size and adjust fitter if needed: the reason for this is
15132 	 * that in compute_mode_changes we check the native mode (not the pfit
15133 	 * mode) to see if we can flip rather than do a full mode set. In the
15134 	 * fastboot case, we'll flip, but if we don't update the pipesrc and
15135 	 * pfit state, we'll end up with a big fb scanned out into the wrong
15136 	 * sized surface.
15137 	 */
15138 	intel_set_pipe_src_size(new_crtc_state);
15139 
15140 	/* on skylake this is done by detaching scalers */
15141 	if (INTEL_GEN(dev_priv) >= 9) {
15142 		skl_detach_scalers(new_crtc_state);
15143 
15144 		if (new_crtc_state->pch_pfit.enabled)
15145 			skl_pfit_enable(new_crtc_state);
15146 	} else if (HAS_PCH_SPLIT(dev_priv)) {
15147 		if (new_crtc_state->pch_pfit.enabled)
15148 			ilk_pfit_enable(new_crtc_state);
15149 		else if (old_crtc_state->pch_pfit.enabled)
15150 			ilk_pfit_disable(old_crtc_state);
15151 	}
15152 
15153 	/*
15154 	 * The register is supposedly single buffered so perhaps
15155 	 * not 100% correct to do this here. But SKL+ calculate
15156 	 * this based on the adjust pixel rate so pfit changes do
15157 	 * affect it and so it must be updated for fastsets.
15158 	 * HSW/BDW only really need this here for fastboot, after
15159 	 * that the value should not change without a full modeset.
15160 	 */
15161 	if (INTEL_GEN(dev_priv) >= 9 ||
15162 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
15163 		hsw_set_linetime_wm(new_crtc_state);
15164 
15165 	if (INTEL_GEN(dev_priv) >= 11)
15166 		icl_set_pipe_chicken(crtc);
15167 }
15168 
15169 static void commit_pipe_config(struct intel_atomic_state *state,
15170 			       struct intel_crtc *crtc)
15171 {
15172 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15173 	const struct intel_crtc_state *old_crtc_state =
15174 		intel_atomic_get_old_crtc_state(state, crtc);
15175 	const struct intel_crtc_state *new_crtc_state =
15176 		intel_atomic_get_new_crtc_state(state, crtc);
15177 	bool modeset = needs_modeset(new_crtc_state);
15178 
15179 	/*
15180 	 * During modesets pipe configuration was programmed as the
15181 	 * CRTC was enabled.
15182 	 */
15183 	if (!modeset) {
15184 		if (new_crtc_state->uapi.color_mgmt_changed ||
15185 		    new_crtc_state->update_pipe)
15186 			intel_color_commit(new_crtc_state);
15187 
15188 		if (INTEL_GEN(dev_priv) >= 9)
15189 			skl_detach_scalers(new_crtc_state);
15190 
15191 		if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
15192 			bdw_set_pipemisc(new_crtc_state);
15193 
15194 		if (new_crtc_state->update_pipe)
15195 			intel_pipe_fastset(old_crtc_state, new_crtc_state);
15196 
15197 		intel_psr2_program_trans_man_trk_ctl(new_crtc_state);
15198 	}
15199 
15200 	if (dev_priv->display.atomic_update_watermarks)
15201 		dev_priv->display.atomic_update_watermarks(state, crtc);
15202 }
15203 
15204 static void intel_enable_crtc(struct intel_atomic_state *state,
15205 			      struct intel_crtc *crtc)
15206 {
15207 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15208 	const struct intel_crtc_state *new_crtc_state =
15209 		intel_atomic_get_new_crtc_state(state, crtc);
15210 
15211 	if (!needs_modeset(new_crtc_state))
15212 		return;
15213 
15214 	intel_crtc_update_active_timings(new_crtc_state);
15215 
15216 	dev_priv->display.crtc_enable(state, crtc);
15217 
15218 	/* vblanks work again, re-enable pipe CRC. */
15219 	intel_crtc_enable_pipe_crc(crtc);
15220 }
15221 
15222 static void intel_update_crtc(struct intel_atomic_state *state,
15223 			      struct intel_crtc *crtc)
15224 {
15225 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15226 	const struct intel_crtc_state *old_crtc_state =
15227 		intel_atomic_get_old_crtc_state(state, crtc);
15228 	struct intel_crtc_state *new_crtc_state =
15229 		intel_atomic_get_new_crtc_state(state, crtc);
15230 	bool modeset = needs_modeset(new_crtc_state);
15231 
15232 	if (!modeset) {
15233 		if (new_crtc_state->preload_luts &&
15234 		    (new_crtc_state->uapi.color_mgmt_changed ||
15235 		     new_crtc_state->update_pipe))
15236 			intel_color_load_luts(new_crtc_state);
15237 
15238 		intel_pre_plane_update(state, crtc);
15239 
15240 		if (new_crtc_state->update_pipe)
15241 			intel_encoders_update_pipe(state, crtc);
15242 	}
15243 
15244 	if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
15245 		intel_fbc_disable(crtc);
15246 	else
15247 		intel_fbc_enable(state, crtc);
15248 
15249 	/* Perform vblank evasion around commit operation */
15250 	intel_pipe_update_start(new_crtc_state);
15251 
15252 	commit_pipe_config(state, crtc);
15253 
15254 	if (INTEL_GEN(dev_priv) >= 9)
15255 		skl_update_planes_on_crtc(state, crtc);
15256 	else
15257 		i9xx_update_planes_on_crtc(state, crtc);
15258 
15259 	intel_pipe_update_end(new_crtc_state);
15260 
15261 	/*
15262 	 * We usually enable FIFO underrun interrupts as part of the
15263 	 * CRTC enable sequence during modesets.  But when we inherit a
15264 	 * valid pipe configuration from the BIOS we need to take care
15265 	 * of enabling them on the CRTC's first fastset.
15266 	 */
15267 	if (new_crtc_state->update_pipe && !modeset &&
15268 	    old_crtc_state->inherited)
15269 		intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
15270 }
15271 
15272 
15273 static void intel_old_crtc_state_disables(struct intel_atomic_state *state,
15274 					  struct intel_crtc_state *old_crtc_state,
15275 					  struct intel_crtc_state *new_crtc_state,
15276 					  struct intel_crtc *crtc)
15277 {
15278 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15279 
15280 	intel_crtc_disable_planes(state, crtc);
15281 
15282 	/*
15283 	 * We need to disable pipe CRC before disabling the pipe,
15284 	 * or we race against vblank off.
15285 	 */
15286 	intel_crtc_disable_pipe_crc(crtc);
15287 
15288 	dev_priv->display.crtc_disable(state, crtc);
15289 	crtc->active = false;
15290 	intel_fbc_disable(crtc);
15291 	intel_disable_shared_dpll(old_crtc_state);
15292 
15293 	/* FIXME unify this for all platforms */
15294 	if (!new_crtc_state->hw.active &&
15295 	    !HAS_GMCH(dev_priv) &&
15296 	    dev_priv->display.initial_watermarks)
15297 		dev_priv->display.initial_watermarks(state, crtc);
15298 }
15299 
15300 static void intel_commit_modeset_disables(struct intel_atomic_state *state)
15301 {
15302 	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
15303 	struct intel_crtc *crtc;
15304 	u32 handled = 0;
15305 	int i;
15306 
15307 	/* Only disable port sync and MST slaves */
15308 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15309 					    new_crtc_state, i) {
15310 		if (!needs_modeset(new_crtc_state))
15311 			continue;
15312 
15313 		if (!old_crtc_state->hw.active)
15314 			continue;
15315 
15316 		/* In case of Transcoder port Sync master slave CRTCs can be
15317 		 * assigned in any order and we need to make sure that
15318 		 * slave CRTCs are disabled first and then master CRTC since
15319 		 * Slave vblanks are masked till Master Vblanks.
15320 		 */
15321 		if (!is_trans_port_sync_slave(old_crtc_state) &&
15322 		    !intel_dp_mst_is_slave_trans(old_crtc_state))
15323 			continue;
15324 
15325 		intel_pre_plane_update(state, crtc);
15326 		intel_old_crtc_state_disables(state, old_crtc_state,
15327 					      new_crtc_state, crtc);
15328 		handled |= BIT(crtc->pipe);
15329 	}
15330 
15331 	/* Disable everything else left on */
15332 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15333 					    new_crtc_state, i) {
15334 		if (!needs_modeset(new_crtc_state) ||
15335 		    (handled & BIT(crtc->pipe)))
15336 			continue;
15337 
15338 		intel_pre_plane_update(state, crtc);
15339 		if (old_crtc_state->hw.active)
15340 			intel_old_crtc_state_disables(state, old_crtc_state,
15341 						      new_crtc_state, crtc);
15342 	}
15343 }
15344 
15345 static void intel_commit_modeset_enables(struct intel_atomic_state *state)
15346 {
15347 	struct intel_crtc_state *new_crtc_state;
15348 	struct intel_crtc *crtc;
15349 	int i;
15350 
15351 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15352 		if (!new_crtc_state->hw.active)
15353 			continue;
15354 
15355 		intel_enable_crtc(state, crtc);
15356 		intel_update_crtc(state, crtc);
15357 	}
15358 }
15359 
15360 static void skl_commit_modeset_enables(struct intel_atomic_state *state)
15361 {
15362 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15363 	struct intel_crtc *crtc;
15364 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15365 	struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
15366 	u8 update_pipes = 0, modeset_pipes = 0;
15367 	int i;
15368 
15369 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15370 		enum pipe pipe = crtc->pipe;
15371 
15372 		if (!new_crtc_state->hw.active)
15373 			continue;
15374 
15375 		/* ignore allocations for crtc's that have been turned off. */
15376 		if (!needs_modeset(new_crtc_state)) {
15377 			entries[pipe] = old_crtc_state->wm.skl.ddb;
15378 			update_pipes |= BIT(pipe);
15379 		} else {
15380 			modeset_pipes |= BIT(pipe);
15381 		}
15382 	}
15383 
15384 	/*
15385 	 * Whenever the number of active pipes changes, we need to make sure we
15386 	 * update the pipes in the right order so that their ddb allocations
15387 	 * never overlap with each other between CRTC updates. Otherwise we'll
15388 	 * cause pipe underruns and other bad stuff.
15389 	 *
15390 	 * So first lets enable all pipes that do not need a fullmodeset as
15391 	 * those don't have any external dependency.
15392 	 */
15393 	while (update_pipes) {
15394 		for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15395 						    new_crtc_state, i) {
15396 			enum pipe pipe = crtc->pipe;
15397 
15398 			if ((update_pipes & BIT(pipe)) == 0)
15399 				continue;
15400 
15401 			if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15402 							entries, I915_MAX_PIPES, pipe))
15403 				continue;
15404 
15405 			entries[pipe] = new_crtc_state->wm.skl.ddb;
15406 			update_pipes &= ~BIT(pipe);
15407 
15408 			intel_update_crtc(state, crtc);
15409 
15410 			/*
15411 			 * If this is an already active pipe, it's DDB changed,
15412 			 * and this isn't the last pipe that needs updating
15413 			 * then we need to wait for a vblank to pass for the
15414 			 * new ddb allocation to take effect.
15415 			 */
15416 			if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb,
15417 						 &old_crtc_state->wm.skl.ddb) &&
15418 			    (update_pipes | modeset_pipes))
15419 				intel_wait_for_vblank(dev_priv, pipe);
15420 		}
15421 	}
15422 
15423 	update_pipes = modeset_pipes;
15424 
15425 	/*
15426 	 * Enable all pipes that needs a modeset and do not depends on other
15427 	 * pipes
15428 	 */
15429 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15430 		enum pipe pipe = crtc->pipe;
15431 
15432 		if ((modeset_pipes & BIT(pipe)) == 0)
15433 			continue;
15434 
15435 		if (intel_dp_mst_is_slave_trans(new_crtc_state) ||
15436 		    is_trans_port_sync_master(new_crtc_state))
15437 			continue;
15438 
15439 		modeset_pipes &= ~BIT(pipe);
15440 
15441 		intel_enable_crtc(state, crtc);
15442 	}
15443 
15444 	/*
15445 	 * Then we enable all remaining pipes that depend on other
15446 	 * pipes: MST slaves and port sync masters.
15447 	 */
15448 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15449 		enum pipe pipe = crtc->pipe;
15450 
15451 		if ((modeset_pipes & BIT(pipe)) == 0)
15452 			continue;
15453 
15454 		modeset_pipes &= ~BIT(pipe);
15455 
15456 		intel_enable_crtc(state, crtc);
15457 	}
15458 
15459 	/*
15460 	 * Finally we do the plane updates/etc. for all pipes that got enabled.
15461 	 */
15462 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15463 		enum pipe pipe = crtc->pipe;
15464 
15465 		if ((update_pipes & BIT(pipe)) == 0)
15466 			continue;
15467 
15468 		drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15469 									entries, I915_MAX_PIPES, pipe));
15470 
15471 		entries[pipe] = new_crtc_state->wm.skl.ddb;
15472 		update_pipes &= ~BIT(pipe);
15473 
15474 		intel_update_crtc(state, crtc);
15475 	}
15476 
15477 	drm_WARN_ON(&dev_priv->drm, modeset_pipes);
15478 	drm_WARN_ON(&dev_priv->drm, update_pipes);
15479 }
15480 
15481 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
15482 {
15483 	struct intel_atomic_state *state, *next;
15484 	struct llist_node *freed;
15485 
15486 	freed = llist_del_all(&dev_priv->atomic_helper.free_list);
15487 	llist_for_each_entry_safe(state, next, freed, freed)
15488 		drm_atomic_state_put(&state->base);
15489 }
15490 
15491 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
15492 {
15493 	struct drm_i915_private *dev_priv =
15494 		container_of(work, typeof(*dev_priv), atomic_helper.free_work);
15495 
15496 	intel_atomic_helper_free_state(dev_priv);
15497 }
15498 
15499 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
15500 {
15501 	struct wait_queue_entry wait_fence, wait_reset;
15502 	struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
15503 
15504 	init_wait_entry(&wait_fence, 0);
15505 	init_wait_entry(&wait_reset, 0);
15506 	for (;;) {
15507 		prepare_to_wait(&intel_state->commit_ready.wait,
15508 				&wait_fence, TASK_UNINTERRUPTIBLE);
15509 		prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
15510 					      I915_RESET_MODESET),
15511 				&wait_reset, TASK_UNINTERRUPTIBLE);
15512 
15513 
15514 		if (i915_sw_fence_done(&intel_state->commit_ready) ||
15515 		    test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
15516 			break;
15517 
15518 		schedule();
15519 	}
15520 	finish_wait(&intel_state->commit_ready.wait, &wait_fence);
15521 	finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
15522 				  I915_RESET_MODESET),
15523 		    &wait_reset);
15524 }
15525 
15526 static void intel_cleanup_dsbs(struct intel_atomic_state *state)
15527 {
15528 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15529 	struct intel_crtc *crtc;
15530 	int i;
15531 
15532 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15533 					    new_crtc_state, i)
15534 		intel_dsb_cleanup(old_crtc_state);
15535 }
15536 
15537 static void intel_atomic_cleanup_work(struct work_struct *work)
15538 {
15539 	struct intel_atomic_state *state =
15540 		container_of(work, struct intel_atomic_state, base.commit_work);
15541 	struct drm_i915_private *i915 = to_i915(state->base.dev);
15542 
15543 	intel_cleanup_dsbs(state);
15544 	drm_atomic_helper_cleanup_planes(&i915->drm, &state->base);
15545 	drm_atomic_helper_commit_cleanup_done(&state->base);
15546 	drm_atomic_state_put(&state->base);
15547 
15548 	intel_atomic_helper_free_state(i915);
15549 }
15550 
15551 static void intel_atomic_commit_tail(struct intel_atomic_state *state)
15552 {
15553 	struct drm_device *dev = state->base.dev;
15554 	struct drm_i915_private *dev_priv = to_i915(dev);
15555 	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
15556 	struct intel_crtc *crtc;
15557 	u64 put_domains[I915_MAX_PIPES] = {};
15558 	intel_wakeref_t wakeref = 0;
15559 	int i;
15560 
15561 	intel_atomic_commit_fence_wait(state);
15562 
15563 	drm_atomic_helper_wait_for_dependencies(&state->base);
15564 
15565 	if (state->modeset)
15566 		wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
15567 
15568 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15569 					    new_crtc_state, i) {
15570 		if (needs_modeset(new_crtc_state) ||
15571 		    new_crtc_state->update_pipe) {
15572 
15573 			put_domains[crtc->pipe] =
15574 				modeset_get_crtc_power_domains(new_crtc_state);
15575 		}
15576 	}
15577 
15578 	intel_commit_modeset_disables(state);
15579 
15580 	/* FIXME: Eventually get rid of our crtc->config pointer */
15581 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15582 		crtc->config = new_crtc_state;
15583 
15584 	if (state->modeset) {
15585 		drm_atomic_helper_update_legacy_modeset_state(dev, &state->base);
15586 
15587 		intel_set_cdclk_pre_plane_update(state);
15588 
15589 		intel_modeset_verify_disabled(dev_priv, state);
15590 	}
15591 
15592 	intel_sagv_pre_plane_update(state);
15593 
15594 	/* Complete the events for pipes that have now been disabled */
15595 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15596 		bool modeset = needs_modeset(new_crtc_state);
15597 
15598 		/* Complete events for now disable pipes here. */
15599 		if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) {
15600 			spin_lock_irq(&dev->event_lock);
15601 			drm_crtc_send_vblank_event(&crtc->base,
15602 						   new_crtc_state->uapi.event);
15603 			spin_unlock_irq(&dev->event_lock);
15604 
15605 			new_crtc_state->uapi.event = NULL;
15606 		}
15607 	}
15608 
15609 	if (state->modeset)
15610 		intel_encoders_update_prepare(state);
15611 
15612 	intel_dbuf_pre_plane_update(state);
15613 
15614 	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
15615 	dev_priv->display.commit_modeset_enables(state);
15616 
15617 	if (state->modeset) {
15618 		intel_encoders_update_complete(state);
15619 
15620 		intel_set_cdclk_post_plane_update(state);
15621 	}
15622 
15623 	/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
15624 	 * already, but still need the state for the delayed optimization. To
15625 	 * fix this:
15626 	 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
15627 	 * - schedule that vblank worker _before_ calling hw_done
15628 	 * - at the start of commit_tail, cancel it _synchrously
15629 	 * - switch over to the vblank wait helper in the core after that since
15630 	 *   we don't need out special handling any more.
15631 	 */
15632 	drm_atomic_helper_wait_for_flip_done(dev, &state->base);
15633 
15634 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15635 		if (new_crtc_state->hw.active &&
15636 		    !needs_modeset(new_crtc_state) &&
15637 		    !new_crtc_state->preload_luts &&
15638 		    (new_crtc_state->uapi.color_mgmt_changed ||
15639 		     new_crtc_state->update_pipe))
15640 			intel_color_load_luts(new_crtc_state);
15641 	}
15642 
15643 	/*
15644 	 * Now that the vblank has passed, we can go ahead and program the
15645 	 * optimal watermarks on platforms that need two-step watermark
15646 	 * programming.
15647 	 *
15648 	 * TODO: Move this (and other cleanup) to an async worker eventually.
15649 	 */
15650 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15651 					    new_crtc_state, i) {
15652 		/*
15653 		 * Gen2 reports pipe underruns whenever all planes are disabled.
15654 		 * So re-enable underrun reporting after some planes get enabled.
15655 		 *
15656 		 * We do this before .optimize_watermarks() so that we have a
15657 		 * chance of catching underruns with the intermediate watermarks
15658 		 * vs. the new plane configuration.
15659 		 */
15660 		if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state))
15661 			intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
15662 
15663 		if (dev_priv->display.optimize_watermarks)
15664 			dev_priv->display.optimize_watermarks(state, crtc);
15665 	}
15666 
15667 	intel_dbuf_post_plane_update(state);
15668 
15669 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15670 		intel_post_plane_update(state, crtc);
15671 
15672 		if (put_domains[i])
15673 			modeset_put_power_domains(dev_priv, put_domains[i]);
15674 
15675 		intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
15676 
15677 		/*
15678 		 * DSB cleanup is done in cleanup_work aligning with framebuffer
15679 		 * cleanup. So copy and reset the dsb structure to sync with
15680 		 * commit_done and later do dsb cleanup in cleanup_work.
15681 		 */
15682 		old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb);
15683 	}
15684 
15685 	/* Underruns don't always raise interrupts, so check manually */
15686 	intel_check_cpu_fifo_underruns(dev_priv);
15687 	intel_check_pch_fifo_underruns(dev_priv);
15688 
15689 	if (state->modeset)
15690 		intel_verify_planes(state);
15691 
15692 	intel_sagv_post_plane_update(state);
15693 
15694 	drm_atomic_helper_commit_hw_done(&state->base);
15695 
15696 	if (state->modeset) {
15697 		/* As one of the primary mmio accessors, KMS has a high
15698 		 * likelihood of triggering bugs in unclaimed access. After we
15699 		 * finish modesetting, see if an error has been flagged, and if
15700 		 * so enable debugging for the next modeset - and hope we catch
15701 		 * the culprit.
15702 		 */
15703 		intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
15704 		intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref);
15705 	}
15706 	intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15707 
15708 	/*
15709 	 * Defer the cleanup of the old state to a separate worker to not
15710 	 * impede the current task (userspace for blocking modesets) that
15711 	 * are executed inline. For out-of-line asynchronous modesets/flips,
15712 	 * deferring to a new worker seems overkill, but we would place a
15713 	 * schedule point (cond_resched()) here anyway to keep latencies
15714 	 * down.
15715 	 */
15716 	INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work);
15717 	queue_work(system_highpri_wq, &state->base.commit_work);
15718 }
15719 
15720 static void intel_atomic_commit_work(struct work_struct *work)
15721 {
15722 	struct intel_atomic_state *state =
15723 		container_of(work, struct intel_atomic_state, base.commit_work);
15724 
15725 	intel_atomic_commit_tail(state);
15726 }
15727 
15728 static int __i915_sw_fence_call
15729 intel_atomic_commit_ready(struct i915_sw_fence *fence,
15730 			  enum i915_sw_fence_notify notify)
15731 {
15732 	struct intel_atomic_state *state =
15733 		container_of(fence, struct intel_atomic_state, commit_ready);
15734 
15735 	switch (notify) {
15736 	case FENCE_COMPLETE:
15737 		/* we do blocking waits in the worker, nothing to do here */
15738 		break;
15739 	case FENCE_FREE:
15740 		{
15741 			struct intel_atomic_helper *helper =
15742 				&to_i915(state->base.dev)->atomic_helper;
15743 
15744 			if (llist_add(&state->freed, &helper->free_list))
15745 				schedule_work(&helper->free_work);
15746 			break;
15747 		}
15748 	}
15749 
15750 	return NOTIFY_DONE;
15751 }
15752 
15753 static void intel_atomic_track_fbs(struct intel_atomic_state *state)
15754 {
15755 	struct intel_plane_state *old_plane_state, *new_plane_state;
15756 	struct intel_plane *plane;
15757 	int i;
15758 
15759 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
15760 					     new_plane_state, i)
15761 		intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
15762 					to_intel_frontbuffer(new_plane_state->hw.fb),
15763 					plane->frontbuffer_bit);
15764 }
15765 
15766 static int intel_atomic_commit(struct drm_device *dev,
15767 			       struct drm_atomic_state *_state,
15768 			       bool nonblock)
15769 {
15770 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
15771 	struct drm_i915_private *dev_priv = to_i915(dev);
15772 	int ret = 0;
15773 
15774 	state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
15775 
15776 	drm_atomic_state_get(&state->base);
15777 	i915_sw_fence_init(&state->commit_ready,
15778 			   intel_atomic_commit_ready);
15779 
15780 	/*
15781 	 * The intel_legacy_cursor_update() fast path takes care
15782 	 * of avoiding the vblank waits for simple cursor
15783 	 * movement and flips. For cursor on/off and size changes,
15784 	 * we want to perform the vblank waits so that watermark
15785 	 * updates happen during the correct frames. Gen9+ have
15786 	 * double buffered watermarks and so shouldn't need this.
15787 	 *
15788 	 * Unset state->legacy_cursor_update before the call to
15789 	 * drm_atomic_helper_setup_commit() because otherwise
15790 	 * drm_atomic_helper_wait_for_flip_done() is a noop and
15791 	 * we get FIFO underruns because we didn't wait
15792 	 * for vblank.
15793 	 *
15794 	 * FIXME doing watermarks and fb cleanup from a vblank worker
15795 	 * (assuming we had any) would solve these problems.
15796 	 */
15797 	if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) {
15798 		struct intel_crtc_state *new_crtc_state;
15799 		struct intel_crtc *crtc;
15800 		int i;
15801 
15802 		for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15803 			if (new_crtc_state->wm.need_postvbl_update ||
15804 			    new_crtc_state->update_wm_post)
15805 				state->base.legacy_cursor_update = false;
15806 	}
15807 
15808 	ret = intel_atomic_prepare_commit(state);
15809 	if (ret) {
15810 		drm_dbg_atomic(&dev_priv->drm,
15811 			       "Preparing state failed with %i\n", ret);
15812 		i915_sw_fence_commit(&state->commit_ready);
15813 		intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15814 		return ret;
15815 	}
15816 
15817 	ret = drm_atomic_helper_setup_commit(&state->base, nonblock);
15818 	if (!ret)
15819 		ret = drm_atomic_helper_swap_state(&state->base, true);
15820 	if (!ret)
15821 		intel_atomic_swap_global_state(state);
15822 
15823 	if (ret) {
15824 		struct intel_crtc_state *new_crtc_state;
15825 		struct intel_crtc *crtc;
15826 		int i;
15827 
15828 		i915_sw_fence_commit(&state->commit_ready);
15829 
15830 		for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15831 			intel_dsb_cleanup(new_crtc_state);
15832 
15833 		drm_atomic_helper_cleanup_planes(dev, &state->base);
15834 		intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15835 		return ret;
15836 	}
15837 	dev_priv->wm.distrust_bios_wm = false;
15838 	intel_shared_dpll_swap_state(state);
15839 	intel_atomic_track_fbs(state);
15840 
15841 	drm_atomic_state_get(&state->base);
15842 	INIT_WORK(&state->base.commit_work, intel_atomic_commit_work);
15843 
15844 	i915_sw_fence_commit(&state->commit_ready);
15845 	if (nonblock && state->modeset) {
15846 		queue_work(dev_priv->modeset_wq, &state->base.commit_work);
15847 	} else if (nonblock) {
15848 		queue_work(dev_priv->flip_wq, &state->base.commit_work);
15849 	} else {
15850 		if (state->modeset)
15851 			flush_workqueue(dev_priv->modeset_wq);
15852 		intel_atomic_commit_tail(state);
15853 	}
15854 
15855 	return 0;
15856 }
15857 
15858 struct wait_rps_boost {
15859 	struct wait_queue_entry wait;
15860 
15861 	struct drm_crtc *crtc;
15862 	struct i915_request *request;
15863 };
15864 
15865 static int do_rps_boost(struct wait_queue_entry *_wait,
15866 			unsigned mode, int sync, void *key)
15867 {
15868 	struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
15869 	struct i915_request *rq = wait->request;
15870 
15871 	/*
15872 	 * If we missed the vblank, but the request is already running it
15873 	 * is reasonable to assume that it will complete before the next
15874 	 * vblank without our intervention, so leave RPS alone.
15875 	 */
15876 	if (!i915_request_started(rq))
15877 		intel_rps_boost(rq);
15878 	i915_request_put(rq);
15879 
15880 	drm_crtc_vblank_put(wait->crtc);
15881 
15882 	list_del(&wait->wait.entry);
15883 	kfree(wait);
15884 	return 1;
15885 }
15886 
15887 static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
15888 				       struct dma_fence *fence)
15889 {
15890 	struct wait_rps_boost *wait;
15891 
15892 	if (!dma_fence_is_i915(fence))
15893 		return;
15894 
15895 	if (INTEL_GEN(to_i915(crtc->dev)) < 6)
15896 		return;
15897 
15898 	if (drm_crtc_vblank_get(crtc))
15899 		return;
15900 
15901 	wait = kmalloc(sizeof(*wait), GFP_KERNEL);
15902 	if (!wait) {
15903 		drm_crtc_vblank_put(crtc);
15904 		return;
15905 	}
15906 
15907 	wait->request = to_request(dma_fence_get(fence));
15908 	wait->crtc = crtc;
15909 
15910 	wait->wait.func = do_rps_boost;
15911 	wait->wait.flags = 0;
15912 
15913 	add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
15914 }
15915 
15916 static int intel_plane_pin_fb(struct intel_plane_state *plane_state)
15917 {
15918 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
15919 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15920 	struct drm_framebuffer *fb = plane_state->hw.fb;
15921 	struct i915_vma *vma;
15922 
15923 	if (plane->id == PLANE_CURSOR &&
15924 	    INTEL_INFO(dev_priv)->display.cursor_needs_physical) {
15925 		struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15926 		const int align = intel_cursor_alignment(dev_priv);
15927 		int err;
15928 
15929 		err = i915_gem_object_attach_phys(obj, align);
15930 		if (err)
15931 			return err;
15932 	}
15933 
15934 	vma = intel_pin_and_fence_fb_obj(fb,
15935 					 &plane_state->view,
15936 					 intel_plane_uses_fence(plane_state),
15937 					 &plane_state->flags);
15938 	if (IS_ERR(vma))
15939 		return PTR_ERR(vma);
15940 
15941 	plane_state->vma = vma;
15942 
15943 	return 0;
15944 }
15945 
15946 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state)
15947 {
15948 	struct i915_vma *vma;
15949 
15950 	vma = fetch_and_zero(&old_plane_state->vma);
15951 	if (vma)
15952 		intel_unpin_fb_vma(vma, old_plane_state->flags);
15953 }
15954 
15955 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj)
15956 {
15957 	struct i915_sched_attr attr = {
15958 		.priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY),
15959 	};
15960 
15961 	i915_gem_object_wait_priority(obj, 0, &attr);
15962 }
15963 
15964 /**
15965  * intel_prepare_plane_fb - Prepare fb for usage on plane
15966  * @_plane: drm plane to prepare for
15967  * @_new_plane_state: the plane state being prepared
15968  *
15969  * Prepares a framebuffer for usage on a display plane.  Generally this
15970  * involves pinning the underlying object and updating the frontbuffer tracking
15971  * bits.  Some older platforms need special physical address handling for
15972  * cursor planes.
15973  *
15974  * Returns 0 on success, negative error code on failure.
15975  */
15976 int
15977 intel_prepare_plane_fb(struct drm_plane *_plane,
15978 		       struct drm_plane_state *_new_plane_state)
15979 {
15980 	struct intel_plane *plane = to_intel_plane(_plane);
15981 	struct intel_plane_state *new_plane_state =
15982 		to_intel_plane_state(_new_plane_state);
15983 	struct intel_atomic_state *state =
15984 		to_intel_atomic_state(new_plane_state->uapi.state);
15985 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15986 	const struct intel_plane_state *old_plane_state =
15987 		intel_atomic_get_old_plane_state(state, plane);
15988 	struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb);
15989 	struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb);
15990 	int ret;
15991 
15992 	if (old_obj) {
15993 		const struct intel_crtc_state *crtc_state =
15994 			intel_atomic_get_new_crtc_state(state,
15995 							to_intel_crtc(old_plane_state->hw.crtc));
15996 
15997 		/* Big Hammer, we also need to ensure that any pending
15998 		 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
15999 		 * current scanout is retired before unpinning the old
16000 		 * framebuffer. Note that we rely on userspace rendering
16001 		 * into the buffer attached to the pipe they are waiting
16002 		 * on. If not, userspace generates a GPU hang with IPEHR
16003 		 * point to the MI_WAIT_FOR_EVENT.
16004 		 *
16005 		 * This should only fail upon a hung GPU, in which case we
16006 		 * can safely continue.
16007 		 */
16008 		if (needs_modeset(crtc_state)) {
16009 			ret = i915_sw_fence_await_reservation(&state->commit_ready,
16010 							      old_obj->base.resv, NULL,
16011 							      false, 0,
16012 							      GFP_KERNEL);
16013 			if (ret < 0)
16014 				return ret;
16015 		}
16016 	}
16017 
16018 	if (new_plane_state->uapi.fence) { /* explicit fencing */
16019 		ret = i915_sw_fence_await_dma_fence(&state->commit_ready,
16020 						    new_plane_state->uapi.fence,
16021 						    i915_fence_timeout(dev_priv),
16022 						    GFP_KERNEL);
16023 		if (ret < 0)
16024 			return ret;
16025 	}
16026 
16027 	if (!obj)
16028 		return 0;
16029 
16030 	ret = i915_gem_object_pin_pages(obj);
16031 	if (ret)
16032 		return ret;
16033 
16034 	ret = intel_plane_pin_fb(new_plane_state);
16035 
16036 	i915_gem_object_unpin_pages(obj);
16037 	if (ret)
16038 		return ret;
16039 
16040 	fb_obj_bump_render_priority(obj);
16041 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB);
16042 
16043 	if (!new_plane_state->uapi.fence) { /* implicit fencing */
16044 		struct dma_fence *fence;
16045 
16046 		ret = i915_sw_fence_await_reservation(&state->commit_ready,
16047 						      obj->base.resv, NULL,
16048 						      false,
16049 						      i915_fence_timeout(dev_priv),
16050 						      GFP_KERNEL);
16051 		if (ret < 0)
16052 			goto unpin_fb;
16053 
16054 		fence = dma_resv_get_excl_rcu(obj->base.resv);
16055 		if (fence) {
16056 			add_rps_boost_after_vblank(new_plane_state->hw.crtc,
16057 						   fence);
16058 			dma_fence_put(fence);
16059 		}
16060 	} else {
16061 		add_rps_boost_after_vblank(new_plane_state->hw.crtc,
16062 					   new_plane_state->uapi.fence);
16063 	}
16064 
16065 	/*
16066 	 * We declare pageflips to be interactive and so merit a small bias
16067 	 * towards upclocking to deliver the frame on time. By only changing
16068 	 * the RPS thresholds to sample more regularly and aim for higher
16069 	 * clocks we can hopefully deliver low power workloads (like kodi)
16070 	 * that are not quite steady state without resorting to forcing
16071 	 * maximum clocks following a vblank miss (see do_rps_boost()).
16072 	 */
16073 	if (!state->rps_interactive) {
16074 		intel_rps_mark_interactive(&dev_priv->gt.rps, true);
16075 		state->rps_interactive = true;
16076 	}
16077 
16078 	return 0;
16079 
16080 unpin_fb:
16081 	intel_plane_unpin_fb(new_plane_state);
16082 
16083 	return ret;
16084 }
16085 
16086 /**
16087  * intel_cleanup_plane_fb - Cleans up an fb after plane use
16088  * @plane: drm plane to clean up for
16089  * @_old_plane_state: the state from the previous modeset
16090  *
16091  * Cleans up a framebuffer that has just been removed from a plane.
16092  */
16093 void
16094 intel_cleanup_plane_fb(struct drm_plane *plane,
16095 		       struct drm_plane_state *_old_plane_state)
16096 {
16097 	struct intel_plane_state *old_plane_state =
16098 		to_intel_plane_state(_old_plane_state);
16099 	struct intel_atomic_state *state =
16100 		to_intel_atomic_state(old_plane_state->uapi.state);
16101 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
16102 	struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb);
16103 
16104 	if (!obj)
16105 		return;
16106 
16107 	if (state->rps_interactive) {
16108 		intel_rps_mark_interactive(&dev_priv->gt.rps, false);
16109 		state->rps_interactive = false;
16110 	}
16111 
16112 	/* Should only be called after a successful intel_prepare_plane_fb()! */
16113 	intel_plane_unpin_fb(old_plane_state);
16114 }
16115 
16116 /**
16117  * intel_plane_destroy - destroy a plane
16118  * @plane: plane to destroy
16119  *
16120  * Common destruction function for all types of planes (primary, cursor,
16121  * sprite).
16122  */
16123 void intel_plane_destroy(struct drm_plane *plane)
16124 {
16125 	drm_plane_cleanup(plane);
16126 	kfree(to_intel_plane(plane));
16127 }
16128 
16129 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane,
16130 					    u32 format, u64 modifier)
16131 {
16132 	switch (modifier) {
16133 	case DRM_FORMAT_MOD_LINEAR:
16134 	case I915_FORMAT_MOD_X_TILED:
16135 		break;
16136 	default:
16137 		return false;
16138 	}
16139 
16140 	switch (format) {
16141 	case DRM_FORMAT_C8:
16142 	case DRM_FORMAT_RGB565:
16143 	case DRM_FORMAT_XRGB1555:
16144 	case DRM_FORMAT_XRGB8888:
16145 		return modifier == DRM_FORMAT_MOD_LINEAR ||
16146 			modifier == I915_FORMAT_MOD_X_TILED;
16147 	default:
16148 		return false;
16149 	}
16150 }
16151 
16152 static bool i965_plane_format_mod_supported(struct drm_plane *_plane,
16153 					    u32 format, u64 modifier)
16154 {
16155 	switch (modifier) {
16156 	case DRM_FORMAT_MOD_LINEAR:
16157 	case I915_FORMAT_MOD_X_TILED:
16158 		break;
16159 	default:
16160 		return false;
16161 	}
16162 
16163 	switch (format) {
16164 	case DRM_FORMAT_C8:
16165 	case DRM_FORMAT_RGB565:
16166 	case DRM_FORMAT_XRGB8888:
16167 	case DRM_FORMAT_XBGR8888:
16168 	case DRM_FORMAT_ARGB8888:
16169 	case DRM_FORMAT_ABGR8888:
16170 	case DRM_FORMAT_XRGB2101010:
16171 	case DRM_FORMAT_XBGR2101010:
16172 	case DRM_FORMAT_ARGB2101010:
16173 	case DRM_FORMAT_ABGR2101010:
16174 	case DRM_FORMAT_XBGR16161616F:
16175 		return modifier == DRM_FORMAT_MOD_LINEAR ||
16176 			modifier == I915_FORMAT_MOD_X_TILED;
16177 	default:
16178 		return false;
16179 	}
16180 }
16181 
16182 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane,
16183 					      u32 format, u64 modifier)
16184 {
16185 	return modifier == DRM_FORMAT_MOD_LINEAR &&
16186 		format == DRM_FORMAT_ARGB8888;
16187 }
16188 
16189 static const struct drm_plane_funcs i965_plane_funcs = {
16190 	.update_plane = drm_atomic_helper_update_plane,
16191 	.disable_plane = drm_atomic_helper_disable_plane,
16192 	.destroy = intel_plane_destroy,
16193 	.atomic_duplicate_state = intel_plane_duplicate_state,
16194 	.atomic_destroy_state = intel_plane_destroy_state,
16195 	.format_mod_supported = i965_plane_format_mod_supported,
16196 };
16197 
16198 static const struct drm_plane_funcs i8xx_plane_funcs = {
16199 	.update_plane = drm_atomic_helper_update_plane,
16200 	.disable_plane = drm_atomic_helper_disable_plane,
16201 	.destroy = intel_plane_destroy,
16202 	.atomic_duplicate_state = intel_plane_duplicate_state,
16203 	.atomic_destroy_state = intel_plane_destroy_state,
16204 	.format_mod_supported = i8xx_plane_format_mod_supported,
16205 };
16206 
16207 static int
16208 intel_legacy_cursor_update(struct drm_plane *_plane,
16209 			   struct drm_crtc *_crtc,
16210 			   struct drm_framebuffer *fb,
16211 			   int crtc_x, int crtc_y,
16212 			   unsigned int crtc_w, unsigned int crtc_h,
16213 			   u32 src_x, u32 src_y,
16214 			   u32 src_w, u32 src_h,
16215 			   struct drm_modeset_acquire_ctx *ctx)
16216 {
16217 	struct intel_plane *plane = to_intel_plane(_plane);
16218 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
16219 	struct intel_plane_state *old_plane_state =
16220 		to_intel_plane_state(plane->base.state);
16221 	struct intel_plane_state *new_plane_state;
16222 	struct intel_crtc_state *crtc_state =
16223 		to_intel_crtc_state(crtc->base.state);
16224 	struct intel_crtc_state *new_crtc_state;
16225 	int ret;
16226 
16227 	/*
16228 	 * When crtc is inactive or there is a modeset pending,
16229 	 * wait for it to complete in the slowpath
16230 	 */
16231 	if (!crtc_state->hw.active || needs_modeset(crtc_state) ||
16232 	    crtc_state->update_pipe)
16233 		goto slow;
16234 
16235 	/*
16236 	 * Don't do an async update if there is an outstanding commit modifying
16237 	 * the plane.  This prevents our async update's changes from getting
16238 	 * overridden by a previous synchronous update's state.
16239 	 */
16240 	if (old_plane_state->uapi.commit &&
16241 	    !try_wait_for_completion(&old_plane_state->uapi.commit->hw_done))
16242 		goto slow;
16243 
16244 	/*
16245 	 * If any parameters change that may affect watermarks,
16246 	 * take the slowpath. Only changing fb or position should be
16247 	 * in the fastpath.
16248 	 */
16249 	if (old_plane_state->uapi.crtc != &crtc->base ||
16250 	    old_plane_state->uapi.src_w != src_w ||
16251 	    old_plane_state->uapi.src_h != src_h ||
16252 	    old_plane_state->uapi.crtc_w != crtc_w ||
16253 	    old_plane_state->uapi.crtc_h != crtc_h ||
16254 	    !old_plane_state->uapi.fb != !fb)
16255 		goto slow;
16256 
16257 	new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base));
16258 	if (!new_plane_state)
16259 		return -ENOMEM;
16260 
16261 	new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base));
16262 	if (!new_crtc_state) {
16263 		ret = -ENOMEM;
16264 		goto out_free;
16265 	}
16266 
16267 	drm_atomic_set_fb_for_plane(&new_plane_state->uapi, fb);
16268 
16269 	new_plane_state->uapi.src_x = src_x;
16270 	new_plane_state->uapi.src_y = src_y;
16271 	new_plane_state->uapi.src_w = src_w;
16272 	new_plane_state->uapi.src_h = src_h;
16273 	new_plane_state->uapi.crtc_x = crtc_x;
16274 	new_plane_state->uapi.crtc_y = crtc_y;
16275 	new_plane_state->uapi.crtc_w = crtc_w;
16276 	new_plane_state->uapi.crtc_h = crtc_h;
16277 
16278 	intel_plane_copy_uapi_to_hw_state(new_plane_state, new_plane_state);
16279 
16280 	ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state,
16281 						  old_plane_state, new_plane_state);
16282 	if (ret)
16283 		goto out_free;
16284 
16285 	ret = intel_plane_pin_fb(new_plane_state);
16286 	if (ret)
16287 		goto out_free;
16288 
16289 	intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->hw.fb),
16290 				ORIGIN_FLIP);
16291 	intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
16292 				to_intel_frontbuffer(new_plane_state->hw.fb),
16293 				plane->frontbuffer_bit);
16294 
16295 	/* Swap plane state */
16296 	plane->base.state = &new_plane_state->uapi;
16297 
16298 	/*
16299 	 * We cannot swap crtc_state as it may be in use by an atomic commit or
16300 	 * page flip that's running simultaneously. If we swap crtc_state and
16301 	 * destroy the old state, we will cause a use-after-free there.
16302 	 *
16303 	 * Only update active_planes, which is needed for our internal
16304 	 * bookkeeping. Either value will do the right thing when updating
16305 	 * planes atomically. If the cursor was part of the atomic update then
16306 	 * we would have taken the slowpath.
16307 	 */
16308 	crtc_state->active_planes = new_crtc_state->active_planes;
16309 
16310 	if (new_plane_state->uapi.visible)
16311 		intel_update_plane(plane, crtc_state, new_plane_state);
16312 	else
16313 		intel_disable_plane(plane, crtc_state);
16314 
16315 	intel_plane_unpin_fb(old_plane_state);
16316 
16317 out_free:
16318 	if (new_crtc_state)
16319 		intel_crtc_destroy_state(&crtc->base, &new_crtc_state->uapi);
16320 	if (ret)
16321 		intel_plane_destroy_state(&plane->base, &new_plane_state->uapi);
16322 	else
16323 		intel_plane_destroy_state(&plane->base, &old_plane_state->uapi);
16324 	return ret;
16325 
16326 slow:
16327 	return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb,
16328 					      crtc_x, crtc_y, crtc_w, crtc_h,
16329 					      src_x, src_y, src_w, src_h, ctx);
16330 }
16331 
16332 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
16333 	.update_plane = intel_legacy_cursor_update,
16334 	.disable_plane = drm_atomic_helper_disable_plane,
16335 	.destroy = intel_plane_destroy,
16336 	.atomic_duplicate_state = intel_plane_duplicate_state,
16337 	.atomic_destroy_state = intel_plane_destroy_state,
16338 	.format_mod_supported = intel_cursor_format_mod_supported,
16339 };
16340 
16341 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv,
16342 			       enum i9xx_plane_id i9xx_plane)
16343 {
16344 	if (!HAS_FBC(dev_priv))
16345 		return false;
16346 
16347 	if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
16348 		return i9xx_plane == PLANE_A; /* tied to pipe A */
16349 	else if (IS_IVYBRIDGE(dev_priv))
16350 		return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B ||
16351 			i9xx_plane == PLANE_C;
16352 	else if (INTEL_GEN(dev_priv) >= 4)
16353 		return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B;
16354 	else
16355 		return i9xx_plane == PLANE_A;
16356 }
16357 
16358 static struct intel_plane *
16359 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
16360 {
16361 	struct intel_plane *plane;
16362 	const struct drm_plane_funcs *plane_funcs;
16363 	unsigned int supported_rotations;
16364 	const u32 *formats;
16365 	int num_formats;
16366 	int ret, zpos;
16367 
16368 	if (INTEL_GEN(dev_priv) >= 9)
16369 		return skl_universal_plane_create(dev_priv, pipe,
16370 						  PLANE_PRIMARY);
16371 
16372 	plane = intel_plane_alloc();
16373 	if (IS_ERR(plane))
16374 		return plane;
16375 
16376 	plane->pipe = pipe;
16377 	/*
16378 	 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
16379 	 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
16380 	 */
16381 	if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4 &&
16382 	    INTEL_NUM_PIPES(dev_priv) == 2)
16383 		plane->i9xx_plane = (enum i9xx_plane_id) !pipe;
16384 	else
16385 		plane->i9xx_plane = (enum i9xx_plane_id) pipe;
16386 	plane->id = PLANE_PRIMARY;
16387 	plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id);
16388 
16389 	plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane);
16390 	if (plane->has_fbc) {
16391 		struct intel_fbc *fbc = &dev_priv->fbc;
16392 
16393 		fbc->possible_framebuffer_bits |= plane->frontbuffer_bit;
16394 	}
16395 
16396 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16397 		formats = vlv_primary_formats;
16398 		num_formats = ARRAY_SIZE(vlv_primary_formats);
16399 	} else if (INTEL_GEN(dev_priv) >= 4) {
16400 		/*
16401 		 * WaFP16GammaEnabling:ivb
16402 		 * "Workaround : When using the 64-bit format, the plane
16403 		 *  output on each color channel has one quarter amplitude.
16404 		 *  It can be brought up to full amplitude by using pipe
16405 		 *  gamma correction or pipe color space conversion to
16406 		 *  multiply the plane output by four."
16407 		 *
16408 		 * There is no dedicated plane gamma for the primary plane,
16409 		 * and using the pipe gamma/csc could conflict with other
16410 		 * planes, so we choose not to expose fp16 on IVB primary
16411 		 * planes. HSW primary planes no longer have this problem.
16412 		 */
16413 		if (IS_IVYBRIDGE(dev_priv)) {
16414 			formats = ivb_primary_formats;
16415 			num_formats = ARRAY_SIZE(ivb_primary_formats);
16416 		} else {
16417 			formats = i965_primary_formats;
16418 			num_formats = ARRAY_SIZE(i965_primary_formats);
16419 		}
16420 	} else {
16421 		formats = i8xx_primary_formats;
16422 		num_formats = ARRAY_SIZE(i8xx_primary_formats);
16423 	}
16424 
16425 	if (INTEL_GEN(dev_priv) >= 4)
16426 		plane_funcs = &i965_plane_funcs;
16427 	else
16428 		plane_funcs = &i8xx_plane_funcs;
16429 
16430 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16431 		plane->min_cdclk = vlv_plane_min_cdclk;
16432 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
16433 		plane->min_cdclk = hsw_plane_min_cdclk;
16434 	else if (IS_IVYBRIDGE(dev_priv))
16435 		plane->min_cdclk = ivb_plane_min_cdclk;
16436 	else
16437 		plane->min_cdclk = i9xx_plane_min_cdclk;
16438 
16439 	plane->max_stride = i9xx_plane_max_stride;
16440 	plane->update_plane = i9xx_update_plane;
16441 	plane->disable_plane = i9xx_disable_plane;
16442 	plane->get_hw_state = i9xx_plane_get_hw_state;
16443 	plane->check_plane = i9xx_plane_check;
16444 
16445 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
16446 		ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
16447 					       0, plane_funcs,
16448 					       formats, num_formats,
16449 					       i9xx_format_modifiers,
16450 					       DRM_PLANE_TYPE_PRIMARY,
16451 					       "primary %c", pipe_name(pipe));
16452 	else
16453 		ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
16454 					       0, plane_funcs,
16455 					       formats, num_formats,
16456 					       i9xx_format_modifiers,
16457 					       DRM_PLANE_TYPE_PRIMARY,
16458 					       "plane %c",
16459 					       plane_name(plane->i9xx_plane));
16460 	if (ret)
16461 		goto fail;
16462 
16463 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
16464 		supported_rotations =
16465 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
16466 			DRM_MODE_REFLECT_X;
16467 	} else if (INTEL_GEN(dev_priv) >= 4) {
16468 		supported_rotations =
16469 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
16470 	} else {
16471 		supported_rotations = DRM_MODE_ROTATE_0;
16472 	}
16473 
16474 	if (INTEL_GEN(dev_priv) >= 4)
16475 		drm_plane_create_rotation_property(&plane->base,
16476 						   DRM_MODE_ROTATE_0,
16477 						   supported_rotations);
16478 
16479 	zpos = 0;
16480 	drm_plane_create_zpos_immutable_property(&plane->base, zpos);
16481 
16482 	drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs);
16483 
16484 	return plane;
16485 
16486 fail:
16487 	intel_plane_free(plane);
16488 
16489 	return ERR_PTR(ret);
16490 }
16491 
16492 static struct intel_plane *
16493 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
16494 			  enum pipe pipe)
16495 {
16496 	struct intel_plane *cursor;
16497 	int ret, zpos;
16498 
16499 	cursor = intel_plane_alloc();
16500 	if (IS_ERR(cursor))
16501 		return cursor;
16502 
16503 	cursor->pipe = pipe;
16504 	cursor->i9xx_plane = (enum i9xx_plane_id) pipe;
16505 	cursor->id = PLANE_CURSOR;
16506 	cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id);
16507 
16508 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
16509 		cursor->max_stride = i845_cursor_max_stride;
16510 		cursor->update_plane = i845_update_cursor;
16511 		cursor->disable_plane = i845_disable_cursor;
16512 		cursor->get_hw_state = i845_cursor_get_hw_state;
16513 		cursor->check_plane = i845_check_cursor;
16514 	} else {
16515 		cursor->max_stride = i9xx_cursor_max_stride;
16516 		cursor->update_plane = i9xx_update_cursor;
16517 		cursor->disable_plane = i9xx_disable_cursor;
16518 		cursor->get_hw_state = i9xx_cursor_get_hw_state;
16519 		cursor->check_plane = i9xx_check_cursor;
16520 	}
16521 
16522 	cursor->cursor.base = ~0;
16523 	cursor->cursor.cntl = ~0;
16524 
16525 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
16526 		cursor->cursor.size = ~0;
16527 
16528 	ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
16529 				       0, &intel_cursor_plane_funcs,
16530 				       intel_cursor_formats,
16531 				       ARRAY_SIZE(intel_cursor_formats),
16532 				       cursor_format_modifiers,
16533 				       DRM_PLANE_TYPE_CURSOR,
16534 				       "cursor %c", pipe_name(pipe));
16535 	if (ret)
16536 		goto fail;
16537 
16538 	if (INTEL_GEN(dev_priv) >= 4)
16539 		drm_plane_create_rotation_property(&cursor->base,
16540 						   DRM_MODE_ROTATE_0,
16541 						   DRM_MODE_ROTATE_0 |
16542 						   DRM_MODE_ROTATE_180);
16543 
16544 	zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1;
16545 	drm_plane_create_zpos_immutable_property(&cursor->base, zpos);
16546 
16547 	if (INTEL_GEN(dev_priv) >= 12)
16548 		drm_plane_enable_fb_damage_clips(&cursor->base);
16549 
16550 	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
16551 
16552 	return cursor;
16553 
16554 fail:
16555 	intel_plane_free(cursor);
16556 
16557 	return ERR_PTR(ret);
16558 }
16559 
16560 #define INTEL_CRTC_FUNCS \
16561 	.gamma_set = drm_atomic_helper_legacy_gamma_set, \
16562 	.set_config = drm_atomic_helper_set_config, \
16563 	.destroy = intel_crtc_destroy, \
16564 	.page_flip = drm_atomic_helper_page_flip, \
16565 	.atomic_duplicate_state = intel_crtc_duplicate_state, \
16566 	.atomic_destroy_state = intel_crtc_destroy_state, \
16567 	.set_crc_source = intel_crtc_set_crc_source, \
16568 	.verify_crc_source = intel_crtc_verify_crc_source, \
16569 	.get_crc_sources = intel_crtc_get_crc_sources
16570 
16571 static const struct drm_crtc_funcs bdw_crtc_funcs = {
16572 	INTEL_CRTC_FUNCS,
16573 
16574 	.get_vblank_counter = g4x_get_vblank_counter,
16575 	.enable_vblank = bdw_enable_vblank,
16576 	.disable_vblank = bdw_disable_vblank,
16577 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16578 };
16579 
16580 static const struct drm_crtc_funcs ilk_crtc_funcs = {
16581 	INTEL_CRTC_FUNCS,
16582 
16583 	.get_vblank_counter = g4x_get_vblank_counter,
16584 	.enable_vblank = ilk_enable_vblank,
16585 	.disable_vblank = ilk_disable_vblank,
16586 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16587 };
16588 
16589 static const struct drm_crtc_funcs g4x_crtc_funcs = {
16590 	INTEL_CRTC_FUNCS,
16591 
16592 	.get_vblank_counter = g4x_get_vblank_counter,
16593 	.enable_vblank = i965_enable_vblank,
16594 	.disable_vblank = i965_disable_vblank,
16595 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16596 };
16597 
16598 static const struct drm_crtc_funcs i965_crtc_funcs = {
16599 	INTEL_CRTC_FUNCS,
16600 
16601 	.get_vblank_counter = i915_get_vblank_counter,
16602 	.enable_vblank = i965_enable_vblank,
16603 	.disable_vblank = i965_disable_vblank,
16604 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16605 };
16606 
16607 static const struct drm_crtc_funcs i915gm_crtc_funcs = {
16608 	INTEL_CRTC_FUNCS,
16609 
16610 	.get_vblank_counter = i915_get_vblank_counter,
16611 	.enable_vblank = i915gm_enable_vblank,
16612 	.disable_vblank = i915gm_disable_vblank,
16613 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16614 };
16615 
16616 static const struct drm_crtc_funcs i915_crtc_funcs = {
16617 	INTEL_CRTC_FUNCS,
16618 
16619 	.get_vblank_counter = i915_get_vblank_counter,
16620 	.enable_vblank = i8xx_enable_vblank,
16621 	.disable_vblank = i8xx_disable_vblank,
16622 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16623 };
16624 
16625 static const struct drm_crtc_funcs i8xx_crtc_funcs = {
16626 	INTEL_CRTC_FUNCS,
16627 
16628 	/* no hw vblank counter */
16629 	.enable_vblank = i8xx_enable_vblank,
16630 	.disable_vblank = i8xx_disable_vblank,
16631 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16632 };
16633 
16634 static struct intel_crtc *intel_crtc_alloc(void)
16635 {
16636 	struct intel_crtc_state *crtc_state;
16637 	struct intel_crtc *crtc;
16638 
16639 	crtc = kzalloc(sizeof(*crtc), GFP_KERNEL);
16640 	if (!crtc)
16641 		return ERR_PTR(-ENOMEM);
16642 
16643 	crtc_state = intel_crtc_state_alloc(crtc);
16644 	if (!crtc_state) {
16645 		kfree(crtc);
16646 		return ERR_PTR(-ENOMEM);
16647 	}
16648 
16649 	crtc->base.state = &crtc_state->uapi;
16650 	crtc->config = crtc_state;
16651 
16652 	return crtc;
16653 }
16654 
16655 static void intel_crtc_free(struct intel_crtc *crtc)
16656 {
16657 	intel_crtc_destroy_state(&crtc->base, crtc->base.state);
16658 	kfree(crtc);
16659 }
16660 
16661 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv)
16662 {
16663 	struct intel_plane *plane;
16664 
16665 	for_each_intel_plane(&dev_priv->drm, plane) {
16666 		struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
16667 								  plane->pipe);
16668 
16669 		plane->base.possible_crtcs = drm_crtc_mask(&crtc->base);
16670 	}
16671 }
16672 
16673 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
16674 {
16675 	struct intel_plane *primary, *cursor;
16676 	const struct drm_crtc_funcs *funcs;
16677 	struct intel_crtc *crtc;
16678 	int sprite, ret;
16679 
16680 	crtc = intel_crtc_alloc();
16681 	if (IS_ERR(crtc))
16682 		return PTR_ERR(crtc);
16683 
16684 	crtc->pipe = pipe;
16685 	crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe];
16686 
16687 	primary = intel_primary_plane_create(dev_priv, pipe);
16688 	if (IS_ERR(primary)) {
16689 		ret = PTR_ERR(primary);
16690 		goto fail;
16691 	}
16692 	crtc->plane_ids_mask |= BIT(primary->id);
16693 
16694 	for_each_sprite(dev_priv, pipe, sprite) {
16695 		struct intel_plane *plane;
16696 
16697 		plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
16698 		if (IS_ERR(plane)) {
16699 			ret = PTR_ERR(plane);
16700 			goto fail;
16701 		}
16702 		crtc->plane_ids_mask |= BIT(plane->id);
16703 	}
16704 
16705 	cursor = intel_cursor_plane_create(dev_priv, pipe);
16706 	if (IS_ERR(cursor)) {
16707 		ret = PTR_ERR(cursor);
16708 		goto fail;
16709 	}
16710 	crtc->plane_ids_mask |= BIT(cursor->id);
16711 
16712 	if (HAS_GMCH(dev_priv)) {
16713 		if (IS_CHERRYVIEW(dev_priv) ||
16714 		    IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
16715 			funcs = &g4x_crtc_funcs;
16716 		else if (IS_GEN(dev_priv, 4))
16717 			funcs = &i965_crtc_funcs;
16718 		else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv))
16719 			funcs = &i915gm_crtc_funcs;
16720 		else if (IS_GEN(dev_priv, 3))
16721 			funcs = &i915_crtc_funcs;
16722 		else
16723 			funcs = &i8xx_crtc_funcs;
16724 	} else {
16725 		if (INTEL_GEN(dev_priv) >= 8)
16726 			funcs = &bdw_crtc_funcs;
16727 		else
16728 			funcs = &ilk_crtc_funcs;
16729 	}
16730 
16731 	ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base,
16732 					&primary->base, &cursor->base,
16733 					funcs, "pipe %c", pipe_name(pipe));
16734 	if (ret)
16735 		goto fail;
16736 
16737 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) ||
16738 	       dev_priv->pipe_to_crtc_mapping[pipe] != NULL);
16739 	dev_priv->pipe_to_crtc_mapping[pipe] = crtc;
16740 
16741 	if (INTEL_GEN(dev_priv) < 9) {
16742 		enum i9xx_plane_id i9xx_plane = primary->i9xx_plane;
16743 
16744 		BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
16745 		       dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL);
16746 		dev_priv->plane_to_crtc_mapping[i9xx_plane] = crtc;
16747 	}
16748 
16749 	intel_color_init(crtc);
16750 
16751 	intel_crtc_crc_init(crtc);
16752 
16753 	drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe);
16754 
16755 	return 0;
16756 
16757 fail:
16758 	intel_crtc_free(crtc);
16759 
16760 	return ret;
16761 }
16762 
16763 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
16764 				      struct drm_file *file)
16765 {
16766 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
16767 	struct drm_crtc *drmmode_crtc;
16768 	struct intel_crtc *crtc;
16769 
16770 	drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
16771 	if (!drmmode_crtc)
16772 		return -ENOENT;
16773 
16774 	crtc = to_intel_crtc(drmmode_crtc);
16775 	pipe_from_crtc_id->pipe = crtc->pipe;
16776 
16777 	return 0;
16778 }
16779 
16780 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder)
16781 {
16782 	struct drm_device *dev = encoder->base.dev;
16783 	struct intel_encoder *source_encoder;
16784 	u32 possible_clones = 0;
16785 
16786 	for_each_intel_encoder(dev, source_encoder) {
16787 		if (encoders_cloneable(encoder, source_encoder))
16788 			possible_clones |= drm_encoder_mask(&source_encoder->base);
16789 	}
16790 
16791 	return possible_clones;
16792 }
16793 
16794 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder)
16795 {
16796 	struct drm_device *dev = encoder->base.dev;
16797 	struct intel_crtc *crtc;
16798 	u32 possible_crtcs = 0;
16799 
16800 	for_each_intel_crtc(dev, crtc) {
16801 		if (encoder->pipe_mask & BIT(crtc->pipe))
16802 			possible_crtcs |= drm_crtc_mask(&crtc->base);
16803 	}
16804 
16805 	return possible_crtcs;
16806 }
16807 
16808 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv)
16809 {
16810 	if (!IS_MOBILE(dev_priv))
16811 		return false;
16812 
16813 	if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0)
16814 		return false;
16815 
16816 	if (IS_GEN(dev_priv, 5) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE))
16817 		return false;
16818 
16819 	return true;
16820 }
16821 
16822 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv)
16823 {
16824 	if (INTEL_GEN(dev_priv) >= 9)
16825 		return false;
16826 
16827 	if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
16828 		return false;
16829 
16830 	if (HAS_PCH_LPT_H(dev_priv) &&
16831 	    intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
16832 		return false;
16833 
16834 	/* DDI E can't be used if DDI A requires 4 lanes */
16835 	if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
16836 		return false;
16837 
16838 	if (!dev_priv->vbt.int_crt_support)
16839 		return false;
16840 
16841 	return true;
16842 }
16843 
16844 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
16845 {
16846 	int pps_num;
16847 	int pps_idx;
16848 
16849 	if (HAS_DDI(dev_priv))
16850 		return;
16851 	/*
16852 	 * This w/a is needed at least on CPT/PPT, but to be sure apply it
16853 	 * everywhere where registers can be write protected.
16854 	 */
16855 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16856 		pps_num = 2;
16857 	else
16858 		pps_num = 1;
16859 
16860 	for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
16861 		u32 val = intel_de_read(dev_priv, PP_CONTROL(pps_idx));
16862 
16863 		val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
16864 		intel_de_write(dev_priv, PP_CONTROL(pps_idx), val);
16865 	}
16866 }
16867 
16868 static void intel_pps_init(struct drm_i915_private *dev_priv)
16869 {
16870 	if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
16871 		dev_priv->pps_mmio_base = PCH_PPS_BASE;
16872 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16873 		dev_priv->pps_mmio_base = VLV_PPS_BASE;
16874 	else
16875 		dev_priv->pps_mmio_base = PPS_BASE;
16876 
16877 	intel_pps_unlock_regs_wa(dev_priv);
16878 }
16879 
16880 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
16881 {
16882 	struct intel_encoder *encoder;
16883 	bool dpd_is_edp = false;
16884 
16885 	intel_pps_init(dev_priv);
16886 
16887 	if (!HAS_DISPLAY(dev_priv))
16888 		return;
16889 
16890 	if (IS_ROCKETLAKE(dev_priv)) {
16891 		intel_ddi_init(dev_priv, PORT_A);
16892 		intel_ddi_init(dev_priv, PORT_B);
16893 		intel_ddi_init(dev_priv, PORT_D);	/* DDI TC1 */
16894 		intel_ddi_init(dev_priv, PORT_E);	/* DDI TC2 */
16895 	} else if (INTEL_GEN(dev_priv) >= 12) {
16896 		intel_ddi_init(dev_priv, PORT_A);
16897 		intel_ddi_init(dev_priv, PORT_B);
16898 		intel_ddi_init(dev_priv, PORT_D);
16899 		intel_ddi_init(dev_priv, PORT_E);
16900 		intel_ddi_init(dev_priv, PORT_F);
16901 		intel_ddi_init(dev_priv, PORT_G);
16902 		intel_ddi_init(dev_priv, PORT_H);
16903 		intel_ddi_init(dev_priv, PORT_I);
16904 		icl_dsi_init(dev_priv);
16905 	} else if (IS_ELKHARTLAKE(dev_priv)) {
16906 		intel_ddi_init(dev_priv, PORT_A);
16907 		intel_ddi_init(dev_priv, PORT_B);
16908 		intel_ddi_init(dev_priv, PORT_C);
16909 		intel_ddi_init(dev_priv, PORT_D);
16910 		icl_dsi_init(dev_priv);
16911 	} else if (IS_GEN(dev_priv, 11)) {
16912 		intel_ddi_init(dev_priv, PORT_A);
16913 		intel_ddi_init(dev_priv, PORT_B);
16914 		intel_ddi_init(dev_priv, PORT_C);
16915 		intel_ddi_init(dev_priv, PORT_D);
16916 		intel_ddi_init(dev_priv, PORT_E);
16917 		/*
16918 		 * On some ICL SKUs port F is not present. No strap bits for
16919 		 * this, so rely on VBT.
16920 		 * Work around broken VBTs on SKUs known to have no port F.
16921 		 */
16922 		if (IS_ICL_WITH_PORT_F(dev_priv) &&
16923 		    intel_bios_is_port_present(dev_priv, PORT_F))
16924 			intel_ddi_init(dev_priv, PORT_F);
16925 
16926 		icl_dsi_init(dev_priv);
16927 	} else if (IS_GEN9_LP(dev_priv)) {
16928 		/*
16929 		 * FIXME: Broxton doesn't support port detection via the
16930 		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
16931 		 * detect the ports.
16932 		 */
16933 		intel_ddi_init(dev_priv, PORT_A);
16934 		intel_ddi_init(dev_priv, PORT_B);
16935 		intel_ddi_init(dev_priv, PORT_C);
16936 
16937 		vlv_dsi_init(dev_priv);
16938 	} else if (HAS_DDI(dev_priv)) {
16939 		int found;
16940 
16941 		if (intel_ddi_crt_present(dev_priv))
16942 			intel_crt_init(dev_priv);
16943 
16944 		/*
16945 		 * Haswell uses DDI functions to detect digital outputs.
16946 		 * On SKL pre-D0 the strap isn't connected, so we assume
16947 		 * it's there.
16948 		 */
16949 		found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
16950 		/* WaIgnoreDDIAStrap: skl */
16951 		if (found || IS_GEN9_BC(dev_priv))
16952 			intel_ddi_init(dev_priv, PORT_A);
16953 
16954 		/* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP
16955 		 * register */
16956 		found = intel_de_read(dev_priv, SFUSE_STRAP);
16957 
16958 		if (found & SFUSE_STRAP_DDIB_DETECTED)
16959 			intel_ddi_init(dev_priv, PORT_B);
16960 		if (found & SFUSE_STRAP_DDIC_DETECTED)
16961 			intel_ddi_init(dev_priv, PORT_C);
16962 		if (found & SFUSE_STRAP_DDID_DETECTED)
16963 			intel_ddi_init(dev_priv, PORT_D);
16964 		if (found & SFUSE_STRAP_DDIF_DETECTED)
16965 			intel_ddi_init(dev_priv, PORT_F);
16966 		/*
16967 		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
16968 		 */
16969 		if (IS_GEN9_BC(dev_priv) &&
16970 		    intel_bios_is_port_present(dev_priv, PORT_E))
16971 			intel_ddi_init(dev_priv, PORT_E);
16972 
16973 	} else if (HAS_PCH_SPLIT(dev_priv)) {
16974 		int found;
16975 
16976 		/*
16977 		 * intel_edp_init_connector() depends on this completing first,
16978 		 * to prevent the registration of both eDP and LVDS and the
16979 		 * incorrect sharing of the PPS.
16980 		 */
16981 		intel_lvds_init(dev_priv);
16982 		intel_crt_init(dev_priv);
16983 
16984 		dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
16985 
16986 		if (ilk_has_edp_a(dev_priv))
16987 			intel_dp_init(dev_priv, DP_A, PORT_A);
16988 
16989 		if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) {
16990 			/* PCH SDVOB multiplex with HDMIB */
16991 			found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
16992 			if (!found)
16993 				intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
16994 			if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED))
16995 				intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
16996 		}
16997 
16998 		if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED)
16999 			intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
17000 
17001 		if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED)
17002 			intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
17003 
17004 		if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED)
17005 			intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
17006 
17007 		if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED)
17008 			intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
17009 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
17010 		bool has_edp, has_port;
17011 
17012 		if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support)
17013 			intel_crt_init(dev_priv);
17014 
17015 		/*
17016 		 * The DP_DETECTED bit is the latched state of the DDC
17017 		 * SDA pin at boot. However since eDP doesn't require DDC
17018 		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
17019 		 * eDP ports may have been muxed to an alternate function.
17020 		 * Thus we can't rely on the DP_DETECTED bit alone to detect
17021 		 * eDP ports. Consult the VBT as well as DP_DETECTED to
17022 		 * detect eDP ports.
17023 		 *
17024 		 * Sadly the straps seem to be missing sometimes even for HDMI
17025 		 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
17026 		 * and VBT for the presence of the port. Additionally we can't
17027 		 * trust the port type the VBT declares as we've seen at least
17028 		 * HDMI ports that the VBT claim are DP or eDP.
17029 		 */
17030 		has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
17031 		has_port = intel_bios_is_port_present(dev_priv, PORT_B);
17032 		if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port)
17033 			has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
17034 		if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
17035 			intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
17036 
17037 		has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
17038 		has_port = intel_bios_is_port_present(dev_priv, PORT_C);
17039 		if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port)
17040 			has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
17041 		if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
17042 			intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
17043 
17044 		if (IS_CHERRYVIEW(dev_priv)) {
17045 			/*
17046 			 * eDP not supported on port D,
17047 			 * so no need to worry about it
17048 			 */
17049 			has_port = intel_bios_is_port_present(dev_priv, PORT_D);
17050 			if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port)
17051 				intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
17052 			if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port)
17053 				intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
17054 		}
17055 
17056 		vlv_dsi_init(dev_priv);
17057 	} else if (IS_PINEVIEW(dev_priv)) {
17058 		intel_lvds_init(dev_priv);
17059 		intel_crt_init(dev_priv);
17060 	} else if (IS_GEN_RANGE(dev_priv, 3, 4)) {
17061 		bool found = false;
17062 
17063 		if (IS_MOBILE(dev_priv))
17064 			intel_lvds_init(dev_priv);
17065 
17066 		intel_crt_init(dev_priv);
17067 
17068 		if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
17069 			drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n");
17070 			found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
17071 			if (!found && IS_G4X(dev_priv)) {
17072 				drm_dbg_kms(&dev_priv->drm,
17073 					    "probing HDMI on SDVOB\n");
17074 				intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
17075 			}
17076 
17077 			if (!found && IS_G4X(dev_priv))
17078 				intel_dp_init(dev_priv, DP_B, PORT_B);
17079 		}
17080 
17081 		/* Before G4X SDVOC doesn't have its own detect register */
17082 
17083 		if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
17084 			drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n");
17085 			found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
17086 		}
17087 
17088 		if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) {
17089 
17090 			if (IS_G4X(dev_priv)) {
17091 				drm_dbg_kms(&dev_priv->drm,
17092 					    "probing HDMI on SDVOC\n");
17093 				intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
17094 			}
17095 			if (IS_G4X(dev_priv))
17096 				intel_dp_init(dev_priv, DP_C, PORT_C);
17097 		}
17098 
17099 		if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED))
17100 			intel_dp_init(dev_priv, DP_D, PORT_D);
17101 
17102 		if (SUPPORTS_TV(dev_priv))
17103 			intel_tv_init(dev_priv);
17104 	} else if (IS_GEN(dev_priv, 2)) {
17105 		if (IS_I85X(dev_priv))
17106 			intel_lvds_init(dev_priv);
17107 
17108 		intel_crt_init(dev_priv);
17109 		intel_dvo_init(dev_priv);
17110 	}
17111 
17112 	intel_psr_init(dev_priv);
17113 
17114 	for_each_intel_encoder(&dev_priv->drm, encoder) {
17115 		encoder->base.possible_crtcs =
17116 			intel_encoder_possible_crtcs(encoder);
17117 		encoder->base.possible_clones =
17118 			intel_encoder_possible_clones(encoder);
17119 	}
17120 
17121 	intel_init_pch_refclk(dev_priv);
17122 
17123 	drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
17124 }
17125 
17126 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
17127 {
17128 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
17129 
17130 	drm_framebuffer_cleanup(fb);
17131 	intel_frontbuffer_put(intel_fb->frontbuffer);
17132 
17133 	kfree(intel_fb);
17134 }
17135 
17136 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
17137 						struct drm_file *file,
17138 						unsigned int *handle)
17139 {
17140 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17141 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
17142 
17143 	if (obj->userptr.mm) {
17144 		drm_dbg(&i915->drm,
17145 			"attempting to use a userptr for a framebuffer, denied\n");
17146 		return -EINVAL;
17147 	}
17148 
17149 	return drm_gem_handle_create(file, &obj->base, handle);
17150 }
17151 
17152 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
17153 					struct drm_file *file,
17154 					unsigned flags, unsigned color,
17155 					struct drm_clip_rect *clips,
17156 					unsigned num_clips)
17157 {
17158 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17159 
17160 	i915_gem_object_flush_if_display(obj);
17161 	intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
17162 
17163 	return 0;
17164 }
17165 
17166 static const struct drm_framebuffer_funcs intel_fb_funcs = {
17167 	.destroy = intel_user_framebuffer_destroy,
17168 	.create_handle = intel_user_framebuffer_create_handle,
17169 	.dirty = intel_user_framebuffer_dirty,
17170 };
17171 
17172 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
17173 				  struct drm_i915_gem_object *obj,
17174 				  struct drm_mode_fb_cmd2 *mode_cmd)
17175 {
17176 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
17177 	struct drm_framebuffer *fb = &intel_fb->base;
17178 	u32 max_stride;
17179 	unsigned int tiling, stride;
17180 	int ret = -EINVAL;
17181 	int i;
17182 
17183 	intel_fb->frontbuffer = intel_frontbuffer_get(obj);
17184 	if (!intel_fb->frontbuffer)
17185 		return -ENOMEM;
17186 
17187 	i915_gem_object_lock(obj, NULL);
17188 	tiling = i915_gem_object_get_tiling(obj);
17189 	stride = i915_gem_object_get_stride(obj);
17190 	i915_gem_object_unlock(obj);
17191 
17192 	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
17193 		/*
17194 		 * If there's a fence, enforce that
17195 		 * the fb modifier and tiling mode match.
17196 		 */
17197 		if (tiling != I915_TILING_NONE &&
17198 		    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
17199 			drm_dbg_kms(&dev_priv->drm,
17200 				    "tiling_mode doesn't match fb modifier\n");
17201 			goto err;
17202 		}
17203 	} else {
17204 		if (tiling == I915_TILING_X) {
17205 			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
17206 		} else if (tiling == I915_TILING_Y) {
17207 			drm_dbg_kms(&dev_priv->drm,
17208 				    "No Y tiling for legacy addfb\n");
17209 			goto err;
17210 		}
17211 	}
17212 
17213 	if (!drm_any_plane_has_format(&dev_priv->drm,
17214 				      mode_cmd->pixel_format,
17215 				      mode_cmd->modifier[0])) {
17216 		struct drm_format_name_buf format_name;
17217 
17218 		drm_dbg_kms(&dev_priv->drm,
17219 			    "unsupported pixel format %s / modifier 0x%llx\n",
17220 			    drm_get_format_name(mode_cmd->pixel_format,
17221 						&format_name),
17222 			    mode_cmd->modifier[0]);
17223 		goto err;
17224 	}
17225 
17226 	/*
17227 	 * gen2/3 display engine uses the fence if present,
17228 	 * so the tiling mode must match the fb modifier exactly.
17229 	 */
17230 	if (INTEL_GEN(dev_priv) < 4 &&
17231 	    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
17232 		drm_dbg_kms(&dev_priv->drm,
17233 			    "tiling_mode must match fb modifier exactly on gen2/3\n");
17234 		goto err;
17235 	}
17236 
17237 	max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format,
17238 					 mode_cmd->modifier[0]);
17239 	if (mode_cmd->pitches[0] > max_stride) {
17240 		drm_dbg_kms(&dev_priv->drm,
17241 			    "%s pitch (%u) must be at most %d\n",
17242 			    mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
17243 			    "tiled" : "linear",
17244 			    mode_cmd->pitches[0], max_stride);
17245 		goto err;
17246 	}
17247 
17248 	/*
17249 	 * If there's a fence, enforce that
17250 	 * the fb pitch and fence stride match.
17251 	 */
17252 	if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
17253 		drm_dbg_kms(&dev_priv->drm,
17254 			    "pitch (%d) must match tiling stride (%d)\n",
17255 			    mode_cmd->pitches[0], stride);
17256 		goto err;
17257 	}
17258 
17259 	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
17260 	if (mode_cmd->offsets[0] != 0) {
17261 		drm_dbg_kms(&dev_priv->drm,
17262 			    "plane 0 offset (0x%08x) must be 0\n",
17263 			    mode_cmd->offsets[0]);
17264 		goto err;
17265 	}
17266 
17267 	drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
17268 
17269 	for (i = 0; i < fb->format->num_planes; i++) {
17270 		u32 stride_alignment;
17271 
17272 		if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
17273 			drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n",
17274 				    i);
17275 			goto err;
17276 		}
17277 
17278 		stride_alignment = intel_fb_stride_alignment(fb, i);
17279 		if (fb->pitches[i] & (stride_alignment - 1)) {
17280 			drm_dbg_kms(&dev_priv->drm,
17281 				    "plane %d pitch (%d) must be at least %u byte aligned\n",
17282 				    i, fb->pitches[i], stride_alignment);
17283 			goto err;
17284 		}
17285 
17286 		if (is_gen12_ccs_plane(fb, i)) {
17287 			int ccs_aux_stride = gen12_ccs_aux_stride(fb, i);
17288 
17289 			if (fb->pitches[i] != ccs_aux_stride) {
17290 				drm_dbg_kms(&dev_priv->drm,
17291 					    "ccs aux plane %d pitch (%d) must be %d\n",
17292 					    i,
17293 					    fb->pitches[i], ccs_aux_stride);
17294 				goto err;
17295 			}
17296 		}
17297 
17298 		fb->obj[i] = &obj->base;
17299 	}
17300 
17301 	ret = intel_fill_fb_info(dev_priv, fb);
17302 	if (ret)
17303 		goto err;
17304 
17305 	ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
17306 	if (ret) {
17307 		drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret);
17308 		goto err;
17309 	}
17310 
17311 	return 0;
17312 
17313 err:
17314 	intel_frontbuffer_put(intel_fb->frontbuffer);
17315 	return ret;
17316 }
17317 
17318 static struct drm_framebuffer *
17319 intel_user_framebuffer_create(struct drm_device *dev,
17320 			      struct drm_file *filp,
17321 			      const struct drm_mode_fb_cmd2 *user_mode_cmd)
17322 {
17323 	struct drm_framebuffer *fb;
17324 	struct drm_i915_gem_object *obj;
17325 	struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
17326 
17327 	obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
17328 	if (!obj)
17329 		return ERR_PTR(-ENOENT);
17330 
17331 	fb = intel_framebuffer_create(obj, &mode_cmd);
17332 	i915_gem_object_put(obj);
17333 
17334 	return fb;
17335 }
17336 
17337 static enum drm_mode_status
17338 intel_mode_valid(struct drm_device *dev,
17339 		 const struct drm_display_mode *mode)
17340 {
17341 	struct drm_i915_private *dev_priv = to_i915(dev);
17342 	int hdisplay_max, htotal_max;
17343 	int vdisplay_max, vtotal_max;
17344 
17345 	/*
17346 	 * Can't reject DBLSCAN here because Xorg ddxen can add piles
17347 	 * of DBLSCAN modes to the output's mode list when they detect
17348 	 * the scaling mode property on the connector. And they don't
17349 	 * ask the kernel to validate those modes in any way until
17350 	 * modeset time at which point the client gets a protocol error.
17351 	 * So in order to not upset those clients we silently ignore the
17352 	 * DBLSCAN flag on such connectors. For other connectors we will
17353 	 * reject modes with the DBLSCAN flag in encoder->compute_config().
17354 	 * And we always reject DBLSCAN modes in connector->mode_valid()
17355 	 * as we never want such modes on the connector's mode list.
17356 	 */
17357 
17358 	if (mode->vscan > 1)
17359 		return MODE_NO_VSCAN;
17360 
17361 	if (mode->flags & DRM_MODE_FLAG_HSKEW)
17362 		return MODE_H_ILLEGAL;
17363 
17364 	if (mode->flags & (DRM_MODE_FLAG_CSYNC |
17365 			   DRM_MODE_FLAG_NCSYNC |
17366 			   DRM_MODE_FLAG_PCSYNC))
17367 		return MODE_HSYNC;
17368 
17369 	if (mode->flags & (DRM_MODE_FLAG_BCAST |
17370 			   DRM_MODE_FLAG_PIXMUX |
17371 			   DRM_MODE_FLAG_CLKDIV2))
17372 		return MODE_BAD;
17373 
17374 	/* Transcoder timing limits */
17375 	if (INTEL_GEN(dev_priv) >= 11) {
17376 		hdisplay_max = 16384;
17377 		vdisplay_max = 8192;
17378 		htotal_max = 16384;
17379 		vtotal_max = 8192;
17380 	} else if (INTEL_GEN(dev_priv) >= 9 ||
17381 		   IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
17382 		hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */
17383 		vdisplay_max = 4096;
17384 		htotal_max = 8192;
17385 		vtotal_max = 8192;
17386 	} else if (INTEL_GEN(dev_priv) >= 3) {
17387 		hdisplay_max = 4096;
17388 		vdisplay_max = 4096;
17389 		htotal_max = 8192;
17390 		vtotal_max = 8192;
17391 	} else {
17392 		hdisplay_max = 2048;
17393 		vdisplay_max = 2048;
17394 		htotal_max = 4096;
17395 		vtotal_max = 4096;
17396 	}
17397 
17398 	if (mode->hdisplay > hdisplay_max ||
17399 	    mode->hsync_start > htotal_max ||
17400 	    mode->hsync_end > htotal_max ||
17401 	    mode->htotal > htotal_max)
17402 		return MODE_H_ILLEGAL;
17403 
17404 	if (mode->vdisplay > vdisplay_max ||
17405 	    mode->vsync_start > vtotal_max ||
17406 	    mode->vsync_end > vtotal_max ||
17407 	    mode->vtotal > vtotal_max)
17408 		return MODE_V_ILLEGAL;
17409 
17410 	if (INTEL_GEN(dev_priv) >= 5) {
17411 		if (mode->hdisplay < 64 ||
17412 		    mode->htotal - mode->hdisplay < 32)
17413 			return MODE_H_ILLEGAL;
17414 
17415 		if (mode->vtotal - mode->vdisplay < 5)
17416 			return MODE_V_ILLEGAL;
17417 	} else {
17418 		if (mode->htotal - mode->hdisplay < 32)
17419 			return MODE_H_ILLEGAL;
17420 
17421 		if (mode->vtotal - mode->vdisplay < 3)
17422 			return MODE_V_ILLEGAL;
17423 	}
17424 
17425 	return MODE_OK;
17426 }
17427 
17428 enum drm_mode_status
17429 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv,
17430 				const struct drm_display_mode *mode)
17431 {
17432 	int plane_width_max, plane_height_max;
17433 
17434 	/*
17435 	 * intel_mode_valid() should be
17436 	 * sufficient on older platforms.
17437 	 */
17438 	if (INTEL_GEN(dev_priv) < 9)
17439 		return MODE_OK;
17440 
17441 	/*
17442 	 * Most people will probably want a fullscreen
17443 	 * plane so let's not advertize modes that are
17444 	 * too big for that.
17445 	 */
17446 	if (INTEL_GEN(dev_priv) >= 11) {
17447 		plane_width_max = 5120;
17448 		plane_height_max = 4320;
17449 	} else {
17450 		plane_width_max = 5120;
17451 		plane_height_max = 4096;
17452 	}
17453 
17454 	if (mode->hdisplay > plane_width_max)
17455 		return MODE_H_ILLEGAL;
17456 
17457 	if (mode->vdisplay > plane_height_max)
17458 		return MODE_V_ILLEGAL;
17459 
17460 	return MODE_OK;
17461 }
17462 
17463 static const struct drm_mode_config_funcs intel_mode_funcs = {
17464 	.fb_create = intel_user_framebuffer_create,
17465 	.get_format_info = intel_get_format_info,
17466 	.output_poll_changed = intel_fbdev_output_poll_changed,
17467 	.mode_valid = intel_mode_valid,
17468 	.atomic_check = intel_atomic_check,
17469 	.atomic_commit = intel_atomic_commit,
17470 	.atomic_state_alloc = intel_atomic_state_alloc,
17471 	.atomic_state_clear = intel_atomic_state_clear,
17472 	.atomic_state_free = intel_atomic_state_free,
17473 };
17474 
17475 /**
17476  * intel_init_display_hooks - initialize the display modesetting hooks
17477  * @dev_priv: device private
17478  */
17479 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
17480 {
17481 	intel_init_cdclk_hooks(dev_priv);
17482 
17483 	if (INTEL_GEN(dev_priv) >= 9) {
17484 		dev_priv->display.get_pipe_config = hsw_get_pipe_config;
17485 		dev_priv->display.get_initial_plane_config =
17486 			skl_get_initial_plane_config;
17487 		dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock;
17488 		dev_priv->display.crtc_enable = hsw_crtc_enable;
17489 		dev_priv->display.crtc_disable = hsw_crtc_disable;
17490 	} else if (HAS_DDI(dev_priv)) {
17491 		dev_priv->display.get_pipe_config = hsw_get_pipe_config;
17492 		dev_priv->display.get_initial_plane_config =
17493 			i9xx_get_initial_plane_config;
17494 		dev_priv->display.crtc_compute_clock =
17495 			hsw_crtc_compute_clock;
17496 		dev_priv->display.crtc_enable = hsw_crtc_enable;
17497 		dev_priv->display.crtc_disable = hsw_crtc_disable;
17498 	} else if (HAS_PCH_SPLIT(dev_priv)) {
17499 		dev_priv->display.get_pipe_config = ilk_get_pipe_config;
17500 		dev_priv->display.get_initial_plane_config =
17501 			i9xx_get_initial_plane_config;
17502 		dev_priv->display.crtc_compute_clock =
17503 			ilk_crtc_compute_clock;
17504 		dev_priv->display.crtc_enable = ilk_crtc_enable;
17505 		dev_priv->display.crtc_disable = ilk_crtc_disable;
17506 	} else if (IS_CHERRYVIEW(dev_priv)) {
17507 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17508 		dev_priv->display.get_initial_plane_config =
17509 			i9xx_get_initial_plane_config;
17510 		dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
17511 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
17512 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17513 	} else if (IS_VALLEYVIEW(dev_priv)) {
17514 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17515 		dev_priv->display.get_initial_plane_config =
17516 			i9xx_get_initial_plane_config;
17517 		dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
17518 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
17519 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17520 	} else if (IS_G4X(dev_priv)) {
17521 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17522 		dev_priv->display.get_initial_plane_config =
17523 			i9xx_get_initial_plane_config;
17524 		dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
17525 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
17526 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17527 	} else if (IS_PINEVIEW(dev_priv)) {
17528 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17529 		dev_priv->display.get_initial_plane_config =
17530 			i9xx_get_initial_plane_config;
17531 		dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
17532 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
17533 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17534 	} else if (!IS_GEN(dev_priv, 2)) {
17535 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17536 		dev_priv->display.get_initial_plane_config =
17537 			i9xx_get_initial_plane_config;
17538 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
17539 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
17540 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17541 	} else {
17542 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17543 		dev_priv->display.get_initial_plane_config =
17544 			i9xx_get_initial_plane_config;
17545 		dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
17546 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
17547 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17548 	}
17549 
17550 	if (IS_GEN(dev_priv, 5)) {
17551 		dev_priv->display.fdi_link_train = ilk_fdi_link_train;
17552 	} else if (IS_GEN(dev_priv, 6)) {
17553 		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
17554 	} else if (IS_IVYBRIDGE(dev_priv)) {
17555 		/* FIXME: detect B0+ stepping and use auto training */
17556 		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
17557 	}
17558 
17559 	if (INTEL_GEN(dev_priv) >= 9)
17560 		dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables;
17561 	else
17562 		dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables;
17563 
17564 }
17565 
17566 void intel_modeset_init_hw(struct drm_i915_private *i915)
17567 {
17568 	struct intel_cdclk_state *cdclk_state =
17569 		to_intel_cdclk_state(i915->cdclk.obj.state);
17570 	struct intel_dbuf_state *dbuf_state =
17571 		to_intel_dbuf_state(i915->dbuf.obj.state);
17572 
17573 	intel_update_cdclk(i915);
17574 	intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK");
17575 	cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw;
17576 
17577 	dbuf_state->enabled_slices = i915->dbuf.enabled_slices;
17578 }
17579 
17580 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state)
17581 {
17582 	struct drm_plane *plane;
17583 	struct intel_crtc *crtc;
17584 
17585 	for_each_intel_crtc(state->dev, crtc) {
17586 		struct intel_crtc_state *crtc_state;
17587 
17588 		crtc_state = intel_atomic_get_crtc_state(state, crtc);
17589 		if (IS_ERR(crtc_state))
17590 			return PTR_ERR(crtc_state);
17591 
17592 		if (crtc_state->hw.active) {
17593 			/*
17594 			 * Preserve the inherited flag to avoid
17595 			 * taking the full modeset path.
17596 			 */
17597 			crtc_state->inherited = true;
17598 		}
17599 	}
17600 
17601 	drm_for_each_plane(plane, state->dev) {
17602 		struct drm_plane_state *plane_state;
17603 
17604 		plane_state = drm_atomic_get_plane_state(state, plane);
17605 		if (IS_ERR(plane_state))
17606 			return PTR_ERR(plane_state);
17607 	}
17608 
17609 	return 0;
17610 }
17611 
17612 /*
17613  * Calculate what we think the watermarks should be for the state we've read
17614  * out of the hardware and then immediately program those watermarks so that
17615  * we ensure the hardware settings match our internal state.
17616  *
17617  * We can calculate what we think WM's should be by creating a duplicate of the
17618  * current state (which was constructed during hardware readout) and running it
17619  * through the atomic check code to calculate new watermark values in the
17620  * state object.
17621  */
17622 static void sanitize_watermarks(struct drm_i915_private *dev_priv)
17623 {
17624 	struct drm_atomic_state *state;
17625 	struct intel_atomic_state *intel_state;
17626 	struct intel_crtc *crtc;
17627 	struct intel_crtc_state *crtc_state;
17628 	struct drm_modeset_acquire_ctx ctx;
17629 	int ret;
17630 	int i;
17631 
17632 	/* Only supported on platforms that use atomic watermark design */
17633 	if (!dev_priv->display.optimize_watermarks)
17634 		return;
17635 
17636 	state = drm_atomic_state_alloc(&dev_priv->drm);
17637 	if (drm_WARN_ON(&dev_priv->drm, !state))
17638 		return;
17639 
17640 	intel_state = to_intel_atomic_state(state);
17641 
17642 	drm_modeset_acquire_init(&ctx, 0);
17643 
17644 retry:
17645 	state->acquire_ctx = &ctx;
17646 
17647 	/*
17648 	 * Hardware readout is the only time we don't want to calculate
17649 	 * intermediate watermarks (since we don't trust the current
17650 	 * watermarks).
17651 	 */
17652 	if (!HAS_GMCH(dev_priv))
17653 		intel_state->skip_intermediate_wm = true;
17654 
17655 	ret = sanitize_watermarks_add_affected(state);
17656 	if (ret)
17657 		goto fail;
17658 
17659 	ret = intel_atomic_check(&dev_priv->drm, state);
17660 	if (ret)
17661 		goto fail;
17662 
17663 	/* Write calculated watermark values back */
17664 	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
17665 		crtc_state->wm.need_postvbl_update = true;
17666 		dev_priv->display.optimize_watermarks(intel_state, crtc);
17667 
17668 		to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
17669 	}
17670 
17671 fail:
17672 	if (ret == -EDEADLK) {
17673 		drm_atomic_state_clear(state);
17674 		drm_modeset_backoff(&ctx);
17675 		goto retry;
17676 	}
17677 
17678 	/*
17679 	 * If we fail here, it means that the hardware appears to be
17680 	 * programmed in a way that shouldn't be possible, given our
17681 	 * understanding of watermark requirements.  This might mean a
17682 	 * mistake in the hardware readout code or a mistake in the
17683 	 * watermark calculations for a given platform.  Raise a WARN
17684 	 * so that this is noticeable.
17685 	 *
17686 	 * If this actually happens, we'll have to just leave the
17687 	 * BIOS-programmed watermarks untouched and hope for the best.
17688 	 */
17689 	drm_WARN(&dev_priv->drm, ret,
17690 		 "Could not determine valid watermarks for inherited state\n");
17691 
17692 	drm_atomic_state_put(state);
17693 
17694 	drm_modeset_drop_locks(&ctx);
17695 	drm_modeset_acquire_fini(&ctx);
17696 }
17697 
17698 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv)
17699 {
17700 	if (IS_GEN(dev_priv, 5)) {
17701 		u32 fdi_pll_clk =
17702 			intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK;
17703 
17704 		dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000;
17705 	} else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) {
17706 		dev_priv->fdi_pll_freq = 270000;
17707 	} else {
17708 		return;
17709 	}
17710 
17711 	drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq);
17712 }
17713 
17714 static int intel_initial_commit(struct drm_device *dev)
17715 {
17716 	struct drm_atomic_state *state = NULL;
17717 	struct drm_modeset_acquire_ctx ctx;
17718 	struct intel_crtc *crtc;
17719 	int ret = 0;
17720 
17721 	state = drm_atomic_state_alloc(dev);
17722 	if (!state)
17723 		return -ENOMEM;
17724 
17725 	drm_modeset_acquire_init(&ctx, 0);
17726 
17727 retry:
17728 	state->acquire_ctx = &ctx;
17729 
17730 	for_each_intel_crtc(dev, crtc) {
17731 		struct intel_crtc_state *crtc_state =
17732 			intel_atomic_get_crtc_state(state, crtc);
17733 
17734 		if (IS_ERR(crtc_state)) {
17735 			ret = PTR_ERR(crtc_state);
17736 			goto out;
17737 		}
17738 
17739 		if (crtc_state->hw.active) {
17740 			/*
17741 			 * We've not yet detected sink capabilities
17742 			 * (audio,infoframes,etc.) and thus we don't want to
17743 			 * force a full state recomputation yet. We want that to
17744 			 * happen only for the first real commit from userspace.
17745 			 * So preserve the inherited flag for the time being.
17746 			 */
17747 			crtc_state->inherited = true;
17748 
17749 			ret = drm_atomic_add_affected_planes(state, &crtc->base);
17750 			if (ret)
17751 				goto out;
17752 
17753 			/*
17754 			 * FIXME hack to force a LUT update to avoid the
17755 			 * plane update forcing the pipe gamma on without
17756 			 * having a proper LUT loaded. Remove once we
17757 			 * have readout for pipe gamma enable.
17758 			 */
17759 			crtc_state->uapi.color_mgmt_changed = true;
17760 
17761 			/*
17762 			 * FIXME hack to force full modeset when DSC is being
17763 			 * used.
17764 			 *
17765 			 * As long as we do not have full state readout and
17766 			 * config comparison of crtc_state->dsc, we have no way
17767 			 * to ensure reliable fastset. Remove once we have
17768 			 * readout for DSC.
17769 			 */
17770 			if (crtc_state->dsc.compression_enable) {
17771 				ret = drm_atomic_add_affected_connectors(state,
17772 									 &crtc->base);
17773 				if (ret)
17774 					goto out;
17775 				crtc_state->uapi.mode_changed = true;
17776 				drm_dbg_kms(dev, "Force full modeset for DSC\n");
17777 			}
17778 		}
17779 	}
17780 
17781 	ret = drm_atomic_commit(state);
17782 
17783 out:
17784 	if (ret == -EDEADLK) {
17785 		drm_atomic_state_clear(state);
17786 		drm_modeset_backoff(&ctx);
17787 		goto retry;
17788 	}
17789 
17790 	drm_atomic_state_put(state);
17791 
17792 	drm_modeset_drop_locks(&ctx);
17793 	drm_modeset_acquire_fini(&ctx);
17794 
17795 	return ret;
17796 }
17797 
17798 static void intel_mode_config_init(struct drm_i915_private *i915)
17799 {
17800 	struct drm_mode_config *mode_config = &i915->drm.mode_config;
17801 
17802 	drm_mode_config_init(&i915->drm);
17803 	INIT_LIST_HEAD(&i915->global_obj_list);
17804 
17805 	mode_config->min_width = 0;
17806 	mode_config->min_height = 0;
17807 
17808 	mode_config->preferred_depth = 24;
17809 	mode_config->prefer_shadow = 1;
17810 
17811 	mode_config->allow_fb_modifiers = true;
17812 
17813 	mode_config->funcs = &intel_mode_funcs;
17814 
17815 	/*
17816 	 * Maximum framebuffer dimensions, chosen to match
17817 	 * the maximum render engine surface size on gen4+.
17818 	 */
17819 	if (INTEL_GEN(i915) >= 7) {
17820 		mode_config->max_width = 16384;
17821 		mode_config->max_height = 16384;
17822 	} else if (INTEL_GEN(i915) >= 4) {
17823 		mode_config->max_width = 8192;
17824 		mode_config->max_height = 8192;
17825 	} else if (IS_GEN(i915, 3)) {
17826 		mode_config->max_width = 4096;
17827 		mode_config->max_height = 4096;
17828 	} else {
17829 		mode_config->max_width = 2048;
17830 		mode_config->max_height = 2048;
17831 	}
17832 
17833 	if (IS_I845G(i915) || IS_I865G(i915)) {
17834 		mode_config->cursor_width = IS_I845G(i915) ? 64 : 512;
17835 		mode_config->cursor_height = 1023;
17836 	} else if (IS_I830(i915) || IS_I85X(i915) ||
17837 		   IS_I915G(i915) || IS_I915GM(i915)) {
17838 		mode_config->cursor_width = 64;
17839 		mode_config->cursor_height = 64;
17840 	} else {
17841 		mode_config->cursor_width = 256;
17842 		mode_config->cursor_height = 256;
17843 	}
17844 }
17845 
17846 static void intel_mode_config_cleanup(struct drm_i915_private *i915)
17847 {
17848 	intel_atomic_global_obj_cleanup(i915);
17849 	drm_mode_config_cleanup(&i915->drm);
17850 }
17851 
17852 static void plane_config_fini(struct intel_initial_plane_config *plane_config)
17853 {
17854 	if (plane_config->fb) {
17855 		struct drm_framebuffer *fb = &plane_config->fb->base;
17856 
17857 		/* We may only have the stub and not a full framebuffer */
17858 		if (drm_framebuffer_read_refcount(fb))
17859 			drm_framebuffer_put(fb);
17860 		else
17861 			kfree(fb);
17862 	}
17863 
17864 	if (plane_config->vma)
17865 		i915_vma_put(plane_config->vma);
17866 }
17867 
17868 /* part #1: call before irq install */
17869 int intel_modeset_init_noirq(struct drm_i915_private *i915)
17870 {
17871 	int ret;
17872 
17873 	if (i915_inject_probe_failure(i915))
17874 		return -ENODEV;
17875 
17876 	if (HAS_DISPLAY(i915)) {
17877 		ret = drm_vblank_init(&i915->drm,
17878 				      INTEL_NUM_PIPES(i915));
17879 		if (ret)
17880 			return ret;
17881 	}
17882 
17883 	intel_bios_init(i915);
17884 
17885 	ret = intel_vga_register(i915);
17886 	if (ret)
17887 		goto cleanup_bios;
17888 
17889 	/* FIXME: completely on the wrong abstraction layer */
17890 	intel_power_domains_init_hw(i915, false);
17891 
17892 	intel_csr_ucode_init(i915);
17893 
17894 	i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
17895 	i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI |
17896 					WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE);
17897 
17898 	intel_mode_config_init(i915);
17899 
17900 	ret = intel_cdclk_init(i915);
17901 	if (ret)
17902 		goto cleanup_vga_client_pw_domain_csr;
17903 
17904 	ret = intel_dbuf_init(i915);
17905 	if (ret)
17906 		goto cleanup_vga_client_pw_domain_csr;
17907 
17908 	ret = intel_bw_init(i915);
17909 	if (ret)
17910 		goto cleanup_vga_client_pw_domain_csr;
17911 
17912 	init_llist_head(&i915->atomic_helper.free_list);
17913 	INIT_WORK(&i915->atomic_helper.free_work,
17914 		  intel_atomic_helper_free_state_worker);
17915 
17916 	intel_init_quirks(i915);
17917 
17918 	intel_fbc_init(i915);
17919 
17920 	return 0;
17921 
17922 cleanup_vga_client_pw_domain_csr:
17923 	intel_csr_ucode_fini(i915);
17924 	intel_power_domains_driver_remove(i915);
17925 	intel_vga_unregister(i915);
17926 cleanup_bios:
17927 	intel_bios_driver_remove(i915);
17928 
17929 	return ret;
17930 }
17931 
17932 /* part #2: call after irq install, but before gem init */
17933 int intel_modeset_init_nogem(struct drm_i915_private *i915)
17934 {
17935 	struct drm_device *dev = &i915->drm;
17936 	enum pipe pipe;
17937 	struct intel_crtc *crtc;
17938 	int ret;
17939 
17940 	intel_init_pm(i915);
17941 
17942 	intel_panel_sanitize_ssc(i915);
17943 
17944 	intel_gmbus_setup(i915);
17945 
17946 	drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n",
17947 		    INTEL_NUM_PIPES(i915),
17948 		    INTEL_NUM_PIPES(i915) > 1 ? "s" : "");
17949 
17950 	if (HAS_DISPLAY(i915)) {
17951 		for_each_pipe(i915, pipe) {
17952 			ret = intel_crtc_init(i915, pipe);
17953 			if (ret) {
17954 				intel_mode_config_cleanup(i915);
17955 				return ret;
17956 			}
17957 		}
17958 	}
17959 
17960 	intel_plane_possible_crtcs_init(i915);
17961 	intel_shared_dpll_init(dev);
17962 	intel_update_fdi_pll_freq(i915);
17963 
17964 	intel_update_czclk(i915);
17965 	intel_modeset_init_hw(i915);
17966 
17967 	intel_hdcp_component_init(i915);
17968 
17969 	if (i915->max_cdclk_freq == 0)
17970 		intel_update_max_cdclk(i915);
17971 
17972 	/*
17973 	 * If the platform has HTI, we need to find out whether it has reserved
17974 	 * any display resources before we create our display outputs.
17975 	 */
17976 	if (INTEL_INFO(i915)->display.has_hti)
17977 		i915->hti_state = intel_de_read(i915, HDPORT_STATE);
17978 
17979 	/* Just disable it once at startup */
17980 	intel_vga_disable(i915);
17981 	intel_setup_outputs(i915);
17982 
17983 	drm_modeset_lock_all(dev);
17984 	intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
17985 	drm_modeset_unlock_all(dev);
17986 
17987 	for_each_intel_crtc(dev, crtc) {
17988 		struct intel_initial_plane_config plane_config = {};
17989 
17990 		if (!crtc->active)
17991 			continue;
17992 
17993 		/*
17994 		 * Note that reserving the BIOS fb up front prevents us
17995 		 * from stuffing other stolen allocations like the ring
17996 		 * on top.  This prevents some ugliness at boot time, and
17997 		 * can even allow for smooth boot transitions if the BIOS
17998 		 * fb is large enough for the active pipe configuration.
17999 		 */
18000 		i915->display.get_initial_plane_config(crtc, &plane_config);
18001 
18002 		/*
18003 		 * If the fb is shared between multiple heads, we'll
18004 		 * just get the first one.
18005 		 */
18006 		intel_find_initial_plane_obj(crtc, &plane_config);
18007 
18008 		plane_config_fini(&plane_config);
18009 	}
18010 
18011 	/*
18012 	 * Make sure hardware watermarks really match the state we read out.
18013 	 * Note that we need to do this after reconstructing the BIOS fb's
18014 	 * since the watermark calculation done here will use pstate->fb.
18015 	 */
18016 	if (!HAS_GMCH(i915))
18017 		sanitize_watermarks(i915);
18018 
18019 	/*
18020 	 * Force all active planes to recompute their states. So that on
18021 	 * mode_setcrtc after probe, all the intel_plane_state variables
18022 	 * are already calculated and there is no assert_plane warnings
18023 	 * during bootup.
18024 	 */
18025 	ret = intel_initial_commit(dev);
18026 	if (ret)
18027 		drm_dbg_kms(&i915->drm, "Initial commit in probe failed.\n");
18028 
18029 	return 0;
18030 }
18031 
18032 /* part #3: call after gem init */
18033 int intel_modeset_init(struct drm_i915_private *i915)
18034 {
18035 	int ret;
18036 
18037 	intel_overlay_setup(i915);
18038 
18039 	if (!HAS_DISPLAY(i915))
18040 		return 0;
18041 
18042 	ret = intel_fbdev_init(&i915->drm);
18043 	if (ret)
18044 		return ret;
18045 
18046 	/* Only enable hotplug handling once the fbdev is fully set up. */
18047 	intel_hpd_init(i915);
18048 
18049 	intel_init_ipc(i915);
18050 
18051 	intel_psr_set_force_mode_changed(i915->psr.dp);
18052 
18053 	return 0;
18054 }
18055 
18056 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
18057 {
18058 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18059 	/* 640x480@60Hz, ~25175 kHz */
18060 	struct dpll clock = {
18061 		.m1 = 18,
18062 		.m2 = 7,
18063 		.p1 = 13,
18064 		.p2 = 4,
18065 		.n = 2,
18066 	};
18067 	u32 dpll, fp;
18068 	int i;
18069 
18070 	drm_WARN_ON(&dev_priv->drm,
18071 		    i9xx_calc_dpll_params(48000, &clock) != 25154);
18072 
18073 	drm_dbg_kms(&dev_priv->drm,
18074 		    "enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
18075 		    pipe_name(pipe), clock.vco, clock.dot);
18076 
18077 	fp = i9xx_dpll_compute_fp(&clock);
18078 	dpll = DPLL_DVO_2X_MODE |
18079 		DPLL_VGA_MODE_DIS |
18080 		((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
18081 		PLL_P2_DIVIDE_BY_4 |
18082 		PLL_REF_INPUT_DREFCLK |
18083 		DPLL_VCO_ENABLE;
18084 
18085 	intel_de_write(dev_priv, FP0(pipe), fp);
18086 	intel_de_write(dev_priv, FP1(pipe), fp);
18087 
18088 	intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
18089 	intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
18090 	intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
18091 	intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
18092 	intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
18093 	intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
18094 	intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
18095 
18096 	/*
18097 	 * Apparently we need to have VGA mode enabled prior to changing
18098 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
18099 	 * dividers, even though the register value does change.
18100 	 */
18101 	intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
18102 	intel_de_write(dev_priv, DPLL(pipe), dpll);
18103 
18104 	/* Wait for the clocks to stabilize. */
18105 	intel_de_posting_read(dev_priv, DPLL(pipe));
18106 	udelay(150);
18107 
18108 	/* The pixel multiplier can only be updated once the
18109 	 * DPLL is enabled and the clocks are stable.
18110 	 *
18111 	 * So write it again.
18112 	 */
18113 	intel_de_write(dev_priv, DPLL(pipe), dpll);
18114 
18115 	/* We do this three times for luck */
18116 	for (i = 0; i < 3 ; i++) {
18117 		intel_de_write(dev_priv, DPLL(pipe), dpll);
18118 		intel_de_posting_read(dev_priv, DPLL(pipe));
18119 		udelay(150); /* wait for warmup */
18120 	}
18121 
18122 	intel_de_write(dev_priv, PIPECONF(pipe),
18123 		       PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
18124 	intel_de_posting_read(dev_priv, PIPECONF(pipe));
18125 
18126 	intel_wait_for_pipe_scanline_moving(crtc);
18127 }
18128 
18129 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
18130 {
18131 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18132 
18133 	drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n",
18134 		    pipe_name(pipe));
18135 
18136 	drm_WARN_ON(&dev_priv->drm,
18137 		    intel_de_read(dev_priv, DSPCNTR(PLANE_A)) &
18138 		    DISPLAY_PLANE_ENABLE);
18139 	drm_WARN_ON(&dev_priv->drm,
18140 		    intel_de_read(dev_priv, DSPCNTR(PLANE_B)) &
18141 		    DISPLAY_PLANE_ENABLE);
18142 	drm_WARN_ON(&dev_priv->drm,
18143 		    intel_de_read(dev_priv, DSPCNTR(PLANE_C)) &
18144 		    DISPLAY_PLANE_ENABLE);
18145 	drm_WARN_ON(&dev_priv->drm,
18146 		    intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE);
18147 	drm_WARN_ON(&dev_priv->drm,
18148 		    intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE);
18149 
18150 	intel_de_write(dev_priv, PIPECONF(pipe), 0);
18151 	intel_de_posting_read(dev_priv, PIPECONF(pipe));
18152 
18153 	intel_wait_for_pipe_scanline_stopped(crtc);
18154 
18155 	intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
18156 	intel_de_posting_read(dev_priv, DPLL(pipe));
18157 }
18158 
18159 static void
18160 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
18161 {
18162 	struct intel_crtc *crtc;
18163 
18164 	if (INTEL_GEN(dev_priv) >= 4)
18165 		return;
18166 
18167 	for_each_intel_crtc(&dev_priv->drm, crtc) {
18168 		struct intel_plane *plane =
18169 			to_intel_plane(crtc->base.primary);
18170 		struct intel_crtc *plane_crtc;
18171 		enum pipe pipe;
18172 
18173 		if (!plane->get_hw_state(plane, &pipe))
18174 			continue;
18175 
18176 		if (pipe == crtc->pipe)
18177 			continue;
18178 
18179 		drm_dbg_kms(&dev_priv->drm,
18180 			    "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n",
18181 			    plane->base.base.id, plane->base.name);
18182 
18183 		plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18184 		intel_plane_disable_noatomic(plane_crtc, plane);
18185 	}
18186 }
18187 
18188 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
18189 {
18190 	struct drm_device *dev = crtc->base.dev;
18191 	struct intel_encoder *encoder;
18192 
18193 	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
18194 		return true;
18195 
18196 	return false;
18197 }
18198 
18199 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
18200 {
18201 	struct drm_device *dev = encoder->base.dev;
18202 	struct intel_connector *connector;
18203 
18204 	for_each_connector_on_encoder(dev, &encoder->base, connector)
18205 		return connector;
18206 
18207 	return NULL;
18208 }
18209 
18210 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
18211 			      enum pipe pch_transcoder)
18212 {
18213 	return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
18214 		(HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
18215 }
18216 
18217 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state)
18218 {
18219 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
18220 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
18221 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
18222 
18223 	if (INTEL_GEN(dev_priv) >= 9 ||
18224 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
18225 		i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
18226 		u32 val;
18227 
18228 		if (transcoder_is_dsi(cpu_transcoder))
18229 			return;
18230 
18231 		val = intel_de_read(dev_priv, reg);
18232 		val &= ~HSW_FRAME_START_DELAY_MASK;
18233 		val |= HSW_FRAME_START_DELAY(0);
18234 		intel_de_write(dev_priv, reg, val);
18235 	} else {
18236 		i915_reg_t reg = PIPECONF(cpu_transcoder);
18237 		u32 val;
18238 
18239 		val = intel_de_read(dev_priv, reg);
18240 		val &= ~PIPECONF_FRAME_START_DELAY_MASK;
18241 		val |= PIPECONF_FRAME_START_DELAY(0);
18242 		intel_de_write(dev_priv, reg, val);
18243 	}
18244 
18245 	if (!crtc_state->has_pch_encoder)
18246 		return;
18247 
18248 	if (HAS_PCH_IBX(dev_priv)) {
18249 		i915_reg_t reg = PCH_TRANSCONF(crtc->pipe);
18250 		u32 val;
18251 
18252 		val = intel_de_read(dev_priv, reg);
18253 		val &= ~TRANS_FRAME_START_DELAY_MASK;
18254 		val |= TRANS_FRAME_START_DELAY(0);
18255 		intel_de_write(dev_priv, reg, val);
18256 	} else {
18257 		enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc);
18258 		i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder);
18259 		u32 val;
18260 
18261 		val = intel_de_read(dev_priv, reg);
18262 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
18263 		val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
18264 		intel_de_write(dev_priv, reg, val);
18265 	}
18266 }
18267 
18268 static void intel_sanitize_crtc(struct intel_crtc *crtc,
18269 				struct drm_modeset_acquire_ctx *ctx)
18270 {
18271 	struct drm_device *dev = crtc->base.dev;
18272 	struct drm_i915_private *dev_priv = to_i915(dev);
18273 	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
18274 
18275 	if (crtc_state->hw.active) {
18276 		struct intel_plane *plane;
18277 
18278 		/* Clear any frame start delays used for debugging left by the BIOS */
18279 		intel_sanitize_frame_start_delay(crtc_state);
18280 
18281 		/* Disable everything but the primary plane */
18282 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
18283 			const struct intel_plane_state *plane_state =
18284 				to_intel_plane_state(plane->base.state);
18285 
18286 			if (plane_state->uapi.visible &&
18287 			    plane->base.type != DRM_PLANE_TYPE_PRIMARY)
18288 				intel_plane_disable_noatomic(crtc, plane);
18289 		}
18290 
18291 		/*
18292 		 * Disable any background color set by the BIOS, but enable the
18293 		 * gamma and CSC to match how we program our planes.
18294 		 */
18295 		if (INTEL_GEN(dev_priv) >= 9)
18296 			intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe),
18297 				       SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE);
18298 	}
18299 
18300 	/* Adjust the state of the output pipe according to whether we
18301 	 * have active connectors/encoders. */
18302 	if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc))
18303 		intel_crtc_disable_noatomic(crtc, ctx);
18304 
18305 	if (crtc_state->hw.active || HAS_GMCH(dev_priv)) {
18306 		/*
18307 		 * We start out with underrun reporting disabled to avoid races.
18308 		 * For correct bookkeeping mark this on active crtcs.
18309 		 *
18310 		 * Also on gmch platforms we dont have any hardware bits to
18311 		 * disable the underrun reporting. Which means we need to start
18312 		 * out with underrun reporting disabled also on inactive pipes,
18313 		 * since otherwise we'll complain about the garbage we read when
18314 		 * e.g. coming up after runtime pm.
18315 		 *
18316 		 * No protection against concurrent access is required - at
18317 		 * worst a fifo underrun happens which also sets this to false.
18318 		 */
18319 		crtc->cpu_fifo_underrun_disabled = true;
18320 		/*
18321 		 * We track the PCH trancoder underrun reporting state
18322 		 * within the crtc. With crtc for pipe A housing the underrun
18323 		 * reporting state for PCH transcoder A, crtc for pipe B housing
18324 		 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
18325 		 * and marking underrun reporting as disabled for the non-existing
18326 		 * PCH transcoders B and C would prevent enabling the south
18327 		 * error interrupt (see cpt_can_enable_serr_int()).
18328 		 */
18329 		if (has_pch_trancoder(dev_priv, crtc->pipe))
18330 			crtc->pch_fifo_underrun_disabled = true;
18331 	}
18332 }
18333 
18334 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state)
18335 {
18336 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
18337 
18338 	/*
18339 	 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram
18340 	 * the hardware when a high res displays plugged in. DPLL P
18341 	 * divider is zero, and the pipe timings are bonkers. We'll
18342 	 * try to disable everything in that case.
18343 	 *
18344 	 * FIXME would be nice to be able to sanitize this state
18345 	 * without several WARNs, but for now let's take the easy
18346 	 * road.
18347 	 */
18348 	return IS_GEN(dev_priv, 6) &&
18349 		crtc_state->hw.active &&
18350 		crtc_state->shared_dpll &&
18351 		crtc_state->port_clock == 0;
18352 }
18353 
18354 static void intel_sanitize_encoder(struct intel_encoder *encoder)
18355 {
18356 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
18357 	struct intel_connector *connector;
18358 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
18359 	struct intel_crtc_state *crtc_state = crtc ?
18360 		to_intel_crtc_state(crtc->base.state) : NULL;
18361 
18362 	/* We need to check both for a crtc link (meaning that the
18363 	 * encoder is active and trying to read from a pipe) and the
18364 	 * pipe itself being active. */
18365 	bool has_active_crtc = crtc_state &&
18366 		crtc_state->hw.active;
18367 
18368 	if (crtc_state && has_bogus_dpll_config(crtc_state)) {
18369 		drm_dbg_kms(&dev_priv->drm,
18370 			    "BIOS has misprogrammed the hardware. Disabling pipe %c\n",
18371 			    pipe_name(crtc->pipe));
18372 		has_active_crtc = false;
18373 	}
18374 
18375 	connector = intel_encoder_find_connector(encoder);
18376 	if (connector && !has_active_crtc) {
18377 		drm_dbg_kms(&dev_priv->drm,
18378 			    "[ENCODER:%d:%s] has active connectors but no active pipe!\n",
18379 			    encoder->base.base.id,
18380 			    encoder->base.name);
18381 
18382 		/* Connector is active, but has no active pipe. This is
18383 		 * fallout from our resume register restoring. Disable
18384 		 * the encoder manually again. */
18385 		if (crtc_state) {
18386 			struct drm_encoder *best_encoder;
18387 
18388 			drm_dbg_kms(&dev_priv->drm,
18389 				    "[ENCODER:%d:%s] manually disabled\n",
18390 				    encoder->base.base.id,
18391 				    encoder->base.name);
18392 
18393 			/* avoid oopsing in case the hooks consult best_encoder */
18394 			best_encoder = connector->base.state->best_encoder;
18395 			connector->base.state->best_encoder = &encoder->base;
18396 
18397 			/* FIXME NULL atomic state passed! */
18398 			if (encoder->disable)
18399 				encoder->disable(NULL, encoder, crtc_state,
18400 						 connector->base.state);
18401 			if (encoder->post_disable)
18402 				encoder->post_disable(NULL, encoder, crtc_state,
18403 						      connector->base.state);
18404 
18405 			connector->base.state->best_encoder = best_encoder;
18406 		}
18407 		encoder->base.crtc = NULL;
18408 
18409 		/* Inconsistent output/port/pipe state happens presumably due to
18410 		 * a bug in one of the get_hw_state functions. Or someplace else
18411 		 * in our code, like the register restore mess on resume. Clamp
18412 		 * things to off as a safer default. */
18413 
18414 		connector->base.dpms = DRM_MODE_DPMS_OFF;
18415 		connector->base.encoder = NULL;
18416 	}
18417 
18418 	/* notify opregion of the sanitized encoder state */
18419 	intel_opregion_notify_encoder(encoder, connector && has_active_crtc);
18420 
18421 	if (INTEL_GEN(dev_priv) >= 11)
18422 		icl_sanitize_encoder_pll_mapping(encoder);
18423 }
18424 
18425 /* FIXME read out full plane state for all planes */
18426 static void readout_plane_state(struct drm_i915_private *dev_priv)
18427 {
18428 	struct intel_plane *plane;
18429 	struct intel_crtc *crtc;
18430 
18431 	for_each_intel_plane(&dev_priv->drm, plane) {
18432 		struct intel_plane_state *plane_state =
18433 			to_intel_plane_state(plane->base.state);
18434 		struct intel_crtc_state *crtc_state;
18435 		enum pipe pipe = PIPE_A;
18436 		bool visible;
18437 
18438 		visible = plane->get_hw_state(plane, &pipe);
18439 
18440 		crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18441 		crtc_state = to_intel_crtc_state(crtc->base.state);
18442 
18443 		intel_set_plane_visible(crtc_state, plane_state, visible);
18444 
18445 		drm_dbg_kms(&dev_priv->drm,
18446 			    "[PLANE:%d:%s] hw state readout: %s, pipe %c\n",
18447 			    plane->base.base.id, plane->base.name,
18448 			    enableddisabled(visible), pipe_name(pipe));
18449 	}
18450 
18451 	for_each_intel_crtc(&dev_priv->drm, crtc) {
18452 		struct intel_crtc_state *crtc_state =
18453 			to_intel_crtc_state(crtc->base.state);
18454 
18455 		fixup_active_planes(crtc_state);
18456 	}
18457 }
18458 
18459 static void intel_modeset_readout_hw_state(struct drm_device *dev)
18460 {
18461 	struct drm_i915_private *dev_priv = to_i915(dev);
18462 	struct intel_cdclk_state *cdclk_state =
18463 		to_intel_cdclk_state(dev_priv->cdclk.obj.state);
18464 	struct intel_dbuf_state *dbuf_state =
18465 		to_intel_dbuf_state(dev_priv->dbuf.obj.state);
18466 	enum pipe pipe;
18467 	struct intel_crtc *crtc;
18468 	struct intel_encoder *encoder;
18469 	struct intel_connector *connector;
18470 	struct drm_connector_list_iter conn_iter;
18471 	u8 active_pipes = 0;
18472 
18473 	for_each_intel_crtc(dev, crtc) {
18474 		struct intel_crtc_state *crtc_state =
18475 			to_intel_crtc_state(crtc->base.state);
18476 
18477 		__drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi);
18478 		intel_crtc_free_hw_state(crtc_state);
18479 		intel_crtc_state_reset(crtc_state, crtc);
18480 
18481 		crtc_state->hw.active = crtc_state->hw.enable =
18482 			dev_priv->display.get_pipe_config(crtc, crtc_state);
18483 
18484 		crtc->base.enabled = crtc_state->hw.enable;
18485 		crtc->active = crtc_state->hw.active;
18486 
18487 		if (crtc_state->hw.active)
18488 			active_pipes |= BIT(crtc->pipe);
18489 
18490 		drm_dbg_kms(&dev_priv->drm,
18491 			    "[CRTC:%d:%s] hw state readout: %s\n",
18492 			    crtc->base.base.id, crtc->base.name,
18493 			    enableddisabled(crtc_state->hw.active));
18494 	}
18495 
18496 	dev_priv->active_pipes = cdclk_state->active_pipes =
18497 		dbuf_state->active_pipes = active_pipes;
18498 
18499 	readout_plane_state(dev_priv);
18500 
18501 	intel_dpll_readout_hw_state(dev_priv);
18502 
18503 	for_each_intel_encoder(dev, encoder) {
18504 		pipe = 0;
18505 
18506 		if (encoder->get_hw_state(encoder, &pipe)) {
18507 			struct intel_crtc_state *crtc_state;
18508 
18509 			crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18510 			crtc_state = to_intel_crtc_state(crtc->base.state);
18511 
18512 			encoder->base.crtc = &crtc->base;
18513 			encoder->get_config(encoder, crtc_state);
18514 		} else {
18515 			encoder->base.crtc = NULL;
18516 		}
18517 
18518 		drm_dbg_kms(&dev_priv->drm,
18519 			    "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
18520 			    encoder->base.base.id, encoder->base.name,
18521 			    enableddisabled(encoder->base.crtc),
18522 			    pipe_name(pipe));
18523 	}
18524 
18525 	drm_connector_list_iter_begin(dev, &conn_iter);
18526 	for_each_intel_connector_iter(connector, &conn_iter) {
18527 		if (connector->get_hw_state(connector)) {
18528 			struct intel_crtc_state *crtc_state;
18529 			struct intel_crtc *crtc;
18530 
18531 			connector->base.dpms = DRM_MODE_DPMS_ON;
18532 
18533 			encoder = intel_attached_encoder(connector);
18534 			connector->base.encoder = &encoder->base;
18535 
18536 			crtc = to_intel_crtc(encoder->base.crtc);
18537 			crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL;
18538 
18539 			if (crtc_state && crtc_state->hw.active) {
18540 				/*
18541 				 * This has to be done during hardware readout
18542 				 * because anything calling .crtc_disable may
18543 				 * rely on the connector_mask being accurate.
18544 				 */
18545 				crtc_state->uapi.connector_mask |=
18546 					drm_connector_mask(&connector->base);
18547 				crtc_state->uapi.encoder_mask |=
18548 					drm_encoder_mask(&encoder->base);
18549 			}
18550 		} else {
18551 			connector->base.dpms = DRM_MODE_DPMS_OFF;
18552 			connector->base.encoder = NULL;
18553 		}
18554 		drm_dbg_kms(&dev_priv->drm,
18555 			    "[CONNECTOR:%d:%s] hw state readout: %s\n",
18556 			    connector->base.base.id, connector->base.name,
18557 			    enableddisabled(connector->base.encoder));
18558 	}
18559 	drm_connector_list_iter_end(&conn_iter);
18560 
18561 	for_each_intel_crtc(dev, crtc) {
18562 		struct intel_bw_state *bw_state =
18563 			to_intel_bw_state(dev_priv->bw_obj.state);
18564 		struct intel_crtc_state *crtc_state =
18565 			to_intel_crtc_state(crtc->base.state);
18566 		struct intel_plane *plane;
18567 		int min_cdclk = 0;
18568 
18569 		if (crtc_state->hw.active) {
18570 			struct drm_display_mode *mode = &crtc_state->hw.mode;
18571 
18572 			intel_mode_from_pipe_config(&crtc_state->hw.adjusted_mode,
18573 						    crtc_state);
18574 
18575 			*mode = crtc_state->hw.adjusted_mode;
18576 			mode->hdisplay = crtc_state->pipe_src_w;
18577 			mode->vdisplay = crtc_state->pipe_src_h;
18578 
18579 			/*
18580 			 * The initial mode needs to be set in order to keep
18581 			 * the atomic core happy. It wants a valid mode if the
18582 			 * crtc's enabled, so we do the above call.
18583 			 *
18584 			 * But we don't set all the derived state fully, hence
18585 			 * set a flag to indicate that a full recalculation is
18586 			 * needed on the next commit.
18587 			 */
18588 			crtc_state->inherited = true;
18589 
18590 			intel_crtc_compute_pixel_rate(crtc_state);
18591 
18592 			intel_crtc_update_active_timings(crtc_state);
18593 
18594 			intel_crtc_copy_hw_to_uapi_state(crtc_state);
18595 		}
18596 
18597 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
18598 			const struct intel_plane_state *plane_state =
18599 				to_intel_plane_state(plane->base.state);
18600 
18601 			/*
18602 			 * FIXME don't have the fb yet, so can't
18603 			 * use intel_plane_data_rate() :(
18604 			 */
18605 			if (plane_state->uapi.visible)
18606 				crtc_state->data_rate[plane->id] =
18607 					4 * crtc_state->pixel_rate;
18608 			/*
18609 			 * FIXME don't have the fb yet, so can't
18610 			 * use plane->min_cdclk() :(
18611 			 */
18612 			if (plane_state->uapi.visible && plane->min_cdclk) {
18613 				if (crtc_state->double_wide ||
18614 				    INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
18615 					crtc_state->min_cdclk[plane->id] =
18616 						DIV_ROUND_UP(crtc_state->pixel_rate, 2);
18617 				else
18618 					crtc_state->min_cdclk[plane->id] =
18619 						crtc_state->pixel_rate;
18620 			}
18621 			drm_dbg_kms(&dev_priv->drm,
18622 				    "[PLANE:%d:%s] min_cdclk %d kHz\n",
18623 				    plane->base.base.id, plane->base.name,
18624 				    crtc_state->min_cdclk[plane->id]);
18625 		}
18626 
18627 		if (crtc_state->hw.active) {
18628 			min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
18629 			if (drm_WARN_ON(dev, min_cdclk < 0))
18630 				min_cdclk = 0;
18631 		}
18632 
18633 		cdclk_state->min_cdclk[crtc->pipe] = min_cdclk;
18634 		cdclk_state->min_voltage_level[crtc->pipe] =
18635 			crtc_state->min_voltage_level;
18636 
18637 		intel_bw_crtc_update(bw_state, crtc_state);
18638 
18639 		intel_pipe_config_sanity_check(dev_priv, crtc_state);
18640 	}
18641 }
18642 
18643 static void
18644 get_encoder_power_domains(struct drm_i915_private *dev_priv)
18645 {
18646 	struct intel_encoder *encoder;
18647 
18648 	for_each_intel_encoder(&dev_priv->drm, encoder) {
18649 		struct intel_crtc_state *crtc_state;
18650 
18651 		if (!encoder->get_power_domains)
18652 			continue;
18653 
18654 		/*
18655 		 * MST-primary and inactive encoders don't have a crtc state
18656 		 * and neither of these require any power domain references.
18657 		 */
18658 		if (!encoder->base.crtc)
18659 			continue;
18660 
18661 		crtc_state = to_intel_crtc_state(encoder->base.crtc->state);
18662 		encoder->get_power_domains(encoder, crtc_state);
18663 	}
18664 }
18665 
18666 static void intel_early_display_was(struct drm_i915_private *dev_priv)
18667 {
18668 	/*
18669 	 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl
18670 	 * Also known as Wa_14010480278.
18671 	 */
18672 	if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv))
18673 		intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0,
18674 			       intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS);
18675 
18676 	if (IS_HASWELL(dev_priv)) {
18677 		/*
18678 		 * WaRsPkgCStateDisplayPMReq:hsw
18679 		 * System hang if this isn't done before disabling all planes!
18680 		 */
18681 		intel_de_write(dev_priv, CHICKEN_PAR1_1,
18682 			       intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
18683 	}
18684 }
18685 
18686 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv,
18687 				       enum port port, i915_reg_t hdmi_reg)
18688 {
18689 	u32 val = intel_de_read(dev_priv, hdmi_reg);
18690 
18691 	if (val & SDVO_ENABLE ||
18692 	    (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A))
18693 		return;
18694 
18695 	drm_dbg_kms(&dev_priv->drm,
18696 		    "Sanitizing transcoder select for HDMI %c\n",
18697 		    port_name(port));
18698 
18699 	val &= ~SDVO_PIPE_SEL_MASK;
18700 	val |= SDVO_PIPE_SEL(PIPE_A);
18701 
18702 	intel_de_write(dev_priv, hdmi_reg, val);
18703 }
18704 
18705 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv,
18706 				     enum port port, i915_reg_t dp_reg)
18707 {
18708 	u32 val = intel_de_read(dev_priv, dp_reg);
18709 
18710 	if (val & DP_PORT_EN ||
18711 	    (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A))
18712 		return;
18713 
18714 	drm_dbg_kms(&dev_priv->drm,
18715 		    "Sanitizing transcoder select for DP %c\n",
18716 		    port_name(port));
18717 
18718 	val &= ~DP_PIPE_SEL_MASK;
18719 	val |= DP_PIPE_SEL(PIPE_A);
18720 
18721 	intel_de_write(dev_priv, dp_reg, val);
18722 }
18723 
18724 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv)
18725 {
18726 	/*
18727 	 * The BIOS may select transcoder B on some of the PCH
18728 	 * ports even it doesn't enable the port. This would trip
18729 	 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled().
18730 	 * Sanitize the transcoder select bits to prevent that. We
18731 	 * assume that the BIOS never actually enabled the port,
18732 	 * because if it did we'd actually have to toggle the port
18733 	 * on and back off to make the transcoder A select stick
18734 	 * (see. intel_dp_link_down(), intel_disable_hdmi(),
18735 	 * intel_disable_sdvo()).
18736 	 */
18737 	ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B);
18738 	ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C);
18739 	ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D);
18740 
18741 	/* PCH SDVOB multiplex with HDMIB */
18742 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB);
18743 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC);
18744 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID);
18745 }
18746 
18747 /* Scan out the current hw modeset state,
18748  * and sanitizes it to the current state
18749  */
18750 static void
18751 intel_modeset_setup_hw_state(struct drm_device *dev,
18752 			     struct drm_modeset_acquire_ctx *ctx)
18753 {
18754 	struct drm_i915_private *dev_priv = to_i915(dev);
18755 	struct intel_encoder *encoder;
18756 	struct intel_crtc *crtc;
18757 	intel_wakeref_t wakeref;
18758 
18759 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
18760 
18761 	intel_early_display_was(dev_priv);
18762 	intel_modeset_readout_hw_state(dev);
18763 
18764 	/* HW state is read out, now we need to sanitize this mess. */
18765 
18766 	/* Sanitize the TypeC port mode upfront, encoders depend on this */
18767 	for_each_intel_encoder(dev, encoder) {
18768 		enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
18769 
18770 		/* We need to sanitize only the MST primary port. */
18771 		if (encoder->type != INTEL_OUTPUT_DP_MST &&
18772 		    intel_phy_is_tc(dev_priv, phy))
18773 			intel_tc_port_sanitize(enc_to_dig_port(encoder));
18774 	}
18775 
18776 	get_encoder_power_domains(dev_priv);
18777 
18778 	if (HAS_PCH_IBX(dev_priv))
18779 		ibx_sanitize_pch_ports(dev_priv);
18780 
18781 	/*
18782 	 * intel_sanitize_plane_mapping() may need to do vblank
18783 	 * waits, so we need vblank interrupts restored beforehand.
18784 	 */
18785 	for_each_intel_crtc(&dev_priv->drm, crtc) {
18786 		struct intel_crtc_state *crtc_state =
18787 			to_intel_crtc_state(crtc->base.state);
18788 
18789 		drm_crtc_vblank_reset(&crtc->base);
18790 
18791 		if (crtc_state->hw.active)
18792 			intel_crtc_vblank_on(crtc_state);
18793 	}
18794 
18795 	intel_sanitize_plane_mapping(dev_priv);
18796 
18797 	for_each_intel_encoder(dev, encoder)
18798 		intel_sanitize_encoder(encoder);
18799 
18800 	for_each_intel_crtc(&dev_priv->drm, crtc) {
18801 		struct intel_crtc_state *crtc_state =
18802 			to_intel_crtc_state(crtc->base.state);
18803 
18804 		intel_sanitize_crtc(crtc, ctx);
18805 		intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]");
18806 	}
18807 
18808 	intel_modeset_update_connector_atomic_state(dev);
18809 
18810 	intel_dpll_sanitize_state(dev_priv);
18811 
18812 	if (IS_G4X(dev_priv)) {
18813 		g4x_wm_get_hw_state(dev_priv);
18814 		g4x_wm_sanitize(dev_priv);
18815 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
18816 		vlv_wm_get_hw_state(dev_priv);
18817 		vlv_wm_sanitize(dev_priv);
18818 	} else if (INTEL_GEN(dev_priv) >= 9) {
18819 		skl_wm_get_hw_state(dev_priv);
18820 	} else if (HAS_PCH_SPLIT(dev_priv)) {
18821 		ilk_wm_get_hw_state(dev_priv);
18822 	}
18823 
18824 	for_each_intel_crtc(dev, crtc) {
18825 		struct intel_crtc_state *crtc_state =
18826 			to_intel_crtc_state(crtc->base.state);
18827 		u64 put_domains;
18828 
18829 		put_domains = modeset_get_crtc_power_domains(crtc_state);
18830 		if (drm_WARN_ON(dev, put_domains))
18831 			modeset_put_power_domains(dev_priv, put_domains);
18832 	}
18833 
18834 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref);
18835 }
18836 
18837 void intel_display_resume(struct drm_device *dev)
18838 {
18839 	struct drm_i915_private *dev_priv = to_i915(dev);
18840 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
18841 	struct drm_modeset_acquire_ctx ctx;
18842 	int ret;
18843 
18844 	dev_priv->modeset_restore_state = NULL;
18845 	if (state)
18846 		state->acquire_ctx = &ctx;
18847 
18848 	drm_modeset_acquire_init(&ctx, 0);
18849 
18850 	while (1) {
18851 		ret = drm_modeset_lock_all_ctx(dev, &ctx);
18852 		if (ret != -EDEADLK)
18853 			break;
18854 
18855 		drm_modeset_backoff(&ctx);
18856 	}
18857 
18858 	if (!ret)
18859 		ret = __intel_display_resume(dev, state, &ctx);
18860 
18861 	intel_enable_ipc(dev_priv);
18862 	drm_modeset_drop_locks(&ctx);
18863 	drm_modeset_acquire_fini(&ctx);
18864 
18865 	if (ret)
18866 		drm_err(&dev_priv->drm,
18867 			"Restoring old state failed with %i\n", ret);
18868 	if (state)
18869 		drm_atomic_state_put(state);
18870 }
18871 
18872 static void intel_hpd_poll_fini(struct drm_i915_private *i915)
18873 {
18874 	struct intel_connector *connector;
18875 	struct drm_connector_list_iter conn_iter;
18876 
18877 	/* Kill all the work that may have been queued by hpd. */
18878 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
18879 	for_each_intel_connector_iter(connector, &conn_iter) {
18880 		if (connector->modeset_retry_work.func)
18881 			cancel_work_sync(&connector->modeset_retry_work);
18882 		if (connector->hdcp.shim) {
18883 			cancel_delayed_work_sync(&connector->hdcp.check_work);
18884 			cancel_work_sync(&connector->hdcp.prop_work);
18885 		}
18886 	}
18887 	drm_connector_list_iter_end(&conn_iter);
18888 }
18889 
18890 /* part #1: call before irq uninstall */
18891 void intel_modeset_driver_remove(struct drm_i915_private *i915)
18892 {
18893 	flush_workqueue(i915->flip_wq);
18894 	flush_workqueue(i915->modeset_wq);
18895 
18896 	flush_work(&i915->atomic_helper.free_work);
18897 	drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list));
18898 }
18899 
18900 /* part #2: call after irq uninstall */
18901 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915)
18902 {
18903 	/*
18904 	 * Due to the hpd irq storm handling the hotplug work can re-arm the
18905 	 * poll handlers. Hence disable polling after hpd handling is shut down.
18906 	 */
18907 	intel_hpd_poll_fini(i915);
18908 
18909 	/*
18910 	 * MST topology needs to be suspended so we don't have any calls to
18911 	 * fbdev after it's finalized. MST will be destroyed later as part of
18912 	 * drm_mode_config_cleanup()
18913 	 */
18914 	intel_dp_mst_suspend(i915);
18915 
18916 	/* poll work can call into fbdev, hence clean that up afterwards */
18917 	intel_fbdev_fini(i915);
18918 
18919 	intel_unregister_dsm_handler();
18920 
18921 	intel_fbc_global_disable(i915);
18922 
18923 	/* flush any delayed tasks or pending work */
18924 	flush_scheduled_work();
18925 
18926 	intel_hdcp_component_fini(i915);
18927 
18928 	intel_mode_config_cleanup(i915);
18929 
18930 	intel_overlay_cleanup(i915);
18931 
18932 	intel_gmbus_teardown(i915);
18933 
18934 	destroy_workqueue(i915->flip_wq);
18935 	destroy_workqueue(i915->modeset_wq);
18936 
18937 	intel_fbc_cleanup_cfb(i915);
18938 }
18939 
18940 /* part #3: call after gem init */
18941 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915)
18942 {
18943 	intel_csr_ucode_fini(i915);
18944 
18945 	intel_power_domains_driver_remove(i915);
18946 
18947 	intel_vga_unregister(i915);
18948 
18949 	intel_bios_driver_remove(i915);
18950 }
18951 
18952 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
18953 
18954 struct intel_display_error_state {
18955 
18956 	u32 power_well_driver;
18957 
18958 	struct intel_cursor_error_state {
18959 		u32 control;
18960 		u32 position;
18961 		u32 base;
18962 		u32 size;
18963 	} cursor[I915_MAX_PIPES];
18964 
18965 	struct intel_pipe_error_state {
18966 		bool power_domain_on;
18967 		u32 source;
18968 		u32 stat;
18969 	} pipe[I915_MAX_PIPES];
18970 
18971 	struct intel_plane_error_state {
18972 		u32 control;
18973 		u32 stride;
18974 		u32 size;
18975 		u32 pos;
18976 		u32 addr;
18977 		u32 surface;
18978 		u32 tile_offset;
18979 	} plane[I915_MAX_PIPES];
18980 
18981 	struct intel_transcoder_error_state {
18982 		bool available;
18983 		bool power_domain_on;
18984 		enum transcoder cpu_transcoder;
18985 
18986 		u32 conf;
18987 
18988 		u32 htotal;
18989 		u32 hblank;
18990 		u32 hsync;
18991 		u32 vtotal;
18992 		u32 vblank;
18993 		u32 vsync;
18994 	} transcoder[5];
18995 };
18996 
18997 struct intel_display_error_state *
18998 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
18999 {
19000 	struct intel_display_error_state *error;
19001 	int transcoders[] = {
19002 		TRANSCODER_A,
19003 		TRANSCODER_B,
19004 		TRANSCODER_C,
19005 		TRANSCODER_D,
19006 		TRANSCODER_EDP,
19007 	};
19008 	int i;
19009 
19010 	BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder));
19011 
19012 	if (!HAS_DISPLAY(dev_priv))
19013 		return NULL;
19014 
19015 	error = kzalloc(sizeof(*error), GFP_ATOMIC);
19016 	if (error == NULL)
19017 		return NULL;
19018 
19019 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
19020 		error->power_well_driver = intel_de_read(dev_priv,
19021 							 HSW_PWR_WELL_CTL2);
19022 
19023 	for_each_pipe(dev_priv, i) {
19024 		error->pipe[i].power_domain_on =
19025 			__intel_display_power_is_enabled(dev_priv,
19026 							 POWER_DOMAIN_PIPE(i));
19027 		if (!error->pipe[i].power_domain_on)
19028 			continue;
19029 
19030 		error->cursor[i].control = intel_de_read(dev_priv, CURCNTR(i));
19031 		error->cursor[i].position = intel_de_read(dev_priv, CURPOS(i));
19032 		error->cursor[i].base = intel_de_read(dev_priv, CURBASE(i));
19033 
19034 		error->plane[i].control = intel_de_read(dev_priv, DSPCNTR(i));
19035 		error->plane[i].stride = intel_de_read(dev_priv, DSPSTRIDE(i));
19036 		if (INTEL_GEN(dev_priv) <= 3) {
19037 			error->plane[i].size = intel_de_read(dev_priv,
19038 							     DSPSIZE(i));
19039 			error->plane[i].pos = intel_de_read(dev_priv,
19040 							    DSPPOS(i));
19041 		}
19042 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
19043 			error->plane[i].addr = intel_de_read(dev_priv,
19044 							     DSPADDR(i));
19045 		if (INTEL_GEN(dev_priv) >= 4) {
19046 			error->plane[i].surface = intel_de_read(dev_priv,
19047 								DSPSURF(i));
19048 			error->plane[i].tile_offset = intel_de_read(dev_priv,
19049 								    DSPTILEOFF(i));
19050 		}
19051 
19052 		error->pipe[i].source = intel_de_read(dev_priv, PIPESRC(i));
19053 
19054 		if (HAS_GMCH(dev_priv))
19055 			error->pipe[i].stat = intel_de_read(dev_priv,
19056 							    PIPESTAT(i));
19057 	}
19058 
19059 	for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
19060 		enum transcoder cpu_transcoder = transcoders[i];
19061 
19062 		if (!HAS_TRANSCODER(dev_priv, cpu_transcoder))
19063 			continue;
19064 
19065 		error->transcoder[i].available = true;
19066 		error->transcoder[i].power_domain_on =
19067 			__intel_display_power_is_enabled(dev_priv,
19068 				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
19069 		if (!error->transcoder[i].power_domain_on)
19070 			continue;
19071 
19072 		error->transcoder[i].cpu_transcoder = cpu_transcoder;
19073 
19074 		error->transcoder[i].conf = intel_de_read(dev_priv,
19075 							  PIPECONF(cpu_transcoder));
19076 		error->transcoder[i].htotal = intel_de_read(dev_priv,
19077 							    HTOTAL(cpu_transcoder));
19078 		error->transcoder[i].hblank = intel_de_read(dev_priv,
19079 							    HBLANK(cpu_transcoder));
19080 		error->transcoder[i].hsync = intel_de_read(dev_priv,
19081 							   HSYNC(cpu_transcoder));
19082 		error->transcoder[i].vtotal = intel_de_read(dev_priv,
19083 							    VTOTAL(cpu_transcoder));
19084 		error->transcoder[i].vblank = intel_de_read(dev_priv,
19085 							    VBLANK(cpu_transcoder));
19086 		error->transcoder[i].vsync = intel_de_read(dev_priv,
19087 							   VSYNC(cpu_transcoder));
19088 	}
19089 
19090 	return error;
19091 }
19092 
19093 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
19094 
19095 void
19096 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
19097 				struct intel_display_error_state *error)
19098 {
19099 	struct drm_i915_private *dev_priv = m->i915;
19100 	int i;
19101 
19102 	if (!error)
19103 		return;
19104 
19105 	err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv));
19106 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
19107 		err_printf(m, "PWR_WELL_CTL2: %08x\n",
19108 			   error->power_well_driver);
19109 	for_each_pipe(dev_priv, i) {
19110 		err_printf(m, "Pipe [%d]:\n", i);
19111 		err_printf(m, "  Power: %s\n",
19112 			   onoff(error->pipe[i].power_domain_on));
19113 		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
19114 		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
19115 
19116 		err_printf(m, "Plane [%d]:\n", i);
19117 		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
19118 		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
19119 		if (INTEL_GEN(dev_priv) <= 3) {
19120 			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
19121 			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
19122 		}
19123 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
19124 			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
19125 		if (INTEL_GEN(dev_priv) >= 4) {
19126 			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
19127 			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
19128 		}
19129 
19130 		err_printf(m, "Cursor [%d]:\n", i);
19131 		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
19132 		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
19133 		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
19134 	}
19135 
19136 	for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
19137 		if (!error->transcoder[i].available)
19138 			continue;
19139 
19140 		err_printf(m, "CPU transcoder: %s\n",
19141 			   transcoder_name(error->transcoder[i].cpu_transcoder));
19142 		err_printf(m, "  Power: %s\n",
19143 			   onoff(error->transcoder[i].power_domain_on));
19144 		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
19145 		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
19146 		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
19147 		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
19148 		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
19149 		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
19150 		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
19151 	}
19152 }
19153 
19154 #endif
19155