1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <acpi/video.h> 28 #include <linux/i2c.h> 29 #include <linux/input.h> 30 #include <linux/intel-iommu.h> 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/dma-resv.h> 34 #include <linux/slab.h> 35 36 #include <drm/drm_atomic.h> 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_atomic_uapi.h> 39 #include <drm/drm_damage_helper.h> 40 #include <drm/drm_dp_helper.h> 41 #include <drm/drm_edid.h> 42 #include <drm/drm_fourcc.h> 43 #include <drm/drm_plane_helper.h> 44 #include <drm/drm_probe_helper.h> 45 #include <drm/drm_rect.h> 46 47 #include "display/intel_audio.h" 48 #include "display/intel_crt.h" 49 #include "display/intel_ddi.h" 50 #include "display/intel_display_debugfs.h" 51 #include "display/intel_dp.h" 52 #include "display/intel_dp_mst.h" 53 #include "display/intel_dpll.h" 54 #include "display/intel_dpll_mgr.h" 55 #include "display/intel_dsi.h" 56 #include "display/intel_dvo.h" 57 #include "display/intel_gmbus.h" 58 #include "display/intel_hdmi.h" 59 #include "display/intel_lvds.h" 60 #include "display/intel_sdvo.h" 61 #include "display/intel_tv.h" 62 #include "display/intel_vdsc.h" 63 #include "display/intel_vrr.h" 64 65 #include "gem/i915_gem_object.h" 66 67 #include "gt/intel_rps.h" 68 69 #include "i915_drv.h" 70 #include "intel_acpi.h" 71 #include "intel_atomic.h" 72 #include "intel_atomic_plane.h" 73 #include "intel_bw.h" 74 #include "intel_cdclk.h" 75 #include "intel_color.h" 76 #include "intel_crtc.h" 77 #include "intel_csr.h" 78 #include "intel_display_types.h" 79 #include "intel_dp_link_training.h" 80 #include "intel_fbc.h" 81 #include "intel_fdi.h" 82 #include "intel_fbdev.h" 83 #include "intel_fifo_underrun.h" 84 #include "intel_frontbuffer.h" 85 #include "intel_hdcp.h" 86 #include "intel_hotplug.h" 87 #include "intel_overlay.h" 88 #include "intel_pipe_crc.h" 89 #include "intel_pm.h" 90 #include "intel_pps.h" 91 #include "intel_psr.h" 92 #include "intel_quirks.h" 93 #include "intel_sideband.h" 94 #include "intel_sprite.h" 95 #include "intel_tc.h" 96 #include "intel_vga.h" 97 #include "i9xx_plane.h" 98 #include "skl_scaler.h" 99 #include "skl_universal_plane.h" 100 101 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 102 struct intel_crtc_state *pipe_config); 103 static void ilk_pch_clock_get(struct intel_crtc *crtc, 104 struct intel_crtc_state *pipe_config); 105 106 static int intel_framebuffer_init(struct intel_framebuffer *ifb, 107 struct drm_i915_gem_object *obj, 108 struct drm_mode_fb_cmd2 *mode_cmd); 109 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state); 110 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 111 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 112 const struct intel_link_m_n *m_n, 113 const struct intel_link_m_n *m2_n2); 114 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 115 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state); 116 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state); 117 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 118 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); 119 static void intel_modeset_setup_hw_state(struct drm_device *dev, 120 struct drm_modeset_acquire_ctx *ctx); 121 122 /* returns HPLL frequency in kHz */ 123 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 124 { 125 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 126 127 /* Obtain SKU information */ 128 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 129 CCK_FUSE_HPLL_FREQ_MASK; 130 131 return vco_freq[hpll_freq] * 1000; 132 } 133 134 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 135 const char *name, u32 reg, int ref_freq) 136 { 137 u32 val; 138 int divider; 139 140 val = vlv_cck_read(dev_priv, reg); 141 divider = val & CCK_FREQUENCY_VALUES; 142 143 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != 144 (divider << CCK_FREQUENCY_STATUS_SHIFT), 145 "%s change in progress\n", name); 146 147 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 148 } 149 150 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 151 const char *name, u32 reg) 152 { 153 int hpll; 154 155 vlv_cck_get(dev_priv); 156 157 if (dev_priv->hpll_freq == 0) 158 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 159 160 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 161 162 vlv_cck_put(dev_priv); 163 164 return hpll; 165 } 166 167 static void intel_update_czclk(struct drm_i915_private *dev_priv) 168 { 169 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 170 return; 171 172 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 173 CCK_CZ_CLOCK_CONTROL); 174 175 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n", 176 dev_priv->czclk_freq); 177 } 178 179 /* WA Display #0827: Gen9:all */ 180 static void 181 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) 182 { 183 if (enable) 184 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 185 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); 186 else 187 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 188 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 189 } 190 191 /* Wa_2006604312:icl,ehl */ 192 static void 193 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 194 bool enable) 195 { 196 if (enable) 197 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 198 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 199 else 200 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 201 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 202 } 203 204 static bool 205 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) 206 { 207 return crtc_state->master_transcoder != INVALID_TRANSCODER; 208 } 209 210 static bool 211 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state) 212 { 213 return crtc_state->sync_mode_slaves_mask != 0; 214 } 215 216 bool 217 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 218 { 219 return is_trans_port_sync_master(crtc_state) || 220 is_trans_port_sync_slave(crtc_state); 221 } 222 223 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 224 enum pipe pipe) 225 { 226 i915_reg_t reg = PIPEDSL(pipe); 227 u32 line1, line2; 228 u32 line_mask; 229 230 if (IS_GEN(dev_priv, 2)) 231 line_mask = DSL_LINEMASK_GEN2; 232 else 233 line_mask = DSL_LINEMASK_GEN3; 234 235 line1 = intel_de_read(dev_priv, reg) & line_mask; 236 msleep(5); 237 line2 = intel_de_read(dev_priv, reg) & line_mask; 238 239 return line1 != line2; 240 } 241 242 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 243 { 244 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 245 enum pipe pipe = crtc->pipe; 246 247 /* Wait for the display line to settle/start moving */ 248 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 249 drm_err(&dev_priv->drm, 250 "pipe %c scanline %s wait timed out\n", 251 pipe_name(pipe), onoff(state)); 252 } 253 254 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 255 { 256 wait_for_pipe_scanline_moving(crtc, false); 257 } 258 259 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 260 { 261 wait_for_pipe_scanline_moving(crtc, true); 262 } 263 264 static void 265 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 266 { 267 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 268 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 269 270 if (INTEL_GEN(dev_priv) >= 4) { 271 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 272 i915_reg_t reg = PIPECONF(cpu_transcoder); 273 274 /* Wait for the Pipe State to go off */ 275 if (intel_de_wait_for_clear(dev_priv, reg, 276 I965_PIPECONF_ACTIVE, 100)) 277 drm_WARN(&dev_priv->drm, 1, 278 "pipe_off wait timed out\n"); 279 } else { 280 intel_wait_for_pipe_scanline_stopped(crtc); 281 } 282 } 283 284 /* Only for pre-ILK configs */ 285 void assert_pll(struct drm_i915_private *dev_priv, 286 enum pipe pipe, bool state) 287 { 288 u32 val; 289 bool cur_state; 290 291 val = intel_de_read(dev_priv, DPLL(pipe)); 292 cur_state = !!(val & DPLL_VCO_ENABLE); 293 I915_STATE_WARN(cur_state != state, 294 "PLL state assertion failure (expected %s, current %s)\n", 295 onoff(state), onoff(cur_state)); 296 } 297 298 /* XXX: the dsi pll is shared between MIPI DSI ports */ 299 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 300 { 301 u32 val; 302 bool cur_state; 303 304 vlv_cck_get(dev_priv); 305 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 306 vlv_cck_put(dev_priv); 307 308 cur_state = val & DSI_PLL_VCO_EN; 309 I915_STATE_WARN(cur_state != state, 310 "DSI PLL state assertion failure (expected %s, current %s)\n", 311 onoff(state), onoff(cur_state)); 312 } 313 314 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 315 enum pipe pipe, bool state) 316 { 317 bool cur_state; 318 319 if (HAS_DDI(dev_priv)) { 320 /* 321 * DDI does not have a specific FDI_TX register. 322 * 323 * FDI is never fed from EDP transcoder 324 * so pipe->transcoder cast is fine here. 325 */ 326 enum transcoder cpu_transcoder = (enum transcoder)pipe; 327 u32 val = intel_de_read(dev_priv, 328 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 329 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 330 } else { 331 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 332 cur_state = !!(val & FDI_TX_ENABLE); 333 } 334 I915_STATE_WARN(cur_state != state, 335 "FDI TX state assertion failure (expected %s, current %s)\n", 336 onoff(state), onoff(cur_state)); 337 } 338 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 339 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 340 341 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 342 enum pipe pipe, bool state) 343 { 344 u32 val; 345 bool cur_state; 346 347 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 348 cur_state = !!(val & FDI_RX_ENABLE); 349 I915_STATE_WARN(cur_state != state, 350 "FDI RX state assertion failure (expected %s, current %s)\n", 351 onoff(state), onoff(cur_state)); 352 } 353 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 354 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 355 356 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 357 enum pipe pipe) 358 { 359 u32 val; 360 361 /* ILK FDI PLL is always enabled */ 362 if (IS_GEN(dev_priv, 5)) 363 return; 364 365 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 366 if (HAS_DDI(dev_priv)) 367 return; 368 369 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 370 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 371 } 372 373 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 374 enum pipe pipe, bool state) 375 { 376 u32 val; 377 bool cur_state; 378 379 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 380 cur_state = !!(val & FDI_RX_PLL_ENABLE); 381 I915_STATE_WARN(cur_state != state, 382 "FDI RX PLL assertion failure (expected %s, current %s)\n", 383 onoff(state), onoff(cur_state)); 384 } 385 386 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) 387 { 388 i915_reg_t pp_reg; 389 u32 val; 390 enum pipe panel_pipe = INVALID_PIPE; 391 bool locked = true; 392 393 if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv))) 394 return; 395 396 if (HAS_PCH_SPLIT(dev_priv)) { 397 u32 port_sel; 398 399 pp_reg = PP_CONTROL(0); 400 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 401 402 switch (port_sel) { 403 case PANEL_PORT_SELECT_LVDS: 404 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); 405 break; 406 case PANEL_PORT_SELECT_DPA: 407 intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); 408 break; 409 case PANEL_PORT_SELECT_DPC: 410 intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); 411 break; 412 case PANEL_PORT_SELECT_DPD: 413 intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); 414 break; 415 default: 416 MISSING_CASE(port_sel); 417 break; 418 } 419 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 420 /* presumably write lock depends on pipe, not port select */ 421 pp_reg = PP_CONTROL(pipe); 422 panel_pipe = pipe; 423 } else { 424 u32 port_sel; 425 426 pp_reg = PP_CONTROL(0); 427 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 428 429 drm_WARN_ON(&dev_priv->drm, 430 port_sel != PANEL_PORT_SELECT_LVDS); 431 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); 432 } 433 434 val = intel_de_read(dev_priv, pp_reg); 435 if (!(val & PANEL_POWER_ON) || 436 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 437 locked = false; 438 439 I915_STATE_WARN(panel_pipe == pipe && locked, 440 "panel assertion failure, pipe %c regs locked\n", 441 pipe_name(pipe)); 442 } 443 444 void assert_pipe(struct drm_i915_private *dev_priv, 445 enum transcoder cpu_transcoder, bool state) 446 { 447 bool cur_state; 448 enum intel_display_power_domain power_domain; 449 intel_wakeref_t wakeref; 450 451 /* we keep both pipes enabled on 830 */ 452 if (IS_I830(dev_priv)) 453 state = true; 454 455 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 456 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 457 if (wakeref) { 458 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 459 cur_state = !!(val & PIPECONF_ENABLE); 460 461 intel_display_power_put(dev_priv, power_domain, wakeref); 462 } else { 463 cur_state = false; 464 } 465 466 I915_STATE_WARN(cur_state != state, 467 "transcoder %s assertion failure (expected %s, current %s)\n", 468 transcoder_name(cpu_transcoder), 469 onoff(state), onoff(cur_state)); 470 } 471 472 static void assert_plane(struct intel_plane *plane, bool state) 473 { 474 enum pipe pipe; 475 bool cur_state; 476 477 cur_state = plane->get_hw_state(plane, &pipe); 478 479 I915_STATE_WARN(cur_state != state, 480 "%s assertion failure (expected %s, current %s)\n", 481 plane->base.name, onoff(state), onoff(cur_state)); 482 } 483 484 #define assert_plane_enabled(p) assert_plane(p, true) 485 #define assert_plane_disabled(p) assert_plane(p, false) 486 487 static void assert_planes_disabled(struct intel_crtc *crtc) 488 { 489 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 490 struct intel_plane *plane; 491 492 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 493 assert_plane_disabled(plane); 494 } 495 496 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 497 enum pipe pipe) 498 { 499 u32 val; 500 bool enabled; 501 502 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe)); 503 enabled = !!(val & TRANS_ENABLE); 504 I915_STATE_WARN(enabled, 505 "transcoder assertion failed, should be off on pipe %c but is still active\n", 506 pipe_name(pipe)); 507 } 508 509 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 510 enum pipe pipe, enum port port, 511 i915_reg_t dp_reg) 512 { 513 enum pipe port_pipe; 514 bool state; 515 516 state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 517 518 I915_STATE_WARN(state && port_pipe == pipe, 519 "PCH DP %c enabled on transcoder %c, should be disabled\n", 520 port_name(port), pipe_name(pipe)); 521 522 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 523 "IBX PCH DP %c still using transcoder B\n", 524 port_name(port)); 525 } 526 527 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 528 enum pipe pipe, enum port port, 529 i915_reg_t hdmi_reg) 530 { 531 enum pipe port_pipe; 532 bool state; 533 534 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 535 536 I915_STATE_WARN(state && port_pipe == pipe, 537 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 538 port_name(port), pipe_name(pipe)); 539 540 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 541 "IBX PCH HDMI %c still using transcoder B\n", 542 port_name(port)); 543 } 544 545 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 546 enum pipe pipe) 547 { 548 enum pipe port_pipe; 549 550 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 551 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 552 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 553 554 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 555 port_pipe == pipe, 556 "PCH VGA enabled on transcoder %c, should be disabled\n", 557 pipe_name(pipe)); 558 559 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 560 port_pipe == pipe, 561 "PCH LVDS enabled on transcoder %c, should be disabled\n", 562 pipe_name(pipe)); 563 564 /* PCH SDVOB multiplex with HDMIB */ 565 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 566 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 567 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 568 } 569 570 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 571 struct intel_digital_port *dig_port, 572 unsigned int expected_mask) 573 { 574 u32 port_mask; 575 i915_reg_t dpll_reg; 576 577 switch (dig_port->base.port) { 578 case PORT_B: 579 port_mask = DPLL_PORTB_READY_MASK; 580 dpll_reg = DPLL(0); 581 break; 582 case PORT_C: 583 port_mask = DPLL_PORTC_READY_MASK; 584 dpll_reg = DPLL(0); 585 expected_mask <<= 4; 586 break; 587 case PORT_D: 588 port_mask = DPLL_PORTD_READY_MASK; 589 dpll_reg = DPIO_PHY_STATUS; 590 break; 591 default: 592 BUG(); 593 } 594 595 if (intel_de_wait_for_register(dev_priv, dpll_reg, 596 port_mask, expected_mask, 1000)) 597 drm_WARN(&dev_priv->drm, 1, 598 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", 599 dig_port->base.base.base.id, dig_port->base.base.name, 600 intel_de_read(dev_priv, dpll_reg) & port_mask, 601 expected_mask); 602 } 603 604 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 605 { 606 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 607 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 608 enum pipe pipe = crtc->pipe; 609 i915_reg_t reg; 610 u32 val, pipeconf_val; 611 612 /* Make sure PCH DPLL is enabled */ 613 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 614 615 /* FDI must be feeding us bits for PCH ports */ 616 assert_fdi_tx_enabled(dev_priv, pipe); 617 assert_fdi_rx_enabled(dev_priv, pipe); 618 619 if (HAS_PCH_CPT(dev_priv)) { 620 reg = TRANS_CHICKEN2(pipe); 621 val = intel_de_read(dev_priv, reg); 622 /* 623 * Workaround: Set the timing override bit 624 * before enabling the pch transcoder. 625 */ 626 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 627 /* Configure frame start delay to match the CPU */ 628 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 629 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 630 intel_de_write(dev_priv, reg, val); 631 } 632 633 reg = PCH_TRANSCONF(pipe); 634 val = intel_de_read(dev_priv, reg); 635 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe)); 636 637 if (HAS_PCH_IBX(dev_priv)) { 638 /* Configure frame start delay to match the CPU */ 639 val &= ~TRANS_FRAME_START_DELAY_MASK; 640 val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 641 642 /* 643 * Make the BPC in transcoder be consistent with 644 * that in pipeconf reg. For HDMI we must use 8bpc 645 * here for both 8bpc and 12bpc. 646 */ 647 val &= ~PIPECONF_BPC_MASK; 648 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 649 val |= PIPECONF_8BPC; 650 else 651 val |= pipeconf_val & PIPECONF_BPC_MASK; 652 } 653 654 val &= ~TRANS_INTERLACE_MASK; 655 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 656 if (HAS_PCH_IBX(dev_priv) && 657 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 658 val |= TRANS_LEGACY_INTERLACED_ILK; 659 else 660 val |= TRANS_INTERLACED; 661 } else { 662 val |= TRANS_PROGRESSIVE; 663 } 664 665 intel_de_write(dev_priv, reg, val | TRANS_ENABLE); 666 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 667 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n", 668 pipe_name(pipe)); 669 } 670 671 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 672 enum transcoder cpu_transcoder) 673 { 674 u32 val, pipeconf_val; 675 676 /* FDI must be feeding us bits for PCH ports */ 677 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 678 assert_fdi_rx_enabled(dev_priv, PIPE_A); 679 680 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 681 /* Workaround: set timing override bit. */ 682 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 683 /* Configure frame start delay to match the CPU */ 684 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 685 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 686 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 687 688 val = TRANS_ENABLE; 689 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 690 691 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 692 PIPECONF_INTERLACED_ILK) 693 val |= TRANS_INTERLACED; 694 else 695 val |= TRANS_PROGRESSIVE; 696 697 intel_de_write(dev_priv, LPT_TRANSCONF, val); 698 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 699 TRANS_STATE_ENABLE, 100)) 700 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n"); 701 } 702 703 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv, 704 enum pipe pipe) 705 { 706 i915_reg_t reg; 707 u32 val; 708 709 /* FDI relies on the transcoder */ 710 assert_fdi_tx_disabled(dev_priv, pipe); 711 assert_fdi_rx_disabled(dev_priv, pipe); 712 713 /* Ports must be off as well */ 714 assert_pch_ports_disabled(dev_priv, pipe); 715 716 reg = PCH_TRANSCONF(pipe); 717 val = intel_de_read(dev_priv, reg); 718 val &= ~TRANS_ENABLE; 719 intel_de_write(dev_priv, reg, val); 720 /* wait for PCH transcoder off, transcoder state */ 721 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 722 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n", 723 pipe_name(pipe)); 724 725 if (HAS_PCH_CPT(dev_priv)) { 726 /* Workaround: Clear the timing override chicken bit again. */ 727 reg = TRANS_CHICKEN2(pipe); 728 val = intel_de_read(dev_priv, reg); 729 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 730 intel_de_write(dev_priv, reg, val); 731 } 732 } 733 734 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 735 { 736 u32 val; 737 738 val = intel_de_read(dev_priv, LPT_TRANSCONF); 739 val &= ~TRANS_ENABLE; 740 intel_de_write(dev_priv, LPT_TRANSCONF, val); 741 /* wait for PCH transcoder off, transcoder state */ 742 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 743 TRANS_STATE_ENABLE, 50)) 744 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n"); 745 746 /* Workaround: clear timing override bit. */ 747 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 748 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 749 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 750 } 751 752 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 753 { 754 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 755 756 if (HAS_PCH_LPT(dev_priv)) 757 return PIPE_A; 758 else 759 return crtc->pipe; 760 } 761 762 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) 763 { 764 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 765 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 766 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 767 enum pipe pipe = crtc->pipe; 768 i915_reg_t reg; 769 u32 val; 770 771 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe)); 772 773 assert_planes_disabled(crtc); 774 775 /* 776 * A pipe without a PLL won't actually be able to drive bits from 777 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 778 * need the check. 779 */ 780 if (HAS_GMCH(dev_priv)) { 781 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 782 assert_dsi_pll_enabled(dev_priv); 783 else 784 assert_pll_enabled(dev_priv, pipe); 785 } else { 786 if (new_crtc_state->has_pch_encoder) { 787 /* if driving the PCH, we need FDI enabled */ 788 assert_fdi_rx_pll_enabled(dev_priv, 789 intel_crtc_pch_transcoder(crtc)); 790 assert_fdi_tx_pll_enabled(dev_priv, 791 (enum pipe) cpu_transcoder); 792 } 793 /* FIXME: assert CPU port conditions for SNB+ */ 794 } 795 796 reg = PIPECONF(cpu_transcoder); 797 val = intel_de_read(dev_priv, reg); 798 if (val & PIPECONF_ENABLE) { 799 /* we keep both pipes enabled on 830 */ 800 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv)); 801 return; 802 } 803 804 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE); 805 intel_de_posting_read(dev_priv, reg); 806 807 /* 808 * Until the pipe starts PIPEDSL reads will return a stale value, 809 * which causes an apparent vblank timestamp jump when PIPEDSL 810 * resets to its proper value. That also messes up the frame count 811 * when it's derived from the timestamps. So let's wait for the 812 * pipe to start properly before we call drm_crtc_vblank_on() 813 */ 814 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 815 intel_wait_for_pipe_scanline_moving(crtc); 816 } 817 818 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) 819 { 820 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 821 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 822 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 823 enum pipe pipe = crtc->pipe; 824 i915_reg_t reg; 825 u32 val; 826 827 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe)); 828 829 /* 830 * Make sure planes won't keep trying to pump pixels to us, 831 * or we might hang the display. 832 */ 833 assert_planes_disabled(crtc); 834 835 reg = PIPECONF(cpu_transcoder); 836 val = intel_de_read(dev_priv, reg); 837 if ((val & PIPECONF_ENABLE) == 0) 838 return; 839 840 /* 841 * Double wide has implications for planes 842 * so best keep it disabled when not needed. 843 */ 844 if (old_crtc_state->double_wide) 845 val &= ~PIPECONF_DOUBLE_WIDE; 846 847 /* Don't disable pipe or pipe PLLs if needed */ 848 if (!IS_I830(dev_priv)) 849 val &= ~PIPECONF_ENABLE; 850 851 intel_de_write(dev_priv, reg, val); 852 if ((val & PIPECONF_ENABLE) == 0) 853 intel_wait_for_pipe_off(old_crtc_state); 854 } 855 856 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv) 857 { 858 return IS_GEN(dev_priv, 2) ? 2048 : 4096; 859 } 860 861 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane) 862 { 863 if (is_ccs_modifier(fb->modifier)) 864 return is_ccs_plane(fb, plane); 865 866 return plane == 1; 867 } 868 869 bool 870 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info, 871 u64 modifier) 872 { 873 return info->is_yuv && 874 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2); 875 } 876 877 static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb, 878 int color_plane) 879 { 880 return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) && 881 color_plane == 1; 882 } 883 884 unsigned int 885 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) 886 { 887 struct drm_i915_private *dev_priv = to_i915(fb->dev); 888 unsigned int cpp = fb->format->cpp[color_plane]; 889 890 switch (fb->modifier) { 891 case DRM_FORMAT_MOD_LINEAR: 892 return intel_tile_size(dev_priv); 893 case I915_FORMAT_MOD_X_TILED: 894 if (IS_GEN(dev_priv, 2)) 895 return 128; 896 else 897 return 512; 898 case I915_FORMAT_MOD_Y_TILED_CCS: 899 if (is_ccs_plane(fb, color_plane)) 900 return 128; 901 fallthrough; 902 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 903 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 904 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 905 if (is_ccs_plane(fb, color_plane)) 906 return 64; 907 fallthrough; 908 case I915_FORMAT_MOD_Y_TILED: 909 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv)) 910 return 128; 911 else 912 return 512; 913 case I915_FORMAT_MOD_Yf_TILED_CCS: 914 if (is_ccs_plane(fb, color_plane)) 915 return 128; 916 fallthrough; 917 case I915_FORMAT_MOD_Yf_TILED: 918 switch (cpp) { 919 case 1: 920 return 64; 921 case 2: 922 case 4: 923 return 128; 924 case 8: 925 case 16: 926 return 256; 927 default: 928 MISSING_CASE(cpp); 929 return cpp; 930 } 931 break; 932 default: 933 MISSING_CASE(fb->modifier); 934 return cpp; 935 } 936 } 937 938 unsigned int 939 intel_tile_height(const struct drm_framebuffer *fb, int color_plane) 940 { 941 if (is_gen12_ccs_plane(fb, color_plane)) 942 return 1; 943 944 return intel_tile_size(to_i915(fb->dev)) / 945 intel_tile_width_bytes(fb, color_plane); 946 } 947 948 /* Return the tile dimensions in pixel units */ 949 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane, 950 unsigned int *tile_width, 951 unsigned int *tile_height) 952 { 953 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane); 954 unsigned int cpp = fb->format->cpp[color_plane]; 955 956 *tile_width = tile_width_bytes / cpp; 957 *tile_height = intel_tile_height(fb, color_plane); 958 } 959 960 static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb, 961 int color_plane) 962 { 963 unsigned int tile_width, tile_height; 964 965 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 966 967 return fb->pitches[color_plane] * tile_height; 968 } 969 970 unsigned int 971 intel_fb_align_height(const struct drm_framebuffer *fb, 972 int color_plane, unsigned int height) 973 { 974 unsigned int tile_height = intel_tile_height(fb, color_plane); 975 976 return ALIGN(height, tile_height); 977 } 978 979 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 980 { 981 unsigned int size = 0; 982 int i; 983 984 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 985 size += rot_info->plane[i].width * rot_info->plane[i].height; 986 987 return size; 988 } 989 990 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 991 { 992 unsigned int size = 0; 993 int i; 994 995 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 996 size += rem_info->plane[i].width * rem_info->plane[i].height; 997 998 return size; 999 } 1000 1001 static void 1002 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, 1003 const struct drm_framebuffer *fb, 1004 unsigned int rotation) 1005 { 1006 view->type = I915_GGTT_VIEW_NORMAL; 1007 if (drm_rotation_90_or_270(rotation)) { 1008 view->type = I915_GGTT_VIEW_ROTATED; 1009 view->rotated = to_intel_framebuffer(fb)->rot_info; 1010 } 1011 } 1012 1013 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv) 1014 { 1015 if (IS_I830(dev_priv)) 1016 return 16 * 1024; 1017 else if (IS_I85X(dev_priv)) 1018 return 256; 1019 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) 1020 return 32; 1021 else 1022 return 4 * 1024; 1023 } 1024 1025 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 1026 { 1027 if (INTEL_GEN(dev_priv) >= 9) 1028 return 256 * 1024; 1029 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || 1030 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1031 return 128 * 1024; 1032 else if (INTEL_GEN(dev_priv) >= 4) 1033 return 4 * 1024; 1034 else 1035 return 0; 1036 } 1037 1038 static bool has_async_flips(struct drm_i915_private *i915) 1039 { 1040 return INTEL_GEN(i915) >= 5; 1041 } 1042 1043 unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, 1044 int color_plane) 1045 { 1046 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1047 1048 /* AUX_DIST needs only 4K alignment */ 1049 if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) || 1050 is_ccs_plane(fb, color_plane)) 1051 return 4096; 1052 1053 switch (fb->modifier) { 1054 case DRM_FORMAT_MOD_LINEAR: 1055 return intel_linear_alignment(dev_priv); 1056 case I915_FORMAT_MOD_X_TILED: 1057 if (has_async_flips(dev_priv)) 1058 return 256 * 1024; 1059 return 0; 1060 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1061 if (is_semiplanar_uv_plane(fb, color_plane)) 1062 return intel_tile_row_size(fb, color_plane); 1063 fallthrough; 1064 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1065 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1066 return 16 * 1024; 1067 case I915_FORMAT_MOD_Y_TILED_CCS: 1068 case I915_FORMAT_MOD_Yf_TILED_CCS: 1069 case I915_FORMAT_MOD_Y_TILED: 1070 if (INTEL_GEN(dev_priv) >= 12 && 1071 is_semiplanar_uv_plane(fb, color_plane)) 1072 return intel_tile_row_size(fb, color_plane); 1073 fallthrough; 1074 case I915_FORMAT_MOD_Yf_TILED: 1075 return 1 * 1024 * 1024; 1076 default: 1077 MISSING_CASE(fb->modifier); 1078 return 0; 1079 } 1080 } 1081 1082 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 1083 { 1084 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1085 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 1086 1087 return INTEL_GEN(dev_priv) < 4 || 1088 (plane->has_fbc && 1089 plane_state->view.type == I915_GGTT_VIEW_NORMAL); 1090 } 1091 1092 struct i915_vma * 1093 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 1094 const struct i915_ggtt_view *view, 1095 bool uses_fence, 1096 unsigned long *out_flags) 1097 { 1098 struct drm_device *dev = fb->dev; 1099 struct drm_i915_private *dev_priv = to_i915(dev); 1100 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 1101 intel_wakeref_t wakeref; 1102 struct i915_vma *vma; 1103 unsigned int pinctl; 1104 u32 alignment; 1105 1106 if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj))) 1107 return ERR_PTR(-EINVAL); 1108 1109 alignment = intel_surf_alignment(fb, 0); 1110 if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment))) 1111 return ERR_PTR(-EINVAL); 1112 1113 /* Note that the w/a also requires 64 PTE of padding following the 1114 * bo. We currently fill all unused PTE with the shadow page and so 1115 * we should always have valid PTE following the scanout preventing 1116 * the VT-d warning. 1117 */ 1118 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) 1119 alignment = 256 * 1024; 1120 1121 /* 1122 * Global gtt pte registers are special registers which actually forward 1123 * writes to a chunk of system memory. Which means that there is no risk 1124 * that the register values disappear as soon as we call 1125 * intel_runtime_pm_put(), so it is correct to wrap only the 1126 * pin/unpin/fence and not more. 1127 */ 1128 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 1129 1130 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 1131 1132 /* 1133 * Valleyview is definitely limited to scanning out the first 1134 * 512MiB. Lets presume this behaviour was inherited from the 1135 * g4x display engine and that all earlier gen are similarly 1136 * limited. Testing suggests that it is a little more 1137 * complicated than this. For example, Cherryview appears quite 1138 * happy to scanout from anywhere within its global aperture. 1139 */ 1140 pinctl = 0; 1141 if (HAS_GMCH(dev_priv)) 1142 pinctl |= PIN_MAPPABLE; 1143 1144 vma = i915_gem_object_pin_to_display_plane(obj, 1145 alignment, view, pinctl); 1146 if (IS_ERR(vma)) 1147 goto err; 1148 1149 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { 1150 int ret; 1151 1152 /* 1153 * Install a fence for tiled scan-out. Pre-i965 always needs a 1154 * fence, whereas 965+ only requires a fence if using 1155 * framebuffer compression. For simplicity, we always, when 1156 * possible, install a fence as the cost is not that onerous. 1157 * 1158 * If we fail to fence the tiled scanout, then either the 1159 * modeset will reject the change (which is highly unlikely as 1160 * the affected systems, all but one, do not have unmappable 1161 * space) or we will not be able to enable full powersaving 1162 * techniques (also likely not to apply due to various limits 1163 * FBC and the like impose on the size of the buffer, which 1164 * presumably we violated anyway with this unmappable buffer). 1165 * Anyway, it is presumably better to stumble onwards with 1166 * something and try to run the system in a "less than optimal" 1167 * mode that matches the user configuration. 1168 */ 1169 ret = i915_vma_pin_fence(vma); 1170 if (ret != 0 && INTEL_GEN(dev_priv) < 4) { 1171 i915_vma_unpin(vma); 1172 vma = ERR_PTR(ret); 1173 goto err; 1174 } 1175 1176 if (ret == 0 && vma->fence) 1177 *out_flags |= PLANE_HAS_FENCE; 1178 } 1179 1180 i915_vma_get(vma); 1181 err: 1182 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 1183 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 1184 return vma; 1185 } 1186 1187 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) 1188 { 1189 if (flags & PLANE_HAS_FENCE) 1190 i915_vma_unpin_fence(vma); 1191 i915_vma_unpin(vma); 1192 i915_vma_put(vma); 1193 } 1194 1195 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane, 1196 unsigned int rotation) 1197 { 1198 if (drm_rotation_90_or_270(rotation)) 1199 return to_intel_framebuffer(fb)->rotated[color_plane].pitch; 1200 else 1201 return fb->pitches[color_plane]; 1202 } 1203 1204 /* 1205 * Convert the x/y offsets into a linear offset. 1206 * Only valid with 0/180 degree rotation, which is fine since linear 1207 * offset is only used with linear buffers on pre-hsw and tiled buffers 1208 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 1209 */ 1210 u32 intel_fb_xy_to_linear(int x, int y, 1211 const struct intel_plane_state *state, 1212 int color_plane) 1213 { 1214 const struct drm_framebuffer *fb = state->hw.fb; 1215 unsigned int cpp = fb->format->cpp[color_plane]; 1216 unsigned int pitch = state->color_plane[color_plane].stride; 1217 1218 return y * pitch + x * cpp; 1219 } 1220 1221 /* 1222 * Add the x/y offsets derived from fb->offsets[] to the user 1223 * specified plane src x/y offsets. The resulting x/y offsets 1224 * specify the start of scanout from the beginning of the gtt mapping. 1225 */ 1226 void intel_add_fb_offsets(int *x, int *y, 1227 const struct intel_plane_state *state, 1228 int color_plane) 1229 1230 { 1231 *x += state->color_plane[color_plane].x; 1232 *y += state->color_plane[color_plane].y; 1233 } 1234 1235 static u32 intel_adjust_tile_offset(int *x, int *y, 1236 unsigned int tile_width, 1237 unsigned int tile_height, 1238 unsigned int tile_size, 1239 unsigned int pitch_tiles, 1240 u32 old_offset, 1241 u32 new_offset) 1242 { 1243 unsigned int pitch_pixels = pitch_tiles * tile_width; 1244 unsigned int tiles; 1245 1246 WARN_ON(old_offset & (tile_size - 1)); 1247 WARN_ON(new_offset & (tile_size - 1)); 1248 WARN_ON(new_offset > old_offset); 1249 1250 tiles = (old_offset - new_offset) / tile_size; 1251 1252 *y += tiles / pitch_tiles * tile_height; 1253 *x += tiles % pitch_tiles * tile_width; 1254 1255 /* minimize x in case it got needlessly big */ 1256 *y += *x / pitch_pixels * tile_height; 1257 *x %= pitch_pixels; 1258 1259 return new_offset; 1260 } 1261 1262 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane) 1263 { 1264 return fb->modifier == DRM_FORMAT_MOD_LINEAR || 1265 is_gen12_ccs_plane(fb, color_plane); 1266 } 1267 1268 static u32 intel_adjust_aligned_offset(int *x, int *y, 1269 const struct drm_framebuffer *fb, 1270 int color_plane, 1271 unsigned int rotation, 1272 unsigned int pitch, 1273 u32 old_offset, u32 new_offset) 1274 { 1275 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1276 unsigned int cpp = fb->format->cpp[color_plane]; 1277 1278 drm_WARN_ON(&dev_priv->drm, new_offset > old_offset); 1279 1280 if (!is_surface_linear(fb, color_plane)) { 1281 unsigned int tile_size, tile_width, tile_height; 1282 unsigned int pitch_tiles; 1283 1284 tile_size = intel_tile_size(dev_priv); 1285 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 1286 1287 if (drm_rotation_90_or_270(rotation)) { 1288 pitch_tiles = pitch / tile_height; 1289 swap(tile_width, tile_height); 1290 } else { 1291 pitch_tiles = pitch / (tile_width * cpp); 1292 } 1293 1294 intel_adjust_tile_offset(x, y, tile_width, tile_height, 1295 tile_size, pitch_tiles, 1296 old_offset, new_offset); 1297 } else { 1298 old_offset += *y * pitch + *x * cpp; 1299 1300 *y = (old_offset - new_offset) / pitch; 1301 *x = ((old_offset - new_offset) - *y * pitch) / cpp; 1302 } 1303 1304 return new_offset; 1305 } 1306 1307 /* 1308 * Adjust the tile offset by moving the difference into 1309 * the x/y offsets. 1310 */ 1311 u32 intel_plane_adjust_aligned_offset(int *x, int *y, 1312 const struct intel_plane_state *state, 1313 int color_plane, 1314 u32 old_offset, u32 new_offset) 1315 { 1316 return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane, 1317 state->hw.rotation, 1318 state->color_plane[color_plane].stride, 1319 old_offset, new_offset); 1320 } 1321 1322 /* 1323 * Computes the aligned offset to the base tile and adjusts 1324 * x, y. bytes per pixel is assumed to be a power-of-two. 1325 * 1326 * In the 90/270 rotated case, x and y are assumed 1327 * to be already rotated to match the rotated GTT view, and 1328 * pitch is the tile_height aligned framebuffer height. 1329 * 1330 * This function is used when computing the derived information 1331 * under intel_framebuffer, so using any of that information 1332 * here is not allowed. Anything under drm_framebuffer can be 1333 * used. This is why the user has to pass in the pitch since it 1334 * is specified in the rotated orientation. 1335 */ 1336 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv, 1337 int *x, int *y, 1338 const struct drm_framebuffer *fb, 1339 int color_plane, 1340 unsigned int pitch, 1341 unsigned int rotation, 1342 u32 alignment) 1343 { 1344 unsigned int cpp = fb->format->cpp[color_plane]; 1345 u32 offset, offset_aligned; 1346 1347 if (!is_surface_linear(fb, color_plane)) { 1348 unsigned int tile_size, tile_width, tile_height; 1349 unsigned int tile_rows, tiles, pitch_tiles; 1350 1351 tile_size = intel_tile_size(dev_priv); 1352 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 1353 1354 if (drm_rotation_90_or_270(rotation)) { 1355 pitch_tiles = pitch / tile_height; 1356 swap(tile_width, tile_height); 1357 } else { 1358 pitch_tiles = pitch / (tile_width * cpp); 1359 } 1360 1361 tile_rows = *y / tile_height; 1362 *y %= tile_height; 1363 1364 tiles = *x / tile_width; 1365 *x %= tile_width; 1366 1367 offset = (tile_rows * pitch_tiles + tiles) * tile_size; 1368 1369 offset_aligned = offset; 1370 if (alignment) 1371 offset_aligned = rounddown(offset_aligned, alignment); 1372 1373 intel_adjust_tile_offset(x, y, tile_width, tile_height, 1374 tile_size, pitch_tiles, 1375 offset, offset_aligned); 1376 } else { 1377 offset = *y * pitch + *x * cpp; 1378 offset_aligned = offset; 1379 if (alignment) { 1380 offset_aligned = rounddown(offset_aligned, alignment); 1381 *y = (offset % alignment) / pitch; 1382 *x = ((offset % alignment) - *y * pitch) / cpp; 1383 } else { 1384 *y = *x = 0; 1385 } 1386 } 1387 1388 return offset_aligned; 1389 } 1390 1391 u32 intel_plane_compute_aligned_offset(int *x, int *y, 1392 const struct intel_plane_state *state, 1393 int color_plane) 1394 { 1395 struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane); 1396 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 1397 const struct drm_framebuffer *fb = state->hw.fb; 1398 unsigned int rotation = state->hw.rotation; 1399 int pitch = state->color_plane[color_plane].stride; 1400 u32 alignment; 1401 1402 if (intel_plane->id == PLANE_CURSOR) 1403 alignment = intel_cursor_alignment(dev_priv); 1404 else 1405 alignment = intel_surf_alignment(fb, color_plane); 1406 1407 return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane, 1408 pitch, rotation, alignment); 1409 } 1410 1411 /* Convert the fb->offset[] into x/y offsets */ 1412 static int intel_fb_offset_to_xy(int *x, int *y, 1413 const struct drm_framebuffer *fb, 1414 int color_plane) 1415 { 1416 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1417 unsigned int height; 1418 u32 alignment; 1419 1420 if (INTEL_GEN(dev_priv) >= 12 && 1421 is_semiplanar_uv_plane(fb, color_plane)) 1422 alignment = intel_tile_row_size(fb, color_plane); 1423 else if (fb->modifier != DRM_FORMAT_MOD_LINEAR) 1424 alignment = intel_tile_size(dev_priv); 1425 else 1426 alignment = 0; 1427 1428 if (alignment != 0 && fb->offsets[color_plane] % alignment) { 1429 drm_dbg_kms(&dev_priv->drm, 1430 "Misaligned offset 0x%08x for color plane %d\n", 1431 fb->offsets[color_plane], color_plane); 1432 return -EINVAL; 1433 } 1434 1435 height = drm_framebuffer_plane_height(fb->height, fb, color_plane); 1436 height = ALIGN(height, intel_tile_height(fb, color_plane)); 1437 1438 /* Catch potential overflows early */ 1439 if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]), 1440 fb->offsets[color_plane])) { 1441 drm_dbg_kms(&dev_priv->drm, 1442 "Bad offset 0x%08x or pitch %d for color plane %d\n", 1443 fb->offsets[color_plane], fb->pitches[color_plane], 1444 color_plane); 1445 return -ERANGE; 1446 } 1447 1448 *x = 0; 1449 *y = 0; 1450 1451 intel_adjust_aligned_offset(x, y, 1452 fb, color_plane, DRM_MODE_ROTATE_0, 1453 fb->pitches[color_plane], 1454 fb->offsets[color_plane], 0); 1455 1456 return 0; 1457 } 1458 1459 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) 1460 { 1461 switch (fb_modifier) { 1462 case I915_FORMAT_MOD_X_TILED: 1463 return I915_TILING_X; 1464 case I915_FORMAT_MOD_Y_TILED: 1465 case I915_FORMAT_MOD_Y_TILED_CCS: 1466 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1467 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1468 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1469 return I915_TILING_Y; 1470 default: 1471 return I915_TILING_NONE; 1472 } 1473 } 1474 1475 /* 1476 * From the Sky Lake PRM: 1477 * "The Color Control Surface (CCS) contains the compression status of 1478 * the cache-line pairs. The compression state of the cache-line pair 1479 * is specified by 2 bits in the CCS. Each CCS cache-line represents 1480 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 1481 * cache-line-pairs. CCS is always Y tiled." 1482 * 1483 * Since cache line pairs refers to horizontally adjacent cache lines, 1484 * each cache line in the CCS corresponds to an area of 32x16 cache 1485 * lines on the main surface. Since each pixel is 4 bytes, this gives 1486 * us a ratio of one byte in the CCS for each 8x16 pixels in the 1487 * main surface. 1488 */ 1489 static const struct drm_format_info skl_ccs_formats[] = { 1490 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 1491 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 1492 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 1493 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 1494 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 1495 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 1496 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 1497 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 1498 }; 1499 1500 /* 1501 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the 1502 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles 1503 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of 1504 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in 1505 * the main surface. 1506 */ 1507 static const struct drm_format_info gen12_ccs_formats[] = { 1508 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 1509 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1510 .hsub = 1, .vsub = 1, }, 1511 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 1512 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1513 .hsub = 1, .vsub = 1, }, 1514 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 1515 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1516 .hsub = 1, .vsub = 1, .has_alpha = true }, 1517 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 1518 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1519 .hsub = 1, .vsub = 1, .has_alpha = true }, 1520 { .format = DRM_FORMAT_YUYV, .num_planes = 2, 1521 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1522 .hsub = 2, .vsub = 1, .is_yuv = true }, 1523 { .format = DRM_FORMAT_YVYU, .num_planes = 2, 1524 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1525 .hsub = 2, .vsub = 1, .is_yuv = true }, 1526 { .format = DRM_FORMAT_UYVY, .num_planes = 2, 1527 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1528 .hsub = 2, .vsub = 1, .is_yuv = true }, 1529 { .format = DRM_FORMAT_VYUY, .num_planes = 2, 1530 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 1531 .hsub = 2, .vsub = 1, .is_yuv = true }, 1532 { .format = DRM_FORMAT_NV12, .num_planes = 4, 1533 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 }, 1534 .hsub = 2, .vsub = 2, .is_yuv = true }, 1535 { .format = DRM_FORMAT_P010, .num_planes = 4, 1536 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1537 .hsub = 2, .vsub = 2, .is_yuv = true }, 1538 { .format = DRM_FORMAT_P012, .num_planes = 4, 1539 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1540 .hsub = 2, .vsub = 2, .is_yuv = true }, 1541 { .format = DRM_FORMAT_P016, .num_planes = 4, 1542 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 1543 .hsub = 2, .vsub = 2, .is_yuv = true }, 1544 }; 1545 1546 /* 1547 * Same as gen12_ccs_formats[] above, but with additional surface used 1548 * to pass Clear Color information in plane 2 with 64 bits of data. 1549 */ 1550 static const struct drm_format_info gen12_ccs_cc_formats[] = { 1551 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 3, 1552 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1553 .hsub = 1, .vsub = 1, }, 1554 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 3, 1555 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1556 .hsub = 1, .vsub = 1, }, 1557 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 3, 1558 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1559 .hsub = 1, .vsub = 1, .has_alpha = true }, 1560 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 3, 1561 .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, 1562 .hsub = 1, .vsub = 1, .has_alpha = true }, 1563 }; 1564 1565 static const struct drm_format_info * 1566 lookup_format_info(const struct drm_format_info formats[], 1567 int num_formats, u32 format) 1568 { 1569 int i; 1570 1571 for (i = 0; i < num_formats; i++) { 1572 if (formats[i].format == format) 1573 return &formats[i]; 1574 } 1575 1576 return NULL; 1577 } 1578 1579 static const struct drm_format_info * 1580 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 1581 { 1582 switch (cmd->modifier[0]) { 1583 case I915_FORMAT_MOD_Y_TILED_CCS: 1584 case I915_FORMAT_MOD_Yf_TILED_CCS: 1585 return lookup_format_info(skl_ccs_formats, 1586 ARRAY_SIZE(skl_ccs_formats), 1587 cmd->pixel_format); 1588 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 1589 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 1590 return lookup_format_info(gen12_ccs_formats, 1591 ARRAY_SIZE(gen12_ccs_formats), 1592 cmd->pixel_format); 1593 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: 1594 return lookup_format_info(gen12_ccs_cc_formats, 1595 ARRAY_SIZE(gen12_ccs_cc_formats), 1596 cmd->pixel_format); 1597 default: 1598 return NULL; 1599 } 1600 } 1601 1602 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane) 1603 { 1604 return DIV_ROUND_UP(fb->pitches[skl_ccs_to_main_plane(fb, ccs_plane)], 1605 512) * 64; 1606 } 1607 1608 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 1609 u32 pixel_format, u64 modifier) 1610 { 1611 struct intel_crtc *crtc; 1612 struct intel_plane *plane; 1613 1614 /* 1615 * We assume the primary plane for pipe A has 1616 * the highest stride limits of them all, 1617 * if in case pipe A is disabled, use the first pipe from pipe_mask. 1618 */ 1619 crtc = intel_get_first_crtc(dev_priv); 1620 if (!crtc) 1621 return 0; 1622 1623 plane = to_intel_plane(crtc->base.primary); 1624 1625 return plane->max_stride(plane, pixel_format, modifier, 1626 DRM_MODE_ROTATE_0); 1627 } 1628 1629 static 1630 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, 1631 u32 pixel_format, u64 modifier) 1632 { 1633 /* 1634 * Arbitrary limit for gen4+ chosen to match the 1635 * render engine max stride. 1636 * 1637 * The new CCS hash mode makes remapping impossible 1638 */ 1639 if (!is_ccs_modifier(modifier)) { 1640 if (INTEL_GEN(dev_priv) >= 7) 1641 return 256*1024; 1642 else if (INTEL_GEN(dev_priv) >= 4) 1643 return 128*1024; 1644 } 1645 1646 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); 1647 } 1648 1649 static u32 1650 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) 1651 { 1652 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1653 u32 tile_width; 1654 1655 if (is_surface_linear(fb, color_plane)) { 1656 u32 max_stride = intel_plane_fb_max_stride(dev_priv, 1657 fb->format->format, 1658 fb->modifier); 1659 1660 /* 1661 * To make remapping with linear generally feasible 1662 * we need the stride to be page aligned. 1663 */ 1664 if (fb->pitches[color_plane] > max_stride && 1665 !is_ccs_modifier(fb->modifier)) 1666 return intel_tile_size(dev_priv); 1667 else 1668 return 64; 1669 } 1670 1671 tile_width = intel_tile_width_bytes(fb, color_plane); 1672 if (is_ccs_modifier(fb->modifier)) { 1673 /* 1674 * Display WA #0531: skl,bxt,kbl,glk 1675 * 1676 * Render decompression and plane width > 3840 1677 * combined with horizontal panning requires the 1678 * plane stride to be a multiple of 4. We'll just 1679 * require the entire fb to accommodate that to avoid 1680 * potential runtime errors at plane configuration time. 1681 */ 1682 if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840) 1683 tile_width *= 4; 1684 /* 1685 * The main surface pitch must be padded to a multiple of four 1686 * tile widths. 1687 */ 1688 else if (INTEL_GEN(dev_priv) >= 12) 1689 tile_width *= 4; 1690 } 1691 return tile_width; 1692 } 1693 1694 bool intel_plane_can_remap(const struct intel_plane_state *plane_state) 1695 { 1696 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1697 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 1698 const struct drm_framebuffer *fb = plane_state->hw.fb; 1699 int i; 1700 1701 /* We don't want to deal with remapping with cursors */ 1702 if (plane->id == PLANE_CURSOR) 1703 return false; 1704 1705 /* 1706 * The display engine limits already match/exceed the 1707 * render engine limits, so not much point in remapping. 1708 * Would also need to deal with the fence POT alignment 1709 * and gen2 2KiB GTT tile size. 1710 */ 1711 if (INTEL_GEN(dev_priv) < 4) 1712 return false; 1713 1714 /* 1715 * The new CCS hash mode isn't compatible with remapping as 1716 * the virtual address of the pages affects the compressed data. 1717 */ 1718 if (is_ccs_modifier(fb->modifier)) 1719 return false; 1720 1721 /* Linear needs a page aligned stride for remapping */ 1722 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) { 1723 unsigned int alignment = intel_tile_size(dev_priv) - 1; 1724 1725 for (i = 0; i < fb->format->num_planes; i++) { 1726 if (fb->pitches[i] & alignment) 1727 return false; 1728 } 1729 } 1730 1731 return true; 1732 } 1733 1734 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state) 1735 { 1736 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1737 const struct drm_framebuffer *fb = plane_state->hw.fb; 1738 unsigned int rotation = plane_state->hw.rotation; 1739 u32 stride, max_stride; 1740 1741 /* 1742 * No remapping for invisible planes since we don't have 1743 * an actual source viewport to remap. 1744 */ 1745 if (!plane_state->uapi.visible) 1746 return false; 1747 1748 if (!intel_plane_can_remap(plane_state)) 1749 return false; 1750 1751 /* 1752 * FIXME: aux plane limits on gen9+ are 1753 * unclear in Bspec, for now no checking. 1754 */ 1755 stride = intel_fb_pitch(fb, 0, rotation); 1756 max_stride = plane->max_stride(plane, fb->format->format, 1757 fb->modifier, rotation); 1758 1759 return stride > max_stride; 1760 } 1761 1762 void 1763 intel_fb_plane_get_subsampling(int *hsub, int *vsub, 1764 const struct drm_framebuffer *fb, 1765 int color_plane) 1766 { 1767 int main_plane; 1768 1769 if (color_plane == 0) { 1770 *hsub = 1; 1771 *vsub = 1; 1772 1773 return; 1774 } 1775 1776 /* 1777 * TODO: Deduct the subsampling from the char block for all CCS 1778 * formats and planes. 1779 */ 1780 if (!is_gen12_ccs_plane(fb, color_plane)) { 1781 *hsub = fb->format->hsub; 1782 *vsub = fb->format->vsub; 1783 1784 return; 1785 } 1786 1787 main_plane = skl_ccs_to_main_plane(fb, color_plane); 1788 *hsub = drm_format_info_block_width(fb->format, color_plane) / 1789 drm_format_info_block_width(fb->format, main_plane); 1790 1791 /* 1792 * The min stride check in the core framebuffer_check() function 1793 * assumes that format->hsub applies to every plane except for the 1794 * first plane. That's incorrect for the CCS AUX plane of the first 1795 * plane, but for the above check to pass we must define the block 1796 * width with that subsampling applied to it. Adjust the width here 1797 * accordingly, so we can calculate the actual subsampling factor. 1798 */ 1799 if (main_plane == 0) 1800 *hsub *= fb->format->hsub; 1801 1802 *vsub = 32; 1803 } 1804 static int 1805 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y) 1806 { 1807 struct drm_i915_private *i915 = to_i915(fb->dev); 1808 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 1809 int main_plane; 1810 int hsub, vsub; 1811 int tile_width, tile_height; 1812 int ccs_x, ccs_y; 1813 int main_x, main_y; 1814 1815 if (!is_ccs_plane(fb, ccs_plane) || is_gen12_ccs_cc_plane(fb, ccs_plane)) 1816 return 0; 1817 1818 intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height); 1819 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 1820 1821 tile_width *= hsub; 1822 tile_height *= vsub; 1823 1824 ccs_x = (x * hsub) % tile_width; 1825 ccs_y = (y * vsub) % tile_height; 1826 1827 main_plane = skl_ccs_to_main_plane(fb, ccs_plane); 1828 main_x = intel_fb->normal[main_plane].x % tile_width; 1829 main_y = intel_fb->normal[main_plane].y % tile_height; 1830 1831 /* 1832 * CCS doesn't have its own x/y offset register, so the intra CCS tile 1833 * x/y offsets must match between CCS and the main surface. 1834 */ 1835 if (main_x != ccs_x || main_y != ccs_y) { 1836 drm_dbg_kms(&i915->drm, 1837 "Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n", 1838 main_x, main_y, 1839 ccs_x, ccs_y, 1840 intel_fb->normal[main_plane].x, 1841 intel_fb->normal[main_plane].y, 1842 x, y); 1843 return -EINVAL; 1844 } 1845 1846 return 0; 1847 } 1848 1849 static void 1850 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane) 1851 { 1852 int main_plane = is_ccs_plane(fb, color_plane) ? 1853 skl_ccs_to_main_plane(fb, color_plane) : 0; 1854 int main_hsub, main_vsub; 1855 int hsub, vsub; 1856 1857 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane); 1858 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane); 1859 *w = fb->width / main_hsub / hsub; 1860 *h = fb->height / main_vsub / vsub; 1861 } 1862 1863 /* 1864 * Setup the rotated view for an FB plane and return the size the GTT mapping 1865 * requires for this view. 1866 */ 1867 static u32 1868 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info, 1869 u32 gtt_offset_rotated, int x, int y, 1870 unsigned int width, unsigned int height, 1871 unsigned int tile_size, 1872 unsigned int tile_width, unsigned int tile_height, 1873 struct drm_framebuffer *fb) 1874 { 1875 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 1876 struct intel_rotation_info *rot_info = &intel_fb->rot_info; 1877 unsigned int pitch_tiles; 1878 struct drm_rect r; 1879 1880 /* Y or Yf modifiers required for 90/270 rotation */ 1881 if (fb->modifier != I915_FORMAT_MOD_Y_TILED && 1882 fb->modifier != I915_FORMAT_MOD_Yf_TILED) 1883 return 0; 1884 1885 if (drm_WARN_ON(fb->dev, plane >= ARRAY_SIZE(rot_info->plane))) 1886 return 0; 1887 1888 rot_info->plane[plane] = *plane_info; 1889 1890 intel_fb->rotated[plane].pitch = plane_info->height * tile_height; 1891 1892 /* rotate the x/y offsets to match the GTT view */ 1893 drm_rect_init(&r, x, y, width, height); 1894 drm_rect_rotate(&r, 1895 plane_info->width * tile_width, 1896 plane_info->height * tile_height, 1897 DRM_MODE_ROTATE_270); 1898 x = r.x1; 1899 y = r.y1; 1900 1901 /* rotate the tile dimensions to match the GTT view */ 1902 pitch_tiles = intel_fb->rotated[plane].pitch / tile_height; 1903 swap(tile_width, tile_height); 1904 1905 /* 1906 * We only keep the x/y offsets, so push all of the 1907 * gtt offset into the x/y offsets. 1908 */ 1909 intel_adjust_tile_offset(&x, &y, 1910 tile_width, tile_height, 1911 tile_size, pitch_tiles, 1912 gtt_offset_rotated * tile_size, 0); 1913 1914 /* 1915 * First pixel of the framebuffer from 1916 * the start of the rotated gtt mapping. 1917 */ 1918 intel_fb->rotated[plane].x = x; 1919 intel_fb->rotated[plane].y = y; 1920 1921 return plane_info->width * plane_info->height; 1922 } 1923 1924 static int 1925 intel_fill_fb_info(struct drm_i915_private *dev_priv, 1926 struct drm_framebuffer *fb) 1927 { 1928 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 1929 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 1930 u32 gtt_offset_rotated = 0; 1931 unsigned int max_size = 0; 1932 int i, num_planes = fb->format->num_planes; 1933 unsigned int tile_size = intel_tile_size(dev_priv); 1934 1935 for (i = 0; i < num_planes; i++) { 1936 unsigned int width, height; 1937 unsigned int cpp, size; 1938 u32 offset; 1939 int x, y; 1940 int ret; 1941 1942 /* 1943 * Plane 2 of Render Compression with Clear Color fb modifier 1944 * is consumed by the driver and not passed to DE. Skip the 1945 * arithmetic related to alignment and offset calculation. 1946 */ 1947 if (is_gen12_ccs_cc_plane(fb, i)) { 1948 if (IS_ALIGNED(fb->offsets[i], PAGE_SIZE)) 1949 continue; 1950 else 1951 return -EINVAL; 1952 } 1953 1954 cpp = fb->format->cpp[i]; 1955 intel_fb_plane_dims(&width, &height, fb, i); 1956 1957 ret = intel_fb_offset_to_xy(&x, &y, fb, i); 1958 if (ret) { 1959 drm_dbg_kms(&dev_priv->drm, 1960 "bad fb plane %d offset: 0x%x\n", 1961 i, fb->offsets[i]); 1962 return ret; 1963 } 1964 1965 ret = intel_fb_check_ccs_xy(fb, i, x, y); 1966 if (ret) 1967 return ret; 1968 1969 /* 1970 * The fence (if used) is aligned to the start of the object 1971 * so having the framebuffer wrap around across the edge of the 1972 * fenced region doesn't really work. We have no API to configure 1973 * the fence start offset within the object (nor could we probably 1974 * on gen2/3). So it's just easier if we just require that the 1975 * fb layout agrees with the fence layout. We already check that the 1976 * fb stride matches the fence stride elsewhere. 1977 */ 1978 if (i == 0 && i915_gem_object_is_tiled(obj) && 1979 (x + width) * cpp > fb->pitches[i]) { 1980 drm_dbg_kms(&dev_priv->drm, 1981 "bad fb plane %d offset: 0x%x\n", 1982 i, fb->offsets[i]); 1983 return -EINVAL; 1984 } 1985 1986 /* 1987 * First pixel of the framebuffer from 1988 * the start of the normal gtt mapping. 1989 */ 1990 intel_fb->normal[i].x = x; 1991 intel_fb->normal[i].y = y; 1992 1993 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i, 1994 fb->pitches[i], 1995 DRM_MODE_ROTATE_0, 1996 tile_size); 1997 offset /= tile_size; 1998 1999 if (!is_surface_linear(fb, i)) { 2000 struct intel_remapped_plane_info plane_info; 2001 unsigned int tile_width, tile_height; 2002 2003 intel_tile_dims(fb, i, &tile_width, &tile_height); 2004 2005 plane_info.offset = offset; 2006 plane_info.stride = DIV_ROUND_UP(fb->pitches[i], 2007 tile_width * cpp); 2008 plane_info.width = DIV_ROUND_UP(x + width, tile_width); 2009 plane_info.height = DIV_ROUND_UP(y + height, 2010 tile_height); 2011 2012 /* how many tiles does this plane need */ 2013 size = plane_info.stride * plane_info.height; 2014 /* 2015 * If the plane isn't horizontally tile aligned, 2016 * we need one more tile. 2017 */ 2018 if (x != 0) 2019 size++; 2020 2021 gtt_offset_rotated += 2022 setup_fb_rotation(i, &plane_info, 2023 gtt_offset_rotated, 2024 x, y, width, height, 2025 tile_size, 2026 tile_width, tile_height, 2027 fb); 2028 } else { 2029 size = DIV_ROUND_UP((y + height) * fb->pitches[i] + 2030 x * cpp, tile_size); 2031 } 2032 2033 /* how many tiles in total needed in the bo */ 2034 max_size = max(max_size, offset + size); 2035 } 2036 2037 if (mul_u32_u32(max_size, tile_size) > obj->base.size) { 2038 drm_dbg_kms(&dev_priv->drm, 2039 "fb too big for bo (need %llu bytes, have %zu bytes)\n", 2040 mul_u32_u32(max_size, tile_size), obj->base.size); 2041 return -EINVAL; 2042 } 2043 2044 return 0; 2045 } 2046 2047 static void 2048 intel_plane_remap_gtt(struct intel_plane_state *plane_state) 2049 { 2050 struct drm_i915_private *dev_priv = 2051 to_i915(plane_state->uapi.plane->dev); 2052 struct drm_framebuffer *fb = plane_state->hw.fb; 2053 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2054 struct intel_rotation_info *info = &plane_state->view.rotated; 2055 unsigned int rotation = plane_state->hw.rotation; 2056 int i, num_planes = fb->format->num_planes; 2057 unsigned int tile_size = intel_tile_size(dev_priv); 2058 unsigned int src_x, src_y; 2059 unsigned int src_w, src_h; 2060 u32 gtt_offset = 0; 2061 2062 memset(&plane_state->view, 0, sizeof(plane_state->view)); 2063 plane_state->view.type = drm_rotation_90_or_270(rotation) ? 2064 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED; 2065 2066 src_x = plane_state->uapi.src.x1 >> 16; 2067 src_y = plane_state->uapi.src.y1 >> 16; 2068 src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 2069 src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 2070 2071 drm_WARN_ON(&dev_priv->drm, is_ccs_modifier(fb->modifier)); 2072 2073 /* Make src coordinates relative to the viewport */ 2074 drm_rect_translate(&plane_state->uapi.src, 2075 -(src_x << 16), -(src_y << 16)); 2076 2077 /* Rotate src coordinates to match rotated GTT view */ 2078 if (drm_rotation_90_or_270(rotation)) 2079 drm_rect_rotate(&plane_state->uapi.src, 2080 src_w << 16, src_h << 16, 2081 DRM_MODE_ROTATE_270); 2082 2083 for (i = 0; i < num_planes; i++) { 2084 unsigned int hsub = i ? fb->format->hsub : 1; 2085 unsigned int vsub = i ? fb->format->vsub : 1; 2086 unsigned int cpp = fb->format->cpp[i]; 2087 unsigned int tile_width, tile_height; 2088 unsigned int width, height; 2089 unsigned int pitch_tiles; 2090 unsigned int x, y; 2091 u32 offset; 2092 2093 intel_tile_dims(fb, i, &tile_width, &tile_height); 2094 2095 x = src_x / hsub; 2096 y = src_y / vsub; 2097 width = src_w / hsub; 2098 height = src_h / vsub; 2099 2100 /* 2101 * First pixel of the src viewport from the 2102 * start of the normal gtt mapping. 2103 */ 2104 x += intel_fb->normal[i].x; 2105 y += intel_fb->normal[i].y; 2106 2107 offset = intel_compute_aligned_offset(dev_priv, &x, &y, 2108 fb, i, fb->pitches[i], 2109 DRM_MODE_ROTATE_0, tile_size); 2110 offset /= tile_size; 2111 2112 drm_WARN_ON(&dev_priv->drm, i >= ARRAY_SIZE(info->plane)); 2113 info->plane[i].offset = offset; 2114 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], 2115 tile_width * cpp); 2116 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width); 2117 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height); 2118 2119 if (drm_rotation_90_or_270(rotation)) { 2120 struct drm_rect r; 2121 2122 /* rotate the x/y offsets to match the GTT view */ 2123 drm_rect_init(&r, x, y, width, height); 2124 drm_rect_rotate(&r, 2125 info->plane[i].width * tile_width, 2126 info->plane[i].height * tile_height, 2127 DRM_MODE_ROTATE_270); 2128 x = r.x1; 2129 y = r.y1; 2130 2131 pitch_tiles = info->plane[i].height; 2132 plane_state->color_plane[i].stride = pitch_tiles * tile_height; 2133 2134 /* rotate the tile dimensions to match the GTT view */ 2135 swap(tile_width, tile_height); 2136 } else { 2137 pitch_tiles = info->plane[i].width; 2138 plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp; 2139 } 2140 2141 /* 2142 * We only keep the x/y offsets, so push all of the 2143 * gtt offset into the x/y offsets. 2144 */ 2145 intel_adjust_tile_offset(&x, &y, 2146 tile_width, tile_height, 2147 tile_size, pitch_tiles, 2148 gtt_offset * tile_size, 0); 2149 2150 gtt_offset += info->plane[i].width * info->plane[i].height; 2151 2152 plane_state->color_plane[i].offset = 0; 2153 plane_state->color_plane[i].x = x; 2154 plane_state->color_plane[i].y = y; 2155 } 2156 } 2157 2158 int 2159 intel_plane_compute_gtt(struct intel_plane_state *plane_state) 2160 { 2161 const struct intel_framebuffer *fb = 2162 to_intel_framebuffer(plane_state->hw.fb); 2163 unsigned int rotation = plane_state->hw.rotation; 2164 int i, num_planes; 2165 2166 if (!fb) 2167 return 0; 2168 2169 num_planes = fb->base.format->num_planes; 2170 2171 if (intel_plane_needs_remap(plane_state)) { 2172 intel_plane_remap_gtt(plane_state); 2173 2174 /* 2175 * Sometimes even remapping can't overcome 2176 * the stride limitations :( Can happen with 2177 * big plane sizes and suitably misaligned 2178 * offsets. 2179 */ 2180 return intel_plane_check_stride(plane_state); 2181 } 2182 2183 intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation); 2184 2185 for (i = 0; i < num_planes; i++) { 2186 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation); 2187 plane_state->color_plane[i].offset = 0; 2188 2189 if (drm_rotation_90_or_270(rotation)) { 2190 plane_state->color_plane[i].x = fb->rotated[i].x; 2191 plane_state->color_plane[i].y = fb->rotated[i].y; 2192 } else { 2193 plane_state->color_plane[i].x = fb->normal[i].x; 2194 plane_state->color_plane[i].y = fb->normal[i].y; 2195 } 2196 } 2197 2198 /* Rotate src coordinates to match rotated GTT view */ 2199 if (drm_rotation_90_or_270(rotation)) 2200 drm_rect_rotate(&plane_state->uapi.src, 2201 fb->base.width << 16, fb->base.height << 16, 2202 DRM_MODE_ROTATE_270); 2203 2204 return intel_plane_check_stride(plane_state); 2205 } 2206 2207 static struct i915_vma * 2208 initial_plane_vma(struct drm_i915_private *i915, 2209 struct intel_initial_plane_config *plane_config) 2210 { 2211 struct drm_i915_gem_object *obj; 2212 struct i915_vma *vma; 2213 u32 base, size; 2214 2215 if (plane_config->size == 0) 2216 return NULL; 2217 2218 base = round_down(plane_config->base, 2219 I915_GTT_MIN_ALIGNMENT); 2220 size = round_up(plane_config->base + plane_config->size, 2221 I915_GTT_MIN_ALIGNMENT); 2222 size -= base; 2223 2224 /* 2225 * If the FB is too big, just don't use it since fbdev is not very 2226 * important and we should probably use that space with FBC or other 2227 * features. 2228 */ 2229 if (size * 2 > i915->stolen_usable_size) 2230 return NULL; 2231 2232 obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size); 2233 if (IS_ERR(obj)) 2234 return NULL; 2235 2236 /* 2237 * Mark it WT ahead of time to avoid changing the 2238 * cache_level during fbdev initialization. The 2239 * unbind there would get stuck waiting for rcu. 2240 */ 2241 i915_gem_object_set_cache_coherency(obj, HAS_WT(i915) ? 2242 I915_CACHE_WT : I915_CACHE_NONE); 2243 2244 switch (plane_config->tiling) { 2245 case I915_TILING_NONE: 2246 break; 2247 case I915_TILING_X: 2248 case I915_TILING_Y: 2249 obj->tiling_and_stride = 2250 plane_config->fb->base.pitches[0] | 2251 plane_config->tiling; 2252 break; 2253 default: 2254 MISSING_CASE(plane_config->tiling); 2255 goto err_obj; 2256 } 2257 2258 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); 2259 if (IS_ERR(vma)) 2260 goto err_obj; 2261 2262 if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base)) 2263 goto err_obj; 2264 2265 if (i915_gem_object_is_tiled(obj) && 2266 !i915_vma_is_map_and_fenceable(vma)) 2267 goto err_obj; 2268 2269 return vma; 2270 2271 err_obj: 2272 i915_gem_object_put(obj); 2273 return NULL; 2274 } 2275 2276 static bool 2277 intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 2278 struct intel_initial_plane_config *plane_config) 2279 { 2280 struct drm_device *dev = crtc->base.dev; 2281 struct drm_i915_private *dev_priv = to_i915(dev); 2282 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 2283 struct drm_framebuffer *fb = &plane_config->fb->base; 2284 struct i915_vma *vma; 2285 2286 switch (fb->modifier) { 2287 case DRM_FORMAT_MOD_LINEAR: 2288 case I915_FORMAT_MOD_X_TILED: 2289 case I915_FORMAT_MOD_Y_TILED: 2290 break; 2291 default: 2292 drm_dbg(&dev_priv->drm, 2293 "Unsupported modifier for initial FB: 0x%llx\n", 2294 fb->modifier); 2295 return false; 2296 } 2297 2298 vma = initial_plane_vma(dev_priv, plane_config); 2299 if (!vma) 2300 return false; 2301 2302 mode_cmd.pixel_format = fb->format->format; 2303 mode_cmd.width = fb->width; 2304 mode_cmd.height = fb->height; 2305 mode_cmd.pitches[0] = fb->pitches[0]; 2306 mode_cmd.modifier[0] = fb->modifier; 2307 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 2308 2309 if (intel_framebuffer_init(to_intel_framebuffer(fb), 2310 vma->obj, &mode_cmd)) { 2311 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n"); 2312 goto err_vma; 2313 } 2314 2315 plane_config->vma = vma; 2316 return true; 2317 2318 err_vma: 2319 i915_vma_put(vma); 2320 return false; 2321 } 2322 2323 static void 2324 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 2325 struct intel_plane_state *plane_state, 2326 bool visible) 2327 { 2328 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2329 2330 plane_state->uapi.visible = visible; 2331 2332 if (visible) 2333 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); 2334 else 2335 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); 2336 } 2337 2338 static void fixup_plane_bitmasks(struct intel_crtc_state *crtc_state) 2339 { 2340 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 2341 struct drm_plane *plane; 2342 2343 /* 2344 * Active_planes aliases if multiple "primary" or cursor planes 2345 * have been used on the same (or wrong) pipe. plane_mask uses 2346 * unique ids, hence we can use that to reconstruct active_planes. 2347 */ 2348 crtc_state->enabled_planes = 0; 2349 crtc_state->active_planes = 0; 2350 2351 drm_for_each_plane_mask(plane, &dev_priv->drm, 2352 crtc_state->uapi.plane_mask) { 2353 crtc_state->enabled_planes |= BIT(to_intel_plane(plane)->id); 2354 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 2355 } 2356 } 2357 2358 static void intel_plane_disable_noatomic(struct intel_crtc *crtc, 2359 struct intel_plane *plane) 2360 { 2361 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2362 struct intel_crtc_state *crtc_state = 2363 to_intel_crtc_state(crtc->base.state); 2364 struct intel_plane_state *plane_state = 2365 to_intel_plane_state(plane->base.state); 2366 2367 drm_dbg_kms(&dev_priv->drm, 2368 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 2369 plane->base.base.id, plane->base.name, 2370 crtc->base.base.id, crtc->base.name); 2371 2372 intel_set_plane_visible(crtc_state, plane_state, false); 2373 fixup_plane_bitmasks(crtc_state); 2374 crtc_state->data_rate[plane->id] = 0; 2375 crtc_state->min_cdclk[plane->id] = 0; 2376 2377 if (plane->id == PLANE_PRIMARY) 2378 hsw_disable_ips(crtc_state); 2379 2380 /* 2381 * Vblank time updates from the shadow to live plane control register 2382 * are blocked if the memory self-refresh mode is active at that 2383 * moment. So to make sure the plane gets truly disabled, disable 2384 * first the self-refresh mode. The self-refresh enable bit in turn 2385 * will be checked/applied by the HW only at the next frame start 2386 * event which is after the vblank start event, so we need to have a 2387 * wait-for-vblank between disabling the plane and the pipe. 2388 */ 2389 if (HAS_GMCH(dev_priv) && 2390 intel_set_memory_cxsr(dev_priv, false)) 2391 intel_wait_for_vblank(dev_priv, crtc->pipe); 2392 2393 /* 2394 * Gen2 reports pipe underruns whenever all planes are disabled. 2395 * So disable underrun reporting before all the planes get disabled. 2396 */ 2397 if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes) 2398 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 2399 2400 intel_disable_plane(plane, crtc_state); 2401 intel_wait_for_vblank(dev_priv, crtc->pipe); 2402 } 2403 2404 static void 2405 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, 2406 struct intel_initial_plane_config *plane_config) 2407 { 2408 struct drm_device *dev = intel_crtc->base.dev; 2409 struct drm_i915_private *dev_priv = to_i915(dev); 2410 struct drm_crtc *c; 2411 struct drm_plane *primary = intel_crtc->base.primary; 2412 struct drm_plane_state *plane_state = primary->state; 2413 struct intel_plane *intel_plane = to_intel_plane(primary); 2414 struct intel_plane_state *intel_state = 2415 to_intel_plane_state(plane_state); 2416 struct intel_crtc_state *crtc_state = 2417 to_intel_crtc_state(intel_crtc->base.state); 2418 struct drm_framebuffer *fb; 2419 struct i915_vma *vma; 2420 2421 if (!plane_config->fb) 2422 return; 2423 2424 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { 2425 fb = &plane_config->fb->base; 2426 vma = plane_config->vma; 2427 goto valid_fb; 2428 } 2429 2430 /* 2431 * Failed to alloc the obj, check to see if we should share 2432 * an fb with another CRTC instead 2433 */ 2434 for_each_crtc(dev, c) { 2435 struct intel_plane_state *state; 2436 2437 if (c == &intel_crtc->base) 2438 continue; 2439 2440 if (!to_intel_crtc_state(c->state)->uapi.active) 2441 continue; 2442 2443 state = to_intel_plane_state(c->primary->state); 2444 if (!state->vma) 2445 continue; 2446 2447 if (intel_plane_ggtt_offset(state) == plane_config->base) { 2448 fb = state->hw.fb; 2449 vma = state->vma; 2450 goto valid_fb; 2451 } 2452 } 2453 2454 /* 2455 * We've failed to reconstruct the BIOS FB. Current display state 2456 * indicates that the primary plane is visible, but has a NULL FB, 2457 * which will lead to problems later if we don't fix it up. The 2458 * simplest solution is to just disable the primary plane now and 2459 * pretend the BIOS never had it enabled. 2460 */ 2461 intel_plane_disable_noatomic(intel_crtc, intel_plane); 2462 if (crtc_state->bigjoiner) { 2463 struct intel_crtc *slave = 2464 crtc_state->bigjoiner_linked_crtc; 2465 intel_plane_disable_noatomic(slave, to_intel_plane(slave->base.primary)); 2466 } 2467 2468 return; 2469 2470 valid_fb: 2471 intel_state->hw.rotation = plane_config->rotation; 2472 intel_fill_fb_ggtt_view(&intel_state->view, fb, 2473 intel_state->hw.rotation); 2474 intel_state->color_plane[0].stride = 2475 intel_fb_pitch(fb, 0, intel_state->hw.rotation); 2476 2477 __i915_vma_pin(vma); 2478 intel_state->vma = i915_vma_get(vma); 2479 if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0) 2480 if (vma->fence) 2481 intel_state->flags |= PLANE_HAS_FENCE; 2482 2483 plane_state->src_x = 0; 2484 plane_state->src_y = 0; 2485 plane_state->src_w = fb->width << 16; 2486 plane_state->src_h = fb->height << 16; 2487 2488 plane_state->crtc_x = 0; 2489 plane_state->crtc_y = 0; 2490 plane_state->crtc_w = fb->width; 2491 plane_state->crtc_h = fb->height; 2492 2493 intel_state->uapi.src = drm_plane_state_src(plane_state); 2494 intel_state->uapi.dst = drm_plane_state_dest(plane_state); 2495 2496 if (plane_config->tiling) 2497 dev_priv->preserve_bios_swizzle = true; 2498 2499 plane_state->fb = fb; 2500 drm_framebuffer_get(fb); 2501 2502 plane_state->crtc = &intel_crtc->base; 2503 intel_plane_copy_uapi_to_hw_state(intel_state, intel_state, 2504 intel_crtc); 2505 2506 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 2507 2508 atomic_or(to_intel_plane(primary)->frontbuffer_bit, 2509 &to_intel_frontbuffer(fb)->bits); 2510 } 2511 2512 unsigned int 2513 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state) 2514 { 2515 int x = 0, y = 0; 2516 2517 intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 2518 plane_state->color_plane[0].offset, 0); 2519 2520 return y; 2521 } 2522 2523 static int 2524 __intel_display_resume(struct drm_device *dev, 2525 struct drm_atomic_state *state, 2526 struct drm_modeset_acquire_ctx *ctx) 2527 { 2528 struct drm_crtc_state *crtc_state; 2529 struct drm_crtc *crtc; 2530 int i, ret; 2531 2532 intel_modeset_setup_hw_state(dev, ctx); 2533 intel_vga_redisable(to_i915(dev)); 2534 2535 if (!state) 2536 return 0; 2537 2538 /* 2539 * We've duplicated the state, pointers to the old state are invalid. 2540 * 2541 * Don't attempt to use the old state until we commit the duplicated state. 2542 */ 2543 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 2544 /* 2545 * Force recalculation even if we restore 2546 * current state. With fast modeset this may not result 2547 * in a modeset when the state is compatible. 2548 */ 2549 crtc_state->mode_changed = true; 2550 } 2551 2552 /* ignore any reset values/BIOS leftovers in the WM registers */ 2553 if (!HAS_GMCH(to_i915(dev))) 2554 to_intel_atomic_state(state)->skip_intermediate_wm = true; 2555 2556 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 2557 2558 drm_WARN_ON(dev, ret == -EDEADLK); 2559 return ret; 2560 } 2561 2562 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 2563 { 2564 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 2565 intel_has_gpu_reset(&dev_priv->gt)); 2566 } 2567 2568 void intel_display_prepare_reset(struct drm_i915_private *dev_priv) 2569 { 2570 struct drm_device *dev = &dev_priv->drm; 2571 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 2572 struct drm_atomic_state *state; 2573 int ret; 2574 2575 if (!HAS_DISPLAY(dev_priv)) 2576 return; 2577 2578 /* reset doesn't touch the display */ 2579 if (!dev_priv->params.force_reset_modeset_test && 2580 !gpu_reset_clobbers_display(dev_priv)) 2581 return; 2582 2583 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 2584 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 2585 smp_mb__after_atomic(); 2586 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 2587 2588 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 2589 drm_dbg_kms(&dev_priv->drm, 2590 "Modeset potentially stuck, unbreaking through wedging\n"); 2591 intel_gt_set_wedged(&dev_priv->gt); 2592 } 2593 2594 /* 2595 * Need mode_config.mutex so that we don't 2596 * trample ongoing ->detect() and whatnot. 2597 */ 2598 mutex_lock(&dev->mode_config.mutex); 2599 drm_modeset_acquire_init(ctx, 0); 2600 while (1) { 2601 ret = drm_modeset_lock_all_ctx(dev, ctx); 2602 if (ret != -EDEADLK) 2603 break; 2604 2605 drm_modeset_backoff(ctx); 2606 } 2607 /* 2608 * Disabling the crtcs gracefully seems nicer. Also the 2609 * g33 docs say we should at least disable all the planes. 2610 */ 2611 state = drm_atomic_helper_duplicate_state(dev, ctx); 2612 if (IS_ERR(state)) { 2613 ret = PTR_ERR(state); 2614 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n", 2615 ret); 2616 return; 2617 } 2618 2619 ret = drm_atomic_helper_disable_all(dev, ctx); 2620 if (ret) { 2621 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 2622 ret); 2623 drm_atomic_state_put(state); 2624 return; 2625 } 2626 2627 dev_priv->modeset_restore_state = state; 2628 state->acquire_ctx = ctx; 2629 } 2630 2631 void intel_display_finish_reset(struct drm_i915_private *dev_priv) 2632 { 2633 struct drm_device *dev = &dev_priv->drm; 2634 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 2635 struct drm_atomic_state *state; 2636 int ret; 2637 2638 if (!HAS_DISPLAY(dev_priv)) 2639 return; 2640 2641 /* reset doesn't touch the display */ 2642 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 2643 return; 2644 2645 state = fetch_and_zero(&dev_priv->modeset_restore_state); 2646 if (!state) 2647 goto unlock; 2648 2649 /* reset doesn't touch the display */ 2650 if (!gpu_reset_clobbers_display(dev_priv)) { 2651 /* for testing only restore the display */ 2652 ret = __intel_display_resume(dev, state, ctx); 2653 if (ret) 2654 drm_err(&dev_priv->drm, 2655 "Restoring old state failed with %i\n", ret); 2656 } else { 2657 /* 2658 * The display has been reset as well, 2659 * so need a full re-initialization. 2660 */ 2661 intel_pps_unlock_regs_wa(dev_priv); 2662 intel_modeset_init_hw(dev_priv); 2663 intel_init_clock_gating(dev_priv); 2664 intel_hpd_init(dev_priv); 2665 2666 ret = __intel_display_resume(dev, state, ctx); 2667 if (ret) 2668 drm_err(&dev_priv->drm, 2669 "Restoring old state failed with %i\n", ret); 2670 2671 intel_hpd_poll_disable(dev_priv); 2672 } 2673 2674 drm_atomic_state_put(state); 2675 unlock: 2676 drm_modeset_drop_locks(ctx); 2677 drm_modeset_acquire_fini(ctx); 2678 mutex_unlock(&dev->mode_config.mutex); 2679 2680 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 2681 } 2682 2683 static void icl_set_pipe_chicken(struct intel_crtc *crtc) 2684 { 2685 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2686 enum pipe pipe = crtc->pipe; 2687 u32 tmp; 2688 2689 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe)); 2690 2691 /* 2692 * Display WA #1153: icl 2693 * enable hardware to bypass the alpha math 2694 * and rounding for per-pixel values 00 and 0xff 2695 */ 2696 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 2697 /* 2698 * Display WA # 1605353570: icl 2699 * Set the pixel rounding bit to 1 for allowing 2700 * passthrough of Frame buffer pixels unmodified 2701 * across pipe 2702 */ 2703 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 2704 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp); 2705 } 2706 2707 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 2708 { 2709 struct drm_crtc *crtc; 2710 bool cleanup_done; 2711 2712 drm_for_each_crtc(crtc, &dev_priv->drm) { 2713 struct drm_crtc_commit *commit; 2714 spin_lock(&crtc->commit_lock); 2715 commit = list_first_entry_or_null(&crtc->commit_list, 2716 struct drm_crtc_commit, commit_entry); 2717 cleanup_done = commit ? 2718 try_wait_for_completion(&commit->cleanup_done) : true; 2719 spin_unlock(&crtc->commit_lock); 2720 2721 if (cleanup_done) 2722 continue; 2723 2724 drm_crtc_wait_one_vblank(crtc); 2725 2726 return true; 2727 } 2728 2729 return false; 2730 } 2731 2732 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 2733 { 2734 u32 temp; 2735 2736 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE); 2737 2738 mutex_lock(&dev_priv->sb_lock); 2739 2740 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2741 temp |= SBI_SSCCTL_DISABLE; 2742 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 2743 2744 mutex_unlock(&dev_priv->sb_lock); 2745 } 2746 2747 /* Program iCLKIP clock to the desired frequency */ 2748 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 2749 { 2750 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2751 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2752 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 2753 u32 divsel, phaseinc, auxdiv, phasedir = 0; 2754 u32 temp; 2755 2756 lpt_disable_iclkip(dev_priv); 2757 2758 /* The iCLK virtual clock root frequency is in MHz, 2759 * but the adjusted_mode->crtc_clock in in KHz. To get the 2760 * divisors, it is necessary to divide one by another, so we 2761 * convert the virtual clock precision to KHz here for higher 2762 * precision. 2763 */ 2764 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 2765 u32 iclk_virtual_root_freq = 172800 * 1000; 2766 u32 iclk_pi_range = 64; 2767 u32 desired_divisor; 2768 2769 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 2770 clock << auxdiv); 2771 divsel = (desired_divisor / iclk_pi_range) - 2; 2772 phaseinc = desired_divisor % iclk_pi_range; 2773 2774 /* 2775 * Near 20MHz is a corner case which is 2776 * out of range for the 7-bit divisor 2777 */ 2778 if (divsel <= 0x7f) 2779 break; 2780 } 2781 2782 /* This should not happen with any sane values */ 2783 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 2784 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 2785 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) & 2786 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 2787 2788 drm_dbg_kms(&dev_priv->drm, 2789 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 2790 clock, auxdiv, divsel, phasedir, phaseinc); 2791 2792 mutex_lock(&dev_priv->sb_lock); 2793 2794 /* Program SSCDIVINTPHASE6 */ 2795 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 2796 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 2797 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 2798 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 2799 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 2800 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 2801 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 2802 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 2803 2804 /* Program SSCAUXDIV */ 2805 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 2806 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 2807 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 2808 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 2809 2810 /* Enable modulator and associated divider */ 2811 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2812 temp &= ~SBI_SSCCTL_DISABLE; 2813 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 2814 2815 mutex_unlock(&dev_priv->sb_lock); 2816 2817 /* Wait for initialization time */ 2818 udelay(24); 2819 2820 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE); 2821 } 2822 2823 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 2824 { 2825 u32 divsel, phaseinc, auxdiv; 2826 u32 iclk_virtual_root_freq = 172800 * 1000; 2827 u32 iclk_pi_range = 64; 2828 u32 desired_divisor; 2829 u32 temp; 2830 2831 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 2832 return 0; 2833 2834 mutex_lock(&dev_priv->sb_lock); 2835 2836 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 2837 if (temp & SBI_SSCCTL_DISABLE) { 2838 mutex_unlock(&dev_priv->sb_lock); 2839 return 0; 2840 } 2841 2842 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 2843 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 2844 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 2845 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 2846 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 2847 2848 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 2849 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 2850 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 2851 2852 mutex_unlock(&dev_priv->sb_lock); 2853 2854 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 2855 2856 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 2857 desired_divisor << auxdiv); 2858 } 2859 2860 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 2861 enum pipe pch_transcoder) 2862 { 2863 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2864 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2865 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 2866 2867 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder), 2868 intel_de_read(dev_priv, HTOTAL(cpu_transcoder))); 2869 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder), 2870 intel_de_read(dev_priv, HBLANK(cpu_transcoder))); 2871 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder), 2872 intel_de_read(dev_priv, HSYNC(cpu_transcoder))); 2873 2874 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder), 2875 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 2876 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder), 2877 intel_de_read(dev_priv, VBLANK(cpu_transcoder))); 2878 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder), 2879 intel_de_read(dev_priv, VSYNC(cpu_transcoder))); 2880 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder), 2881 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder))); 2882 } 2883 2884 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) 2885 { 2886 u32 temp; 2887 2888 temp = intel_de_read(dev_priv, SOUTH_CHICKEN1); 2889 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 2890 return; 2891 2892 drm_WARN_ON(&dev_priv->drm, 2893 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) & 2894 FDI_RX_ENABLE); 2895 drm_WARN_ON(&dev_priv->drm, 2896 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) & 2897 FDI_RX_ENABLE); 2898 2899 temp &= ~FDI_BC_BIFURCATION_SELECT; 2900 if (enable) 2901 temp |= FDI_BC_BIFURCATION_SELECT; 2902 2903 drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n", 2904 enable ? "en" : "dis"); 2905 intel_de_write(dev_priv, SOUTH_CHICKEN1, temp); 2906 intel_de_posting_read(dev_priv, SOUTH_CHICKEN1); 2907 } 2908 2909 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) 2910 { 2911 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2912 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2913 2914 switch (crtc->pipe) { 2915 case PIPE_A: 2916 break; 2917 case PIPE_B: 2918 if (crtc_state->fdi_lanes > 2) 2919 cpt_set_fdi_bc_bifurcation(dev_priv, false); 2920 else 2921 cpt_set_fdi_bc_bifurcation(dev_priv, true); 2922 2923 break; 2924 case PIPE_C: 2925 cpt_set_fdi_bc_bifurcation(dev_priv, true); 2926 2927 break; 2928 default: 2929 BUG(); 2930 } 2931 } 2932 2933 /* 2934 * Finds the encoder associated with the given CRTC. This can only be 2935 * used when we know that the CRTC isn't feeding multiple encoders! 2936 */ 2937 struct intel_encoder * 2938 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 2939 const struct intel_crtc_state *crtc_state) 2940 { 2941 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2942 const struct drm_connector_state *connector_state; 2943 const struct drm_connector *connector; 2944 struct intel_encoder *encoder = NULL; 2945 int num_encoders = 0; 2946 int i; 2947 2948 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 2949 if (connector_state->crtc != &crtc->base) 2950 continue; 2951 2952 encoder = to_intel_encoder(connector_state->best_encoder); 2953 num_encoders++; 2954 } 2955 2956 drm_WARN(encoder->base.dev, num_encoders != 1, 2957 "%d encoders for pipe %c\n", 2958 num_encoders, pipe_name(crtc->pipe)); 2959 2960 return encoder; 2961 } 2962 2963 /* 2964 * Enable PCH resources required for PCH ports: 2965 * - PCH PLLs 2966 * - FDI training & RX/TX 2967 * - update transcoder timings 2968 * - DP transcoding bits 2969 * - transcoder 2970 */ 2971 static void ilk_pch_enable(const struct intel_atomic_state *state, 2972 const struct intel_crtc_state *crtc_state) 2973 { 2974 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2975 struct drm_device *dev = crtc->base.dev; 2976 struct drm_i915_private *dev_priv = to_i915(dev); 2977 enum pipe pipe = crtc->pipe; 2978 u32 temp; 2979 2980 assert_pch_transcoder_disabled(dev_priv, pipe); 2981 2982 if (IS_IVYBRIDGE(dev_priv)) 2983 ivb_update_fdi_bc_bifurcation(crtc_state); 2984 2985 /* Write the TU size bits before fdi link training, so that error 2986 * detection works. */ 2987 intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe), 2988 intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 2989 2990 /* For PCH output, training FDI link */ 2991 dev_priv->display.fdi_link_train(crtc, crtc_state); 2992 2993 /* We need to program the right clock selection before writing the pixel 2994 * mutliplier into the DPLL. */ 2995 if (HAS_PCH_CPT(dev_priv)) { 2996 u32 sel; 2997 2998 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 2999 temp |= TRANS_DPLL_ENABLE(pipe); 3000 sel = TRANS_DPLLB_SEL(pipe); 3001 if (crtc_state->shared_dpll == 3002 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 3003 temp |= sel; 3004 else 3005 temp &= ~sel; 3006 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 3007 } 3008 3009 /* XXX: pch pll's can be enabled any time before we enable the PCH 3010 * transcoder, and we actually should do this to not upset any PCH 3011 * transcoder that already use the clock when we share it. 3012 * 3013 * Note that enable_shared_dpll tries to do the right thing, but 3014 * get_shared_dpll unconditionally resets the pll - we need that to have 3015 * the right LVDS enable sequence. */ 3016 intel_enable_shared_dpll(crtc_state); 3017 3018 /* set transcoder timing, panel must allow it */ 3019 assert_panel_unlocked(dev_priv, pipe); 3020 ilk_pch_transcoder_set_timings(crtc_state, pipe); 3021 3022 intel_fdi_normal_train(crtc); 3023 3024 /* For PCH DP, enable TRANS_DP_CTL */ 3025 if (HAS_PCH_CPT(dev_priv) && 3026 intel_crtc_has_dp_encoder(crtc_state)) { 3027 const struct drm_display_mode *adjusted_mode = 3028 &crtc_state->hw.adjusted_mode; 3029 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 3030 i915_reg_t reg = TRANS_DP_CTL(pipe); 3031 enum port port; 3032 3033 temp = intel_de_read(dev_priv, reg); 3034 temp &= ~(TRANS_DP_PORT_SEL_MASK | 3035 TRANS_DP_SYNC_MASK | 3036 TRANS_DP_BPC_MASK); 3037 temp |= TRANS_DP_OUTPUT_ENABLE; 3038 temp |= bpc << 9; /* same format but at 11:9 */ 3039 3040 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 3041 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 3042 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 3043 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 3044 3045 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 3046 drm_WARN_ON(dev, port < PORT_B || port > PORT_D); 3047 temp |= TRANS_DP_PORT_SEL(port); 3048 3049 intel_de_write(dev_priv, reg, temp); 3050 } 3051 3052 ilk_enable_pch_transcoder(crtc_state); 3053 } 3054 3055 void lpt_pch_enable(const struct intel_crtc_state *crtc_state) 3056 { 3057 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3058 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3059 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 3060 3061 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 3062 3063 lpt_program_iclkip(crtc_state); 3064 3065 /* Set transcoder timing. */ 3066 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A); 3067 3068 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 3069 } 3070 3071 static void cpt_verify_modeset(struct drm_i915_private *dev_priv, 3072 enum pipe pipe) 3073 { 3074 i915_reg_t dslreg = PIPEDSL(pipe); 3075 u32 temp; 3076 3077 temp = intel_de_read(dev_priv, dslreg); 3078 udelay(500); 3079 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) { 3080 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) 3081 drm_err(&dev_priv->drm, 3082 "mode set failed: pipe %c stuck\n", 3083 pipe_name(pipe)); 3084 } 3085 } 3086 3087 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state) 3088 { 3089 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3090 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3091 const struct drm_rect *dst = &crtc_state->pch_pfit.dst; 3092 enum pipe pipe = crtc->pipe; 3093 int width = drm_rect_width(dst); 3094 int height = drm_rect_height(dst); 3095 int x = dst->x1; 3096 int y = dst->y1; 3097 3098 if (!crtc_state->pch_pfit.enabled) 3099 return; 3100 3101 /* Force use of hard-coded filter coefficients 3102 * as some pre-programmed values are broken, 3103 * e.g. x201. 3104 */ 3105 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 3106 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 3107 PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); 3108 else 3109 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 3110 PF_FILTER_MED_3x3); 3111 intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y); 3112 intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height); 3113 } 3114 3115 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 3116 { 3117 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3118 struct drm_device *dev = crtc->base.dev; 3119 struct drm_i915_private *dev_priv = to_i915(dev); 3120 3121 if (!crtc_state->ips_enabled) 3122 return; 3123 3124 /* 3125 * We can only enable IPS after we enable a plane and wait for a vblank 3126 * This function is called from post_plane_update, which is run after 3127 * a vblank wait. 3128 */ 3129 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 3130 3131 if (IS_BROADWELL(dev_priv)) { 3132 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 3133 IPS_ENABLE | IPS_PCODE_CONTROL)); 3134 /* Quoting Art Runyan: "its not safe to expect any particular 3135 * value in IPS_CTL bit 31 after enabling IPS through the 3136 * mailbox." Moreover, the mailbox may return a bogus state, 3137 * so we need to just enable it and continue on. 3138 */ 3139 } else { 3140 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE); 3141 /* The bit only becomes 1 in the next vblank, so this wait here 3142 * is essentially intel_wait_for_vblank. If we don't have this 3143 * and don't wait for vblanks until the end of crtc_enable, then 3144 * the HW state readout code will complain that the expected 3145 * IPS_CTL value is not the one we read. */ 3146 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 3147 drm_err(&dev_priv->drm, 3148 "Timed out waiting for IPS enable\n"); 3149 } 3150 } 3151 3152 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 3153 { 3154 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3155 struct drm_device *dev = crtc->base.dev; 3156 struct drm_i915_private *dev_priv = to_i915(dev); 3157 3158 if (!crtc_state->ips_enabled) 3159 return; 3160 3161 if (IS_BROADWELL(dev_priv)) { 3162 drm_WARN_ON(dev, 3163 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 3164 /* 3165 * Wait for PCODE to finish disabling IPS. The BSpec specified 3166 * 42ms timeout value leads to occasional timeouts so use 100ms 3167 * instead. 3168 */ 3169 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 3170 drm_err(&dev_priv->drm, 3171 "Timed out waiting for IPS disable\n"); 3172 } else { 3173 intel_de_write(dev_priv, IPS_CTL, 0); 3174 intel_de_posting_read(dev_priv, IPS_CTL); 3175 } 3176 3177 /* We need to wait for a vblank before we can disable the plane. */ 3178 intel_wait_for_vblank(dev_priv, crtc->pipe); 3179 } 3180 3181 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) 3182 { 3183 if (intel_crtc->overlay) 3184 (void) intel_overlay_switch_off(intel_crtc->overlay); 3185 3186 /* Let userspace switch the overlay on again. In most cases userspace 3187 * has to recompute where to put it anyway. 3188 */ 3189 } 3190 3191 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 3192 const struct intel_crtc_state *new_crtc_state) 3193 { 3194 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 3195 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3196 3197 if (!old_crtc_state->ips_enabled) 3198 return false; 3199 3200 if (intel_crtc_needs_modeset(new_crtc_state)) 3201 return true; 3202 3203 /* 3204 * Workaround : Do not read or write the pipe palette/gamma data while 3205 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 3206 * 3207 * Disable IPS before we program the LUT. 3208 */ 3209 if (IS_HASWELL(dev_priv) && 3210 (new_crtc_state->uapi.color_mgmt_changed || 3211 new_crtc_state->update_pipe) && 3212 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 3213 return true; 3214 3215 return !new_crtc_state->ips_enabled; 3216 } 3217 3218 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 3219 const struct intel_crtc_state *new_crtc_state) 3220 { 3221 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 3222 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3223 3224 if (!new_crtc_state->ips_enabled) 3225 return false; 3226 3227 if (intel_crtc_needs_modeset(new_crtc_state)) 3228 return true; 3229 3230 /* 3231 * Workaround : Do not read or write the pipe palette/gamma data while 3232 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 3233 * 3234 * Re-enable IPS after the LUT has been programmed. 3235 */ 3236 if (IS_HASWELL(dev_priv) && 3237 (new_crtc_state->uapi.color_mgmt_changed || 3238 new_crtc_state->update_pipe) && 3239 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 3240 return true; 3241 3242 /* 3243 * We can't read out IPS on broadwell, assume the worst and 3244 * forcibly enable IPS on the first fastset. 3245 */ 3246 if (new_crtc_state->update_pipe && old_crtc_state->inherited) 3247 return true; 3248 3249 return !old_crtc_state->ips_enabled; 3250 } 3251 3252 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) 3253 { 3254 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 3255 3256 if (!crtc_state->nv12_planes) 3257 return false; 3258 3259 /* WA Display #0827: Gen9:all */ 3260 if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv)) 3261 return true; 3262 3263 return false; 3264 } 3265 3266 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) 3267 { 3268 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 3269 3270 /* Wa_2006604312:icl,ehl */ 3271 if (crtc_state->scaler_state.scaler_users > 0 && IS_GEN(dev_priv, 11)) 3272 return true; 3273 3274 return false; 3275 } 3276 3277 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, 3278 const struct intel_crtc_state *new_crtc_state) 3279 { 3280 return (!old_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)) && 3281 new_crtc_state->active_planes; 3282 } 3283 3284 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, 3285 const struct intel_crtc_state *new_crtc_state) 3286 { 3287 return old_crtc_state->active_planes && 3288 (!new_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)); 3289 } 3290 3291 static void intel_post_plane_update(struct intel_atomic_state *state, 3292 struct intel_crtc *crtc) 3293 { 3294 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 3295 const struct intel_crtc_state *old_crtc_state = 3296 intel_atomic_get_old_crtc_state(state, crtc); 3297 const struct intel_crtc_state *new_crtc_state = 3298 intel_atomic_get_new_crtc_state(state, crtc); 3299 enum pipe pipe = crtc->pipe; 3300 3301 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); 3302 3303 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) 3304 intel_update_watermarks(crtc); 3305 3306 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state)) 3307 hsw_enable_ips(new_crtc_state); 3308 3309 intel_fbc_post_update(state, crtc); 3310 3311 if (needs_nv12_wa(old_crtc_state) && 3312 !needs_nv12_wa(new_crtc_state)) 3313 skl_wa_827(dev_priv, pipe, false); 3314 3315 if (needs_scalerclk_wa(old_crtc_state) && 3316 !needs_scalerclk_wa(new_crtc_state)) 3317 icl_wa_scalerclkgating(dev_priv, pipe, false); 3318 } 3319 3320 static void intel_crtc_enable_flip_done(struct intel_atomic_state *state, 3321 struct intel_crtc *crtc) 3322 { 3323 const struct intel_crtc_state *crtc_state = 3324 intel_atomic_get_new_crtc_state(state, crtc); 3325 u8 update_planes = crtc_state->update_planes; 3326 const struct intel_plane_state *plane_state; 3327 struct intel_plane *plane; 3328 int i; 3329 3330 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 3331 if (plane->enable_flip_done && 3332 plane->pipe == crtc->pipe && 3333 update_planes & BIT(plane->id)) 3334 plane->enable_flip_done(plane); 3335 } 3336 } 3337 3338 static void intel_crtc_disable_flip_done(struct intel_atomic_state *state, 3339 struct intel_crtc *crtc) 3340 { 3341 const struct intel_crtc_state *crtc_state = 3342 intel_atomic_get_new_crtc_state(state, crtc); 3343 u8 update_planes = crtc_state->update_planes; 3344 const struct intel_plane_state *plane_state; 3345 struct intel_plane *plane; 3346 int i; 3347 3348 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 3349 if (plane->disable_flip_done && 3350 plane->pipe == crtc->pipe && 3351 update_planes & BIT(plane->id)) 3352 plane->disable_flip_done(plane); 3353 } 3354 } 3355 3356 static void intel_crtc_async_flip_disable_wa(struct intel_atomic_state *state, 3357 struct intel_crtc *crtc) 3358 { 3359 struct drm_i915_private *i915 = to_i915(state->base.dev); 3360 const struct intel_crtc_state *old_crtc_state = 3361 intel_atomic_get_old_crtc_state(state, crtc); 3362 const struct intel_crtc_state *new_crtc_state = 3363 intel_atomic_get_new_crtc_state(state, crtc); 3364 u8 update_planes = new_crtc_state->update_planes; 3365 const struct intel_plane_state *old_plane_state; 3366 struct intel_plane *plane; 3367 bool need_vbl_wait = false; 3368 int i; 3369 3370 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 3371 if (plane->need_async_flip_disable_wa && 3372 plane->pipe == crtc->pipe && 3373 update_planes & BIT(plane->id)) { 3374 /* 3375 * Apart from the async flip bit we want to 3376 * preserve the old state for the plane. 3377 */ 3378 plane->async_flip(plane, old_crtc_state, 3379 old_plane_state, false); 3380 need_vbl_wait = true; 3381 } 3382 } 3383 3384 if (need_vbl_wait) 3385 intel_wait_for_vblank(i915, crtc->pipe); 3386 } 3387 3388 static void intel_pre_plane_update(struct intel_atomic_state *state, 3389 struct intel_crtc *crtc) 3390 { 3391 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 3392 const struct intel_crtc_state *old_crtc_state = 3393 intel_atomic_get_old_crtc_state(state, crtc); 3394 const struct intel_crtc_state *new_crtc_state = 3395 intel_atomic_get_new_crtc_state(state, crtc); 3396 enum pipe pipe = crtc->pipe; 3397 3398 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state)) 3399 hsw_disable_ips(old_crtc_state); 3400 3401 if (intel_fbc_pre_update(state, crtc)) 3402 intel_wait_for_vblank(dev_priv, pipe); 3403 3404 /* Display WA 827 */ 3405 if (!needs_nv12_wa(old_crtc_state) && 3406 needs_nv12_wa(new_crtc_state)) 3407 skl_wa_827(dev_priv, pipe, true); 3408 3409 /* Wa_2006604312:icl,ehl */ 3410 if (!needs_scalerclk_wa(old_crtc_state) && 3411 needs_scalerclk_wa(new_crtc_state)) 3412 icl_wa_scalerclkgating(dev_priv, pipe, true); 3413 3414 /* 3415 * Vblank time updates from the shadow to live plane control register 3416 * are blocked if the memory self-refresh mode is active at that 3417 * moment. So to make sure the plane gets truly disabled, disable 3418 * first the self-refresh mode. The self-refresh enable bit in turn 3419 * will be checked/applied by the HW only at the next frame start 3420 * event which is after the vblank start event, so we need to have a 3421 * wait-for-vblank between disabling the plane and the pipe. 3422 */ 3423 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active && 3424 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 3425 intel_wait_for_vblank(dev_priv, pipe); 3426 3427 /* 3428 * IVB workaround: must disable low power watermarks for at least 3429 * one frame before enabling scaling. LP watermarks can be re-enabled 3430 * when scaling is disabled. 3431 * 3432 * WaCxSRDisabledForSpriteScaling:ivb 3433 */ 3434 if (old_crtc_state->hw.active && 3435 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv)) 3436 intel_wait_for_vblank(dev_priv, pipe); 3437 3438 /* 3439 * If we're doing a modeset we don't need to do any 3440 * pre-vblank watermark programming here. 3441 */ 3442 if (!intel_crtc_needs_modeset(new_crtc_state)) { 3443 /* 3444 * For platforms that support atomic watermarks, program the 3445 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 3446 * will be the intermediate values that are safe for both pre- and 3447 * post- vblank; when vblank happens, the 'active' values will be set 3448 * to the final 'target' values and we'll do this again to get the 3449 * optimal watermarks. For gen9+ platforms, the values we program here 3450 * will be the final target values which will get automatically latched 3451 * at vblank time; no further programming will be necessary. 3452 * 3453 * If a platform hasn't been transitioned to atomic watermarks yet, 3454 * we'll continue to update watermarks the old way, if flags tell 3455 * us to. 3456 */ 3457 if (dev_priv->display.initial_watermarks) 3458 dev_priv->display.initial_watermarks(state, crtc); 3459 else if (new_crtc_state->update_wm_pre) 3460 intel_update_watermarks(crtc); 3461 } 3462 3463 /* 3464 * Gen2 reports pipe underruns whenever all planes are disabled. 3465 * So disable underrun reporting before all the planes get disabled. 3466 * 3467 * We do this after .initial_watermarks() so that we have a 3468 * chance of catching underruns with the intermediate watermarks 3469 * vs. the old plane configuration. 3470 */ 3471 if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state)) 3472 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3473 3474 /* 3475 * WA for platforms where async address update enable bit 3476 * is double buffered and only latched at start of vblank. 3477 */ 3478 if (old_crtc_state->uapi.async_flip && !new_crtc_state->uapi.async_flip) 3479 intel_crtc_async_flip_disable_wa(state, crtc); 3480 } 3481 3482 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 3483 struct intel_crtc *crtc) 3484 { 3485 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3486 const struct intel_crtc_state *new_crtc_state = 3487 intel_atomic_get_new_crtc_state(state, crtc); 3488 unsigned int update_mask = new_crtc_state->update_planes; 3489 const struct intel_plane_state *old_plane_state; 3490 struct intel_plane *plane; 3491 unsigned fb_bits = 0; 3492 int i; 3493 3494 intel_crtc_dpms_overlay_disable(crtc); 3495 3496 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 3497 if (crtc->pipe != plane->pipe || 3498 !(update_mask & BIT(plane->id))) 3499 continue; 3500 3501 intel_disable_plane(plane, new_crtc_state); 3502 3503 if (old_plane_state->uapi.visible) 3504 fb_bits |= plane->frontbuffer_bit; 3505 } 3506 3507 intel_frontbuffer_flip(dev_priv, fb_bits); 3508 } 3509 3510 /* 3511 * intel_connector_primary_encoder - get the primary encoder for a connector 3512 * @connector: connector for which to return the encoder 3513 * 3514 * Returns the primary encoder for a connector. There is a 1:1 mapping from 3515 * all connectors to their encoder, except for DP-MST connectors which have 3516 * both a virtual and a primary encoder. These DP-MST primary encoders can be 3517 * pointed to by as many DP-MST connectors as there are pipes. 3518 */ 3519 static struct intel_encoder * 3520 intel_connector_primary_encoder(struct intel_connector *connector) 3521 { 3522 struct intel_encoder *encoder; 3523 3524 if (connector->mst_port) 3525 return &dp_to_dig_port(connector->mst_port)->base; 3526 3527 encoder = intel_attached_encoder(connector); 3528 drm_WARN_ON(connector->base.dev, !encoder); 3529 3530 return encoder; 3531 } 3532 3533 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 3534 { 3535 struct drm_connector_state *new_conn_state; 3536 struct drm_connector *connector; 3537 int i; 3538 3539 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 3540 i) { 3541 struct intel_connector *intel_connector; 3542 struct intel_encoder *encoder; 3543 struct intel_crtc *crtc; 3544 3545 if (!intel_connector_needs_modeset(state, connector)) 3546 continue; 3547 3548 intel_connector = to_intel_connector(connector); 3549 encoder = intel_connector_primary_encoder(intel_connector); 3550 if (!encoder->update_prepare) 3551 continue; 3552 3553 crtc = new_conn_state->crtc ? 3554 to_intel_crtc(new_conn_state->crtc) : NULL; 3555 encoder->update_prepare(state, encoder, crtc); 3556 } 3557 } 3558 3559 static void intel_encoders_update_complete(struct intel_atomic_state *state) 3560 { 3561 struct drm_connector_state *new_conn_state; 3562 struct drm_connector *connector; 3563 int i; 3564 3565 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 3566 i) { 3567 struct intel_connector *intel_connector; 3568 struct intel_encoder *encoder; 3569 struct intel_crtc *crtc; 3570 3571 if (!intel_connector_needs_modeset(state, connector)) 3572 continue; 3573 3574 intel_connector = to_intel_connector(connector); 3575 encoder = intel_connector_primary_encoder(intel_connector); 3576 if (!encoder->update_complete) 3577 continue; 3578 3579 crtc = new_conn_state->crtc ? 3580 to_intel_crtc(new_conn_state->crtc) : NULL; 3581 encoder->update_complete(state, encoder, crtc); 3582 } 3583 } 3584 3585 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, 3586 struct intel_crtc *crtc) 3587 { 3588 const struct intel_crtc_state *crtc_state = 3589 intel_atomic_get_new_crtc_state(state, crtc); 3590 const struct drm_connector_state *conn_state; 3591 struct drm_connector *conn; 3592 int i; 3593 3594 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3595 struct intel_encoder *encoder = 3596 to_intel_encoder(conn_state->best_encoder); 3597 3598 if (conn_state->crtc != &crtc->base) 3599 continue; 3600 3601 if (encoder->pre_pll_enable) 3602 encoder->pre_pll_enable(state, encoder, 3603 crtc_state, conn_state); 3604 } 3605 } 3606 3607 static void intel_encoders_pre_enable(struct intel_atomic_state *state, 3608 struct intel_crtc *crtc) 3609 { 3610 const struct intel_crtc_state *crtc_state = 3611 intel_atomic_get_new_crtc_state(state, crtc); 3612 const struct drm_connector_state *conn_state; 3613 struct drm_connector *conn; 3614 int i; 3615 3616 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3617 struct intel_encoder *encoder = 3618 to_intel_encoder(conn_state->best_encoder); 3619 3620 if (conn_state->crtc != &crtc->base) 3621 continue; 3622 3623 if (encoder->pre_enable) 3624 encoder->pre_enable(state, encoder, 3625 crtc_state, conn_state); 3626 } 3627 } 3628 3629 static void intel_encoders_enable(struct intel_atomic_state *state, 3630 struct intel_crtc *crtc) 3631 { 3632 const struct intel_crtc_state *crtc_state = 3633 intel_atomic_get_new_crtc_state(state, crtc); 3634 const struct drm_connector_state *conn_state; 3635 struct drm_connector *conn; 3636 int i; 3637 3638 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3639 struct intel_encoder *encoder = 3640 to_intel_encoder(conn_state->best_encoder); 3641 3642 if (conn_state->crtc != &crtc->base) 3643 continue; 3644 3645 if (encoder->enable) 3646 encoder->enable(state, encoder, 3647 crtc_state, conn_state); 3648 intel_opregion_notify_encoder(encoder, true); 3649 } 3650 } 3651 3652 static void intel_encoders_disable(struct intel_atomic_state *state, 3653 struct intel_crtc *crtc) 3654 { 3655 const struct intel_crtc_state *old_crtc_state = 3656 intel_atomic_get_old_crtc_state(state, crtc); 3657 const struct drm_connector_state *old_conn_state; 3658 struct drm_connector *conn; 3659 int i; 3660 3661 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3662 struct intel_encoder *encoder = 3663 to_intel_encoder(old_conn_state->best_encoder); 3664 3665 if (old_conn_state->crtc != &crtc->base) 3666 continue; 3667 3668 intel_opregion_notify_encoder(encoder, false); 3669 if (encoder->disable) 3670 encoder->disable(state, encoder, 3671 old_crtc_state, old_conn_state); 3672 } 3673 } 3674 3675 static void intel_encoders_post_disable(struct intel_atomic_state *state, 3676 struct intel_crtc *crtc) 3677 { 3678 const struct intel_crtc_state *old_crtc_state = 3679 intel_atomic_get_old_crtc_state(state, crtc); 3680 const struct drm_connector_state *old_conn_state; 3681 struct drm_connector *conn; 3682 int i; 3683 3684 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3685 struct intel_encoder *encoder = 3686 to_intel_encoder(old_conn_state->best_encoder); 3687 3688 if (old_conn_state->crtc != &crtc->base) 3689 continue; 3690 3691 if (encoder->post_disable) 3692 encoder->post_disable(state, encoder, 3693 old_crtc_state, old_conn_state); 3694 } 3695 } 3696 3697 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, 3698 struct intel_crtc *crtc) 3699 { 3700 const struct intel_crtc_state *old_crtc_state = 3701 intel_atomic_get_old_crtc_state(state, crtc); 3702 const struct drm_connector_state *old_conn_state; 3703 struct drm_connector *conn; 3704 int i; 3705 3706 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 3707 struct intel_encoder *encoder = 3708 to_intel_encoder(old_conn_state->best_encoder); 3709 3710 if (old_conn_state->crtc != &crtc->base) 3711 continue; 3712 3713 if (encoder->post_pll_disable) 3714 encoder->post_pll_disable(state, encoder, 3715 old_crtc_state, old_conn_state); 3716 } 3717 } 3718 3719 static void intel_encoders_update_pipe(struct intel_atomic_state *state, 3720 struct intel_crtc *crtc) 3721 { 3722 const struct intel_crtc_state *crtc_state = 3723 intel_atomic_get_new_crtc_state(state, crtc); 3724 const struct drm_connector_state *conn_state; 3725 struct drm_connector *conn; 3726 int i; 3727 3728 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3729 struct intel_encoder *encoder = 3730 to_intel_encoder(conn_state->best_encoder); 3731 3732 if (conn_state->crtc != &crtc->base) 3733 continue; 3734 3735 if (encoder->update_pipe) 3736 encoder->update_pipe(state, encoder, 3737 crtc_state, conn_state); 3738 } 3739 } 3740 3741 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 3742 { 3743 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3744 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 3745 3746 plane->disable_plane(plane, crtc_state); 3747 } 3748 3749 static void ilk_crtc_enable(struct intel_atomic_state *state, 3750 struct intel_crtc *crtc) 3751 { 3752 const struct intel_crtc_state *new_crtc_state = 3753 intel_atomic_get_new_crtc_state(state, crtc); 3754 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3755 enum pipe pipe = crtc->pipe; 3756 3757 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3758 return; 3759 3760 /* 3761 * Sometimes spurious CPU pipe underruns happen during FDI 3762 * training, at least with VGA+HDMI cloning. Suppress them. 3763 * 3764 * On ILK we get an occasional spurious CPU pipe underruns 3765 * between eDP port A enable and vdd enable. Also PCH port 3766 * enable seems to result in the occasional CPU pipe underrun. 3767 * 3768 * Spurious PCH underruns also occur during PCH enabling. 3769 */ 3770 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 3771 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 3772 3773 if (new_crtc_state->has_pch_encoder) 3774 intel_prepare_shared_dpll(new_crtc_state); 3775 3776 if (intel_crtc_has_dp_encoder(new_crtc_state)) 3777 intel_dp_set_m_n(new_crtc_state, M1_N1); 3778 3779 intel_set_transcoder_timings(new_crtc_state); 3780 intel_set_pipe_src_size(new_crtc_state); 3781 3782 if (new_crtc_state->has_pch_encoder) 3783 intel_cpu_transcoder_set_m_n(new_crtc_state, 3784 &new_crtc_state->fdi_m_n, NULL); 3785 3786 ilk_set_pipeconf(new_crtc_state); 3787 3788 crtc->active = true; 3789 3790 intel_encoders_pre_enable(state, crtc); 3791 3792 if (new_crtc_state->has_pch_encoder) { 3793 /* Note: FDI PLL enabling _must_ be done before we enable the 3794 * cpu pipes, hence this is separate from all the other fdi/pch 3795 * enabling. */ 3796 ilk_fdi_pll_enable(new_crtc_state); 3797 } else { 3798 assert_fdi_tx_disabled(dev_priv, pipe); 3799 assert_fdi_rx_disabled(dev_priv, pipe); 3800 } 3801 3802 ilk_pfit_enable(new_crtc_state); 3803 3804 /* 3805 * On ILK+ LUT must be loaded before the pipe is running but with 3806 * clocks enabled 3807 */ 3808 intel_color_load_luts(new_crtc_state); 3809 intel_color_commit(new_crtc_state); 3810 /* update DSPCNTR to configure gamma for pipe bottom color */ 3811 intel_disable_primary_plane(new_crtc_state); 3812 3813 if (dev_priv->display.initial_watermarks) 3814 dev_priv->display.initial_watermarks(state, crtc); 3815 intel_enable_pipe(new_crtc_state); 3816 3817 if (new_crtc_state->has_pch_encoder) 3818 ilk_pch_enable(state, new_crtc_state); 3819 3820 intel_crtc_vblank_on(new_crtc_state); 3821 3822 intel_encoders_enable(state, crtc); 3823 3824 if (HAS_PCH_CPT(dev_priv)) 3825 cpt_verify_modeset(dev_priv, pipe); 3826 3827 /* 3828 * Must wait for vblank to avoid spurious PCH FIFO underruns. 3829 * And a second vblank wait is needed at least on ILK with 3830 * some interlaced HDMI modes. Let's do the double wait always 3831 * in case there are more corner cases we don't know about. 3832 */ 3833 if (new_crtc_state->has_pch_encoder) { 3834 intel_wait_for_vblank(dev_priv, pipe); 3835 intel_wait_for_vblank(dev_priv, pipe); 3836 } 3837 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 3838 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 3839 } 3840 3841 /* IPS only exists on ULT machines and is tied to pipe A. */ 3842 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 3843 { 3844 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 3845 } 3846 3847 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 3848 enum pipe pipe, bool apply) 3849 { 3850 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)); 3851 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 3852 3853 if (apply) 3854 val |= mask; 3855 else 3856 val &= ~mask; 3857 3858 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val); 3859 } 3860 3861 static void icl_pipe_mbus_enable(struct intel_crtc *crtc) 3862 { 3863 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3864 enum pipe pipe = crtc->pipe; 3865 u32 val; 3866 3867 val = MBUS_DBOX_A_CREDIT(2); 3868 3869 if (INTEL_GEN(dev_priv) >= 12) { 3870 val |= MBUS_DBOX_BW_CREDIT(2); 3871 val |= MBUS_DBOX_B_CREDIT(12); 3872 } else { 3873 val |= MBUS_DBOX_BW_CREDIT(1); 3874 val |= MBUS_DBOX_B_CREDIT(8); 3875 } 3876 3877 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val); 3878 } 3879 3880 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) 3881 { 3882 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3883 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3884 3885 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe), 3886 HSW_LINETIME(crtc_state->linetime) | 3887 HSW_IPS_LINETIME(crtc_state->ips_linetime)); 3888 } 3889 3890 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) 3891 { 3892 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3893 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3894 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder); 3895 u32 val; 3896 3897 val = intel_de_read(dev_priv, reg); 3898 val &= ~HSW_FRAME_START_DELAY_MASK; 3899 val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 3900 intel_de_write(dev_priv, reg, val); 3901 } 3902 3903 static void icl_ddi_bigjoiner_pre_enable(struct intel_atomic_state *state, 3904 const struct intel_crtc_state *crtc_state) 3905 { 3906 struct intel_crtc *master = to_intel_crtc(crtc_state->uapi.crtc); 3907 struct intel_crtc_state *master_crtc_state; 3908 struct drm_connector_state *conn_state; 3909 struct drm_connector *conn; 3910 struct intel_encoder *encoder = NULL; 3911 int i; 3912 3913 if (crtc_state->bigjoiner_slave) 3914 master = crtc_state->bigjoiner_linked_crtc; 3915 3916 master_crtc_state = intel_atomic_get_new_crtc_state(state, master); 3917 3918 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 3919 if (conn_state->crtc != &master->base) 3920 continue; 3921 3922 encoder = to_intel_encoder(conn_state->best_encoder); 3923 break; 3924 } 3925 3926 if (!crtc_state->bigjoiner_slave) { 3927 /* need to enable VDSC, which we skipped in pre-enable */ 3928 intel_dsc_enable(encoder, crtc_state); 3929 } else { 3930 /* 3931 * Enable sequence steps 1-7 on bigjoiner master 3932 */ 3933 intel_encoders_pre_pll_enable(state, master); 3934 intel_enable_shared_dpll(master_crtc_state); 3935 intel_encoders_pre_enable(state, master); 3936 3937 /* and DSC on slave */ 3938 intel_dsc_enable(NULL, crtc_state); 3939 } 3940 } 3941 3942 static void hsw_crtc_enable(struct intel_atomic_state *state, 3943 struct intel_crtc *crtc) 3944 { 3945 const struct intel_crtc_state *new_crtc_state = 3946 intel_atomic_get_new_crtc_state(state, crtc); 3947 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3948 enum pipe pipe = crtc->pipe, hsw_workaround_pipe; 3949 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 3950 bool psl_clkgate_wa; 3951 3952 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 3953 return; 3954 3955 if (!new_crtc_state->bigjoiner) { 3956 intel_encoders_pre_pll_enable(state, crtc); 3957 3958 if (new_crtc_state->shared_dpll) 3959 intel_enable_shared_dpll(new_crtc_state); 3960 3961 intel_encoders_pre_enable(state, crtc); 3962 } else { 3963 icl_ddi_bigjoiner_pre_enable(state, new_crtc_state); 3964 } 3965 3966 intel_set_pipe_src_size(new_crtc_state); 3967 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 3968 bdw_set_pipemisc(new_crtc_state); 3969 3970 if (!new_crtc_state->bigjoiner_slave && !transcoder_is_dsi(cpu_transcoder)) { 3971 intel_set_transcoder_timings(new_crtc_state); 3972 3973 if (cpu_transcoder != TRANSCODER_EDP) 3974 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder), 3975 new_crtc_state->pixel_multiplier - 1); 3976 3977 if (new_crtc_state->has_pch_encoder) 3978 intel_cpu_transcoder_set_m_n(new_crtc_state, 3979 &new_crtc_state->fdi_m_n, NULL); 3980 3981 hsw_set_frame_start_delay(new_crtc_state); 3982 } 3983 3984 if (!transcoder_is_dsi(cpu_transcoder)) 3985 hsw_set_pipeconf(new_crtc_state); 3986 3987 crtc->active = true; 3988 3989 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */ 3990 psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) && 3991 new_crtc_state->pch_pfit.enabled; 3992 if (psl_clkgate_wa) 3993 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 3994 3995 if (INTEL_GEN(dev_priv) >= 9) 3996 skl_pfit_enable(new_crtc_state); 3997 else 3998 ilk_pfit_enable(new_crtc_state); 3999 4000 /* 4001 * On ILK+ LUT must be loaded before the pipe is running but with 4002 * clocks enabled 4003 */ 4004 intel_color_load_luts(new_crtc_state); 4005 intel_color_commit(new_crtc_state); 4006 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 4007 if (INTEL_GEN(dev_priv) < 9) 4008 intel_disable_primary_plane(new_crtc_state); 4009 4010 hsw_set_linetime_wm(new_crtc_state); 4011 4012 if (INTEL_GEN(dev_priv) >= 11) 4013 icl_set_pipe_chicken(crtc); 4014 4015 if (dev_priv->display.initial_watermarks) 4016 dev_priv->display.initial_watermarks(state, crtc); 4017 4018 if (INTEL_GEN(dev_priv) >= 11) 4019 icl_pipe_mbus_enable(crtc); 4020 4021 if (new_crtc_state->bigjoiner_slave) 4022 intel_crtc_vblank_on(new_crtc_state); 4023 4024 intel_encoders_enable(state, crtc); 4025 4026 if (psl_clkgate_wa) { 4027 intel_wait_for_vblank(dev_priv, pipe); 4028 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 4029 } 4030 4031 /* If we change the relative order between pipe/planes enabling, we need 4032 * to change the workaround. */ 4033 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe; 4034 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 4035 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 4036 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 4037 } 4038 } 4039 4040 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state) 4041 { 4042 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 4043 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4044 enum pipe pipe = crtc->pipe; 4045 4046 /* To avoid upsetting the power well on haswell only disable the pfit if 4047 * it's in use. The hw state code will make sure we get this right. */ 4048 if (!old_crtc_state->pch_pfit.enabled) 4049 return; 4050 4051 intel_de_write(dev_priv, PF_CTL(pipe), 0); 4052 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0); 4053 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0); 4054 } 4055 4056 static void ilk_crtc_disable(struct intel_atomic_state *state, 4057 struct intel_crtc *crtc) 4058 { 4059 const struct intel_crtc_state *old_crtc_state = 4060 intel_atomic_get_old_crtc_state(state, crtc); 4061 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4062 enum pipe pipe = crtc->pipe; 4063 4064 /* 4065 * Sometimes spurious CPU pipe underruns happen when the 4066 * pipe is already disabled, but FDI RX/TX is still enabled. 4067 * Happens at least with VGA+HDMI cloning. Suppress them. 4068 */ 4069 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 4070 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 4071 4072 intel_encoders_disable(state, crtc); 4073 4074 intel_crtc_vblank_off(old_crtc_state); 4075 4076 intel_disable_pipe(old_crtc_state); 4077 4078 ilk_pfit_disable(old_crtc_state); 4079 4080 if (old_crtc_state->has_pch_encoder) 4081 ilk_fdi_disable(crtc); 4082 4083 intel_encoders_post_disable(state, crtc); 4084 4085 if (old_crtc_state->has_pch_encoder) { 4086 ilk_disable_pch_transcoder(dev_priv, pipe); 4087 4088 if (HAS_PCH_CPT(dev_priv)) { 4089 i915_reg_t reg; 4090 u32 temp; 4091 4092 /* disable TRANS_DP_CTL */ 4093 reg = TRANS_DP_CTL(pipe); 4094 temp = intel_de_read(dev_priv, reg); 4095 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 4096 TRANS_DP_PORT_SEL_MASK); 4097 temp |= TRANS_DP_PORT_SEL_NONE; 4098 intel_de_write(dev_priv, reg, temp); 4099 4100 /* disable DPLL_SEL */ 4101 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 4102 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 4103 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 4104 } 4105 4106 ilk_fdi_pll_disable(crtc); 4107 } 4108 4109 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 4110 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 4111 } 4112 4113 static void hsw_crtc_disable(struct intel_atomic_state *state, 4114 struct intel_crtc *crtc) 4115 { 4116 /* 4117 * FIXME collapse everything to one hook. 4118 * Need care with mst->ddi interactions. 4119 */ 4120 intel_encoders_disable(state, crtc); 4121 intel_encoders_post_disable(state, crtc); 4122 } 4123 4124 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 4125 { 4126 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4127 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4128 4129 if (!crtc_state->gmch_pfit.control) 4130 return; 4131 4132 /* 4133 * The panel fitter should only be adjusted whilst the pipe is disabled, 4134 * according to register description and PRM. 4135 */ 4136 drm_WARN_ON(&dev_priv->drm, 4137 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE); 4138 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 4139 4140 intel_de_write(dev_priv, PFIT_PGM_RATIOS, 4141 crtc_state->gmch_pfit.pgm_ratios); 4142 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control); 4143 4144 /* Border color in case we don't scale up to the full screen. Black by 4145 * default, change to something else for debugging. */ 4146 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0); 4147 } 4148 4149 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 4150 { 4151 if (phy == PHY_NONE) 4152 return false; 4153 else if (IS_ALDERLAKE_S(dev_priv)) 4154 return phy <= PHY_E; 4155 else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) 4156 return phy <= PHY_D; 4157 else if (IS_JSL_EHL(dev_priv)) 4158 return phy <= PHY_C; 4159 else if (INTEL_GEN(dev_priv) >= 11) 4160 return phy <= PHY_B; 4161 else 4162 return false; 4163 } 4164 4165 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 4166 { 4167 if (IS_TIGERLAKE(dev_priv)) 4168 return phy >= PHY_D && phy <= PHY_I; 4169 else if (IS_ICELAKE(dev_priv)) 4170 return phy >= PHY_C && phy <= PHY_F; 4171 else 4172 return false; 4173 } 4174 4175 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 4176 { 4177 if (IS_ALDERLAKE_S(i915) && port >= PORT_TC1) 4178 return PHY_B + port - PORT_TC1; 4179 else if ((IS_DG1(i915) || IS_ROCKETLAKE(i915)) && port >= PORT_TC1) 4180 return PHY_C + port - PORT_TC1; 4181 else if (IS_JSL_EHL(i915) && port == PORT_D) 4182 return PHY_A; 4183 4184 return PHY_A + port - PORT_A; 4185 } 4186 4187 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 4188 { 4189 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 4190 return TC_PORT_NONE; 4191 4192 if (INTEL_GEN(dev_priv) >= 12) 4193 return TC_PORT_1 + port - PORT_TC1; 4194 else 4195 return TC_PORT_1 + port - PORT_C; 4196 } 4197 4198 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 4199 { 4200 switch (port) { 4201 case PORT_A: 4202 return POWER_DOMAIN_PORT_DDI_A_LANES; 4203 case PORT_B: 4204 return POWER_DOMAIN_PORT_DDI_B_LANES; 4205 case PORT_C: 4206 return POWER_DOMAIN_PORT_DDI_C_LANES; 4207 case PORT_D: 4208 return POWER_DOMAIN_PORT_DDI_D_LANES; 4209 case PORT_E: 4210 return POWER_DOMAIN_PORT_DDI_E_LANES; 4211 case PORT_F: 4212 return POWER_DOMAIN_PORT_DDI_F_LANES; 4213 case PORT_G: 4214 return POWER_DOMAIN_PORT_DDI_G_LANES; 4215 case PORT_H: 4216 return POWER_DOMAIN_PORT_DDI_H_LANES; 4217 case PORT_I: 4218 return POWER_DOMAIN_PORT_DDI_I_LANES; 4219 default: 4220 MISSING_CASE(port); 4221 return POWER_DOMAIN_PORT_OTHER; 4222 } 4223 } 4224 4225 enum intel_display_power_domain 4226 intel_aux_power_domain(struct intel_digital_port *dig_port) 4227 { 4228 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 4229 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 4230 4231 if (intel_phy_is_tc(dev_priv, phy) && 4232 dig_port->tc_mode == TC_PORT_TBT_ALT) { 4233 switch (dig_port->aux_ch) { 4234 case AUX_CH_C: 4235 return POWER_DOMAIN_AUX_C_TBT; 4236 case AUX_CH_D: 4237 return POWER_DOMAIN_AUX_D_TBT; 4238 case AUX_CH_E: 4239 return POWER_DOMAIN_AUX_E_TBT; 4240 case AUX_CH_F: 4241 return POWER_DOMAIN_AUX_F_TBT; 4242 case AUX_CH_G: 4243 return POWER_DOMAIN_AUX_G_TBT; 4244 case AUX_CH_H: 4245 return POWER_DOMAIN_AUX_H_TBT; 4246 case AUX_CH_I: 4247 return POWER_DOMAIN_AUX_I_TBT; 4248 default: 4249 MISSING_CASE(dig_port->aux_ch); 4250 return POWER_DOMAIN_AUX_C_TBT; 4251 } 4252 } 4253 4254 return intel_legacy_aux_to_power_domain(dig_port->aux_ch); 4255 } 4256 4257 /* 4258 * Converts aux_ch to power_domain without caring about TBT ports for that use 4259 * intel_aux_power_domain() 4260 */ 4261 enum intel_display_power_domain 4262 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch) 4263 { 4264 switch (aux_ch) { 4265 case AUX_CH_A: 4266 return POWER_DOMAIN_AUX_A; 4267 case AUX_CH_B: 4268 return POWER_DOMAIN_AUX_B; 4269 case AUX_CH_C: 4270 return POWER_DOMAIN_AUX_C; 4271 case AUX_CH_D: 4272 return POWER_DOMAIN_AUX_D; 4273 case AUX_CH_E: 4274 return POWER_DOMAIN_AUX_E; 4275 case AUX_CH_F: 4276 return POWER_DOMAIN_AUX_F; 4277 case AUX_CH_G: 4278 return POWER_DOMAIN_AUX_G; 4279 case AUX_CH_H: 4280 return POWER_DOMAIN_AUX_H; 4281 case AUX_CH_I: 4282 return POWER_DOMAIN_AUX_I; 4283 default: 4284 MISSING_CASE(aux_ch); 4285 return POWER_DOMAIN_AUX_A; 4286 } 4287 } 4288 4289 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 4290 { 4291 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4292 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4293 struct drm_encoder *encoder; 4294 enum pipe pipe = crtc->pipe; 4295 u64 mask; 4296 enum transcoder transcoder = crtc_state->cpu_transcoder; 4297 4298 if (!crtc_state->hw.active) 4299 return 0; 4300 4301 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 4302 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); 4303 if (crtc_state->pch_pfit.enabled || 4304 crtc_state->pch_pfit.force_thru) 4305 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 4306 4307 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 4308 crtc_state->uapi.encoder_mask) { 4309 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 4310 4311 mask |= BIT_ULL(intel_encoder->power_domain); 4312 } 4313 4314 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 4315 mask |= BIT_ULL(POWER_DOMAIN_AUDIO); 4316 4317 if (crtc_state->shared_dpll) 4318 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 4319 4320 if (crtc_state->dsc.compression_enable) 4321 mask |= BIT_ULL(intel_dsc_power_domain(crtc_state)); 4322 4323 return mask; 4324 } 4325 4326 static u64 4327 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 4328 { 4329 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4330 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4331 enum intel_display_power_domain domain; 4332 u64 domains, new_domains, old_domains; 4333 4334 domains = get_crtc_power_domains(crtc_state); 4335 4336 new_domains = domains & ~crtc->enabled_power_domains.mask; 4337 old_domains = crtc->enabled_power_domains.mask & ~domains; 4338 4339 for_each_power_domain(domain, new_domains) 4340 intel_display_power_get_in_set(dev_priv, 4341 &crtc->enabled_power_domains, 4342 domain); 4343 4344 return old_domains; 4345 } 4346 4347 static void modeset_put_crtc_power_domains(struct intel_crtc *crtc, 4348 u64 domains) 4349 { 4350 intel_display_power_put_mask_in_set(to_i915(crtc->base.dev), 4351 &crtc->enabled_power_domains, 4352 domains); 4353 } 4354 4355 static void valleyview_crtc_enable(struct intel_atomic_state *state, 4356 struct intel_crtc *crtc) 4357 { 4358 const struct intel_crtc_state *new_crtc_state = 4359 intel_atomic_get_new_crtc_state(state, crtc); 4360 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4361 enum pipe pipe = crtc->pipe; 4362 4363 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 4364 return; 4365 4366 if (intel_crtc_has_dp_encoder(new_crtc_state)) 4367 intel_dp_set_m_n(new_crtc_state, M1_N1); 4368 4369 intel_set_transcoder_timings(new_crtc_state); 4370 intel_set_pipe_src_size(new_crtc_state); 4371 4372 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 4373 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY); 4374 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0); 4375 } 4376 4377 i9xx_set_pipeconf(new_crtc_state); 4378 4379 crtc->active = true; 4380 4381 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 4382 4383 intel_encoders_pre_pll_enable(state, crtc); 4384 4385 if (IS_CHERRYVIEW(dev_priv)) { 4386 chv_prepare_pll(crtc, new_crtc_state); 4387 chv_enable_pll(crtc, new_crtc_state); 4388 } else { 4389 vlv_prepare_pll(crtc, new_crtc_state); 4390 vlv_enable_pll(crtc, new_crtc_state); 4391 } 4392 4393 intel_encoders_pre_enable(state, crtc); 4394 4395 i9xx_pfit_enable(new_crtc_state); 4396 4397 intel_color_load_luts(new_crtc_state); 4398 intel_color_commit(new_crtc_state); 4399 /* update DSPCNTR to configure gamma for pipe bottom color */ 4400 intel_disable_primary_plane(new_crtc_state); 4401 4402 dev_priv->display.initial_watermarks(state, crtc); 4403 intel_enable_pipe(new_crtc_state); 4404 4405 intel_crtc_vblank_on(new_crtc_state); 4406 4407 intel_encoders_enable(state, crtc); 4408 } 4409 4410 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) 4411 { 4412 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4413 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4414 4415 intel_de_write(dev_priv, FP0(crtc->pipe), 4416 crtc_state->dpll_hw_state.fp0); 4417 intel_de_write(dev_priv, FP1(crtc->pipe), 4418 crtc_state->dpll_hw_state.fp1); 4419 } 4420 4421 static void i9xx_crtc_enable(struct intel_atomic_state *state, 4422 struct intel_crtc *crtc) 4423 { 4424 const struct intel_crtc_state *new_crtc_state = 4425 intel_atomic_get_new_crtc_state(state, crtc); 4426 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4427 enum pipe pipe = crtc->pipe; 4428 4429 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 4430 return; 4431 4432 i9xx_set_pll_dividers(new_crtc_state); 4433 4434 if (intel_crtc_has_dp_encoder(new_crtc_state)) 4435 intel_dp_set_m_n(new_crtc_state, M1_N1); 4436 4437 intel_set_transcoder_timings(new_crtc_state); 4438 intel_set_pipe_src_size(new_crtc_state); 4439 4440 i9xx_set_pipeconf(new_crtc_state); 4441 4442 crtc->active = true; 4443 4444 if (!IS_GEN(dev_priv, 2)) 4445 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 4446 4447 intel_encoders_pre_enable(state, crtc); 4448 4449 i9xx_enable_pll(crtc, new_crtc_state); 4450 4451 i9xx_pfit_enable(new_crtc_state); 4452 4453 intel_color_load_luts(new_crtc_state); 4454 intel_color_commit(new_crtc_state); 4455 /* update DSPCNTR to configure gamma for pipe bottom color */ 4456 intel_disable_primary_plane(new_crtc_state); 4457 4458 if (dev_priv->display.initial_watermarks) 4459 dev_priv->display.initial_watermarks(state, crtc); 4460 else 4461 intel_update_watermarks(crtc); 4462 intel_enable_pipe(new_crtc_state); 4463 4464 intel_crtc_vblank_on(new_crtc_state); 4465 4466 intel_encoders_enable(state, crtc); 4467 4468 /* prevents spurious underruns */ 4469 if (IS_GEN(dev_priv, 2)) 4470 intel_wait_for_vblank(dev_priv, pipe); 4471 } 4472 4473 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 4474 { 4475 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 4476 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4477 4478 if (!old_crtc_state->gmch_pfit.control) 4479 return; 4480 4481 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 4482 4483 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n", 4484 intel_de_read(dev_priv, PFIT_CONTROL)); 4485 intel_de_write(dev_priv, PFIT_CONTROL, 0); 4486 } 4487 4488 static void i9xx_crtc_disable(struct intel_atomic_state *state, 4489 struct intel_crtc *crtc) 4490 { 4491 struct intel_crtc_state *old_crtc_state = 4492 intel_atomic_get_old_crtc_state(state, crtc); 4493 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4494 enum pipe pipe = crtc->pipe; 4495 4496 /* 4497 * On gen2 planes are double buffered but the pipe isn't, so we must 4498 * wait for planes to fully turn off before disabling the pipe. 4499 */ 4500 if (IS_GEN(dev_priv, 2)) 4501 intel_wait_for_vblank(dev_priv, pipe); 4502 4503 intel_encoders_disable(state, crtc); 4504 4505 intel_crtc_vblank_off(old_crtc_state); 4506 4507 intel_disable_pipe(old_crtc_state); 4508 4509 i9xx_pfit_disable(old_crtc_state); 4510 4511 intel_encoders_post_disable(state, crtc); 4512 4513 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 4514 if (IS_CHERRYVIEW(dev_priv)) 4515 chv_disable_pll(dev_priv, pipe); 4516 else if (IS_VALLEYVIEW(dev_priv)) 4517 vlv_disable_pll(dev_priv, pipe); 4518 else 4519 i9xx_disable_pll(old_crtc_state); 4520 } 4521 4522 intel_encoders_post_pll_disable(state, crtc); 4523 4524 if (!IS_GEN(dev_priv, 2)) 4525 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 4526 4527 if (!dev_priv->display.initial_watermarks) 4528 intel_update_watermarks(crtc); 4529 4530 /* clock the pipe down to 640x480@60 to potentially save power */ 4531 if (IS_I830(dev_priv)) 4532 i830_enable_pipe(dev_priv, pipe); 4533 } 4534 4535 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc, 4536 struct drm_modeset_acquire_ctx *ctx) 4537 { 4538 struct intel_encoder *encoder; 4539 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4540 struct intel_bw_state *bw_state = 4541 to_intel_bw_state(dev_priv->bw_obj.state); 4542 struct intel_cdclk_state *cdclk_state = 4543 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 4544 struct intel_dbuf_state *dbuf_state = 4545 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 4546 struct intel_crtc_state *crtc_state = 4547 to_intel_crtc_state(crtc->base.state); 4548 struct intel_plane *plane; 4549 struct drm_atomic_state *state; 4550 struct intel_crtc_state *temp_crtc_state; 4551 enum pipe pipe = crtc->pipe; 4552 int ret; 4553 4554 if (!crtc_state->hw.active) 4555 return; 4556 4557 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 4558 const struct intel_plane_state *plane_state = 4559 to_intel_plane_state(plane->base.state); 4560 4561 if (plane_state->uapi.visible) 4562 intel_plane_disable_noatomic(crtc, plane); 4563 } 4564 4565 state = drm_atomic_state_alloc(&dev_priv->drm); 4566 if (!state) { 4567 drm_dbg_kms(&dev_priv->drm, 4568 "failed to disable [CRTC:%d:%s], out of memory", 4569 crtc->base.base.id, crtc->base.name); 4570 return; 4571 } 4572 4573 state->acquire_ctx = ctx; 4574 4575 /* Everything's already locked, -EDEADLK can't happen. */ 4576 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc); 4577 ret = drm_atomic_add_affected_connectors(state, &crtc->base); 4578 4579 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret); 4580 4581 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc); 4582 4583 drm_atomic_state_put(state); 4584 4585 drm_dbg_kms(&dev_priv->drm, 4586 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 4587 crtc->base.base.id, crtc->base.name); 4588 4589 crtc->active = false; 4590 crtc->base.enabled = false; 4591 4592 drm_WARN_ON(&dev_priv->drm, 4593 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0); 4594 crtc_state->uapi.active = false; 4595 crtc_state->uapi.connector_mask = 0; 4596 crtc_state->uapi.encoder_mask = 0; 4597 intel_crtc_free_hw_state(crtc_state); 4598 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw)); 4599 4600 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder) 4601 encoder->base.crtc = NULL; 4602 4603 intel_fbc_disable(crtc); 4604 intel_update_watermarks(crtc); 4605 intel_disable_shared_dpll(crtc_state); 4606 4607 intel_display_power_put_all_in_set(dev_priv, &crtc->enabled_power_domains); 4608 4609 dev_priv->active_pipes &= ~BIT(pipe); 4610 cdclk_state->min_cdclk[pipe] = 0; 4611 cdclk_state->min_voltage_level[pipe] = 0; 4612 cdclk_state->active_pipes &= ~BIT(pipe); 4613 4614 dbuf_state->active_pipes &= ~BIT(pipe); 4615 4616 bw_state->data_rate[pipe] = 0; 4617 bw_state->num_active_planes[pipe] = 0; 4618 } 4619 4620 /* 4621 * turn all crtc's off, but do not adjust state 4622 * This has to be paired with a call to intel_modeset_setup_hw_state. 4623 */ 4624 int intel_display_suspend(struct drm_device *dev) 4625 { 4626 struct drm_i915_private *dev_priv = to_i915(dev); 4627 struct drm_atomic_state *state; 4628 int ret; 4629 4630 state = drm_atomic_helper_suspend(dev); 4631 ret = PTR_ERR_OR_ZERO(state); 4632 if (ret) 4633 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 4634 ret); 4635 else 4636 dev_priv->modeset_restore_state = state; 4637 return ret; 4638 } 4639 4640 void intel_encoder_destroy(struct drm_encoder *encoder) 4641 { 4642 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 4643 4644 drm_encoder_cleanup(encoder); 4645 kfree(intel_encoder); 4646 } 4647 4648 /* Cross check the actual hw state with our own modeset state tracking (and it's 4649 * internal consistency). */ 4650 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 4651 struct drm_connector_state *conn_state) 4652 { 4653 struct intel_connector *connector = to_intel_connector(conn_state->connector); 4654 struct drm_i915_private *i915 = to_i915(connector->base.dev); 4655 4656 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 4657 connector->base.base.id, connector->base.name); 4658 4659 if (connector->get_hw_state(connector)) { 4660 struct intel_encoder *encoder = intel_attached_encoder(connector); 4661 4662 I915_STATE_WARN(!crtc_state, 4663 "connector enabled without attached crtc\n"); 4664 4665 if (!crtc_state) 4666 return; 4667 4668 I915_STATE_WARN(!crtc_state->hw.active, 4669 "connector is active, but attached crtc isn't\n"); 4670 4671 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 4672 return; 4673 4674 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 4675 "atomic encoder doesn't match attached encoder\n"); 4676 4677 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 4678 "attached encoder crtc differs from connector crtc\n"); 4679 } else { 4680 I915_STATE_WARN(crtc_state && crtc_state->hw.active, 4681 "attached crtc is active, but connector isn't\n"); 4682 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 4683 "best encoder set without crtc!\n"); 4684 } 4685 } 4686 4687 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 4688 { 4689 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4690 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4691 4692 /* IPS only exists on ULT machines and is tied to pipe A. */ 4693 if (!hsw_crtc_supports_ips(crtc)) 4694 return false; 4695 4696 if (!dev_priv->params.enable_ips) 4697 return false; 4698 4699 if (crtc_state->pipe_bpp > 24) 4700 return false; 4701 4702 /* 4703 * We compare against max which means we must take 4704 * the increased cdclk requirement into account when 4705 * calculating the new cdclk. 4706 * 4707 * Should measure whether using a lower cdclk w/o IPS 4708 */ 4709 if (IS_BROADWELL(dev_priv) && 4710 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 4711 return false; 4712 4713 return true; 4714 } 4715 4716 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 4717 { 4718 struct drm_i915_private *dev_priv = 4719 to_i915(crtc_state->uapi.crtc->dev); 4720 struct intel_atomic_state *state = 4721 to_intel_atomic_state(crtc_state->uapi.state); 4722 4723 crtc_state->ips_enabled = false; 4724 4725 if (!hsw_crtc_state_ips_capable(crtc_state)) 4726 return 0; 4727 4728 /* 4729 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 4730 * enabled and disabled dynamically based on package C states, 4731 * user space can't make reliable use of the CRCs, so let's just 4732 * completely disable it. 4733 */ 4734 if (crtc_state->crc_enabled) 4735 return 0; 4736 4737 /* IPS should be fine as long as at least one plane is enabled. */ 4738 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 4739 return 0; 4740 4741 if (IS_BROADWELL(dev_priv)) { 4742 const struct intel_cdclk_state *cdclk_state; 4743 4744 cdclk_state = intel_atomic_get_cdclk_state(state); 4745 if (IS_ERR(cdclk_state)) 4746 return PTR_ERR(cdclk_state); 4747 4748 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 4749 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100) 4750 return 0; 4751 } 4752 4753 crtc_state->ips_enabled = true; 4754 4755 return 0; 4756 } 4757 4758 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 4759 { 4760 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4761 4762 /* GDG double wide on either pipe, otherwise pipe A only */ 4763 return INTEL_GEN(dev_priv) < 4 && 4764 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 4765 } 4766 4767 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state) 4768 { 4769 u32 pixel_rate = crtc_state->hw.pipe_mode.crtc_clock; 4770 unsigned int pipe_w, pipe_h, pfit_w, pfit_h; 4771 4772 /* 4773 * We only use IF-ID interlacing. If we ever use 4774 * PF-ID we'll need to adjust the pixel_rate here. 4775 */ 4776 4777 if (!crtc_state->pch_pfit.enabled) 4778 return pixel_rate; 4779 4780 pipe_w = crtc_state->pipe_src_w; 4781 pipe_h = crtc_state->pipe_src_h; 4782 4783 pfit_w = drm_rect_width(&crtc_state->pch_pfit.dst); 4784 pfit_h = drm_rect_height(&crtc_state->pch_pfit.dst); 4785 4786 if (pipe_w < pfit_w) 4787 pipe_w = pfit_w; 4788 if (pipe_h < pfit_h) 4789 pipe_h = pfit_h; 4790 4791 if (drm_WARN_ON(crtc_state->uapi.crtc->dev, 4792 !pfit_w || !pfit_h)) 4793 return pixel_rate; 4794 4795 return div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h), 4796 pfit_w * pfit_h); 4797 } 4798 4799 static void intel_mode_from_crtc_timings(struct drm_display_mode *mode, 4800 const struct drm_display_mode *timings) 4801 { 4802 mode->hdisplay = timings->crtc_hdisplay; 4803 mode->htotal = timings->crtc_htotal; 4804 mode->hsync_start = timings->crtc_hsync_start; 4805 mode->hsync_end = timings->crtc_hsync_end; 4806 4807 mode->vdisplay = timings->crtc_vdisplay; 4808 mode->vtotal = timings->crtc_vtotal; 4809 mode->vsync_start = timings->crtc_vsync_start; 4810 mode->vsync_end = timings->crtc_vsync_end; 4811 4812 mode->flags = timings->flags; 4813 mode->type = DRM_MODE_TYPE_DRIVER; 4814 4815 mode->clock = timings->crtc_clock; 4816 4817 drm_mode_set_name(mode); 4818 } 4819 4820 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 4821 { 4822 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4823 4824 if (HAS_GMCH(dev_priv)) 4825 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 4826 crtc_state->pixel_rate = 4827 crtc_state->hw.pipe_mode.crtc_clock; 4828 else 4829 crtc_state->pixel_rate = 4830 ilk_pipe_pixel_rate(crtc_state); 4831 } 4832 4833 static void intel_crtc_readout_derived_state(struct intel_crtc_state *crtc_state) 4834 { 4835 struct drm_display_mode *mode = &crtc_state->hw.mode; 4836 struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; 4837 struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 4838 4839 drm_mode_copy(pipe_mode, adjusted_mode); 4840 4841 if (crtc_state->bigjoiner) { 4842 /* 4843 * transcoder is programmed to the full mode, 4844 * but pipe timings are half of the transcoder mode 4845 */ 4846 pipe_mode->crtc_hdisplay /= 2; 4847 pipe_mode->crtc_hblank_start /= 2; 4848 pipe_mode->crtc_hblank_end /= 2; 4849 pipe_mode->crtc_hsync_start /= 2; 4850 pipe_mode->crtc_hsync_end /= 2; 4851 pipe_mode->crtc_htotal /= 2; 4852 pipe_mode->crtc_clock /= 2; 4853 } 4854 4855 if (crtc_state->splitter.enable) { 4856 int n = crtc_state->splitter.link_count; 4857 int overlap = crtc_state->splitter.pixel_overlap; 4858 4859 /* 4860 * eDP MSO uses segment timings from EDID for transcoder 4861 * timings, but full mode for everything else. 4862 * 4863 * h_full = (h_segment - pixel_overlap) * link_count 4864 */ 4865 pipe_mode->crtc_hdisplay = (pipe_mode->crtc_hdisplay - overlap) * n; 4866 pipe_mode->crtc_hblank_start = (pipe_mode->crtc_hblank_start - overlap) * n; 4867 pipe_mode->crtc_hblank_end = (pipe_mode->crtc_hblank_end - overlap) * n; 4868 pipe_mode->crtc_hsync_start = (pipe_mode->crtc_hsync_start - overlap) * n; 4869 pipe_mode->crtc_hsync_end = (pipe_mode->crtc_hsync_end - overlap) * n; 4870 pipe_mode->crtc_htotal = (pipe_mode->crtc_htotal - overlap) * n; 4871 pipe_mode->crtc_clock *= n; 4872 4873 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4874 intel_mode_from_crtc_timings(adjusted_mode, pipe_mode); 4875 } else { 4876 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4877 intel_mode_from_crtc_timings(adjusted_mode, adjusted_mode); 4878 } 4879 4880 intel_crtc_compute_pixel_rate(crtc_state); 4881 4882 drm_mode_copy(mode, adjusted_mode); 4883 mode->hdisplay = crtc_state->pipe_src_w << crtc_state->bigjoiner; 4884 mode->vdisplay = crtc_state->pipe_src_h; 4885 } 4886 4887 static void intel_encoder_get_config(struct intel_encoder *encoder, 4888 struct intel_crtc_state *crtc_state) 4889 { 4890 encoder->get_config(encoder, crtc_state); 4891 4892 intel_crtc_readout_derived_state(crtc_state); 4893 } 4894 4895 static int intel_crtc_compute_config(struct intel_crtc *crtc, 4896 struct intel_crtc_state *pipe_config) 4897 { 4898 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4899 struct drm_display_mode *pipe_mode = &pipe_config->hw.pipe_mode; 4900 int clock_limit = dev_priv->max_dotclk_freq; 4901 4902 drm_mode_copy(pipe_mode, &pipe_config->hw.adjusted_mode); 4903 4904 /* Adjust pipe_mode for bigjoiner, with half the horizontal mode */ 4905 if (pipe_config->bigjoiner) { 4906 pipe_mode->crtc_clock /= 2; 4907 pipe_mode->crtc_hdisplay /= 2; 4908 pipe_mode->crtc_hblank_start /= 2; 4909 pipe_mode->crtc_hblank_end /= 2; 4910 pipe_mode->crtc_hsync_start /= 2; 4911 pipe_mode->crtc_hsync_end /= 2; 4912 pipe_mode->crtc_htotal /= 2; 4913 pipe_config->pipe_src_w /= 2; 4914 } 4915 4916 if (pipe_config->splitter.enable) { 4917 int n = pipe_config->splitter.link_count; 4918 int overlap = pipe_config->splitter.pixel_overlap; 4919 4920 pipe_mode->crtc_hdisplay = (pipe_mode->crtc_hdisplay - overlap) * n; 4921 pipe_mode->crtc_hblank_start = (pipe_mode->crtc_hblank_start - overlap) * n; 4922 pipe_mode->crtc_hblank_end = (pipe_mode->crtc_hblank_end - overlap) * n; 4923 pipe_mode->crtc_hsync_start = (pipe_mode->crtc_hsync_start - overlap) * n; 4924 pipe_mode->crtc_hsync_end = (pipe_mode->crtc_hsync_end - overlap) * n; 4925 pipe_mode->crtc_htotal = (pipe_mode->crtc_htotal - overlap) * n; 4926 pipe_mode->crtc_clock *= n; 4927 } 4928 4929 intel_mode_from_crtc_timings(pipe_mode, pipe_mode); 4930 4931 if (INTEL_GEN(dev_priv) < 4) { 4932 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 4933 4934 /* 4935 * Enable double wide mode when the dot clock 4936 * is > 90% of the (display) core speed. 4937 */ 4938 if (intel_crtc_supports_double_wide(crtc) && 4939 pipe_mode->crtc_clock > clock_limit) { 4940 clock_limit = dev_priv->max_dotclk_freq; 4941 pipe_config->double_wide = true; 4942 } 4943 } 4944 4945 if (pipe_mode->crtc_clock > clock_limit) { 4946 drm_dbg_kms(&dev_priv->drm, 4947 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 4948 pipe_mode->crtc_clock, clock_limit, 4949 yesno(pipe_config->double_wide)); 4950 return -EINVAL; 4951 } 4952 4953 /* 4954 * Pipe horizontal size must be even in: 4955 * - DVO ganged mode 4956 * - LVDS dual channel mode 4957 * - Double wide pipe 4958 */ 4959 if (pipe_config->pipe_src_w & 1) { 4960 if (pipe_config->double_wide) { 4961 drm_dbg_kms(&dev_priv->drm, 4962 "Odd pipe source width not supported with double wide pipe\n"); 4963 return -EINVAL; 4964 } 4965 4966 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 4967 intel_is_dual_link_lvds(dev_priv)) { 4968 drm_dbg_kms(&dev_priv->drm, 4969 "Odd pipe source width not supported with dual link LVDS\n"); 4970 return -EINVAL; 4971 } 4972 } 4973 4974 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 4975 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 4976 */ 4977 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) && 4978 pipe_mode->crtc_hsync_start == pipe_mode->crtc_hdisplay) 4979 return -EINVAL; 4980 4981 intel_crtc_compute_pixel_rate(pipe_config); 4982 4983 if (pipe_config->has_pch_encoder) 4984 return ilk_fdi_compute_config(crtc, pipe_config); 4985 4986 return 0; 4987 } 4988 4989 static void 4990 intel_reduce_m_n_ratio(u32 *num, u32 *den) 4991 { 4992 while (*num > DATA_LINK_M_N_MASK || 4993 *den > DATA_LINK_M_N_MASK) { 4994 *num >>= 1; 4995 *den >>= 1; 4996 } 4997 } 4998 4999 static void compute_m_n(unsigned int m, unsigned int n, 5000 u32 *ret_m, u32 *ret_n, 5001 bool constant_n) 5002 { 5003 /* 5004 * Several DP dongles in particular seem to be fussy about 5005 * too large link M/N values. Give N value as 0x8000 that 5006 * should be acceptable by specific devices. 0x8000 is the 5007 * specified fixed N value for asynchronous clock mode, 5008 * which the devices expect also in synchronous clock mode. 5009 */ 5010 if (constant_n) 5011 *ret_n = DP_LINK_CONSTANT_N_VALUE; 5012 else 5013 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 5014 5015 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 5016 intel_reduce_m_n_ratio(ret_m, ret_n); 5017 } 5018 5019 void 5020 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 5021 int pixel_clock, int link_clock, 5022 struct intel_link_m_n *m_n, 5023 bool constant_n, bool fec_enable) 5024 { 5025 u32 data_clock = bits_per_pixel * pixel_clock; 5026 5027 if (fec_enable) 5028 data_clock = intel_dp_mode_to_fec_clock(data_clock); 5029 5030 m_n->tu = 64; 5031 compute_m_n(data_clock, 5032 link_clock * nlanes * 8, 5033 &m_n->gmch_m, &m_n->gmch_n, 5034 constant_n); 5035 5036 compute_m_n(pixel_clock, link_clock, 5037 &m_n->link_m, &m_n->link_n, 5038 constant_n); 5039 } 5040 5041 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) 5042 { 5043 /* 5044 * There may be no VBT; and if the BIOS enabled SSC we can 5045 * just keep using it to avoid unnecessary flicker. Whereas if the 5046 * BIOS isn't using it, don't assume it will work even if the VBT 5047 * indicates as much. 5048 */ 5049 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 5050 bool bios_lvds_use_ssc = intel_de_read(dev_priv, 5051 PCH_DREF_CONTROL) & 5052 DREF_SSC1_ENABLE; 5053 5054 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 5055 drm_dbg_kms(&dev_priv->drm, 5056 "SSC %s by BIOS, overriding VBT which says %s\n", 5057 enableddisabled(bios_lvds_use_ssc), 5058 enableddisabled(dev_priv->vbt.lvds_use_ssc)); 5059 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 5060 } 5061 } 5062 } 5063 5064 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 5065 const struct intel_link_m_n *m_n) 5066 { 5067 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5068 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5069 enum pipe pipe = crtc->pipe; 5070 5071 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe), 5072 TU_SIZE(m_n->tu) | m_n->gmch_m); 5073 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 5074 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m); 5075 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n); 5076 } 5077 5078 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 5079 enum transcoder transcoder) 5080 { 5081 if (IS_HASWELL(dev_priv)) 5082 return transcoder == TRANSCODER_EDP; 5083 5084 /* 5085 * Strictly speaking some registers are available before 5086 * gen7, but we only support DRRS on gen7+ 5087 */ 5088 return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv); 5089 } 5090 5091 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 5092 const struct intel_link_m_n *m_n, 5093 const struct intel_link_m_n *m2_n2) 5094 { 5095 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5096 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5097 enum pipe pipe = crtc->pipe; 5098 enum transcoder transcoder = crtc_state->cpu_transcoder; 5099 5100 if (INTEL_GEN(dev_priv) >= 5) { 5101 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder), 5102 TU_SIZE(m_n->tu) | m_n->gmch_m); 5103 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder), 5104 m_n->gmch_n); 5105 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder), 5106 m_n->link_m); 5107 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder), 5108 m_n->link_n); 5109 /* 5110 * M2_N2 registers are set only if DRRS is supported 5111 * (to make sure the registers are not unnecessarily accessed). 5112 */ 5113 if (m2_n2 && crtc_state->has_drrs && 5114 transcoder_has_m2_n2(dev_priv, transcoder)) { 5115 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder), 5116 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 5117 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder), 5118 m2_n2->gmch_n); 5119 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder), 5120 m2_n2->link_m); 5121 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder), 5122 m2_n2->link_n); 5123 } 5124 } else { 5125 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe), 5126 TU_SIZE(m_n->tu) | m_n->gmch_m); 5127 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 5128 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m); 5129 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n); 5130 } 5131 } 5132 5133 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 5134 { 5135 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 5136 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 5137 5138 if (m_n == M1_N1) { 5139 dp_m_n = &crtc_state->dp_m_n; 5140 dp_m2_n2 = &crtc_state->dp_m2_n2; 5141 } else if (m_n == M2_N2) { 5142 5143 /* 5144 * M2_N2 registers are not supported. Hence m2_n2 divider value 5145 * needs to be programmed into M1_N1. 5146 */ 5147 dp_m_n = &crtc_state->dp_m2_n2; 5148 } else { 5149 drm_err(&i915->drm, "Unsupported divider value\n"); 5150 return; 5151 } 5152 5153 if (crtc_state->has_pch_encoder) 5154 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 5155 else 5156 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 5157 } 5158 5159 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state) 5160 { 5161 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5162 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5163 enum pipe pipe = crtc->pipe; 5164 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5165 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 5166 u32 crtc_vtotal, crtc_vblank_end; 5167 int vsyncshift = 0; 5168 5169 /* We need to be careful not to changed the adjusted mode, for otherwise 5170 * the hw state checker will get angry at the mismatch. */ 5171 crtc_vtotal = adjusted_mode->crtc_vtotal; 5172 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 5173 5174 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 5175 /* the chip adds 2 halflines automatically */ 5176 crtc_vtotal -= 1; 5177 crtc_vblank_end -= 1; 5178 5179 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 5180 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 5181 else 5182 vsyncshift = adjusted_mode->crtc_hsync_start - 5183 adjusted_mode->crtc_htotal / 2; 5184 if (vsyncshift < 0) 5185 vsyncshift += adjusted_mode->crtc_htotal; 5186 } 5187 5188 if (INTEL_GEN(dev_priv) > 3) 5189 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder), 5190 vsyncshift); 5191 5192 intel_de_write(dev_priv, HTOTAL(cpu_transcoder), 5193 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); 5194 intel_de_write(dev_priv, HBLANK(cpu_transcoder), 5195 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); 5196 intel_de_write(dev_priv, HSYNC(cpu_transcoder), 5197 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); 5198 5199 intel_de_write(dev_priv, VTOTAL(cpu_transcoder), 5200 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); 5201 intel_de_write(dev_priv, VBLANK(cpu_transcoder), 5202 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); 5203 intel_de_write(dev_priv, VSYNC(cpu_transcoder), 5204 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); 5205 5206 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 5207 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 5208 * documented on the DDI_FUNC_CTL register description, EDP Input Select 5209 * bits. */ 5210 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 5211 (pipe == PIPE_B || pipe == PIPE_C)) 5212 intel_de_write(dev_priv, VTOTAL(pipe), 5213 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 5214 5215 } 5216 5217 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 5218 { 5219 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5220 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5221 enum pipe pipe = crtc->pipe; 5222 5223 /* pipesrc controls the size that is scaled from, which should 5224 * always be the user's requested size. 5225 */ 5226 intel_de_write(dev_priv, PIPESRC(pipe), 5227 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1)); 5228 } 5229 5230 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 5231 { 5232 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 5233 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5234 5235 if (IS_GEN(dev_priv, 2)) 5236 return false; 5237 5238 if (INTEL_GEN(dev_priv) >= 9 || 5239 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 5240 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; 5241 else 5242 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; 5243 } 5244 5245 static void intel_get_transcoder_timings(struct intel_crtc *crtc, 5246 struct intel_crtc_state *pipe_config) 5247 { 5248 struct drm_device *dev = crtc->base.dev; 5249 struct drm_i915_private *dev_priv = to_i915(dev); 5250 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 5251 u32 tmp; 5252 5253 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); 5254 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 5255 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 5256 5257 if (!transcoder_is_dsi(cpu_transcoder)) { 5258 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); 5259 pipe_config->hw.adjusted_mode.crtc_hblank_start = 5260 (tmp & 0xffff) + 1; 5261 pipe_config->hw.adjusted_mode.crtc_hblank_end = 5262 ((tmp >> 16) & 0xffff) + 1; 5263 } 5264 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); 5265 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 5266 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 5267 5268 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); 5269 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 5270 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 5271 5272 if (!transcoder_is_dsi(cpu_transcoder)) { 5273 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); 5274 pipe_config->hw.adjusted_mode.crtc_vblank_start = 5275 (tmp & 0xffff) + 1; 5276 pipe_config->hw.adjusted_mode.crtc_vblank_end = 5277 ((tmp >> 16) & 0xffff) + 1; 5278 } 5279 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); 5280 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 5281 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 5282 5283 if (intel_pipe_is_interlaced(pipe_config)) { 5284 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 5285 pipe_config->hw.adjusted_mode.crtc_vtotal += 1; 5286 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1; 5287 } 5288 } 5289 5290 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 5291 struct intel_crtc_state *pipe_config) 5292 { 5293 struct drm_device *dev = crtc->base.dev; 5294 struct drm_i915_private *dev_priv = to_i915(dev); 5295 u32 tmp; 5296 5297 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe)); 5298 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 5299 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 5300 } 5301 5302 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 5303 { 5304 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5305 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5306 u32 pipeconf; 5307 5308 pipeconf = 0; 5309 5310 /* we keep both pipes enabled on 830 */ 5311 if (IS_I830(dev_priv)) 5312 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 5313 5314 if (crtc_state->double_wide) 5315 pipeconf |= PIPECONF_DOUBLE_WIDE; 5316 5317 /* only g4x and later have fancy bpc/dither controls */ 5318 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 5319 IS_CHERRYVIEW(dev_priv)) { 5320 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 5321 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 5322 pipeconf |= PIPECONF_DITHER_EN | 5323 PIPECONF_DITHER_TYPE_SP; 5324 5325 switch (crtc_state->pipe_bpp) { 5326 case 18: 5327 pipeconf |= PIPECONF_6BPC; 5328 break; 5329 case 24: 5330 pipeconf |= PIPECONF_8BPC; 5331 break; 5332 case 30: 5333 pipeconf |= PIPECONF_10BPC; 5334 break; 5335 default: 5336 /* Case prevented by intel_choose_pipe_bpp_dither. */ 5337 BUG(); 5338 } 5339 } 5340 5341 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 5342 if (INTEL_GEN(dev_priv) < 4 || 5343 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 5344 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 5345 else 5346 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 5347 } else { 5348 pipeconf |= PIPECONF_PROGRESSIVE; 5349 } 5350 5351 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 5352 crtc_state->limited_color_range) 5353 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 5354 5355 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 5356 5357 pipeconf |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 5358 5359 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf); 5360 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); 5361 } 5362 5363 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 5364 { 5365 if (IS_I830(dev_priv)) 5366 return false; 5367 5368 return INTEL_GEN(dev_priv) >= 4 || 5369 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 5370 } 5371 5372 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state) 5373 { 5374 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5375 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5376 u32 tmp; 5377 5378 if (!i9xx_has_pfit(dev_priv)) 5379 return; 5380 5381 tmp = intel_de_read(dev_priv, PFIT_CONTROL); 5382 if (!(tmp & PFIT_ENABLE)) 5383 return; 5384 5385 /* Check whether the pfit is attached to our pipe. */ 5386 if (INTEL_GEN(dev_priv) < 4) { 5387 if (crtc->pipe != PIPE_B) 5388 return; 5389 } else { 5390 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 5391 return; 5392 } 5393 5394 crtc_state->gmch_pfit.control = tmp; 5395 crtc_state->gmch_pfit.pgm_ratios = 5396 intel_de_read(dev_priv, PFIT_PGM_RATIOS); 5397 } 5398 5399 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 5400 struct intel_crtc_state *pipe_config) 5401 { 5402 struct drm_device *dev = crtc->base.dev; 5403 struct drm_i915_private *dev_priv = to_i915(dev); 5404 enum pipe pipe = crtc->pipe; 5405 struct dpll clock; 5406 u32 mdiv; 5407 int refclk = 100000; 5408 5409 /* In case of DSI, DPLL will not be used */ 5410 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 5411 return; 5412 5413 vlv_dpio_get(dev_priv); 5414 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 5415 vlv_dpio_put(dev_priv); 5416 5417 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 5418 clock.m2 = mdiv & DPIO_M2DIV_MASK; 5419 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 5420 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 5421 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 5422 5423 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 5424 } 5425 5426 static void chv_crtc_clock_get(struct intel_crtc *crtc, 5427 struct intel_crtc_state *pipe_config) 5428 { 5429 struct drm_device *dev = crtc->base.dev; 5430 struct drm_i915_private *dev_priv = to_i915(dev); 5431 enum pipe pipe = crtc->pipe; 5432 enum dpio_channel port = vlv_pipe_to_channel(pipe); 5433 struct dpll clock; 5434 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 5435 int refclk = 100000; 5436 5437 /* In case of DSI, DPLL will not be used */ 5438 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 5439 return; 5440 5441 vlv_dpio_get(dev_priv); 5442 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 5443 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 5444 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 5445 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 5446 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 5447 vlv_dpio_put(dev_priv); 5448 5449 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 5450 clock.m2 = (pll_dw0 & 0xff) << 22; 5451 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 5452 clock.m2 |= pll_dw2 & 0x3fffff; 5453 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 5454 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 5455 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 5456 5457 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 5458 } 5459 5460 static enum intel_output_format 5461 bdw_get_pipemisc_output_format(struct intel_crtc *crtc) 5462 { 5463 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5464 u32 tmp; 5465 5466 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 5467 5468 if (tmp & PIPEMISC_YUV420_ENABLE) { 5469 /* We support 4:2:0 in full blend mode only */ 5470 drm_WARN_ON(&dev_priv->drm, 5471 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); 5472 5473 return INTEL_OUTPUT_FORMAT_YCBCR420; 5474 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 5475 return INTEL_OUTPUT_FORMAT_YCBCR444; 5476 } else { 5477 return INTEL_OUTPUT_FORMAT_RGB; 5478 } 5479 } 5480 5481 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 5482 { 5483 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5484 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 5485 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5486 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 5487 u32 tmp; 5488 5489 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 5490 5491 if (tmp & DISPPLANE_GAMMA_ENABLE) 5492 crtc_state->gamma_enable = true; 5493 5494 if (!HAS_GMCH(dev_priv) && 5495 tmp & DISPPLANE_PIPE_CSC_ENABLE) 5496 crtc_state->csc_enable = true; 5497 } 5498 5499 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 5500 struct intel_crtc_state *pipe_config) 5501 { 5502 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5503 enum intel_display_power_domain power_domain; 5504 intel_wakeref_t wakeref; 5505 u32 tmp; 5506 bool ret; 5507 5508 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 5509 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 5510 if (!wakeref) 5511 return false; 5512 5513 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 5514 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 5515 pipe_config->shared_dpll = NULL; 5516 5517 ret = false; 5518 5519 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 5520 if (!(tmp & PIPECONF_ENABLE)) 5521 goto out; 5522 5523 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 5524 IS_CHERRYVIEW(dev_priv)) { 5525 switch (tmp & PIPECONF_BPC_MASK) { 5526 case PIPECONF_6BPC: 5527 pipe_config->pipe_bpp = 18; 5528 break; 5529 case PIPECONF_8BPC: 5530 pipe_config->pipe_bpp = 24; 5531 break; 5532 case PIPECONF_10BPC: 5533 pipe_config->pipe_bpp = 30; 5534 break; 5535 default: 5536 break; 5537 } 5538 } 5539 5540 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 5541 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 5542 pipe_config->limited_color_range = true; 5543 5544 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 5545 PIPECONF_GAMMA_MODE_SHIFT; 5546 5547 if (IS_CHERRYVIEW(dev_priv)) 5548 pipe_config->cgm_mode = intel_de_read(dev_priv, 5549 CGM_PIPE_MODE(crtc->pipe)); 5550 5551 i9xx_get_pipe_color_config(pipe_config); 5552 intel_color_get_config(pipe_config); 5553 5554 if (INTEL_GEN(dev_priv) < 4) 5555 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 5556 5557 intel_get_transcoder_timings(crtc, pipe_config); 5558 intel_get_pipe_src_size(crtc, pipe_config); 5559 5560 i9xx_get_pfit_config(pipe_config); 5561 5562 if (INTEL_GEN(dev_priv) >= 4) { 5563 /* No way to read it out on pipes B and C */ 5564 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 5565 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 5566 else 5567 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); 5568 pipe_config->pixel_multiplier = 5569 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 5570 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 5571 pipe_config->dpll_hw_state.dpll_md = tmp; 5572 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 5573 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 5574 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe)); 5575 pipe_config->pixel_multiplier = 5576 ((tmp & SDVO_MULTIPLIER_MASK) 5577 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 5578 } else { 5579 /* Note that on i915G/GM the pixel multiplier is in the sdvo 5580 * port and will be fixed up in the encoder->get_config 5581 * function. */ 5582 pipe_config->pixel_multiplier = 1; 5583 } 5584 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv, 5585 DPLL(crtc->pipe)); 5586 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 5587 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv, 5588 FP0(crtc->pipe)); 5589 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv, 5590 FP1(crtc->pipe)); 5591 } else { 5592 /* Mask out read-only status bits. */ 5593 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 5594 DPLL_PORTC_READY_MASK | 5595 DPLL_PORTB_READY_MASK); 5596 } 5597 5598 if (IS_CHERRYVIEW(dev_priv)) 5599 chv_crtc_clock_get(crtc, pipe_config); 5600 else if (IS_VALLEYVIEW(dev_priv)) 5601 vlv_crtc_clock_get(crtc, pipe_config); 5602 else 5603 i9xx_crtc_clock_get(crtc, pipe_config); 5604 5605 /* 5606 * Normally the dotclock is filled in by the encoder .get_config() 5607 * but in case the pipe is enabled w/o any ports we need a sane 5608 * default. 5609 */ 5610 pipe_config->hw.adjusted_mode.crtc_clock = 5611 pipe_config->port_clock / pipe_config->pixel_multiplier; 5612 5613 ret = true; 5614 5615 out: 5616 intel_display_power_put(dev_priv, power_domain, wakeref); 5617 5618 return ret; 5619 } 5620 5621 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv) 5622 { 5623 struct intel_encoder *encoder; 5624 int i; 5625 u32 val, final; 5626 bool has_lvds = false; 5627 bool has_cpu_edp = false; 5628 bool has_panel = false; 5629 bool has_ck505 = false; 5630 bool can_ssc = false; 5631 bool using_ssc_source = false; 5632 5633 /* We need to take the global config into account */ 5634 for_each_intel_encoder(&dev_priv->drm, encoder) { 5635 switch (encoder->type) { 5636 case INTEL_OUTPUT_LVDS: 5637 has_panel = true; 5638 has_lvds = true; 5639 break; 5640 case INTEL_OUTPUT_EDP: 5641 has_panel = true; 5642 if (encoder->port == PORT_A) 5643 has_cpu_edp = true; 5644 break; 5645 default: 5646 break; 5647 } 5648 } 5649 5650 if (HAS_PCH_IBX(dev_priv)) { 5651 has_ck505 = dev_priv->vbt.display_clock_mode; 5652 can_ssc = has_ck505; 5653 } else { 5654 has_ck505 = false; 5655 can_ssc = true; 5656 } 5657 5658 /* Check if any DPLLs are using the SSC source */ 5659 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) { 5660 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i)); 5661 5662 if (!(temp & DPLL_VCO_ENABLE)) 5663 continue; 5664 5665 if ((temp & PLL_REF_INPUT_MASK) == 5666 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 5667 using_ssc_source = true; 5668 break; 5669 } 5670 } 5671 5672 drm_dbg_kms(&dev_priv->drm, 5673 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 5674 has_panel, has_lvds, has_ck505, using_ssc_source); 5675 5676 /* Ironlake: try to setup display ref clock before DPLL 5677 * enabling. This is only under driver's control after 5678 * PCH B stepping, previous chipset stepping should be 5679 * ignoring this setting. 5680 */ 5681 val = intel_de_read(dev_priv, PCH_DREF_CONTROL); 5682 5683 /* As we must carefully and slowly disable/enable each source in turn, 5684 * compute the final state we want first and check if we need to 5685 * make any changes at all. 5686 */ 5687 final = val; 5688 final &= ~DREF_NONSPREAD_SOURCE_MASK; 5689 if (has_ck505) 5690 final |= DREF_NONSPREAD_CK505_ENABLE; 5691 else 5692 final |= DREF_NONSPREAD_SOURCE_ENABLE; 5693 5694 final &= ~DREF_SSC_SOURCE_MASK; 5695 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5696 final &= ~DREF_SSC1_ENABLE; 5697 5698 if (has_panel) { 5699 final |= DREF_SSC_SOURCE_ENABLE; 5700 5701 if (intel_panel_use_ssc(dev_priv) && can_ssc) 5702 final |= DREF_SSC1_ENABLE; 5703 5704 if (has_cpu_edp) { 5705 if (intel_panel_use_ssc(dev_priv) && can_ssc) 5706 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 5707 else 5708 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 5709 } else 5710 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5711 } else if (using_ssc_source) { 5712 final |= DREF_SSC_SOURCE_ENABLE; 5713 final |= DREF_SSC1_ENABLE; 5714 } 5715 5716 if (final == val) 5717 return; 5718 5719 /* Always enable nonspread source */ 5720 val &= ~DREF_NONSPREAD_SOURCE_MASK; 5721 5722 if (has_ck505) 5723 val |= DREF_NONSPREAD_CK505_ENABLE; 5724 else 5725 val |= DREF_NONSPREAD_SOURCE_ENABLE; 5726 5727 if (has_panel) { 5728 val &= ~DREF_SSC_SOURCE_MASK; 5729 val |= DREF_SSC_SOURCE_ENABLE; 5730 5731 /* SSC must be turned on before enabling the CPU output */ 5732 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 5733 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n"); 5734 val |= DREF_SSC1_ENABLE; 5735 } else 5736 val &= ~DREF_SSC1_ENABLE; 5737 5738 /* Get SSC going before enabling the outputs */ 5739 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5740 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5741 udelay(200); 5742 5743 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5744 5745 /* Enable CPU source on CPU attached eDP */ 5746 if (has_cpu_edp) { 5747 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 5748 drm_dbg_kms(&dev_priv->drm, 5749 "Using SSC on eDP\n"); 5750 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 5751 } else 5752 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 5753 } else 5754 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5755 5756 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5757 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5758 udelay(200); 5759 } else { 5760 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n"); 5761 5762 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 5763 5764 /* Turn off CPU output */ 5765 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 5766 5767 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5768 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5769 udelay(200); 5770 5771 if (!using_ssc_source) { 5772 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n"); 5773 5774 /* Turn off the SSC source */ 5775 val &= ~DREF_SSC_SOURCE_MASK; 5776 val |= DREF_SSC_SOURCE_DISABLE; 5777 5778 /* Turn off SSC1 */ 5779 val &= ~DREF_SSC1_ENABLE; 5780 5781 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 5782 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 5783 udelay(200); 5784 } 5785 } 5786 5787 BUG_ON(val != final); 5788 } 5789 5790 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 5791 { 5792 u32 tmp; 5793 5794 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 5795 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 5796 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 5797 5798 if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) & 5799 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 5800 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n"); 5801 5802 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 5803 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 5804 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 5805 5806 if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) & 5807 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 5808 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n"); 5809 } 5810 5811 /* WaMPhyProgramming:hsw */ 5812 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 5813 { 5814 u32 tmp; 5815 5816 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 5817 tmp &= ~(0xFF << 24); 5818 tmp |= (0x12 << 24); 5819 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 5820 5821 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 5822 tmp |= (1 << 11); 5823 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 5824 5825 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 5826 tmp |= (1 << 11); 5827 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 5828 5829 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 5830 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 5831 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 5832 5833 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 5834 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 5835 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 5836 5837 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 5838 tmp &= ~(7 << 13); 5839 tmp |= (5 << 13); 5840 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 5841 5842 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 5843 tmp &= ~(7 << 13); 5844 tmp |= (5 << 13); 5845 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 5846 5847 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 5848 tmp &= ~0xFF; 5849 tmp |= 0x1C; 5850 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 5851 5852 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 5853 tmp &= ~0xFF; 5854 tmp |= 0x1C; 5855 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 5856 5857 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 5858 tmp &= ~(0xFF << 16); 5859 tmp |= (0x1C << 16); 5860 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 5861 5862 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 5863 tmp &= ~(0xFF << 16); 5864 tmp |= (0x1C << 16); 5865 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 5866 5867 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 5868 tmp |= (1 << 27); 5869 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 5870 5871 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 5872 tmp |= (1 << 27); 5873 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 5874 5875 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 5876 tmp &= ~(0xF << 28); 5877 tmp |= (4 << 28); 5878 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 5879 5880 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 5881 tmp &= ~(0xF << 28); 5882 tmp |= (4 << 28); 5883 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 5884 } 5885 5886 /* Implements 3 different sequences from BSpec chapter "Display iCLK 5887 * Programming" based on the parameters passed: 5888 * - Sequence to enable CLKOUT_DP 5889 * - Sequence to enable CLKOUT_DP without spread 5890 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 5891 */ 5892 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 5893 bool with_spread, bool with_fdi) 5894 { 5895 u32 reg, tmp; 5896 5897 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread, 5898 "FDI requires downspread\n")) 5899 with_spread = true; 5900 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) && 5901 with_fdi, "LP PCH doesn't have FDI\n")) 5902 with_fdi = false; 5903 5904 mutex_lock(&dev_priv->sb_lock); 5905 5906 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5907 tmp &= ~SBI_SSCCTL_DISABLE; 5908 tmp |= SBI_SSCCTL_PATHALT; 5909 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5910 5911 udelay(24); 5912 5913 if (with_spread) { 5914 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5915 tmp &= ~SBI_SSCCTL_PATHALT; 5916 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5917 5918 if (with_fdi) { 5919 lpt_reset_fdi_mphy(dev_priv); 5920 lpt_program_fdi_mphy(dev_priv); 5921 } 5922 } 5923 5924 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 5925 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 5926 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 5927 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 5928 5929 mutex_unlock(&dev_priv->sb_lock); 5930 } 5931 5932 /* Sequence to disable CLKOUT_DP */ 5933 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 5934 { 5935 u32 reg, tmp; 5936 5937 mutex_lock(&dev_priv->sb_lock); 5938 5939 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 5940 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 5941 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 5942 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 5943 5944 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 5945 if (!(tmp & SBI_SSCCTL_DISABLE)) { 5946 if (!(tmp & SBI_SSCCTL_PATHALT)) { 5947 tmp |= SBI_SSCCTL_PATHALT; 5948 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5949 udelay(32); 5950 } 5951 tmp |= SBI_SSCCTL_DISABLE; 5952 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 5953 } 5954 5955 mutex_unlock(&dev_priv->sb_lock); 5956 } 5957 5958 #define BEND_IDX(steps) ((50 + (steps)) / 5) 5959 5960 static const u16 sscdivintphase[] = { 5961 [BEND_IDX( 50)] = 0x3B23, 5962 [BEND_IDX( 45)] = 0x3B23, 5963 [BEND_IDX( 40)] = 0x3C23, 5964 [BEND_IDX( 35)] = 0x3C23, 5965 [BEND_IDX( 30)] = 0x3D23, 5966 [BEND_IDX( 25)] = 0x3D23, 5967 [BEND_IDX( 20)] = 0x3E23, 5968 [BEND_IDX( 15)] = 0x3E23, 5969 [BEND_IDX( 10)] = 0x3F23, 5970 [BEND_IDX( 5)] = 0x3F23, 5971 [BEND_IDX( 0)] = 0x0025, 5972 [BEND_IDX( -5)] = 0x0025, 5973 [BEND_IDX(-10)] = 0x0125, 5974 [BEND_IDX(-15)] = 0x0125, 5975 [BEND_IDX(-20)] = 0x0225, 5976 [BEND_IDX(-25)] = 0x0225, 5977 [BEND_IDX(-30)] = 0x0325, 5978 [BEND_IDX(-35)] = 0x0325, 5979 [BEND_IDX(-40)] = 0x0425, 5980 [BEND_IDX(-45)] = 0x0425, 5981 [BEND_IDX(-50)] = 0x0525, 5982 }; 5983 5984 /* 5985 * Bend CLKOUT_DP 5986 * steps -50 to 50 inclusive, in steps of 5 5987 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 5988 * change in clock period = -(steps / 10) * 5.787 ps 5989 */ 5990 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 5991 { 5992 u32 tmp; 5993 int idx = BEND_IDX(steps); 5994 5995 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0)) 5996 return; 5997 5998 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase))) 5999 return; 6000 6001 mutex_lock(&dev_priv->sb_lock); 6002 6003 if (steps % 10 != 0) 6004 tmp = 0xAAAAAAAB; 6005 else 6006 tmp = 0x00000000; 6007 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 6008 6009 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 6010 tmp &= 0xffff0000; 6011 tmp |= sscdivintphase[idx]; 6012 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 6013 6014 mutex_unlock(&dev_priv->sb_lock); 6015 } 6016 6017 #undef BEND_IDX 6018 6019 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 6020 { 6021 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 6022 u32 ctl = intel_de_read(dev_priv, SPLL_CTL); 6023 6024 if ((ctl & SPLL_PLL_ENABLE) == 0) 6025 return false; 6026 6027 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 6028 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 6029 return true; 6030 6031 if (IS_BROADWELL(dev_priv) && 6032 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 6033 return true; 6034 6035 return false; 6036 } 6037 6038 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 6039 enum intel_dpll_id id) 6040 { 6041 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 6042 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id)); 6043 6044 if ((ctl & WRPLL_PLL_ENABLE) == 0) 6045 return false; 6046 6047 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 6048 return true; 6049 6050 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 6051 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 6052 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 6053 return true; 6054 6055 return false; 6056 } 6057 6058 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 6059 { 6060 struct intel_encoder *encoder; 6061 bool has_fdi = false; 6062 6063 for_each_intel_encoder(&dev_priv->drm, encoder) { 6064 switch (encoder->type) { 6065 case INTEL_OUTPUT_ANALOG: 6066 has_fdi = true; 6067 break; 6068 default: 6069 break; 6070 } 6071 } 6072 6073 /* 6074 * The BIOS may have decided to use the PCH SSC 6075 * reference so we must not disable it until the 6076 * relevant PLLs have stopped relying on it. We'll 6077 * just leave the PCH SSC reference enabled in case 6078 * any active PLL is using it. It will get disabled 6079 * after runtime suspend if we don't have FDI. 6080 * 6081 * TODO: Move the whole reference clock handling 6082 * to the modeset sequence proper so that we can 6083 * actually enable/disable/reconfigure these things 6084 * safely. To do that we need to introduce a real 6085 * clock hierarchy. That would also allow us to do 6086 * clock bending finally. 6087 */ 6088 dev_priv->pch_ssc_use = 0; 6089 6090 if (spll_uses_pch_ssc(dev_priv)) { 6091 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n"); 6092 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); 6093 } 6094 6095 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 6096 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n"); 6097 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 6098 } 6099 6100 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 6101 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n"); 6102 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 6103 } 6104 6105 if (dev_priv->pch_ssc_use) 6106 return; 6107 6108 if (has_fdi) { 6109 lpt_bend_clkout_dp(dev_priv, 0); 6110 lpt_enable_clkout_dp(dev_priv, true, true); 6111 } else { 6112 lpt_disable_clkout_dp(dev_priv); 6113 } 6114 } 6115 6116 /* 6117 * Initialize reference clocks when the driver loads 6118 */ 6119 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 6120 { 6121 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 6122 ilk_init_pch_refclk(dev_priv); 6123 else if (HAS_PCH_LPT(dev_priv)) 6124 lpt_init_pch_refclk(dev_priv); 6125 } 6126 6127 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) 6128 { 6129 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6130 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6131 enum pipe pipe = crtc->pipe; 6132 u32 val; 6133 6134 val = 0; 6135 6136 switch (crtc_state->pipe_bpp) { 6137 case 18: 6138 val |= PIPECONF_6BPC; 6139 break; 6140 case 24: 6141 val |= PIPECONF_8BPC; 6142 break; 6143 case 30: 6144 val |= PIPECONF_10BPC; 6145 break; 6146 case 36: 6147 val |= PIPECONF_12BPC; 6148 break; 6149 default: 6150 /* Case prevented by intel_choose_pipe_bpp_dither. */ 6151 BUG(); 6152 } 6153 6154 if (crtc_state->dither) 6155 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 6156 6157 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 6158 val |= PIPECONF_INTERLACED_ILK; 6159 else 6160 val |= PIPECONF_PROGRESSIVE; 6161 6162 /* 6163 * This would end up with an odd purple hue over 6164 * the entire display. Make sure we don't do it. 6165 */ 6166 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && 6167 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 6168 6169 if (crtc_state->limited_color_range && 6170 !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 6171 val |= PIPECONF_COLOR_RANGE_SELECT; 6172 6173 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 6174 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; 6175 6176 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 6177 6178 val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 6179 6180 intel_de_write(dev_priv, PIPECONF(pipe), val); 6181 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 6182 } 6183 6184 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state) 6185 { 6186 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6187 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6188 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 6189 u32 val = 0; 6190 6191 if (IS_HASWELL(dev_priv) && crtc_state->dither) 6192 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 6193 6194 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 6195 val |= PIPECONF_INTERLACED_ILK; 6196 else 6197 val |= PIPECONF_PROGRESSIVE; 6198 6199 if (IS_HASWELL(dev_priv) && 6200 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 6201 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; 6202 6203 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val); 6204 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder)); 6205 } 6206 6207 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 6208 { 6209 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6210 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6211 u32 val = 0; 6212 6213 switch (crtc_state->pipe_bpp) { 6214 case 18: 6215 val |= PIPEMISC_DITHER_6_BPC; 6216 break; 6217 case 24: 6218 val |= PIPEMISC_DITHER_8_BPC; 6219 break; 6220 case 30: 6221 val |= PIPEMISC_DITHER_10_BPC; 6222 break; 6223 case 36: 6224 val |= PIPEMISC_DITHER_12_BPC; 6225 break; 6226 default: 6227 MISSING_CASE(crtc_state->pipe_bpp); 6228 break; 6229 } 6230 6231 if (crtc_state->dither) 6232 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 6233 6234 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 6235 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 6236 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 6237 6238 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 6239 val |= PIPEMISC_YUV420_ENABLE | 6240 PIPEMISC_YUV420_MODE_FULL_BLEND; 6241 6242 if (INTEL_GEN(dev_priv) >= 11 && 6243 (crtc_state->active_planes & ~(icl_hdr_plane_mask() | 6244 BIT(PLANE_CURSOR))) == 0) 6245 val |= PIPEMISC_HDR_MODE_PRECISION; 6246 6247 if (INTEL_GEN(dev_priv) >= 12) 6248 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC; 6249 6250 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val); 6251 } 6252 6253 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 6254 { 6255 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6256 u32 tmp; 6257 6258 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 6259 6260 switch (tmp & PIPEMISC_DITHER_BPC_MASK) { 6261 case PIPEMISC_DITHER_6_BPC: 6262 return 18; 6263 case PIPEMISC_DITHER_8_BPC: 6264 return 24; 6265 case PIPEMISC_DITHER_10_BPC: 6266 return 30; 6267 case PIPEMISC_DITHER_12_BPC: 6268 return 36; 6269 default: 6270 MISSING_CASE(tmp); 6271 return 0; 6272 } 6273 } 6274 6275 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) 6276 { 6277 /* 6278 * Account for spread spectrum to avoid 6279 * oversubscribing the link. Max center spread 6280 * is 2.5%; use 5% for safety's sake. 6281 */ 6282 u32 bps = target_clock * bpp * 21 / 20; 6283 return DIV_ROUND_UP(bps, link_bw * 8); 6284 } 6285 6286 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 6287 struct intel_link_m_n *m_n) 6288 { 6289 struct drm_device *dev = crtc->base.dev; 6290 struct drm_i915_private *dev_priv = to_i915(dev); 6291 enum pipe pipe = crtc->pipe; 6292 6293 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe)); 6294 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe)); 6295 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 6296 & ~TU_SIZE_MASK; 6297 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe)); 6298 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 6299 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 6300 } 6301 6302 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 6303 enum transcoder transcoder, 6304 struct intel_link_m_n *m_n, 6305 struct intel_link_m_n *m2_n2) 6306 { 6307 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6308 enum pipe pipe = crtc->pipe; 6309 6310 if (INTEL_GEN(dev_priv) >= 5) { 6311 m_n->link_m = intel_de_read(dev_priv, 6312 PIPE_LINK_M1(transcoder)); 6313 m_n->link_n = intel_de_read(dev_priv, 6314 PIPE_LINK_N1(transcoder)); 6315 m_n->gmch_m = intel_de_read(dev_priv, 6316 PIPE_DATA_M1(transcoder)) 6317 & ~TU_SIZE_MASK; 6318 m_n->gmch_n = intel_de_read(dev_priv, 6319 PIPE_DATA_N1(transcoder)); 6320 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder)) 6321 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 6322 6323 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 6324 m2_n2->link_m = intel_de_read(dev_priv, 6325 PIPE_LINK_M2(transcoder)); 6326 m2_n2->link_n = intel_de_read(dev_priv, 6327 PIPE_LINK_N2(transcoder)); 6328 m2_n2->gmch_m = intel_de_read(dev_priv, 6329 PIPE_DATA_M2(transcoder)) 6330 & ~TU_SIZE_MASK; 6331 m2_n2->gmch_n = intel_de_read(dev_priv, 6332 PIPE_DATA_N2(transcoder)); 6333 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder)) 6334 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 6335 } 6336 } else { 6337 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe)); 6338 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe)); 6339 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 6340 & ~TU_SIZE_MASK; 6341 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe)); 6342 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 6343 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 6344 } 6345 } 6346 6347 void intel_dp_get_m_n(struct intel_crtc *crtc, 6348 struct intel_crtc_state *pipe_config) 6349 { 6350 if (pipe_config->has_pch_encoder) 6351 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 6352 else 6353 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 6354 &pipe_config->dp_m_n, 6355 &pipe_config->dp_m2_n2); 6356 } 6357 6358 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc, 6359 struct intel_crtc_state *pipe_config) 6360 { 6361 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 6362 &pipe_config->fdi_m_n, NULL); 6363 } 6364 6365 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state, 6366 u32 pos, u32 size) 6367 { 6368 drm_rect_init(&crtc_state->pch_pfit.dst, 6369 pos >> 16, pos & 0xffff, 6370 size >> 16, size & 0xffff); 6371 } 6372 6373 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state) 6374 { 6375 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6376 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6377 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; 6378 int id = -1; 6379 int i; 6380 6381 /* find scaler attached to this pipe */ 6382 for (i = 0; i < crtc->num_scalers; i++) { 6383 u32 ctl, pos, size; 6384 6385 ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i)); 6386 if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN) 6387 continue; 6388 6389 id = i; 6390 crtc_state->pch_pfit.enabled = true; 6391 6392 pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i)); 6393 size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i)); 6394 6395 ilk_get_pfit_pos_size(crtc_state, pos, size); 6396 6397 scaler_state->scalers[i].in_use = true; 6398 break; 6399 } 6400 6401 scaler_state->scaler_id = id; 6402 if (id >= 0) 6403 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 6404 else 6405 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 6406 } 6407 6408 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state) 6409 { 6410 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6411 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6412 u32 ctl, pos, size; 6413 6414 ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe)); 6415 if ((ctl & PF_ENABLE) == 0) 6416 return; 6417 6418 crtc_state->pch_pfit.enabled = true; 6419 6420 pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe)); 6421 size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe)); 6422 6423 ilk_get_pfit_pos_size(crtc_state, pos, size); 6424 6425 /* 6426 * We currently do not free assignements of panel fitters on 6427 * ivb/hsw (since we don't use the higher upscaling modes which 6428 * differentiates them) so just WARN about this case for now. 6429 */ 6430 drm_WARN_ON(&dev_priv->drm, IS_GEN(dev_priv, 7) && 6431 (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe)); 6432 } 6433 6434 static bool ilk_get_pipe_config(struct intel_crtc *crtc, 6435 struct intel_crtc_state *pipe_config) 6436 { 6437 struct drm_device *dev = crtc->base.dev; 6438 struct drm_i915_private *dev_priv = to_i915(dev); 6439 enum intel_display_power_domain power_domain; 6440 intel_wakeref_t wakeref; 6441 u32 tmp; 6442 bool ret; 6443 6444 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 6445 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 6446 if (!wakeref) 6447 return false; 6448 6449 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 6450 pipe_config->shared_dpll = NULL; 6451 6452 ret = false; 6453 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 6454 if (!(tmp & PIPECONF_ENABLE)) 6455 goto out; 6456 6457 switch (tmp & PIPECONF_BPC_MASK) { 6458 case PIPECONF_6BPC: 6459 pipe_config->pipe_bpp = 18; 6460 break; 6461 case PIPECONF_8BPC: 6462 pipe_config->pipe_bpp = 24; 6463 break; 6464 case PIPECONF_10BPC: 6465 pipe_config->pipe_bpp = 30; 6466 break; 6467 case PIPECONF_12BPC: 6468 pipe_config->pipe_bpp = 36; 6469 break; 6470 default: 6471 break; 6472 } 6473 6474 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 6475 pipe_config->limited_color_range = true; 6476 6477 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { 6478 case PIPECONF_OUTPUT_COLORSPACE_YUV601: 6479 case PIPECONF_OUTPUT_COLORSPACE_YUV709: 6480 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 6481 break; 6482 default: 6483 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 6484 break; 6485 } 6486 6487 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 6488 PIPECONF_GAMMA_MODE_SHIFT; 6489 6490 pipe_config->csc_mode = intel_de_read(dev_priv, 6491 PIPE_CSC_MODE(crtc->pipe)); 6492 6493 i9xx_get_pipe_color_config(pipe_config); 6494 intel_color_get_config(pipe_config); 6495 6496 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 6497 struct intel_shared_dpll *pll; 6498 enum intel_dpll_id pll_id; 6499 bool pll_active; 6500 6501 pipe_config->has_pch_encoder = true; 6502 6503 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe)); 6504 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 6505 FDI_DP_PORT_WIDTH_SHIFT) + 1; 6506 6507 ilk_get_fdi_m_n_config(crtc, pipe_config); 6508 6509 if (HAS_PCH_IBX(dev_priv)) { 6510 /* 6511 * The pipe->pch transcoder and pch transcoder->pll 6512 * mapping is fixed. 6513 */ 6514 pll_id = (enum intel_dpll_id) crtc->pipe; 6515 } else { 6516 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL); 6517 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 6518 pll_id = DPLL_ID_PCH_PLL_B; 6519 else 6520 pll_id= DPLL_ID_PCH_PLL_A; 6521 } 6522 6523 pipe_config->shared_dpll = 6524 intel_get_shared_dpll_by_id(dev_priv, pll_id); 6525 pll = pipe_config->shared_dpll; 6526 6527 pll_active = intel_dpll_get_hw_state(dev_priv, pll, 6528 &pipe_config->dpll_hw_state); 6529 drm_WARN_ON(dev, !pll_active); 6530 6531 tmp = pipe_config->dpll_hw_state.dpll; 6532 pipe_config->pixel_multiplier = 6533 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 6534 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 6535 6536 ilk_pch_clock_get(crtc, pipe_config); 6537 } else { 6538 pipe_config->pixel_multiplier = 1; 6539 } 6540 6541 intel_get_transcoder_timings(crtc, pipe_config); 6542 intel_get_pipe_src_size(crtc, pipe_config); 6543 6544 ilk_get_pfit_config(pipe_config); 6545 6546 ret = true; 6547 6548 out: 6549 intel_display_power_put(dev_priv, power_domain, wakeref); 6550 6551 return ret; 6552 } 6553 6554 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 6555 struct intel_crtc_state *pipe_config, 6556 struct intel_display_power_domain_set *power_domain_set) 6557 { 6558 struct drm_device *dev = crtc->base.dev; 6559 struct drm_i915_private *dev_priv = to_i915(dev); 6560 unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP); 6561 unsigned long enabled_panel_transcoders = 0; 6562 enum transcoder panel_transcoder; 6563 u32 tmp; 6564 6565 if (INTEL_GEN(dev_priv) >= 11) 6566 panel_transcoder_mask |= 6567 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 6568 6569 /* 6570 * The pipe->transcoder mapping is fixed with the exception of the eDP 6571 * and DSI transcoders handled below. 6572 */ 6573 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 6574 6575 /* 6576 * XXX: Do intel_display_power_get_if_enabled before reading this (for 6577 * consistency and less surprising code; it's in always on power). 6578 */ 6579 for_each_cpu_transcoder_masked(dev_priv, panel_transcoder, 6580 panel_transcoder_mask) { 6581 bool force_thru = false; 6582 enum pipe trans_pipe; 6583 6584 tmp = intel_de_read(dev_priv, 6585 TRANS_DDI_FUNC_CTL(panel_transcoder)); 6586 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 6587 continue; 6588 6589 /* 6590 * Log all enabled ones, only use the first one. 6591 * 6592 * FIXME: This won't work for two separate DSI displays. 6593 */ 6594 enabled_panel_transcoders |= BIT(panel_transcoder); 6595 if (enabled_panel_transcoders != BIT(panel_transcoder)) 6596 continue; 6597 6598 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 6599 default: 6600 drm_WARN(dev, 1, 6601 "unknown pipe linked to transcoder %s\n", 6602 transcoder_name(panel_transcoder)); 6603 fallthrough; 6604 case TRANS_DDI_EDP_INPUT_A_ONOFF: 6605 force_thru = true; 6606 fallthrough; 6607 case TRANS_DDI_EDP_INPUT_A_ON: 6608 trans_pipe = PIPE_A; 6609 break; 6610 case TRANS_DDI_EDP_INPUT_B_ONOFF: 6611 trans_pipe = PIPE_B; 6612 break; 6613 case TRANS_DDI_EDP_INPUT_C_ONOFF: 6614 trans_pipe = PIPE_C; 6615 break; 6616 case TRANS_DDI_EDP_INPUT_D_ONOFF: 6617 trans_pipe = PIPE_D; 6618 break; 6619 } 6620 6621 if (trans_pipe == crtc->pipe) { 6622 pipe_config->cpu_transcoder = panel_transcoder; 6623 pipe_config->pch_pfit.force_thru = force_thru; 6624 } 6625 } 6626 6627 /* 6628 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 6629 */ 6630 drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && 6631 enabled_panel_transcoders != BIT(TRANSCODER_EDP)); 6632 6633 if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, 6634 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder))) 6635 return false; 6636 6637 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); 6638 6639 return tmp & PIPECONF_ENABLE; 6640 } 6641 6642 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 6643 struct intel_crtc_state *pipe_config, 6644 struct intel_display_power_domain_set *power_domain_set) 6645 { 6646 struct drm_device *dev = crtc->base.dev; 6647 struct drm_i915_private *dev_priv = to_i915(dev); 6648 enum transcoder cpu_transcoder; 6649 enum port port; 6650 u32 tmp; 6651 6652 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 6653 if (port == PORT_A) 6654 cpu_transcoder = TRANSCODER_DSI_A; 6655 else 6656 cpu_transcoder = TRANSCODER_DSI_C; 6657 6658 if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, 6659 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) 6660 continue; 6661 6662 /* 6663 * The PLL needs to be enabled with a valid divider 6664 * configuration, otherwise accessing DSI registers will hang 6665 * the machine. See BSpec North Display Engine 6666 * registers/MIPI[BXT]. We can break out here early, since we 6667 * need the same DSI PLL to be enabled for both DSI ports. 6668 */ 6669 if (!bxt_dsi_pll_is_enabled(dev_priv)) 6670 break; 6671 6672 /* XXX: this works for video mode only */ 6673 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); 6674 if (!(tmp & DPI_ENABLE)) 6675 continue; 6676 6677 tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); 6678 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 6679 continue; 6680 6681 pipe_config->cpu_transcoder = cpu_transcoder; 6682 break; 6683 } 6684 6685 return transcoder_is_dsi(pipe_config->cpu_transcoder); 6686 } 6687 6688 static void hsw_get_ddi_port_state(struct intel_crtc *crtc, 6689 struct intel_crtc_state *pipe_config) 6690 { 6691 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6692 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 6693 enum port port; 6694 u32 tmp; 6695 6696 if (transcoder_is_dsi(cpu_transcoder)) { 6697 port = (cpu_transcoder == TRANSCODER_DSI_A) ? 6698 PORT_A : PORT_B; 6699 } else { 6700 tmp = intel_de_read(dev_priv, 6701 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 6702 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 6703 return; 6704 if (INTEL_GEN(dev_priv) >= 12) 6705 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 6706 else 6707 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 6708 } 6709 6710 /* 6711 * Haswell has only FDI/PCH transcoder A. It is which is connected to 6712 * DDI E. So just check whether this pipe is wired to DDI E and whether 6713 * the PCH transcoder is on. 6714 */ 6715 if (INTEL_GEN(dev_priv) < 9 && 6716 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) { 6717 pipe_config->has_pch_encoder = true; 6718 6719 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); 6720 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 6721 FDI_DP_PORT_WIDTH_SHIFT) + 1; 6722 6723 ilk_get_fdi_m_n_config(crtc, pipe_config); 6724 } 6725 } 6726 6727 static bool hsw_get_pipe_config(struct intel_crtc *crtc, 6728 struct intel_crtc_state *pipe_config) 6729 { 6730 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6731 struct intel_display_power_domain_set power_domain_set = { }; 6732 bool active; 6733 u32 tmp; 6734 6735 if (!intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, 6736 POWER_DOMAIN_PIPE(crtc->pipe))) 6737 return false; 6738 6739 pipe_config->shared_dpll = NULL; 6740 6741 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_set); 6742 6743 if (IS_GEN9_LP(dev_priv) && 6744 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_set)) { 6745 drm_WARN_ON(&dev_priv->drm, active); 6746 active = true; 6747 } 6748 6749 intel_dsc_get_config(pipe_config); 6750 6751 if (!active) { 6752 /* bigjoiner slave doesn't enable transcoder */ 6753 if (!pipe_config->bigjoiner_slave) 6754 goto out; 6755 6756 active = true; 6757 pipe_config->pixel_multiplier = 1; 6758 6759 /* we cannot read out most state, so don't bother.. */ 6760 pipe_config->quirks |= PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE; 6761 } else if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 6762 INTEL_GEN(dev_priv) >= 11) { 6763 hsw_get_ddi_port_state(crtc, pipe_config); 6764 intel_get_transcoder_timings(crtc, pipe_config); 6765 } 6766 6767 if (HAS_VRR(dev_priv) && !transcoder_is_dsi(pipe_config->cpu_transcoder)) 6768 intel_vrr_get_config(crtc, pipe_config); 6769 6770 intel_get_pipe_src_size(crtc, pipe_config); 6771 6772 if (IS_HASWELL(dev_priv)) { 6773 u32 tmp = intel_de_read(dev_priv, 6774 PIPECONF(pipe_config->cpu_transcoder)); 6775 6776 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) 6777 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 6778 else 6779 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 6780 } else { 6781 pipe_config->output_format = 6782 bdw_get_pipemisc_output_format(crtc); 6783 } 6784 6785 pipe_config->gamma_mode = intel_de_read(dev_priv, 6786 GAMMA_MODE(crtc->pipe)); 6787 6788 pipe_config->csc_mode = intel_de_read(dev_priv, 6789 PIPE_CSC_MODE(crtc->pipe)); 6790 6791 if (INTEL_GEN(dev_priv) >= 9) { 6792 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe)); 6793 6794 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 6795 pipe_config->gamma_enable = true; 6796 6797 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 6798 pipe_config->csc_enable = true; 6799 } else { 6800 i9xx_get_pipe_color_config(pipe_config); 6801 } 6802 6803 intel_color_get_config(pipe_config); 6804 6805 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe)); 6806 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); 6807 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 6808 pipe_config->ips_linetime = 6809 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); 6810 6811 if (intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, 6812 POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe))) { 6813 if (INTEL_GEN(dev_priv) >= 9) 6814 skl_get_pfit_config(pipe_config); 6815 else 6816 ilk_get_pfit_config(pipe_config); 6817 } 6818 6819 if (hsw_crtc_supports_ips(crtc)) { 6820 if (IS_HASWELL(dev_priv)) 6821 pipe_config->ips_enabled = intel_de_read(dev_priv, 6822 IPS_CTL) & IPS_ENABLE; 6823 else { 6824 /* 6825 * We cannot readout IPS state on broadwell, set to 6826 * true so we can set it to a defined state on first 6827 * commit. 6828 */ 6829 pipe_config->ips_enabled = true; 6830 } 6831 } 6832 6833 if (pipe_config->bigjoiner_slave) { 6834 /* Cannot be read out as a slave, set to 0. */ 6835 pipe_config->pixel_multiplier = 0; 6836 } else if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 6837 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 6838 pipe_config->pixel_multiplier = 6839 intel_de_read(dev_priv, 6840 PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 6841 } else { 6842 pipe_config->pixel_multiplier = 1; 6843 } 6844 6845 out: 6846 intel_display_power_put_all_in_set(dev_priv, &power_domain_set); 6847 6848 return active; 6849 } 6850 6851 static bool intel_crtc_get_pipe_config(struct intel_crtc_state *crtc_state) 6852 { 6853 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6854 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 6855 6856 if (!i915->display.get_pipe_config(crtc, crtc_state)) 6857 return false; 6858 6859 crtc_state->hw.active = true; 6860 6861 intel_crtc_readout_derived_state(crtc_state); 6862 6863 return true; 6864 } 6865 6866 /* VESA 640x480x72Hz mode to set on the pipe */ 6867 static const struct drm_display_mode load_detect_mode = { 6868 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 6869 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 6870 }; 6871 6872 struct drm_framebuffer * 6873 intel_framebuffer_create(struct drm_i915_gem_object *obj, 6874 struct drm_mode_fb_cmd2 *mode_cmd) 6875 { 6876 struct intel_framebuffer *intel_fb; 6877 int ret; 6878 6879 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 6880 if (!intel_fb) 6881 return ERR_PTR(-ENOMEM); 6882 6883 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); 6884 if (ret) 6885 goto err; 6886 6887 return &intel_fb->base; 6888 6889 err: 6890 kfree(intel_fb); 6891 return ERR_PTR(ret); 6892 } 6893 6894 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 6895 struct drm_crtc *crtc) 6896 { 6897 struct drm_plane *plane; 6898 struct drm_plane_state *plane_state; 6899 int ret, i; 6900 6901 ret = drm_atomic_add_affected_planes(state, crtc); 6902 if (ret) 6903 return ret; 6904 6905 for_each_new_plane_in_state(state, plane, plane_state, i) { 6906 if (plane_state->crtc != crtc) 6907 continue; 6908 6909 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 6910 if (ret) 6911 return ret; 6912 6913 drm_atomic_set_fb_for_plane(plane_state, NULL); 6914 } 6915 6916 return 0; 6917 } 6918 6919 int intel_get_load_detect_pipe(struct drm_connector *connector, 6920 struct intel_load_detect_pipe *old, 6921 struct drm_modeset_acquire_ctx *ctx) 6922 { 6923 struct intel_crtc *intel_crtc; 6924 struct intel_encoder *intel_encoder = 6925 intel_attached_encoder(to_intel_connector(connector)); 6926 struct drm_crtc *possible_crtc; 6927 struct drm_encoder *encoder = &intel_encoder->base; 6928 struct drm_crtc *crtc = NULL; 6929 struct drm_device *dev = encoder->dev; 6930 struct drm_i915_private *dev_priv = to_i915(dev); 6931 struct drm_mode_config *config = &dev->mode_config; 6932 struct drm_atomic_state *state = NULL, *restore_state = NULL; 6933 struct drm_connector_state *connector_state; 6934 struct intel_crtc_state *crtc_state; 6935 int ret, i = -1; 6936 6937 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 6938 connector->base.id, connector->name, 6939 encoder->base.id, encoder->name); 6940 6941 old->restore_state = NULL; 6942 6943 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex)); 6944 6945 /* 6946 * Algorithm gets a little messy: 6947 * 6948 * - if the connector already has an assigned crtc, use it (but make 6949 * sure it's on first) 6950 * 6951 * - try to find the first unused crtc that can drive this connector, 6952 * and use that if we find one 6953 */ 6954 6955 /* See if we already have a CRTC for this connector */ 6956 if (connector->state->crtc) { 6957 crtc = connector->state->crtc; 6958 6959 ret = drm_modeset_lock(&crtc->mutex, ctx); 6960 if (ret) 6961 goto fail; 6962 6963 /* Make sure the crtc and connector are running */ 6964 goto found; 6965 } 6966 6967 /* Find an unused one (if possible) */ 6968 for_each_crtc(dev, possible_crtc) { 6969 i++; 6970 if (!(encoder->possible_crtcs & (1 << i))) 6971 continue; 6972 6973 ret = drm_modeset_lock(&possible_crtc->mutex, ctx); 6974 if (ret) 6975 goto fail; 6976 6977 if (possible_crtc->state->enable) { 6978 drm_modeset_unlock(&possible_crtc->mutex); 6979 continue; 6980 } 6981 6982 crtc = possible_crtc; 6983 break; 6984 } 6985 6986 /* 6987 * If we didn't find an unused CRTC, don't use any. 6988 */ 6989 if (!crtc) { 6990 drm_dbg_kms(&dev_priv->drm, 6991 "no pipe available for load-detect\n"); 6992 ret = -ENODEV; 6993 goto fail; 6994 } 6995 6996 found: 6997 intel_crtc = to_intel_crtc(crtc); 6998 6999 state = drm_atomic_state_alloc(dev); 7000 restore_state = drm_atomic_state_alloc(dev); 7001 if (!state || !restore_state) { 7002 ret = -ENOMEM; 7003 goto fail; 7004 } 7005 7006 state->acquire_ctx = ctx; 7007 restore_state->acquire_ctx = ctx; 7008 7009 connector_state = drm_atomic_get_connector_state(state, connector); 7010 if (IS_ERR(connector_state)) { 7011 ret = PTR_ERR(connector_state); 7012 goto fail; 7013 } 7014 7015 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); 7016 if (ret) 7017 goto fail; 7018 7019 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); 7020 if (IS_ERR(crtc_state)) { 7021 ret = PTR_ERR(crtc_state); 7022 goto fail; 7023 } 7024 7025 crtc_state->uapi.active = true; 7026 7027 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi, 7028 &load_detect_mode); 7029 if (ret) 7030 goto fail; 7031 7032 ret = intel_modeset_disable_planes(state, crtc); 7033 if (ret) 7034 goto fail; 7035 7036 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 7037 if (!ret) 7038 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); 7039 if (!ret) 7040 ret = drm_atomic_add_affected_planes(restore_state, crtc); 7041 if (ret) { 7042 drm_dbg_kms(&dev_priv->drm, 7043 "Failed to create a copy of old state to restore: %i\n", 7044 ret); 7045 goto fail; 7046 } 7047 7048 ret = drm_atomic_commit(state); 7049 if (ret) { 7050 drm_dbg_kms(&dev_priv->drm, 7051 "failed to set mode on load-detect pipe\n"); 7052 goto fail; 7053 } 7054 7055 old->restore_state = restore_state; 7056 drm_atomic_state_put(state); 7057 7058 /* let the connector get through one full cycle before testing */ 7059 intel_wait_for_vblank(dev_priv, intel_crtc->pipe); 7060 return true; 7061 7062 fail: 7063 if (state) { 7064 drm_atomic_state_put(state); 7065 state = NULL; 7066 } 7067 if (restore_state) { 7068 drm_atomic_state_put(restore_state); 7069 restore_state = NULL; 7070 } 7071 7072 if (ret == -EDEADLK) 7073 return ret; 7074 7075 return false; 7076 } 7077 7078 void intel_release_load_detect_pipe(struct drm_connector *connector, 7079 struct intel_load_detect_pipe *old, 7080 struct drm_modeset_acquire_ctx *ctx) 7081 { 7082 struct intel_encoder *intel_encoder = 7083 intel_attached_encoder(to_intel_connector(connector)); 7084 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev); 7085 struct drm_encoder *encoder = &intel_encoder->base; 7086 struct drm_atomic_state *state = old->restore_state; 7087 int ret; 7088 7089 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 7090 connector->base.id, connector->name, 7091 encoder->base.id, encoder->name); 7092 7093 if (!state) 7094 return; 7095 7096 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 7097 if (ret) 7098 drm_dbg_kms(&i915->drm, 7099 "Couldn't release load detect pipe: %i\n", ret); 7100 drm_atomic_state_put(state); 7101 } 7102 7103 static int i9xx_pll_refclk(struct drm_device *dev, 7104 const struct intel_crtc_state *pipe_config) 7105 { 7106 struct drm_i915_private *dev_priv = to_i915(dev); 7107 u32 dpll = pipe_config->dpll_hw_state.dpll; 7108 7109 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 7110 return dev_priv->vbt.lvds_ssc_freq; 7111 else if (HAS_PCH_SPLIT(dev_priv)) 7112 return 120000; 7113 else if (!IS_GEN(dev_priv, 2)) 7114 return 96000; 7115 else 7116 return 48000; 7117 } 7118 7119 /* Returns the clock of the currently programmed mode of the given pipe. */ 7120 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 7121 struct intel_crtc_state *pipe_config) 7122 { 7123 struct drm_device *dev = crtc->base.dev; 7124 struct drm_i915_private *dev_priv = to_i915(dev); 7125 enum pipe pipe = crtc->pipe; 7126 u32 dpll = pipe_config->dpll_hw_state.dpll; 7127 u32 fp; 7128 struct dpll clock; 7129 int port_clock; 7130 int refclk = i9xx_pll_refclk(dev, pipe_config); 7131 7132 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 7133 fp = pipe_config->dpll_hw_state.fp0; 7134 else 7135 fp = pipe_config->dpll_hw_state.fp1; 7136 7137 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 7138 if (IS_PINEVIEW(dev_priv)) { 7139 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 7140 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 7141 } else { 7142 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 7143 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 7144 } 7145 7146 if (!IS_GEN(dev_priv, 2)) { 7147 if (IS_PINEVIEW(dev_priv)) 7148 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 7149 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 7150 else 7151 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 7152 DPLL_FPA01_P1_POST_DIV_SHIFT); 7153 7154 switch (dpll & DPLL_MODE_MASK) { 7155 case DPLLB_MODE_DAC_SERIAL: 7156 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 7157 5 : 10; 7158 break; 7159 case DPLLB_MODE_LVDS: 7160 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 7161 7 : 14; 7162 break; 7163 default: 7164 drm_dbg_kms(&dev_priv->drm, 7165 "Unknown DPLL mode %08x in programmed " 7166 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 7167 return; 7168 } 7169 7170 if (IS_PINEVIEW(dev_priv)) 7171 port_clock = pnv_calc_dpll_params(refclk, &clock); 7172 else 7173 port_clock = i9xx_calc_dpll_params(refclk, &clock); 7174 } else { 7175 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv, 7176 LVDS); 7177 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 7178 7179 if (is_lvds) { 7180 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 7181 DPLL_FPA01_P1_POST_DIV_SHIFT); 7182 7183 if (lvds & LVDS_CLKB_POWER_UP) 7184 clock.p2 = 7; 7185 else 7186 clock.p2 = 14; 7187 } else { 7188 if (dpll & PLL_P1_DIVIDE_BY_TWO) 7189 clock.p1 = 2; 7190 else { 7191 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 7192 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 7193 } 7194 if (dpll & PLL_P2_DIVIDE_BY_4) 7195 clock.p2 = 4; 7196 else 7197 clock.p2 = 2; 7198 } 7199 7200 port_clock = i9xx_calc_dpll_params(refclk, &clock); 7201 } 7202 7203 /* 7204 * This value includes pixel_multiplier. We will use 7205 * port_clock to compute adjusted_mode.crtc_clock in the 7206 * encoder's get_config() function. 7207 */ 7208 pipe_config->port_clock = port_clock; 7209 } 7210 7211 int intel_dotclock_calculate(int link_freq, 7212 const struct intel_link_m_n *m_n) 7213 { 7214 /* 7215 * The calculation for the data clock is: 7216 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 7217 * But we want to avoid losing precison if possible, so: 7218 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 7219 * 7220 * and the link clock is simpler: 7221 * link_clock = (m * link_clock) / n 7222 */ 7223 7224 if (!m_n->link_n) 7225 return 0; 7226 7227 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 7228 } 7229 7230 static void ilk_pch_clock_get(struct intel_crtc *crtc, 7231 struct intel_crtc_state *pipe_config) 7232 { 7233 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7234 7235 /* read out port_clock from the DPLL */ 7236 i9xx_crtc_clock_get(crtc, pipe_config); 7237 7238 /* 7239 * In case there is an active pipe without active ports, 7240 * we may need some idea for the dotclock anyway. 7241 * Calculate one based on the FDI configuration. 7242 */ 7243 pipe_config->hw.adjusted_mode.crtc_clock = 7244 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 7245 &pipe_config->fdi_m_n); 7246 } 7247 7248 /* Returns the currently programmed mode of the given encoder. */ 7249 struct drm_display_mode * 7250 intel_encoder_current_mode(struct intel_encoder *encoder) 7251 { 7252 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 7253 struct intel_crtc_state *crtc_state; 7254 struct drm_display_mode *mode; 7255 struct intel_crtc *crtc; 7256 enum pipe pipe; 7257 7258 if (!encoder->get_hw_state(encoder, &pipe)) 7259 return NULL; 7260 7261 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 7262 7263 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 7264 if (!mode) 7265 return NULL; 7266 7267 crtc_state = intel_crtc_state_alloc(crtc); 7268 if (!crtc_state) { 7269 kfree(mode); 7270 return NULL; 7271 } 7272 7273 if (!intel_crtc_get_pipe_config(crtc_state)) { 7274 kfree(crtc_state); 7275 kfree(mode); 7276 return NULL; 7277 } 7278 7279 intel_encoder_get_config(encoder, crtc_state); 7280 7281 intel_mode_from_crtc_timings(mode, &crtc_state->hw.adjusted_mode); 7282 7283 kfree(crtc_state); 7284 7285 return mode; 7286 } 7287 7288 /** 7289 * intel_wm_need_update - Check whether watermarks need updating 7290 * @cur: current plane state 7291 * @new: new plane state 7292 * 7293 * Check current plane state versus the new one to determine whether 7294 * watermarks need to be recalculated. 7295 * 7296 * Returns true or false. 7297 */ 7298 static bool intel_wm_need_update(const struct intel_plane_state *cur, 7299 struct intel_plane_state *new) 7300 { 7301 /* Update watermarks on tiling or size changes. */ 7302 if (new->uapi.visible != cur->uapi.visible) 7303 return true; 7304 7305 if (!cur->hw.fb || !new->hw.fb) 7306 return false; 7307 7308 if (cur->hw.fb->modifier != new->hw.fb->modifier || 7309 cur->hw.rotation != new->hw.rotation || 7310 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) || 7311 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) || 7312 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) || 7313 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst)) 7314 return true; 7315 7316 return false; 7317 } 7318 7319 static bool needs_scaling(const struct intel_plane_state *state) 7320 { 7321 int src_w = drm_rect_width(&state->uapi.src) >> 16; 7322 int src_h = drm_rect_height(&state->uapi.src) >> 16; 7323 int dst_w = drm_rect_width(&state->uapi.dst); 7324 int dst_h = drm_rect_height(&state->uapi.dst); 7325 7326 return (src_w != dst_w || src_h != dst_h); 7327 } 7328 7329 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 7330 struct intel_crtc_state *crtc_state, 7331 const struct intel_plane_state *old_plane_state, 7332 struct intel_plane_state *plane_state) 7333 { 7334 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7335 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 7336 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7337 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 7338 bool was_crtc_enabled = old_crtc_state->hw.active; 7339 bool is_crtc_enabled = crtc_state->hw.active; 7340 bool turn_off, turn_on, visible, was_visible; 7341 int ret; 7342 7343 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 7344 ret = skl_update_scaler_plane(crtc_state, plane_state); 7345 if (ret) 7346 return ret; 7347 } 7348 7349 was_visible = old_plane_state->uapi.visible; 7350 visible = plane_state->uapi.visible; 7351 7352 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible)) 7353 was_visible = false; 7354 7355 /* 7356 * Visibility is calculated as if the crtc was on, but 7357 * after scaler setup everything depends on it being off 7358 * when the crtc isn't active. 7359 * 7360 * FIXME this is wrong for watermarks. Watermarks should also 7361 * be computed as if the pipe would be active. Perhaps move 7362 * per-plane wm computation to the .check_plane() hook, and 7363 * only combine the results from all planes in the current place? 7364 */ 7365 if (!is_crtc_enabled) { 7366 intel_plane_set_invisible(crtc_state, plane_state); 7367 visible = false; 7368 } 7369 7370 if (!was_visible && !visible) 7371 return 0; 7372 7373 turn_off = was_visible && (!visible || mode_changed); 7374 turn_on = visible && (!was_visible || mode_changed); 7375 7376 drm_dbg_atomic(&dev_priv->drm, 7377 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 7378 crtc->base.base.id, crtc->base.name, 7379 plane->base.base.id, plane->base.name, 7380 was_visible, visible, 7381 turn_off, turn_on, mode_changed); 7382 7383 if (turn_on) { 7384 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 7385 crtc_state->update_wm_pre = true; 7386 7387 /* must disable cxsr around plane enable/disable */ 7388 if (plane->id != PLANE_CURSOR) 7389 crtc_state->disable_cxsr = true; 7390 } else if (turn_off) { 7391 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 7392 crtc_state->update_wm_post = true; 7393 7394 /* must disable cxsr around plane enable/disable */ 7395 if (plane->id != PLANE_CURSOR) 7396 crtc_state->disable_cxsr = true; 7397 } else if (intel_wm_need_update(old_plane_state, plane_state)) { 7398 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) { 7399 /* FIXME bollocks */ 7400 crtc_state->update_wm_pre = true; 7401 crtc_state->update_wm_post = true; 7402 } 7403 } 7404 7405 if (visible || was_visible) 7406 crtc_state->fb_bits |= plane->frontbuffer_bit; 7407 7408 /* 7409 * ILK/SNB DVSACNTR/Sprite Enable 7410 * IVB SPR_CTL/Sprite Enable 7411 * "When in Self Refresh Big FIFO mode, a write to enable the 7412 * plane will be internally buffered and delayed while Big FIFO 7413 * mode is exiting." 7414 * 7415 * Which means that enabling the sprite can take an extra frame 7416 * when we start in big FIFO mode (LP1+). Thus we need to drop 7417 * down to LP0 and wait for vblank in order to make sure the 7418 * sprite gets enabled on the next vblank after the register write. 7419 * Doing otherwise would risk enabling the sprite one frame after 7420 * we've already signalled flip completion. We can resume LP1+ 7421 * once the sprite has been enabled. 7422 * 7423 * 7424 * WaCxSRDisabledForSpriteScaling:ivb 7425 * IVB SPR_SCALE/Scaling Enable 7426 * "Low Power watermarks must be disabled for at least one 7427 * frame before enabling sprite scaling, and kept disabled 7428 * until sprite scaling is disabled." 7429 * 7430 * ILK/SNB DVSASCALE/Scaling Enable 7431 * "When in Self Refresh Big FIFO mode, scaling enable will be 7432 * masked off while Big FIFO mode is exiting." 7433 * 7434 * Despite the w/a only being listed for IVB we assume that 7435 * the ILK/SNB note has similar ramifications, hence we apply 7436 * the w/a on all three platforms. 7437 * 7438 * With experimental results seems this is needed also for primary 7439 * plane, not only sprite plane. 7440 */ 7441 if (plane->id != PLANE_CURSOR && 7442 (IS_GEN_RANGE(dev_priv, 5, 6) || 7443 IS_IVYBRIDGE(dev_priv)) && 7444 (turn_on || (!needs_scaling(old_plane_state) && 7445 needs_scaling(plane_state)))) 7446 crtc_state->disable_lp_wm = true; 7447 7448 return 0; 7449 } 7450 7451 static bool encoders_cloneable(const struct intel_encoder *a, 7452 const struct intel_encoder *b) 7453 { 7454 /* masks could be asymmetric, so check both ways */ 7455 return a == b || (a->cloneable & (1 << b->type) && 7456 b->cloneable & (1 << a->type)); 7457 } 7458 7459 static bool check_single_encoder_cloning(struct intel_atomic_state *state, 7460 struct intel_crtc *crtc, 7461 struct intel_encoder *encoder) 7462 { 7463 struct intel_encoder *source_encoder; 7464 struct drm_connector *connector; 7465 struct drm_connector_state *connector_state; 7466 int i; 7467 7468 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 7469 if (connector_state->crtc != &crtc->base) 7470 continue; 7471 7472 source_encoder = 7473 to_intel_encoder(connector_state->best_encoder); 7474 if (!encoders_cloneable(encoder, source_encoder)) 7475 return false; 7476 } 7477 7478 return true; 7479 } 7480 7481 static int icl_add_linked_planes(struct intel_atomic_state *state) 7482 { 7483 struct intel_plane *plane, *linked; 7484 struct intel_plane_state *plane_state, *linked_plane_state; 7485 int i; 7486 7487 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7488 linked = plane_state->planar_linked_plane; 7489 7490 if (!linked) 7491 continue; 7492 7493 linked_plane_state = intel_atomic_get_plane_state(state, linked); 7494 if (IS_ERR(linked_plane_state)) 7495 return PTR_ERR(linked_plane_state); 7496 7497 drm_WARN_ON(state->base.dev, 7498 linked_plane_state->planar_linked_plane != plane); 7499 drm_WARN_ON(state->base.dev, 7500 linked_plane_state->planar_slave == plane_state->planar_slave); 7501 } 7502 7503 return 0; 7504 } 7505 7506 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 7507 { 7508 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7509 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7510 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); 7511 struct intel_plane *plane, *linked; 7512 struct intel_plane_state *plane_state; 7513 int i; 7514 7515 if (INTEL_GEN(dev_priv) < 11) 7516 return 0; 7517 7518 /* 7519 * Destroy all old plane links and make the slave plane invisible 7520 * in the crtc_state->active_planes mask. 7521 */ 7522 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7523 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) 7524 continue; 7525 7526 plane_state->planar_linked_plane = NULL; 7527 if (plane_state->planar_slave && !plane_state->uapi.visible) { 7528 crtc_state->enabled_planes &= ~BIT(plane->id); 7529 crtc_state->active_planes &= ~BIT(plane->id); 7530 crtc_state->update_planes |= BIT(plane->id); 7531 } 7532 7533 plane_state->planar_slave = false; 7534 } 7535 7536 if (!crtc_state->nv12_planes) 7537 return 0; 7538 7539 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 7540 struct intel_plane_state *linked_state = NULL; 7541 7542 if (plane->pipe != crtc->pipe || 7543 !(crtc_state->nv12_planes & BIT(plane->id))) 7544 continue; 7545 7546 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 7547 if (!icl_is_nv12_y_plane(dev_priv, linked->id)) 7548 continue; 7549 7550 if (crtc_state->active_planes & BIT(linked->id)) 7551 continue; 7552 7553 linked_state = intel_atomic_get_plane_state(state, linked); 7554 if (IS_ERR(linked_state)) 7555 return PTR_ERR(linked_state); 7556 7557 break; 7558 } 7559 7560 if (!linked_state) { 7561 drm_dbg_kms(&dev_priv->drm, 7562 "Need %d free Y planes for planar YUV\n", 7563 hweight8(crtc_state->nv12_planes)); 7564 7565 return -EINVAL; 7566 } 7567 7568 plane_state->planar_linked_plane = linked; 7569 7570 linked_state->planar_slave = true; 7571 linked_state->planar_linked_plane = plane; 7572 crtc_state->enabled_planes |= BIT(linked->id); 7573 crtc_state->active_planes |= BIT(linked->id); 7574 crtc_state->update_planes |= BIT(linked->id); 7575 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n", 7576 linked->base.name, plane->base.name); 7577 7578 /* Copy parameters to slave plane */ 7579 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE; 7580 linked_state->color_ctl = plane_state->color_ctl; 7581 linked_state->view = plane_state->view; 7582 memcpy(linked_state->color_plane, plane_state->color_plane, 7583 sizeof(linked_state->color_plane)); 7584 7585 intel_plane_copy_hw_state(linked_state, plane_state); 7586 linked_state->uapi.src = plane_state->uapi.src; 7587 linked_state->uapi.dst = plane_state->uapi.dst; 7588 7589 if (icl_is_hdr_plane(dev_priv, plane->id)) { 7590 if (linked->id == PLANE_SPRITE5) 7591 plane_state->cus_ctl |= PLANE_CUS_PLANE_7; 7592 else if (linked->id == PLANE_SPRITE4) 7593 plane_state->cus_ctl |= PLANE_CUS_PLANE_6; 7594 else if (linked->id == PLANE_SPRITE3) 7595 plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL; 7596 else if (linked->id == PLANE_SPRITE2) 7597 plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL; 7598 else 7599 MISSING_CASE(linked->id); 7600 } 7601 } 7602 7603 return 0; 7604 } 7605 7606 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 7607 { 7608 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 7609 struct intel_atomic_state *state = 7610 to_intel_atomic_state(new_crtc_state->uapi.state); 7611 const struct intel_crtc_state *old_crtc_state = 7612 intel_atomic_get_old_crtc_state(state, crtc); 7613 7614 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 7615 } 7616 7617 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) 7618 { 7619 const struct drm_display_mode *pipe_mode = 7620 &crtc_state->hw.pipe_mode; 7621 int linetime_wm; 7622 7623 if (!crtc_state->hw.enable) 7624 return 0; 7625 7626 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 7627 pipe_mode->crtc_clock); 7628 7629 return min(linetime_wm, 0x1ff); 7630 } 7631 7632 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, 7633 const struct intel_cdclk_state *cdclk_state) 7634 { 7635 const struct drm_display_mode *pipe_mode = 7636 &crtc_state->hw.pipe_mode; 7637 int linetime_wm; 7638 7639 if (!crtc_state->hw.enable) 7640 return 0; 7641 7642 linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, 7643 cdclk_state->logical.cdclk); 7644 7645 return min(linetime_wm, 0x1ff); 7646 } 7647 7648 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) 7649 { 7650 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7651 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7652 const struct drm_display_mode *pipe_mode = 7653 &crtc_state->hw.pipe_mode; 7654 int linetime_wm; 7655 7656 if (!crtc_state->hw.enable) 7657 return 0; 7658 7659 linetime_wm = DIV_ROUND_UP(pipe_mode->crtc_htotal * 1000 * 8, 7660 crtc_state->pixel_rate); 7661 7662 /* Display WA #1135: BXT:ALL GLK:ALL */ 7663 if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled) 7664 linetime_wm /= 2; 7665 7666 return min(linetime_wm, 0x1ff); 7667 } 7668 7669 static int hsw_compute_linetime_wm(struct intel_atomic_state *state, 7670 struct intel_crtc *crtc) 7671 { 7672 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7673 struct intel_crtc_state *crtc_state = 7674 intel_atomic_get_new_crtc_state(state, crtc); 7675 const struct intel_cdclk_state *cdclk_state; 7676 7677 if (INTEL_GEN(dev_priv) >= 9) 7678 crtc_state->linetime = skl_linetime_wm(crtc_state); 7679 else 7680 crtc_state->linetime = hsw_linetime_wm(crtc_state); 7681 7682 if (!hsw_crtc_supports_ips(crtc)) 7683 return 0; 7684 7685 cdclk_state = intel_atomic_get_cdclk_state(state); 7686 if (IS_ERR(cdclk_state)) 7687 return PTR_ERR(cdclk_state); 7688 7689 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, 7690 cdclk_state); 7691 7692 return 0; 7693 } 7694 7695 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 7696 struct intel_crtc *crtc) 7697 { 7698 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7699 struct intel_crtc_state *crtc_state = 7700 intel_atomic_get_new_crtc_state(state, crtc); 7701 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 7702 int ret; 7703 7704 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) && 7705 mode_changed && !crtc_state->hw.active) 7706 crtc_state->update_wm_post = true; 7707 7708 if (mode_changed && crtc_state->hw.enable && 7709 dev_priv->display.crtc_compute_clock && 7710 !crtc_state->bigjoiner_slave && 7711 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) { 7712 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state); 7713 if (ret) 7714 return ret; 7715 } 7716 7717 /* 7718 * May need to update pipe gamma enable bits 7719 * when C8 planes are getting enabled/disabled. 7720 */ 7721 if (c8_planes_changed(crtc_state)) 7722 crtc_state->uapi.color_mgmt_changed = true; 7723 7724 if (mode_changed || crtc_state->update_pipe || 7725 crtc_state->uapi.color_mgmt_changed) { 7726 ret = intel_color_check(crtc_state); 7727 if (ret) 7728 return ret; 7729 } 7730 7731 if (dev_priv->display.compute_pipe_wm) { 7732 ret = dev_priv->display.compute_pipe_wm(crtc_state); 7733 if (ret) { 7734 drm_dbg_kms(&dev_priv->drm, 7735 "Target pipe watermarks are invalid\n"); 7736 return ret; 7737 } 7738 } 7739 7740 if (dev_priv->display.compute_intermediate_wm) { 7741 if (drm_WARN_ON(&dev_priv->drm, 7742 !dev_priv->display.compute_pipe_wm)) 7743 return 0; 7744 7745 /* 7746 * Calculate 'intermediate' watermarks that satisfy both the 7747 * old state and the new state. We can program these 7748 * immediately. 7749 */ 7750 ret = dev_priv->display.compute_intermediate_wm(crtc_state); 7751 if (ret) { 7752 drm_dbg_kms(&dev_priv->drm, 7753 "No valid intermediate pipe watermarks are possible\n"); 7754 return ret; 7755 } 7756 } 7757 7758 if (INTEL_GEN(dev_priv) >= 9) { 7759 if (mode_changed || crtc_state->update_pipe) { 7760 ret = skl_update_scaler_crtc(crtc_state); 7761 if (ret) 7762 return ret; 7763 } 7764 7765 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state); 7766 if (ret) 7767 return ret; 7768 } 7769 7770 if (HAS_IPS(dev_priv)) { 7771 ret = hsw_compute_ips_config(crtc_state); 7772 if (ret) 7773 return ret; 7774 } 7775 7776 if (INTEL_GEN(dev_priv) >= 9 || 7777 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 7778 ret = hsw_compute_linetime_wm(state, crtc); 7779 if (ret) 7780 return ret; 7781 7782 } 7783 7784 if (!mode_changed) { 7785 ret = intel_psr2_sel_fetch_update(state, crtc); 7786 if (ret) 7787 return ret; 7788 } 7789 7790 return 0; 7791 } 7792 7793 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 7794 { 7795 struct intel_connector *connector; 7796 struct drm_connector_list_iter conn_iter; 7797 7798 drm_connector_list_iter_begin(dev, &conn_iter); 7799 for_each_intel_connector_iter(connector, &conn_iter) { 7800 struct drm_connector_state *conn_state = connector->base.state; 7801 struct intel_encoder *encoder = 7802 to_intel_encoder(connector->base.encoder); 7803 7804 if (conn_state->crtc) 7805 drm_connector_put(&connector->base); 7806 7807 if (encoder) { 7808 struct intel_crtc *crtc = 7809 to_intel_crtc(encoder->base.crtc); 7810 const struct intel_crtc_state *crtc_state = 7811 to_intel_crtc_state(crtc->base.state); 7812 7813 conn_state->best_encoder = &encoder->base; 7814 conn_state->crtc = &crtc->base; 7815 conn_state->max_bpc = (crtc_state->pipe_bpp ?: 24) / 3; 7816 7817 drm_connector_get(&connector->base); 7818 } else { 7819 conn_state->best_encoder = NULL; 7820 conn_state->crtc = NULL; 7821 } 7822 } 7823 drm_connector_list_iter_end(&conn_iter); 7824 } 7825 7826 static int 7827 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 7828 struct intel_crtc_state *pipe_config) 7829 { 7830 struct drm_connector *connector = conn_state->connector; 7831 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7832 const struct drm_display_info *info = &connector->display_info; 7833 int bpp; 7834 7835 switch (conn_state->max_bpc) { 7836 case 6 ... 7: 7837 bpp = 6 * 3; 7838 break; 7839 case 8 ... 9: 7840 bpp = 8 * 3; 7841 break; 7842 case 10 ... 11: 7843 bpp = 10 * 3; 7844 break; 7845 case 12 ... 16: 7846 bpp = 12 * 3; 7847 break; 7848 default: 7849 MISSING_CASE(conn_state->max_bpc); 7850 return -EINVAL; 7851 } 7852 7853 if (bpp < pipe_config->pipe_bpp) { 7854 drm_dbg_kms(&i915->drm, 7855 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 7856 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 7857 connector->base.id, connector->name, 7858 bpp, 3 * info->bpc, 7859 3 * conn_state->max_requested_bpc, 7860 pipe_config->pipe_bpp); 7861 7862 pipe_config->pipe_bpp = bpp; 7863 } 7864 7865 return 0; 7866 } 7867 7868 static int 7869 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 7870 struct intel_crtc_state *pipe_config) 7871 { 7872 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7873 struct drm_atomic_state *state = pipe_config->uapi.state; 7874 struct drm_connector *connector; 7875 struct drm_connector_state *connector_state; 7876 int bpp, i; 7877 7878 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 7879 IS_CHERRYVIEW(dev_priv))) 7880 bpp = 10*3; 7881 else if (INTEL_GEN(dev_priv) >= 5) 7882 bpp = 12*3; 7883 else 7884 bpp = 8*3; 7885 7886 pipe_config->pipe_bpp = bpp; 7887 7888 /* Clamp display bpp to connector max bpp */ 7889 for_each_new_connector_in_state(state, connector, connector_state, i) { 7890 int ret; 7891 7892 if (connector_state->crtc != &crtc->base) 7893 continue; 7894 7895 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 7896 if (ret) 7897 return ret; 7898 } 7899 7900 return 0; 7901 } 7902 7903 static void intel_dump_crtc_timings(struct drm_i915_private *i915, 7904 const struct drm_display_mode *mode) 7905 { 7906 drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, " 7907 "type: 0x%x flags: 0x%x\n", 7908 mode->crtc_clock, 7909 mode->crtc_hdisplay, mode->crtc_hsync_start, 7910 mode->crtc_hsync_end, mode->crtc_htotal, 7911 mode->crtc_vdisplay, mode->crtc_vsync_start, 7912 mode->crtc_vsync_end, mode->crtc_vtotal, 7913 mode->type, mode->flags); 7914 } 7915 7916 static void 7917 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 7918 const char *id, unsigned int lane_count, 7919 const struct intel_link_m_n *m_n) 7920 { 7921 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 7922 7923 drm_dbg_kms(&i915->drm, 7924 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 7925 id, lane_count, 7926 m_n->gmch_m, m_n->gmch_n, 7927 m_n->link_m, m_n->link_n, m_n->tu); 7928 } 7929 7930 static void 7931 intel_dump_infoframe(struct drm_i915_private *dev_priv, 7932 const union hdmi_infoframe *frame) 7933 { 7934 if (!drm_debug_enabled(DRM_UT_KMS)) 7935 return; 7936 7937 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 7938 } 7939 7940 static void 7941 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv, 7942 const struct drm_dp_vsc_sdp *vsc) 7943 { 7944 if (!drm_debug_enabled(DRM_UT_KMS)) 7945 return; 7946 7947 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc); 7948 } 7949 7950 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 7951 7952 static const char * const output_type_str[] = { 7953 OUTPUT_TYPE(UNUSED), 7954 OUTPUT_TYPE(ANALOG), 7955 OUTPUT_TYPE(DVO), 7956 OUTPUT_TYPE(SDVO), 7957 OUTPUT_TYPE(LVDS), 7958 OUTPUT_TYPE(TVOUT), 7959 OUTPUT_TYPE(HDMI), 7960 OUTPUT_TYPE(DP), 7961 OUTPUT_TYPE(EDP), 7962 OUTPUT_TYPE(DSI), 7963 OUTPUT_TYPE(DDI), 7964 OUTPUT_TYPE(DP_MST), 7965 }; 7966 7967 #undef OUTPUT_TYPE 7968 7969 static void snprintf_output_types(char *buf, size_t len, 7970 unsigned int output_types) 7971 { 7972 char *str = buf; 7973 int i; 7974 7975 str[0] = '\0'; 7976 7977 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 7978 int r; 7979 7980 if ((output_types & BIT(i)) == 0) 7981 continue; 7982 7983 r = snprintf(str, len, "%s%s", 7984 str != buf ? "," : "", output_type_str[i]); 7985 if (r >= len) 7986 break; 7987 str += r; 7988 len -= r; 7989 7990 output_types &= ~BIT(i); 7991 } 7992 7993 WARN_ON_ONCE(output_types != 0); 7994 } 7995 7996 static const char * const output_format_str[] = { 7997 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 7998 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 7999 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 8000 }; 8001 8002 static const char *output_formats(enum intel_output_format format) 8003 { 8004 if (format >= ARRAY_SIZE(output_format_str)) 8005 return "invalid"; 8006 return output_format_str[format]; 8007 } 8008 8009 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 8010 { 8011 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 8012 struct drm_i915_private *i915 = to_i915(plane->base.dev); 8013 const struct drm_framebuffer *fb = plane_state->hw.fb; 8014 8015 if (!fb) { 8016 drm_dbg_kms(&i915->drm, 8017 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 8018 plane->base.base.id, plane->base.name, 8019 yesno(plane_state->uapi.visible)); 8020 return; 8021 } 8022 8023 drm_dbg_kms(&i915->drm, 8024 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %p4cc modifier = 0x%llx, visible: %s\n", 8025 plane->base.base.id, plane->base.name, 8026 fb->base.id, fb->width, fb->height, &fb->format->format, 8027 fb->modifier, yesno(plane_state->uapi.visible)); 8028 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n", 8029 plane_state->hw.rotation, plane_state->scaler_id); 8030 if (plane_state->uapi.visible) 8031 drm_dbg_kms(&i915->drm, 8032 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 8033 DRM_RECT_FP_ARG(&plane_state->uapi.src), 8034 DRM_RECT_ARG(&plane_state->uapi.dst)); 8035 } 8036 8037 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 8038 struct intel_atomic_state *state, 8039 const char *context) 8040 { 8041 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 8042 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8043 const struct intel_plane_state *plane_state; 8044 struct intel_plane *plane; 8045 char buf[64]; 8046 int i; 8047 8048 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n", 8049 crtc->base.base.id, crtc->base.name, 8050 yesno(pipe_config->hw.enable), context); 8051 8052 if (!pipe_config->hw.enable) 8053 goto dump_planes; 8054 8055 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 8056 drm_dbg_kms(&dev_priv->drm, 8057 "active: %s, output_types: %s (0x%x), output format: %s\n", 8058 yesno(pipe_config->hw.active), 8059 buf, pipe_config->output_types, 8060 output_formats(pipe_config->output_format)); 8061 8062 drm_dbg_kms(&dev_priv->drm, 8063 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 8064 transcoder_name(pipe_config->cpu_transcoder), 8065 pipe_config->pipe_bpp, pipe_config->dither); 8066 8067 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n", 8068 transcoder_name(pipe_config->mst_master_transcoder)); 8069 8070 drm_dbg_kms(&dev_priv->drm, 8071 "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n", 8072 transcoder_name(pipe_config->master_transcoder), 8073 pipe_config->sync_mode_slaves_mask); 8074 8075 drm_dbg_kms(&dev_priv->drm, "bigjoiner: %s\n", 8076 pipe_config->bigjoiner_slave ? "slave" : 8077 pipe_config->bigjoiner ? "master" : "no"); 8078 8079 drm_dbg_kms(&dev_priv->drm, "splitter: %s, link count %d, overlap %d\n", 8080 enableddisabled(pipe_config->splitter.enable), 8081 pipe_config->splitter.link_count, 8082 pipe_config->splitter.pixel_overlap); 8083 8084 if (pipe_config->has_pch_encoder) 8085 intel_dump_m_n_config(pipe_config, "fdi", 8086 pipe_config->fdi_lanes, 8087 &pipe_config->fdi_m_n); 8088 8089 if (intel_crtc_has_dp_encoder(pipe_config)) { 8090 intel_dump_m_n_config(pipe_config, "dp m_n", 8091 pipe_config->lane_count, &pipe_config->dp_m_n); 8092 if (pipe_config->has_drrs) 8093 intel_dump_m_n_config(pipe_config, "dp m2_n2", 8094 pipe_config->lane_count, 8095 &pipe_config->dp_m2_n2); 8096 } 8097 8098 drm_dbg_kms(&dev_priv->drm, 8099 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 8100 pipe_config->has_audio, pipe_config->has_infoframe, 8101 pipe_config->infoframes.enable); 8102 8103 if (pipe_config->infoframes.enable & 8104 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 8105 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n", 8106 pipe_config->infoframes.gcp); 8107 if (pipe_config->infoframes.enable & 8108 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 8109 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 8110 if (pipe_config->infoframes.enable & 8111 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 8112 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 8113 if (pipe_config->infoframes.enable & 8114 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 8115 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 8116 if (pipe_config->infoframes.enable & 8117 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) 8118 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 8119 if (pipe_config->infoframes.enable & 8120 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA)) 8121 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 8122 if (pipe_config->infoframes.enable & 8123 intel_hdmi_infoframe_enable(DP_SDP_VSC)) 8124 intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc); 8125 8126 drm_dbg_kms(&dev_priv->drm, "vrr: %s, vmin: %d, vmax: %d, pipeline full: %d, flipline: %d, vmin vblank: %d, vmax vblank: %d\n", 8127 yesno(pipe_config->vrr.enable), 8128 pipe_config->vrr.vmin, pipe_config->vrr.vmax, 8129 pipe_config->vrr.pipeline_full, pipe_config->vrr.flipline, 8130 intel_vrr_vmin_vblank_start(pipe_config), 8131 intel_vrr_vmax_vblank_start(pipe_config)); 8132 8133 drm_dbg_kms(&dev_priv->drm, "requested mode:\n"); 8134 drm_mode_debug_printmodeline(&pipe_config->hw.mode); 8135 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n"); 8136 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode); 8137 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode); 8138 drm_dbg_kms(&dev_priv->drm, "pipe mode:\n"); 8139 drm_mode_debug_printmodeline(&pipe_config->hw.pipe_mode); 8140 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.pipe_mode); 8141 drm_dbg_kms(&dev_priv->drm, 8142 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 8143 pipe_config->port_clock, 8144 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 8145 pipe_config->pixel_rate); 8146 8147 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n", 8148 pipe_config->linetime, pipe_config->ips_linetime); 8149 8150 if (INTEL_GEN(dev_priv) >= 9) 8151 drm_dbg_kms(&dev_priv->drm, 8152 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 8153 crtc->num_scalers, 8154 pipe_config->scaler_state.scaler_users, 8155 pipe_config->scaler_state.scaler_id); 8156 8157 if (HAS_GMCH(dev_priv)) 8158 drm_dbg_kms(&dev_priv->drm, 8159 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 8160 pipe_config->gmch_pfit.control, 8161 pipe_config->gmch_pfit.pgm_ratios, 8162 pipe_config->gmch_pfit.lvds_border_bits); 8163 else 8164 drm_dbg_kms(&dev_priv->drm, 8165 "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n", 8166 DRM_RECT_ARG(&pipe_config->pch_pfit.dst), 8167 enableddisabled(pipe_config->pch_pfit.enabled), 8168 yesno(pipe_config->pch_pfit.force_thru)); 8169 8170 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n", 8171 pipe_config->ips_enabled, pipe_config->double_wide); 8172 8173 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 8174 8175 if (IS_CHERRYVIEW(dev_priv)) 8176 drm_dbg_kms(&dev_priv->drm, 8177 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 8178 pipe_config->cgm_mode, pipe_config->gamma_mode, 8179 pipe_config->gamma_enable, pipe_config->csc_enable); 8180 else 8181 drm_dbg_kms(&dev_priv->drm, 8182 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 8183 pipe_config->csc_mode, pipe_config->gamma_mode, 8184 pipe_config->gamma_enable, pipe_config->csc_enable); 8185 8186 drm_dbg_kms(&dev_priv->drm, "degamma lut: %d entries, gamma lut: %d entries\n", 8187 pipe_config->hw.degamma_lut ? 8188 drm_color_lut_size(pipe_config->hw.degamma_lut) : 0, 8189 pipe_config->hw.gamma_lut ? 8190 drm_color_lut_size(pipe_config->hw.gamma_lut) : 0); 8191 8192 dump_planes: 8193 if (!state) 8194 return; 8195 8196 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 8197 if (plane->pipe == crtc->pipe) 8198 intel_dump_plane_state(plane_state); 8199 } 8200 } 8201 8202 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 8203 { 8204 struct drm_device *dev = state->base.dev; 8205 struct drm_connector *connector; 8206 struct drm_connector_list_iter conn_iter; 8207 unsigned int used_ports = 0; 8208 unsigned int used_mst_ports = 0; 8209 bool ret = true; 8210 8211 /* 8212 * We're going to peek into connector->state, 8213 * hence connection_mutex must be held. 8214 */ 8215 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); 8216 8217 /* 8218 * Walk the connector list instead of the encoder 8219 * list to detect the problem on ddi platforms 8220 * where there's just one encoder per digital port. 8221 */ 8222 drm_connector_list_iter_begin(dev, &conn_iter); 8223 drm_for_each_connector_iter(connector, &conn_iter) { 8224 struct drm_connector_state *connector_state; 8225 struct intel_encoder *encoder; 8226 8227 connector_state = 8228 drm_atomic_get_new_connector_state(&state->base, 8229 connector); 8230 if (!connector_state) 8231 connector_state = connector->state; 8232 8233 if (!connector_state->best_encoder) 8234 continue; 8235 8236 encoder = to_intel_encoder(connector_state->best_encoder); 8237 8238 drm_WARN_ON(dev, !connector_state->crtc); 8239 8240 switch (encoder->type) { 8241 case INTEL_OUTPUT_DDI: 8242 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev)))) 8243 break; 8244 fallthrough; 8245 case INTEL_OUTPUT_DP: 8246 case INTEL_OUTPUT_HDMI: 8247 case INTEL_OUTPUT_EDP: 8248 /* the same port mustn't appear more than once */ 8249 if (used_ports & BIT(encoder->port)) 8250 ret = false; 8251 8252 used_ports |= BIT(encoder->port); 8253 break; 8254 case INTEL_OUTPUT_DP_MST: 8255 used_mst_ports |= 8256 1 << encoder->port; 8257 break; 8258 default: 8259 break; 8260 } 8261 } 8262 drm_connector_list_iter_end(&conn_iter); 8263 8264 /* can't mix MST and SST/HDMI on the same port */ 8265 if (used_ports & used_mst_ports) 8266 return false; 8267 8268 return ret; 8269 } 8270 8271 static void 8272 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_atomic_state *state, 8273 struct intel_crtc_state *crtc_state) 8274 { 8275 const struct intel_crtc_state *from_crtc_state = crtc_state; 8276 8277 if (crtc_state->bigjoiner_slave) { 8278 from_crtc_state = intel_atomic_get_new_crtc_state(state, 8279 crtc_state->bigjoiner_linked_crtc); 8280 8281 /* No need to copy state if the master state is unchanged */ 8282 if (!from_crtc_state) 8283 return; 8284 } 8285 8286 intel_crtc_copy_color_blobs(crtc_state, from_crtc_state); 8287 } 8288 8289 static void 8290 intel_crtc_copy_uapi_to_hw_state(struct intel_atomic_state *state, 8291 struct intel_crtc_state *crtc_state) 8292 { 8293 crtc_state->hw.enable = crtc_state->uapi.enable; 8294 crtc_state->hw.active = crtc_state->uapi.active; 8295 crtc_state->hw.mode = crtc_state->uapi.mode; 8296 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode; 8297 crtc_state->hw.scaling_filter = crtc_state->uapi.scaling_filter; 8298 8299 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc_state); 8300 } 8301 8302 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state) 8303 { 8304 if (crtc_state->bigjoiner_slave) 8305 return; 8306 8307 crtc_state->uapi.enable = crtc_state->hw.enable; 8308 crtc_state->uapi.active = crtc_state->hw.active; 8309 drm_WARN_ON(crtc_state->uapi.crtc->dev, 8310 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0); 8311 8312 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode; 8313 crtc_state->uapi.scaling_filter = crtc_state->hw.scaling_filter; 8314 8315 /* copy color blobs to uapi */ 8316 drm_property_replace_blob(&crtc_state->uapi.degamma_lut, 8317 crtc_state->hw.degamma_lut); 8318 drm_property_replace_blob(&crtc_state->uapi.gamma_lut, 8319 crtc_state->hw.gamma_lut); 8320 drm_property_replace_blob(&crtc_state->uapi.ctm, 8321 crtc_state->hw.ctm); 8322 } 8323 8324 static int 8325 copy_bigjoiner_crtc_state(struct intel_crtc_state *crtc_state, 8326 const struct intel_crtc_state *from_crtc_state) 8327 { 8328 struct intel_crtc_state *saved_state; 8329 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8330 8331 saved_state = kmemdup(from_crtc_state, sizeof(*saved_state), GFP_KERNEL); 8332 if (!saved_state) 8333 return -ENOMEM; 8334 8335 saved_state->uapi = crtc_state->uapi; 8336 saved_state->scaler_state = crtc_state->scaler_state; 8337 saved_state->shared_dpll = crtc_state->shared_dpll; 8338 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 8339 saved_state->crc_enabled = crtc_state->crc_enabled; 8340 8341 intel_crtc_free_hw_state(crtc_state); 8342 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 8343 kfree(saved_state); 8344 8345 /* Re-init hw state */ 8346 memset(&crtc_state->hw, 0, sizeof(saved_state->hw)); 8347 crtc_state->hw.enable = from_crtc_state->hw.enable; 8348 crtc_state->hw.active = from_crtc_state->hw.active; 8349 crtc_state->hw.pipe_mode = from_crtc_state->hw.pipe_mode; 8350 crtc_state->hw.adjusted_mode = from_crtc_state->hw.adjusted_mode; 8351 8352 /* Some fixups */ 8353 crtc_state->uapi.mode_changed = from_crtc_state->uapi.mode_changed; 8354 crtc_state->uapi.connectors_changed = from_crtc_state->uapi.connectors_changed; 8355 crtc_state->uapi.active_changed = from_crtc_state->uapi.active_changed; 8356 crtc_state->nv12_planes = crtc_state->c8_planes = crtc_state->update_planes = 0; 8357 crtc_state->bigjoiner_linked_crtc = to_intel_crtc(from_crtc_state->uapi.crtc); 8358 crtc_state->bigjoiner_slave = true; 8359 crtc_state->cpu_transcoder = (enum transcoder)crtc->pipe; 8360 crtc_state->has_audio = false; 8361 8362 return 0; 8363 } 8364 8365 static int 8366 intel_crtc_prepare_cleared_state(struct intel_atomic_state *state, 8367 struct intel_crtc_state *crtc_state) 8368 { 8369 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8370 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8371 struct intel_crtc_state *saved_state; 8372 8373 saved_state = intel_crtc_state_alloc(crtc); 8374 if (!saved_state) 8375 return -ENOMEM; 8376 8377 /* free the old crtc_state->hw members */ 8378 intel_crtc_free_hw_state(crtc_state); 8379 8380 /* FIXME: before the switch to atomic started, a new pipe_config was 8381 * kzalloc'd. Code that depends on any field being zero should be 8382 * fixed, so that the crtc_state can be safely duplicated. For now, 8383 * only fields that are know to not cause problems are preserved. */ 8384 8385 saved_state->uapi = crtc_state->uapi; 8386 saved_state->scaler_state = crtc_state->scaler_state; 8387 saved_state->shared_dpll = crtc_state->shared_dpll; 8388 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 8389 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 8390 sizeof(saved_state->icl_port_dplls)); 8391 saved_state->crc_enabled = crtc_state->crc_enabled; 8392 if (IS_G4X(dev_priv) || 8393 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8394 saved_state->wm = crtc_state->wm; 8395 8396 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 8397 kfree(saved_state); 8398 8399 intel_crtc_copy_uapi_to_hw_state(state, crtc_state); 8400 8401 return 0; 8402 } 8403 8404 static int 8405 intel_modeset_pipe_config(struct intel_atomic_state *state, 8406 struct intel_crtc_state *pipe_config) 8407 { 8408 struct drm_crtc *crtc = pipe_config->uapi.crtc; 8409 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 8410 struct drm_connector *connector; 8411 struct drm_connector_state *connector_state; 8412 int base_bpp, ret, i; 8413 bool retry = true; 8414 8415 pipe_config->cpu_transcoder = 8416 (enum transcoder) to_intel_crtc(crtc)->pipe; 8417 8418 /* 8419 * Sanitize sync polarity flags based on requested ones. If neither 8420 * positive or negative polarity is requested, treat this as meaning 8421 * negative polarity. 8422 */ 8423 if (!(pipe_config->hw.adjusted_mode.flags & 8424 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 8425 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 8426 8427 if (!(pipe_config->hw.adjusted_mode.flags & 8428 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 8429 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 8430 8431 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 8432 pipe_config); 8433 if (ret) 8434 return ret; 8435 8436 base_bpp = pipe_config->pipe_bpp; 8437 8438 /* 8439 * Determine the real pipe dimensions. Note that stereo modes can 8440 * increase the actual pipe size due to the frame doubling and 8441 * insertion of additional space for blanks between the frame. This 8442 * is stored in the crtc timings. We use the requested mode to do this 8443 * computation to clearly distinguish it from the adjusted mode, which 8444 * can be changed by the connectors in the below retry loop. 8445 */ 8446 drm_mode_get_hv_timing(&pipe_config->hw.mode, 8447 &pipe_config->pipe_src_w, 8448 &pipe_config->pipe_src_h); 8449 8450 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 8451 struct intel_encoder *encoder = 8452 to_intel_encoder(connector_state->best_encoder); 8453 8454 if (connector_state->crtc != crtc) 8455 continue; 8456 8457 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 8458 drm_dbg_kms(&i915->drm, 8459 "rejecting invalid cloning configuration\n"); 8460 return -EINVAL; 8461 } 8462 8463 /* 8464 * Determine output_types before calling the .compute_config() 8465 * hooks so that the hooks can use this information safely. 8466 */ 8467 if (encoder->compute_output_type) 8468 pipe_config->output_types |= 8469 BIT(encoder->compute_output_type(encoder, pipe_config, 8470 connector_state)); 8471 else 8472 pipe_config->output_types |= BIT(encoder->type); 8473 } 8474 8475 encoder_retry: 8476 /* Ensure the port clock defaults are reset when retrying. */ 8477 pipe_config->port_clock = 0; 8478 pipe_config->pixel_multiplier = 1; 8479 8480 /* Fill in default crtc timings, allow encoders to overwrite them. */ 8481 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode, 8482 CRTC_STEREO_DOUBLE); 8483 8484 /* Pass our mode to the connectors and the CRTC to give them a chance to 8485 * adjust it according to limitations or connector properties, and also 8486 * a chance to reject the mode entirely. 8487 */ 8488 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 8489 struct intel_encoder *encoder = 8490 to_intel_encoder(connector_state->best_encoder); 8491 8492 if (connector_state->crtc != crtc) 8493 continue; 8494 8495 ret = encoder->compute_config(encoder, pipe_config, 8496 connector_state); 8497 if (ret < 0) { 8498 if (ret != -EDEADLK) 8499 drm_dbg_kms(&i915->drm, 8500 "Encoder config failure: %d\n", 8501 ret); 8502 return ret; 8503 } 8504 } 8505 8506 /* Set default port clock if not overwritten by the encoder. Needs to be 8507 * done afterwards in case the encoder adjusts the mode. */ 8508 if (!pipe_config->port_clock) 8509 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock 8510 * pipe_config->pixel_multiplier; 8511 8512 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 8513 if (ret == -EDEADLK) 8514 return ret; 8515 if (ret < 0) { 8516 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n"); 8517 return ret; 8518 } 8519 8520 if (ret == I915_DISPLAY_CONFIG_RETRY) { 8521 if (drm_WARN(&i915->drm, !retry, 8522 "loop in pipe configuration computation\n")) 8523 return -EINVAL; 8524 8525 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n"); 8526 retry = false; 8527 goto encoder_retry; 8528 } 8529 8530 /* Dithering seems to not pass-through bits correctly when it should, so 8531 * only enable it on 6bpc panels and when its not a compliance 8532 * test requesting 6bpc video pattern. 8533 */ 8534 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 8535 !pipe_config->dither_force_disable; 8536 drm_dbg_kms(&i915->drm, 8537 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 8538 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 8539 8540 return 0; 8541 } 8542 8543 static int 8544 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state) 8545 { 8546 struct intel_atomic_state *state = 8547 to_intel_atomic_state(crtc_state->uapi.state); 8548 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8549 struct drm_connector_state *conn_state; 8550 struct drm_connector *connector; 8551 int i; 8552 8553 for_each_new_connector_in_state(&state->base, connector, 8554 conn_state, i) { 8555 struct intel_encoder *encoder = 8556 to_intel_encoder(conn_state->best_encoder); 8557 int ret; 8558 8559 if (conn_state->crtc != &crtc->base || 8560 !encoder->compute_config_late) 8561 continue; 8562 8563 ret = encoder->compute_config_late(encoder, crtc_state, 8564 conn_state); 8565 if (ret) 8566 return ret; 8567 } 8568 8569 return 0; 8570 } 8571 8572 bool intel_fuzzy_clock_check(int clock1, int clock2) 8573 { 8574 int diff; 8575 8576 if (clock1 == clock2) 8577 return true; 8578 8579 if (!clock1 || !clock2) 8580 return false; 8581 8582 diff = abs(clock1 - clock2); 8583 8584 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 8585 return true; 8586 8587 return false; 8588 } 8589 8590 static bool 8591 intel_compare_m_n(unsigned int m, unsigned int n, 8592 unsigned int m2, unsigned int n2, 8593 bool exact) 8594 { 8595 if (m == m2 && n == n2) 8596 return true; 8597 8598 if (exact || !m || !n || !m2 || !n2) 8599 return false; 8600 8601 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 8602 8603 if (n > n2) { 8604 while (n > n2) { 8605 m2 <<= 1; 8606 n2 <<= 1; 8607 } 8608 } else if (n < n2) { 8609 while (n < n2) { 8610 m <<= 1; 8611 n <<= 1; 8612 } 8613 } 8614 8615 if (n != n2) 8616 return false; 8617 8618 return intel_fuzzy_clock_check(m, m2); 8619 } 8620 8621 static bool 8622 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 8623 const struct intel_link_m_n *m2_n2, 8624 bool exact) 8625 { 8626 return m_n->tu == m2_n2->tu && 8627 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 8628 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 8629 intel_compare_m_n(m_n->link_m, m_n->link_n, 8630 m2_n2->link_m, m2_n2->link_n, exact); 8631 } 8632 8633 static bool 8634 intel_compare_infoframe(const union hdmi_infoframe *a, 8635 const union hdmi_infoframe *b) 8636 { 8637 return memcmp(a, b, sizeof(*a)) == 0; 8638 } 8639 8640 static bool 8641 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a, 8642 const struct drm_dp_vsc_sdp *b) 8643 { 8644 return memcmp(a, b, sizeof(*a)) == 0; 8645 } 8646 8647 static void 8648 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 8649 bool fastset, const char *name, 8650 const union hdmi_infoframe *a, 8651 const union hdmi_infoframe *b) 8652 { 8653 if (fastset) { 8654 if (!drm_debug_enabled(DRM_UT_KMS)) 8655 return; 8656 8657 drm_dbg_kms(&dev_priv->drm, 8658 "fastset mismatch in %s infoframe\n", name); 8659 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 8660 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 8661 drm_dbg_kms(&dev_priv->drm, "found:\n"); 8662 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 8663 } else { 8664 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name); 8665 drm_err(&dev_priv->drm, "expected:\n"); 8666 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 8667 drm_err(&dev_priv->drm, "found:\n"); 8668 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 8669 } 8670 } 8671 8672 static void 8673 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv, 8674 bool fastset, const char *name, 8675 const struct drm_dp_vsc_sdp *a, 8676 const struct drm_dp_vsc_sdp *b) 8677 { 8678 if (fastset) { 8679 if (!drm_debug_enabled(DRM_UT_KMS)) 8680 return; 8681 8682 drm_dbg_kms(&dev_priv->drm, 8683 "fastset mismatch in %s dp sdp\n", name); 8684 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 8685 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a); 8686 drm_dbg_kms(&dev_priv->drm, "found:\n"); 8687 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b); 8688 } else { 8689 drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name); 8690 drm_err(&dev_priv->drm, "expected:\n"); 8691 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a); 8692 drm_err(&dev_priv->drm, "found:\n"); 8693 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b); 8694 } 8695 } 8696 8697 static void __printf(4, 5) 8698 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, 8699 const char *name, const char *format, ...) 8700 { 8701 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 8702 struct va_format vaf; 8703 va_list args; 8704 8705 va_start(args, format); 8706 vaf.fmt = format; 8707 vaf.va = &args; 8708 8709 if (fastset) 8710 drm_dbg_kms(&i915->drm, 8711 "[CRTC:%d:%s] fastset mismatch in %s %pV\n", 8712 crtc->base.base.id, crtc->base.name, name, &vaf); 8713 else 8714 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n", 8715 crtc->base.base.id, crtc->base.name, name, &vaf); 8716 8717 va_end(args); 8718 } 8719 8720 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 8721 { 8722 if (dev_priv->params.fastboot != -1) 8723 return dev_priv->params.fastboot; 8724 8725 /* Enable fastboot by default on Skylake and newer */ 8726 if (INTEL_GEN(dev_priv) >= 9) 8727 return true; 8728 8729 /* Enable fastboot by default on VLV and CHV */ 8730 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8731 return true; 8732 8733 /* Disabled by default on all others */ 8734 return false; 8735 } 8736 8737 static bool 8738 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 8739 const struct intel_crtc_state *pipe_config, 8740 bool fastset) 8741 { 8742 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev); 8743 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 8744 bool ret = true; 8745 u32 bp_gamma = 0; 8746 bool fixup_inherited = fastset && 8747 current_config->inherited && !pipe_config->inherited; 8748 8749 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 8750 drm_dbg_kms(&dev_priv->drm, 8751 "initial modeset and fastboot not set\n"); 8752 ret = false; 8753 } 8754 8755 #define PIPE_CONF_CHECK_X(name) do { \ 8756 if (current_config->name != pipe_config->name) { \ 8757 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8758 "(expected 0x%08x, found 0x%08x)", \ 8759 current_config->name, \ 8760 pipe_config->name); \ 8761 ret = false; \ 8762 } \ 8763 } while (0) 8764 8765 #define PIPE_CONF_CHECK_I(name) do { \ 8766 if (current_config->name != pipe_config->name) { \ 8767 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8768 "(expected %i, found %i)", \ 8769 current_config->name, \ 8770 pipe_config->name); \ 8771 ret = false; \ 8772 } \ 8773 } while (0) 8774 8775 #define PIPE_CONF_CHECK_BOOL(name) do { \ 8776 if (current_config->name != pipe_config->name) { \ 8777 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8778 "(expected %s, found %s)", \ 8779 yesno(current_config->name), \ 8780 yesno(pipe_config->name)); \ 8781 ret = false; \ 8782 } \ 8783 } while (0) 8784 8785 /* 8786 * Checks state where we only read out the enabling, but not the entire 8787 * state itself (like full infoframes or ELD for audio). These states 8788 * require a full modeset on bootup to fix up. 8789 */ 8790 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 8791 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 8792 PIPE_CONF_CHECK_BOOL(name); \ 8793 } else { \ 8794 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8795 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ 8796 yesno(current_config->name), \ 8797 yesno(pipe_config->name)); \ 8798 ret = false; \ 8799 } \ 8800 } while (0) 8801 8802 #define PIPE_CONF_CHECK_P(name) do { \ 8803 if (current_config->name != pipe_config->name) { \ 8804 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8805 "(expected %p, found %p)", \ 8806 current_config->name, \ 8807 pipe_config->name); \ 8808 ret = false; \ 8809 } \ 8810 } while (0) 8811 8812 #define PIPE_CONF_CHECK_M_N(name) do { \ 8813 if (!intel_compare_link_m_n(¤t_config->name, \ 8814 &pipe_config->name,\ 8815 !fastset)) { \ 8816 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8817 "(expected tu %i gmch %i/%i link %i/%i, " \ 8818 "found tu %i, gmch %i/%i link %i/%i)", \ 8819 current_config->name.tu, \ 8820 current_config->name.gmch_m, \ 8821 current_config->name.gmch_n, \ 8822 current_config->name.link_m, \ 8823 current_config->name.link_n, \ 8824 pipe_config->name.tu, \ 8825 pipe_config->name.gmch_m, \ 8826 pipe_config->name.gmch_n, \ 8827 pipe_config->name.link_m, \ 8828 pipe_config->name.link_n); \ 8829 ret = false; \ 8830 } \ 8831 } while (0) 8832 8833 /* This is required for BDW+ where there is only one set of registers for 8834 * switching between high and low RR. 8835 * This macro can be used whenever a comparison has to be made between one 8836 * hw state and multiple sw state variables. 8837 */ 8838 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 8839 if (!intel_compare_link_m_n(¤t_config->name, \ 8840 &pipe_config->name, !fastset) && \ 8841 !intel_compare_link_m_n(¤t_config->alt_name, \ 8842 &pipe_config->name, !fastset)) { \ 8843 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8844 "(expected tu %i gmch %i/%i link %i/%i, " \ 8845 "or tu %i gmch %i/%i link %i/%i, " \ 8846 "found tu %i, gmch %i/%i link %i/%i)", \ 8847 current_config->name.tu, \ 8848 current_config->name.gmch_m, \ 8849 current_config->name.gmch_n, \ 8850 current_config->name.link_m, \ 8851 current_config->name.link_n, \ 8852 current_config->alt_name.tu, \ 8853 current_config->alt_name.gmch_m, \ 8854 current_config->alt_name.gmch_n, \ 8855 current_config->alt_name.link_m, \ 8856 current_config->alt_name.link_n, \ 8857 pipe_config->name.tu, \ 8858 pipe_config->name.gmch_m, \ 8859 pipe_config->name.gmch_n, \ 8860 pipe_config->name.link_m, \ 8861 pipe_config->name.link_n); \ 8862 ret = false; \ 8863 } \ 8864 } while (0) 8865 8866 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 8867 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 8868 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8869 "(%x) (expected %i, found %i)", \ 8870 (mask), \ 8871 current_config->name & (mask), \ 8872 pipe_config->name & (mask)); \ 8873 ret = false; \ 8874 } \ 8875 } while (0) 8876 8877 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 8878 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 8879 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 8880 "(expected %i, found %i)", \ 8881 current_config->name, \ 8882 pipe_config->name); \ 8883 ret = false; \ 8884 } \ 8885 } while (0) 8886 8887 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 8888 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 8889 &pipe_config->infoframes.name)) { \ 8890 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 8891 ¤t_config->infoframes.name, \ 8892 &pipe_config->infoframes.name); \ 8893 ret = false; \ 8894 } \ 8895 } while (0) 8896 8897 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \ 8898 if (!current_config->has_psr && !pipe_config->has_psr && \ 8899 !intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \ 8900 &pipe_config->infoframes.name)) { \ 8901 pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \ 8902 ¤t_config->infoframes.name, \ 8903 &pipe_config->infoframes.name); \ 8904 ret = false; \ 8905 } \ 8906 } while (0) 8907 8908 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ 8909 if (current_config->name1 != pipe_config->name1) { \ 8910 pipe_config_mismatch(fastset, crtc, __stringify(name1), \ 8911 "(expected %i, found %i, won't compare lut values)", \ 8912 current_config->name1, \ 8913 pipe_config->name1); \ 8914 ret = false;\ 8915 } else { \ 8916 if (!intel_color_lut_equal(current_config->name2, \ 8917 pipe_config->name2, pipe_config->name1, \ 8918 bit_precision)) { \ 8919 pipe_config_mismatch(fastset, crtc, __stringify(name2), \ 8920 "hw_state doesn't match sw_state"); \ 8921 ret = false; \ 8922 } \ 8923 } \ 8924 } while (0) 8925 8926 #define PIPE_CONF_QUIRK(quirk) \ 8927 ((current_config->quirks | pipe_config->quirks) & (quirk)) 8928 8929 PIPE_CONF_CHECK_I(cpu_transcoder); 8930 8931 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 8932 PIPE_CONF_CHECK_I(fdi_lanes); 8933 PIPE_CONF_CHECK_M_N(fdi_m_n); 8934 8935 PIPE_CONF_CHECK_I(lane_count); 8936 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 8937 8938 if (INTEL_GEN(dev_priv) < 8) { 8939 PIPE_CONF_CHECK_M_N(dp_m_n); 8940 8941 if (current_config->has_drrs) 8942 PIPE_CONF_CHECK_M_N(dp_m2_n2); 8943 } else 8944 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 8945 8946 PIPE_CONF_CHECK_X(output_types); 8947 8948 /* FIXME do the readout properly and get rid of this quirk */ 8949 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 8950 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hdisplay); 8951 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_htotal); 8952 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_start); 8953 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_end); 8954 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_start); 8955 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_end); 8956 8957 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vdisplay); 8958 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vtotal); 8959 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_start); 8960 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_end); 8961 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_start); 8962 PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_end); 8963 8964 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay); 8965 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal); 8966 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start); 8967 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end); 8968 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start); 8969 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end); 8970 8971 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay); 8972 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal); 8973 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start); 8974 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end); 8975 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start); 8976 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end); 8977 8978 PIPE_CONF_CHECK_I(pixel_multiplier); 8979 8980 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8981 DRM_MODE_FLAG_INTERLACE); 8982 8983 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 8984 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8985 DRM_MODE_FLAG_PHSYNC); 8986 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8987 DRM_MODE_FLAG_NHSYNC); 8988 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8989 DRM_MODE_FLAG_PVSYNC); 8990 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 8991 DRM_MODE_FLAG_NVSYNC); 8992 } 8993 } 8994 8995 PIPE_CONF_CHECK_I(output_format); 8996 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 8997 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 8998 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 8999 PIPE_CONF_CHECK_BOOL(limited_color_range); 9000 9001 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 9002 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 9003 PIPE_CONF_CHECK_BOOL(has_infoframe); 9004 /* FIXME do the readout properly and get rid of this quirk */ 9005 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) 9006 PIPE_CONF_CHECK_BOOL(fec_enable); 9007 9008 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 9009 9010 PIPE_CONF_CHECK_X(gmch_pfit.control); 9011 /* pfit ratios are autocomputed by the hw on gen4+ */ 9012 if (INTEL_GEN(dev_priv) < 4) 9013 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 9014 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 9015 9016 /* 9017 * Changing the EDP transcoder input mux 9018 * (A_ONOFF vs. A_ON) requires a full modeset. 9019 */ 9020 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 9021 9022 if (!fastset) { 9023 PIPE_CONF_CHECK_I(pipe_src_w); 9024 PIPE_CONF_CHECK_I(pipe_src_h); 9025 9026 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 9027 if (current_config->pch_pfit.enabled) { 9028 PIPE_CONF_CHECK_I(pch_pfit.dst.x1); 9029 PIPE_CONF_CHECK_I(pch_pfit.dst.y1); 9030 PIPE_CONF_CHECK_I(pch_pfit.dst.x2); 9031 PIPE_CONF_CHECK_I(pch_pfit.dst.y2); 9032 } 9033 9034 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 9035 /* FIXME do the readout properly and get rid of this quirk */ 9036 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) 9037 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 9038 9039 PIPE_CONF_CHECK_X(gamma_mode); 9040 if (IS_CHERRYVIEW(dev_priv)) 9041 PIPE_CONF_CHECK_X(cgm_mode); 9042 else 9043 PIPE_CONF_CHECK_X(csc_mode); 9044 PIPE_CONF_CHECK_BOOL(gamma_enable); 9045 PIPE_CONF_CHECK_BOOL(csc_enable); 9046 9047 PIPE_CONF_CHECK_I(linetime); 9048 PIPE_CONF_CHECK_I(ips_linetime); 9049 9050 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); 9051 if (bp_gamma) 9052 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma); 9053 } 9054 9055 PIPE_CONF_CHECK_BOOL(double_wide); 9056 9057 PIPE_CONF_CHECK_P(shared_dpll); 9058 9059 /* FIXME do the readout properly and get rid of this quirk */ 9060 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) { 9061 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 9062 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 9063 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 9064 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 9065 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 9066 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 9067 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 9068 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 9069 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 9070 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 9071 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 9072 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 9073 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 9074 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 9075 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 9076 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 9077 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 9078 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 9079 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 9080 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 9081 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 9082 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 9083 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 9084 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 9085 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 9086 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 9087 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 9088 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 9089 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 9090 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 9091 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 9092 9093 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 9094 PIPE_CONF_CHECK_X(dsi_pll.div); 9095 9096 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) 9097 PIPE_CONF_CHECK_I(pipe_bpp); 9098 9099 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.pipe_mode.crtc_clock); 9100 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock); 9101 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 9102 9103 PIPE_CONF_CHECK_I(min_voltage_level); 9104 } 9105 9106 PIPE_CONF_CHECK_X(infoframes.enable); 9107 PIPE_CONF_CHECK_X(infoframes.gcp); 9108 PIPE_CONF_CHECK_INFOFRAME(avi); 9109 PIPE_CONF_CHECK_INFOFRAME(spd); 9110 PIPE_CONF_CHECK_INFOFRAME(hdmi); 9111 PIPE_CONF_CHECK_INFOFRAME(drm); 9112 PIPE_CONF_CHECK_DP_VSC_SDP(vsc); 9113 9114 PIPE_CONF_CHECK_X(sync_mode_slaves_mask); 9115 PIPE_CONF_CHECK_I(master_transcoder); 9116 PIPE_CONF_CHECK_BOOL(bigjoiner); 9117 PIPE_CONF_CHECK_BOOL(bigjoiner_slave); 9118 PIPE_CONF_CHECK_P(bigjoiner_linked_crtc); 9119 9120 PIPE_CONF_CHECK_I(dsc.compression_enable); 9121 PIPE_CONF_CHECK_I(dsc.dsc_split); 9122 PIPE_CONF_CHECK_I(dsc.compressed_bpp); 9123 9124 PIPE_CONF_CHECK_BOOL(splitter.enable); 9125 PIPE_CONF_CHECK_I(splitter.link_count); 9126 PIPE_CONF_CHECK_I(splitter.pixel_overlap); 9127 9128 PIPE_CONF_CHECK_I(mst_master_transcoder); 9129 9130 PIPE_CONF_CHECK_BOOL(vrr.enable); 9131 PIPE_CONF_CHECK_I(vrr.vmin); 9132 PIPE_CONF_CHECK_I(vrr.vmax); 9133 PIPE_CONF_CHECK_I(vrr.flipline); 9134 PIPE_CONF_CHECK_I(vrr.pipeline_full); 9135 9136 #undef PIPE_CONF_CHECK_X 9137 #undef PIPE_CONF_CHECK_I 9138 #undef PIPE_CONF_CHECK_BOOL 9139 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 9140 #undef PIPE_CONF_CHECK_P 9141 #undef PIPE_CONF_CHECK_FLAGS 9142 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 9143 #undef PIPE_CONF_CHECK_COLOR_LUT 9144 #undef PIPE_CONF_QUIRK 9145 9146 return ret; 9147 } 9148 9149 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 9150 const struct intel_crtc_state *pipe_config) 9151 { 9152 if (pipe_config->has_pch_encoder) { 9153 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 9154 &pipe_config->fdi_m_n); 9155 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock; 9156 9157 /* 9158 * FDI already provided one idea for the dotclock. 9159 * Yell if the encoder disagrees. 9160 */ 9161 drm_WARN(&dev_priv->drm, 9162 !intel_fuzzy_clock_check(fdi_dotclock, dotclock), 9163 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 9164 fdi_dotclock, dotclock); 9165 } 9166 } 9167 9168 static void verify_wm_state(struct intel_crtc *crtc, 9169 struct intel_crtc_state *new_crtc_state) 9170 { 9171 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9172 struct skl_hw_state { 9173 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 9174 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 9175 struct skl_pipe_wm wm; 9176 } *hw; 9177 const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal; 9178 int level, max_level = ilk_wm_max_level(dev_priv); 9179 struct intel_plane *plane; 9180 u8 hw_enabled_slices; 9181 9182 if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active) 9183 return; 9184 9185 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 9186 if (!hw) 9187 return; 9188 9189 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 9190 9191 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 9192 9193 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv); 9194 9195 if (INTEL_GEN(dev_priv) >= 11 && 9196 hw_enabled_slices != dev_priv->dbuf.enabled_slices) 9197 drm_err(&dev_priv->drm, 9198 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", 9199 dev_priv->dbuf.enabled_slices, 9200 hw_enabled_slices); 9201 9202 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 9203 const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 9204 const struct skl_wm_level *hw_wm_level, *sw_wm_level; 9205 9206 /* Watermarks */ 9207 for (level = 0; level <= max_level; level++) { 9208 hw_wm_level = &hw->wm.planes[plane->id].wm[level]; 9209 sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level); 9210 9211 if (skl_wm_level_equals(hw_wm_level, sw_wm_level)) 9212 continue; 9213 9214 drm_err(&dev_priv->drm, 9215 "[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 9216 plane->base.base.id, plane->base.name, level, 9217 sw_wm_level->enable, 9218 sw_wm_level->blocks, 9219 sw_wm_level->lines, 9220 hw_wm_level->enable, 9221 hw_wm_level->blocks, 9222 hw_wm_level->lines); 9223 } 9224 9225 hw_wm_level = &hw->wm.planes[plane->id].trans_wm; 9226 sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id); 9227 9228 if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 9229 drm_err(&dev_priv->drm, 9230 "[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 9231 plane->base.base.id, plane->base.name, 9232 sw_wm_level->enable, 9233 sw_wm_level->blocks, 9234 sw_wm_level->lines, 9235 hw_wm_level->enable, 9236 hw_wm_level->blocks, 9237 hw_wm_level->lines); 9238 } 9239 9240 /* DDB */ 9241 hw_ddb_entry = &hw->ddb_y[plane->id]; 9242 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane->id]; 9243 9244 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 9245 drm_err(&dev_priv->drm, 9246 "[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n", 9247 plane->base.base.id, plane->base.name, 9248 sw_ddb_entry->start, sw_ddb_entry->end, 9249 hw_ddb_entry->start, hw_ddb_entry->end); 9250 } 9251 } 9252 9253 kfree(hw); 9254 } 9255 9256 static void 9257 verify_connector_state(struct intel_atomic_state *state, 9258 struct intel_crtc *crtc) 9259 { 9260 struct drm_connector *connector; 9261 struct drm_connector_state *new_conn_state; 9262 int i; 9263 9264 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 9265 struct drm_encoder *encoder = connector->encoder; 9266 struct intel_crtc_state *crtc_state = NULL; 9267 9268 if (new_conn_state->crtc != &crtc->base) 9269 continue; 9270 9271 if (crtc) 9272 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 9273 9274 intel_connector_verify_state(crtc_state, new_conn_state); 9275 9276 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 9277 "connector's atomic encoder doesn't match legacy encoder\n"); 9278 } 9279 } 9280 9281 static void 9282 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 9283 { 9284 struct intel_encoder *encoder; 9285 struct drm_connector *connector; 9286 struct drm_connector_state *old_conn_state, *new_conn_state; 9287 int i; 9288 9289 for_each_intel_encoder(&dev_priv->drm, encoder) { 9290 bool enabled = false, found = false; 9291 enum pipe pipe; 9292 9293 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n", 9294 encoder->base.base.id, 9295 encoder->base.name); 9296 9297 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 9298 new_conn_state, i) { 9299 if (old_conn_state->best_encoder == &encoder->base) 9300 found = true; 9301 9302 if (new_conn_state->best_encoder != &encoder->base) 9303 continue; 9304 found = enabled = true; 9305 9306 I915_STATE_WARN(new_conn_state->crtc != 9307 encoder->base.crtc, 9308 "connector's crtc doesn't match encoder crtc\n"); 9309 } 9310 9311 if (!found) 9312 continue; 9313 9314 I915_STATE_WARN(!!encoder->base.crtc != enabled, 9315 "encoder's enabled state mismatch " 9316 "(expected %i, found %i)\n", 9317 !!encoder->base.crtc, enabled); 9318 9319 if (!encoder->base.crtc) { 9320 bool active; 9321 9322 active = encoder->get_hw_state(encoder, &pipe); 9323 I915_STATE_WARN(active, 9324 "encoder detached but still enabled on pipe %c.\n", 9325 pipe_name(pipe)); 9326 } 9327 } 9328 } 9329 9330 static void 9331 verify_crtc_state(struct intel_crtc *crtc, 9332 struct intel_crtc_state *old_crtc_state, 9333 struct intel_crtc_state *new_crtc_state) 9334 { 9335 struct drm_device *dev = crtc->base.dev; 9336 struct drm_i915_private *dev_priv = to_i915(dev); 9337 struct intel_encoder *encoder; 9338 struct intel_crtc_state *pipe_config = old_crtc_state; 9339 struct drm_atomic_state *state = old_crtc_state->uapi.state; 9340 struct intel_crtc *master = crtc; 9341 9342 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi); 9343 intel_crtc_free_hw_state(old_crtc_state); 9344 intel_crtc_state_reset(old_crtc_state, crtc); 9345 old_crtc_state->uapi.state = state; 9346 9347 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id, 9348 crtc->base.name); 9349 9350 pipe_config->hw.enable = new_crtc_state->hw.enable; 9351 9352 intel_crtc_get_pipe_config(pipe_config); 9353 9354 /* we keep both pipes enabled on 830 */ 9355 if (IS_I830(dev_priv) && pipe_config->hw.active) 9356 pipe_config->hw.active = new_crtc_state->hw.active; 9357 9358 I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active, 9359 "crtc active state doesn't match with hw state " 9360 "(expected %i, found %i)\n", 9361 new_crtc_state->hw.active, pipe_config->hw.active); 9362 9363 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active, 9364 "transitional active state does not match atomic hw state " 9365 "(expected %i, found %i)\n", 9366 new_crtc_state->hw.active, crtc->active); 9367 9368 if (new_crtc_state->bigjoiner_slave) 9369 master = new_crtc_state->bigjoiner_linked_crtc; 9370 9371 for_each_encoder_on_crtc(dev, &master->base, encoder) { 9372 enum pipe pipe; 9373 bool active; 9374 9375 active = encoder->get_hw_state(encoder, &pipe); 9376 I915_STATE_WARN(active != new_crtc_state->hw.active, 9377 "[ENCODER:%i] active %i with crtc active %i\n", 9378 encoder->base.base.id, active, 9379 new_crtc_state->hw.active); 9380 9381 I915_STATE_WARN(active && master->pipe != pipe, 9382 "Encoder connected to wrong pipe %c\n", 9383 pipe_name(pipe)); 9384 9385 if (active) 9386 intel_encoder_get_config(encoder, pipe_config); 9387 } 9388 9389 if (!new_crtc_state->hw.active) 9390 return; 9391 9392 intel_pipe_config_sanity_check(dev_priv, pipe_config); 9393 9394 if (!intel_pipe_config_compare(new_crtc_state, 9395 pipe_config, false)) { 9396 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 9397 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 9398 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 9399 } 9400 } 9401 9402 static void 9403 intel_verify_planes(struct intel_atomic_state *state) 9404 { 9405 struct intel_plane *plane; 9406 const struct intel_plane_state *plane_state; 9407 int i; 9408 9409 for_each_new_intel_plane_in_state(state, plane, 9410 plane_state, i) 9411 assert_plane(plane, plane_state->planar_slave || 9412 plane_state->uapi.visible); 9413 } 9414 9415 static void 9416 verify_single_dpll_state(struct drm_i915_private *dev_priv, 9417 struct intel_shared_dpll *pll, 9418 struct intel_crtc *crtc, 9419 struct intel_crtc_state *new_crtc_state) 9420 { 9421 struct intel_dpll_hw_state dpll_hw_state; 9422 u8 pipe_mask; 9423 bool active; 9424 9425 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 9426 9427 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name); 9428 9429 active = intel_dpll_get_hw_state(dev_priv, pll, &dpll_hw_state); 9430 9431 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 9432 I915_STATE_WARN(!pll->on && pll->active_mask, 9433 "pll in active use but not on in sw tracking\n"); 9434 I915_STATE_WARN(pll->on && !pll->active_mask, 9435 "pll is on but not used by any active pipe\n"); 9436 I915_STATE_WARN(pll->on != active, 9437 "pll on state mismatch (expected %i, found %i)\n", 9438 pll->on, active); 9439 } 9440 9441 if (!crtc) { 9442 I915_STATE_WARN(pll->active_mask & ~pll->state.pipe_mask, 9443 "more active pll users than references: 0x%x vs 0x%x\n", 9444 pll->active_mask, pll->state.pipe_mask); 9445 9446 return; 9447 } 9448 9449 pipe_mask = BIT(crtc->pipe); 9450 9451 if (new_crtc_state->hw.active) 9452 I915_STATE_WARN(!(pll->active_mask & pipe_mask), 9453 "pll active mismatch (expected pipe %c in active mask 0x%x)\n", 9454 pipe_name(crtc->pipe), pll->active_mask); 9455 else 9456 I915_STATE_WARN(pll->active_mask & pipe_mask, 9457 "pll active mismatch (didn't expect pipe %c in active mask 0x%x)\n", 9458 pipe_name(crtc->pipe), pll->active_mask); 9459 9460 I915_STATE_WARN(!(pll->state.pipe_mask & pipe_mask), 9461 "pll enabled crtcs mismatch (expected 0x%x in 0x%x)\n", 9462 pipe_mask, pll->state.pipe_mask); 9463 9464 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 9465 &dpll_hw_state, 9466 sizeof(dpll_hw_state)), 9467 "pll hw state mismatch\n"); 9468 } 9469 9470 static void 9471 verify_shared_dpll_state(struct intel_crtc *crtc, 9472 struct intel_crtc_state *old_crtc_state, 9473 struct intel_crtc_state *new_crtc_state) 9474 { 9475 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9476 9477 if (new_crtc_state->shared_dpll) 9478 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 9479 9480 if (old_crtc_state->shared_dpll && 9481 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 9482 u8 pipe_mask = BIT(crtc->pipe); 9483 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 9484 9485 I915_STATE_WARN(pll->active_mask & pipe_mask, 9486 "pll active mismatch (didn't expect pipe %c in active mask (0x%x))\n", 9487 pipe_name(crtc->pipe), pll->active_mask); 9488 I915_STATE_WARN(pll->state.pipe_mask & pipe_mask, 9489 "pll enabled crtcs mismatch (found %x in enabled mask (0x%x))\n", 9490 pipe_name(crtc->pipe), pll->state.pipe_mask); 9491 } 9492 } 9493 9494 static void 9495 intel_modeset_verify_crtc(struct intel_crtc *crtc, 9496 struct intel_atomic_state *state, 9497 struct intel_crtc_state *old_crtc_state, 9498 struct intel_crtc_state *new_crtc_state) 9499 { 9500 if (!intel_crtc_needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 9501 return; 9502 9503 verify_wm_state(crtc, new_crtc_state); 9504 verify_connector_state(state, crtc); 9505 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 9506 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 9507 } 9508 9509 static void 9510 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 9511 { 9512 int i; 9513 9514 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) 9515 verify_single_dpll_state(dev_priv, 9516 &dev_priv->dpll.shared_dplls[i], 9517 NULL, NULL); 9518 } 9519 9520 static void 9521 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 9522 struct intel_atomic_state *state) 9523 { 9524 verify_encoder_state(dev_priv, state); 9525 verify_connector_state(state, NULL); 9526 verify_disabled_dpll_state(dev_priv); 9527 } 9528 9529 static void 9530 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) 9531 { 9532 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9533 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9534 struct drm_display_mode adjusted_mode = 9535 crtc_state->hw.adjusted_mode; 9536 9537 if (crtc_state->vrr.enable) { 9538 adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax; 9539 adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax; 9540 adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 9541 crtc->vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 9542 } 9543 9544 drm_calc_timestamping_constants(&crtc->base, &adjusted_mode); 9545 9546 crtc->mode_flags = crtc_state->mode_flags; 9547 9548 /* 9549 * The scanline counter increments at the leading edge of hsync. 9550 * 9551 * On most platforms it starts counting from vtotal-1 on the 9552 * first active line. That means the scanline counter value is 9553 * always one less than what we would expect. Ie. just after 9554 * start of vblank, which also occurs at start of hsync (on the 9555 * last active line), the scanline counter will read vblank_start-1. 9556 * 9557 * On gen2 the scanline counter starts counting from 1 instead 9558 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 9559 * to keep the value positive), instead of adding one. 9560 * 9561 * On HSW+ the behaviour of the scanline counter depends on the output 9562 * type. For DP ports it behaves like most other platforms, but on HDMI 9563 * there's an extra 1 line difference. So we need to add two instead of 9564 * one to the value. 9565 * 9566 * On VLV/CHV DSI the scanline counter would appear to increment 9567 * approx. 1/3 of a scanline before start of vblank. Unfortunately 9568 * that means we can't tell whether we're in vblank or not while 9569 * we're on that particular line. We must still set scanline_offset 9570 * to 1 so that the vblank timestamps come out correct when we query 9571 * the scanline counter from within the vblank interrupt handler. 9572 * However if queried just before the start of vblank we'll get an 9573 * answer that's slightly in the future. 9574 */ 9575 if (IS_GEN(dev_priv, 2)) { 9576 int vtotal; 9577 9578 vtotal = adjusted_mode.crtc_vtotal; 9579 if (adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 9580 vtotal /= 2; 9581 9582 crtc->scanline_offset = vtotal - 1; 9583 } else if (HAS_DDI(dev_priv) && 9584 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 9585 crtc->scanline_offset = 2; 9586 } else { 9587 crtc->scanline_offset = 1; 9588 } 9589 } 9590 9591 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 9592 { 9593 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9594 struct intel_crtc_state *new_crtc_state; 9595 struct intel_crtc *crtc; 9596 int i; 9597 9598 if (!dev_priv->display.crtc_compute_clock) 9599 return; 9600 9601 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9602 if (!intel_crtc_needs_modeset(new_crtc_state)) 9603 continue; 9604 9605 intel_release_shared_dplls(state, crtc); 9606 } 9607 } 9608 9609 /* 9610 * This implements the workaround described in the "notes" section of the mode 9611 * set sequence documentation. When going from no pipes or single pipe to 9612 * multiple pipes, and planes are enabled after the pipe, we need to wait at 9613 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 9614 */ 9615 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) 9616 { 9617 struct intel_crtc_state *crtc_state; 9618 struct intel_crtc *crtc; 9619 struct intel_crtc_state *first_crtc_state = NULL; 9620 struct intel_crtc_state *other_crtc_state = NULL; 9621 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 9622 int i; 9623 9624 /* look at all crtc's that are going to be enabled in during modeset */ 9625 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9626 if (!crtc_state->hw.active || 9627 !intel_crtc_needs_modeset(crtc_state)) 9628 continue; 9629 9630 if (first_crtc_state) { 9631 other_crtc_state = crtc_state; 9632 break; 9633 } else { 9634 first_crtc_state = crtc_state; 9635 first_pipe = crtc->pipe; 9636 } 9637 } 9638 9639 /* No workaround needed? */ 9640 if (!first_crtc_state) 9641 return 0; 9642 9643 /* w/a possibly needed, check how many crtc's are already enabled. */ 9644 for_each_intel_crtc(state->base.dev, crtc) { 9645 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 9646 if (IS_ERR(crtc_state)) 9647 return PTR_ERR(crtc_state); 9648 9649 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 9650 9651 if (!crtc_state->hw.active || 9652 intel_crtc_needs_modeset(crtc_state)) 9653 continue; 9654 9655 /* 2 or more enabled crtcs means no need for w/a */ 9656 if (enabled_pipe != INVALID_PIPE) 9657 return 0; 9658 9659 enabled_pipe = crtc->pipe; 9660 } 9661 9662 if (enabled_pipe != INVALID_PIPE) 9663 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 9664 else if (other_crtc_state) 9665 other_crtc_state->hsw_workaround_pipe = first_pipe; 9666 9667 return 0; 9668 } 9669 9670 u8 intel_calc_active_pipes(struct intel_atomic_state *state, 9671 u8 active_pipes) 9672 { 9673 const struct intel_crtc_state *crtc_state; 9674 struct intel_crtc *crtc; 9675 int i; 9676 9677 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9678 if (crtc_state->hw.active) 9679 active_pipes |= BIT(crtc->pipe); 9680 else 9681 active_pipes &= ~BIT(crtc->pipe); 9682 } 9683 9684 return active_pipes; 9685 } 9686 9687 static int intel_modeset_checks(struct intel_atomic_state *state) 9688 { 9689 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9690 9691 state->modeset = true; 9692 9693 if (IS_HASWELL(dev_priv)) 9694 return hsw_mode_set_planes_workaround(state); 9695 9696 return 0; 9697 } 9698 9699 /* 9700 * Handle calculation of various watermark data at the end of the atomic check 9701 * phase. The code here should be run after the per-crtc and per-plane 'check' 9702 * handlers to ensure that all derived state has been updated. 9703 */ 9704 static int calc_watermark_data(struct intel_atomic_state *state) 9705 { 9706 struct drm_device *dev = state->base.dev; 9707 struct drm_i915_private *dev_priv = to_i915(dev); 9708 9709 /* Is there platform-specific watermark information to calculate? */ 9710 if (dev_priv->display.compute_global_watermarks) 9711 return dev_priv->display.compute_global_watermarks(state); 9712 9713 return 0; 9714 } 9715 9716 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 9717 struct intel_crtc_state *new_crtc_state) 9718 { 9719 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 9720 return; 9721 9722 new_crtc_state->uapi.mode_changed = false; 9723 new_crtc_state->update_pipe = true; 9724 } 9725 9726 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state, 9727 struct intel_crtc_state *new_crtc_state) 9728 { 9729 /* 9730 * If we're not doing the full modeset we want to 9731 * keep the current M/N values as they may be 9732 * sufficiently different to the computed values 9733 * to cause problems. 9734 * 9735 * FIXME: should really copy more fuzzy state here 9736 */ 9737 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 9738 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 9739 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 9740 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 9741 } 9742 9743 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, 9744 struct intel_crtc *crtc, 9745 u8 plane_ids_mask) 9746 { 9747 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9748 struct intel_plane *plane; 9749 9750 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 9751 struct intel_plane_state *plane_state; 9752 9753 if ((plane_ids_mask & BIT(plane->id)) == 0) 9754 continue; 9755 9756 plane_state = intel_atomic_get_plane_state(state, plane); 9757 if (IS_ERR(plane_state)) 9758 return PTR_ERR(plane_state); 9759 } 9760 9761 return 0; 9762 } 9763 9764 int intel_atomic_add_affected_planes(struct intel_atomic_state *state, 9765 struct intel_crtc *crtc) 9766 { 9767 const struct intel_crtc_state *old_crtc_state = 9768 intel_atomic_get_old_crtc_state(state, crtc); 9769 const struct intel_crtc_state *new_crtc_state = 9770 intel_atomic_get_new_crtc_state(state, crtc); 9771 9772 return intel_crtc_add_planes_to_state(state, crtc, 9773 old_crtc_state->enabled_planes | 9774 new_crtc_state->enabled_planes); 9775 } 9776 9777 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) 9778 { 9779 /* See {hsw,vlv,ivb}_plane_ratio() */ 9780 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || 9781 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || 9782 IS_IVYBRIDGE(dev_priv) || (INTEL_GEN(dev_priv) >= 11); 9783 } 9784 9785 static int intel_crtc_add_bigjoiner_planes(struct intel_atomic_state *state, 9786 struct intel_crtc *crtc, 9787 struct intel_crtc *other) 9788 { 9789 const struct intel_plane_state *plane_state; 9790 struct intel_plane *plane; 9791 u8 plane_ids = 0; 9792 int i; 9793 9794 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9795 if (plane->pipe == crtc->pipe) 9796 plane_ids |= BIT(plane->id); 9797 } 9798 9799 return intel_crtc_add_planes_to_state(state, other, plane_ids); 9800 } 9801 9802 static int intel_bigjoiner_add_affected_planes(struct intel_atomic_state *state) 9803 { 9804 const struct intel_crtc_state *crtc_state; 9805 struct intel_crtc *crtc; 9806 int i; 9807 9808 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9809 int ret; 9810 9811 if (!crtc_state->bigjoiner) 9812 continue; 9813 9814 ret = intel_crtc_add_bigjoiner_planes(state, crtc, 9815 crtc_state->bigjoiner_linked_crtc); 9816 if (ret) 9817 return ret; 9818 } 9819 9820 return 0; 9821 } 9822 9823 static int intel_atomic_check_planes(struct intel_atomic_state *state) 9824 { 9825 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9826 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 9827 struct intel_plane_state *plane_state; 9828 struct intel_plane *plane; 9829 struct intel_crtc *crtc; 9830 int i, ret; 9831 9832 ret = icl_add_linked_planes(state); 9833 if (ret) 9834 return ret; 9835 9836 ret = intel_bigjoiner_add_affected_planes(state); 9837 if (ret) 9838 return ret; 9839 9840 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9841 ret = intel_plane_atomic_check(state, plane); 9842 if (ret) { 9843 drm_dbg_atomic(&dev_priv->drm, 9844 "[PLANE:%d:%s] atomic driver check failed\n", 9845 plane->base.base.id, plane->base.name); 9846 return ret; 9847 } 9848 } 9849 9850 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 9851 new_crtc_state, i) { 9852 u8 old_active_planes, new_active_planes; 9853 9854 ret = icl_check_nv12_planes(new_crtc_state); 9855 if (ret) 9856 return ret; 9857 9858 /* 9859 * On some platforms the number of active planes affects 9860 * the planes' minimum cdclk calculation. Add such planes 9861 * to the state before we compute the minimum cdclk. 9862 */ 9863 if (!active_planes_affects_min_cdclk(dev_priv)) 9864 continue; 9865 9866 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 9867 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 9868 9869 /* 9870 * Not only the number of planes, but if the plane configuration had 9871 * changed might already mean we need to recompute min CDCLK, 9872 * because different planes might consume different amount of Dbuf bandwidth 9873 * according to formula: Bw per plane = Pixel rate * bpp * pipe/plane scale factor 9874 */ 9875 if (old_active_planes == new_active_planes) 9876 continue; 9877 9878 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); 9879 if (ret) 9880 return ret; 9881 } 9882 9883 return 0; 9884 } 9885 9886 static int intel_atomic_check_cdclk(struct intel_atomic_state *state, 9887 bool *need_cdclk_calc) 9888 { 9889 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9890 const struct intel_cdclk_state *old_cdclk_state; 9891 const struct intel_cdclk_state *new_cdclk_state; 9892 struct intel_plane_state *plane_state; 9893 struct intel_bw_state *new_bw_state; 9894 struct intel_plane *plane; 9895 int min_cdclk = 0; 9896 enum pipe pipe; 9897 int ret; 9898 int i; 9899 /* 9900 * active_planes bitmask has been updated, and potentially 9901 * affected planes are part of the state. We can now 9902 * compute the minimum cdclk for each plane. 9903 */ 9904 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 9905 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 9906 if (ret) 9907 return ret; 9908 } 9909 9910 old_cdclk_state = intel_atomic_get_old_cdclk_state(state); 9911 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 9912 9913 if (new_cdclk_state && 9914 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk) 9915 *need_cdclk_calc = true; 9916 9917 ret = dev_priv->display.bw_calc_min_cdclk(state); 9918 if (ret) 9919 return ret; 9920 9921 new_bw_state = intel_atomic_get_new_bw_state(state); 9922 9923 if (!new_cdclk_state || !new_bw_state) 9924 return 0; 9925 9926 for_each_pipe(dev_priv, pipe) { 9927 min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk); 9928 9929 /* 9930 * Currently do this change only if we need to increase 9931 */ 9932 if (new_bw_state->min_cdclk > min_cdclk) 9933 *need_cdclk_calc = true; 9934 } 9935 9936 return 0; 9937 } 9938 9939 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 9940 { 9941 struct intel_crtc_state *crtc_state; 9942 struct intel_crtc *crtc; 9943 int i; 9944 9945 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 9946 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 9947 int ret; 9948 9949 ret = intel_crtc_atomic_check(state, crtc); 9950 if (ret) { 9951 drm_dbg_atomic(&i915->drm, 9952 "[CRTC:%d:%s] atomic driver check failed\n", 9953 crtc->base.base.id, crtc->base.name); 9954 return ret; 9955 } 9956 } 9957 9958 return 0; 9959 } 9960 9961 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, 9962 u8 transcoders) 9963 { 9964 const struct intel_crtc_state *new_crtc_state; 9965 struct intel_crtc *crtc; 9966 int i; 9967 9968 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 9969 if (new_crtc_state->hw.enable && 9970 transcoders & BIT(new_crtc_state->cpu_transcoder) && 9971 intel_crtc_needs_modeset(new_crtc_state)) 9972 return true; 9973 } 9974 9975 return false; 9976 } 9977 9978 static int intel_atomic_check_bigjoiner(struct intel_atomic_state *state, 9979 struct intel_crtc *crtc, 9980 struct intel_crtc_state *old_crtc_state, 9981 struct intel_crtc_state *new_crtc_state) 9982 { 9983 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 9984 struct intel_crtc_state *slave_crtc_state, *master_crtc_state; 9985 struct intel_crtc *slave, *master; 9986 9987 /* slave being enabled, is master is still claiming this crtc? */ 9988 if (old_crtc_state->bigjoiner_slave) { 9989 slave = crtc; 9990 master = old_crtc_state->bigjoiner_linked_crtc; 9991 master_crtc_state = intel_atomic_get_new_crtc_state(state, master); 9992 if (!master_crtc_state || !intel_crtc_needs_modeset(master_crtc_state)) 9993 goto claimed; 9994 } 9995 9996 if (!new_crtc_state->bigjoiner) 9997 return 0; 9998 9999 if (1 + crtc->pipe >= INTEL_NUM_PIPES(dev_priv)) { 10000 DRM_DEBUG_KMS("[CRTC:%d:%s] Big joiner configuration requires " 10001 "CRTC + 1 to be used, doesn't exist\n", 10002 crtc->base.base.id, crtc->base.name); 10003 return -EINVAL; 10004 } 10005 10006 slave = new_crtc_state->bigjoiner_linked_crtc = 10007 intel_get_crtc_for_pipe(dev_priv, crtc->pipe + 1); 10008 slave_crtc_state = intel_atomic_get_crtc_state(&state->base, slave); 10009 master = crtc; 10010 if (IS_ERR(slave_crtc_state)) 10011 return PTR_ERR(slave_crtc_state); 10012 10013 /* master being enabled, slave was already configured? */ 10014 if (slave_crtc_state->uapi.enable) 10015 goto claimed; 10016 10017 DRM_DEBUG_KMS("[CRTC:%d:%s] Used as slave for big joiner\n", 10018 slave->base.base.id, slave->base.name); 10019 10020 return copy_bigjoiner_crtc_state(slave_crtc_state, new_crtc_state); 10021 10022 claimed: 10023 DRM_DEBUG_KMS("[CRTC:%d:%s] Slave is enabled as normal CRTC, but " 10024 "[CRTC:%d:%s] claiming this CRTC for bigjoiner.\n", 10025 slave->base.base.id, slave->base.name, 10026 master->base.base.id, master->base.name); 10027 return -EINVAL; 10028 } 10029 10030 static void kill_bigjoiner_slave(struct intel_atomic_state *state, 10031 struct intel_crtc_state *master_crtc_state) 10032 { 10033 struct intel_crtc_state *slave_crtc_state = 10034 intel_atomic_get_new_crtc_state(state, master_crtc_state->bigjoiner_linked_crtc); 10035 10036 slave_crtc_state->bigjoiner = master_crtc_state->bigjoiner = false; 10037 slave_crtc_state->bigjoiner_slave = master_crtc_state->bigjoiner_slave = false; 10038 slave_crtc_state->bigjoiner_linked_crtc = master_crtc_state->bigjoiner_linked_crtc = NULL; 10039 intel_crtc_copy_uapi_to_hw_state(state, slave_crtc_state); 10040 } 10041 10042 /** 10043 * DOC: asynchronous flip implementation 10044 * 10045 * Asynchronous page flip is the implementation for the DRM_MODE_PAGE_FLIP_ASYNC 10046 * flag. Currently async flip is only supported via the drmModePageFlip IOCTL. 10047 * Correspondingly, support is currently added for primary plane only. 10048 * 10049 * Async flip can only change the plane surface address, so anything else 10050 * changing is rejected from the intel_atomic_check_async() function. 10051 * Once this check is cleared, flip done interrupt is enabled using 10052 * the intel_crtc_enable_flip_done() function. 10053 * 10054 * As soon as the surface address register is written, flip done interrupt is 10055 * generated and the requested events are sent to the usersapce in the interrupt 10056 * handler itself. The timestamp and sequence sent during the flip done event 10057 * correspond to the last vblank and have no relation to the actual time when 10058 * the flip done event was sent. 10059 */ 10060 static int intel_atomic_check_async(struct intel_atomic_state *state) 10061 { 10062 struct drm_i915_private *i915 = to_i915(state->base.dev); 10063 const struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10064 const struct intel_plane_state *new_plane_state, *old_plane_state; 10065 struct intel_crtc *crtc; 10066 struct intel_plane *plane; 10067 int i; 10068 10069 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10070 new_crtc_state, i) { 10071 if (intel_crtc_needs_modeset(new_crtc_state)) { 10072 drm_dbg_kms(&i915->drm, "Modeset Required. Async flip not supported\n"); 10073 return -EINVAL; 10074 } 10075 10076 if (!new_crtc_state->hw.active) { 10077 drm_dbg_kms(&i915->drm, "CRTC inactive\n"); 10078 return -EINVAL; 10079 } 10080 if (old_crtc_state->active_planes != new_crtc_state->active_planes) { 10081 drm_dbg_kms(&i915->drm, 10082 "Active planes cannot be changed during async flip\n"); 10083 return -EINVAL; 10084 } 10085 } 10086 10087 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 10088 new_plane_state, i) { 10089 /* 10090 * TODO: Async flip is only supported through the page flip IOCTL 10091 * as of now. So support currently added for primary plane only. 10092 * Support for other planes on platforms on which supports 10093 * this(vlv/chv and icl+) should be added when async flip is 10094 * enabled in the atomic IOCTL path. 10095 */ 10096 if (!plane->async_flip) 10097 return -EINVAL; 10098 10099 /* 10100 * FIXME: This check is kept generic for all platforms. 10101 * Need to verify this for all gen9 and gen10 platforms to enable 10102 * this selectively if required. 10103 */ 10104 switch (new_plane_state->hw.fb->modifier) { 10105 case I915_FORMAT_MOD_X_TILED: 10106 case I915_FORMAT_MOD_Y_TILED: 10107 case I915_FORMAT_MOD_Yf_TILED: 10108 break; 10109 default: 10110 drm_dbg_kms(&i915->drm, 10111 "Linear memory/CCS does not support async flips\n"); 10112 return -EINVAL; 10113 } 10114 10115 if (old_plane_state->color_plane[0].stride != 10116 new_plane_state->color_plane[0].stride) { 10117 drm_dbg_kms(&i915->drm, "Stride cannot be changed in async flip\n"); 10118 return -EINVAL; 10119 } 10120 10121 if (old_plane_state->hw.fb->modifier != 10122 new_plane_state->hw.fb->modifier) { 10123 drm_dbg_kms(&i915->drm, 10124 "Framebuffer modifiers cannot be changed in async flip\n"); 10125 return -EINVAL; 10126 } 10127 10128 if (old_plane_state->hw.fb->format != 10129 new_plane_state->hw.fb->format) { 10130 drm_dbg_kms(&i915->drm, 10131 "Framebuffer format cannot be changed in async flip\n"); 10132 return -EINVAL; 10133 } 10134 10135 if (old_plane_state->hw.rotation != 10136 new_plane_state->hw.rotation) { 10137 drm_dbg_kms(&i915->drm, "Rotation cannot be changed in async flip\n"); 10138 return -EINVAL; 10139 } 10140 10141 if (!drm_rect_equals(&old_plane_state->uapi.src, &new_plane_state->uapi.src) || 10142 !drm_rect_equals(&old_plane_state->uapi.dst, &new_plane_state->uapi.dst)) { 10143 drm_dbg_kms(&i915->drm, 10144 "Plane size/co-ordinates cannot be changed in async flip\n"); 10145 return -EINVAL; 10146 } 10147 10148 if (old_plane_state->hw.alpha != new_plane_state->hw.alpha) { 10149 drm_dbg_kms(&i915->drm, "Alpha value cannot be changed in async flip\n"); 10150 return -EINVAL; 10151 } 10152 10153 if (old_plane_state->hw.pixel_blend_mode != 10154 new_plane_state->hw.pixel_blend_mode) { 10155 drm_dbg_kms(&i915->drm, 10156 "Pixel blend mode cannot be changed in async flip\n"); 10157 return -EINVAL; 10158 } 10159 10160 if (old_plane_state->hw.color_encoding != new_plane_state->hw.color_encoding) { 10161 drm_dbg_kms(&i915->drm, 10162 "Color encoding cannot be changed in async flip\n"); 10163 return -EINVAL; 10164 } 10165 10166 if (old_plane_state->hw.color_range != new_plane_state->hw.color_range) { 10167 drm_dbg_kms(&i915->drm, "Color range cannot be changed in async flip\n"); 10168 return -EINVAL; 10169 } 10170 } 10171 10172 return 0; 10173 } 10174 10175 static int intel_bigjoiner_add_affected_crtcs(struct intel_atomic_state *state) 10176 { 10177 struct intel_crtc_state *crtc_state; 10178 struct intel_crtc *crtc; 10179 int i; 10180 10181 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 10182 struct intel_crtc_state *linked_crtc_state; 10183 struct intel_crtc *linked_crtc; 10184 int ret; 10185 10186 if (!crtc_state->bigjoiner) 10187 continue; 10188 10189 linked_crtc = crtc_state->bigjoiner_linked_crtc; 10190 linked_crtc_state = intel_atomic_get_crtc_state(&state->base, linked_crtc); 10191 if (IS_ERR(linked_crtc_state)) 10192 return PTR_ERR(linked_crtc_state); 10193 10194 if (!intel_crtc_needs_modeset(crtc_state)) 10195 continue; 10196 10197 linked_crtc_state->uapi.mode_changed = true; 10198 10199 ret = drm_atomic_add_affected_connectors(&state->base, 10200 &linked_crtc->base); 10201 if (ret) 10202 return ret; 10203 10204 ret = intel_atomic_add_affected_planes(state, linked_crtc); 10205 if (ret) 10206 return ret; 10207 } 10208 10209 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 10210 /* Kill old bigjoiner link, we may re-establish afterwards */ 10211 if (intel_crtc_needs_modeset(crtc_state) && 10212 crtc_state->bigjoiner && !crtc_state->bigjoiner_slave) 10213 kill_bigjoiner_slave(state, crtc_state); 10214 } 10215 10216 return 0; 10217 } 10218 10219 /** 10220 * intel_atomic_check - validate state object 10221 * @dev: drm device 10222 * @_state: state to validate 10223 */ 10224 static int intel_atomic_check(struct drm_device *dev, 10225 struct drm_atomic_state *_state) 10226 { 10227 struct drm_i915_private *dev_priv = to_i915(dev); 10228 struct intel_atomic_state *state = to_intel_atomic_state(_state); 10229 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10230 struct intel_crtc *crtc; 10231 int ret, i; 10232 bool any_ms = false; 10233 10234 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10235 new_crtc_state, i) { 10236 if (new_crtc_state->inherited != old_crtc_state->inherited) 10237 new_crtc_state->uapi.mode_changed = true; 10238 } 10239 10240 intel_vrr_check_modeset(state); 10241 10242 ret = drm_atomic_helper_check_modeset(dev, &state->base); 10243 if (ret) 10244 goto fail; 10245 10246 ret = intel_bigjoiner_add_affected_crtcs(state); 10247 if (ret) 10248 goto fail; 10249 10250 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10251 new_crtc_state, i) { 10252 if (!intel_crtc_needs_modeset(new_crtc_state)) { 10253 /* Light copy */ 10254 intel_crtc_copy_uapi_to_hw_state_nomodeset(state, new_crtc_state); 10255 10256 continue; 10257 } 10258 10259 if (!new_crtc_state->uapi.enable) { 10260 if (!new_crtc_state->bigjoiner_slave) { 10261 intel_crtc_copy_uapi_to_hw_state(state, new_crtc_state); 10262 any_ms = true; 10263 } 10264 continue; 10265 } 10266 10267 ret = intel_crtc_prepare_cleared_state(state, new_crtc_state); 10268 if (ret) 10269 goto fail; 10270 10271 ret = intel_modeset_pipe_config(state, new_crtc_state); 10272 if (ret) 10273 goto fail; 10274 10275 ret = intel_atomic_check_bigjoiner(state, crtc, old_crtc_state, 10276 new_crtc_state); 10277 if (ret) 10278 goto fail; 10279 } 10280 10281 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10282 new_crtc_state, i) { 10283 if (!intel_crtc_needs_modeset(new_crtc_state)) 10284 continue; 10285 10286 ret = intel_modeset_pipe_config_late(new_crtc_state); 10287 if (ret) 10288 goto fail; 10289 10290 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 10291 } 10292 10293 /** 10294 * Check if fastset is allowed by external dependencies like other 10295 * pipes and transcoders. 10296 * 10297 * Right now it only forces a fullmodeset when the MST master 10298 * transcoder did not changed but the pipe of the master transcoder 10299 * needs a fullmodeset so all slaves also needs to do a fullmodeset or 10300 * in case of port synced crtcs, if one of the synced crtcs 10301 * needs a full modeset, all other synced crtcs should be 10302 * forced a full modeset. 10303 */ 10304 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10305 if (!new_crtc_state->hw.enable || intel_crtc_needs_modeset(new_crtc_state)) 10306 continue; 10307 10308 if (intel_dp_mst_is_slave_trans(new_crtc_state)) { 10309 enum transcoder master = new_crtc_state->mst_master_transcoder; 10310 10311 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) { 10312 new_crtc_state->uapi.mode_changed = true; 10313 new_crtc_state->update_pipe = false; 10314 } 10315 } 10316 10317 if (is_trans_port_sync_mode(new_crtc_state)) { 10318 u8 trans = new_crtc_state->sync_mode_slaves_mask; 10319 10320 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) 10321 trans |= BIT(new_crtc_state->master_transcoder); 10322 10323 if (intel_cpu_transcoders_need_modeset(state, trans)) { 10324 new_crtc_state->uapi.mode_changed = true; 10325 new_crtc_state->update_pipe = false; 10326 } 10327 } 10328 10329 if (new_crtc_state->bigjoiner) { 10330 struct intel_crtc_state *linked_crtc_state = 10331 intel_atomic_get_new_crtc_state(state, new_crtc_state->bigjoiner_linked_crtc); 10332 10333 if (intel_crtc_needs_modeset(linked_crtc_state)) { 10334 new_crtc_state->uapi.mode_changed = true; 10335 new_crtc_state->update_pipe = false; 10336 } 10337 } 10338 } 10339 10340 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10341 new_crtc_state, i) { 10342 if (intel_crtc_needs_modeset(new_crtc_state)) { 10343 any_ms = true; 10344 continue; 10345 } 10346 10347 if (!new_crtc_state->update_pipe) 10348 continue; 10349 10350 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state); 10351 } 10352 10353 if (any_ms && !check_digital_port_conflicts(state)) { 10354 drm_dbg_kms(&dev_priv->drm, 10355 "rejecting conflicting digital port configuration\n"); 10356 ret = -EINVAL; 10357 goto fail; 10358 } 10359 10360 ret = drm_dp_mst_atomic_check(&state->base); 10361 if (ret) 10362 goto fail; 10363 10364 ret = intel_atomic_check_planes(state); 10365 if (ret) 10366 goto fail; 10367 10368 intel_fbc_choose_crtc(dev_priv, state); 10369 ret = calc_watermark_data(state); 10370 if (ret) 10371 goto fail; 10372 10373 ret = intel_bw_atomic_check(state); 10374 if (ret) 10375 goto fail; 10376 10377 ret = intel_atomic_check_cdclk(state, &any_ms); 10378 if (ret) 10379 goto fail; 10380 10381 if (any_ms) { 10382 ret = intel_modeset_checks(state); 10383 if (ret) 10384 goto fail; 10385 10386 ret = intel_modeset_calc_cdclk(state); 10387 if (ret) 10388 return ret; 10389 10390 intel_modeset_clear_plls(state); 10391 } 10392 10393 ret = intel_atomic_check_crtcs(state); 10394 if (ret) 10395 goto fail; 10396 10397 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10398 new_crtc_state, i) { 10399 if (new_crtc_state->uapi.async_flip) { 10400 ret = intel_atomic_check_async(state); 10401 if (ret) 10402 goto fail; 10403 } 10404 10405 if (!intel_crtc_needs_modeset(new_crtc_state) && 10406 !new_crtc_state->update_pipe) 10407 continue; 10408 10409 intel_dump_pipe_config(new_crtc_state, state, 10410 intel_crtc_needs_modeset(new_crtc_state) ? 10411 "[modeset]" : "[fastset]"); 10412 } 10413 10414 return 0; 10415 10416 fail: 10417 if (ret == -EDEADLK) 10418 return ret; 10419 10420 /* 10421 * FIXME would probably be nice to know which crtc specifically 10422 * caused the failure, in cases where we can pinpoint it. 10423 */ 10424 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10425 new_crtc_state, i) 10426 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 10427 10428 return ret; 10429 } 10430 10431 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 10432 { 10433 struct intel_crtc_state *crtc_state; 10434 struct intel_crtc *crtc; 10435 int i, ret; 10436 10437 ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base); 10438 if (ret < 0) 10439 return ret; 10440 10441 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 10442 bool mode_changed = intel_crtc_needs_modeset(crtc_state); 10443 10444 if (mode_changed || crtc_state->update_pipe || 10445 crtc_state->uapi.color_mgmt_changed) { 10446 intel_dsb_prepare(crtc_state); 10447 } 10448 } 10449 10450 return 0; 10451 } 10452 10453 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 10454 struct intel_crtc_state *crtc_state) 10455 { 10456 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10457 10458 if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes) 10459 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 10460 10461 if (crtc_state->has_pch_encoder) { 10462 enum pipe pch_transcoder = 10463 intel_crtc_pch_transcoder(crtc); 10464 10465 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 10466 } 10467 } 10468 10469 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 10470 const struct intel_crtc_state *new_crtc_state) 10471 { 10472 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 10473 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10474 10475 /* 10476 * Update pipe size and adjust fitter if needed: the reason for this is 10477 * that in compute_mode_changes we check the native mode (not the pfit 10478 * mode) to see if we can flip rather than do a full mode set. In the 10479 * fastboot case, we'll flip, but if we don't update the pipesrc and 10480 * pfit state, we'll end up with a big fb scanned out into the wrong 10481 * sized surface. 10482 */ 10483 intel_set_pipe_src_size(new_crtc_state); 10484 10485 /* on skylake this is done by detaching scalers */ 10486 if (INTEL_GEN(dev_priv) >= 9) { 10487 skl_detach_scalers(new_crtc_state); 10488 10489 if (new_crtc_state->pch_pfit.enabled) 10490 skl_pfit_enable(new_crtc_state); 10491 } else if (HAS_PCH_SPLIT(dev_priv)) { 10492 if (new_crtc_state->pch_pfit.enabled) 10493 ilk_pfit_enable(new_crtc_state); 10494 else if (old_crtc_state->pch_pfit.enabled) 10495 ilk_pfit_disable(old_crtc_state); 10496 } 10497 10498 /* 10499 * The register is supposedly single buffered so perhaps 10500 * not 100% correct to do this here. But SKL+ calculate 10501 * this based on the adjust pixel rate so pfit changes do 10502 * affect it and so it must be updated for fastsets. 10503 * HSW/BDW only really need this here for fastboot, after 10504 * that the value should not change without a full modeset. 10505 */ 10506 if (INTEL_GEN(dev_priv) >= 9 || 10507 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 10508 hsw_set_linetime_wm(new_crtc_state); 10509 10510 if (INTEL_GEN(dev_priv) >= 11) 10511 icl_set_pipe_chicken(crtc); 10512 } 10513 10514 static void commit_pipe_config(struct intel_atomic_state *state, 10515 struct intel_crtc *crtc) 10516 { 10517 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10518 const struct intel_crtc_state *old_crtc_state = 10519 intel_atomic_get_old_crtc_state(state, crtc); 10520 const struct intel_crtc_state *new_crtc_state = 10521 intel_atomic_get_new_crtc_state(state, crtc); 10522 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10523 10524 /* 10525 * During modesets pipe configuration was programmed as the 10526 * CRTC was enabled. 10527 */ 10528 if (!modeset) { 10529 if (new_crtc_state->uapi.color_mgmt_changed || 10530 new_crtc_state->update_pipe) 10531 intel_color_commit(new_crtc_state); 10532 10533 if (INTEL_GEN(dev_priv) >= 9) 10534 skl_detach_scalers(new_crtc_state); 10535 10536 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 10537 bdw_set_pipemisc(new_crtc_state); 10538 10539 if (new_crtc_state->update_pipe) 10540 intel_pipe_fastset(old_crtc_state, new_crtc_state); 10541 10542 intel_psr2_program_trans_man_trk_ctl(new_crtc_state); 10543 } 10544 10545 if (dev_priv->display.atomic_update_watermarks) 10546 dev_priv->display.atomic_update_watermarks(state, crtc); 10547 } 10548 10549 static void intel_enable_crtc(struct intel_atomic_state *state, 10550 struct intel_crtc *crtc) 10551 { 10552 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10553 const struct intel_crtc_state *new_crtc_state = 10554 intel_atomic_get_new_crtc_state(state, crtc); 10555 10556 if (!intel_crtc_needs_modeset(new_crtc_state)) 10557 return; 10558 10559 intel_crtc_update_active_timings(new_crtc_state); 10560 10561 dev_priv->display.crtc_enable(state, crtc); 10562 10563 if (new_crtc_state->bigjoiner_slave) 10564 return; 10565 10566 /* vblanks work again, re-enable pipe CRC. */ 10567 intel_crtc_enable_pipe_crc(crtc); 10568 } 10569 10570 static void intel_update_crtc(struct intel_atomic_state *state, 10571 struct intel_crtc *crtc) 10572 { 10573 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10574 const struct intel_crtc_state *old_crtc_state = 10575 intel_atomic_get_old_crtc_state(state, crtc); 10576 struct intel_crtc_state *new_crtc_state = 10577 intel_atomic_get_new_crtc_state(state, crtc); 10578 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 10579 10580 if (!modeset) { 10581 if (new_crtc_state->preload_luts && 10582 (new_crtc_state->uapi.color_mgmt_changed || 10583 new_crtc_state->update_pipe)) 10584 intel_color_load_luts(new_crtc_state); 10585 10586 intel_pre_plane_update(state, crtc); 10587 10588 if (new_crtc_state->update_pipe) 10589 intel_encoders_update_pipe(state, crtc); 10590 } 10591 10592 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 10593 intel_fbc_disable(crtc); 10594 else 10595 intel_fbc_enable(state, crtc); 10596 10597 /* Perform vblank evasion around commit operation */ 10598 intel_pipe_update_start(new_crtc_state); 10599 10600 commit_pipe_config(state, crtc); 10601 10602 if (INTEL_GEN(dev_priv) >= 9) 10603 skl_update_planes_on_crtc(state, crtc); 10604 else 10605 i9xx_update_planes_on_crtc(state, crtc); 10606 10607 intel_pipe_update_end(new_crtc_state); 10608 10609 /* 10610 * We usually enable FIFO underrun interrupts as part of the 10611 * CRTC enable sequence during modesets. But when we inherit a 10612 * valid pipe configuration from the BIOS we need to take care 10613 * of enabling them on the CRTC's first fastset. 10614 */ 10615 if (new_crtc_state->update_pipe && !modeset && 10616 old_crtc_state->inherited) 10617 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 10618 } 10619 10620 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 10621 struct intel_crtc_state *old_crtc_state, 10622 struct intel_crtc_state *new_crtc_state, 10623 struct intel_crtc *crtc) 10624 { 10625 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10626 10627 drm_WARN_ON(&dev_priv->drm, old_crtc_state->bigjoiner_slave); 10628 10629 intel_crtc_disable_planes(state, crtc); 10630 10631 /* 10632 * We still need special handling for disabling bigjoiner master 10633 * and slaves since for slave we do not have encoder or plls 10634 * so we dont need to disable those. 10635 */ 10636 if (old_crtc_state->bigjoiner) { 10637 intel_crtc_disable_planes(state, 10638 old_crtc_state->bigjoiner_linked_crtc); 10639 old_crtc_state->bigjoiner_linked_crtc->active = false; 10640 } 10641 10642 /* 10643 * We need to disable pipe CRC before disabling the pipe, 10644 * or we race against vblank off. 10645 */ 10646 intel_crtc_disable_pipe_crc(crtc); 10647 10648 dev_priv->display.crtc_disable(state, crtc); 10649 crtc->active = false; 10650 intel_fbc_disable(crtc); 10651 intel_disable_shared_dpll(old_crtc_state); 10652 10653 /* FIXME unify this for all platforms */ 10654 if (!new_crtc_state->hw.active && 10655 !HAS_GMCH(dev_priv) && 10656 dev_priv->display.initial_watermarks) 10657 dev_priv->display.initial_watermarks(state, crtc); 10658 } 10659 10660 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 10661 { 10662 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 10663 struct intel_crtc *crtc; 10664 u32 handled = 0; 10665 int i; 10666 10667 /* Only disable port sync and MST slaves */ 10668 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10669 new_crtc_state, i) { 10670 if (!intel_crtc_needs_modeset(new_crtc_state) || old_crtc_state->bigjoiner) 10671 continue; 10672 10673 if (!old_crtc_state->hw.active) 10674 continue; 10675 10676 /* In case of Transcoder port Sync master slave CRTCs can be 10677 * assigned in any order and we need to make sure that 10678 * slave CRTCs are disabled first and then master CRTC since 10679 * Slave vblanks are masked till Master Vblanks. 10680 */ 10681 if (!is_trans_port_sync_slave(old_crtc_state) && 10682 !intel_dp_mst_is_slave_trans(old_crtc_state)) 10683 continue; 10684 10685 intel_pre_plane_update(state, crtc); 10686 intel_old_crtc_state_disables(state, old_crtc_state, 10687 new_crtc_state, crtc); 10688 handled |= BIT(crtc->pipe); 10689 } 10690 10691 /* Disable everything else left on */ 10692 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10693 new_crtc_state, i) { 10694 if (!intel_crtc_needs_modeset(new_crtc_state) || 10695 (handled & BIT(crtc->pipe)) || 10696 old_crtc_state->bigjoiner_slave) 10697 continue; 10698 10699 intel_pre_plane_update(state, crtc); 10700 if (old_crtc_state->bigjoiner) { 10701 struct intel_crtc *slave = 10702 old_crtc_state->bigjoiner_linked_crtc; 10703 10704 intel_pre_plane_update(state, slave); 10705 } 10706 10707 if (old_crtc_state->hw.active) 10708 intel_old_crtc_state_disables(state, old_crtc_state, 10709 new_crtc_state, crtc); 10710 } 10711 } 10712 10713 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 10714 { 10715 struct intel_crtc_state *new_crtc_state; 10716 struct intel_crtc *crtc; 10717 int i; 10718 10719 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10720 if (!new_crtc_state->hw.active) 10721 continue; 10722 10723 intel_enable_crtc(state, crtc); 10724 intel_update_crtc(state, crtc); 10725 } 10726 } 10727 10728 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 10729 { 10730 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 10731 struct intel_crtc *crtc; 10732 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10733 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 10734 u8 update_pipes = 0, modeset_pipes = 0; 10735 int i; 10736 10737 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 10738 enum pipe pipe = crtc->pipe; 10739 10740 if (!new_crtc_state->hw.active) 10741 continue; 10742 10743 /* ignore allocations for crtc's that have been turned off. */ 10744 if (!intel_crtc_needs_modeset(new_crtc_state)) { 10745 entries[pipe] = old_crtc_state->wm.skl.ddb; 10746 update_pipes |= BIT(pipe); 10747 } else { 10748 modeset_pipes |= BIT(pipe); 10749 } 10750 } 10751 10752 /* 10753 * Whenever the number of active pipes changes, we need to make sure we 10754 * update the pipes in the right order so that their ddb allocations 10755 * never overlap with each other between CRTC updates. Otherwise we'll 10756 * cause pipe underruns and other bad stuff. 10757 * 10758 * So first lets enable all pipes that do not need a fullmodeset as 10759 * those don't have any external dependency. 10760 */ 10761 while (update_pipes) { 10762 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10763 new_crtc_state, i) { 10764 enum pipe pipe = crtc->pipe; 10765 10766 if ((update_pipes & BIT(pipe)) == 0) 10767 continue; 10768 10769 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 10770 entries, I915_MAX_PIPES, pipe)) 10771 continue; 10772 10773 entries[pipe] = new_crtc_state->wm.skl.ddb; 10774 update_pipes &= ~BIT(pipe); 10775 10776 intel_update_crtc(state, crtc); 10777 10778 /* 10779 * If this is an already active pipe, it's DDB changed, 10780 * and this isn't the last pipe that needs updating 10781 * then we need to wait for a vblank to pass for the 10782 * new ddb allocation to take effect. 10783 */ 10784 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 10785 &old_crtc_state->wm.skl.ddb) && 10786 (update_pipes | modeset_pipes)) 10787 intel_wait_for_vblank(dev_priv, pipe); 10788 } 10789 } 10790 10791 update_pipes = modeset_pipes; 10792 10793 /* 10794 * Enable all pipes that needs a modeset and do not depends on other 10795 * pipes 10796 */ 10797 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10798 enum pipe pipe = crtc->pipe; 10799 10800 if ((modeset_pipes & BIT(pipe)) == 0) 10801 continue; 10802 10803 if (intel_dp_mst_is_slave_trans(new_crtc_state) || 10804 is_trans_port_sync_master(new_crtc_state) || 10805 (new_crtc_state->bigjoiner && !new_crtc_state->bigjoiner_slave)) 10806 continue; 10807 10808 modeset_pipes &= ~BIT(pipe); 10809 10810 intel_enable_crtc(state, crtc); 10811 } 10812 10813 /* 10814 * Then we enable all remaining pipes that depend on other 10815 * pipes: MST slaves and port sync masters, big joiner master 10816 */ 10817 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10818 enum pipe pipe = crtc->pipe; 10819 10820 if ((modeset_pipes & BIT(pipe)) == 0) 10821 continue; 10822 10823 modeset_pipes &= ~BIT(pipe); 10824 10825 intel_enable_crtc(state, crtc); 10826 } 10827 10828 /* 10829 * Finally we do the plane updates/etc. for all pipes that got enabled. 10830 */ 10831 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 10832 enum pipe pipe = crtc->pipe; 10833 10834 if ((update_pipes & BIT(pipe)) == 0) 10835 continue; 10836 10837 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 10838 entries, I915_MAX_PIPES, pipe)); 10839 10840 entries[pipe] = new_crtc_state->wm.skl.ddb; 10841 update_pipes &= ~BIT(pipe); 10842 10843 intel_update_crtc(state, crtc); 10844 } 10845 10846 drm_WARN_ON(&dev_priv->drm, modeset_pipes); 10847 drm_WARN_ON(&dev_priv->drm, update_pipes); 10848 } 10849 10850 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 10851 { 10852 struct intel_atomic_state *state, *next; 10853 struct llist_node *freed; 10854 10855 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 10856 llist_for_each_entry_safe(state, next, freed, freed) 10857 drm_atomic_state_put(&state->base); 10858 } 10859 10860 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 10861 { 10862 struct drm_i915_private *dev_priv = 10863 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 10864 10865 intel_atomic_helper_free_state(dev_priv); 10866 } 10867 10868 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 10869 { 10870 struct wait_queue_entry wait_fence, wait_reset; 10871 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 10872 10873 init_wait_entry(&wait_fence, 0); 10874 init_wait_entry(&wait_reset, 0); 10875 for (;;) { 10876 prepare_to_wait(&intel_state->commit_ready.wait, 10877 &wait_fence, TASK_UNINTERRUPTIBLE); 10878 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 10879 I915_RESET_MODESET), 10880 &wait_reset, TASK_UNINTERRUPTIBLE); 10881 10882 10883 if (i915_sw_fence_done(&intel_state->commit_ready) || 10884 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 10885 break; 10886 10887 schedule(); 10888 } 10889 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 10890 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 10891 I915_RESET_MODESET), 10892 &wait_reset); 10893 } 10894 10895 static void intel_cleanup_dsbs(struct intel_atomic_state *state) 10896 { 10897 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 10898 struct intel_crtc *crtc; 10899 int i; 10900 10901 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10902 new_crtc_state, i) 10903 intel_dsb_cleanup(old_crtc_state); 10904 } 10905 10906 static void intel_atomic_cleanup_work(struct work_struct *work) 10907 { 10908 struct intel_atomic_state *state = 10909 container_of(work, struct intel_atomic_state, base.commit_work); 10910 struct drm_i915_private *i915 = to_i915(state->base.dev); 10911 10912 intel_cleanup_dsbs(state); 10913 drm_atomic_helper_cleanup_planes(&i915->drm, &state->base); 10914 drm_atomic_helper_commit_cleanup_done(&state->base); 10915 drm_atomic_state_put(&state->base); 10916 10917 intel_atomic_helper_free_state(i915); 10918 } 10919 10920 static void intel_atomic_prepare_plane_clear_colors(struct intel_atomic_state *state) 10921 { 10922 struct drm_i915_private *i915 = to_i915(state->base.dev); 10923 struct intel_plane *plane; 10924 struct intel_plane_state *plane_state; 10925 int i; 10926 10927 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 10928 struct drm_framebuffer *fb = plane_state->hw.fb; 10929 int ret; 10930 10931 if (!fb || 10932 fb->modifier != I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC) 10933 continue; 10934 10935 /* 10936 * The layout of the fast clear color value expected by HW 10937 * (the DRM ABI requiring this value to be located in fb at offset 0 of plane#2): 10938 * - 4 x 4 bytes per-channel value 10939 * (in surface type specific float/int format provided by the fb user) 10940 * - 8 bytes native color value used by the display 10941 * (converted/written by GPU during a fast clear operation using the 10942 * above per-channel values) 10943 * 10944 * The commit's FB prepare hook already ensured that FB obj is pinned and the 10945 * caller made sure that the object is synced wrt. the related color clear value 10946 * GPU write on it. 10947 */ 10948 ret = i915_gem_object_read_from_page(intel_fb_obj(fb), 10949 fb->offsets[2] + 16, 10950 &plane_state->ccval, 10951 sizeof(plane_state->ccval)); 10952 /* The above could only fail if the FB obj has an unexpected backing store type. */ 10953 drm_WARN_ON(&i915->drm, ret); 10954 } 10955 } 10956 10957 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 10958 { 10959 struct drm_device *dev = state->base.dev; 10960 struct drm_i915_private *dev_priv = to_i915(dev); 10961 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 10962 struct intel_crtc *crtc; 10963 u64 put_domains[I915_MAX_PIPES] = {}; 10964 intel_wakeref_t wakeref = 0; 10965 int i; 10966 10967 intel_atomic_commit_fence_wait(state); 10968 10969 drm_atomic_helper_wait_for_dependencies(&state->base); 10970 10971 if (state->modeset) 10972 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 10973 10974 intel_atomic_prepare_plane_clear_colors(state); 10975 10976 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 10977 new_crtc_state, i) { 10978 if (intel_crtc_needs_modeset(new_crtc_state) || 10979 new_crtc_state->update_pipe) { 10980 10981 put_domains[crtc->pipe] = 10982 modeset_get_crtc_power_domains(new_crtc_state); 10983 } 10984 } 10985 10986 intel_commit_modeset_disables(state); 10987 10988 /* FIXME: Eventually get rid of our crtc->config pointer */ 10989 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 10990 crtc->config = new_crtc_state; 10991 10992 if (state->modeset) { 10993 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 10994 10995 intel_set_cdclk_pre_plane_update(state); 10996 10997 intel_modeset_verify_disabled(dev_priv, state); 10998 } 10999 11000 intel_sagv_pre_plane_update(state); 11001 11002 /* Complete the events for pipes that have now been disabled */ 11003 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 11004 bool modeset = intel_crtc_needs_modeset(new_crtc_state); 11005 11006 /* Complete events for now disable pipes here. */ 11007 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { 11008 spin_lock_irq(&dev->event_lock); 11009 drm_crtc_send_vblank_event(&crtc->base, 11010 new_crtc_state->uapi.event); 11011 spin_unlock_irq(&dev->event_lock); 11012 11013 new_crtc_state->uapi.event = NULL; 11014 } 11015 } 11016 11017 if (state->modeset) 11018 intel_encoders_update_prepare(state); 11019 11020 intel_dbuf_pre_plane_update(state); 11021 11022 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 11023 if (new_crtc_state->uapi.async_flip) 11024 intel_crtc_enable_flip_done(state, crtc); 11025 } 11026 11027 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 11028 dev_priv->display.commit_modeset_enables(state); 11029 11030 if (state->modeset) { 11031 intel_encoders_update_complete(state); 11032 11033 intel_set_cdclk_post_plane_update(state); 11034 } 11035 11036 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 11037 * already, but still need the state for the delayed optimization. To 11038 * fix this: 11039 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 11040 * - schedule that vblank worker _before_ calling hw_done 11041 * - at the start of commit_tail, cancel it _synchrously 11042 * - switch over to the vblank wait helper in the core after that since 11043 * we don't need out special handling any more. 11044 */ 11045 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 11046 11047 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 11048 if (new_crtc_state->uapi.async_flip) 11049 intel_crtc_disable_flip_done(state, crtc); 11050 11051 if (new_crtc_state->hw.active && 11052 !intel_crtc_needs_modeset(new_crtc_state) && 11053 !new_crtc_state->preload_luts && 11054 (new_crtc_state->uapi.color_mgmt_changed || 11055 new_crtc_state->update_pipe)) 11056 intel_color_load_luts(new_crtc_state); 11057 } 11058 11059 /* 11060 * Now that the vblank has passed, we can go ahead and program the 11061 * optimal watermarks on platforms that need two-step watermark 11062 * programming. 11063 * 11064 * TODO: Move this (and other cleanup) to an async worker eventually. 11065 */ 11066 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 11067 new_crtc_state, i) { 11068 /* 11069 * Gen2 reports pipe underruns whenever all planes are disabled. 11070 * So re-enable underrun reporting after some planes get enabled. 11071 * 11072 * We do this before .optimize_watermarks() so that we have a 11073 * chance of catching underruns with the intermediate watermarks 11074 * vs. the new plane configuration. 11075 */ 11076 if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state)) 11077 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 11078 11079 if (dev_priv->display.optimize_watermarks) 11080 dev_priv->display.optimize_watermarks(state, crtc); 11081 } 11082 11083 intel_dbuf_post_plane_update(state); 11084 11085 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 11086 intel_post_plane_update(state, crtc); 11087 11088 modeset_put_crtc_power_domains(crtc, put_domains[crtc->pipe]); 11089 11090 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 11091 11092 /* 11093 * DSB cleanup is done in cleanup_work aligning with framebuffer 11094 * cleanup. So copy and reset the dsb structure to sync with 11095 * commit_done and later do dsb cleanup in cleanup_work. 11096 */ 11097 old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb); 11098 } 11099 11100 /* Underruns don't always raise interrupts, so check manually */ 11101 intel_check_cpu_fifo_underruns(dev_priv); 11102 intel_check_pch_fifo_underruns(dev_priv); 11103 11104 if (state->modeset) 11105 intel_verify_planes(state); 11106 11107 intel_sagv_post_plane_update(state); 11108 11109 drm_atomic_helper_commit_hw_done(&state->base); 11110 11111 if (state->modeset) { 11112 /* As one of the primary mmio accessors, KMS has a high 11113 * likelihood of triggering bugs in unclaimed access. After we 11114 * finish modesetting, see if an error has been flagged, and if 11115 * so enable debugging for the next modeset - and hope we catch 11116 * the culprit. 11117 */ 11118 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 11119 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 11120 } 11121 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 11122 11123 /* 11124 * Defer the cleanup of the old state to a separate worker to not 11125 * impede the current task (userspace for blocking modesets) that 11126 * are executed inline. For out-of-line asynchronous modesets/flips, 11127 * deferring to a new worker seems overkill, but we would place a 11128 * schedule point (cond_resched()) here anyway to keep latencies 11129 * down. 11130 */ 11131 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 11132 queue_work(system_highpri_wq, &state->base.commit_work); 11133 } 11134 11135 static void intel_atomic_commit_work(struct work_struct *work) 11136 { 11137 struct intel_atomic_state *state = 11138 container_of(work, struct intel_atomic_state, base.commit_work); 11139 11140 intel_atomic_commit_tail(state); 11141 } 11142 11143 static int __i915_sw_fence_call 11144 intel_atomic_commit_ready(struct i915_sw_fence *fence, 11145 enum i915_sw_fence_notify notify) 11146 { 11147 struct intel_atomic_state *state = 11148 container_of(fence, struct intel_atomic_state, commit_ready); 11149 11150 switch (notify) { 11151 case FENCE_COMPLETE: 11152 /* we do blocking waits in the worker, nothing to do here */ 11153 break; 11154 case FENCE_FREE: 11155 { 11156 struct intel_atomic_helper *helper = 11157 &to_i915(state->base.dev)->atomic_helper; 11158 11159 if (llist_add(&state->freed, &helper->free_list)) 11160 schedule_work(&helper->free_work); 11161 break; 11162 } 11163 } 11164 11165 return NOTIFY_DONE; 11166 } 11167 11168 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 11169 { 11170 struct intel_plane_state *old_plane_state, *new_plane_state; 11171 struct intel_plane *plane; 11172 int i; 11173 11174 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 11175 new_plane_state, i) 11176 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 11177 to_intel_frontbuffer(new_plane_state->hw.fb), 11178 plane->frontbuffer_bit); 11179 } 11180 11181 static int intel_atomic_commit(struct drm_device *dev, 11182 struct drm_atomic_state *_state, 11183 bool nonblock) 11184 { 11185 struct intel_atomic_state *state = to_intel_atomic_state(_state); 11186 struct drm_i915_private *dev_priv = to_i915(dev); 11187 int ret = 0; 11188 11189 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 11190 11191 drm_atomic_state_get(&state->base); 11192 i915_sw_fence_init(&state->commit_ready, 11193 intel_atomic_commit_ready); 11194 11195 /* 11196 * The intel_legacy_cursor_update() fast path takes care 11197 * of avoiding the vblank waits for simple cursor 11198 * movement and flips. For cursor on/off and size changes, 11199 * we want to perform the vblank waits so that watermark 11200 * updates happen during the correct frames. Gen9+ have 11201 * double buffered watermarks and so shouldn't need this. 11202 * 11203 * Unset state->legacy_cursor_update before the call to 11204 * drm_atomic_helper_setup_commit() because otherwise 11205 * drm_atomic_helper_wait_for_flip_done() is a noop and 11206 * we get FIFO underruns because we didn't wait 11207 * for vblank. 11208 * 11209 * FIXME doing watermarks and fb cleanup from a vblank worker 11210 * (assuming we had any) would solve these problems. 11211 */ 11212 if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) { 11213 struct intel_crtc_state *new_crtc_state; 11214 struct intel_crtc *crtc; 11215 int i; 11216 11217 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 11218 if (new_crtc_state->wm.need_postvbl_update || 11219 new_crtc_state->update_wm_post) 11220 state->base.legacy_cursor_update = false; 11221 } 11222 11223 ret = intel_atomic_prepare_commit(state); 11224 if (ret) { 11225 drm_dbg_atomic(&dev_priv->drm, 11226 "Preparing state failed with %i\n", ret); 11227 i915_sw_fence_commit(&state->commit_ready); 11228 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 11229 return ret; 11230 } 11231 11232 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 11233 if (!ret) 11234 ret = drm_atomic_helper_swap_state(&state->base, true); 11235 if (!ret) 11236 intel_atomic_swap_global_state(state); 11237 11238 if (ret) { 11239 struct intel_crtc_state *new_crtc_state; 11240 struct intel_crtc *crtc; 11241 int i; 11242 11243 i915_sw_fence_commit(&state->commit_ready); 11244 11245 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 11246 intel_dsb_cleanup(new_crtc_state); 11247 11248 drm_atomic_helper_cleanup_planes(dev, &state->base); 11249 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 11250 return ret; 11251 } 11252 intel_shared_dpll_swap_state(state); 11253 intel_atomic_track_fbs(state); 11254 11255 drm_atomic_state_get(&state->base); 11256 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 11257 11258 i915_sw_fence_commit(&state->commit_ready); 11259 if (nonblock && state->modeset) { 11260 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 11261 } else if (nonblock) { 11262 queue_work(dev_priv->flip_wq, &state->base.commit_work); 11263 } else { 11264 if (state->modeset) 11265 flush_workqueue(dev_priv->modeset_wq); 11266 intel_atomic_commit_tail(state); 11267 } 11268 11269 return 0; 11270 } 11271 11272 struct wait_rps_boost { 11273 struct wait_queue_entry wait; 11274 11275 struct drm_crtc *crtc; 11276 struct i915_request *request; 11277 }; 11278 11279 static int do_rps_boost(struct wait_queue_entry *_wait, 11280 unsigned mode, int sync, void *key) 11281 { 11282 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); 11283 struct i915_request *rq = wait->request; 11284 11285 /* 11286 * If we missed the vblank, but the request is already running it 11287 * is reasonable to assume that it will complete before the next 11288 * vblank without our intervention, so leave RPS alone. 11289 */ 11290 if (!i915_request_started(rq)) 11291 intel_rps_boost(rq); 11292 i915_request_put(rq); 11293 11294 drm_crtc_vblank_put(wait->crtc); 11295 11296 list_del(&wait->wait.entry); 11297 kfree(wait); 11298 return 1; 11299 } 11300 11301 static void add_rps_boost_after_vblank(struct drm_crtc *crtc, 11302 struct dma_fence *fence) 11303 { 11304 struct wait_rps_boost *wait; 11305 11306 if (!dma_fence_is_i915(fence)) 11307 return; 11308 11309 if (INTEL_GEN(to_i915(crtc->dev)) < 6) 11310 return; 11311 11312 if (drm_crtc_vblank_get(crtc)) 11313 return; 11314 11315 wait = kmalloc(sizeof(*wait), GFP_KERNEL); 11316 if (!wait) { 11317 drm_crtc_vblank_put(crtc); 11318 return; 11319 } 11320 11321 wait->request = to_request(dma_fence_get(fence)); 11322 wait->crtc = crtc; 11323 11324 wait->wait.func = do_rps_boost; 11325 wait->wait.flags = 0; 11326 11327 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); 11328 } 11329 11330 int intel_plane_pin_fb(struct intel_plane_state *plane_state) 11331 { 11332 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 11333 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11334 struct drm_framebuffer *fb = plane_state->hw.fb; 11335 struct i915_vma *vma; 11336 11337 if (plane->id == PLANE_CURSOR && 11338 INTEL_INFO(dev_priv)->display.cursor_needs_physical) { 11339 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11340 const int align = intel_cursor_alignment(dev_priv); 11341 int err; 11342 11343 err = i915_gem_object_attach_phys(obj, align); 11344 if (err) 11345 return err; 11346 } 11347 11348 vma = intel_pin_and_fence_fb_obj(fb, 11349 &plane_state->view, 11350 intel_plane_uses_fence(plane_state), 11351 &plane_state->flags); 11352 if (IS_ERR(vma)) 11353 return PTR_ERR(vma); 11354 11355 plane_state->vma = vma; 11356 11357 return 0; 11358 } 11359 11360 void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) 11361 { 11362 struct i915_vma *vma; 11363 11364 vma = fetch_and_zero(&old_plane_state->vma); 11365 if (vma) 11366 intel_unpin_fb_vma(vma, old_plane_state->flags); 11367 } 11368 11369 /** 11370 * intel_prepare_plane_fb - Prepare fb for usage on plane 11371 * @_plane: drm plane to prepare for 11372 * @_new_plane_state: the plane state being prepared 11373 * 11374 * Prepares a framebuffer for usage on a display plane. Generally this 11375 * involves pinning the underlying object and updating the frontbuffer tracking 11376 * bits. Some older platforms need special physical address handling for 11377 * cursor planes. 11378 * 11379 * Returns 0 on success, negative error code on failure. 11380 */ 11381 int 11382 intel_prepare_plane_fb(struct drm_plane *_plane, 11383 struct drm_plane_state *_new_plane_state) 11384 { 11385 struct i915_sched_attr attr = { 11386 .priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY), 11387 }; 11388 struct intel_plane *plane = to_intel_plane(_plane); 11389 struct intel_plane_state *new_plane_state = 11390 to_intel_plane_state(_new_plane_state); 11391 struct intel_atomic_state *state = 11392 to_intel_atomic_state(new_plane_state->uapi.state); 11393 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11394 const struct intel_plane_state *old_plane_state = 11395 intel_atomic_get_old_plane_state(state, plane); 11396 struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb); 11397 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb); 11398 int ret; 11399 11400 if (old_obj) { 11401 const struct intel_crtc_state *crtc_state = 11402 intel_atomic_get_new_crtc_state(state, 11403 to_intel_crtc(old_plane_state->hw.crtc)); 11404 11405 /* Big Hammer, we also need to ensure that any pending 11406 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 11407 * current scanout is retired before unpinning the old 11408 * framebuffer. Note that we rely on userspace rendering 11409 * into the buffer attached to the pipe they are waiting 11410 * on. If not, userspace generates a GPU hang with IPEHR 11411 * point to the MI_WAIT_FOR_EVENT. 11412 * 11413 * This should only fail upon a hung GPU, in which case we 11414 * can safely continue. 11415 */ 11416 if (intel_crtc_needs_modeset(crtc_state)) { 11417 ret = i915_sw_fence_await_reservation(&state->commit_ready, 11418 old_obj->base.resv, NULL, 11419 false, 0, 11420 GFP_KERNEL); 11421 if (ret < 0) 11422 return ret; 11423 } 11424 } 11425 11426 if (new_plane_state->uapi.fence) { /* explicit fencing */ 11427 i915_gem_fence_wait_priority(new_plane_state->uapi.fence, 11428 &attr); 11429 ret = i915_sw_fence_await_dma_fence(&state->commit_ready, 11430 new_plane_state->uapi.fence, 11431 i915_fence_timeout(dev_priv), 11432 GFP_KERNEL); 11433 if (ret < 0) 11434 return ret; 11435 } 11436 11437 if (!obj) 11438 return 0; 11439 11440 ret = i915_gem_object_pin_pages(obj); 11441 if (ret) 11442 return ret; 11443 11444 ret = intel_plane_pin_fb(new_plane_state); 11445 11446 i915_gem_object_unpin_pages(obj); 11447 if (ret) 11448 return ret; 11449 11450 i915_gem_object_wait_priority(obj, 0, &attr); 11451 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB); 11452 11453 if (!new_plane_state->uapi.fence) { /* implicit fencing */ 11454 struct dma_fence *fence; 11455 11456 ret = i915_sw_fence_await_reservation(&state->commit_ready, 11457 obj->base.resv, NULL, 11458 false, 11459 i915_fence_timeout(dev_priv), 11460 GFP_KERNEL); 11461 if (ret < 0) 11462 goto unpin_fb; 11463 11464 fence = dma_resv_get_excl_rcu(obj->base.resv); 11465 if (fence) { 11466 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 11467 fence); 11468 dma_fence_put(fence); 11469 } 11470 } else { 11471 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 11472 new_plane_state->uapi.fence); 11473 } 11474 11475 /* 11476 * We declare pageflips to be interactive and so merit a small bias 11477 * towards upclocking to deliver the frame on time. By only changing 11478 * the RPS thresholds to sample more regularly and aim for higher 11479 * clocks we can hopefully deliver low power workloads (like kodi) 11480 * that are not quite steady state without resorting to forcing 11481 * maximum clocks following a vblank miss (see do_rps_boost()). 11482 */ 11483 if (!state->rps_interactive) { 11484 intel_rps_mark_interactive(&dev_priv->gt.rps, true); 11485 state->rps_interactive = true; 11486 } 11487 11488 return 0; 11489 11490 unpin_fb: 11491 intel_plane_unpin_fb(new_plane_state); 11492 11493 return ret; 11494 } 11495 11496 /** 11497 * intel_cleanup_plane_fb - Cleans up an fb after plane use 11498 * @plane: drm plane to clean up for 11499 * @_old_plane_state: the state from the previous modeset 11500 * 11501 * Cleans up a framebuffer that has just been removed from a plane. 11502 */ 11503 void 11504 intel_cleanup_plane_fb(struct drm_plane *plane, 11505 struct drm_plane_state *_old_plane_state) 11506 { 11507 struct intel_plane_state *old_plane_state = 11508 to_intel_plane_state(_old_plane_state); 11509 struct intel_atomic_state *state = 11510 to_intel_atomic_state(old_plane_state->uapi.state); 11511 struct drm_i915_private *dev_priv = to_i915(plane->dev); 11512 struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb); 11513 11514 if (!obj) 11515 return; 11516 11517 if (state->rps_interactive) { 11518 intel_rps_mark_interactive(&dev_priv->gt.rps, false); 11519 state->rps_interactive = false; 11520 } 11521 11522 /* Should only be called after a successful intel_prepare_plane_fb()! */ 11523 intel_plane_unpin_fb(old_plane_state); 11524 } 11525 11526 /** 11527 * intel_plane_destroy - destroy a plane 11528 * @plane: plane to destroy 11529 * 11530 * Common destruction function for all types of planes (primary, cursor, 11531 * sprite). 11532 */ 11533 void intel_plane_destroy(struct drm_plane *plane) 11534 { 11535 drm_plane_cleanup(plane); 11536 kfree(to_intel_plane(plane)); 11537 } 11538 11539 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv) 11540 { 11541 struct intel_plane *plane; 11542 11543 for_each_intel_plane(&dev_priv->drm, plane) { 11544 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, 11545 plane->pipe); 11546 11547 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base); 11548 } 11549 } 11550 11551 11552 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 11553 struct drm_file *file) 11554 { 11555 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 11556 struct drm_crtc *drmmode_crtc; 11557 struct intel_crtc *crtc; 11558 11559 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 11560 if (!drmmode_crtc) 11561 return -ENOENT; 11562 11563 crtc = to_intel_crtc(drmmode_crtc); 11564 pipe_from_crtc_id->pipe = crtc->pipe; 11565 11566 return 0; 11567 } 11568 11569 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 11570 { 11571 struct drm_device *dev = encoder->base.dev; 11572 struct intel_encoder *source_encoder; 11573 u32 possible_clones = 0; 11574 11575 for_each_intel_encoder(dev, source_encoder) { 11576 if (encoders_cloneable(encoder, source_encoder)) 11577 possible_clones |= drm_encoder_mask(&source_encoder->base); 11578 } 11579 11580 return possible_clones; 11581 } 11582 11583 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 11584 { 11585 struct drm_device *dev = encoder->base.dev; 11586 struct intel_crtc *crtc; 11587 u32 possible_crtcs = 0; 11588 11589 for_each_intel_crtc(dev, crtc) { 11590 if (encoder->pipe_mask & BIT(crtc->pipe)) 11591 possible_crtcs |= drm_crtc_mask(&crtc->base); 11592 } 11593 11594 return possible_crtcs; 11595 } 11596 11597 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 11598 { 11599 if (!IS_MOBILE(dev_priv)) 11600 return false; 11601 11602 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0) 11603 return false; 11604 11605 if (IS_GEN(dev_priv, 5) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE)) 11606 return false; 11607 11608 return true; 11609 } 11610 11611 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 11612 { 11613 if (INTEL_GEN(dev_priv) >= 9) 11614 return false; 11615 11616 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 11617 return false; 11618 11619 if (HAS_PCH_LPT_H(dev_priv) && 11620 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 11621 return false; 11622 11623 /* DDI E can't be used if DDI A requires 4 lanes */ 11624 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 11625 return false; 11626 11627 if (!dev_priv->vbt.int_crt_support) 11628 return false; 11629 11630 return true; 11631 } 11632 11633 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 11634 { 11635 struct intel_encoder *encoder; 11636 bool dpd_is_edp = false; 11637 11638 intel_pps_unlock_regs_wa(dev_priv); 11639 11640 if (!HAS_DISPLAY(dev_priv)) 11641 return; 11642 11643 if (IS_ALDERLAKE_S(dev_priv)) { 11644 intel_ddi_init(dev_priv, PORT_A); 11645 intel_ddi_init(dev_priv, PORT_TC1); 11646 intel_ddi_init(dev_priv, PORT_TC2); 11647 intel_ddi_init(dev_priv, PORT_TC3); 11648 intel_ddi_init(dev_priv, PORT_TC4); 11649 } else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) { 11650 intel_ddi_init(dev_priv, PORT_A); 11651 intel_ddi_init(dev_priv, PORT_B); 11652 intel_ddi_init(dev_priv, PORT_TC1); 11653 intel_ddi_init(dev_priv, PORT_TC2); 11654 } else if (INTEL_GEN(dev_priv) >= 12) { 11655 intel_ddi_init(dev_priv, PORT_A); 11656 intel_ddi_init(dev_priv, PORT_B); 11657 intel_ddi_init(dev_priv, PORT_TC1); 11658 intel_ddi_init(dev_priv, PORT_TC2); 11659 intel_ddi_init(dev_priv, PORT_TC3); 11660 intel_ddi_init(dev_priv, PORT_TC4); 11661 intel_ddi_init(dev_priv, PORT_TC5); 11662 intel_ddi_init(dev_priv, PORT_TC6); 11663 icl_dsi_init(dev_priv); 11664 } else if (IS_JSL_EHL(dev_priv)) { 11665 intel_ddi_init(dev_priv, PORT_A); 11666 intel_ddi_init(dev_priv, PORT_B); 11667 intel_ddi_init(dev_priv, PORT_C); 11668 intel_ddi_init(dev_priv, PORT_D); 11669 icl_dsi_init(dev_priv); 11670 } else if (IS_GEN(dev_priv, 11)) { 11671 intel_ddi_init(dev_priv, PORT_A); 11672 intel_ddi_init(dev_priv, PORT_B); 11673 intel_ddi_init(dev_priv, PORT_C); 11674 intel_ddi_init(dev_priv, PORT_D); 11675 intel_ddi_init(dev_priv, PORT_E); 11676 /* 11677 * On some ICL SKUs port F is not present. No strap bits for 11678 * this, so rely on VBT. 11679 * Work around broken VBTs on SKUs known to have no port F. 11680 */ 11681 if (IS_ICL_WITH_PORT_F(dev_priv) && 11682 intel_bios_is_port_present(dev_priv, PORT_F)) 11683 intel_ddi_init(dev_priv, PORT_F); 11684 11685 icl_dsi_init(dev_priv); 11686 } else if (IS_GEN9_LP(dev_priv)) { 11687 /* 11688 * FIXME: Broxton doesn't support port detection via the 11689 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to 11690 * detect the ports. 11691 */ 11692 intel_ddi_init(dev_priv, PORT_A); 11693 intel_ddi_init(dev_priv, PORT_B); 11694 intel_ddi_init(dev_priv, PORT_C); 11695 11696 vlv_dsi_init(dev_priv); 11697 } else if (HAS_DDI(dev_priv)) { 11698 int found; 11699 11700 if (intel_ddi_crt_present(dev_priv)) 11701 intel_crt_init(dev_priv); 11702 11703 /* 11704 * Haswell uses DDI functions to detect digital outputs. 11705 * On SKL pre-D0 the strap isn't connected. Later SKUs may or 11706 * may not have it - it was supposed to be fixed by the same 11707 * time we stopped using straps. Assume it's there. 11708 */ 11709 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 11710 /* WaIgnoreDDIAStrap: skl */ 11711 if (found || IS_GEN9_BC(dev_priv)) 11712 intel_ddi_init(dev_priv, PORT_A); 11713 11714 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP 11715 * register */ 11716 if (HAS_PCH_TGP(dev_priv)) { 11717 /* W/A due to lack of STRAP config on TGP PCH*/ 11718 found = (SFUSE_STRAP_DDIB_DETECTED | 11719 SFUSE_STRAP_DDIC_DETECTED | 11720 SFUSE_STRAP_DDID_DETECTED); 11721 } else { 11722 found = intel_de_read(dev_priv, SFUSE_STRAP); 11723 } 11724 11725 if (found & SFUSE_STRAP_DDIB_DETECTED) 11726 intel_ddi_init(dev_priv, PORT_B); 11727 if (found & SFUSE_STRAP_DDIC_DETECTED) 11728 intel_ddi_init(dev_priv, PORT_C); 11729 if (found & SFUSE_STRAP_DDID_DETECTED) 11730 intel_ddi_init(dev_priv, PORT_D); 11731 if (found & SFUSE_STRAP_DDIF_DETECTED) 11732 intel_ddi_init(dev_priv, PORT_F); 11733 /* 11734 * On SKL we don't have a way to detect DDI-E so we rely on VBT. 11735 */ 11736 if (IS_GEN9_BC(dev_priv) && 11737 intel_bios_is_port_present(dev_priv, PORT_E)) 11738 intel_ddi_init(dev_priv, PORT_E); 11739 11740 } else if (HAS_PCH_SPLIT(dev_priv)) { 11741 int found; 11742 11743 /* 11744 * intel_edp_init_connector() depends on this completing first, 11745 * to prevent the registration of both eDP and LVDS and the 11746 * incorrect sharing of the PPS. 11747 */ 11748 intel_lvds_init(dev_priv); 11749 intel_crt_init(dev_priv); 11750 11751 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 11752 11753 if (ilk_has_edp_a(dev_priv)) 11754 intel_dp_init(dev_priv, DP_A, PORT_A); 11755 11756 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) { 11757 /* PCH SDVOB multiplex with HDMIB */ 11758 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 11759 if (!found) 11760 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 11761 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED)) 11762 intel_dp_init(dev_priv, PCH_DP_B, PORT_B); 11763 } 11764 11765 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED) 11766 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 11767 11768 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED) 11769 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 11770 11771 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED) 11772 intel_dp_init(dev_priv, PCH_DP_C, PORT_C); 11773 11774 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED) 11775 intel_dp_init(dev_priv, PCH_DP_D, PORT_D); 11776 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 11777 bool has_edp, has_port; 11778 11779 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 11780 intel_crt_init(dev_priv); 11781 11782 /* 11783 * The DP_DETECTED bit is the latched state of the DDC 11784 * SDA pin at boot. However since eDP doesn't require DDC 11785 * (no way to plug in a DP->HDMI dongle) the DDC pins for 11786 * eDP ports may have been muxed to an alternate function. 11787 * Thus we can't rely on the DP_DETECTED bit alone to detect 11788 * eDP ports. Consult the VBT as well as DP_DETECTED to 11789 * detect eDP ports. 11790 * 11791 * Sadly the straps seem to be missing sometimes even for HDMI 11792 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 11793 * and VBT for the presence of the port. Additionally we can't 11794 * trust the port type the VBT declares as we've seen at least 11795 * HDMI ports that the VBT claim are DP or eDP. 11796 */ 11797 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 11798 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 11799 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port) 11800 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B); 11801 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 11802 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 11803 11804 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 11805 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 11806 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port) 11807 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C); 11808 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 11809 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 11810 11811 if (IS_CHERRYVIEW(dev_priv)) { 11812 /* 11813 * eDP not supported on port D, 11814 * so no need to worry about it 11815 */ 11816 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 11817 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port) 11818 intel_dp_init(dev_priv, CHV_DP_D, PORT_D); 11819 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port) 11820 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 11821 } 11822 11823 vlv_dsi_init(dev_priv); 11824 } else if (IS_PINEVIEW(dev_priv)) { 11825 intel_lvds_init(dev_priv); 11826 intel_crt_init(dev_priv); 11827 } else if (IS_GEN_RANGE(dev_priv, 3, 4)) { 11828 bool found = false; 11829 11830 if (IS_MOBILE(dev_priv)) 11831 intel_lvds_init(dev_priv); 11832 11833 intel_crt_init(dev_priv); 11834 11835 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 11836 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n"); 11837 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 11838 if (!found && IS_G4X(dev_priv)) { 11839 drm_dbg_kms(&dev_priv->drm, 11840 "probing HDMI on SDVOB\n"); 11841 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 11842 } 11843 11844 if (!found && IS_G4X(dev_priv)) 11845 intel_dp_init(dev_priv, DP_B, PORT_B); 11846 } 11847 11848 /* Before G4X SDVOC doesn't have its own detect register */ 11849 11850 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 11851 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n"); 11852 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 11853 } 11854 11855 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) { 11856 11857 if (IS_G4X(dev_priv)) { 11858 drm_dbg_kms(&dev_priv->drm, 11859 "probing HDMI on SDVOC\n"); 11860 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 11861 } 11862 if (IS_G4X(dev_priv)) 11863 intel_dp_init(dev_priv, DP_C, PORT_C); 11864 } 11865 11866 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED)) 11867 intel_dp_init(dev_priv, DP_D, PORT_D); 11868 11869 if (SUPPORTS_TV(dev_priv)) 11870 intel_tv_init(dev_priv); 11871 } else if (IS_GEN(dev_priv, 2)) { 11872 if (IS_I85X(dev_priv)) 11873 intel_lvds_init(dev_priv); 11874 11875 intel_crt_init(dev_priv); 11876 intel_dvo_init(dev_priv); 11877 } 11878 11879 for_each_intel_encoder(&dev_priv->drm, encoder) { 11880 encoder->base.possible_crtcs = 11881 intel_encoder_possible_crtcs(encoder); 11882 encoder->base.possible_clones = 11883 intel_encoder_possible_clones(encoder); 11884 } 11885 11886 intel_init_pch_refclk(dev_priv); 11887 11888 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 11889 } 11890 11891 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 11892 { 11893 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 11894 11895 drm_framebuffer_cleanup(fb); 11896 intel_frontbuffer_put(intel_fb->frontbuffer); 11897 11898 kfree(intel_fb); 11899 } 11900 11901 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 11902 struct drm_file *file, 11903 unsigned int *handle) 11904 { 11905 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11906 struct drm_i915_private *i915 = to_i915(obj->base.dev); 11907 11908 if (obj->userptr.mm) { 11909 drm_dbg(&i915->drm, 11910 "attempting to use a userptr for a framebuffer, denied\n"); 11911 return -EINVAL; 11912 } 11913 11914 return drm_gem_handle_create(file, &obj->base, handle); 11915 } 11916 11917 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 11918 struct drm_file *file, 11919 unsigned flags, unsigned color, 11920 struct drm_clip_rect *clips, 11921 unsigned num_clips) 11922 { 11923 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11924 11925 i915_gem_object_flush_if_display(obj); 11926 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 11927 11928 return 0; 11929 } 11930 11931 static const struct drm_framebuffer_funcs intel_fb_funcs = { 11932 .destroy = intel_user_framebuffer_destroy, 11933 .create_handle = intel_user_framebuffer_create_handle, 11934 .dirty = intel_user_framebuffer_dirty, 11935 }; 11936 11937 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, 11938 struct drm_i915_gem_object *obj, 11939 struct drm_mode_fb_cmd2 *mode_cmd) 11940 { 11941 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 11942 struct drm_framebuffer *fb = &intel_fb->base; 11943 u32 max_stride; 11944 unsigned int tiling, stride; 11945 int ret = -EINVAL; 11946 int i; 11947 11948 intel_fb->frontbuffer = intel_frontbuffer_get(obj); 11949 if (!intel_fb->frontbuffer) 11950 return -ENOMEM; 11951 11952 i915_gem_object_lock(obj, NULL); 11953 tiling = i915_gem_object_get_tiling(obj); 11954 stride = i915_gem_object_get_stride(obj); 11955 i915_gem_object_unlock(obj); 11956 11957 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 11958 /* 11959 * If there's a fence, enforce that 11960 * the fb modifier and tiling mode match. 11961 */ 11962 if (tiling != I915_TILING_NONE && 11963 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 11964 drm_dbg_kms(&dev_priv->drm, 11965 "tiling_mode doesn't match fb modifier\n"); 11966 goto err; 11967 } 11968 } else { 11969 if (tiling == I915_TILING_X) { 11970 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 11971 } else if (tiling == I915_TILING_Y) { 11972 drm_dbg_kms(&dev_priv->drm, 11973 "No Y tiling for legacy addfb\n"); 11974 goto err; 11975 } 11976 } 11977 11978 if (!drm_any_plane_has_format(&dev_priv->drm, 11979 mode_cmd->pixel_format, 11980 mode_cmd->modifier[0])) { 11981 drm_dbg_kms(&dev_priv->drm, 11982 "unsupported pixel format %p4cc / modifier 0x%llx\n", 11983 &mode_cmd->pixel_format, mode_cmd->modifier[0]); 11984 goto err; 11985 } 11986 11987 /* 11988 * gen2/3 display engine uses the fence if present, 11989 * so the tiling mode must match the fb modifier exactly. 11990 */ 11991 if (INTEL_GEN(dev_priv) < 4 && 11992 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 11993 drm_dbg_kms(&dev_priv->drm, 11994 "tiling_mode must match fb modifier exactly on gen2/3\n"); 11995 goto err; 11996 } 11997 11998 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, 11999 mode_cmd->modifier[0]); 12000 if (mode_cmd->pitches[0] > max_stride) { 12001 drm_dbg_kms(&dev_priv->drm, 12002 "%s pitch (%u) must be at most %d\n", 12003 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? 12004 "tiled" : "linear", 12005 mode_cmd->pitches[0], max_stride); 12006 goto err; 12007 } 12008 12009 /* 12010 * If there's a fence, enforce that 12011 * the fb pitch and fence stride match. 12012 */ 12013 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { 12014 drm_dbg_kms(&dev_priv->drm, 12015 "pitch (%d) must match tiling stride (%d)\n", 12016 mode_cmd->pitches[0], stride); 12017 goto err; 12018 } 12019 12020 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 12021 if (mode_cmd->offsets[0] != 0) { 12022 drm_dbg_kms(&dev_priv->drm, 12023 "plane 0 offset (0x%08x) must be 0\n", 12024 mode_cmd->offsets[0]); 12025 goto err; 12026 } 12027 12028 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); 12029 12030 for (i = 0; i < fb->format->num_planes; i++) { 12031 u32 stride_alignment; 12032 12033 if (mode_cmd->handles[i] != mode_cmd->handles[0]) { 12034 drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n", 12035 i); 12036 goto err; 12037 } 12038 12039 stride_alignment = intel_fb_stride_alignment(fb, i); 12040 if (fb->pitches[i] & (stride_alignment - 1)) { 12041 drm_dbg_kms(&dev_priv->drm, 12042 "plane %d pitch (%d) must be at least %u byte aligned\n", 12043 i, fb->pitches[i], stride_alignment); 12044 goto err; 12045 } 12046 12047 if (is_gen12_ccs_plane(fb, i) && !is_gen12_ccs_cc_plane(fb, i)) { 12048 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i); 12049 12050 if (fb->pitches[i] != ccs_aux_stride) { 12051 drm_dbg_kms(&dev_priv->drm, 12052 "ccs aux plane %d pitch (%d) must be %d\n", 12053 i, 12054 fb->pitches[i], ccs_aux_stride); 12055 goto err; 12056 } 12057 } 12058 12059 fb->obj[i] = &obj->base; 12060 } 12061 12062 ret = intel_fill_fb_info(dev_priv, fb); 12063 if (ret) 12064 goto err; 12065 12066 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); 12067 if (ret) { 12068 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret); 12069 goto err; 12070 } 12071 12072 return 0; 12073 12074 err: 12075 intel_frontbuffer_put(intel_fb->frontbuffer); 12076 return ret; 12077 } 12078 12079 static struct drm_framebuffer * 12080 intel_user_framebuffer_create(struct drm_device *dev, 12081 struct drm_file *filp, 12082 const struct drm_mode_fb_cmd2 *user_mode_cmd) 12083 { 12084 struct drm_framebuffer *fb; 12085 struct drm_i915_gem_object *obj; 12086 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 12087 12088 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); 12089 if (!obj) 12090 return ERR_PTR(-ENOENT); 12091 12092 fb = intel_framebuffer_create(obj, &mode_cmd); 12093 i915_gem_object_put(obj); 12094 12095 return fb; 12096 } 12097 12098 static enum drm_mode_status 12099 intel_mode_valid(struct drm_device *dev, 12100 const struct drm_display_mode *mode) 12101 { 12102 struct drm_i915_private *dev_priv = to_i915(dev); 12103 int hdisplay_max, htotal_max; 12104 int vdisplay_max, vtotal_max; 12105 12106 /* 12107 * Can't reject DBLSCAN here because Xorg ddxen can add piles 12108 * of DBLSCAN modes to the output's mode list when they detect 12109 * the scaling mode property on the connector. And they don't 12110 * ask the kernel to validate those modes in any way until 12111 * modeset time at which point the client gets a protocol error. 12112 * So in order to not upset those clients we silently ignore the 12113 * DBLSCAN flag on such connectors. For other connectors we will 12114 * reject modes with the DBLSCAN flag in encoder->compute_config(). 12115 * And we always reject DBLSCAN modes in connector->mode_valid() 12116 * as we never want such modes on the connector's mode list. 12117 */ 12118 12119 if (mode->vscan > 1) 12120 return MODE_NO_VSCAN; 12121 12122 if (mode->flags & DRM_MODE_FLAG_HSKEW) 12123 return MODE_H_ILLEGAL; 12124 12125 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 12126 DRM_MODE_FLAG_NCSYNC | 12127 DRM_MODE_FLAG_PCSYNC)) 12128 return MODE_HSYNC; 12129 12130 if (mode->flags & (DRM_MODE_FLAG_BCAST | 12131 DRM_MODE_FLAG_PIXMUX | 12132 DRM_MODE_FLAG_CLKDIV2)) 12133 return MODE_BAD; 12134 12135 /* Transcoder timing limits */ 12136 if (INTEL_GEN(dev_priv) >= 11) { 12137 hdisplay_max = 16384; 12138 vdisplay_max = 8192; 12139 htotal_max = 16384; 12140 vtotal_max = 8192; 12141 } else if (INTEL_GEN(dev_priv) >= 9 || 12142 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 12143 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 12144 vdisplay_max = 4096; 12145 htotal_max = 8192; 12146 vtotal_max = 8192; 12147 } else if (INTEL_GEN(dev_priv) >= 3) { 12148 hdisplay_max = 4096; 12149 vdisplay_max = 4096; 12150 htotal_max = 8192; 12151 vtotal_max = 8192; 12152 } else { 12153 hdisplay_max = 2048; 12154 vdisplay_max = 2048; 12155 htotal_max = 4096; 12156 vtotal_max = 4096; 12157 } 12158 12159 if (mode->hdisplay > hdisplay_max || 12160 mode->hsync_start > htotal_max || 12161 mode->hsync_end > htotal_max || 12162 mode->htotal > htotal_max) 12163 return MODE_H_ILLEGAL; 12164 12165 if (mode->vdisplay > vdisplay_max || 12166 mode->vsync_start > vtotal_max || 12167 mode->vsync_end > vtotal_max || 12168 mode->vtotal > vtotal_max) 12169 return MODE_V_ILLEGAL; 12170 12171 if (INTEL_GEN(dev_priv) >= 5) { 12172 if (mode->hdisplay < 64 || 12173 mode->htotal - mode->hdisplay < 32) 12174 return MODE_H_ILLEGAL; 12175 12176 if (mode->vtotal - mode->vdisplay < 5) 12177 return MODE_V_ILLEGAL; 12178 } else { 12179 if (mode->htotal - mode->hdisplay < 32) 12180 return MODE_H_ILLEGAL; 12181 12182 if (mode->vtotal - mode->vdisplay < 3) 12183 return MODE_V_ILLEGAL; 12184 } 12185 12186 return MODE_OK; 12187 } 12188 12189 enum drm_mode_status 12190 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, 12191 const struct drm_display_mode *mode, 12192 bool bigjoiner) 12193 { 12194 int plane_width_max, plane_height_max; 12195 12196 /* 12197 * intel_mode_valid() should be 12198 * sufficient on older platforms. 12199 */ 12200 if (INTEL_GEN(dev_priv) < 9) 12201 return MODE_OK; 12202 12203 /* 12204 * Most people will probably want a fullscreen 12205 * plane so let's not advertize modes that are 12206 * too big for that. 12207 */ 12208 if (INTEL_GEN(dev_priv) >= 11) { 12209 plane_width_max = 5120 << bigjoiner; 12210 plane_height_max = 4320; 12211 } else { 12212 plane_width_max = 5120; 12213 plane_height_max = 4096; 12214 } 12215 12216 if (mode->hdisplay > plane_width_max) 12217 return MODE_H_ILLEGAL; 12218 12219 if (mode->vdisplay > plane_height_max) 12220 return MODE_V_ILLEGAL; 12221 12222 return MODE_OK; 12223 } 12224 12225 static const struct drm_mode_config_funcs intel_mode_funcs = { 12226 .fb_create = intel_user_framebuffer_create, 12227 .get_format_info = intel_get_format_info, 12228 .output_poll_changed = intel_fbdev_output_poll_changed, 12229 .mode_valid = intel_mode_valid, 12230 .atomic_check = intel_atomic_check, 12231 .atomic_commit = intel_atomic_commit, 12232 .atomic_state_alloc = intel_atomic_state_alloc, 12233 .atomic_state_clear = intel_atomic_state_clear, 12234 .atomic_state_free = intel_atomic_state_free, 12235 }; 12236 12237 /** 12238 * intel_init_display_hooks - initialize the display modesetting hooks 12239 * @dev_priv: device private 12240 */ 12241 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 12242 { 12243 intel_init_cdclk_hooks(dev_priv); 12244 intel_init_audio_hooks(dev_priv); 12245 12246 intel_dpll_init_clock_hook(dev_priv); 12247 12248 if (INTEL_GEN(dev_priv) >= 9) { 12249 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 12250 dev_priv->display.crtc_enable = hsw_crtc_enable; 12251 dev_priv->display.crtc_disable = hsw_crtc_disable; 12252 } else if (HAS_DDI(dev_priv)) { 12253 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 12254 dev_priv->display.crtc_enable = hsw_crtc_enable; 12255 dev_priv->display.crtc_disable = hsw_crtc_disable; 12256 } else if (HAS_PCH_SPLIT(dev_priv)) { 12257 dev_priv->display.get_pipe_config = ilk_get_pipe_config; 12258 dev_priv->display.crtc_enable = ilk_crtc_enable; 12259 dev_priv->display.crtc_disable = ilk_crtc_disable; 12260 } else if (IS_CHERRYVIEW(dev_priv) || 12261 IS_VALLEYVIEW(dev_priv)) { 12262 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 12263 dev_priv->display.crtc_enable = valleyview_crtc_enable; 12264 dev_priv->display.crtc_disable = i9xx_crtc_disable; 12265 } else { 12266 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 12267 dev_priv->display.crtc_enable = i9xx_crtc_enable; 12268 dev_priv->display.crtc_disable = i9xx_crtc_disable; 12269 } 12270 12271 intel_fdi_init_hook(dev_priv); 12272 12273 if (INTEL_GEN(dev_priv) >= 9) { 12274 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; 12275 dev_priv->display.get_initial_plane_config = skl_get_initial_plane_config; 12276 } else { 12277 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; 12278 dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; 12279 } 12280 12281 } 12282 12283 void intel_modeset_init_hw(struct drm_i915_private *i915) 12284 { 12285 struct intel_cdclk_state *cdclk_state = 12286 to_intel_cdclk_state(i915->cdclk.obj.state); 12287 12288 intel_update_cdclk(i915); 12289 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK"); 12290 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw; 12291 } 12292 12293 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state) 12294 { 12295 struct drm_plane *plane; 12296 struct intel_crtc *crtc; 12297 12298 for_each_intel_crtc(state->dev, crtc) { 12299 struct intel_crtc_state *crtc_state; 12300 12301 crtc_state = intel_atomic_get_crtc_state(state, crtc); 12302 if (IS_ERR(crtc_state)) 12303 return PTR_ERR(crtc_state); 12304 12305 if (crtc_state->hw.active) { 12306 /* 12307 * Preserve the inherited flag to avoid 12308 * taking the full modeset path. 12309 */ 12310 crtc_state->inherited = true; 12311 } 12312 } 12313 12314 drm_for_each_plane(plane, state->dev) { 12315 struct drm_plane_state *plane_state; 12316 12317 plane_state = drm_atomic_get_plane_state(state, plane); 12318 if (IS_ERR(plane_state)) 12319 return PTR_ERR(plane_state); 12320 } 12321 12322 return 0; 12323 } 12324 12325 /* 12326 * Calculate what we think the watermarks should be for the state we've read 12327 * out of the hardware and then immediately program those watermarks so that 12328 * we ensure the hardware settings match our internal state. 12329 * 12330 * We can calculate what we think WM's should be by creating a duplicate of the 12331 * current state (which was constructed during hardware readout) and running it 12332 * through the atomic check code to calculate new watermark values in the 12333 * state object. 12334 */ 12335 static void sanitize_watermarks(struct drm_i915_private *dev_priv) 12336 { 12337 struct drm_atomic_state *state; 12338 struct intel_atomic_state *intel_state; 12339 struct intel_crtc *crtc; 12340 struct intel_crtc_state *crtc_state; 12341 struct drm_modeset_acquire_ctx ctx; 12342 int ret; 12343 int i; 12344 12345 /* Only supported on platforms that use atomic watermark design */ 12346 if (!dev_priv->display.optimize_watermarks) 12347 return; 12348 12349 state = drm_atomic_state_alloc(&dev_priv->drm); 12350 if (drm_WARN_ON(&dev_priv->drm, !state)) 12351 return; 12352 12353 intel_state = to_intel_atomic_state(state); 12354 12355 drm_modeset_acquire_init(&ctx, 0); 12356 12357 retry: 12358 state->acquire_ctx = &ctx; 12359 12360 /* 12361 * Hardware readout is the only time we don't want to calculate 12362 * intermediate watermarks (since we don't trust the current 12363 * watermarks). 12364 */ 12365 if (!HAS_GMCH(dev_priv)) 12366 intel_state->skip_intermediate_wm = true; 12367 12368 ret = sanitize_watermarks_add_affected(state); 12369 if (ret) 12370 goto fail; 12371 12372 ret = intel_atomic_check(&dev_priv->drm, state); 12373 if (ret) 12374 goto fail; 12375 12376 /* Write calculated watermark values back */ 12377 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 12378 crtc_state->wm.need_postvbl_update = true; 12379 dev_priv->display.optimize_watermarks(intel_state, crtc); 12380 12381 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 12382 } 12383 12384 fail: 12385 if (ret == -EDEADLK) { 12386 drm_atomic_state_clear(state); 12387 drm_modeset_backoff(&ctx); 12388 goto retry; 12389 } 12390 12391 /* 12392 * If we fail here, it means that the hardware appears to be 12393 * programmed in a way that shouldn't be possible, given our 12394 * understanding of watermark requirements. This might mean a 12395 * mistake in the hardware readout code or a mistake in the 12396 * watermark calculations for a given platform. Raise a WARN 12397 * so that this is noticeable. 12398 * 12399 * If this actually happens, we'll have to just leave the 12400 * BIOS-programmed watermarks untouched and hope for the best. 12401 */ 12402 drm_WARN(&dev_priv->drm, ret, 12403 "Could not determine valid watermarks for inherited state\n"); 12404 12405 drm_atomic_state_put(state); 12406 12407 drm_modeset_drop_locks(&ctx); 12408 drm_modeset_acquire_fini(&ctx); 12409 } 12410 12411 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) 12412 { 12413 if (IS_GEN(dev_priv, 5)) { 12414 u32 fdi_pll_clk = 12415 intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; 12416 12417 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; 12418 } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) { 12419 dev_priv->fdi_pll_freq = 270000; 12420 } else { 12421 return; 12422 } 12423 12424 drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); 12425 } 12426 12427 static int intel_initial_commit(struct drm_device *dev) 12428 { 12429 struct drm_atomic_state *state = NULL; 12430 struct drm_modeset_acquire_ctx ctx; 12431 struct intel_crtc *crtc; 12432 int ret = 0; 12433 12434 state = drm_atomic_state_alloc(dev); 12435 if (!state) 12436 return -ENOMEM; 12437 12438 drm_modeset_acquire_init(&ctx, 0); 12439 12440 retry: 12441 state->acquire_ctx = &ctx; 12442 12443 for_each_intel_crtc(dev, crtc) { 12444 struct intel_crtc_state *crtc_state = 12445 intel_atomic_get_crtc_state(state, crtc); 12446 12447 if (IS_ERR(crtc_state)) { 12448 ret = PTR_ERR(crtc_state); 12449 goto out; 12450 } 12451 12452 if (crtc_state->hw.active) { 12453 struct intel_encoder *encoder; 12454 12455 /* 12456 * We've not yet detected sink capabilities 12457 * (audio,infoframes,etc.) and thus we don't want to 12458 * force a full state recomputation yet. We want that to 12459 * happen only for the first real commit from userspace. 12460 * So preserve the inherited flag for the time being. 12461 */ 12462 crtc_state->inherited = true; 12463 12464 ret = drm_atomic_add_affected_planes(state, &crtc->base); 12465 if (ret) 12466 goto out; 12467 12468 /* 12469 * FIXME hack to force a LUT update to avoid the 12470 * plane update forcing the pipe gamma on without 12471 * having a proper LUT loaded. Remove once we 12472 * have readout for pipe gamma enable. 12473 */ 12474 crtc_state->uapi.color_mgmt_changed = true; 12475 12476 for_each_intel_encoder_mask(dev, encoder, 12477 crtc_state->uapi.encoder_mask) { 12478 if (encoder->initial_fastset_check && 12479 !encoder->initial_fastset_check(encoder, crtc_state)) { 12480 ret = drm_atomic_add_affected_connectors(state, 12481 &crtc->base); 12482 if (ret) 12483 goto out; 12484 } 12485 } 12486 } 12487 } 12488 12489 ret = drm_atomic_commit(state); 12490 12491 out: 12492 if (ret == -EDEADLK) { 12493 drm_atomic_state_clear(state); 12494 drm_modeset_backoff(&ctx); 12495 goto retry; 12496 } 12497 12498 drm_atomic_state_put(state); 12499 12500 drm_modeset_drop_locks(&ctx); 12501 drm_modeset_acquire_fini(&ctx); 12502 12503 return ret; 12504 } 12505 12506 static void intel_mode_config_init(struct drm_i915_private *i915) 12507 { 12508 struct drm_mode_config *mode_config = &i915->drm.mode_config; 12509 12510 drm_mode_config_init(&i915->drm); 12511 INIT_LIST_HEAD(&i915->global_obj_list); 12512 12513 mode_config->min_width = 0; 12514 mode_config->min_height = 0; 12515 12516 mode_config->preferred_depth = 24; 12517 mode_config->prefer_shadow = 1; 12518 12519 mode_config->allow_fb_modifiers = true; 12520 12521 mode_config->funcs = &intel_mode_funcs; 12522 12523 mode_config->async_page_flip = has_async_flips(i915); 12524 12525 /* 12526 * Maximum framebuffer dimensions, chosen to match 12527 * the maximum render engine surface size on gen4+. 12528 */ 12529 if (INTEL_GEN(i915) >= 7) { 12530 mode_config->max_width = 16384; 12531 mode_config->max_height = 16384; 12532 } else if (INTEL_GEN(i915) >= 4) { 12533 mode_config->max_width = 8192; 12534 mode_config->max_height = 8192; 12535 } else if (IS_GEN(i915, 3)) { 12536 mode_config->max_width = 4096; 12537 mode_config->max_height = 4096; 12538 } else { 12539 mode_config->max_width = 2048; 12540 mode_config->max_height = 2048; 12541 } 12542 12543 if (IS_I845G(i915) || IS_I865G(i915)) { 12544 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; 12545 mode_config->cursor_height = 1023; 12546 } else if (IS_I830(i915) || IS_I85X(i915) || 12547 IS_I915G(i915) || IS_I915GM(i915)) { 12548 mode_config->cursor_width = 64; 12549 mode_config->cursor_height = 64; 12550 } else { 12551 mode_config->cursor_width = 256; 12552 mode_config->cursor_height = 256; 12553 } 12554 } 12555 12556 static void intel_mode_config_cleanup(struct drm_i915_private *i915) 12557 { 12558 intel_atomic_global_obj_cleanup(i915); 12559 drm_mode_config_cleanup(&i915->drm); 12560 } 12561 12562 static void plane_config_fini(struct intel_initial_plane_config *plane_config) 12563 { 12564 if (plane_config->fb) { 12565 struct drm_framebuffer *fb = &plane_config->fb->base; 12566 12567 /* We may only have the stub and not a full framebuffer */ 12568 if (drm_framebuffer_read_refcount(fb)) 12569 drm_framebuffer_put(fb); 12570 else 12571 kfree(fb); 12572 } 12573 12574 if (plane_config->vma) 12575 i915_vma_put(plane_config->vma); 12576 } 12577 12578 /* part #1: call before irq install */ 12579 int intel_modeset_init_noirq(struct drm_i915_private *i915) 12580 { 12581 int ret; 12582 12583 if (i915_inject_probe_failure(i915)) 12584 return -ENODEV; 12585 12586 if (HAS_DISPLAY(i915)) { 12587 ret = drm_vblank_init(&i915->drm, 12588 INTEL_NUM_PIPES(i915)); 12589 if (ret) 12590 return ret; 12591 } 12592 12593 intel_bios_init(i915); 12594 12595 ret = intel_vga_register(i915); 12596 if (ret) 12597 goto cleanup_bios; 12598 12599 /* FIXME: completely on the wrong abstraction layer */ 12600 intel_power_domains_init_hw(i915, false); 12601 12602 intel_csr_ucode_init(i915); 12603 12604 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 12605 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | 12606 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); 12607 12608 i915->framestart_delay = 1; /* 1-4 */ 12609 12610 intel_mode_config_init(i915); 12611 12612 ret = intel_cdclk_init(i915); 12613 if (ret) 12614 goto cleanup_vga_client_pw_domain_csr; 12615 12616 ret = intel_dbuf_init(i915); 12617 if (ret) 12618 goto cleanup_vga_client_pw_domain_csr; 12619 12620 ret = intel_bw_init(i915); 12621 if (ret) 12622 goto cleanup_vga_client_pw_domain_csr; 12623 12624 init_llist_head(&i915->atomic_helper.free_list); 12625 INIT_WORK(&i915->atomic_helper.free_work, 12626 intel_atomic_helper_free_state_worker); 12627 12628 intel_init_quirks(i915); 12629 12630 intel_fbc_init(i915); 12631 12632 return 0; 12633 12634 cleanup_vga_client_pw_domain_csr: 12635 intel_csr_ucode_fini(i915); 12636 intel_power_domains_driver_remove(i915); 12637 intel_vga_unregister(i915); 12638 cleanup_bios: 12639 intel_bios_driver_remove(i915); 12640 12641 return ret; 12642 } 12643 12644 /* part #2: call after irq install, but before gem init */ 12645 int intel_modeset_init_nogem(struct drm_i915_private *i915) 12646 { 12647 struct drm_device *dev = &i915->drm; 12648 enum pipe pipe; 12649 struct intel_crtc *crtc; 12650 int ret; 12651 12652 intel_init_pm(i915); 12653 12654 intel_panel_sanitize_ssc(i915); 12655 12656 intel_pps_setup(i915); 12657 12658 intel_gmbus_setup(i915); 12659 12660 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n", 12661 INTEL_NUM_PIPES(i915), 12662 INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); 12663 12664 if (HAS_DISPLAY(i915)) { 12665 for_each_pipe(i915, pipe) { 12666 ret = intel_crtc_init(i915, pipe); 12667 if (ret) { 12668 intel_mode_config_cleanup(i915); 12669 return ret; 12670 } 12671 } 12672 } 12673 12674 intel_plane_possible_crtcs_init(i915); 12675 intel_shared_dpll_init(dev); 12676 intel_update_fdi_pll_freq(i915); 12677 12678 intel_update_czclk(i915); 12679 intel_modeset_init_hw(i915); 12680 intel_dpll_update_ref_clks(i915); 12681 12682 intel_hdcp_component_init(i915); 12683 12684 if (i915->max_cdclk_freq == 0) 12685 intel_update_max_cdclk(i915); 12686 12687 /* 12688 * If the platform has HTI, we need to find out whether it has reserved 12689 * any display resources before we create our display outputs. 12690 */ 12691 if (INTEL_INFO(i915)->display.has_hti) 12692 i915->hti_state = intel_de_read(i915, HDPORT_STATE); 12693 12694 /* Just disable it once at startup */ 12695 intel_vga_disable(i915); 12696 intel_setup_outputs(i915); 12697 12698 drm_modeset_lock_all(dev); 12699 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 12700 drm_modeset_unlock_all(dev); 12701 12702 for_each_intel_crtc(dev, crtc) { 12703 struct intel_initial_plane_config plane_config = {}; 12704 12705 if (!to_intel_crtc_state(crtc->base.state)->uapi.active) 12706 continue; 12707 12708 /* 12709 * Note that reserving the BIOS fb up front prevents us 12710 * from stuffing other stolen allocations like the ring 12711 * on top. This prevents some ugliness at boot time, and 12712 * can even allow for smooth boot transitions if the BIOS 12713 * fb is large enough for the active pipe configuration. 12714 */ 12715 i915->display.get_initial_plane_config(crtc, &plane_config); 12716 12717 /* 12718 * If the fb is shared between multiple heads, we'll 12719 * just get the first one. 12720 */ 12721 intel_find_initial_plane_obj(crtc, &plane_config); 12722 12723 plane_config_fini(&plane_config); 12724 } 12725 12726 /* 12727 * Make sure hardware watermarks really match the state we read out. 12728 * Note that we need to do this after reconstructing the BIOS fb's 12729 * since the watermark calculation done here will use pstate->fb. 12730 */ 12731 if (!HAS_GMCH(i915)) 12732 sanitize_watermarks(i915); 12733 12734 return 0; 12735 } 12736 12737 /* part #3: call after gem init */ 12738 int intel_modeset_init(struct drm_i915_private *i915) 12739 { 12740 int ret; 12741 12742 if (!HAS_DISPLAY(i915)) 12743 return 0; 12744 12745 /* 12746 * Force all active planes to recompute their states. So that on 12747 * mode_setcrtc after probe, all the intel_plane_state variables 12748 * are already calculated and there is no assert_plane warnings 12749 * during bootup. 12750 */ 12751 ret = intel_initial_commit(&i915->drm); 12752 if (ret) 12753 drm_dbg_kms(&i915->drm, "Initial modeset failed, %d\n", ret); 12754 12755 intel_overlay_setup(i915); 12756 12757 ret = intel_fbdev_init(&i915->drm); 12758 if (ret) 12759 return ret; 12760 12761 /* Only enable hotplug handling once the fbdev is fully set up. */ 12762 intel_hpd_init(i915); 12763 intel_hpd_poll_disable(i915); 12764 12765 intel_init_ipc(i915); 12766 12767 return 0; 12768 } 12769 12770 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 12771 { 12772 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12773 /* 640x480@60Hz, ~25175 kHz */ 12774 struct dpll clock = { 12775 .m1 = 18, 12776 .m2 = 7, 12777 .p1 = 13, 12778 .p2 = 4, 12779 .n = 2, 12780 }; 12781 u32 dpll, fp; 12782 int i; 12783 12784 drm_WARN_ON(&dev_priv->drm, 12785 i9xx_calc_dpll_params(48000, &clock) != 25154); 12786 12787 drm_dbg_kms(&dev_priv->drm, 12788 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 12789 pipe_name(pipe), clock.vco, clock.dot); 12790 12791 fp = i9xx_dpll_compute_fp(&clock); 12792 dpll = DPLL_DVO_2X_MODE | 12793 DPLL_VGA_MODE_DIS | 12794 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 12795 PLL_P2_DIVIDE_BY_4 | 12796 PLL_REF_INPUT_DREFCLK | 12797 DPLL_VCO_ENABLE; 12798 12799 intel_de_write(dev_priv, FP0(pipe), fp); 12800 intel_de_write(dev_priv, FP1(pipe), fp); 12801 12802 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 12803 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 12804 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 12805 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 12806 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 12807 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 12808 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 12809 12810 /* 12811 * Apparently we need to have VGA mode enabled prior to changing 12812 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 12813 * dividers, even though the register value does change. 12814 */ 12815 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 12816 intel_de_write(dev_priv, DPLL(pipe), dpll); 12817 12818 /* Wait for the clocks to stabilize. */ 12819 intel_de_posting_read(dev_priv, DPLL(pipe)); 12820 udelay(150); 12821 12822 /* The pixel multiplier can only be updated once the 12823 * DPLL is enabled and the clocks are stable. 12824 * 12825 * So write it again. 12826 */ 12827 intel_de_write(dev_priv, DPLL(pipe), dpll); 12828 12829 /* We do this three times for luck */ 12830 for (i = 0; i < 3 ; i++) { 12831 intel_de_write(dev_priv, DPLL(pipe), dpll); 12832 intel_de_posting_read(dev_priv, DPLL(pipe)); 12833 udelay(150); /* wait for warmup */ 12834 } 12835 12836 intel_de_write(dev_priv, PIPECONF(pipe), 12837 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 12838 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 12839 12840 intel_wait_for_pipe_scanline_moving(crtc); 12841 } 12842 12843 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 12844 { 12845 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12846 12847 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n", 12848 pipe_name(pipe)); 12849 12850 drm_WARN_ON(&dev_priv->drm, 12851 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & 12852 DISPLAY_PLANE_ENABLE); 12853 drm_WARN_ON(&dev_priv->drm, 12854 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & 12855 DISPLAY_PLANE_ENABLE); 12856 drm_WARN_ON(&dev_priv->drm, 12857 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & 12858 DISPLAY_PLANE_ENABLE); 12859 drm_WARN_ON(&dev_priv->drm, 12860 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE); 12861 drm_WARN_ON(&dev_priv->drm, 12862 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE); 12863 12864 intel_de_write(dev_priv, PIPECONF(pipe), 0); 12865 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 12866 12867 intel_wait_for_pipe_scanline_stopped(crtc); 12868 12869 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 12870 intel_de_posting_read(dev_priv, DPLL(pipe)); 12871 } 12872 12873 static void 12874 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 12875 { 12876 struct intel_crtc *crtc; 12877 12878 if (INTEL_GEN(dev_priv) >= 4) 12879 return; 12880 12881 for_each_intel_crtc(&dev_priv->drm, crtc) { 12882 struct intel_plane *plane = 12883 to_intel_plane(crtc->base.primary); 12884 struct intel_crtc *plane_crtc; 12885 enum pipe pipe; 12886 12887 if (!plane->get_hw_state(plane, &pipe)) 12888 continue; 12889 12890 if (pipe == crtc->pipe) 12891 continue; 12892 12893 drm_dbg_kms(&dev_priv->drm, 12894 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 12895 plane->base.base.id, plane->base.name); 12896 12897 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12898 intel_plane_disable_noatomic(plane_crtc, plane); 12899 } 12900 } 12901 12902 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 12903 { 12904 struct drm_device *dev = crtc->base.dev; 12905 struct intel_encoder *encoder; 12906 12907 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 12908 return true; 12909 12910 return false; 12911 } 12912 12913 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 12914 { 12915 struct drm_device *dev = encoder->base.dev; 12916 struct intel_connector *connector; 12917 12918 for_each_connector_on_encoder(dev, &encoder->base, connector) 12919 return connector; 12920 12921 return NULL; 12922 } 12923 12924 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 12925 enum pipe pch_transcoder) 12926 { 12927 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 12928 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 12929 } 12930 12931 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state) 12932 { 12933 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12934 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12935 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 12936 12937 if (INTEL_GEN(dev_priv) >= 9 || 12938 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 12939 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); 12940 u32 val; 12941 12942 if (transcoder_is_dsi(cpu_transcoder)) 12943 return; 12944 12945 val = intel_de_read(dev_priv, reg); 12946 val &= ~HSW_FRAME_START_DELAY_MASK; 12947 val |= HSW_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12948 intel_de_write(dev_priv, reg, val); 12949 } else { 12950 i915_reg_t reg = PIPECONF(cpu_transcoder); 12951 u32 val; 12952 12953 val = intel_de_read(dev_priv, reg); 12954 val &= ~PIPECONF_FRAME_START_DELAY_MASK; 12955 val |= PIPECONF_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12956 intel_de_write(dev_priv, reg, val); 12957 } 12958 12959 if (!crtc_state->has_pch_encoder) 12960 return; 12961 12962 if (HAS_PCH_IBX(dev_priv)) { 12963 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe); 12964 u32 val; 12965 12966 val = intel_de_read(dev_priv, reg); 12967 val &= ~TRANS_FRAME_START_DELAY_MASK; 12968 val |= TRANS_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12969 intel_de_write(dev_priv, reg, val); 12970 } else { 12971 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); 12972 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder); 12973 u32 val; 12974 12975 val = intel_de_read(dev_priv, reg); 12976 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 12977 val |= TRANS_CHICKEN2_FRAME_START_DELAY(dev_priv->framestart_delay - 1); 12978 intel_de_write(dev_priv, reg, val); 12979 } 12980 } 12981 12982 static void intel_sanitize_crtc(struct intel_crtc *crtc, 12983 struct drm_modeset_acquire_ctx *ctx) 12984 { 12985 struct drm_device *dev = crtc->base.dev; 12986 struct drm_i915_private *dev_priv = to_i915(dev); 12987 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 12988 12989 if (crtc_state->hw.active) { 12990 struct intel_plane *plane; 12991 12992 /* Clear any frame start delays used for debugging left by the BIOS */ 12993 intel_sanitize_frame_start_delay(crtc_state); 12994 12995 /* Disable everything but the primary plane */ 12996 for_each_intel_plane_on_crtc(dev, crtc, plane) { 12997 const struct intel_plane_state *plane_state = 12998 to_intel_plane_state(plane->base.state); 12999 13000 if (plane_state->uapi.visible && 13001 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 13002 intel_plane_disable_noatomic(crtc, plane); 13003 } 13004 13005 /* 13006 * Disable any background color set by the BIOS, but enable the 13007 * gamma and CSC to match how we program our planes. 13008 */ 13009 if (INTEL_GEN(dev_priv) >= 9) 13010 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe), 13011 SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE); 13012 } 13013 13014 /* Adjust the state of the output pipe according to whether we 13015 * have active connectors/encoders. */ 13016 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc) && 13017 !crtc_state->bigjoiner_slave) 13018 intel_crtc_disable_noatomic(crtc, ctx); 13019 13020 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) { 13021 /* 13022 * We start out with underrun reporting disabled to avoid races. 13023 * For correct bookkeeping mark this on active crtcs. 13024 * 13025 * Also on gmch platforms we dont have any hardware bits to 13026 * disable the underrun reporting. Which means we need to start 13027 * out with underrun reporting disabled also on inactive pipes, 13028 * since otherwise we'll complain about the garbage we read when 13029 * e.g. coming up after runtime pm. 13030 * 13031 * No protection against concurrent access is required - at 13032 * worst a fifo underrun happens which also sets this to false. 13033 */ 13034 crtc->cpu_fifo_underrun_disabled = true; 13035 /* 13036 * We track the PCH trancoder underrun reporting state 13037 * within the crtc. With crtc for pipe A housing the underrun 13038 * reporting state for PCH transcoder A, crtc for pipe B housing 13039 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 13040 * and marking underrun reporting as disabled for the non-existing 13041 * PCH transcoders B and C would prevent enabling the south 13042 * error interrupt (see cpt_can_enable_serr_int()). 13043 */ 13044 if (has_pch_trancoder(dev_priv, crtc->pipe)) 13045 crtc->pch_fifo_underrun_disabled = true; 13046 } 13047 } 13048 13049 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 13050 { 13051 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 13052 13053 /* 13054 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 13055 * the hardware when a high res displays plugged in. DPLL P 13056 * divider is zero, and the pipe timings are bonkers. We'll 13057 * try to disable everything in that case. 13058 * 13059 * FIXME would be nice to be able to sanitize this state 13060 * without several WARNs, but for now let's take the easy 13061 * road. 13062 */ 13063 return IS_GEN(dev_priv, 6) && 13064 crtc_state->hw.active && 13065 crtc_state->shared_dpll && 13066 crtc_state->port_clock == 0; 13067 } 13068 13069 static void intel_sanitize_encoder(struct intel_encoder *encoder) 13070 { 13071 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 13072 struct intel_connector *connector; 13073 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 13074 struct intel_crtc_state *crtc_state = crtc ? 13075 to_intel_crtc_state(crtc->base.state) : NULL; 13076 13077 /* We need to check both for a crtc link (meaning that the 13078 * encoder is active and trying to read from a pipe) and the 13079 * pipe itself being active. */ 13080 bool has_active_crtc = crtc_state && 13081 crtc_state->hw.active; 13082 13083 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 13084 drm_dbg_kms(&dev_priv->drm, 13085 "BIOS has misprogrammed the hardware. Disabling pipe %c\n", 13086 pipe_name(crtc->pipe)); 13087 has_active_crtc = false; 13088 } 13089 13090 connector = intel_encoder_find_connector(encoder); 13091 if (connector && !has_active_crtc) { 13092 drm_dbg_kms(&dev_priv->drm, 13093 "[ENCODER:%d:%s] has active connectors but no active pipe!\n", 13094 encoder->base.base.id, 13095 encoder->base.name); 13096 13097 /* Connector is active, but has no active pipe. This is 13098 * fallout from our resume register restoring. Disable 13099 * the encoder manually again. */ 13100 if (crtc_state) { 13101 struct drm_encoder *best_encoder; 13102 13103 drm_dbg_kms(&dev_priv->drm, 13104 "[ENCODER:%d:%s] manually disabled\n", 13105 encoder->base.base.id, 13106 encoder->base.name); 13107 13108 /* avoid oopsing in case the hooks consult best_encoder */ 13109 best_encoder = connector->base.state->best_encoder; 13110 connector->base.state->best_encoder = &encoder->base; 13111 13112 /* FIXME NULL atomic state passed! */ 13113 if (encoder->disable) 13114 encoder->disable(NULL, encoder, crtc_state, 13115 connector->base.state); 13116 if (encoder->post_disable) 13117 encoder->post_disable(NULL, encoder, crtc_state, 13118 connector->base.state); 13119 13120 connector->base.state->best_encoder = best_encoder; 13121 } 13122 encoder->base.crtc = NULL; 13123 13124 /* Inconsistent output/port/pipe state happens presumably due to 13125 * a bug in one of the get_hw_state functions. Or someplace else 13126 * in our code, like the register restore mess on resume. Clamp 13127 * things to off as a safer default. */ 13128 13129 connector->base.dpms = DRM_MODE_DPMS_OFF; 13130 connector->base.encoder = NULL; 13131 } 13132 13133 /* notify opregion of the sanitized encoder state */ 13134 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 13135 13136 if (HAS_DDI(dev_priv)) 13137 intel_ddi_sanitize_encoder_pll_mapping(encoder); 13138 } 13139 13140 /* FIXME read out full plane state for all planes */ 13141 static void readout_plane_state(struct drm_i915_private *dev_priv) 13142 { 13143 struct intel_plane *plane; 13144 struct intel_crtc *crtc; 13145 13146 for_each_intel_plane(&dev_priv->drm, plane) { 13147 struct intel_plane_state *plane_state = 13148 to_intel_plane_state(plane->base.state); 13149 struct intel_crtc_state *crtc_state; 13150 enum pipe pipe = PIPE_A; 13151 bool visible; 13152 13153 visible = plane->get_hw_state(plane, &pipe); 13154 13155 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 13156 crtc_state = to_intel_crtc_state(crtc->base.state); 13157 13158 intel_set_plane_visible(crtc_state, plane_state, visible); 13159 13160 drm_dbg_kms(&dev_priv->drm, 13161 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 13162 plane->base.base.id, plane->base.name, 13163 enableddisabled(visible), pipe_name(pipe)); 13164 } 13165 13166 for_each_intel_crtc(&dev_priv->drm, crtc) { 13167 struct intel_crtc_state *crtc_state = 13168 to_intel_crtc_state(crtc->base.state); 13169 13170 fixup_plane_bitmasks(crtc_state); 13171 } 13172 } 13173 13174 static void intel_modeset_readout_hw_state(struct drm_device *dev) 13175 { 13176 struct drm_i915_private *dev_priv = to_i915(dev); 13177 struct intel_cdclk_state *cdclk_state = 13178 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 13179 struct intel_dbuf_state *dbuf_state = 13180 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 13181 enum pipe pipe; 13182 struct intel_crtc *crtc; 13183 struct intel_encoder *encoder; 13184 struct intel_connector *connector; 13185 struct drm_connector_list_iter conn_iter; 13186 u8 active_pipes = 0; 13187 13188 for_each_intel_crtc(dev, crtc) { 13189 struct intel_crtc_state *crtc_state = 13190 to_intel_crtc_state(crtc->base.state); 13191 13192 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi); 13193 intel_crtc_free_hw_state(crtc_state); 13194 intel_crtc_state_reset(crtc_state, crtc); 13195 13196 intel_crtc_get_pipe_config(crtc_state); 13197 13198 crtc_state->hw.enable = crtc_state->hw.active; 13199 13200 crtc->base.enabled = crtc_state->hw.enable; 13201 crtc->active = crtc_state->hw.active; 13202 13203 if (crtc_state->hw.active) 13204 active_pipes |= BIT(crtc->pipe); 13205 13206 drm_dbg_kms(&dev_priv->drm, 13207 "[CRTC:%d:%s] hw state readout: %s\n", 13208 crtc->base.base.id, crtc->base.name, 13209 enableddisabled(crtc_state->hw.active)); 13210 } 13211 13212 dev_priv->active_pipes = cdclk_state->active_pipes = 13213 dbuf_state->active_pipes = active_pipes; 13214 13215 readout_plane_state(dev_priv); 13216 13217 for_each_intel_encoder(dev, encoder) { 13218 pipe = 0; 13219 13220 if (encoder->get_hw_state(encoder, &pipe)) { 13221 struct intel_crtc_state *crtc_state; 13222 13223 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 13224 crtc_state = to_intel_crtc_state(crtc->base.state); 13225 13226 encoder->base.crtc = &crtc->base; 13227 intel_encoder_get_config(encoder, crtc_state); 13228 if (encoder->sync_state) 13229 encoder->sync_state(encoder, crtc_state); 13230 13231 /* read out to slave crtc as well for bigjoiner */ 13232 if (crtc_state->bigjoiner) { 13233 /* encoder should read be linked to bigjoiner master */ 13234 WARN_ON(crtc_state->bigjoiner_slave); 13235 13236 crtc = crtc_state->bigjoiner_linked_crtc; 13237 crtc_state = to_intel_crtc_state(crtc->base.state); 13238 intel_encoder_get_config(encoder, crtc_state); 13239 } 13240 } else { 13241 encoder->base.crtc = NULL; 13242 } 13243 13244 drm_dbg_kms(&dev_priv->drm, 13245 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 13246 encoder->base.base.id, encoder->base.name, 13247 enableddisabled(encoder->base.crtc), 13248 pipe_name(pipe)); 13249 } 13250 13251 intel_dpll_readout_hw_state(dev_priv); 13252 13253 drm_connector_list_iter_begin(dev, &conn_iter); 13254 for_each_intel_connector_iter(connector, &conn_iter) { 13255 if (connector->get_hw_state(connector)) { 13256 struct intel_crtc_state *crtc_state; 13257 struct intel_crtc *crtc; 13258 13259 connector->base.dpms = DRM_MODE_DPMS_ON; 13260 13261 encoder = intel_attached_encoder(connector); 13262 connector->base.encoder = &encoder->base; 13263 13264 crtc = to_intel_crtc(encoder->base.crtc); 13265 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; 13266 13267 if (crtc_state && crtc_state->hw.active) { 13268 /* 13269 * This has to be done during hardware readout 13270 * because anything calling .crtc_disable may 13271 * rely on the connector_mask being accurate. 13272 */ 13273 crtc_state->uapi.connector_mask |= 13274 drm_connector_mask(&connector->base); 13275 crtc_state->uapi.encoder_mask |= 13276 drm_encoder_mask(&encoder->base); 13277 } 13278 } else { 13279 connector->base.dpms = DRM_MODE_DPMS_OFF; 13280 connector->base.encoder = NULL; 13281 } 13282 drm_dbg_kms(&dev_priv->drm, 13283 "[CONNECTOR:%d:%s] hw state readout: %s\n", 13284 connector->base.base.id, connector->base.name, 13285 enableddisabled(connector->base.encoder)); 13286 } 13287 drm_connector_list_iter_end(&conn_iter); 13288 13289 for_each_intel_crtc(dev, crtc) { 13290 struct intel_bw_state *bw_state = 13291 to_intel_bw_state(dev_priv->bw_obj.state); 13292 struct intel_crtc_state *crtc_state = 13293 to_intel_crtc_state(crtc->base.state); 13294 struct intel_plane *plane; 13295 int min_cdclk = 0; 13296 13297 if (crtc_state->bigjoiner_slave) 13298 continue; 13299 13300 if (crtc_state->hw.active) { 13301 /* 13302 * The initial mode needs to be set in order to keep 13303 * the atomic core happy. It wants a valid mode if the 13304 * crtc's enabled, so we do the above call. 13305 * 13306 * But we don't set all the derived state fully, hence 13307 * set a flag to indicate that a full recalculation is 13308 * needed on the next commit. 13309 */ 13310 crtc_state->inherited = true; 13311 13312 intel_crtc_update_active_timings(crtc_state); 13313 13314 intel_crtc_copy_hw_to_uapi_state(crtc_state); 13315 } 13316 13317 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 13318 const struct intel_plane_state *plane_state = 13319 to_intel_plane_state(plane->base.state); 13320 13321 /* 13322 * FIXME don't have the fb yet, so can't 13323 * use intel_plane_data_rate() :( 13324 */ 13325 if (plane_state->uapi.visible) 13326 crtc_state->data_rate[plane->id] = 13327 4 * crtc_state->pixel_rate; 13328 /* 13329 * FIXME don't have the fb yet, so can't 13330 * use plane->min_cdclk() :( 13331 */ 13332 if (plane_state->uapi.visible && plane->min_cdclk) { 13333 if (crtc_state->double_wide || 13334 INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 13335 crtc_state->min_cdclk[plane->id] = 13336 DIV_ROUND_UP(crtc_state->pixel_rate, 2); 13337 else 13338 crtc_state->min_cdclk[plane->id] = 13339 crtc_state->pixel_rate; 13340 } 13341 drm_dbg_kms(&dev_priv->drm, 13342 "[PLANE:%d:%s] min_cdclk %d kHz\n", 13343 plane->base.base.id, plane->base.name, 13344 crtc_state->min_cdclk[plane->id]); 13345 } 13346 13347 if (crtc_state->hw.active) { 13348 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 13349 if (drm_WARN_ON(dev, min_cdclk < 0)) 13350 min_cdclk = 0; 13351 } 13352 13353 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 13354 cdclk_state->min_voltage_level[crtc->pipe] = 13355 crtc_state->min_voltage_level; 13356 13357 intel_bw_crtc_update(bw_state, crtc_state); 13358 13359 intel_pipe_config_sanity_check(dev_priv, crtc_state); 13360 13361 /* discard our incomplete slave state, copy it from master */ 13362 if (crtc_state->bigjoiner && crtc_state->hw.active) { 13363 struct intel_crtc *slave = crtc_state->bigjoiner_linked_crtc; 13364 struct intel_crtc_state *slave_crtc_state = 13365 to_intel_crtc_state(slave->base.state); 13366 13367 copy_bigjoiner_crtc_state(slave_crtc_state, crtc_state); 13368 slave->base.mode = crtc->base.mode; 13369 13370 cdclk_state->min_cdclk[slave->pipe] = min_cdclk; 13371 cdclk_state->min_voltage_level[slave->pipe] = 13372 crtc_state->min_voltage_level; 13373 13374 for_each_intel_plane_on_crtc(&dev_priv->drm, slave, plane) { 13375 const struct intel_plane_state *plane_state = 13376 to_intel_plane_state(plane->base.state); 13377 13378 /* 13379 * FIXME don't have the fb yet, so can't 13380 * use intel_plane_data_rate() :( 13381 */ 13382 if (plane_state->uapi.visible) 13383 crtc_state->data_rate[plane->id] = 13384 4 * crtc_state->pixel_rate; 13385 else 13386 crtc_state->data_rate[plane->id] = 0; 13387 } 13388 13389 intel_bw_crtc_update(bw_state, slave_crtc_state); 13390 drm_calc_timestamping_constants(&slave->base, 13391 &slave_crtc_state->hw.adjusted_mode); 13392 } 13393 } 13394 } 13395 13396 static void 13397 get_encoder_power_domains(struct drm_i915_private *dev_priv) 13398 { 13399 struct intel_encoder *encoder; 13400 13401 for_each_intel_encoder(&dev_priv->drm, encoder) { 13402 struct intel_crtc_state *crtc_state; 13403 13404 if (!encoder->get_power_domains) 13405 continue; 13406 13407 /* 13408 * MST-primary and inactive encoders don't have a crtc state 13409 * and neither of these require any power domain references. 13410 */ 13411 if (!encoder->base.crtc) 13412 continue; 13413 13414 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 13415 encoder->get_power_domains(encoder, crtc_state); 13416 } 13417 } 13418 13419 static void intel_early_display_was(struct drm_i915_private *dev_priv) 13420 { 13421 /* 13422 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl 13423 * Also known as Wa_14010480278. 13424 */ 13425 if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv)) 13426 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0, 13427 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS); 13428 13429 if (IS_HASWELL(dev_priv)) { 13430 /* 13431 * WaRsPkgCStateDisplayPMReq:hsw 13432 * System hang if this isn't done before disabling all planes! 13433 */ 13434 intel_de_write(dev_priv, CHICKEN_PAR1_1, 13435 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 13436 } 13437 13438 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv)) { 13439 /* Display WA #1142:kbl,cfl,cml */ 13440 intel_de_rmw(dev_priv, CHICKEN_PAR1_1, 13441 KBL_ARB_FILL_SPARE_22, KBL_ARB_FILL_SPARE_22); 13442 intel_de_rmw(dev_priv, CHICKEN_MISC_2, 13443 KBL_ARB_FILL_SPARE_13 | KBL_ARB_FILL_SPARE_14, 13444 KBL_ARB_FILL_SPARE_14); 13445 } 13446 } 13447 13448 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 13449 enum port port, i915_reg_t hdmi_reg) 13450 { 13451 u32 val = intel_de_read(dev_priv, hdmi_reg); 13452 13453 if (val & SDVO_ENABLE || 13454 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 13455 return; 13456 13457 drm_dbg_kms(&dev_priv->drm, 13458 "Sanitizing transcoder select for HDMI %c\n", 13459 port_name(port)); 13460 13461 val &= ~SDVO_PIPE_SEL_MASK; 13462 val |= SDVO_PIPE_SEL(PIPE_A); 13463 13464 intel_de_write(dev_priv, hdmi_reg, val); 13465 } 13466 13467 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 13468 enum port port, i915_reg_t dp_reg) 13469 { 13470 u32 val = intel_de_read(dev_priv, dp_reg); 13471 13472 if (val & DP_PORT_EN || 13473 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 13474 return; 13475 13476 drm_dbg_kms(&dev_priv->drm, 13477 "Sanitizing transcoder select for DP %c\n", 13478 port_name(port)); 13479 13480 val &= ~DP_PIPE_SEL_MASK; 13481 val |= DP_PIPE_SEL(PIPE_A); 13482 13483 intel_de_write(dev_priv, dp_reg, val); 13484 } 13485 13486 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 13487 { 13488 /* 13489 * The BIOS may select transcoder B on some of the PCH 13490 * ports even it doesn't enable the port. This would trip 13491 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 13492 * Sanitize the transcoder select bits to prevent that. We 13493 * assume that the BIOS never actually enabled the port, 13494 * because if it did we'd actually have to toggle the port 13495 * on and back off to make the transcoder A select stick 13496 * (see. intel_dp_link_down(), intel_disable_hdmi(), 13497 * intel_disable_sdvo()). 13498 */ 13499 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 13500 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 13501 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 13502 13503 /* PCH SDVOB multiplex with HDMIB */ 13504 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 13505 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 13506 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 13507 } 13508 13509 /* Scan out the current hw modeset state, 13510 * and sanitizes it to the current state 13511 */ 13512 static void 13513 intel_modeset_setup_hw_state(struct drm_device *dev, 13514 struct drm_modeset_acquire_ctx *ctx) 13515 { 13516 struct drm_i915_private *dev_priv = to_i915(dev); 13517 struct intel_encoder *encoder; 13518 struct intel_crtc *crtc; 13519 intel_wakeref_t wakeref; 13520 13521 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 13522 13523 intel_early_display_was(dev_priv); 13524 intel_modeset_readout_hw_state(dev); 13525 13526 /* HW state is read out, now we need to sanitize this mess. */ 13527 13528 /* Sanitize the TypeC port mode upfront, encoders depend on this */ 13529 for_each_intel_encoder(dev, encoder) { 13530 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 13531 13532 /* We need to sanitize only the MST primary port. */ 13533 if (encoder->type != INTEL_OUTPUT_DP_MST && 13534 intel_phy_is_tc(dev_priv, phy)) 13535 intel_tc_port_sanitize(enc_to_dig_port(encoder)); 13536 } 13537 13538 get_encoder_power_domains(dev_priv); 13539 13540 if (HAS_PCH_IBX(dev_priv)) 13541 ibx_sanitize_pch_ports(dev_priv); 13542 13543 /* 13544 * intel_sanitize_plane_mapping() may need to do vblank 13545 * waits, so we need vblank interrupts restored beforehand. 13546 */ 13547 for_each_intel_crtc(&dev_priv->drm, crtc) { 13548 struct intel_crtc_state *crtc_state = 13549 to_intel_crtc_state(crtc->base.state); 13550 13551 drm_crtc_vblank_reset(&crtc->base); 13552 13553 if (crtc_state->hw.active) 13554 intel_crtc_vblank_on(crtc_state); 13555 } 13556 13557 intel_sanitize_plane_mapping(dev_priv); 13558 13559 for_each_intel_encoder(dev, encoder) 13560 intel_sanitize_encoder(encoder); 13561 13562 for_each_intel_crtc(&dev_priv->drm, crtc) { 13563 struct intel_crtc_state *crtc_state = 13564 to_intel_crtc_state(crtc->base.state); 13565 13566 intel_sanitize_crtc(crtc, ctx); 13567 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 13568 } 13569 13570 intel_modeset_update_connector_atomic_state(dev); 13571 13572 intel_dpll_sanitize_state(dev_priv); 13573 13574 if (IS_G4X(dev_priv)) { 13575 g4x_wm_get_hw_state(dev_priv); 13576 g4x_wm_sanitize(dev_priv); 13577 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 13578 vlv_wm_get_hw_state(dev_priv); 13579 vlv_wm_sanitize(dev_priv); 13580 } else if (INTEL_GEN(dev_priv) >= 9) { 13581 skl_wm_get_hw_state(dev_priv); 13582 } else if (HAS_PCH_SPLIT(dev_priv)) { 13583 ilk_wm_get_hw_state(dev_priv); 13584 } 13585 13586 for_each_intel_crtc(dev, crtc) { 13587 struct intel_crtc_state *crtc_state = 13588 to_intel_crtc_state(crtc->base.state); 13589 u64 put_domains; 13590 13591 put_domains = modeset_get_crtc_power_domains(crtc_state); 13592 if (drm_WARN_ON(dev, put_domains)) 13593 modeset_put_crtc_power_domains(crtc, put_domains); 13594 } 13595 13596 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 13597 } 13598 13599 void intel_display_resume(struct drm_device *dev) 13600 { 13601 struct drm_i915_private *dev_priv = to_i915(dev); 13602 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 13603 struct drm_modeset_acquire_ctx ctx; 13604 int ret; 13605 13606 dev_priv->modeset_restore_state = NULL; 13607 if (state) 13608 state->acquire_ctx = &ctx; 13609 13610 drm_modeset_acquire_init(&ctx, 0); 13611 13612 while (1) { 13613 ret = drm_modeset_lock_all_ctx(dev, &ctx); 13614 if (ret != -EDEADLK) 13615 break; 13616 13617 drm_modeset_backoff(&ctx); 13618 } 13619 13620 if (!ret) 13621 ret = __intel_display_resume(dev, state, &ctx); 13622 13623 intel_enable_ipc(dev_priv); 13624 drm_modeset_drop_locks(&ctx); 13625 drm_modeset_acquire_fini(&ctx); 13626 13627 if (ret) 13628 drm_err(&dev_priv->drm, 13629 "Restoring old state failed with %i\n", ret); 13630 if (state) 13631 drm_atomic_state_put(state); 13632 } 13633 13634 static void intel_hpd_poll_fini(struct drm_i915_private *i915) 13635 { 13636 struct intel_connector *connector; 13637 struct drm_connector_list_iter conn_iter; 13638 13639 /* Kill all the work that may have been queued by hpd. */ 13640 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 13641 for_each_intel_connector_iter(connector, &conn_iter) { 13642 if (connector->modeset_retry_work.func) 13643 cancel_work_sync(&connector->modeset_retry_work); 13644 if (connector->hdcp.shim) { 13645 cancel_delayed_work_sync(&connector->hdcp.check_work); 13646 cancel_work_sync(&connector->hdcp.prop_work); 13647 } 13648 } 13649 drm_connector_list_iter_end(&conn_iter); 13650 } 13651 13652 /* part #1: call before irq uninstall */ 13653 void intel_modeset_driver_remove(struct drm_i915_private *i915) 13654 { 13655 flush_workqueue(i915->flip_wq); 13656 flush_workqueue(i915->modeset_wq); 13657 13658 flush_work(&i915->atomic_helper.free_work); 13659 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list)); 13660 } 13661 13662 /* part #2: call after irq uninstall */ 13663 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915) 13664 { 13665 /* 13666 * Due to the hpd irq storm handling the hotplug work can re-arm the 13667 * poll handlers. Hence disable polling after hpd handling is shut down. 13668 */ 13669 intel_hpd_poll_fini(i915); 13670 13671 /* 13672 * MST topology needs to be suspended so we don't have any calls to 13673 * fbdev after it's finalized. MST will be destroyed later as part of 13674 * drm_mode_config_cleanup() 13675 */ 13676 intel_dp_mst_suspend(i915); 13677 13678 /* poll work can call into fbdev, hence clean that up afterwards */ 13679 intel_fbdev_fini(i915); 13680 13681 intel_unregister_dsm_handler(); 13682 13683 intel_fbc_global_disable(i915); 13684 13685 /* flush any delayed tasks or pending work */ 13686 flush_scheduled_work(); 13687 13688 intel_hdcp_component_fini(i915); 13689 13690 intel_mode_config_cleanup(i915); 13691 13692 intel_overlay_cleanup(i915); 13693 13694 intel_gmbus_teardown(i915); 13695 13696 destroy_workqueue(i915->flip_wq); 13697 destroy_workqueue(i915->modeset_wq); 13698 13699 intel_fbc_cleanup_cfb(i915); 13700 } 13701 13702 /* part #3: call after gem init */ 13703 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915) 13704 { 13705 intel_csr_ucode_fini(i915); 13706 13707 intel_power_domains_driver_remove(i915); 13708 13709 intel_vga_unregister(i915); 13710 13711 intel_bios_driver_remove(i915); 13712 } 13713 13714 void intel_display_driver_register(struct drm_i915_private *i915) 13715 { 13716 if (!HAS_DISPLAY(i915)) 13717 return; 13718 13719 intel_display_debugfs_register(i915); 13720 13721 /* Must be done after probing outputs */ 13722 intel_opregion_register(i915); 13723 acpi_video_register(); 13724 13725 intel_audio_init(i915); 13726 13727 /* 13728 * Some ports require correctly set-up hpd registers for 13729 * detection to work properly (leading to ghost connected 13730 * connector status), e.g. VGA on gm45. Hence we can only set 13731 * up the initial fbdev config after hpd irqs are fully 13732 * enabled. We do it last so that the async config cannot run 13733 * before the connectors are registered. 13734 */ 13735 intel_fbdev_initial_config_async(&i915->drm); 13736 13737 /* 13738 * We need to coordinate the hotplugs with the asynchronous 13739 * fbdev configuration, for which we use the 13740 * fbdev->async_cookie. 13741 */ 13742 drm_kms_helper_poll_init(&i915->drm); 13743 } 13744 13745 void intel_display_driver_unregister(struct drm_i915_private *i915) 13746 { 13747 if (!HAS_DISPLAY(i915)) 13748 return; 13749 13750 intel_fbdev_unregister(i915); 13751 intel_audio_deinit(i915); 13752 13753 /* 13754 * After flushing the fbdev (incl. a late async config which 13755 * will have delayed queuing of a hotplug event), then flush 13756 * the hotplug events. 13757 */ 13758 drm_kms_helper_poll_fini(&i915->drm); 13759 drm_atomic_helper_shutdown(&i915->drm); 13760 13761 acpi_video_unregister(); 13762 intel_opregion_unregister(i915); 13763 } 13764 13765 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 13766 13767 struct intel_display_error_state { 13768 13769 u32 power_well_driver; 13770 13771 struct intel_cursor_error_state { 13772 u32 control; 13773 u32 position; 13774 u32 base; 13775 u32 size; 13776 } cursor[I915_MAX_PIPES]; 13777 13778 struct intel_pipe_error_state { 13779 bool power_domain_on; 13780 u32 source; 13781 u32 stat; 13782 } pipe[I915_MAX_PIPES]; 13783 13784 struct intel_plane_error_state { 13785 u32 control; 13786 u32 stride; 13787 u32 size; 13788 u32 pos; 13789 u32 addr; 13790 u32 surface; 13791 u32 tile_offset; 13792 } plane[I915_MAX_PIPES]; 13793 13794 struct intel_transcoder_error_state { 13795 bool available; 13796 bool power_domain_on; 13797 enum transcoder cpu_transcoder; 13798 13799 u32 conf; 13800 13801 u32 htotal; 13802 u32 hblank; 13803 u32 hsync; 13804 u32 vtotal; 13805 u32 vblank; 13806 u32 vsync; 13807 } transcoder[5]; 13808 }; 13809 13810 struct intel_display_error_state * 13811 intel_display_capture_error_state(struct drm_i915_private *dev_priv) 13812 { 13813 struct intel_display_error_state *error; 13814 int transcoders[] = { 13815 TRANSCODER_A, 13816 TRANSCODER_B, 13817 TRANSCODER_C, 13818 TRANSCODER_D, 13819 TRANSCODER_EDP, 13820 }; 13821 int i; 13822 13823 BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder)); 13824 13825 if (!HAS_DISPLAY(dev_priv)) 13826 return NULL; 13827 13828 error = kzalloc(sizeof(*error), GFP_ATOMIC); 13829 if (error == NULL) 13830 return NULL; 13831 13832 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 13833 error->power_well_driver = intel_de_read(dev_priv, 13834 HSW_PWR_WELL_CTL2); 13835 13836 for_each_pipe(dev_priv, i) { 13837 error->pipe[i].power_domain_on = 13838 __intel_display_power_is_enabled(dev_priv, 13839 POWER_DOMAIN_PIPE(i)); 13840 if (!error->pipe[i].power_domain_on) 13841 continue; 13842 13843 error->cursor[i].control = intel_de_read(dev_priv, CURCNTR(i)); 13844 error->cursor[i].position = intel_de_read(dev_priv, CURPOS(i)); 13845 error->cursor[i].base = intel_de_read(dev_priv, CURBASE(i)); 13846 13847 error->plane[i].control = intel_de_read(dev_priv, DSPCNTR(i)); 13848 error->plane[i].stride = intel_de_read(dev_priv, DSPSTRIDE(i)); 13849 if (INTEL_GEN(dev_priv) <= 3) { 13850 error->plane[i].size = intel_de_read(dev_priv, 13851 DSPSIZE(i)); 13852 error->plane[i].pos = intel_de_read(dev_priv, 13853 DSPPOS(i)); 13854 } 13855 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 13856 error->plane[i].addr = intel_de_read(dev_priv, 13857 DSPADDR(i)); 13858 if (INTEL_GEN(dev_priv) >= 4) { 13859 error->plane[i].surface = intel_de_read(dev_priv, 13860 DSPSURF(i)); 13861 error->plane[i].tile_offset = intel_de_read(dev_priv, 13862 DSPTILEOFF(i)); 13863 } 13864 13865 error->pipe[i].source = intel_de_read(dev_priv, PIPESRC(i)); 13866 13867 if (HAS_GMCH(dev_priv)) 13868 error->pipe[i].stat = intel_de_read(dev_priv, 13869 PIPESTAT(i)); 13870 } 13871 13872 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 13873 enum transcoder cpu_transcoder = transcoders[i]; 13874 13875 if (!HAS_TRANSCODER(dev_priv, cpu_transcoder)) 13876 continue; 13877 13878 error->transcoder[i].available = true; 13879 error->transcoder[i].power_domain_on = 13880 __intel_display_power_is_enabled(dev_priv, 13881 POWER_DOMAIN_TRANSCODER(cpu_transcoder)); 13882 if (!error->transcoder[i].power_domain_on) 13883 continue; 13884 13885 error->transcoder[i].cpu_transcoder = cpu_transcoder; 13886 13887 error->transcoder[i].conf = intel_de_read(dev_priv, 13888 PIPECONF(cpu_transcoder)); 13889 error->transcoder[i].htotal = intel_de_read(dev_priv, 13890 HTOTAL(cpu_transcoder)); 13891 error->transcoder[i].hblank = intel_de_read(dev_priv, 13892 HBLANK(cpu_transcoder)); 13893 error->transcoder[i].hsync = intel_de_read(dev_priv, 13894 HSYNC(cpu_transcoder)); 13895 error->transcoder[i].vtotal = intel_de_read(dev_priv, 13896 VTOTAL(cpu_transcoder)); 13897 error->transcoder[i].vblank = intel_de_read(dev_priv, 13898 VBLANK(cpu_transcoder)); 13899 error->transcoder[i].vsync = intel_de_read(dev_priv, 13900 VSYNC(cpu_transcoder)); 13901 } 13902 13903 return error; 13904 } 13905 13906 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) 13907 13908 void 13909 intel_display_print_error_state(struct drm_i915_error_state_buf *m, 13910 struct intel_display_error_state *error) 13911 { 13912 struct drm_i915_private *dev_priv = m->i915; 13913 int i; 13914 13915 if (!error) 13916 return; 13917 13918 err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv)); 13919 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 13920 err_printf(m, "PWR_WELL_CTL2: %08x\n", 13921 error->power_well_driver); 13922 for_each_pipe(dev_priv, i) { 13923 err_printf(m, "Pipe [%d]:\n", i); 13924 err_printf(m, " Power: %s\n", 13925 onoff(error->pipe[i].power_domain_on)); 13926 err_printf(m, " SRC: %08x\n", error->pipe[i].source); 13927 err_printf(m, " STAT: %08x\n", error->pipe[i].stat); 13928 13929 err_printf(m, "Plane [%d]:\n", i); 13930 err_printf(m, " CNTR: %08x\n", error->plane[i].control); 13931 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride); 13932 if (INTEL_GEN(dev_priv) <= 3) { 13933 err_printf(m, " SIZE: %08x\n", error->plane[i].size); 13934 err_printf(m, " POS: %08x\n", error->plane[i].pos); 13935 } 13936 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 13937 err_printf(m, " ADDR: %08x\n", error->plane[i].addr); 13938 if (INTEL_GEN(dev_priv) >= 4) { 13939 err_printf(m, " SURF: %08x\n", error->plane[i].surface); 13940 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); 13941 } 13942 13943 err_printf(m, "Cursor [%d]:\n", i); 13944 err_printf(m, " CNTR: %08x\n", error->cursor[i].control); 13945 err_printf(m, " POS: %08x\n", error->cursor[i].position); 13946 err_printf(m, " BASE: %08x\n", error->cursor[i].base); 13947 } 13948 13949 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 13950 if (!error->transcoder[i].available) 13951 continue; 13952 13953 err_printf(m, "CPU transcoder: %s\n", 13954 transcoder_name(error->transcoder[i].cpu_transcoder)); 13955 err_printf(m, " Power: %s\n", 13956 onoff(error->transcoder[i].power_domain_on)); 13957 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf); 13958 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal); 13959 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank); 13960 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync); 13961 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal); 13962 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank); 13963 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync); 13964 } 13965 } 13966 13967 #endif 13968