xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_display.c (revision 630dce2810b9f09d312aed4189300e785254c24b)
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  */
26 
27 #include <linux/i2c.h>
28 #include <linux/input.h>
29 #include <linux/intel-iommu.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/dma-resv.h>
33 #include <linux/slab.h>
34 
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_atomic_uapi.h>
38 #include <drm/drm_damage_helper.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fourcc.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_probe_helper.h>
44 #include <drm/drm_rect.h>
45 
46 #include "display/intel_crt.h"
47 #include "display/intel_ddi.h"
48 #include "display/intel_dp.h"
49 #include "display/intel_dp_mst.h"
50 #include "display/intel_dpll_mgr.h"
51 #include "display/intel_dsi.h"
52 #include "display/intel_dvo.h"
53 #include "display/intel_gmbus.h"
54 #include "display/intel_hdmi.h"
55 #include "display/intel_lvds.h"
56 #include "display/intel_sdvo.h"
57 #include "display/intel_tv.h"
58 #include "display/intel_vdsc.h"
59 
60 #include "gt/intel_rps.h"
61 
62 #include "i915_drv.h"
63 #include "i915_trace.h"
64 #include "intel_acpi.h"
65 #include "intel_atomic.h"
66 #include "intel_atomic_plane.h"
67 #include "intel_bw.h"
68 #include "intel_cdclk.h"
69 #include "intel_color.h"
70 #include "intel_csr.h"
71 #include "intel_display_types.h"
72 #include "intel_dp_link_training.h"
73 #include "intel_fbc.h"
74 #include "intel_fbdev.h"
75 #include "intel_fifo_underrun.h"
76 #include "intel_frontbuffer.h"
77 #include "intel_hdcp.h"
78 #include "intel_hotplug.h"
79 #include "intel_overlay.h"
80 #include "intel_pipe_crc.h"
81 #include "intel_pm.h"
82 #include "intel_psr.h"
83 #include "intel_quirks.h"
84 #include "intel_sideband.h"
85 #include "intel_sprite.h"
86 #include "intel_tc.h"
87 #include "intel_vga.h"
88 
89 /* Primary plane formats for gen <= 3 */
90 static const u32 i8xx_primary_formats[] = {
91 	DRM_FORMAT_C8,
92 	DRM_FORMAT_XRGB1555,
93 	DRM_FORMAT_RGB565,
94 	DRM_FORMAT_XRGB8888,
95 };
96 
97 /* Primary plane formats for ivb (no fp16 due to hw issue) */
98 static const u32 ivb_primary_formats[] = {
99 	DRM_FORMAT_C8,
100 	DRM_FORMAT_RGB565,
101 	DRM_FORMAT_XRGB8888,
102 	DRM_FORMAT_XBGR8888,
103 	DRM_FORMAT_XRGB2101010,
104 	DRM_FORMAT_XBGR2101010,
105 };
106 
107 /* Primary plane formats for gen >= 4, except ivb */
108 static const u32 i965_primary_formats[] = {
109 	DRM_FORMAT_C8,
110 	DRM_FORMAT_RGB565,
111 	DRM_FORMAT_XRGB8888,
112 	DRM_FORMAT_XBGR8888,
113 	DRM_FORMAT_XRGB2101010,
114 	DRM_FORMAT_XBGR2101010,
115 	DRM_FORMAT_XBGR16161616F,
116 };
117 
118 /* Primary plane formats for vlv/chv */
119 static const u32 vlv_primary_formats[] = {
120 	DRM_FORMAT_C8,
121 	DRM_FORMAT_RGB565,
122 	DRM_FORMAT_XRGB8888,
123 	DRM_FORMAT_XBGR8888,
124 	DRM_FORMAT_ARGB8888,
125 	DRM_FORMAT_ABGR8888,
126 	DRM_FORMAT_XRGB2101010,
127 	DRM_FORMAT_XBGR2101010,
128 	DRM_FORMAT_ARGB2101010,
129 	DRM_FORMAT_ABGR2101010,
130 	DRM_FORMAT_XBGR16161616F,
131 };
132 
133 static const u64 i9xx_format_modifiers[] = {
134 	I915_FORMAT_MOD_X_TILED,
135 	DRM_FORMAT_MOD_LINEAR,
136 	DRM_FORMAT_MOD_INVALID
137 };
138 
139 /* Cursor formats */
140 static const u32 intel_cursor_formats[] = {
141 	DRM_FORMAT_ARGB8888,
142 };
143 
144 static const u64 cursor_format_modifiers[] = {
145 	DRM_FORMAT_MOD_LINEAR,
146 	DRM_FORMAT_MOD_INVALID
147 };
148 
149 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
150 				struct intel_crtc_state *pipe_config);
151 static void ilk_pch_clock_get(struct intel_crtc *crtc,
152 			      struct intel_crtc_state *pipe_config);
153 
154 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
155 				  struct drm_i915_gem_object *obj,
156 				  struct drm_mode_fb_cmd2 *mode_cmd);
157 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state);
158 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
159 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
160 					 const struct intel_link_m_n *m_n,
161 					 const struct intel_link_m_n *m2_n2);
162 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state);
163 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state);
164 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state);
165 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state);
166 static void vlv_prepare_pll(struct intel_crtc *crtc,
167 			    const struct intel_crtc_state *pipe_config);
168 static void chv_prepare_pll(struct intel_crtc *crtc,
169 			    const struct intel_crtc_state *pipe_config);
170 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state);
171 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state);
172 static void intel_modeset_setup_hw_state(struct drm_device *dev,
173 					 struct drm_modeset_acquire_ctx *ctx);
174 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc);
175 
176 struct intel_limit {
177 	struct {
178 		int min, max;
179 	} dot, vco, n, m, m1, m2, p, p1;
180 
181 	struct {
182 		int dot_limit;
183 		int p2_slow, p2_fast;
184 	} p2;
185 };
186 
187 /* returns HPLL frequency in kHz */
188 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
189 {
190 	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
191 
192 	/* Obtain SKU information */
193 	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
194 		CCK_FUSE_HPLL_FREQ_MASK;
195 
196 	return vco_freq[hpll_freq] * 1000;
197 }
198 
199 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
200 		      const char *name, u32 reg, int ref_freq)
201 {
202 	u32 val;
203 	int divider;
204 
205 	val = vlv_cck_read(dev_priv, reg);
206 	divider = val & CCK_FREQUENCY_VALUES;
207 
208 	drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) !=
209 		 (divider << CCK_FREQUENCY_STATUS_SHIFT),
210 		 "%s change in progress\n", name);
211 
212 	return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
213 }
214 
215 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
216 			   const char *name, u32 reg)
217 {
218 	int hpll;
219 
220 	vlv_cck_get(dev_priv);
221 
222 	if (dev_priv->hpll_freq == 0)
223 		dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
224 
225 	hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq);
226 
227 	vlv_cck_put(dev_priv);
228 
229 	return hpll;
230 }
231 
232 static void intel_update_czclk(struct drm_i915_private *dev_priv)
233 {
234 	if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
235 		return;
236 
237 	dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
238 						      CCK_CZ_CLOCK_CONTROL);
239 
240 	drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n",
241 		dev_priv->czclk_freq);
242 }
243 
244 /* units of 100MHz */
245 static u32 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
246 			       const struct intel_crtc_state *pipe_config)
247 {
248 	if (HAS_DDI(dev_priv))
249 		return pipe_config->port_clock; /* SPLL */
250 	else
251 		return dev_priv->fdi_pll_freq;
252 }
253 
254 static const struct intel_limit intel_limits_i8xx_dac = {
255 	.dot = { .min = 25000, .max = 350000 },
256 	.vco = { .min = 908000, .max = 1512000 },
257 	.n = { .min = 2, .max = 16 },
258 	.m = { .min = 96, .max = 140 },
259 	.m1 = { .min = 18, .max = 26 },
260 	.m2 = { .min = 6, .max = 16 },
261 	.p = { .min = 4, .max = 128 },
262 	.p1 = { .min = 2, .max = 33 },
263 	.p2 = { .dot_limit = 165000,
264 		.p2_slow = 4, .p2_fast = 2 },
265 };
266 
267 static const struct intel_limit intel_limits_i8xx_dvo = {
268 	.dot = { .min = 25000, .max = 350000 },
269 	.vco = { .min = 908000, .max = 1512000 },
270 	.n = { .min = 2, .max = 16 },
271 	.m = { .min = 96, .max = 140 },
272 	.m1 = { .min = 18, .max = 26 },
273 	.m2 = { .min = 6, .max = 16 },
274 	.p = { .min = 4, .max = 128 },
275 	.p1 = { .min = 2, .max = 33 },
276 	.p2 = { .dot_limit = 165000,
277 		.p2_slow = 4, .p2_fast = 4 },
278 };
279 
280 static const struct intel_limit intel_limits_i8xx_lvds = {
281 	.dot = { .min = 25000, .max = 350000 },
282 	.vco = { .min = 908000, .max = 1512000 },
283 	.n = { .min = 2, .max = 16 },
284 	.m = { .min = 96, .max = 140 },
285 	.m1 = { .min = 18, .max = 26 },
286 	.m2 = { .min = 6, .max = 16 },
287 	.p = { .min = 4, .max = 128 },
288 	.p1 = { .min = 1, .max = 6 },
289 	.p2 = { .dot_limit = 165000,
290 		.p2_slow = 14, .p2_fast = 7 },
291 };
292 
293 static const struct intel_limit intel_limits_i9xx_sdvo = {
294 	.dot = { .min = 20000, .max = 400000 },
295 	.vco = { .min = 1400000, .max = 2800000 },
296 	.n = { .min = 1, .max = 6 },
297 	.m = { .min = 70, .max = 120 },
298 	.m1 = { .min = 8, .max = 18 },
299 	.m2 = { .min = 3, .max = 7 },
300 	.p = { .min = 5, .max = 80 },
301 	.p1 = { .min = 1, .max = 8 },
302 	.p2 = { .dot_limit = 200000,
303 		.p2_slow = 10, .p2_fast = 5 },
304 };
305 
306 static const struct intel_limit intel_limits_i9xx_lvds = {
307 	.dot = { .min = 20000, .max = 400000 },
308 	.vco = { .min = 1400000, .max = 2800000 },
309 	.n = { .min = 1, .max = 6 },
310 	.m = { .min = 70, .max = 120 },
311 	.m1 = { .min = 8, .max = 18 },
312 	.m2 = { .min = 3, .max = 7 },
313 	.p = { .min = 7, .max = 98 },
314 	.p1 = { .min = 1, .max = 8 },
315 	.p2 = { .dot_limit = 112000,
316 		.p2_slow = 14, .p2_fast = 7 },
317 };
318 
319 
320 static const struct intel_limit intel_limits_g4x_sdvo = {
321 	.dot = { .min = 25000, .max = 270000 },
322 	.vco = { .min = 1750000, .max = 3500000},
323 	.n = { .min = 1, .max = 4 },
324 	.m = { .min = 104, .max = 138 },
325 	.m1 = { .min = 17, .max = 23 },
326 	.m2 = { .min = 5, .max = 11 },
327 	.p = { .min = 10, .max = 30 },
328 	.p1 = { .min = 1, .max = 3},
329 	.p2 = { .dot_limit = 270000,
330 		.p2_slow = 10,
331 		.p2_fast = 10
332 	},
333 };
334 
335 static const struct intel_limit intel_limits_g4x_hdmi = {
336 	.dot = { .min = 22000, .max = 400000 },
337 	.vco = { .min = 1750000, .max = 3500000},
338 	.n = { .min = 1, .max = 4 },
339 	.m = { .min = 104, .max = 138 },
340 	.m1 = { .min = 16, .max = 23 },
341 	.m2 = { .min = 5, .max = 11 },
342 	.p = { .min = 5, .max = 80 },
343 	.p1 = { .min = 1, .max = 8},
344 	.p2 = { .dot_limit = 165000,
345 		.p2_slow = 10, .p2_fast = 5 },
346 };
347 
348 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
349 	.dot = { .min = 20000, .max = 115000 },
350 	.vco = { .min = 1750000, .max = 3500000 },
351 	.n = { .min = 1, .max = 3 },
352 	.m = { .min = 104, .max = 138 },
353 	.m1 = { .min = 17, .max = 23 },
354 	.m2 = { .min = 5, .max = 11 },
355 	.p = { .min = 28, .max = 112 },
356 	.p1 = { .min = 2, .max = 8 },
357 	.p2 = { .dot_limit = 0,
358 		.p2_slow = 14, .p2_fast = 14
359 	},
360 };
361 
362 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
363 	.dot = { .min = 80000, .max = 224000 },
364 	.vco = { .min = 1750000, .max = 3500000 },
365 	.n = { .min = 1, .max = 3 },
366 	.m = { .min = 104, .max = 138 },
367 	.m1 = { .min = 17, .max = 23 },
368 	.m2 = { .min = 5, .max = 11 },
369 	.p = { .min = 14, .max = 42 },
370 	.p1 = { .min = 2, .max = 6 },
371 	.p2 = { .dot_limit = 0,
372 		.p2_slow = 7, .p2_fast = 7
373 	},
374 };
375 
376 static const struct intel_limit pnv_limits_sdvo = {
377 	.dot = { .min = 20000, .max = 400000},
378 	.vco = { .min = 1700000, .max = 3500000 },
379 	/* Pineview's Ncounter is a ring counter */
380 	.n = { .min = 3, .max = 6 },
381 	.m = { .min = 2, .max = 256 },
382 	/* Pineview only has one combined m divider, which we treat as m2. */
383 	.m1 = { .min = 0, .max = 0 },
384 	.m2 = { .min = 0, .max = 254 },
385 	.p = { .min = 5, .max = 80 },
386 	.p1 = { .min = 1, .max = 8 },
387 	.p2 = { .dot_limit = 200000,
388 		.p2_slow = 10, .p2_fast = 5 },
389 };
390 
391 static const struct intel_limit pnv_limits_lvds = {
392 	.dot = { .min = 20000, .max = 400000 },
393 	.vco = { .min = 1700000, .max = 3500000 },
394 	.n = { .min = 3, .max = 6 },
395 	.m = { .min = 2, .max = 256 },
396 	.m1 = { .min = 0, .max = 0 },
397 	.m2 = { .min = 0, .max = 254 },
398 	.p = { .min = 7, .max = 112 },
399 	.p1 = { .min = 1, .max = 8 },
400 	.p2 = { .dot_limit = 112000,
401 		.p2_slow = 14, .p2_fast = 14 },
402 };
403 
404 /* Ironlake / Sandybridge
405  *
406  * We calculate clock using (register_value + 2) for N/M1/M2, so here
407  * the range value for them is (actual_value - 2).
408  */
409 static const struct intel_limit ilk_limits_dac = {
410 	.dot = { .min = 25000, .max = 350000 },
411 	.vco = { .min = 1760000, .max = 3510000 },
412 	.n = { .min = 1, .max = 5 },
413 	.m = { .min = 79, .max = 127 },
414 	.m1 = { .min = 12, .max = 22 },
415 	.m2 = { .min = 5, .max = 9 },
416 	.p = { .min = 5, .max = 80 },
417 	.p1 = { .min = 1, .max = 8 },
418 	.p2 = { .dot_limit = 225000,
419 		.p2_slow = 10, .p2_fast = 5 },
420 };
421 
422 static const struct intel_limit ilk_limits_single_lvds = {
423 	.dot = { .min = 25000, .max = 350000 },
424 	.vco = { .min = 1760000, .max = 3510000 },
425 	.n = { .min = 1, .max = 3 },
426 	.m = { .min = 79, .max = 118 },
427 	.m1 = { .min = 12, .max = 22 },
428 	.m2 = { .min = 5, .max = 9 },
429 	.p = { .min = 28, .max = 112 },
430 	.p1 = { .min = 2, .max = 8 },
431 	.p2 = { .dot_limit = 225000,
432 		.p2_slow = 14, .p2_fast = 14 },
433 };
434 
435 static const struct intel_limit ilk_limits_dual_lvds = {
436 	.dot = { .min = 25000, .max = 350000 },
437 	.vco = { .min = 1760000, .max = 3510000 },
438 	.n = { .min = 1, .max = 3 },
439 	.m = { .min = 79, .max = 127 },
440 	.m1 = { .min = 12, .max = 22 },
441 	.m2 = { .min = 5, .max = 9 },
442 	.p = { .min = 14, .max = 56 },
443 	.p1 = { .min = 2, .max = 8 },
444 	.p2 = { .dot_limit = 225000,
445 		.p2_slow = 7, .p2_fast = 7 },
446 };
447 
448 /* LVDS 100mhz refclk limits. */
449 static const struct intel_limit ilk_limits_single_lvds_100m = {
450 	.dot = { .min = 25000, .max = 350000 },
451 	.vco = { .min = 1760000, .max = 3510000 },
452 	.n = { .min = 1, .max = 2 },
453 	.m = { .min = 79, .max = 126 },
454 	.m1 = { .min = 12, .max = 22 },
455 	.m2 = { .min = 5, .max = 9 },
456 	.p = { .min = 28, .max = 112 },
457 	.p1 = { .min = 2, .max = 8 },
458 	.p2 = { .dot_limit = 225000,
459 		.p2_slow = 14, .p2_fast = 14 },
460 };
461 
462 static const struct intel_limit ilk_limits_dual_lvds_100m = {
463 	.dot = { .min = 25000, .max = 350000 },
464 	.vco = { .min = 1760000, .max = 3510000 },
465 	.n = { .min = 1, .max = 3 },
466 	.m = { .min = 79, .max = 126 },
467 	.m1 = { .min = 12, .max = 22 },
468 	.m2 = { .min = 5, .max = 9 },
469 	.p = { .min = 14, .max = 42 },
470 	.p1 = { .min = 2, .max = 6 },
471 	.p2 = { .dot_limit = 225000,
472 		.p2_slow = 7, .p2_fast = 7 },
473 };
474 
475 static const struct intel_limit intel_limits_vlv = {
476 	 /*
477 	  * These are the data rate limits (measured in fast clocks)
478 	  * since those are the strictest limits we have. The fast
479 	  * clock and actual rate limits are more relaxed, so checking
480 	  * them would make no difference.
481 	  */
482 	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
483 	.vco = { .min = 4000000, .max = 6000000 },
484 	.n = { .min = 1, .max = 7 },
485 	.m1 = { .min = 2, .max = 3 },
486 	.m2 = { .min = 11, .max = 156 },
487 	.p1 = { .min = 2, .max = 3 },
488 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
489 };
490 
491 static const struct intel_limit intel_limits_chv = {
492 	/*
493 	 * These are the data rate limits (measured in fast clocks)
494 	 * since those are the strictest limits we have.  The fast
495 	 * clock and actual rate limits are more relaxed, so checking
496 	 * them would make no difference.
497 	 */
498 	.dot = { .min = 25000 * 5, .max = 540000 * 5},
499 	.vco = { .min = 4800000, .max = 6480000 },
500 	.n = { .min = 1, .max = 1 },
501 	.m1 = { .min = 2, .max = 2 },
502 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
503 	.p1 = { .min = 2, .max = 4 },
504 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
505 };
506 
507 static const struct intel_limit intel_limits_bxt = {
508 	/* FIXME: find real dot limits */
509 	.dot = { .min = 0, .max = INT_MAX },
510 	.vco = { .min = 4800000, .max = 6700000 },
511 	.n = { .min = 1, .max = 1 },
512 	.m1 = { .min = 2, .max = 2 },
513 	/* FIXME: find real m2 limits */
514 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
515 	.p1 = { .min = 2, .max = 4 },
516 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
517 };
518 
519 /* WA Display #0827: Gen9:all */
520 static void
521 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable)
522 {
523 	if (enable)
524 		intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
525 		               intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS);
526 	else
527 		intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
528 		               intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS));
529 }
530 
531 /* Wa_2006604312:icl,ehl */
532 static void
533 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
534 		       bool enable)
535 {
536 	if (enable)
537 		intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
538 		               intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS);
539 	else
540 		intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
541 		               intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS);
542 }
543 
544 static bool
545 needs_modeset(const struct intel_crtc_state *state)
546 {
547 	return drm_atomic_crtc_needs_modeset(&state->uapi);
548 }
549 
550 static bool
551 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state)
552 {
553 	return crtc_state->master_transcoder != INVALID_TRANSCODER;
554 }
555 
556 static bool
557 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state)
558 {
559 	return crtc_state->sync_mode_slaves_mask != 0;
560 }
561 
562 bool
563 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state)
564 {
565 	return is_trans_port_sync_master(crtc_state) ||
566 		is_trans_port_sync_slave(crtc_state);
567 }
568 
569 /*
570  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
571  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
572  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
573  * The helpers' return value is the rate of the clock that is fed to the
574  * display engine's pipe which can be the above fast dot clock rate or a
575  * divided-down version of it.
576  */
577 /* m1 is reserved as 0 in Pineview, n is a ring counter */
578 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
579 {
580 	clock->m = clock->m2 + 2;
581 	clock->p = clock->p1 * clock->p2;
582 	if (WARN_ON(clock->n == 0 || clock->p == 0))
583 		return 0;
584 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
585 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
586 
587 	return clock->dot;
588 }
589 
590 static u32 i9xx_dpll_compute_m(struct dpll *dpll)
591 {
592 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
593 }
594 
595 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
596 {
597 	clock->m = i9xx_dpll_compute_m(clock);
598 	clock->p = clock->p1 * clock->p2;
599 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
600 		return 0;
601 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
602 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
603 
604 	return clock->dot;
605 }
606 
607 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
608 {
609 	clock->m = clock->m1 * clock->m2;
610 	clock->p = clock->p1 * clock->p2;
611 	if (WARN_ON(clock->n == 0 || clock->p == 0))
612 		return 0;
613 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
614 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
615 
616 	return clock->dot / 5;
617 }
618 
619 int chv_calc_dpll_params(int refclk, struct dpll *clock)
620 {
621 	clock->m = clock->m1 * clock->m2;
622 	clock->p = clock->p1 * clock->p2;
623 	if (WARN_ON(clock->n == 0 || clock->p == 0))
624 		return 0;
625 	clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
626 					   clock->n << 22);
627 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
628 
629 	return clock->dot / 5;
630 }
631 
632 /*
633  * Returns whether the given set of divisors are valid for a given refclk with
634  * the given connectors.
635  */
636 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
637 			       const struct intel_limit *limit,
638 			       const struct dpll *clock)
639 {
640 	if (clock->n < limit->n.min || limit->n.max < clock->n)
641 		return false;
642 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
643 		return false;
644 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
645 		return false;
646 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
647 		return false;
648 
649 	if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
650 	    !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
651 		if (clock->m1 <= clock->m2)
652 			return false;
653 
654 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
655 	    !IS_GEN9_LP(dev_priv)) {
656 		if (clock->p < limit->p.min || limit->p.max < clock->p)
657 			return false;
658 		if (clock->m < limit->m.min || limit->m.max < clock->m)
659 			return false;
660 	}
661 
662 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
663 		return false;
664 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
665 	 * connector, etc., rather than just a single range.
666 	 */
667 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
668 		return false;
669 
670 	return true;
671 }
672 
673 static int
674 i9xx_select_p2_div(const struct intel_limit *limit,
675 		   const struct intel_crtc_state *crtc_state,
676 		   int target)
677 {
678 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
679 
680 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
681 		/*
682 		 * For LVDS just rely on its current settings for dual-channel.
683 		 * We haven't figured out how to reliably set up different
684 		 * single/dual channel state, if we even can.
685 		 */
686 		if (intel_is_dual_link_lvds(dev_priv))
687 			return limit->p2.p2_fast;
688 		else
689 			return limit->p2.p2_slow;
690 	} else {
691 		if (target < limit->p2.dot_limit)
692 			return limit->p2.p2_slow;
693 		else
694 			return limit->p2.p2_fast;
695 	}
696 }
697 
698 /*
699  * Returns a set of divisors for the desired target clock with the given
700  * refclk, or FALSE.  The returned values represent the clock equation:
701  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
702  *
703  * Target and reference clocks are specified in kHz.
704  *
705  * If match_clock is provided, then best_clock P divider must match the P
706  * divider from @match_clock used for LVDS downclocking.
707  */
708 static bool
709 i9xx_find_best_dpll(const struct intel_limit *limit,
710 		    struct intel_crtc_state *crtc_state,
711 		    int target, int refclk, struct dpll *match_clock,
712 		    struct dpll *best_clock)
713 {
714 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
715 	struct dpll clock;
716 	int err = target;
717 
718 	memset(best_clock, 0, sizeof(*best_clock));
719 
720 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
721 
722 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
723 	     clock.m1++) {
724 		for (clock.m2 = limit->m2.min;
725 		     clock.m2 <= limit->m2.max; clock.m2++) {
726 			if (clock.m2 >= clock.m1)
727 				break;
728 			for (clock.n = limit->n.min;
729 			     clock.n <= limit->n.max; clock.n++) {
730 				for (clock.p1 = limit->p1.min;
731 					clock.p1 <= limit->p1.max; clock.p1++) {
732 					int this_err;
733 
734 					i9xx_calc_dpll_params(refclk, &clock);
735 					if (!intel_pll_is_valid(to_i915(dev),
736 								limit,
737 								&clock))
738 						continue;
739 					if (match_clock &&
740 					    clock.p != match_clock->p)
741 						continue;
742 
743 					this_err = abs(clock.dot - target);
744 					if (this_err < err) {
745 						*best_clock = clock;
746 						err = this_err;
747 					}
748 				}
749 			}
750 		}
751 	}
752 
753 	return (err != target);
754 }
755 
756 /*
757  * Returns a set of divisors for the desired target clock with the given
758  * refclk, or FALSE.  The returned values represent the clock equation:
759  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
760  *
761  * Target and reference clocks are specified in kHz.
762  *
763  * If match_clock is provided, then best_clock P divider must match the P
764  * divider from @match_clock used for LVDS downclocking.
765  */
766 static bool
767 pnv_find_best_dpll(const struct intel_limit *limit,
768 		   struct intel_crtc_state *crtc_state,
769 		   int target, int refclk, struct dpll *match_clock,
770 		   struct dpll *best_clock)
771 {
772 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
773 	struct dpll clock;
774 	int err = target;
775 
776 	memset(best_clock, 0, sizeof(*best_clock));
777 
778 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779 
780 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
781 	     clock.m1++) {
782 		for (clock.m2 = limit->m2.min;
783 		     clock.m2 <= limit->m2.max; clock.m2++) {
784 			for (clock.n = limit->n.min;
785 			     clock.n <= limit->n.max; clock.n++) {
786 				for (clock.p1 = limit->p1.min;
787 					clock.p1 <= limit->p1.max; clock.p1++) {
788 					int this_err;
789 
790 					pnv_calc_dpll_params(refclk, &clock);
791 					if (!intel_pll_is_valid(to_i915(dev),
792 								limit,
793 								&clock))
794 						continue;
795 					if (match_clock &&
796 					    clock.p != match_clock->p)
797 						continue;
798 
799 					this_err = abs(clock.dot - target);
800 					if (this_err < err) {
801 						*best_clock = clock;
802 						err = this_err;
803 					}
804 				}
805 			}
806 		}
807 	}
808 
809 	return (err != target);
810 }
811 
812 /*
813  * Returns a set of divisors for the desired target clock with the given
814  * refclk, or FALSE.  The returned values represent the clock equation:
815  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
816  *
817  * Target and reference clocks are specified in kHz.
818  *
819  * If match_clock is provided, then best_clock P divider must match the P
820  * divider from @match_clock used for LVDS downclocking.
821  */
822 static bool
823 g4x_find_best_dpll(const struct intel_limit *limit,
824 		   struct intel_crtc_state *crtc_state,
825 		   int target, int refclk, struct dpll *match_clock,
826 		   struct dpll *best_clock)
827 {
828 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
829 	struct dpll clock;
830 	int max_n;
831 	bool found = false;
832 	/* approximately equals target * 0.00585 */
833 	int err_most = (target >> 8) + (target >> 9);
834 
835 	memset(best_clock, 0, sizeof(*best_clock));
836 
837 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
838 
839 	max_n = limit->n.max;
840 	/* based on hardware requirement, prefer smaller n to precision */
841 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
842 		/* based on hardware requirement, prefere larger m1,m2 */
843 		for (clock.m1 = limit->m1.max;
844 		     clock.m1 >= limit->m1.min; clock.m1--) {
845 			for (clock.m2 = limit->m2.max;
846 			     clock.m2 >= limit->m2.min; clock.m2--) {
847 				for (clock.p1 = limit->p1.max;
848 				     clock.p1 >= limit->p1.min; clock.p1--) {
849 					int this_err;
850 
851 					i9xx_calc_dpll_params(refclk, &clock);
852 					if (!intel_pll_is_valid(to_i915(dev),
853 								limit,
854 								&clock))
855 						continue;
856 
857 					this_err = abs(clock.dot - target);
858 					if (this_err < err_most) {
859 						*best_clock = clock;
860 						err_most = this_err;
861 						max_n = clock.n;
862 						found = true;
863 					}
864 				}
865 			}
866 		}
867 	}
868 	return found;
869 }
870 
871 /*
872  * Check if the calculated PLL configuration is more optimal compared to the
873  * best configuration and error found so far. Return the calculated error.
874  */
875 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
876 			       const struct dpll *calculated_clock,
877 			       const struct dpll *best_clock,
878 			       unsigned int best_error_ppm,
879 			       unsigned int *error_ppm)
880 {
881 	/*
882 	 * For CHV ignore the error and consider only the P value.
883 	 * Prefer a bigger P value based on HW requirements.
884 	 */
885 	if (IS_CHERRYVIEW(to_i915(dev))) {
886 		*error_ppm = 0;
887 
888 		return calculated_clock->p > best_clock->p;
889 	}
890 
891 	if (drm_WARN_ON_ONCE(dev, !target_freq))
892 		return false;
893 
894 	*error_ppm = div_u64(1000000ULL *
895 				abs(target_freq - calculated_clock->dot),
896 			     target_freq);
897 	/*
898 	 * Prefer a better P value over a better (smaller) error if the error
899 	 * is small. Ensure this preference for future configurations too by
900 	 * setting the error to 0.
901 	 */
902 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
903 		*error_ppm = 0;
904 
905 		return true;
906 	}
907 
908 	return *error_ppm + 10 < best_error_ppm;
909 }
910 
911 /*
912  * Returns a set of divisors for the desired target clock with the given
913  * refclk, or FALSE.  The returned values represent the clock equation:
914  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
915  */
916 static bool
917 vlv_find_best_dpll(const struct intel_limit *limit,
918 		   struct intel_crtc_state *crtc_state,
919 		   int target, int refclk, struct dpll *match_clock,
920 		   struct dpll *best_clock)
921 {
922 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
923 	struct drm_device *dev = crtc->base.dev;
924 	struct dpll clock;
925 	unsigned int bestppm = 1000000;
926 	/* min update 19.2 MHz */
927 	int max_n = min(limit->n.max, refclk / 19200);
928 	bool found = false;
929 
930 	target *= 5; /* fast clock */
931 
932 	memset(best_clock, 0, sizeof(*best_clock));
933 
934 	/* based on hardware requirement, prefer smaller n to precision */
935 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
936 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
937 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
938 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
939 				clock.p = clock.p1 * clock.p2;
940 				/* based on hardware requirement, prefer bigger m1,m2 values */
941 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
942 					unsigned int ppm;
943 
944 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
945 								     refclk * clock.m1);
946 
947 					vlv_calc_dpll_params(refclk, &clock);
948 
949 					if (!intel_pll_is_valid(to_i915(dev),
950 								limit,
951 								&clock))
952 						continue;
953 
954 					if (!vlv_PLL_is_optimal(dev, target,
955 								&clock,
956 								best_clock,
957 								bestppm, &ppm))
958 						continue;
959 
960 					*best_clock = clock;
961 					bestppm = ppm;
962 					found = true;
963 				}
964 			}
965 		}
966 	}
967 
968 	return found;
969 }
970 
971 /*
972  * Returns a set of divisors for the desired target clock with the given
973  * refclk, or FALSE.  The returned values represent the clock equation:
974  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
975  */
976 static bool
977 chv_find_best_dpll(const struct intel_limit *limit,
978 		   struct intel_crtc_state *crtc_state,
979 		   int target, int refclk, struct dpll *match_clock,
980 		   struct dpll *best_clock)
981 {
982 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
983 	struct drm_device *dev = crtc->base.dev;
984 	unsigned int best_error_ppm;
985 	struct dpll clock;
986 	u64 m2;
987 	int found = false;
988 
989 	memset(best_clock, 0, sizeof(*best_clock));
990 	best_error_ppm = 1000000;
991 
992 	/*
993 	 * Based on hardware doc, the n always set to 1, and m1 always
994 	 * set to 2.  If requires to support 200Mhz refclk, we need to
995 	 * revisit this because n may not 1 anymore.
996 	 */
997 	clock.n = 1, clock.m1 = 2;
998 	target *= 5;	/* fast clock */
999 
1000 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1001 		for (clock.p2 = limit->p2.p2_fast;
1002 				clock.p2 >= limit->p2.p2_slow;
1003 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1004 			unsigned int error_ppm;
1005 
1006 			clock.p = clock.p1 * clock.p2;
1007 
1008 			m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
1009 						   refclk * clock.m1);
1010 
1011 			if (m2 > INT_MAX/clock.m1)
1012 				continue;
1013 
1014 			clock.m2 = m2;
1015 
1016 			chv_calc_dpll_params(refclk, &clock);
1017 
1018 			if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
1019 				continue;
1020 
1021 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1022 						best_error_ppm, &error_ppm))
1023 				continue;
1024 
1025 			*best_clock = clock;
1026 			best_error_ppm = error_ppm;
1027 			found = true;
1028 		}
1029 	}
1030 
1031 	return found;
1032 }
1033 
1034 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
1035 			struct dpll *best_clock)
1036 {
1037 	int refclk = 100000;
1038 	const struct intel_limit *limit = &intel_limits_bxt;
1039 
1040 	return chv_find_best_dpll(limit, crtc_state,
1041 				  crtc_state->port_clock, refclk,
1042 				  NULL, best_clock);
1043 }
1044 
1045 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1046 				    enum pipe pipe)
1047 {
1048 	i915_reg_t reg = PIPEDSL(pipe);
1049 	u32 line1, line2;
1050 	u32 line_mask;
1051 
1052 	if (IS_GEN(dev_priv, 2))
1053 		line_mask = DSL_LINEMASK_GEN2;
1054 	else
1055 		line_mask = DSL_LINEMASK_GEN3;
1056 
1057 	line1 = intel_de_read(dev_priv, reg) & line_mask;
1058 	msleep(5);
1059 	line2 = intel_de_read(dev_priv, reg) & line_mask;
1060 
1061 	return line1 != line2;
1062 }
1063 
1064 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1065 {
1066 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1067 	enum pipe pipe = crtc->pipe;
1068 
1069 	/* Wait for the display line to settle/start moving */
1070 	if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1071 		drm_err(&dev_priv->drm,
1072 			"pipe %c scanline %s wait timed out\n",
1073 			pipe_name(pipe), onoff(state));
1074 }
1075 
1076 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1077 {
1078 	wait_for_pipe_scanline_moving(crtc, false);
1079 }
1080 
1081 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1082 {
1083 	wait_for_pipe_scanline_moving(crtc, true);
1084 }
1085 
1086 static void
1087 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
1088 {
1089 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1090 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1091 
1092 	if (INTEL_GEN(dev_priv) >= 4) {
1093 		enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1094 		i915_reg_t reg = PIPECONF(cpu_transcoder);
1095 
1096 		/* Wait for the Pipe State to go off */
1097 		if (intel_de_wait_for_clear(dev_priv, reg,
1098 					    I965_PIPECONF_ACTIVE, 100))
1099 			drm_WARN(&dev_priv->drm, 1,
1100 				 "pipe_off wait timed out\n");
1101 	} else {
1102 		intel_wait_for_pipe_scanline_stopped(crtc);
1103 	}
1104 }
1105 
1106 /* Only for pre-ILK configs */
1107 void assert_pll(struct drm_i915_private *dev_priv,
1108 		enum pipe pipe, bool state)
1109 {
1110 	u32 val;
1111 	bool cur_state;
1112 
1113 	val = intel_de_read(dev_priv, DPLL(pipe));
1114 	cur_state = !!(val & DPLL_VCO_ENABLE);
1115 	I915_STATE_WARN(cur_state != state,
1116 	     "PLL state assertion failure (expected %s, current %s)\n",
1117 			onoff(state), onoff(cur_state));
1118 }
1119 
1120 /* XXX: the dsi pll is shared between MIPI DSI ports */
1121 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1122 {
1123 	u32 val;
1124 	bool cur_state;
1125 
1126 	vlv_cck_get(dev_priv);
1127 	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1128 	vlv_cck_put(dev_priv);
1129 
1130 	cur_state = val & DSI_PLL_VCO_EN;
1131 	I915_STATE_WARN(cur_state != state,
1132 	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1133 			onoff(state), onoff(cur_state));
1134 }
1135 
1136 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1137 			  enum pipe pipe, bool state)
1138 {
1139 	bool cur_state;
1140 
1141 	if (HAS_DDI(dev_priv)) {
1142 		/*
1143 		 * DDI does not have a specific FDI_TX register.
1144 		 *
1145 		 * FDI is never fed from EDP transcoder
1146 		 * so pipe->transcoder cast is fine here.
1147 		 */
1148 		enum transcoder cpu_transcoder = (enum transcoder)pipe;
1149 		u32 val = intel_de_read(dev_priv,
1150 					TRANS_DDI_FUNC_CTL(cpu_transcoder));
1151 		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1152 	} else {
1153 		u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe));
1154 		cur_state = !!(val & FDI_TX_ENABLE);
1155 	}
1156 	I915_STATE_WARN(cur_state != state,
1157 	     "FDI TX state assertion failure (expected %s, current %s)\n",
1158 			onoff(state), onoff(cur_state));
1159 }
1160 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1161 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1162 
1163 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1164 			  enum pipe pipe, bool state)
1165 {
1166 	u32 val;
1167 	bool cur_state;
1168 
1169 	val = intel_de_read(dev_priv, FDI_RX_CTL(pipe));
1170 	cur_state = !!(val & FDI_RX_ENABLE);
1171 	I915_STATE_WARN(cur_state != state,
1172 	     "FDI RX state assertion failure (expected %s, current %s)\n",
1173 			onoff(state), onoff(cur_state));
1174 }
1175 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1176 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1177 
1178 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1179 				      enum pipe pipe)
1180 {
1181 	u32 val;
1182 
1183 	/* ILK FDI PLL is always enabled */
1184 	if (IS_GEN(dev_priv, 5))
1185 		return;
1186 
1187 	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
1188 	if (HAS_DDI(dev_priv))
1189 		return;
1190 
1191 	val = intel_de_read(dev_priv, FDI_TX_CTL(pipe));
1192 	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1193 }
1194 
1195 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1196 		       enum pipe pipe, bool state)
1197 {
1198 	u32 val;
1199 	bool cur_state;
1200 
1201 	val = intel_de_read(dev_priv, FDI_RX_CTL(pipe));
1202 	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1203 	I915_STATE_WARN(cur_state != state,
1204 	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1205 			onoff(state), onoff(cur_state));
1206 }
1207 
1208 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1209 {
1210 	i915_reg_t pp_reg;
1211 	u32 val;
1212 	enum pipe panel_pipe = INVALID_PIPE;
1213 	bool locked = true;
1214 
1215 	if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv)))
1216 		return;
1217 
1218 	if (HAS_PCH_SPLIT(dev_priv)) {
1219 		u32 port_sel;
1220 
1221 		pp_reg = PP_CONTROL(0);
1222 		port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1223 
1224 		switch (port_sel) {
1225 		case PANEL_PORT_SELECT_LVDS:
1226 			intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe);
1227 			break;
1228 		case PANEL_PORT_SELECT_DPA:
1229 			intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe);
1230 			break;
1231 		case PANEL_PORT_SELECT_DPC:
1232 			intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe);
1233 			break;
1234 		case PANEL_PORT_SELECT_DPD:
1235 			intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe);
1236 			break;
1237 		default:
1238 			MISSING_CASE(port_sel);
1239 			break;
1240 		}
1241 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1242 		/* presumably write lock depends on pipe, not port select */
1243 		pp_reg = PP_CONTROL(pipe);
1244 		panel_pipe = pipe;
1245 	} else {
1246 		u32 port_sel;
1247 
1248 		pp_reg = PP_CONTROL(0);
1249 		port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1250 
1251 		drm_WARN_ON(&dev_priv->drm,
1252 			    port_sel != PANEL_PORT_SELECT_LVDS);
1253 		intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe);
1254 	}
1255 
1256 	val = intel_de_read(dev_priv, pp_reg);
1257 	if (!(val & PANEL_POWER_ON) ||
1258 	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1259 		locked = false;
1260 
1261 	I915_STATE_WARN(panel_pipe == pipe && locked,
1262 	     "panel assertion failure, pipe %c regs locked\n",
1263 	     pipe_name(pipe));
1264 }
1265 
1266 void assert_pipe(struct drm_i915_private *dev_priv,
1267 		 enum transcoder cpu_transcoder, bool state)
1268 {
1269 	bool cur_state;
1270 	enum intel_display_power_domain power_domain;
1271 	intel_wakeref_t wakeref;
1272 
1273 	/* we keep both pipes enabled on 830 */
1274 	if (IS_I830(dev_priv))
1275 		state = true;
1276 
1277 	power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1278 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
1279 	if (wakeref) {
1280 		u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder));
1281 		cur_state = !!(val & PIPECONF_ENABLE);
1282 
1283 		intel_display_power_put(dev_priv, power_domain, wakeref);
1284 	} else {
1285 		cur_state = false;
1286 	}
1287 
1288 	I915_STATE_WARN(cur_state != state,
1289 			"transcoder %s assertion failure (expected %s, current %s)\n",
1290 			transcoder_name(cpu_transcoder),
1291 			onoff(state), onoff(cur_state));
1292 }
1293 
1294 static void assert_plane(struct intel_plane *plane, bool state)
1295 {
1296 	enum pipe pipe;
1297 	bool cur_state;
1298 
1299 	cur_state = plane->get_hw_state(plane, &pipe);
1300 
1301 	I915_STATE_WARN(cur_state != state,
1302 			"%s assertion failure (expected %s, current %s)\n",
1303 			plane->base.name, onoff(state), onoff(cur_state));
1304 }
1305 
1306 #define assert_plane_enabled(p) assert_plane(p, true)
1307 #define assert_plane_disabled(p) assert_plane(p, false)
1308 
1309 static void assert_planes_disabled(struct intel_crtc *crtc)
1310 {
1311 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1312 	struct intel_plane *plane;
1313 
1314 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1315 		assert_plane_disabled(plane);
1316 }
1317 
1318 static void assert_vblank_disabled(struct drm_crtc *crtc)
1319 {
1320 	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1321 		drm_crtc_vblank_put(crtc);
1322 }
1323 
1324 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1325 				    enum pipe pipe)
1326 {
1327 	u32 val;
1328 	bool enabled;
1329 
1330 	val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe));
1331 	enabled = !!(val & TRANS_ENABLE);
1332 	I915_STATE_WARN(enabled,
1333 	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1334 	     pipe_name(pipe));
1335 }
1336 
1337 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1338 				   enum pipe pipe, enum port port,
1339 				   i915_reg_t dp_reg)
1340 {
1341 	enum pipe port_pipe;
1342 	bool state;
1343 
1344 	state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe);
1345 
1346 	I915_STATE_WARN(state && port_pipe == pipe,
1347 			"PCH DP %c enabled on transcoder %c, should be disabled\n",
1348 			port_name(port), pipe_name(pipe));
1349 
1350 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1351 			"IBX PCH DP %c still using transcoder B\n",
1352 			port_name(port));
1353 }
1354 
1355 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1356 				     enum pipe pipe, enum port port,
1357 				     i915_reg_t hdmi_reg)
1358 {
1359 	enum pipe port_pipe;
1360 	bool state;
1361 
1362 	state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe);
1363 
1364 	I915_STATE_WARN(state && port_pipe == pipe,
1365 			"PCH HDMI %c enabled on transcoder %c, should be disabled\n",
1366 			port_name(port), pipe_name(pipe));
1367 
1368 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1369 			"IBX PCH HDMI %c still using transcoder B\n",
1370 			port_name(port));
1371 }
1372 
1373 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1374 				      enum pipe pipe)
1375 {
1376 	enum pipe port_pipe;
1377 
1378 	assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B);
1379 	assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C);
1380 	assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D);
1381 
1382 	I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) &&
1383 			port_pipe == pipe,
1384 			"PCH VGA enabled on transcoder %c, should be disabled\n",
1385 			pipe_name(pipe));
1386 
1387 	I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) &&
1388 			port_pipe == pipe,
1389 			"PCH LVDS enabled on transcoder %c, should be disabled\n",
1390 			pipe_name(pipe));
1391 
1392 	/* PCH SDVOB multiplex with HDMIB */
1393 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB);
1394 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC);
1395 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID);
1396 }
1397 
1398 static void _vlv_enable_pll(struct intel_crtc *crtc,
1399 			    const struct intel_crtc_state *pipe_config)
1400 {
1401 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1402 	enum pipe pipe = crtc->pipe;
1403 
1404 	intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1405 	intel_de_posting_read(dev_priv, DPLL(pipe));
1406 	udelay(150);
1407 
1408 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1409 		drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
1410 }
1411 
1412 static void vlv_enable_pll(struct intel_crtc *crtc,
1413 			   const struct intel_crtc_state *pipe_config)
1414 {
1415 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1416 	enum pipe pipe = crtc->pipe;
1417 
1418 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1419 
1420 	/* PLL is protected by panel, make sure we can write it */
1421 	assert_panel_unlocked(dev_priv, pipe);
1422 
1423 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1424 		_vlv_enable_pll(crtc, pipe_config);
1425 
1426 	intel_de_write(dev_priv, DPLL_MD(pipe),
1427 		       pipe_config->dpll_hw_state.dpll_md);
1428 	intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1429 }
1430 
1431 
1432 static void _chv_enable_pll(struct intel_crtc *crtc,
1433 			    const struct intel_crtc_state *pipe_config)
1434 {
1435 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1436 	enum pipe pipe = crtc->pipe;
1437 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1438 	u32 tmp;
1439 
1440 	vlv_dpio_get(dev_priv);
1441 
1442 	/* Enable back the 10bit clock to display controller */
1443 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1444 	tmp |= DPIO_DCLKP_EN;
1445 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1446 
1447 	vlv_dpio_put(dev_priv);
1448 
1449 	/*
1450 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1451 	 */
1452 	udelay(1);
1453 
1454 	/* Enable PLL */
1455 	intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1456 
1457 	/* Check PLL is locked */
1458 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1459 		drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
1460 }
1461 
1462 static void chv_enable_pll(struct intel_crtc *crtc,
1463 			   const struct intel_crtc_state *pipe_config)
1464 {
1465 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1466 	enum pipe pipe = crtc->pipe;
1467 
1468 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1469 
1470 	/* PLL is protected by panel, make sure we can write it */
1471 	assert_panel_unlocked(dev_priv, pipe);
1472 
1473 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1474 		_chv_enable_pll(crtc, pipe_config);
1475 
1476 	if (pipe != PIPE_A) {
1477 		/*
1478 		 * WaPixelRepeatModeFixForC0:chv
1479 		 *
1480 		 * DPLLCMD is AWOL. Use chicken bits to propagate
1481 		 * the value from DPLLBMD to either pipe B or C.
1482 		 */
1483 		intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1484 		intel_de_write(dev_priv, DPLL_MD(PIPE_B),
1485 			       pipe_config->dpll_hw_state.dpll_md);
1486 		intel_de_write(dev_priv, CBR4_VLV, 0);
1487 		dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1488 
1489 		/*
1490 		 * DPLLB VGA mode also seems to cause problems.
1491 		 * We should always have it disabled.
1492 		 */
1493 		drm_WARN_ON(&dev_priv->drm,
1494 			    (intel_de_read(dev_priv, DPLL(PIPE_B)) &
1495 			     DPLL_VGA_MODE_DIS) == 0);
1496 	} else {
1497 		intel_de_write(dev_priv, DPLL_MD(pipe),
1498 			       pipe_config->dpll_hw_state.dpll_md);
1499 		intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1500 	}
1501 }
1502 
1503 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1504 {
1505 	if (IS_I830(dev_priv))
1506 		return false;
1507 
1508 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1509 }
1510 
1511 static void i9xx_enable_pll(struct intel_crtc *crtc,
1512 			    const struct intel_crtc_state *crtc_state)
1513 {
1514 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1515 	i915_reg_t reg = DPLL(crtc->pipe);
1516 	u32 dpll = crtc_state->dpll_hw_state.dpll;
1517 	int i;
1518 
1519 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1520 
1521 	/* PLL is protected by panel, make sure we can write it */
1522 	if (i9xx_has_pps(dev_priv))
1523 		assert_panel_unlocked(dev_priv, crtc->pipe);
1524 
1525 	/*
1526 	 * Apparently we need to have VGA mode enabled prior to changing
1527 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1528 	 * dividers, even though the register value does change.
1529 	 */
1530 	intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS);
1531 	intel_de_write(dev_priv, reg, dpll);
1532 
1533 	/* Wait for the clocks to stabilize. */
1534 	intel_de_posting_read(dev_priv, reg);
1535 	udelay(150);
1536 
1537 	if (INTEL_GEN(dev_priv) >= 4) {
1538 		intel_de_write(dev_priv, DPLL_MD(crtc->pipe),
1539 			       crtc_state->dpll_hw_state.dpll_md);
1540 	} else {
1541 		/* The pixel multiplier can only be updated once the
1542 		 * DPLL is enabled and the clocks are stable.
1543 		 *
1544 		 * So write it again.
1545 		 */
1546 		intel_de_write(dev_priv, reg, dpll);
1547 	}
1548 
1549 	/* We do this three times for luck */
1550 	for (i = 0; i < 3; i++) {
1551 		intel_de_write(dev_priv, reg, dpll);
1552 		intel_de_posting_read(dev_priv, reg);
1553 		udelay(150); /* wait for warmup */
1554 	}
1555 }
1556 
1557 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1558 {
1559 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1560 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1561 	enum pipe pipe = crtc->pipe;
1562 
1563 	/* Don't disable pipe or pipe PLLs if needed */
1564 	if (IS_I830(dev_priv))
1565 		return;
1566 
1567 	/* Make sure the pipe isn't still relying on us */
1568 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1569 
1570 	intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
1571 	intel_de_posting_read(dev_priv, DPLL(pipe));
1572 }
1573 
1574 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1575 {
1576 	u32 val;
1577 
1578 	/* Make sure the pipe isn't still relying on us */
1579 	assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1580 
1581 	val = DPLL_INTEGRATED_REF_CLK_VLV |
1582 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1583 	if (pipe != PIPE_A)
1584 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1585 
1586 	intel_de_write(dev_priv, DPLL(pipe), val);
1587 	intel_de_posting_read(dev_priv, DPLL(pipe));
1588 }
1589 
1590 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1591 {
1592 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1593 	u32 val;
1594 
1595 	/* Make sure the pipe isn't still relying on us */
1596 	assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1597 
1598 	val = DPLL_SSC_REF_CLK_CHV |
1599 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1600 	if (pipe != PIPE_A)
1601 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1602 
1603 	intel_de_write(dev_priv, DPLL(pipe), val);
1604 	intel_de_posting_read(dev_priv, DPLL(pipe));
1605 
1606 	vlv_dpio_get(dev_priv);
1607 
1608 	/* Disable 10bit clock to display controller */
1609 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1610 	val &= ~DPIO_DCLKP_EN;
1611 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1612 
1613 	vlv_dpio_put(dev_priv);
1614 }
1615 
1616 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1617 			 struct intel_digital_port *dig_port,
1618 			 unsigned int expected_mask)
1619 {
1620 	u32 port_mask;
1621 	i915_reg_t dpll_reg;
1622 
1623 	switch (dig_port->base.port) {
1624 	case PORT_B:
1625 		port_mask = DPLL_PORTB_READY_MASK;
1626 		dpll_reg = DPLL(0);
1627 		break;
1628 	case PORT_C:
1629 		port_mask = DPLL_PORTC_READY_MASK;
1630 		dpll_reg = DPLL(0);
1631 		expected_mask <<= 4;
1632 		break;
1633 	case PORT_D:
1634 		port_mask = DPLL_PORTD_READY_MASK;
1635 		dpll_reg = DPIO_PHY_STATUS;
1636 		break;
1637 	default:
1638 		BUG();
1639 	}
1640 
1641 	if (intel_de_wait_for_register(dev_priv, dpll_reg,
1642 				       port_mask, expected_mask, 1000))
1643 		drm_WARN(&dev_priv->drm, 1,
1644 			 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n",
1645 			 dig_port->base.base.base.id, dig_port->base.base.name,
1646 			 intel_de_read(dev_priv, dpll_reg) & port_mask,
1647 			 expected_mask);
1648 }
1649 
1650 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state)
1651 {
1652 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1653 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1654 	enum pipe pipe = crtc->pipe;
1655 	i915_reg_t reg;
1656 	u32 val, pipeconf_val;
1657 
1658 	/* Make sure PCH DPLL is enabled */
1659 	assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll);
1660 
1661 	/* FDI must be feeding us bits for PCH ports */
1662 	assert_fdi_tx_enabled(dev_priv, pipe);
1663 	assert_fdi_rx_enabled(dev_priv, pipe);
1664 
1665 	if (HAS_PCH_CPT(dev_priv)) {
1666 		reg = TRANS_CHICKEN2(pipe);
1667 		val = intel_de_read(dev_priv, reg);
1668 		/*
1669 		 * Workaround: Set the timing override bit
1670 		 * before enabling the pch transcoder.
1671 		 */
1672 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1673 		/* Configure frame start delay to match the CPU */
1674 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1675 		val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1676 		intel_de_write(dev_priv, reg, val);
1677 	}
1678 
1679 	reg = PCH_TRANSCONF(pipe);
1680 	val = intel_de_read(dev_priv, reg);
1681 	pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe));
1682 
1683 	if (HAS_PCH_IBX(dev_priv)) {
1684 		/* Configure frame start delay to match the CPU */
1685 		val &= ~TRANS_FRAME_START_DELAY_MASK;
1686 		val |= TRANS_FRAME_START_DELAY(0);
1687 
1688 		/*
1689 		 * Make the BPC in transcoder be consistent with
1690 		 * that in pipeconf reg. For HDMI we must use 8bpc
1691 		 * here for both 8bpc and 12bpc.
1692 		 */
1693 		val &= ~PIPECONF_BPC_MASK;
1694 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1695 			val |= PIPECONF_8BPC;
1696 		else
1697 			val |= pipeconf_val & PIPECONF_BPC_MASK;
1698 	}
1699 
1700 	val &= ~TRANS_INTERLACE_MASK;
1701 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) {
1702 		if (HAS_PCH_IBX(dev_priv) &&
1703 		    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
1704 			val |= TRANS_LEGACY_INTERLACED_ILK;
1705 		else
1706 			val |= TRANS_INTERLACED;
1707 	} else {
1708 		val |= TRANS_PROGRESSIVE;
1709 	}
1710 
1711 	intel_de_write(dev_priv, reg, val | TRANS_ENABLE);
1712 	if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100))
1713 		drm_err(&dev_priv->drm, "failed to enable transcoder %c\n",
1714 			pipe_name(pipe));
1715 }
1716 
1717 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1718 				      enum transcoder cpu_transcoder)
1719 {
1720 	u32 val, pipeconf_val;
1721 
1722 	/* FDI must be feeding us bits for PCH ports */
1723 	assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1724 	assert_fdi_rx_enabled(dev_priv, PIPE_A);
1725 
1726 	val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A));
1727 	/* Workaround: set timing override bit. */
1728 	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1729 	/* Configure frame start delay to match the CPU */
1730 	val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1731 	val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1732 	intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val);
1733 
1734 	val = TRANS_ENABLE;
1735 	pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder));
1736 
1737 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1738 	    PIPECONF_INTERLACED_ILK)
1739 		val |= TRANS_INTERLACED;
1740 	else
1741 		val |= TRANS_PROGRESSIVE;
1742 
1743 	intel_de_write(dev_priv, LPT_TRANSCONF, val);
1744 	if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF,
1745 				  TRANS_STATE_ENABLE, 100))
1746 		drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n");
1747 }
1748 
1749 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1750 				       enum pipe pipe)
1751 {
1752 	i915_reg_t reg;
1753 	u32 val;
1754 
1755 	/* FDI relies on the transcoder */
1756 	assert_fdi_tx_disabled(dev_priv, pipe);
1757 	assert_fdi_rx_disabled(dev_priv, pipe);
1758 
1759 	/* Ports must be off as well */
1760 	assert_pch_ports_disabled(dev_priv, pipe);
1761 
1762 	reg = PCH_TRANSCONF(pipe);
1763 	val = intel_de_read(dev_priv, reg);
1764 	val &= ~TRANS_ENABLE;
1765 	intel_de_write(dev_priv, reg, val);
1766 	/* wait for PCH transcoder off, transcoder state */
1767 	if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50))
1768 		drm_err(&dev_priv->drm, "failed to disable transcoder %c\n",
1769 			pipe_name(pipe));
1770 
1771 	if (HAS_PCH_CPT(dev_priv)) {
1772 		/* Workaround: Clear the timing override chicken bit again. */
1773 		reg = TRANS_CHICKEN2(pipe);
1774 		val = intel_de_read(dev_priv, reg);
1775 		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1776 		intel_de_write(dev_priv, reg, val);
1777 	}
1778 }
1779 
1780 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1781 {
1782 	u32 val;
1783 
1784 	val = intel_de_read(dev_priv, LPT_TRANSCONF);
1785 	val &= ~TRANS_ENABLE;
1786 	intel_de_write(dev_priv, LPT_TRANSCONF, val);
1787 	/* wait for PCH transcoder off, transcoder state */
1788 	if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF,
1789 				    TRANS_STATE_ENABLE, 50))
1790 		drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n");
1791 
1792 	/* Workaround: clear timing override bit. */
1793 	val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A));
1794 	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1795 	intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val);
1796 }
1797 
1798 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1799 {
1800 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1801 
1802 	if (HAS_PCH_LPT(dev_priv))
1803 		return PIPE_A;
1804 	else
1805 		return crtc->pipe;
1806 }
1807 
1808 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
1809 {
1810 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1811 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1812 	u32 mode_flags = crtc->mode_flags;
1813 
1814 	/*
1815 	 * From Gen 11, In case of dsi cmd mode, frame counter wouldnt
1816 	 * have updated at the beginning of TE, if we want to use
1817 	 * the hw counter, then we would find it updated in only
1818 	 * the next TE, hence switching to sw counter.
1819 	 */
1820 	if (mode_flags & (I915_MODE_FLAG_DSI_USE_TE0 | I915_MODE_FLAG_DSI_USE_TE1))
1821 		return 0;
1822 
1823 	/*
1824 	 * On i965gm the hardware frame counter reads
1825 	 * zero when the TV encoder is enabled :(
1826 	 */
1827 	if (IS_I965GM(dev_priv) &&
1828 	    (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
1829 		return 0;
1830 
1831 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1832 		return 0xffffffff; /* full 32 bit counter */
1833 	else if (INTEL_GEN(dev_priv) >= 3)
1834 		return 0xffffff; /* only 24 bits of frame count */
1835 	else
1836 		return 0; /* Gen2 doesn't have a hardware frame counter */
1837 }
1838 
1839 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
1840 {
1841 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1842 
1843 	assert_vblank_disabled(&crtc->base);
1844 	drm_crtc_set_max_vblank_count(&crtc->base,
1845 				      intel_crtc_max_vblank_count(crtc_state));
1846 	drm_crtc_vblank_on(&crtc->base);
1847 }
1848 
1849 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state)
1850 {
1851 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1852 
1853 	drm_crtc_vblank_off(&crtc->base);
1854 	assert_vblank_disabled(&crtc->base);
1855 }
1856 
1857 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state)
1858 {
1859 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1860 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1861 	enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
1862 	enum pipe pipe = crtc->pipe;
1863 	i915_reg_t reg;
1864 	u32 val;
1865 
1866 	drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe));
1867 
1868 	assert_planes_disabled(crtc);
1869 
1870 	/*
1871 	 * A pipe without a PLL won't actually be able to drive bits from
1872 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1873 	 * need the check.
1874 	 */
1875 	if (HAS_GMCH(dev_priv)) {
1876 		if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
1877 			assert_dsi_pll_enabled(dev_priv);
1878 		else
1879 			assert_pll_enabled(dev_priv, pipe);
1880 	} else {
1881 		if (new_crtc_state->has_pch_encoder) {
1882 			/* if driving the PCH, we need FDI enabled */
1883 			assert_fdi_rx_pll_enabled(dev_priv,
1884 						  intel_crtc_pch_transcoder(crtc));
1885 			assert_fdi_tx_pll_enabled(dev_priv,
1886 						  (enum pipe) cpu_transcoder);
1887 		}
1888 		/* FIXME: assert CPU port conditions for SNB+ */
1889 	}
1890 
1891 	trace_intel_pipe_enable(crtc);
1892 
1893 	reg = PIPECONF(cpu_transcoder);
1894 	val = intel_de_read(dev_priv, reg);
1895 	if (val & PIPECONF_ENABLE) {
1896 		/* we keep both pipes enabled on 830 */
1897 		drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv));
1898 		return;
1899 	}
1900 
1901 	intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE);
1902 	intel_de_posting_read(dev_priv, reg);
1903 
1904 	/*
1905 	 * Until the pipe starts PIPEDSL reads will return a stale value,
1906 	 * which causes an apparent vblank timestamp jump when PIPEDSL
1907 	 * resets to its proper value. That also messes up the frame count
1908 	 * when it's derived from the timestamps. So let's wait for the
1909 	 * pipe to start properly before we call drm_crtc_vblank_on()
1910 	 */
1911 	if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
1912 		intel_wait_for_pipe_scanline_moving(crtc);
1913 }
1914 
1915 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state)
1916 {
1917 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1918 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1919 	enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1920 	enum pipe pipe = crtc->pipe;
1921 	i915_reg_t reg;
1922 	u32 val;
1923 
1924 	drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe));
1925 
1926 	/*
1927 	 * Make sure planes won't keep trying to pump pixels to us,
1928 	 * or we might hang the display.
1929 	 */
1930 	assert_planes_disabled(crtc);
1931 
1932 	trace_intel_pipe_disable(crtc);
1933 
1934 	reg = PIPECONF(cpu_transcoder);
1935 	val = intel_de_read(dev_priv, reg);
1936 	if ((val & PIPECONF_ENABLE) == 0)
1937 		return;
1938 
1939 	/*
1940 	 * Double wide has implications for planes
1941 	 * so best keep it disabled when not needed.
1942 	 */
1943 	if (old_crtc_state->double_wide)
1944 		val &= ~PIPECONF_DOUBLE_WIDE;
1945 
1946 	/* Don't disable pipe or pipe PLLs if needed */
1947 	if (!IS_I830(dev_priv))
1948 		val &= ~PIPECONF_ENABLE;
1949 
1950 	intel_de_write(dev_priv, reg, val);
1951 	if ((val & PIPECONF_ENABLE) == 0)
1952 		intel_wait_for_pipe_off(old_crtc_state);
1953 }
1954 
1955 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1956 {
1957 	return IS_GEN(dev_priv, 2) ? 2048 : 4096;
1958 }
1959 
1960 static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane)
1961 {
1962 	if (!is_ccs_modifier(fb->modifier))
1963 		return false;
1964 
1965 	return plane >= fb->format->num_planes / 2;
1966 }
1967 
1968 static bool is_gen12_ccs_modifier(u64 modifier)
1969 {
1970 	return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
1971 	       modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
1972 
1973 }
1974 
1975 static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane)
1976 {
1977 	return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane);
1978 }
1979 
1980 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane)
1981 {
1982 	if (is_ccs_modifier(fb->modifier))
1983 		return is_ccs_plane(fb, plane);
1984 
1985 	return plane == 1;
1986 }
1987 
1988 static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane)
1989 {
1990 	drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) ||
1991 		    (main_plane && main_plane >= fb->format->num_planes / 2));
1992 
1993 	return fb->format->num_planes / 2 + main_plane;
1994 }
1995 
1996 static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane)
1997 {
1998 	drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) ||
1999 		    ccs_plane < fb->format->num_planes / 2);
2000 
2001 	return ccs_plane - fb->format->num_planes / 2;
2002 }
2003 
2004 int intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane)
2005 {
2006 	struct drm_i915_private *i915 = to_i915(fb->dev);
2007 
2008 	if (is_ccs_modifier(fb->modifier))
2009 		return main_to_ccs_plane(fb, main_plane);
2010 	else if (INTEL_GEN(i915) < 11 &&
2011 		 intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
2012 		return 1;
2013 	else
2014 		return 0;
2015 }
2016 
2017 bool
2018 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info,
2019 				    uint64_t modifier)
2020 {
2021 	return info->is_yuv &&
2022 	       info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2);
2023 }
2024 
2025 static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb,
2026 				   int color_plane)
2027 {
2028 	return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) &&
2029 	       color_plane == 1;
2030 }
2031 
2032 static unsigned int
2033 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane)
2034 {
2035 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2036 	unsigned int cpp = fb->format->cpp[color_plane];
2037 
2038 	switch (fb->modifier) {
2039 	case DRM_FORMAT_MOD_LINEAR:
2040 		return intel_tile_size(dev_priv);
2041 	case I915_FORMAT_MOD_X_TILED:
2042 		if (IS_GEN(dev_priv, 2))
2043 			return 128;
2044 		else
2045 			return 512;
2046 	case I915_FORMAT_MOD_Y_TILED_CCS:
2047 		if (is_ccs_plane(fb, color_plane))
2048 			return 128;
2049 		fallthrough;
2050 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2051 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2052 		if (is_ccs_plane(fb, color_plane))
2053 			return 64;
2054 		fallthrough;
2055 	case I915_FORMAT_MOD_Y_TILED:
2056 		if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv))
2057 			return 128;
2058 		else
2059 			return 512;
2060 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2061 		if (is_ccs_plane(fb, color_plane))
2062 			return 128;
2063 		fallthrough;
2064 	case I915_FORMAT_MOD_Yf_TILED:
2065 		switch (cpp) {
2066 		case 1:
2067 			return 64;
2068 		case 2:
2069 		case 4:
2070 			return 128;
2071 		case 8:
2072 		case 16:
2073 			return 256;
2074 		default:
2075 			MISSING_CASE(cpp);
2076 			return cpp;
2077 		}
2078 		break;
2079 	default:
2080 		MISSING_CASE(fb->modifier);
2081 		return cpp;
2082 	}
2083 }
2084 
2085 static unsigned int
2086 intel_tile_height(const struct drm_framebuffer *fb, int color_plane)
2087 {
2088 	if (is_gen12_ccs_plane(fb, color_plane))
2089 		return 1;
2090 
2091 	return intel_tile_size(to_i915(fb->dev)) /
2092 		intel_tile_width_bytes(fb, color_plane);
2093 }
2094 
2095 /* Return the tile dimensions in pixel units */
2096 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane,
2097 			    unsigned int *tile_width,
2098 			    unsigned int *tile_height)
2099 {
2100 	unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane);
2101 	unsigned int cpp = fb->format->cpp[color_plane];
2102 
2103 	*tile_width = tile_width_bytes / cpp;
2104 	*tile_height = intel_tile_height(fb, color_plane);
2105 }
2106 
2107 static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb,
2108 					int color_plane)
2109 {
2110 	unsigned int tile_width, tile_height;
2111 
2112 	intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2113 
2114 	return fb->pitches[color_plane] * tile_height;
2115 }
2116 
2117 unsigned int
2118 intel_fb_align_height(const struct drm_framebuffer *fb,
2119 		      int color_plane, unsigned int height)
2120 {
2121 	unsigned int tile_height = intel_tile_height(fb, color_plane);
2122 
2123 	return ALIGN(height, tile_height);
2124 }
2125 
2126 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2127 {
2128 	unsigned int size = 0;
2129 	int i;
2130 
2131 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2132 		size += rot_info->plane[i].width * rot_info->plane[i].height;
2133 
2134 	return size;
2135 }
2136 
2137 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info)
2138 {
2139 	unsigned int size = 0;
2140 	int i;
2141 
2142 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
2143 		size += rem_info->plane[i].width * rem_info->plane[i].height;
2144 
2145 	return size;
2146 }
2147 
2148 static void
2149 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2150 			const struct drm_framebuffer *fb,
2151 			unsigned int rotation)
2152 {
2153 	view->type = I915_GGTT_VIEW_NORMAL;
2154 	if (drm_rotation_90_or_270(rotation)) {
2155 		view->type = I915_GGTT_VIEW_ROTATED;
2156 		view->rotated = to_intel_framebuffer(fb)->rot_info;
2157 	}
2158 }
2159 
2160 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2161 {
2162 	if (IS_I830(dev_priv))
2163 		return 16 * 1024;
2164 	else if (IS_I85X(dev_priv))
2165 		return 256;
2166 	else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2167 		return 32;
2168 	else
2169 		return 4 * 1024;
2170 }
2171 
2172 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2173 {
2174 	if (INTEL_GEN(dev_priv) >= 9)
2175 		return 256 * 1024;
2176 	else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2177 		 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2178 		return 128 * 1024;
2179 	else if (INTEL_GEN(dev_priv) >= 4)
2180 		return 4 * 1024;
2181 	else
2182 		return 0;
2183 }
2184 
2185 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2186 					 int color_plane)
2187 {
2188 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2189 
2190 	/* AUX_DIST needs only 4K alignment */
2191 	if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) ||
2192 	    is_ccs_plane(fb, color_plane))
2193 		return 4096;
2194 
2195 	switch (fb->modifier) {
2196 	case DRM_FORMAT_MOD_LINEAR:
2197 		return intel_linear_alignment(dev_priv);
2198 	case I915_FORMAT_MOD_X_TILED:
2199 		if (INTEL_GEN(dev_priv) >= 9)
2200 			return 256 * 1024;
2201 		return 0;
2202 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2203 		if (is_semiplanar_uv_plane(fb, color_plane))
2204 			return intel_tile_row_size(fb, color_plane);
2205 		fallthrough;
2206 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2207 		return 16 * 1024;
2208 	case I915_FORMAT_MOD_Y_TILED_CCS:
2209 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2210 	case I915_FORMAT_MOD_Y_TILED:
2211 		if (INTEL_GEN(dev_priv) >= 12 &&
2212 		    is_semiplanar_uv_plane(fb, color_plane))
2213 			return intel_tile_row_size(fb, color_plane);
2214 		fallthrough;
2215 	case I915_FORMAT_MOD_Yf_TILED:
2216 		return 1 * 1024 * 1024;
2217 	default:
2218 		MISSING_CASE(fb->modifier);
2219 		return 0;
2220 	}
2221 }
2222 
2223 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state)
2224 {
2225 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2226 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2227 
2228 	return INTEL_GEN(dev_priv) < 4 ||
2229 		(plane->has_fbc &&
2230 		 plane_state->view.type == I915_GGTT_VIEW_NORMAL);
2231 }
2232 
2233 struct i915_vma *
2234 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2235 			   const struct i915_ggtt_view *view,
2236 			   bool uses_fence,
2237 			   unsigned long *out_flags)
2238 {
2239 	struct drm_device *dev = fb->dev;
2240 	struct drm_i915_private *dev_priv = to_i915(dev);
2241 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2242 	intel_wakeref_t wakeref;
2243 	struct i915_vma *vma;
2244 	unsigned int pinctl;
2245 	u32 alignment;
2246 
2247 	if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj)))
2248 		return ERR_PTR(-EINVAL);
2249 
2250 	alignment = intel_surf_alignment(fb, 0);
2251 	if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment)))
2252 		return ERR_PTR(-EINVAL);
2253 
2254 	/* Note that the w/a also requires 64 PTE of padding following the
2255 	 * bo. We currently fill all unused PTE with the shadow page and so
2256 	 * we should always have valid PTE following the scanout preventing
2257 	 * the VT-d warning.
2258 	 */
2259 	if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2260 		alignment = 256 * 1024;
2261 
2262 	/*
2263 	 * Global gtt pte registers are special registers which actually forward
2264 	 * writes to a chunk of system memory. Which means that there is no risk
2265 	 * that the register values disappear as soon as we call
2266 	 * intel_runtime_pm_put(), so it is correct to wrap only the
2267 	 * pin/unpin/fence and not more.
2268 	 */
2269 	wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2270 
2271 	atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2272 
2273 	/*
2274 	 * Valleyview is definitely limited to scanning out the first
2275 	 * 512MiB. Lets presume this behaviour was inherited from the
2276 	 * g4x display engine and that all earlier gen are similarly
2277 	 * limited. Testing suggests that it is a little more
2278 	 * complicated than this. For example, Cherryview appears quite
2279 	 * happy to scanout from anywhere within its global aperture.
2280 	 */
2281 	pinctl = 0;
2282 	if (HAS_GMCH(dev_priv))
2283 		pinctl |= PIN_MAPPABLE;
2284 
2285 	vma = i915_gem_object_pin_to_display_plane(obj,
2286 						   alignment, view, pinctl);
2287 	if (IS_ERR(vma))
2288 		goto err;
2289 
2290 	if (uses_fence && i915_vma_is_map_and_fenceable(vma)) {
2291 		int ret;
2292 
2293 		/*
2294 		 * Install a fence for tiled scan-out. Pre-i965 always needs a
2295 		 * fence, whereas 965+ only requires a fence if using
2296 		 * framebuffer compression.  For simplicity, we always, when
2297 		 * possible, install a fence as the cost is not that onerous.
2298 		 *
2299 		 * If we fail to fence the tiled scanout, then either the
2300 		 * modeset will reject the change (which is highly unlikely as
2301 		 * the affected systems, all but one, do not have unmappable
2302 		 * space) or we will not be able to enable full powersaving
2303 		 * techniques (also likely not to apply due to various limits
2304 		 * FBC and the like impose on the size of the buffer, which
2305 		 * presumably we violated anyway with this unmappable buffer).
2306 		 * Anyway, it is presumably better to stumble onwards with
2307 		 * something and try to run the system in a "less than optimal"
2308 		 * mode that matches the user configuration.
2309 		 */
2310 		ret = i915_vma_pin_fence(vma);
2311 		if (ret != 0 && INTEL_GEN(dev_priv) < 4) {
2312 			i915_vma_unpin(vma);
2313 			vma = ERR_PTR(ret);
2314 			goto err;
2315 		}
2316 
2317 		if (ret == 0 && vma->fence)
2318 			*out_flags |= PLANE_HAS_FENCE;
2319 	}
2320 
2321 	i915_vma_get(vma);
2322 err:
2323 	atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2324 	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
2325 	return vma;
2326 }
2327 
2328 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags)
2329 {
2330 	if (flags & PLANE_HAS_FENCE)
2331 		i915_vma_unpin_fence(vma);
2332 	i915_vma_unpin(vma);
2333 	i915_vma_put(vma);
2334 }
2335 
2336 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane,
2337 			  unsigned int rotation)
2338 {
2339 	if (drm_rotation_90_or_270(rotation))
2340 		return to_intel_framebuffer(fb)->rotated[color_plane].pitch;
2341 	else
2342 		return fb->pitches[color_plane];
2343 }
2344 
2345 /*
2346  * Convert the x/y offsets into a linear offset.
2347  * Only valid with 0/180 degree rotation, which is fine since linear
2348  * offset is only used with linear buffers on pre-hsw and tiled buffers
2349  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2350  */
2351 u32 intel_fb_xy_to_linear(int x, int y,
2352 			  const struct intel_plane_state *state,
2353 			  int color_plane)
2354 {
2355 	const struct drm_framebuffer *fb = state->hw.fb;
2356 	unsigned int cpp = fb->format->cpp[color_plane];
2357 	unsigned int pitch = state->color_plane[color_plane].stride;
2358 
2359 	return y * pitch + x * cpp;
2360 }
2361 
2362 /*
2363  * Add the x/y offsets derived from fb->offsets[] to the user
2364  * specified plane src x/y offsets. The resulting x/y offsets
2365  * specify the start of scanout from the beginning of the gtt mapping.
2366  */
2367 void intel_add_fb_offsets(int *x, int *y,
2368 			  const struct intel_plane_state *state,
2369 			  int color_plane)
2370 
2371 {
2372 	*x += state->color_plane[color_plane].x;
2373 	*y += state->color_plane[color_plane].y;
2374 }
2375 
2376 static u32 intel_adjust_tile_offset(int *x, int *y,
2377 				    unsigned int tile_width,
2378 				    unsigned int tile_height,
2379 				    unsigned int tile_size,
2380 				    unsigned int pitch_tiles,
2381 				    u32 old_offset,
2382 				    u32 new_offset)
2383 {
2384 	unsigned int pitch_pixels = pitch_tiles * tile_width;
2385 	unsigned int tiles;
2386 
2387 	WARN_ON(old_offset & (tile_size - 1));
2388 	WARN_ON(new_offset & (tile_size - 1));
2389 	WARN_ON(new_offset > old_offset);
2390 
2391 	tiles = (old_offset - new_offset) / tile_size;
2392 
2393 	*y += tiles / pitch_tiles * tile_height;
2394 	*x += tiles % pitch_tiles * tile_width;
2395 
2396 	/* minimize x in case it got needlessly big */
2397 	*y += *x / pitch_pixels * tile_height;
2398 	*x %= pitch_pixels;
2399 
2400 	return new_offset;
2401 }
2402 
2403 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane)
2404 {
2405 	return fb->modifier == DRM_FORMAT_MOD_LINEAR ||
2406 	       is_gen12_ccs_plane(fb, color_plane);
2407 }
2408 
2409 static u32 intel_adjust_aligned_offset(int *x, int *y,
2410 				       const struct drm_framebuffer *fb,
2411 				       int color_plane,
2412 				       unsigned int rotation,
2413 				       unsigned int pitch,
2414 				       u32 old_offset, u32 new_offset)
2415 {
2416 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2417 	unsigned int cpp = fb->format->cpp[color_plane];
2418 
2419 	drm_WARN_ON(&dev_priv->drm, new_offset > old_offset);
2420 
2421 	if (!is_surface_linear(fb, color_plane)) {
2422 		unsigned int tile_size, tile_width, tile_height;
2423 		unsigned int pitch_tiles;
2424 
2425 		tile_size = intel_tile_size(dev_priv);
2426 		intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2427 
2428 		if (drm_rotation_90_or_270(rotation)) {
2429 			pitch_tiles = pitch / tile_height;
2430 			swap(tile_width, tile_height);
2431 		} else {
2432 			pitch_tiles = pitch / (tile_width * cpp);
2433 		}
2434 
2435 		intel_adjust_tile_offset(x, y, tile_width, tile_height,
2436 					 tile_size, pitch_tiles,
2437 					 old_offset, new_offset);
2438 	} else {
2439 		old_offset += *y * pitch + *x * cpp;
2440 
2441 		*y = (old_offset - new_offset) / pitch;
2442 		*x = ((old_offset - new_offset) - *y * pitch) / cpp;
2443 	}
2444 
2445 	return new_offset;
2446 }
2447 
2448 /*
2449  * Adjust the tile offset by moving the difference into
2450  * the x/y offsets.
2451  */
2452 static u32 intel_plane_adjust_aligned_offset(int *x, int *y,
2453 					     const struct intel_plane_state *state,
2454 					     int color_plane,
2455 					     u32 old_offset, u32 new_offset)
2456 {
2457 	return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane,
2458 					   state->hw.rotation,
2459 					   state->color_plane[color_plane].stride,
2460 					   old_offset, new_offset);
2461 }
2462 
2463 /*
2464  * Computes the aligned offset to the base tile and adjusts
2465  * x, y. bytes per pixel is assumed to be a power-of-two.
2466  *
2467  * In the 90/270 rotated case, x and y are assumed
2468  * to be already rotated to match the rotated GTT view, and
2469  * pitch is the tile_height aligned framebuffer height.
2470  *
2471  * This function is used when computing the derived information
2472  * under intel_framebuffer, so using any of that information
2473  * here is not allowed. Anything under drm_framebuffer can be
2474  * used. This is why the user has to pass in the pitch since it
2475  * is specified in the rotated orientation.
2476  */
2477 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv,
2478 					int *x, int *y,
2479 					const struct drm_framebuffer *fb,
2480 					int color_plane,
2481 					unsigned int pitch,
2482 					unsigned int rotation,
2483 					u32 alignment)
2484 {
2485 	unsigned int cpp = fb->format->cpp[color_plane];
2486 	u32 offset, offset_aligned;
2487 
2488 	if (!is_surface_linear(fb, color_plane)) {
2489 		unsigned int tile_size, tile_width, tile_height;
2490 		unsigned int tile_rows, tiles, pitch_tiles;
2491 
2492 		tile_size = intel_tile_size(dev_priv);
2493 		intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2494 
2495 		if (drm_rotation_90_or_270(rotation)) {
2496 			pitch_tiles = pitch / tile_height;
2497 			swap(tile_width, tile_height);
2498 		} else {
2499 			pitch_tiles = pitch / (tile_width * cpp);
2500 		}
2501 
2502 		tile_rows = *y / tile_height;
2503 		*y %= tile_height;
2504 
2505 		tiles = *x / tile_width;
2506 		*x %= tile_width;
2507 
2508 		offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2509 
2510 		offset_aligned = offset;
2511 		if (alignment)
2512 			offset_aligned = rounddown(offset_aligned, alignment);
2513 
2514 		intel_adjust_tile_offset(x, y, tile_width, tile_height,
2515 					 tile_size, pitch_tiles,
2516 					 offset, offset_aligned);
2517 	} else {
2518 		offset = *y * pitch + *x * cpp;
2519 		offset_aligned = offset;
2520 		if (alignment) {
2521 			offset_aligned = rounddown(offset_aligned, alignment);
2522 			*y = (offset % alignment) / pitch;
2523 			*x = ((offset % alignment) - *y * pitch) / cpp;
2524 		} else {
2525 			*y = *x = 0;
2526 		}
2527 	}
2528 
2529 	return offset_aligned;
2530 }
2531 
2532 static u32 intel_plane_compute_aligned_offset(int *x, int *y,
2533 					      const struct intel_plane_state *state,
2534 					      int color_plane)
2535 {
2536 	struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane);
2537 	struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2538 	const struct drm_framebuffer *fb = state->hw.fb;
2539 	unsigned int rotation = state->hw.rotation;
2540 	int pitch = state->color_plane[color_plane].stride;
2541 	u32 alignment;
2542 
2543 	if (intel_plane->id == PLANE_CURSOR)
2544 		alignment = intel_cursor_alignment(dev_priv);
2545 	else
2546 		alignment = intel_surf_alignment(fb, color_plane);
2547 
2548 	return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane,
2549 					    pitch, rotation, alignment);
2550 }
2551 
2552 /* Convert the fb->offset[] into x/y offsets */
2553 static int intel_fb_offset_to_xy(int *x, int *y,
2554 				 const struct drm_framebuffer *fb,
2555 				 int color_plane)
2556 {
2557 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2558 	unsigned int height;
2559 	u32 alignment;
2560 
2561 	if (INTEL_GEN(dev_priv) >= 12 &&
2562 	    is_semiplanar_uv_plane(fb, color_plane))
2563 		alignment = intel_tile_row_size(fb, color_plane);
2564 	else if (fb->modifier != DRM_FORMAT_MOD_LINEAR)
2565 		alignment = intel_tile_size(dev_priv);
2566 	else
2567 		alignment = 0;
2568 
2569 	if (alignment != 0 && fb->offsets[color_plane] % alignment) {
2570 		drm_dbg_kms(&dev_priv->drm,
2571 			    "Misaligned offset 0x%08x for color plane %d\n",
2572 			    fb->offsets[color_plane], color_plane);
2573 		return -EINVAL;
2574 	}
2575 
2576 	height = drm_framebuffer_plane_height(fb->height, fb, color_plane);
2577 	height = ALIGN(height, intel_tile_height(fb, color_plane));
2578 
2579 	/* Catch potential overflows early */
2580 	if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]),
2581 			    fb->offsets[color_plane])) {
2582 		drm_dbg_kms(&dev_priv->drm,
2583 			    "Bad offset 0x%08x or pitch %d for color plane %d\n",
2584 			    fb->offsets[color_plane], fb->pitches[color_plane],
2585 			    color_plane);
2586 		return -ERANGE;
2587 	}
2588 
2589 	*x = 0;
2590 	*y = 0;
2591 
2592 	intel_adjust_aligned_offset(x, y,
2593 				    fb, color_plane, DRM_MODE_ROTATE_0,
2594 				    fb->pitches[color_plane],
2595 				    fb->offsets[color_plane], 0);
2596 
2597 	return 0;
2598 }
2599 
2600 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier)
2601 {
2602 	switch (fb_modifier) {
2603 	case I915_FORMAT_MOD_X_TILED:
2604 		return I915_TILING_X;
2605 	case I915_FORMAT_MOD_Y_TILED:
2606 	case I915_FORMAT_MOD_Y_TILED_CCS:
2607 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2608 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2609 		return I915_TILING_Y;
2610 	default:
2611 		return I915_TILING_NONE;
2612 	}
2613 }
2614 
2615 /*
2616  * From the Sky Lake PRM:
2617  * "The Color Control Surface (CCS) contains the compression status of
2618  *  the cache-line pairs. The compression state of the cache-line pair
2619  *  is specified by 2 bits in the CCS. Each CCS cache-line represents
2620  *  an area on the main surface of 16 x16 sets of 128 byte Y-tiled
2621  *  cache-line-pairs. CCS is always Y tiled."
2622  *
2623  * Since cache line pairs refers to horizontally adjacent cache lines,
2624  * each cache line in the CCS corresponds to an area of 32x16 cache
2625  * lines on the main surface. Since each pixel is 4 bytes, this gives
2626  * us a ratio of one byte in the CCS for each 8x16 pixels in the
2627  * main surface.
2628  */
2629 static const struct drm_format_info skl_ccs_formats[] = {
2630 	{ .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2631 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2632 	{ .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2633 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2634 	{ .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2635 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2636 	{ .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2637 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2638 };
2639 
2640 /*
2641  * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the
2642  * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles
2643  * in the main surface. With 4 byte pixels and each Y-tile having dimensions of
2644  * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in
2645  * the main surface.
2646  */
2647 static const struct drm_format_info gen12_ccs_formats[] = {
2648 	{ .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2649 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2650 	  .hsub = 1, .vsub = 1, },
2651 	{ .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2652 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2653 	  .hsub = 1, .vsub = 1, },
2654 	{ .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2655 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2656 	  .hsub = 1, .vsub = 1, .has_alpha = true },
2657 	{ .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2658 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2659 	  .hsub = 1, .vsub = 1, .has_alpha = true },
2660 	{ .format = DRM_FORMAT_YUYV, .num_planes = 2,
2661 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2662 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2663 	{ .format = DRM_FORMAT_YVYU, .num_planes = 2,
2664 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2665 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2666 	{ .format = DRM_FORMAT_UYVY, .num_planes = 2,
2667 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2668 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2669 	{ .format = DRM_FORMAT_VYUY, .num_planes = 2,
2670 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2671 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2672 	{ .format = DRM_FORMAT_NV12, .num_planes = 4,
2673 	  .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 },
2674 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2675 	{ .format = DRM_FORMAT_P010, .num_planes = 4,
2676 	  .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2677 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2678 	{ .format = DRM_FORMAT_P012, .num_planes = 4,
2679 	  .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2680 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2681 	{ .format = DRM_FORMAT_P016, .num_planes = 4,
2682 	  .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2683 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2684 };
2685 
2686 static const struct drm_format_info *
2687 lookup_format_info(const struct drm_format_info formats[],
2688 		   int num_formats, u32 format)
2689 {
2690 	int i;
2691 
2692 	for (i = 0; i < num_formats; i++) {
2693 		if (formats[i].format == format)
2694 			return &formats[i];
2695 	}
2696 
2697 	return NULL;
2698 }
2699 
2700 static const struct drm_format_info *
2701 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2702 {
2703 	switch (cmd->modifier[0]) {
2704 	case I915_FORMAT_MOD_Y_TILED_CCS:
2705 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2706 		return lookup_format_info(skl_ccs_formats,
2707 					  ARRAY_SIZE(skl_ccs_formats),
2708 					  cmd->pixel_format);
2709 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2710 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2711 		return lookup_format_info(gen12_ccs_formats,
2712 					  ARRAY_SIZE(gen12_ccs_formats),
2713 					  cmd->pixel_format);
2714 	default:
2715 		return NULL;
2716 	}
2717 }
2718 
2719 bool is_ccs_modifier(u64 modifier)
2720 {
2721 	return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
2722 	       modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS ||
2723 	       modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2724 	       modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
2725 }
2726 
2727 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane)
2728 {
2729 	return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)],
2730 			    512) * 64;
2731 }
2732 
2733 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv,
2734 			      u32 pixel_format, u64 modifier)
2735 {
2736 	struct intel_crtc *crtc;
2737 	struct intel_plane *plane;
2738 
2739 	/*
2740 	 * We assume the primary plane for pipe A has
2741 	 * the highest stride limits of them all,
2742 	 * if in case pipe A is disabled, use the first pipe from pipe_mask.
2743 	 */
2744 	crtc = intel_get_first_crtc(dev_priv);
2745 	if (!crtc)
2746 		return 0;
2747 
2748 	plane = to_intel_plane(crtc->base.primary);
2749 
2750 	return plane->max_stride(plane, pixel_format, modifier,
2751 				 DRM_MODE_ROTATE_0);
2752 }
2753 
2754 static
2755 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv,
2756 			u32 pixel_format, u64 modifier)
2757 {
2758 	/*
2759 	 * Arbitrary limit for gen4+ chosen to match the
2760 	 * render engine max stride.
2761 	 *
2762 	 * The new CCS hash mode makes remapping impossible
2763 	 */
2764 	if (!is_ccs_modifier(modifier)) {
2765 		if (INTEL_GEN(dev_priv) >= 7)
2766 			return 256*1024;
2767 		else if (INTEL_GEN(dev_priv) >= 4)
2768 			return 128*1024;
2769 	}
2770 
2771 	return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier);
2772 }
2773 
2774 static u32
2775 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane)
2776 {
2777 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2778 	u32 tile_width;
2779 
2780 	if (is_surface_linear(fb, color_plane)) {
2781 		u32 max_stride = intel_plane_fb_max_stride(dev_priv,
2782 							   fb->format->format,
2783 							   fb->modifier);
2784 
2785 		/*
2786 		 * To make remapping with linear generally feasible
2787 		 * we need the stride to be page aligned.
2788 		 */
2789 		if (fb->pitches[color_plane] > max_stride &&
2790 		    !is_ccs_modifier(fb->modifier))
2791 			return intel_tile_size(dev_priv);
2792 		else
2793 			return 64;
2794 	}
2795 
2796 	tile_width = intel_tile_width_bytes(fb, color_plane);
2797 	if (is_ccs_modifier(fb->modifier)) {
2798 		/*
2799 		 * Display WA #0531: skl,bxt,kbl,glk
2800 		 *
2801 		 * Render decompression and plane width > 3840
2802 		 * combined with horizontal panning requires the
2803 		 * plane stride to be a multiple of 4. We'll just
2804 		 * require the entire fb to accommodate that to avoid
2805 		 * potential runtime errors at plane configuration time.
2806 		 */
2807 		if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840)
2808 			tile_width *= 4;
2809 		/*
2810 		 * The main surface pitch must be padded to a multiple of four
2811 		 * tile widths.
2812 		 */
2813 		else if (INTEL_GEN(dev_priv) >= 12)
2814 			tile_width *= 4;
2815 	}
2816 	return tile_width;
2817 }
2818 
2819 bool intel_plane_can_remap(const struct intel_plane_state *plane_state)
2820 {
2821 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2822 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2823 	const struct drm_framebuffer *fb = plane_state->hw.fb;
2824 	int i;
2825 
2826 	/* We don't want to deal with remapping with cursors */
2827 	if (plane->id == PLANE_CURSOR)
2828 		return false;
2829 
2830 	/*
2831 	 * The display engine limits already match/exceed the
2832 	 * render engine limits, so not much point in remapping.
2833 	 * Would also need to deal with the fence POT alignment
2834 	 * and gen2 2KiB GTT tile size.
2835 	 */
2836 	if (INTEL_GEN(dev_priv) < 4)
2837 		return false;
2838 
2839 	/*
2840 	 * The new CCS hash mode isn't compatible with remapping as
2841 	 * the virtual address of the pages affects the compressed data.
2842 	 */
2843 	if (is_ccs_modifier(fb->modifier))
2844 		return false;
2845 
2846 	/* Linear needs a page aligned stride for remapping */
2847 	if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2848 		unsigned int alignment = intel_tile_size(dev_priv) - 1;
2849 
2850 		for (i = 0; i < fb->format->num_planes; i++) {
2851 			if (fb->pitches[i] & alignment)
2852 				return false;
2853 		}
2854 	}
2855 
2856 	return true;
2857 }
2858 
2859 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state)
2860 {
2861 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2862 	const struct drm_framebuffer *fb = plane_state->hw.fb;
2863 	unsigned int rotation = plane_state->hw.rotation;
2864 	u32 stride, max_stride;
2865 
2866 	/*
2867 	 * No remapping for invisible planes since we don't have
2868 	 * an actual source viewport to remap.
2869 	 */
2870 	if (!plane_state->uapi.visible)
2871 		return false;
2872 
2873 	if (!intel_plane_can_remap(plane_state))
2874 		return false;
2875 
2876 	/*
2877 	 * FIXME: aux plane limits on gen9+ are
2878 	 * unclear in Bspec, for now no checking.
2879 	 */
2880 	stride = intel_fb_pitch(fb, 0, rotation);
2881 	max_stride = plane->max_stride(plane, fb->format->format,
2882 				       fb->modifier, rotation);
2883 
2884 	return stride > max_stride;
2885 }
2886 
2887 static void
2888 intel_fb_plane_get_subsampling(int *hsub, int *vsub,
2889 			       const struct drm_framebuffer *fb,
2890 			       int color_plane)
2891 {
2892 	int main_plane;
2893 
2894 	if (color_plane == 0) {
2895 		*hsub = 1;
2896 		*vsub = 1;
2897 
2898 		return;
2899 	}
2900 
2901 	/*
2902 	 * TODO: Deduct the subsampling from the char block for all CCS
2903 	 * formats and planes.
2904 	 */
2905 	if (!is_gen12_ccs_plane(fb, color_plane)) {
2906 		*hsub = fb->format->hsub;
2907 		*vsub = fb->format->vsub;
2908 
2909 		return;
2910 	}
2911 
2912 	main_plane = ccs_to_main_plane(fb, color_plane);
2913 	*hsub = drm_format_info_block_width(fb->format, color_plane) /
2914 		drm_format_info_block_width(fb->format, main_plane);
2915 
2916 	/*
2917 	 * The min stride check in the core framebuffer_check() function
2918 	 * assumes that format->hsub applies to every plane except for the
2919 	 * first plane. That's incorrect for the CCS AUX plane of the first
2920 	 * plane, but for the above check to pass we must define the block
2921 	 * width with that subsampling applied to it. Adjust the width here
2922 	 * accordingly, so we can calculate the actual subsampling factor.
2923 	 */
2924 	if (main_plane == 0)
2925 		*hsub *= fb->format->hsub;
2926 
2927 	*vsub = 32;
2928 }
2929 static int
2930 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y)
2931 {
2932 	struct drm_i915_private *i915 = to_i915(fb->dev);
2933 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2934 	int main_plane;
2935 	int hsub, vsub;
2936 	int tile_width, tile_height;
2937 	int ccs_x, ccs_y;
2938 	int main_x, main_y;
2939 
2940 	if (!is_ccs_plane(fb, ccs_plane))
2941 		return 0;
2942 
2943 	intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height);
2944 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
2945 
2946 	tile_width *= hsub;
2947 	tile_height *= vsub;
2948 
2949 	ccs_x = (x * hsub) % tile_width;
2950 	ccs_y = (y * vsub) % tile_height;
2951 
2952 	main_plane = ccs_to_main_plane(fb, ccs_plane);
2953 	main_x = intel_fb->normal[main_plane].x % tile_width;
2954 	main_y = intel_fb->normal[main_plane].y % tile_height;
2955 
2956 	/*
2957 	 * CCS doesn't have its own x/y offset register, so the intra CCS tile
2958 	 * x/y offsets must match between CCS and the main surface.
2959 	 */
2960 	if (main_x != ccs_x || main_y != ccs_y) {
2961 		drm_dbg_kms(&i915->drm,
2962 			      "Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2963 			      main_x, main_y,
2964 			      ccs_x, ccs_y,
2965 			      intel_fb->normal[main_plane].x,
2966 			      intel_fb->normal[main_plane].y,
2967 			      x, y);
2968 		return -EINVAL;
2969 	}
2970 
2971 	return 0;
2972 }
2973 
2974 static void
2975 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane)
2976 {
2977 	int main_plane = is_ccs_plane(fb, color_plane) ?
2978 			 ccs_to_main_plane(fb, color_plane) : 0;
2979 	int main_hsub, main_vsub;
2980 	int hsub, vsub;
2981 
2982 	intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane);
2983 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane);
2984 	*w = fb->width / main_hsub / hsub;
2985 	*h = fb->height / main_vsub / vsub;
2986 }
2987 
2988 /*
2989  * Setup the rotated view for an FB plane and return the size the GTT mapping
2990  * requires for this view.
2991  */
2992 static u32
2993 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info,
2994 		  u32 gtt_offset_rotated, int x, int y,
2995 		  unsigned int width, unsigned int height,
2996 		  unsigned int tile_size,
2997 		  unsigned int tile_width, unsigned int tile_height,
2998 		  struct drm_framebuffer *fb)
2999 {
3000 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3001 	struct intel_rotation_info *rot_info = &intel_fb->rot_info;
3002 	unsigned int pitch_tiles;
3003 	struct drm_rect r;
3004 
3005 	/* Y or Yf modifiers required for 90/270 rotation */
3006 	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
3007 	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3008 		return 0;
3009 
3010 	if (drm_WARN_ON(fb->dev, plane >= ARRAY_SIZE(rot_info->plane)))
3011 		return 0;
3012 
3013 	rot_info->plane[plane] = *plane_info;
3014 
3015 	intel_fb->rotated[plane].pitch = plane_info->height * tile_height;
3016 
3017 	/* rotate the x/y offsets to match the GTT view */
3018 	drm_rect_init(&r, x, y, width, height);
3019 	drm_rect_rotate(&r,
3020 			plane_info->width * tile_width,
3021 			plane_info->height * tile_height,
3022 			DRM_MODE_ROTATE_270);
3023 	x = r.x1;
3024 	y = r.y1;
3025 
3026 	/* rotate the tile dimensions to match the GTT view */
3027 	pitch_tiles = intel_fb->rotated[plane].pitch / tile_height;
3028 	swap(tile_width, tile_height);
3029 
3030 	/*
3031 	 * We only keep the x/y offsets, so push all of the
3032 	 * gtt offset into the x/y offsets.
3033 	 */
3034 	intel_adjust_tile_offset(&x, &y,
3035 				 tile_width, tile_height,
3036 				 tile_size, pitch_tiles,
3037 				 gtt_offset_rotated * tile_size, 0);
3038 
3039 	/*
3040 	 * First pixel of the framebuffer from
3041 	 * the start of the rotated gtt mapping.
3042 	 */
3043 	intel_fb->rotated[plane].x = x;
3044 	intel_fb->rotated[plane].y = y;
3045 
3046 	return plane_info->width * plane_info->height;
3047 }
3048 
3049 static int
3050 intel_fill_fb_info(struct drm_i915_private *dev_priv,
3051 		   struct drm_framebuffer *fb)
3052 {
3053 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3054 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3055 	u32 gtt_offset_rotated = 0;
3056 	unsigned int max_size = 0;
3057 	int i, num_planes = fb->format->num_planes;
3058 	unsigned int tile_size = intel_tile_size(dev_priv);
3059 
3060 	for (i = 0; i < num_planes; i++) {
3061 		unsigned int width, height;
3062 		unsigned int cpp, size;
3063 		u32 offset;
3064 		int x, y;
3065 		int ret;
3066 
3067 		cpp = fb->format->cpp[i];
3068 		intel_fb_plane_dims(&width, &height, fb, i);
3069 
3070 		ret = intel_fb_offset_to_xy(&x, &y, fb, i);
3071 		if (ret) {
3072 			drm_dbg_kms(&dev_priv->drm,
3073 				    "bad fb plane %d offset: 0x%x\n",
3074 				    i, fb->offsets[i]);
3075 			return ret;
3076 		}
3077 
3078 		ret = intel_fb_check_ccs_xy(fb, i, x, y);
3079 		if (ret)
3080 			return ret;
3081 
3082 		/*
3083 		 * The fence (if used) is aligned to the start of the object
3084 		 * so having the framebuffer wrap around across the edge of the
3085 		 * fenced region doesn't really work. We have no API to configure
3086 		 * the fence start offset within the object (nor could we probably
3087 		 * on gen2/3). So it's just easier if we just require that the
3088 		 * fb layout agrees with the fence layout. We already check that the
3089 		 * fb stride matches the fence stride elsewhere.
3090 		 */
3091 		if (i == 0 && i915_gem_object_is_tiled(obj) &&
3092 		    (x + width) * cpp > fb->pitches[i]) {
3093 			drm_dbg_kms(&dev_priv->drm,
3094 				    "bad fb plane %d offset: 0x%x\n",
3095 				     i, fb->offsets[i]);
3096 			return -EINVAL;
3097 		}
3098 
3099 		/*
3100 		 * First pixel of the framebuffer from
3101 		 * the start of the normal gtt mapping.
3102 		 */
3103 		intel_fb->normal[i].x = x;
3104 		intel_fb->normal[i].y = y;
3105 
3106 		offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i,
3107 						      fb->pitches[i],
3108 						      DRM_MODE_ROTATE_0,
3109 						      tile_size);
3110 		offset /= tile_size;
3111 
3112 		if (!is_surface_linear(fb, i)) {
3113 			struct intel_remapped_plane_info plane_info;
3114 			unsigned int tile_width, tile_height;
3115 
3116 			intel_tile_dims(fb, i, &tile_width, &tile_height);
3117 
3118 			plane_info.offset = offset;
3119 			plane_info.stride = DIV_ROUND_UP(fb->pitches[i],
3120 							 tile_width * cpp);
3121 			plane_info.width = DIV_ROUND_UP(x + width, tile_width);
3122 			plane_info.height = DIV_ROUND_UP(y + height,
3123 							 tile_height);
3124 
3125 			/* how many tiles does this plane need */
3126 			size = plane_info.stride * plane_info.height;
3127 			/*
3128 			 * If the plane isn't horizontally tile aligned,
3129 			 * we need one more tile.
3130 			 */
3131 			if (x != 0)
3132 				size++;
3133 
3134 			gtt_offset_rotated +=
3135 				setup_fb_rotation(i, &plane_info,
3136 						  gtt_offset_rotated,
3137 						  x, y, width, height,
3138 						  tile_size,
3139 						  tile_width, tile_height,
3140 						  fb);
3141 		} else {
3142 			size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
3143 					    x * cpp, tile_size);
3144 		}
3145 
3146 		/* how many tiles in total needed in the bo */
3147 		max_size = max(max_size, offset + size);
3148 	}
3149 
3150 	if (mul_u32_u32(max_size, tile_size) > obj->base.size) {
3151 		drm_dbg_kms(&dev_priv->drm,
3152 			    "fb too big for bo (need %llu bytes, have %zu bytes)\n",
3153 			    mul_u32_u32(max_size, tile_size), obj->base.size);
3154 		return -EINVAL;
3155 	}
3156 
3157 	return 0;
3158 }
3159 
3160 static void
3161 intel_plane_remap_gtt(struct intel_plane_state *plane_state)
3162 {
3163 	struct drm_i915_private *dev_priv =
3164 		to_i915(plane_state->uapi.plane->dev);
3165 	struct drm_framebuffer *fb = plane_state->hw.fb;
3166 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3167 	struct intel_rotation_info *info = &plane_state->view.rotated;
3168 	unsigned int rotation = plane_state->hw.rotation;
3169 	int i, num_planes = fb->format->num_planes;
3170 	unsigned int tile_size = intel_tile_size(dev_priv);
3171 	unsigned int src_x, src_y;
3172 	unsigned int src_w, src_h;
3173 	u32 gtt_offset = 0;
3174 
3175 	memset(&plane_state->view, 0, sizeof(plane_state->view));
3176 	plane_state->view.type = drm_rotation_90_or_270(rotation) ?
3177 		I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED;
3178 
3179 	src_x = plane_state->uapi.src.x1 >> 16;
3180 	src_y = plane_state->uapi.src.y1 >> 16;
3181 	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
3182 	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
3183 
3184 	drm_WARN_ON(&dev_priv->drm, is_ccs_modifier(fb->modifier));
3185 
3186 	/* Make src coordinates relative to the viewport */
3187 	drm_rect_translate(&plane_state->uapi.src,
3188 			   -(src_x << 16), -(src_y << 16));
3189 
3190 	/* Rotate src coordinates to match rotated GTT view */
3191 	if (drm_rotation_90_or_270(rotation))
3192 		drm_rect_rotate(&plane_state->uapi.src,
3193 				src_w << 16, src_h << 16,
3194 				DRM_MODE_ROTATE_270);
3195 
3196 	for (i = 0; i < num_planes; i++) {
3197 		unsigned int hsub = i ? fb->format->hsub : 1;
3198 		unsigned int vsub = i ? fb->format->vsub : 1;
3199 		unsigned int cpp = fb->format->cpp[i];
3200 		unsigned int tile_width, tile_height;
3201 		unsigned int width, height;
3202 		unsigned int pitch_tiles;
3203 		unsigned int x, y;
3204 		u32 offset;
3205 
3206 		intel_tile_dims(fb, i, &tile_width, &tile_height);
3207 
3208 		x = src_x / hsub;
3209 		y = src_y / vsub;
3210 		width = src_w / hsub;
3211 		height = src_h / vsub;
3212 
3213 		/*
3214 		 * First pixel of the src viewport from the
3215 		 * start of the normal gtt mapping.
3216 		 */
3217 		x += intel_fb->normal[i].x;
3218 		y += intel_fb->normal[i].y;
3219 
3220 		offset = intel_compute_aligned_offset(dev_priv, &x, &y,
3221 						      fb, i, fb->pitches[i],
3222 						      DRM_MODE_ROTATE_0, tile_size);
3223 		offset /= tile_size;
3224 
3225 		drm_WARN_ON(&dev_priv->drm, i >= ARRAY_SIZE(info->plane));
3226 		info->plane[i].offset = offset;
3227 		info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i],
3228 						     tile_width * cpp);
3229 		info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
3230 		info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
3231 
3232 		if (drm_rotation_90_or_270(rotation)) {
3233 			struct drm_rect r;
3234 
3235 			/* rotate the x/y offsets to match the GTT view */
3236 			drm_rect_init(&r, x, y, width, height);
3237 			drm_rect_rotate(&r,
3238 					info->plane[i].width * tile_width,
3239 					info->plane[i].height * tile_height,
3240 					DRM_MODE_ROTATE_270);
3241 			x = r.x1;
3242 			y = r.y1;
3243 
3244 			pitch_tiles = info->plane[i].height;
3245 			plane_state->color_plane[i].stride = pitch_tiles * tile_height;
3246 
3247 			/* rotate the tile dimensions to match the GTT view */
3248 			swap(tile_width, tile_height);
3249 		} else {
3250 			pitch_tiles = info->plane[i].width;
3251 			plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp;
3252 		}
3253 
3254 		/*
3255 		 * We only keep the x/y offsets, so push all of the
3256 		 * gtt offset into the x/y offsets.
3257 		 */
3258 		intel_adjust_tile_offset(&x, &y,
3259 					 tile_width, tile_height,
3260 					 tile_size, pitch_tiles,
3261 					 gtt_offset * tile_size, 0);
3262 
3263 		gtt_offset += info->plane[i].width * info->plane[i].height;
3264 
3265 		plane_state->color_plane[i].offset = 0;
3266 		plane_state->color_plane[i].x = x;
3267 		plane_state->color_plane[i].y = y;
3268 	}
3269 }
3270 
3271 static int
3272 intel_plane_compute_gtt(struct intel_plane_state *plane_state)
3273 {
3274 	const struct intel_framebuffer *fb =
3275 		to_intel_framebuffer(plane_state->hw.fb);
3276 	unsigned int rotation = plane_state->hw.rotation;
3277 	int i, num_planes;
3278 
3279 	if (!fb)
3280 		return 0;
3281 
3282 	num_planes = fb->base.format->num_planes;
3283 
3284 	if (intel_plane_needs_remap(plane_state)) {
3285 		intel_plane_remap_gtt(plane_state);
3286 
3287 		/*
3288 		 * Sometimes even remapping can't overcome
3289 		 * the stride limitations :( Can happen with
3290 		 * big plane sizes and suitably misaligned
3291 		 * offsets.
3292 		 */
3293 		return intel_plane_check_stride(plane_state);
3294 	}
3295 
3296 	intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation);
3297 
3298 	for (i = 0; i < num_planes; i++) {
3299 		plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation);
3300 		plane_state->color_plane[i].offset = 0;
3301 
3302 		if (drm_rotation_90_or_270(rotation)) {
3303 			plane_state->color_plane[i].x = fb->rotated[i].x;
3304 			plane_state->color_plane[i].y = fb->rotated[i].y;
3305 		} else {
3306 			plane_state->color_plane[i].x = fb->normal[i].x;
3307 			plane_state->color_plane[i].y = fb->normal[i].y;
3308 		}
3309 	}
3310 
3311 	/* Rotate src coordinates to match rotated GTT view */
3312 	if (drm_rotation_90_or_270(rotation))
3313 		drm_rect_rotate(&plane_state->uapi.src,
3314 				fb->base.width << 16, fb->base.height << 16,
3315 				DRM_MODE_ROTATE_270);
3316 
3317 	return intel_plane_check_stride(plane_state);
3318 }
3319 
3320 static int i9xx_format_to_fourcc(int format)
3321 {
3322 	switch (format) {
3323 	case DISPPLANE_8BPP:
3324 		return DRM_FORMAT_C8;
3325 	case DISPPLANE_BGRA555:
3326 		return DRM_FORMAT_ARGB1555;
3327 	case DISPPLANE_BGRX555:
3328 		return DRM_FORMAT_XRGB1555;
3329 	case DISPPLANE_BGRX565:
3330 		return DRM_FORMAT_RGB565;
3331 	default:
3332 	case DISPPLANE_BGRX888:
3333 		return DRM_FORMAT_XRGB8888;
3334 	case DISPPLANE_RGBX888:
3335 		return DRM_FORMAT_XBGR8888;
3336 	case DISPPLANE_BGRA888:
3337 		return DRM_FORMAT_ARGB8888;
3338 	case DISPPLANE_RGBA888:
3339 		return DRM_FORMAT_ABGR8888;
3340 	case DISPPLANE_BGRX101010:
3341 		return DRM_FORMAT_XRGB2101010;
3342 	case DISPPLANE_RGBX101010:
3343 		return DRM_FORMAT_XBGR2101010;
3344 	case DISPPLANE_BGRA101010:
3345 		return DRM_FORMAT_ARGB2101010;
3346 	case DISPPLANE_RGBA101010:
3347 		return DRM_FORMAT_ABGR2101010;
3348 	case DISPPLANE_RGBX161616:
3349 		return DRM_FORMAT_XBGR16161616F;
3350 	}
3351 }
3352 
3353 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
3354 {
3355 	switch (format) {
3356 	case PLANE_CTL_FORMAT_RGB_565:
3357 		return DRM_FORMAT_RGB565;
3358 	case PLANE_CTL_FORMAT_NV12:
3359 		return DRM_FORMAT_NV12;
3360 	case PLANE_CTL_FORMAT_XYUV:
3361 		return DRM_FORMAT_XYUV8888;
3362 	case PLANE_CTL_FORMAT_P010:
3363 		return DRM_FORMAT_P010;
3364 	case PLANE_CTL_FORMAT_P012:
3365 		return DRM_FORMAT_P012;
3366 	case PLANE_CTL_FORMAT_P016:
3367 		return DRM_FORMAT_P016;
3368 	case PLANE_CTL_FORMAT_Y210:
3369 		return DRM_FORMAT_Y210;
3370 	case PLANE_CTL_FORMAT_Y212:
3371 		return DRM_FORMAT_Y212;
3372 	case PLANE_CTL_FORMAT_Y216:
3373 		return DRM_FORMAT_Y216;
3374 	case PLANE_CTL_FORMAT_Y410:
3375 		return DRM_FORMAT_XVYU2101010;
3376 	case PLANE_CTL_FORMAT_Y412:
3377 		return DRM_FORMAT_XVYU12_16161616;
3378 	case PLANE_CTL_FORMAT_Y416:
3379 		return DRM_FORMAT_XVYU16161616;
3380 	default:
3381 	case PLANE_CTL_FORMAT_XRGB_8888:
3382 		if (rgb_order) {
3383 			if (alpha)
3384 				return DRM_FORMAT_ABGR8888;
3385 			else
3386 				return DRM_FORMAT_XBGR8888;
3387 		} else {
3388 			if (alpha)
3389 				return DRM_FORMAT_ARGB8888;
3390 			else
3391 				return DRM_FORMAT_XRGB8888;
3392 		}
3393 	case PLANE_CTL_FORMAT_XRGB_2101010:
3394 		if (rgb_order) {
3395 			if (alpha)
3396 				return DRM_FORMAT_ABGR2101010;
3397 			else
3398 				return DRM_FORMAT_XBGR2101010;
3399 		} else {
3400 			if (alpha)
3401 				return DRM_FORMAT_ARGB2101010;
3402 			else
3403 				return DRM_FORMAT_XRGB2101010;
3404 		}
3405 	case PLANE_CTL_FORMAT_XRGB_16161616F:
3406 		if (rgb_order) {
3407 			if (alpha)
3408 				return DRM_FORMAT_ABGR16161616F;
3409 			else
3410 				return DRM_FORMAT_XBGR16161616F;
3411 		} else {
3412 			if (alpha)
3413 				return DRM_FORMAT_ARGB16161616F;
3414 			else
3415 				return DRM_FORMAT_XRGB16161616F;
3416 		}
3417 	}
3418 }
3419 
3420 static struct i915_vma *
3421 initial_plane_vma(struct drm_i915_private *i915,
3422 		  struct intel_initial_plane_config *plane_config)
3423 {
3424 	struct drm_i915_gem_object *obj;
3425 	struct i915_vma *vma;
3426 	u32 base, size;
3427 
3428 	if (plane_config->size == 0)
3429 		return NULL;
3430 
3431 	base = round_down(plane_config->base,
3432 			  I915_GTT_MIN_ALIGNMENT);
3433 	size = round_up(plane_config->base + plane_config->size,
3434 			I915_GTT_MIN_ALIGNMENT);
3435 	size -= base;
3436 
3437 	/*
3438 	 * If the FB is too big, just don't use it since fbdev is not very
3439 	 * important and we should probably use that space with FBC or other
3440 	 * features.
3441 	 */
3442 	if (size * 2 > i915->stolen_usable_size)
3443 		return NULL;
3444 
3445 	obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size);
3446 	if (IS_ERR(obj))
3447 		return NULL;
3448 
3449 	/*
3450 	 * Mark it WT ahead of time to avoid changing the
3451 	 * cache_level during fbdev initialization. The
3452 	 * unbind there would get stuck waiting for rcu.
3453 	 */
3454 	i915_gem_object_set_cache_coherency(obj, HAS_WT(i915) ?
3455 					    I915_CACHE_WT : I915_CACHE_NONE);
3456 
3457 	switch (plane_config->tiling) {
3458 	case I915_TILING_NONE:
3459 		break;
3460 	case I915_TILING_X:
3461 	case I915_TILING_Y:
3462 		obj->tiling_and_stride =
3463 			plane_config->fb->base.pitches[0] |
3464 			plane_config->tiling;
3465 		break;
3466 	default:
3467 		MISSING_CASE(plane_config->tiling);
3468 		goto err_obj;
3469 	}
3470 
3471 	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
3472 	if (IS_ERR(vma))
3473 		goto err_obj;
3474 
3475 	if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base))
3476 		goto err_obj;
3477 
3478 	if (i915_gem_object_is_tiled(obj) &&
3479 	    !i915_vma_is_map_and_fenceable(vma))
3480 		goto err_obj;
3481 
3482 	return vma;
3483 
3484 err_obj:
3485 	i915_gem_object_put(obj);
3486 	return NULL;
3487 }
3488 
3489 static bool
3490 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
3491 			      struct intel_initial_plane_config *plane_config)
3492 {
3493 	struct drm_device *dev = crtc->base.dev;
3494 	struct drm_i915_private *dev_priv = to_i915(dev);
3495 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
3496 	struct drm_framebuffer *fb = &plane_config->fb->base;
3497 	struct i915_vma *vma;
3498 
3499 	switch (fb->modifier) {
3500 	case DRM_FORMAT_MOD_LINEAR:
3501 	case I915_FORMAT_MOD_X_TILED:
3502 	case I915_FORMAT_MOD_Y_TILED:
3503 		break;
3504 	default:
3505 		drm_dbg(&dev_priv->drm,
3506 			"Unsupported modifier for initial FB: 0x%llx\n",
3507 			fb->modifier);
3508 		return false;
3509 	}
3510 
3511 	vma = initial_plane_vma(dev_priv, plane_config);
3512 	if (!vma)
3513 		return false;
3514 
3515 	mode_cmd.pixel_format = fb->format->format;
3516 	mode_cmd.width = fb->width;
3517 	mode_cmd.height = fb->height;
3518 	mode_cmd.pitches[0] = fb->pitches[0];
3519 	mode_cmd.modifier[0] = fb->modifier;
3520 	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
3521 
3522 	if (intel_framebuffer_init(to_intel_framebuffer(fb),
3523 				   vma->obj, &mode_cmd)) {
3524 		drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n");
3525 		goto err_vma;
3526 	}
3527 
3528 	plane_config->vma = vma;
3529 	return true;
3530 
3531 err_vma:
3532 	i915_vma_put(vma);
3533 	return false;
3534 }
3535 
3536 static void
3537 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
3538 			struct intel_plane_state *plane_state,
3539 			bool visible)
3540 {
3541 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
3542 
3543 	plane_state->uapi.visible = visible;
3544 
3545 	if (visible)
3546 		crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base);
3547 	else
3548 		crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base);
3549 }
3550 
3551 static void fixup_active_planes(struct intel_crtc_state *crtc_state)
3552 {
3553 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3554 	struct drm_plane *plane;
3555 
3556 	/*
3557 	 * Active_planes aliases if multiple "primary" or cursor planes
3558 	 * have been used on the same (or wrong) pipe. plane_mask uses
3559 	 * unique ids, hence we can use that to reconstruct active_planes.
3560 	 */
3561 	crtc_state->active_planes = 0;
3562 
3563 	drm_for_each_plane_mask(plane, &dev_priv->drm,
3564 				crtc_state->uapi.plane_mask)
3565 		crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
3566 }
3567 
3568 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
3569 					 struct intel_plane *plane)
3570 {
3571 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3572 	struct intel_crtc_state *crtc_state =
3573 		to_intel_crtc_state(crtc->base.state);
3574 	struct intel_plane_state *plane_state =
3575 		to_intel_plane_state(plane->base.state);
3576 
3577 	drm_dbg_kms(&dev_priv->drm,
3578 		    "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
3579 		    plane->base.base.id, plane->base.name,
3580 		    crtc->base.base.id, crtc->base.name);
3581 
3582 	intel_set_plane_visible(crtc_state, plane_state, false);
3583 	fixup_active_planes(crtc_state);
3584 	crtc_state->data_rate[plane->id] = 0;
3585 	crtc_state->min_cdclk[plane->id] = 0;
3586 
3587 	if (plane->id == PLANE_PRIMARY)
3588 		hsw_disable_ips(crtc_state);
3589 
3590 	/*
3591 	 * Vblank time updates from the shadow to live plane control register
3592 	 * are blocked if the memory self-refresh mode is active at that
3593 	 * moment. So to make sure the plane gets truly disabled, disable
3594 	 * first the self-refresh mode. The self-refresh enable bit in turn
3595 	 * will be checked/applied by the HW only at the next frame start
3596 	 * event which is after the vblank start event, so we need to have a
3597 	 * wait-for-vblank between disabling the plane and the pipe.
3598 	 */
3599 	if (HAS_GMCH(dev_priv) &&
3600 	    intel_set_memory_cxsr(dev_priv, false))
3601 		intel_wait_for_vblank(dev_priv, crtc->pipe);
3602 
3603 	/*
3604 	 * Gen2 reports pipe underruns whenever all planes are disabled.
3605 	 * So disable underrun reporting before all the planes get disabled.
3606 	 */
3607 	if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes)
3608 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
3609 
3610 	intel_disable_plane(plane, crtc_state);
3611 }
3612 
3613 static struct intel_frontbuffer *
3614 to_intel_frontbuffer(struct drm_framebuffer *fb)
3615 {
3616 	return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL;
3617 }
3618 
3619 static void
3620 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
3621 			     struct intel_initial_plane_config *plane_config)
3622 {
3623 	struct drm_device *dev = intel_crtc->base.dev;
3624 	struct drm_i915_private *dev_priv = to_i915(dev);
3625 	struct drm_crtc *c;
3626 	struct drm_plane *primary = intel_crtc->base.primary;
3627 	struct drm_plane_state *plane_state = primary->state;
3628 	struct intel_plane *intel_plane = to_intel_plane(primary);
3629 	struct intel_plane_state *intel_state =
3630 		to_intel_plane_state(plane_state);
3631 	struct intel_crtc_state *crtc_state =
3632 		to_intel_crtc_state(intel_crtc->base.state);
3633 	struct drm_framebuffer *fb;
3634 	struct i915_vma *vma;
3635 
3636 	if (!plane_config->fb)
3637 		return;
3638 
3639 	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
3640 		fb = &plane_config->fb->base;
3641 		vma = plane_config->vma;
3642 		goto valid_fb;
3643 	}
3644 
3645 	/*
3646 	 * Failed to alloc the obj, check to see if we should share
3647 	 * an fb with another CRTC instead
3648 	 */
3649 	for_each_crtc(dev, c) {
3650 		struct intel_plane_state *state;
3651 
3652 		if (c == &intel_crtc->base)
3653 			continue;
3654 
3655 		if (!to_intel_crtc_state(c->state)->uapi.active)
3656 			continue;
3657 
3658 		state = to_intel_plane_state(c->primary->state);
3659 		if (!state->vma)
3660 			continue;
3661 
3662 		if (intel_plane_ggtt_offset(state) == plane_config->base) {
3663 			fb = state->hw.fb;
3664 			vma = state->vma;
3665 			goto valid_fb;
3666 		}
3667 	}
3668 
3669 	/*
3670 	 * We've failed to reconstruct the BIOS FB.  Current display state
3671 	 * indicates that the primary plane is visible, but has a NULL FB,
3672 	 * which will lead to problems later if we don't fix it up.  The
3673 	 * simplest solution is to just disable the primary plane now and
3674 	 * pretend the BIOS never had it enabled.
3675 	 */
3676 	intel_plane_disable_noatomic(intel_crtc, intel_plane);
3677 	if (crtc_state->bigjoiner) {
3678 		struct intel_crtc *slave =
3679 			crtc_state->bigjoiner_linked_crtc;
3680 		intel_plane_disable_noatomic(slave, to_intel_plane(slave->base.primary));
3681 	}
3682 
3683 	return;
3684 
3685 valid_fb:
3686 	intel_state->hw.rotation = plane_config->rotation;
3687 	intel_fill_fb_ggtt_view(&intel_state->view, fb,
3688 				intel_state->hw.rotation);
3689 	intel_state->color_plane[0].stride =
3690 		intel_fb_pitch(fb, 0, intel_state->hw.rotation);
3691 
3692 	__i915_vma_pin(vma);
3693 	intel_state->vma = i915_vma_get(vma);
3694 	if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0)
3695 		if (vma->fence)
3696 			intel_state->flags |= PLANE_HAS_FENCE;
3697 
3698 	plane_state->src_x = 0;
3699 	plane_state->src_y = 0;
3700 	plane_state->src_w = fb->width << 16;
3701 	plane_state->src_h = fb->height << 16;
3702 
3703 	plane_state->crtc_x = 0;
3704 	plane_state->crtc_y = 0;
3705 	plane_state->crtc_w = fb->width;
3706 	plane_state->crtc_h = fb->height;
3707 
3708 	intel_state->uapi.src = drm_plane_state_src(plane_state);
3709 	intel_state->uapi.dst = drm_plane_state_dest(plane_state);
3710 
3711 	if (plane_config->tiling)
3712 		dev_priv->preserve_bios_swizzle = true;
3713 
3714 	plane_state->fb = fb;
3715 	drm_framebuffer_get(fb);
3716 
3717 	plane_state->crtc = &intel_crtc->base;
3718 	intel_plane_copy_uapi_to_hw_state(intel_state, intel_state,
3719 					  intel_crtc);
3720 
3721 	intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
3722 
3723 	atomic_or(to_intel_plane(primary)->frontbuffer_bit,
3724 		  &to_intel_frontbuffer(fb)->bits);
3725 }
3726 
3727 
3728 static bool
3729 skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
3730 			       int main_x, int main_y, u32 main_offset,
3731 			       int ccs_plane)
3732 {
3733 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3734 	int aux_x = plane_state->color_plane[ccs_plane].x;
3735 	int aux_y = plane_state->color_plane[ccs_plane].y;
3736 	u32 aux_offset = plane_state->color_plane[ccs_plane].offset;
3737 	u32 alignment = intel_surf_alignment(fb, ccs_plane);
3738 	int hsub;
3739 	int vsub;
3740 
3741 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
3742 	while (aux_offset >= main_offset && aux_y <= main_y) {
3743 		int x, y;
3744 
3745 		if (aux_x == main_x && aux_y == main_y)
3746 			break;
3747 
3748 		if (aux_offset == 0)
3749 			break;
3750 
3751 		x = aux_x / hsub;
3752 		y = aux_y / vsub;
3753 		aux_offset = intel_plane_adjust_aligned_offset(&x, &y,
3754 							       plane_state,
3755 							       ccs_plane,
3756 							       aux_offset,
3757 							       aux_offset -
3758 								alignment);
3759 		aux_x = x * hsub + aux_x % hsub;
3760 		aux_y = y * vsub + aux_y % vsub;
3761 	}
3762 
3763 	if (aux_x != main_x || aux_y != main_y)
3764 		return false;
3765 
3766 	plane_state->color_plane[ccs_plane].offset = aux_offset;
3767 	plane_state->color_plane[ccs_plane].x = aux_x;
3768 	plane_state->color_plane[ccs_plane].y = aux_y;
3769 
3770 	return true;
3771 }
3772 
3773 unsigned int
3774 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state)
3775 {
3776 	int x = 0, y = 0;
3777 
3778 	intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3779 					  plane_state->color_plane[0].offset, 0);
3780 
3781 	return y;
3782 }
3783 
3784 static int intel_plane_min_width(struct intel_plane *plane,
3785 				 const struct drm_framebuffer *fb,
3786 				 int color_plane,
3787 				 unsigned int rotation)
3788 {
3789 	if (plane->min_width)
3790 		return plane->min_width(fb, color_plane, rotation);
3791 	else
3792 		return 1;
3793 }
3794 
3795 static int intel_plane_max_width(struct intel_plane *plane,
3796 				 const struct drm_framebuffer *fb,
3797 				 int color_plane,
3798 				 unsigned int rotation)
3799 {
3800 	if (plane->max_width)
3801 		return plane->max_width(fb, color_plane, rotation);
3802 	else
3803 		return INT_MAX;
3804 }
3805 
3806 static int intel_plane_max_height(struct intel_plane *plane,
3807 				  const struct drm_framebuffer *fb,
3808 				  int color_plane,
3809 				  unsigned int rotation)
3810 {
3811 	if (plane->max_height)
3812 		return plane->max_height(fb, color_plane, rotation);
3813 	else
3814 		return INT_MAX;
3815 }
3816 
3817 static int skl_check_main_surface(struct intel_plane_state *plane_state)
3818 {
3819 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
3820 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3821 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3822 	unsigned int rotation = plane_state->hw.rotation;
3823 	int x = plane_state->uapi.src.x1 >> 16;
3824 	int y = plane_state->uapi.src.y1 >> 16;
3825 	int w = drm_rect_width(&plane_state->uapi.src) >> 16;
3826 	int h = drm_rect_height(&plane_state->uapi.src) >> 16;
3827 	int min_width = intel_plane_min_width(plane, fb, 0, rotation);
3828 	int max_width = intel_plane_max_width(plane, fb, 0, rotation);
3829 	int max_height = intel_plane_max_height(plane, fb, 0, rotation);
3830 	int aux_plane = intel_main_to_aux_plane(fb, 0);
3831 	u32 aux_offset = plane_state->color_plane[aux_plane].offset;
3832 	u32 alignment, offset;
3833 
3834 	if (w > max_width || w < min_width || h > max_height) {
3835 		drm_dbg_kms(&dev_priv->drm,
3836 			    "requested Y/RGB source size %dx%d outside limits (min: %dx1 max: %dx%d)\n",
3837 			    w, h, min_width, max_width, max_height);
3838 		return -EINVAL;
3839 	}
3840 
3841 	intel_add_fb_offsets(&x, &y, plane_state, 0);
3842 	offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0);
3843 	alignment = intel_surf_alignment(fb, 0);
3844 	if (drm_WARN_ON(&dev_priv->drm, alignment && !is_power_of_2(alignment)))
3845 		return -EINVAL;
3846 
3847 	/*
3848 	 * AUX surface offset is specified as the distance from the
3849 	 * main surface offset, and it must be non-negative. Make
3850 	 * sure that is what we will get.
3851 	 */
3852 	if (aux_plane && offset > aux_offset)
3853 		offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3854 							   offset, aux_offset & ~(alignment - 1));
3855 
3856 	/*
3857 	 * When using an X-tiled surface, the plane blows up
3858 	 * if the x offset + width exceed the stride.
3859 	 *
3860 	 * TODO: linear and Y-tiled seem fine, Yf untested,
3861 	 */
3862 	if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
3863 		int cpp = fb->format->cpp[0];
3864 
3865 		while ((x + w) * cpp > plane_state->color_plane[0].stride) {
3866 			if (offset == 0) {
3867 				drm_dbg_kms(&dev_priv->drm,
3868 					    "Unable to find suitable display surface offset due to X-tiling\n");
3869 				return -EINVAL;
3870 			}
3871 
3872 			offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3873 								   offset, offset - alignment);
3874 		}
3875 	}
3876 
3877 	/*
3878 	 * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3879 	 * they match with the main surface x/y offsets.
3880 	 */
3881 	if (is_ccs_modifier(fb->modifier)) {
3882 		while (!skl_check_main_ccs_coordinates(plane_state, x, y,
3883 						       offset, aux_plane)) {
3884 			if (offset == 0)
3885 				break;
3886 
3887 			offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3888 								   offset, offset - alignment);
3889 		}
3890 
3891 		if (x != plane_state->color_plane[aux_plane].x ||
3892 		    y != plane_state->color_plane[aux_plane].y) {
3893 			drm_dbg_kms(&dev_priv->drm,
3894 				    "Unable to find suitable display surface offset due to CCS\n");
3895 			return -EINVAL;
3896 		}
3897 	}
3898 
3899 	plane_state->color_plane[0].offset = offset;
3900 	plane_state->color_plane[0].x = x;
3901 	plane_state->color_plane[0].y = y;
3902 
3903 	/*
3904 	 * Put the final coordinates back so that the src
3905 	 * coordinate checks will see the right values.
3906 	 */
3907 	drm_rect_translate_to(&plane_state->uapi.src,
3908 			      x << 16, y << 16);
3909 
3910 	return 0;
3911 }
3912 
3913 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3914 {
3915 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
3916 	struct drm_i915_private *i915 = to_i915(plane->base.dev);
3917 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3918 	unsigned int rotation = plane_state->hw.rotation;
3919 	int uv_plane = 1;
3920 	int max_width = intel_plane_max_width(plane, fb, uv_plane, rotation);
3921 	int max_height = intel_plane_max_height(plane, fb, uv_plane, rotation);
3922 	int x = plane_state->uapi.src.x1 >> 17;
3923 	int y = plane_state->uapi.src.y1 >> 17;
3924 	int w = drm_rect_width(&plane_state->uapi.src) >> 17;
3925 	int h = drm_rect_height(&plane_state->uapi.src) >> 17;
3926 	u32 offset;
3927 
3928 	/* FIXME not quite sure how/if these apply to the chroma plane */
3929 	if (w > max_width || h > max_height) {
3930 		drm_dbg_kms(&i915->drm,
3931 			    "CbCr source size %dx%d too big (limit %dx%d)\n",
3932 			    w, h, max_width, max_height);
3933 		return -EINVAL;
3934 	}
3935 
3936 	intel_add_fb_offsets(&x, &y, plane_state, uv_plane);
3937 	offset = intel_plane_compute_aligned_offset(&x, &y,
3938 						    plane_state, uv_plane);
3939 
3940 	if (is_ccs_modifier(fb->modifier)) {
3941 		int ccs_plane = main_to_ccs_plane(fb, uv_plane);
3942 		u32 aux_offset = plane_state->color_plane[ccs_plane].offset;
3943 		u32 alignment = intel_surf_alignment(fb, uv_plane);
3944 
3945 		if (offset > aux_offset)
3946 			offset = intel_plane_adjust_aligned_offset(&x, &y,
3947 								   plane_state,
3948 								   uv_plane,
3949 								   offset,
3950 								   aux_offset & ~(alignment - 1));
3951 
3952 		while (!skl_check_main_ccs_coordinates(plane_state, x, y,
3953 						       offset, ccs_plane)) {
3954 			if (offset == 0)
3955 				break;
3956 
3957 			offset = intel_plane_adjust_aligned_offset(&x, &y,
3958 								   plane_state,
3959 								   uv_plane,
3960 								   offset, offset - alignment);
3961 		}
3962 
3963 		if (x != plane_state->color_plane[ccs_plane].x ||
3964 		    y != plane_state->color_plane[ccs_plane].y) {
3965 			drm_dbg_kms(&i915->drm,
3966 				    "Unable to find suitable display surface offset due to CCS\n");
3967 			return -EINVAL;
3968 		}
3969 	}
3970 
3971 	plane_state->color_plane[uv_plane].offset = offset;
3972 	plane_state->color_plane[uv_plane].x = x;
3973 	plane_state->color_plane[uv_plane].y = y;
3974 
3975 	return 0;
3976 }
3977 
3978 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
3979 {
3980 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3981 	int src_x = plane_state->uapi.src.x1 >> 16;
3982 	int src_y = plane_state->uapi.src.y1 >> 16;
3983 	u32 offset;
3984 	int ccs_plane;
3985 
3986 	for (ccs_plane = 0; ccs_plane < fb->format->num_planes; ccs_plane++) {
3987 		int main_hsub, main_vsub;
3988 		int hsub, vsub;
3989 		int x, y;
3990 
3991 		if (!is_ccs_plane(fb, ccs_plane))
3992 			continue;
3993 
3994 		intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb,
3995 					       ccs_to_main_plane(fb, ccs_plane));
3996 		intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
3997 
3998 		hsub *= main_hsub;
3999 		vsub *= main_vsub;
4000 		x = src_x / hsub;
4001 		y = src_y / vsub;
4002 
4003 		intel_add_fb_offsets(&x, &y, plane_state, ccs_plane);
4004 
4005 		offset = intel_plane_compute_aligned_offset(&x, &y,
4006 							    plane_state,
4007 							    ccs_plane);
4008 
4009 		plane_state->color_plane[ccs_plane].offset = offset;
4010 		plane_state->color_plane[ccs_plane].x = (x * hsub +
4011 							 src_x % hsub) /
4012 							main_hsub;
4013 		plane_state->color_plane[ccs_plane].y = (y * vsub +
4014 							 src_y % vsub) /
4015 							main_vsub;
4016 	}
4017 
4018 	return 0;
4019 }
4020 
4021 int skl_check_plane_surface(struct intel_plane_state *plane_state)
4022 {
4023 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4024 	int ret, i;
4025 
4026 	ret = intel_plane_compute_gtt(plane_state);
4027 	if (ret)
4028 		return ret;
4029 
4030 	if (!plane_state->uapi.visible)
4031 		return 0;
4032 
4033 	/*
4034 	 * Handle the AUX surface first since the main surface setup depends on
4035 	 * it.
4036 	 */
4037 	if (is_ccs_modifier(fb->modifier)) {
4038 		ret = skl_check_ccs_aux_surface(plane_state);
4039 		if (ret)
4040 			return ret;
4041 	}
4042 
4043 	if (intel_format_info_is_yuv_semiplanar(fb->format,
4044 						fb->modifier)) {
4045 		ret = skl_check_nv12_aux_surface(plane_state);
4046 		if (ret)
4047 			return ret;
4048 	}
4049 
4050 	for (i = fb->format->num_planes; i < ARRAY_SIZE(plane_state->color_plane); i++) {
4051 		plane_state->color_plane[i].offset = 0;
4052 		plane_state->color_plane[i].x = 0;
4053 		plane_state->color_plane[i].y = 0;
4054 	}
4055 
4056 	ret = skl_check_main_surface(plane_state);
4057 	if (ret)
4058 		return ret;
4059 
4060 	return 0;
4061 }
4062 
4063 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state,
4064 			     const struct intel_plane_state *plane_state,
4065 			     unsigned int *num, unsigned int *den)
4066 {
4067 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4068 	unsigned int cpp = fb->format->cpp[0];
4069 
4070 	/*
4071 	 * g4x bspec says 64bpp pixel rate can't exceed 80%
4072 	 * of cdclk when the sprite plane is enabled on the
4073 	 * same pipe. ilk/snb bspec says 64bpp pixel rate is
4074 	 * never allowed to exceed 80% of cdclk. Let's just go
4075 	 * with the ilk/snb limit always.
4076 	 */
4077 	if (cpp == 8) {
4078 		*num = 10;
4079 		*den = 8;
4080 	} else {
4081 		*num = 1;
4082 		*den = 1;
4083 	}
4084 }
4085 
4086 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state,
4087 				const struct intel_plane_state *plane_state)
4088 {
4089 	unsigned int pixel_rate;
4090 	unsigned int num, den;
4091 
4092 	/*
4093 	 * Note that crtc_state->pixel_rate accounts for both
4094 	 * horizontal and vertical panel fitter downscaling factors.
4095 	 * Pre-HSW bspec tells us to only consider the horizontal
4096 	 * downscaling factor here. We ignore that and just consider
4097 	 * both for simplicity.
4098 	 */
4099 	pixel_rate = crtc_state->pixel_rate;
4100 
4101 	i9xx_plane_ratio(crtc_state, plane_state, &num, &den);
4102 
4103 	/* two pixels per clock with double wide pipe */
4104 	if (crtc_state->double_wide)
4105 		den *= 2;
4106 
4107 	return DIV_ROUND_UP(pixel_rate * num, den);
4108 }
4109 
4110 unsigned int
4111 i9xx_plane_max_stride(struct intel_plane *plane,
4112 		      u32 pixel_format, u64 modifier,
4113 		      unsigned int rotation)
4114 {
4115 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4116 
4117 	if (!HAS_GMCH(dev_priv)) {
4118 		return 32*1024;
4119 	} else if (INTEL_GEN(dev_priv) >= 4) {
4120 		if (modifier == I915_FORMAT_MOD_X_TILED)
4121 			return 16*1024;
4122 		else
4123 			return 32*1024;
4124 	} else if (INTEL_GEN(dev_priv) >= 3) {
4125 		if (modifier == I915_FORMAT_MOD_X_TILED)
4126 			return 8*1024;
4127 		else
4128 			return 16*1024;
4129 	} else {
4130 		if (plane->i9xx_plane == PLANE_C)
4131 			return 4*1024;
4132 		else
4133 			return 8*1024;
4134 	}
4135 }
4136 
4137 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4138 {
4139 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4140 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4141 	u32 dspcntr = 0;
4142 
4143 	if (crtc_state->gamma_enable)
4144 		dspcntr |= DISPPLANE_GAMMA_ENABLE;
4145 
4146 	if (crtc_state->csc_enable)
4147 		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
4148 
4149 	if (INTEL_GEN(dev_priv) < 5)
4150 		dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
4151 
4152 	return dspcntr;
4153 }
4154 
4155 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
4156 			  const struct intel_plane_state *plane_state)
4157 {
4158 	struct drm_i915_private *dev_priv =
4159 		to_i915(plane_state->uapi.plane->dev);
4160 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4161 	unsigned int rotation = plane_state->hw.rotation;
4162 	u32 dspcntr;
4163 
4164 	dspcntr = DISPLAY_PLANE_ENABLE;
4165 
4166 	if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) ||
4167 	    IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
4168 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
4169 
4170 	switch (fb->format->format) {
4171 	case DRM_FORMAT_C8:
4172 		dspcntr |= DISPPLANE_8BPP;
4173 		break;
4174 	case DRM_FORMAT_XRGB1555:
4175 		dspcntr |= DISPPLANE_BGRX555;
4176 		break;
4177 	case DRM_FORMAT_ARGB1555:
4178 		dspcntr |= DISPPLANE_BGRA555;
4179 		break;
4180 	case DRM_FORMAT_RGB565:
4181 		dspcntr |= DISPPLANE_BGRX565;
4182 		break;
4183 	case DRM_FORMAT_XRGB8888:
4184 		dspcntr |= DISPPLANE_BGRX888;
4185 		break;
4186 	case DRM_FORMAT_XBGR8888:
4187 		dspcntr |= DISPPLANE_RGBX888;
4188 		break;
4189 	case DRM_FORMAT_ARGB8888:
4190 		dspcntr |= DISPPLANE_BGRA888;
4191 		break;
4192 	case DRM_FORMAT_ABGR8888:
4193 		dspcntr |= DISPPLANE_RGBA888;
4194 		break;
4195 	case DRM_FORMAT_XRGB2101010:
4196 		dspcntr |= DISPPLANE_BGRX101010;
4197 		break;
4198 	case DRM_FORMAT_XBGR2101010:
4199 		dspcntr |= DISPPLANE_RGBX101010;
4200 		break;
4201 	case DRM_FORMAT_ARGB2101010:
4202 		dspcntr |= DISPPLANE_BGRA101010;
4203 		break;
4204 	case DRM_FORMAT_ABGR2101010:
4205 		dspcntr |= DISPPLANE_RGBA101010;
4206 		break;
4207 	case DRM_FORMAT_XBGR16161616F:
4208 		dspcntr |= DISPPLANE_RGBX161616;
4209 		break;
4210 	default:
4211 		MISSING_CASE(fb->format->format);
4212 		return 0;
4213 	}
4214 
4215 	if (INTEL_GEN(dev_priv) >= 4 &&
4216 	    fb->modifier == I915_FORMAT_MOD_X_TILED)
4217 		dspcntr |= DISPPLANE_TILED;
4218 
4219 	if (rotation & DRM_MODE_ROTATE_180)
4220 		dspcntr |= DISPPLANE_ROTATE_180;
4221 
4222 	if (rotation & DRM_MODE_REFLECT_X)
4223 		dspcntr |= DISPPLANE_MIRROR;
4224 
4225 	return dspcntr;
4226 }
4227 
4228 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
4229 {
4230 	struct drm_i915_private *dev_priv =
4231 		to_i915(plane_state->uapi.plane->dev);
4232 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4233 	int src_x, src_y, src_w;
4234 	u32 offset;
4235 	int ret;
4236 
4237 	ret = intel_plane_compute_gtt(plane_state);
4238 	if (ret)
4239 		return ret;
4240 
4241 	if (!plane_state->uapi.visible)
4242 		return 0;
4243 
4244 	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4245 	src_x = plane_state->uapi.src.x1 >> 16;
4246 	src_y = plane_state->uapi.src.y1 >> 16;
4247 
4248 	/* Undocumented hardware limit on i965/g4x/vlv/chv */
4249 	if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048)
4250 		return -EINVAL;
4251 
4252 	intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
4253 
4254 	if (INTEL_GEN(dev_priv) >= 4)
4255 		offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
4256 							    plane_state, 0);
4257 	else
4258 		offset = 0;
4259 
4260 	/*
4261 	 * Put the final coordinates back so that the src
4262 	 * coordinate checks will see the right values.
4263 	 */
4264 	drm_rect_translate_to(&plane_state->uapi.src,
4265 			      src_x << 16, src_y << 16);
4266 
4267 	/* HSW/BDW do this automagically in hardware */
4268 	if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
4269 		unsigned int rotation = plane_state->hw.rotation;
4270 		int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4271 		int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4272 
4273 		if (rotation & DRM_MODE_ROTATE_180) {
4274 			src_x += src_w - 1;
4275 			src_y += src_h - 1;
4276 		} else if (rotation & DRM_MODE_REFLECT_X) {
4277 			src_x += src_w - 1;
4278 		}
4279 	}
4280 
4281 	plane_state->color_plane[0].offset = offset;
4282 	plane_state->color_plane[0].x = src_x;
4283 	plane_state->color_plane[0].y = src_y;
4284 
4285 	return 0;
4286 }
4287 
4288 static bool i9xx_plane_has_windowing(struct intel_plane *plane)
4289 {
4290 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4291 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4292 
4293 	if (IS_CHERRYVIEW(dev_priv))
4294 		return i9xx_plane == PLANE_B;
4295 	else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
4296 		return false;
4297 	else if (IS_GEN(dev_priv, 4))
4298 		return i9xx_plane == PLANE_C;
4299 	else
4300 		return i9xx_plane == PLANE_B ||
4301 			i9xx_plane == PLANE_C;
4302 }
4303 
4304 static int
4305 i9xx_plane_check(struct intel_crtc_state *crtc_state,
4306 		 struct intel_plane_state *plane_state)
4307 {
4308 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4309 	int ret;
4310 
4311 	ret = chv_plane_check_rotation(plane_state);
4312 	if (ret)
4313 		return ret;
4314 
4315 	ret = intel_atomic_plane_check_clipping(plane_state, crtc_state,
4316 						DRM_PLANE_HELPER_NO_SCALING,
4317 						DRM_PLANE_HELPER_NO_SCALING,
4318 						i9xx_plane_has_windowing(plane));
4319 	if (ret)
4320 		return ret;
4321 
4322 	ret = i9xx_check_plane_surface(plane_state);
4323 	if (ret)
4324 		return ret;
4325 
4326 	if (!plane_state->uapi.visible)
4327 		return 0;
4328 
4329 	ret = intel_plane_check_src_coordinates(plane_state);
4330 	if (ret)
4331 		return ret;
4332 
4333 	plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state);
4334 
4335 	return 0;
4336 }
4337 
4338 static void i9xx_update_plane(struct intel_plane *plane,
4339 			      const struct intel_crtc_state *crtc_state,
4340 			      const struct intel_plane_state *plane_state)
4341 {
4342 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4343 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4344 	u32 linear_offset;
4345 	int x = plane_state->color_plane[0].x;
4346 	int y = plane_state->color_plane[0].y;
4347 	int crtc_x = plane_state->uapi.dst.x1;
4348 	int crtc_y = plane_state->uapi.dst.y1;
4349 	int crtc_w = drm_rect_width(&plane_state->uapi.dst);
4350 	int crtc_h = drm_rect_height(&plane_state->uapi.dst);
4351 	unsigned long irqflags;
4352 	u32 dspaddr_offset;
4353 	u32 dspcntr;
4354 
4355 	dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state);
4356 
4357 	linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
4358 
4359 	if (INTEL_GEN(dev_priv) >= 4)
4360 		dspaddr_offset = plane_state->color_plane[0].offset;
4361 	else
4362 		dspaddr_offset = linear_offset;
4363 
4364 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4365 
4366 	intel_de_write_fw(dev_priv, DSPSTRIDE(i9xx_plane),
4367 			  plane_state->color_plane[0].stride);
4368 
4369 	if (INTEL_GEN(dev_priv) < 4) {
4370 		/*
4371 		 * PLANE_A doesn't actually have a full window
4372 		 * generator but let's assume we still need to
4373 		 * program whatever is there.
4374 		 */
4375 		intel_de_write_fw(dev_priv, DSPPOS(i9xx_plane),
4376 				  (crtc_y << 16) | crtc_x);
4377 		intel_de_write_fw(dev_priv, DSPSIZE(i9xx_plane),
4378 				  ((crtc_h - 1) << 16) | (crtc_w - 1));
4379 	} else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) {
4380 		intel_de_write_fw(dev_priv, PRIMPOS(i9xx_plane),
4381 				  (crtc_y << 16) | crtc_x);
4382 		intel_de_write_fw(dev_priv, PRIMSIZE(i9xx_plane),
4383 				  ((crtc_h - 1) << 16) | (crtc_w - 1));
4384 		intel_de_write_fw(dev_priv, PRIMCNSTALPHA(i9xx_plane), 0);
4385 	}
4386 
4387 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
4388 		intel_de_write_fw(dev_priv, DSPOFFSET(i9xx_plane),
4389 				  (y << 16) | x);
4390 	} else if (INTEL_GEN(dev_priv) >= 4) {
4391 		intel_de_write_fw(dev_priv, DSPLINOFF(i9xx_plane),
4392 				  linear_offset);
4393 		intel_de_write_fw(dev_priv, DSPTILEOFF(i9xx_plane),
4394 				  (y << 16) | x);
4395 	}
4396 
4397 	/*
4398 	 * The control register self-arms if the plane was previously
4399 	 * disabled. Try to make the plane enable atomic by writing
4400 	 * the control register just before the surface register.
4401 	 */
4402 	intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr);
4403 	if (INTEL_GEN(dev_priv) >= 4)
4404 		intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane),
4405 				  intel_plane_ggtt_offset(plane_state) + dspaddr_offset);
4406 	else
4407 		intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane),
4408 				  intel_plane_ggtt_offset(plane_state) + dspaddr_offset);
4409 
4410 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4411 }
4412 
4413 static void i9xx_disable_plane(struct intel_plane *plane,
4414 			       const struct intel_crtc_state *crtc_state)
4415 {
4416 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4417 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4418 	unsigned long irqflags;
4419 	u32 dspcntr;
4420 
4421 	/*
4422 	 * DSPCNTR pipe gamma enable on g4x+ and pipe csc
4423 	 * enable on ilk+ affect the pipe bottom color as
4424 	 * well, so we must configure them even if the plane
4425 	 * is disabled.
4426 	 *
4427 	 * On pre-g4x there is no way to gamma correct the
4428 	 * pipe bottom color but we'll keep on doing this
4429 	 * anyway so that the crtc state readout works correctly.
4430 	 */
4431 	dspcntr = i9xx_plane_ctl_crtc(crtc_state);
4432 
4433 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4434 
4435 	intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr);
4436 	if (INTEL_GEN(dev_priv) >= 4)
4437 		intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 0);
4438 	else
4439 		intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 0);
4440 
4441 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4442 }
4443 
4444 static bool i9xx_plane_get_hw_state(struct intel_plane *plane,
4445 				    enum pipe *pipe)
4446 {
4447 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4448 	enum intel_display_power_domain power_domain;
4449 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4450 	intel_wakeref_t wakeref;
4451 	bool ret;
4452 	u32 val;
4453 
4454 	/*
4455 	 * Not 100% correct for planes that can move between pipes,
4456 	 * but that's only the case for gen2-4 which don't have any
4457 	 * display power wells.
4458 	 */
4459 	power_domain = POWER_DOMAIN_PIPE(plane->pipe);
4460 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4461 	if (!wakeref)
4462 		return false;
4463 
4464 	val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
4465 
4466 	ret = val & DISPLAY_PLANE_ENABLE;
4467 
4468 	if (INTEL_GEN(dev_priv) >= 5)
4469 		*pipe = plane->pipe;
4470 	else
4471 		*pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
4472 			DISPPLANE_SEL_PIPE_SHIFT;
4473 
4474 	intel_display_power_put(dev_priv, power_domain, wakeref);
4475 
4476 	return ret;
4477 }
4478 
4479 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
4480 {
4481 	struct drm_device *dev = intel_crtc->base.dev;
4482 	struct drm_i915_private *dev_priv = to_i915(dev);
4483 	unsigned long irqflags;
4484 
4485 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4486 
4487 	intel_de_write_fw(dev_priv, SKL_PS_CTRL(intel_crtc->pipe, id), 0);
4488 	intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
4489 	intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
4490 
4491 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4492 }
4493 
4494 /*
4495  * This function detaches (aka. unbinds) unused scalers in hardware
4496  */
4497 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state)
4498 {
4499 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
4500 	const struct intel_crtc_scaler_state *scaler_state =
4501 		&crtc_state->scaler_state;
4502 	int i;
4503 
4504 	/* loop through and disable scalers that aren't in use */
4505 	for (i = 0; i < intel_crtc->num_scalers; i++) {
4506 		if (!scaler_state->scalers[i].in_use)
4507 			skl_detach_scaler(intel_crtc, i);
4508 	}
4509 }
4510 
4511 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb,
4512 					  int color_plane, unsigned int rotation)
4513 {
4514 	/*
4515 	 * The stride is either expressed as a multiple of 64 bytes chunks for
4516 	 * linear buffers or in number of tiles for tiled buffers.
4517 	 */
4518 	if (is_surface_linear(fb, color_plane))
4519 		return 64;
4520 	else if (drm_rotation_90_or_270(rotation))
4521 		return intel_tile_height(fb, color_plane);
4522 	else
4523 		return intel_tile_width_bytes(fb, color_plane);
4524 }
4525 
4526 u32 skl_plane_stride(const struct intel_plane_state *plane_state,
4527 		     int color_plane)
4528 {
4529 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4530 	unsigned int rotation = plane_state->hw.rotation;
4531 	u32 stride = plane_state->color_plane[color_plane].stride;
4532 
4533 	if (color_plane >= fb->format->num_planes)
4534 		return 0;
4535 
4536 	return stride / skl_plane_stride_mult(fb, color_plane, rotation);
4537 }
4538 
4539 static u32 skl_plane_ctl_format(u32 pixel_format)
4540 {
4541 	switch (pixel_format) {
4542 	case DRM_FORMAT_C8:
4543 		return PLANE_CTL_FORMAT_INDEXED;
4544 	case DRM_FORMAT_RGB565:
4545 		return PLANE_CTL_FORMAT_RGB_565;
4546 	case DRM_FORMAT_XBGR8888:
4547 	case DRM_FORMAT_ABGR8888:
4548 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
4549 	case DRM_FORMAT_XRGB8888:
4550 	case DRM_FORMAT_ARGB8888:
4551 		return PLANE_CTL_FORMAT_XRGB_8888;
4552 	case DRM_FORMAT_XBGR2101010:
4553 	case DRM_FORMAT_ABGR2101010:
4554 		return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX;
4555 	case DRM_FORMAT_XRGB2101010:
4556 	case DRM_FORMAT_ARGB2101010:
4557 		return PLANE_CTL_FORMAT_XRGB_2101010;
4558 	case DRM_FORMAT_XBGR16161616F:
4559 	case DRM_FORMAT_ABGR16161616F:
4560 		return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX;
4561 	case DRM_FORMAT_XRGB16161616F:
4562 	case DRM_FORMAT_ARGB16161616F:
4563 		return PLANE_CTL_FORMAT_XRGB_16161616F;
4564 	case DRM_FORMAT_XYUV8888:
4565 		return PLANE_CTL_FORMAT_XYUV;
4566 	case DRM_FORMAT_YUYV:
4567 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
4568 	case DRM_FORMAT_YVYU:
4569 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
4570 	case DRM_FORMAT_UYVY:
4571 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
4572 	case DRM_FORMAT_VYUY:
4573 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
4574 	case DRM_FORMAT_NV12:
4575 		return PLANE_CTL_FORMAT_NV12;
4576 	case DRM_FORMAT_P010:
4577 		return PLANE_CTL_FORMAT_P010;
4578 	case DRM_FORMAT_P012:
4579 		return PLANE_CTL_FORMAT_P012;
4580 	case DRM_FORMAT_P016:
4581 		return PLANE_CTL_FORMAT_P016;
4582 	case DRM_FORMAT_Y210:
4583 		return PLANE_CTL_FORMAT_Y210;
4584 	case DRM_FORMAT_Y212:
4585 		return PLANE_CTL_FORMAT_Y212;
4586 	case DRM_FORMAT_Y216:
4587 		return PLANE_CTL_FORMAT_Y216;
4588 	case DRM_FORMAT_XVYU2101010:
4589 		return PLANE_CTL_FORMAT_Y410;
4590 	case DRM_FORMAT_XVYU12_16161616:
4591 		return PLANE_CTL_FORMAT_Y412;
4592 	case DRM_FORMAT_XVYU16161616:
4593 		return PLANE_CTL_FORMAT_Y416;
4594 	default:
4595 		MISSING_CASE(pixel_format);
4596 	}
4597 
4598 	return 0;
4599 }
4600 
4601 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state)
4602 {
4603 	if (!plane_state->hw.fb->format->has_alpha)
4604 		return PLANE_CTL_ALPHA_DISABLE;
4605 
4606 	switch (plane_state->hw.pixel_blend_mode) {
4607 	case DRM_MODE_BLEND_PIXEL_NONE:
4608 		return PLANE_CTL_ALPHA_DISABLE;
4609 	case DRM_MODE_BLEND_PREMULTI:
4610 		return PLANE_CTL_ALPHA_SW_PREMULTIPLY;
4611 	case DRM_MODE_BLEND_COVERAGE:
4612 		return PLANE_CTL_ALPHA_HW_PREMULTIPLY;
4613 	default:
4614 		MISSING_CASE(plane_state->hw.pixel_blend_mode);
4615 		return PLANE_CTL_ALPHA_DISABLE;
4616 	}
4617 }
4618 
4619 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state)
4620 {
4621 	if (!plane_state->hw.fb->format->has_alpha)
4622 		return PLANE_COLOR_ALPHA_DISABLE;
4623 
4624 	switch (plane_state->hw.pixel_blend_mode) {
4625 	case DRM_MODE_BLEND_PIXEL_NONE:
4626 		return PLANE_COLOR_ALPHA_DISABLE;
4627 	case DRM_MODE_BLEND_PREMULTI:
4628 		return PLANE_COLOR_ALPHA_SW_PREMULTIPLY;
4629 	case DRM_MODE_BLEND_COVERAGE:
4630 		return PLANE_COLOR_ALPHA_HW_PREMULTIPLY;
4631 	default:
4632 		MISSING_CASE(plane_state->hw.pixel_blend_mode);
4633 		return PLANE_COLOR_ALPHA_DISABLE;
4634 	}
4635 }
4636 
4637 static u32 skl_plane_ctl_tiling(u64 fb_modifier)
4638 {
4639 	switch (fb_modifier) {
4640 	case DRM_FORMAT_MOD_LINEAR:
4641 		break;
4642 	case I915_FORMAT_MOD_X_TILED:
4643 		return PLANE_CTL_TILED_X;
4644 	case I915_FORMAT_MOD_Y_TILED:
4645 		return PLANE_CTL_TILED_Y;
4646 	case I915_FORMAT_MOD_Y_TILED_CCS:
4647 		return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4648 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
4649 		return PLANE_CTL_TILED_Y |
4650 		       PLANE_CTL_RENDER_DECOMPRESSION_ENABLE |
4651 		       PLANE_CTL_CLEAR_COLOR_DISABLE;
4652 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
4653 		return PLANE_CTL_TILED_Y | PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE;
4654 	case I915_FORMAT_MOD_Yf_TILED:
4655 		return PLANE_CTL_TILED_YF;
4656 	case I915_FORMAT_MOD_Yf_TILED_CCS:
4657 		return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4658 	default:
4659 		MISSING_CASE(fb_modifier);
4660 	}
4661 
4662 	return 0;
4663 }
4664 
4665 static u32 skl_plane_ctl_rotate(unsigned int rotate)
4666 {
4667 	switch (rotate) {
4668 	case DRM_MODE_ROTATE_0:
4669 		break;
4670 	/*
4671 	 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
4672 	 * while i915 HW rotation is clockwise, thats why this swapping.
4673 	 */
4674 	case DRM_MODE_ROTATE_90:
4675 		return PLANE_CTL_ROTATE_270;
4676 	case DRM_MODE_ROTATE_180:
4677 		return PLANE_CTL_ROTATE_180;
4678 	case DRM_MODE_ROTATE_270:
4679 		return PLANE_CTL_ROTATE_90;
4680 	default:
4681 		MISSING_CASE(rotate);
4682 	}
4683 
4684 	return 0;
4685 }
4686 
4687 static u32 cnl_plane_ctl_flip(unsigned int reflect)
4688 {
4689 	switch (reflect) {
4690 	case 0:
4691 		break;
4692 	case DRM_MODE_REFLECT_X:
4693 		return PLANE_CTL_FLIP_HORIZONTAL;
4694 	case DRM_MODE_REFLECT_Y:
4695 	default:
4696 		MISSING_CASE(reflect);
4697 	}
4698 
4699 	return 0;
4700 }
4701 
4702 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4703 {
4704 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4705 	u32 plane_ctl = 0;
4706 
4707 	if (crtc_state->uapi.async_flip)
4708 		plane_ctl |= PLANE_CTL_ASYNC_FLIP;
4709 
4710 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4711 		return plane_ctl;
4712 
4713 	if (crtc_state->gamma_enable)
4714 		plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE;
4715 
4716 	if (crtc_state->csc_enable)
4717 		plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE;
4718 
4719 	return plane_ctl;
4720 }
4721 
4722 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
4723 		  const struct intel_plane_state *plane_state)
4724 {
4725 	struct drm_i915_private *dev_priv =
4726 		to_i915(plane_state->uapi.plane->dev);
4727 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4728 	unsigned int rotation = plane_state->hw.rotation;
4729 	const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
4730 	u32 plane_ctl;
4731 
4732 	plane_ctl = PLANE_CTL_ENABLE;
4733 
4734 	if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) {
4735 		plane_ctl |= skl_plane_ctl_alpha(plane_state);
4736 		plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
4737 
4738 		if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709)
4739 			plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709;
4740 
4741 		if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4742 			plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE;
4743 	}
4744 
4745 	plane_ctl |= skl_plane_ctl_format(fb->format->format);
4746 	plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
4747 	plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK);
4748 
4749 	if (INTEL_GEN(dev_priv) >= 10)
4750 		plane_ctl |= cnl_plane_ctl_flip(rotation &
4751 						DRM_MODE_REFLECT_MASK);
4752 
4753 	if (key->flags & I915_SET_COLORKEY_DESTINATION)
4754 		plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
4755 	else if (key->flags & I915_SET_COLORKEY_SOURCE)
4756 		plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
4757 
4758 	return plane_ctl;
4759 }
4760 
4761 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state)
4762 {
4763 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4764 	u32 plane_color_ctl = 0;
4765 
4766 	if (INTEL_GEN(dev_priv) >= 11)
4767 		return plane_color_ctl;
4768 
4769 	if (crtc_state->gamma_enable)
4770 		plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE;
4771 
4772 	if (crtc_state->csc_enable)
4773 		plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE;
4774 
4775 	return plane_color_ctl;
4776 }
4777 
4778 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state,
4779 			const struct intel_plane_state *plane_state)
4780 {
4781 	struct drm_i915_private *dev_priv =
4782 		to_i915(plane_state->uapi.plane->dev);
4783 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4784 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4785 	u32 plane_color_ctl = 0;
4786 
4787 	plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE;
4788 	plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state);
4789 
4790 	if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) {
4791 		switch (plane_state->hw.color_encoding) {
4792 		case DRM_COLOR_YCBCR_BT709:
4793 			plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709;
4794 			break;
4795 		case DRM_COLOR_YCBCR_BT2020:
4796 			plane_color_ctl |=
4797 				PLANE_COLOR_CSC_MODE_YUV2020_TO_RGB2020;
4798 			break;
4799 		default:
4800 			plane_color_ctl |=
4801 				PLANE_COLOR_CSC_MODE_YUV601_TO_RGB601;
4802 		}
4803 		if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4804 			plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
4805 	} else if (fb->format->is_yuv) {
4806 		plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE;
4807 		if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4808 			plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
4809 	}
4810 
4811 	return plane_color_ctl;
4812 }
4813 
4814 static int
4815 __intel_display_resume(struct drm_device *dev,
4816 		       struct drm_atomic_state *state,
4817 		       struct drm_modeset_acquire_ctx *ctx)
4818 {
4819 	struct drm_crtc_state *crtc_state;
4820 	struct drm_crtc *crtc;
4821 	int i, ret;
4822 
4823 	intel_modeset_setup_hw_state(dev, ctx);
4824 	intel_vga_redisable(to_i915(dev));
4825 
4826 	if (!state)
4827 		return 0;
4828 
4829 	/*
4830 	 * We've duplicated the state, pointers to the old state are invalid.
4831 	 *
4832 	 * Don't attempt to use the old state until we commit the duplicated state.
4833 	 */
4834 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
4835 		/*
4836 		 * Force recalculation even if we restore
4837 		 * current state. With fast modeset this may not result
4838 		 * in a modeset when the state is compatible.
4839 		 */
4840 		crtc_state->mode_changed = true;
4841 	}
4842 
4843 	/* ignore any reset values/BIOS leftovers in the WM registers */
4844 	if (!HAS_GMCH(to_i915(dev)))
4845 		to_intel_atomic_state(state)->skip_intermediate_wm = true;
4846 
4847 	ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
4848 
4849 	drm_WARN_ON(dev, ret == -EDEADLK);
4850 	return ret;
4851 }
4852 
4853 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
4854 {
4855 	return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display &&
4856 		intel_has_gpu_reset(&dev_priv->gt));
4857 }
4858 
4859 void intel_display_prepare_reset(struct drm_i915_private *dev_priv)
4860 {
4861 	struct drm_device *dev = &dev_priv->drm;
4862 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4863 	struct drm_atomic_state *state;
4864 	int ret;
4865 
4866 	if (!HAS_DISPLAY(dev_priv))
4867 		return;
4868 
4869 	/* reset doesn't touch the display */
4870 	if (!dev_priv->params.force_reset_modeset_test &&
4871 	    !gpu_reset_clobbers_display(dev_priv))
4872 		return;
4873 
4874 	/* We have a modeset vs reset deadlock, defensively unbreak it. */
4875 	set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4876 	smp_mb__after_atomic();
4877 	wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET);
4878 
4879 	if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
4880 		drm_dbg_kms(&dev_priv->drm,
4881 			    "Modeset potentially stuck, unbreaking through wedging\n");
4882 		intel_gt_set_wedged(&dev_priv->gt);
4883 	}
4884 
4885 	/*
4886 	 * Need mode_config.mutex so that we don't
4887 	 * trample ongoing ->detect() and whatnot.
4888 	 */
4889 	mutex_lock(&dev->mode_config.mutex);
4890 	drm_modeset_acquire_init(ctx, 0);
4891 	while (1) {
4892 		ret = drm_modeset_lock_all_ctx(dev, ctx);
4893 		if (ret != -EDEADLK)
4894 			break;
4895 
4896 		drm_modeset_backoff(ctx);
4897 	}
4898 	/*
4899 	 * Disabling the crtcs gracefully seems nicer. Also the
4900 	 * g33 docs say we should at least disable all the planes.
4901 	 */
4902 	state = drm_atomic_helper_duplicate_state(dev, ctx);
4903 	if (IS_ERR(state)) {
4904 		ret = PTR_ERR(state);
4905 		drm_err(&dev_priv->drm, "Duplicating state failed with %i\n",
4906 			ret);
4907 		return;
4908 	}
4909 
4910 	ret = drm_atomic_helper_disable_all(dev, ctx);
4911 	if (ret) {
4912 		drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n",
4913 			ret);
4914 		drm_atomic_state_put(state);
4915 		return;
4916 	}
4917 
4918 	dev_priv->modeset_restore_state = state;
4919 	state->acquire_ctx = ctx;
4920 }
4921 
4922 void intel_display_finish_reset(struct drm_i915_private *dev_priv)
4923 {
4924 	struct drm_device *dev = &dev_priv->drm;
4925 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4926 	struct drm_atomic_state *state;
4927 	int ret;
4928 
4929 	if (!HAS_DISPLAY(dev_priv))
4930 		return;
4931 
4932 	/* reset doesn't touch the display */
4933 	if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
4934 		return;
4935 
4936 	state = fetch_and_zero(&dev_priv->modeset_restore_state);
4937 	if (!state)
4938 		goto unlock;
4939 
4940 	/* reset doesn't touch the display */
4941 	if (!gpu_reset_clobbers_display(dev_priv)) {
4942 		/* for testing only restore the display */
4943 		ret = __intel_display_resume(dev, state, ctx);
4944 		if (ret)
4945 			drm_err(&dev_priv->drm,
4946 				"Restoring old state failed with %i\n", ret);
4947 	} else {
4948 		/*
4949 		 * The display has been reset as well,
4950 		 * so need a full re-initialization.
4951 		 */
4952 		intel_pps_unlock_regs_wa(dev_priv);
4953 		intel_modeset_init_hw(dev_priv);
4954 		intel_init_clock_gating(dev_priv);
4955 		intel_hpd_init(dev_priv);
4956 
4957 		ret = __intel_display_resume(dev, state, ctx);
4958 		if (ret)
4959 			drm_err(&dev_priv->drm,
4960 				"Restoring old state failed with %i\n", ret);
4961 
4962 		intel_hpd_poll_disable(dev_priv);
4963 	}
4964 
4965 	drm_atomic_state_put(state);
4966 unlock:
4967 	drm_modeset_drop_locks(ctx);
4968 	drm_modeset_acquire_fini(ctx);
4969 	mutex_unlock(&dev->mode_config.mutex);
4970 
4971 	clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4972 }
4973 
4974 static void icl_set_pipe_chicken(struct intel_crtc *crtc)
4975 {
4976 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4977 	enum pipe pipe = crtc->pipe;
4978 	u32 tmp;
4979 
4980 	tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe));
4981 
4982 	/*
4983 	 * Display WA #1153: icl
4984 	 * enable hardware to bypass the alpha math
4985 	 * and rounding for per-pixel values 00 and 0xff
4986 	 */
4987 	tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
4988 	/*
4989 	 * Display WA # 1605353570: icl
4990 	 * Set the pixel rounding bit to 1 for allowing
4991 	 * passthrough of Frame buffer pixels unmodified
4992 	 * across pipe
4993 	 */
4994 	tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
4995 	intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp);
4996 }
4997 
4998 static void intel_fdi_normal_train(struct intel_crtc *crtc)
4999 {
5000 	struct drm_device *dev = crtc->base.dev;
5001 	struct drm_i915_private *dev_priv = to_i915(dev);
5002 	enum pipe pipe = crtc->pipe;
5003 	i915_reg_t reg;
5004 	u32 temp;
5005 
5006 	/* enable normal train */
5007 	reg = FDI_TX_CTL(pipe);
5008 	temp = intel_de_read(dev_priv, reg);
5009 	if (IS_IVYBRIDGE(dev_priv)) {
5010 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5011 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
5012 	} else {
5013 		temp &= ~FDI_LINK_TRAIN_NONE;
5014 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
5015 	}
5016 	intel_de_write(dev_priv, reg, temp);
5017 
5018 	reg = FDI_RX_CTL(pipe);
5019 	temp = intel_de_read(dev_priv, reg);
5020 	if (HAS_PCH_CPT(dev_priv)) {
5021 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5022 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
5023 	} else {
5024 		temp &= ~FDI_LINK_TRAIN_NONE;
5025 		temp |= FDI_LINK_TRAIN_NONE;
5026 	}
5027 	intel_de_write(dev_priv, reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
5028 
5029 	/* wait one idle pattern time */
5030 	intel_de_posting_read(dev_priv, reg);
5031 	udelay(1000);
5032 
5033 	/* IVB wants error correction enabled */
5034 	if (IS_IVYBRIDGE(dev_priv))
5035 		intel_de_write(dev_priv, reg,
5036 		               intel_de_read(dev_priv, reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE);
5037 }
5038 
5039 /* The FDI link training functions for ILK/Ibexpeak. */
5040 static void ilk_fdi_link_train(struct intel_crtc *crtc,
5041 			       const struct intel_crtc_state *crtc_state)
5042 {
5043 	struct drm_device *dev = crtc->base.dev;
5044 	struct drm_i915_private *dev_priv = to_i915(dev);
5045 	enum pipe pipe = crtc->pipe;
5046 	i915_reg_t reg;
5047 	u32 temp, tries;
5048 
5049 	/* FDI needs bits from pipe first */
5050 	assert_pipe_enabled(dev_priv, crtc_state->cpu_transcoder);
5051 
5052 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5053 	   for train result */
5054 	reg = FDI_RX_IMR(pipe);
5055 	temp = intel_de_read(dev_priv, reg);
5056 	temp &= ~FDI_RX_SYMBOL_LOCK;
5057 	temp &= ~FDI_RX_BIT_LOCK;
5058 	intel_de_write(dev_priv, reg, temp);
5059 	intel_de_read(dev_priv, reg);
5060 	udelay(150);
5061 
5062 	/* enable CPU FDI TX and PCH FDI RX */
5063 	reg = FDI_TX_CTL(pipe);
5064 	temp = intel_de_read(dev_priv, reg);
5065 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
5066 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5067 	temp &= ~FDI_LINK_TRAIN_NONE;
5068 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5069 	intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5070 
5071 	reg = FDI_RX_CTL(pipe);
5072 	temp = intel_de_read(dev_priv, reg);
5073 	temp &= ~FDI_LINK_TRAIN_NONE;
5074 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5075 	intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5076 
5077 	intel_de_posting_read(dev_priv, reg);
5078 	udelay(150);
5079 
5080 	/* Ironlake workaround, enable clock pointer after FDI enable*/
5081 	intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5082 		       FDI_RX_PHASE_SYNC_POINTER_OVR);
5083 	intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5084 		       FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN);
5085 
5086 	reg = FDI_RX_IIR(pipe);
5087 	for (tries = 0; tries < 5; tries++) {
5088 		temp = intel_de_read(dev_priv, reg);
5089 		drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5090 
5091 		if ((temp & FDI_RX_BIT_LOCK)) {
5092 			drm_dbg_kms(&dev_priv->drm, "FDI train 1 done.\n");
5093 			intel_de_write(dev_priv, reg, temp | FDI_RX_BIT_LOCK);
5094 			break;
5095 		}
5096 	}
5097 	if (tries == 5)
5098 		drm_err(&dev_priv->drm, "FDI train 1 fail!\n");
5099 
5100 	/* Train 2 */
5101 	reg = FDI_TX_CTL(pipe);
5102 	temp = intel_de_read(dev_priv, reg);
5103 	temp &= ~FDI_LINK_TRAIN_NONE;
5104 	temp |= FDI_LINK_TRAIN_PATTERN_2;
5105 	intel_de_write(dev_priv, reg, temp);
5106 
5107 	reg = FDI_RX_CTL(pipe);
5108 	temp = intel_de_read(dev_priv, reg);
5109 	temp &= ~FDI_LINK_TRAIN_NONE;
5110 	temp |= FDI_LINK_TRAIN_PATTERN_2;
5111 	intel_de_write(dev_priv, reg, temp);
5112 
5113 	intel_de_posting_read(dev_priv, reg);
5114 	udelay(150);
5115 
5116 	reg = FDI_RX_IIR(pipe);
5117 	for (tries = 0; tries < 5; tries++) {
5118 		temp = intel_de_read(dev_priv, reg);
5119 		drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5120 
5121 		if (temp & FDI_RX_SYMBOL_LOCK) {
5122 			intel_de_write(dev_priv, reg,
5123 				       temp | FDI_RX_SYMBOL_LOCK);
5124 			drm_dbg_kms(&dev_priv->drm, "FDI train 2 done.\n");
5125 			break;
5126 		}
5127 	}
5128 	if (tries == 5)
5129 		drm_err(&dev_priv->drm, "FDI train 2 fail!\n");
5130 
5131 	drm_dbg_kms(&dev_priv->drm, "FDI train done\n");
5132 
5133 }
5134 
5135 static const int snb_b_fdi_train_param[] = {
5136 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
5137 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
5138 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
5139 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
5140 };
5141 
5142 /* The FDI link training functions for SNB/Cougarpoint. */
5143 static void gen6_fdi_link_train(struct intel_crtc *crtc,
5144 				const struct intel_crtc_state *crtc_state)
5145 {
5146 	struct drm_device *dev = crtc->base.dev;
5147 	struct drm_i915_private *dev_priv = to_i915(dev);
5148 	enum pipe pipe = crtc->pipe;
5149 	i915_reg_t reg;
5150 	u32 temp, i, retry;
5151 
5152 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5153 	   for train result */
5154 	reg = FDI_RX_IMR(pipe);
5155 	temp = intel_de_read(dev_priv, reg);
5156 	temp &= ~FDI_RX_SYMBOL_LOCK;
5157 	temp &= ~FDI_RX_BIT_LOCK;
5158 	intel_de_write(dev_priv, reg, temp);
5159 
5160 	intel_de_posting_read(dev_priv, reg);
5161 	udelay(150);
5162 
5163 	/* enable CPU FDI TX and PCH FDI RX */
5164 	reg = FDI_TX_CTL(pipe);
5165 	temp = intel_de_read(dev_priv, reg);
5166 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
5167 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5168 	temp &= ~FDI_LINK_TRAIN_NONE;
5169 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5170 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5171 	/* SNB-B */
5172 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5173 	intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5174 
5175 	intel_de_write(dev_priv, FDI_RX_MISC(pipe),
5176 		       FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5177 
5178 	reg = FDI_RX_CTL(pipe);
5179 	temp = intel_de_read(dev_priv, reg);
5180 	if (HAS_PCH_CPT(dev_priv)) {
5181 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5182 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5183 	} else {
5184 		temp &= ~FDI_LINK_TRAIN_NONE;
5185 		temp |= FDI_LINK_TRAIN_PATTERN_1;
5186 	}
5187 	intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5188 
5189 	intel_de_posting_read(dev_priv, reg);
5190 	udelay(150);
5191 
5192 	for (i = 0; i < 4; i++) {
5193 		reg = FDI_TX_CTL(pipe);
5194 		temp = intel_de_read(dev_priv, reg);
5195 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5196 		temp |= snb_b_fdi_train_param[i];
5197 		intel_de_write(dev_priv, reg, temp);
5198 
5199 		intel_de_posting_read(dev_priv, reg);
5200 		udelay(500);
5201 
5202 		for (retry = 0; retry < 5; retry++) {
5203 			reg = FDI_RX_IIR(pipe);
5204 			temp = intel_de_read(dev_priv, reg);
5205 			drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5206 			if (temp & FDI_RX_BIT_LOCK) {
5207 				intel_de_write(dev_priv, reg,
5208 					       temp | FDI_RX_BIT_LOCK);
5209 				drm_dbg_kms(&dev_priv->drm,
5210 					    "FDI train 1 done.\n");
5211 				break;
5212 			}
5213 			udelay(50);
5214 		}
5215 		if (retry < 5)
5216 			break;
5217 	}
5218 	if (i == 4)
5219 		drm_err(&dev_priv->drm, "FDI train 1 fail!\n");
5220 
5221 	/* Train 2 */
5222 	reg = FDI_TX_CTL(pipe);
5223 	temp = intel_de_read(dev_priv, reg);
5224 	temp &= ~FDI_LINK_TRAIN_NONE;
5225 	temp |= FDI_LINK_TRAIN_PATTERN_2;
5226 	if (IS_GEN(dev_priv, 6)) {
5227 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5228 		/* SNB-B */
5229 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5230 	}
5231 	intel_de_write(dev_priv, reg, temp);
5232 
5233 	reg = FDI_RX_CTL(pipe);
5234 	temp = intel_de_read(dev_priv, reg);
5235 	if (HAS_PCH_CPT(dev_priv)) {
5236 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5237 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5238 	} else {
5239 		temp &= ~FDI_LINK_TRAIN_NONE;
5240 		temp |= FDI_LINK_TRAIN_PATTERN_2;
5241 	}
5242 	intel_de_write(dev_priv, reg, temp);
5243 
5244 	intel_de_posting_read(dev_priv, reg);
5245 	udelay(150);
5246 
5247 	for (i = 0; i < 4; i++) {
5248 		reg = FDI_TX_CTL(pipe);
5249 		temp = intel_de_read(dev_priv, reg);
5250 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5251 		temp |= snb_b_fdi_train_param[i];
5252 		intel_de_write(dev_priv, reg, temp);
5253 
5254 		intel_de_posting_read(dev_priv, reg);
5255 		udelay(500);
5256 
5257 		for (retry = 0; retry < 5; retry++) {
5258 			reg = FDI_RX_IIR(pipe);
5259 			temp = intel_de_read(dev_priv, reg);
5260 			drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5261 			if (temp & FDI_RX_SYMBOL_LOCK) {
5262 				intel_de_write(dev_priv, reg,
5263 					       temp | FDI_RX_SYMBOL_LOCK);
5264 				drm_dbg_kms(&dev_priv->drm,
5265 					    "FDI train 2 done.\n");
5266 				break;
5267 			}
5268 			udelay(50);
5269 		}
5270 		if (retry < 5)
5271 			break;
5272 	}
5273 	if (i == 4)
5274 		drm_err(&dev_priv->drm, "FDI train 2 fail!\n");
5275 
5276 	drm_dbg_kms(&dev_priv->drm, "FDI train done.\n");
5277 }
5278 
5279 /* Manual link training for Ivy Bridge A0 parts */
5280 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
5281 				      const struct intel_crtc_state *crtc_state)
5282 {
5283 	struct drm_device *dev = crtc->base.dev;
5284 	struct drm_i915_private *dev_priv = to_i915(dev);
5285 	enum pipe pipe = crtc->pipe;
5286 	i915_reg_t reg;
5287 	u32 temp, i, j;
5288 
5289 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5290 	   for train result */
5291 	reg = FDI_RX_IMR(pipe);
5292 	temp = intel_de_read(dev_priv, reg);
5293 	temp &= ~FDI_RX_SYMBOL_LOCK;
5294 	temp &= ~FDI_RX_BIT_LOCK;
5295 	intel_de_write(dev_priv, reg, temp);
5296 
5297 	intel_de_posting_read(dev_priv, reg);
5298 	udelay(150);
5299 
5300 	drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR before link train 0x%x\n",
5301 		    intel_de_read(dev_priv, FDI_RX_IIR(pipe)));
5302 
5303 	/* Try each vswing and preemphasis setting twice before moving on */
5304 	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
5305 		/* disable first in case we need to retry */
5306 		reg = FDI_TX_CTL(pipe);
5307 		temp = intel_de_read(dev_priv, reg);
5308 		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
5309 		temp &= ~FDI_TX_ENABLE;
5310 		intel_de_write(dev_priv, reg, temp);
5311 
5312 		reg = FDI_RX_CTL(pipe);
5313 		temp = intel_de_read(dev_priv, reg);
5314 		temp &= ~FDI_LINK_TRAIN_AUTO;
5315 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5316 		temp &= ~FDI_RX_ENABLE;
5317 		intel_de_write(dev_priv, reg, temp);
5318 
5319 		/* enable CPU FDI TX and PCH FDI RX */
5320 		reg = FDI_TX_CTL(pipe);
5321 		temp = intel_de_read(dev_priv, reg);
5322 		temp &= ~FDI_DP_PORT_WIDTH_MASK;
5323 		temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5324 		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
5325 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5326 		temp |= snb_b_fdi_train_param[j/2];
5327 		temp |= FDI_COMPOSITE_SYNC;
5328 		intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5329 
5330 		intel_de_write(dev_priv, FDI_RX_MISC(pipe),
5331 			       FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5332 
5333 		reg = FDI_RX_CTL(pipe);
5334 		temp = intel_de_read(dev_priv, reg);
5335 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5336 		temp |= FDI_COMPOSITE_SYNC;
5337 		intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5338 
5339 		intel_de_posting_read(dev_priv, reg);
5340 		udelay(1); /* should be 0.5us */
5341 
5342 		for (i = 0; i < 4; i++) {
5343 			reg = FDI_RX_IIR(pipe);
5344 			temp = intel_de_read(dev_priv, reg);
5345 			drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5346 
5347 			if (temp & FDI_RX_BIT_LOCK ||
5348 			    (intel_de_read(dev_priv, reg) & FDI_RX_BIT_LOCK)) {
5349 				intel_de_write(dev_priv, reg,
5350 					       temp | FDI_RX_BIT_LOCK);
5351 				drm_dbg_kms(&dev_priv->drm,
5352 					    "FDI train 1 done, level %i.\n",
5353 					    i);
5354 				break;
5355 			}
5356 			udelay(1); /* should be 0.5us */
5357 		}
5358 		if (i == 4) {
5359 			drm_dbg_kms(&dev_priv->drm,
5360 				    "FDI train 1 fail on vswing %d\n", j / 2);
5361 			continue;
5362 		}
5363 
5364 		/* Train 2 */
5365 		reg = FDI_TX_CTL(pipe);
5366 		temp = intel_de_read(dev_priv, reg);
5367 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5368 		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
5369 		intel_de_write(dev_priv, reg, temp);
5370 
5371 		reg = FDI_RX_CTL(pipe);
5372 		temp = intel_de_read(dev_priv, reg);
5373 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5374 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5375 		intel_de_write(dev_priv, reg, temp);
5376 
5377 		intel_de_posting_read(dev_priv, reg);
5378 		udelay(2); /* should be 1.5us */
5379 
5380 		for (i = 0; i < 4; i++) {
5381 			reg = FDI_RX_IIR(pipe);
5382 			temp = intel_de_read(dev_priv, reg);
5383 			drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5384 
5385 			if (temp & FDI_RX_SYMBOL_LOCK ||
5386 			    (intel_de_read(dev_priv, reg) & FDI_RX_SYMBOL_LOCK)) {
5387 				intel_de_write(dev_priv, reg,
5388 					       temp | FDI_RX_SYMBOL_LOCK);
5389 				drm_dbg_kms(&dev_priv->drm,
5390 					    "FDI train 2 done, level %i.\n",
5391 					    i);
5392 				goto train_done;
5393 			}
5394 			udelay(2); /* should be 1.5us */
5395 		}
5396 		if (i == 4)
5397 			drm_dbg_kms(&dev_priv->drm,
5398 				    "FDI train 2 fail on vswing %d\n", j / 2);
5399 	}
5400 
5401 train_done:
5402 	drm_dbg_kms(&dev_priv->drm, "FDI train done.\n");
5403 }
5404 
5405 static void ilk_fdi_pll_enable(const struct intel_crtc_state *crtc_state)
5406 {
5407 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
5408 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5409 	enum pipe pipe = intel_crtc->pipe;
5410 	i915_reg_t reg;
5411 	u32 temp;
5412 
5413 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5414 	reg = FDI_RX_CTL(pipe);
5415 	temp = intel_de_read(dev_priv, reg);
5416 	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
5417 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5418 	temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5419 	intel_de_write(dev_priv, reg, temp | FDI_RX_PLL_ENABLE);
5420 
5421 	intel_de_posting_read(dev_priv, reg);
5422 	udelay(200);
5423 
5424 	/* Switch from Rawclk to PCDclk */
5425 	temp = intel_de_read(dev_priv, reg);
5426 	intel_de_write(dev_priv, reg, temp | FDI_PCDCLK);
5427 
5428 	intel_de_posting_read(dev_priv, reg);
5429 	udelay(200);
5430 
5431 	/* Enable CPU FDI TX PLL, always on for Ironlake */
5432 	reg = FDI_TX_CTL(pipe);
5433 	temp = intel_de_read(dev_priv, reg);
5434 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
5435 		intel_de_write(dev_priv, reg, temp | FDI_TX_PLL_ENABLE);
5436 
5437 		intel_de_posting_read(dev_priv, reg);
5438 		udelay(100);
5439 	}
5440 }
5441 
5442 static void ilk_fdi_pll_disable(struct intel_crtc *intel_crtc)
5443 {
5444 	struct drm_device *dev = intel_crtc->base.dev;
5445 	struct drm_i915_private *dev_priv = to_i915(dev);
5446 	enum pipe pipe = intel_crtc->pipe;
5447 	i915_reg_t reg;
5448 	u32 temp;
5449 
5450 	/* Switch from PCDclk to Rawclk */
5451 	reg = FDI_RX_CTL(pipe);
5452 	temp = intel_de_read(dev_priv, reg);
5453 	intel_de_write(dev_priv, reg, temp & ~FDI_PCDCLK);
5454 
5455 	/* Disable CPU FDI TX PLL */
5456 	reg = FDI_TX_CTL(pipe);
5457 	temp = intel_de_read(dev_priv, reg);
5458 	intel_de_write(dev_priv, reg, temp & ~FDI_TX_PLL_ENABLE);
5459 
5460 	intel_de_posting_read(dev_priv, reg);
5461 	udelay(100);
5462 
5463 	reg = FDI_RX_CTL(pipe);
5464 	temp = intel_de_read(dev_priv, reg);
5465 	intel_de_write(dev_priv, reg, temp & ~FDI_RX_PLL_ENABLE);
5466 
5467 	/* Wait for the clocks to turn off. */
5468 	intel_de_posting_read(dev_priv, reg);
5469 	udelay(100);
5470 }
5471 
5472 static void ilk_fdi_disable(struct intel_crtc *crtc)
5473 {
5474 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5475 	enum pipe pipe = crtc->pipe;
5476 	i915_reg_t reg;
5477 	u32 temp;
5478 
5479 	/* disable CPU FDI tx and PCH FDI rx */
5480 	reg = FDI_TX_CTL(pipe);
5481 	temp = intel_de_read(dev_priv, reg);
5482 	intel_de_write(dev_priv, reg, temp & ~FDI_TX_ENABLE);
5483 	intel_de_posting_read(dev_priv, reg);
5484 
5485 	reg = FDI_RX_CTL(pipe);
5486 	temp = intel_de_read(dev_priv, reg);
5487 	temp &= ~(0x7 << 16);
5488 	temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5489 	intel_de_write(dev_priv, reg, temp & ~FDI_RX_ENABLE);
5490 
5491 	intel_de_posting_read(dev_priv, reg);
5492 	udelay(100);
5493 
5494 	/* Ironlake workaround, disable clock pointer after downing FDI */
5495 	if (HAS_PCH_IBX(dev_priv))
5496 		intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5497 			       FDI_RX_PHASE_SYNC_POINTER_OVR);
5498 
5499 	/* still set train pattern 1 */
5500 	reg = FDI_TX_CTL(pipe);
5501 	temp = intel_de_read(dev_priv, reg);
5502 	temp &= ~FDI_LINK_TRAIN_NONE;
5503 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5504 	intel_de_write(dev_priv, reg, temp);
5505 
5506 	reg = FDI_RX_CTL(pipe);
5507 	temp = intel_de_read(dev_priv, reg);
5508 	if (HAS_PCH_CPT(dev_priv)) {
5509 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5510 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5511 	} else {
5512 		temp &= ~FDI_LINK_TRAIN_NONE;
5513 		temp |= FDI_LINK_TRAIN_PATTERN_1;
5514 	}
5515 	/* BPC in FDI rx is consistent with that in PIPECONF */
5516 	temp &= ~(0x07 << 16);
5517 	temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5518 	intel_de_write(dev_priv, reg, temp);
5519 
5520 	intel_de_posting_read(dev_priv, reg);
5521 	udelay(100);
5522 }
5523 
5524 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
5525 {
5526 	struct drm_crtc *crtc;
5527 	bool cleanup_done;
5528 
5529 	drm_for_each_crtc(crtc, &dev_priv->drm) {
5530 		struct drm_crtc_commit *commit;
5531 		spin_lock(&crtc->commit_lock);
5532 		commit = list_first_entry_or_null(&crtc->commit_list,
5533 						  struct drm_crtc_commit, commit_entry);
5534 		cleanup_done = commit ?
5535 			try_wait_for_completion(&commit->cleanup_done) : true;
5536 		spin_unlock(&crtc->commit_lock);
5537 
5538 		if (cleanup_done)
5539 			continue;
5540 
5541 		drm_crtc_wait_one_vblank(crtc);
5542 
5543 		return true;
5544 	}
5545 
5546 	return false;
5547 }
5548 
5549 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
5550 {
5551 	u32 temp;
5552 
5553 	intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE);
5554 
5555 	mutex_lock(&dev_priv->sb_lock);
5556 
5557 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5558 	temp |= SBI_SSCCTL_DISABLE;
5559 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5560 
5561 	mutex_unlock(&dev_priv->sb_lock);
5562 }
5563 
5564 /* Program iCLKIP clock to the desired frequency */
5565 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state)
5566 {
5567 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5568 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5569 	int clock = crtc_state->hw.adjusted_mode.crtc_clock;
5570 	u32 divsel, phaseinc, auxdiv, phasedir = 0;
5571 	u32 temp;
5572 
5573 	lpt_disable_iclkip(dev_priv);
5574 
5575 	/* The iCLK virtual clock root frequency is in MHz,
5576 	 * but the adjusted_mode->crtc_clock in in KHz. To get the
5577 	 * divisors, it is necessary to divide one by another, so we
5578 	 * convert the virtual clock precision to KHz here for higher
5579 	 * precision.
5580 	 */
5581 	for (auxdiv = 0; auxdiv < 2; auxdiv++) {
5582 		u32 iclk_virtual_root_freq = 172800 * 1000;
5583 		u32 iclk_pi_range = 64;
5584 		u32 desired_divisor;
5585 
5586 		desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5587 						    clock << auxdiv);
5588 		divsel = (desired_divisor / iclk_pi_range) - 2;
5589 		phaseinc = desired_divisor % iclk_pi_range;
5590 
5591 		/*
5592 		 * Near 20MHz is a corner case which is
5593 		 * out of range for the 7-bit divisor
5594 		 */
5595 		if (divsel <= 0x7f)
5596 			break;
5597 	}
5598 
5599 	/* This should not happen with any sane values */
5600 	drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
5601 		    ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
5602 	drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) &
5603 		    ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
5604 
5605 	drm_dbg_kms(&dev_priv->drm,
5606 		    "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
5607 		    clock, auxdiv, divsel, phasedir, phaseinc);
5608 
5609 	mutex_lock(&dev_priv->sb_lock);
5610 
5611 	/* Program SSCDIVINTPHASE6 */
5612 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5613 	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
5614 	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
5615 	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
5616 	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
5617 	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
5618 	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
5619 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
5620 
5621 	/* Program SSCAUXDIV */
5622 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5623 	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
5624 	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
5625 	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
5626 
5627 	/* Enable modulator and associated divider */
5628 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5629 	temp &= ~SBI_SSCCTL_DISABLE;
5630 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5631 
5632 	mutex_unlock(&dev_priv->sb_lock);
5633 
5634 	/* Wait for initialization time */
5635 	udelay(24);
5636 
5637 	intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE);
5638 }
5639 
5640 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
5641 {
5642 	u32 divsel, phaseinc, auxdiv;
5643 	u32 iclk_virtual_root_freq = 172800 * 1000;
5644 	u32 iclk_pi_range = 64;
5645 	u32 desired_divisor;
5646 	u32 temp;
5647 
5648 	if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
5649 		return 0;
5650 
5651 	mutex_lock(&dev_priv->sb_lock);
5652 
5653 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5654 	if (temp & SBI_SSCCTL_DISABLE) {
5655 		mutex_unlock(&dev_priv->sb_lock);
5656 		return 0;
5657 	}
5658 
5659 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5660 	divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
5661 		SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
5662 	phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
5663 		SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
5664 
5665 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5666 	auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
5667 		SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
5668 
5669 	mutex_unlock(&dev_priv->sb_lock);
5670 
5671 	desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
5672 
5673 	return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5674 				 desired_divisor << auxdiv);
5675 }
5676 
5677 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state,
5678 					   enum pipe pch_transcoder)
5679 {
5680 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5681 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5682 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5683 
5684 	intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder),
5685 		       intel_de_read(dev_priv, HTOTAL(cpu_transcoder)));
5686 	intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder),
5687 		       intel_de_read(dev_priv, HBLANK(cpu_transcoder)));
5688 	intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder),
5689 		       intel_de_read(dev_priv, HSYNC(cpu_transcoder)));
5690 
5691 	intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder),
5692 		       intel_de_read(dev_priv, VTOTAL(cpu_transcoder)));
5693 	intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder),
5694 		       intel_de_read(dev_priv, VBLANK(cpu_transcoder)));
5695 	intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder),
5696 		       intel_de_read(dev_priv, VSYNC(cpu_transcoder)));
5697 	intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder),
5698 		       intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder)));
5699 }
5700 
5701 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable)
5702 {
5703 	u32 temp;
5704 
5705 	temp = intel_de_read(dev_priv, SOUTH_CHICKEN1);
5706 	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
5707 		return;
5708 
5709 	drm_WARN_ON(&dev_priv->drm,
5710 		    intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) &
5711 		    FDI_RX_ENABLE);
5712 	drm_WARN_ON(&dev_priv->drm,
5713 		    intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) &
5714 		    FDI_RX_ENABLE);
5715 
5716 	temp &= ~FDI_BC_BIFURCATION_SELECT;
5717 	if (enable)
5718 		temp |= FDI_BC_BIFURCATION_SELECT;
5719 
5720 	drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n",
5721 		    enable ? "en" : "dis");
5722 	intel_de_write(dev_priv, SOUTH_CHICKEN1, temp);
5723 	intel_de_posting_read(dev_priv, SOUTH_CHICKEN1);
5724 }
5725 
5726 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state)
5727 {
5728 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5729 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5730 
5731 	switch (crtc->pipe) {
5732 	case PIPE_A:
5733 		break;
5734 	case PIPE_B:
5735 		if (crtc_state->fdi_lanes > 2)
5736 			cpt_set_fdi_bc_bifurcation(dev_priv, false);
5737 		else
5738 			cpt_set_fdi_bc_bifurcation(dev_priv, true);
5739 
5740 		break;
5741 	case PIPE_C:
5742 		cpt_set_fdi_bc_bifurcation(dev_priv, true);
5743 
5744 		break;
5745 	default:
5746 		BUG();
5747 	}
5748 }
5749 
5750 /*
5751  * Finds the encoder associated with the given CRTC. This can only be
5752  * used when we know that the CRTC isn't feeding multiple encoders!
5753  */
5754 static struct intel_encoder *
5755 intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
5756 			   const struct intel_crtc_state *crtc_state)
5757 {
5758 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5759 	const struct drm_connector_state *connector_state;
5760 	const struct drm_connector *connector;
5761 	struct intel_encoder *encoder = NULL;
5762 	int num_encoders = 0;
5763 	int i;
5764 
5765 	for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
5766 		if (connector_state->crtc != &crtc->base)
5767 			continue;
5768 
5769 		encoder = to_intel_encoder(connector_state->best_encoder);
5770 		num_encoders++;
5771 	}
5772 
5773 	drm_WARN(encoder->base.dev, num_encoders != 1,
5774 		 "%d encoders for pipe %c\n",
5775 		 num_encoders, pipe_name(crtc->pipe));
5776 
5777 	return encoder;
5778 }
5779 
5780 /*
5781  * Enable PCH resources required for PCH ports:
5782  *   - PCH PLLs
5783  *   - FDI training & RX/TX
5784  *   - update transcoder timings
5785  *   - DP transcoding bits
5786  *   - transcoder
5787  */
5788 static void ilk_pch_enable(const struct intel_atomic_state *state,
5789 			   const struct intel_crtc_state *crtc_state)
5790 {
5791 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5792 	struct drm_device *dev = crtc->base.dev;
5793 	struct drm_i915_private *dev_priv = to_i915(dev);
5794 	enum pipe pipe = crtc->pipe;
5795 	u32 temp;
5796 
5797 	assert_pch_transcoder_disabled(dev_priv, pipe);
5798 
5799 	if (IS_IVYBRIDGE(dev_priv))
5800 		ivb_update_fdi_bc_bifurcation(crtc_state);
5801 
5802 	/* Write the TU size bits before fdi link training, so that error
5803 	 * detection works. */
5804 	intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe),
5805 		       intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
5806 
5807 	/* For PCH output, training FDI link */
5808 	dev_priv->display.fdi_link_train(crtc, crtc_state);
5809 
5810 	/* We need to program the right clock selection before writing the pixel
5811 	 * mutliplier into the DPLL. */
5812 	if (HAS_PCH_CPT(dev_priv)) {
5813 		u32 sel;
5814 
5815 		temp = intel_de_read(dev_priv, PCH_DPLL_SEL);
5816 		temp |= TRANS_DPLL_ENABLE(pipe);
5817 		sel = TRANS_DPLLB_SEL(pipe);
5818 		if (crtc_state->shared_dpll ==
5819 		    intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
5820 			temp |= sel;
5821 		else
5822 			temp &= ~sel;
5823 		intel_de_write(dev_priv, PCH_DPLL_SEL, temp);
5824 	}
5825 
5826 	/* XXX: pch pll's can be enabled any time before we enable the PCH
5827 	 * transcoder, and we actually should do this to not upset any PCH
5828 	 * transcoder that already use the clock when we share it.
5829 	 *
5830 	 * Note that enable_shared_dpll tries to do the right thing, but
5831 	 * get_shared_dpll unconditionally resets the pll - we need that to have
5832 	 * the right LVDS enable sequence. */
5833 	intel_enable_shared_dpll(crtc_state);
5834 
5835 	/* set transcoder timing, panel must allow it */
5836 	assert_panel_unlocked(dev_priv, pipe);
5837 	ilk_pch_transcoder_set_timings(crtc_state, pipe);
5838 
5839 	intel_fdi_normal_train(crtc);
5840 
5841 	/* For PCH DP, enable TRANS_DP_CTL */
5842 	if (HAS_PCH_CPT(dev_priv) &&
5843 	    intel_crtc_has_dp_encoder(crtc_state)) {
5844 		const struct drm_display_mode *adjusted_mode =
5845 			&crtc_state->hw.adjusted_mode;
5846 		u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5847 		i915_reg_t reg = TRANS_DP_CTL(pipe);
5848 		enum port port;
5849 
5850 		temp = intel_de_read(dev_priv, reg);
5851 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
5852 			  TRANS_DP_SYNC_MASK |
5853 			  TRANS_DP_BPC_MASK);
5854 		temp |= TRANS_DP_OUTPUT_ENABLE;
5855 		temp |= bpc << 9; /* same format but at 11:9 */
5856 
5857 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5858 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
5859 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5860 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
5861 
5862 		port = intel_get_crtc_new_encoder(state, crtc_state)->port;
5863 		drm_WARN_ON(dev, port < PORT_B || port > PORT_D);
5864 		temp |= TRANS_DP_PORT_SEL(port);
5865 
5866 		intel_de_write(dev_priv, reg, temp);
5867 	}
5868 
5869 	ilk_enable_pch_transcoder(crtc_state);
5870 }
5871 
5872 void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
5873 {
5874 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5875 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5876 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5877 
5878 	assert_pch_transcoder_disabled(dev_priv, PIPE_A);
5879 
5880 	lpt_program_iclkip(crtc_state);
5881 
5882 	/* Set transcoder timing. */
5883 	ilk_pch_transcoder_set_timings(crtc_state, PIPE_A);
5884 
5885 	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
5886 }
5887 
5888 static void cpt_verify_modeset(struct drm_i915_private *dev_priv,
5889 			       enum pipe pipe)
5890 {
5891 	i915_reg_t dslreg = PIPEDSL(pipe);
5892 	u32 temp;
5893 
5894 	temp = intel_de_read(dev_priv, dslreg);
5895 	udelay(500);
5896 	if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) {
5897 		if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5))
5898 			drm_err(&dev_priv->drm,
5899 				"mode set failed: pipe %c stuck\n",
5900 				pipe_name(pipe));
5901 	}
5902 }
5903 
5904 /*
5905  * The hardware phase 0.0 refers to the center of the pixel.
5906  * We want to start from the top/left edge which is phase
5907  * -0.5. That matches how the hardware calculates the scaling
5908  * factors (from top-left of the first pixel to bottom-right
5909  * of the last pixel, as opposed to the pixel centers).
5910  *
5911  * For 4:2:0 subsampled chroma planes we obviously have to
5912  * adjust that so that the chroma sample position lands in
5913  * the right spot.
5914  *
5915  * Note that for packed YCbCr 4:2:2 formats there is no way to
5916  * control chroma siting. The hardware simply replicates the
5917  * chroma samples for both of the luma samples, and thus we don't
5918  * actually get the expected MPEG2 chroma siting convention :(
5919  * The same behaviour is observed on pre-SKL platforms as well.
5920  *
5921  * Theory behind the formula (note that we ignore sub-pixel
5922  * source coordinates):
5923  * s = source sample position
5924  * d = destination sample position
5925  *
5926  * Downscaling 4:1:
5927  * -0.5
5928  * | 0.0
5929  * | |     1.5 (initial phase)
5930  * | |     |
5931  * v v     v
5932  * | s | s | s | s |
5933  * |       d       |
5934  *
5935  * Upscaling 1:4:
5936  * -0.5
5937  * | -0.375 (initial phase)
5938  * | |     0.0
5939  * | |     |
5940  * v v     v
5941  * |       s       |
5942  * | d | d | d | d |
5943  */
5944 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
5945 {
5946 	int phase = -0x8000;
5947 	u16 trip = 0;
5948 
5949 	if (chroma_cosited)
5950 		phase += (sub - 1) * 0x8000 / sub;
5951 
5952 	phase += scale / (2 * sub);
5953 
5954 	/*
5955 	 * Hardware initial phase limited to [-0.5:1.5].
5956 	 * Since the max hardware scale factor is 3.0, we
5957 	 * should never actually excdeed 1.0 here.
5958 	 */
5959 	WARN_ON(phase < -0x8000 || phase > 0x18000);
5960 
5961 	if (phase < 0)
5962 		phase = 0x10000 + phase;
5963 	else
5964 		trip = PS_PHASE_TRIP;
5965 
5966 	return ((phase >> 2) & PS_PHASE_MASK) | trip;
5967 }
5968 
5969 #define SKL_MIN_SRC_W 8
5970 #define SKL_MAX_SRC_W 4096
5971 #define SKL_MIN_SRC_H 8
5972 #define SKL_MAX_SRC_H 4096
5973 #define SKL_MIN_DST_W 8
5974 #define SKL_MAX_DST_W 4096
5975 #define SKL_MIN_DST_H 8
5976 #define SKL_MAX_DST_H 4096
5977 #define ICL_MAX_SRC_W 5120
5978 #define ICL_MAX_SRC_H 4096
5979 #define ICL_MAX_DST_W 5120
5980 #define ICL_MAX_DST_H 4096
5981 #define SKL_MIN_YUV_420_SRC_W 16
5982 #define SKL_MIN_YUV_420_SRC_H 16
5983 
5984 static int
5985 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
5986 		  unsigned int scaler_user, int *scaler_id,
5987 		  int src_w, int src_h, int dst_w, int dst_h,
5988 		  const struct drm_format_info *format,
5989 		  u64 modifier, bool need_scaler)
5990 {
5991 	struct intel_crtc_scaler_state *scaler_state =
5992 		&crtc_state->scaler_state;
5993 	struct intel_crtc *intel_crtc =
5994 		to_intel_crtc(crtc_state->uapi.crtc);
5995 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5996 	const struct drm_display_mode *adjusted_mode =
5997 		&crtc_state->hw.adjusted_mode;
5998 
5999 	/*
6000 	 * Src coordinates are already rotated by 270 degrees for
6001 	 * the 90/270 degree plane rotation cases (to match the
6002 	 * GTT mapping), hence no need to account for rotation here.
6003 	 */
6004 	if (src_w != dst_w || src_h != dst_h)
6005 		need_scaler = true;
6006 
6007 	/*
6008 	 * Scaling/fitting not supported in IF-ID mode in GEN9+
6009 	 * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
6010 	 * Once NV12 is enabled, handle it here while allocating scaler
6011 	 * for NV12.
6012 	 */
6013 	if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable &&
6014 	    need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6015 		drm_dbg_kms(&dev_priv->drm,
6016 			    "Pipe/Plane scaling not supported with IF-ID mode\n");
6017 		return -EINVAL;
6018 	}
6019 
6020 	/*
6021 	 * if plane is being disabled or scaler is no more required or force detach
6022 	 *  - free scaler binded to this plane/crtc
6023 	 *  - in order to do this, update crtc->scaler_usage
6024 	 *
6025 	 * Here scaler state in crtc_state is set free so that
6026 	 * scaler can be assigned to other user. Actual register
6027 	 * update to free the scaler is done in plane/panel-fit programming.
6028 	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
6029 	 */
6030 	if (force_detach || !need_scaler) {
6031 		if (*scaler_id >= 0) {
6032 			scaler_state->scaler_users &= ~(1 << scaler_user);
6033 			scaler_state->scalers[*scaler_id].in_use = 0;
6034 
6035 			drm_dbg_kms(&dev_priv->drm,
6036 				    "scaler_user index %u.%u: "
6037 				    "Staged freeing scaler id %d scaler_users = 0x%x\n",
6038 				    intel_crtc->pipe, scaler_user, *scaler_id,
6039 				    scaler_state->scaler_users);
6040 			*scaler_id = -1;
6041 		}
6042 		return 0;
6043 	}
6044 
6045 	if (format && intel_format_info_is_yuv_semiplanar(format, modifier) &&
6046 	    (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) {
6047 		drm_dbg_kms(&dev_priv->drm,
6048 			    "Planar YUV: src dimensions not met\n");
6049 		return -EINVAL;
6050 	}
6051 
6052 	/* range checks */
6053 	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
6054 	    dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
6055 	    (INTEL_GEN(dev_priv) >= 11 &&
6056 	     (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H ||
6057 	      dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) ||
6058 	    (INTEL_GEN(dev_priv) < 11 &&
6059 	     (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
6060 	      dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H)))	{
6061 		drm_dbg_kms(&dev_priv->drm,
6062 			    "scaler_user index %u.%u: src %ux%u dst %ux%u "
6063 			    "size is out of scaler range\n",
6064 			    intel_crtc->pipe, scaler_user, src_w, src_h,
6065 			    dst_w, dst_h);
6066 		return -EINVAL;
6067 	}
6068 
6069 	/* mark this plane as a scaler user in crtc_state */
6070 	scaler_state->scaler_users |= (1 << scaler_user);
6071 	drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: "
6072 		    "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
6073 		    intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
6074 		    scaler_state->scaler_users);
6075 
6076 	return 0;
6077 }
6078 
6079 static int skl_update_scaler_crtc(struct intel_crtc_state *crtc_state)
6080 {
6081 	const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
6082 	int width, height;
6083 
6084 	if (crtc_state->pch_pfit.enabled) {
6085 		width = drm_rect_width(&crtc_state->pch_pfit.dst);
6086 		height = drm_rect_height(&crtc_state->pch_pfit.dst);
6087 	} else {
6088 		width = pipe_mode->crtc_hdisplay;
6089 		height = pipe_mode->crtc_vdisplay;
6090 	}
6091 	return skl_update_scaler(crtc_state, !crtc_state->hw.active,
6092 				 SKL_CRTC_INDEX,
6093 				 &crtc_state->scaler_state.scaler_id,
6094 				 crtc_state->pipe_src_w, crtc_state->pipe_src_h,
6095 				 width, height, NULL, 0,
6096 				 crtc_state->pch_pfit.enabled);
6097 }
6098 
6099 /**
6100  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
6101  * @crtc_state: crtc's scaler state
6102  * @plane_state: atomic plane state to update
6103  *
6104  * Return
6105  *     0 - scaler_usage updated successfully
6106  *    error - requested scaling cannot be supported or other error condition
6107  */
6108 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
6109 				   struct intel_plane_state *plane_state)
6110 {
6111 	struct intel_plane *intel_plane =
6112 		to_intel_plane(plane_state->uapi.plane);
6113 	struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
6114 	struct drm_framebuffer *fb = plane_state->hw.fb;
6115 	int ret;
6116 	bool force_detach = !fb || !plane_state->uapi.visible;
6117 	bool need_scaler = false;
6118 
6119 	/* Pre-gen11 and SDR planes always need a scaler for planar formats. */
6120 	if (!icl_is_hdr_plane(dev_priv, intel_plane->id) &&
6121 	    fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
6122 		need_scaler = true;
6123 
6124 	ret = skl_update_scaler(crtc_state, force_detach,
6125 				drm_plane_index(&intel_plane->base),
6126 				&plane_state->scaler_id,
6127 				drm_rect_width(&plane_state->uapi.src) >> 16,
6128 				drm_rect_height(&plane_state->uapi.src) >> 16,
6129 				drm_rect_width(&plane_state->uapi.dst),
6130 				drm_rect_height(&plane_state->uapi.dst),
6131 				fb ? fb->format : NULL,
6132 				fb ? fb->modifier : 0,
6133 				need_scaler);
6134 
6135 	if (ret || plane_state->scaler_id < 0)
6136 		return ret;
6137 
6138 	/* check colorkey */
6139 	if (plane_state->ckey.flags) {
6140 		drm_dbg_kms(&dev_priv->drm,
6141 			    "[PLANE:%d:%s] scaling with color key not allowed",
6142 			    intel_plane->base.base.id,
6143 			    intel_plane->base.name);
6144 		return -EINVAL;
6145 	}
6146 
6147 	/* Check src format */
6148 	switch (fb->format->format) {
6149 	case DRM_FORMAT_RGB565:
6150 	case DRM_FORMAT_XBGR8888:
6151 	case DRM_FORMAT_XRGB8888:
6152 	case DRM_FORMAT_ABGR8888:
6153 	case DRM_FORMAT_ARGB8888:
6154 	case DRM_FORMAT_XRGB2101010:
6155 	case DRM_FORMAT_XBGR2101010:
6156 	case DRM_FORMAT_ARGB2101010:
6157 	case DRM_FORMAT_ABGR2101010:
6158 	case DRM_FORMAT_YUYV:
6159 	case DRM_FORMAT_YVYU:
6160 	case DRM_FORMAT_UYVY:
6161 	case DRM_FORMAT_VYUY:
6162 	case DRM_FORMAT_NV12:
6163 	case DRM_FORMAT_XYUV8888:
6164 	case DRM_FORMAT_P010:
6165 	case DRM_FORMAT_P012:
6166 	case DRM_FORMAT_P016:
6167 	case DRM_FORMAT_Y210:
6168 	case DRM_FORMAT_Y212:
6169 	case DRM_FORMAT_Y216:
6170 	case DRM_FORMAT_XVYU2101010:
6171 	case DRM_FORMAT_XVYU12_16161616:
6172 	case DRM_FORMAT_XVYU16161616:
6173 		break;
6174 	case DRM_FORMAT_XBGR16161616F:
6175 	case DRM_FORMAT_ABGR16161616F:
6176 	case DRM_FORMAT_XRGB16161616F:
6177 	case DRM_FORMAT_ARGB16161616F:
6178 		if (INTEL_GEN(dev_priv) >= 11)
6179 			break;
6180 		fallthrough;
6181 	default:
6182 		drm_dbg_kms(&dev_priv->drm,
6183 			    "[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
6184 			    intel_plane->base.base.id, intel_plane->base.name,
6185 			    fb->base.id, fb->format->format);
6186 		return -EINVAL;
6187 	}
6188 
6189 	return 0;
6190 }
6191 
6192 void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state)
6193 {
6194 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
6195 	int i;
6196 
6197 	for (i = 0; i < crtc->num_scalers; i++)
6198 		skl_detach_scaler(crtc, i);
6199 }
6200 
6201 static int cnl_coef_tap(int i)
6202 {
6203 	return i % 7;
6204 }
6205 
6206 static u16 cnl_nearest_filter_coef(int t)
6207 {
6208 	return t == 3 ? 0x0800 : 0x3000;
6209 }
6210 
6211 /*
6212  *  Theory behind setting nearest-neighbor integer scaling:
6213  *
6214  *  17 phase of 7 taps requires 119 coefficients in 60 dwords per set.
6215  *  The letter represents the filter tap (D is the center tap) and the number
6216  *  represents the coefficient set for a phase (0-16).
6217  *
6218  *         +------------+------------------------+------------------------+
6219  *         |Index value | Data value coeffient 1 | Data value coeffient 2 |
6220  *         +------------+------------------------+------------------------+
6221  *         |   00h      |          B0            |          A0            |
6222  *         +------------+------------------------+------------------------+
6223  *         |   01h      |          D0            |          C0            |
6224  *         +------------+------------------------+------------------------+
6225  *         |   02h      |          F0            |          E0            |
6226  *         +------------+------------------------+------------------------+
6227  *         |   03h      |          A1            |          G0            |
6228  *         +------------+------------------------+------------------------+
6229  *         |   04h      |          C1            |          B1            |
6230  *         +------------+------------------------+------------------------+
6231  *         |   ...      |          ...           |          ...           |
6232  *         +------------+------------------------+------------------------+
6233  *         |   38h      |          B16           |          A16           |
6234  *         +------------+------------------------+------------------------+
6235  *         |   39h      |          D16           |          C16           |
6236  *         +------------+------------------------+------------------------+
6237  *         |   3Ah      |          F16           |          C16           |
6238  *         +------------+------------------------+------------------------+
6239  *         |   3Bh      |        Reserved        |          G16           |
6240  *         +------------+------------------------+------------------------+
6241  *
6242  *  To enable nearest-neighbor scaling:  program scaler coefficents with
6243  *  the center tap (Dxx) values set to 1 and all other values set to 0 as per
6244  *  SCALER_COEFFICIENT_FORMAT
6245  *
6246  */
6247 
6248 static void cnl_program_nearest_filter_coefs(struct drm_i915_private *dev_priv,
6249 					     enum pipe pipe, int id, int set)
6250 {
6251 	int i;
6252 
6253 	intel_de_write_fw(dev_priv, CNL_PS_COEF_INDEX_SET(pipe, id, set),
6254 			  PS_COEE_INDEX_AUTO_INC);
6255 
6256 	for (i = 0; i < 17 * 7; i += 2) {
6257 		u32 tmp;
6258 		int t;
6259 
6260 		t = cnl_coef_tap(i);
6261 		tmp = cnl_nearest_filter_coef(t);
6262 
6263 		t = cnl_coef_tap(i + 1);
6264 		tmp |= cnl_nearest_filter_coef(t) << 16;
6265 
6266 		intel_de_write_fw(dev_priv, CNL_PS_COEF_DATA_SET(pipe, id, set),
6267 				  tmp);
6268 	}
6269 
6270 	intel_de_write_fw(dev_priv, CNL_PS_COEF_INDEX_SET(pipe, id, set), 0);
6271 }
6272 
6273 inline u32 skl_scaler_get_filter_select(enum drm_scaling_filter filter, int set)
6274 {
6275 	if (filter == DRM_SCALING_FILTER_NEAREST_NEIGHBOR) {
6276 		return (PS_FILTER_PROGRAMMED |
6277 			PS_Y_VERT_FILTER_SELECT(set) |
6278 			PS_Y_HORZ_FILTER_SELECT(set) |
6279 			PS_UV_VERT_FILTER_SELECT(set) |
6280 			PS_UV_HORZ_FILTER_SELECT(set));
6281 	}
6282 
6283 	return PS_FILTER_MEDIUM;
6284 }
6285 
6286 void skl_scaler_setup_filter(struct drm_i915_private *dev_priv, enum pipe pipe,
6287 			     int id, int set, enum drm_scaling_filter filter)
6288 {
6289 	switch (filter) {
6290 	case DRM_SCALING_FILTER_DEFAULT:
6291 		break;
6292 	case DRM_SCALING_FILTER_NEAREST_NEIGHBOR:
6293 		cnl_program_nearest_filter_coefs(dev_priv, pipe, id, set);
6294 		break;
6295 	default:
6296 		MISSING_CASE(filter);
6297 	}
6298 }
6299 
6300 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state)
6301 {
6302 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6303 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6304 	const struct intel_crtc_scaler_state *scaler_state =
6305 		&crtc_state->scaler_state;
6306 	struct drm_rect src = {
6307 		.x2 = crtc_state->pipe_src_w << 16,
6308 		.y2 = crtc_state->pipe_src_h << 16,
6309 	};
6310 	const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
6311 	u16 uv_rgb_hphase, uv_rgb_vphase;
6312 	enum pipe pipe = crtc->pipe;
6313 	int width = drm_rect_width(dst);
6314 	int height = drm_rect_height(dst);
6315 	int x = dst->x1;
6316 	int y = dst->y1;
6317 	int hscale, vscale;
6318 	unsigned long irqflags;
6319 	int id;
6320 	u32 ps_ctrl;
6321 
6322 	if (!crtc_state->pch_pfit.enabled)
6323 		return;
6324 
6325 	if (drm_WARN_ON(&dev_priv->drm,
6326 			crtc_state->scaler_state.scaler_id < 0))
6327 		return;
6328 
6329 	hscale = drm_rect_calc_hscale(&src, dst, 0, INT_MAX);
6330 	vscale = drm_rect_calc_vscale(&src, dst, 0, INT_MAX);
6331 
6332 	uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
6333 	uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
6334 
6335 	id = scaler_state->scaler_id;
6336 
6337 	ps_ctrl = skl_scaler_get_filter_select(crtc_state->hw.scaling_filter, 0);
6338 	ps_ctrl |=  PS_SCALER_EN | scaler_state->scalers[id].mode;
6339 
6340 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
6341 
6342 	skl_scaler_setup_filter(dev_priv, pipe, id, 0,
6343 				crtc_state->hw.scaling_filter);
6344 
6345 	intel_de_write_fw(dev_priv, SKL_PS_CTRL(pipe, id), ps_ctrl);
6346 
6347 	intel_de_write_fw(dev_priv, SKL_PS_VPHASE(pipe, id),
6348 			  PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
6349 	intel_de_write_fw(dev_priv, SKL_PS_HPHASE(pipe, id),
6350 			  PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
6351 	intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(pipe, id),
6352 			  x << 16 | y);
6353 	intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(pipe, id),
6354 			  width << 16 | height);
6355 
6356 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
6357 }
6358 
6359 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state)
6360 {
6361 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6362 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6363 	const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
6364 	enum pipe pipe = crtc->pipe;
6365 	int width = drm_rect_width(dst);
6366 	int height = drm_rect_height(dst);
6367 	int x = dst->x1;
6368 	int y = dst->y1;
6369 
6370 	if (!crtc_state->pch_pfit.enabled)
6371 		return;
6372 
6373 	/* Force use of hard-coded filter coefficients
6374 	 * as some pre-programmed values are broken,
6375 	 * e.g. x201.
6376 	 */
6377 	if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
6378 		intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE |
6379 			       PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe));
6380 	else
6381 		intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE |
6382 			       PF_FILTER_MED_3x3);
6383 	intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y);
6384 	intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height);
6385 }
6386 
6387 void hsw_enable_ips(const struct intel_crtc_state *crtc_state)
6388 {
6389 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6390 	struct drm_device *dev = crtc->base.dev;
6391 	struct drm_i915_private *dev_priv = to_i915(dev);
6392 
6393 	if (!crtc_state->ips_enabled)
6394 		return;
6395 
6396 	/*
6397 	 * We can only enable IPS after we enable a plane and wait for a vblank
6398 	 * This function is called from post_plane_update, which is run after
6399 	 * a vblank wait.
6400 	 */
6401 	drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR)));
6402 
6403 	if (IS_BROADWELL(dev_priv)) {
6404 		drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
6405 							 IPS_ENABLE | IPS_PCODE_CONTROL));
6406 		/* Quoting Art Runyan: "its not safe to expect any particular
6407 		 * value in IPS_CTL bit 31 after enabling IPS through the
6408 		 * mailbox." Moreover, the mailbox may return a bogus state,
6409 		 * so we need to just enable it and continue on.
6410 		 */
6411 	} else {
6412 		intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE);
6413 		/* The bit only becomes 1 in the next vblank, so this wait here
6414 		 * is essentially intel_wait_for_vblank. If we don't have this
6415 		 * and don't wait for vblanks until the end of crtc_enable, then
6416 		 * the HW state readout code will complain that the expected
6417 		 * IPS_CTL value is not the one we read. */
6418 		if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50))
6419 			drm_err(&dev_priv->drm,
6420 				"Timed out waiting for IPS enable\n");
6421 	}
6422 }
6423 
6424 void hsw_disable_ips(const struct intel_crtc_state *crtc_state)
6425 {
6426 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6427 	struct drm_device *dev = crtc->base.dev;
6428 	struct drm_i915_private *dev_priv = to_i915(dev);
6429 
6430 	if (!crtc_state->ips_enabled)
6431 		return;
6432 
6433 	if (IS_BROADWELL(dev_priv)) {
6434 		drm_WARN_ON(dev,
6435 			    sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
6436 		/*
6437 		 * Wait for PCODE to finish disabling IPS. The BSpec specified
6438 		 * 42ms timeout value leads to occasional timeouts so use 100ms
6439 		 * instead.
6440 		 */
6441 		if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100))
6442 			drm_err(&dev_priv->drm,
6443 				"Timed out waiting for IPS disable\n");
6444 	} else {
6445 		intel_de_write(dev_priv, IPS_CTL, 0);
6446 		intel_de_posting_read(dev_priv, IPS_CTL);
6447 	}
6448 
6449 	/* We need to wait for a vblank before we can disable the plane. */
6450 	intel_wait_for_vblank(dev_priv, crtc->pipe);
6451 }
6452 
6453 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
6454 {
6455 	if (intel_crtc->overlay)
6456 		(void) intel_overlay_switch_off(intel_crtc->overlay);
6457 
6458 	/* Let userspace switch the overlay on again. In most cases userspace
6459 	 * has to recompute where to put it anyway.
6460 	 */
6461 }
6462 
6463 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state,
6464 				       const struct intel_crtc_state *new_crtc_state)
6465 {
6466 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6467 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6468 
6469 	if (!old_crtc_state->ips_enabled)
6470 		return false;
6471 
6472 	if (needs_modeset(new_crtc_state))
6473 		return true;
6474 
6475 	/*
6476 	 * Workaround : Do not read or write the pipe palette/gamma data while
6477 	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6478 	 *
6479 	 * Disable IPS before we program the LUT.
6480 	 */
6481 	if (IS_HASWELL(dev_priv) &&
6482 	    (new_crtc_state->uapi.color_mgmt_changed ||
6483 	     new_crtc_state->update_pipe) &&
6484 	    new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6485 		return true;
6486 
6487 	return !new_crtc_state->ips_enabled;
6488 }
6489 
6490 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state,
6491 				       const struct intel_crtc_state *new_crtc_state)
6492 {
6493 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6494 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6495 
6496 	if (!new_crtc_state->ips_enabled)
6497 		return false;
6498 
6499 	if (needs_modeset(new_crtc_state))
6500 		return true;
6501 
6502 	/*
6503 	 * Workaround : Do not read or write the pipe palette/gamma data while
6504 	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6505 	 *
6506 	 * Re-enable IPS after the LUT has been programmed.
6507 	 */
6508 	if (IS_HASWELL(dev_priv) &&
6509 	    (new_crtc_state->uapi.color_mgmt_changed ||
6510 	     new_crtc_state->update_pipe) &&
6511 	    new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6512 		return true;
6513 
6514 	/*
6515 	 * We can't read out IPS on broadwell, assume the worst and
6516 	 * forcibly enable IPS on the first fastset.
6517 	 */
6518 	if (new_crtc_state->update_pipe && old_crtc_state->inherited)
6519 		return true;
6520 
6521 	return !old_crtc_state->ips_enabled;
6522 }
6523 
6524 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state)
6525 {
6526 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6527 
6528 	if (!crtc_state->nv12_planes)
6529 		return false;
6530 
6531 	/* WA Display #0827: Gen9:all */
6532 	if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv))
6533 		return true;
6534 
6535 	return false;
6536 }
6537 
6538 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state)
6539 {
6540 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6541 
6542 	/* Wa_2006604312:icl,ehl */
6543 	if (crtc_state->scaler_state.scaler_users > 0 && IS_GEN(dev_priv, 11))
6544 		return true;
6545 
6546 	return false;
6547 }
6548 
6549 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state,
6550 			    const struct intel_crtc_state *new_crtc_state)
6551 {
6552 	return (!old_crtc_state->active_planes || needs_modeset(new_crtc_state)) &&
6553 		new_crtc_state->active_planes;
6554 }
6555 
6556 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state,
6557 			     const struct intel_crtc_state *new_crtc_state)
6558 {
6559 	return old_crtc_state->active_planes &&
6560 		(!new_crtc_state->active_planes || needs_modeset(new_crtc_state));
6561 }
6562 
6563 static void intel_post_plane_update(struct intel_atomic_state *state,
6564 				    struct intel_crtc *crtc)
6565 {
6566 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6567 	const struct intel_crtc_state *old_crtc_state =
6568 		intel_atomic_get_old_crtc_state(state, crtc);
6569 	const struct intel_crtc_state *new_crtc_state =
6570 		intel_atomic_get_new_crtc_state(state, crtc);
6571 	enum pipe pipe = crtc->pipe;
6572 
6573 	intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits);
6574 
6575 	if (new_crtc_state->update_wm_post && new_crtc_state->hw.active)
6576 		intel_update_watermarks(crtc);
6577 
6578 	if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state))
6579 		hsw_enable_ips(new_crtc_state);
6580 
6581 	intel_fbc_post_update(state, crtc);
6582 
6583 	if (needs_nv12_wa(old_crtc_state) &&
6584 	    !needs_nv12_wa(new_crtc_state))
6585 		skl_wa_827(dev_priv, pipe, false);
6586 
6587 	if (needs_scalerclk_wa(old_crtc_state) &&
6588 	    !needs_scalerclk_wa(new_crtc_state))
6589 		icl_wa_scalerclkgating(dev_priv, pipe, false);
6590 }
6591 
6592 static void skl_disable_async_flip_wa(struct intel_atomic_state *state,
6593 				      struct intel_crtc *crtc,
6594 				      const struct intel_crtc_state *new_crtc_state)
6595 {
6596 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6597 	struct intel_plane *plane;
6598 	struct intel_plane_state *new_plane_state;
6599 	int i;
6600 
6601 	for_each_new_intel_plane_in_state(state, plane, new_plane_state, i) {
6602 		u32 update_mask = new_crtc_state->update_planes;
6603 		u32 plane_ctl, surf_addr;
6604 		enum plane_id plane_id;
6605 		unsigned long irqflags;
6606 		enum pipe pipe;
6607 
6608 		if (crtc->pipe != plane->pipe ||
6609 		    !(update_mask & BIT(plane->id)))
6610 			continue;
6611 
6612 		plane_id = plane->id;
6613 		pipe = plane->pipe;
6614 
6615 		spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
6616 		plane_ctl = intel_de_read_fw(dev_priv, PLANE_CTL(pipe, plane_id));
6617 		surf_addr = intel_de_read_fw(dev_priv, PLANE_SURF(pipe, plane_id));
6618 
6619 		plane_ctl &= ~PLANE_CTL_ASYNC_FLIP;
6620 
6621 		intel_de_write_fw(dev_priv, PLANE_CTL(pipe, plane_id), plane_ctl);
6622 		intel_de_write_fw(dev_priv, PLANE_SURF(pipe, plane_id), surf_addr);
6623 		spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
6624 	}
6625 
6626 	intel_wait_for_vblank(dev_priv, crtc->pipe);
6627 }
6628 
6629 static void intel_pre_plane_update(struct intel_atomic_state *state,
6630 				   struct intel_crtc *crtc)
6631 {
6632 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6633 	const struct intel_crtc_state *old_crtc_state =
6634 		intel_atomic_get_old_crtc_state(state, crtc);
6635 	const struct intel_crtc_state *new_crtc_state =
6636 		intel_atomic_get_new_crtc_state(state, crtc);
6637 	enum pipe pipe = crtc->pipe;
6638 
6639 	if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state))
6640 		hsw_disable_ips(old_crtc_state);
6641 
6642 	if (intel_fbc_pre_update(state, crtc))
6643 		intel_wait_for_vblank(dev_priv, pipe);
6644 
6645 	/* Display WA 827 */
6646 	if (!needs_nv12_wa(old_crtc_state) &&
6647 	    needs_nv12_wa(new_crtc_state))
6648 		skl_wa_827(dev_priv, pipe, true);
6649 
6650 	/* Wa_2006604312:icl,ehl */
6651 	if (!needs_scalerclk_wa(old_crtc_state) &&
6652 	    needs_scalerclk_wa(new_crtc_state))
6653 		icl_wa_scalerclkgating(dev_priv, pipe, true);
6654 
6655 	/*
6656 	 * Vblank time updates from the shadow to live plane control register
6657 	 * are blocked if the memory self-refresh mode is active at that
6658 	 * moment. So to make sure the plane gets truly disabled, disable
6659 	 * first the self-refresh mode. The self-refresh enable bit in turn
6660 	 * will be checked/applied by the HW only at the next frame start
6661 	 * event which is after the vblank start event, so we need to have a
6662 	 * wait-for-vblank between disabling the plane and the pipe.
6663 	 */
6664 	if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active &&
6665 	    new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
6666 		intel_wait_for_vblank(dev_priv, pipe);
6667 
6668 	/*
6669 	 * IVB workaround: must disable low power watermarks for at least
6670 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
6671 	 * when scaling is disabled.
6672 	 *
6673 	 * WaCxSRDisabledForSpriteScaling:ivb
6674 	 */
6675 	if (old_crtc_state->hw.active &&
6676 	    new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv))
6677 		intel_wait_for_vblank(dev_priv, pipe);
6678 
6679 	/*
6680 	 * If we're doing a modeset we don't need to do any
6681 	 * pre-vblank watermark programming here.
6682 	 */
6683 	if (!needs_modeset(new_crtc_state)) {
6684 		/*
6685 		 * For platforms that support atomic watermarks, program the
6686 		 * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
6687 		 * will be the intermediate values that are safe for both pre- and
6688 		 * post- vblank; when vblank happens, the 'active' values will be set
6689 		 * to the final 'target' values and we'll do this again to get the
6690 		 * optimal watermarks.  For gen9+ platforms, the values we program here
6691 		 * will be the final target values which will get automatically latched
6692 		 * at vblank time; no further programming will be necessary.
6693 		 *
6694 		 * If a platform hasn't been transitioned to atomic watermarks yet,
6695 		 * we'll continue to update watermarks the old way, if flags tell
6696 		 * us to.
6697 		 */
6698 		if (dev_priv->display.initial_watermarks)
6699 			dev_priv->display.initial_watermarks(state, crtc);
6700 		else if (new_crtc_state->update_wm_pre)
6701 			intel_update_watermarks(crtc);
6702 	}
6703 
6704 	/*
6705 	 * Gen2 reports pipe underruns whenever all planes are disabled.
6706 	 * So disable underrun reporting before all the planes get disabled.
6707 	 *
6708 	 * We do this after .initial_watermarks() so that we have a
6709 	 * chance of catching underruns with the intermediate watermarks
6710 	 * vs. the old plane configuration.
6711 	 */
6712 	if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state))
6713 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6714 
6715 	/*
6716 	 * WA for platforms where async address update enable bit
6717 	 * is double buffered and only latched at start of vblank.
6718 	 */
6719 	if (old_crtc_state->uapi.async_flip &&
6720 	    !new_crtc_state->uapi.async_flip &&
6721 	    IS_GEN_RANGE(dev_priv, 9, 10))
6722 		skl_disable_async_flip_wa(state, crtc, new_crtc_state);
6723 }
6724 
6725 static void intel_crtc_disable_planes(struct intel_atomic_state *state,
6726 				      struct intel_crtc *crtc)
6727 {
6728 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6729 	const struct intel_crtc_state *new_crtc_state =
6730 		intel_atomic_get_new_crtc_state(state, crtc);
6731 	unsigned int update_mask = new_crtc_state->update_planes;
6732 	const struct intel_plane_state *old_plane_state;
6733 	struct intel_plane *plane;
6734 	unsigned fb_bits = 0;
6735 	int i;
6736 
6737 	intel_crtc_dpms_overlay_disable(crtc);
6738 
6739 	for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
6740 		if (crtc->pipe != plane->pipe ||
6741 		    !(update_mask & BIT(plane->id)))
6742 			continue;
6743 
6744 		intel_disable_plane(plane, new_crtc_state);
6745 
6746 		if (old_plane_state->uapi.visible)
6747 			fb_bits |= plane->frontbuffer_bit;
6748 	}
6749 
6750 	intel_frontbuffer_flip(dev_priv, fb_bits);
6751 }
6752 
6753 /*
6754  * intel_connector_primary_encoder - get the primary encoder for a connector
6755  * @connector: connector for which to return the encoder
6756  *
6757  * Returns the primary encoder for a connector. There is a 1:1 mapping from
6758  * all connectors to their encoder, except for DP-MST connectors which have
6759  * both a virtual and a primary encoder. These DP-MST primary encoders can be
6760  * pointed to by as many DP-MST connectors as there are pipes.
6761  */
6762 static struct intel_encoder *
6763 intel_connector_primary_encoder(struct intel_connector *connector)
6764 {
6765 	struct intel_encoder *encoder;
6766 
6767 	if (connector->mst_port)
6768 		return &dp_to_dig_port(connector->mst_port)->base;
6769 
6770 	encoder = intel_attached_encoder(connector);
6771 	drm_WARN_ON(connector->base.dev, !encoder);
6772 
6773 	return encoder;
6774 }
6775 
6776 static void intel_encoders_update_prepare(struct intel_atomic_state *state)
6777 {
6778 	struct drm_connector_state *new_conn_state;
6779 	struct drm_connector *connector;
6780 	int i;
6781 
6782 	for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6783 					i) {
6784 		struct intel_connector *intel_connector;
6785 		struct intel_encoder *encoder;
6786 		struct intel_crtc *crtc;
6787 
6788 		if (!intel_connector_needs_modeset(state, connector))
6789 			continue;
6790 
6791 		intel_connector = to_intel_connector(connector);
6792 		encoder = intel_connector_primary_encoder(intel_connector);
6793 		if (!encoder->update_prepare)
6794 			continue;
6795 
6796 		crtc = new_conn_state->crtc ?
6797 			to_intel_crtc(new_conn_state->crtc) : NULL;
6798 		encoder->update_prepare(state, encoder, crtc);
6799 	}
6800 }
6801 
6802 static void intel_encoders_update_complete(struct intel_atomic_state *state)
6803 {
6804 	struct drm_connector_state *new_conn_state;
6805 	struct drm_connector *connector;
6806 	int i;
6807 
6808 	for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6809 					i) {
6810 		struct intel_connector *intel_connector;
6811 		struct intel_encoder *encoder;
6812 		struct intel_crtc *crtc;
6813 
6814 		if (!intel_connector_needs_modeset(state, connector))
6815 			continue;
6816 
6817 		intel_connector = to_intel_connector(connector);
6818 		encoder = intel_connector_primary_encoder(intel_connector);
6819 		if (!encoder->update_complete)
6820 			continue;
6821 
6822 		crtc = new_conn_state->crtc ?
6823 			to_intel_crtc(new_conn_state->crtc) : NULL;
6824 		encoder->update_complete(state, encoder, crtc);
6825 	}
6826 }
6827 
6828 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state,
6829 					  struct intel_crtc *crtc)
6830 {
6831 	const struct intel_crtc_state *crtc_state =
6832 		intel_atomic_get_new_crtc_state(state, crtc);
6833 	const struct drm_connector_state *conn_state;
6834 	struct drm_connector *conn;
6835 	int i;
6836 
6837 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6838 		struct intel_encoder *encoder =
6839 			to_intel_encoder(conn_state->best_encoder);
6840 
6841 		if (conn_state->crtc != &crtc->base)
6842 			continue;
6843 
6844 		if (encoder->pre_pll_enable)
6845 			encoder->pre_pll_enable(state, encoder,
6846 						crtc_state, conn_state);
6847 	}
6848 }
6849 
6850 static void intel_encoders_pre_enable(struct intel_atomic_state *state,
6851 				      struct intel_crtc *crtc)
6852 {
6853 	const struct intel_crtc_state *crtc_state =
6854 		intel_atomic_get_new_crtc_state(state, crtc);
6855 	const struct drm_connector_state *conn_state;
6856 	struct drm_connector *conn;
6857 	int i;
6858 
6859 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6860 		struct intel_encoder *encoder =
6861 			to_intel_encoder(conn_state->best_encoder);
6862 
6863 		if (conn_state->crtc != &crtc->base)
6864 			continue;
6865 
6866 		if (encoder->pre_enable)
6867 			encoder->pre_enable(state, encoder,
6868 					    crtc_state, conn_state);
6869 	}
6870 }
6871 
6872 static void intel_encoders_enable(struct intel_atomic_state *state,
6873 				  struct intel_crtc *crtc)
6874 {
6875 	const struct intel_crtc_state *crtc_state =
6876 		intel_atomic_get_new_crtc_state(state, crtc);
6877 	const struct drm_connector_state *conn_state;
6878 	struct drm_connector *conn;
6879 	int i;
6880 
6881 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6882 		struct intel_encoder *encoder =
6883 			to_intel_encoder(conn_state->best_encoder);
6884 
6885 		if (conn_state->crtc != &crtc->base)
6886 			continue;
6887 
6888 		if (encoder->enable)
6889 			encoder->enable(state, encoder,
6890 					crtc_state, conn_state);
6891 		intel_opregion_notify_encoder(encoder, true);
6892 	}
6893 }
6894 
6895 static void intel_encoders_disable(struct intel_atomic_state *state,
6896 				   struct intel_crtc *crtc)
6897 {
6898 	const struct intel_crtc_state *old_crtc_state =
6899 		intel_atomic_get_old_crtc_state(state, crtc);
6900 	const struct drm_connector_state *old_conn_state;
6901 	struct drm_connector *conn;
6902 	int i;
6903 
6904 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6905 		struct intel_encoder *encoder =
6906 			to_intel_encoder(old_conn_state->best_encoder);
6907 
6908 		if (old_conn_state->crtc != &crtc->base)
6909 			continue;
6910 
6911 		intel_opregion_notify_encoder(encoder, false);
6912 		if (encoder->disable)
6913 			encoder->disable(state, encoder,
6914 					 old_crtc_state, old_conn_state);
6915 	}
6916 }
6917 
6918 static void intel_encoders_post_disable(struct intel_atomic_state *state,
6919 					struct intel_crtc *crtc)
6920 {
6921 	const struct intel_crtc_state *old_crtc_state =
6922 		intel_atomic_get_old_crtc_state(state, crtc);
6923 	const struct drm_connector_state *old_conn_state;
6924 	struct drm_connector *conn;
6925 	int i;
6926 
6927 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6928 		struct intel_encoder *encoder =
6929 			to_intel_encoder(old_conn_state->best_encoder);
6930 
6931 		if (old_conn_state->crtc != &crtc->base)
6932 			continue;
6933 
6934 		if (encoder->post_disable)
6935 			encoder->post_disable(state, encoder,
6936 					      old_crtc_state, old_conn_state);
6937 	}
6938 }
6939 
6940 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state,
6941 					    struct intel_crtc *crtc)
6942 {
6943 	const struct intel_crtc_state *old_crtc_state =
6944 		intel_atomic_get_old_crtc_state(state, crtc);
6945 	const struct drm_connector_state *old_conn_state;
6946 	struct drm_connector *conn;
6947 	int i;
6948 
6949 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6950 		struct intel_encoder *encoder =
6951 			to_intel_encoder(old_conn_state->best_encoder);
6952 
6953 		if (old_conn_state->crtc != &crtc->base)
6954 			continue;
6955 
6956 		if (encoder->post_pll_disable)
6957 			encoder->post_pll_disable(state, encoder,
6958 						  old_crtc_state, old_conn_state);
6959 	}
6960 }
6961 
6962 static void intel_encoders_update_pipe(struct intel_atomic_state *state,
6963 				       struct intel_crtc *crtc)
6964 {
6965 	const struct intel_crtc_state *crtc_state =
6966 		intel_atomic_get_new_crtc_state(state, crtc);
6967 	const struct drm_connector_state *conn_state;
6968 	struct drm_connector *conn;
6969 	int i;
6970 
6971 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6972 		struct intel_encoder *encoder =
6973 			to_intel_encoder(conn_state->best_encoder);
6974 
6975 		if (conn_state->crtc != &crtc->base)
6976 			continue;
6977 
6978 		if (encoder->update_pipe)
6979 			encoder->update_pipe(state, encoder,
6980 					     crtc_state, conn_state);
6981 	}
6982 }
6983 
6984 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state)
6985 {
6986 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6987 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
6988 
6989 	plane->disable_plane(plane, crtc_state);
6990 }
6991 
6992 static void ilk_crtc_enable(struct intel_atomic_state *state,
6993 			    struct intel_crtc *crtc)
6994 {
6995 	const struct intel_crtc_state *new_crtc_state =
6996 		intel_atomic_get_new_crtc_state(state, crtc);
6997 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6998 	enum pipe pipe = crtc->pipe;
6999 
7000 	if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7001 		return;
7002 
7003 	/*
7004 	 * Sometimes spurious CPU pipe underruns happen during FDI
7005 	 * training, at least with VGA+HDMI cloning. Suppress them.
7006 	 *
7007 	 * On ILK we get an occasional spurious CPU pipe underruns
7008 	 * between eDP port A enable and vdd enable. Also PCH port
7009 	 * enable seems to result in the occasional CPU pipe underrun.
7010 	 *
7011 	 * Spurious PCH underruns also occur during PCH enabling.
7012 	 */
7013 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7014 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
7015 
7016 	if (new_crtc_state->has_pch_encoder)
7017 		intel_prepare_shared_dpll(new_crtc_state);
7018 
7019 	if (intel_crtc_has_dp_encoder(new_crtc_state))
7020 		intel_dp_set_m_n(new_crtc_state, M1_N1);
7021 
7022 	intel_set_transcoder_timings(new_crtc_state);
7023 	intel_set_pipe_src_size(new_crtc_state);
7024 
7025 	if (new_crtc_state->has_pch_encoder)
7026 		intel_cpu_transcoder_set_m_n(new_crtc_state,
7027 					     &new_crtc_state->fdi_m_n, NULL);
7028 
7029 	ilk_set_pipeconf(new_crtc_state);
7030 
7031 	crtc->active = true;
7032 
7033 	intel_encoders_pre_enable(state, crtc);
7034 
7035 	if (new_crtc_state->has_pch_encoder) {
7036 		/* Note: FDI PLL enabling _must_ be done before we enable the
7037 		 * cpu pipes, hence this is separate from all the other fdi/pch
7038 		 * enabling. */
7039 		ilk_fdi_pll_enable(new_crtc_state);
7040 	} else {
7041 		assert_fdi_tx_disabled(dev_priv, pipe);
7042 		assert_fdi_rx_disabled(dev_priv, pipe);
7043 	}
7044 
7045 	ilk_pfit_enable(new_crtc_state);
7046 
7047 	/*
7048 	 * On ILK+ LUT must be loaded before the pipe is running but with
7049 	 * clocks enabled
7050 	 */
7051 	intel_color_load_luts(new_crtc_state);
7052 	intel_color_commit(new_crtc_state);
7053 	/* update DSPCNTR to configure gamma for pipe bottom color */
7054 	intel_disable_primary_plane(new_crtc_state);
7055 
7056 	if (dev_priv->display.initial_watermarks)
7057 		dev_priv->display.initial_watermarks(state, crtc);
7058 	intel_enable_pipe(new_crtc_state);
7059 
7060 	if (new_crtc_state->has_pch_encoder)
7061 		ilk_pch_enable(state, new_crtc_state);
7062 
7063 	intel_crtc_vblank_on(new_crtc_state);
7064 
7065 	intel_encoders_enable(state, crtc);
7066 
7067 	if (HAS_PCH_CPT(dev_priv))
7068 		cpt_verify_modeset(dev_priv, pipe);
7069 
7070 	/*
7071 	 * Must wait for vblank to avoid spurious PCH FIFO underruns.
7072 	 * And a second vblank wait is needed at least on ILK with
7073 	 * some interlaced HDMI modes. Let's do the double wait always
7074 	 * in case there are more corner cases we don't know about.
7075 	 */
7076 	if (new_crtc_state->has_pch_encoder) {
7077 		intel_wait_for_vblank(dev_priv, pipe);
7078 		intel_wait_for_vblank(dev_priv, pipe);
7079 	}
7080 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7081 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
7082 }
7083 
7084 /* IPS only exists on ULT machines and is tied to pipe A. */
7085 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
7086 {
7087 	return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
7088 }
7089 
7090 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
7091 					    enum pipe pipe, bool apply)
7092 {
7093 	u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe));
7094 	u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
7095 
7096 	if (apply)
7097 		val |= mask;
7098 	else
7099 		val &= ~mask;
7100 
7101 	intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val);
7102 }
7103 
7104 static void icl_pipe_mbus_enable(struct intel_crtc *crtc)
7105 {
7106 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7107 	enum pipe pipe = crtc->pipe;
7108 	u32 val;
7109 
7110 	val = MBUS_DBOX_A_CREDIT(2);
7111 
7112 	if (INTEL_GEN(dev_priv) >= 12) {
7113 		val |= MBUS_DBOX_BW_CREDIT(2);
7114 		val |= MBUS_DBOX_B_CREDIT(12);
7115 	} else {
7116 		val |= MBUS_DBOX_BW_CREDIT(1);
7117 		val |= MBUS_DBOX_B_CREDIT(8);
7118 	}
7119 
7120 	intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val);
7121 }
7122 
7123 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state)
7124 {
7125 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7126 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7127 
7128 	intel_de_write(dev_priv, WM_LINETIME(crtc->pipe),
7129 		       HSW_LINETIME(crtc_state->linetime) |
7130 		       HSW_IPS_LINETIME(crtc_state->ips_linetime));
7131 }
7132 
7133 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state)
7134 {
7135 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7136 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7137 	i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder);
7138 	u32 val;
7139 
7140 	val = intel_de_read(dev_priv, reg);
7141 	val &= ~HSW_FRAME_START_DELAY_MASK;
7142 	val |= HSW_FRAME_START_DELAY(0);
7143 	intel_de_write(dev_priv, reg, val);
7144 }
7145 
7146 static void icl_ddi_bigjoiner_pre_enable(struct intel_atomic_state *state,
7147 					 const struct intel_crtc_state *crtc_state)
7148 {
7149 	struct intel_crtc *master = to_intel_crtc(crtc_state->uapi.crtc);
7150 	struct intel_crtc_state *master_crtc_state;
7151 	struct drm_connector_state *conn_state;
7152 	struct drm_connector *conn;
7153 	struct intel_encoder *encoder = NULL;
7154 	int i;
7155 
7156 	if (crtc_state->bigjoiner_slave)
7157 		master = crtc_state->bigjoiner_linked_crtc;
7158 
7159 	master_crtc_state = intel_atomic_get_new_crtc_state(state, master);
7160 
7161 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
7162 		if (conn_state->crtc != &master->base)
7163 			continue;
7164 
7165 		encoder = to_intel_encoder(conn_state->best_encoder);
7166 		break;
7167 	}
7168 
7169 	if (!crtc_state->bigjoiner_slave) {
7170 		/* need to enable VDSC, which we skipped in pre-enable */
7171 		intel_dsc_enable(encoder, crtc_state);
7172 	} else {
7173 		/*
7174 		 * Enable sequence steps 1-7 on bigjoiner master
7175 		 */
7176 		intel_encoders_pre_pll_enable(state, master);
7177 		intel_enable_shared_dpll(master_crtc_state);
7178 		intel_encoders_pre_enable(state, master);
7179 
7180 		/* and DSC on slave */
7181 		intel_dsc_enable(NULL, crtc_state);
7182 	}
7183 }
7184 
7185 static void hsw_crtc_enable(struct intel_atomic_state *state,
7186 			    struct intel_crtc *crtc)
7187 {
7188 	const struct intel_crtc_state *new_crtc_state =
7189 		intel_atomic_get_new_crtc_state(state, crtc);
7190 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7191 	enum pipe pipe = crtc->pipe, hsw_workaround_pipe;
7192 	enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
7193 	bool psl_clkgate_wa;
7194 
7195 	if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7196 		return;
7197 
7198 	if (!new_crtc_state->bigjoiner) {
7199 		intel_encoders_pre_pll_enable(state, crtc);
7200 
7201 		if (new_crtc_state->shared_dpll)
7202 			intel_enable_shared_dpll(new_crtc_state);
7203 
7204 		intel_encoders_pre_enable(state, crtc);
7205 	} else {
7206 		icl_ddi_bigjoiner_pre_enable(state, new_crtc_state);
7207 	}
7208 
7209 	intel_set_pipe_src_size(new_crtc_state);
7210 	if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
7211 		bdw_set_pipemisc(new_crtc_state);
7212 
7213 	if (!new_crtc_state->bigjoiner_slave && !transcoder_is_dsi(cpu_transcoder)) {
7214 		intel_set_transcoder_timings(new_crtc_state);
7215 
7216 		if (cpu_transcoder != TRANSCODER_EDP)
7217 			intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder),
7218 				       new_crtc_state->pixel_multiplier - 1);
7219 
7220 		if (new_crtc_state->has_pch_encoder)
7221 			intel_cpu_transcoder_set_m_n(new_crtc_state,
7222 						     &new_crtc_state->fdi_m_n, NULL);
7223 
7224 		hsw_set_frame_start_delay(new_crtc_state);
7225 	}
7226 
7227 	if (!transcoder_is_dsi(cpu_transcoder))
7228 		hsw_set_pipeconf(new_crtc_state);
7229 
7230 	crtc->active = true;
7231 
7232 	/* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
7233 	psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
7234 		new_crtc_state->pch_pfit.enabled;
7235 	if (psl_clkgate_wa)
7236 		glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
7237 
7238 	if (INTEL_GEN(dev_priv) >= 9)
7239 		skl_pfit_enable(new_crtc_state);
7240 	else
7241 		ilk_pfit_enable(new_crtc_state);
7242 
7243 	/*
7244 	 * On ILK+ LUT must be loaded before the pipe is running but with
7245 	 * clocks enabled
7246 	 */
7247 	intel_color_load_luts(new_crtc_state);
7248 	intel_color_commit(new_crtc_state);
7249 	/* update DSPCNTR to configure gamma/csc for pipe bottom color */
7250 	if (INTEL_GEN(dev_priv) < 9)
7251 		intel_disable_primary_plane(new_crtc_state);
7252 
7253 	hsw_set_linetime_wm(new_crtc_state);
7254 
7255 	if (INTEL_GEN(dev_priv) >= 11)
7256 		icl_set_pipe_chicken(crtc);
7257 
7258 	if (dev_priv->display.initial_watermarks)
7259 		dev_priv->display.initial_watermarks(state, crtc);
7260 
7261 	if (INTEL_GEN(dev_priv) >= 11)
7262 		icl_pipe_mbus_enable(crtc);
7263 
7264 	if (new_crtc_state->bigjoiner_slave) {
7265 		trace_intel_pipe_enable(crtc);
7266 		intel_crtc_vblank_on(new_crtc_state);
7267 	}
7268 
7269 	intel_encoders_enable(state, crtc);
7270 
7271 	if (psl_clkgate_wa) {
7272 		intel_wait_for_vblank(dev_priv, pipe);
7273 		glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
7274 	}
7275 
7276 	/* If we change the relative order between pipe/planes enabling, we need
7277 	 * to change the workaround. */
7278 	hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe;
7279 	if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
7280 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7281 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7282 	}
7283 }
7284 
7285 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7286 {
7287 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7288 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7289 	enum pipe pipe = crtc->pipe;
7290 
7291 	/* To avoid upsetting the power well on haswell only disable the pfit if
7292 	 * it's in use. The hw state code will make sure we get this right. */
7293 	if (!old_crtc_state->pch_pfit.enabled)
7294 		return;
7295 
7296 	intel_de_write(dev_priv, PF_CTL(pipe), 0);
7297 	intel_de_write(dev_priv, PF_WIN_POS(pipe), 0);
7298 	intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0);
7299 }
7300 
7301 static void ilk_crtc_disable(struct intel_atomic_state *state,
7302 			     struct intel_crtc *crtc)
7303 {
7304 	const struct intel_crtc_state *old_crtc_state =
7305 		intel_atomic_get_old_crtc_state(state, crtc);
7306 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7307 	enum pipe pipe = crtc->pipe;
7308 
7309 	/*
7310 	 * Sometimes spurious CPU pipe underruns happen when the
7311 	 * pipe is already disabled, but FDI RX/TX is still enabled.
7312 	 * Happens at least with VGA+HDMI cloning. Suppress them.
7313 	 */
7314 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7315 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
7316 
7317 	intel_encoders_disable(state, crtc);
7318 
7319 	intel_crtc_vblank_off(old_crtc_state);
7320 
7321 	intel_disable_pipe(old_crtc_state);
7322 
7323 	ilk_pfit_disable(old_crtc_state);
7324 
7325 	if (old_crtc_state->has_pch_encoder)
7326 		ilk_fdi_disable(crtc);
7327 
7328 	intel_encoders_post_disable(state, crtc);
7329 
7330 	if (old_crtc_state->has_pch_encoder) {
7331 		ilk_disable_pch_transcoder(dev_priv, pipe);
7332 
7333 		if (HAS_PCH_CPT(dev_priv)) {
7334 			i915_reg_t reg;
7335 			u32 temp;
7336 
7337 			/* disable TRANS_DP_CTL */
7338 			reg = TRANS_DP_CTL(pipe);
7339 			temp = intel_de_read(dev_priv, reg);
7340 			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
7341 				  TRANS_DP_PORT_SEL_MASK);
7342 			temp |= TRANS_DP_PORT_SEL_NONE;
7343 			intel_de_write(dev_priv, reg, temp);
7344 
7345 			/* disable DPLL_SEL */
7346 			temp = intel_de_read(dev_priv, PCH_DPLL_SEL);
7347 			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
7348 			intel_de_write(dev_priv, PCH_DPLL_SEL, temp);
7349 		}
7350 
7351 		ilk_fdi_pll_disable(crtc);
7352 	}
7353 
7354 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7355 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
7356 }
7357 
7358 static void hsw_crtc_disable(struct intel_atomic_state *state,
7359 			     struct intel_crtc *crtc)
7360 {
7361 	/*
7362 	 * FIXME collapse everything to one hook.
7363 	 * Need care with mst->ddi interactions.
7364 	 */
7365 	intel_encoders_disable(state, crtc);
7366 	intel_encoders_post_disable(state, crtc);
7367 }
7368 
7369 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state)
7370 {
7371 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7372 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7373 
7374 	if (!crtc_state->gmch_pfit.control)
7375 		return;
7376 
7377 	/*
7378 	 * The panel fitter should only be adjusted whilst the pipe is disabled,
7379 	 * according to register description and PRM.
7380 	 */
7381 	drm_WARN_ON(&dev_priv->drm,
7382 		    intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE);
7383 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
7384 
7385 	intel_de_write(dev_priv, PFIT_PGM_RATIOS,
7386 		       crtc_state->gmch_pfit.pgm_ratios);
7387 	intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control);
7388 
7389 	/* Border color in case we don't scale up to the full screen. Black by
7390 	 * default, change to something else for debugging. */
7391 	intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0);
7392 }
7393 
7394 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy)
7395 {
7396 	if (phy == PHY_NONE)
7397 		return false;
7398 	else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv))
7399 		return phy <= PHY_D;
7400 	else if (IS_JSL_EHL(dev_priv))
7401 		return phy <= PHY_C;
7402 	else if (INTEL_GEN(dev_priv) >= 11)
7403 		return phy <= PHY_B;
7404 	else
7405 		return false;
7406 }
7407 
7408 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy)
7409 {
7410 	if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv))
7411 		return false;
7412 	else if (INTEL_GEN(dev_priv) >= 12)
7413 		return phy >= PHY_D && phy <= PHY_I;
7414 	else if (INTEL_GEN(dev_priv) >= 11 && !IS_JSL_EHL(dev_priv))
7415 		return phy >= PHY_C && phy <= PHY_F;
7416 	else
7417 		return false;
7418 }
7419 
7420 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port)
7421 {
7422 	if ((IS_DG1(i915) || IS_ROCKETLAKE(i915)) && port >= PORT_TC1)
7423 		return PHY_C + port - PORT_TC1;
7424 	else if (IS_JSL_EHL(i915) && port == PORT_D)
7425 		return PHY_A;
7426 
7427 	return PHY_A + port - PORT_A;
7428 }
7429 
7430 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port)
7431 {
7432 	if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port)))
7433 		return TC_PORT_NONE;
7434 
7435 	if (INTEL_GEN(dev_priv) >= 12)
7436 		return TC_PORT_1 + port - PORT_TC1;
7437 	else
7438 		return TC_PORT_1 + port - PORT_C;
7439 }
7440 
7441 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
7442 {
7443 	switch (port) {
7444 	case PORT_A:
7445 		return POWER_DOMAIN_PORT_DDI_A_LANES;
7446 	case PORT_B:
7447 		return POWER_DOMAIN_PORT_DDI_B_LANES;
7448 	case PORT_C:
7449 		return POWER_DOMAIN_PORT_DDI_C_LANES;
7450 	case PORT_D:
7451 		return POWER_DOMAIN_PORT_DDI_D_LANES;
7452 	case PORT_E:
7453 		return POWER_DOMAIN_PORT_DDI_E_LANES;
7454 	case PORT_F:
7455 		return POWER_DOMAIN_PORT_DDI_F_LANES;
7456 	case PORT_G:
7457 		return POWER_DOMAIN_PORT_DDI_G_LANES;
7458 	case PORT_H:
7459 		return POWER_DOMAIN_PORT_DDI_H_LANES;
7460 	case PORT_I:
7461 		return POWER_DOMAIN_PORT_DDI_I_LANES;
7462 	default:
7463 		MISSING_CASE(port);
7464 		return POWER_DOMAIN_PORT_OTHER;
7465 	}
7466 }
7467 
7468 enum intel_display_power_domain
7469 intel_aux_power_domain(struct intel_digital_port *dig_port)
7470 {
7471 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
7472 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
7473 
7474 	if (intel_phy_is_tc(dev_priv, phy) &&
7475 	    dig_port->tc_mode == TC_PORT_TBT_ALT) {
7476 		switch (dig_port->aux_ch) {
7477 		case AUX_CH_C:
7478 			return POWER_DOMAIN_AUX_C_TBT;
7479 		case AUX_CH_D:
7480 			return POWER_DOMAIN_AUX_D_TBT;
7481 		case AUX_CH_E:
7482 			return POWER_DOMAIN_AUX_E_TBT;
7483 		case AUX_CH_F:
7484 			return POWER_DOMAIN_AUX_F_TBT;
7485 		case AUX_CH_G:
7486 			return POWER_DOMAIN_AUX_G_TBT;
7487 		case AUX_CH_H:
7488 			return POWER_DOMAIN_AUX_H_TBT;
7489 		case AUX_CH_I:
7490 			return POWER_DOMAIN_AUX_I_TBT;
7491 		default:
7492 			MISSING_CASE(dig_port->aux_ch);
7493 			return POWER_DOMAIN_AUX_C_TBT;
7494 		}
7495 	}
7496 
7497 	return intel_legacy_aux_to_power_domain(dig_port->aux_ch);
7498 }
7499 
7500 /*
7501  * Converts aux_ch to power_domain without caring about TBT ports for that use
7502  * intel_aux_power_domain()
7503  */
7504 enum intel_display_power_domain
7505 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch)
7506 {
7507 	switch (aux_ch) {
7508 	case AUX_CH_A:
7509 		return POWER_DOMAIN_AUX_A;
7510 	case AUX_CH_B:
7511 		return POWER_DOMAIN_AUX_B;
7512 	case AUX_CH_C:
7513 		return POWER_DOMAIN_AUX_C;
7514 	case AUX_CH_D:
7515 		return POWER_DOMAIN_AUX_D;
7516 	case AUX_CH_E:
7517 		return POWER_DOMAIN_AUX_E;
7518 	case AUX_CH_F:
7519 		return POWER_DOMAIN_AUX_F;
7520 	case AUX_CH_G:
7521 		return POWER_DOMAIN_AUX_G;
7522 	case AUX_CH_H:
7523 		return POWER_DOMAIN_AUX_H;
7524 	case AUX_CH_I:
7525 		return POWER_DOMAIN_AUX_I;
7526 	default:
7527 		MISSING_CASE(aux_ch);
7528 		return POWER_DOMAIN_AUX_A;
7529 	}
7530 }
7531 
7532 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7533 {
7534 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7535 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7536 	struct drm_encoder *encoder;
7537 	enum pipe pipe = crtc->pipe;
7538 	u64 mask;
7539 	enum transcoder transcoder = crtc_state->cpu_transcoder;
7540 
7541 	if (!crtc_state->hw.active)
7542 		return 0;
7543 
7544 	mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe));
7545 	mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder));
7546 	if (crtc_state->pch_pfit.enabled ||
7547 	    crtc_state->pch_pfit.force_thru)
7548 		mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
7549 
7550 	drm_for_each_encoder_mask(encoder, &dev_priv->drm,
7551 				  crtc_state->uapi.encoder_mask) {
7552 		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7553 
7554 		mask |= BIT_ULL(intel_encoder->power_domain);
7555 	}
7556 
7557 	if (HAS_DDI(dev_priv) && crtc_state->has_audio)
7558 		mask |= BIT_ULL(POWER_DOMAIN_AUDIO);
7559 
7560 	if (crtc_state->shared_dpll)
7561 		mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE);
7562 
7563 	if (crtc_state->dsc.compression_enable)
7564 		mask |= BIT_ULL(intel_dsc_power_domain(crtc_state));
7565 
7566 	return mask;
7567 }
7568 
7569 static u64
7570 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7571 {
7572 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7573 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7574 	enum intel_display_power_domain domain;
7575 	u64 domains, new_domains, old_domains;
7576 
7577 	old_domains = crtc->enabled_power_domains;
7578 	crtc->enabled_power_domains = new_domains =
7579 		get_crtc_power_domains(crtc_state);
7580 
7581 	domains = new_domains & ~old_domains;
7582 
7583 	for_each_power_domain(domain, domains)
7584 		intel_display_power_get(dev_priv, domain);
7585 
7586 	return old_domains & ~new_domains;
7587 }
7588 
7589 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
7590 				      u64 domains)
7591 {
7592 	enum intel_display_power_domain domain;
7593 
7594 	for_each_power_domain(domain, domains)
7595 		intel_display_power_put_unchecked(dev_priv, domain);
7596 }
7597 
7598 static void valleyview_crtc_enable(struct intel_atomic_state *state,
7599 				   struct intel_crtc *crtc)
7600 {
7601 	const struct intel_crtc_state *new_crtc_state =
7602 		intel_atomic_get_new_crtc_state(state, crtc);
7603 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7604 	enum pipe pipe = crtc->pipe;
7605 
7606 	if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7607 		return;
7608 
7609 	if (intel_crtc_has_dp_encoder(new_crtc_state))
7610 		intel_dp_set_m_n(new_crtc_state, M1_N1);
7611 
7612 	intel_set_transcoder_timings(new_crtc_state);
7613 	intel_set_pipe_src_size(new_crtc_state);
7614 
7615 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
7616 		intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY);
7617 		intel_de_write(dev_priv, CHV_CANVAS(pipe), 0);
7618 	}
7619 
7620 	i9xx_set_pipeconf(new_crtc_state);
7621 
7622 	crtc->active = true;
7623 
7624 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7625 
7626 	intel_encoders_pre_pll_enable(state, crtc);
7627 
7628 	if (IS_CHERRYVIEW(dev_priv)) {
7629 		chv_prepare_pll(crtc, new_crtc_state);
7630 		chv_enable_pll(crtc, new_crtc_state);
7631 	} else {
7632 		vlv_prepare_pll(crtc, new_crtc_state);
7633 		vlv_enable_pll(crtc, new_crtc_state);
7634 	}
7635 
7636 	intel_encoders_pre_enable(state, crtc);
7637 
7638 	i9xx_pfit_enable(new_crtc_state);
7639 
7640 	intel_color_load_luts(new_crtc_state);
7641 	intel_color_commit(new_crtc_state);
7642 	/* update DSPCNTR to configure gamma for pipe bottom color */
7643 	intel_disable_primary_plane(new_crtc_state);
7644 
7645 	dev_priv->display.initial_watermarks(state, crtc);
7646 	intel_enable_pipe(new_crtc_state);
7647 
7648 	intel_crtc_vblank_on(new_crtc_state);
7649 
7650 	intel_encoders_enable(state, crtc);
7651 }
7652 
7653 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state)
7654 {
7655 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7656 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7657 
7658 	intel_de_write(dev_priv, FP0(crtc->pipe),
7659 		       crtc_state->dpll_hw_state.fp0);
7660 	intel_de_write(dev_priv, FP1(crtc->pipe),
7661 		       crtc_state->dpll_hw_state.fp1);
7662 }
7663 
7664 static void i9xx_crtc_enable(struct intel_atomic_state *state,
7665 			     struct intel_crtc *crtc)
7666 {
7667 	const struct intel_crtc_state *new_crtc_state =
7668 		intel_atomic_get_new_crtc_state(state, crtc);
7669 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7670 	enum pipe pipe = crtc->pipe;
7671 
7672 	if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7673 		return;
7674 
7675 	i9xx_set_pll_dividers(new_crtc_state);
7676 
7677 	if (intel_crtc_has_dp_encoder(new_crtc_state))
7678 		intel_dp_set_m_n(new_crtc_state, M1_N1);
7679 
7680 	intel_set_transcoder_timings(new_crtc_state);
7681 	intel_set_pipe_src_size(new_crtc_state);
7682 
7683 	i9xx_set_pipeconf(new_crtc_state);
7684 
7685 	crtc->active = true;
7686 
7687 	if (!IS_GEN(dev_priv, 2))
7688 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7689 
7690 	intel_encoders_pre_enable(state, crtc);
7691 
7692 	i9xx_enable_pll(crtc, new_crtc_state);
7693 
7694 	i9xx_pfit_enable(new_crtc_state);
7695 
7696 	intel_color_load_luts(new_crtc_state);
7697 	intel_color_commit(new_crtc_state);
7698 	/* update DSPCNTR to configure gamma for pipe bottom color */
7699 	intel_disable_primary_plane(new_crtc_state);
7700 
7701 	if (dev_priv->display.initial_watermarks)
7702 		dev_priv->display.initial_watermarks(state, crtc);
7703 	else
7704 		intel_update_watermarks(crtc);
7705 	intel_enable_pipe(new_crtc_state);
7706 
7707 	intel_crtc_vblank_on(new_crtc_state);
7708 
7709 	intel_encoders_enable(state, crtc);
7710 
7711 	/* prevents spurious underruns */
7712 	if (IS_GEN(dev_priv, 2))
7713 		intel_wait_for_vblank(dev_priv, pipe);
7714 }
7715 
7716 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7717 {
7718 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7719 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7720 
7721 	if (!old_crtc_state->gmch_pfit.control)
7722 		return;
7723 
7724 	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
7725 
7726 	drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n",
7727 		    intel_de_read(dev_priv, PFIT_CONTROL));
7728 	intel_de_write(dev_priv, PFIT_CONTROL, 0);
7729 }
7730 
7731 static void i9xx_crtc_disable(struct intel_atomic_state *state,
7732 			      struct intel_crtc *crtc)
7733 {
7734 	struct intel_crtc_state *old_crtc_state =
7735 		intel_atomic_get_old_crtc_state(state, crtc);
7736 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7737 	enum pipe pipe = crtc->pipe;
7738 
7739 	/*
7740 	 * On gen2 planes are double buffered but the pipe isn't, so we must
7741 	 * wait for planes to fully turn off before disabling the pipe.
7742 	 */
7743 	if (IS_GEN(dev_priv, 2))
7744 		intel_wait_for_vblank(dev_priv, pipe);
7745 
7746 	intel_encoders_disable(state, crtc);
7747 
7748 	intel_crtc_vblank_off(old_crtc_state);
7749 
7750 	intel_disable_pipe(old_crtc_state);
7751 
7752 	i9xx_pfit_disable(old_crtc_state);
7753 
7754 	intel_encoders_post_disable(state, crtc);
7755 
7756 	if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
7757 		if (IS_CHERRYVIEW(dev_priv))
7758 			chv_disable_pll(dev_priv, pipe);
7759 		else if (IS_VALLEYVIEW(dev_priv))
7760 			vlv_disable_pll(dev_priv, pipe);
7761 		else
7762 			i9xx_disable_pll(old_crtc_state);
7763 	}
7764 
7765 	intel_encoders_post_pll_disable(state, crtc);
7766 
7767 	if (!IS_GEN(dev_priv, 2))
7768 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7769 
7770 	if (!dev_priv->display.initial_watermarks)
7771 		intel_update_watermarks(crtc);
7772 
7773 	/* clock the pipe down to 640x480@60 to potentially save power */
7774 	if (IS_I830(dev_priv))
7775 		i830_enable_pipe(dev_priv, pipe);
7776 }
7777 
7778 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc,
7779 					struct drm_modeset_acquire_ctx *ctx)
7780 {
7781 	struct intel_encoder *encoder;
7782 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7783 	struct intel_bw_state *bw_state =
7784 		to_intel_bw_state(dev_priv->bw_obj.state);
7785 	struct intel_cdclk_state *cdclk_state =
7786 		to_intel_cdclk_state(dev_priv->cdclk.obj.state);
7787 	struct intel_dbuf_state *dbuf_state =
7788 		to_intel_dbuf_state(dev_priv->dbuf.obj.state);
7789 	struct intel_crtc_state *crtc_state =
7790 		to_intel_crtc_state(crtc->base.state);
7791 	enum intel_display_power_domain domain;
7792 	struct intel_plane *plane;
7793 	struct drm_atomic_state *state;
7794 	struct intel_crtc_state *temp_crtc_state;
7795 	enum pipe pipe = crtc->pipe;
7796 	u64 domains;
7797 	int ret;
7798 
7799 	if (!crtc_state->hw.active)
7800 		return;
7801 
7802 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
7803 		const struct intel_plane_state *plane_state =
7804 			to_intel_plane_state(plane->base.state);
7805 
7806 		if (plane_state->uapi.visible)
7807 			intel_plane_disable_noatomic(crtc, plane);
7808 	}
7809 
7810 	state = drm_atomic_state_alloc(&dev_priv->drm);
7811 	if (!state) {
7812 		drm_dbg_kms(&dev_priv->drm,
7813 			    "failed to disable [CRTC:%d:%s], out of memory",
7814 			    crtc->base.base.id, crtc->base.name);
7815 		return;
7816 	}
7817 
7818 	state->acquire_ctx = ctx;
7819 
7820 	/* Everything's already locked, -EDEADLK can't happen. */
7821 	temp_crtc_state = intel_atomic_get_crtc_state(state, crtc);
7822 	ret = drm_atomic_add_affected_connectors(state, &crtc->base);
7823 
7824 	drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret);
7825 
7826 	dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc);
7827 
7828 	drm_atomic_state_put(state);
7829 
7830 	drm_dbg_kms(&dev_priv->drm,
7831 		    "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
7832 		    crtc->base.base.id, crtc->base.name);
7833 
7834 	crtc->active = false;
7835 	crtc->base.enabled = false;
7836 
7837 	drm_WARN_ON(&dev_priv->drm,
7838 		    drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0);
7839 	crtc_state->uapi.active = false;
7840 	crtc_state->uapi.connector_mask = 0;
7841 	crtc_state->uapi.encoder_mask = 0;
7842 	intel_crtc_free_hw_state(crtc_state);
7843 	memset(&crtc_state->hw, 0, sizeof(crtc_state->hw));
7844 
7845 	for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder)
7846 		encoder->base.crtc = NULL;
7847 
7848 	intel_fbc_disable(crtc);
7849 	intel_update_watermarks(crtc);
7850 	intel_disable_shared_dpll(crtc_state);
7851 
7852 	domains = crtc->enabled_power_domains;
7853 	for_each_power_domain(domain, domains)
7854 		intel_display_power_put_unchecked(dev_priv, domain);
7855 	crtc->enabled_power_domains = 0;
7856 
7857 	dev_priv->active_pipes &= ~BIT(pipe);
7858 	cdclk_state->min_cdclk[pipe] = 0;
7859 	cdclk_state->min_voltage_level[pipe] = 0;
7860 	cdclk_state->active_pipes &= ~BIT(pipe);
7861 
7862 	dbuf_state->active_pipes &= ~BIT(pipe);
7863 
7864 	bw_state->data_rate[pipe] = 0;
7865 	bw_state->num_active_planes[pipe] = 0;
7866 }
7867 
7868 /*
7869  * turn all crtc's off, but do not adjust state
7870  * This has to be paired with a call to intel_modeset_setup_hw_state.
7871  */
7872 int intel_display_suspend(struct drm_device *dev)
7873 {
7874 	struct drm_i915_private *dev_priv = to_i915(dev);
7875 	struct drm_atomic_state *state;
7876 	int ret;
7877 
7878 	state = drm_atomic_helper_suspend(dev);
7879 	ret = PTR_ERR_OR_ZERO(state);
7880 	if (ret)
7881 		drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n",
7882 			ret);
7883 	else
7884 		dev_priv->modeset_restore_state = state;
7885 	return ret;
7886 }
7887 
7888 void intel_encoder_destroy(struct drm_encoder *encoder)
7889 {
7890 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7891 
7892 	drm_encoder_cleanup(encoder);
7893 	kfree(intel_encoder);
7894 }
7895 
7896 /* Cross check the actual hw state with our own modeset state tracking (and it's
7897  * internal consistency). */
7898 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state,
7899 					 struct drm_connector_state *conn_state)
7900 {
7901 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
7902 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
7903 
7904 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
7905 		    connector->base.base.id, connector->base.name);
7906 
7907 	if (connector->get_hw_state(connector)) {
7908 		struct intel_encoder *encoder = intel_attached_encoder(connector);
7909 
7910 		I915_STATE_WARN(!crtc_state,
7911 			 "connector enabled without attached crtc\n");
7912 
7913 		if (!crtc_state)
7914 			return;
7915 
7916 		I915_STATE_WARN(!crtc_state->hw.active,
7917 				"connector is active, but attached crtc isn't\n");
7918 
7919 		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
7920 			return;
7921 
7922 		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
7923 			"atomic encoder doesn't match attached encoder\n");
7924 
7925 		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
7926 			"attached encoder crtc differs from connector crtc\n");
7927 	} else {
7928 		I915_STATE_WARN(crtc_state && crtc_state->hw.active,
7929 				"attached crtc is active, but connector isn't\n");
7930 		I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
7931 			"best encoder set without crtc!\n");
7932 	}
7933 }
7934 
7935 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7936 {
7937 	if (crtc_state->hw.enable && crtc_state->has_pch_encoder)
7938 		return crtc_state->fdi_lanes;
7939 
7940 	return 0;
7941 }
7942 
7943 static int ilk_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7944 			       struct intel_crtc_state *pipe_config)
7945 {
7946 	struct drm_i915_private *dev_priv = to_i915(dev);
7947 	struct drm_atomic_state *state = pipe_config->uapi.state;
7948 	struct intel_crtc *other_crtc;
7949 	struct intel_crtc_state *other_crtc_state;
7950 
7951 	drm_dbg_kms(&dev_priv->drm,
7952 		    "checking fdi config on pipe %c, lanes %i\n",
7953 		    pipe_name(pipe), pipe_config->fdi_lanes);
7954 	if (pipe_config->fdi_lanes > 4) {
7955 		drm_dbg_kms(&dev_priv->drm,
7956 			    "invalid fdi lane config on pipe %c: %i lanes\n",
7957 			    pipe_name(pipe), pipe_config->fdi_lanes);
7958 		return -EINVAL;
7959 	}
7960 
7961 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7962 		if (pipe_config->fdi_lanes > 2) {
7963 			drm_dbg_kms(&dev_priv->drm,
7964 				    "only 2 lanes on haswell, required: %i lanes\n",
7965 				    pipe_config->fdi_lanes);
7966 			return -EINVAL;
7967 		} else {
7968 			return 0;
7969 		}
7970 	}
7971 
7972 	if (INTEL_NUM_PIPES(dev_priv) == 2)
7973 		return 0;
7974 
7975 	/* Ivybridge 3 pipe is really complicated */
7976 	switch (pipe) {
7977 	case PIPE_A:
7978 		return 0;
7979 	case PIPE_B:
7980 		if (pipe_config->fdi_lanes <= 2)
7981 			return 0;
7982 
7983 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7984 		other_crtc_state =
7985 			intel_atomic_get_crtc_state(state, other_crtc);
7986 		if (IS_ERR(other_crtc_state))
7987 			return PTR_ERR(other_crtc_state);
7988 
7989 		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7990 			drm_dbg_kms(&dev_priv->drm,
7991 				    "invalid shared fdi lane config on pipe %c: %i lanes\n",
7992 				    pipe_name(pipe), pipe_config->fdi_lanes);
7993 			return -EINVAL;
7994 		}
7995 		return 0;
7996 	case PIPE_C:
7997 		if (pipe_config->fdi_lanes > 2) {
7998 			drm_dbg_kms(&dev_priv->drm,
7999 				    "only 2 lanes on pipe %c: required %i lanes\n",
8000 				    pipe_name(pipe), pipe_config->fdi_lanes);
8001 			return -EINVAL;
8002 		}
8003 
8004 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
8005 		other_crtc_state =
8006 			intel_atomic_get_crtc_state(state, other_crtc);
8007 		if (IS_ERR(other_crtc_state))
8008 			return PTR_ERR(other_crtc_state);
8009 
8010 		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
8011 			drm_dbg_kms(&dev_priv->drm,
8012 				    "fdi link B uses too many lanes to enable link C\n");
8013 			return -EINVAL;
8014 		}
8015 		return 0;
8016 	default:
8017 		BUG();
8018 	}
8019 }
8020 
8021 #define RETRY 1
8022 static int ilk_fdi_compute_config(struct intel_crtc *intel_crtc,
8023 				  struct intel_crtc_state *pipe_config)
8024 {
8025 	struct drm_device *dev = intel_crtc->base.dev;
8026 	struct drm_i915_private *i915 = to_i915(dev);
8027 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
8028 	int lane, link_bw, fdi_dotclock, ret;
8029 	bool needs_recompute = false;
8030 
8031 retry:
8032 	/* FDI is a binary signal running at ~2.7GHz, encoding
8033 	 * each output octet as 10 bits. The actual frequency
8034 	 * is stored as a divider into a 100MHz clock, and the
8035 	 * mode pixel clock is stored in units of 1KHz.
8036 	 * Hence the bw of each lane in terms of the mode signal
8037 	 * is:
8038 	 */
8039 	link_bw = intel_fdi_link_freq(i915, pipe_config);
8040 
8041 	fdi_dotclock = adjusted_mode->crtc_clock;
8042 
8043 	lane = ilk_get_lanes_required(fdi_dotclock, link_bw,
8044 				      pipe_config->pipe_bpp);
8045 
8046 	pipe_config->fdi_lanes = lane;
8047 
8048 	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
8049 			       link_bw, &pipe_config->fdi_m_n, false, false);
8050 
8051 	ret = ilk_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
8052 	if (ret == -EDEADLK)
8053 		return ret;
8054 
8055 	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
8056 		pipe_config->pipe_bpp -= 2*3;
8057 		drm_dbg_kms(&i915->drm,
8058 			    "fdi link bw constraint, reducing pipe bpp to %i\n",
8059 			    pipe_config->pipe_bpp);
8060 		needs_recompute = true;
8061 		pipe_config->bw_constrained = true;
8062 
8063 		goto retry;
8064 	}
8065 
8066 	if (needs_recompute)
8067 		return RETRY;
8068 
8069 	return ret;
8070 }
8071 
8072 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state)
8073 {
8074 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8075 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8076 
8077 	/* IPS only exists on ULT machines and is tied to pipe A. */
8078 	if (!hsw_crtc_supports_ips(crtc))
8079 		return false;
8080 
8081 	if (!dev_priv->params.enable_ips)
8082 		return false;
8083 
8084 	if (crtc_state->pipe_bpp > 24)
8085 		return false;
8086 
8087 	/*
8088 	 * We compare against max which means we must take
8089 	 * the increased cdclk requirement into account when
8090 	 * calculating the new cdclk.
8091 	 *
8092 	 * Should measure whether using a lower cdclk w/o IPS
8093 	 */
8094 	if (IS_BROADWELL(dev_priv) &&
8095 	    crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100)
8096 		return false;
8097 
8098 	return true;
8099 }
8100 
8101 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state)
8102 {
8103 	struct drm_i915_private *dev_priv =
8104 		to_i915(crtc_state->uapi.crtc->dev);
8105 	struct intel_atomic_state *state =
8106 		to_intel_atomic_state(crtc_state->uapi.state);
8107 
8108 	crtc_state->ips_enabled = false;
8109 
8110 	if (!hsw_crtc_state_ips_capable(crtc_state))
8111 		return 0;
8112 
8113 	/*
8114 	 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
8115 	 * enabled and disabled dynamically based on package C states,
8116 	 * user space can't make reliable use of the CRCs, so let's just
8117 	 * completely disable it.
8118 	 */
8119 	if (crtc_state->crc_enabled)
8120 		return 0;
8121 
8122 	/* IPS should be fine as long as at least one plane is enabled. */
8123 	if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)))
8124 		return 0;
8125 
8126 	if (IS_BROADWELL(dev_priv)) {
8127 		const struct intel_cdclk_state *cdclk_state;
8128 
8129 		cdclk_state = intel_atomic_get_cdclk_state(state);
8130 		if (IS_ERR(cdclk_state))
8131 			return PTR_ERR(cdclk_state);
8132 
8133 		/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
8134 		if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100)
8135 			return 0;
8136 	}
8137 
8138 	crtc_state->ips_enabled = true;
8139 
8140 	return 0;
8141 }
8142 
8143 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
8144 {
8145 	const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8146 
8147 	/* GDG double wide on either pipe, otherwise pipe A only */
8148 	return INTEL_GEN(dev_priv) < 4 &&
8149 		(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
8150 }
8151 
8152 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state)
8153 {
8154 	u32 pixel_rate = crtc_state->hw.pipe_mode.crtc_clock;
8155 	unsigned int pipe_w, pipe_h, pfit_w, pfit_h;
8156 
8157 	/*
8158 	 * We only use IF-ID interlacing. If we ever use
8159 	 * PF-ID we'll need to adjust the pixel_rate here.
8160 	 */
8161 
8162 	if (!crtc_state->pch_pfit.enabled)
8163 		return pixel_rate;
8164 
8165 	pipe_w = crtc_state->pipe_src_w;
8166 	pipe_h = crtc_state->pipe_src_h;
8167 
8168 	pfit_w = drm_rect_width(&crtc_state->pch_pfit.dst);
8169 	pfit_h = drm_rect_height(&crtc_state->pch_pfit.dst);
8170 
8171 	if (pipe_w < pfit_w)
8172 		pipe_w = pfit_w;
8173 	if (pipe_h < pfit_h)
8174 		pipe_h = pfit_h;
8175 
8176 	if (drm_WARN_ON(crtc_state->uapi.crtc->dev,
8177 			!pfit_w || !pfit_h))
8178 		return pixel_rate;
8179 
8180 	return div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h),
8181 		       pfit_w * pfit_h);
8182 }
8183 
8184 static void intel_mode_from_crtc_timings(struct drm_display_mode *mode,
8185 					 const struct drm_display_mode *timings)
8186 {
8187 	mode->hdisplay = timings->crtc_hdisplay;
8188 	mode->htotal = timings->crtc_htotal;
8189 	mode->hsync_start = timings->crtc_hsync_start;
8190 	mode->hsync_end = timings->crtc_hsync_end;
8191 
8192 	mode->vdisplay = timings->crtc_vdisplay;
8193 	mode->vtotal = timings->crtc_vtotal;
8194 	mode->vsync_start = timings->crtc_vsync_start;
8195 	mode->vsync_end = timings->crtc_vsync_end;
8196 
8197 	mode->flags = timings->flags;
8198 	mode->type = DRM_MODE_TYPE_DRIVER;
8199 
8200 	mode->clock = timings->crtc_clock;
8201 
8202 	drm_mode_set_name(mode);
8203 }
8204 
8205 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
8206 {
8207 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
8208 
8209 	if (HAS_GMCH(dev_priv))
8210 		/* FIXME calculate proper pipe pixel rate for GMCH pfit */
8211 		crtc_state->pixel_rate =
8212 			crtc_state->hw.pipe_mode.crtc_clock;
8213 	else
8214 		crtc_state->pixel_rate =
8215 			ilk_pipe_pixel_rate(crtc_state);
8216 }
8217 
8218 static void intel_crtc_readout_derived_state(struct intel_crtc_state *crtc_state)
8219 {
8220 	struct drm_display_mode *mode = &crtc_state->hw.mode;
8221 	struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
8222 	struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
8223 
8224 	drm_mode_copy(pipe_mode, adjusted_mode);
8225 
8226 	if (crtc_state->bigjoiner) {
8227 		/*
8228 		 * transcoder is programmed to the full mode,
8229 		 * but pipe timings are half of the transcoder mode
8230 		 */
8231 		pipe_mode->crtc_hdisplay /= 2;
8232 		pipe_mode->crtc_hblank_start /= 2;
8233 		pipe_mode->crtc_hblank_end /= 2;
8234 		pipe_mode->crtc_hsync_start /= 2;
8235 		pipe_mode->crtc_hsync_end /= 2;
8236 		pipe_mode->crtc_htotal /= 2;
8237 		pipe_mode->crtc_clock /= 2;
8238 	}
8239 
8240 	intel_mode_from_crtc_timings(pipe_mode, pipe_mode);
8241 	intel_mode_from_crtc_timings(adjusted_mode, adjusted_mode);
8242 
8243 	intel_crtc_compute_pixel_rate(crtc_state);
8244 
8245 	drm_mode_copy(mode, adjusted_mode);
8246 	mode->hdisplay = crtc_state->pipe_src_w << crtc_state->bigjoiner;
8247 	mode->vdisplay = crtc_state->pipe_src_h;
8248 }
8249 
8250 static void intel_encoder_get_config(struct intel_encoder *encoder,
8251 				     struct intel_crtc_state *crtc_state)
8252 {
8253 	encoder->get_config(encoder, crtc_state);
8254 
8255 	intel_crtc_readout_derived_state(crtc_state);
8256 }
8257 
8258 static int intel_crtc_compute_config(struct intel_crtc *crtc,
8259 				     struct intel_crtc_state *pipe_config)
8260 {
8261 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8262 	struct drm_display_mode *pipe_mode = &pipe_config->hw.pipe_mode;
8263 	int clock_limit = dev_priv->max_dotclk_freq;
8264 
8265 	drm_mode_copy(pipe_mode, &pipe_config->hw.adjusted_mode);
8266 
8267 	/* Adjust pipe_mode for bigjoiner, with half the horizontal mode */
8268 	if (pipe_config->bigjoiner) {
8269 		pipe_mode->crtc_clock /= 2;
8270 		pipe_mode->crtc_hdisplay /= 2;
8271 		pipe_mode->crtc_hblank_start /= 2;
8272 		pipe_mode->crtc_hblank_end /= 2;
8273 		pipe_mode->crtc_hsync_start /= 2;
8274 		pipe_mode->crtc_hsync_end /= 2;
8275 		pipe_mode->crtc_htotal /= 2;
8276 		pipe_config->pipe_src_w /= 2;
8277 	}
8278 
8279 	intel_mode_from_crtc_timings(pipe_mode, pipe_mode);
8280 
8281 	if (INTEL_GEN(dev_priv) < 4) {
8282 		clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
8283 
8284 		/*
8285 		 * Enable double wide mode when the dot clock
8286 		 * is > 90% of the (display) core speed.
8287 		 */
8288 		if (intel_crtc_supports_double_wide(crtc) &&
8289 		    pipe_mode->crtc_clock > clock_limit) {
8290 			clock_limit = dev_priv->max_dotclk_freq;
8291 			pipe_config->double_wide = true;
8292 		}
8293 	}
8294 
8295 	if (pipe_mode->crtc_clock > clock_limit) {
8296 		drm_dbg_kms(&dev_priv->drm,
8297 			    "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
8298 			    pipe_mode->crtc_clock, clock_limit,
8299 			    yesno(pipe_config->double_wide));
8300 		return -EINVAL;
8301 	}
8302 
8303 	if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
8304 	     pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) &&
8305 	     pipe_config->hw.ctm) {
8306 		/*
8307 		 * There is only one pipe CSC unit per pipe, and we need that
8308 		 * for output conversion from RGB->YCBCR. So if CTM is already
8309 		 * applied we can't support YCBCR420 output.
8310 		 */
8311 		drm_dbg_kms(&dev_priv->drm,
8312 			    "YCBCR420 and CTM together are not possible\n");
8313 		return -EINVAL;
8314 	}
8315 
8316 	/*
8317 	 * Pipe horizontal size must be even in:
8318 	 * - DVO ganged mode
8319 	 * - LVDS dual channel mode
8320 	 * - Double wide pipe
8321 	 */
8322 	if (pipe_config->pipe_src_w & 1) {
8323 		if (pipe_config->double_wide) {
8324 			drm_dbg_kms(&dev_priv->drm,
8325 				    "Odd pipe source width not supported with double wide pipe\n");
8326 			return -EINVAL;
8327 		}
8328 
8329 		if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
8330 		    intel_is_dual_link_lvds(dev_priv)) {
8331 			drm_dbg_kms(&dev_priv->drm,
8332 				    "Odd pipe source width not supported with dual link LVDS\n");
8333 			return -EINVAL;
8334 		}
8335 	}
8336 
8337 	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
8338 	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
8339 	 */
8340 	if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
8341 	    pipe_mode->crtc_hsync_start == pipe_mode->crtc_hdisplay)
8342 		return -EINVAL;
8343 
8344 	intel_crtc_compute_pixel_rate(pipe_config);
8345 
8346 	if (pipe_config->has_pch_encoder)
8347 		return ilk_fdi_compute_config(crtc, pipe_config);
8348 
8349 	return 0;
8350 }
8351 
8352 static void
8353 intel_reduce_m_n_ratio(u32 *num, u32 *den)
8354 {
8355 	while (*num > DATA_LINK_M_N_MASK ||
8356 	       *den > DATA_LINK_M_N_MASK) {
8357 		*num >>= 1;
8358 		*den >>= 1;
8359 	}
8360 }
8361 
8362 static void compute_m_n(unsigned int m, unsigned int n,
8363 			u32 *ret_m, u32 *ret_n,
8364 			bool constant_n)
8365 {
8366 	/*
8367 	 * Several DP dongles in particular seem to be fussy about
8368 	 * too large link M/N values. Give N value as 0x8000 that
8369 	 * should be acceptable by specific devices. 0x8000 is the
8370 	 * specified fixed N value for asynchronous clock mode,
8371 	 * which the devices expect also in synchronous clock mode.
8372 	 */
8373 	if (constant_n)
8374 		*ret_n = DP_LINK_CONSTANT_N_VALUE;
8375 	else
8376 		*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
8377 
8378 	*ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
8379 	intel_reduce_m_n_ratio(ret_m, ret_n);
8380 }
8381 
8382 void
8383 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes,
8384 		       int pixel_clock, int link_clock,
8385 		       struct intel_link_m_n *m_n,
8386 		       bool constant_n, bool fec_enable)
8387 {
8388 	u32 data_clock = bits_per_pixel * pixel_clock;
8389 
8390 	if (fec_enable)
8391 		data_clock = intel_dp_mode_to_fec_clock(data_clock);
8392 
8393 	m_n->tu = 64;
8394 	compute_m_n(data_clock,
8395 		    link_clock * nlanes * 8,
8396 		    &m_n->gmch_m, &m_n->gmch_n,
8397 		    constant_n);
8398 
8399 	compute_m_n(pixel_clock, link_clock,
8400 		    &m_n->link_m, &m_n->link_n,
8401 		    constant_n);
8402 }
8403 
8404 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv)
8405 {
8406 	/*
8407 	 * There may be no VBT; and if the BIOS enabled SSC we can
8408 	 * just keep using it to avoid unnecessary flicker.  Whereas if the
8409 	 * BIOS isn't using it, don't assume it will work even if the VBT
8410 	 * indicates as much.
8411 	 */
8412 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
8413 		bool bios_lvds_use_ssc = intel_de_read(dev_priv,
8414 						       PCH_DREF_CONTROL) &
8415 			DREF_SSC1_ENABLE;
8416 
8417 		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
8418 			drm_dbg_kms(&dev_priv->drm,
8419 				    "SSC %s by BIOS, overriding VBT which says %s\n",
8420 				    enableddisabled(bios_lvds_use_ssc),
8421 				    enableddisabled(dev_priv->vbt.lvds_use_ssc));
8422 			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
8423 		}
8424 	}
8425 }
8426 
8427 static bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
8428 {
8429 	if (dev_priv->params.panel_use_ssc >= 0)
8430 		return dev_priv->params.panel_use_ssc != 0;
8431 	return dev_priv->vbt.lvds_use_ssc
8432 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
8433 }
8434 
8435 static u32 pnv_dpll_compute_fp(struct dpll *dpll)
8436 {
8437 	return (1 << dpll->n) << 16 | dpll->m2;
8438 }
8439 
8440 static u32 i9xx_dpll_compute_fp(struct dpll *dpll)
8441 {
8442 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
8443 }
8444 
8445 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
8446 				     struct intel_crtc_state *crtc_state,
8447 				     struct dpll *reduced_clock)
8448 {
8449 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8450 	u32 fp, fp2 = 0;
8451 
8452 	if (IS_PINEVIEW(dev_priv)) {
8453 		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
8454 		if (reduced_clock)
8455 			fp2 = pnv_dpll_compute_fp(reduced_clock);
8456 	} else {
8457 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8458 		if (reduced_clock)
8459 			fp2 = i9xx_dpll_compute_fp(reduced_clock);
8460 	}
8461 
8462 	crtc_state->dpll_hw_state.fp0 = fp;
8463 
8464 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8465 	    reduced_clock) {
8466 		crtc_state->dpll_hw_state.fp1 = fp2;
8467 	} else {
8468 		crtc_state->dpll_hw_state.fp1 = fp;
8469 	}
8470 }
8471 
8472 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
8473 		pipe)
8474 {
8475 	u32 reg_val;
8476 
8477 	/*
8478 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
8479 	 * and set it to a reasonable value instead.
8480 	 */
8481 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8482 	reg_val &= 0xffffff00;
8483 	reg_val |= 0x00000030;
8484 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8485 
8486 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8487 	reg_val &= 0x00ffffff;
8488 	reg_val |= 0x8c000000;
8489 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8490 
8491 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8492 	reg_val &= 0xffffff00;
8493 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8494 
8495 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8496 	reg_val &= 0x00ffffff;
8497 	reg_val |= 0xb0000000;
8498 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8499 }
8500 
8501 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8502 					 const struct intel_link_m_n *m_n)
8503 {
8504 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8505 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8506 	enum pipe pipe = crtc->pipe;
8507 
8508 	intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe),
8509 		       TU_SIZE(m_n->tu) | m_n->gmch_m);
8510 	intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
8511 	intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m);
8512 	intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n);
8513 }
8514 
8515 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv,
8516 				 enum transcoder transcoder)
8517 {
8518 	if (IS_HASWELL(dev_priv))
8519 		return transcoder == TRANSCODER_EDP;
8520 
8521 	/*
8522 	 * Strictly speaking some registers are available before
8523 	 * gen7, but we only support DRRS on gen7+
8524 	 */
8525 	return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv);
8526 }
8527 
8528 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8529 					 const struct intel_link_m_n *m_n,
8530 					 const struct intel_link_m_n *m2_n2)
8531 {
8532 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8533 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8534 	enum pipe pipe = crtc->pipe;
8535 	enum transcoder transcoder = crtc_state->cpu_transcoder;
8536 
8537 	if (INTEL_GEN(dev_priv) >= 5) {
8538 		intel_de_write(dev_priv, PIPE_DATA_M1(transcoder),
8539 			       TU_SIZE(m_n->tu) | m_n->gmch_m);
8540 		intel_de_write(dev_priv, PIPE_DATA_N1(transcoder),
8541 			       m_n->gmch_n);
8542 		intel_de_write(dev_priv, PIPE_LINK_M1(transcoder),
8543 			       m_n->link_m);
8544 		intel_de_write(dev_priv, PIPE_LINK_N1(transcoder),
8545 			       m_n->link_n);
8546 		/*
8547 		 *  M2_N2 registers are set only if DRRS is supported
8548 		 * (to make sure the registers are not unnecessarily accessed).
8549 		 */
8550 		if (m2_n2 && crtc_state->has_drrs &&
8551 		    transcoder_has_m2_n2(dev_priv, transcoder)) {
8552 			intel_de_write(dev_priv, PIPE_DATA_M2(transcoder),
8553 				       TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
8554 			intel_de_write(dev_priv, PIPE_DATA_N2(transcoder),
8555 				       m2_n2->gmch_n);
8556 			intel_de_write(dev_priv, PIPE_LINK_M2(transcoder),
8557 				       m2_n2->link_m);
8558 			intel_de_write(dev_priv, PIPE_LINK_N2(transcoder),
8559 				       m2_n2->link_n);
8560 		}
8561 	} else {
8562 		intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe),
8563 			       TU_SIZE(m_n->tu) | m_n->gmch_m);
8564 		intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
8565 		intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m);
8566 		intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n);
8567 	}
8568 }
8569 
8570 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n)
8571 {
8572 	const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
8573 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
8574 
8575 	if (m_n == M1_N1) {
8576 		dp_m_n = &crtc_state->dp_m_n;
8577 		dp_m2_n2 = &crtc_state->dp_m2_n2;
8578 	} else if (m_n == M2_N2) {
8579 
8580 		/*
8581 		 * M2_N2 registers are not supported. Hence m2_n2 divider value
8582 		 * needs to be programmed into M1_N1.
8583 		 */
8584 		dp_m_n = &crtc_state->dp_m2_n2;
8585 	} else {
8586 		drm_err(&i915->drm, "Unsupported divider value\n");
8587 		return;
8588 	}
8589 
8590 	if (crtc_state->has_pch_encoder)
8591 		intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n);
8592 	else
8593 		intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2);
8594 }
8595 
8596 static void vlv_compute_dpll(struct intel_crtc *crtc,
8597 			     struct intel_crtc_state *pipe_config)
8598 {
8599 	pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
8600 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8601 	if (crtc->pipe != PIPE_A)
8602 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8603 
8604 	/* DPLL not used with DSI, but still need the rest set up */
8605 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8606 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
8607 			DPLL_EXT_BUFFER_ENABLE_VLV;
8608 
8609 	pipe_config->dpll_hw_state.dpll_md =
8610 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8611 }
8612 
8613 static void chv_compute_dpll(struct intel_crtc *crtc,
8614 			     struct intel_crtc_state *pipe_config)
8615 {
8616 	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
8617 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8618 	if (crtc->pipe != PIPE_A)
8619 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8620 
8621 	/* DPLL not used with DSI, but still need the rest set up */
8622 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8623 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
8624 
8625 	pipe_config->dpll_hw_state.dpll_md =
8626 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8627 }
8628 
8629 static void vlv_prepare_pll(struct intel_crtc *crtc,
8630 			    const struct intel_crtc_state *pipe_config)
8631 {
8632 	struct drm_device *dev = crtc->base.dev;
8633 	struct drm_i915_private *dev_priv = to_i915(dev);
8634 	enum pipe pipe = crtc->pipe;
8635 	u32 mdiv;
8636 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
8637 	u32 coreclk, reg_val;
8638 
8639 	/* Enable Refclk */
8640 	intel_de_write(dev_priv, DPLL(pipe),
8641 		       pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
8642 
8643 	/* No need to actually set up the DPLL with DSI */
8644 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8645 		return;
8646 
8647 	vlv_dpio_get(dev_priv);
8648 
8649 	bestn = pipe_config->dpll.n;
8650 	bestm1 = pipe_config->dpll.m1;
8651 	bestm2 = pipe_config->dpll.m2;
8652 	bestp1 = pipe_config->dpll.p1;
8653 	bestp2 = pipe_config->dpll.p2;
8654 
8655 	/* See eDP HDMI DPIO driver vbios notes doc */
8656 
8657 	/* PLL B needs special handling */
8658 	if (pipe == PIPE_B)
8659 		vlv_pllb_recal_opamp(dev_priv, pipe);
8660 
8661 	/* Set up Tx target for periodic Rcomp update */
8662 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
8663 
8664 	/* Disable target IRef on PLL */
8665 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
8666 	reg_val &= 0x00ffffff;
8667 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
8668 
8669 	/* Disable fast lock */
8670 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
8671 
8672 	/* Set idtafcrecal before PLL is enabled */
8673 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
8674 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
8675 	mdiv |= ((bestn << DPIO_N_SHIFT));
8676 	mdiv |= (1 << DPIO_K_SHIFT);
8677 
8678 	/*
8679 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
8680 	 * but we don't support that).
8681 	 * Note: don't use the DAC post divider as it seems unstable.
8682 	 */
8683 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
8684 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8685 
8686 	mdiv |= DPIO_ENABLE_CALIBRATION;
8687 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8688 
8689 	/* Set HBR and RBR LPF coefficients */
8690 	if (pipe_config->port_clock == 162000 ||
8691 	    intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
8692 	    intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
8693 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8694 				 0x009f0003);
8695 	else
8696 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8697 				 0x00d0000f);
8698 
8699 	if (intel_crtc_has_dp_encoder(pipe_config)) {
8700 		/* Use SSC source */
8701 		if (pipe == PIPE_A)
8702 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8703 					 0x0df40000);
8704 		else
8705 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8706 					 0x0df70000);
8707 	} else { /* HDMI or VGA */
8708 		/* Use bend source */
8709 		if (pipe == PIPE_A)
8710 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8711 					 0x0df70000);
8712 		else
8713 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8714 					 0x0df40000);
8715 	}
8716 
8717 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
8718 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
8719 	if (intel_crtc_has_dp_encoder(pipe_config))
8720 		coreclk |= 0x01000000;
8721 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
8722 
8723 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
8724 
8725 	vlv_dpio_put(dev_priv);
8726 }
8727 
8728 static void chv_prepare_pll(struct intel_crtc *crtc,
8729 			    const struct intel_crtc_state *pipe_config)
8730 {
8731 	struct drm_device *dev = crtc->base.dev;
8732 	struct drm_i915_private *dev_priv = to_i915(dev);
8733 	enum pipe pipe = crtc->pipe;
8734 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
8735 	u32 loopfilter, tribuf_calcntr;
8736 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
8737 	u32 dpio_val;
8738 	int vco;
8739 
8740 	/* Enable Refclk and SSC */
8741 	intel_de_write(dev_priv, DPLL(pipe),
8742 		       pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
8743 
8744 	/* No need to actually set up the DPLL with DSI */
8745 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8746 		return;
8747 
8748 	bestn = pipe_config->dpll.n;
8749 	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
8750 	bestm1 = pipe_config->dpll.m1;
8751 	bestm2 = pipe_config->dpll.m2 >> 22;
8752 	bestp1 = pipe_config->dpll.p1;
8753 	bestp2 = pipe_config->dpll.p2;
8754 	vco = pipe_config->dpll.vco;
8755 	dpio_val = 0;
8756 	loopfilter = 0;
8757 
8758 	vlv_dpio_get(dev_priv);
8759 
8760 	/* p1 and p2 divider */
8761 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8762 			5 << DPIO_CHV_S1_DIV_SHIFT |
8763 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8764 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8765 			1 << DPIO_CHV_K_DIV_SHIFT);
8766 
8767 	/* Feedback post-divider - m2 */
8768 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8769 
8770 	/* Feedback refclk divider - n and m1 */
8771 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8772 			DPIO_CHV_M1_DIV_BY_2 |
8773 			1 << DPIO_CHV_N_DIV_SHIFT);
8774 
8775 	/* M2 fraction division */
8776 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8777 
8778 	/* M2 fraction division enable */
8779 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8780 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8781 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8782 	if (bestm2_frac)
8783 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8784 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8785 
8786 	/* Program digital lock detect threshold */
8787 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8788 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8789 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8790 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8791 	if (!bestm2_frac)
8792 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8793 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8794 
8795 	/* Loop filter */
8796 	if (vco == 5400000) {
8797 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8798 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8799 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8800 		tribuf_calcntr = 0x9;
8801 	} else if (vco <= 6200000) {
8802 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8803 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8804 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8805 		tribuf_calcntr = 0x9;
8806 	} else if (vco <= 6480000) {
8807 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8808 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8809 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8810 		tribuf_calcntr = 0x8;
8811 	} else {
8812 		/* Not supported. Apply the same limits as in the max case */
8813 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8814 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8815 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8816 		tribuf_calcntr = 0;
8817 	}
8818 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8819 
8820 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8821 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8822 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8823 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8824 
8825 	/* AFC Recal */
8826 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8827 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8828 			DPIO_AFC_RECAL);
8829 
8830 	vlv_dpio_put(dev_priv);
8831 }
8832 
8833 /**
8834  * vlv_force_pll_on - forcibly enable just the PLL
8835  * @dev_priv: i915 private structure
8836  * @pipe: pipe PLL to enable
8837  * @dpll: PLL configuration
8838  *
8839  * Enable the PLL for @pipe using the supplied @dpll config. To be used
8840  * in cases where we need the PLL enabled even when @pipe is not going to
8841  * be enabled.
8842  */
8843 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8844 		     const struct dpll *dpll)
8845 {
8846 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8847 	struct intel_crtc_state *pipe_config;
8848 
8849 	pipe_config = intel_crtc_state_alloc(crtc);
8850 	if (!pipe_config)
8851 		return -ENOMEM;
8852 
8853 	pipe_config->cpu_transcoder = (enum transcoder)pipe;
8854 	pipe_config->pixel_multiplier = 1;
8855 	pipe_config->dpll = *dpll;
8856 
8857 	if (IS_CHERRYVIEW(dev_priv)) {
8858 		chv_compute_dpll(crtc, pipe_config);
8859 		chv_prepare_pll(crtc, pipe_config);
8860 		chv_enable_pll(crtc, pipe_config);
8861 	} else {
8862 		vlv_compute_dpll(crtc, pipe_config);
8863 		vlv_prepare_pll(crtc, pipe_config);
8864 		vlv_enable_pll(crtc, pipe_config);
8865 	}
8866 
8867 	kfree(pipe_config);
8868 
8869 	return 0;
8870 }
8871 
8872 /**
8873  * vlv_force_pll_off - forcibly disable just the PLL
8874  * @dev_priv: i915 private structure
8875  * @pipe: pipe PLL to disable
8876  *
8877  * Disable the PLL for @pipe. To be used in cases where we need
8878  * the PLL enabled even when @pipe is not going to be enabled.
8879  */
8880 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8881 {
8882 	if (IS_CHERRYVIEW(dev_priv))
8883 		chv_disable_pll(dev_priv, pipe);
8884 	else
8885 		vlv_disable_pll(dev_priv, pipe);
8886 }
8887 
8888 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8889 			      struct intel_crtc_state *crtc_state,
8890 			      struct dpll *reduced_clock)
8891 {
8892 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8893 	u32 dpll;
8894 	struct dpll *clock = &crtc_state->dpll;
8895 
8896 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8897 
8898 	dpll = DPLL_VGA_MODE_DIS;
8899 
8900 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8901 		dpll |= DPLLB_MODE_LVDS;
8902 	else
8903 		dpll |= DPLLB_MODE_DAC_SERIAL;
8904 
8905 	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8906 	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8907 		dpll |= (crtc_state->pixel_multiplier - 1)
8908 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
8909 	}
8910 
8911 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8912 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8913 		dpll |= DPLL_SDVO_HIGH_SPEED;
8914 
8915 	if (intel_crtc_has_dp_encoder(crtc_state))
8916 		dpll |= DPLL_SDVO_HIGH_SPEED;
8917 
8918 	/* compute bitmask from p1 value */
8919 	if (IS_PINEVIEW(dev_priv))
8920 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8921 	else {
8922 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8923 		if (IS_G4X(dev_priv) && reduced_clock)
8924 			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8925 	}
8926 	switch (clock->p2) {
8927 	case 5:
8928 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8929 		break;
8930 	case 7:
8931 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8932 		break;
8933 	case 10:
8934 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8935 		break;
8936 	case 14:
8937 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8938 		break;
8939 	}
8940 	if (INTEL_GEN(dev_priv) >= 4)
8941 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8942 
8943 	if (crtc_state->sdvo_tv_clock)
8944 		dpll |= PLL_REF_INPUT_TVCLKINBC;
8945 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8946 		 intel_panel_use_ssc(dev_priv))
8947 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8948 	else
8949 		dpll |= PLL_REF_INPUT_DREFCLK;
8950 
8951 	dpll |= DPLL_VCO_ENABLE;
8952 	crtc_state->dpll_hw_state.dpll = dpll;
8953 
8954 	if (INTEL_GEN(dev_priv) >= 4) {
8955 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8956 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
8957 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
8958 	}
8959 }
8960 
8961 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8962 			      struct intel_crtc_state *crtc_state,
8963 			      struct dpll *reduced_clock)
8964 {
8965 	struct drm_device *dev = crtc->base.dev;
8966 	struct drm_i915_private *dev_priv = to_i915(dev);
8967 	u32 dpll;
8968 	struct dpll *clock = &crtc_state->dpll;
8969 
8970 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8971 
8972 	dpll = DPLL_VGA_MODE_DIS;
8973 
8974 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8975 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8976 	} else {
8977 		if (clock->p1 == 2)
8978 			dpll |= PLL_P1_DIVIDE_BY_TWO;
8979 		else
8980 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8981 		if (clock->p2 == 4)
8982 			dpll |= PLL_P2_DIVIDE_BY_4;
8983 	}
8984 
8985 	/*
8986 	 * Bspec:
8987 	 * "[Almador Errata}: For the correct operation of the muxed DVO pins
8988 	 *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
8989 	 *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
8990 	 *  Enable) must be set to “1” in both the DPLL A Control Register
8991 	 *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
8992 	 *
8993 	 * For simplicity We simply keep both bits always enabled in
8994 	 * both DPLLS. The spec says we should disable the DVO 2X clock
8995 	 * when not needed, but this seems to work fine in practice.
8996 	 */
8997 	if (IS_I830(dev_priv) ||
8998 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8999 		dpll |= DPLL_DVO_2X_MODE;
9000 
9001 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9002 	    intel_panel_use_ssc(dev_priv))
9003 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9004 	else
9005 		dpll |= PLL_REF_INPUT_DREFCLK;
9006 
9007 	dpll |= DPLL_VCO_ENABLE;
9008 	crtc_state->dpll_hw_state.dpll = dpll;
9009 }
9010 
9011 static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state)
9012 {
9013 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9014 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9015 	enum pipe pipe = crtc->pipe;
9016 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
9017 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
9018 	u32 crtc_vtotal, crtc_vblank_end;
9019 	int vsyncshift = 0;
9020 
9021 	/* We need to be careful not to changed the adjusted mode, for otherwise
9022 	 * the hw state checker will get angry at the mismatch. */
9023 	crtc_vtotal = adjusted_mode->crtc_vtotal;
9024 	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
9025 
9026 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
9027 		/* the chip adds 2 halflines automatically */
9028 		crtc_vtotal -= 1;
9029 		crtc_vblank_end -= 1;
9030 
9031 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
9032 			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
9033 		else
9034 			vsyncshift = adjusted_mode->crtc_hsync_start -
9035 				adjusted_mode->crtc_htotal / 2;
9036 		if (vsyncshift < 0)
9037 			vsyncshift += adjusted_mode->crtc_htotal;
9038 	}
9039 
9040 	if (INTEL_GEN(dev_priv) > 3)
9041 		intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder),
9042 		               vsyncshift);
9043 
9044 	intel_de_write(dev_priv, HTOTAL(cpu_transcoder),
9045 		       (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16));
9046 	intel_de_write(dev_priv, HBLANK(cpu_transcoder),
9047 		       (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16));
9048 	intel_de_write(dev_priv, HSYNC(cpu_transcoder),
9049 		       (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16));
9050 
9051 	intel_de_write(dev_priv, VTOTAL(cpu_transcoder),
9052 		       (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16));
9053 	intel_de_write(dev_priv, VBLANK(cpu_transcoder),
9054 		       (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16));
9055 	intel_de_write(dev_priv, VSYNC(cpu_transcoder),
9056 		       (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16));
9057 
9058 	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
9059 	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
9060 	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
9061 	 * bits. */
9062 	if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
9063 	    (pipe == PIPE_B || pipe == PIPE_C))
9064 		intel_de_write(dev_priv, VTOTAL(pipe),
9065 		               intel_de_read(dev_priv, VTOTAL(cpu_transcoder)));
9066 
9067 }
9068 
9069 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
9070 {
9071 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9072 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9073 	enum pipe pipe = crtc->pipe;
9074 
9075 	/* pipesrc controls the size that is scaled from, which should
9076 	 * always be the user's requested size.
9077 	 */
9078 	intel_de_write(dev_priv, PIPESRC(pipe),
9079 		       ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1));
9080 }
9081 
9082 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state)
9083 {
9084 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
9085 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
9086 
9087 	if (IS_GEN(dev_priv, 2))
9088 		return false;
9089 
9090 	if (INTEL_GEN(dev_priv) >= 9 ||
9091 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
9092 		return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW;
9093 	else
9094 		return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK;
9095 }
9096 
9097 static void intel_get_transcoder_timings(struct intel_crtc *crtc,
9098 					 struct intel_crtc_state *pipe_config)
9099 {
9100 	struct drm_device *dev = crtc->base.dev;
9101 	struct drm_i915_private *dev_priv = to_i915(dev);
9102 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
9103 	u32 tmp;
9104 
9105 	tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder));
9106 	pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
9107 	pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
9108 
9109 	if (!transcoder_is_dsi(cpu_transcoder)) {
9110 		tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder));
9111 		pipe_config->hw.adjusted_mode.crtc_hblank_start =
9112 							(tmp & 0xffff) + 1;
9113 		pipe_config->hw.adjusted_mode.crtc_hblank_end =
9114 						((tmp >> 16) & 0xffff) + 1;
9115 	}
9116 	tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder));
9117 	pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
9118 	pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
9119 
9120 	tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder));
9121 	pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
9122 	pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
9123 
9124 	if (!transcoder_is_dsi(cpu_transcoder)) {
9125 		tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder));
9126 		pipe_config->hw.adjusted_mode.crtc_vblank_start =
9127 							(tmp & 0xffff) + 1;
9128 		pipe_config->hw.adjusted_mode.crtc_vblank_end =
9129 						((tmp >> 16) & 0xffff) + 1;
9130 	}
9131 	tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder));
9132 	pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
9133 	pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
9134 
9135 	if (intel_pipe_is_interlaced(pipe_config)) {
9136 		pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
9137 		pipe_config->hw.adjusted_mode.crtc_vtotal += 1;
9138 		pipe_config->hw.adjusted_mode.crtc_vblank_end += 1;
9139 	}
9140 }
9141 
9142 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
9143 				    struct intel_crtc_state *pipe_config)
9144 {
9145 	struct drm_device *dev = crtc->base.dev;
9146 	struct drm_i915_private *dev_priv = to_i915(dev);
9147 	u32 tmp;
9148 
9149 	tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe));
9150 	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
9151 	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
9152 }
9153 
9154 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
9155 {
9156 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9157 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9158 	u32 pipeconf;
9159 
9160 	pipeconf = 0;
9161 
9162 	/* we keep both pipes enabled on 830 */
9163 	if (IS_I830(dev_priv))
9164 		pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE;
9165 
9166 	if (crtc_state->double_wide)
9167 		pipeconf |= PIPECONF_DOUBLE_WIDE;
9168 
9169 	/* only g4x and later have fancy bpc/dither controls */
9170 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
9171 	    IS_CHERRYVIEW(dev_priv)) {
9172 		/* Bspec claims that we can't use dithering for 30bpp pipes. */
9173 		if (crtc_state->dither && crtc_state->pipe_bpp != 30)
9174 			pipeconf |= PIPECONF_DITHER_EN |
9175 				    PIPECONF_DITHER_TYPE_SP;
9176 
9177 		switch (crtc_state->pipe_bpp) {
9178 		case 18:
9179 			pipeconf |= PIPECONF_6BPC;
9180 			break;
9181 		case 24:
9182 			pipeconf |= PIPECONF_8BPC;
9183 			break;
9184 		case 30:
9185 			pipeconf |= PIPECONF_10BPC;
9186 			break;
9187 		default:
9188 			/* Case prevented by intel_choose_pipe_bpp_dither. */
9189 			BUG();
9190 		}
9191 	}
9192 
9193 	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
9194 		if (INTEL_GEN(dev_priv) < 4 ||
9195 		    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
9196 			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
9197 		else
9198 			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
9199 	} else {
9200 		pipeconf |= PIPECONF_PROGRESSIVE;
9201 	}
9202 
9203 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
9204 	     crtc_state->limited_color_range)
9205 		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9206 
9207 	pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
9208 
9209 	pipeconf |= PIPECONF_FRAME_START_DELAY(0);
9210 
9211 	intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf);
9212 	intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe));
9213 }
9214 
9215 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
9216 				   struct intel_crtc_state *crtc_state)
9217 {
9218 	struct drm_device *dev = crtc->base.dev;
9219 	struct drm_i915_private *dev_priv = to_i915(dev);
9220 	const struct intel_limit *limit;
9221 	int refclk = 48000;
9222 
9223 	memset(&crtc_state->dpll_hw_state, 0,
9224 	       sizeof(crtc_state->dpll_hw_state));
9225 
9226 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9227 		if (intel_panel_use_ssc(dev_priv)) {
9228 			refclk = dev_priv->vbt.lvds_ssc_freq;
9229 			drm_dbg_kms(&dev_priv->drm,
9230 				    "using SSC reference clock of %d kHz\n",
9231 				    refclk);
9232 		}
9233 
9234 		limit = &intel_limits_i8xx_lvds;
9235 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
9236 		limit = &intel_limits_i8xx_dvo;
9237 	} else {
9238 		limit = &intel_limits_i8xx_dac;
9239 	}
9240 
9241 	if (!crtc_state->clock_set &&
9242 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9243 				 refclk, NULL, &crtc_state->dpll)) {
9244 		drm_err(&dev_priv->drm,
9245 			"Couldn't find PLL settings for mode!\n");
9246 		return -EINVAL;
9247 	}
9248 
9249 	i8xx_compute_dpll(crtc, crtc_state, NULL);
9250 
9251 	return 0;
9252 }
9253 
9254 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
9255 				  struct intel_crtc_state *crtc_state)
9256 {
9257 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9258 	const struct intel_limit *limit;
9259 	int refclk = 96000;
9260 
9261 	memset(&crtc_state->dpll_hw_state, 0,
9262 	       sizeof(crtc_state->dpll_hw_state));
9263 
9264 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9265 		if (intel_panel_use_ssc(dev_priv)) {
9266 			refclk = dev_priv->vbt.lvds_ssc_freq;
9267 			drm_dbg_kms(&dev_priv->drm,
9268 				    "using SSC reference clock of %d kHz\n",
9269 				    refclk);
9270 		}
9271 
9272 		if (intel_is_dual_link_lvds(dev_priv))
9273 			limit = &intel_limits_g4x_dual_channel_lvds;
9274 		else
9275 			limit = &intel_limits_g4x_single_channel_lvds;
9276 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
9277 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
9278 		limit = &intel_limits_g4x_hdmi;
9279 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
9280 		limit = &intel_limits_g4x_sdvo;
9281 	} else {
9282 		/* The option is for other outputs */
9283 		limit = &intel_limits_i9xx_sdvo;
9284 	}
9285 
9286 	if (!crtc_state->clock_set &&
9287 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9288 				refclk, NULL, &crtc_state->dpll)) {
9289 		drm_err(&dev_priv->drm,
9290 			"Couldn't find PLL settings for mode!\n");
9291 		return -EINVAL;
9292 	}
9293 
9294 	i9xx_compute_dpll(crtc, crtc_state, NULL);
9295 
9296 	return 0;
9297 }
9298 
9299 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
9300 				  struct intel_crtc_state *crtc_state)
9301 {
9302 	struct drm_device *dev = crtc->base.dev;
9303 	struct drm_i915_private *dev_priv = to_i915(dev);
9304 	const struct intel_limit *limit;
9305 	int refclk = 96000;
9306 
9307 	memset(&crtc_state->dpll_hw_state, 0,
9308 	       sizeof(crtc_state->dpll_hw_state));
9309 
9310 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9311 		if (intel_panel_use_ssc(dev_priv)) {
9312 			refclk = dev_priv->vbt.lvds_ssc_freq;
9313 			drm_dbg_kms(&dev_priv->drm,
9314 				    "using SSC reference clock of %d kHz\n",
9315 				    refclk);
9316 		}
9317 
9318 		limit = &pnv_limits_lvds;
9319 	} else {
9320 		limit = &pnv_limits_sdvo;
9321 	}
9322 
9323 	if (!crtc_state->clock_set &&
9324 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9325 				refclk, NULL, &crtc_state->dpll)) {
9326 		drm_err(&dev_priv->drm,
9327 			"Couldn't find PLL settings for mode!\n");
9328 		return -EINVAL;
9329 	}
9330 
9331 	i9xx_compute_dpll(crtc, crtc_state, NULL);
9332 
9333 	return 0;
9334 }
9335 
9336 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
9337 				   struct intel_crtc_state *crtc_state)
9338 {
9339 	struct drm_device *dev = crtc->base.dev;
9340 	struct drm_i915_private *dev_priv = to_i915(dev);
9341 	const struct intel_limit *limit;
9342 	int refclk = 96000;
9343 
9344 	memset(&crtc_state->dpll_hw_state, 0,
9345 	       sizeof(crtc_state->dpll_hw_state));
9346 
9347 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9348 		if (intel_panel_use_ssc(dev_priv)) {
9349 			refclk = dev_priv->vbt.lvds_ssc_freq;
9350 			drm_dbg_kms(&dev_priv->drm,
9351 				    "using SSC reference clock of %d kHz\n",
9352 				    refclk);
9353 		}
9354 
9355 		limit = &intel_limits_i9xx_lvds;
9356 	} else {
9357 		limit = &intel_limits_i9xx_sdvo;
9358 	}
9359 
9360 	if (!crtc_state->clock_set &&
9361 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9362 				 refclk, NULL, &crtc_state->dpll)) {
9363 		drm_err(&dev_priv->drm,
9364 			"Couldn't find PLL settings for mode!\n");
9365 		return -EINVAL;
9366 	}
9367 
9368 	i9xx_compute_dpll(crtc, crtc_state, NULL);
9369 
9370 	return 0;
9371 }
9372 
9373 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
9374 				  struct intel_crtc_state *crtc_state)
9375 {
9376 	int refclk = 100000;
9377 	const struct intel_limit *limit = &intel_limits_chv;
9378 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
9379 
9380 	memset(&crtc_state->dpll_hw_state, 0,
9381 	       sizeof(crtc_state->dpll_hw_state));
9382 
9383 	if (!crtc_state->clock_set &&
9384 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9385 				refclk, NULL, &crtc_state->dpll)) {
9386 		drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n");
9387 		return -EINVAL;
9388 	}
9389 
9390 	chv_compute_dpll(crtc, crtc_state);
9391 
9392 	return 0;
9393 }
9394 
9395 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
9396 				  struct intel_crtc_state *crtc_state)
9397 {
9398 	int refclk = 100000;
9399 	const struct intel_limit *limit = &intel_limits_vlv;
9400 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
9401 
9402 	memset(&crtc_state->dpll_hw_state, 0,
9403 	       sizeof(crtc_state->dpll_hw_state));
9404 
9405 	if (!crtc_state->clock_set &&
9406 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9407 				refclk, NULL, &crtc_state->dpll)) {
9408 		drm_err(&i915->drm,  "Couldn't find PLL settings for mode!\n");
9409 		return -EINVAL;
9410 	}
9411 
9412 	vlv_compute_dpll(crtc, crtc_state);
9413 
9414 	return 0;
9415 }
9416 
9417 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv)
9418 {
9419 	if (IS_I830(dev_priv))
9420 		return false;
9421 
9422 	return INTEL_GEN(dev_priv) >= 4 ||
9423 		IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
9424 }
9425 
9426 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state)
9427 {
9428 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9429 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9430 	u32 tmp;
9431 
9432 	if (!i9xx_has_pfit(dev_priv))
9433 		return;
9434 
9435 	tmp = intel_de_read(dev_priv, PFIT_CONTROL);
9436 	if (!(tmp & PFIT_ENABLE))
9437 		return;
9438 
9439 	/* Check whether the pfit is attached to our pipe. */
9440 	if (INTEL_GEN(dev_priv) < 4) {
9441 		if (crtc->pipe != PIPE_B)
9442 			return;
9443 	} else {
9444 		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
9445 			return;
9446 	}
9447 
9448 	crtc_state->gmch_pfit.control = tmp;
9449 	crtc_state->gmch_pfit.pgm_ratios =
9450 		intel_de_read(dev_priv, PFIT_PGM_RATIOS);
9451 }
9452 
9453 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
9454 			       struct intel_crtc_state *pipe_config)
9455 {
9456 	struct drm_device *dev = crtc->base.dev;
9457 	struct drm_i915_private *dev_priv = to_i915(dev);
9458 	enum pipe pipe = crtc->pipe;
9459 	struct dpll clock;
9460 	u32 mdiv;
9461 	int refclk = 100000;
9462 
9463 	/* In case of DSI, DPLL will not be used */
9464 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9465 		return;
9466 
9467 	vlv_dpio_get(dev_priv);
9468 	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
9469 	vlv_dpio_put(dev_priv);
9470 
9471 	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
9472 	clock.m2 = mdiv & DPIO_M2DIV_MASK;
9473 	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
9474 	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
9475 	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
9476 
9477 	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
9478 }
9479 
9480 static void
9481 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
9482 			      struct intel_initial_plane_config *plane_config)
9483 {
9484 	struct drm_device *dev = crtc->base.dev;
9485 	struct drm_i915_private *dev_priv = to_i915(dev);
9486 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9487 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9488 	enum pipe pipe;
9489 	u32 val, base, offset;
9490 	int fourcc, pixel_format;
9491 	unsigned int aligned_height;
9492 	struct drm_framebuffer *fb;
9493 	struct intel_framebuffer *intel_fb;
9494 
9495 	if (!plane->get_hw_state(plane, &pipe))
9496 		return;
9497 
9498 	drm_WARN_ON(dev, pipe != crtc->pipe);
9499 
9500 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9501 	if (!intel_fb) {
9502 		drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n");
9503 		return;
9504 	}
9505 
9506 	fb = &intel_fb->base;
9507 
9508 	fb->dev = dev;
9509 
9510 	val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
9511 
9512 	if (INTEL_GEN(dev_priv) >= 4) {
9513 		if (val & DISPPLANE_TILED) {
9514 			plane_config->tiling = I915_TILING_X;
9515 			fb->modifier = I915_FORMAT_MOD_X_TILED;
9516 		}
9517 
9518 		if (val & DISPPLANE_ROTATE_180)
9519 			plane_config->rotation = DRM_MODE_ROTATE_180;
9520 	}
9521 
9522 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B &&
9523 	    val & DISPPLANE_MIRROR)
9524 		plane_config->rotation |= DRM_MODE_REFLECT_X;
9525 
9526 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9527 	fourcc = i9xx_format_to_fourcc(pixel_format);
9528 	fb->format = drm_format_info(fourcc);
9529 
9530 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9531 		offset = intel_de_read(dev_priv, DSPOFFSET(i9xx_plane));
9532 		base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000;
9533 	} else if (INTEL_GEN(dev_priv) >= 4) {
9534 		if (plane_config->tiling)
9535 			offset = intel_de_read(dev_priv,
9536 					       DSPTILEOFF(i9xx_plane));
9537 		else
9538 			offset = intel_de_read(dev_priv,
9539 					       DSPLINOFF(i9xx_plane));
9540 		base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000;
9541 	} else {
9542 		base = intel_de_read(dev_priv, DSPADDR(i9xx_plane));
9543 	}
9544 	plane_config->base = base;
9545 
9546 	val = intel_de_read(dev_priv, PIPESRC(pipe));
9547 	fb->width = ((val >> 16) & 0xfff) + 1;
9548 	fb->height = ((val >> 0) & 0xfff) + 1;
9549 
9550 	val = intel_de_read(dev_priv, DSPSTRIDE(i9xx_plane));
9551 	fb->pitches[0] = val & 0xffffffc0;
9552 
9553 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
9554 
9555 	plane_config->size = fb->pitches[0] * aligned_height;
9556 
9557 	drm_dbg_kms(&dev_priv->drm,
9558 		    "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9559 		    crtc->base.name, plane->base.name, fb->width, fb->height,
9560 		    fb->format->cpp[0] * 8, base, fb->pitches[0],
9561 		    plane_config->size);
9562 
9563 	plane_config->fb = intel_fb;
9564 }
9565 
9566 static void chv_crtc_clock_get(struct intel_crtc *crtc,
9567 			       struct intel_crtc_state *pipe_config)
9568 {
9569 	struct drm_device *dev = crtc->base.dev;
9570 	struct drm_i915_private *dev_priv = to_i915(dev);
9571 	enum pipe pipe = crtc->pipe;
9572 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
9573 	struct dpll clock;
9574 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
9575 	int refclk = 100000;
9576 
9577 	/* In case of DSI, DPLL will not be used */
9578 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9579 		return;
9580 
9581 	vlv_dpio_get(dev_priv);
9582 	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
9583 	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
9584 	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
9585 	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
9586 	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
9587 	vlv_dpio_put(dev_priv);
9588 
9589 	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
9590 	clock.m2 = (pll_dw0 & 0xff) << 22;
9591 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
9592 		clock.m2 |= pll_dw2 & 0x3fffff;
9593 	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
9594 	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
9595 	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
9596 
9597 	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
9598 }
9599 
9600 static enum intel_output_format
9601 bdw_get_pipemisc_output_format(struct intel_crtc *crtc)
9602 {
9603 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9604 	u32 tmp;
9605 
9606 	tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe));
9607 
9608 	if (tmp & PIPEMISC_YUV420_ENABLE) {
9609 		/* We support 4:2:0 in full blend mode only */
9610 		drm_WARN_ON(&dev_priv->drm,
9611 			    (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0);
9612 
9613 		return INTEL_OUTPUT_FORMAT_YCBCR420;
9614 	} else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) {
9615 		return INTEL_OUTPUT_FORMAT_YCBCR444;
9616 	} else {
9617 		return INTEL_OUTPUT_FORMAT_RGB;
9618 	}
9619 }
9620 
9621 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state)
9622 {
9623 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9624 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9625 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9626 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9627 	u32 tmp;
9628 
9629 	tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
9630 
9631 	if (tmp & DISPPLANE_GAMMA_ENABLE)
9632 		crtc_state->gamma_enable = true;
9633 
9634 	if (!HAS_GMCH(dev_priv) &&
9635 	    tmp & DISPPLANE_PIPE_CSC_ENABLE)
9636 		crtc_state->csc_enable = true;
9637 }
9638 
9639 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
9640 				 struct intel_crtc_state *pipe_config)
9641 {
9642 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9643 	enum intel_display_power_domain power_domain;
9644 	intel_wakeref_t wakeref;
9645 	u32 tmp;
9646 	bool ret;
9647 
9648 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9649 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
9650 	if (!wakeref)
9651 		return false;
9652 
9653 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
9654 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9655 	pipe_config->shared_dpll = NULL;
9656 
9657 	ret = false;
9658 
9659 	tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe));
9660 	if (!(tmp & PIPECONF_ENABLE))
9661 		goto out;
9662 
9663 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
9664 	    IS_CHERRYVIEW(dev_priv)) {
9665 		switch (tmp & PIPECONF_BPC_MASK) {
9666 		case PIPECONF_6BPC:
9667 			pipe_config->pipe_bpp = 18;
9668 			break;
9669 		case PIPECONF_8BPC:
9670 			pipe_config->pipe_bpp = 24;
9671 			break;
9672 		case PIPECONF_10BPC:
9673 			pipe_config->pipe_bpp = 30;
9674 			break;
9675 		default:
9676 			break;
9677 		}
9678 	}
9679 
9680 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
9681 	    (tmp & PIPECONF_COLOR_RANGE_SELECT))
9682 		pipe_config->limited_color_range = true;
9683 
9684 	pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >>
9685 		PIPECONF_GAMMA_MODE_SHIFT;
9686 
9687 	if (IS_CHERRYVIEW(dev_priv))
9688 		pipe_config->cgm_mode = intel_de_read(dev_priv,
9689 						      CGM_PIPE_MODE(crtc->pipe));
9690 
9691 	i9xx_get_pipe_color_config(pipe_config);
9692 	intel_color_get_config(pipe_config);
9693 
9694 	if (INTEL_GEN(dev_priv) < 4)
9695 		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
9696 
9697 	intel_get_transcoder_timings(crtc, pipe_config);
9698 	intel_get_pipe_src_size(crtc, pipe_config);
9699 
9700 	i9xx_get_pfit_config(pipe_config);
9701 
9702 	if (INTEL_GEN(dev_priv) >= 4) {
9703 		/* No way to read it out on pipes B and C */
9704 		if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
9705 			tmp = dev_priv->chv_dpll_md[crtc->pipe];
9706 		else
9707 			tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe));
9708 		pipe_config->pixel_multiplier =
9709 			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
9710 			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
9711 		pipe_config->dpll_hw_state.dpll_md = tmp;
9712 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
9713 		   IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
9714 		tmp = intel_de_read(dev_priv, DPLL(crtc->pipe));
9715 		pipe_config->pixel_multiplier =
9716 			((tmp & SDVO_MULTIPLIER_MASK)
9717 			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
9718 	} else {
9719 		/* Note that on i915G/GM the pixel multiplier is in the sdvo
9720 		 * port and will be fixed up in the encoder->get_config
9721 		 * function. */
9722 		pipe_config->pixel_multiplier = 1;
9723 	}
9724 	pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv,
9725 							DPLL(crtc->pipe));
9726 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
9727 		pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv,
9728 							       FP0(crtc->pipe));
9729 		pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv,
9730 							       FP1(crtc->pipe));
9731 	} else {
9732 		/* Mask out read-only status bits. */
9733 		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
9734 						     DPLL_PORTC_READY_MASK |
9735 						     DPLL_PORTB_READY_MASK);
9736 	}
9737 
9738 	if (IS_CHERRYVIEW(dev_priv))
9739 		chv_crtc_clock_get(crtc, pipe_config);
9740 	else if (IS_VALLEYVIEW(dev_priv))
9741 		vlv_crtc_clock_get(crtc, pipe_config);
9742 	else
9743 		i9xx_crtc_clock_get(crtc, pipe_config);
9744 
9745 	/*
9746 	 * Normally the dotclock is filled in by the encoder .get_config()
9747 	 * but in case the pipe is enabled w/o any ports we need a sane
9748 	 * default.
9749 	 */
9750 	pipe_config->hw.adjusted_mode.crtc_clock =
9751 		pipe_config->port_clock / pipe_config->pixel_multiplier;
9752 
9753 	ret = true;
9754 
9755 out:
9756 	intel_display_power_put(dev_priv, power_domain, wakeref);
9757 
9758 	return ret;
9759 }
9760 
9761 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv)
9762 {
9763 	struct intel_encoder *encoder;
9764 	int i;
9765 	u32 val, final;
9766 	bool has_lvds = false;
9767 	bool has_cpu_edp = false;
9768 	bool has_panel = false;
9769 	bool has_ck505 = false;
9770 	bool can_ssc = false;
9771 	bool using_ssc_source = false;
9772 
9773 	/* We need to take the global config into account */
9774 	for_each_intel_encoder(&dev_priv->drm, encoder) {
9775 		switch (encoder->type) {
9776 		case INTEL_OUTPUT_LVDS:
9777 			has_panel = true;
9778 			has_lvds = true;
9779 			break;
9780 		case INTEL_OUTPUT_EDP:
9781 			has_panel = true;
9782 			if (encoder->port == PORT_A)
9783 				has_cpu_edp = true;
9784 			break;
9785 		default:
9786 			break;
9787 		}
9788 	}
9789 
9790 	if (HAS_PCH_IBX(dev_priv)) {
9791 		has_ck505 = dev_priv->vbt.display_clock_mode;
9792 		can_ssc = has_ck505;
9793 	} else {
9794 		has_ck505 = false;
9795 		can_ssc = true;
9796 	}
9797 
9798 	/* Check if any DPLLs are using the SSC source */
9799 	for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) {
9800 		u32 temp = intel_de_read(dev_priv, PCH_DPLL(i));
9801 
9802 		if (!(temp & DPLL_VCO_ENABLE))
9803 			continue;
9804 
9805 		if ((temp & PLL_REF_INPUT_MASK) ==
9806 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
9807 			using_ssc_source = true;
9808 			break;
9809 		}
9810 	}
9811 
9812 	drm_dbg_kms(&dev_priv->drm,
9813 		    "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
9814 		    has_panel, has_lvds, has_ck505, using_ssc_source);
9815 
9816 	/* Ironlake: try to setup display ref clock before DPLL
9817 	 * enabling. This is only under driver's control after
9818 	 * PCH B stepping, previous chipset stepping should be
9819 	 * ignoring this setting.
9820 	 */
9821 	val = intel_de_read(dev_priv, PCH_DREF_CONTROL);
9822 
9823 	/* As we must carefully and slowly disable/enable each source in turn,
9824 	 * compute the final state we want first and check if we need to
9825 	 * make any changes at all.
9826 	 */
9827 	final = val;
9828 	final &= ~DREF_NONSPREAD_SOURCE_MASK;
9829 	if (has_ck505)
9830 		final |= DREF_NONSPREAD_CK505_ENABLE;
9831 	else
9832 		final |= DREF_NONSPREAD_SOURCE_ENABLE;
9833 
9834 	final &= ~DREF_SSC_SOURCE_MASK;
9835 	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9836 	final &= ~DREF_SSC1_ENABLE;
9837 
9838 	if (has_panel) {
9839 		final |= DREF_SSC_SOURCE_ENABLE;
9840 
9841 		if (intel_panel_use_ssc(dev_priv) && can_ssc)
9842 			final |= DREF_SSC1_ENABLE;
9843 
9844 		if (has_cpu_edp) {
9845 			if (intel_panel_use_ssc(dev_priv) && can_ssc)
9846 				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9847 			else
9848 				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9849 		} else
9850 			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9851 	} else if (using_ssc_source) {
9852 		final |= DREF_SSC_SOURCE_ENABLE;
9853 		final |= DREF_SSC1_ENABLE;
9854 	}
9855 
9856 	if (final == val)
9857 		return;
9858 
9859 	/* Always enable nonspread source */
9860 	val &= ~DREF_NONSPREAD_SOURCE_MASK;
9861 
9862 	if (has_ck505)
9863 		val |= DREF_NONSPREAD_CK505_ENABLE;
9864 	else
9865 		val |= DREF_NONSPREAD_SOURCE_ENABLE;
9866 
9867 	if (has_panel) {
9868 		val &= ~DREF_SSC_SOURCE_MASK;
9869 		val |= DREF_SSC_SOURCE_ENABLE;
9870 
9871 		/* SSC must be turned on before enabling the CPU output  */
9872 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9873 			drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n");
9874 			val |= DREF_SSC1_ENABLE;
9875 		} else
9876 			val &= ~DREF_SSC1_ENABLE;
9877 
9878 		/* Get SSC going before enabling the outputs */
9879 		intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9880 		intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9881 		udelay(200);
9882 
9883 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9884 
9885 		/* Enable CPU source on CPU attached eDP */
9886 		if (has_cpu_edp) {
9887 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9888 				drm_dbg_kms(&dev_priv->drm,
9889 					    "Using SSC on eDP\n");
9890 				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9891 			} else
9892 				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9893 		} else
9894 			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9895 
9896 		intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9897 		intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9898 		udelay(200);
9899 	} else {
9900 		drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n");
9901 
9902 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9903 
9904 		/* Turn off CPU output */
9905 		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9906 
9907 		intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9908 		intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9909 		udelay(200);
9910 
9911 		if (!using_ssc_source) {
9912 			drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n");
9913 
9914 			/* Turn off the SSC source */
9915 			val &= ~DREF_SSC_SOURCE_MASK;
9916 			val |= DREF_SSC_SOURCE_DISABLE;
9917 
9918 			/* Turn off SSC1 */
9919 			val &= ~DREF_SSC1_ENABLE;
9920 
9921 			intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9922 			intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9923 			udelay(200);
9924 		}
9925 	}
9926 
9927 	BUG_ON(val != final);
9928 }
9929 
9930 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9931 {
9932 	u32 tmp;
9933 
9934 	tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2);
9935 	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9936 	intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp);
9937 
9938 	if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) &
9939 			FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9940 		drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n");
9941 
9942 	tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2);
9943 	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9944 	intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp);
9945 
9946 	if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) &
9947 			 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9948 		drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n");
9949 }
9950 
9951 /* WaMPhyProgramming:hsw */
9952 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9953 {
9954 	u32 tmp;
9955 
9956 	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9957 	tmp &= ~(0xFF << 24);
9958 	tmp |= (0x12 << 24);
9959 	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9960 
9961 	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9962 	tmp |= (1 << 11);
9963 	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9964 
9965 	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9966 	tmp |= (1 << 11);
9967 	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9968 
9969 	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9970 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9971 	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9972 
9973 	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9974 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9975 	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9976 
9977 	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9978 	tmp &= ~(7 << 13);
9979 	tmp |= (5 << 13);
9980 	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9981 
9982 	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9983 	tmp &= ~(7 << 13);
9984 	tmp |= (5 << 13);
9985 	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9986 
9987 	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9988 	tmp &= ~0xFF;
9989 	tmp |= 0x1C;
9990 	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9991 
9992 	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9993 	tmp &= ~0xFF;
9994 	tmp |= 0x1C;
9995 	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9996 
9997 	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9998 	tmp &= ~(0xFF << 16);
9999 	tmp |= (0x1C << 16);
10000 	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
10001 
10002 	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
10003 	tmp &= ~(0xFF << 16);
10004 	tmp |= (0x1C << 16);
10005 	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
10006 
10007 	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
10008 	tmp |= (1 << 27);
10009 	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
10010 
10011 	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
10012 	tmp |= (1 << 27);
10013 	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
10014 
10015 	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
10016 	tmp &= ~(0xF << 28);
10017 	tmp |= (4 << 28);
10018 	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
10019 
10020 	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
10021 	tmp &= ~(0xF << 28);
10022 	tmp |= (4 << 28);
10023 	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
10024 }
10025 
10026 /* Implements 3 different sequences from BSpec chapter "Display iCLK
10027  * Programming" based on the parameters passed:
10028  * - Sequence to enable CLKOUT_DP
10029  * - Sequence to enable CLKOUT_DP without spread
10030  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
10031  */
10032 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
10033 				 bool with_spread, bool with_fdi)
10034 {
10035 	u32 reg, tmp;
10036 
10037 	if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread,
10038 		     "FDI requires downspread\n"))
10039 		with_spread = true;
10040 	if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) &&
10041 		     with_fdi, "LP PCH doesn't have FDI\n"))
10042 		with_fdi = false;
10043 
10044 	mutex_lock(&dev_priv->sb_lock);
10045 
10046 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
10047 	tmp &= ~SBI_SSCCTL_DISABLE;
10048 	tmp |= SBI_SSCCTL_PATHALT;
10049 	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
10050 
10051 	udelay(24);
10052 
10053 	if (with_spread) {
10054 		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
10055 		tmp &= ~SBI_SSCCTL_PATHALT;
10056 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
10057 
10058 		if (with_fdi) {
10059 			lpt_reset_fdi_mphy(dev_priv);
10060 			lpt_program_fdi_mphy(dev_priv);
10061 		}
10062 	}
10063 
10064 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
10065 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
10066 	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
10067 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
10068 
10069 	mutex_unlock(&dev_priv->sb_lock);
10070 }
10071 
10072 /* Sequence to disable CLKOUT_DP */
10073 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
10074 {
10075 	u32 reg, tmp;
10076 
10077 	mutex_lock(&dev_priv->sb_lock);
10078 
10079 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
10080 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
10081 	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
10082 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
10083 
10084 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
10085 	if (!(tmp & SBI_SSCCTL_DISABLE)) {
10086 		if (!(tmp & SBI_SSCCTL_PATHALT)) {
10087 			tmp |= SBI_SSCCTL_PATHALT;
10088 			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
10089 			udelay(32);
10090 		}
10091 		tmp |= SBI_SSCCTL_DISABLE;
10092 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
10093 	}
10094 
10095 	mutex_unlock(&dev_priv->sb_lock);
10096 }
10097 
10098 #define BEND_IDX(steps) ((50 + (steps)) / 5)
10099 
10100 static const u16 sscdivintphase[] = {
10101 	[BEND_IDX( 50)] = 0x3B23,
10102 	[BEND_IDX( 45)] = 0x3B23,
10103 	[BEND_IDX( 40)] = 0x3C23,
10104 	[BEND_IDX( 35)] = 0x3C23,
10105 	[BEND_IDX( 30)] = 0x3D23,
10106 	[BEND_IDX( 25)] = 0x3D23,
10107 	[BEND_IDX( 20)] = 0x3E23,
10108 	[BEND_IDX( 15)] = 0x3E23,
10109 	[BEND_IDX( 10)] = 0x3F23,
10110 	[BEND_IDX(  5)] = 0x3F23,
10111 	[BEND_IDX(  0)] = 0x0025,
10112 	[BEND_IDX( -5)] = 0x0025,
10113 	[BEND_IDX(-10)] = 0x0125,
10114 	[BEND_IDX(-15)] = 0x0125,
10115 	[BEND_IDX(-20)] = 0x0225,
10116 	[BEND_IDX(-25)] = 0x0225,
10117 	[BEND_IDX(-30)] = 0x0325,
10118 	[BEND_IDX(-35)] = 0x0325,
10119 	[BEND_IDX(-40)] = 0x0425,
10120 	[BEND_IDX(-45)] = 0x0425,
10121 	[BEND_IDX(-50)] = 0x0525,
10122 };
10123 
10124 /*
10125  * Bend CLKOUT_DP
10126  * steps -50 to 50 inclusive, in steps of 5
10127  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
10128  * change in clock period = -(steps / 10) * 5.787 ps
10129  */
10130 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
10131 {
10132 	u32 tmp;
10133 	int idx = BEND_IDX(steps);
10134 
10135 	if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0))
10136 		return;
10137 
10138 	if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase)))
10139 		return;
10140 
10141 	mutex_lock(&dev_priv->sb_lock);
10142 
10143 	if (steps % 10 != 0)
10144 		tmp = 0xAAAAAAAB;
10145 	else
10146 		tmp = 0x00000000;
10147 	intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
10148 
10149 	tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
10150 	tmp &= 0xffff0000;
10151 	tmp |= sscdivintphase[idx];
10152 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
10153 
10154 	mutex_unlock(&dev_priv->sb_lock);
10155 }
10156 
10157 #undef BEND_IDX
10158 
10159 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv)
10160 {
10161 	u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
10162 	u32 ctl = intel_de_read(dev_priv, SPLL_CTL);
10163 
10164 	if ((ctl & SPLL_PLL_ENABLE) == 0)
10165 		return false;
10166 
10167 	if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC &&
10168 	    (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
10169 		return true;
10170 
10171 	if (IS_BROADWELL(dev_priv) &&
10172 	    (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW)
10173 		return true;
10174 
10175 	return false;
10176 }
10177 
10178 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv,
10179 			       enum intel_dpll_id id)
10180 {
10181 	u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
10182 	u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id));
10183 
10184 	if ((ctl & WRPLL_PLL_ENABLE) == 0)
10185 		return false;
10186 
10187 	if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC)
10188 		return true;
10189 
10190 	if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) &&
10191 	    (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW &&
10192 	    (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
10193 		return true;
10194 
10195 	return false;
10196 }
10197 
10198 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
10199 {
10200 	struct intel_encoder *encoder;
10201 	bool has_fdi = false;
10202 
10203 	for_each_intel_encoder(&dev_priv->drm, encoder) {
10204 		switch (encoder->type) {
10205 		case INTEL_OUTPUT_ANALOG:
10206 			has_fdi = true;
10207 			break;
10208 		default:
10209 			break;
10210 		}
10211 	}
10212 
10213 	/*
10214 	 * The BIOS may have decided to use the PCH SSC
10215 	 * reference so we must not disable it until the
10216 	 * relevant PLLs have stopped relying on it. We'll
10217 	 * just leave the PCH SSC reference enabled in case
10218 	 * any active PLL is using it. It will get disabled
10219 	 * after runtime suspend if we don't have FDI.
10220 	 *
10221 	 * TODO: Move the whole reference clock handling
10222 	 * to the modeset sequence proper so that we can
10223 	 * actually enable/disable/reconfigure these things
10224 	 * safely. To do that we need to introduce a real
10225 	 * clock hierarchy. That would also allow us to do
10226 	 * clock bending finally.
10227 	 */
10228 	dev_priv->pch_ssc_use = 0;
10229 
10230 	if (spll_uses_pch_ssc(dev_priv)) {
10231 		drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n");
10232 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL);
10233 	}
10234 
10235 	if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) {
10236 		drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n");
10237 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1);
10238 	}
10239 
10240 	if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) {
10241 		drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n");
10242 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2);
10243 	}
10244 
10245 	if (dev_priv->pch_ssc_use)
10246 		return;
10247 
10248 	if (has_fdi) {
10249 		lpt_bend_clkout_dp(dev_priv, 0);
10250 		lpt_enable_clkout_dp(dev_priv, true, true);
10251 	} else {
10252 		lpt_disable_clkout_dp(dev_priv);
10253 	}
10254 }
10255 
10256 /*
10257  * Initialize reference clocks when the driver loads
10258  */
10259 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
10260 {
10261 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
10262 		ilk_init_pch_refclk(dev_priv);
10263 	else if (HAS_PCH_LPT(dev_priv))
10264 		lpt_init_pch_refclk(dev_priv);
10265 }
10266 
10267 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state)
10268 {
10269 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10270 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10271 	enum pipe pipe = crtc->pipe;
10272 	u32 val;
10273 
10274 	val = 0;
10275 
10276 	switch (crtc_state->pipe_bpp) {
10277 	case 18:
10278 		val |= PIPECONF_6BPC;
10279 		break;
10280 	case 24:
10281 		val |= PIPECONF_8BPC;
10282 		break;
10283 	case 30:
10284 		val |= PIPECONF_10BPC;
10285 		break;
10286 	case 36:
10287 		val |= PIPECONF_12BPC;
10288 		break;
10289 	default:
10290 		/* Case prevented by intel_choose_pipe_bpp_dither. */
10291 		BUG();
10292 	}
10293 
10294 	if (crtc_state->dither)
10295 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
10296 
10297 	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
10298 		val |= PIPECONF_INTERLACED_ILK;
10299 	else
10300 		val |= PIPECONF_PROGRESSIVE;
10301 
10302 	/*
10303 	 * This would end up with an odd purple hue over
10304 	 * the entire display. Make sure we don't do it.
10305 	 */
10306 	drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range &&
10307 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
10308 
10309 	if (crtc_state->limited_color_range &&
10310 	    !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
10311 		val |= PIPECONF_COLOR_RANGE_SELECT;
10312 
10313 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
10314 		val |= PIPECONF_OUTPUT_COLORSPACE_YUV709;
10315 
10316 	val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
10317 
10318 	val |= PIPECONF_FRAME_START_DELAY(0);
10319 
10320 	intel_de_write(dev_priv, PIPECONF(pipe), val);
10321 	intel_de_posting_read(dev_priv, PIPECONF(pipe));
10322 }
10323 
10324 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state)
10325 {
10326 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10327 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10328 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
10329 	u32 val = 0;
10330 
10331 	if (IS_HASWELL(dev_priv) && crtc_state->dither)
10332 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
10333 
10334 	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
10335 		val |= PIPECONF_INTERLACED_ILK;
10336 	else
10337 		val |= PIPECONF_PROGRESSIVE;
10338 
10339 	if (IS_HASWELL(dev_priv) &&
10340 	    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
10341 		val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW;
10342 
10343 	intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val);
10344 	intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder));
10345 }
10346 
10347 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state)
10348 {
10349 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10350 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10351 	u32 val = 0;
10352 
10353 	switch (crtc_state->pipe_bpp) {
10354 	case 18:
10355 		val |= PIPEMISC_DITHER_6_BPC;
10356 		break;
10357 	case 24:
10358 		val |= PIPEMISC_DITHER_8_BPC;
10359 		break;
10360 	case 30:
10361 		val |= PIPEMISC_DITHER_10_BPC;
10362 		break;
10363 	case 36:
10364 		val |= PIPEMISC_DITHER_12_BPC;
10365 		break;
10366 	default:
10367 		MISSING_CASE(crtc_state->pipe_bpp);
10368 		break;
10369 	}
10370 
10371 	if (crtc_state->dither)
10372 		val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
10373 
10374 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
10375 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
10376 		val |= PIPEMISC_OUTPUT_COLORSPACE_YUV;
10377 
10378 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
10379 		val |= PIPEMISC_YUV420_ENABLE |
10380 			PIPEMISC_YUV420_MODE_FULL_BLEND;
10381 
10382 	if (INTEL_GEN(dev_priv) >= 11 &&
10383 	    (crtc_state->active_planes & ~(icl_hdr_plane_mask() |
10384 					   BIT(PLANE_CURSOR))) == 0)
10385 		val |= PIPEMISC_HDR_MODE_PRECISION;
10386 
10387 	if (INTEL_GEN(dev_priv) >= 12)
10388 		val |= PIPEMISC_PIXEL_ROUNDING_TRUNC;
10389 
10390 	intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val);
10391 }
10392 
10393 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc)
10394 {
10395 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10396 	u32 tmp;
10397 
10398 	tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe));
10399 
10400 	switch (tmp & PIPEMISC_DITHER_BPC_MASK) {
10401 	case PIPEMISC_DITHER_6_BPC:
10402 		return 18;
10403 	case PIPEMISC_DITHER_8_BPC:
10404 		return 24;
10405 	case PIPEMISC_DITHER_10_BPC:
10406 		return 30;
10407 	case PIPEMISC_DITHER_12_BPC:
10408 		return 36;
10409 	default:
10410 		MISSING_CASE(tmp);
10411 		return 0;
10412 	}
10413 }
10414 
10415 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp)
10416 {
10417 	/*
10418 	 * Account for spread spectrum to avoid
10419 	 * oversubscribing the link. Max center spread
10420 	 * is 2.5%; use 5% for safety's sake.
10421 	 */
10422 	u32 bps = target_clock * bpp * 21 / 20;
10423 	return DIV_ROUND_UP(bps, link_bw * 8);
10424 }
10425 
10426 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor)
10427 {
10428 	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
10429 }
10430 
10431 static void ilk_compute_dpll(struct intel_crtc *crtc,
10432 			     struct intel_crtc_state *crtc_state,
10433 			     struct dpll *reduced_clock)
10434 {
10435 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10436 	u32 dpll, fp, fp2;
10437 	int factor;
10438 
10439 	/* Enable autotuning of the PLL clock (if permissible) */
10440 	factor = 21;
10441 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10442 		if ((intel_panel_use_ssc(dev_priv) &&
10443 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
10444 		    (HAS_PCH_IBX(dev_priv) &&
10445 		     intel_is_dual_link_lvds(dev_priv)))
10446 			factor = 25;
10447 	} else if (crtc_state->sdvo_tv_clock) {
10448 		factor = 20;
10449 	}
10450 
10451 	fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
10452 
10453 	if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor))
10454 		fp |= FP_CB_TUNE;
10455 
10456 	if (reduced_clock) {
10457 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
10458 
10459 		if (reduced_clock->m < factor * reduced_clock->n)
10460 			fp2 |= FP_CB_TUNE;
10461 	} else {
10462 		fp2 = fp;
10463 	}
10464 
10465 	dpll = 0;
10466 
10467 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
10468 		dpll |= DPLLB_MODE_LVDS;
10469 	else
10470 		dpll |= DPLLB_MODE_DAC_SERIAL;
10471 
10472 	dpll |= (crtc_state->pixel_multiplier - 1)
10473 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
10474 
10475 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
10476 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
10477 		dpll |= DPLL_SDVO_HIGH_SPEED;
10478 
10479 	if (intel_crtc_has_dp_encoder(crtc_state))
10480 		dpll |= DPLL_SDVO_HIGH_SPEED;
10481 
10482 	/*
10483 	 * The high speed IO clock is only really required for
10484 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
10485 	 * possible to share the DPLL between CRT and HDMI. Enabling
10486 	 * the clock needlessly does no real harm, except use up a
10487 	 * bit of power potentially.
10488 	 *
10489 	 * We'll limit this to IVB with 3 pipes, since it has only two
10490 	 * DPLLs and so DPLL sharing is the only way to get three pipes
10491 	 * driving PCH ports at the same time. On SNB we could do this,
10492 	 * and potentially avoid enabling the second DPLL, but it's not
10493 	 * clear if it''s a win or loss power wise. No point in doing
10494 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
10495 	 */
10496 	if (INTEL_NUM_PIPES(dev_priv) == 3 &&
10497 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
10498 		dpll |= DPLL_SDVO_HIGH_SPEED;
10499 
10500 	/* compute bitmask from p1 value */
10501 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
10502 	/* also FPA1 */
10503 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
10504 
10505 	switch (crtc_state->dpll.p2) {
10506 	case 5:
10507 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
10508 		break;
10509 	case 7:
10510 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
10511 		break;
10512 	case 10:
10513 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
10514 		break;
10515 	case 14:
10516 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
10517 		break;
10518 	}
10519 
10520 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
10521 	    intel_panel_use_ssc(dev_priv))
10522 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
10523 	else
10524 		dpll |= PLL_REF_INPUT_DREFCLK;
10525 
10526 	dpll |= DPLL_VCO_ENABLE;
10527 
10528 	crtc_state->dpll_hw_state.dpll = dpll;
10529 	crtc_state->dpll_hw_state.fp0 = fp;
10530 	crtc_state->dpll_hw_state.fp1 = fp2;
10531 }
10532 
10533 static int ilk_crtc_compute_clock(struct intel_crtc *crtc,
10534 				  struct intel_crtc_state *crtc_state)
10535 {
10536 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10537 	struct intel_atomic_state *state =
10538 		to_intel_atomic_state(crtc_state->uapi.state);
10539 	const struct intel_limit *limit;
10540 	int refclk = 120000;
10541 
10542 	memset(&crtc_state->dpll_hw_state, 0,
10543 	       sizeof(crtc_state->dpll_hw_state));
10544 
10545 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
10546 	if (!crtc_state->has_pch_encoder)
10547 		return 0;
10548 
10549 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10550 		if (intel_panel_use_ssc(dev_priv)) {
10551 			drm_dbg_kms(&dev_priv->drm,
10552 				    "using SSC reference clock of %d kHz\n",
10553 				    dev_priv->vbt.lvds_ssc_freq);
10554 			refclk = dev_priv->vbt.lvds_ssc_freq;
10555 		}
10556 
10557 		if (intel_is_dual_link_lvds(dev_priv)) {
10558 			if (refclk == 100000)
10559 				limit = &ilk_limits_dual_lvds_100m;
10560 			else
10561 				limit = &ilk_limits_dual_lvds;
10562 		} else {
10563 			if (refclk == 100000)
10564 				limit = &ilk_limits_single_lvds_100m;
10565 			else
10566 				limit = &ilk_limits_single_lvds;
10567 		}
10568 	} else {
10569 		limit = &ilk_limits_dac;
10570 	}
10571 
10572 	if (!crtc_state->clock_set &&
10573 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
10574 				refclk, NULL, &crtc_state->dpll)) {
10575 		drm_err(&dev_priv->drm,
10576 			"Couldn't find PLL settings for mode!\n");
10577 		return -EINVAL;
10578 	}
10579 
10580 	ilk_compute_dpll(crtc, crtc_state, NULL);
10581 
10582 	if (!intel_reserve_shared_dplls(state, crtc, NULL)) {
10583 		drm_dbg_kms(&dev_priv->drm,
10584 			    "failed to find PLL for pipe %c\n",
10585 			    pipe_name(crtc->pipe));
10586 		return -EINVAL;
10587 	}
10588 
10589 	return 0;
10590 }
10591 
10592 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
10593 					 struct intel_link_m_n *m_n)
10594 {
10595 	struct drm_device *dev = crtc->base.dev;
10596 	struct drm_i915_private *dev_priv = to_i915(dev);
10597 	enum pipe pipe = crtc->pipe;
10598 
10599 	m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe));
10600 	m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe));
10601 	m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe))
10602 		& ~TU_SIZE_MASK;
10603 	m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe));
10604 	m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe))
10605 		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10606 }
10607 
10608 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
10609 					 enum transcoder transcoder,
10610 					 struct intel_link_m_n *m_n,
10611 					 struct intel_link_m_n *m2_n2)
10612 {
10613 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10614 	enum pipe pipe = crtc->pipe;
10615 
10616 	if (INTEL_GEN(dev_priv) >= 5) {
10617 		m_n->link_m = intel_de_read(dev_priv,
10618 					    PIPE_LINK_M1(transcoder));
10619 		m_n->link_n = intel_de_read(dev_priv,
10620 					    PIPE_LINK_N1(transcoder));
10621 		m_n->gmch_m = intel_de_read(dev_priv,
10622 					    PIPE_DATA_M1(transcoder))
10623 			& ~TU_SIZE_MASK;
10624 		m_n->gmch_n = intel_de_read(dev_priv,
10625 					    PIPE_DATA_N1(transcoder));
10626 		m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder))
10627 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10628 
10629 		if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) {
10630 			m2_n2->link_m = intel_de_read(dev_priv,
10631 						      PIPE_LINK_M2(transcoder));
10632 			m2_n2->link_n =	intel_de_read(dev_priv,
10633 							     PIPE_LINK_N2(transcoder));
10634 			m2_n2->gmch_m =	intel_de_read(dev_priv,
10635 							     PIPE_DATA_M2(transcoder))
10636 					& ~TU_SIZE_MASK;
10637 			m2_n2->gmch_n =	intel_de_read(dev_priv,
10638 							     PIPE_DATA_N2(transcoder));
10639 			m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder))
10640 					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10641 		}
10642 	} else {
10643 		m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe));
10644 		m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe));
10645 		m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe))
10646 			& ~TU_SIZE_MASK;
10647 		m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe));
10648 		m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe))
10649 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10650 	}
10651 }
10652 
10653 void intel_dp_get_m_n(struct intel_crtc *crtc,
10654 		      struct intel_crtc_state *pipe_config)
10655 {
10656 	if (pipe_config->has_pch_encoder)
10657 		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
10658 	else
10659 		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10660 					     &pipe_config->dp_m_n,
10661 					     &pipe_config->dp_m2_n2);
10662 }
10663 
10664 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc,
10665 				   struct intel_crtc_state *pipe_config)
10666 {
10667 	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10668 				     &pipe_config->fdi_m_n, NULL);
10669 }
10670 
10671 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state,
10672 				  u32 pos, u32 size)
10673 {
10674 	drm_rect_init(&crtc_state->pch_pfit.dst,
10675 		      pos >> 16, pos & 0xffff,
10676 		      size >> 16, size & 0xffff);
10677 }
10678 
10679 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state)
10680 {
10681 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10682 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10683 	struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
10684 	int id = -1;
10685 	int i;
10686 
10687 	/* find scaler attached to this pipe */
10688 	for (i = 0; i < crtc->num_scalers; i++) {
10689 		u32 ctl, pos, size;
10690 
10691 		ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i));
10692 		if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN)
10693 			continue;
10694 
10695 		id = i;
10696 		crtc_state->pch_pfit.enabled = true;
10697 
10698 		pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i));
10699 		size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i));
10700 
10701 		ilk_get_pfit_pos_size(crtc_state, pos, size);
10702 
10703 		scaler_state->scalers[i].in_use = true;
10704 		break;
10705 	}
10706 
10707 	scaler_state->scaler_id = id;
10708 	if (id >= 0)
10709 		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
10710 	else
10711 		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
10712 }
10713 
10714 static void
10715 skl_get_initial_plane_config(struct intel_crtc *crtc,
10716 			     struct intel_initial_plane_config *plane_config)
10717 {
10718 	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
10719 	struct drm_device *dev = crtc->base.dev;
10720 	struct drm_i915_private *dev_priv = to_i915(dev);
10721 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
10722 	enum plane_id plane_id = plane->id;
10723 	enum pipe pipe;
10724 	u32 val, base, offset, stride_mult, tiling, alpha;
10725 	int fourcc, pixel_format;
10726 	unsigned int aligned_height;
10727 	struct drm_framebuffer *fb;
10728 	struct intel_framebuffer *intel_fb;
10729 
10730 	if (!plane->get_hw_state(plane, &pipe))
10731 		return;
10732 
10733 	drm_WARN_ON(dev, pipe != crtc->pipe);
10734 
10735 	if (crtc_state->bigjoiner) {
10736 		drm_dbg_kms(&dev_priv->drm,
10737 			    "Unsupported bigjoiner configuration for initial FB\n");
10738 		return;
10739 	}
10740 
10741 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10742 	if (!intel_fb) {
10743 		drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n");
10744 		return;
10745 	}
10746 
10747 	fb = &intel_fb->base;
10748 
10749 	fb->dev = dev;
10750 
10751 	val = intel_de_read(dev_priv, PLANE_CTL(pipe, plane_id));
10752 
10753 	if (INTEL_GEN(dev_priv) >= 11)
10754 		pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK;
10755 	else
10756 		pixel_format = val & PLANE_CTL_FORMAT_MASK;
10757 
10758 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
10759 		alpha = intel_de_read(dev_priv,
10760 				      PLANE_COLOR_CTL(pipe, plane_id));
10761 		alpha &= PLANE_COLOR_ALPHA_MASK;
10762 	} else {
10763 		alpha = val & PLANE_CTL_ALPHA_MASK;
10764 	}
10765 
10766 	fourcc = skl_format_to_fourcc(pixel_format,
10767 				      val & PLANE_CTL_ORDER_RGBX, alpha);
10768 	fb->format = drm_format_info(fourcc);
10769 
10770 	tiling = val & PLANE_CTL_TILED_MASK;
10771 	switch (tiling) {
10772 	case PLANE_CTL_TILED_LINEAR:
10773 		fb->modifier = DRM_FORMAT_MOD_LINEAR;
10774 		break;
10775 	case PLANE_CTL_TILED_X:
10776 		plane_config->tiling = I915_TILING_X;
10777 		fb->modifier = I915_FORMAT_MOD_X_TILED;
10778 		break;
10779 	case PLANE_CTL_TILED_Y:
10780 		plane_config->tiling = I915_TILING_Y;
10781 		if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10782 			fb->modifier = INTEL_GEN(dev_priv) >= 12 ?
10783 				I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS :
10784 				I915_FORMAT_MOD_Y_TILED_CCS;
10785 		else if (val & PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE)
10786 			fb->modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
10787 		else
10788 			fb->modifier = I915_FORMAT_MOD_Y_TILED;
10789 		break;
10790 	case PLANE_CTL_TILED_YF:
10791 		if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10792 			fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
10793 		else
10794 			fb->modifier = I915_FORMAT_MOD_Yf_TILED;
10795 		break;
10796 	default:
10797 		MISSING_CASE(tiling);
10798 		goto error;
10799 	}
10800 
10801 	/*
10802 	 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
10803 	 * while i915 HW rotation is clockwise, thats why this swapping.
10804 	 */
10805 	switch (val & PLANE_CTL_ROTATE_MASK) {
10806 	case PLANE_CTL_ROTATE_0:
10807 		plane_config->rotation = DRM_MODE_ROTATE_0;
10808 		break;
10809 	case PLANE_CTL_ROTATE_90:
10810 		plane_config->rotation = DRM_MODE_ROTATE_270;
10811 		break;
10812 	case PLANE_CTL_ROTATE_180:
10813 		plane_config->rotation = DRM_MODE_ROTATE_180;
10814 		break;
10815 	case PLANE_CTL_ROTATE_270:
10816 		plane_config->rotation = DRM_MODE_ROTATE_90;
10817 		break;
10818 	}
10819 
10820 	if (INTEL_GEN(dev_priv) >= 10 &&
10821 	    val & PLANE_CTL_FLIP_HORIZONTAL)
10822 		plane_config->rotation |= DRM_MODE_REFLECT_X;
10823 
10824 	/* 90/270 degree rotation would require extra work */
10825 	if (drm_rotation_90_or_270(plane_config->rotation))
10826 		goto error;
10827 
10828 	base = intel_de_read(dev_priv, PLANE_SURF(pipe, plane_id)) & 0xfffff000;
10829 	plane_config->base = base;
10830 
10831 	offset = intel_de_read(dev_priv, PLANE_OFFSET(pipe, plane_id));
10832 
10833 	val = intel_de_read(dev_priv, PLANE_SIZE(pipe, plane_id));
10834 	fb->height = ((val >> 16) & 0xffff) + 1;
10835 	fb->width = ((val >> 0) & 0xffff) + 1;
10836 
10837 	val = intel_de_read(dev_priv, PLANE_STRIDE(pipe, plane_id));
10838 	stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0);
10839 	fb->pitches[0] = (val & 0x3ff) * stride_mult;
10840 
10841 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
10842 
10843 	plane_config->size = fb->pitches[0] * aligned_height;
10844 
10845 	drm_dbg_kms(&dev_priv->drm,
10846 		    "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
10847 		    crtc->base.name, plane->base.name, fb->width, fb->height,
10848 		    fb->format->cpp[0] * 8, base, fb->pitches[0],
10849 		    plane_config->size);
10850 
10851 	plane_config->fb = intel_fb;
10852 	return;
10853 
10854 error:
10855 	kfree(intel_fb);
10856 }
10857 
10858 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state)
10859 {
10860 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10861 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10862 	u32 ctl, pos, size;
10863 
10864 	ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe));
10865 	if ((ctl & PF_ENABLE) == 0)
10866 		return;
10867 
10868 	crtc_state->pch_pfit.enabled = true;
10869 
10870 	pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe));
10871 	size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe));
10872 
10873 	ilk_get_pfit_pos_size(crtc_state, pos, size);
10874 
10875 	/*
10876 	 * We currently do not free assignements of panel fitters on
10877 	 * ivb/hsw (since we don't use the higher upscaling modes which
10878 	 * differentiates them) so just WARN about this case for now.
10879 	 */
10880 	drm_WARN_ON(&dev_priv->drm, IS_GEN(dev_priv, 7) &&
10881 		    (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe));
10882 }
10883 
10884 static bool ilk_get_pipe_config(struct intel_crtc *crtc,
10885 				struct intel_crtc_state *pipe_config)
10886 {
10887 	struct drm_device *dev = crtc->base.dev;
10888 	struct drm_i915_private *dev_priv = to_i915(dev);
10889 	enum intel_display_power_domain power_domain;
10890 	intel_wakeref_t wakeref;
10891 	u32 tmp;
10892 	bool ret;
10893 
10894 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10895 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
10896 	if (!wakeref)
10897 		return false;
10898 
10899 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10900 	pipe_config->shared_dpll = NULL;
10901 
10902 	ret = false;
10903 	tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe));
10904 	if (!(tmp & PIPECONF_ENABLE))
10905 		goto out;
10906 
10907 	switch (tmp & PIPECONF_BPC_MASK) {
10908 	case PIPECONF_6BPC:
10909 		pipe_config->pipe_bpp = 18;
10910 		break;
10911 	case PIPECONF_8BPC:
10912 		pipe_config->pipe_bpp = 24;
10913 		break;
10914 	case PIPECONF_10BPC:
10915 		pipe_config->pipe_bpp = 30;
10916 		break;
10917 	case PIPECONF_12BPC:
10918 		pipe_config->pipe_bpp = 36;
10919 		break;
10920 	default:
10921 		break;
10922 	}
10923 
10924 	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
10925 		pipe_config->limited_color_range = true;
10926 
10927 	switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) {
10928 	case PIPECONF_OUTPUT_COLORSPACE_YUV601:
10929 	case PIPECONF_OUTPUT_COLORSPACE_YUV709:
10930 		pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
10931 		break;
10932 	default:
10933 		pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
10934 		break;
10935 	}
10936 
10937 	pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >>
10938 		PIPECONF_GAMMA_MODE_SHIFT;
10939 
10940 	pipe_config->csc_mode = intel_de_read(dev_priv,
10941 					      PIPE_CSC_MODE(crtc->pipe));
10942 
10943 	i9xx_get_pipe_color_config(pipe_config);
10944 	intel_color_get_config(pipe_config);
10945 
10946 	if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
10947 		struct intel_shared_dpll *pll;
10948 		enum intel_dpll_id pll_id;
10949 		bool pll_active;
10950 
10951 		pipe_config->has_pch_encoder = true;
10952 
10953 		tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe));
10954 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10955 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
10956 
10957 		ilk_get_fdi_m_n_config(crtc, pipe_config);
10958 
10959 		if (HAS_PCH_IBX(dev_priv)) {
10960 			/*
10961 			 * The pipe->pch transcoder and pch transcoder->pll
10962 			 * mapping is fixed.
10963 			 */
10964 			pll_id = (enum intel_dpll_id) crtc->pipe;
10965 		} else {
10966 			tmp = intel_de_read(dev_priv, PCH_DPLL_SEL);
10967 			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
10968 				pll_id = DPLL_ID_PCH_PLL_B;
10969 			else
10970 				pll_id= DPLL_ID_PCH_PLL_A;
10971 		}
10972 
10973 		pipe_config->shared_dpll =
10974 			intel_get_shared_dpll_by_id(dev_priv, pll_id);
10975 		pll = pipe_config->shared_dpll;
10976 
10977 		pll_active = intel_dpll_get_hw_state(dev_priv, pll,
10978 						     &pipe_config->dpll_hw_state);
10979 		drm_WARN_ON(dev, !pll_active);
10980 
10981 		tmp = pipe_config->dpll_hw_state.dpll;
10982 		pipe_config->pixel_multiplier =
10983 			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
10984 			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
10985 
10986 		ilk_pch_clock_get(crtc, pipe_config);
10987 	} else {
10988 		pipe_config->pixel_multiplier = 1;
10989 	}
10990 
10991 	intel_get_transcoder_timings(crtc, pipe_config);
10992 	intel_get_pipe_src_size(crtc, pipe_config);
10993 
10994 	ilk_get_pfit_config(pipe_config);
10995 
10996 	ret = true;
10997 
10998 out:
10999 	intel_display_power_put(dev_priv, power_domain, wakeref);
11000 
11001 	return ret;
11002 }
11003 
11004 static int hsw_crtc_compute_clock(struct intel_crtc *crtc,
11005 				  struct intel_crtc_state *crtc_state)
11006 {
11007 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11008 	struct intel_atomic_state *state =
11009 		to_intel_atomic_state(crtc_state->uapi.state);
11010 
11011 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
11012 	    INTEL_GEN(dev_priv) >= 11) {
11013 		struct intel_encoder *encoder =
11014 			intel_get_crtc_new_encoder(state, crtc_state);
11015 
11016 		if (!intel_reserve_shared_dplls(state, crtc, encoder)) {
11017 			drm_dbg_kms(&dev_priv->drm,
11018 				    "failed to find PLL for pipe %c\n",
11019 				    pipe_name(crtc->pipe));
11020 			return -EINVAL;
11021 		}
11022 	}
11023 
11024 	return 0;
11025 }
11026 
11027 static void dg1_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
11028 			    struct intel_crtc_state *pipe_config)
11029 {
11030 	enum icl_port_dpll_id port_dpll_id = ICL_PORT_DPLL_DEFAULT;
11031 	enum phy phy = intel_port_to_phy(dev_priv, port);
11032 	struct icl_port_dpll *port_dpll;
11033 	struct intel_shared_dpll *pll;
11034 	enum intel_dpll_id id;
11035 	bool pll_active;
11036 	u32 clk_sel;
11037 
11038 	clk_sel = intel_de_read(dev_priv, DG1_DPCLKA_CFGCR0(phy)) & DG1_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
11039 	id = DG1_DPCLKA_CFGCR0_DDI_CLK_SEL_DPLL_MAP(clk_sel, phy);
11040 
11041 	if (WARN_ON(id > DPLL_ID_DG1_DPLL3))
11042 		return;
11043 
11044 	pll = intel_get_shared_dpll_by_id(dev_priv, id);
11045 	port_dpll = &pipe_config->icl_port_dplls[port_dpll_id];
11046 
11047 	port_dpll->pll = pll;
11048 	pll_active = intel_dpll_get_hw_state(dev_priv, pll,
11049 					     &port_dpll->hw_state);
11050 	drm_WARN_ON(&dev_priv->drm, !pll_active);
11051 
11052 	icl_set_active_port_dpll(pipe_config, port_dpll_id);
11053 }
11054 
11055 static void icl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
11056 			    struct intel_crtc_state *pipe_config)
11057 {
11058 	enum phy phy = intel_port_to_phy(dev_priv, port);
11059 	enum icl_port_dpll_id port_dpll_id;
11060 	struct icl_port_dpll *port_dpll;
11061 	struct intel_shared_dpll *pll;
11062 	enum intel_dpll_id id;
11063 	bool pll_active;
11064 	u32 temp;
11065 
11066 	if (intel_phy_is_combo(dev_priv, phy)) {
11067 		u32 mask, shift;
11068 
11069 		if (IS_ROCKETLAKE(dev_priv)) {
11070 			mask = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
11071 			shift = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
11072 		} else {
11073 			mask = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
11074 			shift = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
11075 		}
11076 
11077 		temp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0) & mask;
11078 		id = temp >> shift;
11079 		port_dpll_id = ICL_PORT_DPLL_DEFAULT;
11080 	} else if (intel_phy_is_tc(dev_priv, phy)) {
11081 		u32 clk_sel = intel_de_read(dev_priv, DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK;
11082 
11083 		if (clk_sel == DDI_CLK_SEL_MG) {
11084 			id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv,
11085 								    port));
11086 			port_dpll_id = ICL_PORT_DPLL_MG_PHY;
11087 		} else {
11088 			drm_WARN_ON(&dev_priv->drm,
11089 				    clk_sel < DDI_CLK_SEL_TBT_162);
11090 			id = DPLL_ID_ICL_TBTPLL;
11091 			port_dpll_id = ICL_PORT_DPLL_DEFAULT;
11092 		}
11093 	} else {
11094 		drm_WARN(&dev_priv->drm, 1, "Invalid port %x\n", port);
11095 		return;
11096 	}
11097 
11098 	pll = intel_get_shared_dpll_by_id(dev_priv, id);
11099 	port_dpll = &pipe_config->icl_port_dplls[port_dpll_id];
11100 
11101 	port_dpll->pll = pll;
11102 	pll_active = intel_dpll_get_hw_state(dev_priv, pll,
11103 					     &port_dpll->hw_state);
11104 	drm_WARN_ON(&dev_priv->drm, !pll_active);
11105 
11106 	icl_set_active_port_dpll(pipe_config, port_dpll_id);
11107 }
11108 
11109 static void cnl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
11110 			    struct intel_crtc_state *pipe_config)
11111 {
11112 	struct intel_shared_dpll *pll;
11113 	enum intel_dpll_id id;
11114 	bool pll_active;
11115 	u32 temp;
11116 
11117 	temp = intel_de_read(dev_priv, DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
11118 	id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
11119 
11120 	if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL2))
11121 		return;
11122 
11123 	pll = intel_get_shared_dpll_by_id(dev_priv, id);
11124 
11125 	pipe_config->shared_dpll = pll;
11126 	pll_active = intel_dpll_get_hw_state(dev_priv, pll,
11127 					     &pipe_config->dpll_hw_state);
11128 	drm_WARN_ON(&dev_priv->drm, !pll_active);
11129 }
11130 
11131 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
11132 				enum port port,
11133 				struct intel_crtc_state *pipe_config)
11134 {
11135 	struct intel_shared_dpll *pll;
11136 	enum intel_dpll_id id;
11137 	bool pll_active;
11138 
11139 	switch (port) {
11140 	case PORT_A:
11141 		id = DPLL_ID_SKL_DPLL0;
11142 		break;
11143 	case PORT_B:
11144 		id = DPLL_ID_SKL_DPLL1;
11145 		break;
11146 	case PORT_C:
11147 		id = DPLL_ID_SKL_DPLL2;
11148 		break;
11149 	default:
11150 		drm_err(&dev_priv->drm, "Incorrect port type\n");
11151 		return;
11152 	}
11153 
11154 	pll = intel_get_shared_dpll_by_id(dev_priv, id);
11155 
11156 	pipe_config->shared_dpll = pll;
11157 	pll_active = intel_dpll_get_hw_state(dev_priv, pll,
11158 					     &pipe_config->dpll_hw_state);
11159 	drm_WARN_ON(&dev_priv->drm, !pll_active);
11160 }
11161 
11162 static void skl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
11163 			    struct intel_crtc_state *pipe_config)
11164 {
11165 	struct intel_shared_dpll *pll;
11166 	enum intel_dpll_id id;
11167 	bool pll_active;
11168 	u32 temp;
11169 
11170 	temp = intel_de_read(dev_priv, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
11171 	id = temp >> (port * 3 + 1);
11172 
11173 	if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL3))
11174 		return;
11175 
11176 	pll = intel_get_shared_dpll_by_id(dev_priv, id);
11177 
11178 	pipe_config->shared_dpll = pll;
11179 	pll_active = intel_dpll_get_hw_state(dev_priv, pll,
11180 					     &pipe_config->dpll_hw_state);
11181 	drm_WARN_ON(&dev_priv->drm, !pll_active);
11182 }
11183 
11184 static void hsw_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
11185 			    struct intel_crtc_state *pipe_config)
11186 {
11187 	struct intel_shared_dpll *pll;
11188 	enum intel_dpll_id id;
11189 	u32 ddi_pll_sel = intel_de_read(dev_priv, PORT_CLK_SEL(port));
11190 	bool pll_active;
11191 
11192 	switch (ddi_pll_sel) {
11193 	case PORT_CLK_SEL_WRPLL1:
11194 		id = DPLL_ID_WRPLL1;
11195 		break;
11196 	case PORT_CLK_SEL_WRPLL2:
11197 		id = DPLL_ID_WRPLL2;
11198 		break;
11199 	case PORT_CLK_SEL_SPLL:
11200 		id = DPLL_ID_SPLL;
11201 		break;
11202 	case PORT_CLK_SEL_LCPLL_810:
11203 		id = DPLL_ID_LCPLL_810;
11204 		break;
11205 	case PORT_CLK_SEL_LCPLL_1350:
11206 		id = DPLL_ID_LCPLL_1350;
11207 		break;
11208 	case PORT_CLK_SEL_LCPLL_2700:
11209 		id = DPLL_ID_LCPLL_2700;
11210 		break;
11211 	default:
11212 		MISSING_CASE(ddi_pll_sel);
11213 		fallthrough;
11214 	case PORT_CLK_SEL_NONE:
11215 		return;
11216 	}
11217 
11218 	pll = intel_get_shared_dpll_by_id(dev_priv, id);
11219 
11220 	pipe_config->shared_dpll = pll;
11221 	pll_active = intel_dpll_get_hw_state(dev_priv, pll,
11222 					     &pipe_config->dpll_hw_state);
11223 	drm_WARN_ON(&dev_priv->drm, !pll_active);
11224 }
11225 
11226 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
11227 				     struct intel_crtc_state *pipe_config,
11228 				     u64 *power_domain_mask,
11229 				     intel_wakeref_t *wakerefs)
11230 {
11231 	struct drm_device *dev = crtc->base.dev;
11232 	struct drm_i915_private *dev_priv = to_i915(dev);
11233 	enum intel_display_power_domain power_domain;
11234 	unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP);
11235 	unsigned long enabled_panel_transcoders = 0;
11236 	enum transcoder panel_transcoder;
11237 	intel_wakeref_t wf;
11238 	u32 tmp;
11239 
11240 	if (INTEL_GEN(dev_priv) >= 11)
11241 		panel_transcoder_mask |=
11242 			BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
11243 
11244 	/*
11245 	 * The pipe->transcoder mapping is fixed with the exception of the eDP
11246 	 * and DSI transcoders handled below.
11247 	 */
11248 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
11249 
11250 	/*
11251 	 * XXX: Do intel_display_power_get_if_enabled before reading this (for
11252 	 * consistency and less surprising code; it's in always on power).
11253 	 */
11254 	for_each_cpu_transcoder_masked(dev_priv, panel_transcoder,
11255 				       panel_transcoder_mask) {
11256 		bool force_thru = false;
11257 		enum pipe trans_pipe;
11258 
11259 		tmp = intel_de_read(dev_priv,
11260 				    TRANS_DDI_FUNC_CTL(panel_transcoder));
11261 		if (!(tmp & TRANS_DDI_FUNC_ENABLE))
11262 			continue;
11263 
11264 		/*
11265 		 * Log all enabled ones, only use the first one.
11266 		 *
11267 		 * FIXME: This won't work for two separate DSI displays.
11268 		 */
11269 		enabled_panel_transcoders |= BIT(panel_transcoder);
11270 		if (enabled_panel_transcoders != BIT(panel_transcoder))
11271 			continue;
11272 
11273 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
11274 		default:
11275 			drm_WARN(dev, 1,
11276 				 "unknown pipe linked to transcoder %s\n",
11277 				 transcoder_name(panel_transcoder));
11278 			fallthrough;
11279 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
11280 			force_thru = true;
11281 			fallthrough;
11282 		case TRANS_DDI_EDP_INPUT_A_ON:
11283 			trans_pipe = PIPE_A;
11284 			break;
11285 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
11286 			trans_pipe = PIPE_B;
11287 			break;
11288 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
11289 			trans_pipe = PIPE_C;
11290 			break;
11291 		case TRANS_DDI_EDP_INPUT_D_ONOFF:
11292 			trans_pipe = PIPE_D;
11293 			break;
11294 		}
11295 
11296 		if (trans_pipe == crtc->pipe) {
11297 			pipe_config->cpu_transcoder = panel_transcoder;
11298 			pipe_config->pch_pfit.force_thru = force_thru;
11299 		}
11300 	}
11301 
11302 	/*
11303 	 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1
11304 	 */
11305 	drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) &&
11306 		    enabled_panel_transcoders != BIT(TRANSCODER_EDP));
11307 
11308 	power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
11309 	drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain));
11310 
11311 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11312 	if (!wf)
11313 		return false;
11314 
11315 	wakerefs[power_domain] = wf;
11316 	*power_domain_mask |= BIT_ULL(power_domain);
11317 
11318 	tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder));
11319 
11320 	return tmp & PIPECONF_ENABLE;
11321 }
11322 
11323 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
11324 					 struct intel_crtc_state *pipe_config,
11325 					 u64 *power_domain_mask,
11326 					 intel_wakeref_t *wakerefs)
11327 {
11328 	struct drm_device *dev = crtc->base.dev;
11329 	struct drm_i915_private *dev_priv = to_i915(dev);
11330 	enum intel_display_power_domain power_domain;
11331 	enum transcoder cpu_transcoder;
11332 	intel_wakeref_t wf;
11333 	enum port port;
11334 	u32 tmp;
11335 
11336 	for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
11337 		if (port == PORT_A)
11338 			cpu_transcoder = TRANSCODER_DSI_A;
11339 		else
11340 			cpu_transcoder = TRANSCODER_DSI_C;
11341 
11342 		power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
11343 		drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain));
11344 
11345 		wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11346 		if (!wf)
11347 			continue;
11348 
11349 		wakerefs[power_domain] = wf;
11350 		*power_domain_mask |= BIT_ULL(power_domain);
11351 
11352 		/*
11353 		 * The PLL needs to be enabled with a valid divider
11354 		 * configuration, otherwise accessing DSI registers will hang
11355 		 * the machine. See BSpec North Display Engine
11356 		 * registers/MIPI[BXT]. We can break out here early, since we
11357 		 * need the same DSI PLL to be enabled for both DSI ports.
11358 		 */
11359 		if (!bxt_dsi_pll_is_enabled(dev_priv))
11360 			break;
11361 
11362 		/* XXX: this works for video mode only */
11363 		tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port));
11364 		if (!(tmp & DPI_ENABLE))
11365 			continue;
11366 
11367 		tmp = intel_de_read(dev_priv, MIPI_CTRL(port));
11368 		if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
11369 			continue;
11370 
11371 		pipe_config->cpu_transcoder = cpu_transcoder;
11372 		break;
11373 	}
11374 
11375 	return transcoder_is_dsi(pipe_config->cpu_transcoder);
11376 }
11377 
11378 static void hsw_get_ddi_port_state(struct intel_crtc *crtc,
11379 				   struct intel_crtc_state *pipe_config)
11380 {
11381 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11382 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
11383 	enum port port;
11384 	u32 tmp;
11385 
11386 	if (transcoder_is_dsi(cpu_transcoder)) {
11387 		port = (cpu_transcoder == TRANSCODER_DSI_A) ?
11388 						PORT_A : PORT_B;
11389 	} else {
11390 		tmp = intel_de_read(dev_priv,
11391 				    TRANS_DDI_FUNC_CTL(cpu_transcoder));
11392 		if (!(tmp & TRANS_DDI_FUNC_ENABLE))
11393 			return;
11394 		if (INTEL_GEN(dev_priv) >= 12)
11395 			port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
11396 		else
11397 			port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
11398 	}
11399 
11400 	if (IS_DG1(dev_priv))
11401 		dg1_get_ddi_pll(dev_priv, port, pipe_config);
11402 	else if (INTEL_GEN(dev_priv) >= 11)
11403 		icl_get_ddi_pll(dev_priv, port, pipe_config);
11404 	else if (IS_CANNONLAKE(dev_priv))
11405 		cnl_get_ddi_pll(dev_priv, port, pipe_config);
11406 	else if (IS_GEN9_LP(dev_priv))
11407 		bxt_get_ddi_pll(dev_priv, port, pipe_config);
11408 	else if (IS_GEN9_BC(dev_priv))
11409 		skl_get_ddi_pll(dev_priv, port, pipe_config);
11410 	else
11411 		hsw_get_ddi_pll(dev_priv, port, pipe_config);
11412 
11413 	/*
11414 	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
11415 	 * DDI E. So just check whether this pipe is wired to DDI E and whether
11416 	 * the PCH transcoder is on.
11417 	 */
11418 	if (INTEL_GEN(dev_priv) < 9 &&
11419 	    (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) {
11420 		pipe_config->has_pch_encoder = true;
11421 
11422 		tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A));
11423 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
11424 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
11425 
11426 		ilk_get_fdi_m_n_config(crtc, pipe_config);
11427 	}
11428 }
11429 
11430 static bool hsw_get_pipe_config(struct intel_crtc *crtc,
11431 				struct intel_crtc_state *pipe_config)
11432 {
11433 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11434 	intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf;
11435 	enum intel_display_power_domain power_domain;
11436 	u64 power_domain_mask;
11437 	bool active;
11438 	u32 tmp;
11439 
11440 	pipe_config->master_transcoder = INVALID_TRANSCODER;
11441 
11442 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
11443 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11444 	if (!wf)
11445 		return false;
11446 
11447 	wakerefs[power_domain] = wf;
11448 	power_domain_mask = BIT_ULL(power_domain);
11449 
11450 	pipe_config->shared_dpll = NULL;
11451 
11452 	active = hsw_get_transcoder_state(crtc, pipe_config,
11453 					  &power_domain_mask, wakerefs);
11454 
11455 	if (IS_GEN9_LP(dev_priv) &&
11456 	    bxt_get_dsi_transcoder_state(crtc, pipe_config,
11457 					 &power_domain_mask, wakerefs)) {
11458 		drm_WARN_ON(&dev_priv->drm, active);
11459 		active = true;
11460 	}
11461 
11462 	intel_dsc_get_config(pipe_config);
11463 
11464 	if (!active) {
11465 		/* bigjoiner slave doesn't enable transcoder */
11466 		if (!pipe_config->bigjoiner_slave)
11467 			goto out;
11468 
11469 		active = true;
11470 		pipe_config->pixel_multiplier = 1;
11471 
11472 		/* we cannot read out most state, so don't bother.. */
11473 		pipe_config->quirks |= PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE;
11474 	} else if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
11475 	    INTEL_GEN(dev_priv) >= 11) {
11476 		hsw_get_ddi_port_state(crtc, pipe_config);
11477 		intel_get_transcoder_timings(crtc, pipe_config);
11478 	}
11479 
11480 	intel_get_pipe_src_size(crtc, pipe_config);
11481 
11482 	if (IS_HASWELL(dev_priv)) {
11483 		u32 tmp = intel_de_read(dev_priv,
11484 					PIPECONF(pipe_config->cpu_transcoder));
11485 
11486 		if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW)
11487 			pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
11488 		else
11489 			pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
11490 	} else {
11491 		pipe_config->output_format =
11492 			bdw_get_pipemisc_output_format(crtc);
11493 	}
11494 
11495 	pipe_config->gamma_mode = intel_de_read(dev_priv,
11496 						GAMMA_MODE(crtc->pipe));
11497 
11498 	pipe_config->csc_mode = intel_de_read(dev_priv,
11499 					      PIPE_CSC_MODE(crtc->pipe));
11500 
11501 	if (INTEL_GEN(dev_priv) >= 9) {
11502 		tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe));
11503 
11504 		if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE)
11505 			pipe_config->gamma_enable = true;
11506 
11507 		if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE)
11508 			pipe_config->csc_enable = true;
11509 	} else {
11510 		i9xx_get_pipe_color_config(pipe_config);
11511 	}
11512 
11513 	intel_color_get_config(pipe_config);
11514 
11515 	tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe));
11516 	pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp);
11517 	if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
11518 		pipe_config->ips_linetime =
11519 			REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp);
11520 
11521 	power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
11522 	drm_WARN_ON(&dev_priv->drm, power_domain_mask & BIT_ULL(power_domain));
11523 
11524 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11525 	if (wf) {
11526 		wakerefs[power_domain] = wf;
11527 		power_domain_mask |= BIT_ULL(power_domain);
11528 
11529 		if (INTEL_GEN(dev_priv) >= 9)
11530 			skl_get_pfit_config(pipe_config);
11531 		else
11532 			ilk_get_pfit_config(pipe_config);
11533 	}
11534 
11535 	if (hsw_crtc_supports_ips(crtc)) {
11536 		if (IS_HASWELL(dev_priv))
11537 			pipe_config->ips_enabled = intel_de_read(dev_priv,
11538 								 IPS_CTL) & IPS_ENABLE;
11539 		else {
11540 			/*
11541 			 * We cannot readout IPS state on broadwell, set to
11542 			 * true so we can set it to a defined state on first
11543 			 * commit.
11544 			 */
11545 			pipe_config->ips_enabled = true;
11546 		}
11547 	}
11548 
11549 	if (pipe_config->bigjoiner_slave) {
11550 		/* Cannot be read out as a slave, set to 0. */
11551 		pipe_config->pixel_multiplier = 0;
11552 	} else if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
11553 	    !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
11554 		pipe_config->pixel_multiplier =
11555 			intel_de_read(dev_priv,
11556 				      PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
11557 	} else {
11558 		pipe_config->pixel_multiplier = 1;
11559 	}
11560 
11561 out:
11562 	for_each_power_domain(power_domain, power_domain_mask)
11563 		intel_display_power_put(dev_priv,
11564 					power_domain, wakerefs[power_domain]);
11565 
11566 	return active;
11567 }
11568 
11569 static bool intel_crtc_get_pipe_config(struct intel_crtc_state *crtc_state)
11570 {
11571 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
11572 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
11573 
11574 	if (!i915->display.get_pipe_config(crtc, crtc_state))
11575 		return false;
11576 
11577 	crtc_state->hw.active = true;
11578 
11579 	intel_crtc_readout_derived_state(crtc_state);
11580 
11581 	return true;
11582 }
11583 
11584 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
11585 {
11586 	struct drm_i915_private *dev_priv =
11587 		to_i915(plane_state->uapi.plane->dev);
11588 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11589 	const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11590 	u32 base;
11591 
11592 	if (INTEL_INFO(dev_priv)->display.cursor_needs_physical)
11593 		base = sg_dma_address(obj->mm.pages->sgl);
11594 	else
11595 		base = intel_plane_ggtt_offset(plane_state);
11596 
11597 	return base + plane_state->color_plane[0].offset;
11598 }
11599 
11600 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
11601 {
11602 	int x = plane_state->uapi.dst.x1;
11603 	int y = plane_state->uapi.dst.y1;
11604 	u32 pos = 0;
11605 
11606 	if (x < 0) {
11607 		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
11608 		x = -x;
11609 	}
11610 	pos |= x << CURSOR_X_SHIFT;
11611 
11612 	if (y < 0) {
11613 		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
11614 		y = -y;
11615 	}
11616 	pos |= y << CURSOR_Y_SHIFT;
11617 
11618 	return pos;
11619 }
11620 
11621 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
11622 {
11623 	const struct drm_mode_config *config =
11624 		&plane_state->uapi.plane->dev->mode_config;
11625 	int width = drm_rect_width(&plane_state->uapi.dst);
11626 	int height = drm_rect_height(&plane_state->uapi.dst);
11627 
11628 	return width > 0 && width <= config->cursor_width &&
11629 		height > 0 && height <= config->cursor_height;
11630 }
11631 
11632 static int intel_cursor_check_surface(struct intel_plane_state *plane_state)
11633 {
11634 	struct drm_i915_private *dev_priv =
11635 		to_i915(plane_state->uapi.plane->dev);
11636 	unsigned int rotation = plane_state->hw.rotation;
11637 	int src_x, src_y;
11638 	u32 offset;
11639 	int ret;
11640 
11641 	ret = intel_plane_compute_gtt(plane_state);
11642 	if (ret)
11643 		return ret;
11644 
11645 	if (!plane_state->uapi.visible)
11646 		return 0;
11647 
11648 	src_x = plane_state->uapi.src.x1 >> 16;
11649 	src_y = plane_state->uapi.src.y1 >> 16;
11650 
11651 	intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
11652 	offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
11653 						    plane_state, 0);
11654 
11655 	if (src_x != 0 || src_y != 0) {
11656 		drm_dbg_kms(&dev_priv->drm,
11657 			    "Arbitrary cursor panning not supported\n");
11658 		return -EINVAL;
11659 	}
11660 
11661 	/*
11662 	 * Put the final coordinates back so that the src
11663 	 * coordinate checks will see the right values.
11664 	 */
11665 	drm_rect_translate_to(&plane_state->uapi.src,
11666 			      src_x << 16, src_y << 16);
11667 
11668 	/* ILK+ do this automagically in hardware */
11669 	if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) {
11670 		const struct drm_framebuffer *fb = plane_state->hw.fb;
11671 		int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
11672 		int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
11673 
11674 		offset += (src_h * src_w - 1) * fb->format->cpp[0];
11675 	}
11676 
11677 	plane_state->color_plane[0].offset = offset;
11678 	plane_state->color_plane[0].x = src_x;
11679 	plane_state->color_plane[0].y = src_y;
11680 
11681 	return 0;
11682 }
11683 
11684 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
11685 			      struct intel_plane_state *plane_state)
11686 {
11687 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11688 	struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
11689 	const struct drm_rect src = plane_state->uapi.src;
11690 	const struct drm_rect dst = plane_state->uapi.dst;
11691 	int ret;
11692 
11693 	if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) {
11694 		drm_dbg_kms(&i915->drm, "cursor cannot be tiled\n");
11695 		return -EINVAL;
11696 	}
11697 
11698 	ret = intel_atomic_plane_check_clipping(plane_state, crtc_state,
11699 						DRM_PLANE_HELPER_NO_SCALING,
11700 						DRM_PLANE_HELPER_NO_SCALING,
11701 						true);
11702 	if (ret)
11703 		return ret;
11704 
11705 	/* Use the unclipped src/dst rectangles, which we program to hw */
11706 	plane_state->uapi.src = src;
11707 	plane_state->uapi.dst = dst;
11708 
11709 	ret = intel_cursor_check_surface(plane_state);
11710 	if (ret)
11711 		return ret;
11712 
11713 	if (!plane_state->uapi.visible)
11714 		return 0;
11715 
11716 	ret = intel_plane_check_src_coordinates(plane_state);
11717 	if (ret)
11718 		return ret;
11719 
11720 	return 0;
11721 }
11722 
11723 static unsigned int
11724 i845_cursor_max_stride(struct intel_plane *plane,
11725 		       u32 pixel_format, u64 modifier,
11726 		       unsigned int rotation)
11727 {
11728 	return 2048;
11729 }
11730 
11731 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11732 {
11733 	u32 cntl = 0;
11734 
11735 	if (crtc_state->gamma_enable)
11736 		cntl |= CURSOR_GAMMA_ENABLE;
11737 
11738 	return cntl;
11739 }
11740 
11741 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
11742 			   const struct intel_plane_state *plane_state)
11743 {
11744 	return CURSOR_ENABLE |
11745 		CURSOR_FORMAT_ARGB |
11746 		CURSOR_STRIDE(plane_state->color_plane[0].stride);
11747 }
11748 
11749 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
11750 {
11751 	int width = drm_rect_width(&plane_state->uapi.dst);
11752 
11753 	/*
11754 	 * 845g/865g are only limited by the width of their cursors,
11755 	 * the height is arbitrary up to the precision of the register.
11756 	 */
11757 	return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
11758 }
11759 
11760 static int i845_check_cursor(struct intel_crtc_state *crtc_state,
11761 			     struct intel_plane_state *plane_state)
11762 {
11763 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11764 	struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
11765 	int ret;
11766 
11767 	ret = intel_check_cursor(crtc_state, plane_state);
11768 	if (ret)
11769 		return ret;
11770 
11771 	/* if we want to turn off the cursor ignore width and height */
11772 	if (!fb)
11773 		return 0;
11774 
11775 	/* Check for which cursor types we support */
11776 	if (!i845_cursor_size_ok(plane_state)) {
11777 		drm_dbg_kms(&i915->drm,
11778 			    "Cursor dimension %dx%d not supported\n",
11779 			    drm_rect_width(&plane_state->uapi.dst),
11780 			    drm_rect_height(&plane_state->uapi.dst));
11781 		return -EINVAL;
11782 	}
11783 
11784 	drm_WARN_ON(&i915->drm, plane_state->uapi.visible &&
11785 		    plane_state->color_plane[0].stride != fb->pitches[0]);
11786 
11787 	switch (fb->pitches[0]) {
11788 	case 256:
11789 	case 512:
11790 	case 1024:
11791 	case 2048:
11792 		break;
11793 	default:
11794 		 drm_dbg_kms(&i915->drm, "Invalid cursor stride (%u)\n",
11795 			     fb->pitches[0]);
11796 		return -EINVAL;
11797 	}
11798 
11799 	plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
11800 
11801 	return 0;
11802 }
11803 
11804 static void i845_update_cursor(struct intel_plane *plane,
11805 			       const struct intel_crtc_state *crtc_state,
11806 			       const struct intel_plane_state *plane_state)
11807 {
11808 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11809 	u32 cntl = 0, base = 0, pos = 0, size = 0;
11810 	unsigned long irqflags;
11811 
11812 	if (plane_state && plane_state->uapi.visible) {
11813 		unsigned int width = drm_rect_width(&plane_state->uapi.dst);
11814 		unsigned int height = drm_rect_height(&plane_state->uapi.dst);
11815 
11816 		cntl = plane_state->ctl |
11817 			i845_cursor_ctl_crtc(crtc_state);
11818 
11819 		size = (height << 12) | width;
11820 
11821 		base = intel_cursor_base(plane_state);
11822 		pos = intel_cursor_position(plane_state);
11823 	}
11824 
11825 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11826 
11827 	/* On these chipsets we can only modify the base/size/stride
11828 	 * whilst the cursor is disabled.
11829 	 */
11830 	if (plane->cursor.base != base ||
11831 	    plane->cursor.size != size ||
11832 	    plane->cursor.cntl != cntl) {
11833 		intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), 0);
11834 		intel_de_write_fw(dev_priv, CURBASE(PIPE_A), base);
11835 		intel_de_write_fw(dev_priv, CURSIZE, size);
11836 		intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos);
11837 		intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), cntl);
11838 
11839 		plane->cursor.base = base;
11840 		plane->cursor.size = size;
11841 		plane->cursor.cntl = cntl;
11842 	} else {
11843 		intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos);
11844 	}
11845 
11846 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11847 }
11848 
11849 static void i845_disable_cursor(struct intel_plane *plane,
11850 				const struct intel_crtc_state *crtc_state)
11851 {
11852 	i845_update_cursor(plane, crtc_state, NULL);
11853 }
11854 
11855 static bool i845_cursor_get_hw_state(struct intel_plane *plane,
11856 				     enum pipe *pipe)
11857 {
11858 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11859 	enum intel_display_power_domain power_domain;
11860 	intel_wakeref_t wakeref;
11861 	bool ret;
11862 
11863 	power_domain = POWER_DOMAIN_PIPE(PIPE_A);
11864 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11865 	if (!wakeref)
11866 		return false;
11867 
11868 	ret = intel_de_read(dev_priv, CURCNTR(PIPE_A)) & CURSOR_ENABLE;
11869 
11870 	*pipe = PIPE_A;
11871 
11872 	intel_display_power_put(dev_priv, power_domain, wakeref);
11873 
11874 	return ret;
11875 }
11876 
11877 static unsigned int
11878 i9xx_cursor_max_stride(struct intel_plane *plane,
11879 		       u32 pixel_format, u64 modifier,
11880 		       unsigned int rotation)
11881 {
11882 	return plane->base.dev->mode_config.cursor_width * 4;
11883 }
11884 
11885 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11886 {
11887 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
11888 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11889 	u32 cntl = 0;
11890 
11891 	if (INTEL_GEN(dev_priv) >= 11)
11892 		return cntl;
11893 
11894 	if (crtc_state->gamma_enable)
11895 		cntl = MCURSOR_GAMMA_ENABLE;
11896 
11897 	if (crtc_state->csc_enable)
11898 		cntl |= MCURSOR_PIPE_CSC_ENABLE;
11899 
11900 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11901 		cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
11902 
11903 	return cntl;
11904 }
11905 
11906 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
11907 			   const struct intel_plane_state *plane_state)
11908 {
11909 	struct drm_i915_private *dev_priv =
11910 		to_i915(plane_state->uapi.plane->dev);
11911 	u32 cntl = 0;
11912 
11913 	if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
11914 		cntl |= MCURSOR_TRICKLE_FEED_DISABLE;
11915 
11916 	switch (drm_rect_width(&plane_state->uapi.dst)) {
11917 	case 64:
11918 		cntl |= MCURSOR_MODE_64_ARGB_AX;
11919 		break;
11920 	case 128:
11921 		cntl |= MCURSOR_MODE_128_ARGB_AX;
11922 		break;
11923 	case 256:
11924 		cntl |= MCURSOR_MODE_256_ARGB_AX;
11925 		break;
11926 	default:
11927 		MISSING_CASE(drm_rect_width(&plane_state->uapi.dst));
11928 		return 0;
11929 	}
11930 
11931 	if (plane_state->hw.rotation & DRM_MODE_ROTATE_180)
11932 		cntl |= MCURSOR_ROTATE_180;
11933 
11934 	return cntl;
11935 }
11936 
11937 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
11938 {
11939 	struct drm_i915_private *dev_priv =
11940 		to_i915(plane_state->uapi.plane->dev);
11941 	int width = drm_rect_width(&plane_state->uapi.dst);
11942 	int height = drm_rect_height(&plane_state->uapi.dst);
11943 
11944 	if (!intel_cursor_size_ok(plane_state))
11945 		return false;
11946 
11947 	/* Cursor width is limited to a few power-of-two sizes */
11948 	switch (width) {
11949 	case 256:
11950 	case 128:
11951 	case 64:
11952 		break;
11953 	default:
11954 		return false;
11955 	}
11956 
11957 	/*
11958 	 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
11959 	 * height from 8 lines up to the cursor width, when the
11960 	 * cursor is not rotated. Everything else requires square
11961 	 * cursors.
11962 	 */
11963 	if (HAS_CUR_FBC(dev_priv) &&
11964 	    plane_state->hw.rotation & DRM_MODE_ROTATE_0) {
11965 		if (height < 8 || height > width)
11966 			return false;
11967 	} else {
11968 		if (height != width)
11969 			return false;
11970 	}
11971 
11972 	return true;
11973 }
11974 
11975 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state,
11976 			     struct intel_plane_state *plane_state)
11977 {
11978 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
11979 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11980 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11981 	enum pipe pipe = plane->pipe;
11982 	int ret;
11983 
11984 	ret = intel_check_cursor(crtc_state, plane_state);
11985 	if (ret)
11986 		return ret;
11987 
11988 	/* if we want to turn off the cursor ignore width and height */
11989 	if (!fb)
11990 		return 0;
11991 
11992 	/* Check for which cursor types we support */
11993 	if (!i9xx_cursor_size_ok(plane_state)) {
11994 		drm_dbg(&dev_priv->drm,
11995 			"Cursor dimension %dx%d not supported\n",
11996 			drm_rect_width(&plane_state->uapi.dst),
11997 			drm_rect_height(&plane_state->uapi.dst));
11998 		return -EINVAL;
11999 	}
12000 
12001 	drm_WARN_ON(&dev_priv->drm, plane_state->uapi.visible &&
12002 		    plane_state->color_plane[0].stride != fb->pitches[0]);
12003 
12004 	if (fb->pitches[0] !=
12005 	    drm_rect_width(&plane_state->uapi.dst) * fb->format->cpp[0]) {
12006 		drm_dbg_kms(&dev_priv->drm,
12007 			    "Invalid cursor stride (%u) (cursor width %d)\n",
12008 			    fb->pitches[0],
12009 			    drm_rect_width(&plane_state->uapi.dst));
12010 		return -EINVAL;
12011 	}
12012 
12013 	/*
12014 	 * There's something wrong with the cursor on CHV pipe C.
12015 	 * If it straddles the left edge of the screen then
12016 	 * moving it away from the edge or disabling it often
12017 	 * results in a pipe underrun, and often that can lead to
12018 	 * dead pipe (constant underrun reported, and it scans
12019 	 * out just a solid color). To recover from that, the
12020 	 * display power well must be turned off and on again.
12021 	 * Refuse the put the cursor into that compromised position.
12022 	 */
12023 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
12024 	    plane_state->uapi.visible && plane_state->uapi.dst.x1 < 0) {
12025 		drm_dbg_kms(&dev_priv->drm,
12026 			    "CHV cursor C not allowed to straddle the left screen edge\n");
12027 		return -EINVAL;
12028 	}
12029 
12030 	plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
12031 
12032 	return 0;
12033 }
12034 
12035 static void i9xx_update_cursor(struct intel_plane *plane,
12036 			       const struct intel_crtc_state *crtc_state,
12037 			       const struct intel_plane_state *plane_state)
12038 {
12039 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
12040 	enum pipe pipe = plane->pipe;
12041 	u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
12042 	unsigned long irqflags;
12043 
12044 	if (plane_state && plane_state->uapi.visible) {
12045 		unsigned width = drm_rect_width(&plane_state->uapi.dst);
12046 		unsigned height = drm_rect_height(&plane_state->uapi.dst);
12047 
12048 		cntl = plane_state->ctl |
12049 			i9xx_cursor_ctl_crtc(crtc_state);
12050 
12051 		if (width != height)
12052 			fbc_ctl = CUR_FBC_CTL_EN | (height - 1);
12053 
12054 		base = intel_cursor_base(plane_state);
12055 		pos = intel_cursor_position(plane_state);
12056 	}
12057 
12058 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
12059 
12060 	/*
12061 	 * On some platforms writing CURCNTR first will also
12062 	 * cause CURPOS to be armed by the CURBASE write.
12063 	 * Without the CURCNTR write the CURPOS write would
12064 	 * arm itself. Thus we always update CURCNTR before
12065 	 * CURPOS.
12066 	 *
12067 	 * On other platforms CURPOS always requires the
12068 	 * CURBASE write to arm the update. Additonally
12069 	 * a write to any of the cursor register will cancel
12070 	 * an already armed cursor update. Thus leaving out
12071 	 * the CURBASE write after CURPOS could lead to a
12072 	 * cursor that doesn't appear to move, or even change
12073 	 * shape. Thus we always write CURBASE.
12074 	 *
12075 	 * The other registers are armed by by the CURBASE write
12076 	 * except when the plane is getting enabled at which time
12077 	 * the CURCNTR write arms the update.
12078 	 */
12079 
12080 	if (INTEL_GEN(dev_priv) >= 9)
12081 		skl_write_cursor_wm(plane, crtc_state);
12082 
12083 	if (!needs_modeset(crtc_state))
12084 		intel_psr2_program_plane_sel_fetch(plane, crtc_state, plane_state, 0);
12085 
12086 	if (plane->cursor.base != base ||
12087 	    plane->cursor.size != fbc_ctl ||
12088 	    plane->cursor.cntl != cntl) {
12089 		if (HAS_CUR_FBC(dev_priv))
12090 			intel_de_write_fw(dev_priv, CUR_FBC_CTL(pipe),
12091 					  fbc_ctl);
12092 		intel_de_write_fw(dev_priv, CURCNTR(pipe), cntl);
12093 		intel_de_write_fw(dev_priv, CURPOS(pipe), pos);
12094 		intel_de_write_fw(dev_priv, CURBASE(pipe), base);
12095 
12096 		plane->cursor.base = base;
12097 		plane->cursor.size = fbc_ctl;
12098 		plane->cursor.cntl = cntl;
12099 	} else {
12100 		intel_de_write_fw(dev_priv, CURPOS(pipe), pos);
12101 		intel_de_write_fw(dev_priv, CURBASE(pipe), base);
12102 	}
12103 
12104 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
12105 }
12106 
12107 static void i9xx_disable_cursor(struct intel_plane *plane,
12108 				const struct intel_crtc_state *crtc_state)
12109 {
12110 	i9xx_update_cursor(plane, crtc_state, NULL);
12111 }
12112 
12113 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane,
12114 				     enum pipe *pipe)
12115 {
12116 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
12117 	enum intel_display_power_domain power_domain;
12118 	intel_wakeref_t wakeref;
12119 	bool ret;
12120 	u32 val;
12121 
12122 	/*
12123 	 * Not 100% correct for planes that can move between pipes,
12124 	 * but that's only the case for gen2-3 which don't have any
12125 	 * display power wells.
12126 	 */
12127 	power_domain = POWER_DOMAIN_PIPE(plane->pipe);
12128 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
12129 	if (!wakeref)
12130 		return false;
12131 
12132 	val = intel_de_read(dev_priv, CURCNTR(plane->pipe));
12133 
12134 	ret = val & MCURSOR_MODE;
12135 
12136 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
12137 		*pipe = plane->pipe;
12138 	else
12139 		*pipe = (val & MCURSOR_PIPE_SELECT_MASK) >>
12140 			MCURSOR_PIPE_SELECT_SHIFT;
12141 
12142 	intel_display_power_put(dev_priv, power_domain, wakeref);
12143 
12144 	return ret;
12145 }
12146 
12147 /* VESA 640x480x72Hz mode to set on the pipe */
12148 static const struct drm_display_mode load_detect_mode = {
12149 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
12150 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
12151 };
12152 
12153 struct drm_framebuffer *
12154 intel_framebuffer_create(struct drm_i915_gem_object *obj,
12155 			 struct drm_mode_fb_cmd2 *mode_cmd)
12156 {
12157 	struct intel_framebuffer *intel_fb;
12158 	int ret;
12159 
12160 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
12161 	if (!intel_fb)
12162 		return ERR_PTR(-ENOMEM);
12163 
12164 	ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
12165 	if (ret)
12166 		goto err;
12167 
12168 	return &intel_fb->base;
12169 
12170 err:
12171 	kfree(intel_fb);
12172 	return ERR_PTR(ret);
12173 }
12174 
12175 static int intel_modeset_disable_planes(struct drm_atomic_state *state,
12176 					struct drm_crtc *crtc)
12177 {
12178 	struct drm_plane *plane;
12179 	struct drm_plane_state *plane_state;
12180 	int ret, i;
12181 
12182 	ret = drm_atomic_add_affected_planes(state, crtc);
12183 	if (ret)
12184 		return ret;
12185 
12186 	for_each_new_plane_in_state(state, plane, plane_state, i) {
12187 		if (plane_state->crtc != crtc)
12188 			continue;
12189 
12190 		ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
12191 		if (ret)
12192 			return ret;
12193 
12194 		drm_atomic_set_fb_for_plane(plane_state, NULL);
12195 	}
12196 
12197 	return 0;
12198 }
12199 
12200 int intel_get_load_detect_pipe(struct drm_connector *connector,
12201 			       struct intel_load_detect_pipe *old,
12202 			       struct drm_modeset_acquire_ctx *ctx)
12203 {
12204 	struct intel_crtc *intel_crtc;
12205 	struct intel_encoder *intel_encoder =
12206 		intel_attached_encoder(to_intel_connector(connector));
12207 	struct drm_crtc *possible_crtc;
12208 	struct drm_encoder *encoder = &intel_encoder->base;
12209 	struct drm_crtc *crtc = NULL;
12210 	struct drm_device *dev = encoder->dev;
12211 	struct drm_i915_private *dev_priv = to_i915(dev);
12212 	struct drm_mode_config *config = &dev->mode_config;
12213 	struct drm_atomic_state *state = NULL, *restore_state = NULL;
12214 	struct drm_connector_state *connector_state;
12215 	struct intel_crtc_state *crtc_state;
12216 	int ret, i = -1;
12217 
12218 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
12219 		    connector->base.id, connector->name,
12220 		    encoder->base.id, encoder->name);
12221 
12222 	old->restore_state = NULL;
12223 
12224 	drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex));
12225 
12226 	/*
12227 	 * Algorithm gets a little messy:
12228 	 *
12229 	 *   - if the connector already has an assigned crtc, use it (but make
12230 	 *     sure it's on first)
12231 	 *
12232 	 *   - try to find the first unused crtc that can drive this connector,
12233 	 *     and use that if we find one
12234 	 */
12235 
12236 	/* See if we already have a CRTC for this connector */
12237 	if (connector->state->crtc) {
12238 		crtc = connector->state->crtc;
12239 
12240 		ret = drm_modeset_lock(&crtc->mutex, ctx);
12241 		if (ret)
12242 			goto fail;
12243 
12244 		/* Make sure the crtc and connector are running */
12245 		goto found;
12246 	}
12247 
12248 	/* Find an unused one (if possible) */
12249 	for_each_crtc(dev, possible_crtc) {
12250 		i++;
12251 		if (!(encoder->possible_crtcs & (1 << i)))
12252 			continue;
12253 
12254 		ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
12255 		if (ret)
12256 			goto fail;
12257 
12258 		if (possible_crtc->state->enable) {
12259 			drm_modeset_unlock(&possible_crtc->mutex);
12260 			continue;
12261 		}
12262 
12263 		crtc = possible_crtc;
12264 		break;
12265 	}
12266 
12267 	/*
12268 	 * If we didn't find an unused CRTC, don't use any.
12269 	 */
12270 	if (!crtc) {
12271 		drm_dbg_kms(&dev_priv->drm,
12272 			    "no pipe available for load-detect\n");
12273 		ret = -ENODEV;
12274 		goto fail;
12275 	}
12276 
12277 found:
12278 	intel_crtc = to_intel_crtc(crtc);
12279 
12280 	state = drm_atomic_state_alloc(dev);
12281 	restore_state = drm_atomic_state_alloc(dev);
12282 	if (!state || !restore_state) {
12283 		ret = -ENOMEM;
12284 		goto fail;
12285 	}
12286 
12287 	state->acquire_ctx = ctx;
12288 	restore_state->acquire_ctx = ctx;
12289 
12290 	connector_state = drm_atomic_get_connector_state(state, connector);
12291 	if (IS_ERR(connector_state)) {
12292 		ret = PTR_ERR(connector_state);
12293 		goto fail;
12294 	}
12295 
12296 	ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
12297 	if (ret)
12298 		goto fail;
12299 
12300 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
12301 	if (IS_ERR(crtc_state)) {
12302 		ret = PTR_ERR(crtc_state);
12303 		goto fail;
12304 	}
12305 
12306 	crtc_state->uapi.active = true;
12307 
12308 	ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi,
12309 					   &load_detect_mode);
12310 	if (ret)
12311 		goto fail;
12312 
12313 	ret = intel_modeset_disable_planes(state, crtc);
12314 	if (ret)
12315 		goto fail;
12316 
12317 	ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
12318 	if (!ret)
12319 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
12320 	if (!ret)
12321 		ret = drm_atomic_add_affected_planes(restore_state, crtc);
12322 	if (ret) {
12323 		drm_dbg_kms(&dev_priv->drm,
12324 			    "Failed to create a copy of old state to restore: %i\n",
12325 			    ret);
12326 		goto fail;
12327 	}
12328 
12329 	ret = drm_atomic_commit(state);
12330 	if (ret) {
12331 		drm_dbg_kms(&dev_priv->drm,
12332 			    "failed to set mode on load-detect pipe\n");
12333 		goto fail;
12334 	}
12335 
12336 	old->restore_state = restore_state;
12337 	drm_atomic_state_put(state);
12338 
12339 	/* let the connector get through one full cycle before testing */
12340 	intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
12341 	return true;
12342 
12343 fail:
12344 	if (state) {
12345 		drm_atomic_state_put(state);
12346 		state = NULL;
12347 	}
12348 	if (restore_state) {
12349 		drm_atomic_state_put(restore_state);
12350 		restore_state = NULL;
12351 	}
12352 
12353 	if (ret == -EDEADLK)
12354 		return ret;
12355 
12356 	return false;
12357 }
12358 
12359 void intel_release_load_detect_pipe(struct drm_connector *connector,
12360 				    struct intel_load_detect_pipe *old,
12361 				    struct drm_modeset_acquire_ctx *ctx)
12362 {
12363 	struct intel_encoder *intel_encoder =
12364 		intel_attached_encoder(to_intel_connector(connector));
12365 	struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev);
12366 	struct drm_encoder *encoder = &intel_encoder->base;
12367 	struct drm_atomic_state *state = old->restore_state;
12368 	int ret;
12369 
12370 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
12371 		    connector->base.id, connector->name,
12372 		    encoder->base.id, encoder->name);
12373 
12374 	if (!state)
12375 		return;
12376 
12377 	ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
12378 	if (ret)
12379 		drm_dbg_kms(&i915->drm,
12380 			    "Couldn't release load detect pipe: %i\n", ret);
12381 	drm_atomic_state_put(state);
12382 }
12383 
12384 static int i9xx_pll_refclk(struct drm_device *dev,
12385 			   const struct intel_crtc_state *pipe_config)
12386 {
12387 	struct drm_i915_private *dev_priv = to_i915(dev);
12388 	u32 dpll = pipe_config->dpll_hw_state.dpll;
12389 
12390 	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
12391 		return dev_priv->vbt.lvds_ssc_freq;
12392 	else if (HAS_PCH_SPLIT(dev_priv))
12393 		return 120000;
12394 	else if (!IS_GEN(dev_priv, 2))
12395 		return 96000;
12396 	else
12397 		return 48000;
12398 }
12399 
12400 /* Returns the clock of the currently programmed mode of the given pipe. */
12401 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
12402 				struct intel_crtc_state *pipe_config)
12403 {
12404 	struct drm_device *dev = crtc->base.dev;
12405 	struct drm_i915_private *dev_priv = to_i915(dev);
12406 	enum pipe pipe = crtc->pipe;
12407 	u32 dpll = pipe_config->dpll_hw_state.dpll;
12408 	u32 fp;
12409 	struct dpll clock;
12410 	int port_clock;
12411 	int refclk = i9xx_pll_refclk(dev, pipe_config);
12412 
12413 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
12414 		fp = pipe_config->dpll_hw_state.fp0;
12415 	else
12416 		fp = pipe_config->dpll_hw_state.fp1;
12417 
12418 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
12419 	if (IS_PINEVIEW(dev_priv)) {
12420 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
12421 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
12422 	} else {
12423 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
12424 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
12425 	}
12426 
12427 	if (!IS_GEN(dev_priv, 2)) {
12428 		if (IS_PINEVIEW(dev_priv))
12429 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
12430 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
12431 		else
12432 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
12433 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
12434 
12435 		switch (dpll & DPLL_MODE_MASK) {
12436 		case DPLLB_MODE_DAC_SERIAL:
12437 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
12438 				5 : 10;
12439 			break;
12440 		case DPLLB_MODE_LVDS:
12441 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
12442 				7 : 14;
12443 			break;
12444 		default:
12445 			drm_dbg_kms(&dev_priv->drm,
12446 				    "Unknown DPLL mode %08x in programmed "
12447 				    "mode\n", (int)(dpll & DPLL_MODE_MASK));
12448 			return;
12449 		}
12450 
12451 		if (IS_PINEVIEW(dev_priv))
12452 			port_clock = pnv_calc_dpll_params(refclk, &clock);
12453 		else
12454 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
12455 	} else {
12456 		u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv,
12457 								 LVDS);
12458 		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
12459 
12460 		if (is_lvds) {
12461 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
12462 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
12463 
12464 			if (lvds & LVDS_CLKB_POWER_UP)
12465 				clock.p2 = 7;
12466 			else
12467 				clock.p2 = 14;
12468 		} else {
12469 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
12470 				clock.p1 = 2;
12471 			else {
12472 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
12473 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
12474 			}
12475 			if (dpll & PLL_P2_DIVIDE_BY_4)
12476 				clock.p2 = 4;
12477 			else
12478 				clock.p2 = 2;
12479 		}
12480 
12481 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
12482 	}
12483 
12484 	/*
12485 	 * This value includes pixel_multiplier. We will use
12486 	 * port_clock to compute adjusted_mode.crtc_clock in the
12487 	 * encoder's get_config() function.
12488 	 */
12489 	pipe_config->port_clock = port_clock;
12490 }
12491 
12492 int intel_dotclock_calculate(int link_freq,
12493 			     const struct intel_link_m_n *m_n)
12494 {
12495 	/*
12496 	 * The calculation for the data clock is:
12497 	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
12498 	 * But we want to avoid losing precison if possible, so:
12499 	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
12500 	 *
12501 	 * and the link clock is simpler:
12502 	 * link_clock = (m * link_clock) / n
12503 	 */
12504 
12505 	if (!m_n->link_n)
12506 		return 0;
12507 
12508 	return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
12509 }
12510 
12511 static void ilk_pch_clock_get(struct intel_crtc *crtc,
12512 			      struct intel_crtc_state *pipe_config)
12513 {
12514 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12515 
12516 	/* read out port_clock from the DPLL */
12517 	i9xx_crtc_clock_get(crtc, pipe_config);
12518 
12519 	/*
12520 	 * In case there is an active pipe without active ports,
12521 	 * we may need some idea for the dotclock anyway.
12522 	 * Calculate one based on the FDI configuration.
12523 	 */
12524 	pipe_config->hw.adjusted_mode.crtc_clock =
12525 		intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12526 					 &pipe_config->fdi_m_n);
12527 }
12528 
12529 static void intel_crtc_state_reset(struct intel_crtc_state *crtc_state,
12530 				   struct intel_crtc *crtc)
12531 {
12532 	memset(crtc_state, 0, sizeof(*crtc_state));
12533 
12534 	__drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base);
12535 
12536 	crtc_state->cpu_transcoder = INVALID_TRANSCODER;
12537 	crtc_state->master_transcoder = INVALID_TRANSCODER;
12538 	crtc_state->hsw_workaround_pipe = INVALID_PIPE;
12539 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_INVALID;
12540 	crtc_state->scaler_state.scaler_id = -1;
12541 	crtc_state->mst_master_transcoder = INVALID_TRANSCODER;
12542 }
12543 
12544 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc)
12545 {
12546 	struct intel_crtc_state *crtc_state;
12547 
12548 	crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL);
12549 
12550 	if (crtc_state)
12551 		intel_crtc_state_reset(crtc_state, crtc);
12552 
12553 	return crtc_state;
12554 }
12555 
12556 /* Returns the currently programmed mode of the given encoder. */
12557 struct drm_display_mode *
12558 intel_encoder_current_mode(struct intel_encoder *encoder)
12559 {
12560 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
12561 	struct intel_crtc_state *crtc_state;
12562 	struct drm_display_mode *mode;
12563 	struct intel_crtc *crtc;
12564 	enum pipe pipe;
12565 
12566 	if (!encoder->get_hw_state(encoder, &pipe))
12567 		return NULL;
12568 
12569 	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12570 
12571 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
12572 	if (!mode)
12573 		return NULL;
12574 
12575 	crtc_state = intel_crtc_state_alloc(crtc);
12576 	if (!crtc_state) {
12577 		kfree(mode);
12578 		return NULL;
12579 	}
12580 
12581 	if (!intel_crtc_get_pipe_config(crtc_state)) {
12582 		kfree(crtc_state);
12583 		kfree(mode);
12584 		return NULL;
12585 	}
12586 
12587 	intel_encoder_get_config(encoder, crtc_state);
12588 
12589 	intel_mode_from_crtc_timings(mode, &crtc_state->hw.adjusted_mode);
12590 
12591 	kfree(crtc_state);
12592 
12593 	return mode;
12594 }
12595 
12596 static void intel_crtc_destroy(struct drm_crtc *crtc)
12597 {
12598 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12599 
12600 	drm_crtc_cleanup(crtc);
12601 	kfree(intel_crtc);
12602 }
12603 
12604 /**
12605  * intel_wm_need_update - Check whether watermarks need updating
12606  * @cur: current plane state
12607  * @new: new plane state
12608  *
12609  * Check current plane state versus the new one to determine whether
12610  * watermarks need to be recalculated.
12611  *
12612  * Returns true or false.
12613  */
12614 static bool intel_wm_need_update(const struct intel_plane_state *cur,
12615 				 struct intel_plane_state *new)
12616 {
12617 	/* Update watermarks on tiling or size changes. */
12618 	if (new->uapi.visible != cur->uapi.visible)
12619 		return true;
12620 
12621 	if (!cur->hw.fb || !new->hw.fb)
12622 		return false;
12623 
12624 	if (cur->hw.fb->modifier != new->hw.fb->modifier ||
12625 	    cur->hw.rotation != new->hw.rotation ||
12626 	    drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) ||
12627 	    drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) ||
12628 	    drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) ||
12629 	    drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst))
12630 		return true;
12631 
12632 	return false;
12633 }
12634 
12635 static bool needs_scaling(const struct intel_plane_state *state)
12636 {
12637 	int src_w = drm_rect_width(&state->uapi.src) >> 16;
12638 	int src_h = drm_rect_height(&state->uapi.src) >> 16;
12639 	int dst_w = drm_rect_width(&state->uapi.dst);
12640 	int dst_h = drm_rect_height(&state->uapi.dst);
12641 
12642 	return (src_w != dst_w || src_h != dst_h);
12643 }
12644 
12645 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
12646 				    struct intel_crtc_state *crtc_state,
12647 				    const struct intel_plane_state *old_plane_state,
12648 				    struct intel_plane_state *plane_state)
12649 {
12650 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12651 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
12652 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12653 	bool mode_changed = needs_modeset(crtc_state);
12654 	bool was_crtc_enabled = old_crtc_state->hw.active;
12655 	bool is_crtc_enabled = crtc_state->hw.active;
12656 	bool turn_off, turn_on, visible, was_visible;
12657 	int ret;
12658 
12659 	if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
12660 		ret = skl_update_scaler_plane(crtc_state, plane_state);
12661 		if (ret)
12662 			return ret;
12663 	}
12664 
12665 	was_visible = old_plane_state->uapi.visible;
12666 	visible = plane_state->uapi.visible;
12667 
12668 	if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible))
12669 		was_visible = false;
12670 
12671 	/*
12672 	 * Visibility is calculated as if the crtc was on, but
12673 	 * after scaler setup everything depends on it being off
12674 	 * when the crtc isn't active.
12675 	 *
12676 	 * FIXME this is wrong for watermarks. Watermarks should also
12677 	 * be computed as if the pipe would be active. Perhaps move
12678 	 * per-plane wm computation to the .check_plane() hook, and
12679 	 * only combine the results from all planes in the current place?
12680 	 */
12681 	if (!is_crtc_enabled) {
12682 		intel_plane_set_invisible(crtc_state, plane_state);
12683 		visible = false;
12684 	}
12685 
12686 	if (!was_visible && !visible)
12687 		return 0;
12688 
12689 	turn_off = was_visible && (!visible || mode_changed);
12690 	turn_on = visible && (!was_visible || mode_changed);
12691 
12692 	drm_dbg_atomic(&dev_priv->drm,
12693 		       "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12694 		       crtc->base.base.id, crtc->base.name,
12695 		       plane->base.base.id, plane->base.name,
12696 		       was_visible, visible,
12697 		       turn_off, turn_on, mode_changed);
12698 
12699 	if (turn_on) {
12700 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12701 			crtc_state->update_wm_pre = true;
12702 
12703 		/* must disable cxsr around plane enable/disable */
12704 		if (plane->id != PLANE_CURSOR)
12705 			crtc_state->disable_cxsr = true;
12706 	} else if (turn_off) {
12707 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12708 			crtc_state->update_wm_post = true;
12709 
12710 		/* must disable cxsr around plane enable/disable */
12711 		if (plane->id != PLANE_CURSOR)
12712 			crtc_state->disable_cxsr = true;
12713 	} else if (intel_wm_need_update(old_plane_state, plane_state)) {
12714 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
12715 			/* FIXME bollocks */
12716 			crtc_state->update_wm_pre = true;
12717 			crtc_state->update_wm_post = true;
12718 		}
12719 	}
12720 
12721 	if (visible || was_visible)
12722 		crtc_state->fb_bits |= plane->frontbuffer_bit;
12723 
12724 	/*
12725 	 * ILK/SNB DVSACNTR/Sprite Enable
12726 	 * IVB SPR_CTL/Sprite Enable
12727 	 * "When in Self Refresh Big FIFO mode, a write to enable the
12728 	 *  plane will be internally buffered and delayed while Big FIFO
12729 	 *  mode is exiting."
12730 	 *
12731 	 * Which means that enabling the sprite can take an extra frame
12732 	 * when we start in big FIFO mode (LP1+). Thus we need to drop
12733 	 * down to LP0 and wait for vblank in order to make sure the
12734 	 * sprite gets enabled on the next vblank after the register write.
12735 	 * Doing otherwise would risk enabling the sprite one frame after
12736 	 * we've already signalled flip completion. We can resume LP1+
12737 	 * once the sprite has been enabled.
12738 	 *
12739 	 *
12740 	 * WaCxSRDisabledForSpriteScaling:ivb
12741 	 * IVB SPR_SCALE/Scaling Enable
12742 	 * "Low Power watermarks must be disabled for at least one
12743 	 *  frame before enabling sprite scaling, and kept disabled
12744 	 *  until sprite scaling is disabled."
12745 	 *
12746 	 * ILK/SNB DVSASCALE/Scaling Enable
12747 	 * "When in Self Refresh Big FIFO mode, scaling enable will be
12748 	 *  masked off while Big FIFO mode is exiting."
12749 	 *
12750 	 * Despite the w/a only being listed for IVB we assume that
12751 	 * the ILK/SNB note has similar ramifications, hence we apply
12752 	 * the w/a on all three platforms.
12753 	 *
12754 	 * With experimental results seems this is needed also for primary
12755 	 * plane, not only sprite plane.
12756 	 */
12757 	if (plane->id != PLANE_CURSOR &&
12758 	    (IS_GEN_RANGE(dev_priv, 5, 6) ||
12759 	     IS_IVYBRIDGE(dev_priv)) &&
12760 	    (turn_on || (!needs_scaling(old_plane_state) &&
12761 			 needs_scaling(plane_state))))
12762 		crtc_state->disable_lp_wm = true;
12763 
12764 	return 0;
12765 }
12766 
12767 static bool encoders_cloneable(const struct intel_encoder *a,
12768 			       const struct intel_encoder *b)
12769 {
12770 	/* masks could be asymmetric, so check both ways */
12771 	return a == b || (a->cloneable & (1 << b->type) &&
12772 			  b->cloneable & (1 << a->type));
12773 }
12774 
12775 static bool check_single_encoder_cloning(struct intel_atomic_state *state,
12776 					 struct intel_crtc *crtc,
12777 					 struct intel_encoder *encoder)
12778 {
12779 	struct intel_encoder *source_encoder;
12780 	struct drm_connector *connector;
12781 	struct drm_connector_state *connector_state;
12782 	int i;
12783 
12784 	for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
12785 		if (connector_state->crtc != &crtc->base)
12786 			continue;
12787 
12788 		source_encoder =
12789 			to_intel_encoder(connector_state->best_encoder);
12790 		if (!encoders_cloneable(encoder, source_encoder))
12791 			return false;
12792 	}
12793 
12794 	return true;
12795 }
12796 
12797 static int icl_add_linked_planes(struct intel_atomic_state *state)
12798 {
12799 	struct intel_plane *plane, *linked;
12800 	struct intel_plane_state *plane_state, *linked_plane_state;
12801 	int i;
12802 
12803 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12804 		linked = plane_state->planar_linked_plane;
12805 
12806 		if (!linked)
12807 			continue;
12808 
12809 		linked_plane_state = intel_atomic_get_plane_state(state, linked);
12810 		if (IS_ERR(linked_plane_state))
12811 			return PTR_ERR(linked_plane_state);
12812 
12813 		drm_WARN_ON(state->base.dev,
12814 			    linked_plane_state->planar_linked_plane != plane);
12815 		drm_WARN_ON(state->base.dev,
12816 			    linked_plane_state->planar_slave == plane_state->planar_slave);
12817 	}
12818 
12819 	return 0;
12820 }
12821 
12822 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state)
12823 {
12824 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12825 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12826 	struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
12827 	struct intel_plane *plane, *linked;
12828 	struct intel_plane_state *plane_state;
12829 	int i;
12830 
12831 	if (INTEL_GEN(dev_priv) < 11)
12832 		return 0;
12833 
12834 	/*
12835 	 * Destroy all old plane links and make the slave plane invisible
12836 	 * in the crtc_state->active_planes mask.
12837 	 */
12838 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12839 		if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane)
12840 			continue;
12841 
12842 		plane_state->planar_linked_plane = NULL;
12843 		if (plane_state->planar_slave && !plane_state->uapi.visible) {
12844 			crtc_state->active_planes &= ~BIT(plane->id);
12845 			crtc_state->update_planes |= BIT(plane->id);
12846 		}
12847 
12848 		plane_state->planar_slave = false;
12849 	}
12850 
12851 	if (!crtc_state->nv12_planes)
12852 		return 0;
12853 
12854 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12855 		struct intel_plane_state *linked_state = NULL;
12856 
12857 		if (plane->pipe != crtc->pipe ||
12858 		    !(crtc_state->nv12_planes & BIT(plane->id)))
12859 			continue;
12860 
12861 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) {
12862 			if (!icl_is_nv12_y_plane(dev_priv, linked->id))
12863 				continue;
12864 
12865 			if (crtc_state->active_planes & BIT(linked->id))
12866 				continue;
12867 
12868 			linked_state = intel_atomic_get_plane_state(state, linked);
12869 			if (IS_ERR(linked_state))
12870 				return PTR_ERR(linked_state);
12871 
12872 			break;
12873 		}
12874 
12875 		if (!linked_state) {
12876 			drm_dbg_kms(&dev_priv->drm,
12877 				    "Need %d free Y planes for planar YUV\n",
12878 				    hweight8(crtc_state->nv12_planes));
12879 
12880 			return -EINVAL;
12881 		}
12882 
12883 		plane_state->planar_linked_plane = linked;
12884 
12885 		linked_state->planar_slave = true;
12886 		linked_state->planar_linked_plane = plane;
12887 		crtc_state->active_planes |= BIT(linked->id);
12888 		crtc_state->update_planes |= BIT(linked->id);
12889 		drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n",
12890 			    linked->base.name, plane->base.name);
12891 
12892 		/* Copy parameters to slave plane */
12893 		linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE;
12894 		linked_state->color_ctl = plane_state->color_ctl;
12895 		linked_state->view = plane_state->view;
12896 		memcpy(linked_state->color_plane, plane_state->color_plane,
12897 		       sizeof(linked_state->color_plane));
12898 
12899 		intel_plane_copy_hw_state(linked_state, plane_state);
12900 		linked_state->uapi.src = plane_state->uapi.src;
12901 		linked_state->uapi.dst = plane_state->uapi.dst;
12902 
12903 		if (icl_is_hdr_plane(dev_priv, plane->id)) {
12904 			if (linked->id == PLANE_SPRITE5)
12905 				plane_state->cus_ctl |= PLANE_CUS_PLANE_7;
12906 			else if (linked->id == PLANE_SPRITE4)
12907 				plane_state->cus_ctl |= PLANE_CUS_PLANE_6;
12908 			else if (linked->id == PLANE_SPRITE3)
12909 				plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL;
12910 			else if (linked->id == PLANE_SPRITE2)
12911 				plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL;
12912 			else
12913 				MISSING_CASE(linked->id);
12914 		}
12915 	}
12916 
12917 	return 0;
12918 }
12919 
12920 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state)
12921 {
12922 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
12923 	struct intel_atomic_state *state =
12924 		to_intel_atomic_state(new_crtc_state->uapi.state);
12925 	const struct intel_crtc_state *old_crtc_state =
12926 		intel_atomic_get_old_crtc_state(state, crtc);
12927 
12928 	return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes;
12929 }
12930 
12931 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state)
12932 {
12933 	const struct drm_display_mode *pipe_mode =
12934 		&crtc_state->hw.pipe_mode;
12935 	int linetime_wm;
12936 
12937 	if (!crtc_state->hw.enable)
12938 		return 0;
12939 
12940 	linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8,
12941 					pipe_mode->crtc_clock);
12942 
12943 	return min(linetime_wm, 0x1ff);
12944 }
12945 
12946 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state,
12947 			       const struct intel_cdclk_state *cdclk_state)
12948 {
12949 	const struct drm_display_mode *pipe_mode =
12950 		&crtc_state->hw.pipe_mode;
12951 	int linetime_wm;
12952 
12953 	if (!crtc_state->hw.enable)
12954 		return 0;
12955 
12956 	linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8,
12957 					cdclk_state->logical.cdclk);
12958 
12959 	return min(linetime_wm, 0x1ff);
12960 }
12961 
12962 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state)
12963 {
12964 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12965 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12966 	const struct drm_display_mode *pipe_mode =
12967 		&crtc_state->hw.pipe_mode;
12968 	int linetime_wm;
12969 
12970 	if (!crtc_state->hw.enable)
12971 		return 0;
12972 
12973 	linetime_wm = DIV_ROUND_UP(pipe_mode->crtc_htotal * 1000 * 8,
12974 				   crtc_state->pixel_rate);
12975 
12976 	/* Display WA #1135: BXT:ALL GLK:ALL */
12977 	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
12978 		linetime_wm /= 2;
12979 
12980 	return min(linetime_wm, 0x1ff);
12981 }
12982 
12983 static int hsw_compute_linetime_wm(struct intel_atomic_state *state,
12984 				   struct intel_crtc *crtc)
12985 {
12986 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12987 	struct intel_crtc_state *crtc_state =
12988 		intel_atomic_get_new_crtc_state(state, crtc);
12989 	const struct intel_cdclk_state *cdclk_state;
12990 
12991 	if (INTEL_GEN(dev_priv) >= 9)
12992 		crtc_state->linetime = skl_linetime_wm(crtc_state);
12993 	else
12994 		crtc_state->linetime = hsw_linetime_wm(crtc_state);
12995 
12996 	if (!hsw_crtc_supports_ips(crtc))
12997 		return 0;
12998 
12999 	cdclk_state = intel_atomic_get_cdclk_state(state);
13000 	if (IS_ERR(cdclk_state))
13001 		return PTR_ERR(cdclk_state);
13002 
13003 	crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state,
13004 						       cdclk_state);
13005 
13006 	return 0;
13007 }
13008 
13009 static int intel_crtc_atomic_check(struct intel_atomic_state *state,
13010 				   struct intel_crtc *crtc)
13011 {
13012 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13013 	struct intel_crtc_state *crtc_state =
13014 		intel_atomic_get_new_crtc_state(state, crtc);
13015 	bool mode_changed = needs_modeset(crtc_state);
13016 	int ret;
13017 
13018 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) &&
13019 	    mode_changed && !crtc_state->hw.active)
13020 		crtc_state->update_wm_post = true;
13021 
13022 	if (mode_changed && crtc_state->hw.enable &&
13023 	    dev_priv->display.crtc_compute_clock &&
13024 	    !crtc_state->bigjoiner_slave &&
13025 	    !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) {
13026 		ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state);
13027 		if (ret)
13028 			return ret;
13029 	}
13030 
13031 	/*
13032 	 * May need to update pipe gamma enable bits
13033 	 * when C8 planes are getting enabled/disabled.
13034 	 */
13035 	if (c8_planes_changed(crtc_state))
13036 		crtc_state->uapi.color_mgmt_changed = true;
13037 
13038 	if (mode_changed || crtc_state->update_pipe ||
13039 	    crtc_state->uapi.color_mgmt_changed) {
13040 		ret = intel_color_check(crtc_state);
13041 		if (ret)
13042 			return ret;
13043 	}
13044 
13045 	if (dev_priv->display.compute_pipe_wm) {
13046 		ret = dev_priv->display.compute_pipe_wm(crtc_state);
13047 		if (ret) {
13048 			drm_dbg_kms(&dev_priv->drm,
13049 				    "Target pipe watermarks are invalid\n");
13050 			return ret;
13051 		}
13052 	}
13053 
13054 	if (dev_priv->display.compute_intermediate_wm) {
13055 		if (drm_WARN_ON(&dev_priv->drm,
13056 				!dev_priv->display.compute_pipe_wm))
13057 			return 0;
13058 
13059 		/*
13060 		 * Calculate 'intermediate' watermarks that satisfy both the
13061 		 * old state and the new state.  We can program these
13062 		 * immediately.
13063 		 */
13064 		ret = dev_priv->display.compute_intermediate_wm(crtc_state);
13065 		if (ret) {
13066 			drm_dbg_kms(&dev_priv->drm,
13067 				    "No valid intermediate pipe watermarks are possible\n");
13068 			return ret;
13069 		}
13070 	}
13071 
13072 	if (INTEL_GEN(dev_priv) >= 9) {
13073 		if (mode_changed || crtc_state->update_pipe) {
13074 			ret = skl_update_scaler_crtc(crtc_state);
13075 			if (ret)
13076 				return ret;
13077 		}
13078 
13079 		ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state);
13080 		if (ret)
13081 			return ret;
13082 	}
13083 
13084 	if (HAS_IPS(dev_priv)) {
13085 		ret = hsw_compute_ips_config(crtc_state);
13086 		if (ret)
13087 			return ret;
13088 	}
13089 
13090 	if (INTEL_GEN(dev_priv) >= 9 ||
13091 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
13092 		ret = hsw_compute_linetime_wm(state, crtc);
13093 		if (ret)
13094 			return ret;
13095 
13096 	}
13097 
13098 	if (!mode_changed) {
13099 		ret = intel_psr2_sel_fetch_update(state, crtc);
13100 		if (ret)
13101 			return ret;
13102 	}
13103 
13104 	return 0;
13105 }
13106 
13107 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
13108 {
13109 	struct intel_connector *connector;
13110 	struct drm_connector_list_iter conn_iter;
13111 
13112 	drm_connector_list_iter_begin(dev, &conn_iter);
13113 	for_each_intel_connector_iter(connector, &conn_iter) {
13114 		if (connector->base.state->crtc)
13115 			drm_connector_put(&connector->base);
13116 
13117 		if (connector->base.encoder) {
13118 			connector->base.state->best_encoder =
13119 				connector->base.encoder;
13120 			connector->base.state->crtc =
13121 				connector->base.encoder->crtc;
13122 
13123 			drm_connector_get(&connector->base);
13124 		} else {
13125 			connector->base.state->best_encoder = NULL;
13126 			connector->base.state->crtc = NULL;
13127 		}
13128 	}
13129 	drm_connector_list_iter_end(&conn_iter);
13130 }
13131 
13132 static int
13133 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
13134 		      struct intel_crtc_state *pipe_config)
13135 {
13136 	struct drm_connector *connector = conn_state->connector;
13137 	struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
13138 	const struct drm_display_info *info = &connector->display_info;
13139 	int bpp;
13140 
13141 	switch (conn_state->max_bpc) {
13142 	case 6 ... 7:
13143 		bpp = 6 * 3;
13144 		break;
13145 	case 8 ... 9:
13146 		bpp = 8 * 3;
13147 		break;
13148 	case 10 ... 11:
13149 		bpp = 10 * 3;
13150 		break;
13151 	case 12 ... 16:
13152 		bpp = 12 * 3;
13153 		break;
13154 	default:
13155 		MISSING_CASE(conn_state->max_bpc);
13156 		return -EINVAL;
13157 	}
13158 
13159 	if (bpp < pipe_config->pipe_bpp) {
13160 		drm_dbg_kms(&i915->drm,
13161 			    "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of "
13162 			    "EDID bpp %d, requested bpp %d, max platform bpp %d\n",
13163 			    connector->base.id, connector->name,
13164 			    bpp, 3 * info->bpc,
13165 			    3 * conn_state->max_requested_bpc,
13166 			    pipe_config->pipe_bpp);
13167 
13168 		pipe_config->pipe_bpp = bpp;
13169 	}
13170 
13171 	return 0;
13172 }
13173 
13174 static int
13175 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
13176 			  struct intel_crtc_state *pipe_config)
13177 {
13178 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13179 	struct drm_atomic_state *state = pipe_config->uapi.state;
13180 	struct drm_connector *connector;
13181 	struct drm_connector_state *connector_state;
13182 	int bpp, i;
13183 
13184 	if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
13185 	    IS_CHERRYVIEW(dev_priv)))
13186 		bpp = 10*3;
13187 	else if (INTEL_GEN(dev_priv) >= 5)
13188 		bpp = 12*3;
13189 	else
13190 		bpp = 8*3;
13191 
13192 	pipe_config->pipe_bpp = bpp;
13193 
13194 	/* Clamp display bpp to connector max bpp */
13195 	for_each_new_connector_in_state(state, connector, connector_state, i) {
13196 		int ret;
13197 
13198 		if (connector_state->crtc != &crtc->base)
13199 			continue;
13200 
13201 		ret = compute_sink_pipe_bpp(connector_state, pipe_config);
13202 		if (ret)
13203 			return ret;
13204 	}
13205 
13206 	return 0;
13207 }
13208 
13209 static void intel_dump_crtc_timings(struct drm_i915_private *i915,
13210 				    const struct drm_display_mode *mode)
13211 {
13212 	drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, "
13213 		    "type: 0x%x flags: 0x%x\n",
13214 		    mode->crtc_clock,
13215 		    mode->crtc_hdisplay, mode->crtc_hsync_start,
13216 		    mode->crtc_hsync_end, mode->crtc_htotal,
13217 		    mode->crtc_vdisplay, mode->crtc_vsync_start,
13218 		    mode->crtc_vsync_end, mode->crtc_vtotal,
13219 		    mode->type, mode->flags);
13220 }
13221 
13222 static void
13223 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config,
13224 		      const char *id, unsigned int lane_count,
13225 		      const struct intel_link_m_n *m_n)
13226 {
13227 	struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
13228 
13229 	drm_dbg_kms(&i915->drm,
13230 		    "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
13231 		    id, lane_count,
13232 		    m_n->gmch_m, m_n->gmch_n,
13233 		    m_n->link_m, m_n->link_n, m_n->tu);
13234 }
13235 
13236 static void
13237 intel_dump_infoframe(struct drm_i915_private *dev_priv,
13238 		     const union hdmi_infoframe *frame)
13239 {
13240 	if (!drm_debug_enabled(DRM_UT_KMS))
13241 		return;
13242 
13243 	hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame);
13244 }
13245 
13246 static void
13247 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv,
13248 		      const struct drm_dp_vsc_sdp *vsc)
13249 {
13250 	if (!drm_debug_enabled(DRM_UT_KMS))
13251 		return;
13252 
13253 	drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc);
13254 }
13255 
13256 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
13257 
13258 static const char * const output_type_str[] = {
13259 	OUTPUT_TYPE(UNUSED),
13260 	OUTPUT_TYPE(ANALOG),
13261 	OUTPUT_TYPE(DVO),
13262 	OUTPUT_TYPE(SDVO),
13263 	OUTPUT_TYPE(LVDS),
13264 	OUTPUT_TYPE(TVOUT),
13265 	OUTPUT_TYPE(HDMI),
13266 	OUTPUT_TYPE(DP),
13267 	OUTPUT_TYPE(EDP),
13268 	OUTPUT_TYPE(DSI),
13269 	OUTPUT_TYPE(DDI),
13270 	OUTPUT_TYPE(DP_MST),
13271 };
13272 
13273 #undef OUTPUT_TYPE
13274 
13275 static void snprintf_output_types(char *buf, size_t len,
13276 				  unsigned int output_types)
13277 {
13278 	char *str = buf;
13279 	int i;
13280 
13281 	str[0] = '\0';
13282 
13283 	for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
13284 		int r;
13285 
13286 		if ((output_types & BIT(i)) == 0)
13287 			continue;
13288 
13289 		r = snprintf(str, len, "%s%s",
13290 			     str != buf ? "," : "", output_type_str[i]);
13291 		if (r >= len)
13292 			break;
13293 		str += r;
13294 		len -= r;
13295 
13296 		output_types &= ~BIT(i);
13297 	}
13298 
13299 	WARN_ON_ONCE(output_types != 0);
13300 }
13301 
13302 static const char * const output_format_str[] = {
13303 	[INTEL_OUTPUT_FORMAT_INVALID] = "Invalid",
13304 	[INTEL_OUTPUT_FORMAT_RGB] = "RGB",
13305 	[INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0",
13306 	[INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4",
13307 };
13308 
13309 static const char *output_formats(enum intel_output_format format)
13310 {
13311 	if (format >= ARRAY_SIZE(output_format_str))
13312 		format = INTEL_OUTPUT_FORMAT_INVALID;
13313 	return output_format_str[format];
13314 }
13315 
13316 static void intel_dump_plane_state(const struct intel_plane_state *plane_state)
13317 {
13318 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
13319 	struct drm_i915_private *i915 = to_i915(plane->base.dev);
13320 	const struct drm_framebuffer *fb = plane_state->hw.fb;
13321 	struct drm_format_name_buf format_name;
13322 
13323 	if (!fb) {
13324 		drm_dbg_kms(&i915->drm,
13325 			    "[PLANE:%d:%s] fb: [NOFB], visible: %s\n",
13326 			    plane->base.base.id, plane->base.name,
13327 			    yesno(plane_state->uapi.visible));
13328 		return;
13329 	}
13330 
13331 	drm_dbg_kms(&i915->drm,
13332 		    "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s modifier = 0x%llx, visible: %s\n",
13333 		    plane->base.base.id, plane->base.name,
13334 		    fb->base.id, fb->width, fb->height,
13335 		    drm_get_format_name(fb->format->format, &format_name),
13336 		    fb->modifier, yesno(plane_state->uapi.visible));
13337 	drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n",
13338 		    plane_state->hw.rotation, plane_state->scaler_id);
13339 	if (plane_state->uapi.visible)
13340 		drm_dbg_kms(&i915->drm,
13341 			    "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n",
13342 			    DRM_RECT_FP_ARG(&plane_state->uapi.src),
13343 			    DRM_RECT_ARG(&plane_state->uapi.dst));
13344 }
13345 
13346 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config,
13347 				   struct intel_atomic_state *state,
13348 				   const char *context)
13349 {
13350 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
13351 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13352 	const struct intel_plane_state *plane_state;
13353 	struct intel_plane *plane;
13354 	char buf[64];
13355 	int i;
13356 
13357 	drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n",
13358 		    crtc->base.base.id, crtc->base.name,
13359 		    yesno(pipe_config->hw.enable), context);
13360 
13361 	if (!pipe_config->hw.enable)
13362 		goto dump_planes;
13363 
13364 	snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
13365 	drm_dbg_kms(&dev_priv->drm,
13366 		    "active: %s, output_types: %s (0x%x), output format: %s\n",
13367 		    yesno(pipe_config->hw.active),
13368 		    buf, pipe_config->output_types,
13369 		    output_formats(pipe_config->output_format));
13370 
13371 	drm_dbg_kms(&dev_priv->drm,
13372 		    "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
13373 		    transcoder_name(pipe_config->cpu_transcoder),
13374 		    pipe_config->pipe_bpp, pipe_config->dither);
13375 
13376 	drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n",
13377 		    transcoder_name(pipe_config->mst_master_transcoder));
13378 
13379 	drm_dbg_kms(&dev_priv->drm,
13380 		    "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n",
13381 		    transcoder_name(pipe_config->master_transcoder),
13382 		    pipe_config->sync_mode_slaves_mask);
13383 
13384 	drm_dbg_kms(&dev_priv->drm, "bigjoiner: %s\n",
13385 		    pipe_config->bigjoiner_slave ? "slave" :
13386 		    pipe_config->bigjoiner ? "master" : "no");
13387 
13388 	if (pipe_config->has_pch_encoder)
13389 		intel_dump_m_n_config(pipe_config, "fdi",
13390 				      pipe_config->fdi_lanes,
13391 				      &pipe_config->fdi_m_n);
13392 
13393 	if (intel_crtc_has_dp_encoder(pipe_config)) {
13394 		intel_dump_m_n_config(pipe_config, "dp m_n",
13395 				pipe_config->lane_count, &pipe_config->dp_m_n);
13396 		if (pipe_config->has_drrs)
13397 			intel_dump_m_n_config(pipe_config, "dp m2_n2",
13398 					      pipe_config->lane_count,
13399 					      &pipe_config->dp_m2_n2);
13400 	}
13401 
13402 	drm_dbg_kms(&dev_priv->drm,
13403 		    "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n",
13404 		    pipe_config->has_audio, pipe_config->has_infoframe,
13405 		    pipe_config->infoframes.enable);
13406 
13407 	if (pipe_config->infoframes.enable &
13408 	    intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL))
13409 		drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n",
13410 			    pipe_config->infoframes.gcp);
13411 	if (pipe_config->infoframes.enable &
13412 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI))
13413 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi);
13414 	if (pipe_config->infoframes.enable &
13415 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD))
13416 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd);
13417 	if (pipe_config->infoframes.enable &
13418 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR))
13419 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi);
13420 	if (pipe_config->infoframes.enable &
13421 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM))
13422 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm);
13423 	if (pipe_config->infoframes.enable &
13424 	    intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA))
13425 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm);
13426 	if (pipe_config->infoframes.enable &
13427 	    intel_hdmi_infoframe_enable(DP_SDP_VSC))
13428 		intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc);
13429 
13430 	drm_dbg_kms(&dev_priv->drm, "requested mode:\n");
13431 	drm_mode_debug_printmodeline(&pipe_config->hw.mode);
13432 	drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n");
13433 	drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode);
13434 	intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode);
13435 	drm_dbg_kms(&dev_priv->drm, "pipe mode:\n");
13436 	drm_mode_debug_printmodeline(&pipe_config->hw.pipe_mode);
13437 	intel_dump_crtc_timings(dev_priv, &pipe_config->hw.pipe_mode);
13438 	drm_dbg_kms(&dev_priv->drm,
13439 		    "port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
13440 		    pipe_config->port_clock,
13441 		    pipe_config->pipe_src_w, pipe_config->pipe_src_h,
13442 		    pipe_config->pixel_rate);
13443 
13444 	drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n",
13445 		    pipe_config->linetime, pipe_config->ips_linetime);
13446 
13447 	if (INTEL_GEN(dev_priv) >= 9)
13448 		drm_dbg_kms(&dev_priv->drm,
13449 			    "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
13450 			    crtc->num_scalers,
13451 			    pipe_config->scaler_state.scaler_users,
13452 			    pipe_config->scaler_state.scaler_id);
13453 
13454 	if (HAS_GMCH(dev_priv))
13455 		drm_dbg_kms(&dev_priv->drm,
13456 			    "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
13457 			    pipe_config->gmch_pfit.control,
13458 			    pipe_config->gmch_pfit.pgm_ratios,
13459 			    pipe_config->gmch_pfit.lvds_border_bits);
13460 	else
13461 		drm_dbg_kms(&dev_priv->drm,
13462 			    "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n",
13463 			    DRM_RECT_ARG(&pipe_config->pch_pfit.dst),
13464 			    enableddisabled(pipe_config->pch_pfit.enabled),
13465 			    yesno(pipe_config->pch_pfit.force_thru));
13466 
13467 	drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n",
13468 		    pipe_config->ips_enabled, pipe_config->double_wide);
13469 
13470 	intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
13471 
13472 	if (IS_CHERRYVIEW(dev_priv))
13473 		drm_dbg_kms(&dev_priv->drm,
13474 			    "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
13475 			    pipe_config->cgm_mode, pipe_config->gamma_mode,
13476 			    pipe_config->gamma_enable, pipe_config->csc_enable);
13477 	else
13478 		drm_dbg_kms(&dev_priv->drm,
13479 			    "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
13480 			    pipe_config->csc_mode, pipe_config->gamma_mode,
13481 			    pipe_config->gamma_enable, pipe_config->csc_enable);
13482 
13483 	drm_dbg_kms(&dev_priv->drm, "degamma lut: %d entries, gamma lut: %d entries\n",
13484 		    pipe_config->hw.degamma_lut ?
13485 		    drm_color_lut_size(pipe_config->hw.degamma_lut) : 0,
13486 		    pipe_config->hw.gamma_lut ?
13487 		    drm_color_lut_size(pipe_config->hw.gamma_lut) : 0);
13488 
13489 dump_planes:
13490 	if (!state)
13491 		return;
13492 
13493 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
13494 		if (plane->pipe == crtc->pipe)
13495 			intel_dump_plane_state(plane_state);
13496 	}
13497 }
13498 
13499 static bool check_digital_port_conflicts(struct intel_atomic_state *state)
13500 {
13501 	struct drm_device *dev = state->base.dev;
13502 	struct drm_connector *connector;
13503 	struct drm_connector_list_iter conn_iter;
13504 	unsigned int used_ports = 0;
13505 	unsigned int used_mst_ports = 0;
13506 	bool ret = true;
13507 
13508 	/*
13509 	 * We're going to peek into connector->state,
13510 	 * hence connection_mutex must be held.
13511 	 */
13512 	drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex);
13513 
13514 	/*
13515 	 * Walk the connector list instead of the encoder
13516 	 * list to detect the problem on ddi platforms
13517 	 * where there's just one encoder per digital port.
13518 	 */
13519 	drm_connector_list_iter_begin(dev, &conn_iter);
13520 	drm_for_each_connector_iter(connector, &conn_iter) {
13521 		struct drm_connector_state *connector_state;
13522 		struct intel_encoder *encoder;
13523 
13524 		connector_state =
13525 			drm_atomic_get_new_connector_state(&state->base,
13526 							   connector);
13527 		if (!connector_state)
13528 			connector_state = connector->state;
13529 
13530 		if (!connector_state->best_encoder)
13531 			continue;
13532 
13533 		encoder = to_intel_encoder(connector_state->best_encoder);
13534 
13535 		drm_WARN_ON(dev, !connector_state->crtc);
13536 
13537 		switch (encoder->type) {
13538 		case INTEL_OUTPUT_DDI:
13539 			if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev))))
13540 				break;
13541 			fallthrough;
13542 		case INTEL_OUTPUT_DP:
13543 		case INTEL_OUTPUT_HDMI:
13544 		case INTEL_OUTPUT_EDP:
13545 			/* the same port mustn't appear more than once */
13546 			if (used_ports & BIT(encoder->port))
13547 				ret = false;
13548 
13549 			used_ports |= BIT(encoder->port);
13550 			break;
13551 		case INTEL_OUTPUT_DP_MST:
13552 			used_mst_ports |=
13553 				1 << encoder->port;
13554 			break;
13555 		default:
13556 			break;
13557 		}
13558 	}
13559 	drm_connector_list_iter_end(&conn_iter);
13560 
13561 	/* can't mix MST and SST/HDMI on the same port */
13562 	if (used_ports & used_mst_ports)
13563 		return false;
13564 
13565 	return ret;
13566 }
13567 
13568 static void
13569 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_atomic_state *state,
13570 					   struct intel_crtc_state *crtc_state)
13571 {
13572 	const struct intel_crtc_state *from_crtc_state = crtc_state;
13573 
13574 	if (crtc_state->bigjoiner_slave) {
13575 		from_crtc_state = intel_atomic_get_new_crtc_state(state,
13576 								  crtc_state->bigjoiner_linked_crtc);
13577 
13578 		/* No need to copy state if the master state is unchanged */
13579 		if (!from_crtc_state)
13580 			return;
13581 	}
13582 
13583 	intel_crtc_copy_color_blobs(crtc_state, from_crtc_state);
13584 }
13585 
13586 static void
13587 intel_crtc_copy_uapi_to_hw_state(struct intel_atomic_state *state,
13588 				 struct intel_crtc_state *crtc_state)
13589 {
13590 	crtc_state->hw.enable = crtc_state->uapi.enable;
13591 	crtc_state->hw.active = crtc_state->uapi.active;
13592 	crtc_state->hw.mode = crtc_state->uapi.mode;
13593 	crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode;
13594 	crtc_state->hw.scaling_filter = crtc_state->uapi.scaling_filter;
13595 
13596 	intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc_state);
13597 }
13598 
13599 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state)
13600 {
13601 	if (crtc_state->bigjoiner_slave)
13602 		return;
13603 
13604 	crtc_state->uapi.enable = crtc_state->hw.enable;
13605 	crtc_state->uapi.active = crtc_state->hw.active;
13606 	drm_WARN_ON(crtc_state->uapi.crtc->dev,
13607 		    drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0);
13608 
13609 	crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode;
13610 	crtc_state->uapi.scaling_filter = crtc_state->hw.scaling_filter;
13611 
13612 	/* copy color blobs to uapi */
13613 	drm_property_replace_blob(&crtc_state->uapi.degamma_lut,
13614 				  crtc_state->hw.degamma_lut);
13615 	drm_property_replace_blob(&crtc_state->uapi.gamma_lut,
13616 				  crtc_state->hw.gamma_lut);
13617 	drm_property_replace_blob(&crtc_state->uapi.ctm,
13618 				  crtc_state->hw.ctm);
13619 }
13620 
13621 static int
13622 copy_bigjoiner_crtc_state(struct intel_crtc_state *crtc_state,
13623 			  const struct intel_crtc_state *from_crtc_state)
13624 {
13625 	struct intel_crtc_state *saved_state;
13626 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13627 
13628 	saved_state = kmemdup(from_crtc_state, sizeof(*saved_state), GFP_KERNEL);
13629 	if (!saved_state)
13630 		return -ENOMEM;
13631 
13632 	saved_state->uapi = crtc_state->uapi;
13633 	saved_state->scaler_state = crtc_state->scaler_state;
13634 	saved_state->shared_dpll = crtc_state->shared_dpll;
13635 	saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
13636 	saved_state->crc_enabled = crtc_state->crc_enabled;
13637 
13638 	intel_crtc_free_hw_state(crtc_state);
13639 	memcpy(crtc_state, saved_state, sizeof(*crtc_state));
13640 	kfree(saved_state);
13641 
13642 	/* Re-init hw state */
13643 	memset(&crtc_state->hw, 0, sizeof(saved_state->hw));
13644 	crtc_state->hw.enable = from_crtc_state->hw.enable;
13645 	crtc_state->hw.active = from_crtc_state->hw.active;
13646 	crtc_state->hw.pipe_mode = from_crtc_state->hw.pipe_mode;
13647 	crtc_state->hw.adjusted_mode = from_crtc_state->hw.adjusted_mode;
13648 
13649 	/* Some fixups */
13650 	crtc_state->uapi.mode_changed = from_crtc_state->uapi.mode_changed;
13651 	crtc_state->uapi.connectors_changed = from_crtc_state->uapi.connectors_changed;
13652 	crtc_state->uapi.active_changed = from_crtc_state->uapi.active_changed;
13653 	crtc_state->nv12_planes = crtc_state->c8_planes = crtc_state->update_planes = 0;
13654 	crtc_state->bigjoiner_linked_crtc = to_intel_crtc(from_crtc_state->uapi.crtc);
13655 	crtc_state->bigjoiner_slave = true;
13656 	crtc_state->cpu_transcoder = (enum transcoder)crtc->pipe;
13657 	crtc_state->has_audio = false;
13658 
13659 	return 0;
13660 }
13661 
13662 static int
13663 intel_crtc_prepare_cleared_state(struct intel_atomic_state *state,
13664 				 struct intel_crtc_state *crtc_state)
13665 {
13666 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13667 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13668 	struct intel_crtc_state *saved_state;
13669 
13670 	saved_state = intel_crtc_state_alloc(crtc);
13671 	if (!saved_state)
13672 		return -ENOMEM;
13673 
13674 	/* free the old crtc_state->hw members */
13675 	intel_crtc_free_hw_state(crtc_state);
13676 
13677 	/* FIXME: before the switch to atomic started, a new pipe_config was
13678 	 * kzalloc'd. Code that depends on any field being zero should be
13679 	 * fixed, so that the crtc_state can be safely duplicated. For now,
13680 	 * only fields that are know to not cause problems are preserved. */
13681 
13682 	saved_state->uapi = crtc_state->uapi;
13683 	saved_state->scaler_state = crtc_state->scaler_state;
13684 	saved_state->shared_dpll = crtc_state->shared_dpll;
13685 	saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
13686 	memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls,
13687 	       sizeof(saved_state->icl_port_dplls));
13688 	saved_state->crc_enabled = crtc_state->crc_enabled;
13689 	if (IS_G4X(dev_priv) ||
13690 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13691 		saved_state->wm = crtc_state->wm;
13692 
13693 	memcpy(crtc_state, saved_state, sizeof(*crtc_state));
13694 	kfree(saved_state);
13695 
13696 	intel_crtc_copy_uapi_to_hw_state(state, crtc_state);
13697 
13698 	return 0;
13699 }
13700 
13701 static int
13702 intel_modeset_pipe_config(struct intel_atomic_state *state,
13703 			  struct intel_crtc_state *pipe_config)
13704 {
13705 	struct drm_crtc *crtc = pipe_config->uapi.crtc;
13706 	struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
13707 	struct drm_connector *connector;
13708 	struct drm_connector_state *connector_state;
13709 	int base_bpp, ret, i;
13710 	bool retry = true;
13711 
13712 	pipe_config->cpu_transcoder =
13713 		(enum transcoder) to_intel_crtc(crtc)->pipe;
13714 
13715 	/*
13716 	 * Sanitize sync polarity flags based on requested ones. If neither
13717 	 * positive or negative polarity is requested, treat this as meaning
13718 	 * negative polarity.
13719 	 */
13720 	if (!(pipe_config->hw.adjusted_mode.flags &
13721 	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
13722 		pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
13723 
13724 	if (!(pipe_config->hw.adjusted_mode.flags &
13725 	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
13726 		pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
13727 
13728 	ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
13729 					pipe_config);
13730 	if (ret)
13731 		return ret;
13732 
13733 	base_bpp = pipe_config->pipe_bpp;
13734 
13735 	/*
13736 	 * Determine the real pipe dimensions. Note that stereo modes can
13737 	 * increase the actual pipe size due to the frame doubling and
13738 	 * insertion of additional space for blanks between the frame. This
13739 	 * is stored in the crtc timings. We use the requested mode to do this
13740 	 * computation to clearly distinguish it from the adjusted mode, which
13741 	 * can be changed by the connectors in the below retry loop.
13742 	 */
13743 	drm_mode_get_hv_timing(&pipe_config->hw.mode,
13744 			       &pipe_config->pipe_src_w,
13745 			       &pipe_config->pipe_src_h);
13746 
13747 	for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
13748 		struct intel_encoder *encoder =
13749 			to_intel_encoder(connector_state->best_encoder);
13750 
13751 		if (connector_state->crtc != crtc)
13752 			continue;
13753 
13754 		if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13755 			drm_dbg_kms(&i915->drm,
13756 				    "rejecting invalid cloning configuration\n");
13757 			return -EINVAL;
13758 		}
13759 
13760 		/*
13761 		 * Determine output_types before calling the .compute_config()
13762 		 * hooks so that the hooks can use this information safely.
13763 		 */
13764 		if (encoder->compute_output_type)
13765 			pipe_config->output_types |=
13766 				BIT(encoder->compute_output_type(encoder, pipe_config,
13767 								 connector_state));
13768 		else
13769 			pipe_config->output_types |= BIT(encoder->type);
13770 	}
13771 
13772 encoder_retry:
13773 	/* Ensure the port clock defaults are reset when retrying. */
13774 	pipe_config->port_clock = 0;
13775 	pipe_config->pixel_multiplier = 1;
13776 
13777 	/* Fill in default crtc timings, allow encoders to overwrite them. */
13778 	drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode,
13779 			      CRTC_STEREO_DOUBLE);
13780 
13781 	/* Pass our mode to the connectors and the CRTC to give them a chance to
13782 	 * adjust it according to limitations or connector properties, and also
13783 	 * a chance to reject the mode entirely.
13784 	 */
13785 	for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
13786 		struct intel_encoder *encoder =
13787 			to_intel_encoder(connector_state->best_encoder);
13788 
13789 		if (connector_state->crtc != crtc)
13790 			continue;
13791 
13792 		ret = encoder->compute_config(encoder, pipe_config,
13793 					      connector_state);
13794 		if (ret < 0) {
13795 			if (ret != -EDEADLK)
13796 				drm_dbg_kms(&i915->drm,
13797 					    "Encoder config failure: %d\n",
13798 					    ret);
13799 			return ret;
13800 		}
13801 	}
13802 
13803 	/* Set default port clock if not overwritten by the encoder. Needs to be
13804 	 * done afterwards in case the encoder adjusts the mode. */
13805 	if (!pipe_config->port_clock)
13806 		pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock
13807 			* pipe_config->pixel_multiplier;
13808 
13809 	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13810 	if (ret == -EDEADLK)
13811 		return ret;
13812 	if (ret < 0) {
13813 		drm_dbg_kms(&i915->drm, "CRTC fixup failed\n");
13814 		return ret;
13815 	}
13816 
13817 	if (ret == RETRY) {
13818 		if (drm_WARN(&i915->drm, !retry,
13819 			     "loop in pipe configuration computation\n"))
13820 			return -EINVAL;
13821 
13822 		drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n");
13823 		retry = false;
13824 		goto encoder_retry;
13825 	}
13826 
13827 	/* Dithering seems to not pass-through bits correctly when it should, so
13828 	 * only enable it on 6bpc panels and when its not a compliance
13829 	 * test requesting 6bpc video pattern.
13830 	 */
13831 	pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
13832 		!pipe_config->dither_force_disable;
13833 	drm_dbg_kms(&i915->drm,
13834 		    "hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13835 		    base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13836 
13837 	return 0;
13838 }
13839 
13840 static int
13841 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state)
13842 {
13843 	struct intel_atomic_state *state =
13844 		to_intel_atomic_state(crtc_state->uapi.state);
13845 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13846 	struct drm_connector_state *conn_state;
13847 	struct drm_connector *connector;
13848 	int i;
13849 
13850 	for_each_new_connector_in_state(&state->base, connector,
13851 					conn_state, i) {
13852 		struct intel_encoder *encoder =
13853 			to_intel_encoder(conn_state->best_encoder);
13854 		int ret;
13855 
13856 		if (conn_state->crtc != &crtc->base ||
13857 		    !encoder->compute_config_late)
13858 			continue;
13859 
13860 		ret = encoder->compute_config_late(encoder, crtc_state,
13861 						   conn_state);
13862 		if (ret)
13863 			return ret;
13864 	}
13865 
13866 	return 0;
13867 }
13868 
13869 bool intel_fuzzy_clock_check(int clock1, int clock2)
13870 {
13871 	int diff;
13872 
13873 	if (clock1 == clock2)
13874 		return true;
13875 
13876 	if (!clock1 || !clock2)
13877 		return false;
13878 
13879 	diff = abs(clock1 - clock2);
13880 
13881 	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13882 		return true;
13883 
13884 	return false;
13885 }
13886 
13887 static bool
13888 intel_compare_m_n(unsigned int m, unsigned int n,
13889 		  unsigned int m2, unsigned int n2,
13890 		  bool exact)
13891 {
13892 	if (m == m2 && n == n2)
13893 		return true;
13894 
13895 	if (exact || !m || !n || !m2 || !n2)
13896 		return false;
13897 
13898 	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13899 
13900 	if (n > n2) {
13901 		while (n > n2) {
13902 			m2 <<= 1;
13903 			n2 <<= 1;
13904 		}
13905 	} else if (n < n2) {
13906 		while (n < n2) {
13907 			m <<= 1;
13908 			n <<= 1;
13909 		}
13910 	}
13911 
13912 	if (n != n2)
13913 		return false;
13914 
13915 	return intel_fuzzy_clock_check(m, m2);
13916 }
13917 
13918 static bool
13919 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13920 		       const struct intel_link_m_n *m2_n2,
13921 		       bool exact)
13922 {
13923 	return m_n->tu == m2_n2->tu &&
13924 		intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13925 				  m2_n2->gmch_m, m2_n2->gmch_n, exact) &&
13926 		intel_compare_m_n(m_n->link_m, m_n->link_n,
13927 				  m2_n2->link_m, m2_n2->link_n, exact);
13928 }
13929 
13930 static bool
13931 intel_compare_infoframe(const union hdmi_infoframe *a,
13932 			const union hdmi_infoframe *b)
13933 {
13934 	return memcmp(a, b, sizeof(*a)) == 0;
13935 }
13936 
13937 static bool
13938 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a,
13939 			 const struct drm_dp_vsc_sdp *b)
13940 {
13941 	return memcmp(a, b, sizeof(*a)) == 0;
13942 }
13943 
13944 static void
13945 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv,
13946 			       bool fastset, const char *name,
13947 			       const union hdmi_infoframe *a,
13948 			       const union hdmi_infoframe *b)
13949 {
13950 	if (fastset) {
13951 		if (!drm_debug_enabled(DRM_UT_KMS))
13952 			return;
13953 
13954 		drm_dbg_kms(&dev_priv->drm,
13955 			    "fastset mismatch in %s infoframe\n", name);
13956 		drm_dbg_kms(&dev_priv->drm, "expected:\n");
13957 		hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a);
13958 		drm_dbg_kms(&dev_priv->drm, "found:\n");
13959 		hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b);
13960 	} else {
13961 		drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name);
13962 		drm_err(&dev_priv->drm, "expected:\n");
13963 		hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a);
13964 		drm_err(&dev_priv->drm, "found:\n");
13965 		hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b);
13966 	}
13967 }
13968 
13969 static void
13970 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv,
13971 				bool fastset, const char *name,
13972 				const struct drm_dp_vsc_sdp *a,
13973 				const struct drm_dp_vsc_sdp *b)
13974 {
13975 	if (fastset) {
13976 		if (!drm_debug_enabled(DRM_UT_KMS))
13977 			return;
13978 
13979 		drm_dbg_kms(&dev_priv->drm,
13980 			    "fastset mismatch in %s dp sdp\n", name);
13981 		drm_dbg_kms(&dev_priv->drm, "expected:\n");
13982 		drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a);
13983 		drm_dbg_kms(&dev_priv->drm, "found:\n");
13984 		drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b);
13985 	} else {
13986 		drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name);
13987 		drm_err(&dev_priv->drm, "expected:\n");
13988 		drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a);
13989 		drm_err(&dev_priv->drm, "found:\n");
13990 		drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b);
13991 	}
13992 }
13993 
13994 static void __printf(4, 5)
13995 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc,
13996 		     const char *name, const char *format, ...)
13997 {
13998 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
13999 	struct va_format vaf;
14000 	va_list args;
14001 
14002 	va_start(args, format);
14003 	vaf.fmt = format;
14004 	vaf.va = &args;
14005 
14006 	if (fastset)
14007 		drm_dbg_kms(&i915->drm,
14008 			    "[CRTC:%d:%s] fastset mismatch in %s %pV\n",
14009 			    crtc->base.base.id, crtc->base.name, name, &vaf);
14010 	else
14011 		drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n",
14012 			crtc->base.base.id, crtc->base.name, name, &vaf);
14013 
14014 	va_end(args);
14015 }
14016 
14017 static bool fastboot_enabled(struct drm_i915_private *dev_priv)
14018 {
14019 	if (dev_priv->params.fastboot != -1)
14020 		return dev_priv->params.fastboot;
14021 
14022 	/* Enable fastboot by default on Skylake and newer */
14023 	if (INTEL_GEN(dev_priv) >= 9)
14024 		return true;
14025 
14026 	/* Enable fastboot by default on VLV and CHV */
14027 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14028 		return true;
14029 
14030 	/* Disabled by default on all others */
14031 	return false;
14032 }
14033 
14034 static bool
14035 intel_pipe_config_compare(const struct intel_crtc_state *current_config,
14036 			  const struct intel_crtc_state *pipe_config,
14037 			  bool fastset)
14038 {
14039 	struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev);
14040 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
14041 	bool ret = true;
14042 	u32 bp_gamma = 0;
14043 	bool fixup_inherited = fastset &&
14044 		current_config->inherited && !pipe_config->inherited;
14045 
14046 	if (fixup_inherited && !fastboot_enabled(dev_priv)) {
14047 		drm_dbg_kms(&dev_priv->drm,
14048 			    "initial modeset and fastboot not set\n");
14049 		ret = false;
14050 	}
14051 
14052 #define PIPE_CONF_CHECK_X(name) do { \
14053 	if (current_config->name != pipe_config->name) { \
14054 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
14055 				     "(expected 0x%08x, found 0x%08x)", \
14056 				     current_config->name, \
14057 				     pipe_config->name); \
14058 		ret = false; \
14059 	} \
14060 } while (0)
14061 
14062 #define PIPE_CONF_CHECK_I(name) do { \
14063 	if (current_config->name != pipe_config->name) { \
14064 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
14065 				     "(expected %i, found %i)", \
14066 				     current_config->name, \
14067 				     pipe_config->name); \
14068 		ret = false; \
14069 	} \
14070 } while (0)
14071 
14072 #define PIPE_CONF_CHECK_BOOL(name) do { \
14073 	if (current_config->name != pipe_config->name) { \
14074 		pipe_config_mismatch(fastset, crtc,  __stringify(name), \
14075 				     "(expected %s, found %s)", \
14076 				     yesno(current_config->name), \
14077 				     yesno(pipe_config->name)); \
14078 		ret = false; \
14079 	} \
14080 } while (0)
14081 
14082 /*
14083  * Checks state where we only read out the enabling, but not the entire
14084  * state itself (like full infoframes or ELD for audio). These states
14085  * require a full modeset on bootup to fix up.
14086  */
14087 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \
14088 	if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \
14089 		PIPE_CONF_CHECK_BOOL(name); \
14090 	} else { \
14091 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
14092 				     "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \
14093 				     yesno(current_config->name), \
14094 				     yesno(pipe_config->name)); \
14095 		ret = false; \
14096 	} \
14097 } while (0)
14098 
14099 #define PIPE_CONF_CHECK_P(name) do { \
14100 	if (current_config->name != pipe_config->name) { \
14101 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
14102 				     "(expected %p, found %p)", \
14103 				     current_config->name, \
14104 				     pipe_config->name); \
14105 		ret = false; \
14106 	} \
14107 } while (0)
14108 
14109 #define PIPE_CONF_CHECK_M_N(name) do { \
14110 	if (!intel_compare_link_m_n(&current_config->name, \
14111 				    &pipe_config->name,\
14112 				    !fastset)) { \
14113 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
14114 				     "(expected tu %i gmch %i/%i link %i/%i, " \
14115 				     "found tu %i, gmch %i/%i link %i/%i)", \
14116 				     current_config->name.tu, \
14117 				     current_config->name.gmch_m, \
14118 				     current_config->name.gmch_n, \
14119 				     current_config->name.link_m, \
14120 				     current_config->name.link_n, \
14121 				     pipe_config->name.tu, \
14122 				     pipe_config->name.gmch_m, \
14123 				     pipe_config->name.gmch_n, \
14124 				     pipe_config->name.link_m, \
14125 				     pipe_config->name.link_n); \
14126 		ret = false; \
14127 	} \
14128 } while (0)
14129 
14130 /* This is required for BDW+ where there is only one set of registers for
14131  * switching between high and low RR.
14132  * This macro can be used whenever a comparison has to be made between one
14133  * hw state and multiple sw state variables.
14134  */
14135 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \
14136 	if (!intel_compare_link_m_n(&current_config->name, \
14137 				    &pipe_config->name, !fastset) && \
14138 	    !intel_compare_link_m_n(&current_config->alt_name, \
14139 				    &pipe_config->name, !fastset)) { \
14140 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
14141 				     "(expected tu %i gmch %i/%i link %i/%i, " \
14142 				     "or tu %i gmch %i/%i link %i/%i, " \
14143 				     "found tu %i, gmch %i/%i link %i/%i)", \
14144 				     current_config->name.tu, \
14145 				     current_config->name.gmch_m, \
14146 				     current_config->name.gmch_n, \
14147 				     current_config->name.link_m, \
14148 				     current_config->name.link_n, \
14149 				     current_config->alt_name.tu, \
14150 				     current_config->alt_name.gmch_m, \
14151 				     current_config->alt_name.gmch_n, \
14152 				     current_config->alt_name.link_m, \
14153 				     current_config->alt_name.link_n, \
14154 				     pipe_config->name.tu, \
14155 				     pipe_config->name.gmch_m, \
14156 				     pipe_config->name.gmch_n, \
14157 				     pipe_config->name.link_m, \
14158 				     pipe_config->name.link_n); \
14159 		ret = false; \
14160 	} \
14161 } while (0)
14162 
14163 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
14164 	if ((current_config->name ^ pipe_config->name) & (mask)) { \
14165 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
14166 				     "(%x) (expected %i, found %i)", \
14167 				     (mask), \
14168 				     current_config->name & (mask), \
14169 				     pipe_config->name & (mask)); \
14170 		ret = false; \
14171 	} \
14172 } while (0)
14173 
14174 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \
14175 	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
14176 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
14177 				     "(expected %i, found %i)", \
14178 				     current_config->name, \
14179 				     pipe_config->name); \
14180 		ret = false; \
14181 	} \
14182 } while (0)
14183 
14184 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \
14185 	if (!intel_compare_infoframe(&current_config->infoframes.name, \
14186 				     &pipe_config->infoframes.name)) { \
14187 		pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \
14188 					       &current_config->infoframes.name, \
14189 					       &pipe_config->infoframes.name); \
14190 		ret = false; \
14191 	} \
14192 } while (0)
14193 
14194 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \
14195 	if (!current_config->has_psr && !pipe_config->has_psr && \
14196 	    !intel_compare_dp_vsc_sdp(&current_config->infoframes.name, \
14197 				      &pipe_config->infoframes.name)) { \
14198 		pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \
14199 						&current_config->infoframes.name, \
14200 						&pipe_config->infoframes.name); \
14201 		ret = false; \
14202 	} \
14203 } while (0)
14204 
14205 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \
14206 	if (current_config->name1 != pipe_config->name1) { \
14207 		pipe_config_mismatch(fastset, crtc, __stringify(name1), \
14208 				"(expected %i, found %i, won't compare lut values)", \
14209 				current_config->name1, \
14210 				pipe_config->name1); \
14211 		ret = false;\
14212 	} else { \
14213 		if (!intel_color_lut_equal(current_config->name2, \
14214 					pipe_config->name2, pipe_config->name1, \
14215 					bit_precision)) { \
14216 			pipe_config_mismatch(fastset, crtc, __stringify(name2), \
14217 					"hw_state doesn't match sw_state"); \
14218 			ret = false; \
14219 		} \
14220 	} \
14221 } while (0)
14222 
14223 #define PIPE_CONF_QUIRK(quirk) \
14224 	((current_config->quirks | pipe_config->quirks) & (quirk))
14225 
14226 	PIPE_CONF_CHECK_I(cpu_transcoder);
14227 
14228 	PIPE_CONF_CHECK_BOOL(has_pch_encoder);
14229 	PIPE_CONF_CHECK_I(fdi_lanes);
14230 	PIPE_CONF_CHECK_M_N(fdi_m_n);
14231 
14232 	PIPE_CONF_CHECK_I(lane_count);
14233 	PIPE_CONF_CHECK_X(lane_lat_optim_mask);
14234 
14235 	if (INTEL_GEN(dev_priv) < 8) {
14236 		PIPE_CONF_CHECK_M_N(dp_m_n);
14237 
14238 		if (current_config->has_drrs)
14239 			PIPE_CONF_CHECK_M_N(dp_m2_n2);
14240 	} else
14241 		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
14242 
14243 	PIPE_CONF_CHECK_X(output_types);
14244 
14245 	/* FIXME do the readout properly and get rid of this quirk */
14246 	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) {
14247 		PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hdisplay);
14248 		PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_htotal);
14249 		PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_start);
14250 		PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hblank_end);
14251 		PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_start);
14252 		PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_hsync_end);
14253 
14254 		PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vdisplay);
14255 		PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vtotal);
14256 		PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_start);
14257 		PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vblank_end);
14258 		PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_start);
14259 		PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_vsync_end);
14260 
14261 		PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay);
14262 		PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal);
14263 		PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start);
14264 		PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end);
14265 		PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start);
14266 		PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end);
14267 
14268 		PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay);
14269 		PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal);
14270 		PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start);
14271 		PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end);
14272 		PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start);
14273 		PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end);
14274 
14275 		PIPE_CONF_CHECK_I(pixel_multiplier);
14276 
14277 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
14278 				      DRM_MODE_FLAG_INTERLACE);
14279 
14280 		if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
14281 			PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
14282 					      DRM_MODE_FLAG_PHSYNC);
14283 			PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
14284 					      DRM_MODE_FLAG_NHSYNC);
14285 			PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
14286 					      DRM_MODE_FLAG_PVSYNC);
14287 			PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
14288 					      DRM_MODE_FLAG_NVSYNC);
14289 		}
14290 	}
14291 
14292 	PIPE_CONF_CHECK_I(output_format);
14293 	PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
14294 	if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
14295 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14296 		PIPE_CONF_CHECK_BOOL(limited_color_range);
14297 
14298 	PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
14299 	PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
14300 	PIPE_CONF_CHECK_BOOL(has_infoframe);
14301 	/* FIXME do the readout properly and get rid of this quirk */
14302 	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE))
14303 		PIPE_CONF_CHECK_BOOL(fec_enable);
14304 
14305 	PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio);
14306 
14307 	PIPE_CONF_CHECK_X(gmch_pfit.control);
14308 	/* pfit ratios are autocomputed by the hw on gen4+ */
14309 	if (INTEL_GEN(dev_priv) < 4)
14310 		PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
14311 	PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
14312 
14313 	/*
14314 	 * Changing the EDP transcoder input mux
14315 	 * (A_ONOFF vs. A_ON) requires a full modeset.
14316 	 */
14317 	PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru);
14318 
14319 	if (!fastset) {
14320 		PIPE_CONF_CHECK_I(pipe_src_w);
14321 		PIPE_CONF_CHECK_I(pipe_src_h);
14322 
14323 		PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
14324 		if (current_config->pch_pfit.enabled) {
14325 			PIPE_CONF_CHECK_I(pch_pfit.dst.x1);
14326 			PIPE_CONF_CHECK_I(pch_pfit.dst.y1);
14327 			PIPE_CONF_CHECK_I(pch_pfit.dst.x2);
14328 			PIPE_CONF_CHECK_I(pch_pfit.dst.y2);
14329 		}
14330 
14331 		PIPE_CONF_CHECK_I(scaler_state.scaler_id);
14332 		/* FIXME do the readout properly and get rid of this quirk */
14333 		if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE))
14334 			PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
14335 
14336 		PIPE_CONF_CHECK_X(gamma_mode);
14337 		if (IS_CHERRYVIEW(dev_priv))
14338 			PIPE_CONF_CHECK_X(cgm_mode);
14339 		else
14340 			PIPE_CONF_CHECK_X(csc_mode);
14341 		PIPE_CONF_CHECK_BOOL(gamma_enable);
14342 		PIPE_CONF_CHECK_BOOL(csc_enable);
14343 
14344 		PIPE_CONF_CHECK_I(linetime);
14345 		PIPE_CONF_CHECK_I(ips_linetime);
14346 
14347 		bp_gamma = intel_color_get_gamma_bit_precision(pipe_config);
14348 		if (bp_gamma)
14349 			PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma);
14350 	}
14351 
14352 	PIPE_CONF_CHECK_BOOL(double_wide);
14353 
14354 	PIPE_CONF_CHECK_P(shared_dpll);
14355 
14356 	/* FIXME do the readout properly and get rid of this quirk */
14357 	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE)) {
14358 		PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
14359 		PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
14360 		PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
14361 		PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
14362 		PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
14363 		PIPE_CONF_CHECK_X(dpll_hw_state.spll);
14364 		PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
14365 		PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
14366 		PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
14367 		PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
14368 		PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
14369 		PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
14370 		PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
14371 		PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
14372 		PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
14373 		PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
14374 		PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
14375 		PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
14376 		PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
14377 		PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
14378 		PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
14379 		PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl);
14380 		PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1);
14381 		PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl);
14382 		PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0);
14383 		PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1);
14384 		PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf);
14385 		PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock);
14386 		PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc);
14387 		PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias);
14388 		PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias);
14389 
14390 		PIPE_CONF_CHECK_X(dsi_pll.ctrl);
14391 		PIPE_CONF_CHECK_X(dsi_pll.div);
14392 
14393 		if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
14394 			PIPE_CONF_CHECK_I(pipe_bpp);
14395 
14396 		PIPE_CONF_CHECK_CLOCK_FUZZY(hw.pipe_mode.crtc_clock);
14397 		PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock);
14398 		PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
14399 
14400 		PIPE_CONF_CHECK_I(min_voltage_level);
14401 	}
14402 
14403 	PIPE_CONF_CHECK_X(infoframes.enable);
14404 	PIPE_CONF_CHECK_X(infoframes.gcp);
14405 	PIPE_CONF_CHECK_INFOFRAME(avi);
14406 	PIPE_CONF_CHECK_INFOFRAME(spd);
14407 	PIPE_CONF_CHECK_INFOFRAME(hdmi);
14408 	PIPE_CONF_CHECK_INFOFRAME(drm);
14409 	PIPE_CONF_CHECK_DP_VSC_SDP(vsc);
14410 
14411 	PIPE_CONF_CHECK_X(sync_mode_slaves_mask);
14412 	PIPE_CONF_CHECK_I(master_transcoder);
14413 	PIPE_CONF_CHECK_BOOL(bigjoiner);
14414 	PIPE_CONF_CHECK_BOOL(bigjoiner_slave);
14415 	PIPE_CONF_CHECK_P(bigjoiner_linked_crtc);
14416 
14417 	PIPE_CONF_CHECK_I(dsc.compression_enable);
14418 	PIPE_CONF_CHECK_I(dsc.dsc_split);
14419 	PIPE_CONF_CHECK_I(dsc.compressed_bpp);
14420 
14421 	PIPE_CONF_CHECK_I(mst_master_transcoder);
14422 
14423 #undef PIPE_CONF_CHECK_X
14424 #undef PIPE_CONF_CHECK_I
14425 #undef PIPE_CONF_CHECK_BOOL
14426 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE
14427 #undef PIPE_CONF_CHECK_P
14428 #undef PIPE_CONF_CHECK_FLAGS
14429 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
14430 #undef PIPE_CONF_CHECK_COLOR_LUT
14431 #undef PIPE_CONF_QUIRK
14432 
14433 	return ret;
14434 }
14435 
14436 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
14437 					   const struct intel_crtc_state *pipe_config)
14438 {
14439 	if (pipe_config->has_pch_encoder) {
14440 		int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
14441 							    &pipe_config->fdi_m_n);
14442 		int dotclock = pipe_config->hw.adjusted_mode.crtc_clock;
14443 
14444 		/*
14445 		 * FDI already provided one idea for the dotclock.
14446 		 * Yell if the encoder disagrees.
14447 		 */
14448 		drm_WARN(&dev_priv->drm,
14449 			 !intel_fuzzy_clock_check(fdi_dotclock, dotclock),
14450 			 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
14451 			 fdi_dotclock, dotclock);
14452 	}
14453 }
14454 
14455 static void verify_wm_state(struct intel_crtc *crtc,
14456 			    struct intel_crtc_state *new_crtc_state)
14457 {
14458 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14459 	struct skl_hw_state {
14460 		struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
14461 		struct skl_ddb_entry ddb_uv[I915_MAX_PLANES];
14462 		struct skl_pipe_wm wm;
14463 	} *hw;
14464 	struct skl_pipe_wm *sw_wm;
14465 	struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
14466 	u8 hw_enabled_slices;
14467 	const enum pipe pipe = crtc->pipe;
14468 	int plane, level, max_level = ilk_wm_max_level(dev_priv);
14469 
14470 	if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active)
14471 		return;
14472 
14473 	hw = kzalloc(sizeof(*hw), GFP_KERNEL);
14474 	if (!hw)
14475 		return;
14476 
14477 	skl_pipe_wm_get_hw_state(crtc, &hw->wm);
14478 	sw_wm = &new_crtc_state->wm.skl.optimal;
14479 
14480 	skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv);
14481 
14482 	hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv);
14483 
14484 	if (INTEL_GEN(dev_priv) >= 11 &&
14485 	    hw_enabled_slices != dev_priv->dbuf.enabled_slices)
14486 		drm_err(&dev_priv->drm,
14487 			"mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n",
14488 			dev_priv->dbuf.enabled_slices,
14489 			hw_enabled_slices);
14490 
14491 	/* planes */
14492 	for_each_universal_plane(dev_priv, pipe, plane) {
14493 		struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
14494 
14495 		hw_plane_wm = &hw->wm.planes[plane];
14496 		sw_plane_wm = &sw_wm->planes[plane];
14497 
14498 		/* Watermarks */
14499 		for (level = 0; level <= max_level; level++) {
14500 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
14501 						&sw_plane_wm->wm[level]) ||
14502 			    (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level],
14503 							       &sw_plane_wm->sagv_wm0)))
14504 				continue;
14505 
14506 			drm_err(&dev_priv->drm,
14507 				"mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14508 				pipe_name(pipe), plane + 1, level,
14509 				sw_plane_wm->wm[level].plane_en,
14510 				sw_plane_wm->wm[level].plane_res_b,
14511 				sw_plane_wm->wm[level].plane_res_l,
14512 				hw_plane_wm->wm[level].plane_en,
14513 				hw_plane_wm->wm[level].plane_res_b,
14514 				hw_plane_wm->wm[level].plane_res_l);
14515 		}
14516 
14517 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
14518 					 &sw_plane_wm->trans_wm)) {
14519 			drm_err(&dev_priv->drm,
14520 				"mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14521 				pipe_name(pipe), plane + 1,
14522 				sw_plane_wm->trans_wm.plane_en,
14523 				sw_plane_wm->trans_wm.plane_res_b,
14524 				sw_plane_wm->trans_wm.plane_res_l,
14525 				hw_plane_wm->trans_wm.plane_en,
14526 				hw_plane_wm->trans_wm.plane_res_b,
14527 				hw_plane_wm->trans_wm.plane_res_l);
14528 		}
14529 
14530 		/* DDB */
14531 		hw_ddb_entry = &hw->ddb_y[plane];
14532 		sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane];
14533 
14534 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
14535 			drm_err(&dev_priv->drm,
14536 				"mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
14537 				pipe_name(pipe), plane + 1,
14538 				sw_ddb_entry->start, sw_ddb_entry->end,
14539 				hw_ddb_entry->start, hw_ddb_entry->end);
14540 		}
14541 	}
14542 
14543 	/*
14544 	 * cursor
14545 	 * If the cursor plane isn't active, we may not have updated it's ddb
14546 	 * allocation. In that case since the ddb allocation will be updated
14547 	 * once the plane becomes visible, we can skip this check
14548 	 */
14549 	if (1) {
14550 		struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
14551 
14552 		hw_plane_wm = &hw->wm.planes[PLANE_CURSOR];
14553 		sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
14554 
14555 		/* Watermarks */
14556 		for (level = 0; level <= max_level; level++) {
14557 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
14558 						&sw_plane_wm->wm[level]) ||
14559 			    (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level],
14560 							       &sw_plane_wm->sagv_wm0)))
14561 				continue;
14562 
14563 			drm_err(&dev_priv->drm,
14564 				"mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14565 				pipe_name(pipe), level,
14566 				sw_plane_wm->wm[level].plane_en,
14567 				sw_plane_wm->wm[level].plane_res_b,
14568 				sw_plane_wm->wm[level].plane_res_l,
14569 				hw_plane_wm->wm[level].plane_en,
14570 				hw_plane_wm->wm[level].plane_res_b,
14571 				hw_plane_wm->wm[level].plane_res_l);
14572 		}
14573 
14574 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
14575 					 &sw_plane_wm->trans_wm)) {
14576 			drm_err(&dev_priv->drm,
14577 				"mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14578 				pipe_name(pipe),
14579 				sw_plane_wm->trans_wm.plane_en,
14580 				sw_plane_wm->trans_wm.plane_res_b,
14581 				sw_plane_wm->trans_wm.plane_res_l,
14582 				hw_plane_wm->trans_wm.plane_en,
14583 				hw_plane_wm->trans_wm.plane_res_b,
14584 				hw_plane_wm->trans_wm.plane_res_l);
14585 		}
14586 
14587 		/* DDB */
14588 		hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR];
14589 		sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR];
14590 
14591 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
14592 			drm_err(&dev_priv->drm,
14593 				"mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
14594 				pipe_name(pipe),
14595 				sw_ddb_entry->start, sw_ddb_entry->end,
14596 				hw_ddb_entry->start, hw_ddb_entry->end);
14597 		}
14598 	}
14599 
14600 	kfree(hw);
14601 }
14602 
14603 static void
14604 verify_connector_state(struct intel_atomic_state *state,
14605 		       struct intel_crtc *crtc)
14606 {
14607 	struct drm_connector *connector;
14608 	struct drm_connector_state *new_conn_state;
14609 	int i;
14610 
14611 	for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) {
14612 		struct drm_encoder *encoder = connector->encoder;
14613 		struct intel_crtc_state *crtc_state = NULL;
14614 
14615 		if (new_conn_state->crtc != &crtc->base)
14616 			continue;
14617 
14618 		if (crtc)
14619 			crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
14620 
14621 		intel_connector_verify_state(crtc_state, new_conn_state);
14622 
14623 		I915_STATE_WARN(new_conn_state->best_encoder != encoder,
14624 		     "connector's atomic encoder doesn't match legacy encoder\n");
14625 	}
14626 }
14627 
14628 static void
14629 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state)
14630 {
14631 	struct intel_encoder *encoder;
14632 	struct drm_connector *connector;
14633 	struct drm_connector_state *old_conn_state, *new_conn_state;
14634 	int i;
14635 
14636 	for_each_intel_encoder(&dev_priv->drm, encoder) {
14637 		bool enabled = false, found = false;
14638 		enum pipe pipe;
14639 
14640 		drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n",
14641 			    encoder->base.base.id,
14642 			    encoder->base.name);
14643 
14644 		for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state,
14645 						   new_conn_state, i) {
14646 			if (old_conn_state->best_encoder == &encoder->base)
14647 				found = true;
14648 
14649 			if (new_conn_state->best_encoder != &encoder->base)
14650 				continue;
14651 			found = enabled = true;
14652 
14653 			I915_STATE_WARN(new_conn_state->crtc !=
14654 					encoder->base.crtc,
14655 			     "connector's crtc doesn't match encoder crtc\n");
14656 		}
14657 
14658 		if (!found)
14659 			continue;
14660 
14661 		I915_STATE_WARN(!!encoder->base.crtc != enabled,
14662 		     "encoder's enabled state mismatch "
14663 		     "(expected %i, found %i)\n",
14664 		     !!encoder->base.crtc, enabled);
14665 
14666 		if (!encoder->base.crtc) {
14667 			bool active;
14668 
14669 			active = encoder->get_hw_state(encoder, &pipe);
14670 			I915_STATE_WARN(active,
14671 			     "encoder detached but still enabled on pipe %c.\n",
14672 			     pipe_name(pipe));
14673 		}
14674 	}
14675 }
14676 
14677 static void
14678 verify_crtc_state(struct intel_crtc *crtc,
14679 		  struct intel_crtc_state *old_crtc_state,
14680 		  struct intel_crtc_state *new_crtc_state)
14681 {
14682 	struct drm_device *dev = crtc->base.dev;
14683 	struct drm_i915_private *dev_priv = to_i915(dev);
14684 	struct intel_encoder *encoder;
14685 	struct intel_crtc_state *pipe_config = old_crtc_state;
14686 	struct drm_atomic_state *state = old_crtc_state->uapi.state;
14687 	struct intel_crtc *master = crtc;
14688 
14689 	__drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi);
14690 	intel_crtc_free_hw_state(old_crtc_state);
14691 	intel_crtc_state_reset(old_crtc_state, crtc);
14692 	old_crtc_state->uapi.state = state;
14693 
14694 	drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id,
14695 		    crtc->base.name);
14696 
14697 	pipe_config->hw.enable = new_crtc_state->hw.enable;
14698 
14699 	intel_crtc_get_pipe_config(pipe_config);
14700 
14701 	/* we keep both pipes enabled on 830 */
14702 	if (IS_I830(dev_priv) && pipe_config->hw.active)
14703 		pipe_config->hw.active = new_crtc_state->hw.active;
14704 
14705 	I915_STATE_WARN(new_crtc_state->hw.active != pipe_config->hw.active,
14706 			"crtc active state doesn't match with hw state "
14707 			"(expected %i, found %i)\n",
14708 			new_crtc_state->hw.active, pipe_config->hw.active);
14709 
14710 	I915_STATE_WARN(crtc->active != new_crtc_state->hw.active,
14711 			"transitional active state does not match atomic hw state "
14712 			"(expected %i, found %i)\n",
14713 			new_crtc_state->hw.active, crtc->active);
14714 
14715 	if (new_crtc_state->bigjoiner_slave)
14716 		master = new_crtc_state->bigjoiner_linked_crtc;
14717 
14718 	for_each_encoder_on_crtc(dev, &master->base, encoder) {
14719 		enum pipe pipe;
14720 		bool active;
14721 
14722 		active = encoder->get_hw_state(encoder, &pipe);
14723 		I915_STATE_WARN(active != new_crtc_state->hw.active,
14724 				"[ENCODER:%i] active %i with crtc active %i\n",
14725 				encoder->base.base.id, active,
14726 				new_crtc_state->hw.active);
14727 
14728 		I915_STATE_WARN(active && master->pipe != pipe,
14729 				"Encoder connected to wrong pipe %c\n",
14730 				pipe_name(pipe));
14731 
14732 		if (active)
14733 			intel_encoder_get_config(encoder, pipe_config);
14734 	}
14735 
14736 	if (!new_crtc_state->hw.active)
14737 		return;
14738 
14739 	intel_pipe_config_sanity_check(dev_priv, pipe_config);
14740 
14741 	if (!intel_pipe_config_compare(new_crtc_state,
14742 				       pipe_config, false)) {
14743 		I915_STATE_WARN(1, "pipe state doesn't match!\n");
14744 		intel_dump_pipe_config(pipe_config, NULL, "[hw state]");
14745 		intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]");
14746 	}
14747 }
14748 
14749 static void
14750 intel_verify_planes(struct intel_atomic_state *state)
14751 {
14752 	struct intel_plane *plane;
14753 	const struct intel_plane_state *plane_state;
14754 	int i;
14755 
14756 	for_each_new_intel_plane_in_state(state, plane,
14757 					  plane_state, i)
14758 		assert_plane(plane, plane_state->planar_slave ||
14759 			     plane_state->uapi.visible);
14760 }
14761 
14762 static void
14763 verify_single_dpll_state(struct drm_i915_private *dev_priv,
14764 			 struct intel_shared_dpll *pll,
14765 			 struct intel_crtc *crtc,
14766 			 struct intel_crtc_state *new_crtc_state)
14767 {
14768 	struct intel_dpll_hw_state dpll_hw_state;
14769 	unsigned int crtc_mask;
14770 	bool active;
14771 
14772 	memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
14773 
14774 	drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name);
14775 
14776 	active = intel_dpll_get_hw_state(dev_priv, pll, &dpll_hw_state);
14777 
14778 	if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) {
14779 		I915_STATE_WARN(!pll->on && pll->active_mask,
14780 		     "pll in active use but not on in sw tracking\n");
14781 		I915_STATE_WARN(pll->on && !pll->active_mask,
14782 		     "pll is on but not used by any active crtc\n");
14783 		I915_STATE_WARN(pll->on != active,
14784 		     "pll on state mismatch (expected %i, found %i)\n",
14785 		     pll->on, active);
14786 	}
14787 
14788 	if (!crtc) {
14789 		I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
14790 				"more active pll users than references: %x vs %x\n",
14791 				pll->active_mask, pll->state.crtc_mask);
14792 
14793 		return;
14794 	}
14795 
14796 	crtc_mask = drm_crtc_mask(&crtc->base);
14797 
14798 	if (new_crtc_state->hw.active)
14799 		I915_STATE_WARN(!(pll->active_mask & crtc_mask),
14800 				"pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
14801 				pipe_name(crtc->pipe), pll->active_mask);
14802 	else
14803 		I915_STATE_WARN(pll->active_mask & crtc_mask,
14804 				"pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
14805 				pipe_name(crtc->pipe), pll->active_mask);
14806 
14807 	I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
14808 			"pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
14809 			crtc_mask, pll->state.crtc_mask);
14810 
14811 	I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
14812 					  &dpll_hw_state,
14813 					  sizeof(dpll_hw_state)),
14814 			"pll hw state mismatch\n");
14815 }
14816 
14817 static void
14818 verify_shared_dpll_state(struct intel_crtc *crtc,
14819 			 struct intel_crtc_state *old_crtc_state,
14820 			 struct intel_crtc_state *new_crtc_state)
14821 {
14822 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14823 
14824 	if (new_crtc_state->shared_dpll)
14825 		verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state);
14826 
14827 	if (old_crtc_state->shared_dpll &&
14828 	    old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) {
14829 		unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
14830 		struct intel_shared_dpll *pll = old_crtc_state->shared_dpll;
14831 
14832 		I915_STATE_WARN(pll->active_mask & crtc_mask,
14833 				"pll active mismatch (didn't expect pipe %c in active mask)\n",
14834 				pipe_name(crtc->pipe));
14835 		I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
14836 				"pll enabled crtcs mismatch (found %x in enabled mask)\n",
14837 				pipe_name(crtc->pipe));
14838 	}
14839 }
14840 
14841 static void
14842 intel_modeset_verify_crtc(struct intel_crtc *crtc,
14843 			  struct intel_atomic_state *state,
14844 			  struct intel_crtc_state *old_crtc_state,
14845 			  struct intel_crtc_state *new_crtc_state)
14846 {
14847 	if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe)
14848 		return;
14849 
14850 	verify_wm_state(crtc, new_crtc_state);
14851 	verify_connector_state(state, crtc);
14852 	verify_crtc_state(crtc, old_crtc_state, new_crtc_state);
14853 	verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state);
14854 }
14855 
14856 static void
14857 verify_disabled_dpll_state(struct drm_i915_private *dev_priv)
14858 {
14859 	int i;
14860 
14861 	for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++)
14862 		verify_single_dpll_state(dev_priv,
14863 					 &dev_priv->dpll.shared_dplls[i],
14864 					 NULL, NULL);
14865 }
14866 
14867 static void
14868 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv,
14869 			      struct intel_atomic_state *state)
14870 {
14871 	verify_encoder_state(dev_priv, state);
14872 	verify_connector_state(state, NULL);
14873 	verify_disabled_dpll_state(dev_priv);
14874 }
14875 
14876 static void
14877 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state)
14878 {
14879 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
14880 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14881 	const struct drm_display_mode *adjusted_mode =
14882 		&crtc_state->hw.adjusted_mode;
14883 
14884 	drm_calc_timestamping_constants(&crtc->base, adjusted_mode);
14885 
14886 	crtc->mode_flags = crtc_state->mode_flags;
14887 
14888 	/*
14889 	 * The scanline counter increments at the leading edge of hsync.
14890 	 *
14891 	 * On most platforms it starts counting from vtotal-1 on the
14892 	 * first active line. That means the scanline counter value is
14893 	 * always one less than what we would expect. Ie. just after
14894 	 * start of vblank, which also occurs at start of hsync (on the
14895 	 * last active line), the scanline counter will read vblank_start-1.
14896 	 *
14897 	 * On gen2 the scanline counter starts counting from 1 instead
14898 	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
14899 	 * to keep the value positive), instead of adding one.
14900 	 *
14901 	 * On HSW+ the behaviour of the scanline counter depends on the output
14902 	 * type. For DP ports it behaves like most other platforms, but on HDMI
14903 	 * there's an extra 1 line difference. So we need to add two instead of
14904 	 * one to the value.
14905 	 *
14906 	 * On VLV/CHV DSI the scanline counter would appear to increment
14907 	 * approx. 1/3 of a scanline before start of vblank. Unfortunately
14908 	 * that means we can't tell whether we're in vblank or not while
14909 	 * we're on that particular line. We must still set scanline_offset
14910 	 * to 1 so that the vblank timestamps come out correct when we query
14911 	 * the scanline counter from within the vblank interrupt handler.
14912 	 * However if queried just before the start of vblank we'll get an
14913 	 * answer that's slightly in the future.
14914 	 */
14915 	if (IS_GEN(dev_priv, 2)) {
14916 		int vtotal;
14917 
14918 		vtotal = adjusted_mode->crtc_vtotal;
14919 		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
14920 			vtotal /= 2;
14921 
14922 		crtc->scanline_offset = vtotal - 1;
14923 	} else if (HAS_DDI(dev_priv) &&
14924 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
14925 		crtc->scanline_offset = 2;
14926 	} else {
14927 		crtc->scanline_offset = 1;
14928 	}
14929 }
14930 
14931 static void intel_modeset_clear_plls(struct intel_atomic_state *state)
14932 {
14933 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14934 	struct intel_crtc_state *new_crtc_state;
14935 	struct intel_crtc *crtc;
14936 	int i;
14937 
14938 	if (!dev_priv->display.crtc_compute_clock)
14939 		return;
14940 
14941 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14942 		if (!needs_modeset(new_crtc_state))
14943 			continue;
14944 
14945 		intel_release_shared_dplls(state, crtc);
14946 	}
14947 }
14948 
14949 /*
14950  * This implements the workaround described in the "notes" section of the mode
14951  * set sequence documentation. When going from no pipes or single pipe to
14952  * multiple pipes, and planes are enabled after the pipe, we need to wait at
14953  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
14954  */
14955 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state)
14956 {
14957 	struct intel_crtc_state *crtc_state;
14958 	struct intel_crtc *crtc;
14959 	struct intel_crtc_state *first_crtc_state = NULL;
14960 	struct intel_crtc_state *other_crtc_state = NULL;
14961 	enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
14962 	int i;
14963 
14964 	/* look at all crtc's that are going to be enabled in during modeset */
14965 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14966 		if (!crtc_state->hw.active ||
14967 		    !needs_modeset(crtc_state))
14968 			continue;
14969 
14970 		if (first_crtc_state) {
14971 			other_crtc_state = crtc_state;
14972 			break;
14973 		} else {
14974 			first_crtc_state = crtc_state;
14975 			first_pipe = crtc->pipe;
14976 		}
14977 	}
14978 
14979 	/* No workaround needed? */
14980 	if (!first_crtc_state)
14981 		return 0;
14982 
14983 	/* w/a possibly needed, check how many crtc's are already enabled. */
14984 	for_each_intel_crtc(state->base.dev, crtc) {
14985 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
14986 		if (IS_ERR(crtc_state))
14987 			return PTR_ERR(crtc_state);
14988 
14989 		crtc_state->hsw_workaround_pipe = INVALID_PIPE;
14990 
14991 		if (!crtc_state->hw.active ||
14992 		    needs_modeset(crtc_state))
14993 			continue;
14994 
14995 		/* 2 or more enabled crtcs means no need for w/a */
14996 		if (enabled_pipe != INVALID_PIPE)
14997 			return 0;
14998 
14999 		enabled_pipe = crtc->pipe;
15000 	}
15001 
15002 	if (enabled_pipe != INVALID_PIPE)
15003 		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
15004 	else if (other_crtc_state)
15005 		other_crtc_state->hsw_workaround_pipe = first_pipe;
15006 
15007 	return 0;
15008 }
15009 
15010 u8 intel_calc_active_pipes(struct intel_atomic_state *state,
15011 			   u8 active_pipes)
15012 {
15013 	const struct intel_crtc_state *crtc_state;
15014 	struct intel_crtc *crtc;
15015 	int i;
15016 
15017 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
15018 		if (crtc_state->hw.active)
15019 			active_pipes |= BIT(crtc->pipe);
15020 		else
15021 			active_pipes &= ~BIT(crtc->pipe);
15022 	}
15023 
15024 	return active_pipes;
15025 }
15026 
15027 static int intel_modeset_checks(struct intel_atomic_state *state)
15028 {
15029 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15030 
15031 	state->modeset = true;
15032 
15033 	if (IS_HASWELL(dev_priv))
15034 		return hsw_mode_set_planes_workaround(state);
15035 
15036 	return 0;
15037 }
15038 
15039 /*
15040  * Handle calculation of various watermark data at the end of the atomic check
15041  * phase.  The code here should be run after the per-crtc and per-plane 'check'
15042  * handlers to ensure that all derived state has been updated.
15043  */
15044 static int calc_watermark_data(struct intel_atomic_state *state)
15045 {
15046 	struct drm_device *dev = state->base.dev;
15047 	struct drm_i915_private *dev_priv = to_i915(dev);
15048 
15049 	/* Is there platform-specific watermark information to calculate? */
15050 	if (dev_priv->display.compute_global_watermarks)
15051 		return dev_priv->display.compute_global_watermarks(state);
15052 
15053 	return 0;
15054 }
15055 
15056 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state,
15057 				     struct intel_crtc_state *new_crtc_state)
15058 {
15059 	if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true))
15060 		return;
15061 
15062 	new_crtc_state->uapi.mode_changed = false;
15063 	new_crtc_state->update_pipe = true;
15064 }
15065 
15066 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state,
15067 				    struct intel_crtc_state *new_crtc_state)
15068 {
15069 	/*
15070 	 * If we're not doing the full modeset we want to
15071 	 * keep the current M/N values as they may be
15072 	 * sufficiently different to the computed values
15073 	 * to cause problems.
15074 	 *
15075 	 * FIXME: should really copy more fuzzy state here
15076 	 */
15077 	new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n;
15078 	new_crtc_state->dp_m_n = old_crtc_state->dp_m_n;
15079 	new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2;
15080 	new_crtc_state->has_drrs = old_crtc_state->has_drrs;
15081 }
15082 
15083 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state,
15084 					  struct intel_crtc *crtc,
15085 					  u8 plane_ids_mask)
15086 {
15087 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15088 	struct intel_plane *plane;
15089 
15090 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
15091 		struct intel_plane_state *plane_state;
15092 
15093 		if ((plane_ids_mask & BIT(plane->id)) == 0)
15094 			continue;
15095 
15096 		plane_state = intel_atomic_get_plane_state(state, plane);
15097 		if (IS_ERR(plane_state))
15098 			return PTR_ERR(plane_state);
15099 	}
15100 
15101 	return 0;
15102 }
15103 
15104 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv)
15105 {
15106 	/* See {hsw,vlv,ivb}_plane_ratio() */
15107 	return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) ||
15108 		IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
15109 		IS_IVYBRIDGE(dev_priv) || (INTEL_GEN(dev_priv) >= 11);
15110 }
15111 
15112 static int intel_crtc_add_bigjoiner_planes(struct intel_atomic_state *state,
15113 					   struct intel_crtc *crtc,
15114 					   struct intel_crtc *other)
15115 {
15116 	const struct intel_plane_state *plane_state;
15117 	struct intel_plane *plane;
15118 	u8 plane_ids = 0;
15119 	int i;
15120 
15121 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
15122 		if (plane->pipe == crtc->pipe)
15123 			plane_ids |= BIT(plane->id);
15124 	}
15125 
15126 	return intel_crtc_add_planes_to_state(state, other, plane_ids);
15127 }
15128 
15129 static int intel_bigjoiner_add_affected_planes(struct intel_atomic_state *state)
15130 {
15131 	const struct intel_crtc_state *crtc_state;
15132 	struct intel_crtc *crtc;
15133 	int i;
15134 
15135 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
15136 		int ret;
15137 
15138 		if (!crtc_state->bigjoiner)
15139 			continue;
15140 
15141 		ret = intel_crtc_add_bigjoiner_planes(state, crtc,
15142 						      crtc_state->bigjoiner_linked_crtc);
15143 		if (ret)
15144 			return ret;
15145 	}
15146 
15147 	return 0;
15148 }
15149 
15150 static int intel_atomic_check_planes(struct intel_atomic_state *state)
15151 {
15152 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15153 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15154 	struct intel_plane_state *plane_state;
15155 	struct intel_plane *plane;
15156 	struct intel_crtc *crtc;
15157 	int i, ret;
15158 
15159 	ret = icl_add_linked_planes(state);
15160 	if (ret)
15161 		return ret;
15162 
15163 	ret = intel_bigjoiner_add_affected_planes(state);
15164 	if (ret)
15165 		return ret;
15166 
15167 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
15168 		ret = intel_plane_atomic_check(state, plane);
15169 		if (ret) {
15170 			drm_dbg_atomic(&dev_priv->drm,
15171 				       "[PLANE:%d:%s] atomic driver check failed\n",
15172 				       plane->base.base.id, plane->base.name);
15173 			return ret;
15174 		}
15175 	}
15176 
15177 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15178 					    new_crtc_state, i) {
15179 		u8 old_active_planes, new_active_planes;
15180 
15181 		ret = icl_check_nv12_planes(new_crtc_state);
15182 		if (ret)
15183 			return ret;
15184 
15185 		/*
15186 		 * On some platforms the number of active planes affects
15187 		 * the planes' minimum cdclk calculation. Add such planes
15188 		 * to the state before we compute the minimum cdclk.
15189 		 */
15190 		if (!active_planes_affects_min_cdclk(dev_priv))
15191 			continue;
15192 
15193 		old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
15194 		new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
15195 
15196 		/*
15197 		 * Not only the number of planes, but if the plane configuration had
15198 		 * changed might already mean we need to recompute min CDCLK,
15199 		 * because different planes might consume different amount of Dbuf bandwidth
15200 		 * according to formula: Bw per plane = Pixel rate * bpp * pipe/plane scale factor
15201 		 */
15202 		if (old_active_planes == new_active_planes)
15203 			continue;
15204 
15205 		ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes);
15206 		if (ret)
15207 			return ret;
15208 	}
15209 
15210 	return 0;
15211 }
15212 
15213 static int intel_atomic_check_cdclk(struct intel_atomic_state *state,
15214 				    bool *need_cdclk_calc)
15215 {
15216 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15217 	const struct intel_cdclk_state *old_cdclk_state;
15218 	const struct intel_cdclk_state *new_cdclk_state;
15219 	struct intel_plane_state *plane_state;
15220 	struct intel_bw_state *new_bw_state;
15221 	struct intel_plane *plane;
15222 	int min_cdclk = 0;
15223 	enum pipe pipe;
15224 	int ret;
15225 	int i;
15226 	/*
15227 	 * active_planes bitmask has been updated, and potentially
15228 	 * affected planes are part of the state. We can now
15229 	 * compute the minimum cdclk for each plane.
15230 	 */
15231 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
15232 		ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc);
15233 		if (ret)
15234 			return ret;
15235 	}
15236 
15237 	old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
15238 	new_cdclk_state = intel_atomic_get_new_cdclk_state(state);
15239 
15240 	if (new_cdclk_state &&
15241 	    old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk)
15242 		*need_cdclk_calc = true;
15243 
15244 	ret = dev_priv->display.bw_calc_min_cdclk(state);
15245 	if (ret)
15246 		return ret;
15247 
15248 	new_bw_state = intel_atomic_get_new_bw_state(state);
15249 
15250 	if (!new_cdclk_state || !new_bw_state)
15251 		return 0;
15252 
15253 	for_each_pipe(dev_priv, pipe) {
15254 		min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk);
15255 
15256 		/*
15257 		 * Currently do this change only if we need to increase
15258 		 */
15259 		if (new_bw_state->min_cdclk > min_cdclk)
15260 			*need_cdclk_calc = true;
15261 	}
15262 
15263 	return 0;
15264 }
15265 
15266 static int intel_atomic_check_crtcs(struct intel_atomic_state *state)
15267 {
15268 	struct intel_crtc_state *crtc_state;
15269 	struct intel_crtc *crtc;
15270 	int i;
15271 
15272 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
15273 		struct drm_i915_private *i915 = to_i915(crtc->base.dev);
15274 		int ret;
15275 
15276 		ret = intel_crtc_atomic_check(state, crtc);
15277 		if (ret) {
15278 			drm_dbg_atomic(&i915->drm,
15279 				       "[CRTC:%d:%s] atomic driver check failed\n",
15280 				       crtc->base.base.id, crtc->base.name);
15281 			return ret;
15282 		}
15283 	}
15284 
15285 	return 0;
15286 }
15287 
15288 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state,
15289 					       u8 transcoders)
15290 {
15291 	const struct intel_crtc_state *new_crtc_state;
15292 	struct intel_crtc *crtc;
15293 	int i;
15294 
15295 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15296 		if (new_crtc_state->hw.enable &&
15297 		    transcoders & BIT(new_crtc_state->cpu_transcoder) &&
15298 		    needs_modeset(new_crtc_state))
15299 			return true;
15300 	}
15301 
15302 	return false;
15303 }
15304 
15305 static int intel_atomic_check_bigjoiner(struct intel_atomic_state *state,
15306 					struct intel_crtc *crtc,
15307 					struct intel_crtc_state *old_crtc_state,
15308 					struct intel_crtc_state *new_crtc_state)
15309 {
15310 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15311 	struct intel_crtc_state *slave_crtc_state, *master_crtc_state;
15312 	struct intel_crtc *slave, *master;
15313 
15314 	/* slave being enabled, is master is still claiming this crtc? */
15315 	if (old_crtc_state->bigjoiner_slave) {
15316 		slave = crtc;
15317 		master = old_crtc_state->bigjoiner_linked_crtc;
15318 		master_crtc_state = intel_atomic_get_new_crtc_state(state, master);
15319 		if (!master_crtc_state || !needs_modeset(master_crtc_state))
15320 			goto claimed;
15321 	}
15322 
15323 	if (!new_crtc_state->bigjoiner)
15324 		return 0;
15325 
15326 	if (1 + crtc->pipe >= INTEL_NUM_PIPES(dev_priv)) {
15327 		DRM_DEBUG_KMS("[CRTC:%d:%s] Big joiner configuration requires "
15328 			      "CRTC + 1 to be used, doesn't exist\n",
15329 			      crtc->base.base.id, crtc->base.name);
15330 		return -EINVAL;
15331 	}
15332 
15333 	slave = new_crtc_state->bigjoiner_linked_crtc =
15334 		intel_get_crtc_for_pipe(dev_priv, crtc->pipe + 1);
15335 	slave_crtc_state = intel_atomic_get_crtc_state(&state->base, slave);
15336 	master = crtc;
15337 	if (IS_ERR(slave_crtc_state))
15338 		return PTR_ERR(slave_crtc_state);
15339 
15340 	/* master being enabled, slave was already configured? */
15341 	if (slave_crtc_state->uapi.enable)
15342 		goto claimed;
15343 
15344 	DRM_DEBUG_KMS("[CRTC:%d:%s] Used as slave for big joiner\n",
15345 		      slave->base.base.id, slave->base.name);
15346 
15347 	return copy_bigjoiner_crtc_state(slave_crtc_state, new_crtc_state);
15348 
15349 claimed:
15350 	DRM_DEBUG_KMS("[CRTC:%d:%s] Slave is enabled as normal CRTC, but "
15351 		      "[CRTC:%d:%s] claiming this CRTC for bigjoiner.\n",
15352 		      slave->base.base.id, slave->base.name,
15353 		      master->base.base.id, master->base.name);
15354 	return -EINVAL;
15355 }
15356 
15357 static int kill_bigjoiner_slave(struct intel_atomic_state *state,
15358 				struct intel_crtc_state *master_crtc_state)
15359 {
15360 	struct intel_crtc_state *slave_crtc_state =
15361 		intel_atomic_get_crtc_state(&state->base,
15362 					    master_crtc_state->bigjoiner_linked_crtc);
15363 
15364 	if (IS_ERR(slave_crtc_state))
15365 		return PTR_ERR(slave_crtc_state);
15366 
15367 	slave_crtc_state->bigjoiner = master_crtc_state->bigjoiner = false;
15368 	slave_crtc_state->bigjoiner_slave = master_crtc_state->bigjoiner_slave = false;
15369 	slave_crtc_state->bigjoiner_linked_crtc = master_crtc_state->bigjoiner_linked_crtc = NULL;
15370 	intel_crtc_copy_uapi_to_hw_state(state, slave_crtc_state);
15371 	return 0;
15372 }
15373 
15374 /**
15375  * DOC: asynchronous flip implementation
15376  *
15377  * Asynchronous page flip is the implementation for the DRM_MODE_PAGE_FLIP_ASYNC
15378  * flag. Currently async flip is only supported via the drmModePageFlip IOCTL.
15379  * Correspondingly, support is currently added for primary plane only.
15380  *
15381  * Async flip can only change the plane surface address, so anything else
15382  * changing is rejected from the intel_atomic_check_async() function.
15383  * Once this check is cleared, flip done interrupt is enabled using
15384  * the skl_enable_flip_done() function.
15385  *
15386  * As soon as the surface address register is written, flip done interrupt is
15387  * generated and the requested events are sent to the usersapce in the interrupt
15388  * handler itself. The timestamp and sequence sent during the flip done event
15389  * correspond to the last vblank and have no relation to the actual time when
15390  * the flip done event was sent.
15391  */
15392 static int intel_atomic_check_async(struct intel_atomic_state *state)
15393 {
15394 	struct drm_i915_private *i915 = to_i915(state->base.dev);
15395 	const struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15396 	const struct intel_plane_state *new_plane_state, *old_plane_state;
15397 	struct intel_crtc *crtc;
15398 	struct intel_plane *plane;
15399 	int i;
15400 
15401 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15402 					    new_crtc_state, i) {
15403 		if (needs_modeset(new_crtc_state)) {
15404 			drm_dbg_kms(&i915->drm, "Modeset Required. Async flip not supported\n");
15405 			return -EINVAL;
15406 		}
15407 
15408 		if (!new_crtc_state->hw.active) {
15409 			drm_dbg_kms(&i915->drm, "CRTC inactive\n");
15410 			return -EINVAL;
15411 		}
15412 		if (old_crtc_state->active_planes != new_crtc_state->active_planes) {
15413 			drm_dbg_kms(&i915->drm,
15414 				    "Active planes cannot be changed during async flip\n");
15415 			return -EINVAL;
15416 		}
15417 	}
15418 
15419 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
15420 					     new_plane_state, i) {
15421 		/*
15422 		 * TODO: Async flip is only supported through the page flip IOCTL
15423 		 * as of now. So support currently added for primary plane only.
15424 		 * Support for other planes on platforms on which supports
15425 		 * this(vlv/chv and icl+) should be added when async flip is
15426 		 * enabled in the atomic IOCTL path.
15427 		 */
15428 		if (plane->id != PLANE_PRIMARY)
15429 			return -EINVAL;
15430 
15431 		/*
15432 		 * FIXME: This check is kept generic for all platforms.
15433 		 * Need to verify this for all gen9 and gen10 platforms to enable
15434 		 * this selectively if required.
15435 		 */
15436 		switch (new_plane_state->hw.fb->modifier) {
15437 		case I915_FORMAT_MOD_X_TILED:
15438 		case I915_FORMAT_MOD_Y_TILED:
15439 		case I915_FORMAT_MOD_Yf_TILED:
15440 			break;
15441 		default:
15442 			drm_dbg_kms(&i915->drm,
15443 				    "Linear memory/CCS does not support async flips\n");
15444 			return -EINVAL;
15445 		}
15446 
15447 		if (old_plane_state->color_plane[0].stride !=
15448 		    new_plane_state->color_plane[0].stride) {
15449 			drm_dbg_kms(&i915->drm, "Stride cannot be changed in async flip\n");
15450 			return -EINVAL;
15451 		}
15452 
15453 		if (old_plane_state->hw.fb->modifier !=
15454 		    new_plane_state->hw.fb->modifier) {
15455 			drm_dbg_kms(&i915->drm,
15456 				    "Framebuffer modifiers cannot be changed in async flip\n");
15457 			return -EINVAL;
15458 		}
15459 
15460 		if (old_plane_state->hw.fb->format !=
15461 		    new_plane_state->hw.fb->format) {
15462 			drm_dbg_kms(&i915->drm,
15463 				    "Framebuffer format cannot be changed in async flip\n");
15464 			return -EINVAL;
15465 		}
15466 
15467 		if (old_plane_state->hw.rotation !=
15468 		    new_plane_state->hw.rotation) {
15469 			drm_dbg_kms(&i915->drm, "Rotation cannot be changed in async flip\n");
15470 			return -EINVAL;
15471 		}
15472 
15473 		if (!drm_rect_equals(&old_plane_state->uapi.src, &new_plane_state->uapi.src) ||
15474 		    !drm_rect_equals(&old_plane_state->uapi.dst, &new_plane_state->uapi.dst)) {
15475 			drm_dbg_kms(&i915->drm,
15476 				    "Plane size/co-ordinates cannot be changed in async flip\n");
15477 			return -EINVAL;
15478 		}
15479 
15480 		if (old_plane_state->hw.alpha != new_plane_state->hw.alpha) {
15481 			drm_dbg_kms(&i915->drm, "Alpha value cannot be changed in async flip\n");
15482 			return -EINVAL;
15483 		}
15484 
15485 		if (old_plane_state->hw.pixel_blend_mode !=
15486 		    new_plane_state->hw.pixel_blend_mode) {
15487 			drm_dbg_kms(&i915->drm,
15488 				    "Pixel blend mode cannot be changed in async flip\n");
15489 			return -EINVAL;
15490 		}
15491 
15492 		if (old_plane_state->hw.color_encoding != new_plane_state->hw.color_encoding) {
15493 			drm_dbg_kms(&i915->drm,
15494 				    "Color encoding cannot be changed in async flip\n");
15495 			return -EINVAL;
15496 		}
15497 
15498 		if (old_plane_state->hw.color_range != new_plane_state->hw.color_range) {
15499 			drm_dbg_kms(&i915->drm, "Color range cannot be changed in async flip\n");
15500 			return -EINVAL;
15501 		}
15502 	}
15503 
15504 	return 0;
15505 }
15506 
15507 static int intel_bigjoiner_add_affected_crtcs(struct intel_atomic_state *state)
15508 {
15509 	const struct intel_crtc_state *crtc_state;
15510 	struct intel_crtc *crtc;
15511 	int i;
15512 
15513 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
15514 		struct intel_crtc_state *linked_crtc_state;
15515 
15516 		if (!crtc_state->bigjoiner)
15517 			continue;
15518 
15519 		linked_crtc_state = intel_atomic_get_crtc_state(&state->base,
15520 								crtc_state->bigjoiner_linked_crtc);
15521 		if (IS_ERR(linked_crtc_state))
15522 			return PTR_ERR(linked_crtc_state);
15523 	}
15524 
15525 	return 0;
15526 }
15527 
15528 /**
15529  * intel_atomic_check - validate state object
15530  * @dev: drm device
15531  * @_state: state to validate
15532  */
15533 static int intel_atomic_check(struct drm_device *dev,
15534 			      struct drm_atomic_state *_state)
15535 {
15536 	struct drm_i915_private *dev_priv = to_i915(dev);
15537 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
15538 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15539 	struct intel_crtc *crtc;
15540 	int ret, i;
15541 	bool any_ms = false;
15542 
15543 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15544 					    new_crtc_state, i) {
15545 		if (new_crtc_state->inherited != old_crtc_state->inherited)
15546 			new_crtc_state->uapi.mode_changed = true;
15547 	}
15548 
15549 	ret = drm_atomic_helper_check_modeset(dev, &state->base);
15550 	if (ret)
15551 		goto fail;
15552 
15553 	ret = intel_bigjoiner_add_affected_crtcs(state);
15554 	if (ret)
15555 		goto fail;
15556 
15557 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15558 					    new_crtc_state, i) {
15559 		if (!needs_modeset(new_crtc_state)) {
15560 			/* Light copy */
15561 			intel_crtc_copy_uapi_to_hw_state_nomodeset(state, new_crtc_state);
15562 
15563 			continue;
15564 		}
15565 
15566 		/* Kill old bigjoiner link, we may re-establish afterwards */
15567 		if (old_crtc_state->bigjoiner && !old_crtc_state->bigjoiner_slave) {
15568 			ret = kill_bigjoiner_slave(state, new_crtc_state);
15569 			if (ret)
15570 				goto fail;
15571 		}
15572 
15573 		if (!new_crtc_state->uapi.enable) {
15574 			if (!new_crtc_state->bigjoiner_slave) {
15575 				intel_crtc_copy_uapi_to_hw_state(state, new_crtc_state);
15576 				any_ms = true;
15577 			}
15578 			continue;
15579 		}
15580 
15581 		ret = intel_crtc_prepare_cleared_state(state, new_crtc_state);
15582 		if (ret)
15583 			goto fail;
15584 
15585 		ret = intel_modeset_pipe_config(state, new_crtc_state);
15586 		if (ret)
15587 			goto fail;
15588 
15589 		ret = intel_atomic_check_bigjoiner(state, crtc, old_crtc_state,
15590 						   new_crtc_state);
15591 		if (ret)
15592 			goto fail;
15593 	}
15594 
15595 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15596 					    new_crtc_state, i) {
15597 		if (!needs_modeset(new_crtc_state))
15598 			continue;
15599 
15600 		ret = intel_modeset_pipe_config_late(new_crtc_state);
15601 		if (ret)
15602 			goto fail;
15603 
15604 		intel_crtc_check_fastset(old_crtc_state, new_crtc_state);
15605 	}
15606 
15607 	/**
15608 	 * Check if fastset is allowed by external dependencies like other
15609 	 * pipes and transcoders.
15610 	 *
15611 	 * Right now it only forces a fullmodeset when the MST master
15612 	 * transcoder did not changed but the pipe of the master transcoder
15613 	 * needs a fullmodeset so all slaves also needs to do a fullmodeset or
15614 	 * in case of port synced crtcs, if one of the synced crtcs
15615 	 * needs a full modeset, all other synced crtcs should be
15616 	 * forced a full modeset.
15617 	 */
15618 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15619 		if (!new_crtc_state->hw.enable || needs_modeset(new_crtc_state))
15620 			continue;
15621 
15622 		if (intel_dp_mst_is_slave_trans(new_crtc_state)) {
15623 			enum transcoder master = new_crtc_state->mst_master_transcoder;
15624 
15625 			if (intel_cpu_transcoders_need_modeset(state, BIT(master))) {
15626 				new_crtc_state->uapi.mode_changed = true;
15627 				new_crtc_state->update_pipe = false;
15628 			}
15629 		}
15630 
15631 		if (is_trans_port_sync_mode(new_crtc_state)) {
15632 			u8 trans = new_crtc_state->sync_mode_slaves_mask;
15633 
15634 			if (new_crtc_state->master_transcoder != INVALID_TRANSCODER)
15635 				trans |= BIT(new_crtc_state->master_transcoder);
15636 
15637 			if (intel_cpu_transcoders_need_modeset(state, trans)) {
15638 				new_crtc_state->uapi.mode_changed = true;
15639 				new_crtc_state->update_pipe = false;
15640 			}
15641 		}
15642 	}
15643 
15644 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15645 					    new_crtc_state, i) {
15646 		if (needs_modeset(new_crtc_state)) {
15647 			any_ms = true;
15648 			continue;
15649 		}
15650 
15651 		if (!new_crtc_state->update_pipe)
15652 			continue;
15653 
15654 		intel_crtc_copy_fastset(old_crtc_state, new_crtc_state);
15655 	}
15656 
15657 	if (any_ms && !check_digital_port_conflicts(state)) {
15658 		drm_dbg_kms(&dev_priv->drm,
15659 			    "rejecting conflicting digital port configuration\n");
15660 		ret = -EINVAL;
15661 		goto fail;
15662 	}
15663 
15664 	ret = drm_dp_mst_atomic_check(&state->base);
15665 	if (ret)
15666 		goto fail;
15667 
15668 	ret = intel_atomic_check_planes(state);
15669 	if (ret)
15670 		goto fail;
15671 
15672 	/*
15673 	 * distrust_bios_wm will force a full dbuf recomputation
15674 	 * but the hardware state will only get updated accordingly
15675 	 * if state->modeset==true. Hence distrust_bios_wm==true &&
15676 	 * state->modeset==false is an invalid combination which
15677 	 * would cause the hardware and software dbuf state to get
15678 	 * out of sync. We must prevent that.
15679 	 *
15680 	 * FIXME clean up this mess and introduce better
15681 	 * state tracking for dbuf.
15682 	 */
15683 	if (dev_priv->wm.distrust_bios_wm)
15684 		any_ms = true;
15685 
15686 	intel_fbc_choose_crtc(dev_priv, state);
15687 	ret = calc_watermark_data(state);
15688 	if (ret)
15689 		goto fail;
15690 
15691 	ret = intel_bw_atomic_check(state);
15692 	if (ret)
15693 		goto fail;
15694 
15695 	ret = intel_atomic_check_cdclk(state, &any_ms);
15696 	if (ret)
15697 		goto fail;
15698 
15699 	if (any_ms) {
15700 		ret = intel_modeset_checks(state);
15701 		if (ret)
15702 			goto fail;
15703 
15704 		ret = intel_modeset_calc_cdclk(state);
15705 		if (ret)
15706 			return ret;
15707 
15708 		intel_modeset_clear_plls(state);
15709 	}
15710 
15711 	ret = intel_atomic_check_crtcs(state);
15712 	if (ret)
15713 		goto fail;
15714 
15715 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15716 					    new_crtc_state, i) {
15717 		if (new_crtc_state->uapi.async_flip) {
15718 			ret = intel_atomic_check_async(state);
15719 			if (ret)
15720 				goto fail;
15721 		}
15722 
15723 		if (!needs_modeset(new_crtc_state) &&
15724 		    !new_crtc_state->update_pipe)
15725 			continue;
15726 
15727 		intel_dump_pipe_config(new_crtc_state, state,
15728 				       needs_modeset(new_crtc_state) ?
15729 				       "[modeset]" : "[fastset]");
15730 	}
15731 
15732 	return 0;
15733 
15734  fail:
15735 	if (ret == -EDEADLK)
15736 		return ret;
15737 
15738 	/*
15739 	 * FIXME would probably be nice to know which crtc specifically
15740 	 * caused the failure, in cases where we can pinpoint it.
15741 	 */
15742 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15743 					    new_crtc_state, i)
15744 		intel_dump_pipe_config(new_crtc_state, state, "[failed]");
15745 
15746 	return ret;
15747 }
15748 
15749 static int intel_atomic_prepare_commit(struct intel_atomic_state *state)
15750 {
15751 	struct intel_crtc_state *crtc_state;
15752 	struct intel_crtc *crtc;
15753 	int i, ret;
15754 
15755 	ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base);
15756 	if (ret < 0)
15757 		return ret;
15758 
15759 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
15760 		bool mode_changed = needs_modeset(crtc_state);
15761 
15762 		if (mode_changed || crtc_state->update_pipe ||
15763 		    crtc_state->uapi.color_mgmt_changed) {
15764 			intel_dsb_prepare(crtc_state);
15765 		}
15766 	}
15767 
15768 	return 0;
15769 }
15770 
15771 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
15772 {
15773 	struct drm_device *dev = crtc->base.dev;
15774 	struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
15775 
15776 	if (!vblank->max_vblank_count)
15777 		return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
15778 
15779 	return crtc->base.funcs->get_vblank_counter(&crtc->base);
15780 }
15781 
15782 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
15783 				  struct intel_crtc_state *crtc_state)
15784 {
15785 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15786 
15787 	if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes)
15788 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
15789 
15790 	if (crtc_state->has_pch_encoder) {
15791 		enum pipe pch_transcoder =
15792 			intel_crtc_pch_transcoder(crtc);
15793 
15794 		intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true);
15795 	}
15796 }
15797 
15798 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state,
15799 			       const struct intel_crtc_state *new_crtc_state)
15800 {
15801 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
15802 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15803 
15804 	/*
15805 	 * Update pipe size and adjust fitter if needed: the reason for this is
15806 	 * that in compute_mode_changes we check the native mode (not the pfit
15807 	 * mode) to see if we can flip rather than do a full mode set. In the
15808 	 * fastboot case, we'll flip, but if we don't update the pipesrc and
15809 	 * pfit state, we'll end up with a big fb scanned out into the wrong
15810 	 * sized surface.
15811 	 */
15812 	intel_set_pipe_src_size(new_crtc_state);
15813 
15814 	/* on skylake this is done by detaching scalers */
15815 	if (INTEL_GEN(dev_priv) >= 9) {
15816 		skl_detach_scalers(new_crtc_state);
15817 
15818 		if (new_crtc_state->pch_pfit.enabled)
15819 			skl_pfit_enable(new_crtc_state);
15820 	} else if (HAS_PCH_SPLIT(dev_priv)) {
15821 		if (new_crtc_state->pch_pfit.enabled)
15822 			ilk_pfit_enable(new_crtc_state);
15823 		else if (old_crtc_state->pch_pfit.enabled)
15824 			ilk_pfit_disable(old_crtc_state);
15825 	}
15826 
15827 	/*
15828 	 * The register is supposedly single buffered so perhaps
15829 	 * not 100% correct to do this here. But SKL+ calculate
15830 	 * this based on the adjust pixel rate so pfit changes do
15831 	 * affect it and so it must be updated for fastsets.
15832 	 * HSW/BDW only really need this here for fastboot, after
15833 	 * that the value should not change without a full modeset.
15834 	 */
15835 	if (INTEL_GEN(dev_priv) >= 9 ||
15836 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
15837 		hsw_set_linetime_wm(new_crtc_state);
15838 
15839 	if (INTEL_GEN(dev_priv) >= 11)
15840 		icl_set_pipe_chicken(crtc);
15841 }
15842 
15843 static void commit_pipe_config(struct intel_atomic_state *state,
15844 			       struct intel_crtc *crtc)
15845 {
15846 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15847 	const struct intel_crtc_state *old_crtc_state =
15848 		intel_atomic_get_old_crtc_state(state, crtc);
15849 	const struct intel_crtc_state *new_crtc_state =
15850 		intel_atomic_get_new_crtc_state(state, crtc);
15851 	bool modeset = needs_modeset(new_crtc_state);
15852 
15853 	/*
15854 	 * During modesets pipe configuration was programmed as the
15855 	 * CRTC was enabled.
15856 	 */
15857 	if (!modeset) {
15858 		if (new_crtc_state->uapi.color_mgmt_changed ||
15859 		    new_crtc_state->update_pipe)
15860 			intel_color_commit(new_crtc_state);
15861 
15862 		if (INTEL_GEN(dev_priv) >= 9)
15863 			skl_detach_scalers(new_crtc_state);
15864 
15865 		if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
15866 			bdw_set_pipemisc(new_crtc_state);
15867 
15868 		if (new_crtc_state->update_pipe)
15869 			intel_pipe_fastset(old_crtc_state, new_crtc_state);
15870 
15871 		intel_psr2_program_trans_man_trk_ctl(new_crtc_state);
15872 	}
15873 
15874 	if (dev_priv->display.atomic_update_watermarks)
15875 		dev_priv->display.atomic_update_watermarks(state, crtc);
15876 }
15877 
15878 static void intel_enable_crtc(struct intel_atomic_state *state,
15879 			      struct intel_crtc *crtc)
15880 {
15881 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15882 	const struct intel_crtc_state *new_crtc_state =
15883 		intel_atomic_get_new_crtc_state(state, crtc);
15884 
15885 	if (!needs_modeset(new_crtc_state))
15886 		return;
15887 
15888 	intel_crtc_update_active_timings(new_crtc_state);
15889 
15890 	dev_priv->display.crtc_enable(state, crtc);
15891 
15892 	if (new_crtc_state->bigjoiner_slave)
15893 		return;
15894 
15895 	/* vblanks work again, re-enable pipe CRC. */
15896 	intel_crtc_enable_pipe_crc(crtc);
15897 }
15898 
15899 static void intel_update_crtc(struct intel_atomic_state *state,
15900 			      struct intel_crtc *crtc)
15901 {
15902 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15903 	const struct intel_crtc_state *old_crtc_state =
15904 		intel_atomic_get_old_crtc_state(state, crtc);
15905 	struct intel_crtc_state *new_crtc_state =
15906 		intel_atomic_get_new_crtc_state(state, crtc);
15907 	bool modeset = needs_modeset(new_crtc_state);
15908 
15909 	if (!modeset) {
15910 		if (new_crtc_state->preload_luts &&
15911 		    (new_crtc_state->uapi.color_mgmt_changed ||
15912 		     new_crtc_state->update_pipe))
15913 			intel_color_load_luts(new_crtc_state);
15914 
15915 		intel_pre_plane_update(state, crtc);
15916 
15917 		if (new_crtc_state->update_pipe)
15918 			intel_encoders_update_pipe(state, crtc);
15919 	}
15920 
15921 	if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
15922 		intel_fbc_disable(crtc);
15923 	else
15924 		intel_fbc_enable(state, crtc);
15925 
15926 	/* Perform vblank evasion around commit operation */
15927 	intel_pipe_update_start(new_crtc_state);
15928 
15929 	commit_pipe_config(state, crtc);
15930 
15931 	if (INTEL_GEN(dev_priv) >= 9)
15932 		skl_update_planes_on_crtc(state, crtc);
15933 	else
15934 		i9xx_update_planes_on_crtc(state, crtc);
15935 
15936 	intel_pipe_update_end(new_crtc_state);
15937 
15938 	/*
15939 	 * We usually enable FIFO underrun interrupts as part of the
15940 	 * CRTC enable sequence during modesets.  But when we inherit a
15941 	 * valid pipe configuration from the BIOS we need to take care
15942 	 * of enabling them on the CRTC's first fastset.
15943 	 */
15944 	if (new_crtc_state->update_pipe && !modeset &&
15945 	    old_crtc_state->inherited)
15946 		intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
15947 }
15948 
15949 static void intel_old_crtc_state_disables(struct intel_atomic_state *state,
15950 					  struct intel_crtc_state *old_crtc_state,
15951 					  struct intel_crtc_state *new_crtc_state,
15952 					  struct intel_crtc *crtc)
15953 {
15954 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15955 
15956 	drm_WARN_ON(&dev_priv->drm, old_crtc_state->bigjoiner_slave);
15957 
15958 	intel_crtc_disable_planes(state, crtc);
15959 
15960 	/*
15961 	 * We still need special handling for disabling bigjoiner master
15962 	 * and slaves since for slave we do not have encoder or plls
15963 	 * so we dont need to disable those.
15964 	 */
15965 	if (old_crtc_state->bigjoiner) {
15966 		intel_crtc_disable_planes(state,
15967 					  old_crtc_state->bigjoiner_linked_crtc);
15968 		old_crtc_state->bigjoiner_linked_crtc->active = false;
15969 	}
15970 
15971 	/*
15972 	 * We need to disable pipe CRC before disabling the pipe,
15973 	 * or we race against vblank off.
15974 	 */
15975 	intel_crtc_disable_pipe_crc(crtc);
15976 
15977 	dev_priv->display.crtc_disable(state, crtc);
15978 	crtc->active = false;
15979 	intel_fbc_disable(crtc);
15980 	intel_disable_shared_dpll(old_crtc_state);
15981 
15982 	/* FIXME unify this for all platforms */
15983 	if (!new_crtc_state->hw.active &&
15984 	    !HAS_GMCH(dev_priv) &&
15985 	    dev_priv->display.initial_watermarks)
15986 		dev_priv->display.initial_watermarks(state, crtc);
15987 }
15988 
15989 static void intel_commit_modeset_disables(struct intel_atomic_state *state)
15990 {
15991 	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
15992 	struct intel_crtc *crtc;
15993 	u32 handled = 0;
15994 	int i;
15995 
15996 	/* Only disable port sync and MST slaves */
15997 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15998 					    new_crtc_state, i) {
15999 		if (!needs_modeset(new_crtc_state) || old_crtc_state->bigjoiner)
16000 			continue;
16001 
16002 		if (!old_crtc_state->hw.active)
16003 			continue;
16004 
16005 		/* In case of Transcoder port Sync master slave CRTCs can be
16006 		 * assigned in any order and we need to make sure that
16007 		 * slave CRTCs are disabled first and then master CRTC since
16008 		 * Slave vblanks are masked till Master Vblanks.
16009 		 */
16010 		if (!is_trans_port_sync_slave(old_crtc_state) &&
16011 		    !intel_dp_mst_is_slave_trans(old_crtc_state))
16012 			continue;
16013 
16014 		intel_pre_plane_update(state, crtc);
16015 		intel_old_crtc_state_disables(state, old_crtc_state,
16016 					      new_crtc_state, crtc);
16017 		handled |= BIT(crtc->pipe);
16018 	}
16019 
16020 	/* Disable everything else left on */
16021 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
16022 					    new_crtc_state, i) {
16023 		if (!needs_modeset(new_crtc_state) ||
16024 		    (handled & BIT(crtc->pipe)) ||
16025 		    old_crtc_state->bigjoiner_slave)
16026 			continue;
16027 
16028 		intel_pre_plane_update(state, crtc);
16029 		if (old_crtc_state->bigjoiner) {
16030 			struct intel_crtc *slave =
16031 				old_crtc_state->bigjoiner_linked_crtc;
16032 
16033 			intel_pre_plane_update(state, slave);
16034 		}
16035 
16036 		if (old_crtc_state->hw.active)
16037 			intel_old_crtc_state_disables(state, old_crtc_state,
16038 						      new_crtc_state, crtc);
16039 	}
16040 }
16041 
16042 static void intel_commit_modeset_enables(struct intel_atomic_state *state)
16043 {
16044 	struct intel_crtc_state *new_crtc_state;
16045 	struct intel_crtc *crtc;
16046 	int i;
16047 
16048 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
16049 		if (!new_crtc_state->hw.active)
16050 			continue;
16051 
16052 		intel_enable_crtc(state, crtc);
16053 		intel_update_crtc(state, crtc);
16054 	}
16055 }
16056 
16057 static void skl_commit_modeset_enables(struct intel_atomic_state *state)
16058 {
16059 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
16060 	struct intel_crtc *crtc;
16061 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
16062 	struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
16063 	u8 update_pipes = 0, modeset_pipes = 0;
16064 	int i;
16065 
16066 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
16067 		enum pipe pipe = crtc->pipe;
16068 
16069 		if (!new_crtc_state->hw.active)
16070 			continue;
16071 
16072 		/* ignore allocations for crtc's that have been turned off. */
16073 		if (!needs_modeset(new_crtc_state)) {
16074 			entries[pipe] = old_crtc_state->wm.skl.ddb;
16075 			update_pipes |= BIT(pipe);
16076 		} else {
16077 			modeset_pipes |= BIT(pipe);
16078 		}
16079 	}
16080 
16081 	/*
16082 	 * Whenever the number of active pipes changes, we need to make sure we
16083 	 * update the pipes in the right order so that their ddb allocations
16084 	 * never overlap with each other between CRTC updates. Otherwise we'll
16085 	 * cause pipe underruns and other bad stuff.
16086 	 *
16087 	 * So first lets enable all pipes that do not need a fullmodeset as
16088 	 * those don't have any external dependency.
16089 	 */
16090 	while (update_pipes) {
16091 		for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
16092 						    new_crtc_state, i) {
16093 			enum pipe pipe = crtc->pipe;
16094 
16095 			if ((update_pipes & BIT(pipe)) == 0)
16096 				continue;
16097 
16098 			if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
16099 							entries, I915_MAX_PIPES, pipe))
16100 				continue;
16101 
16102 			entries[pipe] = new_crtc_state->wm.skl.ddb;
16103 			update_pipes &= ~BIT(pipe);
16104 
16105 			intel_update_crtc(state, crtc);
16106 
16107 			/*
16108 			 * If this is an already active pipe, it's DDB changed,
16109 			 * and this isn't the last pipe that needs updating
16110 			 * then we need to wait for a vblank to pass for the
16111 			 * new ddb allocation to take effect.
16112 			 */
16113 			if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb,
16114 						 &old_crtc_state->wm.skl.ddb) &&
16115 			    (update_pipes | modeset_pipes))
16116 				intel_wait_for_vblank(dev_priv, pipe);
16117 		}
16118 	}
16119 
16120 	update_pipes = modeset_pipes;
16121 
16122 	/*
16123 	 * Enable all pipes that needs a modeset and do not depends on other
16124 	 * pipes
16125 	 */
16126 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
16127 		enum pipe pipe = crtc->pipe;
16128 
16129 		if ((modeset_pipes & BIT(pipe)) == 0)
16130 			continue;
16131 
16132 		if (intel_dp_mst_is_slave_trans(new_crtc_state) ||
16133 		    is_trans_port_sync_master(new_crtc_state) ||
16134 		    (new_crtc_state->bigjoiner && !new_crtc_state->bigjoiner_slave))
16135 			continue;
16136 
16137 		modeset_pipes &= ~BIT(pipe);
16138 
16139 		intel_enable_crtc(state, crtc);
16140 	}
16141 
16142 	/*
16143 	 * Then we enable all remaining pipes that depend on other
16144 	 * pipes: MST slaves and port sync masters, big joiner master
16145 	 */
16146 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
16147 		enum pipe pipe = crtc->pipe;
16148 
16149 		if ((modeset_pipes & BIT(pipe)) == 0)
16150 			continue;
16151 
16152 		modeset_pipes &= ~BIT(pipe);
16153 
16154 		intel_enable_crtc(state, crtc);
16155 	}
16156 
16157 	/*
16158 	 * Finally we do the plane updates/etc. for all pipes that got enabled.
16159 	 */
16160 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
16161 		enum pipe pipe = crtc->pipe;
16162 
16163 		if ((update_pipes & BIT(pipe)) == 0)
16164 			continue;
16165 
16166 		drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
16167 									entries, I915_MAX_PIPES, pipe));
16168 
16169 		entries[pipe] = new_crtc_state->wm.skl.ddb;
16170 		update_pipes &= ~BIT(pipe);
16171 
16172 		intel_update_crtc(state, crtc);
16173 	}
16174 
16175 	drm_WARN_ON(&dev_priv->drm, modeset_pipes);
16176 	drm_WARN_ON(&dev_priv->drm, update_pipes);
16177 }
16178 
16179 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
16180 {
16181 	struct intel_atomic_state *state, *next;
16182 	struct llist_node *freed;
16183 
16184 	freed = llist_del_all(&dev_priv->atomic_helper.free_list);
16185 	llist_for_each_entry_safe(state, next, freed, freed)
16186 		drm_atomic_state_put(&state->base);
16187 }
16188 
16189 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
16190 {
16191 	struct drm_i915_private *dev_priv =
16192 		container_of(work, typeof(*dev_priv), atomic_helper.free_work);
16193 
16194 	intel_atomic_helper_free_state(dev_priv);
16195 }
16196 
16197 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
16198 {
16199 	struct wait_queue_entry wait_fence, wait_reset;
16200 	struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
16201 
16202 	init_wait_entry(&wait_fence, 0);
16203 	init_wait_entry(&wait_reset, 0);
16204 	for (;;) {
16205 		prepare_to_wait(&intel_state->commit_ready.wait,
16206 				&wait_fence, TASK_UNINTERRUPTIBLE);
16207 		prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
16208 					      I915_RESET_MODESET),
16209 				&wait_reset, TASK_UNINTERRUPTIBLE);
16210 
16211 
16212 		if (i915_sw_fence_done(&intel_state->commit_ready) ||
16213 		    test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
16214 			break;
16215 
16216 		schedule();
16217 	}
16218 	finish_wait(&intel_state->commit_ready.wait, &wait_fence);
16219 	finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
16220 				  I915_RESET_MODESET),
16221 		    &wait_reset);
16222 }
16223 
16224 static void intel_cleanup_dsbs(struct intel_atomic_state *state)
16225 {
16226 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
16227 	struct intel_crtc *crtc;
16228 	int i;
16229 
16230 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
16231 					    new_crtc_state, i)
16232 		intel_dsb_cleanup(old_crtc_state);
16233 }
16234 
16235 static void intel_atomic_cleanup_work(struct work_struct *work)
16236 {
16237 	struct intel_atomic_state *state =
16238 		container_of(work, struct intel_atomic_state, base.commit_work);
16239 	struct drm_i915_private *i915 = to_i915(state->base.dev);
16240 
16241 	intel_cleanup_dsbs(state);
16242 	drm_atomic_helper_cleanup_planes(&i915->drm, &state->base);
16243 	drm_atomic_helper_commit_cleanup_done(&state->base);
16244 	drm_atomic_state_put(&state->base);
16245 
16246 	intel_atomic_helper_free_state(i915);
16247 }
16248 
16249 static void intel_atomic_commit_tail(struct intel_atomic_state *state)
16250 {
16251 	struct drm_device *dev = state->base.dev;
16252 	struct drm_i915_private *dev_priv = to_i915(dev);
16253 	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
16254 	struct intel_crtc *crtc;
16255 	u64 put_domains[I915_MAX_PIPES] = {};
16256 	intel_wakeref_t wakeref = 0;
16257 	int i;
16258 
16259 	intel_atomic_commit_fence_wait(state);
16260 
16261 	drm_atomic_helper_wait_for_dependencies(&state->base);
16262 
16263 	if (state->modeset)
16264 		wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
16265 
16266 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
16267 					    new_crtc_state, i) {
16268 		if (needs_modeset(new_crtc_state) ||
16269 		    new_crtc_state->update_pipe) {
16270 
16271 			put_domains[crtc->pipe] =
16272 				modeset_get_crtc_power_domains(new_crtc_state);
16273 		}
16274 	}
16275 
16276 	intel_commit_modeset_disables(state);
16277 
16278 	/* FIXME: Eventually get rid of our crtc->config pointer */
16279 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
16280 		crtc->config = new_crtc_state;
16281 
16282 	if (state->modeset) {
16283 		drm_atomic_helper_update_legacy_modeset_state(dev, &state->base);
16284 
16285 		intel_set_cdclk_pre_plane_update(state);
16286 
16287 		intel_modeset_verify_disabled(dev_priv, state);
16288 	}
16289 
16290 	intel_sagv_pre_plane_update(state);
16291 
16292 	/* Complete the events for pipes that have now been disabled */
16293 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
16294 		bool modeset = needs_modeset(new_crtc_state);
16295 
16296 		/* Complete events for now disable pipes here. */
16297 		if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) {
16298 			spin_lock_irq(&dev->event_lock);
16299 			drm_crtc_send_vblank_event(&crtc->base,
16300 						   new_crtc_state->uapi.event);
16301 			spin_unlock_irq(&dev->event_lock);
16302 
16303 			new_crtc_state->uapi.event = NULL;
16304 		}
16305 	}
16306 
16307 	if (state->modeset)
16308 		intel_encoders_update_prepare(state);
16309 
16310 	intel_dbuf_pre_plane_update(state);
16311 
16312 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
16313 		if (new_crtc_state->uapi.async_flip)
16314 			skl_enable_flip_done(crtc);
16315 	}
16316 
16317 	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
16318 	dev_priv->display.commit_modeset_enables(state);
16319 
16320 	if (state->modeset) {
16321 		intel_encoders_update_complete(state);
16322 
16323 		intel_set_cdclk_post_plane_update(state);
16324 	}
16325 
16326 	/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
16327 	 * already, but still need the state for the delayed optimization. To
16328 	 * fix this:
16329 	 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
16330 	 * - schedule that vblank worker _before_ calling hw_done
16331 	 * - at the start of commit_tail, cancel it _synchrously
16332 	 * - switch over to the vblank wait helper in the core after that since
16333 	 *   we don't need out special handling any more.
16334 	 */
16335 	drm_atomic_helper_wait_for_flip_done(dev, &state->base);
16336 
16337 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
16338 		if (new_crtc_state->uapi.async_flip)
16339 			skl_disable_flip_done(crtc);
16340 
16341 		if (new_crtc_state->hw.active &&
16342 		    !needs_modeset(new_crtc_state) &&
16343 		    !new_crtc_state->preload_luts &&
16344 		    (new_crtc_state->uapi.color_mgmt_changed ||
16345 		     new_crtc_state->update_pipe))
16346 			intel_color_load_luts(new_crtc_state);
16347 	}
16348 
16349 	/*
16350 	 * Now that the vblank has passed, we can go ahead and program the
16351 	 * optimal watermarks on platforms that need two-step watermark
16352 	 * programming.
16353 	 *
16354 	 * TODO: Move this (and other cleanup) to an async worker eventually.
16355 	 */
16356 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
16357 					    new_crtc_state, i) {
16358 		/*
16359 		 * Gen2 reports pipe underruns whenever all planes are disabled.
16360 		 * So re-enable underrun reporting after some planes get enabled.
16361 		 *
16362 		 * We do this before .optimize_watermarks() so that we have a
16363 		 * chance of catching underruns with the intermediate watermarks
16364 		 * vs. the new plane configuration.
16365 		 */
16366 		if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state))
16367 			intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
16368 
16369 		if (dev_priv->display.optimize_watermarks)
16370 			dev_priv->display.optimize_watermarks(state, crtc);
16371 	}
16372 
16373 	intel_dbuf_post_plane_update(state);
16374 
16375 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
16376 		intel_post_plane_update(state, crtc);
16377 
16378 		if (put_domains[i])
16379 			modeset_put_power_domains(dev_priv, put_domains[i]);
16380 
16381 		intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
16382 
16383 		/*
16384 		 * DSB cleanup is done in cleanup_work aligning with framebuffer
16385 		 * cleanup. So copy and reset the dsb structure to sync with
16386 		 * commit_done and later do dsb cleanup in cleanup_work.
16387 		 */
16388 		old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb);
16389 	}
16390 
16391 	/* Underruns don't always raise interrupts, so check manually */
16392 	intel_check_cpu_fifo_underruns(dev_priv);
16393 	intel_check_pch_fifo_underruns(dev_priv);
16394 
16395 	if (state->modeset)
16396 		intel_verify_planes(state);
16397 
16398 	intel_sagv_post_plane_update(state);
16399 
16400 	drm_atomic_helper_commit_hw_done(&state->base);
16401 
16402 	if (state->modeset) {
16403 		/* As one of the primary mmio accessors, KMS has a high
16404 		 * likelihood of triggering bugs in unclaimed access. After we
16405 		 * finish modesetting, see if an error has been flagged, and if
16406 		 * so enable debugging for the next modeset - and hope we catch
16407 		 * the culprit.
16408 		 */
16409 		intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
16410 		intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref);
16411 	}
16412 	intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
16413 
16414 	/*
16415 	 * Defer the cleanup of the old state to a separate worker to not
16416 	 * impede the current task (userspace for blocking modesets) that
16417 	 * are executed inline. For out-of-line asynchronous modesets/flips,
16418 	 * deferring to a new worker seems overkill, but we would place a
16419 	 * schedule point (cond_resched()) here anyway to keep latencies
16420 	 * down.
16421 	 */
16422 	INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work);
16423 	queue_work(system_highpri_wq, &state->base.commit_work);
16424 }
16425 
16426 static void intel_atomic_commit_work(struct work_struct *work)
16427 {
16428 	struct intel_atomic_state *state =
16429 		container_of(work, struct intel_atomic_state, base.commit_work);
16430 
16431 	intel_atomic_commit_tail(state);
16432 }
16433 
16434 static int __i915_sw_fence_call
16435 intel_atomic_commit_ready(struct i915_sw_fence *fence,
16436 			  enum i915_sw_fence_notify notify)
16437 {
16438 	struct intel_atomic_state *state =
16439 		container_of(fence, struct intel_atomic_state, commit_ready);
16440 
16441 	switch (notify) {
16442 	case FENCE_COMPLETE:
16443 		/* we do blocking waits in the worker, nothing to do here */
16444 		break;
16445 	case FENCE_FREE:
16446 		{
16447 			struct intel_atomic_helper *helper =
16448 				&to_i915(state->base.dev)->atomic_helper;
16449 
16450 			if (llist_add(&state->freed, &helper->free_list))
16451 				schedule_work(&helper->free_work);
16452 			break;
16453 		}
16454 	}
16455 
16456 	return NOTIFY_DONE;
16457 }
16458 
16459 static void intel_atomic_track_fbs(struct intel_atomic_state *state)
16460 {
16461 	struct intel_plane_state *old_plane_state, *new_plane_state;
16462 	struct intel_plane *plane;
16463 	int i;
16464 
16465 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
16466 					     new_plane_state, i)
16467 		intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
16468 					to_intel_frontbuffer(new_plane_state->hw.fb),
16469 					plane->frontbuffer_bit);
16470 }
16471 
16472 static int intel_atomic_commit(struct drm_device *dev,
16473 			       struct drm_atomic_state *_state,
16474 			       bool nonblock)
16475 {
16476 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
16477 	struct drm_i915_private *dev_priv = to_i915(dev);
16478 	int ret = 0;
16479 
16480 	state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
16481 
16482 	drm_atomic_state_get(&state->base);
16483 	i915_sw_fence_init(&state->commit_ready,
16484 			   intel_atomic_commit_ready);
16485 
16486 	/*
16487 	 * The intel_legacy_cursor_update() fast path takes care
16488 	 * of avoiding the vblank waits for simple cursor
16489 	 * movement and flips. For cursor on/off and size changes,
16490 	 * we want to perform the vblank waits so that watermark
16491 	 * updates happen during the correct frames. Gen9+ have
16492 	 * double buffered watermarks and so shouldn't need this.
16493 	 *
16494 	 * Unset state->legacy_cursor_update before the call to
16495 	 * drm_atomic_helper_setup_commit() because otherwise
16496 	 * drm_atomic_helper_wait_for_flip_done() is a noop and
16497 	 * we get FIFO underruns because we didn't wait
16498 	 * for vblank.
16499 	 *
16500 	 * FIXME doing watermarks and fb cleanup from a vblank worker
16501 	 * (assuming we had any) would solve these problems.
16502 	 */
16503 	if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) {
16504 		struct intel_crtc_state *new_crtc_state;
16505 		struct intel_crtc *crtc;
16506 		int i;
16507 
16508 		for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
16509 			if (new_crtc_state->wm.need_postvbl_update ||
16510 			    new_crtc_state->update_wm_post)
16511 				state->base.legacy_cursor_update = false;
16512 	}
16513 
16514 	ret = intel_atomic_prepare_commit(state);
16515 	if (ret) {
16516 		drm_dbg_atomic(&dev_priv->drm,
16517 			       "Preparing state failed with %i\n", ret);
16518 		i915_sw_fence_commit(&state->commit_ready);
16519 		intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
16520 		return ret;
16521 	}
16522 
16523 	ret = drm_atomic_helper_setup_commit(&state->base, nonblock);
16524 	if (!ret)
16525 		ret = drm_atomic_helper_swap_state(&state->base, true);
16526 	if (!ret)
16527 		intel_atomic_swap_global_state(state);
16528 
16529 	if (ret) {
16530 		struct intel_crtc_state *new_crtc_state;
16531 		struct intel_crtc *crtc;
16532 		int i;
16533 
16534 		i915_sw_fence_commit(&state->commit_ready);
16535 
16536 		for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
16537 			intel_dsb_cleanup(new_crtc_state);
16538 
16539 		drm_atomic_helper_cleanup_planes(dev, &state->base);
16540 		intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
16541 		return ret;
16542 	}
16543 	dev_priv->wm.distrust_bios_wm = false;
16544 	intel_shared_dpll_swap_state(state);
16545 	intel_atomic_track_fbs(state);
16546 
16547 	drm_atomic_state_get(&state->base);
16548 	INIT_WORK(&state->base.commit_work, intel_atomic_commit_work);
16549 
16550 	i915_sw_fence_commit(&state->commit_ready);
16551 	if (nonblock && state->modeset) {
16552 		queue_work(dev_priv->modeset_wq, &state->base.commit_work);
16553 	} else if (nonblock) {
16554 		queue_work(dev_priv->flip_wq, &state->base.commit_work);
16555 	} else {
16556 		if (state->modeset)
16557 			flush_workqueue(dev_priv->modeset_wq);
16558 		intel_atomic_commit_tail(state);
16559 	}
16560 
16561 	return 0;
16562 }
16563 
16564 struct wait_rps_boost {
16565 	struct wait_queue_entry wait;
16566 
16567 	struct drm_crtc *crtc;
16568 	struct i915_request *request;
16569 };
16570 
16571 static int do_rps_boost(struct wait_queue_entry *_wait,
16572 			unsigned mode, int sync, void *key)
16573 {
16574 	struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
16575 	struct i915_request *rq = wait->request;
16576 
16577 	/*
16578 	 * If we missed the vblank, but the request is already running it
16579 	 * is reasonable to assume that it will complete before the next
16580 	 * vblank without our intervention, so leave RPS alone.
16581 	 */
16582 	if (!i915_request_started(rq))
16583 		intel_rps_boost(rq);
16584 	i915_request_put(rq);
16585 
16586 	drm_crtc_vblank_put(wait->crtc);
16587 
16588 	list_del(&wait->wait.entry);
16589 	kfree(wait);
16590 	return 1;
16591 }
16592 
16593 static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
16594 				       struct dma_fence *fence)
16595 {
16596 	struct wait_rps_boost *wait;
16597 
16598 	if (!dma_fence_is_i915(fence))
16599 		return;
16600 
16601 	if (INTEL_GEN(to_i915(crtc->dev)) < 6)
16602 		return;
16603 
16604 	if (drm_crtc_vblank_get(crtc))
16605 		return;
16606 
16607 	wait = kmalloc(sizeof(*wait), GFP_KERNEL);
16608 	if (!wait) {
16609 		drm_crtc_vblank_put(crtc);
16610 		return;
16611 	}
16612 
16613 	wait->request = to_request(dma_fence_get(fence));
16614 	wait->crtc = crtc;
16615 
16616 	wait->wait.func = do_rps_boost;
16617 	wait->wait.flags = 0;
16618 
16619 	add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
16620 }
16621 
16622 static int intel_plane_pin_fb(struct intel_plane_state *plane_state)
16623 {
16624 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
16625 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16626 	struct drm_framebuffer *fb = plane_state->hw.fb;
16627 	struct i915_vma *vma;
16628 
16629 	if (plane->id == PLANE_CURSOR &&
16630 	    INTEL_INFO(dev_priv)->display.cursor_needs_physical) {
16631 		struct drm_i915_gem_object *obj = intel_fb_obj(fb);
16632 		const int align = intel_cursor_alignment(dev_priv);
16633 		int err;
16634 
16635 		err = i915_gem_object_attach_phys(obj, align);
16636 		if (err)
16637 			return err;
16638 	}
16639 
16640 	vma = intel_pin_and_fence_fb_obj(fb,
16641 					 &plane_state->view,
16642 					 intel_plane_uses_fence(plane_state),
16643 					 &plane_state->flags);
16644 	if (IS_ERR(vma))
16645 		return PTR_ERR(vma);
16646 
16647 	plane_state->vma = vma;
16648 
16649 	return 0;
16650 }
16651 
16652 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state)
16653 {
16654 	struct i915_vma *vma;
16655 
16656 	vma = fetch_and_zero(&old_plane_state->vma);
16657 	if (vma)
16658 		intel_unpin_fb_vma(vma, old_plane_state->flags);
16659 }
16660 
16661 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj)
16662 {
16663 	struct i915_sched_attr attr = {
16664 		.priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY),
16665 	};
16666 
16667 	i915_gem_object_wait_priority(obj, 0, &attr);
16668 }
16669 
16670 /**
16671  * intel_prepare_plane_fb - Prepare fb for usage on plane
16672  * @_plane: drm plane to prepare for
16673  * @_new_plane_state: the plane state being prepared
16674  *
16675  * Prepares a framebuffer for usage on a display plane.  Generally this
16676  * involves pinning the underlying object and updating the frontbuffer tracking
16677  * bits.  Some older platforms need special physical address handling for
16678  * cursor planes.
16679  *
16680  * Returns 0 on success, negative error code on failure.
16681  */
16682 int
16683 intel_prepare_plane_fb(struct drm_plane *_plane,
16684 		       struct drm_plane_state *_new_plane_state)
16685 {
16686 	struct intel_plane *plane = to_intel_plane(_plane);
16687 	struct intel_plane_state *new_plane_state =
16688 		to_intel_plane_state(_new_plane_state);
16689 	struct intel_atomic_state *state =
16690 		to_intel_atomic_state(new_plane_state->uapi.state);
16691 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16692 	const struct intel_plane_state *old_plane_state =
16693 		intel_atomic_get_old_plane_state(state, plane);
16694 	struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb);
16695 	struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb);
16696 	int ret;
16697 
16698 	if (old_obj) {
16699 		const struct intel_crtc_state *crtc_state =
16700 			intel_atomic_get_new_crtc_state(state,
16701 							to_intel_crtc(old_plane_state->hw.crtc));
16702 
16703 		/* Big Hammer, we also need to ensure that any pending
16704 		 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
16705 		 * current scanout is retired before unpinning the old
16706 		 * framebuffer. Note that we rely on userspace rendering
16707 		 * into the buffer attached to the pipe they are waiting
16708 		 * on. If not, userspace generates a GPU hang with IPEHR
16709 		 * point to the MI_WAIT_FOR_EVENT.
16710 		 *
16711 		 * This should only fail upon a hung GPU, in which case we
16712 		 * can safely continue.
16713 		 */
16714 		if (needs_modeset(crtc_state)) {
16715 			ret = i915_sw_fence_await_reservation(&state->commit_ready,
16716 							      old_obj->base.resv, NULL,
16717 							      false, 0,
16718 							      GFP_KERNEL);
16719 			if (ret < 0)
16720 				return ret;
16721 		}
16722 	}
16723 
16724 	if (new_plane_state->uapi.fence) { /* explicit fencing */
16725 		ret = i915_sw_fence_await_dma_fence(&state->commit_ready,
16726 						    new_plane_state->uapi.fence,
16727 						    i915_fence_timeout(dev_priv),
16728 						    GFP_KERNEL);
16729 		if (ret < 0)
16730 			return ret;
16731 	}
16732 
16733 	if (!obj)
16734 		return 0;
16735 
16736 	ret = i915_gem_object_pin_pages(obj);
16737 	if (ret)
16738 		return ret;
16739 
16740 	ret = intel_plane_pin_fb(new_plane_state);
16741 
16742 	i915_gem_object_unpin_pages(obj);
16743 	if (ret)
16744 		return ret;
16745 
16746 	fb_obj_bump_render_priority(obj);
16747 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB);
16748 
16749 	if (!new_plane_state->uapi.fence) { /* implicit fencing */
16750 		struct dma_fence *fence;
16751 
16752 		ret = i915_sw_fence_await_reservation(&state->commit_ready,
16753 						      obj->base.resv, NULL,
16754 						      false,
16755 						      i915_fence_timeout(dev_priv),
16756 						      GFP_KERNEL);
16757 		if (ret < 0)
16758 			goto unpin_fb;
16759 
16760 		fence = dma_resv_get_excl_rcu(obj->base.resv);
16761 		if (fence) {
16762 			add_rps_boost_after_vblank(new_plane_state->hw.crtc,
16763 						   fence);
16764 			dma_fence_put(fence);
16765 		}
16766 	} else {
16767 		add_rps_boost_after_vblank(new_plane_state->hw.crtc,
16768 					   new_plane_state->uapi.fence);
16769 	}
16770 
16771 	/*
16772 	 * We declare pageflips to be interactive and so merit a small bias
16773 	 * towards upclocking to deliver the frame on time. By only changing
16774 	 * the RPS thresholds to sample more regularly and aim for higher
16775 	 * clocks we can hopefully deliver low power workloads (like kodi)
16776 	 * that are not quite steady state without resorting to forcing
16777 	 * maximum clocks following a vblank miss (see do_rps_boost()).
16778 	 */
16779 	if (!state->rps_interactive) {
16780 		intel_rps_mark_interactive(&dev_priv->gt.rps, true);
16781 		state->rps_interactive = true;
16782 	}
16783 
16784 	return 0;
16785 
16786 unpin_fb:
16787 	intel_plane_unpin_fb(new_plane_state);
16788 
16789 	return ret;
16790 }
16791 
16792 /**
16793  * intel_cleanup_plane_fb - Cleans up an fb after plane use
16794  * @plane: drm plane to clean up for
16795  * @_old_plane_state: the state from the previous modeset
16796  *
16797  * Cleans up a framebuffer that has just been removed from a plane.
16798  */
16799 void
16800 intel_cleanup_plane_fb(struct drm_plane *plane,
16801 		       struct drm_plane_state *_old_plane_state)
16802 {
16803 	struct intel_plane_state *old_plane_state =
16804 		to_intel_plane_state(_old_plane_state);
16805 	struct intel_atomic_state *state =
16806 		to_intel_atomic_state(old_plane_state->uapi.state);
16807 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
16808 	struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb);
16809 
16810 	if (!obj)
16811 		return;
16812 
16813 	if (state->rps_interactive) {
16814 		intel_rps_mark_interactive(&dev_priv->gt.rps, false);
16815 		state->rps_interactive = false;
16816 	}
16817 
16818 	/* Should only be called after a successful intel_prepare_plane_fb()! */
16819 	intel_plane_unpin_fb(old_plane_state);
16820 }
16821 
16822 /**
16823  * intel_plane_destroy - destroy a plane
16824  * @plane: plane to destroy
16825  *
16826  * Common destruction function for all types of planes (primary, cursor,
16827  * sprite).
16828  */
16829 void intel_plane_destroy(struct drm_plane *plane)
16830 {
16831 	drm_plane_cleanup(plane);
16832 	kfree(to_intel_plane(plane));
16833 }
16834 
16835 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane,
16836 					    u32 format, u64 modifier)
16837 {
16838 	switch (modifier) {
16839 	case DRM_FORMAT_MOD_LINEAR:
16840 	case I915_FORMAT_MOD_X_TILED:
16841 		break;
16842 	default:
16843 		return false;
16844 	}
16845 
16846 	switch (format) {
16847 	case DRM_FORMAT_C8:
16848 	case DRM_FORMAT_RGB565:
16849 	case DRM_FORMAT_XRGB1555:
16850 	case DRM_FORMAT_XRGB8888:
16851 		return modifier == DRM_FORMAT_MOD_LINEAR ||
16852 			modifier == I915_FORMAT_MOD_X_TILED;
16853 	default:
16854 		return false;
16855 	}
16856 }
16857 
16858 static bool i965_plane_format_mod_supported(struct drm_plane *_plane,
16859 					    u32 format, u64 modifier)
16860 {
16861 	switch (modifier) {
16862 	case DRM_FORMAT_MOD_LINEAR:
16863 	case I915_FORMAT_MOD_X_TILED:
16864 		break;
16865 	default:
16866 		return false;
16867 	}
16868 
16869 	switch (format) {
16870 	case DRM_FORMAT_C8:
16871 	case DRM_FORMAT_RGB565:
16872 	case DRM_FORMAT_XRGB8888:
16873 	case DRM_FORMAT_XBGR8888:
16874 	case DRM_FORMAT_ARGB8888:
16875 	case DRM_FORMAT_ABGR8888:
16876 	case DRM_FORMAT_XRGB2101010:
16877 	case DRM_FORMAT_XBGR2101010:
16878 	case DRM_FORMAT_ARGB2101010:
16879 	case DRM_FORMAT_ABGR2101010:
16880 	case DRM_FORMAT_XBGR16161616F:
16881 		return modifier == DRM_FORMAT_MOD_LINEAR ||
16882 			modifier == I915_FORMAT_MOD_X_TILED;
16883 	default:
16884 		return false;
16885 	}
16886 }
16887 
16888 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane,
16889 					      u32 format, u64 modifier)
16890 {
16891 	return modifier == DRM_FORMAT_MOD_LINEAR &&
16892 		format == DRM_FORMAT_ARGB8888;
16893 }
16894 
16895 static const struct drm_plane_funcs i965_plane_funcs = {
16896 	.update_plane = drm_atomic_helper_update_plane,
16897 	.disable_plane = drm_atomic_helper_disable_plane,
16898 	.destroy = intel_plane_destroy,
16899 	.atomic_duplicate_state = intel_plane_duplicate_state,
16900 	.atomic_destroy_state = intel_plane_destroy_state,
16901 	.format_mod_supported = i965_plane_format_mod_supported,
16902 };
16903 
16904 static const struct drm_plane_funcs i8xx_plane_funcs = {
16905 	.update_plane = drm_atomic_helper_update_plane,
16906 	.disable_plane = drm_atomic_helper_disable_plane,
16907 	.destroy = intel_plane_destroy,
16908 	.atomic_duplicate_state = intel_plane_duplicate_state,
16909 	.atomic_destroy_state = intel_plane_destroy_state,
16910 	.format_mod_supported = i8xx_plane_format_mod_supported,
16911 };
16912 
16913 static int
16914 intel_legacy_cursor_update(struct drm_plane *_plane,
16915 			   struct drm_crtc *_crtc,
16916 			   struct drm_framebuffer *fb,
16917 			   int crtc_x, int crtc_y,
16918 			   unsigned int crtc_w, unsigned int crtc_h,
16919 			   u32 src_x, u32 src_y,
16920 			   u32 src_w, u32 src_h,
16921 			   struct drm_modeset_acquire_ctx *ctx)
16922 {
16923 	struct intel_plane *plane = to_intel_plane(_plane);
16924 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
16925 	struct intel_plane_state *old_plane_state =
16926 		to_intel_plane_state(plane->base.state);
16927 	struct intel_plane_state *new_plane_state;
16928 	struct intel_crtc_state *crtc_state =
16929 		to_intel_crtc_state(crtc->base.state);
16930 	struct intel_crtc_state *new_crtc_state;
16931 	int ret;
16932 
16933 	/*
16934 	 * When crtc is inactive or there is a modeset pending,
16935 	 * wait for it to complete in the slowpath
16936 	 *
16937 	 * FIXME bigjoiner fastpath would be good
16938 	 */
16939 	if (!crtc_state->hw.active || needs_modeset(crtc_state) ||
16940 	    crtc_state->update_pipe || crtc_state->bigjoiner)
16941 		goto slow;
16942 
16943 	/*
16944 	 * Don't do an async update if there is an outstanding commit modifying
16945 	 * the plane.  This prevents our async update's changes from getting
16946 	 * overridden by a previous synchronous update's state.
16947 	 */
16948 	if (old_plane_state->uapi.commit &&
16949 	    !try_wait_for_completion(&old_plane_state->uapi.commit->hw_done))
16950 		goto slow;
16951 
16952 	/*
16953 	 * If any parameters change that may affect watermarks,
16954 	 * take the slowpath. Only changing fb or position should be
16955 	 * in the fastpath.
16956 	 */
16957 	if (old_plane_state->uapi.crtc != &crtc->base ||
16958 	    old_plane_state->uapi.src_w != src_w ||
16959 	    old_plane_state->uapi.src_h != src_h ||
16960 	    old_plane_state->uapi.crtc_w != crtc_w ||
16961 	    old_plane_state->uapi.crtc_h != crtc_h ||
16962 	    !old_plane_state->uapi.fb != !fb)
16963 		goto slow;
16964 
16965 	new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base));
16966 	if (!new_plane_state)
16967 		return -ENOMEM;
16968 
16969 	new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base));
16970 	if (!new_crtc_state) {
16971 		ret = -ENOMEM;
16972 		goto out_free;
16973 	}
16974 
16975 	drm_atomic_set_fb_for_plane(&new_plane_state->uapi, fb);
16976 
16977 	new_plane_state->uapi.src_x = src_x;
16978 	new_plane_state->uapi.src_y = src_y;
16979 	new_plane_state->uapi.src_w = src_w;
16980 	new_plane_state->uapi.src_h = src_h;
16981 	new_plane_state->uapi.crtc_x = crtc_x;
16982 	new_plane_state->uapi.crtc_y = crtc_y;
16983 	new_plane_state->uapi.crtc_w = crtc_w;
16984 	new_plane_state->uapi.crtc_h = crtc_h;
16985 
16986 	intel_plane_copy_uapi_to_hw_state(new_plane_state, new_plane_state, crtc);
16987 
16988 	ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state,
16989 						  old_plane_state, new_plane_state);
16990 	if (ret)
16991 		goto out_free;
16992 
16993 	ret = intel_plane_pin_fb(new_plane_state);
16994 	if (ret)
16995 		goto out_free;
16996 
16997 	intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->hw.fb),
16998 				ORIGIN_FLIP);
16999 	intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
17000 				to_intel_frontbuffer(new_plane_state->hw.fb),
17001 				plane->frontbuffer_bit);
17002 
17003 	/* Swap plane state */
17004 	plane->base.state = &new_plane_state->uapi;
17005 
17006 	/*
17007 	 * We cannot swap crtc_state as it may be in use by an atomic commit or
17008 	 * page flip that's running simultaneously. If we swap crtc_state and
17009 	 * destroy the old state, we will cause a use-after-free there.
17010 	 *
17011 	 * Only update active_planes, which is needed for our internal
17012 	 * bookkeeping. Either value will do the right thing when updating
17013 	 * planes atomically. If the cursor was part of the atomic update then
17014 	 * we would have taken the slowpath.
17015 	 */
17016 	crtc_state->active_planes = new_crtc_state->active_planes;
17017 
17018 	if (new_plane_state->uapi.visible)
17019 		intel_update_plane(plane, crtc_state, new_plane_state);
17020 	else
17021 		intel_disable_plane(plane, crtc_state);
17022 
17023 	intel_plane_unpin_fb(old_plane_state);
17024 
17025 out_free:
17026 	if (new_crtc_state)
17027 		intel_crtc_destroy_state(&crtc->base, &new_crtc_state->uapi);
17028 	if (ret)
17029 		intel_plane_destroy_state(&plane->base, &new_plane_state->uapi);
17030 	else
17031 		intel_plane_destroy_state(&plane->base, &old_plane_state->uapi);
17032 	return ret;
17033 
17034 slow:
17035 	return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb,
17036 					      crtc_x, crtc_y, crtc_w, crtc_h,
17037 					      src_x, src_y, src_w, src_h, ctx);
17038 }
17039 
17040 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
17041 	.update_plane = intel_legacy_cursor_update,
17042 	.disable_plane = drm_atomic_helper_disable_plane,
17043 	.destroy = intel_plane_destroy,
17044 	.atomic_duplicate_state = intel_plane_duplicate_state,
17045 	.atomic_destroy_state = intel_plane_destroy_state,
17046 	.format_mod_supported = intel_cursor_format_mod_supported,
17047 };
17048 
17049 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv,
17050 			       enum i9xx_plane_id i9xx_plane)
17051 {
17052 	if (!HAS_FBC(dev_priv))
17053 		return false;
17054 
17055 	if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
17056 		return i9xx_plane == PLANE_A; /* tied to pipe A */
17057 	else if (IS_IVYBRIDGE(dev_priv))
17058 		return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B ||
17059 			i9xx_plane == PLANE_C;
17060 	else if (INTEL_GEN(dev_priv) >= 4)
17061 		return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B;
17062 	else
17063 		return i9xx_plane == PLANE_A;
17064 }
17065 
17066 static struct intel_plane *
17067 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
17068 {
17069 	struct intel_plane *plane;
17070 	const struct drm_plane_funcs *plane_funcs;
17071 	unsigned int supported_rotations;
17072 	const u32 *formats;
17073 	int num_formats;
17074 	int ret, zpos;
17075 
17076 	if (INTEL_GEN(dev_priv) >= 9)
17077 		return skl_universal_plane_create(dev_priv, pipe,
17078 						  PLANE_PRIMARY);
17079 
17080 	plane = intel_plane_alloc();
17081 	if (IS_ERR(plane))
17082 		return plane;
17083 
17084 	plane->pipe = pipe;
17085 	/*
17086 	 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
17087 	 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
17088 	 */
17089 	if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4 &&
17090 	    INTEL_NUM_PIPES(dev_priv) == 2)
17091 		plane->i9xx_plane = (enum i9xx_plane_id) !pipe;
17092 	else
17093 		plane->i9xx_plane = (enum i9xx_plane_id) pipe;
17094 	plane->id = PLANE_PRIMARY;
17095 	plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id);
17096 
17097 	plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane);
17098 	if (plane->has_fbc) {
17099 		struct intel_fbc *fbc = &dev_priv->fbc;
17100 
17101 		fbc->possible_framebuffer_bits |= plane->frontbuffer_bit;
17102 	}
17103 
17104 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
17105 		formats = vlv_primary_formats;
17106 		num_formats = ARRAY_SIZE(vlv_primary_formats);
17107 	} else if (INTEL_GEN(dev_priv) >= 4) {
17108 		/*
17109 		 * WaFP16GammaEnabling:ivb
17110 		 * "Workaround : When using the 64-bit format, the plane
17111 		 *  output on each color channel has one quarter amplitude.
17112 		 *  It can be brought up to full amplitude by using pipe
17113 		 *  gamma correction or pipe color space conversion to
17114 		 *  multiply the plane output by four."
17115 		 *
17116 		 * There is no dedicated plane gamma for the primary plane,
17117 		 * and using the pipe gamma/csc could conflict with other
17118 		 * planes, so we choose not to expose fp16 on IVB primary
17119 		 * planes. HSW primary planes no longer have this problem.
17120 		 */
17121 		if (IS_IVYBRIDGE(dev_priv)) {
17122 			formats = ivb_primary_formats;
17123 			num_formats = ARRAY_SIZE(ivb_primary_formats);
17124 		} else {
17125 			formats = i965_primary_formats;
17126 			num_formats = ARRAY_SIZE(i965_primary_formats);
17127 		}
17128 	} else {
17129 		formats = i8xx_primary_formats;
17130 		num_formats = ARRAY_SIZE(i8xx_primary_formats);
17131 	}
17132 
17133 	if (INTEL_GEN(dev_priv) >= 4)
17134 		plane_funcs = &i965_plane_funcs;
17135 	else
17136 		plane_funcs = &i8xx_plane_funcs;
17137 
17138 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
17139 		plane->min_cdclk = vlv_plane_min_cdclk;
17140 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
17141 		plane->min_cdclk = hsw_plane_min_cdclk;
17142 	else if (IS_IVYBRIDGE(dev_priv))
17143 		plane->min_cdclk = ivb_plane_min_cdclk;
17144 	else
17145 		plane->min_cdclk = i9xx_plane_min_cdclk;
17146 
17147 	plane->max_stride = i9xx_plane_max_stride;
17148 	plane->update_plane = i9xx_update_plane;
17149 	plane->disable_plane = i9xx_disable_plane;
17150 	plane->get_hw_state = i9xx_plane_get_hw_state;
17151 	plane->check_plane = i9xx_plane_check;
17152 
17153 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
17154 		ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
17155 					       0, plane_funcs,
17156 					       formats, num_formats,
17157 					       i9xx_format_modifiers,
17158 					       DRM_PLANE_TYPE_PRIMARY,
17159 					       "primary %c", pipe_name(pipe));
17160 	else
17161 		ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
17162 					       0, plane_funcs,
17163 					       formats, num_formats,
17164 					       i9xx_format_modifiers,
17165 					       DRM_PLANE_TYPE_PRIMARY,
17166 					       "plane %c",
17167 					       plane_name(plane->i9xx_plane));
17168 	if (ret)
17169 		goto fail;
17170 
17171 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
17172 		supported_rotations =
17173 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
17174 			DRM_MODE_REFLECT_X;
17175 	} else if (INTEL_GEN(dev_priv) >= 4) {
17176 		supported_rotations =
17177 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
17178 	} else {
17179 		supported_rotations = DRM_MODE_ROTATE_0;
17180 	}
17181 
17182 	if (INTEL_GEN(dev_priv) >= 4)
17183 		drm_plane_create_rotation_property(&plane->base,
17184 						   DRM_MODE_ROTATE_0,
17185 						   supported_rotations);
17186 
17187 	zpos = 0;
17188 	drm_plane_create_zpos_immutable_property(&plane->base, zpos);
17189 
17190 	drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs);
17191 
17192 	return plane;
17193 
17194 fail:
17195 	intel_plane_free(plane);
17196 
17197 	return ERR_PTR(ret);
17198 }
17199 
17200 static struct intel_plane *
17201 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
17202 			  enum pipe pipe)
17203 {
17204 	struct intel_plane *cursor;
17205 	int ret, zpos;
17206 
17207 	cursor = intel_plane_alloc();
17208 	if (IS_ERR(cursor))
17209 		return cursor;
17210 
17211 	cursor->pipe = pipe;
17212 	cursor->i9xx_plane = (enum i9xx_plane_id) pipe;
17213 	cursor->id = PLANE_CURSOR;
17214 	cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id);
17215 
17216 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
17217 		cursor->max_stride = i845_cursor_max_stride;
17218 		cursor->update_plane = i845_update_cursor;
17219 		cursor->disable_plane = i845_disable_cursor;
17220 		cursor->get_hw_state = i845_cursor_get_hw_state;
17221 		cursor->check_plane = i845_check_cursor;
17222 	} else {
17223 		cursor->max_stride = i9xx_cursor_max_stride;
17224 		cursor->update_plane = i9xx_update_cursor;
17225 		cursor->disable_plane = i9xx_disable_cursor;
17226 		cursor->get_hw_state = i9xx_cursor_get_hw_state;
17227 		cursor->check_plane = i9xx_check_cursor;
17228 	}
17229 
17230 	cursor->cursor.base = ~0;
17231 	cursor->cursor.cntl = ~0;
17232 
17233 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
17234 		cursor->cursor.size = ~0;
17235 
17236 	ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
17237 				       0, &intel_cursor_plane_funcs,
17238 				       intel_cursor_formats,
17239 				       ARRAY_SIZE(intel_cursor_formats),
17240 				       cursor_format_modifiers,
17241 				       DRM_PLANE_TYPE_CURSOR,
17242 				       "cursor %c", pipe_name(pipe));
17243 	if (ret)
17244 		goto fail;
17245 
17246 	if (INTEL_GEN(dev_priv) >= 4)
17247 		drm_plane_create_rotation_property(&cursor->base,
17248 						   DRM_MODE_ROTATE_0,
17249 						   DRM_MODE_ROTATE_0 |
17250 						   DRM_MODE_ROTATE_180);
17251 
17252 	zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1;
17253 	drm_plane_create_zpos_immutable_property(&cursor->base, zpos);
17254 
17255 	if (INTEL_GEN(dev_priv) >= 12)
17256 		drm_plane_enable_fb_damage_clips(&cursor->base);
17257 
17258 	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
17259 
17260 	return cursor;
17261 
17262 fail:
17263 	intel_plane_free(cursor);
17264 
17265 	return ERR_PTR(ret);
17266 }
17267 
17268 #define INTEL_CRTC_FUNCS \
17269 	.gamma_set = drm_atomic_helper_legacy_gamma_set, \
17270 	.set_config = drm_atomic_helper_set_config, \
17271 	.destroy = intel_crtc_destroy, \
17272 	.page_flip = drm_atomic_helper_page_flip, \
17273 	.atomic_duplicate_state = intel_crtc_duplicate_state, \
17274 	.atomic_destroy_state = intel_crtc_destroy_state, \
17275 	.set_crc_source = intel_crtc_set_crc_source, \
17276 	.verify_crc_source = intel_crtc_verify_crc_source, \
17277 	.get_crc_sources = intel_crtc_get_crc_sources
17278 
17279 static const struct drm_crtc_funcs bdw_crtc_funcs = {
17280 	INTEL_CRTC_FUNCS,
17281 
17282 	.get_vblank_counter = g4x_get_vblank_counter,
17283 	.enable_vblank = bdw_enable_vblank,
17284 	.disable_vblank = bdw_disable_vblank,
17285 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
17286 };
17287 
17288 static const struct drm_crtc_funcs ilk_crtc_funcs = {
17289 	INTEL_CRTC_FUNCS,
17290 
17291 	.get_vblank_counter = g4x_get_vblank_counter,
17292 	.enable_vblank = ilk_enable_vblank,
17293 	.disable_vblank = ilk_disable_vblank,
17294 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
17295 };
17296 
17297 static const struct drm_crtc_funcs g4x_crtc_funcs = {
17298 	INTEL_CRTC_FUNCS,
17299 
17300 	.get_vblank_counter = g4x_get_vblank_counter,
17301 	.enable_vblank = i965_enable_vblank,
17302 	.disable_vblank = i965_disable_vblank,
17303 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
17304 };
17305 
17306 static const struct drm_crtc_funcs i965_crtc_funcs = {
17307 	INTEL_CRTC_FUNCS,
17308 
17309 	.get_vblank_counter = i915_get_vblank_counter,
17310 	.enable_vblank = i965_enable_vblank,
17311 	.disable_vblank = i965_disable_vblank,
17312 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
17313 };
17314 
17315 static const struct drm_crtc_funcs i915gm_crtc_funcs = {
17316 	INTEL_CRTC_FUNCS,
17317 
17318 	.get_vblank_counter = i915_get_vblank_counter,
17319 	.enable_vblank = i915gm_enable_vblank,
17320 	.disable_vblank = i915gm_disable_vblank,
17321 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
17322 };
17323 
17324 static const struct drm_crtc_funcs i915_crtc_funcs = {
17325 	INTEL_CRTC_FUNCS,
17326 
17327 	.get_vblank_counter = i915_get_vblank_counter,
17328 	.enable_vblank = i8xx_enable_vblank,
17329 	.disable_vblank = i8xx_disable_vblank,
17330 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
17331 };
17332 
17333 static const struct drm_crtc_funcs i8xx_crtc_funcs = {
17334 	INTEL_CRTC_FUNCS,
17335 
17336 	/* no hw vblank counter */
17337 	.enable_vblank = i8xx_enable_vblank,
17338 	.disable_vblank = i8xx_disable_vblank,
17339 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
17340 };
17341 
17342 static struct intel_crtc *intel_crtc_alloc(void)
17343 {
17344 	struct intel_crtc_state *crtc_state;
17345 	struct intel_crtc *crtc;
17346 
17347 	crtc = kzalloc(sizeof(*crtc), GFP_KERNEL);
17348 	if (!crtc)
17349 		return ERR_PTR(-ENOMEM);
17350 
17351 	crtc_state = intel_crtc_state_alloc(crtc);
17352 	if (!crtc_state) {
17353 		kfree(crtc);
17354 		return ERR_PTR(-ENOMEM);
17355 	}
17356 
17357 	crtc->base.state = &crtc_state->uapi;
17358 	crtc->config = crtc_state;
17359 
17360 	return crtc;
17361 }
17362 
17363 static void intel_crtc_free(struct intel_crtc *crtc)
17364 {
17365 	intel_crtc_destroy_state(&crtc->base, crtc->base.state);
17366 	kfree(crtc);
17367 }
17368 
17369 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv)
17370 {
17371 	struct intel_plane *plane;
17372 
17373 	for_each_intel_plane(&dev_priv->drm, plane) {
17374 		struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
17375 								  plane->pipe);
17376 
17377 		plane->base.possible_crtcs = drm_crtc_mask(&crtc->base);
17378 	}
17379 }
17380 
17381 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
17382 {
17383 	struct intel_plane *primary, *cursor;
17384 	const struct drm_crtc_funcs *funcs;
17385 	struct intel_crtc *crtc;
17386 	int sprite, ret;
17387 
17388 	crtc = intel_crtc_alloc();
17389 	if (IS_ERR(crtc))
17390 		return PTR_ERR(crtc);
17391 
17392 	crtc->pipe = pipe;
17393 	crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe];
17394 
17395 	primary = intel_primary_plane_create(dev_priv, pipe);
17396 	if (IS_ERR(primary)) {
17397 		ret = PTR_ERR(primary);
17398 		goto fail;
17399 	}
17400 	crtc->plane_ids_mask |= BIT(primary->id);
17401 
17402 	for_each_sprite(dev_priv, pipe, sprite) {
17403 		struct intel_plane *plane;
17404 
17405 		plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
17406 		if (IS_ERR(plane)) {
17407 			ret = PTR_ERR(plane);
17408 			goto fail;
17409 		}
17410 		crtc->plane_ids_mask |= BIT(plane->id);
17411 	}
17412 
17413 	cursor = intel_cursor_plane_create(dev_priv, pipe);
17414 	if (IS_ERR(cursor)) {
17415 		ret = PTR_ERR(cursor);
17416 		goto fail;
17417 	}
17418 	crtc->plane_ids_mask |= BIT(cursor->id);
17419 
17420 	if (HAS_GMCH(dev_priv)) {
17421 		if (IS_CHERRYVIEW(dev_priv) ||
17422 		    IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
17423 			funcs = &g4x_crtc_funcs;
17424 		else if (IS_GEN(dev_priv, 4))
17425 			funcs = &i965_crtc_funcs;
17426 		else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv))
17427 			funcs = &i915gm_crtc_funcs;
17428 		else if (IS_GEN(dev_priv, 3))
17429 			funcs = &i915_crtc_funcs;
17430 		else
17431 			funcs = &i8xx_crtc_funcs;
17432 	} else {
17433 		if (INTEL_GEN(dev_priv) >= 8)
17434 			funcs = &bdw_crtc_funcs;
17435 		else
17436 			funcs = &ilk_crtc_funcs;
17437 	}
17438 
17439 	ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base,
17440 					&primary->base, &cursor->base,
17441 					funcs, "pipe %c", pipe_name(pipe));
17442 	if (ret)
17443 		goto fail;
17444 
17445 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) ||
17446 	       dev_priv->pipe_to_crtc_mapping[pipe] != NULL);
17447 	dev_priv->pipe_to_crtc_mapping[pipe] = crtc;
17448 
17449 	if (INTEL_GEN(dev_priv) < 9) {
17450 		enum i9xx_plane_id i9xx_plane = primary->i9xx_plane;
17451 
17452 		BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
17453 		       dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL);
17454 		dev_priv->plane_to_crtc_mapping[i9xx_plane] = crtc;
17455 	}
17456 
17457 	if (INTEL_GEN(dev_priv) >= 10)
17458 		drm_crtc_create_scaling_filter_property(&crtc->base,
17459 						BIT(DRM_SCALING_FILTER_DEFAULT) |
17460 						BIT(DRM_SCALING_FILTER_NEAREST_NEIGHBOR));
17461 
17462 	intel_color_init(crtc);
17463 
17464 	intel_crtc_crc_init(crtc);
17465 
17466 	drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe);
17467 
17468 	return 0;
17469 
17470 fail:
17471 	intel_crtc_free(crtc);
17472 
17473 	return ret;
17474 }
17475 
17476 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
17477 				      struct drm_file *file)
17478 {
17479 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
17480 	struct drm_crtc *drmmode_crtc;
17481 	struct intel_crtc *crtc;
17482 
17483 	drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
17484 	if (!drmmode_crtc)
17485 		return -ENOENT;
17486 
17487 	crtc = to_intel_crtc(drmmode_crtc);
17488 	pipe_from_crtc_id->pipe = crtc->pipe;
17489 
17490 	return 0;
17491 }
17492 
17493 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder)
17494 {
17495 	struct drm_device *dev = encoder->base.dev;
17496 	struct intel_encoder *source_encoder;
17497 	u32 possible_clones = 0;
17498 
17499 	for_each_intel_encoder(dev, source_encoder) {
17500 		if (encoders_cloneable(encoder, source_encoder))
17501 			possible_clones |= drm_encoder_mask(&source_encoder->base);
17502 	}
17503 
17504 	return possible_clones;
17505 }
17506 
17507 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder)
17508 {
17509 	struct drm_device *dev = encoder->base.dev;
17510 	struct intel_crtc *crtc;
17511 	u32 possible_crtcs = 0;
17512 
17513 	for_each_intel_crtc(dev, crtc) {
17514 		if (encoder->pipe_mask & BIT(crtc->pipe))
17515 			possible_crtcs |= drm_crtc_mask(&crtc->base);
17516 	}
17517 
17518 	return possible_crtcs;
17519 }
17520 
17521 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv)
17522 {
17523 	if (!IS_MOBILE(dev_priv))
17524 		return false;
17525 
17526 	if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0)
17527 		return false;
17528 
17529 	if (IS_GEN(dev_priv, 5) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE))
17530 		return false;
17531 
17532 	return true;
17533 }
17534 
17535 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv)
17536 {
17537 	if (INTEL_GEN(dev_priv) >= 9)
17538 		return false;
17539 
17540 	if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
17541 		return false;
17542 
17543 	if (HAS_PCH_LPT_H(dev_priv) &&
17544 	    intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
17545 		return false;
17546 
17547 	/* DDI E can't be used if DDI A requires 4 lanes */
17548 	if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
17549 		return false;
17550 
17551 	if (!dev_priv->vbt.int_crt_support)
17552 		return false;
17553 
17554 	return true;
17555 }
17556 
17557 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
17558 {
17559 	int pps_num;
17560 	int pps_idx;
17561 
17562 	if (HAS_DDI(dev_priv))
17563 		return;
17564 	/*
17565 	 * This w/a is needed at least on CPT/PPT, but to be sure apply it
17566 	 * everywhere where registers can be write protected.
17567 	 */
17568 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
17569 		pps_num = 2;
17570 	else
17571 		pps_num = 1;
17572 
17573 	for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
17574 		u32 val = intel_de_read(dev_priv, PP_CONTROL(pps_idx));
17575 
17576 		val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
17577 		intel_de_write(dev_priv, PP_CONTROL(pps_idx), val);
17578 	}
17579 }
17580 
17581 static void intel_pps_init(struct drm_i915_private *dev_priv)
17582 {
17583 	if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
17584 		dev_priv->pps_mmio_base = PCH_PPS_BASE;
17585 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
17586 		dev_priv->pps_mmio_base = VLV_PPS_BASE;
17587 	else
17588 		dev_priv->pps_mmio_base = PPS_BASE;
17589 
17590 	intel_pps_unlock_regs_wa(dev_priv);
17591 }
17592 
17593 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
17594 {
17595 	struct intel_encoder *encoder;
17596 	bool dpd_is_edp = false;
17597 
17598 	intel_pps_init(dev_priv);
17599 
17600 	if (!HAS_DISPLAY(dev_priv))
17601 		return;
17602 
17603 	if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) {
17604 		intel_ddi_init(dev_priv, PORT_A);
17605 		intel_ddi_init(dev_priv, PORT_B);
17606 		intel_ddi_init(dev_priv, PORT_TC1);
17607 		intel_ddi_init(dev_priv, PORT_TC2);
17608 	} else if (INTEL_GEN(dev_priv) >= 12) {
17609 		intel_ddi_init(dev_priv, PORT_A);
17610 		intel_ddi_init(dev_priv, PORT_B);
17611 		intel_ddi_init(dev_priv, PORT_TC1);
17612 		intel_ddi_init(dev_priv, PORT_TC2);
17613 		intel_ddi_init(dev_priv, PORT_TC3);
17614 		intel_ddi_init(dev_priv, PORT_TC4);
17615 		intel_ddi_init(dev_priv, PORT_TC5);
17616 		intel_ddi_init(dev_priv, PORT_TC6);
17617 		icl_dsi_init(dev_priv);
17618 	} else if (IS_JSL_EHL(dev_priv)) {
17619 		intel_ddi_init(dev_priv, PORT_A);
17620 		intel_ddi_init(dev_priv, PORT_B);
17621 		intel_ddi_init(dev_priv, PORT_C);
17622 		intel_ddi_init(dev_priv, PORT_D);
17623 		icl_dsi_init(dev_priv);
17624 	} else if (IS_GEN(dev_priv, 11)) {
17625 		intel_ddi_init(dev_priv, PORT_A);
17626 		intel_ddi_init(dev_priv, PORT_B);
17627 		intel_ddi_init(dev_priv, PORT_C);
17628 		intel_ddi_init(dev_priv, PORT_D);
17629 		intel_ddi_init(dev_priv, PORT_E);
17630 		/*
17631 		 * On some ICL SKUs port F is not present. No strap bits for
17632 		 * this, so rely on VBT.
17633 		 * Work around broken VBTs on SKUs known to have no port F.
17634 		 */
17635 		if (IS_ICL_WITH_PORT_F(dev_priv) &&
17636 		    intel_bios_is_port_present(dev_priv, PORT_F))
17637 			intel_ddi_init(dev_priv, PORT_F);
17638 
17639 		icl_dsi_init(dev_priv);
17640 	} else if (IS_GEN9_LP(dev_priv)) {
17641 		/*
17642 		 * FIXME: Broxton doesn't support port detection via the
17643 		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
17644 		 * detect the ports.
17645 		 */
17646 		intel_ddi_init(dev_priv, PORT_A);
17647 		intel_ddi_init(dev_priv, PORT_B);
17648 		intel_ddi_init(dev_priv, PORT_C);
17649 
17650 		vlv_dsi_init(dev_priv);
17651 	} else if (HAS_DDI(dev_priv)) {
17652 		int found;
17653 
17654 		if (intel_ddi_crt_present(dev_priv))
17655 			intel_crt_init(dev_priv);
17656 
17657 		/*
17658 		 * Haswell uses DDI functions to detect digital outputs.
17659 		 * On SKL pre-D0 the strap isn't connected, so we assume
17660 		 * it's there.
17661 		 */
17662 		found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
17663 		/* WaIgnoreDDIAStrap: skl */
17664 		if (found || IS_GEN9_BC(dev_priv))
17665 			intel_ddi_init(dev_priv, PORT_A);
17666 
17667 		/* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP
17668 		 * register */
17669 		found = intel_de_read(dev_priv, SFUSE_STRAP);
17670 
17671 		if (found & SFUSE_STRAP_DDIB_DETECTED)
17672 			intel_ddi_init(dev_priv, PORT_B);
17673 		if (found & SFUSE_STRAP_DDIC_DETECTED)
17674 			intel_ddi_init(dev_priv, PORT_C);
17675 		if (found & SFUSE_STRAP_DDID_DETECTED)
17676 			intel_ddi_init(dev_priv, PORT_D);
17677 		if (found & SFUSE_STRAP_DDIF_DETECTED)
17678 			intel_ddi_init(dev_priv, PORT_F);
17679 		/*
17680 		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
17681 		 */
17682 		if (IS_GEN9_BC(dev_priv) &&
17683 		    intel_bios_is_port_present(dev_priv, PORT_E))
17684 			intel_ddi_init(dev_priv, PORT_E);
17685 
17686 	} else if (HAS_PCH_SPLIT(dev_priv)) {
17687 		int found;
17688 
17689 		/*
17690 		 * intel_edp_init_connector() depends on this completing first,
17691 		 * to prevent the registration of both eDP and LVDS and the
17692 		 * incorrect sharing of the PPS.
17693 		 */
17694 		intel_lvds_init(dev_priv);
17695 		intel_crt_init(dev_priv);
17696 
17697 		dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
17698 
17699 		if (ilk_has_edp_a(dev_priv))
17700 			intel_dp_init(dev_priv, DP_A, PORT_A);
17701 
17702 		if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) {
17703 			/* PCH SDVOB multiplex with HDMIB */
17704 			found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
17705 			if (!found)
17706 				intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
17707 			if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED))
17708 				intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
17709 		}
17710 
17711 		if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED)
17712 			intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
17713 
17714 		if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED)
17715 			intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
17716 
17717 		if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED)
17718 			intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
17719 
17720 		if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED)
17721 			intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
17722 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
17723 		bool has_edp, has_port;
17724 
17725 		if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support)
17726 			intel_crt_init(dev_priv);
17727 
17728 		/*
17729 		 * The DP_DETECTED bit is the latched state of the DDC
17730 		 * SDA pin at boot. However since eDP doesn't require DDC
17731 		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
17732 		 * eDP ports may have been muxed to an alternate function.
17733 		 * Thus we can't rely on the DP_DETECTED bit alone to detect
17734 		 * eDP ports. Consult the VBT as well as DP_DETECTED to
17735 		 * detect eDP ports.
17736 		 *
17737 		 * Sadly the straps seem to be missing sometimes even for HDMI
17738 		 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
17739 		 * and VBT for the presence of the port. Additionally we can't
17740 		 * trust the port type the VBT declares as we've seen at least
17741 		 * HDMI ports that the VBT claim are DP or eDP.
17742 		 */
17743 		has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
17744 		has_port = intel_bios_is_port_present(dev_priv, PORT_B);
17745 		if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port)
17746 			has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
17747 		if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
17748 			intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
17749 
17750 		has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
17751 		has_port = intel_bios_is_port_present(dev_priv, PORT_C);
17752 		if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port)
17753 			has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
17754 		if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
17755 			intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
17756 
17757 		if (IS_CHERRYVIEW(dev_priv)) {
17758 			/*
17759 			 * eDP not supported on port D,
17760 			 * so no need to worry about it
17761 			 */
17762 			has_port = intel_bios_is_port_present(dev_priv, PORT_D);
17763 			if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port)
17764 				intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
17765 			if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port)
17766 				intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
17767 		}
17768 
17769 		vlv_dsi_init(dev_priv);
17770 	} else if (IS_PINEVIEW(dev_priv)) {
17771 		intel_lvds_init(dev_priv);
17772 		intel_crt_init(dev_priv);
17773 	} else if (IS_GEN_RANGE(dev_priv, 3, 4)) {
17774 		bool found = false;
17775 
17776 		if (IS_MOBILE(dev_priv))
17777 			intel_lvds_init(dev_priv);
17778 
17779 		intel_crt_init(dev_priv);
17780 
17781 		if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
17782 			drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n");
17783 			found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
17784 			if (!found && IS_G4X(dev_priv)) {
17785 				drm_dbg_kms(&dev_priv->drm,
17786 					    "probing HDMI on SDVOB\n");
17787 				intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
17788 			}
17789 
17790 			if (!found && IS_G4X(dev_priv))
17791 				intel_dp_init(dev_priv, DP_B, PORT_B);
17792 		}
17793 
17794 		/* Before G4X SDVOC doesn't have its own detect register */
17795 
17796 		if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
17797 			drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n");
17798 			found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
17799 		}
17800 
17801 		if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) {
17802 
17803 			if (IS_G4X(dev_priv)) {
17804 				drm_dbg_kms(&dev_priv->drm,
17805 					    "probing HDMI on SDVOC\n");
17806 				intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
17807 			}
17808 			if (IS_G4X(dev_priv))
17809 				intel_dp_init(dev_priv, DP_C, PORT_C);
17810 		}
17811 
17812 		if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED))
17813 			intel_dp_init(dev_priv, DP_D, PORT_D);
17814 
17815 		if (SUPPORTS_TV(dev_priv))
17816 			intel_tv_init(dev_priv);
17817 	} else if (IS_GEN(dev_priv, 2)) {
17818 		if (IS_I85X(dev_priv))
17819 			intel_lvds_init(dev_priv);
17820 
17821 		intel_crt_init(dev_priv);
17822 		intel_dvo_init(dev_priv);
17823 	}
17824 
17825 	intel_psr_init(dev_priv);
17826 
17827 	for_each_intel_encoder(&dev_priv->drm, encoder) {
17828 		encoder->base.possible_crtcs =
17829 			intel_encoder_possible_crtcs(encoder);
17830 		encoder->base.possible_clones =
17831 			intel_encoder_possible_clones(encoder);
17832 	}
17833 
17834 	intel_init_pch_refclk(dev_priv);
17835 
17836 	drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
17837 }
17838 
17839 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
17840 {
17841 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
17842 
17843 	drm_framebuffer_cleanup(fb);
17844 	intel_frontbuffer_put(intel_fb->frontbuffer);
17845 
17846 	kfree(intel_fb);
17847 }
17848 
17849 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
17850 						struct drm_file *file,
17851 						unsigned int *handle)
17852 {
17853 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17854 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
17855 
17856 	if (obj->userptr.mm) {
17857 		drm_dbg(&i915->drm,
17858 			"attempting to use a userptr for a framebuffer, denied\n");
17859 		return -EINVAL;
17860 	}
17861 
17862 	return drm_gem_handle_create(file, &obj->base, handle);
17863 }
17864 
17865 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
17866 					struct drm_file *file,
17867 					unsigned flags, unsigned color,
17868 					struct drm_clip_rect *clips,
17869 					unsigned num_clips)
17870 {
17871 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17872 
17873 	i915_gem_object_flush_if_display(obj);
17874 	intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
17875 
17876 	return 0;
17877 }
17878 
17879 static const struct drm_framebuffer_funcs intel_fb_funcs = {
17880 	.destroy = intel_user_framebuffer_destroy,
17881 	.create_handle = intel_user_framebuffer_create_handle,
17882 	.dirty = intel_user_framebuffer_dirty,
17883 };
17884 
17885 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
17886 				  struct drm_i915_gem_object *obj,
17887 				  struct drm_mode_fb_cmd2 *mode_cmd)
17888 {
17889 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
17890 	struct drm_framebuffer *fb = &intel_fb->base;
17891 	u32 max_stride;
17892 	unsigned int tiling, stride;
17893 	int ret = -EINVAL;
17894 	int i;
17895 
17896 	intel_fb->frontbuffer = intel_frontbuffer_get(obj);
17897 	if (!intel_fb->frontbuffer)
17898 		return -ENOMEM;
17899 
17900 	i915_gem_object_lock(obj, NULL);
17901 	tiling = i915_gem_object_get_tiling(obj);
17902 	stride = i915_gem_object_get_stride(obj);
17903 	i915_gem_object_unlock(obj);
17904 
17905 	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
17906 		/*
17907 		 * If there's a fence, enforce that
17908 		 * the fb modifier and tiling mode match.
17909 		 */
17910 		if (tiling != I915_TILING_NONE &&
17911 		    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
17912 			drm_dbg_kms(&dev_priv->drm,
17913 				    "tiling_mode doesn't match fb modifier\n");
17914 			goto err;
17915 		}
17916 	} else {
17917 		if (tiling == I915_TILING_X) {
17918 			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
17919 		} else if (tiling == I915_TILING_Y) {
17920 			drm_dbg_kms(&dev_priv->drm,
17921 				    "No Y tiling for legacy addfb\n");
17922 			goto err;
17923 		}
17924 	}
17925 
17926 	if (!drm_any_plane_has_format(&dev_priv->drm,
17927 				      mode_cmd->pixel_format,
17928 				      mode_cmd->modifier[0])) {
17929 		struct drm_format_name_buf format_name;
17930 
17931 		drm_dbg_kms(&dev_priv->drm,
17932 			    "unsupported pixel format %s / modifier 0x%llx\n",
17933 			    drm_get_format_name(mode_cmd->pixel_format,
17934 						&format_name),
17935 			    mode_cmd->modifier[0]);
17936 		goto err;
17937 	}
17938 
17939 	/*
17940 	 * gen2/3 display engine uses the fence if present,
17941 	 * so the tiling mode must match the fb modifier exactly.
17942 	 */
17943 	if (INTEL_GEN(dev_priv) < 4 &&
17944 	    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
17945 		drm_dbg_kms(&dev_priv->drm,
17946 			    "tiling_mode must match fb modifier exactly on gen2/3\n");
17947 		goto err;
17948 	}
17949 
17950 	max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format,
17951 					 mode_cmd->modifier[0]);
17952 	if (mode_cmd->pitches[0] > max_stride) {
17953 		drm_dbg_kms(&dev_priv->drm,
17954 			    "%s pitch (%u) must be at most %d\n",
17955 			    mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
17956 			    "tiled" : "linear",
17957 			    mode_cmd->pitches[0], max_stride);
17958 		goto err;
17959 	}
17960 
17961 	/*
17962 	 * If there's a fence, enforce that
17963 	 * the fb pitch and fence stride match.
17964 	 */
17965 	if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
17966 		drm_dbg_kms(&dev_priv->drm,
17967 			    "pitch (%d) must match tiling stride (%d)\n",
17968 			    mode_cmd->pitches[0], stride);
17969 		goto err;
17970 	}
17971 
17972 	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
17973 	if (mode_cmd->offsets[0] != 0) {
17974 		drm_dbg_kms(&dev_priv->drm,
17975 			    "plane 0 offset (0x%08x) must be 0\n",
17976 			    mode_cmd->offsets[0]);
17977 		goto err;
17978 	}
17979 
17980 	drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
17981 
17982 	for (i = 0; i < fb->format->num_planes; i++) {
17983 		u32 stride_alignment;
17984 
17985 		if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
17986 			drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n",
17987 				    i);
17988 			goto err;
17989 		}
17990 
17991 		stride_alignment = intel_fb_stride_alignment(fb, i);
17992 		if (fb->pitches[i] & (stride_alignment - 1)) {
17993 			drm_dbg_kms(&dev_priv->drm,
17994 				    "plane %d pitch (%d) must be at least %u byte aligned\n",
17995 				    i, fb->pitches[i], stride_alignment);
17996 			goto err;
17997 		}
17998 
17999 		if (is_gen12_ccs_plane(fb, i)) {
18000 			int ccs_aux_stride = gen12_ccs_aux_stride(fb, i);
18001 
18002 			if (fb->pitches[i] != ccs_aux_stride) {
18003 				drm_dbg_kms(&dev_priv->drm,
18004 					    "ccs aux plane %d pitch (%d) must be %d\n",
18005 					    i,
18006 					    fb->pitches[i], ccs_aux_stride);
18007 				goto err;
18008 			}
18009 		}
18010 
18011 		fb->obj[i] = &obj->base;
18012 	}
18013 
18014 	ret = intel_fill_fb_info(dev_priv, fb);
18015 	if (ret)
18016 		goto err;
18017 
18018 	ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
18019 	if (ret) {
18020 		drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret);
18021 		goto err;
18022 	}
18023 
18024 	return 0;
18025 
18026 err:
18027 	intel_frontbuffer_put(intel_fb->frontbuffer);
18028 	return ret;
18029 }
18030 
18031 static struct drm_framebuffer *
18032 intel_user_framebuffer_create(struct drm_device *dev,
18033 			      struct drm_file *filp,
18034 			      const struct drm_mode_fb_cmd2 *user_mode_cmd)
18035 {
18036 	struct drm_framebuffer *fb;
18037 	struct drm_i915_gem_object *obj;
18038 	struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
18039 
18040 	obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
18041 	if (!obj)
18042 		return ERR_PTR(-ENOENT);
18043 
18044 	fb = intel_framebuffer_create(obj, &mode_cmd);
18045 	i915_gem_object_put(obj);
18046 
18047 	return fb;
18048 }
18049 
18050 static enum drm_mode_status
18051 intel_mode_valid(struct drm_device *dev,
18052 		 const struct drm_display_mode *mode)
18053 {
18054 	struct drm_i915_private *dev_priv = to_i915(dev);
18055 	int hdisplay_max, htotal_max;
18056 	int vdisplay_max, vtotal_max;
18057 
18058 	/*
18059 	 * Can't reject DBLSCAN here because Xorg ddxen can add piles
18060 	 * of DBLSCAN modes to the output's mode list when they detect
18061 	 * the scaling mode property on the connector. And they don't
18062 	 * ask the kernel to validate those modes in any way until
18063 	 * modeset time at which point the client gets a protocol error.
18064 	 * So in order to not upset those clients we silently ignore the
18065 	 * DBLSCAN flag on such connectors. For other connectors we will
18066 	 * reject modes with the DBLSCAN flag in encoder->compute_config().
18067 	 * And we always reject DBLSCAN modes in connector->mode_valid()
18068 	 * as we never want such modes on the connector's mode list.
18069 	 */
18070 
18071 	if (mode->vscan > 1)
18072 		return MODE_NO_VSCAN;
18073 
18074 	if (mode->flags & DRM_MODE_FLAG_HSKEW)
18075 		return MODE_H_ILLEGAL;
18076 
18077 	if (mode->flags & (DRM_MODE_FLAG_CSYNC |
18078 			   DRM_MODE_FLAG_NCSYNC |
18079 			   DRM_MODE_FLAG_PCSYNC))
18080 		return MODE_HSYNC;
18081 
18082 	if (mode->flags & (DRM_MODE_FLAG_BCAST |
18083 			   DRM_MODE_FLAG_PIXMUX |
18084 			   DRM_MODE_FLAG_CLKDIV2))
18085 		return MODE_BAD;
18086 
18087 	/* Transcoder timing limits */
18088 	if (INTEL_GEN(dev_priv) >= 11) {
18089 		hdisplay_max = 16384;
18090 		vdisplay_max = 8192;
18091 		htotal_max = 16384;
18092 		vtotal_max = 8192;
18093 	} else if (INTEL_GEN(dev_priv) >= 9 ||
18094 		   IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
18095 		hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */
18096 		vdisplay_max = 4096;
18097 		htotal_max = 8192;
18098 		vtotal_max = 8192;
18099 	} else if (INTEL_GEN(dev_priv) >= 3) {
18100 		hdisplay_max = 4096;
18101 		vdisplay_max = 4096;
18102 		htotal_max = 8192;
18103 		vtotal_max = 8192;
18104 	} else {
18105 		hdisplay_max = 2048;
18106 		vdisplay_max = 2048;
18107 		htotal_max = 4096;
18108 		vtotal_max = 4096;
18109 	}
18110 
18111 	if (mode->hdisplay > hdisplay_max ||
18112 	    mode->hsync_start > htotal_max ||
18113 	    mode->hsync_end > htotal_max ||
18114 	    mode->htotal > htotal_max)
18115 		return MODE_H_ILLEGAL;
18116 
18117 	if (mode->vdisplay > vdisplay_max ||
18118 	    mode->vsync_start > vtotal_max ||
18119 	    mode->vsync_end > vtotal_max ||
18120 	    mode->vtotal > vtotal_max)
18121 		return MODE_V_ILLEGAL;
18122 
18123 	if (INTEL_GEN(dev_priv) >= 5) {
18124 		if (mode->hdisplay < 64 ||
18125 		    mode->htotal - mode->hdisplay < 32)
18126 			return MODE_H_ILLEGAL;
18127 
18128 		if (mode->vtotal - mode->vdisplay < 5)
18129 			return MODE_V_ILLEGAL;
18130 	} else {
18131 		if (mode->htotal - mode->hdisplay < 32)
18132 			return MODE_H_ILLEGAL;
18133 
18134 		if (mode->vtotal - mode->vdisplay < 3)
18135 			return MODE_V_ILLEGAL;
18136 	}
18137 
18138 	return MODE_OK;
18139 }
18140 
18141 enum drm_mode_status
18142 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv,
18143 				const struct drm_display_mode *mode,
18144 				bool bigjoiner)
18145 {
18146 	int plane_width_max, plane_height_max;
18147 
18148 	/*
18149 	 * intel_mode_valid() should be
18150 	 * sufficient on older platforms.
18151 	 */
18152 	if (INTEL_GEN(dev_priv) < 9)
18153 		return MODE_OK;
18154 
18155 	/*
18156 	 * Most people will probably want a fullscreen
18157 	 * plane so let's not advertize modes that are
18158 	 * too big for that.
18159 	 */
18160 	if (INTEL_GEN(dev_priv) >= 11) {
18161 		plane_width_max = 5120 << bigjoiner;
18162 		plane_height_max = 4320;
18163 	} else {
18164 		plane_width_max = 5120;
18165 		plane_height_max = 4096;
18166 	}
18167 
18168 	if (mode->hdisplay > plane_width_max)
18169 		return MODE_H_ILLEGAL;
18170 
18171 	if (mode->vdisplay > plane_height_max)
18172 		return MODE_V_ILLEGAL;
18173 
18174 	return MODE_OK;
18175 }
18176 
18177 static const struct drm_mode_config_funcs intel_mode_funcs = {
18178 	.fb_create = intel_user_framebuffer_create,
18179 	.get_format_info = intel_get_format_info,
18180 	.output_poll_changed = intel_fbdev_output_poll_changed,
18181 	.mode_valid = intel_mode_valid,
18182 	.atomic_check = intel_atomic_check,
18183 	.atomic_commit = intel_atomic_commit,
18184 	.atomic_state_alloc = intel_atomic_state_alloc,
18185 	.atomic_state_clear = intel_atomic_state_clear,
18186 	.atomic_state_free = intel_atomic_state_free,
18187 };
18188 
18189 /**
18190  * intel_init_display_hooks - initialize the display modesetting hooks
18191  * @dev_priv: device private
18192  */
18193 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
18194 {
18195 	intel_init_cdclk_hooks(dev_priv);
18196 
18197 	if (INTEL_GEN(dev_priv) >= 9) {
18198 		dev_priv->display.get_pipe_config = hsw_get_pipe_config;
18199 		dev_priv->display.get_initial_plane_config =
18200 			skl_get_initial_plane_config;
18201 		dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock;
18202 		dev_priv->display.crtc_enable = hsw_crtc_enable;
18203 		dev_priv->display.crtc_disable = hsw_crtc_disable;
18204 	} else if (HAS_DDI(dev_priv)) {
18205 		dev_priv->display.get_pipe_config = hsw_get_pipe_config;
18206 		dev_priv->display.get_initial_plane_config =
18207 			i9xx_get_initial_plane_config;
18208 		dev_priv->display.crtc_compute_clock =
18209 			hsw_crtc_compute_clock;
18210 		dev_priv->display.crtc_enable = hsw_crtc_enable;
18211 		dev_priv->display.crtc_disable = hsw_crtc_disable;
18212 	} else if (HAS_PCH_SPLIT(dev_priv)) {
18213 		dev_priv->display.get_pipe_config = ilk_get_pipe_config;
18214 		dev_priv->display.get_initial_plane_config =
18215 			i9xx_get_initial_plane_config;
18216 		dev_priv->display.crtc_compute_clock =
18217 			ilk_crtc_compute_clock;
18218 		dev_priv->display.crtc_enable = ilk_crtc_enable;
18219 		dev_priv->display.crtc_disable = ilk_crtc_disable;
18220 	} else if (IS_CHERRYVIEW(dev_priv)) {
18221 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
18222 		dev_priv->display.get_initial_plane_config =
18223 			i9xx_get_initial_plane_config;
18224 		dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
18225 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
18226 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
18227 	} else if (IS_VALLEYVIEW(dev_priv)) {
18228 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
18229 		dev_priv->display.get_initial_plane_config =
18230 			i9xx_get_initial_plane_config;
18231 		dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
18232 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
18233 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
18234 	} else if (IS_G4X(dev_priv)) {
18235 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
18236 		dev_priv->display.get_initial_plane_config =
18237 			i9xx_get_initial_plane_config;
18238 		dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
18239 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
18240 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
18241 	} else if (IS_PINEVIEW(dev_priv)) {
18242 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
18243 		dev_priv->display.get_initial_plane_config =
18244 			i9xx_get_initial_plane_config;
18245 		dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
18246 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
18247 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
18248 	} else if (!IS_GEN(dev_priv, 2)) {
18249 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
18250 		dev_priv->display.get_initial_plane_config =
18251 			i9xx_get_initial_plane_config;
18252 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
18253 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
18254 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
18255 	} else {
18256 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
18257 		dev_priv->display.get_initial_plane_config =
18258 			i9xx_get_initial_plane_config;
18259 		dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
18260 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
18261 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
18262 	}
18263 
18264 	if (IS_GEN(dev_priv, 5)) {
18265 		dev_priv->display.fdi_link_train = ilk_fdi_link_train;
18266 	} else if (IS_GEN(dev_priv, 6)) {
18267 		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
18268 	} else if (IS_IVYBRIDGE(dev_priv)) {
18269 		/* FIXME: detect B0+ stepping and use auto training */
18270 		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
18271 	}
18272 
18273 	if (INTEL_GEN(dev_priv) >= 9)
18274 		dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables;
18275 	else
18276 		dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables;
18277 
18278 }
18279 
18280 void intel_modeset_init_hw(struct drm_i915_private *i915)
18281 {
18282 	struct intel_cdclk_state *cdclk_state =
18283 		to_intel_cdclk_state(i915->cdclk.obj.state);
18284 	struct intel_dbuf_state *dbuf_state =
18285 		to_intel_dbuf_state(i915->dbuf.obj.state);
18286 
18287 	intel_update_cdclk(i915);
18288 	intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK");
18289 	cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw;
18290 
18291 	dbuf_state->enabled_slices = i915->dbuf.enabled_slices;
18292 }
18293 
18294 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state)
18295 {
18296 	struct drm_plane *plane;
18297 	struct intel_crtc *crtc;
18298 
18299 	for_each_intel_crtc(state->dev, crtc) {
18300 		struct intel_crtc_state *crtc_state;
18301 
18302 		crtc_state = intel_atomic_get_crtc_state(state, crtc);
18303 		if (IS_ERR(crtc_state))
18304 			return PTR_ERR(crtc_state);
18305 
18306 		if (crtc_state->hw.active) {
18307 			/*
18308 			 * Preserve the inherited flag to avoid
18309 			 * taking the full modeset path.
18310 			 */
18311 			crtc_state->inherited = true;
18312 		}
18313 	}
18314 
18315 	drm_for_each_plane(plane, state->dev) {
18316 		struct drm_plane_state *plane_state;
18317 
18318 		plane_state = drm_atomic_get_plane_state(state, plane);
18319 		if (IS_ERR(plane_state))
18320 			return PTR_ERR(plane_state);
18321 	}
18322 
18323 	return 0;
18324 }
18325 
18326 /*
18327  * Calculate what we think the watermarks should be for the state we've read
18328  * out of the hardware and then immediately program those watermarks so that
18329  * we ensure the hardware settings match our internal state.
18330  *
18331  * We can calculate what we think WM's should be by creating a duplicate of the
18332  * current state (which was constructed during hardware readout) and running it
18333  * through the atomic check code to calculate new watermark values in the
18334  * state object.
18335  */
18336 static void sanitize_watermarks(struct drm_i915_private *dev_priv)
18337 {
18338 	struct drm_atomic_state *state;
18339 	struct intel_atomic_state *intel_state;
18340 	struct intel_crtc *crtc;
18341 	struct intel_crtc_state *crtc_state;
18342 	struct drm_modeset_acquire_ctx ctx;
18343 	int ret;
18344 	int i;
18345 
18346 	/* Only supported on platforms that use atomic watermark design */
18347 	if (!dev_priv->display.optimize_watermarks)
18348 		return;
18349 
18350 	state = drm_atomic_state_alloc(&dev_priv->drm);
18351 	if (drm_WARN_ON(&dev_priv->drm, !state))
18352 		return;
18353 
18354 	intel_state = to_intel_atomic_state(state);
18355 
18356 	drm_modeset_acquire_init(&ctx, 0);
18357 
18358 retry:
18359 	state->acquire_ctx = &ctx;
18360 
18361 	/*
18362 	 * Hardware readout is the only time we don't want to calculate
18363 	 * intermediate watermarks (since we don't trust the current
18364 	 * watermarks).
18365 	 */
18366 	if (!HAS_GMCH(dev_priv))
18367 		intel_state->skip_intermediate_wm = true;
18368 
18369 	ret = sanitize_watermarks_add_affected(state);
18370 	if (ret)
18371 		goto fail;
18372 
18373 	ret = intel_atomic_check(&dev_priv->drm, state);
18374 	if (ret)
18375 		goto fail;
18376 
18377 	/* Write calculated watermark values back */
18378 	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
18379 		crtc_state->wm.need_postvbl_update = true;
18380 		dev_priv->display.optimize_watermarks(intel_state, crtc);
18381 
18382 		to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
18383 	}
18384 
18385 fail:
18386 	if (ret == -EDEADLK) {
18387 		drm_atomic_state_clear(state);
18388 		drm_modeset_backoff(&ctx);
18389 		goto retry;
18390 	}
18391 
18392 	/*
18393 	 * If we fail here, it means that the hardware appears to be
18394 	 * programmed in a way that shouldn't be possible, given our
18395 	 * understanding of watermark requirements.  This might mean a
18396 	 * mistake in the hardware readout code or a mistake in the
18397 	 * watermark calculations for a given platform.  Raise a WARN
18398 	 * so that this is noticeable.
18399 	 *
18400 	 * If this actually happens, we'll have to just leave the
18401 	 * BIOS-programmed watermarks untouched and hope for the best.
18402 	 */
18403 	drm_WARN(&dev_priv->drm, ret,
18404 		 "Could not determine valid watermarks for inherited state\n");
18405 
18406 	drm_atomic_state_put(state);
18407 
18408 	drm_modeset_drop_locks(&ctx);
18409 	drm_modeset_acquire_fini(&ctx);
18410 }
18411 
18412 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv)
18413 {
18414 	if (IS_GEN(dev_priv, 5)) {
18415 		u32 fdi_pll_clk =
18416 			intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK;
18417 
18418 		dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000;
18419 	} else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) {
18420 		dev_priv->fdi_pll_freq = 270000;
18421 	} else {
18422 		return;
18423 	}
18424 
18425 	drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq);
18426 }
18427 
18428 static int intel_initial_commit(struct drm_device *dev)
18429 {
18430 	struct drm_atomic_state *state = NULL;
18431 	struct drm_modeset_acquire_ctx ctx;
18432 	struct intel_crtc *crtc;
18433 	int ret = 0;
18434 
18435 	state = drm_atomic_state_alloc(dev);
18436 	if (!state)
18437 		return -ENOMEM;
18438 
18439 	drm_modeset_acquire_init(&ctx, 0);
18440 
18441 retry:
18442 	state->acquire_ctx = &ctx;
18443 
18444 	for_each_intel_crtc(dev, crtc) {
18445 		struct intel_crtc_state *crtc_state =
18446 			intel_atomic_get_crtc_state(state, crtc);
18447 
18448 		if (IS_ERR(crtc_state)) {
18449 			ret = PTR_ERR(crtc_state);
18450 			goto out;
18451 		}
18452 
18453 		if (crtc_state->hw.active) {
18454 			struct intel_encoder *encoder;
18455 
18456 			/*
18457 			 * We've not yet detected sink capabilities
18458 			 * (audio,infoframes,etc.) and thus we don't want to
18459 			 * force a full state recomputation yet. We want that to
18460 			 * happen only for the first real commit from userspace.
18461 			 * So preserve the inherited flag for the time being.
18462 			 */
18463 			crtc_state->inherited = true;
18464 
18465 			ret = drm_atomic_add_affected_planes(state, &crtc->base);
18466 			if (ret)
18467 				goto out;
18468 
18469 			/*
18470 			 * FIXME hack to force a LUT update to avoid the
18471 			 * plane update forcing the pipe gamma on without
18472 			 * having a proper LUT loaded. Remove once we
18473 			 * have readout for pipe gamma enable.
18474 			 */
18475 			crtc_state->uapi.color_mgmt_changed = true;
18476 
18477 			for_each_intel_encoder_mask(dev, encoder,
18478 						    crtc_state->uapi.encoder_mask) {
18479 				if (encoder->initial_fastset_check &&
18480 				    !encoder->initial_fastset_check(encoder, crtc_state)) {
18481 					ret = drm_atomic_add_affected_connectors(state,
18482 										 &crtc->base);
18483 					if (ret)
18484 						goto out;
18485 				}
18486 			}
18487 		}
18488 	}
18489 
18490 	ret = drm_atomic_commit(state);
18491 
18492 out:
18493 	if (ret == -EDEADLK) {
18494 		drm_atomic_state_clear(state);
18495 		drm_modeset_backoff(&ctx);
18496 		goto retry;
18497 	}
18498 
18499 	drm_atomic_state_put(state);
18500 
18501 	drm_modeset_drop_locks(&ctx);
18502 	drm_modeset_acquire_fini(&ctx);
18503 
18504 	return ret;
18505 }
18506 
18507 static void intel_mode_config_init(struct drm_i915_private *i915)
18508 {
18509 	struct drm_mode_config *mode_config = &i915->drm.mode_config;
18510 
18511 	drm_mode_config_init(&i915->drm);
18512 	INIT_LIST_HEAD(&i915->global_obj_list);
18513 
18514 	mode_config->min_width = 0;
18515 	mode_config->min_height = 0;
18516 
18517 	mode_config->preferred_depth = 24;
18518 	mode_config->prefer_shadow = 1;
18519 
18520 	mode_config->allow_fb_modifiers = true;
18521 
18522 	mode_config->funcs = &intel_mode_funcs;
18523 
18524 	if (INTEL_GEN(i915) >= 9)
18525 		mode_config->async_page_flip = true;
18526 
18527 	/*
18528 	 * Maximum framebuffer dimensions, chosen to match
18529 	 * the maximum render engine surface size on gen4+.
18530 	 */
18531 	if (INTEL_GEN(i915) >= 7) {
18532 		mode_config->max_width = 16384;
18533 		mode_config->max_height = 16384;
18534 	} else if (INTEL_GEN(i915) >= 4) {
18535 		mode_config->max_width = 8192;
18536 		mode_config->max_height = 8192;
18537 	} else if (IS_GEN(i915, 3)) {
18538 		mode_config->max_width = 4096;
18539 		mode_config->max_height = 4096;
18540 	} else {
18541 		mode_config->max_width = 2048;
18542 		mode_config->max_height = 2048;
18543 	}
18544 
18545 	if (IS_I845G(i915) || IS_I865G(i915)) {
18546 		mode_config->cursor_width = IS_I845G(i915) ? 64 : 512;
18547 		mode_config->cursor_height = 1023;
18548 	} else if (IS_I830(i915) || IS_I85X(i915) ||
18549 		   IS_I915G(i915) || IS_I915GM(i915)) {
18550 		mode_config->cursor_width = 64;
18551 		mode_config->cursor_height = 64;
18552 	} else {
18553 		mode_config->cursor_width = 256;
18554 		mode_config->cursor_height = 256;
18555 	}
18556 }
18557 
18558 static void intel_mode_config_cleanup(struct drm_i915_private *i915)
18559 {
18560 	intel_atomic_global_obj_cleanup(i915);
18561 	drm_mode_config_cleanup(&i915->drm);
18562 }
18563 
18564 static void plane_config_fini(struct intel_initial_plane_config *plane_config)
18565 {
18566 	if (plane_config->fb) {
18567 		struct drm_framebuffer *fb = &plane_config->fb->base;
18568 
18569 		/* We may only have the stub and not a full framebuffer */
18570 		if (drm_framebuffer_read_refcount(fb))
18571 			drm_framebuffer_put(fb);
18572 		else
18573 			kfree(fb);
18574 	}
18575 
18576 	if (plane_config->vma)
18577 		i915_vma_put(plane_config->vma);
18578 }
18579 
18580 /* part #1: call before irq install */
18581 int intel_modeset_init_noirq(struct drm_i915_private *i915)
18582 {
18583 	int ret;
18584 
18585 	if (i915_inject_probe_failure(i915))
18586 		return -ENODEV;
18587 
18588 	if (HAS_DISPLAY(i915)) {
18589 		ret = drm_vblank_init(&i915->drm,
18590 				      INTEL_NUM_PIPES(i915));
18591 		if (ret)
18592 			return ret;
18593 	}
18594 
18595 	intel_bios_init(i915);
18596 
18597 	ret = intel_vga_register(i915);
18598 	if (ret)
18599 		goto cleanup_bios;
18600 
18601 	/* FIXME: completely on the wrong abstraction layer */
18602 	intel_power_domains_init_hw(i915, false);
18603 
18604 	intel_csr_ucode_init(i915);
18605 
18606 	i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
18607 	i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI |
18608 					WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE);
18609 
18610 	intel_mode_config_init(i915);
18611 
18612 	ret = intel_cdclk_init(i915);
18613 	if (ret)
18614 		goto cleanup_vga_client_pw_domain_csr;
18615 
18616 	ret = intel_dbuf_init(i915);
18617 	if (ret)
18618 		goto cleanup_vga_client_pw_domain_csr;
18619 
18620 	ret = intel_bw_init(i915);
18621 	if (ret)
18622 		goto cleanup_vga_client_pw_domain_csr;
18623 
18624 	init_llist_head(&i915->atomic_helper.free_list);
18625 	INIT_WORK(&i915->atomic_helper.free_work,
18626 		  intel_atomic_helper_free_state_worker);
18627 
18628 	intel_init_quirks(i915);
18629 
18630 	intel_fbc_init(i915);
18631 
18632 	return 0;
18633 
18634 cleanup_vga_client_pw_domain_csr:
18635 	intel_csr_ucode_fini(i915);
18636 	intel_power_domains_driver_remove(i915);
18637 	intel_vga_unregister(i915);
18638 cleanup_bios:
18639 	intel_bios_driver_remove(i915);
18640 
18641 	return ret;
18642 }
18643 
18644 /* part #2: call after irq install, but before gem init */
18645 int intel_modeset_init_nogem(struct drm_i915_private *i915)
18646 {
18647 	struct drm_device *dev = &i915->drm;
18648 	enum pipe pipe;
18649 	struct intel_crtc *crtc;
18650 	int ret;
18651 
18652 	intel_init_pm(i915);
18653 
18654 	intel_panel_sanitize_ssc(i915);
18655 
18656 	intel_gmbus_setup(i915);
18657 
18658 	drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n",
18659 		    INTEL_NUM_PIPES(i915),
18660 		    INTEL_NUM_PIPES(i915) > 1 ? "s" : "");
18661 
18662 	if (HAS_DISPLAY(i915)) {
18663 		for_each_pipe(i915, pipe) {
18664 			ret = intel_crtc_init(i915, pipe);
18665 			if (ret) {
18666 				intel_mode_config_cleanup(i915);
18667 				return ret;
18668 			}
18669 		}
18670 	}
18671 
18672 	intel_plane_possible_crtcs_init(i915);
18673 	intel_shared_dpll_init(dev);
18674 	intel_update_fdi_pll_freq(i915);
18675 
18676 	intel_update_czclk(i915);
18677 	intel_modeset_init_hw(i915);
18678 
18679 	intel_hdcp_component_init(i915);
18680 
18681 	if (i915->max_cdclk_freq == 0)
18682 		intel_update_max_cdclk(i915);
18683 
18684 	/*
18685 	 * If the platform has HTI, we need to find out whether it has reserved
18686 	 * any display resources before we create our display outputs.
18687 	 */
18688 	if (INTEL_INFO(i915)->display.has_hti)
18689 		i915->hti_state = intel_de_read(i915, HDPORT_STATE);
18690 
18691 	/* Just disable it once at startup */
18692 	intel_vga_disable(i915);
18693 	intel_setup_outputs(i915);
18694 
18695 	drm_modeset_lock_all(dev);
18696 	intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
18697 	drm_modeset_unlock_all(dev);
18698 
18699 	for_each_intel_crtc(dev, crtc) {
18700 		struct intel_initial_plane_config plane_config = {};
18701 
18702 		if (!to_intel_crtc_state(crtc->base.state)->uapi.active)
18703 			continue;
18704 
18705 		/*
18706 		 * Note that reserving the BIOS fb up front prevents us
18707 		 * from stuffing other stolen allocations like the ring
18708 		 * on top.  This prevents some ugliness at boot time, and
18709 		 * can even allow for smooth boot transitions if the BIOS
18710 		 * fb is large enough for the active pipe configuration.
18711 		 */
18712 		i915->display.get_initial_plane_config(crtc, &plane_config);
18713 
18714 		/*
18715 		 * If the fb is shared between multiple heads, we'll
18716 		 * just get the first one.
18717 		 */
18718 		intel_find_initial_plane_obj(crtc, &plane_config);
18719 
18720 		plane_config_fini(&plane_config);
18721 	}
18722 
18723 	/*
18724 	 * Make sure hardware watermarks really match the state we read out.
18725 	 * Note that we need to do this after reconstructing the BIOS fb's
18726 	 * since the watermark calculation done here will use pstate->fb.
18727 	 */
18728 	if (!HAS_GMCH(i915))
18729 		sanitize_watermarks(i915);
18730 
18731 	return 0;
18732 }
18733 
18734 /* part #3: call after gem init */
18735 int intel_modeset_init(struct drm_i915_private *i915)
18736 {
18737 	int ret;
18738 
18739 	if (!HAS_DISPLAY(i915))
18740 		return 0;
18741 
18742 	/*
18743 	 * Force all active planes to recompute their states. So that on
18744 	 * mode_setcrtc after probe, all the intel_plane_state variables
18745 	 * are already calculated and there is no assert_plane warnings
18746 	 * during bootup.
18747 	 */
18748 	ret = intel_initial_commit(&i915->drm);
18749 	if (ret)
18750 		drm_dbg_kms(&i915->drm, "Initial modeset failed, %d\n", ret);
18751 
18752 	intel_overlay_setup(i915);
18753 
18754 	ret = intel_fbdev_init(&i915->drm);
18755 	if (ret)
18756 		return ret;
18757 
18758 	/* Only enable hotplug handling once the fbdev is fully set up. */
18759 	intel_hpd_init(i915);
18760 	intel_hpd_poll_disable(i915);
18761 
18762 	intel_init_ipc(i915);
18763 
18764 	return 0;
18765 }
18766 
18767 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
18768 {
18769 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18770 	/* 640x480@60Hz, ~25175 kHz */
18771 	struct dpll clock = {
18772 		.m1 = 18,
18773 		.m2 = 7,
18774 		.p1 = 13,
18775 		.p2 = 4,
18776 		.n = 2,
18777 	};
18778 	u32 dpll, fp;
18779 	int i;
18780 
18781 	drm_WARN_ON(&dev_priv->drm,
18782 		    i9xx_calc_dpll_params(48000, &clock) != 25154);
18783 
18784 	drm_dbg_kms(&dev_priv->drm,
18785 		    "enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
18786 		    pipe_name(pipe), clock.vco, clock.dot);
18787 
18788 	fp = i9xx_dpll_compute_fp(&clock);
18789 	dpll = DPLL_DVO_2X_MODE |
18790 		DPLL_VGA_MODE_DIS |
18791 		((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
18792 		PLL_P2_DIVIDE_BY_4 |
18793 		PLL_REF_INPUT_DREFCLK |
18794 		DPLL_VCO_ENABLE;
18795 
18796 	intel_de_write(dev_priv, FP0(pipe), fp);
18797 	intel_de_write(dev_priv, FP1(pipe), fp);
18798 
18799 	intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
18800 	intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
18801 	intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
18802 	intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
18803 	intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
18804 	intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
18805 	intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
18806 
18807 	/*
18808 	 * Apparently we need to have VGA mode enabled prior to changing
18809 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
18810 	 * dividers, even though the register value does change.
18811 	 */
18812 	intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
18813 	intel_de_write(dev_priv, DPLL(pipe), dpll);
18814 
18815 	/* Wait for the clocks to stabilize. */
18816 	intel_de_posting_read(dev_priv, DPLL(pipe));
18817 	udelay(150);
18818 
18819 	/* The pixel multiplier can only be updated once the
18820 	 * DPLL is enabled and the clocks are stable.
18821 	 *
18822 	 * So write it again.
18823 	 */
18824 	intel_de_write(dev_priv, DPLL(pipe), dpll);
18825 
18826 	/* We do this three times for luck */
18827 	for (i = 0; i < 3 ; i++) {
18828 		intel_de_write(dev_priv, DPLL(pipe), dpll);
18829 		intel_de_posting_read(dev_priv, DPLL(pipe));
18830 		udelay(150); /* wait for warmup */
18831 	}
18832 
18833 	intel_de_write(dev_priv, PIPECONF(pipe),
18834 		       PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
18835 	intel_de_posting_read(dev_priv, PIPECONF(pipe));
18836 
18837 	intel_wait_for_pipe_scanline_moving(crtc);
18838 }
18839 
18840 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
18841 {
18842 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18843 
18844 	drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n",
18845 		    pipe_name(pipe));
18846 
18847 	drm_WARN_ON(&dev_priv->drm,
18848 		    intel_de_read(dev_priv, DSPCNTR(PLANE_A)) &
18849 		    DISPLAY_PLANE_ENABLE);
18850 	drm_WARN_ON(&dev_priv->drm,
18851 		    intel_de_read(dev_priv, DSPCNTR(PLANE_B)) &
18852 		    DISPLAY_PLANE_ENABLE);
18853 	drm_WARN_ON(&dev_priv->drm,
18854 		    intel_de_read(dev_priv, DSPCNTR(PLANE_C)) &
18855 		    DISPLAY_PLANE_ENABLE);
18856 	drm_WARN_ON(&dev_priv->drm,
18857 		    intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE);
18858 	drm_WARN_ON(&dev_priv->drm,
18859 		    intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE);
18860 
18861 	intel_de_write(dev_priv, PIPECONF(pipe), 0);
18862 	intel_de_posting_read(dev_priv, PIPECONF(pipe));
18863 
18864 	intel_wait_for_pipe_scanline_stopped(crtc);
18865 
18866 	intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
18867 	intel_de_posting_read(dev_priv, DPLL(pipe));
18868 }
18869 
18870 static void
18871 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
18872 {
18873 	struct intel_crtc *crtc;
18874 
18875 	if (INTEL_GEN(dev_priv) >= 4)
18876 		return;
18877 
18878 	for_each_intel_crtc(&dev_priv->drm, crtc) {
18879 		struct intel_plane *plane =
18880 			to_intel_plane(crtc->base.primary);
18881 		struct intel_crtc *plane_crtc;
18882 		enum pipe pipe;
18883 
18884 		if (!plane->get_hw_state(plane, &pipe))
18885 			continue;
18886 
18887 		if (pipe == crtc->pipe)
18888 			continue;
18889 
18890 		drm_dbg_kms(&dev_priv->drm,
18891 			    "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n",
18892 			    plane->base.base.id, plane->base.name);
18893 
18894 		plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18895 		intel_plane_disable_noatomic(plane_crtc, plane);
18896 	}
18897 }
18898 
18899 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
18900 {
18901 	struct drm_device *dev = crtc->base.dev;
18902 	struct intel_encoder *encoder;
18903 
18904 	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
18905 		return true;
18906 
18907 	return false;
18908 }
18909 
18910 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
18911 {
18912 	struct drm_device *dev = encoder->base.dev;
18913 	struct intel_connector *connector;
18914 
18915 	for_each_connector_on_encoder(dev, &encoder->base, connector)
18916 		return connector;
18917 
18918 	return NULL;
18919 }
18920 
18921 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
18922 			      enum pipe pch_transcoder)
18923 {
18924 	return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
18925 		(HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
18926 }
18927 
18928 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state)
18929 {
18930 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
18931 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
18932 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
18933 
18934 	if (INTEL_GEN(dev_priv) >= 9 ||
18935 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
18936 		i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
18937 		u32 val;
18938 
18939 		if (transcoder_is_dsi(cpu_transcoder))
18940 			return;
18941 
18942 		val = intel_de_read(dev_priv, reg);
18943 		val &= ~HSW_FRAME_START_DELAY_MASK;
18944 		val |= HSW_FRAME_START_DELAY(0);
18945 		intel_de_write(dev_priv, reg, val);
18946 	} else {
18947 		i915_reg_t reg = PIPECONF(cpu_transcoder);
18948 		u32 val;
18949 
18950 		val = intel_de_read(dev_priv, reg);
18951 		val &= ~PIPECONF_FRAME_START_DELAY_MASK;
18952 		val |= PIPECONF_FRAME_START_DELAY(0);
18953 		intel_de_write(dev_priv, reg, val);
18954 	}
18955 
18956 	if (!crtc_state->has_pch_encoder)
18957 		return;
18958 
18959 	if (HAS_PCH_IBX(dev_priv)) {
18960 		i915_reg_t reg = PCH_TRANSCONF(crtc->pipe);
18961 		u32 val;
18962 
18963 		val = intel_de_read(dev_priv, reg);
18964 		val &= ~TRANS_FRAME_START_DELAY_MASK;
18965 		val |= TRANS_FRAME_START_DELAY(0);
18966 		intel_de_write(dev_priv, reg, val);
18967 	} else {
18968 		enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc);
18969 		i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder);
18970 		u32 val;
18971 
18972 		val = intel_de_read(dev_priv, reg);
18973 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
18974 		val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
18975 		intel_de_write(dev_priv, reg, val);
18976 	}
18977 }
18978 
18979 static void intel_sanitize_crtc(struct intel_crtc *crtc,
18980 				struct drm_modeset_acquire_ctx *ctx)
18981 {
18982 	struct drm_device *dev = crtc->base.dev;
18983 	struct drm_i915_private *dev_priv = to_i915(dev);
18984 	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
18985 
18986 	if (crtc_state->hw.active) {
18987 		struct intel_plane *plane;
18988 
18989 		/* Clear any frame start delays used for debugging left by the BIOS */
18990 		intel_sanitize_frame_start_delay(crtc_state);
18991 
18992 		/* Disable everything but the primary plane */
18993 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
18994 			const struct intel_plane_state *plane_state =
18995 				to_intel_plane_state(plane->base.state);
18996 
18997 			if (plane_state->uapi.visible &&
18998 			    plane->base.type != DRM_PLANE_TYPE_PRIMARY)
18999 				intel_plane_disable_noatomic(crtc, plane);
19000 		}
19001 
19002 		/*
19003 		 * Disable any background color set by the BIOS, but enable the
19004 		 * gamma and CSC to match how we program our planes.
19005 		 */
19006 		if (INTEL_GEN(dev_priv) >= 9)
19007 			intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe),
19008 				       SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE);
19009 	}
19010 
19011 	/* Adjust the state of the output pipe according to whether we
19012 	 * have active connectors/encoders. */
19013 	if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc) &&
19014 	    !crtc_state->bigjoiner_slave)
19015 		intel_crtc_disable_noatomic(crtc, ctx);
19016 
19017 	if (crtc_state->hw.active || HAS_GMCH(dev_priv)) {
19018 		/*
19019 		 * We start out with underrun reporting disabled to avoid races.
19020 		 * For correct bookkeeping mark this on active crtcs.
19021 		 *
19022 		 * Also on gmch platforms we dont have any hardware bits to
19023 		 * disable the underrun reporting. Which means we need to start
19024 		 * out with underrun reporting disabled also on inactive pipes,
19025 		 * since otherwise we'll complain about the garbage we read when
19026 		 * e.g. coming up after runtime pm.
19027 		 *
19028 		 * No protection against concurrent access is required - at
19029 		 * worst a fifo underrun happens which also sets this to false.
19030 		 */
19031 		crtc->cpu_fifo_underrun_disabled = true;
19032 		/*
19033 		 * We track the PCH trancoder underrun reporting state
19034 		 * within the crtc. With crtc for pipe A housing the underrun
19035 		 * reporting state for PCH transcoder A, crtc for pipe B housing
19036 		 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
19037 		 * and marking underrun reporting as disabled for the non-existing
19038 		 * PCH transcoders B and C would prevent enabling the south
19039 		 * error interrupt (see cpt_can_enable_serr_int()).
19040 		 */
19041 		if (has_pch_trancoder(dev_priv, crtc->pipe))
19042 			crtc->pch_fifo_underrun_disabled = true;
19043 	}
19044 }
19045 
19046 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state)
19047 {
19048 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
19049 
19050 	/*
19051 	 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram
19052 	 * the hardware when a high res displays plugged in. DPLL P
19053 	 * divider is zero, and the pipe timings are bonkers. We'll
19054 	 * try to disable everything in that case.
19055 	 *
19056 	 * FIXME would be nice to be able to sanitize this state
19057 	 * without several WARNs, but for now let's take the easy
19058 	 * road.
19059 	 */
19060 	return IS_GEN(dev_priv, 6) &&
19061 		crtc_state->hw.active &&
19062 		crtc_state->shared_dpll &&
19063 		crtc_state->port_clock == 0;
19064 }
19065 
19066 static void intel_sanitize_encoder(struct intel_encoder *encoder)
19067 {
19068 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
19069 	struct intel_connector *connector;
19070 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
19071 	struct intel_crtc_state *crtc_state = crtc ?
19072 		to_intel_crtc_state(crtc->base.state) : NULL;
19073 
19074 	/* We need to check both for a crtc link (meaning that the
19075 	 * encoder is active and trying to read from a pipe) and the
19076 	 * pipe itself being active. */
19077 	bool has_active_crtc = crtc_state &&
19078 		crtc_state->hw.active;
19079 
19080 	if (crtc_state && has_bogus_dpll_config(crtc_state)) {
19081 		drm_dbg_kms(&dev_priv->drm,
19082 			    "BIOS has misprogrammed the hardware. Disabling pipe %c\n",
19083 			    pipe_name(crtc->pipe));
19084 		has_active_crtc = false;
19085 	}
19086 
19087 	connector = intel_encoder_find_connector(encoder);
19088 	if (connector && !has_active_crtc) {
19089 		drm_dbg_kms(&dev_priv->drm,
19090 			    "[ENCODER:%d:%s] has active connectors but no active pipe!\n",
19091 			    encoder->base.base.id,
19092 			    encoder->base.name);
19093 
19094 		/* Connector is active, but has no active pipe. This is
19095 		 * fallout from our resume register restoring. Disable
19096 		 * the encoder manually again. */
19097 		if (crtc_state) {
19098 			struct drm_encoder *best_encoder;
19099 
19100 			drm_dbg_kms(&dev_priv->drm,
19101 				    "[ENCODER:%d:%s] manually disabled\n",
19102 				    encoder->base.base.id,
19103 				    encoder->base.name);
19104 
19105 			/* avoid oopsing in case the hooks consult best_encoder */
19106 			best_encoder = connector->base.state->best_encoder;
19107 			connector->base.state->best_encoder = &encoder->base;
19108 
19109 			/* FIXME NULL atomic state passed! */
19110 			if (encoder->disable)
19111 				encoder->disable(NULL, encoder, crtc_state,
19112 						 connector->base.state);
19113 			if (encoder->post_disable)
19114 				encoder->post_disable(NULL, encoder, crtc_state,
19115 						      connector->base.state);
19116 
19117 			connector->base.state->best_encoder = best_encoder;
19118 		}
19119 		encoder->base.crtc = NULL;
19120 
19121 		/* Inconsistent output/port/pipe state happens presumably due to
19122 		 * a bug in one of the get_hw_state functions. Or someplace else
19123 		 * in our code, like the register restore mess on resume. Clamp
19124 		 * things to off as a safer default. */
19125 
19126 		connector->base.dpms = DRM_MODE_DPMS_OFF;
19127 		connector->base.encoder = NULL;
19128 	}
19129 
19130 	/* notify opregion of the sanitized encoder state */
19131 	intel_opregion_notify_encoder(encoder, connector && has_active_crtc);
19132 
19133 	if (INTEL_GEN(dev_priv) >= 11)
19134 		icl_sanitize_encoder_pll_mapping(encoder);
19135 }
19136 
19137 /* FIXME read out full plane state for all planes */
19138 static void readout_plane_state(struct drm_i915_private *dev_priv)
19139 {
19140 	struct intel_plane *plane;
19141 	struct intel_crtc *crtc;
19142 
19143 	for_each_intel_plane(&dev_priv->drm, plane) {
19144 		struct intel_plane_state *plane_state =
19145 			to_intel_plane_state(plane->base.state);
19146 		struct intel_crtc_state *crtc_state;
19147 		enum pipe pipe = PIPE_A;
19148 		bool visible;
19149 
19150 		visible = plane->get_hw_state(plane, &pipe);
19151 
19152 		crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
19153 		crtc_state = to_intel_crtc_state(crtc->base.state);
19154 
19155 		intel_set_plane_visible(crtc_state, plane_state, visible);
19156 
19157 		drm_dbg_kms(&dev_priv->drm,
19158 			    "[PLANE:%d:%s] hw state readout: %s, pipe %c\n",
19159 			    plane->base.base.id, plane->base.name,
19160 			    enableddisabled(visible), pipe_name(pipe));
19161 	}
19162 
19163 	for_each_intel_crtc(&dev_priv->drm, crtc) {
19164 		struct intel_crtc_state *crtc_state =
19165 			to_intel_crtc_state(crtc->base.state);
19166 
19167 		fixup_active_planes(crtc_state);
19168 	}
19169 }
19170 
19171 static void intel_modeset_readout_hw_state(struct drm_device *dev)
19172 {
19173 	struct drm_i915_private *dev_priv = to_i915(dev);
19174 	struct intel_cdclk_state *cdclk_state =
19175 		to_intel_cdclk_state(dev_priv->cdclk.obj.state);
19176 	struct intel_dbuf_state *dbuf_state =
19177 		to_intel_dbuf_state(dev_priv->dbuf.obj.state);
19178 	enum pipe pipe;
19179 	struct intel_crtc *crtc;
19180 	struct intel_encoder *encoder;
19181 	struct intel_connector *connector;
19182 	struct drm_connector_list_iter conn_iter;
19183 	u8 active_pipes = 0;
19184 
19185 	for_each_intel_crtc(dev, crtc) {
19186 		struct intel_crtc_state *crtc_state =
19187 			to_intel_crtc_state(crtc->base.state);
19188 
19189 		__drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi);
19190 		intel_crtc_free_hw_state(crtc_state);
19191 		intel_crtc_state_reset(crtc_state, crtc);
19192 
19193 		intel_crtc_get_pipe_config(crtc_state);
19194 
19195 		crtc_state->hw.enable = crtc_state->hw.active;
19196 
19197 		crtc->base.enabled = crtc_state->hw.enable;
19198 		crtc->active = crtc_state->hw.active;
19199 
19200 		if (crtc_state->hw.active)
19201 			active_pipes |= BIT(crtc->pipe);
19202 
19203 		drm_dbg_kms(&dev_priv->drm,
19204 			    "[CRTC:%d:%s] hw state readout: %s\n",
19205 			    crtc->base.base.id, crtc->base.name,
19206 			    enableddisabled(crtc_state->hw.active));
19207 	}
19208 
19209 	dev_priv->active_pipes = cdclk_state->active_pipes =
19210 		dbuf_state->active_pipes = active_pipes;
19211 
19212 	readout_plane_state(dev_priv);
19213 
19214 	intel_dpll_readout_hw_state(dev_priv);
19215 
19216 	for_each_intel_encoder(dev, encoder) {
19217 		pipe = 0;
19218 
19219 		if (encoder->get_hw_state(encoder, &pipe)) {
19220 			struct intel_crtc_state *crtc_state;
19221 
19222 			crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
19223 			crtc_state = to_intel_crtc_state(crtc->base.state);
19224 
19225 			encoder->base.crtc = &crtc->base;
19226 			intel_encoder_get_config(encoder, crtc_state);
19227 			if (encoder->sync_state)
19228 				encoder->sync_state(encoder, crtc_state);
19229 
19230 			/* read out to slave crtc as well for bigjoiner */
19231 			if (crtc_state->bigjoiner) {
19232 				/* encoder should read be linked to bigjoiner master */
19233 				WARN_ON(crtc_state->bigjoiner_slave);
19234 
19235 				crtc = crtc_state->bigjoiner_linked_crtc;
19236 				crtc_state = to_intel_crtc_state(crtc->base.state);
19237 				intel_encoder_get_config(encoder, crtc_state);
19238 			}
19239 		} else {
19240 			encoder->base.crtc = NULL;
19241 		}
19242 
19243 		drm_dbg_kms(&dev_priv->drm,
19244 			    "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
19245 			    encoder->base.base.id, encoder->base.name,
19246 			    enableddisabled(encoder->base.crtc),
19247 			    pipe_name(pipe));
19248 	}
19249 
19250 	drm_connector_list_iter_begin(dev, &conn_iter);
19251 	for_each_intel_connector_iter(connector, &conn_iter) {
19252 		if (connector->get_hw_state(connector)) {
19253 			struct intel_crtc_state *crtc_state;
19254 			struct intel_crtc *crtc;
19255 
19256 			connector->base.dpms = DRM_MODE_DPMS_ON;
19257 
19258 			encoder = intel_attached_encoder(connector);
19259 			connector->base.encoder = &encoder->base;
19260 
19261 			crtc = to_intel_crtc(encoder->base.crtc);
19262 			crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL;
19263 
19264 			if (crtc_state && crtc_state->hw.active) {
19265 				/*
19266 				 * This has to be done during hardware readout
19267 				 * because anything calling .crtc_disable may
19268 				 * rely on the connector_mask being accurate.
19269 				 */
19270 				crtc_state->uapi.connector_mask |=
19271 					drm_connector_mask(&connector->base);
19272 				crtc_state->uapi.encoder_mask |=
19273 					drm_encoder_mask(&encoder->base);
19274 			}
19275 		} else {
19276 			connector->base.dpms = DRM_MODE_DPMS_OFF;
19277 			connector->base.encoder = NULL;
19278 		}
19279 		drm_dbg_kms(&dev_priv->drm,
19280 			    "[CONNECTOR:%d:%s] hw state readout: %s\n",
19281 			    connector->base.base.id, connector->base.name,
19282 			    enableddisabled(connector->base.encoder));
19283 	}
19284 	drm_connector_list_iter_end(&conn_iter);
19285 
19286 	for_each_intel_crtc(dev, crtc) {
19287 		struct intel_bw_state *bw_state =
19288 			to_intel_bw_state(dev_priv->bw_obj.state);
19289 		struct intel_crtc_state *crtc_state =
19290 			to_intel_crtc_state(crtc->base.state);
19291 		struct intel_plane *plane;
19292 		int min_cdclk = 0;
19293 
19294 		if (crtc_state->bigjoiner_slave)
19295 			continue;
19296 
19297 		if (crtc_state->hw.active) {
19298 			/*
19299 			 * The initial mode needs to be set in order to keep
19300 			 * the atomic core happy. It wants a valid mode if the
19301 			 * crtc's enabled, so we do the above call.
19302 			 *
19303 			 * But we don't set all the derived state fully, hence
19304 			 * set a flag to indicate that a full recalculation is
19305 			 * needed on the next commit.
19306 			 */
19307 			crtc_state->inherited = true;
19308 
19309 			intel_crtc_update_active_timings(crtc_state);
19310 
19311 			intel_crtc_copy_hw_to_uapi_state(crtc_state);
19312 		}
19313 
19314 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
19315 			const struct intel_plane_state *plane_state =
19316 				to_intel_plane_state(plane->base.state);
19317 
19318 			/*
19319 			 * FIXME don't have the fb yet, so can't
19320 			 * use intel_plane_data_rate() :(
19321 			 */
19322 			if (plane_state->uapi.visible)
19323 				crtc_state->data_rate[plane->id] =
19324 					4 * crtc_state->pixel_rate;
19325 			/*
19326 			 * FIXME don't have the fb yet, so can't
19327 			 * use plane->min_cdclk() :(
19328 			 */
19329 			if (plane_state->uapi.visible && plane->min_cdclk) {
19330 				if (crtc_state->double_wide ||
19331 				    INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
19332 					crtc_state->min_cdclk[plane->id] =
19333 						DIV_ROUND_UP(crtc_state->pixel_rate, 2);
19334 				else
19335 					crtc_state->min_cdclk[plane->id] =
19336 						crtc_state->pixel_rate;
19337 			}
19338 			drm_dbg_kms(&dev_priv->drm,
19339 				    "[PLANE:%d:%s] min_cdclk %d kHz\n",
19340 				    plane->base.base.id, plane->base.name,
19341 				    crtc_state->min_cdclk[plane->id]);
19342 		}
19343 
19344 		if (crtc_state->hw.active) {
19345 			min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
19346 			if (drm_WARN_ON(dev, min_cdclk < 0))
19347 				min_cdclk = 0;
19348 		}
19349 
19350 		cdclk_state->min_cdclk[crtc->pipe] = min_cdclk;
19351 		cdclk_state->min_voltage_level[crtc->pipe] =
19352 			crtc_state->min_voltage_level;
19353 
19354 		intel_bw_crtc_update(bw_state, crtc_state);
19355 
19356 		intel_pipe_config_sanity_check(dev_priv, crtc_state);
19357 
19358 		/* discard our incomplete slave state, copy it from master */
19359 		if (crtc_state->bigjoiner && crtc_state->hw.active) {
19360 			struct intel_crtc *slave = crtc_state->bigjoiner_linked_crtc;
19361 			struct intel_crtc_state *slave_crtc_state =
19362 				to_intel_crtc_state(slave->base.state);
19363 
19364 			copy_bigjoiner_crtc_state(slave_crtc_state, crtc_state);
19365 			slave->base.mode = crtc->base.mode;
19366 
19367 			cdclk_state->min_cdclk[slave->pipe] = min_cdclk;
19368 			cdclk_state->min_voltage_level[slave->pipe] =
19369 				crtc_state->min_voltage_level;
19370 
19371 			for_each_intel_plane_on_crtc(&dev_priv->drm, slave, plane) {
19372 				const struct intel_plane_state *plane_state =
19373 					to_intel_plane_state(plane->base.state);
19374 
19375 				/*
19376 				 * FIXME don't have the fb yet, so can't
19377 				 * use intel_plane_data_rate() :(
19378 				 */
19379 				if (plane_state->uapi.visible)
19380 					crtc_state->data_rate[plane->id] =
19381 						4 * crtc_state->pixel_rate;
19382 				else
19383 					crtc_state->data_rate[plane->id] = 0;
19384 			}
19385 
19386 			intel_bw_crtc_update(bw_state, slave_crtc_state);
19387 			drm_calc_timestamping_constants(&slave->base,
19388 							&slave_crtc_state->hw.adjusted_mode);
19389 		}
19390 	}
19391 }
19392 
19393 static void
19394 get_encoder_power_domains(struct drm_i915_private *dev_priv)
19395 {
19396 	struct intel_encoder *encoder;
19397 
19398 	for_each_intel_encoder(&dev_priv->drm, encoder) {
19399 		struct intel_crtc_state *crtc_state;
19400 
19401 		if (!encoder->get_power_domains)
19402 			continue;
19403 
19404 		/*
19405 		 * MST-primary and inactive encoders don't have a crtc state
19406 		 * and neither of these require any power domain references.
19407 		 */
19408 		if (!encoder->base.crtc)
19409 			continue;
19410 
19411 		crtc_state = to_intel_crtc_state(encoder->base.crtc->state);
19412 		encoder->get_power_domains(encoder, crtc_state);
19413 	}
19414 }
19415 
19416 static void intel_early_display_was(struct drm_i915_private *dev_priv)
19417 {
19418 	/*
19419 	 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl
19420 	 * Also known as Wa_14010480278.
19421 	 */
19422 	if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv))
19423 		intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0,
19424 			       intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS);
19425 
19426 	if (IS_HASWELL(dev_priv)) {
19427 		/*
19428 		 * WaRsPkgCStateDisplayPMReq:hsw
19429 		 * System hang if this isn't done before disabling all planes!
19430 		 */
19431 		intel_de_write(dev_priv, CHICKEN_PAR1_1,
19432 			       intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
19433 	}
19434 
19435 	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv)) {
19436 		/* Display WA #1142:kbl,cfl,cml */
19437 		intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
19438 			     KBL_ARB_FILL_SPARE_22, KBL_ARB_FILL_SPARE_22);
19439 		intel_de_rmw(dev_priv, CHICKEN_MISC_2,
19440 			     KBL_ARB_FILL_SPARE_13 | KBL_ARB_FILL_SPARE_14,
19441 			     KBL_ARB_FILL_SPARE_14);
19442 	}
19443 }
19444 
19445 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv,
19446 				       enum port port, i915_reg_t hdmi_reg)
19447 {
19448 	u32 val = intel_de_read(dev_priv, hdmi_reg);
19449 
19450 	if (val & SDVO_ENABLE ||
19451 	    (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A))
19452 		return;
19453 
19454 	drm_dbg_kms(&dev_priv->drm,
19455 		    "Sanitizing transcoder select for HDMI %c\n",
19456 		    port_name(port));
19457 
19458 	val &= ~SDVO_PIPE_SEL_MASK;
19459 	val |= SDVO_PIPE_SEL(PIPE_A);
19460 
19461 	intel_de_write(dev_priv, hdmi_reg, val);
19462 }
19463 
19464 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv,
19465 				     enum port port, i915_reg_t dp_reg)
19466 {
19467 	u32 val = intel_de_read(dev_priv, dp_reg);
19468 
19469 	if (val & DP_PORT_EN ||
19470 	    (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A))
19471 		return;
19472 
19473 	drm_dbg_kms(&dev_priv->drm,
19474 		    "Sanitizing transcoder select for DP %c\n",
19475 		    port_name(port));
19476 
19477 	val &= ~DP_PIPE_SEL_MASK;
19478 	val |= DP_PIPE_SEL(PIPE_A);
19479 
19480 	intel_de_write(dev_priv, dp_reg, val);
19481 }
19482 
19483 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv)
19484 {
19485 	/*
19486 	 * The BIOS may select transcoder B on some of the PCH
19487 	 * ports even it doesn't enable the port. This would trip
19488 	 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled().
19489 	 * Sanitize the transcoder select bits to prevent that. We
19490 	 * assume that the BIOS never actually enabled the port,
19491 	 * because if it did we'd actually have to toggle the port
19492 	 * on and back off to make the transcoder A select stick
19493 	 * (see. intel_dp_link_down(), intel_disable_hdmi(),
19494 	 * intel_disable_sdvo()).
19495 	 */
19496 	ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B);
19497 	ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C);
19498 	ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D);
19499 
19500 	/* PCH SDVOB multiplex with HDMIB */
19501 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB);
19502 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC);
19503 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID);
19504 }
19505 
19506 /* Scan out the current hw modeset state,
19507  * and sanitizes it to the current state
19508  */
19509 static void
19510 intel_modeset_setup_hw_state(struct drm_device *dev,
19511 			     struct drm_modeset_acquire_ctx *ctx)
19512 {
19513 	struct drm_i915_private *dev_priv = to_i915(dev);
19514 	struct intel_encoder *encoder;
19515 	struct intel_crtc *crtc;
19516 	intel_wakeref_t wakeref;
19517 
19518 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
19519 
19520 	intel_early_display_was(dev_priv);
19521 	intel_modeset_readout_hw_state(dev);
19522 
19523 	/* HW state is read out, now we need to sanitize this mess. */
19524 
19525 	/* Sanitize the TypeC port mode upfront, encoders depend on this */
19526 	for_each_intel_encoder(dev, encoder) {
19527 		enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
19528 
19529 		/* We need to sanitize only the MST primary port. */
19530 		if (encoder->type != INTEL_OUTPUT_DP_MST &&
19531 		    intel_phy_is_tc(dev_priv, phy))
19532 			intel_tc_port_sanitize(enc_to_dig_port(encoder));
19533 	}
19534 
19535 	get_encoder_power_domains(dev_priv);
19536 
19537 	if (HAS_PCH_IBX(dev_priv))
19538 		ibx_sanitize_pch_ports(dev_priv);
19539 
19540 	/*
19541 	 * intel_sanitize_plane_mapping() may need to do vblank
19542 	 * waits, so we need vblank interrupts restored beforehand.
19543 	 */
19544 	for_each_intel_crtc(&dev_priv->drm, crtc) {
19545 		struct intel_crtc_state *crtc_state =
19546 			to_intel_crtc_state(crtc->base.state);
19547 
19548 		drm_crtc_vblank_reset(&crtc->base);
19549 
19550 		if (crtc_state->hw.active)
19551 			intel_crtc_vblank_on(crtc_state);
19552 	}
19553 
19554 	intel_sanitize_plane_mapping(dev_priv);
19555 
19556 	for_each_intel_encoder(dev, encoder)
19557 		intel_sanitize_encoder(encoder);
19558 
19559 	for_each_intel_crtc(&dev_priv->drm, crtc) {
19560 		struct intel_crtc_state *crtc_state =
19561 			to_intel_crtc_state(crtc->base.state);
19562 
19563 		intel_sanitize_crtc(crtc, ctx);
19564 		intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]");
19565 	}
19566 
19567 	intel_modeset_update_connector_atomic_state(dev);
19568 
19569 	intel_dpll_sanitize_state(dev_priv);
19570 
19571 	if (IS_G4X(dev_priv)) {
19572 		g4x_wm_get_hw_state(dev_priv);
19573 		g4x_wm_sanitize(dev_priv);
19574 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
19575 		vlv_wm_get_hw_state(dev_priv);
19576 		vlv_wm_sanitize(dev_priv);
19577 	} else if (INTEL_GEN(dev_priv) >= 9) {
19578 		skl_wm_get_hw_state(dev_priv);
19579 	} else if (HAS_PCH_SPLIT(dev_priv)) {
19580 		ilk_wm_get_hw_state(dev_priv);
19581 	}
19582 
19583 	for_each_intel_crtc(dev, crtc) {
19584 		struct intel_crtc_state *crtc_state =
19585 			to_intel_crtc_state(crtc->base.state);
19586 		u64 put_domains;
19587 
19588 		put_domains = modeset_get_crtc_power_domains(crtc_state);
19589 		if (drm_WARN_ON(dev, put_domains))
19590 			modeset_put_power_domains(dev_priv, put_domains);
19591 	}
19592 
19593 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref);
19594 }
19595 
19596 void intel_display_resume(struct drm_device *dev)
19597 {
19598 	struct drm_i915_private *dev_priv = to_i915(dev);
19599 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
19600 	struct drm_modeset_acquire_ctx ctx;
19601 	int ret;
19602 
19603 	dev_priv->modeset_restore_state = NULL;
19604 	if (state)
19605 		state->acquire_ctx = &ctx;
19606 
19607 	drm_modeset_acquire_init(&ctx, 0);
19608 
19609 	while (1) {
19610 		ret = drm_modeset_lock_all_ctx(dev, &ctx);
19611 		if (ret != -EDEADLK)
19612 			break;
19613 
19614 		drm_modeset_backoff(&ctx);
19615 	}
19616 
19617 	if (!ret)
19618 		ret = __intel_display_resume(dev, state, &ctx);
19619 
19620 	intel_enable_ipc(dev_priv);
19621 	drm_modeset_drop_locks(&ctx);
19622 	drm_modeset_acquire_fini(&ctx);
19623 
19624 	if (ret)
19625 		drm_err(&dev_priv->drm,
19626 			"Restoring old state failed with %i\n", ret);
19627 	if (state)
19628 		drm_atomic_state_put(state);
19629 }
19630 
19631 static void intel_hpd_poll_fini(struct drm_i915_private *i915)
19632 {
19633 	struct intel_connector *connector;
19634 	struct drm_connector_list_iter conn_iter;
19635 
19636 	/* Kill all the work that may have been queued by hpd. */
19637 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
19638 	for_each_intel_connector_iter(connector, &conn_iter) {
19639 		if (connector->modeset_retry_work.func)
19640 			cancel_work_sync(&connector->modeset_retry_work);
19641 		if (connector->hdcp.shim) {
19642 			cancel_delayed_work_sync(&connector->hdcp.check_work);
19643 			cancel_work_sync(&connector->hdcp.prop_work);
19644 		}
19645 	}
19646 	drm_connector_list_iter_end(&conn_iter);
19647 }
19648 
19649 /* part #1: call before irq uninstall */
19650 void intel_modeset_driver_remove(struct drm_i915_private *i915)
19651 {
19652 	flush_workqueue(i915->flip_wq);
19653 	flush_workqueue(i915->modeset_wq);
19654 
19655 	flush_work(&i915->atomic_helper.free_work);
19656 	drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list));
19657 }
19658 
19659 /* part #2: call after irq uninstall */
19660 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915)
19661 {
19662 	/*
19663 	 * Due to the hpd irq storm handling the hotplug work can re-arm the
19664 	 * poll handlers. Hence disable polling after hpd handling is shut down.
19665 	 */
19666 	intel_hpd_poll_fini(i915);
19667 
19668 	/*
19669 	 * MST topology needs to be suspended so we don't have any calls to
19670 	 * fbdev after it's finalized. MST will be destroyed later as part of
19671 	 * drm_mode_config_cleanup()
19672 	 */
19673 	intel_dp_mst_suspend(i915);
19674 
19675 	/* poll work can call into fbdev, hence clean that up afterwards */
19676 	intel_fbdev_fini(i915);
19677 
19678 	intel_unregister_dsm_handler();
19679 
19680 	intel_fbc_global_disable(i915);
19681 
19682 	/* flush any delayed tasks or pending work */
19683 	flush_scheduled_work();
19684 
19685 	intel_hdcp_component_fini(i915);
19686 
19687 	intel_mode_config_cleanup(i915);
19688 
19689 	intel_overlay_cleanup(i915);
19690 
19691 	intel_gmbus_teardown(i915);
19692 
19693 	destroy_workqueue(i915->flip_wq);
19694 	destroy_workqueue(i915->modeset_wq);
19695 
19696 	intel_fbc_cleanup_cfb(i915);
19697 }
19698 
19699 /* part #3: call after gem init */
19700 void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915)
19701 {
19702 	intel_csr_ucode_fini(i915);
19703 
19704 	intel_power_domains_driver_remove(i915);
19705 
19706 	intel_vga_unregister(i915);
19707 
19708 	intel_bios_driver_remove(i915);
19709 }
19710 
19711 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
19712 
19713 struct intel_display_error_state {
19714 
19715 	u32 power_well_driver;
19716 
19717 	struct intel_cursor_error_state {
19718 		u32 control;
19719 		u32 position;
19720 		u32 base;
19721 		u32 size;
19722 	} cursor[I915_MAX_PIPES];
19723 
19724 	struct intel_pipe_error_state {
19725 		bool power_domain_on;
19726 		u32 source;
19727 		u32 stat;
19728 	} pipe[I915_MAX_PIPES];
19729 
19730 	struct intel_plane_error_state {
19731 		u32 control;
19732 		u32 stride;
19733 		u32 size;
19734 		u32 pos;
19735 		u32 addr;
19736 		u32 surface;
19737 		u32 tile_offset;
19738 	} plane[I915_MAX_PIPES];
19739 
19740 	struct intel_transcoder_error_state {
19741 		bool available;
19742 		bool power_domain_on;
19743 		enum transcoder cpu_transcoder;
19744 
19745 		u32 conf;
19746 
19747 		u32 htotal;
19748 		u32 hblank;
19749 		u32 hsync;
19750 		u32 vtotal;
19751 		u32 vblank;
19752 		u32 vsync;
19753 	} transcoder[5];
19754 };
19755 
19756 struct intel_display_error_state *
19757 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
19758 {
19759 	struct intel_display_error_state *error;
19760 	int transcoders[] = {
19761 		TRANSCODER_A,
19762 		TRANSCODER_B,
19763 		TRANSCODER_C,
19764 		TRANSCODER_D,
19765 		TRANSCODER_EDP,
19766 	};
19767 	int i;
19768 
19769 	BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder));
19770 
19771 	if (!HAS_DISPLAY(dev_priv))
19772 		return NULL;
19773 
19774 	error = kzalloc(sizeof(*error), GFP_ATOMIC);
19775 	if (error == NULL)
19776 		return NULL;
19777 
19778 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
19779 		error->power_well_driver = intel_de_read(dev_priv,
19780 							 HSW_PWR_WELL_CTL2);
19781 
19782 	for_each_pipe(dev_priv, i) {
19783 		error->pipe[i].power_domain_on =
19784 			__intel_display_power_is_enabled(dev_priv,
19785 							 POWER_DOMAIN_PIPE(i));
19786 		if (!error->pipe[i].power_domain_on)
19787 			continue;
19788 
19789 		error->cursor[i].control = intel_de_read(dev_priv, CURCNTR(i));
19790 		error->cursor[i].position = intel_de_read(dev_priv, CURPOS(i));
19791 		error->cursor[i].base = intel_de_read(dev_priv, CURBASE(i));
19792 
19793 		error->plane[i].control = intel_de_read(dev_priv, DSPCNTR(i));
19794 		error->plane[i].stride = intel_de_read(dev_priv, DSPSTRIDE(i));
19795 		if (INTEL_GEN(dev_priv) <= 3) {
19796 			error->plane[i].size = intel_de_read(dev_priv,
19797 							     DSPSIZE(i));
19798 			error->plane[i].pos = intel_de_read(dev_priv,
19799 							    DSPPOS(i));
19800 		}
19801 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
19802 			error->plane[i].addr = intel_de_read(dev_priv,
19803 							     DSPADDR(i));
19804 		if (INTEL_GEN(dev_priv) >= 4) {
19805 			error->plane[i].surface = intel_de_read(dev_priv,
19806 								DSPSURF(i));
19807 			error->plane[i].tile_offset = intel_de_read(dev_priv,
19808 								    DSPTILEOFF(i));
19809 		}
19810 
19811 		error->pipe[i].source = intel_de_read(dev_priv, PIPESRC(i));
19812 
19813 		if (HAS_GMCH(dev_priv))
19814 			error->pipe[i].stat = intel_de_read(dev_priv,
19815 							    PIPESTAT(i));
19816 	}
19817 
19818 	for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
19819 		enum transcoder cpu_transcoder = transcoders[i];
19820 
19821 		if (!HAS_TRANSCODER(dev_priv, cpu_transcoder))
19822 			continue;
19823 
19824 		error->transcoder[i].available = true;
19825 		error->transcoder[i].power_domain_on =
19826 			__intel_display_power_is_enabled(dev_priv,
19827 				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
19828 		if (!error->transcoder[i].power_domain_on)
19829 			continue;
19830 
19831 		error->transcoder[i].cpu_transcoder = cpu_transcoder;
19832 
19833 		error->transcoder[i].conf = intel_de_read(dev_priv,
19834 							  PIPECONF(cpu_transcoder));
19835 		error->transcoder[i].htotal = intel_de_read(dev_priv,
19836 							    HTOTAL(cpu_transcoder));
19837 		error->transcoder[i].hblank = intel_de_read(dev_priv,
19838 							    HBLANK(cpu_transcoder));
19839 		error->transcoder[i].hsync = intel_de_read(dev_priv,
19840 							   HSYNC(cpu_transcoder));
19841 		error->transcoder[i].vtotal = intel_de_read(dev_priv,
19842 							    VTOTAL(cpu_transcoder));
19843 		error->transcoder[i].vblank = intel_de_read(dev_priv,
19844 							    VBLANK(cpu_transcoder));
19845 		error->transcoder[i].vsync = intel_de_read(dev_priv,
19846 							   VSYNC(cpu_transcoder));
19847 	}
19848 
19849 	return error;
19850 }
19851 
19852 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
19853 
19854 void
19855 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
19856 				struct intel_display_error_state *error)
19857 {
19858 	struct drm_i915_private *dev_priv = m->i915;
19859 	int i;
19860 
19861 	if (!error)
19862 		return;
19863 
19864 	err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv));
19865 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
19866 		err_printf(m, "PWR_WELL_CTL2: %08x\n",
19867 			   error->power_well_driver);
19868 	for_each_pipe(dev_priv, i) {
19869 		err_printf(m, "Pipe [%d]:\n", i);
19870 		err_printf(m, "  Power: %s\n",
19871 			   onoff(error->pipe[i].power_domain_on));
19872 		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
19873 		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
19874 
19875 		err_printf(m, "Plane [%d]:\n", i);
19876 		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
19877 		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
19878 		if (INTEL_GEN(dev_priv) <= 3) {
19879 			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
19880 			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
19881 		}
19882 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
19883 			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
19884 		if (INTEL_GEN(dev_priv) >= 4) {
19885 			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
19886 			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
19887 		}
19888 
19889 		err_printf(m, "Cursor [%d]:\n", i);
19890 		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
19891 		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
19892 		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
19893 	}
19894 
19895 	for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
19896 		if (!error->transcoder[i].available)
19897 			continue;
19898 
19899 		err_printf(m, "CPU transcoder: %s\n",
19900 			   transcoder_name(error->transcoder[i].cpu_transcoder));
19901 		err_printf(m, "  Power: %s\n",
19902 			   onoff(error->transcoder[i].power_domain_on));
19903 		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
19904 		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
19905 		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
19906 		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
19907 		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
19908 		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
19909 		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
19910 	}
19911 }
19912 
19913 #endif
19914