1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <linux/i2c.h> 28 #include <linux/input.h> 29 #include <linux/intel-iommu.h> 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/dma-resv.h> 33 #include <linux/slab.h> 34 35 #include <drm/drm_atomic.h> 36 #include <drm/drm_atomic_helper.h> 37 #include <drm/drm_atomic_uapi.h> 38 #include <drm/drm_dp_helper.h> 39 #include <drm/drm_edid.h> 40 #include <drm/drm_fourcc.h> 41 #include <drm/drm_plane_helper.h> 42 #include <drm/drm_probe_helper.h> 43 #include <drm/drm_rect.h> 44 #include <drm/i915_drm.h> 45 46 #include "display/intel_crt.h" 47 #include "display/intel_ddi.h" 48 #include "display/intel_dp.h" 49 #include "display/intel_dsi.h" 50 #include "display/intel_dvo.h" 51 #include "display/intel_gmbus.h" 52 #include "display/intel_hdmi.h" 53 #include "display/intel_lvds.h" 54 #include "display/intel_sdvo.h" 55 #include "display/intel_tv.h" 56 #include "display/intel_vdsc.h" 57 58 #include "gt/intel_rps.h" 59 60 #include "i915_drv.h" 61 #include "i915_trace.h" 62 #include "intel_acpi.h" 63 #include "intel_atomic.h" 64 #include "intel_atomic_plane.h" 65 #include "intel_bw.h" 66 #include "intel_cdclk.h" 67 #include "intel_color.h" 68 #include "intel_display_types.h" 69 #include "intel_fbc.h" 70 #include "intel_fbdev.h" 71 #include "intel_fifo_underrun.h" 72 #include "intel_frontbuffer.h" 73 #include "intel_hdcp.h" 74 #include "intel_hotplug.h" 75 #include "intel_overlay.h" 76 #include "intel_pipe_crc.h" 77 #include "intel_pm.h" 78 #include "intel_psr.h" 79 #include "intel_quirks.h" 80 #include "intel_sideband.h" 81 #include "intel_sprite.h" 82 #include "intel_tc.h" 83 #include "intel_vga.h" 84 85 /* Primary plane formats for gen <= 3 */ 86 static const u32 i8xx_primary_formats[] = { 87 DRM_FORMAT_C8, 88 DRM_FORMAT_RGB565, 89 DRM_FORMAT_XRGB1555, 90 DRM_FORMAT_XRGB8888, 91 }; 92 93 /* Primary plane formats for ivb (no fp16 due to hw issue) */ 94 static const u32 ivb_primary_formats[] = { 95 DRM_FORMAT_C8, 96 DRM_FORMAT_RGB565, 97 DRM_FORMAT_XRGB8888, 98 DRM_FORMAT_XBGR8888, 99 DRM_FORMAT_XRGB2101010, 100 DRM_FORMAT_XBGR2101010, 101 }; 102 103 /* Primary plane formats for gen >= 4, except ivb */ 104 static const u32 i965_primary_formats[] = { 105 DRM_FORMAT_C8, 106 DRM_FORMAT_RGB565, 107 DRM_FORMAT_XRGB8888, 108 DRM_FORMAT_XBGR8888, 109 DRM_FORMAT_XRGB2101010, 110 DRM_FORMAT_XBGR2101010, 111 DRM_FORMAT_XBGR16161616F, 112 }; 113 114 static const u64 i9xx_format_modifiers[] = { 115 I915_FORMAT_MOD_X_TILED, 116 DRM_FORMAT_MOD_LINEAR, 117 DRM_FORMAT_MOD_INVALID 118 }; 119 120 /* Cursor formats */ 121 static const u32 intel_cursor_formats[] = { 122 DRM_FORMAT_ARGB8888, 123 }; 124 125 static const u64 cursor_format_modifiers[] = { 126 DRM_FORMAT_MOD_LINEAR, 127 DRM_FORMAT_MOD_INVALID 128 }; 129 130 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 131 struct intel_crtc_state *pipe_config); 132 static void ironlake_pch_clock_get(struct intel_crtc *crtc, 133 struct intel_crtc_state *pipe_config); 134 135 static int intel_framebuffer_init(struct intel_framebuffer *ifb, 136 struct drm_i915_gem_object *obj, 137 struct drm_mode_fb_cmd2 *mode_cmd); 138 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state); 139 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 140 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 141 const struct intel_link_m_n *m_n, 142 const struct intel_link_m_n *m2_n2); 143 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 144 static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state); 145 static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state); 146 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 147 static void vlv_prepare_pll(struct intel_crtc *crtc, 148 const struct intel_crtc_state *pipe_config); 149 static void chv_prepare_pll(struct intel_crtc *crtc, 150 const struct intel_crtc_state *pipe_config); 151 static void intel_crtc_init_scalers(struct intel_crtc *crtc, 152 struct intel_crtc_state *crtc_state); 153 static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state); 154 static void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state); 155 static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state); 156 static void intel_modeset_setup_hw_state(struct drm_device *dev, 157 struct drm_modeset_acquire_ctx *ctx); 158 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc); 159 160 struct intel_limit { 161 struct { 162 int min, max; 163 } dot, vco, n, m, m1, m2, p, p1; 164 165 struct { 166 int dot_limit; 167 int p2_slow, p2_fast; 168 } p2; 169 }; 170 171 /* returns HPLL frequency in kHz */ 172 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 173 { 174 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 175 176 /* Obtain SKU information */ 177 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 178 CCK_FUSE_HPLL_FREQ_MASK; 179 180 return vco_freq[hpll_freq] * 1000; 181 } 182 183 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 184 const char *name, u32 reg, int ref_freq) 185 { 186 u32 val; 187 int divider; 188 189 val = vlv_cck_read(dev_priv, reg); 190 divider = val & CCK_FREQUENCY_VALUES; 191 192 WARN((val & CCK_FREQUENCY_STATUS) != 193 (divider << CCK_FREQUENCY_STATUS_SHIFT), 194 "%s change in progress\n", name); 195 196 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 197 } 198 199 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 200 const char *name, u32 reg) 201 { 202 int hpll; 203 204 vlv_cck_get(dev_priv); 205 206 if (dev_priv->hpll_freq == 0) 207 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 208 209 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 210 211 vlv_cck_put(dev_priv); 212 213 return hpll; 214 } 215 216 static void intel_update_czclk(struct drm_i915_private *dev_priv) 217 { 218 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 219 return; 220 221 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 222 CCK_CZ_CLOCK_CONTROL); 223 224 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq); 225 } 226 227 static inline u32 /* units of 100MHz */ 228 intel_fdi_link_freq(struct drm_i915_private *dev_priv, 229 const struct intel_crtc_state *pipe_config) 230 { 231 if (HAS_DDI(dev_priv)) 232 return pipe_config->port_clock; /* SPLL */ 233 else 234 return dev_priv->fdi_pll_freq; 235 } 236 237 static const struct intel_limit intel_limits_i8xx_dac = { 238 .dot = { .min = 25000, .max = 350000 }, 239 .vco = { .min = 908000, .max = 1512000 }, 240 .n = { .min = 2, .max = 16 }, 241 .m = { .min = 96, .max = 140 }, 242 .m1 = { .min = 18, .max = 26 }, 243 .m2 = { .min = 6, .max = 16 }, 244 .p = { .min = 4, .max = 128 }, 245 .p1 = { .min = 2, .max = 33 }, 246 .p2 = { .dot_limit = 165000, 247 .p2_slow = 4, .p2_fast = 2 }, 248 }; 249 250 static const struct intel_limit intel_limits_i8xx_dvo = { 251 .dot = { .min = 25000, .max = 350000 }, 252 .vco = { .min = 908000, .max = 1512000 }, 253 .n = { .min = 2, .max = 16 }, 254 .m = { .min = 96, .max = 140 }, 255 .m1 = { .min = 18, .max = 26 }, 256 .m2 = { .min = 6, .max = 16 }, 257 .p = { .min = 4, .max = 128 }, 258 .p1 = { .min = 2, .max = 33 }, 259 .p2 = { .dot_limit = 165000, 260 .p2_slow = 4, .p2_fast = 4 }, 261 }; 262 263 static const struct intel_limit intel_limits_i8xx_lvds = { 264 .dot = { .min = 25000, .max = 350000 }, 265 .vco = { .min = 908000, .max = 1512000 }, 266 .n = { .min = 2, .max = 16 }, 267 .m = { .min = 96, .max = 140 }, 268 .m1 = { .min = 18, .max = 26 }, 269 .m2 = { .min = 6, .max = 16 }, 270 .p = { .min = 4, .max = 128 }, 271 .p1 = { .min = 1, .max = 6 }, 272 .p2 = { .dot_limit = 165000, 273 .p2_slow = 14, .p2_fast = 7 }, 274 }; 275 276 static const struct intel_limit intel_limits_i9xx_sdvo = { 277 .dot = { .min = 20000, .max = 400000 }, 278 .vco = { .min = 1400000, .max = 2800000 }, 279 .n = { .min = 1, .max = 6 }, 280 .m = { .min = 70, .max = 120 }, 281 .m1 = { .min = 8, .max = 18 }, 282 .m2 = { .min = 3, .max = 7 }, 283 .p = { .min = 5, .max = 80 }, 284 .p1 = { .min = 1, .max = 8 }, 285 .p2 = { .dot_limit = 200000, 286 .p2_slow = 10, .p2_fast = 5 }, 287 }; 288 289 static const struct intel_limit intel_limits_i9xx_lvds = { 290 .dot = { .min = 20000, .max = 400000 }, 291 .vco = { .min = 1400000, .max = 2800000 }, 292 .n = { .min = 1, .max = 6 }, 293 .m = { .min = 70, .max = 120 }, 294 .m1 = { .min = 8, .max = 18 }, 295 .m2 = { .min = 3, .max = 7 }, 296 .p = { .min = 7, .max = 98 }, 297 .p1 = { .min = 1, .max = 8 }, 298 .p2 = { .dot_limit = 112000, 299 .p2_slow = 14, .p2_fast = 7 }, 300 }; 301 302 303 static const struct intel_limit intel_limits_g4x_sdvo = { 304 .dot = { .min = 25000, .max = 270000 }, 305 .vco = { .min = 1750000, .max = 3500000}, 306 .n = { .min = 1, .max = 4 }, 307 .m = { .min = 104, .max = 138 }, 308 .m1 = { .min = 17, .max = 23 }, 309 .m2 = { .min = 5, .max = 11 }, 310 .p = { .min = 10, .max = 30 }, 311 .p1 = { .min = 1, .max = 3}, 312 .p2 = { .dot_limit = 270000, 313 .p2_slow = 10, 314 .p2_fast = 10 315 }, 316 }; 317 318 static const struct intel_limit intel_limits_g4x_hdmi = { 319 .dot = { .min = 22000, .max = 400000 }, 320 .vco = { .min = 1750000, .max = 3500000}, 321 .n = { .min = 1, .max = 4 }, 322 .m = { .min = 104, .max = 138 }, 323 .m1 = { .min = 16, .max = 23 }, 324 .m2 = { .min = 5, .max = 11 }, 325 .p = { .min = 5, .max = 80 }, 326 .p1 = { .min = 1, .max = 8}, 327 .p2 = { .dot_limit = 165000, 328 .p2_slow = 10, .p2_fast = 5 }, 329 }; 330 331 static const struct intel_limit intel_limits_g4x_single_channel_lvds = { 332 .dot = { .min = 20000, .max = 115000 }, 333 .vco = { .min = 1750000, .max = 3500000 }, 334 .n = { .min = 1, .max = 3 }, 335 .m = { .min = 104, .max = 138 }, 336 .m1 = { .min = 17, .max = 23 }, 337 .m2 = { .min = 5, .max = 11 }, 338 .p = { .min = 28, .max = 112 }, 339 .p1 = { .min = 2, .max = 8 }, 340 .p2 = { .dot_limit = 0, 341 .p2_slow = 14, .p2_fast = 14 342 }, 343 }; 344 345 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { 346 .dot = { .min = 80000, .max = 224000 }, 347 .vco = { .min = 1750000, .max = 3500000 }, 348 .n = { .min = 1, .max = 3 }, 349 .m = { .min = 104, .max = 138 }, 350 .m1 = { .min = 17, .max = 23 }, 351 .m2 = { .min = 5, .max = 11 }, 352 .p = { .min = 14, .max = 42 }, 353 .p1 = { .min = 2, .max = 6 }, 354 .p2 = { .dot_limit = 0, 355 .p2_slow = 7, .p2_fast = 7 356 }, 357 }; 358 359 static const struct intel_limit intel_limits_pineview_sdvo = { 360 .dot = { .min = 20000, .max = 400000}, 361 .vco = { .min = 1700000, .max = 3500000 }, 362 /* Pineview's Ncounter is a ring counter */ 363 .n = { .min = 3, .max = 6 }, 364 .m = { .min = 2, .max = 256 }, 365 /* Pineview only has one combined m divider, which we treat as m2. */ 366 .m1 = { .min = 0, .max = 0 }, 367 .m2 = { .min = 0, .max = 254 }, 368 .p = { .min = 5, .max = 80 }, 369 .p1 = { .min = 1, .max = 8 }, 370 .p2 = { .dot_limit = 200000, 371 .p2_slow = 10, .p2_fast = 5 }, 372 }; 373 374 static const struct intel_limit intel_limits_pineview_lvds = { 375 .dot = { .min = 20000, .max = 400000 }, 376 .vco = { .min = 1700000, .max = 3500000 }, 377 .n = { .min = 3, .max = 6 }, 378 .m = { .min = 2, .max = 256 }, 379 .m1 = { .min = 0, .max = 0 }, 380 .m2 = { .min = 0, .max = 254 }, 381 .p = { .min = 7, .max = 112 }, 382 .p1 = { .min = 1, .max = 8 }, 383 .p2 = { .dot_limit = 112000, 384 .p2_slow = 14, .p2_fast = 14 }, 385 }; 386 387 /* Ironlake / Sandybridge 388 * 389 * We calculate clock using (register_value + 2) for N/M1/M2, so here 390 * the range value for them is (actual_value - 2). 391 */ 392 static const struct intel_limit intel_limits_ironlake_dac = { 393 .dot = { .min = 25000, .max = 350000 }, 394 .vco = { .min = 1760000, .max = 3510000 }, 395 .n = { .min = 1, .max = 5 }, 396 .m = { .min = 79, .max = 127 }, 397 .m1 = { .min = 12, .max = 22 }, 398 .m2 = { .min = 5, .max = 9 }, 399 .p = { .min = 5, .max = 80 }, 400 .p1 = { .min = 1, .max = 8 }, 401 .p2 = { .dot_limit = 225000, 402 .p2_slow = 10, .p2_fast = 5 }, 403 }; 404 405 static const struct intel_limit intel_limits_ironlake_single_lvds = { 406 .dot = { .min = 25000, .max = 350000 }, 407 .vco = { .min = 1760000, .max = 3510000 }, 408 .n = { .min = 1, .max = 3 }, 409 .m = { .min = 79, .max = 118 }, 410 .m1 = { .min = 12, .max = 22 }, 411 .m2 = { .min = 5, .max = 9 }, 412 .p = { .min = 28, .max = 112 }, 413 .p1 = { .min = 2, .max = 8 }, 414 .p2 = { .dot_limit = 225000, 415 .p2_slow = 14, .p2_fast = 14 }, 416 }; 417 418 static const struct intel_limit intel_limits_ironlake_dual_lvds = { 419 .dot = { .min = 25000, .max = 350000 }, 420 .vco = { .min = 1760000, .max = 3510000 }, 421 .n = { .min = 1, .max = 3 }, 422 .m = { .min = 79, .max = 127 }, 423 .m1 = { .min = 12, .max = 22 }, 424 .m2 = { .min = 5, .max = 9 }, 425 .p = { .min = 14, .max = 56 }, 426 .p1 = { .min = 2, .max = 8 }, 427 .p2 = { .dot_limit = 225000, 428 .p2_slow = 7, .p2_fast = 7 }, 429 }; 430 431 /* LVDS 100mhz refclk limits. */ 432 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = { 433 .dot = { .min = 25000, .max = 350000 }, 434 .vco = { .min = 1760000, .max = 3510000 }, 435 .n = { .min = 1, .max = 2 }, 436 .m = { .min = 79, .max = 126 }, 437 .m1 = { .min = 12, .max = 22 }, 438 .m2 = { .min = 5, .max = 9 }, 439 .p = { .min = 28, .max = 112 }, 440 .p1 = { .min = 2, .max = 8 }, 441 .p2 = { .dot_limit = 225000, 442 .p2_slow = 14, .p2_fast = 14 }, 443 }; 444 445 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = { 446 .dot = { .min = 25000, .max = 350000 }, 447 .vco = { .min = 1760000, .max = 3510000 }, 448 .n = { .min = 1, .max = 3 }, 449 .m = { .min = 79, .max = 126 }, 450 .m1 = { .min = 12, .max = 22 }, 451 .m2 = { .min = 5, .max = 9 }, 452 .p = { .min = 14, .max = 42 }, 453 .p1 = { .min = 2, .max = 6 }, 454 .p2 = { .dot_limit = 225000, 455 .p2_slow = 7, .p2_fast = 7 }, 456 }; 457 458 static const struct intel_limit intel_limits_vlv = { 459 /* 460 * These are the data rate limits (measured in fast clocks) 461 * since those are the strictest limits we have. The fast 462 * clock and actual rate limits are more relaxed, so checking 463 * them would make no difference. 464 */ 465 .dot = { .min = 25000 * 5, .max = 270000 * 5 }, 466 .vco = { .min = 4000000, .max = 6000000 }, 467 .n = { .min = 1, .max = 7 }, 468 .m1 = { .min = 2, .max = 3 }, 469 .m2 = { .min = 11, .max = 156 }, 470 .p1 = { .min = 2, .max = 3 }, 471 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ 472 }; 473 474 static const struct intel_limit intel_limits_chv = { 475 /* 476 * These are the data rate limits (measured in fast clocks) 477 * since those are the strictest limits we have. The fast 478 * clock and actual rate limits are more relaxed, so checking 479 * them would make no difference. 480 */ 481 .dot = { .min = 25000 * 5, .max = 540000 * 5}, 482 .vco = { .min = 4800000, .max = 6480000 }, 483 .n = { .min = 1, .max = 1 }, 484 .m1 = { .min = 2, .max = 2 }, 485 .m2 = { .min = 24 << 22, .max = 175 << 22 }, 486 .p1 = { .min = 2, .max = 4 }, 487 .p2 = { .p2_slow = 1, .p2_fast = 14 }, 488 }; 489 490 static const struct intel_limit intel_limits_bxt = { 491 /* FIXME: find real dot limits */ 492 .dot = { .min = 0, .max = INT_MAX }, 493 .vco = { .min = 4800000, .max = 6700000 }, 494 .n = { .min = 1, .max = 1 }, 495 .m1 = { .min = 2, .max = 2 }, 496 /* FIXME: find real m2 limits */ 497 .m2 = { .min = 2 << 22, .max = 255 << 22 }, 498 .p1 = { .min = 2, .max = 4 }, 499 .p2 = { .p2_slow = 1, .p2_fast = 20 }, 500 }; 501 502 /* WA Display #0827: Gen9:all */ 503 static void 504 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) 505 { 506 if (enable) 507 I915_WRITE(CLKGATE_DIS_PSL(pipe), 508 I915_READ(CLKGATE_DIS_PSL(pipe)) | 509 DUPS1_GATING_DIS | DUPS2_GATING_DIS); 510 else 511 I915_WRITE(CLKGATE_DIS_PSL(pipe), 512 I915_READ(CLKGATE_DIS_PSL(pipe)) & 513 ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 514 } 515 516 /* Wa_2006604312:icl */ 517 static void 518 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 519 bool enable) 520 { 521 if (enable) 522 I915_WRITE(CLKGATE_DIS_PSL(pipe), 523 I915_READ(CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 524 else 525 I915_WRITE(CLKGATE_DIS_PSL(pipe), 526 I915_READ(CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 527 } 528 529 static bool 530 needs_modeset(const struct intel_crtc_state *state) 531 { 532 return drm_atomic_crtc_needs_modeset(&state->base); 533 } 534 535 bool 536 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 537 { 538 return (crtc_state->master_transcoder != INVALID_TRANSCODER || 539 crtc_state->sync_mode_slaves_mask); 540 } 541 542 static bool 543 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state) 544 { 545 return (crtc_state->master_transcoder == INVALID_TRANSCODER && 546 crtc_state->sync_mode_slaves_mask); 547 } 548 549 /* 550 * Platform specific helpers to calculate the port PLL loopback- (clock.m), 551 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast 552 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. 553 * The helpers' return value is the rate of the clock that is fed to the 554 * display engine's pipe which can be the above fast dot clock rate or a 555 * divided-down version of it. 556 */ 557 /* m1 is reserved as 0 in Pineview, n is a ring counter */ 558 static int pnv_calc_dpll_params(int refclk, struct dpll *clock) 559 { 560 clock->m = clock->m2 + 2; 561 clock->p = clock->p1 * clock->p2; 562 if (WARN_ON(clock->n == 0 || clock->p == 0)) 563 return 0; 564 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 565 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 566 567 return clock->dot; 568 } 569 570 static u32 i9xx_dpll_compute_m(struct dpll *dpll) 571 { 572 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); 573 } 574 575 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock) 576 { 577 clock->m = i9xx_dpll_compute_m(clock); 578 clock->p = clock->p1 * clock->p2; 579 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) 580 return 0; 581 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); 582 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 583 584 return clock->dot; 585 } 586 587 static int vlv_calc_dpll_params(int refclk, struct dpll *clock) 588 { 589 clock->m = clock->m1 * clock->m2; 590 clock->p = clock->p1 * clock->p2; 591 if (WARN_ON(clock->n == 0 || clock->p == 0)) 592 return 0; 593 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 594 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 595 596 return clock->dot / 5; 597 } 598 599 int chv_calc_dpll_params(int refclk, struct dpll *clock) 600 { 601 clock->m = clock->m1 * clock->m2; 602 clock->p = clock->p1 * clock->p2; 603 if (WARN_ON(clock->n == 0 || clock->p == 0)) 604 return 0; 605 clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), 606 clock->n << 22); 607 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 608 609 return clock->dot / 5; 610 } 611 612 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0) 613 614 /* 615 * Returns whether the given set of divisors are valid for a given refclk with 616 * the given connectors. 617 */ 618 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv, 619 const struct intel_limit *limit, 620 const struct dpll *clock) 621 { 622 if (clock->n < limit->n.min || limit->n.max < clock->n) 623 INTELPllInvalid("n out of range\n"); 624 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) 625 INTELPllInvalid("p1 out of range\n"); 626 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) 627 INTELPllInvalid("m2 out of range\n"); 628 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) 629 INTELPllInvalid("m1 out of range\n"); 630 631 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) && 632 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv)) 633 if (clock->m1 <= clock->m2) 634 INTELPllInvalid("m1 <= m2\n"); 635 636 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 637 !IS_GEN9_LP(dev_priv)) { 638 if (clock->p < limit->p.min || limit->p.max < clock->p) 639 INTELPllInvalid("p out of range\n"); 640 if (clock->m < limit->m.min || limit->m.max < clock->m) 641 INTELPllInvalid("m out of range\n"); 642 } 643 644 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) 645 INTELPllInvalid("vco out of range\n"); 646 /* XXX: We may need to be checking "Dot clock" depending on the multiplier, 647 * connector, etc., rather than just a single range. 648 */ 649 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) 650 INTELPllInvalid("dot out of range\n"); 651 652 return true; 653 } 654 655 static int 656 i9xx_select_p2_div(const struct intel_limit *limit, 657 const struct intel_crtc_state *crtc_state, 658 int target) 659 { 660 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 661 662 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 663 /* 664 * For LVDS just rely on its current settings for dual-channel. 665 * We haven't figured out how to reliably set up different 666 * single/dual channel state, if we even can. 667 */ 668 if (intel_is_dual_link_lvds(dev_priv)) 669 return limit->p2.p2_fast; 670 else 671 return limit->p2.p2_slow; 672 } else { 673 if (target < limit->p2.dot_limit) 674 return limit->p2.p2_slow; 675 else 676 return limit->p2.p2_fast; 677 } 678 } 679 680 /* 681 * Returns a set of divisors for the desired target clock with the given 682 * refclk, or FALSE. The returned values represent the clock equation: 683 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 684 * 685 * Target and reference clocks are specified in kHz. 686 * 687 * If match_clock is provided, then best_clock P divider must match the P 688 * divider from @match_clock used for LVDS downclocking. 689 */ 690 static bool 691 i9xx_find_best_dpll(const struct intel_limit *limit, 692 struct intel_crtc_state *crtc_state, 693 int target, int refclk, struct dpll *match_clock, 694 struct dpll *best_clock) 695 { 696 struct drm_device *dev = crtc_state->base.crtc->dev; 697 struct dpll clock; 698 int err = target; 699 700 memset(best_clock, 0, sizeof(*best_clock)); 701 702 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 703 704 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 705 clock.m1++) { 706 for (clock.m2 = limit->m2.min; 707 clock.m2 <= limit->m2.max; clock.m2++) { 708 if (clock.m2 >= clock.m1) 709 break; 710 for (clock.n = limit->n.min; 711 clock.n <= limit->n.max; clock.n++) { 712 for (clock.p1 = limit->p1.min; 713 clock.p1 <= limit->p1.max; clock.p1++) { 714 int this_err; 715 716 i9xx_calc_dpll_params(refclk, &clock); 717 if (!intel_PLL_is_valid(to_i915(dev), 718 limit, 719 &clock)) 720 continue; 721 if (match_clock && 722 clock.p != match_clock->p) 723 continue; 724 725 this_err = abs(clock.dot - target); 726 if (this_err < err) { 727 *best_clock = clock; 728 err = this_err; 729 } 730 } 731 } 732 } 733 } 734 735 return (err != target); 736 } 737 738 /* 739 * Returns a set of divisors for the desired target clock with the given 740 * refclk, or FALSE. The returned values represent the clock equation: 741 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 742 * 743 * Target and reference clocks are specified in kHz. 744 * 745 * If match_clock is provided, then best_clock P divider must match the P 746 * divider from @match_clock used for LVDS downclocking. 747 */ 748 static bool 749 pnv_find_best_dpll(const struct intel_limit *limit, 750 struct intel_crtc_state *crtc_state, 751 int target, int refclk, struct dpll *match_clock, 752 struct dpll *best_clock) 753 { 754 struct drm_device *dev = crtc_state->base.crtc->dev; 755 struct dpll clock; 756 int err = target; 757 758 memset(best_clock, 0, sizeof(*best_clock)); 759 760 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 761 762 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 763 clock.m1++) { 764 for (clock.m2 = limit->m2.min; 765 clock.m2 <= limit->m2.max; clock.m2++) { 766 for (clock.n = limit->n.min; 767 clock.n <= limit->n.max; clock.n++) { 768 for (clock.p1 = limit->p1.min; 769 clock.p1 <= limit->p1.max; clock.p1++) { 770 int this_err; 771 772 pnv_calc_dpll_params(refclk, &clock); 773 if (!intel_PLL_is_valid(to_i915(dev), 774 limit, 775 &clock)) 776 continue; 777 if (match_clock && 778 clock.p != match_clock->p) 779 continue; 780 781 this_err = abs(clock.dot - target); 782 if (this_err < err) { 783 *best_clock = clock; 784 err = this_err; 785 } 786 } 787 } 788 } 789 } 790 791 return (err != target); 792 } 793 794 /* 795 * Returns a set of divisors for the desired target clock with the given 796 * refclk, or FALSE. The returned values represent the clock equation: 797 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 798 * 799 * Target and reference clocks are specified in kHz. 800 * 801 * If match_clock is provided, then best_clock P divider must match the P 802 * divider from @match_clock used for LVDS downclocking. 803 */ 804 static bool 805 g4x_find_best_dpll(const struct intel_limit *limit, 806 struct intel_crtc_state *crtc_state, 807 int target, int refclk, struct dpll *match_clock, 808 struct dpll *best_clock) 809 { 810 struct drm_device *dev = crtc_state->base.crtc->dev; 811 struct dpll clock; 812 int max_n; 813 bool found = false; 814 /* approximately equals target * 0.00585 */ 815 int err_most = (target >> 8) + (target >> 9); 816 817 memset(best_clock, 0, sizeof(*best_clock)); 818 819 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 820 821 max_n = limit->n.max; 822 /* based on hardware requirement, prefer smaller n to precision */ 823 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 824 /* based on hardware requirement, prefere larger m1,m2 */ 825 for (clock.m1 = limit->m1.max; 826 clock.m1 >= limit->m1.min; clock.m1--) { 827 for (clock.m2 = limit->m2.max; 828 clock.m2 >= limit->m2.min; clock.m2--) { 829 for (clock.p1 = limit->p1.max; 830 clock.p1 >= limit->p1.min; clock.p1--) { 831 int this_err; 832 833 i9xx_calc_dpll_params(refclk, &clock); 834 if (!intel_PLL_is_valid(to_i915(dev), 835 limit, 836 &clock)) 837 continue; 838 839 this_err = abs(clock.dot - target); 840 if (this_err < err_most) { 841 *best_clock = clock; 842 err_most = this_err; 843 max_n = clock.n; 844 found = true; 845 } 846 } 847 } 848 } 849 } 850 return found; 851 } 852 853 /* 854 * Check if the calculated PLL configuration is more optimal compared to the 855 * best configuration and error found so far. Return the calculated error. 856 */ 857 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, 858 const struct dpll *calculated_clock, 859 const struct dpll *best_clock, 860 unsigned int best_error_ppm, 861 unsigned int *error_ppm) 862 { 863 /* 864 * For CHV ignore the error and consider only the P value. 865 * Prefer a bigger P value based on HW requirements. 866 */ 867 if (IS_CHERRYVIEW(to_i915(dev))) { 868 *error_ppm = 0; 869 870 return calculated_clock->p > best_clock->p; 871 } 872 873 if (WARN_ON_ONCE(!target_freq)) 874 return false; 875 876 *error_ppm = div_u64(1000000ULL * 877 abs(target_freq - calculated_clock->dot), 878 target_freq); 879 /* 880 * Prefer a better P value over a better (smaller) error if the error 881 * is small. Ensure this preference for future configurations too by 882 * setting the error to 0. 883 */ 884 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { 885 *error_ppm = 0; 886 887 return true; 888 } 889 890 return *error_ppm + 10 < best_error_ppm; 891 } 892 893 /* 894 * Returns a set of divisors for the desired target clock with the given 895 * refclk, or FALSE. The returned values represent the clock equation: 896 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 897 */ 898 static bool 899 vlv_find_best_dpll(const struct intel_limit *limit, 900 struct intel_crtc_state *crtc_state, 901 int target, int refclk, struct dpll *match_clock, 902 struct dpll *best_clock) 903 { 904 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 905 struct drm_device *dev = crtc->base.dev; 906 struct dpll clock; 907 unsigned int bestppm = 1000000; 908 /* min update 19.2 MHz */ 909 int max_n = min(limit->n.max, refclk / 19200); 910 bool found = false; 911 912 target *= 5; /* fast clock */ 913 914 memset(best_clock, 0, sizeof(*best_clock)); 915 916 /* based on hardware requirement, prefer smaller n to precision */ 917 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 918 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 919 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; 920 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 921 clock.p = clock.p1 * clock.p2; 922 /* based on hardware requirement, prefer bigger m1,m2 values */ 923 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { 924 unsigned int ppm; 925 926 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, 927 refclk * clock.m1); 928 929 vlv_calc_dpll_params(refclk, &clock); 930 931 if (!intel_PLL_is_valid(to_i915(dev), 932 limit, 933 &clock)) 934 continue; 935 936 if (!vlv_PLL_is_optimal(dev, target, 937 &clock, 938 best_clock, 939 bestppm, &ppm)) 940 continue; 941 942 *best_clock = clock; 943 bestppm = ppm; 944 found = true; 945 } 946 } 947 } 948 } 949 950 return found; 951 } 952 953 /* 954 * Returns a set of divisors for the desired target clock with the given 955 * refclk, or FALSE. The returned values represent the clock equation: 956 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 957 */ 958 static bool 959 chv_find_best_dpll(const struct intel_limit *limit, 960 struct intel_crtc_state *crtc_state, 961 int target, int refclk, struct dpll *match_clock, 962 struct dpll *best_clock) 963 { 964 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 965 struct drm_device *dev = crtc->base.dev; 966 unsigned int best_error_ppm; 967 struct dpll clock; 968 u64 m2; 969 int found = false; 970 971 memset(best_clock, 0, sizeof(*best_clock)); 972 best_error_ppm = 1000000; 973 974 /* 975 * Based on hardware doc, the n always set to 1, and m1 always 976 * set to 2. If requires to support 200Mhz refclk, we need to 977 * revisit this because n may not 1 anymore. 978 */ 979 clock.n = 1, clock.m1 = 2; 980 target *= 5; /* fast clock */ 981 982 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 983 for (clock.p2 = limit->p2.p2_fast; 984 clock.p2 >= limit->p2.p2_slow; 985 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 986 unsigned int error_ppm; 987 988 clock.p = clock.p1 * clock.p2; 989 990 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, 991 refclk * clock.m1); 992 993 if (m2 > INT_MAX/clock.m1) 994 continue; 995 996 clock.m2 = m2; 997 998 chv_calc_dpll_params(refclk, &clock); 999 1000 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock)) 1001 continue; 1002 1003 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, 1004 best_error_ppm, &error_ppm)) 1005 continue; 1006 1007 *best_clock = clock; 1008 best_error_ppm = error_ppm; 1009 found = true; 1010 } 1011 } 1012 1013 return found; 1014 } 1015 1016 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, 1017 struct dpll *best_clock) 1018 { 1019 int refclk = 100000; 1020 const struct intel_limit *limit = &intel_limits_bxt; 1021 1022 return chv_find_best_dpll(limit, crtc_state, 1023 crtc_state->port_clock, refclk, 1024 NULL, best_clock); 1025 } 1026 1027 bool intel_crtc_active(struct intel_crtc *crtc) 1028 { 1029 /* Be paranoid as we can arrive here with only partial 1030 * state retrieved from the hardware during setup. 1031 * 1032 * We can ditch the adjusted_mode.crtc_clock check as soon 1033 * as Haswell has gained clock readout/fastboot support. 1034 * 1035 * We can ditch the crtc->primary->state->fb check as soon as we can 1036 * properly reconstruct framebuffers. 1037 * 1038 * FIXME: The intel_crtc->active here should be switched to 1039 * crtc->state->active once we have proper CRTC states wired up 1040 * for atomic. 1041 */ 1042 return crtc->active && crtc->base.primary->state->fb && 1043 crtc->config->base.adjusted_mode.crtc_clock; 1044 } 1045 1046 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv, 1047 enum pipe pipe) 1048 { 1049 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 1050 1051 return crtc->config->cpu_transcoder; 1052 } 1053 1054 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 1055 enum pipe pipe) 1056 { 1057 i915_reg_t reg = PIPEDSL(pipe); 1058 u32 line1, line2; 1059 u32 line_mask; 1060 1061 if (IS_GEN(dev_priv, 2)) 1062 line_mask = DSL_LINEMASK_GEN2; 1063 else 1064 line_mask = DSL_LINEMASK_GEN3; 1065 1066 line1 = I915_READ(reg) & line_mask; 1067 msleep(5); 1068 line2 = I915_READ(reg) & line_mask; 1069 1070 return line1 != line2; 1071 } 1072 1073 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 1074 { 1075 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1076 enum pipe pipe = crtc->pipe; 1077 1078 /* Wait for the display line to settle/start moving */ 1079 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 1080 DRM_ERROR("pipe %c scanline %s wait timed out\n", 1081 pipe_name(pipe), onoff(state)); 1082 } 1083 1084 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 1085 { 1086 wait_for_pipe_scanline_moving(crtc, false); 1087 } 1088 1089 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 1090 { 1091 wait_for_pipe_scanline_moving(crtc, true); 1092 } 1093 1094 static void 1095 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 1096 { 1097 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 1098 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1099 1100 if (INTEL_GEN(dev_priv) >= 4) { 1101 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1102 i915_reg_t reg = PIPECONF(cpu_transcoder); 1103 1104 /* Wait for the Pipe State to go off */ 1105 if (intel_de_wait_for_clear(dev_priv, reg, 1106 I965_PIPECONF_ACTIVE, 100)) 1107 WARN(1, "pipe_off wait timed out\n"); 1108 } else { 1109 intel_wait_for_pipe_scanline_stopped(crtc); 1110 } 1111 } 1112 1113 /* Only for pre-ILK configs */ 1114 void assert_pll(struct drm_i915_private *dev_priv, 1115 enum pipe pipe, bool state) 1116 { 1117 u32 val; 1118 bool cur_state; 1119 1120 val = I915_READ(DPLL(pipe)); 1121 cur_state = !!(val & DPLL_VCO_ENABLE); 1122 I915_STATE_WARN(cur_state != state, 1123 "PLL state assertion failure (expected %s, current %s)\n", 1124 onoff(state), onoff(cur_state)); 1125 } 1126 1127 /* XXX: the dsi pll is shared between MIPI DSI ports */ 1128 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 1129 { 1130 u32 val; 1131 bool cur_state; 1132 1133 vlv_cck_get(dev_priv); 1134 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 1135 vlv_cck_put(dev_priv); 1136 1137 cur_state = val & DSI_PLL_VCO_EN; 1138 I915_STATE_WARN(cur_state != state, 1139 "DSI PLL state assertion failure (expected %s, current %s)\n", 1140 onoff(state), onoff(cur_state)); 1141 } 1142 1143 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 1144 enum pipe pipe, bool state) 1145 { 1146 bool cur_state; 1147 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, 1148 pipe); 1149 1150 if (HAS_DDI(dev_priv)) { 1151 /* DDI does not have a specific FDI_TX register */ 1152 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); 1153 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 1154 } else { 1155 u32 val = I915_READ(FDI_TX_CTL(pipe)); 1156 cur_state = !!(val & FDI_TX_ENABLE); 1157 } 1158 I915_STATE_WARN(cur_state != state, 1159 "FDI TX state assertion failure (expected %s, current %s)\n", 1160 onoff(state), onoff(cur_state)); 1161 } 1162 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 1163 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 1164 1165 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 1166 enum pipe pipe, bool state) 1167 { 1168 u32 val; 1169 bool cur_state; 1170 1171 val = I915_READ(FDI_RX_CTL(pipe)); 1172 cur_state = !!(val & FDI_RX_ENABLE); 1173 I915_STATE_WARN(cur_state != state, 1174 "FDI RX state assertion failure (expected %s, current %s)\n", 1175 onoff(state), onoff(cur_state)); 1176 } 1177 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 1178 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 1179 1180 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 1181 enum pipe pipe) 1182 { 1183 u32 val; 1184 1185 /* ILK FDI PLL is always enabled */ 1186 if (IS_GEN(dev_priv, 5)) 1187 return; 1188 1189 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 1190 if (HAS_DDI(dev_priv)) 1191 return; 1192 1193 val = I915_READ(FDI_TX_CTL(pipe)); 1194 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 1195 } 1196 1197 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 1198 enum pipe pipe, bool state) 1199 { 1200 u32 val; 1201 bool cur_state; 1202 1203 val = I915_READ(FDI_RX_CTL(pipe)); 1204 cur_state = !!(val & FDI_RX_PLL_ENABLE); 1205 I915_STATE_WARN(cur_state != state, 1206 "FDI RX PLL assertion failure (expected %s, current %s)\n", 1207 onoff(state), onoff(cur_state)); 1208 } 1209 1210 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) 1211 { 1212 i915_reg_t pp_reg; 1213 u32 val; 1214 enum pipe panel_pipe = INVALID_PIPE; 1215 bool locked = true; 1216 1217 if (WARN_ON(HAS_DDI(dev_priv))) 1218 return; 1219 1220 if (HAS_PCH_SPLIT(dev_priv)) { 1221 u32 port_sel; 1222 1223 pp_reg = PP_CONTROL(0); 1224 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1225 1226 switch (port_sel) { 1227 case PANEL_PORT_SELECT_LVDS: 1228 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); 1229 break; 1230 case PANEL_PORT_SELECT_DPA: 1231 intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); 1232 break; 1233 case PANEL_PORT_SELECT_DPC: 1234 intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); 1235 break; 1236 case PANEL_PORT_SELECT_DPD: 1237 intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); 1238 break; 1239 default: 1240 MISSING_CASE(port_sel); 1241 break; 1242 } 1243 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1244 /* presumably write lock depends on pipe, not port select */ 1245 pp_reg = PP_CONTROL(pipe); 1246 panel_pipe = pipe; 1247 } else { 1248 u32 port_sel; 1249 1250 pp_reg = PP_CONTROL(0); 1251 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1252 1253 WARN_ON(port_sel != PANEL_PORT_SELECT_LVDS); 1254 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); 1255 } 1256 1257 val = I915_READ(pp_reg); 1258 if (!(val & PANEL_POWER_ON) || 1259 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 1260 locked = false; 1261 1262 I915_STATE_WARN(panel_pipe == pipe && locked, 1263 "panel assertion failure, pipe %c regs locked\n", 1264 pipe_name(pipe)); 1265 } 1266 1267 void assert_pipe(struct drm_i915_private *dev_priv, 1268 enum pipe pipe, bool state) 1269 { 1270 bool cur_state; 1271 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, 1272 pipe); 1273 enum intel_display_power_domain power_domain; 1274 intel_wakeref_t wakeref; 1275 1276 /* we keep both pipes enabled on 830 */ 1277 if (IS_I830(dev_priv)) 1278 state = true; 1279 1280 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 1281 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 1282 if (wakeref) { 1283 u32 val = I915_READ(PIPECONF(cpu_transcoder)); 1284 cur_state = !!(val & PIPECONF_ENABLE); 1285 1286 intel_display_power_put(dev_priv, power_domain, wakeref); 1287 } else { 1288 cur_state = false; 1289 } 1290 1291 I915_STATE_WARN(cur_state != state, 1292 "pipe %c assertion failure (expected %s, current %s)\n", 1293 pipe_name(pipe), onoff(state), onoff(cur_state)); 1294 } 1295 1296 static void assert_plane(struct intel_plane *plane, bool state) 1297 { 1298 enum pipe pipe; 1299 bool cur_state; 1300 1301 cur_state = plane->get_hw_state(plane, &pipe); 1302 1303 I915_STATE_WARN(cur_state != state, 1304 "%s assertion failure (expected %s, current %s)\n", 1305 plane->base.name, onoff(state), onoff(cur_state)); 1306 } 1307 1308 #define assert_plane_enabled(p) assert_plane(p, true) 1309 #define assert_plane_disabled(p) assert_plane(p, false) 1310 1311 static void assert_planes_disabled(struct intel_crtc *crtc) 1312 { 1313 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1314 struct intel_plane *plane; 1315 1316 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 1317 assert_plane_disabled(plane); 1318 } 1319 1320 static void assert_vblank_disabled(struct drm_crtc *crtc) 1321 { 1322 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0)) 1323 drm_crtc_vblank_put(crtc); 1324 } 1325 1326 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 1327 enum pipe pipe) 1328 { 1329 u32 val; 1330 bool enabled; 1331 1332 val = I915_READ(PCH_TRANSCONF(pipe)); 1333 enabled = !!(val & TRANS_ENABLE); 1334 I915_STATE_WARN(enabled, 1335 "transcoder assertion failed, should be off on pipe %c but is still active\n", 1336 pipe_name(pipe)); 1337 } 1338 1339 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 1340 enum pipe pipe, enum port port, 1341 i915_reg_t dp_reg) 1342 { 1343 enum pipe port_pipe; 1344 bool state; 1345 1346 state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 1347 1348 I915_STATE_WARN(state && port_pipe == pipe, 1349 "PCH DP %c enabled on transcoder %c, should be disabled\n", 1350 port_name(port), pipe_name(pipe)); 1351 1352 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1353 "IBX PCH DP %c still using transcoder B\n", 1354 port_name(port)); 1355 } 1356 1357 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 1358 enum pipe pipe, enum port port, 1359 i915_reg_t hdmi_reg) 1360 { 1361 enum pipe port_pipe; 1362 bool state; 1363 1364 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 1365 1366 I915_STATE_WARN(state && port_pipe == pipe, 1367 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 1368 port_name(port), pipe_name(pipe)); 1369 1370 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1371 "IBX PCH HDMI %c still using transcoder B\n", 1372 port_name(port)); 1373 } 1374 1375 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 1376 enum pipe pipe) 1377 { 1378 enum pipe port_pipe; 1379 1380 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 1381 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 1382 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 1383 1384 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 1385 port_pipe == pipe, 1386 "PCH VGA enabled on transcoder %c, should be disabled\n", 1387 pipe_name(pipe)); 1388 1389 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 1390 port_pipe == pipe, 1391 "PCH LVDS enabled on transcoder %c, should be disabled\n", 1392 pipe_name(pipe)); 1393 1394 /* PCH SDVOB multiplex with HDMIB */ 1395 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 1396 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 1397 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 1398 } 1399 1400 static void _vlv_enable_pll(struct intel_crtc *crtc, 1401 const struct intel_crtc_state *pipe_config) 1402 { 1403 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1404 enum pipe pipe = crtc->pipe; 1405 1406 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1407 POSTING_READ(DPLL(pipe)); 1408 udelay(150); 1409 1410 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1411 DRM_ERROR("DPLL %d failed to lock\n", pipe); 1412 } 1413 1414 static void vlv_enable_pll(struct intel_crtc *crtc, 1415 const struct intel_crtc_state *pipe_config) 1416 { 1417 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1418 enum pipe pipe = crtc->pipe; 1419 1420 assert_pipe_disabled(dev_priv, pipe); 1421 1422 /* PLL is protected by panel, make sure we can write it */ 1423 assert_panel_unlocked(dev_priv, pipe); 1424 1425 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1426 _vlv_enable_pll(crtc, pipe_config); 1427 1428 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md); 1429 POSTING_READ(DPLL_MD(pipe)); 1430 } 1431 1432 1433 static void _chv_enable_pll(struct intel_crtc *crtc, 1434 const struct intel_crtc_state *pipe_config) 1435 { 1436 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1437 enum pipe pipe = crtc->pipe; 1438 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1439 u32 tmp; 1440 1441 vlv_dpio_get(dev_priv); 1442 1443 /* Enable back the 10bit clock to display controller */ 1444 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1445 tmp |= DPIO_DCLKP_EN; 1446 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp); 1447 1448 vlv_dpio_put(dev_priv); 1449 1450 /* 1451 * Need to wait > 100ns between dclkp clock enable bit and PLL enable. 1452 */ 1453 udelay(1); 1454 1455 /* Enable PLL */ 1456 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1457 1458 /* Check PLL is locked */ 1459 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1460 DRM_ERROR("PLL %d failed to lock\n", pipe); 1461 } 1462 1463 static void chv_enable_pll(struct intel_crtc *crtc, 1464 const struct intel_crtc_state *pipe_config) 1465 { 1466 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1467 enum pipe pipe = crtc->pipe; 1468 1469 assert_pipe_disabled(dev_priv, pipe); 1470 1471 /* PLL is protected by panel, make sure we can write it */ 1472 assert_panel_unlocked(dev_priv, pipe); 1473 1474 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1475 _chv_enable_pll(crtc, pipe_config); 1476 1477 if (pipe != PIPE_A) { 1478 /* 1479 * WaPixelRepeatModeFixForC0:chv 1480 * 1481 * DPLLCMD is AWOL. Use chicken bits to propagate 1482 * the value from DPLLBMD to either pipe B or C. 1483 */ 1484 I915_WRITE(CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); 1485 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md); 1486 I915_WRITE(CBR4_VLV, 0); 1487 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md; 1488 1489 /* 1490 * DPLLB VGA mode also seems to cause problems. 1491 * We should always have it disabled. 1492 */ 1493 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0); 1494 } else { 1495 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md); 1496 POSTING_READ(DPLL_MD(pipe)); 1497 } 1498 } 1499 1500 static bool i9xx_has_pps(struct drm_i915_private *dev_priv) 1501 { 1502 if (IS_I830(dev_priv)) 1503 return false; 1504 1505 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 1506 } 1507 1508 static void i9xx_enable_pll(struct intel_crtc *crtc, 1509 const struct intel_crtc_state *crtc_state) 1510 { 1511 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1512 i915_reg_t reg = DPLL(crtc->pipe); 1513 u32 dpll = crtc_state->dpll_hw_state.dpll; 1514 int i; 1515 1516 assert_pipe_disabled(dev_priv, crtc->pipe); 1517 1518 /* PLL is protected by panel, make sure we can write it */ 1519 if (i9xx_has_pps(dev_priv)) 1520 assert_panel_unlocked(dev_priv, crtc->pipe); 1521 1522 /* 1523 * Apparently we need to have VGA mode enabled prior to changing 1524 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 1525 * dividers, even though the register value does change. 1526 */ 1527 I915_WRITE(reg, dpll & ~DPLL_VGA_MODE_DIS); 1528 I915_WRITE(reg, dpll); 1529 1530 /* Wait for the clocks to stabilize. */ 1531 POSTING_READ(reg); 1532 udelay(150); 1533 1534 if (INTEL_GEN(dev_priv) >= 4) { 1535 I915_WRITE(DPLL_MD(crtc->pipe), 1536 crtc_state->dpll_hw_state.dpll_md); 1537 } else { 1538 /* The pixel multiplier can only be updated once the 1539 * DPLL is enabled and the clocks are stable. 1540 * 1541 * So write it again. 1542 */ 1543 I915_WRITE(reg, dpll); 1544 } 1545 1546 /* We do this three times for luck */ 1547 for (i = 0; i < 3; i++) { 1548 I915_WRITE(reg, dpll); 1549 POSTING_READ(reg); 1550 udelay(150); /* wait for warmup */ 1551 } 1552 } 1553 1554 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) 1555 { 1556 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 1557 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1558 enum pipe pipe = crtc->pipe; 1559 1560 /* Don't disable pipe or pipe PLLs if needed */ 1561 if (IS_I830(dev_priv)) 1562 return; 1563 1564 /* Make sure the pipe isn't still relying on us */ 1565 assert_pipe_disabled(dev_priv, pipe); 1566 1567 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS); 1568 POSTING_READ(DPLL(pipe)); 1569 } 1570 1571 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1572 { 1573 u32 val; 1574 1575 /* Make sure the pipe isn't still relying on us */ 1576 assert_pipe_disabled(dev_priv, pipe); 1577 1578 val = DPLL_INTEGRATED_REF_CLK_VLV | 1579 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1580 if (pipe != PIPE_A) 1581 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1582 1583 I915_WRITE(DPLL(pipe), val); 1584 POSTING_READ(DPLL(pipe)); 1585 } 1586 1587 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1588 { 1589 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1590 u32 val; 1591 1592 /* Make sure the pipe isn't still relying on us */ 1593 assert_pipe_disabled(dev_priv, pipe); 1594 1595 val = DPLL_SSC_REF_CLK_CHV | 1596 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1597 if (pipe != PIPE_A) 1598 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1599 1600 I915_WRITE(DPLL(pipe), val); 1601 POSTING_READ(DPLL(pipe)); 1602 1603 vlv_dpio_get(dev_priv); 1604 1605 /* Disable 10bit clock to display controller */ 1606 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1607 val &= ~DPIO_DCLKP_EN; 1608 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val); 1609 1610 vlv_dpio_put(dev_priv); 1611 } 1612 1613 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 1614 struct intel_digital_port *dport, 1615 unsigned int expected_mask) 1616 { 1617 u32 port_mask; 1618 i915_reg_t dpll_reg; 1619 1620 switch (dport->base.port) { 1621 case PORT_B: 1622 port_mask = DPLL_PORTB_READY_MASK; 1623 dpll_reg = DPLL(0); 1624 break; 1625 case PORT_C: 1626 port_mask = DPLL_PORTC_READY_MASK; 1627 dpll_reg = DPLL(0); 1628 expected_mask <<= 4; 1629 break; 1630 case PORT_D: 1631 port_mask = DPLL_PORTD_READY_MASK; 1632 dpll_reg = DPIO_PHY_STATUS; 1633 break; 1634 default: 1635 BUG(); 1636 } 1637 1638 if (intel_de_wait_for_register(dev_priv, dpll_reg, 1639 port_mask, expected_mask, 1000)) 1640 WARN(1, "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", 1641 dport->base.base.base.id, dport->base.base.name, 1642 I915_READ(dpll_reg) & port_mask, expected_mask); 1643 } 1644 1645 static void ironlake_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 1646 { 1647 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 1648 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1649 enum pipe pipe = crtc->pipe; 1650 i915_reg_t reg; 1651 u32 val, pipeconf_val; 1652 1653 /* Make sure PCH DPLL is enabled */ 1654 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 1655 1656 /* FDI must be feeding us bits for PCH ports */ 1657 assert_fdi_tx_enabled(dev_priv, pipe); 1658 assert_fdi_rx_enabled(dev_priv, pipe); 1659 1660 if (HAS_PCH_CPT(dev_priv)) { 1661 /* Workaround: Set the timing override bit before enabling the 1662 * pch transcoder. */ 1663 reg = TRANS_CHICKEN2(pipe); 1664 val = I915_READ(reg); 1665 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1666 I915_WRITE(reg, val); 1667 } 1668 1669 reg = PCH_TRANSCONF(pipe); 1670 val = I915_READ(reg); 1671 pipeconf_val = I915_READ(PIPECONF(pipe)); 1672 1673 if (HAS_PCH_IBX(dev_priv)) { 1674 /* 1675 * Make the BPC in transcoder be consistent with 1676 * that in pipeconf reg. For HDMI we must use 8bpc 1677 * here for both 8bpc and 12bpc. 1678 */ 1679 val &= ~PIPECONF_BPC_MASK; 1680 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1681 val |= PIPECONF_8BPC; 1682 else 1683 val |= pipeconf_val & PIPECONF_BPC_MASK; 1684 } 1685 1686 val &= ~TRANS_INTERLACE_MASK; 1687 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 1688 if (HAS_PCH_IBX(dev_priv) && 1689 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 1690 val |= TRANS_LEGACY_INTERLACED_ILK; 1691 else 1692 val |= TRANS_INTERLACED; 1693 } else { 1694 val |= TRANS_PROGRESSIVE; 1695 } 1696 1697 I915_WRITE(reg, val | TRANS_ENABLE); 1698 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 1699 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe)); 1700 } 1701 1702 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 1703 enum transcoder cpu_transcoder) 1704 { 1705 u32 val, pipeconf_val; 1706 1707 /* FDI must be feeding us bits for PCH ports */ 1708 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 1709 assert_fdi_rx_enabled(dev_priv, PIPE_A); 1710 1711 /* Workaround: set timing override bit. */ 1712 val = I915_READ(TRANS_CHICKEN2(PIPE_A)); 1713 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1714 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val); 1715 1716 val = TRANS_ENABLE; 1717 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder)); 1718 1719 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 1720 PIPECONF_INTERLACED_ILK) 1721 val |= TRANS_INTERLACED; 1722 else 1723 val |= TRANS_PROGRESSIVE; 1724 1725 I915_WRITE(LPT_TRANSCONF, val); 1726 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 1727 TRANS_STATE_ENABLE, 100)) 1728 DRM_ERROR("Failed to enable PCH transcoder\n"); 1729 } 1730 1731 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv, 1732 enum pipe pipe) 1733 { 1734 i915_reg_t reg; 1735 u32 val; 1736 1737 /* FDI relies on the transcoder */ 1738 assert_fdi_tx_disabled(dev_priv, pipe); 1739 assert_fdi_rx_disabled(dev_priv, pipe); 1740 1741 /* Ports must be off as well */ 1742 assert_pch_ports_disabled(dev_priv, pipe); 1743 1744 reg = PCH_TRANSCONF(pipe); 1745 val = I915_READ(reg); 1746 val &= ~TRANS_ENABLE; 1747 I915_WRITE(reg, val); 1748 /* wait for PCH transcoder off, transcoder state */ 1749 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 1750 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe)); 1751 1752 if (HAS_PCH_CPT(dev_priv)) { 1753 /* Workaround: Clear the timing override chicken bit again. */ 1754 reg = TRANS_CHICKEN2(pipe); 1755 val = I915_READ(reg); 1756 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1757 I915_WRITE(reg, val); 1758 } 1759 } 1760 1761 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 1762 { 1763 u32 val; 1764 1765 val = I915_READ(LPT_TRANSCONF); 1766 val &= ~TRANS_ENABLE; 1767 I915_WRITE(LPT_TRANSCONF, val); 1768 /* wait for PCH transcoder off, transcoder state */ 1769 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 1770 TRANS_STATE_ENABLE, 50)) 1771 DRM_ERROR("Failed to disable PCH transcoder\n"); 1772 1773 /* Workaround: clear timing override bit. */ 1774 val = I915_READ(TRANS_CHICKEN2(PIPE_A)); 1775 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1776 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val); 1777 } 1778 1779 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 1780 { 1781 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1782 1783 if (HAS_PCH_LPT(dev_priv)) 1784 return PIPE_A; 1785 else 1786 return crtc->pipe; 1787 } 1788 1789 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state) 1790 { 1791 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 1792 1793 /* 1794 * On i965gm the hardware frame counter reads 1795 * zero when the TV encoder is enabled :( 1796 */ 1797 if (IS_I965GM(dev_priv) && 1798 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT))) 1799 return 0; 1800 1801 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1802 return 0xffffffff; /* full 32 bit counter */ 1803 else if (INTEL_GEN(dev_priv) >= 3) 1804 return 0xffffff; /* only 24 bits of frame count */ 1805 else 1806 return 0; /* Gen2 doesn't have a hardware frame counter */ 1807 } 1808 1809 static void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state) 1810 { 1811 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 1812 1813 drm_crtc_set_max_vblank_count(&crtc->base, 1814 intel_crtc_max_vblank_count(crtc_state)); 1815 drm_crtc_vblank_on(&crtc->base); 1816 } 1817 1818 static void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) 1819 { 1820 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); 1821 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1822 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 1823 enum pipe pipe = crtc->pipe; 1824 i915_reg_t reg; 1825 u32 val; 1826 1827 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe)); 1828 1829 assert_planes_disabled(crtc); 1830 1831 /* 1832 * A pipe without a PLL won't actually be able to drive bits from 1833 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 1834 * need the check. 1835 */ 1836 if (HAS_GMCH(dev_priv)) { 1837 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 1838 assert_dsi_pll_enabled(dev_priv); 1839 else 1840 assert_pll_enabled(dev_priv, pipe); 1841 } else { 1842 if (new_crtc_state->has_pch_encoder) { 1843 /* if driving the PCH, we need FDI enabled */ 1844 assert_fdi_rx_pll_enabled(dev_priv, 1845 intel_crtc_pch_transcoder(crtc)); 1846 assert_fdi_tx_pll_enabled(dev_priv, 1847 (enum pipe) cpu_transcoder); 1848 } 1849 /* FIXME: assert CPU port conditions for SNB+ */ 1850 } 1851 1852 trace_intel_pipe_enable(crtc); 1853 1854 reg = PIPECONF(cpu_transcoder); 1855 val = I915_READ(reg); 1856 if (val & PIPECONF_ENABLE) { 1857 /* we keep both pipes enabled on 830 */ 1858 WARN_ON(!IS_I830(dev_priv)); 1859 return; 1860 } 1861 1862 I915_WRITE(reg, val | PIPECONF_ENABLE); 1863 POSTING_READ(reg); 1864 1865 /* 1866 * Until the pipe starts PIPEDSL reads will return a stale value, 1867 * which causes an apparent vblank timestamp jump when PIPEDSL 1868 * resets to its proper value. That also messes up the frame count 1869 * when it's derived from the timestamps. So let's wait for the 1870 * pipe to start properly before we call drm_crtc_vblank_on() 1871 */ 1872 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 1873 intel_wait_for_pipe_scanline_moving(crtc); 1874 } 1875 1876 static void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) 1877 { 1878 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 1879 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1880 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1881 enum pipe pipe = crtc->pipe; 1882 i915_reg_t reg; 1883 u32 val; 1884 1885 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe)); 1886 1887 /* 1888 * Make sure planes won't keep trying to pump pixels to us, 1889 * or we might hang the display. 1890 */ 1891 assert_planes_disabled(crtc); 1892 1893 trace_intel_pipe_disable(crtc); 1894 1895 reg = PIPECONF(cpu_transcoder); 1896 val = I915_READ(reg); 1897 if ((val & PIPECONF_ENABLE) == 0) 1898 return; 1899 1900 /* 1901 * Double wide has implications for planes 1902 * so best keep it disabled when not needed. 1903 */ 1904 if (old_crtc_state->double_wide) 1905 val &= ~PIPECONF_DOUBLE_WIDE; 1906 1907 /* Don't disable pipe or pipe PLLs if needed */ 1908 if (!IS_I830(dev_priv)) 1909 val &= ~PIPECONF_ENABLE; 1910 1911 I915_WRITE(reg, val); 1912 if ((val & PIPECONF_ENABLE) == 0) 1913 intel_wait_for_pipe_off(old_crtc_state); 1914 } 1915 1916 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv) 1917 { 1918 return IS_GEN(dev_priv, 2) ? 2048 : 4096; 1919 } 1920 1921 static unsigned int 1922 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) 1923 { 1924 struct drm_i915_private *dev_priv = to_i915(fb->dev); 1925 unsigned int cpp = fb->format->cpp[color_plane]; 1926 1927 switch (fb->modifier) { 1928 case DRM_FORMAT_MOD_LINEAR: 1929 return intel_tile_size(dev_priv); 1930 case I915_FORMAT_MOD_X_TILED: 1931 if (IS_GEN(dev_priv, 2)) 1932 return 128; 1933 else 1934 return 512; 1935 case I915_FORMAT_MOD_Y_TILED_CCS: 1936 if (color_plane == 1) 1937 return 128; 1938 /* fall through */ 1939 case I915_FORMAT_MOD_Y_TILED: 1940 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv)) 1941 return 128; 1942 else 1943 return 512; 1944 case I915_FORMAT_MOD_Yf_TILED_CCS: 1945 if (color_plane == 1) 1946 return 128; 1947 /* fall through */ 1948 case I915_FORMAT_MOD_Yf_TILED: 1949 switch (cpp) { 1950 case 1: 1951 return 64; 1952 case 2: 1953 case 4: 1954 return 128; 1955 case 8: 1956 case 16: 1957 return 256; 1958 default: 1959 MISSING_CASE(cpp); 1960 return cpp; 1961 } 1962 break; 1963 default: 1964 MISSING_CASE(fb->modifier); 1965 return cpp; 1966 } 1967 } 1968 1969 static unsigned int 1970 intel_tile_height(const struct drm_framebuffer *fb, int color_plane) 1971 { 1972 return intel_tile_size(to_i915(fb->dev)) / 1973 intel_tile_width_bytes(fb, color_plane); 1974 } 1975 1976 /* Return the tile dimensions in pixel units */ 1977 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane, 1978 unsigned int *tile_width, 1979 unsigned int *tile_height) 1980 { 1981 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane); 1982 unsigned int cpp = fb->format->cpp[color_plane]; 1983 1984 *tile_width = tile_width_bytes / cpp; 1985 *tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes; 1986 } 1987 1988 unsigned int 1989 intel_fb_align_height(const struct drm_framebuffer *fb, 1990 int color_plane, unsigned int height) 1991 { 1992 unsigned int tile_height = intel_tile_height(fb, color_plane); 1993 1994 return ALIGN(height, tile_height); 1995 } 1996 1997 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 1998 { 1999 unsigned int size = 0; 2000 int i; 2001 2002 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 2003 size += rot_info->plane[i].width * rot_info->plane[i].height; 2004 2005 return size; 2006 } 2007 2008 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 2009 { 2010 unsigned int size = 0; 2011 int i; 2012 2013 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 2014 size += rem_info->plane[i].width * rem_info->plane[i].height; 2015 2016 return size; 2017 } 2018 2019 static void 2020 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, 2021 const struct drm_framebuffer *fb, 2022 unsigned int rotation) 2023 { 2024 view->type = I915_GGTT_VIEW_NORMAL; 2025 if (drm_rotation_90_or_270(rotation)) { 2026 view->type = I915_GGTT_VIEW_ROTATED; 2027 view->rotated = to_intel_framebuffer(fb)->rot_info; 2028 } 2029 } 2030 2031 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv) 2032 { 2033 if (IS_I830(dev_priv)) 2034 return 16 * 1024; 2035 else if (IS_I85X(dev_priv)) 2036 return 256; 2037 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) 2038 return 32; 2039 else 2040 return 4 * 1024; 2041 } 2042 2043 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 2044 { 2045 if (INTEL_GEN(dev_priv) >= 9) 2046 return 256 * 1024; 2047 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || 2048 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 2049 return 128 * 1024; 2050 else if (INTEL_GEN(dev_priv) >= 4) 2051 return 4 * 1024; 2052 else 2053 return 0; 2054 } 2055 2056 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, 2057 int color_plane) 2058 { 2059 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2060 2061 /* AUX_DIST needs only 4K alignment */ 2062 if (color_plane == 1) 2063 return 4096; 2064 2065 switch (fb->modifier) { 2066 case DRM_FORMAT_MOD_LINEAR: 2067 return intel_linear_alignment(dev_priv); 2068 case I915_FORMAT_MOD_X_TILED: 2069 if (INTEL_GEN(dev_priv) >= 9) 2070 return 256 * 1024; 2071 return 0; 2072 case I915_FORMAT_MOD_Y_TILED_CCS: 2073 case I915_FORMAT_MOD_Yf_TILED_CCS: 2074 case I915_FORMAT_MOD_Y_TILED: 2075 case I915_FORMAT_MOD_Yf_TILED: 2076 return 1 * 1024 * 1024; 2077 default: 2078 MISSING_CASE(fb->modifier); 2079 return 0; 2080 } 2081 } 2082 2083 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 2084 { 2085 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 2086 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2087 2088 return INTEL_GEN(dev_priv) < 4 || 2089 (plane->has_fbc && 2090 plane_state->view.type == I915_GGTT_VIEW_NORMAL); 2091 } 2092 2093 struct i915_vma * 2094 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 2095 const struct i915_ggtt_view *view, 2096 bool uses_fence, 2097 unsigned long *out_flags) 2098 { 2099 struct drm_device *dev = fb->dev; 2100 struct drm_i915_private *dev_priv = to_i915(dev); 2101 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 2102 intel_wakeref_t wakeref; 2103 struct i915_vma *vma; 2104 unsigned int pinctl; 2105 u32 alignment; 2106 2107 if (WARN_ON(!i915_gem_object_is_framebuffer(obj))) 2108 return ERR_PTR(-EINVAL); 2109 2110 alignment = intel_surf_alignment(fb, 0); 2111 2112 /* Note that the w/a also requires 64 PTE of padding following the 2113 * bo. We currently fill all unused PTE with the shadow page and so 2114 * we should always have valid PTE following the scanout preventing 2115 * the VT-d warning. 2116 */ 2117 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) 2118 alignment = 256 * 1024; 2119 2120 /* 2121 * Global gtt pte registers are special registers which actually forward 2122 * writes to a chunk of system memory. Which means that there is no risk 2123 * that the register values disappear as soon as we call 2124 * intel_runtime_pm_put(), so it is correct to wrap only the 2125 * pin/unpin/fence and not more. 2126 */ 2127 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 2128 i915_gem_object_lock(obj); 2129 2130 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 2131 2132 pinctl = 0; 2133 2134 /* Valleyview is definitely limited to scanning out the first 2135 * 512MiB. Lets presume this behaviour was inherited from the 2136 * g4x display engine and that all earlier gen are similarly 2137 * limited. Testing suggests that it is a little more 2138 * complicated than this. For example, Cherryview appears quite 2139 * happy to scanout from anywhere within its global aperture. 2140 */ 2141 if (HAS_GMCH(dev_priv)) 2142 pinctl |= PIN_MAPPABLE; 2143 2144 vma = i915_gem_object_pin_to_display_plane(obj, 2145 alignment, view, pinctl); 2146 if (IS_ERR(vma)) 2147 goto err; 2148 2149 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { 2150 int ret; 2151 2152 /* Install a fence for tiled scan-out. Pre-i965 always needs a 2153 * fence, whereas 965+ only requires a fence if using 2154 * framebuffer compression. For simplicity, we always, when 2155 * possible, install a fence as the cost is not that onerous. 2156 * 2157 * If we fail to fence the tiled scanout, then either the 2158 * modeset will reject the change (which is highly unlikely as 2159 * the affected systems, all but one, do not have unmappable 2160 * space) or we will not be able to enable full powersaving 2161 * techniques (also likely not to apply due to various limits 2162 * FBC and the like impose on the size of the buffer, which 2163 * presumably we violated anyway with this unmappable buffer). 2164 * Anyway, it is presumably better to stumble onwards with 2165 * something and try to run the system in a "less than optimal" 2166 * mode that matches the user configuration. 2167 */ 2168 ret = i915_vma_pin_fence(vma); 2169 if (ret != 0 && INTEL_GEN(dev_priv) < 4) { 2170 i915_gem_object_unpin_from_display_plane(vma); 2171 vma = ERR_PTR(ret); 2172 goto err; 2173 } 2174 2175 if (ret == 0 && vma->fence) 2176 *out_flags |= PLANE_HAS_FENCE; 2177 } 2178 2179 i915_vma_get(vma); 2180 err: 2181 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 2182 2183 i915_gem_object_unlock(obj); 2184 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 2185 return vma; 2186 } 2187 2188 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) 2189 { 2190 i915_gem_object_lock(vma->obj); 2191 if (flags & PLANE_HAS_FENCE) 2192 i915_vma_unpin_fence(vma); 2193 i915_gem_object_unpin_from_display_plane(vma); 2194 i915_gem_object_unlock(vma->obj); 2195 2196 i915_vma_put(vma); 2197 } 2198 2199 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane, 2200 unsigned int rotation) 2201 { 2202 if (drm_rotation_90_or_270(rotation)) 2203 return to_intel_framebuffer(fb)->rotated[color_plane].pitch; 2204 else 2205 return fb->pitches[color_plane]; 2206 } 2207 2208 /* 2209 * Convert the x/y offsets into a linear offset. 2210 * Only valid with 0/180 degree rotation, which is fine since linear 2211 * offset is only used with linear buffers on pre-hsw and tiled buffers 2212 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 2213 */ 2214 u32 intel_fb_xy_to_linear(int x, int y, 2215 const struct intel_plane_state *state, 2216 int color_plane) 2217 { 2218 const struct drm_framebuffer *fb = state->base.fb; 2219 unsigned int cpp = fb->format->cpp[color_plane]; 2220 unsigned int pitch = state->color_plane[color_plane].stride; 2221 2222 return y * pitch + x * cpp; 2223 } 2224 2225 /* 2226 * Add the x/y offsets derived from fb->offsets[] to the user 2227 * specified plane src x/y offsets. The resulting x/y offsets 2228 * specify the start of scanout from the beginning of the gtt mapping. 2229 */ 2230 void intel_add_fb_offsets(int *x, int *y, 2231 const struct intel_plane_state *state, 2232 int color_plane) 2233 2234 { 2235 *x += state->color_plane[color_plane].x; 2236 *y += state->color_plane[color_plane].y; 2237 } 2238 2239 static u32 intel_adjust_tile_offset(int *x, int *y, 2240 unsigned int tile_width, 2241 unsigned int tile_height, 2242 unsigned int tile_size, 2243 unsigned int pitch_tiles, 2244 u32 old_offset, 2245 u32 new_offset) 2246 { 2247 unsigned int pitch_pixels = pitch_tiles * tile_width; 2248 unsigned int tiles; 2249 2250 WARN_ON(old_offset & (tile_size - 1)); 2251 WARN_ON(new_offset & (tile_size - 1)); 2252 WARN_ON(new_offset > old_offset); 2253 2254 tiles = (old_offset - new_offset) / tile_size; 2255 2256 *y += tiles / pitch_tiles * tile_height; 2257 *x += tiles % pitch_tiles * tile_width; 2258 2259 /* minimize x in case it got needlessly big */ 2260 *y += *x / pitch_pixels * tile_height; 2261 *x %= pitch_pixels; 2262 2263 return new_offset; 2264 } 2265 2266 static bool is_surface_linear(u64 modifier, int color_plane) 2267 { 2268 return modifier == DRM_FORMAT_MOD_LINEAR; 2269 } 2270 2271 static u32 intel_adjust_aligned_offset(int *x, int *y, 2272 const struct drm_framebuffer *fb, 2273 int color_plane, 2274 unsigned int rotation, 2275 unsigned int pitch, 2276 u32 old_offset, u32 new_offset) 2277 { 2278 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2279 unsigned int cpp = fb->format->cpp[color_plane]; 2280 2281 WARN_ON(new_offset > old_offset); 2282 2283 if (!is_surface_linear(fb->modifier, color_plane)) { 2284 unsigned int tile_size, tile_width, tile_height; 2285 unsigned int pitch_tiles; 2286 2287 tile_size = intel_tile_size(dev_priv); 2288 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2289 2290 if (drm_rotation_90_or_270(rotation)) { 2291 pitch_tiles = pitch / tile_height; 2292 swap(tile_width, tile_height); 2293 } else { 2294 pitch_tiles = pitch / (tile_width * cpp); 2295 } 2296 2297 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2298 tile_size, pitch_tiles, 2299 old_offset, new_offset); 2300 } else { 2301 old_offset += *y * pitch + *x * cpp; 2302 2303 *y = (old_offset - new_offset) / pitch; 2304 *x = ((old_offset - new_offset) - *y * pitch) / cpp; 2305 } 2306 2307 return new_offset; 2308 } 2309 2310 /* 2311 * Adjust the tile offset by moving the difference into 2312 * the x/y offsets. 2313 */ 2314 static u32 intel_plane_adjust_aligned_offset(int *x, int *y, 2315 const struct intel_plane_state *state, 2316 int color_plane, 2317 u32 old_offset, u32 new_offset) 2318 { 2319 return intel_adjust_aligned_offset(x, y, state->base.fb, color_plane, 2320 state->base.rotation, 2321 state->color_plane[color_plane].stride, 2322 old_offset, new_offset); 2323 } 2324 2325 /* 2326 * Computes the aligned offset to the base tile and adjusts 2327 * x, y. bytes per pixel is assumed to be a power-of-two. 2328 * 2329 * In the 90/270 rotated case, x and y are assumed 2330 * to be already rotated to match the rotated GTT view, and 2331 * pitch is the tile_height aligned framebuffer height. 2332 * 2333 * This function is used when computing the derived information 2334 * under intel_framebuffer, so using any of that information 2335 * here is not allowed. Anything under drm_framebuffer can be 2336 * used. This is why the user has to pass in the pitch since it 2337 * is specified in the rotated orientation. 2338 */ 2339 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv, 2340 int *x, int *y, 2341 const struct drm_framebuffer *fb, 2342 int color_plane, 2343 unsigned int pitch, 2344 unsigned int rotation, 2345 u32 alignment) 2346 { 2347 unsigned int cpp = fb->format->cpp[color_plane]; 2348 u32 offset, offset_aligned; 2349 2350 if (alignment) 2351 alignment--; 2352 2353 if (!is_surface_linear(fb->modifier, color_plane)) { 2354 unsigned int tile_size, tile_width, tile_height; 2355 unsigned int tile_rows, tiles, pitch_tiles; 2356 2357 tile_size = intel_tile_size(dev_priv); 2358 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2359 2360 if (drm_rotation_90_or_270(rotation)) { 2361 pitch_tiles = pitch / tile_height; 2362 swap(tile_width, tile_height); 2363 } else { 2364 pitch_tiles = pitch / (tile_width * cpp); 2365 } 2366 2367 tile_rows = *y / tile_height; 2368 *y %= tile_height; 2369 2370 tiles = *x / tile_width; 2371 *x %= tile_width; 2372 2373 offset = (tile_rows * pitch_tiles + tiles) * tile_size; 2374 offset_aligned = offset & ~alignment; 2375 2376 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2377 tile_size, pitch_tiles, 2378 offset, offset_aligned); 2379 } else { 2380 offset = *y * pitch + *x * cpp; 2381 offset_aligned = offset & ~alignment; 2382 2383 *y = (offset & alignment) / pitch; 2384 *x = ((offset & alignment) - *y * pitch) / cpp; 2385 } 2386 2387 return offset_aligned; 2388 } 2389 2390 static u32 intel_plane_compute_aligned_offset(int *x, int *y, 2391 const struct intel_plane_state *state, 2392 int color_plane) 2393 { 2394 struct intel_plane *intel_plane = to_intel_plane(state->base.plane); 2395 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 2396 const struct drm_framebuffer *fb = state->base.fb; 2397 unsigned int rotation = state->base.rotation; 2398 int pitch = state->color_plane[color_plane].stride; 2399 u32 alignment; 2400 2401 if (intel_plane->id == PLANE_CURSOR) 2402 alignment = intel_cursor_alignment(dev_priv); 2403 else 2404 alignment = intel_surf_alignment(fb, color_plane); 2405 2406 return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane, 2407 pitch, rotation, alignment); 2408 } 2409 2410 /* Convert the fb->offset[] into x/y offsets */ 2411 static int intel_fb_offset_to_xy(int *x, int *y, 2412 const struct drm_framebuffer *fb, 2413 int color_plane) 2414 { 2415 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2416 unsigned int height; 2417 2418 if (fb->modifier != DRM_FORMAT_MOD_LINEAR && 2419 fb->offsets[color_plane] % intel_tile_size(dev_priv)) { 2420 DRM_DEBUG_KMS("Misaligned offset 0x%08x for color plane %d\n", 2421 fb->offsets[color_plane], color_plane); 2422 return -EINVAL; 2423 } 2424 2425 height = drm_framebuffer_plane_height(fb->height, fb, color_plane); 2426 height = ALIGN(height, intel_tile_height(fb, color_plane)); 2427 2428 /* Catch potential overflows early */ 2429 if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]), 2430 fb->offsets[color_plane])) { 2431 DRM_DEBUG_KMS("Bad offset 0x%08x or pitch %d for color plane %d\n", 2432 fb->offsets[color_plane], fb->pitches[color_plane], 2433 color_plane); 2434 return -ERANGE; 2435 } 2436 2437 *x = 0; 2438 *y = 0; 2439 2440 intel_adjust_aligned_offset(x, y, 2441 fb, color_plane, DRM_MODE_ROTATE_0, 2442 fb->pitches[color_plane], 2443 fb->offsets[color_plane], 0); 2444 2445 return 0; 2446 } 2447 2448 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) 2449 { 2450 switch (fb_modifier) { 2451 case I915_FORMAT_MOD_X_TILED: 2452 return I915_TILING_X; 2453 case I915_FORMAT_MOD_Y_TILED: 2454 case I915_FORMAT_MOD_Y_TILED_CCS: 2455 return I915_TILING_Y; 2456 default: 2457 return I915_TILING_NONE; 2458 } 2459 } 2460 2461 /* 2462 * From the Sky Lake PRM: 2463 * "The Color Control Surface (CCS) contains the compression status of 2464 * the cache-line pairs. The compression state of the cache-line pair 2465 * is specified by 2 bits in the CCS. Each CCS cache-line represents 2466 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 2467 * cache-line-pairs. CCS is always Y tiled." 2468 * 2469 * Since cache line pairs refers to horizontally adjacent cache lines, 2470 * each cache line in the CCS corresponds to an area of 32x16 cache 2471 * lines on the main surface. Since each pixel is 4 bytes, this gives 2472 * us a ratio of one byte in the CCS for each 8x16 pixels in the 2473 * main surface. 2474 */ 2475 static const struct drm_format_info ccs_formats[] = { 2476 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 2477 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2478 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 2479 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2480 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 2481 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2482 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 2483 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2484 }; 2485 2486 static const struct drm_format_info * 2487 lookup_format_info(const struct drm_format_info formats[], 2488 int num_formats, u32 format) 2489 { 2490 int i; 2491 2492 for (i = 0; i < num_formats; i++) { 2493 if (formats[i].format == format) 2494 return &formats[i]; 2495 } 2496 2497 return NULL; 2498 } 2499 2500 static const struct drm_format_info * 2501 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 2502 { 2503 switch (cmd->modifier[0]) { 2504 case I915_FORMAT_MOD_Y_TILED_CCS: 2505 case I915_FORMAT_MOD_Yf_TILED_CCS: 2506 return lookup_format_info(ccs_formats, 2507 ARRAY_SIZE(ccs_formats), 2508 cmd->pixel_format); 2509 default: 2510 return NULL; 2511 } 2512 } 2513 2514 bool is_ccs_modifier(u64 modifier) 2515 { 2516 return modifier == I915_FORMAT_MOD_Y_TILED_CCS || 2517 modifier == I915_FORMAT_MOD_Yf_TILED_CCS; 2518 } 2519 2520 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 2521 u32 pixel_format, u64 modifier) 2522 { 2523 struct intel_crtc *crtc; 2524 struct intel_plane *plane; 2525 2526 /* 2527 * We assume the primary plane for pipe A has 2528 * the highest stride limits of them all. 2529 */ 2530 crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_A); 2531 plane = to_intel_plane(crtc->base.primary); 2532 2533 return plane->max_stride(plane, pixel_format, modifier, 2534 DRM_MODE_ROTATE_0); 2535 } 2536 2537 static 2538 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, 2539 u32 pixel_format, u64 modifier) 2540 { 2541 /* 2542 * Arbitrary limit for gen4+ chosen to match the 2543 * render engine max stride. 2544 * 2545 * The new CCS hash mode makes remapping impossible 2546 */ 2547 if (!is_ccs_modifier(modifier)) { 2548 if (INTEL_GEN(dev_priv) >= 7) 2549 return 256*1024; 2550 else if (INTEL_GEN(dev_priv) >= 4) 2551 return 128*1024; 2552 } 2553 2554 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); 2555 } 2556 2557 static u32 2558 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) 2559 { 2560 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2561 2562 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) { 2563 u32 max_stride = intel_plane_fb_max_stride(dev_priv, 2564 fb->format->format, 2565 fb->modifier); 2566 2567 /* 2568 * To make remapping with linear generally feasible 2569 * we need the stride to be page aligned. 2570 */ 2571 if (fb->pitches[color_plane] > max_stride) 2572 return intel_tile_size(dev_priv); 2573 else 2574 return 64; 2575 } else { 2576 return intel_tile_width_bytes(fb, color_plane); 2577 } 2578 } 2579 2580 bool intel_plane_can_remap(const struct intel_plane_state *plane_state) 2581 { 2582 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 2583 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2584 const struct drm_framebuffer *fb = plane_state->base.fb; 2585 int i; 2586 2587 /* We don't want to deal with remapping with cursors */ 2588 if (plane->id == PLANE_CURSOR) 2589 return false; 2590 2591 /* 2592 * The display engine limits already match/exceed the 2593 * render engine limits, so not much point in remapping. 2594 * Would also need to deal with the fence POT alignment 2595 * and gen2 2KiB GTT tile size. 2596 */ 2597 if (INTEL_GEN(dev_priv) < 4) 2598 return false; 2599 2600 /* 2601 * The new CCS hash mode isn't compatible with remapping as 2602 * the virtual address of the pages affects the compressed data. 2603 */ 2604 if (is_ccs_modifier(fb->modifier)) 2605 return false; 2606 2607 /* Linear needs a page aligned stride for remapping */ 2608 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) { 2609 unsigned int alignment = intel_tile_size(dev_priv) - 1; 2610 2611 for (i = 0; i < fb->format->num_planes; i++) { 2612 if (fb->pitches[i] & alignment) 2613 return false; 2614 } 2615 } 2616 2617 return true; 2618 } 2619 2620 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state) 2621 { 2622 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 2623 const struct drm_framebuffer *fb = plane_state->base.fb; 2624 unsigned int rotation = plane_state->base.rotation; 2625 u32 stride, max_stride; 2626 2627 /* 2628 * No remapping for invisible planes since we don't have 2629 * an actual source viewport to remap. 2630 */ 2631 if (!plane_state->base.visible) 2632 return false; 2633 2634 if (!intel_plane_can_remap(plane_state)) 2635 return false; 2636 2637 /* 2638 * FIXME: aux plane limits on gen9+ are 2639 * unclear in Bspec, for now no checking. 2640 */ 2641 stride = intel_fb_pitch(fb, 0, rotation); 2642 max_stride = plane->max_stride(plane, fb->format->format, 2643 fb->modifier, rotation); 2644 2645 return stride > max_stride; 2646 } 2647 2648 static int 2649 intel_fill_fb_info(struct drm_i915_private *dev_priv, 2650 struct drm_framebuffer *fb) 2651 { 2652 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2653 struct intel_rotation_info *rot_info = &intel_fb->rot_info; 2654 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 2655 u32 gtt_offset_rotated = 0; 2656 unsigned int max_size = 0; 2657 int i, num_planes = fb->format->num_planes; 2658 unsigned int tile_size = intel_tile_size(dev_priv); 2659 2660 for (i = 0; i < num_planes; i++) { 2661 unsigned int width, height; 2662 unsigned int cpp, size; 2663 u32 offset; 2664 int x, y; 2665 int ret; 2666 2667 cpp = fb->format->cpp[i]; 2668 width = drm_framebuffer_plane_width(fb->width, fb, i); 2669 height = drm_framebuffer_plane_height(fb->height, fb, i); 2670 2671 ret = intel_fb_offset_to_xy(&x, &y, fb, i); 2672 if (ret) { 2673 DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n", 2674 i, fb->offsets[i]); 2675 return ret; 2676 } 2677 2678 if (is_ccs_modifier(fb->modifier) && i == 1) { 2679 int hsub = fb->format->hsub; 2680 int vsub = fb->format->vsub; 2681 int tile_width, tile_height; 2682 int main_x, main_y; 2683 int ccs_x, ccs_y; 2684 2685 intel_tile_dims(fb, i, &tile_width, &tile_height); 2686 tile_width *= hsub; 2687 tile_height *= vsub; 2688 2689 ccs_x = (x * hsub) % tile_width; 2690 ccs_y = (y * vsub) % tile_height; 2691 main_x = intel_fb->normal[0].x % tile_width; 2692 main_y = intel_fb->normal[0].y % tile_height; 2693 2694 /* 2695 * CCS doesn't have its own x/y offset register, so the intra CCS tile 2696 * x/y offsets must match between CCS and the main surface. 2697 */ 2698 if (main_x != ccs_x || main_y != ccs_y) { 2699 DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n", 2700 main_x, main_y, 2701 ccs_x, ccs_y, 2702 intel_fb->normal[0].x, 2703 intel_fb->normal[0].y, 2704 x, y); 2705 return -EINVAL; 2706 } 2707 } 2708 2709 /* 2710 * The fence (if used) is aligned to the start of the object 2711 * so having the framebuffer wrap around across the edge of the 2712 * fenced region doesn't really work. We have no API to configure 2713 * the fence start offset within the object (nor could we probably 2714 * on gen2/3). So it's just easier if we just require that the 2715 * fb layout agrees with the fence layout. We already check that the 2716 * fb stride matches the fence stride elsewhere. 2717 */ 2718 if (i == 0 && i915_gem_object_is_tiled(obj) && 2719 (x + width) * cpp > fb->pitches[i]) { 2720 DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n", 2721 i, fb->offsets[i]); 2722 return -EINVAL; 2723 } 2724 2725 /* 2726 * First pixel of the framebuffer from 2727 * the start of the normal gtt mapping. 2728 */ 2729 intel_fb->normal[i].x = x; 2730 intel_fb->normal[i].y = y; 2731 2732 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i, 2733 fb->pitches[i], 2734 DRM_MODE_ROTATE_0, 2735 tile_size); 2736 offset /= tile_size; 2737 2738 if (!is_surface_linear(fb->modifier, i)) { 2739 unsigned int tile_width, tile_height; 2740 unsigned int pitch_tiles; 2741 struct drm_rect r; 2742 2743 intel_tile_dims(fb, i, &tile_width, &tile_height); 2744 2745 rot_info->plane[i].offset = offset; 2746 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp); 2747 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width); 2748 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height); 2749 2750 intel_fb->rotated[i].pitch = 2751 rot_info->plane[i].height * tile_height; 2752 2753 /* how many tiles does this plane need */ 2754 size = rot_info->plane[i].stride * rot_info->plane[i].height; 2755 /* 2756 * If the plane isn't horizontally tile aligned, 2757 * we need one more tile. 2758 */ 2759 if (x != 0) 2760 size++; 2761 2762 /* rotate the x/y offsets to match the GTT view */ 2763 drm_rect_init(&r, x, y, width, height); 2764 drm_rect_rotate(&r, 2765 rot_info->plane[i].width * tile_width, 2766 rot_info->plane[i].height * tile_height, 2767 DRM_MODE_ROTATE_270); 2768 x = r.x1; 2769 y = r.y1; 2770 2771 /* rotate the tile dimensions to match the GTT view */ 2772 pitch_tiles = intel_fb->rotated[i].pitch / tile_height; 2773 swap(tile_width, tile_height); 2774 2775 /* 2776 * We only keep the x/y offsets, so push all of the 2777 * gtt offset into the x/y offsets. 2778 */ 2779 intel_adjust_tile_offset(&x, &y, 2780 tile_width, tile_height, 2781 tile_size, pitch_tiles, 2782 gtt_offset_rotated * tile_size, 0); 2783 2784 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height; 2785 2786 /* 2787 * First pixel of the framebuffer from 2788 * the start of the rotated gtt mapping. 2789 */ 2790 intel_fb->rotated[i].x = x; 2791 intel_fb->rotated[i].y = y; 2792 } else { 2793 size = DIV_ROUND_UP((y + height) * fb->pitches[i] + 2794 x * cpp, tile_size); 2795 } 2796 2797 /* how many tiles in total needed in the bo */ 2798 max_size = max(max_size, offset + size); 2799 } 2800 2801 if (mul_u32_u32(max_size, tile_size) > obj->base.size) { 2802 DRM_DEBUG_KMS("fb too big for bo (need %llu bytes, have %zu bytes)\n", 2803 mul_u32_u32(max_size, tile_size), obj->base.size); 2804 return -EINVAL; 2805 } 2806 2807 return 0; 2808 } 2809 2810 static void 2811 intel_plane_remap_gtt(struct intel_plane_state *plane_state) 2812 { 2813 struct drm_i915_private *dev_priv = 2814 to_i915(plane_state->base.plane->dev); 2815 struct drm_framebuffer *fb = plane_state->base.fb; 2816 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2817 struct intel_rotation_info *info = &plane_state->view.rotated; 2818 unsigned int rotation = plane_state->base.rotation; 2819 int i, num_planes = fb->format->num_planes; 2820 unsigned int tile_size = intel_tile_size(dev_priv); 2821 unsigned int src_x, src_y; 2822 unsigned int src_w, src_h; 2823 u32 gtt_offset = 0; 2824 2825 memset(&plane_state->view, 0, sizeof(plane_state->view)); 2826 plane_state->view.type = drm_rotation_90_or_270(rotation) ? 2827 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED; 2828 2829 src_x = plane_state->base.src.x1 >> 16; 2830 src_y = plane_state->base.src.y1 >> 16; 2831 src_w = drm_rect_width(&plane_state->base.src) >> 16; 2832 src_h = drm_rect_height(&plane_state->base.src) >> 16; 2833 2834 WARN_ON(is_ccs_modifier(fb->modifier)); 2835 2836 /* Make src coordinates relative to the viewport */ 2837 drm_rect_translate(&plane_state->base.src, 2838 -(src_x << 16), -(src_y << 16)); 2839 2840 /* Rotate src coordinates to match rotated GTT view */ 2841 if (drm_rotation_90_or_270(rotation)) 2842 drm_rect_rotate(&plane_state->base.src, 2843 src_w << 16, src_h << 16, 2844 DRM_MODE_ROTATE_270); 2845 2846 for (i = 0; i < num_planes; i++) { 2847 unsigned int hsub = i ? fb->format->hsub : 1; 2848 unsigned int vsub = i ? fb->format->vsub : 1; 2849 unsigned int cpp = fb->format->cpp[i]; 2850 unsigned int tile_width, tile_height; 2851 unsigned int width, height; 2852 unsigned int pitch_tiles; 2853 unsigned int x, y; 2854 u32 offset; 2855 2856 intel_tile_dims(fb, i, &tile_width, &tile_height); 2857 2858 x = src_x / hsub; 2859 y = src_y / vsub; 2860 width = src_w / hsub; 2861 height = src_h / vsub; 2862 2863 /* 2864 * First pixel of the src viewport from the 2865 * start of the normal gtt mapping. 2866 */ 2867 x += intel_fb->normal[i].x; 2868 y += intel_fb->normal[i].y; 2869 2870 offset = intel_compute_aligned_offset(dev_priv, &x, &y, 2871 fb, i, fb->pitches[i], 2872 DRM_MODE_ROTATE_0, tile_size); 2873 offset /= tile_size; 2874 2875 info->plane[i].offset = offset; 2876 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], 2877 tile_width * cpp); 2878 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width); 2879 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height); 2880 2881 if (drm_rotation_90_or_270(rotation)) { 2882 struct drm_rect r; 2883 2884 /* rotate the x/y offsets to match the GTT view */ 2885 drm_rect_init(&r, x, y, width, height); 2886 drm_rect_rotate(&r, 2887 info->plane[i].width * tile_width, 2888 info->plane[i].height * tile_height, 2889 DRM_MODE_ROTATE_270); 2890 x = r.x1; 2891 y = r.y1; 2892 2893 pitch_tiles = info->plane[i].height; 2894 plane_state->color_plane[i].stride = pitch_tiles * tile_height; 2895 2896 /* rotate the tile dimensions to match the GTT view */ 2897 swap(tile_width, tile_height); 2898 } else { 2899 pitch_tiles = info->plane[i].width; 2900 plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp; 2901 } 2902 2903 /* 2904 * We only keep the x/y offsets, so push all of the 2905 * gtt offset into the x/y offsets. 2906 */ 2907 intel_adjust_tile_offset(&x, &y, 2908 tile_width, tile_height, 2909 tile_size, pitch_tiles, 2910 gtt_offset * tile_size, 0); 2911 2912 gtt_offset += info->plane[i].width * info->plane[i].height; 2913 2914 plane_state->color_plane[i].offset = 0; 2915 plane_state->color_plane[i].x = x; 2916 plane_state->color_plane[i].y = y; 2917 } 2918 } 2919 2920 static int 2921 intel_plane_compute_gtt(struct intel_plane_state *plane_state) 2922 { 2923 const struct intel_framebuffer *fb = 2924 to_intel_framebuffer(plane_state->base.fb); 2925 unsigned int rotation = plane_state->base.rotation; 2926 int i, num_planes; 2927 2928 if (!fb) 2929 return 0; 2930 2931 num_planes = fb->base.format->num_planes; 2932 2933 if (intel_plane_needs_remap(plane_state)) { 2934 intel_plane_remap_gtt(plane_state); 2935 2936 /* 2937 * Sometimes even remapping can't overcome 2938 * the stride limitations :( Can happen with 2939 * big plane sizes and suitably misaligned 2940 * offsets. 2941 */ 2942 return intel_plane_check_stride(plane_state); 2943 } 2944 2945 intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation); 2946 2947 for (i = 0; i < num_planes; i++) { 2948 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation); 2949 plane_state->color_plane[i].offset = 0; 2950 2951 if (drm_rotation_90_or_270(rotation)) { 2952 plane_state->color_plane[i].x = fb->rotated[i].x; 2953 plane_state->color_plane[i].y = fb->rotated[i].y; 2954 } else { 2955 plane_state->color_plane[i].x = fb->normal[i].x; 2956 plane_state->color_plane[i].y = fb->normal[i].y; 2957 } 2958 } 2959 2960 /* Rotate src coordinates to match rotated GTT view */ 2961 if (drm_rotation_90_or_270(rotation)) 2962 drm_rect_rotate(&plane_state->base.src, 2963 fb->base.width << 16, fb->base.height << 16, 2964 DRM_MODE_ROTATE_270); 2965 2966 return intel_plane_check_stride(plane_state); 2967 } 2968 2969 static int i9xx_format_to_fourcc(int format) 2970 { 2971 switch (format) { 2972 case DISPPLANE_8BPP: 2973 return DRM_FORMAT_C8; 2974 case DISPPLANE_BGRX555: 2975 return DRM_FORMAT_XRGB1555; 2976 case DISPPLANE_BGRX565: 2977 return DRM_FORMAT_RGB565; 2978 default: 2979 case DISPPLANE_BGRX888: 2980 return DRM_FORMAT_XRGB8888; 2981 case DISPPLANE_RGBX888: 2982 return DRM_FORMAT_XBGR8888; 2983 case DISPPLANE_BGRX101010: 2984 return DRM_FORMAT_XRGB2101010; 2985 case DISPPLANE_RGBX101010: 2986 return DRM_FORMAT_XBGR2101010; 2987 case DISPPLANE_RGBX161616: 2988 return DRM_FORMAT_XBGR16161616F; 2989 } 2990 } 2991 2992 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha) 2993 { 2994 switch (format) { 2995 case PLANE_CTL_FORMAT_RGB_565: 2996 return DRM_FORMAT_RGB565; 2997 case PLANE_CTL_FORMAT_NV12: 2998 return DRM_FORMAT_NV12; 2999 case PLANE_CTL_FORMAT_P010: 3000 return DRM_FORMAT_P010; 3001 case PLANE_CTL_FORMAT_P012: 3002 return DRM_FORMAT_P012; 3003 case PLANE_CTL_FORMAT_P016: 3004 return DRM_FORMAT_P016; 3005 case PLANE_CTL_FORMAT_Y210: 3006 return DRM_FORMAT_Y210; 3007 case PLANE_CTL_FORMAT_Y212: 3008 return DRM_FORMAT_Y212; 3009 case PLANE_CTL_FORMAT_Y216: 3010 return DRM_FORMAT_Y216; 3011 case PLANE_CTL_FORMAT_Y410: 3012 return DRM_FORMAT_XVYU2101010; 3013 case PLANE_CTL_FORMAT_Y412: 3014 return DRM_FORMAT_XVYU12_16161616; 3015 case PLANE_CTL_FORMAT_Y416: 3016 return DRM_FORMAT_XVYU16161616; 3017 default: 3018 case PLANE_CTL_FORMAT_XRGB_8888: 3019 if (rgb_order) { 3020 if (alpha) 3021 return DRM_FORMAT_ABGR8888; 3022 else 3023 return DRM_FORMAT_XBGR8888; 3024 } else { 3025 if (alpha) 3026 return DRM_FORMAT_ARGB8888; 3027 else 3028 return DRM_FORMAT_XRGB8888; 3029 } 3030 case PLANE_CTL_FORMAT_XRGB_2101010: 3031 if (rgb_order) 3032 return DRM_FORMAT_XBGR2101010; 3033 else 3034 return DRM_FORMAT_XRGB2101010; 3035 case PLANE_CTL_FORMAT_XRGB_16161616F: 3036 if (rgb_order) { 3037 if (alpha) 3038 return DRM_FORMAT_ABGR16161616F; 3039 else 3040 return DRM_FORMAT_XBGR16161616F; 3041 } else { 3042 if (alpha) 3043 return DRM_FORMAT_ARGB16161616F; 3044 else 3045 return DRM_FORMAT_XRGB16161616F; 3046 } 3047 } 3048 } 3049 3050 static bool 3051 intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 3052 struct intel_initial_plane_config *plane_config) 3053 { 3054 struct drm_device *dev = crtc->base.dev; 3055 struct drm_i915_private *dev_priv = to_i915(dev); 3056 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 3057 struct drm_framebuffer *fb = &plane_config->fb->base; 3058 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE); 3059 u32 size_aligned = round_up(plane_config->base + plane_config->size, 3060 PAGE_SIZE); 3061 struct drm_i915_gem_object *obj; 3062 bool ret = false; 3063 3064 size_aligned -= base_aligned; 3065 3066 if (plane_config->size == 0) 3067 return false; 3068 3069 /* If the FB is too big, just don't use it since fbdev is not very 3070 * important and we should probably use that space with FBC or other 3071 * features. */ 3072 if (size_aligned * 2 > dev_priv->stolen_usable_size) 3073 return false; 3074 3075 switch (fb->modifier) { 3076 case DRM_FORMAT_MOD_LINEAR: 3077 case I915_FORMAT_MOD_X_TILED: 3078 case I915_FORMAT_MOD_Y_TILED: 3079 break; 3080 default: 3081 DRM_DEBUG_DRIVER("Unsupported modifier for initial FB: 0x%llx\n", 3082 fb->modifier); 3083 return false; 3084 } 3085 3086 obj = i915_gem_object_create_stolen_for_preallocated(dev_priv, 3087 base_aligned, 3088 base_aligned, 3089 size_aligned); 3090 if (IS_ERR(obj)) 3091 return false; 3092 3093 switch (plane_config->tiling) { 3094 case I915_TILING_NONE: 3095 break; 3096 case I915_TILING_X: 3097 case I915_TILING_Y: 3098 obj->tiling_and_stride = fb->pitches[0] | plane_config->tiling; 3099 break; 3100 default: 3101 MISSING_CASE(plane_config->tiling); 3102 goto out; 3103 } 3104 3105 mode_cmd.pixel_format = fb->format->format; 3106 mode_cmd.width = fb->width; 3107 mode_cmd.height = fb->height; 3108 mode_cmd.pitches[0] = fb->pitches[0]; 3109 mode_cmd.modifier[0] = fb->modifier; 3110 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 3111 3112 if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) { 3113 DRM_DEBUG_KMS("intel fb init failed\n"); 3114 goto out; 3115 } 3116 3117 3118 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj); 3119 ret = true; 3120 out: 3121 i915_gem_object_put(obj); 3122 return ret; 3123 } 3124 3125 static void 3126 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 3127 struct intel_plane_state *plane_state, 3128 bool visible) 3129 { 3130 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 3131 3132 plane_state->base.visible = visible; 3133 3134 if (visible) 3135 crtc_state->base.plane_mask |= drm_plane_mask(&plane->base); 3136 else 3137 crtc_state->base.plane_mask &= ~drm_plane_mask(&plane->base); 3138 } 3139 3140 static void fixup_active_planes(struct intel_crtc_state *crtc_state) 3141 { 3142 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 3143 struct drm_plane *plane; 3144 3145 /* 3146 * Active_planes aliases if multiple "primary" or cursor planes 3147 * have been used on the same (or wrong) pipe. plane_mask uses 3148 * unique ids, hence we can use that to reconstruct active_planes. 3149 */ 3150 crtc_state->active_planes = 0; 3151 3152 drm_for_each_plane_mask(plane, &dev_priv->drm, 3153 crtc_state->base.plane_mask) 3154 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 3155 } 3156 3157 static void intel_plane_disable_noatomic(struct intel_crtc *crtc, 3158 struct intel_plane *plane) 3159 { 3160 struct intel_crtc_state *crtc_state = 3161 to_intel_crtc_state(crtc->base.state); 3162 struct intel_plane_state *plane_state = 3163 to_intel_plane_state(plane->base.state); 3164 3165 DRM_DEBUG_KMS("Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 3166 plane->base.base.id, plane->base.name, 3167 crtc->base.base.id, crtc->base.name); 3168 3169 intel_set_plane_visible(crtc_state, plane_state, false); 3170 fixup_active_planes(crtc_state); 3171 crtc_state->data_rate[plane->id] = 0; 3172 crtc_state->min_cdclk[plane->id] = 0; 3173 3174 if (plane->id == PLANE_PRIMARY) 3175 intel_pre_disable_primary_noatomic(&crtc->base); 3176 3177 intel_disable_plane(plane, crtc_state); 3178 } 3179 3180 static struct intel_frontbuffer * 3181 to_intel_frontbuffer(struct drm_framebuffer *fb) 3182 { 3183 return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL; 3184 } 3185 3186 static void 3187 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, 3188 struct intel_initial_plane_config *plane_config) 3189 { 3190 struct drm_device *dev = intel_crtc->base.dev; 3191 struct drm_i915_private *dev_priv = to_i915(dev); 3192 struct drm_crtc *c; 3193 struct drm_plane *primary = intel_crtc->base.primary; 3194 struct drm_plane_state *plane_state = primary->state; 3195 struct intel_plane *intel_plane = to_intel_plane(primary); 3196 struct intel_plane_state *intel_state = 3197 to_intel_plane_state(plane_state); 3198 struct drm_framebuffer *fb; 3199 3200 if (!plane_config->fb) 3201 return; 3202 3203 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { 3204 fb = &plane_config->fb->base; 3205 goto valid_fb; 3206 } 3207 3208 kfree(plane_config->fb); 3209 3210 /* 3211 * Failed to alloc the obj, check to see if we should share 3212 * an fb with another CRTC instead 3213 */ 3214 for_each_crtc(dev, c) { 3215 struct intel_plane_state *state; 3216 3217 if (c == &intel_crtc->base) 3218 continue; 3219 3220 if (!to_intel_crtc(c)->active) 3221 continue; 3222 3223 state = to_intel_plane_state(c->primary->state); 3224 if (!state->vma) 3225 continue; 3226 3227 if (intel_plane_ggtt_offset(state) == plane_config->base) { 3228 fb = state->base.fb; 3229 drm_framebuffer_get(fb); 3230 goto valid_fb; 3231 } 3232 } 3233 3234 /* 3235 * We've failed to reconstruct the BIOS FB. Current display state 3236 * indicates that the primary plane is visible, but has a NULL FB, 3237 * which will lead to problems later if we don't fix it up. The 3238 * simplest solution is to just disable the primary plane now and 3239 * pretend the BIOS never had it enabled. 3240 */ 3241 intel_plane_disable_noatomic(intel_crtc, intel_plane); 3242 3243 return; 3244 3245 valid_fb: 3246 intel_state->base.rotation = plane_config->rotation; 3247 intel_fill_fb_ggtt_view(&intel_state->view, fb, 3248 intel_state->base.rotation); 3249 intel_state->color_plane[0].stride = 3250 intel_fb_pitch(fb, 0, intel_state->base.rotation); 3251 3252 intel_state->vma = 3253 intel_pin_and_fence_fb_obj(fb, 3254 &intel_state->view, 3255 intel_plane_uses_fence(intel_state), 3256 &intel_state->flags); 3257 if (IS_ERR(intel_state->vma)) { 3258 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n", 3259 intel_crtc->pipe, PTR_ERR(intel_state->vma)); 3260 3261 intel_state->vma = NULL; 3262 drm_framebuffer_put(fb); 3263 return; 3264 } 3265 3266 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 3267 3268 plane_state->src_x = 0; 3269 plane_state->src_y = 0; 3270 plane_state->src_w = fb->width << 16; 3271 plane_state->src_h = fb->height << 16; 3272 3273 plane_state->crtc_x = 0; 3274 plane_state->crtc_y = 0; 3275 plane_state->crtc_w = fb->width; 3276 plane_state->crtc_h = fb->height; 3277 3278 intel_state->base.src = drm_plane_state_src(plane_state); 3279 intel_state->base.dst = drm_plane_state_dest(plane_state); 3280 3281 if (plane_config->tiling) 3282 dev_priv->preserve_bios_swizzle = true; 3283 3284 plane_state->fb = fb; 3285 plane_state->crtc = &intel_crtc->base; 3286 3287 atomic_or(to_intel_plane(primary)->frontbuffer_bit, 3288 &to_intel_frontbuffer(fb)->bits); 3289 } 3290 3291 static int skl_max_plane_width(const struct drm_framebuffer *fb, 3292 int color_plane, 3293 unsigned int rotation) 3294 { 3295 int cpp = fb->format->cpp[color_plane]; 3296 3297 switch (fb->modifier) { 3298 case DRM_FORMAT_MOD_LINEAR: 3299 case I915_FORMAT_MOD_X_TILED: 3300 /* 3301 * Validated limit is 4k, but has 5k should 3302 * work apart from the following features: 3303 * - Ytile (already limited to 4k) 3304 * - FP16 (already limited to 4k) 3305 * - render compression (already limited to 4k) 3306 * - KVMR sprite and cursor (don't care) 3307 * - horizontal panning (TODO verify this) 3308 * - pipe and plane scaling (TODO verify this) 3309 */ 3310 if (cpp == 8) 3311 return 4096; 3312 else 3313 return 5120; 3314 case I915_FORMAT_MOD_Y_TILED_CCS: 3315 case I915_FORMAT_MOD_Yf_TILED_CCS: 3316 /* FIXME AUX plane? */ 3317 case I915_FORMAT_MOD_Y_TILED: 3318 case I915_FORMAT_MOD_Yf_TILED: 3319 if (cpp == 8) 3320 return 2048; 3321 else 3322 return 4096; 3323 default: 3324 MISSING_CASE(fb->modifier); 3325 return 2048; 3326 } 3327 } 3328 3329 static int glk_max_plane_width(const struct drm_framebuffer *fb, 3330 int color_plane, 3331 unsigned int rotation) 3332 { 3333 int cpp = fb->format->cpp[color_plane]; 3334 3335 switch (fb->modifier) { 3336 case DRM_FORMAT_MOD_LINEAR: 3337 case I915_FORMAT_MOD_X_TILED: 3338 if (cpp == 8) 3339 return 4096; 3340 else 3341 return 5120; 3342 case I915_FORMAT_MOD_Y_TILED_CCS: 3343 case I915_FORMAT_MOD_Yf_TILED_CCS: 3344 /* FIXME AUX plane? */ 3345 case I915_FORMAT_MOD_Y_TILED: 3346 case I915_FORMAT_MOD_Yf_TILED: 3347 if (cpp == 8) 3348 return 2048; 3349 else 3350 return 5120; 3351 default: 3352 MISSING_CASE(fb->modifier); 3353 return 2048; 3354 } 3355 } 3356 3357 static int icl_max_plane_width(const struct drm_framebuffer *fb, 3358 int color_plane, 3359 unsigned int rotation) 3360 { 3361 return 5120; 3362 } 3363 3364 static int skl_max_plane_height(void) 3365 { 3366 return 4096; 3367 } 3368 3369 static int icl_max_plane_height(void) 3370 { 3371 return 4320; 3372 } 3373 3374 static bool skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state, 3375 int main_x, int main_y, u32 main_offset) 3376 { 3377 const struct drm_framebuffer *fb = plane_state->base.fb; 3378 int hsub = fb->format->hsub; 3379 int vsub = fb->format->vsub; 3380 int aux_x = plane_state->color_plane[1].x; 3381 int aux_y = plane_state->color_plane[1].y; 3382 u32 aux_offset = plane_state->color_plane[1].offset; 3383 u32 alignment = intel_surf_alignment(fb, 1); 3384 3385 while (aux_offset >= main_offset && aux_y <= main_y) { 3386 int x, y; 3387 3388 if (aux_x == main_x && aux_y == main_y) 3389 break; 3390 3391 if (aux_offset == 0) 3392 break; 3393 3394 x = aux_x / hsub; 3395 y = aux_y / vsub; 3396 aux_offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 1, 3397 aux_offset, aux_offset - alignment); 3398 aux_x = x * hsub + aux_x % hsub; 3399 aux_y = y * vsub + aux_y % vsub; 3400 } 3401 3402 if (aux_x != main_x || aux_y != main_y) 3403 return false; 3404 3405 plane_state->color_plane[1].offset = aux_offset; 3406 plane_state->color_plane[1].x = aux_x; 3407 plane_state->color_plane[1].y = aux_y; 3408 3409 return true; 3410 } 3411 3412 static int skl_check_main_surface(struct intel_plane_state *plane_state) 3413 { 3414 struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev); 3415 const struct drm_framebuffer *fb = plane_state->base.fb; 3416 unsigned int rotation = plane_state->base.rotation; 3417 int x = plane_state->base.src.x1 >> 16; 3418 int y = plane_state->base.src.y1 >> 16; 3419 int w = drm_rect_width(&plane_state->base.src) >> 16; 3420 int h = drm_rect_height(&plane_state->base.src) >> 16; 3421 int max_width; 3422 int max_height; 3423 u32 alignment, offset, aux_offset = plane_state->color_plane[1].offset; 3424 3425 if (INTEL_GEN(dev_priv) >= 11) 3426 max_width = icl_max_plane_width(fb, 0, rotation); 3427 else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 3428 max_width = glk_max_plane_width(fb, 0, rotation); 3429 else 3430 max_width = skl_max_plane_width(fb, 0, rotation); 3431 3432 if (INTEL_GEN(dev_priv) >= 11) 3433 max_height = icl_max_plane_height(); 3434 else 3435 max_height = skl_max_plane_height(); 3436 3437 if (w > max_width || h > max_height) { 3438 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n", 3439 w, h, max_width, max_height); 3440 return -EINVAL; 3441 } 3442 3443 intel_add_fb_offsets(&x, &y, plane_state, 0); 3444 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0); 3445 alignment = intel_surf_alignment(fb, 0); 3446 3447 /* 3448 * AUX surface offset is specified as the distance from the 3449 * main surface offset, and it must be non-negative. Make 3450 * sure that is what we will get. 3451 */ 3452 if (offset > aux_offset) 3453 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3454 offset, aux_offset & ~(alignment - 1)); 3455 3456 /* 3457 * When using an X-tiled surface, the plane blows up 3458 * if the x offset + width exceed the stride. 3459 * 3460 * TODO: linear and Y-tiled seem fine, Yf untested, 3461 */ 3462 if (fb->modifier == I915_FORMAT_MOD_X_TILED) { 3463 int cpp = fb->format->cpp[0]; 3464 3465 while ((x + w) * cpp > plane_state->color_plane[0].stride) { 3466 if (offset == 0) { 3467 DRM_DEBUG_KMS("Unable to find suitable display surface offset due to X-tiling\n"); 3468 return -EINVAL; 3469 } 3470 3471 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3472 offset, offset - alignment); 3473 } 3474 } 3475 3476 /* 3477 * CCS AUX surface doesn't have its own x/y offsets, we must make sure 3478 * they match with the main surface x/y offsets. 3479 */ 3480 if (is_ccs_modifier(fb->modifier)) { 3481 while (!skl_check_main_ccs_coordinates(plane_state, x, y, offset)) { 3482 if (offset == 0) 3483 break; 3484 3485 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3486 offset, offset - alignment); 3487 } 3488 3489 if (x != plane_state->color_plane[1].x || y != plane_state->color_plane[1].y) { 3490 DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n"); 3491 return -EINVAL; 3492 } 3493 } 3494 3495 plane_state->color_plane[0].offset = offset; 3496 plane_state->color_plane[0].x = x; 3497 plane_state->color_plane[0].y = y; 3498 3499 /* 3500 * Put the final coordinates back so that the src 3501 * coordinate checks will see the right values. 3502 */ 3503 drm_rect_translate_to(&plane_state->base.src, 3504 x << 16, y << 16); 3505 3506 return 0; 3507 } 3508 3509 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state) 3510 { 3511 const struct drm_framebuffer *fb = plane_state->base.fb; 3512 unsigned int rotation = plane_state->base.rotation; 3513 int max_width = skl_max_plane_width(fb, 1, rotation); 3514 int max_height = 4096; 3515 int x = plane_state->base.src.x1 >> 17; 3516 int y = plane_state->base.src.y1 >> 17; 3517 int w = drm_rect_width(&plane_state->base.src) >> 17; 3518 int h = drm_rect_height(&plane_state->base.src) >> 17; 3519 u32 offset; 3520 3521 intel_add_fb_offsets(&x, &y, plane_state, 1); 3522 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1); 3523 3524 /* FIXME not quite sure how/if these apply to the chroma plane */ 3525 if (w > max_width || h > max_height) { 3526 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n", 3527 w, h, max_width, max_height); 3528 return -EINVAL; 3529 } 3530 3531 plane_state->color_plane[1].offset = offset; 3532 plane_state->color_plane[1].x = x; 3533 plane_state->color_plane[1].y = y; 3534 3535 return 0; 3536 } 3537 3538 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state) 3539 { 3540 const struct drm_framebuffer *fb = plane_state->base.fb; 3541 int src_x = plane_state->base.src.x1 >> 16; 3542 int src_y = plane_state->base.src.y1 >> 16; 3543 int hsub = fb->format->hsub; 3544 int vsub = fb->format->vsub; 3545 int x = src_x / hsub; 3546 int y = src_y / vsub; 3547 u32 offset; 3548 3549 intel_add_fb_offsets(&x, &y, plane_state, 1); 3550 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1); 3551 3552 plane_state->color_plane[1].offset = offset; 3553 plane_state->color_plane[1].x = x * hsub + src_x % hsub; 3554 plane_state->color_plane[1].y = y * vsub + src_y % vsub; 3555 3556 return 0; 3557 } 3558 3559 int skl_check_plane_surface(struct intel_plane_state *plane_state) 3560 { 3561 const struct drm_framebuffer *fb = plane_state->base.fb; 3562 int ret; 3563 3564 ret = intel_plane_compute_gtt(plane_state); 3565 if (ret) 3566 return ret; 3567 3568 if (!plane_state->base.visible) 3569 return 0; 3570 3571 /* 3572 * Handle the AUX surface first since 3573 * the main surface setup depends on it. 3574 */ 3575 if (drm_format_info_is_yuv_semiplanar(fb->format)) { 3576 ret = skl_check_nv12_aux_surface(plane_state); 3577 if (ret) 3578 return ret; 3579 } else if (is_ccs_modifier(fb->modifier)) { 3580 ret = skl_check_ccs_aux_surface(plane_state); 3581 if (ret) 3582 return ret; 3583 } else { 3584 plane_state->color_plane[1].offset = ~0xfff; 3585 plane_state->color_plane[1].x = 0; 3586 plane_state->color_plane[1].y = 0; 3587 } 3588 3589 ret = skl_check_main_surface(plane_state); 3590 if (ret) 3591 return ret; 3592 3593 return 0; 3594 } 3595 3596 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state, 3597 const struct intel_plane_state *plane_state, 3598 unsigned int *num, unsigned int *den) 3599 { 3600 const struct drm_framebuffer *fb = plane_state->base.fb; 3601 unsigned int cpp = fb->format->cpp[0]; 3602 3603 /* 3604 * g4x bspec says 64bpp pixel rate can't exceed 80% 3605 * of cdclk when the sprite plane is enabled on the 3606 * same pipe. ilk/snb bspec says 64bpp pixel rate is 3607 * never allowed to exceed 80% of cdclk. Let's just go 3608 * with the ilk/snb limit always. 3609 */ 3610 if (cpp == 8) { 3611 *num = 10; 3612 *den = 8; 3613 } else { 3614 *num = 1; 3615 *den = 1; 3616 } 3617 } 3618 3619 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state, 3620 const struct intel_plane_state *plane_state) 3621 { 3622 unsigned int pixel_rate; 3623 unsigned int num, den; 3624 3625 /* 3626 * Note that crtc_state->pixel_rate accounts for both 3627 * horizontal and vertical panel fitter downscaling factors. 3628 * Pre-HSW bspec tells us to only consider the horizontal 3629 * downscaling factor here. We ignore that and just consider 3630 * both for simplicity. 3631 */ 3632 pixel_rate = crtc_state->pixel_rate; 3633 3634 i9xx_plane_ratio(crtc_state, plane_state, &num, &den); 3635 3636 /* two pixels per clock with double wide pipe */ 3637 if (crtc_state->double_wide) 3638 den *= 2; 3639 3640 return DIV_ROUND_UP(pixel_rate * num, den); 3641 } 3642 3643 unsigned int 3644 i9xx_plane_max_stride(struct intel_plane *plane, 3645 u32 pixel_format, u64 modifier, 3646 unsigned int rotation) 3647 { 3648 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 3649 3650 if (!HAS_GMCH(dev_priv)) { 3651 return 32*1024; 3652 } else if (INTEL_GEN(dev_priv) >= 4) { 3653 if (modifier == I915_FORMAT_MOD_X_TILED) 3654 return 16*1024; 3655 else 3656 return 32*1024; 3657 } else if (INTEL_GEN(dev_priv) >= 3) { 3658 if (modifier == I915_FORMAT_MOD_X_TILED) 3659 return 8*1024; 3660 else 3661 return 16*1024; 3662 } else { 3663 if (plane->i9xx_plane == PLANE_C) 3664 return 4*1024; 3665 else 3666 return 8*1024; 3667 } 3668 } 3669 3670 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 3671 { 3672 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 3673 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3674 u32 dspcntr = 0; 3675 3676 if (crtc_state->gamma_enable) 3677 dspcntr |= DISPPLANE_GAMMA_ENABLE; 3678 3679 if (crtc_state->csc_enable) 3680 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE; 3681 3682 if (INTEL_GEN(dev_priv) < 5) 3683 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe); 3684 3685 return dspcntr; 3686 } 3687 3688 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state, 3689 const struct intel_plane_state *plane_state) 3690 { 3691 struct drm_i915_private *dev_priv = 3692 to_i915(plane_state->base.plane->dev); 3693 const struct drm_framebuffer *fb = plane_state->base.fb; 3694 unsigned int rotation = plane_state->base.rotation; 3695 u32 dspcntr; 3696 3697 dspcntr = DISPLAY_PLANE_ENABLE; 3698 3699 if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) || 3700 IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 3701 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; 3702 3703 switch (fb->format->format) { 3704 case DRM_FORMAT_C8: 3705 dspcntr |= DISPPLANE_8BPP; 3706 break; 3707 case DRM_FORMAT_XRGB1555: 3708 dspcntr |= DISPPLANE_BGRX555; 3709 break; 3710 case DRM_FORMAT_RGB565: 3711 dspcntr |= DISPPLANE_BGRX565; 3712 break; 3713 case DRM_FORMAT_XRGB8888: 3714 dspcntr |= DISPPLANE_BGRX888; 3715 break; 3716 case DRM_FORMAT_XBGR8888: 3717 dspcntr |= DISPPLANE_RGBX888; 3718 break; 3719 case DRM_FORMAT_XRGB2101010: 3720 dspcntr |= DISPPLANE_BGRX101010; 3721 break; 3722 case DRM_FORMAT_XBGR2101010: 3723 dspcntr |= DISPPLANE_RGBX101010; 3724 break; 3725 case DRM_FORMAT_XBGR16161616F: 3726 dspcntr |= DISPPLANE_RGBX161616; 3727 break; 3728 default: 3729 MISSING_CASE(fb->format->format); 3730 return 0; 3731 } 3732 3733 if (INTEL_GEN(dev_priv) >= 4 && 3734 fb->modifier == I915_FORMAT_MOD_X_TILED) 3735 dspcntr |= DISPPLANE_TILED; 3736 3737 if (rotation & DRM_MODE_ROTATE_180) 3738 dspcntr |= DISPPLANE_ROTATE_180; 3739 3740 if (rotation & DRM_MODE_REFLECT_X) 3741 dspcntr |= DISPPLANE_MIRROR; 3742 3743 return dspcntr; 3744 } 3745 3746 int i9xx_check_plane_surface(struct intel_plane_state *plane_state) 3747 { 3748 struct drm_i915_private *dev_priv = 3749 to_i915(plane_state->base.plane->dev); 3750 const struct drm_framebuffer *fb = plane_state->base.fb; 3751 int src_x, src_y, src_w; 3752 u32 offset; 3753 int ret; 3754 3755 ret = intel_plane_compute_gtt(plane_state); 3756 if (ret) 3757 return ret; 3758 3759 if (!plane_state->base.visible) 3760 return 0; 3761 3762 src_w = drm_rect_width(&plane_state->base.src) >> 16; 3763 src_x = plane_state->base.src.x1 >> 16; 3764 src_y = plane_state->base.src.y1 >> 16; 3765 3766 /* Undocumented hardware limit on i965/g4x/vlv/chv */ 3767 if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048) 3768 return -EINVAL; 3769 3770 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 3771 3772 if (INTEL_GEN(dev_priv) >= 4) 3773 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 3774 plane_state, 0); 3775 else 3776 offset = 0; 3777 3778 /* 3779 * Put the final coordinates back so that the src 3780 * coordinate checks will see the right values. 3781 */ 3782 drm_rect_translate_to(&plane_state->base.src, 3783 src_x << 16, src_y << 16); 3784 3785 /* HSW/BDW do this automagically in hardware */ 3786 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) { 3787 unsigned int rotation = plane_state->base.rotation; 3788 int src_w = drm_rect_width(&plane_state->base.src) >> 16; 3789 int src_h = drm_rect_height(&plane_state->base.src) >> 16; 3790 3791 if (rotation & DRM_MODE_ROTATE_180) { 3792 src_x += src_w - 1; 3793 src_y += src_h - 1; 3794 } else if (rotation & DRM_MODE_REFLECT_X) { 3795 src_x += src_w - 1; 3796 } 3797 } 3798 3799 plane_state->color_plane[0].offset = offset; 3800 plane_state->color_plane[0].x = src_x; 3801 plane_state->color_plane[0].y = src_y; 3802 3803 return 0; 3804 } 3805 3806 static bool i9xx_plane_has_windowing(struct intel_plane *plane) 3807 { 3808 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 3809 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 3810 3811 if (IS_CHERRYVIEW(dev_priv)) 3812 return i9xx_plane == PLANE_B; 3813 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 3814 return false; 3815 else if (IS_GEN(dev_priv, 4)) 3816 return i9xx_plane == PLANE_C; 3817 else 3818 return i9xx_plane == PLANE_B || 3819 i9xx_plane == PLANE_C; 3820 } 3821 3822 static int 3823 i9xx_plane_check(struct intel_crtc_state *crtc_state, 3824 struct intel_plane_state *plane_state) 3825 { 3826 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 3827 int ret; 3828 3829 ret = chv_plane_check_rotation(plane_state); 3830 if (ret) 3831 return ret; 3832 3833 ret = drm_atomic_helper_check_plane_state(&plane_state->base, 3834 &crtc_state->base, 3835 DRM_PLANE_HELPER_NO_SCALING, 3836 DRM_PLANE_HELPER_NO_SCALING, 3837 i9xx_plane_has_windowing(plane), 3838 true); 3839 if (ret) 3840 return ret; 3841 3842 ret = i9xx_check_plane_surface(plane_state); 3843 if (ret) 3844 return ret; 3845 3846 if (!plane_state->base.visible) 3847 return 0; 3848 3849 ret = intel_plane_check_src_coordinates(plane_state); 3850 if (ret) 3851 return ret; 3852 3853 plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state); 3854 3855 return 0; 3856 } 3857 3858 static void i9xx_update_plane(struct intel_plane *plane, 3859 const struct intel_crtc_state *crtc_state, 3860 const struct intel_plane_state *plane_state) 3861 { 3862 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 3863 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 3864 u32 linear_offset; 3865 int x = plane_state->color_plane[0].x; 3866 int y = plane_state->color_plane[0].y; 3867 int crtc_x = plane_state->base.dst.x1; 3868 int crtc_y = plane_state->base.dst.y1; 3869 int crtc_w = drm_rect_width(&plane_state->base.dst); 3870 int crtc_h = drm_rect_height(&plane_state->base.dst); 3871 unsigned long irqflags; 3872 u32 dspaddr_offset; 3873 u32 dspcntr; 3874 3875 dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state); 3876 3877 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0); 3878 3879 if (INTEL_GEN(dev_priv) >= 4) 3880 dspaddr_offset = plane_state->color_plane[0].offset; 3881 else 3882 dspaddr_offset = linear_offset; 3883 3884 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 3885 3886 I915_WRITE_FW(DSPSTRIDE(i9xx_plane), plane_state->color_plane[0].stride); 3887 3888 if (INTEL_GEN(dev_priv) < 4) { 3889 /* 3890 * PLANE_A doesn't actually have a full window 3891 * generator but let's assume we still need to 3892 * program whatever is there. 3893 */ 3894 I915_WRITE_FW(DSPPOS(i9xx_plane), (crtc_y << 16) | crtc_x); 3895 I915_WRITE_FW(DSPSIZE(i9xx_plane), 3896 ((crtc_h - 1) << 16) | (crtc_w - 1)); 3897 } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) { 3898 I915_WRITE_FW(PRIMPOS(i9xx_plane), (crtc_y << 16) | crtc_x); 3899 I915_WRITE_FW(PRIMSIZE(i9xx_plane), 3900 ((crtc_h - 1) << 16) | (crtc_w - 1)); 3901 I915_WRITE_FW(PRIMCNSTALPHA(i9xx_plane), 0); 3902 } 3903 3904 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 3905 I915_WRITE_FW(DSPOFFSET(i9xx_plane), (y << 16) | x); 3906 } else if (INTEL_GEN(dev_priv) >= 4) { 3907 I915_WRITE_FW(DSPLINOFF(i9xx_plane), linear_offset); 3908 I915_WRITE_FW(DSPTILEOFF(i9xx_plane), (y << 16) | x); 3909 } 3910 3911 /* 3912 * The control register self-arms if the plane was previously 3913 * disabled. Try to make the plane enable atomic by writing 3914 * the control register just before the surface register. 3915 */ 3916 I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr); 3917 if (INTEL_GEN(dev_priv) >= 4) 3918 I915_WRITE_FW(DSPSURF(i9xx_plane), 3919 intel_plane_ggtt_offset(plane_state) + 3920 dspaddr_offset); 3921 else 3922 I915_WRITE_FW(DSPADDR(i9xx_plane), 3923 intel_plane_ggtt_offset(plane_state) + 3924 dspaddr_offset); 3925 3926 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 3927 } 3928 3929 static void i9xx_disable_plane(struct intel_plane *plane, 3930 const struct intel_crtc_state *crtc_state) 3931 { 3932 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 3933 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 3934 unsigned long irqflags; 3935 u32 dspcntr; 3936 3937 /* 3938 * DSPCNTR pipe gamma enable on g4x+ and pipe csc 3939 * enable on ilk+ affect the pipe bottom color as 3940 * well, so we must configure them even if the plane 3941 * is disabled. 3942 * 3943 * On pre-g4x there is no way to gamma correct the 3944 * pipe bottom color but we'll keep on doing this 3945 * anyway so that the crtc state readout works correctly. 3946 */ 3947 dspcntr = i9xx_plane_ctl_crtc(crtc_state); 3948 3949 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 3950 3951 I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr); 3952 if (INTEL_GEN(dev_priv) >= 4) 3953 I915_WRITE_FW(DSPSURF(i9xx_plane), 0); 3954 else 3955 I915_WRITE_FW(DSPADDR(i9xx_plane), 0); 3956 3957 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 3958 } 3959 3960 static bool i9xx_plane_get_hw_state(struct intel_plane *plane, 3961 enum pipe *pipe) 3962 { 3963 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 3964 enum intel_display_power_domain power_domain; 3965 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 3966 intel_wakeref_t wakeref; 3967 bool ret; 3968 u32 val; 3969 3970 /* 3971 * Not 100% correct for planes that can move between pipes, 3972 * but that's only the case for gen2-4 which don't have any 3973 * display power wells. 3974 */ 3975 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 3976 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 3977 if (!wakeref) 3978 return false; 3979 3980 val = I915_READ(DSPCNTR(i9xx_plane)); 3981 3982 ret = val & DISPLAY_PLANE_ENABLE; 3983 3984 if (INTEL_GEN(dev_priv) >= 5) 3985 *pipe = plane->pipe; 3986 else 3987 *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> 3988 DISPPLANE_SEL_PIPE_SHIFT; 3989 3990 intel_display_power_put(dev_priv, power_domain, wakeref); 3991 3992 return ret; 3993 } 3994 3995 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id) 3996 { 3997 struct drm_device *dev = intel_crtc->base.dev; 3998 struct drm_i915_private *dev_priv = to_i915(dev); 3999 4000 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0); 4001 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0); 4002 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0); 4003 } 4004 4005 /* 4006 * This function detaches (aka. unbinds) unused scalers in hardware 4007 */ 4008 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state) 4009 { 4010 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); 4011 const struct intel_crtc_scaler_state *scaler_state = 4012 &crtc_state->scaler_state; 4013 int i; 4014 4015 /* loop through and disable scalers that aren't in use */ 4016 for (i = 0; i < intel_crtc->num_scalers; i++) { 4017 if (!scaler_state->scalers[i].in_use) 4018 skl_detach_scaler(intel_crtc, i); 4019 } 4020 } 4021 4022 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb, 4023 int color_plane, unsigned int rotation) 4024 { 4025 /* 4026 * The stride is either expressed as a multiple of 64 bytes chunks for 4027 * linear buffers or in number of tiles for tiled buffers. 4028 */ 4029 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) 4030 return 64; 4031 else if (drm_rotation_90_or_270(rotation)) 4032 return intel_tile_height(fb, color_plane); 4033 else 4034 return intel_tile_width_bytes(fb, color_plane); 4035 } 4036 4037 u32 skl_plane_stride(const struct intel_plane_state *plane_state, 4038 int color_plane) 4039 { 4040 const struct drm_framebuffer *fb = plane_state->base.fb; 4041 unsigned int rotation = plane_state->base.rotation; 4042 u32 stride = plane_state->color_plane[color_plane].stride; 4043 4044 if (color_plane >= fb->format->num_planes) 4045 return 0; 4046 4047 return stride / skl_plane_stride_mult(fb, color_plane, rotation); 4048 } 4049 4050 static u32 skl_plane_ctl_format(u32 pixel_format) 4051 { 4052 switch (pixel_format) { 4053 case DRM_FORMAT_C8: 4054 return PLANE_CTL_FORMAT_INDEXED; 4055 case DRM_FORMAT_RGB565: 4056 return PLANE_CTL_FORMAT_RGB_565; 4057 case DRM_FORMAT_XBGR8888: 4058 case DRM_FORMAT_ABGR8888: 4059 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX; 4060 case DRM_FORMAT_XRGB8888: 4061 case DRM_FORMAT_ARGB8888: 4062 return PLANE_CTL_FORMAT_XRGB_8888; 4063 case DRM_FORMAT_XBGR2101010: 4064 return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX; 4065 case DRM_FORMAT_XRGB2101010: 4066 return PLANE_CTL_FORMAT_XRGB_2101010; 4067 case DRM_FORMAT_XBGR16161616F: 4068 case DRM_FORMAT_ABGR16161616F: 4069 return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX; 4070 case DRM_FORMAT_XRGB16161616F: 4071 case DRM_FORMAT_ARGB16161616F: 4072 return PLANE_CTL_FORMAT_XRGB_16161616F; 4073 case DRM_FORMAT_YUYV: 4074 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV; 4075 case DRM_FORMAT_YVYU: 4076 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU; 4077 case DRM_FORMAT_UYVY: 4078 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY; 4079 case DRM_FORMAT_VYUY: 4080 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY; 4081 case DRM_FORMAT_NV12: 4082 return PLANE_CTL_FORMAT_NV12; 4083 case DRM_FORMAT_P010: 4084 return PLANE_CTL_FORMAT_P010; 4085 case DRM_FORMAT_P012: 4086 return PLANE_CTL_FORMAT_P012; 4087 case DRM_FORMAT_P016: 4088 return PLANE_CTL_FORMAT_P016; 4089 case DRM_FORMAT_Y210: 4090 return PLANE_CTL_FORMAT_Y210; 4091 case DRM_FORMAT_Y212: 4092 return PLANE_CTL_FORMAT_Y212; 4093 case DRM_FORMAT_Y216: 4094 return PLANE_CTL_FORMAT_Y216; 4095 case DRM_FORMAT_XVYU2101010: 4096 return PLANE_CTL_FORMAT_Y410; 4097 case DRM_FORMAT_XVYU12_16161616: 4098 return PLANE_CTL_FORMAT_Y412; 4099 case DRM_FORMAT_XVYU16161616: 4100 return PLANE_CTL_FORMAT_Y416; 4101 default: 4102 MISSING_CASE(pixel_format); 4103 } 4104 4105 return 0; 4106 } 4107 4108 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state) 4109 { 4110 if (!plane_state->base.fb->format->has_alpha) 4111 return PLANE_CTL_ALPHA_DISABLE; 4112 4113 switch (plane_state->base.pixel_blend_mode) { 4114 case DRM_MODE_BLEND_PIXEL_NONE: 4115 return PLANE_CTL_ALPHA_DISABLE; 4116 case DRM_MODE_BLEND_PREMULTI: 4117 return PLANE_CTL_ALPHA_SW_PREMULTIPLY; 4118 case DRM_MODE_BLEND_COVERAGE: 4119 return PLANE_CTL_ALPHA_HW_PREMULTIPLY; 4120 default: 4121 MISSING_CASE(plane_state->base.pixel_blend_mode); 4122 return PLANE_CTL_ALPHA_DISABLE; 4123 } 4124 } 4125 4126 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state) 4127 { 4128 if (!plane_state->base.fb->format->has_alpha) 4129 return PLANE_COLOR_ALPHA_DISABLE; 4130 4131 switch (plane_state->base.pixel_blend_mode) { 4132 case DRM_MODE_BLEND_PIXEL_NONE: 4133 return PLANE_COLOR_ALPHA_DISABLE; 4134 case DRM_MODE_BLEND_PREMULTI: 4135 return PLANE_COLOR_ALPHA_SW_PREMULTIPLY; 4136 case DRM_MODE_BLEND_COVERAGE: 4137 return PLANE_COLOR_ALPHA_HW_PREMULTIPLY; 4138 default: 4139 MISSING_CASE(plane_state->base.pixel_blend_mode); 4140 return PLANE_COLOR_ALPHA_DISABLE; 4141 } 4142 } 4143 4144 static u32 skl_plane_ctl_tiling(u64 fb_modifier) 4145 { 4146 switch (fb_modifier) { 4147 case DRM_FORMAT_MOD_LINEAR: 4148 break; 4149 case I915_FORMAT_MOD_X_TILED: 4150 return PLANE_CTL_TILED_X; 4151 case I915_FORMAT_MOD_Y_TILED: 4152 return PLANE_CTL_TILED_Y; 4153 case I915_FORMAT_MOD_Y_TILED_CCS: 4154 return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4155 case I915_FORMAT_MOD_Yf_TILED: 4156 return PLANE_CTL_TILED_YF; 4157 case I915_FORMAT_MOD_Yf_TILED_CCS: 4158 return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4159 default: 4160 MISSING_CASE(fb_modifier); 4161 } 4162 4163 return 0; 4164 } 4165 4166 static u32 skl_plane_ctl_rotate(unsigned int rotate) 4167 { 4168 switch (rotate) { 4169 case DRM_MODE_ROTATE_0: 4170 break; 4171 /* 4172 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 4173 * while i915 HW rotation is clockwise, thats why this swapping. 4174 */ 4175 case DRM_MODE_ROTATE_90: 4176 return PLANE_CTL_ROTATE_270; 4177 case DRM_MODE_ROTATE_180: 4178 return PLANE_CTL_ROTATE_180; 4179 case DRM_MODE_ROTATE_270: 4180 return PLANE_CTL_ROTATE_90; 4181 default: 4182 MISSING_CASE(rotate); 4183 } 4184 4185 return 0; 4186 } 4187 4188 static u32 cnl_plane_ctl_flip(unsigned int reflect) 4189 { 4190 switch (reflect) { 4191 case 0: 4192 break; 4193 case DRM_MODE_REFLECT_X: 4194 return PLANE_CTL_FLIP_HORIZONTAL; 4195 case DRM_MODE_REFLECT_Y: 4196 default: 4197 MISSING_CASE(reflect); 4198 } 4199 4200 return 0; 4201 } 4202 4203 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 4204 { 4205 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 4206 u32 plane_ctl = 0; 4207 4208 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4209 return plane_ctl; 4210 4211 if (crtc_state->gamma_enable) 4212 plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE; 4213 4214 if (crtc_state->csc_enable) 4215 plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE; 4216 4217 return plane_ctl; 4218 } 4219 4220 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state, 4221 const struct intel_plane_state *plane_state) 4222 { 4223 struct drm_i915_private *dev_priv = 4224 to_i915(plane_state->base.plane->dev); 4225 const struct drm_framebuffer *fb = plane_state->base.fb; 4226 unsigned int rotation = plane_state->base.rotation; 4227 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey; 4228 u32 plane_ctl; 4229 4230 plane_ctl = PLANE_CTL_ENABLE; 4231 4232 if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) { 4233 plane_ctl |= skl_plane_ctl_alpha(plane_state); 4234 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE; 4235 4236 if (plane_state->base.color_encoding == DRM_COLOR_YCBCR_BT709) 4237 plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709; 4238 4239 if (plane_state->base.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4240 plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE; 4241 } 4242 4243 plane_ctl |= skl_plane_ctl_format(fb->format->format); 4244 plane_ctl |= skl_plane_ctl_tiling(fb->modifier); 4245 plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK); 4246 4247 if (INTEL_GEN(dev_priv) >= 10) 4248 plane_ctl |= cnl_plane_ctl_flip(rotation & 4249 DRM_MODE_REFLECT_MASK); 4250 4251 if (key->flags & I915_SET_COLORKEY_DESTINATION) 4252 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION; 4253 else if (key->flags & I915_SET_COLORKEY_SOURCE) 4254 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE; 4255 4256 return plane_ctl; 4257 } 4258 4259 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state) 4260 { 4261 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 4262 u32 plane_color_ctl = 0; 4263 4264 if (INTEL_GEN(dev_priv) >= 11) 4265 return plane_color_ctl; 4266 4267 if (crtc_state->gamma_enable) 4268 plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE; 4269 4270 if (crtc_state->csc_enable) 4271 plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE; 4272 4273 return plane_color_ctl; 4274 } 4275 4276 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state, 4277 const struct intel_plane_state *plane_state) 4278 { 4279 struct drm_i915_private *dev_priv = 4280 to_i915(plane_state->base.plane->dev); 4281 const struct drm_framebuffer *fb = plane_state->base.fb; 4282 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 4283 u32 plane_color_ctl = 0; 4284 4285 plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE; 4286 plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state); 4287 4288 if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) { 4289 if (plane_state->base.color_encoding == DRM_COLOR_YCBCR_BT709) 4290 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709; 4291 else 4292 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV601_TO_RGB709; 4293 4294 if (plane_state->base.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4295 plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE; 4296 } else if (fb->format->is_yuv) { 4297 plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE; 4298 } 4299 4300 return plane_color_ctl; 4301 } 4302 4303 static int 4304 __intel_display_resume(struct drm_device *dev, 4305 struct drm_atomic_state *state, 4306 struct drm_modeset_acquire_ctx *ctx) 4307 { 4308 struct drm_crtc_state *crtc_state; 4309 struct drm_crtc *crtc; 4310 int i, ret; 4311 4312 intel_modeset_setup_hw_state(dev, ctx); 4313 intel_vga_redisable(to_i915(dev)); 4314 4315 if (!state) 4316 return 0; 4317 4318 /* 4319 * We've duplicated the state, pointers to the old state are invalid. 4320 * 4321 * Don't attempt to use the old state until we commit the duplicated state. 4322 */ 4323 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 4324 /* 4325 * Force recalculation even if we restore 4326 * current state. With fast modeset this may not result 4327 * in a modeset when the state is compatible. 4328 */ 4329 crtc_state->mode_changed = true; 4330 } 4331 4332 /* ignore any reset values/BIOS leftovers in the WM registers */ 4333 if (!HAS_GMCH(to_i915(dev))) 4334 to_intel_atomic_state(state)->skip_intermediate_wm = true; 4335 4336 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 4337 4338 WARN_ON(ret == -EDEADLK); 4339 return ret; 4340 } 4341 4342 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 4343 { 4344 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 4345 intel_has_gpu_reset(&dev_priv->gt)); 4346 } 4347 4348 void intel_prepare_reset(struct drm_i915_private *dev_priv) 4349 { 4350 struct drm_device *dev = &dev_priv->drm; 4351 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4352 struct drm_atomic_state *state; 4353 int ret; 4354 4355 /* reset doesn't touch the display */ 4356 if (!i915_modparams.force_reset_modeset_test && 4357 !gpu_reset_clobbers_display(dev_priv)) 4358 return; 4359 4360 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 4361 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 4362 smp_mb__after_atomic(); 4363 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 4364 4365 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 4366 DRM_DEBUG_KMS("Modeset potentially stuck, unbreaking through wedging\n"); 4367 intel_gt_set_wedged(&dev_priv->gt); 4368 } 4369 4370 /* 4371 * Need mode_config.mutex so that we don't 4372 * trample ongoing ->detect() and whatnot. 4373 */ 4374 mutex_lock(&dev->mode_config.mutex); 4375 drm_modeset_acquire_init(ctx, 0); 4376 while (1) { 4377 ret = drm_modeset_lock_all_ctx(dev, ctx); 4378 if (ret != -EDEADLK) 4379 break; 4380 4381 drm_modeset_backoff(ctx); 4382 } 4383 /* 4384 * Disabling the crtcs gracefully seems nicer. Also the 4385 * g33 docs say we should at least disable all the planes. 4386 */ 4387 state = drm_atomic_helper_duplicate_state(dev, ctx); 4388 if (IS_ERR(state)) { 4389 ret = PTR_ERR(state); 4390 DRM_ERROR("Duplicating state failed with %i\n", ret); 4391 return; 4392 } 4393 4394 ret = drm_atomic_helper_disable_all(dev, ctx); 4395 if (ret) { 4396 DRM_ERROR("Suspending crtc's failed with %i\n", ret); 4397 drm_atomic_state_put(state); 4398 return; 4399 } 4400 4401 dev_priv->modeset_restore_state = state; 4402 state->acquire_ctx = ctx; 4403 } 4404 4405 void intel_finish_reset(struct drm_i915_private *dev_priv) 4406 { 4407 struct drm_device *dev = &dev_priv->drm; 4408 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4409 struct drm_atomic_state *state; 4410 int ret; 4411 4412 /* reset doesn't touch the display */ 4413 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 4414 return; 4415 4416 state = fetch_and_zero(&dev_priv->modeset_restore_state); 4417 if (!state) 4418 goto unlock; 4419 4420 /* reset doesn't touch the display */ 4421 if (!gpu_reset_clobbers_display(dev_priv)) { 4422 /* for testing only restore the display */ 4423 ret = __intel_display_resume(dev, state, ctx); 4424 if (ret) 4425 DRM_ERROR("Restoring old state failed with %i\n", ret); 4426 } else { 4427 /* 4428 * The display has been reset as well, 4429 * so need a full re-initialization. 4430 */ 4431 intel_pps_unlock_regs_wa(dev_priv); 4432 intel_modeset_init_hw(dev_priv); 4433 intel_init_clock_gating(dev_priv); 4434 4435 spin_lock_irq(&dev_priv->irq_lock); 4436 if (dev_priv->display.hpd_irq_setup) 4437 dev_priv->display.hpd_irq_setup(dev_priv); 4438 spin_unlock_irq(&dev_priv->irq_lock); 4439 4440 ret = __intel_display_resume(dev, state, ctx); 4441 if (ret) 4442 DRM_ERROR("Restoring old state failed with %i\n", ret); 4443 4444 intel_hpd_init(dev_priv); 4445 } 4446 4447 drm_atomic_state_put(state); 4448 unlock: 4449 drm_modeset_drop_locks(ctx); 4450 drm_modeset_acquire_fini(ctx); 4451 mutex_unlock(&dev->mode_config.mutex); 4452 4453 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 4454 } 4455 4456 static void icl_set_pipe_chicken(struct intel_crtc *crtc) 4457 { 4458 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4459 enum pipe pipe = crtc->pipe; 4460 u32 tmp; 4461 4462 tmp = I915_READ(PIPE_CHICKEN(pipe)); 4463 4464 /* 4465 * Display WA #1153: icl 4466 * enable hardware to bypass the alpha math 4467 * and rounding for per-pixel values 00 and 0xff 4468 */ 4469 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 4470 /* 4471 * Display WA # 1605353570: icl 4472 * Set the pixel rounding bit to 1 for allowing 4473 * passthrough of Frame buffer pixels unmodified 4474 * across pipe 4475 */ 4476 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 4477 I915_WRITE(PIPE_CHICKEN(pipe), tmp); 4478 } 4479 4480 static void icl_enable_trans_port_sync(const struct intel_crtc_state *crtc_state) 4481 { 4482 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 4483 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4484 u32 trans_ddi_func_ctl2_val; 4485 u8 master_select; 4486 4487 /* 4488 * Configure the master select and enable Transcoder Port Sync for 4489 * Slave CRTCs transcoder. 4490 */ 4491 if (crtc_state->master_transcoder == INVALID_TRANSCODER) 4492 return; 4493 4494 if (crtc_state->master_transcoder == TRANSCODER_EDP) 4495 master_select = 0; 4496 else 4497 master_select = crtc_state->master_transcoder + 1; 4498 4499 /* Set the master select bits for Tranascoder Port Sync */ 4500 trans_ddi_func_ctl2_val = (PORT_SYNC_MODE_MASTER_SELECT(master_select) & 4501 PORT_SYNC_MODE_MASTER_SELECT_MASK) << 4502 PORT_SYNC_MODE_MASTER_SELECT_SHIFT; 4503 /* Enable Transcoder Port Sync */ 4504 trans_ddi_func_ctl2_val |= PORT_SYNC_MODE_ENABLE; 4505 4506 I915_WRITE(TRANS_DDI_FUNC_CTL2(crtc_state->cpu_transcoder), 4507 trans_ddi_func_ctl2_val); 4508 } 4509 4510 static void icl_disable_transcoder_port_sync(const struct intel_crtc_state *old_crtc_state) 4511 { 4512 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 4513 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4514 i915_reg_t reg; 4515 u32 trans_ddi_func_ctl2_val; 4516 4517 if (old_crtc_state->master_transcoder == INVALID_TRANSCODER) 4518 return; 4519 4520 DRM_DEBUG_KMS("Disabling Transcoder Port Sync on Slave Transcoder %s\n", 4521 transcoder_name(old_crtc_state->cpu_transcoder)); 4522 4523 reg = TRANS_DDI_FUNC_CTL2(old_crtc_state->cpu_transcoder); 4524 trans_ddi_func_ctl2_val = ~(PORT_SYNC_MODE_ENABLE | 4525 PORT_SYNC_MODE_MASTER_SELECT_MASK); 4526 I915_WRITE(reg, trans_ddi_func_ctl2_val); 4527 } 4528 4529 static void intel_fdi_normal_train(struct intel_crtc *crtc) 4530 { 4531 struct drm_device *dev = crtc->base.dev; 4532 struct drm_i915_private *dev_priv = to_i915(dev); 4533 enum pipe pipe = crtc->pipe; 4534 i915_reg_t reg; 4535 u32 temp; 4536 4537 /* enable normal train */ 4538 reg = FDI_TX_CTL(pipe); 4539 temp = I915_READ(reg); 4540 if (IS_IVYBRIDGE(dev_priv)) { 4541 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 4542 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; 4543 } else { 4544 temp &= ~FDI_LINK_TRAIN_NONE; 4545 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; 4546 } 4547 I915_WRITE(reg, temp); 4548 4549 reg = FDI_RX_CTL(pipe); 4550 temp = I915_READ(reg); 4551 if (HAS_PCH_CPT(dev_priv)) { 4552 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 4553 temp |= FDI_LINK_TRAIN_NORMAL_CPT; 4554 } else { 4555 temp &= ~FDI_LINK_TRAIN_NONE; 4556 temp |= FDI_LINK_TRAIN_NONE; 4557 } 4558 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); 4559 4560 /* wait one idle pattern time */ 4561 POSTING_READ(reg); 4562 udelay(1000); 4563 4564 /* IVB wants error correction enabled */ 4565 if (IS_IVYBRIDGE(dev_priv)) 4566 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE | 4567 FDI_FE_ERRC_ENABLE); 4568 } 4569 4570 /* The FDI link training functions for ILK/Ibexpeak. */ 4571 static void ironlake_fdi_link_train(struct intel_crtc *crtc, 4572 const struct intel_crtc_state *crtc_state) 4573 { 4574 struct drm_device *dev = crtc->base.dev; 4575 struct drm_i915_private *dev_priv = to_i915(dev); 4576 enum pipe pipe = crtc->pipe; 4577 i915_reg_t reg; 4578 u32 temp, tries; 4579 4580 /* FDI needs bits from pipe first */ 4581 assert_pipe_enabled(dev_priv, pipe); 4582 4583 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 4584 for train result */ 4585 reg = FDI_RX_IMR(pipe); 4586 temp = I915_READ(reg); 4587 temp &= ~FDI_RX_SYMBOL_LOCK; 4588 temp &= ~FDI_RX_BIT_LOCK; 4589 I915_WRITE(reg, temp); 4590 I915_READ(reg); 4591 udelay(150); 4592 4593 /* enable CPU FDI TX and PCH FDI RX */ 4594 reg = FDI_TX_CTL(pipe); 4595 temp = I915_READ(reg); 4596 temp &= ~FDI_DP_PORT_WIDTH_MASK; 4597 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 4598 temp &= ~FDI_LINK_TRAIN_NONE; 4599 temp |= FDI_LINK_TRAIN_PATTERN_1; 4600 I915_WRITE(reg, temp | FDI_TX_ENABLE); 4601 4602 reg = FDI_RX_CTL(pipe); 4603 temp = I915_READ(reg); 4604 temp &= ~FDI_LINK_TRAIN_NONE; 4605 temp |= FDI_LINK_TRAIN_PATTERN_1; 4606 I915_WRITE(reg, temp | FDI_RX_ENABLE); 4607 4608 POSTING_READ(reg); 4609 udelay(150); 4610 4611 /* Ironlake workaround, enable clock pointer after FDI enable*/ 4612 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); 4613 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR | 4614 FDI_RX_PHASE_SYNC_POINTER_EN); 4615 4616 reg = FDI_RX_IIR(pipe); 4617 for (tries = 0; tries < 5; tries++) { 4618 temp = I915_READ(reg); 4619 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 4620 4621 if ((temp & FDI_RX_BIT_LOCK)) { 4622 DRM_DEBUG_KMS("FDI train 1 done.\n"); 4623 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); 4624 break; 4625 } 4626 } 4627 if (tries == 5) 4628 DRM_ERROR("FDI train 1 fail!\n"); 4629 4630 /* Train 2 */ 4631 reg = FDI_TX_CTL(pipe); 4632 temp = I915_READ(reg); 4633 temp &= ~FDI_LINK_TRAIN_NONE; 4634 temp |= FDI_LINK_TRAIN_PATTERN_2; 4635 I915_WRITE(reg, temp); 4636 4637 reg = FDI_RX_CTL(pipe); 4638 temp = I915_READ(reg); 4639 temp &= ~FDI_LINK_TRAIN_NONE; 4640 temp |= FDI_LINK_TRAIN_PATTERN_2; 4641 I915_WRITE(reg, temp); 4642 4643 POSTING_READ(reg); 4644 udelay(150); 4645 4646 reg = FDI_RX_IIR(pipe); 4647 for (tries = 0; tries < 5; tries++) { 4648 temp = I915_READ(reg); 4649 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 4650 4651 if (temp & FDI_RX_SYMBOL_LOCK) { 4652 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); 4653 DRM_DEBUG_KMS("FDI train 2 done.\n"); 4654 break; 4655 } 4656 } 4657 if (tries == 5) 4658 DRM_ERROR("FDI train 2 fail!\n"); 4659 4660 DRM_DEBUG_KMS("FDI train done\n"); 4661 4662 } 4663 4664 static const int snb_b_fdi_train_param[] = { 4665 FDI_LINK_TRAIN_400MV_0DB_SNB_B, 4666 FDI_LINK_TRAIN_400MV_6DB_SNB_B, 4667 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, 4668 FDI_LINK_TRAIN_800MV_0DB_SNB_B, 4669 }; 4670 4671 /* The FDI link training functions for SNB/Cougarpoint. */ 4672 static void gen6_fdi_link_train(struct intel_crtc *crtc, 4673 const struct intel_crtc_state *crtc_state) 4674 { 4675 struct drm_device *dev = crtc->base.dev; 4676 struct drm_i915_private *dev_priv = to_i915(dev); 4677 enum pipe pipe = crtc->pipe; 4678 i915_reg_t reg; 4679 u32 temp, i, retry; 4680 4681 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 4682 for train result */ 4683 reg = FDI_RX_IMR(pipe); 4684 temp = I915_READ(reg); 4685 temp &= ~FDI_RX_SYMBOL_LOCK; 4686 temp &= ~FDI_RX_BIT_LOCK; 4687 I915_WRITE(reg, temp); 4688 4689 POSTING_READ(reg); 4690 udelay(150); 4691 4692 /* enable CPU FDI TX and PCH FDI RX */ 4693 reg = FDI_TX_CTL(pipe); 4694 temp = I915_READ(reg); 4695 temp &= ~FDI_DP_PORT_WIDTH_MASK; 4696 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 4697 temp &= ~FDI_LINK_TRAIN_NONE; 4698 temp |= FDI_LINK_TRAIN_PATTERN_1; 4699 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 4700 /* SNB-B */ 4701 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 4702 I915_WRITE(reg, temp | FDI_TX_ENABLE); 4703 4704 I915_WRITE(FDI_RX_MISC(pipe), 4705 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 4706 4707 reg = FDI_RX_CTL(pipe); 4708 temp = I915_READ(reg); 4709 if (HAS_PCH_CPT(dev_priv)) { 4710 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 4711 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 4712 } else { 4713 temp &= ~FDI_LINK_TRAIN_NONE; 4714 temp |= FDI_LINK_TRAIN_PATTERN_1; 4715 } 4716 I915_WRITE(reg, temp | FDI_RX_ENABLE); 4717 4718 POSTING_READ(reg); 4719 udelay(150); 4720 4721 for (i = 0; i < 4; i++) { 4722 reg = FDI_TX_CTL(pipe); 4723 temp = I915_READ(reg); 4724 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 4725 temp |= snb_b_fdi_train_param[i]; 4726 I915_WRITE(reg, temp); 4727 4728 POSTING_READ(reg); 4729 udelay(500); 4730 4731 for (retry = 0; retry < 5; retry++) { 4732 reg = FDI_RX_IIR(pipe); 4733 temp = I915_READ(reg); 4734 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 4735 if (temp & FDI_RX_BIT_LOCK) { 4736 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); 4737 DRM_DEBUG_KMS("FDI train 1 done.\n"); 4738 break; 4739 } 4740 udelay(50); 4741 } 4742 if (retry < 5) 4743 break; 4744 } 4745 if (i == 4) 4746 DRM_ERROR("FDI train 1 fail!\n"); 4747 4748 /* Train 2 */ 4749 reg = FDI_TX_CTL(pipe); 4750 temp = I915_READ(reg); 4751 temp &= ~FDI_LINK_TRAIN_NONE; 4752 temp |= FDI_LINK_TRAIN_PATTERN_2; 4753 if (IS_GEN(dev_priv, 6)) { 4754 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 4755 /* SNB-B */ 4756 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 4757 } 4758 I915_WRITE(reg, temp); 4759 4760 reg = FDI_RX_CTL(pipe); 4761 temp = I915_READ(reg); 4762 if (HAS_PCH_CPT(dev_priv)) { 4763 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 4764 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 4765 } else { 4766 temp &= ~FDI_LINK_TRAIN_NONE; 4767 temp |= FDI_LINK_TRAIN_PATTERN_2; 4768 } 4769 I915_WRITE(reg, temp); 4770 4771 POSTING_READ(reg); 4772 udelay(150); 4773 4774 for (i = 0; i < 4; i++) { 4775 reg = FDI_TX_CTL(pipe); 4776 temp = I915_READ(reg); 4777 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 4778 temp |= snb_b_fdi_train_param[i]; 4779 I915_WRITE(reg, temp); 4780 4781 POSTING_READ(reg); 4782 udelay(500); 4783 4784 for (retry = 0; retry < 5; retry++) { 4785 reg = FDI_RX_IIR(pipe); 4786 temp = I915_READ(reg); 4787 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 4788 if (temp & FDI_RX_SYMBOL_LOCK) { 4789 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); 4790 DRM_DEBUG_KMS("FDI train 2 done.\n"); 4791 break; 4792 } 4793 udelay(50); 4794 } 4795 if (retry < 5) 4796 break; 4797 } 4798 if (i == 4) 4799 DRM_ERROR("FDI train 2 fail!\n"); 4800 4801 DRM_DEBUG_KMS("FDI train done.\n"); 4802 } 4803 4804 /* Manual link training for Ivy Bridge A0 parts */ 4805 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc, 4806 const struct intel_crtc_state *crtc_state) 4807 { 4808 struct drm_device *dev = crtc->base.dev; 4809 struct drm_i915_private *dev_priv = to_i915(dev); 4810 enum pipe pipe = crtc->pipe; 4811 i915_reg_t reg; 4812 u32 temp, i, j; 4813 4814 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 4815 for train result */ 4816 reg = FDI_RX_IMR(pipe); 4817 temp = I915_READ(reg); 4818 temp &= ~FDI_RX_SYMBOL_LOCK; 4819 temp &= ~FDI_RX_BIT_LOCK; 4820 I915_WRITE(reg, temp); 4821 4822 POSTING_READ(reg); 4823 udelay(150); 4824 4825 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n", 4826 I915_READ(FDI_RX_IIR(pipe))); 4827 4828 /* Try each vswing and preemphasis setting twice before moving on */ 4829 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) { 4830 /* disable first in case we need to retry */ 4831 reg = FDI_TX_CTL(pipe); 4832 temp = I915_READ(reg); 4833 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); 4834 temp &= ~FDI_TX_ENABLE; 4835 I915_WRITE(reg, temp); 4836 4837 reg = FDI_RX_CTL(pipe); 4838 temp = I915_READ(reg); 4839 temp &= ~FDI_LINK_TRAIN_AUTO; 4840 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 4841 temp &= ~FDI_RX_ENABLE; 4842 I915_WRITE(reg, temp); 4843 4844 /* enable CPU FDI TX and PCH FDI RX */ 4845 reg = FDI_TX_CTL(pipe); 4846 temp = I915_READ(reg); 4847 temp &= ~FDI_DP_PORT_WIDTH_MASK; 4848 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 4849 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; 4850 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 4851 temp |= snb_b_fdi_train_param[j/2]; 4852 temp |= FDI_COMPOSITE_SYNC; 4853 I915_WRITE(reg, temp | FDI_TX_ENABLE); 4854 4855 I915_WRITE(FDI_RX_MISC(pipe), 4856 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 4857 4858 reg = FDI_RX_CTL(pipe); 4859 temp = I915_READ(reg); 4860 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 4861 temp |= FDI_COMPOSITE_SYNC; 4862 I915_WRITE(reg, temp | FDI_RX_ENABLE); 4863 4864 POSTING_READ(reg); 4865 udelay(1); /* should be 0.5us */ 4866 4867 for (i = 0; i < 4; i++) { 4868 reg = FDI_RX_IIR(pipe); 4869 temp = I915_READ(reg); 4870 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 4871 4872 if (temp & FDI_RX_BIT_LOCK || 4873 (I915_READ(reg) & FDI_RX_BIT_LOCK)) { 4874 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); 4875 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", 4876 i); 4877 break; 4878 } 4879 udelay(1); /* should be 0.5us */ 4880 } 4881 if (i == 4) { 4882 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2); 4883 continue; 4884 } 4885 4886 /* Train 2 */ 4887 reg = FDI_TX_CTL(pipe); 4888 temp = I915_READ(reg); 4889 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 4890 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; 4891 I915_WRITE(reg, temp); 4892 4893 reg = FDI_RX_CTL(pipe); 4894 temp = I915_READ(reg); 4895 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 4896 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 4897 I915_WRITE(reg, temp); 4898 4899 POSTING_READ(reg); 4900 udelay(2); /* should be 1.5us */ 4901 4902 for (i = 0; i < 4; i++) { 4903 reg = FDI_RX_IIR(pipe); 4904 temp = I915_READ(reg); 4905 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 4906 4907 if (temp & FDI_RX_SYMBOL_LOCK || 4908 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) { 4909 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); 4910 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", 4911 i); 4912 goto train_done; 4913 } 4914 udelay(2); /* should be 1.5us */ 4915 } 4916 if (i == 4) 4917 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2); 4918 } 4919 4920 train_done: 4921 DRM_DEBUG_KMS("FDI train done.\n"); 4922 } 4923 4924 static void ironlake_fdi_pll_enable(const struct intel_crtc_state *crtc_state) 4925 { 4926 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); 4927 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 4928 enum pipe pipe = intel_crtc->pipe; 4929 i915_reg_t reg; 4930 u32 temp; 4931 4932 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ 4933 reg = FDI_RX_CTL(pipe); 4934 temp = I915_READ(reg); 4935 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16)); 4936 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 4937 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 4938 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE); 4939 4940 POSTING_READ(reg); 4941 udelay(200); 4942 4943 /* Switch from Rawclk to PCDclk */ 4944 temp = I915_READ(reg); 4945 I915_WRITE(reg, temp | FDI_PCDCLK); 4946 4947 POSTING_READ(reg); 4948 udelay(200); 4949 4950 /* Enable CPU FDI TX PLL, always on for Ironlake */ 4951 reg = FDI_TX_CTL(pipe); 4952 temp = I915_READ(reg); 4953 if ((temp & FDI_TX_PLL_ENABLE) == 0) { 4954 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE); 4955 4956 POSTING_READ(reg); 4957 udelay(100); 4958 } 4959 } 4960 4961 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc) 4962 { 4963 struct drm_device *dev = intel_crtc->base.dev; 4964 struct drm_i915_private *dev_priv = to_i915(dev); 4965 enum pipe pipe = intel_crtc->pipe; 4966 i915_reg_t reg; 4967 u32 temp; 4968 4969 /* Switch from PCDclk to Rawclk */ 4970 reg = FDI_RX_CTL(pipe); 4971 temp = I915_READ(reg); 4972 I915_WRITE(reg, temp & ~FDI_PCDCLK); 4973 4974 /* Disable CPU FDI TX PLL */ 4975 reg = FDI_TX_CTL(pipe); 4976 temp = I915_READ(reg); 4977 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE); 4978 4979 POSTING_READ(reg); 4980 udelay(100); 4981 4982 reg = FDI_RX_CTL(pipe); 4983 temp = I915_READ(reg); 4984 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE); 4985 4986 /* Wait for the clocks to turn off. */ 4987 POSTING_READ(reg); 4988 udelay(100); 4989 } 4990 4991 static void ironlake_fdi_disable(struct drm_crtc *crtc) 4992 { 4993 struct drm_device *dev = crtc->dev; 4994 struct drm_i915_private *dev_priv = to_i915(dev); 4995 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 4996 enum pipe pipe = intel_crtc->pipe; 4997 i915_reg_t reg; 4998 u32 temp; 4999 5000 /* disable CPU FDI tx and PCH FDI rx */ 5001 reg = FDI_TX_CTL(pipe); 5002 temp = I915_READ(reg); 5003 I915_WRITE(reg, temp & ~FDI_TX_ENABLE); 5004 POSTING_READ(reg); 5005 5006 reg = FDI_RX_CTL(pipe); 5007 temp = I915_READ(reg); 5008 temp &= ~(0x7 << 16); 5009 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5010 I915_WRITE(reg, temp & ~FDI_RX_ENABLE); 5011 5012 POSTING_READ(reg); 5013 udelay(100); 5014 5015 /* Ironlake workaround, disable clock pointer after downing FDI */ 5016 if (HAS_PCH_IBX(dev_priv)) 5017 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); 5018 5019 /* still set train pattern 1 */ 5020 reg = FDI_TX_CTL(pipe); 5021 temp = I915_READ(reg); 5022 temp &= ~FDI_LINK_TRAIN_NONE; 5023 temp |= FDI_LINK_TRAIN_PATTERN_1; 5024 I915_WRITE(reg, temp); 5025 5026 reg = FDI_RX_CTL(pipe); 5027 temp = I915_READ(reg); 5028 if (HAS_PCH_CPT(dev_priv)) { 5029 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5030 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5031 } else { 5032 temp &= ~FDI_LINK_TRAIN_NONE; 5033 temp |= FDI_LINK_TRAIN_PATTERN_1; 5034 } 5035 /* BPC in FDI rx is consistent with that in PIPECONF */ 5036 temp &= ~(0x07 << 16); 5037 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5038 I915_WRITE(reg, temp); 5039 5040 POSTING_READ(reg); 5041 udelay(100); 5042 } 5043 5044 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 5045 { 5046 struct drm_crtc *crtc; 5047 bool cleanup_done; 5048 5049 drm_for_each_crtc(crtc, &dev_priv->drm) { 5050 struct drm_crtc_commit *commit; 5051 spin_lock(&crtc->commit_lock); 5052 commit = list_first_entry_or_null(&crtc->commit_list, 5053 struct drm_crtc_commit, commit_entry); 5054 cleanup_done = commit ? 5055 try_wait_for_completion(&commit->cleanup_done) : true; 5056 spin_unlock(&crtc->commit_lock); 5057 5058 if (cleanup_done) 5059 continue; 5060 5061 drm_crtc_wait_one_vblank(crtc); 5062 5063 return true; 5064 } 5065 5066 return false; 5067 } 5068 5069 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 5070 { 5071 u32 temp; 5072 5073 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE); 5074 5075 mutex_lock(&dev_priv->sb_lock); 5076 5077 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5078 temp |= SBI_SSCCTL_DISABLE; 5079 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5080 5081 mutex_unlock(&dev_priv->sb_lock); 5082 } 5083 5084 /* Program iCLKIP clock to the desired frequency */ 5085 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 5086 { 5087 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5088 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5089 int clock = crtc_state->base.adjusted_mode.crtc_clock; 5090 u32 divsel, phaseinc, auxdiv, phasedir = 0; 5091 u32 temp; 5092 5093 lpt_disable_iclkip(dev_priv); 5094 5095 /* The iCLK virtual clock root frequency is in MHz, 5096 * but the adjusted_mode->crtc_clock in in KHz. To get the 5097 * divisors, it is necessary to divide one by another, so we 5098 * convert the virtual clock precision to KHz here for higher 5099 * precision. 5100 */ 5101 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 5102 u32 iclk_virtual_root_freq = 172800 * 1000; 5103 u32 iclk_pi_range = 64; 5104 u32 desired_divisor; 5105 5106 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5107 clock << auxdiv); 5108 divsel = (desired_divisor / iclk_pi_range) - 2; 5109 phaseinc = desired_divisor % iclk_pi_range; 5110 5111 /* 5112 * Near 20MHz is a corner case which is 5113 * out of range for the 7-bit divisor 5114 */ 5115 if (divsel <= 0x7f) 5116 break; 5117 } 5118 5119 /* This should not happen with any sane values */ 5120 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 5121 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 5122 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) & 5123 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 5124 5125 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 5126 clock, 5127 auxdiv, 5128 divsel, 5129 phasedir, 5130 phaseinc); 5131 5132 mutex_lock(&dev_priv->sb_lock); 5133 5134 /* Program SSCDIVINTPHASE6 */ 5135 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5136 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 5137 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 5138 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 5139 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 5140 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 5141 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 5142 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 5143 5144 /* Program SSCAUXDIV */ 5145 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5146 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 5147 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 5148 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 5149 5150 /* Enable modulator and associated divider */ 5151 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5152 temp &= ~SBI_SSCCTL_DISABLE; 5153 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5154 5155 mutex_unlock(&dev_priv->sb_lock); 5156 5157 /* Wait for initialization time */ 5158 udelay(24); 5159 5160 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE); 5161 } 5162 5163 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 5164 { 5165 u32 divsel, phaseinc, auxdiv; 5166 u32 iclk_virtual_root_freq = 172800 * 1000; 5167 u32 iclk_pi_range = 64; 5168 u32 desired_divisor; 5169 u32 temp; 5170 5171 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 5172 return 0; 5173 5174 mutex_lock(&dev_priv->sb_lock); 5175 5176 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5177 if (temp & SBI_SSCCTL_DISABLE) { 5178 mutex_unlock(&dev_priv->sb_lock); 5179 return 0; 5180 } 5181 5182 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5183 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 5184 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 5185 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 5186 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 5187 5188 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5189 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 5190 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 5191 5192 mutex_unlock(&dev_priv->sb_lock); 5193 5194 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 5195 5196 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5197 desired_divisor << auxdiv); 5198 } 5199 5200 static void ironlake_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 5201 enum pipe pch_transcoder) 5202 { 5203 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5204 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5205 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5206 5207 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder), 5208 I915_READ(HTOTAL(cpu_transcoder))); 5209 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder), 5210 I915_READ(HBLANK(cpu_transcoder))); 5211 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder), 5212 I915_READ(HSYNC(cpu_transcoder))); 5213 5214 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder), 5215 I915_READ(VTOTAL(cpu_transcoder))); 5216 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder), 5217 I915_READ(VBLANK(cpu_transcoder))); 5218 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder), 5219 I915_READ(VSYNC(cpu_transcoder))); 5220 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder), 5221 I915_READ(VSYNCSHIFT(cpu_transcoder))); 5222 } 5223 5224 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) 5225 { 5226 u32 temp; 5227 5228 temp = I915_READ(SOUTH_CHICKEN1); 5229 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 5230 return; 5231 5232 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE); 5233 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE); 5234 5235 temp &= ~FDI_BC_BIFURCATION_SELECT; 5236 if (enable) 5237 temp |= FDI_BC_BIFURCATION_SELECT; 5238 5239 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis"); 5240 I915_WRITE(SOUTH_CHICKEN1, temp); 5241 POSTING_READ(SOUTH_CHICKEN1); 5242 } 5243 5244 static void ivybridge_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) 5245 { 5246 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5247 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5248 5249 switch (crtc->pipe) { 5250 case PIPE_A: 5251 break; 5252 case PIPE_B: 5253 if (crtc_state->fdi_lanes > 2) 5254 cpt_set_fdi_bc_bifurcation(dev_priv, false); 5255 else 5256 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5257 5258 break; 5259 case PIPE_C: 5260 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5261 5262 break; 5263 default: 5264 BUG(); 5265 } 5266 } 5267 5268 /* 5269 * Finds the encoder associated with the given CRTC. This can only be 5270 * used when we know that the CRTC isn't feeding multiple encoders! 5271 */ 5272 static struct intel_encoder * 5273 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 5274 const struct intel_crtc_state *crtc_state) 5275 { 5276 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5277 const struct drm_connector_state *connector_state; 5278 const struct drm_connector *connector; 5279 struct intel_encoder *encoder = NULL; 5280 int num_encoders = 0; 5281 int i; 5282 5283 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 5284 if (connector_state->crtc != &crtc->base) 5285 continue; 5286 5287 encoder = to_intel_encoder(connector_state->best_encoder); 5288 num_encoders++; 5289 } 5290 5291 WARN(num_encoders != 1, "%d encoders for pipe %c\n", 5292 num_encoders, pipe_name(crtc->pipe)); 5293 5294 return encoder; 5295 } 5296 5297 /* 5298 * Enable PCH resources required for PCH ports: 5299 * - PCH PLLs 5300 * - FDI training & RX/TX 5301 * - update transcoder timings 5302 * - DP transcoding bits 5303 * - transcoder 5304 */ 5305 static void ironlake_pch_enable(const struct intel_atomic_state *state, 5306 const struct intel_crtc_state *crtc_state) 5307 { 5308 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5309 struct drm_device *dev = crtc->base.dev; 5310 struct drm_i915_private *dev_priv = to_i915(dev); 5311 enum pipe pipe = crtc->pipe; 5312 u32 temp; 5313 5314 assert_pch_transcoder_disabled(dev_priv, pipe); 5315 5316 if (IS_IVYBRIDGE(dev_priv)) 5317 ivybridge_update_fdi_bc_bifurcation(crtc_state); 5318 5319 /* Write the TU size bits before fdi link training, so that error 5320 * detection works. */ 5321 I915_WRITE(FDI_RX_TUSIZE1(pipe), 5322 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 5323 5324 /* For PCH output, training FDI link */ 5325 dev_priv->display.fdi_link_train(crtc, crtc_state); 5326 5327 /* We need to program the right clock selection before writing the pixel 5328 * mutliplier into the DPLL. */ 5329 if (HAS_PCH_CPT(dev_priv)) { 5330 u32 sel; 5331 5332 temp = I915_READ(PCH_DPLL_SEL); 5333 temp |= TRANS_DPLL_ENABLE(pipe); 5334 sel = TRANS_DPLLB_SEL(pipe); 5335 if (crtc_state->shared_dpll == 5336 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 5337 temp |= sel; 5338 else 5339 temp &= ~sel; 5340 I915_WRITE(PCH_DPLL_SEL, temp); 5341 } 5342 5343 /* XXX: pch pll's can be enabled any time before we enable the PCH 5344 * transcoder, and we actually should do this to not upset any PCH 5345 * transcoder that already use the clock when we share it. 5346 * 5347 * Note that enable_shared_dpll tries to do the right thing, but 5348 * get_shared_dpll unconditionally resets the pll - we need that to have 5349 * the right LVDS enable sequence. */ 5350 intel_enable_shared_dpll(crtc_state); 5351 5352 /* set transcoder timing, panel must allow it */ 5353 assert_panel_unlocked(dev_priv, pipe); 5354 ironlake_pch_transcoder_set_timings(crtc_state, pipe); 5355 5356 intel_fdi_normal_train(crtc); 5357 5358 /* For PCH DP, enable TRANS_DP_CTL */ 5359 if (HAS_PCH_CPT(dev_priv) && 5360 intel_crtc_has_dp_encoder(crtc_state)) { 5361 const struct drm_display_mode *adjusted_mode = 5362 &crtc_state->base.adjusted_mode; 5363 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 5364 i915_reg_t reg = TRANS_DP_CTL(pipe); 5365 enum port port; 5366 5367 temp = I915_READ(reg); 5368 temp &= ~(TRANS_DP_PORT_SEL_MASK | 5369 TRANS_DP_SYNC_MASK | 5370 TRANS_DP_BPC_MASK); 5371 temp |= TRANS_DP_OUTPUT_ENABLE; 5372 temp |= bpc << 9; /* same format but at 11:9 */ 5373 5374 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 5375 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 5376 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 5377 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 5378 5379 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 5380 WARN_ON(port < PORT_B || port > PORT_D); 5381 temp |= TRANS_DP_PORT_SEL(port); 5382 5383 I915_WRITE(reg, temp); 5384 } 5385 5386 ironlake_enable_pch_transcoder(crtc_state); 5387 } 5388 5389 static void lpt_pch_enable(const struct intel_atomic_state *state, 5390 const struct intel_crtc_state *crtc_state) 5391 { 5392 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5393 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5394 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5395 5396 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 5397 5398 lpt_program_iclkip(crtc_state); 5399 5400 /* Set transcoder timing. */ 5401 ironlake_pch_transcoder_set_timings(crtc_state, PIPE_A); 5402 5403 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 5404 } 5405 5406 static void cpt_verify_modeset(struct drm_device *dev, enum pipe pipe) 5407 { 5408 struct drm_i915_private *dev_priv = to_i915(dev); 5409 i915_reg_t dslreg = PIPEDSL(pipe); 5410 u32 temp; 5411 5412 temp = I915_READ(dslreg); 5413 udelay(500); 5414 if (wait_for(I915_READ(dslreg) != temp, 5)) { 5415 if (wait_for(I915_READ(dslreg) != temp, 5)) 5416 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe)); 5417 } 5418 } 5419 5420 /* 5421 * The hardware phase 0.0 refers to the center of the pixel. 5422 * We want to start from the top/left edge which is phase 5423 * -0.5. That matches how the hardware calculates the scaling 5424 * factors (from top-left of the first pixel to bottom-right 5425 * of the last pixel, as opposed to the pixel centers). 5426 * 5427 * For 4:2:0 subsampled chroma planes we obviously have to 5428 * adjust that so that the chroma sample position lands in 5429 * the right spot. 5430 * 5431 * Note that for packed YCbCr 4:2:2 formats there is no way to 5432 * control chroma siting. The hardware simply replicates the 5433 * chroma samples for both of the luma samples, and thus we don't 5434 * actually get the expected MPEG2 chroma siting convention :( 5435 * The same behaviour is observed on pre-SKL platforms as well. 5436 * 5437 * Theory behind the formula (note that we ignore sub-pixel 5438 * source coordinates): 5439 * s = source sample position 5440 * d = destination sample position 5441 * 5442 * Downscaling 4:1: 5443 * -0.5 5444 * | 0.0 5445 * | | 1.5 (initial phase) 5446 * | | | 5447 * v v v 5448 * | s | s | s | s | 5449 * | d | 5450 * 5451 * Upscaling 1:4: 5452 * -0.5 5453 * | -0.375 (initial phase) 5454 * | | 0.0 5455 * | | | 5456 * v v v 5457 * | s | 5458 * | d | d | d | d | 5459 */ 5460 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited) 5461 { 5462 int phase = -0x8000; 5463 u16 trip = 0; 5464 5465 if (chroma_cosited) 5466 phase += (sub - 1) * 0x8000 / sub; 5467 5468 phase += scale / (2 * sub); 5469 5470 /* 5471 * Hardware initial phase limited to [-0.5:1.5]. 5472 * Since the max hardware scale factor is 3.0, we 5473 * should never actually excdeed 1.0 here. 5474 */ 5475 WARN_ON(phase < -0x8000 || phase > 0x18000); 5476 5477 if (phase < 0) 5478 phase = 0x10000 + phase; 5479 else 5480 trip = PS_PHASE_TRIP; 5481 5482 return ((phase >> 2) & PS_PHASE_MASK) | trip; 5483 } 5484 5485 #define SKL_MIN_SRC_W 8 5486 #define SKL_MAX_SRC_W 4096 5487 #define SKL_MIN_SRC_H 8 5488 #define SKL_MAX_SRC_H 4096 5489 #define SKL_MIN_DST_W 8 5490 #define SKL_MAX_DST_W 4096 5491 #define SKL_MIN_DST_H 8 5492 #define SKL_MAX_DST_H 4096 5493 #define ICL_MAX_SRC_W 5120 5494 #define ICL_MAX_SRC_H 4096 5495 #define ICL_MAX_DST_W 5120 5496 #define ICL_MAX_DST_H 4096 5497 #define SKL_MIN_YUV_420_SRC_W 16 5498 #define SKL_MIN_YUV_420_SRC_H 16 5499 5500 static int 5501 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach, 5502 unsigned int scaler_user, int *scaler_id, 5503 int src_w, int src_h, int dst_w, int dst_h, 5504 const struct drm_format_info *format, bool need_scaler) 5505 { 5506 struct intel_crtc_scaler_state *scaler_state = 5507 &crtc_state->scaler_state; 5508 struct intel_crtc *intel_crtc = 5509 to_intel_crtc(crtc_state->base.crtc); 5510 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 5511 const struct drm_display_mode *adjusted_mode = 5512 &crtc_state->base.adjusted_mode; 5513 5514 /* 5515 * Src coordinates are already rotated by 270 degrees for 5516 * the 90/270 degree plane rotation cases (to match the 5517 * GTT mapping), hence no need to account for rotation here. 5518 */ 5519 if (src_w != dst_w || src_h != dst_h) 5520 need_scaler = true; 5521 5522 /* 5523 * Scaling/fitting not supported in IF-ID mode in GEN9+ 5524 * TODO: Interlace fetch mode doesn't support YUV420 planar formats. 5525 * Once NV12 is enabled, handle it here while allocating scaler 5526 * for NV12. 5527 */ 5528 if (INTEL_GEN(dev_priv) >= 9 && crtc_state->base.enable && 5529 need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 5530 DRM_DEBUG_KMS("Pipe/Plane scaling not supported with IF-ID mode\n"); 5531 return -EINVAL; 5532 } 5533 5534 /* 5535 * if plane is being disabled or scaler is no more required or force detach 5536 * - free scaler binded to this plane/crtc 5537 * - in order to do this, update crtc->scaler_usage 5538 * 5539 * Here scaler state in crtc_state is set free so that 5540 * scaler can be assigned to other user. Actual register 5541 * update to free the scaler is done in plane/panel-fit programming. 5542 * For this purpose crtc/plane_state->scaler_id isn't reset here. 5543 */ 5544 if (force_detach || !need_scaler) { 5545 if (*scaler_id >= 0) { 5546 scaler_state->scaler_users &= ~(1 << scaler_user); 5547 scaler_state->scalers[*scaler_id].in_use = 0; 5548 5549 DRM_DEBUG_KMS("scaler_user index %u.%u: " 5550 "Staged freeing scaler id %d scaler_users = 0x%x\n", 5551 intel_crtc->pipe, scaler_user, *scaler_id, 5552 scaler_state->scaler_users); 5553 *scaler_id = -1; 5554 } 5555 return 0; 5556 } 5557 5558 if (format && drm_format_info_is_yuv_semiplanar(format) && 5559 (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) { 5560 DRM_DEBUG_KMS("Planar YUV: src dimensions not met\n"); 5561 return -EINVAL; 5562 } 5563 5564 /* range checks */ 5565 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H || 5566 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H || 5567 (INTEL_GEN(dev_priv) >= 11 && 5568 (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H || 5569 dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) || 5570 (INTEL_GEN(dev_priv) < 11 && 5571 (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H || 5572 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) { 5573 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u " 5574 "size is out of scaler range\n", 5575 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h); 5576 return -EINVAL; 5577 } 5578 5579 /* mark this plane as a scaler user in crtc_state */ 5580 scaler_state->scaler_users |= (1 << scaler_user); 5581 DRM_DEBUG_KMS("scaler_user index %u.%u: " 5582 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n", 5583 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h, 5584 scaler_state->scaler_users); 5585 5586 return 0; 5587 } 5588 5589 /** 5590 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc. 5591 * 5592 * @state: crtc's scaler state 5593 * 5594 * Return 5595 * 0 - scaler_usage updated successfully 5596 * error - requested scaling cannot be supported or other error condition 5597 */ 5598 int skl_update_scaler_crtc(struct intel_crtc_state *state) 5599 { 5600 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode; 5601 bool need_scaler = false; 5602 5603 if (state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 5604 need_scaler = true; 5605 5606 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX, 5607 &state->scaler_state.scaler_id, 5608 state->pipe_src_w, state->pipe_src_h, 5609 adjusted_mode->crtc_hdisplay, 5610 adjusted_mode->crtc_vdisplay, NULL, need_scaler); 5611 } 5612 5613 /** 5614 * skl_update_scaler_plane - Stages update to scaler state for a given plane. 5615 * @crtc_state: crtc's scaler state 5616 * @plane_state: atomic plane state to update 5617 * 5618 * Return 5619 * 0 - scaler_usage updated successfully 5620 * error - requested scaling cannot be supported or other error condition 5621 */ 5622 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state, 5623 struct intel_plane_state *plane_state) 5624 { 5625 struct intel_plane *intel_plane = 5626 to_intel_plane(plane_state->base.plane); 5627 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 5628 struct drm_framebuffer *fb = plane_state->base.fb; 5629 int ret; 5630 bool force_detach = !fb || !plane_state->base.visible; 5631 bool need_scaler = false; 5632 5633 /* Pre-gen11 and SDR planes always need a scaler for planar formats. */ 5634 if (!icl_is_hdr_plane(dev_priv, intel_plane->id) && 5635 fb && drm_format_info_is_yuv_semiplanar(fb->format)) 5636 need_scaler = true; 5637 5638 ret = skl_update_scaler(crtc_state, force_detach, 5639 drm_plane_index(&intel_plane->base), 5640 &plane_state->scaler_id, 5641 drm_rect_width(&plane_state->base.src) >> 16, 5642 drm_rect_height(&plane_state->base.src) >> 16, 5643 drm_rect_width(&plane_state->base.dst), 5644 drm_rect_height(&plane_state->base.dst), 5645 fb ? fb->format : NULL, need_scaler); 5646 5647 if (ret || plane_state->scaler_id < 0) 5648 return ret; 5649 5650 /* check colorkey */ 5651 if (plane_state->ckey.flags) { 5652 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed", 5653 intel_plane->base.base.id, 5654 intel_plane->base.name); 5655 return -EINVAL; 5656 } 5657 5658 /* Check src format */ 5659 switch (fb->format->format) { 5660 case DRM_FORMAT_RGB565: 5661 case DRM_FORMAT_XBGR8888: 5662 case DRM_FORMAT_XRGB8888: 5663 case DRM_FORMAT_ABGR8888: 5664 case DRM_FORMAT_ARGB8888: 5665 case DRM_FORMAT_XRGB2101010: 5666 case DRM_FORMAT_XBGR2101010: 5667 case DRM_FORMAT_YUYV: 5668 case DRM_FORMAT_YVYU: 5669 case DRM_FORMAT_UYVY: 5670 case DRM_FORMAT_VYUY: 5671 case DRM_FORMAT_NV12: 5672 case DRM_FORMAT_P010: 5673 case DRM_FORMAT_P012: 5674 case DRM_FORMAT_P016: 5675 case DRM_FORMAT_Y210: 5676 case DRM_FORMAT_Y212: 5677 case DRM_FORMAT_Y216: 5678 case DRM_FORMAT_XVYU2101010: 5679 case DRM_FORMAT_XVYU12_16161616: 5680 case DRM_FORMAT_XVYU16161616: 5681 break; 5682 case DRM_FORMAT_XBGR16161616F: 5683 case DRM_FORMAT_ABGR16161616F: 5684 case DRM_FORMAT_XRGB16161616F: 5685 case DRM_FORMAT_ARGB16161616F: 5686 if (INTEL_GEN(dev_priv) >= 11) 5687 break; 5688 /* fall through */ 5689 default: 5690 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n", 5691 intel_plane->base.base.id, intel_plane->base.name, 5692 fb->base.id, fb->format->format); 5693 return -EINVAL; 5694 } 5695 5696 return 0; 5697 } 5698 5699 static void skylake_scaler_disable(struct intel_crtc *crtc) 5700 { 5701 int i; 5702 5703 for (i = 0; i < crtc->num_scalers; i++) 5704 skl_detach_scaler(crtc, i); 5705 } 5706 5707 static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state) 5708 { 5709 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5710 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5711 enum pipe pipe = crtc->pipe; 5712 const struct intel_crtc_scaler_state *scaler_state = 5713 &crtc_state->scaler_state; 5714 5715 if (crtc_state->pch_pfit.enabled) { 5716 u16 uv_rgb_hphase, uv_rgb_vphase; 5717 int pfit_w, pfit_h, hscale, vscale; 5718 int id; 5719 5720 if (WARN_ON(crtc_state->scaler_state.scaler_id < 0)) 5721 return; 5722 5723 pfit_w = (crtc_state->pch_pfit.size >> 16) & 0xFFFF; 5724 pfit_h = crtc_state->pch_pfit.size & 0xFFFF; 5725 5726 hscale = (crtc_state->pipe_src_w << 16) / pfit_w; 5727 vscale = (crtc_state->pipe_src_h << 16) / pfit_h; 5728 5729 uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false); 5730 uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false); 5731 5732 id = scaler_state->scaler_id; 5733 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN | 5734 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode); 5735 I915_WRITE_FW(SKL_PS_VPHASE(pipe, id), 5736 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase)); 5737 I915_WRITE_FW(SKL_PS_HPHASE(pipe, id), 5738 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase)); 5739 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc_state->pch_pfit.pos); 5740 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc_state->pch_pfit.size); 5741 } 5742 } 5743 5744 static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state) 5745 { 5746 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5747 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5748 enum pipe pipe = crtc->pipe; 5749 5750 if (crtc_state->pch_pfit.enabled) { 5751 /* Force use of hard-coded filter coefficients 5752 * as some pre-programmed values are broken, 5753 * e.g. x201. 5754 */ 5755 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 5756 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 | 5757 PF_PIPE_SEL_IVB(pipe)); 5758 else 5759 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3); 5760 I915_WRITE(PF_WIN_POS(pipe), crtc_state->pch_pfit.pos); 5761 I915_WRITE(PF_WIN_SZ(pipe), crtc_state->pch_pfit.size); 5762 } 5763 } 5764 5765 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 5766 { 5767 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5768 struct drm_device *dev = crtc->base.dev; 5769 struct drm_i915_private *dev_priv = to_i915(dev); 5770 5771 if (!crtc_state->ips_enabled) 5772 return; 5773 5774 /* 5775 * We can only enable IPS after we enable a plane and wait for a vblank 5776 * This function is called from post_plane_update, which is run after 5777 * a vblank wait. 5778 */ 5779 WARN_ON(!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 5780 5781 if (IS_BROADWELL(dev_priv)) { 5782 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 5783 IPS_ENABLE | IPS_PCODE_CONTROL)); 5784 /* Quoting Art Runyan: "its not safe to expect any particular 5785 * value in IPS_CTL bit 31 after enabling IPS through the 5786 * mailbox." Moreover, the mailbox may return a bogus state, 5787 * so we need to just enable it and continue on. 5788 */ 5789 } else { 5790 I915_WRITE(IPS_CTL, IPS_ENABLE); 5791 /* The bit only becomes 1 in the next vblank, so this wait here 5792 * is essentially intel_wait_for_vblank. If we don't have this 5793 * and don't wait for vblanks until the end of crtc_enable, then 5794 * the HW state readout code will complain that the expected 5795 * IPS_CTL value is not the one we read. */ 5796 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 5797 DRM_ERROR("Timed out waiting for IPS enable\n"); 5798 } 5799 } 5800 5801 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 5802 { 5803 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 5804 struct drm_device *dev = crtc->base.dev; 5805 struct drm_i915_private *dev_priv = to_i915(dev); 5806 5807 if (!crtc_state->ips_enabled) 5808 return; 5809 5810 if (IS_BROADWELL(dev_priv)) { 5811 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 5812 /* 5813 * Wait for PCODE to finish disabling IPS. The BSpec specified 5814 * 42ms timeout value leads to occasional timeouts so use 100ms 5815 * instead. 5816 */ 5817 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 5818 DRM_ERROR("Timed out waiting for IPS disable\n"); 5819 } else { 5820 I915_WRITE(IPS_CTL, 0); 5821 POSTING_READ(IPS_CTL); 5822 } 5823 5824 /* We need to wait for a vblank before we can disable the plane. */ 5825 intel_wait_for_vblank(dev_priv, crtc->pipe); 5826 } 5827 5828 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) 5829 { 5830 if (intel_crtc->overlay) 5831 (void) intel_overlay_switch_off(intel_crtc->overlay); 5832 5833 /* Let userspace switch the overlay on again. In most cases userspace 5834 * has to recompute where to put it anyway. 5835 */ 5836 } 5837 5838 /** 5839 * intel_post_enable_primary - Perform operations after enabling primary plane 5840 * @crtc: the CRTC whose primary plane was just enabled 5841 * @new_crtc_state: the enabling state 5842 * 5843 * Performs potentially sleeping operations that must be done after the primary 5844 * plane is enabled, such as updating FBC and IPS. Note that this may be 5845 * called due to an explicit primary plane update, or due to an implicit 5846 * re-enable that is caused when a sprite plane is updated to no longer 5847 * completely hide the primary plane. 5848 */ 5849 static void 5850 intel_post_enable_primary(struct drm_crtc *crtc, 5851 const struct intel_crtc_state *new_crtc_state) 5852 { 5853 struct drm_device *dev = crtc->dev; 5854 struct drm_i915_private *dev_priv = to_i915(dev); 5855 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 5856 enum pipe pipe = intel_crtc->pipe; 5857 5858 /* 5859 * Gen2 reports pipe underruns whenever all planes are disabled. 5860 * So don't enable underrun reporting before at least some planes 5861 * are enabled. 5862 * FIXME: Need to fix the logic to work when we turn off all planes 5863 * but leave the pipe running. 5864 */ 5865 if (IS_GEN(dev_priv, 2)) 5866 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 5867 5868 /* Underruns don't always raise interrupts, so check manually. */ 5869 intel_check_cpu_fifo_underruns(dev_priv); 5870 intel_check_pch_fifo_underruns(dev_priv); 5871 } 5872 5873 /* FIXME get rid of this and use pre_plane_update */ 5874 static void 5875 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc) 5876 { 5877 struct drm_device *dev = crtc->dev; 5878 struct drm_i915_private *dev_priv = to_i915(dev); 5879 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 5880 enum pipe pipe = intel_crtc->pipe; 5881 5882 /* 5883 * Gen2 reports pipe underruns whenever all planes are disabled. 5884 * So disable underrun reporting before all the planes get disabled. 5885 */ 5886 if (IS_GEN(dev_priv, 2)) 5887 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 5888 5889 hsw_disable_ips(to_intel_crtc_state(crtc->state)); 5890 5891 /* 5892 * Vblank time updates from the shadow to live plane control register 5893 * are blocked if the memory self-refresh mode is active at that 5894 * moment. So to make sure the plane gets truly disabled, disable 5895 * first the self-refresh mode. The self-refresh enable bit in turn 5896 * will be checked/applied by the HW only at the next frame start 5897 * event which is after the vblank start event, so we need to have a 5898 * wait-for-vblank between disabling the plane and the pipe. 5899 */ 5900 if (HAS_GMCH(dev_priv) && 5901 intel_set_memory_cxsr(dev_priv, false)) 5902 intel_wait_for_vblank(dev_priv, pipe); 5903 } 5904 5905 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 5906 const struct intel_crtc_state *new_crtc_state) 5907 { 5908 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); 5909 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5910 5911 if (!old_crtc_state->ips_enabled) 5912 return false; 5913 5914 if (needs_modeset(new_crtc_state)) 5915 return true; 5916 5917 /* 5918 * Workaround : Do not read or write the pipe palette/gamma data while 5919 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 5920 * 5921 * Disable IPS before we program the LUT. 5922 */ 5923 if (IS_HASWELL(dev_priv) && 5924 (new_crtc_state->base.color_mgmt_changed || 5925 new_crtc_state->update_pipe) && 5926 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 5927 return true; 5928 5929 return !new_crtc_state->ips_enabled; 5930 } 5931 5932 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 5933 const struct intel_crtc_state *new_crtc_state) 5934 { 5935 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); 5936 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5937 5938 if (!new_crtc_state->ips_enabled) 5939 return false; 5940 5941 if (needs_modeset(new_crtc_state)) 5942 return true; 5943 5944 /* 5945 * Workaround : Do not read or write the pipe palette/gamma data while 5946 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 5947 * 5948 * Re-enable IPS after the LUT has been programmed. 5949 */ 5950 if (IS_HASWELL(dev_priv) && 5951 (new_crtc_state->base.color_mgmt_changed || 5952 new_crtc_state->update_pipe) && 5953 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 5954 return true; 5955 5956 /* 5957 * We can't read out IPS on broadwell, assume the worst and 5958 * forcibly enable IPS on the first fastset. 5959 */ 5960 if (new_crtc_state->update_pipe && 5961 old_crtc_state->base.adjusted_mode.private_flags & I915_MODE_FLAG_INHERITED) 5962 return true; 5963 5964 return !old_crtc_state->ips_enabled; 5965 } 5966 5967 static bool needs_nv12_wa(struct drm_i915_private *dev_priv, 5968 const struct intel_crtc_state *crtc_state) 5969 { 5970 if (!crtc_state->nv12_planes) 5971 return false; 5972 5973 /* WA Display #0827: Gen9:all */ 5974 if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv)) 5975 return true; 5976 5977 return false; 5978 } 5979 5980 static bool needs_scalerclk_wa(struct drm_i915_private *dev_priv, 5981 const struct intel_crtc_state *crtc_state) 5982 { 5983 /* Wa_2006604312:icl */ 5984 if (crtc_state->scaler_state.scaler_users > 0 && IS_ICELAKE(dev_priv)) 5985 return true; 5986 5987 return false; 5988 } 5989 5990 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state) 5991 { 5992 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 5993 struct drm_device *dev = crtc->base.dev; 5994 struct drm_i915_private *dev_priv = to_i915(dev); 5995 struct drm_atomic_state *state = old_crtc_state->base.state; 5996 struct intel_crtc_state *pipe_config = 5997 intel_atomic_get_new_crtc_state(to_intel_atomic_state(state), 5998 crtc); 5999 struct drm_plane *primary = crtc->base.primary; 6000 struct drm_plane_state *old_primary_state = 6001 drm_atomic_get_old_plane_state(state, primary); 6002 6003 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits); 6004 6005 if (pipe_config->update_wm_post && pipe_config->base.active) 6006 intel_update_watermarks(crtc); 6007 6008 if (hsw_post_update_enable_ips(old_crtc_state, pipe_config)) 6009 hsw_enable_ips(pipe_config); 6010 6011 if (old_primary_state) { 6012 struct drm_plane_state *new_primary_state = 6013 drm_atomic_get_new_plane_state(state, primary); 6014 6015 intel_fbc_post_update(crtc); 6016 6017 if (new_primary_state->visible && 6018 (needs_modeset(pipe_config) || 6019 !old_primary_state->visible)) 6020 intel_post_enable_primary(&crtc->base, pipe_config); 6021 } 6022 6023 if (needs_nv12_wa(dev_priv, old_crtc_state) && 6024 !needs_nv12_wa(dev_priv, pipe_config)) 6025 skl_wa_827(dev_priv, crtc->pipe, false); 6026 6027 if (needs_scalerclk_wa(dev_priv, old_crtc_state) && 6028 !needs_scalerclk_wa(dev_priv, pipe_config)) 6029 icl_wa_scalerclkgating(dev_priv, crtc->pipe, false); 6030 } 6031 6032 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state, 6033 struct intel_crtc_state *pipe_config) 6034 { 6035 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 6036 struct drm_device *dev = crtc->base.dev; 6037 struct drm_i915_private *dev_priv = to_i915(dev); 6038 struct drm_atomic_state *state = old_crtc_state->base.state; 6039 struct drm_plane *primary = crtc->base.primary; 6040 struct drm_plane_state *old_primary_state = 6041 drm_atomic_get_old_plane_state(state, primary); 6042 bool modeset = needs_modeset(pipe_config); 6043 struct intel_atomic_state *intel_state = 6044 to_intel_atomic_state(state); 6045 6046 if (hsw_pre_update_disable_ips(old_crtc_state, pipe_config)) 6047 hsw_disable_ips(old_crtc_state); 6048 6049 if (old_primary_state) { 6050 struct intel_plane_state *new_primary_state = 6051 intel_atomic_get_new_plane_state(intel_state, 6052 to_intel_plane(primary)); 6053 6054 intel_fbc_pre_update(crtc, pipe_config, new_primary_state); 6055 /* 6056 * Gen2 reports pipe underruns whenever all planes are disabled. 6057 * So disable underrun reporting before all the planes get disabled. 6058 */ 6059 if (IS_GEN(dev_priv, 2) && old_primary_state->visible && 6060 (modeset || !new_primary_state->base.visible)) 6061 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 6062 } 6063 6064 /* Display WA 827 */ 6065 if (!needs_nv12_wa(dev_priv, old_crtc_state) && 6066 needs_nv12_wa(dev_priv, pipe_config)) 6067 skl_wa_827(dev_priv, crtc->pipe, true); 6068 6069 /* Wa_2006604312:icl */ 6070 if (!needs_scalerclk_wa(dev_priv, old_crtc_state) && 6071 needs_scalerclk_wa(dev_priv, pipe_config)) 6072 icl_wa_scalerclkgating(dev_priv, crtc->pipe, true); 6073 6074 /* 6075 * Vblank time updates from the shadow to live plane control register 6076 * are blocked if the memory self-refresh mode is active at that 6077 * moment. So to make sure the plane gets truly disabled, disable 6078 * first the self-refresh mode. The self-refresh enable bit in turn 6079 * will be checked/applied by the HW only at the next frame start 6080 * event which is after the vblank start event, so we need to have a 6081 * wait-for-vblank between disabling the plane and the pipe. 6082 */ 6083 if (HAS_GMCH(dev_priv) && old_crtc_state->base.active && 6084 pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 6085 intel_wait_for_vblank(dev_priv, crtc->pipe); 6086 6087 /* 6088 * IVB workaround: must disable low power watermarks for at least 6089 * one frame before enabling scaling. LP watermarks can be re-enabled 6090 * when scaling is disabled. 6091 * 6092 * WaCxSRDisabledForSpriteScaling:ivb 6093 */ 6094 if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev) && 6095 old_crtc_state->base.active) 6096 intel_wait_for_vblank(dev_priv, crtc->pipe); 6097 6098 /* 6099 * If we're doing a modeset, we're done. No need to do any pre-vblank 6100 * watermark programming here. 6101 */ 6102 if (needs_modeset(pipe_config)) 6103 return; 6104 6105 /* 6106 * For platforms that support atomic watermarks, program the 6107 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 6108 * will be the intermediate values that are safe for both pre- and 6109 * post- vblank; when vblank happens, the 'active' values will be set 6110 * to the final 'target' values and we'll do this again to get the 6111 * optimal watermarks. For gen9+ platforms, the values we program here 6112 * will be the final target values which will get automatically latched 6113 * at vblank time; no further programming will be necessary. 6114 * 6115 * If a platform hasn't been transitioned to atomic watermarks yet, 6116 * we'll continue to update watermarks the old way, if flags tell 6117 * us to. 6118 */ 6119 if (dev_priv->display.initial_watermarks != NULL) 6120 dev_priv->display.initial_watermarks(intel_state, 6121 pipe_config); 6122 else if (pipe_config->update_wm_pre) 6123 intel_update_watermarks(crtc); 6124 } 6125 6126 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 6127 struct intel_crtc *crtc) 6128 { 6129 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6130 const struct intel_crtc_state *new_crtc_state = 6131 intel_atomic_get_new_crtc_state(state, crtc); 6132 unsigned int update_mask = new_crtc_state->update_planes; 6133 const struct intel_plane_state *old_plane_state; 6134 struct intel_plane *plane; 6135 unsigned fb_bits = 0; 6136 int i; 6137 6138 intel_crtc_dpms_overlay_disable(crtc); 6139 6140 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 6141 if (crtc->pipe != plane->pipe || 6142 !(update_mask & BIT(plane->id))) 6143 continue; 6144 6145 intel_disable_plane(plane, new_crtc_state); 6146 6147 if (old_plane_state->base.visible) 6148 fb_bits |= plane->frontbuffer_bit; 6149 } 6150 6151 intel_frontbuffer_flip(dev_priv, fb_bits); 6152 } 6153 6154 /* 6155 * intel_connector_primary_encoder - get the primary encoder for a connector 6156 * @connector: connector for which to return the encoder 6157 * 6158 * Returns the primary encoder for a connector. There is a 1:1 mapping from 6159 * all connectors to their encoder, except for DP-MST connectors which have 6160 * both a virtual and a primary encoder. These DP-MST primary encoders can be 6161 * pointed to by as many DP-MST connectors as there are pipes. 6162 */ 6163 static struct intel_encoder * 6164 intel_connector_primary_encoder(struct intel_connector *connector) 6165 { 6166 struct intel_encoder *encoder; 6167 6168 if (connector->mst_port) 6169 return &dp_to_dig_port(connector->mst_port)->base; 6170 6171 encoder = intel_attached_encoder(&connector->base); 6172 WARN_ON(!encoder); 6173 6174 return encoder; 6175 } 6176 6177 static bool 6178 intel_connector_needs_modeset(struct intel_atomic_state *state, 6179 const struct drm_connector_state *old_conn_state, 6180 const struct drm_connector_state *new_conn_state) 6181 { 6182 struct intel_crtc *old_crtc = old_conn_state->crtc ? 6183 to_intel_crtc(old_conn_state->crtc) : NULL; 6184 struct intel_crtc *new_crtc = new_conn_state->crtc ? 6185 to_intel_crtc(new_conn_state->crtc) : NULL; 6186 6187 return new_crtc != old_crtc || 6188 (new_crtc && 6189 needs_modeset(intel_atomic_get_new_crtc_state(state, new_crtc))); 6190 } 6191 6192 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 6193 { 6194 struct drm_connector_state *old_conn_state; 6195 struct drm_connector_state *new_conn_state; 6196 struct drm_connector *conn; 6197 int i; 6198 6199 for_each_oldnew_connector_in_state(&state->base, conn, 6200 old_conn_state, new_conn_state, i) { 6201 struct intel_encoder *encoder; 6202 struct intel_crtc *crtc; 6203 6204 if (!intel_connector_needs_modeset(state, 6205 old_conn_state, 6206 new_conn_state)) 6207 continue; 6208 6209 encoder = intel_connector_primary_encoder(to_intel_connector(conn)); 6210 if (!encoder->update_prepare) 6211 continue; 6212 6213 crtc = new_conn_state->crtc ? 6214 to_intel_crtc(new_conn_state->crtc) : NULL; 6215 encoder->update_prepare(state, encoder, crtc); 6216 } 6217 } 6218 6219 static void intel_encoders_update_complete(struct intel_atomic_state *state) 6220 { 6221 struct drm_connector_state *old_conn_state; 6222 struct drm_connector_state *new_conn_state; 6223 struct drm_connector *conn; 6224 int i; 6225 6226 for_each_oldnew_connector_in_state(&state->base, conn, 6227 old_conn_state, new_conn_state, i) { 6228 struct intel_encoder *encoder; 6229 struct intel_crtc *crtc; 6230 6231 if (!intel_connector_needs_modeset(state, 6232 old_conn_state, 6233 new_conn_state)) 6234 continue; 6235 6236 encoder = intel_connector_primary_encoder(to_intel_connector(conn)); 6237 if (!encoder->update_complete) 6238 continue; 6239 6240 crtc = new_conn_state->crtc ? 6241 to_intel_crtc(new_conn_state->crtc) : NULL; 6242 encoder->update_complete(state, encoder, crtc); 6243 } 6244 } 6245 6246 static void intel_encoders_pre_pll_enable(struct intel_crtc *crtc, 6247 struct intel_crtc_state *crtc_state, 6248 struct intel_atomic_state *state) 6249 { 6250 struct drm_connector_state *conn_state; 6251 struct drm_connector *conn; 6252 int i; 6253 6254 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6255 struct intel_encoder *encoder = 6256 to_intel_encoder(conn_state->best_encoder); 6257 6258 if (conn_state->crtc != &crtc->base) 6259 continue; 6260 6261 if (encoder->pre_pll_enable) 6262 encoder->pre_pll_enable(encoder, crtc_state, conn_state); 6263 } 6264 } 6265 6266 static void intel_encoders_pre_enable(struct intel_crtc *crtc, 6267 struct intel_crtc_state *crtc_state, 6268 struct intel_atomic_state *state) 6269 { 6270 struct drm_connector_state *conn_state; 6271 struct drm_connector *conn; 6272 int i; 6273 6274 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6275 struct intel_encoder *encoder = 6276 to_intel_encoder(conn_state->best_encoder); 6277 6278 if (conn_state->crtc != &crtc->base) 6279 continue; 6280 6281 if (encoder->pre_enable) 6282 encoder->pre_enable(encoder, crtc_state, conn_state); 6283 } 6284 } 6285 6286 static void intel_encoders_enable(struct intel_crtc *crtc, 6287 struct intel_crtc_state *crtc_state, 6288 struct intel_atomic_state *state) 6289 { 6290 struct drm_connector_state *conn_state; 6291 struct drm_connector *conn; 6292 int i; 6293 6294 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6295 struct intel_encoder *encoder = 6296 to_intel_encoder(conn_state->best_encoder); 6297 6298 if (conn_state->crtc != &crtc->base) 6299 continue; 6300 6301 if (encoder->enable) 6302 encoder->enable(encoder, crtc_state, conn_state); 6303 intel_opregion_notify_encoder(encoder, true); 6304 } 6305 } 6306 6307 static void intel_encoders_disable(struct intel_crtc *crtc, 6308 struct intel_crtc_state *old_crtc_state, 6309 struct intel_atomic_state *state) 6310 { 6311 struct drm_connector_state *old_conn_state; 6312 struct drm_connector *conn; 6313 int i; 6314 6315 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6316 struct intel_encoder *encoder = 6317 to_intel_encoder(old_conn_state->best_encoder); 6318 6319 if (old_conn_state->crtc != &crtc->base) 6320 continue; 6321 6322 intel_opregion_notify_encoder(encoder, false); 6323 if (encoder->disable) 6324 encoder->disable(encoder, old_crtc_state, old_conn_state); 6325 } 6326 } 6327 6328 static void intel_encoders_post_disable(struct intel_crtc *crtc, 6329 struct intel_crtc_state *old_crtc_state, 6330 struct intel_atomic_state *state) 6331 { 6332 struct drm_connector_state *old_conn_state; 6333 struct drm_connector *conn; 6334 int i; 6335 6336 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6337 struct intel_encoder *encoder = 6338 to_intel_encoder(old_conn_state->best_encoder); 6339 6340 if (old_conn_state->crtc != &crtc->base) 6341 continue; 6342 6343 if (encoder->post_disable) 6344 encoder->post_disable(encoder, old_crtc_state, old_conn_state); 6345 } 6346 } 6347 6348 static void intel_encoders_post_pll_disable(struct intel_crtc *crtc, 6349 struct intel_crtc_state *old_crtc_state, 6350 struct intel_atomic_state *state) 6351 { 6352 struct drm_connector_state *old_conn_state; 6353 struct drm_connector *conn; 6354 int i; 6355 6356 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6357 struct intel_encoder *encoder = 6358 to_intel_encoder(old_conn_state->best_encoder); 6359 6360 if (old_conn_state->crtc != &crtc->base) 6361 continue; 6362 6363 if (encoder->post_pll_disable) 6364 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state); 6365 } 6366 } 6367 6368 static void intel_encoders_update_pipe(struct intel_crtc *crtc, 6369 struct intel_crtc_state *crtc_state, 6370 struct intel_atomic_state *state) 6371 { 6372 struct drm_connector_state *conn_state; 6373 struct drm_connector *conn; 6374 int i; 6375 6376 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6377 struct intel_encoder *encoder = 6378 to_intel_encoder(conn_state->best_encoder); 6379 6380 if (conn_state->crtc != &crtc->base) 6381 continue; 6382 6383 if (encoder->update_pipe) 6384 encoder->update_pipe(encoder, crtc_state, conn_state); 6385 } 6386 } 6387 6388 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 6389 { 6390 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 6391 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 6392 6393 plane->disable_plane(plane, crtc_state); 6394 } 6395 6396 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config, 6397 struct intel_atomic_state *state) 6398 { 6399 struct drm_crtc *crtc = pipe_config->base.crtc; 6400 struct drm_device *dev = crtc->dev; 6401 struct drm_i915_private *dev_priv = to_i915(dev); 6402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6403 enum pipe pipe = intel_crtc->pipe; 6404 6405 if (WARN_ON(intel_crtc->active)) 6406 return; 6407 6408 /* 6409 * Sometimes spurious CPU pipe underruns happen during FDI 6410 * training, at least with VGA+HDMI cloning. Suppress them. 6411 * 6412 * On ILK we get an occasional spurious CPU pipe underruns 6413 * between eDP port A enable and vdd enable. Also PCH port 6414 * enable seems to result in the occasional CPU pipe underrun. 6415 * 6416 * Spurious PCH underruns also occur during PCH enabling. 6417 */ 6418 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6419 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 6420 6421 if (pipe_config->has_pch_encoder) 6422 intel_prepare_shared_dpll(pipe_config); 6423 6424 if (intel_crtc_has_dp_encoder(pipe_config)) 6425 intel_dp_set_m_n(pipe_config, M1_N1); 6426 6427 intel_set_pipe_timings(pipe_config); 6428 intel_set_pipe_src_size(pipe_config); 6429 6430 if (pipe_config->has_pch_encoder) { 6431 intel_cpu_transcoder_set_m_n(pipe_config, 6432 &pipe_config->fdi_m_n, NULL); 6433 } 6434 6435 ironlake_set_pipeconf(pipe_config); 6436 6437 intel_crtc->active = true; 6438 6439 intel_encoders_pre_enable(intel_crtc, pipe_config, state); 6440 6441 if (pipe_config->has_pch_encoder) { 6442 /* Note: FDI PLL enabling _must_ be done before we enable the 6443 * cpu pipes, hence this is separate from all the other fdi/pch 6444 * enabling. */ 6445 ironlake_fdi_pll_enable(pipe_config); 6446 } else { 6447 assert_fdi_tx_disabled(dev_priv, pipe); 6448 assert_fdi_rx_disabled(dev_priv, pipe); 6449 } 6450 6451 ironlake_pfit_enable(pipe_config); 6452 6453 /* 6454 * On ILK+ LUT must be loaded before the pipe is running but with 6455 * clocks enabled 6456 */ 6457 intel_color_load_luts(pipe_config); 6458 intel_color_commit(pipe_config); 6459 /* update DSPCNTR to configure gamma for pipe bottom color */ 6460 intel_disable_primary_plane(pipe_config); 6461 6462 if (dev_priv->display.initial_watermarks != NULL) 6463 dev_priv->display.initial_watermarks(state, pipe_config); 6464 intel_enable_pipe(pipe_config); 6465 6466 if (pipe_config->has_pch_encoder) 6467 ironlake_pch_enable(state, pipe_config); 6468 6469 assert_vblank_disabled(crtc); 6470 intel_crtc_vblank_on(pipe_config); 6471 6472 intel_encoders_enable(intel_crtc, pipe_config, state); 6473 6474 if (HAS_PCH_CPT(dev_priv)) 6475 cpt_verify_modeset(dev, intel_crtc->pipe); 6476 6477 /* 6478 * Must wait for vblank to avoid spurious PCH FIFO underruns. 6479 * And a second vblank wait is needed at least on ILK with 6480 * some interlaced HDMI modes. Let's do the double wait always 6481 * in case there are more corner cases we don't know about. 6482 */ 6483 if (pipe_config->has_pch_encoder) { 6484 intel_wait_for_vblank(dev_priv, pipe); 6485 intel_wait_for_vblank(dev_priv, pipe); 6486 } 6487 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 6488 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 6489 } 6490 6491 /* IPS only exists on ULT machines and is tied to pipe A. */ 6492 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 6493 { 6494 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 6495 } 6496 6497 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 6498 enum pipe pipe, bool apply) 6499 { 6500 u32 val = I915_READ(CLKGATE_DIS_PSL(pipe)); 6501 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 6502 6503 if (apply) 6504 val |= mask; 6505 else 6506 val &= ~mask; 6507 6508 I915_WRITE(CLKGATE_DIS_PSL(pipe), val); 6509 } 6510 6511 static void icl_pipe_mbus_enable(struct intel_crtc *crtc) 6512 { 6513 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6514 enum pipe pipe = crtc->pipe; 6515 u32 val; 6516 6517 val = MBUS_DBOX_A_CREDIT(2); 6518 6519 if (INTEL_GEN(dev_priv) >= 12) { 6520 val |= MBUS_DBOX_BW_CREDIT(2); 6521 val |= MBUS_DBOX_B_CREDIT(12); 6522 } else { 6523 val |= MBUS_DBOX_BW_CREDIT(1); 6524 val |= MBUS_DBOX_B_CREDIT(8); 6525 } 6526 6527 I915_WRITE(PIPE_MBUS_DBOX_CTL(pipe), val); 6528 } 6529 6530 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config, 6531 struct intel_atomic_state *state) 6532 { 6533 struct drm_crtc *crtc = pipe_config->base.crtc; 6534 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 6535 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6536 enum pipe pipe = intel_crtc->pipe, hsw_workaround_pipe; 6537 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 6538 bool psl_clkgate_wa; 6539 6540 if (WARN_ON(intel_crtc->active)) 6541 return; 6542 6543 intel_encoders_pre_pll_enable(intel_crtc, pipe_config, state); 6544 6545 if (pipe_config->shared_dpll) 6546 intel_enable_shared_dpll(pipe_config); 6547 6548 intel_encoders_pre_enable(intel_crtc, pipe_config, state); 6549 6550 if (intel_crtc_has_dp_encoder(pipe_config)) 6551 intel_dp_set_m_n(pipe_config, M1_N1); 6552 6553 if (!transcoder_is_dsi(cpu_transcoder)) 6554 intel_set_pipe_timings(pipe_config); 6555 6556 if (INTEL_GEN(dev_priv) >= 11) 6557 icl_enable_trans_port_sync(pipe_config); 6558 6559 intel_set_pipe_src_size(pipe_config); 6560 6561 if (cpu_transcoder != TRANSCODER_EDP && 6562 !transcoder_is_dsi(cpu_transcoder)) { 6563 I915_WRITE(PIPE_MULT(cpu_transcoder), 6564 pipe_config->pixel_multiplier - 1); 6565 } 6566 6567 if (pipe_config->has_pch_encoder) { 6568 intel_cpu_transcoder_set_m_n(pipe_config, 6569 &pipe_config->fdi_m_n, NULL); 6570 } 6571 6572 if (!transcoder_is_dsi(cpu_transcoder)) 6573 haswell_set_pipeconf(pipe_config); 6574 6575 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 6576 bdw_set_pipemisc(pipe_config); 6577 6578 intel_crtc->active = true; 6579 6580 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */ 6581 psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) && 6582 pipe_config->pch_pfit.enabled; 6583 if (psl_clkgate_wa) 6584 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 6585 6586 if (INTEL_GEN(dev_priv) >= 9) 6587 skylake_pfit_enable(pipe_config); 6588 else 6589 ironlake_pfit_enable(pipe_config); 6590 6591 /* 6592 * On ILK+ LUT must be loaded before the pipe is running but with 6593 * clocks enabled 6594 */ 6595 intel_color_load_luts(pipe_config); 6596 intel_color_commit(pipe_config); 6597 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 6598 if (INTEL_GEN(dev_priv) < 9) 6599 intel_disable_primary_plane(pipe_config); 6600 6601 if (INTEL_GEN(dev_priv) >= 11) 6602 icl_set_pipe_chicken(intel_crtc); 6603 6604 if (!transcoder_is_dsi(cpu_transcoder)) 6605 intel_ddi_enable_transcoder_func(pipe_config); 6606 6607 if (dev_priv->display.initial_watermarks != NULL) 6608 dev_priv->display.initial_watermarks(state, pipe_config); 6609 6610 if (INTEL_GEN(dev_priv) >= 11) 6611 icl_pipe_mbus_enable(intel_crtc); 6612 6613 /* XXX: Do the pipe assertions at the right place for BXT DSI. */ 6614 if (!transcoder_is_dsi(cpu_transcoder)) 6615 intel_enable_pipe(pipe_config); 6616 6617 if (pipe_config->has_pch_encoder) 6618 lpt_pch_enable(state, pipe_config); 6619 6620 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) 6621 intel_ddi_set_vc_payload_alloc(pipe_config, true); 6622 6623 assert_vblank_disabled(crtc); 6624 intel_crtc_vblank_on(pipe_config); 6625 6626 intel_encoders_enable(intel_crtc, pipe_config, state); 6627 6628 if (psl_clkgate_wa) { 6629 intel_wait_for_vblank(dev_priv, pipe); 6630 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 6631 } 6632 6633 /* If we change the relative order between pipe/planes enabling, we need 6634 * to change the workaround. */ 6635 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe; 6636 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 6637 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 6638 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 6639 } 6640 } 6641 6642 static void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state) 6643 { 6644 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 6645 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6646 enum pipe pipe = crtc->pipe; 6647 6648 /* To avoid upsetting the power well on haswell only disable the pfit if 6649 * it's in use. The hw state code will make sure we get this right. */ 6650 if (old_crtc_state->pch_pfit.enabled) { 6651 I915_WRITE(PF_CTL(pipe), 0); 6652 I915_WRITE(PF_WIN_POS(pipe), 0); 6653 I915_WRITE(PF_WIN_SZ(pipe), 0); 6654 } 6655 } 6656 6657 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state, 6658 struct intel_atomic_state *state) 6659 { 6660 struct drm_crtc *crtc = old_crtc_state->base.crtc; 6661 struct drm_device *dev = crtc->dev; 6662 struct drm_i915_private *dev_priv = to_i915(dev); 6663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6664 enum pipe pipe = intel_crtc->pipe; 6665 6666 /* 6667 * Sometimes spurious CPU pipe underruns happen when the 6668 * pipe is already disabled, but FDI RX/TX is still enabled. 6669 * Happens at least with VGA+HDMI cloning. Suppress them. 6670 */ 6671 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6672 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 6673 6674 intel_encoders_disable(intel_crtc, old_crtc_state, state); 6675 6676 drm_crtc_vblank_off(crtc); 6677 assert_vblank_disabled(crtc); 6678 6679 intel_disable_pipe(old_crtc_state); 6680 6681 ironlake_pfit_disable(old_crtc_state); 6682 6683 if (old_crtc_state->has_pch_encoder) 6684 ironlake_fdi_disable(crtc); 6685 6686 intel_encoders_post_disable(intel_crtc, old_crtc_state, state); 6687 6688 if (old_crtc_state->has_pch_encoder) { 6689 ironlake_disable_pch_transcoder(dev_priv, pipe); 6690 6691 if (HAS_PCH_CPT(dev_priv)) { 6692 i915_reg_t reg; 6693 u32 temp; 6694 6695 /* disable TRANS_DP_CTL */ 6696 reg = TRANS_DP_CTL(pipe); 6697 temp = I915_READ(reg); 6698 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 6699 TRANS_DP_PORT_SEL_MASK); 6700 temp |= TRANS_DP_PORT_SEL_NONE; 6701 I915_WRITE(reg, temp); 6702 6703 /* disable DPLL_SEL */ 6704 temp = I915_READ(PCH_DPLL_SEL); 6705 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 6706 I915_WRITE(PCH_DPLL_SEL, temp); 6707 } 6708 6709 ironlake_fdi_pll_disable(intel_crtc); 6710 } 6711 6712 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 6713 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 6714 } 6715 6716 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state, 6717 struct intel_atomic_state *state) 6718 { 6719 struct drm_crtc *crtc = old_crtc_state->base.crtc; 6720 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 6721 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6722 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 6723 6724 intel_encoders_disable(intel_crtc, old_crtc_state, state); 6725 6726 drm_crtc_vblank_off(crtc); 6727 assert_vblank_disabled(crtc); 6728 6729 /* XXX: Do the pipe assertions at the right place for BXT DSI. */ 6730 if (!transcoder_is_dsi(cpu_transcoder)) 6731 intel_disable_pipe(old_crtc_state); 6732 6733 if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DP_MST)) 6734 intel_ddi_set_vc_payload_alloc(old_crtc_state, false); 6735 6736 if (INTEL_GEN(dev_priv) >= 11) 6737 icl_disable_transcoder_port_sync(old_crtc_state); 6738 6739 if (!transcoder_is_dsi(cpu_transcoder)) 6740 intel_ddi_disable_transcoder_func(old_crtc_state); 6741 6742 intel_dsc_disable(old_crtc_state); 6743 6744 if (INTEL_GEN(dev_priv) >= 9) 6745 skylake_scaler_disable(intel_crtc); 6746 else 6747 ironlake_pfit_disable(old_crtc_state); 6748 6749 intel_encoders_post_disable(intel_crtc, old_crtc_state, state); 6750 6751 intel_encoders_post_pll_disable(intel_crtc, old_crtc_state, state); 6752 } 6753 6754 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 6755 { 6756 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 6757 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6758 6759 if (!crtc_state->gmch_pfit.control) 6760 return; 6761 6762 /* 6763 * The panel fitter should only be adjusted whilst the pipe is disabled, 6764 * according to register description and PRM. 6765 */ 6766 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE); 6767 assert_pipe_disabled(dev_priv, crtc->pipe); 6768 6769 I915_WRITE(PFIT_PGM_RATIOS, crtc_state->gmch_pfit.pgm_ratios); 6770 I915_WRITE(PFIT_CONTROL, crtc_state->gmch_pfit.control); 6771 6772 /* Border color in case we don't scale up to the full screen. Black by 6773 * default, change to something else for debugging. */ 6774 I915_WRITE(BCLRPAT(crtc->pipe), 0); 6775 } 6776 6777 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 6778 { 6779 if (phy == PHY_NONE) 6780 return false; 6781 6782 if (IS_ELKHARTLAKE(dev_priv)) 6783 return phy <= PHY_C; 6784 6785 if (INTEL_GEN(dev_priv) >= 11) 6786 return phy <= PHY_B; 6787 6788 return false; 6789 } 6790 6791 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 6792 { 6793 if (INTEL_GEN(dev_priv) >= 12) 6794 return phy >= PHY_D && phy <= PHY_I; 6795 6796 if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv)) 6797 return phy >= PHY_C && phy <= PHY_F; 6798 6799 return false; 6800 } 6801 6802 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 6803 { 6804 if (IS_ELKHARTLAKE(i915) && port == PORT_D) 6805 return PHY_A; 6806 6807 return (enum phy)port; 6808 } 6809 6810 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 6811 { 6812 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 6813 return PORT_TC_NONE; 6814 6815 if (INTEL_GEN(dev_priv) >= 12) 6816 return port - PORT_D; 6817 6818 return port - PORT_C; 6819 } 6820 6821 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 6822 { 6823 switch (port) { 6824 case PORT_A: 6825 return POWER_DOMAIN_PORT_DDI_A_LANES; 6826 case PORT_B: 6827 return POWER_DOMAIN_PORT_DDI_B_LANES; 6828 case PORT_C: 6829 return POWER_DOMAIN_PORT_DDI_C_LANES; 6830 case PORT_D: 6831 return POWER_DOMAIN_PORT_DDI_D_LANES; 6832 case PORT_E: 6833 return POWER_DOMAIN_PORT_DDI_E_LANES; 6834 case PORT_F: 6835 return POWER_DOMAIN_PORT_DDI_F_LANES; 6836 case PORT_G: 6837 return POWER_DOMAIN_PORT_DDI_G_LANES; 6838 default: 6839 MISSING_CASE(port); 6840 return POWER_DOMAIN_PORT_OTHER; 6841 } 6842 } 6843 6844 enum intel_display_power_domain 6845 intel_aux_power_domain(struct intel_digital_port *dig_port) 6846 { 6847 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 6848 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 6849 6850 if (intel_phy_is_tc(dev_priv, phy) && 6851 dig_port->tc_mode == TC_PORT_TBT_ALT) { 6852 switch (dig_port->aux_ch) { 6853 case AUX_CH_C: 6854 return POWER_DOMAIN_AUX_C_TBT; 6855 case AUX_CH_D: 6856 return POWER_DOMAIN_AUX_D_TBT; 6857 case AUX_CH_E: 6858 return POWER_DOMAIN_AUX_E_TBT; 6859 case AUX_CH_F: 6860 return POWER_DOMAIN_AUX_F_TBT; 6861 case AUX_CH_G: 6862 return POWER_DOMAIN_AUX_G_TBT; 6863 default: 6864 MISSING_CASE(dig_port->aux_ch); 6865 return POWER_DOMAIN_AUX_C_TBT; 6866 } 6867 } 6868 6869 switch (dig_port->aux_ch) { 6870 case AUX_CH_A: 6871 return POWER_DOMAIN_AUX_A; 6872 case AUX_CH_B: 6873 return POWER_DOMAIN_AUX_B; 6874 case AUX_CH_C: 6875 return POWER_DOMAIN_AUX_C; 6876 case AUX_CH_D: 6877 return POWER_DOMAIN_AUX_D; 6878 case AUX_CH_E: 6879 return POWER_DOMAIN_AUX_E; 6880 case AUX_CH_F: 6881 return POWER_DOMAIN_AUX_F; 6882 case AUX_CH_G: 6883 return POWER_DOMAIN_AUX_G; 6884 default: 6885 MISSING_CASE(dig_port->aux_ch); 6886 return POWER_DOMAIN_AUX_A; 6887 } 6888 } 6889 6890 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 6891 { 6892 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 6893 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6894 struct drm_encoder *encoder; 6895 enum pipe pipe = crtc->pipe; 6896 u64 mask; 6897 enum transcoder transcoder = crtc_state->cpu_transcoder; 6898 6899 if (!crtc_state->base.active) 6900 return 0; 6901 6902 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 6903 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); 6904 if (crtc_state->pch_pfit.enabled || 6905 crtc_state->pch_pfit.force_thru) 6906 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 6907 6908 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 6909 crtc_state->base.encoder_mask) { 6910 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 6911 6912 mask |= BIT_ULL(intel_encoder->power_domain); 6913 } 6914 6915 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 6916 mask |= BIT_ULL(POWER_DOMAIN_AUDIO); 6917 6918 if (crtc_state->shared_dpll) 6919 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 6920 6921 return mask; 6922 } 6923 6924 static u64 6925 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 6926 { 6927 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 6928 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6929 enum intel_display_power_domain domain; 6930 u64 domains, new_domains, old_domains; 6931 6932 old_domains = crtc->enabled_power_domains; 6933 crtc->enabled_power_domains = new_domains = 6934 get_crtc_power_domains(crtc_state); 6935 6936 domains = new_domains & ~old_domains; 6937 6938 for_each_power_domain(domain, domains) 6939 intel_display_power_get(dev_priv, domain); 6940 6941 return old_domains & ~new_domains; 6942 } 6943 6944 static void modeset_put_power_domains(struct drm_i915_private *dev_priv, 6945 u64 domains) 6946 { 6947 enum intel_display_power_domain domain; 6948 6949 for_each_power_domain(domain, domains) 6950 intel_display_power_put_unchecked(dev_priv, domain); 6951 } 6952 6953 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config, 6954 struct intel_atomic_state *state) 6955 { 6956 struct drm_crtc *crtc = pipe_config->base.crtc; 6957 struct drm_device *dev = crtc->dev; 6958 struct drm_i915_private *dev_priv = to_i915(dev); 6959 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6960 enum pipe pipe = intel_crtc->pipe; 6961 6962 if (WARN_ON(intel_crtc->active)) 6963 return; 6964 6965 if (intel_crtc_has_dp_encoder(pipe_config)) 6966 intel_dp_set_m_n(pipe_config, M1_N1); 6967 6968 intel_set_pipe_timings(pipe_config); 6969 intel_set_pipe_src_size(pipe_config); 6970 6971 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 6972 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY); 6973 I915_WRITE(CHV_CANVAS(pipe), 0); 6974 } 6975 6976 i9xx_set_pipeconf(pipe_config); 6977 6978 intel_crtc->active = true; 6979 6980 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 6981 6982 intel_encoders_pre_pll_enable(intel_crtc, pipe_config, state); 6983 6984 if (IS_CHERRYVIEW(dev_priv)) { 6985 chv_prepare_pll(intel_crtc, pipe_config); 6986 chv_enable_pll(intel_crtc, pipe_config); 6987 } else { 6988 vlv_prepare_pll(intel_crtc, pipe_config); 6989 vlv_enable_pll(intel_crtc, pipe_config); 6990 } 6991 6992 intel_encoders_pre_enable(intel_crtc, pipe_config, state); 6993 6994 i9xx_pfit_enable(pipe_config); 6995 6996 intel_color_load_luts(pipe_config); 6997 intel_color_commit(pipe_config); 6998 /* update DSPCNTR to configure gamma for pipe bottom color */ 6999 intel_disable_primary_plane(pipe_config); 7000 7001 dev_priv->display.initial_watermarks(state, pipe_config); 7002 intel_enable_pipe(pipe_config); 7003 7004 assert_vblank_disabled(crtc); 7005 intel_crtc_vblank_on(pipe_config); 7006 7007 intel_encoders_enable(intel_crtc, pipe_config, state); 7008 } 7009 7010 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) 7011 { 7012 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 7013 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7014 7015 I915_WRITE(FP0(crtc->pipe), crtc_state->dpll_hw_state.fp0); 7016 I915_WRITE(FP1(crtc->pipe), crtc_state->dpll_hw_state.fp1); 7017 } 7018 7019 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config, 7020 struct intel_atomic_state *state) 7021 { 7022 struct drm_crtc *crtc = pipe_config->base.crtc; 7023 struct drm_device *dev = crtc->dev; 7024 struct drm_i915_private *dev_priv = to_i915(dev); 7025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 7026 enum pipe pipe = intel_crtc->pipe; 7027 7028 if (WARN_ON(intel_crtc->active)) 7029 return; 7030 7031 i9xx_set_pll_dividers(pipe_config); 7032 7033 if (intel_crtc_has_dp_encoder(pipe_config)) 7034 intel_dp_set_m_n(pipe_config, M1_N1); 7035 7036 intel_set_pipe_timings(pipe_config); 7037 intel_set_pipe_src_size(pipe_config); 7038 7039 i9xx_set_pipeconf(pipe_config); 7040 7041 intel_crtc->active = true; 7042 7043 if (!IS_GEN(dev_priv, 2)) 7044 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7045 7046 intel_encoders_pre_enable(intel_crtc, pipe_config, state); 7047 7048 i9xx_enable_pll(intel_crtc, pipe_config); 7049 7050 i9xx_pfit_enable(pipe_config); 7051 7052 intel_color_load_luts(pipe_config); 7053 intel_color_commit(pipe_config); 7054 /* update DSPCNTR to configure gamma for pipe bottom color */ 7055 intel_disable_primary_plane(pipe_config); 7056 7057 if (dev_priv->display.initial_watermarks != NULL) 7058 dev_priv->display.initial_watermarks(state, 7059 pipe_config); 7060 else 7061 intel_update_watermarks(intel_crtc); 7062 intel_enable_pipe(pipe_config); 7063 7064 assert_vblank_disabled(crtc); 7065 intel_crtc_vblank_on(pipe_config); 7066 7067 intel_encoders_enable(intel_crtc, pipe_config, state); 7068 } 7069 7070 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 7071 { 7072 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 7073 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7074 7075 if (!old_crtc_state->gmch_pfit.control) 7076 return; 7077 7078 assert_pipe_disabled(dev_priv, crtc->pipe); 7079 7080 DRM_DEBUG_KMS("disabling pfit, current: 0x%08x\n", 7081 I915_READ(PFIT_CONTROL)); 7082 I915_WRITE(PFIT_CONTROL, 0); 7083 } 7084 7085 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state, 7086 struct intel_atomic_state *state) 7087 { 7088 struct drm_crtc *crtc = old_crtc_state->base.crtc; 7089 struct drm_device *dev = crtc->dev; 7090 struct drm_i915_private *dev_priv = to_i915(dev); 7091 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 7092 enum pipe pipe = intel_crtc->pipe; 7093 7094 /* 7095 * On gen2 planes are double buffered but the pipe isn't, so we must 7096 * wait for planes to fully turn off before disabling the pipe. 7097 */ 7098 if (IS_GEN(dev_priv, 2)) 7099 intel_wait_for_vblank(dev_priv, pipe); 7100 7101 intel_encoders_disable(intel_crtc, old_crtc_state, state); 7102 7103 drm_crtc_vblank_off(crtc); 7104 assert_vblank_disabled(crtc); 7105 7106 intel_disable_pipe(old_crtc_state); 7107 7108 i9xx_pfit_disable(old_crtc_state); 7109 7110 intel_encoders_post_disable(intel_crtc, old_crtc_state, state); 7111 7112 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 7113 if (IS_CHERRYVIEW(dev_priv)) 7114 chv_disable_pll(dev_priv, pipe); 7115 else if (IS_VALLEYVIEW(dev_priv)) 7116 vlv_disable_pll(dev_priv, pipe); 7117 else 7118 i9xx_disable_pll(old_crtc_state); 7119 } 7120 7121 intel_encoders_post_pll_disable(intel_crtc, old_crtc_state, state); 7122 7123 if (!IS_GEN(dev_priv, 2)) 7124 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 7125 7126 if (!dev_priv->display.initial_watermarks) 7127 intel_update_watermarks(intel_crtc); 7128 7129 /* clock the pipe down to 640x480@60 to potentially save power */ 7130 if (IS_I830(dev_priv)) 7131 i830_enable_pipe(dev_priv, pipe); 7132 } 7133 7134 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc, 7135 struct drm_modeset_acquire_ctx *ctx) 7136 { 7137 struct intel_encoder *encoder; 7138 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 7139 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 7140 struct intel_bw_state *bw_state = 7141 to_intel_bw_state(dev_priv->bw_obj.state); 7142 enum intel_display_power_domain domain; 7143 struct intel_plane *plane; 7144 u64 domains; 7145 struct drm_atomic_state *state; 7146 struct intel_crtc_state *crtc_state; 7147 int ret; 7148 7149 if (!intel_crtc->active) 7150 return; 7151 7152 for_each_intel_plane_on_crtc(&dev_priv->drm, intel_crtc, plane) { 7153 const struct intel_plane_state *plane_state = 7154 to_intel_plane_state(plane->base.state); 7155 7156 if (plane_state->base.visible) 7157 intel_plane_disable_noatomic(intel_crtc, plane); 7158 } 7159 7160 state = drm_atomic_state_alloc(crtc->dev); 7161 if (!state) { 7162 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory", 7163 crtc->base.id, crtc->name); 7164 return; 7165 } 7166 7167 state->acquire_ctx = ctx; 7168 7169 /* Everything's already locked, -EDEADLK can't happen. */ 7170 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); 7171 ret = drm_atomic_add_affected_connectors(state, crtc); 7172 7173 WARN_ON(IS_ERR(crtc_state) || ret); 7174 7175 dev_priv->display.crtc_disable(crtc_state, to_intel_atomic_state(state)); 7176 7177 drm_atomic_state_put(state); 7178 7179 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 7180 crtc->base.id, crtc->name); 7181 7182 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0); 7183 crtc->state->active = false; 7184 intel_crtc->active = false; 7185 crtc->enabled = false; 7186 crtc->state->connector_mask = 0; 7187 crtc->state->encoder_mask = 0; 7188 7189 for_each_encoder_on_crtc(crtc->dev, crtc, encoder) 7190 encoder->base.crtc = NULL; 7191 7192 intel_fbc_disable(intel_crtc); 7193 intel_update_watermarks(intel_crtc); 7194 intel_disable_shared_dpll(to_intel_crtc_state(crtc->state)); 7195 7196 domains = intel_crtc->enabled_power_domains; 7197 for_each_power_domain(domain, domains) 7198 intel_display_power_put_unchecked(dev_priv, domain); 7199 intel_crtc->enabled_power_domains = 0; 7200 7201 dev_priv->active_pipes &= ~BIT(intel_crtc->pipe); 7202 dev_priv->min_cdclk[intel_crtc->pipe] = 0; 7203 dev_priv->min_voltage_level[intel_crtc->pipe] = 0; 7204 7205 bw_state->data_rate[intel_crtc->pipe] = 0; 7206 bw_state->num_active_planes[intel_crtc->pipe] = 0; 7207 } 7208 7209 /* 7210 * turn all crtc's off, but do not adjust state 7211 * This has to be paired with a call to intel_modeset_setup_hw_state. 7212 */ 7213 int intel_display_suspend(struct drm_device *dev) 7214 { 7215 struct drm_i915_private *dev_priv = to_i915(dev); 7216 struct drm_atomic_state *state; 7217 int ret; 7218 7219 state = drm_atomic_helper_suspend(dev); 7220 ret = PTR_ERR_OR_ZERO(state); 7221 if (ret) 7222 DRM_ERROR("Suspending crtc's failed with %i\n", ret); 7223 else 7224 dev_priv->modeset_restore_state = state; 7225 return ret; 7226 } 7227 7228 void intel_encoder_destroy(struct drm_encoder *encoder) 7229 { 7230 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 7231 7232 drm_encoder_cleanup(encoder); 7233 kfree(intel_encoder); 7234 } 7235 7236 /* Cross check the actual hw state with our own modeset state tracking (and it's 7237 * internal consistency). */ 7238 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 7239 struct drm_connector_state *conn_state) 7240 { 7241 struct intel_connector *connector = to_intel_connector(conn_state->connector); 7242 7243 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 7244 connector->base.base.id, 7245 connector->base.name); 7246 7247 if (connector->get_hw_state(connector)) { 7248 struct intel_encoder *encoder = connector->encoder; 7249 7250 I915_STATE_WARN(!crtc_state, 7251 "connector enabled without attached crtc\n"); 7252 7253 if (!crtc_state) 7254 return; 7255 7256 I915_STATE_WARN(!crtc_state->base.active, 7257 "connector is active, but attached crtc isn't\n"); 7258 7259 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 7260 return; 7261 7262 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 7263 "atomic encoder doesn't match attached encoder\n"); 7264 7265 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 7266 "attached encoder crtc differs from connector crtc\n"); 7267 } else { 7268 I915_STATE_WARN(crtc_state && crtc_state->base.active, 7269 "attached crtc is active, but connector isn't\n"); 7270 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 7271 "best encoder set without crtc!\n"); 7272 } 7273 } 7274 7275 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state) 7276 { 7277 if (crtc_state->base.enable && crtc_state->has_pch_encoder) 7278 return crtc_state->fdi_lanes; 7279 7280 return 0; 7281 } 7282 7283 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe, 7284 struct intel_crtc_state *pipe_config) 7285 { 7286 struct drm_i915_private *dev_priv = to_i915(dev); 7287 struct drm_atomic_state *state = pipe_config->base.state; 7288 struct intel_crtc *other_crtc; 7289 struct intel_crtc_state *other_crtc_state; 7290 7291 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n", 7292 pipe_name(pipe), pipe_config->fdi_lanes); 7293 if (pipe_config->fdi_lanes > 4) { 7294 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n", 7295 pipe_name(pipe), pipe_config->fdi_lanes); 7296 return -EINVAL; 7297 } 7298 7299 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 7300 if (pipe_config->fdi_lanes > 2) { 7301 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n", 7302 pipe_config->fdi_lanes); 7303 return -EINVAL; 7304 } else { 7305 return 0; 7306 } 7307 } 7308 7309 if (INTEL_NUM_PIPES(dev_priv) == 2) 7310 return 0; 7311 7312 /* Ivybridge 3 pipe is really complicated */ 7313 switch (pipe) { 7314 case PIPE_A: 7315 return 0; 7316 case PIPE_B: 7317 if (pipe_config->fdi_lanes <= 2) 7318 return 0; 7319 7320 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C); 7321 other_crtc_state = 7322 intel_atomic_get_crtc_state(state, other_crtc); 7323 if (IS_ERR(other_crtc_state)) 7324 return PTR_ERR(other_crtc_state); 7325 7326 if (pipe_required_fdi_lanes(other_crtc_state) > 0) { 7327 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n", 7328 pipe_name(pipe), pipe_config->fdi_lanes); 7329 return -EINVAL; 7330 } 7331 return 0; 7332 case PIPE_C: 7333 if (pipe_config->fdi_lanes > 2) { 7334 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n", 7335 pipe_name(pipe), pipe_config->fdi_lanes); 7336 return -EINVAL; 7337 } 7338 7339 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B); 7340 other_crtc_state = 7341 intel_atomic_get_crtc_state(state, other_crtc); 7342 if (IS_ERR(other_crtc_state)) 7343 return PTR_ERR(other_crtc_state); 7344 7345 if (pipe_required_fdi_lanes(other_crtc_state) > 2) { 7346 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n"); 7347 return -EINVAL; 7348 } 7349 return 0; 7350 default: 7351 BUG(); 7352 } 7353 } 7354 7355 #define RETRY 1 7356 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc, 7357 struct intel_crtc_state *pipe_config) 7358 { 7359 struct drm_device *dev = intel_crtc->base.dev; 7360 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 7361 int lane, link_bw, fdi_dotclock, ret; 7362 bool needs_recompute = false; 7363 7364 retry: 7365 /* FDI is a binary signal running at ~2.7GHz, encoding 7366 * each output octet as 10 bits. The actual frequency 7367 * is stored as a divider into a 100MHz clock, and the 7368 * mode pixel clock is stored in units of 1KHz. 7369 * Hence the bw of each lane in terms of the mode signal 7370 * is: 7371 */ 7372 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config); 7373 7374 fdi_dotclock = adjusted_mode->crtc_clock; 7375 7376 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw, 7377 pipe_config->pipe_bpp); 7378 7379 pipe_config->fdi_lanes = lane; 7380 7381 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock, 7382 link_bw, &pipe_config->fdi_m_n, false, false); 7383 7384 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config); 7385 if (ret == -EDEADLK) 7386 return ret; 7387 7388 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) { 7389 pipe_config->pipe_bpp -= 2*3; 7390 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n", 7391 pipe_config->pipe_bpp); 7392 needs_recompute = true; 7393 pipe_config->bw_constrained = true; 7394 7395 goto retry; 7396 } 7397 7398 if (needs_recompute) 7399 return RETRY; 7400 7401 return ret; 7402 } 7403 7404 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 7405 { 7406 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 7407 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7408 7409 /* IPS only exists on ULT machines and is tied to pipe A. */ 7410 if (!hsw_crtc_supports_ips(crtc)) 7411 return false; 7412 7413 if (!i915_modparams.enable_ips) 7414 return false; 7415 7416 if (crtc_state->pipe_bpp > 24) 7417 return false; 7418 7419 /* 7420 * We compare against max which means we must take 7421 * the increased cdclk requirement into account when 7422 * calculating the new cdclk. 7423 * 7424 * Should measure whether using a lower cdclk w/o IPS 7425 */ 7426 if (IS_BROADWELL(dev_priv) && 7427 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 7428 return false; 7429 7430 return true; 7431 } 7432 7433 static bool hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 7434 { 7435 struct drm_i915_private *dev_priv = 7436 to_i915(crtc_state->base.crtc->dev); 7437 struct intel_atomic_state *intel_state = 7438 to_intel_atomic_state(crtc_state->base.state); 7439 7440 if (!hsw_crtc_state_ips_capable(crtc_state)) 7441 return false; 7442 7443 /* 7444 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 7445 * enabled and disabled dynamically based on package C states, 7446 * user space can't make reliable use of the CRCs, so let's just 7447 * completely disable it. 7448 */ 7449 if (crtc_state->crc_enabled) 7450 return false; 7451 7452 /* IPS should be fine as long as at least one plane is enabled. */ 7453 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 7454 return false; 7455 7456 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 7457 if (IS_BROADWELL(dev_priv) && 7458 crtc_state->pixel_rate > intel_state->cdclk.logical.cdclk * 95 / 100) 7459 return false; 7460 7461 return true; 7462 } 7463 7464 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 7465 { 7466 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7467 7468 /* GDG double wide on either pipe, otherwise pipe A only */ 7469 return INTEL_GEN(dev_priv) < 4 && 7470 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 7471 } 7472 7473 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config) 7474 { 7475 u32 pixel_rate; 7476 7477 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock; 7478 7479 /* 7480 * We only use IF-ID interlacing. If we ever use 7481 * PF-ID we'll need to adjust the pixel_rate here. 7482 */ 7483 7484 if (pipe_config->pch_pfit.enabled) { 7485 u64 pipe_w, pipe_h, pfit_w, pfit_h; 7486 u32 pfit_size = pipe_config->pch_pfit.size; 7487 7488 pipe_w = pipe_config->pipe_src_w; 7489 pipe_h = pipe_config->pipe_src_h; 7490 7491 pfit_w = (pfit_size >> 16) & 0xFFFF; 7492 pfit_h = pfit_size & 0xFFFF; 7493 if (pipe_w < pfit_w) 7494 pipe_w = pfit_w; 7495 if (pipe_h < pfit_h) 7496 pipe_h = pfit_h; 7497 7498 if (WARN_ON(!pfit_w || !pfit_h)) 7499 return pixel_rate; 7500 7501 pixel_rate = div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h), 7502 pfit_w * pfit_h); 7503 } 7504 7505 return pixel_rate; 7506 } 7507 7508 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 7509 { 7510 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 7511 7512 if (HAS_GMCH(dev_priv)) 7513 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 7514 crtc_state->pixel_rate = 7515 crtc_state->base.adjusted_mode.crtc_clock; 7516 else 7517 crtc_state->pixel_rate = 7518 ilk_pipe_pixel_rate(crtc_state); 7519 } 7520 7521 static int intel_crtc_compute_config(struct intel_crtc *crtc, 7522 struct intel_crtc_state *pipe_config) 7523 { 7524 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7525 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 7526 int clock_limit = dev_priv->max_dotclk_freq; 7527 7528 if (INTEL_GEN(dev_priv) < 4) { 7529 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 7530 7531 /* 7532 * Enable double wide mode when the dot clock 7533 * is > 90% of the (display) core speed. 7534 */ 7535 if (intel_crtc_supports_double_wide(crtc) && 7536 adjusted_mode->crtc_clock > clock_limit) { 7537 clock_limit = dev_priv->max_dotclk_freq; 7538 pipe_config->double_wide = true; 7539 } 7540 } 7541 7542 if (adjusted_mode->crtc_clock > clock_limit) { 7543 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 7544 adjusted_mode->crtc_clock, clock_limit, 7545 yesno(pipe_config->double_wide)); 7546 return -EINVAL; 7547 } 7548 7549 if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 7550 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) && 7551 pipe_config->base.ctm) { 7552 /* 7553 * There is only one pipe CSC unit per pipe, and we need that 7554 * for output conversion from RGB->YCBCR. So if CTM is already 7555 * applied we can't support YCBCR420 output. 7556 */ 7557 DRM_DEBUG_KMS("YCBCR420 and CTM together are not possible\n"); 7558 return -EINVAL; 7559 } 7560 7561 /* 7562 * Pipe horizontal size must be even in: 7563 * - DVO ganged mode 7564 * - LVDS dual channel mode 7565 * - Double wide pipe 7566 */ 7567 if (pipe_config->pipe_src_w & 1) { 7568 if (pipe_config->double_wide) { 7569 DRM_DEBUG_KMS("Odd pipe source width not supported with double wide pipe\n"); 7570 return -EINVAL; 7571 } 7572 7573 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 7574 intel_is_dual_link_lvds(dev_priv)) { 7575 DRM_DEBUG_KMS("Odd pipe source width not supported with dual link LVDS\n"); 7576 return -EINVAL; 7577 } 7578 } 7579 7580 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 7581 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 7582 */ 7583 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) && 7584 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay) 7585 return -EINVAL; 7586 7587 intel_crtc_compute_pixel_rate(pipe_config); 7588 7589 if (pipe_config->has_pch_encoder) 7590 return ironlake_fdi_compute_config(crtc, pipe_config); 7591 7592 return 0; 7593 } 7594 7595 static void 7596 intel_reduce_m_n_ratio(u32 *num, u32 *den) 7597 { 7598 while (*num > DATA_LINK_M_N_MASK || 7599 *den > DATA_LINK_M_N_MASK) { 7600 *num >>= 1; 7601 *den >>= 1; 7602 } 7603 } 7604 7605 static void compute_m_n(unsigned int m, unsigned int n, 7606 u32 *ret_m, u32 *ret_n, 7607 bool constant_n) 7608 { 7609 /* 7610 * Several DP dongles in particular seem to be fussy about 7611 * too large link M/N values. Give N value as 0x8000 that 7612 * should be acceptable by specific devices. 0x8000 is the 7613 * specified fixed N value for asynchronous clock mode, 7614 * which the devices expect also in synchronous clock mode. 7615 */ 7616 if (constant_n) 7617 *ret_n = 0x8000; 7618 else 7619 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 7620 7621 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 7622 intel_reduce_m_n_ratio(ret_m, ret_n); 7623 } 7624 7625 void 7626 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 7627 int pixel_clock, int link_clock, 7628 struct intel_link_m_n *m_n, 7629 bool constant_n, bool fec_enable) 7630 { 7631 u32 data_clock = bits_per_pixel * pixel_clock; 7632 7633 if (fec_enable) 7634 data_clock = intel_dp_mode_to_fec_clock(data_clock); 7635 7636 m_n->tu = 64; 7637 compute_m_n(data_clock, 7638 link_clock * nlanes * 8, 7639 &m_n->gmch_m, &m_n->gmch_n, 7640 constant_n); 7641 7642 compute_m_n(pixel_clock, link_clock, 7643 &m_n->link_m, &m_n->link_n, 7644 constant_n); 7645 } 7646 7647 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) 7648 { 7649 /* 7650 * There may be no VBT; and if the BIOS enabled SSC we can 7651 * just keep using it to avoid unnecessary flicker. Whereas if the 7652 * BIOS isn't using it, don't assume it will work even if the VBT 7653 * indicates as much. 7654 */ 7655 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 7656 bool bios_lvds_use_ssc = I915_READ(PCH_DREF_CONTROL) & 7657 DREF_SSC1_ENABLE; 7658 7659 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 7660 DRM_DEBUG_KMS("SSC %s by BIOS, overriding VBT which says %s\n", 7661 enableddisabled(bios_lvds_use_ssc), 7662 enableddisabled(dev_priv->vbt.lvds_use_ssc)); 7663 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 7664 } 7665 } 7666 } 7667 7668 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) 7669 { 7670 if (i915_modparams.panel_use_ssc >= 0) 7671 return i915_modparams.panel_use_ssc != 0; 7672 return dev_priv->vbt.lvds_use_ssc 7673 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); 7674 } 7675 7676 static u32 pnv_dpll_compute_fp(struct dpll *dpll) 7677 { 7678 return (1 << dpll->n) << 16 | dpll->m2; 7679 } 7680 7681 static u32 i9xx_dpll_compute_fp(struct dpll *dpll) 7682 { 7683 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; 7684 } 7685 7686 static void i9xx_update_pll_dividers(struct intel_crtc *crtc, 7687 struct intel_crtc_state *crtc_state, 7688 struct dpll *reduced_clock) 7689 { 7690 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7691 u32 fp, fp2 = 0; 7692 7693 if (IS_PINEVIEW(dev_priv)) { 7694 fp = pnv_dpll_compute_fp(&crtc_state->dpll); 7695 if (reduced_clock) 7696 fp2 = pnv_dpll_compute_fp(reduced_clock); 7697 } else { 7698 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 7699 if (reduced_clock) 7700 fp2 = i9xx_dpll_compute_fp(reduced_clock); 7701 } 7702 7703 crtc_state->dpll_hw_state.fp0 = fp; 7704 7705 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 7706 reduced_clock) { 7707 crtc_state->dpll_hw_state.fp1 = fp2; 7708 } else { 7709 crtc_state->dpll_hw_state.fp1 = fp; 7710 } 7711 } 7712 7713 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe 7714 pipe) 7715 { 7716 u32 reg_val; 7717 7718 /* 7719 * PLLB opamp always calibrates to max value of 0x3f, force enable it 7720 * and set it to a reasonable value instead. 7721 */ 7722 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 7723 reg_val &= 0xffffff00; 7724 reg_val |= 0x00000030; 7725 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 7726 7727 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 7728 reg_val &= 0x00ffffff; 7729 reg_val |= 0x8c000000; 7730 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 7731 7732 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 7733 reg_val &= 0xffffff00; 7734 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 7735 7736 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 7737 reg_val &= 0x00ffffff; 7738 reg_val |= 0xb0000000; 7739 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 7740 } 7741 7742 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 7743 const struct intel_link_m_n *m_n) 7744 { 7745 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 7746 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7747 enum pipe pipe = crtc->pipe; 7748 7749 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); 7750 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 7751 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m); 7752 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n); 7753 } 7754 7755 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 7756 enum transcoder transcoder) 7757 { 7758 if (IS_HASWELL(dev_priv)) 7759 return transcoder == TRANSCODER_EDP; 7760 7761 /* 7762 * Strictly speaking some registers are available before 7763 * gen7, but we only support DRRS on gen7+ 7764 */ 7765 return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv); 7766 } 7767 7768 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 7769 const struct intel_link_m_n *m_n, 7770 const struct intel_link_m_n *m2_n2) 7771 { 7772 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 7773 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7774 enum pipe pipe = crtc->pipe; 7775 enum transcoder transcoder = crtc_state->cpu_transcoder; 7776 7777 if (INTEL_GEN(dev_priv) >= 5) { 7778 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m); 7779 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n); 7780 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m); 7781 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n); 7782 /* 7783 * M2_N2 registers are set only if DRRS is supported 7784 * (to make sure the registers are not unnecessarily accessed). 7785 */ 7786 if (m2_n2 && crtc_state->has_drrs && 7787 transcoder_has_m2_n2(dev_priv, transcoder)) { 7788 I915_WRITE(PIPE_DATA_M2(transcoder), 7789 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 7790 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n); 7791 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m); 7792 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n); 7793 } 7794 } else { 7795 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); 7796 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 7797 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m); 7798 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n); 7799 } 7800 } 7801 7802 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 7803 { 7804 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 7805 7806 if (m_n == M1_N1) { 7807 dp_m_n = &crtc_state->dp_m_n; 7808 dp_m2_n2 = &crtc_state->dp_m2_n2; 7809 } else if (m_n == M2_N2) { 7810 7811 /* 7812 * M2_N2 registers are not supported. Hence m2_n2 divider value 7813 * needs to be programmed into M1_N1. 7814 */ 7815 dp_m_n = &crtc_state->dp_m2_n2; 7816 } else { 7817 DRM_ERROR("Unsupported divider value\n"); 7818 return; 7819 } 7820 7821 if (crtc_state->has_pch_encoder) 7822 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 7823 else 7824 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 7825 } 7826 7827 static void vlv_compute_dpll(struct intel_crtc *crtc, 7828 struct intel_crtc_state *pipe_config) 7829 { 7830 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV | 7831 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 7832 if (crtc->pipe != PIPE_A) 7833 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 7834 7835 /* DPLL not used with DSI, but still need the rest set up */ 7836 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 7837 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE | 7838 DPLL_EXT_BUFFER_ENABLE_VLV; 7839 7840 pipe_config->dpll_hw_state.dpll_md = 7841 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 7842 } 7843 7844 static void chv_compute_dpll(struct intel_crtc *crtc, 7845 struct intel_crtc_state *pipe_config) 7846 { 7847 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV | 7848 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 7849 if (crtc->pipe != PIPE_A) 7850 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 7851 7852 /* DPLL not used with DSI, but still need the rest set up */ 7853 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 7854 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE; 7855 7856 pipe_config->dpll_hw_state.dpll_md = 7857 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 7858 } 7859 7860 static void vlv_prepare_pll(struct intel_crtc *crtc, 7861 const struct intel_crtc_state *pipe_config) 7862 { 7863 struct drm_device *dev = crtc->base.dev; 7864 struct drm_i915_private *dev_priv = to_i915(dev); 7865 enum pipe pipe = crtc->pipe; 7866 u32 mdiv; 7867 u32 bestn, bestm1, bestm2, bestp1, bestp2; 7868 u32 coreclk, reg_val; 7869 7870 /* Enable Refclk */ 7871 I915_WRITE(DPLL(pipe), 7872 pipe_config->dpll_hw_state.dpll & 7873 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); 7874 7875 /* No need to actually set up the DPLL with DSI */ 7876 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 7877 return; 7878 7879 vlv_dpio_get(dev_priv); 7880 7881 bestn = pipe_config->dpll.n; 7882 bestm1 = pipe_config->dpll.m1; 7883 bestm2 = pipe_config->dpll.m2; 7884 bestp1 = pipe_config->dpll.p1; 7885 bestp2 = pipe_config->dpll.p2; 7886 7887 /* See eDP HDMI DPIO driver vbios notes doc */ 7888 7889 /* PLL B needs special handling */ 7890 if (pipe == PIPE_B) 7891 vlv_pllb_recal_opamp(dev_priv, pipe); 7892 7893 /* Set up Tx target for periodic Rcomp update */ 7894 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f); 7895 7896 /* Disable target IRef on PLL */ 7897 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe)); 7898 reg_val &= 0x00ffffff; 7899 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val); 7900 7901 /* Disable fast lock */ 7902 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610); 7903 7904 /* Set idtafcrecal before PLL is enabled */ 7905 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); 7906 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); 7907 mdiv |= ((bestn << DPIO_N_SHIFT)); 7908 mdiv |= (1 << DPIO_K_SHIFT); 7909 7910 /* 7911 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, 7912 * but we don't support that). 7913 * Note: don't use the DAC post divider as it seems unstable. 7914 */ 7915 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); 7916 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 7917 7918 mdiv |= DPIO_ENABLE_CALIBRATION; 7919 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 7920 7921 /* Set HBR and RBR LPF coefficients */ 7922 if (pipe_config->port_clock == 162000 || 7923 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) || 7924 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI)) 7925 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 7926 0x009f0003); 7927 else 7928 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 7929 0x00d0000f); 7930 7931 if (intel_crtc_has_dp_encoder(pipe_config)) { 7932 /* Use SSC source */ 7933 if (pipe == PIPE_A) 7934 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 7935 0x0df40000); 7936 else 7937 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 7938 0x0df70000); 7939 } else { /* HDMI or VGA */ 7940 /* Use bend source */ 7941 if (pipe == PIPE_A) 7942 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 7943 0x0df70000); 7944 else 7945 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 7946 0x0df40000); 7947 } 7948 7949 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe)); 7950 coreclk = (coreclk & 0x0000ff00) | 0x01c00000; 7951 if (intel_crtc_has_dp_encoder(pipe_config)) 7952 coreclk |= 0x01000000; 7953 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk); 7954 7955 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000); 7956 7957 vlv_dpio_put(dev_priv); 7958 } 7959 7960 static void chv_prepare_pll(struct intel_crtc *crtc, 7961 const struct intel_crtc_state *pipe_config) 7962 { 7963 struct drm_device *dev = crtc->base.dev; 7964 struct drm_i915_private *dev_priv = to_i915(dev); 7965 enum pipe pipe = crtc->pipe; 7966 enum dpio_channel port = vlv_pipe_to_channel(pipe); 7967 u32 loopfilter, tribuf_calcntr; 7968 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac; 7969 u32 dpio_val; 7970 int vco; 7971 7972 /* Enable Refclk and SSC */ 7973 I915_WRITE(DPLL(pipe), 7974 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); 7975 7976 /* No need to actually set up the DPLL with DSI */ 7977 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 7978 return; 7979 7980 bestn = pipe_config->dpll.n; 7981 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff; 7982 bestm1 = pipe_config->dpll.m1; 7983 bestm2 = pipe_config->dpll.m2 >> 22; 7984 bestp1 = pipe_config->dpll.p1; 7985 bestp2 = pipe_config->dpll.p2; 7986 vco = pipe_config->dpll.vco; 7987 dpio_val = 0; 7988 loopfilter = 0; 7989 7990 vlv_dpio_get(dev_priv); 7991 7992 /* p1 and p2 divider */ 7993 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port), 7994 5 << DPIO_CHV_S1_DIV_SHIFT | 7995 bestp1 << DPIO_CHV_P1_DIV_SHIFT | 7996 bestp2 << DPIO_CHV_P2_DIV_SHIFT | 7997 1 << DPIO_CHV_K_DIV_SHIFT); 7998 7999 /* Feedback post-divider - m2 */ 8000 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2); 8001 8002 /* Feedback refclk divider - n and m1 */ 8003 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port), 8004 DPIO_CHV_M1_DIV_BY_2 | 8005 1 << DPIO_CHV_N_DIV_SHIFT); 8006 8007 /* M2 fraction division */ 8008 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac); 8009 8010 /* M2 fraction division enable */ 8011 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 8012 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); 8013 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT); 8014 if (bestm2_frac) 8015 dpio_val |= DPIO_CHV_FRAC_DIV_EN; 8016 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val); 8017 8018 /* Program digital lock detect threshold */ 8019 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port)); 8020 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | 8021 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); 8022 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT); 8023 if (!bestm2_frac) 8024 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; 8025 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val); 8026 8027 /* Loop filter */ 8028 if (vco == 5400000) { 8029 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT); 8030 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT); 8031 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT); 8032 tribuf_calcntr = 0x9; 8033 } else if (vco <= 6200000) { 8034 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT); 8035 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT); 8036 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8037 tribuf_calcntr = 0x9; 8038 } else if (vco <= 6480000) { 8039 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 8040 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 8041 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8042 tribuf_calcntr = 0x8; 8043 } else { 8044 /* Not supported. Apply the same limits as in the max case */ 8045 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 8046 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 8047 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8048 tribuf_calcntr = 0; 8049 } 8050 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter); 8051 8052 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port)); 8053 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; 8054 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT); 8055 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val); 8056 8057 /* AFC Recal */ 8058 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), 8059 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) | 8060 DPIO_AFC_RECAL); 8061 8062 vlv_dpio_put(dev_priv); 8063 } 8064 8065 /** 8066 * vlv_force_pll_on - forcibly enable just the PLL 8067 * @dev_priv: i915 private structure 8068 * @pipe: pipe PLL to enable 8069 * @dpll: PLL configuration 8070 * 8071 * Enable the PLL for @pipe using the supplied @dpll config. To be used 8072 * in cases where we need the PLL enabled even when @pipe is not going to 8073 * be enabled. 8074 */ 8075 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe, 8076 const struct dpll *dpll) 8077 { 8078 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 8079 struct intel_crtc_state *pipe_config; 8080 8081 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL); 8082 if (!pipe_config) 8083 return -ENOMEM; 8084 8085 pipe_config->base.crtc = &crtc->base; 8086 pipe_config->pixel_multiplier = 1; 8087 pipe_config->dpll = *dpll; 8088 8089 if (IS_CHERRYVIEW(dev_priv)) { 8090 chv_compute_dpll(crtc, pipe_config); 8091 chv_prepare_pll(crtc, pipe_config); 8092 chv_enable_pll(crtc, pipe_config); 8093 } else { 8094 vlv_compute_dpll(crtc, pipe_config); 8095 vlv_prepare_pll(crtc, pipe_config); 8096 vlv_enable_pll(crtc, pipe_config); 8097 } 8098 8099 kfree(pipe_config); 8100 8101 return 0; 8102 } 8103 8104 /** 8105 * vlv_force_pll_off - forcibly disable just the PLL 8106 * @dev_priv: i915 private structure 8107 * @pipe: pipe PLL to disable 8108 * 8109 * Disable the PLL for @pipe. To be used in cases where we need 8110 * the PLL enabled even when @pipe is not going to be enabled. 8111 */ 8112 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe) 8113 { 8114 if (IS_CHERRYVIEW(dev_priv)) 8115 chv_disable_pll(dev_priv, pipe); 8116 else 8117 vlv_disable_pll(dev_priv, pipe); 8118 } 8119 8120 static void i9xx_compute_dpll(struct intel_crtc *crtc, 8121 struct intel_crtc_state *crtc_state, 8122 struct dpll *reduced_clock) 8123 { 8124 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8125 u32 dpll; 8126 struct dpll *clock = &crtc_state->dpll; 8127 8128 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8129 8130 dpll = DPLL_VGA_MODE_DIS; 8131 8132 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 8133 dpll |= DPLLB_MODE_LVDS; 8134 else 8135 dpll |= DPLLB_MODE_DAC_SERIAL; 8136 8137 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 8138 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 8139 dpll |= (crtc_state->pixel_multiplier - 1) 8140 << SDVO_MULTIPLIER_SHIFT_HIRES; 8141 } 8142 8143 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 8144 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 8145 dpll |= DPLL_SDVO_HIGH_SPEED; 8146 8147 if (intel_crtc_has_dp_encoder(crtc_state)) 8148 dpll |= DPLL_SDVO_HIGH_SPEED; 8149 8150 /* compute bitmask from p1 value */ 8151 if (IS_PINEVIEW(dev_priv)) 8152 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; 8153 else { 8154 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8155 if (IS_G4X(dev_priv) && reduced_clock) 8156 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 8157 } 8158 switch (clock->p2) { 8159 case 5: 8160 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 8161 break; 8162 case 7: 8163 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 8164 break; 8165 case 10: 8166 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 8167 break; 8168 case 14: 8169 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 8170 break; 8171 } 8172 if (INTEL_GEN(dev_priv) >= 4) 8173 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); 8174 8175 if (crtc_state->sdvo_tv_clock) 8176 dpll |= PLL_REF_INPUT_TVCLKINBC; 8177 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8178 intel_panel_use_ssc(dev_priv)) 8179 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8180 else 8181 dpll |= PLL_REF_INPUT_DREFCLK; 8182 8183 dpll |= DPLL_VCO_ENABLE; 8184 crtc_state->dpll_hw_state.dpll = dpll; 8185 8186 if (INTEL_GEN(dev_priv) >= 4) { 8187 u32 dpll_md = (crtc_state->pixel_multiplier - 1) 8188 << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8189 crtc_state->dpll_hw_state.dpll_md = dpll_md; 8190 } 8191 } 8192 8193 static void i8xx_compute_dpll(struct intel_crtc *crtc, 8194 struct intel_crtc_state *crtc_state, 8195 struct dpll *reduced_clock) 8196 { 8197 struct drm_device *dev = crtc->base.dev; 8198 struct drm_i915_private *dev_priv = to_i915(dev); 8199 u32 dpll; 8200 struct dpll *clock = &crtc_state->dpll; 8201 8202 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8203 8204 dpll = DPLL_VGA_MODE_DIS; 8205 8206 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8207 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8208 } else { 8209 if (clock->p1 == 2) 8210 dpll |= PLL_P1_DIVIDE_BY_TWO; 8211 else 8212 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8213 if (clock->p2 == 4) 8214 dpll |= PLL_P2_DIVIDE_BY_4; 8215 } 8216 8217 /* 8218 * Bspec: 8219 * "[Almador Errata}: For the correct operation of the muxed DVO pins 8220 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, 8221 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock 8222 * Enable) must be set to “1” in both the DPLL A Control Register 8223 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." 8224 * 8225 * For simplicity We simply keep both bits always enabled in 8226 * both DPLLS. The spec says we should disable the DVO 2X clock 8227 * when not needed, but this seems to work fine in practice. 8228 */ 8229 if (IS_I830(dev_priv) || 8230 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) 8231 dpll |= DPLL_DVO_2X_MODE; 8232 8233 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8234 intel_panel_use_ssc(dev_priv)) 8235 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8236 else 8237 dpll |= PLL_REF_INPUT_DREFCLK; 8238 8239 dpll |= DPLL_VCO_ENABLE; 8240 crtc_state->dpll_hw_state.dpll = dpll; 8241 } 8242 8243 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state) 8244 { 8245 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 8246 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8247 enum pipe pipe = crtc->pipe; 8248 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8249 const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode; 8250 u32 crtc_vtotal, crtc_vblank_end; 8251 int vsyncshift = 0; 8252 8253 /* We need to be careful not to changed the adjusted mode, for otherwise 8254 * the hw state checker will get angry at the mismatch. */ 8255 crtc_vtotal = adjusted_mode->crtc_vtotal; 8256 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 8257 8258 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 8259 /* the chip adds 2 halflines automatically */ 8260 crtc_vtotal -= 1; 8261 crtc_vblank_end -= 1; 8262 8263 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 8264 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 8265 else 8266 vsyncshift = adjusted_mode->crtc_hsync_start - 8267 adjusted_mode->crtc_htotal / 2; 8268 if (vsyncshift < 0) 8269 vsyncshift += adjusted_mode->crtc_htotal; 8270 } 8271 8272 if (INTEL_GEN(dev_priv) > 3) 8273 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift); 8274 8275 I915_WRITE(HTOTAL(cpu_transcoder), 8276 (adjusted_mode->crtc_hdisplay - 1) | 8277 ((adjusted_mode->crtc_htotal - 1) << 16)); 8278 I915_WRITE(HBLANK(cpu_transcoder), 8279 (adjusted_mode->crtc_hblank_start - 1) | 8280 ((adjusted_mode->crtc_hblank_end - 1) << 16)); 8281 I915_WRITE(HSYNC(cpu_transcoder), 8282 (adjusted_mode->crtc_hsync_start - 1) | 8283 ((adjusted_mode->crtc_hsync_end - 1) << 16)); 8284 8285 I915_WRITE(VTOTAL(cpu_transcoder), 8286 (adjusted_mode->crtc_vdisplay - 1) | 8287 ((crtc_vtotal - 1) << 16)); 8288 I915_WRITE(VBLANK(cpu_transcoder), 8289 (adjusted_mode->crtc_vblank_start - 1) | 8290 ((crtc_vblank_end - 1) << 16)); 8291 I915_WRITE(VSYNC(cpu_transcoder), 8292 (adjusted_mode->crtc_vsync_start - 1) | 8293 ((adjusted_mode->crtc_vsync_end - 1) << 16)); 8294 8295 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 8296 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 8297 * documented on the DDI_FUNC_CTL register description, EDP Input Select 8298 * bits. */ 8299 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 8300 (pipe == PIPE_B || pipe == PIPE_C)) 8301 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder))); 8302 8303 } 8304 8305 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 8306 { 8307 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 8308 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8309 enum pipe pipe = crtc->pipe; 8310 8311 /* pipesrc controls the size that is scaled from, which should 8312 * always be the user's requested size. 8313 */ 8314 I915_WRITE(PIPESRC(pipe), 8315 ((crtc_state->pipe_src_w - 1) << 16) | 8316 (crtc_state->pipe_src_h - 1)); 8317 } 8318 8319 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 8320 { 8321 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 8322 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8323 8324 if (IS_GEN(dev_priv, 2)) 8325 return false; 8326 8327 if (INTEL_GEN(dev_priv) >= 9 || 8328 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 8329 return I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; 8330 else 8331 return I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; 8332 } 8333 8334 static void intel_get_pipe_timings(struct intel_crtc *crtc, 8335 struct intel_crtc_state *pipe_config) 8336 { 8337 struct drm_device *dev = crtc->base.dev; 8338 struct drm_i915_private *dev_priv = to_i915(dev); 8339 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 8340 u32 tmp; 8341 8342 tmp = I915_READ(HTOTAL(cpu_transcoder)); 8343 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 8344 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 8345 8346 if (!transcoder_is_dsi(cpu_transcoder)) { 8347 tmp = I915_READ(HBLANK(cpu_transcoder)); 8348 pipe_config->base.adjusted_mode.crtc_hblank_start = 8349 (tmp & 0xffff) + 1; 8350 pipe_config->base.adjusted_mode.crtc_hblank_end = 8351 ((tmp >> 16) & 0xffff) + 1; 8352 } 8353 tmp = I915_READ(HSYNC(cpu_transcoder)); 8354 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 8355 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 8356 8357 tmp = I915_READ(VTOTAL(cpu_transcoder)); 8358 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 8359 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 8360 8361 if (!transcoder_is_dsi(cpu_transcoder)) { 8362 tmp = I915_READ(VBLANK(cpu_transcoder)); 8363 pipe_config->base.adjusted_mode.crtc_vblank_start = 8364 (tmp & 0xffff) + 1; 8365 pipe_config->base.adjusted_mode.crtc_vblank_end = 8366 ((tmp >> 16) & 0xffff) + 1; 8367 } 8368 tmp = I915_READ(VSYNC(cpu_transcoder)); 8369 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 8370 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 8371 8372 if (intel_pipe_is_interlaced(pipe_config)) { 8373 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 8374 pipe_config->base.adjusted_mode.crtc_vtotal += 1; 8375 pipe_config->base.adjusted_mode.crtc_vblank_end += 1; 8376 } 8377 } 8378 8379 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 8380 struct intel_crtc_state *pipe_config) 8381 { 8382 struct drm_device *dev = crtc->base.dev; 8383 struct drm_i915_private *dev_priv = to_i915(dev); 8384 u32 tmp; 8385 8386 tmp = I915_READ(PIPESRC(crtc->pipe)); 8387 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 8388 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 8389 8390 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h; 8391 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w; 8392 } 8393 8394 void intel_mode_from_pipe_config(struct drm_display_mode *mode, 8395 struct intel_crtc_state *pipe_config) 8396 { 8397 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay; 8398 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal; 8399 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start; 8400 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end; 8401 8402 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay; 8403 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal; 8404 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start; 8405 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end; 8406 8407 mode->flags = pipe_config->base.adjusted_mode.flags; 8408 mode->type = DRM_MODE_TYPE_DRIVER; 8409 8410 mode->clock = pipe_config->base.adjusted_mode.crtc_clock; 8411 8412 mode->hsync = drm_mode_hsync(mode); 8413 mode->vrefresh = drm_mode_vrefresh(mode); 8414 drm_mode_set_name(mode); 8415 } 8416 8417 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 8418 { 8419 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 8420 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8421 u32 pipeconf; 8422 8423 pipeconf = 0; 8424 8425 /* we keep both pipes enabled on 830 */ 8426 if (IS_I830(dev_priv)) 8427 pipeconf |= I915_READ(PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 8428 8429 if (crtc_state->double_wide) 8430 pipeconf |= PIPECONF_DOUBLE_WIDE; 8431 8432 /* only g4x and later have fancy bpc/dither controls */ 8433 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 8434 IS_CHERRYVIEW(dev_priv)) { 8435 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 8436 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 8437 pipeconf |= PIPECONF_DITHER_EN | 8438 PIPECONF_DITHER_TYPE_SP; 8439 8440 switch (crtc_state->pipe_bpp) { 8441 case 18: 8442 pipeconf |= PIPECONF_6BPC; 8443 break; 8444 case 24: 8445 pipeconf |= PIPECONF_8BPC; 8446 break; 8447 case 30: 8448 pipeconf |= PIPECONF_10BPC; 8449 break; 8450 default: 8451 /* Case prevented by intel_choose_pipe_bpp_dither. */ 8452 BUG(); 8453 } 8454 } 8455 8456 if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 8457 if (INTEL_GEN(dev_priv) < 4 || 8458 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 8459 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 8460 else 8461 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 8462 } else { 8463 pipeconf |= PIPECONF_PROGRESSIVE; 8464 } 8465 8466 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 8467 crtc_state->limited_color_range) 8468 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 8469 8470 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 8471 8472 I915_WRITE(PIPECONF(crtc->pipe), pipeconf); 8473 POSTING_READ(PIPECONF(crtc->pipe)); 8474 } 8475 8476 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc, 8477 struct intel_crtc_state *crtc_state) 8478 { 8479 struct drm_device *dev = crtc->base.dev; 8480 struct drm_i915_private *dev_priv = to_i915(dev); 8481 const struct intel_limit *limit; 8482 int refclk = 48000; 8483 8484 memset(&crtc_state->dpll_hw_state, 0, 8485 sizeof(crtc_state->dpll_hw_state)); 8486 8487 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8488 if (intel_panel_use_ssc(dev_priv)) { 8489 refclk = dev_priv->vbt.lvds_ssc_freq; 8490 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); 8491 } 8492 8493 limit = &intel_limits_i8xx_lvds; 8494 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { 8495 limit = &intel_limits_i8xx_dvo; 8496 } else { 8497 limit = &intel_limits_i8xx_dac; 8498 } 8499 8500 if (!crtc_state->clock_set && 8501 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8502 refclk, NULL, &crtc_state->dpll)) { 8503 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8504 return -EINVAL; 8505 } 8506 8507 i8xx_compute_dpll(crtc, crtc_state, NULL); 8508 8509 return 0; 8510 } 8511 8512 static int g4x_crtc_compute_clock(struct intel_crtc *crtc, 8513 struct intel_crtc_state *crtc_state) 8514 { 8515 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8516 const struct intel_limit *limit; 8517 int refclk = 96000; 8518 8519 memset(&crtc_state->dpll_hw_state, 0, 8520 sizeof(crtc_state->dpll_hw_state)); 8521 8522 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8523 if (intel_panel_use_ssc(dev_priv)) { 8524 refclk = dev_priv->vbt.lvds_ssc_freq; 8525 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); 8526 } 8527 8528 if (intel_is_dual_link_lvds(dev_priv)) 8529 limit = &intel_limits_g4x_dual_channel_lvds; 8530 else 8531 limit = &intel_limits_g4x_single_channel_lvds; 8532 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || 8533 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { 8534 limit = &intel_limits_g4x_hdmi; 8535 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { 8536 limit = &intel_limits_g4x_sdvo; 8537 } else { 8538 /* The option is for other outputs */ 8539 limit = &intel_limits_i9xx_sdvo; 8540 } 8541 8542 if (!crtc_state->clock_set && 8543 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8544 refclk, NULL, &crtc_state->dpll)) { 8545 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8546 return -EINVAL; 8547 } 8548 8549 i9xx_compute_dpll(crtc, crtc_state, NULL); 8550 8551 return 0; 8552 } 8553 8554 static int pnv_crtc_compute_clock(struct intel_crtc *crtc, 8555 struct intel_crtc_state *crtc_state) 8556 { 8557 struct drm_device *dev = crtc->base.dev; 8558 struct drm_i915_private *dev_priv = to_i915(dev); 8559 const struct intel_limit *limit; 8560 int refclk = 96000; 8561 8562 memset(&crtc_state->dpll_hw_state, 0, 8563 sizeof(crtc_state->dpll_hw_state)); 8564 8565 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8566 if (intel_panel_use_ssc(dev_priv)) { 8567 refclk = dev_priv->vbt.lvds_ssc_freq; 8568 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); 8569 } 8570 8571 limit = &intel_limits_pineview_lvds; 8572 } else { 8573 limit = &intel_limits_pineview_sdvo; 8574 } 8575 8576 if (!crtc_state->clock_set && 8577 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8578 refclk, NULL, &crtc_state->dpll)) { 8579 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8580 return -EINVAL; 8581 } 8582 8583 i9xx_compute_dpll(crtc, crtc_state, NULL); 8584 8585 return 0; 8586 } 8587 8588 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc, 8589 struct intel_crtc_state *crtc_state) 8590 { 8591 struct drm_device *dev = crtc->base.dev; 8592 struct drm_i915_private *dev_priv = to_i915(dev); 8593 const struct intel_limit *limit; 8594 int refclk = 96000; 8595 8596 memset(&crtc_state->dpll_hw_state, 0, 8597 sizeof(crtc_state->dpll_hw_state)); 8598 8599 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8600 if (intel_panel_use_ssc(dev_priv)) { 8601 refclk = dev_priv->vbt.lvds_ssc_freq; 8602 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); 8603 } 8604 8605 limit = &intel_limits_i9xx_lvds; 8606 } else { 8607 limit = &intel_limits_i9xx_sdvo; 8608 } 8609 8610 if (!crtc_state->clock_set && 8611 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8612 refclk, NULL, &crtc_state->dpll)) { 8613 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8614 return -EINVAL; 8615 } 8616 8617 i9xx_compute_dpll(crtc, crtc_state, NULL); 8618 8619 return 0; 8620 } 8621 8622 static int chv_crtc_compute_clock(struct intel_crtc *crtc, 8623 struct intel_crtc_state *crtc_state) 8624 { 8625 int refclk = 100000; 8626 const struct intel_limit *limit = &intel_limits_chv; 8627 8628 memset(&crtc_state->dpll_hw_state, 0, 8629 sizeof(crtc_state->dpll_hw_state)); 8630 8631 if (!crtc_state->clock_set && 8632 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8633 refclk, NULL, &crtc_state->dpll)) { 8634 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8635 return -EINVAL; 8636 } 8637 8638 chv_compute_dpll(crtc, crtc_state); 8639 8640 return 0; 8641 } 8642 8643 static int vlv_crtc_compute_clock(struct intel_crtc *crtc, 8644 struct intel_crtc_state *crtc_state) 8645 { 8646 int refclk = 100000; 8647 const struct intel_limit *limit = &intel_limits_vlv; 8648 8649 memset(&crtc_state->dpll_hw_state, 0, 8650 sizeof(crtc_state->dpll_hw_state)); 8651 8652 if (!crtc_state->clock_set && 8653 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8654 refclk, NULL, &crtc_state->dpll)) { 8655 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8656 return -EINVAL; 8657 } 8658 8659 vlv_compute_dpll(crtc, crtc_state); 8660 8661 return 0; 8662 } 8663 8664 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 8665 { 8666 if (IS_I830(dev_priv)) 8667 return false; 8668 8669 return INTEL_GEN(dev_priv) >= 4 || 8670 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 8671 } 8672 8673 static void i9xx_get_pfit_config(struct intel_crtc *crtc, 8674 struct intel_crtc_state *pipe_config) 8675 { 8676 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8677 u32 tmp; 8678 8679 if (!i9xx_has_pfit(dev_priv)) 8680 return; 8681 8682 tmp = I915_READ(PFIT_CONTROL); 8683 if (!(tmp & PFIT_ENABLE)) 8684 return; 8685 8686 /* Check whether the pfit is attached to our pipe. */ 8687 if (INTEL_GEN(dev_priv) < 4) { 8688 if (crtc->pipe != PIPE_B) 8689 return; 8690 } else { 8691 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 8692 return; 8693 } 8694 8695 pipe_config->gmch_pfit.control = tmp; 8696 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS); 8697 } 8698 8699 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 8700 struct intel_crtc_state *pipe_config) 8701 { 8702 struct drm_device *dev = crtc->base.dev; 8703 struct drm_i915_private *dev_priv = to_i915(dev); 8704 enum pipe pipe = crtc->pipe; 8705 struct dpll clock; 8706 u32 mdiv; 8707 int refclk = 100000; 8708 8709 /* In case of DSI, DPLL will not be used */ 8710 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8711 return; 8712 8713 vlv_dpio_get(dev_priv); 8714 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 8715 vlv_dpio_put(dev_priv); 8716 8717 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 8718 clock.m2 = mdiv & DPIO_M2DIV_MASK; 8719 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 8720 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 8721 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 8722 8723 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 8724 } 8725 8726 static void 8727 i9xx_get_initial_plane_config(struct intel_crtc *crtc, 8728 struct intel_initial_plane_config *plane_config) 8729 { 8730 struct drm_device *dev = crtc->base.dev; 8731 struct drm_i915_private *dev_priv = to_i915(dev); 8732 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 8733 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 8734 enum pipe pipe; 8735 u32 val, base, offset; 8736 int fourcc, pixel_format; 8737 unsigned int aligned_height; 8738 struct drm_framebuffer *fb; 8739 struct intel_framebuffer *intel_fb; 8740 8741 if (!plane->get_hw_state(plane, &pipe)) 8742 return; 8743 8744 WARN_ON(pipe != crtc->pipe); 8745 8746 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 8747 if (!intel_fb) { 8748 DRM_DEBUG_KMS("failed to alloc fb\n"); 8749 return; 8750 } 8751 8752 fb = &intel_fb->base; 8753 8754 fb->dev = dev; 8755 8756 val = I915_READ(DSPCNTR(i9xx_plane)); 8757 8758 if (INTEL_GEN(dev_priv) >= 4) { 8759 if (val & DISPPLANE_TILED) { 8760 plane_config->tiling = I915_TILING_X; 8761 fb->modifier = I915_FORMAT_MOD_X_TILED; 8762 } 8763 8764 if (val & DISPPLANE_ROTATE_180) 8765 plane_config->rotation = DRM_MODE_ROTATE_180; 8766 } 8767 8768 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B && 8769 val & DISPPLANE_MIRROR) 8770 plane_config->rotation |= DRM_MODE_REFLECT_X; 8771 8772 pixel_format = val & DISPPLANE_PIXFORMAT_MASK; 8773 fourcc = i9xx_format_to_fourcc(pixel_format); 8774 fb->format = drm_format_info(fourcc); 8775 8776 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 8777 offset = I915_READ(DSPOFFSET(i9xx_plane)); 8778 base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000; 8779 } else if (INTEL_GEN(dev_priv) >= 4) { 8780 if (plane_config->tiling) 8781 offset = I915_READ(DSPTILEOFF(i9xx_plane)); 8782 else 8783 offset = I915_READ(DSPLINOFF(i9xx_plane)); 8784 base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000; 8785 } else { 8786 base = I915_READ(DSPADDR(i9xx_plane)); 8787 } 8788 plane_config->base = base; 8789 8790 val = I915_READ(PIPESRC(pipe)); 8791 fb->width = ((val >> 16) & 0xfff) + 1; 8792 fb->height = ((val >> 0) & 0xfff) + 1; 8793 8794 val = I915_READ(DSPSTRIDE(i9xx_plane)); 8795 fb->pitches[0] = val & 0xffffffc0; 8796 8797 aligned_height = intel_fb_align_height(fb, 0, fb->height); 8798 8799 plane_config->size = fb->pitches[0] * aligned_height; 8800 8801 DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 8802 crtc->base.name, plane->base.name, fb->width, fb->height, 8803 fb->format->cpp[0] * 8, base, fb->pitches[0], 8804 plane_config->size); 8805 8806 plane_config->fb = intel_fb; 8807 } 8808 8809 static void chv_crtc_clock_get(struct intel_crtc *crtc, 8810 struct intel_crtc_state *pipe_config) 8811 { 8812 struct drm_device *dev = crtc->base.dev; 8813 struct drm_i915_private *dev_priv = to_i915(dev); 8814 enum pipe pipe = crtc->pipe; 8815 enum dpio_channel port = vlv_pipe_to_channel(pipe); 8816 struct dpll clock; 8817 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 8818 int refclk = 100000; 8819 8820 /* In case of DSI, DPLL will not be used */ 8821 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8822 return; 8823 8824 vlv_dpio_get(dev_priv); 8825 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 8826 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 8827 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 8828 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 8829 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 8830 vlv_dpio_put(dev_priv); 8831 8832 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 8833 clock.m2 = (pll_dw0 & 0xff) << 22; 8834 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 8835 clock.m2 |= pll_dw2 & 0x3fffff; 8836 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 8837 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 8838 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 8839 8840 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 8841 } 8842 8843 static enum intel_output_format 8844 bdw_get_pipemisc_output_format(struct intel_crtc *crtc) 8845 { 8846 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8847 u32 tmp; 8848 8849 tmp = I915_READ(PIPEMISC(crtc->pipe)); 8850 8851 if (tmp & PIPEMISC_YUV420_ENABLE) { 8852 /* We support 4:2:0 in full blend mode only */ 8853 WARN_ON((tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); 8854 8855 return INTEL_OUTPUT_FORMAT_YCBCR420; 8856 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 8857 return INTEL_OUTPUT_FORMAT_YCBCR444; 8858 } else { 8859 return INTEL_OUTPUT_FORMAT_RGB; 8860 } 8861 } 8862 8863 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 8864 { 8865 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 8866 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 8867 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8868 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 8869 u32 tmp; 8870 8871 tmp = I915_READ(DSPCNTR(i9xx_plane)); 8872 8873 if (tmp & DISPPLANE_GAMMA_ENABLE) 8874 crtc_state->gamma_enable = true; 8875 8876 if (!HAS_GMCH(dev_priv) && 8877 tmp & DISPPLANE_PIPE_CSC_ENABLE) 8878 crtc_state->csc_enable = true; 8879 } 8880 8881 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 8882 struct intel_crtc_state *pipe_config) 8883 { 8884 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8885 enum intel_display_power_domain power_domain; 8886 intel_wakeref_t wakeref; 8887 u32 tmp; 8888 bool ret; 8889 8890 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 8891 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 8892 if (!wakeref) 8893 return false; 8894 8895 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 8896 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 8897 pipe_config->shared_dpll = NULL; 8898 pipe_config->master_transcoder = INVALID_TRANSCODER; 8899 8900 ret = false; 8901 8902 tmp = I915_READ(PIPECONF(crtc->pipe)); 8903 if (!(tmp & PIPECONF_ENABLE)) 8904 goto out; 8905 8906 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 8907 IS_CHERRYVIEW(dev_priv)) { 8908 switch (tmp & PIPECONF_BPC_MASK) { 8909 case PIPECONF_6BPC: 8910 pipe_config->pipe_bpp = 18; 8911 break; 8912 case PIPECONF_8BPC: 8913 pipe_config->pipe_bpp = 24; 8914 break; 8915 case PIPECONF_10BPC: 8916 pipe_config->pipe_bpp = 30; 8917 break; 8918 default: 8919 break; 8920 } 8921 } 8922 8923 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 8924 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 8925 pipe_config->limited_color_range = true; 8926 8927 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 8928 PIPECONF_GAMMA_MODE_SHIFT; 8929 8930 if (IS_CHERRYVIEW(dev_priv)) 8931 pipe_config->cgm_mode = I915_READ(CGM_PIPE_MODE(crtc->pipe)); 8932 8933 i9xx_get_pipe_color_config(pipe_config); 8934 intel_color_get_config(pipe_config); 8935 8936 if (INTEL_GEN(dev_priv) < 4) 8937 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 8938 8939 intel_get_pipe_timings(crtc, pipe_config); 8940 intel_get_pipe_src_size(crtc, pipe_config); 8941 8942 i9xx_get_pfit_config(crtc, pipe_config); 8943 8944 if (INTEL_GEN(dev_priv) >= 4) { 8945 /* No way to read it out on pipes B and C */ 8946 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 8947 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 8948 else 8949 tmp = I915_READ(DPLL_MD(crtc->pipe)); 8950 pipe_config->pixel_multiplier = 8951 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 8952 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 8953 pipe_config->dpll_hw_state.dpll_md = tmp; 8954 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 8955 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 8956 tmp = I915_READ(DPLL(crtc->pipe)); 8957 pipe_config->pixel_multiplier = 8958 ((tmp & SDVO_MULTIPLIER_MASK) 8959 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 8960 } else { 8961 /* Note that on i915G/GM the pixel multiplier is in the sdvo 8962 * port and will be fixed up in the encoder->get_config 8963 * function. */ 8964 pipe_config->pixel_multiplier = 1; 8965 } 8966 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe)); 8967 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 8968 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe)); 8969 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe)); 8970 } else { 8971 /* Mask out read-only status bits. */ 8972 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 8973 DPLL_PORTC_READY_MASK | 8974 DPLL_PORTB_READY_MASK); 8975 } 8976 8977 if (IS_CHERRYVIEW(dev_priv)) 8978 chv_crtc_clock_get(crtc, pipe_config); 8979 else if (IS_VALLEYVIEW(dev_priv)) 8980 vlv_crtc_clock_get(crtc, pipe_config); 8981 else 8982 i9xx_crtc_clock_get(crtc, pipe_config); 8983 8984 /* 8985 * Normally the dotclock is filled in by the encoder .get_config() 8986 * but in case the pipe is enabled w/o any ports we need a sane 8987 * default. 8988 */ 8989 pipe_config->base.adjusted_mode.crtc_clock = 8990 pipe_config->port_clock / pipe_config->pixel_multiplier; 8991 8992 ret = true; 8993 8994 out: 8995 intel_display_power_put(dev_priv, power_domain, wakeref); 8996 8997 return ret; 8998 } 8999 9000 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv) 9001 { 9002 struct intel_encoder *encoder; 9003 int i; 9004 u32 val, final; 9005 bool has_lvds = false; 9006 bool has_cpu_edp = false; 9007 bool has_panel = false; 9008 bool has_ck505 = false; 9009 bool can_ssc = false; 9010 bool using_ssc_source = false; 9011 9012 /* We need to take the global config into account */ 9013 for_each_intel_encoder(&dev_priv->drm, encoder) { 9014 switch (encoder->type) { 9015 case INTEL_OUTPUT_LVDS: 9016 has_panel = true; 9017 has_lvds = true; 9018 break; 9019 case INTEL_OUTPUT_EDP: 9020 has_panel = true; 9021 if (encoder->port == PORT_A) 9022 has_cpu_edp = true; 9023 break; 9024 default: 9025 break; 9026 } 9027 } 9028 9029 if (HAS_PCH_IBX(dev_priv)) { 9030 has_ck505 = dev_priv->vbt.display_clock_mode; 9031 can_ssc = has_ck505; 9032 } else { 9033 has_ck505 = false; 9034 can_ssc = true; 9035 } 9036 9037 /* Check if any DPLLs are using the SSC source */ 9038 for (i = 0; i < dev_priv->num_shared_dpll; i++) { 9039 u32 temp = I915_READ(PCH_DPLL(i)); 9040 9041 if (!(temp & DPLL_VCO_ENABLE)) 9042 continue; 9043 9044 if ((temp & PLL_REF_INPUT_MASK) == 9045 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 9046 using_ssc_source = true; 9047 break; 9048 } 9049 } 9050 9051 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 9052 has_panel, has_lvds, has_ck505, using_ssc_source); 9053 9054 /* Ironlake: try to setup display ref clock before DPLL 9055 * enabling. This is only under driver's control after 9056 * PCH B stepping, previous chipset stepping should be 9057 * ignoring this setting. 9058 */ 9059 val = I915_READ(PCH_DREF_CONTROL); 9060 9061 /* As we must carefully and slowly disable/enable each source in turn, 9062 * compute the final state we want first and check if we need to 9063 * make any changes at all. 9064 */ 9065 final = val; 9066 final &= ~DREF_NONSPREAD_SOURCE_MASK; 9067 if (has_ck505) 9068 final |= DREF_NONSPREAD_CK505_ENABLE; 9069 else 9070 final |= DREF_NONSPREAD_SOURCE_ENABLE; 9071 9072 final &= ~DREF_SSC_SOURCE_MASK; 9073 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9074 final &= ~DREF_SSC1_ENABLE; 9075 9076 if (has_panel) { 9077 final |= DREF_SSC_SOURCE_ENABLE; 9078 9079 if (intel_panel_use_ssc(dev_priv) && can_ssc) 9080 final |= DREF_SSC1_ENABLE; 9081 9082 if (has_cpu_edp) { 9083 if (intel_panel_use_ssc(dev_priv) && can_ssc) 9084 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9085 else 9086 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9087 } else 9088 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9089 } else if (using_ssc_source) { 9090 final |= DREF_SSC_SOURCE_ENABLE; 9091 final |= DREF_SSC1_ENABLE; 9092 } 9093 9094 if (final == val) 9095 return; 9096 9097 /* Always enable nonspread source */ 9098 val &= ~DREF_NONSPREAD_SOURCE_MASK; 9099 9100 if (has_ck505) 9101 val |= DREF_NONSPREAD_CK505_ENABLE; 9102 else 9103 val |= DREF_NONSPREAD_SOURCE_ENABLE; 9104 9105 if (has_panel) { 9106 val &= ~DREF_SSC_SOURCE_MASK; 9107 val |= DREF_SSC_SOURCE_ENABLE; 9108 9109 /* SSC must be turned on before enabling the CPU output */ 9110 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9111 DRM_DEBUG_KMS("Using SSC on panel\n"); 9112 val |= DREF_SSC1_ENABLE; 9113 } else 9114 val &= ~DREF_SSC1_ENABLE; 9115 9116 /* Get SSC going before enabling the outputs */ 9117 I915_WRITE(PCH_DREF_CONTROL, val); 9118 POSTING_READ(PCH_DREF_CONTROL); 9119 udelay(200); 9120 9121 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9122 9123 /* Enable CPU source on CPU attached eDP */ 9124 if (has_cpu_edp) { 9125 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9126 DRM_DEBUG_KMS("Using SSC on eDP\n"); 9127 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9128 } else 9129 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9130 } else 9131 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9132 9133 I915_WRITE(PCH_DREF_CONTROL, val); 9134 POSTING_READ(PCH_DREF_CONTROL); 9135 udelay(200); 9136 } else { 9137 DRM_DEBUG_KMS("Disabling CPU source output\n"); 9138 9139 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9140 9141 /* Turn off CPU output */ 9142 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9143 9144 I915_WRITE(PCH_DREF_CONTROL, val); 9145 POSTING_READ(PCH_DREF_CONTROL); 9146 udelay(200); 9147 9148 if (!using_ssc_source) { 9149 DRM_DEBUG_KMS("Disabling SSC source\n"); 9150 9151 /* Turn off the SSC source */ 9152 val &= ~DREF_SSC_SOURCE_MASK; 9153 val |= DREF_SSC_SOURCE_DISABLE; 9154 9155 /* Turn off SSC1 */ 9156 val &= ~DREF_SSC1_ENABLE; 9157 9158 I915_WRITE(PCH_DREF_CONTROL, val); 9159 POSTING_READ(PCH_DREF_CONTROL); 9160 udelay(200); 9161 } 9162 } 9163 9164 BUG_ON(val != final); 9165 } 9166 9167 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 9168 { 9169 u32 tmp; 9170 9171 tmp = I915_READ(SOUTH_CHICKEN2); 9172 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 9173 I915_WRITE(SOUTH_CHICKEN2, tmp); 9174 9175 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) & 9176 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 9177 DRM_ERROR("FDI mPHY reset assert timeout\n"); 9178 9179 tmp = I915_READ(SOUTH_CHICKEN2); 9180 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 9181 I915_WRITE(SOUTH_CHICKEN2, tmp); 9182 9183 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) & 9184 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 9185 DRM_ERROR("FDI mPHY reset de-assert timeout\n"); 9186 } 9187 9188 /* WaMPhyProgramming:hsw */ 9189 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 9190 { 9191 u32 tmp; 9192 9193 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 9194 tmp &= ~(0xFF << 24); 9195 tmp |= (0x12 << 24); 9196 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 9197 9198 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 9199 tmp |= (1 << 11); 9200 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 9201 9202 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 9203 tmp |= (1 << 11); 9204 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 9205 9206 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 9207 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9208 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 9209 9210 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 9211 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9212 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 9213 9214 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 9215 tmp &= ~(7 << 13); 9216 tmp |= (5 << 13); 9217 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 9218 9219 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 9220 tmp &= ~(7 << 13); 9221 tmp |= (5 << 13); 9222 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 9223 9224 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 9225 tmp &= ~0xFF; 9226 tmp |= 0x1C; 9227 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 9228 9229 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 9230 tmp &= ~0xFF; 9231 tmp |= 0x1C; 9232 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 9233 9234 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 9235 tmp &= ~(0xFF << 16); 9236 tmp |= (0x1C << 16); 9237 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 9238 9239 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 9240 tmp &= ~(0xFF << 16); 9241 tmp |= (0x1C << 16); 9242 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 9243 9244 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 9245 tmp |= (1 << 27); 9246 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 9247 9248 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 9249 tmp |= (1 << 27); 9250 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 9251 9252 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 9253 tmp &= ~(0xF << 28); 9254 tmp |= (4 << 28); 9255 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 9256 9257 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 9258 tmp &= ~(0xF << 28); 9259 tmp |= (4 << 28); 9260 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 9261 } 9262 9263 /* Implements 3 different sequences from BSpec chapter "Display iCLK 9264 * Programming" based on the parameters passed: 9265 * - Sequence to enable CLKOUT_DP 9266 * - Sequence to enable CLKOUT_DP without spread 9267 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 9268 */ 9269 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 9270 bool with_spread, bool with_fdi) 9271 { 9272 u32 reg, tmp; 9273 9274 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n")) 9275 with_spread = true; 9276 if (WARN(HAS_PCH_LPT_LP(dev_priv) && 9277 with_fdi, "LP PCH doesn't have FDI\n")) 9278 with_fdi = false; 9279 9280 mutex_lock(&dev_priv->sb_lock); 9281 9282 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9283 tmp &= ~SBI_SSCCTL_DISABLE; 9284 tmp |= SBI_SSCCTL_PATHALT; 9285 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9286 9287 udelay(24); 9288 9289 if (with_spread) { 9290 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9291 tmp &= ~SBI_SSCCTL_PATHALT; 9292 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9293 9294 if (with_fdi) { 9295 lpt_reset_fdi_mphy(dev_priv); 9296 lpt_program_fdi_mphy(dev_priv); 9297 } 9298 } 9299 9300 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9301 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9302 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9303 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9304 9305 mutex_unlock(&dev_priv->sb_lock); 9306 } 9307 9308 /* Sequence to disable CLKOUT_DP */ 9309 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 9310 { 9311 u32 reg, tmp; 9312 9313 mutex_lock(&dev_priv->sb_lock); 9314 9315 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9316 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9317 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9318 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9319 9320 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9321 if (!(tmp & SBI_SSCCTL_DISABLE)) { 9322 if (!(tmp & SBI_SSCCTL_PATHALT)) { 9323 tmp |= SBI_SSCCTL_PATHALT; 9324 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9325 udelay(32); 9326 } 9327 tmp |= SBI_SSCCTL_DISABLE; 9328 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9329 } 9330 9331 mutex_unlock(&dev_priv->sb_lock); 9332 } 9333 9334 #define BEND_IDX(steps) ((50 + (steps)) / 5) 9335 9336 static const u16 sscdivintphase[] = { 9337 [BEND_IDX( 50)] = 0x3B23, 9338 [BEND_IDX( 45)] = 0x3B23, 9339 [BEND_IDX( 40)] = 0x3C23, 9340 [BEND_IDX( 35)] = 0x3C23, 9341 [BEND_IDX( 30)] = 0x3D23, 9342 [BEND_IDX( 25)] = 0x3D23, 9343 [BEND_IDX( 20)] = 0x3E23, 9344 [BEND_IDX( 15)] = 0x3E23, 9345 [BEND_IDX( 10)] = 0x3F23, 9346 [BEND_IDX( 5)] = 0x3F23, 9347 [BEND_IDX( 0)] = 0x0025, 9348 [BEND_IDX( -5)] = 0x0025, 9349 [BEND_IDX(-10)] = 0x0125, 9350 [BEND_IDX(-15)] = 0x0125, 9351 [BEND_IDX(-20)] = 0x0225, 9352 [BEND_IDX(-25)] = 0x0225, 9353 [BEND_IDX(-30)] = 0x0325, 9354 [BEND_IDX(-35)] = 0x0325, 9355 [BEND_IDX(-40)] = 0x0425, 9356 [BEND_IDX(-45)] = 0x0425, 9357 [BEND_IDX(-50)] = 0x0525, 9358 }; 9359 9360 /* 9361 * Bend CLKOUT_DP 9362 * steps -50 to 50 inclusive, in steps of 5 9363 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 9364 * change in clock period = -(steps / 10) * 5.787 ps 9365 */ 9366 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 9367 { 9368 u32 tmp; 9369 int idx = BEND_IDX(steps); 9370 9371 if (WARN_ON(steps % 5 != 0)) 9372 return; 9373 9374 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase))) 9375 return; 9376 9377 mutex_lock(&dev_priv->sb_lock); 9378 9379 if (steps % 10 != 0) 9380 tmp = 0xAAAAAAAB; 9381 else 9382 tmp = 0x00000000; 9383 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 9384 9385 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 9386 tmp &= 0xffff0000; 9387 tmp |= sscdivintphase[idx]; 9388 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 9389 9390 mutex_unlock(&dev_priv->sb_lock); 9391 } 9392 9393 #undef BEND_IDX 9394 9395 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 9396 { 9397 u32 fuse_strap = I915_READ(FUSE_STRAP); 9398 u32 ctl = I915_READ(SPLL_CTL); 9399 9400 if ((ctl & SPLL_PLL_ENABLE) == 0) 9401 return false; 9402 9403 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 9404 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 9405 return true; 9406 9407 if (IS_BROADWELL(dev_priv) && 9408 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 9409 return true; 9410 9411 return false; 9412 } 9413 9414 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 9415 enum intel_dpll_id id) 9416 { 9417 u32 fuse_strap = I915_READ(FUSE_STRAP); 9418 u32 ctl = I915_READ(WRPLL_CTL(id)); 9419 9420 if ((ctl & WRPLL_PLL_ENABLE) == 0) 9421 return false; 9422 9423 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 9424 return true; 9425 9426 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 9427 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 9428 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 9429 return true; 9430 9431 return false; 9432 } 9433 9434 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 9435 { 9436 struct intel_encoder *encoder; 9437 bool has_fdi = false; 9438 9439 for_each_intel_encoder(&dev_priv->drm, encoder) { 9440 switch (encoder->type) { 9441 case INTEL_OUTPUT_ANALOG: 9442 has_fdi = true; 9443 break; 9444 default: 9445 break; 9446 } 9447 } 9448 9449 /* 9450 * The BIOS may have decided to use the PCH SSC 9451 * reference so we must not disable it until the 9452 * relevant PLLs have stopped relying on it. We'll 9453 * just leave the PCH SSC reference enabled in case 9454 * any active PLL is using it. It will get disabled 9455 * after runtime suspend if we don't have FDI. 9456 * 9457 * TODO: Move the whole reference clock handling 9458 * to the modeset sequence proper so that we can 9459 * actually enable/disable/reconfigure these things 9460 * safely. To do that we need to introduce a real 9461 * clock hierarchy. That would also allow us to do 9462 * clock bending finally. 9463 */ 9464 dev_priv->pch_ssc_use = 0; 9465 9466 if (spll_uses_pch_ssc(dev_priv)) { 9467 DRM_DEBUG_KMS("SPLL using PCH SSC\n"); 9468 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); 9469 } 9470 9471 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 9472 DRM_DEBUG_KMS("WRPLL1 using PCH SSC\n"); 9473 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 9474 } 9475 9476 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 9477 DRM_DEBUG_KMS("WRPLL2 using PCH SSC\n"); 9478 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 9479 } 9480 9481 if (dev_priv->pch_ssc_use) 9482 return; 9483 9484 if (has_fdi) { 9485 lpt_bend_clkout_dp(dev_priv, 0); 9486 lpt_enable_clkout_dp(dev_priv, true, true); 9487 } else { 9488 lpt_disable_clkout_dp(dev_priv); 9489 } 9490 } 9491 9492 /* 9493 * Initialize reference clocks when the driver loads 9494 */ 9495 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 9496 { 9497 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 9498 ironlake_init_pch_refclk(dev_priv); 9499 else if (HAS_PCH_LPT(dev_priv)) 9500 lpt_init_pch_refclk(dev_priv); 9501 } 9502 9503 static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state) 9504 { 9505 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 9506 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9507 enum pipe pipe = crtc->pipe; 9508 u32 val; 9509 9510 val = 0; 9511 9512 switch (crtc_state->pipe_bpp) { 9513 case 18: 9514 val |= PIPECONF_6BPC; 9515 break; 9516 case 24: 9517 val |= PIPECONF_8BPC; 9518 break; 9519 case 30: 9520 val |= PIPECONF_10BPC; 9521 break; 9522 case 36: 9523 val |= PIPECONF_12BPC; 9524 break; 9525 default: 9526 /* Case prevented by intel_choose_pipe_bpp_dither. */ 9527 BUG(); 9528 } 9529 9530 if (crtc_state->dither) 9531 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 9532 9533 if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 9534 val |= PIPECONF_INTERLACED_ILK; 9535 else 9536 val |= PIPECONF_PROGRESSIVE; 9537 9538 /* 9539 * This would end up with an odd purple hue over 9540 * the entire display. Make sure we don't do it. 9541 */ 9542 WARN_ON(crtc_state->limited_color_range && 9543 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 9544 9545 if (crtc_state->limited_color_range) 9546 val |= PIPECONF_COLOR_RANGE_SELECT; 9547 9548 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 9549 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; 9550 9551 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 9552 9553 I915_WRITE(PIPECONF(pipe), val); 9554 POSTING_READ(PIPECONF(pipe)); 9555 } 9556 9557 static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state) 9558 { 9559 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 9560 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9561 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 9562 u32 val = 0; 9563 9564 if (IS_HASWELL(dev_priv) && crtc_state->dither) 9565 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 9566 9567 if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 9568 val |= PIPECONF_INTERLACED_ILK; 9569 else 9570 val |= PIPECONF_PROGRESSIVE; 9571 9572 if (IS_HASWELL(dev_priv) && 9573 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 9574 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; 9575 9576 I915_WRITE(PIPECONF(cpu_transcoder), val); 9577 POSTING_READ(PIPECONF(cpu_transcoder)); 9578 } 9579 9580 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 9581 { 9582 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 9583 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9584 u32 val = 0; 9585 9586 switch (crtc_state->pipe_bpp) { 9587 case 18: 9588 val |= PIPEMISC_DITHER_6_BPC; 9589 break; 9590 case 24: 9591 val |= PIPEMISC_DITHER_8_BPC; 9592 break; 9593 case 30: 9594 val |= PIPEMISC_DITHER_10_BPC; 9595 break; 9596 case 36: 9597 val |= PIPEMISC_DITHER_12_BPC; 9598 break; 9599 default: 9600 MISSING_CASE(crtc_state->pipe_bpp); 9601 break; 9602 } 9603 9604 if (crtc_state->dither) 9605 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 9606 9607 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 9608 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 9609 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 9610 9611 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 9612 val |= PIPEMISC_YUV420_ENABLE | 9613 PIPEMISC_YUV420_MODE_FULL_BLEND; 9614 9615 if (INTEL_GEN(dev_priv) >= 11 && 9616 (crtc_state->active_planes & ~(icl_hdr_plane_mask() | 9617 BIT(PLANE_CURSOR))) == 0) 9618 val |= PIPEMISC_HDR_MODE_PRECISION; 9619 9620 I915_WRITE(PIPEMISC(crtc->pipe), val); 9621 } 9622 9623 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 9624 { 9625 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9626 u32 tmp; 9627 9628 tmp = I915_READ(PIPEMISC(crtc->pipe)); 9629 9630 switch (tmp & PIPEMISC_DITHER_BPC_MASK) { 9631 case PIPEMISC_DITHER_6_BPC: 9632 return 18; 9633 case PIPEMISC_DITHER_8_BPC: 9634 return 24; 9635 case PIPEMISC_DITHER_10_BPC: 9636 return 30; 9637 case PIPEMISC_DITHER_12_BPC: 9638 return 36; 9639 default: 9640 MISSING_CASE(tmp); 9641 return 0; 9642 } 9643 } 9644 9645 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp) 9646 { 9647 /* 9648 * Account for spread spectrum to avoid 9649 * oversubscribing the link. Max center spread 9650 * is 2.5%; use 5% for safety's sake. 9651 */ 9652 u32 bps = target_clock * bpp * 21 / 20; 9653 return DIV_ROUND_UP(bps, link_bw * 8); 9654 } 9655 9656 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor) 9657 { 9658 return i9xx_dpll_compute_m(dpll) < factor * dpll->n; 9659 } 9660 9661 static void ironlake_compute_dpll(struct intel_crtc *crtc, 9662 struct intel_crtc_state *crtc_state, 9663 struct dpll *reduced_clock) 9664 { 9665 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9666 u32 dpll, fp, fp2; 9667 int factor; 9668 9669 /* Enable autotuning of the PLL clock (if permissible) */ 9670 factor = 21; 9671 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9672 if ((intel_panel_use_ssc(dev_priv) && 9673 dev_priv->vbt.lvds_ssc_freq == 100000) || 9674 (HAS_PCH_IBX(dev_priv) && 9675 intel_is_dual_link_lvds(dev_priv))) 9676 factor = 25; 9677 } else if (crtc_state->sdvo_tv_clock) { 9678 factor = 20; 9679 } 9680 9681 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 9682 9683 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor)) 9684 fp |= FP_CB_TUNE; 9685 9686 if (reduced_clock) { 9687 fp2 = i9xx_dpll_compute_fp(reduced_clock); 9688 9689 if (reduced_clock->m < factor * reduced_clock->n) 9690 fp2 |= FP_CB_TUNE; 9691 } else { 9692 fp2 = fp; 9693 } 9694 9695 dpll = 0; 9696 9697 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 9698 dpll |= DPLLB_MODE_LVDS; 9699 else 9700 dpll |= DPLLB_MODE_DAC_SERIAL; 9701 9702 dpll |= (crtc_state->pixel_multiplier - 1) 9703 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; 9704 9705 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 9706 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 9707 dpll |= DPLL_SDVO_HIGH_SPEED; 9708 9709 if (intel_crtc_has_dp_encoder(crtc_state)) 9710 dpll |= DPLL_SDVO_HIGH_SPEED; 9711 9712 /* 9713 * The high speed IO clock is only really required for 9714 * SDVO/HDMI/DP, but we also enable it for CRT to make it 9715 * possible to share the DPLL between CRT and HDMI. Enabling 9716 * the clock needlessly does no real harm, except use up a 9717 * bit of power potentially. 9718 * 9719 * We'll limit this to IVB with 3 pipes, since it has only two 9720 * DPLLs and so DPLL sharing is the only way to get three pipes 9721 * driving PCH ports at the same time. On SNB we could do this, 9722 * and potentially avoid enabling the second DPLL, but it's not 9723 * clear if it''s a win or loss power wise. No point in doing 9724 * this on ILK at all since it has a fixed DPLL<->pipe mapping. 9725 */ 9726 if (INTEL_NUM_PIPES(dev_priv) == 3 && 9727 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) 9728 dpll |= DPLL_SDVO_HIGH_SPEED; 9729 9730 /* compute bitmask from p1 value */ 9731 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 9732 /* also FPA1 */ 9733 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 9734 9735 switch (crtc_state->dpll.p2) { 9736 case 5: 9737 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 9738 break; 9739 case 7: 9740 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 9741 break; 9742 case 10: 9743 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 9744 break; 9745 case 14: 9746 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 9747 break; 9748 } 9749 9750 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 9751 intel_panel_use_ssc(dev_priv)) 9752 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 9753 else 9754 dpll |= PLL_REF_INPUT_DREFCLK; 9755 9756 dpll |= DPLL_VCO_ENABLE; 9757 9758 crtc_state->dpll_hw_state.dpll = dpll; 9759 crtc_state->dpll_hw_state.fp0 = fp; 9760 crtc_state->dpll_hw_state.fp1 = fp2; 9761 } 9762 9763 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc, 9764 struct intel_crtc_state *crtc_state) 9765 { 9766 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9767 struct intel_atomic_state *state = 9768 to_intel_atomic_state(crtc_state->base.state); 9769 const struct intel_limit *limit; 9770 int refclk = 120000; 9771 9772 memset(&crtc_state->dpll_hw_state, 0, 9773 sizeof(crtc_state->dpll_hw_state)); 9774 9775 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 9776 if (!crtc_state->has_pch_encoder) 9777 return 0; 9778 9779 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9780 if (intel_panel_use_ssc(dev_priv)) { 9781 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", 9782 dev_priv->vbt.lvds_ssc_freq); 9783 refclk = dev_priv->vbt.lvds_ssc_freq; 9784 } 9785 9786 if (intel_is_dual_link_lvds(dev_priv)) { 9787 if (refclk == 100000) 9788 limit = &intel_limits_ironlake_dual_lvds_100m; 9789 else 9790 limit = &intel_limits_ironlake_dual_lvds; 9791 } else { 9792 if (refclk == 100000) 9793 limit = &intel_limits_ironlake_single_lvds_100m; 9794 else 9795 limit = &intel_limits_ironlake_single_lvds; 9796 } 9797 } else { 9798 limit = &intel_limits_ironlake_dac; 9799 } 9800 9801 if (!crtc_state->clock_set && 9802 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9803 refclk, NULL, &crtc_state->dpll)) { 9804 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 9805 return -EINVAL; 9806 } 9807 9808 ironlake_compute_dpll(crtc, crtc_state, NULL); 9809 9810 if (!intel_reserve_shared_dplls(state, crtc, NULL)) { 9811 DRM_DEBUG_KMS("failed to find PLL for pipe %c\n", 9812 pipe_name(crtc->pipe)); 9813 return -EINVAL; 9814 } 9815 9816 return 0; 9817 } 9818 9819 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 9820 struct intel_link_m_n *m_n) 9821 { 9822 struct drm_device *dev = crtc->base.dev; 9823 struct drm_i915_private *dev_priv = to_i915(dev); 9824 enum pipe pipe = crtc->pipe; 9825 9826 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe)); 9827 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe)); 9828 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe)) 9829 & ~TU_SIZE_MASK; 9830 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe)); 9831 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe)) 9832 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 9833 } 9834 9835 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 9836 enum transcoder transcoder, 9837 struct intel_link_m_n *m_n, 9838 struct intel_link_m_n *m2_n2) 9839 { 9840 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9841 enum pipe pipe = crtc->pipe; 9842 9843 if (INTEL_GEN(dev_priv) >= 5) { 9844 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder)); 9845 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder)); 9846 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder)) 9847 & ~TU_SIZE_MASK; 9848 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder)); 9849 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder)) 9850 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 9851 9852 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 9853 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder)); 9854 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder)); 9855 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder)) 9856 & ~TU_SIZE_MASK; 9857 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder)); 9858 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder)) 9859 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 9860 } 9861 } else { 9862 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe)); 9863 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe)); 9864 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe)) 9865 & ~TU_SIZE_MASK; 9866 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe)); 9867 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe)) 9868 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 9869 } 9870 } 9871 9872 void intel_dp_get_m_n(struct intel_crtc *crtc, 9873 struct intel_crtc_state *pipe_config) 9874 { 9875 if (pipe_config->has_pch_encoder) 9876 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 9877 else 9878 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 9879 &pipe_config->dp_m_n, 9880 &pipe_config->dp_m2_n2); 9881 } 9882 9883 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc, 9884 struct intel_crtc_state *pipe_config) 9885 { 9886 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 9887 &pipe_config->fdi_m_n, NULL); 9888 } 9889 9890 static void skylake_get_pfit_config(struct intel_crtc *crtc, 9891 struct intel_crtc_state *pipe_config) 9892 { 9893 struct drm_device *dev = crtc->base.dev; 9894 struct drm_i915_private *dev_priv = to_i915(dev); 9895 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state; 9896 u32 ps_ctrl = 0; 9897 int id = -1; 9898 int i; 9899 9900 /* find scaler attached to this pipe */ 9901 for (i = 0; i < crtc->num_scalers; i++) { 9902 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i)); 9903 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) { 9904 id = i; 9905 pipe_config->pch_pfit.enabled = true; 9906 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i)); 9907 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i)); 9908 scaler_state->scalers[i].in_use = true; 9909 break; 9910 } 9911 } 9912 9913 scaler_state->scaler_id = id; 9914 if (id >= 0) { 9915 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 9916 } else { 9917 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 9918 } 9919 } 9920 9921 static void 9922 skylake_get_initial_plane_config(struct intel_crtc *crtc, 9923 struct intel_initial_plane_config *plane_config) 9924 { 9925 struct drm_device *dev = crtc->base.dev; 9926 struct drm_i915_private *dev_priv = to_i915(dev); 9927 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 9928 enum plane_id plane_id = plane->id; 9929 enum pipe pipe; 9930 u32 val, base, offset, stride_mult, tiling, alpha; 9931 int fourcc, pixel_format; 9932 unsigned int aligned_height; 9933 struct drm_framebuffer *fb; 9934 struct intel_framebuffer *intel_fb; 9935 9936 if (!plane->get_hw_state(plane, &pipe)) 9937 return; 9938 9939 WARN_ON(pipe != crtc->pipe); 9940 9941 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 9942 if (!intel_fb) { 9943 DRM_DEBUG_KMS("failed to alloc fb\n"); 9944 return; 9945 } 9946 9947 fb = &intel_fb->base; 9948 9949 fb->dev = dev; 9950 9951 val = I915_READ(PLANE_CTL(pipe, plane_id)); 9952 9953 if (INTEL_GEN(dev_priv) >= 11) 9954 pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK; 9955 else 9956 pixel_format = val & PLANE_CTL_FORMAT_MASK; 9957 9958 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { 9959 alpha = I915_READ(PLANE_COLOR_CTL(pipe, plane_id)); 9960 alpha &= PLANE_COLOR_ALPHA_MASK; 9961 } else { 9962 alpha = val & PLANE_CTL_ALPHA_MASK; 9963 } 9964 9965 fourcc = skl_format_to_fourcc(pixel_format, 9966 val & PLANE_CTL_ORDER_RGBX, alpha); 9967 fb->format = drm_format_info(fourcc); 9968 9969 tiling = val & PLANE_CTL_TILED_MASK; 9970 switch (tiling) { 9971 case PLANE_CTL_TILED_LINEAR: 9972 fb->modifier = DRM_FORMAT_MOD_LINEAR; 9973 break; 9974 case PLANE_CTL_TILED_X: 9975 plane_config->tiling = I915_TILING_X; 9976 fb->modifier = I915_FORMAT_MOD_X_TILED; 9977 break; 9978 case PLANE_CTL_TILED_Y: 9979 plane_config->tiling = I915_TILING_Y; 9980 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 9981 fb->modifier = I915_FORMAT_MOD_Y_TILED_CCS; 9982 else 9983 fb->modifier = I915_FORMAT_MOD_Y_TILED; 9984 break; 9985 case PLANE_CTL_TILED_YF: 9986 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 9987 fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS; 9988 else 9989 fb->modifier = I915_FORMAT_MOD_Yf_TILED; 9990 break; 9991 default: 9992 MISSING_CASE(tiling); 9993 goto error; 9994 } 9995 9996 /* 9997 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 9998 * while i915 HW rotation is clockwise, thats why this swapping. 9999 */ 10000 switch (val & PLANE_CTL_ROTATE_MASK) { 10001 case PLANE_CTL_ROTATE_0: 10002 plane_config->rotation = DRM_MODE_ROTATE_0; 10003 break; 10004 case PLANE_CTL_ROTATE_90: 10005 plane_config->rotation = DRM_MODE_ROTATE_270; 10006 break; 10007 case PLANE_CTL_ROTATE_180: 10008 plane_config->rotation = DRM_MODE_ROTATE_180; 10009 break; 10010 case PLANE_CTL_ROTATE_270: 10011 plane_config->rotation = DRM_MODE_ROTATE_90; 10012 break; 10013 } 10014 10015 if (INTEL_GEN(dev_priv) >= 10 && 10016 val & PLANE_CTL_FLIP_HORIZONTAL) 10017 plane_config->rotation |= DRM_MODE_REFLECT_X; 10018 10019 base = I915_READ(PLANE_SURF(pipe, plane_id)) & 0xfffff000; 10020 plane_config->base = base; 10021 10022 offset = I915_READ(PLANE_OFFSET(pipe, plane_id)); 10023 10024 val = I915_READ(PLANE_SIZE(pipe, plane_id)); 10025 fb->height = ((val >> 16) & 0xffff) + 1; 10026 fb->width = ((val >> 0) & 0xffff) + 1; 10027 10028 val = I915_READ(PLANE_STRIDE(pipe, plane_id)); 10029 stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0); 10030 fb->pitches[0] = (val & 0x3ff) * stride_mult; 10031 10032 aligned_height = intel_fb_align_height(fb, 0, fb->height); 10033 10034 plane_config->size = fb->pitches[0] * aligned_height; 10035 10036 DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 10037 crtc->base.name, plane->base.name, fb->width, fb->height, 10038 fb->format->cpp[0] * 8, base, fb->pitches[0], 10039 plane_config->size); 10040 10041 plane_config->fb = intel_fb; 10042 return; 10043 10044 error: 10045 kfree(intel_fb); 10046 } 10047 10048 static void ironlake_get_pfit_config(struct intel_crtc *crtc, 10049 struct intel_crtc_state *pipe_config) 10050 { 10051 struct drm_device *dev = crtc->base.dev; 10052 struct drm_i915_private *dev_priv = to_i915(dev); 10053 u32 tmp; 10054 10055 tmp = I915_READ(PF_CTL(crtc->pipe)); 10056 10057 if (tmp & PF_ENABLE) { 10058 pipe_config->pch_pfit.enabled = true; 10059 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe)); 10060 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe)); 10061 10062 /* We currently do not free assignements of panel fitters on 10063 * ivb/hsw (since we don't use the higher upscaling modes which 10064 * differentiates them) so just WARN about this case for now. */ 10065 if (IS_GEN(dev_priv, 7)) { 10066 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) != 10067 PF_PIPE_SEL_IVB(crtc->pipe)); 10068 } 10069 } 10070 } 10071 10072 static bool ironlake_get_pipe_config(struct intel_crtc *crtc, 10073 struct intel_crtc_state *pipe_config) 10074 { 10075 struct drm_device *dev = crtc->base.dev; 10076 struct drm_i915_private *dev_priv = to_i915(dev); 10077 enum intel_display_power_domain power_domain; 10078 intel_wakeref_t wakeref; 10079 u32 tmp; 10080 bool ret; 10081 10082 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 10083 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 10084 if (!wakeref) 10085 return false; 10086 10087 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10088 pipe_config->shared_dpll = NULL; 10089 pipe_config->master_transcoder = INVALID_TRANSCODER; 10090 10091 ret = false; 10092 tmp = I915_READ(PIPECONF(crtc->pipe)); 10093 if (!(tmp & PIPECONF_ENABLE)) 10094 goto out; 10095 10096 switch (tmp & PIPECONF_BPC_MASK) { 10097 case PIPECONF_6BPC: 10098 pipe_config->pipe_bpp = 18; 10099 break; 10100 case PIPECONF_8BPC: 10101 pipe_config->pipe_bpp = 24; 10102 break; 10103 case PIPECONF_10BPC: 10104 pipe_config->pipe_bpp = 30; 10105 break; 10106 case PIPECONF_12BPC: 10107 pipe_config->pipe_bpp = 36; 10108 break; 10109 default: 10110 break; 10111 } 10112 10113 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 10114 pipe_config->limited_color_range = true; 10115 10116 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { 10117 case PIPECONF_OUTPUT_COLORSPACE_YUV601: 10118 case PIPECONF_OUTPUT_COLORSPACE_YUV709: 10119 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 10120 break; 10121 default: 10122 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 10123 break; 10124 } 10125 10126 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 10127 PIPECONF_GAMMA_MODE_SHIFT; 10128 10129 pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe)); 10130 10131 i9xx_get_pipe_color_config(pipe_config); 10132 intel_color_get_config(pipe_config); 10133 10134 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 10135 struct intel_shared_dpll *pll; 10136 enum intel_dpll_id pll_id; 10137 10138 pipe_config->has_pch_encoder = true; 10139 10140 tmp = I915_READ(FDI_RX_CTL(crtc->pipe)); 10141 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 10142 FDI_DP_PORT_WIDTH_SHIFT) + 1; 10143 10144 ironlake_get_fdi_m_n_config(crtc, pipe_config); 10145 10146 if (HAS_PCH_IBX(dev_priv)) { 10147 /* 10148 * The pipe->pch transcoder and pch transcoder->pll 10149 * mapping is fixed. 10150 */ 10151 pll_id = (enum intel_dpll_id) crtc->pipe; 10152 } else { 10153 tmp = I915_READ(PCH_DPLL_SEL); 10154 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 10155 pll_id = DPLL_ID_PCH_PLL_B; 10156 else 10157 pll_id= DPLL_ID_PCH_PLL_A; 10158 } 10159 10160 pipe_config->shared_dpll = 10161 intel_get_shared_dpll_by_id(dev_priv, pll_id); 10162 pll = pipe_config->shared_dpll; 10163 10164 WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll, 10165 &pipe_config->dpll_hw_state)); 10166 10167 tmp = pipe_config->dpll_hw_state.dpll; 10168 pipe_config->pixel_multiplier = 10169 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 10170 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 10171 10172 ironlake_pch_clock_get(crtc, pipe_config); 10173 } else { 10174 pipe_config->pixel_multiplier = 1; 10175 } 10176 10177 intel_get_pipe_timings(crtc, pipe_config); 10178 intel_get_pipe_src_size(crtc, pipe_config); 10179 10180 ironlake_get_pfit_config(crtc, pipe_config); 10181 10182 ret = true; 10183 10184 out: 10185 intel_display_power_put(dev_priv, power_domain, wakeref); 10186 10187 return ret; 10188 } 10189 static int haswell_crtc_compute_clock(struct intel_crtc *crtc, 10190 struct intel_crtc_state *crtc_state) 10191 { 10192 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10193 struct intel_atomic_state *state = 10194 to_intel_atomic_state(crtc_state->base.state); 10195 10196 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) || 10197 INTEL_GEN(dev_priv) >= 11) { 10198 struct intel_encoder *encoder = 10199 intel_get_crtc_new_encoder(state, crtc_state); 10200 10201 if (!intel_reserve_shared_dplls(state, crtc, encoder)) { 10202 DRM_DEBUG_KMS("failed to find PLL for pipe %c\n", 10203 pipe_name(crtc->pipe)); 10204 return -EINVAL; 10205 } 10206 } 10207 10208 return 0; 10209 } 10210 10211 static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv, 10212 enum port port, 10213 struct intel_crtc_state *pipe_config) 10214 { 10215 enum intel_dpll_id id; 10216 u32 temp; 10217 10218 temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port); 10219 id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port); 10220 10221 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2)) 10222 return; 10223 10224 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10225 } 10226 10227 static void icelake_get_ddi_pll(struct drm_i915_private *dev_priv, 10228 enum port port, 10229 struct intel_crtc_state *pipe_config) 10230 { 10231 enum phy phy = intel_port_to_phy(dev_priv, port); 10232 enum icl_port_dpll_id port_dpll_id; 10233 enum intel_dpll_id id; 10234 u32 temp; 10235 10236 if (intel_phy_is_combo(dev_priv, phy)) { 10237 temp = I915_READ(ICL_DPCLKA_CFGCR0) & 10238 ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); 10239 id = temp >> ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy); 10240 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10241 } else if (intel_phy_is_tc(dev_priv, phy)) { 10242 u32 clk_sel = I915_READ(DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK; 10243 10244 if (clk_sel == DDI_CLK_SEL_MG) { 10245 id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv, 10246 port)); 10247 port_dpll_id = ICL_PORT_DPLL_MG_PHY; 10248 } else { 10249 WARN_ON(clk_sel < DDI_CLK_SEL_TBT_162); 10250 id = DPLL_ID_ICL_TBTPLL; 10251 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10252 } 10253 } else { 10254 WARN(1, "Invalid port %x\n", port); 10255 return; 10256 } 10257 10258 pipe_config->icl_port_dplls[port_dpll_id].pll = 10259 intel_get_shared_dpll_by_id(dev_priv, id); 10260 10261 icl_set_active_port_dpll(pipe_config, port_dpll_id); 10262 } 10263 10264 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv, 10265 enum port port, 10266 struct intel_crtc_state *pipe_config) 10267 { 10268 enum intel_dpll_id id; 10269 10270 switch (port) { 10271 case PORT_A: 10272 id = DPLL_ID_SKL_DPLL0; 10273 break; 10274 case PORT_B: 10275 id = DPLL_ID_SKL_DPLL1; 10276 break; 10277 case PORT_C: 10278 id = DPLL_ID_SKL_DPLL2; 10279 break; 10280 default: 10281 DRM_ERROR("Incorrect port type\n"); 10282 return; 10283 } 10284 10285 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10286 } 10287 10288 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv, 10289 enum port port, 10290 struct intel_crtc_state *pipe_config) 10291 { 10292 enum intel_dpll_id id; 10293 u32 temp; 10294 10295 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port); 10296 id = temp >> (port * 3 + 1); 10297 10298 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3)) 10299 return; 10300 10301 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10302 } 10303 10304 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv, 10305 enum port port, 10306 struct intel_crtc_state *pipe_config) 10307 { 10308 enum intel_dpll_id id; 10309 u32 ddi_pll_sel = I915_READ(PORT_CLK_SEL(port)); 10310 10311 switch (ddi_pll_sel) { 10312 case PORT_CLK_SEL_WRPLL1: 10313 id = DPLL_ID_WRPLL1; 10314 break; 10315 case PORT_CLK_SEL_WRPLL2: 10316 id = DPLL_ID_WRPLL2; 10317 break; 10318 case PORT_CLK_SEL_SPLL: 10319 id = DPLL_ID_SPLL; 10320 break; 10321 case PORT_CLK_SEL_LCPLL_810: 10322 id = DPLL_ID_LCPLL_810; 10323 break; 10324 case PORT_CLK_SEL_LCPLL_1350: 10325 id = DPLL_ID_LCPLL_1350; 10326 break; 10327 case PORT_CLK_SEL_LCPLL_2700: 10328 id = DPLL_ID_LCPLL_2700; 10329 break; 10330 default: 10331 MISSING_CASE(ddi_pll_sel); 10332 /* fall through */ 10333 case PORT_CLK_SEL_NONE: 10334 return; 10335 } 10336 10337 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10338 } 10339 10340 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 10341 struct intel_crtc_state *pipe_config, 10342 u64 *power_domain_mask, 10343 intel_wakeref_t *wakerefs) 10344 { 10345 struct drm_device *dev = crtc->base.dev; 10346 struct drm_i915_private *dev_priv = to_i915(dev); 10347 enum intel_display_power_domain power_domain; 10348 unsigned long panel_transcoder_mask = 0; 10349 unsigned long enabled_panel_transcoders = 0; 10350 enum transcoder panel_transcoder; 10351 intel_wakeref_t wf; 10352 u32 tmp; 10353 10354 if (INTEL_GEN(dev_priv) >= 11) 10355 panel_transcoder_mask |= 10356 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 10357 10358 if (HAS_TRANSCODER_EDP(dev_priv)) 10359 panel_transcoder_mask |= BIT(TRANSCODER_EDP); 10360 10361 /* 10362 * The pipe->transcoder mapping is fixed with the exception of the eDP 10363 * and DSI transcoders handled below. 10364 */ 10365 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10366 10367 /* 10368 * XXX: Do intel_display_power_get_if_enabled before reading this (for 10369 * consistency and less surprising code; it's in always on power). 10370 */ 10371 for_each_set_bit(panel_transcoder, 10372 &panel_transcoder_mask, 10373 ARRAY_SIZE(INTEL_INFO(dev_priv)->trans_offsets)) { 10374 bool force_thru = false; 10375 enum pipe trans_pipe; 10376 10377 tmp = I915_READ(TRANS_DDI_FUNC_CTL(panel_transcoder)); 10378 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 10379 continue; 10380 10381 /* 10382 * Log all enabled ones, only use the first one. 10383 * 10384 * FIXME: This won't work for two separate DSI displays. 10385 */ 10386 enabled_panel_transcoders |= BIT(panel_transcoder); 10387 if (enabled_panel_transcoders != BIT(panel_transcoder)) 10388 continue; 10389 10390 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 10391 default: 10392 WARN(1, "unknown pipe linked to transcoder %s\n", 10393 transcoder_name(panel_transcoder)); 10394 /* fall through */ 10395 case TRANS_DDI_EDP_INPUT_A_ONOFF: 10396 force_thru = true; 10397 /* fall through */ 10398 case TRANS_DDI_EDP_INPUT_A_ON: 10399 trans_pipe = PIPE_A; 10400 break; 10401 case TRANS_DDI_EDP_INPUT_B_ONOFF: 10402 trans_pipe = PIPE_B; 10403 break; 10404 case TRANS_DDI_EDP_INPUT_C_ONOFF: 10405 trans_pipe = PIPE_C; 10406 break; 10407 } 10408 10409 if (trans_pipe == crtc->pipe) { 10410 pipe_config->cpu_transcoder = panel_transcoder; 10411 pipe_config->pch_pfit.force_thru = force_thru; 10412 } 10413 } 10414 10415 /* 10416 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 10417 */ 10418 WARN_ON((enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && 10419 enabled_panel_transcoders != BIT(TRANSCODER_EDP)); 10420 10421 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder); 10422 WARN_ON(*power_domain_mask & BIT_ULL(power_domain)); 10423 10424 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 10425 if (!wf) 10426 return false; 10427 10428 wakerefs[power_domain] = wf; 10429 *power_domain_mask |= BIT_ULL(power_domain); 10430 10431 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder)); 10432 10433 return tmp & PIPECONF_ENABLE; 10434 } 10435 10436 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 10437 struct intel_crtc_state *pipe_config, 10438 u64 *power_domain_mask, 10439 intel_wakeref_t *wakerefs) 10440 { 10441 struct drm_device *dev = crtc->base.dev; 10442 struct drm_i915_private *dev_priv = to_i915(dev); 10443 enum intel_display_power_domain power_domain; 10444 enum transcoder cpu_transcoder; 10445 intel_wakeref_t wf; 10446 enum port port; 10447 u32 tmp; 10448 10449 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 10450 if (port == PORT_A) 10451 cpu_transcoder = TRANSCODER_DSI_A; 10452 else 10453 cpu_transcoder = TRANSCODER_DSI_C; 10454 10455 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 10456 WARN_ON(*power_domain_mask & BIT_ULL(power_domain)); 10457 10458 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 10459 if (!wf) 10460 continue; 10461 10462 wakerefs[power_domain] = wf; 10463 *power_domain_mask |= BIT_ULL(power_domain); 10464 10465 /* 10466 * The PLL needs to be enabled with a valid divider 10467 * configuration, otherwise accessing DSI registers will hang 10468 * the machine. See BSpec North Display Engine 10469 * registers/MIPI[BXT]. We can break out here early, since we 10470 * need the same DSI PLL to be enabled for both DSI ports. 10471 */ 10472 if (!bxt_dsi_pll_is_enabled(dev_priv)) 10473 break; 10474 10475 /* XXX: this works for video mode only */ 10476 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port)); 10477 if (!(tmp & DPI_ENABLE)) 10478 continue; 10479 10480 tmp = I915_READ(MIPI_CTRL(port)); 10481 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 10482 continue; 10483 10484 pipe_config->cpu_transcoder = cpu_transcoder; 10485 break; 10486 } 10487 10488 return transcoder_is_dsi(pipe_config->cpu_transcoder); 10489 } 10490 10491 static void haswell_get_ddi_port_state(struct intel_crtc *crtc, 10492 struct intel_crtc_state *pipe_config) 10493 { 10494 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10495 struct intel_shared_dpll *pll; 10496 enum port port; 10497 u32 tmp; 10498 10499 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder)); 10500 10501 if (INTEL_GEN(dev_priv) >= 12) 10502 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 10503 else 10504 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 10505 10506 if (INTEL_GEN(dev_priv) >= 11) 10507 icelake_get_ddi_pll(dev_priv, port, pipe_config); 10508 else if (IS_CANNONLAKE(dev_priv)) 10509 cannonlake_get_ddi_pll(dev_priv, port, pipe_config); 10510 else if (IS_GEN9_BC(dev_priv)) 10511 skylake_get_ddi_pll(dev_priv, port, pipe_config); 10512 else if (IS_GEN9_LP(dev_priv)) 10513 bxt_get_ddi_pll(dev_priv, port, pipe_config); 10514 else 10515 haswell_get_ddi_pll(dev_priv, port, pipe_config); 10516 10517 pll = pipe_config->shared_dpll; 10518 if (pll) { 10519 WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll, 10520 &pipe_config->dpll_hw_state)); 10521 } 10522 10523 /* 10524 * Haswell has only FDI/PCH transcoder A. It is which is connected to 10525 * DDI E. So just check whether this pipe is wired to DDI E and whether 10526 * the PCH transcoder is on. 10527 */ 10528 if (INTEL_GEN(dev_priv) < 9 && 10529 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) { 10530 pipe_config->has_pch_encoder = true; 10531 10532 tmp = I915_READ(FDI_RX_CTL(PIPE_A)); 10533 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 10534 FDI_DP_PORT_WIDTH_SHIFT) + 1; 10535 10536 ironlake_get_fdi_m_n_config(crtc, pipe_config); 10537 } 10538 } 10539 10540 static enum transcoder transcoder_master_readout(struct drm_i915_private *dev_priv, 10541 enum transcoder cpu_transcoder) 10542 { 10543 u32 trans_port_sync, master_select; 10544 10545 trans_port_sync = I915_READ(TRANS_DDI_FUNC_CTL2(cpu_transcoder)); 10546 10547 if ((trans_port_sync & PORT_SYNC_MODE_ENABLE) == 0) 10548 return INVALID_TRANSCODER; 10549 10550 master_select = trans_port_sync & 10551 PORT_SYNC_MODE_MASTER_SELECT_MASK; 10552 if (master_select == 0) 10553 return TRANSCODER_EDP; 10554 else 10555 return master_select - 1; 10556 } 10557 10558 static void icelake_get_trans_port_sync_config(struct intel_crtc_state *crtc_state) 10559 { 10560 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 10561 u32 transcoders; 10562 enum transcoder cpu_transcoder; 10563 10564 crtc_state->master_transcoder = transcoder_master_readout(dev_priv, 10565 crtc_state->cpu_transcoder); 10566 10567 transcoders = BIT(TRANSCODER_A) | 10568 BIT(TRANSCODER_B) | 10569 BIT(TRANSCODER_C) | 10570 BIT(TRANSCODER_D); 10571 for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) { 10572 enum intel_display_power_domain power_domain; 10573 intel_wakeref_t trans_wakeref; 10574 10575 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 10576 trans_wakeref = intel_display_power_get_if_enabled(dev_priv, 10577 power_domain); 10578 10579 if (!trans_wakeref) 10580 continue; 10581 10582 if (transcoder_master_readout(dev_priv, cpu_transcoder) == 10583 crtc_state->cpu_transcoder) 10584 crtc_state->sync_mode_slaves_mask |= BIT(cpu_transcoder); 10585 10586 intel_display_power_put(dev_priv, power_domain, trans_wakeref); 10587 } 10588 10589 WARN_ON(crtc_state->master_transcoder != INVALID_TRANSCODER && 10590 crtc_state->sync_mode_slaves_mask); 10591 } 10592 10593 static bool haswell_get_pipe_config(struct intel_crtc *crtc, 10594 struct intel_crtc_state *pipe_config) 10595 { 10596 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10597 intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf; 10598 enum intel_display_power_domain power_domain; 10599 u64 power_domain_mask; 10600 bool active; 10601 10602 intel_crtc_init_scalers(crtc, pipe_config); 10603 10604 pipe_config->master_transcoder = INVALID_TRANSCODER; 10605 10606 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 10607 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 10608 if (!wf) 10609 return false; 10610 10611 wakerefs[power_domain] = wf; 10612 power_domain_mask = BIT_ULL(power_domain); 10613 10614 pipe_config->shared_dpll = NULL; 10615 10616 active = hsw_get_transcoder_state(crtc, pipe_config, 10617 &power_domain_mask, wakerefs); 10618 10619 if (IS_GEN9_LP(dev_priv) && 10620 bxt_get_dsi_transcoder_state(crtc, pipe_config, 10621 &power_domain_mask, wakerefs)) { 10622 WARN_ON(active); 10623 active = true; 10624 } 10625 10626 if (!active) 10627 goto out; 10628 10629 if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 10630 INTEL_GEN(dev_priv) >= 11) { 10631 haswell_get_ddi_port_state(crtc, pipe_config); 10632 intel_get_pipe_timings(crtc, pipe_config); 10633 } 10634 10635 intel_get_pipe_src_size(crtc, pipe_config); 10636 10637 if (IS_HASWELL(dev_priv)) { 10638 u32 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder)); 10639 10640 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) 10641 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 10642 else 10643 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 10644 } else { 10645 pipe_config->output_format = 10646 bdw_get_pipemisc_output_format(crtc); 10647 10648 /* 10649 * Currently there is no interface defined to 10650 * check user preference between RGB/YCBCR444 10651 * or YCBCR420. So the only possible case for 10652 * YCBCR444 usage is driving YCBCR420 output 10653 * with LSPCON, when pipe is configured for 10654 * YCBCR444 output and LSPCON takes care of 10655 * downsampling it. 10656 */ 10657 pipe_config->lspcon_downsampling = 10658 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444; 10659 } 10660 10661 pipe_config->gamma_mode = I915_READ(GAMMA_MODE(crtc->pipe)); 10662 10663 pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe)); 10664 10665 if (INTEL_GEN(dev_priv) >= 9) { 10666 u32 tmp = I915_READ(SKL_BOTTOM_COLOR(crtc->pipe)); 10667 10668 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 10669 pipe_config->gamma_enable = true; 10670 10671 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 10672 pipe_config->csc_enable = true; 10673 } else { 10674 i9xx_get_pipe_color_config(pipe_config); 10675 } 10676 10677 intel_color_get_config(pipe_config); 10678 10679 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe); 10680 WARN_ON(power_domain_mask & BIT_ULL(power_domain)); 10681 10682 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 10683 if (wf) { 10684 wakerefs[power_domain] = wf; 10685 power_domain_mask |= BIT_ULL(power_domain); 10686 10687 if (INTEL_GEN(dev_priv) >= 9) 10688 skylake_get_pfit_config(crtc, pipe_config); 10689 else 10690 ironlake_get_pfit_config(crtc, pipe_config); 10691 } 10692 10693 if (hsw_crtc_supports_ips(crtc)) { 10694 if (IS_HASWELL(dev_priv)) 10695 pipe_config->ips_enabled = I915_READ(IPS_CTL) & IPS_ENABLE; 10696 else { 10697 /* 10698 * We cannot readout IPS state on broadwell, set to 10699 * true so we can set it to a defined state on first 10700 * commit. 10701 */ 10702 pipe_config->ips_enabled = true; 10703 } 10704 } 10705 10706 if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 10707 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 10708 pipe_config->pixel_multiplier = 10709 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 10710 } else { 10711 pipe_config->pixel_multiplier = 1; 10712 } 10713 10714 if (INTEL_GEN(dev_priv) >= 11 && 10715 !transcoder_is_dsi(pipe_config->cpu_transcoder)) 10716 icelake_get_trans_port_sync_config(pipe_config); 10717 10718 out: 10719 for_each_power_domain(power_domain, power_domain_mask) 10720 intel_display_power_put(dev_priv, 10721 power_domain, wakerefs[power_domain]); 10722 10723 return active; 10724 } 10725 10726 static u32 intel_cursor_base(const struct intel_plane_state *plane_state) 10727 { 10728 struct drm_i915_private *dev_priv = 10729 to_i915(plane_state->base.plane->dev); 10730 const struct drm_framebuffer *fb = plane_state->base.fb; 10731 const struct drm_i915_gem_object *obj = intel_fb_obj(fb); 10732 u32 base; 10733 10734 if (INTEL_INFO(dev_priv)->display.cursor_needs_physical) 10735 base = obj->phys_handle->busaddr; 10736 else 10737 base = intel_plane_ggtt_offset(plane_state); 10738 10739 return base + plane_state->color_plane[0].offset; 10740 } 10741 10742 static u32 intel_cursor_position(const struct intel_plane_state *plane_state) 10743 { 10744 int x = plane_state->base.dst.x1; 10745 int y = plane_state->base.dst.y1; 10746 u32 pos = 0; 10747 10748 if (x < 0) { 10749 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; 10750 x = -x; 10751 } 10752 pos |= x << CURSOR_X_SHIFT; 10753 10754 if (y < 0) { 10755 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; 10756 y = -y; 10757 } 10758 pos |= y << CURSOR_Y_SHIFT; 10759 10760 return pos; 10761 } 10762 10763 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state) 10764 { 10765 const struct drm_mode_config *config = 10766 &plane_state->base.plane->dev->mode_config; 10767 int width = drm_rect_width(&plane_state->base.dst); 10768 int height = drm_rect_height(&plane_state->base.dst); 10769 10770 return width > 0 && width <= config->cursor_width && 10771 height > 0 && height <= config->cursor_height; 10772 } 10773 10774 static int intel_cursor_check_surface(struct intel_plane_state *plane_state) 10775 { 10776 struct drm_i915_private *dev_priv = 10777 to_i915(plane_state->base.plane->dev); 10778 unsigned int rotation = plane_state->base.rotation; 10779 int src_x, src_y; 10780 u32 offset; 10781 int ret; 10782 10783 ret = intel_plane_compute_gtt(plane_state); 10784 if (ret) 10785 return ret; 10786 10787 if (!plane_state->base.visible) 10788 return 0; 10789 10790 src_x = plane_state->base.src.x1 >> 16; 10791 src_y = plane_state->base.src.y1 >> 16; 10792 10793 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 10794 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 10795 plane_state, 0); 10796 10797 if (src_x != 0 || src_y != 0) { 10798 DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n"); 10799 return -EINVAL; 10800 } 10801 10802 /* 10803 * Put the final coordinates back so that the src 10804 * coordinate checks will see the right values. 10805 */ 10806 drm_rect_translate_to(&plane_state->base.src, 10807 src_x << 16, src_y << 16); 10808 10809 /* ILK+ do this automagically in hardware */ 10810 if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) { 10811 const struct drm_framebuffer *fb = plane_state->base.fb; 10812 int src_w = drm_rect_width(&plane_state->base.src) >> 16; 10813 int src_h = drm_rect_height(&plane_state->base.src) >> 16; 10814 10815 offset += (src_h * src_w - 1) * fb->format->cpp[0]; 10816 } 10817 10818 plane_state->color_plane[0].offset = offset; 10819 plane_state->color_plane[0].x = src_x; 10820 plane_state->color_plane[0].y = src_y; 10821 10822 return 0; 10823 } 10824 10825 static int intel_check_cursor(struct intel_crtc_state *crtc_state, 10826 struct intel_plane_state *plane_state) 10827 { 10828 const struct drm_framebuffer *fb = plane_state->base.fb; 10829 int ret; 10830 10831 if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) { 10832 DRM_DEBUG_KMS("cursor cannot be tiled\n"); 10833 return -EINVAL; 10834 } 10835 10836 ret = drm_atomic_helper_check_plane_state(&plane_state->base, 10837 &crtc_state->base, 10838 DRM_PLANE_HELPER_NO_SCALING, 10839 DRM_PLANE_HELPER_NO_SCALING, 10840 true, true); 10841 if (ret) 10842 return ret; 10843 10844 /* Use the unclipped src/dst rectangles, which we program to hw */ 10845 plane_state->base.src = drm_plane_state_src(&plane_state->base); 10846 plane_state->base.dst = drm_plane_state_dest(&plane_state->base); 10847 10848 ret = intel_cursor_check_surface(plane_state); 10849 if (ret) 10850 return ret; 10851 10852 if (!plane_state->base.visible) 10853 return 0; 10854 10855 ret = intel_plane_check_src_coordinates(plane_state); 10856 if (ret) 10857 return ret; 10858 10859 return 0; 10860 } 10861 10862 static unsigned int 10863 i845_cursor_max_stride(struct intel_plane *plane, 10864 u32 pixel_format, u64 modifier, 10865 unsigned int rotation) 10866 { 10867 return 2048; 10868 } 10869 10870 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 10871 { 10872 u32 cntl = 0; 10873 10874 if (crtc_state->gamma_enable) 10875 cntl |= CURSOR_GAMMA_ENABLE; 10876 10877 return cntl; 10878 } 10879 10880 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state, 10881 const struct intel_plane_state *plane_state) 10882 { 10883 return CURSOR_ENABLE | 10884 CURSOR_FORMAT_ARGB | 10885 CURSOR_STRIDE(plane_state->color_plane[0].stride); 10886 } 10887 10888 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state) 10889 { 10890 int width = drm_rect_width(&plane_state->base.dst); 10891 10892 /* 10893 * 845g/865g are only limited by the width of their cursors, 10894 * the height is arbitrary up to the precision of the register. 10895 */ 10896 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64); 10897 } 10898 10899 static int i845_check_cursor(struct intel_crtc_state *crtc_state, 10900 struct intel_plane_state *plane_state) 10901 { 10902 const struct drm_framebuffer *fb = plane_state->base.fb; 10903 int ret; 10904 10905 ret = intel_check_cursor(crtc_state, plane_state); 10906 if (ret) 10907 return ret; 10908 10909 /* if we want to turn off the cursor ignore width and height */ 10910 if (!fb) 10911 return 0; 10912 10913 /* Check for which cursor types we support */ 10914 if (!i845_cursor_size_ok(plane_state)) { 10915 DRM_DEBUG("Cursor dimension %dx%d not supported\n", 10916 drm_rect_width(&plane_state->base.dst), 10917 drm_rect_height(&plane_state->base.dst)); 10918 return -EINVAL; 10919 } 10920 10921 WARN_ON(plane_state->base.visible && 10922 plane_state->color_plane[0].stride != fb->pitches[0]); 10923 10924 switch (fb->pitches[0]) { 10925 case 256: 10926 case 512: 10927 case 1024: 10928 case 2048: 10929 break; 10930 default: 10931 DRM_DEBUG_KMS("Invalid cursor stride (%u)\n", 10932 fb->pitches[0]); 10933 return -EINVAL; 10934 } 10935 10936 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state); 10937 10938 return 0; 10939 } 10940 10941 static void i845_update_cursor(struct intel_plane *plane, 10942 const struct intel_crtc_state *crtc_state, 10943 const struct intel_plane_state *plane_state) 10944 { 10945 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 10946 u32 cntl = 0, base = 0, pos = 0, size = 0; 10947 unsigned long irqflags; 10948 10949 if (plane_state && plane_state->base.visible) { 10950 unsigned int width = drm_rect_width(&plane_state->base.dst); 10951 unsigned int height = drm_rect_height(&plane_state->base.dst); 10952 10953 cntl = plane_state->ctl | 10954 i845_cursor_ctl_crtc(crtc_state); 10955 10956 size = (height << 12) | width; 10957 10958 base = intel_cursor_base(plane_state); 10959 pos = intel_cursor_position(plane_state); 10960 } 10961 10962 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 10963 10964 /* On these chipsets we can only modify the base/size/stride 10965 * whilst the cursor is disabled. 10966 */ 10967 if (plane->cursor.base != base || 10968 plane->cursor.size != size || 10969 plane->cursor.cntl != cntl) { 10970 I915_WRITE_FW(CURCNTR(PIPE_A), 0); 10971 I915_WRITE_FW(CURBASE(PIPE_A), base); 10972 I915_WRITE_FW(CURSIZE, size); 10973 I915_WRITE_FW(CURPOS(PIPE_A), pos); 10974 I915_WRITE_FW(CURCNTR(PIPE_A), cntl); 10975 10976 plane->cursor.base = base; 10977 plane->cursor.size = size; 10978 plane->cursor.cntl = cntl; 10979 } else { 10980 I915_WRITE_FW(CURPOS(PIPE_A), pos); 10981 } 10982 10983 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 10984 } 10985 10986 static void i845_disable_cursor(struct intel_plane *plane, 10987 const struct intel_crtc_state *crtc_state) 10988 { 10989 i845_update_cursor(plane, crtc_state, NULL); 10990 } 10991 10992 static bool i845_cursor_get_hw_state(struct intel_plane *plane, 10993 enum pipe *pipe) 10994 { 10995 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 10996 enum intel_display_power_domain power_domain; 10997 intel_wakeref_t wakeref; 10998 bool ret; 10999 11000 power_domain = POWER_DOMAIN_PIPE(PIPE_A); 11001 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11002 if (!wakeref) 11003 return false; 11004 11005 ret = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE; 11006 11007 *pipe = PIPE_A; 11008 11009 intel_display_power_put(dev_priv, power_domain, wakeref); 11010 11011 return ret; 11012 } 11013 11014 static unsigned int 11015 i9xx_cursor_max_stride(struct intel_plane *plane, 11016 u32 pixel_format, u64 modifier, 11017 unsigned int rotation) 11018 { 11019 return plane->base.dev->mode_config.cursor_width * 4; 11020 } 11021 11022 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 11023 { 11024 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 11025 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11026 u32 cntl = 0; 11027 11028 if (INTEL_GEN(dev_priv) >= 11) 11029 return cntl; 11030 11031 if (crtc_state->gamma_enable) 11032 cntl = MCURSOR_GAMMA_ENABLE; 11033 11034 if (crtc_state->csc_enable) 11035 cntl |= MCURSOR_PIPE_CSC_ENABLE; 11036 11037 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 11038 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe); 11039 11040 return cntl; 11041 } 11042 11043 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state, 11044 const struct intel_plane_state *plane_state) 11045 { 11046 struct drm_i915_private *dev_priv = 11047 to_i915(plane_state->base.plane->dev); 11048 u32 cntl = 0; 11049 11050 if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 11051 cntl |= MCURSOR_TRICKLE_FEED_DISABLE; 11052 11053 switch (drm_rect_width(&plane_state->base.dst)) { 11054 case 64: 11055 cntl |= MCURSOR_MODE_64_ARGB_AX; 11056 break; 11057 case 128: 11058 cntl |= MCURSOR_MODE_128_ARGB_AX; 11059 break; 11060 case 256: 11061 cntl |= MCURSOR_MODE_256_ARGB_AX; 11062 break; 11063 default: 11064 MISSING_CASE(drm_rect_width(&plane_state->base.dst)); 11065 return 0; 11066 } 11067 11068 if (plane_state->base.rotation & DRM_MODE_ROTATE_180) 11069 cntl |= MCURSOR_ROTATE_180; 11070 11071 return cntl; 11072 } 11073 11074 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state) 11075 { 11076 struct drm_i915_private *dev_priv = 11077 to_i915(plane_state->base.plane->dev); 11078 int width = drm_rect_width(&plane_state->base.dst); 11079 int height = drm_rect_height(&plane_state->base.dst); 11080 11081 if (!intel_cursor_size_ok(plane_state)) 11082 return false; 11083 11084 /* Cursor width is limited to a few power-of-two sizes */ 11085 switch (width) { 11086 case 256: 11087 case 128: 11088 case 64: 11089 break; 11090 default: 11091 return false; 11092 } 11093 11094 /* 11095 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor 11096 * height from 8 lines up to the cursor width, when the 11097 * cursor is not rotated. Everything else requires square 11098 * cursors. 11099 */ 11100 if (HAS_CUR_FBC(dev_priv) && 11101 plane_state->base.rotation & DRM_MODE_ROTATE_0) { 11102 if (height < 8 || height > width) 11103 return false; 11104 } else { 11105 if (height != width) 11106 return false; 11107 } 11108 11109 return true; 11110 } 11111 11112 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state, 11113 struct intel_plane_state *plane_state) 11114 { 11115 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 11116 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11117 const struct drm_framebuffer *fb = plane_state->base.fb; 11118 enum pipe pipe = plane->pipe; 11119 int ret; 11120 11121 ret = intel_check_cursor(crtc_state, plane_state); 11122 if (ret) 11123 return ret; 11124 11125 /* if we want to turn off the cursor ignore width and height */ 11126 if (!fb) 11127 return 0; 11128 11129 /* Check for which cursor types we support */ 11130 if (!i9xx_cursor_size_ok(plane_state)) { 11131 DRM_DEBUG("Cursor dimension %dx%d not supported\n", 11132 drm_rect_width(&plane_state->base.dst), 11133 drm_rect_height(&plane_state->base.dst)); 11134 return -EINVAL; 11135 } 11136 11137 WARN_ON(plane_state->base.visible && 11138 plane_state->color_plane[0].stride != fb->pitches[0]); 11139 11140 if (fb->pitches[0] != 11141 drm_rect_width(&plane_state->base.dst) * fb->format->cpp[0]) { 11142 DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n", 11143 fb->pitches[0], 11144 drm_rect_width(&plane_state->base.dst)); 11145 return -EINVAL; 11146 } 11147 11148 /* 11149 * There's something wrong with the cursor on CHV pipe C. 11150 * If it straddles the left edge of the screen then 11151 * moving it away from the edge or disabling it often 11152 * results in a pipe underrun, and often that can lead to 11153 * dead pipe (constant underrun reported, and it scans 11154 * out just a solid color). To recover from that, the 11155 * display power well must be turned off and on again. 11156 * Refuse the put the cursor into that compromised position. 11157 */ 11158 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C && 11159 plane_state->base.visible && plane_state->base.dst.x1 < 0) { 11160 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n"); 11161 return -EINVAL; 11162 } 11163 11164 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state); 11165 11166 return 0; 11167 } 11168 11169 static void i9xx_update_cursor(struct intel_plane *plane, 11170 const struct intel_crtc_state *crtc_state, 11171 const struct intel_plane_state *plane_state) 11172 { 11173 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11174 enum pipe pipe = plane->pipe; 11175 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0; 11176 unsigned long irqflags; 11177 11178 if (plane_state && plane_state->base.visible) { 11179 unsigned width = drm_rect_width(&plane_state->base.dst); 11180 unsigned height = drm_rect_height(&plane_state->base.dst); 11181 11182 cntl = plane_state->ctl | 11183 i9xx_cursor_ctl_crtc(crtc_state); 11184 11185 if (width != height) 11186 fbc_ctl = CUR_FBC_CTL_EN | (height - 1); 11187 11188 base = intel_cursor_base(plane_state); 11189 pos = intel_cursor_position(plane_state); 11190 } 11191 11192 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 11193 11194 /* 11195 * On some platforms writing CURCNTR first will also 11196 * cause CURPOS to be armed by the CURBASE write. 11197 * Without the CURCNTR write the CURPOS write would 11198 * arm itself. Thus we always update CURCNTR before 11199 * CURPOS. 11200 * 11201 * On other platforms CURPOS always requires the 11202 * CURBASE write to arm the update. Additonally 11203 * a write to any of the cursor register will cancel 11204 * an already armed cursor update. Thus leaving out 11205 * the CURBASE write after CURPOS could lead to a 11206 * cursor that doesn't appear to move, or even change 11207 * shape. Thus we always write CURBASE. 11208 * 11209 * The other registers are armed by by the CURBASE write 11210 * except when the plane is getting enabled at which time 11211 * the CURCNTR write arms the update. 11212 */ 11213 11214 if (INTEL_GEN(dev_priv) >= 9) 11215 skl_write_cursor_wm(plane, crtc_state); 11216 11217 if (plane->cursor.base != base || 11218 plane->cursor.size != fbc_ctl || 11219 plane->cursor.cntl != cntl) { 11220 if (HAS_CUR_FBC(dev_priv)) 11221 I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl); 11222 I915_WRITE_FW(CURCNTR(pipe), cntl); 11223 I915_WRITE_FW(CURPOS(pipe), pos); 11224 I915_WRITE_FW(CURBASE(pipe), base); 11225 11226 plane->cursor.base = base; 11227 plane->cursor.size = fbc_ctl; 11228 plane->cursor.cntl = cntl; 11229 } else { 11230 I915_WRITE_FW(CURPOS(pipe), pos); 11231 I915_WRITE_FW(CURBASE(pipe), base); 11232 } 11233 11234 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 11235 } 11236 11237 static void i9xx_disable_cursor(struct intel_plane *plane, 11238 const struct intel_crtc_state *crtc_state) 11239 { 11240 i9xx_update_cursor(plane, crtc_state, NULL); 11241 } 11242 11243 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane, 11244 enum pipe *pipe) 11245 { 11246 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11247 enum intel_display_power_domain power_domain; 11248 intel_wakeref_t wakeref; 11249 bool ret; 11250 u32 val; 11251 11252 /* 11253 * Not 100% correct for planes that can move between pipes, 11254 * but that's only the case for gen2-3 which don't have any 11255 * display power wells. 11256 */ 11257 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 11258 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11259 if (!wakeref) 11260 return false; 11261 11262 val = I915_READ(CURCNTR(plane->pipe)); 11263 11264 ret = val & MCURSOR_MODE; 11265 11266 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 11267 *pipe = plane->pipe; 11268 else 11269 *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >> 11270 MCURSOR_PIPE_SELECT_SHIFT; 11271 11272 intel_display_power_put(dev_priv, power_domain, wakeref); 11273 11274 return ret; 11275 } 11276 11277 /* VESA 640x480x72Hz mode to set on the pipe */ 11278 static const struct drm_display_mode load_detect_mode = { 11279 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 11280 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 11281 }; 11282 11283 struct drm_framebuffer * 11284 intel_framebuffer_create(struct drm_i915_gem_object *obj, 11285 struct drm_mode_fb_cmd2 *mode_cmd) 11286 { 11287 struct intel_framebuffer *intel_fb; 11288 int ret; 11289 11290 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 11291 if (!intel_fb) 11292 return ERR_PTR(-ENOMEM); 11293 11294 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); 11295 if (ret) 11296 goto err; 11297 11298 return &intel_fb->base; 11299 11300 err: 11301 kfree(intel_fb); 11302 return ERR_PTR(ret); 11303 } 11304 11305 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 11306 struct drm_crtc *crtc) 11307 { 11308 struct drm_plane *plane; 11309 struct drm_plane_state *plane_state; 11310 int ret, i; 11311 11312 ret = drm_atomic_add_affected_planes(state, crtc); 11313 if (ret) 11314 return ret; 11315 11316 for_each_new_plane_in_state(state, plane, plane_state, i) { 11317 if (plane_state->crtc != crtc) 11318 continue; 11319 11320 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 11321 if (ret) 11322 return ret; 11323 11324 drm_atomic_set_fb_for_plane(plane_state, NULL); 11325 } 11326 11327 return 0; 11328 } 11329 11330 int intel_get_load_detect_pipe(struct drm_connector *connector, 11331 struct intel_load_detect_pipe *old, 11332 struct drm_modeset_acquire_ctx *ctx) 11333 { 11334 struct intel_crtc *intel_crtc; 11335 struct intel_encoder *intel_encoder = 11336 intel_attached_encoder(connector); 11337 struct drm_crtc *possible_crtc; 11338 struct drm_encoder *encoder = &intel_encoder->base; 11339 struct drm_crtc *crtc = NULL; 11340 struct drm_device *dev = encoder->dev; 11341 struct drm_i915_private *dev_priv = to_i915(dev); 11342 struct drm_mode_config *config = &dev->mode_config; 11343 struct drm_atomic_state *state = NULL, *restore_state = NULL; 11344 struct drm_connector_state *connector_state; 11345 struct intel_crtc_state *crtc_state; 11346 int ret, i = -1; 11347 11348 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 11349 connector->base.id, connector->name, 11350 encoder->base.id, encoder->name); 11351 11352 old->restore_state = NULL; 11353 11354 WARN_ON(!drm_modeset_is_locked(&config->connection_mutex)); 11355 11356 /* 11357 * Algorithm gets a little messy: 11358 * 11359 * - if the connector already has an assigned crtc, use it (but make 11360 * sure it's on first) 11361 * 11362 * - try to find the first unused crtc that can drive this connector, 11363 * and use that if we find one 11364 */ 11365 11366 /* See if we already have a CRTC for this connector */ 11367 if (connector->state->crtc) { 11368 crtc = connector->state->crtc; 11369 11370 ret = drm_modeset_lock(&crtc->mutex, ctx); 11371 if (ret) 11372 goto fail; 11373 11374 /* Make sure the crtc and connector are running */ 11375 goto found; 11376 } 11377 11378 /* Find an unused one (if possible) */ 11379 for_each_crtc(dev, possible_crtc) { 11380 i++; 11381 if (!(encoder->possible_crtcs & (1 << i))) 11382 continue; 11383 11384 ret = drm_modeset_lock(&possible_crtc->mutex, ctx); 11385 if (ret) 11386 goto fail; 11387 11388 if (possible_crtc->state->enable) { 11389 drm_modeset_unlock(&possible_crtc->mutex); 11390 continue; 11391 } 11392 11393 crtc = possible_crtc; 11394 break; 11395 } 11396 11397 /* 11398 * If we didn't find an unused CRTC, don't use any. 11399 */ 11400 if (!crtc) { 11401 DRM_DEBUG_KMS("no pipe available for load-detect\n"); 11402 ret = -ENODEV; 11403 goto fail; 11404 } 11405 11406 found: 11407 intel_crtc = to_intel_crtc(crtc); 11408 11409 state = drm_atomic_state_alloc(dev); 11410 restore_state = drm_atomic_state_alloc(dev); 11411 if (!state || !restore_state) { 11412 ret = -ENOMEM; 11413 goto fail; 11414 } 11415 11416 state->acquire_ctx = ctx; 11417 restore_state->acquire_ctx = ctx; 11418 11419 connector_state = drm_atomic_get_connector_state(state, connector); 11420 if (IS_ERR(connector_state)) { 11421 ret = PTR_ERR(connector_state); 11422 goto fail; 11423 } 11424 11425 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); 11426 if (ret) 11427 goto fail; 11428 11429 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); 11430 if (IS_ERR(crtc_state)) { 11431 ret = PTR_ERR(crtc_state); 11432 goto fail; 11433 } 11434 11435 crtc_state->base.active = crtc_state->base.enable = true; 11436 11437 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, 11438 &load_detect_mode); 11439 if (ret) 11440 goto fail; 11441 11442 ret = intel_modeset_disable_planes(state, crtc); 11443 if (ret) 11444 goto fail; 11445 11446 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 11447 if (!ret) 11448 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); 11449 if (!ret) 11450 ret = drm_atomic_add_affected_planes(restore_state, crtc); 11451 if (ret) { 11452 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret); 11453 goto fail; 11454 } 11455 11456 ret = drm_atomic_commit(state); 11457 if (ret) { 11458 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n"); 11459 goto fail; 11460 } 11461 11462 old->restore_state = restore_state; 11463 drm_atomic_state_put(state); 11464 11465 /* let the connector get through one full cycle before testing */ 11466 intel_wait_for_vblank(dev_priv, intel_crtc->pipe); 11467 return true; 11468 11469 fail: 11470 if (state) { 11471 drm_atomic_state_put(state); 11472 state = NULL; 11473 } 11474 if (restore_state) { 11475 drm_atomic_state_put(restore_state); 11476 restore_state = NULL; 11477 } 11478 11479 if (ret == -EDEADLK) 11480 return ret; 11481 11482 return false; 11483 } 11484 11485 void intel_release_load_detect_pipe(struct drm_connector *connector, 11486 struct intel_load_detect_pipe *old, 11487 struct drm_modeset_acquire_ctx *ctx) 11488 { 11489 struct intel_encoder *intel_encoder = 11490 intel_attached_encoder(connector); 11491 struct drm_encoder *encoder = &intel_encoder->base; 11492 struct drm_atomic_state *state = old->restore_state; 11493 int ret; 11494 11495 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 11496 connector->base.id, connector->name, 11497 encoder->base.id, encoder->name); 11498 11499 if (!state) 11500 return; 11501 11502 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 11503 if (ret) 11504 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret); 11505 drm_atomic_state_put(state); 11506 } 11507 11508 static int i9xx_pll_refclk(struct drm_device *dev, 11509 const struct intel_crtc_state *pipe_config) 11510 { 11511 struct drm_i915_private *dev_priv = to_i915(dev); 11512 u32 dpll = pipe_config->dpll_hw_state.dpll; 11513 11514 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 11515 return dev_priv->vbt.lvds_ssc_freq; 11516 else if (HAS_PCH_SPLIT(dev_priv)) 11517 return 120000; 11518 else if (!IS_GEN(dev_priv, 2)) 11519 return 96000; 11520 else 11521 return 48000; 11522 } 11523 11524 /* Returns the clock of the currently programmed mode of the given pipe. */ 11525 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 11526 struct intel_crtc_state *pipe_config) 11527 { 11528 struct drm_device *dev = crtc->base.dev; 11529 struct drm_i915_private *dev_priv = to_i915(dev); 11530 enum pipe pipe = crtc->pipe; 11531 u32 dpll = pipe_config->dpll_hw_state.dpll; 11532 u32 fp; 11533 struct dpll clock; 11534 int port_clock; 11535 int refclk = i9xx_pll_refclk(dev, pipe_config); 11536 11537 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 11538 fp = pipe_config->dpll_hw_state.fp0; 11539 else 11540 fp = pipe_config->dpll_hw_state.fp1; 11541 11542 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 11543 if (IS_PINEVIEW(dev_priv)) { 11544 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 11545 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 11546 } else { 11547 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 11548 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 11549 } 11550 11551 if (!IS_GEN(dev_priv, 2)) { 11552 if (IS_PINEVIEW(dev_priv)) 11553 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 11554 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 11555 else 11556 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 11557 DPLL_FPA01_P1_POST_DIV_SHIFT); 11558 11559 switch (dpll & DPLL_MODE_MASK) { 11560 case DPLLB_MODE_DAC_SERIAL: 11561 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 11562 5 : 10; 11563 break; 11564 case DPLLB_MODE_LVDS: 11565 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 11566 7 : 14; 11567 break; 11568 default: 11569 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed " 11570 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 11571 return; 11572 } 11573 11574 if (IS_PINEVIEW(dev_priv)) 11575 port_clock = pnv_calc_dpll_params(refclk, &clock); 11576 else 11577 port_clock = i9xx_calc_dpll_params(refclk, &clock); 11578 } else { 11579 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS); 11580 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 11581 11582 if (is_lvds) { 11583 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 11584 DPLL_FPA01_P1_POST_DIV_SHIFT); 11585 11586 if (lvds & LVDS_CLKB_POWER_UP) 11587 clock.p2 = 7; 11588 else 11589 clock.p2 = 14; 11590 } else { 11591 if (dpll & PLL_P1_DIVIDE_BY_TWO) 11592 clock.p1 = 2; 11593 else { 11594 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 11595 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 11596 } 11597 if (dpll & PLL_P2_DIVIDE_BY_4) 11598 clock.p2 = 4; 11599 else 11600 clock.p2 = 2; 11601 } 11602 11603 port_clock = i9xx_calc_dpll_params(refclk, &clock); 11604 } 11605 11606 /* 11607 * This value includes pixel_multiplier. We will use 11608 * port_clock to compute adjusted_mode.crtc_clock in the 11609 * encoder's get_config() function. 11610 */ 11611 pipe_config->port_clock = port_clock; 11612 } 11613 11614 int intel_dotclock_calculate(int link_freq, 11615 const struct intel_link_m_n *m_n) 11616 { 11617 /* 11618 * The calculation for the data clock is: 11619 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 11620 * But we want to avoid losing precison if possible, so: 11621 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 11622 * 11623 * and the link clock is simpler: 11624 * link_clock = (m * link_clock) / n 11625 */ 11626 11627 if (!m_n->link_n) 11628 return 0; 11629 11630 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 11631 } 11632 11633 static void ironlake_pch_clock_get(struct intel_crtc *crtc, 11634 struct intel_crtc_state *pipe_config) 11635 { 11636 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11637 11638 /* read out port_clock from the DPLL */ 11639 i9xx_crtc_clock_get(crtc, pipe_config); 11640 11641 /* 11642 * In case there is an active pipe without active ports, 11643 * we may need some idea for the dotclock anyway. 11644 * Calculate one based on the FDI configuration. 11645 */ 11646 pipe_config->base.adjusted_mode.crtc_clock = 11647 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 11648 &pipe_config->fdi_m_n); 11649 } 11650 11651 /* Returns the currently programmed mode of the given encoder. */ 11652 struct drm_display_mode * 11653 intel_encoder_current_mode(struct intel_encoder *encoder) 11654 { 11655 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 11656 struct intel_crtc_state *crtc_state; 11657 struct drm_display_mode *mode; 11658 struct intel_crtc *crtc; 11659 enum pipe pipe; 11660 11661 if (!encoder->get_hw_state(encoder, &pipe)) 11662 return NULL; 11663 11664 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 11665 11666 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 11667 if (!mode) 11668 return NULL; 11669 11670 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL); 11671 if (!crtc_state) { 11672 kfree(mode); 11673 return NULL; 11674 } 11675 11676 crtc_state->base.crtc = &crtc->base; 11677 11678 if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) { 11679 kfree(crtc_state); 11680 kfree(mode); 11681 return NULL; 11682 } 11683 11684 encoder->get_config(encoder, crtc_state); 11685 11686 intel_mode_from_pipe_config(mode, crtc_state); 11687 11688 kfree(crtc_state); 11689 11690 return mode; 11691 } 11692 11693 static void intel_crtc_destroy(struct drm_crtc *crtc) 11694 { 11695 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 11696 11697 drm_crtc_cleanup(crtc); 11698 kfree(intel_crtc); 11699 } 11700 11701 /** 11702 * intel_wm_need_update - Check whether watermarks need updating 11703 * @cur: current plane state 11704 * @new: new plane state 11705 * 11706 * Check current plane state versus the new one to determine whether 11707 * watermarks need to be recalculated. 11708 * 11709 * Returns true or false. 11710 */ 11711 static bool intel_wm_need_update(const struct intel_plane_state *cur, 11712 struct intel_plane_state *new) 11713 { 11714 /* Update watermarks on tiling or size changes. */ 11715 if (new->base.visible != cur->base.visible) 11716 return true; 11717 11718 if (!cur->base.fb || !new->base.fb) 11719 return false; 11720 11721 if (cur->base.fb->modifier != new->base.fb->modifier || 11722 cur->base.rotation != new->base.rotation || 11723 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) || 11724 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) || 11725 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) || 11726 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst)) 11727 return true; 11728 11729 return false; 11730 } 11731 11732 static bool needs_scaling(const struct intel_plane_state *state) 11733 { 11734 int src_w = drm_rect_width(&state->base.src) >> 16; 11735 int src_h = drm_rect_height(&state->base.src) >> 16; 11736 int dst_w = drm_rect_width(&state->base.dst); 11737 int dst_h = drm_rect_height(&state->base.dst); 11738 11739 return (src_w != dst_w || src_h != dst_h); 11740 } 11741 11742 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 11743 struct intel_crtc_state *crtc_state, 11744 const struct intel_plane_state *old_plane_state, 11745 struct intel_plane_state *plane_state) 11746 { 11747 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 11748 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 11749 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11750 bool mode_changed = needs_modeset(crtc_state); 11751 bool was_crtc_enabled = old_crtc_state->base.active; 11752 bool is_crtc_enabled = crtc_state->base.active; 11753 bool turn_off, turn_on, visible, was_visible; 11754 int ret; 11755 11756 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 11757 ret = skl_update_scaler_plane(crtc_state, plane_state); 11758 if (ret) 11759 return ret; 11760 } 11761 11762 was_visible = old_plane_state->base.visible; 11763 visible = plane_state->base.visible; 11764 11765 if (!was_crtc_enabled && WARN_ON(was_visible)) 11766 was_visible = false; 11767 11768 /* 11769 * Visibility is calculated as if the crtc was on, but 11770 * after scaler setup everything depends on it being off 11771 * when the crtc isn't active. 11772 * 11773 * FIXME this is wrong for watermarks. Watermarks should also 11774 * be computed as if the pipe would be active. Perhaps move 11775 * per-plane wm computation to the .check_plane() hook, and 11776 * only combine the results from all planes in the current place? 11777 */ 11778 if (!is_crtc_enabled) { 11779 plane_state->base.visible = visible = false; 11780 crtc_state->active_planes &= ~BIT(plane->id); 11781 crtc_state->data_rate[plane->id] = 0; 11782 crtc_state->min_cdclk[plane->id] = 0; 11783 } 11784 11785 if (!was_visible && !visible) 11786 return 0; 11787 11788 turn_off = was_visible && (!visible || mode_changed); 11789 turn_on = visible && (!was_visible || mode_changed); 11790 11791 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 11792 crtc->base.base.id, crtc->base.name, 11793 plane->base.base.id, plane->base.name, 11794 was_visible, visible, 11795 turn_off, turn_on, mode_changed); 11796 11797 if (turn_on) { 11798 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 11799 crtc_state->update_wm_pre = true; 11800 11801 /* must disable cxsr around plane enable/disable */ 11802 if (plane->id != PLANE_CURSOR) 11803 crtc_state->disable_cxsr = true; 11804 } else if (turn_off) { 11805 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 11806 crtc_state->update_wm_post = true; 11807 11808 /* must disable cxsr around plane enable/disable */ 11809 if (plane->id != PLANE_CURSOR) 11810 crtc_state->disable_cxsr = true; 11811 } else if (intel_wm_need_update(old_plane_state, plane_state)) { 11812 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) { 11813 /* FIXME bollocks */ 11814 crtc_state->update_wm_pre = true; 11815 crtc_state->update_wm_post = true; 11816 } 11817 } 11818 11819 if (visible || was_visible) 11820 crtc_state->fb_bits |= plane->frontbuffer_bit; 11821 11822 /* 11823 * ILK/SNB DVSACNTR/Sprite Enable 11824 * IVB SPR_CTL/Sprite Enable 11825 * "When in Self Refresh Big FIFO mode, a write to enable the 11826 * plane will be internally buffered and delayed while Big FIFO 11827 * mode is exiting." 11828 * 11829 * Which means that enabling the sprite can take an extra frame 11830 * when we start in big FIFO mode (LP1+). Thus we need to drop 11831 * down to LP0 and wait for vblank in order to make sure the 11832 * sprite gets enabled on the next vblank after the register write. 11833 * Doing otherwise would risk enabling the sprite one frame after 11834 * we've already signalled flip completion. We can resume LP1+ 11835 * once the sprite has been enabled. 11836 * 11837 * 11838 * WaCxSRDisabledForSpriteScaling:ivb 11839 * IVB SPR_SCALE/Scaling Enable 11840 * "Low Power watermarks must be disabled for at least one 11841 * frame before enabling sprite scaling, and kept disabled 11842 * until sprite scaling is disabled." 11843 * 11844 * ILK/SNB DVSASCALE/Scaling Enable 11845 * "When in Self Refresh Big FIFO mode, scaling enable will be 11846 * masked off while Big FIFO mode is exiting." 11847 * 11848 * Despite the w/a only being listed for IVB we assume that 11849 * the ILK/SNB note has similar ramifications, hence we apply 11850 * the w/a on all three platforms. 11851 * 11852 * With experimental results seems this is needed also for primary 11853 * plane, not only sprite plane. 11854 */ 11855 if (plane->id != PLANE_CURSOR && 11856 (IS_GEN_RANGE(dev_priv, 5, 6) || 11857 IS_IVYBRIDGE(dev_priv)) && 11858 (turn_on || (!needs_scaling(old_plane_state) && 11859 needs_scaling(plane_state)))) 11860 crtc_state->disable_lp_wm = true; 11861 11862 return 0; 11863 } 11864 11865 static bool encoders_cloneable(const struct intel_encoder *a, 11866 const struct intel_encoder *b) 11867 { 11868 /* masks could be asymmetric, so check both ways */ 11869 return a == b || (a->cloneable & (1 << b->type) && 11870 b->cloneable & (1 << a->type)); 11871 } 11872 11873 static bool check_single_encoder_cloning(struct drm_atomic_state *state, 11874 struct intel_crtc *crtc, 11875 struct intel_encoder *encoder) 11876 { 11877 struct intel_encoder *source_encoder; 11878 struct drm_connector *connector; 11879 struct drm_connector_state *connector_state; 11880 int i; 11881 11882 for_each_new_connector_in_state(state, connector, connector_state, i) { 11883 if (connector_state->crtc != &crtc->base) 11884 continue; 11885 11886 source_encoder = 11887 to_intel_encoder(connector_state->best_encoder); 11888 if (!encoders_cloneable(encoder, source_encoder)) 11889 return false; 11890 } 11891 11892 return true; 11893 } 11894 11895 static int icl_add_linked_planes(struct intel_atomic_state *state) 11896 { 11897 struct intel_plane *plane, *linked; 11898 struct intel_plane_state *plane_state, *linked_plane_state; 11899 int i; 11900 11901 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 11902 linked = plane_state->planar_linked_plane; 11903 11904 if (!linked) 11905 continue; 11906 11907 linked_plane_state = intel_atomic_get_plane_state(state, linked); 11908 if (IS_ERR(linked_plane_state)) 11909 return PTR_ERR(linked_plane_state); 11910 11911 WARN_ON(linked_plane_state->planar_linked_plane != plane); 11912 WARN_ON(linked_plane_state->planar_slave == plane_state->planar_slave); 11913 } 11914 11915 return 0; 11916 } 11917 11918 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 11919 { 11920 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 11921 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11922 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->base.state); 11923 struct intel_plane *plane, *linked; 11924 struct intel_plane_state *plane_state; 11925 int i; 11926 11927 if (INTEL_GEN(dev_priv) < 11) 11928 return 0; 11929 11930 /* 11931 * Destroy all old plane links and make the slave plane invisible 11932 * in the crtc_state->active_planes mask. 11933 */ 11934 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 11935 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) 11936 continue; 11937 11938 plane_state->planar_linked_plane = NULL; 11939 if (plane_state->planar_slave && !plane_state->base.visible) { 11940 crtc_state->active_planes &= ~BIT(plane->id); 11941 crtc_state->update_planes |= BIT(plane->id); 11942 } 11943 11944 plane_state->planar_slave = false; 11945 } 11946 11947 if (!crtc_state->nv12_planes) 11948 return 0; 11949 11950 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 11951 struct intel_plane_state *linked_state = NULL; 11952 11953 if (plane->pipe != crtc->pipe || 11954 !(crtc_state->nv12_planes & BIT(plane->id))) 11955 continue; 11956 11957 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 11958 if (!icl_is_nv12_y_plane(linked->id)) 11959 continue; 11960 11961 if (crtc_state->active_planes & BIT(linked->id)) 11962 continue; 11963 11964 linked_state = intel_atomic_get_plane_state(state, linked); 11965 if (IS_ERR(linked_state)) 11966 return PTR_ERR(linked_state); 11967 11968 break; 11969 } 11970 11971 if (!linked_state) { 11972 DRM_DEBUG_KMS("Need %d free Y planes for planar YUV\n", 11973 hweight8(crtc_state->nv12_planes)); 11974 11975 return -EINVAL; 11976 } 11977 11978 plane_state->planar_linked_plane = linked; 11979 11980 linked_state->planar_slave = true; 11981 linked_state->planar_linked_plane = plane; 11982 crtc_state->active_planes |= BIT(linked->id); 11983 crtc_state->update_planes |= BIT(linked->id); 11984 DRM_DEBUG_KMS("Using %s as Y plane for %s\n", linked->base.name, plane->base.name); 11985 } 11986 11987 return 0; 11988 } 11989 11990 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 11991 { 11992 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); 11993 struct intel_atomic_state *state = 11994 to_intel_atomic_state(new_crtc_state->base.state); 11995 const struct intel_crtc_state *old_crtc_state = 11996 intel_atomic_get_old_crtc_state(state, crtc); 11997 11998 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 11999 } 12000 12001 static int icl_add_sync_mode_crtcs(struct intel_crtc_state *crtc_state) 12002 { 12003 struct drm_crtc *crtc = crtc_state->base.crtc; 12004 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->base.state); 12005 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 12006 struct drm_connector *master_connector, *connector; 12007 struct drm_connector_state *connector_state; 12008 struct drm_connector_list_iter conn_iter; 12009 struct drm_crtc *master_crtc = NULL; 12010 struct drm_crtc_state *master_crtc_state; 12011 struct intel_crtc_state *master_pipe_config; 12012 int i, tile_group_id; 12013 12014 if (INTEL_GEN(dev_priv) < 11) 12015 return 0; 12016 12017 /* 12018 * In case of tiled displays there could be one or more slaves but there is 12019 * only one master. Lets make the CRTC used by the connector corresponding 12020 * to the last horizonal and last vertical tile a master/genlock CRTC. 12021 * All the other CRTCs corresponding to other tiles of the same Tile group 12022 * are the slave CRTCs and hold a pointer to their genlock CRTC. 12023 */ 12024 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 12025 if (connector_state->crtc != crtc) 12026 continue; 12027 if (!connector->has_tile) 12028 continue; 12029 if (crtc_state->base.mode.hdisplay != connector->tile_h_size || 12030 crtc_state->base.mode.vdisplay != connector->tile_v_size) 12031 return 0; 12032 if (connector->tile_h_loc == connector->num_h_tile - 1 && 12033 connector->tile_v_loc == connector->num_v_tile - 1) 12034 continue; 12035 crtc_state->sync_mode_slaves_mask = 0; 12036 tile_group_id = connector->tile_group->id; 12037 drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter); 12038 drm_for_each_connector_iter(master_connector, &conn_iter) { 12039 struct drm_connector_state *master_conn_state = NULL; 12040 12041 if (!master_connector->has_tile) 12042 continue; 12043 if (master_connector->tile_h_loc != master_connector->num_h_tile - 1 || 12044 master_connector->tile_v_loc != master_connector->num_v_tile - 1) 12045 continue; 12046 if (master_connector->tile_group->id != tile_group_id) 12047 continue; 12048 12049 master_conn_state = drm_atomic_get_connector_state(&state->base, 12050 master_connector); 12051 if (IS_ERR(master_conn_state)) { 12052 drm_connector_list_iter_end(&conn_iter); 12053 return PTR_ERR(master_conn_state); 12054 } 12055 if (master_conn_state->crtc) { 12056 master_crtc = master_conn_state->crtc; 12057 break; 12058 } 12059 } 12060 drm_connector_list_iter_end(&conn_iter); 12061 12062 if (!master_crtc) { 12063 DRM_DEBUG_KMS("Could not find Master CRTC for Slave CRTC %d\n", 12064 connector_state->crtc->base.id); 12065 return -EINVAL; 12066 } 12067 12068 master_crtc_state = drm_atomic_get_crtc_state(&state->base, 12069 master_crtc); 12070 if (IS_ERR(master_crtc_state)) 12071 return PTR_ERR(master_crtc_state); 12072 12073 master_pipe_config = to_intel_crtc_state(master_crtc_state); 12074 crtc_state->master_transcoder = master_pipe_config->cpu_transcoder; 12075 master_pipe_config->sync_mode_slaves_mask |= 12076 BIT(crtc_state->cpu_transcoder); 12077 DRM_DEBUG_KMS("Master Transcoder = %s added for Slave CRTC = %d, slave transcoder bitmask = %d\n", 12078 transcoder_name(crtc_state->master_transcoder), 12079 crtc_state->base.crtc->base.id, 12080 master_pipe_config->sync_mode_slaves_mask); 12081 } 12082 12083 return 0; 12084 } 12085 12086 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 12087 struct intel_crtc *crtc) 12088 { 12089 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12090 struct intel_crtc_state *crtc_state = 12091 intel_atomic_get_new_crtc_state(state, crtc); 12092 bool mode_changed = needs_modeset(crtc_state); 12093 int ret; 12094 12095 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) && 12096 mode_changed && !crtc_state->base.active) 12097 crtc_state->update_wm_post = true; 12098 12099 if (mode_changed && crtc_state->base.enable && 12100 dev_priv->display.crtc_compute_clock && 12101 !WARN_ON(crtc_state->shared_dpll)) { 12102 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state); 12103 if (ret) 12104 return ret; 12105 } 12106 12107 /* 12108 * May need to update pipe gamma enable bits 12109 * when C8 planes are getting enabled/disabled. 12110 */ 12111 if (c8_planes_changed(crtc_state)) 12112 crtc_state->base.color_mgmt_changed = true; 12113 12114 if (mode_changed || crtc_state->update_pipe || 12115 crtc_state->base.color_mgmt_changed) { 12116 ret = intel_color_check(crtc_state); 12117 if (ret) 12118 return ret; 12119 } 12120 12121 ret = 0; 12122 if (dev_priv->display.compute_pipe_wm) { 12123 ret = dev_priv->display.compute_pipe_wm(crtc_state); 12124 if (ret) { 12125 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n"); 12126 return ret; 12127 } 12128 } 12129 12130 if (dev_priv->display.compute_intermediate_wm) { 12131 if (WARN_ON(!dev_priv->display.compute_pipe_wm)) 12132 return 0; 12133 12134 /* 12135 * Calculate 'intermediate' watermarks that satisfy both the 12136 * old state and the new state. We can program these 12137 * immediately. 12138 */ 12139 ret = dev_priv->display.compute_intermediate_wm(crtc_state); 12140 if (ret) { 12141 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n"); 12142 return ret; 12143 } 12144 } 12145 12146 if (INTEL_GEN(dev_priv) >= 9) { 12147 if (mode_changed || crtc_state->update_pipe) 12148 ret = skl_update_scaler_crtc(crtc_state); 12149 if (!ret) 12150 ret = intel_atomic_setup_scalers(dev_priv, crtc, 12151 crtc_state); 12152 } 12153 12154 if (HAS_IPS(dev_priv)) 12155 crtc_state->ips_enabled = hsw_compute_ips_config(crtc_state); 12156 12157 return ret; 12158 } 12159 12160 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 12161 { 12162 struct intel_connector *connector; 12163 struct drm_connector_list_iter conn_iter; 12164 12165 drm_connector_list_iter_begin(dev, &conn_iter); 12166 for_each_intel_connector_iter(connector, &conn_iter) { 12167 if (connector->base.state->crtc) 12168 drm_connector_put(&connector->base); 12169 12170 if (connector->base.encoder) { 12171 connector->base.state->best_encoder = 12172 connector->base.encoder; 12173 connector->base.state->crtc = 12174 connector->base.encoder->crtc; 12175 12176 drm_connector_get(&connector->base); 12177 } else { 12178 connector->base.state->best_encoder = NULL; 12179 connector->base.state->crtc = NULL; 12180 } 12181 } 12182 drm_connector_list_iter_end(&conn_iter); 12183 } 12184 12185 static int 12186 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 12187 struct intel_crtc_state *pipe_config) 12188 { 12189 struct drm_connector *connector = conn_state->connector; 12190 const struct drm_display_info *info = &connector->display_info; 12191 int bpp; 12192 12193 switch (conn_state->max_bpc) { 12194 case 6 ... 7: 12195 bpp = 6 * 3; 12196 break; 12197 case 8 ... 9: 12198 bpp = 8 * 3; 12199 break; 12200 case 10 ... 11: 12201 bpp = 10 * 3; 12202 break; 12203 case 12: 12204 bpp = 12 * 3; 12205 break; 12206 default: 12207 return -EINVAL; 12208 } 12209 12210 if (bpp < pipe_config->pipe_bpp) { 12211 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 12212 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 12213 connector->base.id, connector->name, 12214 bpp, 3 * info->bpc, 3 * conn_state->max_requested_bpc, 12215 pipe_config->pipe_bpp); 12216 12217 pipe_config->pipe_bpp = bpp; 12218 } 12219 12220 return 0; 12221 } 12222 12223 static int 12224 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 12225 struct intel_crtc_state *pipe_config) 12226 { 12227 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12228 struct drm_atomic_state *state = pipe_config->base.state; 12229 struct drm_connector *connector; 12230 struct drm_connector_state *connector_state; 12231 int bpp, i; 12232 12233 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 12234 IS_CHERRYVIEW(dev_priv))) 12235 bpp = 10*3; 12236 else if (INTEL_GEN(dev_priv) >= 5) 12237 bpp = 12*3; 12238 else 12239 bpp = 8*3; 12240 12241 pipe_config->pipe_bpp = bpp; 12242 12243 /* Clamp display bpp to connector max bpp */ 12244 for_each_new_connector_in_state(state, connector, connector_state, i) { 12245 int ret; 12246 12247 if (connector_state->crtc != &crtc->base) 12248 continue; 12249 12250 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 12251 if (ret) 12252 return ret; 12253 } 12254 12255 return 0; 12256 } 12257 12258 static void intel_dump_crtc_timings(const struct drm_display_mode *mode) 12259 { 12260 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, " 12261 "type: 0x%x flags: 0x%x\n", 12262 mode->crtc_clock, 12263 mode->crtc_hdisplay, mode->crtc_hsync_start, 12264 mode->crtc_hsync_end, mode->crtc_htotal, 12265 mode->crtc_vdisplay, mode->crtc_vsync_start, 12266 mode->crtc_vsync_end, mode->crtc_vtotal, 12267 mode->type, mode->flags); 12268 } 12269 12270 static inline void 12271 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 12272 const char *id, unsigned int lane_count, 12273 const struct intel_link_m_n *m_n) 12274 { 12275 DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 12276 id, lane_count, 12277 m_n->gmch_m, m_n->gmch_n, 12278 m_n->link_m, m_n->link_n, m_n->tu); 12279 } 12280 12281 static void 12282 intel_dump_infoframe(struct drm_i915_private *dev_priv, 12283 const union hdmi_infoframe *frame) 12284 { 12285 if ((drm_debug & DRM_UT_KMS) == 0) 12286 return; 12287 12288 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 12289 } 12290 12291 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 12292 12293 static const char * const output_type_str[] = { 12294 OUTPUT_TYPE(UNUSED), 12295 OUTPUT_TYPE(ANALOG), 12296 OUTPUT_TYPE(DVO), 12297 OUTPUT_TYPE(SDVO), 12298 OUTPUT_TYPE(LVDS), 12299 OUTPUT_TYPE(TVOUT), 12300 OUTPUT_TYPE(HDMI), 12301 OUTPUT_TYPE(DP), 12302 OUTPUT_TYPE(EDP), 12303 OUTPUT_TYPE(DSI), 12304 OUTPUT_TYPE(DDI), 12305 OUTPUT_TYPE(DP_MST), 12306 }; 12307 12308 #undef OUTPUT_TYPE 12309 12310 static void snprintf_output_types(char *buf, size_t len, 12311 unsigned int output_types) 12312 { 12313 char *str = buf; 12314 int i; 12315 12316 str[0] = '\0'; 12317 12318 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 12319 int r; 12320 12321 if ((output_types & BIT(i)) == 0) 12322 continue; 12323 12324 r = snprintf(str, len, "%s%s", 12325 str != buf ? "," : "", output_type_str[i]); 12326 if (r >= len) 12327 break; 12328 str += r; 12329 len -= r; 12330 12331 output_types &= ~BIT(i); 12332 } 12333 12334 WARN_ON_ONCE(output_types != 0); 12335 } 12336 12337 static const char * const output_format_str[] = { 12338 [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid", 12339 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 12340 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 12341 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 12342 }; 12343 12344 static const char *output_formats(enum intel_output_format format) 12345 { 12346 if (format >= ARRAY_SIZE(output_format_str)) 12347 format = INTEL_OUTPUT_FORMAT_INVALID; 12348 return output_format_str[format]; 12349 } 12350 12351 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 12352 { 12353 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 12354 const struct drm_framebuffer *fb = plane_state->base.fb; 12355 struct drm_format_name_buf format_name; 12356 12357 if (!fb) { 12358 DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 12359 plane->base.base.id, plane->base.name, 12360 yesno(plane_state->base.visible)); 12361 return; 12362 } 12363 12364 DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n", 12365 plane->base.base.id, plane->base.name, 12366 fb->base.id, fb->width, fb->height, 12367 drm_get_format_name(fb->format->format, &format_name), 12368 yesno(plane_state->base.visible)); 12369 DRM_DEBUG_KMS("\trotation: 0x%x, scaler: %d\n", 12370 plane_state->base.rotation, plane_state->scaler_id); 12371 if (plane_state->base.visible) 12372 DRM_DEBUG_KMS("\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 12373 DRM_RECT_FP_ARG(&plane_state->base.src), 12374 DRM_RECT_ARG(&plane_state->base.dst)); 12375 } 12376 12377 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 12378 struct intel_atomic_state *state, 12379 const char *context) 12380 { 12381 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 12382 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12383 const struct intel_plane_state *plane_state; 12384 struct intel_plane *plane; 12385 char buf[64]; 12386 int i; 12387 12388 DRM_DEBUG_KMS("[CRTC:%d:%s] enable: %s %s\n", 12389 crtc->base.base.id, crtc->base.name, 12390 yesno(pipe_config->base.enable), context); 12391 12392 if (!pipe_config->base.enable) 12393 goto dump_planes; 12394 12395 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 12396 DRM_DEBUG_KMS("active: %s, output_types: %s (0x%x), output format: %s\n", 12397 yesno(pipe_config->base.active), 12398 buf, pipe_config->output_types, 12399 output_formats(pipe_config->output_format)); 12400 12401 DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 12402 transcoder_name(pipe_config->cpu_transcoder), 12403 pipe_config->pipe_bpp, pipe_config->dither); 12404 12405 if (pipe_config->has_pch_encoder) 12406 intel_dump_m_n_config(pipe_config, "fdi", 12407 pipe_config->fdi_lanes, 12408 &pipe_config->fdi_m_n); 12409 12410 if (intel_crtc_has_dp_encoder(pipe_config)) { 12411 intel_dump_m_n_config(pipe_config, "dp m_n", 12412 pipe_config->lane_count, &pipe_config->dp_m_n); 12413 if (pipe_config->has_drrs) 12414 intel_dump_m_n_config(pipe_config, "dp m2_n2", 12415 pipe_config->lane_count, 12416 &pipe_config->dp_m2_n2); 12417 } 12418 12419 DRM_DEBUG_KMS("audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 12420 pipe_config->has_audio, pipe_config->has_infoframe, 12421 pipe_config->infoframes.enable); 12422 12423 if (pipe_config->infoframes.enable & 12424 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 12425 DRM_DEBUG_KMS("GCP: 0x%x\n", pipe_config->infoframes.gcp); 12426 if (pipe_config->infoframes.enable & 12427 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 12428 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 12429 if (pipe_config->infoframes.enable & 12430 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 12431 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 12432 if (pipe_config->infoframes.enable & 12433 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 12434 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 12435 12436 DRM_DEBUG_KMS("requested mode:\n"); 12437 drm_mode_debug_printmodeline(&pipe_config->base.mode); 12438 DRM_DEBUG_KMS("adjusted mode:\n"); 12439 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode); 12440 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode); 12441 DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 12442 pipe_config->port_clock, 12443 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 12444 pipe_config->pixel_rate); 12445 12446 if (INTEL_GEN(dev_priv) >= 9) 12447 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 12448 crtc->num_scalers, 12449 pipe_config->scaler_state.scaler_users, 12450 pipe_config->scaler_state.scaler_id); 12451 12452 if (HAS_GMCH(dev_priv)) 12453 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 12454 pipe_config->gmch_pfit.control, 12455 pipe_config->gmch_pfit.pgm_ratios, 12456 pipe_config->gmch_pfit.lvds_border_bits); 12457 else 12458 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s, force thru: %s\n", 12459 pipe_config->pch_pfit.pos, 12460 pipe_config->pch_pfit.size, 12461 enableddisabled(pipe_config->pch_pfit.enabled), 12462 yesno(pipe_config->pch_pfit.force_thru)); 12463 12464 DRM_DEBUG_KMS("ips: %i, double wide: %i\n", 12465 pipe_config->ips_enabled, pipe_config->double_wide); 12466 12467 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 12468 12469 if (IS_CHERRYVIEW(dev_priv)) 12470 DRM_DEBUG_KMS("cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 12471 pipe_config->cgm_mode, pipe_config->gamma_mode, 12472 pipe_config->gamma_enable, pipe_config->csc_enable); 12473 else 12474 DRM_DEBUG_KMS("csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 12475 pipe_config->csc_mode, pipe_config->gamma_mode, 12476 pipe_config->gamma_enable, pipe_config->csc_enable); 12477 12478 dump_planes: 12479 if (!state) 12480 return; 12481 12482 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12483 if (plane->pipe == crtc->pipe) 12484 intel_dump_plane_state(plane_state); 12485 } 12486 } 12487 12488 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 12489 { 12490 struct drm_device *dev = state->base.dev; 12491 struct drm_connector *connector; 12492 struct drm_connector_list_iter conn_iter; 12493 unsigned int used_ports = 0; 12494 unsigned int used_mst_ports = 0; 12495 bool ret = true; 12496 12497 /* 12498 * We're going to peek into connector->state, 12499 * hence connection_mutex must be held. 12500 */ 12501 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); 12502 12503 /* 12504 * Walk the connector list instead of the encoder 12505 * list to detect the problem on ddi platforms 12506 * where there's just one encoder per digital port. 12507 */ 12508 drm_connector_list_iter_begin(dev, &conn_iter); 12509 drm_for_each_connector_iter(connector, &conn_iter) { 12510 struct drm_connector_state *connector_state; 12511 struct intel_encoder *encoder; 12512 12513 connector_state = 12514 drm_atomic_get_new_connector_state(&state->base, 12515 connector); 12516 if (!connector_state) 12517 connector_state = connector->state; 12518 12519 if (!connector_state->best_encoder) 12520 continue; 12521 12522 encoder = to_intel_encoder(connector_state->best_encoder); 12523 12524 WARN_ON(!connector_state->crtc); 12525 12526 switch (encoder->type) { 12527 unsigned int port_mask; 12528 case INTEL_OUTPUT_DDI: 12529 if (WARN_ON(!HAS_DDI(to_i915(dev)))) 12530 break; 12531 /* else, fall through */ 12532 case INTEL_OUTPUT_DP: 12533 case INTEL_OUTPUT_HDMI: 12534 case INTEL_OUTPUT_EDP: 12535 port_mask = 1 << encoder->port; 12536 12537 /* the same port mustn't appear more than once */ 12538 if (used_ports & port_mask) 12539 ret = false; 12540 12541 used_ports |= port_mask; 12542 break; 12543 case INTEL_OUTPUT_DP_MST: 12544 used_mst_ports |= 12545 1 << encoder->port; 12546 break; 12547 default: 12548 break; 12549 } 12550 } 12551 drm_connector_list_iter_end(&conn_iter); 12552 12553 /* can't mix MST and SST/HDMI on the same port */ 12554 if (used_ports & used_mst_ports) 12555 return false; 12556 12557 return ret; 12558 } 12559 12560 static int 12561 clear_intel_crtc_state(struct intel_crtc_state *crtc_state) 12562 { 12563 struct drm_i915_private *dev_priv = 12564 to_i915(crtc_state->base.crtc->dev); 12565 struct intel_crtc_state *saved_state; 12566 12567 saved_state = kzalloc(sizeof(*saved_state), GFP_KERNEL); 12568 if (!saved_state) 12569 return -ENOMEM; 12570 12571 /* FIXME: before the switch to atomic started, a new pipe_config was 12572 * kzalloc'd. Code that depends on any field being zero should be 12573 * fixed, so that the crtc_state can be safely duplicated. For now, 12574 * only fields that are know to not cause problems are preserved. */ 12575 12576 saved_state->scaler_state = crtc_state->scaler_state; 12577 saved_state->shared_dpll = crtc_state->shared_dpll; 12578 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 12579 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 12580 sizeof(saved_state->icl_port_dplls)); 12581 saved_state->crc_enabled = crtc_state->crc_enabled; 12582 if (IS_G4X(dev_priv) || 12583 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 12584 saved_state->wm = crtc_state->wm; 12585 /* 12586 * Save the slave bitmask which gets filled for master crtc state during 12587 * slave atomic check call. 12588 */ 12589 if (is_trans_port_sync_master(crtc_state)) 12590 saved_state->sync_mode_slaves_mask = 12591 crtc_state->sync_mode_slaves_mask; 12592 12593 /* Keep base drm_crtc_state intact, only clear our extended struct */ 12594 BUILD_BUG_ON(offsetof(struct intel_crtc_state, base)); 12595 memcpy(&crtc_state->base + 1, &saved_state->base + 1, 12596 sizeof(*crtc_state) - sizeof(crtc_state->base)); 12597 12598 kfree(saved_state); 12599 return 0; 12600 } 12601 12602 static int 12603 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config) 12604 { 12605 struct drm_crtc *crtc = pipe_config->base.crtc; 12606 struct drm_atomic_state *state = pipe_config->base.state; 12607 struct intel_encoder *encoder; 12608 struct drm_connector *connector; 12609 struct drm_connector_state *connector_state; 12610 int base_bpp, ret; 12611 int i; 12612 bool retry = true; 12613 12614 ret = clear_intel_crtc_state(pipe_config); 12615 if (ret) 12616 return ret; 12617 12618 pipe_config->cpu_transcoder = 12619 (enum transcoder) to_intel_crtc(crtc)->pipe; 12620 12621 /* 12622 * Sanitize sync polarity flags based on requested ones. If neither 12623 * positive or negative polarity is requested, treat this as meaning 12624 * negative polarity. 12625 */ 12626 if (!(pipe_config->base.adjusted_mode.flags & 12627 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 12628 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 12629 12630 if (!(pipe_config->base.adjusted_mode.flags & 12631 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 12632 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 12633 12634 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 12635 pipe_config); 12636 if (ret) 12637 return ret; 12638 12639 base_bpp = pipe_config->pipe_bpp; 12640 12641 /* 12642 * Determine the real pipe dimensions. Note that stereo modes can 12643 * increase the actual pipe size due to the frame doubling and 12644 * insertion of additional space for blanks between the frame. This 12645 * is stored in the crtc timings. We use the requested mode to do this 12646 * computation to clearly distinguish it from the adjusted mode, which 12647 * can be changed by the connectors in the below retry loop. 12648 */ 12649 drm_mode_get_hv_timing(&pipe_config->base.mode, 12650 &pipe_config->pipe_src_w, 12651 &pipe_config->pipe_src_h); 12652 12653 for_each_new_connector_in_state(state, connector, connector_state, i) { 12654 if (connector_state->crtc != crtc) 12655 continue; 12656 12657 encoder = to_intel_encoder(connector_state->best_encoder); 12658 12659 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 12660 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n"); 12661 return -EINVAL; 12662 } 12663 12664 /* 12665 * Determine output_types before calling the .compute_config() 12666 * hooks so that the hooks can use this information safely. 12667 */ 12668 if (encoder->compute_output_type) 12669 pipe_config->output_types |= 12670 BIT(encoder->compute_output_type(encoder, pipe_config, 12671 connector_state)); 12672 else 12673 pipe_config->output_types |= BIT(encoder->type); 12674 } 12675 12676 encoder_retry: 12677 /* Ensure the port clock defaults are reset when retrying. */ 12678 pipe_config->port_clock = 0; 12679 pipe_config->pixel_multiplier = 1; 12680 12681 /* Fill in default crtc timings, allow encoders to overwrite them. */ 12682 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode, 12683 CRTC_STEREO_DOUBLE); 12684 12685 /* Set the crtc_state defaults for trans_port_sync */ 12686 pipe_config->master_transcoder = INVALID_TRANSCODER; 12687 ret = icl_add_sync_mode_crtcs(pipe_config); 12688 if (ret) { 12689 DRM_DEBUG_KMS("Cannot assign Sync Mode CRTCs: %d\n", 12690 ret); 12691 return ret; 12692 } 12693 12694 /* Pass our mode to the connectors and the CRTC to give them a chance to 12695 * adjust it according to limitations or connector properties, and also 12696 * a chance to reject the mode entirely. 12697 */ 12698 for_each_new_connector_in_state(state, connector, connector_state, i) { 12699 if (connector_state->crtc != crtc) 12700 continue; 12701 12702 encoder = to_intel_encoder(connector_state->best_encoder); 12703 ret = encoder->compute_config(encoder, pipe_config, 12704 connector_state); 12705 if (ret < 0) { 12706 if (ret != -EDEADLK) 12707 DRM_DEBUG_KMS("Encoder config failure: %d\n", 12708 ret); 12709 return ret; 12710 } 12711 } 12712 12713 /* Set default port clock if not overwritten by the encoder. Needs to be 12714 * done afterwards in case the encoder adjusts the mode. */ 12715 if (!pipe_config->port_clock) 12716 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock 12717 * pipe_config->pixel_multiplier; 12718 12719 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 12720 if (ret == -EDEADLK) 12721 return ret; 12722 if (ret < 0) { 12723 DRM_DEBUG_KMS("CRTC fixup failed\n"); 12724 return ret; 12725 } 12726 12727 if (ret == RETRY) { 12728 if (WARN(!retry, "loop in pipe configuration computation\n")) 12729 return -EINVAL; 12730 12731 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n"); 12732 retry = false; 12733 goto encoder_retry; 12734 } 12735 12736 /* Dithering seems to not pass-through bits correctly when it should, so 12737 * only enable it on 6bpc panels and when its not a compliance 12738 * test requesting 6bpc video pattern. 12739 */ 12740 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 12741 !pipe_config->dither_force_disable; 12742 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 12743 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 12744 12745 return 0; 12746 } 12747 12748 bool intel_fuzzy_clock_check(int clock1, int clock2) 12749 { 12750 int diff; 12751 12752 if (clock1 == clock2) 12753 return true; 12754 12755 if (!clock1 || !clock2) 12756 return false; 12757 12758 diff = abs(clock1 - clock2); 12759 12760 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 12761 return true; 12762 12763 return false; 12764 } 12765 12766 static bool 12767 intel_compare_m_n(unsigned int m, unsigned int n, 12768 unsigned int m2, unsigned int n2, 12769 bool exact) 12770 { 12771 if (m == m2 && n == n2) 12772 return true; 12773 12774 if (exact || !m || !n || !m2 || !n2) 12775 return false; 12776 12777 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 12778 12779 if (n > n2) { 12780 while (n > n2) { 12781 m2 <<= 1; 12782 n2 <<= 1; 12783 } 12784 } else if (n < n2) { 12785 while (n < n2) { 12786 m <<= 1; 12787 n <<= 1; 12788 } 12789 } 12790 12791 if (n != n2) 12792 return false; 12793 12794 return intel_fuzzy_clock_check(m, m2); 12795 } 12796 12797 static bool 12798 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 12799 const struct intel_link_m_n *m2_n2, 12800 bool exact) 12801 { 12802 return m_n->tu == m2_n2->tu && 12803 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 12804 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 12805 intel_compare_m_n(m_n->link_m, m_n->link_n, 12806 m2_n2->link_m, m2_n2->link_n, exact); 12807 } 12808 12809 static bool 12810 intel_compare_infoframe(const union hdmi_infoframe *a, 12811 const union hdmi_infoframe *b) 12812 { 12813 return memcmp(a, b, sizeof(*a)) == 0; 12814 } 12815 12816 static void 12817 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 12818 bool fastset, const char *name, 12819 const union hdmi_infoframe *a, 12820 const union hdmi_infoframe *b) 12821 { 12822 if (fastset) { 12823 if ((drm_debug & DRM_UT_KMS) == 0) 12824 return; 12825 12826 DRM_DEBUG_KMS("fastset mismatch in %s infoframe\n", name); 12827 DRM_DEBUG_KMS("expected:\n"); 12828 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 12829 DRM_DEBUG_KMS("found:\n"); 12830 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 12831 } else { 12832 DRM_ERROR("mismatch in %s infoframe\n", name); 12833 DRM_ERROR("expected:\n"); 12834 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 12835 DRM_ERROR("found:\n"); 12836 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 12837 } 12838 } 12839 12840 static void __printf(4, 5) 12841 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, 12842 const char *name, const char *format, ...) 12843 { 12844 struct va_format vaf; 12845 va_list args; 12846 12847 va_start(args, format); 12848 vaf.fmt = format; 12849 vaf.va = &args; 12850 12851 if (fastset) 12852 DRM_DEBUG_KMS("[CRTC:%d:%s] fastset mismatch in %s %pV\n", 12853 crtc->base.base.id, crtc->base.name, name, &vaf); 12854 else 12855 DRM_ERROR("[CRTC:%d:%s] mismatch in %s %pV\n", 12856 crtc->base.base.id, crtc->base.name, name, &vaf); 12857 12858 va_end(args); 12859 } 12860 12861 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 12862 { 12863 if (i915_modparams.fastboot != -1) 12864 return i915_modparams.fastboot; 12865 12866 /* Enable fastboot by default on Skylake and newer */ 12867 if (INTEL_GEN(dev_priv) >= 9) 12868 return true; 12869 12870 /* Enable fastboot by default on VLV and CHV */ 12871 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 12872 return true; 12873 12874 /* Disabled by default on all others */ 12875 return false; 12876 } 12877 12878 static bool 12879 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 12880 const struct intel_crtc_state *pipe_config, 12881 bool fastset) 12882 { 12883 struct drm_i915_private *dev_priv = to_i915(current_config->base.crtc->dev); 12884 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); 12885 bool ret = true; 12886 u32 bp_gamma = 0; 12887 bool fixup_inherited = fastset && 12888 (current_config->base.mode.private_flags & I915_MODE_FLAG_INHERITED) && 12889 !(pipe_config->base.mode.private_flags & I915_MODE_FLAG_INHERITED); 12890 12891 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 12892 DRM_DEBUG_KMS("initial modeset and fastboot not set\n"); 12893 ret = false; 12894 } 12895 12896 #define PIPE_CONF_CHECK_X(name) do { \ 12897 if (current_config->name != pipe_config->name) { \ 12898 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 12899 "(expected 0x%08x, found 0x%08x)", \ 12900 current_config->name, \ 12901 pipe_config->name); \ 12902 ret = false; \ 12903 } \ 12904 } while (0) 12905 12906 #define PIPE_CONF_CHECK_I(name) do { \ 12907 if (current_config->name != pipe_config->name) { \ 12908 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 12909 "(expected %i, found %i)", \ 12910 current_config->name, \ 12911 pipe_config->name); \ 12912 ret = false; \ 12913 } \ 12914 } while (0) 12915 12916 #define PIPE_CONF_CHECK_BOOL(name) do { \ 12917 if (current_config->name != pipe_config->name) { \ 12918 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 12919 "(expected %s, found %s)", \ 12920 yesno(current_config->name), \ 12921 yesno(pipe_config->name)); \ 12922 ret = false; \ 12923 } \ 12924 } while (0) 12925 12926 /* 12927 * Checks state where we only read out the enabling, but not the entire 12928 * state itself (like full infoframes or ELD for audio). These states 12929 * require a full modeset on bootup to fix up. 12930 */ 12931 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 12932 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 12933 PIPE_CONF_CHECK_BOOL(name); \ 12934 } else { \ 12935 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 12936 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ 12937 yesno(current_config->name), \ 12938 yesno(pipe_config->name)); \ 12939 ret = false; \ 12940 } \ 12941 } while (0) 12942 12943 #define PIPE_CONF_CHECK_P(name) do { \ 12944 if (current_config->name != pipe_config->name) { \ 12945 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 12946 "(expected %p, found %p)", \ 12947 current_config->name, \ 12948 pipe_config->name); \ 12949 ret = false; \ 12950 } \ 12951 } while (0) 12952 12953 #define PIPE_CONF_CHECK_M_N(name) do { \ 12954 if (!intel_compare_link_m_n(¤t_config->name, \ 12955 &pipe_config->name,\ 12956 !fastset)) { \ 12957 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 12958 "(expected tu %i gmch %i/%i link %i/%i, " \ 12959 "found tu %i, gmch %i/%i link %i/%i)", \ 12960 current_config->name.tu, \ 12961 current_config->name.gmch_m, \ 12962 current_config->name.gmch_n, \ 12963 current_config->name.link_m, \ 12964 current_config->name.link_n, \ 12965 pipe_config->name.tu, \ 12966 pipe_config->name.gmch_m, \ 12967 pipe_config->name.gmch_n, \ 12968 pipe_config->name.link_m, \ 12969 pipe_config->name.link_n); \ 12970 ret = false; \ 12971 } \ 12972 } while (0) 12973 12974 /* This is required for BDW+ where there is only one set of registers for 12975 * switching between high and low RR. 12976 * This macro can be used whenever a comparison has to be made between one 12977 * hw state and multiple sw state variables. 12978 */ 12979 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 12980 if (!intel_compare_link_m_n(¤t_config->name, \ 12981 &pipe_config->name, !fastset) && \ 12982 !intel_compare_link_m_n(¤t_config->alt_name, \ 12983 &pipe_config->name, !fastset)) { \ 12984 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 12985 "(expected tu %i gmch %i/%i link %i/%i, " \ 12986 "or tu %i gmch %i/%i link %i/%i, " \ 12987 "found tu %i, gmch %i/%i link %i/%i)", \ 12988 current_config->name.tu, \ 12989 current_config->name.gmch_m, \ 12990 current_config->name.gmch_n, \ 12991 current_config->name.link_m, \ 12992 current_config->name.link_n, \ 12993 current_config->alt_name.tu, \ 12994 current_config->alt_name.gmch_m, \ 12995 current_config->alt_name.gmch_n, \ 12996 current_config->alt_name.link_m, \ 12997 current_config->alt_name.link_n, \ 12998 pipe_config->name.tu, \ 12999 pipe_config->name.gmch_m, \ 13000 pipe_config->name.gmch_n, \ 13001 pipe_config->name.link_m, \ 13002 pipe_config->name.link_n); \ 13003 ret = false; \ 13004 } \ 13005 } while (0) 13006 13007 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 13008 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 13009 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13010 "(%x) (expected %i, found %i)", \ 13011 (mask), \ 13012 current_config->name & (mask), \ 13013 pipe_config->name & (mask)); \ 13014 ret = false; \ 13015 } \ 13016 } while (0) 13017 13018 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 13019 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 13020 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13021 "(expected %i, found %i)", \ 13022 current_config->name, \ 13023 pipe_config->name); \ 13024 ret = false; \ 13025 } \ 13026 } while (0) 13027 13028 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 13029 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 13030 &pipe_config->infoframes.name)) { \ 13031 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 13032 ¤t_config->infoframes.name, \ 13033 &pipe_config->infoframes.name); \ 13034 ret = false; \ 13035 } \ 13036 } while (0) 13037 13038 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ 13039 if (current_config->name1 != pipe_config->name1) { \ 13040 pipe_config_mismatch(fastset, crtc, __stringify(name1), \ 13041 "(expected %i, found %i, won't compare lut values)", \ 13042 current_config->name1, \ 13043 pipe_config->name1); \ 13044 ret = false;\ 13045 } else { \ 13046 if (!intel_color_lut_equal(current_config->name2, \ 13047 pipe_config->name2, pipe_config->name1, \ 13048 bit_precision)) { \ 13049 pipe_config_mismatch(fastset, crtc, __stringify(name2), \ 13050 "hw_state doesn't match sw_state"); \ 13051 ret = false; \ 13052 } \ 13053 } \ 13054 } while (0) 13055 13056 #define PIPE_CONF_QUIRK(quirk) \ 13057 ((current_config->quirks | pipe_config->quirks) & (quirk)) 13058 13059 PIPE_CONF_CHECK_I(cpu_transcoder); 13060 13061 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 13062 PIPE_CONF_CHECK_I(fdi_lanes); 13063 PIPE_CONF_CHECK_M_N(fdi_m_n); 13064 13065 PIPE_CONF_CHECK_I(lane_count); 13066 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 13067 13068 if (INTEL_GEN(dev_priv) < 8) { 13069 PIPE_CONF_CHECK_M_N(dp_m_n); 13070 13071 if (current_config->has_drrs) 13072 PIPE_CONF_CHECK_M_N(dp_m2_n2); 13073 } else 13074 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 13075 13076 PIPE_CONF_CHECK_X(output_types); 13077 13078 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay); 13079 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal); 13080 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start); 13081 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end); 13082 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start); 13083 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end); 13084 13085 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay); 13086 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal); 13087 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start); 13088 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end); 13089 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start); 13090 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end); 13091 13092 PIPE_CONF_CHECK_I(pixel_multiplier); 13093 PIPE_CONF_CHECK_I(output_format); 13094 PIPE_CONF_CHECK_I(dc3co_exitline); 13095 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 13096 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 13097 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13098 PIPE_CONF_CHECK_BOOL(limited_color_range); 13099 13100 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 13101 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 13102 PIPE_CONF_CHECK_BOOL(has_infoframe); 13103 PIPE_CONF_CHECK_BOOL(fec_enable); 13104 13105 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 13106 13107 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 13108 DRM_MODE_FLAG_INTERLACE); 13109 13110 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 13111 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 13112 DRM_MODE_FLAG_PHSYNC); 13113 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 13114 DRM_MODE_FLAG_NHSYNC); 13115 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 13116 DRM_MODE_FLAG_PVSYNC); 13117 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 13118 DRM_MODE_FLAG_NVSYNC); 13119 } 13120 13121 PIPE_CONF_CHECK_X(gmch_pfit.control); 13122 /* pfit ratios are autocomputed by the hw on gen4+ */ 13123 if (INTEL_GEN(dev_priv) < 4) 13124 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 13125 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 13126 13127 /* 13128 * Changing the EDP transcoder input mux 13129 * (A_ONOFF vs. A_ON) requires a full modeset. 13130 */ 13131 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 13132 13133 if (!fastset) { 13134 PIPE_CONF_CHECK_I(pipe_src_w); 13135 PIPE_CONF_CHECK_I(pipe_src_h); 13136 13137 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 13138 if (current_config->pch_pfit.enabled) { 13139 PIPE_CONF_CHECK_X(pch_pfit.pos); 13140 PIPE_CONF_CHECK_X(pch_pfit.size); 13141 } 13142 13143 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 13144 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 13145 13146 PIPE_CONF_CHECK_X(gamma_mode); 13147 if (IS_CHERRYVIEW(dev_priv)) 13148 PIPE_CONF_CHECK_X(cgm_mode); 13149 else 13150 PIPE_CONF_CHECK_X(csc_mode); 13151 PIPE_CONF_CHECK_BOOL(gamma_enable); 13152 PIPE_CONF_CHECK_BOOL(csc_enable); 13153 13154 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); 13155 if (bp_gamma) 13156 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, base.gamma_lut, bp_gamma); 13157 13158 } 13159 13160 PIPE_CONF_CHECK_BOOL(double_wide); 13161 13162 PIPE_CONF_CHECK_P(shared_dpll); 13163 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 13164 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 13165 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 13166 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 13167 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 13168 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 13169 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 13170 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 13171 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 13172 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 13173 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 13174 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 13175 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 13176 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 13177 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 13178 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 13179 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 13180 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 13181 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 13182 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 13183 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 13184 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 13185 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 13186 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 13187 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 13188 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 13189 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 13190 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 13191 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 13192 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 13193 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 13194 13195 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 13196 PIPE_CONF_CHECK_X(dsi_pll.div); 13197 13198 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) 13199 PIPE_CONF_CHECK_I(pipe_bpp); 13200 13201 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock); 13202 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 13203 13204 PIPE_CONF_CHECK_I(min_voltage_level); 13205 13206 PIPE_CONF_CHECK_X(infoframes.enable); 13207 PIPE_CONF_CHECK_X(infoframes.gcp); 13208 PIPE_CONF_CHECK_INFOFRAME(avi); 13209 PIPE_CONF_CHECK_INFOFRAME(spd); 13210 PIPE_CONF_CHECK_INFOFRAME(hdmi); 13211 PIPE_CONF_CHECK_INFOFRAME(drm); 13212 13213 PIPE_CONF_CHECK_I(sync_mode_slaves_mask); 13214 PIPE_CONF_CHECK_I(master_transcoder); 13215 13216 #undef PIPE_CONF_CHECK_X 13217 #undef PIPE_CONF_CHECK_I 13218 #undef PIPE_CONF_CHECK_BOOL 13219 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 13220 #undef PIPE_CONF_CHECK_P 13221 #undef PIPE_CONF_CHECK_FLAGS 13222 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 13223 #undef PIPE_CONF_CHECK_COLOR_LUT 13224 #undef PIPE_CONF_QUIRK 13225 13226 return ret; 13227 } 13228 13229 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 13230 const struct intel_crtc_state *pipe_config) 13231 { 13232 if (pipe_config->has_pch_encoder) { 13233 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 13234 &pipe_config->fdi_m_n); 13235 int dotclock = pipe_config->base.adjusted_mode.crtc_clock; 13236 13237 /* 13238 * FDI already provided one idea for the dotclock. 13239 * Yell if the encoder disagrees. 13240 */ 13241 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock), 13242 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 13243 fdi_dotclock, dotclock); 13244 } 13245 } 13246 13247 static void verify_wm_state(struct intel_crtc *crtc, 13248 struct intel_crtc_state *new_crtc_state) 13249 { 13250 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13251 struct skl_hw_state { 13252 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 13253 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 13254 struct skl_ddb_allocation ddb; 13255 struct skl_pipe_wm wm; 13256 } *hw; 13257 struct skl_ddb_allocation *sw_ddb; 13258 struct skl_pipe_wm *sw_wm; 13259 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 13260 const enum pipe pipe = crtc->pipe; 13261 int plane, level, max_level = ilk_wm_max_level(dev_priv); 13262 13263 if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->base.active) 13264 return; 13265 13266 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 13267 if (!hw) 13268 return; 13269 13270 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 13271 sw_wm = &new_crtc_state->wm.skl.optimal; 13272 13273 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 13274 13275 skl_ddb_get_hw_state(dev_priv, &hw->ddb); 13276 sw_ddb = &dev_priv->wm.skl_hw.ddb; 13277 13278 if (INTEL_GEN(dev_priv) >= 11 && 13279 hw->ddb.enabled_slices != sw_ddb->enabled_slices) 13280 DRM_ERROR("mismatch in DBUF Slices (expected %u, got %u)\n", 13281 sw_ddb->enabled_slices, 13282 hw->ddb.enabled_slices); 13283 13284 /* planes */ 13285 for_each_universal_plane(dev_priv, pipe, plane) { 13286 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 13287 13288 hw_plane_wm = &hw->wm.planes[plane]; 13289 sw_plane_wm = &sw_wm->planes[plane]; 13290 13291 /* Watermarks */ 13292 for (level = 0; level <= max_level; level++) { 13293 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 13294 &sw_plane_wm->wm[level])) 13295 continue; 13296 13297 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 13298 pipe_name(pipe), plane + 1, level, 13299 sw_plane_wm->wm[level].plane_en, 13300 sw_plane_wm->wm[level].plane_res_b, 13301 sw_plane_wm->wm[level].plane_res_l, 13302 hw_plane_wm->wm[level].plane_en, 13303 hw_plane_wm->wm[level].plane_res_b, 13304 hw_plane_wm->wm[level].plane_res_l); 13305 } 13306 13307 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 13308 &sw_plane_wm->trans_wm)) { 13309 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 13310 pipe_name(pipe), plane + 1, 13311 sw_plane_wm->trans_wm.plane_en, 13312 sw_plane_wm->trans_wm.plane_res_b, 13313 sw_plane_wm->trans_wm.plane_res_l, 13314 hw_plane_wm->trans_wm.plane_en, 13315 hw_plane_wm->trans_wm.plane_res_b, 13316 hw_plane_wm->trans_wm.plane_res_l); 13317 } 13318 13319 /* DDB */ 13320 hw_ddb_entry = &hw->ddb_y[plane]; 13321 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane]; 13322 13323 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 13324 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n", 13325 pipe_name(pipe), plane + 1, 13326 sw_ddb_entry->start, sw_ddb_entry->end, 13327 hw_ddb_entry->start, hw_ddb_entry->end); 13328 } 13329 } 13330 13331 /* 13332 * cursor 13333 * If the cursor plane isn't active, we may not have updated it's ddb 13334 * allocation. In that case since the ddb allocation will be updated 13335 * once the plane becomes visible, we can skip this check 13336 */ 13337 if (1) { 13338 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 13339 13340 hw_plane_wm = &hw->wm.planes[PLANE_CURSOR]; 13341 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR]; 13342 13343 /* Watermarks */ 13344 for (level = 0; level <= max_level; level++) { 13345 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 13346 &sw_plane_wm->wm[level])) 13347 continue; 13348 13349 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 13350 pipe_name(pipe), level, 13351 sw_plane_wm->wm[level].plane_en, 13352 sw_plane_wm->wm[level].plane_res_b, 13353 sw_plane_wm->wm[level].plane_res_l, 13354 hw_plane_wm->wm[level].plane_en, 13355 hw_plane_wm->wm[level].plane_res_b, 13356 hw_plane_wm->wm[level].plane_res_l); 13357 } 13358 13359 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 13360 &sw_plane_wm->trans_wm)) { 13361 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 13362 pipe_name(pipe), 13363 sw_plane_wm->trans_wm.plane_en, 13364 sw_plane_wm->trans_wm.plane_res_b, 13365 sw_plane_wm->trans_wm.plane_res_l, 13366 hw_plane_wm->trans_wm.plane_en, 13367 hw_plane_wm->trans_wm.plane_res_b, 13368 hw_plane_wm->trans_wm.plane_res_l); 13369 } 13370 13371 /* DDB */ 13372 hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR]; 13373 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR]; 13374 13375 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 13376 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n", 13377 pipe_name(pipe), 13378 sw_ddb_entry->start, sw_ddb_entry->end, 13379 hw_ddb_entry->start, hw_ddb_entry->end); 13380 } 13381 } 13382 13383 kfree(hw); 13384 } 13385 13386 static void 13387 verify_connector_state(struct intel_atomic_state *state, 13388 struct intel_crtc *crtc) 13389 { 13390 struct drm_connector *connector; 13391 struct drm_connector_state *new_conn_state; 13392 int i; 13393 13394 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 13395 struct drm_encoder *encoder = connector->encoder; 13396 struct intel_crtc_state *crtc_state = NULL; 13397 13398 if (new_conn_state->crtc != &crtc->base) 13399 continue; 13400 13401 if (crtc) 13402 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 13403 13404 intel_connector_verify_state(crtc_state, new_conn_state); 13405 13406 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 13407 "connector's atomic encoder doesn't match legacy encoder\n"); 13408 } 13409 } 13410 13411 static void 13412 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 13413 { 13414 struct intel_encoder *encoder; 13415 struct drm_connector *connector; 13416 struct drm_connector_state *old_conn_state, *new_conn_state; 13417 int i; 13418 13419 for_each_intel_encoder(&dev_priv->drm, encoder) { 13420 bool enabled = false, found = false; 13421 enum pipe pipe; 13422 13423 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n", 13424 encoder->base.base.id, 13425 encoder->base.name); 13426 13427 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 13428 new_conn_state, i) { 13429 if (old_conn_state->best_encoder == &encoder->base) 13430 found = true; 13431 13432 if (new_conn_state->best_encoder != &encoder->base) 13433 continue; 13434 found = enabled = true; 13435 13436 I915_STATE_WARN(new_conn_state->crtc != 13437 encoder->base.crtc, 13438 "connector's crtc doesn't match encoder crtc\n"); 13439 } 13440 13441 if (!found) 13442 continue; 13443 13444 I915_STATE_WARN(!!encoder->base.crtc != enabled, 13445 "encoder's enabled state mismatch " 13446 "(expected %i, found %i)\n", 13447 !!encoder->base.crtc, enabled); 13448 13449 if (!encoder->base.crtc) { 13450 bool active; 13451 13452 active = encoder->get_hw_state(encoder, &pipe); 13453 I915_STATE_WARN(active, 13454 "encoder detached but still enabled on pipe %c.\n", 13455 pipe_name(pipe)); 13456 } 13457 } 13458 } 13459 13460 static void 13461 verify_crtc_state(struct intel_crtc *crtc, 13462 struct intel_crtc_state *old_crtc_state, 13463 struct intel_crtc_state *new_crtc_state) 13464 { 13465 struct drm_device *dev = crtc->base.dev; 13466 struct drm_i915_private *dev_priv = to_i915(dev); 13467 struct intel_encoder *encoder; 13468 struct intel_crtc_state *pipe_config; 13469 struct drm_atomic_state *state; 13470 bool active; 13471 13472 state = old_crtc_state->base.state; 13473 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->base); 13474 pipe_config = old_crtc_state; 13475 memset(pipe_config, 0, sizeof(*pipe_config)); 13476 pipe_config->base.crtc = &crtc->base; 13477 pipe_config->base.state = state; 13478 13479 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.base.id, crtc->base.name); 13480 13481 active = dev_priv->display.get_pipe_config(crtc, pipe_config); 13482 13483 /* we keep both pipes enabled on 830 */ 13484 if (IS_I830(dev_priv)) 13485 active = new_crtc_state->base.active; 13486 13487 I915_STATE_WARN(new_crtc_state->base.active != active, 13488 "crtc active state doesn't match with hw state " 13489 "(expected %i, found %i)\n", new_crtc_state->base.active, active); 13490 13491 I915_STATE_WARN(crtc->active != new_crtc_state->base.active, 13492 "transitional active state does not match atomic hw state " 13493 "(expected %i, found %i)\n", new_crtc_state->base.active, crtc->active); 13494 13495 for_each_encoder_on_crtc(dev, &crtc->base, encoder) { 13496 enum pipe pipe; 13497 13498 active = encoder->get_hw_state(encoder, &pipe); 13499 I915_STATE_WARN(active != new_crtc_state->base.active, 13500 "[ENCODER:%i] active %i with crtc active %i\n", 13501 encoder->base.base.id, active, new_crtc_state->base.active); 13502 13503 I915_STATE_WARN(active && crtc->pipe != pipe, 13504 "Encoder connected to wrong pipe %c\n", 13505 pipe_name(pipe)); 13506 13507 if (active) 13508 encoder->get_config(encoder, pipe_config); 13509 } 13510 13511 intel_crtc_compute_pixel_rate(pipe_config); 13512 13513 if (!new_crtc_state->base.active) 13514 return; 13515 13516 intel_pipe_config_sanity_check(dev_priv, pipe_config); 13517 13518 if (!intel_pipe_config_compare(new_crtc_state, 13519 pipe_config, false)) { 13520 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 13521 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 13522 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 13523 } 13524 } 13525 13526 static void 13527 intel_verify_planes(struct intel_atomic_state *state) 13528 { 13529 struct intel_plane *plane; 13530 const struct intel_plane_state *plane_state; 13531 int i; 13532 13533 for_each_new_intel_plane_in_state(state, plane, 13534 plane_state, i) 13535 assert_plane(plane, plane_state->planar_slave || 13536 plane_state->base.visible); 13537 } 13538 13539 static void 13540 verify_single_dpll_state(struct drm_i915_private *dev_priv, 13541 struct intel_shared_dpll *pll, 13542 struct intel_crtc *crtc, 13543 struct intel_crtc_state *new_crtc_state) 13544 { 13545 struct intel_dpll_hw_state dpll_hw_state; 13546 unsigned int crtc_mask; 13547 bool active; 13548 13549 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 13550 13551 DRM_DEBUG_KMS("%s\n", pll->info->name); 13552 13553 active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state); 13554 13555 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 13556 I915_STATE_WARN(!pll->on && pll->active_mask, 13557 "pll in active use but not on in sw tracking\n"); 13558 I915_STATE_WARN(pll->on && !pll->active_mask, 13559 "pll is on but not used by any active crtc\n"); 13560 I915_STATE_WARN(pll->on != active, 13561 "pll on state mismatch (expected %i, found %i)\n", 13562 pll->on, active); 13563 } 13564 13565 if (!crtc) { 13566 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask, 13567 "more active pll users than references: %x vs %x\n", 13568 pll->active_mask, pll->state.crtc_mask); 13569 13570 return; 13571 } 13572 13573 crtc_mask = drm_crtc_mask(&crtc->base); 13574 13575 if (new_crtc_state->base.active) 13576 I915_STATE_WARN(!(pll->active_mask & crtc_mask), 13577 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n", 13578 pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask); 13579 else 13580 I915_STATE_WARN(pll->active_mask & crtc_mask, 13581 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n", 13582 pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask); 13583 13584 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask), 13585 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n", 13586 crtc_mask, pll->state.crtc_mask); 13587 13588 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 13589 &dpll_hw_state, 13590 sizeof(dpll_hw_state)), 13591 "pll hw state mismatch\n"); 13592 } 13593 13594 static void 13595 verify_shared_dpll_state(struct intel_crtc *crtc, 13596 struct intel_crtc_state *old_crtc_state, 13597 struct intel_crtc_state *new_crtc_state) 13598 { 13599 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13600 13601 if (new_crtc_state->shared_dpll) 13602 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 13603 13604 if (old_crtc_state->shared_dpll && 13605 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 13606 unsigned int crtc_mask = drm_crtc_mask(&crtc->base); 13607 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 13608 13609 I915_STATE_WARN(pll->active_mask & crtc_mask, 13610 "pll active mismatch (didn't expect pipe %c in active mask)\n", 13611 pipe_name(drm_crtc_index(&crtc->base))); 13612 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask, 13613 "pll enabled crtcs mismatch (found %x in enabled mask)\n", 13614 pipe_name(drm_crtc_index(&crtc->base))); 13615 } 13616 } 13617 13618 static void 13619 intel_modeset_verify_crtc(struct intel_crtc *crtc, 13620 struct intel_atomic_state *state, 13621 struct intel_crtc_state *old_crtc_state, 13622 struct intel_crtc_state *new_crtc_state) 13623 { 13624 if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 13625 return; 13626 13627 verify_wm_state(crtc, new_crtc_state); 13628 verify_connector_state(state, crtc); 13629 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 13630 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 13631 } 13632 13633 static void 13634 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 13635 { 13636 int i; 13637 13638 for (i = 0; i < dev_priv->num_shared_dpll; i++) 13639 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL); 13640 } 13641 13642 static void 13643 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 13644 struct intel_atomic_state *state) 13645 { 13646 verify_encoder_state(dev_priv, state); 13647 verify_connector_state(state, NULL); 13648 verify_disabled_dpll_state(dev_priv); 13649 } 13650 13651 static void 13652 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) 13653 { 13654 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 13655 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13656 const struct drm_display_mode *adjusted_mode = 13657 &crtc_state->base.adjusted_mode; 13658 13659 drm_calc_timestamping_constants(&crtc->base, adjusted_mode); 13660 13661 /* 13662 * The scanline counter increments at the leading edge of hsync. 13663 * 13664 * On most platforms it starts counting from vtotal-1 on the 13665 * first active line. That means the scanline counter value is 13666 * always one less than what we would expect. Ie. just after 13667 * start of vblank, which also occurs at start of hsync (on the 13668 * last active line), the scanline counter will read vblank_start-1. 13669 * 13670 * On gen2 the scanline counter starts counting from 1 instead 13671 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 13672 * to keep the value positive), instead of adding one. 13673 * 13674 * On HSW+ the behaviour of the scanline counter depends on the output 13675 * type. For DP ports it behaves like most other platforms, but on HDMI 13676 * there's an extra 1 line difference. So we need to add two instead of 13677 * one to the value. 13678 * 13679 * On VLV/CHV DSI the scanline counter would appear to increment 13680 * approx. 1/3 of a scanline before start of vblank. Unfortunately 13681 * that means we can't tell whether we're in vblank or not while 13682 * we're on that particular line. We must still set scanline_offset 13683 * to 1 so that the vblank timestamps come out correct when we query 13684 * the scanline counter from within the vblank interrupt handler. 13685 * However if queried just before the start of vblank we'll get an 13686 * answer that's slightly in the future. 13687 */ 13688 if (IS_GEN(dev_priv, 2)) { 13689 int vtotal; 13690 13691 vtotal = adjusted_mode->crtc_vtotal; 13692 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 13693 vtotal /= 2; 13694 13695 crtc->scanline_offset = vtotal - 1; 13696 } else if (HAS_DDI(dev_priv) && 13697 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 13698 crtc->scanline_offset = 2; 13699 } else { 13700 crtc->scanline_offset = 1; 13701 } 13702 } 13703 13704 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 13705 { 13706 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 13707 struct intel_crtc_state *new_crtc_state; 13708 struct intel_crtc *crtc; 13709 int i; 13710 13711 if (!dev_priv->display.crtc_compute_clock) 13712 return; 13713 13714 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 13715 if (!needs_modeset(new_crtc_state)) 13716 continue; 13717 13718 intel_release_shared_dplls(state, crtc); 13719 } 13720 } 13721 13722 /* 13723 * This implements the workaround described in the "notes" section of the mode 13724 * set sequence documentation. When going from no pipes or single pipe to 13725 * multiple pipes, and planes are enabled after the pipe, we need to wait at 13726 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 13727 */ 13728 static int haswell_mode_set_planes_workaround(struct intel_atomic_state *state) 13729 { 13730 struct intel_crtc_state *crtc_state; 13731 struct intel_crtc *crtc; 13732 struct intel_crtc_state *first_crtc_state = NULL; 13733 struct intel_crtc_state *other_crtc_state = NULL; 13734 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 13735 int i; 13736 13737 /* look at all crtc's that are going to be enabled in during modeset */ 13738 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 13739 if (!crtc_state->base.active || 13740 !needs_modeset(crtc_state)) 13741 continue; 13742 13743 if (first_crtc_state) { 13744 other_crtc_state = crtc_state; 13745 break; 13746 } else { 13747 first_crtc_state = crtc_state; 13748 first_pipe = crtc->pipe; 13749 } 13750 } 13751 13752 /* No workaround needed? */ 13753 if (!first_crtc_state) 13754 return 0; 13755 13756 /* w/a possibly needed, check how many crtc's are already enabled. */ 13757 for_each_intel_crtc(state->base.dev, crtc) { 13758 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 13759 if (IS_ERR(crtc_state)) 13760 return PTR_ERR(crtc_state); 13761 13762 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 13763 13764 if (!crtc_state->base.active || 13765 needs_modeset(crtc_state)) 13766 continue; 13767 13768 /* 2 or more enabled crtcs means no need for w/a */ 13769 if (enabled_pipe != INVALID_PIPE) 13770 return 0; 13771 13772 enabled_pipe = crtc->pipe; 13773 } 13774 13775 if (enabled_pipe != INVALID_PIPE) 13776 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 13777 else if (other_crtc_state) 13778 other_crtc_state->hsw_workaround_pipe = first_pipe; 13779 13780 return 0; 13781 } 13782 13783 static int intel_modeset_checks(struct intel_atomic_state *state) 13784 { 13785 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 13786 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 13787 struct intel_crtc *crtc; 13788 int ret, i; 13789 13790 /* keep the current setting */ 13791 if (!state->cdclk.force_min_cdclk_changed) 13792 state->cdclk.force_min_cdclk = dev_priv->cdclk.force_min_cdclk; 13793 13794 state->modeset = true; 13795 state->active_pipes = dev_priv->active_pipes; 13796 state->cdclk.logical = dev_priv->cdclk.logical; 13797 state->cdclk.actual = dev_priv->cdclk.actual; 13798 13799 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 13800 new_crtc_state, i) { 13801 if (new_crtc_state->base.active) 13802 state->active_pipes |= BIT(crtc->pipe); 13803 else 13804 state->active_pipes &= ~BIT(crtc->pipe); 13805 13806 if (old_crtc_state->base.active != new_crtc_state->base.active) 13807 state->active_pipe_changes |= BIT(crtc->pipe); 13808 } 13809 13810 if (state->active_pipe_changes) { 13811 ret = intel_atomic_lock_global_state(state); 13812 if (ret) 13813 return ret; 13814 } 13815 13816 ret = intel_modeset_calc_cdclk(state); 13817 if (ret) 13818 return ret; 13819 13820 intel_modeset_clear_plls(state); 13821 13822 if (IS_HASWELL(dev_priv)) 13823 return haswell_mode_set_planes_workaround(state); 13824 13825 return 0; 13826 } 13827 13828 /* 13829 * Handle calculation of various watermark data at the end of the atomic check 13830 * phase. The code here should be run after the per-crtc and per-plane 'check' 13831 * handlers to ensure that all derived state has been updated. 13832 */ 13833 static int calc_watermark_data(struct intel_atomic_state *state) 13834 { 13835 struct drm_device *dev = state->base.dev; 13836 struct drm_i915_private *dev_priv = to_i915(dev); 13837 13838 /* Is there platform-specific watermark information to calculate? */ 13839 if (dev_priv->display.compute_global_watermarks) 13840 return dev_priv->display.compute_global_watermarks(state); 13841 13842 return 0; 13843 } 13844 13845 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 13846 struct intel_crtc_state *new_crtc_state) 13847 { 13848 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 13849 return; 13850 13851 new_crtc_state->base.mode_changed = false; 13852 new_crtc_state->update_pipe = true; 13853 13854 /* 13855 * If we're not doing the full modeset we want to 13856 * keep the current M/N values as they may be 13857 * sufficiently different to the computed values 13858 * to cause problems. 13859 * 13860 * FIXME: should really copy more fuzzy state here 13861 */ 13862 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 13863 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 13864 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 13865 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 13866 } 13867 13868 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, 13869 struct intel_crtc *crtc, 13870 u8 plane_ids_mask) 13871 { 13872 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 13873 struct intel_plane *plane; 13874 13875 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 13876 struct intel_plane_state *plane_state; 13877 13878 if ((plane_ids_mask & BIT(plane->id)) == 0) 13879 continue; 13880 13881 plane_state = intel_atomic_get_plane_state(state, plane); 13882 if (IS_ERR(plane_state)) 13883 return PTR_ERR(plane_state); 13884 } 13885 13886 return 0; 13887 } 13888 13889 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) 13890 { 13891 /* See {hsw,vlv,ivb}_plane_ratio() */ 13892 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || 13893 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || 13894 IS_IVYBRIDGE(dev_priv); 13895 } 13896 13897 static int intel_atomic_check_planes(struct intel_atomic_state *state, 13898 bool *need_modeset) 13899 { 13900 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 13901 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 13902 struct intel_plane_state *plane_state; 13903 struct intel_plane *plane; 13904 struct intel_crtc *crtc; 13905 int i, ret; 13906 13907 ret = icl_add_linked_planes(state); 13908 if (ret) 13909 return ret; 13910 13911 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 13912 ret = intel_plane_atomic_check(state, plane); 13913 if (ret) { 13914 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] atomic driver check failed\n", 13915 plane->base.base.id, plane->base.name); 13916 return ret; 13917 } 13918 } 13919 13920 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 13921 new_crtc_state, i) { 13922 u8 old_active_planes, new_active_planes; 13923 13924 ret = icl_check_nv12_planes(new_crtc_state); 13925 if (ret) 13926 return ret; 13927 13928 /* 13929 * On some platforms the number of active planes affects 13930 * the planes' minimum cdclk calculation. Add such planes 13931 * to the state before we compute the minimum cdclk. 13932 */ 13933 if (!active_planes_affects_min_cdclk(dev_priv)) 13934 continue; 13935 13936 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 13937 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 13938 13939 if (hweight8(old_active_planes) == hweight8(new_active_planes)) 13940 continue; 13941 13942 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); 13943 if (ret) 13944 return ret; 13945 } 13946 13947 /* 13948 * active_planes bitmask has been updated, and potentially 13949 * affected planes are part of the state. We can now 13950 * compute the minimum cdclk for each plane. 13951 */ 13952 for_each_new_intel_plane_in_state(state, plane, plane_state, i) 13953 *need_modeset |= intel_plane_calc_min_cdclk(state, plane); 13954 13955 return 0; 13956 } 13957 13958 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 13959 { 13960 struct intel_crtc_state *crtc_state; 13961 struct intel_crtc *crtc; 13962 int i; 13963 13964 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 13965 int ret = intel_crtc_atomic_check(state, crtc); 13966 if (ret) { 13967 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] atomic driver check failed\n", 13968 crtc->base.base.id, crtc->base.name); 13969 return ret; 13970 } 13971 } 13972 13973 return 0; 13974 } 13975 13976 /** 13977 * intel_atomic_check - validate state object 13978 * @dev: drm device 13979 * @_state: state to validate 13980 */ 13981 static int intel_atomic_check(struct drm_device *dev, 13982 struct drm_atomic_state *_state) 13983 { 13984 struct drm_i915_private *dev_priv = to_i915(dev); 13985 struct intel_atomic_state *state = to_intel_atomic_state(_state); 13986 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 13987 struct intel_crtc *crtc; 13988 int ret, i; 13989 bool any_ms = false; 13990 13991 /* Catch I915_MODE_FLAG_INHERITED */ 13992 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 13993 new_crtc_state, i) { 13994 if (new_crtc_state->base.mode.private_flags != 13995 old_crtc_state->base.mode.private_flags) 13996 new_crtc_state->base.mode_changed = true; 13997 } 13998 13999 ret = drm_atomic_helper_check_modeset(dev, &state->base); 14000 if (ret) 14001 goto fail; 14002 14003 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14004 new_crtc_state, i) { 14005 if (!needs_modeset(new_crtc_state)) 14006 continue; 14007 14008 if (!new_crtc_state->base.enable) { 14009 any_ms = true; 14010 continue; 14011 } 14012 14013 ret = intel_modeset_pipe_config(new_crtc_state); 14014 if (ret) 14015 goto fail; 14016 14017 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 14018 14019 if (needs_modeset(new_crtc_state)) 14020 any_ms = true; 14021 } 14022 14023 if (any_ms && !check_digital_port_conflicts(state)) { 14024 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n"); 14025 ret = EINVAL; 14026 goto fail; 14027 } 14028 14029 ret = drm_dp_mst_atomic_check(&state->base); 14030 if (ret) 14031 goto fail; 14032 14033 any_ms |= state->cdclk.force_min_cdclk_changed; 14034 14035 ret = intel_atomic_check_planes(state, &any_ms); 14036 if (ret) 14037 goto fail; 14038 14039 if (any_ms) { 14040 ret = intel_modeset_checks(state); 14041 if (ret) 14042 goto fail; 14043 } else { 14044 state->cdclk.logical = dev_priv->cdclk.logical; 14045 } 14046 14047 ret = intel_atomic_check_crtcs(state); 14048 if (ret) 14049 goto fail; 14050 14051 intel_fbc_choose_crtc(dev_priv, state); 14052 ret = calc_watermark_data(state); 14053 if (ret) 14054 goto fail; 14055 14056 ret = intel_bw_atomic_check(state); 14057 if (ret) 14058 goto fail; 14059 14060 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14061 new_crtc_state, i) { 14062 if (!needs_modeset(new_crtc_state) && 14063 !new_crtc_state->update_pipe) 14064 continue; 14065 14066 intel_dump_pipe_config(new_crtc_state, state, 14067 needs_modeset(new_crtc_state) ? 14068 "[modeset]" : "[fastset]"); 14069 } 14070 14071 return 0; 14072 14073 fail: 14074 if (ret == -EDEADLK) 14075 return ret; 14076 14077 /* 14078 * FIXME would probably be nice to know which crtc specifically 14079 * caused the failure, in cases where we can pinpoint it. 14080 */ 14081 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14082 new_crtc_state, i) 14083 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 14084 14085 return ret; 14086 } 14087 14088 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 14089 { 14090 return drm_atomic_helper_prepare_planes(state->base.dev, 14091 &state->base); 14092 } 14093 14094 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc) 14095 { 14096 struct drm_device *dev = crtc->base.dev; 14097 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)]; 14098 14099 if (!vblank->max_vblank_count) 14100 return (u32)drm_crtc_accurate_vblank_count(&crtc->base); 14101 14102 return crtc->base.funcs->get_vblank_counter(&crtc->base); 14103 } 14104 14105 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 14106 struct intel_crtc_state *crtc_state) 14107 { 14108 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14109 14110 if (!IS_GEN(dev_priv, 2)) 14111 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 14112 14113 if (crtc_state->has_pch_encoder) { 14114 enum pipe pch_transcoder = 14115 intel_crtc_pch_transcoder(crtc); 14116 14117 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 14118 } 14119 } 14120 14121 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 14122 const struct intel_crtc_state *new_crtc_state) 14123 { 14124 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); 14125 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14126 14127 /* 14128 * Update pipe size and adjust fitter if needed: the reason for this is 14129 * that in compute_mode_changes we check the native mode (not the pfit 14130 * mode) to see if we can flip rather than do a full mode set. In the 14131 * fastboot case, we'll flip, but if we don't update the pipesrc and 14132 * pfit state, we'll end up with a big fb scanned out into the wrong 14133 * sized surface. 14134 */ 14135 intel_set_pipe_src_size(new_crtc_state); 14136 14137 /* on skylake this is done by detaching scalers */ 14138 if (INTEL_GEN(dev_priv) >= 9) { 14139 skl_detach_scalers(new_crtc_state); 14140 14141 if (new_crtc_state->pch_pfit.enabled) 14142 skylake_pfit_enable(new_crtc_state); 14143 } else if (HAS_PCH_SPLIT(dev_priv)) { 14144 if (new_crtc_state->pch_pfit.enabled) 14145 ironlake_pfit_enable(new_crtc_state); 14146 else if (old_crtc_state->pch_pfit.enabled) 14147 ironlake_pfit_disable(old_crtc_state); 14148 } 14149 14150 if (INTEL_GEN(dev_priv) >= 11) 14151 icl_set_pipe_chicken(crtc); 14152 } 14153 14154 static void commit_pipe_config(struct intel_atomic_state *state, 14155 struct intel_crtc_state *old_crtc_state, 14156 struct intel_crtc_state *new_crtc_state) 14157 { 14158 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14159 bool modeset = needs_modeset(new_crtc_state); 14160 14161 /* 14162 * During modesets pipe configuration was programmed as the 14163 * CRTC was enabled. 14164 */ 14165 if (!modeset) { 14166 if (new_crtc_state->base.color_mgmt_changed || 14167 new_crtc_state->update_pipe) 14168 intel_color_commit(new_crtc_state); 14169 14170 if (INTEL_GEN(dev_priv) >= 9) 14171 skl_detach_scalers(new_crtc_state); 14172 14173 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 14174 bdw_set_pipemisc(new_crtc_state); 14175 14176 if (new_crtc_state->update_pipe) 14177 intel_pipe_fastset(old_crtc_state, new_crtc_state); 14178 } 14179 14180 if (dev_priv->display.atomic_update_watermarks) 14181 dev_priv->display.atomic_update_watermarks(state, 14182 new_crtc_state); 14183 } 14184 14185 static void intel_update_crtc(struct intel_crtc *crtc, 14186 struct intel_atomic_state *state, 14187 struct intel_crtc_state *old_crtc_state, 14188 struct intel_crtc_state *new_crtc_state) 14189 { 14190 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14191 bool modeset = needs_modeset(new_crtc_state); 14192 struct intel_plane_state *new_plane_state = 14193 intel_atomic_get_new_plane_state(state, 14194 to_intel_plane(crtc->base.primary)); 14195 14196 if (modeset) { 14197 intel_crtc_update_active_timings(new_crtc_state); 14198 14199 dev_priv->display.crtc_enable(new_crtc_state, state); 14200 14201 /* vblanks work again, re-enable pipe CRC. */ 14202 intel_crtc_enable_pipe_crc(crtc); 14203 } else { 14204 intel_pre_plane_update(old_crtc_state, new_crtc_state); 14205 14206 if (new_crtc_state->update_pipe) 14207 intel_encoders_update_pipe(crtc, new_crtc_state, state); 14208 } 14209 14210 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 14211 intel_fbc_disable(crtc); 14212 else if (new_plane_state) 14213 intel_fbc_enable(crtc, new_crtc_state, new_plane_state); 14214 14215 /* Perform vblank evasion around commit operation */ 14216 intel_pipe_update_start(new_crtc_state); 14217 14218 commit_pipe_config(state, old_crtc_state, new_crtc_state); 14219 14220 if (INTEL_GEN(dev_priv) >= 9) 14221 skl_update_planes_on_crtc(state, crtc); 14222 else 14223 i9xx_update_planes_on_crtc(state, crtc); 14224 14225 intel_pipe_update_end(new_crtc_state); 14226 14227 /* 14228 * We usually enable FIFO underrun interrupts as part of the 14229 * CRTC enable sequence during modesets. But when we inherit a 14230 * valid pipe configuration from the BIOS we need to take care 14231 * of enabling them on the CRTC's first fastset. 14232 */ 14233 if (new_crtc_state->update_pipe && !modeset && 14234 old_crtc_state->base.mode.private_flags & I915_MODE_FLAG_INHERITED) 14235 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 14236 } 14237 14238 static struct intel_crtc *intel_get_slave_crtc(const struct intel_crtc_state *new_crtc_state) 14239 { 14240 struct drm_i915_private *dev_priv = to_i915(new_crtc_state->base.crtc->dev); 14241 enum transcoder slave_transcoder; 14242 14243 WARN_ON(!is_power_of_2(new_crtc_state->sync_mode_slaves_mask)); 14244 14245 slave_transcoder = ffs(new_crtc_state->sync_mode_slaves_mask) - 1; 14246 return intel_get_crtc_for_pipe(dev_priv, 14247 (enum pipe)slave_transcoder); 14248 } 14249 14250 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 14251 struct intel_crtc_state *old_crtc_state, 14252 struct intel_crtc_state *new_crtc_state, 14253 struct intel_crtc *crtc) 14254 { 14255 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14256 14257 intel_crtc_disable_planes(state, crtc); 14258 14259 /* 14260 * We need to disable pipe CRC before disabling the pipe, 14261 * or we race against vblank off. 14262 */ 14263 intel_crtc_disable_pipe_crc(crtc); 14264 14265 dev_priv->display.crtc_disable(old_crtc_state, state); 14266 crtc->active = false; 14267 intel_fbc_disable(crtc); 14268 intel_disable_shared_dpll(old_crtc_state); 14269 14270 /* 14271 * Underruns don't always raise interrupts, 14272 * so check manually. 14273 */ 14274 intel_check_cpu_fifo_underruns(dev_priv); 14275 intel_check_pch_fifo_underruns(dev_priv); 14276 14277 /* FIXME unify this for all platforms */ 14278 if (!new_crtc_state->base.active && 14279 !HAS_GMCH(dev_priv) && 14280 dev_priv->display.initial_watermarks) 14281 dev_priv->display.initial_watermarks(state, 14282 new_crtc_state); 14283 } 14284 14285 static void intel_trans_port_sync_modeset_disables(struct intel_atomic_state *state, 14286 struct intel_crtc *crtc, 14287 struct intel_crtc_state *old_crtc_state, 14288 struct intel_crtc_state *new_crtc_state) 14289 { 14290 struct intel_crtc *slave_crtc = intel_get_slave_crtc(new_crtc_state); 14291 struct intel_crtc_state *new_slave_crtc_state = 14292 intel_atomic_get_new_crtc_state(state, slave_crtc); 14293 struct intel_crtc_state *old_slave_crtc_state = 14294 intel_atomic_get_old_crtc_state(state, slave_crtc); 14295 14296 WARN_ON(!slave_crtc || !new_slave_crtc_state || 14297 !old_slave_crtc_state); 14298 14299 /* Disable Slave first */ 14300 intel_pre_plane_update(old_slave_crtc_state, new_slave_crtc_state); 14301 if (old_slave_crtc_state->base.active) 14302 intel_old_crtc_state_disables(state, 14303 old_slave_crtc_state, 14304 new_slave_crtc_state, 14305 slave_crtc); 14306 14307 /* Disable Master */ 14308 intel_pre_plane_update(old_crtc_state, new_crtc_state); 14309 if (old_crtc_state->base.active) 14310 intel_old_crtc_state_disables(state, 14311 old_crtc_state, 14312 new_crtc_state, 14313 crtc); 14314 } 14315 14316 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 14317 { 14318 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 14319 struct intel_crtc *crtc; 14320 int i; 14321 14322 /* 14323 * Disable CRTC/pipes in reverse order because some features(MST in 14324 * TGL+) requires master and slave relationship between pipes, so it 14325 * should always pick the lowest pipe as master as it will be enabled 14326 * first and disable in the reverse order so the master will be the 14327 * last one to be disabled. 14328 */ 14329 for_each_oldnew_intel_crtc_in_state_reverse(state, crtc, old_crtc_state, 14330 new_crtc_state, i) { 14331 if (!needs_modeset(new_crtc_state)) 14332 continue; 14333 14334 /* In case of Transcoder port Sync master slave CRTCs can be 14335 * assigned in any order and we need to make sure that 14336 * slave CRTCs are disabled first and then master CRTC since 14337 * Slave vblanks are masked till Master Vblanks. 14338 */ 14339 if (is_trans_port_sync_mode(new_crtc_state)) { 14340 if (is_trans_port_sync_master(new_crtc_state)) 14341 intel_trans_port_sync_modeset_disables(state, 14342 crtc, 14343 old_crtc_state, 14344 new_crtc_state); 14345 else 14346 continue; 14347 } else { 14348 intel_pre_plane_update(old_crtc_state, new_crtc_state); 14349 14350 if (old_crtc_state->base.active) 14351 intel_old_crtc_state_disables(state, 14352 old_crtc_state, 14353 new_crtc_state, 14354 crtc); 14355 } 14356 } 14357 } 14358 14359 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 14360 { 14361 struct intel_crtc *crtc; 14362 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 14363 int i; 14364 14365 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 14366 if (!new_crtc_state->base.active) 14367 continue; 14368 14369 intel_update_crtc(crtc, state, old_crtc_state, 14370 new_crtc_state); 14371 } 14372 } 14373 14374 static void intel_crtc_enable_trans_port_sync(struct intel_crtc *crtc, 14375 struct intel_atomic_state *state, 14376 struct intel_crtc_state *new_crtc_state) 14377 { 14378 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14379 14380 intel_crtc_update_active_timings(new_crtc_state); 14381 dev_priv->display.crtc_enable(new_crtc_state, state); 14382 intel_crtc_enable_pipe_crc(crtc); 14383 } 14384 14385 static void intel_set_dp_tp_ctl_normal(struct intel_crtc *crtc, 14386 struct intel_atomic_state *state) 14387 { 14388 struct drm_connector *uninitialized_var(conn); 14389 struct drm_connector_state *conn_state; 14390 struct intel_dp *intel_dp; 14391 int i; 14392 14393 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 14394 if (conn_state->crtc == &crtc->base) 14395 break; 14396 } 14397 intel_dp = enc_to_intel_dp(&intel_attached_encoder(conn)->base); 14398 intel_dp_stop_link_train(intel_dp); 14399 } 14400 14401 static void intel_post_crtc_enable_updates(struct intel_crtc *crtc, 14402 struct intel_atomic_state *state) 14403 { 14404 struct intel_crtc_state *new_crtc_state = 14405 intel_atomic_get_new_crtc_state(state, crtc); 14406 struct intel_crtc_state *old_crtc_state = 14407 intel_atomic_get_old_crtc_state(state, crtc); 14408 struct intel_plane_state *new_plane_state = 14409 intel_atomic_get_new_plane_state(state, 14410 to_intel_plane(crtc->base.primary)); 14411 bool modeset = needs_modeset(new_crtc_state); 14412 14413 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 14414 intel_fbc_disable(crtc); 14415 else if (new_plane_state) 14416 intel_fbc_enable(crtc, new_crtc_state, new_plane_state); 14417 14418 /* Perform vblank evasion around commit operation */ 14419 intel_pipe_update_start(new_crtc_state); 14420 commit_pipe_config(state, old_crtc_state, new_crtc_state); 14421 skl_update_planes_on_crtc(state, crtc); 14422 intel_pipe_update_end(new_crtc_state); 14423 14424 /* 14425 * We usually enable FIFO underrun interrupts as part of the 14426 * CRTC enable sequence during modesets. But when we inherit a 14427 * valid pipe configuration from the BIOS we need to take care 14428 * of enabling them on the CRTC's first fastset. 14429 */ 14430 if (new_crtc_state->update_pipe && !modeset && 14431 old_crtc_state->base.mode.private_flags & I915_MODE_FLAG_INHERITED) 14432 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 14433 } 14434 14435 static void intel_update_trans_port_sync_crtcs(struct intel_crtc *crtc, 14436 struct intel_atomic_state *state, 14437 struct intel_crtc_state *old_crtc_state, 14438 struct intel_crtc_state *new_crtc_state) 14439 { 14440 struct intel_crtc *slave_crtc = intel_get_slave_crtc(new_crtc_state); 14441 struct intel_crtc_state *new_slave_crtc_state = 14442 intel_atomic_get_new_crtc_state(state, slave_crtc); 14443 struct intel_crtc_state *old_slave_crtc_state = 14444 intel_atomic_get_old_crtc_state(state, slave_crtc); 14445 14446 WARN_ON(!slave_crtc || !new_slave_crtc_state || 14447 !old_slave_crtc_state); 14448 14449 DRM_DEBUG_KMS("Updating Transcoder Port Sync Master CRTC = %d %s and Slave CRTC %d %s\n", 14450 crtc->base.base.id, crtc->base.name, slave_crtc->base.base.id, 14451 slave_crtc->base.name); 14452 14453 /* Enable seq for slave with with DP_TP_CTL left Idle until the 14454 * master is ready 14455 */ 14456 intel_crtc_enable_trans_port_sync(slave_crtc, 14457 state, 14458 new_slave_crtc_state); 14459 14460 /* Enable seq for master with with DP_TP_CTL left Idle */ 14461 intel_crtc_enable_trans_port_sync(crtc, 14462 state, 14463 new_crtc_state); 14464 14465 /* Set Slave's DP_TP_CTL to Normal */ 14466 intel_set_dp_tp_ctl_normal(slave_crtc, 14467 state); 14468 14469 /* Set Master's DP_TP_CTL To Normal */ 14470 usleep_range(200, 400); 14471 intel_set_dp_tp_ctl_normal(crtc, 14472 state); 14473 14474 /* Now do the post crtc enable for all master and slaves */ 14475 intel_post_crtc_enable_updates(slave_crtc, 14476 state); 14477 intel_post_crtc_enable_updates(crtc, 14478 state); 14479 } 14480 14481 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 14482 { 14483 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14484 struct intel_crtc *crtc; 14485 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 14486 unsigned int updated = 0; 14487 bool progress; 14488 int i; 14489 u8 hw_enabled_slices = dev_priv->wm.skl_hw.ddb.enabled_slices; 14490 u8 required_slices = state->wm_results.ddb.enabled_slices; 14491 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 14492 14493 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) 14494 /* ignore allocations for crtc's that have been turned off. */ 14495 if (new_crtc_state->base.active) 14496 entries[i] = old_crtc_state->wm.skl.ddb; 14497 14498 /* If 2nd DBuf slice required, enable it here */ 14499 if (INTEL_GEN(dev_priv) >= 11 && required_slices > hw_enabled_slices) 14500 icl_dbuf_slices_update(dev_priv, required_slices); 14501 14502 /* 14503 * Whenever the number of active pipes changes, we need to make sure we 14504 * update the pipes in the right order so that their ddb allocations 14505 * never overlap with eachother inbetween CRTC updates. Otherwise we'll 14506 * cause pipe underruns and other bad stuff. 14507 */ 14508 do { 14509 progress = false; 14510 14511 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 14512 enum pipe pipe = crtc->pipe; 14513 bool vbl_wait = false; 14514 bool modeset = needs_modeset(new_crtc_state); 14515 14516 if (updated & BIT(crtc->pipe) || !new_crtc_state->base.active) 14517 continue; 14518 14519 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 14520 entries, 14521 INTEL_NUM_PIPES(dev_priv), i)) 14522 continue; 14523 14524 updated |= BIT(pipe); 14525 entries[i] = new_crtc_state->wm.skl.ddb; 14526 14527 /* 14528 * If this is an already active pipe, it's DDB changed, 14529 * and this isn't the last pipe that needs updating 14530 * then we need to wait for a vblank to pass for the 14531 * new ddb allocation to take effect. 14532 */ 14533 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 14534 &old_crtc_state->wm.skl.ddb) && 14535 !modeset && 14536 state->wm_results.dirty_pipes != updated) 14537 vbl_wait = true; 14538 14539 if (modeset && is_trans_port_sync_mode(new_crtc_state)) { 14540 if (is_trans_port_sync_master(new_crtc_state)) 14541 intel_update_trans_port_sync_crtcs(crtc, 14542 state, 14543 old_crtc_state, 14544 new_crtc_state); 14545 else 14546 continue; 14547 } else { 14548 intel_update_crtc(crtc, state, old_crtc_state, 14549 new_crtc_state); 14550 } 14551 14552 if (vbl_wait) 14553 intel_wait_for_vblank(dev_priv, pipe); 14554 14555 progress = true; 14556 } 14557 } while (progress); 14558 14559 /* If 2nd DBuf slice is no more required disable it */ 14560 if (INTEL_GEN(dev_priv) >= 11 && required_slices < hw_enabled_slices) 14561 icl_dbuf_slices_update(dev_priv, required_slices); 14562 } 14563 14564 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 14565 { 14566 struct intel_atomic_state *state, *next; 14567 struct llist_node *freed; 14568 14569 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 14570 llist_for_each_entry_safe(state, next, freed, freed) 14571 drm_atomic_state_put(&state->base); 14572 } 14573 14574 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 14575 { 14576 struct drm_i915_private *dev_priv = 14577 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 14578 14579 intel_atomic_helper_free_state(dev_priv); 14580 } 14581 14582 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 14583 { 14584 struct wait_queue_entry wait_fence, wait_reset; 14585 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 14586 14587 init_wait_entry(&wait_fence, 0); 14588 init_wait_entry(&wait_reset, 0); 14589 for (;;) { 14590 prepare_to_wait(&intel_state->commit_ready.wait, 14591 &wait_fence, TASK_UNINTERRUPTIBLE); 14592 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 14593 I915_RESET_MODESET), 14594 &wait_reset, TASK_UNINTERRUPTIBLE); 14595 14596 14597 if (i915_sw_fence_done(&intel_state->commit_ready) || 14598 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 14599 break; 14600 14601 schedule(); 14602 } 14603 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 14604 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 14605 I915_RESET_MODESET), 14606 &wait_reset); 14607 } 14608 14609 static void intel_atomic_cleanup_work(struct work_struct *work) 14610 { 14611 struct drm_atomic_state *state = 14612 container_of(work, struct drm_atomic_state, commit_work); 14613 struct drm_i915_private *i915 = to_i915(state->dev); 14614 14615 drm_atomic_helper_cleanup_planes(&i915->drm, state); 14616 drm_atomic_helper_commit_cleanup_done(state); 14617 drm_atomic_state_put(state); 14618 14619 intel_atomic_helper_free_state(i915); 14620 } 14621 14622 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 14623 { 14624 struct drm_device *dev = state->base.dev; 14625 struct drm_i915_private *dev_priv = to_i915(dev); 14626 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 14627 struct intel_crtc *crtc; 14628 u64 put_domains[I915_MAX_PIPES] = {}; 14629 intel_wakeref_t wakeref = 0; 14630 int i; 14631 14632 intel_atomic_commit_fence_wait(state); 14633 14634 drm_atomic_helper_wait_for_dependencies(&state->base); 14635 14636 if (state->modeset) 14637 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 14638 14639 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14640 new_crtc_state, i) { 14641 if (needs_modeset(new_crtc_state) || 14642 new_crtc_state->update_pipe) { 14643 14644 put_domains[crtc->pipe] = 14645 modeset_get_crtc_power_domains(new_crtc_state); 14646 } 14647 } 14648 14649 intel_commit_modeset_disables(state); 14650 14651 /* FIXME: Eventually get rid of our crtc->config pointer */ 14652 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 14653 crtc->config = new_crtc_state; 14654 14655 if (state->modeset) { 14656 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 14657 14658 intel_set_cdclk_pre_plane_update(dev_priv, 14659 &state->cdclk.actual, 14660 &dev_priv->cdclk.actual, 14661 state->cdclk.pipe); 14662 14663 /* 14664 * SKL workaround: bspec recommends we disable the SAGV when we 14665 * have more then one pipe enabled 14666 */ 14667 if (!intel_can_enable_sagv(state)) 14668 intel_disable_sagv(dev_priv); 14669 14670 intel_modeset_verify_disabled(dev_priv, state); 14671 } 14672 14673 /* Complete the events for pipes that have now been disabled */ 14674 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14675 bool modeset = needs_modeset(new_crtc_state); 14676 14677 /* Complete events for now disable pipes here. */ 14678 if (modeset && !new_crtc_state->base.active && new_crtc_state->base.event) { 14679 spin_lock_irq(&dev->event_lock); 14680 drm_crtc_send_vblank_event(&crtc->base, new_crtc_state->base.event); 14681 spin_unlock_irq(&dev->event_lock); 14682 14683 new_crtc_state->base.event = NULL; 14684 } 14685 } 14686 14687 if (state->modeset) 14688 intel_encoders_update_prepare(state); 14689 14690 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 14691 dev_priv->display.commit_modeset_enables(state); 14692 14693 if (state->modeset) { 14694 intel_encoders_update_complete(state); 14695 14696 intel_set_cdclk_post_plane_update(dev_priv, 14697 &state->cdclk.actual, 14698 &dev_priv->cdclk.actual, 14699 state->cdclk.pipe); 14700 } 14701 14702 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 14703 * already, but still need the state for the delayed optimization. To 14704 * fix this: 14705 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 14706 * - schedule that vblank worker _before_ calling hw_done 14707 * - at the start of commit_tail, cancel it _synchrously 14708 * - switch over to the vblank wait helper in the core after that since 14709 * we don't need out special handling any more. 14710 */ 14711 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 14712 14713 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14714 if (new_crtc_state->base.active && 14715 !needs_modeset(new_crtc_state) && 14716 (new_crtc_state->base.color_mgmt_changed || 14717 new_crtc_state->update_pipe)) 14718 intel_color_load_luts(new_crtc_state); 14719 } 14720 14721 /* 14722 * Now that the vblank has passed, we can go ahead and program the 14723 * optimal watermarks on platforms that need two-step watermark 14724 * programming. 14725 * 14726 * TODO: Move this (and other cleanup) to an async worker eventually. 14727 */ 14728 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14729 if (dev_priv->display.optimize_watermarks) 14730 dev_priv->display.optimize_watermarks(state, 14731 new_crtc_state); 14732 } 14733 14734 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 14735 intel_post_plane_update(old_crtc_state); 14736 14737 if (put_domains[i]) 14738 modeset_put_power_domains(dev_priv, put_domains[i]); 14739 14740 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 14741 } 14742 14743 if (state->modeset) 14744 intel_verify_planes(state); 14745 14746 if (state->modeset && intel_can_enable_sagv(state)) 14747 intel_enable_sagv(dev_priv); 14748 14749 drm_atomic_helper_commit_hw_done(&state->base); 14750 14751 if (state->modeset) { 14752 /* As one of the primary mmio accessors, KMS has a high 14753 * likelihood of triggering bugs in unclaimed access. After we 14754 * finish modesetting, see if an error has been flagged, and if 14755 * so enable debugging for the next modeset - and hope we catch 14756 * the culprit. 14757 */ 14758 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 14759 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 14760 } 14761 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 14762 14763 /* 14764 * Defer the cleanup of the old state to a separate worker to not 14765 * impede the current task (userspace for blocking modesets) that 14766 * are executed inline. For out-of-line asynchronous modesets/flips, 14767 * deferring to a new worker seems overkill, but we would place a 14768 * schedule point (cond_resched()) here anyway to keep latencies 14769 * down. 14770 */ 14771 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 14772 queue_work(system_highpri_wq, &state->base.commit_work); 14773 } 14774 14775 static void intel_atomic_commit_work(struct work_struct *work) 14776 { 14777 struct intel_atomic_state *state = 14778 container_of(work, struct intel_atomic_state, base.commit_work); 14779 14780 intel_atomic_commit_tail(state); 14781 } 14782 14783 static int __i915_sw_fence_call 14784 intel_atomic_commit_ready(struct i915_sw_fence *fence, 14785 enum i915_sw_fence_notify notify) 14786 { 14787 struct intel_atomic_state *state = 14788 container_of(fence, struct intel_atomic_state, commit_ready); 14789 14790 switch (notify) { 14791 case FENCE_COMPLETE: 14792 /* we do blocking waits in the worker, nothing to do here */ 14793 break; 14794 case FENCE_FREE: 14795 { 14796 struct intel_atomic_helper *helper = 14797 &to_i915(state->base.dev)->atomic_helper; 14798 14799 if (llist_add(&state->freed, &helper->free_list)) 14800 schedule_work(&helper->free_work); 14801 break; 14802 } 14803 } 14804 14805 return NOTIFY_DONE; 14806 } 14807 14808 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 14809 { 14810 struct intel_plane_state *old_plane_state, *new_plane_state; 14811 struct intel_plane *plane; 14812 int i; 14813 14814 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 14815 new_plane_state, i) 14816 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->base.fb), 14817 to_intel_frontbuffer(new_plane_state->base.fb), 14818 plane->frontbuffer_bit); 14819 } 14820 14821 static void assert_global_state_locked(struct drm_i915_private *dev_priv) 14822 { 14823 struct intel_crtc *crtc; 14824 14825 for_each_intel_crtc(&dev_priv->drm, crtc) 14826 drm_modeset_lock_assert_held(&crtc->base.mutex); 14827 } 14828 14829 static int intel_atomic_commit(struct drm_device *dev, 14830 struct drm_atomic_state *_state, 14831 bool nonblock) 14832 { 14833 struct intel_atomic_state *state = to_intel_atomic_state(_state); 14834 struct drm_i915_private *dev_priv = to_i915(dev); 14835 int ret = 0; 14836 14837 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 14838 14839 drm_atomic_state_get(&state->base); 14840 i915_sw_fence_init(&state->commit_ready, 14841 intel_atomic_commit_ready); 14842 14843 /* 14844 * The intel_legacy_cursor_update() fast path takes care 14845 * of avoiding the vblank waits for simple cursor 14846 * movement and flips. For cursor on/off and size changes, 14847 * we want to perform the vblank waits so that watermark 14848 * updates happen during the correct frames. Gen9+ have 14849 * double buffered watermarks and so shouldn't need this. 14850 * 14851 * Unset state->legacy_cursor_update before the call to 14852 * drm_atomic_helper_setup_commit() because otherwise 14853 * drm_atomic_helper_wait_for_flip_done() is a noop and 14854 * we get FIFO underruns because we didn't wait 14855 * for vblank. 14856 * 14857 * FIXME doing watermarks and fb cleanup from a vblank worker 14858 * (assuming we had any) would solve these problems. 14859 */ 14860 if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) { 14861 struct intel_crtc_state *new_crtc_state; 14862 struct intel_crtc *crtc; 14863 int i; 14864 14865 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 14866 if (new_crtc_state->wm.need_postvbl_update || 14867 new_crtc_state->update_wm_post) 14868 state->base.legacy_cursor_update = false; 14869 } 14870 14871 ret = intel_atomic_prepare_commit(state); 14872 if (ret) { 14873 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret); 14874 i915_sw_fence_commit(&state->commit_ready); 14875 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 14876 return ret; 14877 } 14878 14879 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 14880 if (!ret) 14881 ret = drm_atomic_helper_swap_state(&state->base, true); 14882 14883 if (ret) { 14884 i915_sw_fence_commit(&state->commit_ready); 14885 14886 drm_atomic_helper_cleanup_planes(dev, &state->base); 14887 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 14888 return ret; 14889 } 14890 dev_priv->wm.distrust_bios_wm = false; 14891 intel_shared_dpll_swap_state(state); 14892 intel_atomic_track_fbs(state); 14893 14894 if (state->global_state_changed) { 14895 assert_global_state_locked(dev_priv); 14896 14897 memcpy(dev_priv->min_cdclk, state->min_cdclk, 14898 sizeof(state->min_cdclk)); 14899 memcpy(dev_priv->min_voltage_level, state->min_voltage_level, 14900 sizeof(state->min_voltage_level)); 14901 dev_priv->active_pipes = state->active_pipes; 14902 dev_priv->cdclk.force_min_cdclk = state->cdclk.force_min_cdclk; 14903 14904 intel_cdclk_swap_state(state); 14905 } 14906 14907 drm_atomic_state_get(&state->base); 14908 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 14909 14910 i915_sw_fence_commit(&state->commit_ready); 14911 if (nonblock && state->modeset) { 14912 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 14913 } else if (nonblock) { 14914 queue_work(dev_priv->flip_wq, &state->base.commit_work); 14915 } else { 14916 if (state->modeset) 14917 flush_workqueue(dev_priv->modeset_wq); 14918 intel_atomic_commit_tail(state); 14919 } 14920 14921 return 0; 14922 } 14923 14924 struct wait_rps_boost { 14925 struct wait_queue_entry wait; 14926 14927 struct drm_crtc *crtc; 14928 struct i915_request *request; 14929 }; 14930 14931 static int do_rps_boost(struct wait_queue_entry *_wait, 14932 unsigned mode, int sync, void *key) 14933 { 14934 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); 14935 struct i915_request *rq = wait->request; 14936 14937 /* 14938 * If we missed the vblank, but the request is already running it 14939 * is reasonable to assume that it will complete before the next 14940 * vblank without our intervention, so leave RPS alone. 14941 */ 14942 if (!i915_request_started(rq)) 14943 intel_rps_boost(rq); 14944 i915_request_put(rq); 14945 14946 drm_crtc_vblank_put(wait->crtc); 14947 14948 list_del(&wait->wait.entry); 14949 kfree(wait); 14950 return 1; 14951 } 14952 14953 static void add_rps_boost_after_vblank(struct drm_crtc *crtc, 14954 struct dma_fence *fence) 14955 { 14956 struct wait_rps_boost *wait; 14957 14958 if (!dma_fence_is_i915(fence)) 14959 return; 14960 14961 if (INTEL_GEN(to_i915(crtc->dev)) < 6) 14962 return; 14963 14964 if (drm_crtc_vblank_get(crtc)) 14965 return; 14966 14967 wait = kmalloc(sizeof(*wait), GFP_KERNEL); 14968 if (!wait) { 14969 drm_crtc_vblank_put(crtc); 14970 return; 14971 } 14972 14973 wait->request = to_request(dma_fence_get(fence)); 14974 wait->crtc = crtc; 14975 14976 wait->wait.func = do_rps_boost; 14977 wait->wait.flags = 0; 14978 14979 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); 14980 } 14981 14982 static int intel_plane_pin_fb(struct intel_plane_state *plane_state) 14983 { 14984 struct intel_plane *plane = to_intel_plane(plane_state->base.plane); 14985 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 14986 struct drm_framebuffer *fb = plane_state->base.fb; 14987 struct i915_vma *vma; 14988 14989 if (plane->id == PLANE_CURSOR && 14990 INTEL_INFO(dev_priv)->display.cursor_needs_physical) { 14991 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 14992 const int align = intel_cursor_alignment(dev_priv); 14993 int err; 14994 14995 err = i915_gem_object_attach_phys(obj, align); 14996 if (err) 14997 return err; 14998 } 14999 15000 vma = intel_pin_and_fence_fb_obj(fb, 15001 &plane_state->view, 15002 intel_plane_uses_fence(plane_state), 15003 &plane_state->flags); 15004 if (IS_ERR(vma)) 15005 return PTR_ERR(vma); 15006 15007 plane_state->vma = vma; 15008 15009 return 0; 15010 } 15011 15012 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) 15013 { 15014 struct i915_vma *vma; 15015 15016 vma = fetch_and_zero(&old_plane_state->vma); 15017 if (vma) 15018 intel_unpin_fb_vma(vma, old_plane_state->flags); 15019 } 15020 15021 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj) 15022 { 15023 struct i915_sched_attr attr = { 15024 .priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY), 15025 }; 15026 15027 i915_gem_object_wait_priority(obj, 0, &attr); 15028 } 15029 15030 /** 15031 * intel_prepare_plane_fb - Prepare fb for usage on plane 15032 * @plane: drm plane to prepare for 15033 * @_new_plane_state: the plane state being prepared 15034 * 15035 * Prepares a framebuffer for usage on a display plane. Generally this 15036 * involves pinning the underlying object and updating the frontbuffer tracking 15037 * bits. Some older platforms need special physical address handling for 15038 * cursor planes. 15039 * 15040 * Returns 0 on success, negative error code on failure. 15041 */ 15042 int 15043 intel_prepare_plane_fb(struct drm_plane *plane, 15044 struct drm_plane_state *_new_plane_state) 15045 { 15046 struct intel_plane_state *new_plane_state = 15047 to_intel_plane_state(_new_plane_state); 15048 struct intel_atomic_state *intel_state = 15049 to_intel_atomic_state(new_plane_state->base.state); 15050 struct drm_i915_private *dev_priv = to_i915(plane->dev); 15051 struct drm_framebuffer *fb = new_plane_state->base.fb; 15052 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 15053 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb); 15054 int ret; 15055 15056 if (old_obj) { 15057 struct intel_crtc_state *crtc_state = 15058 intel_atomic_get_new_crtc_state(intel_state, 15059 to_intel_crtc(plane->state->crtc)); 15060 15061 /* Big Hammer, we also need to ensure that any pending 15062 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 15063 * current scanout is retired before unpinning the old 15064 * framebuffer. Note that we rely on userspace rendering 15065 * into the buffer attached to the pipe they are waiting 15066 * on. If not, userspace generates a GPU hang with IPEHR 15067 * point to the MI_WAIT_FOR_EVENT. 15068 * 15069 * This should only fail upon a hung GPU, in which case we 15070 * can safely continue. 15071 */ 15072 if (needs_modeset(crtc_state)) { 15073 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready, 15074 old_obj->base.resv, NULL, 15075 false, 0, 15076 GFP_KERNEL); 15077 if (ret < 0) 15078 return ret; 15079 } 15080 } 15081 15082 if (new_plane_state->base.fence) { /* explicit fencing */ 15083 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready, 15084 new_plane_state->base.fence, 15085 I915_FENCE_TIMEOUT, 15086 GFP_KERNEL); 15087 if (ret < 0) 15088 return ret; 15089 } 15090 15091 if (!obj) 15092 return 0; 15093 15094 ret = i915_gem_object_pin_pages(obj); 15095 if (ret) 15096 return ret; 15097 15098 ret = intel_plane_pin_fb(new_plane_state); 15099 15100 i915_gem_object_unpin_pages(obj); 15101 if (ret) 15102 return ret; 15103 15104 fb_obj_bump_render_priority(obj); 15105 intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_DIRTYFB); 15106 15107 if (!new_plane_state->base.fence) { /* implicit fencing */ 15108 struct dma_fence *fence; 15109 15110 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready, 15111 obj->base.resv, NULL, 15112 false, I915_FENCE_TIMEOUT, 15113 GFP_KERNEL); 15114 if (ret < 0) 15115 return ret; 15116 15117 fence = dma_resv_get_excl_rcu(obj->base.resv); 15118 if (fence) { 15119 add_rps_boost_after_vblank(new_plane_state->base.crtc, 15120 fence); 15121 dma_fence_put(fence); 15122 } 15123 } else { 15124 add_rps_boost_after_vblank(new_plane_state->base.crtc, 15125 new_plane_state->base.fence); 15126 } 15127 15128 /* 15129 * We declare pageflips to be interactive and so merit a small bias 15130 * towards upclocking to deliver the frame on time. By only changing 15131 * the RPS thresholds to sample more regularly and aim for higher 15132 * clocks we can hopefully deliver low power workloads (like kodi) 15133 * that are not quite steady state without resorting to forcing 15134 * maximum clocks following a vblank miss (see do_rps_boost()). 15135 */ 15136 if (!intel_state->rps_interactive) { 15137 intel_rps_mark_interactive(&dev_priv->gt.rps, true); 15138 intel_state->rps_interactive = true; 15139 } 15140 15141 return 0; 15142 } 15143 15144 /** 15145 * intel_cleanup_plane_fb - Cleans up an fb after plane use 15146 * @plane: drm plane to clean up for 15147 * @_old_plane_state: the state from the previous modeset 15148 * 15149 * Cleans up a framebuffer that has just been removed from a plane. 15150 */ 15151 void 15152 intel_cleanup_plane_fb(struct drm_plane *plane, 15153 struct drm_plane_state *_old_plane_state) 15154 { 15155 struct intel_plane_state *old_plane_state = 15156 to_intel_plane_state(_old_plane_state); 15157 struct intel_atomic_state *intel_state = 15158 to_intel_atomic_state(old_plane_state->base.state); 15159 struct drm_i915_private *dev_priv = to_i915(plane->dev); 15160 15161 if (intel_state->rps_interactive) { 15162 intel_rps_mark_interactive(&dev_priv->gt.rps, false); 15163 intel_state->rps_interactive = false; 15164 } 15165 15166 /* Should only be called after a successful intel_prepare_plane_fb()! */ 15167 intel_plane_unpin_fb(old_plane_state); 15168 } 15169 15170 /** 15171 * intel_plane_destroy - destroy a plane 15172 * @plane: plane to destroy 15173 * 15174 * Common destruction function for all types of planes (primary, cursor, 15175 * sprite). 15176 */ 15177 void intel_plane_destroy(struct drm_plane *plane) 15178 { 15179 drm_plane_cleanup(plane); 15180 kfree(to_intel_plane(plane)); 15181 } 15182 15183 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane, 15184 u32 format, u64 modifier) 15185 { 15186 switch (modifier) { 15187 case DRM_FORMAT_MOD_LINEAR: 15188 case I915_FORMAT_MOD_X_TILED: 15189 break; 15190 default: 15191 return false; 15192 } 15193 15194 switch (format) { 15195 case DRM_FORMAT_C8: 15196 case DRM_FORMAT_RGB565: 15197 case DRM_FORMAT_XRGB1555: 15198 case DRM_FORMAT_XRGB8888: 15199 return modifier == DRM_FORMAT_MOD_LINEAR || 15200 modifier == I915_FORMAT_MOD_X_TILED; 15201 default: 15202 return false; 15203 } 15204 } 15205 15206 static bool i965_plane_format_mod_supported(struct drm_plane *_plane, 15207 u32 format, u64 modifier) 15208 { 15209 switch (modifier) { 15210 case DRM_FORMAT_MOD_LINEAR: 15211 case I915_FORMAT_MOD_X_TILED: 15212 break; 15213 default: 15214 return false; 15215 } 15216 15217 switch (format) { 15218 case DRM_FORMAT_C8: 15219 case DRM_FORMAT_RGB565: 15220 case DRM_FORMAT_XRGB8888: 15221 case DRM_FORMAT_XBGR8888: 15222 case DRM_FORMAT_XRGB2101010: 15223 case DRM_FORMAT_XBGR2101010: 15224 case DRM_FORMAT_XBGR16161616F: 15225 return modifier == DRM_FORMAT_MOD_LINEAR || 15226 modifier == I915_FORMAT_MOD_X_TILED; 15227 default: 15228 return false; 15229 } 15230 } 15231 15232 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane, 15233 u32 format, u64 modifier) 15234 { 15235 return modifier == DRM_FORMAT_MOD_LINEAR && 15236 format == DRM_FORMAT_ARGB8888; 15237 } 15238 15239 static const struct drm_plane_funcs i965_plane_funcs = { 15240 .update_plane = drm_atomic_helper_update_plane, 15241 .disable_plane = drm_atomic_helper_disable_plane, 15242 .destroy = intel_plane_destroy, 15243 .atomic_duplicate_state = intel_plane_duplicate_state, 15244 .atomic_destroy_state = intel_plane_destroy_state, 15245 .format_mod_supported = i965_plane_format_mod_supported, 15246 }; 15247 15248 static const struct drm_plane_funcs i8xx_plane_funcs = { 15249 .update_plane = drm_atomic_helper_update_plane, 15250 .disable_plane = drm_atomic_helper_disable_plane, 15251 .destroy = intel_plane_destroy, 15252 .atomic_duplicate_state = intel_plane_duplicate_state, 15253 .atomic_destroy_state = intel_plane_destroy_state, 15254 .format_mod_supported = i8xx_plane_format_mod_supported, 15255 }; 15256 15257 static int 15258 intel_legacy_cursor_update(struct drm_plane *_plane, 15259 struct drm_crtc *_crtc, 15260 struct drm_framebuffer *fb, 15261 int crtc_x, int crtc_y, 15262 unsigned int crtc_w, unsigned int crtc_h, 15263 u32 src_x, u32 src_y, 15264 u32 src_w, u32 src_h, 15265 struct drm_modeset_acquire_ctx *ctx) 15266 { 15267 struct intel_plane *plane = to_intel_plane(_plane); 15268 struct intel_crtc *crtc = to_intel_crtc(_crtc); 15269 struct intel_plane_state *old_plane_state = 15270 to_intel_plane_state(plane->base.state); 15271 struct intel_plane_state *new_plane_state; 15272 struct intel_crtc_state *crtc_state = 15273 to_intel_crtc_state(crtc->base.state); 15274 struct intel_crtc_state *new_crtc_state; 15275 int ret; 15276 15277 /* 15278 * When crtc is inactive or there is a modeset pending, 15279 * wait for it to complete in the slowpath 15280 */ 15281 if (!crtc_state->base.active || needs_modeset(crtc_state) || 15282 crtc_state->update_pipe) 15283 goto slow; 15284 15285 /* 15286 * Don't do an async update if there is an outstanding commit modifying 15287 * the plane. This prevents our async update's changes from getting 15288 * overridden by a previous synchronous update's state. 15289 */ 15290 if (old_plane_state->base.commit && 15291 !try_wait_for_completion(&old_plane_state->base.commit->hw_done)) 15292 goto slow; 15293 15294 /* 15295 * If any parameters change that may affect watermarks, 15296 * take the slowpath. Only changing fb or position should be 15297 * in the fastpath. 15298 */ 15299 if (old_plane_state->base.crtc != &crtc->base || 15300 old_plane_state->base.src_w != src_w || 15301 old_plane_state->base.src_h != src_h || 15302 old_plane_state->base.crtc_w != crtc_w || 15303 old_plane_state->base.crtc_h != crtc_h || 15304 !old_plane_state->base.fb != !fb) 15305 goto slow; 15306 15307 new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base)); 15308 if (!new_plane_state) 15309 return -ENOMEM; 15310 15311 new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base)); 15312 if (!new_crtc_state) { 15313 ret = -ENOMEM; 15314 goto out_free; 15315 } 15316 15317 drm_atomic_set_fb_for_plane(&new_plane_state->base, fb); 15318 15319 new_plane_state->base.src_x = src_x; 15320 new_plane_state->base.src_y = src_y; 15321 new_plane_state->base.src_w = src_w; 15322 new_plane_state->base.src_h = src_h; 15323 new_plane_state->base.crtc_x = crtc_x; 15324 new_plane_state->base.crtc_y = crtc_y; 15325 new_plane_state->base.crtc_w = crtc_w; 15326 new_plane_state->base.crtc_h = crtc_h; 15327 15328 ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state, 15329 old_plane_state, new_plane_state); 15330 if (ret) 15331 goto out_free; 15332 15333 ret = intel_plane_pin_fb(new_plane_state); 15334 if (ret) 15335 goto out_free; 15336 15337 intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->base.fb), ORIGIN_FLIP); 15338 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->base.fb), 15339 to_intel_frontbuffer(new_plane_state->base.fb), 15340 plane->frontbuffer_bit); 15341 15342 /* Swap plane state */ 15343 plane->base.state = &new_plane_state->base; 15344 15345 /* 15346 * We cannot swap crtc_state as it may be in use by an atomic commit or 15347 * page flip that's running simultaneously. If we swap crtc_state and 15348 * destroy the old state, we will cause a use-after-free there. 15349 * 15350 * Only update active_planes, which is needed for our internal 15351 * bookkeeping. Either value will do the right thing when updating 15352 * planes atomically. If the cursor was part of the atomic update then 15353 * we would have taken the slowpath. 15354 */ 15355 crtc_state->active_planes = new_crtc_state->active_planes; 15356 15357 if (new_plane_state->base.visible) 15358 intel_update_plane(plane, crtc_state, new_plane_state); 15359 else 15360 intel_disable_plane(plane, crtc_state); 15361 15362 intel_plane_unpin_fb(old_plane_state); 15363 15364 out_free: 15365 if (new_crtc_state) 15366 intel_crtc_destroy_state(&crtc->base, &new_crtc_state->base); 15367 if (ret) 15368 intel_plane_destroy_state(&plane->base, &new_plane_state->base); 15369 else 15370 intel_plane_destroy_state(&plane->base, &old_plane_state->base); 15371 return ret; 15372 15373 slow: 15374 return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb, 15375 crtc_x, crtc_y, crtc_w, crtc_h, 15376 src_x, src_y, src_w, src_h, ctx); 15377 } 15378 15379 static const struct drm_plane_funcs intel_cursor_plane_funcs = { 15380 .update_plane = intel_legacy_cursor_update, 15381 .disable_plane = drm_atomic_helper_disable_plane, 15382 .destroy = intel_plane_destroy, 15383 .atomic_duplicate_state = intel_plane_duplicate_state, 15384 .atomic_destroy_state = intel_plane_destroy_state, 15385 .format_mod_supported = intel_cursor_format_mod_supported, 15386 }; 15387 15388 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv, 15389 enum i9xx_plane_id i9xx_plane) 15390 { 15391 if (!HAS_FBC(dev_priv)) 15392 return false; 15393 15394 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 15395 return i9xx_plane == PLANE_A; /* tied to pipe A */ 15396 else if (IS_IVYBRIDGE(dev_priv)) 15397 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B || 15398 i9xx_plane == PLANE_C; 15399 else if (INTEL_GEN(dev_priv) >= 4) 15400 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B; 15401 else 15402 return i9xx_plane == PLANE_A; 15403 } 15404 15405 static struct intel_plane * 15406 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe) 15407 { 15408 struct intel_plane *plane; 15409 const struct drm_plane_funcs *plane_funcs; 15410 unsigned int supported_rotations; 15411 unsigned int possible_crtcs; 15412 const u64 *modifiers; 15413 const u32 *formats; 15414 int num_formats; 15415 int ret, zpos; 15416 15417 if (INTEL_GEN(dev_priv) >= 9) 15418 return skl_universal_plane_create(dev_priv, pipe, 15419 PLANE_PRIMARY); 15420 15421 plane = intel_plane_alloc(); 15422 if (IS_ERR(plane)) 15423 return plane; 15424 15425 plane->pipe = pipe; 15426 /* 15427 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS 15428 * port is hooked to pipe B. Hence we want plane A feeding pipe B. 15429 */ 15430 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4) 15431 plane->i9xx_plane = (enum i9xx_plane_id) !pipe; 15432 else 15433 plane->i9xx_plane = (enum i9xx_plane_id) pipe; 15434 plane->id = PLANE_PRIMARY; 15435 plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id); 15436 15437 plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane); 15438 if (plane->has_fbc) { 15439 struct intel_fbc *fbc = &dev_priv->fbc; 15440 15441 fbc->possible_framebuffer_bits |= plane->frontbuffer_bit; 15442 } 15443 15444 if (INTEL_GEN(dev_priv) >= 4) { 15445 /* 15446 * WaFP16GammaEnabling:ivb 15447 * "Workaround : When using the 64-bit format, the plane 15448 * output on each color channel has one quarter amplitude. 15449 * It can be brought up to full amplitude by using pipe 15450 * gamma correction or pipe color space conversion to 15451 * multiply the plane output by four." 15452 * 15453 * There is no dedicated plane gamma for the primary plane, 15454 * and using the pipe gamma/csc could conflict with other 15455 * planes, so we choose not to expose fp16 on IVB primary 15456 * planes. HSW primary planes no longer have this problem. 15457 */ 15458 if (IS_IVYBRIDGE(dev_priv)) { 15459 formats = ivb_primary_formats; 15460 num_formats = ARRAY_SIZE(ivb_primary_formats); 15461 } else { 15462 formats = i965_primary_formats; 15463 num_formats = ARRAY_SIZE(i965_primary_formats); 15464 } 15465 modifiers = i9xx_format_modifiers; 15466 15467 plane->max_stride = i9xx_plane_max_stride; 15468 plane->update_plane = i9xx_update_plane; 15469 plane->disable_plane = i9xx_disable_plane; 15470 plane->get_hw_state = i9xx_plane_get_hw_state; 15471 plane->check_plane = i9xx_plane_check; 15472 15473 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 15474 plane->min_cdclk = hsw_plane_min_cdclk; 15475 else if (IS_IVYBRIDGE(dev_priv)) 15476 plane->min_cdclk = ivb_plane_min_cdclk; 15477 else if (IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv)) 15478 plane->min_cdclk = vlv_plane_min_cdclk; 15479 else 15480 plane->min_cdclk = i9xx_plane_min_cdclk; 15481 15482 plane_funcs = &i965_plane_funcs; 15483 } else { 15484 formats = i8xx_primary_formats; 15485 num_formats = ARRAY_SIZE(i8xx_primary_formats); 15486 modifiers = i9xx_format_modifiers; 15487 15488 plane->max_stride = i9xx_plane_max_stride; 15489 plane->update_plane = i9xx_update_plane; 15490 plane->disable_plane = i9xx_disable_plane; 15491 plane->get_hw_state = i9xx_plane_get_hw_state; 15492 plane->check_plane = i9xx_plane_check; 15493 plane->min_cdclk = i9xx_plane_min_cdclk; 15494 15495 plane_funcs = &i8xx_plane_funcs; 15496 } 15497 15498 possible_crtcs = BIT(pipe); 15499 15500 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 15501 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 15502 possible_crtcs, plane_funcs, 15503 formats, num_formats, modifiers, 15504 DRM_PLANE_TYPE_PRIMARY, 15505 "primary %c", pipe_name(pipe)); 15506 else 15507 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 15508 possible_crtcs, plane_funcs, 15509 formats, num_formats, modifiers, 15510 DRM_PLANE_TYPE_PRIMARY, 15511 "plane %c", 15512 plane_name(plane->i9xx_plane)); 15513 if (ret) 15514 goto fail; 15515 15516 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 15517 supported_rotations = 15518 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 | 15519 DRM_MODE_REFLECT_X; 15520 } else if (INTEL_GEN(dev_priv) >= 4) { 15521 supported_rotations = 15522 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180; 15523 } else { 15524 supported_rotations = DRM_MODE_ROTATE_0; 15525 } 15526 15527 if (INTEL_GEN(dev_priv) >= 4) 15528 drm_plane_create_rotation_property(&plane->base, 15529 DRM_MODE_ROTATE_0, 15530 supported_rotations); 15531 15532 zpos = 0; 15533 drm_plane_create_zpos_immutable_property(&plane->base, zpos); 15534 15535 drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs); 15536 15537 return plane; 15538 15539 fail: 15540 intel_plane_free(plane); 15541 15542 return ERR_PTR(ret); 15543 } 15544 15545 static struct intel_plane * 15546 intel_cursor_plane_create(struct drm_i915_private *dev_priv, 15547 enum pipe pipe) 15548 { 15549 unsigned int possible_crtcs; 15550 struct intel_plane *cursor; 15551 int ret, zpos; 15552 15553 cursor = intel_plane_alloc(); 15554 if (IS_ERR(cursor)) 15555 return cursor; 15556 15557 cursor->pipe = pipe; 15558 cursor->i9xx_plane = (enum i9xx_plane_id) pipe; 15559 cursor->id = PLANE_CURSOR; 15560 cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id); 15561 15562 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) { 15563 cursor->max_stride = i845_cursor_max_stride; 15564 cursor->update_plane = i845_update_cursor; 15565 cursor->disable_plane = i845_disable_cursor; 15566 cursor->get_hw_state = i845_cursor_get_hw_state; 15567 cursor->check_plane = i845_check_cursor; 15568 } else { 15569 cursor->max_stride = i9xx_cursor_max_stride; 15570 cursor->update_plane = i9xx_update_cursor; 15571 cursor->disable_plane = i9xx_disable_cursor; 15572 cursor->get_hw_state = i9xx_cursor_get_hw_state; 15573 cursor->check_plane = i9xx_check_cursor; 15574 } 15575 15576 cursor->cursor.base = ~0; 15577 cursor->cursor.cntl = ~0; 15578 15579 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv)) 15580 cursor->cursor.size = ~0; 15581 15582 possible_crtcs = BIT(pipe); 15583 15584 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base, 15585 possible_crtcs, &intel_cursor_plane_funcs, 15586 intel_cursor_formats, 15587 ARRAY_SIZE(intel_cursor_formats), 15588 cursor_format_modifiers, 15589 DRM_PLANE_TYPE_CURSOR, 15590 "cursor %c", pipe_name(pipe)); 15591 if (ret) 15592 goto fail; 15593 15594 if (INTEL_GEN(dev_priv) >= 4) 15595 drm_plane_create_rotation_property(&cursor->base, 15596 DRM_MODE_ROTATE_0, 15597 DRM_MODE_ROTATE_0 | 15598 DRM_MODE_ROTATE_180); 15599 15600 zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1; 15601 drm_plane_create_zpos_immutable_property(&cursor->base, zpos); 15602 15603 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs); 15604 15605 return cursor; 15606 15607 fail: 15608 intel_plane_free(cursor); 15609 15610 return ERR_PTR(ret); 15611 } 15612 15613 static void intel_crtc_init_scalers(struct intel_crtc *crtc, 15614 struct intel_crtc_state *crtc_state) 15615 { 15616 struct intel_crtc_scaler_state *scaler_state = 15617 &crtc_state->scaler_state; 15618 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 15619 int i; 15620 15621 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[crtc->pipe]; 15622 if (!crtc->num_scalers) 15623 return; 15624 15625 for (i = 0; i < crtc->num_scalers; i++) { 15626 struct intel_scaler *scaler = &scaler_state->scalers[i]; 15627 15628 scaler->in_use = 0; 15629 scaler->mode = 0; 15630 } 15631 15632 scaler_state->scaler_id = -1; 15633 } 15634 15635 #define INTEL_CRTC_FUNCS \ 15636 .gamma_set = drm_atomic_helper_legacy_gamma_set, \ 15637 .set_config = drm_atomic_helper_set_config, \ 15638 .destroy = intel_crtc_destroy, \ 15639 .page_flip = drm_atomic_helper_page_flip, \ 15640 .atomic_duplicate_state = intel_crtc_duplicate_state, \ 15641 .atomic_destroy_state = intel_crtc_destroy_state, \ 15642 .set_crc_source = intel_crtc_set_crc_source, \ 15643 .verify_crc_source = intel_crtc_verify_crc_source, \ 15644 .get_crc_sources = intel_crtc_get_crc_sources 15645 15646 static const struct drm_crtc_funcs bdw_crtc_funcs = { 15647 INTEL_CRTC_FUNCS, 15648 15649 .get_vblank_counter = g4x_get_vblank_counter, 15650 .enable_vblank = bdw_enable_vblank, 15651 .disable_vblank = bdw_disable_vblank, 15652 }; 15653 15654 static const struct drm_crtc_funcs ilk_crtc_funcs = { 15655 INTEL_CRTC_FUNCS, 15656 15657 .get_vblank_counter = g4x_get_vblank_counter, 15658 .enable_vblank = ilk_enable_vblank, 15659 .disable_vblank = ilk_disable_vblank, 15660 }; 15661 15662 static const struct drm_crtc_funcs g4x_crtc_funcs = { 15663 INTEL_CRTC_FUNCS, 15664 15665 .get_vblank_counter = g4x_get_vblank_counter, 15666 .enable_vblank = i965_enable_vblank, 15667 .disable_vblank = i965_disable_vblank, 15668 }; 15669 15670 static const struct drm_crtc_funcs i965_crtc_funcs = { 15671 INTEL_CRTC_FUNCS, 15672 15673 .get_vblank_counter = i915_get_vblank_counter, 15674 .enable_vblank = i965_enable_vblank, 15675 .disable_vblank = i965_disable_vblank, 15676 }; 15677 15678 static const struct drm_crtc_funcs i915gm_crtc_funcs = { 15679 INTEL_CRTC_FUNCS, 15680 15681 .get_vblank_counter = i915_get_vblank_counter, 15682 .enable_vblank = i915gm_enable_vblank, 15683 .disable_vblank = i915gm_disable_vblank, 15684 }; 15685 15686 static const struct drm_crtc_funcs i915_crtc_funcs = { 15687 INTEL_CRTC_FUNCS, 15688 15689 .get_vblank_counter = i915_get_vblank_counter, 15690 .enable_vblank = i8xx_enable_vblank, 15691 .disable_vblank = i8xx_disable_vblank, 15692 }; 15693 15694 static const struct drm_crtc_funcs i8xx_crtc_funcs = { 15695 INTEL_CRTC_FUNCS, 15696 15697 /* no hw vblank counter */ 15698 .enable_vblank = i8xx_enable_vblank, 15699 .disable_vblank = i8xx_disable_vblank, 15700 }; 15701 15702 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe) 15703 { 15704 const struct drm_crtc_funcs *funcs; 15705 struct intel_crtc *intel_crtc; 15706 struct intel_crtc_state *crtc_state = NULL; 15707 struct intel_plane *primary = NULL; 15708 struct intel_plane *cursor = NULL; 15709 int sprite, ret; 15710 15711 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL); 15712 if (!intel_crtc) 15713 return -ENOMEM; 15714 15715 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL); 15716 if (!crtc_state) { 15717 ret = -ENOMEM; 15718 goto fail; 15719 } 15720 __drm_atomic_helper_crtc_reset(&intel_crtc->base, &crtc_state->base); 15721 intel_crtc->config = crtc_state; 15722 15723 primary = intel_primary_plane_create(dev_priv, pipe); 15724 if (IS_ERR(primary)) { 15725 ret = PTR_ERR(primary); 15726 goto fail; 15727 } 15728 intel_crtc->plane_ids_mask |= BIT(primary->id); 15729 15730 for_each_sprite(dev_priv, pipe, sprite) { 15731 struct intel_plane *plane; 15732 15733 plane = intel_sprite_plane_create(dev_priv, pipe, sprite); 15734 if (IS_ERR(plane)) { 15735 ret = PTR_ERR(plane); 15736 goto fail; 15737 } 15738 intel_crtc->plane_ids_mask |= BIT(plane->id); 15739 } 15740 15741 cursor = intel_cursor_plane_create(dev_priv, pipe); 15742 if (IS_ERR(cursor)) { 15743 ret = PTR_ERR(cursor); 15744 goto fail; 15745 } 15746 intel_crtc->plane_ids_mask |= BIT(cursor->id); 15747 15748 if (HAS_GMCH(dev_priv)) { 15749 if (IS_CHERRYVIEW(dev_priv) || 15750 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv)) 15751 funcs = &g4x_crtc_funcs; 15752 else if (IS_GEN(dev_priv, 4)) 15753 funcs = &i965_crtc_funcs; 15754 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv)) 15755 funcs = &i915gm_crtc_funcs; 15756 else if (IS_GEN(dev_priv, 3)) 15757 funcs = &i915_crtc_funcs; 15758 else 15759 funcs = &i8xx_crtc_funcs; 15760 } else { 15761 if (INTEL_GEN(dev_priv) >= 8) 15762 funcs = &bdw_crtc_funcs; 15763 else 15764 funcs = &ilk_crtc_funcs; 15765 } 15766 15767 ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base, 15768 &primary->base, &cursor->base, 15769 funcs, "pipe %c", pipe_name(pipe)); 15770 if (ret) 15771 goto fail; 15772 15773 intel_crtc->pipe = pipe; 15774 15775 /* initialize shared scalers */ 15776 intel_crtc_init_scalers(intel_crtc, crtc_state); 15777 15778 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) || 15779 dev_priv->pipe_to_crtc_mapping[pipe] != NULL); 15780 dev_priv->pipe_to_crtc_mapping[pipe] = intel_crtc; 15781 15782 if (INTEL_GEN(dev_priv) < 9) { 15783 enum i9xx_plane_id i9xx_plane = primary->i9xx_plane; 15784 15785 BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || 15786 dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL); 15787 dev_priv->plane_to_crtc_mapping[i9xx_plane] = intel_crtc; 15788 } 15789 15790 intel_color_init(intel_crtc); 15791 15792 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe); 15793 15794 return 0; 15795 15796 fail: 15797 /* 15798 * drm_mode_config_cleanup() will free up any 15799 * crtcs/planes already initialized. 15800 */ 15801 kfree(crtc_state); 15802 kfree(intel_crtc); 15803 15804 return ret; 15805 } 15806 15807 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 15808 struct drm_file *file) 15809 { 15810 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 15811 struct drm_crtc *drmmode_crtc; 15812 struct intel_crtc *crtc; 15813 15814 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 15815 if (!drmmode_crtc) 15816 return -ENOENT; 15817 15818 crtc = to_intel_crtc(drmmode_crtc); 15819 pipe_from_crtc_id->pipe = crtc->pipe; 15820 15821 return 0; 15822 } 15823 15824 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 15825 { 15826 struct drm_device *dev = encoder->base.dev; 15827 struct intel_encoder *source_encoder; 15828 u32 possible_clones = 0; 15829 15830 for_each_intel_encoder(dev, source_encoder) { 15831 if (encoders_cloneable(encoder, source_encoder)) 15832 possible_clones |= drm_encoder_mask(&source_encoder->base); 15833 } 15834 15835 return possible_clones; 15836 } 15837 15838 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 15839 { 15840 struct drm_device *dev = encoder->base.dev; 15841 struct intel_crtc *crtc; 15842 u32 possible_crtcs = 0; 15843 15844 for_each_intel_crtc(dev, crtc) { 15845 if (encoder->pipe_mask & BIT(crtc->pipe)) 15846 possible_crtcs |= drm_crtc_mask(&crtc->base); 15847 } 15848 15849 return possible_crtcs; 15850 } 15851 15852 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 15853 { 15854 if (!IS_MOBILE(dev_priv)) 15855 return false; 15856 15857 if ((I915_READ(DP_A) & DP_DETECTED) == 0) 15858 return false; 15859 15860 if (IS_GEN(dev_priv, 5) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE)) 15861 return false; 15862 15863 return true; 15864 } 15865 15866 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 15867 { 15868 if (INTEL_GEN(dev_priv) >= 9) 15869 return false; 15870 15871 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 15872 return false; 15873 15874 if (HAS_PCH_LPT_H(dev_priv) && 15875 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 15876 return false; 15877 15878 /* DDI E can't be used if DDI A requires 4 lanes */ 15879 if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 15880 return false; 15881 15882 if (!dev_priv->vbt.int_crt_support) 15883 return false; 15884 15885 return true; 15886 } 15887 15888 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv) 15889 { 15890 int pps_num; 15891 int pps_idx; 15892 15893 if (HAS_DDI(dev_priv)) 15894 return; 15895 /* 15896 * This w/a is needed at least on CPT/PPT, but to be sure apply it 15897 * everywhere where registers can be write protected. 15898 */ 15899 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 15900 pps_num = 2; 15901 else 15902 pps_num = 1; 15903 15904 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) { 15905 u32 val = I915_READ(PP_CONTROL(pps_idx)); 15906 15907 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS; 15908 I915_WRITE(PP_CONTROL(pps_idx), val); 15909 } 15910 } 15911 15912 static void intel_pps_init(struct drm_i915_private *dev_priv) 15913 { 15914 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv)) 15915 dev_priv->pps_mmio_base = PCH_PPS_BASE; 15916 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 15917 dev_priv->pps_mmio_base = VLV_PPS_BASE; 15918 else 15919 dev_priv->pps_mmio_base = PPS_BASE; 15920 15921 intel_pps_unlock_regs_wa(dev_priv); 15922 } 15923 15924 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 15925 { 15926 struct intel_encoder *encoder; 15927 bool dpd_is_edp = false; 15928 15929 intel_pps_init(dev_priv); 15930 15931 if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv)) 15932 return; 15933 15934 if (INTEL_GEN(dev_priv) >= 12) { 15935 intel_ddi_init(dev_priv, PORT_A); 15936 intel_ddi_init(dev_priv, PORT_B); 15937 intel_ddi_init(dev_priv, PORT_D); 15938 intel_ddi_init(dev_priv, PORT_E); 15939 intel_ddi_init(dev_priv, PORT_F); 15940 intel_ddi_init(dev_priv, PORT_G); 15941 intel_ddi_init(dev_priv, PORT_H); 15942 intel_ddi_init(dev_priv, PORT_I); 15943 icl_dsi_init(dev_priv); 15944 } else if (IS_ELKHARTLAKE(dev_priv)) { 15945 intel_ddi_init(dev_priv, PORT_A); 15946 intel_ddi_init(dev_priv, PORT_B); 15947 intel_ddi_init(dev_priv, PORT_C); 15948 intel_ddi_init(dev_priv, PORT_D); 15949 icl_dsi_init(dev_priv); 15950 } else if (IS_GEN(dev_priv, 11)) { 15951 intel_ddi_init(dev_priv, PORT_A); 15952 intel_ddi_init(dev_priv, PORT_B); 15953 intel_ddi_init(dev_priv, PORT_C); 15954 intel_ddi_init(dev_priv, PORT_D); 15955 intel_ddi_init(dev_priv, PORT_E); 15956 /* 15957 * On some ICL SKUs port F is not present. No strap bits for 15958 * this, so rely on VBT. 15959 * Work around broken VBTs on SKUs known to have no port F. 15960 */ 15961 if (IS_ICL_WITH_PORT_F(dev_priv) && 15962 intel_bios_is_port_present(dev_priv, PORT_F)) 15963 intel_ddi_init(dev_priv, PORT_F); 15964 15965 icl_dsi_init(dev_priv); 15966 } else if (IS_GEN9_LP(dev_priv)) { 15967 /* 15968 * FIXME: Broxton doesn't support port detection via the 15969 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to 15970 * detect the ports. 15971 */ 15972 intel_ddi_init(dev_priv, PORT_A); 15973 intel_ddi_init(dev_priv, PORT_B); 15974 intel_ddi_init(dev_priv, PORT_C); 15975 15976 vlv_dsi_init(dev_priv); 15977 } else if (HAS_DDI(dev_priv)) { 15978 int found; 15979 15980 if (intel_ddi_crt_present(dev_priv)) 15981 intel_crt_init(dev_priv); 15982 15983 /* 15984 * Haswell uses DDI functions to detect digital outputs. 15985 * On SKL pre-D0 the strap isn't connected, so we assume 15986 * it's there. 15987 */ 15988 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 15989 /* WaIgnoreDDIAStrap: skl */ 15990 if (found || IS_GEN9_BC(dev_priv)) 15991 intel_ddi_init(dev_priv, PORT_A); 15992 15993 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP 15994 * register */ 15995 found = I915_READ(SFUSE_STRAP); 15996 15997 if (found & SFUSE_STRAP_DDIB_DETECTED) 15998 intel_ddi_init(dev_priv, PORT_B); 15999 if (found & SFUSE_STRAP_DDIC_DETECTED) 16000 intel_ddi_init(dev_priv, PORT_C); 16001 if (found & SFUSE_STRAP_DDID_DETECTED) 16002 intel_ddi_init(dev_priv, PORT_D); 16003 if (found & SFUSE_STRAP_DDIF_DETECTED) 16004 intel_ddi_init(dev_priv, PORT_F); 16005 /* 16006 * On SKL we don't have a way to detect DDI-E so we rely on VBT. 16007 */ 16008 if (IS_GEN9_BC(dev_priv) && 16009 intel_bios_is_port_present(dev_priv, PORT_E)) 16010 intel_ddi_init(dev_priv, PORT_E); 16011 16012 } else if (HAS_PCH_SPLIT(dev_priv)) { 16013 int found; 16014 16015 /* 16016 * intel_edp_init_connector() depends on this completing first, 16017 * to prevent the registration of both eDP and LVDS and the 16018 * incorrect sharing of the PPS. 16019 */ 16020 intel_lvds_init(dev_priv); 16021 intel_crt_init(dev_priv); 16022 16023 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 16024 16025 if (ilk_has_edp_a(dev_priv)) 16026 intel_dp_init(dev_priv, DP_A, PORT_A); 16027 16028 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) { 16029 /* PCH SDVOB multiplex with HDMIB */ 16030 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 16031 if (!found) 16032 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 16033 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED)) 16034 intel_dp_init(dev_priv, PCH_DP_B, PORT_B); 16035 } 16036 16037 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED) 16038 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 16039 16040 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED) 16041 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 16042 16043 if (I915_READ(PCH_DP_C) & DP_DETECTED) 16044 intel_dp_init(dev_priv, PCH_DP_C, PORT_C); 16045 16046 if (I915_READ(PCH_DP_D) & DP_DETECTED) 16047 intel_dp_init(dev_priv, PCH_DP_D, PORT_D); 16048 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 16049 bool has_edp, has_port; 16050 16051 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 16052 intel_crt_init(dev_priv); 16053 16054 /* 16055 * The DP_DETECTED bit is the latched state of the DDC 16056 * SDA pin at boot. However since eDP doesn't require DDC 16057 * (no way to plug in a DP->HDMI dongle) the DDC pins for 16058 * eDP ports may have been muxed to an alternate function. 16059 * Thus we can't rely on the DP_DETECTED bit alone to detect 16060 * eDP ports. Consult the VBT as well as DP_DETECTED to 16061 * detect eDP ports. 16062 * 16063 * Sadly the straps seem to be missing sometimes even for HDMI 16064 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 16065 * and VBT for the presence of the port. Additionally we can't 16066 * trust the port type the VBT declares as we've seen at least 16067 * HDMI ports that the VBT claim are DP or eDP. 16068 */ 16069 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 16070 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 16071 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port) 16072 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B); 16073 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 16074 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 16075 16076 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 16077 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 16078 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port) 16079 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C); 16080 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 16081 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 16082 16083 if (IS_CHERRYVIEW(dev_priv)) { 16084 /* 16085 * eDP not supported on port D, 16086 * so no need to worry about it 16087 */ 16088 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 16089 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port) 16090 intel_dp_init(dev_priv, CHV_DP_D, PORT_D); 16091 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port) 16092 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 16093 } 16094 16095 vlv_dsi_init(dev_priv); 16096 } else if (IS_PINEVIEW(dev_priv)) { 16097 intel_lvds_init(dev_priv); 16098 intel_crt_init(dev_priv); 16099 } else if (IS_GEN_RANGE(dev_priv, 3, 4)) { 16100 bool found = false; 16101 16102 if (IS_MOBILE(dev_priv)) 16103 intel_lvds_init(dev_priv); 16104 16105 intel_crt_init(dev_priv); 16106 16107 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { 16108 DRM_DEBUG_KMS("probing SDVOB\n"); 16109 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 16110 if (!found && IS_G4X(dev_priv)) { 16111 DRM_DEBUG_KMS("probing HDMI on SDVOB\n"); 16112 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 16113 } 16114 16115 if (!found && IS_G4X(dev_priv)) 16116 intel_dp_init(dev_priv, DP_B, PORT_B); 16117 } 16118 16119 /* Before G4X SDVOC doesn't have its own detect register */ 16120 16121 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { 16122 DRM_DEBUG_KMS("probing SDVOC\n"); 16123 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 16124 } 16125 16126 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) { 16127 16128 if (IS_G4X(dev_priv)) { 16129 DRM_DEBUG_KMS("probing HDMI on SDVOC\n"); 16130 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 16131 } 16132 if (IS_G4X(dev_priv)) 16133 intel_dp_init(dev_priv, DP_C, PORT_C); 16134 } 16135 16136 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED)) 16137 intel_dp_init(dev_priv, DP_D, PORT_D); 16138 16139 if (SUPPORTS_TV(dev_priv)) 16140 intel_tv_init(dev_priv); 16141 } else if (IS_GEN(dev_priv, 2)) { 16142 if (IS_I85X(dev_priv)) 16143 intel_lvds_init(dev_priv); 16144 16145 intel_crt_init(dev_priv); 16146 intel_dvo_init(dev_priv); 16147 } 16148 16149 intel_psr_init(dev_priv); 16150 16151 for_each_intel_encoder(&dev_priv->drm, encoder) { 16152 encoder->base.possible_crtcs = 16153 intel_encoder_possible_crtcs(encoder); 16154 encoder->base.possible_clones = 16155 intel_encoder_possible_clones(encoder); 16156 } 16157 16158 intel_init_pch_refclk(dev_priv); 16159 16160 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 16161 } 16162 16163 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 16164 { 16165 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 16166 16167 drm_framebuffer_cleanup(fb); 16168 intel_frontbuffer_put(intel_fb->frontbuffer); 16169 16170 kfree(intel_fb); 16171 } 16172 16173 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 16174 struct drm_file *file, 16175 unsigned int *handle) 16176 { 16177 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 16178 16179 if (obj->userptr.mm) { 16180 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n"); 16181 return -EINVAL; 16182 } 16183 16184 return drm_gem_handle_create(file, &obj->base, handle); 16185 } 16186 16187 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 16188 struct drm_file *file, 16189 unsigned flags, unsigned color, 16190 struct drm_clip_rect *clips, 16191 unsigned num_clips) 16192 { 16193 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 16194 16195 i915_gem_object_flush_if_display(obj); 16196 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 16197 16198 return 0; 16199 } 16200 16201 static const struct drm_framebuffer_funcs intel_fb_funcs = { 16202 .destroy = intel_user_framebuffer_destroy, 16203 .create_handle = intel_user_framebuffer_create_handle, 16204 .dirty = intel_user_framebuffer_dirty, 16205 }; 16206 16207 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, 16208 struct drm_i915_gem_object *obj, 16209 struct drm_mode_fb_cmd2 *mode_cmd) 16210 { 16211 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 16212 struct drm_framebuffer *fb = &intel_fb->base; 16213 u32 max_stride; 16214 unsigned int tiling, stride; 16215 int ret = -EINVAL; 16216 int i; 16217 16218 intel_fb->frontbuffer = intel_frontbuffer_get(obj); 16219 if (!intel_fb->frontbuffer) 16220 return -ENOMEM; 16221 16222 i915_gem_object_lock(obj); 16223 tiling = i915_gem_object_get_tiling(obj); 16224 stride = i915_gem_object_get_stride(obj); 16225 i915_gem_object_unlock(obj); 16226 16227 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 16228 /* 16229 * If there's a fence, enforce that 16230 * the fb modifier and tiling mode match. 16231 */ 16232 if (tiling != I915_TILING_NONE && 16233 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 16234 DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n"); 16235 goto err; 16236 } 16237 } else { 16238 if (tiling == I915_TILING_X) { 16239 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 16240 } else if (tiling == I915_TILING_Y) { 16241 DRM_DEBUG_KMS("No Y tiling for legacy addfb\n"); 16242 goto err; 16243 } 16244 } 16245 16246 if (!drm_any_plane_has_format(&dev_priv->drm, 16247 mode_cmd->pixel_format, 16248 mode_cmd->modifier[0])) { 16249 struct drm_format_name_buf format_name; 16250 16251 DRM_DEBUG_KMS("unsupported pixel format %s / modifier 0x%llx\n", 16252 drm_get_format_name(mode_cmd->pixel_format, 16253 &format_name), 16254 mode_cmd->modifier[0]); 16255 goto err; 16256 } 16257 16258 /* 16259 * gen2/3 display engine uses the fence if present, 16260 * so the tiling mode must match the fb modifier exactly. 16261 */ 16262 if (INTEL_GEN(dev_priv) < 4 && 16263 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 16264 DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n"); 16265 goto err; 16266 } 16267 16268 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, 16269 mode_cmd->modifier[0]); 16270 if (mode_cmd->pitches[0] > max_stride) { 16271 DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n", 16272 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? 16273 "tiled" : "linear", 16274 mode_cmd->pitches[0], max_stride); 16275 goto err; 16276 } 16277 16278 /* 16279 * If there's a fence, enforce that 16280 * the fb pitch and fence stride match. 16281 */ 16282 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { 16283 DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n", 16284 mode_cmd->pitches[0], stride); 16285 goto err; 16286 } 16287 16288 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 16289 if (mode_cmd->offsets[0] != 0) 16290 goto err; 16291 16292 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); 16293 16294 for (i = 0; i < fb->format->num_planes; i++) { 16295 u32 stride_alignment; 16296 16297 if (mode_cmd->handles[i] != mode_cmd->handles[0]) { 16298 DRM_DEBUG_KMS("bad plane %d handle\n", i); 16299 goto err; 16300 } 16301 16302 stride_alignment = intel_fb_stride_alignment(fb, i); 16303 16304 /* 16305 * Display WA #0531: skl,bxt,kbl,glk 16306 * 16307 * Render decompression and plane width > 3840 16308 * combined with horizontal panning requires the 16309 * plane stride to be a multiple of 4. We'll just 16310 * require the entire fb to accommodate that to avoid 16311 * potential runtime errors at plane configuration time. 16312 */ 16313 if (IS_GEN(dev_priv, 9) && i == 0 && fb->width > 3840 && 16314 is_ccs_modifier(fb->modifier)) 16315 stride_alignment *= 4; 16316 16317 if (fb->pitches[i] & (stride_alignment - 1)) { 16318 DRM_DEBUG_KMS("plane %d pitch (%d) must be at least %u byte aligned\n", 16319 i, fb->pitches[i], stride_alignment); 16320 goto err; 16321 } 16322 16323 fb->obj[i] = &obj->base; 16324 } 16325 16326 ret = intel_fill_fb_info(dev_priv, fb); 16327 if (ret) 16328 goto err; 16329 16330 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); 16331 if (ret) { 16332 DRM_ERROR("framebuffer init failed %d\n", ret); 16333 goto err; 16334 } 16335 16336 return 0; 16337 16338 err: 16339 intel_frontbuffer_put(intel_fb->frontbuffer); 16340 return ret; 16341 } 16342 16343 static struct drm_framebuffer * 16344 intel_user_framebuffer_create(struct drm_device *dev, 16345 struct drm_file *filp, 16346 const struct drm_mode_fb_cmd2 *user_mode_cmd) 16347 { 16348 struct drm_framebuffer *fb; 16349 struct drm_i915_gem_object *obj; 16350 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 16351 16352 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); 16353 if (!obj) 16354 return ERR_PTR(-ENOENT); 16355 16356 fb = intel_framebuffer_create(obj, &mode_cmd); 16357 i915_gem_object_put(obj); 16358 16359 return fb; 16360 } 16361 16362 static void intel_atomic_state_free(struct drm_atomic_state *state) 16363 { 16364 struct intel_atomic_state *intel_state = to_intel_atomic_state(state); 16365 16366 drm_atomic_state_default_release(state); 16367 16368 i915_sw_fence_fini(&intel_state->commit_ready); 16369 16370 kfree(state); 16371 } 16372 16373 static enum drm_mode_status 16374 intel_mode_valid(struct drm_device *dev, 16375 const struct drm_display_mode *mode) 16376 { 16377 struct drm_i915_private *dev_priv = to_i915(dev); 16378 int hdisplay_max, htotal_max; 16379 int vdisplay_max, vtotal_max; 16380 16381 /* 16382 * Can't reject DBLSCAN here because Xorg ddxen can add piles 16383 * of DBLSCAN modes to the output's mode list when they detect 16384 * the scaling mode property on the connector. And they don't 16385 * ask the kernel to validate those modes in any way until 16386 * modeset time at which point the client gets a protocol error. 16387 * So in order to not upset those clients we silently ignore the 16388 * DBLSCAN flag on such connectors. For other connectors we will 16389 * reject modes with the DBLSCAN flag in encoder->compute_config(). 16390 * And we always reject DBLSCAN modes in connector->mode_valid() 16391 * as we never want such modes on the connector's mode list. 16392 */ 16393 16394 if (mode->vscan > 1) 16395 return MODE_NO_VSCAN; 16396 16397 if (mode->flags & DRM_MODE_FLAG_HSKEW) 16398 return MODE_H_ILLEGAL; 16399 16400 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 16401 DRM_MODE_FLAG_NCSYNC | 16402 DRM_MODE_FLAG_PCSYNC)) 16403 return MODE_HSYNC; 16404 16405 if (mode->flags & (DRM_MODE_FLAG_BCAST | 16406 DRM_MODE_FLAG_PIXMUX | 16407 DRM_MODE_FLAG_CLKDIV2)) 16408 return MODE_BAD; 16409 16410 /* Transcoder timing limits */ 16411 if (INTEL_GEN(dev_priv) >= 11) { 16412 hdisplay_max = 16384; 16413 vdisplay_max = 8192; 16414 htotal_max = 16384; 16415 vtotal_max = 8192; 16416 } else if (INTEL_GEN(dev_priv) >= 9 || 16417 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 16418 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 16419 vdisplay_max = 4096; 16420 htotal_max = 8192; 16421 vtotal_max = 8192; 16422 } else if (INTEL_GEN(dev_priv) >= 3) { 16423 hdisplay_max = 4096; 16424 vdisplay_max = 4096; 16425 htotal_max = 8192; 16426 vtotal_max = 8192; 16427 } else { 16428 hdisplay_max = 2048; 16429 vdisplay_max = 2048; 16430 htotal_max = 4096; 16431 vtotal_max = 4096; 16432 } 16433 16434 if (mode->hdisplay > hdisplay_max || 16435 mode->hsync_start > htotal_max || 16436 mode->hsync_end > htotal_max || 16437 mode->htotal > htotal_max) 16438 return MODE_H_ILLEGAL; 16439 16440 if (mode->vdisplay > vdisplay_max || 16441 mode->vsync_start > vtotal_max || 16442 mode->vsync_end > vtotal_max || 16443 mode->vtotal > vtotal_max) 16444 return MODE_V_ILLEGAL; 16445 16446 if (INTEL_GEN(dev_priv) >= 5) { 16447 if (mode->hdisplay < 64 || 16448 mode->htotal - mode->hdisplay < 32) 16449 return MODE_H_ILLEGAL; 16450 16451 if (mode->vtotal - mode->vdisplay < 5) 16452 return MODE_V_ILLEGAL; 16453 } else { 16454 if (mode->htotal - mode->hdisplay < 32) 16455 return MODE_H_ILLEGAL; 16456 16457 if (mode->vtotal - mode->vdisplay < 3) 16458 return MODE_V_ILLEGAL; 16459 } 16460 16461 return MODE_OK; 16462 } 16463 16464 enum drm_mode_status 16465 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, 16466 const struct drm_display_mode *mode) 16467 { 16468 int plane_width_max, plane_height_max; 16469 16470 /* 16471 * intel_mode_valid() should be 16472 * sufficient on older platforms. 16473 */ 16474 if (INTEL_GEN(dev_priv) < 9) 16475 return MODE_OK; 16476 16477 /* 16478 * Most people will probably want a fullscreen 16479 * plane so let's not advertize modes that are 16480 * too big for that. 16481 */ 16482 if (INTEL_GEN(dev_priv) >= 11) { 16483 plane_width_max = 5120; 16484 plane_height_max = 4320; 16485 } else { 16486 plane_width_max = 5120; 16487 plane_height_max = 4096; 16488 } 16489 16490 if (mode->hdisplay > plane_width_max) 16491 return MODE_H_ILLEGAL; 16492 16493 if (mode->vdisplay > plane_height_max) 16494 return MODE_V_ILLEGAL; 16495 16496 return MODE_OK; 16497 } 16498 16499 static const struct drm_mode_config_funcs intel_mode_funcs = { 16500 .fb_create = intel_user_framebuffer_create, 16501 .get_format_info = intel_get_format_info, 16502 .output_poll_changed = intel_fbdev_output_poll_changed, 16503 .mode_valid = intel_mode_valid, 16504 .atomic_check = intel_atomic_check, 16505 .atomic_commit = intel_atomic_commit, 16506 .atomic_state_alloc = intel_atomic_state_alloc, 16507 .atomic_state_clear = intel_atomic_state_clear, 16508 .atomic_state_free = intel_atomic_state_free, 16509 }; 16510 16511 /** 16512 * intel_init_display_hooks - initialize the display modesetting hooks 16513 * @dev_priv: device private 16514 */ 16515 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 16516 { 16517 intel_init_cdclk_hooks(dev_priv); 16518 16519 if (INTEL_GEN(dev_priv) >= 9) { 16520 dev_priv->display.get_pipe_config = haswell_get_pipe_config; 16521 dev_priv->display.get_initial_plane_config = 16522 skylake_get_initial_plane_config; 16523 dev_priv->display.crtc_compute_clock = 16524 haswell_crtc_compute_clock; 16525 dev_priv->display.crtc_enable = haswell_crtc_enable; 16526 dev_priv->display.crtc_disable = haswell_crtc_disable; 16527 } else if (HAS_DDI(dev_priv)) { 16528 dev_priv->display.get_pipe_config = haswell_get_pipe_config; 16529 dev_priv->display.get_initial_plane_config = 16530 i9xx_get_initial_plane_config; 16531 dev_priv->display.crtc_compute_clock = 16532 haswell_crtc_compute_clock; 16533 dev_priv->display.crtc_enable = haswell_crtc_enable; 16534 dev_priv->display.crtc_disable = haswell_crtc_disable; 16535 } else if (HAS_PCH_SPLIT(dev_priv)) { 16536 dev_priv->display.get_pipe_config = ironlake_get_pipe_config; 16537 dev_priv->display.get_initial_plane_config = 16538 i9xx_get_initial_plane_config; 16539 dev_priv->display.crtc_compute_clock = 16540 ironlake_crtc_compute_clock; 16541 dev_priv->display.crtc_enable = ironlake_crtc_enable; 16542 dev_priv->display.crtc_disable = ironlake_crtc_disable; 16543 } else if (IS_CHERRYVIEW(dev_priv)) { 16544 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 16545 dev_priv->display.get_initial_plane_config = 16546 i9xx_get_initial_plane_config; 16547 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock; 16548 dev_priv->display.crtc_enable = valleyview_crtc_enable; 16549 dev_priv->display.crtc_disable = i9xx_crtc_disable; 16550 } else if (IS_VALLEYVIEW(dev_priv)) { 16551 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 16552 dev_priv->display.get_initial_plane_config = 16553 i9xx_get_initial_plane_config; 16554 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock; 16555 dev_priv->display.crtc_enable = valleyview_crtc_enable; 16556 dev_priv->display.crtc_disable = i9xx_crtc_disable; 16557 } else if (IS_G4X(dev_priv)) { 16558 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 16559 dev_priv->display.get_initial_plane_config = 16560 i9xx_get_initial_plane_config; 16561 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock; 16562 dev_priv->display.crtc_enable = i9xx_crtc_enable; 16563 dev_priv->display.crtc_disable = i9xx_crtc_disable; 16564 } else if (IS_PINEVIEW(dev_priv)) { 16565 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 16566 dev_priv->display.get_initial_plane_config = 16567 i9xx_get_initial_plane_config; 16568 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock; 16569 dev_priv->display.crtc_enable = i9xx_crtc_enable; 16570 dev_priv->display.crtc_disable = i9xx_crtc_disable; 16571 } else if (!IS_GEN(dev_priv, 2)) { 16572 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 16573 dev_priv->display.get_initial_plane_config = 16574 i9xx_get_initial_plane_config; 16575 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock; 16576 dev_priv->display.crtc_enable = i9xx_crtc_enable; 16577 dev_priv->display.crtc_disable = i9xx_crtc_disable; 16578 } else { 16579 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 16580 dev_priv->display.get_initial_plane_config = 16581 i9xx_get_initial_plane_config; 16582 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock; 16583 dev_priv->display.crtc_enable = i9xx_crtc_enable; 16584 dev_priv->display.crtc_disable = i9xx_crtc_disable; 16585 } 16586 16587 if (IS_GEN(dev_priv, 5)) { 16588 dev_priv->display.fdi_link_train = ironlake_fdi_link_train; 16589 } else if (IS_GEN(dev_priv, 6)) { 16590 dev_priv->display.fdi_link_train = gen6_fdi_link_train; 16591 } else if (IS_IVYBRIDGE(dev_priv)) { 16592 /* FIXME: detect B0+ stepping and use auto training */ 16593 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; 16594 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 16595 dev_priv->display.fdi_link_train = hsw_fdi_link_train; 16596 } 16597 16598 if (INTEL_GEN(dev_priv) >= 9) 16599 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; 16600 else 16601 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; 16602 16603 } 16604 16605 void intel_modeset_init_hw(struct drm_i915_private *i915) 16606 { 16607 intel_update_cdclk(i915); 16608 intel_dump_cdclk_state(&i915->cdclk.hw, "Current CDCLK"); 16609 i915->cdclk.logical = i915->cdclk.actual = i915->cdclk.hw; 16610 } 16611 16612 /* 16613 * Calculate what we think the watermarks should be for the state we've read 16614 * out of the hardware and then immediately program those watermarks so that 16615 * we ensure the hardware settings match our internal state. 16616 * 16617 * We can calculate what we think WM's should be by creating a duplicate of the 16618 * current state (which was constructed during hardware readout) and running it 16619 * through the atomic check code to calculate new watermark values in the 16620 * state object. 16621 */ 16622 static void sanitize_watermarks(struct drm_device *dev) 16623 { 16624 struct drm_i915_private *dev_priv = to_i915(dev); 16625 struct drm_atomic_state *state; 16626 struct intel_atomic_state *intel_state; 16627 struct intel_crtc *crtc; 16628 struct intel_crtc_state *crtc_state; 16629 struct drm_modeset_acquire_ctx ctx; 16630 int ret; 16631 int i; 16632 16633 /* Only supported on platforms that use atomic watermark design */ 16634 if (!dev_priv->display.optimize_watermarks) 16635 return; 16636 16637 /* 16638 * We need to hold connection_mutex before calling duplicate_state so 16639 * that the connector loop is protected. 16640 */ 16641 drm_modeset_acquire_init(&ctx, 0); 16642 retry: 16643 ret = drm_modeset_lock_all_ctx(dev, &ctx); 16644 if (ret == -EDEADLK) { 16645 drm_modeset_backoff(&ctx); 16646 goto retry; 16647 } else if (WARN_ON(ret)) { 16648 goto fail; 16649 } 16650 16651 state = drm_atomic_helper_duplicate_state(dev, &ctx); 16652 if (WARN_ON(IS_ERR(state))) 16653 goto fail; 16654 16655 intel_state = to_intel_atomic_state(state); 16656 16657 /* 16658 * Hardware readout is the only time we don't want to calculate 16659 * intermediate watermarks (since we don't trust the current 16660 * watermarks). 16661 */ 16662 if (!HAS_GMCH(dev_priv)) 16663 intel_state->skip_intermediate_wm = true; 16664 16665 ret = intel_atomic_check(dev, state); 16666 if (ret) { 16667 /* 16668 * If we fail here, it means that the hardware appears to be 16669 * programmed in a way that shouldn't be possible, given our 16670 * understanding of watermark requirements. This might mean a 16671 * mistake in the hardware readout code or a mistake in the 16672 * watermark calculations for a given platform. Raise a WARN 16673 * so that this is noticeable. 16674 * 16675 * If this actually happens, we'll have to just leave the 16676 * BIOS-programmed watermarks untouched and hope for the best. 16677 */ 16678 WARN(true, "Could not determine valid watermarks for inherited state\n"); 16679 goto put_state; 16680 } 16681 16682 /* Write calculated watermark values back */ 16683 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 16684 crtc_state->wm.need_postvbl_update = true; 16685 dev_priv->display.optimize_watermarks(intel_state, crtc_state); 16686 16687 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 16688 } 16689 16690 put_state: 16691 drm_atomic_state_put(state); 16692 fail: 16693 drm_modeset_drop_locks(&ctx); 16694 drm_modeset_acquire_fini(&ctx); 16695 } 16696 16697 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) 16698 { 16699 if (IS_GEN(dev_priv, 5)) { 16700 u32 fdi_pll_clk = 16701 I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; 16702 16703 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; 16704 } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) { 16705 dev_priv->fdi_pll_freq = 270000; 16706 } else { 16707 return; 16708 } 16709 16710 DRM_DEBUG_DRIVER("FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); 16711 } 16712 16713 static int intel_initial_commit(struct drm_device *dev) 16714 { 16715 struct drm_atomic_state *state = NULL; 16716 struct drm_modeset_acquire_ctx ctx; 16717 struct drm_crtc *crtc; 16718 struct drm_crtc_state *crtc_state; 16719 int ret = 0; 16720 16721 state = drm_atomic_state_alloc(dev); 16722 if (!state) 16723 return -ENOMEM; 16724 16725 drm_modeset_acquire_init(&ctx, 0); 16726 16727 retry: 16728 state->acquire_ctx = &ctx; 16729 16730 drm_for_each_crtc(crtc, dev) { 16731 crtc_state = drm_atomic_get_crtc_state(state, crtc); 16732 if (IS_ERR(crtc_state)) { 16733 ret = PTR_ERR(crtc_state); 16734 goto out; 16735 } 16736 16737 if (crtc_state->active) { 16738 ret = drm_atomic_add_affected_planes(state, crtc); 16739 if (ret) 16740 goto out; 16741 16742 /* 16743 * FIXME hack to force a LUT update to avoid the 16744 * plane update forcing the pipe gamma on without 16745 * having a proper LUT loaded. Remove once we 16746 * have readout for pipe gamma enable. 16747 */ 16748 crtc_state->color_mgmt_changed = true; 16749 } 16750 } 16751 16752 ret = drm_atomic_commit(state); 16753 16754 out: 16755 if (ret == -EDEADLK) { 16756 drm_atomic_state_clear(state); 16757 drm_modeset_backoff(&ctx); 16758 goto retry; 16759 } 16760 16761 drm_atomic_state_put(state); 16762 16763 drm_modeset_drop_locks(&ctx); 16764 drm_modeset_acquire_fini(&ctx); 16765 16766 return ret; 16767 } 16768 16769 static void intel_mode_config_init(struct drm_i915_private *i915) 16770 { 16771 struct drm_mode_config *mode_config = &i915->drm.mode_config; 16772 16773 drm_mode_config_init(&i915->drm); 16774 16775 mode_config->min_width = 0; 16776 mode_config->min_height = 0; 16777 16778 mode_config->preferred_depth = 24; 16779 mode_config->prefer_shadow = 1; 16780 16781 mode_config->allow_fb_modifiers = true; 16782 16783 mode_config->funcs = &intel_mode_funcs; 16784 16785 /* 16786 * Maximum framebuffer dimensions, chosen to match 16787 * the maximum render engine surface size on gen4+. 16788 */ 16789 if (INTEL_GEN(i915) >= 7) { 16790 mode_config->max_width = 16384; 16791 mode_config->max_height = 16384; 16792 } else if (INTEL_GEN(i915) >= 4) { 16793 mode_config->max_width = 8192; 16794 mode_config->max_height = 8192; 16795 } else if (IS_GEN(i915, 3)) { 16796 mode_config->max_width = 4096; 16797 mode_config->max_height = 4096; 16798 } else { 16799 mode_config->max_width = 2048; 16800 mode_config->max_height = 2048; 16801 } 16802 16803 if (IS_I845G(i915) || IS_I865G(i915)) { 16804 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; 16805 mode_config->cursor_height = 1023; 16806 } else if (IS_GEN(i915, 2)) { 16807 mode_config->cursor_width = 64; 16808 mode_config->cursor_height = 64; 16809 } else { 16810 mode_config->cursor_width = 256; 16811 mode_config->cursor_height = 256; 16812 } 16813 } 16814 16815 int intel_modeset_init(struct drm_i915_private *i915) 16816 { 16817 struct drm_device *dev = &i915->drm; 16818 enum pipe pipe; 16819 struct intel_crtc *crtc; 16820 int ret; 16821 16822 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 16823 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | 16824 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); 16825 16826 intel_mode_config_init(i915); 16827 16828 ret = intel_bw_init(i915); 16829 if (ret) 16830 return ret; 16831 16832 init_llist_head(&i915->atomic_helper.free_list); 16833 INIT_WORK(&i915->atomic_helper.free_work, 16834 intel_atomic_helper_free_state_worker); 16835 16836 intel_init_quirks(i915); 16837 16838 intel_fbc_init(i915); 16839 16840 intel_init_pm(i915); 16841 16842 intel_panel_sanitize_ssc(i915); 16843 16844 intel_gmbus_setup(i915); 16845 16846 DRM_DEBUG_KMS("%d display pipe%s available.\n", 16847 INTEL_NUM_PIPES(i915), 16848 INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); 16849 16850 if (HAS_DISPLAY(i915) && INTEL_DISPLAY_ENABLED(i915)) { 16851 for_each_pipe(i915, pipe) { 16852 ret = intel_crtc_init(i915, pipe); 16853 if (ret) { 16854 drm_mode_config_cleanup(dev); 16855 return ret; 16856 } 16857 } 16858 } 16859 16860 intel_shared_dpll_init(dev); 16861 intel_update_fdi_pll_freq(i915); 16862 16863 intel_update_czclk(i915); 16864 intel_modeset_init_hw(i915); 16865 16866 intel_hdcp_component_init(i915); 16867 16868 if (i915->max_cdclk_freq == 0) 16869 intel_update_max_cdclk(i915); 16870 16871 /* Just disable it once at startup */ 16872 intel_vga_disable(i915); 16873 intel_setup_outputs(i915); 16874 16875 drm_modeset_lock_all(dev); 16876 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 16877 drm_modeset_unlock_all(dev); 16878 16879 for_each_intel_crtc(dev, crtc) { 16880 struct intel_initial_plane_config plane_config = {}; 16881 16882 if (!crtc->active) 16883 continue; 16884 16885 /* 16886 * Note that reserving the BIOS fb up front prevents us 16887 * from stuffing other stolen allocations like the ring 16888 * on top. This prevents some ugliness at boot time, and 16889 * can even allow for smooth boot transitions if the BIOS 16890 * fb is large enough for the active pipe configuration. 16891 */ 16892 i915->display.get_initial_plane_config(crtc, &plane_config); 16893 16894 /* 16895 * If the fb is shared between multiple heads, we'll 16896 * just get the first one. 16897 */ 16898 intel_find_initial_plane_obj(crtc, &plane_config); 16899 } 16900 16901 /* 16902 * Make sure hardware watermarks really match the state we read out. 16903 * Note that we need to do this after reconstructing the BIOS fb's 16904 * since the watermark calculation done here will use pstate->fb. 16905 */ 16906 if (!HAS_GMCH(i915)) 16907 sanitize_watermarks(dev); 16908 16909 /* 16910 * Force all active planes to recompute their states. So that on 16911 * mode_setcrtc after probe, all the intel_plane_state variables 16912 * are already calculated and there is no assert_plane warnings 16913 * during bootup. 16914 */ 16915 ret = intel_initial_commit(dev); 16916 if (ret) 16917 DRM_DEBUG_KMS("Initial commit in probe failed.\n"); 16918 16919 return 0; 16920 } 16921 16922 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 16923 { 16924 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 16925 /* 640x480@60Hz, ~25175 kHz */ 16926 struct dpll clock = { 16927 .m1 = 18, 16928 .m2 = 7, 16929 .p1 = 13, 16930 .p2 = 4, 16931 .n = 2, 16932 }; 16933 u32 dpll, fp; 16934 int i; 16935 16936 WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154); 16937 16938 DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 16939 pipe_name(pipe), clock.vco, clock.dot); 16940 16941 fp = i9xx_dpll_compute_fp(&clock); 16942 dpll = DPLL_DVO_2X_MODE | 16943 DPLL_VGA_MODE_DIS | 16944 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 16945 PLL_P2_DIVIDE_BY_4 | 16946 PLL_REF_INPUT_DREFCLK | 16947 DPLL_VCO_ENABLE; 16948 16949 I915_WRITE(FP0(pipe), fp); 16950 I915_WRITE(FP1(pipe), fp); 16951 16952 I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 16953 I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 16954 I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 16955 I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 16956 I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 16957 I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 16958 I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 16959 16960 /* 16961 * Apparently we need to have VGA mode enabled prior to changing 16962 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 16963 * dividers, even though the register value does change. 16964 */ 16965 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 16966 I915_WRITE(DPLL(pipe), dpll); 16967 16968 /* Wait for the clocks to stabilize. */ 16969 POSTING_READ(DPLL(pipe)); 16970 udelay(150); 16971 16972 /* The pixel multiplier can only be updated once the 16973 * DPLL is enabled and the clocks are stable. 16974 * 16975 * So write it again. 16976 */ 16977 I915_WRITE(DPLL(pipe), dpll); 16978 16979 /* We do this three times for luck */ 16980 for (i = 0; i < 3 ; i++) { 16981 I915_WRITE(DPLL(pipe), dpll); 16982 POSTING_READ(DPLL(pipe)); 16983 udelay(150); /* wait for warmup */ 16984 } 16985 16986 I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 16987 POSTING_READ(PIPECONF(pipe)); 16988 16989 intel_wait_for_pipe_scanline_moving(crtc); 16990 } 16991 16992 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 16993 { 16994 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 16995 16996 DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n", 16997 pipe_name(pipe)); 16998 16999 WARN_ON(I915_READ(DSPCNTR(PLANE_A)) & DISPLAY_PLANE_ENABLE); 17000 WARN_ON(I915_READ(DSPCNTR(PLANE_B)) & DISPLAY_PLANE_ENABLE); 17001 WARN_ON(I915_READ(DSPCNTR(PLANE_C)) & DISPLAY_PLANE_ENABLE); 17002 WARN_ON(I915_READ(CURCNTR(PIPE_A)) & MCURSOR_MODE); 17003 WARN_ON(I915_READ(CURCNTR(PIPE_B)) & MCURSOR_MODE); 17004 17005 I915_WRITE(PIPECONF(pipe), 0); 17006 POSTING_READ(PIPECONF(pipe)); 17007 17008 intel_wait_for_pipe_scanline_stopped(crtc); 17009 17010 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS); 17011 POSTING_READ(DPLL(pipe)); 17012 } 17013 17014 static void 17015 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 17016 { 17017 struct intel_crtc *crtc; 17018 17019 if (INTEL_GEN(dev_priv) >= 4) 17020 return; 17021 17022 for_each_intel_crtc(&dev_priv->drm, crtc) { 17023 struct intel_plane *plane = 17024 to_intel_plane(crtc->base.primary); 17025 struct intel_crtc *plane_crtc; 17026 enum pipe pipe; 17027 17028 if (!plane->get_hw_state(plane, &pipe)) 17029 continue; 17030 17031 if (pipe == crtc->pipe) 17032 continue; 17033 17034 DRM_DEBUG_KMS("[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 17035 plane->base.base.id, plane->base.name); 17036 17037 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 17038 intel_plane_disable_noatomic(plane_crtc, plane); 17039 } 17040 } 17041 17042 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 17043 { 17044 struct drm_device *dev = crtc->base.dev; 17045 struct intel_encoder *encoder; 17046 17047 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 17048 return true; 17049 17050 return false; 17051 } 17052 17053 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 17054 { 17055 struct drm_device *dev = encoder->base.dev; 17056 struct intel_connector *connector; 17057 17058 for_each_connector_on_encoder(dev, &encoder->base, connector) 17059 return connector; 17060 17061 return NULL; 17062 } 17063 17064 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 17065 enum pipe pch_transcoder) 17066 { 17067 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 17068 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 17069 } 17070 17071 static void intel_sanitize_crtc(struct intel_crtc *crtc, 17072 struct drm_modeset_acquire_ctx *ctx) 17073 { 17074 struct drm_device *dev = crtc->base.dev; 17075 struct drm_i915_private *dev_priv = to_i915(dev); 17076 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 17077 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 17078 17079 /* Clear any frame start delays used for debugging left by the BIOS */ 17080 if (crtc->active && !transcoder_is_dsi(cpu_transcoder)) { 17081 i915_reg_t reg = PIPECONF(cpu_transcoder); 17082 17083 I915_WRITE(reg, 17084 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK); 17085 } 17086 17087 if (crtc_state->base.active) { 17088 struct intel_plane *plane; 17089 17090 /* Disable everything but the primary plane */ 17091 for_each_intel_plane_on_crtc(dev, crtc, plane) { 17092 const struct intel_plane_state *plane_state = 17093 to_intel_plane_state(plane->base.state); 17094 17095 if (plane_state->base.visible && 17096 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 17097 intel_plane_disable_noatomic(crtc, plane); 17098 } 17099 17100 /* 17101 * Disable any background color set by the BIOS, but enable the 17102 * gamma and CSC to match how we program our planes. 17103 */ 17104 if (INTEL_GEN(dev_priv) >= 9) 17105 I915_WRITE(SKL_BOTTOM_COLOR(crtc->pipe), 17106 SKL_BOTTOM_COLOR_GAMMA_ENABLE | 17107 SKL_BOTTOM_COLOR_CSC_ENABLE); 17108 } 17109 17110 /* Adjust the state of the output pipe according to whether we 17111 * have active connectors/encoders. */ 17112 if (crtc_state->base.active && !intel_crtc_has_encoders(crtc)) 17113 intel_crtc_disable_noatomic(&crtc->base, ctx); 17114 17115 if (crtc_state->base.active || HAS_GMCH(dev_priv)) { 17116 /* 17117 * We start out with underrun reporting disabled to avoid races. 17118 * For correct bookkeeping mark this on active crtcs. 17119 * 17120 * Also on gmch platforms we dont have any hardware bits to 17121 * disable the underrun reporting. Which means we need to start 17122 * out with underrun reporting disabled also on inactive pipes, 17123 * since otherwise we'll complain about the garbage we read when 17124 * e.g. coming up after runtime pm. 17125 * 17126 * No protection against concurrent access is required - at 17127 * worst a fifo underrun happens which also sets this to false. 17128 */ 17129 crtc->cpu_fifo_underrun_disabled = true; 17130 /* 17131 * We track the PCH trancoder underrun reporting state 17132 * within the crtc. With crtc for pipe A housing the underrun 17133 * reporting state for PCH transcoder A, crtc for pipe B housing 17134 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 17135 * and marking underrun reporting as disabled for the non-existing 17136 * PCH transcoders B and C would prevent enabling the south 17137 * error interrupt (see cpt_can_enable_serr_int()). 17138 */ 17139 if (has_pch_trancoder(dev_priv, crtc->pipe)) 17140 crtc->pch_fifo_underrun_disabled = true; 17141 } 17142 } 17143 17144 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 17145 { 17146 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); 17147 17148 /* 17149 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 17150 * the hardware when a high res displays plugged in. DPLL P 17151 * divider is zero, and the pipe timings are bonkers. We'll 17152 * try to disable everything in that case. 17153 * 17154 * FIXME would be nice to be able to sanitize this state 17155 * without several WARNs, but for now let's take the easy 17156 * road. 17157 */ 17158 return IS_GEN(dev_priv, 6) && 17159 crtc_state->base.active && 17160 crtc_state->shared_dpll && 17161 crtc_state->port_clock == 0; 17162 } 17163 17164 static void intel_sanitize_encoder(struct intel_encoder *encoder) 17165 { 17166 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 17167 struct intel_connector *connector; 17168 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 17169 struct intel_crtc_state *crtc_state = crtc ? 17170 to_intel_crtc_state(crtc->base.state) : NULL; 17171 17172 /* We need to check both for a crtc link (meaning that the 17173 * encoder is active and trying to read from a pipe) and the 17174 * pipe itself being active. */ 17175 bool has_active_crtc = crtc_state && 17176 crtc_state->base.active; 17177 17178 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 17179 DRM_DEBUG_KMS("BIOS has misprogrammed the hardware. Disabling pipe %c\n", 17180 pipe_name(crtc->pipe)); 17181 has_active_crtc = false; 17182 } 17183 17184 connector = intel_encoder_find_connector(encoder); 17185 if (connector && !has_active_crtc) { 17186 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n", 17187 encoder->base.base.id, 17188 encoder->base.name); 17189 17190 /* Connector is active, but has no active pipe. This is 17191 * fallout from our resume register restoring. Disable 17192 * the encoder manually again. */ 17193 if (crtc_state) { 17194 struct drm_encoder *best_encoder; 17195 17196 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n", 17197 encoder->base.base.id, 17198 encoder->base.name); 17199 17200 /* avoid oopsing in case the hooks consult best_encoder */ 17201 best_encoder = connector->base.state->best_encoder; 17202 connector->base.state->best_encoder = &encoder->base; 17203 17204 if (encoder->disable) 17205 encoder->disable(encoder, crtc_state, 17206 connector->base.state); 17207 if (encoder->post_disable) 17208 encoder->post_disable(encoder, crtc_state, 17209 connector->base.state); 17210 17211 connector->base.state->best_encoder = best_encoder; 17212 } 17213 encoder->base.crtc = NULL; 17214 17215 /* Inconsistent output/port/pipe state happens presumably due to 17216 * a bug in one of the get_hw_state functions. Or someplace else 17217 * in our code, like the register restore mess on resume. Clamp 17218 * things to off as a safer default. */ 17219 17220 connector->base.dpms = DRM_MODE_DPMS_OFF; 17221 connector->base.encoder = NULL; 17222 } 17223 17224 /* notify opregion of the sanitized encoder state */ 17225 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 17226 17227 if (INTEL_GEN(dev_priv) >= 11) 17228 icl_sanitize_encoder_pll_mapping(encoder); 17229 } 17230 17231 /* FIXME read out full plane state for all planes */ 17232 static void readout_plane_state(struct drm_i915_private *dev_priv) 17233 { 17234 struct intel_plane *plane; 17235 struct intel_crtc *crtc; 17236 17237 for_each_intel_plane(&dev_priv->drm, plane) { 17238 struct intel_plane_state *plane_state = 17239 to_intel_plane_state(plane->base.state); 17240 struct intel_crtc_state *crtc_state; 17241 enum pipe pipe = PIPE_A; 17242 bool visible; 17243 17244 visible = plane->get_hw_state(plane, &pipe); 17245 17246 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 17247 crtc_state = to_intel_crtc_state(crtc->base.state); 17248 17249 intel_set_plane_visible(crtc_state, plane_state, visible); 17250 17251 DRM_DEBUG_KMS("[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 17252 plane->base.base.id, plane->base.name, 17253 enableddisabled(visible), pipe_name(pipe)); 17254 } 17255 17256 for_each_intel_crtc(&dev_priv->drm, crtc) { 17257 struct intel_crtc_state *crtc_state = 17258 to_intel_crtc_state(crtc->base.state); 17259 17260 fixup_active_planes(crtc_state); 17261 } 17262 } 17263 17264 static void intel_modeset_readout_hw_state(struct drm_device *dev) 17265 { 17266 struct drm_i915_private *dev_priv = to_i915(dev); 17267 enum pipe pipe; 17268 struct intel_crtc *crtc; 17269 struct intel_encoder *encoder; 17270 struct intel_connector *connector; 17271 struct drm_connector_list_iter conn_iter; 17272 int i; 17273 17274 dev_priv->active_pipes = 0; 17275 17276 for_each_intel_crtc(dev, crtc) { 17277 struct intel_crtc_state *crtc_state = 17278 to_intel_crtc_state(crtc->base.state); 17279 17280 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base); 17281 memset(crtc_state, 0, sizeof(*crtc_state)); 17282 __drm_atomic_helper_crtc_reset(&crtc->base, &crtc_state->base); 17283 17284 crtc_state->base.active = crtc_state->base.enable = 17285 dev_priv->display.get_pipe_config(crtc, crtc_state); 17286 17287 crtc->base.enabled = crtc_state->base.enable; 17288 crtc->active = crtc_state->base.active; 17289 17290 if (crtc_state->base.active) 17291 dev_priv->active_pipes |= BIT(crtc->pipe); 17292 17293 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n", 17294 crtc->base.base.id, crtc->base.name, 17295 enableddisabled(crtc_state->base.active)); 17296 } 17297 17298 readout_plane_state(dev_priv); 17299 17300 for (i = 0; i < dev_priv->num_shared_dpll; i++) { 17301 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; 17302 17303 pll->on = pll->info->funcs->get_hw_state(dev_priv, pll, 17304 &pll->state.hw_state); 17305 17306 if (IS_ELKHARTLAKE(dev_priv) && pll->on && 17307 pll->info->id == DPLL_ID_EHL_DPLL4) { 17308 pll->wakeref = intel_display_power_get(dev_priv, 17309 POWER_DOMAIN_DPLL_DC_OFF); 17310 } 17311 17312 pll->state.crtc_mask = 0; 17313 for_each_intel_crtc(dev, crtc) { 17314 struct intel_crtc_state *crtc_state = 17315 to_intel_crtc_state(crtc->base.state); 17316 17317 if (crtc_state->base.active && 17318 crtc_state->shared_dpll == pll) 17319 pll->state.crtc_mask |= 1 << crtc->pipe; 17320 } 17321 pll->active_mask = pll->state.crtc_mask; 17322 17323 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n", 17324 pll->info->name, pll->state.crtc_mask, pll->on); 17325 } 17326 17327 for_each_intel_encoder(dev, encoder) { 17328 pipe = 0; 17329 17330 if (encoder->get_hw_state(encoder, &pipe)) { 17331 struct intel_crtc_state *crtc_state; 17332 17333 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 17334 crtc_state = to_intel_crtc_state(crtc->base.state); 17335 17336 encoder->base.crtc = &crtc->base; 17337 encoder->get_config(encoder, crtc_state); 17338 } else { 17339 encoder->base.crtc = NULL; 17340 } 17341 17342 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 17343 encoder->base.base.id, encoder->base.name, 17344 enableddisabled(encoder->base.crtc), 17345 pipe_name(pipe)); 17346 } 17347 17348 drm_connector_list_iter_begin(dev, &conn_iter); 17349 for_each_intel_connector_iter(connector, &conn_iter) { 17350 if (connector->get_hw_state(connector)) { 17351 struct intel_crtc_state *crtc_state; 17352 struct intel_crtc *crtc; 17353 17354 connector->base.dpms = DRM_MODE_DPMS_ON; 17355 17356 encoder = connector->encoder; 17357 connector->base.encoder = &encoder->base; 17358 17359 crtc = to_intel_crtc(encoder->base.crtc); 17360 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; 17361 17362 if (crtc_state && crtc_state->base.active) { 17363 /* 17364 * This has to be done during hardware readout 17365 * because anything calling .crtc_disable may 17366 * rely on the connector_mask being accurate. 17367 */ 17368 crtc_state->base.connector_mask |= 17369 drm_connector_mask(&connector->base); 17370 crtc_state->base.encoder_mask |= 17371 drm_encoder_mask(&encoder->base); 17372 } 17373 } else { 17374 connector->base.dpms = DRM_MODE_DPMS_OFF; 17375 connector->base.encoder = NULL; 17376 } 17377 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n", 17378 connector->base.base.id, connector->base.name, 17379 enableddisabled(connector->base.encoder)); 17380 } 17381 drm_connector_list_iter_end(&conn_iter); 17382 17383 for_each_intel_crtc(dev, crtc) { 17384 struct intel_bw_state *bw_state = 17385 to_intel_bw_state(dev_priv->bw_obj.state); 17386 struct intel_crtc_state *crtc_state = 17387 to_intel_crtc_state(crtc->base.state); 17388 struct intel_plane *plane; 17389 int min_cdclk = 0; 17390 17391 if (crtc_state->base.active) { 17392 struct drm_display_mode mode; 17393 17394 intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, 17395 crtc_state); 17396 17397 mode = crtc_state->base.adjusted_mode; 17398 mode.hdisplay = crtc_state->pipe_src_w; 17399 mode.vdisplay = crtc_state->pipe_src_h; 17400 WARN_ON(drm_atomic_set_mode_for_crtc(&crtc_state->base, &mode)); 17401 17402 /* 17403 * The initial mode needs to be set in order to keep 17404 * the atomic core happy. It wants a valid mode if the 17405 * crtc's enabled, so we do the above call. 17406 * 17407 * But we don't set all the derived state fully, hence 17408 * set a flag to indicate that a full recalculation is 17409 * needed on the next commit. 17410 */ 17411 crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED; 17412 17413 intel_crtc_compute_pixel_rate(crtc_state); 17414 17415 intel_crtc_update_active_timings(crtc_state); 17416 } 17417 17418 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 17419 const struct intel_plane_state *plane_state = 17420 to_intel_plane_state(plane->base.state); 17421 17422 /* 17423 * FIXME don't have the fb yet, so can't 17424 * use intel_plane_data_rate() :( 17425 */ 17426 if (plane_state->base.visible) 17427 crtc_state->data_rate[plane->id] = 17428 4 * crtc_state->pixel_rate; 17429 /* 17430 * FIXME don't have the fb yet, so can't 17431 * use plane->min_cdclk() :( 17432 */ 17433 if (plane_state->base.visible && plane->min_cdclk) { 17434 if (crtc_state->double_wide || 17435 INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 17436 crtc_state->min_cdclk[plane->id] = 17437 DIV_ROUND_UP(crtc_state->pixel_rate, 2); 17438 else 17439 crtc_state->min_cdclk[plane->id] = 17440 crtc_state->pixel_rate; 17441 } 17442 DRM_DEBUG_KMS("[PLANE:%d:%s] min_cdclk %d kHz\n", 17443 plane->base.base.id, plane->base.name, 17444 crtc_state->min_cdclk[plane->id]); 17445 } 17446 17447 if (crtc_state->base.active) { 17448 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 17449 if (WARN_ON(min_cdclk < 0)) 17450 min_cdclk = 0; 17451 } 17452 17453 dev_priv->min_cdclk[crtc->pipe] = min_cdclk; 17454 dev_priv->min_voltage_level[crtc->pipe] = 17455 crtc_state->min_voltage_level; 17456 17457 intel_bw_crtc_update(bw_state, crtc_state); 17458 17459 intel_pipe_config_sanity_check(dev_priv, crtc_state); 17460 } 17461 } 17462 17463 static void 17464 get_encoder_power_domains(struct drm_i915_private *dev_priv) 17465 { 17466 struct intel_encoder *encoder; 17467 17468 for_each_intel_encoder(&dev_priv->drm, encoder) { 17469 struct intel_crtc_state *crtc_state; 17470 17471 if (!encoder->get_power_domains) 17472 continue; 17473 17474 /* 17475 * MST-primary and inactive encoders don't have a crtc state 17476 * and neither of these require any power domain references. 17477 */ 17478 if (!encoder->base.crtc) 17479 continue; 17480 17481 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 17482 encoder->get_power_domains(encoder, crtc_state); 17483 } 17484 } 17485 17486 static void intel_early_display_was(struct drm_i915_private *dev_priv) 17487 { 17488 /* Display WA #1185 WaDisableDARBFClkGating:cnl,glk */ 17489 if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv)) 17490 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) | 17491 DARBF_GATING_DIS); 17492 17493 if (IS_HASWELL(dev_priv)) { 17494 /* 17495 * WaRsPkgCStateDisplayPMReq:hsw 17496 * System hang if this isn't done before disabling all planes! 17497 */ 17498 I915_WRITE(CHICKEN_PAR1_1, 17499 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 17500 } 17501 } 17502 17503 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 17504 enum port port, i915_reg_t hdmi_reg) 17505 { 17506 u32 val = I915_READ(hdmi_reg); 17507 17508 if (val & SDVO_ENABLE || 17509 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 17510 return; 17511 17512 DRM_DEBUG_KMS("Sanitizing transcoder select for HDMI %c\n", 17513 port_name(port)); 17514 17515 val &= ~SDVO_PIPE_SEL_MASK; 17516 val |= SDVO_PIPE_SEL(PIPE_A); 17517 17518 I915_WRITE(hdmi_reg, val); 17519 } 17520 17521 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 17522 enum port port, i915_reg_t dp_reg) 17523 { 17524 u32 val = I915_READ(dp_reg); 17525 17526 if (val & DP_PORT_EN || 17527 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 17528 return; 17529 17530 DRM_DEBUG_KMS("Sanitizing transcoder select for DP %c\n", 17531 port_name(port)); 17532 17533 val &= ~DP_PIPE_SEL_MASK; 17534 val |= DP_PIPE_SEL(PIPE_A); 17535 17536 I915_WRITE(dp_reg, val); 17537 } 17538 17539 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 17540 { 17541 /* 17542 * The BIOS may select transcoder B on some of the PCH 17543 * ports even it doesn't enable the port. This would trip 17544 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 17545 * Sanitize the transcoder select bits to prevent that. We 17546 * assume that the BIOS never actually enabled the port, 17547 * because if it did we'd actually have to toggle the port 17548 * on and back off to make the transcoder A select stick 17549 * (see. intel_dp_link_down(), intel_disable_hdmi(), 17550 * intel_disable_sdvo()). 17551 */ 17552 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 17553 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 17554 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 17555 17556 /* PCH SDVOB multiplex with HDMIB */ 17557 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 17558 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 17559 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 17560 } 17561 17562 /* Scan out the current hw modeset state, 17563 * and sanitizes it to the current state 17564 */ 17565 static void 17566 intel_modeset_setup_hw_state(struct drm_device *dev, 17567 struct drm_modeset_acquire_ctx *ctx) 17568 { 17569 struct drm_i915_private *dev_priv = to_i915(dev); 17570 struct intel_crtc_state *crtc_state; 17571 struct intel_encoder *encoder; 17572 struct intel_crtc *crtc; 17573 intel_wakeref_t wakeref; 17574 int i; 17575 17576 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 17577 17578 intel_early_display_was(dev_priv); 17579 intel_modeset_readout_hw_state(dev); 17580 17581 /* HW state is read out, now we need to sanitize this mess. */ 17582 17583 /* Sanitize the TypeC port mode upfront, encoders depend on this */ 17584 for_each_intel_encoder(dev, encoder) { 17585 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 17586 17587 /* We need to sanitize only the MST primary port. */ 17588 if (encoder->type != INTEL_OUTPUT_DP_MST && 17589 intel_phy_is_tc(dev_priv, phy)) 17590 intel_tc_port_sanitize(enc_to_dig_port(&encoder->base)); 17591 } 17592 17593 get_encoder_power_domains(dev_priv); 17594 17595 if (HAS_PCH_IBX(dev_priv)) 17596 ibx_sanitize_pch_ports(dev_priv); 17597 17598 /* 17599 * intel_sanitize_plane_mapping() may need to do vblank 17600 * waits, so we need vblank interrupts restored beforehand. 17601 */ 17602 for_each_intel_crtc(&dev_priv->drm, crtc) { 17603 crtc_state = to_intel_crtc_state(crtc->base.state); 17604 17605 drm_crtc_vblank_reset(&crtc->base); 17606 17607 if (crtc_state->base.active) 17608 intel_crtc_vblank_on(crtc_state); 17609 } 17610 17611 intel_sanitize_plane_mapping(dev_priv); 17612 17613 for_each_intel_encoder(dev, encoder) 17614 intel_sanitize_encoder(encoder); 17615 17616 for_each_intel_crtc(&dev_priv->drm, crtc) { 17617 crtc_state = to_intel_crtc_state(crtc->base.state); 17618 intel_sanitize_crtc(crtc, ctx); 17619 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 17620 } 17621 17622 intel_modeset_update_connector_atomic_state(dev); 17623 17624 for (i = 0; i < dev_priv->num_shared_dpll; i++) { 17625 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; 17626 17627 if (!pll->on || pll->active_mask) 17628 continue; 17629 17630 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", 17631 pll->info->name); 17632 17633 pll->info->funcs->disable(dev_priv, pll); 17634 pll->on = false; 17635 } 17636 17637 if (IS_G4X(dev_priv)) { 17638 g4x_wm_get_hw_state(dev_priv); 17639 g4x_wm_sanitize(dev_priv); 17640 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 17641 vlv_wm_get_hw_state(dev_priv); 17642 vlv_wm_sanitize(dev_priv); 17643 } else if (INTEL_GEN(dev_priv) >= 9) { 17644 skl_wm_get_hw_state(dev_priv); 17645 } else if (HAS_PCH_SPLIT(dev_priv)) { 17646 ilk_wm_get_hw_state(dev_priv); 17647 } 17648 17649 for_each_intel_crtc(dev, crtc) { 17650 u64 put_domains; 17651 17652 crtc_state = to_intel_crtc_state(crtc->base.state); 17653 put_domains = modeset_get_crtc_power_domains(crtc_state); 17654 if (WARN_ON(put_domains)) 17655 modeset_put_power_domains(dev_priv, put_domains); 17656 } 17657 17658 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 17659 17660 intel_fbc_init_pipe_state(dev_priv); 17661 } 17662 17663 void intel_display_resume(struct drm_device *dev) 17664 { 17665 struct drm_i915_private *dev_priv = to_i915(dev); 17666 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 17667 struct drm_modeset_acquire_ctx ctx; 17668 int ret; 17669 17670 dev_priv->modeset_restore_state = NULL; 17671 if (state) 17672 state->acquire_ctx = &ctx; 17673 17674 drm_modeset_acquire_init(&ctx, 0); 17675 17676 while (1) { 17677 ret = drm_modeset_lock_all_ctx(dev, &ctx); 17678 if (ret != -EDEADLK) 17679 break; 17680 17681 drm_modeset_backoff(&ctx); 17682 } 17683 17684 if (!ret) 17685 ret = __intel_display_resume(dev, state, &ctx); 17686 17687 intel_enable_ipc(dev_priv); 17688 drm_modeset_drop_locks(&ctx); 17689 drm_modeset_acquire_fini(&ctx); 17690 17691 if (ret) 17692 DRM_ERROR("Restoring old state failed with %i\n", ret); 17693 if (state) 17694 drm_atomic_state_put(state); 17695 } 17696 17697 static void intel_hpd_poll_fini(struct drm_i915_private *i915) 17698 { 17699 struct intel_connector *connector; 17700 struct drm_connector_list_iter conn_iter; 17701 17702 /* Kill all the work that may have been queued by hpd. */ 17703 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 17704 for_each_intel_connector_iter(connector, &conn_iter) { 17705 if (connector->modeset_retry_work.func) 17706 cancel_work_sync(&connector->modeset_retry_work); 17707 if (connector->hdcp.shim) { 17708 cancel_delayed_work_sync(&connector->hdcp.check_work); 17709 cancel_work_sync(&connector->hdcp.prop_work); 17710 } 17711 } 17712 drm_connector_list_iter_end(&conn_iter); 17713 } 17714 17715 void intel_modeset_driver_remove(struct drm_i915_private *i915) 17716 { 17717 flush_workqueue(i915->flip_wq); 17718 flush_workqueue(i915->modeset_wq); 17719 17720 flush_work(&i915->atomic_helper.free_work); 17721 WARN_ON(!llist_empty(&i915->atomic_helper.free_list)); 17722 17723 /* 17724 * Interrupts and polling as the first thing to avoid creating havoc. 17725 * Too much stuff here (turning of connectors, ...) would 17726 * experience fancy races otherwise. 17727 */ 17728 intel_irq_uninstall(i915); 17729 17730 /* 17731 * Due to the hpd irq storm handling the hotplug work can re-arm the 17732 * poll handlers. Hence disable polling after hpd handling is shut down. 17733 */ 17734 intel_hpd_poll_fini(i915); 17735 17736 /* poll work can call into fbdev, hence clean that up afterwards */ 17737 intel_fbdev_fini(i915); 17738 17739 intel_unregister_dsm_handler(); 17740 17741 intel_fbc_global_disable(i915); 17742 17743 /* flush any delayed tasks or pending work */ 17744 flush_scheduled_work(); 17745 17746 intel_hdcp_component_fini(i915); 17747 17748 drm_mode_config_cleanup(&i915->drm); 17749 17750 intel_overlay_cleanup(i915); 17751 17752 intel_gmbus_teardown(i915); 17753 17754 destroy_workqueue(i915->flip_wq); 17755 destroy_workqueue(i915->modeset_wq); 17756 17757 intel_fbc_cleanup_cfb(i915); 17758 } 17759 17760 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 17761 17762 struct intel_display_error_state { 17763 17764 u32 power_well_driver; 17765 17766 struct intel_cursor_error_state { 17767 u32 control; 17768 u32 position; 17769 u32 base; 17770 u32 size; 17771 } cursor[I915_MAX_PIPES]; 17772 17773 struct intel_pipe_error_state { 17774 bool power_domain_on; 17775 u32 source; 17776 u32 stat; 17777 } pipe[I915_MAX_PIPES]; 17778 17779 struct intel_plane_error_state { 17780 u32 control; 17781 u32 stride; 17782 u32 size; 17783 u32 pos; 17784 u32 addr; 17785 u32 surface; 17786 u32 tile_offset; 17787 } plane[I915_MAX_PIPES]; 17788 17789 struct intel_transcoder_error_state { 17790 bool available; 17791 bool power_domain_on; 17792 enum transcoder cpu_transcoder; 17793 17794 u32 conf; 17795 17796 u32 htotal; 17797 u32 hblank; 17798 u32 hsync; 17799 u32 vtotal; 17800 u32 vblank; 17801 u32 vsync; 17802 } transcoder[5]; 17803 }; 17804 17805 struct intel_display_error_state * 17806 intel_display_capture_error_state(struct drm_i915_private *dev_priv) 17807 { 17808 struct intel_display_error_state *error; 17809 int transcoders[] = { 17810 TRANSCODER_A, 17811 TRANSCODER_B, 17812 TRANSCODER_C, 17813 TRANSCODER_D, 17814 TRANSCODER_EDP, 17815 }; 17816 int i; 17817 17818 BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder)); 17819 17820 if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv)) 17821 return NULL; 17822 17823 error = kzalloc(sizeof(*error), GFP_ATOMIC); 17824 if (error == NULL) 17825 return NULL; 17826 17827 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 17828 error->power_well_driver = I915_READ(HSW_PWR_WELL_CTL2); 17829 17830 for_each_pipe(dev_priv, i) { 17831 error->pipe[i].power_domain_on = 17832 __intel_display_power_is_enabled(dev_priv, 17833 POWER_DOMAIN_PIPE(i)); 17834 if (!error->pipe[i].power_domain_on) 17835 continue; 17836 17837 error->cursor[i].control = I915_READ(CURCNTR(i)); 17838 error->cursor[i].position = I915_READ(CURPOS(i)); 17839 error->cursor[i].base = I915_READ(CURBASE(i)); 17840 17841 error->plane[i].control = I915_READ(DSPCNTR(i)); 17842 error->plane[i].stride = I915_READ(DSPSTRIDE(i)); 17843 if (INTEL_GEN(dev_priv) <= 3) { 17844 error->plane[i].size = I915_READ(DSPSIZE(i)); 17845 error->plane[i].pos = I915_READ(DSPPOS(i)); 17846 } 17847 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 17848 error->plane[i].addr = I915_READ(DSPADDR(i)); 17849 if (INTEL_GEN(dev_priv) >= 4) { 17850 error->plane[i].surface = I915_READ(DSPSURF(i)); 17851 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i)); 17852 } 17853 17854 error->pipe[i].source = I915_READ(PIPESRC(i)); 17855 17856 if (HAS_GMCH(dev_priv)) 17857 error->pipe[i].stat = I915_READ(PIPESTAT(i)); 17858 } 17859 17860 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 17861 enum transcoder cpu_transcoder = transcoders[i]; 17862 17863 if (!INTEL_INFO(dev_priv)->trans_offsets[cpu_transcoder]) 17864 continue; 17865 17866 error->transcoder[i].available = true; 17867 error->transcoder[i].power_domain_on = 17868 __intel_display_power_is_enabled(dev_priv, 17869 POWER_DOMAIN_TRANSCODER(cpu_transcoder)); 17870 if (!error->transcoder[i].power_domain_on) 17871 continue; 17872 17873 error->transcoder[i].cpu_transcoder = cpu_transcoder; 17874 17875 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder)); 17876 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder)); 17877 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder)); 17878 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder)); 17879 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder)); 17880 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder)); 17881 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder)); 17882 } 17883 17884 return error; 17885 } 17886 17887 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) 17888 17889 void 17890 intel_display_print_error_state(struct drm_i915_error_state_buf *m, 17891 struct intel_display_error_state *error) 17892 { 17893 struct drm_i915_private *dev_priv = m->i915; 17894 int i; 17895 17896 if (!error) 17897 return; 17898 17899 err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv)); 17900 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 17901 err_printf(m, "PWR_WELL_CTL2: %08x\n", 17902 error->power_well_driver); 17903 for_each_pipe(dev_priv, i) { 17904 err_printf(m, "Pipe [%d]:\n", i); 17905 err_printf(m, " Power: %s\n", 17906 onoff(error->pipe[i].power_domain_on)); 17907 err_printf(m, " SRC: %08x\n", error->pipe[i].source); 17908 err_printf(m, " STAT: %08x\n", error->pipe[i].stat); 17909 17910 err_printf(m, "Plane [%d]:\n", i); 17911 err_printf(m, " CNTR: %08x\n", error->plane[i].control); 17912 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride); 17913 if (INTEL_GEN(dev_priv) <= 3) { 17914 err_printf(m, " SIZE: %08x\n", error->plane[i].size); 17915 err_printf(m, " POS: %08x\n", error->plane[i].pos); 17916 } 17917 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 17918 err_printf(m, " ADDR: %08x\n", error->plane[i].addr); 17919 if (INTEL_GEN(dev_priv) >= 4) { 17920 err_printf(m, " SURF: %08x\n", error->plane[i].surface); 17921 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); 17922 } 17923 17924 err_printf(m, "Cursor [%d]:\n", i); 17925 err_printf(m, " CNTR: %08x\n", error->cursor[i].control); 17926 err_printf(m, " POS: %08x\n", error->cursor[i].position); 17927 err_printf(m, " BASE: %08x\n", error->cursor[i].base); 17928 } 17929 17930 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 17931 if (!error->transcoder[i].available) 17932 continue; 17933 17934 err_printf(m, "CPU transcoder: %s\n", 17935 transcoder_name(error->transcoder[i].cpu_transcoder)); 17936 err_printf(m, " Power: %s\n", 17937 onoff(error->transcoder[i].power_domain_on)); 17938 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf); 17939 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal); 17940 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank); 17941 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync); 17942 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal); 17943 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank); 17944 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync); 17945 } 17946 } 17947 17948 #endif 17949