1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  */
26 
27 #include <linux/i2c.h>
28 #include <linux/input.h>
29 #include <linux/intel-iommu.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/dma-resv.h>
33 #include <linux/slab.h>
34 
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_atomic_uapi.h>
38 #include <drm/drm_damage_helper.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fourcc.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_probe_helper.h>
44 #include <drm/drm_rect.h>
45 
46 #include "display/intel_crt.h"
47 #include "display/intel_ddi.h"
48 #include "display/intel_dp.h"
49 #include "display/intel_dp_mst.h"
50 #include "display/intel_dsi.h"
51 #include "display/intel_dvo.h"
52 #include "display/intel_gmbus.h"
53 #include "display/intel_hdmi.h"
54 #include "display/intel_lvds.h"
55 #include "display/intel_sdvo.h"
56 #include "display/intel_tv.h"
57 #include "display/intel_vdsc.h"
58 
59 #include "gt/intel_rps.h"
60 
61 #include "i915_drv.h"
62 #include "i915_trace.h"
63 #include "intel_acpi.h"
64 #include "intel_atomic.h"
65 #include "intel_atomic_plane.h"
66 #include "intel_bw.h"
67 #include "intel_cdclk.h"
68 #include "intel_color.h"
69 #include "intel_display_types.h"
70 #include "intel_dp_link_training.h"
71 #include "intel_fbc.h"
72 #include "intel_fbdev.h"
73 #include "intel_fifo_underrun.h"
74 #include "intel_frontbuffer.h"
75 #include "intel_hdcp.h"
76 #include "intel_hotplug.h"
77 #include "intel_overlay.h"
78 #include "intel_pipe_crc.h"
79 #include "intel_pm.h"
80 #include "intel_psr.h"
81 #include "intel_quirks.h"
82 #include "intel_sideband.h"
83 #include "intel_sprite.h"
84 #include "intel_tc.h"
85 #include "intel_vga.h"
86 
87 /* Primary plane formats for gen <= 3 */
88 static const u32 i8xx_primary_formats[] = {
89 	DRM_FORMAT_C8,
90 	DRM_FORMAT_XRGB1555,
91 	DRM_FORMAT_RGB565,
92 	DRM_FORMAT_XRGB8888,
93 };
94 
95 /* Primary plane formats for ivb (no fp16 due to hw issue) */
96 static const u32 ivb_primary_formats[] = {
97 	DRM_FORMAT_C8,
98 	DRM_FORMAT_RGB565,
99 	DRM_FORMAT_XRGB8888,
100 	DRM_FORMAT_XBGR8888,
101 	DRM_FORMAT_XRGB2101010,
102 	DRM_FORMAT_XBGR2101010,
103 };
104 
105 /* Primary plane formats for gen >= 4, except ivb */
106 static const u32 i965_primary_formats[] = {
107 	DRM_FORMAT_C8,
108 	DRM_FORMAT_RGB565,
109 	DRM_FORMAT_XRGB8888,
110 	DRM_FORMAT_XBGR8888,
111 	DRM_FORMAT_XRGB2101010,
112 	DRM_FORMAT_XBGR2101010,
113 	DRM_FORMAT_XBGR16161616F,
114 };
115 
116 /* Primary plane formats for vlv/chv */
117 static const u32 vlv_primary_formats[] = {
118 	DRM_FORMAT_C8,
119 	DRM_FORMAT_RGB565,
120 	DRM_FORMAT_XRGB8888,
121 	DRM_FORMAT_XBGR8888,
122 	DRM_FORMAT_ARGB8888,
123 	DRM_FORMAT_ABGR8888,
124 	DRM_FORMAT_XRGB2101010,
125 	DRM_FORMAT_XBGR2101010,
126 	DRM_FORMAT_ARGB2101010,
127 	DRM_FORMAT_ABGR2101010,
128 	DRM_FORMAT_XBGR16161616F,
129 };
130 
131 static const u64 i9xx_format_modifiers[] = {
132 	I915_FORMAT_MOD_X_TILED,
133 	DRM_FORMAT_MOD_LINEAR,
134 	DRM_FORMAT_MOD_INVALID
135 };
136 
137 /* Cursor formats */
138 static const u32 intel_cursor_formats[] = {
139 	DRM_FORMAT_ARGB8888,
140 };
141 
142 static const u64 cursor_format_modifiers[] = {
143 	DRM_FORMAT_MOD_LINEAR,
144 	DRM_FORMAT_MOD_INVALID
145 };
146 
147 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
148 				struct intel_crtc_state *pipe_config);
149 static void ilk_pch_clock_get(struct intel_crtc *crtc,
150 			      struct intel_crtc_state *pipe_config);
151 
152 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
153 				  struct drm_i915_gem_object *obj,
154 				  struct drm_mode_fb_cmd2 *mode_cmd);
155 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state);
156 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
157 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
158 					 const struct intel_link_m_n *m_n,
159 					 const struct intel_link_m_n *m2_n2);
160 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state);
161 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state);
162 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state);
163 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state);
164 static void vlv_prepare_pll(struct intel_crtc *crtc,
165 			    const struct intel_crtc_state *pipe_config);
166 static void chv_prepare_pll(struct intel_crtc *crtc,
167 			    const struct intel_crtc_state *pipe_config);
168 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state);
169 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state);
170 static void intel_modeset_setup_hw_state(struct drm_device *dev,
171 					 struct drm_modeset_acquire_ctx *ctx);
172 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc);
173 
174 struct intel_limit {
175 	struct {
176 		int min, max;
177 	} dot, vco, n, m, m1, m2, p, p1;
178 
179 	struct {
180 		int dot_limit;
181 		int p2_slow, p2_fast;
182 	} p2;
183 };
184 
185 /* returns HPLL frequency in kHz */
186 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
187 {
188 	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
189 
190 	/* Obtain SKU information */
191 	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
192 		CCK_FUSE_HPLL_FREQ_MASK;
193 
194 	return vco_freq[hpll_freq] * 1000;
195 }
196 
197 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
198 		      const char *name, u32 reg, int ref_freq)
199 {
200 	u32 val;
201 	int divider;
202 
203 	val = vlv_cck_read(dev_priv, reg);
204 	divider = val & CCK_FREQUENCY_VALUES;
205 
206 	drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) !=
207 		 (divider << CCK_FREQUENCY_STATUS_SHIFT),
208 		 "%s change in progress\n", name);
209 
210 	return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
211 }
212 
213 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
214 			   const char *name, u32 reg)
215 {
216 	int hpll;
217 
218 	vlv_cck_get(dev_priv);
219 
220 	if (dev_priv->hpll_freq == 0)
221 		dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
222 
223 	hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq);
224 
225 	vlv_cck_put(dev_priv);
226 
227 	return hpll;
228 }
229 
230 static void intel_update_czclk(struct drm_i915_private *dev_priv)
231 {
232 	if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
233 		return;
234 
235 	dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
236 						      CCK_CZ_CLOCK_CONTROL);
237 
238 	drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n",
239 		dev_priv->czclk_freq);
240 }
241 
242 /* units of 100MHz */
243 static u32 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
244 			       const struct intel_crtc_state *pipe_config)
245 {
246 	if (HAS_DDI(dev_priv))
247 		return pipe_config->port_clock; /* SPLL */
248 	else
249 		return dev_priv->fdi_pll_freq;
250 }
251 
252 static const struct intel_limit intel_limits_i8xx_dac = {
253 	.dot = { .min = 25000, .max = 350000 },
254 	.vco = { .min = 908000, .max = 1512000 },
255 	.n = { .min = 2, .max = 16 },
256 	.m = { .min = 96, .max = 140 },
257 	.m1 = { .min = 18, .max = 26 },
258 	.m2 = { .min = 6, .max = 16 },
259 	.p = { .min = 4, .max = 128 },
260 	.p1 = { .min = 2, .max = 33 },
261 	.p2 = { .dot_limit = 165000,
262 		.p2_slow = 4, .p2_fast = 2 },
263 };
264 
265 static const struct intel_limit intel_limits_i8xx_dvo = {
266 	.dot = { .min = 25000, .max = 350000 },
267 	.vco = { .min = 908000, .max = 1512000 },
268 	.n = { .min = 2, .max = 16 },
269 	.m = { .min = 96, .max = 140 },
270 	.m1 = { .min = 18, .max = 26 },
271 	.m2 = { .min = 6, .max = 16 },
272 	.p = { .min = 4, .max = 128 },
273 	.p1 = { .min = 2, .max = 33 },
274 	.p2 = { .dot_limit = 165000,
275 		.p2_slow = 4, .p2_fast = 4 },
276 };
277 
278 static const struct intel_limit intel_limits_i8xx_lvds = {
279 	.dot = { .min = 25000, .max = 350000 },
280 	.vco = { .min = 908000, .max = 1512000 },
281 	.n = { .min = 2, .max = 16 },
282 	.m = { .min = 96, .max = 140 },
283 	.m1 = { .min = 18, .max = 26 },
284 	.m2 = { .min = 6, .max = 16 },
285 	.p = { .min = 4, .max = 128 },
286 	.p1 = { .min = 1, .max = 6 },
287 	.p2 = { .dot_limit = 165000,
288 		.p2_slow = 14, .p2_fast = 7 },
289 };
290 
291 static const struct intel_limit intel_limits_i9xx_sdvo = {
292 	.dot = { .min = 20000, .max = 400000 },
293 	.vco = { .min = 1400000, .max = 2800000 },
294 	.n = { .min = 1, .max = 6 },
295 	.m = { .min = 70, .max = 120 },
296 	.m1 = { .min = 8, .max = 18 },
297 	.m2 = { .min = 3, .max = 7 },
298 	.p = { .min = 5, .max = 80 },
299 	.p1 = { .min = 1, .max = 8 },
300 	.p2 = { .dot_limit = 200000,
301 		.p2_slow = 10, .p2_fast = 5 },
302 };
303 
304 static const struct intel_limit intel_limits_i9xx_lvds = {
305 	.dot = { .min = 20000, .max = 400000 },
306 	.vco = { .min = 1400000, .max = 2800000 },
307 	.n = { .min = 1, .max = 6 },
308 	.m = { .min = 70, .max = 120 },
309 	.m1 = { .min = 8, .max = 18 },
310 	.m2 = { .min = 3, .max = 7 },
311 	.p = { .min = 7, .max = 98 },
312 	.p1 = { .min = 1, .max = 8 },
313 	.p2 = { .dot_limit = 112000,
314 		.p2_slow = 14, .p2_fast = 7 },
315 };
316 
317 
318 static const struct intel_limit intel_limits_g4x_sdvo = {
319 	.dot = { .min = 25000, .max = 270000 },
320 	.vco = { .min = 1750000, .max = 3500000},
321 	.n = { .min = 1, .max = 4 },
322 	.m = { .min = 104, .max = 138 },
323 	.m1 = { .min = 17, .max = 23 },
324 	.m2 = { .min = 5, .max = 11 },
325 	.p = { .min = 10, .max = 30 },
326 	.p1 = { .min = 1, .max = 3},
327 	.p2 = { .dot_limit = 270000,
328 		.p2_slow = 10,
329 		.p2_fast = 10
330 	},
331 };
332 
333 static const struct intel_limit intel_limits_g4x_hdmi = {
334 	.dot = { .min = 22000, .max = 400000 },
335 	.vco = { .min = 1750000, .max = 3500000},
336 	.n = { .min = 1, .max = 4 },
337 	.m = { .min = 104, .max = 138 },
338 	.m1 = { .min = 16, .max = 23 },
339 	.m2 = { .min = 5, .max = 11 },
340 	.p = { .min = 5, .max = 80 },
341 	.p1 = { .min = 1, .max = 8},
342 	.p2 = { .dot_limit = 165000,
343 		.p2_slow = 10, .p2_fast = 5 },
344 };
345 
346 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
347 	.dot = { .min = 20000, .max = 115000 },
348 	.vco = { .min = 1750000, .max = 3500000 },
349 	.n = { .min = 1, .max = 3 },
350 	.m = { .min = 104, .max = 138 },
351 	.m1 = { .min = 17, .max = 23 },
352 	.m2 = { .min = 5, .max = 11 },
353 	.p = { .min = 28, .max = 112 },
354 	.p1 = { .min = 2, .max = 8 },
355 	.p2 = { .dot_limit = 0,
356 		.p2_slow = 14, .p2_fast = 14
357 	},
358 };
359 
360 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
361 	.dot = { .min = 80000, .max = 224000 },
362 	.vco = { .min = 1750000, .max = 3500000 },
363 	.n = { .min = 1, .max = 3 },
364 	.m = { .min = 104, .max = 138 },
365 	.m1 = { .min = 17, .max = 23 },
366 	.m2 = { .min = 5, .max = 11 },
367 	.p = { .min = 14, .max = 42 },
368 	.p1 = { .min = 2, .max = 6 },
369 	.p2 = { .dot_limit = 0,
370 		.p2_slow = 7, .p2_fast = 7
371 	},
372 };
373 
374 static const struct intel_limit pnv_limits_sdvo = {
375 	.dot = { .min = 20000, .max = 400000},
376 	.vco = { .min = 1700000, .max = 3500000 },
377 	/* Pineview's Ncounter is a ring counter */
378 	.n = { .min = 3, .max = 6 },
379 	.m = { .min = 2, .max = 256 },
380 	/* Pineview only has one combined m divider, which we treat as m2. */
381 	.m1 = { .min = 0, .max = 0 },
382 	.m2 = { .min = 0, .max = 254 },
383 	.p = { .min = 5, .max = 80 },
384 	.p1 = { .min = 1, .max = 8 },
385 	.p2 = { .dot_limit = 200000,
386 		.p2_slow = 10, .p2_fast = 5 },
387 };
388 
389 static const struct intel_limit pnv_limits_lvds = {
390 	.dot = { .min = 20000, .max = 400000 },
391 	.vco = { .min = 1700000, .max = 3500000 },
392 	.n = { .min = 3, .max = 6 },
393 	.m = { .min = 2, .max = 256 },
394 	.m1 = { .min = 0, .max = 0 },
395 	.m2 = { .min = 0, .max = 254 },
396 	.p = { .min = 7, .max = 112 },
397 	.p1 = { .min = 1, .max = 8 },
398 	.p2 = { .dot_limit = 112000,
399 		.p2_slow = 14, .p2_fast = 14 },
400 };
401 
402 /* Ironlake / Sandybridge
403  *
404  * We calculate clock using (register_value + 2) for N/M1/M2, so here
405  * the range value for them is (actual_value - 2).
406  */
407 static const struct intel_limit ilk_limits_dac = {
408 	.dot = { .min = 25000, .max = 350000 },
409 	.vco = { .min = 1760000, .max = 3510000 },
410 	.n = { .min = 1, .max = 5 },
411 	.m = { .min = 79, .max = 127 },
412 	.m1 = { .min = 12, .max = 22 },
413 	.m2 = { .min = 5, .max = 9 },
414 	.p = { .min = 5, .max = 80 },
415 	.p1 = { .min = 1, .max = 8 },
416 	.p2 = { .dot_limit = 225000,
417 		.p2_slow = 10, .p2_fast = 5 },
418 };
419 
420 static const struct intel_limit ilk_limits_single_lvds = {
421 	.dot = { .min = 25000, .max = 350000 },
422 	.vco = { .min = 1760000, .max = 3510000 },
423 	.n = { .min = 1, .max = 3 },
424 	.m = { .min = 79, .max = 118 },
425 	.m1 = { .min = 12, .max = 22 },
426 	.m2 = { .min = 5, .max = 9 },
427 	.p = { .min = 28, .max = 112 },
428 	.p1 = { .min = 2, .max = 8 },
429 	.p2 = { .dot_limit = 225000,
430 		.p2_slow = 14, .p2_fast = 14 },
431 };
432 
433 static const struct intel_limit ilk_limits_dual_lvds = {
434 	.dot = { .min = 25000, .max = 350000 },
435 	.vco = { .min = 1760000, .max = 3510000 },
436 	.n = { .min = 1, .max = 3 },
437 	.m = { .min = 79, .max = 127 },
438 	.m1 = { .min = 12, .max = 22 },
439 	.m2 = { .min = 5, .max = 9 },
440 	.p = { .min = 14, .max = 56 },
441 	.p1 = { .min = 2, .max = 8 },
442 	.p2 = { .dot_limit = 225000,
443 		.p2_slow = 7, .p2_fast = 7 },
444 };
445 
446 /* LVDS 100mhz refclk limits. */
447 static const struct intel_limit ilk_limits_single_lvds_100m = {
448 	.dot = { .min = 25000, .max = 350000 },
449 	.vco = { .min = 1760000, .max = 3510000 },
450 	.n = { .min = 1, .max = 2 },
451 	.m = { .min = 79, .max = 126 },
452 	.m1 = { .min = 12, .max = 22 },
453 	.m2 = { .min = 5, .max = 9 },
454 	.p = { .min = 28, .max = 112 },
455 	.p1 = { .min = 2, .max = 8 },
456 	.p2 = { .dot_limit = 225000,
457 		.p2_slow = 14, .p2_fast = 14 },
458 };
459 
460 static const struct intel_limit ilk_limits_dual_lvds_100m = {
461 	.dot = { .min = 25000, .max = 350000 },
462 	.vco = { .min = 1760000, .max = 3510000 },
463 	.n = { .min = 1, .max = 3 },
464 	.m = { .min = 79, .max = 126 },
465 	.m1 = { .min = 12, .max = 22 },
466 	.m2 = { .min = 5, .max = 9 },
467 	.p = { .min = 14, .max = 42 },
468 	.p1 = { .min = 2, .max = 6 },
469 	.p2 = { .dot_limit = 225000,
470 		.p2_slow = 7, .p2_fast = 7 },
471 };
472 
473 static const struct intel_limit intel_limits_vlv = {
474 	 /*
475 	  * These are the data rate limits (measured in fast clocks)
476 	  * since those are the strictest limits we have. The fast
477 	  * clock and actual rate limits are more relaxed, so checking
478 	  * them would make no difference.
479 	  */
480 	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
481 	.vco = { .min = 4000000, .max = 6000000 },
482 	.n = { .min = 1, .max = 7 },
483 	.m1 = { .min = 2, .max = 3 },
484 	.m2 = { .min = 11, .max = 156 },
485 	.p1 = { .min = 2, .max = 3 },
486 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
487 };
488 
489 static const struct intel_limit intel_limits_chv = {
490 	/*
491 	 * These are the data rate limits (measured in fast clocks)
492 	 * since those are the strictest limits we have.  The fast
493 	 * clock and actual rate limits are more relaxed, so checking
494 	 * them would make no difference.
495 	 */
496 	.dot = { .min = 25000 * 5, .max = 540000 * 5},
497 	.vco = { .min = 4800000, .max = 6480000 },
498 	.n = { .min = 1, .max = 1 },
499 	.m1 = { .min = 2, .max = 2 },
500 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
501 	.p1 = { .min = 2, .max = 4 },
502 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
503 };
504 
505 static const struct intel_limit intel_limits_bxt = {
506 	/* FIXME: find real dot limits */
507 	.dot = { .min = 0, .max = INT_MAX },
508 	.vco = { .min = 4800000, .max = 6700000 },
509 	.n = { .min = 1, .max = 1 },
510 	.m1 = { .min = 2, .max = 2 },
511 	/* FIXME: find real m2 limits */
512 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
513 	.p1 = { .min = 2, .max = 4 },
514 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
515 };
516 
517 /* WA Display #0827: Gen9:all */
518 static void
519 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable)
520 {
521 	if (enable)
522 		intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
523 		               intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS);
524 	else
525 		intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
526 		               intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS));
527 }
528 
529 /* Wa_2006604312:icl,ehl */
530 static void
531 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
532 		       bool enable)
533 {
534 	if (enable)
535 		intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
536 		               intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS);
537 	else
538 		intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe),
539 		               intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS);
540 }
541 
542 static bool
543 needs_modeset(const struct intel_crtc_state *state)
544 {
545 	return drm_atomic_crtc_needs_modeset(&state->uapi);
546 }
547 
548 static bool
549 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state)
550 {
551 	return crtc_state->master_transcoder != INVALID_TRANSCODER;
552 }
553 
554 static bool
555 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state)
556 {
557 	return crtc_state->sync_mode_slaves_mask != 0;
558 }
559 
560 bool
561 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state)
562 {
563 	return is_trans_port_sync_master(crtc_state) ||
564 		is_trans_port_sync_slave(crtc_state);
565 }
566 
567 /*
568  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
569  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
570  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
571  * The helpers' return value is the rate of the clock that is fed to the
572  * display engine's pipe which can be the above fast dot clock rate or a
573  * divided-down version of it.
574  */
575 /* m1 is reserved as 0 in Pineview, n is a ring counter */
576 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
577 {
578 	clock->m = clock->m2 + 2;
579 	clock->p = clock->p1 * clock->p2;
580 	if (WARN_ON(clock->n == 0 || clock->p == 0))
581 		return 0;
582 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
583 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
584 
585 	return clock->dot;
586 }
587 
588 static u32 i9xx_dpll_compute_m(struct dpll *dpll)
589 {
590 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
591 }
592 
593 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
594 {
595 	clock->m = i9xx_dpll_compute_m(clock);
596 	clock->p = clock->p1 * clock->p2;
597 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
598 		return 0;
599 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
600 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
601 
602 	return clock->dot;
603 }
604 
605 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
606 {
607 	clock->m = clock->m1 * clock->m2;
608 	clock->p = clock->p1 * clock->p2;
609 	if (WARN_ON(clock->n == 0 || clock->p == 0))
610 		return 0;
611 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
612 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
613 
614 	return clock->dot / 5;
615 }
616 
617 int chv_calc_dpll_params(int refclk, struct dpll *clock)
618 {
619 	clock->m = clock->m1 * clock->m2;
620 	clock->p = clock->p1 * clock->p2;
621 	if (WARN_ON(clock->n == 0 || clock->p == 0))
622 		return 0;
623 	clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
624 					   clock->n << 22);
625 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
626 
627 	return clock->dot / 5;
628 }
629 
630 /*
631  * Returns whether the given set of divisors are valid for a given refclk with
632  * the given connectors.
633  */
634 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
635 			       const struct intel_limit *limit,
636 			       const struct dpll *clock)
637 {
638 	if (clock->n < limit->n.min || limit->n.max < clock->n)
639 		return false;
640 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
641 		return false;
642 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
643 		return false;
644 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
645 		return false;
646 
647 	if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
648 	    !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
649 		if (clock->m1 <= clock->m2)
650 			return false;
651 
652 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
653 	    !IS_GEN9_LP(dev_priv)) {
654 		if (clock->p < limit->p.min || limit->p.max < clock->p)
655 			return false;
656 		if (clock->m < limit->m.min || limit->m.max < clock->m)
657 			return false;
658 	}
659 
660 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
661 		return false;
662 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
663 	 * connector, etc., rather than just a single range.
664 	 */
665 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
666 		return false;
667 
668 	return true;
669 }
670 
671 static int
672 i9xx_select_p2_div(const struct intel_limit *limit,
673 		   const struct intel_crtc_state *crtc_state,
674 		   int target)
675 {
676 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
677 
678 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
679 		/*
680 		 * For LVDS just rely on its current settings for dual-channel.
681 		 * We haven't figured out how to reliably set up different
682 		 * single/dual channel state, if we even can.
683 		 */
684 		if (intel_is_dual_link_lvds(dev_priv))
685 			return limit->p2.p2_fast;
686 		else
687 			return limit->p2.p2_slow;
688 	} else {
689 		if (target < limit->p2.dot_limit)
690 			return limit->p2.p2_slow;
691 		else
692 			return limit->p2.p2_fast;
693 	}
694 }
695 
696 /*
697  * Returns a set of divisors for the desired target clock with the given
698  * refclk, or FALSE.  The returned values represent the clock equation:
699  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
700  *
701  * Target and reference clocks are specified in kHz.
702  *
703  * If match_clock is provided, then best_clock P divider must match the P
704  * divider from @match_clock used for LVDS downclocking.
705  */
706 static bool
707 i9xx_find_best_dpll(const struct intel_limit *limit,
708 		    struct intel_crtc_state *crtc_state,
709 		    int target, int refclk, struct dpll *match_clock,
710 		    struct dpll *best_clock)
711 {
712 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
713 	struct dpll clock;
714 	int err = target;
715 
716 	memset(best_clock, 0, sizeof(*best_clock));
717 
718 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
719 
720 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
721 	     clock.m1++) {
722 		for (clock.m2 = limit->m2.min;
723 		     clock.m2 <= limit->m2.max; clock.m2++) {
724 			if (clock.m2 >= clock.m1)
725 				break;
726 			for (clock.n = limit->n.min;
727 			     clock.n <= limit->n.max; clock.n++) {
728 				for (clock.p1 = limit->p1.min;
729 					clock.p1 <= limit->p1.max; clock.p1++) {
730 					int this_err;
731 
732 					i9xx_calc_dpll_params(refclk, &clock);
733 					if (!intel_pll_is_valid(to_i915(dev),
734 								limit,
735 								&clock))
736 						continue;
737 					if (match_clock &&
738 					    clock.p != match_clock->p)
739 						continue;
740 
741 					this_err = abs(clock.dot - target);
742 					if (this_err < err) {
743 						*best_clock = clock;
744 						err = this_err;
745 					}
746 				}
747 			}
748 		}
749 	}
750 
751 	return (err != target);
752 }
753 
754 /*
755  * Returns a set of divisors for the desired target clock with the given
756  * refclk, or FALSE.  The returned values represent the clock equation:
757  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
758  *
759  * Target and reference clocks are specified in kHz.
760  *
761  * If match_clock is provided, then best_clock P divider must match the P
762  * divider from @match_clock used for LVDS downclocking.
763  */
764 static bool
765 pnv_find_best_dpll(const struct intel_limit *limit,
766 		   struct intel_crtc_state *crtc_state,
767 		   int target, int refclk, struct dpll *match_clock,
768 		   struct dpll *best_clock)
769 {
770 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
771 	struct dpll clock;
772 	int err = target;
773 
774 	memset(best_clock, 0, sizeof(*best_clock));
775 
776 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
777 
778 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
779 	     clock.m1++) {
780 		for (clock.m2 = limit->m2.min;
781 		     clock.m2 <= limit->m2.max; clock.m2++) {
782 			for (clock.n = limit->n.min;
783 			     clock.n <= limit->n.max; clock.n++) {
784 				for (clock.p1 = limit->p1.min;
785 					clock.p1 <= limit->p1.max; clock.p1++) {
786 					int this_err;
787 
788 					pnv_calc_dpll_params(refclk, &clock);
789 					if (!intel_pll_is_valid(to_i915(dev),
790 								limit,
791 								&clock))
792 						continue;
793 					if (match_clock &&
794 					    clock.p != match_clock->p)
795 						continue;
796 
797 					this_err = abs(clock.dot - target);
798 					if (this_err < err) {
799 						*best_clock = clock;
800 						err = this_err;
801 					}
802 				}
803 			}
804 		}
805 	}
806 
807 	return (err != target);
808 }
809 
810 /*
811  * Returns a set of divisors for the desired target clock with the given
812  * refclk, or FALSE.  The returned values represent the clock equation:
813  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
814  *
815  * Target and reference clocks are specified in kHz.
816  *
817  * If match_clock is provided, then best_clock P divider must match the P
818  * divider from @match_clock used for LVDS downclocking.
819  */
820 static bool
821 g4x_find_best_dpll(const struct intel_limit *limit,
822 		   struct intel_crtc_state *crtc_state,
823 		   int target, int refclk, struct dpll *match_clock,
824 		   struct dpll *best_clock)
825 {
826 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
827 	struct dpll clock;
828 	int max_n;
829 	bool found = false;
830 	/* approximately equals target * 0.00585 */
831 	int err_most = (target >> 8) + (target >> 9);
832 
833 	memset(best_clock, 0, sizeof(*best_clock));
834 
835 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
836 
837 	max_n = limit->n.max;
838 	/* based on hardware requirement, prefer smaller n to precision */
839 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
840 		/* based on hardware requirement, prefere larger m1,m2 */
841 		for (clock.m1 = limit->m1.max;
842 		     clock.m1 >= limit->m1.min; clock.m1--) {
843 			for (clock.m2 = limit->m2.max;
844 			     clock.m2 >= limit->m2.min; clock.m2--) {
845 				for (clock.p1 = limit->p1.max;
846 				     clock.p1 >= limit->p1.min; clock.p1--) {
847 					int this_err;
848 
849 					i9xx_calc_dpll_params(refclk, &clock);
850 					if (!intel_pll_is_valid(to_i915(dev),
851 								limit,
852 								&clock))
853 						continue;
854 
855 					this_err = abs(clock.dot - target);
856 					if (this_err < err_most) {
857 						*best_clock = clock;
858 						err_most = this_err;
859 						max_n = clock.n;
860 						found = true;
861 					}
862 				}
863 			}
864 		}
865 	}
866 	return found;
867 }
868 
869 /*
870  * Check if the calculated PLL configuration is more optimal compared to the
871  * best configuration and error found so far. Return the calculated error.
872  */
873 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
874 			       const struct dpll *calculated_clock,
875 			       const struct dpll *best_clock,
876 			       unsigned int best_error_ppm,
877 			       unsigned int *error_ppm)
878 {
879 	/*
880 	 * For CHV ignore the error and consider only the P value.
881 	 * Prefer a bigger P value based on HW requirements.
882 	 */
883 	if (IS_CHERRYVIEW(to_i915(dev))) {
884 		*error_ppm = 0;
885 
886 		return calculated_clock->p > best_clock->p;
887 	}
888 
889 	if (drm_WARN_ON_ONCE(dev, !target_freq))
890 		return false;
891 
892 	*error_ppm = div_u64(1000000ULL *
893 				abs(target_freq - calculated_clock->dot),
894 			     target_freq);
895 	/*
896 	 * Prefer a better P value over a better (smaller) error if the error
897 	 * is small. Ensure this preference for future configurations too by
898 	 * setting the error to 0.
899 	 */
900 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
901 		*error_ppm = 0;
902 
903 		return true;
904 	}
905 
906 	return *error_ppm + 10 < best_error_ppm;
907 }
908 
909 /*
910  * Returns a set of divisors for the desired target clock with the given
911  * refclk, or FALSE.  The returned values represent the clock equation:
912  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
913  */
914 static bool
915 vlv_find_best_dpll(const struct intel_limit *limit,
916 		   struct intel_crtc_state *crtc_state,
917 		   int target, int refclk, struct dpll *match_clock,
918 		   struct dpll *best_clock)
919 {
920 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
921 	struct drm_device *dev = crtc->base.dev;
922 	struct dpll clock;
923 	unsigned int bestppm = 1000000;
924 	/* min update 19.2 MHz */
925 	int max_n = min(limit->n.max, refclk / 19200);
926 	bool found = false;
927 
928 	target *= 5; /* fast clock */
929 
930 	memset(best_clock, 0, sizeof(*best_clock));
931 
932 	/* based on hardware requirement, prefer smaller n to precision */
933 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
934 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
935 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
936 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
937 				clock.p = clock.p1 * clock.p2;
938 				/* based on hardware requirement, prefer bigger m1,m2 values */
939 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
940 					unsigned int ppm;
941 
942 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
943 								     refclk * clock.m1);
944 
945 					vlv_calc_dpll_params(refclk, &clock);
946 
947 					if (!intel_pll_is_valid(to_i915(dev),
948 								limit,
949 								&clock))
950 						continue;
951 
952 					if (!vlv_PLL_is_optimal(dev, target,
953 								&clock,
954 								best_clock,
955 								bestppm, &ppm))
956 						continue;
957 
958 					*best_clock = clock;
959 					bestppm = ppm;
960 					found = true;
961 				}
962 			}
963 		}
964 	}
965 
966 	return found;
967 }
968 
969 /*
970  * Returns a set of divisors for the desired target clock with the given
971  * refclk, or FALSE.  The returned values represent the clock equation:
972  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
973  */
974 static bool
975 chv_find_best_dpll(const struct intel_limit *limit,
976 		   struct intel_crtc_state *crtc_state,
977 		   int target, int refclk, struct dpll *match_clock,
978 		   struct dpll *best_clock)
979 {
980 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
981 	struct drm_device *dev = crtc->base.dev;
982 	unsigned int best_error_ppm;
983 	struct dpll clock;
984 	u64 m2;
985 	int found = false;
986 
987 	memset(best_clock, 0, sizeof(*best_clock));
988 	best_error_ppm = 1000000;
989 
990 	/*
991 	 * Based on hardware doc, the n always set to 1, and m1 always
992 	 * set to 2.  If requires to support 200Mhz refclk, we need to
993 	 * revisit this because n may not 1 anymore.
994 	 */
995 	clock.n = 1, clock.m1 = 2;
996 	target *= 5;	/* fast clock */
997 
998 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
999 		for (clock.p2 = limit->p2.p2_fast;
1000 				clock.p2 >= limit->p2.p2_slow;
1001 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1002 			unsigned int error_ppm;
1003 
1004 			clock.p = clock.p1 * clock.p2;
1005 
1006 			m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
1007 						   refclk * clock.m1);
1008 
1009 			if (m2 > INT_MAX/clock.m1)
1010 				continue;
1011 
1012 			clock.m2 = m2;
1013 
1014 			chv_calc_dpll_params(refclk, &clock);
1015 
1016 			if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
1017 				continue;
1018 
1019 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1020 						best_error_ppm, &error_ppm))
1021 				continue;
1022 
1023 			*best_clock = clock;
1024 			best_error_ppm = error_ppm;
1025 			found = true;
1026 		}
1027 	}
1028 
1029 	return found;
1030 }
1031 
1032 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
1033 			struct dpll *best_clock)
1034 {
1035 	int refclk = 100000;
1036 	const struct intel_limit *limit = &intel_limits_bxt;
1037 
1038 	return chv_find_best_dpll(limit, crtc_state,
1039 				  crtc_state->port_clock, refclk,
1040 				  NULL, best_clock);
1041 }
1042 
1043 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1044 				    enum pipe pipe)
1045 {
1046 	i915_reg_t reg = PIPEDSL(pipe);
1047 	u32 line1, line2;
1048 	u32 line_mask;
1049 
1050 	if (IS_GEN(dev_priv, 2))
1051 		line_mask = DSL_LINEMASK_GEN2;
1052 	else
1053 		line_mask = DSL_LINEMASK_GEN3;
1054 
1055 	line1 = intel_de_read(dev_priv, reg) & line_mask;
1056 	msleep(5);
1057 	line2 = intel_de_read(dev_priv, reg) & line_mask;
1058 
1059 	return line1 != line2;
1060 }
1061 
1062 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1063 {
1064 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1065 	enum pipe pipe = crtc->pipe;
1066 
1067 	/* Wait for the display line to settle/start moving */
1068 	if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1069 		drm_err(&dev_priv->drm,
1070 			"pipe %c scanline %s wait timed out\n",
1071 			pipe_name(pipe), onoff(state));
1072 }
1073 
1074 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1075 {
1076 	wait_for_pipe_scanline_moving(crtc, false);
1077 }
1078 
1079 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1080 {
1081 	wait_for_pipe_scanline_moving(crtc, true);
1082 }
1083 
1084 static void
1085 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
1086 {
1087 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1088 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1089 
1090 	if (INTEL_GEN(dev_priv) >= 4) {
1091 		enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1092 		i915_reg_t reg = PIPECONF(cpu_transcoder);
1093 
1094 		/* Wait for the Pipe State to go off */
1095 		if (intel_de_wait_for_clear(dev_priv, reg,
1096 					    I965_PIPECONF_ACTIVE, 100))
1097 			drm_WARN(&dev_priv->drm, 1,
1098 				 "pipe_off wait timed out\n");
1099 	} else {
1100 		intel_wait_for_pipe_scanline_stopped(crtc);
1101 	}
1102 }
1103 
1104 /* Only for pre-ILK configs */
1105 void assert_pll(struct drm_i915_private *dev_priv,
1106 		enum pipe pipe, bool state)
1107 {
1108 	u32 val;
1109 	bool cur_state;
1110 
1111 	val = intel_de_read(dev_priv, DPLL(pipe));
1112 	cur_state = !!(val & DPLL_VCO_ENABLE);
1113 	I915_STATE_WARN(cur_state != state,
1114 	     "PLL state assertion failure (expected %s, current %s)\n",
1115 			onoff(state), onoff(cur_state));
1116 }
1117 
1118 /* XXX: the dsi pll is shared between MIPI DSI ports */
1119 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1120 {
1121 	u32 val;
1122 	bool cur_state;
1123 
1124 	vlv_cck_get(dev_priv);
1125 	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1126 	vlv_cck_put(dev_priv);
1127 
1128 	cur_state = val & DSI_PLL_VCO_EN;
1129 	I915_STATE_WARN(cur_state != state,
1130 	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1131 			onoff(state), onoff(cur_state));
1132 }
1133 
1134 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1135 			  enum pipe pipe, bool state)
1136 {
1137 	bool cur_state;
1138 
1139 	if (HAS_DDI(dev_priv)) {
1140 		/*
1141 		 * DDI does not have a specific FDI_TX register.
1142 		 *
1143 		 * FDI is never fed from EDP transcoder
1144 		 * so pipe->transcoder cast is fine here.
1145 		 */
1146 		enum transcoder cpu_transcoder = (enum transcoder)pipe;
1147 		u32 val = intel_de_read(dev_priv,
1148 					TRANS_DDI_FUNC_CTL(cpu_transcoder));
1149 		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1150 	} else {
1151 		u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe));
1152 		cur_state = !!(val & FDI_TX_ENABLE);
1153 	}
1154 	I915_STATE_WARN(cur_state != state,
1155 	     "FDI TX state assertion failure (expected %s, current %s)\n",
1156 			onoff(state), onoff(cur_state));
1157 }
1158 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1159 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1160 
1161 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1162 			  enum pipe pipe, bool state)
1163 {
1164 	u32 val;
1165 	bool cur_state;
1166 
1167 	val = intel_de_read(dev_priv, FDI_RX_CTL(pipe));
1168 	cur_state = !!(val & FDI_RX_ENABLE);
1169 	I915_STATE_WARN(cur_state != state,
1170 	     "FDI RX state assertion failure (expected %s, current %s)\n",
1171 			onoff(state), onoff(cur_state));
1172 }
1173 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1174 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1175 
1176 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1177 				      enum pipe pipe)
1178 {
1179 	u32 val;
1180 
1181 	/* ILK FDI PLL is always enabled */
1182 	if (IS_GEN(dev_priv, 5))
1183 		return;
1184 
1185 	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
1186 	if (HAS_DDI(dev_priv))
1187 		return;
1188 
1189 	val = intel_de_read(dev_priv, FDI_TX_CTL(pipe));
1190 	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1191 }
1192 
1193 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1194 		       enum pipe pipe, bool state)
1195 {
1196 	u32 val;
1197 	bool cur_state;
1198 
1199 	val = intel_de_read(dev_priv, FDI_RX_CTL(pipe));
1200 	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1201 	I915_STATE_WARN(cur_state != state,
1202 	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1203 			onoff(state), onoff(cur_state));
1204 }
1205 
1206 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1207 {
1208 	i915_reg_t pp_reg;
1209 	u32 val;
1210 	enum pipe panel_pipe = INVALID_PIPE;
1211 	bool locked = true;
1212 
1213 	if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv)))
1214 		return;
1215 
1216 	if (HAS_PCH_SPLIT(dev_priv)) {
1217 		u32 port_sel;
1218 
1219 		pp_reg = PP_CONTROL(0);
1220 		port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1221 
1222 		switch (port_sel) {
1223 		case PANEL_PORT_SELECT_LVDS:
1224 			intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe);
1225 			break;
1226 		case PANEL_PORT_SELECT_DPA:
1227 			intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe);
1228 			break;
1229 		case PANEL_PORT_SELECT_DPC:
1230 			intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe);
1231 			break;
1232 		case PANEL_PORT_SELECT_DPD:
1233 			intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe);
1234 			break;
1235 		default:
1236 			MISSING_CASE(port_sel);
1237 			break;
1238 		}
1239 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1240 		/* presumably write lock depends on pipe, not port select */
1241 		pp_reg = PP_CONTROL(pipe);
1242 		panel_pipe = pipe;
1243 	} else {
1244 		u32 port_sel;
1245 
1246 		pp_reg = PP_CONTROL(0);
1247 		port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1248 
1249 		drm_WARN_ON(&dev_priv->drm,
1250 			    port_sel != PANEL_PORT_SELECT_LVDS);
1251 		intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe);
1252 	}
1253 
1254 	val = intel_de_read(dev_priv, pp_reg);
1255 	if (!(val & PANEL_POWER_ON) ||
1256 	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1257 		locked = false;
1258 
1259 	I915_STATE_WARN(panel_pipe == pipe && locked,
1260 	     "panel assertion failure, pipe %c regs locked\n",
1261 	     pipe_name(pipe));
1262 }
1263 
1264 void assert_pipe(struct drm_i915_private *dev_priv,
1265 		 enum transcoder cpu_transcoder, bool state)
1266 {
1267 	bool cur_state;
1268 	enum intel_display_power_domain power_domain;
1269 	intel_wakeref_t wakeref;
1270 
1271 	/* we keep both pipes enabled on 830 */
1272 	if (IS_I830(dev_priv))
1273 		state = true;
1274 
1275 	power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1276 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
1277 	if (wakeref) {
1278 		u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder));
1279 		cur_state = !!(val & PIPECONF_ENABLE);
1280 
1281 		intel_display_power_put(dev_priv, power_domain, wakeref);
1282 	} else {
1283 		cur_state = false;
1284 	}
1285 
1286 	I915_STATE_WARN(cur_state != state,
1287 			"transcoder %s assertion failure (expected %s, current %s)\n",
1288 			transcoder_name(cpu_transcoder),
1289 			onoff(state), onoff(cur_state));
1290 }
1291 
1292 static void assert_plane(struct intel_plane *plane, bool state)
1293 {
1294 	enum pipe pipe;
1295 	bool cur_state;
1296 
1297 	cur_state = plane->get_hw_state(plane, &pipe);
1298 
1299 	I915_STATE_WARN(cur_state != state,
1300 			"%s assertion failure (expected %s, current %s)\n",
1301 			plane->base.name, onoff(state), onoff(cur_state));
1302 }
1303 
1304 #define assert_plane_enabled(p) assert_plane(p, true)
1305 #define assert_plane_disabled(p) assert_plane(p, false)
1306 
1307 static void assert_planes_disabled(struct intel_crtc *crtc)
1308 {
1309 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1310 	struct intel_plane *plane;
1311 
1312 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1313 		assert_plane_disabled(plane);
1314 }
1315 
1316 static void assert_vblank_disabled(struct drm_crtc *crtc)
1317 {
1318 	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1319 		drm_crtc_vblank_put(crtc);
1320 }
1321 
1322 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1323 				    enum pipe pipe)
1324 {
1325 	u32 val;
1326 	bool enabled;
1327 
1328 	val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe));
1329 	enabled = !!(val & TRANS_ENABLE);
1330 	I915_STATE_WARN(enabled,
1331 	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1332 	     pipe_name(pipe));
1333 }
1334 
1335 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1336 				   enum pipe pipe, enum port port,
1337 				   i915_reg_t dp_reg)
1338 {
1339 	enum pipe port_pipe;
1340 	bool state;
1341 
1342 	state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe);
1343 
1344 	I915_STATE_WARN(state && port_pipe == pipe,
1345 			"PCH DP %c enabled on transcoder %c, should be disabled\n",
1346 			port_name(port), pipe_name(pipe));
1347 
1348 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1349 			"IBX PCH DP %c still using transcoder B\n",
1350 			port_name(port));
1351 }
1352 
1353 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1354 				     enum pipe pipe, enum port port,
1355 				     i915_reg_t hdmi_reg)
1356 {
1357 	enum pipe port_pipe;
1358 	bool state;
1359 
1360 	state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe);
1361 
1362 	I915_STATE_WARN(state && port_pipe == pipe,
1363 			"PCH HDMI %c enabled on transcoder %c, should be disabled\n",
1364 			port_name(port), pipe_name(pipe));
1365 
1366 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1367 			"IBX PCH HDMI %c still using transcoder B\n",
1368 			port_name(port));
1369 }
1370 
1371 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1372 				      enum pipe pipe)
1373 {
1374 	enum pipe port_pipe;
1375 
1376 	assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B);
1377 	assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C);
1378 	assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D);
1379 
1380 	I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) &&
1381 			port_pipe == pipe,
1382 			"PCH VGA enabled on transcoder %c, should be disabled\n",
1383 			pipe_name(pipe));
1384 
1385 	I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) &&
1386 			port_pipe == pipe,
1387 			"PCH LVDS enabled on transcoder %c, should be disabled\n",
1388 			pipe_name(pipe));
1389 
1390 	/* PCH SDVOB multiplex with HDMIB */
1391 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB);
1392 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC);
1393 	assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID);
1394 }
1395 
1396 static void _vlv_enable_pll(struct intel_crtc *crtc,
1397 			    const struct intel_crtc_state *pipe_config)
1398 {
1399 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1400 	enum pipe pipe = crtc->pipe;
1401 
1402 	intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1403 	intel_de_posting_read(dev_priv, DPLL(pipe));
1404 	udelay(150);
1405 
1406 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1407 		drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
1408 }
1409 
1410 static void vlv_enable_pll(struct intel_crtc *crtc,
1411 			   const struct intel_crtc_state *pipe_config)
1412 {
1413 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1414 	enum pipe pipe = crtc->pipe;
1415 
1416 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1417 
1418 	/* PLL is protected by panel, make sure we can write it */
1419 	assert_panel_unlocked(dev_priv, pipe);
1420 
1421 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1422 		_vlv_enable_pll(crtc, pipe_config);
1423 
1424 	intel_de_write(dev_priv, DPLL_MD(pipe),
1425 		       pipe_config->dpll_hw_state.dpll_md);
1426 	intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1427 }
1428 
1429 
1430 static void _chv_enable_pll(struct intel_crtc *crtc,
1431 			    const struct intel_crtc_state *pipe_config)
1432 {
1433 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1434 	enum pipe pipe = crtc->pipe;
1435 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1436 	u32 tmp;
1437 
1438 	vlv_dpio_get(dev_priv);
1439 
1440 	/* Enable back the 10bit clock to display controller */
1441 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1442 	tmp |= DPIO_DCLKP_EN;
1443 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1444 
1445 	vlv_dpio_put(dev_priv);
1446 
1447 	/*
1448 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1449 	 */
1450 	udelay(1);
1451 
1452 	/* Enable PLL */
1453 	intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1454 
1455 	/* Check PLL is locked */
1456 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1457 		drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
1458 }
1459 
1460 static void chv_enable_pll(struct intel_crtc *crtc,
1461 			   const struct intel_crtc_state *pipe_config)
1462 {
1463 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1464 	enum pipe pipe = crtc->pipe;
1465 
1466 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1467 
1468 	/* PLL is protected by panel, make sure we can write it */
1469 	assert_panel_unlocked(dev_priv, pipe);
1470 
1471 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1472 		_chv_enable_pll(crtc, pipe_config);
1473 
1474 	if (pipe != PIPE_A) {
1475 		/*
1476 		 * WaPixelRepeatModeFixForC0:chv
1477 		 *
1478 		 * DPLLCMD is AWOL. Use chicken bits to propagate
1479 		 * the value from DPLLBMD to either pipe B or C.
1480 		 */
1481 		intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1482 		intel_de_write(dev_priv, DPLL_MD(PIPE_B),
1483 			       pipe_config->dpll_hw_state.dpll_md);
1484 		intel_de_write(dev_priv, CBR4_VLV, 0);
1485 		dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1486 
1487 		/*
1488 		 * DPLLB VGA mode also seems to cause problems.
1489 		 * We should always have it disabled.
1490 		 */
1491 		drm_WARN_ON(&dev_priv->drm,
1492 			    (intel_de_read(dev_priv, DPLL(PIPE_B)) &
1493 			     DPLL_VGA_MODE_DIS) == 0);
1494 	} else {
1495 		intel_de_write(dev_priv, DPLL_MD(pipe),
1496 			       pipe_config->dpll_hw_state.dpll_md);
1497 		intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1498 	}
1499 }
1500 
1501 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1502 {
1503 	if (IS_I830(dev_priv))
1504 		return false;
1505 
1506 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1507 }
1508 
1509 static void i9xx_enable_pll(struct intel_crtc *crtc,
1510 			    const struct intel_crtc_state *crtc_state)
1511 {
1512 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1513 	i915_reg_t reg = DPLL(crtc->pipe);
1514 	u32 dpll = crtc_state->dpll_hw_state.dpll;
1515 	int i;
1516 
1517 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1518 
1519 	/* PLL is protected by panel, make sure we can write it */
1520 	if (i9xx_has_pps(dev_priv))
1521 		assert_panel_unlocked(dev_priv, crtc->pipe);
1522 
1523 	/*
1524 	 * Apparently we need to have VGA mode enabled prior to changing
1525 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1526 	 * dividers, even though the register value does change.
1527 	 */
1528 	intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS);
1529 	intel_de_write(dev_priv, reg, dpll);
1530 
1531 	/* Wait for the clocks to stabilize. */
1532 	intel_de_posting_read(dev_priv, reg);
1533 	udelay(150);
1534 
1535 	if (INTEL_GEN(dev_priv) >= 4) {
1536 		intel_de_write(dev_priv, DPLL_MD(crtc->pipe),
1537 			       crtc_state->dpll_hw_state.dpll_md);
1538 	} else {
1539 		/* The pixel multiplier can only be updated once the
1540 		 * DPLL is enabled and the clocks are stable.
1541 		 *
1542 		 * So write it again.
1543 		 */
1544 		intel_de_write(dev_priv, reg, dpll);
1545 	}
1546 
1547 	/* We do this three times for luck */
1548 	for (i = 0; i < 3; i++) {
1549 		intel_de_write(dev_priv, reg, dpll);
1550 		intel_de_posting_read(dev_priv, reg);
1551 		udelay(150); /* wait for warmup */
1552 	}
1553 }
1554 
1555 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1556 {
1557 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1558 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1559 	enum pipe pipe = crtc->pipe;
1560 
1561 	/* Don't disable pipe or pipe PLLs if needed */
1562 	if (IS_I830(dev_priv))
1563 		return;
1564 
1565 	/* Make sure the pipe isn't still relying on us */
1566 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1567 
1568 	intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
1569 	intel_de_posting_read(dev_priv, DPLL(pipe));
1570 }
1571 
1572 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1573 {
1574 	u32 val;
1575 
1576 	/* Make sure the pipe isn't still relying on us */
1577 	assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1578 
1579 	val = DPLL_INTEGRATED_REF_CLK_VLV |
1580 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1581 	if (pipe != PIPE_A)
1582 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1583 
1584 	intel_de_write(dev_priv, DPLL(pipe), val);
1585 	intel_de_posting_read(dev_priv, DPLL(pipe));
1586 }
1587 
1588 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1589 {
1590 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1591 	u32 val;
1592 
1593 	/* Make sure the pipe isn't still relying on us */
1594 	assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1595 
1596 	val = DPLL_SSC_REF_CLK_CHV |
1597 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1598 	if (pipe != PIPE_A)
1599 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1600 
1601 	intel_de_write(dev_priv, DPLL(pipe), val);
1602 	intel_de_posting_read(dev_priv, DPLL(pipe));
1603 
1604 	vlv_dpio_get(dev_priv);
1605 
1606 	/* Disable 10bit clock to display controller */
1607 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1608 	val &= ~DPIO_DCLKP_EN;
1609 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1610 
1611 	vlv_dpio_put(dev_priv);
1612 }
1613 
1614 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1615 			 struct intel_digital_port *dig_port,
1616 			 unsigned int expected_mask)
1617 {
1618 	u32 port_mask;
1619 	i915_reg_t dpll_reg;
1620 
1621 	switch (dig_port->base.port) {
1622 	case PORT_B:
1623 		port_mask = DPLL_PORTB_READY_MASK;
1624 		dpll_reg = DPLL(0);
1625 		break;
1626 	case PORT_C:
1627 		port_mask = DPLL_PORTC_READY_MASK;
1628 		dpll_reg = DPLL(0);
1629 		expected_mask <<= 4;
1630 		break;
1631 	case PORT_D:
1632 		port_mask = DPLL_PORTD_READY_MASK;
1633 		dpll_reg = DPIO_PHY_STATUS;
1634 		break;
1635 	default:
1636 		BUG();
1637 	}
1638 
1639 	if (intel_de_wait_for_register(dev_priv, dpll_reg,
1640 				       port_mask, expected_mask, 1000))
1641 		drm_WARN(&dev_priv->drm, 1,
1642 			 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n",
1643 			 dig_port->base.base.base.id, dig_port->base.base.name,
1644 			 intel_de_read(dev_priv, dpll_reg) & port_mask,
1645 			 expected_mask);
1646 }
1647 
1648 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state)
1649 {
1650 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1651 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1652 	enum pipe pipe = crtc->pipe;
1653 	i915_reg_t reg;
1654 	u32 val, pipeconf_val;
1655 
1656 	/* Make sure PCH DPLL is enabled */
1657 	assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll);
1658 
1659 	/* FDI must be feeding us bits for PCH ports */
1660 	assert_fdi_tx_enabled(dev_priv, pipe);
1661 	assert_fdi_rx_enabled(dev_priv, pipe);
1662 
1663 	if (HAS_PCH_CPT(dev_priv)) {
1664 		reg = TRANS_CHICKEN2(pipe);
1665 		val = intel_de_read(dev_priv, reg);
1666 		/*
1667 		 * Workaround: Set the timing override bit
1668 		 * before enabling the pch transcoder.
1669 		 */
1670 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1671 		/* Configure frame start delay to match the CPU */
1672 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1673 		val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1674 		intel_de_write(dev_priv, reg, val);
1675 	}
1676 
1677 	reg = PCH_TRANSCONF(pipe);
1678 	val = intel_de_read(dev_priv, reg);
1679 	pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe));
1680 
1681 	if (HAS_PCH_IBX(dev_priv)) {
1682 		/* Configure frame start delay to match the CPU */
1683 		val &= ~TRANS_FRAME_START_DELAY_MASK;
1684 		val |= TRANS_FRAME_START_DELAY(0);
1685 
1686 		/*
1687 		 * Make the BPC in transcoder be consistent with
1688 		 * that in pipeconf reg. For HDMI we must use 8bpc
1689 		 * here for both 8bpc and 12bpc.
1690 		 */
1691 		val &= ~PIPECONF_BPC_MASK;
1692 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1693 			val |= PIPECONF_8BPC;
1694 		else
1695 			val |= pipeconf_val & PIPECONF_BPC_MASK;
1696 	}
1697 
1698 	val &= ~TRANS_INTERLACE_MASK;
1699 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) {
1700 		if (HAS_PCH_IBX(dev_priv) &&
1701 		    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
1702 			val |= TRANS_LEGACY_INTERLACED_ILK;
1703 		else
1704 			val |= TRANS_INTERLACED;
1705 	} else {
1706 		val |= TRANS_PROGRESSIVE;
1707 	}
1708 
1709 	intel_de_write(dev_priv, reg, val | TRANS_ENABLE);
1710 	if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100))
1711 		drm_err(&dev_priv->drm, "failed to enable transcoder %c\n",
1712 			pipe_name(pipe));
1713 }
1714 
1715 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1716 				      enum transcoder cpu_transcoder)
1717 {
1718 	u32 val, pipeconf_val;
1719 
1720 	/* FDI must be feeding us bits for PCH ports */
1721 	assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1722 	assert_fdi_rx_enabled(dev_priv, PIPE_A);
1723 
1724 	val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A));
1725 	/* Workaround: set timing override bit. */
1726 	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1727 	/* Configure frame start delay to match the CPU */
1728 	val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1729 	val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1730 	intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val);
1731 
1732 	val = TRANS_ENABLE;
1733 	pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder));
1734 
1735 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1736 	    PIPECONF_INTERLACED_ILK)
1737 		val |= TRANS_INTERLACED;
1738 	else
1739 		val |= TRANS_PROGRESSIVE;
1740 
1741 	intel_de_write(dev_priv, LPT_TRANSCONF, val);
1742 	if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF,
1743 				  TRANS_STATE_ENABLE, 100))
1744 		drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n");
1745 }
1746 
1747 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1748 				       enum pipe pipe)
1749 {
1750 	i915_reg_t reg;
1751 	u32 val;
1752 
1753 	/* FDI relies on the transcoder */
1754 	assert_fdi_tx_disabled(dev_priv, pipe);
1755 	assert_fdi_rx_disabled(dev_priv, pipe);
1756 
1757 	/* Ports must be off as well */
1758 	assert_pch_ports_disabled(dev_priv, pipe);
1759 
1760 	reg = PCH_TRANSCONF(pipe);
1761 	val = intel_de_read(dev_priv, reg);
1762 	val &= ~TRANS_ENABLE;
1763 	intel_de_write(dev_priv, reg, val);
1764 	/* wait for PCH transcoder off, transcoder state */
1765 	if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50))
1766 		drm_err(&dev_priv->drm, "failed to disable transcoder %c\n",
1767 			pipe_name(pipe));
1768 
1769 	if (HAS_PCH_CPT(dev_priv)) {
1770 		/* Workaround: Clear the timing override chicken bit again. */
1771 		reg = TRANS_CHICKEN2(pipe);
1772 		val = intel_de_read(dev_priv, reg);
1773 		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1774 		intel_de_write(dev_priv, reg, val);
1775 	}
1776 }
1777 
1778 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1779 {
1780 	u32 val;
1781 
1782 	val = intel_de_read(dev_priv, LPT_TRANSCONF);
1783 	val &= ~TRANS_ENABLE;
1784 	intel_de_write(dev_priv, LPT_TRANSCONF, val);
1785 	/* wait for PCH transcoder off, transcoder state */
1786 	if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF,
1787 				    TRANS_STATE_ENABLE, 50))
1788 		drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n");
1789 
1790 	/* Workaround: clear timing override bit. */
1791 	val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A));
1792 	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1793 	intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val);
1794 }
1795 
1796 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1797 {
1798 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1799 
1800 	if (HAS_PCH_LPT(dev_priv))
1801 		return PIPE_A;
1802 	else
1803 		return crtc->pipe;
1804 }
1805 
1806 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
1807 {
1808 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1809 
1810 	/*
1811 	 * On i965gm the hardware frame counter reads
1812 	 * zero when the TV encoder is enabled :(
1813 	 */
1814 	if (IS_I965GM(dev_priv) &&
1815 	    (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
1816 		return 0;
1817 
1818 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1819 		return 0xffffffff; /* full 32 bit counter */
1820 	else if (INTEL_GEN(dev_priv) >= 3)
1821 		return 0xffffff; /* only 24 bits of frame count */
1822 	else
1823 		return 0; /* Gen2 doesn't have a hardware frame counter */
1824 }
1825 
1826 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
1827 {
1828 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1829 
1830 	assert_vblank_disabled(&crtc->base);
1831 	drm_crtc_set_max_vblank_count(&crtc->base,
1832 				      intel_crtc_max_vblank_count(crtc_state));
1833 	drm_crtc_vblank_on(&crtc->base);
1834 }
1835 
1836 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state)
1837 {
1838 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1839 
1840 	drm_crtc_vblank_off(&crtc->base);
1841 	assert_vblank_disabled(&crtc->base);
1842 }
1843 
1844 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state)
1845 {
1846 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1847 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1848 	enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
1849 	enum pipe pipe = crtc->pipe;
1850 	i915_reg_t reg;
1851 	u32 val;
1852 
1853 	drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe));
1854 
1855 	assert_planes_disabled(crtc);
1856 
1857 	/*
1858 	 * A pipe without a PLL won't actually be able to drive bits from
1859 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1860 	 * need the check.
1861 	 */
1862 	if (HAS_GMCH(dev_priv)) {
1863 		if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
1864 			assert_dsi_pll_enabled(dev_priv);
1865 		else
1866 			assert_pll_enabled(dev_priv, pipe);
1867 	} else {
1868 		if (new_crtc_state->has_pch_encoder) {
1869 			/* if driving the PCH, we need FDI enabled */
1870 			assert_fdi_rx_pll_enabled(dev_priv,
1871 						  intel_crtc_pch_transcoder(crtc));
1872 			assert_fdi_tx_pll_enabled(dev_priv,
1873 						  (enum pipe) cpu_transcoder);
1874 		}
1875 		/* FIXME: assert CPU port conditions for SNB+ */
1876 	}
1877 
1878 	trace_intel_pipe_enable(crtc);
1879 
1880 	reg = PIPECONF(cpu_transcoder);
1881 	val = intel_de_read(dev_priv, reg);
1882 	if (val & PIPECONF_ENABLE) {
1883 		/* we keep both pipes enabled on 830 */
1884 		drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv));
1885 		return;
1886 	}
1887 
1888 	intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE);
1889 	intel_de_posting_read(dev_priv, reg);
1890 
1891 	/*
1892 	 * Until the pipe starts PIPEDSL reads will return a stale value,
1893 	 * which causes an apparent vblank timestamp jump when PIPEDSL
1894 	 * resets to its proper value. That also messes up the frame count
1895 	 * when it's derived from the timestamps. So let's wait for the
1896 	 * pipe to start properly before we call drm_crtc_vblank_on()
1897 	 */
1898 	if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
1899 		intel_wait_for_pipe_scanline_moving(crtc);
1900 }
1901 
1902 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state)
1903 {
1904 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1905 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1906 	enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1907 	enum pipe pipe = crtc->pipe;
1908 	i915_reg_t reg;
1909 	u32 val;
1910 
1911 	drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe));
1912 
1913 	/*
1914 	 * Make sure planes won't keep trying to pump pixels to us,
1915 	 * or we might hang the display.
1916 	 */
1917 	assert_planes_disabled(crtc);
1918 
1919 	trace_intel_pipe_disable(crtc);
1920 
1921 	reg = PIPECONF(cpu_transcoder);
1922 	val = intel_de_read(dev_priv, reg);
1923 	if ((val & PIPECONF_ENABLE) == 0)
1924 		return;
1925 
1926 	/*
1927 	 * Double wide has implications for planes
1928 	 * so best keep it disabled when not needed.
1929 	 */
1930 	if (old_crtc_state->double_wide)
1931 		val &= ~PIPECONF_DOUBLE_WIDE;
1932 
1933 	/* Don't disable pipe or pipe PLLs if needed */
1934 	if (!IS_I830(dev_priv))
1935 		val &= ~PIPECONF_ENABLE;
1936 
1937 	intel_de_write(dev_priv, reg, val);
1938 	if ((val & PIPECONF_ENABLE) == 0)
1939 		intel_wait_for_pipe_off(old_crtc_state);
1940 }
1941 
1942 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1943 {
1944 	return IS_GEN(dev_priv, 2) ? 2048 : 4096;
1945 }
1946 
1947 static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane)
1948 {
1949 	if (!is_ccs_modifier(fb->modifier))
1950 		return false;
1951 
1952 	return plane >= fb->format->num_planes / 2;
1953 }
1954 
1955 static bool is_gen12_ccs_modifier(u64 modifier)
1956 {
1957 	return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
1958 	       modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
1959 
1960 }
1961 
1962 static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane)
1963 {
1964 	return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane);
1965 }
1966 
1967 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane)
1968 {
1969 	if (is_ccs_modifier(fb->modifier))
1970 		return is_ccs_plane(fb, plane);
1971 
1972 	return plane == 1;
1973 }
1974 
1975 static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane)
1976 {
1977 	drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) ||
1978 		    (main_plane && main_plane >= fb->format->num_planes / 2));
1979 
1980 	return fb->format->num_planes / 2 + main_plane;
1981 }
1982 
1983 static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane)
1984 {
1985 	drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) ||
1986 		    ccs_plane < fb->format->num_planes / 2);
1987 
1988 	return ccs_plane - fb->format->num_planes / 2;
1989 }
1990 
1991 /* Return either the main plane's CCS or - if not a CCS FB - UV plane */
1992 int intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane)
1993 {
1994 	if (is_ccs_modifier(fb->modifier))
1995 		return main_to_ccs_plane(fb, main_plane);
1996 
1997 	return 1;
1998 }
1999 
2000 bool
2001 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info,
2002 				    uint64_t modifier)
2003 {
2004 	return info->is_yuv &&
2005 	       info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2);
2006 }
2007 
2008 static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb,
2009 				   int color_plane)
2010 {
2011 	return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) &&
2012 	       color_plane == 1;
2013 }
2014 
2015 static unsigned int
2016 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane)
2017 {
2018 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2019 	unsigned int cpp = fb->format->cpp[color_plane];
2020 
2021 	switch (fb->modifier) {
2022 	case DRM_FORMAT_MOD_LINEAR:
2023 		return intel_tile_size(dev_priv);
2024 	case I915_FORMAT_MOD_X_TILED:
2025 		if (IS_GEN(dev_priv, 2))
2026 			return 128;
2027 		else
2028 			return 512;
2029 	case I915_FORMAT_MOD_Y_TILED_CCS:
2030 		if (is_ccs_plane(fb, color_plane))
2031 			return 128;
2032 		/* fall through */
2033 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2034 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2035 		if (is_ccs_plane(fb, color_plane))
2036 			return 64;
2037 		/* fall through */
2038 	case I915_FORMAT_MOD_Y_TILED:
2039 		if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv))
2040 			return 128;
2041 		else
2042 			return 512;
2043 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2044 		if (is_ccs_plane(fb, color_plane))
2045 			return 128;
2046 		/* fall through */
2047 	case I915_FORMAT_MOD_Yf_TILED:
2048 		switch (cpp) {
2049 		case 1:
2050 			return 64;
2051 		case 2:
2052 		case 4:
2053 			return 128;
2054 		case 8:
2055 		case 16:
2056 			return 256;
2057 		default:
2058 			MISSING_CASE(cpp);
2059 			return cpp;
2060 		}
2061 		break;
2062 	default:
2063 		MISSING_CASE(fb->modifier);
2064 		return cpp;
2065 	}
2066 }
2067 
2068 static unsigned int
2069 intel_tile_height(const struct drm_framebuffer *fb, int color_plane)
2070 {
2071 	if (is_gen12_ccs_plane(fb, color_plane))
2072 		return 1;
2073 
2074 	return intel_tile_size(to_i915(fb->dev)) /
2075 		intel_tile_width_bytes(fb, color_plane);
2076 }
2077 
2078 /* Return the tile dimensions in pixel units */
2079 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane,
2080 			    unsigned int *tile_width,
2081 			    unsigned int *tile_height)
2082 {
2083 	unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane);
2084 	unsigned int cpp = fb->format->cpp[color_plane];
2085 
2086 	*tile_width = tile_width_bytes / cpp;
2087 	*tile_height = intel_tile_height(fb, color_plane);
2088 }
2089 
2090 static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb,
2091 					int color_plane)
2092 {
2093 	unsigned int tile_width, tile_height;
2094 
2095 	intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2096 
2097 	return fb->pitches[color_plane] * tile_height;
2098 }
2099 
2100 unsigned int
2101 intel_fb_align_height(const struct drm_framebuffer *fb,
2102 		      int color_plane, unsigned int height)
2103 {
2104 	unsigned int tile_height = intel_tile_height(fb, color_plane);
2105 
2106 	return ALIGN(height, tile_height);
2107 }
2108 
2109 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2110 {
2111 	unsigned int size = 0;
2112 	int i;
2113 
2114 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2115 		size += rot_info->plane[i].width * rot_info->plane[i].height;
2116 
2117 	return size;
2118 }
2119 
2120 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info)
2121 {
2122 	unsigned int size = 0;
2123 	int i;
2124 
2125 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
2126 		size += rem_info->plane[i].width * rem_info->plane[i].height;
2127 
2128 	return size;
2129 }
2130 
2131 static void
2132 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2133 			const struct drm_framebuffer *fb,
2134 			unsigned int rotation)
2135 {
2136 	view->type = I915_GGTT_VIEW_NORMAL;
2137 	if (drm_rotation_90_or_270(rotation)) {
2138 		view->type = I915_GGTT_VIEW_ROTATED;
2139 		view->rotated = to_intel_framebuffer(fb)->rot_info;
2140 	}
2141 }
2142 
2143 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2144 {
2145 	if (IS_I830(dev_priv))
2146 		return 16 * 1024;
2147 	else if (IS_I85X(dev_priv))
2148 		return 256;
2149 	else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2150 		return 32;
2151 	else
2152 		return 4 * 1024;
2153 }
2154 
2155 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2156 {
2157 	if (INTEL_GEN(dev_priv) >= 9)
2158 		return 256 * 1024;
2159 	else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2160 		 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2161 		return 128 * 1024;
2162 	else if (INTEL_GEN(dev_priv) >= 4)
2163 		return 4 * 1024;
2164 	else
2165 		return 0;
2166 }
2167 
2168 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2169 					 int color_plane)
2170 {
2171 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2172 
2173 	/* AUX_DIST needs only 4K alignment */
2174 	if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) ||
2175 	    is_ccs_plane(fb, color_plane))
2176 		return 4096;
2177 
2178 	switch (fb->modifier) {
2179 	case DRM_FORMAT_MOD_LINEAR:
2180 		return intel_linear_alignment(dev_priv);
2181 	case I915_FORMAT_MOD_X_TILED:
2182 		if (INTEL_GEN(dev_priv) >= 9)
2183 			return 256 * 1024;
2184 		return 0;
2185 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2186 		if (is_semiplanar_uv_plane(fb, color_plane))
2187 			return intel_tile_row_size(fb, color_plane);
2188 		/* Fall-through */
2189 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2190 		return 16 * 1024;
2191 	case I915_FORMAT_MOD_Y_TILED_CCS:
2192 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2193 	case I915_FORMAT_MOD_Y_TILED:
2194 		if (INTEL_GEN(dev_priv) >= 12 &&
2195 		    is_semiplanar_uv_plane(fb, color_plane))
2196 			return intel_tile_row_size(fb, color_plane);
2197 		/* Fall-through */
2198 	case I915_FORMAT_MOD_Yf_TILED:
2199 		return 1 * 1024 * 1024;
2200 	default:
2201 		MISSING_CASE(fb->modifier);
2202 		return 0;
2203 	}
2204 }
2205 
2206 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state)
2207 {
2208 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2209 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2210 
2211 	return INTEL_GEN(dev_priv) < 4 ||
2212 		(plane->has_fbc &&
2213 		 plane_state->view.type == I915_GGTT_VIEW_NORMAL);
2214 }
2215 
2216 struct i915_vma *
2217 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2218 			   const struct i915_ggtt_view *view,
2219 			   bool uses_fence,
2220 			   unsigned long *out_flags)
2221 {
2222 	struct drm_device *dev = fb->dev;
2223 	struct drm_i915_private *dev_priv = to_i915(dev);
2224 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2225 	intel_wakeref_t wakeref;
2226 	struct i915_vma *vma;
2227 	unsigned int pinctl;
2228 	u32 alignment;
2229 
2230 	if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj)))
2231 		return ERR_PTR(-EINVAL);
2232 
2233 	alignment = intel_surf_alignment(fb, 0);
2234 	if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment)))
2235 		return ERR_PTR(-EINVAL);
2236 
2237 	/* Note that the w/a also requires 64 PTE of padding following the
2238 	 * bo. We currently fill all unused PTE with the shadow page and so
2239 	 * we should always have valid PTE following the scanout preventing
2240 	 * the VT-d warning.
2241 	 */
2242 	if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2243 		alignment = 256 * 1024;
2244 
2245 	/*
2246 	 * Global gtt pte registers are special registers which actually forward
2247 	 * writes to a chunk of system memory. Which means that there is no risk
2248 	 * that the register values disappear as soon as we call
2249 	 * intel_runtime_pm_put(), so it is correct to wrap only the
2250 	 * pin/unpin/fence and not more.
2251 	 */
2252 	wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2253 
2254 	atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2255 
2256 	/*
2257 	 * Valleyview is definitely limited to scanning out the first
2258 	 * 512MiB. Lets presume this behaviour was inherited from the
2259 	 * g4x display engine and that all earlier gen are similarly
2260 	 * limited. Testing suggests that it is a little more
2261 	 * complicated than this. For example, Cherryview appears quite
2262 	 * happy to scanout from anywhere within its global aperture.
2263 	 */
2264 	pinctl = 0;
2265 	if (HAS_GMCH(dev_priv))
2266 		pinctl |= PIN_MAPPABLE;
2267 
2268 	vma = i915_gem_object_pin_to_display_plane(obj,
2269 						   alignment, view, pinctl);
2270 	if (IS_ERR(vma))
2271 		goto err;
2272 
2273 	if (uses_fence && i915_vma_is_map_and_fenceable(vma)) {
2274 		int ret;
2275 
2276 		/*
2277 		 * Install a fence for tiled scan-out. Pre-i965 always needs a
2278 		 * fence, whereas 965+ only requires a fence if using
2279 		 * framebuffer compression.  For simplicity, we always, when
2280 		 * possible, install a fence as the cost is not that onerous.
2281 		 *
2282 		 * If we fail to fence the tiled scanout, then either the
2283 		 * modeset will reject the change (which is highly unlikely as
2284 		 * the affected systems, all but one, do not have unmappable
2285 		 * space) or we will not be able to enable full powersaving
2286 		 * techniques (also likely not to apply due to various limits
2287 		 * FBC and the like impose on the size of the buffer, which
2288 		 * presumably we violated anyway with this unmappable buffer).
2289 		 * Anyway, it is presumably better to stumble onwards with
2290 		 * something and try to run the system in a "less than optimal"
2291 		 * mode that matches the user configuration.
2292 		 */
2293 		ret = i915_vma_pin_fence(vma);
2294 		if (ret != 0 && INTEL_GEN(dev_priv) < 4) {
2295 			i915_gem_object_unpin_from_display_plane(vma);
2296 			vma = ERR_PTR(ret);
2297 			goto err;
2298 		}
2299 
2300 		if (ret == 0 && vma->fence)
2301 			*out_flags |= PLANE_HAS_FENCE;
2302 	}
2303 
2304 	i915_vma_get(vma);
2305 err:
2306 	atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2307 	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
2308 	return vma;
2309 }
2310 
2311 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags)
2312 {
2313 	i915_gem_object_lock(vma->obj);
2314 	if (flags & PLANE_HAS_FENCE)
2315 		i915_vma_unpin_fence(vma);
2316 	i915_gem_object_unpin_from_display_plane(vma);
2317 	i915_gem_object_unlock(vma->obj);
2318 
2319 	i915_vma_put(vma);
2320 }
2321 
2322 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane,
2323 			  unsigned int rotation)
2324 {
2325 	if (drm_rotation_90_or_270(rotation))
2326 		return to_intel_framebuffer(fb)->rotated[color_plane].pitch;
2327 	else
2328 		return fb->pitches[color_plane];
2329 }
2330 
2331 /*
2332  * Convert the x/y offsets into a linear offset.
2333  * Only valid with 0/180 degree rotation, which is fine since linear
2334  * offset is only used with linear buffers on pre-hsw and tiled buffers
2335  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2336  */
2337 u32 intel_fb_xy_to_linear(int x, int y,
2338 			  const struct intel_plane_state *state,
2339 			  int color_plane)
2340 {
2341 	const struct drm_framebuffer *fb = state->hw.fb;
2342 	unsigned int cpp = fb->format->cpp[color_plane];
2343 	unsigned int pitch = state->color_plane[color_plane].stride;
2344 
2345 	return y * pitch + x * cpp;
2346 }
2347 
2348 /*
2349  * Add the x/y offsets derived from fb->offsets[] to the user
2350  * specified plane src x/y offsets. The resulting x/y offsets
2351  * specify the start of scanout from the beginning of the gtt mapping.
2352  */
2353 void intel_add_fb_offsets(int *x, int *y,
2354 			  const struct intel_plane_state *state,
2355 			  int color_plane)
2356 
2357 {
2358 	*x += state->color_plane[color_plane].x;
2359 	*y += state->color_plane[color_plane].y;
2360 }
2361 
2362 static u32 intel_adjust_tile_offset(int *x, int *y,
2363 				    unsigned int tile_width,
2364 				    unsigned int tile_height,
2365 				    unsigned int tile_size,
2366 				    unsigned int pitch_tiles,
2367 				    u32 old_offset,
2368 				    u32 new_offset)
2369 {
2370 	unsigned int pitch_pixels = pitch_tiles * tile_width;
2371 	unsigned int tiles;
2372 
2373 	WARN_ON(old_offset & (tile_size - 1));
2374 	WARN_ON(new_offset & (tile_size - 1));
2375 	WARN_ON(new_offset > old_offset);
2376 
2377 	tiles = (old_offset - new_offset) / tile_size;
2378 
2379 	*y += tiles / pitch_tiles * tile_height;
2380 	*x += tiles % pitch_tiles * tile_width;
2381 
2382 	/* minimize x in case it got needlessly big */
2383 	*y += *x / pitch_pixels * tile_height;
2384 	*x %= pitch_pixels;
2385 
2386 	return new_offset;
2387 }
2388 
2389 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane)
2390 {
2391 	return fb->modifier == DRM_FORMAT_MOD_LINEAR ||
2392 	       is_gen12_ccs_plane(fb, color_plane);
2393 }
2394 
2395 static u32 intel_adjust_aligned_offset(int *x, int *y,
2396 				       const struct drm_framebuffer *fb,
2397 				       int color_plane,
2398 				       unsigned int rotation,
2399 				       unsigned int pitch,
2400 				       u32 old_offset, u32 new_offset)
2401 {
2402 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2403 	unsigned int cpp = fb->format->cpp[color_plane];
2404 
2405 	drm_WARN_ON(&dev_priv->drm, new_offset > old_offset);
2406 
2407 	if (!is_surface_linear(fb, color_plane)) {
2408 		unsigned int tile_size, tile_width, tile_height;
2409 		unsigned int pitch_tiles;
2410 
2411 		tile_size = intel_tile_size(dev_priv);
2412 		intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2413 
2414 		if (drm_rotation_90_or_270(rotation)) {
2415 			pitch_tiles = pitch / tile_height;
2416 			swap(tile_width, tile_height);
2417 		} else {
2418 			pitch_tiles = pitch / (tile_width * cpp);
2419 		}
2420 
2421 		intel_adjust_tile_offset(x, y, tile_width, tile_height,
2422 					 tile_size, pitch_tiles,
2423 					 old_offset, new_offset);
2424 	} else {
2425 		old_offset += *y * pitch + *x * cpp;
2426 
2427 		*y = (old_offset - new_offset) / pitch;
2428 		*x = ((old_offset - new_offset) - *y * pitch) / cpp;
2429 	}
2430 
2431 	return new_offset;
2432 }
2433 
2434 /*
2435  * Adjust the tile offset by moving the difference into
2436  * the x/y offsets.
2437  */
2438 static u32 intel_plane_adjust_aligned_offset(int *x, int *y,
2439 					     const struct intel_plane_state *state,
2440 					     int color_plane,
2441 					     u32 old_offset, u32 new_offset)
2442 {
2443 	return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane,
2444 					   state->hw.rotation,
2445 					   state->color_plane[color_plane].stride,
2446 					   old_offset, new_offset);
2447 }
2448 
2449 /*
2450  * Computes the aligned offset to the base tile and adjusts
2451  * x, y. bytes per pixel is assumed to be a power-of-two.
2452  *
2453  * In the 90/270 rotated case, x and y are assumed
2454  * to be already rotated to match the rotated GTT view, and
2455  * pitch is the tile_height aligned framebuffer height.
2456  *
2457  * This function is used when computing the derived information
2458  * under intel_framebuffer, so using any of that information
2459  * here is not allowed. Anything under drm_framebuffer can be
2460  * used. This is why the user has to pass in the pitch since it
2461  * is specified in the rotated orientation.
2462  */
2463 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv,
2464 					int *x, int *y,
2465 					const struct drm_framebuffer *fb,
2466 					int color_plane,
2467 					unsigned int pitch,
2468 					unsigned int rotation,
2469 					u32 alignment)
2470 {
2471 	unsigned int cpp = fb->format->cpp[color_plane];
2472 	u32 offset, offset_aligned;
2473 
2474 	if (!is_surface_linear(fb, color_plane)) {
2475 		unsigned int tile_size, tile_width, tile_height;
2476 		unsigned int tile_rows, tiles, pitch_tiles;
2477 
2478 		tile_size = intel_tile_size(dev_priv);
2479 		intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2480 
2481 		if (drm_rotation_90_or_270(rotation)) {
2482 			pitch_tiles = pitch / tile_height;
2483 			swap(tile_width, tile_height);
2484 		} else {
2485 			pitch_tiles = pitch / (tile_width * cpp);
2486 		}
2487 
2488 		tile_rows = *y / tile_height;
2489 		*y %= tile_height;
2490 
2491 		tiles = *x / tile_width;
2492 		*x %= tile_width;
2493 
2494 		offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2495 
2496 		offset_aligned = offset;
2497 		if (alignment)
2498 			offset_aligned = rounddown(offset_aligned, alignment);
2499 
2500 		intel_adjust_tile_offset(x, y, tile_width, tile_height,
2501 					 tile_size, pitch_tiles,
2502 					 offset, offset_aligned);
2503 	} else {
2504 		offset = *y * pitch + *x * cpp;
2505 		offset_aligned = offset;
2506 		if (alignment) {
2507 			offset_aligned = rounddown(offset_aligned, alignment);
2508 			*y = (offset % alignment) / pitch;
2509 			*x = ((offset % alignment) - *y * pitch) / cpp;
2510 		} else {
2511 			*y = *x = 0;
2512 		}
2513 	}
2514 
2515 	return offset_aligned;
2516 }
2517 
2518 static u32 intel_plane_compute_aligned_offset(int *x, int *y,
2519 					      const struct intel_plane_state *state,
2520 					      int color_plane)
2521 {
2522 	struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane);
2523 	struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2524 	const struct drm_framebuffer *fb = state->hw.fb;
2525 	unsigned int rotation = state->hw.rotation;
2526 	int pitch = state->color_plane[color_plane].stride;
2527 	u32 alignment;
2528 
2529 	if (intel_plane->id == PLANE_CURSOR)
2530 		alignment = intel_cursor_alignment(dev_priv);
2531 	else
2532 		alignment = intel_surf_alignment(fb, color_plane);
2533 
2534 	return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane,
2535 					    pitch, rotation, alignment);
2536 }
2537 
2538 /* Convert the fb->offset[] into x/y offsets */
2539 static int intel_fb_offset_to_xy(int *x, int *y,
2540 				 const struct drm_framebuffer *fb,
2541 				 int color_plane)
2542 {
2543 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2544 	unsigned int height;
2545 	u32 alignment;
2546 
2547 	if (INTEL_GEN(dev_priv) >= 12 &&
2548 	    is_semiplanar_uv_plane(fb, color_plane))
2549 		alignment = intel_tile_row_size(fb, color_plane);
2550 	else if (fb->modifier != DRM_FORMAT_MOD_LINEAR)
2551 		alignment = intel_tile_size(dev_priv);
2552 	else
2553 		alignment = 0;
2554 
2555 	if (alignment != 0 && fb->offsets[color_plane] % alignment) {
2556 		drm_dbg_kms(&dev_priv->drm,
2557 			    "Misaligned offset 0x%08x for color plane %d\n",
2558 			    fb->offsets[color_plane], color_plane);
2559 		return -EINVAL;
2560 	}
2561 
2562 	height = drm_framebuffer_plane_height(fb->height, fb, color_plane);
2563 	height = ALIGN(height, intel_tile_height(fb, color_plane));
2564 
2565 	/* Catch potential overflows early */
2566 	if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]),
2567 			    fb->offsets[color_plane])) {
2568 		drm_dbg_kms(&dev_priv->drm,
2569 			    "Bad offset 0x%08x or pitch %d for color plane %d\n",
2570 			    fb->offsets[color_plane], fb->pitches[color_plane],
2571 			    color_plane);
2572 		return -ERANGE;
2573 	}
2574 
2575 	*x = 0;
2576 	*y = 0;
2577 
2578 	intel_adjust_aligned_offset(x, y,
2579 				    fb, color_plane, DRM_MODE_ROTATE_0,
2580 				    fb->pitches[color_plane],
2581 				    fb->offsets[color_plane], 0);
2582 
2583 	return 0;
2584 }
2585 
2586 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier)
2587 {
2588 	switch (fb_modifier) {
2589 	case I915_FORMAT_MOD_X_TILED:
2590 		return I915_TILING_X;
2591 	case I915_FORMAT_MOD_Y_TILED:
2592 	case I915_FORMAT_MOD_Y_TILED_CCS:
2593 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2594 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2595 		return I915_TILING_Y;
2596 	default:
2597 		return I915_TILING_NONE;
2598 	}
2599 }
2600 
2601 /*
2602  * From the Sky Lake PRM:
2603  * "The Color Control Surface (CCS) contains the compression status of
2604  *  the cache-line pairs. The compression state of the cache-line pair
2605  *  is specified by 2 bits in the CCS. Each CCS cache-line represents
2606  *  an area on the main surface of 16 x16 sets of 128 byte Y-tiled
2607  *  cache-line-pairs. CCS is always Y tiled."
2608  *
2609  * Since cache line pairs refers to horizontally adjacent cache lines,
2610  * each cache line in the CCS corresponds to an area of 32x16 cache
2611  * lines on the main surface. Since each pixel is 4 bytes, this gives
2612  * us a ratio of one byte in the CCS for each 8x16 pixels in the
2613  * main surface.
2614  */
2615 static const struct drm_format_info skl_ccs_formats[] = {
2616 	{ .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2617 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2618 	{ .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2619 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2620 	{ .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2621 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2622 	{ .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2623 	  .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2624 };
2625 
2626 /*
2627  * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the
2628  * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles
2629  * in the main surface. With 4 byte pixels and each Y-tile having dimensions of
2630  * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in
2631  * the main surface.
2632  */
2633 static const struct drm_format_info gen12_ccs_formats[] = {
2634 	{ .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2635 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2636 	  .hsub = 1, .vsub = 1, },
2637 	{ .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2638 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2639 	  .hsub = 1, .vsub = 1, },
2640 	{ .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2641 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2642 	  .hsub = 1, .vsub = 1, .has_alpha = true },
2643 	{ .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2644 	  .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2645 	  .hsub = 1, .vsub = 1, .has_alpha = true },
2646 	{ .format = DRM_FORMAT_YUYV, .num_planes = 2,
2647 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2648 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2649 	{ .format = DRM_FORMAT_YVYU, .num_planes = 2,
2650 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2651 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2652 	{ .format = DRM_FORMAT_UYVY, .num_planes = 2,
2653 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2654 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2655 	{ .format = DRM_FORMAT_VYUY, .num_planes = 2,
2656 	  .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2657 	  .hsub = 2, .vsub = 1, .is_yuv = true },
2658 	{ .format = DRM_FORMAT_NV12, .num_planes = 4,
2659 	  .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 },
2660 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2661 	{ .format = DRM_FORMAT_P010, .num_planes = 4,
2662 	  .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2663 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2664 	{ .format = DRM_FORMAT_P012, .num_planes = 4,
2665 	  .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2666 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2667 	{ .format = DRM_FORMAT_P016, .num_planes = 4,
2668 	  .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2669 	  .hsub = 2, .vsub = 2, .is_yuv = true },
2670 };
2671 
2672 static const struct drm_format_info *
2673 lookup_format_info(const struct drm_format_info formats[],
2674 		   int num_formats, u32 format)
2675 {
2676 	int i;
2677 
2678 	for (i = 0; i < num_formats; i++) {
2679 		if (formats[i].format == format)
2680 			return &formats[i];
2681 	}
2682 
2683 	return NULL;
2684 }
2685 
2686 static const struct drm_format_info *
2687 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2688 {
2689 	switch (cmd->modifier[0]) {
2690 	case I915_FORMAT_MOD_Y_TILED_CCS:
2691 	case I915_FORMAT_MOD_Yf_TILED_CCS:
2692 		return lookup_format_info(skl_ccs_formats,
2693 					  ARRAY_SIZE(skl_ccs_formats),
2694 					  cmd->pixel_format);
2695 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2696 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2697 		return lookup_format_info(gen12_ccs_formats,
2698 					  ARRAY_SIZE(gen12_ccs_formats),
2699 					  cmd->pixel_format);
2700 	default:
2701 		return NULL;
2702 	}
2703 }
2704 
2705 bool is_ccs_modifier(u64 modifier)
2706 {
2707 	return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
2708 	       modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS ||
2709 	       modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2710 	       modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
2711 }
2712 
2713 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane)
2714 {
2715 	return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)],
2716 			    512) * 64;
2717 }
2718 
2719 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv,
2720 			      u32 pixel_format, u64 modifier)
2721 {
2722 	struct intel_crtc *crtc;
2723 	struct intel_plane *plane;
2724 
2725 	/*
2726 	 * We assume the primary plane for pipe A has
2727 	 * the highest stride limits of them all,
2728 	 * if in case pipe A is disabled, use the first pipe from pipe_mask.
2729 	 */
2730 	crtc = intel_get_first_crtc(dev_priv);
2731 	if (!crtc)
2732 		return 0;
2733 
2734 	plane = to_intel_plane(crtc->base.primary);
2735 
2736 	return plane->max_stride(plane, pixel_format, modifier,
2737 				 DRM_MODE_ROTATE_0);
2738 }
2739 
2740 static
2741 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv,
2742 			u32 pixel_format, u64 modifier)
2743 {
2744 	/*
2745 	 * Arbitrary limit for gen4+ chosen to match the
2746 	 * render engine max stride.
2747 	 *
2748 	 * The new CCS hash mode makes remapping impossible
2749 	 */
2750 	if (!is_ccs_modifier(modifier)) {
2751 		if (INTEL_GEN(dev_priv) >= 7)
2752 			return 256*1024;
2753 		else if (INTEL_GEN(dev_priv) >= 4)
2754 			return 128*1024;
2755 	}
2756 
2757 	return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier);
2758 }
2759 
2760 static u32
2761 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane)
2762 {
2763 	struct drm_i915_private *dev_priv = to_i915(fb->dev);
2764 	u32 tile_width;
2765 
2766 	if (is_surface_linear(fb, color_plane)) {
2767 		u32 max_stride = intel_plane_fb_max_stride(dev_priv,
2768 							   fb->format->format,
2769 							   fb->modifier);
2770 
2771 		/*
2772 		 * To make remapping with linear generally feasible
2773 		 * we need the stride to be page aligned.
2774 		 */
2775 		if (fb->pitches[color_plane] > max_stride &&
2776 		    !is_ccs_modifier(fb->modifier))
2777 			return intel_tile_size(dev_priv);
2778 		else
2779 			return 64;
2780 	}
2781 
2782 	tile_width = intel_tile_width_bytes(fb, color_plane);
2783 	if (is_ccs_modifier(fb->modifier)) {
2784 		/*
2785 		 * Display WA #0531: skl,bxt,kbl,glk
2786 		 *
2787 		 * Render decompression and plane width > 3840
2788 		 * combined with horizontal panning requires the
2789 		 * plane stride to be a multiple of 4. We'll just
2790 		 * require the entire fb to accommodate that to avoid
2791 		 * potential runtime errors at plane configuration time.
2792 		 */
2793 		if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840)
2794 			tile_width *= 4;
2795 		/*
2796 		 * The main surface pitch must be padded to a multiple of four
2797 		 * tile widths.
2798 		 */
2799 		else if (INTEL_GEN(dev_priv) >= 12)
2800 			tile_width *= 4;
2801 	}
2802 	return tile_width;
2803 }
2804 
2805 bool intel_plane_can_remap(const struct intel_plane_state *plane_state)
2806 {
2807 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2808 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2809 	const struct drm_framebuffer *fb = plane_state->hw.fb;
2810 	int i;
2811 
2812 	/* We don't want to deal with remapping with cursors */
2813 	if (plane->id == PLANE_CURSOR)
2814 		return false;
2815 
2816 	/*
2817 	 * The display engine limits already match/exceed the
2818 	 * render engine limits, so not much point in remapping.
2819 	 * Would also need to deal with the fence POT alignment
2820 	 * and gen2 2KiB GTT tile size.
2821 	 */
2822 	if (INTEL_GEN(dev_priv) < 4)
2823 		return false;
2824 
2825 	/*
2826 	 * The new CCS hash mode isn't compatible with remapping as
2827 	 * the virtual address of the pages affects the compressed data.
2828 	 */
2829 	if (is_ccs_modifier(fb->modifier))
2830 		return false;
2831 
2832 	/* Linear needs a page aligned stride for remapping */
2833 	if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2834 		unsigned int alignment = intel_tile_size(dev_priv) - 1;
2835 
2836 		for (i = 0; i < fb->format->num_planes; i++) {
2837 			if (fb->pitches[i] & alignment)
2838 				return false;
2839 		}
2840 	}
2841 
2842 	return true;
2843 }
2844 
2845 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state)
2846 {
2847 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2848 	const struct drm_framebuffer *fb = plane_state->hw.fb;
2849 	unsigned int rotation = plane_state->hw.rotation;
2850 	u32 stride, max_stride;
2851 
2852 	/*
2853 	 * No remapping for invisible planes since we don't have
2854 	 * an actual source viewport to remap.
2855 	 */
2856 	if (!plane_state->uapi.visible)
2857 		return false;
2858 
2859 	if (!intel_plane_can_remap(plane_state))
2860 		return false;
2861 
2862 	/*
2863 	 * FIXME: aux plane limits on gen9+ are
2864 	 * unclear in Bspec, for now no checking.
2865 	 */
2866 	stride = intel_fb_pitch(fb, 0, rotation);
2867 	max_stride = plane->max_stride(plane, fb->format->format,
2868 				       fb->modifier, rotation);
2869 
2870 	return stride > max_stride;
2871 }
2872 
2873 static void
2874 intel_fb_plane_get_subsampling(int *hsub, int *vsub,
2875 			       const struct drm_framebuffer *fb,
2876 			       int color_plane)
2877 {
2878 	int main_plane;
2879 
2880 	if (color_plane == 0) {
2881 		*hsub = 1;
2882 		*vsub = 1;
2883 
2884 		return;
2885 	}
2886 
2887 	/*
2888 	 * TODO: Deduct the subsampling from the char block for all CCS
2889 	 * formats and planes.
2890 	 */
2891 	if (!is_gen12_ccs_plane(fb, color_plane)) {
2892 		*hsub = fb->format->hsub;
2893 		*vsub = fb->format->vsub;
2894 
2895 		return;
2896 	}
2897 
2898 	main_plane = ccs_to_main_plane(fb, color_plane);
2899 	*hsub = drm_format_info_block_width(fb->format, color_plane) /
2900 		drm_format_info_block_width(fb->format, main_plane);
2901 
2902 	/*
2903 	 * The min stride check in the core framebuffer_check() function
2904 	 * assumes that format->hsub applies to every plane except for the
2905 	 * first plane. That's incorrect for the CCS AUX plane of the first
2906 	 * plane, but for the above check to pass we must define the block
2907 	 * width with that subsampling applied to it. Adjust the width here
2908 	 * accordingly, so we can calculate the actual subsampling factor.
2909 	 */
2910 	if (main_plane == 0)
2911 		*hsub *= fb->format->hsub;
2912 
2913 	*vsub = 32;
2914 }
2915 static int
2916 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y)
2917 {
2918 	struct drm_i915_private *i915 = to_i915(fb->dev);
2919 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2920 	int main_plane;
2921 	int hsub, vsub;
2922 	int tile_width, tile_height;
2923 	int ccs_x, ccs_y;
2924 	int main_x, main_y;
2925 
2926 	if (!is_ccs_plane(fb, ccs_plane))
2927 		return 0;
2928 
2929 	intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height);
2930 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
2931 
2932 	tile_width *= hsub;
2933 	tile_height *= vsub;
2934 
2935 	ccs_x = (x * hsub) % tile_width;
2936 	ccs_y = (y * vsub) % tile_height;
2937 
2938 	main_plane = ccs_to_main_plane(fb, ccs_plane);
2939 	main_x = intel_fb->normal[main_plane].x % tile_width;
2940 	main_y = intel_fb->normal[main_plane].y % tile_height;
2941 
2942 	/*
2943 	 * CCS doesn't have its own x/y offset register, so the intra CCS tile
2944 	 * x/y offsets must match between CCS and the main surface.
2945 	 */
2946 	if (main_x != ccs_x || main_y != ccs_y) {
2947 		drm_dbg_kms(&i915->drm,
2948 			      "Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2949 			      main_x, main_y,
2950 			      ccs_x, ccs_y,
2951 			      intel_fb->normal[main_plane].x,
2952 			      intel_fb->normal[main_plane].y,
2953 			      x, y);
2954 		return -EINVAL;
2955 	}
2956 
2957 	return 0;
2958 }
2959 
2960 static void
2961 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane)
2962 {
2963 	int main_plane = is_ccs_plane(fb, color_plane) ?
2964 			 ccs_to_main_plane(fb, color_plane) : 0;
2965 	int main_hsub, main_vsub;
2966 	int hsub, vsub;
2967 
2968 	intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane);
2969 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane);
2970 	*w = fb->width / main_hsub / hsub;
2971 	*h = fb->height / main_vsub / vsub;
2972 }
2973 
2974 /*
2975  * Setup the rotated view for an FB plane and return the size the GTT mapping
2976  * requires for this view.
2977  */
2978 static u32
2979 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info,
2980 		  u32 gtt_offset_rotated, int x, int y,
2981 		  unsigned int width, unsigned int height,
2982 		  unsigned int tile_size,
2983 		  unsigned int tile_width, unsigned int tile_height,
2984 		  struct drm_framebuffer *fb)
2985 {
2986 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2987 	struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2988 	unsigned int pitch_tiles;
2989 	struct drm_rect r;
2990 
2991 	/* Y or Yf modifiers required for 90/270 rotation */
2992 	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
2993 	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
2994 		return 0;
2995 
2996 	if (drm_WARN_ON(fb->dev, plane >= ARRAY_SIZE(rot_info->plane)))
2997 		return 0;
2998 
2999 	rot_info->plane[plane] = *plane_info;
3000 
3001 	intel_fb->rotated[plane].pitch = plane_info->height * tile_height;
3002 
3003 	/* rotate the x/y offsets to match the GTT view */
3004 	drm_rect_init(&r, x, y, width, height);
3005 	drm_rect_rotate(&r,
3006 			plane_info->width * tile_width,
3007 			plane_info->height * tile_height,
3008 			DRM_MODE_ROTATE_270);
3009 	x = r.x1;
3010 	y = r.y1;
3011 
3012 	/* rotate the tile dimensions to match the GTT view */
3013 	pitch_tiles = intel_fb->rotated[plane].pitch / tile_height;
3014 	swap(tile_width, tile_height);
3015 
3016 	/*
3017 	 * We only keep the x/y offsets, so push all of the
3018 	 * gtt offset into the x/y offsets.
3019 	 */
3020 	intel_adjust_tile_offset(&x, &y,
3021 				 tile_width, tile_height,
3022 				 tile_size, pitch_tiles,
3023 				 gtt_offset_rotated * tile_size, 0);
3024 
3025 	/*
3026 	 * First pixel of the framebuffer from
3027 	 * the start of the rotated gtt mapping.
3028 	 */
3029 	intel_fb->rotated[plane].x = x;
3030 	intel_fb->rotated[plane].y = y;
3031 
3032 	return plane_info->width * plane_info->height;
3033 }
3034 
3035 static int
3036 intel_fill_fb_info(struct drm_i915_private *dev_priv,
3037 		   struct drm_framebuffer *fb)
3038 {
3039 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3040 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3041 	u32 gtt_offset_rotated = 0;
3042 	unsigned int max_size = 0;
3043 	int i, num_planes = fb->format->num_planes;
3044 	unsigned int tile_size = intel_tile_size(dev_priv);
3045 
3046 	for (i = 0; i < num_planes; i++) {
3047 		unsigned int width, height;
3048 		unsigned int cpp, size;
3049 		u32 offset;
3050 		int x, y;
3051 		int ret;
3052 
3053 		cpp = fb->format->cpp[i];
3054 		intel_fb_plane_dims(&width, &height, fb, i);
3055 
3056 		ret = intel_fb_offset_to_xy(&x, &y, fb, i);
3057 		if (ret) {
3058 			drm_dbg_kms(&dev_priv->drm,
3059 				    "bad fb plane %d offset: 0x%x\n",
3060 				    i, fb->offsets[i]);
3061 			return ret;
3062 		}
3063 
3064 		ret = intel_fb_check_ccs_xy(fb, i, x, y);
3065 		if (ret)
3066 			return ret;
3067 
3068 		/*
3069 		 * The fence (if used) is aligned to the start of the object
3070 		 * so having the framebuffer wrap around across the edge of the
3071 		 * fenced region doesn't really work. We have no API to configure
3072 		 * the fence start offset within the object (nor could we probably
3073 		 * on gen2/3). So it's just easier if we just require that the
3074 		 * fb layout agrees with the fence layout. We already check that the
3075 		 * fb stride matches the fence stride elsewhere.
3076 		 */
3077 		if (i == 0 && i915_gem_object_is_tiled(obj) &&
3078 		    (x + width) * cpp > fb->pitches[i]) {
3079 			drm_dbg_kms(&dev_priv->drm,
3080 				    "bad fb plane %d offset: 0x%x\n",
3081 				     i, fb->offsets[i]);
3082 			return -EINVAL;
3083 		}
3084 
3085 		/*
3086 		 * First pixel of the framebuffer from
3087 		 * the start of the normal gtt mapping.
3088 		 */
3089 		intel_fb->normal[i].x = x;
3090 		intel_fb->normal[i].y = y;
3091 
3092 		offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i,
3093 						      fb->pitches[i],
3094 						      DRM_MODE_ROTATE_0,
3095 						      tile_size);
3096 		offset /= tile_size;
3097 
3098 		if (!is_surface_linear(fb, i)) {
3099 			struct intel_remapped_plane_info plane_info;
3100 			unsigned int tile_width, tile_height;
3101 
3102 			intel_tile_dims(fb, i, &tile_width, &tile_height);
3103 
3104 			plane_info.offset = offset;
3105 			plane_info.stride = DIV_ROUND_UP(fb->pitches[i],
3106 							 tile_width * cpp);
3107 			plane_info.width = DIV_ROUND_UP(x + width, tile_width);
3108 			plane_info.height = DIV_ROUND_UP(y + height,
3109 							 tile_height);
3110 
3111 			/* how many tiles does this plane need */
3112 			size = plane_info.stride * plane_info.height;
3113 			/*
3114 			 * If the plane isn't horizontally tile aligned,
3115 			 * we need one more tile.
3116 			 */
3117 			if (x != 0)
3118 				size++;
3119 
3120 			gtt_offset_rotated +=
3121 				setup_fb_rotation(i, &plane_info,
3122 						  gtt_offset_rotated,
3123 						  x, y, width, height,
3124 						  tile_size,
3125 						  tile_width, tile_height,
3126 						  fb);
3127 		} else {
3128 			size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
3129 					    x * cpp, tile_size);
3130 		}
3131 
3132 		/* how many tiles in total needed in the bo */
3133 		max_size = max(max_size, offset + size);
3134 	}
3135 
3136 	if (mul_u32_u32(max_size, tile_size) > obj->base.size) {
3137 		drm_dbg_kms(&dev_priv->drm,
3138 			    "fb too big for bo (need %llu bytes, have %zu bytes)\n",
3139 			    mul_u32_u32(max_size, tile_size), obj->base.size);
3140 		return -EINVAL;
3141 	}
3142 
3143 	return 0;
3144 }
3145 
3146 static void
3147 intel_plane_remap_gtt(struct intel_plane_state *plane_state)
3148 {
3149 	struct drm_i915_private *dev_priv =
3150 		to_i915(plane_state->uapi.plane->dev);
3151 	struct drm_framebuffer *fb = plane_state->hw.fb;
3152 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3153 	struct intel_rotation_info *info = &plane_state->view.rotated;
3154 	unsigned int rotation = plane_state->hw.rotation;
3155 	int i, num_planes = fb->format->num_planes;
3156 	unsigned int tile_size = intel_tile_size(dev_priv);
3157 	unsigned int src_x, src_y;
3158 	unsigned int src_w, src_h;
3159 	u32 gtt_offset = 0;
3160 
3161 	memset(&plane_state->view, 0, sizeof(plane_state->view));
3162 	plane_state->view.type = drm_rotation_90_or_270(rotation) ?
3163 		I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED;
3164 
3165 	src_x = plane_state->uapi.src.x1 >> 16;
3166 	src_y = plane_state->uapi.src.y1 >> 16;
3167 	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
3168 	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
3169 
3170 	drm_WARN_ON(&dev_priv->drm, is_ccs_modifier(fb->modifier));
3171 
3172 	/* Make src coordinates relative to the viewport */
3173 	drm_rect_translate(&plane_state->uapi.src,
3174 			   -(src_x << 16), -(src_y << 16));
3175 
3176 	/* Rotate src coordinates to match rotated GTT view */
3177 	if (drm_rotation_90_or_270(rotation))
3178 		drm_rect_rotate(&plane_state->uapi.src,
3179 				src_w << 16, src_h << 16,
3180 				DRM_MODE_ROTATE_270);
3181 
3182 	for (i = 0; i < num_planes; i++) {
3183 		unsigned int hsub = i ? fb->format->hsub : 1;
3184 		unsigned int vsub = i ? fb->format->vsub : 1;
3185 		unsigned int cpp = fb->format->cpp[i];
3186 		unsigned int tile_width, tile_height;
3187 		unsigned int width, height;
3188 		unsigned int pitch_tiles;
3189 		unsigned int x, y;
3190 		u32 offset;
3191 
3192 		intel_tile_dims(fb, i, &tile_width, &tile_height);
3193 
3194 		x = src_x / hsub;
3195 		y = src_y / vsub;
3196 		width = src_w / hsub;
3197 		height = src_h / vsub;
3198 
3199 		/*
3200 		 * First pixel of the src viewport from the
3201 		 * start of the normal gtt mapping.
3202 		 */
3203 		x += intel_fb->normal[i].x;
3204 		y += intel_fb->normal[i].y;
3205 
3206 		offset = intel_compute_aligned_offset(dev_priv, &x, &y,
3207 						      fb, i, fb->pitches[i],
3208 						      DRM_MODE_ROTATE_0, tile_size);
3209 		offset /= tile_size;
3210 
3211 		drm_WARN_ON(&dev_priv->drm, i >= ARRAY_SIZE(info->plane));
3212 		info->plane[i].offset = offset;
3213 		info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i],
3214 						     tile_width * cpp);
3215 		info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
3216 		info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
3217 
3218 		if (drm_rotation_90_or_270(rotation)) {
3219 			struct drm_rect r;
3220 
3221 			/* rotate the x/y offsets to match the GTT view */
3222 			drm_rect_init(&r, x, y, width, height);
3223 			drm_rect_rotate(&r,
3224 					info->plane[i].width * tile_width,
3225 					info->plane[i].height * tile_height,
3226 					DRM_MODE_ROTATE_270);
3227 			x = r.x1;
3228 			y = r.y1;
3229 
3230 			pitch_tiles = info->plane[i].height;
3231 			plane_state->color_plane[i].stride = pitch_tiles * tile_height;
3232 
3233 			/* rotate the tile dimensions to match the GTT view */
3234 			swap(tile_width, tile_height);
3235 		} else {
3236 			pitch_tiles = info->plane[i].width;
3237 			plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp;
3238 		}
3239 
3240 		/*
3241 		 * We only keep the x/y offsets, so push all of the
3242 		 * gtt offset into the x/y offsets.
3243 		 */
3244 		intel_adjust_tile_offset(&x, &y,
3245 					 tile_width, tile_height,
3246 					 tile_size, pitch_tiles,
3247 					 gtt_offset * tile_size, 0);
3248 
3249 		gtt_offset += info->plane[i].width * info->plane[i].height;
3250 
3251 		plane_state->color_plane[i].offset = 0;
3252 		plane_state->color_plane[i].x = x;
3253 		plane_state->color_plane[i].y = y;
3254 	}
3255 }
3256 
3257 static int
3258 intel_plane_compute_gtt(struct intel_plane_state *plane_state)
3259 {
3260 	const struct intel_framebuffer *fb =
3261 		to_intel_framebuffer(plane_state->hw.fb);
3262 	unsigned int rotation = plane_state->hw.rotation;
3263 	int i, num_planes;
3264 
3265 	if (!fb)
3266 		return 0;
3267 
3268 	num_planes = fb->base.format->num_planes;
3269 
3270 	if (intel_plane_needs_remap(plane_state)) {
3271 		intel_plane_remap_gtt(plane_state);
3272 
3273 		/*
3274 		 * Sometimes even remapping can't overcome
3275 		 * the stride limitations :( Can happen with
3276 		 * big plane sizes and suitably misaligned
3277 		 * offsets.
3278 		 */
3279 		return intel_plane_check_stride(plane_state);
3280 	}
3281 
3282 	intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation);
3283 
3284 	for (i = 0; i < num_planes; i++) {
3285 		plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation);
3286 		plane_state->color_plane[i].offset = 0;
3287 
3288 		if (drm_rotation_90_or_270(rotation)) {
3289 			plane_state->color_plane[i].x = fb->rotated[i].x;
3290 			plane_state->color_plane[i].y = fb->rotated[i].y;
3291 		} else {
3292 			plane_state->color_plane[i].x = fb->normal[i].x;
3293 			plane_state->color_plane[i].y = fb->normal[i].y;
3294 		}
3295 	}
3296 
3297 	/* Rotate src coordinates to match rotated GTT view */
3298 	if (drm_rotation_90_or_270(rotation))
3299 		drm_rect_rotate(&plane_state->uapi.src,
3300 				fb->base.width << 16, fb->base.height << 16,
3301 				DRM_MODE_ROTATE_270);
3302 
3303 	return intel_plane_check_stride(plane_state);
3304 }
3305 
3306 static int i9xx_format_to_fourcc(int format)
3307 {
3308 	switch (format) {
3309 	case DISPPLANE_8BPP:
3310 		return DRM_FORMAT_C8;
3311 	case DISPPLANE_BGRA555:
3312 		return DRM_FORMAT_ARGB1555;
3313 	case DISPPLANE_BGRX555:
3314 		return DRM_FORMAT_XRGB1555;
3315 	case DISPPLANE_BGRX565:
3316 		return DRM_FORMAT_RGB565;
3317 	default:
3318 	case DISPPLANE_BGRX888:
3319 		return DRM_FORMAT_XRGB8888;
3320 	case DISPPLANE_RGBX888:
3321 		return DRM_FORMAT_XBGR8888;
3322 	case DISPPLANE_BGRA888:
3323 		return DRM_FORMAT_ARGB8888;
3324 	case DISPPLANE_RGBA888:
3325 		return DRM_FORMAT_ABGR8888;
3326 	case DISPPLANE_BGRX101010:
3327 		return DRM_FORMAT_XRGB2101010;
3328 	case DISPPLANE_RGBX101010:
3329 		return DRM_FORMAT_XBGR2101010;
3330 	case DISPPLANE_BGRA101010:
3331 		return DRM_FORMAT_ARGB2101010;
3332 	case DISPPLANE_RGBA101010:
3333 		return DRM_FORMAT_ABGR2101010;
3334 	case DISPPLANE_RGBX161616:
3335 		return DRM_FORMAT_XBGR16161616F;
3336 	}
3337 }
3338 
3339 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
3340 {
3341 	switch (format) {
3342 	case PLANE_CTL_FORMAT_RGB_565:
3343 		return DRM_FORMAT_RGB565;
3344 	case PLANE_CTL_FORMAT_NV12:
3345 		return DRM_FORMAT_NV12;
3346 	case PLANE_CTL_FORMAT_XYUV:
3347 		return DRM_FORMAT_XYUV8888;
3348 	case PLANE_CTL_FORMAT_P010:
3349 		return DRM_FORMAT_P010;
3350 	case PLANE_CTL_FORMAT_P012:
3351 		return DRM_FORMAT_P012;
3352 	case PLANE_CTL_FORMAT_P016:
3353 		return DRM_FORMAT_P016;
3354 	case PLANE_CTL_FORMAT_Y210:
3355 		return DRM_FORMAT_Y210;
3356 	case PLANE_CTL_FORMAT_Y212:
3357 		return DRM_FORMAT_Y212;
3358 	case PLANE_CTL_FORMAT_Y216:
3359 		return DRM_FORMAT_Y216;
3360 	case PLANE_CTL_FORMAT_Y410:
3361 		return DRM_FORMAT_XVYU2101010;
3362 	case PLANE_CTL_FORMAT_Y412:
3363 		return DRM_FORMAT_XVYU12_16161616;
3364 	case PLANE_CTL_FORMAT_Y416:
3365 		return DRM_FORMAT_XVYU16161616;
3366 	default:
3367 	case PLANE_CTL_FORMAT_XRGB_8888:
3368 		if (rgb_order) {
3369 			if (alpha)
3370 				return DRM_FORMAT_ABGR8888;
3371 			else
3372 				return DRM_FORMAT_XBGR8888;
3373 		} else {
3374 			if (alpha)
3375 				return DRM_FORMAT_ARGB8888;
3376 			else
3377 				return DRM_FORMAT_XRGB8888;
3378 		}
3379 	case PLANE_CTL_FORMAT_XRGB_2101010:
3380 		if (rgb_order) {
3381 			if (alpha)
3382 				return DRM_FORMAT_ABGR2101010;
3383 			else
3384 				return DRM_FORMAT_XBGR2101010;
3385 		} else {
3386 			if (alpha)
3387 				return DRM_FORMAT_ARGB2101010;
3388 			else
3389 				return DRM_FORMAT_XRGB2101010;
3390 		}
3391 	case PLANE_CTL_FORMAT_XRGB_16161616F:
3392 		if (rgb_order) {
3393 			if (alpha)
3394 				return DRM_FORMAT_ABGR16161616F;
3395 			else
3396 				return DRM_FORMAT_XBGR16161616F;
3397 		} else {
3398 			if (alpha)
3399 				return DRM_FORMAT_ARGB16161616F;
3400 			else
3401 				return DRM_FORMAT_XRGB16161616F;
3402 		}
3403 	}
3404 }
3405 
3406 static struct i915_vma *
3407 initial_plane_vma(struct drm_i915_private *i915,
3408 		  struct intel_initial_plane_config *plane_config)
3409 {
3410 	struct drm_i915_gem_object *obj;
3411 	struct i915_vma *vma;
3412 	u32 base, size;
3413 
3414 	if (plane_config->size == 0)
3415 		return NULL;
3416 
3417 	base = round_down(plane_config->base,
3418 			  I915_GTT_MIN_ALIGNMENT);
3419 	size = round_up(plane_config->base + plane_config->size,
3420 			I915_GTT_MIN_ALIGNMENT);
3421 	size -= base;
3422 
3423 	/*
3424 	 * If the FB is too big, just don't use it since fbdev is not very
3425 	 * important and we should probably use that space with FBC or other
3426 	 * features.
3427 	 */
3428 	if (size * 2 > i915->stolen_usable_size)
3429 		return NULL;
3430 
3431 	obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size);
3432 	if (IS_ERR(obj))
3433 		return NULL;
3434 
3435 	switch (plane_config->tiling) {
3436 	case I915_TILING_NONE:
3437 		break;
3438 	case I915_TILING_X:
3439 	case I915_TILING_Y:
3440 		obj->tiling_and_stride =
3441 			plane_config->fb->base.pitches[0] |
3442 			plane_config->tiling;
3443 		break;
3444 	default:
3445 		MISSING_CASE(plane_config->tiling);
3446 		goto err_obj;
3447 	}
3448 
3449 	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
3450 	if (IS_ERR(vma))
3451 		goto err_obj;
3452 
3453 	if (i915_ggtt_pin(vma, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base))
3454 		goto err_obj;
3455 
3456 	if (i915_gem_object_is_tiled(obj) &&
3457 	    !i915_vma_is_map_and_fenceable(vma))
3458 		goto err_obj;
3459 
3460 	return vma;
3461 
3462 err_obj:
3463 	i915_gem_object_put(obj);
3464 	return NULL;
3465 }
3466 
3467 static bool
3468 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
3469 			      struct intel_initial_plane_config *plane_config)
3470 {
3471 	struct drm_device *dev = crtc->base.dev;
3472 	struct drm_i915_private *dev_priv = to_i915(dev);
3473 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
3474 	struct drm_framebuffer *fb = &plane_config->fb->base;
3475 	struct i915_vma *vma;
3476 
3477 	switch (fb->modifier) {
3478 	case DRM_FORMAT_MOD_LINEAR:
3479 	case I915_FORMAT_MOD_X_TILED:
3480 	case I915_FORMAT_MOD_Y_TILED:
3481 		break;
3482 	default:
3483 		drm_dbg(&dev_priv->drm,
3484 			"Unsupported modifier for initial FB: 0x%llx\n",
3485 			fb->modifier);
3486 		return false;
3487 	}
3488 
3489 	vma = initial_plane_vma(dev_priv, plane_config);
3490 	if (!vma)
3491 		return false;
3492 
3493 	mode_cmd.pixel_format = fb->format->format;
3494 	mode_cmd.width = fb->width;
3495 	mode_cmd.height = fb->height;
3496 	mode_cmd.pitches[0] = fb->pitches[0];
3497 	mode_cmd.modifier[0] = fb->modifier;
3498 	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
3499 
3500 	if (intel_framebuffer_init(to_intel_framebuffer(fb),
3501 				   vma->obj, &mode_cmd)) {
3502 		drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n");
3503 		goto err_vma;
3504 	}
3505 
3506 	plane_config->vma = vma;
3507 	return true;
3508 
3509 err_vma:
3510 	i915_vma_put(vma);
3511 	return false;
3512 }
3513 
3514 static void
3515 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
3516 			struct intel_plane_state *plane_state,
3517 			bool visible)
3518 {
3519 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
3520 
3521 	plane_state->uapi.visible = visible;
3522 
3523 	if (visible)
3524 		crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base);
3525 	else
3526 		crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base);
3527 }
3528 
3529 static void fixup_active_planes(struct intel_crtc_state *crtc_state)
3530 {
3531 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3532 	struct drm_plane *plane;
3533 
3534 	/*
3535 	 * Active_planes aliases if multiple "primary" or cursor planes
3536 	 * have been used on the same (or wrong) pipe. plane_mask uses
3537 	 * unique ids, hence we can use that to reconstruct active_planes.
3538 	 */
3539 	crtc_state->active_planes = 0;
3540 
3541 	drm_for_each_plane_mask(plane, &dev_priv->drm,
3542 				crtc_state->uapi.plane_mask)
3543 		crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
3544 }
3545 
3546 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
3547 					 struct intel_plane *plane)
3548 {
3549 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3550 	struct intel_crtc_state *crtc_state =
3551 		to_intel_crtc_state(crtc->base.state);
3552 	struct intel_plane_state *plane_state =
3553 		to_intel_plane_state(plane->base.state);
3554 
3555 	drm_dbg_kms(&dev_priv->drm,
3556 		    "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
3557 		    plane->base.base.id, plane->base.name,
3558 		    crtc->base.base.id, crtc->base.name);
3559 
3560 	intel_set_plane_visible(crtc_state, plane_state, false);
3561 	fixup_active_planes(crtc_state);
3562 	crtc_state->data_rate[plane->id] = 0;
3563 	crtc_state->min_cdclk[plane->id] = 0;
3564 
3565 	if (plane->id == PLANE_PRIMARY)
3566 		hsw_disable_ips(crtc_state);
3567 
3568 	/*
3569 	 * Vblank time updates from the shadow to live plane control register
3570 	 * are blocked if the memory self-refresh mode is active at that
3571 	 * moment. So to make sure the plane gets truly disabled, disable
3572 	 * first the self-refresh mode. The self-refresh enable bit in turn
3573 	 * will be checked/applied by the HW only at the next frame start
3574 	 * event which is after the vblank start event, so we need to have a
3575 	 * wait-for-vblank between disabling the plane and the pipe.
3576 	 */
3577 	if (HAS_GMCH(dev_priv) &&
3578 	    intel_set_memory_cxsr(dev_priv, false))
3579 		intel_wait_for_vblank(dev_priv, crtc->pipe);
3580 
3581 	/*
3582 	 * Gen2 reports pipe underruns whenever all planes are disabled.
3583 	 * So disable underrun reporting before all the planes get disabled.
3584 	 */
3585 	if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes)
3586 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
3587 
3588 	intel_disable_plane(plane, crtc_state);
3589 }
3590 
3591 static struct intel_frontbuffer *
3592 to_intel_frontbuffer(struct drm_framebuffer *fb)
3593 {
3594 	return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL;
3595 }
3596 
3597 static void
3598 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
3599 			     struct intel_initial_plane_config *plane_config)
3600 {
3601 	struct drm_device *dev = intel_crtc->base.dev;
3602 	struct drm_i915_private *dev_priv = to_i915(dev);
3603 	struct drm_crtc *c;
3604 	struct drm_plane *primary = intel_crtc->base.primary;
3605 	struct drm_plane_state *plane_state = primary->state;
3606 	struct intel_plane *intel_plane = to_intel_plane(primary);
3607 	struct intel_plane_state *intel_state =
3608 		to_intel_plane_state(plane_state);
3609 	struct drm_framebuffer *fb;
3610 	struct i915_vma *vma;
3611 
3612 	if (!plane_config->fb)
3613 		return;
3614 
3615 	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
3616 		fb = &plane_config->fb->base;
3617 		vma = plane_config->vma;
3618 		goto valid_fb;
3619 	}
3620 
3621 	/*
3622 	 * Failed to alloc the obj, check to see if we should share
3623 	 * an fb with another CRTC instead
3624 	 */
3625 	for_each_crtc(dev, c) {
3626 		struct intel_plane_state *state;
3627 
3628 		if (c == &intel_crtc->base)
3629 			continue;
3630 
3631 		if (!to_intel_crtc(c)->active)
3632 			continue;
3633 
3634 		state = to_intel_plane_state(c->primary->state);
3635 		if (!state->vma)
3636 			continue;
3637 
3638 		if (intel_plane_ggtt_offset(state) == plane_config->base) {
3639 			fb = state->hw.fb;
3640 			vma = state->vma;
3641 			goto valid_fb;
3642 		}
3643 	}
3644 
3645 	/*
3646 	 * We've failed to reconstruct the BIOS FB.  Current display state
3647 	 * indicates that the primary plane is visible, but has a NULL FB,
3648 	 * which will lead to problems later if we don't fix it up.  The
3649 	 * simplest solution is to just disable the primary plane now and
3650 	 * pretend the BIOS never had it enabled.
3651 	 */
3652 	intel_plane_disable_noatomic(intel_crtc, intel_plane);
3653 
3654 	return;
3655 
3656 valid_fb:
3657 	intel_state->hw.rotation = plane_config->rotation;
3658 	intel_fill_fb_ggtt_view(&intel_state->view, fb,
3659 				intel_state->hw.rotation);
3660 	intel_state->color_plane[0].stride =
3661 		intel_fb_pitch(fb, 0, intel_state->hw.rotation);
3662 
3663 	__i915_vma_pin(vma);
3664 	intel_state->vma = i915_vma_get(vma);
3665 	if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0)
3666 		if (vma->fence)
3667 			intel_state->flags |= PLANE_HAS_FENCE;
3668 
3669 	plane_state->src_x = 0;
3670 	plane_state->src_y = 0;
3671 	plane_state->src_w = fb->width << 16;
3672 	plane_state->src_h = fb->height << 16;
3673 
3674 	plane_state->crtc_x = 0;
3675 	plane_state->crtc_y = 0;
3676 	plane_state->crtc_w = fb->width;
3677 	plane_state->crtc_h = fb->height;
3678 
3679 	intel_state->uapi.src = drm_plane_state_src(plane_state);
3680 	intel_state->uapi.dst = drm_plane_state_dest(plane_state);
3681 
3682 	if (plane_config->tiling)
3683 		dev_priv->preserve_bios_swizzle = true;
3684 
3685 	plane_state->fb = fb;
3686 	drm_framebuffer_get(fb);
3687 
3688 	plane_state->crtc = &intel_crtc->base;
3689 	intel_plane_copy_uapi_to_hw_state(intel_state, intel_state);
3690 
3691 	intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
3692 
3693 	atomic_or(to_intel_plane(primary)->frontbuffer_bit,
3694 		  &to_intel_frontbuffer(fb)->bits);
3695 }
3696 
3697 static int skl_max_plane_width(const struct drm_framebuffer *fb,
3698 			       int color_plane,
3699 			       unsigned int rotation)
3700 {
3701 	int cpp = fb->format->cpp[color_plane];
3702 
3703 	switch (fb->modifier) {
3704 	case DRM_FORMAT_MOD_LINEAR:
3705 	case I915_FORMAT_MOD_X_TILED:
3706 		/*
3707 		 * Validated limit is 4k, but has 5k should
3708 		 * work apart from the following features:
3709 		 * - Ytile (already limited to 4k)
3710 		 * - FP16 (already limited to 4k)
3711 		 * - render compression (already limited to 4k)
3712 		 * - KVMR sprite and cursor (don't care)
3713 		 * - horizontal panning (TODO verify this)
3714 		 * - pipe and plane scaling (TODO verify this)
3715 		 */
3716 		if (cpp == 8)
3717 			return 4096;
3718 		else
3719 			return 5120;
3720 	case I915_FORMAT_MOD_Y_TILED_CCS:
3721 	case I915_FORMAT_MOD_Yf_TILED_CCS:
3722 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
3723 		/* FIXME AUX plane? */
3724 	case I915_FORMAT_MOD_Y_TILED:
3725 	case I915_FORMAT_MOD_Yf_TILED:
3726 		if (cpp == 8)
3727 			return 2048;
3728 		else
3729 			return 4096;
3730 	default:
3731 		MISSING_CASE(fb->modifier);
3732 		return 2048;
3733 	}
3734 }
3735 
3736 static int glk_max_plane_width(const struct drm_framebuffer *fb,
3737 			       int color_plane,
3738 			       unsigned int rotation)
3739 {
3740 	int cpp = fb->format->cpp[color_plane];
3741 
3742 	switch (fb->modifier) {
3743 	case DRM_FORMAT_MOD_LINEAR:
3744 	case I915_FORMAT_MOD_X_TILED:
3745 		if (cpp == 8)
3746 			return 4096;
3747 		else
3748 			return 5120;
3749 	case I915_FORMAT_MOD_Y_TILED_CCS:
3750 	case I915_FORMAT_MOD_Yf_TILED_CCS:
3751 		/* FIXME AUX plane? */
3752 	case I915_FORMAT_MOD_Y_TILED:
3753 	case I915_FORMAT_MOD_Yf_TILED:
3754 		if (cpp == 8)
3755 			return 2048;
3756 		else
3757 			return 5120;
3758 	default:
3759 		MISSING_CASE(fb->modifier);
3760 		return 2048;
3761 	}
3762 }
3763 
3764 static int icl_max_plane_width(const struct drm_framebuffer *fb,
3765 			       int color_plane,
3766 			       unsigned int rotation)
3767 {
3768 	return 5120;
3769 }
3770 
3771 static int skl_max_plane_height(void)
3772 {
3773 	return 4096;
3774 }
3775 
3776 static int icl_max_plane_height(void)
3777 {
3778 	return 4320;
3779 }
3780 
3781 static bool
3782 skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
3783 			       int main_x, int main_y, u32 main_offset,
3784 			       int ccs_plane)
3785 {
3786 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3787 	int aux_x = plane_state->color_plane[ccs_plane].x;
3788 	int aux_y = plane_state->color_plane[ccs_plane].y;
3789 	u32 aux_offset = plane_state->color_plane[ccs_plane].offset;
3790 	u32 alignment = intel_surf_alignment(fb, ccs_plane);
3791 	int hsub;
3792 	int vsub;
3793 
3794 	intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
3795 	while (aux_offset >= main_offset && aux_y <= main_y) {
3796 		int x, y;
3797 
3798 		if (aux_x == main_x && aux_y == main_y)
3799 			break;
3800 
3801 		if (aux_offset == 0)
3802 			break;
3803 
3804 		x = aux_x / hsub;
3805 		y = aux_y / vsub;
3806 		aux_offset = intel_plane_adjust_aligned_offset(&x, &y,
3807 							       plane_state,
3808 							       ccs_plane,
3809 							       aux_offset,
3810 							       aux_offset -
3811 								alignment);
3812 		aux_x = x * hsub + aux_x % hsub;
3813 		aux_y = y * vsub + aux_y % vsub;
3814 	}
3815 
3816 	if (aux_x != main_x || aux_y != main_y)
3817 		return false;
3818 
3819 	plane_state->color_plane[ccs_plane].offset = aux_offset;
3820 	plane_state->color_plane[ccs_plane].x = aux_x;
3821 	plane_state->color_plane[ccs_plane].y = aux_y;
3822 
3823 	return true;
3824 }
3825 
3826 unsigned int
3827 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state)
3828 {
3829 	int x = 0, y = 0;
3830 
3831 	intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3832 					  plane_state->color_plane[0].offset, 0);
3833 
3834 	return y;
3835 }
3836 
3837 static int skl_check_main_surface(struct intel_plane_state *plane_state)
3838 {
3839 	struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev);
3840 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3841 	unsigned int rotation = plane_state->hw.rotation;
3842 	int x = plane_state->uapi.src.x1 >> 16;
3843 	int y = plane_state->uapi.src.y1 >> 16;
3844 	int w = drm_rect_width(&plane_state->uapi.src) >> 16;
3845 	int h = drm_rect_height(&plane_state->uapi.src) >> 16;
3846 	int max_width;
3847 	int max_height;
3848 	u32 alignment;
3849 	u32 offset;
3850 	int aux_plane = intel_main_to_aux_plane(fb, 0);
3851 	u32 aux_offset = plane_state->color_plane[aux_plane].offset;
3852 
3853 	if (INTEL_GEN(dev_priv) >= 11)
3854 		max_width = icl_max_plane_width(fb, 0, rotation);
3855 	else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
3856 		max_width = glk_max_plane_width(fb, 0, rotation);
3857 	else
3858 		max_width = skl_max_plane_width(fb, 0, rotation);
3859 
3860 	if (INTEL_GEN(dev_priv) >= 11)
3861 		max_height = icl_max_plane_height();
3862 	else
3863 		max_height = skl_max_plane_height();
3864 
3865 	if (w > max_width || h > max_height) {
3866 		drm_dbg_kms(&dev_priv->drm,
3867 			    "requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
3868 			    w, h, max_width, max_height);
3869 		return -EINVAL;
3870 	}
3871 
3872 	intel_add_fb_offsets(&x, &y, plane_state, 0);
3873 	offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0);
3874 	alignment = intel_surf_alignment(fb, 0);
3875 	if (drm_WARN_ON(&dev_priv->drm, alignment && !is_power_of_2(alignment)))
3876 		return -EINVAL;
3877 
3878 	/*
3879 	 * AUX surface offset is specified as the distance from the
3880 	 * main surface offset, and it must be non-negative. Make
3881 	 * sure that is what we will get.
3882 	 */
3883 	if (offset > aux_offset)
3884 		offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3885 							   offset, aux_offset & ~(alignment - 1));
3886 
3887 	/*
3888 	 * When using an X-tiled surface, the plane blows up
3889 	 * if the x offset + width exceed the stride.
3890 	 *
3891 	 * TODO: linear and Y-tiled seem fine, Yf untested,
3892 	 */
3893 	if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
3894 		int cpp = fb->format->cpp[0];
3895 
3896 		while ((x + w) * cpp > plane_state->color_plane[0].stride) {
3897 			if (offset == 0) {
3898 				drm_dbg_kms(&dev_priv->drm,
3899 					    "Unable to find suitable display surface offset due to X-tiling\n");
3900 				return -EINVAL;
3901 			}
3902 
3903 			offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3904 								   offset, offset - alignment);
3905 		}
3906 	}
3907 
3908 	/*
3909 	 * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3910 	 * they match with the main surface x/y offsets.
3911 	 */
3912 	if (is_ccs_modifier(fb->modifier)) {
3913 		while (!skl_check_main_ccs_coordinates(plane_state, x, y,
3914 						       offset, aux_plane)) {
3915 			if (offset == 0)
3916 				break;
3917 
3918 			offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3919 								   offset, offset - alignment);
3920 		}
3921 
3922 		if (x != plane_state->color_plane[aux_plane].x ||
3923 		    y != plane_state->color_plane[aux_plane].y) {
3924 			drm_dbg_kms(&dev_priv->drm,
3925 				    "Unable to find suitable display surface offset due to CCS\n");
3926 			return -EINVAL;
3927 		}
3928 	}
3929 
3930 	plane_state->color_plane[0].offset = offset;
3931 	plane_state->color_plane[0].x = x;
3932 	plane_state->color_plane[0].y = y;
3933 
3934 	/*
3935 	 * Put the final coordinates back so that the src
3936 	 * coordinate checks will see the right values.
3937 	 */
3938 	drm_rect_translate_to(&plane_state->uapi.src,
3939 			      x << 16, y << 16);
3940 
3941 	return 0;
3942 }
3943 
3944 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3945 {
3946 	struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
3947 	const struct drm_framebuffer *fb = plane_state->hw.fb;
3948 	unsigned int rotation = plane_state->hw.rotation;
3949 	int uv_plane = 1;
3950 	int max_width = skl_max_plane_width(fb, uv_plane, rotation);
3951 	int max_height = 4096;
3952 	int x = plane_state->uapi.src.x1 >> 17;
3953 	int y = plane_state->uapi.src.y1 >> 17;
3954 	int w = drm_rect_width(&plane_state->uapi.src) >> 17;
3955 	int h = drm_rect_height(&plane_state->uapi.src) >> 17;
3956 	u32 offset;
3957 
3958 	intel_add_fb_offsets(&x, &y, plane_state, uv_plane);
3959 	offset = intel_plane_compute_aligned_offset(&x, &y,
3960 						    plane_state, uv_plane);
3961 
3962 	/* FIXME not quite sure how/if these apply to the chroma plane */
3963 	if (w > max_width || h > max_height) {
3964 		drm_dbg_kms(&i915->drm,
3965 			    "CbCr source size %dx%d too big (limit %dx%d)\n",
3966 			    w, h, max_width, max_height);
3967 		return -EINVAL;
3968 	}
3969 
3970 	if (is_ccs_modifier(fb->modifier)) {
3971 		int ccs_plane = main_to_ccs_plane(fb, uv_plane);
3972 		int aux_offset = plane_state->color_plane[ccs_plane].offset;
3973 		int alignment = intel_surf_alignment(fb, uv_plane);
3974 
3975 		if (offset > aux_offset)
3976 			offset = intel_plane_adjust_aligned_offset(&x, &y,
3977 								   plane_state,
3978 								   uv_plane,
3979 								   offset,
3980 								   aux_offset & ~(alignment - 1));
3981 
3982 		while (!skl_check_main_ccs_coordinates(plane_state, x, y,
3983 						       offset, ccs_plane)) {
3984 			if (offset == 0)
3985 				break;
3986 
3987 			offset = intel_plane_adjust_aligned_offset(&x, &y,
3988 								   plane_state,
3989 								   uv_plane,
3990 								   offset, offset - alignment);
3991 		}
3992 
3993 		if (x != plane_state->color_plane[ccs_plane].x ||
3994 		    y != plane_state->color_plane[ccs_plane].y) {
3995 			drm_dbg_kms(&i915->drm,
3996 				    "Unable to find suitable display surface offset due to CCS\n");
3997 			return -EINVAL;
3998 		}
3999 	}
4000 
4001 	plane_state->color_plane[uv_plane].offset = offset;
4002 	plane_state->color_plane[uv_plane].x = x;
4003 	plane_state->color_plane[uv_plane].y = y;
4004 
4005 	return 0;
4006 }
4007 
4008 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
4009 {
4010 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4011 	int src_x = plane_state->uapi.src.x1 >> 16;
4012 	int src_y = plane_state->uapi.src.y1 >> 16;
4013 	u32 offset;
4014 	int ccs_plane;
4015 
4016 	for (ccs_plane = 0; ccs_plane < fb->format->num_planes; ccs_plane++) {
4017 		int main_hsub, main_vsub;
4018 		int hsub, vsub;
4019 		int x, y;
4020 
4021 		if (!is_ccs_plane(fb, ccs_plane))
4022 			continue;
4023 
4024 		intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb,
4025 					       ccs_to_main_plane(fb, ccs_plane));
4026 		intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
4027 
4028 		hsub *= main_hsub;
4029 		vsub *= main_vsub;
4030 		x = src_x / hsub;
4031 		y = src_y / vsub;
4032 
4033 		intel_add_fb_offsets(&x, &y, plane_state, ccs_plane);
4034 
4035 		offset = intel_plane_compute_aligned_offset(&x, &y,
4036 							    plane_state,
4037 							    ccs_plane);
4038 
4039 		plane_state->color_plane[ccs_plane].offset = offset;
4040 		plane_state->color_plane[ccs_plane].x = (x * hsub +
4041 							 src_x % hsub) /
4042 							main_hsub;
4043 		plane_state->color_plane[ccs_plane].y = (y * vsub +
4044 							 src_y % vsub) /
4045 							main_vsub;
4046 	}
4047 
4048 	return 0;
4049 }
4050 
4051 int skl_check_plane_surface(struct intel_plane_state *plane_state)
4052 {
4053 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4054 	int ret;
4055 	bool needs_aux = false;
4056 
4057 	ret = intel_plane_compute_gtt(plane_state);
4058 	if (ret)
4059 		return ret;
4060 
4061 	if (!plane_state->uapi.visible)
4062 		return 0;
4063 
4064 	/*
4065 	 * Handle the AUX surface first since the main surface setup depends on
4066 	 * it.
4067 	 */
4068 	if (is_ccs_modifier(fb->modifier)) {
4069 		needs_aux = true;
4070 		ret = skl_check_ccs_aux_surface(plane_state);
4071 		if (ret)
4072 			return ret;
4073 	}
4074 
4075 	if (intel_format_info_is_yuv_semiplanar(fb->format,
4076 						fb->modifier)) {
4077 		needs_aux = true;
4078 		ret = skl_check_nv12_aux_surface(plane_state);
4079 		if (ret)
4080 			return ret;
4081 	}
4082 
4083 	if (!needs_aux) {
4084 		int i;
4085 
4086 		for (i = 1; i < fb->format->num_planes; i++) {
4087 			plane_state->color_plane[i].offset = ~0xfff;
4088 			plane_state->color_plane[i].x = 0;
4089 			plane_state->color_plane[i].y = 0;
4090 		}
4091 	}
4092 
4093 	ret = skl_check_main_surface(plane_state);
4094 	if (ret)
4095 		return ret;
4096 
4097 	return 0;
4098 }
4099 
4100 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state,
4101 			     const struct intel_plane_state *plane_state,
4102 			     unsigned int *num, unsigned int *den)
4103 {
4104 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4105 	unsigned int cpp = fb->format->cpp[0];
4106 
4107 	/*
4108 	 * g4x bspec says 64bpp pixel rate can't exceed 80%
4109 	 * of cdclk when the sprite plane is enabled on the
4110 	 * same pipe. ilk/snb bspec says 64bpp pixel rate is
4111 	 * never allowed to exceed 80% of cdclk. Let's just go
4112 	 * with the ilk/snb limit always.
4113 	 */
4114 	if (cpp == 8) {
4115 		*num = 10;
4116 		*den = 8;
4117 	} else {
4118 		*num = 1;
4119 		*den = 1;
4120 	}
4121 }
4122 
4123 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state,
4124 				const struct intel_plane_state *plane_state)
4125 {
4126 	unsigned int pixel_rate;
4127 	unsigned int num, den;
4128 
4129 	/*
4130 	 * Note that crtc_state->pixel_rate accounts for both
4131 	 * horizontal and vertical panel fitter downscaling factors.
4132 	 * Pre-HSW bspec tells us to only consider the horizontal
4133 	 * downscaling factor here. We ignore that and just consider
4134 	 * both for simplicity.
4135 	 */
4136 	pixel_rate = crtc_state->pixel_rate;
4137 
4138 	i9xx_plane_ratio(crtc_state, plane_state, &num, &den);
4139 
4140 	/* two pixels per clock with double wide pipe */
4141 	if (crtc_state->double_wide)
4142 		den *= 2;
4143 
4144 	return DIV_ROUND_UP(pixel_rate * num, den);
4145 }
4146 
4147 unsigned int
4148 i9xx_plane_max_stride(struct intel_plane *plane,
4149 		      u32 pixel_format, u64 modifier,
4150 		      unsigned int rotation)
4151 {
4152 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4153 
4154 	if (!HAS_GMCH(dev_priv)) {
4155 		return 32*1024;
4156 	} else if (INTEL_GEN(dev_priv) >= 4) {
4157 		if (modifier == I915_FORMAT_MOD_X_TILED)
4158 			return 16*1024;
4159 		else
4160 			return 32*1024;
4161 	} else if (INTEL_GEN(dev_priv) >= 3) {
4162 		if (modifier == I915_FORMAT_MOD_X_TILED)
4163 			return 8*1024;
4164 		else
4165 			return 16*1024;
4166 	} else {
4167 		if (plane->i9xx_plane == PLANE_C)
4168 			return 4*1024;
4169 		else
4170 			return 8*1024;
4171 	}
4172 }
4173 
4174 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4175 {
4176 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4177 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4178 	u32 dspcntr = 0;
4179 
4180 	if (crtc_state->gamma_enable)
4181 		dspcntr |= DISPPLANE_GAMMA_ENABLE;
4182 
4183 	if (crtc_state->csc_enable)
4184 		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
4185 
4186 	if (INTEL_GEN(dev_priv) < 5)
4187 		dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
4188 
4189 	return dspcntr;
4190 }
4191 
4192 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
4193 			  const struct intel_plane_state *plane_state)
4194 {
4195 	struct drm_i915_private *dev_priv =
4196 		to_i915(plane_state->uapi.plane->dev);
4197 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4198 	unsigned int rotation = plane_state->hw.rotation;
4199 	u32 dspcntr;
4200 
4201 	dspcntr = DISPLAY_PLANE_ENABLE;
4202 
4203 	if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) ||
4204 	    IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
4205 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
4206 
4207 	switch (fb->format->format) {
4208 	case DRM_FORMAT_C8:
4209 		dspcntr |= DISPPLANE_8BPP;
4210 		break;
4211 	case DRM_FORMAT_XRGB1555:
4212 		dspcntr |= DISPPLANE_BGRX555;
4213 		break;
4214 	case DRM_FORMAT_ARGB1555:
4215 		dspcntr |= DISPPLANE_BGRA555;
4216 		break;
4217 	case DRM_FORMAT_RGB565:
4218 		dspcntr |= DISPPLANE_BGRX565;
4219 		break;
4220 	case DRM_FORMAT_XRGB8888:
4221 		dspcntr |= DISPPLANE_BGRX888;
4222 		break;
4223 	case DRM_FORMAT_XBGR8888:
4224 		dspcntr |= DISPPLANE_RGBX888;
4225 		break;
4226 	case DRM_FORMAT_ARGB8888:
4227 		dspcntr |= DISPPLANE_BGRA888;
4228 		break;
4229 	case DRM_FORMAT_ABGR8888:
4230 		dspcntr |= DISPPLANE_RGBA888;
4231 		break;
4232 	case DRM_FORMAT_XRGB2101010:
4233 		dspcntr |= DISPPLANE_BGRX101010;
4234 		break;
4235 	case DRM_FORMAT_XBGR2101010:
4236 		dspcntr |= DISPPLANE_RGBX101010;
4237 		break;
4238 	case DRM_FORMAT_ARGB2101010:
4239 		dspcntr |= DISPPLANE_BGRA101010;
4240 		break;
4241 	case DRM_FORMAT_ABGR2101010:
4242 		dspcntr |= DISPPLANE_RGBA101010;
4243 		break;
4244 	case DRM_FORMAT_XBGR16161616F:
4245 		dspcntr |= DISPPLANE_RGBX161616;
4246 		break;
4247 	default:
4248 		MISSING_CASE(fb->format->format);
4249 		return 0;
4250 	}
4251 
4252 	if (INTEL_GEN(dev_priv) >= 4 &&
4253 	    fb->modifier == I915_FORMAT_MOD_X_TILED)
4254 		dspcntr |= DISPPLANE_TILED;
4255 
4256 	if (rotation & DRM_MODE_ROTATE_180)
4257 		dspcntr |= DISPPLANE_ROTATE_180;
4258 
4259 	if (rotation & DRM_MODE_REFLECT_X)
4260 		dspcntr |= DISPPLANE_MIRROR;
4261 
4262 	return dspcntr;
4263 }
4264 
4265 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
4266 {
4267 	struct drm_i915_private *dev_priv =
4268 		to_i915(plane_state->uapi.plane->dev);
4269 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4270 	int src_x, src_y, src_w;
4271 	u32 offset;
4272 	int ret;
4273 
4274 	ret = intel_plane_compute_gtt(plane_state);
4275 	if (ret)
4276 		return ret;
4277 
4278 	if (!plane_state->uapi.visible)
4279 		return 0;
4280 
4281 	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4282 	src_x = plane_state->uapi.src.x1 >> 16;
4283 	src_y = plane_state->uapi.src.y1 >> 16;
4284 
4285 	/* Undocumented hardware limit on i965/g4x/vlv/chv */
4286 	if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048)
4287 		return -EINVAL;
4288 
4289 	intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
4290 
4291 	if (INTEL_GEN(dev_priv) >= 4)
4292 		offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
4293 							    plane_state, 0);
4294 	else
4295 		offset = 0;
4296 
4297 	/*
4298 	 * Put the final coordinates back so that the src
4299 	 * coordinate checks will see the right values.
4300 	 */
4301 	drm_rect_translate_to(&plane_state->uapi.src,
4302 			      src_x << 16, src_y << 16);
4303 
4304 	/* HSW/BDW do this automagically in hardware */
4305 	if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
4306 		unsigned int rotation = plane_state->hw.rotation;
4307 		int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4308 		int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4309 
4310 		if (rotation & DRM_MODE_ROTATE_180) {
4311 			src_x += src_w - 1;
4312 			src_y += src_h - 1;
4313 		} else if (rotation & DRM_MODE_REFLECT_X) {
4314 			src_x += src_w - 1;
4315 		}
4316 	}
4317 
4318 	plane_state->color_plane[0].offset = offset;
4319 	plane_state->color_plane[0].x = src_x;
4320 	plane_state->color_plane[0].y = src_y;
4321 
4322 	return 0;
4323 }
4324 
4325 static bool i9xx_plane_has_windowing(struct intel_plane *plane)
4326 {
4327 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4328 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4329 
4330 	if (IS_CHERRYVIEW(dev_priv))
4331 		return i9xx_plane == PLANE_B;
4332 	else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
4333 		return false;
4334 	else if (IS_GEN(dev_priv, 4))
4335 		return i9xx_plane == PLANE_C;
4336 	else
4337 		return i9xx_plane == PLANE_B ||
4338 			i9xx_plane == PLANE_C;
4339 }
4340 
4341 static int
4342 i9xx_plane_check(struct intel_crtc_state *crtc_state,
4343 		 struct intel_plane_state *plane_state)
4344 {
4345 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4346 	int ret;
4347 
4348 	ret = chv_plane_check_rotation(plane_state);
4349 	if (ret)
4350 		return ret;
4351 
4352 	ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
4353 						  &crtc_state->uapi,
4354 						  DRM_PLANE_HELPER_NO_SCALING,
4355 						  DRM_PLANE_HELPER_NO_SCALING,
4356 						  i9xx_plane_has_windowing(plane),
4357 						  true);
4358 	if (ret)
4359 		return ret;
4360 
4361 	ret = i9xx_check_plane_surface(plane_state);
4362 	if (ret)
4363 		return ret;
4364 
4365 	if (!plane_state->uapi.visible)
4366 		return 0;
4367 
4368 	ret = intel_plane_check_src_coordinates(plane_state);
4369 	if (ret)
4370 		return ret;
4371 
4372 	plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state);
4373 
4374 	return 0;
4375 }
4376 
4377 static void i9xx_update_plane(struct intel_plane *plane,
4378 			      const struct intel_crtc_state *crtc_state,
4379 			      const struct intel_plane_state *plane_state)
4380 {
4381 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4382 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4383 	u32 linear_offset;
4384 	int x = plane_state->color_plane[0].x;
4385 	int y = plane_state->color_plane[0].y;
4386 	int crtc_x = plane_state->uapi.dst.x1;
4387 	int crtc_y = plane_state->uapi.dst.y1;
4388 	int crtc_w = drm_rect_width(&plane_state->uapi.dst);
4389 	int crtc_h = drm_rect_height(&plane_state->uapi.dst);
4390 	unsigned long irqflags;
4391 	u32 dspaddr_offset;
4392 	u32 dspcntr;
4393 
4394 	dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state);
4395 
4396 	linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
4397 
4398 	if (INTEL_GEN(dev_priv) >= 4)
4399 		dspaddr_offset = plane_state->color_plane[0].offset;
4400 	else
4401 		dspaddr_offset = linear_offset;
4402 
4403 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4404 
4405 	intel_de_write_fw(dev_priv, DSPSTRIDE(i9xx_plane),
4406 			  plane_state->color_plane[0].stride);
4407 
4408 	if (INTEL_GEN(dev_priv) < 4) {
4409 		/*
4410 		 * PLANE_A doesn't actually have a full window
4411 		 * generator but let's assume we still need to
4412 		 * program whatever is there.
4413 		 */
4414 		intel_de_write_fw(dev_priv, DSPPOS(i9xx_plane),
4415 				  (crtc_y << 16) | crtc_x);
4416 		intel_de_write_fw(dev_priv, DSPSIZE(i9xx_plane),
4417 				  ((crtc_h - 1) << 16) | (crtc_w - 1));
4418 	} else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) {
4419 		intel_de_write_fw(dev_priv, PRIMPOS(i9xx_plane),
4420 				  (crtc_y << 16) | crtc_x);
4421 		intel_de_write_fw(dev_priv, PRIMSIZE(i9xx_plane),
4422 				  ((crtc_h - 1) << 16) | (crtc_w - 1));
4423 		intel_de_write_fw(dev_priv, PRIMCNSTALPHA(i9xx_plane), 0);
4424 	}
4425 
4426 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
4427 		intel_de_write_fw(dev_priv, DSPOFFSET(i9xx_plane),
4428 				  (y << 16) | x);
4429 	} else if (INTEL_GEN(dev_priv) >= 4) {
4430 		intel_de_write_fw(dev_priv, DSPLINOFF(i9xx_plane),
4431 				  linear_offset);
4432 		intel_de_write_fw(dev_priv, DSPTILEOFF(i9xx_plane),
4433 				  (y << 16) | x);
4434 	}
4435 
4436 	/*
4437 	 * The control register self-arms if the plane was previously
4438 	 * disabled. Try to make the plane enable atomic by writing
4439 	 * the control register just before the surface register.
4440 	 */
4441 	intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr);
4442 	if (INTEL_GEN(dev_priv) >= 4)
4443 		intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane),
4444 				  intel_plane_ggtt_offset(plane_state) + dspaddr_offset);
4445 	else
4446 		intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane),
4447 				  intel_plane_ggtt_offset(plane_state) + dspaddr_offset);
4448 
4449 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4450 }
4451 
4452 static void i9xx_disable_plane(struct intel_plane *plane,
4453 			       const struct intel_crtc_state *crtc_state)
4454 {
4455 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4456 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4457 	unsigned long irqflags;
4458 	u32 dspcntr;
4459 
4460 	/*
4461 	 * DSPCNTR pipe gamma enable on g4x+ and pipe csc
4462 	 * enable on ilk+ affect the pipe bottom color as
4463 	 * well, so we must configure them even if the plane
4464 	 * is disabled.
4465 	 *
4466 	 * On pre-g4x there is no way to gamma correct the
4467 	 * pipe bottom color but we'll keep on doing this
4468 	 * anyway so that the crtc state readout works correctly.
4469 	 */
4470 	dspcntr = i9xx_plane_ctl_crtc(crtc_state);
4471 
4472 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4473 
4474 	intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr);
4475 	if (INTEL_GEN(dev_priv) >= 4)
4476 		intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 0);
4477 	else
4478 		intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 0);
4479 
4480 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4481 }
4482 
4483 static bool i9xx_plane_get_hw_state(struct intel_plane *plane,
4484 				    enum pipe *pipe)
4485 {
4486 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4487 	enum intel_display_power_domain power_domain;
4488 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4489 	intel_wakeref_t wakeref;
4490 	bool ret;
4491 	u32 val;
4492 
4493 	/*
4494 	 * Not 100% correct for planes that can move between pipes,
4495 	 * but that's only the case for gen2-4 which don't have any
4496 	 * display power wells.
4497 	 */
4498 	power_domain = POWER_DOMAIN_PIPE(plane->pipe);
4499 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4500 	if (!wakeref)
4501 		return false;
4502 
4503 	val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
4504 
4505 	ret = val & DISPLAY_PLANE_ENABLE;
4506 
4507 	if (INTEL_GEN(dev_priv) >= 5)
4508 		*pipe = plane->pipe;
4509 	else
4510 		*pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
4511 			DISPPLANE_SEL_PIPE_SHIFT;
4512 
4513 	intel_display_power_put(dev_priv, power_domain, wakeref);
4514 
4515 	return ret;
4516 }
4517 
4518 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
4519 {
4520 	struct drm_device *dev = intel_crtc->base.dev;
4521 	struct drm_i915_private *dev_priv = to_i915(dev);
4522 	unsigned long irqflags;
4523 
4524 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4525 
4526 	intel_de_write_fw(dev_priv, SKL_PS_CTRL(intel_crtc->pipe, id), 0);
4527 	intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
4528 	intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
4529 
4530 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4531 }
4532 
4533 /*
4534  * This function detaches (aka. unbinds) unused scalers in hardware
4535  */
4536 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state)
4537 {
4538 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
4539 	const struct intel_crtc_scaler_state *scaler_state =
4540 		&crtc_state->scaler_state;
4541 	int i;
4542 
4543 	/* loop through and disable scalers that aren't in use */
4544 	for (i = 0; i < intel_crtc->num_scalers; i++) {
4545 		if (!scaler_state->scalers[i].in_use)
4546 			skl_detach_scaler(intel_crtc, i);
4547 	}
4548 }
4549 
4550 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb,
4551 					  int color_plane, unsigned int rotation)
4552 {
4553 	/*
4554 	 * The stride is either expressed as a multiple of 64 bytes chunks for
4555 	 * linear buffers or in number of tiles for tiled buffers.
4556 	 */
4557 	if (is_surface_linear(fb, color_plane))
4558 		return 64;
4559 	else if (drm_rotation_90_or_270(rotation))
4560 		return intel_tile_height(fb, color_plane);
4561 	else
4562 		return intel_tile_width_bytes(fb, color_plane);
4563 }
4564 
4565 u32 skl_plane_stride(const struct intel_plane_state *plane_state,
4566 		     int color_plane)
4567 {
4568 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4569 	unsigned int rotation = plane_state->hw.rotation;
4570 	u32 stride = plane_state->color_plane[color_plane].stride;
4571 
4572 	if (color_plane >= fb->format->num_planes)
4573 		return 0;
4574 
4575 	return stride / skl_plane_stride_mult(fb, color_plane, rotation);
4576 }
4577 
4578 static u32 skl_plane_ctl_format(u32 pixel_format)
4579 {
4580 	switch (pixel_format) {
4581 	case DRM_FORMAT_C8:
4582 		return PLANE_CTL_FORMAT_INDEXED;
4583 	case DRM_FORMAT_RGB565:
4584 		return PLANE_CTL_FORMAT_RGB_565;
4585 	case DRM_FORMAT_XBGR8888:
4586 	case DRM_FORMAT_ABGR8888:
4587 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
4588 	case DRM_FORMAT_XRGB8888:
4589 	case DRM_FORMAT_ARGB8888:
4590 		return PLANE_CTL_FORMAT_XRGB_8888;
4591 	case DRM_FORMAT_XBGR2101010:
4592 	case DRM_FORMAT_ABGR2101010:
4593 		return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX;
4594 	case DRM_FORMAT_XRGB2101010:
4595 	case DRM_FORMAT_ARGB2101010:
4596 		return PLANE_CTL_FORMAT_XRGB_2101010;
4597 	case DRM_FORMAT_XBGR16161616F:
4598 	case DRM_FORMAT_ABGR16161616F:
4599 		return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX;
4600 	case DRM_FORMAT_XRGB16161616F:
4601 	case DRM_FORMAT_ARGB16161616F:
4602 		return PLANE_CTL_FORMAT_XRGB_16161616F;
4603 	case DRM_FORMAT_XYUV8888:
4604 		return PLANE_CTL_FORMAT_XYUV;
4605 	case DRM_FORMAT_YUYV:
4606 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
4607 	case DRM_FORMAT_YVYU:
4608 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
4609 	case DRM_FORMAT_UYVY:
4610 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
4611 	case DRM_FORMAT_VYUY:
4612 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
4613 	case DRM_FORMAT_NV12:
4614 		return PLANE_CTL_FORMAT_NV12;
4615 	case DRM_FORMAT_P010:
4616 		return PLANE_CTL_FORMAT_P010;
4617 	case DRM_FORMAT_P012:
4618 		return PLANE_CTL_FORMAT_P012;
4619 	case DRM_FORMAT_P016:
4620 		return PLANE_CTL_FORMAT_P016;
4621 	case DRM_FORMAT_Y210:
4622 		return PLANE_CTL_FORMAT_Y210;
4623 	case DRM_FORMAT_Y212:
4624 		return PLANE_CTL_FORMAT_Y212;
4625 	case DRM_FORMAT_Y216:
4626 		return PLANE_CTL_FORMAT_Y216;
4627 	case DRM_FORMAT_XVYU2101010:
4628 		return PLANE_CTL_FORMAT_Y410;
4629 	case DRM_FORMAT_XVYU12_16161616:
4630 		return PLANE_CTL_FORMAT_Y412;
4631 	case DRM_FORMAT_XVYU16161616:
4632 		return PLANE_CTL_FORMAT_Y416;
4633 	default:
4634 		MISSING_CASE(pixel_format);
4635 	}
4636 
4637 	return 0;
4638 }
4639 
4640 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state)
4641 {
4642 	if (!plane_state->hw.fb->format->has_alpha)
4643 		return PLANE_CTL_ALPHA_DISABLE;
4644 
4645 	switch (plane_state->hw.pixel_blend_mode) {
4646 	case DRM_MODE_BLEND_PIXEL_NONE:
4647 		return PLANE_CTL_ALPHA_DISABLE;
4648 	case DRM_MODE_BLEND_PREMULTI:
4649 		return PLANE_CTL_ALPHA_SW_PREMULTIPLY;
4650 	case DRM_MODE_BLEND_COVERAGE:
4651 		return PLANE_CTL_ALPHA_HW_PREMULTIPLY;
4652 	default:
4653 		MISSING_CASE(plane_state->hw.pixel_blend_mode);
4654 		return PLANE_CTL_ALPHA_DISABLE;
4655 	}
4656 }
4657 
4658 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state)
4659 {
4660 	if (!plane_state->hw.fb->format->has_alpha)
4661 		return PLANE_COLOR_ALPHA_DISABLE;
4662 
4663 	switch (plane_state->hw.pixel_blend_mode) {
4664 	case DRM_MODE_BLEND_PIXEL_NONE:
4665 		return PLANE_COLOR_ALPHA_DISABLE;
4666 	case DRM_MODE_BLEND_PREMULTI:
4667 		return PLANE_COLOR_ALPHA_SW_PREMULTIPLY;
4668 	case DRM_MODE_BLEND_COVERAGE:
4669 		return PLANE_COLOR_ALPHA_HW_PREMULTIPLY;
4670 	default:
4671 		MISSING_CASE(plane_state->hw.pixel_blend_mode);
4672 		return PLANE_COLOR_ALPHA_DISABLE;
4673 	}
4674 }
4675 
4676 static u32 skl_plane_ctl_tiling(u64 fb_modifier)
4677 {
4678 	switch (fb_modifier) {
4679 	case DRM_FORMAT_MOD_LINEAR:
4680 		break;
4681 	case I915_FORMAT_MOD_X_TILED:
4682 		return PLANE_CTL_TILED_X;
4683 	case I915_FORMAT_MOD_Y_TILED:
4684 		return PLANE_CTL_TILED_Y;
4685 	case I915_FORMAT_MOD_Y_TILED_CCS:
4686 		return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4687 	case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
4688 		return PLANE_CTL_TILED_Y |
4689 		       PLANE_CTL_RENDER_DECOMPRESSION_ENABLE |
4690 		       PLANE_CTL_CLEAR_COLOR_DISABLE;
4691 	case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
4692 		return PLANE_CTL_TILED_Y | PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE;
4693 	case I915_FORMAT_MOD_Yf_TILED:
4694 		return PLANE_CTL_TILED_YF;
4695 	case I915_FORMAT_MOD_Yf_TILED_CCS:
4696 		return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4697 	default:
4698 		MISSING_CASE(fb_modifier);
4699 	}
4700 
4701 	return 0;
4702 }
4703 
4704 static u32 skl_plane_ctl_rotate(unsigned int rotate)
4705 {
4706 	switch (rotate) {
4707 	case DRM_MODE_ROTATE_0:
4708 		break;
4709 	/*
4710 	 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
4711 	 * while i915 HW rotation is clockwise, thats why this swapping.
4712 	 */
4713 	case DRM_MODE_ROTATE_90:
4714 		return PLANE_CTL_ROTATE_270;
4715 	case DRM_MODE_ROTATE_180:
4716 		return PLANE_CTL_ROTATE_180;
4717 	case DRM_MODE_ROTATE_270:
4718 		return PLANE_CTL_ROTATE_90;
4719 	default:
4720 		MISSING_CASE(rotate);
4721 	}
4722 
4723 	return 0;
4724 }
4725 
4726 static u32 cnl_plane_ctl_flip(unsigned int reflect)
4727 {
4728 	switch (reflect) {
4729 	case 0:
4730 		break;
4731 	case DRM_MODE_REFLECT_X:
4732 		return PLANE_CTL_FLIP_HORIZONTAL;
4733 	case DRM_MODE_REFLECT_Y:
4734 	default:
4735 		MISSING_CASE(reflect);
4736 	}
4737 
4738 	return 0;
4739 }
4740 
4741 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4742 {
4743 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4744 	u32 plane_ctl = 0;
4745 
4746 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4747 		return plane_ctl;
4748 
4749 	if (crtc_state->gamma_enable)
4750 		plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE;
4751 
4752 	if (crtc_state->csc_enable)
4753 		plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE;
4754 
4755 	return plane_ctl;
4756 }
4757 
4758 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
4759 		  const struct intel_plane_state *plane_state)
4760 {
4761 	struct drm_i915_private *dev_priv =
4762 		to_i915(plane_state->uapi.plane->dev);
4763 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4764 	unsigned int rotation = plane_state->hw.rotation;
4765 	const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
4766 	u32 plane_ctl;
4767 
4768 	plane_ctl = PLANE_CTL_ENABLE;
4769 
4770 	if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) {
4771 		plane_ctl |= skl_plane_ctl_alpha(plane_state);
4772 		plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
4773 
4774 		if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709)
4775 			plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709;
4776 
4777 		if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4778 			plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE;
4779 	}
4780 
4781 	plane_ctl |= skl_plane_ctl_format(fb->format->format);
4782 	plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
4783 	plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK);
4784 
4785 	if (INTEL_GEN(dev_priv) >= 10)
4786 		plane_ctl |= cnl_plane_ctl_flip(rotation &
4787 						DRM_MODE_REFLECT_MASK);
4788 
4789 	if (key->flags & I915_SET_COLORKEY_DESTINATION)
4790 		plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
4791 	else if (key->flags & I915_SET_COLORKEY_SOURCE)
4792 		plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
4793 
4794 	return plane_ctl;
4795 }
4796 
4797 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state)
4798 {
4799 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4800 	u32 plane_color_ctl = 0;
4801 
4802 	if (INTEL_GEN(dev_priv) >= 11)
4803 		return plane_color_ctl;
4804 
4805 	if (crtc_state->gamma_enable)
4806 		plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE;
4807 
4808 	if (crtc_state->csc_enable)
4809 		plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE;
4810 
4811 	return plane_color_ctl;
4812 }
4813 
4814 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state,
4815 			const struct intel_plane_state *plane_state)
4816 {
4817 	struct drm_i915_private *dev_priv =
4818 		to_i915(plane_state->uapi.plane->dev);
4819 	const struct drm_framebuffer *fb = plane_state->hw.fb;
4820 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4821 	u32 plane_color_ctl = 0;
4822 
4823 	plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE;
4824 	plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state);
4825 
4826 	if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) {
4827 		switch (plane_state->hw.color_encoding) {
4828 		case DRM_COLOR_YCBCR_BT709:
4829 			plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709;
4830 			break;
4831 		case DRM_COLOR_YCBCR_BT2020:
4832 			plane_color_ctl |=
4833 				PLANE_COLOR_CSC_MODE_YUV2020_TO_RGB2020;
4834 			break;
4835 		default:
4836 			plane_color_ctl |=
4837 				PLANE_COLOR_CSC_MODE_YUV601_TO_RGB601;
4838 		}
4839 		if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4840 			plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
4841 	} else if (fb->format->is_yuv) {
4842 		plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE;
4843 	}
4844 
4845 	return plane_color_ctl;
4846 }
4847 
4848 static int
4849 __intel_display_resume(struct drm_device *dev,
4850 		       struct drm_atomic_state *state,
4851 		       struct drm_modeset_acquire_ctx *ctx)
4852 {
4853 	struct drm_crtc_state *crtc_state;
4854 	struct drm_crtc *crtc;
4855 	int i, ret;
4856 
4857 	intel_modeset_setup_hw_state(dev, ctx);
4858 	intel_vga_redisable(to_i915(dev));
4859 
4860 	if (!state)
4861 		return 0;
4862 
4863 	/*
4864 	 * We've duplicated the state, pointers to the old state are invalid.
4865 	 *
4866 	 * Don't attempt to use the old state until we commit the duplicated state.
4867 	 */
4868 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
4869 		/*
4870 		 * Force recalculation even if we restore
4871 		 * current state. With fast modeset this may not result
4872 		 * in a modeset when the state is compatible.
4873 		 */
4874 		crtc_state->mode_changed = true;
4875 	}
4876 
4877 	/* ignore any reset values/BIOS leftovers in the WM registers */
4878 	if (!HAS_GMCH(to_i915(dev)))
4879 		to_intel_atomic_state(state)->skip_intermediate_wm = true;
4880 
4881 	ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
4882 
4883 	drm_WARN_ON(dev, ret == -EDEADLK);
4884 	return ret;
4885 }
4886 
4887 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
4888 {
4889 	return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display &&
4890 		intel_has_gpu_reset(&dev_priv->gt));
4891 }
4892 
4893 void intel_prepare_reset(struct drm_i915_private *dev_priv)
4894 {
4895 	struct drm_device *dev = &dev_priv->drm;
4896 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4897 	struct drm_atomic_state *state;
4898 	int ret;
4899 
4900 	/* reset doesn't touch the display */
4901 	if (!dev_priv->params.force_reset_modeset_test &&
4902 	    !gpu_reset_clobbers_display(dev_priv))
4903 		return;
4904 
4905 	/* We have a modeset vs reset deadlock, defensively unbreak it. */
4906 	set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4907 	smp_mb__after_atomic();
4908 	wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET);
4909 
4910 	if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
4911 		drm_dbg_kms(&dev_priv->drm,
4912 			    "Modeset potentially stuck, unbreaking through wedging\n");
4913 		intel_gt_set_wedged(&dev_priv->gt);
4914 	}
4915 
4916 	/*
4917 	 * Need mode_config.mutex so that we don't
4918 	 * trample ongoing ->detect() and whatnot.
4919 	 */
4920 	mutex_lock(&dev->mode_config.mutex);
4921 	drm_modeset_acquire_init(ctx, 0);
4922 	while (1) {
4923 		ret = drm_modeset_lock_all_ctx(dev, ctx);
4924 		if (ret != -EDEADLK)
4925 			break;
4926 
4927 		drm_modeset_backoff(ctx);
4928 	}
4929 	/*
4930 	 * Disabling the crtcs gracefully seems nicer. Also the
4931 	 * g33 docs say we should at least disable all the planes.
4932 	 */
4933 	state = drm_atomic_helper_duplicate_state(dev, ctx);
4934 	if (IS_ERR(state)) {
4935 		ret = PTR_ERR(state);
4936 		drm_err(&dev_priv->drm, "Duplicating state failed with %i\n",
4937 			ret);
4938 		return;
4939 	}
4940 
4941 	ret = drm_atomic_helper_disable_all(dev, ctx);
4942 	if (ret) {
4943 		drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n",
4944 			ret);
4945 		drm_atomic_state_put(state);
4946 		return;
4947 	}
4948 
4949 	dev_priv->modeset_restore_state = state;
4950 	state->acquire_ctx = ctx;
4951 }
4952 
4953 void intel_finish_reset(struct drm_i915_private *dev_priv)
4954 {
4955 	struct drm_device *dev = &dev_priv->drm;
4956 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4957 	struct drm_atomic_state *state;
4958 	int ret;
4959 
4960 	/* reset doesn't touch the display */
4961 	if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
4962 		return;
4963 
4964 	state = fetch_and_zero(&dev_priv->modeset_restore_state);
4965 	if (!state)
4966 		goto unlock;
4967 
4968 	/* reset doesn't touch the display */
4969 	if (!gpu_reset_clobbers_display(dev_priv)) {
4970 		/* for testing only restore the display */
4971 		ret = __intel_display_resume(dev, state, ctx);
4972 		if (ret)
4973 			drm_err(&dev_priv->drm,
4974 				"Restoring old state failed with %i\n", ret);
4975 	} else {
4976 		/*
4977 		 * The display has been reset as well,
4978 		 * so need a full re-initialization.
4979 		 */
4980 		intel_pps_unlock_regs_wa(dev_priv);
4981 		intel_modeset_init_hw(dev_priv);
4982 		intel_init_clock_gating(dev_priv);
4983 
4984 		spin_lock_irq(&dev_priv->irq_lock);
4985 		if (dev_priv->display.hpd_irq_setup)
4986 			dev_priv->display.hpd_irq_setup(dev_priv);
4987 		spin_unlock_irq(&dev_priv->irq_lock);
4988 
4989 		ret = __intel_display_resume(dev, state, ctx);
4990 		if (ret)
4991 			drm_err(&dev_priv->drm,
4992 				"Restoring old state failed with %i\n", ret);
4993 
4994 		intel_hpd_init(dev_priv);
4995 	}
4996 
4997 	drm_atomic_state_put(state);
4998 unlock:
4999 	drm_modeset_drop_locks(ctx);
5000 	drm_modeset_acquire_fini(ctx);
5001 	mutex_unlock(&dev->mode_config.mutex);
5002 
5003 	clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
5004 }
5005 
5006 static void icl_set_pipe_chicken(struct intel_crtc *crtc)
5007 {
5008 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5009 	enum pipe pipe = crtc->pipe;
5010 	u32 tmp;
5011 
5012 	tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe));
5013 
5014 	/*
5015 	 * Display WA #1153: icl
5016 	 * enable hardware to bypass the alpha math
5017 	 * and rounding for per-pixel values 00 and 0xff
5018 	 */
5019 	tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
5020 	/*
5021 	 * Display WA # 1605353570: icl
5022 	 * Set the pixel rounding bit to 1 for allowing
5023 	 * passthrough of Frame buffer pixels unmodified
5024 	 * across pipe
5025 	 */
5026 	tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
5027 	intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp);
5028 }
5029 
5030 static void intel_fdi_normal_train(struct intel_crtc *crtc)
5031 {
5032 	struct drm_device *dev = crtc->base.dev;
5033 	struct drm_i915_private *dev_priv = to_i915(dev);
5034 	enum pipe pipe = crtc->pipe;
5035 	i915_reg_t reg;
5036 	u32 temp;
5037 
5038 	/* enable normal train */
5039 	reg = FDI_TX_CTL(pipe);
5040 	temp = intel_de_read(dev_priv, reg);
5041 	if (IS_IVYBRIDGE(dev_priv)) {
5042 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5043 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
5044 	} else {
5045 		temp &= ~FDI_LINK_TRAIN_NONE;
5046 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
5047 	}
5048 	intel_de_write(dev_priv, reg, temp);
5049 
5050 	reg = FDI_RX_CTL(pipe);
5051 	temp = intel_de_read(dev_priv, reg);
5052 	if (HAS_PCH_CPT(dev_priv)) {
5053 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5054 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
5055 	} else {
5056 		temp &= ~FDI_LINK_TRAIN_NONE;
5057 		temp |= FDI_LINK_TRAIN_NONE;
5058 	}
5059 	intel_de_write(dev_priv, reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
5060 
5061 	/* wait one idle pattern time */
5062 	intel_de_posting_read(dev_priv, reg);
5063 	udelay(1000);
5064 
5065 	/* IVB wants error correction enabled */
5066 	if (IS_IVYBRIDGE(dev_priv))
5067 		intel_de_write(dev_priv, reg,
5068 		               intel_de_read(dev_priv, reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE);
5069 }
5070 
5071 /* The FDI link training functions for ILK/Ibexpeak. */
5072 static void ilk_fdi_link_train(struct intel_crtc *crtc,
5073 			       const struct intel_crtc_state *crtc_state)
5074 {
5075 	struct drm_device *dev = crtc->base.dev;
5076 	struct drm_i915_private *dev_priv = to_i915(dev);
5077 	enum pipe pipe = crtc->pipe;
5078 	i915_reg_t reg;
5079 	u32 temp, tries;
5080 
5081 	/* FDI needs bits from pipe first */
5082 	assert_pipe_enabled(dev_priv, crtc_state->cpu_transcoder);
5083 
5084 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5085 	   for train result */
5086 	reg = FDI_RX_IMR(pipe);
5087 	temp = intel_de_read(dev_priv, reg);
5088 	temp &= ~FDI_RX_SYMBOL_LOCK;
5089 	temp &= ~FDI_RX_BIT_LOCK;
5090 	intel_de_write(dev_priv, reg, temp);
5091 	intel_de_read(dev_priv, reg);
5092 	udelay(150);
5093 
5094 	/* enable CPU FDI TX and PCH FDI RX */
5095 	reg = FDI_TX_CTL(pipe);
5096 	temp = intel_de_read(dev_priv, reg);
5097 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
5098 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5099 	temp &= ~FDI_LINK_TRAIN_NONE;
5100 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5101 	intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5102 
5103 	reg = FDI_RX_CTL(pipe);
5104 	temp = intel_de_read(dev_priv, reg);
5105 	temp &= ~FDI_LINK_TRAIN_NONE;
5106 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5107 	intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5108 
5109 	intel_de_posting_read(dev_priv, reg);
5110 	udelay(150);
5111 
5112 	/* Ironlake workaround, enable clock pointer after FDI enable*/
5113 	intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5114 		       FDI_RX_PHASE_SYNC_POINTER_OVR);
5115 	intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5116 		       FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN);
5117 
5118 	reg = FDI_RX_IIR(pipe);
5119 	for (tries = 0; tries < 5; tries++) {
5120 		temp = intel_de_read(dev_priv, reg);
5121 		drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5122 
5123 		if ((temp & FDI_RX_BIT_LOCK)) {
5124 			drm_dbg_kms(&dev_priv->drm, "FDI train 1 done.\n");
5125 			intel_de_write(dev_priv, reg, temp | FDI_RX_BIT_LOCK);
5126 			break;
5127 		}
5128 	}
5129 	if (tries == 5)
5130 		drm_err(&dev_priv->drm, "FDI train 1 fail!\n");
5131 
5132 	/* Train 2 */
5133 	reg = FDI_TX_CTL(pipe);
5134 	temp = intel_de_read(dev_priv, reg);
5135 	temp &= ~FDI_LINK_TRAIN_NONE;
5136 	temp |= FDI_LINK_TRAIN_PATTERN_2;
5137 	intel_de_write(dev_priv, reg, temp);
5138 
5139 	reg = FDI_RX_CTL(pipe);
5140 	temp = intel_de_read(dev_priv, reg);
5141 	temp &= ~FDI_LINK_TRAIN_NONE;
5142 	temp |= FDI_LINK_TRAIN_PATTERN_2;
5143 	intel_de_write(dev_priv, reg, temp);
5144 
5145 	intel_de_posting_read(dev_priv, reg);
5146 	udelay(150);
5147 
5148 	reg = FDI_RX_IIR(pipe);
5149 	for (tries = 0; tries < 5; tries++) {
5150 		temp = intel_de_read(dev_priv, reg);
5151 		drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5152 
5153 		if (temp & FDI_RX_SYMBOL_LOCK) {
5154 			intel_de_write(dev_priv, reg,
5155 				       temp | FDI_RX_SYMBOL_LOCK);
5156 			drm_dbg_kms(&dev_priv->drm, "FDI train 2 done.\n");
5157 			break;
5158 		}
5159 	}
5160 	if (tries == 5)
5161 		drm_err(&dev_priv->drm, "FDI train 2 fail!\n");
5162 
5163 	drm_dbg_kms(&dev_priv->drm, "FDI train done\n");
5164 
5165 }
5166 
5167 static const int snb_b_fdi_train_param[] = {
5168 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
5169 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
5170 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
5171 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
5172 };
5173 
5174 /* The FDI link training functions for SNB/Cougarpoint. */
5175 static void gen6_fdi_link_train(struct intel_crtc *crtc,
5176 				const struct intel_crtc_state *crtc_state)
5177 {
5178 	struct drm_device *dev = crtc->base.dev;
5179 	struct drm_i915_private *dev_priv = to_i915(dev);
5180 	enum pipe pipe = crtc->pipe;
5181 	i915_reg_t reg;
5182 	u32 temp, i, retry;
5183 
5184 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5185 	   for train result */
5186 	reg = FDI_RX_IMR(pipe);
5187 	temp = intel_de_read(dev_priv, reg);
5188 	temp &= ~FDI_RX_SYMBOL_LOCK;
5189 	temp &= ~FDI_RX_BIT_LOCK;
5190 	intel_de_write(dev_priv, reg, temp);
5191 
5192 	intel_de_posting_read(dev_priv, reg);
5193 	udelay(150);
5194 
5195 	/* enable CPU FDI TX and PCH FDI RX */
5196 	reg = FDI_TX_CTL(pipe);
5197 	temp = intel_de_read(dev_priv, reg);
5198 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
5199 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5200 	temp &= ~FDI_LINK_TRAIN_NONE;
5201 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5202 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5203 	/* SNB-B */
5204 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5205 	intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5206 
5207 	intel_de_write(dev_priv, FDI_RX_MISC(pipe),
5208 		       FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5209 
5210 	reg = FDI_RX_CTL(pipe);
5211 	temp = intel_de_read(dev_priv, reg);
5212 	if (HAS_PCH_CPT(dev_priv)) {
5213 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5214 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5215 	} else {
5216 		temp &= ~FDI_LINK_TRAIN_NONE;
5217 		temp |= FDI_LINK_TRAIN_PATTERN_1;
5218 	}
5219 	intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5220 
5221 	intel_de_posting_read(dev_priv, reg);
5222 	udelay(150);
5223 
5224 	for (i = 0; i < 4; i++) {
5225 		reg = FDI_TX_CTL(pipe);
5226 		temp = intel_de_read(dev_priv, reg);
5227 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5228 		temp |= snb_b_fdi_train_param[i];
5229 		intel_de_write(dev_priv, reg, temp);
5230 
5231 		intel_de_posting_read(dev_priv, reg);
5232 		udelay(500);
5233 
5234 		for (retry = 0; retry < 5; retry++) {
5235 			reg = FDI_RX_IIR(pipe);
5236 			temp = intel_de_read(dev_priv, reg);
5237 			drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5238 			if (temp & FDI_RX_BIT_LOCK) {
5239 				intel_de_write(dev_priv, reg,
5240 					       temp | FDI_RX_BIT_LOCK);
5241 				drm_dbg_kms(&dev_priv->drm,
5242 					    "FDI train 1 done.\n");
5243 				break;
5244 			}
5245 			udelay(50);
5246 		}
5247 		if (retry < 5)
5248 			break;
5249 	}
5250 	if (i == 4)
5251 		drm_err(&dev_priv->drm, "FDI train 1 fail!\n");
5252 
5253 	/* Train 2 */
5254 	reg = FDI_TX_CTL(pipe);
5255 	temp = intel_de_read(dev_priv, reg);
5256 	temp &= ~FDI_LINK_TRAIN_NONE;
5257 	temp |= FDI_LINK_TRAIN_PATTERN_2;
5258 	if (IS_GEN(dev_priv, 6)) {
5259 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5260 		/* SNB-B */
5261 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5262 	}
5263 	intel_de_write(dev_priv, reg, temp);
5264 
5265 	reg = FDI_RX_CTL(pipe);
5266 	temp = intel_de_read(dev_priv, reg);
5267 	if (HAS_PCH_CPT(dev_priv)) {
5268 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5269 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5270 	} else {
5271 		temp &= ~FDI_LINK_TRAIN_NONE;
5272 		temp |= FDI_LINK_TRAIN_PATTERN_2;
5273 	}
5274 	intel_de_write(dev_priv, reg, temp);
5275 
5276 	intel_de_posting_read(dev_priv, reg);
5277 	udelay(150);
5278 
5279 	for (i = 0; i < 4; i++) {
5280 		reg = FDI_TX_CTL(pipe);
5281 		temp = intel_de_read(dev_priv, reg);
5282 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5283 		temp |= snb_b_fdi_train_param[i];
5284 		intel_de_write(dev_priv, reg, temp);
5285 
5286 		intel_de_posting_read(dev_priv, reg);
5287 		udelay(500);
5288 
5289 		for (retry = 0; retry < 5; retry++) {
5290 			reg = FDI_RX_IIR(pipe);
5291 			temp = intel_de_read(dev_priv, reg);
5292 			drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5293 			if (temp & FDI_RX_SYMBOL_LOCK) {
5294 				intel_de_write(dev_priv, reg,
5295 					       temp | FDI_RX_SYMBOL_LOCK);
5296 				drm_dbg_kms(&dev_priv->drm,
5297 					    "FDI train 2 done.\n");
5298 				break;
5299 			}
5300 			udelay(50);
5301 		}
5302 		if (retry < 5)
5303 			break;
5304 	}
5305 	if (i == 4)
5306 		drm_err(&dev_priv->drm, "FDI train 2 fail!\n");
5307 
5308 	drm_dbg_kms(&dev_priv->drm, "FDI train done.\n");
5309 }
5310 
5311 /* Manual link training for Ivy Bridge A0 parts */
5312 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
5313 				      const struct intel_crtc_state *crtc_state)
5314 {
5315 	struct drm_device *dev = crtc->base.dev;
5316 	struct drm_i915_private *dev_priv = to_i915(dev);
5317 	enum pipe pipe = crtc->pipe;
5318 	i915_reg_t reg;
5319 	u32 temp, i, j;
5320 
5321 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5322 	   for train result */
5323 	reg = FDI_RX_IMR(pipe);
5324 	temp = intel_de_read(dev_priv, reg);
5325 	temp &= ~FDI_RX_SYMBOL_LOCK;
5326 	temp &= ~FDI_RX_BIT_LOCK;
5327 	intel_de_write(dev_priv, reg, temp);
5328 
5329 	intel_de_posting_read(dev_priv, reg);
5330 	udelay(150);
5331 
5332 	drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR before link train 0x%x\n",
5333 		    intel_de_read(dev_priv, FDI_RX_IIR(pipe)));
5334 
5335 	/* Try each vswing and preemphasis setting twice before moving on */
5336 	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
5337 		/* disable first in case we need to retry */
5338 		reg = FDI_TX_CTL(pipe);
5339 		temp = intel_de_read(dev_priv, reg);
5340 		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
5341 		temp &= ~FDI_TX_ENABLE;
5342 		intel_de_write(dev_priv, reg, temp);
5343 
5344 		reg = FDI_RX_CTL(pipe);
5345 		temp = intel_de_read(dev_priv, reg);
5346 		temp &= ~FDI_LINK_TRAIN_AUTO;
5347 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5348 		temp &= ~FDI_RX_ENABLE;
5349 		intel_de_write(dev_priv, reg, temp);
5350 
5351 		/* enable CPU FDI TX and PCH FDI RX */
5352 		reg = FDI_TX_CTL(pipe);
5353 		temp = intel_de_read(dev_priv, reg);
5354 		temp &= ~FDI_DP_PORT_WIDTH_MASK;
5355 		temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5356 		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
5357 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5358 		temp |= snb_b_fdi_train_param[j/2];
5359 		temp |= FDI_COMPOSITE_SYNC;
5360 		intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
5361 
5362 		intel_de_write(dev_priv, FDI_RX_MISC(pipe),
5363 			       FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5364 
5365 		reg = FDI_RX_CTL(pipe);
5366 		temp = intel_de_read(dev_priv, reg);
5367 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5368 		temp |= FDI_COMPOSITE_SYNC;
5369 		intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
5370 
5371 		intel_de_posting_read(dev_priv, reg);
5372 		udelay(1); /* should be 0.5us */
5373 
5374 		for (i = 0; i < 4; i++) {
5375 			reg = FDI_RX_IIR(pipe);
5376 			temp = intel_de_read(dev_priv, reg);
5377 			drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5378 
5379 			if (temp & FDI_RX_BIT_LOCK ||
5380 			    (intel_de_read(dev_priv, reg) & FDI_RX_BIT_LOCK)) {
5381 				intel_de_write(dev_priv, reg,
5382 					       temp | FDI_RX_BIT_LOCK);
5383 				drm_dbg_kms(&dev_priv->drm,
5384 					    "FDI train 1 done, level %i.\n",
5385 					    i);
5386 				break;
5387 			}
5388 			udelay(1); /* should be 0.5us */
5389 		}
5390 		if (i == 4) {
5391 			drm_dbg_kms(&dev_priv->drm,
5392 				    "FDI train 1 fail on vswing %d\n", j / 2);
5393 			continue;
5394 		}
5395 
5396 		/* Train 2 */
5397 		reg = FDI_TX_CTL(pipe);
5398 		temp = intel_de_read(dev_priv, reg);
5399 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5400 		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
5401 		intel_de_write(dev_priv, reg, temp);
5402 
5403 		reg = FDI_RX_CTL(pipe);
5404 		temp = intel_de_read(dev_priv, reg);
5405 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5406 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5407 		intel_de_write(dev_priv, reg, temp);
5408 
5409 		intel_de_posting_read(dev_priv, reg);
5410 		udelay(2); /* should be 1.5us */
5411 
5412 		for (i = 0; i < 4; i++) {
5413 			reg = FDI_RX_IIR(pipe);
5414 			temp = intel_de_read(dev_priv, reg);
5415 			drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
5416 
5417 			if (temp & FDI_RX_SYMBOL_LOCK ||
5418 			    (intel_de_read(dev_priv, reg) & FDI_RX_SYMBOL_LOCK)) {
5419 				intel_de_write(dev_priv, reg,
5420 					       temp | FDI_RX_SYMBOL_LOCK);
5421 				drm_dbg_kms(&dev_priv->drm,
5422 					    "FDI train 2 done, level %i.\n",
5423 					    i);
5424 				goto train_done;
5425 			}
5426 			udelay(2); /* should be 1.5us */
5427 		}
5428 		if (i == 4)
5429 			drm_dbg_kms(&dev_priv->drm,
5430 				    "FDI train 2 fail on vswing %d\n", j / 2);
5431 	}
5432 
5433 train_done:
5434 	drm_dbg_kms(&dev_priv->drm, "FDI train done.\n");
5435 }
5436 
5437 static void ilk_fdi_pll_enable(const struct intel_crtc_state *crtc_state)
5438 {
5439 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
5440 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5441 	enum pipe pipe = intel_crtc->pipe;
5442 	i915_reg_t reg;
5443 	u32 temp;
5444 
5445 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5446 	reg = FDI_RX_CTL(pipe);
5447 	temp = intel_de_read(dev_priv, reg);
5448 	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
5449 	temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5450 	temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5451 	intel_de_write(dev_priv, reg, temp | FDI_RX_PLL_ENABLE);
5452 
5453 	intel_de_posting_read(dev_priv, reg);
5454 	udelay(200);
5455 
5456 	/* Switch from Rawclk to PCDclk */
5457 	temp = intel_de_read(dev_priv, reg);
5458 	intel_de_write(dev_priv, reg, temp | FDI_PCDCLK);
5459 
5460 	intel_de_posting_read(dev_priv, reg);
5461 	udelay(200);
5462 
5463 	/* Enable CPU FDI TX PLL, always on for Ironlake */
5464 	reg = FDI_TX_CTL(pipe);
5465 	temp = intel_de_read(dev_priv, reg);
5466 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
5467 		intel_de_write(dev_priv, reg, temp | FDI_TX_PLL_ENABLE);
5468 
5469 		intel_de_posting_read(dev_priv, reg);
5470 		udelay(100);
5471 	}
5472 }
5473 
5474 static void ilk_fdi_pll_disable(struct intel_crtc *intel_crtc)
5475 {
5476 	struct drm_device *dev = intel_crtc->base.dev;
5477 	struct drm_i915_private *dev_priv = to_i915(dev);
5478 	enum pipe pipe = intel_crtc->pipe;
5479 	i915_reg_t reg;
5480 	u32 temp;
5481 
5482 	/* Switch from PCDclk to Rawclk */
5483 	reg = FDI_RX_CTL(pipe);
5484 	temp = intel_de_read(dev_priv, reg);
5485 	intel_de_write(dev_priv, reg, temp & ~FDI_PCDCLK);
5486 
5487 	/* Disable CPU FDI TX PLL */
5488 	reg = FDI_TX_CTL(pipe);
5489 	temp = intel_de_read(dev_priv, reg);
5490 	intel_de_write(dev_priv, reg, temp & ~FDI_TX_PLL_ENABLE);
5491 
5492 	intel_de_posting_read(dev_priv, reg);
5493 	udelay(100);
5494 
5495 	reg = FDI_RX_CTL(pipe);
5496 	temp = intel_de_read(dev_priv, reg);
5497 	intel_de_write(dev_priv, reg, temp & ~FDI_RX_PLL_ENABLE);
5498 
5499 	/* Wait for the clocks to turn off. */
5500 	intel_de_posting_read(dev_priv, reg);
5501 	udelay(100);
5502 }
5503 
5504 static void ilk_fdi_disable(struct intel_crtc *crtc)
5505 {
5506 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5507 	enum pipe pipe = crtc->pipe;
5508 	i915_reg_t reg;
5509 	u32 temp;
5510 
5511 	/* disable CPU FDI tx and PCH FDI rx */
5512 	reg = FDI_TX_CTL(pipe);
5513 	temp = intel_de_read(dev_priv, reg);
5514 	intel_de_write(dev_priv, reg, temp & ~FDI_TX_ENABLE);
5515 	intel_de_posting_read(dev_priv, reg);
5516 
5517 	reg = FDI_RX_CTL(pipe);
5518 	temp = intel_de_read(dev_priv, reg);
5519 	temp &= ~(0x7 << 16);
5520 	temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5521 	intel_de_write(dev_priv, reg, temp & ~FDI_RX_ENABLE);
5522 
5523 	intel_de_posting_read(dev_priv, reg);
5524 	udelay(100);
5525 
5526 	/* Ironlake workaround, disable clock pointer after downing FDI */
5527 	if (HAS_PCH_IBX(dev_priv))
5528 		intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
5529 			       FDI_RX_PHASE_SYNC_POINTER_OVR);
5530 
5531 	/* still set train pattern 1 */
5532 	reg = FDI_TX_CTL(pipe);
5533 	temp = intel_de_read(dev_priv, reg);
5534 	temp &= ~FDI_LINK_TRAIN_NONE;
5535 	temp |= FDI_LINK_TRAIN_PATTERN_1;
5536 	intel_de_write(dev_priv, reg, temp);
5537 
5538 	reg = FDI_RX_CTL(pipe);
5539 	temp = intel_de_read(dev_priv, reg);
5540 	if (HAS_PCH_CPT(dev_priv)) {
5541 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5542 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5543 	} else {
5544 		temp &= ~FDI_LINK_TRAIN_NONE;
5545 		temp |= FDI_LINK_TRAIN_PATTERN_1;
5546 	}
5547 	/* BPC in FDI rx is consistent with that in PIPECONF */
5548 	temp &= ~(0x07 << 16);
5549 	temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5550 	intel_de_write(dev_priv, reg, temp);
5551 
5552 	intel_de_posting_read(dev_priv, reg);
5553 	udelay(100);
5554 }
5555 
5556 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
5557 {
5558 	struct drm_crtc *crtc;
5559 	bool cleanup_done;
5560 
5561 	drm_for_each_crtc(crtc, &dev_priv->drm) {
5562 		struct drm_crtc_commit *commit;
5563 		spin_lock(&crtc->commit_lock);
5564 		commit = list_first_entry_or_null(&crtc->commit_list,
5565 						  struct drm_crtc_commit, commit_entry);
5566 		cleanup_done = commit ?
5567 			try_wait_for_completion(&commit->cleanup_done) : true;
5568 		spin_unlock(&crtc->commit_lock);
5569 
5570 		if (cleanup_done)
5571 			continue;
5572 
5573 		drm_crtc_wait_one_vblank(crtc);
5574 
5575 		return true;
5576 	}
5577 
5578 	return false;
5579 }
5580 
5581 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
5582 {
5583 	u32 temp;
5584 
5585 	intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE);
5586 
5587 	mutex_lock(&dev_priv->sb_lock);
5588 
5589 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5590 	temp |= SBI_SSCCTL_DISABLE;
5591 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5592 
5593 	mutex_unlock(&dev_priv->sb_lock);
5594 }
5595 
5596 /* Program iCLKIP clock to the desired frequency */
5597 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state)
5598 {
5599 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5600 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5601 	int clock = crtc_state->hw.adjusted_mode.crtc_clock;
5602 	u32 divsel, phaseinc, auxdiv, phasedir = 0;
5603 	u32 temp;
5604 
5605 	lpt_disable_iclkip(dev_priv);
5606 
5607 	/* The iCLK virtual clock root frequency is in MHz,
5608 	 * but the adjusted_mode->crtc_clock in in KHz. To get the
5609 	 * divisors, it is necessary to divide one by another, so we
5610 	 * convert the virtual clock precision to KHz here for higher
5611 	 * precision.
5612 	 */
5613 	for (auxdiv = 0; auxdiv < 2; auxdiv++) {
5614 		u32 iclk_virtual_root_freq = 172800 * 1000;
5615 		u32 iclk_pi_range = 64;
5616 		u32 desired_divisor;
5617 
5618 		desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5619 						    clock << auxdiv);
5620 		divsel = (desired_divisor / iclk_pi_range) - 2;
5621 		phaseinc = desired_divisor % iclk_pi_range;
5622 
5623 		/*
5624 		 * Near 20MHz is a corner case which is
5625 		 * out of range for the 7-bit divisor
5626 		 */
5627 		if (divsel <= 0x7f)
5628 			break;
5629 	}
5630 
5631 	/* This should not happen with any sane values */
5632 	drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
5633 		    ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
5634 	drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) &
5635 		    ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
5636 
5637 	drm_dbg_kms(&dev_priv->drm,
5638 		    "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
5639 		    clock, auxdiv, divsel, phasedir, phaseinc);
5640 
5641 	mutex_lock(&dev_priv->sb_lock);
5642 
5643 	/* Program SSCDIVINTPHASE6 */
5644 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5645 	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
5646 	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
5647 	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
5648 	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
5649 	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
5650 	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
5651 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
5652 
5653 	/* Program SSCAUXDIV */
5654 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5655 	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
5656 	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
5657 	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
5658 
5659 	/* Enable modulator and associated divider */
5660 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5661 	temp &= ~SBI_SSCCTL_DISABLE;
5662 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5663 
5664 	mutex_unlock(&dev_priv->sb_lock);
5665 
5666 	/* Wait for initialization time */
5667 	udelay(24);
5668 
5669 	intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE);
5670 }
5671 
5672 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
5673 {
5674 	u32 divsel, phaseinc, auxdiv;
5675 	u32 iclk_virtual_root_freq = 172800 * 1000;
5676 	u32 iclk_pi_range = 64;
5677 	u32 desired_divisor;
5678 	u32 temp;
5679 
5680 	if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
5681 		return 0;
5682 
5683 	mutex_lock(&dev_priv->sb_lock);
5684 
5685 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5686 	if (temp & SBI_SSCCTL_DISABLE) {
5687 		mutex_unlock(&dev_priv->sb_lock);
5688 		return 0;
5689 	}
5690 
5691 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5692 	divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
5693 		SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
5694 	phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
5695 		SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
5696 
5697 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5698 	auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
5699 		SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
5700 
5701 	mutex_unlock(&dev_priv->sb_lock);
5702 
5703 	desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
5704 
5705 	return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5706 				 desired_divisor << auxdiv);
5707 }
5708 
5709 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state,
5710 					   enum pipe pch_transcoder)
5711 {
5712 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5713 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5714 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5715 
5716 	intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder),
5717 		       intel_de_read(dev_priv, HTOTAL(cpu_transcoder)));
5718 	intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder),
5719 		       intel_de_read(dev_priv, HBLANK(cpu_transcoder)));
5720 	intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder),
5721 		       intel_de_read(dev_priv, HSYNC(cpu_transcoder)));
5722 
5723 	intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder),
5724 		       intel_de_read(dev_priv, VTOTAL(cpu_transcoder)));
5725 	intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder),
5726 		       intel_de_read(dev_priv, VBLANK(cpu_transcoder)));
5727 	intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder),
5728 		       intel_de_read(dev_priv, VSYNC(cpu_transcoder)));
5729 	intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder),
5730 		       intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder)));
5731 }
5732 
5733 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable)
5734 {
5735 	u32 temp;
5736 
5737 	temp = intel_de_read(dev_priv, SOUTH_CHICKEN1);
5738 	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
5739 		return;
5740 
5741 	drm_WARN_ON(&dev_priv->drm,
5742 		    intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) &
5743 		    FDI_RX_ENABLE);
5744 	drm_WARN_ON(&dev_priv->drm,
5745 		    intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) &
5746 		    FDI_RX_ENABLE);
5747 
5748 	temp &= ~FDI_BC_BIFURCATION_SELECT;
5749 	if (enable)
5750 		temp |= FDI_BC_BIFURCATION_SELECT;
5751 
5752 	drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n",
5753 		    enable ? "en" : "dis");
5754 	intel_de_write(dev_priv, SOUTH_CHICKEN1, temp);
5755 	intel_de_posting_read(dev_priv, SOUTH_CHICKEN1);
5756 }
5757 
5758 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state)
5759 {
5760 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5761 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5762 
5763 	switch (crtc->pipe) {
5764 	case PIPE_A:
5765 		break;
5766 	case PIPE_B:
5767 		if (crtc_state->fdi_lanes > 2)
5768 			cpt_set_fdi_bc_bifurcation(dev_priv, false);
5769 		else
5770 			cpt_set_fdi_bc_bifurcation(dev_priv, true);
5771 
5772 		break;
5773 	case PIPE_C:
5774 		cpt_set_fdi_bc_bifurcation(dev_priv, true);
5775 
5776 		break;
5777 	default:
5778 		BUG();
5779 	}
5780 }
5781 
5782 /*
5783  * Finds the encoder associated with the given CRTC. This can only be
5784  * used when we know that the CRTC isn't feeding multiple encoders!
5785  */
5786 static struct intel_encoder *
5787 intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
5788 			   const struct intel_crtc_state *crtc_state)
5789 {
5790 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5791 	const struct drm_connector_state *connector_state;
5792 	const struct drm_connector *connector;
5793 	struct intel_encoder *encoder = NULL;
5794 	int num_encoders = 0;
5795 	int i;
5796 
5797 	for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
5798 		if (connector_state->crtc != &crtc->base)
5799 			continue;
5800 
5801 		encoder = to_intel_encoder(connector_state->best_encoder);
5802 		num_encoders++;
5803 	}
5804 
5805 	drm_WARN(encoder->base.dev, num_encoders != 1,
5806 		 "%d encoders for pipe %c\n",
5807 		 num_encoders, pipe_name(crtc->pipe));
5808 
5809 	return encoder;
5810 }
5811 
5812 /*
5813  * Enable PCH resources required for PCH ports:
5814  *   - PCH PLLs
5815  *   - FDI training & RX/TX
5816  *   - update transcoder timings
5817  *   - DP transcoding bits
5818  *   - transcoder
5819  */
5820 static void ilk_pch_enable(const struct intel_atomic_state *state,
5821 			   const struct intel_crtc_state *crtc_state)
5822 {
5823 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5824 	struct drm_device *dev = crtc->base.dev;
5825 	struct drm_i915_private *dev_priv = to_i915(dev);
5826 	enum pipe pipe = crtc->pipe;
5827 	u32 temp;
5828 
5829 	assert_pch_transcoder_disabled(dev_priv, pipe);
5830 
5831 	if (IS_IVYBRIDGE(dev_priv))
5832 		ivb_update_fdi_bc_bifurcation(crtc_state);
5833 
5834 	/* Write the TU size bits before fdi link training, so that error
5835 	 * detection works. */
5836 	intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe),
5837 		       intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
5838 
5839 	/* For PCH output, training FDI link */
5840 	dev_priv->display.fdi_link_train(crtc, crtc_state);
5841 
5842 	/* We need to program the right clock selection before writing the pixel
5843 	 * mutliplier into the DPLL. */
5844 	if (HAS_PCH_CPT(dev_priv)) {
5845 		u32 sel;
5846 
5847 		temp = intel_de_read(dev_priv, PCH_DPLL_SEL);
5848 		temp |= TRANS_DPLL_ENABLE(pipe);
5849 		sel = TRANS_DPLLB_SEL(pipe);
5850 		if (crtc_state->shared_dpll ==
5851 		    intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
5852 			temp |= sel;
5853 		else
5854 			temp &= ~sel;
5855 		intel_de_write(dev_priv, PCH_DPLL_SEL, temp);
5856 	}
5857 
5858 	/* XXX: pch pll's can be enabled any time before we enable the PCH
5859 	 * transcoder, and we actually should do this to not upset any PCH
5860 	 * transcoder that already use the clock when we share it.
5861 	 *
5862 	 * Note that enable_shared_dpll tries to do the right thing, but
5863 	 * get_shared_dpll unconditionally resets the pll - we need that to have
5864 	 * the right LVDS enable sequence. */
5865 	intel_enable_shared_dpll(crtc_state);
5866 
5867 	/* set transcoder timing, panel must allow it */
5868 	assert_panel_unlocked(dev_priv, pipe);
5869 	ilk_pch_transcoder_set_timings(crtc_state, pipe);
5870 
5871 	intel_fdi_normal_train(crtc);
5872 
5873 	/* For PCH DP, enable TRANS_DP_CTL */
5874 	if (HAS_PCH_CPT(dev_priv) &&
5875 	    intel_crtc_has_dp_encoder(crtc_state)) {
5876 		const struct drm_display_mode *adjusted_mode =
5877 			&crtc_state->hw.adjusted_mode;
5878 		u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5879 		i915_reg_t reg = TRANS_DP_CTL(pipe);
5880 		enum port port;
5881 
5882 		temp = intel_de_read(dev_priv, reg);
5883 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
5884 			  TRANS_DP_SYNC_MASK |
5885 			  TRANS_DP_BPC_MASK);
5886 		temp |= TRANS_DP_OUTPUT_ENABLE;
5887 		temp |= bpc << 9; /* same format but at 11:9 */
5888 
5889 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5890 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
5891 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5892 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
5893 
5894 		port = intel_get_crtc_new_encoder(state, crtc_state)->port;
5895 		drm_WARN_ON(dev, port < PORT_B || port > PORT_D);
5896 		temp |= TRANS_DP_PORT_SEL(port);
5897 
5898 		intel_de_write(dev_priv, reg, temp);
5899 	}
5900 
5901 	ilk_enable_pch_transcoder(crtc_state);
5902 }
5903 
5904 void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
5905 {
5906 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5907 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5908 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5909 
5910 	assert_pch_transcoder_disabled(dev_priv, PIPE_A);
5911 
5912 	lpt_program_iclkip(crtc_state);
5913 
5914 	/* Set transcoder timing. */
5915 	ilk_pch_transcoder_set_timings(crtc_state, PIPE_A);
5916 
5917 	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
5918 }
5919 
5920 static void cpt_verify_modeset(struct drm_i915_private *dev_priv,
5921 			       enum pipe pipe)
5922 {
5923 	i915_reg_t dslreg = PIPEDSL(pipe);
5924 	u32 temp;
5925 
5926 	temp = intel_de_read(dev_priv, dslreg);
5927 	udelay(500);
5928 	if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) {
5929 		if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5))
5930 			drm_err(&dev_priv->drm,
5931 				"mode set failed: pipe %c stuck\n",
5932 				pipe_name(pipe));
5933 	}
5934 }
5935 
5936 /*
5937  * The hardware phase 0.0 refers to the center of the pixel.
5938  * We want to start from the top/left edge which is phase
5939  * -0.5. That matches how the hardware calculates the scaling
5940  * factors (from top-left of the first pixel to bottom-right
5941  * of the last pixel, as opposed to the pixel centers).
5942  *
5943  * For 4:2:0 subsampled chroma planes we obviously have to
5944  * adjust that so that the chroma sample position lands in
5945  * the right spot.
5946  *
5947  * Note that for packed YCbCr 4:2:2 formats there is no way to
5948  * control chroma siting. The hardware simply replicates the
5949  * chroma samples for both of the luma samples, and thus we don't
5950  * actually get the expected MPEG2 chroma siting convention :(
5951  * The same behaviour is observed on pre-SKL platforms as well.
5952  *
5953  * Theory behind the formula (note that we ignore sub-pixel
5954  * source coordinates):
5955  * s = source sample position
5956  * d = destination sample position
5957  *
5958  * Downscaling 4:1:
5959  * -0.5
5960  * | 0.0
5961  * | |     1.5 (initial phase)
5962  * | |     |
5963  * v v     v
5964  * | s | s | s | s |
5965  * |       d       |
5966  *
5967  * Upscaling 1:4:
5968  * -0.5
5969  * | -0.375 (initial phase)
5970  * | |     0.0
5971  * | |     |
5972  * v v     v
5973  * |       s       |
5974  * | d | d | d | d |
5975  */
5976 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
5977 {
5978 	int phase = -0x8000;
5979 	u16 trip = 0;
5980 
5981 	if (chroma_cosited)
5982 		phase += (sub - 1) * 0x8000 / sub;
5983 
5984 	phase += scale / (2 * sub);
5985 
5986 	/*
5987 	 * Hardware initial phase limited to [-0.5:1.5].
5988 	 * Since the max hardware scale factor is 3.0, we
5989 	 * should never actually excdeed 1.0 here.
5990 	 */
5991 	WARN_ON(phase < -0x8000 || phase > 0x18000);
5992 
5993 	if (phase < 0)
5994 		phase = 0x10000 + phase;
5995 	else
5996 		trip = PS_PHASE_TRIP;
5997 
5998 	return ((phase >> 2) & PS_PHASE_MASK) | trip;
5999 }
6000 
6001 #define SKL_MIN_SRC_W 8
6002 #define SKL_MAX_SRC_W 4096
6003 #define SKL_MIN_SRC_H 8
6004 #define SKL_MAX_SRC_H 4096
6005 #define SKL_MIN_DST_W 8
6006 #define SKL_MAX_DST_W 4096
6007 #define SKL_MIN_DST_H 8
6008 #define SKL_MAX_DST_H 4096
6009 #define ICL_MAX_SRC_W 5120
6010 #define ICL_MAX_SRC_H 4096
6011 #define ICL_MAX_DST_W 5120
6012 #define ICL_MAX_DST_H 4096
6013 #define SKL_MIN_YUV_420_SRC_W 16
6014 #define SKL_MIN_YUV_420_SRC_H 16
6015 
6016 static int
6017 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
6018 		  unsigned int scaler_user, int *scaler_id,
6019 		  int src_w, int src_h, int dst_w, int dst_h,
6020 		  const struct drm_format_info *format,
6021 		  u64 modifier, bool need_scaler)
6022 {
6023 	struct intel_crtc_scaler_state *scaler_state =
6024 		&crtc_state->scaler_state;
6025 	struct intel_crtc *intel_crtc =
6026 		to_intel_crtc(crtc_state->uapi.crtc);
6027 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6028 	const struct drm_display_mode *adjusted_mode =
6029 		&crtc_state->hw.adjusted_mode;
6030 
6031 	/*
6032 	 * Src coordinates are already rotated by 270 degrees for
6033 	 * the 90/270 degree plane rotation cases (to match the
6034 	 * GTT mapping), hence no need to account for rotation here.
6035 	 */
6036 	if (src_w != dst_w || src_h != dst_h)
6037 		need_scaler = true;
6038 
6039 	/*
6040 	 * Scaling/fitting not supported in IF-ID mode in GEN9+
6041 	 * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
6042 	 * Once NV12 is enabled, handle it here while allocating scaler
6043 	 * for NV12.
6044 	 */
6045 	if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable &&
6046 	    need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6047 		drm_dbg_kms(&dev_priv->drm,
6048 			    "Pipe/Plane scaling not supported with IF-ID mode\n");
6049 		return -EINVAL;
6050 	}
6051 
6052 	/*
6053 	 * if plane is being disabled or scaler is no more required or force detach
6054 	 *  - free scaler binded to this plane/crtc
6055 	 *  - in order to do this, update crtc->scaler_usage
6056 	 *
6057 	 * Here scaler state in crtc_state is set free so that
6058 	 * scaler can be assigned to other user. Actual register
6059 	 * update to free the scaler is done in plane/panel-fit programming.
6060 	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
6061 	 */
6062 	if (force_detach || !need_scaler) {
6063 		if (*scaler_id >= 0) {
6064 			scaler_state->scaler_users &= ~(1 << scaler_user);
6065 			scaler_state->scalers[*scaler_id].in_use = 0;
6066 
6067 			drm_dbg_kms(&dev_priv->drm,
6068 				    "scaler_user index %u.%u: "
6069 				    "Staged freeing scaler id %d scaler_users = 0x%x\n",
6070 				    intel_crtc->pipe, scaler_user, *scaler_id,
6071 				    scaler_state->scaler_users);
6072 			*scaler_id = -1;
6073 		}
6074 		return 0;
6075 	}
6076 
6077 	if (format && intel_format_info_is_yuv_semiplanar(format, modifier) &&
6078 	    (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) {
6079 		drm_dbg_kms(&dev_priv->drm,
6080 			    "Planar YUV: src dimensions not met\n");
6081 		return -EINVAL;
6082 	}
6083 
6084 	/* range checks */
6085 	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
6086 	    dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
6087 	    (INTEL_GEN(dev_priv) >= 11 &&
6088 	     (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H ||
6089 	      dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) ||
6090 	    (INTEL_GEN(dev_priv) < 11 &&
6091 	     (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
6092 	      dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H)))	{
6093 		drm_dbg_kms(&dev_priv->drm,
6094 			    "scaler_user index %u.%u: src %ux%u dst %ux%u "
6095 			    "size is out of scaler range\n",
6096 			    intel_crtc->pipe, scaler_user, src_w, src_h,
6097 			    dst_w, dst_h);
6098 		return -EINVAL;
6099 	}
6100 
6101 	/* mark this plane as a scaler user in crtc_state */
6102 	scaler_state->scaler_users |= (1 << scaler_user);
6103 	drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: "
6104 		    "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
6105 		    intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
6106 		    scaler_state->scaler_users);
6107 
6108 	return 0;
6109 }
6110 
6111 static int skl_update_scaler_crtc(struct intel_crtc_state *crtc_state)
6112 {
6113 	const struct drm_display_mode *adjusted_mode =
6114 		&crtc_state->hw.adjusted_mode;
6115 	int width, height;
6116 
6117 	if (crtc_state->pch_pfit.enabled) {
6118 		width = drm_rect_width(&crtc_state->pch_pfit.dst);
6119 		height = drm_rect_height(&crtc_state->pch_pfit.dst);
6120 	} else {
6121 		width = adjusted_mode->crtc_hdisplay;
6122 		height = adjusted_mode->crtc_vdisplay;
6123 	}
6124 
6125 	return skl_update_scaler(crtc_state, !crtc_state->hw.active,
6126 				 SKL_CRTC_INDEX,
6127 				 &crtc_state->scaler_state.scaler_id,
6128 				 crtc_state->pipe_src_w, crtc_state->pipe_src_h,
6129 				 width, height, NULL, 0,
6130 				 crtc_state->pch_pfit.enabled);
6131 }
6132 
6133 /**
6134  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
6135  * @crtc_state: crtc's scaler state
6136  * @plane_state: atomic plane state to update
6137  *
6138  * Return
6139  *     0 - scaler_usage updated successfully
6140  *    error - requested scaling cannot be supported or other error condition
6141  */
6142 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
6143 				   struct intel_plane_state *plane_state)
6144 {
6145 	struct intel_plane *intel_plane =
6146 		to_intel_plane(plane_state->uapi.plane);
6147 	struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
6148 	struct drm_framebuffer *fb = plane_state->hw.fb;
6149 	int ret;
6150 	bool force_detach = !fb || !plane_state->uapi.visible;
6151 	bool need_scaler = false;
6152 
6153 	/* Pre-gen11 and SDR planes always need a scaler for planar formats. */
6154 	if (!icl_is_hdr_plane(dev_priv, intel_plane->id) &&
6155 	    fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
6156 		need_scaler = true;
6157 
6158 	ret = skl_update_scaler(crtc_state, force_detach,
6159 				drm_plane_index(&intel_plane->base),
6160 				&plane_state->scaler_id,
6161 				drm_rect_width(&plane_state->uapi.src) >> 16,
6162 				drm_rect_height(&plane_state->uapi.src) >> 16,
6163 				drm_rect_width(&plane_state->uapi.dst),
6164 				drm_rect_height(&plane_state->uapi.dst),
6165 				fb ? fb->format : NULL,
6166 				fb ? fb->modifier : 0,
6167 				need_scaler);
6168 
6169 	if (ret || plane_state->scaler_id < 0)
6170 		return ret;
6171 
6172 	/* check colorkey */
6173 	if (plane_state->ckey.flags) {
6174 		drm_dbg_kms(&dev_priv->drm,
6175 			    "[PLANE:%d:%s] scaling with color key not allowed",
6176 			    intel_plane->base.base.id,
6177 			    intel_plane->base.name);
6178 		return -EINVAL;
6179 	}
6180 
6181 	/* Check src format */
6182 	switch (fb->format->format) {
6183 	case DRM_FORMAT_RGB565:
6184 	case DRM_FORMAT_XBGR8888:
6185 	case DRM_FORMAT_XRGB8888:
6186 	case DRM_FORMAT_ABGR8888:
6187 	case DRM_FORMAT_ARGB8888:
6188 	case DRM_FORMAT_XRGB2101010:
6189 	case DRM_FORMAT_XBGR2101010:
6190 	case DRM_FORMAT_ARGB2101010:
6191 	case DRM_FORMAT_ABGR2101010:
6192 	case DRM_FORMAT_YUYV:
6193 	case DRM_FORMAT_YVYU:
6194 	case DRM_FORMAT_UYVY:
6195 	case DRM_FORMAT_VYUY:
6196 	case DRM_FORMAT_NV12:
6197 	case DRM_FORMAT_XYUV8888:
6198 	case DRM_FORMAT_P010:
6199 	case DRM_FORMAT_P012:
6200 	case DRM_FORMAT_P016:
6201 	case DRM_FORMAT_Y210:
6202 	case DRM_FORMAT_Y212:
6203 	case DRM_FORMAT_Y216:
6204 	case DRM_FORMAT_XVYU2101010:
6205 	case DRM_FORMAT_XVYU12_16161616:
6206 	case DRM_FORMAT_XVYU16161616:
6207 		break;
6208 	case DRM_FORMAT_XBGR16161616F:
6209 	case DRM_FORMAT_ABGR16161616F:
6210 	case DRM_FORMAT_XRGB16161616F:
6211 	case DRM_FORMAT_ARGB16161616F:
6212 		if (INTEL_GEN(dev_priv) >= 11)
6213 			break;
6214 		/* fall through */
6215 	default:
6216 		drm_dbg_kms(&dev_priv->drm,
6217 			    "[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
6218 			    intel_plane->base.base.id, intel_plane->base.name,
6219 			    fb->base.id, fb->format->format);
6220 		return -EINVAL;
6221 	}
6222 
6223 	return 0;
6224 }
6225 
6226 void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state)
6227 {
6228 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
6229 	int i;
6230 
6231 	for (i = 0; i < crtc->num_scalers; i++)
6232 		skl_detach_scaler(crtc, i);
6233 }
6234 
6235 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state)
6236 {
6237 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6238 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6239 	const struct intel_crtc_scaler_state *scaler_state =
6240 		&crtc_state->scaler_state;
6241 	struct drm_rect src = {
6242 		.x2 = crtc_state->pipe_src_w << 16,
6243 		.y2 = crtc_state->pipe_src_h << 16,
6244 	};
6245 	const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
6246 	u16 uv_rgb_hphase, uv_rgb_vphase;
6247 	enum pipe pipe = crtc->pipe;
6248 	int width = drm_rect_width(dst);
6249 	int height = drm_rect_height(dst);
6250 	int x = dst->x1;
6251 	int y = dst->y1;
6252 	int hscale, vscale;
6253 	unsigned long irqflags;
6254 	int id;
6255 
6256 	if (!crtc_state->pch_pfit.enabled)
6257 		return;
6258 
6259 	if (drm_WARN_ON(&dev_priv->drm,
6260 			crtc_state->scaler_state.scaler_id < 0))
6261 		return;
6262 
6263 	hscale = drm_rect_calc_hscale(&src, dst, 0, INT_MAX);
6264 	vscale = drm_rect_calc_vscale(&src, dst, 0, INT_MAX);
6265 
6266 	uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
6267 	uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
6268 
6269 	id = scaler_state->scaler_id;
6270 
6271 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
6272 
6273 	intel_de_write_fw(dev_priv, SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
6274 			  PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
6275 	intel_de_write_fw(dev_priv, SKL_PS_VPHASE(pipe, id),
6276 			  PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
6277 	intel_de_write_fw(dev_priv, SKL_PS_HPHASE(pipe, id),
6278 			  PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
6279 	intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(pipe, id),
6280 			  x << 16 | y);
6281 	intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(pipe, id),
6282 			  width << 16 | height);
6283 
6284 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
6285 }
6286 
6287 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state)
6288 {
6289 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6290 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6291 	const struct drm_rect *dst = &crtc_state->pch_pfit.dst;
6292 	enum pipe pipe = crtc->pipe;
6293 	int width = drm_rect_width(dst);
6294 	int height = drm_rect_height(dst);
6295 	int x = dst->x1;
6296 	int y = dst->y1;
6297 
6298 	if (!crtc_state->pch_pfit.enabled)
6299 		return;
6300 
6301 	/* Force use of hard-coded filter coefficients
6302 	 * as some pre-programmed values are broken,
6303 	 * e.g. x201.
6304 	 */
6305 	if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
6306 		intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE |
6307 			       PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe));
6308 	else
6309 		intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE |
6310 			       PF_FILTER_MED_3x3);
6311 	intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y);
6312 	intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height);
6313 }
6314 
6315 void hsw_enable_ips(const struct intel_crtc_state *crtc_state)
6316 {
6317 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6318 	struct drm_device *dev = crtc->base.dev;
6319 	struct drm_i915_private *dev_priv = to_i915(dev);
6320 
6321 	if (!crtc_state->ips_enabled)
6322 		return;
6323 
6324 	/*
6325 	 * We can only enable IPS after we enable a plane and wait for a vblank
6326 	 * This function is called from post_plane_update, which is run after
6327 	 * a vblank wait.
6328 	 */
6329 	drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR)));
6330 
6331 	if (IS_BROADWELL(dev_priv)) {
6332 		drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
6333 							 IPS_ENABLE | IPS_PCODE_CONTROL));
6334 		/* Quoting Art Runyan: "its not safe to expect any particular
6335 		 * value in IPS_CTL bit 31 after enabling IPS through the
6336 		 * mailbox." Moreover, the mailbox may return a bogus state,
6337 		 * so we need to just enable it and continue on.
6338 		 */
6339 	} else {
6340 		intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE);
6341 		/* The bit only becomes 1 in the next vblank, so this wait here
6342 		 * is essentially intel_wait_for_vblank. If we don't have this
6343 		 * and don't wait for vblanks until the end of crtc_enable, then
6344 		 * the HW state readout code will complain that the expected
6345 		 * IPS_CTL value is not the one we read. */
6346 		if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50))
6347 			drm_err(&dev_priv->drm,
6348 				"Timed out waiting for IPS enable\n");
6349 	}
6350 }
6351 
6352 void hsw_disable_ips(const struct intel_crtc_state *crtc_state)
6353 {
6354 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6355 	struct drm_device *dev = crtc->base.dev;
6356 	struct drm_i915_private *dev_priv = to_i915(dev);
6357 
6358 	if (!crtc_state->ips_enabled)
6359 		return;
6360 
6361 	if (IS_BROADWELL(dev_priv)) {
6362 		drm_WARN_ON(dev,
6363 			    sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
6364 		/*
6365 		 * Wait for PCODE to finish disabling IPS. The BSpec specified
6366 		 * 42ms timeout value leads to occasional timeouts so use 100ms
6367 		 * instead.
6368 		 */
6369 		if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100))
6370 			drm_err(&dev_priv->drm,
6371 				"Timed out waiting for IPS disable\n");
6372 	} else {
6373 		intel_de_write(dev_priv, IPS_CTL, 0);
6374 		intel_de_posting_read(dev_priv, IPS_CTL);
6375 	}
6376 
6377 	/* We need to wait for a vblank before we can disable the plane. */
6378 	intel_wait_for_vblank(dev_priv, crtc->pipe);
6379 }
6380 
6381 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
6382 {
6383 	if (intel_crtc->overlay)
6384 		(void) intel_overlay_switch_off(intel_crtc->overlay);
6385 
6386 	/* Let userspace switch the overlay on again. In most cases userspace
6387 	 * has to recompute where to put it anyway.
6388 	 */
6389 }
6390 
6391 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state,
6392 				       const struct intel_crtc_state *new_crtc_state)
6393 {
6394 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6395 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6396 
6397 	if (!old_crtc_state->ips_enabled)
6398 		return false;
6399 
6400 	if (needs_modeset(new_crtc_state))
6401 		return true;
6402 
6403 	/*
6404 	 * Workaround : Do not read or write the pipe palette/gamma data while
6405 	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6406 	 *
6407 	 * Disable IPS before we program the LUT.
6408 	 */
6409 	if (IS_HASWELL(dev_priv) &&
6410 	    (new_crtc_state->uapi.color_mgmt_changed ||
6411 	     new_crtc_state->update_pipe) &&
6412 	    new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6413 		return true;
6414 
6415 	return !new_crtc_state->ips_enabled;
6416 }
6417 
6418 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state,
6419 				       const struct intel_crtc_state *new_crtc_state)
6420 {
6421 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6422 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6423 
6424 	if (!new_crtc_state->ips_enabled)
6425 		return false;
6426 
6427 	if (needs_modeset(new_crtc_state))
6428 		return true;
6429 
6430 	/*
6431 	 * Workaround : Do not read or write the pipe palette/gamma data while
6432 	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6433 	 *
6434 	 * Re-enable IPS after the LUT has been programmed.
6435 	 */
6436 	if (IS_HASWELL(dev_priv) &&
6437 	    (new_crtc_state->uapi.color_mgmt_changed ||
6438 	     new_crtc_state->update_pipe) &&
6439 	    new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6440 		return true;
6441 
6442 	/*
6443 	 * We can't read out IPS on broadwell, assume the worst and
6444 	 * forcibly enable IPS on the first fastset.
6445 	 */
6446 	if (new_crtc_state->update_pipe && old_crtc_state->inherited)
6447 		return true;
6448 
6449 	return !old_crtc_state->ips_enabled;
6450 }
6451 
6452 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state)
6453 {
6454 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6455 
6456 	if (!crtc_state->nv12_planes)
6457 		return false;
6458 
6459 	/* WA Display #0827: Gen9:all */
6460 	if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv))
6461 		return true;
6462 
6463 	return false;
6464 }
6465 
6466 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state)
6467 {
6468 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6469 
6470 	/* Wa_2006604312:icl,ehl */
6471 	if (crtc_state->scaler_state.scaler_users > 0 && IS_GEN(dev_priv, 11))
6472 		return true;
6473 
6474 	return false;
6475 }
6476 
6477 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state,
6478 			    const struct intel_crtc_state *new_crtc_state)
6479 {
6480 	return (!old_crtc_state->active_planes || needs_modeset(new_crtc_state)) &&
6481 		new_crtc_state->active_planes;
6482 }
6483 
6484 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state,
6485 			     const struct intel_crtc_state *new_crtc_state)
6486 {
6487 	return old_crtc_state->active_planes &&
6488 		(!new_crtc_state->active_planes || needs_modeset(new_crtc_state));
6489 }
6490 
6491 static void intel_post_plane_update(struct intel_atomic_state *state,
6492 				    struct intel_crtc *crtc)
6493 {
6494 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6495 	const struct intel_crtc_state *old_crtc_state =
6496 		intel_atomic_get_old_crtc_state(state, crtc);
6497 	const struct intel_crtc_state *new_crtc_state =
6498 		intel_atomic_get_new_crtc_state(state, crtc);
6499 	enum pipe pipe = crtc->pipe;
6500 
6501 	intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits);
6502 
6503 	if (new_crtc_state->update_wm_post && new_crtc_state->hw.active)
6504 		intel_update_watermarks(crtc);
6505 
6506 	if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state))
6507 		hsw_enable_ips(new_crtc_state);
6508 
6509 	intel_fbc_post_update(state, crtc);
6510 
6511 	if (needs_nv12_wa(old_crtc_state) &&
6512 	    !needs_nv12_wa(new_crtc_state))
6513 		skl_wa_827(dev_priv, pipe, false);
6514 
6515 	if (needs_scalerclk_wa(old_crtc_state) &&
6516 	    !needs_scalerclk_wa(new_crtc_state))
6517 		icl_wa_scalerclkgating(dev_priv, pipe, false);
6518 }
6519 
6520 static void intel_pre_plane_update(struct intel_atomic_state *state,
6521 				   struct intel_crtc *crtc)
6522 {
6523 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6524 	const struct intel_crtc_state *old_crtc_state =
6525 		intel_atomic_get_old_crtc_state(state, crtc);
6526 	const struct intel_crtc_state *new_crtc_state =
6527 		intel_atomic_get_new_crtc_state(state, crtc);
6528 	enum pipe pipe = crtc->pipe;
6529 
6530 	if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state))
6531 		hsw_disable_ips(old_crtc_state);
6532 
6533 	if (intel_fbc_pre_update(state, crtc))
6534 		intel_wait_for_vblank(dev_priv, pipe);
6535 
6536 	/* Display WA 827 */
6537 	if (!needs_nv12_wa(old_crtc_state) &&
6538 	    needs_nv12_wa(new_crtc_state))
6539 		skl_wa_827(dev_priv, pipe, true);
6540 
6541 	/* Wa_2006604312:icl,ehl */
6542 	if (!needs_scalerclk_wa(old_crtc_state) &&
6543 	    needs_scalerclk_wa(new_crtc_state))
6544 		icl_wa_scalerclkgating(dev_priv, pipe, true);
6545 
6546 	/*
6547 	 * Vblank time updates from the shadow to live plane control register
6548 	 * are blocked if the memory self-refresh mode is active at that
6549 	 * moment. So to make sure the plane gets truly disabled, disable
6550 	 * first the self-refresh mode. The self-refresh enable bit in turn
6551 	 * will be checked/applied by the HW only at the next frame start
6552 	 * event which is after the vblank start event, so we need to have a
6553 	 * wait-for-vblank between disabling the plane and the pipe.
6554 	 */
6555 	if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active &&
6556 	    new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
6557 		intel_wait_for_vblank(dev_priv, pipe);
6558 
6559 	/*
6560 	 * IVB workaround: must disable low power watermarks for at least
6561 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
6562 	 * when scaling is disabled.
6563 	 *
6564 	 * WaCxSRDisabledForSpriteScaling:ivb
6565 	 */
6566 	if (old_crtc_state->hw.active &&
6567 	    new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv))
6568 		intel_wait_for_vblank(dev_priv, pipe);
6569 
6570 	/*
6571 	 * If we're doing a modeset we don't need to do any
6572 	 * pre-vblank watermark programming here.
6573 	 */
6574 	if (!needs_modeset(new_crtc_state)) {
6575 		/*
6576 		 * For platforms that support atomic watermarks, program the
6577 		 * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
6578 		 * will be the intermediate values that are safe for both pre- and
6579 		 * post- vblank; when vblank happens, the 'active' values will be set
6580 		 * to the final 'target' values and we'll do this again to get the
6581 		 * optimal watermarks.  For gen9+ platforms, the values we program here
6582 		 * will be the final target values which will get automatically latched
6583 		 * at vblank time; no further programming will be necessary.
6584 		 *
6585 		 * If a platform hasn't been transitioned to atomic watermarks yet,
6586 		 * we'll continue to update watermarks the old way, if flags tell
6587 		 * us to.
6588 		 */
6589 		if (dev_priv->display.initial_watermarks)
6590 			dev_priv->display.initial_watermarks(state, crtc);
6591 		else if (new_crtc_state->update_wm_pre)
6592 			intel_update_watermarks(crtc);
6593 	}
6594 
6595 	/*
6596 	 * Gen2 reports pipe underruns whenever all planes are disabled.
6597 	 * So disable underrun reporting before all the planes get disabled.
6598 	 *
6599 	 * We do this after .initial_watermarks() so that we have a
6600 	 * chance of catching underruns with the intermediate watermarks
6601 	 * vs. the old plane configuration.
6602 	 */
6603 	if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state))
6604 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6605 }
6606 
6607 static void intel_crtc_disable_planes(struct intel_atomic_state *state,
6608 				      struct intel_crtc *crtc)
6609 {
6610 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6611 	const struct intel_crtc_state *new_crtc_state =
6612 		intel_atomic_get_new_crtc_state(state, crtc);
6613 	unsigned int update_mask = new_crtc_state->update_planes;
6614 	const struct intel_plane_state *old_plane_state;
6615 	struct intel_plane *plane;
6616 	unsigned fb_bits = 0;
6617 	int i;
6618 
6619 	intel_crtc_dpms_overlay_disable(crtc);
6620 
6621 	for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
6622 		if (crtc->pipe != plane->pipe ||
6623 		    !(update_mask & BIT(plane->id)))
6624 			continue;
6625 
6626 		intel_disable_plane(plane, new_crtc_state);
6627 
6628 		if (old_plane_state->uapi.visible)
6629 			fb_bits |= plane->frontbuffer_bit;
6630 	}
6631 
6632 	intel_frontbuffer_flip(dev_priv, fb_bits);
6633 }
6634 
6635 /*
6636  * intel_connector_primary_encoder - get the primary encoder for a connector
6637  * @connector: connector for which to return the encoder
6638  *
6639  * Returns the primary encoder for a connector. There is a 1:1 mapping from
6640  * all connectors to their encoder, except for DP-MST connectors which have
6641  * both a virtual and a primary encoder. These DP-MST primary encoders can be
6642  * pointed to by as many DP-MST connectors as there are pipes.
6643  */
6644 static struct intel_encoder *
6645 intel_connector_primary_encoder(struct intel_connector *connector)
6646 {
6647 	struct intel_encoder *encoder;
6648 
6649 	if (connector->mst_port)
6650 		return &dp_to_dig_port(connector->mst_port)->base;
6651 
6652 	encoder = intel_attached_encoder(connector);
6653 	drm_WARN_ON(connector->base.dev, !encoder);
6654 
6655 	return encoder;
6656 }
6657 
6658 static void intel_encoders_update_prepare(struct intel_atomic_state *state)
6659 {
6660 	struct drm_connector_state *new_conn_state;
6661 	struct drm_connector *connector;
6662 	int i;
6663 
6664 	for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6665 					i) {
6666 		struct intel_connector *intel_connector;
6667 		struct intel_encoder *encoder;
6668 		struct intel_crtc *crtc;
6669 
6670 		if (!intel_connector_needs_modeset(state, connector))
6671 			continue;
6672 
6673 		intel_connector = to_intel_connector(connector);
6674 		encoder = intel_connector_primary_encoder(intel_connector);
6675 		if (!encoder->update_prepare)
6676 			continue;
6677 
6678 		crtc = new_conn_state->crtc ?
6679 			to_intel_crtc(new_conn_state->crtc) : NULL;
6680 		encoder->update_prepare(state, encoder, crtc);
6681 	}
6682 }
6683 
6684 static void intel_encoders_update_complete(struct intel_atomic_state *state)
6685 {
6686 	struct drm_connector_state *new_conn_state;
6687 	struct drm_connector *connector;
6688 	int i;
6689 
6690 	for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6691 					i) {
6692 		struct intel_connector *intel_connector;
6693 		struct intel_encoder *encoder;
6694 		struct intel_crtc *crtc;
6695 
6696 		if (!intel_connector_needs_modeset(state, connector))
6697 			continue;
6698 
6699 		intel_connector = to_intel_connector(connector);
6700 		encoder = intel_connector_primary_encoder(intel_connector);
6701 		if (!encoder->update_complete)
6702 			continue;
6703 
6704 		crtc = new_conn_state->crtc ?
6705 			to_intel_crtc(new_conn_state->crtc) : NULL;
6706 		encoder->update_complete(state, encoder, crtc);
6707 	}
6708 }
6709 
6710 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state,
6711 					  struct intel_crtc *crtc)
6712 {
6713 	const struct intel_crtc_state *crtc_state =
6714 		intel_atomic_get_new_crtc_state(state, crtc);
6715 	const struct drm_connector_state *conn_state;
6716 	struct drm_connector *conn;
6717 	int i;
6718 
6719 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6720 		struct intel_encoder *encoder =
6721 			to_intel_encoder(conn_state->best_encoder);
6722 
6723 		if (conn_state->crtc != &crtc->base)
6724 			continue;
6725 
6726 		if (encoder->pre_pll_enable)
6727 			encoder->pre_pll_enable(state, encoder,
6728 						crtc_state, conn_state);
6729 	}
6730 }
6731 
6732 static void intel_encoders_pre_enable(struct intel_atomic_state *state,
6733 				      struct intel_crtc *crtc)
6734 {
6735 	const struct intel_crtc_state *crtc_state =
6736 		intel_atomic_get_new_crtc_state(state, crtc);
6737 	const struct drm_connector_state *conn_state;
6738 	struct drm_connector *conn;
6739 	int i;
6740 
6741 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6742 		struct intel_encoder *encoder =
6743 			to_intel_encoder(conn_state->best_encoder);
6744 
6745 		if (conn_state->crtc != &crtc->base)
6746 			continue;
6747 
6748 		if (encoder->pre_enable)
6749 			encoder->pre_enable(state, encoder,
6750 					    crtc_state, conn_state);
6751 	}
6752 }
6753 
6754 static void intel_encoders_enable(struct intel_atomic_state *state,
6755 				  struct intel_crtc *crtc)
6756 {
6757 	const struct intel_crtc_state *crtc_state =
6758 		intel_atomic_get_new_crtc_state(state, crtc);
6759 	const struct drm_connector_state *conn_state;
6760 	struct drm_connector *conn;
6761 	int i;
6762 
6763 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6764 		struct intel_encoder *encoder =
6765 			to_intel_encoder(conn_state->best_encoder);
6766 
6767 		if (conn_state->crtc != &crtc->base)
6768 			continue;
6769 
6770 		if (encoder->enable)
6771 			encoder->enable(state, encoder,
6772 					crtc_state, conn_state);
6773 		intel_opregion_notify_encoder(encoder, true);
6774 	}
6775 }
6776 
6777 static void intel_encoders_disable(struct intel_atomic_state *state,
6778 				   struct intel_crtc *crtc)
6779 {
6780 	const struct intel_crtc_state *old_crtc_state =
6781 		intel_atomic_get_old_crtc_state(state, crtc);
6782 	const struct drm_connector_state *old_conn_state;
6783 	struct drm_connector *conn;
6784 	int i;
6785 
6786 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6787 		struct intel_encoder *encoder =
6788 			to_intel_encoder(old_conn_state->best_encoder);
6789 
6790 		if (old_conn_state->crtc != &crtc->base)
6791 			continue;
6792 
6793 		intel_opregion_notify_encoder(encoder, false);
6794 		if (encoder->disable)
6795 			encoder->disable(state, encoder,
6796 					 old_crtc_state, old_conn_state);
6797 	}
6798 }
6799 
6800 static void intel_encoders_post_disable(struct intel_atomic_state *state,
6801 					struct intel_crtc *crtc)
6802 {
6803 	const struct intel_crtc_state *old_crtc_state =
6804 		intel_atomic_get_old_crtc_state(state, crtc);
6805 	const struct drm_connector_state *old_conn_state;
6806 	struct drm_connector *conn;
6807 	int i;
6808 
6809 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6810 		struct intel_encoder *encoder =
6811 			to_intel_encoder(old_conn_state->best_encoder);
6812 
6813 		if (old_conn_state->crtc != &crtc->base)
6814 			continue;
6815 
6816 		if (encoder->post_disable)
6817 			encoder->post_disable(state, encoder,
6818 					      old_crtc_state, old_conn_state);
6819 	}
6820 }
6821 
6822 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state,
6823 					    struct intel_crtc *crtc)
6824 {
6825 	const struct intel_crtc_state *old_crtc_state =
6826 		intel_atomic_get_old_crtc_state(state, crtc);
6827 	const struct drm_connector_state *old_conn_state;
6828 	struct drm_connector *conn;
6829 	int i;
6830 
6831 	for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6832 		struct intel_encoder *encoder =
6833 			to_intel_encoder(old_conn_state->best_encoder);
6834 
6835 		if (old_conn_state->crtc != &crtc->base)
6836 			continue;
6837 
6838 		if (encoder->post_pll_disable)
6839 			encoder->post_pll_disable(state, encoder,
6840 						  old_crtc_state, old_conn_state);
6841 	}
6842 }
6843 
6844 static void intel_encoders_update_pipe(struct intel_atomic_state *state,
6845 				       struct intel_crtc *crtc)
6846 {
6847 	const struct intel_crtc_state *crtc_state =
6848 		intel_atomic_get_new_crtc_state(state, crtc);
6849 	const struct drm_connector_state *conn_state;
6850 	struct drm_connector *conn;
6851 	int i;
6852 
6853 	for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6854 		struct intel_encoder *encoder =
6855 			to_intel_encoder(conn_state->best_encoder);
6856 
6857 		if (conn_state->crtc != &crtc->base)
6858 			continue;
6859 
6860 		if (encoder->update_pipe)
6861 			encoder->update_pipe(state, encoder,
6862 					     crtc_state, conn_state);
6863 	}
6864 }
6865 
6866 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state)
6867 {
6868 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6869 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
6870 
6871 	plane->disable_plane(plane, crtc_state);
6872 }
6873 
6874 static void ilk_crtc_enable(struct intel_atomic_state *state,
6875 			    struct intel_crtc *crtc)
6876 {
6877 	const struct intel_crtc_state *new_crtc_state =
6878 		intel_atomic_get_new_crtc_state(state, crtc);
6879 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6880 	enum pipe pipe = crtc->pipe;
6881 
6882 	if (drm_WARN_ON(&dev_priv->drm, crtc->active))
6883 		return;
6884 
6885 	/*
6886 	 * Sometimes spurious CPU pipe underruns happen during FDI
6887 	 * training, at least with VGA+HDMI cloning. Suppress them.
6888 	 *
6889 	 * On ILK we get an occasional spurious CPU pipe underruns
6890 	 * between eDP port A enable and vdd enable. Also PCH port
6891 	 * enable seems to result in the occasional CPU pipe underrun.
6892 	 *
6893 	 * Spurious PCH underruns also occur during PCH enabling.
6894 	 */
6895 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6896 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6897 
6898 	if (new_crtc_state->has_pch_encoder)
6899 		intel_prepare_shared_dpll(new_crtc_state);
6900 
6901 	if (intel_crtc_has_dp_encoder(new_crtc_state))
6902 		intel_dp_set_m_n(new_crtc_state, M1_N1);
6903 
6904 	intel_set_pipe_timings(new_crtc_state);
6905 	intel_set_pipe_src_size(new_crtc_state);
6906 
6907 	if (new_crtc_state->has_pch_encoder)
6908 		intel_cpu_transcoder_set_m_n(new_crtc_state,
6909 					     &new_crtc_state->fdi_m_n, NULL);
6910 
6911 	ilk_set_pipeconf(new_crtc_state);
6912 
6913 	crtc->active = true;
6914 
6915 	intel_encoders_pre_enable(state, crtc);
6916 
6917 	if (new_crtc_state->has_pch_encoder) {
6918 		/* Note: FDI PLL enabling _must_ be done before we enable the
6919 		 * cpu pipes, hence this is separate from all the other fdi/pch
6920 		 * enabling. */
6921 		ilk_fdi_pll_enable(new_crtc_state);
6922 	} else {
6923 		assert_fdi_tx_disabled(dev_priv, pipe);
6924 		assert_fdi_rx_disabled(dev_priv, pipe);
6925 	}
6926 
6927 	ilk_pfit_enable(new_crtc_state);
6928 
6929 	/*
6930 	 * On ILK+ LUT must be loaded before the pipe is running but with
6931 	 * clocks enabled
6932 	 */
6933 	intel_color_load_luts(new_crtc_state);
6934 	intel_color_commit(new_crtc_state);
6935 	/* update DSPCNTR to configure gamma for pipe bottom color */
6936 	intel_disable_primary_plane(new_crtc_state);
6937 
6938 	if (dev_priv->display.initial_watermarks)
6939 		dev_priv->display.initial_watermarks(state, crtc);
6940 	intel_enable_pipe(new_crtc_state);
6941 
6942 	if (new_crtc_state->has_pch_encoder)
6943 		ilk_pch_enable(state, new_crtc_state);
6944 
6945 	intel_crtc_vblank_on(new_crtc_state);
6946 
6947 	intel_encoders_enable(state, crtc);
6948 
6949 	if (HAS_PCH_CPT(dev_priv))
6950 		cpt_verify_modeset(dev_priv, pipe);
6951 
6952 	/*
6953 	 * Must wait for vblank to avoid spurious PCH FIFO underruns.
6954 	 * And a second vblank wait is needed at least on ILK with
6955 	 * some interlaced HDMI modes. Let's do the double wait always
6956 	 * in case there are more corner cases we don't know about.
6957 	 */
6958 	if (new_crtc_state->has_pch_encoder) {
6959 		intel_wait_for_vblank(dev_priv, pipe);
6960 		intel_wait_for_vblank(dev_priv, pipe);
6961 	}
6962 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6963 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6964 }
6965 
6966 /* IPS only exists on ULT machines and is tied to pipe A. */
6967 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
6968 {
6969 	return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
6970 }
6971 
6972 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
6973 					    enum pipe pipe, bool apply)
6974 {
6975 	u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe));
6976 	u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
6977 
6978 	if (apply)
6979 		val |= mask;
6980 	else
6981 		val &= ~mask;
6982 
6983 	intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val);
6984 }
6985 
6986 static void icl_pipe_mbus_enable(struct intel_crtc *crtc)
6987 {
6988 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6989 	enum pipe pipe = crtc->pipe;
6990 	u32 val;
6991 
6992 	val = MBUS_DBOX_A_CREDIT(2);
6993 
6994 	if (INTEL_GEN(dev_priv) >= 12) {
6995 		val |= MBUS_DBOX_BW_CREDIT(2);
6996 		val |= MBUS_DBOX_B_CREDIT(12);
6997 	} else {
6998 		val |= MBUS_DBOX_BW_CREDIT(1);
6999 		val |= MBUS_DBOX_B_CREDIT(8);
7000 	}
7001 
7002 	intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val);
7003 }
7004 
7005 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state)
7006 {
7007 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7008 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7009 
7010 	intel_de_write(dev_priv, WM_LINETIME(crtc->pipe),
7011 		       HSW_LINETIME(crtc_state->linetime) |
7012 		       HSW_IPS_LINETIME(crtc_state->ips_linetime));
7013 }
7014 
7015 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state)
7016 {
7017 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7018 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7019 	i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder);
7020 	u32 val;
7021 
7022 	val = intel_de_read(dev_priv, reg);
7023 	val &= ~HSW_FRAME_START_DELAY_MASK;
7024 	val |= HSW_FRAME_START_DELAY(0);
7025 	intel_de_write(dev_priv, reg, val);
7026 }
7027 
7028 static void hsw_crtc_enable(struct intel_atomic_state *state,
7029 			    struct intel_crtc *crtc)
7030 {
7031 	const struct intel_crtc_state *new_crtc_state =
7032 		intel_atomic_get_new_crtc_state(state, crtc);
7033 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7034 	enum pipe pipe = crtc->pipe, hsw_workaround_pipe;
7035 	enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
7036 	bool psl_clkgate_wa;
7037 
7038 	if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7039 		return;
7040 
7041 	intel_encoders_pre_pll_enable(state, crtc);
7042 
7043 	if (new_crtc_state->shared_dpll)
7044 		intel_enable_shared_dpll(new_crtc_state);
7045 
7046 	intel_encoders_pre_enable(state, crtc);
7047 
7048 	if (!transcoder_is_dsi(cpu_transcoder))
7049 		intel_set_pipe_timings(new_crtc_state);
7050 
7051 	intel_set_pipe_src_size(new_crtc_state);
7052 
7053 	if (cpu_transcoder != TRANSCODER_EDP &&
7054 	    !transcoder_is_dsi(cpu_transcoder))
7055 		intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder),
7056 			       new_crtc_state->pixel_multiplier - 1);
7057 
7058 	if (new_crtc_state->has_pch_encoder)
7059 		intel_cpu_transcoder_set_m_n(new_crtc_state,
7060 					     &new_crtc_state->fdi_m_n, NULL);
7061 
7062 	if (!transcoder_is_dsi(cpu_transcoder)) {
7063 		hsw_set_frame_start_delay(new_crtc_state);
7064 		hsw_set_pipeconf(new_crtc_state);
7065 	}
7066 
7067 	if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
7068 		bdw_set_pipemisc(new_crtc_state);
7069 
7070 	crtc->active = true;
7071 
7072 	/* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
7073 	psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
7074 		new_crtc_state->pch_pfit.enabled;
7075 	if (psl_clkgate_wa)
7076 		glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
7077 
7078 	if (INTEL_GEN(dev_priv) >= 9)
7079 		skl_pfit_enable(new_crtc_state);
7080 	else
7081 		ilk_pfit_enable(new_crtc_state);
7082 
7083 	/*
7084 	 * On ILK+ LUT must be loaded before the pipe is running but with
7085 	 * clocks enabled
7086 	 */
7087 	intel_color_load_luts(new_crtc_state);
7088 	intel_color_commit(new_crtc_state);
7089 	/* update DSPCNTR to configure gamma/csc for pipe bottom color */
7090 	if (INTEL_GEN(dev_priv) < 9)
7091 		intel_disable_primary_plane(new_crtc_state);
7092 
7093 	hsw_set_linetime_wm(new_crtc_state);
7094 
7095 	if (INTEL_GEN(dev_priv) >= 11)
7096 		icl_set_pipe_chicken(crtc);
7097 
7098 	if (dev_priv->display.initial_watermarks)
7099 		dev_priv->display.initial_watermarks(state, crtc);
7100 
7101 	if (INTEL_GEN(dev_priv) >= 11)
7102 		icl_pipe_mbus_enable(crtc);
7103 
7104 	intel_encoders_enable(state, crtc);
7105 
7106 	if (psl_clkgate_wa) {
7107 		intel_wait_for_vblank(dev_priv, pipe);
7108 		glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
7109 	}
7110 
7111 	/* If we change the relative order between pipe/planes enabling, we need
7112 	 * to change the workaround. */
7113 	hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe;
7114 	if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
7115 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7116 		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7117 	}
7118 }
7119 
7120 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7121 {
7122 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7123 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7124 	enum pipe pipe = crtc->pipe;
7125 
7126 	/* To avoid upsetting the power well on haswell only disable the pfit if
7127 	 * it's in use. The hw state code will make sure we get this right. */
7128 	if (!old_crtc_state->pch_pfit.enabled)
7129 		return;
7130 
7131 	intel_de_write(dev_priv, PF_CTL(pipe), 0);
7132 	intel_de_write(dev_priv, PF_WIN_POS(pipe), 0);
7133 	intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0);
7134 }
7135 
7136 static void ilk_crtc_disable(struct intel_atomic_state *state,
7137 			     struct intel_crtc *crtc)
7138 {
7139 	const struct intel_crtc_state *old_crtc_state =
7140 		intel_atomic_get_old_crtc_state(state, crtc);
7141 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7142 	enum pipe pipe = crtc->pipe;
7143 
7144 	/*
7145 	 * Sometimes spurious CPU pipe underruns happen when the
7146 	 * pipe is already disabled, but FDI RX/TX is still enabled.
7147 	 * Happens at least with VGA+HDMI cloning. Suppress them.
7148 	 */
7149 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7150 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
7151 
7152 	intel_encoders_disable(state, crtc);
7153 
7154 	intel_crtc_vblank_off(old_crtc_state);
7155 
7156 	intel_disable_pipe(old_crtc_state);
7157 
7158 	ilk_pfit_disable(old_crtc_state);
7159 
7160 	if (old_crtc_state->has_pch_encoder)
7161 		ilk_fdi_disable(crtc);
7162 
7163 	intel_encoders_post_disable(state, crtc);
7164 
7165 	if (old_crtc_state->has_pch_encoder) {
7166 		ilk_disable_pch_transcoder(dev_priv, pipe);
7167 
7168 		if (HAS_PCH_CPT(dev_priv)) {
7169 			i915_reg_t reg;
7170 			u32 temp;
7171 
7172 			/* disable TRANS_DP_CTL */
7173 			reg = TRANS_DP_CTL(pipe);
7174 			temp = intel_de_read(dev_priv, reg);
7175 			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
7176 				  TRANS_DP_PORT_SEL_MASK);
7177 			temp |= TRANS_DP_PORT_SEL_NONE;
7178 			intel_de_write(dev_priv, reg, temp);
7179 
7180 			/* disable DPLL_SEL */
7181 			temp = intel_de_read(dev_priv, PCH_DPLL_SEL);
7182 			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
7183 			intel_de_write(dev_priv, PCH_DPLL_SEL, temp);
7184 		}
7185 
7186 		ilk_fdi_pll_disable(crtc);
7187 	}
7188 
7189 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7190 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
7191 }
7192 
7193 static void hsw_crtc_disable(struct intel_atomic_state *state,
7194 			     struct intel_crtc *crtc)
7195 {
7196 	/*
7197 	 * FIXME collapse everything to one hook.
7198 	 * Need care with mst->ddi interactions.
7199 	 */
7200 	intel_encoders_disable(state, crtc);
7201 	intel_encoders_post_disable(state, crtc);
7202 }
7203 
7204 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state)
7205 {
7206 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7207 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7208 
7209 	if (!crtc_state->gmch_pfit.control)
7210 		return;
7211 
7212 	/*
7213 	 * The panel fitter should only be adjusted whilst the pipe is disabled,
7214 	 * according to register description and PRM.
7215 	 */
7216 	drm_WARN_ON(&dev_priv->drm,
7217 		    intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE);
7218 	assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
7219 
7220 	intel_de_write(dev_priv, PFIT_PGM_RATIOS,
7221 		       crtc_state->gmch_pfit.pgm_ratios);
7222 	intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control);
7223 
7224 	/* Border color in case we don't scale up to the full screen. Black by
7225 	 * default, change to something else for debugging. */
7226 	intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0);
7227 }
7228 
7229 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy)
7230 {
7231 	if (phy == PHY_NONE)
7232 		return false;
7233 	else if (IS_ROCKETLAKE(dev_priv))
7234 		return phy <= PHY_D;
7235 	else if (IS_ELKHARTLAKE(dev_priv))
7236 		return phy <= PHY_C;
7237 	else if (INTEL_GEN(dev_priv) >= 11)
7238 		return phy <= PHY_B;
7239 	else
7240 		return false;
7241 }
7242 
7243 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy)
7244 {
7245 	if (IS_ROCKETLAKE(dev_priv))
7246 		return false;
7247 	else if (INTEL_GEN(dev_priv) >= 12)
7248 		return phy >= PHY_D && phy <= PHY_I;
7249 	else if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv))
7250 		return phy >= PHY_C && phy <= PHY_F;
7251 	else
7252 		return false;
7253 }
7254 
7255 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port)
7256 {
7257 	if (IS_ROCKETLAKE(i915) && port >= PORT_D)
7258 		return (enum phy)port - 1;
7259 	else if (IS_ELKHARTLAKE(i915) && port == PORT_D)
7260 		return PHY_A;
7261 
7262 	return (enum phy)port;
7263 }
7264 
7265 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port)
7266 {
7267 	if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port)))
7268 		return PORT_TC_NONE;
7269 
7270 	if (INTEL_GEN(dev_priv) >= 12)
7271 		return port - PORT_D;
7272 
7273 	return port - PORT_C;
7274 }
7275 
7276 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
7277 {
7278 	switch (port) {
7279 	case PORT_A:
7280 		return POWER_DOMAIN_PORT_DDI_A_LANES;
7281 	case PORT_B:
7282 		return POWER_DOMAIN_PORT_DDI_B_LANES;
7283 	case PORT_C:
7284 		return POWER_DOMAIN_PORT_DDI_C_LANES;
7285 	case PORT_D:
7286 		return POWER_DOMAIN_PORT_DDI_D_LANES;
7287 	case PORT_E:
7288 		return POWER_DOMAIN_PORT_DDI_E_LANES;
7289 	case PORT_F:
7290 		return POWER_DOMAIN_PORT_DDI_F_LANES;
7291 	case PORT_G:
7292 		return POWER_DOMAIN_PORT_DDI_G_LANES;
7293 	default:
7294 		MISSING_CASE(port);
7295 		return POWER_DOMAIN_PORT_OTHER;
7296 	}
7297 }
7298 
7299 enum intel_display_power_domain
7300 intel_aux_power_domain(struct intel_digital_port *dig_port)
7301 {
7302 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
7303 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
7304 
7305 	if (intel_phy_is_tc(dev_priv, phy) &&
7306 	    dig_port->tc_mode == TC_PORT_TBT_ALT) {
7307 		switch (dig_port->aux_ch) {
7308 		case AUX_CH_C:
7309 			return POWER_DOMAIN_AUX_C_TBT;
7310 		case AUX_CH_D:
7311 			return POWER_DOMAIN_AUX_D_TBT;
7312 		case AUX_CH_E:
7313 			return POWER_DOMAIN_AUX_E_TBT;
7314 		case AUX_CH_F:
7315 			return POWER_DOMAIN_AUX_F_TBT;
7316 		case AUX_CH_G:
7317 			return POWER_DOMAIN_AUX_G_TBT;
7318 		default:
7319 			MISSING_CASE(dig_port->aux_ch);
7320 			return POWER_DOMAIN_AUX_C_TBT;
7321 		}
7322 	}
7323 
7324 	return intel_legacy_aux_to_power_domain(dig_port->aux_ch);
7325 }
7326 
7327 /*
7328  * Converts aux_ch to power_domain without caring about TBT ports for that use
7329  * intel_aux_power_domain()
7330  */
7331 enum intel_display_power_domain
7332 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch)
7333 {
7334 	switch (aux_ch) {
7335 	case AUX_CH_A:
7336 		return POWER_DOMAIN_AUX_A;
7337 	case AUX_CH_B:
7338 		return POWER_DOMAIN_AUX_B;
7339 	case AUX_CH_C:
7340 		return POWER_DOMAIN_AUX_C;
7341 	case AUX_CH_D:
7342 		return POWER_DOMAIN_AUX_D;
7343 	case AUX_CH_E:
7344 		return POWER_DOMAIN_AUX_E;
7345 	case AUX_CH_F:
7346 		return POWER_DOMAIN_AUX_F;
7347 	case AUX_CH_G:
7348 		return POWER_DOMAIN_AUX_G;
7349 	default:
7350 		MISSING_CASE(aux_ch);
7351 		return POWER_DOMAIN_AUX_A;
7352 	}
7353 }
7354 
7355 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7356 {
7357 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7358 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7359 	struct drm_encoder *encoder;
7360 	enum pipe pipe = crtc->pipe;
7361 	u64 mask;
7362 	enum transcoder transcoder = crtc_state->cpu_transcoder;
7363 
7364 	if (!crtc_state->hw.active)
7365 		return 0;
7366 
7367 	mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe));
7368 	mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder));
7369 	if (crtc_state->pch_pfit.enabled ||
7370 	    crtc_state->pch_pfit.force_thru)
7371 		mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
7372 
7373 	drm_for_each_encoder_mask(encoder, &dev_priv->drm,
7374 				  crtc_state->uapi.encoder_mask) {
7375 		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7376 
7377 		mask |= BIT_ULL(intel_encoder->power_domain);
7378 	}
7379 
7380 	if (HAS_DDI(dev_priv) && crtc_state->has_audio)
7381 		mask |= BIT_ULL(POWER_DOMAIN_AUDIO);
7382 
7383 	if (crtc_state->shared_dpll)
7384 		mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE);
7385 
7386 	return mask;
7387 }
7388 
7389 static u64
7390 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7391 {
7392 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7393 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7394 	enum intel_display_power_domain domain;
7395 	u64 domains, new_domains, old_domains;
7396 
7397 	old_domains = crtc->enabled_power_domains;
7398 	crtc->enabled_power_domains = new_domains =
7399 		get_crtc_power_domains(crtc_state);
7400 
7401 	domains = new_domains & ~old_domains;
7402 
7403 	for_each_power_domain(domain, domains)
7404 		intel_display_power_get(dev_priv, domain);
7405 
7406 	return old_domains & ~new_domains;
7407 }
7408 
7409 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
7410 				      u64 domains)
7411 {
7412 	enum intel_display_power_domain domain;
7413 
7414 	for_each_power_domain(domain, domains)
7415 		intel_display_power_put_unchecked(dev_priv, domain);
7416 }
7417 
7418 static void valleyview_crtc_enable(struct intel_atomic_state *state,
7419 				   struct intel_crtc *crtc)
7420 {
7421 	const struct intel_crtc_state *new_crtc_state =
7422 		intel_atomic_get_new_crtc_state(state, crtc);
7423 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7424 	enum pipe pipe = crtc->pipe;
7425 
7426 	if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7427 		return;
7428 
7429 	if (intel_crtc_has_dp_encoder(new_crtc_state))
7430 		intel_dp_set_m_n(new_crtc_state, M1_N1);
7431 
7432 	intel_set_pipe_timings(new_crtc_state);
7433 	intel_set_pipe_src_size(new_crtc_state);
7434 
7435 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
7436 		intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY);
7437 		intel_de_write(dev_priv, CHV_CANVAS(pipe), 0);
7438 	}
7439 
7440 	i9xx_set_pipeconf(new_crtc_state);
7441 
7442 	crtc->active = true;
7443 
7444 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7445 
7446 	intel_encoders_pre_pll_enable(state, crtc);
7447 
7448 	if (IS_CHERRYVIEW(dev_priv)) {
7449 		chv_prepare_pll(crtc, new_crtc_state);
7450 		chv_enable_pll(crtc, new_crtc_state);
7451 	} else {
7452 		vlv_prepare_pll(crtc, new_crtc_state);
7453 		vlv_enable_pll(crtc, new_crtc_state);
7454 	}
7455 
7456 	intel_encoders_pre_enable(state, crtc);
7457 
7458 	i9xx_pfit_enable(new_crtc_state);
7459 
7460 	intel_color_load_luts(new_crtc_state);
7461 	intel_color_commit(new_crtc_state);
7462 	/* update DSPCNTR to configure gamma for pipe bottom color */
7463 	intel_disable_primary_plane(new_crtc_state);
7464 
7465 	dev_priv->display.initial_watermarks(state, crtc);
7466 	intel_enable_pipe(new_crtc_state);
7467 
7468 	intel_crtc_vblank_on(new_crtc_state);
7469 
7470 	intel_encoders_enable(state, crtc);
7471 }
7472 
7473 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state)
7474 {
7475 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7476 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7477 
7478 	intel_de_write(dev_priv, FP0(crtc->pipe),
7479 		       crtc_state->dpll_hw_state.fp0);
7480 	intel_de_write(dev_priv, FP1(crtc->pipe),
7481 		       crtc_state->dpll_hw_state.fp1);
7482 }
7483 
7484 static void i9xx_crtc_enable(struct intel_atomic_state *state,
7485 			     struct intel_crtc *crtc)
7486 {
7487 	const struct intel_crtc_state *new_crtc_state =
7488 		intel_atomic_get_new_crtc_state(state, crtc);
7489 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7490 	enum pipe pipe = crtc->pipe;
7491 
7492 	if (drm_WARN_ON(&dev_priv->drm, crtc->active))
7493 		return;
7494 
7495 	i9xx_set_pll_dividers(new_crtc_state);
7496 
7497 	if (intel_crtc_has_dp_encoder(new_crtc_state))
7498 		intel_dp_set_m_n(new_crtc_state, M1_N1);
7499 
7500 	intel_set_pipe_timings(new_crtc_state);
7501 	intel_set_pipe_src_size(new_crtc_state);
7502 
7503 	i9xx_set_pipeconf(new_crtc_state);
7504 
7505 	crtc->active = true;
7506 
7507 	if (!IS_GEN(dev_priv, 2))
7508 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7509 
7510 	intel_encoders_pre_enable(state, crtc);
7511 
7512 	i9xx_enable_pll(crtc, new_crtc_state);
7513 
7514 	i9xx_pfit_enable(new_crtc_state);
7515 
7516 	intel_color_load_luts(new_crtc_state);
7517 	intel_color_commit(new_crtc_state);
7518 	/* update DSPCNTR to configure gamma for pipe bottom color */
7519 	intel_disable_primary_plane(new_crtc_state);
7520 
7521 	if (dev_priv->display.initial_watermarks)
7522 		dev_priv->display.initial_watermarks(state, crtc);
7523 	else
7524 		intel_update_watermarks(crtc);
7525 	intel_enable_pipe(new_crtc_state);
7526 
7527 	intel_crtc_vblank_on(new_crtc_state);
7528 
7529 	intel_encoders_enable(state, crtc);
7530 
7531 	/* prevents spurious underruns */
7532 	if (IS_GEN(dev_priv, 2))
7533 		intel_wait_for_vblank(dev_priv, pipe);
7534 }
7535 
7536 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7537 {
7538 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7539 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7540 
7541 	if (!old_crtc_state->gmch_pfit.control)
7542 		return;
7543 
7544 	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
7545 
7546 	drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n",
7547 		    intel_de_read(dev_priv, PFIT_CONTROL));
7548 	intel_de_write(dev_priv, PFIT_CONTROL, 0);
7549 }
7550 
7551 static void i9xx_crtc_disable(struct intel_atomic_state *state,
7552 			      struct intel_crtc *crtc)
7553 {
7554 	struct intel_crtc_state *old_crtc_state =
7555 		intel_atomic_get_old_crtc_state(state, crtc);
7556 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7557 	enum pipe pipe = crtc->pipe;
7558 
7559 	/*
7560 	 * On gen2 planes are double buffered but the pipe isn't, so we must
7561 	 * wait for planes to fully turn off before disabling the pipe.
7562 	 */
7563 	if (IS_GEN(dev_priv, 2))
7564 		intel_wait_for_vblank(dev_priv, pipe);
7565 
7566 	intel_encoders_disable(state, crtc);
7567 
7568 	intel_crtc_vblank_off(old_crtc_state);
7569 
7570 	intel_disable_pipe(old_crtc_state);
7571 
7572 	i9xx_pfit_disable(old_crtc_state);
7573 
7574 	intel_encoders_post_disable(state, crtc);
7575 
7576 	if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
7577 		if (IS_CHERRYVIEW(dev_priv))
7578 			chv_disable_pll(dev_priv, pipe);
7579 		else if (IS_VALLEYVIEW(dev_priv))
7580 			vlv_disable_pll(dev_priv, pipe);
7581 		else
7582 			i9xx_disable_pll(old_crtc_state);
7583 	}
7584 
7585 	intel_encoders_post_pll_disable(state, crtc);
7586 
7587 	if (!IS_GEN(dev_priv, 2))
7588 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7589 
7590 	if (!dev_priv->display.initial_watermarks)
7591 		intel_update_watermarks(crtc);
7592 
7593 	/* clock the pipe down to 640x480@60 to potentially save power */
7594 	if (IS_I830(dev_priv))
7595 		i830_enable_pipe(dev_priv, pipe);
7596 }
7597 
7598 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc,
7599 					struct drm_modeset_acquire_ctx *ctx)
7600 {
7601 	struct intel_encoder *encoder;
7602 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7603 	struct intel_bw_state *bw_state =
7604 		to_intel_bw_state(dev_priv->bw_obj.state);
7605 	struct intel_cdclk_state *cdclk_state =
7606 		to_intel_cdclk_state(dev_priv->cdclk.obj.state);
7607 	struct intel_dbuf_state *dbuf_state =
7608 		to_intel_dbuf_state(dev_priv->dbuf.obj.state);
7609 	struct intel_crtc_state *crtc_state =
7610 		to_intel_crtc_state(crtc->base.state);
7611 	enum intel_display_power_domain domain;
7612 	struct intel_plane *plane;
7613 	struct drm_atomic_state *state;
7614 	struct intel_crtc_state *temp_crtc_state;
7615 	enum pipe pipe = crtc->pipe;
7616 	u64 domains;
7617 	int ret;
7618 
7619 	if (!crtc_state->hw.active)
7620 		return;
7621 
7622 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
7623 		const struct intel_plane_state *plane_state =
7624 			to_intel_plane_state(plane->base.state);
7625 
7626 		if (plane_state->uapi.visible)
7627 			intel_plane_disable_noatomic(crtc, plane);
7628 	}
7629 
7630 	state = drm_atomic_state_alloc(&dev_priv->drm);
7631 	if (!state) {
7632 		drm_dbg_kms(&dev_priv->drm,
7633 			    "failed to disable [CRTC:%d:%s], out of memory",
7634 			    crtc->base.base.id, crtc->base.name);
7635 		return;
7636 	}
7637 
7638 	state->acquire_ctx = ctx;
7639 
7640 	/* Everything's already locked, -EDEADLK can't happen. */
7641 	temp_crtc_state = intel_atomic_get_crtc_state(state, crtc);
7642 	ret = drm_atomic_add_affected_connectors(state, &crtc->base);
7643 
7644 	drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret);
7645 
7646 	dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc);
7647 
7648 	drm_atomic_state_put(state);
7649 
7650 	drm_dbg_kms(&dev_priv->drm,
7651 		    "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
7652 		    crtc->base.base.id, crtc->base.name);
7653 
7654 	crtc->active = false;
7655 	crtc->base.enabled = false;
7656 
7657 	drm_WARN_ON(&dev_priv->drm,
7658 		    drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0);
7659 	crtc_state->uapi.active = false;
7660 	crtc_state->uapi.connector_mask = 0;
7661 	crtc_state->uapi.encoder_mask = 0;
7662 	intel_crtc_free_hw_state(crtc_state);
7663 	memset(&crtc_state->hw, 0, sizeof(crtc_state->hw));
7664 
7665 	for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder)
7666 		encoder->base.crtc = NULL;
7667 
7668 	intel_fbc_disable(crtc);
7669 	intel_update_watermarks(crtc);
7670 	intel_disable_shared_dpll(crtc_state);
7671 
7672 	domains = crtc->enabled_power_domains;
7673 	for_each_power_domain(domain, domains)
7674 		intel_display_power_put_unchecked(dev_priv, domain);
7675 	crtc->enabled_power_domains = 0;
7676 
7677 	dev_priv->active_pipes &= ~BIT(pipe);
7678 	cdclk_state->min_cdclk[pipe] = 0;
7679 	cdclk_state->min_voltage_level[pipe] = 0;
7680 	cdclk_state->active_pipes &= ~BIT(pipe);
7681 
7682 	dbuf_state->active_pipes &= ~BIT(pipe);
7683 
7684 	bw_state->data_rate[pipe] = 0;
7685 	bw_state->num_active_planes[pipe] = 0;
7686 }
7687 
7688 /*
7689  * turn all crtc's off, but do not adjust state
7690  * This has to be paired with a call to intel_modeset_setup_hw_state.
7691  */
7692 int intel_display_suspend(struct drm_device *dev)
7693 {
7694 	struct drm_i915_private *dev_priv = to_i915(dev);
7695 	struct drm_atomic_state *state;
7696 	int ret;
7697 
7698 	state = drm_atomic_helper_suspend(dev);
7699 	ret = PTR_ERR_OR_ZERO(state);
7700 	if (ret)
7701 		drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n",
7702 			ret);
7703 	else
7704 		dev_priv->modeset_restore_state = state;
7705 	return ret;
7706 }
7707 
7708 void intel_encoder_destroy(struct drm_encoder *encoder)
7709 {
7710 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7711 
7712 	drm_encoder_cleanup(encoder);
7713 	kfree(intel_encoder);
7714 }
7715 
7716 /* Cross check the actual hw state with our own modeset state tracking (and it's
7717  * internal consistency). */
7718 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state,
7719 					 struct drm_connector_state *conn_state)
7720 {
7721 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
7722 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
7723 
7724 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
7725 		    connector->base.base.id, connector->base.name);
7726 
7727 	if (connector->get_hw_state(connector)) {
7728 		struct intel_encoder *encoder = intel_attached_encoder(connector);
7729 
7730 		I915_STATE_WARN(!crtc_state,
7731 			 "connector enabled without attached crtc\n");
7732 
7733 		if (!crtc_state)
7734 			return;
7735 
7736 		I915_STATE_WARN(!crtc_state->hw.active,
7737 				"connector is active, but attached crtc isn't\n");
7738 
7739 		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
7740 			return;
7741 
7742 		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
7743 			"atomic encoder doesn't match attached encoder\n");
7744 
7745 		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
7746 			"attached encoder crtc differs from connector crtc\n");
7747 	} else {
7748 		I915_STATE_WARN(crtc_state && crtc_state->hw.active,
7749 				"attached crtc is active, but connector isn't\n");
7750 		I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
7751 			"best encoder set without crtc!\n");
7752 	}
7753 }
7754 
7755 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7756 {
7757 	if (crtc_state->hw.enable && crtc_state->has_pch_encoder)
7758 		return crtc_state->fdi_lanes;
7759 
7760 	return 0;
7761 }
7762 
7763 static int ilk_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7764 			       struct intel_crtc_state *pipe_config)
7765 {
7766 	struct drm_i915_private *dev_priv = to_i915(dev);
7767 	struct drm_atomic_state *state = pipe_config->uapi.state;
7768 	struct intel_crtc *other_crtc;
7769 	struct intel_crtc_state *other_crtc_state;
7770 
7771 	drm_dbg_kms(&dev_priv->drm,
7772 		    "checking fdi config on pipe %c, lanes %i\n",
7773 		    pipe_name(pipe), pipe_config->fdi_lanes);
7774 	if (pipe_config->fdi_lanes > 4) {
7775 		drm_dbg_kms(&dev_priv->drm,
7776 			    "invalid fdi lane config on pipe %c: %i lanes\n",
7777 			    pipe_name(pipe), pipe_config->fdi_lanes);
7778 		return -EINVAL;
7779 	}
7780 
7781 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7782 		if (pipe_config->fdi_lanes > 2) {
7783 			drm_dbg_kms(&dev_priv->drm,
7784 				    "only 2 lanes on haswell, required: %i lanes\n",
7785 				    pipe_config->fdi_lanes);
7786 			return -EINVAL;
7787 		} else {
7788 			return 0;
7789 		}
7790 	}
7791 
7792 	if (INTEL_NUM_PIPES(dev_priv) == 2)
7793 		return 0;
7794 
7795 	/* Ivybridge 3 pipe is really complicated */
7796 	switch (pipe) {
7797 	case PIPE_A:
7798 		return 0;
7799 	case PIPE_B:
7800 		if (pipe_config->fdi_lanes <= 2)
7801 			return 0;
7802 
7803 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7804 		other_crtc_state =
7805 			intel_atomic_get_crtc_state(state, other_crtc);
7806 		if (IS_ERR(other_crtc_state))
7807 			return PTR_ERR(other_crtc_state);
7808 
7809 		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7810 			drm_dbg_kms(&dev_priv->drm,
7811 				    "invalid shared fdi lane config on pipe %c: %i lanes\n",
7812 				    pipe_name(pipe), pipe_config->fdi_lanes);
7813 			return -EINVAL;
7814 		}
7815 		return 0;
7816 	case PIPE_C:
7817 		if (pipe_config->fdi_lanes > 2) {
7818 			drm_dbg_kms(&dev_priv->drm,
7819 				    "only 2 lanes on pipe %c: required %i lanes\n",
7820 				    pipe_name(pipe), pipe_config->fdi_lanes);
7821 			return -EINVAL;
7822 		}
7823 
7824 		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7825 		other_crtc_state =
7826 			intel_atomic_get_crtc_state(state, other_crtc);
7827 		if (IS_ERR(other_crtc_state))
7828 			return PTR_ERR(other_crtc_state);
7829 
7830 		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7831 			drm_dbg_kms(&dev_priv->drm,
7832 				    "fdi link B uses too many lanes to enable link C\n");
7833 			return -EINVAL;
7834 		}
7835 		return 0;
7836 	default:
7837 		BUG();
7838 	}
7839 }
7840 
7841 #define RETRY 1
7842 static int ilk_fdi_compute_config(struct intel_crtc *intel_crtc,
7843 				  struct intel_crtc_state *pipe_config)
7844 {
7845 	struct drm_device *dev = intel_crtc->base.dev;
7846 	struct drm_i915_private *i915 = to_i915(dev);
7847 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
7848 	int lane, link_bw, fdi_dotclock, ret;
7849 	bool needs_recompute = false;
7850 
7851 retry:
7852 	/* FDI is a binary signal running at ~2.7GHz, encoding
7853 	 * each output octet as 10 bits. The actual frequency
7854 	 * is stored as a divider into a 100MHz clock, and the
7855 	 * mode pixel clock is stored in units of 1KHz.
7856 	 * Hence the bw of each lane in terms of the mode signal
7857 	 * is:
7858 	 */
7859 	link_bw = intel_fdi_link_freq(i915, pipe_config);
7860 
7861 	fdi_dotclock = adjusted_mode->crtc_clock;
7862 
7863 	lane = ilk_get_lanes_required(fdi_dotclock, link_bw,
7864 				      pipe_config->pipe_bpp);
7865 
7866 	pipe_config->fdi_lanes = lane;
7867 
7868 	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7869 			       link_bw, &pipe_config->fdi_m_n, false, false);
7870 
7871 	ret = ilk_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7872 	if (ret == -EDEADLK)
7873 		return ret;
7874 
7875 	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7876 		pipe_config->pipe_bpp -= 2*3;
7877 		drm_dbg_kms(&i915->drm,
7878 			    "fdi link bw constraint, reducing pipe bpp to %i\n",
7879 			    pipe_config->pipe_bpp);
7880 		needs_recompute = true;
7881 		pipe_config->bw_constrained = true;
7882 
7883 		goto retry;
7884 	}
7885 
7886 	if (needs_recompute)
7887 		return RETRY;
7888 
7889 	return ret;
7890 }
7891 
7892 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state)
7893 {
7894 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7895 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7896 
7897 	/* IPS only exists on ULT machines and is tied to pipe A. */
7898 	if (!hsw_crtc_supports_ips(crtc))
7899 		return false;
7900 
7901 	if (!dev_priv->params.enable_ips)
7902 		return false;
7903 
7904 	if (crtc_state->pipe_bpp > 24)
7905 		return false;
7906 
7907 	/*
7908 	 * We compare against max which means we must take
7909 	 * the increased cdclk requirement into account when
7910 	 * calculating the new cdclk.
7911 	 *
7912 	 * Should measure whether using a lower cdclk w/o IPS
7913 	 */
7914 	if (IS_BROADWELL(dev_priv) &&
7915 	    crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100)
7916 		return false;
7917 
7918 	return true;
7919 }
7920 
7921 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state)
7922 {
7923 	struct drm_i915_private *dev_priv =
7924 		to_i915(crtc_state->uapi.crtc->dev);
7925 	struct intel_atomic_state *state =
7926 		to_intel_atomic_state(crtc_state->uapi.state);
7927 
7928 	crtc_state->ips_enabled = false;
7929 
7930 	if (!hsw_crtc_state_ips_capable(crtc_state))
7931 		return 0;
7932 
7933 	/*
7934 	 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
7935 	 * enabled and disabled dynamically based on package C states,
7936 	 * user space can't make reliable use of the CRCs, so let's just
7937 	 * completely disable it.
7938 	 */
7939 	if (crtc_state->crc_enabled)
7940 		return 0;
7941 
7942 	/* IPS should be fine as long as at least one plane is enabled. */
7943 	if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)))
7944 		return 0;
7945 
7946 	if (IS_BROADWELL(dev_priv)) {
7947 		const struct intel_cdclk_state *cdclk_state;
7948 
7949 		cdclk_state = intel_atomic_get_cdclk_state(state);
7950 		if (IS_ERR(cdclk_state))
7951 			return PTR_ERR(cdclk_state);
7952 
7953 		/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
7954 		if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100)
7955 			return 0;
7956 	}
7957 
7958 	crtc_state->ips_enabled = true;
7959 
7960 	return 0;
7961 }
7962 
7963 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7964 {
7965 	const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7966 
7967 	/* GDG double wide on either pipe, otherwise pipe A only */
7968 	return INTEL_GEN(dev_priv) < 4 &&
7969 		(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7970 }
7971 
7972 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state)
7973 {
7974 	u32 pixel_rate = crtc_state->hw.adjusted_mode.crtc_clock;
7975 	unsigned int pipe_w, pipe_h, pfit_w, pfit_h;
7976 
7977 	/*
7978 	 * We only use IF-ID interlacing. If we ever use
7979 	 * PF-ID we'll need to adjust the pixel_rate here.
7980 	 */
7981 
7982 	if (!crtc_state->pch_pfit.enabled)
7983 		return pixel_rate;
7984 
7985 	pipe_w = crtc_state->pipe_src_w;
7986 	pipe_h = crtc_state->pipe_src_h;
7987 
7988 	pfit_w = drm_rect_width(&crtc_state->pch_pfit.dst);
7989 	pfit_h = drm_rect_height(&crtc_state->pch_pfit.dst);
7990 
7991 	if (pipe_w < pfit_w)
7992 		pipe_w = pfit_w;
7993 	if (pipe_h < pfit_h)
7994 		pipe_h = pfit_h;
7995 
7996 	if (drm_WARN_ON(crtc_state->uapi.crtc->dev,
7997 			!pfit_w || !pfit_h))
7998 		return pixel_rate;
7999 
8000 	return div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h),
8001 		       pfit_w * pfit_h);
8002 }
8003 
8004 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
8005 {
8006 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
8007 
8008 	if (HAS_GMCH(dev_priv))
8009 		/* FIXME calculate proper pipe pixel rate for GMCH pfit */
8010 		crtc_state->pixel_rate =
8011 			crtc_state->hw.adjusted_mode.crtc_clock;
8012 	else
8013 		crtc_state->pixel_rate =
8014 			ilk_pipe_pixel_rate(crtc_state);
8015 }
8016 
8017 static int intel_crtc_compute_config(struct intel_crtc *crtc,
8018 				     struct intel_crtc_state *pipe_config)
8019 {
8020 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8021 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
8022 	int clock_limit = dev_priv->max_dotclk_freq;
8023 
8024 	if (INTEL_GEN(dev_priv) < 4) {
8025 		clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
8026 
8027 		/*
8028 		 * Enable double wide mode when the dot clock
8029 		 * is > 90% of the (display) core speed.
8030 		 */
8031 		if (intel_crtc_supports_double_wide(crtc) &&
8032 		    adjusted_mode->crtc_clock > clock_limit) {
8033 			clock_limit = dev_priv->max_dotclk_freq;
8034 			pipe_config->double_wide = true;
8035 		}
8036 	}
8037 
8038 	if (adjusted_mode->crtc_clock > clock_limit) {
8039 		drm_dbg_kms(&dev_priv->drm,
8040 			    "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
8041 			    adjusted_mode->crtc_clock, clock_limit,
8042 			    yesno(pipe_config->double_wide));
8043 		return -EINVAL;
8044 	}
8045 
8046 	if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
8047 	     pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) &&
8048 	     pipe_config->hw.ctm) {
8049 		/*
8050 		 * There is only one pipe CSC unit per pipe, and we need that
8051 		 * for output conversion from RGB->YCBCR. So if CTM is already
8052 		 * applied we can't support YCBCR420 output.
8053 		 */
8054 		drm_dbg_kms(&dev_priv->drm,
8055 			    "YCBCR420 and CTM together are not possible\n");
8056 		return -EINVAL;
8057 	}
8058 
8059 	/*
8060 	 * Pipe horizontal size must be even in:
8061 	 * - DVO ganged mode
8062 	 * - LVDS dual channel mode
8063 	 * - Double wide pipe
8064 	 */
8065 	if (pipe_config->pipe_src_w & 1) {
8066 		if (pipe_config->double_wide) {
8067 			drm_dbg_kms(&dev_priv->drm,
8068 				    "Odd pipe source width not supported with double wide pipe\n");
8069 			return -EINVAL;
8070 		}
8071 
8072 		if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
8073 		    intel_is_dual_link_lvds(dev_priv)) {
8074 			drm_dbg_kms(&dev_priv->drm,
8075 				    "Odd pipe source width not supported with dual link LVDS\n");
8076 			return -EINVAL;
8077 		}
8078 	}
8079 
8080 	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
8081 	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
8082 	 */
8083 	if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
8084 		adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
8085 		return -EINVAL;
8086 
8087 	intel_crtc_compute_pixel_rate(pipe_config);
8088 
8089 	if (pipe_config->has_pch_encoder)
8090 		return ilk_fdi_compute_config(crtc, pipe_config);
8091 
8092 	return 0;
8093 }
8094 
8095 static void
8096 intel_reduce_m_n_ratio(u32 *num, u32 *den)
8097 {
8098 	while (*num > DATA_LINK_M_N_MASK ||
8099 	       *den > DATA_LINK_M_N_MASK) {
8100 		*num >>= 1;
8101 		*den >>= 1;
8102 	}
8103 }
8104 
8105 static void compute_m_n(unsigned int m, unsigned int n,
8106 			u32 *ret_m, u32 *ret_n,
8107 			bool constant_n)
8108 {
8109 	/*
8110 	 * Several DP dongles in particular seem to be fussy about
8111 	 * too large link M/N values. Give N value as 0x8000 that
8112 	 * should be acceptable by specific devices. 0x8000 is the
8113 	 * specified fixed N value for asynchronous clock mode,
8114 	 * which the devices expect also in synchronous clock mode.
8115 	 */
8116 	if (constant_n)
8117 		*ret_n = 0x8000;
8118 	else
8119 		*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
8120 
8121 	*ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
8122 	intel_reduce_m_n_ratio(ret_m, ret_n);
8123 }
8124 
8125 void
8126 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes,
8127 		       int pixel_clock, int link_clock,
8128 		       struct intel_link_m_n *m_n,
8129 		       bool constant_n, bool fec_enable)
8130 {
8131 	u32 data_clock = bits_per_pixel * pixel_clock;
8132 
8133 	if (fec_enable)
8134 		data_clock = intel_dp_mode_to_fec_clock(data_clock);
8135 
8136 	m_n->tu = 64;
8137 	compute_m_n(data_clock,
8138 		    link_clock * nlanes * 8,
8139 		    &m_n->gmch_m, &m_n->gmch_n,
8140 		    constant_n);
8141 
8142 	compute_m_n(pixel_clock, link_clock,
8143 		    &m_n->link_m, &m_n->link_n,
8144 		    constant_n);
8145 }
8146 
8147 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv)
8148 {
8149 	/*
8150 	 * There may be no VBT; and if the BIOS enabled SSC we can
8151 	 * just keep using it to avoid unnecessary flicker.  Whereas if the
8152 	 * BIOS isn't using it, don't assume it will work even if the VBT
8153 	 * indicates as much.
8154 	 */
8155 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
8156 		bool bios_lvds_use_ssc = intel_de_read(dev_priv,
8157 						       PCH_DREF_CONTROL) &
8158 			DREF_SSC1_ENABLE;
8159 
8160 		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
8161 			drm_dbg_kms(&dev_priv->drm,
8162 				    "SSC %s by BIOS, overriding VBT which says %s\n",
8163 				    enableddisabled(bios_lvds_use_ssc),
8164 				    enableddisabled(dev_priv->vbt.lvds_use_ssc));
8165 			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
8166 		}
8167 	}
8168 }
8169 
8170 static bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
8171 {
8172 	if (dev_priv->params.panel_use_ssc >= 0)
8173 		return dev_priv->params.panel_use_ssc != 0;
8174 	return dev_priv->vbt.lvds_use_ssc
8175 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
8176 }
8177 
8178 static u32 pnv_dpll_compute_fp(struct dpll *dpll)
8179 {
8180 	return (1 << dpll->n) << 16 | dpll->m2;
8181 }
8182 
8183 static u32 i9xx_dpll_compute_fp(struct dpll *dpll)
8184 {
8185 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
8186 }
8187 
8188 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
8189 				     struct intel_crtc_state *crtc_state,
8190 				     struct dpll *reduced_clock)
8191 {
8192 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8193 	u32 fp, fp2 = 0;
8194 
8195 	if (IS_PINEVIEW(dev_priv)) {
8196 		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
8197 		if (reduced_clock)
8198 			fp2 = pnv_dpll_compute_fp(reduced_clock);
8199 	} else {
8200 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8201 		if (reduced_clock)
8202 			fp2 = i9xx_dpll_compute_fp(reduced_clock);
8203 	}
8204 
8205 	crtc_state->dpll_hw_state.fp0 = fp;
8206 
8207 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8208 	    reduced_clock) {
8209 		crtc_state->dpll_hw_state.fp1 = fp2;
8210 	} else {
8211 		crtc_state->dpll_hw_state.fp1 = fp;
8212 	}
8213 }
8214 
8215 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
8216 		pipe)
8217 {
8218 	u32 reg_val;
8219 
8220 	/*
8221 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
8222 	 * and set it to a reasonable value instead.
8223 	 */
8224 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8225 	reg_val &= 0xffffff00;
8226 	reg_val |= 0x00000030;
8227 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8228 
8229 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8230 	reg_val &= 0x00ffffff;
8231 	reg_val |= 0x8c000000;
8232 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8233 
8234 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8235 	reg_val &= 0xffffff00;
8236 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8237 
8238 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8239 	reg_val &= 0x00ffffff;
8240 	reg_val |= 0xb0000000;
8241 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8242 }
8243 
8244 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8245 					 const struct intel_link_m_n *m_n)
8246 {
8247 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8248 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8249 	enum pipe pipe = crtc->pipe;
8250 
8251 	intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe),
8252 		       TU_SIZE(m_n->tu) | m_n->gmch_m);
8253 	intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
8254 	intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m);
8255 	intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n);
8256 }
8257 
8258 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv,
8259 				 enum transcoder transcoder)
8260 {
8261 	if (IS_HASWELL(dev_priv))
8262 		return transcoder == TRANSCODER_EDP;
8263 
8264 	/*
8265 	 * Strictly speaking some registers are available before
8266 	 * gen7, but we only support DRRS on gen7+
8267 	 */
8268 	return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv);
8269 }
8270 
8271 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8272 					 const struct intel_link_m_n *m_n,
8273 					 const struct intel_link_m_n *m2_n2)
8274 {
8275 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8276 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8277 	enum pipe pipe = crtc->pipe;
8278 	enum transcoder transcoder = crtc_state->cpu_transcoder;
8279 
8280 	if (INTEL_GEN(dev_priv) >= 5) {
8281 		intel_de_write(dev_priv, PIPE_DATA_M1(transcoder),
8282 			       TU_SIZE(m_n->tu) | m_n->gmch_m);
8283 		intel_de_write(dev_priv, PIPE_DATA_N1(transcoder),
8284 			       m_n->gmch_n);
8285 		intel_de_write(dev_priv, PIPE_LINK_M1(transcoder),
8286 			       m_n->link_m);
8287 		intel_de_write(dev_priv, PIPE_LINK_N1(transcoder),
8288 			       m_n->link_n);
8289 		/*
8290 		 *  M2_N2 registers are set only if DRRS is supported
8291 		 * (to make sure the registers are not unnecessarily accessed).
8292 		 */
8293 		if (m2_n2 && crtc_state->has_drrs &&
8294 		    transcoder_has_m2_n2(dev_priv, transcoder)) {
8295 			intel_de_write(dev_priv, PIPE_DATA_M2(transcoder),
8296 				       TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
8297 			intel_de_write(dev_priv, PIPE_DATA_N2(transcoder),
8298 				       m2_n2->gmch_n);
8299 			intel_de_write(dev_priv, PIPE_LINK_M2(transcoder),
8300 				       m2_n2->link_m);
8301 			intel_de_write(dev_priv, PIPE_LINK_N2(transcoder),
8302 				       m2_n2->link_n);
8303 		}
8304 	} else {
8305 		intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe),
8306 			       TU_SIZE(m_n->tu) | m_n->gmch_m);
8307 		intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
8308 		intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m);
8309 		intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n);
8310 	}
8311 }
8312 
8313 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n)
8314 {
8315 	const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
8316 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
8317 
8318 	if (m_n == M1_N1) {
8319 		dp_m_n = &crtc_state->dp_m_n;
8320 		dp_m2_n2 = &crtc_state->dp_m2_n2;
8321 	} else if (m_n == M2_N2) {
8322 
8323 		/*
8324 		 * M2_N2 registers are not supported. Hence m2_n2 divider value
8325 		 * needs to be programmed into M1_N1.
8326 		 */
8327 		dp_m_n = &crtc_state->dp_m2_n2;
8328 	} else {
8329 		drm_err(&i915->drm, "Unsupported divider value\n");
8330 		return;
8331 	}
8332 
8333 	if (crtc_state->has_pch_encoder)
8334 		intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n);
8335 	else
8336 		intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2);
8337 }
8338 
8339 static void vlv_compute_dpll(struct intel_crtc *crtc,
8340 			     struct intel_crtc_state *pipe_config)
8341 {
8342 	pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
8343 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8344 	if (crtc->pipe != PIPE_A)
8345 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8346 
8347 	/* DPLL not used with DSI, but still need the rest set up */
8348 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8349 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
8350 			DPLL_EXT_BUFFER_ENABLE_VLV;
8351 
8352 	pipe_config->dpll_hw_state.dpll_md =
8353 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8354 }
8355 
8356 static void chv_compute_dpll(struct intel_crtc *crtc,
8357 			     struct intel_crtc_state *pipe_config)
8358 {
8359 	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
8360 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8361 	if (crtc->pipe != PIPE_A)
8362 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8363 
8364 	/* DPLL not used with DSI, but still need the rest set up */
8365 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8366 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
8367 
8368 	pipe_config->dpll_hw_state.dpll_md =
8369 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8370 }
8371 
8372 static void vlv_prepare_pll(struct intel_crtc *crtc,
8373 			    const struct intel_crtc_state *pipe_config)
8374 {
8375 	struct drm_device *dev = crtc->base.dev;
8376 	struct drm_i915_private *dev_priv = to_i915(dev);
8377 	enum pipe pipe = crtc->pipe;
8378 	u32 mdiv;
8379 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
8380 	u32 coreclk, reg_val;
8381 
8382 	/* Enable Refclk */
8383 	intel_de_write(dev_priv, DPLL(pipe),
8384 		       pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
8385 
8386 	/* No need to actually set up the DPLL with DSI */
8387 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8388 		return;
8389 
8390 	vlv_dpio_get(dev_priv);
8391 
8392 	bestn = pipe_config->dpll.n;
8393 	bestm1 = pipe_config->dpll.m1;
8394 	bestm2 = pipe_config->dpll.m2;
8395 	bestp1 = pipe_config->dpll.p1;
8396 	bestp2 = pipe_config->dpll.p2;
8397 
8398 	/* See eDP HDMI DPIO driver vbios notes doc */
8399 
8400 	/* PLL B needs special handling */
8401 	if (pipe == PIPE_B)
8402 		vlv_pllb_recal_opamp(dev_priv, pipe);
8403 
8404 	/* Set up Tx target for periodic Rcomp update */
8405 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
8406 
8407 	/* Disable target IRef on PLL */
8408 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
8409 	reg_val &= 0x00ffffff;
8410 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
8411 
8412 	/* Disable fast lock */
8413 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
8414 
8415 	/* Set idtafcrecal before PLL is enabled */
8416 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
8417 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
8418 	mdiv |= ((bestn << DPIO_N_SHIFT));
8419 	mdiv |= (1 << DPIO_K_SHIFT);
8420 
8421 	/*
8422 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
8423 	 * but we don't support that).
8424 	 * Note: don't use the DAC post divider as it seems unstable.
8425 	 */
8426 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
8427 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8428 
8429 	mdiv |= DPIO_ENABLE_CALIBRATION;
8430 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8431 
8432 	/* Set HBR and RBR LPF coefficients */
8433 	if (pipe_config->port_clock == 162000 ||
8434 	    intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
8435 	    intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
8436 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8437 				 0x009f0003);
8438 	else
8439 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8440 				 0x00d0000f);
8441 
8442 	if (intel_crtc_has_dp_encoder(pipe_config)) {
8443 		/* Use SSC source */
8444 		if (pipe == PIPE_A)
8445 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8446 					 0x0df40000);
8447 		else
8448 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8449 					 0x0df70000);
8450 	} else { /* HDMI or VGA */
8451 		/* Use bend source */
8452 		if (pipe == PIPE_A)
8453 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8454 					 0x0df70000);
8455 		else
8456 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8457 					 0x0df40000);
8458 	}
8459 
8460 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
8461 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
8462 	if (intel_crtc_has_dp_encoder(pipe_config))
8463 		coreclk |= 0x01000000;
8464 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
8465 
8466 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
8467 
8468 	vlv_dpio_put(dev_priv);
8469 }
8470 
8471 static void chv_prepare_pll(struct intel_crtc *crtc,
8472 			    const struct intel_crtc_state *pipe_config)
8473 {
8474 	struct drm_device *dev = crtc->base.dev;
8475 	struct drm_i915_private *dev_priv = to_i915(dev);
8476 	enum pipe pipe = crtc->pipe;
8477 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
8478 	u32 loopfilter, tribuf_calcntr;
8479 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
8480 	u32 dpio_val;
8481 	int vco;
8482 
8483 	/* Enable Refclk and SSC */
8484 	intel_de_write(dev_priv, DPLL(pipe),
8485 		       pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
8486 
8487 	/* No need to actually set up the DPLL with DSI */
8488 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8489 		return;
8490 
8491 	bestn = pipe_config->dpll.n;
8492 	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
8493 	bestm1 = pipe_config->dpll.m1;
8494 	bestm2 = pipe_config->dpll.m2 >> 22;
8495 	bestp1 = pipe_config->dpll.p1;
8496 	bestp2 = pipe_config->dpll.p2;
8497 	vco = pipe_config->dpll.vco;
8498 	dpio_val = 0;
8499 	loopfilter = 0;
8500 
8501 	vlv_dpio_get(dev_priv);
8502 
8503 	/* p1 and p2 divider */
8504 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8505 			5 << DPIO_CHV_S1_DIV_SHIFT |
8506 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8507 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8508 			1 << DPIO_CHV_K_DIV_SHIFT);
8509 
8510 	/* Feedback post-divider - m2 */
8511 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8512 
8513 	/* Feedback refclk divider - n and m1 */
8514 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8515 			DPIO_CHV_M1_DIV_BY_2 |
8516 			1 << DPIO_CHV_N_DIV_SHIFT);
8517 
8518 	/* M2 fraction division */
8519 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8520 
8521 	/* M2 fraction division enable */
8522 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8523 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8524 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8525 	if (bestm2_frac)
8526 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8527 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8528 
8529 	/* Program digital lock detect threshold */
8530 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8531 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8532 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8533 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8534 	if (!bestm2_frac)
8535 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8536 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8537 
8538 	/* Loop filter */
8539 	if (vco == 5400000) {
8540 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8541 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8542 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8543 		tribuf_calcntr = 0x9;
8544 	} else if (vco <= 6200000) {
8545 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8546 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8547 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8548 		tribuf_calcntr = 0x9;
8549 	} else if (vco <= 6480000) {
8550 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8551 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8552 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8553 		tribuf_calcntr = 0x8;
8554 	} else {
8555 		/* Not supported. Apply the same limits as in the max case */
8556 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8557 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8558 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8559 		tribuf_calcntr = 0;
8560 	}
8561 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8562 
8563 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8564 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8565 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8566 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8567 
8568 	/* AFC Recal */
8569 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8570 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8571 			DPIO_AFC_RECAL);
8572 
8573 	vlv_dpio_put(dev_priv);
8574 }
8575 
8576 /**
8577  * vlv_force_pll_on - forcibly enable just the PLL
8578  * @dev_priv: i915 private structure
8579  * @pipe: pipe PLL to enable
8580  * @dpll: PLL configuration
8581  *
8582  * Enable the PLL for @pipe using the supplied @dpll config. To be used
8583  * in cases where we need the PLL enabled even when @pipe is not going to
8584  * be enabled.
8585  */
8586 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8587 		     const struct dpll *dpll)
8588 {
8589 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8590 	struct intel_crtc_state *pipe_config;
8591 
8592 	pipe_config = intel_crtc_state_alloc(crtc);
8593 	if (!pipe_config)
8594 		return -ENOMEM;
8595 
8596 	pipe_config->cpu_transcoder = (enum transcoder)pipe;
8597 	pipe_config->pixel_multiplier = 1;
8598 	pipe_config->dpll = *dpll;
8599 
8600 	if (IS_CHERRYVIEW(dev_priv)) {
8601 		chv_compute_dpll(crtc, pipe_config);
8602 		chv_prepare_pll(crtc, pipe_config);
8603 		chv_enable_pll(crtc, pipe_config);
8604 	} else {
8605 		vlv_compute_dpll(crtc, pipe_config);
8606 		vlv_prepare_pll(crtc, pipe_config);
8607 		vlv_enable_pll(crtc, pipe_config);
8608 	}
8609 
8610 	kfree(pipe_config);
8611 
8612 	return 0;
8613 }
8614 
8615 /**
8616  * vlv_force_pll_off - forcibly disable just the PLL
8617  * @dev_priv: i915 private structure
8618  * @pipe: pipe PLL to disable
8619  *
8620  * Disable the PLL for @pipe. To be used in cases where we need
8621  * the PLL enabled even when @pipe is not going to be enabled.
8622  */
8623 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8624 {
8625 	if (IS_CHERRYVIEW(dev_priv))
8626 		chv_disable_pll(dev_priv, pipe);
8627 	else
8628 		vlv_disable_pll(dev_priv, pipe);
8629 }
8630 
8631 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8632 			      struct intel_crtc_state *crtc_state,
8633 			      struct dpll *reduced_clock)
8634 {
8635 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8636 	u32 dpll;
8637 	struct dpll *clock = &crtc_state->dpll;
8638 
8639 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8640 
8641 	dpll = DPLL_VGA_MODE_DIS;
8642 
8643 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8644 		dpll |= DPLLB_MODE_LVDS;
8645 	else
8646 		dpll |= DPLLB_MODE_DAC_SERIAL;
8647 
8648 	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8649 	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8650 		dpll |= (crtc_state->pixel_multiplier - 1)
8651 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
8652 	}
8653 
8654 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8655 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8656 		dpll |= DPLL_SDVO_HIGH_SPEED;
8657 
8658 	if (intel_crtc_has_dp_encoder(crtc_state))
8659 		dpll |= DPLL_SDVO_HIGH_SPEED;
8660 
8661 	/* compute bitmask from p1 value */
8662 	if (IS_PINEVIEW(dev_priv))
8663 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8664 	else {
8665 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8666 		if (IS_G4X(dev_priv) && reduced_clock)
8667 			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8668 	}
8669 	switch (clock->p2) {
8670 	case 5:
8671 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8672 		break;
8673 	case 7:
8674 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8675 		break;
8676 	case 10:
8677 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8678 		break;
8679 	case 14:
8680 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8681 		break;
8682 	}
8683 	if (INTEL_GEN(dev_priv) >= 4)
8684 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8685 
8686 	if (crtc_state->sdvo_tv_clock)
8687 		dpll |= PLL_REF_INPUT_TVCLKINBC;
8688 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8689 		 intel_panel_use_ssc(dev_priv))
8690 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8691 	else
8692 		dpll |= PLL_REF_INPUT_DREFCLK;
8693 
8694 	dpll |= DPLL_VCO_ENABLE;
8695 	crtc_state->dpll_hw_state.dpll = dpll;
8696 
8697 	if (INTEL_GEN(dev_priv) >= 4) {
8698 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8699 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
8700 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
8701 	}
8702 }
8703 
8704 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8705 			      struct intel_crtc_state *crtc_state,
8706 			      struct dpll *reduced_clock)
8707 {
8708 	struct drm_device *dev = crtc->base.dev;
8709 	struct drm_i915_private *dev_priv = to_i915(dev);
8710 	u32 dpll;
8711 	struct dpll *clock = &crtc_state->dpll;
8712 
8713 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8714 
8715 	dpll = DPLL_VGA_MODE_DIS;
8716 
8717 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8718 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8719 	} else {
8720 		if (clock->p1 == 2)
8721 			dpll |= PLL_P1_DIVIDE_BY_TWO;
8722 		else
8723 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8724 		if (clock->p2 == 4)
8725 			dpll |= PLL_P2_DIVIDE_BY_4;
8726 	}
8727 
8728 	/*
8729 	 * Bspec:
8730 	 * "[Almador Errata}: For the correct operation of the muxed DVO pins
8731 	 *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
8732 	 *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
8733 	 *  Enable) must be set to “1” in both the DPLL A Control Register
8734 	 *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
8735 	 *
8736 	 * For simplicity We simply keep both bits always enabled in
8737 	 * both DPLLS. The spec says we should disable the DVO 2X clock
8738 	 * when not needed, but this seems to work fine in practice.
8739 	 */
8740 	if (IS_I830(dev_priv) ||
8741 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8742 		dpll |= DPLL_DVO_2X_MODE;
8743 
8744 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8745 	    intel_panel_use_ssc(dev_priv))
8746 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8747 	else
8748 		dpll |= PLL_REF_INPUT_DREFCLK;
8749 
8750 	dpll |= DPLL_VCO_ENABLE;
8751 	crtc_state->dpll_hw_state.dpll = dpll;
8752 }
8753 
8754 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state)
8755 {
8756 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8757 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8758 	enum pipe pipe = crtc->pipe;
8759 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8760 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
8761 	u32 crtc_vtotal, crtc_vblank_end;
8762 	int vsyncshift = 0;
8763 
8764 	/* We need to be careful not to changed the adjusted mode, for otherwise
8765 	 * the hw state checker will get angry at the mismatch. */
8766 	crtc_vtotal = adjusted_mode->crtc_vtotal;
8767 	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8768 
8769 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8770 		/* the chip adds 2 halflines automatically */
8771 		crtc_vtotal -= 1;
8772 		crtc_vblank_end -= 1;
8773 
8774 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8775 			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8776 		else
8777 			vsyncshift = adjusted_mode->crtc_hsync_start -
8778 				adjusted_mode->crtc_htotal / 2;
8779 		if (vsyncshift < 0)
8780 			vsyncshift += adjusted_mode->crtc_htotal;
8781 	}
8782 
8783 	if (INTEL_GEN(dev_priv) > 3)
8784 		intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder),
8785 		               vsyncshift);
8786 
8787 	intel_de_write(dev_priv, HTOTAL(cpu_transcoder),
8788 		       (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16));
8789 	intel_de_write(dev_priv, HBLANK(cpu_transcoder),
8790 		       (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16));
8791 	intel_de_write(dev_priv, HSYNC(cpu_transcoder),
8792 		       (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16));
8793 
8794 	intel_de_write(dev_priv, VTOTAL(cpu_transcoder),
8795 		       (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16));
8796 	intel_de_write(dev_priv, VBLANK(cpu_transcoder),
8797 		       (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16));
8798 	intel_de_write(dev_priv, VSYNC(cpu_transcoder),
8799 		       (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16));
8800 
8801 	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8802 	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8803 	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8804 	 * bits. */
8805 	if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8806 	    (pipe == PIPE_B || pipe == PIPE_C))
8807 		intel_de_write(dev_priv, VTOTAL(pipe),
8808 		               intel_de_read(dev_priv, VTOTAL(cpu_transcoder)));
8809 
8810 }
8811 
8812 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
8813 {
8814 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8815 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8816 	enum pipe pipe = crtc->pipe;
8817 
8818 	/* pipesrc controls the size that is scaled from, which should
8819 	 * always be the user's requested size.
8820 	 */
8821 	intel_de_write(dev_priv, PIPESRC(pipe),
8822 		       ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1));
8823 }
8824 
8825 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state)
8826 {
8827 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
8828 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8829 
8830 	if (IS_GEN(dev_priv, 2))
8831 		return false;
8832 
8833 	if (INTEL_GEN(dev_priv) >= 9 ||
8834 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
8835 		return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW;
8836 	else
8837 		return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK;
8838 }
8839 
8840 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8841 				   struct intel_crtc_state *pipe_config)
8842 {
8843 	struct drm_device *dev = crtc->base.dev;
8844 	struct drm_i915_private *dev_priv = to_i915(dev);
8845 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8846 	u32 tmp;
8847 
8848 	tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder));
8849 	pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8850 	pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8851 
8852 	if (!transcoder_is_dsi(cpu_transcoder)) {
8853 		tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder));
8854 		pipe_config->hw.adjusted_mode.crtc_hblank_start =
8855 							(tmp & 0xffff) + 1;
8856 		pipe_config->hw.adjusted_mode.crtc_hblank_end =
8857 						((tmp >> 16) & 0xffff) + 1;
8858 	}
8859 	tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder));
8860 	pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8861 	pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8862 
8863 	tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder));
8864 	pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8865 	pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8866 
8867 	if (!transcoder_is_dsi(cpu_transcoder)) {
8868 		tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder));
8869 		pipe_config->hw.adjusted_mode.crtc_vblank_start =
8870 							(tmp & 0xffff) + 1;
8871 		pipe_config->hw.adjusted_mode.crtc_vblank_end =
8872 						((tmp >> 16) & 0xffff) + 1;
8873 	}
8874 	tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder));
8875 	pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8876 	pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8877 
8878 	if (intel_pipe_is_interlaced(pipe_config)) {
8879 		pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8880 		pipe_config->hw.adjusted_mode.crtc_vtotal += 1;
8881 		pipe_config->hw.adjusted_mode.crtc_vblank_end += 1;
8882 	}
8883 }
8884 
8885 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8886 				    struct intel_crtc_state *pipe_config)
8887 {
8888 	struct drm_device *dev = crtc->base.dev;
8889 	struct drm_i915_private *dev_priv = to_i915(dev);
8890 	u32 tmp;
8891 
8892 	tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe));
8893 	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8894 	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8895 
8896 	pipe_config->hw.mode.vdisplay = pipe_config->pipe_src_h;
8897 	pipe_config->hw.mode.hdisplay = pipe_config->pipe_src_w;
8898 }
8899 
8900 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8901 				 struct intel_crtc_state *pipe_config)
8902 {
8903 	mode->hdisplay = pipe_config->hw.adjusted_mode.crtc_hdisplay;
8904 	mode->htotal = pipe_config->hw.adjusted_mode.crtc_htotal;
8905 	mode->hsync_start = pipe_config->hw.adjusted_mode.crtc_hsync_start;
8906 	mode->hsync_end = pipe_config->hw.adjusted_mode.crtc_hsync_end;
8907 
8908 	mode->vdisplay = pipe_config->hw.adjusted_mode.crtc_vdisplay;
8909 	mode->vtotal = pipe_config->hw.adjusted_mode.crtc_vtotal;
8910 	mode->vsync_start = pipe_config->hw.adjusted_mode.crtc_vsync_start;
8911 	mode->vsync_end = pipe_config->hw.adjusted_mode.crtc_vsync_end;
8912 
8913 	mode->flags = pipe_config->hw.adjusted_mode.flags;
8914 	mode->type = DRM_MODE_TYPE_DRIVER;
8915 
8916 	mode->clock = pipe_config->hw.adjusted_mode.crtc_clock;
8917 
8918 	drm_mode_set_name(mode);
8919 }
8920 
8921 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
8922 {
8923 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8924 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8925 	u32 pipeconf;
8926 
8927 	pipeconf = 0;
8928 
8929 	/* we keep both pipes enabled on 830 */
8930 	if (IS_I830(dev_priv))
8931 		pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE;
8932 
8933 	if (crtc_state->double_wide)
8934 		pipeconf |= PIPECONF_DOUBLE_WIDE;
8935 
8936 	/* only g4x and later have fancy bpc/dither controls */
8937 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8938 	    IS_CHERRYVIEW(dev_priv)) {
8939 		/* Bspec claims that we can't use dithering for 30bpp pipes. */
8940 		if (crtc_state->dither && crtc_state->pipe_bpp != 30)
8941 			pipeconf |= PIPECONF_DITHER_EN |
8942 				    PIPECONF_DITHER_TYPE_SP;
8943 
8944 		switch (crtc_state->pipe_bpp) {
8945 		case 18:
8946 			pipeconf |= PIPECONF_6BPC;
8947 			break;
8948 		case 24:
8949 			pipeconf |= PIPECONF_8BPC;
8950 			break;
8951 		case 30:
8952 			pipeconf |= PIPECONF_10BPC;
8953 			break;
8954 		default:
8955 			/* Case prevented by intel_choose_pipe_bpp_dither. */
8956 			BUG();
8957 		}
8958 	}
8959 
8960 	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8961 		if (INTEL_GEN(dev_priv) < 4 ||
8962 		    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8963 			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8964 		else
8965 			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8966 	} else {
8967 		pipeconf |= PIPECONF_PROGRESSIVE;
8968 	}
8969 
8970 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8971 	     crtc_state->limited_color_range)
8972 		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8973 
8974 	pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
8975 
8976 	pipeconf |= PIPECONF_FRAME_START_DELAY(0);
8977 
8978 	intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf);
8979 	intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe));
8980 }
8981 
8982 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8983 				   struct intel_crtc_state *crtc_state)
8984 {
8985 	struct drm_device *dev = crtc->base.dev;
8986 	struct drm_i915_private *dev_priv = to_i915(dev);
8987 	const struct intel_limit *limit;
8988 	int refclk = 48000;
8989 
8990 	memset(&crtc_state->dpll_hw_state, 0,
8991 	       sizeof(crtc_state->dpll_hw_state));
8992 
8993 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8994 		if (intel_panel_use_ssc(dev_priv)) {
8995 			refclk = dev_priv->vbt.lvds_ssc_freq;
8996 			drm_dbg_kms(&dev_priv->drm,
8997 				    "using SSC reference clock of %d kHz\n",
8998 				    refclk);
8999 		}
9000 
9001 		limit = &intel_limits_i8xx_lvds;
9002 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
9003 		limit = &intel_limits_i8xx_dvo;
9004 	} else {
9005 		limit = &intel_limits_i8xx_dac;
9006 	}
9007 
9008 	if (!crtc_state->clock_set &&
9009 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9010 				 refclk, NULL, &crtc_state->dpll)) {
9011 		drm_err(&dev_priv->drm,
9012 			"Couldn't find PLL settings for mode!\n");
9013 		return -EINVAL;
9014 	}
9015 
9016 	i8xx_compute_dpll(crtc, crtc_state, NULL);
9017 
9018 	return 0;
9019 }
9020 
9021 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
9022 				  struct intel_crtc_state *crtc_state)
9023 {
9024 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9025 	const struct intel_limit *limit;
9026 	int refclk = 96000;
9027 
9028 	memset(&crtc_state->dpll_hw_state, 0,
9029 	       sizeof(crtc_state->dpll_hw_state));
9030 
9031 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9032 		if (intel_panel_use_ssc(dev_priv)) {
9033 			refclk = dev_priv->vbt.lvds_ssc_freq;
9034 			drm_dbg_kms(&dev_priv->drm,
9035 				    "using SSC reference clock of %d kHz\n",
9036 				    refclk);
9037 		}
9038 
9039 		if (intel_is_dual_link_lvds(dev_priv))
9040 			limit = &intel_limits_g4x_dual_channel_lvds;
9041 		else
9042 			limit = &intel_limits_g4x_single_channel_lvds;
9043 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
9044 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
9045 		limit = &intel_limits_g4x_hdmi;
9046 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
9047 		limit = &intel_limits_g4x_sdvo;
9048 	} else {
9049 		/* The option is for other outputs */
9050 		limit = &intel_limits_i9xx_sdvo;
9051 	}
9052 
9053 	if (!crtc_state->clock_set &&
9054 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9055 				refclk, NULL, &crtc_state->dpll)) {
9056 		drm_err(&dev_priv->drm,
9057 			"Couldn't find PLL settings for mode!\n");
9058 		return -EINVAL;
9059 	}
9060 
9061 	i9xx_compute_dpll(crtc, crtc_state, NULL);
9062 
9063 	return 0;
9064 }
9065 
9066 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
9067 				  struct intel_crtc_state *crtc_state)
9068 {
9069 	struct drm_device *dev = crtc->base.dev;
9070 	struct drm_i915_private *dev_priv = to_i915(dev);
9071 	const struct intel_limit *limit;
9072 	int refclk = 96000;
9073 
9074 	memset(&crtc_state->dpll_hw_state, 0,
9075 	       sizeof(crtc_state->dpll_hw_state));
9076 
9077 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9078 		if (intel_panel_use_ssc(dev_priv)) {
9079 			refclk = dev_priv->vbt.lvds_ssc_freq;
9080 			drm_dbg_kms(&dev_priv->drm,
9081 				    "using SSC reference clock of %d kHz\n",
9082 				    refclk);
9083 		}
9084 
9085 		limit = &pnv_limits_lvds;
9086 	} else {
9087 		limit = &pnv_limits_sdvo;
9088 	}
9089 
9090 	if (!crtc_state->clock_set &&
9091 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9092 				refclk, NULL, &crtc_state->dpll)) {
9093 		drm_err(&dev_priv->drm,
9094 			"Couldn't find PLL settings for mode!\n");
9095 		return -EINVAL;
9096 	}
9097 
9098 	i9xx_compute_dpll(crtc, crtc_state, NULL);
9099 
9100 	return 0;
9101 }
9102 
9103 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
9104 				   struct intel_crtc_state *crtc_state)
9105 {
9106 	struct drm_device *dev = crtc->base.dev;
9107 	struct drm_i915_private *dev_priv = to_i915(dev);
9108 	const struct intel_limit *limit;
9109 	int refclk = 96000;
9110 
9111 	memset(&crtc_state->dpll_hw_state, 0,
9112 	       sizeof(crtc_state->dpll_hw_state));
9113 
9114 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9115 		if (intel_panel_use_ssc(dev_priv)) {
9116 			refclk = dev_priv->vbt.lvds_ssc_freq;
9117 			drm_dbg_kms(&dev_priv->drm,
9118 				    "using SSC reference clock of %d kHz\n",
9119 				    refclk);
9120 		}
9121 
9122 		limit = &intel_limits_i9xx_lvds;
9123 	} else {
9124 		limit = &intel_limits_i9xx_sdvo;
9125 	}
9126 
9127 	if (!crtc_state->clock_set &&
9128 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9129 				 refclk, NULL, &crtc_state->dpll)) {
9130 		drm_err(&dev_priv->drm,
9131 			"Couldn't find PLL settings for mode!\n");
9132 		return -EINVAL;
9133 	}
9134 
9135 	i9xx_compute_dpll(crtc, crtc_state, NULL);
9136 
9137 	return 0;
9138 }
9139 
9140 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
9141 				  struct intel_crtc_state *crtc_state)
9142 {
9143 	int refclk = 100000;
9144 	const struct intel_limit *limit = &intel_limits_chv;
9145 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
9146 
9147 	memset(&crtc_state->dpll_hw_state, 0,
9148 	       sizeof(crtc_state->dpll_hw_state));
9149 
9150 	if (!crtc_state->clock_set &&
9151 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9152 				refclk, NULL, &crtc_state->dpll)) {
9153 		drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n");
9154 		return -EINVAL;
9155 	}
9156 
9157 	chv_compute_dpll(crtc, crtc_state);
9158 
9159 	return 0;
9160 }
9161 
9162 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
9163 				  struct intel_crtc_state *crtc_state)
9164 {
9165 	int refclk = 100000;
9166 	const struct intel_limit *limit = &intel_limits_vlv;
9167 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
9168 
9169 	memset(&crtc_state->dpll_hw_state, 0,
9170 	       sizeof(crtc_state->dpll_hw_state));
9171 
9172 	if (!crtc_state->clock_set &&
9173 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9174 				refclk, NULL, &crtc_state->dpll)) {
9175 		drm_err(&i915->drm,  "Couldn't find PLL settings for mode!\n");
9176 		return -EINVAL;
9177 	}
9178 
9179 	vlv_compute_dpll(crtc, crtc_state);
9180 
9181 	return 0;
9182 }
9183 
9184 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv)
9185 {
9186 	if (IS_I830(dev_priv))
9187 		return false;
9188 
9189 	return INTEL_GEN(dev_priv) >= 4 ||
9190 		IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
9191 }
9192 
9193 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state)
9194 {
9195 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9196 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9197 	u32 tmp;
9198 
9199 	if (!i9xx_has_pfit(dev_priv))
9200 		return;
9201 
9202 	tmp = intel_de_read(dev_priv, PFIT_CONTROL);
9203 	if (!(tmp & PFIT_ENABLE))
9204 		return;
9205 
9206 	/* Check whether the pfit is attached to our pipe. */
9207 	if (INTEL_GEN(dev_priv) < 4) {
9208 		if (crtc->pipe != PIPE_B)
9209 			return;
9210 	} else {
9211 		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
9212 			return;
9213 	}
9214 
9215 	crtc_state->gmch_pfit.control = tmp;
9216 	crtc_state->gmch_pfit.pgm_ratios =
9217 		intel_de_read(dev_priv, PFIT_PGM_RATIOS);
9218 }
9219 
9220 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
9221 			       struct intel_crtc_state *pipe_config)
9222 {
9223 	struct drm_device *dev = crtc->base.dev;
9224 	struct drm_i915_private *dev_priv = to_i915(dev);
9225 	enum pipe pipe = crtc->pipe;
9226 	struct dpll clock;
9227 	u32 mdiv;
9228 	int refclk = 100000;
9229 
9230 	/* In case of DSI, DPLL will not be used */
9231 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9232 		return;
9233 
9234 	vlv_dpio_get(dev_priv);
9235 	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
9236 	vlv_dpio_put(dev_priv);
9237 
9238 	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
9239 	clock.m2 = mdiv & DPIO_M2DIV_MASK;
9240 	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
9241 	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
9242 	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
9243 
9244 	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
9245 }
9246 
9247 static void
9248 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
9249 			      struct intel_initial_plane_config *plane_config)
9250 {
9251 	struct drm_device *dev = crtc->base.dev;
9252 	struct drm_i915_private *dev_priv = to_i915(dev);
9253 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9254 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9255 	enum pipe pipe;
9256 	u32 val, base, offset;
9257 	int fourcc, pixel_format;
9258 	unsigned int aligned_height;
9259 	struct drm_framebuffer *fb;
9260 	struct intel_framebuffer *intel_fb;
9261 
9262 	if (!plane->get_hw_state(plane, &pipe))
9263 		return;
9264 
9265 	drm_WARN_ON(dev, pipe != crtc->pipe);
9266 
9267 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9268 	if (!intel_fb) {
9269 		drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n");
9270 		return;
9271 	}
9272 
9273 	fb = &intel_fb->base;
9274 
9275 	fb->dev = dev;
9276 
9277 	val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
9278 
9279 	if (INTEL_GEN(dev_priv) >= 4) {
9280 		if (val & DISPPLANE_TILED) {
9281 			plane_config->tiling = I915_TILING_X;
9282 			fb->modifier = I915_FORMAT_MOD_X_TILED;
9283 		}
9284 
9285 		if (val & DISPPLANE_ROTATE_180)
9286 			plane_config->rotation = DRM_MODE_ROTATE_180;
9287 	}
9288 
9289 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B &&
9290 	    val & DISPPLANE_MIRROR)
9291 		plane_config->rotation |= DRM_MODE_REFLECT_X;
9292 
9293 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9294 	fourcc = i9xx_format_to_fourcc(pixel_format);
9295 	fb->format = drm_format_info(fourcc);
9296 
9297 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9298 		offset = intel_de_read(dev_priv, DSPOFFSET(i9xx_plane));
9299 		base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000;
9300 	} else if (INTEL_GEN(dev_priv) >= 4) {
9301 		if (plane_config->tiling)
9302 			offset = intel_de_read(dev_priv,
9303 					       DSPTILEOFF(i9xx_plane));
9304 		else
9305 			offset = intel_de_read(dev_priv,
9306 					       DSPLINOFF(i9xx_plane));
9307 		base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000;
9308 	} else {
9309 		base = intel_de_read(dev_priv, DSPADDR(i9xx_plane));
9310 	}
9311 	plane_config->base = base;
9312 
9313 	val = intel_de_read(dev_priv, PIPESRC(pipe));
9314 	fb->width = ((val >> 16) & 0xfff) + 1;
9315 	fb->height = ((val >> 0) & 0xfff) + 1;
9316 
9317 	val = intel_de_read(dev_priv, DSPSTRIDE(i9xx_plane));
9318 	fb->pitches[0] = val & 0xffffffc0;
9319 
9320 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
9321 
9322 	plane_config->size = fb->pitches[0] * aligned_height;
9323 
9324 	drm_dbg_kms(&dev_priv->drm,
9325 		    "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9326 		    crtc->base.name, plane->base.name, fb->width, fb->height,
9327 		    fb->format->cpp[0] * 8, base, fb->pitches[0],
9328 		    plane_config->size);
9329 
9330 	plane_config->fb = intel_fb;
9331 }
9332 
9333 static void chv_crtc_clock_get(struct intel_crtc *crtc,
9334 			       struct intel_crtc_state *pipe_config)
9335 {
9336 	struct drm_device *dev = crtc->base.dev;
9337 	struct drm_i915_private *dev_priv = to_i915(dev);
9338 	enum pipe pipe = crtc->pipe;
9339 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
9340 	struct dpll clock;
9341 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
9342 	int refclk = 100000;
9343 
9344 	/* In case of DSI, DPLL will not be used */
9345 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9346 		return;
9347 
9348 	vlv_dpio_get(dev_priv);
9349 	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
9350 	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
9351 	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
9352 	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
9353 	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
9354 	vlv_dpio_put(dev_priv);
9355 
9356 	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
9357 	clock.m2 = (pll_dw0 & 0xff) << 22;
9358 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
9359 		clock.m2 |= pll_dw2 & 0x3fffff;
9360 	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
9361 	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
9362 	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
9363 
9364 	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
9365 }
9366 
9367 static enum intel_output_format
9368 bdw_get_pipemisc_output_format(struct intel_crtc *crtc)
9369 {
9370 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9371 	u32 tmp;
9372 
9373 	tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe));
9374 
9375 	if (tmp & PIPEMISC_YUV420_ENABLE) {
9376 		/* We support 4:2:0 in full blend mode only */
9377 		drm_WARN_ON(&dev_priv->drm,
9378 			    (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0);
9379 
9380 		return INTEL_OUTPUT_FORMAT_YCBCR420;
9381 	} else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) {
9382 		return INTEL_OUTPUT_FORMAT_YCBCR444;
9383 	} else {
9384 		return INTEL_OUTPUT_FORMAT_RGB;
9385 	}
9386 }
9387 
9388 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state)
9389 {
9390 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9391 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9392 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9393 	enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9394 	u32 tmp;
9395 
9396 	tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane));
9397 
9398 	if (tmp & DISPPLANE_GAMMA_ENABLE)
9399 		crtc_state->gamma_enable = true;
9400 
9401 	if (!HAS_GMCH(dev_priv) &&
9402 	    tmp & DISPPLANE_PIPE_CSC_ENABLE)
9403 		crtc_state->csc_enable = true;
9404 }
9405 
9406 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
9407 				 struct intel_crtc_state *pipe_config)
9408 {
9409 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9410 	enum intel_display_power_domain power_domain;
9411 	intel_wakeref_t wakeref;
9412 	u32 tmp;
9413 	bool ret;
9414 
9415 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9416 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
9417 	if (!wakeref)
9418 		return false;
9419 
9420 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
9421 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9422 	pipe_config->shared_dpll = NULL;
9423 
9424 	ret = false;
9425 
9426 	tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe));
9427 	if (!(tmp & PIPECONF_ENABLE))
9428 		goto out;
9429 
9430 	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
9431 	    IS_CHERRYVIEW(dev_priv)) {
9432 		switch (tmp & PIPECONF_BPC_MASK) {
9433 		case PIPECONF_6BPC:
9434 			pipe_config->pipe_bpp = 18;
9435 			break;
9436 		case PIPECONF_8BPC:
9437 			pipe_config->pipe_bpp = 24;
9438 			break;
9439 		case PIPECONF_10BPC:
9440 			pipe_config->pipe_bpp = 30;
9441 			break;
9442 		default:
9443 			break;
9444 		}
9445 	}
9446 
9447 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
9448 	    (tmp & PIPECONF_COLOR_RANGE_SELECT))
9449 		pipe_config->limited_color_range = true;
9450 
9451 	pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >>
9452 		PIPECONF_GAMMA_MODE_SHIFT;
9453 
9454 	if (IS_CHERRYVIEW(dev_priv))
9455 		pipe_config->cgm_mode = intel_de_read(dev_priv,
9456 						      CGM_PIPE_MODE(crtc->pipe));
9457 
9458 	i9xx_get_pipe_color_config(pipe_config);
9459 	intel_color_get_config(pipe_config);
9460 
9461 	if (INTEL_GEN(dev_priv) < 4)
9462 		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
9463 
9464 	intel_get_pipe_timings(crtc, pipe_config);
9465 	intel_get_pipe_src_size(crtc, pipe_config);
9466 
9467 	i9xx_get_pfit_config(pipe_config);
9468 
9469 	if (INTEL_GEN(dev_priv) >= 4) {
9470 		/* No way to read it out on pipes B and C */
9471 		if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
9472 			tmp = dev_priv->chv_dpll_md[crtc->pipe];
9473 		else
9474 			tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe));
9475 		pipe_config->pixel_multiplier =
9476 			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
9477 			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
9478 		pipe_config->dpll_hw_state.dpll_md = tmp;
9479 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
9480 		   IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
9481 		tmp = intel_de_read(dev_priv, DPLL(crtc->pipe));
9482 		pipe_config->pixel_multiplier =
9483 			((tmp & SDVO_MULTIPLIER_MASK)
9484 			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
9485 	} else {
9486 		/* Note that on i915G/GM the pixel multiplier is in the sdvo
9487 		 * port and will be fixed up in the encoder->get_config
9488 		 * function. */
9489 		pipe_config->pixel_multiplier = 1;
9490 	}
9491 	pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv,
9492 							DPLL(crtc->pipe));
9493 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
9494 		pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv,
9495 							       FP0(crtc->pipe));
9496 		pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv,
9497 							       FP1(crtc->pipe));
9498 	} else {
9499 		/* Mask out read-only status bits. */
9500 		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
9501 						     DPLL_PORTC_READY_MASK |
9502 						     DPLL_PORTB_READY_MASK);
9503 	}
9504 
9505 	if (IS_CHERRYVIEW(dev_priv))
9506 		chv_crtc_clock_get(crtc, pipe_config);
9507 	else if (IS_VALLEYVIEW(dev_priv))
9508 		vlv_crtc_clock_get(crtc, pipe_config);
9509 	else
9510 		i9xx_crtc_clock_get(crtc, pipe_config);
9511 
9512 	/*
9513 	 * Normally the dotclock is filled in by the encoder .get_config()
9514 	 * but in case the pipe is enabled w/o any ports we need a sane
9515 	 * default.
9516 	 */
9517 	pipe_config->hw.adjusted_mode.crtc_clock =
9518 		pipe_config->port_clock / pipe_config->pixel_multiplier;
9519 
9520 	ret = true;
9521 
9522 out:
9523 	intel_display_power_put(dev_priv, power_domain, wakeref);
9524 
9525 	return ret;
9526 }
9527 
9528 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv)
9529 {
9530 	struct intel_encoder *encoder;
9531 	int i;
9532 	u32 val, final;
9533 	bool has_lvds = false;
9534 	bool has_cpu_edp = false;
9535 	bool has_panel = false;
9536 	bool has_ck505 = false;
9537 	bool can_ssc = false;
9538 	bool using_ssc_source = false;
9539 
9540 	/* We need to take the global config into account */
9541 	for_each_intel_encoder(&dev_priv->drm, encoder) {
9542 		switch (encoder->type) {
9543 		case INTEL_OUTPUT_LVDS:
9544 			has_panel = true;
9545 			has_lvds = true;
9546 			break;
9547 		case INTEL_OUTPUT_EDP:
9548 			has_panel = true;
9549 			if (encoder->port == PORT_A)
9550 				has_cpu_edp = true;
9551 			break;
9552 		default:
9553 			break;
9554 		}
9555 	}
9556 
9557 	if (HAS_PCH_IBX(dev_priv)) {
9558 		has_ck505 = dev_priv->vbt.display_clock_mode;
9559 		can_ssc = has_ck505;
9560 	} else {
9561 		has_ck505 = false;
9562 		can_ssc = true;
9563 	}
9564 
9565 	/* Check if any DPLLs are using the SSC source */
9566 	for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) {
9567 		u32 temp = intel_de_read(dev_priv, PCH_DPLL(i));
9568 
9569 		if (!(temp & DPLL_VCO_ENABLE))
9570 			continue;
9571 
9572 		if ((temp & PLL_REF_INPUT_MASK) ==
9573 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
9574 			using_ssc_source = true;
9575 			break;
9576 		}
9577 	}
9578 
9579 	drm_dbg_kms(&dev_priv->drm,
9580 		    "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
9581 		    has_panel, has_lvds, has_ck505, using_ssc_source);
9582 
9583 	/* Ironlake: try to setup display ref clock before DPLL
9584 	 * enabling. This is only under driver's control after
9585 	 * PCH B stepping, previous chipset stepping should be
9586 	 * ignoring this setting.
9587 	 */
9588 	val = intel_de_read(dev_priv, PCH_DREF_CONTROL);
9589 
9590 	/* As we must carefully and slowly disable/enable each source in turn,
9591 	 * compute the final state we want first and check if we need to
9592 	 * make any changes at all.
9593 	 */
9594 	final = val;
9595 	final &= ~DREF_NONSPREAD_SOURCE_MASK;
9596 	if (has_ck505)
9597 		final |= DREF_NONSPREAD_CK505_ENABLE;
9598 	else
9599 		final |= DREF_NONSPREAD_SOURCE_ENABLE;
9600 
9601 	final &= ~DREF_SSC_SOURCE_MASK;
9602 	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9603 	final &= ~DREF_SSC1_ENABLE;
9604 
9605 	if (has_panel) {
9606 		final |= DREF_SSC_SOURCE_ENABLE;
9607 
9608 		if (intel_panel_use_ssc(dev_priv) && can_ssc)
9609 			final |= DREF_SSC1_ENABLE;
9610 
9611 		if (has_cpu_edp) {
9612 			if (intel_panel_use_ssc(dev_priv) && can_ssc)
9613 				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9614 			else
9615 				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9616 		} else
9617 			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9618 	} else if (using_ssc_source) {
9619 		final |= DREF_SSC_SOURCE_ENABLE;
9620 		final |= DREF_SSC1_ENABLE;
9621 	}
9622 
9623 	if (final == val)
9624 		return;
9625 
9626 	/* Always enable nonspread source */
9627 	val &= ~DREF_NONSPREAD_SOURCE_MASK;
9628 
9629 	if (has_ck505)
9630 		val |= DREF_NONSPREAD_CK505_ENABLE;
9631 	else
9632 		val |= DREF_NONSPREAD_SOURCE_ENABLE;
9633 
9634 	if (has_panel) {
9635 		val &= ~DREF_SSC_SOURCE_MASK;
9636 		val |= DREF_SSC_SOURCE_ENABLE;
9637 
9638 		/* SSC must be turned on before enabling the CPU output  */
9639 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9640 			drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n");
9641 			val |= DREF_SSC1_ENABLE;
9642 		} else
9643 			val &= ~DREF_SSC1_ENABLE;
9644 
9645 		/* Get SSC going before enabling the outputs */
9646 		intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9647 		intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9648 		udelay(200);
9649 
9650 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9651 
9652 		/* Enable CPU source on CPU attached eDP */
9653 		if (has_cpu_edp) {
9654 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9655 				drm_dbg_kms(&dev_priv->drm,
9656 					    "Using SSC on eDP\n");
9657 				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9658 			} else
9659 				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9660 		} else
9661 			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9662 
9663 		intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9664 		intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9665 		udelay(200);
9666 	} else {
9667 		drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n");
9668 
9669 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9670 
9671 		/* Turn off CPU output */
9672 		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9673 
9674 		intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9675 		intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9676 		udelay(200);
9677 
9678 		if (!using_ssc_source) {
9679 			drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n");
9680 
9681 			/* Turn off the SSC source */
9682 			val &= ~DREF_SSC_SOURCE_MASK;
9683 			val |= DREF_SSC_SOURCE_DISABLE;
9684 
9685 			/* Turn off SSC1 */
9686 			val &= ~DREF_SSC1_ENABLE;
9687 
9688 			intel_de_write(dev_priv, PCH_DREF_CONTROL, val);
9689 			intel_de_posting_read(dev_priv, PCH_DREF_CONTROL);
9690 			udelay(200);
9691 		}
9692 	}
9693 
9694 	BUG_ON(val != final);
9695 }
9696 
9697 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9698 {
9699 	u32 tmp;
9700 
9701 	tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2);
9702 	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9703 	intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp);
9704 
9705 	if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) &
9706 			FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9707 		drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n");
9708 
9709 	tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2);
9710 	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9711 	intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp);
9712 
9713 	if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) &
9714 			 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9715 		drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n");
9716 }
9717 
9718 /* WaMPhyProgramming:hsw */
9719 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9720 {
9721 	u32 tmp;
9722 
9723 	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9724 	tmp &= ~(0xFF << 24);
9725 	tmp |= (0x12 << 24);
9726 	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9727 
9728 	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9729 	tmp |= (1 << 11);
9730 	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9731 
9732 	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9733 	tmp |= (1 << 11);
9734 	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9735 
9736 	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9737 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9738 	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9739 
9740 	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9741 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9742 	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9743 
9744 	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9745 	tmp &= ~(7 << 13);
9746 	tmp |= (5 << 13);
9747 	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9748 
9749 	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9750 	tmp &= ~(7 << 13);
9751 	tmp |= (5 << 13);
9752 	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9753 
9754 	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9755 	tmp &= ~0xFF;
9756 	tmp |= 0x1C;
9757 	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9758 
9759 	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9760 	tmp &= ~0xFF;
9761 	tmp |= 0x1C;
9762 	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9763 
9764 	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9765 	tmp &= ~(0xFF << 16);
9766 	tmp |= (0x1C << 16);
9767 	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9768 
9769 	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9770 	tmp &= ~(0xFF << 16);
9771 	tmp |= (0x1C << 16);
9772 	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9773 
9774 	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9775 	tmp |= (1 << 27);
9776 	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9777 
9778 	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9779 	tmp |= (1 << 27);
9780 	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9781 
9782 	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9783 	tmp &= ~(0xF << 28);
9784 	tmp |= (4 << 28);
9785 	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9786 
9787 	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9788 	tmp &= ~(0xF << 28);
9789 	tmp |= (4 << 28);
9790 	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9791 }
9792 
9793 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9794  * Programming" based on the parameters passed:
9795  * - Sequence to enable CLKOUT_DP
9796  * - Sequence to enable CLKOUT_DP without spread
9797  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9798  */
9799 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
9800 				 bool with_spread, bool with_fdi)
9801 {
9802 	u32 reg, tmp;
9803 
9804 	if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread,
9805 		     "FDI requires downspread\n"))
9806 		with_spread = true;
9807 	if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) &&
9808 		     with_fdi, "LP PCH doesn't have FDI\n"))
9809 		with_fdi = false;
9810 
9811 	mutex_lock(&dev_priv->sb_lock);
9812 
9813 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9814 	tmp &= ~SBI_SSCCTL_DISABLE;
9815 	tmp |= SBI_SSCCTL_PATHALT;
9816 	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9817 
9818 	udelay(24);
9819 
9820 	if (with_spread) {
9821 		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9822 		tmp &= ~SBI_SSCCTL_PATHALT;
9823 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9824 
9825 		if (with_fdi) {
9826 			lpt_reset_fdi_mphy(dev_priv);
9827 			lpt_program_fdi_mphy(dev_priv);
9828 		}
9829 	}
9830 
9831 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9832 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9833 	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9834 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9835 
9836 	mutex_unlock(&dev_priv->sb_lock);
9837 }
9838 
9839 /* Sequence to disable CLKOUT_DP */
9840 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
9841 {
9842 	u32 reg, tmp;
9843 
9844 	mutex_lock(&dev_priv->sb_lock);
9845 
9846 	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9847 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9848 	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9849 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9850 
9851 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9852 	if (!(tmp & SBI_SSCCTL_DISABLE)) {
9853 		if (!(tmp & SBI_SSCCTL_PATHALT)) {
9854 			tmp |= SBI_SSCCTL_PATHALT;
9855 			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9856 			udelay(32);
9857 		}
9858 		tmp |= SBI_SSCCTL_DISABLE;
9859 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9860 	}
9861 
9862 	mutex_unlock(&dev_priv->sb_lock);
9863 }
9864 
9865 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9866 
9867 static const u16 sscdivintphase[] = {
9868 	[BEND_IDX( 50)] = 0x3B23,
9869 	[BEND_IDX( 45)] = 0x3B23,
9870 	[BEND_IDX( 40)] = 0x3C23,
9871 	[BEND_IDX( 35)] = 0x3C23,
9872 	[BEND_IDX( 30)] = 0x3D23,
9873 	[BEND_IDX( 25)] = 0x3D23,
9874 	[BEND_IDX( 20)] = 0x3E23,
9875 	[BEND_IDX( 15)] = 0x3E23,
9876 	[BEND_IDX( 10)] = 0x3F23,
9877 	[BEND_IDX(  5)] = 0x3F23,
9878 	[BEND_IDX(  0)] = 0x0025,
9879 	[BEND_IDX( -5)] = 0x0025,
9880 	[BEND_IDX(-10)] = 0x0125,
9881 	[BEND_IDX(-15)] = 0x0125,
9882 	[BEND_IDX(-20)] = 0x0225,
9883 	[BEND_IDX(-25)] = 0x0225,
9884 	[BEND_IDX(-30)] = 0x0325,
9885 	[BEND_IDX(-35)] = 0x0325,
9886 	[BEND_IDX(-40)] = 0x0425,
9887 	[BEND_IDX(-45)] = 0x0425,
9888 	[BEND_IDX(-50)] = 0x0525,
9889 };
9890 
9891 /*
9892  * Bend CLKOUT_DP
9893  * steps -50 to 50 inclusive, in steps of 5
9894  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9895  * change in clock period = -(steps / 10) * 5.787 ps
9896  */
9897 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9898 {
9899 	u32 tmp;
9900 	int idx = BEND_IDX(steps);
9901 
9902 	if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0))
9903 		return;
9904 
9905 	if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase)))
9906 		return;
9907 
9908 	mutex_lock(&dev_priv->sb_lock);
9909 
9910 	if (steps % 10 != 0)
9911 		tmp = 0xAAAAAAAB;
9912 	else
9913 		tmp = 0x00000000;
9914 	intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9915 
9916 	tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9917 	tmp &= 0xffff0000;
9918 	tmp |= sscdivintphase[idx];
9919 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9920 
9921 	mutex_unlock(&dev_priv->sb_lock);
9922 }
9923 
9924 #undef BEND_IDX
9925 
9926 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv)
9927 {
9928 	u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
9929 	u32 ctl = intel_de_read(dev_priv, SPLL_CTL);
9930 
9931 	if ((ctl & SPLL_PLL_ENABLE) == 0)
9932 		return false;
9933 
9934 	if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC &&
9935 	    (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9936 		return true;
9937 
9938 	if (IS_BROADWELL(dev_priv) &&
9939 	    (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW)
9940 		return true;
9941 
9942 	return false;
9943 }
9944 
9945 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv,
9946 			       enum intel_dpll_id id)
9947 {
9948 	u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
9949 	u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id));
9950 
9951 	if ((ctl & WRPLL_PLL_ENABLE) == 0)
9952 		return false;
9953 
9954 	if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC)
9955 		return true;
9956 
9957 	if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) &&
9958 	    (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW &&
9959 	    (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9960 		return true;
9961 
9962 	return false;
9963 }
9964 
9965 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
9966 {
9967 	struct intel_encoder *encoder;
9968 	bool has_fdi = false;
9969 
9970 	for_each_intel_encoder(&dev_priv->drm, encoder) {
9971 		switch (encoder->type) {
9972 		case INTEL_OUTPUT_ANALOG:
9973 			has_fdi = true;
9974 			break;
9975 		default:
9976 			break;
9977 		}
9978 	}
9979 
9980 	/*
9981 	 * The BIOS may have decided to use the PCH SSC
9982 	 * reference so we must not disable it until the
9983 	 * relevant PLLs have stopped relying on it. We'll
9984 	 * just leave the PCH SSC reference enabled in case
9985 	 * any active PLL is using it. It will get disabled
9986 	 * after runtime suspend if we don't have FDI.
9987 	 *
9988 	 * TODO: Move the whole reference clock handling
9989 	 * to the modeset sequence proper so that we can
9990 	 * actually enable/disable/reconfigure these things
9991 	 * safely. To do that we need to introduce a real
9992 	 * clock hierarchy. That would also allow us to do
9993 	 * clock bending finally.
9994 	 */
9995 	dev_priv->pch_ssc_use = 0;
9996 
9997 	if (spll_uses_pch_ssc(dev_priv)) {
9998 		drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n");
9999 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL);
10000 	}
10001 
10002 	if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) {
10003 		drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n");
10004 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1);
10005 	}
10006 
10007 	if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) {
10008 		drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n");
10009 		dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2);
10010 	}
10011 
10012 	if (dev_priv->pch_ssc_use)
10013 		return;
10014 
10015 	if (has_fdi) {
10016 		lpt_bend_clkout_dp(dev_priv, 0);
10017 		lpt_enable_clkout_dp(dev_priv, true, true);
10018 	} else {
10019 		lpt_disable_clkout_dp(dev_priv);
10020 	}
10021 }
10022 
10023 /*
10024  * Initialize reference clocks when the driver loads
10025  */
10026 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
10027 {
10028 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
10029 		ilk_init_pch_refclk(dev_priv);
10030 	else if (HAS_PCH_LPT(dev_priv))
10031 		lpt_init_pch_refclk(dev_priv);
10032 }
10033 
10034 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state)
10035 {
10036 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10037 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10038 	enum pipe pipe = crtc->pipe;
10039 	u32 val;
10040 
10041 	val = 0;
10042 
10043 	switch (crtc_state->pipe_bpp) {
10044 	case 18:
10045 		val |= PIPECONF_6BPC;
10046 		break;
10047 	case 24:
10048 		val |= PIPECONF_8BPC;
10049 		break;
10050 	case 30:
10051 		val |= PIPECONF_10BPC;
10052 		break;
10053 	case 36:
10054 		val |= PIPECONF_12BPC;
10055 		break;
10056 	default:
10057 		/* Case prevented by intel_choose_pipe_bpp_dither. */
10058 		BUG();
10059 	}
10060 
10061 	if (crtc_state->dither)
10062 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
10063 
10064 	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
10065 		val |= PIPECONF_INTERLACED_ILK;
10066 	else
10067 		val |= PIPECONF_PROGRESSIVE;
10068 
10069 	/*
10070 	 * This would end up with an odd purple hue over
10071 	 * the entire display. Make sure we don't do it.
10072 	 */
10073 	drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range &&
10074 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
10075 
10076 	if (crtc_state->limited_color_range &&
10077 	    !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
10078 		val |= PIPECONF_COLOR_RANGE_SELECT;
10079 
10080 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
10081 		val |= PIPECONF_OUTPUT_COLORSPACE_YUV709;
10082 
10083 	val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
10084 
10085 	val |= PIPECONF_FRAME_START_DELAY(0);
10086 
10087 	intel_de_write(dev_priv, PIPECONF(pipe), val);
10088 	intel_de_posting_read(dev_priv, PIPECONF(pipe));
10089 }
10090 
10091 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state)
10092 {
10093 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10094 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10095 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
10096 	u32 val = 0;
10097 
10098 	if (IS_HASWELL(dev_priv) && crtc_state->dither)
10099 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
10100 
10101 	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
10102 		val |= PIPECONF_INTERLACED_ILK;
10103 	else
10104 		val |= PIPECONF_PROGRESSIVE;
10105 
10106 	if (IS_HASWELL(dev_priv) &&
10107 	    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
10108 		val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW;
10109 
10110 	intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val);
10111 	intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder));
10112 }
10113 
10114 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state)
10115 {
10116 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10117 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10118 	u32 val = 0;
10119 
10120 	switch (crtc_state->pipe_bpp) {
10121 	case 18:
10122 		val |= PIPEMISC_DITHER_6_BPC;
10123 		break;
10124 	case 24:
10125 		val |= PIPEMISC_DITHER_8_BPC;
10126 		break;
10127 	case 30:
10128 		val |= PIPEMISC_DITHER_10_BPC;
10129 		break;
10130 	case 36:
10131 		val |= PIPEMISC_DITHER_12_BPC;
10132 		break;
10133 	default:
10134 		MISSING_CASE(crtc_state->pipe_bpp);
10135 		break;
10136 	}
10137 
10138 	if (crtc_state->dither)
10139 		val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
10140 
10141 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
10142 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
10143 		val |= PIPEMISC_OUTPUT_COLORSPACE_YUV;
10144 
10145 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
10146 		val |= PIPEMISC_YUV420_ENABLE |
10147 			PIPEMISC_YUV420_MODE_FULL_BLEND;
10148 
10149 	if (INTEL_GEN(dev_priv) >= 11 &&
10150 	    (crtc_state->active_planes & ~(icl_hdr_plane_mask() |
10151 					   BIT(PLANE_CURSOR))) == 0)
10152 		val |= PIPEMISC_HDR_MODE_PRECISION;
10153 
10154 	if (INTEL_GEN(dev_priv) >= 12)
10155 		val |= PIPEMISC_PIXEL_ROUNDING_TRUNC;
10156 
10157 	intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val);
10158 }
10159 
10160 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc)
10161 {
10162 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10163 	u32 tmp;
10164 
10165 	tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe));
10166 
10167 	switch (tmp & PIPEMISC_DITHER_BPC_MASK) {
10168 	case PIPEMISC_DITHER_6_BPC:
10169 		return 18;
10170 	case PIPEMISC_DITHER_8_BPC:
10171 		return 24;
10172 	case PIPEMISC_DITHER_10_BPC:
10173 		return 30;
10174 	case PIPEMISC_DITHER_12_BPC:
10175 		return 36;
10176 	default:
10177 		MISSING_CASE(tmp);
10178 		return 0;
10179 	}
10180 }
10181 
10182 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp)
10183 {
10184 	/*
10185 	 * Account for spread spectrum to avoid
10186 	 * oversubscribing the link. Max center spread
10187 	 * is 2.5%; use 5% for safety's sake.
10188 	 */
10189 	u32 bps = target_clock * bpp * 21 / 20;
10190 	return DIV_ROUND_UP(bps, link_bw * 8);
10191 }
10192 
10193 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor)
10194 {
10195 	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
10196 }
10197 
10198 static void ilk_compute_dpll(struct intel_crtc *crtc,
10199 			     struct intel_crtc_state *crtc_state,
10200 			     struct dpll *reduced_clock)
10201 {
10202 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10203 	u32 dpll, fp, fp2;
10204 	int factor;
10205 
10206 	/* Enable autotuning of the PLL clock (if permissible) */
10207 	factor = 21;
10208 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10209 		if ((intel_panel_use_ssc(dev_priv) &&
10210 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
10211 		    (HAS_PCH_IBX(dev_priv) &&
10212 		     intel_is_dual_link_lvds(dev_priv)))
10213 			factor = 25;
10214 	} else if (crtc_state->sdvo_tv_clock) {
10215 		factor = 20;
10216 	}
10217 
10218 	fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
10219 
10220 	if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor))
10221 		fp |= FP_CB_TUNE;
10222 
10223 	if (reduced_clock) {
10224 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
10225 
10226 		if (reduced_clock->m < factor * reduced_clock->n)
10227 			fp2 |= FP_CB_TUNE;
10228 	} else {
10229 		fp2 = fp;
10230 	}
10231 
10232 	dpll = 0;
10233 
10234 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
10235 		dpll |= DPLLB_MODE_LVDS;
10236 	else
10237 		dpll |= DPLLB_MODE_DAC_SERIAL;
10238 
10239 	dpll |= (crtc_state->pixel_multiplier - 1)
10240 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
10241 
10242 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
10243 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
10244 		dpll |= DPLL_SDVO_HIGH_SPEED;
10245 
10246 	if (intel_crtc_has_dp_encoder(crtc_state))
10247 		dpll |= DPLL_SDVO_HIGH_SPEED;
10248 
10249 	/*
10250 	 * The high speed IO clock is only really required for
10251 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
10252 	 * possible to share the DPLL between CRT and HDMI. Enabling
10253 	 * the clock needlessly does no real harm, except use up a
10254 	 * bit of power potentially.
10255 	 *
10256 	 * We'll limit this to IVB with 3 pipes, since it has only two
10257 	 * DPLLs and so DPLL sharing is the only way to get three pipes
10258 	 * driving PCH ports at the same time. On SNB we could do this,
10259 	 * and potentially avoid enabling the second DPLL, but it's not
10260 	 * clear if it''s a win or loss power wise. No point in doing
10261 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
10262 	 */
10263 	if (INTEL_NUM_PIPES(dev_priv) == 3 &&
10264 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
10265 		dpll |= DPLL_SDVO_HIGH_SPEED;
10266 
10267 	/* compute bitmask from p1 value */
10268 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
10269 	/* also FPA1 */
10270 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
10271 
10272 	switch (crtc_state->dpll.p2) {
10273 	case 5:
10274 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
10275 		break;
10276 	case 7:
10277 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
10278 		break;
10279 	case 10:
10280 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
10281 		break;
10282 	case 14:
10283 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
10284 		break;
10285 	}
10286 
10287 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
10288 	    intel_panel_use_ssc(dev_priv))
10289 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
10290 	else
10291 		dpll |= PLL_REF_INPUT_DREFCLK;
10292 
10293 	dpll |= DPLL_VCO_ENABLE;
10294 
10295 	crtc_state->dpll_hw_state.dpll = dpll;
10296 	crtc_state->dpll_hw_state.fp0 = fp;
10297 	crtc_state->dpll_hw_state.fp1 = fp2;
10298 }
10299 
10300 static int ilk_crtc_compute_clock(struct intel_crtc *crtc,
10301 				  struct intel_crtc_state *crtc_state)
10302 {
10303 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10304 	struct intel_atomic_state *state =
10305 		to_intel_atomic_state(crtc_state->uapi.state);
10306 	const struct intel_limit *limit;
10307 	int refclk = 120000;
10308 
10309 	memset(&crtc_state->dpll_hw_state, 0,
10310 	       sizeof(crtc_state->dpll_hw_state));
10311 
10312 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
10313 	if (!crtc_state->has_pch_encoder)
10314 		return 0;
10315 
10316 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10317 		if (intel_panel_use_ssc(dev_priv)) {
10318 			drm_dbg_kms(&dev_priv->drm,
10319 				    "using SSC reference clock of %d kHz\n",
10320 				    dev_priv->vbt.lvds_ssc_freq);
10321 			refclk = dev_priv->vbt.lvds_ssc_freq;
10322 		}
10323 
10324 		if (intel_is_dual_link_lvds(dev_priv)) {
10325 			if (refclk == 100000)
10326 				limit = &ilk_limits_dual_lvds_100m;
10327 			else
10328 				limit = &ilk_limits_dual_lvds;
10329 		} else {
10330 			if (refclk == 100000)
10331 				limit = &ilk_limits_single_lvds_100m;
10332 			else
10333 				limit = &ilk_limits_single_lvds;
10334 		}
10335 	} else {
10336 		limit = &ilk_limits_dac;
10337 	}
10338 
10339 	if (!crtc_state->clock_set &&
10340 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
10341 				refclk, NULL, &crtc_state->dpll)) {
10342 		drm_err(&dev_priv->drm,
10343 			"Couldn't find PLL settings for mode!\n");
10344 		return -EINVAL;
10345 	}
10346 
10347 	ilk_compute_dpll(crtc, crtc_state, NULL);
10348 
10349 	if (!intel_reserve_shared_dplls(state, crtc, NULL)) {
10350 		drm_dbg_kms(&dev_priv->drm,
10351 			    "failed to find PLL for pipe %c\n",
10352 			    pipe_name(crtc->pipe));
10353 		return -EINVAL;
10354 	}
10355 
10356 	return 0;
10357 }
10358 
10359 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
10360 					 struct intel_link_m_n *m_n)
10361 {
10362 	struct drm_device *dev = crtc->base.dev;
10363 	struct drm_i915_private *dev_priv = to_i915(dev);
10364 	enum pipe pipe = crtc->pipe;
10365 
10366 	m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe));
10367 	m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe));
10368 	m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe))
10369 		& ~TU_SIZE_MASK;
10370 	m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe));
10371 	m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe))
10372 		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10373 }
10374 
10375 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
10376 					 enum transcoder transcoder,
10377 					 struct intel_link_m_n *m_n,
10378 					 struct intel_link_m_n *m2_n2)
10379 {
10380 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10381 	enum pipe pipe = crtc->pipe;
10382 
10383 	if (INTEL_GEN(dev_priv) >= 5) {
10384 		m_n->link_m = intel_de_read(dev_priv,
10385 					    PIPE_LINK_M1(transcoder));
10386 		m_n->link_n = intel_de_read(dev_priv,
10387 					    PIPE_LINK_N1(transcoder));
10388 		m_n->gmch_m = intel_de_read(dev_priv,
10389 					    PIPE_DATA_M1(transcoder))
10390 			& ~TU_SIZE_MASK;
10391 		m_n->gmch_n = intel_de_read(dev_priv,
10392 					    PIPE_DATA_N1(transcoder));
10393 		m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder))
10394 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10395 
10396 		if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) {
10397 			m2_n2->link_m = intel_de_read(dev_priv,
10398 						      PIPE_LINK_M2(transcoder));
10399 			m2_n2->link_n =	intel_de_read(dev_priv,
10400 							     PIPE_LINK_N2(transcoder));
10401 			m2_n2->gmch_m =	intel_de_read(dev_priv,
10402 							     PIPE_DATA_M2(transcoder))
10403 					& ~TU_SIZE_MASK;
10404 			m2_n2->gmch_n =	intel_de_read(dev_priv,
10405 							     PIPE_DATA_N2(transcoder));
10406 			m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder))
10407 					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10408 		}
10409 	} else {
10410 		m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe));
10411 		m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe));
10412 		m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe))
10413 			& ~TU_SIZE_MASK;
10414 		m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe));
10415 		m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe))
10416 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10417 	}
10418 }
10419 
10420 void intel_dp_get_m_n(struct intel_crtc *crtc,
10421 		      struct intel_crtc_state *pipe_config)
10422 {
10423 	if (pipe_config->has_pch_encoder)
10424 		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
10425 	else
10426 		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10427 					     &pipe_config->dp_m_n,
10428 					     &pipe_config->dp_m2_n2);
10429 }
10430 
10431 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc,
10432 				   struct intel_crtc_state *pipe_config)
10433 {
10434 	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10435 				     &pipe_config->fdi_m_n, NULL);
10436 }
10437 
10438 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state,
10439 				  u32 pos, u32 size)
10440 {
10441 	drm_rect_init(&crtc_state->pch_pfit.dst,
10442 		      pos >> 16, pos & 0xffff,
10443 		      size >> 16, size & 0xffff);
10444 }
10445 
10446 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state)
10447 {
10448 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10449 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10450 	struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
10451 	int id = -1;
10452 	int i;
10453 
10454 	/* find scaler attached to this pipe */
10455 	for (i = 0; i < crtc->num_scalers; i++) {
10456 		u32 ctl, pos, size;
10457 
10458 		ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i));
10459 		if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN)
10460 			continue;
10461 
10462 		id = i;
10463 		crtc_state->pch_pfit.enabled = true;
10464 
10465 		pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i));
10466 		size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i));
10467 
10468 		ilk_get_pfit_pos_size(crtc_state, pos, size);
10469 
10470 		scaler_state->scalers[i].in_use = true;
10471 		break;
10472 	}
10473 
10474 	scaler_state->scaler_id = id;
10475 	if (id >= 0)
10476 		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
10477 	else
10478 		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
10479 }
10480 
10481 static void
10482 skl_get_initial_plane_config(struct intel_crtc *crtc,
10483 			     struct intel_initial_plane_config *plane_config)
10484 {
10485 	struct drm_device *dev = crtc->base.dev;
10486 	struct drm_i915_private *dev_priv = to_i915(dev);
10487 	struct intel_plane *plane = to_intel_plane(crtc->base.primary);
10488 	enum plane_id plane_id = plane->id;
10489 	enum pipe pipe;
10490 	u32 val, base, offset, stride_mult, tiling, alpha;
10491 	int fourcc, pixel_format;
10492 	unsigned int aligned_height;
10493 	struct drm_framebuffer *fb;
10494 	struct intel_framebuffer *intel_fb;
10495 
10496 	if (!plane->get_hw_state(plane, &pipe))
10497 		return;
10498 
10499 	drm_WARN_ON(dev, pipe != crtc->pipe);
10500 
10501 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10502 	if (!intel_fb) {
10503 		drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n");
10504 		return;
10505 	}
10506 
10507 	fb = &intel_fb->base;
10508 
10509 	fb->dev = dev;
10510 
10511 	val = intel_de_read(dev_priv, PLANE_CTL(pipe, plane_id));
10512 
10513 	if (INTEL_GEN(dev_priv) >= 11)
10514 		pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK;
10515 	else
10516 		pixel_format = val & PLANE_CTL_FORMAT_MASK;
10517 
10518 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
10519 		alpha = intel_de_read(dev_priv,
10520 				      PLANE_COLOR_CTL(pipe, plane_id));
10521 		alpha &= PLANE_COLOR_ALPHA_MASK;
10522 	} else {
10523 		alpha = val & PLANE_CTL_ALPHA_MASK;
10524 	}
10525 
10526 	fourcc = skl_format_to_fourcc(pixel_format,
10527 				      val & PLANE_CTL_ORDER_RGBX, alpha);
10528 	fb->format = drm_format_info(fourcc);
10529 
10530 	tiling = val & PLANE_CTL_TILED_MASK;
10531 	switch (tiling) {
10532 	case PLANE_CTL_TILED_LINEAR:
10533 		fb->modifier = DRM_FORMAT_MOD_LINEAR;
10534 		break;
10535 	case PLANE_CTL_TILED_X:
10536 		plane_config->tiling = I915_TILING_X;
10537 		fb->modifier = I915_FORMAT_MOD_X_TILED;
10538 		break;
10539 	case PLANE_CTL_TILED_Y:
10540 		plane_config->tiling = I915_TILING_Y;
10541 		if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10542 			fb->modifier = INTEL_GEN(dev_priv) >= 12 ?
10543 				I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS :
10544 				I915_FORMAT_MOD_Y_TILED_CCS;
10545 		else if (val & PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE)
10546 			fb->modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
10547 		else
10548 			fb->modifier = I915_FORMAT_MOD_Y_TILED;
10549 		break;
10550 	case PLANE_CTL_TILED_YF:
10551 		if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10552 			fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
10553 		else
10554 			fb->modifier = I915_FORMAT_MOD_Yf_TILED;
10555 		break;
10556 	default:
10557 		MISSING_CASE(tiling);
10558 		goto error;
10559 	}
10560 
10561 	/*
10562 	 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
10563 	 * while i915 HW rotation is clockwise, thats why this swapping.
10564 	 */
10565 	switch (val & PLANE_CTL_ROTATE_MASK) {
10566 	case PLANE_CTL_ROTATE_0:
10567 		plane_config->rotation = DRM_MODE_ROTATE_0;
10568 		break;
10569 	case PLANE_CTL_ROTATE_90:
10570 		plane_config->rotation = DRM_MODE_ROTATE_270;
10571 		break;
10572 	case PLANE_CTL_ROTATE_180:
10573 		plane_config->rotation = DRM_MODE_ROTATE_180;
10574 		break;
10575 	case PLANE_CTL_ROTATE_270:
10576 		plane_config->rotation = DRM_MODE_ROTATE_90;
10577 		break;
10578 	}
10579 
10580 	if (INTEL_GEN(dev_priv) >= 10 &&
10581 	    val & PLANE_CTL_FLIP_HORIZONTAL)
10582 		plane_config->rotation |= DRM_MODE_REFLECT_X;
10583 
10584 	base = intel_de_read(dev_priv, PLANE_SURF(pipe, plane_id)) & 0xfffff000;
10585 	plane_config->base = base;
10586 
10587 	offset = intel_de_read(dev_priv, PLANE_OFFSET(pipe, plane_id));
10588 
10589 	val = intel_de_read(dev_priv, PLANE_SIZE(pipe, plane_id));
10590 	fb->height = ((val >> 16) & 0xffff) + 1;
10591 	fb->width = ((val >> 0) & 0xffff) + 1;
10592 
10593 	val = intel_de_read(dev_priv, PLANE_STRIDE(pipe, plane_id));
10594 	stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0);
10595 	fb->pitches[0] = (val & 0x3ff) * stride_mult;
10596 
10597 	aligned_height = intel_fb_align_height(fb, 0, fb->height);
10598 
10599 	plane_config->size = fb->pitches[0] * aligned_height;
10600 
10601 	drm_dbg_kms(&dev_priv->drm,
10602 		    "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
10603 		    crtc->base.name, plane->base.name, fb->width, fb->height,
10604 		    fb->format->cpp[0] * 8, base, fb->pitches[0],
10605 		    plane_config->size);
10606 
10607 	plane_config->fb = intel_fb;
10608 	return;
10609 
10610 error:
10611 	kfree(intel_fb);
10612 }
10613 
10614 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state)
10615 {
10616 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
10617 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10618 	u32 ctl, pos, size;
10619 
10620 	ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe));
10621 	if ((ctl & PF_ENABLE) == 0)
10622 		return;
10623 
10624 	crtc_state->pch_pfit.enabled = true;
10625 
10626 	pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe));
10627 	size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe));
10628 
10629 	ilk_get_pfit_pos_size(crtc_state, pos, size);
10630 
10631 	/*
10632 	 * We currently do not free assignements of panel fitters on
10633 	 * ivb/hsw (since we don't use the higher upscaling modes which
10634 	 * differentiates them) so just WARN about this case for now.
10635 	 */
10636 	drm_WARN_ON(&dev_priv->drm, IS_GEN(dev_priv, 7) &&
10637 		    (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe));
10638 }
10639 
10640 static bool ilk_get_pipe_config(struct intel_crtc *crtc,
10641 				struct intel_crtc_state *pipe_config)
10642 {
10643 	struct drm_device *dev = crtc->base.dev;
10644 	struct drm_i915_private *dev_priv = to_i915(dev);
10645 	enum intel_display_power_domain power_domain;
10646 	intel_wakeref_t wakeref;
10647 	u32 tmp;
10648 	bool ret;
10649 
10650 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10651 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
10652 	if (!wakeref)
10653 		return false;
10654 
10655 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10656 	pipe_config->shared_dpll = NULL;
10657 
10658 	ret = false;
10659 	tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe));
10660 	if (!(tmp & PIPECONF_ENABLE))
10661 		goto out;
10662 
10663 	switch (tmp & PIPECONF_BPC_MASK) {
10664 	case PIPECONF_6BPC:
10665 		pipe_config->pipe_bpp = 18;
10666 		break;
10667 	case PIPECONF_8BPC:
10668 		pipe_config->pipe_bpp = 24;
10669 		break;
10670 	case PIPECONF_10BPC:
10671 		pipe_config->pipe_bpp = 30;
10672 		break;
10673 	case PIPECONF_12BPC:
10674 		pipe_config->pipe_bpp = 36;
10675 		break;
10676 	default:
10677 		break;
10678 	}
10679 
10680 	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
10681 		pipe_config->limited_color_range = true;
10682 
10683 	switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) {
10684 	case PIPECONF_OUTPUT_COLORSPACE_YUV601:
10685 	case PIPECONF_OUTPUT_COLORSPACE_YUV709:
10686 		pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
10687 		break;
10688 	default:
10689 		pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
10690 		break;
10691 	}
10692 
10693 	pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >>
10694 		PIPECONF_GAMMA_MODE_SHIFT;
10695 
10696 	pipe_config->csc_mode = intel_de_read(dev_priv,
10697 					      PIPE_CSC_MODE(crtc->pipe));
10698 
10699 	i9xx_get_pipe_color_config(pipe_config);
10700 	intel_color_get_config(pipe_config);
10701 
10702 	if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
10703 		struct intel_shared_dpll *pll;
10704 		enum intel_dpll_id pll_id;
10705 
10706 		pipe_config->has_pch_encoder = true;
10707 
10708 		tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe));
10709 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10710 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
10711 
10712 		ilk_get_fdi_m_n_config(crtc, pipe_config);
10713 
10714 		if (HAS_PCH_IBX(dev_priv)) {
10715 			/*
10716 			 * The pipe->pch transcoder and pch transcoder->pll
10717 			 * mapping is fixed.
10718 			 */
10719 			pll_id = (enum intel_dpll_id) crtc->pipe;
10720 		} else {
10721 			tmp = intel_de_read(dev_priv, PCH_DPLL_SEL);
10722 			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
10723 				pll_id = DPLL_ID_PCH_PLL_B;
10724 			else
10725 				pll_id= DPLL_ID_PCH_PLL_A;
10726 		}
10727 
10728 		pipe_config->shared_dpll =
10729 			intel_get_shared_dpll_by_id(dev_priv, pll_id);
10730 		pll = pipe_config->shared_dpll;
10731 
10732 		drm_WARN_ON(dev, !pll->info->funcs->get_hw_state(dev_priv, pll,
10733 						 &pipe_config->dpll_hw_state));
10734 
10735 		tmp = pipe_config->dpll_hw_state.dpll;
10736 		pipe_config->pixel_multiplier =
10737 			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
10738 			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
10739 
10740 		ilk_pch_clock_get(crtc, pipe_config);
10741 	} else {
10742 		pipe_config->pixel_multiplier = 1;
10743 	}
10744 
10745 	intel_get_pipe_timings(crtc, pipe_config);
10746 	intel_get_pipe_src_size(crtc, pipe_config);
10747 
10748 	ilk_get_pfit_config(pipe_config);
10749 
10750 	ret = true;
10751 
10752 out:
10753 	intel_display_power_put(dev_priv, power_domain, wakeref);
10754 
10755 	return ret;
10756 }
10757 
10758 static int hsw_crtc_compute_clock(struct intel_crtc *crtc,
10759 				  struct intel_crtc_state *crtc_state)
10760 {
10761 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10762 	struct intel_atomic_state *state =
10763 		to_intel_atomic_state(crtc_state->uapi.state);
10764 
10765 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
10766 	    INTEL_GEN(dev_priv) >= 11) {
10767 		struct intel_encoder *encoder =
10768 			intel_get_crtc_new_encoder(state, crtc_state);
10769 
10770 		if (!intel_reserve_shared_dplls(state, crtc, encoder)) {
10771 			drm_dbg_kms(&dev_priv->drm,
10772 				    "failed to find PLL for pipe %c\n",
10773 				    pipe_name(crtc->pipe));
10774 			return -EINVAL;
10775 		}
10776 	}
10777 
10778 	return 0;
10779 }
10780 
10781 static void cnl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10782 			    struct intel_crtc_state *pipe_config)
10783 {
10784 	enum intel_dpll_id id;
10785 	u32 temp;
10786 
10787 	temp = intel_de_read(dev_priv, DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
10788 	id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
10789 
10790 	if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL2))
10791 		return;
10792 
10793 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10794 }
10795 
10796 static void icl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10797 			    struct intel_crtc_state *pipe_config)
10798 {
10799 	enum phy phy = intel_port_to_phy(dev_priv, port);
10800 	enum icl_port_dpll_id port_dpll_id;
10801 	enum intel_dpll_id id;
10802 	u32 temp;
10803 
10804 	if (intel_phy_is_combo(dev_priv, phy)) {
10805 		temp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0) &
10806 			ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10807 		id = temp >> ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10808 		port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10809 	} else if (intel_phy_is_tc(dev_priv, phy)) {
10810 		u32 clk_sel = intel_de_read(dev_priv, DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK;
10811 
10812 		if (clk_sel == DDI_CLK_SEL_MG) {
10813 			id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv,
10814 								    port));
10815 			port_dpll_id = ICL_PORT_DPLL_MG_PHY;
10816 		} else {
10817 			drm_WARN_ON(&dev_priv->drm,
10818 				    clk_sel < DDI_CLK_SEL_TBT_162);
10819 			id = DPLL_ID_ICL_TBTPLL;
10820 			port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10821 		}
10822 	} else {
10823 		drm_WARN(&dev_priv->drm, 1, "Invalid port %x\n", port);
10824 		return;
10825 	}
10826 
10827 	pipe_config->icl_port_dplls[port_dpll_id].pll =
10828 		intel_get_shared_dpll_by_id(dev_priv, id);
10829 
10830 	icl_set_active_port_dpll(pipe_config, port_dpll_id);
10831 }
10832 
10833 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10834 				enum port port,
10835 				struct intel_crtc_state *pipe_config)
10836 {
10837 	enum intel_dpll_id id;
10838 
10839 	switch (port) {
10840 	case PORT_A:
10841 		id = DPLL_ID_SKL_DPLL0;
10842 		break;
10843 	case PORT_B:
10844 		id = DPLL_ID_SKL_DPLL1;
10845 		break;
10846 	case PORT_C:
10847 		id = DPLL_ID_SKL_DPLL2;
10848 		break;
10849 	default:
10850 		drm_err(&dev_priv->drm, "Incorrect port type\n");
10851 		return;
10852 	}
10853 
10854 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10855 }
10856 
10857 static void skl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10858 			    struct intel_crtc_state *pipe_config)
10859 {
10860 	enum intel_dpll_id id;
10861 	u32 temp;
10862 
10863 	temp = intel_de_read(dev_priv, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10864 	id = temp >> (port * 3 + 1);
10865 
10866 	if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL3))
10867 		return;
10868 
10869 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10870 }
10871 
10872 static void hsw_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10873 			    struct intel_crtc_state *pipe_config)
10874 {
10875 	enum intel_dpll_id id;
10876 	u32 ddi_pll_sel = intel_de_read(dev_priv, PORT_CLK_SEL(port));
10877 
10878 	switch (ddi_pll_sel) {
10879 	case PORT_CLK_SEL_WRPLL1:
10880 		id = DPLL_ID_WRPLL1;
10881 		break;
10882 	case PORT_CLK_SEL_WRPLL2:
10883 		id = DPLL_ID_WRPLL2;
10884 		break;
10885 	case PORT_CLK_SEL_SPLL:
10886 		id = DPLL_ID_SPLL;
10887 		break;
10888 	case PORT_CLK_SEL_LCPLL_810:
10889 		id = DPLL_ID_LCPLL_810;
10890 		break;
10891 	case PORT_CLK_SEL_LCPLL_1350:
10892 		id = DPLL_ID_LCPLL_1350;
10893 		break;
10894 	case PORT_CLK_SEL_LCPLL_2700:
10895 		id = DPLL_ID_LCPLL_2700;
10896 		break;
10897 	default:
10898 		MISSING_CASE(ddi_pll_sel);
10899 		/* fall through */
10900 	case PORT_CLK_SEL_NONE:
10901 		return;
10902 	}
10903 
10904 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10905 }
10906 
10907 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10908 				     struct intel_crtc_state *pipe_config,
10909 				     u64 *power_domain_mask,
10910 				     intel_wakeref_t *wakerefs)
10911 {
10912 	struct drm_device *dev = crtc->base.dev;
10913 	struct drm_i915_private *dev_priv = to_i915(dev);
10914 	enum intel_display_power_domain power_domain;
10915 	unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP);
10916 	unsigned long enabled_panel_transcoders = 0;
10917 	enum transcoder panel_transcoder;
10918 	intel_wakeref_t wf;
10919 	u32 tmp;
10920 
10921 	if (INTEL_GEN(dev_priv) >= 11)
10922 		panel_transcoder_mask |=
10923 			BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
10924 
10925 	/*
10926 	 * The pipe->transcoder mapping is fixed with the exception of the eDP
10927 	 * and DSI transcoders handled below.
10928 	 */
10929 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10930 
10931 	/*
10932 	 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10933 	 * consistency and less surprising code; it's in always on power).
10934 	 */
10935 	for_each_cpu_transcoder_masked(dev_priv, panel_transcoder,
10936 				       panel_transcoder_mask) {
10937 		bool force_thru = false;
10938 		enum pipe trans_pipe;
10939 
10940 		tmp = intel_de_read(dev_priv,
10941 				    TRANS_DDI_FUNC_CTL(panel_transcoder));
10942 		if (!(tmp & TRANS_DDI_FUNC_ENABLE))
10943 			continue;
10944 
10945 		/*
10946 		 * Log all enabled ones, only use the first one.
10947 		 *
10948 		 * FIXME: This won't work for two separate DSI displays.
10949 		 */
10950 		enabled_panel_transcoders |= BIT(panel_transcoder);
10951 		if (enabled_panel_transcoders != BIT(panel_transcoder))
10952 			continue;
10953 
10954 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10955 		default:
10956 			drm_WARN(dev, 1,
10957 				 "unknown pipe linked to transcoder %s\n",
10958 				 transcoder_name(panel_transcoder));
10959 			/* fall through */
10960 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
10961 			force_thru = true;
10962 			/* fall through */
10963 		case TRANS_DDI_EDP_INPUT_A_ON:
10964 			trans_pipe = PIPE_A;
10965 			break;
10966 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
10967 			trans_pipe = PIPE_B;
10968 			break;
10969 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
10970 			trans_pipe = PIPE_C;
10971 			break;
10972 		case TRANS_DDI_EDP_INPUT_D_ONOFF:
10973 			trans_pipe = PIPE_D;
10974 			break;
10975 		}
10976 
10977 		if (trans_pipe == crtc->pipe) {
10978 			pipe_config->cpu_transcoder = panel_transcoder;
10979 			pipe_config->pch_pfit.force_thru = force_thru;
10980 		}
10981 	}
10982 
10983 	/*
10984 	 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1
10985 	 */
10986 	drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) &&
10987 		    enabled_panel_transcoders != BIT(TRANSCODER_EDP));
10988 
10989 	power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10990 	drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain));
10991 
10992 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10993 	if (!wf)
10994 		return false;
10995 
10996 	wakerefs[power_domain] = wf;
10997 	*power_domain_mask |= BIT_ULL(power_domain);
10998 
10999 	tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder));
11000 
11001 	return tmp & PIPECONF_ENABLE;
11002 }
11003 
11004 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
11005 					 struct intel_crtc_state *pipe_config,
11006 					 u64 *power_domain_mask,
11007 					 intel_wakeref_t *wakerefs)
11008 {
11009 	struct drm_device *dev = crtc->base.dev;
11010 	struct drm_i915_private *dev_priv = to_i915(dev);
11011 	enum intel_display_power_domain power_domain;
11012 	enum transcoder cpu_transcoder;
11013 	intel_wakeref_t wf;
11014 	enum port port;
11015 	u32 tmp;
11016 
11017 	for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
11018 		if (port == PORT_A)
11019 			cpu_transcoder = TRANSCODER_DSI_A;
11020 		else
11021 			cpu_transcoder = TRANSCODER_DSI_C;
11022 
11023 		power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
11024 		drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain));
11025 
11026 		wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11027 		if (!wf)
11028 			continue;
11029 
11030 		wakerefs[power_domain] = wf;
11031 		*power_domain_mask |= BIT_ULL(power_domain);
11032 
11033 		/*
11034 		 * The PLL needs to be enabled with a valid divider
11035 		 * configuration, otherwise accessing DSI registers will hang
11036 		 * the machine. See BSpec North Display Engine
11037 		 * registers/MIPI[BXT]. We can break out here early, since we
11038 		 * need the same DSI PLL to be enabled for both DSI ports.
11039 		 */
11040 		if (!bxt_dsi_pll_is_enabled(dev_priv))
11041 			break;
11042 
11043 		/* XXX: this works for video mode only */
11044 		tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port));
11045 		if (!(tmp & DPI_ENABLE))
11046 			continue;
11047 
11048 		tmp = intel_de_read(dev_priv, MIPI_CTRL(port));
11049 		if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
11050 			continue;
11051 
11052 		pipe_config->cpu_transcoder = cpu_transcoder;
11053 		break;
11054 	}
11055 
11056 	return transcoder_is_dsi(pipe_config->cpu_transcoder);
11057 }
11058 
11059 static void hsw_get_ddi_port_state(struct intel_crtc *crtc,
11060 				   struct intel_crtc_state *pipe_config)
11061 {
11062 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11063 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
11064 	struct intel_shared_dpll *pll;
11065 	enum port port;
11066 	u32 tmp;
11067 
11068 	if (transcoder_is_dsi(cpu_transcoder)) {
11069 		port = (cpu_transcoder == TRANSCODER_DSI_A) ?
11070 						PORT_A : PORT_B;
11071 	} else {
11072 		tmp = intel_de_read(dev_priv,
11073 				    TRANS_DDI_FUNC_CTL(cpu_transcoder));
11074 		if (INTEL_GEN(dev_priv) >= 12)
11075 			port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
11076 		else
11077 			port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
11078 	}
11079 
11080 	if (INTEL_GEN(dev_priv) >= 11)
11081 		icl_get_ddi_pll(dev_priv, port, pipe_config);
11082 	else if (IS_CANNONLAKE(dev_priv))
11083 		cnl_get_ddi_pll(dev_priv, port, pipe_config);
11084 	else if (IS_GEN9_BC(dev_priv))
11085 		skl_get_ddi_pll(dev_priv, port, pipe_config);
11086 	else if (IS_GEN9_LP(dev_priv))
11087 		bxt_get_ddi_pll(dev_priv, port, pipe_config);
11088 	else
11089 		hsw_get_ddi_pll(dev_priv, port, pipe_config);
11090 
11091 	pll = pipe_config->shared_dpll;
11092 	if (pll) {
11093 		drm_WARN_ON(&dev_priv->drm,
11094 			    !pll->info->funcs->get_hw_state(dev_priv, pll,
11095 						&pipe_config->dpll_hw_state));
11096 	}
11097 
11098 	/*
11099 	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
11100 	 * DDI E. So just check whether this pipe is wired to DDI E and whether
11101 	 * the PCH transcoder is on.
11102 	 */
11103 	if (INTEL_GEN(dev_priv) < 9 &&
11104 	    (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) {
11105 		pipe_config->has_pch_encoder = true;
11106 
11107 		tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A));
11108 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
11109 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
11110 
11111 		ilk_get_fdi_m_n_config(crtc, pipe_config);
11112 	}
11113 }
11114 
11115 static bool hsw_get_pipe_config(struct intel_crtc *crtc,
11116 				struct intel_crtc_state *pipe_config)
11117 {
11118 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11119 	intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf;
11120 	enum intel_display_power_domain power_domain;
11121 	u64 power_domain_mask;
11122 	bool active;
11123 	u32 tmp;
11124 
11125 	pipe_config->master_transcoder = INVALID_TRANSCODER;
11126 
11127 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
11128 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11129 	if (!wf)
11130 		return false;
11131 
11132 	wakerefs[power_domain] = wf;
11133 	power_domain_mask = BIT_ULL(power_domain);
11134 
11135 	pipe_config->shared_dpll = NULL;
11136 
11137 	active = hsw_get_transcoder_state(crtc, pipe_config,
11138 					  &power_domain_mask, wakerefs);
11139 
11140 	if (IS_GEN9_LP(dev_priv) &&
11141 	    bxt_get_dsi_transcoder_state(crtc, pipe_config,
11142 					 &power_domain_mask, wakerefs)) {
11143 		drm_WARN_ON(&dev_priv->drm, active);
11144 		active = true;
11145 	}
11146 
11147 	if (!active)
11148 		goto out;
11149 
11150 	if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
11151 	    INTEL_GEN(dev_priv) >= 11) {
11152 		hsw_get_ddi_port_state(crtc, pipe_config);
11153 		intel_get_pipe_timings(crtc, pipe_config);
11154 	}
11155 
11156 	intel_get_pipe_src_size(crtc, pipe_config);
11157 
11158 	if (IS_HASWELL(dev_priv)) {
11159 		u32 tmp = intel_de_read(dev_priv,
11160 					PIPECONF(pipe_config->cpu_transcoder));
11161 
11162 		if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW)
11163 			pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
11164 		else
11165 			pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
11166 	} else {
11167 		pipe_config->output_format =
11168 			bdw_get_pipemisc_output_format(crtc);
11169 
11170 		/*
11171 		 * Currently there is no interface defined to
11172 		 * check user preference between RGB/YCBCR444
11173 		 * or YCBCR420. So the only possible case for
11174 		 * YCBCR444 usage is driving YCBCR420 output
11175 		 * with LSPCON, when pipe is configured for
11176 		 * YCBCR444 output and LSPCON takes care of
11177 		 * downsampling it.
11178 		 */
11179 		pipe_config->lspcon_downsampling =
11180 			pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444;
11181 	}
11182 
11183 	pipe_config->gamma_mode = intel_de_read(dev_priv,
11184 						GAMMA_MODE(crtc->pipe));
11185 
11186 	pipe_config->csc_mode = intel_de_read(dev_priv,
11187 					      PIPE_CSC_MODE(crtc->pipe));
11188 
11189 	if (INTEL_GEN(dev_priv) >= 9) {
11190 		tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe));
11191 
11192 		if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE)
11193 			pipe_config->gamma_enable = true;
11194 
11195 		if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE)
11196 			pipe_config->csc_enable = true;
11197 	} else {
11198 		i9xx_get_pipe_color_config(pipe_config);
11199 	}
11200 
11201 	intel_color_get_config(pipe_config);
11202 
11203 	tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe));
11204 	pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp);
11205 	if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
11206 		pipe_config->ips_linetime =
11207 			REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp);
11208 
11209 	power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
11210 	drm_WARN_ON(&dev_priv->drm, power_domain_mask & BIT_ULL(power_domain));
11211 
11212 	wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11213 	if (wf) {
11214 		wakerefs[power_domain] = wf;
11215 		power_domain_mask |= BIT_ULL(power_domain);
11216 
11217 		if (INTEL_GEN(dev_priv) >= 9)
11218 			skl_get_pfit_config(pipe_config);
11219 		else
11220 			ilk_get_pfit_config(pipe_config);
11221 	}
11222 
11223 	if (hsw_crtc_supports_ips(crtc)) {
11224 		if (IS_HASWELL(dev_priv))
11225 			pipe_config->ips_enabled = intel_de_read(dev_priv,
11226 								 IPS_CTL) & IPS_ENABLE;
11227 		else {
11228 			/*
11229 			 * We cannot readout IPS state on broadwell, set to
11230 			 * true so we can set it to a defined state on first
11231 			 * commit.
11232 			 */
11233 			pipe_config->ips_enabled = true;
11234 		}
11235 	}
11236 
11237 	if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
11238 	    !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
11239 		pipe_config->pixel_multiplier =
11240 			intel_de_read(dev_priv,
11241 				      PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
11242 	} else {
11243 		pipe_config->pixel_multiplier = 1;
11244 	}
11245 
11246 out:
11247 	for_each_power_domain(power_domain, power_domain_mask)
11248 		intel_display_power_put(dev_priv,
11249 					power_domain, wakerefs[power_domain]);
11250 
11251 	return active;
11252 }
11253 
11254 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
11255 {
11256 	struct drm_i915_private *dev_priv =
11257 		to_i915(plane_state->uapi.plane->dev);
11258 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11259 	const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11260 	u32 base;
11261 
11262 	if (INTEL_INFO(dev_priv)->display.cursor_needs_physical)
11263 		base = sg_dma_address(obj->mm.pages->sgl);
11264 	else
11265 		base = intel_plane_ggtt_offset(plane_state);
11266 
11267 	return base + plane_state->color_plane[0].offset;
11268 }
11269 
11270 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
11271 {
11272 	int x = plane_state->uapi.dst.x1;
11273 	int y = plane_state->uapi.dst.y1;
11274 	u32 pos = 0;
11275 
11276 	if (x < 0) {
11277 		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
11278 		x = -x;
11279 	}
11280 	pos |= x << CURSOR_X_SHIFT;
11281 
11282 	if (y < 0) {
11283 		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
11284 		y = -y;
11285 	}
11286 	pos |= y << CURSOR_Y_SHIFT;
11287 
11288 	return pos;
11289 }
11290 
11291 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
11292 {
11293 	const struct drm_mode_config *config =
11294 		&plane_state->uapi.plane->dev->mode_config;
11295 	int width = drm_rect_width(&plane_state->uapi.dst);
11296 	int height = drm_rect_height(&plane_state->uapi.dst);
11297 
11298 	return width > 0 && width <= config->cursor_width &&
11299 		height > 0 && height <= config->cursor_height;
11300 }
11301 
11302 static int intel_cursor_check_surface(struct intel_plane_state *plane_state)
11303 {
11304 	struct drm_i915_private *dev_priv =
11305 		to_i915(plane_state->uapi.plane->dev);
11306 	unsigned int rotation = plane_state->hw.rotation;
11307 	int src_x, src_y;
11308 	u32 offset;
11309 	int ret;
11310 
11311 	ret = intel_plane_compute_gtt(plane_state);
11312 	if (ret)
11313 		return ret;
11314 
11315 	if (!plane_state->uapi.visible)
11316 		return 0;
11317 
11318 	src_x = plane_state->uapi.src.x1 >> 16;
11319 	src_y = plane_state->uapi.src.y1 >> 16;
11320 
11321 	intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
11322 	offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
11323 						    plane_state, 0);
11324 
11325 	if (src_x != 0 || src_y != 0) {
11326 		drm_dbg_kms(&dev_priv->drm,
11327 			    "Arbitrary cursor panning not supported\n");
11328 		return -EINVAL;
11329 	}
11330 
11331 	/*
11332 	 * Put the final coordinates back so that the src
11333 	 * coordinate checks will see the right values.
11334 	 */
11335 	drm_rect_translate_to(&plane_state->uapi.src,
11336 			      src_x << 16, src_y << 16);
11337 
11338 	/* ILK+ do this automagically in hardware */
11339 	if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) {
11340 		const struct drm_framebuffer *fb = plane_state->hw.fb;
11341 		int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
11342 		int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
11343 
11344 		offset += (src_h * src_w - 1) * fb->format->cpp[0];
11345 	}
11346 
11347 	plane_state->color_plane[0].offset = offset;
11348 	plane_state->color_plane[0].x = src_x;
11349 	plane_state->color_plane[0].y = src_y;
11350 
11351 	return 0;
11352 }
11353 
11354 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
11355 			      struct intel_plane_state *plane_state)
11356 {
11357 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11358 	struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
11359 	int ret;
11360 
11361 	if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) {
11362 		drm_dbg_kms(&i915->drm, "cursor cannot be tiled\n");
11363 		return -EINVAL;
11364 	}
11365 
11366 	ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
11367 						  &crtc_state->uapi,
11368 						  DRM_PLANE_HELPER_NO_SCALING,
11369 						  DRM_PLANE_HELPER_NO_SCALING,
11370 						  true, true);
11371 	if (ret)
11372 		return ret;
11373 
11374 	/* Use the unclipped src/dst rectangles, which we program to hw */
11375 	plane_state->uapi.src = drm_plane_state_src(&plane_state->uapi);
11376 	plane_state->uapi.dst = drm_plane_state_dest(&plane_state->uapi);
11377 
11378 	ret = intel_cursor_check_surface(plane_state);
11379 	if (ret)
11380 		return ret;
11381 
11382 	if (!plane_state->uapi.visible)
11383 		return 0;
11384 
11385 	ret = intel_plane_check_src_coordinates(plane_state);
11386 	if (ret)
11387 		return ret;
11388 
11389 	return 0;
11390 }
11391 
11392 static unsigned int
11393 i845_cursor_max_stride(struct intel_plane *plane,
11394 		       u32 pixel_format, u64 modifier,
11395 		       unsigned int rotation)
11396 {
11397 	return 2048;
11398 }
11399 
11400 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11401 {
11402 	u32 cntl = 0;
11403 
11404 	if (crtc_state->gamma_enable)
11405 		cntl |= CURSOR_GAMMA_ENABLE;
11406 
11407 	return cntl;
11408 }
11409 
11410 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
11411 			   const struct intel_plane_state *plane_state)
11412 {
11413 	return CURSOR_ENABLE |
11414 		CURSOR_FORMAT_ARGB |
11415 		CURSOR_STRIDE(plane_state->color_plane[0].stride);
11416 }
11417 
11418 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
11419 {
11420 	int width = drm_rect_width(&plane_state->uapi.dst);
11421 
11422 	/*
11423 	 * 845g/865g are only limited by the width of their cursors,
11424 	 * the height is arbitrary up to the precision of the register.
11425 	 */
11426 	return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
11427 }
11428 
11429 static int i845_check_cursor(struct intel_crtc_state *crtc_state,
11430 			     struct intel_plane_state *plane_state)
11431 {
11432 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11433 	struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev);
11434 	int ret;
11435 
11436 	ret = intel_check_cursor(crtc_state, plane_state);
11437 	if (ret)
11438 		return ret;
11439 
11440 	/* if we want to turn off the cursor ignore width and height */
11441 	if (!fb)
11442 		return 0;
11443 
11444 	/* Check for which cursor types we support */
11445 	if (!i845_cursor_size_ok(plane_state)) {
11446 		drm_dbg_kms(&i915->drm,
11447 			    "Cursor dimension %dx%d not supported\n",
11448 			    drm_rect_width(&plane_state->uapi.dst),
11449 			    drm_rect_height(&plane_state->uapi.dst));
11450 		return -EINVAL;
11451 	}
11452 
11453 	drm_WARN_ON(&i915->drm, plane_state->uapi.visible &&
11454 		    plane_state->color_plane[0].stride != fb->pitches[0]);
11455 
11456 	switch (fb->pitches[0]) {
11457 	case 256:
11458 	case 512:
11459 	case 1024:
11460 	case 2048:
11461 		break;
11462 	default:
11463 		 drm_dbg_kms(&i915->drm, "Invalid cursor stride (%u)\n",
11464 			     fb->pitches[0]);
11465 		return -EINVAL;
11466 	}
11467 
11468 	plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
11469 
11470 	return 0;
11471 }
11472 
11473 static void i845_update_cursor(struct intel_plane *plane,
11474 			       const struct intel_crtc_state *crtc_state,
11475 			       const struct intel_plane_state *plane_state)
11476 {
11477 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11478 	u32 cntl = 0, base = 0, pos = 0, size = 0;
11479 	unsigned long irqflags;
11480 
11481 	if (plane_state && plane_state->uapi.visible) {
11482 		unsigned int width = drm_rect_width(&plane_state->uapi.dst);
11483 		unsigned int height = drm_rect_height(&plane_state->uapi.dst);
11484 
11485 		cntl = plane_state->ctl |
11486 			i845_cursor_ctl_crtc(crtc_state);
11487 
11488 		size = (height << 12) | width;
11489 
11490 		base = intel_cursor_base(plane_state);
11491 		pos = intel_cursor_position(plane_state);
11492 	}
11493 
11494 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11495 
11496 	/* On these chipsets we can only modify the base/size/stride
11497 	 * whilst the cursor is disabled.
11498 	 */
11499 	if (plane->cursor.base != base ||
11500 	    plane->cursor.size != size ||
11501 	    plane->cursor.cntl != cntl) {
11502 		intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), 0);
11503 		intel_de_write_fw(dev_priv, CURBASE(PIPE_A), base);
11504 		intel_de_write_fw(dev_priv, CURSIZE, size);
11505 		intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos);
11506 		intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), cntl);
11507 
11508 		plane->cursor.base = base;
11509 		plane->cursor.size = size;
11510 		plane->cursor.cntl = cntl;
11511 	} else {
11512 		intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos);
11513 	}
11514 
11515 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11516 }
11517 
11518 static void i845_disable_cursor(struct intel_plane *plane,
11519 				const struct intel_crtc_state *crtc_state)
11520 {
11521 	i845_update_cursor(plane, crtc_state, NULL);
11522 }
11523 
11524 static bool i845_cursor_get_hw_state(struct intel_plane *plane,
11525 				     enum pipe *pipe)
11526 {
11527 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11528 	enum intel_display_power_domain power_domain;
11529 	intel_wakeref_t wakeref;
11530 	bool ret;
11531 
11532 	power_domain = POWER_DOMAIN_PIPE(PIPE_A);
11533 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11534 	if (!wakeref)
11535 		return false;
11536 
11537 	ret = intel_de_read(dev_priv, CURCNTR(PIPE_A)) & CURSOR_ENABLE;
11538 
11539 	*pipe = PIPE_A;
11540 
11541 	intel_display_power_put(dev_priv, power_domain, wakeref);
11542 
11543 	return ret;
11544 }
11545 
11546 static unsigned int
11547 i9xx_cursor_max_stride(struct intel_plane *plane,
11548 		       u32 pixel_format, u64 modifier,
11549 		       unsigned int rotation)
11550 {
11551 	return plane->base.dev->mode_config.cursor_width * 4;
11552 }
11553 
11554 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11555 {
11556 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
11557 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11558 	u32 cntl = 0;
11559 
11560 	if (INTEL_GEN(dev_priv) >= 11)
11561 		return cntl;
11562 
11563 	if (crtc_state->gamma_enable)
11564 		cntl = MCURSOR_GAMMA_ENABLE;
11565 
11566 	if (crtc_state->csc_enable)
11567 		cntl |= MCURSOR_PIPE_CSC_ENABLE;
11568 
11569 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11570 		cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
11571 
11572 	return cntl;
11573 }
11574 
11575 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
11576 			   const struct intel_plane_state *plane_state)
11577 {
11578 	struct drm_i915_private *dev_priv =
11579 		to_i915(plane_state->uapi.plane->dev);
11580 	u32 cntl = 0;
11581 
11582 	if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
11583 		cntl |= MCURSOR_TRICKLE_FEED_DISABLE;
11584 
11585 	switch (drm_rect_width(&plane_state->uapi.dst)) {
11586 	case 64:
11587 		cntl |= MCURSOR_MODE_64_ARGB_AX;
11588 		break;
11589 	case 128:
11590 		cntl |= MCURSOR_MODE_128_ARGB_AX;
11591 		break;
11592 	case 256:
11593 		cntl |= MCURSOR_MODE_256_ARGB_AX;
11594 		break;
11595 	default:
11596 		MISSING_CASE(drm_rect_width(&plane_state->uapi.dst));
11597 		return 0;
11598 	}
11599 
11600 	if (plane_state->hw.rotation & DRM_MODE_ROTATE_180)
11601 		cntl |= MCURSOR_ROTATE_180;
11602 
11603 	return cntl;
11604 }
11605 
11606 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
11607 {
11608 	struct drm_i915_private *dev_priv =
11609 		to_i915(plane_state->uapi.plane->dev);
11610 	int width = drm_rect_width(&plane_state->uapi.dst);
11611 	int height = drm_rect_height(&plane_state->uapi.dst);
11612 
11613 	if (!intel_cursor_size_ok(plane_state))
11614 		return false;
11615 
11616 	/* Cursor width is limited to a few power-of-two sizes */
11617 	switch (width) {
11618 	case 256:
11619 	case 128:
11620 	case 64:
11621 		break;
11622 	default:
11623 		return false;
11624 	}
11625 
11626 	/*
11627 	 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
11628 	 * height from 8 lines up to the cursor width, when the
11629 	 * cursor is not rotated. Everything else requires square
11630 	 * cursors.
11631 	 */
11632 	if (HAS_CUR_FBC(dev_priv) &&
11633 	    plane_state->hw.rotation & DRM_MODE_ROTATE_0) {
11634 		if (height < 8 || height > width)
11635 			return false;
11636 	} else {
11637 		if (height != width)
11638 			return false;
11639 	}
11640 
11641 	return true;
11642 }
11643 
11644 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state,
11645 			     struct intel_plane_state *plane_state)
11646 {
11647 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
11648 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11649 	const struct drm_framebuffer *fb = plane_state->hw.fb;
11650 	enum pipe pipe = plane->pipe;
11651 	int ret;
11652 
11653 	ret = intel_check_cursor(crtc_state, plane_state);
11654 	if (ret)
11655 		return ret;
11656 
11657 	/* if we want to turn off the cursor ignore width and height */
11658 	if (!fb)
11659 		return 0;
11660 
11661 	/* Check for which cursor types we support */
11662 	if (!i9xx_cursor_size_ok(plane_state)) {
11663 		drm_dbg(&dev_priv->drm,
11664 			"Cursor dimension %dx%d not supported\n",
11665 			drm_rect_width(&plane_state->uapi.dst),
11666 			drm_rect_height(&plane_state->uapi.dst));
11667 		return -EINVAL;
11668 	}
11669 
11670 	drm_WARN_ON(&dev_priv->drm, plane_state->uapi.visible &&
11671 		    plane_state->color_plane[0].stride != fb->pitches[0]);
11672 
11673 	if (fb->pitches[0] !=
11674 	    drm_rect_width(&plane_state->uapi.dst) * fb->format->cpp[0]) {
11675 		drm_dbg_kms(&dev_priv->drm,
11676 			    "Invalid cursor stride (%u) (cursor width %d)\n",
11677 			    fb->pitches[0],
11678 			    drm_rect_width(&plane_state->uapi.dst));
11679 		return -EINVAL;
11680 	}
11681 
11682 	/*
11683 	 * There's something wrong with the cursor on CHV pipe C.
11684 	 * If it straddles the left edge of the screen then
11685 	 * moving it away from the edge or disabling it often
11686 	 * results in a pipe underrun, and often that can lead to
11687 	 * dead pipe (constant underrun reported, and it scans
11688 	 * out just a solid color). To recover from that, the
11689 	 * display power well must be turned off and on again.
11690 	 * Refuse the put the cursor into that compromised position.
11691 	 */
11692 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
11693 	    plane_state->uapi.visible && plane_state->uapi.dst.x1 < 0) {
11694 		drm_dbg_kms(&dev_priv->drm,
11695 			    "CHV cursor C not allowed to straddle the left screen edge\n");
11696 		return -EINVAL;
11697 	}
11698 
11699 	plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
11700 
11701 	return 0;
11702 }
11703 
11704 static void i9xx_update_cursor(struct intel_plane *plane,
11705 			       const struct intel_crtc_state *crtc_state,
11706 			       const struct intel_plane_state *plane_state)
11707 {
11708 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11709 	enum pipe pipe = plane->pipe;
11710 	u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
11711 	unsigned long irqflags;
11712 
11713 	if (plane_state && plane_state->uapi.visible) {
11714 		unsigned width = drm_rect_width(&plane_state->uapi.dst);
11715 		unsigned height = drm_rect_height(&plane_state->uapi.dst);
11716 
11717 		cntl = plane_state->ctl |
11718 			i9xx_cursor_ctl_crtc(crtc_state);
11719 
11720 		if (width != height)
11721 			fbc_ctl = CUR_FBC_CTL_EN | (height - 1);
11722 
11723 		base = intel_cursor_base(plane_state);
11724 		pos = intel_cursor_position(plane_state);
11725 	}
11726 
11727 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11728 
11729 	/*
11730 	 * On some platforms writing CURCNTR first will also
11731 	 * cause CURPOS to be armed by the CURBASE write.
11732 	 * Without the CURCNTR write the CURPOS write would
11733 	 * arm itself. Thus we always update CURCNTR before
11734 	 * CURPOS.
11735 	 *
11736 	 * On other platforms CURPOS always requires the
11737 	 * CURBASE write to arm the update. Additonally
11738 	 * a write to any of the cursor register will cancel
11739 	 * an already armed cursor update. Thus leaving out
11740 	 * the CURBASE write after CURPOS could lead to a
11741 	 * cursor that doesn't appear to move, or even change
11742 	 * shape. Thus we always write CURBASE.
11743 	 *
11744 	 * The other registers are armed by by the CURBASE write
11745 	 * except when the plane is getting enabled at which time
11746 	 * the CURCNTR write arms the update.
11747 	 */
11748 
11749 	if (INTEL_GEN(dev_priv) >= 9)
11750 		skl_write_cursor_wm(plane, crtc_state);
11751 
11752 	if (plane->cursor.base != base ||
11753 	    plane->cursor.size != fbc_ctl ||
11754 	    plane->cursor.cntl != cntl) {
11755 		if (HAS_CUR_FBC(dev_priv))
11756 			intel_de_write_fw(dev_priv, CUR_FBC_CTL(pipe),
11757 					  fbc_ctl);
11758 		intel_de_write_fw(dev_priv, CURCNTR(pipe), cntl);
11759 		intel_de_write_fw(dev_priv, CURPOS(pipe), pos);
11760 		intel_de_write_fw(dev_priv, CURBASE(pipe), base);
11761 
11762 		plane->cursor.base = base;
11763 		plane->cursor.size = fbc_ctl;
11764 		plane->cursor.cntl = cntl;
11765 	} else {
11766 		intel_de_write_fw(dev_priv, CURPOS(pipe), pos);
11767 		intel_de_write_fw(dev_priv, CURBASE(pipe), base);
11768 	}
11769 
11770 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11771 }
11772 
11773 static void i9xx_disable_cursor(struct intel_plane *plane,
11774 				const struct intel_crtc_state *crtc_state)
11775 {
11776 	i9xx_update_cursor(plane, crtc_state, NULL);
11777 }
11778 
11779 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane,
11780 				     enum pipe *pipe)
11781 {
11782 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11783 	enum intel_display_power_domain power_domain;
11784 	intel_wakeref_t wakeref;
11785 	bool ret;
11786 	u32 val;
11787 
11788 	/*
11789 	 * Not 100% correct for planes that can move between pipes,
11790 	 * but that's only the case for gen2-3 which don't have any
11791 	 * display power wells.
11792 	 */
11793 	power_domain = POWER_DOMAIN_PIPE(plane->pipe);
11794 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11795 	if (!wakeref)
11796 		return false;
11797 
11798 	val = intel_de_read(dev_priv, CURCNTR(plane->pipe));
11799 
11800 	ret = val & MCURSOR_MODE;
11801 
11802 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
11803 		*pipe = plane->pipe;
11804 	else
11805 		*pipe = (val & MCURSOR_PIPE_SELECT_MASK) >>
11806 			MCURSOR_PIPE_SELECT_SHIFT;
11807 
11808 	intel_display_power_put(dev_priv, power_domain, wakeref);
11809 
11810 	return ret;
11811 }
11812 
11813 /* VESA 640x480x72Hz mode to set on the pipe */
11814 static const struct drm_display_mode load_detect_mode = {
11815 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
11816 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
11817 };
11818 
11819 struct drm_framebuffer *
11820 intel_framebuffer_create(struct drm_i915_gem_object *obj,
11821 			 struct drm_mode_fb_cmd2 *mode_cmd)
11822 {
11823 	struct intel_framebuffer *intel_fb;
11824 	int ret;
11825 
11826 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
11827 	if (!intel_fb)
11828 		return ERR_PTR(-ENOMEM);
11829 
11830 	ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
11831 	if (ret)
11832 		goto err;
11833 
11834 	return &intel_fb->base;
11835 
11836 err:
11837 	kfree(intel_fb);
11838 	return ERR_PTR(ret);
11839 }
11840 
11841 static int intel_modeset_disable_planes(struct drm_atomic_state *state,
11842 					struct drm_crtc *crtc)
11843 {
11844 	struct drm_plane *plane;
11845 	struct drm_plane_state *plane_state;
11846 	int ret, i;
11847 
11848 	ret = drm_atomic_add_affected_planes(state, crtc);
11849 	if (ret)
11850 		return ret;
11851 
11852 	for_each_new_plane_in_state(state, plane, plane_state, i) {
11853 		if (plane_state->crtc != crtc)
11854 			continue;
11855 
11856 		ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
11857 		if (ret)
11858 			return ret;
11859 
11860 		drm_atomic_set_fb_for_plane(plane_state, NULL);
11861 	}
11862 
11863 	return 0;
11864 }
11865 
11866 int intel_get_load_detect_pipe(struct drm_connector *connector,
11867 			       struct intel_load_detect_pipe *old,
11868 			       struct drm_modeset_acquire_ctx *ctx)
11869 {
11870 	struct intel_crtc *intel_crtc;
11871 	struct intel_encoder *intel_encoder =
11872 		intel_attached_encoder(to_intel_connector(connector));
11873 	struct drm_crtc *possible_crtc;
11874 	struct drm_encoder *encoder = &intel_encoder->base;
11875 	struct drm_crtc *crtc = NULL;
11876 	struct drm_device *dev = encoder->dev;
11877 	struct drm_i915_private *dev_priv = to_i915(dev);
11878 	struct drm_mode_config *config = &dev->mode_config;
11879 	struct drm_atomic_state *state = NULL, *restore_state = NULL;
11880 	struct drm_connector_state *connector_state;
11881 	struct intel_crtc_state *crtc_state;
11882 	int ret, i = -1;
11883 
11884 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11885 		    connector->base.id, connector->name,
11886 		    encoder->base.id, encoder->name);
11887 
11888 	old->restore_state = NULL;
11889 
11890 	drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex));
11891 
11892 	/*
11893 	 * Algorithm gets a little messy:
11894 	 *
11895 	 *   - if the connector already has an assigned crtc, use it (but make
11896 	 *     sure it's on first)
11897 	 *
11898 	 *   - try to find the first unused crtc that can drive this connector,
11899 	 *     and use that if we find one
11900 	 */
11901 
11902 	/* See if we already have a CRTC for this connector */
11903 	if (connector->state->crtc) {
11904 		crtc = connector->state->crtc;
11905 
11906 		ret = drm_modeset_lock(&crtc->mutex, ctx);
11907 		if (ret)
11908 			goto fail;
11909 
11910 		/* Make sure the crtc and connector are running */
11911 		goto found;
11912 	}
11913 
11914 	/* Find an unused one (if possible) */
11915 	for_each_crtc(dev, possible_crtc) {
11916 		i++;
11917 		if (!(encoder->possible_crtcs & (1 << i)))
11918 			continue;
11919 
11920 		ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11921 		if (ret)
11922 			goto fail;
11923 
11924 		if (possible_crtc->state->enable) {
11925 			drm_modeset_unlock(&possible_crtc->mutex);
11926 			continue;
11927 		}
11928 
11929 		crtc = possible_crtc;
11930 		break;
11931 	}
11932 
11933 	/*
11934 	 * If we didn't find an unused CRTC, don't use any.
11935 	 */
11936 	if (!crtc) {
11937 		drm_dbg_kms(&dev_priv->drm,
11938 			    "no pipe available for load-detect\n");
11939 		ret = -ENODEV;
11940 		goto fail;
11941 	}
11942 
11943 found:
11944 	intel_crtc = to_intel_crtc(crtc);
11945 
11946 	state = drm_atomic_state_alloc(dev);
11947 	restore_state = drm_atomic_state_alloc(dev);
11948 	if (!state || !restore_state) {
11949 		ret = -ENOMEM;
11950 		goto fail;
11951 	}
11952 
11953 	state->acquire_ctx = ctx;
11954 	restore_state->acquire_ctx = ctx;
11955 
11956 	connector_state = drm_atomic_get_connector_state(state, connector);
11957 	if (IS_ERR(connector_state)) {
11958 		ret = PTR_ERR(connector_state);
11959 		goto fail;
11960 	}
11961 
11962 	ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11963 	if (ret)
11964 		goto fail;
11965 
11966 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11967 	if (IS_ERR(crtc_state)) {
11968 		ret = PTR_ERR(crtc_state);
11969 		goto fail;
11970 	}
11971 
11972 	crtc_state->uapi.active = true;
11973 
11974 	ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi,
11975 					   &load_detect_mode);
11976 	if (ret)
11977 		goto fail;
11978 
11979 	ret = intel_modeset_disable_planes(state, crtc);
11980 	if (ret)
11981 		goto fail;
11982 
11983 	ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11984 	if (!ret)
11985 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11986 	if (!ret)
11987 		ret = drm_atomic_add_affected_planes(restore_state, crtc);
11988 	if (ret) {
11989 		drm_dbg_kms(&dev_priv->drm,
11990 			    "Failed to create a copy of old state to restore: %i\n",
11991 			    ret);
11992 		goto fail;
11993 	}
11994 
11995 	ret = drm_atomic_commit(state);
11996 	if (ret) {
11997 		drm_dbg_kms(&dev_priv->drm,
11998 			    "failed to set mode on load-detect pipe\n");
11999 		goto fail;
12000 	}
12001 
12002 	old->restore_state = restore_state;
12003 	drm_atomic_state_put(state);
12004 
12005 	/* let the connector get through one full cycle before testing */
12006 	intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
12007 	return true;
12008 
12009 fail:
12010 	if (state) {
12011 		drm_atomic_state_put(state);
12012 		state = NULL;
12013 	}
12014 	if (restore_state) {
12015 		drm_atomic_state_put(restore_state);
12016 		restore_state = NULL;
12017 	}
12018 
12019 	if (ret == -EDEADLK)
12020 		return ret;
12021 
12022 	return false;
12023 }
12024 
12025 void intel_release_load_detect_pipe(struct drm_connector *connector,
12026 				    struct intel_load_detect_pipe *old,
12027 				    struct drm_modeset_acquire_ctx *ctx)
12028 {
12029 	struct intel_encoder *intel_encoder =
12030 		intel_attached_encoder(to_intel_connector(connector));
12031 	struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev);
12032 	struct drm_encoder *encoder = &intel_encoder->base;
12033 	struct drm_atomic_state *state = old->restore_state;
12034 	int ret;
12035 
12036 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
12037 		    connector->base.id, connector->name,
12038 		    encoder->base.id, encoder->name);
12039 
12040 	if (!state)
12041 		return;
12042 
12043 	ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
12044 	if (ret)
12045 		drm_dbg_kms(&i915->drm,
12046 			    "Couldn't release load detect pipe: %i\n", ret);
12047 	drm_atomic_state_put(state);
12048 }
12049 
12050 static int i9xx_pll_refclk(struct drm_device *dev,
12051 			   const struct intel_crtc_state *pipe_config)
12052 {
12053 	struct drm_i915_private *dev_priv = to_i915(dev);
12054 	u32 dpll = pipe_config->dpll_hw_state.dpll;
12055 
12056 	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
12057 		return dev_priv->vbt.lvds_ssc_freq;
12058 	else if (HAS_PCH_SPLIT(dev_priv))
12059 		return 120000;
12060 	else if (!IS_GEN(dev_priv, 2))
12061 		return 96000;
12062 	else
12063 		return 48000;
12064 }
12065 
12066 /* Returns the clock of the currently programmed mode of the given pipe. */
12067 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
12068 				struct intel_crtc_state *pipe_config)
12069 {
12070 	struct drm_device *dev = crtc->base.dev;
12071 	struct drm_i915_private *dev_priv = to_i915(dev);
12072 	enum pipe pipe = crtc->pipe;
12073 	u32 dpll = pipe_config->dpll_hw_state.dpll;
12074 	u32 fp;
12075 	struct dpll clock;
12076 	int port_clock;
12077 	int refclk = i9xx_pll_refclk(dev, pipe_config);
12078 
12079 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
12080 		fp = pipe_config->dpll_hw_state.fp0;
12081 	else
12082 		fp = pipe_config->dpll_hw_state.fp1;
12083 
12084 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
12085 	if (IS_PINEVIEW(dev_priv)) {
12086 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
12087 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
12088 	} else {
12089 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
12090 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
12091 	}
12092 
12093 	if (!IS_GEN(dev_priv, 2)) {
12094 		if (IS_PINEVIEW(dev_priv))
12095 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
12096 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
12097 		else
12098 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
12099 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
12100 
12101 		switch (dpll & DPLL_MODE_MASK) {
12102 		case DPLLB_MODE_DAC_SERIAL:
12103 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
12104 				5 : 10;
12105 			break;
12106 		case DPLLB_MODE_LVDS:
12107 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
12108 				7 : 14;
12109 			break;
12110 		default:
12111 			drm_dbg_kms(&dev_priv->drm,
12112 				    "Unknown DPLL mode %08x in programmed "
12113 				    "mode\n", (int)(dpll & DPLL_MODE_MASK));
12114 			return;
12115 		}
12116 
12117 		if (IS_PINEVIEW(dev_priv))
12118 			port_clock = pnv_calc_dpll_params(refclk, &clock);
12119 		else
12120 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
12121 	} else {
12122 		u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv,
12123 								 LVDS);
12124 		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
12125 
12126 		if (is_lvds) {
12127 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
12128 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
12129 
12130 			if (lvds & LVDS_CLKB_POWER_UP)
12131 				clock.p2 = 7;
12132 			else
12133 				clock.p2 = 14;
12134 		} else {
12135 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
12136 				clock.p1 = 2;
12137 			else {
12138 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
12139 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
12140 			}
12141 			if (dpll & PLL_P2_DIVIDE_BY_4)
12142 				clock.p2 = 4;
12143 			else
12144 				clock.p2 = 2;
12145 		}
12146 
12147 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
12148 	}
12149 
12150 	/*
12151 	 * This value includes pixel_multiplier. We will use
12152 	 * port_clock to compute adjusted_mode.crtc_clock in the
12153 	 * encoder's get_config() function.
12154 	 */
12155 	pipe_config->port_clock = port_clock;
12156 }
12157 
12158 int intel_dotclock_calculate(int link_freq,
12159 			     const struct intel_link_m_n *m_n)
12160 {
12161 	/*
12162 	 * The calculation for the data clock is:
12163 	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
12164 	 * But we want to avoid losing precison if possible, so:
12165 	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
12166 	 *
12167 	 * and the link clock is simpler:
12168 	 * link_clock = (m * link_clock) / n
12169 	 */
12170 
12171 	if (!m_n->link_n)
12172 		return 0;
12173 
12174 	return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
12175 }
12176 
12177 static void ilk_pch_clock_get(struct intel_crtc *crtc,
12178 			      struct intel_crtc_state *pipe_config)
12179 {
12180 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12181 
12182 	/* read out port_clock from the DPLL */
12183 	i9xx_crtc_clock_get(crtc, pipe_config);
12184 
12185 	/*
12186 	 * In case there is an active pipe without active ports,
12187 	 * we may need some idea for the dotclock anyway.
12188 	 * Calculate one based on the FDI configuration.
12189 	 */
12190 	pipe_config->hw.adjusted_mode.crtc_clock =
12191 		intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12192 					 &pipe_config->fdi_m_n);
12193 }
12194 
12195 static void intel_crtc_state_reset(struct intel_crtc_state *crtc_state,
12196 				   struct intel_crtc *crtc)
12197 {
12198 	memset(crtc_state, 0, sizeof(*crtc_state));
12199 
12200 	__drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base);
12201 
12202 	crtc_state->cpu_transcoder = INVALID_TRANSCODER;
12203 	crtc_state->master_transcoder = INVALID_TRANSCODER;
12204 	crtc_state->hsw_workaround_pipe = INVALID_PIPE;
12205 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_INVALID;
12206 	crtc_state->scaler_state.scaler_id = -1;
12207 	crtc_state->mst_master_transcoder = INVALID_TRANSCODER;
12208 }
12209 
12210 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc)
12211 {
12212 	struct intel_crtc_state *crtc_state;
12213 
12214 	crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL);
12215 
12216 	if (crtc_state)
12217 		intel_crtc_state_reset(crtc_state, crtc);
12218 
12219 	return crtc_state;
12220 }
12221 
12222 /* Returns the currently programmed mode of the given encoder. */
12223 struct drm_display_mode *
12224 intel_encoder_current_mode(struct intel_encoder *encoder)
12225 {
12226 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
12227 	struct intel_crtc_state *crtc_state;
12228 	struct drm_display_mode *mode;
12229 	struct intel_crtc *crtc;
12230 	enum pipe pipe;
12231 
12232 	if (!encoder->get_hw_state(encoder, &pipe))
12233 		return NULL;
12234 
12235 	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12236 
12237 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
12238 	if (!mode)
12239 		return NULL;
12240 
12241 	crtc_state = intel_crtc_state_alloc(crtc);
12242 	if (!crtc_state) {
12243 		kfree(mode);
12244 		return NULL;
12245 	}
12246 
12247 	if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) {
12248 		kfree(crtc_state);
12249 		kfree(mode);
12250 		return NULL;
12251 	}
12252 
12253 	encoder->get_config(encoder, crtc_state);
12254 
12255 	intel_mode_from_pipe_config(mode, crtc_state);
12256 
12257 	kfree(crtc_state);
12258 
12259 	return mode;
12260 }
12261 
12262 static void intel_crtc_destroy(struct drm_crtc *crtc)
12263 {
12264 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12265 
12266 	drm_crtc_cleanup(crtc);
12267 	kfree(intel_crtc);
12268 }
12269 
12270 /**
12271  * intel_wm_need_update - Check whether watermarks need updating
12272  * @cur: current plane state
12273  * @new: new plane state
12274  *
12275  * Check current plane state versus the new one to determine whether
12276  * watermarks need to be recalculated.
12277  *
12278  * Returns true or false.
12279  */
12280 static bool intel_wm_need_update(const struct intel_plane_state *cur,
12281 				 struct intel_plane_state *new)
12282 {
12283 	/* Update watermarks on tiling or size changes. */
12284 	if (new->uapi.visible != cur->uapi.visible)
12285 		return true;
12286 
12287 	if (!cur->hw.fb || !new->hw.fb)
12288 		return false;
12289 
12290 	if (cur->hw.fb->modifier != new->hw.fb->modifier ||
12291 	    cur->hw.rotation != new->hw.rotation ||
12292 	    drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) ||
12293 	    drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) ||
12294 	    drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) ||
12295 	    drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst))
12296 		return true;
12297 
12298 	return false;
12299 }
12300 
12301 static bool needs_scaling(const struct intel_plane_state *state)
12302 {
12303 	int src_w = drm_rect_width(&state->uapi.src) >> 16;
12304 	int src_h = drm_rect_height(&state->uapi.src) >> 16;
12305 	int dst_w = drm_rect_width(&state->uapi.dst);
12306 	int dst_h = drm_rect_height(&state->uapi.dst);
12307 
12308 	return (src_w != dst_w || src_h != dst_h);
12309 }
12310 
12311 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
12312 				    struct intel_crtc_state *crtc_state,
12313 				    const struct intel_plane_state *old_plane_state,
12314 				    struct intel_plane_state *plane_state)
12315 {
12316 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12317 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
12318 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12319 	bool mode_changed = needs_modeset(crtc_state);
12320 	bool was_crtc_enabled = old_crtc_state->hw.active;
12321 	bool is_crtc_enabled = crtc_state->hw.active;
12322 	bool turn_off, turn_on, visible, was_visible;
12323 	int ret;
12324 
12325 	if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
12326 		ret = skl_update_scaler_plane(crtc_state, plane_state);
12327 		if (ret)
12328 			return ret;
12329 	}
12330 
12331 	was_visible = old_plane_state->uapi.visible;
12332 	visible = plane_state->uapi.visible;
12333 
12334 	if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible))
12335 		was_visible = false;
12336 
12337 	/*
12338 	 * Visibility is calculated as if the crtc was on, but
12339 	 * after scaler setup everything depends on it being off
12340 	 * when the crtc isn't active.
12341 	 *
12342 	 * FIXME this is wrong for watermarks. Watermarks should also
12343 	 * be computed as if the pipe would be active. Perhaps move
12344 	 * per-plane wm computation to the .check_plane() hook, and
12345 	 * only combine the results from all planes in the current place?
12346 	 */
12347 	if (!is_crtc_enabled) {
12348 		intel_plane_set_invisible(crtc_state, plane_state);
12349 		visible = false;
12350 	}
12351 
12352 	if (!was_visible && !visible)
12353 		return 0;
12354 
12355 	turn_off = was_visible && (!visible || mode_changed);
12356 	turn_on = visible && (!was_visible || mode_changed);
12357 
12358 	drm_dbg_atomic(&dev_priv->drm,
12359 		       "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12360 		       crtc->base.base.id, crtc->base.name,
12361 		       plane->base.base.id, plane->base.name,
12362 		       was_visible, visible,
12363 		       turn_off, turn_on, mode_changed);
12364 
12365 	if (turn_on) {
12366 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12367 			crtc_state->update_wm_pre = true;
12368 
12369 		/* must disable cxsr around plane enable/disable */
12370 		if (plane->id != PLANE_CURSOR)
12371 			crtc_state->disable_cxsr = true;
12372 	} else if (turn_off) {
12373 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12374 			crtc_state->update_wm_post = true;
12375 
12376 		/* must disable cxsr around plane enable/disable */
12377 		if (plane->id != PLANE_CURSOR)
12378 			crtc_state->disable_cxsr = true;
12379 	} else if (intel_wm_need_update(old_plane_state, plane_state)) {
12380 		if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
12381 			/* FIXME bollocks */
12382 			crtc_state->update_wm_pre = true;
12383 			crtc_state->update_wm_post = true;
12384 		}
12385 	}
12386 
12387 	if (visible || was_visible)
12388 		crtc_state->fb_bits |= plane->frontbuffer_bit;
12389 
12390 	/*
12391 	 * ILK/SNB DVSACNTR/Sprite Enable
12392 	 * IVB SPR_CTL/Sprite Enable
12393 	 * "When in Self Refresh Big FIFO mode, a write to enable the
12394 	 *  plane will be internally buffered and delayed while Big FIFO
12395 	 *  mode is exiting."
12396 	 *
12397 	 * Which means that enabling the sprite can take an extra frame
12398 	 * when we start in big FIFO mode (LP1+). Thus we need to drop
12399 	 * down to LP0 and wait for vblank in order to make sure the
12400 	 * sprite gets enabled on the next vblank after the register write.
12401 	 * Doing otherwise would risk enabling the sprite one frame after
12402 	 * we've already signalled flip completion. We can resume LP1+
12403 	 * once the sprite has been enabled.
12404 	 *
12405 	 *
12406 	 * WaCxSRDisabledForSpriteScaling:ivb
12407 	 * IVB SPR_SCALE/Scaling Enable
12408 	 * "Low Power watermarks must be disabled for at least one
12409 	 *  frame before enabling sprite scaling, and kept disabled
12410 	 *  until sprite scaling is disabled."
12411 	 *
12412 	 * ILK/SNB DVSASCALE/Scaling Enable
12413 	 * "When in Self Refresh Big FIFO mode, scaling enable will be
12414 	 *  masked off while Big FIFO mode is exiting."
12415 	 *
12416 	 * Despite the w/a only being listed for IVB we assume that
12417 	 * the ILK/SNB note has similar ramifications, hence we apply
12418 	 * the w/a on all three platforms.
12419 	 *
12420 	 * With experimental results seems this is needed also for primary
12421 	 * plane, not only sprite plane.
12422 	 */
12423 	if (plane->id != PLANE_CURSOR &&
12424 	    (IS_GEN_RANGE(dev_priv, 5, 6) ||
12425 	     IS_IVYBRIDGE(dev_priv)) &&
12426 	    (turn_on || (!needs_scaling(old_plane_state) &&
12427 			 needs_scaling(plane_state))))
12428 		crtc_state->disable_lp_wm = true;
12429 
12430 	return 0;
12431 }
12432 
12433 static bool encoders_cloneable(const struct intel_encoder *a,
12434 			       const struct intel_encoder *b)
12435 {
12436 	/* masks could be asymmetric, so check both ways */
12437 	return a == b || (a->cloneable & (1 << b->type) &&
12438 			  b->cloneable & (1 << a->type));
12439 }
12440 
12441 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12442 					 struct intel_crtc *crtc,
12443 					 struct intel_encoder *encoder)
12444 {
12445 	struct intel_encoder *source_encoder;
12446 	struct drm_connector *connector;
12447 	struct drm_connector_state *connector_state;
12448 	int i;
12449 
12450 	for_each_new_connector_in_state(state, connector, connector_state, i) {
12451 		if (connector_state->crtc != &crtc->base)
12452 			continue;
12453 
12454 		source_encoder =
12455 			to_intel_encoder(connector_state->best_encoder);
12456 		if (!encoders_cloneable(encoder, source_encoder))
12457 			return false;
12458 	}
12459 
12460 	return true;
12461 }
12462 
12463 static int icl_add_linked_planes(struct intel_atomic_state *state)
12464 {
12465 	struct intel_plane *plane, *linked;
12466 	struct intel_plane_state *plane_state, *linked_plane_state;
12467 	int i;
12468 
12469 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12470 		linked = plane_state->planar_linked_plane;
12471 
12472 		if (!linked)
12473 			continue;
12474 
12475 		linked_plane_state = intel_atomic_get_plane_state(state, linked);
12476 		if (IS_ERR(linked_plane_state))
12477 			return PTR_ERR(linked_plane_state);
12478 
12479 		drm_WARN_ON(state->base.dev,
12480 			    linked_plane_state->planar_linked_plane != plane);
12481 		drm_WARN_ON(state->base.dev,
12482 			    linked_plane_state->planar_slave == plane_state->planar_slave);
12483 	}
12484 
12485 	return 0;
12486 }
12487 
12488 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state)
12489 {
12490 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12491 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12492 	struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
12493 	struct intel_plane *plane, *linked;
12494 	struct intel_plane_state *plane_state;
12495 	int i;
12496 
12497 	if (INTEL_GEN(dev_priv) < 11)
12498 		return 0;
12499 
12500 	/*
12501 	 * Destroy all old plane links and make the slave plane invisible
12502 	 * in the crtc_state->active_planes mask.
12503 	 */
12504 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12505 		if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane)
12506 			continue;
12507 
12508 		plane_state->planar_linked_plane = NULL;
12509 		if (plane_state->planar_slave && !plane_state->uapi.visible) {
12510 			crtc_state->active_planes &= ~BIT(plane->id);
12511 			crtc_state->update_planes |= BIT(plane->id);
12512 		}
12513 
12514 		plane_state->planar_slave = false;
12515 	}
12516 
12517 	if (!crtc_state->nv12_planes)
12518 		return 0;
12519 
12520 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12521 		struct intel_plane_state *linked_state = NULL;
12522 
12523 		if (plane->pipe != crtc->pipe ||
12524 		    !(crtc_state->nv12_planes & BIT(plane->id)))
12525 			continue;
12526 
12527 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) {
12528 			if (!icl_is_nv12_y_plane(dev_priv, linked->id))
12529 				continue;
12530 
12531 			if (crtc_state->active_planes & BIT(linked->id))
12532 				continue;
12533 
12534 			linked_state = intel_atomic_get_plane_state(state, linked);
12535 			if (IS_ERR(linked_state))
12536 				return PTR_ERR(linked_state);
12537 
12538 			break;
12539 		}
12540 
12541 		if (!linked_state) {
12542 			drm_dbg_kms(&dev_priv->drm,
12543 				    "Need %d free Y planes for planar YUV\n",
12544 				    hweight8(crtc_state->nv12_planes));
12545 
12546 			return -EINVAL;
12547 		}
12548 
12549 		plane_state->planar_linked_plane = linked;
12550 
12551 		linked_state->planar_slave = true;
12552 		linked_state->planar_linked_plane = plane;
12553 		crtc_state->active_planes |= BIT(linked->id);
12554 		crtc_state->update_planes |= BIT(linked->id);
12555 		drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n",
12556 			    linked->base.name, plane->base.name);
12557 
12558 		/* Copy parameters to slave plane */
12559 		linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE;
12560 		linked_state->color_ctl = plane_state->color_ctl;
12561 		linked_state->view = plane_state->view;
12562 		memcpy(linked_state->color_plane, plane_state->color_plane,
12563 		       sizeof(linked_state->color_plane));
12564 
12565 		intel_plane_copy_uapi_to_hw_state(linked_state, plane_state);
12566 		linked_state->uapi.src = plane_state->uapi.src;
12567 		linked_state->uapi.dst = plane_state->uapi.dst;
12568 
12569 		if (icl_is_hdr_plane(dev_priv, plane->id)) {
12570 			if (linked->id == PLANE_SPRITE5)
12571 				plane_state->cus_ctl |= PLANE_CUS_PLANE_7;
12572 			else if (linked->id == PLANE_SPRITE4)
12573 				plane_state->cus_ctl |= PLANE_CUS_PLANE_6;
12574 			else if (linked->id == PLANE_SPRITE3)
12575 				plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL;
12576 			else if (linked->id == PLANE_SPRITE2)
12577 				plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL;
12578 			else
12579 				MISSING_CASE(linked->id);
12580 		}
12581 	}
12582 
12583 	return 0;
12584 }
12585 
12586 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state)
12587 {
12588 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
12589 	struct intel_atomic_state *state =
12590 		to_intel_atomic_state(new_crtc_state->uapi.state);
12591 	const struct intel_crtc_state *old_crtc_state =
12592 		intel_atomic_get_old_crtc_state(state, crtc);
12593 
12594 	return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes;
12595 }
12596 
12597 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state)
12598 {
12599 	const struct drm_display_mode *adjusted_mode =
12600 		&crtc_state->hw.adjusted_mode;
12601 	int linetime_wm;
12602 
12603 	if (!crtc_state->hw.enable)
12604 		return 0;
12605 
12606 	linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
12607 					adjusted_mode->crtc_clock);
12608 
12609 	return min(linetime_wm, 0x1ff);
12610 }
12611 
12612 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state,
12613 			       const struct intel_cdclk_state *cdclk_state)
12614 {
12615 	const struct drm_display_mode *adjusted_mode =
12616 		&crtc_state->hw.adjusted_mode;
12617 	int linetime_wm;
12618 
12619 	if (!crtc_state->hw.enable)
12620 		return 0;
12621 
12622 	linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
12623 					cdclk_state->logical.cdclk);
12624 
12625 	return min(linetime_wm, 0x1ff);
12626 }
12627 
12628 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state)
12629 {
12630 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12631 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12632 	const struct drm_display_mode *adjusted_mode =
12633 		&crtc_state->hw.adjusted_mode;
12634 	int linetime_wm;
12635 
12636 	if (!crtc_state->hw.enable)
12637 		return 0;
12638 
12639 	linetime_wm = DIV_ROUND_UP(adjusted_mode->crtc_htotal * 1000 * 8,
12640 				   crtc_state->pixel_rate);
12641 
12642 	/* Display WA #1135: BXT:ALL GLK:ALL */
12643 	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
12644 		linetime_wm /= 2;
12645 
12646 	return min(linetime_wm, 0x1ff);
12647 }
12648 
12649 static int hsw_compute_linetime_wm(struct intel_atomic_state *state,
12650 				   struct intel_crtc *crtc)
12651 {
12652 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12653 	struct intel_crtc_state *crtc_state =
12654 		intel_atomic_get_new_crtc_state(state, crtc);
12655 	const struct intel_cdclk_state *cdclk_state;
12656 
12657 	if (INTEL_GEN(dev_priv) >= 9)
12658 		crtc_state->linetime = skl_linetime_wm(crtc_state);
12659 	else
12660 		crtc_state->linetime = hsw_linetime_wm(crtc_state);
12661 
12662 	if (!hsw_crtc_supports_ips(crtc))
12663 		return 0;
12664 
12665 	cdclk_state = intel_atomic_get_cdclk_state(state);
12666 	if (IS_ERR(cdclk_state))
12667 		return PTR_ERR(cdclk_state);
12668 
12669 	crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state,
12670 						       cdclk_state);
12671 
12672 	return 0;
12673 }
12674 
12675 static int intel_crtc_atomic_check(struct intel_atomic_state *state,
12676 				   struct intel_crtc *crtc)
12677 {
12678 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12679 	struct intel_crtc_state *crtc_state =
12680 		intel_atomic_get_new_crtc_state(state, crtc);
12681 	bool mode_changed = needs_modeset(crtc_state);
12682 	int ret;
12683 
12684 	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) &&
12685 	    mode_changed && !crtc_state->hw.active)
12686 		crtc_state->update_wm_post = true;
12687 
12688 	if (mode_changed && crtc_state->hw.enable &&
12689 	    dev_priv->display.crtc_compute_clock &&
12690 	    !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) {
12691 		ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state);
12692 		if (ret)
12693 			return ret;
12694 	}
12695 
12696 	/*
12697 	 * May need to update pipe gamma enable bits
12698 	 * when C8 planes are getting enabled/disabled.
12699 	 */
12700 	if (c8_planes_changed(crtc_state))
12701 		crtc_state->uapi.color_mgmt_changed = true;
12702 
12703 	if (mode_changed || crtc_state->update_pipe ||
12704 	    crtc_state->uapi.color_mgmt_changed) {
12705 		ret = intel_color_check(crtc_state);
12706 		if (ret)
12707 			return ret;
12708 	}
12709 
12710 	if (dev_priv->display.compute_pipe_wm) {
12711 		ret = dev_priv->display.compute_pipe_wm(crtc_state);
12712 		if (ret) {
12713 			drm_dbg_kms(&dev_priv->drm,
12714 				    "Target pipe watermarks are invalid\n");
12715 			return ret;
12716 		}
12717 	}
12718 
12719 	if (dev_priv->display.compute_intermediate_wm) {
12720 		if (drm_WARN_ON(&dev_priv->drm,
12721 				!dev_priv->display.compute_pipe_wm))
12722 			return 0;
12723 
12724 		/*
12725 		 * Calculate 'intermediate' watermarks that satisfy both the
12726 		 * old state and the new state.  We can program these
12727 		 * immediately.
12728 		 */
12729 		ret = dev_priv->display.compute_intermediate_wm(crtc_state);
12730 		if (ret) {
12731 			drm_dbg_kms(&dev_priv->drm,
12732 				    "No valid intermediate pipe watermarks are possible\n");
12733 			return ret;
12734 		}
12735 	}
12736 
12737 	if (INTEL_GEN(dev_priv) >= 9) {
12738 		if (mode_changed || crtc_state->update_pipe) {
12739 			ret = skl_update_scaler_crtc(crtc_state);
12740 			if (ret)
12741 				return ret;
12742 		}
12743 
12744 		ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state);
12745 		if (ret)
12746 			return ret;
12747 	}
12748 
12749 	if (HAS_IPS(dev_priv)) {
12750 		ret = hsw_compute_ips_config(crtc_state);
12751 		if (ret)
12752 			return ret;
12753 	}
12754 
12755 	if (INTEL_GEN(dev_priv) >= 9 ||
12756 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
12757 		ret = hsw_compute_linetime_wm(state, crtc);
12758 		if (ret)
12759 			return ret;
12760 
12761 	}
12762 
12763 	return 0;
12764 }
12765 
12766 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12767 {
12768 	struct intel_connector *connector;
12769 	struct drm_connector_list_iter conn_iter;
12770 
12771 	drm_connector_list_iter_begin(dev, &conn_iter);
12772 	for_each_intel_connector_iter(connector, &conn_iter) {
12773 		if (connector->base.state->crtc)
12774 			drm_connector_put(&connector->base);
12775 
12776 		if (connector->base.encoder) {
12777 			connector->base.state->best_encoder =
12778 				connector->base.encoder;
12779 			connector->base.state->crtc =
12780 				connector->base.encoder->crtc;
12781 
12782 			drm_connector_get(&connector->base);
12783 		} else {
12784 			connector->base.state->best_encoder = NULL;
12785 			connector->base.state->crtc = NULL;
12786 		}
12787 	}
12788 	drm_connector_list_iter_end(&conn_iter);
12789 }
12790 
12791 static int
12792 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
12793 		      struct intel_crtc_state *pipe_config)
12794 {
12795 	struct drm_connector *connector = conn_state->connector;
12796 	struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
12797 	const struct drm_display_info *info = &connector->display_info;
12798 	int bpp;
12799 
12800 	switch (conn_state->max_bpc) {
12801 	case 6 ... 7:
12802 		bpp = 6 * 3;
12803 		break;
12804 	case 8 ... 9:
12805 		bpp = 8 * 3;
12806 		break;
12807 	case 10 ... 11:
12808 		bpp = 10 * 3;
12809 		break;
12810 	case 12:
12811 		bpp = 12 * 3;
12812 		break;
12813 	default:
12814 		return -EINVAL;
12815 	}
12816 
12817 	if (bpp < pipe_config->pipe_bpp) {
12818 		drm_dbg_kms(&i915->drm,
12819 			    "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of "
12820 			    "EDID bpp %d, requested bpp %d, max platform bpp %d\n",
12821 			    connector->base.id, connector->name,
12822 			    bpp, 3 * info->bpc,
12823 			    3 * conn_state->max_requested_bpc,
12824 			    pipe_config->pipe_bpp);
12825 
12826 		pipe_config->pipe_bpp = bpp;
12827 	}
12828 
12829 	return 0;
12830 }
12831 
12832 static int
12833 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12834 			  struct intel_crtc_state *pipe_config)
12835 {
12836 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12837 	struct drm_atomic_state *state = pipe_config->uapi.state;
12838 	struct drm_connector *connector;
12839 	struct drm_connector_state *connector_state;
12840 	int bpp, i;
12841 
12842 	if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12843 	    IS_CHERRYVIEW(dev_priv)))
12844 		bpp = 10*3;
12845 	else if (INTEL_GEN(dev_priv) >= 5)
12846 		bpp = 12*3;
12847 	else
12848 		bpp = 8*3;
12849 
12850 	pipe_config->pipe_bpp = bpp;
12851 
12852 	/* Clamp display bpp to connector max bpp */
12853 	for_each_new_connector_in_state(state, connector, connector_state, i) {
12854 		int ret;
12855 
12856 		if (connector_state->crtc != &crtc->base)
12857 			continue;
12858 
12859 		ret = compute_sink_pipe_bpp(connector_state, pipe_config);
12860 		if (ret)
12861 			return ret;
12862 	}
12863 
12864 	return 0;
12865 }
12866 
12867 static void intel_dump_crtc_timings(struct drm_i915_private *i915,
12868 				    const struct drm_display_mode *mode)
12869 {
12870 	drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, "
12871 		    "type: 0x%x flags: 0x%x\n",
12872 		    mode->crtc_clock,
12873 		    mode->crtc_hdisplay, mode->crtc_hsync_start,
12874 		    mode->crtc_hsync_end, mode->crtc_htotal,
12875 		    mode->crtc_vdisplay, mode->crtc_vsync_start,
12876 		    mode->crtc_vsync_end, mode->crtc_vtotal,
12877 		    mode->type, mode->flags);
12878 }
12879 
12880 static void
12881 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config,
12882 		      const char *id, unsigned int lane_count,
12883 		      const struct intel_link_m_n *m_n)
12884 {
12885 	struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
12886 
12887 	drm_dbg_kms(&i915->drm,
12888 		    "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12889 		    id, lane_count,
12890 		    m_n->gmch_m, m_n->gmch_n,
12891 		    m_n->link_m, m_n->link_n, m_n->tu);
12892 }
12893 
12894 static void
12895 intel_dump_infoframe(struct drm_i915_private *dev_priv,
12896 		     const union hdmi_infoframe *frame)
12897 {
12898 	if (!drm_debug_enabled(DRM_UT_KMS))
12899 		return;
12900 
12901 	hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame);
12902 }
12903 
12904 static void
12905 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv,
12906 		      const struct drm_dp_vsc_sdp *vsc)
12907 {
12908 	if (!drm_debug_enabled(DRM_UT_KMS))
12909 		return;
12910 
12911 	drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc);
12912 }
12913 
12914 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
12915 
12916 static const char * const output_type_str[] = {
12917 	OUTPUT_TYPE(UNUSED),
12918 	OUTPUT_TYPE(ANALOG),
12919 	OUTPUT_TYPE(DVO),
12920 	OUTPUT_TYPE(SDVO),
12921 	OUTPUT_TYPE(LVDS),
12922 	OUTPUT_TYPE(TVOUT),
12923 	OUTPUT_TYPE(HDMI),
12924 	OUTPUT_TYPE(DP),
12925 	OUTPUT_TYPE(EDP),
12926 	OUTPUT_TYPE(DSI),
12927 	OUTPUT_TYPE(DDI),
12928 	OUTPUT_TYPE(DP_MST),
12929 };
12930 
12931 #undef OUTPUT_TYPE
12932 
12933 static void snprintf_output_types(char *buf, size_t len,
12934 				  unsigned int output_types)
12935 {
12936 	char *str = buf;
12937 	int i;
12938 
12939 	str[0] = '\0';
12940 
12941 	for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
12942 		int r;
12943 
12944 		if ((output_types & BIT(i)) == 0)
12945 			continue;
12946 
12947 		r = snprintf(str, len, "%s%s",
12948 			     str != buf ? "," : "", output_type_str[i]);
12949 		if (r >= len)
12950 			break;
12951 		str += r;
12952 		len -= r;
12953 
12954 		output_types &= ~BIT(i);
12955 	}
12956 
12957 	WARN_ON_ONCE(output_types != 0);
12958 }
12959 
12960 static const char * const output_format_str[] = {
12961 	[INTEL_OUTPUT_FORMAT_INVALID] = "Invalid",
12962 	[INTEL_OUTPUT_FORMAT_RGB] = "RGB",
12963 	[INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0",
12964 	[INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4",
12965 };
12966 
12967 static const char *output_formats(enum intel_output_format format)
12968 {
12969 	if (format >= ARRAY_SIZE(output_format_str))
12970 		format = INTEL_OUTPUT_FORMAT_INVALID;
12971 	return output_format_str[format];
12972 }
12973 
12974 static void intel_dump_plane_state(const struct intel_plane_state *plane_state)
12975 {
12976 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
12977 	struct drm_i915_private *i915 = to_i915(plane->base.dev);
12978 	const struct drm_framebuffer *fb = plane_state->hw.fb;
12979 	struct drm_format_name_buf format_name;
12980 
12981 	if (!fb) {
12982 		drm_dbg_kms(&i915->drm,
12983 			    "[PLANE:%d:%s] fb: [NOFB], visible: %s\n",
12984 			    plane->base.base.id, plane->base.name,
12985 			    yesno(plane_state->uapi.visible));
12986 		return;
12987 	}
12988 
12989 	drm_dbg_kms(&i915->drm,
12990 		    "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n",
12991 		    plane->base.base.id, plane->base.name,
12992 		    fb->base.id, fb->width, fb->height,
12993 		    drm_get_format_name(fb->format->format, &format_name),
12994 		    yesno(plane_state->uapi.visible));
12995 	drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n",
12996 		    plane_state->hw.rotation, plane_state->scaler_id);
12997 	if (plane_state->uapi.visible)
12998 		drm_dbg_kms(&i915->drm,
12999 			    "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n",
13000 			    DRM_RECT_FP_ARG(&plane_state->uapi.src),
13001 			    DRM_RECT_ARG(&plane_state->uapi.dst));
13002 }
13003 
13004 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config,
13005 				   struct intel_atomic_state *state,
13006 				   const char *context)
13007 {
13008 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
13009 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13010 	const struct intel_plane_state *plane_state;
13011 	struct intel_plane *plane;
13012 	char buf[64];
13013 	int i;
13014 
13015 	drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n",
13016 		    crtc->base.base.id, crtc->base.name,
13017 		    yesno(pipe_config->hw.enable), context);
13018 
13019 	if (!pipe_config->hw.enable)
13020 		goto dump_planes;
13021 
13022 	snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
13023 	drm_dbg_kms(&dev_priv->drm,
13024 		    "active: %s, output_types: %s (0x%x), output format: %s\n",
13025 		    yesno(pipe_config->hw.active),
13026 		    buf, pipe_config->output_types,
13027 		    output_formats(pipe_config->output_format));
13028 
13029 	drm_dbg_kms(&dev_priv->drm,
13030 		    "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
13031 		    transcoder_name(pipe_config->cpu_transcoder),
13032 		    pipe_config->pipe_bpp, pipe_config->dither);
13033 
13034 	drm_dbg_kms(&dev_priv->drm,
13035 		    "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n",
13036 		    transcoder_name(pipe_config->master_transcoder),
13037 		    pipe_config->sync_mode_slaves_mask);
13038 
13039 	if (pipe_config->has_pch_encoder)
13040 		intel_dump_m_n_config(pipe_config, "fdi",
13041 				      pipe_config->fdi_lanes,
13042 				      &pipe_config->fdi_m_n);
13043 
13044 	if (intel_crtc_has_dp_encoder(pipe_config)) {
13045 		intel_dump_m_n_config(pipe_config, "dp m_n",
13046 				pipe_config->lane_count, &pipe_config->dp_m_n);
13047 		if (pipe_config->has_drrs)
13048 			intel_dump_m_n_config(pipe_config, "dp m2_n2",
13049 					      pipe_config->lane_count,
13050 					      &pipe_config->dp_m2_n2);
13051 	}
13052 
13053 	drm_dbg_kms(&dev_priv->drm,
13054 		    "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n",
13055 		    pipe_config->has_audio, pipe_config->has_infoframe,
13056 		    pipe_config->infoframes.enable);
13057 
13058 	if (pipe_config->infoframes.enable &
13059 	    intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL))
13060 		drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n",
13061 			    pipe_config->infoframes.gcp);
13062 	if (pipe_config->infoframes.enable &
13063 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI))
13064 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi);
13065 	if (pipe_config->infoframes.enable &
13066 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD))
13067 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd);
13068 	if (pipe_config->infoframes.enable &
13069 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR))
13070 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi);
13071 	if (pipe_config->infoframes.enable &
13072 	    intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM))
13073 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm);
13074 	if (pipe_config->infoframes.enable &
13075 	    intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA))
13076 		intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm);
13077 	if (pipe_config->infoframes.enable &
13078 	    intel_hdmi_infoframe_enable(DP_SDP_VSC))
13079 		intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc);
13080 
13081 	drm_dbg_kms(&dev_priv->drm, "requested mode:\n");
13082 	drm_mode_debug_printmodeline(&pipe_config->hw.mode);
13083 	drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n");
13084 	drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode);
13085 	intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode);
13086 	drm_dbg_kms(&dev_priv->drm,
13087 		    "port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
13088 		    pipe_config->port_clock,
13089 		    pipe_config->pipe_src_w, pipe_config->pipe_src_h,
13090 		    pipe_config->pixel_rate);
13091 
13092 	drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n",
13093 		    pipe_config->linetime, pipe_config->ips_linetime);
13094 
13095 	if (INTEL_GEN(dev_priv) >= 9)
13096 		drm_dbg_kms(&dev_priv->drm,
13097 			    "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
13098 			    crtc->num_scalers,
13099 			    pipe_config->scaler_state.scaler_users,
13100 			    pipe_config->scaler_state.scaler_id);
13101 
13102 	if (HAS_GMCH(dev_priv))
13103 		drm_dbg_kms(&dev_priv->drm,
13104 			    "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
13105 			    pipe_config->gmch_pfit.control,
13106 			    pipe_config->gmch_pfit.pgm_ratios,
13107 			    pipe_config->gmch_pfit.lvds_border_bits);
13108 	else
13109 		drm_dbg_kms(&dev_priv->drm,
13110 			    "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n",
13111 			    DRM_RECT_ARG(&pipe_config->pch_pfit.dst),
13112 			    enableddisabled(pipe_config->pch_pfit.enabled),
13113 			    yesno(pipe_config->pch_pfit.force_thru));
13114 
13115 	drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n",
13116 		    pipe_config->ips_enabled, pipe_config->double_wide);
13117 
13118 	intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
13119 
13120 	if (IS_CHERRYVIEW(dev_priv))
13121 		drm_dbg_kms(&dev_priv->drm,
13122 			    "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
13123 			    pipe_config->cgm_mode, pipe_config->gamma_mode,
13124 			    pipe_config->gamma_enable, pipe_config->csc_enable);
13125 	else
13126 		drm_dbg_kms(&dev_priv->drm,
13127 			    "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
13128 			    pipe_config->csc_mode, pipe_config->gamma_mode,
13129 			    pipe_config->gamma_enable, pipe_config->csc_enable);
13130 
13131 	drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n",
13132 		    transcoder_name(pipe_config->mst_master_transcoder));
13133 
13134 dump_planes:
13135 	if (!state)
13136 		return;
13137 
13138 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
13139 		if (plane->pipe == crtc->pipe)
13140 			intel_dump_plane_state(plane_state);
13141 	}
13142 }
13143 
13144 static bool check_digital_port_conflicts(struct intel_atomic_state *state)
13145 {
13146 	struct drm_device *dev = state->base.dev;
13147 	struct drm_connector *connector;
13148 	struct drm_connector_list_iter conn_iter;
13149 	unsigned int used_ports = 0;
13150 	unsigned int used_mst_ports = 0;
13151 	bool ret = true;
13152 
13153 	/*
13154 	 * We're going to peek into connector->state,
13155 	 * hence connection_mutex must be held.
13156 	 */
13157 	drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex);
13158 
13159 	/*
13160 	 * Walk the connector list instead of the encoder
13161 	 * list to detect the problem on ddi platforms
13162 	 * where there's just one encoder per digital port.
13163 	 */
13164 	drm_connector_list_iter_begin(dev, &conn_iter);
13165 	drm_for_each_connector_iter(connector, &conn_iter) {
13166 		struct drm_connector_state *connector_state;
13167 		struct intel_encoder *encoder;
13168 
13169 		connector_state =
13170 			drm_atomic_get_new_connector_state(&state->base,
13171 							   connector);
13172 		if (!connector_state)
13173 			connector_state = connector->state;
13174 
13175 		if (!connector_state->best_encoder)
13176 			continue;
13177 
13178 		encoder = to_intel_encoder(connector_state->best_encoder);
13179 
13180 		drm_WARN_ON(dev, !connector_state->crtc);
13181 
13182 		switch (encoder->type) {
13183 		case INTEL_OUTPUT_DDI:
13184 			if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev))))
13185 				break;
13186 			/* else, fall through */
13187 		case INTEL_OUTPUT_DP:
13188 		case INTEL_OUTPUT_HDMI:
13189 		case INTEL_OUTPUT_EDP:
13190 			/* the same port mustn't appear more than once */
13191 			if (used_ports & BIT(encoder->port))
13192 				ret = false;
13193 
13194 			used_ports |= BIT(encoder->port);
13195 			break;
13196 		case INTEL_OUTPUT_DP_MST:
13197 			used_mst_ports |=
13198 				1 << encoder->port;
13199 			break;
13200 		default:
13201 			break;
13202 		}
13203 	}
13204 	drm_connector_list_iter_end(&conn_iter);
13205 
13206 	/* can't mix MST and SST/HDMI on the same port */
13207 	if (used_ports & used_mst_ports)
13208 		return false;
13209 
13210 	return ret;
13211 }
13212 
13213 static void
13214 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state *crtc_state)
13215 {
13216 	intel_crtc_copy_color_blobs(crtc_state);
13217 }
13218 
13219 static void
13220 intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state *crtc_state)
13221 {
13222 	crtc_state->hw.enable = crtc_state->uapi.enable;
13223 	crtc_state->hw.active = crtc_state->uapi.active;
13224 	crtc_state->hw.mode = crtc_state->uapi.mode;
13225 	crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode;
13226 	intel_crtc_copy_uapi_to_hw_state_nomodeset(crtc_state);
13227 }
13228 
13229 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state)
13230 {
13231 	crtc_state->uapi.enable = crtc_state->hw.enable;
13232 	crtc_state->uapi.active = crtc_state->hw.active;
13233 	drm_WARN_ON(crtc_state->uapi.crtc->dev,
13234 		    drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0);
13235 
13236 	crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode;
13237 
13238 	/* copy color blobs to uapi */
13239 	drm_property_replace_blob(&crtc_state->uapi.degamma_lut,
13240 				  crtc_state->hw.degamma_lut);
13241 	drm_property_replace_blob(&crtc_state->uapi.gamma_lut,
13242 				  crtc_state->hw.gamma_lut);
13243 	drm_property_replace_blob(&crtc_state->uapi.ctm,
13244 				  crtc_state->hw.ctm);
13245 }
13246 
13247 static int
13248 intel_crtc_prepare_cleared_state(struct intel_crtc_state *crtc_state)
13249 {
13250 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13251 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13252 	struct intel_crtc_state *saved_state;
13253 
13254 	saved_state = intel_crtc_state_alloc(crtc);
13255 	if (!saved_state)
13256 		return -ENOMEM;
13257 
13258 	/* free the old crtc_state->hw members */
13259 	intel_crtc_free_hw_state(crtc_state);
13260 
13261 	/* FIXME: before the switch to atomic started, a new pipe_config was
13262 	 * kzalloc'd. Code that depends on any field being zero should be
13263 	 * fixed, so that the crtc_state can be safely duplicated. For now,
13264 	 * only fields that are know to not cause problems are preserved. */
13265 
13266 	saved_state->uapi = crtc_state->uapi;
13267 	saved_state->scaler_state = crtc_state->scaler_state;
13268 	saved_state->shared_dpll = crtc_state->shared_dpll;
13269 	saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
13270 	memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls,
13271 	       sizeof(saved_state->icl_port_dplls));
13272 	saved_state->crc_enabled = crtc_state->crc_enabled;
13273 	if (IS_G4X(dev_priv) ||
13274 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13275 		saved_state->wm = crtc_state->wm;
13276 
13277 	memcpy(crtc_state, saved_state, sizeof(*crtc_state));
13278 	kfree(saved_state);
13279 
13280 	intel_crtc_copy_uapi_to_hw_state(crtc_state);
13281 
13282 	return 0;
13283 }
13284 
13285 static int
13286 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config)
13287 {
13288 	struct drm_crtc *crtc = pipe_config->uapi.crtc;
13289 	struct drm_atomic_state *state = pipe_config->uapi.state;
13290 	struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev);
13291 	struct drm_connector *connector;
13292 	struct drm_connector_state *connector_state;
13293 	int base_bpp, ret, i;
13294 	bool retry = true;
13295 
13296 	pipe_config->cpu_transcoder =
13297 		(enum transcoder) to_intel_crtc(crtc)->pipe;
13298 
13299 	/*
13300 	 * Sanitize sync polarity flags based on requested ones. If neither
13301 	 * positive or negative polarity is requested, treat this as meaning
13302 	 * negative polarity.
13303 	 */
13304 	if (!(pipe_config->hw.adjusted_mode.flags &
13305 	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
13306 		pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
13307 
13308 	if (!(pipe_config->hw.adjusted_mode.flags &
13309 	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
13310 		pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
13311 
13312 	ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
13313 					pipe_config);
13314 	if (ret)
13315 		return ret;
13316 
13317 	base_bpp = pipe_config->pipe_bpp;
13318 
13319 	/*
13320 	 * Determine the real pipe dimensions. Note that stereo modes can
13321 	 * increase the actual pipe size due to the frame doubling and
13322 	 * insertion of additional space for blanks between the frame. This
13323 	 * is stored in the crtc timings. We use the requested mode to do this
13324 	 * computation to clearly distinguish it from the adjusted mode, which
13325 	 * can be changed by the connectors in the below retry loop.
13326 	 */
13327 	drm_mode_get_hv_timing(&pipe_config->hw.mode,
13328 			       &pipe_config->pipe_src_w,
13329 			       &pipe_config->pipe_src_h);
13330 
13331 	for_each_new_connector_in_state(state, connector, connector_state, i) {
13332 		struct intel_encoder *encoder =
13333 			to_intel_encoder(connector_state->best_encoder);
13334 
13335 		if (connector_state->crtc != crtc)
13336 			continue;
13337 
13338 		if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13339 			drm_dbg_kms(&i915->drm,
13340 				    "rejecting invalid cloning configuration\n");
13341 			return -EINVAL;
13342 		}
13343 
13344 		/*
13345 		 * Determine output_types before calling the .compute_config()
13346 		 * hooks so that the hooks can use this information safely.
13347 		 */
13348 		if (encoder->compute_output_type)
13349 			pipe_config->output_types |=
13350 				BIT(encoder->compute_output_type(encoder, pipe_config,
13351 								 connector_state));
13352 		else
13353 			pipe_config->output_types |= BIT(encoder->type);
13354 	}
13355 
13356 encoder_retry:
13357 	/* Ensure the port clock defaults are reset when retrying. */
13358 	pipe_config->port_clock = 0;
13359 	pipe_config->pixel_multiplier = 1;
13360 
13361 	/* Fill in default crtc timings, allow encoders to overwrite them. */
13362 	drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode,
13363 			      CRTC_STEREO_DOUBLE);
13364 
13365 	/* Pass our mode to the connectors and the CRTC to give them a chance to
13366 	 * adjust it according to limitations or connector properties, and also
13367 	 * a chance to reject the mode entirely.
13368 	 */
13369 	for_each_new_connector_in_state(state, connector, connector_state, i) {
13370 		struct intel_encoder *encoder =
13371 			to_intel_encoder(connector_state->best_encoder);
13372 
13373 		if (connector_state->crtc != crtc)
13374 			continue;
13375 
13376 		ret = encoder->compute_config(encoder, pipe_config,
13377 					      connector_state);
13378 		if (ret < 0) {
13379 			if (ret != -EDEADLK)
13380 				drm_dbg_kms(&i915->drm,
13381 					    "Encoder config failure: %d\n",
13382 					    ret);
13383 			return ret;
13384 		}
13385 	}
13386 
13387 	/* Set default port clock if not overwritten by the encoder. Needs to be
13388 	 * done afterwards in case the encoder adjusts the mode. */
13389 	if (!pipe_config->port_clock)
13390 		pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock
13391 			* pipe_config->pixel_multiplier;
13392 
13393 	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13394 	if (ret == -EDEADLK)
13395 		return ret;
13396 	if (ret < 0) {
13397 		drm_dbg_kms(&i915->drm, "CRTC fixup failed\n");
13398 		return ret;
13399 	}
13400 
13401 	if (ret == RETRY) {
13402 		if (drm_WARN(&i915->drm, !retry,
13403 			     "loop in pipe configuration computation\n"))
13404 			return -EINVAL;
13405 
13406 		drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n");
13407 		retry = false;
13408 		goto encoder_retry;
13409 	}
13410 
13411 	/* Dithering seems to not pass-through bits correctly when it should, so
13412 	 * only enable it on 6bpc panels and when its not a compliance
13413 	 * test requesting 6bpc video pattern.
13414 	 */
13415 	pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
13416 		!pipe_config->dither_force_disable;
13417 	drm_dbg_kms(&i915->drm,
13418 		    "hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13419 		    base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13420 
13421 	/*
13422 	 * Make drm_calc_timestamping_constants in
13423 	 * drm_atomic_helper_update_legacy_modeset_state() happy
13424 	 */
13425 	pipe_config->uapi.adjusted_mode = pipe_config->hw.adjusted_mode;
13426 
13427 	return 0;
13428 }
13429 
13430 static int
13431 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state)
13432 {
13433 	struct intel_atomic_state *state =
13434 		to_intel_atomic_state(crtc_state->uapi.state);
13435 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13436 	struct drm_connector_state *conn_state;
13437 	struct drm_connector *connector;
13438 	int i;
13439 
13440 	for_each_new_connector_in_state(&state->base, connector,
13441 					conn_state, i) {
13442 		struct intel_encoder *encoder =
13443 			to_intel_encoder(conn_state->best_encoder);
13444 		int ret;
13445 
13446 		if (conn_state->crtc != &crtc->base ||
13447 		    !encoder->compute_config_late)
13448 			continue;
13449 
13450 		ret = encoder->compute_config_late(encoder, crtc_state,
13451 						   conn_state);
13452 		if (ret)
13453 			return ret;
13454 	}
13455 
13456 	return 0;
13457 }
13458 
13459 bool intel_fuzzy_clock_check(int clock1, int clock2)
13460 {
13461 	int diff;
13462 
13463 	if (clock1 == clock2)
13464 		return true;
13465 
13466 	if (!clock1 || !clock2)
13467 		return false;
13468 
13469 	diff = abs(clock1 - clock2);
13470 
13471 	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13472 		return true;
13473 
13474 	return false;
13475 }
13476 
13477 static bool
13478 intel_compare_m_n(unsigned int m, unsigned int n,
13479 		  unsigned int m2, unsigned int n2,
13480 		  bool exact)
13481 {
13482 	if (m == m2 && n == n2)
13483 		return true;
13484 
13485 	if (exact || !m || !n || !m2 || !n2)
13486 		return false;
13487 
13488 	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13489 
13490 	if (n > n2) {
13491 		while (n > n2) {
13492 			m2 <<= 1;
13493 			n2 <<= 1;
13494 		}
13495 	} else if (n < n2) {
13496 		while (n < n2) {
13497 			m <<= 1;
13498 			n <<= 1;
13499 		}
13500 	}
13501 
13502 	if (n != n2)
13503 		return false;
13504 
13505 	return intel_fuzzy_clock_check(m, m2);
13506 }
13507 
13508 static bool
13509 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13510 		       const struct intel_link_m_n *m2_n2,
13511 		       bool exact)
13512 {
13513 	return m_n->tu == m2_n2->tu &&
13514 		intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13515 				  m2_n2->gmch_m, m2_n2->gmch_n, exact) &&
13516 		intel_compare_m_n(m_n->link_m, m_n->link_n,
13517 				  m2_n2->link_m, m2_n2->link_n, exact);
13518 }
13519 
13520 static bool
13521 intel_compare_infoframe(const union hdmi_infoframe *a,
13522 			const union hdmi_infoframe *b)
13523 {
13524 	return memcmp(a, b, sizeof(*a)) == 0;
13525 }
13526 
13527 static bool
13528 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a,
13529 			 const struct drm_dp_vsc_sdp *b)
13530 {
13531 	return memcmp(a, b, sizeof(*a)) == 0;
13532 }
13533 
13534 static void
13535 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv,
13536 			       bool fastset, const char *name,
13537 			       const union hdmi_infoframe *a,
13538 			       const union hdmi_infoframe *b)
13539 {
13540 	if (fastset) {
13541 		if (!drm_debug_enabled(DRM_UT_KMS))
13542 			return;
13543 
13544 		drm_dbg_kms(&dev_priv->drm,
13545 			    "fastset mismatch in %s infoframe\n", name);
13546 		drm_dbg_kms(&dev_priv->drm, "expected:\n");
13547 		hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a);
13548 		drm_dbg_kms(&dev_priv->drm, "found:\n");
13549 		hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b);
13550 	} else {
13551 		drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name);
13552 		drm_err(&dev_priv->drm, "expected:\n");
13553 		hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a);
13554 		drm_err(&dev_priv->drm, "found:\n");
13555 		hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b);
13556 	}
13557 }
13558 
13559 static void
13560 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv,
13561 				bool fastset, const char *name,
13562 				const struct drm_dp_vsc_sdp *a,
13563 				const struct drm_dp_vsc_sdp *b)
13564 {
13565 	if (fastset) {
13566 		if (!drm_debug_enabled(DRM_UT_KMS))
13567 			return;
13568 
13569 		drm_dbg_kms(&dev_priv->drm,
13570 			    "fastset mismatch in %s dp sdp\n", name);
13571 		drm_dbg_kms(&dev_priv->drm, "expected:\n");
13572 		drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a);
13573 		drm_dbg_kms(&dev_priv->drm, "found:\n");
13574 		drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b);
13575 	} else {
13576 		drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name);
13577 		drm_err(&dev_priv->drm, "expected:\n");
13578 		drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a);
13579 		drm_err(&dev_priv->drm, "found:\n");
13580 		drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b);
13581 	}
13582 }
13583 
13584 static void __printf(4, 5)
13585 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc,
13586 		     const char *name, const char *format, ...)
13587 {
13588 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
13589 	struct va_format vaf;
13590 	va_list args;
13591 
13592 	va_start(args, format);
13593 	vaf.fmt = format;
13594 	vaf.va = &args;
13595 
13596 	if (fastset)
13597 		drm_dbg_kms(&i915->drm,
13598 			    "[CRTC:%d:%s] fastset mismatch in %s %pV\n",
13599 			    crtc->base.base.id, crtc->base.name, name, &vaf);
13600 	else
13601 		drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n",
13602 			crtc->base.base.id, crtc->base.name, name, &vaf);
13603 
13604 	va_end(args);
13605 }
13606 
13607 static bool fastboot_enabled(struct drm_i915_private *dev_priv)
13608 {
13609 	if (dev_priv->params.fastboot != -1)
13610 		return dev_priv->params.fastboot;
13611 
13612 	/* Enable fastboot by default on Skylake and newer */
13613 	if (INTEL_GEN(dev_priv) >= 9)
13614 		return true;
13615 
13616 	/* Enable fastboot by default on VLV and CHV */
13617 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13618 		return true;
13619 
13620 	/* Disabled by default on all others */
13621 	return false;
13622 }
13623 
13624 static bool
13625 intel_pipe_config_compare(const struct intel_crtc_state *current_config,
13626 			  const struct intel_crtc_state *pipe_config,
13627 			  bool fastset)
13628 {
13629 	struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev);
13630 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
13631 	bool ret = true;
13632 	u32 bp_gamma = 0;
13633 	bool fixup_inherited = fastset &&
13634 		current_config->inherited && !pipe_config->inherited;
13635 
13636 	if (fixup_inherited && !fastboot_enabled(dev_priv)) {
13637 		drm_dbg_kms(&dev_priv->drm,
13638 			    "initial modeset and fastboot not set\n");
13639 		ret = false;
13640 	}
13641 
13642 #define PIPE_CONF_CHECK_X(name) do { \
13643 	if (current_config->name != pipe_config->name) { \
13644 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13645 				     "(expected 0x%08x, found 0x%08x)", \
13646 				     current_config->name, \
13647 				     pipe_config->name); \
13648 		ret = false; \
13649 	} \
13650 } while (0)
13651 
13652 #define PIPE_CONF_CHECK_I(name) do { \
13653 	if (current_config->name != pipe_config->name) { \
13654 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13655 				     "(expected %i, found %i)", \
13656 				     current_config->name, \
13657 				     pipe_config->name); \
13658 		ret = false; \
13659 	} \
13660 } while (0)
13661 
13662 #define PIPE_CONF_CHECK_BOOL(name) do { \
13663 	if (current_config->name != pipe_config->name) { \
13664 		pipe_config_mismatch(fastset, crtc,  __stringify(name), \
13665 				     "(expected %s, found %s)", \
13666 				     yesno(current_config->name), \
13667 				     yesno(pipe_config->name)); \
13668 		ret = false; \
13669 	} \
13670 } while (0)
13671 
13672 /*
13673  * Checks state where we only read out the enabling, but not the entire
13674  * state itself (like full infoframes or ELD for audio). These states
13675  * require a full modeset on bootup to fix up.
13676  */
13677 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \
13678 	if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \
13679 		PIPE_CONF_CHECK_BOOL(name); \
13680 	} else { \
13681 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13682 				     "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \
13683 				     yesno(current_config->name), \
13684 				     yesno(pipe_config->name)); \
13685 		ret = false; \
13686 	} \
13687 } while (0)
13688 
13689 #define PIPE_CONF_CHECK_P(name) do { \
13690 	if (current_config->name != pipe_config->name) { \
13691 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13692 				     "(expected %p, found %p)", \
13693 				     current_config->name, \
13694 				     pipe_config->name); \
13695 		ret = false; \
13696 	} \
13697 } while (0)
13698 
13699 #define PIPE_CONF_CHECK_M_N(name) do { \
13700 	if (!intel_compare_link_m_n(&current_config->name, \
13701 				    &pipe_config->name,\
13702 				    !fastset)) { \
13703 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13704 				     "(expected tu %i gmch %i/%i link %i/%i, " \
13705 				     "found tu %i, gmch %i/%i link %i/%i)", \
13706 				     current_config->name.tu, \
13707 				     current_config->name.gmch_m, \
13708 				     current_config->name.gmch_n, \
13709 				     current_config->name.link_m, \
13710 				     current_config->name.link_n, \
13711 				     pipe_config->name.tu, \
13712 				     pipe_config->name.gmch_m, \
13713 				     pipe_config->name.gmch_n, \
13714 				     pipe_config->name.link_m, \
13715 				     pipe_config->name.link_n); \
13716 		ret = false; \
13717 	} \
13718 } while (0)
13719 
13720 /* This is required for BDW+ where there is only one set of registers for
13721  * switching between high and low RR.
13722  * This macro can be used whenever a comparison has to be made between one
13723  * hw state and multiple sw state variables.
13724  */
13725 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \
13726 	if (!intel_compare_link_m_n(&current_config->name, \
13727 				    &pipe_config->name, !fastset) && \
13728 	    !intel_compare_link_m_n(&current_config->alt_name, \
13729 				    &pipe_config->name, !fastset)) { \
13730 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13731 				     "(expected tu %i gmch %i/%i link %i/%i, " \
13732 				     "or tu %i gmch %i/%i link %i/%i, " \
13733 				     "found tu %i, gmch %i/%i link %i/%i)", \
13734 				     current_config->name.tu, \
13735 				     current_config->name.gmch_m, \
13736 				     current_config->name.gmch_n, \
13737 				     current_config->name.link_m, \
13738 				     current_config->name.link_n, \
13739 				     current_config->alt_name.tu, \
13740 				     current_config->alt_name.gmch_m, \
13741 				     current_config->alt_name.gmch_n, \
13742 				     current_config->alt_name.link_m, \
13743 				     current_config->alt_name.link_n, \
13744 				     pipe_config->name.tu, \
13745 				     pipe_config->name.gmch_m, \
13746 				     pipe_config->name.gmch_n, \
13747 				     pipe_config->name.link_m, \
13748 				     pipe_config->name.link_n); \
13749 		ret = false; \
13750 	} \
13751 } while (0)
13752 
13753 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
13754 	if ((current_config->name ^ pipe_config->name) & (mask)) { \
13755 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13756 				     "(%x) (expected %i, found %i)", \
13757 				     (mask), \
13758 				     current_config->name & (mask), \
13759 				     pipe_config->name & (mask)); \
13760 		ret = false; \
13761 	} \
13762 } while (0)
13763 
13764 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \
13765 	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13766 		pipe_config_mismatch(fastset, crtc, __stringify(name), \
13767 				     "(expected %i, found %i)", \
13768 				     current_config->name, \
13769 				     pipe_config->name); \
13770 		ret = false; \
13771 	} \
13772 } while (0)
13773 
13774 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \
13775 	if (!intel_compare_infoframe(&current_config->infoframes.name, \
13776 				     &pipe_config->infoframes.name)) { \
13777 		pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \
13778 					       &current_config->infoframes.name, \
13779 					       &pipe_config->infoframes.name); \
13780 		ret = false; \
13781 	} \
13782 } while (0)
13783 
13784 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \
13785 	if (!current_config->has_psr && !pipe_config->has_psr && \
13786 	    !intel_compare_dp_vsc_sdp(&current_config->infoframes.name, \
13787 				      &pipe_config->infoframes.name)) { \
13788 		pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \
13789 						&current_config->infoframes.name, \
13790 						&pipe_config->infoframes.name); \
13791 		ret = false; \
13792 	} \
13793 } while (0)
13794 
13795 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \
13796 	if (current_config->name1 != pipe_config->name1) { \
13797 		pipe_config_mismatch(fastset, crtc, __stringify(name1), \
13798 				"(expected %i, found %i, won't compare lut values)", \
13799 				current_config->name1, \
13800 				pipe_config->name1); \
13801 		ret = false;\
13802 	} else { \
13803 		if (!intel_color_lut_equal(current_config->name2, \
13804 					pipe_config->name2, pipe_config->name1, \
13805 					bit_precision)) { \
13806 			pipe_config_mismatch(fastset, crtc, __stringify(name2), \
13807 					"hw_state doesn't match sw_state"); \
13808 			ret = false; \
13809 		} \
13810 	} \
13811 } while (0)
13812 
13813 #define PIPE_CONF_QUIRK(quirk) \
13814 	((current_config->quirks | pipe_config->quirks) & (quirk))
13815 
13816 	PIPE_CONF_CHECK_I(cpu_transcoder);
13817 
13818 	PIPE_CONF_CHECK_BOOL(has_pch_encoder);
13819 	PIPE_CONF_CHECK_I(fdi_lanes);
13820 	PIPE_CONF_CHECK_M_N(fdi_m_n);
13821 
13822 	PIPE_CONF_CHECK_I(lane_count);
13823 	PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13824 
13825 	if (INTEL_GEN(dev_priv) < 8) {
13826 		PIPE_CONF_CHECK_M_N(dp_m_n);
13827 
13828 		if (current_config->has_drrs)
13829 			PIPE_CONF_CHECK_M_N(dp_m2_n2);
13830 	} else
13831 		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13832 
13833 	PIPE_CONF_CHECK_X(output_types);
13834 
13835 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay);
13836 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal);
13837 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start);
13838 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end);
13839 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start);
13840 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end);
13841 
13842 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay);
13843 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal);
13844 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start);
13845 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end);
13846 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start);
13847 	PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end);
13848 
13849 	PIPE_CONF_CHECK_I(pixel_multiplier);
13850 	PIPE_CONF_CHECK_I(output_format);
13851 	PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
13852 	if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13853 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13854 		PIPE_CONF_CHECK_BOOL(limited_color_range);
13855 
13856 	PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
13857 	PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
13858 	PIPE_CONF_CHECK_BOOL(has_infoframe);
13859 	PIPE_CONF_CHECK_BOOL(fec_enable);
13860 
13861 	PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio);
13862 
13863 	PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13864 			      DRM_MODE_FLAG_INTERLACE);
13865 
13866 	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13867 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13868 				      DRM_MODE_FLAG_PHSYNC);
13869 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13870 				      DRM_MODE_FLAG_NHSYNC);
13871 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13872 				      DRM_MODE_FLAG_PVSYNC);
13873 		PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13874 				      DRM_MODE_FLAG_NVSYNC);
13875 	}
13876 
13877 	PIPE_CONF_CHECK_X(gmch_pfit.control);
13878 	/* pfit ratios are autocomputed by the hw on gen4+ */
13879 	if (INTEL_GEN(dev_priv) < 4)
13880 		PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13881 	PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13882 
13883 	/*
13884 	 * Changing the EDP transcoder input mux
13885 	 * (A_ONOFF vs. A_ON) requires a full modeset.
13886 	 */
13887 	PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru);
13888 
13889 	if (!fastset) {
13890 		PIPE_CONF_CHECK_I(pipe_src_w);
13891 		PIPE_CONF_CHECK_I(pipe_src_h);
13892 
13893 		PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
13894 		if (current_config->pch_pfit.enabled) {
13895 			PIPE_CONF_CHECK_I(pch_pfit.dst.x1);
13896 			PIPE_CONF_CHECK_I(pch_pfit.dst.y1);
13897 			PIPE_CONF_CHECK_I(pch_pfit.dst.x2);
13898 			PIPE_CONF_CHECK_I(pch_pfit.dst.y2);
13899 		}
13900 
13901 		PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13902 		PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
13903 
13904 		PIPE_CONF_CHECK_X(gamma_mode);
13905 		if (IS_CHERRYVIEW(dev_priv))
13906 			PIPE_CONF_CHECK_X(cgm_mode);
13907 		else
13908 			PIPE_CONF_CHECK_X(csc_mode);
13909 		PIPE_CONF_CHECK_BOOL(gamma_enable);
13910 		PIPE_CONF_CHECK_BOOL(csc_enable);
13911 
13912 		PIPE_CONF_CHECK_I(linetime);
13913 		PIPE_CONF_CHECK_I(ips_linetime);
13914 
13915 		bp_gamma = intel_color_get_gamma_bit_precision(pipe_config);
13916 		if (bp_gamma)
13917 			PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma);
13918 	}
13919 
13920 	PIPE_CONF_CHECK_BOOL(double_wide);
13921 
13922 	PIPE_CONF_CHECK_P(shared_dpll);
13923 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13924 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13925 	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13926 	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13927 	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13928 	PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13929 	PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13930 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13931 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13932 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
13933 	PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
13934 	PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
13935 	PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
13936 	PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
13937 	PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
13938 	PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
13939 	PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
13940 	PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
13941 	PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
13942 	PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
13943 	PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
13944 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl);
13945 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1);
13946 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl);
13947 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0);
13948 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1);
13949 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf);
13950 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock);
13951 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc);
13952 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias);
13953 	PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias);
13954 
13955 	PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13956 	PIPE_CONF_CHECK_X(dsi_pll.div);
13957 
13958 	if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
13959 		PIPE_CONF_CHECK_I(pipe_bpp);
13960 
13961 	PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock);
13962 	PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13963 
13964 	PIPE_CONF_CHECK_I(min_voltage_level);
13965 
13966 	PIPE_CONF_CHECK_X(infoframes.enable);
13967 	PIPE_CONF_CHECK_X(infoframes.gcp);
13968 	PIPE_CONF_CHECK_INFOFRAME(avi);
13969 	PIPE_CONF_CHECK_INFOFRAME(spd);
13970 	PIPE_CONF_CHECK_INFOFRAME(hdmi);
13971 	PIPE_CONF_CHECK_INFOFRAME(drm);
13972 	PIPE_CONF_CHECK_DP_VSC_SDP(vsc);
13973 
13974 	PIPE_CONF_CHECK_X(sync_mode_slaves_mask);
13975 	PIPE_CONF_CHECK_I(master_transcoder);
13976 
13977 	PIPE_CONF_CHECK_I(dsc.compression_enable);
13978 	PIPE_CONF_CHECK_I(dsc.dsc_split);
13979 	PIPE_CONF_CHECK_I(dsc.compressed_bpp);
13980 
13981 	PIPE_CONF_CHECK_I(mst_master_transcoder);
13982 
13983 #undef PIPE_CONF_CHECK_X
13984 #undef PIPE_CONF_CHECK_I
13985 #undef PIPE_CONF_CHECK_BOOL
13986 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE
13987 #undef PIPE_CONF_CHECK_P
13988 #undef PIPE_CONF_CHECK_FLAGS
13989 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13990 #undef PIPE_CONF_CHECK_COLOR_LUT
13991 #undef PIPE_CONF_QUIRK
13992 
13993 	return ret;
13994 }
13995 
13996 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13997 					   const struct intel_crtc_state *pipe_config)
13998 {
13999 	if (pipe_config->has_pch_encoder) {
14000 		int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
14001 							    &pipe_config->fdi_m_n);
14002 		int dotclock = pipe_config->hw.adjusted_mode.crtc_clock;
14003 
14004 		/*
14005 		 * FDI already provided one idea for the dotclock.
14006 		 * Yell if the encoder disagrees.
14007 		 */
14008 		drm_WARN(&dev_priv->drm,
14009 			 !intel_fuzzy_clock_check(fdi_dotclock, dotclock),
14010 			 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
14011 			 fdi_dotclock, dotclock);
14012 	}
14013 }
14014 
14015 static void verify_wm_state(struct intel_crtc *crtc,
14016 			    struct intel_crtc_state *new_crtc_state)
14017 {
14018 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14019 	struct skl_hw_state {
14020 		struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
14021 		struct skl_ddb_entry ddb_uv[I915_MAX_PLANES];
14022 		struct skl_pipe_wm wm;
14023 	} *hw;
14024 	struct skl_pipe_wm *sw_wm;
14025 	struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
14026 	u8 hw_enabled_slices;
14027 	const enum pipe pipe = crtc->pipe;
14028 	int plane, level, max_level = ilk_wm_max_level(dev_priv);
14029 
14030 	if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active)
14031 		return;
14032 
14033 	hw = kzalloc(sizeof(*hw), GFP_KERNEL);
14034 	if (!hw)
14035 		return;
14036 
14037 	skl_pipe_wm_get_hw_state(crtc, &hw->wm);
14038 	sw_wm = &new_crtc_state->wm.skl.optimal;
14039 
14040 	skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv);
14041 
14042 	hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv);
14043 
14044 	if (INTEL_GEN(dev_priv) >= 11 &&
14045 	    hw_enabled_slices != dev_priv->dbuf.enabled_slices)
14046 		drm_err(&dev_priv->drm,
14047 			"mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n",
14048 			dev_priv->dbuf.enabled_slices,
14049 			hw_enabled_slices);
14050 
14051 	/* planes */
14052 	for_each_universal_plane(dev_priv, pipe, plane) {
14053 		struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
14054 
14055 		hw_plane_wm = &hw->wm.planes[plane];
14056 		sw_plane_wm = &sw_wm->planes[plane];
14057 
14058 		/* Watermarks */
14059 		for (level = 0; level <= max_level; level++) {
14060 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
14061 						&sw_plane_wm->wm[level]) ||
14062 			    (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level],
14063 							       &sw_plane_wm->sagv_wm0)))
14064 				continue;
14065 
14066 			drm_err(&dev_priv->drm,
14067 				"mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14068 				pipe_name(pipe), plane + 1, level,
14069 				sw_plane_wm->wm[level].plane_en,
14070 				sw_plane_wm->wm[level].plane_res_b,
14071 				sw_plane_wm->wm[level].plane_res_l,
14072 				hw_plane_wm->wm[level].plane_en,
14073 				hw_plane_wm->wm[level].plane_res_b,
14074 				hw_plane_wm->wm[level].plane_res_l);
14075 		}
14076 
14077 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
14078 					 &sw_plane_wm->trans_wm)) {
14079 			drm_err(&dev_priv->drm,
14080 				"mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14081 				pipe_name(pipe), plane + 1,
14082 				sw_plane_wm->trans_wm.plane_en,
14083 				sw_plane_wm->trans_wm.plane_res_b,
14084 				sw_plane_wm->trans_wm.plane_res_l,
14085 				hw_plane_wm->trans_wm.plane_en,
14086 				hw_plane_wm->trans_wm.plane_res_b,
14087 				hw_plane_wm->trans_wm.plane_res_l);
14088 		}
14089 
14090 		/* DDB */
14091 		hw_ddb_entry = &hw->ddb_y[plane];
14092 		sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane];
14093 
14094 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
14095 			drm_err(&dev_priv->drm,
14096 				"mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
14097 				pipe_name(pipe), plane + 1,
14098 				sw_ddb_entry->start, sw_ddb_entry->end,
14099 				hw_ddb_entry->start, hw_ddb_entry->end);
14100 		}
14101 	}
14102 
14103 	/*
14104 	 * cursor
14105 	 * If the cursor plane isn't active, we may not have updated it's ddb
14106 	 * allocation. In that case since the ddb allocation will be updated
14107 	 * once the plane becomes visible, we can skip this check
14108 	 */
14109 	if (1) {
14110 		struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
14111 
14112 		hw_plane_wm = &hw->wm.planes[PLANE_CURSOR];
14113 		sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
14114 
14115 		/* Watermarks */
14116 		for (level = 0; level <= max_level; level++) {
14117 			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
14118 						&sw_plane_wm->wm[level]) ||
14119 			    (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level],
14120 							       &sw_plane_wm->sagv_wm0)))
14121 				continue;
14122 
14123 			drm_err(&dev_priv->drm,
14124 				"mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14125 				pipe_name(pipe), level,
14126 				sw_plane_wm->wm[level].plane_en,
14127 				sw_plane_wm->wm[level].plane_res_b,
14128 				sw_plane_wm->wm[level].plane_res_l,
14129 				hw_plane_wm->wm[level].plane_en,
14130 				hw_plane_wm->wm[level].plane_res_b,
14131 				hw_plane_wm->wm[level].plane_res_l);
14132 		}
14133 
14134 		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
14135 					 &sw_plane_wm->trans_wm)) {
14136 			drm_err(&dev_priv->drm,
14137 				"mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
14138 				pipe_name(pipe),
14139 				sw_plane_wm->trans_wm.plane_en,
14140 				sw_plane_wm->trans_wm.plane_res_b,
14141 				sw_plane_wm->trans_wm.plane_res_l,
14142 				hw_plane_wm->trans_wm.plane_en,
14143 				hw_plane_wm->trans_wm.plane_res_b,
14144 				hw_plane_wm->trans_wm.plane_res_l);
14145 		}
14146 
14147 		/* DDB */
14148 		hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR];
14149 		sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR];
14150 
14151 		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
14152 			drm_err(&dev_priv->drm,
14153 				"mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
14154 				pipe_name(pipe),
14155 				sw_ddb_entry->start, sw_ddb_entry->end,
14156 				hw_ddb_entry->start, hw_ddb_entry->end);
14157 		}
14158 	}
14159 
14160 	kfree(hw);
14161 }
14162 
14163 static void
14164 verify_connector_state(struct intel_atomic_state *state,
14165 		       struct intel_crtc *crtc)
14166 {
14167 	struct drm_connector *connector;
14168 	struct drm_connector_state *new_conn_state;
14169 	int i;
14170 
14171 	for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) {
14172 		struct drm_encoder *encoder = connector->encoder;
14173 		struct intel_crtc_state *crtc_state = NULL;
14174 
14175 		if (new_conn_state->crtc != &crtc->base)
14176 			continue;
14177 
14178 		if (crtc)
14179 			crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
14180 
14181 		intel_connector_verify_state(crtc_state, new_conn_state);
14182 
14183 		I915_STATE_WARN(new_conn_state->best_encoder != encoder,
14184 		     "connector's atomic encoder doesn't match legacy encoder\n");
14185 	}
14186 }
14187 
14188 static void
14189 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state)
14190 {
14191 	struct intel_encoder *encoder;
14192 	struct drm_connector *connector;
14193 	struct drm_connector_state *old_conn_state, *new_conn_state;
14194 	int i;
14195 
14196 	for_each_intel_encoder(&dev_priv->drm, encoder) {
14197 		bool enabled = false, found = false;
14198 		enum pipe pipe;
14199 
14200 		drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n",
14201 			    encoder->base.base.id,
14202 			    encoder->base.name);
14203 
14204 		for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state,
14205 						   new_conn_state, i) {
14206 			if (old_conn_state->best_encoder == &encoder->base)
14207 				found = true;
14208 
14209 			if (new_conn_state->best_encoder != &encoder->base)
14210 				continue;
14211 			found = enabled = true;
14212 
14213 			I915_STATE_WARN(new_conn_state->crtc !=
14214 					encoder->base.crtc,
14215 			     "connector's crtc doesn't match encoder crtc\n");
14216 		}
14217 
14218 		if (!found)
14219 			continue;
14220 
14221 		I915_STATE_WARN(!!encoder->base.crtc != enabled,
14222 		     "encoder's enabled state mismatch "
14223 		     "(expected %i, found %i)\n",
14224 		     !!encoder->base.crtc, enabled);
14225 
14226 		if (!encoder->base.crtc) {
14227 			bool active;
14228 
14229 			active = encoder->get_hw_state(encoder, &pipe);
14230 			I915_STATE_WARN(active,
14231 			     "encoder detached but still enabled on pipe %c.\n",
14232 			     pipe_name(pipe));
14233 		}
14234 	}
14235 }
14236 
14237 static void
14238 verify_crtc_state(struct intel_crtc *crtc,
14239 		  struct intel_crtc_state *old_crtc_state,
14240 		  struct intel_crtc_state *new_crtc_state)
14241 {
14242 	struct drm_device *dev = crtc->base.dev;
14243 	struct drm_i915_private *dev_priv = to_i915(dev);
14244 	struct intel_encoder *encoder;
14245 	struct intel_crtc_state *pipe_config = old_crtc_state;
14246 	struct drm_atomic_state *state = old_crtc_state->uapi.state;
14247 	bool active;
14248 
14249 	__drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi);
14250 	intel_crtc_free_hw_state(old_crtc_state);
14251 	intel_crtc_state_reset(old_crtc_state, crtc);
14252 	old_crtc_state->uapi.state = state;
14253 
14254 	drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id,
14255 		    crtc->base.name);
14256 
14257 	active = dev_priv->display.get_pipe_config(crtc, pipe_config);
14258 
14259 	/* we keep both pipes enabled on 830 */
14260 	if (IS_I830(dev_priv))
14261 		active = new_crtc_state->hw.active;
14262 
14263 	I915_STATE_WARN(new_crtc_state->hw.active != active,
14264 			"crtc active state doesn't match with hw state "
14265 			"(expected %i, found %i)\n",
14266 			new_crtc_state->hw.active, active);
14267 
14268 	I915_STATE_WARN(crtc->active != new_crtc_state->hw.active,
14269 			"transitional active state does not match atomic hw state "
14270 			"(expected %i, found %i)\n",
14271 			new_crtc_state->hw.active, crtc->active);
14272 
14273 	for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14274 		enum pipe pipe;
14275 
14276 		active = encoder->get_hw_state(encoder, &pipe);
14277 		I915_STATE_WARN(active != new_crtc_state->hw.active,
14278 				"[ENCODER:%i] active %i with crtc active %i\n",
14279 				encoder->base.base.id, active,
14280 				new_crtc_state->hw.active);
14281 
14282 		I915_STATE_WARN(active && crtc->pipe != pipe,
14283 				"Encoder connected to wrong pipe %c\n",
14284 				pipe_name(pipe));
14285 
14286 		if (active)
14287 			encoder->get_config(encoder, pipe_config);
14288 	}
14289 
14290 	intel_crtc_compute_pixel_rate(pipe_config);
14291 
14292 	if (!new_crtc_state->hw.active)
14293 		return;
14294 
14295 	intel_pipe_config_sanity_check(dev_priv, pipe_config);
14296 
14297 	if (!intel_pipe_config_compare(new_crtc_state,
14298 				       pipe_config, false)) {
14299 		I915_STATE_WARN(1, "pipe state doesn't match!\n");
14300 		intel_dump_pipe_config(pipe_config, NULL, "[hw state]");
14301 		intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]");
14302 	}
14303 }
14304 
14305 static void
14306 intel_verify_planes(struct intel_atomic_state *state)
14307 {
14308 	struct intel_plane *plane;
14309 	const struct intel_plane_state *plane_state;
14310 	int i;
14311 
14312 	for_each_new_intel_plane_in_state(state, plane,
14313 					  plane_state, i)
14314 		assert_plane(plane, plane_state->planar_slave ||
14315 			     plane_state->uapi.visible);
14316 }
14317 
14318 static void
14319 verify_single_dpll_state(struct drm_i915_private *dev_priv,
14320 			 struct intel_shared_dpll *pll,
14321 			 struct intel_crtc *crtc,
14322 			 struct intel_crtc_state *new_crtc_state)
14323 {
14324 	struct intel_dpll_hw_state dpll_hw_state;
14325 	unsigned int crtc_mask;
14326 	bool active;
14327 
14328 	memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
14329 
14330 	drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name);
14331 
14332 	active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state);
14333 
14334 	if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) {
14335 		I915_STATE_WARN(!pll->on && pll->active_mask,
14336 		     "pll in active use but not on in sw tracking\n");
14337 		I915_STATE_WARN(pll->on && !pll->active_mask,
14338 		     "pll is on but not used by any active crtc\n");
14339 		I915_STATE_WARN(pll->on != active,
14340 		     "pll on state mismatch (expected %i, found %i)\n",
14341 		     pll->on, active);
14342 	}
14343 
14344 	if (!crtc) {
14345 		I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
14346 				"more active pll users than references: %x vs %x\n",
14347 				pll->active_mask, pll->state.crtc_mask);
14348 
14349 		return;
14350 	}
14351 
14352 	crtc_mask = drm_crtc_mask(&crtc->base);
14353 
14354 	if (new_crtc_state->hw.active)
14355 		I915_STATE_WARN(!(pll->active_mask & crtc_mask),
14356 				"pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
14357 				pipe_name(crtc->pipe), pll->active_mask);
14358 	else
14359 		I915_STATE_WARN(pll->active_mask & crtc_mask,
14360 				"pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
14361 				pipe_name(crtc->pipe), pll->active_mask);
14362 
14363 	I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
14364 			"pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
14365 			crtc_mask, pll->state.crtc_mask);
14366 
14367 	I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
14368 					  &dpll_hw_state,
14369 					  sizeof(dpll_hw_state)),
14370 			"pll hw state mismatch\n");
14371 }
14372 
14373 static void
14374 verify_shared_dpll_state(struct intel_crtc *crtc,
14375 			 struct intel_crtc_state *old_crtc_state,
14376 			 struct intel_crtc_state *new_crtc_state)
14377 {
14378 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14379 
14380 	if (new_crtc_state->shared_dpll)
14381 		verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state);
14382 
14383 	if (old_crtc_state->shared_dpll &&
14384 	    old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) {
14385 		unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
14386 		struct intel_shared_dpll *pll = old_crtc_state->shared_dpll;
14387 
14388 		I915_STATE_WARN(pll->active_mask & crtc_mask,
14389 				"pll active mismatch (didn't expect pipe %c in active mask)\n",
14390 				pipe_name(crtc->pipe));
14391 		I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
14392 				"pll enabled crtcs mismatch (found %x in enabled mask)\n",
14393 				pipe_name(crtc->pipe));
14394 	}
14395 }
14396 
14397 static void
14398 intel_modeset_verify_crtc(struct intel_crtc *crtc,
14399 			  struct intel_atomic_state *state,
14400 			  struct intel_crtc_state *old_crtc_state,
14401 			  struct intel_crtc_state *new_crtc_state)
14402 {
14403 	if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe)
14404 		return;
14405 
14406 	verify_wm_state(crtc, new_crtc_state);
14407 	verify_connector_state(state, crtc);
14408 	verify_crtc_state(crtc, old_crtc_state, new_crtc_state);
14409 	verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state);
14410 }
14411 
14412 static void
14413 verify_disabled_dpll_state(struct drm_i915_private *dev_priv)
14414 {
14415 	int i;
14416 
14417 	for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++)
14418 		verify_single_dpll_state(dev_priv,
14419 					 &dev_priv->dpll.shared_dplls[i],
14420 					 NULL, NULL);
14421 }
14422 
14423 static void
14424 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv,
14425 			      struct intel_atomic_state *state)
14426 {
14427 	verify_encoder_state(dev_priv, state);
14428 	verify_connector_state(state, NULL);
14429 	verify_disabled_dpll_state(dev_priv);
14430 }
14431 
14432 static void
14433 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state)
14434 {
14435 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
14436 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14437 	const struct drm_display_mode *adjusted_mode =
14438 		&crtc_state->hw.adjusted_mode;
14439 
14440 	drm_calc_timestamping_constants(&crtc->base, adjusted_mode);
14441 
14442 	crtc->mode_flags = crtc_state->mode_flags;
14443 
14444 	/*
14445 	 * The scanline counter increments at the leading edge of hsync.
14446 	 *
14447 	 * On most platforms it starts counting from vtotal-1 on the
14448 	 * first active line. That means the scanline counter value is
14449 	 * always one less than what we would expect. Ie. just after
14450 	 * start of vblank, which also occurs at start of hsync (on the
14451 	 * last active line), the scanline counter will read vblank_start-1.
14452 	 *
14453 	 * On gen2 the scanline counter starts counting from 1 instead
14454 	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
14455 	 * to keep the value positive), instead of adding one.
14456 	 *
14457 	 * On HSW+ the behaviour of the scanline counter depends on the output
14458 	 * type. For DP ports it behaves like most other platforms, but on HDMI
14459 	 * there's an extra 1 line difference. So we need to add two instead of
14460 	 * one to the value.
14461 	 *
14462 	 * On VLV/CHV DSI the scanline counter would appear to increment
14463 	 * approx. 1/3 of a scanline before start of vblank. Unfortunately
14464 	 * that means we can't tell whether we're in vblank or not while
14465 	 * we're on that particular line. We must still set scanline_offset
14466 	 * to 1 so that the vblank timestamps come out correct when we query
14467 	 * the scanline counter from within the vblank interrupt handler.
14468 	 * However if queried just before the start of vblank we'll get an
14469 	 * answer that's slightly in the future.
14470 	 */
14471 	if (IS_GEN(dev_priv, 2)) {
14472 		int vtotal;
14473 
14474 		vtotal = adjusted_mode->crtc_vtotal;
14475 		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
14476 			vtotal /= 2;
14477 
14478 		crtc->scanline_offset = vtotal - 1;
14479 	} else if (HAS_DDI(dev_priv) &&
14480 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
14481 		crtc->scanline_offset = 2;
14482 	} else {
14483 		crtc->scanline_offset = 1;
14484 	}
14485 }
14486 
14487 static void intel_modeset_clear_plls(struct intel_atomic_state *state)
14488 {
14489 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14490 	struct intel_crtc_state *new_crtc_state;
14491 	struct intel_crtc *crtc;
14492 	int i;
14493 
14494 	if (!dev_priv->display.crtc_compute_clock)
14495 		return;
14496 
14497 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14498 		if (!needs_modeset(new_crtc_state))
14499 			continue;
14500 
14501 		intel_release_shared_dplls(state, crtc);
14502 	}
14503 }
14504 
14505 /*
14506  * This implements the workaround described in the "notes" section of the mode
14507  * set sequence documentation. When going from no pipes or single pipe to
14508  * multiple pipes, and planes are enabled after the pipe, we need to wait at
14509  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
14510  */
14511 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state)
14512 {
14513 	struct intel_crtc_state *crtc_state;
14514 	struct intel_crtc *crtc;
14515 	struct intel_crtc_state *first_crtc_state = NULL;
14516 	struct intel_crtc_state *other_crtc_state = NULL;
14517 	enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
14518 	int i;
14519 
14520 	/* look at all crtc's that are going to be enabled in during modeset */
14521 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14522 		if (!crtc_state->hw.active ||
14523 		    !needs_modeset(crtc_state))
14524 			continue;
14525 
14526 		if (first_crtc_state) {
14527 			other_crtc_state = crtc_state;
14528 			break;
14529 		} else {
14530 			first_crtc_state = crtc_state;
14531 			first_pipe = crtc->pipe;
14532 		}
14533 	}
14534 
14535 	/* No workaround needed? */
14536 	if (!first_crtc_state)
14537 		return 0;
14538 
14539 	/* w/a possibly needed, check how many crtc's are already enabled. */
14540 	for_each_intel_crtc(state->base.dev, crtc) {
14541 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
14542 		if (IS_ERR(crtc_state))
14543 			return PTR_ERR(crtc_state);
14544 
14545 		crtc_state->hsw_workaround_pipe = INVALID_PIPE;
14546 
14547 		if (!crtc_state->hw.active ||
14548 		    needs_modeset(crtc_state))
14549 			continue;
14550 
14551 		/* 2 or more enabled crtcs means no need for w/a */
14552 		if (enabled_pipe != INVALID_PIPE)
14553 			return 0;
14554 
14555 		enabled_pipe = crtc->pipe;
14556 	}
14557 
14558 	if (enabled_pipe != INVALID_PIPE)
14559 		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
14560 	else if (other_crtc_state)
14561 		other_crtc_state->hsw_workaround_pipe = first_pipe;
14562 
14563 	return 0;
14564 }
14565 
14566 u8 intel_calc_active_pipes(struct intel_atomic_state *state,
14567 			   u8 active_pipes)
14568 {
14569 	const struct intel_crtc_state *crtc_state;
14570 	struct intel_crtc *crtc;
14571 	int i;
14572 
14573 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14574 		if (crtc_state->hw.active)
14575 			active_pipes |= BIT(crtc->pipe);
14576 		else
14577 			active_pipes &= ~BIT(crtc->pipe);
14578 	}
14579 
14580 	return active_pipes;
14581 }
14582 
14583 static int intel_modeset_checks(struct intel_atomic_state *state)
14584 {
14585 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14586 	int ret;
14587 
14588 	state->modeset = true;
14589 	state->active_pipes = intel_calc_active_pipes(state, dev_priv->active_pipes);
14590 
14591 	if (state->active_pipes != dev_priv->active_pipes) {
14592 		ret = _intel_atomic_lock_global_state(state);
14593 		if (ret)
14594 			return ret;
14595 	}
14596 
14597 	if (IS_HASWELL(dev_priv))
14598 		return hsw_mode_set_planes_workaround(state);
14599 
14600 	return 0;
14601 }
14602 
14603 /*
14604  * Handle calculation of various watermark data at the end of the atomic check
14605  * phase.  The code here should be run after the per-crtc and per-plane 'check'
14606  * handlers to ensure that all derived state has been updated.
14607  */
14608 static int calc_watermark_data(struct intel_atomic_state *state)
14609 {
14610 	struct drm_device *dev = state->base.dev;
14611 	struct drm_i915_private *dev_priv = to_i915(dev);
14612 
14613 	/* Is there platform-specific watermark information to calculate? */
14614 	if (dev_priv->display.compute_global_watermarks)
14615 		return dev_priv->display.compute_global_watermarks(state);
14616 
14617 	return 0;
14618 }
14619 
14620 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state,
14621 				     struct intel_crtc_state *new_crtc_state)
14622 {
14623 	if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true))
14624 		return;
14625 
14626 	new_crtc_state->uapi.mode_changed = false;
14627 	new_crtc_state->update_pipe = true;
14628 }
14629 
14630 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state,
14631 				    struct intel_crtc_state *new_crtc_state)
14632 {
14633 	/*
14634 	 * If we're not doing the full modeset we want to
14635 	 * keep the current M/N values as they may be
14636 	 * sufficiently different to the computed values
14637 	 * to cause problems.
14638 	 *
14639 	 * FIXME: should really copy more fuzzy state here
14640 	 */
14641 	new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n;
14642 	new_crtc_state->dp_m_n = old_crtc_state->dp_m_n;
14643 	new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2;
14644 	new_crtc_state->has_drrs = old_crtc_state->has_drrs;
14645 }
14646 
14647 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state,
14648 					  struct intel_crtc *crtc,
14649 					  u8 plane_ids_mask)
14650 {
14651 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14652 	struct intel_plane *plane;
14653 
14654 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
14655 		struct intel_plane_state *plane_state;
14656 
14657 		if ((plane_ids_mask & BIT(plane->id)) == 0)
14658 			continue;
14659 
14660 		plane_state = intel_atomic_get_plane_state(state, plane);
14661 		if (IS_ERR(plane_state))
14662 			return PTR_ERR(plane_state);
14663 	}
14664 
14665 	return 0;
14666 }
14667 
14668 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv)
14669 {
14670 	/* See {hsw,vlv,ivb}_plane_ratio() */
14671 	return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) ||
14672 		IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
14673 		IS_IVYBRIDGE(dev_priv) || (INTEL_GEN(dev_priv) >= 11);
14674 }
14675 
14676 static int intel_atomic_check_planes(struct intel_atomic_state *state)
14677 {
14678 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14679 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14680 	struct intel_plane_state *plane_state;
14681 	struct intel_plane *plane;
14682 	struct intel_crtc *crtc;
14683 	int i, ret;
14684 
14685 	ret = icl_add_linked_planes(state);
14686 	if (ret)
14687 		return ret;
14688 
14689 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
14690 		ret = intel_plane_atomic_check(state, plane);
14691 		if (ret) {
14692 			drm_dbg_atomic(&dev_priv->drm,
14693 				       "[PLANE:%d:%s] atomic driver check failed\n",
14694 				       plane->base.base.id, plane->base.name);
14695 			return ret;
14696 		}
14697 	}
14698 
14699 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14700 					    new_crtc_state, i) {
14701 		u8 old_active_planes, new_active_planes;
14702 
14703 		ret = icl_check_nv12_planes(new_crtc_state);
14704 		if (ret)
14705 			return ret;
14706 
14707 		/*
14708 		 * On some platforms the number of active planes affects
14709 		 * the planes' minimum cdclk calculation. Add such planes
14710 		 * to the state before we compute the minimum cdclk.
14711 		 */
14712 		if (!active_planes_affects_min_cdclk(dev_priv))
14713 			continue;
14714 
14715 		old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14716 		new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14717 
14718 		/*
14719 		 * Not only the number of planes, but if the plane configuration had
14720 		 * changed might already mean we need to recompute min CDCLK,
14721 		 * because different planes might consume different amount of Dbuf bandwidth
14722 		 * according to formula: Bw per plane = Pixel rate * bpp * pipe/plane scale factor
14723 		 */
14724 		if (old_active_planes == new_active_planes)
14725 			continue;
14726 
14727 		ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes);
14728 		if (ret)
14729 			return ret;
14730 	}
14731 
14732 	return 0;
14733 }
14734 
14735 static int intel_atomic_check_cdclk(struct intel_atomic_state *state,
14736 				    bool *need_cdclk_calc)
14737 {
14738 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14739 	struct intel_cdclk_state *new_cdclk_state;
14740 	struct intel_plane_state *plane_state;
14741 	struct intel_bw_state *new_bw_state;
14742 	struct intel_plane *plane;
14743 	int min_cdclk = 0;
14744 	enum pipe pipe;
14745 	int ret;
14746 	int i;
14747 	/*
14748 	 * active_planes bitmask has been updated, and potentially
14749 	 * affected planes are part of the state. We can now
14750 	 * compute the minimum cdclk for each plane.
14751 	 */
14752 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
14753 		ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc);
14754 		if (ret)
14755 			return ret;
14756 	}
14757 
14758 	new_cdclk_state = intel_atomic_get_new_cdclk_state(state);
14759 
14760 	if (new_cdclk_state && new_cdclk_state->force_min_cdclk_changed)
14761 		*need_cdclk_calc = true;
14762 
14763 	ret = dev_priv->display.bw_calc_min_cdclk(state);
14764 	if (ret)
14765 		return ret;
14766 
14767 	new_bw_state = intel_atomic_get_new_bw_state(state);
14768 
14769 	if (!new_cdclk_state || !new_bw_state)
14770 		return 0;
14771 
14772 	for_each_pipe(dev_priv, pipe) {
14773 		min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk);
14774 
14775 		/*
14776 		 * Currently do this change only if we need to increase
14777 		 */
14778 		if (new_bw_state->min_cdclk > min_cdclk)
14779 			*need_cdclk_calc = true;
14780 	}
14781 
14782 	return 0;
14783 }
14784 
14785 static int intel_atomic_check_crtcs(struct intel_atomic_state *state)
14786 {
14787 	struct intel_crtc_state *crtc_state;
14788 	struct intel_crtc *crtc;
14789 	int i;
14790 
14791 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14792 		int ret = intel_crtc_atomic_check(state, crtc);
14793 		struct drm_i915_private *i915 = to_i915(crtc->base.dev);
14794 		if (ret) {
14795 			drm_dbg_atomic(&i915->drm,
14796 				       "[CRTC:%d:%s] atomic driver check failed\n",
14797 				       crtc->base.base.id, crtc->base.name);
14798 			return ret;
14799 		}
14800 	}
14801 
14802 	return 0;
14803 }
14804 
14805 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state,
14806 					       u8 transcoders)
14807 {
14808 	const struct intel_crtc_state *new_crtc_state;
14809 	struct intel_crtc *crtc;
14810 	int i;
14811 
14812 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14813 		if (new_crtc_state->hw.enable &&
14814 		    transcoders & BIT(new_crtc_state->cpu_transcoder) &&
14815 		    needs_modeset(new_crtc_state))
14816 			return true;
14817 	}
14818 
14819 	return false;
14820 }
14821 
14822 /**
14823  * intel_atomic_check - validate state object
14824  * @dev: drm device
14825  * @_state: state to validate
14826  */
14827 static int intel_atomic_check(struct drm_device *dev,
14828 			      struct drm_atomic_state *_state)
14829 {
14830 	struct drm_i915_private *dev_priv = to_i915(dev);
14831 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
14832 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14833 	struct intel_crtc *crtc;
14834 	int ret, i;
14835 	bool any_ms = false;
14836 
14837 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14838 					    new_crtc_state, i) {
14839 		if (new_crtc_state->inherited != old_crtc_state->inherited)
14840 			new_crtc_state->uapi.mode_changed = true;
14841 	}
14842 
14843 	ret = drm_atomic_helper_check_modeset(dev, &state->base);
14844 	if (ret)
14845 		goto fail;
14846 
14847 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14848 					    new_crtc_state, i) {
14849 		if (!needs_modeset(new_crtc_state)) {
14850 			/* Light copy */
14851 			intel_crtc_copy_uapi_to_hw_state_nomodeset(new_crtc_state);
14852 
14853 			continue;
14854 		}
14855 
14856 		ret = intel_crtc_prepare_cleared_state(new_crtc_state);
14857 		if (ret)
14858 			goto fail;
14859 
14860 		if (!new_crtc_state->hw.enable)
14861 			continue;
14862 
14863 		ret = intel_modeset_pipe_config(new_crtc_state);
14864 		if (ret)
14865 			goto fail;
14866 	}
14867 
14868 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14869 					    new_crtc_state, i) {
14870 		if (!needs_modeset(new_crtc_state))
14871 			continue;
14872 
14873 		ret = intel_modeset_pipe_config_late(new_crtc_state);
14874 		if (ret)
14875 			goto fail;
14876 
14877 		intel_crtc_check_fastset(old_crtc_state, new_crtc_state);
14878 	}
14879 
14880 	/**
14881 	 * Check if fastset is allowed by external dependencies like other
14882 	 * pipes and transcoders.
14883 	 *
14884 	 * Right now it only forces a fullmodeset when the MST master
14885 	 * transcoder did not changed but the pipe of the master transcoder
14886 	 * needs a fullmodeset so all slaves also needs to do a fullmodeset or
14887 	 * in case of port synced crtcs, if one of the synced crtcs
14888 	 * needs a full modeset, all other synced crtcs should be
14889 	 * forced a full modeset.
14890 	 */
14891 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14892 		if (!new_crtc_state->hw.enable || needs_modeset(new_crtc_state))
14893 			continue;
14894 
14895 		if (intel_dp_mst_is_slave_trans(new_crtc_state)) {
14896 			enum transcoder master = new_crtc_state->mst_master_transcoder;
14897 
14898 			if (intel_cpu_transcoders_need_modeset(state, BIT(master))) {
14899 				new_crtc_state->uapi.mode_changed = true;
14900 				new_crtc_state->update_pipe = false;
14901 			}
14902 		}
14903 
14904 		if (is_trans_port_sync_mode(new_crtc_state)) {
14905 			u8 trans = new_crtc_state->sync_mode_slaves_mask;
14906 
14907 			if (new_crtc_state->master_transcoder != INVALID_TRANSCODER)
14908 				trans |= BIT(new_crtc_state->master_transcoder);
14909 
14910 			if (intel_cpu_transcoders_need_modeset(state, trans)) {
14911 				new_crtc_state->uapi.mode_changed = true;
14912 				new_crtc_state->update_pipe = false;
14913 			}
14914 		}
14915 	}
14916 
14917 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14918 					    new_crtc_state, i) {
14919 		if (needs_modeset(new_crtc_state)) {
14920 			any_ms = true;
14921 			continue;
14922 		}
14923 
14924 		if (!new_crtc_state->update_pipe)
14925 			continue;
14926 
14927 		intel_crtc_copy_fastset(old_crtc_state, new_crtc_state);
14928 	}
14929 
14930 	if (any_ms && !check_digital_port_conflicts(state)) {
14931 		drm_dbg_kms(&dev_priv->drm,
14932 			    "rejecting conflicting digital port configuration\n");
14933 		ret = EINVAL;
14934 		goto fail;
14935 	}
14936 
14937 	ret = drm_dp_mst_atomic_check(&state->base);
14938 	if (ret)
14939 		goto fail;
14940 
14941 	ret = intel_atomic_check_planes(state);
14942 	if (ret)
14943 		goto fail;
14944 
14945 	/*
14946 	 * distrust_bios_wm will force a full dbuf recomputation
14947 	 * but the hardware state will only get updated accordingly
14948 	 * if state->modeset==true. Hence distrust_bios_wm==true &&
14949 	 * state->modeset==false is an invalid combination which
14950 	 * would cause the hardware and software dbuf state to get
14951 	 * out of sync. We must prevent that.
14952 	 *
14953 	 * FIXME clean up this mess and introduce better
14954 	 * state tracking for dbuf.
14955 	 */
14956 	if (dev_priv->wm.distrust_bios_wm)
14957 		any_ms = true;
14958 
14959 	if (any_ms) {
14960 		ret = intel_modeset_checks(state);
14961 		if (ret)
14962 			goto fail;
14963 	}
14964 
14965 	intel_fbc_choose_crtc(dev_priv, state);
14966 	ret = calc_watermark_data(state);
14967 	if (ret)
14968 		goto fail;
14969 
14970 	ret = intel_bw_atomic_check(state);
14971 	if (ret)
14972 		goto fail;
14973 
14974 	ret = intel_atomic_check_cdclk(state, &any_ms);
14975 	if (ret)
14976 		goto fail;
14977 
14978 	if (any_ms) {
14979 		ret = intel_modeset_calc_cdclk(state);
14980 		if (ret)
14981 			return ret;
14982 
14983 		intel_modeset_clear_plls(state);
14984 	}
14985 
14986 	ret = intel_atomic_check_crtcs(state);
14987 	if (ret)
14988 		goto fail;
14989 
14990 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14991 					    new_crtc_state, i) {
14992 		if (!needs_modeset(new_crtc_state) &&
14993 		    !new_crtc_state->update_pipe)
14994 			continue;
14995 
14996 		intel_dump_pipe_config(new_crtc_state, state,
14997 				       needs_modeset(new_crtc_state) ?
14998 				       "[modeset]" : "[fastset]");
14999 	}
15000 
15001 	return 0;
15002 
15003  fail:
15004 	if (ret == -EDEADLK)
15005 		return ret;
15006 
15007 	/*
15008 	 * FIXME would probably be nice to know which crtc specifically
15009 	 * caused the failure, in cases where we can pinpoint it.
15010 	 */
15011 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15012 					    new_crtc_state, i)
15013 		intel_dump_pipe_config(new_crtc_state, state, "[failed]");
15014 
15015 	return ret;
15016 }
15017 
15018 static int intel_atomic_prepare_commit(struct intel_atomic_state *state)
15019 {
15020 	struct intel_crtc_state *crtc_state;
15021 	struct intel_crtc *crtc;
15022 	int i, ret;
15023 
15024 	ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base);
15025 	if (ret < 0)
15026 		return ret;
15027 
15028 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
15029 		bool mode_changed = needs_modeset(crtc_state);
15030 
15031 		if (mode_changed || crtc_state->update_pipe ||
15032 		    crtc_state->uapi.color_mgmt_changed) {
15033 			intel_dsb_prepare(crtc_state);
15034 		}
15035 	}
15036 
15037 	return 0;
15038 }
15039 
15040 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
15041 {
15042 	struct drm_device *dev = crtc->base.dev;
15043 	struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
15044 
15045 	if (!vblank->max_vblank_count)
15046 		return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
15047 
15048 	return crtc->base.funcs->get_vblank_counter(&crtc->base);
15049 }
15050 
15051 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
15052 				  struct intel_crtc_state *crtc_state)
15053 {
15054 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15055 
15056 	if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes)
15057 		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
15058 
15059 	if (crtc_state->has_pch_encoder) {
15060 		enum pipe pch_transcoder =
15061 			intel_crtc_pch_transcoder(crtc);
15062 
15063 		intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true);
15064 	}
15065 }
15066 
15067 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state,
15068 			       const struct intel_crtc_state *new_crtc_state)
15069 {
15070 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
15071 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15072 
15073 	/*
15074 	 * Update pipe size and adjust fitter if needed: the reason for this is
15075 	 * that in compute_mode_changes we check the native mode (not the pfit
15076 	 * mode) to see if we can flip rather than do a full mode set. In the
15077 	 * fastboot case, we'll flip, but if we don't update the pipesrc and
15078 	 * pfit state, we'll end up with a big fb scanned out into the wrong
15079 	 * sized surface.
15080 	 */
15081 	intel_set_pipe_src_size(new_crtc_state);
15082 
15083 	/* on skylake this is done by detaching scalers */
15084 	if (INTEL_GEN(dev_priv) >= 9) {
15085 		skl_detach_scalers(new_crtc_state);
15086 
15087 		if (new_crtc_state->pch_pfit.enabled)
15088 			skl_pfit_enable(new_crtc_state);
15089 	} else if (HAS_PCH_SPLIT(dev_priv)) {
15090 		if (new_crtc_state->pch_pfit.enabled)
15091 			ilk_pfit_enable(new_crtc_state);
15092 		else if (old_crtc_state->pch_pfit.enabled)
15093 			ilk_pfit_disable(old_crtc_state);
15094 	}
15095 
15096 	/*
15097 	 * The register is supposedly single buffered so perhaps
15098 	 * not 100% correct to do this here. But SKL+ calculate
15099 	 * this based on the adjust pixel rate so pfit changes do
15100 	 * affect it and so it must be updated for fastsets.
15101 	 * HSW/BDW only really need this here for fastboot, after
15102 	 * that the value should not change without a full modeset.
15103 	 */
15104 	if (INTEL_GEN(dev_priv) >= 9 ||
15105 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
15106 		hsw_set_linetime_wm(new_crtc_state);
15107 
15108 	if (INTEL_GEN(dev_priv) >= 11)
15109 		icl_set_pipe_chicken(crtc);
15110 }
15111 
15112 static void commit_pipe_config(struct intel_atomic_state *state,
15113 			       struct intel_crtc *crtc)
15114 {
15115 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15116 	const struct intel_crtc_state *old_crtc_state =
15117 		intel_atomic_get_old_crtc_state(state, crtc);
15118 	const struct intel_crtc_state *new_crtc_state =
15119 		intel_atomic_get_new_crtc_state(state, crtc);
15120 	bool modeset = needs_modeset(new_crtc_state);
15121 
15122 	/*
15123 	 * During modesets pipe configuration was programmed as the
15124 	 * CRTC was enabled.
15125 	 */
15126 	if (!modeset) {
15127 		if (new_crtc_state->uapi.color_mgmt_changed ||
15128 		    new_crtc_state->update_pipe)
15129 			intel_color_commit(new_crtc_state);
15130 
15131 		if (INTEL_GEN(dev_priv) >= 9)
15132 			skl_detach_scalers(new_crtc_state);
15133 
15134 		if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
15135 			bdw_set_pipemisc(new_crtc_state);
15136 
15137 		if (new_crtc_state->update_pipe)
15138 			intel_pipe_fastset(old_crtc_state, new_crtc_state);
15139 	}
15140 
15141 	if (dev_priv->display.atomic_update_watermarks)
15142 		dev_priv->display.atomic_update_watermarks(state, crtc);
15143 }
15144 
15145 static void intel_enable_crtc(struct intel_atomic_state *state,
15146 			      struct intel_crtc *crtc)
15147 {
15148 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15149 	const struct intel_crtc_state *new_crtc_state =
15150 		intel_atomic_get_new_crtc_state(state, crtc);
15151 
15152 	if (!needs_modeset(new_crtc_state))
15153 		return;
15154 
15155 	intel_crtc_update_active_timings(new_crtc_state);
15156 
15157 	dev_priv->display.crtc_enable(state, crtc);
15158 
15159 	/* vblanks work again, re-enable pipe CRC. */
15160 	intel_crtc_enable_pipe_crc(crtc);
15161 }
15162 
15163 static void intel_update_crtc(struct intel_atomic_state *state,
15164 			      struct intel_crtc *crtc)
15165 {
15166 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15167 	const struct intel_crtc_state *old_crtc_state =
15168 		intel_atomic_get_old_crtc_state(state, crtc);
15169 	struct intel_crtc_state *new_crtc_state =
15170 		intel_atomic_get_new_crtc_state(state, crtc);
15171 	bool modeset = needs_modeset(new_crtc_state);
15172 
15173 	if (!modeset) {
15174 		if (new_crtc_state->preload_luts &&
15175 		    (new_crtc_state->uapi.color_mgmt_changed ||
15176 		     new_crtc_state->update_pipe))
15177 			intel_color_load_luts(new_crtc_state);
15178 
15179 		intel_pre_plane_update(state, crtc);
15180 
15181 		if (new_crtc_state->update_pipe)
15182 			intel_encoders_update_pipe(state, crtc);
15183 	}
15184 
15185 	if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
15186 		intel_fbc_disable(crtc);
15187 	else
15188 		intel_fbc_enable(state, crtc);
15189 
15190 	/* Perform vblank evasion around commit operation */
15191 	intel_pipe_update_start(new_crtc_state);
15192 
15193 	commit_pipe_config(state, crtc);
15194 
15195 	if (INTEL_GEN(dev_priv) >= 9)
15196 		skl_update_planes_on_crtc(state, crtc);
15197 	else
15198 		i9xx_update_planes_on_crtc(state, crtc);
15199 
15200 	intel_pipe_update_end(new_crtc_state);
15201 
15202 	/*
15203 	 * We usually enable FIFO underrun interrupts as part of the
15204 	 * CRTC enable sequence during modesets.  But when we inherit a
15205 	 * valid pipe configuration from the BIOS we need to take care
15206 	 * of enabling them on the CRTC's first fastset.
15207 	 */
15208 	if (new_crtc_state->update_pipe && !modeset &&
15209 	    old_crtc_state->inherited)
15210 		intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
15211 }
15212 
15213 
15214 static void intel_old_crtc_state_disables(struct intel_atomic_state *state,
15215 					  struct intel_crtc_state *old_crtc_state,
15216 					  struct intel_crtc_state *new_crtc_state,
15217 					  struct intel_crtc *crtc)
15218 {
15219 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15220 
15221 	intel_crtc_disable_planes(state, crtc);
15222 
15223 	/*
15224 	 * We need to disable pipe CRC before disabling the pipe,
15225 	 * or we race against vblank off.
15226 	 */
15227 	intel_crtc_disable_pipe_crc(crtc);
15228 
15229 	dev_priv->display.crtc_disable(state, crtc);
15230 	crtc->active = false;
15231 	intel_fbc_disable(crtc);
15232 	intel_disable_shared_dpll(old_crtc_state);
15233 
15234 	/* FIXME unify this for all platforms */
15235 	if (!new_crtc_state->hw.active &&
15236 	    !HAS_GMCH(dev_priv) &&
15237 	    dev_priv->display.initial_watermarks)
15238 		dev_priv->display.initial_watermarks(state, crtc);
15239 }
15240 
15241 static void intel_commit_modeset_disables(struct intel_atomic_state *state)
15242 {
15243 	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
15244 	struct intel_crtc *crtc;
15245 	u32 handled = 0;
15246 	int i;
15247 
15248 	/* Only disable port sync and MST slaves */
15249 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15250 					    new_crtc_state, i) {
15251 		if (!needs_modeset(new_crtc_state))
15252 			continue;
15253 
15254 		if (!old_crtc_state->hw.active)
15255 			continue;
15256 
15257 		/* In case of Transcoder port Sync master slave CRTCs can be
15258 		 * assigned in any order and we need to make sure that
15259 		 * slave CRTCs are disabled first and then master CRTC since
15260 		 * Slave vblanks are masked till Master Vblanks.
15261 		 */
15262 		if (!is_trans_port_sync_slave(old_crtc_state) &&
15263 		    !intel_dp_mst_is_slave_trans(old_crtc_state))
15264 			continue;
15265 
15266 		intel_pre_plane_update(state, crtc);
15267 		intel_old_crtc_state_disables(state, old_crtc_state,
15268 					      new_crtc_state, crtc);
15269 		handled |= BIT(crtc->pipe);
15270 	}
15271 
15272 	/* Disable everything else left on */
15273 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15274 					    new_crtc_state, i) {
15275 		if (!needs_modeset(new_crtc_state) ||
15276 		    (handled & BIT(crtc->pipe)))
15277 			continue;
15278 
15279 		intel_pre_plane_update(state, crtc);
15280 		if (old_crtc_state->hw.active)
15281 			intel_old_crtc_state_disables(state, old_crtc_state,
15282 						      new_crtc_state, crtc);
15283 	}
15284 }
15285 
15286 static void intel_commit_modeset_enables(struct intel_atomic_state *state)
15287 {
15288 	struct intel_crtc_state *new_crtc_state;
15289 	struct intel_crtc *crtc;
15290 	int i;
15291 
15292 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15293 		if (!new_crtc_state->hw.active)
15294 			continue;
15295 
15296 		intel_enable_crtc(state, crtc);
15297 		intel_update_crtc(state, crtc);
15298 	}
15299 }
15300 
15301 static void skl_commit_modeset_enables(struct intel_atomic_state *state)
15302 {
15303 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15304 	struct intel_crtc *crtc;
15305 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15306 	struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
15307 	u8 update_pipes = 0, modeset_pipes = 0;
15308 	int i;
15309 
15310 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15311 		enum pipe pipe = crtc->pipe;
15312 
15313 		if (!new_crtc_state->hw.active)
15314 			continue;
15315 
15316 		/* ignore allocations for crtc's that have been turned off. */
15317 		if (!needs_modeset(new_crtc_state)) {
15318 			entries[pipe] = old_crtc_state->wm.skl.ddb;
15319 			update_pipes |= BIT(pipe);
15320 		} else {
15321 			modeset_pipes |= BIT(pipe);
15322 		}
15323 	}
15324 
15325 	/*
15326 	 * Whenever the number of active pipes changes, we need to make sure we
15327 	 * update the pipes in the right order so that their ddb allocations
15328 	 * never overlap with each other between CRTC updates. Otherwise we'll
15329 	 * cause pipe underruns and other bad stuff.
15330 	 *
15331 	 * So first lets enable all pipes that do not need a fullmodeset as
15332 	 * those don't have any external dependency.
15333 	 */
15334 	while (update_pipes) {
15335 		for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15336 						    new_crtc_state, i) {
15337 			enum pipe pipe = crtc->pipe;
15338 
15339 			if ((update_pipes & BIT(pipe)) == 0)
15340 				continue;
15341 
15342 			if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15343 							entries, I915_MAX_PIPES, pipe))
15344 				continue;
15345 
15346 			entries[pipe] = new_crtc_state->wm.skl.ddb;
15347 			update_pipes &= ~BIT(pipe);
15348 
15349 			intel_update_crtc(state, crtc);
15350 
15351 			/*
15352 			 * If this is an already active pipe, it's DDB changed,
15353 			 * and this isn't the last pipe that needs updating
15354 			 * then we need to wait for a vblank to pass for the
15355 			 * new ddb allocation to take effect.
15356 			 */
15357 			if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb,
15358 						 &old_crtc_state->wm.skl.ddb) &&
15359 			    (update_pipes | modeset_pipes))
15360 				intel_wait_for_vblank(dev_priv, pipe);
15361 		}
15362 	}
15363 
15364 	update_pipes = modeset_pipes;
15365 
15366 	/*
15367 	 * Enable all pipes that needs a modeset and do not depends on other
15368 	 * pipes
15369 	 */
15370 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15371 		enum pipe pipe = crtc->pipe;
15372 
15373 		if ((modeset_pipes & BIT(pipe)) == 0)
15374 			continue;
15375 
15376 		if (intel_dp_mst_is_slave_trans(new_crtc_state) ||
15377 		    is_trans_port_sync_master(new_crtc_state))
15378 			continue;
15379 
15380 		modeset_pipes &= ~BIT(pipe);
15381 
15382 		intel_enable_crtc(state, crtc);
15383 	}
15384 
15385 	/*
15386 	 * Then we enable all remaining pipes that depend on other
15387 	 * pipes: MST slaves and port sync masters.
15388 	 */
15389 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15390 		enum pipe pipe = crtc->pipe;
15391 
15392 		if ((modeset_pipes & BIT(pipe)) == 0)
15393 			continue;
15394 
15395 		modeset_pipes &= ~BIT(pipe);
15396 
15397 		intel_enable_crtc(state, crtc);
15398 	}
15399 
15400 	/*
15401 	 * Finally we do the plane updates/etc. for all pipes that got enabled.
15402 	 */
15403 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15404 		enum pipe pipe = crtc->pipe;
15405 
15406 		if ((update_pipes & BIT(pipe)) == 0)
15407 			continue;
15408 
15409 		drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15410 									entries, I915_MAX_PIPES, pipe));
15411 
15412 		entries[pipe] = new_crtc_state->wm.skl.ddb;
15413 		update_pipes &= ~BIT(pipe);
15414 
15415 		intel_update_crtc(state, crtc);
15416 	}
15417 
15418 	drm_WARN_ON(&dev_priv->drm, modeset_pipes);
15419 	drm_WARN_ON(&dev_priv->drm, update_pipes);
15420 }
15421 
15422 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
15423 {
15424 	struct intel_atomic_state *state, *next;
15425 	struct llist_node *freed;
15426 
15427 	freed = llist_del_all(&dev_priv->atomic_helper.free_list);
15428 	llist_for_each_entry_safe(state, next, freed, freed)
15429 		drm_atomic_state_put(&state->base);
15430 }
15431 
15432 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
15433 {
15434 	struct drm_i915_private *dev_priv =
15435 		container_of(work, typeof(*dev_priv), atomic_helper.free_work);
15436 
15437 	intel_atomic_helper_free_state(dev_priv);
15438 }
15439 
15440 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
15441 {
15442 	struct wait_queue_entry wait_fence, wait_reset;
15443 	struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
15444 
15445 	init_wait_entry(&wait_fence, 0);
15446 	init_wait_entry(&wait_reset, 0);
15447 	for (;;) {
15448 		prepare_to_wait(&intel_state->commit_ready.wait,
15449 				&wait_fence, TASK_UNINTERRUPTIBLE);
15450 		prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
15451 					      I915_RESET_MODESET),
15452 				&wait_reset, TASK_UNINTERRUPTIBLE);
15453 
15454 
15455 		if (i915_sw_fence_done(&intel_state->commit_ready) ||
15456 		    test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
15457 			break;
15458 
15459 		schedule();
15460 	}
15461 	finish_wait(&intel_state->commit_ready.wait, &wait_fence);
15462 	finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
15463 				  I915_RESET_MODESET),
15464 		    &wait_reset);
15465 }
15466 
15467 static void intel_cleanup_dsbs(struct intel_atomic_state *state)
15468 {
15469 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15470 	struct intel_crtc *crtc;
15471 	int i;
15472 
15473 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15474 					    new_crtc_state, i)
15475 		intel_dsb_cleanup(old_crtc_state);
15476 }
15477 
15478 static void intel_atomic_cleanup_work(struct work_struct *work)
15479 {
15480 	struct intel_atomic_state *state =
15481 		container_of(work, struct intel_atomic_state, base.commit_work);
15482 	struct drm_i915_private *i915 = to_i915(state->base.dev);
15483 
15484 	intel_cleanup_dsbs(state);
15485 	drm_atomic_helper_cleanup_planes(&i915->drm, &state->base);
15486 	drm_atomic_helper_commit_cleanup_done(&state->base);
15487 	drm_atomic_state_put(&state->base);
15488 
15489 	intel_atomic_helper_free_state(i915);
15490 }
15491 
15492 static void intel_atomic_commit_tail(struct intel_atomic_state *state)
15493 {
15494 	struct drm_device *dev = state->base.dev;
15495 	struct drm_i915_private *dev_priv = to_i915(dev);
15496 	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
15497 	struct intel_crtc *crtc;
15498 	u64 put_domains[I915_MAX_PIPES] = {};
15499 	intel_wakeref_t wakeref = 0;
15500 	int i;
15501 
15502 	intel_atomic_commit_fence_wait(state);
15503 
15504 	drm_atomic_helper_wait_for_dependencies(&state->base);
15505 
15506 	if (state->modeset)
15507 		wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
15508 
15509 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15510 					    new_crtc_state, i) {
15511 		if (needs_modeset(new_crtc_state) ||
15512 		    new_crtc_state->update_pipe) {
15513 
15514 			put_domains[crtc->pipe] =
15515 				modeset_get_crtc_power_domains(new_crtc_state);
15516 		}
15517 	}
15518 
15519 	intel_commit_modeset_disables(state);
15520 
15521 	/* FIXME: Eventually get rid of our crtc->config pointer */
15522 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15523 		crtc->config = new_crtc_state;
15524 
15525 	if (state->modeset) {
15526 		drm_atomic_helper_update_legacy_modeset_state(dev, &state->base);
15527 
15528 		intel_set_cdclk_pre_plane_update(state);
15529 
15530 		intel_modeset_verify_disabled(dev_priv, state);
15531 	}
15532 
15533 	intel_sagv_pre_plane_update(state);
15534 
15535 	/* Complete the events for pipes that have now been disabled */
15536 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15537 		bool modeset = needs_modeset(new_crtc_state);
15538 
15539 		/* Complete events for now disable pipes here. */
15540 		if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) {
15541 			spin_lock_irq(&dev->event_lock);
15542 			drm_crtc_send_vblank_event(&crtc->base,
15543 						   new_crtc_state->uapi.event);
15544 			spin_unlock_irq(&dev->event_lock);
15545 
15546 			new_crtc_state->uapi.event = NULL;
15547 		}
15548 	}
15549 
15550 	if (state->modeset)
15551 		intel_encoders_update_prepare(state);
15552 
15553 	intel_dbuf_pre_plane_update(state);
15554 
15555 	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
15556 	dev_priv->display.commit_modeset_enables(state);
15557 
15558 	if (state->modeset) {
15559 		intel_encoders_update_complete(state);
15560 
15561 		intel_set_cdclk_post_plane_update(state);
15562 	}
15563 
15564 	/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
15565 	 * already, but still need the state for the delayed optimization. To
15566 	 * fix this:
15567 	 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
15568 	 * - schedule that vblank worker _before_ calling hw_done
15569 	 * - at the start of commit_tail, cancel it _synchrously
15570 	 * - switch over to the vblank wait helper in the core after that since
15571 	 *   we don't need out special handling any more.
15572 	 */
15573 	drm_atomic_helper_wait_for_flip_done(dev, &state->base);
15574 
15575 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15576 		if (new_crtc_state->hw.active &&
15577 		    !needs_modeset(new_crtc_state) &&
15578 		    !new_crtc_state->preload_luts &&
15579 		    (new_crtc_state->uapi.color_mgmt_changed ||
15580 		     new_crtc_state->update_pipe))
15581 			intel_color_load_luts(new_crtc_state);
15582 	}
15583 
15584 	/*
15585 	 * Now that the vblank has passed, we can go ahead and program the
15586 	 * optimal watermarks on platforms that need two-step watermark
15587 	 * programming.
15588 	 *
15589 	 * TODO: Move this (and other cleanup) to an async worker eventually.
15590 	 */
15591 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15592 					    new_crtc_state, i) {
15593 		/*
15594 		 * Gen2 reports pipe underruns whenever all planes are disabled.
15595 		 * So re-enable underrun reporting after some planes get enabled.
15596 		 *
15597 		 * We do this before .optimize_watermarks() so that we have a
15598 		 * chance of catching underruns with the intermediate watermarks
15599 		 * vs. the new plane configuration.
15600 		 */
15601 		if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state))
15602 			intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
15603 
15604 		if (dev_priv->display.optimize_watermarks)
15605 			dev_priv->display.optimize_watermarks(state, crtc);
15606 	}
15607 
15608 	intel_dbuf_post_plane_update(state);
15609 
15610 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15611 		intel_post_plane_update(state, crtc);
15612 
15613 		if (put_domains[i])
15614 			modeset_put_power_domains(dev_priv, put_domains[i]);
15615 
15616 		intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
15617 
15618 		/*
15619 		 * DSB cleanup is done in cleanup_work aligning with framebuffer
15620 		 * cleanup. So copy and reset the dsb structure to sync with
15621 		 * commit_done and later do dsb cleanup in cleanup_work.
15622 		 */
15623 		old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb);
15624 	}
15625 
15626 	/* Underruns don't always raise interrupts, so check manually */
15627 	intel_check_cpu_fifo_underruns(dev_priv);
15628 	intel_check_pch_fifo_underruns(dev_priv);
15629 
15630 	if (state->modeset)
15631 		intel_verify_planes(state);
15632 
15633 	intel_sagv_post_plane_update(state);
15634 
15635 	drm_atomic_helper_commit_hw_done(&state->base);
15636 
15637 	if (state->modeset) {
15638 		/* As one of the primary mmio accessors, KMS has a high
15639 		 * likelihood of triggering bugs in unclaimed access. After we
15640 		 * finish modesetting, see if an error has been flagged, and if
15641 		 * so enable debugging for the next modeset - and hope we catch
15642 		 * the culprit.
15643 		 */
15644 		intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
15645 		intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref);
15646 	}
15647 	intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15648 
15649 	/*
15650 	 * Defer the cleanup of the old state to a separate worker to not
15651 	 * impede the current task (userspace for blocking modesets) that
15652 	 * are executed inline. For out-of-line asynchronous modesets/flips,
15653 	 * deferring to a new worker seems overkill, but we would place a
15654 	 * schedule point (cond_resched()) here anyway to keep latencies
15655 	 * down.
15656 	 */
15657 	INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work);
15658 	queue_work(system_highpri_wq, &state->base.commit_work);
15659 }
15660 
15661 static void intel_atomic_commit_work(struct work_struct *work)
15662 {
15663 	struct intel_atomic_state *state =
15664 		container_of(work, struct intel_atomic_state, base.commit_work);
15665 
15666 	intel_atomic_commit_tail(state);
15667 }
15668 
15669 static int __i915_sw_fence_call
15670 intel_atomic_commit_ready(struct i915_sw_fence *fence,
15671 			  enum i915_sw_fence_notify notify)
15672 {
15673 	struct intel_atomic_state *state =
15674 		container_of(fence, struct intel_atomic_state, commit_ready);
15675 
15676 	switch (notify) {
15677 	case FENCE_COMPLETE:
15678 		/* we do blocking waits in the worker, nothing to do here */
15679 		break;
15680 	case FENCE_FREE:
15681 		{
15682 			struct intel_atomic_helper *helper =
15683 				&to_i915(state->base.dev)->atomic_helper;
15684 
15685 			if (llist_add(&state->freed, &helper->free_list))
15686 				schedule_work(&helper->free_work);
15687 			break;
15688 		}
15689 	}
15690 
15691 	return NOTIFY_DONE;
15692 }
15693 
15694 static void intel_atomic_track_fbs(struct intel_atomic_state *state)
15695 {
15696 	struct intel_plane_state *old_plane_state, *new_plane_state;
15697 	struct intel_plane *plane;
15698 	int i;
15699 
15700 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
15701 					     new_plane_state, i)
15702 		intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
15703 					to_intel_frontbuffer(new_plane_state->hw.fb),
15704 					plane->frontbuffer_bit);
15705 }
15706 
15707 static void assert_global_state_locked(struct drm_i915_private *dev_priv)
15708 {
15709 	struct intel_crtc *crtc;
15710 
15711 	for_each_intel_crtc(&dev_priv->drm, crtc)
15712 		drm_modeset_lock_assert_held(&crtc->base.mutex);
15713 }
15714 
15715 static int intel_atomic_commit(struct drm_device *dev,
15716 			       struct drm_atomic_state *_state,
15717 			       bool nonblock)
15718 {
15719 	struct intel_atomic_state *state = to_intel_atomic_state(_state);
15720 	struct drm_i915_private *dev_priv = to_i915(dev);
15721 	int ret = 0;
15722 
15723 	state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
15724 
15725 	drm_atomic_state_get(&state->base);
15726 	i915_sw_fence_init(&state->commit_ready,
15727 			   intel_atomic_commit_ready);
15728 
15729 	/*
15730 	 * The intel_legacy_cursor_update() fast path takes care
15731 	 * of avoiding the vblank waits for simple cursor
15732 	 * movement and flips. For cursor on/off and size changes,
15733 	 * we want to perform the vblank waits so that watermark
15734 	 * updates happen during the correct frames. Gen9+ have
15735 	 * double buffered watermarks and so shouldn't need this.
15736 	 *
15737 	 * Unset state->legacy_cursor_update before the call to
15738 	 * drm_atomic_helper_setup_commit() because otherwise
15739 	 * drm_atomic_helper_wait_for_flip_done() is a noop and
15740 	 * we get FIFO underruns because we didn't wait
15741 	 * for vblank.
15742 	 *
15743 	 * FIXME doing watermarks and fb cleanup from a vblank worker
15744 	 * (assuming we had any) would solve these problems.
15745 	 */
15746 	if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) {
15747 		struct intel_crtc_state *new_crtc_state;
15748 		struct intel_crtc *crtc;
15749 		int i;
15750 
15751 		for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15752 			if (new_crtc_state->wm.need_postvbl_update ||
15753 			    new_crtc_state->update_wm_post)
15754 				state->base.legacy_cursor_update = false;
15755 	}
15756 
15757 	ret = intel_atomic_prepare_commit(state);
15758 	if (ret) {
15759 		drm_dbg_atomic(&dev_priv->drm,
15760 			       "Preparing state failed with %i\n", ret);
15761 		i915_sw_fence_commit(&state->commit_ready);
15762 		intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15763 		return ret;
15764 	}
15765 
15766 	ret = drm_atomic_helper_setup_commit(&state->base, nonblock);
15767 	if (!ret)
15768 		ret = drm_atomic_helper_swap_state(&state->base, true);
15769 	if (!ret)
15770 		intel_atomic_swap_global_state(state);
15771 
15772 	if (ret) {
15773 		struct intel_crtc_state *new_crtc_state;
15774 		struct intel_crtc *crtc;
15775 		int i;
15776 
15777 		i915_sw_fence_commit(&state->commit_ready);
15778 
15779 		for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15780 			intel_dsb_cleanup(new_crtc_state);
15781 
15782 		drm_atomic_helper_cleanup_planes(dev, &state->base);
15783 		intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15784 		return ret;
15785 	}
15786 	dev_priv->wm.distrust_bios_wm = false;
15787 	intel_shared_dpll_swap_state(state);
15788 	intel_atomic_track_fbs(state);
15789 
15790 	if (state->global_state_changed) {
15791 		assert_global_state_locked(dev_priv);
15792 
15793 		dev_priv->active_pipes = state->active_pipes;
15794 	}
15795 
15796 	drm_atomic_state_get(&state->base);
15797 	INIT_WORK(&state->base.commit_work, intel_atomic_commit_work);
15798 
15799 	i915_sw_fence_commit(&state->commit_ready);
15800 	if (nonblock && state->modeset) {
15801 		queue_work(dev_priv->modeset_wq, &state->base.commit_work);
15802 	} else if (nonblock) {
15803 		queue_work(dev_priv->flip_wq, &state->base.commit_work);
15804 	} else {
15805 		if (state->modeset)
15806 			flush_workqueue(dev_priv->modeset_wq);
15807 		intel_atomic_commit_tail(state);
15808 	}
15809 
15810 	return 0;
15811 }
15812 
15813 struct wait_rps_boost {
15814 	struct wait_queue_entry wait;
15815 
15816 	struct drm_crtc *crtc;
15817 	struct i915_request *request;
15818 };
15819 
15820 static int do_rps_boost(struct wait_queue_entry *_wait,
15821 			unsigned mode, int sync, void *key)
15822 {
15823 	struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
15824 	struct i915_request *rq = wait->request;
15825 
15826 	/*
15827 	 * If we missed the vblank, but the request is already running it
15828 	 * is reasonable to assume that it will complete before the next
15829 	 * vblank without our intervention, so leave RPS alone.
15830 	 */
15831 	if (!i915_request_started(rq))
15832 		intel_rps_boost(rq);
15833 	i915_request_put(rq);
15834 
15835 	drm_crtc_vblank_put(wait->crtc);
15836 
15837 	list_del(&wait->wait.entry);
15838 	kfree(wait);
15839 	return 1;
15840 }
15841 
15842 static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
15843 				       struct dma_fence *fence)
15844 {
15845 	struct wait_rps_boost *wait;
15846 
15847 	if (!dma_fence_is_i915(fence))
15848 		return;
15849 
15850 	if (INTEL_GEN(to_i915(crtc->dev)) < 6)
15851 		return;
15852 
15853 	if (drm_crtc_vblank_get(crtc))
15854 		return;
15855 
15856 	wait = kmalloc(sizeof(*wait), GFP_KERNEL);
15857 	if (!wait) {
15858 		drm_crtc_vblank_put(crtc);
15859 		return;
15860 	}
15861 
15862 	wait->request = to_request(dma_fence_get(fence));
15863 	wait->crtc = crtc;
15864 
15865 	wait->wait.func = do_rps_boost;
15866 	wait->wait.flags = 0;
15867 
15868 	add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
15869 }
15870 
15871 static int intel_plane_pin_fb(struct intel_plane_state *plane_state)
15872 {
15873 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
15874 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15875 	struct drm_framebuffer *fb = plane_state->hw.fb;
15876 	struct i915_vma *vma;
15877 
15878 	if (plane->id == PLANE_CURSOR &&
15879 	    INTEL_INFO(dev_priv)->display.cursor_needs_physical) {
15880 		struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15881 		const int align = intel_cursor_alignment(dev_priv);
15882 		int err;
15883 
15884 		err = i915_gem_object_attach_phys(obj, align);
15885 		if (err)
15886 			return err;
15887 	}
15888 
15889 	vma = intel_pin_and_fence_fb_obj(fb,
15890 					 &plane_state->view,
15891 					 intel_plane_uses_fence(plane_state),
15892 					 &plane_state->flags);
15893 	if (IS_ERR(vma))
15894 		return PTR_ERR(vma);
15895 
15896 	plane_state->vma = vma;
15897 
15898 	return 0;
15899 }
15900 
15901 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state)
15902 {
15903 	struct i915_vma *vma;
15904 
15905 	vma = fetch_and_zero(&old_plane_state->vma);
15906 	if (vma)
15907 		intel_unpin_fb_vma(vma, old_plane_state->flags);
15908 }
15909 
15910 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj)
15911 {
15912 	struct i915_sched_attr attr = {
15913 		.priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY),
15914 	};
15915 
15916 	i915_gem_object_wait_priority(obj, 0, &attr);
15917 }
15918 
15919 /**
15920  * intel_prepare_plane_fb - Prepare fb for usage on plane
15921  * @_plane: drm plane to prepare for
15922  * @_new_plane_state: the plane state being prepared
15923  *
15924  * Prepares a framebuffer for usage on a display plane.  Generally this
15925  * involves pinning the underlying object and updating the frontbuffer tracking
15926  * bits.  Some older platforms need special physical address handling for
15927  * cursor planes.
15928  *
15929  * Returns 0 on success, negative error code on failure.
15930  */
15931 int
15932 intel_prepare_plane_fb(struct drm_plane *_plane,
15933 		       struct drm_plane_state *_new_plane_state)
15934 {
15935 	struct intel_plane *plane = to_intel_plane(_plane);
15936 	struct intel_plane_state *new_plane_state =
15937 		to_intel_plane_state(_new_plane_state);
15938 	struct intel_atomic_state *state =
15939 		to_intel_atomic_state(new_plane_state->uapi.state);
15940 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15941 	const struct intel_plane_state *old_plane_state =
15942 		intel_atomic_get_old_plane_state(state, plane);
15943 	struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb);
15944 	struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb);
15945 	int ret;
15946 
15947 	if (old_obj) {
15948 		const struct intel_crtc_state *crtc_state =
15949 			intel_atomic_get_new_crtc_state(state,
15950 							to_intel_crtc(old_plane_state->hw.crtc));
15951 
15952 		/* Big Hammer, we also need to ensure that any pending
15953 		 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
15954 		 * current scanout is retired before unpinning the old
15955 		 * framebuffer. Note that we rely on userspace rendering
15956 		 * into the buffer attached to the pipe they are waiting
15957 		 * on. If not, userspace generates a GPU hang with IPEHR
15958 		 * point to the MI_WAIT_FOR_EVENT.
15959 		 *
15960 		 * This should only fail upon a hung GPU, in which case we
15961 		 * can safely continue.
15962 		 */
15963 		if (needs_modeset(crtc_state)) {
15964 			ret = i915_sw_fence_await_reservation(&state->commit_ready,
15965 							      old_obj->base.resv, NULL,
15966 							      false, 0,
15967 							      GFP_KERNEL);
15968 			if (ret < 0)
15969 				return ret;
15970 		}
15971 	}
15972 
15973 	if (new_plane_state->uapi.fence) { /* explicit fencing */
15974 		ret = i915_sw_fence_await_dma_fence(&state->commit_ready,
15975 						    new_plane_state->uapi.fence,
15976 						    i915_fence_timeout(dev_priv),
15977 						    GFP_KERNEL);
15978 		if (ret < 0)
15979 			return ret;
15980 	}
15981 
15982 	if (!obj)
15983 		return 0;
15984 
15985 	ret = i915_gem_object_pin_pages(obj);
15986 	if (ret)
15987 		return ret;
15988 
15989 	ret = intel_plane_pin_fb(new_plane_state);
15990 
15991 	i915_gem_object_unpin_pages(obj);
15992 	if (ret)
15993 		return ret;
15994 
15995 	fb_obj_bump_render_priority(obj);
15996 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB);
15997 
15998 	if (!new_plane_state->uapi.fence) { /* implicit fencing */
15999 		struct dma_fence *fence;
16000 
16001 		ret = i915_sw_fence_await_reservation(&state->commit_ready,
16002 						      obj->base.resv, NULL,
16003 						      false,
16004 						      i915_fence_timeout(dev_priv),
16005 						      GFP_KERNEL);
16006 		if (ret < 0)
16007 			goto unpin_fb;
16008 
16009 		fence = dma_resv_get_excl_rcu(obj->base.resv);
16010 		if (fence) {
16011 			add_rps_boost_after_vblank(new_plane_state->hw.crtc,
16012 						   fence);
16013 			dma_fence_put(fence);
16014 		}
16015 	} else {
16016 		add_rps_boost_after_vblank(new_plane_state->hw.crtc,
16017 					   new_plane_state->uapi.fence);
16018 	}
16019 
16020 	/*
16021 	 * We declare pageflips to be interactive and so merit a small bias
16022 	 * towards upclocking to deliver the frame on time. By only changing
16023 	 * the RPS thresholds to sample more regularly and aim for higher
16024 	 * clocks we can hopefully deliver low power workloads (like kodi)
16025 	 * that are not quite steady state without resorting to forcing
16026 	 * maximum clocks following a vblank miss (see do_rps_boost()).
16027 	 */
16028 	if (!state->rps_interactive) {
16029 		intel_rps_mark_interactive(&dev_priv->gt.rps, true);
16030 		state->rps_interactive = true;
16031 	}
16032 
16033 	return 0;
16034 
16035 unpin_fb:
16036 	intel_plane_unpin_fb(new_plane_state);
16037 
16038 	return ret;
16039 }
16040 
16041 /**
16042  * intel_cleanup_plane_fb - Cleans up an fb after plane use
16043  * @plane: drm plane to clean up for
16044  * @_old_plane_state: the state from the previous modeset
16045  *
16046  * Cleans up a framebuffer that has just been removed from a plane.
16047  */
16048 void
16049 intel_cleanup_plane_fb(struct drm_plane *plane,
16050 		       struct drm_plane_state *_old_plane_state)
16051 {
16052 	struct intel_plane_state *old_plane_state =
16053 		to_intel_plane_state(_old_plane_state);
16054 	struct intel_atomic_state *state =
16055 		to_intel_atomic_state(old_plane_state->uapi.state);
16056 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
16057 	struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb);
16058 
16059 	if (!obj)
16060 		return;
16061 
16062 	if (state->rps_interactive) {
16063 		intel_rps_mark_interactive(&dev_priv->gt.rps, false);
16064 		state->rps_interactive = false;
16065 	}
16066 
16067 	/* Should only be called after a successful intel_prepare_plane_fb()! */
16068 	intel_plane_unpin_fb(old_plane_state);
16069 }
16070 
16071 /**
16072  * intel_plane_destroy - destroy a plane
16073  * @plane: plane to destroy
16074  *
16075  * Common destruction function for all types of planes (primary, cursor,
16076  * sprite).
16077  */
16078 void intel_plane_destroy(struct drm_plane *plane)
16079 {
16080 	drm_plane_cleanup(plane);
16081 	kfree(to_intel_plane(plane));
16082 }
16083 
16084 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane,
16085 					    u32 format, u64 modifier)
16086 {
16087 	switch (modifier) {
16088 	case DRM_FORMAT_MOD_LINEAR:
16089 	case I915_FORMAT_MOD_X_TILED:
16090 		break;
16091 	default:
16092 		return false;
16093 	}
16094 
16095 	switch (format) {
16096 	case DRM_FORMAT_C8:
16097 	case DRM_FORMAT_RGB565:
16098 	case DRM_FORMAT_XRGB1555:
16099 	case DRM_FORMAT_XRGB8888:
16100 		return modifier == DRM_FORMAT_MOD_LINEAR ||
16101 			modifier == I915_FORMAT_MOD_X_TILED;
16102 	default:
16103 		return false;
16104 	}
16105 }
16106 
16107 static bool i965_plane_format_mod_supported(struct drm_plane *_plane,
16108 					    u32 format, u64 modifier)
16109 {
16110 	switch (modifier) {
16111 	case DRM_FORMAT_MOD_LINEAR:
16112 	case I915_FORMAT_MOD_X_TILED:
16113 		break;
16114 	default:
16115 		return false;
16116 	}
16117 
16118 	switch (format) {
16119 	case DRM_FORMAT_C8:
16120 	case DRM_FORMAT_RGB565:
16121 	case DRM_FORMAT_XRGB8888:
16122 	case DRM_FORMAT_XBGR8888:
16123 	case DRM_FORMAT_ARGB8888:
16124 	case DRM_FORMAT_ABGR8888:
16125 	case DRM_FORMAT_XRGB2101010:
16126 	case DRM_FORMAT_XBGR2101010:
16127 	case DRM_FORMAT_ARGB2101010:
16128 	case DRM_FORMAT_ABGR2101010:
16129 	case DRM_FORMAT_XBGR16161616F:
16130 		return modifier == DRM_FORMAT_MOD_LINEAR ||
16131 			modifier == I915_FORMAT_MOD_X_TILED;
16132 	default:
16133 		return false;
16134 	}
16135 }
16136 
16137 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane,
16138 					      u32 format, u64 modifier)
16139 {
16140 	return modifier == DRM_FORMAT_MOD_LINEAR &&
16141 		format == DRM_FORMAT_ARGB8888;
16142 }
16143 
16144 static const struct drm_plane_funcs i965_plane_funcs = {
16145 	.update_plane = drm_atomic_helper_update_plane,
16146 	.disable_plane = drm_atomic_helper_disable_plane,
16147 	.destroy = intel_plane_destroy,
16148 	.atomic_duplicate_state = intel_plane_duplicate_state,
16149 	.atomic_destroy_state = intel_plane_destroy_state,
16150 	.format_mod_supported = i965_plane_format_mod_supported,
16151 };
16152 
16153 static const struct drm_plane_funcs i8xx_plane_funcs = {
16154 	.update_plane = drm_atomic_helper_update_plane,
16155 	.disable_plane = drm_atomic_helper_disable_plane,
16156 	.destroy = intel_plane_destroy,
16157 	.atomic_duplicate_state = intel_plane_duplicate_state,
16158 	.atomic_destroy_state = intel_plane_destroy_state,
16159 	.format_mod_supported = i8xx_plane_format_mod_supported,
16160 };
16161 
16162 static int
16163 intel_legacy_cursor_update(struct drm_plane *_plane,
16164 			   struct drm_crtc *_crtc,
16165 			   struct drm_framebuffer *fb,
16166 			   int crtc_x, int crtc_y,
16167 			   unsigned int crtc_w, unsigned int crtc_h,
16168 			   u32 src_x, u32 src_y,
16169 			   u32 src_w, u32 src_h,
16170 			   struct drm_modeset_acquire_ctx *ctx)
16171 {
16172 	struct intel_plane *plane = to_intel_plane(_plane);
16173 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
16174 	struct intel_plane_state *old_plane_state =
16175 		to_intel_plane_state(plane->base.state);
16176 	struct intel_plane_state *new_plane_state;
16177 	struct intel_crtc_state *crtc_state =
16178 		to_intel_crtc_state(crtc->base.state);
16179 	struct intel_crtc_state *new_crtc_state;
16180 	int ret;
16181 
16182 	/*
16183 	 * When crtc is inactive or there is a modeset pending,
16184 	 * wait for it to complete in the slowpath
16185 	 */
16186 	if (!crtc_state->hw.active || needs_modeset(crtc_state) ||
16187 	    crtc_state->update_pipe)
16188 		goto slow;
16189 
16190 	/*
16191 	 * Don't do an async update if there is an outstanding commit modifying
16192 	 * the plane.  This prevents our async update's changes from getting
16193 	 * overridden by a previous synchronous update's state.
16194 	 */
16195 	if (old_plane_state->uapi.commit &&
16196 	    !try_wait_for_completion(&old_plane_state->uapi.commit->hw_done))
16197 		goto slow;
16198 
16199 	/*
16200 	 * If any parameters change that may affect watermarks,
16201 	 * take the slowpath. Only changing fb or position should be
16202 	 * in the fastpath.
16203 	 */
16204 	if (old_plane_state->uapi.crtc != &crtc->base ||
16205 	    old_plane_state->uapi.src_w != src_w ||
16206 	    old_plane_state->uapi.src_h != src_h ||
16207 	    old_plane_state->uapi.crtc_w != crtc_w ||
16208 	    old_plane_state->uapi.crtc_h != crtc_h ||
16209 	    !old_plane_state->uapi.fb != !fb)
16210 		goto slow;
16211 
16212 	new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base));
16213 	if (!new_plane_state)
16214 		return -ENOMEM;
16215 
16216 	new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base));
16217 	if (!new_crtc_state) {
16218 		ret = -ENOMEM;
16219 		goto out_free;
16220 	}
16221 
16222 	drm_atomic_set_fb_for_plane(&new_plane_state->uapi, fb);
16223 
16224 	new_plane_state->uapi.src_x = src_x;
16225 	new_plane_state->uapi.src_y = src_y;
16226 	new_plane_state->uapi.src_w = src_w;
16227 	new_plane_state->uapi.src_h = src_h;
16228 	new_plane_state->uapi.crtc_x = crtc_x;
16229 	new_plane_state->uapi.crtc_y = crtc_y;
16230 	new_plane_state->uapi.crtc_w = crtc_w;
16231 	new_plane_state->uapi.crtc_h = crtc_h;
16232 
16233 	intel_plane_copy_uapi_to_hw_state(new_plane_state, new_plane_state);
16234 
16235 	ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state,
16236 						  old_plane_state, new_plane_state);
16237 	if (ret)
16238 		goto out_free;
16239 
16240 	ret = intel_plane_pin_fb(new_plane_state);
16241 	if (ret)
16242 		goto out_free;
16243 
16244 	intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->hw.fb),
16245 				ORIGIN_FLIP);
16246 	intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
16247 				to_intel_frontbuffer(new_plane_state->hw.fb),
16248 				plane->frontbuffer_bit);
16249 
16250 	/* Swap plane state */
16251 	plane->base.state = &new_plane_state->uapi;
16252 
16253 	/*
16254 	 * We cannot swap crtc_state as it may be in use by an atomic commit or
16255 	 * page flip that's running simultaneously. If we swap crtc_state and
16256 	 * destroy the old state, we will cause a use-after-free there.
16257 	 *
16258 	 * Only update active_planes, which is needed for our internal
16259 	 * bookkeeping. Either value will do the right thing when updating
16260 	 * planes atomically. If the cursor was part of the atomic update then
16261 	 * we would have taken the slowpath.
16262 	 */
16263 	crtc_state->active_planes = new_crtc_state->active_planes;
16264 
16265 	if (new_plane_state->uapi.visible)
16266 		intel_update_plane(plane, crtc_state, new_plane_state);
16267 	else
16268 		intel_disable_plane(plane, crtc_state);
16269 
16270 	intel_plane_unpin_fb(old_plane_state);
16271 
16272 out_free:
16273 	if (new_crtc_state)
16274 		intel_crtc_destroy_state(&crtc->base, &new_crtc_state->uapi);
16275 	if (ret)
16276 		intel_plane_destroy_state(&plane->base, &new_plane_state->uapi);
16277 	else
16278 		intel_plane_destroy_state(&plane->base, &old_plane_state->uapi);
16279 	return ret;
16280 
16281 slow:
16282 	return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb,
16283 					      crtc_x, crtc_y, crtc_w, crtc_h,
16284 					      src_x, src_y, src_w, src_h, ctx);
16285 }
16286 
16287 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
16288 	.update_plane = intel_legacy_cursor_update,
16289 	.disable_plane = drm_atomic_helper_disable_plane,
16290 	.destroy = intel_plane_destroy,
16291 	.atomic_duplicate_state = intel_plane_duplicate_state,
16292 	.atomic_destroy_state = intel_plane_destroy_state,
16293 	.format_mod_supported = intel_cursor_format_mod_supported,
16294 };
16295 
16296 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv,
16297 			       enum i9xx_plane_id i9xx_plane)
16298 {
16299 	if (!HAS_FBC(dev_priv))
16300 		return false;
16301 
16302 	if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
16303 		return i9xx_plane == PLANE_A; /* tied to pipe A */
16304 	else if (IS_IVYBRIDGE(dev_priv))
16305 		return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B ||
16306 			i9xx_plane == PLANE_C;
16307 	else if (INTEL_GEN(dev_priv) >= 4)
16308 		return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B;
16309 	else
16310 		return i9xx_plane == PLANE_A;
16311 }
16312 
16313 static struct intel_plane *
16314 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
16315 {
16316 	struct intel_plane *plane;
16317 	const struct drm_plane_funcs *plane_funcs;
16318 	unsigned int supported_rotations;
16319 	const u32 *formats;
16320 	int num_formats;
16321 	int ret, zpos;
16322 
16323 	if (INTEL_GEN(dev_priv) >= 9)
16324 		return skl_universal_plane_create(dev_priv, pipe,
16325 						  PLANE_PRIMARY);
16326 
16327 	plane = intel_plane_alloc();
16328 	if (IS_ERR(plane))
16329 		return plane;
16330 
16331 	plane->pipe = pipe;
16332 	/*
16333 	 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
16334 	 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
16335 	 */
16336 	if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4 &&
16337 	    INTEL_NUM_PIPES(dev_priv) == 2)
16338 		plane->i9xx_plane = (enum i9xx_plane_id) !pipe;
16339 	else
16340 		plane->i9xx_plane = (enum i9xx_plane_id) pipe;
16341 	plane->id = PLANE_PRIMARY;
16342 	plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id);
16343 
16344 	plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane);
16345 	if (plane->has_fbc) {
16346 		struct intel_fbc *fbc = &dev_priv->fbc;
16347 
16348 		fbc->possible_framebuffer_bits |= plane->frontbuffer_bit;
16349 	}
16350 
16351 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16352 		formats = vlv_primary_formats;
16353 		num_formats = ARRAY_SIZE(vlv_primary_formats);
16354 	} else if (INTEL_GEN(dev_priv) >= 4) {
16355 		/*
16356 		 * WaFP16GammaEnabling:ivb
16357 		 * "Workaround : When using the 64-bit format, the plane
16358 		 *  output on each color channel has one quarter amplitude.
16359 		 *  It can be brought up to full amplitude by using pipe
16360 		 *  gamma correction or pipe color space conversion to
16361 		 *  multiply the plane output by four."
16362 		 *
16363 		 * There is no dedicated plane gamma for the primary plane,
16364 		 * and using the pipe gamma/csc could conflict with other
16365 		 * planes, so we choose not to expose fp16 on IVB primary
16366 		 * planes. HSW primary planes no longer have this problem.
16367 		 */
16368 		if (IS_IVYBRIDGE(dev_priv)) {
16369 			formats = ivb_primary_formats;
16370 			num_formats = ARRAY_SIZE(ivb_primary_formats);
16371 		} else {
16372 			formats = i965_primary_formats;
16373 			num_formats = ARRAY_SIZE(i965_primary_formats);
16374 		}
16375 	} else {
16376 		formats = i8xx_primary_formats;
16377 		num_formats = ARRAY_SIZE(i8xx_primary_formats);
16378 	}
16379 
16380 	if (INTEL_GEN(dev_priv) >= 4)
16381 		plane_funcs = &i965_plane_funcs;
16382 	else
16383 		plane_funcs = &i8xx_plane_funcs;
16384 
16385 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16386 		plane->min_cdclk = vlv_plane_min_cdclk;
16387 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
16388 		plane->min_cdclk = hsw_plane_min_cdclk;
16389 	else if (IS_IVYBRIDGE(dev_priv))
16390 		plane->min_cdclk = ivb_plane_min_cdclk;
16391 	else
16392 		plane->min_cdclk = i9xx_plane_min_cdclk;
16393 
16394 	plane->max_stride = i9xx_plane_max_stride;
16395 	plane->update_plane = i9xx_update_plane;
16396 	plane->disable_plane = i9xx_disable_plane;
16397 	plane->get_hw_state = i9xx_plane_get_hw_state;
16398 	plane->check_plane = i9xx_plane_check;
16399 
16400 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
16401 		ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
16402 					       0, plane_funcs,
16403 					       formats, num_formats,
16404 					       i9xx_format_modifiers,
16405 					       DRM_PLANE_TYPE_PRIMARY,
16406 					       "primary %c", pipe_name(pipe));
16407 	else
16408 		ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
16409 					       0, plane_funcs,
16410 					       formats, num_formats,
16411 					       i9xx_format_modifiers,
16412 					       DRM_PLANE_TYPE_PRIMARY,
16413 					       "plane %c",
16414 					       plane_name(plane->i9xx_plane));
16415 	if (ret)
16416 		goto fail;
16417 
16418 	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
16419 		supported_rotations =
16420 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
16421 			DRM_MODE_REFLECT_X;
16422 	} else if (INTEL_GEN(dev_priv) >= 4) {
16423 		supported_rotations =
16424 			DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
16425 	} else {
16426 		supported_rotations = DRM_MODE_ROTATE_0;
16427 	}
16428 
16429 	if (INTEL_GEN(dev_priv) >= 4)
16430 		drm_plane_create_rotation_property(&plane->base,
16431 						   DRM_MODE_ROTATE_0,
16432 						   supported_rotations);
16433 
16434 	zpos = 0;
16435 	drm_plane_create_zpos_immutable_property(&plane->base, zpos);
16436 
16437 	drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs);
16438 
16439 	return plane;
16440 
16441 fail:
16442 	intel_plane_free(plane);
16443 
16444 	return ERR_PTR(ret);
16445 }
16446 
16447 static struct intel_plane *
16448 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
16449 			  enum pipe pipe)
16450 {
16451 	struct intel_plane *cursor;
16452 	int ret, zpos;
16453 
16454 	cursor = intel_plane_alloc();
16455 	if (IS_ERR(cursor))
16456 		return cursor;
16457 
16458 	cursor->pipe = pipe;
16459 	cursor->i9xx_plane = (enum i9xx_plane_id) pipe;
16460 	cursor->id = PLANE_CURSOR;
16461 	cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id);
16462 
16463 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
16464 		cursor->max_stride = i845_cursor_max_stride;
16465 		cursor->update_plane = i845_update_cursor;
16466 		cursor->disable_plane = i845_disable_cursor;
16467 		cursor->get_hw_state = i845_cursor_get_hw_state;
16468 		cursor->check_plane = i845_check_cursor;
16469 	} else {
16470 		cursor->max_stride = i9xx_cursor_max_stride;
16471 		cursor->update_plane = i9xx_update_cursor;
16472 		cursor->disable_plane = i9xx_disable_cursor;
16473 		cursor->get_hw_state = i9xx_cursor_get_hw_state;
16474 		cursor->check_plane = i9xx_check_cursor;
16475 	}
16476 
16477 	cursor->cursor.base = ~0;
16478 	cursor->cursor.cntl = ~0;
16479 
16480 	if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
16481 		cursor->cursor.size = ~0;
16482 
16483 	ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
16484 				       0, &intel_cursor_plane_funcs,
16485 				       intel_cursor_formats,
16486 				       ARRAY_SIZE(intel_cursor_formats),
16487 				       cursor_format_modifiers,
16488 				       DRM_PLANE_TYPE_CURSOR,
16489 				       "cursor %c", pipe_name(pipe));
16490 	if (ret)
16491 		goto fail;
16492 
16493 	if (INTEL_GEN(dev_priv) >= 4)
16494 		drm_plane_create_rotation_property(&cursor->base,
16495 						   DRM_MODE_ROTATE_0,
16496 						   DRM_MODE_ROTATE_0 |
16497 						   DRM_MODE_ROTATE_180);
16498 
16499 	zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1;
16500 	drm_plane_create_zpos_immutable_property(&cursor->base, zpos);
16501 
16502 	if (INTEL_GEN(dev_priv) >= 12)
16503 		drm_plane_enable_fb_damage_clips(&cursor->base);
16504 
16505 	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
16506 
16507 	return cursor;
16508 
16509 fail:
16510 	intel_plane_free(cursor);
16511 
16512 	return ERR_PTR(ret);
16513 }
16514 
16515 #define INTEL_CRTC_FUNCS \
16516 	.gamma_set = drm_atomic_helper_legacy_gamma_set, \
16517 	.set_config = drm_atomic_helper_set_config, \
16518 	.destroy = intel_crtc_destroy, \
16519 	.page_flip = drm_atomic_helper_page_flip, \
16520 	.atomic_duplicate_state = intel_crtc_duplicate_state, \
16521 	.atomic_destroy_state = intel_crtc_destroy_state, \
16522 	.set_crc_source = intel_crtc_set_crc_source, \
16523 	.verify_crc_source = intel_crtc_verify_crc_source, \
16524 	.get_crc_sources = intel_crtc_get_crc_sources
16525 
16526 static const struct drm_crtc_funcs bdw_crtc_funcs = {
16527 	INTEL_CRTC_FUNCS,
16528 
16529 	.get_vblank_counter = g4x_get_vblank_counter,
16530 	.enable_vblank = bdw_enable_vblank,
16531 	.disable_vblank = bdw_disable_vblank,
16532 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16533 };
16534 
16535 static const struct drm_crtc_funcs ilk_crtc_funcs = {
16536 	INTEL_CRTC_FUNCS,
16537 
16538 	.get_vblank_counter = g4x_get_vblank_counter,
16539 	.enable_vblank = ilk_enable_vblank,
16540 	.disable_vblank = ilk_disable_vblank,
16541 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16542 };
16543 
16544 static const struct drm_crtc_funcs g4x_crtc_funcs = {
16545 	INTEL_CRTC_FUNCS,
16546 
16547 	.get_vblank_counter = g4x_get_vblank_counter,
16548 	.enable_vblank = i965_enable_vblank,
16549 	.disable_vblank = i965_disable_vblank,
16550 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16551 };
16552 
16553 static const struct drm_crtc_funcs i965_crtc_funcs = {
16554 	INTEL_CRTC_FUNCS,
16555 
16556 	.get_vblank_counter = i915_get_vblank_counter,
16557 	.enable_vblank = i965_enable_vblank,
16558 	.disable_vblank = i965_disable_vblank,
16559 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16560 };
16561 
16562 static const struct drm_crtc_funcs i915gm_crtc_funcs = {
16563 	INTEL_CRTC_FUNCS,
16564 
16565 	.get_vblank_counter = i915_get_vblank_counter,
16566 	.enable_vblank = i915gm_enable_vblank,
16567 	.disable_vblank = i915gm_disable_vblank,
16568 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16569 };
16570 
16571 static const struct drm_crtc_funcs i915_crtc_funcs = {
16572 	INTEL_CRTC_FUNCS,
16573 
16574 	.get_vblank_counter = i915_get_vblank_counter,
16575 	.enable_vblank = i8xx_enable_vblank,
16576 	.disable_vblank = i8xx_disable_vblank,
16577 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16578 };
16579 
16580 static const struct drm_crtc_funcs i8xx_crtc_funcs = {
16581 	INTEL_CRTC_FUNCS,
16582 
16583 	/* no hw vblank counter */
16584 	.enable_vblank = i8xx_enable_vblank,
16585 	.disable_vblank = i8xx_disable_vblank,
16586 	.get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
16587 };
16588 
16589 static struct intel_crtc *intel_crtc_alloc(void)
16590 {
16591 	struct intel_crtc_state *crtc_state;
16592 	struct intel_crtc *crtc;
16593 
16594 	crtc = kzalloc(sizeof(*crtc), GFP_KERNEL);
16595 	if (!crtc)
16596 		return ERR_PTR(-ENOMEM);
16597 
16598 	crtc_state = intel_crtc_state_alloc(crtc);
16599 	if (!crtc_state) {
16600 		kfree(crtc);
16601 		return ERR_PTR(-ENOMEM);
16602 	}
16603 
16604 	crtc->base.state = &crtc_state->uapi;
16605 	crtc->config = crtc_state;
16606 
16607 	return crtc;
16608 }
16609 
16610 static void intel_crtc_free(struct intel_crtc *crtc)
16611 {
16612 	intel_crtc_destroy_state(&crtc->base, crtc->base.state);
16613 	kfree(crtc);
16614 }
16615 
16616 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv)
16617 {
16618 	struct intel_plane *plane;
16619 
16620 	for_each_intel_plane(&dev_priv->drm, plane) {
16621 		struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
16622 								  plane->pipe);
16623 
16624 		plane->base.possible_crtcs = drm_crtc_mask(&crtc->base);
16625 	}
16626 }
16627 
16628 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
16629 {
16630 	struct intel_plane *primary, *cursor;
16631 	const struct drm_crtc_funcs *funcs;
16632 	struct intel_crtc *crtc;
16633 	int sprite, ret;
16634 
16635 	crtc = intel_crtc_alloc();
16636 	if (IS_ERR(crtc))
16637 		return PTR_ERR(crtc);
16638 
16639 	crtc->pipe = pipe;
16640 	crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe];
16641 
16642 	primary = intel_primary_plane_create(dev_priv, pipe);
16643 	if (IS_ERR(primary)) {
16644 		ret = PTR_ERR(primary);
16645 		goto fail;
16646 	}
16647 	crtc->plane_ids_mask |= BIT(primary->id);
16648 
16649 	for_each_sprite(dev_priv, pipe, sprite) {
16650 		struct intel_plane *plane;
16651 
16652 		plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
16653 		if (IS_ERR(plane)) {
16654 			ret = PTR_ERR(plane);
16655 			goto fail;
16656 		}
16657 		crtc->plane_ids_mask |= BIT(plane->id);
16658 	}
16659 
16660 	cursor = intel_cursor_plane_create(dev_priv, pipe);
16661 	if (IS_ERR(cursor)) {
16662 		ret = PTR_ERR(cursor);
16663 		goto fail;
16664 	}
16665 	crtc->plane_ids_mask |= BIT(cursor->id);
16666 
16667 	if (HAS_GMCH(dev_priv)) {
16668 		if (IS_CHERRYVIEW(dev_priv) ||
16669 		    IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
16670 			funcs = &g4x_crtc_funcs;
16671 		else if (IS_GEN(dev_priv, 4))
16672 			funcs = &i965_crtc_funcs;
16673 		else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv))
16674 			funcs = &i915gm_crtc_funcs;
16675 		else if (IS_GEN(dev_priv, 3))
16676 			funcs = &i915_crtc_funcs;
16677 		else
16678 			funcs = &i8xx_crtc_funcs;
16679 	} else {
16680 		if (INTEL_GEN(dev_priv) >= 8)
16681 			funcs = &bdw_crtc_funcs;
16682 		else
16683 			funcs = &ilk_crtc_funcs;
16684 	}
16685 
16686 	ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base,
16687 					&primary->base, &cursor->base,
16688 					funcs, "pipe %c", pipe_name(pipe));
16689 	if (ret)
16690 		goto fail;
16691 
16692 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) ||
16693 	       dev_priv->pipe_to_crtc_mapping[pipe] != NULL);
16694 	dev_priv->pipe_to_crtc_mapping[pipe] = crtc;
16695 
16696 	if (INTEL_GEN(dev_priv) < 9) {
16697 		enum i9xx_plane_id i9xx_plane = primary->i9xx_plane;
16698 
16699 		BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
16700 		       dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL);
16701 		dev_priv->plane_to_crtc_mapping[i9xx_plane] = crtc;
16702 	}
16703 
16704 	intel_color_init(crtc);
16705 
16706 	intel_crtc_crc_init(crtc);
16707 
16708 	drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe);
16709 
16710 	return 0;
16711 
16712 fail:
16713 	intel_crtc_free(crtc);
16714 
16715 	return ret;
16716 }
16717 
16718 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
16719 				      struct drm_file *file)
16720 {
16721 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
16722 	struct drm_crtc *drmmode_crtc;
16723 	struct intel_crtc *crtc;
16724 
16725 	drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
16726 	if (!drmmode_crtc)
16727 		return -ENOENT;
16728 
16729 	crtc = to_intel_crtc(drmmode_crtc);
16730 	pipe_from_crtc_id->pipe = crtc->pipe;
16731 
16732 	return 0;
16733 }
16734 
16735 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder)
16736 {
16737 	struct drm_device *dev = encoder->base.dev;
16738 	struct intel_encoder *source_encoder;
16739 	u32 possible_clones = 0;
16740 
16741 	for_each_intel_encoder(dev, source_encoder) {
16742 		if (encoders_cloneable(encoder, source_encoder))
16743 			possible_clones |= drm_encoder_mask(&source_encoder->base);
16744 	}
16745 
16746 	return possible_clones;
16747 }
16748 
16749 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder)
16750 {
16751 	struct drm_device *dev = encoder->base.dev;
16752 	struct intel_crtc *crtc;
16753 	u32 possible_crtcs = 0;
16754 
16755 	for_each_intel_crtc(dev, crtc) {
16756 		if (encoder->pipe_mask & BIT(crtc->pipe))
16757 			possible_crtcs |= drm_crtc_mask(&crtc->base);
16758 	}
16759 
16760 	return possible_crtcs;
16761 }
16762 
16763 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv)
16764 {
16765 	if (!IS_MOBILE(dev_priv))
16766 		return false;
16767 
16768 	if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0)
16769 		return false;
16770 
16771 	if (IS_GEN(dev_priv, 5) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE))
16772 		return false;
16773 
16774 	return true;
16775 }
16776 
16777 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv)
16778 {
16779 	if (INTEL_GEN(dev_priv) >= 9)
16780 		return false;
16781 
16782 	if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
16783 		return false;
16784 
16785 	if (HAS_PCH_LPT_H(dev_priv) &&
16786 	    intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
16787 		return false;
16788 
16789 	/* DDI E can't be used if DDI A requires 4 lanes */
16790 	if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
16791 		return false;
16792 
16793 	if (!dev_priv->vbt.int_crt_support)
16794 		return false;
16795 
16796 	return true;
16797 }
16798 
16799 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
16800 {
16801 	int pps_num;
16802 	int pps_idx;
16803 
16804 	if (HAS_DDI(dev_priv))
16805 		return;
16806 	/*
16807 	 * This w/a is needed at least on CPT/PPT, but to be sure apply it
16808 	 * everywhere where registers can be write protected.
16809 	 */
16810 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16811 		pps_num = 2;
16812 	else
16813 		pps_num = 1;
16814 
16815 	for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
16816 		u32 val = intel_de_read(dev_priv, PP_CONTROL(pps_idx));
16817 
16818 		val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
16819 		intel_de_write(dev_priv, PP_CONTROL(pps_idx), val);
16820 	}
16821 }
16822 
16823 static void intel_pps_init(struct drm_i915_private *dev_priv)
16824 {
16825 	if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
16826 		dev_priv->pps_mmio_base = PCH_PPS_BASE;
16827 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16828 		dev_priv->pps_mmio_base = VLV_PPS_BASE;
16829 	else
16830 		dev_priv->pps_mmio_base = PPS_BASE;
16831 
16832 	intel_pps_unlock_regs_wa(dev_priv);
16833 }
16834 
16835 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
16836 {
16837 	struct intel_encoder *encoder;
16838 	bool dpd_is_edp = false;
16839 
16840 	intel_pps_init(dev_priv);
16841 
16842 	if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv))
16843 		return;
16844 
16845 	if (IS_ROCKETLAKE(dev_priv)) {
16846 		intel_ddi_init(dev_priv, PORT_A);
16847 		intel_ddi_init(dev_priv, PORT_B);
16848 		intel_ddi_init(dev_priv, PORT_D);	/* DDI TC1 */
16849 		intel_ddi_init(dev_priv, PORT_E);	/* DDI TC2 */
16850 	} else if (INTEL_GEN(dev_priv) >= 12) {
16851 		intel_ddi_init(dev_priv, PORT_A);
16852 		intel_ddi_init(dev_priv, PORT_B);
16853 		intel_ddi_init(dev_priv, PORT_D);
16854 		intel_ddi_init(dev_priv, PORT_E);
16855 		intel_ddi_init(dev_priv, PORT_F);
16856 		intel_ddi_init(dev_priv, PORT_G);
16857 		intel_ddi_init(dev_priv, PORT_H);
16858 		intel_ddi_init(dev_priv, PORT_I);
16859 		icl_dsi_init(dev_priv);
16860 	} else if (IS_ELKHARTLAKE(dev_priv)) {
16861 		intel_ddi_init(dev_priv, PORT_A);
16862 		intel_ddi_init(dev_priv, PORT_B);
16863 		intel_ddi_init(dev_priv, PORT_C);
16864 		intel_ddi_init(dev_priv, PORT_D);
16865 		icl_dsi_init(dev_priv);
16866 	} else if (IS_GEN(dev_priv, 11)) {
16867 		intel_ddi_init(dev_priv, PORT_A);
16868 		intel_ddi_init(dev_priv, PORT_B);
16869 		intel_ddi_init(dev_priv, PORT_C);
16870 		intel_ddi_init(dev_priv, PORT_D);
16871 		intel_ddi_init(dev_priv, PORT_E);
16872 		/*
16873 		 * On some ICL SKUs port F is not present. No strap bits for
16874 		 * this, so rely on VBT.
16875 		 * Work around broken VBTs on SKUs known to have no port F.
16876 		 */
16877 		if (IS_ICL_WITH_PORT_F(dev_priv) &&
16878 		    intel_bios_is_port_present(dev_priv, PORT_F))
16879 			intel_ddi_init(dev_priv, PORT_F);
16880 
16881 		icl_dsi_init(dev_priv);
16882 	} else if (IS_GEN9_LP(dev_priv)) {
16883 		/*
16884 		 * FIXME: Broxton doesn't support port detection via the
16885 		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
16886 		 * detect the ports.
16887 		 */
16888 		intel_ddi_init(dev_priv, PORT_A);
16889 		intel_ddi_init(dev_priv, PORT_B);
16890 		intel_ddi_init(dev_priv, PORT_C);
16891 
16892 		vlv_dsi_init(dev_priv);
16893 	} else if (HAS_DDI(dev_priv)) {
16894 		int found;
16895 
16896 		if (intel_ddi_crt_present(dev_priv))
16897 			intel_crt_init(dev_priv);
16898 
16899 		/*
16900 		 * Haswell uses DDI functions to detect digital outputs.
16901 		 * On SKL pre-D0 the strap isn't connected, so we assume
16902 		 * it's there.
16903 		 */
16904 		found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
16905 		/* WaIgnoreDDIAStrap: skl */
16906 		if (found || IS_GEN9_BC(dev_priv))
16907 			intel_ddi_init(dev_priv, PORT_A);
16908 
16909 		/* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP
16910 		 * register */
16911 		found = intel_de_read(dev_priv, SFUSE_STRAP);
16912 
16913 		if (found & SFUSE_STRAP_DDIB_DETECTED)
16914 			intel_ddi_init(dev_priv, PORT_B);
16915 		if (found & SFUSE_STRAP_DDIC_DETECTED)
16916 			intel_ddi_init(dev_priv, PORT_C);
16917 		if (found & SFUSE_STRAP_DDID_DETECTED)
16918 			intel_ddi_init(dev_priv, PORT_D);
16919 		if (found & SFUSE_STRAP_DDIF_DETECTED)
16920 			intel_ddi_init(dev_priv, PORT_F);
16921 		/*
16922 		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
16923 		 */
16924 		if (IS_GEN9_BC(dev_priv) &&
16925 		    intel_bios_is_port_present(dev_priv, PORT_E))
16926 			intel_ddi_init(dev_priv, PORT_E);
16927 
16928 	} else if (HAS_PCH_SPLIT(dev_priv)) {
16929 		int found;
16930 
16931 		/*
16932 		 * intel_edp_init_connector() depends on this completing first,
16933 		 * to prevent the registration of both eDP and LVDS and the
16934 		 * incorrect sharing of the PPS.
16935 		 */
16936 		intel_lvds_init(dev_priv);
16937 		intel_crt_init(dev_priv);
16938 
16939 		dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
16940 
16941 		if (ilk_has_edp_a(dev_priv))
16942 			intel_dp_init(dev_priv, DP_A, PORT_A);
16943 
16944 		if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) {
16945 			/* PCH SDVOB multiplex with HDMIB */
16946 			found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
16947 			if (!found)
16948 				intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
16949 			if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED))
16950 				intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
16951 		}
16952 
16953 		if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED)
16954 			intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
16955 
16956 		if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED)
16957 			intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
16958 
16959 		if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED)
16960 			intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
16961 
16962 		if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED)
16963 			intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
16964 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16965 		bool has_edp, has_port;
16966 
16967 		if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support)
16968 			intel_crt_init(dev_priv);
16969 
16970 		/*
16971 		 * The DP_DETECTED bit is the latched state of the DDC
16972 		 * SDA pin at boot. However since eDP doesn't require DDC
16973 		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
16974 		 * eDP ports may have been muxed to an alternate function.
16975 		 * Thus we can't rely on the DP_DETECTED bit alone to detect
16976 		 * eDP ports. Consult the VBT as well as DP_DETECTED to
16977 		 * detect eDP ports.
16978 		 *
16979 		 * Sadly the straps seem to be missing sometimes even for HDMI
16980 		 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
16981 		 * and VBT for the presence of the port. Additionally we can't
16982 		 * trust the port type the VBT declares as we've seen at least
16983 		 * HDMI ports that the VBT claim are DP or eDP.
16984 		 */
16985 		has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
16986 		has_port = intel_bios_is_port_present(dev_priv, PORT_B);
16987 		if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port)
16988 			has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
16989 		if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
16990 			intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
16991 
16992 		has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
16993 		has_port = intel_bios_is_port_present(dev_priv, PORT_C);
16994 		if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port)
16995 			has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
16996 		if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
16997 			intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
16998 
16999 		if (IS_CHERRYVIEW(dev_priv)) {
17000 			/*
17001 			 * eDP not supported on port D,
17002 			 * so no need to worry about it
17003 			 */
17004 			has_port = intel_bios_is_port_present(dev_priv, PORT_D);
17005 			if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port)
17006 				intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
17007 			if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port)
17008 				intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
17009 		}
17010 
17011 		vlv_dsi_init(dev_priv);
17012 	} else if (IS_PINEVIEW(dev_priv)) {
17013 		intel_lvds_init(dev_priv);
17014 		intel_crt_init(dev_priv);
17015 	} else if (IS_GEN_RANGE(dev_priv, 3, 4)) {
17016 		bool found = false;
17017 
17018 		if (IS_MOBILE(dev_priv))
17019 			intel_lvds_init(dev_priv);
17020 
17021 		intel_crt_init(dev_priv);
17022 
17023 		if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
17024 			drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n");
17025 			found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
17026 			if (!found && IS_G4X(dev_priv)) {
17027 				drm_dbg_kms(&dev_priv->drm,
17028 					    "probing HDMI on SDVOB\n");
17029 				intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
17030 			}
17031 
17032 			if (!found && IS_G4X(dev_priv))
17033 				intel_dp_init(dev_priv, DP_B, PORT_B);
17034 		}
17035 
17036 		/* Before G4X SDVOC doesn't have its own detect register */
17037 
17038 		if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) {
17039 			drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n");
17040 			found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
17041 		}
17042 
17043 		if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) {
17044 
17045 			if (IS_G4X(dev_priv)) {
17046 				drm_dbg_kms(&dev_priv->drm,
17047 					    "probing HDMI on SDVOC\n");
17048 				intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
17049 			}
17050 			if (IS_G4X(dev_priv))
17051 				intel_dp_init(dev_priv, DP_C, PORT_C);
17052 		}
17053 
17054 		if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED))
17055 			intel_dp_init(dev_priv, DP_D, PORT_D);
17056 
17057 		if (SUPPORTS_TV(dev_priv))
17058 			intel_tv_init(dev_priv);
17059 	} else if (IS_GEN(dev_priv, 2)) {
17060 		if (IS_I85X(dev_priv))
17061 			intel_lvds_init(dev_priv);
17062 
17063 		intel_crt_init(dev_priv);
17064 		intel_dvo_init(dev_priv);
17065 	}
17066 
17067 	intel_psr_init(dev_priv);
17068 
17069 	for_each_intel_encoder(&dev_priv->drm, encoder) {
17070 		encoder->base.possible_crtcs =
17071 			intel_encoder_possible_crtcs(encoder);
17072 		encoder->base.possible_clones =
17073 			intel_encoder_possible_clones(encoder);
17074 	}
17075 
17076 	intel_init_pch_refclk(dev_priv);
17077 
17078 	drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
17079 }
17080 
17081 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
17082 {
17083 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
17084 
17085 	drm_framebuffer_cleanup(fb);
17086 	intel_frontbuffer_put(intel_fb->frontbuffer);
17087 
17088 	kfree(intel_fb);
17089 }
17090 
17091 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
17092 						struct drm_file *file,
17093 						unsigned int *handle)
17094 {
17095 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17096 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
17097 
17098 	if (obj->userptr.mm) {
17099 		drm_dbg(&i915->drm,
17100 			"attempting to use a userptr for a framebuffer, denied\n");
17101 		return -EINVAL;
17102 	}
17103 
17104 	return drm_gem_handle_create(file, &obj->base, handle);
17105 }
17106 
17107 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
17108 					struct drm_file *file,
17109 					unsigned flags, unsigned color,
17110 					struct drm_clip_rect *clips,
17111 					unsigned num_clips)
17112 {
17113 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17114 
17115 	i915_gem_object_flush_if_display(obj);
17116 	intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
17117 
17118 	return 0;
17119 }
17120 
17121 static const struct drm_framebuffer_funcs intel_fb_funcs = {
17122 	.destroy = intel_user_framebuffer_destroy,
17123 	.create_handle = intel_user_framebuffer_create_handle,
17124 	.dirty = intel_user_framebuffer_dirty,
17125 };
17126 
17127 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
17128 				  struct drm_i915_gem_object *obj,
17129 				  struct drm_mode_fb_cmd2 *mode_cmd)
17130 {
17131 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
17132 	struct drm_framebuffer *fb = &intel_fb->base;
17133 	u32 max_stride;
17134 	unsigned int tiling, stride;
17135 	int ret = -EINVAL;
17136 	int i;
17137 
17138 	intel_fb->frontbuffer = intel_frontbuffer_get(obj);
17139 	if (!intel_fb->frontbuffer)
17140 		return -ENOMEM;
17141 
17142 	i915_gem_object_lock(obj);
17143 	tiling = i915_gem_object_get_tiling(obj);
17144 	stride = i915_gem_object_get_stride(obj);
17145 	i915_gem_object_unlock(obj);
17146 
17147 	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
17148 		/*
17149 		 * If there's a fence, enforce that
17150 		 * the fb modifier and tiling mode match.
17151 		 */
17152 		if (tiling != I915_TILING_NONE &&
17153 		    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
17154 			drm_dbg_kms(&dev_priv->drm,
17155 				    "tiling_mode doesn't match fb modifier\n");
17156 			goto err;
17157 		}
17158 	} else {
17159 		if (tiling == I915_TILING_X) {
17160 			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
17161 		} else if (tiling == I915_TILING_Y) {
17162 			drm_dbg_kms(&dev_priv->drm,
17163 				    "No Y tiling for legacy addfb\n");
17164 			goto err;
17165 		}
17166 	}
17167 
17168 	if (!drm_any_plane_has_format(&dev_priv->drm,
17169 				      mode_cmd->pixel_format,
17170 				      mode_cmd->modifier[0])) {
17171 		struct drm_format_name_buf format_name;
17172 
17173 		drm_dbg_kms(&dev_priv->drm,
17174 			    "unsupported pixel format %s / modifier 0x%llx\n",
17175 			    drm_get_format_name(mode_cmd->pixel_format,
17176 						&format_name),
17177 			    mode_cmd->modifier[0]);
17178 		goto err;
17179 	}
17180 
17181 	/*
17182 	 * gen2/3 display engine uses the fence if present,
17183 	 * so the tiling mode must match the fb modifier exactly.
17184 	 */
17185 	if (INTEL_GEN(dev_priv) < 4 &&
17186 	    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
17187 		drm_dbg_kms(&dev_priv->drm,
17188 			    "tiling_mode must match fb modifier exactly on gen2/3\n");
17189 		goto err;
17190 	}
17191 
17192 	max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format,
17193 					 mode_cmd->modifier[0]);
17194 	if (mode_cmd->pitches[0] > max_stride) {
17195 		drm_dbg_kms(&dev_priv->drm,
17196 			    "%s pitch (%u) must be at most %d\n",
17197 			    mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
17198 			    "tiled" : "linear",
17199 			    mode_cmd->pitches[0], max_stride);
17200 		goto err;
17201 	}
17202 
17203 	/*
17204 	 * If there's a fence, enforce that
17205 	 * the fb pitch and fence stride match.
17206 	 */
17207 	if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
17208 		drm_dbg_kms(&dev_priv->drm,
17209 			    "pitch (%d) must match tiling stride (%d)\n",
17210 			    mode_cmd->pitches[0], stride);
17211 		goto err;
17212 	}
17213 
17214 	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
17215 	if (mode_cmd->offsets[0] != 0) {
17216 		drm_dbg_kms(&dev_priv->drm,
17217 			    "plane 0 offset (0x%08x) must be 0\n",
17218 			    mode_cmd->offsets[0]);
17219 		goto err;
17220 	}
17221 
17222 	drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
17223 
17224 	for (i = 0; i < fb->format->num_planes; i++) {
17225 		u32 stride_alignment;
17226 
17227 		if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
17228 			drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n",
17229 				    i);
17230 			goto err;
17231 		}
17232 
17233 		stride_alignment = intel_fb_stride_alignment(fb, i);
17234 		if (fb->pitches[i] & (stride_alignment - 1)) {
17235 			drm_dbg_kms(&dev_priv->drm,
17236 				    "plane %d pitch (%d) must be at least %u byte aligned\n",
17237 				    i, fb->pitches[i], stride_alignment);
17238 			goto err;
17239 		}
17240 
17241 		if (is_gen12_ccs_plane(fb, i)) {
17242 			int ccs_aux_stride = gen12_ccs_aux_stride(fb, i);
17243 
17244 			if (fb->pitches[i] != ccs_aux_stride) {
17245 				drm_dbg_kms(&dev_priv->drm,
17246 					    "ccs aux plane %d pitch (%d) must be %d\n",
17247 					    i,
17248 					    fb->pitches[i], ccs_aux_stride);
17249 				goto err;
17250 			}
17251 		}
17252 
17253 		fb->obj[i] = &obj->base;
17254 	}
17255 
17256 	ret = intel_fill_fb_info(dev_priv, fb);
17257 	if (ret)
17258 		goto err;
17259 
17260 	ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
17261 	if (ret) {
17262 		drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret);
17263 		goto err;
17264 	}
17265 
17266 	return 0;
17267 
17268 err:
17269 	intel_frontbuffer_put(intel_fb->frontbuffer);
17270 	return ret;
17271 }
17272 
17273 static struct drm_framebuffer *
17274 intel_user_framebuffer_create(struct drm_device *dev,
17275 			      struct drm_file *filp,
17276 			      const struct drm_mode_fb_cmd2 *user_mode_cmd)
17277 {
17278 	struct drm_framebuffer *fb;
17279 	struct drm_i915_gem_object *obj;
17280 	struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
17281 
17282 	obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
17283 	if (!obj)
17284 		return ERR_PTR(-ENOENT);
17285 
17286 	fb = intel_framebuffer_create(obj, &mode_cmd);
17287 	i915_gem_object_put(obj);
17288 
17289 	return fb;
17290 }
17291 
17292 static enum drm_mode_status
17293 intel_mode_valid(struct drm_device *dev,
17294 		 const struct drm_display_mode *mode)
17295 {
17296 	struct drm_i915_private *dev_priv = to_i915(dev);
17297 	int hdisplay_max, htotal_max;
17298 	int vdisplay_max, vtotal_max;
17299 
17300 	/*
17301 	 * Can't reject DBLSCAN here because Xorg ddxen can add piles
17302 	 * of DBLSCAN modes to the output's mode list when they detect
17303 	 * the scaling mode property on the connector. And they don't
17304 	 * ask the kernel to validate those modes in any way until
17305 	 * modeset time at which point the client gets a protocol error.
17306 	 * So in order to not upset those clients we silently ignore the
17307 	 * DBLSCAN flag on such connectors. For other connectors we will
17308 	 * reject modes with the DBLSCAN flag in encoder->compute_config().
17309 	 * And we always reject DBLSCAN modes in connector->mode_valid()
17310 	 * as we never want such modes on the connector's mode list.
17311 	 */
17312 
17313 	if (mode->vscan > 1)
17314 		return MODE_NO_VSCAN;
17315 
17316 	if (mode->flags & DRM_MODE_FLAG_HSKEW)
17317 		return MODE_H_ILLEGAL;
17318 
17319 	if (mode->flags & (DRM_MODE_FLAG_CSYNC |
17320 			   DRM_MODE_FLAG_NCSYNC |
17321 			   DRM_MODE_FLAG_PCSYNC))
17322 		return MODE_HSYNC;
17323 
17324 	if (mode->flags & (DRM_MODE_FLAG_BCAST |
17325 			   DRM_MODE_FLAG_PIXMUX |
17326 			   DRM_MODE_FLAG_CLKDIV2))
17327 		return MODE_BAD;
17328 
17329 	/* Transcoder timing limits */
17330 	if (INTEL_GEN(dev_priv) >= 11) {
17331 		hdisplay_max = 16384;
17332 		vdisplay_max = 8192;
17333 		htotal_max = 16384;
17334 		vtotal_max = 8192;
17335 	} else if (INTEL_GEN(dev_priv) >= 9 ||
17336 		   IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
17337 		hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */
17338 		vdisplay_max = 4096;
17339 		htotal_max = 8192;
17340 		vtotal_max = 8192;
17341 	} else if (INTEL_GEN(dev_priv) >= 3) {
17342 		hdisplay_max = 4096;
17343 		vdisplay_max = 4096;
17344 		htotal_max = 8192;
17345 		vtotal_max = 8192;
17346 	} else {
17347 		hdisplay_max = 2048;
17348 		vdisplay_max = 2048;
17349 		htotal_max = 4096;
17350 		vtotal_max = 4096;
17351 	}
17352 
17353 	if (mode->hdisplay > hdisplay_max ||
17354 	    mode->hsync_start > htotal_max ||
17355 	    mode->hsync_end > htotal_max ||
17356 	    mode->htotal > htotal_max)
17357 		return MODE_H_ILLEGAL;
17358 
17359 	if (mode->vdisplay > vdisplay_max ||
17360 	    mode->vsync_start > vtotal_max ||
17361 	    mode->vsync_end > vtotal_max ||
17362 	    mode->vtotal > vtotal_max)
17363 		return MODE_V_ILLEGAL;
17364 
17365 	if (INTEL_GEN(dev_priv) >= 5) {
17366 		if (mode->hdisplay < 64 ||
17367 		    mode->htotal - mode->hdisplay < 32)
17368 			return MODE_H_ILLEGAL;
17369 
17370 		if (mode->vtotal - mode->vdisplay < 5)
17371 			return MODE_V_ILLEGAL;
17372 	} else {
17373 		if (mode->htotal - mode->hdisplay < 32)
17374 			return MODE_H_ILLEGAL;
17375 
17376 		if (mode->vtotal - mode->vdisplay < 3)
17377 			return MODE_V_ILLEGAL;
17378 	}
17379 
17380 	return MODE_OK;
17381 }
17382 
17383 enum drm_mode_status
17384 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv,
17385 				const struct drm_display_mode *mode)
17386 {
17387 	int plane_width_max, plane_height_max;
17388 
17389 	/*
17390 	 * intel_mode_valid() should be
17391 	 * sufficient on older platforms.
17392 	 */
17393 	if (INTEL_GEN(dev_priv) < 9)
17394 		return MODE_OK;
17395 
17396 	/*
17397 	 * Most people will probably want a fullscreen
17398 	 * plane so let's not advertize modes that are
17399 	 * too big for that.
17400 	 */
17401 	if (INTEL_GEN(dev_priv) >= 11) {
17402 		plane_width_max = 5120;
17403 		plane_height_max = 4320;
17404 	} else {
17405 		plane_width_max = 5120;
17406 		plane_height_max = 4096;
17407 	}
17408 
17409 	if (mode->hdisplay > plane_width_max)
17410 		return MODE_H_ILLEGAL;
17411 
17412 	if (mode->vdisplay > plane_height_max)
17413 		return MODE_V_ILLEGAL;
17414 
17415 	return MODE_OK;
17416 }
17417 
17418 static const struct drm_mode_config_funcs intel_mode_funcs = {
17419 	.fb_create = intel_user_framebuffer_create,
17420 	.get_format_info = intel_get_format_info,
17421 	.output_poll_changed = intel_fbdev_output_poll_changed,
17422 	.mode_valid = intel_mode_valid,
17423 	.atomic_check = intel_atomic_check,
17424 	.atomic_commit = intel_atomic_commit,
17425 	.atomic_state_alloc = intel_atomic_state_alloc,
17426 	.atomic_state_clear = intel_atomic_state_clear,
17427 	.atomic_state_free = intel_atomic_state_free,
17428 };
17429 
17430 /**
17431  * intel_init_display_hooks - initialize the display modesetting hooks
17432  * @dev_priv: device private
17433  */
17434 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
17435 {
17436 	intel_init_cdclk_hooks(dev_priv);
17437 
17438 	if (INTEL_GEN(dev_priv) >= 9) {
17439 		dev_priv->display.get_pipe_config = hsw_get_pipe_config;
17440 		dev_priv->display.get_initial_plane_config =
17441 			skl_get_initial_plane_config;
17442 		dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock;
17443 		dev_priv->display.crtc_enable = hsw_crtc_enable;
17444 		dev_priv->display.crtc_disable = hsw_crtc_disable;
17445 	} else if (HAS_DDI(dev_priv)) {
17446 		dev_priv->display.get_pipe_config = hsw_get_pipe_config;
17447 		dev_priv->display.get_initial_plane_config =
17448 			i9xx_get_initial_plane_config;
17449 		dev_priv->display.crtc_compute_clock =
17450 			hsw_crtc_compute_clock;
17451 		dev_priv->display.crtc_enable = hsw_crtc_enable;
17452 		dev_priv->display.crtc_disable = hsw_crtc_disable;
17453 	} else if (HAS_PCH_SPLIT(dev_priv)) {
17454 		dev_priv->display.get_pipe_config = ilk_get_pipe_config;
17455 		dev_priv->display.get_initial_plane_config =
17456 			i9xx_get_initial_plane_config;
17457 		dev_priv->display.crtc_compute_clock =
17458 			ilk_crtc_compute_clock;
17459 		dev_priv->display.crtc_enable = ilk_crtc_enable;
17460 		dev_priv->display.crtc_disable = ilk_crtc_disable;
17461 	} else if (IS_CHERRYVIEW(dev_priv)) {
17462 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17463 		dev_priv->display.get_initial_plane_config =
17464 			i9xx_get_initial_plane_config;
17465 		dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
17466 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
17467 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17468 	} else if (IS_VALLEYVIEW(dev_priv)) {
17469 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17470 		dev_priv->display.get_initial_plane_config =
17471 			i9xx_get_initial_plane_config;
17472 		dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
17473 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
17474 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17475 	} else if (IS_G4X(dev_priv)) {
17476 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17477 		dev_priv->display.get_initial_plane_config =
17478 			i9xx_get_initial_plane_config;
17479 		dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
17480 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
17481 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17482 	} else if (IS_PINEVIEW(dev_priv)) {
17483 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17484 		dev_priv->display.get_initial_plane_config =
17485 			i9xx_get_initial_plane_config;
17486 		dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
17487 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
17488 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17489 	} else if (!IS_GEN(dev_priv, 2)) {
17490 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17491 		dev_priv->display.get_initial_plane_config =
17492 			i9xx_get_initial_plane_config;
17493 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
17494 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
17495 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17496 	} else {
17497 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17498 		dev_priv->display.get_initial_plane_config =
17499 			i9xx_get_initial_plane_config;
17500 		dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
17501 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
17502 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
17503 	}
17504 
17505 	if (IS_GEN(dev_priv, 5)) {
17506 		dev_priv->display.fdi_link_train = ilk_fdi_link_train;
17507 	} else if (IS_GEN(dev_priv, 6)) {
17508 		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
17509 	} else if (IS_IVYBRIDGE(dev_priv)) {
17510 		/* FIXME: detect B0+ stepping and use auto training */
17511 		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
17512 	}
17513 
17514 	if (INTEL_GEN(dev_priv) >= 9)
17515 		dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables;
17516 	else
17517 		dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables;
17518 
17519 }
17520 
17521 void intel_modeset_init_hw(struct drm_i915_private *i915)
17522 {
17523 	struct intel_cdclk_state *cdclk_state =
17524 		to_intel_cdclk_state(i915->cdclk.obj.state);
17525 	struct intel_dbuf_state *dbuf_state =
17526 		to_intel_dbuf_state(i915->dbuf.obj.state);
17527 
17528 	intel_update_cdclk(i915);
17529 	intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK");
17530 	cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw;
17531 
17532 	dbuf_state->enabled_slices = i915->dbuf.enabled_slices;
17533 }
17534 
17535 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state)
17536 {
17537 	struct drm_plane *plane;
17538 	struct intel_crtc *crtc;
17539 
17540 	for_each_intel_crtc(state->dev, crtc) {
17541 		struct intel_crtc_state *crtc_state;
17542 
17543 		crtc_state = intel_atomic_get_crtc_state(state, crtc);
17544 		if (IS_ERR(crtc_state))
17545 			return PTR_ERR(crtc_state);
17546 
17547 		if (crtc_state->hw.active) {
17548 			/*
17549 			 * Preserve the inherited flag to avoid
17550 			 * taking the full modeset path.
17551 			 */
17552 			crtc_state->inherited = true;
17553 		}
17554 	}
17555 
17556 	drm_for_each_plane(plane, state->dev) {
17557 		struct drm_plane_state *plane_state;
17558 
17559 		plane_state = drm_atomic_get_plane_state(state, plane);
17560 		if (IS_ERR(plane_state))
17561 			return PTR_ERR(plane_state);
17562 	}
17563 
17564 	return 0;
17565 }
17566 
17567 /*
17568  * Calculate what we think the watermarks should be for the state we've read
17569  * out of the hardware and then immediately program those watermarks so that
17570  * we ensure the hardware settings match our internal state.
17571  *
17572  * We can calculate what we think WM's should be by creating a duplicate of the
17573  * current state (which was constructed during hardware readout) and running it
17574  * through the atomic check code to calculate new watermark values in the
17575  * state object.
17576  */
17577 static void sanitize_watermarks(struct drm_i915_private *dev_priv)
17578 {
17579 	struct drm_atomic_state *state;
17580 	struct intel_atomic_state *intel_state;
17581 	struct intel_crtc *crtc;
17582 	struct intel_crtc_state *crtc_state;
17583 	struct drm_modeset_acquire_ctx ctx;
17584 	int ret;
17585 	int i;
17586 
17587 	/* Only supported on platforms that use atomic watermark design */
17588 	if (!dev_priv->display.optimize_watermarks)
17589 		return;
17590 
17591 	state = drm_atomic_state_alloc(&dev_priv->drm);
17592 	if (drm_WARN_ON(&dev_priv->drm, !state))
17593 		return;
17594 
17595 	intel_state = to_intel_atomic_state(state);
17596 
17597 	drm_modeset_acquire_init(&ctx, 0);
17598 
17599 retry:
17600 	state->acquire_ctx = &ctx;
17601 
17602 	/*
17603 	 * Hardware readout is the only time we don't want to calculate
17604 	 * intermediate watermarks (since we don't trust the current
17605 	 * watermarks).
17606 	 */
17607 	if (!HAS_GMCH(dev_priv))
17608 		intel_state->skip_intermediate_wm = true;
17609 
17610 	ret = sanitize_watermarks_add_affected(state);
17611 	if (ret)
17612 		goto fail;
17613 
17614 	ret = intel_atomic_check(&dev_priv->drm, state);
17615 	if (ret)
17616 		goto fail;
17617 
17618 	/* Write calculated watermark values back */
17619 	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
17620 		crtc_state->wm.need_postvbl_update = true;
17621 		dev_priv->display.optimize_watermarks(intel_state, crtc);
17622 
17623 		to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
17624 	}
17625 
17626 fail:
17627 	if (ret == -EDEADLK) {
17628 		drm_atomic_state_clear(state);
17629 		drm_modeset_backoff(&ctx);
17630 		goto retry;
17631 	}
17632 
17633 	/*
17634 	 * If we fail here, it means that the hardware appears to be
17635 	 * programmed in a way that shouldn't be possible, given our
17636 	 * understanding of watermark requirements.  This might mean a
17637 	 * mistake in the hardware readout code or a mistake in the
17638 	 * watermark calculations for a given platform.  Raise a WARN
17639 	 * so that this is noticeable.
17640 	 *
17641 	 * If this actually happens, we'll have to just leave the
17642 	 * BIOS-programmed watermarks untouched and hope for the best.
17643 	 */
17644 	drm_WARN(&dev_priv->drm, ret,
17645 		 "Could not determine valid watermarks for inherited state\n");
17646 
17647 	drm_atomic_state_put(state);
17648 
17649 	drm_modeset_drop_locks(&ctx);
17650 	drm_modeset_acquire_fini(&ctx);
17651 }
17652 
17653 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv)
17654 {
17655 	if (IS_GEN(dev_priv, 5)) {
17656 		u32 fdi_pll_clk =
17657 			intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK;
17658 
17659 		dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000;
17660 	} else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) {
17661 		dev_priv->fdi_pll_freq = 270000;
17662 	} else {
17663 		return;
17664 	}
17665 
17666 	drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq);
17667 }
17668 
17669 static int intel_initial_commit(struct drm_device *dev)
17670 {
17671 	struct drm_atomic_state *state = NULL;
17672 	struct drm_modeset_acquire_ctx ctx;
17673 	struct intel_crtc *crtc;
17674 	int ret = 0;
17675 
17676 	state = drm_atomic_state_alloc(dev);
17677 	if (!state)
17678 		return -ENOMEM;
17679 
17680 	drm_modeset_acquire_init(&ctx, 0);
17681 
17682 retry:
17683 	state->acquire_ctx = &ctx;
17684 
17685 	for_each_intel_crtc(dev, crtc) {
17686 		struct intel_crtc_state *crtc_state =
17687 			intel_atomic_get_crtc_state(state, crtc);
17688 
17689 		if (IS_ERR(crtc_state)) {
17690 			ret = PTR_ERR(crtc_state);
17691 			goto out;
17692 		}
17693 
17694 		if (crtc_state->hw.active) {
17695 			/*
17696 			 * We've not yet detected sink capabilities
17697 			 * (audio,infoframes,etc.) and thus we don't want to
17698 			 * force a full state recomputation yet. We want that to
17699 			 * happen only for the first real commit from userspace.
17700 			 * So preserve the inherited flag for the time being.
17701 			 */
17702 			crtc_state->inherited = true;
17703 
17704 			ret = drm_atomic_add_affected_planes(state, &crtc->base);
17705 			if (ret)
17706 				goto out;
17707 
17708 			/*
17709 			 * FIXME hack to force a LUT update to avoid the
17710 			 * plane update forcing the pipe gamma on without
17711 			 * having a proper LUT loaded. Remove once we
17712 			 * have readout for pipe gamma enable.
17713 			 */
17714 			crtc_state->uapi.color_mgmt_changed = true;
17715 
17716 			/*
17717 			 * FIXME hack to force full modeset when DSC is being
17718 			 * used.
17719 			 *
17720 			 * As long as we do not have full state readout and
17721 			 * config comparison of crtc_state->dsc, we have no way
17722 			 * to ensure reliable fastset. Remove once we have
17723 			 * readout for DSC.
17724 			 */
17725 			if (crtc_state->dsc.compression_enable) {
17726 				ret = drm_atomic_add_affected_connectors(state,
17727 									 &crtc->base);
17728 				if (ret)
17729 					goto out;
17730 				crtc_state->uapi.mode_changed = true;
17731 				drm_dbg_kms(dev, "Force full modeset for DSC\n");
17732 			}
17733 		}
17734 	}
17735 
17736 	ret = drm_atomic_commit(state);
17737 
17738 out:
17739 	if (ret == -EDEADLK) {
17740 		drm_atomic_state_clear(state);
17741 		drm_modeset_backoff(&ctx);
17742 		goto retry;
17743 	}
17744 
17745 	drm_atomic_state_put(state);
17746 
17747 	drm_modeset_drop_locks(&ctx);
17748 	drm_modeset_acquire_fini(&ctx);
17749 
17750 	return ret;
17751 }
17752 
17753 static void intel_mode_config_init(struct drm_i915_private *i915)
17754 {
17755 	struct drm_mode_config *mode_config = &i915->drm.mode_config;
17756 
17757 	drm_mode_config_init(&i915->drm);
17758 	INIT_LIST_HEAD(&i915->global_obj_list);
17759 
17760 	mode_config->min_width = 0;
17761 	mode_config->min_height = 0;
17762 
17763 	mode_config->preferred_depth = 24;
17764 	mode_config->prefer_shadow = 1;
17765 
17766 	mode_config->allow_fb_modifiers = true;
17767 
17768 	mode_config->funcs = &intel_mode_funcs;
17769 
17770 	/*
17771 	 * Maximum framebuffer dimensions, chosen to match
17772 	 * the maximum render engine surface size on gen4+.
17773 	 */
17774 	if (INTEL_GEN(i915) >= 7) {
17775 		mode_config->max_width = 16384;
17776 		mode_config->max_height = 16384;
17777 	} else if (INTEL_GEN(i915) >= 4) {
17778 		mode_config->max_width = 8192;
17779 		mode_config->max_height = 8192;
17780 	} else if (IS_GEN(i915, 3)) {
17781 		mode_config->max_width = 4096;
17782 		mode_config->max_height = 4096;
17783 	} else {
17784 		mode_config->max_width = 2048;
17785 		mode_config->max_height = 2048;
17786 	}
17787 
17788 	if (IS_I845G(i915) || IS_I865G(i915)) {
17789 		mode_config->cursor_width = IS_I845G(i915) ? 64 : 512;
17790 		mode_config->cursor_height = 1023;
17791 	} else if (IS_I830(i915) || IS_I85X(i915) ||
17792 		   IS_I915G(i915) || IS_I915GM(i915)) {
17793 		mode_config->cursor_width = 64;
17794 		mode_config->cursor_height = 64;
17795 	} else {
17796 		mode_config->cursor_width = 256;
17797 		mode_config->cursor_height = 256;
17798 	}
17799 }
17800 
17801 static void intel_mode_config_cleanup(struct drm_i915_private *i915)
17802 {
17803 	intel_atomic_global_obj_cleanup(i915);
17804 	drm_mode_config_cleanup(&i915->drm);
17805 }
17806 
17807 static void plane_config_fini(struct intel_initial_plane_config *plane_config)
17808 {
17809 	if (plane_config->fb) {
17810 		struct drm_framebuffer *fb = &plane_config->fb->base;
17811 
17812 		/* We may only have the stub and not a full framebuffer */
17813 		if (drm_framebuffer_read_refcount(fb))
17814 			drm_framebuffer_put(fb);
17815 		else
17816 			kfree(fb);
17817 	}
17818 
17819 	if (plane_config->vma)
17820 		i915_vma_put(plane_config->vma);
17821 }
17822 
17823 /* part #1: call before irq install */
17824 int intel_modeset_init_noirq(struct drm_i915_private *i915)
17825 {
17826 	int ret;
17827 
17828 	i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
17829 	i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI |
17830 					WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE);
17831 
17832 	intel_mode_config_init(i915);
17833 
17834 	ret = intel_cdclk_init(i915);
17835 	if (ret)
17836 		return ret;
17837 
17838 	ret = intel_dbuf_init(i915);
17839 	if (ret)
17840 		return ret;
17841 
17842 	ret = intel_bw_init(i915);
17843 	if (ret)
17844 		return ret;
17845 
17846 	init_llist_head(&i915->atomic_helper.free_list);
17847 	INIT_WORK(&i915->atomic_helper.free_work,
17848 		  intel_atomic_helper_free_state_worker);
17849 
17850 	intel_init_quirks(i915);
17851 
17852 	intel_fbc_init(i915);
17853 
17854 	return 0;
17855 }
17856 
17857 /* part #2: call after irq install */
17858 int intel_modeset_init(struct drm_i915_private *i915)
17859 {
17860 	struct drm_device *dev = &i915->drm;
17861 	enum pipe pipe;
17862 	struct intel_crtc *crtc;
17863 	int ret;
17864 
17865 	intel_init_pm(i915);
17866 
17867 	intel_panel_sanitize_ssc(i915);
17868 
17869 	intel_gmbus_setup(i915);
17870 
17871 	drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n",
17872 		    INTEL_NUM_PIPES(i915),
17873 		    INTEL_NUM_PIPES(i915) > 1 ? "s" : "");
17874 
17875 	if (HAS_DISPLAY(i915) && INTEL_DISPLAY_ENABLED(i915)) {
17876 		for_each_pipe(i915, pipe) {
17877 			ret = intel_crtc_init(i915, pipe);
17878 			if (ret) {
17879 				intel_mode_config_cleanup(i915);
17880 				return ret;
17881 			}
17882 		}
17883 	}
17884 
17885 	intel_plane_possible_crtcs_init(i915);
17886 	intel_shared_dpll_init(dev);
17887 	intel_update_fdi_pll_freq(i915);
17888 
17889 	intel_update_czclk(i915);
17890 	intel_modeset_init_hw(i915);
17891 
17892 	intel_hdcp_component_init(i915);
17893 
17894 	if (i915->max_cdclk_freq == 0)
17895 		intel_update_max_cdclk(i915);
17896 
17897 	/* Just disable it once at startup */
17898 	intel_vga_disable(i915);
17899 	intel_setup_outputs(i915);
17900 
17901 	drm_modeset_lock_all(dev);
17902 	intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
17903 	drm_modeset_unlock_all(dev);
17904 
17905 	for_each_intel_crtc(dev, crtc) {
17906 		struct intel_initial_plane_config plane_config = {};
17907 
17908 		if (!crtc->active)
17909 			continue;
17910 
17911 		/*
17912 		 * Note that reserving the BIOS fb up front prevents us
17913 		 * from stuffing other stolen allocations like the ring
17914 		 * on top.  This prevents some ugliness at boot time, and
17915 		 * can even allow for smooth boot transitions if the BIOS
17916 		 * fb is large enough for the active pipe configuration.
17917 		 */
17918 		i915->display.get_initial_plane_config(crtc, &plane_config);
17919 
17920 		/*
17921 		 * If the fb is shared between multiple heads, we'll
17922 		 * just get the first one.
17923 		 */
17924 		intel_find_initial_plane_obj(crtc, &plane_config);
17925 
17926 		plane_config_fini(&plane_config);
17927 	}
17928 
17929 	/*
17930 	 * Make sure hardware watermarks really match the state we read out.
17931 	 * Note that we need to do this after reconstructing the BIOS fb's
17932 	 * since the watermark calculation done here will use pstate->fb.
17933 	 */
17934 	if (!HAS_GMCH(i915))
17935 		sanitize_watermarks(i915);
17936 
17937 	/*
17938 	 * Force all active planes to recompute their states. So that on
17939 	 * mode_setcrtc after probe, all the intel_plane_state variables
17940 	 * are already calculated and there is no assert_plane warnings
17941 	 * during bootup.
17942 	 */
17943 	ret = intel_initial_commit(dev);
17944 	if (ret)
17945 		drm_dbg_kms(&i915->drm, "Initial commit in probe failed.\n");
17946 
17947 	return 0;
17948 }
17949 
17950 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
17951 {
17952 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17953 	/* 640x480@60Hz, ~25175 kHz */
17954 	struct dpll clock = {
17955 		.m1 = 18,
17956 		.m2 = 7,
17957 		.p1 = 13,
17958 		.p2 = 4,
17959 		.n = 2,
17960 	};
17961 	u32 dpll, fp;
17962 	int i;
17963 
17964 	drm_WARN_ON(&dev_priv->drm,
17965 		    i9xx_calc_dpll_params(48000, &clock) != 25154);
17966 
17967 	drm_dbg_kms(&dev_priv->drm,
17968 		    "enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
17969 		    pipe_name(pipe), clock.vco, clock.dot);
17970 
17971 	fp = i9xx_dpll_compute_fp(&clock);
17972 	dpll = DPLL_DVO_2X_MODE |
17973 		DPLL_VGA_MODE_DIS |
17974 		((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
17975 		PLL_P2_DIVIDE_BY_4 |
17976 		PLL_REF_INPUT_DREFCLK |
17977 		DPLL_VCO_ENABLE;
17978 
17979 	intel_de_write(dev_priv, FP0(pipe), fp);
17980 	intel_de_write(dev_priv, FP1(pipe), fp);
17981 
17982 	intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
17983 	intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
17984 	intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
17985 	intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
17986 	intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
17987 	intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
17988 	intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
17989 
17990 	/*
17991 	 * Apparently we need to have VGA mode enabled prior to changing
17992 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
17993 	 * dividers, even though the register value does change.
17994 	 */
17995 	intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
17996 	intel_de_write(dev_priv, DPLL(pipe), dpll);
17997 
17998 	/* Wait for the clocks to stabilize. */
17999 	intel_de_posting_read(dev_priv, DPLL(pipe));
18000 	udelay(150);
18001 
18002 	/* The pixel multiplier can only be updated once the
18003 	 * DPLL is enabled and the clocks are stable.
18004 	 *
18005 	 * So write it again.
18006 	 */
18007 	intel_de_write(dev_priv, DPLL(pipe), dpll);
18008 
18009 	/* We do this three times for luck */
18010 	for (i = 0; i < 3 ; i++) {
18011 		intel_de_write(dev_priv, DPLL(pipe), dpll);
18012 		intel_de_posting_read(dev_priv, DPLL(pipe));
18013 		udelay(150); /* wait for warmup */
18014 	}
18015 
18016 	intel_de_write(dev_priv, PIPECONF(pipe),
18017 		       PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
18018 	intel_de_posting_read(dev_priv, PIPECONF(pipe));
18019 
18020 	intel_wait_for_pipe_scanline_moving(crtc);
18021 }
18022 
18023 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
18024 {
18025 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18026 
18027 	drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n",
18028 		    pipe_name(pipe));
18029 
18030 	drm_WARN_ON(&dev_priv->drm,
18031 		    intel_de_read(dev_priv, DSPCNTR(PLANE_A)) &
18032 		    DISPLAY_PLANE_ENABLE);
18033 	drm_WARN_ON(&dev_priv->drm,
18034 		    intel_de_read(dev_priv, DSPCNTR(PLANE_B)) &
18035 		    DISPLAY_PLANE_ENABLE);
18036 	drm_WARN_ON(&dev_priv->drm,
18037 		    intel_de_read(dev_priv, DSPCNTR(PLANE_C)) &
18038 		    DISPLAY_PLANE_ENABLE);
18039 	drm_WARN_ON(&dev_priv->drm,
18040 		    intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE);
18041 	drm_WARN_ON(&dev_priv->drm,
18042 		    intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE);
18043 
18044 	intel_de_write(dev_priv, PIPECONF(pipe), 0);
18045 	intel_de_posting_read(dev_priv, PIPECONF(pipe));
18046 
18047 	intel_wait_for_pipe_scanline_stopped(crtc);
18048 
18049 	intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
18050 	intel_de_posting_read(dev_priv, DPLL(pipe));
18051 }
18052 
18053 static void
18054 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
18055 {
18056 	struct intel_crtc *crtc;
18057 
18058 	if (INTEL_GEN(dev_priv) >= 4)
18059 		return;
18060 
18061 	for_each_intel_crtc(&dev_priv->drm, crtc) {
18062 		struct intel_plane *plane =
18063 			to_intel_plane(crtc->base.primary);
18064 		struct intel_crtc *plane_crtc;
18065 		enum pipe pipe;
18066 
18067 		if (!plane->get_hw_state(plane, &pipe))
18068 			continue;
18069 
18070 		if (pipe == crtc->pipe)
18071 			continue;
18072 
18073 		drm_dbg_kms(&dev_priv->drm,
18074 			    "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n",
18075 			    plane->base.base.id, plane->base.name);
18076 
18077 		plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18078 		intel_plane_disable_noatomic(plane_crtc, plane);
18079 	}
18080 }
18081 
18082 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
18083 {
18084 	struct drm_device *dev = crtc->base.dev;
18085 	struct intel_encoder *encoder;
18086 
18087 	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
18088 		return true;
18089 
18090 	return false;
18091 }
18092 
18093 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
18094 {
18095 	struct drm_device *dev = encoder->base.dev;
18096 	struct intel_connector *connector;
18097 
18098 	for_each_connector_on_encoder(dev, &encoder->base, connector)
18099 		return connector;
18100 
18101 	return NULL;
18102 }
18103 
18104 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
18105 			      enum pipe pch_transcoder)
18106 {
18107 	return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
18108 		(HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
18109 }
18110 
18111 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state)
18112 {
18113 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
18114 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
18115 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
18116 
18117 	if (INTEL_GEN(dev_priv) >= 9 ||
18118 	    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
18119 		i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
18120 		u32 val;
18121 
18122 		if (transcoder_is_dsi(cpu_transcoder))
18123 			return;
18124 
18125 		val = intel_de_read(dev_priv, reg);
18126 		val &= ~HSW_FRAME_START_DELAY_MASK;
18127 		val |= HSW_FRAME_START_DELAY(0);
18128 		intel_de_write(dev_priv, reg, val);
18129 	} else {
18130 		i915_reg_t reg = PIPECONF(cpu_transcoder);
18131 		u32 val;
18132 
18133 		val = intel_de_read(dev_priv, reg);
18134 		val &= ~PIPECONF_FRAME_START_DELAY_MASK;
18135 		val |= PIPECONF_FRAME_START_DELAY(0);
18136 		intel_de_write(dev_priv, reg, val);
18137 	}
18138 
18139 	if (!crtc_state->has_pch_encoder)
18140 		return;
18141 
18142 	if (HAS_PCH_IBX(dev_priv)) {
18143 		i915_reg_t reg = PCH_TRANSCONF(crtc->pipe);
18144 		u32 val;
18145 
18146 		val = intel_de_read(dev_priv, reg);
18147 		val &= ~TRANS_FRAME_START_DELAY_MASK;
18148 		val |= TRANS_FRAME_START_DELAY(0);
18149 		intel_de_write(dev_priv, reg, val);
18150 	} else {
18151 		enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc);
18152 		i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder);
18153 		u32 val;
18154 
18155 		val = intel_de_read(dev_priv, reg);
18156 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
18157 		val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
18158 		intel_de_write(dev_priv, reg, val);
18159 	}
18160 }
18161 
18162 static void intel_sanitize_crtc(struct intel_crtc *crtc,
18163 				struct drm_modeset_acquire_ctx *ctx)
18164 {
18165 	struct drm_device *dev = crtc->base.dev;
18166 	struct drm_i915_private *dev_priv = to_i915(dev);
18167 	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
18168 
18169 	if (crtc_state->hw.active) {
18170 		struct intel_plane *plane;
18171 
18172 		/* Clear any frame start delays used for debugging left by the BIOS */
18173 		intel_sanitize_frame_start_delay(crtc_state);
18174 
18175 		/* Disable everything but the primary plane */
18176 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
18177 			const struct intel_plane_state *plane_state =
18178 				to_intel_plane_state(plane->base.state);
18179 
18180 			if (plane_state->uapi.visible &&
18181 			    plane->base.type != DRM_PLANE_TYPE_PRIMARY)
18182 				intel_plane_disable_noatomic(crtc, plane);
18183 		}
18184 
18185 		/*
18186 		 * Disable any background color set by the BIOS, but enable the
18187 		 * gamma and CSC to match how we program our planes.
18188 		 */
18189 		if (INTEL_GEN(dev_priv) >= 9)
18190 			intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe),
18191 				       SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE);
18192 	}
18193 
18194 	/* Adjust the state of the output pipe according to whether we
18195 	 * have active connectors/encoders. */
18196 	if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc))
18197 		intel_crtc_disable_noatomic(crtc, ctx);
18198 
18199 	if (crtc_state->hw.active || HAS_GMCH(dev_priv)) {
18200 		/*
18201 		 * We start out with underrun reporting disabled to avoid races.
18202 		 * For correct bookkeeping mark this on active crtcs.
18203 		 *
18204 		 * Also on gmch platforms we dont have any hardware bits to
18205 		 * disable the underrun reporting. Which means we need to start
18206 		 * out with underrun reporting disabled also on inactive pipes,
18207 		 * since otherwise we'll complain about the garbage we read when
18208 		 * e.g. coming up after runtime pm.
18209 		 *
18210 		 * No protection against concurrent access is required - at
18211 		 * worst a fifo underrun happens which also sets this to false.
18212 		 */
18213 		crtc->cpu_fifo_underrun_disabled = true;
18214 		/*
18215 		 * We track the PCH trancoder underrun reporting state
18216 		 * within the crtc. With crtc for pipe A housing the underrun
18217 		 * reporting state for PCH transcoder A, crtc for pipe B housing
18218 		 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
18219 		 * and marking underrun reporting as disabled for the non-existing
18220 		 * PCH transcoders B and C would prevent enabling the south
18221 		 * error interrupt (see cpt_can_enable_serr_int()).
18222 		 */
18223 		if (has_pch_trancoder(dev_priv, crtc->pipe))
18224 			crtc->pch_fifo_underrun_disabled = true;
18225 	}
18226 }
18227 
18228 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state)
18229 {
18230 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
18231 
18232 	/*
18233 	 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram
18234 	 * the hardware when a high res displays plugged in. DPLL P
18235 	 * divider is zero, and the pipe timings are bonkers. We'll
18236 	 * try to disable everything in that case.
18237 	 *
18238 	 * FIXME would be nice to be able to sanitize this state
18239 	 * without several WARNs, but for now let's take the easy
18240 	 * road.
18241 	 */
18242 	return IS_GEN(dev_priv, 6) &&
18243 		crtc_state->hw.active &&
18244 		crtc_state->shared_dpll &&
18245 		crtc_state->port_clock == 0;
18246 }
18247 
18248 static void intel_sanitize_encoder(struct intel_encoder *encoder)
18249 {
18250 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
18251 	struct intel_connector *connector;
18252 	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
18253 	struct intel_crtc_state *crtc_state = crtc ?
18254 		to_intel_crtc_state(crtc->base.state) : NULL;
18255 
18256 	/* We need to check both for a crtc link (meaning that the
18257 	 * encoder is active and trying to read from a pipe) and the
18258 	 * pipe itself being active. */
18259 	bool has_active_crtc = crtc_state &&
18260 		crtc_state->hw.active;
18261 
18262 	if (crtc_state && has_bogus_dpll_config(crtc_state)) {
18263 		drm_dbg_kms(&dev_priv->drm,
18264 			    "BIOS has misprogrammed the hardware. Disabling pipe %c\n",
18265 			    pipe_name(crtc->pipe));
18266 		has_active_crtc = false;
18267 	}
18268 
18269 	connector = intel_encoder_find_connector(encoder);
18270 	if (connector && !has_active_crtc) {
18271 		drm_dbg_kms(&dev_priv->drm,
18272 			    "[ENCODER:%d:%s] has active connectors but no active pipe!\n",
18273 			    encoder->base.base.id,
18274 			    encoder->base.name);
18275 
18276 		/* Connector is active, but has no active pipe. This is
18277 		 * fallout from our resume register restoring. Disable
18278 		 * the encoder manually again. */
18279 		if (crtc_state) {
18280 			struct drm_encoder *best_encoder;
18281 
18282 			drm_dbg_kms(&dev_priv->drm,
18283 				    "[ENCODER:%d:%s] manually disabled\n",
18284 				    encoder->base.base.id,
18285 				    encoder->base.name);
18286 
18287 			/* avoid oopsing in case the hooks consult best_encoder */
18288 			best_encoder = connector->base.state->best_encoder;
18289 			connector->base.state->best_encoder = &encoder->base;
18290 
18291 			/* FIXME NULL atomic state passed! */
18292 			if (encoder->disable)
18293 				encoder->disable(NULL, encoder, crtc_state,
18294 						 connector->base.state);
18295 			if (encoder->post_disable)
18296 				encoder->post_disable(NULL, encoder, crtc_state,
18297 						      connector->base.state);
18298 
18299 			connector->base.state->best_encoder = best_encoder;
18300 		}
18301 		encoder->base.crtc = NULL;
18302 
18303 		/* Inconsistent output/port/pipe state happens presumably due to
18304 		 * a bug in one of the get_hw_state functions. Or someplace else
18305 		 * in our code, like the register restore mess on resume. Clamp
18306 		 * things to off as a safer default. */
18307 
18308 		connector->base.dpms = DRM_MODE_DPMS_OFF;
18309 		connector->base.encoder = NULL;
18310 	}
18311 
18312 	/* notify opregion of the sanitized encoder state */
18313 	intel_opregion_notify_encoder(encoder, connector && has_active_crtc);
18314 
18315 	if (INTEL_GEN(dev_priv) >= 11)
18316 		icl_sanitize_encoder_pll_mapping(encoder);
18317 }
18318 
18319 /* FIXME read out full plane state for all planes */
18320 static void readout_plane_state(struct drm_i915_private *dev_priv)
18321 {
18322 	struct intel_plane *plane;
18323 	struct intel_crtc *crtc;
18324 
18325 	for_each_intel_plane(&dev_priv->drm, plane) {
18326 		struct intel_plane_state *plane_state =
18327 			to_intel_plane_state(plane->base.state);
18328 		struct intel_crtc_state *crtc_state;
18329 		enum pipe pipe = PIPE_A;
18330 		bool visible;
18331 
18332 		visible = plane->get_hw_state(plane, &pipe);
18333 
18334 		crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18335 		crtc_state = to_intel_crtc_state(crtc->base.state);
18336 
18337 		intel_set_plane_visible(crtc_state, plane_state, visible);
18338 
18339 		drm_dbg_kms(&dev_priv->drm,
18340 			    "[PLANE:%d:%s] hw state readout: %s, pipe %c\n",
18341 			    plane->base.base.id, plane->base.name,
18342 			    enableddisabled(visible), pipe_name(pipe));
18343 	}
18344 
18345 	for_each_intel_crtc(&dev_priv->drm, crtc) {
18346 		struct intel_crtc_state *crtc_state =
18347 			to_intel_crtc_state(crtc->base.state);
18348 
18349 		fixup_active_planes(crtc_state);
18350 	}
18351 }
18352 
18353 static void intel_modeset_readout_hw_state(struct drm_device *dev)
18354 {
18355 	struct drm_i915_private *dev_priv = to_i915(dev);
18356 	struct intel_cdclk_state *cdclk_state =
18357 		to_intel_cdclk_state(dev_priv->cdclk.obj.state);
18358 	struct intel_dbuf_state *dbuf_state =
18359 		to_intel_dbuf_state(dev_priv->dbuf.obj.state);
18360 	enum pipe pipe;
18361 	struct intel_crtc *crtc;
18362 	struct intel_encoder *encoder;
18363 	struct intel_connector *connector;
18364 	struct drm_connector_list_iter conn_iter;
18365 	u8 active_pipes = 0;
18366 
18367 	for_each_intel_crtc(dev, crtc) {
18368 		struct intel_crtc_state *crtc_state =
18369 			to_intel_crtc_state(crtc->base.state);
18370 
18371 		__drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi);
18372 		intel_crtc_free_hw_state(crtc_state);
18373 		intel_crtc_state_reset(crtc_state, crtc);
18374 
18375 		crtc_state->hw.active = crtc_state->hw.enable =
18376 			dev_priv->display.get_pipe_config(crtc, crtc_state);
18377 
18378 		crtc->base.enabled = crtc_state->hw.enable;
18379 		crtc->active = crtc_state->hw.active;
18380 
18381 		if (crtc_state->hw.active)
18382 			active_pipes |= BIT(crtc->pipe);
18383 
18384 		drm_dbg_kms(&dev_priv->drm,
18385 			    "[CRTC:%d:%s] hw state readout: %s\n",
18386 			    crtc->base.base.id, crtc->base.name,
18387 			    enableddisabled(crtc_state->hw.active));
18388 	}
18389 
18390 	dev_priv->active_pipes = cdclk_state->active_pipes =
18391 		dbuf_state->active_pipes = active_pipes;
18392 
18393 	readout_plane_state(dev_priv);
18394 
18395 	intel_dpll_readout_hw_state(dev_priv);
18396 
18397 	for_each_intel_encoder(dev, encoder) {
18398 		pipe = 0;
18399 
18400 		if (encoder->get_hw_state(encoder, &pipe)) {
18401 			struct intel_crtc_state *crtc_state;
18402 
18403 			crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18404 			crtc_state = to_intel_crtc_state(crtc->base.state);
18405 
18406 			encoder->base.crtc = &crtc->base;
18407 			encoder->get_config(encoder, crtc_state);
18408 		} else {
18409 			encoder->base.crtc = NULL;
18410 		}
18411 
18412 		drm_dbg_kms(&dev_priv->drm,
18413 			    "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
18414 			    encoder->base.base.id, encoder->base.name,
18415 			    enableddisabled(encoder->base.crtc),
18416 			    pipe_name(pipe));
18417 	}
18418 
18419 	drm_connector_list_iter_begin(dev, &conn_iter);
18420 	for_each_intel_connector_iter(connector, &conn_iter) {
18421 		if (connector->get_hw_state(connector)) {
18422 			struct intel_crtc_state *crtc_state;
18423 			struct intel_crtc *crtc;
18424 
18425 			connector->base.dpms = DRM_MODE_DPMS_ON;
18426 
18427 			encoder = intel_attached_encoder(connector);
18428 			connector->base.encoder = &encoder->base;
18429 
18430 			crtc = to_intel_crtc(encoder->base.crtc);
18431 			crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL;
18432 
18433 			if (crtc_state && crtc_state->hw.active) {
18434 				/*
18435 				 * This has to be done during hardware readout
18436 				 * because anything calling .crtc_disable may
18437 				 * rely on the connector_mask being accurate.
18438 				 */
18439 				crtc_state->uapi.connector_mask |=
18440 					drm_connector_mask(&connector->base);
18441 				crtc_state->uapi.encoder_mask |=
18442 					drm_encoder_mask(&encoder->base);
18443 			}
18444 		} else {
18445 			connector->base.dpms = DRM_MODE_DPMS_OFF;
18446 			connector->base.encoder = NULL;
18447 		}
18448 		drm_dbg_kms(&dev_priv->drm,
18449 			    "[CONNECTOR:%d:%s] hw state readout: %s\n",
18450 			    connector->base.base.id, connector->base.name,
18451 			    enableddisabled(connector->base.encoder));
18452 	}
18453 	drm_connector_list_iter_end(&conn_iter);
18454 
18455 	for_each_intel_crtc(dev, crtc) {
18456 		struct intel_bw_state *bw_state =
18457 			to_intel_bw_state(dev_priv->bw_obj.state);
18458 		struct intel_crtc_state *crtc_state =
18459 			to_intel_crtc_state(crtc->base.state);
18460 		struct intel_plane *plane;
18461 		int min_cdclk = 0;
18462 
18463 		if (crtc_state->hw.active) {
18464 			struct drm_display_mode *mode = &crtc_state->hw.mode;
18465 
18466 			intel_mode_from_pipe_config(&crtc_state->hw.adjusted_mode,
18467 						    crtc_state);
18468 
18469 			*mode = crtc_state->hw.adjusted_mode;
18470 			mode->hdisplay = crtc_state->pipe_src_w;
18471 			mode->vdisplay = crtc_state->pipe_src_h;
18472 
18473 			/*
18474 			 * The initial mode needs to be set in order to keep
18475 			 * the atomic core happy. It wants a valid mode if the
18476 			 * crtc's enabled, so we do the above call.
18477 			 *
18478 			 * But we don't set all the derived state fully, hence
18479 			 * set a flag to indicate that a full recalculation is
18480 			 * needed on the next commit.
18481 			 */
18482 			crtc_state->inherited = true;
18483 
18484 			intel_crtc_compute_pixel_rate(crtc_state);
18485 
18486 			intel_crtc_update_active_timings(crtc_state);
18487 
18488 			intel_crtc_copy_hw_to_uapi_state(crtc_state);
18489 		}
18490 
18491 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
18492 			const struct intel_plane_state *plane_state =
18493 				to_intel_plane_state(plane->base.state);
18494 
18495 			/*
18496 			 * FIXME don't have the fb yet, so can't
18497 			 * use intel_plane_data_rate() :(
18498 			 */
18499 			if (plane_state->uapi.visible)
18500 				crtc_state->data_rate[plane->id] =
18501 					4 * crtc_state->pixel_rate;
18502 			/*
18503 			 * FIXME don't have the fb yet, so can't
18504 			 * use plane->min_cdclk() :(
18505 			 */
18506 			if (plane_state->uapi.visible && plane->min_cdclk) {
18507 				if (crtc_state->double_wide ||
18508 				    INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
18509 					crtc_state->min_cdclk[plane->id] =
18510 						DIV_ROUND_UP(crtc_state->pixel_rate, 2);
18511 				else
18512 					crtc_state->min_cdclk[plane->id] =
18513 						crtc_state->pixel_rate;
18514 			}
18515 			drm_dbg_kms(&dev_priv->drm,
18516 				    "[PLANE:%d:%s] min_cdclk %d kHz\n",
18517 				    plane->base.base.id, plane->base.name,
18518 				    crtc_state->min_cdclk[plane->id]);
18519 		}
18520 
18521 		if (crtc_state->hw.active) {
18522 			min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
18523 			if (drm_WARN_ON(dev, min_cdclk < 0))
18524 				min_cdclk = 0;
18525 		}
18526 
18527 		cdclk_state->min_cdclk[crtc->pipe] = min_cdclk;
18528 		cdclk_state->min_voltage_level[crtc->pipe] =
18529 			crtc_state->min_voltage_level;
18530 
18531 		intel_bw_crtc_update(bw_state, crtc_state);
18532 
18533 		intel_pipe_config_sanity_check(dev_priv, crtc_state);
18534 	}
18535 }
18536 
18537 static void
18538 get_encoder_power_domains(struct drm_i915_private *dev_priv)
18539 {
18540 	struct intel_encoder *encoder;
18541 
18542 	for_each_intel_encoder(&dev_priv->drm, encoder) {
18543 		struct intel_crtc_state *crtc_state;
18544 
18545 		if (!encoder->get_power_domains)
18546 			continue;
18547 
18548 		/*
18549 		 * MST-primary and inactive encoders don't have a crtc state
18550 		 * and neither of these require any power domain references.
18551 		 */
18552 		if (!encoder->base.crtc)
18553 			continue;
18554 
18555 		crtc_state = to_intel_crtc_state(encoder->base.crtc->state);
18556 		encoder->get_power_domains(encoder, crtc_state);
18557 	}
18558 }
18559 
18560 static void intel_early_display_was(struct drm_i915_private *dev_priv)
18561 {
18562 	/*
18563 	 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl
18564 	 * Also known as Wa_14010480278.
18565 	 */
18566 	if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv))
18567 		intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0,
18568 			       intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS);
18569 
18570 	if (IS_HASWELL(dev_priv)) {
18571 		/*
18572 		 * WaRsPkgCStateDisplayPMReq:hsw
18573 		 * System hang if this isn't done before disabling all planes!
18574 		 */
18575 		intel_de_write(dev_priv, CHICKEN_PAR1_1,
18576 			       intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
18577 	}
18578 }
18579 
18580 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv,
18581 				       enum port port, i915_reg_t hdmi_reg)
18582 {
18583 	u32 val = intel_de_read(dev_priv, hdmi_reg);
18584 
18585 	if (val & SDVO_ENABLE ||
18586 	    (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A))
18587 		return;
18588 
18589 	drm_dbg_kms(&dev_priv->drm,
18590 		    "Sanitizing transcoder select for HDMI %c\n",
18591 		    port_name(port));
18592 
18593 	val &= ~SDVO_PIPE_SEL_MASK;
18594 	val |= SDVO_PIPE_SEL(PIPE_A);
18595 
18596 	intel_de_write(dev_priv, hdmi_reg, val);
18597 }
18598 
18599 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv,
18600 				     enum port port, i915_reg_t dp_reg)
18601 {
18602 	u32 val = intel_de_read(dev_priv, dp_reg);
18603 
18604 	if (val & DP_PORT_EN ||
18605 	    (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A))
18606 		return;
18607 
18608 	drm_dbg_kms(&dev_priv->drm,
18609 		    "Sanitizing transcoder select for DP %c\n",
18610 		    port_name(port));
18611 
18612 	val &= ~DP_PIPE_SEL_MASK;
18613 	val |= DP_PIPE_SEL(PIPE_A);
18614 
18615 	intel_de_write(dev_priv, dp_reg, val);
18616 }
18617 
18618 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv)
18619 {
18620 	/*
18621 	 * The BIOS may select transcoder B on some of the PCH
18622 	 * ports even it doesn't enable the port. This would trip
18623 	 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled().
18624 	 * Sanitize the transcoder select bits to prevent that. We
18625 	 * assume that the BIOS never actually enabled the port,
18626 	 * because if it did we'd actually have to toggle the port
18627 	 * on and back off to make the transcoder A select stick
18628 	 * (see. intel_dp_link_down(), intel_disable_hdmi(),
18629 	 * intel_disable_sdvo()).
18630 	 */
18631 	ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B);
18632 	ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C);
18633 	ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D);
18634 
18635 	/* PCH SDVOB multiplex with HDMIB */
18636 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB);
18637 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC);
18638 	ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID);
18639 }
18640 
18641 /* Scan out the current hw modeset state,
18642  * and sanitizes it to the current state
18643  */
18644 static void
18645 intel_modeset_setup_hw_state(struct drm_device *dev,
18646 			     struct drm_modeset_acquire_ctx *ctx)
18647 {
18648 	struct drm_i915_private *dev_priv = to_i915(dev);
18649 	struct intel_encoder *encoder;
18650 	struct intel_crtc *crtc;
18651 	intel_wakeref_t wakeref;
18652 
18653 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
18654 
18655 	intel_early_display_was(dev_priv);
18656 	intel_modeset_readout_hw_state(dev);
18657 
18658 	/* HW state is read out, now we need to sanitize this mess. */
18659 
18660 	/* Sanitize the TypeC port mode upfront, encoders depend on this */
18661 	for_each_intel_encoder(dev, encoder) {
18662 		enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
18663 
18664 		/* We need to sanitize only the MST primary port. */
18665 		if (encoder->type != INTEL_OUTPUT_DP_MST &&
18666 		    intel_phy_is_tc(dev_priv, phy))
18667 			intel_tc_port_sanitize(enc_to_dig_port(encoder));
18668 	}
18669 
18670 	get_encoder_power_domains(dev_priv);
18671 
18672 	if (HAS_PCH_IBX(dev_priv))
18673 		ibx_sanitize_pch_ports(dev_priv);
18674 
18675 	/*
18676 	 * intel_sanitize_plane_mapping() may need to do vblank
18677 	 * waits, so we need vblank interrupts restored beforehand.
18678 	 */
18679 	for_each_intel_crtc(&dev_priv->drm, crtc) {
18680 		struct intel_crtc_state *crtc_state =
18681 			to_intel_crtc_state(crtc->base.state);
18682 
18683 		drm_crtc_vblank_reset(&crtc->base);
18684 
18685 		if (crtc_state->hw.active)
18686 			intel_crtc_vblank_on(crtc_state);
18687 	}
18688 
18689 	intel_sanitize_plane_mapping(dev_priv);
18690 
18691 	for_each_intel_encoder(dev, encoder)
18692 		intel_sanitize_encoder(encoder);
18693 
18694 	for_each_intel_crtc(&dev_priv->drm, crtc) {
18695 		struct intel_crtc_state *crtc_state =
18696 			to_intel_crtc_state(crtc->base.state);
18697 
18698 		intel_sanitize_crtc(crtc, ctx);
18699 		intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]");
18700 	}
18701 
18702 	intel_modeset_update_connector_atomic_state(dev);
18703 
18704 	intel_dpll_sanitize_state(dev_priv);
18705 
18706 	if (IS_G4X(dev_priv)) {
18707 		g4x_wm_get_hw_state(dev_priv);
18708 		g4x_wm_sanitize(dev_priv);
18709 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
18710 		vlv_wm_get_hw_state(dev_priv);
18711 		vlv_wm_sanitize(dev_priv);
18712 	} else if (INTEL_GEN(dev_priv) >= 9) {
18713 		skl_wm_get_hw_state(dev_priv);
18714 	} else if (HAS_PCH_SPLIT(dev_priv)) {
18715 		ilk_wm_get_hw_state(dev_priv);
18716 	}
18717 
18718 	for_each_intel_crtc(dev, crtc) {
18719 		struct intel_crtc_state *crtc_state =
18720 			to_intel_crtc_state(crtc->base.state);
18721 		u64 put_domains;
18722 
18723 		put_domains = modeset_get_crtc_power_domains(crtc_state);
18724 		if (drm_WARN_ON(dev, put_domains))
18725 			modeset_put_power_domains(dev_priv, put_domains);
18726 	}
18727 
18728 	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref);
18729 }
18730 
18731 void intel_display_resume(struct drm_device *dev)
18732 {
18733 	struct drm_i915_private *dev_priv = to_i915(dev);
18734 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
18735 	struct drm_modeset_acquire_ctx ctx;
18736 	int ret;
18737 
18738 	dev_priv->modeset_restore_state = NULL;
18739 	if (state)
18740 		state->acquire_ctx = &ctx;
18741 
18742 	drm_modeset_acquire_init(&ctx, 0);
18743 
18744 	while (1) {
18745 		ret = drm_modeset_lock_all_ctx(dev, &ctx);
18746 		if (ret != -EDEADLK)
18747 			break;
18748 
18749 		drm_modeset_backoff(&ctx);
18750 	}
18751 
18752 	if (!ret)
18753 		ret = __intel_display_resume(dev, state, &ctx);
18754 
18755 	intel_enable_ipc(dev_priv);
18756 	drm_modeset_drop_locks(&ctx);
18757 	drm_modeset_acquire_fini(&ctx);
18758 
18759 	if (ret)
18760 		drm_err(&dev_priv->drm,
18761 			"Restoring old state failed with %i\n", ret);
18762 	if (state)
18763 		drm_atomic_state_put(state);
18764 }
18765 
18766 static void intel_hpd_poll_fini(struct drm_i915_private *i915)
18767 {
18768 	struct intel_connector *connector;
18769 	struct drm_connector_list_iter conn_iter;
18770 
18771 	/* Kill all the work that may have been queued by hpd. */
18772 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
18773 	for_each_intel_connector_iter(connector, &conn_iter) {
18774 		if (connector->modeset_retry_work.func)
18775 			cancel_work_sync(&connector->modeset_retry_work);
18776 		if (connector->hdcp.shim) {
18777 			cancel_delayed_work_sync(&connector->hdcp.check_work);
18778 			cancel_work_sync(&connector->hdcp.prop_work);
18779 		}
18780 	}
18781 	drm_connector_list_iter_end(&conn_iter);
18782 }
18783 
18784 /* part #1: call before irq uninstall */
18785 void intel_modeset_driver_remove(struct drm_i915_private *i915)
18786 {
18787 	flush_workqueue(i915->flip_wq);
18788 	flush_workqueue(i915->modeset_wq);
18789 
18790 	flush_work(&i915->atomic_helper.free_work);
18791 	drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list));
18792 }
18793 
18794 /* part #2: call after irq uninstall */
18795 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915)
18796 {
18797 	/*
18798 	 * Due to the hpd irq storm handling the hotplug work can re-arm the
18799 	 * poll handlers. Hence disable polling after hpd handling is shut down.
18800 	 */
18801 	intel_hpd_poll_fini(i915);
18802 
18803 	/*
18804 	 * MST topology needs to be suspended so we don't have any calls to
18805 	 * fbdev after it's finalized. MST will be destroyed later as part of
18806 	 * drm_mode_config_cleanup()
18807 	 */
18808 	intel_dp_mst_suspend(i915);
18809 
18810 	/* poll work can call into fbdev, hence clean that up afterwards */
18811 	intel_fbdev_fini(i915);
18812 
18813 	intel_unregister_dsm_handler();
18814 
18815 	intel_fbc_global_disable(i915);
18816 
18817 	/* flush any delayed tasks or pending work */
18818 	flush_scheduled_work();
18819 
18820 	intel_hdcp_component_fini(i915);
18821 
18822 	intel_mode_config_cleanup(i915);
18823 
18824 	intel_overlay_cleanup(i915);
18825 
18826 	intel_gmbus_teardown(i915);
18827 
18828 	destroy_workqueue(i915->flip_wq);
18829 	destroy_workqueue(i915->modeset_wq);
18830 
18831 	intel_fbc_cleanup_cfb(i915);
18832 }
18833 
18834 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
18835 
18836 struct intel_display_error_state {
18837 
18838 	u32 power_well_driver;
18839 
18840 	struct intel_cursor_error_state {
18841 		u32 control;
18842 		u32 position;
18843 		u32 base;
18844 		u32 size;
18845 	} cursor[I915_MAX_PIPES];
18846 
18847 	struct intel_pipe_error_state {
18848 		bool power_domain_on;
18849 		u32 source;
18850 		u32 stat;
18851 	} pipe[I915_MAX_PIPES];
18852 
18853 	struct intel_plane_error_state {
18854 		u32 control;
18855 		u32 stride;
18856 		u32 size;
18857 		u32 pos;
18858 		u32 addr;
18859 		u32 surface;
18860 		u32 tile_offset;
18861 	} plane[I915_MAX_PIPES];
18862 
18863 	struct intel_transcoder_error_state {
18864 		bool available;
18865 		bool power_domain_on;
18866 		enum transcoder cpu_transcoder;
18867 
18868 		u32 conf;
18869 
18870 		u32 htotal;
18871 		u32 hblank;
18872 		u32 hsync;
18873 		u32 vtotal;
18874 		u32 vblank;
18875 		u32 vsync;
18876 	} transcoder[5];
18877 };
18878 
18879 struct intel_display_error_state *
18880 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
18881 {
18882 	struct intel_display_error_state *error;
18883 	int transcoders[] = {
18884 		TRANSCODER_A,
18885 		TRANSCODER_B,
18886 		TRANSCODER_C,
18887 		TRANSCODER_D,
18888 		TRANSCODER_EDP,
18889 	};
18890 	int i;
18891 
18892 	BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder));
18893 
18894 	if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv))
18895 		return NULL;
18896 
18897 	error = kzalloc(sizeof(*error), GFP_ATOMIC);
18898 	if (error == NULL)
18899 		return NULL;
18900 
18901 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
18902 		error->power_well_driver = intel_de_read(dev_priv,
18903 							 HSW_PWR_WELL_CTL2);
18904 
18905 	for_each_pipe(dev_priv, i) {
18906 		error->pipe[i].power_domain_on =
18907 			__intel_display_power_is_enabled(dev_priv,
18908 							 POWER_DOMAIN_PIPE(i));
18909 		if (!error->pipe[i].power_domain_on)
18910 			continue;
18911 
18912 		error->cursor[i].control = intel_de_read(dev_priv, CURCNTR(i));
18913 		error->cursor[i].position = intel_de_read(dev_priv, CURPOS(i));
18914 		error->cursor[i].base = intel_de_read(dev_priv, CURBASE(i));
18915 
18916 		error->plane[i].control = intel_de_read(dev_priv, DSPCNTR(i));
18917 		error->plane[i].stride = intel_de_read(dev_priv, DSPSTRIDE(i));
18918 		if (INTEL_GEN(dev_priv) <= 3) {
18919 			error->plane[i].size = intel_de_read(dev_priv,
18920 							     DSPSIZE(i));
18921 			error->plane[i].pos = intel_de_read(dev_priv,
18922 							    DSPPOS(i));
18923 		}
18924 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
18925 			error->plane[i].addr = intel_de_read(dev_priv,
18926 							     DSPADDR(i));
18927 		if (INTEL_GEN(dev_priv) >= 4) {
18928 			error->plane[i].surface = intel_de_read(dev_priv,
18929 								DSPSURF(i));
18930 			error->plane[i].tile_offset = intel_de_read(dev_priv,
18931 								    DSPTILEOFF(i));
18932 		}
18933 
18934 		error->pipe[i].source = intel_de_read(dev_priv, PIPESRC(i));
18935 
18936 		if (HAS_GMCH(dev_priv))
18937 			error->pipe[i].stat = intel_de_read(dev_priv,
18938 							    PIPESTAT(i));
18939 	}
18940 
18941 	for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
18942 		enum transcoder cpu_transcoder = transcoders[i];
18943 
18944 		if (!HAS_TRANSCODER(dev_priv, cpu_transcoder))
18945 			continue;
18946 
18947 		error->transcoder[i].available = true;
18948 		error->transcoder[i].power_domain_on =
18949 			__intel_display_power_is_enabled(dev_priv,
18950 				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
18951 		if (!error->transcoder[i].power_domain_on)
18952 			continue;
18953 
18954 		error->transcoder[i].cpu_transcoder = cpu_transcoder;
18955 
18956 		error->transcoder[i].conf = intel_de_read(dev_priv,
18957 							  PIPECONF(cpu_transcoder));
18958 		error->transcoder[i].htotal = intel_de_read(dev_priv,
18959 							    HTOTAL(cpu_transcoder));
18960 		error->transcoder[i].hblank = intel_de_read(dev_priv,
18961 							    HBLANK(cpu_transcoder));
18962 		error->transcoder[i].hsync = intel_de_read(dev_priv,
18963 							   HSYNC(cpu_transcoder));
18964 		error->transcoder[i].vtotal = intel_de_read(dev_priv,
18965 							    VTOTAL(cpu_transcoder));
18966 		error->transcoder[i].vblank = intel_de_read(dev_priv,
18967 							    VBLANK(cpu_transcoder));
18968 		error->transcoder[i].vsync = intel_de_read(dev_priv,
18969 							   VSYNC(cpu_transcoder));
18970 	}
18971 
18972 	return error;
18973 }
18974 
18975 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
18976 
18977 void
18978 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
18979 				struct intel_display_error_state *error)
18980 {
18981 	struct drm_i915_private *dev_priv = m->i915;
18982 	int i;
18983 
18984 	if (!error)
18985 		return;
18986 
18987 	err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv));
18988 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
18989 		err_printf(m, "PWR_WELL_CTL2: %08x\n",
18990 			   error->power_well_driver);
18991 	for_each_pipe(dev_priv, i) {
18992 		err_printf(m, "Pipe [%d]:\n", i);
18993 		err_printf(m, "  Power: %s\n",
18994 			   onoff(error->pipe[i].power_domain_on));
18995 		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
18996 		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
18997 
18998 		err_printf(m, "Plane [%d]:\n", i);
18999 		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
19000 		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
19001 		if (INTEL_GEN(dev_priv) <= 3) {
19002 			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
19003 			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
19004 		}
19005 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
19006 			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
19007 		if (INTEL_GEN(dev_priv) >= 4) {
19008 			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
19009 			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
19010 		}
19011 
19012 		err_printf(m, "Cursor [%d]:\n", i);
19013 		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
19014 		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
19015 		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
19016 	}
19017 
19018 	for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
19019 		if (!error->transcoder[i].available)
19020 			continue;
19021 
19022 		err_printf(m, "CPU transcoder: %s\n",
19023 			   transcoder_name(error->transcoder[i].cpu_transcoder));
19024 		err_printf(m, "  Power: %s\n",
19025 			   onoff(error->transcoder[i].power_domain_on));
19026 		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
19027 		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
19028 		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
19029 		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
19030 		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
19031 		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
19032 		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
19033 	}
19034 }
19035 
19036 #endif
19037