1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <linux/i2c.h> 28 #include <linux/input.h> 29 #include <linux/intel-iommu.h> 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/dma-resv.h> 33 #include <linux/slab.h> 34 35 #include <drm/drm_atomic.h> 36 #include <drm/drm_atomic_helper.h> 37 #include <drm/drm_atomic_uapi.h> 38 #include <drm/drm_damage_helper.h> 39 #include <drm/drm_dp_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_fourcc.h> 42 #include <drm/drm_plane_helper.h> 43 #include <drm/drm_probe_helper.h> 44 #include <drm/drm_rect.h> 45 46 #include "display/intel_crt.h" 47 #include "display/intel_ddi.h" 48 #include "display/intel_dp.h" 49 #include "display/intel_dp_mst.h" 50 #include "display/intel_dpll_mgr.h" 51 #include "display/intel_dsi.h" 52 #include "display/intel_dvo.h" 53 #include "display/intel_gmbus.h" 54 #include "display/intel_hdmi.h" 55 #include "display/intel_lvds.h" 56 #include "display/intel_sdvo.h" 57 #include "display/intel_tv.h" 58 #include "display/intel_vdsc.h" 59 60 #include "gt/intel_rps.h" 61 62 #include "i915_drv.h" 63 #include "i915_trace.h" 64 #include "intel_acpi.h" 65 #include "intel_atomic.h" 66 #include "intel_atomic_plane.h" 67 #include "intel_bw.h" 68 #include "intel_cdclk.h" 69 #include "intel_color.h" 70 #include "intel_display_types.h" 71 #include "intel_dp_link_training.h" 72 #include "intel_fbc.h" 73 #include "intel_fbdev.h" 74 #include "intel_fifo_underrun.h" 75 #include "intel_frontbuffer.h" 76 #include "intel_hdcp.h" 77 #include "intel_hotplug.h" 78 #include "intel_overlay.h" 79 #include "intel_pipe_crc.h" 80 #include "intel_pm.h" 81 #include "intel_psr.h" 82 #include "intel_quirks.h" 83 #include "intel_sideband.h" 84 #include "intel_sprite.h" 85 #include "intel_tc.h" 86 #include "intel_vga.h" 87 88 /* Primary plane formats for gen <= 3 */ 89 static const u32 i8xx_primary_formats[] = { 90 DRM_FORMAT_C8, 91 DRM_FORMAT_XRGB1555, 92 DRM_FORMAT_RGB565, 93 DRM_FORMAT_XRGB8888, 94 }; 95 96 /* Primary plane formats for ivb (no fp16 due to hw issue) */ 97 static const u32 ivb_primary_formats[] = { 98 DRM_FORMAT_C8, 99 DRM_FORMAT_RGB565, 100 DRM_FORMAT_XRGB8888, 101 DRM_FORMAT_XBGR8888, 102 DRM_FORMAT_XRGB2101010, 103 DRM_FORMAT_XBGR2101010, 104 }; 105 106 /* Primary plane formats for gen >= 4, except ivb */ 107 static const u32 i965_primary_formats[] = { 108 DRM_FORMAT_C8, 109 DRM_FORMAT_RGB565, 110 DRM_FORMAT_XRGB8888, 111 DRM_FORMAT_XBGR8888, 112 DRM_FORMAT_XRGB2101010, 113 DRM_FORMAT_XBGR2101010, 114 DRM_FORMAT_XBGR16161616F, 115 }; 116 117 /* Primary plane formats for vlv/chv */ 118 static const u32 vlv_primary_formats[] = { 119 DRM_FORMAT_C8, 120 DRM_FORMAT_RGB565, 121 DRM_FORMAT_XRGB8888, 122 DRM_FORMAT_XBGR8888, 123 DRM_FORMAT_ARGB8888, 124 DRM_FORMAT_ABGR8888, 125 DRM_FORMAT_XRGB2101010, 126 DRM_FORMAT_XBGR2101010, 127 DRM_FORMAT_ARGB2101010, 128 DRM_FORMAT_ABGR2101010, 129 DRM_FORMAT_XBGR16161616F, 130 }; 131 132 static const u64 i9xx_format_modifiers[] = { 133 I915_FORMAT_MOD_X_TILED, 134 DRM_FORMAT_MOD_LINEAR, 135 DRM_FORMAT_MOD_INVALID 136 }; 137 138 /* Cursor formats */ 139 static const u32 intel_cursor_formats[] = { 140 DRM_FORMAT_ARGB8888, 141 }; 142 143 static const u64 cursor_format_modifiers[] = { 144 DRM_FORMAT_MOD_LINEAR, 145 DRM_FORMAT_MOD_INVALID 146 }; 147 148 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 149 struct intel_crtc_state *pipe_config); 150 static void ilk_pch_clock_get(struct intel_crtc *crtc, 151 struct intel_crtc_state *pipe_config); 152 153 static int intel_framebuffer_init(struct intel_framebuffer *ifb, 154 struct drm_i915_gem_object *obj, 155 struct drm_mode_fb_cmd2 *mode_cmd); 156 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state); 157 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 158 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 159 const struct intel_link_m_n *m_n, 160 const struct intel_link_m_n *m2_n2); 161 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 162 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state); 163 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state); 164 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 165 static void vlv_prepare_pll(struct intel_crtc *crtc, 166 const struct intel_crtc_state *pipe_config); 167 static void chv_prepare_pll(struct intel_crtc *crtc, 168 const struct intel_crtc_state *pipe_config); 169 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state); 170 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); 171 static void intel_modeset_setup_hw_state(struct drm_device *dev, 172 struct drm_modeset_acquire_ctx *ctx); 173 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc); 174 175 struct intel_limit { 176 struct { 177 int min, max; 178 } dot, vco, n, m, m1, m2, p, p1; 179 180 struct { 181 int dot_limit; 182 int p2_slow, p2_fast; 183 } p2; 184 }; 185 186 /* returns HPLL frequency in kHz */ 187 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 188 { 189 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 190 191 /* Obtain SKU information */ 192 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 193 CCK_FUSE_HPLL_FREQ_MASK; 194 195 return vco_freq[hpll_freq] * 1000; 196 } 197 198 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 199 const char *name, u32 reg, int ref_freq) 200 { 201 u32 val; 202 int divider; 203 204 val = vlv_cck_read(dev_priv, reg); 205 divider = val & CCK_FREQUENCY_VALUES; 206 207 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != 208 (divider << CCK_FREQUENCY_STATUS_SHIFT), 209 "%s change in progress\n", name); 210 211 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 212 } 213 214 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 215 const char *name, u32 reg) 216 { 217 int hpll; 218 219 vlv_cck_get(dev_priv); 220 221 if (dev_priv->hpll_freq == 0) 222 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 223 224 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 225 226 vlv_cck_put(dev_priv); 227 228 return hpll; 229 } 230 231 static void intel_update_czclk(struct drm_i915_private *dev_priv) 232 { 233 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 234 return; 235 236 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 237 CCK_CZ_CLOCK_CONTROL); 238 239 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n", 240 dev_priv->czclk_freq); 241 } 242 243 /* units of 100MHz */ 244 static u32 intel_fdi_link_freq(struct drm_i915_private *dev_priv, 245 const struct intel_crtc_state *pipe_config) 246 { 247 if (HAS_DDI(dev_priv)) 248 return pipe_config->port_clock; /* SPLL */ 249 else 250 return dev_priv->fdi_pll_freq; 251 } 252 253 static const struct intel_limit intel_limits_i8xx_dac = { 254 .dot = { .min = 25000, .max = 350000 }, 255 .vco = { .min = 908000, .max = 1512000 }, 256 .n = { .min = 2, .max = 16 }, 257 .m = { .min = 96, .max = 140 }, 258 .m1 = { .min = 18, .max = 26 }, 259 .m2 = { .min = 6, .max = 16 }, 260 .p = { .min = 4, .max = 128 }, 261 .p1 = { .min = 2, .max = 33 }, 262 .p2 = { .dot_limit = 165000, 263 .p2_slow = 4, .p2_fast = 2 }, 264 }; 265 266 static const struct intel_limit intel_limits_i8xx_dvo = { 267 .dot = { .min = 25000, .max = 350000 }, 268 .vco = { .min = 908000, .max = 1512000 }, 269 .n = { .min = 2, .max = 16 }, 270 .m = { .min = 96, .max = 140 }, 271 .m1 = { .min = 18, .max = 26 }, 272 .m2 = { .min = 6, .max = 16 }, 273 .p = { .min = 4, .max = 128 }, 274 .p1 = { .min = 2, .max = 33 }, 275 .p2 = { .dot_limit = 165000, 276 .p2_slow = 4, .p2_fast = 4 }, 277 }; 278 279 static const struct intel_limit intel_limits_i8xx_lvds = { 280 .dot = { .min = 25000, .max = 350000 }, 281 .vco = { .min = 908000, .max = 1512000 }, 282 .n = { .min = 2, .max = 16 }, 283 .m = { .min = 96, .max = 140 }, 284 .m1 = { .min = 18, .max = 26 }, 285 .m2 = { .min = 6, .max = 16 }, 286 .p = { .min = 4, .max = 128 }, 287 .p1 = { .min = 1, .max = 6 }, 288 .p2 = { .dot_limit = 165000, 289 .p2_slow = 14, .p2_fast = 7 }, 290 }; 291 292 static const struct intel_limit intel_limits_i9xx_sdvo = { 293 .dot = { .min = 20000, .max = 400000 }, 294 .vco = { .min = 1400000, .max = 2800000 }, 295 .n = { .min = 1, .max = 6 }, 296 .m = { .min = 70, .max = 120 }, 297 .m1 = { .min = 8, .max = 18 }, 298 .m2 = { .min = 3, .max = 7 }, 299 .p = { .min = 5, .max = 80 }, 300 .p1 = { .min = 1, .max = 8 }, 301 .p2 = { .dot_limit = 200000, 302 .p2_slow = 10, .p2_fast = 5 }, 303 }; 304 305 static const struct intel_limit intel_limits_i9xx_lvds = { 306 .dot = { .min = 20000, .max = 400000 }, 307 .vco = { .min = 1400000, .max = 2800000 }, 308 .n = { .min = 1, .max = 6 }, 309 .m = { .min = 70, .max = 120 }, 310 .m1 = { .min = 8, .max = 18 }, 311 .m2 = { .min = 3, .max = 7 }, 312 .p = { .min = 7, .max = 98 }, 313 .p1 = { .min = 1, .max = 8 }, 314 .p2 = { .dot_limit = 112000, 315 .p2_slow = 14, .p2_fast = 7 }, 316 }; 317 318 319 static const struct intel_limit intel_limits_g4x_sdvo = { 320 .dot = { .min = 25000, .max = 270000 }, 321 .vco = { .min = 1750000, .max = 3500000}, 322 .n = { .min = 1, .max = 4 }, 323 .m = { .min = 104, .max = 138 }, 324 .m1 = { .min = 17, .max = 23 }, 325 .m2 = { .min = 5, .max = 11 }, 326 .p = { .min = 10, .max = 30 }, 327 .p1 = { .min = 1, .max = 3}, 328 .p2 = { .dot_limit = 270000, 329 .p2_slow = 10, 330 .p2_fast = 10 331 }, 332 }; 333 334 static const struct intel_limit intel_limits_g4x_hdmi = { 335 .dot = { .min = 22000, .max = 400000 }, 336 .vco = { .min = 1750000, .max = 3500000}, 337 .n = { .min = 1, .max = 4 }, 338 .m = { .min = 104, .max = 138 }, 339 .m1 = { .min = 16, .max = 23 }, 340 .m2 = { .min = 5, .max = 11 }, 341 .p = { .min = 5, .max = 80 }, 342 .p1 = { .min = 1, .max = 8}, 343 .p2 = { .dot_limit = 165000, 344 .p2_slow = 10, .p2_fast = 5 }, 345 }; 346 347 static const struct intel_limit intel_limits_g4x_single_channel_lvds = { 348 .dot = { .min = 20000, .max = 115000 }, 349 .vco = { .min = 1750000, .max = 3500000 }, 350 .n = { .min = 1, .max = 3 }, 351 .m = { .min = 104, .max = 138 }, 352 .m1 = { .min = 17, .max = 23 }, 353 .m2 = { .min = 5, .max = 11 }, 354 .p = { .min = 28, .max = 112 }, 355 .p1 = { .min = 2, .max = 8 }, 356 .p2 = { .dot_limit = 0, 357 .p2_slow = 14, .p2_fast = 14 358 }, 359 }; 360 361 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { 362 .dot = { .min = 80000, .max = 224000 }, 363 .vco = { .min = 1750000, .max = 3500000 }, 364 .n = { .min = 1, .max = 3 }, 365 .m = { .min = 104, .max = 138 }, 366 .m1 = { .min = 17, .max = 23 }, 367 .m2 = { .min = 5, .max = 11 }, 368 .p = { .min = 14, .max = 42 }, 369 .p1 = { .min = 2, .max = 6 }, 370 .p2 = { .dot_limit = 0, 371 .p2_slow = 7, .p2_fast = 7 372 }, 373 }; 374 375 static const struct intel_limit pnv_limits_sdvo = { 376 .dot = { .min = 20000, .max = 400000}, 377 .vco = { .min = 1700000, .max = 3500000 }, 378 /* Pineview's Ncounter is a ring counter */ 379 .n = { .min = 3, .max = 6 }, 380 .m = { .min = 2, .max = 256 }, 381 /* Pineview only has one combined m divider, which we treat as m2. */ 382 .m1 = { .min = 0, .max = 0 }, 383 .m2 = { .min = 0, .max = 254 }, 384 .p = { .min = 5, .max = 80 }, 385 .p1 = { .min = 1, .max = 8 }, 386 .p2 = { .dot_limit = 200000, 387 .p2_slow = 10, .p2_fast = 5 }, 388 }; 389 390 static const struct intel_limit pnv_limits_lvds = { 391 .dot = { .min = 20000, .max = 400000 }, 392 .vco = { .min = 1700000, .max = 3500000 }, 393 .n = { .min = 3, .max = 6 }, 394 .m = { .min = 2, .max = 256 }, 395 .m1 = { .min = 0, .max = 0 }, 396 .m2 = { .min = 0, .max = 254 }, 397 .p = { .min = 7, .max = 112 }, 398 .p1 = { .min = 1, .max = 8 }, 399 .p2 = { .dot_limit = 112000, 400 .p2_slow = 14, .p2_fast = 14 }, 401 }; 402 403 /* Ironlake / Sandybridge 404 * 405 * We calculate clock using (register_value + 2) for N/M1/M2, so here 406 * the range value for them is (actual_value - 2). 407 */ 408 static const struct intel_limit ilk_limits_dac = { 409 .dot = { .min = 25000, .max = 350000 }, 410 .vco = { .min = 1760000, .max = 3510000 }, 411 .n = { .min = 1, .max = 5 }, 412 .m = { .min = 79, .max = 127 }, 413 .m1 = { .min = 12, .max = 22 }, 414 .m2 = { .min = 5, .max = 9 }, 415 .p = { .min = 5, .max = 80 }, 416 .p1 = { .min = 1, .max = 8 }, 417 .p2 = { .dot_limit = 225000, 418 .p2_slow = 10, .p2_fast = 5 }, 419 }; 420 421 static const struct intel_limit ilk_limits_single_lvds = { 422 .dot = { .min = 25000, .max = 350000 }, 423 .vco = { .min = 1760000, .max = 3510000 }, 424 .n = { .min = 1, .max = 3 }, 425 .m = { .min = 79, .max = 118 }, 426 .m1 = { .min = 12, .max = 22 }, 427 .m2 = { .min = 5, .max = 9 }, 428 .p = { .min = 28, .max = 112 }, 429 .p1 = { .min = 2, .max = 8 }, 430 .p2 = { .dot_limit = 225000, 431 .p2_slow = 14, .p2_fast = 14 }, 432 }; 433 434 static const struct intel_limit ilk_limits_dual_lvds = { 435 .dot = { .min = 25000, .max = 350000 }, 436 .vco = { .min = 1760000, .max = 3510000 }, 437 .n = { .min = 1, .max = 3 }, 438 .m = { .min = 79, .max = 127 }, 439 .m1 = { .min = 12, .max = 22 }, 440 .m2 = { .min = 5, .max = 9 }, 441 .p = { .min = 14, .max = 56 }, 442 .p1 = { .min = 2, .max = 8 }, 443 .p2 = { .dot_limit = 225000, 444 .p2_slow = 7, .p2_fast = 7 }, 445 }; 446 447 /* LVDS 100mhz refclk limits. */ 448 static const struct intel_limit ilk_limits_single_lvds_100m = { 449 .dot = { .min = 25000, .max = 350000 }, 450 .vco = { .min = 1760000, .max = 3510000 }, 451 .n = { .min = 1, .max = 2 }, 452 .m = { .min = 79, .max = 126 }, 453 .m1 = { .min = 12, .max = 22 }, 454 .m2 = { .min = 5, .max = 9 }, 455 .p = { .min = 28, .max = 112 }, 456 .p1 = { .min = 2, .max = 8 }, 457 .p2 = { .dot_limit = 225000, 458 .p2_slow = 14, .p2_fast = 14 }, 459 }; 460 461 static const struct intel_limit ilk_limits_dual_lvds_100m = { 462 .dot = { .min = 25000, .max = 350000 }, 463 .vco = { .min = 1760000, .max = 3510000 }, 464 .n = { .min = 1, .max = 3 }, 465 .m = { .min = 79, .max = 126 }, 466 .m1 = { .min = 12, .max = 22 }, 467 .m2 = { .min = 5, .max = 9 }, 468 .p = { .min = 14, .max = 42 }, 469 .p1 = { .min = 2, .max = 6 }, 470 .p2 = { .dot_limit = 225000, 471 .p2_slow = 7, .p2_fast = 7 }, 472 }; 473 474 static const struct intel_limit intel_limits_vlv = { 475 /* 476 * These are the data rate limits (measured in fast clocks) 477 * since those are the strictest limits we have. The fast 478 * clock and actual rate limits are more relaxed, so checking 479 * them would make no difference. 480 */ 481 .dot = { .min = 25000 * 5, .max = 270000 * 5 }, 482 .vco = { .min = 4000000, .max = 6000000 }, 483 .n = { .min = 1, .max = 7 }, 484 .m1 = { .min = 2, .max = 3 }, 485 .m2 = { .min = 11, .max = 156 }, 486 .p1 = { .min = 2, .max = 3 }, 487 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ 488 }; 489 490 static const struct intel_limit intel_limits_chv = { 491 /* 492 * These are the data rate limits (measured in fast clocks) 493 * since those are the strictest limits we have. The fast 494 * clock and actual rate limits are more relaxed, so checking 495 * them would make no difference. 496 */ 497 .dot = { .min = 25000 * 5, .max = 540000 * 5}, 498 .vco = { .min = 4800000, .max = 6480000 }, 499 .n = { .min = 1, .max = 1 }, 500 .m1 = { .min = 2, .max = 2 }, 501 .m2 = { .min = 24 << 22, .max = 175 << 22 }, 502 .p1 = { .min = 2, .max = 4 }, 503 .p2 = { .p2_slow = 1, .p2_fast = 14 }, 504 }; 505 506 static const struct intel_limit intel_limits_bxt = { 507 /* FIXME: find real dot limits */ 508 .dot = { .min = 0, .max = INT_MAX }, 509 .vco = { .min = 4800000, .max = 6700000 }, 510 .n = { .min = 1, .max = 1 }, 511 .m1 = { .min = 2, .max = 2 }, 512 /* FIXME: find real m2 limits */ 513 .m2 = { .min = 2 << 22, .max = 255 << 22 }, 514 .p1 = { .min = 2, .max = 4 }, 515 .p2 = { .p2_slow = 1, .p2_fast = 20 }, 516 }; 517 518 /* WA Display #0827: Gen9:all */ 519 static void 520 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) 521 { 522 if (enable) 523 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 524 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); 525 else 526 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 527 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 528 } 529 530 /* Wa_2006604312:icl,ehl */ 531 static void 532 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 533 bool enable) 534 { 535 if (enable) 536 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 537 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 538 else 539 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 540 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 541 } 542 543 static bool 544 needs_modeset(const struct intel_crtc_state *state) 545 { 546 return drm_atomic_crtc_needs_modeset(&state->uapi); 547 } 548 549 static bool 550 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) 551 { 552 return crtc_state->master_transcoder != INVALID_TRANSCODER; 553 } 554 555 static bool 556 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state) 557 { 558 return crtc_state->sync_mode_slaves_mask != 0; 559 } 560 561 bool 562 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 563 { 564 return is_trans_port_sync_master(crtc_state) || 565 is_trans_port_sync_slave(crtc_state); 566 } 567 568 /* 569 * Platform specific helpers to calculate the port PLL loopback- (clock.m), 570 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast 571 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. 572 * The helpers' return value is the rate of the clock that is fed to the 573 * display engine's pipe which can be the above fast dot clock rate or a 574 * divided-down version of it. 575 */ 576 /* m1 is reserved as 0 in Pineview, n is a ring counter */ 577 static int pnv_calc_dpll_params(int refclk, struct dpll *clock) 578 { 579 clock->m = clock->m2 + 2; 580 clock->p = clock->p1 * clock->p2; 581 if (WARN_ON(clock->n == 0 || clock->p == 0)) 582 return 0; 583 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 584 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 585 586 return clock->dot; 587 } 588 589 static u32 i9xx_dpll_compute_m(struct dpll *dpll) 590 { 591 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); 592 } 593 594 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock) 595 { 596 clock->m = i9xx_dpll_compute_m(clock); 597 clock->p = clock->p1 * clock->p2; 598 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) 599 return 0; 600 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); 601 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 602 603 return clock->dot; 604 } 605 606 static int vlv_calc_dpll_params(int refclk, struct dpll *clock) 607 { 608 clock->m = clock->m1 * clock->m2; 609 clock->p = clock->p1 * clock->p2; 610 if (WARN_ON(clock->n == 0 || clock->p == 0)) 611 return 0; 612 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 613 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 614 615 return clock->dot / 5; 616 } 617 618 int chv_calc_dpll_params(int refclk, struct dpll *clock) 619 { 620 clock->m = clock->m1 * clock->m2; 621 clock->p = clock->p1 * clock->p2; 622 if (WARN_ON(clock->n == 0 || clock->p == 0)) 623 return 0; 624 clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), 625 clock->n << 22); 626 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 627 628 return clock->dot / 5; 629 } 630 631 /* 632 * Returns whether the given set of divisors are valid for a given refclk with 633 * the given connectors. 634 */ 635 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv, 636 const struct intel_limit *limit, 637 const struct dpll *clock) 638 { 639 if (clock->n < limit->n.min || limit->n.max < clock->n) 640 return false; 641 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) 642 return false; 643 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) 644 return false; 645 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) 646 return false; 647 648 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) && 649 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv)) 650 if (clock->m1 <= clock->m2) 651 return false; 652 653 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 654 !IS_GEN9_LP(dev_priv)) { 655 if (clock->p < limit->p.min || limit->p.max < clock->p) 656 return false; 657 if (clock->m < limit->m.min || limit->m.max < clock->m) 658 return false; 659 } 660 661 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) 662 return false; 663 /* XXX: We may need to be checking "Dot clock" depending on the multiplier, 664 * connector, etc., rather than just a single range. 665 */ 666 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) 667 return false; 668 669 return true; 670 } 671 672 static int 673 i9xx_select_p2_div(const struct intel_limit *limit, 674 const struct intel_crtc_state *crtc_state, 675 int target) 676 { 677 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 678 679 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 680 /* 681 * For LVDS just rely on its current settings for dual-channel. 682 * We haven't figured out how to reliably set up different 683 * single/dual channel state, if we even can. 684 */ 685 if (intel_is_dual_link_lvds(dev_priv)) 686 return limit->p2.p2_fast; 687 else 688 return limit->p2.p2_slow; 689 } else { 690 if (target < limit->p2.dot_limit) 691 return limit->p2.p2_slow; 692 else 693 return limit->p2.p2_fast; 694 } 695 } 696 697 /* 698 * Returns a set of divisors for the desired target clock with the given 699 * refclk, or FALSE. The returned values represent the clock equation: 700 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 701 * 702 * Target and reference clocks are specified in kHz. 703 * 704 * If match_clock is provided, then best_clock P divider must match the P 705 * divider from @match_clock used for LVDS downclocking. 706 */ 707 static bool 708 i9xx_find_best_dpll(const struct intel_limit *limit, 709 struct intel_crtc_state *crtc_state, 710 int target, int refclk, struct dpll *match_clock, 711 struct dpll *best_clock) 712 { 713 struct drm_device *dev = crtc_state->uapi.crtc->dev; 714 struct dpll clock; 715 int err = target; 716 717 memset(best_clock, 0, sizeof(*best_clock)); 718 719 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 720 721 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 722 clock.m1++) { 723 for (clock.m2 = limit->m2.min; 724 clock.m2 <= limit->m2.max; clock.m2++) { 725 if (clock.m2 >= clock.m1) 726 break; 727 for (clock.n = limit->n.min; 728 clock.n <= limit->n.max; clock.n++) { 729 for (clock.p1 = limit->p1.min; 730 clock.p1 <= limit->p1.max; clock.p1++) { 731 int this_err; 732 733 i9xx_calc_dpll_params(refclk, &clock); 734 if (!intel_pll_is_valid(to_i915(dev), 735 limit, 736 &clock)) 737 continue; 738 if (match_clock && 739 clock.p != match_clock->p) 740 continue; 741 742 this_err = abs(clock.dot - target); 743 if (this_err < err) { 744 *best_clock = clock; 745 err = this_err; 746 } 747 } 748 } 749 } 750 } 751 752 return (err != target); 753 } 754 755 /* 756 * Returns a set of divisors for the desired target clock with the given 757 * refclk, or FALSE. The returned values represent the clock equation: 758 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 759 * 760 * Target and reference clocks are specified in kHz. 761 * 762 * If match_clock is provided, then best_clock P divider must match the P 763 * divider from @match_clock used for LVDS downclocking. 764 */ 765 static bool 766 pnv_find_best_dpll(const struct intel_limit *limit, 767 struct intel_crtc_state *crtc_state, 768 int target, int refclk, struct dpll *match_clock, 769 struct dpll *best_clock) 770 { 771 struct drm_device *dev = crtc_state->uapi.crtc->dev; 772 struct dpll clock; 773 int err = target; 774 775 memset(best_clock, 0, sizeof(*best_clock)); 776 777 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 778 779 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 780 clock.m1++) { 781 for (clock.m2 = limit->m2.min; 782 clock.m2 <= limit->m2.max; clock.m2++) { 783 for (clock.n = limit->n.min; 784 clock.n <= limit->n.max; clock.n++) { 785 for (clock.p1 = limit->p1.min; 786 clock.p1 <= limit->p1.max; clock.p1++) { 787 int this_err; 788 789 pnv_calc_dpll_params(refclk, &clock); 790 if (!intel_pll_is_valid(to_i915(dev), 791 limit, 792 &clock)) 793 continue; 794 if (match_clock && 795 clock.p != match_clock->p) 796 continue; 797 798 this_err = abs(clock.dot - target); 799 if (this_err < err) { 800 *best_clock = clock; 801 err = this_err; 802 } 803 } 804 } 805 } 806 } 807 808 return (err != target); 809 } 810 811 /* 812 * Returns a set of divisors for the desired target clock with the given 813 * refclk, or FALSE. The returned values represent the clock equation: 814 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 815 * 816 * Target and reference clocks are specified in kHz. 817 * 818 * If match_clock is provided, then best_clock P divider must match the P 819 * divider from @match_clock used for LVDS downclocking. 820 */ 821 static bool 822 g4x_find_best_dpll(const struct intel_limit *limit, 823 struct intel_crtc_state *crtc_state, 824 int target, int refclk, struct dpll *match_clock, 825 struct dpll *best_clock) 826 { 827 struct drm_device *dev = crtc_state->uapi.crtc->dev; 828 struct dpll clock; 829 int max_n; 830 bool found = false; 831 /* approximately equals target * 0.00585 */ 832 int err_most = (target >> 8) + (target >> 9); 833 834 memset(best_clock, 0, sizeof(*best_clock)); 835 836 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 837 838 max_n = limit->n.max; 839 /* based on hardware requirement, prefer smaller n to precision */ 840 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 841 /* based on hardware requirement, prefere larger m1,m2 */ 842 for (clock.m1 = limit->m1.max; 843 clock.m1 >= limit->m1.min; clock.m1--) { 844 for (clock.m2 = limit->m2.max; 845 clock.m2 >= limit->m2.min; clock.m2--) { 846 for (clock.p1 = limit->p1.max; 847 clock.p1 >= limit->p1.min; clock.p1--) { 848 int this_err; 849 850 i9xx_calc_dpll_params(refclk, &clock); 851 if (!intel_pll_is_valid(to_i915(dev), 852 limit, 853 &clock)) 854 continue; 855 856 this_err = abs(clock.dot - target); 857 if (this_err < err_most) { 858 *best_clock = clock; 859 err_most = this_err; 860 max_n = clock.n; 861 found = true; 862 } 863 } 864 } 865 } 866 } 867 return found; 868 } 869 870 /* 871 * Check if the calculated PLL configuration is more optimal compared to the 872 * best configuration and error found so far. Return the calculated error. 873 */ 874 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, 875 const struct dpll *calculated_clock, 876 const struct dpll *best_clock, 877 unsigned int best_error_ppm, 878 unsigned int *error_ppm) 879 { 880 /* 881 * For CHV ignore the error and consider only the P value. 882 * Prefer a bigger P value based on HW requirements. 883 */ 884 if (IS_CHERRYVIEW(to_i915(dev))) { 885 *error_ppm = 0; 886 887 return calculated_clock->p > best_clock->p; 888 } 889 890 if (drm_WARN_ON_ONCE(dev, !target_freq)) 891 return false; 892 893 *error_ppm = div_u64(1000000ULL * 894 abs(target_freq - calculated_clock->dot), 895 target_freq); 896 /* 897 * Prefer a better P value over a better (smaller) error if the error 898 * is small. Ensure this preference for future configurations too by 899 * setting the error to 0. 900 */ 901 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { 902 *error_ppm = 0; 903 904 return true; 905 } 906 907 return *error_ppm + 10 < best_error_ppm; 908 } 909 910 /* 911 * Returns a set of divisors for the desired target clock with the given 912 * refclk, or FALSE. The returned values represent the clock equation: 913 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 914 */ 915 static bool 916 vlv_find_best_dpll(const struct intel_limit *limit, 917 struct intel_crtc_state *crtc_state, 918 int target, int refclk, struct dpll *match_clock, 919 struct dpll *best_clock) 920 { 921 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 922 struct drm_device *dev = crtc->base.dev; 923 struct dpll clock; 924 unsigned int bestppm = 1000000; 925 /* min update 19.2 MHz */ 926 int max_n = min(limit->n.max, refclk / 19200); 927 bool found = false; 928 929 target *= 5; /* fast clock */ 930 931 memset(best_clock, 0, sizeof(*best_clock)); 932 933 /* based on hardware requirement, prefer smaller n to precision */ 934 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 935 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 936 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; 937 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 938 clock.p = clock.p1 * clock.p2; 939 /* based on hardware requirement, prefer bigger m1,m2 values */ 940 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { 941 unsigned int ppm; 942 943 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, 944 refclk * clock.m1); 945 946 vlv_calc_dpll_params(refclk, &clock); 947 948 if (!intel_pll_is_valid(to_i915(dev), 949 limit, 950 &clock)) 951 continue; 952 953 if (!vlv_PLL_is_optimal(dev, target, 954 &clock, 955 best_clock, 956 bestppm, &ppm)) 957 continue; 958 959 *best_clock = clock; 960 bestppm = ppm; 961 found = true; 962 } 963 } 964 } 965 } 966 967 return found; 968 } 969 970 /* 971 * Returns a set of divisors for the desired target clock with the given 972 * refclk, or FALSE. The returned values represent the clock equation: 973 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 974 */ 975 static bool 976 chv_find_best_dpll(const struct intel_limit *limit, 977 struct intel_crtc_state *crtc_state, 978 int target, int refclk, struct dpll *match_clock, 979 struct dpll *best_clock) 980 { 981 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 982 struct drm_device *dev = crtc->base.dev; 983 unsigned int best_error_ppm; 984 struct dpll clock; 985 u64 m2; 986 int found = false; 987 988 memset(best_clock, 0, sizeof(*best_clock)); 989 best_error_ppm = 1000000; 990 991 /* 992 * Based on hardware doc, the n always set to 1, and m1 always 993 * set to 2. If requires to support 200Mhz refclk, we need to 994 * revisit this because n may not 1 anymore. 995 */ 996 clock.n = 1, clock.m1 = 2; 997 target *= 5; /* fast clock */ 998 999 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 1000 for (clock.p2 = limit->p2.p2_fast; 1001 clock.p2 >= limit->p2.p2_slow; 1002 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 1003 unsigned int error_ppm; 1004 1005 clock.p = clock.p1 * clock.p2; 1006 1007 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, 1008 refclk * clock.m1); 1009 1010 if (m2 > INT_MAX/clock.m1) 1011 continue; 1012 1013 clock.m2 = m2; 1014 1015 chv_calc_dpll_params(refclk, &clock); 1016 1017 if (!intel_pll_is_valid(to_i915(dev), limit, &clock)) 1018 continue; 1019 1020 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, 1021 best_error_ppm, &error_ppm)) 1022 continue; 1023 1024 *best_clock = clock; 1025 best_error_ppm = error_ppm; 1026 found = true; 1027 } 1028 } 1029 1030 return found; 1031 } 1032 1033 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, 1034 struct dpll *best_clock) 1035 { 1036 int refclk = 100000; 1037 const struct intel_limit *limit = &intel_limits_bxt; 1038 1039 return chv_find_best_dpll(limit, crtc_state, 1040 crtc_state->port_clock, refclk, 1041 NULL, best_clock); 1042 } 1043 1044 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 1045 enum pipe pipe) 1046 { 1047 i915_reg_t reg = PIPEDSL(pipe); 1048 u32 line1, line2; 1049 u32 line_mask; 1050 1051 if (IS_GEN(dev_priv, 2)) 1052 line_mask = DSL_LINEMASK_GEN2; 1053 else 1054 line_mask = DSL_LINEMASK_GEN3; 1055 1056 line1 = intel_de_read(dev_priv, reg) & line_mask; 1057 msleep(5); 1058 line2 = intel_de_read(dev_priv, reg) & line_mask; 1059 1060 return line1 != line2; 1061 } 1062 1063 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 1064 { 1065 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1066 enum pipe pipe = crtc->pipe; 1067 1068 /* Wait for the display line to settle/start moving */ 1069 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 1070 drm_err(&dev_priv->drm, 1071 "pipe %c scanline %s wait timed out\n", 1072 pipe_name(pipe), onoff(state)); 1073 } 1074 1075 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 1076 { 1077 wait_for_pipe_scanline_moving(crtc, false); 1078 } 1079 1080 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 1081 { 1082 wait_for_pipe_scanline_moving(crtc, true); 1083 } 1084 1085 static void 1086 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 1087 { 1088 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1089 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1090 1091 if (INTEL_GEN(dev_priv) >= 4) { 1092 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1093 i915_reg_t reg = PIPECONF(cpu_transcoder); 1094 1095 /* Wait for the Pipe State to go off */ 1096 if (intel_de_wait_for_clear(dev_priv, reg, 1097 I965_PIPECONF_ACTIVE, 100)) 1098 drm_WARN(&dev_priv->drm, 1, 1099 "pipe_off wait timed out\n"); 1100 } else { 1101 intel_wait_for_pipe_scanline_stopped(crtc); 1102 } 1103 } 1104 1105 /* Only for pre-ILK configs */ 1106 void assert_pll(struct drm_i915_private *dev_priv, 1107 enum pipe pipe, bool state) 1108 { 1109 u32 val; 1110 bool cur_state; 1111 1112 val = intel_de_read(dev_priv, DPLL(pipe)); 1113 cur_state = !!(val & DPLL_VCO_ENABLE); 1114 I915_STATE_WARN(cur_state != state, 1115 "PLL state assertion failure (expected %s, current %s)\n", 1116 onoff(state), onoff(cur_state)); 1117 } 1118 1119 /* XXX: the dsi pll is shared between MIPI DSI ports */ 1120 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 1121 { 1122 u32 val; 1123 bool cur_state; 1124 1125 vlv_cck_get(dev_priv); 1126 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 1127 vlv_cck_put(dev_priv); 1128 1129 cur_state = val & DSI_PLL_VCO_EN; 1130 I915_STATE_WARN(cur_state != state, 1131 "DSI PLL state assertion failure (expected %s, current %s)\n", 1132 onoff(state), onoff(cur_state)); 1133 } 1134 1135 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 1136 enum pipe pipe, bool state) 1137 { 1138 bool cur_state; 1139 1140 if (HAS_DDI(dev_priv)) { 1141 /* 1142 * DDI does not have a specific FDI_TX register. 1143 * 1144 * FDI is never fed from EDP transcoder 1145 * so pipe->transcoder cast is fine here. 1146 */ 1147 enum transcoder cpu_transcoder = (enum transcoder)pipe; 1148 u32 val = intel_de_read(dev_priv, 1149 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 1150 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 1151 } else { 1152 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 1153 cur_state = !!(val & FDI_TX_ENABLE); 1154 } 1155 I915_STATE_WARN(cur_state != state, 1156 "FDI TX state assertion failure (expected %s, current %s)\n", 1157 onoff(state), onoff(cur_state)); 1158 } 1159 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 1160 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 1161 1162 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 1163 enum pipe pipe, bool state) 1164 { 1165 u32 val; 1166 bool cur_state; 1167 1168 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 1169 cur_state = !!(val & FDI_RX_ENABLE); 1170 I915_STATE_WARN(cur_state != state, 1171 "FDI RX state assertion failure (expected %s, current %s)\n", 1172 onoff(state), onoff(cur_state)); 1173 } 1174 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 1175 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 1176 1177 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 1178 enum pipe pipe) 1179 { 1180 u32 val; 1181 1182 /* ILK FDI PLL is always enabled */ 1183 if (IS_GEN(dev_priv, 5)) 1184 return; 1185 1186 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 1187 if (HAS_DDI(dev_priv)) 1188 return; 1189 1190 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 1191 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 1192 } 1193 1194 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 1195 enum pipe pipe, bool state) 1196 { 1197 u32 val; 1198 bool cur_state; 1199 1200 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 1201 cur_state = !!(val & FDI_RX_PLL_ENABLE); 1202 I915_STATE_WARN(cur_state != state, 1203 "FDI RX PLL assertion failure (expected %s, current %s)\n", 1204 onoff(state), onoff(cur_state)); 1205 } 1206 1207 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) 1208 { 1209 i915_reg_t pp_reg; 1210 u32 val; 1211 enum pipe panel_pipe = INVALID_PIPE; 1212 bool locked = true; 1213 1214 if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv))) 1215 return; 1216 1217 if (HAS_PCH_SPLIT(dev_priv)) { 1218 u32 port_sel; 1219 1220 pp_reg = PP_CONTROL(0); 1221 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1222 1223 switch (port_sel) { 1224 case PANEL_PORT_SELECT_LVDS: 1225 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); 1226 break; 1227 case PANEL_PORT_SELECT_DPA: 1228 intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); 1229 break; 1230 case PANEL_PORT_SELECT_DPC: 1231 intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); 1232 break; 1233 case PANEL_PORT_SELECT_DPD: 1234 intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); 1235 break; 1236 default: 1237 MISSING_CASE(port_sel); 1238 break; 1239 } 1240 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1241 /* presumably write lock depends on pipe, not port select */ 1242 pp_reg = PP_CONTROL(pipe); 1243 panel_pipe = pipe; 1244 } else { 1245 u32 port_sel; 1246 1247 pp_reg = PP_CONTROL(0); 1248 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1249 1250 drm_WARN_ON(&dev_priv->drm, 1251 port_sel != PANEL_PORT_SELECT_LVDS); 1252 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); 1253 } 1254 1255 val = intel_de_read(dev_priv, pp_reg); 1256 if (!(val & PANEL_POWER_ON) || 1257 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 1258 locked = false; 1259 1260 I915_STATE_WARN(panel_pipe == pipe && locked, 1261 "panel assertion failure, pipe %c regs locked\n", 1262 pipe_name(pipe)); 1263 } 1264 1265 void assert_pipe(struct drm_i915_private *dev_priv, 1266 enum transcoder cpu_transcoder, bool state) 1267 { 1268 bool cur_state; 1269 enum intel_display_power_domain power_domain; 1270 intel_wakeref_t wakeref; 1271 1272 /* we keep both pipes enabled on 830 */ 1273 if (IS_I830(dev_priv)) 1274 state = true; 1275 1276 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 1277 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 1278 if (wakeref) { 1279 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 1280 cur_state = !!(val & PIPECONF_ENABLE); 1281 1282 intel_display_power_put(dev_priv, power_domain, wakeref); 1283 } else { 1284 cur_state = false; 1285 } 1286 1287 I915_STATE_WARN(cur_state != state, 1288 "transcoder %s assertion failure (expected %s, current %s)\n", 1289 transcoder_name(cpu_transcoder), 1290 onoff(state), onoff(cur_state)); 1291 } 1292 1293 static void assert_plane(struct intel_plane *plane, bool state) 1294 { 1295 enum pipe pipe; 1296 bool cur_state; 1297 1298 cur_state = plane->get_hw_state(plane, &pipe); 1299 1300 I915_STATE_WARN(cur_state != state, 1301 "%s assertion failure (expected %s, current %s)\n", 1302 plane->base.name, onoff(state), onoff(cur_state)); 1303 } 1304 1305 #define assert_plane_enabled(p) assert_plane(p, true) 1306 #define assert_plane_disabled(p) assert_plane(p, false) 1307 1308 static void assert_planes_disabled(struct intel_crtc *crtc) 1309 { 1310 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1311 struct intel_plane *plane; 1312 1313 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 1314 assert_plane_disabled(plane); 1315 } 1316 1317 static void assert_vblank_disabled(struct drm_crtc *crtc) 1318 { 1319 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0)) 1320 drm_crtc_vblank_put(crtc); 1321 } 1322 1323 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 1324 enum pipe pipe) 1325 { 1326 u32 val; 1327 bool enabled; 1328 1329 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe)); 1330 enabled = !!(val & TRANS_ENABLE); 1331 I915_STATE_WARN(enabled, 1332 "transcoder assertion failed, should be off on pipe %c but is still active\n", 1333 pipe_name(pipe)); 1334 } 1335 1336 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 1337 enum pipe pipe, enum port port, 1338 i915_reg_t dp_reg) 1339 { 1340 enum pipe port_pipe; 1341 bool state; 1342 1343 state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 1344 1345 I915_STATE_WARN(state && port_pipe == pipe, 1346 "PCH DP %c enabled on transcoder %c, should be disabled\n", 1347 port_name(port), pipe_name(pipe)); 1348 1349 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1350 "IBX PCH DP %c still using transcoder B\n", 1351 port_name(port)); 1352 } 1353 1354 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 1355 enum pipe pipe, enum port port, 1356 i915_reg_t hdmi_reg) 1357 { 1358 enum pipe port_pipe; 1359 bool state; 1360 1361 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 1362 1363 I915_STATE_WARN(state && port_pipe == pipe, 1364 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 1365 port_name(port), pipe_name(pipe)); 1366 1367 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1368 "IBX PCH HDMI %c still using transcoder B\n", 1369 port_name(port)); 1370 } 1371 1372 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 1373 enum pipe pipe) 1374 { 1375 enum pipe port_pipe; 1376 1377 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 1378 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 1379 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 1380 1381 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 1382 port_pipe == pipe, 1383 "PCH VGA enabled on transcoder %c, should be disabled\n", 1384 pipe_name(pipe)); 1385 1386 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 1387 port_pipe == pipe, 1388 "PCH LVDS enabled on transcoder %c, should be disabled\n", 1389 pipe_name(pipe)); 1390 1391 /* PCH SDVOB multiplex with HDMIB */ 1392 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 1393 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 1394 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 1395 } 1396 1397 static void _vlv_enable_pll(struct intel_crtc *crtc, 1398 const struct intel_crtc_state *pipe_config) 1399 { 1400 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1401 enum pipe pipe = crtc->pipe; 1402 1403 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1404 intel_de_posting_read(dev_priv, DPLL(pipe)); 1405 udelay(150); 1406 1407 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1408 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe); 1409 } 1410 1411 static void vlv_enable_pll(struct intel_crtc *crtc, 1412 const struct intel_crtc_state *pipe_config) 1413 { 1414 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1415 enum pipe pipe = crtc->pipe; 1416 1417 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 1418 1419 /* PLL is protected by panel, make sure we can write it */ 1420 assert_panel_unlocked(dev_priv, pipe); 1421 1422 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1423 _vlv_enable_pll(crtc, pipe_config); 1424 1425 intel_de_write(dev_priv, DPLL_MD(pipe), 1426 pipe_config->dpll_hw_state.dpll_md); 1427 intel_de_posting_read(dev_priv, DPLL_MD(pipe)); 1428 } 1429 1430 1431 static void _chv_enable_pll(struct intel_crtc *crtc, 1432 const struct intel_crtc_state *pipe_config) 1433 { 1434 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1435 enum pipe pipe = crtc->pipe; 1436 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1437 u32 tmp; 1438 1439 vlv_dpio_get(dev_priv); 1440 1441 /* Enable back the 10bit clock to display controller */ 1442 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1443 tmp |= DPIO_DCLKP_EN; 1444 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp); 1445 1446 vlv_dpio_put(dev_priv); 1447 1448 /* 1449 * Need to wait > 100ns between dclkp clock enable bit and PLL enable. 1450 */ 1451 udelay(1); 1452 1453 /* Enable PLL */ 1454 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1455 1456 /* Check PLL is locked */ 1457 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1458 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe); 1459 } 1460 1461 static void chv_enable_pll(struct intel_crtc *crtc, 1462 const struct intel_crtc_state *pipe_config) 1463 { 1464 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1465 enum pipe pipe = crtc->pipe; 1466 1467 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 1468 1469 /* PLL is protected by panel, make sure we can write it */ 1470 assert_panel_unlocked(dev_priv, pipe); 1471 1472 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1473 _chv_enable_pll(crtc, pipe_config); 1474 1475 if (pipe != PIPE_A) { 1476 /* 1477 * WaPixelRepeatModeFixForC0:chv 1478 * 1479 * DPLLCMD is AWOL. Use chicken bits to propagate 1480 * the value from DPLLBMD to either pipe B or C. 1481 */ 1482 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); 1483 intel_de_write(dev_priv, DPLL_MD(PIPE_B), 1484 pipe_config->dpll_hw_state.dpll_md); 1485 intel_de_write(dev_priv, CBR4_VLV, 0); 1486 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md; 1487 1488 /* 1489 * DPLLB VGA mode also seems to cause problems. 1490 * We should always have it disabled. 1491 */ 1492 drm_WARN_ON(&dev_priv->drm, 1493 (intel_de_read(dev_priv, DPLL(PIPE_B)) & 1494 DPLL_VGA_MODE_DIS) == 0); 1495 } else { 1496 intel_de_write(dev_priv, DPLL_MD(pipe), 1497 pipe_config->dpll_hw_state.dpll_md); 1498 intel_de_posting_read(dev_priv, DPLL_MD(pipe)); 1499 } 1500 } 1501 1502 static bool i9xx_has_pps(struct drm_i915_private *dev_priv) 1503 { 1504 if (IS_I830(dev_priv)) 1505 return false; 1506 1507 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 1508 } 1509 1510 static void i9xx_enable_pll(struct intel_crtc *crtc, 1511 const struct intel_crtc_state *crtc_state) 1512 { 1513 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1514 i915_reg_t reg = DPLL(crtc->pipe); 1515 u32 dpll = crtc_state->dpll_hw_state.dpll; 1516 int i; 1517 1518 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 1519 1520 /* PLL is protected by panel, make sure we can write it */ 1521 if (i9xx_has_pps(dev_priv)) 1522 assert_panel_unlocked(dev_priv, crtc->pipe); 1523 1524 /* 1525 * Apparently we need to have VGA mode enabled prior to changing 1526 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 1527 * dividers, even though the register value does change. 1528 */ 1529 intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS); 1530 intel_de_write(dev_priv, reg, dpll); 1531 1532 /* Wait for the clocks to stabilize. */ 1533 intel_de_posting_read(dev_priv, reg); 1534 udelay(150); 1535 1536 if (INTEL_GEN(dev_priv) >= 4) { 1537 intel_de_write(dev_priv, DPLL_MD(crtc->pipe), 1538 crtc_state->dpll_hw_state.dpll_md); 1539 } else { 1540 /* The pixel multiplier can only be updated once the 1541 * DPLL is enabled and the clocks are stable. 1542 * 1543 * So write it again. 1544 */ 1545 intel_de_write(dev_priv, reg, dpll); 1546 } 1547 1548 /* We do this three times for luck */ 1549 for (i = 0; i < 3; i++) { 1550 intel_de_write(dev_priv, reg, dpll); 1551 intel_de_posting_read(dev_priv, reg); 1552 udelay(150); /* wait for warmup */ 1553 } 1554 } 1555 1556 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) 1557 { 1558 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1559 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1560 enum pipe pipe = crtc->pipe; 1561 1562 /* Don't disable pipe or pipe PLLs if needed */ 1563 if (IS_I830(dev_priv)) 1564 return; 1565 1566 /* Make sure the pipe isn't still relying on us */ 1567 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 1568 1569 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 1570 intel_de_posting_read(dev_priv, DPLL(pipe)); 1571 } 1572 1573 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1574 { 1575 u32 val; 1576 1577 /* Make sure the pipe isn't still relying on us */ 1578 assert_pipe_disabled(dev_priv, (enum transcoder)pipe); 1579 1580 val = DPLL_INTEGRATED_REF_CLK_VLV | 1581 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1582 if (pipe != PIPE_A) 1583 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1584 1585 intel_de_write(dev_priv, DPLL(pipe), val); 1586 intel_de_posting_read(dev_priv, DPLL(pipe)); 1587 } 1588 1589 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1590 { 1591 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1592 u32 val; 1593 1594 /* Make sure the pipe isn't still relying on us */ 1595 assert_pipe_disabled(dev_priv, (enum transcoder)pipe); 1596 1597 val = DPLL_SSC_REF_CLK_CHV | 1598 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1599 if (pipe != PIPE_A) 1600 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1601 1602 intel_de_write(dev_priv, DPLL(pipe), val); 1603 intel_de_posting_read(dev_priv, DPLL(pipe)); 1604 1605 vlv_dpio_get(dev_priv); 1606 1607 /* Disable 10bit clock to display controller */ 1608 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1609 val &= ~DPIO_DCLKP_EN; 1610 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val); 1611 1612 vlv_dpio_put(dev_priv); 1613 } 1614 1615 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 1616 struct intel_digital_port *dig_port, 1617 unsigned int expected_mask) 1618 { 1619 u32 port_mask; 1620 i915_reg_t dpll_reg; 1621 1622 switch (dig_port->base.port) { 1623 case PORT_B: 1624 port_mask = DPLL_PORTB_READY_MASK; 1625 dpll_reg = DPLL(0); 1626 break; 1627 case PORT_C: 1628 port_mask = DPLL_PORTC_READY_MASK; 1629 dpll_reg = DPLL(0); 1630 expected_mask <<= 4; 1631 break; 1632 case PORT_D: 1633 port_mask = DPLL_PORTD_READY_MASK; 1634 dpll_reg = DPIO_PHY_STATUS; 1635 break; 1636 default: 1637 BUG(); 1638 } 1639 1640 if (intel_de_wait_for_register(dev_priv, dpll_reg, 1641 port_mask, expected_mask, 1000)) 1642 drm_WARN(&dev_priv->drm, 1, 1643 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", 1644 dig_port->base.base.base.id, dig_port->base.base.name, 1645 intel_de_read(dev_priv, dpll_reg) & port_mask, 1646 expected_mask); 1647 } 1648 1649 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 1650 { 1651 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1652 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1653 enum pipe pipe = crtc->pipe; 1654 i915_reg_t reg; 1655 u32 val, pipeconf_val; 1656 1657 /* Make sure PCH DPLL is enabled */ 1658 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 1659 1660 /* FDI must be feeding us bits for PCH ports */ 1661 assert_fdi_tx_enabled(dev_priv, pipe); 1662 assert_fdi_rx_enabled(dev_priv, pipe); 1663 1664 if (HAS_PCH_CPT(dev_priv)) { 1665 reg = TRANS_CHICKEN2(pipe); 1666 val = intel_de_read(dev_priv, reg); 1667 /* 1668 * Workaround: Set the timing override bit 1669 * before enabling the pch transcoder. 1670 */ 1671 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1672 /* Configure frame start delay to match the CPU */ 1673 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 1674 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 1675 intel_de_write(dev_priv, reg, val); 1676 } 1677 1678 reg = PCH_TRANSCONF(pipe); 1679 val = intel_de_read(dev_priv, reg); 1680 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe)); 1681 1682 if (HAS_PCH_IBX(dev_priv)) { 1683 /* Configure frame start delay to match the CPU */ 1684 val &= ~TRANS_FRAME_START_DELAY_MASK; 1685 val |= TRANS_FRAME_START_DELAY(0); 1686 1687 /* 1688 * Make the BPC in transcoder be consistent with 1689 * that in pipeconf reg. For HDMI we must use 8bpc 1690 * here for both 8bpc and 12bpc. 1691 */ 1692 val &= ~PIPECONF_BPC_MASK; 1693 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1694 val |= PIPECONF_8BPC; 1695 else 1696 val |= pipeconf_val & PIPECONF_BPC_MASK; 1697 } 1698 1699 val &= ~TRANS_INTERLACE_MASK; 1700 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 1701 if (HAS_PCH_IBX(dev_priv) && 1702 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 1703 val |= TRANS_LEGACY_INTERLACED_ILK; 1704 else 1705 val |= TRANS_INTERLACED; 1706 } else { 1707 val |= TRANS_PROGRESSIVE; 1708 } 1709 1710 intel_de_write(dev_priv, reg, val | TRANS_ENABLE); 1711 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 1712 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n", 1713 pipe_name(pipe)); 1714 } 1715 1716 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 1717 enum transcoder cpu_transcoder) 1718 { 1719 u32 val, pipeconf_val; 1720 1721 /* FDI must be feeding us bits for PCH ports */ 1722 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 1723 assert_fdi_rx_enabled(dev_priv, PIPE_A); 1724 1725 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 1726 /* Workaround: set timing override bit. */ 1727 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1728 /* Configure frame start delay to match the CPU */ 1729 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 1730 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 1731 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 1732 1733 val = TRANS_ENABLE; 1734 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 1735 1736 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 1737 PIPECONF_INTERLACED_ILK) 1738 val |= TRANS_INTERLACED; 1739 else 1740 val |= TRANS_PROGRESSIVE; 1741 1742 intel_de_write(dev_priv, LPT_TRANSCONF, val); 1743 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 1744 TRANS_STATE_ENABLE, 100)) 1745 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n"); 1746 } 1747 1748 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv, 1749 enum pipe pipe) 1750 { 1751 i915_reg_t reg; 1752 u32 val; 1753 1754 /* FDI relies on the transcoder */ 1755 assert_fdi_tx_disabled(dev_priv, pipe); 1756 assert_fdi_rx_disabled(dev_priv, pipe); 1757 1758 /* Ports must be off as well */ 1759 assert_pch_ports_disabled(dev_priv, pipe); 1760 1761 reg = PCH_TRANSCONF(pipe); 1762 val = intel_de_read(dev_priv, reg); 1763 val &= ~TRANS_ENABLE; 1764 intel_de_write(dev_priv, reg, val); 1765 /* wait for PCH transcoder off, transcoder state */ 1766 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 1767 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n", 1768 pipe_name(pipe)); 1769 1770 if (HAS_PCH_CPT(dev_priv)) { 1771 /* Workaround: Clear the timing override chicken bit again. */ 1772 reg = TRANS_CHICKEN2(pipe); 1773 val = intel_de_read(dev_priv, reg); 1774 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1775 intel_de_write(dev_priv, reg, val); 1776 } 1777 } 1778 1779 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 1780 { 1781 u32 val; 1782 1783 val = intel_de_read(dev_priv, LPT_TRANSCONF); 1784 val &= ~TRANS_ENABLE; 1785 intel_de_write(dev_priv, LPT_TRANSCONF, val); 1786 /* wait for PCH transcoder off, transcoder state */ 1787 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 1788 TRANS_STATE_ENABLE, 50)) 1789 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n"); 1790 1791 /* Workaround: clear timing override bit. */ 1792 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 1793 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1794 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 1795 } 1796 1797 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 1798 { 1799 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1800 1801 if (HAS_PCH_LPT(dev_priv)) 1802 return PIPE_A; 1803 else 1804 return crtc->pipe; 1805 } 1806 1807 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state) 1808 { 1809 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1810 1811 /* 1812 * On i965gm the hardware frame counter reads 1813 * zero when the TV encoder is enabled :( 1814 */ 1815 if (IS_I965GM(dev_priv) && 1816 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT))) 1817 return 0; 1818 1819 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1820 return 0xffffffff; /* full 32 bit counter */ 1821 else if (INTEL_GEN(dev_priv) >= 3) 1822 return 0xffffff; /* only 24 bits of frame count */ 1823 else 1824 return 0; /* Gen2 doesn't have a hardware frame counter */ 1825 } 1826 1827 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state) 1828 { 1829 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1830 1831 assert_vblank_disabled(&crtc->base); 1832 drm_crtc_set_max_vblank_count(&crtc->base, 1833 intel_crtc_max_vblank_count(crtc_state)); 1834 drm_crtc_vblank_on(&crtc->base); 1835 } 1836 1837 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state) 1838 { 1839 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1840 1841 drm_crtc_vblank_off(&crtc->base); 1842 assert_vblank_disabled(&crtc->base); 1843 } 1844 1845 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) 1846 { 1847 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 1848 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1849 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 1850 enum pipe pipe = crtc->pipe; 1851 i915_reg_t reg; 1852 u32 val; 1853 1854 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe)); 1855 1856 assert_planes_disabled(crtc); 1857 1858 /* 1859 * A pipe without a PLL won't actually be able to drive bits from 1860 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 1861 * need the check. 1862 */ 1863 if (HAS_GMCH(dev_priv)) { 1864 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 1865 assert_dsi_pll_enabled(dev_priv); 1866 else 1867 assert_pll_enabled(dev_priv, pipe); 1868 } else { 1869 if (new_crtc_state->has_pch_encoder) { 1870 /* if driving the PCH, we need FDI enabled */ 1871 assert_fdi_rx_pll_enabled(dev_priv, 1872 intel_crtc_pch_transcoder(crtc)); 1873 assert_fdi_tx_pll_enabled(dev_priv, 1874 (enum pipe) cpu_transcoder); 1875 } 1876 /* FIXME: assert CPU port conditions for SNB+ */ 1877 } 1878 1879 trace_intel_pipe_enable(crtc); 1880 1881 reg = PIPECONF(cpu_transcoder); 1882 val = intel_de_read(dev_priv, reg); 1883 if (val & PIPECONF_ENABLE) { 1884 /* we keep both pipes enabled on 830 */ 1885 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv)); 1886 return; 1887 } 1888 1889 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE); 1890 intel_de_posting_read(dev_priv, reg); 1891 1892 /* 1893 * Until the pipe starts PIPEDSL reads will return a stale value, 1894 * which causes an apparent vblank timestamp jump when PIPEDSL 1895 * resets to its proper value. That also messes up the frame count 1896 * when it's derived from the timestamps. So let's wait for the 1897 * pipe to start properly before we call drm_crtc_vblank_on() 1898 */ 1899 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 1900 intel_wait_for_pipe_scanline_moving(crtc); 1901 } 1902 1903 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) 1904 { 1905 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1906 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1907 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1908 enum pipe pipe = crtc->pipe; 1909 i915_reg_t reg; 1910 u32 val; 1911 1912 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe)); 1913 1914 /* 1915 * Make sure planes won't keep trying to pump pixels to us, 1916 * or we might hang the display. 1917 */ 1918 assert_planes_disabled(crtc); 1919 1920 trace_intel_pipe_disable(crtc); 1921 1922 reg = PIPECONF(cpu_transcoder); 1923 val = intel_de_read(dev_priv, reg); 1924 if ((val & PIPECONF_ENABLE) == 0) 1925 return; 1926 1927 /* 1928 * Double wide has implications for planes 1929 * so best keep it disabled when not needed. 1930 */ 1931 if (old_crtc_state->double_wide) 1932 val &= ~PIPECONF_DOUBLE_WIDE; 1933 1934 /* Don't disable pipe or pipe PLLs if needed */ 1935 if (!IS_I830(dev_priv)) 1936 val &= ~PIPECONF_ENABLE; 1937 1938 intel_de_write(dev_priv, reg, val); 1939 if ((val & PIPECONF_ENABLE) == 0) 1940 intel_wait_for_pipe_off(old_crtc_state); 1941 } 1942 1943 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv) 1944 { 1945 return IS_GEN(dev_priv, 2) ? 2048 : 4096; 1946 } 1947 1948 static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane) 1949 { 1950 if (!is_ccs_modifier(fb->modifier)) 1951 return false; 1952 1953 return plane >= fb->format->num_planes / 2; 1954 } 1955 1956 static bool is_gen12_ccs_modifier(u64 modifier) 1957 { 1958 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS || 1959 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS; 1960 1961 } 1962 1963 static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane) 1964 { 1965 return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane); 1966 } 1967 1968 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane) 1969 { 1970 if (is_ccs_modifier(fb->modifier)) 1971 return is_ccs_plane(fb, plane); 1972 1973 return plane == 1; 1974 } 1975 1976 static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane) 1977 { 1978 drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) || 1979 (main_plane && main_plane >= fb->format->num_planes / 2)); 1980 1981 return fb->format->num_planes / 2 + main_plane; 1982 } 1983 1984 static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane) 1985 { 1986 drm_WARN_ON(fb->dev, !is_ccs_modifier(fb->modifier) || 1987 ccs_plane < fb->format->num_planes / 2); 1988 1989 return ccs_plane - fb->format->num_planes / 2; 1990 } 1991 1992 /* Return either the main plane's CCS or - if not a CCS FB - UV plane */ 1993 int intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane) 1994 { 1995 if (is_ccs_modifier(fb->modifier)) 1996 return main_to_ccs_plane(fb, main_plane); 1997 1998 return 1; 1999 } 2000 2001 bool 2002 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info, 2003 uint64_t modifier) 2004 { 2005 return info->is_yuv && 2006 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2); 2007 } 2008 2009 static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb, 2010 int color_plane) 2011 { 2012 return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) && 2013 color_plane == 1; 2014 } 2015 2016 static unsigned int 2017 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) 2018 { 2019 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2020 unsigned int cpp = fb->format->cpp[color_plane]; 2021 2022 switch (fb->modifier) { 2023 case DRM_FORMAT_MOD_LINEAR: 2024 return intel_tile_size(dev_priv); 2025 case I915_FORMAT_MOD_X_TILED: 2026 if (IS_GEN(dev_priv, 2)) 2027 return 128; 2028 else 2029 return 512; 2030 case I915_FORMAT_MOD_Y_TILED_CCS: 2031 if (is_ccs_plane(fb, color_plane)) 2032 return 128; 2033 fallthrough; 2034 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2035 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2036 if (is_ccs_plane(fb, color_plane)) 2037 return 64; 2038 fallthrough; 2039 case I915_FORMAT_MOD_Y_TILED: 2040 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv)) 2041 return 128; 2042 else 2043 return 512; 2044 case I915_FORMAT_MOD_Yf_TILED_CCS: 2045 if (is_ccs_plane(fb, color_plane)) 2046 return 128; 2047 fallthrough; 2048 case I915_FORMAT_MOD_Yf_TILED: 2049 switch (cpp) { 2050 case 1: 2051 return 64; 2052 case 2: 2053 case 4: 2054 return 128; 2055 case 8: 2056 case 16: 2057 return 256; 2058 default: 2059 MISSING_CASE(cpp); 2060 return cpp; 2061 } 2062 break; 2063 default: 2064 MISSING_CASE(fb->modifier); 2065 return cpp; 2066 } 2067 } 2068 2069 static unsigned int 2070 intel_tile_height(const struct drm_framebuffer *fb, int color_plane) 2071 { 2072 if (is_gen12_ccs_plane(fb, color_plane)) 2073 return 1; 2074 2075 return intel_tile_size(to_i915(fb->dev)) / 2076 intel_tile_width_bytes(fb, color_plane); 2077 } 2078 2079 /* Return the tile dimensions in pixel units */ 2080 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane, 2081 unsigned int *tile_width, 2082 unsigned int *tile_height) 2083 { 2084 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane); 2085 unsigned int cpp = fb->format->cpp[color_plane]; 2086 2087 *tile_width = tile_width_bytes / cpp; 2088 *tile_height = intel_tile_height(fb, color_plane); 2089 } 2090 2091 static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb, 2092 int color_plane) 2093 { 2094 unsigned int tile_width, tile_height; 2095 2096 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2097 2098 return fb->pitches[color_plane] * tile_height; 2099 } 2100 2101 unsigned int 2102 intel_fb_align_height(const struct drm_framebuffer *fb, 2103 int color_plane, unsigned int height) 2104 { 2105 unsigned int tile_height = intel_tile_height(fb, color_plane); 2106 2107 return ALIGN(height, tile_height); 2108 } 2109 2110 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 2111 { 2112 unsigned int size = 0; 2113 int i; 2114 2115 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 2116 size += rot_info->plane[i].width * rot_info->plane[i].height; 2117 2118 return size; 2119 } 2120 2121 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 2122 { 2123 unsigned int size = 0; 2124 int i; 2125 2126 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 2127 size += rem_info->plane[i].width * rem_info->plane[i].height; 2128 2129 return size; 2130 } 2131 2132 static void 2133 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, 2134 const struct drm_framebuffer *fb, 2135 unsigned int rotation) 2136 { 2137 view->type = I915_GGTT_VIEW_NORMAL; 2138 if (drm_rotation_90_or_270(rotation)) { 2139 view->type = I915_GGTT_VIEW_ROTATED; 2140 view->rotated = to_intel_framebuffer(fb)->rot_info; 2141 } 2142 } 2143 2144 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv) 2145 { 2146 if (IS_I830(dev_priv)) 2147 return 16 * 1024; 2148 else if (IS_I85X(dev_priv)) 2149 return 256; 2150 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) 2151 return 32; 2152 else 2153 return 4 * 1024; 2154 } 2155 2156 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 2157 { 2158 if (INTEL_GEN(dev_priv) >= 9) 2159 return 256 * 1024; 2160 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || 2161 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 2162 return 128 * 1024; 2163 else if (INTEL_GEN(dev_priv) >= 4) 2164 return 4 * 1024; 2165 else 2166 return 0; 2167 } 2168 2169 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, 2170 int color_plane) 2171 { 2172 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2173 2174 /* AUX_DIST needs only 4K alignment */ 2175 if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) || 2176 is_ccs_plane(fb, color_plane)) 2177 return 4096; 2178 2179 switch (fb->modifier) { 2180 case DRM_FORMAT_MOD_LINEAR: 2181 return intel_linear_alignment(dev_priv); 2182 case I915_FORMAT_MOD_X_TILED: 2183 if (INTEL_GEN(dev_priv) >= 9) 2184 return 256 * 1024; 2185 return 0; 2186 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2187 if (is_semiplanar_uv_plane(fb, color_plane)) 2188 return intel_tile_row_size(fb, color_plane); 2189 fallthrough; 2190 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2191 return 16 * 1024; 2192 case I915_FORMAT_MOD_Y_TILED_CCS: 2193 case I915_FORMAT_MOD_Yf_TILED_CCS: 2194 case I915_FORMAT_MOD_Y_TILED: 2195 if (INTEL_GEN(dev_priv) >= 12 && 2196 is_semiplanar_uv_plane(fb, color_plane)) 2197 return intel_tile_row_size(fb, color_plane); 2198 fallthrough; 2199 case I915_FORMAT_MOD_Yf_TILED: 2200 return 1 * 1024 * 1024; 2201 default: 2202 MISSING_CASE(fb->modifier); 2203 return 0; 2204 } 2205 } 2206 2207 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 2208 { 2209 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2210 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2211 2212 return INTEL_GEN(dev_priv) < 4 || 2213 (plane->has_fbc && 2214 plane_state->view.type == I915_GGTT_VIEW_NORMAL); 2215 } 2216 2217 struct i915_vma * 2218 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 2219 const struct i915_ggtt_view *view, 2220 bool uses_fence, 2221 unsigned long *out_flags) 2222 { 2223 struct drm_device *dev = fb->dev; 2224 struct drm_i915_private *dev_priv = to_i915(dev); 2225 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 2226 intel_wakeref_t wakeref; 2227 struct i915_vma *vma; 2228 unsigned int pinctl; 2229 u32 alignment; 2230 2231 if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj))) 2232 return ERR_PTR(-EINVAL); 2233 2234 alignment = intel_surf_alignment(fb, 0); 2235 if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment))) 2236 return ERR_PTR(-EINVAL); 2237 2238 /* Note that the w/a also requires 64 PTE of padding following the 2239 * bo. We currently fill all unused PTE with the shadow page and so 2240 * we should always have valid PTE following the scanout preventing 2241 * the VT-d warning. 2242 */ 2243 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) 2244 alignment = 256 * 1024; 2245 2246 /* 2247 * Global gtt pte registers are special registers which actually forward 2248 * writes to a chunk of system memory. Which means that there is no risk 2249 * that the register values disappear as soon as we call 2250 * intel_runtime_pm_put(), so it is correct to wrap only the 2251 * pin/unpin/fence and not more. 2252 */ 2253 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 2254 2255 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 2256 2257 /* 2258 * Valleyview is definitely limited to scanning out the first 2259 * 512MiB. Lets presume this behaviour was inherited from the 2260 * g4x display engine and that all earlier gen are similarly 2261 * limited. Testing suggests that it is a little more 2262 * complicated than this. For example, Cherryview appears quite 2263 * happy to scanout from anywhere within its global aperture. 2264 */ 2265 pinctl = 0; 2266 if (HAS_GMCH(dev_priv)) 2267 pinctl |= PIN_MAPPABLE; 2268 2269 vma = i915_gem_object_pin_to_display_plane(obj, 2270 alignment, view, pinctl); 2271 if (IS_ERR(vma)) 2272 goto err; 2273 2274 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { 2275 int ret; 2276 2277 /* 2278 * Install a fence for tiled scan-out. Pre-i965 always needs a 2279 * fence, whereas 965+ only requires a fence if using 2280 * framebuffer compression. For simplicity, we always, when 2281 * possible, install a fence as the cost is not that onerous. 2282 * 2283 * If we fail to fence the tiled scanout, then either the 2284 * modeset will reject the change (which is highly unlikely as 2285 * the affected systems, all but one, do not have unmappable 2286 * space) or we will not be able to enable full powersaving 2287 * techniques (also likely not to apply due to various limits 2288 * FBC and the like impose on the size of the buffer, which 2289 * presumably we violated anyway with this unmappable buffer). 2290 * Anyway, it is presumably better to stumble onwards with 2291 * something and try to run the system in a "less than optimal" 2292 * mode that matches the user configuration. 2293 */ 2294 ret = i915_vma_pin_fence(vma); 2295 if (ret != 0 && INTEL_GEN(dev_priv) < 4) { 2296 i915_gem_object_unpin_from_display_plane(vma); 2297 vma = ERR_PTR(ret); 2298 goto err; 2299 } 2300 2301 if (ret == 0 && vma->fence) 2302 *out_flags |= PLANE_HAS_FENCE; 2303 } 2304 2305 i915_vma_get(vma); 2306 err: 2307 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 2308 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 2309 return vma; 2310 } 2311 2312 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) 2313 { 2314 i915_gem_object_lock(vma->obj, NULL); 2315 if (flags & PLANE_HAS_FENCE) 2316 i915_vma_unpin_fence(vma); 2317 i915_gem_object_unpin_from_display_plane(vma); 2318 i915_gem_object_unlock(vma->obj); 2319 2320 i915_vma_put(vma); 2321 } 2322 2323 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane, 2324 unsigned int rotation) 2325 { 2326 if (drm_rotation_90_or_270(rotation)) 2327 return to_intel_framebuffer(fb)->rotated[color_plane].pitch; 2328 else 2329 return fb->pitches[color_plane]; 2330 } 2331 2332 /* 2333 * Convert the x/y offsets into a linear offset. 2334 * Only valid with 0/180 degree rotation, which is fine since linear 2335 * offset is only used with linear buffers on pre-hsw and tiled buffers 2336 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 2337 */ 2338 u32 intel_fb_xy_to_linear(int x, int y, 2339 const struct intel_plane_state *state, 2340 int color_plane) 2341 { 2342 const struct drm_framebuffer *fb = state->hw.fb; 2343 unsigned int cpp = fb->format->cpp[color_plane]; 2344 unsigned int pitch = state->color_plane[color_plane].stride; 2345 2346 return y * pitch + x * cpp; 2347 } 2348 2349 /* 2350 * Add the x/y offsets derived from fb->offsets[] to the user 2351 * specified plane src x/y offsets. The resulting x/y offsets 2352 * specify the start of scanout from the beginning of the gtt mapping. 2353 */ 2354 void intel_add_fb_offsets(int *x, int *y, 2355 const struct intel_plane_state *state, 2356 int color_plane) 2357 2358 { 2359 *x += state->color_plane[color_plane].x; 2360 *y += state->color_plane[color_plane].y; 2361 } 2362 2363 static u32 intel_adjust_tile_offset(int *x, int *y, 2364 unsigned int tile_width, 2365 unsigned int tile_height, 2366 unsigned int tile_size, 2367 unsigned int pitch_tiles, 2368 u32 old_offset, 2369 u32 new_offset) 2370 { 2371 unsigned int pitch_pixels = pitch_tiles * tile_width; 2372 unsigned int tiles; 2373 2374 WARN_ON(old_offset & (tile_size - 1)); 2375 WARN_ON(new_offset & (tile_size - 1)); 2376 WARN_ON(new_offset > old_offset); 2377 2378 tiles = (old_offset - new_offset) / tile_size; 2379 2380 *y += tiles / pitch_tiles * tile_height; 2381 *x += tiles % pitch_tiles * tile_width; 2382 2383 /* minimize x in case it got needlessly big */ 2384 *y += *x / pitch_pixels * tile_height; 2385 *x %= pitch_pixels; 2386 2387 return new_offset; 2388 } 2389 2390 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane) 2391 { 2392 return fb->modifier == DRM_FORMAT_MOD_LINEAR || 2393 is_gen12_ccs_plane(fb, color_plane); 2394 } 2395 2396 static u32 intel_adjust_aligned_offset(int *x, int *y, 2397 const struct drm_framebuffer *fb, 2398 int color_plane, 2399 unsigned int rotation, 2400 unsigned int pitch, 2401 u32 old_offset, u32 new_offset) 2402 { 2403 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2404 unsigned int cpp = fb->format->cpp[color_plane]; 2405 2406 drm_WARN_ON(&dev_priv->drm, new_offset > old_offset); 2407 2408 if (!is_surface_linear(fb, color_plane)) { 2409 unsigned int tile_size, tile_width, tile_height; 2410 unsigned int pitch_tiles; 2411 2412 tile_size = intel_tile_size(dev_priv); 2413 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2414 2415 if (drm_rotation_90_or_270(rotation)) { 2416 pitch_tiles = pitch / tile_height; 2417 swap(tile_width, tile_height); 2418 } else { 2419 pitch_tiles = pitch / (tile_width * cpp); 2420 } 2421 2422 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2423 tile_size, pitch_tiles, 2424 old_offset, new_offset); 2425 } else { 2426 old_offset += *y * pitch + *x * cpp; 2427 2428 *y = (old_offset - new_offset) / pitch; 2429 *x = ((old_offset - new_offset) - *y * pitch) / cpp; 2430 } 2431 2432 return new_offset; 2433 } 2434 2435 /* 2436 * Adjust the tile offset by moving the difference into 2437 * the x/y offsets. 2438 */ 2439 static u32 intel_plane_adjust_aligned_offset(int *x, int *y, 2440 const struct intel_plane_state *state, 2441 int color_plane, 2442 u32 old_offset, u32 new_offset) 2443 { 2444 return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane, 2445 state->hw.rotation, 2446 state->color_plane[color_plane].stride, 2447 old_offset, new_offset); 2448 } 2449 2450 /* 2451 * Computes the aligned offset to the base tile and adjusts 2452 * x, y. bytes per pixel is assumed to be a power-of-two. 2453 * 2454 * In the 90/270 rotated case, x and y are assumed 2455 * to be already rotated to match the rotated GTT view, and 2456 * pitch is the tile_height aligned framebuffer height. 2457 * 2458 * This function is used when computing the derived information 2459 * under intel_framebuffer, so using any of that information 2460 * here is not allowed. Anything under drm_framebuffer can be 2461 * used. This is why the user has to pass in the pitch since it 2462 * is specified in the rotated orientation. 2463 */ 2464 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv, 2465 int *x, int *y, 2466 const struct drm_framebuffer *fb, 2467 int color_plane, 2468 unsigned int pitch, 2469 unsigned int rotation, 2470 u32 alignment) 2471 { 2472 unsigned int cpp = fb->format->cpp[color_plane]; 2473 u32 offset, offset_aligned; 2474 2475 if (!is_surface_linear(fb, color_plane)) { 2476 unsigned int tile_size, tile_width, tile_height; 2477 unsigned int tile_rows, tiles, pitch_tiles; 2478 2479 tile_size = intel_tile_size(dev_priv); 2480 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2481 2482 if (drm_rotation_90_or_270(rotation)) { 2483 pitch_tiles = pitch / tile_height; 2484 swap(tile_width, tile_height); 2485 } else { 2486 pitch_tiles = pitch / (tile_width * cpp); 2487 } 2488 2489 tile_rows = *y / tile_height; 2490 *y %= tile_height; 2491 2492 tiles = *x / tile_width; 2493 *x %= tile_width; 2494 2495 offset = (tile_rows * pitch_tiles + tiles) * tile_size; 2496 2497 offset_aligned = offset; 2498 if (alignment) 2499 offset_aligned = rounddown(offset_aligned, alignment); 2500 2501 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2502 tile_size, pitch_tiles, 2503 offset, offset_aligned); 2504 } else { 2505 offset = *y * pitch + *x * cpp; 2506 offset_aligned = offset; 2507 if (alignment) { 2508 offset_aligned = rounddown(offset_aligned, alignment); 2509 *y = (offset % alignment) / pitch; 2510 *x = ((offset % alignment) - *y * pitch) / cpp; 2511 } else { 2512 *y = *x = 0; 2513 } 2514 } 2515 2516 return offset_aligned; 2517 } 2518 2519 static u32 intel_plane_compute_aligned_offset(int *x, int *y, 2520 const struct intel_plane_state *state, 2521 int color_plane) 2522 { 2523 struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane); 2524 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 2525 const struct drm_framebuffer *fb = state->hw.fb; 2526 unsigned int rotation = state->hw.rotation; 2527 int pitch = state->color_plane[color_plane].stride; 2528 u32 alignment; 2529 2530 if (intel_plane->id == PLANE_CURSOR) 2531 alignment = intel_cursor_alignment(dev_priv); 2532 else 2533 alignment = intel_surf_alignment(fb, color_plane); 2534 2535 return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane, 2536 pitch, rotation, alignment); 2537 } 2538 2539 /* Convert the fb->offset[] into x/y offsets */ 2540 static int intel_fb_offset_to_xy(int *x, int *y, 2541 const struct drm_framebuffer *fb, 2542 int color_plane) 2543 { 2544 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2545 unsigned int height; 2546 u32 alignment; 2547 2548 if (INTEL_GEN(dev_priv) >= 12 && 2549 is_semiplanar_uv_plane(fb, color_plane)) 2550 alignment = intel_tile_row_size(fb, color_plane); 2551 else if (fb->modifier != DRM_FORMAT_MOD_LINEAR) 2552 alignment = intel_tile_size(dev_priv); 2553 else 2554 alignment = 0; 2555 2556 if (alignment != 0 && fb->offsets[color_plane] % alignment) { 2557 drm_dbg_kms(&dev_priv->drm, 2558 "Misaligned offset 0x%08x for color plane %d\n", 2559 fb->offsets[color_plane], color_plane); 2560 return -EINVAL; 2561 } 2562 2563 height = drm_framebuffer_plane_height(fb->height, fb, color_plane); 2564 height = ALIGN(height, intel_tile_height(fb, color_plane)); 2565 2566 /* Catch potential overflows early */ 2567 if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]), 2568 fb->offsets[color_plane])) { 2569 drm_dbg_kms(&dev_priv->drm, 2570 "Bad offset 0x%08x or pitch %d for color plane %d\n", 2571 fb->offsets[color_plane], fb->pitches[color_plane], 2572 color_plane); 2573 return -ERANGE; 2574 } 2575 2576 *x = 0; 2577 *y = 0; 2578 2579 intel_adjust_aligned_offset(x, y, 2580 fb, color_plane, DRM_MODE_ROTATE_0, 2581 fb->pitches[color_plane], 2582 fb->offsets[color_plane], 0); 2583 2584 return 0; 2585 } 2586 2587 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) 2588 { 2589 switch (fb_modifier) { 2590 case I915_FORMAT_MOD_X_TILED: 2591 return I915_TILING_X; 2592 case I915_FORMAT_MOD_Y_TILED: 2593 case I915_FORMAT_MOD_Y_TILED_CCS: 2594 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2595 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2596 return I915_TILING_Y; 2597 default: 2598 return I915_TILING_NONE; 2599 } 2600 } 2601 2602 /* 2603 * From the Sky Lake PRM: 2604 * "The Color Control Surface (CCS) contains the compression status of 2605 * the cache-line pairs. The compression state of the cache-line pair 2606 * is specified by 2 bits in the CCS. Each CCS cache-line represents 2607 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 2608 * cache-line-pairs. CCS is always Y tiled." 2609 * 2610 * Since cache line pairs refers to horizontally adjacent cache lines, 2611 * each cache line in the CCS corresponds to an area of 32x16 cache 2612 * lines on the main surface. Since each pixel is 4 bytes, this gives 2613 * us a ratio of one byte in the CCS for each 8x16 pixels in the 2614 * main surface. 2615 */ 2616 static const struct drm_format_info skl_ccs_formats[] = { 2617 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 2618 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2619 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 2620 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2621 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 2622 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2623 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 2624 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2625 }; 2626 2627 /* 2628 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the 2629 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles 2630 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of 2631 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in 2632 * the main surface. 2633 */ 2634 static const struct drm_format_info gen12_ccs_formats[] = { 2635 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 2636 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2637 .hsub = 1, .vsub = 1, }, 2638 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 2639 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2640 .hsub = 1, .vsub = 1, }, 2641 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 2642 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2643 .hsub = 1, .vsub = 1, .has_alpha = true }, 2644 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 2645 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2646 .hsub = 1, .vsub = 1, .has_alpha = true }, 2647 { .format = DRM_FORMAT_YUYV, .num_planes = 2, 2648 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2649 .hsub = 2, .vsub = 1, .is_yuv = true }, 2650 { .format = DRM_FORMAT_YVYU, .num_planes = 2, 2651 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2652 .hsub = 2, .vsub = 1, .is_yuv = true }, 2653 { .format = DRM_FORMAT_UYVY, .num_planes = 2, 2654 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2655 .hsub = 2, .vsub = 1, .is_yuv = true }, 2656 { .format = DRM_FORMAT_VYUY, .num_planes = 2, 2657 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2658 .hsub = 2, .vsub = 1, .is_yuv = true }, 2659 { .format = DRM_FORMAT_NV12, .num_planes = 4, 2660 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 }, 2661 .hsub = 2, .vsub = 2, .is_yuv = true }, 2662 { .format = DRM_FORMAT_P010, .num_planes = 4, 2663 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2664 .hsub = 2, .vsub = 2, .is_yuv = true }, 2665 { .format = DRM_FORMAT_P012, .num_planes = 4, 2666 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2667 .hsub = 2, .vsub = 2, .is_yuv = true }, 2668 { .format = DRM_FORMAT_P016, .num_planes = 4, 2669 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2670 .hsub = 2, .vsub = 2, .is_yuv = true }, 2671 }; 2672 2673 static const struct drm_format_info * 2674 lookup_format_info(const struct drm_format_info formats[], 2675 int num_formats, u32 format) 2676 { 2677 int i; 2678 2679 for (i = 0; i < num_formats; i++) { 2680 if (formats[i].format == format) 2681 return &formats[i]; 2682 } 2683 2684 return NULL; 2685 } 2686 2687 static const struct drm_format_info * 2688 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 2689 { 2690 switch (cmd->modifier[0]) { 2691 case I915_FORMAT_MOD_Y_TILED_CCS: 2692 case I915_FORMAT_MOD_Yf_TILED_CCS: 2693 return lookup_format_info(skl_ccs_formats, 2694 ARRAY_SIZE(skl_ccs_formats), 2695 cmd->pixel_format); 2696 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2697 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2698 return lookup_format_info(gen12_ccs_formats, 2699 ARRAY_SIZE(gen12_ccs_formats), 2700 cmd->pixel_format); 2701 default: 2702 return NULL; 2703 } 2704 } 2705 2706 bool is_ccs_modifier(u64 modifier) 2707 { 2708 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS || 2709 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS || 2710 modifier == I915_FORMAT_MOD_Y_TILED_CCS || 2711 modifier == I915_FORMAT_MOD_Yf_TILED_CCS; 2712 } 2713 2714 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane) 2715 { 2716 return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)], 2717 512) * 64; 2718 } 2719 2720 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 2721 u32 pixel_format, u64 modifier) 2722 { 2723 struct intel_crtc *crtc; 2724 struct intel_plane *plane; 2725 2726 /* 2727 * We assume the primary plane for pipe A has 2728 * the highest stride limits of them all, 2729 * if in case pipe A is disabled, use the first pipe from pipe_mask. 2730 */ 2731 crtc = intel_get_first_crtc(dev_priv); 2732 if (!crtc) 2733 return 0; 2734 2735 plane = to_intel_plane(crtc->base.primary); 2736 2737 return plane->max_stride(plane, pixel_format, modifier, 2738 DRM_MODE_ROTATE_0); 2739 } 2740 2741 static 2742 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, 2743 u32 pixel_format, u64 modifier) 2744 { 2745 /* 2746 * Arbitrary limit for gen4+ chosen to match the 2747 * render engine max stride. 2748 * 2749 * The new CCS hash mode makes remapping impossible 2750 */ 2751 if (!is_ccs_modifier(modifier)) { 2752 if (INTEL_GEN(dev_priv) >= 7) 2753 return 256*1024; 2754 else if (INTEL_GEN(dev_priv) >= 4) 2755 return 128*1024; 2756 } 2757 2758 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); 2759 } 2760 2761 static u32 2762 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) 2763 { 2764 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2765 u32 tile_width; 2766 2767 if (is_surface_linear(fb, color_plane)) { 2768 u32 max_stride = intel_plane_fb_max_stride(dev_priv, 2769 fb->format->format, 2770 fb->modifier); 2771 2772 /* 2773 * To make remapping with linear generally feasible 2774 * we need the stride to be page aligned. 2775 */ 2776 if (fb->pitches[color_plane] > max_stride && 2777 !is_ccs_modifier(fb->modifier)) 2778 return intel_tile_size(dev_priv); 2779 else 2780 return 64; 2781 } 2782 2783 tile_width = intel_tile_width_bytes(fb, color_plane); 2784 if (is_ccs_modifier(fb->modifier)) { 2785 /* 2786 * Display WA #0531: skl,bxt,kbl,glk 2787 * 2788 * Render decompression and plane width > 3840 2789 * combined with horizontal panning requires the 2790 * plane stride to be a multiple of 4. We'll just 2791 * require the entire fb to accommodate that to avoid 2792 * potential runtime errors at plane configuration time. 2793 */ 2794 if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840) 2795 tile_width *= 4; 2796 /* 2797 * The main surface pitch must be padded to a multiple of four 2798 * tile widths. 2799 */ 2800 else if (INTEL_GEN(dev_priv) >= 12) 2801 tile_width *= 4; 2802 } 2803 return tile_width; 2804 } 2805 2806 bool intel_plane_can_remap(const struct intel_plane_state *plane_state) 2807 { 2808 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2809 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2810 const struct drm_framebuffer *fb = plane_state->hw.fb; 2811 int i; 2812 2813 /* We don't want to deal with remapping with cursors */ 2814 if (plane->id == PLANE_CURSOR) 2815 return false; 2816 2817 /* 2818 * The display engine limits already match/exceed the 2819 * render engine limits, so not much point in remapping. 2820 * Would also need to deal with the fence POT alignment 2821 * and gen2 2KiB GTT tile size. 2822 */ 2823 if (INTEL_GEN(dev_priv) < 4) 2824 return false; 2825 2826 /* 2827 * The new CCS hash mode isn't compatible with remapping as 2828 * the virtual address of the pages affects the compressed data. 2829 */ 2830 if (is_ccs_modifier(fb->modifier)) 2831 return false; 2832 2833 /* Linear needs a page aligned stride for remapping */ 2834 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) { 2835 unsigned int alignment = intel_tile_size(dev_priv) - 1; 2836 2837 for (i = 0; i < fb->format->num_planes; i++) { 2838 if (fb->pitches[i] & alignment) 2839 return false; 2840 } 2841 } 2842 2843 return true; 2844 } 2845 2846 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state) 2847 { 2848 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2849 const struct drm_framebuffer *fb = plane_state->hw.fb; 2850 unsigned int rotation = plane_state->hw.rotation; 2851 u32 stride, max_stride; 2852 2853 /* 2854 * No remapping for invisible planes since we don't have 2855 * an actual source viewport to remap. 2856 */ 2857 if (!plane_state->uapi.visible) 2858 return false; 2859 2860 if (!intel_plane_can_remap(plane_state)) 2861 return false; 2862 2863 /* 2864 * FIXME: aux plane limits on gen9+ are 2865 * unclear in Bspec, for now no checking. 2866 */ 2867 stride = intel_fb_pitch(fb, 0, rotation); 2868 max_stride = plane->max_stride(plane, fb->format->format, 2869 fb->modifier, rotation); 2870 2871 return stride > max_stride; 2872 } 2873 2874 static void 2875 intel_fb_plane_get_subsampling(int *hsub, int *vsub, 2876 const struct drm_framebuffer *fb, 2877 int color_plane) 2878 { 2879 int main_plane; 2880 2881 if (color_plane == 0) { 2882 *hsub = 1; 2883 *vsub = 1; 2884 2885 return; 2886 } 2887 2888 /* 2889 * TODO: Deduct the subsampling from the char block for all CCS 2890 * formats and planes. 2891 */ 2892 if (!is_gen12_ccs_plane(fb, color_plane)) { 2893 *hsub = fb->format->hsub; 2894 *vsub = fb->format->vsub; 2895 2896 return; 2897 } 2898 2899 main_plane = ccs_to_main_plane(fb, color_plane); 2900 *hsub = drm_format_info_block_width(fb->format, color_plane) / 2901 drm_format_info_block_width(fb->format, main_plane); 2902 2903 /* 2904 * The min stride check in the core framebuffer_check() function 2905 * assumes that format->hsub applies to every plane except for the 2906 * first plane. That's incorrect for the CCS AUX plane of the first 2907 * plane, but for the above check to pass we must define the block 2908 * width with that subsampling applied to it. Adjust the width here 2909 * accordingly, so we can calculate the actual subsampling factor. 2910 */ 2911 if (main_plane == 0) 2912 *hsub *= fb->format->hsub; 2913 2914 *vsub = 32; 2915 } 2916 static int 2917 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y) 2918 { 2919 struct drm_i915_private *i915 = to_i915(fb->dev); 2920 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2921 int main_plane; 2922 int hsub, vsub; 2923 int tile_width, tile_height; 2924 int ccs_x, ccs_y; 2925 int main_x, main_y; 2926 2927 if (!is_ccs_plane(fb, ccs_plane)) 2928 return 0; 2929 2930 intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height); 2931 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 2932 2933 tile_width *= hsub; 2934 tile_height *= vsub; 2935 2936 ccs_x = (x * hsub) % tile_width; 2937 ccs_y = (y * vsub) % tile_height; 2938 2939 main_plane = ccs_to_main_plane(fb, ccs_plane); 2940 main_x = intel_fb->normal[main_plane].x % tile_width; 2941 main_y = intel_fb->normal[main_plane].y % tile_height; 2942 2943 /* 2944 * CCS doesn't have its own x/y offset register, so the intra CCS tile 2945 * x/y offsets must match between CCS and the main surface. 2946 */ 2947 if (main_x != ccs_x || main_y != ccs_y) { 2948 drm_dbg_kms(&i915->drm, 2949 "Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n", 2950 main_x, main_y, 2951 ccs_x, ccs_y, 2952 intel_fb->normal[main_plane].x, 2953 intel_fb->normal[main_plane].y, 2954 x, y); 2955 return -EINVAL; 2956 } 2957 2958 return 0; 2959 } 2960 2961 static void 2962 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane) 2963 { 2964 int main_plane = is_ccs_plane(fb, color_plane) ? 2965 ccs_to_main_plane(fb, color_plane) : 0; 2966 int main_hsub, main_vsub; 2967 int hsub, vsub; 2968 2969 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane); 2970 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane); 2971 *w = fb->width / main_hsub / hsub; 2972 *h = fb->height / main_vsub / vsub; 2973 } 2974 2975 /* 2976 * Setup the rotated view for an FB plane and return the size the GTT mapping 2977 * requires for this view. 2978 */ 2979 static u32 2980 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info, 2981 u32 gtt_offset_rotated, int x, int y, 2982 unsigned int width, unsigned int height, 2983 unsigned int tile_size, 2984 unsigned int tile_width, unsigned int tile_height, 2985 struct drm_framebuffer *fb) 2986 { 2987 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2988 struct intel_rotation_info *rot_info = &intel_fb->rot_info; 2989 unsigned int pitch_tiles; 2990 struct drm_rect r; 2991 2992 /* Y or Yf modifiers required for 90/270 rotation */ 2993 if (fb->modifier != I915_FORMAT_MOD_Y_TILED && 2994 fb->modifier != I915_FORMAT_MOD_Yf_TILED) 2995 return 0; 2996 2997 if (drm_WARN_ON(fb->dev, plane >= ARRAY_SIZE(rot_info->plane))) 2998 return 0; 2999 3000 rot_info->plane[plane] = *plane_info; 3001 3002 intel_fb->rotated[plane].pitch = plane_info->height * tile_height; 3003 3004 /* rotate the x/y offsets to match the GTT view */ 3005 drm_rect_init(&r, x, y, width, height); 3006 drm_rect_rotate(&r, 3007 plane_info->width * tile_width, 3008 plane_info->height * tile_height, 3009 DRM_MODE_ROTATE_270); 3010 x = r.x1; 3011 y = r.y1; 3012 3013 /* rotate the tile dimensions to match the GTT view */ 3014 pitch_tiles = intel_fb->rotated[plane].pitch / tile_height; 3015 swap(tile_width, tile_height); 3016 3017 /* 3018 * We only keep the x/y offsets, so push all of the 3019 * gtt offset into the x/y offsets. 3020 */ 3021 intel_adjust_tile_offset(&x, &y, 3022 tile_width, tile_height, 3023 tile_size, pitch_tiles, 3024 gtt_offset_rotated * tile_size, 0); 3025 3026 /* 3027 * First pixel of the framebuffer from 3028 * the start of the rotated gtt mapping. 3029 */ 3030 intel_fb->rotated[plane].x = x; 3031 intel_fb->rotated[plane].y = y; 3032 3033 return plane_info->width * plane_info->height; 3034 } 3035 3036 static int 3037 intel_fill_fb_info(struct drm_i915_private *dev_priv, 3038 struct drm_framebuffer *fb) 3039 { 3040 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 3041 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 3042 u32 gtt_offset_rotated = 0; 3043 unsigned int max_size = 0; 3044 int i, num_planes = fb->format->num_planes; 3045 unsigned int tile_size = intel_tile_size(dev_priv); 3046 3047 for (i = 0; i < num_planes; i++) { 3048 unsigned int width, height; 3049 unsigned int cpp, size; 3050 u32 offset; 3051 int x, y; 3052 int ret; 3053 3054 cpp = fb->format->cpp[i]; 3055 intel_fb_plane_dims(&width, &height, fb, i); 3056 3057 ret = intel_fb_offset_to_xy(&x, &y, fb, i); 3058 if (ret) { 3059 drm_dbg_kms(&dev_priv->drm, 3060 "bad fb plane %d offset: 0x%x\n", 3061 i, fb->offsets[i]); 3062 return ret; 3063 } 3064 3065 ret = intel_fb_check_ccs_xy(fb, i, x, y); 3066 if (ret) 3067 return ret; 3068 3069 /* 3070 * The fence (if used) is aligned to the start of the object 3071 * so having the framebuffer wrap around across the edge of the 3072 * fenced region doesn't really work. We have no API to configure 3073 * the fence start offset within the object (nor could we probably 3074 * on gen2/3). So it's just easier if we just require that the 3075 * fb layout agrees with the fence layout. We already check that the 3076 * fb stride matches the fence stride elsewhere. 3077 */ 3078 if (i == 0 && i915_gem_object_is_tiled(obj) && 3079 (x + width) * cpp > fb->pitches[i]) { 3080 drm_dbg_kms(&dev_priv->drm, 3081 "bad fb plane %d offset: 0x%x\n", 3082 i, fb->offsets[i]); 3083 return -EINVAL; 3084 } 3085 3086 /* 3087 * First pixel of the framebuffer from 3088 * the start of the normal gtt mapping. 3089 */ 3090 intel_fb->normal[i].x = x; 3091 intel_fb->normal[i].y = y; 3092 3093 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i, 3094 fb->pitches[i], 3095 DRM_MODE_ROTATE_0, 3096 tile_size); 3097 offset /= tile_size; 3098 3099 if (!is_surface_linear(fb, i)) { 3100 struct intel_remapped_plane_info plane_info; 3101 unsigned int tile_width, tile_height; 3102 3103 intel_tile_dims(fb, i, &tile_width, &tile_height); 3104 3105 plane_info.offset = offset; 3106 plane_info.stride = DIV_ROUND_UP(fb->pitches[i], 3107 tile_width * cpp); 3108 plane_info.width = DIV_ROUND_UP(x + width, tile_width); 3109 plane_info.height = DIV_ROUND_UP(y + height, 3110 tile_height); 3111 3112 /* how many tiles does this plane need */ 3113 size = plane_info.stride * plane_info.height; 3114 /* 3115 * If the plane isn't horizontally tile aligned, 3116 * we need one more tile. 3117 */ 3118 if (x != 0) 3119 size++; 3120 3121 gtt_offset_rotated += 3122 setup_fb_rotation(i, &plane_info, 3123 gtt_offset_rotated, 3124 x, y, width, height, 3125 tile_size, 3126 tile_width, tile_height, 3127 fb); 3128 } else { 3129 size = DIV_ROUND_UP((y + height) * fb->pitches[i] + 3130 x * cpp, tile_size); 3131 } 3132 3133 /* how many tiles in total needed in the bo */ 3134 max_size = max(max_size, offset + size); 3135 } 3136 3137 if (mul_u32_u32(max_size, tile_size) > obj->base.size) { 3138 drm_dbg_kms(&dev_priv->drm, 3139 "fb too big for bo (need %llu bytes, have %zu bytes)\n", 3140 mul_u32_u32(max_size, tile_size), obj->base.size); 3141 return -EINVAL; 3142 } 3143 3144 return 0; 3145 } 3146 3147 static void 3148 intel_plane_remap_gtt(struct intel_plane_state *plane_state) 3149 { 3150 struct drm_i915_private *dev_priv = 3151 to_i915(plane_state->uapi.plane->dev); 3152 struct drm_framebuffer *fb = plane_state->hw.fb; 3153 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 3154 struct intel_rotation_info *info = &plane_state->view.rotated; 3155 unsigned int rotation = plane_state->hw.rotation; 3156 int i, num_planes = fb->format->num_planes; 3157 unsigned int tile_size = intel_tile_size(dev_priv); 3158 unsigned int src_x, src_y; 3159 unsigned int src_w, src_h; 3160 u32 gtt_offset = 0; 3161 3162 memset(&plane_state->view, 0, sizeof(plane_state->view)); 3163 plane_state->view.type = drm_rotation_90_or_270(rotation) ? 3164 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED; 3165 3166 src_x = plane_state->uapi.src.x1 >> 16; 3167 src_y = plane_state->uapi.src.y1 >> 16; 3168 src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 3169 src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 3170 3171 drm_WARN_ON(&dev_priv->drm, is_ccs_modifier(fb->modifier)); 3172 3173 /* Make src coordinates relative to the viewport */ 3174 drm_rect_translate(&plane_state->uapi.src, 3175 -(src_x << 16), -(src_y << 16)); 3176 3177 /* Rotate src coordinates to match rotated GTT view */ 3178 if (drm_rotation_90_or_270(rotation)) 3179 drm_rect_rotate(&plane_state->uapi.src, 3180 src_w << 16, src_h << 16, 3181 DRM_MODE_ROTATE_270); 3182 3183 for (i = 0; i < num_planes; i++) { 3184 unsigned int hsub = i ? fb->format->hsub : 1; 3185 unsigned int vsub = i ? fb->format->vsub : 1; 3186 unsigned int cpp = fb->format->cpp[i]; 3187 unsigned int tile_width, tile_height; 3188 unsigned int width, height; 3189 unsigned int pitch_tiles; 3190 unsigned int x, y; 3191 u32 offset; 3192 3193 intel_tile_dims(fb, i, &tile_width, &tile_height); 3194 3195 x = src_x / hsub; 3196 y = src_y / vsub; 3197 width = src_w / hsub; 3198 height = src_h / vsub; 3199 3200 /* 3201 * First pixel of the src viewport from the 3202 * start of the normal gtt mapping. 3203 */ 3204 x += intel_fb->normal[i].x; 3205 y += intel_fb->normal[i].y; 3206 3207 offset = intel_compute_aligned_offset(dev_priv, &x, &y, 3208 fb, i, fb->pitches[i], 3209 DRM_MODE_ROTATE_0, tile_size); 3210 offset /= tile_size; 3211 3212 drm_WARN_ON(&dev_priv->drm, i >= ARRAY_SIZE(info->plane)); 3213 info->plane[i].offset = offset; 3214 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], 3215 tile_width * cpp); 3216 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width); 3217 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height); 3218 3219 if (drm_rotation_90_or_270(rotation)) { 3220 struct drm_rect r; 3221 3222 /* rotate the x/y offsets to match the GTT view */ 3223 drm_rect_init(&r, x, y, width, height); 3224 drm_rect_rotate(&r, 3225 info->plane[i].width * tile_width, 3226 info->plane[i].height * tile_height, 3227 DRM_MODE_ROTATE_270); 3228 x = r.x1; 3229 y = r.y1; 3230 3231 pitch_tiles = info->plane[i].height; 3232 plane_state->color_plane[i].stride = pitch_tiles * tile_height; 3233 3234 /* rotate the tile dimensions to match the GTT view */ 3235 swap(tile_width, tile_height); 3236 } else { 3237 pitch_tiles = info->plane[i].width; 3238 plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp; 3239 } 3240 3241 /* 3242 * We only keep the x/y offsets, so push all of the 3243 * gtt offset into the x/y offsets. 3244 */ 3245 intel_adjust_tile_offset(&x, &y, 3246 tile_width, tile_height, 3247 tile_size, pitch_tiles, 3248 gtt_offset * tile_size, 0); 3249 3250 gtt_offset += info->plane[i].width * info->plane[i].height; 3251 3252 plane_state->color_plane[i].offset = 0; 3253 plane_state->color_plane[i].x = x; 3254 plane_state->color_plane[i].y = y; 3255 } 3256 } 3257 3258 static int 3259 intel_plane_compute_gtt(struct intel_plane_state *plane_state) 3260 { 3261 const struct intel_framebuffer *fb = 3262 to_intel_framebuffer(plane_state->hw.fb); 3263 unsigned int rotation = plane_state->hw.rotation; 3264 int i, num_planes; 3265 3266 if (!fb) 3267 return 0; 3268 3269 num_planes = fb->base.format->num_planes; 3270 3271 if (intel_plane_needs_remap(plane_state)) { 3272 intel_plane_remap_gtt(plane_state); 3273 3274 /* 3275 * Sometimes even remapping can't overcome 3276 * the stride limitations :( Can happen with 3277 * big plane sizes and suitably misaligned 3278 * offsets. 3279 */ 3280 return intel_plane_check_stride(plane_state); 3281 } 3282 3283 intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation); 3284 3285 for (i = 0; i < num_planes; i++) { 3286 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation); 3287 plane_state->color_plane[i].offset = 0; 3288 3289 if (drm_rotation_90_or_270(rotation)) { 3290 plane_state->color_plane[i].x = fb->rotated[i].x; 3291 plane_state->color_plane[i].y = fb->rotated[i].y; 3292 } else { 3293 plane_state->color_plane[i].x = fb->normal[i].x; 3294 plane_state->color_plane[i].y = fb->normal[i].y; 3295 } 3296 } 3297 3298 /* Rotate src coordinates to match rotated GTT view */ 3299 if (drm_rotation_90_or_270(rotation)) 3300 drm_rect_rotate(&plane_state->uapi.src, 3301 fb->base.width << 16, fb->base.height << 16, 3302 DRM_MODE_ROTATE_270); 3303 3304 return intel_plane_check_stride(plane_state); 3305 } 3306 3307 static int i9xx_format_to_fourcc(int format) 3308 { 3309 switch (format) { 3310 case DISPPLANE_8BPP: 3311 return DRM_FORMAT_C8; 3312 case DISPPLANE_BGRA555: 3313 return DRM_FORMAT_ARGB1555; 3314 case DISPPLANE_BGRX555: 3315 return DRM_FORMAT_XRGB1555; 3316 case DISPPLANE_BGRX565: 3317 return DRM_FORMAT_RGB565; 3318 default: 3319 case DISPPLANE_BGRX888: 3320 return DRM_FORMAT_XRGB8888; 3321 case DISPPLANE_RGBX888: 3322 return DRM_FORMAT_XBGR8888; 3323 case DISPPLANE_BGRA888: 3324 return DRM_FORMAT_ARGB8888; 3325 case DISPPLANE_RGBA888: 3326 return DRM_FORMAT_ABGR8888; 3327 case DISPPLANE_BGRX101010: 3328 return DRM_FORMAT_XRGB2101010; 3329 case DISPPLANE_RGBX101010: 3330 return DRM_FORMAT_XBGR2101010; 3331 case DISPPLANE_BGRA101010: 3332 return DRM_FORMAT_ARGB2101010; 3333 case DISPPLANE_RGBA101010: 3334 return DRM_FORMAT_ABGR2101010; 3335 case DISPPLANE_RGBX161616: 3336 return DRM_FORMAT_XBGR16161616F; 3337 } 3338 } 3339 3340 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha) 3341 { 3342 switch (format) { 3343 case PLANE_CTL_FORMAT_RGB_565: 3344 return DRM_FORMAT_RGB565; 3345 case PLANE_CTL_FORMAT_NV12: 3346 return DRM_FORMAT_NV12; 3347 case PLANE_CTL_FORMAT_XYUV: 3348 return DRM_FORMAT_XYUV8888; 3349 case PLANE_CTL_FORMAT_P010: 3350 return DRM_FORMAT_P010; 3351 case PLANE_CTL_FORMAT_P012: 3352 return DRM_FORMAT_P012; 3353 case PLANE_CTL_FORMAT_P016: 3354 return DRM_FORMAT_P016; 3355 case PLANE_CTL_FORMAT_Y210: 3356 return DRM_FORMAT_Y210; 3357 case PLANE_CTL_FORMAT_Y212: 3358 return DRM_FORMAT_Y212; 3359 case PLANE_CTL_FORMAT_Y216: 3360 return DRM_FORMAT_Y216; 3361 case PLANE_CTL_FORMAT_Y410: 3362 return DRM_FORMAT_XVYU2101010; 3363 case PLANE_CTL_FORMAT_Y412: 3364 return DRM_FORMAT_XVYU12_16161616; 3365 case PLANE_CTL_FORMAT_Y416: 3366 return DRM_FORMAT_XVYU16161616; 3367 default: 3368 case PLANE_CTL_FORMAT_XRGB_8888: 3369 if (rgb_order) { 3370 if (alpha) 3371 return DRM_FORMAT_ABGR8888; 3372 else 3373 return DRM_FORMAT_XBGR8888; 3374 } else { 3375 if (alpha) 3376 return DRM_FORMAT_ARGB8888; 3377 else 3378 return DRM_FORMAT_XRGB8888; 3379 } 3380 case PLANE_CTL_FORMAT_XRGB_2101010: 3381 if (rgb_order) { 3382 if (alpha) 3383 return DRM_FORMAT_ABGR2101010; 3384 else 3385 return DRM_FORMAT_XBGR2101010; 3386 } else { 3387 if (alpha) 3388 return DRM_FORMAT_ARGB2101010; 3389 else 3390 return DRM_FORMAT_XRGB2101010; 3391 } 3392 case PLANE_CTL_FORMAT_XRGB_16161616F: 3393 if (rgb_order) { 3394 if (alpha) 3395 return DRM_FORMAT_ABGR16161616F; 3396 else 3397 return DRM_FORMAT_XBGR16161616F; 3398 } else { 3399 if (alpha) 3400 return DRM_FORMAT_ARGB16161616F; 3401 else 3402 return DRM_FORMAT_XRGB16161616F; 3403 } 3404 } 3405 } 3406 3407 static struct i915_vma * 3408 initial_plane_vma(struct drm_i915_private *i915, 3409 struct intel_initial_plane_config *plane_config) 3410 { 3411 struct drm_i915_gem_object *obj; 3412 struct i915_vma *vma; 3413 u32 base, size; 3414 3415 if (plane_config->size == 0) 3416 return NULL; 3417 3418 base = round_down(plane_config->base, 3419 I915_GTT_MIN_ALIGNMENT); 3420 size = round_up(plane_config->base + plane_config->size, 3421 I915_GTT_MIN_ALIGNMENT); 3422 size -= base; 3423 3424 /* 3425 * If the FB is too big, just don't use it since fbdev is not very 3426 * important and we should probably use that space with FBC or other 3427 * features. 3428 */ 3429 if (size * 2 > i915->stolen_usable_size) 3430 return NULL; 3431 3432 obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size); 3433 if (IS_ERR(obj)) 3434 return NULL; 3435 3436 switch (plane_config->tiling) { 3437 case I915_TILING_NONE: 3438 break; 3439 case I915_TILING_X: 3440 case I915_TILING_Y: 3441 obj->tiling_and_stride = 3442 plane_config->fb->base.pitches[0] | 3443 plane_config->tiling; 3444 break; 3445 default: 3446 MISSING_CASE(plane_config->tiling); 3447 goto err_obj; 3448 } 3449 3450 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); 3451 if (IS_ERR(vma)) 3452 goto err_obj; 3453 3454 if (i915_ggtt_pin(vma, NULL, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base)) 3455 goto err_obj; 3456 3457 if (i915_gem_object_is_tiled(obj) && 3458 !i915_vma_is_map_and_fenceable(vma)) 3459 goto err_obj; 3460 3461 return vma; 3462 3463 err_obj: 3464 i915_gem_object_put(obj); 3465 return NULL; 3466 } 3467 3468 static bool 3469 intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 3470 struct intel_initial_plane_config *plane_config) 3471 { 3472 struct drm_device *dev = crtc->base.dev; 3473 struct drm_i915_private *dev_priv = to_i915(dev); 3474 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 3475 struct drm_framebuffer *fb = &plane_config->fb->base; 3476 struct i915_vma *vma; 3477 3478 switch (fb->modifier) { 3479 case DRM_FORMAT_MOD_LINEAR: 3480 case I915_FORMAT_MOD_X_TILED: 3481 case I915_FORMAT_MOD_Y_TILED: 3482 break; 3483 default: 3484 drm_dbg(&dev_priv->drm, 3485 "Unsupported modifier for initial FB: 0x%llx\n", 3486 fb->modifier); 3487 return false; 3488 } 3489 3490 vma = initial_plane_vma(dev_priv, plane_config); 3491 if (!vma) 3492 return false; 3493 3494 mode_cmd.pixel_format = fb->format->format; 3495 mode_cmd.width = fb->width; 3496 mode_cmd.height = fb->height; 3497 mode_cmd.pitches[0] = fb->pitches[0]; 3498 mode_cmd.modifier[0] = fb->modifier; 3499 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 3500 3501 if (intel_framebuffer_init(to_intel_framebuffer(fb), 3502 vma->obj, &mode_cmd)) { 3503 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n"); 3504 goto err_vma; 3505 } 3506 3507 plane_config->vma = vma; 3508 return true; 3509 3510 err_vma: 3511 i915_vma_put(vma); 3512 return false; 3513 } 3514 3515 static void 3516 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 3517 struct intel_plane_state *plane_state, 3518 bool visible) 3519 { 3520 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 3521 3522 plane_state->uapi.visible = visible; 3523 3524 if (visible) 3525 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); 3526 else 3527 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); 3528 } 3529 3530 static void fixup_active_planes(struct intel_crtc_state *crtc_state) 3531 { 3532 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 3533 struct drm_plane *plane; 3534 3535 /* 3536 * Active_planes aliases if multiple "primary" or cursor planes 3537 * have been used on the same (or wrong) pipe. plane_mask uses 3538 * unique ids, hence we can use that to reconstruct active_planes. 3539 */ 3540 crtc_state->active_planes = 0; 3541 3542 drm_for_each_plane_mask(plane, &dev_priv->drm, 3543 crtc_state->uapi.plane_mask) 3544 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 3545 } 3546 3547 static void intel_plane_disable_noatomic(struct intel_crtc *crtc, 3548 struct intel_plane *plane) 3549 { 3550 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3551 struct intel_crtc_state *crtc_state = 3552 to_intel_crtc_state(crtc->base.state); 3553 struct intel_plane_state *plane_state = 3554 to_intel_plane_state(plane->base.state); 3555 3556 drm_dbg_kms(&dev_priv->drm, 3557 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 3558 plane->base.base.id, plane->base.name, 3559 crtc->base.base.id, crtc->base.name); 3560 3561 intel_set_plane_visible(crtc_state, plane_state, false); 3562 fixup_active_planes(crtc_state); 3563 crtc_state->data_rate[plane->id] = 0; 3564 crtc_state->min_cdclk[plane->id] = 0; 3565 3566 if (plane->id == PLANE_PRIMARY) 3567 hsw_disable_ips(crtc_state); 3568 3569 /* 3570 * Vblank time updates from the shadow to live plane control register 3571 * are blocked if the memory self-refresh mode is active at that 3572 * moment. So to make sure the plane gets truly disabled, disable 3573 * first the self-refresh mode. The self-refresh enable bit in turn 3574 * will be checked/applied by the HW only at the next frame start 3575 * event which is after the vblank start event, so we need to have a 3576 * wait-for-vblank between disabling the plane and the pipe. 3577 */ 3578 if (HAS_GMCH(dev_priv) && 3579 intel_set_memory_cxsr(dev_priv, false)) 3580 intel_wait_for_vblank(dev_priv, crtc->pipe); 3581 3582 /* 3583 * Gen2 reports pipe underruns whenever all planes are disabled. 3584 * So disable underrun reporting before all the planes get disabled. 3585 */ 3586 if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes) 3587 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 3588 3589 intel_disable_plane(plane, crtc_state); 3590 } 3591 3592 static struct intel_frontbuffer * 3593 to_intel_frontbuffer(struct drm_framebuffer *fb) 3594 { 3595 return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL; 3596 } 3597 3598 static void 3599 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, 3600 struct intel_initial_plane_config *plane_config) 3601 { 3602 struct drm_device *dev = intel_crtc->base.dev; 3603 struct drm_i915_private *dev_priv = to_i915(dev); 3604 struct drm_crtc *c; 3605 struct drm_plane *primary = intel_crtc->base.primary; 3606 struct drm_plane_state *plane_state = primary->state; 3607 struct intel_plane *intel_plane = to_intel_plane(primary); 3608 struct intel_plane_state *intel_state = 3609 to_intel_plane_state(plane_state); 3610 struct drm_framebuffer *fb; 3611 struct i915_vma *vma; 3612 3613 if (!plane_config->fb) 3614 return; 3615 3616 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { 3617 fb = &plane_config->fb->base; 3618 vma = plane_config->vma; 3619 goto valid_fb; 3620 } 3621 3622 /* 3623 * Failed to alloc the obj, check to see if we should share 3624 * an fb with another CRTC instead 3625 */ 3626 for_each_crtc(dev, c) { 3627 struct intel_plane_state *state; 3628 3629 if (c == &intel_crtc->base) 3630 continue; 3631 3632 if (!to_intel_crtc(c)->active) 3633 continue; 3634 3635 state = to_intel_plane_state(c->primary->state); 3636 if (!state->vma) 3637 continue; 3638 3639 if (intel_plane_ggtt_offset(state) == plane_config->base) { 3640 fb = state->hw.fb; 3641 vma = state->vma; 3642 goto valid_fb; 3643 } 3644 } 3645 3646 /* 3647 * We've failed to reconstruct the BIOS FB. Current display state 3648 * indicates that the primary plane is visible, but has a NULL FB, 3649 * which will lead to problems later if we don't fix it up. The 3650 * simplest solution is to just disable the primary plane now and 3651 * pretend the BIOS never had it enabled. 3652 */ 3653 intel_plane_disable_noatomic(intel_crtc, intel_plane); 3654 3655 return; 3656 3657 valid_fb: 3658 intel_state->hw.rotation = plane_config->rotation; 3659 intel_fill_fb_ggtt_view(&intel_state->view, fb, 3660 intel_state->hw.rotation); 3661 intel_state->color_plane[0].stride = 3662 intel_fb_pitch(fb, 0, intel_state->hw.rotation); 3663 3664 __i915_vma_pin(vma); 3665 intel_state->vma = i915_vma_get(vma); 3666 if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0) 3667 if (vma->fence) 3668 intel_state->flags |= PLANE_HAS_FENCE; 3669 3670 plane_state->src_x = 0; 3671 plane_state->src_y = 0; 3672 plane_state->src_w = fb->width << 16; 3673 plane_state->src_h = fb->height << 16; 3674 3675 plane_state->crtc_x = 0; 3676 plane_state->crtc_y = 0; 3677 plane_state->crtc_w = fb->width; 3678 plane_state->crtc_h = fb->height; 3679 3680 intel_state->uapi.src = drm_plane_state_src(plane_state); 3681 intel_state->uapi.dst = drm_plane_state_dest(plane_state); 3682 3683 if (plane_config->tiling) 3684 dev_priv->preserve_bios_swizzle = true; 3685 3686 plane_state->fb = fb; 3687 drm_framebuffer_get(fb); 3688 3689 plane_state->crtc = &intel_crtc->base; 3690 intel_plane_copy_uapi_to_hw_state(intel_state, intel_state); 3691 3692 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 3693 3694 atomic_or(to_intel_plane(primary)->frontbuffer_bit, 3695 &to_intel_frontbuffer(fb)->bits); 3696 } 3697 3698 static int skl_max_plane_width(const struct drm_framebuffer *fb, 3699 int color_plane, 3700 unsigned int rotation) 3701 { 3702 int cpp = fb->format->cpp[color_plane]; 3703 3704 switch (fb->modifier) { 3705 case DRM_FORMAT_MOD_LINEAR: 3706 case I915_FORMAT_MOD_X_TILED: 3707 /* 3708 * Validated limit is 4k, but has 5k should 3709 * work apart from the following features: 3710 * - Ytile (already limited to 4k) 3711 * - FP16 (already limited to 4k) 3712 * - render compression (already limited to 4k) 3713 * - KVMR sprite and cursor (don't care) 3714 * - horizontal panning (TODO verify this) 3715 * - pipe and plane scaling (TODO verify this) 3716 */ 3717 if (cpp == 8) 3718 return 4096; 3719 else 3720 return 5120; 3721 case I915_FORMAT_MOD_Y_TILED_CCS: 3722 case I915_FORMAT_MOD_Yf_TILED_CCS: 3723 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 3724 /* FIXME AUX plane? */ 3725 case I915_FORMAT_MOD_Y_TILED: 3726 case I915_FORMAT_MOD_Yf_TILED: 3727 if (cpp == 8) 3728 return 2048; 3729 else 3730 return 4096; 3731 default: 3732 MISSING_CASE(fb->modifier); 3733 return 2048; 3734 } 3735 } 3736 3737 static int glk_max_plane_width(const struct drm_framebuffer *fb, 3738 int color_plane, 3739 unsigned int rotation) 3740 { 3741 int cpp = fb->format->cpp[color_plane]; 3742 3743 switch (fb->modifier) { 3744 case DRM_FORMAT_MOD_LINEAR: 3745 case I915_FORMAT_MOD_X_TILED: 3746 if (cpp == 8) 3747 return 4096; 3748 else 3749 return 5120; 3750 case I915_FORMAT_MOD_Y_TILED_CCS: 3751 case I915_FORMAT_MOD_Yf_TILED_CCS: 3752 /* FIXME AUX plane? */ 3753 case I915_FORMAT_MOD_Y_TILED: 3754 case I915_FORMAT_MOD_Yf_TILED: 3755 if (cpp == 8) 3756 return 2048; 3757 else 3758 return 5120; 3759 default: 3760 MISSING_CASE(fb->modifier); 3761 return 2048; 3762 } 3763 } 3764 3765 static int icl_min_plane_width(const struct drm_framebuffer *fb) 3766 { 3767 /* Wa_14011264657, Wa_14011050563: gen11+ */ 3768 switch (fb->format->format) { 3769 case DRM_FORMAT_C8: 3770 return 18; 3771 case DRM_FORMAT_RGB565: 3772 return 10; 3773 case DRM_FORMAT_XRGB8888: 3774 case DRM_FORMAT_XBGR8888: 3775 case DRM_FORMAT_ARGB8888: 3776 case DRM_FORMAT_ABGR8888: 3777 case DRM_FORMAT_XRGB2101010: 3778 case DRM_FORMAT_XBGR2101010: 3779 case DRM_FORMAT_ARGB2101010: 3780 case DRM_FORMAT_ABGR2101010: 3781 case DRM_FORMAT_XVYU2101010: 3782 case DRM_FORMAT_Y212: 3783 case DRM_FORMAT_Y216: 3784 return 6; 3785 case DRM_FORMAT_NV12: 3786 return 20; 3787 case DRM_FORMAT_P010: 3788 case DRM_FORMAT_P012: 3789 case DRM_FORMAT_P016: 3790 return 12; 3791 case DRM_FORMAT_XRGB16161616F: 3792 case DRM_FORMAT_XBGR16161616F: 3793 case DRM_FORMAT_ARGB16161616F: 3794 case DRM_FORMAT_ABGR16161616F: 3795 case DRM_FORMAT_XVYU12_16161616: 3796 case DRM_FORMAT_XVYU16161616: 3797 return 4; 3798 default: 3799 return 1; 3800 } 3801 } 3802 3803 static int icl_max_plane_width(const struct drm_framebuffer *fb, 3804 int color_plane, 3805 unsigned int rotation) 3806 { 3807 return 5120; 3808 } 3809 3810 static int skl_max_plane_height(void) 3811 { 3812 return 4096; 3813 } 3814 3815 static int icl_max_plane_height(void) 3816 { 3817 return 4320; 3818 } 3819 3820 static bool 3821 skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state, 3822 int main_x, int main_y, u32 main_offset, 3823 int ccs_plane) 3824 { 3825 const struct drm_framebuffer *fb = plane_state->hw.fb; 3826 int aux_x = plane_state->color_plane[ccs_plane].x; 3827 int aux_y = plane_state->color_plane[ccs_plane].y; 3828 u32 aux_offset = plane_state->color_plane[ccs_plane].offset; 3829 u32 alignment = intel_surf_alignment(fb, ccs_plane); 3830 int hsub; 3831 int vsub; 3832 3833 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 3834 while (aux_offset >= main_offset && aux_y <= main_y) { 3835 int x, y; 3836 3837 if (aux_x == main_x && aux_y == main_y) 3838 break; 3839 3840 if (aux_offset == 0) 3841 break; 3842 3843 x = aux_x / hsub; 3844 y = aux_y / vsub; 3845 aux_offset = intel_plane_adjust_aligned_offset(&x, &y, 3846 plane_state, 3847 ccs_plane, 3848 aux_offset, 3849 aux_offset - 3850 alignment); 3851 aux_x = x * hsub + aux_x % hsub; 3852 aux_y = y * vsub + aux_y % vsub; 3853 } 3854 3855 if (aux_x != main_x || aux_y != main_y) 3856 return false; 3857 3858 plane_state->color_plane[ccs_plane].offset = aux_offset; 3859 plane_state->color_plane[ccs_plane].x = aux_x; 3860 plane_state->color_plane[ccs_plane].y = aux_y; 3861 3862 return true; 3863 } 3864 3865 unsigned int 3866 intel_plane_fence_y_offset(const struct intel_plane_state *plane_state) 3867 { 3868 int x = 0, y = 0; 3869 3870 intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3871 plane_state->color_plane[0].offset, 0); 3872 3873 return y; 3874 } 3875 3876 static int skl_check_main_surface(struct intel_plane_state *plane_state) 3877 { 3878 struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev); 3879 const struct drm_framebuffer *fb = plane_state->hw.fb; 3880 unsigned int rotation = plane_state->hw.rotation; 3881 int x = plane_state->uapi.src.x1 >> 16; 3882 int y = plane_state->uapi.src.y1 >> 16; 3883 int w = drm_rect_width(&plane_state->uapi.src) >> 16; 3884 int h = drm_rect_height(&plane_state->uapi.src) >> 16; 3885 int max_width, min_width, max_height; 3886 u32 alignment, offset; 3887 int aux_plane = intel_main_to_aux_plane(fb, 0); 3888 u32 aux_offset = plane_state->color_plane[aux_plane].offset; 3889 3890 if (INTEL_GEN(dev_priv) >= 11) { 3891 max_width = icl_max_plane_width(fb, 0, rotation); 3892 min_width = icl_min_plane_width(fb); 3893 } else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { 3894 max_width = glk_max_plane_width(fb, 0, rotation); 3895 min_width = 1; 3896 } else { 3897 max_width = skl_max_plane_width(fb, 0, rotation); 3898 min_width = 1; 3899 } 3900 3901 if (INTEL_GEN(dev_priv) >= 11) 3902 max_height = icl_max_plane_height(); 3903 else 3904 max_height = skl_max_plane_height(); 3905 3906 if (w > max_width || w < min_width || h > max_height) { 3907 drm_dbg_kms(&dev_priv->drm, 3908 "requested Y/RGB source size %dx%d outside limits (min: %dx1 max: %dx%d)\n", 3909 w, h, min_width, max_width, max_height); 3910 return -EINVAL; 3911 } 3912 3913 intel_add_fb_offsets(&x, &y, plane_state, 0); 3914 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0); 3915 alignment = intel_surf_alignment(fb, 0); 3916 if (drm_WARN_ON(&dev_priv->drm, alignment && !is_power_of_2(alignment))) 3917 return -EINVAL; 3918 3919 /* 3920 * AUX surface offset is specified as the distance from the 3921 * main surface offset, and it must be non-negative. Make 3922 * sure that is what we will get. 3923 */ 3924 if (offset > aux_offset) 3925 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3926 offset, aux_offset & ~(alignment - 1)); 3927 3928 /* 3929 * When using an X-tiled surface, the plane blows up 3930 * if the x offset + width exceed the stride. 3931 * 3932 * TODO: linear and Y-tiled seem fine, Yf untested, 3933 */ 3934 if (fb->modifier == I915_FORMAT_MOD_X_TILED) { 3935 int cpp = fb->format->cpp[0]; 3936 3937 while ((x + w) * cpp > plane_state->color_plane[0].stride) { 3938 if (offset == 0) { 3939 drm_dbg_kms(&dev_priv->drm, 3940 "Unable to find suitable display surface offset due to X-tiling\n"); 3941 return -EINVAL; 3942 } 3943 3944 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3945 offset, offset - alignment); 3946 } 3947 } 3948 3949 /* 3950 * CCS AUX surface doesn't have its own x/y offsets, we must make sure 3951 * they match with the main surface x/y offsets. 3952 */ 3953 if (is_ccs_modifier(fb->modifier)) { 3954 while (!skl_check_main_ccs_coordinates(plane_state, x, y, 3955 offset, aux_plane)) { 3956 if (offset == 0) 3957 break; 3958 3959 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3960 offset, offset - alignment); 3961 } 3962 3963 if (x != plane_state->color_plane[aux_plane].x || 3964 y != plane_state->color_plane[aux_plane].y) { 3965 drm_dbg_kms(&dev_priv->drm, 3966 "Unable to find suitable display surface offset due to CCS\n"); 3967 return -EINVAL; 3968 } 3969 } 3970 3971 plane_state->color_plane[0].offset = offset; 3972 plane_state->color_plane[0].x = x; 3973 plane_state->color_plane[0].y = y; 3974 3975 /* 3976 * Put the final coordinates back so that the src 3977 * coordinate checks will see the right values. 3978 */ 3979 drm_rect_translate_to(&plane_state->uapi.src, 3980 x << 16, y << 16); 3981 3982 return 0; 3983 } 3984 3985 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state) 3986 { 3987 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 3988 const struct drm_framebuffer *fb = plane_state->hw.fb; 3989 unsigned int rotation = plane_state->hw.rotation; 3990 int uv_plane = 1; 3991 int max_width = skl_max_plane_width(fb, uv_plane, rotation); 3992 int max_height = 4096; 3993 int x = plane_state->uapi.src.x1 >> 17; 3994 int y = plane_state->uapi.src.y1 >> 17; 3995 int w = drm_rect_width(&plane_state->uapi.src) >> 17; 3996 int h = drm_rect_height(&plane_state->uapi.src) >> 17; 3997 u32 offset; 3998 3999 intel_add_fb_offsets(&x, &y, plane_state, uv_plane); 4000 offset = intel_plane_compute_aligned_offset(&x, &y, 4001 plane_state, uv_plane); 4002 4003 /* FIXME not quite sure how/if these apply to the chroma plane */ 4004 if (w > max_width || h > max_height) { 4005 drm_dbg_kms(&i915->drm, 4006 "CbCr source size %dx%d too big (limit %dx%d)\n", 4007 w, h, max_width, max_height); 4008 return -EINVAL; 4009 } 4010 4011 if (is_ccs_modifier(fb->modifier)) { 4012 int ccs_plane = main_to_ccs_plane(fb, uv_plane); 4013 int aux_offset = plane_state->color_plane[ccs_plane].offset; 4014 int alignment = intel_surf_alignment(fb, uv_plane); 4015 4016 if (offset > aux_offset) 4017 offset = intel_plane_adjust_aligned_offset(&x, &y, 4018 plane_state, 4019 uv_plane, 4020 offset, 4021 aux_offset & ~(alignment - 1)); 4022 4023 while (!skl_check_main_ccs_coordinates(plane_state, x, y, 4024 offset, ccs_plane)) { 4025 if (offset == 0) 4026 break; 4027 4028 offset = intel_plane_adjust_aligned_offset(&x, &y, 4029 plane_state, 4030 uv_plane, 4031 offset, offset - alignment); 4032 } 4033 4034 if (x != plane_state->color_plane[ccs_plane].x || 4035 y != plane_state->color_plane[ccs_plane].y) { 4036 drm_dbg_kms(&i915->drm, 4037 "Unable to find suitable display surface offset due to CCS\n"); 4038 return -EINVAL; 4039 } 4040 } 4041 4042 plane_state->color_plane[uv_plane].offset = offset; 4043 plane_state->color_plane[uv_plane].x = x; 4044 plane_state->color_plane[uv_plane].y = y; 4045 4046 return 0; 4047 } 4048 4049 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state) 4050 { 4051 const struct drm_framebuffer *fb = plane_state->hw.fb; 4052 int src_x = plane_state->uapi.src.x1 >> 16; 4053 int src_y = plane_state->uapi.src.y1 >> 16; 4054 u32 offset; 4055 int ccs_plane; 4056 4057 for (ccs_plane = 0; ccs_plane < fb->format->num_planes; ccs_plane++) { 4058 int main_hsub, main_vsub; 4059 int hsub, vsub; 4060 int x, y; 4061 4062 if (!is_ccs_plane(fb, ccs_plane)) 4063 continue; 4064 4065 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, 4066 ccs_to_main_plane(fb, ccs_plane)); 4067 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 4068 4069 hsub *= main_hsub; 4070 vsub *= main_vsub; 4071 x = src_x / hsub; 4072 y = src_y / vsub; 4073 4074 intel_add_fb_offsets(&x, &y, plane_state, ccs_plane); 4075 4076 offset = intel_plane_compute_aligned_offset(&x, &y, 4077 plane_state, 4078 ccs_plane); 4079 4080 plane_state->color_plane[ccs_plane].offset = offset; 4081 plane_state->color_plane[ccs_plane].x = (x * hsub + 4082 src_x % hsub) / 4083 main_hsub; 4084 plane_state->color_plane[ccs_plane].y = (y * vsub + 4085 src_y % vsub) / 4086 main_vsub; 4087 } 4088 4089 return 0; 4090 } 4091 4092 int skl_check_plane_surface(struct intel_plane_state *plane_state) 4093 { 4094 const struct drm_framebuffer *fb = plane_state->hw.fb; 4095 int ret; 4096 bool needs_aux = false; 4097 4098 ret = intel_plane_compute_gtt(plane_state); 4099 if (ret) 4100 return ret; 4101 4102 if (!plane_state->uapi.visible) 4103 return 0; 4104 4105 /* 4106 * Handle the AUX surface first since the main surface setup depends on 4107 * it. 4108 */ 4109 if (is_ccs_modifier(fb->modifier)) { 4110 needs_aux = true; 4111 ret = skl_check_ccs_aux_surface(plane_state); 4112 if (ret) 4113 return ret; 4114 } 4115 4116 if (intel_format_info_is_yuv_semiplanar(fb->format, 4117 fb->modifier)) { 4118 needs_aux = true; 4119 ret = skl_check_nv12_aux_surface(plane_state); 4120 if (ret) 4121 return ret; 4122 } 4123 4124 if (!needs_aux) { 4125 int i; 4126 4127 for (i = 1; i < fb->format->num_planes; i++) { 4128 plane_state->color_plane[i].offset = ~0xfff; 4129 plane_state->color_plane[i].x = 0; 4130 plane_state->color_plane[i].y = 0; 4131 } 4132 } 4133 4134 ret = skl_check_main_surface(plane_state); 4135 if (ret) 4136 return ret; 4137 4138 return 0; 4139 } 4140 4141 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state, 4142 const struct intel_plane_state *plane_state, 4143 unsigned int *num, unsigned int *den) 4144 { 4145 const struct drm_framebuffer *fb = plane_state->hw.fb; 4146 unsigned int cpp = fb->format->cpp[0]; 4147 4148 /* 4149 * g4x bspec says 64bpp pixel rate can't exceed 80% 4150 * of cdclk when the sprite plane is enabled on the 4151 * same pipe. ilk/snb bspec says 64bpp pixel rate is 4152 * never allowed to exceed 80% of cdclk. Let's just go 4153 * with the ilk/snb limit always. 4154 */ 4155 if (cpp == 8) { 4156 *num = 10; 4157 *den = 8; 4158 } else { 4159 *num = 1; 4160 *den = 1; 4161 } 4162 } 4163 4164 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state, 4165 const struct intel_plane_state *plane_state) 4166 { 4167 unsigned int pixel_rate; 4168 unsigned int num, den; 4169 4170 /* 4171 * Note that crtc_state->pixel_rate accounts for both 4172 * horizontal and vertical panel fitter downscaling factors. 4173 * Pre-HSW bspec tells us to only consider the horizontal 4174 * downscaling factor here. We ignore that and just consider 4175 * both for simplicity. 4176 */ 4177 pixel_rate = crtc_state->pixel_rate; 4178 4179 i9xx_plane_ratio(crtc_state, plane_state, &num, &den); 4180 4181 /* two pixels per clock with double wide pipe */ 4182 if (crtc_state->double_wide) 4183 den *= 2; 4184 4185 return DIV_ROUND_UP(pixel_rate * num, den); 4186 } 4187 4188 unsigned int 4189 i9xx_plane_max_stride(struct intel_plane *plane, 4190 u32 pixel_format, u64 modifier, 4191 unsigned int rotation) 4192 { 4193 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4194 4195 if (!HAS_GMCH(dev_priv)) { 4196 return 32*1024; 4197 } else if (INTEL_GEN(dev_priv) >= 4) { 4198 if (modifier == I915_FORMAT_MOD_X_TILED) 4199 return 16*1024; 4200 else 4201 return 32*1024; 4202 } else if (INTEL_GEN(dev_priv) >= 3) { 4203 if (modifier == I915_FORMAT_MOD_X_TILED) 4204 return 8*1024; 4205 else 4206 return 16*1024; 4207 } else { 4208 if (plane->i9xx_plane == PLANE_C) 4209 return 4*1024; 4210 else 4211 return 8*1024; 4212 } 4213 } 4214 4215 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 4216 { 4217 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4218 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4219 u32 dspcntr = 0; 4220 4221 if (crtc_state->gamma_enable) 4222 dspcntr |= DISPPLANE_GAMMA_ENABLE; 4223 4224 if (crtc_state->csc_enable) 4225 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE; 4226 4227 if (INTEL_GEN(dev_priv) < 5) 4228 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe); 4229 4230 return dspcntr; 4231 } 4232 4233 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state, 4234 const struct intel_plane_state *plane_state) 4235 { 4236 struct drm_i915_private *dev_priv = 4237 to_i915(plane_state->uapi.plane->dev); 4238 const struct drm_framebuffer *fb = plane_state->hw.fb; 4239 unsigned int rotation = plane_state->hw.rotation; 4240 u32 dspcntr; 4241 4242 dspcntr = DISPLAY_PLANE_ENABLE; 4243 4244 if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) || 4245 IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 4246 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; 4247 4248 switch (fb->format->format) { 4249 case DRM_FORMAT_C8: 4250 dspcntr |= DISPPLANE_8BPP; 4251 break; 4252 case DRM_FORMAT_XRGB1555: 4253 dspcntr |= DISPPLANE_BGRX555; 4254 break; 4255 case DRM_FORMAT_ARGB1555: 4256 dspcntr |= DISPPLANE_BGRA555; 4257 break; 4258 case DRM_FORMAT_RGB565: 4259 dspcntr |= DISPPLANE_BGRX565; 4260 break; 4261 case DRM_FORMAT_XRGB8888: 4262 dspcntr |= DISPPLANE_BGRX888; 4263 break; 4264 case DRM_FORMAT_XBGR8888: 4265 dspcntr |= DISPPLANE_RGBX888; 4266 break; 4267 case DRM_FORMAT_ARGB8888: 4268 dspcntr |= DISPPLANE_BGRA888; 4269 break; 4270 case DRM_FORMAT_ABGR8888: 4271 dspcntr |= DISPPLANE_RGBA888; 4272 break; 4273 case DRM_FORMAT_XRGB2101010: 4274 dspcntr |= DISPPLANE_BGRX101010; 4275 break; 4276 case DRM_FORMAT_XBGR2101010: 4277 dspcntr |= DISPPLANE_RGBX101010; 4278 break; 4279 case DRM_FORMAT_ARGB2101010: 4280 dspcntr |= DISPPLANE_BGRA101010; 4281 break; 4282 case DRM_FORMAT_ABGR2101010: 4283 dspcntr |= DISPPLANE_RGBA101010; 4284 break; 4285 case DRM_FORMAT_XBGR16161616F: 4286 dspcntr |= DISPPLANE_RGBX161616; 4287 break; 4288 default: 4289 MISSING_CASE(fb->format->format); 4290 return 0; 4291 } 4292 4293 if (INTEL_GEN(dev_priv) >= 4 && 4294 fb->modifier == I915_FORMAT_MOD_X_TILED) 4295 dspcntr |= DISPPLANE_TILED; 4296 4297 if (rotation & DRM_MODE_ROTATE_180) 4298 dspcntr |= DISPPLANE_ROTATE_180; 4299 4300 if (rotation & DRM_MODE_REFLECT_X) 4301 dspcntr |= DISPPLANE_MIRROR; 4302 4303 return dspcntr; 4304 } 4305 4306 int i9xx_check_plane_surface(struct intel_plane_state *plane_state) 4307 { 4308 struct drm_i915_private *dev_priv = 4309 to_i915(plane_state->uapi.plane->dev); 4310 const struct drm_framebuffer *fb = plane_state->hw.fb; 4311 int src_x, src_y, src_w; 4312 u32 offset; 4313 int ret; 4314 4315 ret = intel_plane_compute_gtt(plane_state); 4316 if (ret) 4317 return ret; 4318 4319 if (!plane_state->uapi.visible) 4320 return 0; 4321 4322 src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 4323 src_x = plane_state->uapi.src.x1 >> 16; 4324 src_y = plane_state->uapi.src.y1 >> 16; 4325 4326 /* Undocumented hardware limit on i965/g4x/vlv/chv */ 4327 if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048) 4328 return -EINVAL; 4329 4330 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 4331 4332 if (INTEL_GEN(dev_priv) >= 4) 4333 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 4334 plane_state, 0); 4335 else 4336 offset = 0; 4337 4338 /* 4339 * Put the final coordinates back so that the src 4340 * coordinate checks will see the right values. 4341 */ 4342 drm_rect_translate_to(&plane_state->uapi.src, 4343 src_x << 16, src_y << 16); 4344 4345 /* HSW/BDW do this automagically in hardware */ 4346 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) { 4347 unsigned int rotation = plane_state->hw.rotation; 4348 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 4349 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 4350 4351 if (rotation & DRM_MODE_ROTATE_180) { 4352 src_x += src_w - 1; 4353 src_y += src_h - 1; 4354 } else if (rotation & DRM_MODE_REFLECT_X) { 4355 src_x += src_w - 1; 4356 } 4357 } 4358 4359 plane_state->color_plane[0].offset = offset; 4360 plane_state->color_plane[0].x = src_x; 4361 plane_state->color_plane[0].y = src_y; 4362 4363 return 0; 4364 } 4365 4366 static bool i9xx_plane_has_windowing(struct intel_plane *plane) 4367 { 4368 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4369 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4370 4371 if (IS_CHERRYVIEW(dev_priv)) 4372 return i9xx_plane == PLANE_B; 4373 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 4374 return false; 4375 else if (IS_GEN(dev_priv, 4)) 4376 return i9xx_plane == PLANE_C; 4377 else 4378 return i9xx_plane == PLANE_B || 4379 i9xx_plane == PLANE_C; 4380 } 4381 4382 static int 4383 i9xx_plane_check(struct intel_crtc_state *crtc_state, 4384 struct intel_plane_state *plane_state) 4385 { 4386 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 4387 int ret; 4388 4389 ret = chv_plane_check_rotation(plane_state); 4390 if (ret) 4391 return ret; 4392 4393 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi, 4394 &crtc_state->uapi, 4395 DRM_PLANE_HELPER_NO_SCALING, 4396 DRM_PLANE_HELPER_NO_SCALING, 4397 i9xx_plane_has_windowing(plane), 4398 true); 4399 if (ret) 4400 return ret; 4401 4402 ret = i9xx_check_plane_surface(plane_state); 4403 if (ret) 4404 return ret; 4405 4406 if (!plane_state->uapi.visible) 4407 return 0; 4408 4409 ret = intel_plane_check_src_coordinates(plane_state); 4410 if (ret) 4411 return ret; 4412 4413 plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state); 4414 4415 return 0; 4416 } 4417 4418 static void i9xx_update_plane(struct intel_plane *plane, 4419 const struct intel_crtc_state *crtc_state, 4420 const struct intel_plane_state *plane_state) 4421 { 4422 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4423 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4424 u32 linear_offset; 4425 int x = plane_state->color_plane[0].x; 4426 int y = plane_state->color_plane[0].y; 4427 int crtc_x = plane_state->uapi.dst.x1; 4428 int crtc_y = plane_state->uapi.dst.y1; 4429 int crtc_w = drm_rect_width(&plane_state->uapi.dst); 4430 int crtc_h = drm_rect_height(&plane_state->uapi.dst); 4431 unsigned long irqflags; 4432 u32 dspaddr_offset; 4433 u32 dspcntr; 4434 4435 dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state); 4436 4437 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0); 4438 4439 if (INTEL_GEN(dev_priv) >= 4) 4440 dspaddr_offset = plane_state->color_plane[0].offset; 4441 else 4442 dspaddr_offset = linear_offset; 4443 4444 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4445 4446 intel_de_write_fw(dev_priv, DSPSTRIDE(i9xx_plane), 4447 plane_state->color_plane[0].stride); 4448 4449 if (INTEL_GEN(dev_priv) < 4) { 4450 /* 4451 * PLANE_A doesn't actually have a full window 4452 * generator but let's assume we still need to 4453 * program whatever is there. 4454 */ 4455 intel_de_write_fw(dev_priv, DSPPOS(i9xx_plane), 4456 (crtc_y << 16) | crtc_x); 4457 intel_de_write_fw(dev_priv, DSPSIZE(i9xx_plane), 4458 ((crtc_h - 1) << 16) | (crtc_w - 1)); 4459 } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) { 4460 intel_de_write_fw(dev_priv, PRIMPOS(i9xx_plane), 4461 (crtc_y << 16) | crtc_x); 4462 intel_de_write_fw(dev_priv, PRIMSIZE(i9xx_plane), 4463 ((crtc_h - 1) << 16) | (crtc_w - 1)); 4464 intel_de_write_fw(dev_priv, PRIMCNSTALPHA(i9xx_plane), 0); 4465 } 4466 4467 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 4468 intel_de_write_fw(dev_priv, DSPOFFSET(i9xx_plane), 4469 (y << 16) | x); 4470 } else if (INTEL_GEN(dev_priv) >= 4) { 4471 intel_de_write_fw(dev_priv, DSPLINOFF(i9xx_plane), 4472 linear_offset); 4473 intel_de_write_fw(dev_priv, DSPTILEOFF(i9xx_plane), 4474 (y << 16) | x); 4475 } 4476 4477 /* 4478 * The control register self-arms if the plane was previously 4479 * disabled. Try to make the plane enable atomic by writing 4480 * the control register just before the surface register. 4481 */ 4482 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr); 4483 if (INTEL_GEN(dev_priv) >= 4) 4484 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 4485 intel_plane_ggtt_offset(plane_state) + dspaddr_offset); 4486 else 4487 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 4488 intel_plane_ggtt_offset(plane_state) + dspaddr_offset); 4489 4490 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4491 } 4492 4493 static void i9xx_disable_plane(struct intel_plane *plane, 4494 const struct intel_crtc_state *crtc_state) 4495 { 4496 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4497 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4498 unsigned long irqflags; 4499 u32 dspcntr; 4500 4501 /* 4502 * DSPCNTR pipe gamma enable on g4x+ and pipe csc 4503 * enable on ilk+ affect the pipe bottom color as 4504 * well, so we must configure them even if the plane 4505 * is disabled. 4506 * 4507 * On pre-g4x there is no way to gamma correct the 4508 * pipe bottom color but we'll keep on doing this 4509 * anyway so that the crtc state readout works correctly. 4510 */ 4511 dspcntr = i9xx_plane_ctl_crtc(crtc_state); 4512 4513 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4514 4515 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr); 4516 if (INTEL_GEN(dev_priv) >= 4) 4517 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 0); 4518 else 4519 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 0); 4520 4521 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4522 } 4523 4524 static bool i9xx_plane_get_hw_state(struct intel_plane *plane, 4525 enum pipe *pipe) 4526 { 4527 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4528 enum intel_display_power_domain power_domain; 4529 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4530 intel_wakeref_t wakeref; 4531 bool ret; 4532 u32 val; 4533 4534 /* 4535 * Not 100% correct for planes that can move between pipes, 4536 * but that's only the case for gen2-4 which don't have any 4537 * display power wells. 4538 */ 4539 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 4540 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 4541 if (!wakeref) 4542 return false; 4543 4544 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 4545 4546 ret = val & DISPLAY_PLANE_ENABLE; 4547 4548 if (INTEL_GEN(dev_priv) >= 5) 4549 *pipe = plane->pipe; 4550 else 4551 *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> 4552 DISPPLANE_SEL_PIPE_SHIFT; 4553 4554 intel_display_power_put(dev_priv, power_domain, wakeref); 4555 4556 return ret; 4557 } 4558 4559 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id) 4560 { 4561 struct drm_device *dev = intel_crtc->base.dev; 4562 struct drm_i915_private *dev_priv = to_i915(dev); 4563 unsigned long irqflags; 4564 4565 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4566 4567 intel_de_write_fw(dev_priv, SKL_PS_CTRL(intel_crtc->pipe, id), 0); 4568 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(intel_crtc->pipe, id), 0); 4569 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0); 4570 4571 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4572 } 4573 4574 /* 4575 * This function detaches (aka. unbinds) unused scalers in hardware 4576 */ 4577 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state) 4578 { 4579 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 4580 const struct intel_crtc_scaler_state *scaler_state = 4581 &crtc_state->scaler_state; 4582 int i; 4583 4584 /* loop through and disable scalers that aren't in use */ 4585 for (i = 0; i < intel_crtc->num_scalers; i++) { 4586 if (!scaler_state->scalers[i].in_use) 4587 skl_detach_scaler(intel_crtc, i); 4588 } 4589 } 4590 4591 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb, 4592 int color_plane, unsigned int rotation) 4593 { 4594 /* 4595 * The stride is either expressed as a multiple of 64 bytes chunks for 4596 * linear buffers or in number of tiles for tiled buffers. 4597 */ 4598 if (is_surface_linear(fb, color_plane)) 4599 return 64; 4600 else if (drm_rotation_90_or_270(rotation)) 4601 return intel_tile_height(fb, color_plane); 4602 else 4603 return intel_tile_width_bytes(fb, color_plane); 4604 } 4605 4606 u32 skl_plane_stride(const struct intel_plane_state *plane_state, 4607 int color_plane) 4608 { 4609 const struct drm_framebuffer *fb = plane_state->hw.fb; 4610 unsigned int rotation = plane_state->hw.rotation; 4611 u32 stride = plane_state->color_plane[color_plane].stride; 4612 4613 if (color_plane >= fb->format->num_planes) 4614 return 0; 4615 4616 return stride / skl_plane_stride_mult(fb, color_plane, rotation); 4617 } 4618 4619 static u32 skl_plane_ctl_format(u32 pixel_format) 4620 { 4621 switch (pixel_format) { 4622 case DRM_FORMAT_C8: 4623 return PLANE_CTL_FORMAT_INDEXED; 4624 case DRM_FORMAT_RGB565: 4625 return PLANE_CTL_FORMAT_RGB_565; 4626 case DRM_FORMAT_XBGR8888: 4627 case DRM_FORMAT_ABGR8888: 4628 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX; 4629 case DRM_FORMAT_XRGB8888: 4630 case DRM_FORMAT_ARGB8888: 4631 return PLANE_CTL_FORMAT_XRGB_8888; 4632 case DRM_FORMAT_XBGR2101010: 4633 case DRM_FORMAT_ABGR2101010: 4634 return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX; 4635 case DRM_FORMAT_XRGB2101010: 4636 case DRM_FORMAT_ARGB2101010: 4637 return PLANE_CTL_FORMAT_XRGB_2101010; 4638 case DRM_FORMAT_XBGR16161616F: 4639 case DRM_FORMAT_ABGR16161616F: 4640 return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX; 4641 case DRM_FORMAT_XRGB16161616F: 4642 case DRM_FORMAT_ARGB16161616F: 4643 return PLANE_CTL_FORMAT_XRGB_16161616F; 4644 case DRM_FORMAT_XYUV8888: 4645 return PLANE_CTL_FORMAT_XYUV; 4646 case DRM_FORMAT_YUYV: 4647 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV; 4648 case DRM_FORMAT_YVYU: 4649 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU; 4650 case DRM_FORMAT_UYVY: 4651 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY; 4652 case DRM_FORMAT_VYUY: 4653 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY; 4654 case DRM_FORMAT_NV12: 4655 return PLANE_CTL_FORMAT_NV12; 4656 case DRM_FORMAT_P010: 4657 return PLANE_CTL_FORMAT_P010; 4658 case DRM_FORMAT_P012: 4659 return PLANE_CTL_FORMAT_P012; 4660 case DRM_FORMAT_P016: 4661 return PLANE_CTL_FORMAT_P016; 4662 case DRM_FORMAT_Y210: 4663 return PLANE_CTL_FORMAT_Y210; 4664 case DRM_FORMAT_Y212: 4665 return PLANE_CTL_FORMAT_Y212; 4666 case DRM_FORMAT_Y216: 4667 return PLANE_CTL_FORMAT_Y216; 4668 case DRM_FORMAT_XVYU2101010: 4669 return PLANE_CTL_FORMAT_Y410; 4670 case DRM_FORMAT_XVYU12_16161616: 4671 return PLANE_CTL_FORMAT_Y412; 4672 case DRM_FORMAT_XVYU16161616: 4673 return PLANE_CTL_FORMAT_Y416; 4674 default: 4675 MISSING_CASE(pixel_format); 4676 } 4677 4678 return 0; 4679 } 4680 4681 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state) 4682 { 4683 if (!plane_state->hw.fb->format->has_alpha) 4684 return PLANE_CTL_ALPHA_DISABLE; 4685 4686 switch (plane_state->hw.pixel_blend_mode) { 4687 case DRM_MODE_BLEND_PIXEL_NONE: 4688 return PLANE_CTL_ALPHA_DISABLE; 4689 case DRM_MODE_BLEND_PREMULTI: 4690 return PLANE_CTL_ALPHA_SW_PREMULTIPLY; 4691 case DRM_MODE_BLEND_COVERAGE: 4692 return PLANE_CTL_ALPHA_HW_PREMULTIPLY; 4693 default: 4694 MISSING_CASE(plane_state->hw.pixel_blend_mode); 4695 return PLANE_CTL_ALPHA_DISABLE; 4696 } 4697 } 4698 4699 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state) 4700 { 4701 if (!plane_state->hw.fb->format->has_alpha) 4702 return PLANE_COLOR_ALPHA_DISABLE; 4703 4704 switch (plane_state->hw.pixel_blend_mode) { 4705 case DRM_MODE_BLEND_PIXEL_NONE: 4706 return PLANE_COLOR_ALPHA_DISABLE; 4707 case DRM_MODE_BLEND_PREMULTI: 4708 return PLANE_COLOR_ALPHA_SW_PREMULTIPLY; 4709 case DRM_MODE_BLEND_COVERAGE: 4710 return PLANE_COLOR_ALPHA_HW_PREMULTIPLY; 4711 default: 4712 MISSING_CASE(plane_state->hw.pixel_blend_mode); 4713 return PLANE_COLOR_ALPHA_DISABLE; 4714 } 4715 } 4716 4717 static u32 skl_plane_ctl_tiling(u64 fb_modifier) 4718 { 4719 switch (fb_modifier) { 4720 case DRM_FORMAT_MOD_LINEAR: 4721 break; 4722 case I915_FORMAT_MOD_X_TILED: 4723 return PLANE_CTL_TILED_X; 4724 case I915_FORMAT_MOD_Y_TILED: 4725 return PLANE_CTL_TILED_Y; 4726 case I915_FORMAT_MOD_Y_TILED_CCS: 4727 return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4728 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 4729 return PLANE_CTL_TILED_Y | 4730 PLANE_CTL_RENDER_DECOMPRESSION_ENABLE | 4731 PLANE_CTL_CLEAR_COLOR_DISABLE; 4732 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 4733 return PLANE_CTL_TILED_Y | PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE; 4734 case I915_FORMAT_MOD_Yf_TILED: 4735 return PLANE_CTL_TILED_YF; 4736 case I915_FORMAT_MOD_Yf_TILED_CCS: 4737 return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4738 default: 4739 MISSING_CASE(fb_modifier); 4740 } 4741 4742 return 0; 4743 } 4744 4745 static u32 skl_plane_ctl_rotate(unsigned int rotate) 4746 { 4747 switch (rotate) { 4748 case DRM_MODE_ROTATE_0: 4749 break; 4750 /* 4751 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 4752 * while i915 HW rotation is clockwise, thats why this swapping. 4753 */ 4754 case DRM_MODE_ROTATE_90: 4755 return PLANE_CTL_ROTATE_270; 4756 case DRM_MODE_ROTATE_180: 4757 return PLANE_CTL_ROTATE_180; 4758 case DRM_MODE_ROTATE_270: 4759 return PLANE_CTL_ROTATE_90; 4760 default: 4761 MISSING_CASE(rotate); 4762 } 4763 4764 return 0; 4765 } 4766 4767 static u32 cnl_plane_ctl_flip(unsigned int reflect) 4768 { 4769 switch (reflect) { 4770 case 0: 4771 break; 4772 case DRM_MODE_REFLECT_X: 4773 return PLANE_CTL_FLIP_HORIZONTAL; 4774 case DRM_MODE_REFLECT_Y: 4775 default: 4776 MISSING_CASE(reflect); 4777 } 4778 4779 return 0; 4780 } 4781 4782 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 4783 { 4784 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4785 u32 plane_ctl = 0; 4786 4787 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4788 return plane_ctl; 4789 4790 if (crtc_state->gamma_enable) 4791 plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE; 4792 4793 if (crtc_state->csc_enable) 4794 plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE; 4795 4796 return plane_ctl; 4797 } 4798 4799 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state, 4800 const struct intel_plane_state *plane_state) 4801 { 4802 struct drm_i915_private *dev_priv = 4803 to_i915(plane_state->uapi.plane->dev); 4804 const struct drm_framebuffer *fb = plane_state->hw.fb; 4805 unsigned int rotation = plane_state->hw.rotation; 4806 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey; 4807 u32 plane_ctl; 4808 4809 plane_ctl = PLANE_CTL_ENABLE; 4810 4811 if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) { 4812 plane_ctl |= skl_plane_ctl_alpha(plane_state); 4813 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE; 4814 4815 if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709) 4816 plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709; 4817 4818 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4819 plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE; 4820 } 4821 4822 plane_ctl |= skl_plane_ctl_format(fb->format->format); 4823 plane_ctl |= skl_plane_ctl_tiling(fb->modifier); 4824 plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK); 4825 4826 if (INTEL_GEN(dev_priv) >= 10) 4827 plane_ctl |= cnl_plane_ctl_flip(rotation & 4828 DRM_MODE_REFLECT_MASK); 4829 4830 if (key->flags & I915_SET_COLORKEY_DESTINATION) 4831 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION; 4832 else if (key->flags & I915_SET_COLORKEY_SOURCE) 4833 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE; 4834 4835 return plane_ctl; 4836 } 4837 4838 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state) 4839 { 4840 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4841 u32 plane_color_ctl = 0; 4842 4843 if (INTEL_GEN(dev_priv) >= 11) 4844 return plane_color_ctl; 4845 4846 if (crtc_state->gamma_enable) 4847 plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE; 4848 4849 if (crtc_state->csc_enable) 4850 plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE; 4851 4852 return plane_color_ctl; 4853 } 4854 4855 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state, 4856 const struct intel_plane_state *plane_state) 4857 { 4858 struct drm_i915_private *dev_priv = 4859 to_i915(plane_state->uapi.plane->dev); 4860 const struct drm_framebuffer *fb = plane_state->hw.fb; 4861 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 4862 u32 plane_color_ctl = 0; 4863 4864 plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE; 4865 plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state); 4866 4867 if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) { 4868 switch (plane_state->hw.color_encoding) { 4869 case DRM_COLOR_YCBCR_BT709: 4870 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709; 4871 break; 4872 case DRM_COLOR_YCBCR_BT2020: 4873 plane_color_ctl |= 4874 PLANE_COLOR_CSC_MODE_YUV2020_TO_RGB2020; 4875 break; 4876 default: 4877 plane_color_ctl |= 4878 PLANE_COLOR_CSC_MODE_YUV601_TO_RGB601; 4879 } 4880 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4881 plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE; 4882 } else if (fb->format->is_yuv) { 4883 plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE; 4884 } 4885 4886 return plane_color_ctl; 4887 } 4888 4889 static int 4890 __intel_display_resume(struct drm_device *dev, 4891 struct drm_atomic_state *state, 4892 struct drm_modeset_acquire_ctx *ctx) 4893 { 4894 struct drm_crtc_state *crtc_state; 4895 struct drm_crtc *crtc; 4896 int i, ret; 4897 4898 intel_modeset_setup_hw_state(dev, ctx); 4899 intel_vga_redisable(to_i915(dev)); 4900 4901 if (!state) 4902 return 0; 4903 4904 /* 4905 * We've duplicated the state, pointers to the old state are invalid. 4906 * 4907 * Don't attempt to use the old state until we commit the duplicated state. 4908 */ 4909 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 4910 /* 4911 * Force recalculation even if we restore 4912 * current state. With fast modeset this may not result 4913 * in a modeset when the state is compatible. 4914 */ 4915 crtc_state->mode_changed = true; 4916 } 4917 4918 /* ignore any reset values/BIOS leftovers in the WM registers */ 4919 if (!HAS_GMCH(to_i915(dev))) 4920 to_intel_atomic_state(state)->skip_intermediate_wm = true; 4921 4922 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 4923 4924 drm_WARN_ON(dev, ret == -EDEADLK); 4925 return ret; 4926 } 4927 4928 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 4929 { 4930 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 4931 intel_has_gpu_reset(&dev_priv->gt)); 4932 } 4933 4934 void intel_prepare_reset(struct drm_i915_private *dev_priv) 4935 { 4936 struct drm_device *dev = &dev_priv->drm; 4937 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4938 struct drm_atomic_state *state; 4939 int ret; 4940 4941 /* reset doesn't touch the display */ 4942 if (!dev_priv->params.force_reset_modeset_test && 4943 !gpu_reset_clobbers_display(dev_priv)) 4944 return; 4945 4946 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 4947 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 4948 smp_mb__after_atomic(); 4949 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 4950 4951 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 4952 drm_dbg_kms(&dev_priv->drm, 4953 "Modeset potentially stuck, unbreaking through wedging\n"); 4954 intel_gt_set_wedged(&dev_priv->gt); 4955 } 4956 4957 /* 4958 * Need mode_config.mutex so that we don't 4959 * trample ongoing ->detect() and whatnot. 4960 */ 4961 mutex_lock(&dev->mode_config.mutex); 4962 drm_modeset_acquire_init(ctx, 0); 4963 while (1) { 4964 ret = drm_modeset_lock_all_ctx(dev, ctx); 4965 if (ret != -EDEADLK) 4966 break; 4967 4968 drm_modeset_backoff(ctx); 4969 } 4970 /* 4971 * Disabling the crtcs gracefully seems nicer. Also the 4972 * g33 docs say we should at least disable all the planes. 4973 */ 4974 state = drm_atomic_helper_duplicate_state(dev, ctx); 4975 if (IS_ERR(state)) { 4976 ret = PTR_ERR(state); 4977 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n", 4978 ret); 4979 return; 4980 } 4981 4982 ret = drm_atomic_helper_disable_all(dev, ctx); 4983 if (ret) { 4984 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 4985 ret); 4986 drm_atomic_state_put(state); 4987 return; 4988 } 4989 4990 dev_priv->modeset_restore_state = state; 4991 state->acquire_ctx = ctx; 4992 } 4993 4994 void intel_finish_reset(struct drm_i915_private *dev_priv) 4995 { 4996 struct drm_device *dev = &dev_priv->drm; 4997 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4998 struct drm_atomic_state *state; 4999 int ret; 5000 5001 /* reset doesn't touch the display */ 5002 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 5003 return; 5004 5005 state = fetch_and_zero(&dev_priv->modeset_restore_state); 5006 if (!state) 5007 goto unlock; 5008 5009 /* reset doesn't touch the display */ 5010 if (!gpu_reset_clobbers_display(dev_priv)) { 5011 /* for testing only restore the display */ 5012 ret = __intel_display_resume(dev, state, ctx); 5013 if (ret) 5014 drm_err(&dev_priv->drm, 5015 "Restoring old state failed with %i\n", ret); 5016 } else { 5017 /* 5018 * The display has been reset as well, 5019 * so need a full re-initialization. 5020 */ 5021 intel_pps_unlock_regs_wa(dev_priv); 5022 intel_modeset_init_hw(dev_priv); 5023 intel_init_clock_gating(dev_priv); 5024 5025 spin_lock_irq(&dev_priv->irq_lock); 5026 if (dev_priv->display.hpd_irq_setup) 5027 dev_priv->display.hpd_irq_setup(dev_priv); 5028 spin_unlock_irq(&dev_priv->irq_lock); 5029 5030 ret = __intel_display_resume(dev, state, ctx); 5031 if (ret) 5032 drm_err(&dev_priv->drm, 5033 "Restoring old state failed with %i\n", ret); 5034 5035 intel_hpd_init(dev_priv); 5036 } 5037 5038 drm_atomic_state_put(state); 5039 unlock: 5040 drm_modeset_drop_locks(ctx); 5041 drm_modeset_acquire_fini(ctx); 5042 mutex_unlock(&dev->mode_config.mutex); 5043 5044 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 5045 } 5046 5047 static void icl_set_pipe_chicken(struct intel_crtc *crtc) 5048 { 5049 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5050 enum pipe pipe = crtc->pipe; 5051 u32 tmp; 5052 5053 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe)); 5054 5055 /* 5056 * Display WA #1153: icl 5057 * enable hardware to bypass the alpha math 5058 * and rounding for per-pixel values 00 and 0xff 5059 */ 5060 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 5061 /* 5062 * Display WA # 1605353570: icl 5063 * Set the pixel rounding bit to 1 for allowing 5064 * passthrough of Frame buffer pixels unmodified 5065 * across pipe 5066 */ 5067 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 5068 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp); 5069 } 5070 5071 static void intel_fdi_normal_train(struct intel_crtc *crtc) 5072 { 5073 struct drm_device *dev = crtc->base.dev; 5074 struct drm_i915_private *dev_priv = to_i915(dev); 5075 enum pipe pipe = crtc->pipe; 5076 i915_reg_t reg; 5077 u32 temp; 5078 5079 /* enable normal train */ 5080 reg = FDI_TX_CTL(pipe); 5081 temp = intel_de_read(dev_priv, reg); 5082 if (IS_IVYBRIDGE(dev_priv)) { 5083 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 5084 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; 5085 } else { 5086 temp &= ~FDI_LINK_TRAIN_NONE; 5087 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; 5088 } 5089 intel_de_write(dev_priv, reg, temp); 5090 5091 reg = FDI_RX_CTL(pipe); 5092 temp = intel_de_read(dev_priv, reg); 5093 if (HAS_PCH_CPT(dev_priv)) { 5094 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5095 temp |= FDI_LINK_TRAIN_NORMAL_CPT; 5096 } else { 5097 temp &= ~FDI_LINK_TRAIN_NONE; 5098 temp |= FDI_LINK_TRAIN_NONE; 5099 } 5100 intel_de_write(dev_priv, reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); 5101 5102 /* wait one idle pattern time */ 5103 intel_de_posting_read(dev_priv, reg); 5104 udelay(1000); 5105 5106 /* IVB wants error correction enabled */ 5107 if (IS_IVYBRIDGE(dev_priv)) 5108 intel_de_write(dev_priv, reg, 5109 intel_de_read(dev_priv, reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE); 5110 } 5111 5112 /* The FDI link training functions for ILK/Ibexpeak. */ 5113 static void ilk_fdi_link_train(struct intel_crtc *crtc, 5114 const struct intel_crtc_state *crtc_state) 5115 { 5116 struct drm_device *dev = crtc->base.dev; 5117 struct drm_i915_private *dev_priv = to_i915(dev); 5118 enum pipe pipe = crtc->pipe; 5119 i915_reg_t reg; 5120 u32 temp, tries; 5121 5122 /* FDI needs bits from pipe first */ 5123 assert_pipe_enabled(dev_priv, crtc_state->cpu_transcoder); 5124 5125 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5126 for train result */ 5127 reg = FDI_RX_IMR(pipe); 5128 temp = intel_de_read(dev_priv, reg); 5129 temp &= ~FDI_RX_SYMBOL_LOCK; 5130 temp &= ~FDI_RX_BIT_LOCK; 5131 intel_de_write(dev_priv, reg, temp); 5132 intel_de_read(dev_priv, reg); 5133 udelay(150); 5134 5135 /* enable CPU FDI TX and PCH FDI RX */ 5136 reg = FDI_TX_CTL(pipe); 5137 temp = intel_de_read(dev_priv, reg); 5138 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5139 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5140 temp &= ~FDI_LINK_TRAIN_NONE; 5141 temp |= FDI_LINK_TRAIN_PATTERN_1; 5142 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5143 5144 reg = FDI_RX_CTL(pipe); 5145 temp = intel_de_read(dev_priv, reg); 5146 temp &= ~FDI_LINK_TRAIN_NONE; 5147 temp |= FDI_LINK_TRAIN_PATTERN_1; 5148 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5149 5150 intel_de_posting_read(dev_priv, reg); 5151 udelay(150); 5152 5153 /* Ironlake workaround, enable clock pointer after FDI enable*/ 5154 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5155 FDI_RX_PHASE_SYNC_POINTER_OVR); 5156 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5157 FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN); 5158 5159 reg = FDI_RX_IIR(pipe); 5160 for (tries = 0; tries < 5; tries++) { 5161 temp = intel_de_read(dev_priv, reg); 5162 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5163 5164 if ((temp & FDI_RX_BIT_LOCK)) { 5165 drm_dbg_kms(&dev_priv->drm, "FDI train 1 done.\n"); 5166 intel_de_write(dev_priv, reg, temp | FDI_RX_BIT_LOCK); 5167 break; 5168 } 5169 } 5170 if (tries == 5) 5171 drm_err(&dev_priv->drm, "FDI train 1 fail!\n"); 5172 5173 /* Train 2 */ 5174 reg = FDI_TX_CTL(pipe); 5175 temp = intel_de_read(dev_priv, reg); 5176 temp &= ~FDI_LINK_TRAIN_NONE; 5177 temp |= FDI_LINK_TRAIN_PATTERN_2; 5178 intel_de_write(dev_priv, reg, temp); 5179 5180 reg = FDI_RX_CTL(pipe); 5181 temp = intel_de_read(dev_priv, reg); 5182 temp &= ~FDI_LINK_TRAIN_NONE; 5183 temp |= FDI_LINK_TRAIN_PATTERN_2; 5184 intel_de_write(dev_priv, reg, temp); 5185 5186 intel_de_posting_read(dev_priv, reg); 5187 udelay(150); 5188 5189 reg = FDI_RX_IIR(pipe); 5190 for (tries = 0; tries < 5; tries++) { 5191 temp = intel_de_read(dev_priv, reg); 5192 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5193 5194 if (temp & FDI_RX_SYMBOL_LOCK) { 5195 intel_de_write(dev_priv, reg, 5196 temp | FDI_RX_SYMBOL_LOCK); 5197 drm_dbg_kms(&dev_priv->drm, "FDI train 2 done.\n"); 5198 break; 5199 } 5200 } 5201 if (tries == 5) 5202 drm_err(&dev_priv->drm, "FDI train 2 fail!\n"); 5203 5204 drm_dbg_kms(&dev_priv->drm, "FDI train done\n"); 5205 5206 } 5207 5208 static const int snb_b_fdi_train_param[] = { 5209 FDI_LINK_TRAIN_400MV_0DB_SNB_B, 5210 FDI_LINK_TRAIN_400MV_6DB_SNB_B, 5211 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, 5212 FDI_LINK_TRAIN_800MV_0DB_SNB_B, 5213 }; 5214 5215 /* The FDI link training functions for SNB/Cougarpoint. */ 5216 static void gen6_fdi_link_train(struct intel_crtc *crtc, 5217 const struct intel_crtc_state *crtc_state) 5218 { 5219 struct drm_device *dev = crtc->base.dev; 5220 struct drm_i915_private *dev_priv = to_i915(dev); 5221 enum pipe pipe = crtc->pipe; 5222 i915_reg_t reg; 5223 u32 temp, i, retry; 5224 5225 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5226 for train result */ 5227 reg = FDI_RX_IMR(pipe); 5228 temp = intel_de_read(dev_priv, reg); 5229 temp &= ~FDI_RX_SYMBOL_LOCK; 5230 temp &= ~FDI_RX_BIT_LOCK; 5231 intel_de_write(dev_priv, reg, temp); 5232 5233 intel_de_posting_read(dev_priv, reg); 5234 udelay(150); 5235 5236 /* enable CPU FDI TX and PCH FDI RX */ 5237 reg = FDI_TX_CTL(pipe); 5238 temp = intel_de_read(dev_priv, reg); 5239 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5240 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5241 temp &= ~FDI_LINK_TRAIN_NONE; 5242 temp |= FDI_LINK_TRAIN_PATTERN_1; 5243 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5244 /* SNB-B */ 5245 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 5246 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5247 5248 intel_de_write(dev_priv, FDI_RX_MISC(pipe), 5249 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 5250 5251 reg = FDI_RX_CTL(pipe); 5252 temp = intel_de_read(dev_priv, reg); 5253 if (HAS_PCH_CPT(dev_priv)) { 5254 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5255 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5256 } else { 5257 temp &= ~FDI_LINK_TRAIN_NONE; 5258 temp |= FDI_LINK_TRAIN_PATTERN_1; 5259 } 5260 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5261 5262 intel_de_posting_read(dev_priv, reg); 5263 udelay(150); 5264 5265 for (i = 0; i < 4; i++) { 5266 reg = FDI_TX_CTL(pipe); 5267 temp = intel_de_read(dev_priv, reg); 5268 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5269 temp |= snb_b_fdi_train_param[i]; 5270 intel_de_write(dev_priv, reg, temp); 5271 5272 intel_de_posting_read(dev_priv, reg); 5273 udelay(500); 5274 5275 for (retry = 0; retry < 5; retry++) { 5276 reg = FDI_RX_IIR(pipe); 5277 temp = intel_de_read(dev_priv, reg); 5278 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5279 if (temp & FDI_RX_BIT_LOCK) { 5280 intel_de_write(dev_priv, reg, 5281 temp | FDI_RX_BIT_LOCK); 5282 drm_dbg_kms(&dev_priv->drm, 5283 "FDI train 1 done.\n"); 5284 break; 5285 } 5286 udelay(50); 5287 } 5288 if (retry < 5) 5289 break; 5290 } 5291 if (i == 4) 5292 drm_err(&dev_priv->drm, "FDI train 1 fail!\n"); 5293 5294 /* Train 2 */ 5295 reg = FDI_TX_CTL(pipe); 5296 temp = intel_de_read(dev_priv, reg); 5297 temp &= ~FDI_LINK_TRAIN_NONE; 5298 temp |= FDI_LINK_TRAIN_PATTERN_2; 5299 if (IS_GEN(dev_priv, 6)) { 5300 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5301 /* SNB-B */ 5302 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 5303 } 5304 intel_de_write(dev_priv, reg, temp); 5305 5306 reg = FDI_RX_CTL(pipe); 5307 temp = intel_de_read(dev_priv, reg); 5308 if (HAS_PCH_CPT(dev_priv)) { 5309 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5310 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 5311 } else { 5312 temp &= ~FDI_LINK_TRAIN_NONE; 5313 temp |= FDI_LINK_TRAIN_PATTERN_2; 5314 } 5315 intel_de_write(dev_priv, reg, temp); 5316 5317 intel_de_posting_read(dev_priv, reg); 5318 udelay(150); 5319 5320 for (i = 0; i < 4; i++) { 5321 reg = FDI_TX_CTL(pipe); 5322 temp = intel_de_read(dev_priv, reg); 5323 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5324 temp |= snb_b_fdi_train_param[i]; 5325 intel_de_write(dev_priv, reg, temp); 5326 5327 intel_de_posting_read(dev_priv, reg); 5328 udelay(500); 5329 5330 for (retry = 0; retry < 5; retry++) { 5331 reg = FDI_RX_IIR(pipe); 5332 temp = intel_de_read(dev_priv, reg); 5333 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5334 if (temp & FDI_RX_SYMBOL_LOCK) { 5335 intel_de_write(dev_priv, reg, 5336 temp | FDI_RX_SYMBOL_LOCK); 5337 drm_dbg_kms(&dev_priv->drm, 5338 "FDI train 2 done.\n"); 5339 break; 5340 } 5341 udelay(50); 5342 } 5343 if (retry < 5) 5344 break; 5345 } 5346 if (i == 4) 5347 drm_err(&dev_priv->drm, "FDI train 2 fail!\n"); 5348 5349 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n"); 5350 } 5351 5352 /* Manual link training for Ivy Bridge A0 parts */ 5353 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc, 5354 const struct intel_crtc_state *crtc_state) 5355 { 5356 struct drm_device *dev = crtc->base.dev; 5357 struct drm_i915_private *dev_priv = to_i915(dev); 5358 enum pipe pipe = crtc->pipe; 5359 i915_reg_t reg; 5360 u32 temp, i, j; 5361 5362 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5363 for train result */ 5364 reg = FDI_RX_IMR(pipe); 5365 temp = intel_de_read(dev_priv, reg); 5366 temp &= ~FDI_RX_SYMBOL_LOCK; 5367 temp &= ~FDI_RX_BIT_LOCK; 5368 intel_de_write(dev_priv, reg, temp); 5369 5370 intel_de_posting_read(dev_priv, reg); 5371 udelay(150); 5372 5373 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR before link train 0x%x\n", 5374 intel_de_read(dev_priv, FDI_RX_IIR(pipe))); 5375 5376 /* Try each vswing and preemphasis setting twice before moving on */ 5377 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) { 5378 /* disable first in case we need to retry */ 5379 reg = FDI_TX_CTL(pipe); 5380 temp = intel_de_read(dev_priv, reg); 5381 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); 5382 temp &= ~FDI_TX_ENABLE; 5383 intel_de_write(dev_priv, reg, temp); 5384 5385 reg = FDI_RX_CTL(pipe); 5386 temp = intel_de_read(dev_priv, reg); 5387 temp &= ~FDI_LINK_TRAIN_AUTO; 5388 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5389 temp &= ~FDI_RX_ENABLE; 5390 intel_de_write(dev_priv, reg, temp); 5391 5392 /* enable CPU FDI TX and PCH FDI RX */ 5393 reg = FDI_TX_CTL(pipe); 5394 temp = intel_de_read(dev_priv, reg); 5395 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5396 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5397 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; 5398 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5399 temp |= snb_b_fdi_train_param[j/2]; 5400 temp |= FDI_COMPOSITE_SYNC; 5401 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5402 5403 intel_de_write(dev_priv, FDI_RX_MISC(pipe), 5404 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 5405 5406 reg = FDI_RX_CTL(pipe); 5407 temp = intel_de_read(dev_priv, reg); 5408 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5409 temp |= FDI_COMPOSITE_SYNC; 5410 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5411 5412 intel_de_posting_read(dev_priv, reg); 5413 udelay(1); /* should be 0.5us */ 5414 5415 for (i = 0; i < 4; i++) { 5416 reg = FDI_RX_IIR(pipe); 5417 temp = intel_de_read(dev_priv, reg); 5418 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5419 5420 if (temp & FDI_RX_BIT_LOCK || 5421 (intel_de_read(dev_priv, reg) & FDI_RX_BIT_LOCK)) { 5422 intel_de_write(dev_priv, reg, 5423 temp | FDI_RX_BIT_LOCK); 5424 drm_dbg_kms(&dev_priv->drm, 5425 "FDI train 1 done, level %i.\n", 5426 i); 5427 break; 5428 } 5429 udelay(1); /* should be 0.5us */ 5430 } 5431 if (i == 4) { 5432 drm_dbg_kms(&dev_priv->drm, 5433 "FDI train 1 fail on vswing %d\n", j / 2); 5434 continue; 5435 } 5436 5437 /* Train 2 */ 5438 reg = FDI_TX_CTL(pipe); 5439 temp = intel_de_read(dev_priv, reg); 5440 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 5441 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; 5442 intel_de_write(dev_priv, reg, temp); 5443 5444 reg = FDI_RX_CTL(pipe); 5445 temp = intel_de_read(dev_priv, reg); 5446 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5447 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 5448 intel_de_write(dev_priv, reg, temp); 5449 5450 intel_de_posting_read(dev_priv, reg); 5451 udelay(2); /* should be 1.5us */ 5452 5453 for (i = 0; i < 4; i++) { 5454 reg = FDI_RX_IIR(pipe); 5455 temp = intel_de_read(dev_priv, reg); 5456 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5457 5458 if (temp & FDI_RX_SYMBOL_LOCK || 5459 (intel_de_read(dev_priv, reg) & FDI_RX_SYMBOL_LOCK)) { 5460 intel_de_write(dev_priv, reg, 5461 temp | FDI_RX_SYMBOL_LOCK); 5462 drm_dbg_kms(&dev_priv->drm, 5463 "FDI train 2 done, level %i.\n", 5464 i); 5465 goto train_done; 5466 } 5467 udelay(2); /* should be 1.5us */ 5468 } 5469 if (i == 4) 5470 drm_dbg_kms(&dev_priv->drm, 5471 "FDI train 2 fail on vswing %d\n", j / 2); 5472 } 5473 5474 train_done: 5475 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n"); 5476 } 5477 5478 static void ilk_fdi_pll_enable(const struct intel_crtc_state *crtc_state) 5479 { 5480 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 5481 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 5482 enum pipe pipe = intel_crtc->pipe; 5483 i915_reg_t reg; 5484 u32 temp; 5485 5486 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ 5487 reg = FDI_RX_CTL(pipe); 5488 temp = intel_de_read(dev_priv, reg); 5489 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16)); 5490 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5491 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5492 intel_de_write(dev_priv, reg, temp | FDI_RX_PLL_ENABLE); 5493 5494 intel_de_posting_read(dev_priv, reg); 5495 udelay(200); 5496 5497 /* Switch from Rawclk to PCDclk */ 5498 temp = intel_de_read(dev_priv, reg); 5499 intel_de_write(dev_priv, reg, temp | FDI_PCDCLK); 5500 5501 intel_de_posting_read(dev_priv, reg); 5502 udelay(200); 5503 5504 /* Enable CPU FDI TX PLL, always on for Ironlake */ 5505 reg = FDI_TX_CTL(pipe); 5506 temp = intel_de_read(dev_priv, reg); 5507 if ((temp & FDI_TX_PLL_ENABLE) == 0) { 5508 intel_de_write(dev_priv, reg, temp | FDI_TX_PLL_ENABLE); 5509 5510 intel_de_posting_read(dev_priv, reg); 5511 udelay(100); 5512 } 5513 } 5514 5515 static void ilk_fdi_pll_disable(struct intel_crtc *intel_crtc) 5516 { 5517 struct drm_device *dev = intel_crtc->base.dev; 5518 struct drm_i915_private *dev_priv = to_i915(dev); 5519 enum pipe pipe = intel_crtc->pipe; 5520 i915_reg_t reg; 5521 u32 temp; 5522 5523 /* Switch from PCDclk to Rawclk */ 5524 reg = FDI_RX_CTL(pipe); 5525 temp = intel_de_read(dev_priv, reg); 5526 intel_de_write(dev_priv, reg, temp & ~FDI_PCDCLK); 5527 5528 /* Disable CPU FDI TX PLL */ 5529 reg = FDI_TX_CTL(pipe); 5530 temp = intel_de_read(dev_priv, reg); 5531 intel_de_write(dev_priv, reg, temp & ~FDI_TX_PLL_ENABLE); 5532 5533 intel_de_posting_read(dev_priv, reg); 5534 udelay(100); 5535 5536 reg = FDI_RX_CTL(pipe); 5537 temp = intel_de_read(dev_priv, reg); 5538 intel_de_write(dev_priv, reg, temp & ~FDI_RX_PLL_ENABLE); 5539 5540 /* Wait for the clocks to turn off. */ 5541 intel_de_posting_read(dev_priv, reg); 5542 udelay(100); 5543 } 5544 5545 static void ilk_fdi_disable(struct intel_crtc *crtc) 5546 { 5547 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5548 enum pipe pipe = crtc->pipe; 5549 i915_reg_t reg; 5550 u32 temp; 5551 5552 /* disable CPU FDI tx and PCH FDI rx */ 5553 reg = FDI_TX_CTL(pipe); 5554 temp = intel_de_read(dev_priv, reg); 5555 intel_de_write(dev_priv, reg, temp & ~FDI_TX_ENABLE); 5556 intel_de_posting_read(dev_priv, reg); 5557 5558 reg = FDI_RX_CTL(pipe); 5559 temp = intel_de_read(dev_priv, reg); 5560 temp &= ~(0x7 << 16); 5561 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5562 intel_de_write(dev_priv, reg, temp & ~FDI_RX_ENABLE); 5563 5564 intel_de_posting_read(dev_priv, reg); 5565 udelay(100); 5566 5567 /* Ironlake workaround, disable clock pointer after downing FDI */ 5568 if (HAS_PCH_IBX(dev_priv)) 5569 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5570 FDI_RX_PHASE_SYNC_POINTER_OVR); 5571 5572 /* still set train pattern 1 */ 5573 reg = FDI_TX_CTL(pipe); 5574 temp = intel_de_read(dev_priv, reg); 5575 temp &= ~FDI_LINK_TRAIN_NONE; 5576 temp |= FDI_LINK_TRAIN_PATTERN_1; 5577 intel_de_write(dev_priv, reg, temp); 5578 5579 reg = FDI_RX_CTL(pipe); 5580 temp = intel_de_read(dev_priv, reg); 5581 if (HAS_PCH_CPT(dev_priv)) { 5582 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5583 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5584 } else { 5585 temp &= ~FDI_LINK_TRAIN_NONE; 5586 temp |= FDI_LINK_TRAIN_PATTERN_1; 5587 } 5588 /* BPC in FDI rx is consistent with that in PIPECONF */ 5589 temp &= ~(0x07 << 16); 5590 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5591 intel_de_write(dev_priv, reg, temp); 5592 5593 intel_de_posting_read(dev_priv, reg); 5594 udelay(100); 5595 } 5596 5597 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 5598 { 5599 struct drm_crtc *crtc; 5600 bool cleanup_done; 5601 5602 drm_for_each_crtc(crtc, &dev_priv->drm) { 5603 struct drm_crtc_commit *commit; 5604 spin_lock(&crtc->commit_lock); 5605 commit = list_first_entry_or_null(&crtc->commit_list, 5606 struct drm_crtc_commit, commit_entry); 5607 cleanup_done = commit ? 5608 try_wait_for_completion(&commit->cleanup_done) : true; 5609 spin_unlock(&crtc->commit_lock); 5610 5611 if (cleanup_done) 5612 continue; 5613 5614 drm_crtc_wait_one_vblank(crtc); 5615 5616 return true; 5617 } 5618 5619 return false; 5620 } 5621 5622 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 5623 { 5624 u32 temp; 5625 5626 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE); 5627 5628 mutex_lock(&dev_priv->sb_lock); 5629 5630 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5631 temp |= SBI_SSCCTL_DISABLE; 5632 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5633 5634 mutex_unlock(&dev_priv->sb_lock); 5635 } 5636 5637 /* Program iCLKIP clock to the desired frequency */ 5638 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 5639 { 5640 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5641 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5642 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 5643 u32 divsel, phaseinc, auxdiv, phasedir = 0; 5644 u32 temp; 5645 5646 lpt_disable_iclkip(dev_priv); 5647 5648 /* The iCLK virtual clock root frequency is in MHz, 5649 * but the adjusted_mode->crtc_clock in in KHz. To get the 5650 * divisors, it is necessary to divide one by another, so we 5651 * convert the virtual clock precision to KHz here for higher 5652 * precision. 5653 */ 5654 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 5655 u32 iclk_virtual_root_freq = 172800 * 1000; 5656 u32 iclk_pi_range = 64; 5657 u32 desired_divisor; 5658 5659 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5660 clock << auxdiv); 5661 divsel = (desired_divisor / iclk_pi_range) - 2; 5662 phaseinc = desired_divisor % iclk_pi_range; 5663 5664 /* 5665 * Near 20MHz is a corner case which is 5666 * out of range for the 7-bit divisor 5667 */ 5668 if (divsel <= 0x7f) 5669 break; 5670 } 5671 5672 /* This should not happen with any sane values */ 5673 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 5674 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 5675 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) & 5676 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 5677 5678 drm_dbg_kms(&dev_priv->drm, 5679 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 5680 clock, auxdiv, divsel, phasedir, phaseinc); 5681 5682 mutex_lock(&dev_priv->sb_lock); 5683 5684 /* Program SSCDIVINTPHASE6 */ 5685 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5686 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 5687 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 5688 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 5689 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 5690 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 5691 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 5692 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 5693 5694 /* Program SSCAUXDIV */ 5695 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5696 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 5697 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 5698 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 5699 5700 /* Enable modulator and associated divider */ 5701 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5702 temp &= ~SBI_SSCCTL_DISABLE; 5703 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5704 5705 mutex_unlock(&dev_priv->sb_lock); 5706 5707 /* Wait for initialization time */ 5708 udelay(24); 5709 5710 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE); 5711 } 5712 5713 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 5714 { 5715 u32 divsel, phaseinc, auxdiv; 5716 u32 iclk_virtual_root_freq = 172800 * 1000; 5717 u32 iclk_pi_range = 64; 5718 u32 desired_divisor; 5719 u32 temp; 5720 5721 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 5722 return 0; 5723 5724 mutex_lock(&dev_priv->sb_lock); 5725 5726 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5727 if (temp & SBI_SSCCTL_DISABLE) { 5728 mutex_unlock(&dev_priv->sb_lock); 5729 return 0; 5730 } 5731 5732 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5733 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 5734 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 5735 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 5736 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 5737 5738 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5739 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 5740 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 5741 5742 mutex_unlock(&dev_priv->sb_lock); 5743 5744 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 5745 5746 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5747 desired_divisor << auxdiv); 5748 } 5749 5750 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 5751 enum pipe pch_transcoder) 5752 { 5753 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5754 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5755 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5756 5757 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder), 5758 intel_de_read(dev_priv, HTOTAL(cpu_transcoder))); 5759 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder), 5760 intel_de_read(dev_priv, HBLANK(cpu_transcoder))); 5761 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder), 5762 intel_de_read(dev_priv, HSYNC(cpu_transcoder))); 5763 5764 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder), 5765 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 5766 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder), 5767 intel_de_read(dev_priv, VBLANK(cpu_transcoder))); 5768 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder), 5769 intel_de_read(dev_priv, VSYNC(cpu_transcoder))); 5770 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder), 5771 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder))); 5772 } 5773 5774 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) 5775 { 5776 u32 temp; 5777 5778 temp = intel_de_read(dev_priv, SOUTH_CHICKEN1); 5779 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 5780 return; 5781 5782 drm_WARN_ON(&dev_priv->drm, 5783 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) & 5784 FDI_RX_ENABLE); 5785 drm_WARN_ON(&dev_priv->drm, 5786 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) & 5787 FDI_RX_ENABLE); 5788 5789 temp &= ~FDI_BC_BIFURCATION_SELECT; 5790 if (enable) 5791 temp |= FDI_BC_BIFURCATION_SELECT; 5792 5793 drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n", 5794 enable ? "en" : "dis"); 5795 intel_de_write(dev_priv, SOUTH_CHICKEN1, temp); 5796 intel_de_posting_read(dev_priv, SOUTH_CHICKEN1); 5797 } 5798 5799 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) 5800 { 5801 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5802 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5803 5804 switch (crtc->pipe) { 5805 case PIPE_A: 5806 break; 5807 case PIPE_B: 5808 if (crtc_state->fdi_lanes > 2) 5809 cpt_set_fdi_bc_bifurcation(dev_priv, false); 5810 else 5811 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5812 5813 break; 5814 case PIPE_C: 5815 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5816 5817 break; 5818 default: 5819 BUG(); 5820 } 5821 } 5822 5823 /* 5824 * Finds the encoder associated with the given CRTC. This can only be 5825 * used when we know that the CRTC isn't feeding multiple encoders! 5826 */ 5827 static struct intel_encoder * 5828 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 5829 const struct intel_crtc_state *crtc_state) 5830 { 5831 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5832 const struct drm_connector_state *connector_state; 5833 const struct drm_connector *connector; 5834 struct intel_encoder *encoder = NULL; 5835 int num_encoders = 0; 5836 int i; 5837 5838 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 5839 if (connector_state->crtc != &crtc->base) 5840 continue; 5841 5842 encoder = to_intel_encoder(connector_state->best_encoder); 5843 num_encoders++; 5844 } 5845 5846 drm_WARN(encoder->base.dev, num_encoders != 1, 5847 "%d encoders for pipe %c\n", 5848 num_encoders, pipe_name(crtc->pipe)); 5849 5850 return encoder; 5851 } 5852 5853 /* 5854 * Enable PCH resources required for PCH ports: 5855 * - PCH PLLs 5856 * - FDI training & RX/TX 5857 * - update transcoder timings 5858 * - DP transcoding bits 5859 * - transcoder 5860 */ 5861 static void ilk_pch_enable(const struct intel_atomic_state *state, 5862 const struct intel_crtc_state *crtc_state) 5863 { 5864 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5865 struct drm_device *dev = crtc->base.dev; 5866 struct drm_i915_private *dev_priv = to_i915(dev); 5867 enum pipe pipe = crtc->pipe; 5868 u32 temp; 5869 5870 assert_pch_transcoder_disabled(dev_priv, pipe); 5871 5872 if (IS_IVYBRIDGE(dev_priv)) 5873 ivb_update_fdi_bc_bifurcation(crtc_state); 5874 5875 /* Write the TU size bits before fdi link training, so that error 5876 * detection works. */ 5877 intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe), 5878 intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 5879 5880 /* For PCH output, training FDI link */ 5881 dev_priv->display.fdi_link_train(crtc, crtc_state); 5882 5883 /* We need to program the right clock selection before writing the pixel 5884 * mutliplier into the DPLL. */ 5885 if (HAS_PCH_CPT(dev_priv)) { 5886 u32 sel; 5887 5888 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 5889 temp |= TRANS_DPLL_ENABLE(pipe); 5890 sel = TRANS_DPLLB_SEL(pipe); 5891 if (crtc_state->shared_dpll == 5892 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 5893 temp |= sel; 5894 else 5895 temp &= ~sel; 5896 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 5897 } 5898 5899 /* XXX: pch pll's can be enabled any time before we enable the PCH 5900 * transcoder, and we actually should do this to not upset any PCH 5901 * transcoder that already use the clock when we share it. 5902 * 5903 * Note that enable_shared_dpll tries to do the right thing, but 5904 * get_shared_dpll unconditionally resets the pll - we need that to have 5905 * the right LVDS enable sequence. */ 5906 intel_enable_shared_dpll(crtc_state); 5907 5908 /* set transcoder timing, panel must allow it */ 5909 assert_panel_unlocked(dev_priv, pipe); 5910 ilk_pch_transcoder_set_timings(crtc_state, pipe); 5911 5912 intel_fdi_normal_train(crtc); 5913 5914 /* For PCH DP, enable TRANS_DP_CTL */ 5915 if (HAS_PCH_CPT(dev_priv) && 5916 intel_crtc_has_dp_encoder(crtc_state)) { 5917 const struct drm_display_mode *adjusted_mode = 5918 &crtc_state->hw.adjusted_mode; 5919 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 5920 i915_reg_t reg = TRANS_DP_CTL(pipe); 5921 enum port port; 5922 5923 temp = intel_de_read(dev_priv, reg); 5924 temp &= ~(TRANS_DP_PORT_SEL_MASK | 5925 TRANS_DP_SYNC_MASK | 5926 TRANS_DP_BPC_MASK); 5927 temp |= TRANS_DP_OUTPUT_ENABLE; 5928 temp |= bpc << 9; /* same format but at 11:9 */ 5929 5930 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 5931 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 5932 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 5933 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 5934 5935 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 5936 drm_WARN_ON(dev, port < PORT_B || port > PORT_D); 5937 temp |= TRANS_DP_PORT_SEL(port); 5938 5939 intel_de_write(dev_priv, reg, temp); 5940 } 5941 5942 ilk_enable_pch_transcoder(crtc_state); 5943 } 5944 5945 void lpt_pch_enable(const struct intel_crtc_state *crtc_state) 5946 { 5947 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5948 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5949 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5950 5951 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 5952 5953 lpt_program_iclkip(crtc_state); 5954 5955 /* Set transcoder timing. */ 5956 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A); 5957 5958 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 5959 } 5960 5961 static void cpt_verify_modeset(struct drm_i915_private *dev_priv, 5962 enum pipe pipe) 5963 { 5964 i915_reg_t dslreg = PIPEDSL(pipe); 5965 u32 temp; 5966 5967 temp = intel_de_read(dev_priv, dslreg); 5968 udelay(500); 5969 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) { 5970 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) 5971 drm_err(&dev_priv->drm, 5972 "mode set failed: pipe %c stuck\n", 5973 pipe_name(pipe)); 5974 } 5975 } 5976 5977 /* 5978 * The hardware phase 0.0 refers to the center of the pixel. 5979 * We want to start from the top/left edge which is phase 5980 * -0.5. That matches how the hardware calculates the scaling 5981 * factors (from top-left of the first pixel to bottom-right 5982 * of the last pixel, as opposed to the pixel centers). 5983 * 5984 * For 4:2:0 subsampled chroma planes we obviously have to 5985 * adjust that so that the chroma sample position lands in 5986 * the right spot. 5987 * 5988 * Note that for packed YCbCr 4:2:2 formats there is no way to 5989 * control chroma siting. The hardware simply replicates the 5990 * chroma samples for both of the luma samples, and thus we don't 5991 * actually get the expected MPEG2 chroma siting convention :( 5992 * The same behaviour is observed on pre-SKL platforms as well. 5993 * 5994 * Theory behind the formula (note that we ignore sub-pixel 5995 * source coordinates): 5996 * s = source sample position 5997 * d = destination sample position 5998 * 5999 * Downscaling 4:1: 6000 * -0.5 6001 * | 0.0 6002 * | | 1.5 (initial phase) 6003 * | | | 6004 * v v v 6005 * | s | s | s | s | 6006 * | d | 6007 * 6008 * Upscaling 1:4: 6009 * -0.5 6010 * | -0.375 (initial phase) 6011 * | | 0.0 6012 * | | | 6013 * v v v 6014 * | s | 6015 * | d | d | d | d | 6016 */ 6017 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited) 6018 { 6019 int phase = -0x8000; 6020 u16 trip = 0; 6021 6022 if (chroma_cosited) 6023 phase += (sub - 1) * 0x8000 / sub; 6024 6025 phase += scale / (2 * sub); 6026 6027 /* 6028 * Hardware initial phase limited to [-0.5:1.5]. 6029 * Since the max hardware scale factor is 3.0, we 6030 * should never actually excdeed 1.0 here. 6031 */ 6032 WARN_ON(phase < -0x8000 || phase > 0x18000); 6033 6034 if (phase < 0) 6035 phase = 0x10000 + phase; 6036 else 6037 trip = PS_PHASE_TRIP; 6038 6039 return ((phase >> 2) & PS_PHASE_MASK) | trip; 6040 } 6041 6042 #define SKL_MIN_SRC_W 8 6043 #define SKL_MAX_SRC_W 4096 6044 #define SKL_MIN_SRC_H 8 6045 #define SKL_MAX_SRC_H 4096 6046 #define SKL_MIN_DST_W 8 6047 #define SKL_MAX_DST_W 4096 6048 #define SKL_MIN_DST_H 8 6049 #define SKL_MAX_DST_H 4096 6050 #define ICL_MAX_SRC_W 5120 6051 #define ICL_MAX_SRC_H 4096 6052 #define ICL_MAX_DST_W 5120 6053 #define ICL_MAX_DST_H 4096 6054 #define SKL_MIN_YUV_420_SRC_W 16 6055 #define SKL_MIN_YUV_420_SRC_H 16 6056 6057 static int 6058 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach, 6059 unsigned int scaler_user, int *scaler_id, 6060 int src_w, int src_h, int dst_w, int dst_h, 6061 const struct drm_format_info *format, 6062 u64 modifier, bool need_scaler) 6063 { 6064 struct intel_crtc_scaler_state *scaler_state = 6065 &crtc_state->scaler_state; 6066 struct intel_crtc *intel_crtc = 6067 to_intel_crtc(crtc_state->uapi.crtc); 6068 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 6069 const struct drm_display_mode *adjusted_mode = 6070 &crtc_state->hw.adjusted_mode; 6071 6072 /* 6073 * Src coordinates are already rotated by 270 degrees for 6074 * the 90/270 degree plane rotation cases (to match the 6075 * GTT mapping), hence no need to account for rotation here. 6076 */ 6077 if (src_w != dst_w || src_h != dst_h) 6078 need_scaler = true; 6079 6080 /* 6081 * Scaling/fitting not supported in IF-ID mode in GEN9+ 6082 * TODO: Interlace fetch mode doesn't support YUV420 planar formats. 6083 * Once NV12 is enabled, handle it here while allocating scaler 6084 * for NV12. 6085 */ 6086 if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable && 6087 need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 6088 drm_dbg_kms(&dev_priv->drm, 6089 "Pipe/Plane scaling not supported with IF-ID mode\n"); 6090 return -EINVAL; 6091 } 6092 6093 /* 6094 * if plane is being disabled or scaler is no more required or force detach 6095 * - free scaler binded to this plane/crtc 6096 * - in order to do this, update crtc->scaler_usage 6097 * 6098 * Here scaler state in crtc_state is set free so that 6099 * scaler can be assigned to other user. Actual register 6100 * update to free the scaler is done in plane/panel-fit programming. 6101 * For this purpose crtc/plane_state->scaler_id isn't reset here. 6102 */ 6103 if (force_detach || !need_scaler) { 6104 if (*scaler_id >= 0) { 6105 scaler_state->scaler_users &= ~(1 << scaler_user); 6106 scaler_state->scalers[*scaler_id].in_use = 0; 6107 6108 drm_dbg_kms(&dev_priv->drm, 6109 "scaler_user index %u.%u: " 6110 "Staged freeing scaler id %d scaler_users = 0x%x\n", 6111 intel_crtc->pipe, scaler_user, *scaler_id, 6112 scaler_state->scaler_users); 6113 *scaler_id = -1; 6114 } 6115 return 0; 6116 } 6117 6118 if (format && intel_format_info_is_yuv_semiplanar(format, modifier) && 6119 (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) { 6120 drm_dbg_kms(&dev_priv->drm, 6121 "Planar YUV: src dimensions not met\n"); 6122 return -EINVAL; 6123 } 6124 6125 /* range checks */ 6126 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H || 6127 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H || 6128 (INTEL_GEN(dev_priv) >= 11 && 6129 (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H || 6130 dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) || 6131 (INTEL_GEN(dev_priv) < 11 && 6132 (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H || 6133 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) { 6134 drm_dbg_kms(&dev_priv->drm, 6135 "scaler_user index %u.%u: src %ux%u dst %ux%u " 6136 "size is out of scaler range\n", 6137 intel_crtc->pipe, scaler_user, src_w, src_h, 6138 dst_w, dst_h); 6139 return -EINVAL; 6140 } 6141 6142 /* mark this plane as a scaler user in crtc_state */ 6143 scaler_state->scaler_users |= (1 << scaler_user); 6144 drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: " 6145 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n", 6146 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h, 6147 scaler_state->scaler_users); 6148 6149 return 0; 6150 } 6151 6152 static int skl_update_scaler_crtc(struct intel_crtc_state *crtc_state) 6153 { 6154 const struct drm_display_mode *adjusted_mode = 6155 &crtc_state->hw.adjusted_mode; 6156 int width, height; 6157 6158 if (crtc_state->pch_pfit.enabled) { 6159 width = drm_rect_width(&crtc_state->pch_pfit.dst); 6160 height = drm_rect_height(&crtc_state->pch_pfit.dst); 6161 } else { 6162 width = adjusted_mode->crtc_hdisplay; 6163 height = adjusted_mode->crtc_vdisplay; 6164 } 6165 6166 return skl_update_scaler(crtc_state, !crtc_state->hw.active, 6167 SKL_CRTC_INDEX, 6168 &crtc_state->scaler_state.scaler_id, 6169 crtc_state->pipe_src_w, crtc_state->pipe_src_h, 6170 width, height, NULL, 0, 6171 crtc_state->pch_pfit.enabled); 6172 } 6173 6174 /** 6175 * skl_update_scaler_plane - Stages update to scaler state for a given plane. 6176 * @crtc_state: crtc's scaler state 6177 * @plane_state: atomic plane state to update 6178 * 6179 * Return 6180 * 0 - scaler_usage updated successfully 6181 * error - requested scaling cannot be supported or other error condition 6182 */ 6183 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state, 6184 struct intel_plane_state *plane_state) 6185 { 6186 struct intel_plane *intel_plane = 6187 to_intel_plane(plane_state->uapi.plane); 6188 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 6189 struct drm_framebuffer *fb = plane_state->hw.fb; 6190 int ret; 6191 bool force_detach = !fb || !plane_state->uapi.visible; 6192 bool need_scaler = false; 6193 6194 /* Pre-gen11 and SDR planes always need a scaler for planar formats. */ 6195 if (!icl_is_hdr_plane(dev_priv, intel_plane->id) && 6196 fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier)) 6197 need_scaler = true; 6198 6199 ret = skl_update_scaler(crtc_state, force_detach, 6200 drm_plane_index(&intel_plane->base), 6201 &plane_state->scaler_id, 6202 drm_rect_width(&plane_state->uapi.src) >> 16, 6203 drm_rect_height(&plane_state->uapi.src) >> 16, 6204 drm_rect_width(&plane_state->uapi.dst), 6205 drm_rect_height(&plane_state->uapi.dst), 6206 fb ? fb->format : NULL, 6207 fb ? fb->modifier : 0, 6208 need_scaler); 6209 6210 if (ret || plane_state->scaler_id < 0) 6211 return ret; 6212 6213 /* check colorkey */ 6214 if (plane_state->ckey.flags) { 6215 drm_dbg_kms(&dev_priv->drm, 6216 "[PLANE:%d:%s] scaling with color key not allowed", 6217 intel_plane->base.base.id, 6218 intel_plane->base.name); 6219 return -EINVAL; 6220 } 6221 6222 /* Check src format */ 6223 switch (fb->format->format) { 6224 case DRM_FORMAT_RGB565: 6225 case DRM_FORMAT_XBGR8888: 6226 case DRM_FORMAT_XRGB8888: 6227 case DRM_FORMAT_ABGR8888: 6228 case DRM_FORMAT_ARGB8888: 6229 case DRM_FORMAT_XRGB2101010: 6230 case DRM_FORMAT_XBGR2101010: 6231 case DRM_FORMAT_ARGB2101010: 6232 case DRM_FORMAT_ABGR2101010: 6233 case DRM_FORMAT_YUYV: 6234 case DRM_FORMAT_YVYU: 6235 case DRM_FORMAT_UYVY: 6236 case DRM_FORMAT_VYUY: 6237 case DRM_FORMAT_NV12: 6238 case DRM_FORMAT_XYUV8888: 6239 case DRM_FORMAT_P010: 6240 case DRM_FORMAT_P012: 6241 case DRM_FORMAT_P016: 6242 case DRM_FORMAT_Y210: 6243 case DRM_FORMAT_Y212: 6244 case DRM_FORMAT_Y216: 6245 case DRM_FORMAT_XVYU2101010: 6246 case DRM_FORMAT_XVYU12_16161616: 6247 case DRM_FORMAT_XVYU16161616: 6248 break; 6249 case DRM_FORMAT_XBGR16161616F: 6250 case DRM_FORMAT_ABGR16161616F: 6251 case DRM_FORMAT_XRGB16161616F: 6252 case DRM_FORMAT_ARGB16161616F: 6253 if (INTEL_GEN(dev_priv) >= 11) 6254 break; 6255 fallthrough; 6256 default: 6257 drm_dbg_kms(&dev_priv->drm, 6258 "[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n", 6259 intel_plane->base.base.id, intel_plane->base.name, 6260 fb->base.id, fb->format->format); 6261 return -EINVAL; 6262 } 6263 6264 return 0; 6265 } 6266 6267 void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state) 6268 { 6269 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 6270 int i; 6271 6272 for (i = 0; i < crtc->num_scalers; i++) 6273 skl_detach_scaler(crtc, i); 6274 } 6275 6276 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state) 6277 { 6278 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6279 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6280 const struct intel_crtc_scaler_state *scaler_state = 6281 &crtc_state->scaler_state; 6282 struct drm_rect src = { 6283 .x2 = crtc_state->pipe_src_w << 16, 6284 .y2 = crtc_state->pipe_src_h << 16, 6285 }; 6286 const struct drm_rect *dst = &crtc_state->pch_pfit.dst; 6287 u16 uv_rgb_hphase, uv_rgb_vphase; 6288 enum pipe pipe = crtc->pipe; 6289 int width = drm_rect_width(dst); 6290 int height = drm_rect_height(dst); 6291 int x = dst->x1; 6292 int y = dst->y1; 6293 int hscale, vscale; 6294 unsigned long irqflags; 6295 int id; 6296 6297 if (!crtc_state->pch_pfit.enabled) 6298 return; 6299 6300 if (drm_WARN_ON(&dev_priv->drm, 6301 crtc_state->scaler_state.scaler_id < 0)) 6302 return; 6303 6304 hscale = drm_rect_calc_hscale(&src, dst, 0, INT_MAX); 6305 vscale = drm_rect_calc_vscale(&src, dst, 0, INT_MAX); 6306 6307 uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false); 6308 uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false); 6309 6310 id = scaler_state->scaler_id; 6311 6312 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 6313 6314 intel_de_write_fw(dev_priv, SKL_PS_CTRL(pipe, id), PS_SCALER_EN | 6315 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode); 6316 intel_de_write_fw(dev_priv, SKL_PS_VPHASE(pipe, id), 6317 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase)); 6318 intel_de_write_fw(dev_priv, SKL_PS_HPHASE(pipe, id), 6319 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase)); 6320 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(pipe, id), 6321 x << 16 | y); 6322 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(pipe, id), 6323 width << 16 | height); 6324 6325 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 6326 } 6327 6328 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state) 6329 { 6330 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6331 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6332 const struct drm_rect *dst = &crtc_state->pch_pfit.dst; 6333 enum pipe pipe = crtc->pipe; 6334 int width = drm_rect_width(dst); 6335 int height = drm_rect_height(dst); 6336 int x = dst->x1; 6337 int y = dst->y1; 6338 6339 if (!crtc_state->pch_pfit.enabled) 6340 return; 6341 6342 /* Force use of hard-coded filter coefficients 6343 * as some pre-programmed values are broken, 6344 * e.g. x201. 6345 */ 6346 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 6347 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 6348 PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); 6349 else 6350 intel_de_write(dev_priv, PF_CTL(pipe), PF_ENABLE | 6351 PF_FILTER_MED_3x3); 6352 intel_de_write(dev_priv, PF_WIN_POS(pipe), x << 16 | y); 6353 intel_de_write(dev_priv, PF_WIN_SZ(pipe), width << 16 | height); 6354 } 6355 6356 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 6357 { 6358 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6359 struct drm_device *dev = crtc->base.dev; 6360 struct drm_i915_private *dev_priv = to_i915(dev); 6361 6362 if (!crtc_state->ips_enabled) 6363 return; 6364 6365 /* 6366 * We can only enable IPS after we enable a plane and wait for a vblank 6367 * This function is called from post_plane_update, which is run after 6368 * a vblank wait. 6369 */ 6370 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 6371 6372 if (IS_BROADWELL(dev_priv)) { 6373 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 6374 IPS_ENABLE | IPS_PCODE_CONTROL)); 6375 /* Quoting Art Runyan: "its not safe to expect any particular 6376 * value in IPS_CTL bit 31 after enabling IPS through the 6377 * mailbox." Moreover, the mailbox may return a bogus state, 6378 * so we need to just enable it and continue on. 6379 */ 6380 } else { 6381 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE); 6382 /* The bit only becomes 1 in the next vblank, so this wait here 6383 * is essentially intel_wait_for_vblank. If we don't have this 6384 * and don't wait for vblanks until the end of crtc_enable, then 6385 * the HW state readout code will complain that the expected 6386 * IPS_CTL value is not the one we read. */ 6387 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 6388 drm_err(&dev_priv->drm, 6389 "Timed out waiting for IPS enable\n"); 6390 } 6391 } 6392 6393 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 6394 { 6395 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6396 struct drm_device *dev = crtc->base.dev; 6397 struct drm_i915_private *dev_priv = to_i915(dev); 6398 6399 if (!crtc_state->ips_enabled) 6400 return; 6401 6402 if (IS_BROADWELL(dev_priv)) { 6403 drm_WARN_ON(dev, 6404 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 6405 /* 6406 * Wait for PCODE to finish disabling IPS. The BSpec specified 6407 * 42ms timeout value leads to occasional timeouts so use 100ms 6408 * instead. 6409 */ 6410 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 6411 drm_err(&dev_priv->drm, 6412 "Timed out waiting for IPS disable\n"); 6413 } else { 6414 intel_de_write(dev_priv, IPS_CTL, 0); 6415 intel_de_posting_read(dev_priv, IPS_CTL); 6416 } 6417 6418 /* We need to wait for a vblank before we can disable the plane. */ 6419 intel_wait_for_vblank(dev_priv, crtc->pipe); 6420 } 6421 6422 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) 6423 { 6424 if (intel_crtc->overlay) 6425 (void) intel_overlay_switch_off(intel_crtc->overlay); 6426 6427 /* Let userspace switch the overlay on again. In most cases userspace 6428 * has to recompute where to put it anyway. 6429 */ 6430 } 6431 6432 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 6433 const struct intel_crtc_state *new_crtc_state) 6434 { 6435 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 6436 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6437 6438 if (!old_crtc_state->ips_enabled) 6439 return false; 6440 6441 if (needs_modeset(new_crtc_state)) 6442 return true; 6443 6444 /* 6445 * Workaround : Do not read or write the pipe palette/gamma data while 6446 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 6447 * 6448 * Disable IPS before we program the LUT. 6449 */ 6450 if (IS_HASWELL(dev_priv) && 6451 (new_crtc_state->uapi.color_mgmt_changed || 6452 new_crtc_state->update_pipe) && 6453 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 6454 return true; 6455 6456 return !new_crtc_state->ips_enabled; 6457 } 6458 6459 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 6460 const struct intel_crtc_state *new_crtc_state) 6461 { 6462 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 6463 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6464 6465 if (!new_crtc_state->ips_enabled) 6466 return false; 6467 6468 if (needs_modeset(new_crtc_state)) 6469 return true; 6470 6471 /* 6472 * Workaround : Do not read or write the pipe palette/gamma data while 6473 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 6474 * 6475 * Re-enable IPS after the LUT has been programmed. 6476 */ 6477 if (IS_HASWELL(dev_priv) && 6478 (new_crtc_state->uapi.color_mgmt_changed || 6479 new_crtc_state->update_pipe) && 6480 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 6481 return true; 6482 6483 /* 6484 * We can't read out IPS on broadwell, assume the worst and 6485 * forcibly enable IPS on the first fastset. 6486 */ 6487 if (new_crtc_state->update_pipe && old_crtc_state->inherited) 6488 return true; 6489 6490 return !old_crtc_state->ips_enabled; 6491 } 6492 6493 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) 6494 { 6495 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 6496 6497 if (!crtc_state->nv12_planes) 6498 return false; 6499 6500 /* WA Display #0827: Gen9:all */ 6501 if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv)) 6502 return true; 6503 6504 return false; 6505 } 6506 6507 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) 6508 { 6509 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 6510 6511 /* Wa_2006604312:icl,ehl */ 6512 if (crtc_state->scaler_state.scaler_users > 0 && IS_GEN(dev_priv, 11)) 6513 return true; 6514 6515 return false; 6516 } 6517 6518 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, 6519 const struct intel_crtc_state *new_crtc_state) 6520 { 6521 return (!old_crtc_state->active_planes || needs_modeset(new_crtc_state)) && 6522 new_crtc_state->active_planes; 6523 } 6524 6525 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, 6526 const struct intel_crtc_state *new_crtc_state) 6527 { 6528 return old_crtc_state->active_planes && 6529 (!new_crtc_state->active_planes || needs_modeset(new_crtc_state)); 6530 } 6531 6532 static void intel_post_plane_update(struct intel_atomic_state *state, 6533 struct intel_crtc *crtc) 6534 { 6535 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6536 const struct intel_crtc_state *old_crtc_state = 6537 intel_atomic_get_old_crtc_state(state, crtc); 6538 const struct intel_crtc_state *new_crtc_state = 6539 intel_atomic_get_new_crtc_state(state, crtc); 6540 enum pipe pipe = crtc->pipe; 6541 6542 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); 6543 6544 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) 6545 intel_update_watermarks(crtc); 6546 6547 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state)) 6548 hsw_enable_ips(new_crtc_state); 6549 6550 intel_fbc_post_update(state, crtc); 6551 6552 if (needs_nv12_wa(old_crtc_state) && 6553 !needs_nv12_wa(new_crtc_state)) 6554 skl_wa_827(dev_priv, pipe, false); 6555 6556 if (needs_scalerclk_wa(old_crtc_state) && 6557 !needs_scalerclk_wa(new_crtc_state)) 6558 icl_wa_scalerclkgating(dev_priv, pipe, false); 6559 } 6560 6561 static void intel_pre_plane_update(struct intel_atomic_state *state, 6562 struct intel_crtc *crtc) 6563 { 6564 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6565 const struct intel_crtc_state *old_crtc_state = 6566 intel_atomic_get_old_crtc_state(state, crtc); 6567 const struct intel_crtc_state *new_crtc_state = 6568 intel_atomic_get_new_crtc_state(state, crtc); 6569 enum pipe pipe = crtc->pipe; 6570 6571 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state)) 6572 hsw_disable_ips(old_crtc_state); 6573 6574 if (intel_fbc_pre_update(state, crtc)) 6575 intel_wait_for_vblank(dev_priv, pipe); 6576 6577 /* Display WA 827 */ 6578 if (!needs_nv12_wa(old_crtc_state) && 6579 needs_nv12_wa(new_crtc_state)) 6580 skl_wa_827(dev_priv, pipe, true); 6581 6582 /* Wa_2006604312:icl,ehl */ 6583 if (!needs_scalerclk_wa(old_crtc_state) && 6584 needs_scalerclk_wa(new_crtc_state)) 6585 icl_wa_scalerclkgating(dev_priv, pipe, true); 6586 6587 /* 6588 * Vblank time updates from the shadow to live plane control register 6589 * are blocked if the memory self-refresh mode is active at that 6590 * moment. So to make sure the plane gets truly disabled, disable 6591 * first the self-refresh mode. The self-refresh enable bit in turn 6592 * will be checked/applied by the HW only at the next frame start 6593 * event which is after the vblank start event, so we need to have a 6594 * wait-for-vblank between disabling the plane and the pipe. 6595 */ 6596 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active && 6597 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 6598 intel_wait_for_vblank(dev_priv, pipe); 6599 6600 /* 6601 * IVB workaround: must disable low power watermarks for at least 6602 * one frame before enabling scaling. LP watermarks can be re-enabled 6603 * when scaling is disabled. 6604 * 6605 * WaCxSRDisabledForSpriteScaling:ivb 6606 */ 6607 if (old_crtc_state->hw.active && 6608 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv)) 6609 intel_wait_for_vblank(dev_priv, pipe); 6610 6611 /* 6612 * If we're doing a modeset we don't need to do any 6613 * pre-vblank watermark programming here. 6614 */ 6615 if (!needs_modeset(new_crtc_state)) { 6616 /* 6617 * For platforms that support atomic watermarks, program the 6618 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 6619 * will be the intermediate values that are safe for both pre- and 6620 * post- vblank; when vblank happens, the 'active' values will be set 6621 * to the final 'target' values and we'll do this again to get the 6622 * optimal watermarks. For gen9+ platforms, the values we program here 6623 * will be the final target values which will get automatically latched 6624 * at vblank time; no further programming will be necessary. 6625 * 6626 * If a platform hasn't been transitioned to atomic watermarks yet, 6627 * we'll continue to update watermarks the old way, if flags tell 6628 * us to. 6629 */ 6630 if (dev_priv->display.initial_watermarks) 6631 dev_priv->display.initial_watermarks(state, crtc); 6632 else if (new_crtc_state->update_wm_pre) 6633 intel_update_watermarks(crtc); 6634 } 6635 6636 /* 6637 * Gen2 reports pipe underruns whenever all planes are disabled. 6638 * So disable underrun reporting before all the planes get disabled. 6639 * 6640 * We do this after .initial_watermarks() so that we have a 6641 * chance of catching underruns with the intermediate watermarks 6642 * vs. the old plane configuration. 6643 */ 6644 if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state)) 6645 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6646 } 6647 6648 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 6649 struct intel_crtc *crtc) 6650 { 6651 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6652 const struct intel_crtc_state *new_crtc_state = 6653 intel_atomic_get_new_crtc_state(state, crtc); 6654 unsigned int update_mask = new_crtc_state->update_planes; 6655 const struct intel_plane_state *old_plane_state; 6656 struct intel_plane *plane; 6657 unsigned fb_bits = 0; 6658 int i; 6659 6660 intel_crtc_dpms_overlay_disable(crtc); 6661 6662 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 6663 if (crtc->pipe != plane->pipe || 6664 !(update_mask & BIT(plane->id))) 6665 continue; 6666 6667 intel_disable_plane(plane, new_crtc_state); 6668 6669 if (old_plane_state->uapi.visible) 6670 fb_bits |= plane->frontbuffer_bit; 6671 } 6672 6673 intel_frontbuffer_flip(dev_priv, fb_bits); 6674 } 6675 6676 /* 6677 * intel_connector_primary_encoder - get the primary encoder for a connector 6678 * @connector: connector for which to return the encoder 6679 * 6680 * Returns the primary encoder for a connector. There is a 1:1 mapping from 6681 * all connectors to their encoder, except for DP-MST connectors which have 6682 * both a virtual and a primary encoder. These DP-MST primary encoders can be 6683 * pointed to by as many DP-MST connectors as there are pipes. 6684 */ 6685 static struct intel_encoder * 6686 intel_connector_primary_encoder(struct intel_connector *connector) 6687 { 6688 struct intel_encoder *encoder; 6689 6690 if (connector->mst_port) 6691 return &dp_to_dig_port(connector->mst_port)->base; 6692 6693 encoder = intel_attached_encoder(connector); 6694 drm_WARN_ON(connector->base.dev, !encoder); 6695 6696 return encoder; 6697 } 6698 6699 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 6700 { 6701 struct drm_connector_state *new_conn_state; 6702 struct drm_connector *connector; 6703 int i; 6704 6705 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 6706 i) { 6707 struct intel_connector *intel_connector; 6708 struct intel_encoder *encoder; 6709 struct intel_crtc *crtc; 6710 6711 if (!intel_connector_needs_modeset(state, connector)) 6712 continue; 6713 6714 intel_connector = to_intel_connector(connector); 6715 encoder = intel_connector_primary_encoder(intel_connector); 6716 if (!encoder->update_prepare) 6717 continue; 6718 6719 crtc = new_conn_state->crtc ? 6720 to_intel_crtc(new_conn_state->crtc) : NULL; 6721 encoder->update_prepare(state, encoder, crtc); 6722 } 6723 } 6724 6725 static void intel_encoders_update_complete(struct intel_atomic_state *state) 6726 { 6727 struct drm_connector_state *new_conn_state; 6728 struct drm_connector *connector; 6729 int i; 6730 6731 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 6732 i) { 6733 struct intel_connector *intel_connector; 6734 struct intel_encoder *encoder; 6735 struct intel_crtc *crtc; 6736 6737 if (!intel_connector_needs_modeset(state, connector)) 6738 continue; 6739 6740 intel_connector = to_intel_connector(connector); 6741 encoder = intel_connector_primary_encoder(intel_connector); 6742 if (!encoder->update_complete) 6743 continue; 6744 6745 crtc = new_conn_state->crtc ? 6746 to_intel_crtc(new_conn_state->crtc) : NULL; 6747 encoder->update_complete(state, encoder, crtc); 6748 } 6749 } 6750 6751 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, 6752 struct intel_crtc *crtc) 6753 { 6754 const struct intel_crtc_state *crtc_state = 6755 intel_atomic_get_new_crtc_state(state, crtc); 6756 const struct drm_connector_state *conn_state; 6757 struct drm_connector *conn; 6758 int i; 6759 6760 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6761 struct intel_encoder *encoder = 6762 to_intel_encoder(conn_state->best_encoder); 6763 6764 if (conn_state->crtc != &crtc->base) 6765 continue; 6766 6767 if (encoder->pre_pll_enable) 6768 encoder->pre_pll_enable(state, encoder, 6769 crtc_state, conn_state); 6770 } 6771 } 6772 6773 static void intel_encoders_pre_enable(struct intel_atomic_state *state, 6774 struct intel_crtc *crtc) 6775 { 6776 const struct intel_crtc_state *crtc_state = 6777 intel_atomic_get_new_crtc_state(state, crtc); 6778 const struct drm_connector_state *conn_state; 6779 struct drm_connector *conn; 6780 int i; 6781 6782 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6783 struct intel_encoder *encoder = 6784 to_intel_encoder(conn_state->best_encoder); 6785 6786 if (conn_state->crtc != &crtc->base) 6787 continue; 6788 6789 if (encoder->pre_enable) 6790 encoder->pre_enable(state, encoder, 6791 crtc_state, conn_state); 6792 } 6793 } 6794 6795 static void intel_encoders_enable(struct intel_atomic_state *state, 6796 struct intel_crtc *crtc) 6797 { 6798 const struct intel_crtc_state *crtc_state = 6799 intel_atomic_get_new_crtc_state(state, crtc); 6800 const struct drm_connector_state *conn_state; 6801 struct drm_connector *conn; 6802 int i; 6803 6804 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6805 struct intel_encoder *encoder = 6806 to_intel_encoder(conn_state->best_encoder); 6807 6808 if (conn_state->crtc != &crtc->base) 6809 continue; 6810 6811 if (encoder->enable) 6812 encoder->enable(state, encoder, 6813 crtc_state, conn_state); 6814 intel_opregion_notify_encoder(encoder, true); 6815 } 6816 } 6817 6818 static void intel_encoders_disable(struct intel_atomic_state *state, 6819 struct intel_crtc *crtc) 6820 { 6821 const struct intel_crtc_state *old_crtc_state = 6822 intel_atomic_get_old_crtc_state(state, crtc); 6823 const struct drm_connector_state *old_conn_state; 6824 struct drm_connector *conn; 6825 int i; 6826 6827 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6828 struct intel_encoder *encoder = 6829 to_intel_encoder(old_conn_state->best_encoder); 6830 6831 if (old_conn_state->crtc != &crtc->base) 6832 continue; 6833 6834 intel_opregion_notify_encoder(encoder, false); 6835 if (encoder->disable) 6836 encoder->disable(state, encoder, 6837 old_crtc_state, old_conn_state); 6838 } 6839 } 6840 6841 static void intel_encoders_post_disable(struct intel_atomic_state *state, 6842 struct intel_crtc *crtc) 6843 { 6844 const struct intel_crtc_state *old_crtc_state = 6845 intel_atomic_get_old_crtc_state(state, crtc); 6846 const struct drm_connector_state *old_conn_state; 6847 struct drm_connector *conn; 6848 int i; 6849 6850 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6851 struct intel_encoder *encoder = 6852 to_intel_encoder(old_conn_state->best_encoder); 6853 6854 if (old_conn_state->crtc != &crtc->base) 6855 continue; 6856 6857 if (encoder->post_disable) 6858 encoder->post_disable(state, encoder, 6859 old_crtc_state, old_conn_state); 6860 } 6861 } 6862 6863 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, 6864 struct intel_crtc *crtc) 6865 { 6866 const struct intel_crtc_state *old_crtc_state = 6867 intel_atomic_get_old_crtc_state(state, crtc); 6868 const struct drm_connector_state *old_conn_state; 6869 struct drm_connector *conn; 6870 int i; 6871 6872 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6873 struct intel_encoder *encoder = 6874 to_intel_encoder(old_conn_state->best_encoder); 6875 6876 if (old_conn_state->crtc != &crtc->base) 6877 continue; 6878 6879 if (encoder->post_pll_disable) 6880 encoder->post_pll_disable(state, encoder, 6881 old_crtc_state, old_conn_state); 6882 } 6883 } 6884 6885 static void intel_encoders_update_pipe(struct intel_atomic_state *state, 6886 struct intel_crtc *crtc) 6887 { 6888 const struct intel_crtc_state *crtc_state = 6889 intel_atomic_get_new_crtc_state(state, crtc); 6890 const struct drm_connector_state *conn_state; 6891 struct drm_connector *conn; 6892 int i; 6893 6894 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6895 struct intel_encoder *encoder = 6896 to_intel_encoder(conn_state->best_encoder); 6897 6898 if (conn_state->crtc != &crtc->base) 6899 continue; 6900 6901 if (encoder->update_pipe) 6902 encoder->update_pipe(state, encoder, 6903 crtc_state, conn_state); 6904 } 6905 } 6906 6907 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 6908 { 6909 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6910 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 6911 6912 plane->disable_plane(plane, crtc_state); 6913 } 6914 6915 static void ilk_crtc_enable(struct intel_atomic_state *state, 6916 struct intel_crtc *crtc) 6917 { 6918 const struct intel_crtc_state *new_crtc_state = 6919 intel_atomic_get_new_crtc_state(state, crtc); 6920 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6921 enum pipe pipe = crtc->pipe; 6922 6923 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 6924 return; 6925 6926 /* 6927 * Sometimes spurious CPU pipe underruns happen during FDI 6928 * training, at least with VGA+HDMI cloning. Suppress them. 6929 * 6930 * On ILK we get an occasional spurious CPU pipe underruns 6931 * between eDP port A enable and vdd enable. Also PCH port 6932 * enable seems to result in the occasional CPU pipe underrun. 6933 * 6934 * Spurious PCH underruns also occur during PCH enabling. 6935 */ 6936 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6937 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 6938 6939 if (new_crtc_state->has_pch_encoder) 6940 intel_prepare_shared_dpll(new_crtc_state); 6941 6942 if (intel_crtc_has_dp_encoder(new_crtc_state)) 6943 intel_dp_set_m_n(new_crtc_state, M1_N1); 6944 6945 intel_set_pipe_timings(new_crtc_state); 6946 intel_set_pipe_src_size(new_crtc_state); 6947 6948 if (new_crtc_state->has_pch_encoder) 6949 intel_cpu_transcoder_set_m_n(new_crtc_state, 6950 &new_crtc_state->fdi_m_n, NULL); 6951 6952 ilk_set_pipeconf(new_crtc_state); 6953 6954 crtc->active = true; 6955 6956 intel_encoders_pre_enable(state, crtc); 6957 6958 if (new_crtc_state->has_pch_encoder) { 6959 /* Note: FDI PLL enabling _must_ be done before we enable the 6960 * cpu pipes, hence this is separate from all the other fdi/pch 6961 * enabling. */ 6962 ilk_fdi_pll_enable(new_crtc_state); 6963 } else { 6964 assert_fdi_tx_disabled(dev_priv, pipe); 6965 assert_fdi_rx_disabled(dev_priv, pipe); 6966 } 6967 6968 ilk_pfit_enable(new_crtc_state); 6969 6970 /* 6971 * On ILK+ LUT must be loaded before the pipe is running but with 6972 * clocks enabled 6973 */ 6974 intel_color_load_luts(new_crtc_state); 6975 intel_color_commit(new_crtc_state); 6976 /* update DSPCNTR to configure gamma for pipe bottom color */ 6977 intel_disable_primary_plane(new_crtc_state); 6978 6979 if (dev_priv->display.initial_watermarks) 6980 dev_priv->display.initial_watermarks(state, crtc); 6981 intel_enable_pipe(new_crtc_state); 6982 6983 if (new_crtc_state->has_pch_encoder) 6984 ilk_pch_enable(state, new_crtc_state); 6985 6986 intel_crtc_vblank_on(new_crtc_state); 6987 6988 intel_encoders_enable(state, crtc); 6989 6990 if (HAS_PCH_CPT(dev_priv)) 6991 cpt_verify_modeset(dev_priv, pipe); 6992 6993 /* 6994 * Must wait for vblank to avoid spurious PCH FIFO underruns. 6995 * And a second vblank wait is needed at least on ILK with 6996 * some interlaced HDMI modes. Let's do the double wait always 6997 * in case there are more corner cases we don't know about. 6998 */ 6999 if (new_crtc_state->has_pch_encoder) { 7000 intel_wait_for_vblank(dev_priv, pipe); 7001 intel_wait_for_vblank(dev_priv, pipe); 7002 } 7003 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7004 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 7005 } 7006 7007 /* IPS only exists on ULT machines and is tied to pipe A. */ 7008 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 7009 { 7010 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 7011 } 7012 7013 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 7014 enum pipe pipe, bool apply) 7015 { 7016 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)); 7017 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 7018 7019 if (apply) 7020 val |= mask; 7021 else 7022 val &= ~mask; 7023 7024 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val); 7025 } 7026 7027 static void icl_pipe_mbus_enable(struct intel_crtc *crtc) 7028 { 7029 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7030 enum pipe pipe = crtc->pipe; 7031 u32 val; 7032 7033 val = MBUS_DBOX_A_CREDIT(2); 7034 7035 if (INTEL_GEN(dev_priv) >= 12) { 7036 val |= MBUS_DBOX_BW_CREDIT(2); 7037 val |= MBUS_DBOX_B_CREDIT(12); 7038 } else { 7039 val |= MBUS_DBOX_BW_CREDIT(1); 7040 val |= MBUS_DBOX_B_CREDIT(8); 7041 } 7042 7043 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val); 7044 } 7045 7046 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) 7047 { 7048 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7049 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7050 7051 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe), 7052 HSW_LINETIME(crtc_state->linetime) | 7053 HSW_IPS_LINETIME(crtc_state->ips_linetime)); 7054 } 7055 7056 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) 7057 { 7058 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7059 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7060 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder); 7061 u32 val; 7062 7063 val = intel_de_read(dev_priv, reg); 7064 val &= ~HSW_FRAME_START_DELAY_MASK; 7065 val |= HSW_FRAME_START_DELAY(0); 7066 intel_de_write(dev_priv, reg, val); 7067 } 7068 7069 static void hsw_crtc_enable(struct intel_atomic_state *state, 7070 struct intel_crtc *crtc) 7071 { 7072 const struct intel_crtc_state *new_crtc_state = 7073 intel_atomic_get_new_crtc_state(state, crtc); 7074 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7075 enum pipe pipe = crtc->pipe, hsw_workaround_pipe; 7076 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 7077 bool psl_clkgate_wa; 7078 7079 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7080 return; 7081 7082 intel_encoders_pre_pll_enable(state, crtc); 7083 7084 if (new_crtc_state->shared_dpll) 7085 intel_enable_shared_dpll(new_crtc_state); 7086 7087 intel_encoders_pre_enable(state, crtc); 7088 7089 if (!transcoder_is_dsi(cpu_transcoder)) 7090 intel_set_pipe_timings(new_crtc_state); 7091 7092 intel_set_pipe_src_size(new_crtc_state); 7093 7094 if (cpu_transcoder != TRANSCODER_EDP && 7095 !transcoder_is_dsi(cpu_transcoder)) 7096 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder), 7097 new_crtc_state->pixel_multiplier - 1); 7098 7099 if (new_crtc_state->has_pch_encoder) 7100 intel_cpu_transcoder_set_m_n(new_crtc_state, 7101 &new_crtc_state->fdi_m_n, NULL); 7102 7103 if (!transcoder_is_dsi(cpu_transcoder)) { 7104 hsw_set_frame_start_delay(new_crtc_state); 7105 hsw_set_pipeconf(new_crtc_state); 7106 } 7107 7108 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 7109 bdw_set_pipemisc(new_crtc_state); 7110 7111 crtc->active = true; 7112 7113 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */ 7114 psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) && 7115 new_crtc_state->pch_pfit.enabled; 7116 if (psl_clkgate_wa) 7117 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 7118 7119 if (INTEL_GEN(dev_priv) >= 9) 7120 skl_pfit_enable(new_crtc_state); 7121 else 7122 ilk_pfit_enable(new_crtc_state); 7123 7124 /* 7125 * On ILK+ LUT must be loaded before the pipe is running but with 7126 * clocks enabled 7127 */ 7128 intel_color_load_luts(new_crtc_state); 7129 intel_color_commit(new_crtc_state); 7130 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 7131 if (INTEL_GEN(dev_priv) < 9) 7132 intel_disable_primary_plane(new_crtc_state); 7133 7134 hsw_set_linetime_wm(new_crtc_state); 7135 7136 if (INTEL_GEN(dev_priv) >= 11) 7137 icl_set_pipe_chicken(crtc); 7138 7139 if (dev_priv->display.initial_watermarks) 7140 dev_priv->display.initial_watermarks(state, crtc); 7141 7142 if (INTEL_GEN(dev_priv) >= 11) 7143 icl_pipe_mbus_enable(crtc); 7144 7145 intel_encoders_enable(state, crtc); 7146 7147 if (psl_clkgate_wa) { 7148 intel_wait_for_vblank(dev_priv, pipe); 7149 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 7150 } 7151 7152 /* If we change the relative order between pipe/planes enabling, we need 7153 * to change the workaround. */ 7154 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe; 7155 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 7156 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 7157 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 7158 } 7159 } 7160 7161 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state) 7162 { 7163 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 7164 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7165 enum pipe pipe = crtc->pipe; 7166 7167 /* To avoid upsetting the power well on haswell only disable the pfit if 7168 * it's in use. The hw state code will make sure we get this right. */ 7169 if (!old_crtc_state->pch_pfit.enabled) 7170 return; 7171 7172 intel_de_write(dev_priv, PF_CTL(pipe), 0); 7173 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0); 7174 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0); 7175 } 7176 7177 static void ilk_crtc_disable(struct intel_atomic_state *state, 7178 struct intel_crtc *crtc) 7179 { 7180 const struct intel_crtc_state *old_crtc_state = 7181 intel_atomic_get_old_crtc_state(state, crtc); 7182 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7183 enum pipe pipe = crtc->pipe; 7184 7185 /* 7186 * Sometimes spurious CPU pipe underruns happen when the 7187 * pipe is already disabled, but FDI RX/TX is still enabled. 7188 * Happens at least with VGA+HDMI cloning. Suppress them. 7189 */ 7190 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 7191 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 7192 7193 intel_encoders_disable(state, crtc); 7194 7195 intel_crtc_vblank_off(old_crtc_state); 7196 7197 intel_disable_pipe(old_crtc_state); 7198 7199 ilk_pfit_disable(old_crtc_state); 7200 7201 if (old_crtc_state->has_pch_encoder) 7202 ilk_fdi_disable(crtc); 7203 7204 intel_encoders_post_disable(state, crtc); 7205 7206 if (old_crtc_state->has_pch_encoder) { 7207 ilk_disable_pch_transcoder(dev_priv, pipe); 7208 7209 if (HAS_PCH_CPT(dev_priv)) { 7210 i915_reg_t reg; 7211 u32 temp; 7212 7213 /* disable TRANS_DP_CTL */ 7214 reg = TRANS_DP_CTL(pipe); 7215 temp = intel_de_read(dev_priv, reg); 7216 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 7217 TRANS_DP_PORT_SEL_MASK); 7218 temp |= TRANS_DP_PORT_SEL_NONE; 7219 intel_de_write(dev_priv, reg, temp); 7220 7221 /* disable DPLL_SEL */ 7222 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 7223 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 7224 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 7225 } 7226 7227 ilk_fdi_pll_disable(crtc); 7228 } 7229 7230 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7231 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 7232 } 7233 7234 static void hsw_crtc_disable(struct intel_atomic_state *state, 7235 struct intel_crtc *crtc) 7236 { 7237 /* 7238 * FIXME collapse everything to one hook. 7239 * Need care with mst->ddi interactions. 7240 */ 7241 intel_encoders_disable(state, crtc); 7242 intel_encoders_post_disable(state, crtc); 7243 } 7244 7245 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 7246 { 7247 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7248 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7249 7250 if (!crtc_state->gmch_pfit.control) 7251 return; 7252 7253 /* 7254 * The panel fitter should only be adjusted whilst the pipe is disabled, 7255 * according to register description and PRM. 7256 */ 7257 drm_WARN_ON(&dev_priv->drm, 7258 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE); 7259 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 7260 7261 intel_de_write(dev_priv, PFIT_PGM_RATIOS, 7262 crtc_state->gmch_pfit.pgm_ratios); 7263 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control); 7264 7265 /* Border color in case we don't scale up to the full screen. Black by 7266 * default, change to something else for debugging. */ 7267 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0); 7268 } 7269 7270 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 7271 { 7272 if (phy == PHY_NONE) 7273 return false; 7274 else if (IS_ROCKETLAKE(dev_priv)) 7275 return phy <= PHY_D; 7276 else if (IS_ELKHARTLAKE(dev_priv)) 7277 return phy <= PHY_C; 7278 else if (INTEL_GEN(dev_priv) >= 11) 7279 return phy <= PHY_B; 7280 else 7281 return false; 7282 } 7283 7284 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 7285 { 7286 if (IS_ROCKETLAKE(dev_priv)) 7287 return false; 7288 else if (INTEL_GEN(dev_priv) >= 12) 7289 return phy >= PHY_D && phy <= PHY_I; 7290 else if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv)) 7291 return phy >= PHY_C && phy <= PHY_F; 7292 else 7293 return false; 7294 } 7295 7296 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 7297 { 7298 if (IS_ROCKETLAKE(i915) && port >= PORT_D) 7299 return (enum phy)port - 1; 7300 else if (IS_ELKHARTLAKE(i915) && port == PORT_D) 7301 return PHY_A; 7302 7303 return (enum phy)port; 7304 } 7305 7306 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 7307 { 7308 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 7309 return PORT_TC_NONE; 7310 7311 if (INTEL_GEN(dev_priv) >= 12) 7312 return port - PORT_D; 7313 7314 return port - PORT_C; 7315 } 7316 7317 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 7318 { 7319 switch (port) { 7320 case PORT_A: 7321 return POWER_DOMAIN_PORT_DDI_A_LANES; 7322 case PORT_B: 7323 return POWER_DOMAIN_PORT_DDI_B_LANES; 7324 case PORT_C: 7325 return POWER_DOMAIN_PORT_DDI_C_LANES; 7326 case PORT_D: 7327 return POWER_DOMAIN_PORT_DDI_D_LANES; 7328 case PORT_E: 7329 return POWER_DOMAIN_PORT_DDI_E_LANES; 7330 case PORT_F: 7331 return POWER_DOMAIN_PORT_DDI_F_LANES; 7332 case PORT_G: 7333 return POWER_DOMAIN_PORT_DDI_G_LANES; 7334 default: 7335 MISSING_CASE(port); 7336 return POWER_DOMAIN_PORT_OTHER; 7337 } 7338 } 7339 7340 enum intel_display_power_domain 7341 intel_aux_power_domain(struct intel_digital_port *dig_port) 7342 { 7343 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 7344 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 7345 7346 if (intel_phy_is_tc(dev_priv, phy) && 7347 dig_port->tc_mode == TC_PORT_TBT_ALT) { 7348 switch (dig_port->aux_ch) { 7349 case AUX_CH_C: 7350 return POWER_DOMAIN_AUX_C_TBT; 7351 case AUX_CH_D: 7352 return POWER_DOMAIN_AUX_D_TBT; 7353 case AUX_CH_E: 7354 return POWER_DOMAIN_AUX_E_TBT; 7355 case AUX_CH_F: 7356 return POWER_DOMAIN_AUX_F_TBT; 7357 case AUX_CH_G: 7358 return POWER_DOMAIN_AUX_G_TBT; 7359 default: 7360 MISSING_CASE(dig_port->aux_ch); 7361 return POWER_DOMAIN_AUX_C_TBT; 7362 } 7363 } 7364 7365 return intel_legacy_aux_to_power_domain(dig_port->aux_ch); 7366 } 7367 7368 /* 7369 * Converts aux_ch to power_domain without caring about TBT ports for that use 7370 * intel_aux_power_domain() 7371 */ 7372 enum intel_display_power_domain 7373 intel_legacy_aux_to_power_domain(enum aux_ch aux_ch) 7374 { 7375 switch (aux_ch) { 7376 case AUX_CH_A: 7377 return POWER_DOMAIN_AUX_A; 7378 case AUX_CH_B: 7379 return POWER_DOMAIN_AUX_B; 7380 case AUX_CH_C: 7381 return POWER_DOMAIN_AUX_C; 7382 case AUX_CH_D: 7383 return POWER_DOMAIN_AUX_D; 7384 case AUX_CH_E: 7385 return POWER_DOMAIN_AUX_E; 7386 case AUX_CH_F: 7387 return POWER_DOMAIN_AUX_F; 7388 case AUX_CH_G: 7389 return POWER_DOMAIN_AUX_G; 7390 default: 7391 MISSING_CASE(aux_ch); 7392 return POWER_DOMAIN_AUX_A; 7393 } 7394 } 7395 7396 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 7397 { 7398 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7399 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7400 struct drm_encoder *encoder; 7401 enum pipe pipe = crtc->pipe; 7402 u64 mask; 7403 enum transcoder transcoder = crtc_state->cpu_transcoder; 7404 7405 if (!crtc_state->hw.active) 7406 return 0; 7407 7408 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 7409 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); 7410 if (crtc_state->pch_pfit.enabled || 7411 crtc_state->pch_pfit.force_thru) 7412 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 7413 7414 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 7415 crtc_state->uapi.encoder_mask) { 7416 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 7417 7418 mask |= BIT_ULL(intel_encoder->power_domain); 7419 } 7420 7421 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 7422 mask |= BIT_ULL(POWER_DOMAIN_AUDIO); 7423 7424 if (crtc_state->shared_dpll) 7425 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 7426 7427 return mask; 7428 } 7429 7430 static u64 7431 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 7432 { 7433 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7434 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7435 enum intel_display_power_domain domain; 7436 u64 domains, new_domains, old_domains; 7437 7438 old_domains = crtc->enabled_power_domains; 7439 crtc->enabled_power_domains = new_domains = 7440 get_crtc_power_domains(crtc_state); 7441 7442 domains = new_domains & ~old_domains; 7443 7444 for_each_power_domain(domain, domains) 7445 intel_display_power_get(dev_priv, domain); 7446 7447 return old_domains & ~new_domains; 7448 } 7449 7450 static void modeset_put_power_domains(struct drm_i915_private *dev_priv, 7451 u64 domains) 7452 { 7453 enum intel_display_power_domain domain; 7454 7455 for_each_power_domain(domain, domains) 7456 intel_display_power_put_unchecked(dev_priv, domain); 7457 } 7458 7459 static void valleyview_crtc_enable(struct intel_atomic_state *state, 7460 struct intel_crtc *crtc) 7461 { 7462 const struct intel_crtc_state *new_crtc_state = 7463 intel_atomic_get_new_crtc_state(state, crtc); 7464 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7465 enum pipe pipe = crtc->pipe; 7466 7467 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7468 return; 7469 7470 if (intel_crtc_has_dp_encoder(new_crtc_state)) 7471 intel_dp_set_m_n(new_crtc_state, M1_N1); 7472 7473 intel_set_pipe_timings(new_crtc_state); 7474 intel_set_pipe_src_size(new_crtc_state); 7475 7476 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 7477 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY); 7478 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0); 7479 } 7480 7481 i9xx_set_pipeconf(new_crtc_state); 7482 7483 crtc->active = true; 7484 7485 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7486 7487 intel_encoders_pre_pll_enable(state, crtc); 7488 7489 if (IS_CHERRYVIEW(dev_priv)) { 7490 chv_prepare_pll(crtc, new_crtc_state); 7491 chv_enable_pll(crtc, new_crtc_state); 7492 } else { 7493 vlv_prepare_pll(crtc, new_crtc_state); 7494 vlv_enable_pll(crtc, new_crtc_state); 7495 } 7496 7497 intel_encoders_pre_enable(state, crtc); 7498 7499 i9xx_pfit_enable(new_crtc_state); 7500 7501 intel_color_load_luts(new_crtc_state); 7502 intel_color_commit(new_crtc_state); 7503 /* update DSPCNTR to configure gamma for pipe bottom color */ 7504 intel_disable_primary_plane(new_crtc_state); 7505 7506 dev_priv->display.initial_watermarks(state, crtc); 7507 intel_enable_pipe(new_crtc_state); 7508 7509 intel_crtc_vblank_on(new_crtc_state); 7510 7511 intel_encoders_enable(state, crtc); 7512 } 7513 7514 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) 7515 { 7516 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7517 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7518 7519 intel_de_write(dev_priv, FP0(crtc->pipe), 7520 crtc_state->dpll_hw_state.fp0); 7521 intel_de_write(dev_priv, FP1(crtc->pipe), 7522 crtc_state->dpll_hw_state.fp1); 7523 } 7524 7525 static void i9xx_crtc_enable(struct intel_atomic_state *state, 7526 struct intel_crtc *crtc) 7527 { 7528 const struct intel_crtc_state *new_crtc_state = 7529 intel_atomic_get_new_crtc_state(state, crtc); 7530 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7531 enum pipe pipe = crtc->pipe; 7532 7533 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7534 return; 7535 7536 i9xx_set_pll_dividers(new_crtc_state); 7537 7538 if (intel_crtc_has_dp_encoder(new_crtc_state)) 7539 intel_dp_set_m_n(new_crtc_state, M1_N1); 7540 7541 intel_set_pipe_timings(new_crtc_state); 7542 intel_set_pipe_src_size(new_crtc_state); 7543 7544 i9xx_set_pipeconf(new_crtc_state); 7545 7546 crtc->active = true; 7547 7548 if (!IS_GEN(dev_priv, 2)) 7549 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7550 7551 intel_encoders_pre_enable(state, crtc); 7552 7553 i9xx_enable_pll(crtc, new_crtc_state); 7554 7555 i9xx_pfit_enable(new_crtc_state); 7556 7557 intel_color_load_luts(new_crtc_state); 7558 intel_color_commit(new_crtc_state); 7559 /* update DSPCNTR to configure gamma for pipe bottom color */ 7560 intel_disable_primary_plane(new_crtc_state); 7561 7562 if (dev_priv->display.initial_watermarks) 7563 dev_priv->display.initial_watermarks(state, crtc); 7564 else 7565 intel_update_watermarks(crtc); 7566 intel_enable_pipe(new_crtc_state); 7567 7568 intel_crtc_vblank_on(new_crtc_state); 7569 7570 intel_encoders_enable(state, crtc); 7571 7572 /* prevents spurious underruns */ 7573 if (IS_GEN(dev_priv, 2)) 7574 intel_wait_for_vblank(dev_priv, pipe); 7575 } 7576 7577 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 7578 { 7579 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 7580 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7581 7582 if (!old_crtc_state->gmch_pfit.control) 7583 return; 7584 7585 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 7586 7587 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n", 7588 intel_de_read(dev_priv, PFIT_CONTROL)); 7589 intel_de_write(dev_priv, PFIT_CONTROL, 0); 7590 } 7591 7592 static void i9xx_crtc_disable(struct intel_atomic_state *state, 7593 struct intel_crtc *crtc) 7594 { 7595 struct intel_crtc_state *old_crtc_state = 7596 intel_atomic_get_old_crtc_state(state, crtc); 7597 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7598 enum pipe pipe = crtc->pipe; 7599 7600 /* 7601 * On gen2 planes are double buffered but the pipe isn't, so we must 7602 * wait for planes to fully turn off before disabling the pipe. 7603 */ 7604 if (IS_GEN(dev_priv, 2)) 7605 intel_wait_for_vblank(dev_priv, pipe); 7606 7607 intel_encoders_disable(state, crtc); 7608 7609 intel_crtc_vblank_off(old_crtc_state); 7610 7611 intel_disable_pipe(old_crtc_state); 7612 7613 i9xx_pfit_disable(old_crtc_state); 7614 7615 intel_encoders_post_disable(state, crtc); 7616 7617 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 7618 if (IS_CHERRYVIEW(dev_priv)) 7619 chv_disable_pll(dev_priv, pipe); 7620 else if (IS_VALLEYVIEW(dev_priv)) 7621 vlv_disable_pll(dev_priv, pipe); 7622 else 7623 i9xx_disable_pll(old_crtc_state); 7624 } 7625 7626 intel_encoders_post_pll_disable(state, crtc); 7627 7628 if (!IS_GEN(dev_priv, 2)) 7629 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 7630 7631 if (!dev_priv->display.initial_watermarks) 7632 intel_update_watermarks(crtc); 7633 7634 /* clock the pipe down to 640x480@60 to potentially save power */ 7635 if (IS_I830(dev_priv)) 7636 i830_enable_pipe(dev_priv, pipe); 7637 } 7638 7639 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc, 7640 struct drm_modeset_acquire_ctx *ctx) 7641 { 7642 struct intel_encoder *encoder; 7643 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7644 struct intel_bw_state *bw_state = 7645 to_intel_bw_state(dev_priv->bw_obj.state); 7646 struct intel_cdclk_state *cdclk_state = 7647 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 7648 struct intel_dbuf_state *dbuf_state = 7649 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 7650 struct intel_crtc_state *crtc_state = 7651 to_intel_crtc_state(crtc->base.state); 7652 enum intel_display_power_domain domain; 7653 struct intel_plane *plane; 7654 struct drm_atomic_state *state; 7655 struct intel_crtc_state *temp_crtc_state; 7656 enum pipe pipe = crtc->pipe; 7657 u64 domains; 7658 int ret; 7659 7660 if (!crtc_state->hw.active) 7661 return; 7662 7663 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 7664 const struct intel_plane_state *plane_state = 7665 to_intel_plane_state(plane->base.state); 7666 7667 if (plane_state->uapi.visible) 7668 intel_plane_disable_noatomic(crtc, plane); 7669 } 7670 7671 state = drm_atomic_state_alloc(&dev_priv->drm); 7672 if (!state) { 7673 drm_dbg_kms(&dev_priv->drm, 7674 "failed to disable [CRTC:%d:%s], out of memory", 7675 crtc->base.base.id, crtc->base.name); 7676 return; 7677 } 7678 7679 state->acquire_ctx = ctx; 7680 7681 /* Everything's already locked, -EDEADLK can't happen. */ 7682 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc); 7683 ret = drm_atomic_add_affected_connectors(state, &crtc->base); 7684 7685 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret); 7686 7687 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc); 7688 7689 drm_atomic_state_put(state); 7690 7691 drm_dbg_kms(&dev_priv->drm, 7692 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 7693 crtc->base.base.id, crtc->base.name); 7694 7695 crtc->active = false; 7696 crtc->base.enabled = false; 7697 7698 drm_WARN_ON(&dev_priv->drm, 7699 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0); 7700 crtc_state->uapi.active = false; 7701 crtc_state->uapi.connector_mask = 0; 7702 crtc_state->uapi.encoder_mask = 0; 7703 intel_crtc_free_hw_state(crtc_state); 7704 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw)); 7705 7706 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder) 7707 encoder->base.crtc = NULL; 7708 7709 intel_fbc_disable(crtc); 7710 intel_update_watermarks(crtc); 7711 intel_disable_shared_dpll(crtc_state); 7712 7713 domains = crtc->enabled_power_domains; 7714 for_each_power_domain(domain, domains) 7715 intel_display_power_put_unchecked(dev_priv, domain); 7716 crtc->enabled_power_domains = 0; 7717 7718 dev_priv->active_pipes &= ~BIT(pipe); 7719 cdclk_state->min_cdclk[pipe] = 0; 7720 cdclk_state->min_voltage_level[pipe] = 0; 7721 cdclk_state->active_pipes &= ~BIT(pipe); 7722 7723 dbuf_state->active_pipes &= ~BIT(pipe); 7724 7725 bw_state->data_rate[pipe] = 0; 7726 bw_state->num_active_planes[pipe] = 0; 7727 } 7728 7729 /* 7730 * turn all crtc's off, but do not adjust state 7731 * This has to be paired with a call to intel_modeset_setup_hw_state. 7732 */ 7733 int intel_display_suspend(struct drm_device *dev) 7734 { 7735 struct drm_i915_private *dev_priv = to_i915(dev); 7736 struct drm_atomic_state *state; 7737 int ret; 7738 7739 state = drm_atomic_helper_suspend(dev); 7740 ret = PTR_ERR_OR_ZERO(state); 7741 if (ret) 7742 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 7743 ret); 7744 else 7745 dev_priv->modeset_restore_state = state; 7746 return ret; 7747 } 7748 7749 void intel_encoder_destroy(struct drm_encoder *encoder) 7750 { 7751 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 7752 7753 drm_encoder_cleanup(encoder); 7754 kfree(intel_encoder); 7755 } 7756 7757 /* Cross check the actual hw state with our own modeset state tracking (and it's 7758 * internal consistency). */ 7759 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 7760 struct drm_connector_state *conn_state) 7761 { 7762 struct intel_connector *connector = to_intel_connector(conn_state->connector); 7763 struct drm_i915_private *i915 = to_i915(connector->base.dev); 7764 7765 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 7766 connector->base.base.id, connector->base.name); 7767 7768 if (connector->get_hw_state(connector)) { 7769 struct intel_encoder *encoder = intel_attached_encoder(connector); 7770 7771 I915_STATE_WARN(!crtc_state, 7772 "connector enabled without attached crtc\n"); 7773 7774 if (!crtc_state) 7775 return; 7776 7777 I915_STATE_WARN(!crtc_state->hw.active, 7778 "connector is active, but attached crtc isn't\n"); 7779 7780 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 7781 return; 7782 7783 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 7784 "atomic encoder doesn't match attached encoder\n"); 7785 7786 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 7787 "attached encoder crtc differs from connector crtc\n"); 7788 } else { 7789 I915_STATE_WARN(crtc_state && crtc_state->hw.active, 7790 "attached crtc is active, but connector isn't\n"); 7791 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 7792 "best encoder set without crtc!\n"); 7793 } 7794 } 7795 7796 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state) 7797 { 7798 if (crtc_state->hw.enable && crtc_state->has_pch_encoder) 7799 return crtc_state->fdi_lanes; 7800 7801 return 0; 7802 } 7803 7804 static int ilk_check_fdi_lanes(struct drm_device *dev, enum pipe pipe, 7805 struct intel_crtc_state *pipe_config) 7806 { 7807 struct drm_i915_private *dev_priv = to_i915(dev); 7808 struct drm_atomic_state *state = pipe_config->uapi.state; 7809 struct intel_crtc *other_crtc; 7810 struct intel_crtc_state *other_crtc_state; 7811 7812 drm_dbg_kms(&dev_priv->drm, 7813 "checking fdi config on pipe %c, lanes %i\n", 7814 pipe_name(pipe), pipe_config->fdi_lanes); 7815 if (pipe_config->fdi_lanes > 4) { 7816 drm_dbg_kms(&dev_priv->drm, 7817 "invalid fdi lane config on pipe %c: %i lanes\n", 7818 pipe_name(pipe), pipe_config->fdi_lanes); 7819 return -EINVAL; 7820 } 7821 7822 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 7823 if (pipe_config->fdi_lanes > 2) { 7824 drm_dbg_kms(&dev_priv->drm, 7825 "only 2 lanes on haswell, required: %i lanes\n", 7826 pipe_config->fdi_lanes); 7827 return -EINVAL; 7828 } else { 7829 return 0; 7830 } 7831 } 7832 7833 if (INTEL_NUM_PIPES(dev_priv) == 2) 7834 return 0; 7835 7836 /* Ivybridge 3 pipe is really complicated */ 7837 switch (pipe) { 7838 case PIPE_A: 7839 return 0; 7840 case PIPE_B: 7841 if (pipe_config->fdi_lanes <= 2) 7842 return 0; 7843 7844 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C); 7845 other_crtc_state = 7846 intel_atomic_get_crtc_state(state, other_crtc); 7847 if (IS_ERR(other_crtc_state)) 7848 return PTR_ERR(other_crtc_state); 7849 7850 if (pipe_required_fdi_lanes(other_crtc_state) > 0) { 7851 drm_dbg_kms(&dev_priv->drm, 7852 "invalid shared fdi lane config on pipe %c: %i lanes\n", 7853 pipe_name(pipe), pipe_config->fdi_lanes); 7854 return -EINVAL; 7855 } 7856 return 0; 7857 case PIPE_C: 7858 if (pipe_config->fdi_lanes > 2) { 7859 drm_dbg_kms(&dev_priv->drm, 7860 "only 2 lanes on pipe %c: required %i lanes\n", 7861 pipe_name(pipe), pipe_config->fdi_lanes); 7862 return -EINVAL; 7863 } 7864 7865 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B); 7866 other_crtc_state = 7867 intel_atomic_get_crtc_state(state, other_crtc); 7868 if (IS_ERR(other_crtc_state)) 7869 return PTR_ERR(other_crtc_state); 7870 7871 if (pipe_required_fdi_lanes(other_crtc_state) > 2) { 7872 drm_dbg_kms(&dev_priv->drm, 7873 "fdi link B uses too many lanes to enable link C\n"); 7874 return -EINVAL; 7875 } 7876 return 0; 7877 default: 7878 BUG(); 7879 } 7880 } 7881 7882 #define RETRY 1 7883 static int ilk_fdi_compute_config(struct intel_crtc *intel_crtc, 7884 struct intel_crtc_state *pipe_config) 7885 { 7886 struct drm_device *dev = intel_crtc->base.dev; 7887 struct drm_i915_private *i915 = to_i915(dev); 7888 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 7889 int lane, link_bw, fdi_dotclock, ret; 7890 bool needs_recompute = false; 7891 7892 retry: 7893 /* FDI is a binary signal running at ~2.7GHz, encoding 7894 * each output octet as 10 bits. The actual frequency 7895 * is stored as a divider into a 100MHz clock, and the 7896 * mode pixel clock is stored in units of 1KHz. 7897 * Hence the bw of each lane in terms of the mode signal 7898 * is: 7899 */ 7900 link_bw = intel_fdi_link_freq(i915, pipe_config); 7901 7902 fdi_dotclock = adjusted_mode->crtc_clock; 7903 7904 lane = ilk_get_lanes_required(fdi_dotclock, link_bw, 7905 pipe_config->pipe_bpp); 7906 7907 pipe_config->fdi_lanes = lane; 7908 7909 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock, 7910 link_bw, &pipe_config->fdi_m_n, false, false); 7911 7912 ret = ilk_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config); 7913 if (ret == -EDEADLK) 7914 return ret; 7915 7916 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) { 7917 pipe_config->pipe_bpp -= 2*3; 7918 drm_dbg_kms(&i915->drm, 7919 "fdi link bw constraint, reducing pipe bpp to %i\n", 7920 pipe_config->pipe_bpp); 7921 needs_recompute = true; 7922 pipe_config->bw_constrained = true; 7923 7924 goto retry; 7925 } 7926 7927 if (needs_recompute) 7928 return RETRY; 7929 7930 return ret; 7931 } 7932 7933 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 7934 { 7935 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7936 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7937 7938 /* IPS only exists on ULT machines and is tied to pipe A. */ 7939 if (!hsw_crtc_supports_ips(crtc)) 7940 return false; 7941 7942 if (!dev_priv->params.enable_ips) 7943 return false; 7944 7945 if (crtc_state->pipe_bpp > 24) 7946 return false; 7947 7948 /* 7949 * We compare against max which means we must take 7950 * the increased cdclk requirement into account when 7951 * calculating the new cdclk. 7952 * 7953 * Should measure whether using a lower cdclk w/o IPS 7954 */ 7955 if (IS_BROADWELL(dev_priv) && 7956 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 7957 return false; 7958 7959 return true; 7960 } 7961 7962 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 7963 { 7964 struct drm_i915_private *dev_priv = 7965 to_i915(crtc_state->uapi.crtc->dev); 7966 struct intel_atomic_state *state = 7967 to_intel_atomic_state(crtc_state->uapi.state); 7968 7969 crtc_state->ips_enabled = false; 7970 7971 if (!hsw_crtc_state_ips_capable(crtc_state)) 7972 return 0; 7973 7974 /* 7975 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 7976 * enabled and disabled dynamically based on package C states, 7977 * user space can't make reliable use of the CRCs, so let's just 7978 * completely disable it. 7979 */ 7980 if (crtc_state->crc_enabled) 7981 return 0; 7982 7983 /* IPS should be fine as long as at least one plane is enabled. */ 7984 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 7985 return 0; 7986 7987 if (IS_BROADWELL(dev_priv)) { 7988 const struct intel_cdclk_state *cdclk_state; 7989 7990 cdclk_state = intel_atomic_get_cdclk_state(state); 7991 if (IS_ERR(cdclk_state)) 7992 return PTR_ERR(cdclk_state); 7993 7994 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 7995 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100) 7996 return 0; 7997 } 7998 7999 crtc_state->ips_enabled = true; 8000 8001 return 0; 8002 } 8003 8004 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 8005 { 8006 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8007 8008 /* GDG double wide on either pipe, otherwise pipe A only */ 8009 return INTEL_GEN(dev_priv) < 4 && 8010 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 8011 } 8012 8013 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state) 8014 { 8015 u32 pixel_rate = crtc_state->hw.adjusted_mode.crtc_clock; 8016 unsigned int pipe_w, pipe_h, pfit_w, pfit_h; 8017 8018 /* 8019 * We only use IF-ID interlacing. If we ever use 8020 * PF-ID we'll need to adjust the pixel_rate here. 8021 */ 8022 8023 if (!crtc_state->pch_pfit.enabled) 8024 return pixel_rate; 8025 8026 pipe_w = crtc_state->pipe_src_w; 8027 pipe_h = crtc_state->pipe_src_h; 8028 8029 pfit_w = drm_rect_width(&crtc_state->pch_pfit.dst); 8030 pfit_h = drm_rect_height(&crtc_state->pch_pfit.dst); 8031 8032 if (pipe_w < pfit_w) 8033 pipe_w = pfit_w; 8034 if (pipe_h < pfit_h) 8035 pipe_h = pfit_h; 8036 8037 if (drm_WARN_ON(crtc_state->uapi.crtc->dev, 8038 !pfit_w || !pfit_h)) 8039 return pixel_rate; 8040 8041 return div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h), 8042 pfit_w * pfit_h); 8043 } 8044 8045 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 8046 { 8047 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 8048 8049 if (HAS_GMCH(dev_priv)) 8050 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 8051 crtc_state->pixel_rate = 8052 crtc_state->hw.adjusted_mode.crtc_clock; 8053 else 8054 crtc_state->pixel_rate = 8055 ilk_pipe_pixel_rate(crtc_state); 8056 } 8057 8058 static int intel_crtc_compute_config(struct intel_crtc *crtc, 8059 struct intel_crtc_state *pipe_config) 8060 { 8061 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8062 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 8063 int clock_limit = dev_priv->max_dotclk_freq; 8064 8065 if (INTEL_GEN(dev_priv) < 4) { 8066 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 8067 8068 /* 8069 * Enable double wide mode when the dot clock 8070 * is > 90% of the (display) core speed. 8071 */ 8072 if (intel_crtc_supports_double_wide(crtc) && 8073 adjusted_mode->crtc_clock > clock_limit) { 8074 clock_limit = dev_priv->max_dotclk_freq; 8075 pipe_config->double_wide = true; 8076 } 8077 } 8078 8079 if (adjusted_mode->crtc_clock > clock_limit) { 8080 drm_dbg_kms(&dev_priv->drm, 8081 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 8082 adjusted_mode->crtc_clock, clock_limit, 8083 yesno(pipe_config->double_wide)); 8084 return -EINVAL; 8085 } 8086 8087 if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 8088 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) && 8089 pipe_config->hw.ctm) { 8090 /* 8091 * There is only one pipe CSC unit per pipe, and we need that 8092 * for output conversion from RGB->YCBCR. So if CTM is already 8093 * applied we can't support YCBCR420 output. 8094 */ 8095 drm_dbg_kms(&dev_priv->drm, 8096 "YCBCR420 and CTM together are not possible\n"); 8097 return -EINVAL; 8098 } 8099 8100 /* 8101 * Pipe horizontal size must be even in: 8102 * - DVO ganged mode 8103 * - LVDS dual channel mode 8104 * - Double wide pipe 8105 */ 8106 if (pipe_config->pipe_src_w & 1) { 8107 if (pipe_config->double_wide) { 8108 drm_dbg_kms(&dev_priv->drm, 8109 "Odd pipe source width not supported with double wide pipe\n"); 8110 return -EINVAL; 8111 } 8112 8113 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 8114 intel_is_dual_link_lvds(dev_priv)) { 8115 drm_dbg_kms(&dev_priv->drm, 8116 "Odd pipe source width not supported with dual link LVDS\n"); 8117 return -EINVAL; 8118 } 8119 } 8120 8121 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 8122 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 8123 */ 8124 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) && 8125 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay) 8126 return -EINVAL; 8127 8128 intel_crtc_compute_pixel_rate(pipe_config); 8129 8130 if (pipe_config->has_pch_encoder) 8131 return ilk_fdi_compute_config(crtc, pipe_config); 8132 8133 return 0; 8134 } 8135 8136 static void 8137 intel_reduce_m_n_ratio(u32 *num, u32 *den) 8138 { 8139 while (*num > DATA_LINK_M_N_MASK || 8140 *den > DATA_LINK_M_N_MASK) { 8141 *num >>= 1; 8142 *den >>= 1; 8143 } 8144 } 8145 8146 static void compute_m_n(unsigned int m, unsigned int n, 8147 u32 *ret_m, u32 *ret_n, 8148 bool constant_n) 8149 { 8150 /* 8151 * Several DP dongles in particular seem to be fussy about 8152 * too large link M/N values. Give N value as 0x8000 that 8153 * should be acceptable by specific devices. 0x8000 is the 8154 * specified fixed N value for asynchronous clock mode, 8155 * which the devices expect also in synchronous clock mode. 8156 */ 8157 if (constant_n) 8158 *ret_n = 0x8000; 8159 else 8160 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 8161 8162 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 8163 intel_reduce_m_n_ratio(ret_m, ret_n); 8164 } 8165 8166 void 8167 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 8168 int pixel_clock, int link_clock, 8169 struct intel_link_m_n *m_n, 8170 bool constant_n, bool fec_enable) 8171 { 8172 u32 data_clock = bits_per_pixel * pixel_clock; 8173 8174 if (fec_enable) 8175 data_clock = intel_dp_mode_to_fec_clock(data_clock); 8176 8177 m_n->tu = 64; 8178 compute_m_n(data_clock, 8179 link_clock * nlanes * 8, 8180 &m_n->gmch_m, &m_n->gmch_n, 8181 constant_n); 8182 8183 compute_m_n(pixel_clock, link_clock, 8184 &m_n->link_m, &m_n->link_n, 8185 constant_n); 8186 } 8187 8188 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) 8189 { 8190 /* 8191 * There may be no VBT; and if the BIOS enabled SSC we can 8192 * just keep using it to avoid unnecessary flicker. Whereas if the 8193 * BIOS isn't using it, don't assume it will work even if the VBT 8194 * indicates as much. 8195 */ 8196 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 8197 bool bios_lvds_use_ssc = intel_de_read(dev_priv, 8198 PCH_DREF_CONTROL) & 8199 DREF_SSC1_ENABLE; 8200 8201 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 8202 drm_dbg_kms(&dev_priv->drm, 8203 "SSC %s by BIOS, overriding VBT which says %s\n", 8204 enableddisabled(bios_lvds_use_ssc), 8205 enableddisabled(dev_priv->vbt.lvds_use_ssc)); 8206 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 8207 } 8208 } 8209 } 8210 8211 static bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) 8212 { 8213 if (dev_priv->params.panel_use_ssc >= 0) 8214 return dev_priv->params.panel_use_ssc != 0; 8215 return dev_priv->vbt.lvds_use_ssc 8216 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); 8217 } 8218 8219 static u32 pnv_dpll_compute_fp(struct dpll *dpll) 8220 { 8221 return (1 << dpll->n) << 16 | dpll->m2; 8222 } 8223 8224 static u32 i9xx_dpll_compute_fp(struct dpll *dpll) 8225 { 8226 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; 8227 } 8228 8229 static void i9xx_update_pll_dividers(struct intel_crtc *crtc, 8230 struct intel_crtc_state *crtc_state, 8231 struct dpll *reduced_clock) 8232 { 8233 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8234 u32 fp, fp2 = 0; 8235 8236 if (IS_PINEVIEW(dev_priv)) { 8237 fp = pnv_dpll_compute_fp(&crtc_state->dpll); 8238 if (reduced_clock) 8239 fp2 = pnv_dpll_compute_fp(reduced_clock); 8240 } else { 8241 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 8242 if (reduced_clock) 8243 fp2 = i9xx_dpll_compute_fp(reduced_clock); 8244 } 8245 8246 crtc_state->dpll_hw_state.fp0 = fp; 8247 8248 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8249 reduced_clock) { 8250 crtc_state->dpll_hw_state.fp1 = fp2; 8251 } else { 8252 crtc_state->dpll_hw_state.fp1 = fp; 8253 } 8254 } 8255 8256 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe 8257 pipe) 8258 { 8259 u32 reg_val; 8260 8261 /* 8262 * PLLB opamp always calibrates to max value of 0x3f, force enable it 8263 * and set it to a reasonable value instead. 8264 */ 8265 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 8266 reg_val &= 0xffffff00; 8267 reg_val |= 0x00000030; 8268 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 8269 8270 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 8271 reg_val &= 0x00ffffff; 8272 reg_val |= 0x8c000000; 8273 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 8274 8275 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 8276 reg_val &= 0xffffff00; 8277 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 8278 8279 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 8280 reg_val &= 0x00ffffff; 8281 reg_val |= 0xb0000000; 8282 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 8283 } 8284 8285 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 8286 const struct intel_link_m_n *m_n) 8287 { 8288 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8289 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8290 enum pipe pipe = crtc->pipe; 8291 8292 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe), 8293 TU_SIZE(m_n->tu) | m_n->gmch_m); 8294 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 8295 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m); 8296 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n); 8297 } 8298 8299 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 8300 enum transcoder transcoder) 8301 { 8302 if (IS_HASWELL(dev_priv)) 8303 return transcoder == TRANSCODER_EDP; 8304 8305 /* 8306 * Strictly speaking some registers are available before 8307 * gen7, but we only support DRRS on gen7+ 8308 */ 8309 return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv); 8310 } 8311 8312 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 8313 const struct intel_link_m_n *m_n, 8314 const struct intel_link_m_n *m2_n2) 8315 { 8316 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8317 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8318 enum pipe pipe = crtc->pipe; 8319 enum transcoder transcoder = crtc_state->cpu_transcoder; 8320 8321 if (INTEL_GEN(dev_priv) >= 5) { 8322 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder), 8323 TU_SIZE(m_n->tu) | m_n->gmch_m); 8324 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder), 8325 m_n->gmch_n); 8326 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder), 8327 m_n->link_m); 8328 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder), 8329 m_n->link_n); 8330 /* 8331 * M2_N2 registers are set only if DRRS is supported 8332 * (to make sure the registers are not unnecessarily accessed). 8333 */ 8334 if (m2_n2 && crtc_state->has_drrs && 8335 transcoder_has_m2_n2(dev_priv, transcoder)) { 8336 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder), 8337 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 8338 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder), 8339 m2_n2->gmch_n); 8340 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder), 8341 m2_n2->link_m); 8342 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder), 8343 m2_n2->link_n); 8344 } 8345 } else { 8346 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe), 8347 TU_SIZE(m_n->tu) | m_n->gmch_m); 8348 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 8349 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m); 8350 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n); 8351 } 8352 } 8353 8354 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 8355 { 8356 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 8357 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 8358 8359 if (m_n == M1_N1) { 8360 dp_m_n = &crtc_state->dp_m_n; 8361 dp_m2_n2 = &crtc_state->dp_m2_n2; 8362 } else if (m_n == M2_N2) { 8363 8364 /* 8365 * M2_N2 registers are not supported. Hence m2_n2 divider value 8366 * needs to be programmed into M1_N1. 8367 */ 8368 dp_m_n = &crtc_state->dp_m2_n2; 8369 } else { 8370 drm_err(&i915->drm, "Unsupported divider value\n"); 8371 return; 8372 } 8373 8374 if (crtc_state->has_pch_encoder) 8375 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 8376 else 8377 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 8378 } 8379 8380 static void vlv_compute_dpll(struct intel_crtc *crtc, 8381 struct intel_crtc_state *pipe_config) 8382 { 8383 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV | 8384 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 8385 if (crtc->pipe != PIPE_A) 8386 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 8387 8388 /* DPLL not used with DSI, but still need the rest set up */ 8389 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 8390 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE | 8391 DPLL_EXT_BUFFER_ENABLE_VLV; 8392 8393 pipe_config->dpll_hw_state.dpll_md = 8394 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8395 } 8396 8397 static void chv_compute_dpll(struct intel_crtc *crtc, 8398 struct intel_crtc_state *pipe_config) 8399 { 8400 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV | 8401 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 8402 if (crtc->pipe != PIPE_A) 8403 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 8404 8405 /* DPLL not used with DSI, but still need the rest set up */ 8406 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 8407 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE; 8408 8409 pipe_config->dpll_hw_state.dpll_md = 8410 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8411 } 8412 8413 static void vlv_prepare_pll(struct intel_crtc *crtc, 8414 const struct intel_crtc_state *pipe_config) 8415 { 8416 struct drm_device *dev = crtc->base.dev; 8417 struct drm_i915_private *dev_priv = to_i915(dev); 8418 enum pipe pipe = crtc->pipe; 8419 u32 mdiv; 8420 u32 bestn, bestm1, bestm2, bestp1, bestp2; 8421 u32 coreclk, reg_val; 8422 8423 /* Enable Refclk */ 8424 intel_de_write(dev_priv, DPLL(pipe), 8425 pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); 8426 8427 /* No need to actually set up the DPLL with DSI */ 8428 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8429 return; 8430 8431 vlv_dpio_get(dev_priv); 8432 8433 bestn = pipe_config->dpll.n; 8434 bestm1 = pipe_config->dpll.m1; 8435 bestm2 = pipe_config->dpll.m2; 8436 bestp1 = pipe_config->dpll.p1; 8437 bestp2 = pipe_config->dpll.p2; 8438 8439 /* See eDP HDMI DPIO driver vbios notes doc */ 8440 8441 /* PLL B needs special handling */ 8442 if (pipe == PIPE_B) 8443 vlv_pllb_recal_opamp(dev_priv, pipe); 8444 8445 /* Set up Tx target for periodic Rcomp update */ 8446 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f); 8447 8448 /* Disable target IRef on PLL */ 8449 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe)); 8450 reg_val &= 0x00ffffff; 8451 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val); 8452 8453 /* Disable fast lock */ 8454 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610); 8455 8456 /* Set idtafcrecal before PLL is enabled */ 8457 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); 8458 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); 8459 mdiv |= ((bestn << DPIO_N_SHIFT)); 8460 mdiv |= (1 << DPIO_K_SHIFT); 8461 8462 /* 8463 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, 8464 * but we don't support that). 8465 * Note: don't use the DAC post divider as it seems unstable. 8466 */ 8467 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); 8468 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 8469 8470 mdiv |= DPIO_ENABLE_CALIBRATION; 8471 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 8472 8473 /* Set HBR and RBR LPF coefficients */ 8474 if (pipe_config->port_clock == 162000 || 8475 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) || 8476 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI)) 8477 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 8478 0x009f0003); 8479 else 8480 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 8481 0x00d0000f); 8482 8483 if (intel_crtc_has_dp_encoder(pipe_config)) { 8484 /* Use SSC source */ 8485 if (pipe == PIPE_A) 8486 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8487 0x0df40000); 8488 else 8489 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8490 0x0df70000); 8491 } else { /* HDMI or VGA */ 8492 /* Use bend source */ 8493 if (pipe == PIPE_A) 8494 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8495 0x0df70000); 8496 else 8497 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8498 0x0df40000); 8499 } 8500 8501 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe)); 8502 coreclk = (coreclk & 0x0000ff00) | 0x01c00000; 8503 if (intel_crtc_has_dp_encoder(pipe_config)) 8504 coreclk |= 0x01000000; 8505 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk); 8506 8507 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000); 8508 8509 vlv_dpio_put(dev_priv); 8510 } 8511 8512 static void chv_prepare_pll(struct intel_crtc *crtc, 8513 const struct intel_crtc_state *pipe_config) 8514 { 8515 struct drm_device *dev = crtc->base.dev; 8516 struct drm_i915_private *dev_priv = to_i915(dev); 8517 enum pipe pipe = crtc->pipe; 8518 enum dpio_channel port = vlv_pipe_to_channel(pipe); 8519 u32 loopfilter, tribuf_calcntr; 8520 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac; 8521 u32 dpio_val; 8522 int vco; 8523 8524 /* Enable Refclk and SSC */ 8525 intel_de_write(dev_priv, DPLL(pipe), 8526 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); 8527 8528 /* No need to actually set up the DPLL with DSI */ 8529 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8530 return; 8531 8532 bestn = pipe_config->dpll.n; 8533 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff; 8534 bestm1 = pipe_config->dpll.m1; 8535 bestm2 = pipe_config->dpll.m2 >> 22; 8536 bestp1 = pipe_config->dpll.p1; 8537 bestp2 = pipe_config->dpll.p2; 8538 vco = pipe_config->dpll.vco; 8539 dpio_val = 0; 8540 loopfilter = 0; 8541 8542 vlv_dpio_get(dev_priv); 8543 8544 /* p1 and p2 divider */ 8545 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port), 8546 5 << DPIO_CHV_S1_DIV_SHIFT | 8547 bestp1 << DPIO_CHV_P1_DIV_SHIFT | 8548 bestp2 << DPIO_CHV_P2_DIV_SHIFT | 8549 1 << DPIO_CHV_K_DIV_SHIFT); 8550 8551 /* Feedback post-divider - m2 */ 8552 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2); 8553 8554 /* Feedback refclk divider - n and m1 */ 8555 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port), 8556 DPIO_CHV_M1_DIV_BY_2 | 8557 1 << DPIO_CHV_N_DIV_SHIFT); 8558 8559 /* M2 fraction division */ 8560 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac); 8561 8562 /* M2 fraction division enable */ 8563 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 8564 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); 8565 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT); 8566 if (bestm2_frac) 8567 dpio_val |= DPIO_CHV_FRAC_DIV_EN; 8568 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val); 8569 8570 /* Program digital lock detect threshold */ 8571 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port)); 8572 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | 8573 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); 8574 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT); 8575 if (!bestm2_frac) 8576 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; 8577 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val); 8578 8579 /* Loop filter */ 8580 if (vco == 5400000) { 8581 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT); 8582 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT); 8583 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT); 8584 tribuf_calcntr = 0x9; 8585 } else if (vco <= 6200000) { 8586 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT); 8587 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT); 8588 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8589 tribuf_calcntr = 0x9; 8590 } else if (vco <= 6480000) { 8591 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 8592 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 8593 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8594 tribuf_calcntr = 0x8; 8595 } else { 8596 /* Not supported. Apply the same limits as in the max case */ 8597 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 8598 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 8599 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8600 tribuf_calcntr = 0; 8601 } 8602 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter); 8603 8604 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port)); 8605 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; 8606 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT); 8607 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val); 8608 8609 /* AFC Recal */ 8610 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), 8611 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) | 8612 DPIO_AFC_RECAL); 8613 8614 vlv_dpio_put(dev_priv); 8615 } 8616 8617 /** 8618 * vlv_force_pll_on - forcibly enable just the PLL 8619 * @dev_priv: i915 private structure 8620 * @pipe: pipe PLL to enable 8621 * @dpll: PLL configuration 8622 * 8623 * Enable the PLL for @pipe using the supplied @dpll config. To be used 8624 * in cases where we need the PLL enabled even when @pipe is not going to 8625 * be enabled. 8626 */ 8627 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe, 8628 const struct dpll *dpll) 8629 { 8630 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 8631 struct intel_crtc_state *pipe_config; 8632 8633 pipe_config = intel_crtc_state_alloc(crtc); 8634 if (!pipe_config) 8635 return -ENOMEM; 8636 8637 pipe_config->cpu_transcoder = (enum transcoder)pipe; 8638 pipe_config->pixel_multiplier = 1; 8639 pipe_config->dpll = *dpll; 8640 8641 if (IS_CHERRYVIEW(dev_priv)) { 8642 chv_compute_dpll(crtc, pipe_config); 8643 chv_prepare_pll(crtc, pipe_config); 8644 chv_enable_pll(crtc, pipe_config); 8645 } else { 8646 vlv_compute_dpll(crtc, pipe_config); 8647 vlv_prepare_pll(crtc, pipe_config); 8648 vlv_enable_pll(crtc, pipe_config); 8649 } 8650 8651 kfree(pipe_config); 8652 8653 return 0; 8654 } 8655 8656 /** 8657 * vlv_force_pll_off - forcibly disable just the PLL 8658 * @dev_priv: i915 private structure 8659 * @pipe: pipe PLL to disable 8660 * 8661 * Disable the PLL for @pipe. To be used in cases where we need 8662 * the PLL enabled even when @pipe is not going to be enabled. 8663 */ 8664 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe) 8665 { 8666 if (IS_CHERRYVIEW(dev_priv)) 8667 chv_disable_pll(dev_priv, pipe); 8668 else 8669 vlv_disable_pll(dev_priv, pipe); 8670 } 8671 8672 static void i9xx_compute_dpll(struct intel_crtc *crtc, 8673 struct intel_crtc_state *crtc_state, 8674 struct dpll *reduced_clock) 8675 { 8676 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8677 u32 dpll; 8678 struct dpll *clock = &crtc_state->dpll; 8679 8680 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8681 8682 dpll = DPLL_VGA_MODE_DIS; 8683 8684 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 8685 dpll |= DPLLB_MODE_LVDS; 8686 else 8687 dpll |= DPLLB_MODE_DAC_SERIAL; 8688 8689 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 8690 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 8691 dpll |= (crtc_state->pixel_multiplier - 1) 8692 << SDVO_MULTIPLIER_SHIFT_HIRES; 8693 } 8694 8695 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 8696 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 8697 dpll |= DPLL_SDVO_HIGH_SPEED; 8698 8699 if (intel_crtc_has_dp_encoder(crtc_state)) 8700 dpll |= DPLL_SDVO_HIGH_SPEED; 8701 8702 /* compute bitmask from p1 value */ 8703 if (IS_PINEVIEW(dev_priv)) 8704 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; 8705 else { 8706 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8707 if (IS_G4X(dev_priv) && reduced_clock) 8708 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 8709 } 8710 switch (clock->p2) { 8711 case 5: 8712 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 8713 break; 8714 case 7: 8715 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 8716 break; 8717 case 10: 8718 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 8719 break; 8720 case 14: 8721 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 8722 break; 8723 } 8724 if (INTEL_GEN(dev_priv) >= 4) 8725 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); 8726 8727 if (crtc_state->sdvo_tv_clock) 8728 dpll |= PLL_REF_INPUT_TVCLKINBC; 8729 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8730 intel_panel_use_ssc(dev_priv)) 8731 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8732 else 8733 dpll |= PLL_REF_INPUT_DREFCLK; 8734 8735 dpll |= DPLL_VCO_ENABLE; 8736 crtc_state->dpll_hw_state.dpll = dpll; 8737 8738 if (INTEL_GEN(dev_priv) >= 4) { 8739 u32 dpll_md = (crtc_state->pixel_multiplier - 1) 8740 << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8741 crtc_state->dpll_hw_state.dpll_md = dpll_md; 8742 } 8743 } 8744 8745 static void i8xx_compute_dpll(struct intel_crtc *crtc, 8746 struct intel_crtc_state *crtc_state, 8747 struct dpll *reduced_clock) 8748 { 8749 struct drm_device *dev = crtc->base.dev; 8750 struct drm_i915_private *dev_priv = to_i915(dev); 8751 u32 dpll; 8752 struct dpll *clock = &crtc_state->dpll; 8753 8754 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8755 8756 dpll = DPLL_VGA_MODE_DIS; 8757 8758 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8759 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8760 } else { 8761 if (clock->p1 == 2) 8762 dpll |= PLL_P1_DIVIDE_BY_TWO; 8763 else 8764 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8765 if (clock->p2 == 4) 8766 dpll |= PLL_P2_DIVIDE_BY_4; 8767 } 8768 8769 /* 8770 * Bspec: 8771 * "[Almador Errata}: For the correct operation of the muxed DVO pins 8772 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, 8773 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock 8774 * Enable) must be set to “1” in both the DPLL A Control Register 8775 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." 8776 * 8777 * For simplicity We simply keep both bits always enabled in 8778 * both DPLLS. The spec says we should disable the DVO 2X clock 8779 * when not needed, but this seems to work fine in practice. 8780 */ 8781 if (IS_I830(dev_priv) || 8782 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) 8783 dpll |= DPLL_DVO_2X_MODE; 8784 8785 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8786 intel_panel_use_ssc(dev_priv)) 8787 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8788 else 8789 dpll |= PLL_REF_INPUT_DREFCLK; 8790 8791 dpll |= DPLL_VCO_ENABLE; 8792 crtc_state->dpll_hw_state.dpll = dpll; 8793 } 8794 8795 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state) 8796 { 8797 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8798 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8799 enum pipe pipe = crtc->pipe; 8800 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8801 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 8802 u32 crtc_vtotal, crtc_vblank_end; 8803 int vsyncshift = 0; 8804 8805 /* We need to be careful not to changed the adjusted mode, for otherwise 8806 * the hw state checker will get angry at the mismatch. */ 8807 crtc_vtotal = adjusted_mode->crtc_vtotal; 8808 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 8809 8810 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 8811 /* the chip adds 2 halflines automatically */ 8812 crtc_vtotal -= 1; 8813 crtc_vblank_end -= 1; 8814 8815 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 8816 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 8817 else 8818 vsyncshift = adjusted_mode->crtc_hsync_start - 8819 adjusted_mode->crtc_htotal / 2; 8820 if (vsyncshift < 0) 8821 vsyncshift += adjusted_mode->crtc_htotal; 8822 } 8823 8824 if (INTEL_GEN(dev_priv) > 3) 8825 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder), 8826 vsyncshift); 8827 8828 intel_de_write(dev_priv, HTOTAL(cpu_transcoder), 8829 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); 8830 intel_de_write(dev_priv, HBLANK(cpu_transcoder), 8831 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); 8832 intel_de_write(dev_priv, HSYNC(cpu_transcoder), 8833 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); 8834 8835 intel_de_write(dev_priv, VTOTAL(cpu_transcoder), 8836 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); 8837 intel_de_write(dev_priv, VBLANK(cpu_transcoder), 8838 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); 8839 intel_de_write(dev_priv, VSYNC(cpu_transcoder), 8840 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); 8841 8842 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 8843 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 8844 * documented on the DDI_FUNC_CTL register description, EDP Input Select 8845 * bits. */ 8846 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 8847 (pipe == PIPE_B || pipe == PIPE_C)) 8848 intel_de_write(dev_priv, VTOTAL(pipe), 8849 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 8850 8851 } 8852 8853 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 8854 { 8855 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8856 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8857 enum pipe pipe = crtc->pipe; 8858 8859 /* pipesrc controls the size that is scaled from, which should 8860 * always be the user's requested size. 8861 */ 8862 intel_de_write(dev_priv, PIPESRC(pipe), 8863 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1)); 8864 } 8865 8866 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 8867 { 8868 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 8869 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8870 8871 if (IS_GEN(dev_priv, 2)) 8872 return false; 8873 8874 if (INTEL_GEN(dev_priv) >= 9 || 8875 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 8876 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; 8877 else 8878 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; 8879 } 8880 8881 static void intel_get_pipe_timings(struct intel_crtc *crtc, 8882 struct intel_crtc_state *pipe_config) 8883 { 8884 struct drm_device *dev = crtc->base.dev; 8885 struct drm_i915_private *dev_priv = to_i915(dev); 8886 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 8887 u32 tmp; 8888 8889 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); 8890 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 8891 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 8892 8893 if (!transcoder_is_dsi(cpu_transcoder)) { 8894 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); 8895 pipe_config->hw.adjusted_mode.crtc_hblank_start = 8896 (tmp & 0xffff) + 1; 8897 pipe_config->hw.adjusted_mode.crtc_hblank_end = 8898 ((tmp >> 16) & 0xffff) + 1; 8899 } 8900 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); 8901 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 8902 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 8903 8904 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); 8905 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 8906 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 8907 8908 if (!transcoder_is_dsi(cpu_transcoder)) { 8909 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); 8910 pipe_config->hw.adjusted_mode.crtc_vblank_start = 8911 (tmp & 0xffff) + 1; 8912 pipe_config->hw.adjusted_mode.crtc_vblank_end = 8913 ((tmp >> 16) & 0xffff) + 1; 8914 } 8915 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); 8916 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 8917 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 8918 8919 if (intel_pipe_is_interlaced(pipe_config)) { 8920 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 8921 pipe_config->hw.adjusted_mode.crtc_vtotal += 1; 8922 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1; 8923 } 8924 } 8925 8926 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 8927 struct intel_crtc_state *pipe_config) 8928 { 8929 struct drm_device *dev = crtc->base.dev; 8930 struct drm_i915_private *dev_priv = to_i915(dev); 8931 u32 tmp; 8932 8933 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe)); 8934 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 8935 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 8936 8937 pipe_config->hw.mode.vdisplay = pipe_config->pipe_src_h; 8938 pipe_config->hw.mode.hdisplay = pipe_config->pipe_src_w; 8939 } 8940 8941 void intel_mode_from_pipe_config(struct drm_display_mode *mode, 8942 struct intel_crtc_state *pipe_config) 8943 { 8944 mode->hdisplay = pipe_config->hw.adjusted_mode.crtc_hdisplay; 8945 mode->htotal = pipe_config->hw.adjusted_mode.crtc_htotal; 8946 mode->hsync_start = pipe_config->hw.adjusted_mode.crtc_hsync_start; 8947 mode->hsync_end = pipe_config->hw.adjusted_mode.crtc_hsync_end; 8948 8949 mode->vdisplay = pipe_config->hw.adjusted_mode.crtc_vdisplay; 8950 mode->vtotal = pipe_config->hw.adjusted_mode.crtc_vtotal; 8951 mode->vsync_start = pipe_config->hw.adjusted_mode.crtc_vsync_start; 8952 mode->vsync_end = pipe_config->hw.adjusted_mode.crtc_vsync_end; 8953 8954 mode->flags = pipe_config->hw.adjusted_mode.flags; 8955 mode->type = DRM_MODE_TYPE_DRIVER; 8956 8957 mode->clock = pipe_config->hw.adjusted_mode.crtc_clock; 8958 8959 drm_mode_set_name(mode); 8960 } 8961 8962 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 8963 { 8964 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8965 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8966 u32 pipeconf; 8967 8968 pipeconf = 0; 8969 8970 /* we keep both pipes enabled on 830 */ 8971 if (IS_I830(dev_priv)) 8972 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 8973 8974 if (crtc_state->double_wide) 8975 pipeconf |= PIPECONF_DOUBLE_WIDE; 8976 8977 /* only g4x and later have fancy bpc/dither controls */ 8978 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 8979 IS_CHERRYVIEW(dev_priv)) { 8980 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 8981 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 8982 pipeconf |= PIPECONF_DITHER_EN | 8983 PIPECONF_DITHER_TYPE_SP; 8984 8985 switch (crtc_state->pipe_bpp) { 8986 case 18: 8987 pipeconf |= PIPECONF_6BPC; 8988 break; 8989 case 24: 8990 pipeconf |= PIPECONF_8BPC; 8991 break; 8992 case 30: 8993 pipeconf |= PIPECONF_10BPC; 8994 break; 8995 default: 8996 /* Case prevented by intel_choose_pipe_bpp_dither. */ 8997 BUG(); 8998 } 8999 } 9000 9001 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 9002 if (INTEL_GEN(dev_priv) < 4 || 9003 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 9004 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 9005 else 9006 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 9007 } else { 9008 pipeconf |= PIPECONF_PROGRESSIVE; 9009 } 9010 9011 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 9012 crtc_state->limited_color_range) 9013 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 9014 9015 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 9016 9017 pipeconf |= PIPECONF_FRAME_START_DELAY(0); 9018 9019 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf); 9020 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); 9021 } 9022 9023 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc, 9024 struct intel_crtc_state *crtc_state) 9025 { 9026 struct drm_device *dev = crtc->base.dev; 9027 struct drm_i915_private *dev_priv = to_i915(dev); 9028 const struct intel_limit *limit; 9029 int refclk = 48000; 9030 9031 memset(&crtc_state->dpll_hw_state, 0, 9032 sizeof(crtc_state->dpll_hw_state)); 9033 9034 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9035 if (intel_panel_use_ssc(dev_priv)) { 9036 refclk = dev_priv->vbt.lvds_ssc_freq; 9037 drm_dbg_kms(&dev_priv->drm, 9038 "using SSC reference clock of %d kHz\n", 9039 refclk); 9040 } 9041 9042 limit = &intel_limits_i8xx_lvds; 9043 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { 9044 limit = &intel_limits_i8xx_dvo; 9045 } else { 9046 limit = &intel_limits_i8xx_dac; 9047 } 9048 9049 if (!crtc_state->clock_set && 9050 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9051 refclk, NULL, &crtc_state->dpll)) { 9052 drm_err(&dev_priv->drm, 9053 "Couldn't find PLL settings for mode!\n"); 9054 return -EINVAL; 9055 } 9056 9057 i8xx_compute_dpll(crtc, crtc_state, NULL); 9058 9059 return 0; 9060 } 9061 9062 static int g4x_crtc_compute_clock(struct intel_crtc *crtc, 9063 struct intel_crtc_state *crtc_state) 9064 { 9065 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9066 const struct intel_limit *limit; 9067 int refclk = 96000; 9068 9069 memset(&crtc_state->dpll_hw_state, 0, 9070 sizeof(crtc_state->dpll_hw_state)); 9071 9072 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9073 if (intel_panel_use_ssc(dev_priv)) { 9074 refclk = dev_priv->vbt.lvds_ssc_freq; 9075 drm_dbg_kms(&dev_priv->drm, 9076 "using SSC reference clock of %d kHz\n", 9077 refclk); 9078 } 9079 9080 if (intel_is_dual_link_lvds(dev_priv)) 9081 limit = &intel_limits_g4x_dual_channel_lvds; 9082 else 9083 limit = &intel_limits_g4x_single_channel_lvds; 9084 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || 9085 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { 9086 limit = &intel_limits_g4x_hdmi; 9087 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { 9088 limit = &intel_limits_g4x_sdvo; 9089 } else { 9090 /* The option is for other outputs */ 9091 limit = &intel_limits_i9xx_sdvo; 9092 } 9093 9094 if (!crtc_state->clock_set && 9095 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9096 refclk, NULL, &crtc_state->dpll)) { 9097 drm_err(&dev_priv->drm, 9098 "Couldn't find PLL settings for mode!\n"); 9099 return -EINVAL; 9100 } 9101 9102 i9xx_compute_dpll(crtc, crtc_state, NULL); 9103 9104 return 0; 9105 } 9106 9107 static int pnv_crtc_compute_clock(struct intel_crtc *crtc, 9108 struct intel_crtc_state *crtc_state) 9109 { 9110 struct drm_device *dev = crtc->base.dev; 9111 struct drm_i915_private *dev_priv = to_i915(dev); 9112 const struct intel_limit *limit; 9113 int refclk = 96000; 9114 9115 memset(&crtc_state->dpll_hw_state, 0, 9116 sizeof(crtc_state->dpll_hw_state)); 9117 9118 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9119 if (intel_panel_use_ssc(dev_priv)) { 9120 refclk = dev_priv->vbt.lvds_ssc_freq; 9121 drm_dbg_kms(&dev_priv->drm, 9122 "using SSC reference clock of %d kHz\n", 9123 refclk); 9124 } 9125 9126 limit = &pnv_limits_lvds; 9127 } else { 9128 limit = &pnv_limits_sdvo; 9129 } 9130 9131 if (!crtc_state->clock_set && 9132 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9133 refclk, NULL, &crtc_state->dpll)) { 9134 drm_err(&dev_priv->drm, 9135 "Couldn't find PLL settings for mode!\n"); 9136 return -EINVAL; 9137 } 9138 9139 i9xx_compute_dpll(crtc, crtc_state, NULL); 9140 9141 return 0; 9142 } 9143 9144 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc, 9145 struct intel_crtc_state *crtc_state) 9146 { 9147 struct drm_device *dev = crtc->base.dev; 9148 struct drm_i915_private *dev_priv = to_i915(dev); 9149 const struct intel_limit *limit; 9150 int refclk = 96000; 9151 9152 memset(&crtc_state->dpll_hw_state, 0, 9153 sizeof(crtc_state->dpll_hw_state)); 9154 9155 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9156 if (intel_panel_use_ssc(dev_priv)) { 9157 refclk = dev_priv->vbt.lvds_ssc_freq; 9158 drm_dbg_kms(&dev_priv->drm, 9159 "using SSC reference clock of %d kHz\n", 9160 refclk); 9161 } 9162 9163 limit = &intel_limits_i9xx_lvds; 9164 } else { 9165 limit = &intel_limits_i9xx_sdvo; 9166 } 9167 9168 if (!crtc_state->clock_set && 9169 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9170 refclk, NULL, &crtc_state->dpll)) { 9171 drm_err(&dev_priv->drm, 9172 "Couldn't find PLL settings for mode!\n"); 9173 return -EINVAL; 9174 } 9175 9176 i9xx_compute_dpll(crtc, crtc_state, NULL); 9177 9178 return 0; 9179 } 9180 9181 static int chv_crtc_compute_clock(struct intel_crtc *crtc, 9182 struct intel_crtc_state *crtc_state) 9183 { 9184 int refclk = 100000; 9185 const struct intel_limit *limit = &intel_limits_chv; 9186 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 9187 9188 memset(&crtc_state->dpll_hw_state, 0, 9189 sizeof(crtc_state->dpll_hw_state)); 9190 9191 if (!crtc_state->clock_set && 9192 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9193 refclk, NULL, &crtc_state->dpll)) { 9194 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n"); 9195 return -EINVAL; 9196 } 9197 9198 chv_compute_dpll(crtc, crtc_state); 9199 9200 return 0; 9201 } 9202 9203 static int vlv_crtc_compute_clock(struct intel_crtc *crtc, 9204 struct intel_crtc_state *crtc_state) 9205 { 9206 int refclk = 100000; 9207 const struct intel_limit *limit = &intel_limits_vlv; 9208 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 9209 9210 memset(&crtc_state->dpll_hw_state, 0, 9211 sizeof(crtc_state->dpll_hw_state)); 9212 9213 if (!crtc_state->clock_set && 9214 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9215 refclk, NULL, &crtc_state->dpll)) { 9216 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n"); 9217 return -EINVAL; 9218 } 9219 9220 vlv_compute_dpll(crtc, crtc_state); 9221 9222 return 0; 9223 } 9224 9225 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 9226 { 9227 if (IS_I830(dev_priv)) 9228 return false; 9229 9230 return INTEL_GEN(dev_priv) >= 4 || 9231 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 9232 } 9233 9234 static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state) 9235 { 9236 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9237 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9238 u32 tmp; 9239 9240 if (!i9xx_has_pfit(dev_priv)) 9241 return; 9242 9243 tmp = intel_de_read(dev_priv, PFIT_CONTROL); 9244 if (!(tmp & PFIT_ENABLE)) 9245 return; 9246 9247 /* Check whether the pfit is attached to our pipe. */ 9248 if (INTEL_GEN(dev_priv) < 4) { 9249 if (crtc->pipe != PIPE_B) 9250 return; 9251 } else { 9252 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 9253 return; 9254 } 9255 9256 crtc_state->gmch_pfit.control = tmp; 9257 crtc_state->gmch_pfit.pgm_ratios = 9258 intel_de_read(dev_priv, PFIT_PGM_RATIOS); 9259 } 9260 9261 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 9262 struct intel_crtc_state *pipe_config) 9263 { 9264 struct drm_device *dev = crtc->base.dev; 9265 struct drm_i915_private *dev_priv = to_i915(dev); 9266 enum pipe pipe = crtc->pipe; 9267 struct dpll clock; 9268 u32 mdiv; 9269 int refclk = 100000; 9270 9271 /* In case of DSI, DPLL will not be used */ 9272 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 9273 return; 9274 9275 vlv_dpio_get(dev_priv); 9276 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 9277 vlv_dpio_put(dev_priv); 9278 9279 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 9280 clock.m2 = mdiv & DPIO_M2DIV_MASK; 9281 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 9282 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 9283 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 9284 9285 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 9286 } 9287 9288 static void 9289 i9xx_get_initial_plane_config(struct intel_crtc *crtc, 9290 struct intel_initial_plane_config *plane_config) 9291 { 9292 struct drm_device *dev = crtc->base.dev; 9293 struct drm_i915_private *dev_priv = to_i915(dev); 9294 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 9295 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 9296 enum pipe pipe; 9297 u32 val, base, offset; 9298 int fourcc, pixel_format; 9299 unsigned int aligned_height; 9300 struct drm_framebuffer *fb; 9301 struct intel_framebuffer *intel_fb; 9302 9303 if (!plane->get_hw_state(plane, &pipe)) 9304 return; 9305 9306 drm_WARN_ON(dev, pipe != crtc->pipe); 9307 9308 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 9309 if (!intel_fb) { 9310 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n"); 9311 return; 9312 } 9313 9314 fb = &intel_fb->base; 9315 9316 fb->dev = dev; 9317 9318 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 9319 9320 if (INTEL_GEN(dev_priv) >= 4) { 9321 if (val & DISPPLANE_TILED) { 9322 plane_config->tiling = I915_TILING_X; 9323 fb->modifier = I915_FORMAT_MOD_X_TILED; 9324 } 9325 9326 if (val & DISPPLANE_ROTATE_180) 9327 plane_config->rotation = DRM_MODE_ROTATE_180; 9328 } 9329 9330 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B && 9331 val & DISPPLANE_MIRROR) 9332 plane_config->rotation |= DRM_MODE_REFLECT_X; 9333 9334 pixel_format = val & DISPPLANE_PIXFORMAT_MASK; 9335 fourcc = i9xx_format_to_fourcc(pixel_format); 9336 fb->format = drm_format_info(fourcc); 9337 9338 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 9339 offset = intel_de_read(dev_priv, DSPOFFSET(i9xx_plane)); 9340 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000; 9341 } else if (INTEL_GEN(dev_priv) >= 4) { 9342 if (plane_config->tiling) 9343 offset = intel_de_read(dev_priv, 9344 DSPTILEOFF(i9xx_plane)); 9345 else 9346 offset = intel_de_read(dev_priv, 9347 DSPLINOFF(i9xx_plane)); 9348 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000; 9349 } else { 9350 base = intel_de_read(dev_priv, DSPADDR(i9xx_plane)); 9351 } 9352 plane_config->base = base; 9353 9354 val = intel_de_read(dev_priv, PIPESRC(pipe)); 9355 fb->width = ((val >> 16) & 0xfff) + 1; 9356 fb->height = ((val >> 0) & 0xfff) + 1; 9357 9358 val = intel_de_read(dev_priv, DSPSTRIDE(i9xx_plane)); 9359 fb->pitches[0] = val & 0xffffffc0; 9360 9361 aligned_height = intel_fb_align_height(fb, 0, fb->height); 9362 9363 plane_config->size = fb->pitches[0] * aligned_height; 9364 9365 drm_dbg_kms(&dev_priv->drm, 9366 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 9367 crtc->base.name, plane->base.name, fb->width, fb->height, 9368 fb->format->cpp[0] * 8, base, fb->pitches[0], 9369 plane_config->size); 9370 9371 plane_config->fb = intel_fb; 9372 } 9373 9374 static void chv_crtc_clock_get(struct intel_crtc *crtc, 9375 struct intel_crtc_state *pipe_config) 9376 { 9377 struct drm_device *dev = crtc->base.dev; 9378 struct drm_i915_private *dev_priv = to_i915(dev); 9379 enum pipe pipe = crtc->pipe; 9380 enum dpio_channel port = vlv_pipe_to_channel(pipe); 9381 struct dpll clock; 9382 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 9383 int refclk = 100000; 9384 9385 /* In case of DSI, DPLL will not be used */ 9386 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 9387 return; 9388 9389 vlv_dpio_get(dev_priv); 9390 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 9391 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 9392 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 9393 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 9394 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 9395 vlv_dpio_put(dev_priv); 9396 9397 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 9398 clock.m2 = (pll_dw0 & 0xff) << 22; 9399 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 9400 clock.m2 |= pll_dw2 & 0x3fffff; 9401 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 9402 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 9403 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 9404 9405 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 9406 } 9407 9408 static enum intel_output_format 9409 bdw_get_pipemisc_output_format(struct intel_crtc *crtc) 9410 { 9411 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9412 u32 tmp; 9413 9414 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 9415 9416 if (tmp & PIPEMISC_YUV420_ENABLE) { 9417 /* We support 4:2:0 in full blend mode only */ 9418 drm_WARN_ON(&dev_priv->drm, 9419 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); 9420 9421 return INTEL_OUTPUT_FORMAT_YCBCR420; 9422 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 9423 return INTEL_OUTPUT_FORMAT_YCBCR444; 9424 } else { 9425 return INTEL_OUTPUT_FORMAT_RGB; 9426 } 9427 } 9428 9429 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 9430 { 9431 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9432 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 9433 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9434 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 9435 u32 tmp; 9436 9437 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 9438 9439 if (tmp & DISPPLANE_GAMMA_ENABLE) 9440 crtc_state->gamma_enable = true; 9441 9442 if (!HAS_GMCH(dev_priv) && 9443 tmp & DISPPLANE_PIPE_CSC_ENABLE) 9444 crtc_state->csc_enable = true; 9445 } 9446 9447 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 9448 struct intel_crtc_state *pipe_config) 9449 { 9450 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9451 enum intel_display_power_domain power_domain; 9452 intel_wakeref_t wakeref; 9453 u32 tmp; 9454 bool ret; 9455 9456 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 9457 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 9458 if (!wakeref) 9459 return false; 9460 9461 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 9462 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 9463 pipe_config->shared_dpll = NULL; 9464 9465 ret = false; 9466 9467 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 9468 if (!(tmp & PIPECONF_ENABLE)) 9469 goto out; 9470 9471 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 9472 IS_CHERRYVIEW(dev_priv)) { 9473 switch (tmp & PIPECONF_BPC_MASK) { 9474 case PIPECONF_6BPC: 9475 pipe_config->pipe_bpp = 18; 9476 break; 9477 case PIPECONF_8BPC: 9478 pipe_config->pipe_bpp = 24; 9479 break; 9480 case PIPECONF_10BPC: 9481 pipe_config->pipe_bpp = 30; 9482 break; 9483 default: 9484 break; 9485 } 9486 } 9487 9488 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 9489 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 9490 pipe_config->limited_color_range = true; 9491 9492 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 9493 PIPECONF_GAMMA_MODE_SHIFT; 9494 9495 if (IS_CHERRYVIEW(dev_priv)) 9496 pipe_config->cgm_mode = intel_de_read(dev_priv, 9497 CGM_PIPE_MODE(crtc->pipe)); 9498 9499 i9xx_get_pipe_color_config(pipe_config); 9500 intel_color_get_config(pipe_config); 9501 9502 if (INTEL_GEN(dev_priv) < 4) 9503 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 9504 9505 intel_get_pipe_timings(crtc, pipe_config); 9506 intel_get_pipe_src_size(crtc, pipe_config); 9507 9508 i9xx_get_pfit_config(pipe_config); 9509 9510 if (INTEL_GEN(dev_priv) >= 4) { 9511 /* No way to read it out on pipes B and C */ 9512 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 9513 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 9514 else 9515 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); 9516 pipe_config->pixel_multiplier = 9517 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 9518 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 9519 pipe_config->dpll_hw_state.dpll_md = tmp; 9520 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 9521 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 9522 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe)); 9523 pipe_config->pixel_multiplier = 9524 ((tmp & SDVO_MULTIPLIER_MASK) 9525 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 9526 } else { 9527 /* Note that on i915G/GM the pixel multiplier is in the sdvo 9528 * port and will be fixed up in the encoder->get_config 9529 * function. */ 9530 pipe_config->pixel_multiplier = 1; 9531 } 9532 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv, 9533 DPLL(crtc->pipe)); 9534 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 9535 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv, 9536 FP0(crtc->pipe)); 9537 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv, 9538 FP1(crtc->pipe)); 9539 } else { 9540 /* Mask out read-only status bits. */ 9541 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 9542 DPLL_PORTC_READY_MASK | 9543 DPLL_PORTB_READY_MASK); 9544 } 9545 9546 if (IS_CHERRYVIEW(dev_priv)) 9547 chv_crtc_clock_get(crtc, pipe_config); 9548 else if (IS_VALLEYVIEW(dev_priv)) 9549 vlv_crtc_clock_get(crtc, pipe_config); 9550 else 9551 i9xx_crtc_clock_get(crtc, pipe_config); 9552 9553 /* 9554 * Normally the dotclock is filled in by the encoder .get_config() 9555 * but in case the pipe is enabled w/o any ports we need a sane 9556 * default. 9557 */ 9558 pipe_config->hw.adjusted_mode.crtc_clock = 9559 pipe_config->port_clock / pipe_config->pixel_multiplier; 9560 9561 ret = true; 9562 9563 out: 9564 intel_display_power_put(dev_priv, power_domain, wakeref); 9565 9566 return ret; 9567 } 9568 9569 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv) 9570 { 9571 struct intel_encoder *encoder; 9572 int i; 9573 u32 val, final; 9574 bool has_lvds = false; 9575 bool has_cpu_edp = false; 9576 bool has_panel = false; 9577 bool has_ck505 = false; 9578 bool can_ssc = false; 9579 bool using_ssc_source = false; 9580 9581 /* We need to take the global config into account */ 9582 for_each_intel_encoder(&dev_priv->drm, encoder) { 9583 switch (encoder->type) { 9584 case INTEL_OUTPUT_LVDS: 9585 has_panel = true; 9586 has_lvds = true; 9587 break; 9588 case INTEL_OUTPUT_EDP: 9589 has_panel = true; 9590 if (encoder->port == PORT_A) 9591 has_cpu_edp = true; 9592 break; 9593 default: 9594 break; 9595 } 9596 } 9597 9598 if (HAS_PCH_IBX(dev_priv)) { 9599 has_ck505 = dev_priv->vbt.display_clock_mode; 9600 can_ssc = has_ck505; 9601 } else { 9602 has_ck505 = false; 9603 can_ssc = true; 9604 } 9605 9606 /* Check if any DPLLs are using the SSC source */ 9607 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) { 9608 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i)); 9609 9610 if (!(temp & DPLL_VCO_ENABLE)) 9611 continue; 9612 9613 if ((temp & PLL_REF_INPUT_MASK) == 9614 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 9615 using_ssc_source = true; 9616 break; 9617 } 9618 } 9619 9620 drm_dbg_kms(&dev_priv->drm, 9621 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 9622 has_panel, has_lvds, has_ck505, using_ssc_source); 9623 9624 /* Ironlake: try to setup display ref clock before DPLL 9625 * enabling. This is only under driver's control after 9626 * PCH B stepping, previous chipset stepping should be 9627 * ignoring this setting. 9628 */ 9629 val = intel_de_read(dev_priv, PCH_DREF_CONTROL); 9630 9631 /* As we must carefully and slowly disable/enable each source in turn, 9632 * compute the final state we want first and check if we need to 9633 * make any changes at all. 9634 */ 9635 final = val; 9636 final &= ~DREF_NONSPREAD_SOURCE_MASK; 9637 if (has_ck505) 9638 final |= DREF_NONSPREAD_CK505_ENABLE; 9639 else 9640 final |= DREF_NONSPREAD_SOURCE_ENABLE; 9641 9642 final &= ~DREF_SSC_SOURCE_MASK; 9643 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9644 final &= ~DREF_SSC1_ENABLE; 9645 9646 if (has_panel) { 9647 final |= DREF_SSC_SOURCE_ENABLE; 9648 9649 if (intel_panel_use_ssc(dev_priv) && can_ssc) 9650 final |= DREF_SSC1_ENABLE; 9651 9652 if (has_cpu_edp) { 9653 if (intel_panel_use_ssc(dev_priv) && can_ssc) 9654 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9655 else 9656 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9657 } else 9658 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9659 } else if (using_ssc_source) { 9660 final |= DREF_SSC_SOURCE_ENABLE; 9661 final |= DREF_SSC1_ENABLE; 9662 } 9663 9664 if (final == val) 9665 return; 9666 9667 /* Always enable nonspread source */ 9668 val &= ~DREF_NONSPREAD_SOURCE_MASK; 9669 9670 if (has_ck505) 9671 val |= DREF_NONSPREAD_CK505_ENABLE; 9672 else 9673 val |= DREF_NONSPREAD_SOURCE_ENABLE; 9674 9675 if (has_panel) { 9676 val &= ~DREF_SSC_SOURCE_MASK; 9677 val |= DREF_SSC_SOURCE_ENABLE; 9678 9679 /* SSC must be turned on before enabling the CPU output */ 9680 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9681 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n"); 9682 val |= DREF_SSC1_ENABLE; 9683 } else 9684 val &= ~DREF_SSC1_ENABLE; 9685 9686 /* Get SSC going before enabling the outputs */ 9687 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9688 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9689 udelay(200); 9690 9691 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9692 9693 /* Enable CPU source on CPU attached eDP */ 9694 if (has_cpu_edp) { 9695 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9696 drm_dbg_kms(&dev_priv->drm, 9697 "Using SSC on eDP\n"); 9698 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9699 } else 9700 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9701 } else 9702 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9703 9704 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9705 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9706 udelay(200); 9707 } else { 9708 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n"); 9709 9710 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9711 9712 /* Turn off CPU output */ 9713 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9714 9715 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9716 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9717 udelay(200); 9718 9719 if (!using_ssc_source) { 9720 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n"); 9721 9722 /* Turn off the SSC source */ 9723 val &= ~DREF_SSC_SOURCE_MASK; 9724 val |= DREF_SSC_SOURCE_DISABLE; 9725 9726 /* Turn off SSC1 */ 9727 val &= ~DREF_SSC1_ENABLE; 9728 9729 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9730 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9731 udelay(200); 9732 } 9733 } 9734 9735 BUG_ON(val != final); 9736 } 9737 9738 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 9739 { 9740 u32 tmp; 9741 9742 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 9743 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 9744 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 9745 9746 if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) & 9747 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 9748 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n"); 9749 9750 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 9751 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 9752 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 9753 9754 if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) & 9755 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 9756 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n"); 9757 } 9758 9759 /* WaMPhyProgramming:hsw */ 9760 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 9761 { 9762 u32 tmp; 9763 9764 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 9765 tmp &= ~(0xFF << 24); 9766 tmp |= (0x12 << 24); 9767 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 9768 9769 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 9770 tmp |= (1 << 11); 9771 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 9772 9773 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 9774 tmp |= (1 << 11); 9775 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 9776 9777 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 9778 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9779 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 9780 9781 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 9782 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9783 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 9784 9785 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 9786 tmp &= ~(7 << 13); 9787 tmp |= (5 << 13); 9788 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 9789 9790 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 9791 tmp &= ~(7 << 13); 9792 tmp |= (5 << 13); 9793 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 9794 9795 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 9796 tmp &= ~0xFF; 9797 tmp |= 0x1C; 9798 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 9799 9800 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 9801 tmp &= ~0xFF; 9802 tmp |= 0x1C; 9803 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 9804 9805 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 9806 tmp &= ~(0xFF << 16); 9807 tmp |= (0x1C << 16); 9808 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 9809 9810 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 9811 tmp &= ~(0xFF << 16); 9812 tmp |= (0x1C << 16); 9813 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 9814 9815 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 9816 tmp |= (1 << 27); 9817 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 9818 9819 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 9820 tmp |= (1 << 27); 9821 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 9822 9823 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 9824 tmp &= ~(0xF << 28); 9825 tmp |= (4 << 28); 9826 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 9827 9828 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 9829 tmp &= ~(0xF << 28); 9830 tmp |= (4 << 28); 9831 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 9832 } 9833 9834 /* Implements 3 different sequences from BSpec chapter "Display iCLK 9835 * Programming" based on the parameters passed: 9836 * - Sequence to enable CLKOUT_DP 9837 * - Sequence to enable CLKOUT_DP without spread 9838 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 9839 */ 9840 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 9841 bool with_spread, bool with_fdi) 9842 { 9843 u32 reg, tmp; 9844 9845 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread, 9846 "FDI requires downspread\n")) 9847 with_spread = true; 9848 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) && 9849 with_fdi, "LP PCH doesn't have FDI\n")) 9850 with_fdi = false; 9851 9852 mutex_lock(&dev_priv->sb_lock); 9853 9854 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9855 tmp &= ~SBI_SSCCTL_DISABLE; 9856 tmp |= SBI_SSCCTL_PATHALT; 9857 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9858 9859 udelay(24); 9860 9861 if (with_spread) { 9862 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9863 tmp &= ~SBI_SSCCTL_PATHALT; 9864 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9865 9866 if (with_fdi) { 9867 lpt_reset_fdi_mphy(dev_priv); 9868 lpt_program_fdi_mphy(dev_priv); 9869 } 9870 } 9871 9872 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9873 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9874 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9875 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9876 9877 mutex_unlock(&dev_priv->sb_lock); 9878 } 9879 9880 /* Sequence to disable CLKOUT_DP */ 9881 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 9882 { 9883 u32 reg, tmp; 9884 9885 mutex_lock(&dev_priv->sb_lock); 9886 9887 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9888 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9889 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9890 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9891 9892 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9893 if (!(tmp & SBI_SSCCTL_DISABLE)) { 9894 if (!(tmp & SBI_SSCCTL_PATHALT)) { 9895 tmp |= SBI_SSCCTL_PATHALT; 9896 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9897 udelay(32); 9898 } 9899 tmp |= SBI_SSCCTL_DISABLE; 9900 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9901 } 9902 9903 mutex_unlock(&dev_priv->sb_lock); 9904 } 9905 9906 #define BEND_IDX(steps) ((50 + (steps)) / 5) 9907 9908 static const u16 sscdivintphase[] = { 9909 [BEND_IDX( 50)] = 0x3B23, 9910 [BEND_IDX( 45)] = 0x3B23, 9911 [BEND_IDX( 40)] = 0x3C23, 9912 [BEND_IDX( 35)] = 0x3C23, 9913 [BEND_IDX( 30)] = 0x3D23, 9914 [BEND_IDX( 25)] = 0x3D23, 9915 [BEND_IDX( 20)] = 0x3E23, 9916 [BEND_IDX( 15)] = 0x3E23, 9917 [BEND_IDX( 10)] = 0x3F23, 9918 [BEND_IDX( 5)] = 0x3F23, 9919 [BEND_IDX( 0)] = 0x0025, 9920 [BEND_IDX( -5)] = 0x0025, 9921 [BEND_IDX(-10)] = 0x0125, 9922 [BEND_IDX(-15)] = 0x0125, 9923 [BEND_IDX(-20)] = 0x0225, 9924 [BEND_IDX(-25)] = 0x0225, 9925 [BEND_IDX(-30)] = 0x0325, 9926 [BEND_IDX(-35)] = 0x0325, 9927 [BEND_IDX(-40)] = 0x0425, 9928 [BEND_IDX(-45)] = 0x0425, 9929 [BEND_IDX(-50)] = 0x0525, 9930 }; 9931 9932 /* 9933 * Bend CLKOUT_DP 9934 * steps -50 to 50 inclusive, in steps of 5 9935 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 9936 * change in clock period = -(steps / 10) * 5.787 ps 9937 */ 9938 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 9939 { 9940 u32 tmp; 9941 int idx = BEND_IDX(steps); 9942 9943 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0)) 9944 return; 9945 9946 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase))) 9947 return; 9948 9949 mutex_lock(&dev_priv->sb_lock); 9950 9951 if (steps % 10 != 0) 9952 tmp = 0xAAAAAAAB; 9953 else 9954 tmp = 0x00000000; 9955 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 9956 9957 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 9958 tmp &= 0xffff0000; 9959 tmp |= sscdivintphase[idx]; 9960 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 9961 9962 mutex_unlock(&dev_priv->sb_lock); 9963 } 9964 9965 #undef BEND_IDX 9966 9967 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 9968 { 9969 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 9970 u32 ctl = intel_de_read(dev_priv, SPLL_CTL); 9971 9972 if ((ctl & SPLL_PLL_ENABLE) == 0) 9973 return false; 9974 9975 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 9976 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 9977 return true; 9978 9979 if (IS_BROADWELL(dev_priv) && 9980 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 9981 return true; 9982 9983 return false; 9984 } 9985 9986 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 9987 enum intel_dpll_id id) 9988 { 9989 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 9990 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id)); 9991 9992 if ((ctl & WRPLL_PLL_ENABLE) == 0) 9993 return false; 9994 9995 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 9996 return true; 9997 9998 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 9999 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 10000 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 10001 return true; 10002 10003 return false; 10004 } 10005 10006 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 10007 { 10008 struct intel_encoder *encoder; 10009 bool has_fdi = false; 10010 10011 for_each_intel_encoder(&dev_priv->drm, encoder) { 10012 switch (encoder->type) { 10013 case INTEL_OUTPUT_ANALOG: 10014 has_fdi = true; 10015 break; 10016 default: 10017 break; 10018 } 10019 } 10020 10021 /* 10022 * The BIOS may have decided to use the PCH SSC 10023 * reference so we must not disable it until the 10024 * relevant PLLs have stopped relying on it. We'll 10025 * just leave the PCH SSC reference enabled in case 10026 * any active PLL is using it. It will get disabled 10027 * after runtime suspend if we don't have FDI. 10028 * 10029 * TODO: Move the whole reference clock handling 10030 * to the modeset sequence proper so that we can 10031 * actually enable/disable/reconfigure these things 10032 * safely. To do that we need to introduce a real 10033 * clock hierarchy. That would also allow us to do 10034 * clock bending finally. 10035 */ 10036 dev_priv->pch_ssc_use = 0; 10037 10038 if (spll_uses_pch_ssc(dev_priv)) { 10039 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n"); 10040 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); 10041 } 10042 10043 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 10044 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n"); 10045 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 10046 } 10047 10048 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 10049 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n"); 10050 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 10051 } 10052 10053 if (dev_priv->pch_ssc_use) 10054 return; 10055 10056 if (has_fdi) { 10057 lpt_bend_clkout_dp(dev_priv, 0); 10058 lpt_enable_clkout_dp(dev_priv, true, true); 10059 } else { 10060 lpt_disable_clkout_dp(dev_priv); 10061 } 10062 } 10063 10064 /* 10065 * Initialize reference clocks when the driver loads 10066 */ 10067 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 10068 { 10069 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 10070 ilk_init_pch_refclk(dev_priv); 10071 else if (HAS_PCH_LPT(dev_priv)) 10072 lpt_init_pch_refclk(dev_priv); 10073 } 10074 10075 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) 10076 { 10077 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10078 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10079 enum pipe pipe = crtc->pipe; 10080 u32 val; 10081 10082 val = 0; 10083 10084 switch (crtc_state->pipe_bpp) { 10085 case 18: 10086 val |= PIPECONF_6BPC; 10087 break; 10088 case 24: 10089 val |= PIPECONF_8BPC; 10090 break; 10091 case 30: 10092 val |= PIPECONF_10BPC; 10093 break; 10094 case 36: 10095 val |= PIPECONF_12BPC; 10096 break; 10097 default: 10098 /* Case prevented by intel_choose_pipe_bpp_dither. */ 10099 BUG(); 10100 } 10101 10102 if (crtc_state->dither) 10103 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 10104 10105 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 10106 val |= PIPECONF_INTERLACED_ILK; 10107 else 10108 val |= PIPECONF_PROGRESSIVE; 10109 10110 /* 10111 * This would end up with an odd purple hue over 10112 * the entire display. Make sure we don't do it. 10113 */ 10114 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && 10115 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 10116 10117 if (crtc_state->limited_color_range && 10118 !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 10119 val |= PIPECONF_COLOR_RANGE_SELECT; 10120 10121 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 10122 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; 10123 10124 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 10125 10126 val |= PIPECONF_FRAME_START_DELAY(0); 10127 10128 intel_de_write(dev_priv, PIPECONF(pipe), val); 10129 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 10130 } 10131 10132 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state) 10133 { 10134 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10135 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10136 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 10137 u32 val = 0; 10138 10139 if (IS_HASWELL(dev_priv) && crtc_state->dither) 10140 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 10141 10142 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 10143 val |= PIPECONF_INTERLACED_ILK; 10144 else 10145 val |= PIPECONF_PROGRESSIVE; 10146 10147 if (IS_HASWELL(dev_priv) && 10148 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 10149 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; 10150 10151 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val); 10152 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder)); 10153 } 10154 10155 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 10156 { 10157 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10158 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10159 u32 val = 0; 10160 10161 switch (crtc_state->pipe_bpp) { 10162 case 18: 10163 val |= PIPEMISC_DITHER_6_BPC; 10164 break; 10165 case 24: 10166 val |= PIPEMISC_DITHER_8_BPC; 10167 break; 10168 case 30: 10169 val |= PIPEMISC_DITHER_10_BPC; 10170 break; 10171 case 36: 10172 val |= PIPEMISC_DITHER_12_BPC; 10173 break; 10174 default: 10175 MISSING_CASE(crtc_state->pipe_bpp); 10176 break; 10177 } 10178 10179 if (crtc_state->dither) 10180 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 10181 10182 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 10183 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 10184 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 10185 10186 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 10187 val |= PIPEMISC_YUV420_ENABLE | 10188 PIPEMISC_YUV420_MODE_FULL_BLEND; 10189 10190 if (INTEL_GEN(dev_priv) >= 11 && 10191 (crtc_state->active_planes & ~(icl_hdr_plane_mask() | 10192 BIT(PLANE_CURSOR))) == 0) 10193 val |= PIPEMISC_HDR_MODE_PRECISION; 10194 10195 if (INTEL_GEN(dev_priv) >= 12) 10196 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC; 10197 10198 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val); 10199 } 10200 10201 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 10202 { 10203 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10204 u32 tmp; 10205 10206 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 10207 10208 switch (tmp & PIPEMISC_DITHER_BPC_MASK) { 10209 case PIPEMISC_DITHER_6_BPC: 10210 return 18; 10211 case PIPEMISC_DITHER_8_BPC: 10212 return 24; 10213 case PIPEMISC_DITHER_10_BPC: 10214 return 30; 10215 case PIPEMISC_DITHER_12_BPC: 10216 return 36; 10217 default: 10218 MISSING_CASE(tmp); 10219 return 0; 10220 } 10221 } 10222 10223 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) 10224 { 10225 /* 10226 * Account for spread spectrum to avoid 10227 * oversubscribing the link. Max center spread 10228 * is 2.5%; use 5% for safety's sake. 10229 */ 10230 u32 bps = target_clock * bpp * 21 / 20; 10231 return DIV_ROUND_UP(bps, link_bw * 8); 10232 } 10233 10234 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor) 10235 { 10236 return i9xx_dpll_compute_m(dpll) < factor * dpll->n; 10237 } 10238 10239 static void ilk_compute_dpll(struct intel_crtc *crtc, 10240 struct intel_crtc_state *crtc_state, 10241 struct dpll *reduced_clock) 10242 { 10243 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10244 u32 dpll, fp, fp2; 10245 int factor; 10246 10247 /* Enable autotuning of the PLL clock (if permissible) */ 10248 factor = 21; 10249 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 10250 if ((intel_panel_use_ssc(dev_priv) && 10251 dev_priv->vbt.lvds_ssc_freq == 100000) || 10252 (HAS_PCH_IBX(dev_priv) && 10253 intel_is_dual_link_lvds(dev_priv))) 10254 factor = 25; 10255 } else if (crtc_state->sdvo_tv_clock) { 10256 factor = 20; 10257 } 10258 10259 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 10260 10261 if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor)) 10262 fp |= FP_CB_TUNE; 10263 10264 if (reduced_clock) { 10265 fp2 = i9xx_dpll_compute_fp(reduced_clock); 10266 10267 if (reduced_clock->m < factor * reduced_clock->n) 10268 fp2 |= FP_CB_TUNE; 10269 } else { 10270 fp2 = fp; 10271 } 10272 10273 dpll = 0; 10274 10275 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 10276 dpll |= DPLLB_MODE_LVDS; 10277 else 10278 dpll |= DPLLB_MODE_DAC_SERIAL; 10279 10280 dpll |= (crtc_state->pixel_multiplier - 1) 10281 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; 10282 10283 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 10284 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 10285 dpll |= DPLL_SDVO_HIGH_SPEED; 10286 10287 if (intel_crtc_has_dp_encoder(crtc_state)) 10288 dpll |= DPLL_SDVO_HIGH_SPEED; 10289 10290 /* 10291 * The high speed IO clock is only really required for 10292 * SDVO/HDMI/DP, but we also enable it for CRT to make it 10293 * possible to share the DPLL between CRT and HDMI. Enabling 10294 * the clock needlessly does no real harm, except use up a 10295 * bit of power potentially. 10296 * 10297 * We'll limit this to IVB with 3 pipes, since it has only two 10298 * DPLLs and so DPLL sharing is the only way to get three pipes 10299 * driving PCH ports at the same time. On SNB we could do this, 10300 * and potentially avoid enabling the second DPLL, but it's not 10301 * clear if it''s a win or loss power wise. No point in doing 10302 * this on ILK at all since it has a fixed DPLL<->pipe mapping. 10303 */ 10304 if (INTEL_NUM_PIPES(dev_priv) == 3 && 10305 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) 10306 dpll |= DPLL_SDVO_HIGH_SPEED; 10307 10308 /* compute bitmask from p1 value */ 10309 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 10310 /* also FPA1 */ 10311 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 10312 10313 switch (crtc_state->dpll.p2) { 10314 case 5: 10315 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 10316 break; 10317 case 7: 10318 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 10319 break; 10320 case 10: 10321 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 10322 break; 10323 case 14: 10324 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 10325 break; 10326 } 10327 10328 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 10329 intel_panel_use_ssc(dev_priv)) 10330 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 10331 else 10332 dpll |= PLL_REF_INPUT_DREFCLK; 10333 10334 dpll |= DPLL_VCO_ENABLE; 10335 10336 crtc_state->dpll_hw_state.dpll = dpll; 10337 crtc_state->dpll_hw_state.fp0 = fp; 10338 crtc_state->dpll_hw_state.fp1 = fp2; 10339 } 10340 10341 static int ilk_crtc_compute_clock(struct intel_crtc *crtc, 10342 struct intel_crtc_state *crtc_state) 10343 { 10344 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10345 struct intel_atomic_state *state = 10346 to_intel_atomic_state(crtc_state->uapi.state); 10347 const struct intel_limit *limit; 10348 int refclk = 120000; 10349 10350 memset(&crtc_state->dpll_hw_state, 0, 10351 sizeof(crtc_state->dpll_hw_state)); 10352 10353 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 10354 if (!crtc_state->has_pch_encoder) 10355 return 0; 10356 10357 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 10358 if (intel_panel_use_ssc(dev_priv)) { 10359 drm_dbg_kms(&dev_priv->drm, 10360 "using SSC reference clock of %d kHz\n", 10361 dev_priv->vbt.lvds_ssc_freq); 10362 refclk = dev_priv->vbt.lvds_ssc_freq; 10363 } 10364 10365 if (intel_is_dual_link_lvds(dev_priv)) { 10366 if (refclk == 100000) 10367 limit = &ilk_limits_dual_lvds_100m; 10368 else 10369 limit = &ilk_limits_dual_lvds; 10370 } else { 10371 if (refclk == 100000) 10372 limit = &ilk_limits_single_lvds_100m; 10373 else 10374 limit = &ilk_limits_single_lvds; 10375 } 10376 } else { 10377 limit = &ilk_limits_dac; 10378 } 10379 10380 if (!crtc_state->clock_set && 10381 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 10382 refclk, NULL, &crtc_state->dpll)) { 10383 drm_err(&dev_priv->drm, 10384 "Couldn't find PLL settings for mode!\n"); 10385 return -EINVAL; 10386 } 10387 10388 ilk_compute_dpll(crtc, crtc_state, NULL); 10389 10390 if (!intel_reserve_shared_dplls(state, crtc, NULL)) { 10391 drm_dbg_kms(&dev_priv->drm, 10392 "failed to find PLL for pipe %c\n", 10393 pipe_name(crtc->pipe)); 10394 return -EINVAL; 10395 } 10396 10397 return 0; 10398 } 10399 10400 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 10401 struct intel_link_m_n *m_n) 10402 { 10403 struct drm_device *dev = crtc->base.dev; 10404 struct drm_i915_private *dev_priv = to_i915(dev); 10405 enum pipe pipe = crtc->pipe; 10406 10407 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe)); 10408 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe)); 10409 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 10410 & ~TU_SIZE_MASK; 10411 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe)); 10412 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 10413 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10414 } 10415 10416 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 10417 enum transcoder transcoder, 10418 struct intel_link_m_n *m_n, 10419 struct intel_link_m_n *m2_n2) 10420 { 10421 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10422 enum pipe pipe = crtc->pipe; 10423 10424 if (INTEL_GEN(dev_priv) >= 5) { 10425 m_n->link_m = intel_de_read(dev_priv, 10426 PIPE_LINK_M1(transcoder)); 10427 m_n->link_n = intel_de_read(dev_priv, 10428 PIPE_LINK_N1(transcoder)); 10429 m_n->gmch_m = intel_de_read(dev_priv, 10430 PIPE_DATA_M1(transcoder)) 10431 & ~TU_SIZE_MASK; 10432 m_n->gmch_n = intel_de_read(dev_priv, 10433 PIPE_DATA_N1(transcoder)); 10434 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder)) 10435 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10436 10437 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 10438 m2_n2->link_m = intel_de_read(dev_priv, 10439 PIPE_LINK_M2(transcoder)); 10440 m2_n2->link_n = intel_de_read(dev_priv, 10441 PIPE_LINK_N2(transcoder)); 10442 m2_n2->gmch_m = intel_de_read(dev_priv, 10443 PIPE_DATA_M2(transcoder)) 10444 & ~TU_SIZE_MASK; 10445 m2_n2->gmch_n = intel_de_read(dev_priv, 10446 PIPE_DATA_N2(transcoder)); 10447 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder)) 10448 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10449 } 10450 } else { 10451 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe)); 10452 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe)); 10453 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 10454 & ~TU_SIZE_MASK; 10455 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe)); 10456 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 10457 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10458 } 10459 } 10460 10461 void intel_dp_get_m_n(struct intel_crtc *crtc, 10462 struct intel_crtc_state *pipe_config) 10463 { 10464 if (pipe_config->has_pch_encoder) 10465 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 10466 else 10467 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 10468 &pipe_config->dp_m_n, 10469 &pipe_config->dp_m2_n2); 10470 } 10471 10472 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc, 10473 struct intel_crtc_state *pipe_config) 10474 { 10475 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 10476 &pipe_config->fdi_m_n, NULL); 10477 } 10478 10479 static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state, 10480 u32 pos, u32 size) 10481 { 10482 drm_rect_init(&crtc_state->pch_pfit.dst, 10483 pos >> 16, pos & 0xffff, 10484 size >> 16, size & 0xffff); 10485 } 10486 10487 static void skl_get_pfit_config(struct intel_crtc_state *crtc_state) 10488 { 10489 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10490 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10491 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; 10492 int id = -1; 10493 int i; 10494 10495 /* find scaler attached to this pipe */ 10496 for (i = 0; i < crtc->num_scalers; i++) { 10497 u32 ctl, pos, size; 10498 10499 ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i)); 10500 if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN) 10501 continue; 10502 10503 id = i; 10504 crtc_state->pch_pfit.enabled = true; 10505 10506 pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i)); 10507 size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i)); 10508 10509 ilk_get_pfit_pos_size(crtc_state, pos, size); 10510 10511 scaler_state->scalers[i].in_use = true; 10512 break; 10513 } 10514 10515 scaler_state->scaler_id = id; 10516 if (id >= 0) 10517 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 10518 else 10519 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 10520 } 10521 10522 static void 10523 skl_get_initial_plane_config(struct intel_crtc *crtc, 10524 struct intel_initial_plane_config *plane_config) 10525 { 10526 struct drm_device *dev = crtc->base.dev; 10527 struct drm_i915_private *dev_priv = to_i915(dev); 10528 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 10529 enum plane_id plane_id = plane->id; 10530 enum pipe pipe; 10531 u32 val, base, offset, stride_mult, tiling, alpha; 10532 int fourcc, pixel_format; 10533 unsigned int aligned_height; 10534 struct drm_framebuffer *fb; 10535 struct intel_framebuffer *intel_fb; 10536 10537 if (!plane->get_hw_state(plane, &pipe)) 10538 return; 10539 10540 drm_WARN_ON(dev, pipe != crtc->pipe); 10541 10542 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 10543 if (!intel_fb) { 10544 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n"); 10545 return; 10546 } 10547 10548 fb = &intel_fb->base; 10549 10550 fb->dev = dev; 10551 10552 val = intel_de_read(dev_priv, PLANE_CTL(pipe, plane_id)); 10553 10554 if (INTEL_GEN(dev_priv) >= 11) 10555 pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK; 10556 else 10557 pixel_format = val & PLANE_CTL_FORMAT_MASK; 10558 10559 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { 10560 alpha = intel_de_read(dev_priv, 10561 PLANE_COLOR_CTL(pipe, plane_id)); 10562 alpha &= PLANE_COLOR_ALPHA_MASK; 10563 } else { 10564 alpha = val & PLANE_CTL_ALPHA_MASK; 10565 } 10566 10567 fourcc = skl_format_to_fourcc(pixel_format, 10568 val & PLANE_CTL_ORDER_RGBX, alpha); 10569 fb->format = drm_format_info(fourcc); 10570 10571 tiling = val & PLANE_CTL_TILED_MASK; 10572 switch (tiling) { 10573 case PLANE_CTL_TILED_LINEAR: 10574 fb->modifier = DRM_FORMAT_MOD_LINEAR; 10575 break; 10576 case PLANE_CTL_TILED_X: 10577 plane_config->tiling = I915_TILING_X; 10578 fb->modifier = I915_FORMAT_MOD_X_TILED; 10579 break; 10580 case PLANE_CTL_TILED_Y: 10581 plane_config->tiling = I915_TILING_Y; 10582 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 10583 fb->modifier = INTEL_GEN(dev_priv) >= 12 ? 10584 I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS : 10585 I915_FORMAT_MOD_Y_TILED_CCS; 10586 else if (val & PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE) 10587 fb->modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS; 10588 else 10589 fb->modifier = I915_FORMAT_MOD_Y_TILED; 10590 break; 10591 case PLANE_CTL_TILED_YF: 10592 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 10593 fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS; 10594 else 10595 fb->modifier = I915_FORMAT_MOD_Yf_TILED; 10596 break; 10597 default: 10598 MISSING_CASE(tiling); 10599 goto error; 10600 } 10601 10602 /* 10603 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 10604 * while i915 HW rotation is clockwise, thats why this swapping. 10605 */ 10606 switch (val & PLANE_CTL_ROTATE_MASK) { 10607 case PLANE_CTL_ROTATE_0: 10608 plane_config->rotation = DRM_MODE_ROTATE_0; 10609 break; 10610 case PLANE_CTL_ROTATE_90: 10611 plane_config->rotation = DRM_MODE_ROTATE_270; 10612 break; 10613 case PLANE_CTL_ROTATE_180: 10614 plane_config->rotation = DRM_MODE_ROTATE_180; 10615 break; 10616 case PLANE_CTL_ROTATE_270: 10617 plane_config->rotation = DRM_MODE_ROTATE_90; 10618 break; 10619 } 10620 10621 if (INTEL_GEN(dev_priv) >= 10 && 10622 val & PLANE_CTL_FLIP_HORIZONTAL) 10623 plane_config->rotation |= DRM_MODE_REFLECT_X; 10624 10625 base = intel_de_read(dev_priv, PLANE_SURF(pipe, plane_id)) & 0xfffff000; 10626 plane_config->base = base; 10627 10628 offset = intel_de_read(dev_priv, PLANE_OFFSET(pipe, plane_id)); 10629 10630 val = intel_de_read(dev_priv, PLANE_SIZE(pipe, plane_id)); 10631 fb->height = ((val >> 16) & 0xffff) + 1; 10632 fb->width = ((val >> 0) & 0xffff) + 1; 10633 10634 val = intel_de_read(dev_priv, PLANE_STRIDE(pipe, plane_id)); 10635 stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0); 10636 fb->pitches[0] = (val & 0x3ff) * stride_mult; 10637 10638 aligned_height = intel_fb_align_height(fb, 0, fb->height); 10639 10640 plane_config->size = fb->pitches[0] * aligned_height; 10641 10642 drm_dbg_kms(&dev_priv->drm, 10643 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 10644 crtc->base.name, plane->base.name, fb->width, fb->height, 10645 fb->format->cpp[0] * 8, base, fb->pitches[0], 10646 plane_config->size); 10647 10648 plane_config->fb = intel_fb; 10649 return; 10650 10651 error: 10652 kfree(intel_fb); 10653 } 10654 10655 static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state) 10656 { 10657 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10658 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10659 u32 ctl, pos, size; 10660 10661 ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe)); 10662 if ((ctl & PF_ENABLE) == 0) 10663 return; 10664 10665 crtc_state->pch_pfit.enabled = true; 10666 10667 pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe)); 10668 size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe)); 10669 10670 ilk_get_pfit_pos_size(crtc_state, pos, size); 10671 10672 /* 10673 * We currently do not free assignements of panel fitters on 10674 * ivb/hsw (since we don't use the higher upscaling modes which 10675 * differentiates them) so just WARN about this case for now. 10676 */ 10677 drm_WARN_ON(&dev_priv->drm, IS_GEN(dev_priv, 7) && 10678 (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe)); 10679 } 10680 10681 static bool ilk_get_pipe_config(struct intel_crtc *crtc, 10682 struct intel_crtc_state *pipe_config) 10683 { 10684 struct drm_device *dev = crtc->base.dev; 10685 struct drm_i915_private *dev_priv = to_i915(dev); 10686 enum intel_display_power_domain power_domain; 10687 intel_wakeref_t wakeref; 10688 u32 tmp; 10689 bool ret; 10690 10691 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 10692 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 10693 if (!wakeref) 10694 return false; 10695 10696 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10697 pipe_config->shared_dpll = NULL; 10698 10699 ret = false; 10700 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 10701 if (!(tmp & PIPECONF_ENABLE)) 10702 goto out; 10703 10704 switch (tmp & PIPECONF_BPC_MASK) { 10705 case PIPECONF_6BPC: 10706 pipe_config->pipe_bpp = 18; 10707 break; 10708 case PIPECONF_8BPC: 10709 pipe_config->pipe_bpp = 24; 10710 break; 10711 case PIPECONF_10BPC: 10712 pipe_config->pipe_bpp = 30; 10713 break; 10714 case PIPECONF_12BPC: 10715 pipe_config->pipe_bpp = 36; 10716 break; 10717 default: 10718 break; 10719 } 10720 10721 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 10722 pipe_config->limited_color_range = true; 10723 10724 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { 10725 case PIPECONF_OUTPUT_COLORSPACE_YUV601: 10726 case PIPECONF_OUTPUT_COLORSPACE_YUV709: 10727 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 10728 break; 10729 default: 10730 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 10731 break; 10732 } 10733 10734 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 10735 PIPECONF_GAMMA_MODE_SHIFT; 10736 10737 pipe_config->csc_mode = intel_de_read(dev_priv, 10738 PIPE_CSC_MODE(crtc->pipe)); 10739 10740 i9xx_get_pipe_color_config(pipe_config); 10741 intel_color_get_config(pipe_config); 10742 10743 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 10744 struct intel_shared_dpll *pll; 10745 enum intel_dpll_id pll_id; 10746 10747 pipe_config->has_pch_encoder = true; 10748 10749 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe)); 10750 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 10751 FDI_DP_PORT_WIDTH_SHIFT) + 1; 10752 10753 ilk_get_fdi_m_n_config(crtc, pipe_config); 10754 10755 if (HAS_PCH_IBX(dev_priv)) { 10756 /* 10757 * The pipe->pch transcoder and pch transcoder->pll 10758 * mapping is fixed. 10759 */ 10760 pll_id = (enum intel_dpll_id) crtc->pipe; 10761 } else { 10762 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL); 10763 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 10764 pll_id = DPLL_ID_PCH_PLL_B; 10765 else 10766 pll_id= DPLL_ID_PCH_PLL_A; 10767 } 10768 10769 pipe_config->shared_dpll = 10770 intel_get_shared_dpll_by_id(dev_priv, pll_id); 10771 pll = pipe_config->shared_dpll; 10772 10773 drm_WARN_ON(dev, !pll->info->funcs->get_hw_state(dev_priv, pll, 10774 &pipe_config->dpll_hw_state)); 10775 10776 tmp = pipe_config->dpll_hw_state.dpll; 10777 pipe_config->pixel_multiplier = 10778 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 10779 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 10780 10781 ilk_pch_clock_get(crtc, pipe_config); 10782 } else { 10783 pipe_config->pixel_multiplier = 1; 10784 } 10785 10786 intel_get_pipe_timings(crtc, pipe_config); 10787 intel_get_pipe_src_size(crtc, pipe_config); 10788 10789 ilk_get_pfit_config(pipe_config); 10790 10791 ret = true; 10792 10793 out: 10794 intel_display_power_put(dev_priv, power_domain, wakeref); 10795 10796 return ret; 10797 } 10798 10799 static int hsw_crtc_compute_clock(struct intel_crtc *crtc, 10800 struct intel_crtc_state *crtc_state) 10801 { 10802 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10803 struct intel_atomic_state *state = 10804 to_intel_atomic_state(crtc_state->uapi.state); 10805 10806 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) || 10807 INTEL_GEN(dev_priv) >= 11) { 10808 struct intel_encoder *encoder = 10809 intel_get_crtc_new_encoder(state, crtc_state); 10810 10811 if (!intel_reserve_shared_dplls(state, crtc, encoder)) { 10812 drm_dbg_kms(&dev_priv->drm, 10813 "failed to find PLL for pipe %c\n", 10814 pipe_name(crtc->pipe)); 10815 return -EINVAL; 10816 } 10817 } 10818 10819 return 0; 10820 } 10821 10822 static void cnl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10823 struct intel_crtc_state *pipe_config) 10824 { 10825 enum intel_dpll_id id; 10826 u32 temp; 10827 10828 temp = intel_de_read(dev_priv, DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port); 10829 id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port); 10830 10831 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL2)) 10832 return; 10833 10834 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10835 } 10836 10837 static void icl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10838 struct intel_crtc_state *pipe_config) 10839 { 10840 enum phy phy = intel_port_to_phy(dev_priv, port); 10841 enum icl_port_dpll_id port_dpll_id; 10842 enum intel_dpll_id id; 10843 u32 temp; 10844 10845 if (intel_phy_is_combo(dev_priv, phy)) { 10846 u32 mask, shift; 10847 10848 if (IS_ROCKETLAKE(dev_priv)) { 10849 mask = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); 10850 shift = RKL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy); 10851 } else { 10852 mask = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); 10853 shift = ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy); 10854 } 10855 10856 temp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0) & mask; 10857 id = temp >> shift; 10858 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10859 } else if (intel_phy_is_tc(dev_priv, phy)) { 10860 u32 clk_sel = intel_de_read(dev_priv, DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK; 10861 10862 if (clk_sel == DDI_CLK_SEL_MG) { 10863 id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv, 10864 port)); 10865 port_dpll_id = ICL_PORT_DPLL_MG_PHY; 10866 } else { 10867 drm_WARN_ON(&dev_priv->drm, 10868 clk_sel < DDI_CLK_SEL_TBT_162); 10869 id = DPLL_ID_ICL_TBTPLL; 10870 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10871 } 10872 } else { 10873 drm_WARN(&dev_priv->drm, 1, "Invalid port %x\n", port); 10874 return; 10875 } 10876 10877 pipe_config->icl_port_dplls[port_dpll_id].pll = 10878 intel_get_shared_dpll_by_id(dev_priv, id); 10879 10880 icl_set_active_port_dpll(pipe_config, port_dpll_id); 10881 } 10882 10883 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv, 10884 enum port port, 10885 struct intel_crtc_state *pipe_config) 10886 { 10887 enum intel_dpll_id id; 10888 10889 switch (port) { 10890 case PORT_A: 10891 id = DPLL_ID_SKL_DPLL0; 10892 break; 10893 case PORT_B: 10894 id = DPLL_ID_SKL_DPLL1; 10895 break; 10896 case PORT_C: 10897 id = DPLL_ID_SKL_DPLL2; 10898 break; 10899 default: 10900 drm_err(&dev_priv->drm, "Incorrect port type\n"); 10901 return; 10902 } 10903 10904 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10905 } 10906 10907 static void skl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10908 struct intel_crtc_state *pipe_config) 10909 { 10910 enum intel_dpll_id id; 10911 u32 temp; 10912 10913 temp = intel_de_read(dev_priv, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port); 10914 id = temp >> (port * 3 + 1); 10915 10916 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL3)) 10917 return; 10918 10919 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10920 } 10921 10922 static void hsw_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10923 struct intel_crtc_state *pipe_config) 10924 { 10925 enum intel_dpll_id id; 10926 u32 ddi_pll_sel = intel_de_read(dev_priv, PORT_CLK_SEL(port)); 10927 10928 switch (ddi_pll_sel) { 10929 case PORT_CLK_SEL_WRPLL1: 10930 id = DPLL_ID_WRPLL1; 10931 break; 10932 case PORT_CLK_SEL_WRPLL2: 10933 id = DPLL_ID_WRPLL2; 10934 break; 10935 case PORT_CLK_SEL_SPLL: 10936 id = DPLL_ID_SPLL; 10937 break; 10938 case PORT_CLK_SEL_LCPLL_810: 10939 id = DPLL_ID_LCPLL_810; 10940 break; 10941 case PORT_CLK_SEL_LCPLL_1350: 10942 id = DPLL_ID_LCPLL_1350; 10943 break; 10944 case PORT_CLK_SEL_LCPLL_2700: 10945 id = DPLL_ID_LCPLL_2700; 10946 break; 10947 default: 10948 MISSING_CASE(ddi_pll_sel); 10949 fallthrough; 10950 case PORT_CLK_SEL_NONE: 10951 return; 10952 } 10953 10954 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10955 } 10956 10957 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 10958 struct intel_crtc_state *pipe_config, 10959 u64 *power_domain_mask, 10960 intel_wakeref_t *wakerefs) 10961 { 10962 struct drm_device *dev = crtc->base.dev; 10963 struct drm_i915_private *dev_priv = to_i915(dev); 10964 enum intel_display_power_domain power_domain; 10965 unsigned long panel_transcoder_mask = BIT(TRANSCODER_EDP); 10966 unsigned long enabled_panel_transcoders = 0; 10967 enum transcoder panel_transcoder; 10968 intel_wakeref_t wf; 10969 u32 tmp; 10970 10971 if (INTEL_GEN(dev_priv) >= 11) 10972 panel_transcoder_mask |= 10973 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 10974 10975 /* 10976 * The pipe->transcoder mapping is fixed with the exception of the eDP 10977 * and DSI transcoders handled below. 10978 */ 10979 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10980 10981 /* 10982 * XXX: Do intel_display_power_get_if_enabled before reading this (for 10983 * consistency and less surprising code; it's in always on power). 10984 */ 10985 for_each_cpu_transcoder_masked(dev_priv, panel_transcoder, 10986 panel_transcoder_mask) { 10987 bool force_thru = false; 10988 enum pipe trans_pipe; 10989 10990 tmp = intel_de_read(dev_priv, 10991 TRANS_DDI_FUNC_CTL(panel_transcoder)); 10992 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 10993 continue; 10994 10995 /* 10996 * Log all enabled ones, only use the first one. 10997 * 10998 * FIXME: This won't work for two separate DSI displays. 10999 */ 11000 enabled_panel_transcoders |= BIT(panel_transcoder); 11001 if (enabled_panel_transcoders != BIT(panel_transcoder)) 11002 continue; 11003 11004 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 11005 default: 11006 drm_WARN(dev, 1, 11007 "unknown pipe linked to transcoder %s\n", 11008 transcoder_name(panel_transcoder)); 11009 fallthrough; 11010 case TRANS_DDI_EDP_INPUT_A_ONOFF: 11011 force_thru = true; 11012 fallthrough; 11013 case TRANS_DDI_EDP_INPUT_A_ON: 11014 trans_pipe = PIPE_A; 11015 break; 11016 case TRANS_DDI_EDP_INPUT_B_ONOFF: 11017 trans_pipe = PIPE_B; 11018 break; 11019 case TRANS_DDI_EDP_INPUT_C_ONOFF: 11020 trans_pipe = PIPE_C; 11021 break; 11022 case TRANS_DDI_EDP_INPUT_D_ONOFF: 11023 trans_pipe = PIPE_D; 11024 break; 11025 } 11026 11027 if (trans_pipe == crtc->pipe) { 11028 pipe_config->cpu_transcoder = panel_transcoder; 11029 pipe_config->pch_pfit.force_thru = force_thru; 11030 } 11031 } 11032 11033 /* 11034 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 11035 */ 11036 drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && 11037 enabled_panel_transcoders != BIT(TRANSCODER_EDP)); 11038 11039 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder); 11040 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain)); 11041 11042 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11043 if (!wf) 11044 return false; 11045 11046 wakerefs[power_domain] = wf; 11047 *power_domain_mask |= BIT_ULL(power_domain); 11048 11049 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); 11050 11051 return tmp & PIPECONF_ENABLE; 11052 } 11053 11054 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 11055 struct intel_crtc_state *pipe_config, 11056 u64 *power_domain_mask, 11057 intel_wakeref_t *wakerefs) 11058 { 11059 struct drm_device *dev = crtc->base.dev; 11060 struct drm_i915_private *dev_priv = to_i915(dev); 11061 enum intel_display_power_domain power_domain; 11062 enum transcoder cpu_transcoder; 11063 intel_wakeref_t wf; 11064 enum port port; 11065 u32 tmp; 11066 11067 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 11068 if (port == PORT_A) 11069 cpu_transcoder = TRANSCODER_DSI_A; 11070 else 11071 cpu_transcoder = TRANSCODER_DSI_C; 11072 11073 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 11074 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain)); 11075 11076 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11077 if (!wf) 11078 continue; 11079 11080 wakerefs[power_domain] = wf; 11081 *power_domain_mask |= BIT_ULL(power_domain); 11082 11083 /* 11084 * The PLL needs to be enabled with a valid divider 11085 * configuration, otherwise accessing DSI registers will hang 11086 * the machine. See BSpec North Display Engine 11087 * registers/MIPI[BXT]. We can break out here early, since we 11088 * need the same DSI PLL to be enabled for both DSI ports. 11089 */ 11090 if (!bxt_dsi_pll_is_enabled(dev_priv)) 11091 break; 11092 11093 /* XXX: this works for video mode only */ 11094 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); 11095 if (!(tmp & DPI_ENABLE)) 11096 continue; 11097 11098 tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); 11099 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 11100 continue; 11101 11102 pipe_config->cpu_transcoder = cpu_transcoder; 11103 break; 11104 } 11105 11106 return transcoder_is_dsi(pipe_config->cpu_transcoder); 11107 } 11108 11109 static void hsw_get_ddi_port_state(struct intel_crtc *crtc, 11110 struct intel_crtc_state *pipe_config) 11111 { 11112 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11113 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 11114 struct intel_shared_dpll *pll; 11115 enum port port; 11116 u32 tmp; 11117 11118 if (transcoder_is_dsi(cpu_transcoder)) { 11119 port = (cpu_transcoder == TRANSCODER_DSI_A) ? 11120 PORT_A : PORT_B; 11121 } else { 11122 tmp = intel_de_read(dev_priv, 11123 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 11124 if (INTEL_GEN(dev_priv) >= 12) 11125 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 11126 else 11127 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 11128 } 11129 11130 if (INTEL_GEN(dev_priv) >= 11) 11131 icl_get_ddi_pll(dev_priv, port, pipe_config); 11132 else if (IS_CANNONLAKE(dev_priv)) 11133 cnl_get_ddi_pll(dev_priv, port, pipe_config); 11134 else if (IS_GEN9_BC(dev_priv)) 11135 skl_get_ddi_pll(dev_priv, port, pipe_config); 11136 else if (IS_GEN9_LP(dev_priv)) 11137 bxt_get_ddi_pll(dev_priv, port, pipe_config); 11138 else 11139 hsw_get_ddi_pll(dev_priv, port, pipe_config); 11140 11141 pll = pipe_config->shared_dpll; 11142 if (pll) { 11143 drm_WARN_ON(&dev_priv->drm, 11144 !pll->info->funcs->get_hw_state(dev_priv, pll, 11145 &pipe_config->dpll_hw_state)); 11146 } 11147 11148 /* 11149 * Haswell has only FDI/PCH transcoder A. It is which is connected to 11150 * DDI E. So just check whether this pipe is wired to DDI E and whether 11151 * the PCH transcoder is on. 11152 */ 11153 if (INTEL_GEN(dev_priv) < 9 && 11154 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) { 11155 pipe_config->has_pch_encoder = true; 11156 11157 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); 11158 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 11159 FDI_DP_PORT_WIDTH_SHIFT) + 1; 11160 11161 ilk_get_fdi_m_n_config(crtc, pipe_config); 11162 } 11163 } 11164 11165 static bool hsw_get_pipe_config(struct intel_crtc *crtc, 11166 struct intel_crtc_state *pipe_config) 11167 { 11168 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11169 intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf; 11170 enum intel_display_power_domain power_domain; 11171 u64 power_domain_mask; 11172 bool active; 11173 u32 tmp; 11174 11175 pipe_config->master_transcoder = INVALID_TRANSCODER; 11176 11177 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 11178 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11179 if (!wf) 11180 return false; 11181 11182 wakerefs[power_domain] = wf; 11183 power_domain_mask = BIT_ULL(power_domain); 11184 11185 pipe_config->shared_dpll = NULL; 11186 11187 active = hsw_get_transcoder_state(crtc, pipe_config, 11188 &power_domain_mask, wakerefs); 11189 11190 if (IS_GEN9_LP(dev_priv) && 11191 bxt_get_dsi_transcoder_state(crtc, pipe_config, 11192 &power_domain_mask, wakerefs)) { 11193 drm_WARN_ON(&dev_priv->drm, active); 11194 active = true; 11195 } 11196 11197 if (!active) 11198 goto out; 11199 11200 if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 11201 INTEL_GEN(dev_priv) >= 11) { 11202 hsw_get_ddi_port_state(crtc, pipe_config); 11203 intel_get_pipe_timings(crtc, pipe_config); 11204 } 11205 11206 intel_get_pipe_src_size(crtc, pipe_config); 11207 11208 if (IS_HASWELL(dev_priv)) { 11209 u32 tmp = intel_de_read(dev_priv, 11210 PIPECONF(pipe_config->cpu_transcoder)); 11211 11212 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) 11213 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 11214 else 11215 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 11216 } else { 11217 pipe_config->output_format = 11218 bdw_get_pipemisc_output_format(crtc); 11219 11220 /* 11221 * Currently there is no interface defined to 11222 * check user preference between RGB/YCBCR444 11223 * or YCBCR420. So the only possible case for 11224 * YCBCR444 usage is driving YCBCR420 output 11225 * with LSPCON, when pipe is configured for 11226 * YCBCR444 output and LSPCON takes care of 11227 * downsampling it. 11228 */ 11229 pipe_config->lspcon_downsampling = 11230 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444; 11231 } 11232 11233 pipe_config->gamma_mode = intel_de_read(dev_priv, 11234 GAMMA_MODE(crtc->pipe)); 11235 11236 pipe_config->csc_mode = intel_de_read(dev_priv, 11237 PIPE_CSC_MODE(crtc->pipe)); 11238 11239 if (INTEL_GEN(dev_priv) >= 9) { 11240 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe)); 11241 11242 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 11243 pipe_config->gamma_enable = true; 11244 11245 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 11246 pipe_config->csc_enable = true; 11247 } else { 11248 i9xx_get_pipe_color_config(pipe_config); 11249 } 11250 11251 intel_color_get_config(pipe_config); 11252 11253 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe)); 11254 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); 11255 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 11256 pipe_config->ips_linetime = 11257 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); 11258 11259 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe); 11260 drm_WARN_ON(&dev_priv->drm, power_domain_mask & BIT_ULL(power_domain)); 11261 11262 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11263 if (wf) { 11264 wakerefs[power_domain] = wf; 11265 power_domain_mask |= BIT_ULL(power_domain); 11266 11267 if (INTEL_GEN(dev_priv) >= 9) 11268 skl_get_pfit_config(pipe_config); 11269 else 11270 ilk_get_pfit_config(pipe_config); 11271 } 11272 11273 if (hsw_crtc_supports_ips(crtc)) { 11274 if (IS_HASWELL(dev_priv)) 11275 pipe_config->ips_enabled = intel_de_read(dev_priv, 11276 IPS_CTL) & IPS_ENABLE; 11277 else { 11278 /* 11279 * We cannot readout IPS state on broadwell, set to 11280 * true so we can set it to a defined state on first 11281 * commit. 11282 */ 11283 pipe_config->ips_enabled = true; 11284 } 11285 } 11286 11287 if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 11288 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 11289 pipe_config->pixel_multiplier = 11290 intel_de_read(dev_priv, 11291 PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 11292 } else { 11293 pipe_config->pixel_multiplier = 1; 11294 } 11295 11296 out: 11297 for_each_power_domain(power_domain, power_domain_mask) 11298 intel_display_power_put(dev_priv, 11299 power_domain, wakerefs[power_domain]); 11300 11301 return active; 11302 } 11303 11304 static u32 intel_cursor_base(const struct intel_plane_state *plane_state) 11305 { 11306 struct drm_i915_private *dev_priv = 11307 to_i915(plane_state->uapi.plane->dev); 11308 const struct drm_framebuffer *fb = plane_state->hw.fb; 11309 const struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11310 u32 base; 11311 11312 if (INTEL_INFO(dev_priv)->display.cursor_needs_physical) 11313 base = sg_dma_address(obj->mm.pages->sgl); 11314 else 11315 base = intel_plane_ggtt_offset(plane_state); 11316 11317 return base + plane_state->color_plane[0].offset; 11318 } 11319 11320 static u32 intel_cursor_position(const struct intel_plane_state *plane_state) 11321 { 11322 int x = plane_state->uapi.dst.x1; 11323 int y = plane_state->uapi.dst.y1; 11324 u32 pos = 0; 11325 11326 if (x < 0) { 11327 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; 11328 x = -x; 11329 } 11330 pos |= x << CURSOR_X_SHIFT; 11331 11332 if (y < 0) { 11333 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; 11334 y = -y; 11335 } 11336 pos |= y << CURSOR_Y_SHIFT; 11337 11338 return pos; 11339 } 11340 11341 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state) 11342 { 11343 const struct drm_mode_config *config = 11344 &plane_state->uapi.plane->dev->mode_config; 11345 int width = drm_rect_width(&plane_state->uapi.dst); 11346 int height = drm_rect_height(&plane_state->uapi.dst); 11347 11348 return width > 0 && width <= config->cursor_width && 11349 height > 0 && height <= config->cursor_height; 11350 } 11351 11352 static int intel_cursor_check_surface(struct intel_plane_state *plane_state) 11353 { 11354 struct drm_i915_private *dev_priv = 11355 to_i915(plane_state->uapi.plane->dev); 11356 unsigned int rotation = plane_state->hw.rotation; 11357 int src_x, src_y; 11358 u32 offset; 11359 int ret; 11360 11361 ret = intel_plane_compute_gtt(plane_state); 11362 if (ret) 11363 return ret; 11364 11365 if (!plane_state->uapi.visible) 11366 return 0; 11367 11368 src_x = plane_state->uapi.src.x1 >> 16; 11369 src_y = plane_state->uapi.src.y1 >> 16; 11370 11371 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 11372 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 11373 plane_state, 0); 11374 11375 if (src_x != 0 || src_y != 0) { 11376 drm_dbg_kms(&dev_priv->drm, 11377 "Arbitrary cursor panning not supported\n"); 11378 return -EINVAL; 11379 } 11380 11381 /* 11382 * Put the final coordinates back so that the src 11383 * coordinate checks will see the right values. 11384 */ 11385 drm_rect_translate_to(&plane_state->uapi.src, 11386 src_x << 16, src_y << 16); 11387 11388 /* ILK+ do this automagically in hardware */ 11389 if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) { 11390 const struct drm_framebuffer *fb = plane_state->hw.fb; 11391 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 11392 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 11393 11394 offset += (src_h * src_w - 1) * fb->format->cpp[0]; 11395 } 11396 11397 plane_state->color_plane[0].offset = offset; 11398 plane_state->color_plane[0].x = src_x; 11399 plane_state->color_plane[0].y = src_y; 11400 11401 return 0; 11402 } 11403 11404 static int intel_check_cursor(struct intel_crtc_state *crtc_state, 11405 struct intel_plane_state *plane_state) 11406 { 11407 const struct drm_framebuffer *fb = plane_state->hw.fb; 11408 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 11409 int ret; 11410 11411 if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) { 11412 drm_dbg_kms(&i915->drm, "cursor cannot be tiled\n"); 11413 return -EINVAL; 11414 } 11415 11416 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi, 11417 &crtc_state->uapi, 11418 DRM_PLANE_HELPER_NO_SCALING, 11419 DRM_PLANE_HELPER_NO_SCALING, 11420 true, true); 11421 if (ret) 11422 return ret; 11423 11424 /* Use the unclipped src/dst rectangles, which we program to hw */ 11425 plane_state->uapi.src = drm_plane_state_src(&plane_state->uapi); 11426 plane_state->uapi.dst = drm_plane_state_dest(&plane_state->uapi); 11427 11428 ret = intel_cursor_check_surface(plane_state); 11429 if (ret) 11430 return ret; 11431 11432 if (!plane_state->uapi.visible) 11433 return 0; 11434 11435 ret = intel_plane_check_src_coordinates(plane_state); 11436 if (ret) 11437 return ret; 11438 11439 return 0; 11440 } 11441 11442 static unsigned int 11443 i845_cursor_max_stride(struct intel_plane *plane, 11444 u32 pixel_format, u64 modifier, 11445 unsigned int rotation) 11446 { 11447 return 2048; 11448 } 11449 11450 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 11451 { 11452 u32 cntl = 0; 11453 11454 if (crtc_state->gamma_enable) 11455 cntl |= CURSOR_GAMMA_ENABLE; 11456 11457 return cntl; 11458 } 11459 11460 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state, 11461 const struct intel_plane_state *plane_state) 11462 { 11463 return CURSOR_ENABLE | 11464 CURSOR_FORMAT_ARGB | 11465 CURSOR_STRIDE(plane_state->color_plane[0].stride); 11466 } 11467 11468 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state) 11469 { 11470 int width = drm_rect_width(&plane_state->uapi.dst); 11471 11472 /* 11473 * 845g/865g are only limited by the width of their cursors, 11474 * the height is arbitrary up to the precision of the register. 11475 */ 11476 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64); 11477 } 11478 11479 static int i845_check_cursor(struct intel_crtc_state *crtc_state, 11480 struct intel_plane_state *plane_state) 11481 { 11482 const struct drm_framebuffer *fb = plane_state->hw.fb; 11483 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 11484 int ret; 11485 11486 ret = intel_check_cursor(crtc_state, plane_state); 11487 if (ret) 11488 return ret; 11489 11490 /* if we want to turn off the cursor ignore width and height */ 11491 if (!fb) 11492 return 0; 11493 11494 /* Check for which cursor types we support */ 11495 if (!i845_cursor_size_ok(plane_state)) { 11496 drm_dbg_kms(&i915->drm, 11497 "Cursor dimension %dx%d not supported\n", 11498 drm_rect_width(&plane_state->uapi.dst), 11499 drm_rect_height(&plane_state->uapi.dst)); 11500 return -EINVAL; 11501 } 11502 11503 drm_WARN_ON(&i915->drm, plane_state->uapi.visible && 11504 plane_state->color_plane[0].stride != fb->pitches[0]); 11505 11506 switch (fb->pitches[0]) { 11507 case 256: 11508 case 512: 11509 case 1024: 11510 case 2048: 11511 break; 11512 default: 11513 drm_dbg_kms(&i915->drm, "Invalid cursor stride (%u)\n", 11514 fb->pitches[0]); 11515 return -EINVAL; 11516 } 11517 11518 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state); 11519 11520 return 0; 11521 } 11522 11523 static void i845_update_cursor(struct intel_plane *plane, 11524 const struct intel_crtc_state *crtc_state, 11525 const struct intel_plane_state *plane_state) 11526 { 11527 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11528 u32 cntl = 0, base = 0, pos = 0, size = 0; 11529 unsigned long irqflags; 11530 11531 if (plane_state && plane_state->uapi.visible) { 11532 unsigned int width = drm_rect_width(&plane_state->uapi.dst); 11533 unsigned int height = drm_rect_height(&plane_state->uapi.dst); 11534 11535 cntl = plane_state->ctl | 11536 i845_cursor_ctl_crtc(crtc_state); 11537 11538 size = (height << 12) | width; 11539 11540 base = intel_cursor_base(plane_state); 11541 pos = intel_cursor_position(plane_state); 11542 } 11543 11544 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 11545 11546 /* On these chipsets we can only modify the base/size/stride 11547 * whilst the cursor is disabled. 11548 */ 11549 if (plane->cursor.base != base || 11550 plane->cursor.size != size || 11551 plane->cursor.cntl != cntl) { 11552 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), 0); 11553 intel_de_write_fw(dev_priv, CURBASE(PIPE_A), base); 11554 intel_de_write_fw(dev_priv, CURSIZE, size); 11555 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos); 11556 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), cntl); 11557 11558 plane->cursor.base = base; 11559 plane->cursor.size = size; 11560 plane->cursor.cntl = cntl; 11561 } else { 11562 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos); 11563 } 11564 11565 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 11566 } 11567 11568 static void i845_disable_cursor(struct intel_plane *plane, 11569 const struct intel_crtc_state *crtc_state) 11570 { 11571 i845_update_cursor(plane, crtc_state, NULL); 11572 } 11573 11574 static bool i845_cursor_get_hw_state(struct intel_plane *plane, 11575 enum pipe *pipe) 11576 { 11577 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11578 enum intel_display_power_domain power_domain; 11579 intel_wakeref_t wakeref; 11580 bool ret; 11581 11582 power_domain = POWER_DOMAIN_PIPE(PIPE_A); 11583 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11584 if (!wakeref) 11585 return false; 11586 11587 ret = intel_de_read(dev_priv, CURCNTR(PIPE_A)) & CURSOR_ENABLE; 11588 11589 *pipe = PIPE_A; 11590 11591 intel_display_power_put(dev_priv, power_domain, wakeref); 11592 11593 return ret; 11594 } 11595 11596 static unsigned int 11597 i9xx_cursor_max_stride(struct intel_plane *plane, 11598 u32 pixel_format, u64 modifier, 11599 unsigned int rotation) 11600 { 11601 return plane->base.dev->mode_config.cursor_width * 4; 11602 } 11603 11604 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 11605 { 11606 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 11607 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11608 u32 cntl = 0; 11609 11610 if (INTEL_GEN(dev_priv) >= 11) 11611 return cntl; 11612 11613 if (crtc_state->gamma_enable) 11614 cntl = MCURSOR_GAMMA_ENABLE; 11615 11616 if (crtc_state->csc_enable) 11617 cntl |= MCURSOR_PIPE_CSC_ENABLE; 11618 11619 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 11620 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe); 11621 11622 return cntl; 11623 } 11624 11625 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state, 11626 const struct intel_plane_state *plane_state) 11627 { 11628 struct drm_i915_private *dev_priv = 11629 to_i915(plane_state->uapi.plane->dev); 11630 u32 cntl = 0; 11631 11632 if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 11633 cntl |= MCURSOR_TRICKLE_FEED_DISABLE; 11634 11635 switch (drm_rect_width(&plane_state->uapi.dst)) { 11636 case 64: 11637 cntl |= MCURSOR_MODE_64_ARGB_AX; 11638 break; 11639 case 128: 11640 cntl |= MCURSOR_MODE_128_ARGB_AX; 11641 break; 11642 case 256: 11643 cntl |= MCURSOR_MODE_256_ARGB_AX; 11644 break; 11645 default: 11646 MISSING_CASE(drm_rect_width(&plane_state->uapi.dst)); 11647 return 0; 11648 } 11649 11650 if (plane_state->hw.rotation & DRM_MODE_ROTATE_180) 11651 cntl |= MCURSOR_ROTATE_180; 11652 11653 return cntl; 11654 } 11655 11656 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state) 11657 { 11658 struct drm_i915_private *dev_priv = 11659 to_i915(plane_state->uapi.plane->dev); 11660 int width = drm_rect_width(&plane_state->uapi.dst); 11661 int height = drm_rect_height(&plane_state->uapi.dst); 11662 11663 if (!intel_cursor_size_ok(plane_state)) 11664 return false; 11665 11666 /* Cursor width is limited to a few power-of-two sizes */ 11667 switch (width) { 11668 case 256: 11669 case 128: 11670 case 64: 11671 break; 11672 default: 11673 return false; 11674 } 11675 11676 /* 11677 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor 11678 * height from 8 lines up to the cursor width, when the 11679 * cursor is not rotated. Everything else requires square 11680 * cursors. 11681 */ 11682 if (HAS_CUR_FBC(dev_priv) && 11683 plane_state->hw.rotation & DRM_MODE_ROTATE_0) { 11684 if (height < 8 || height > width) 11685 return false; 11686 } else { 11687 if (height != width) 11688 return false; 11689 } 11690 11691 return true; 11692 } 11693 11694 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state, 11695 struct intel_plane_state *plane_state) 11696 { 11697 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 11698 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11699 const struct drm_framebuffer *fb = plane_state->hw.fb; 11700 enum pipe pipe = plane->pipe; 11701 int ret; 11702 11703 ret = intel_check_cursor(crtc_state, plane_state); 11704 if (ret) 11705 return ret; 11706 11707 /* if we want to turn off the cursor ignore width and height */ 11708 if (!fb) 11709 return 0; 11710 11711 /* Check for which cursor types we support */ 11712 if (!i9xx_cursor_size_ok(plane_state)) { 11713 drm_dbg(&dev_priv->drm, 11714 "Cursor dimension %dx%d not supported\n", 11715 drm_rect_width(&plane_state->uapi.dst), 11716 drm_rect_height(&plane_state->uapi.dst)); 11717 return -EINVAL; 11718 } 11719 11720 drm_WARN_ON(&dev_priv->drm, plane_state->uapi.visible && 11721 plane_state->color_plane[0].stride != fb->pitches[0]); 11722 11723 if (fb->pitches[0] != 11724 drm_rect_width(&plane_state->uapi.dst) * fb->format->cpp[0]) { 11725 drm_dbg_kms(&dev_priv->drm, 11726 "Invalid cursor stride (%u) (cursor width %d)\n", 11727 fb->pitches[0], 11728 drm_rect_width(&plane_state->uapi.dst)); 11729 return -EINVAL; 11730 } 11731 11732 /* 11733 * There's something wrong with the cursor on CHV pipe C. 11734 * If it straddles the left edge of the screen then 11735 * moving it away from the edge or disabling it often 11736 * results in a pipe underrun, and often that can lead to 11737 * dead pipe (constant underrun reported, and it scans 11738 * out just a solid color). To recover from that, the 11739 * display power well must be turned off and on again. 11740 * Refuse the put the cursor into that compromised position. 11741 */ 11742 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C && 11743 plane_state->uapi.visible && plane_state->uapi.dst.x1 < 0) { 11744 drm_dbg_kms(&dev_priv->drm, 11745 "CHV cursor C not allowed to straddle the left screen edge\n"); 11746 return -EINVAL; 11747 } 11748 11749 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state); 11750 11751 return 0; 11752 } 11753 11754 static void i9xx_update_cursor(struct intel_plane *plane, 11755 const struct intel_crtc_state *crtc_state, 11756 const struct intel_plane_state *plane_state) 11757 { 11758 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11759 enum pipe pipe = plane->pipe; 11760 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0; 11761 unsigned long irqflags; 11762 11763 if (plane_state && plane_state->uapi.visible) { 11764 unsigned width = drm_rect_width(&plane_state->uapi.dst); 11765 unsigned height = drm_rect_height(&plane_state->uapi.dst); 11766 11767 cntl = plane_state->ctl | 11768 i9xx_cursor_ctl_crtc(crtc_state); 11769 11770 if (width != height) 11771 fbc_ctl = CUR_FBC_CTL_EN | (height - 1); 11772 11773 base = intel_cursor_base(plane_state); 11774 pos = intel_cursor_position(plane_state); 11775 } 11776 11777 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 11778 11779 /* 11780 * On some platforms writing CURCNTR first will also 11781 * cause CURPOS to be armed by the CURBASE write. 11782 * Without the CURCNTR write the CURPOS write would 11783 * arm itself. Thus we always update CURCNTR before 11784 * CURPOS. 11785 * 11786 * On other platforms CURPOS always requires the 11787 * CURBASE write to arm the update. Additonally 11788 * a write to any of the cursor register will cancel 11789 * an already armed cursor update. Thus leaving out 11790 * the CURBASE write after CURPOS could lead to a 11791 * cursor that doesn't appear to move, or even change 11792 * shape. Thus we always write CURBASE. 11793 * 11794 * The other registers are armed by by the CURBASE write 11795 * except when the plane is getting enabled at which time 11796 * the CURCNTR write arms the update. 11797 */ 11798 11799 if (INTEL_GEN(dev_priv) >= 9) 11800 skl_write_cursor_wm(plane, crtc_state); 11801 11802 if (plane->cursor.base != base || 11803 plane->cursor.size != fbc_ctl || 11804 plane->cursor.cntl != cntl) { 11805 if (HAS_CUR_FBC(dev_priv)) 11806 intel_de_write_fw(dev_priv, CUR_FBC_CTL(pipe), 11807 fbc_ctl); 11808 intel_de_write_fw(dev_priv, CURCNTR(pipe), cntl); 11809 intel_de_write_fw(dev_priv, CURPOS(pipe), pos); 11810 intel_de_write_fw(dev_priv, CURBASE(pipe), base); 11811 11812 plane->cursor.base = base; 11813 plane->cursor.size = fbc_ctl; 11814 plane->cursor.cntl = cntl; 11815 } else { 11816 intel_de_write_fw(dev_priv, CURPOS(pipe), pos); 11817 intel_de_write_fw(dev_priv, CURBASE(pipe), base); 11818 } 11819 11820 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 11821 } 11822 11823 static void i9xx_disable_cursor(struct intel_plane *plane, 11824 const struct intel_crtc_state *crtc_state) 11825 { 11826 i9xx_update_cursor(plane, crtc_state, NULL); 11827 } 11828 11829 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane, 11830 enum pipe *pipe) 11831 { 11832 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11833 enum intel_display_power_domain power_domain; 11834 intel_wakeref_t wakeref; 11835 bool ret; 11836 u32 val; 11837 11838 /* 11839 * Not 100% correct for planes that can move between pipes, 11840 * but that's only the case for gen2-3 which don't have any 11841 * display power wells. 11842 */ 11843 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 11844 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11845 if (!wakeref) 11846 return false; 11847 11848 val = intel_de_read(dev_priv, CURCNTR(plane->pipe)); 11849 11850 ret = val & MCURSOR_MODE; 11851 11852 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 11853 *pipe = plane->pipe; 11854 else 11855 *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >> 11856 MCURSOR_PIPE_SELECT_SHIFT; 11857 11858 intel_display_power_put(dev_priv, power_domain, wakeref); 11859 11860 return ret; 11861 } 11862 11863 /* VESA 640x480x72Hz mode to set on the pipe */ 11864 static const struct drm_display_mode load_detect_mode = { 11865 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 11866 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 11867 }; 11868 11869 struct drm_framebuffer * 11870 intel_framebuffer_create(struct drm_i915_gem_object *obj, 11871 struct drm_mode_fb_cmd2 *mode_cmd) 11872 { 11873 struct intel_framebuffer *intel_fb; 11874 int ret; 11875 11876 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 11877 if (!intel_fb) 11878 return ERR_PTR(-ENOMEM); 11879 11880 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); 11881 if (ret) 11882 goto err; 11883 11884 return &intel_fb->base; 11885 11886 err: 11887 kfree(intel_fb); 11888 return ERR_PTR(ret); 11889 } 11890 11891 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 11892 struct drm_crtc *crtc) 11893 { 11894 struct drm_plane *plane; 11895 struct drm_plane_state *plane_state; 11896 int ret, i; 11897 11898 ret = drm_atomic_add_affected_planes(state, crtc); 11899 if (ret) 11900 return ret; 11901 11902 for_each_new_plane_in_state(state, plane, plane_state, i) { 11903 if (plane_state->crtc != crtc) 11904 continue; 11905 11906 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 11907 if (ret) 11908 return ret; 11909 11910 drm_atomic_set_fb_for_plane(plane_state, NULL); 11911 } 11912 11913 return 0; 11914 } 11915 11916 int intel_get_load_detect_pipe(struct drm_connector *connector, 11917 struct intel_load_detect_pipe *old, 11918 struct drm_modeset_acquire_ctx *ctx) 11919 { 11920 struct intel_crtc *intel_crtc; 11921 struct intel_encoder *intel_encoder = 11922 intel_attached_encoder(to_intel_connector(connector)); 11923 struct drm_crtc *possible_crtc; 11924 struct drm_encoder *encoder = &intel_encoder->base; 11925 struct drm_crtc *crtc = NULL; 11926 struct drm_device *dev = encoder->dev; 11927 struct drm_i915_private *dev_priv = to_i915(dev); 11928 struct drm_mode_config *config = &dev->mode_config; 11929 struct drm_atomic_state *state = NULL, *restore_state = NULL; 11930 struct drm_connector_state *connector_state; 11931 struct intel_crtc_state *crtc_state; 11932 int ret, i = -1; 11933 11934 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 11935 connector->base.id, connector->name, 11936 encoder->base.id, encoder->name); 11937 11938 old->restore_state = NULL; 11939 11940 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex)); 11941 11942 /* 11943 * Algorithm gets a little messy: 11944 * 11945 * - if the connector already has an assigned crtc, use it (but make 11946 * sure it's on first) 11947 * 11948 * - try to find the first unused crtc that can drive this connector, 11949 * and use that if we find one 11950 */ 11951 11952 /* See if we already have a CRTC for this connector */ 11953 if (connector->state->crtc) { 11954 crtc = connector->state->crtc; 11955 11956 ret = drm_modeset_lock(&crtc->mutex, ctx); 11957 if (ret) 11958 goto fail; 11959 11960 /* Make sure the crtc and connector are running */ 11961 goto found; 11962 } 11963 11964 /* Find an unused one (if possible) */ 11965 for_each_crtc(dev, possible_crtc) { 11966 i++; 11967 if (!(encoder->possible_crtcs & (1 << i))) 11968 continue; 11969 11970 ret = drm_modeset_lock(&possible_crtc->mutex, ctx); 11971 if (ret) 11972 goto fail; 11973 11974 if (possible_crtc->state->enable) { 11975 drm_modeset_unlock(&possible_crtc->mutex); 11976 continue; 11977 } 11978 11979 crtc = possible_crtc; 11980 break; 11981 } 11982 11983 /* 11984 * If we didn't find an unused CRTC, don't use any. 11985 */ 11986 if (!crtc) { 11987 drm_dbg_kms(&dev_priv->drm, 11988 "no pipe available for load-detect\n"); 11989 ret = -ENODEV; 11990 goto fail; 11991 } 11992 11993 found: 11994 intel_crtc = to_intel_crtc(crtc); 11995 11996 state = drm_atomic_state_alloc(dev); 11997 restore_state = drm_atomic_state_alloc(dev); 11998 if (!state || !restore_state) { 11999 ret = -ENOMEM; 12000 goto fail; 12001 } 12002 12003 state->acquire_ctx = ctx; 12004 restore_state->acquire_ctx = ctx; 12005 12006 connector_state = drm_atomic_get_connector_state(state, connector); 12007 if (IS_ERR(connector_state)) { 12008 ret = PTR_ERR(connector_state); 12009 goto fail; 12010 } 12011 12012 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); 12013 if (ret) 12014 goto fail; 12015 12016 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); 12017 if (IS_ERR(crtc_state)) { 12018 ret = PTR_ERR(crtc_state); 12019 goto fail; 12020 } 12021 12022 crtc_state->uapi.active = true; 12023 12024 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi, 12025 &load_detect_mode); 12026 if (ret) 12027 goto fail; 12028 12029 ret = intel_modeset_disable_planes(state, crtc); 12030 if (ret) 12031 goto fail; 12032 12033 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 12034 if (!ret) 12035 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); 12036 if (!ret) 12037 ret = drm_atomic_add_affected_planes(restore_state, crtc); 12038 if (ret) { 12039 drm_dbg_kms(&dev_priv->drm, 12040 "Failed to create a copy of old state to restore: %i\n", 12041 ret); 12042 goto fail; 12043 } 12044 12045 ret = drm_atomic_commit(state); 12046 if (ret) { 12047 drm_dbg_kms(&dev_priv->drm, 12048 "failed to set mode on load-detect pipe\n"); 12049 goto fail; 12050 } 12051 12052 old->restore_state = restore_state; 12053 drm_atomic_state_put(state); 12054 12055 /* let the connector get through one full cycle before testing */ 12056 intel_wait_for_vblank(dev_priv, intel_crtc->pipe); 12057 return true; 12058 12059 fail: 12060 if (state) { 12061 drm_atomic_state_put(state); 12062 state = NULL; 12063 } 12064 if (restore_state) { 12065 drm_atomic_state_put(restore_state); 12066 restore_state = NULL; 12067 } 12068 12069 if (ret == -EDEADLK) 12070 return ret; 12071 12072 return false; 12073 } 12074 12075 void intel_release_load_detect_pipe(struct drm_connector *connector, 12076 struct intel_load_detect_pipe *old, 12077 struct drm_modeset_acquire_ctx *ctx) 12078 { 12079 struct intel_encoder *intel_encoder = 12080 intel_attached_encoder(to_intel_connector(connector)); 12081 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev); 12082 struct drm_encoder *encoder = &intel_encoder->base; 12083 struct drm_atomic_state *state = old->restore_state; 12084 int ret; 12085 12086 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 12087 connector->base.id, connector->name, 12088 encoder->base.id, encoder->name); 12089 12090 if (!state) 12091 return; 12092 12093 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 12094 if (ret) 12095 drm_dbg_kms(&i915->drm, 12096 "Couldn't release load detect pipe: %i\n", ret); 12097 drm_atomic_state_put(state); 12098 } 12099 12100 static int i9xx_pll_refclk(struct drm_device *dev, 12101 const struct intel_crtc_state *pipe_config) 12102 { 12103 struct drm_i915_private *dev_priv = to_i915(dev); 12104 u32 dpll = pipe_config->dpll_hw_state.dpll; 12105 12106 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 12107 return dev_priv->vbt.lvds_ssc_freq; 12108 else if (HAS_PCH_SPLIT(dev_priv)) 12109 return 120000; 12110 else if (!IS_GEN(dev_priv, 2)) 12111 return 96000; 12112 else 12113 return 48000; 12114 } 12115 12116 /* Returns the clock of the currently programmed mode of the given pipe. */ 12117 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 12118 struct intel_crtc_state *pipe_config) 12119 { 12120 struct drm_device *dev = crtc->base.dev; 12121 struct drm_i915_private *dev_priv = to_i915(dev); 12122 enum pipe pipe = crtc->pipe; 12123 u32 dpll = pipe_config->dpll_hw_state.dpll; 12124 u32 fp; 12125 struct dpll clock; 12126 int port_clock; 12127 int refclk = i9xx_pll_refclk(dev, pipe_config); 12128 12129 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 12130 fp = pipe_config->dpll_hw_state.fp0; 12131 else 12132 fp = pipe_config->dpll_hw_state.fp1; 12133 12134 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 12135 if (IS_PINEVIEW(dev_priv)) { 12136 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 12137 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 12138 } else { 12139 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 12140 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 12141 } 12142 12143 if (!IS_GEN(dev_priv, 2)) { 12144 if (IS_PINEVIEW(dev_priv)) 12145 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 12146 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 12147 else 12148 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 12149 DPLL_FPA01_P1_POST_DIV_SHIFT); 12150 12151 switch (dpll & DPLL_MODE_MASK) { 12152 case DPLLB_MODE_DAC_SERIAL: 12153 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 12154 5 : 10; 12155 break; 12156 case DPLLB_MODE_LVDS: 12157 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 12158 7 : 14; 12159 break; 12160 default: 12161 drm_dbg_kms(&dev_priv->drm, 12162 "Unknown DPLL mode %08x in programmed " 12163 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 12164 return; 12165 } 12166 12167 if (IS_PINEVIEW(dev_priv)) 12168 port_clock = pnv_calc_dpll_params(refclk, &clock); 12169 else 12170 port_clock = i9xx_calc_dpll_params(refclk, &clock); 12171 } else { 12172 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv, 12173 LVDS); 12174 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 12175 12176 if (is_lvds) { 12177 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 12178 DPLL_FPA01_P1_POST_DIV_SHIFT); 12179 12180 if (lvds & LVDS_CLKB_POWER_UP) 12181 clock.p2 = 7; 12182 else 12183 clock.p2 = 14; 12184 } else { 12185 if (dpll & PLL_P1_DIVIDE_BY_TWO) 12186 clock.p1 = 2; 12187 else { 12188 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 12189 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 12190 } 12191 if (dpll & PLL_P2_DIVIDE_BY_4) 12192 clock.p2 = 4; 12193 else 12194 clock.p2 = 2; 12195 } 12196 12197 port_clock = i9xx_calc_dpll_params(refclk, &clock); 12198 } 12199 12200 /* 12201 * This value includes pixel_multiplier. We will use 12202 * port_clock to compute adjusted_mode.crtc_clock in the 12203 * encoder's get_config() function. 12204 */ 12205 pipe_config->port_clock = port_clock; 12206 } 12207 12208 int intel_dotclock_calculate(int link_freq, 12209 const struct intel_link_m_n *m_n) 12210 { 12211 /* 12212 * The calculation for the data clock is: 12213 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 12214 * But we want to avoid losing precison if possible, so: 12215 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 12216 * 12217 * and the link clock is simpler: 12218 * link_clock = (m * link_clock) / n 12219 */ 12220 12221 if (!m_n->link_n) 12222 return 0; 12223 12224 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 12225 } 12226 12227 static void ilk_pch_clock_get(struct intel_crtc *crtc, 12228 struct intel_crtc_state *pipe_config) 12229 { 12230 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12231 12232 /* read out port_clock from the DPLL */ 12233 i9xx_crtc_clock_get(crtc, pipe_config); 12234 12235 /* 12236 * In case there is an active pipe without active ports, 12237 * we may need some idea for the dotclock anyway. 12238 * Calculate one based on the FDI configuration. 12239 */ 12240 pipe_config->hw.adjusted_mode.crtc_clock = 12241 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 12242 &pipe_config->fdi_m_n); 12243 } 12244 12245 static void intel_crtc_state_reset(struct intel_crtc_state *crtc_state, 12246 struct intel_crtc *crtc) 12247 { 12248 memset(crtc_state, 0, sizeof(*crtc_state)); 12249 12250 __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base); 12251 12252 crtc_state->cpu_transcoder = INVALID_TRANSCODER; 12253 crtc_state->master_transcoder = INVALID_TRANSCODER; 12254 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 12255 crtc_state->output_format = INTEL_OUTPUT_FORMAT_INVALID; 12256 crtc_state->scaler_state.scaler_id = -1; 12257 crtc_state->mst_master_transcoder = INVALID_TRANSCODER; 12258 } 12259 12260 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc) 12261 { 12262 struct intel_crtc_state *crtc_state; 12263 12264 crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL); 12265 12266 if (crtc_state) 12267 intel_crtc_state_reset(crtc_state, crtc); 12268 12269 return crtc_state; 12270 } 12271 12272 /* Returns the currently programmed mode of the given encoder. */ 12273 struct drm_display_mode * 12274 intel_encoder_current_mode(struct intel_encoder *encoder) 12275 { 12276 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 12277 struct intel_crtc_state *crtc_state; 12278 struct drm_display_mode *mode; 12279 struct intel_crtc *crtc; 12280 enum pipe pipe; 12281 12282 if (!encoder->get_hw_state(encoder, &pipe)) 12283 return NULL; 12284 12285 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12286 12287 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 12288 if (!mode) 12289 return NULL; 12290 12291 crtc_state = intel_crtc_state_alloc(crtc); 12292 if (!crtc_state) { 12293 kfree(mode); 12294 return NULL; 12295 } 12296 12297 if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) { 12298 kfree(crtc_state); 12299 kfree(mode); 12300 return NULL; 12301 } 12302 12303 encoder->get_config(encoder, crtc_state); 12304 12305 intel_mode_from_pipe_config(mode, crtc_state); 12306 12307 kfree(crtc_state); 12308 12309 return mode; 12310 } 12311 12312 static void intel_crtc_destroy(struct drm_crtc *crtc) 12313 { 12314 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 12315 12316 drm_crtc_cleanup(crtc); 12317 kfree(intel_crtc); 12318 } 12319 12320 /** 12321 * intel_wm_need_update - Check whether watermarks need updating 12322 * @cur: current plane state 12323 * @new: new plane state 12324 * 12325 * Check current plane state versus the new one to determine whether 12326 * watermarks need to be recalculated. 12327 * 12328 * Returns true or false. 12329 */ 12330 static bool intel_wm_need_update(const struct intel_plane_state *cur, 12331 struct intel_plane_state *new) 12332 { 12333 /* Update watermarks on tiling or size changes. */ 12334 if (new->uapi.visible != cur->uapi.visible) 12335 return true; 12336 12337 if (!cur->hw.fb || !new->hw.fb) 12338 return false; 12339 12340 if (cur->hw.fb->modifier != new->hw.fb->modifier || 12341 cur->hw.rotation != new->hw.rotation || 12342 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) || 12343 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) || 12344 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) || 12345 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst)) 12346 return true; 12347 12348 return false; 12349 } 12350 12351 static bool needs_scaling(const struct intel_plane_state *state) 12352 { 12353 int src_w = drm_rect_width(&state->uapi.src) >> 16; 12354 int src_h = drm_rect_height(&state->uapi.src) >> 16; 12355 int dst_w = drm_rect_width(&state->uapi.dst); 12356 int dst_h = drm_rect_height(&state->uapi.dst); 12357 12358 return (src_w != dst_w || src_h != dst_h); 12359 } 12360 12361 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 12362 struct intel_crtc_state *crtc_state, 12363 const struct intel_plane_state *old_plane_state, 12364 struct intel_plane_state *plane_state) 12365 { 12366 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12367 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 12368 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12369 bool mode_changed = needs_modeset(crtc_state); 12370 bool was_crtc_enabled = old_crtc_state->hw.active; 12371 bool is_crtc_enabled = crtc_state->hw.active; 12372 bool turn_off, turn_on, visible, was_visible; 12373 int ret; 12374 12375 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 12376 ret = skl_update_scaler_plane(crtc_state, plane_state); 12377 if (ret) 12378 return ret; 12379 } 12380 12381 was_visible = old_plane_state->uapi.visible; 12382 visible = plane_state->uapi.visible; 12383 12384 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible)) 12385 was_visible = false; 12386 12387 /* 12388 * Visibility is calculated as if the crtc was on, but 12389 * after scaler setup everything depends on it being off 12390 * when the crtc isn't active. 12391 * 12392 * FIXME this is wrong for watermarks. Watermarks should also 12393 * be computed as if the pipe would be active. Perhaps move 12394 * per-plane wm computation to the .check_plane() hook, and 12395 * only combine the results from all planes in the current place? 12396 */ 12397 if (!is_crtc_enabled) { 12398 intel_plane_set_invisible(crtc_state, plane_state); 12399 visible = false; 12400 } 12401 12402 if (!was_visible && !visible) 12403 return 0; 12404 12405 turn_off = was_visible && (!visible || mode_changed); 12406 turn_on = visible && (!was_visible || mode_changed); 12407 12408 drm_dbg_atomic(&dev_priv->drm, 12409 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 12410 crtc->base.base.id, crtc->base.name, 12411 plane->base.base.id, plane->base.name, 12412 was_visible, visible, 12413 turn_off, turn_on, mode_changed); 12414 12415 if (turn_on) { 12416 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 12417 crtc_state->update_wm_pre = true; 12418 12419 /* must disable cxsr around plane enable/disable */ 12420 if (plane->id != PLANE_CURSOR) 12421 crtc_state->disable_cxsr = true; 12422 } else if (turn_off) { 12423 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 12424 crtc_state->update_wm_post = true; 12425 12426 /* must disable cxsr around plane enable/disable */ 12427 if (plane->id != PLANE_CURSOR) 12428 crtc_state->disable_cxsr = true; 12429 } else if (intel_wm_need_update(old_plane_state, plane_state)) { 12430 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) { 12431 /* FIXME bollocks */ 12432 crtc_state->update_wm_pre = true; 12433 crtc_state->update_wm_post = true; 12434 } 12435 } 12436 12437 if (visible || was_visible) 12438 crtc_state->fb_bits |= plane->frontbuffer_bit; 12439 12440 /* 12441 * ILK/SNB DVSACNTR/Sprite Enable 12442 * IVB SPR_CTL/Sprite Enable 12443 * "When in Self Refresh Big FIFO mode, a write to enable the 12444 * plane will be internally buffered and delayed while Big FIFO 12445 * mode is exiting." 12446 * 12447 * Which means that enabling the sprite can take an extra frame 12448 * when we start in big FIFO mode (LP1+). Thus we need to drop 12449 * down to LP0 and wait for vblank in order to make sure the 12450 * sprite gets enabled on the next vblank after the register write. 12451 * Doing otherwise would risk enabling the sprite one frame after 12452 * we've already signalled flip completion. We can resume LP1+ 12453 * once the sprite has been enabled. 12454 * 12455 * 12456 * WaCxSRDisabledForSpriteScaling:ivb 12457 * IVB SPR_SCALE/Scaling Enable 12458 * "Low Power watermarks must be disabled for at least one 12459 * frame before enabling sprite scaling, and kept disabled 12460 * until sprite scaling is disabled." 12461 * 12462 * ILK/SNB DVSASCALE/Scaling Enable 12463 * "When in Self Refresh Big FIFO mode, scaling enable will be 12464 * masked off while Big FIFO mode is exiting." 12465 * 12466 * Despite the w/a only being listed for IVB we assume that 12467 * the ILK/SNB note has similar ramifications, hence we apply 12468 * the w/a on all three platforms. 12469 * 12470 * With experimental results seems this is needed also for primary 12471 * plane, not only sprite plane. 12472 */ 12473 if (plane->id != PLANE_CURSOR && 12474 (IS_GEN_RANGE(dev_priv, 5, 6) || 12475 IS_IVYBRIDGE(dev_priv)) && 12476 (turn_on || (!needs_scaling(old_plane_state) && 12477 needs_scaling(plane_state)))) 12478 crtc_state->disable_lp_wm = true; 12479 12480 return 0; 12481 } 12482 12483 static bool encoders_cloneable(const struct intel_encoder *a, 12484 const struct intel_encoder *b) 12485 { 12486 /* masks could be asymmetric, so check both ways */ 12487 return a == b || (a->cloneable & (1 << b->type) && 12488 b->cloneable & (1 << a->type)); 12489 } 12490 12491 static bool check_single_encoder_cloning(struct drm_atomic_state *state, 12492 struct intel_crtc *crtc, 12493 struct intel_encoder *encoder) 12494 { 12495 struct intel_encoder *source_encoder; 12496 struct drm_connector *connector; 12497 struct drm_connector_state *connector_state; 12498 int i; 12499 12500 for_each_new_connector_in_state(state, connector, connector_state, i) { 12501 if (connector_state->crtc != &crtc->base) 12502 continue; 12503 12504 source_encoder = 12505 to_intel_encoder(connector_state->best_encoder); 12506 if (!encoders_cloneable(encoder, source_encoder)) 12507 return false; 12508 } 12509 12510 return true; 12511 } 12512 12513 static int icl_add_linked_planes(struct intel_atomic_state *state) 12514 { 12515 struct intel_plane *plane, *linked; 12516 struct intel_plane_state *plane_state, *linked_plane_state; 12517 int i; 12518 12519 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12520 linked = plane_state->planar_linked_plane; 12521 12522 if (!linked) 12523 continue; 12524 12525 linked_plane_state = intel_atomic_get_plane_state(state, linked); 12526 if (IS_ERR(linked_plane_state)) 12527 return PTR_ERR(linked_plane_state); 12528 12529 drm_WARN_ON(state->base.dev, 12530 linked_plane_state->planar_linked_plane != plane); 12531 drm_WARN_ON(state->base.dev, 12532 linked_plane_state->planar_slave == plane_state->planar_slave); 12533 } 12534 12535 return 0; 12536 } 12537 12538 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 12539 { 12540 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12541 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12542 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); 12543 struct intel_plane *plane, *linked; 12544 struct intel_plane_state *plane_state; 12545 int i; 12546 12547 if (INTEL_GEN(dev_priv) < 11) 12548 return 0; 12549 12550 /* 12551 * Destroy all old plane links and make the slave plane invisible 12552 * in the crtc_state->active_planes mask. 12553 */ 12554 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12555 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) 12556 continue; 12557 12558 plane_state->planar_linked_plane = NULL; 12559 if (plane_state->planar_slave && !plane_state->uapi.visible) { 12560 crtc_state->active_planes &= ~BIT(plane->id); 12561 crtc_state->update_planes |= BIT(plane->id); 12562 } 12563 12564 plane_state->planar_slave = false; 12565 } 12566 12567 if (!crtc_state->nv12_planes) 12568 return 0; 12569 12570 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12571 struct intel_plane_state *linked_state = NULL; 12572 12573 if (plane->pipe != crtc->pipe || 12574 !(crtc_state->nv12_planes & BIT(plane->id))) 12575 continue; 12576 12577 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 12578 if (!icl_is_nv12_y_plane(dev_priv, linked->id)) 12579 continue; 12580 12581 if (crtc_state->active_planes & BIT(linked->id)) 12582 continue; 12583 12584 linked_state = intel_atomic_get_plane_state(state, linked); 12585 if (IS_ERR(linked_state)) 12586 return PTR_ERR(linked_state); 12587 12588 break; 12589 } 12590 12591 if (!linked_state) { 12592 drm_dbg_kms(&dev_priv->drm, 12593 "Need %d free Y planes for planar YUV\n", 12594 hweight8(crtc_state->nv12_planes)); 12595 12596 return -EINVAL; 12597 } 12598 12599 plane_state->planar_linked_plane = linked; 12600 12601 linked_state->planar_slave = true; 12602 linked_state->planar_linked_plane = plane; 12603 crtc_state->active_planes |= BIT(linked->id); 12604 crtc_state->update_planes |= BIT(linked->id); 12605 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n", 12606 linked->base.name, plane->base.name); 12607 12608 /* Copy parameters to slave plane */ 12609 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE; 12610 linked_state->color_ctl = plane_state->color_ctl; 12611 linked_state->view = plane_state->view; 12612 memcpy(linked_state->color_plane, plane_state->color_plane, 12613 sizeof(linked_state->color_plane)); 12614 12615 intel_plane_copy_uapi_to_hw_state(linked_state, plane_state); 12616 linked_state->uapi.src = plane_state->uapi.src; 12617 linked_state->uapi.dst = plane_state->uapi.dst; 12618 12619 if (icl_is_hdr_plane(dev_priv, plane->id)) { 12620 if (linked->id == PLANE_SPRITE5) 12621 plane_state->cus_ctl |= PLANE_CUS_PLANE_7; 12622 else if (linked->id == PLANE_SPRITE4) 12623 plane_state->cus_ctl |= PLANE_CUS_PLANE_6; 12624 else if (linked->id == PLANE_SPRITE3) 12625 plane_state->cus_ctl |= PLANE_CUS_PLANE_5_RKL; 12626 else if (linked->id == PLANE_SPRITE2) 12627 plane_state->cus_ctl |= PLANE_CUS_PLANE_4_RKL; 12628 else 12629 MISSING_CASE(linked->id); 12630 } 12631 } 12632 12633 return 0; 12634 } 12635 12636 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 12637 { 12638 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 12639 struct intel_atomic_state *state = 12640 to_intel_atomic_state(new_crtc_state->uapi.state); 12641 const struct intel_crtc_state *old_crtc_state = 12642 intel_atomic_get_old_crtc_state(state, crtc); 12643 12644 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 12645 } 12646 12647 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) 12648 { 12649 const struct drm_display_mode *adjusted_mode = 12650 &crtc_state->hw.adjusted_mode; 12651 int linetime_wm; 12652 12653 if (!crtc_state->hw.enable) 12654 return 0; 12655 12656 linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, 12657 adjusted_mode->crtc_clock); 12658 12659 return min(linetime_wm, 0x1ff); 12660 } 12661 12662 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, 12663 const struct intel_cdclk_state *cdclk_state) 12664 { 12665 const struct drm_display_mode *adjusted_mode = 12666 &crtc_state->hw.adjusted_mode; 12667 int linetime_wm; 12668 12669 if (!crtc_state->hw.enable) 12670 return 0; 12671 12672 linetime_wm = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, 12673 cdclk_state->logical.cdclk); 12674 12675 return min(linetime_wm, 0x1ff); 12676 } 12677 12678 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) 12679 { 12680 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12681 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12682 const struct drm_display_mode *adjusted_mode = 12683 &crtc_state->hw.adjusted_mode; 12684 int linetime_wm; 12685 12686 if (!crtc_state->hw.enable) 12687 return 0; 12688 12689 linetime_wm = DIV_ROUND_UP(adjusted_mode->crtc_htotal * 1000 * 8, 12690 crtc_state->pixel_rate); 12691 12692 /* Display WA #1135: BXT:ALL GLK:ALL */ 12693 if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled) 12694 linetime_wm /= 2; 12695 12696 return min(linetime_wm, 0x1ff); 12697 } 12698 12699 static int hsw_compute_linetime_wm(struct intel_atomic_state *state, 12700 struct intel_crtc *crtc) 12701 { 12702 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12703 struct intel_crtc_state *crtc_state = 12704 intel_atomic_get_new_crtc_state(state, crtc); 12705 const struct intel_cdclk_state *cdclk_state; 12706 12707 if (INTEL_GEN(dev_priv) >= 9) 12708 crtc_state->linetime = skl_linetime_wm(crtc_state); 12709 else 12710 crtc_state->linetime = hsw_linetime_wm(crtc_state); 12711 12712 if (!hsw_crtc_supports_ips(crtc)) 12713 return 0; 12714 12715 cdclk_state = intel_atomic_get_cdclk_state(state); 12716 if (IS_ERR(cdclk_state)) 12717 return PTR_ERR(cdclk_state); 12718 12719 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, 12720 cdclk_state); 12721 12722 return 0; 12723 } 12724 12725 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 12726 struct intel_crtc *crtc) 12727 { 12728 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12729 struct intel_crtc_state *crtc_state = 12730 intel_atomic_get_new_crtc_state(state, crtc); 12731 bool mode_changed = needs_modeset(crtc_state); 12732 int ret; 12733 12734 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) && 12735 mode_changed && !crtc_state->hw.active) 12736 crtc_state->update_wm_post = true; 12737 12738 if (mode_changed && crtc_state->hw.enable && 12739 dev_priv->display.crtc_compute_clock && 12740 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) { 12741 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state); 12742 if (ret) 12743 return ret; 12744 } 12745 12746 /* 12747 * May need to update pipe gamma enable bits 12748 * when C8 planes are getting enabled/disabled. 12749 */ 12750 if (c8_planes_changed(crtc_state)) 12751 crtc_state->uapi.color_mgmt_changed = true; 12752 12753 if (mode_changed || crtc_state->update_pipe || 12754 crtc_state->uapi.color_mgmt_changed) { 12755 ret = intel_color_check(crtc_state); 12756 if (ret) 12757 return ret; 12758 } 12759 12760 if (dev_priv->display.compute_pipe_wm) { 12761 ret = dev_priv->display.compute_pipe_wm(crtc_state); 12762 if (ret) { 12763 drm_dbg_kms(&dev_priv->drm, 12764 "Target pipe watermarks are invalid\n"); 12765 return ret; 12766 } 12767 } 12768 12769 if (dev_priv->display.compute_intermediate_wm) { 12770 if (drm_WARN_ON(&dev_priv->drm, 12771 !dev_priv->display.compute_pipe_wm)) 12772 return 0; 12773 12774 /* 12775 * Calculate 'intermediate' watermarks that satisfy both the 12776 * old state and the new state. We can program these 12777 * immediately. 12778 */ 12779 ret = dev_priv->display.compute_intermediate_wm(crtc_state); 12780 if (ret) { 12781 drm_dbg_kms(&dev_priv->drm, 12782 "No valid intermediate pipe watermarks are possible\n"); 12783 return ret; 12784 } 12785 } 12786 12787 if (INTEL_GEN(dev_priv) >= 9) { 12788 if (mode_changed || crtc_state->update_pipe) { 12789 ret = skl_update_scaler_crtc(crtc_state); 12790 if (ret) 12791 return ret; 12792 } 12793 12794 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state); 12795 if (ret) 12796 return ret; 12797 } 12798 12799 if (HAS_IPS(dev_priv)) { 12800 ret = hsw_compute_ips_config(crtc_state); 12801 if (ret) 12802 return ret; 12803 } 12804 12805 if (INTEL_GEN(dev_priv) >= 9 || 12806 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 12807 ret = hsw_compute_linetime_wm(state, crtc); 12808 if (ret) 12809 return ret; 12810 12811 } 12812 12813 if (!mode_changed) 12814 intel_psr2_sel_fetch_update(state, crtc); 12815 12816 return 0; 12817 } 12818 12819 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 12820 { 12821 struct intel_connector *connector; 12822 struct drm_connector_list_iter conn_iter; 12823 12824 drm_connector_list_iter_begin(dev, &conn_iter); 12825 for_each_intel_connector_iter(connector, &conn_iter) { 12826 if (connector->base.state->crtc) 12827 drm_connector_put(&connector->base); 12828 12829 if (connector->base.encoder) { 12830 connector->base.state->best_encoder = 12831 connector->base.encoder; 12832 connector->base.state->crtc = 12833 connector->base.encoder->crtc; 12834 12835 drm_connector_get(&connector->base); 12836 } else { 12837 connector->base.state->best_encoder = NULL; 12838 connector->base.state->crtc = NULL; 12839 } 12840 } 12841 drm_connector_list_iter_end(&conn_iter); 12842 } 12843 12844 static int 12845 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 12846 struct intel_crtc_state *pipe_config) 12847 { 12848 struct drm_connector *connector = conn_state->connector; 12849 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 12850 const struct drm_display_info *info = &connector->display_info; 12851 int bpp; 12852 12853 switch (conn_state->max_bpc) { 12854 case 6 ... 7: 12855 bpp = 6 * 3; 12856 break; 12857 case 8 ... 9: 12858 bpp = 8 * 3; 12859 break; 12860 case 10 ... 11: 12861 bpp = 10 * 3; 12862 break; 12863 case 12: 12864 bpp = 12 * 3; 12865 break; 12866 default: 12867 return -EINVAL; 12868 } 12869 12870 if (bpp < pipe_config->pipe_bpp) { 12871 drm_dbg_kms(&i915->drm, 12872 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 12873 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 12874 connector->base.id, connector->name, 12875 bpp, 3 * info->bpc, 12876 3 * conn_state->max_requested_bpc, 12877 pipe_config->pipe_bpp); 12878 12879 pipe_config->pipe_bpp = bpp; 12880 } 12881 12882 return 0; 12883 } 12884 12885 static int 12886 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 12887 struct intel_crtc_state *pipe_config) 12888 { 12889 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12890 struct drm_atomic_state *state = pipe_config->uapi.state; 12891 struct drm_connector *connector; 12892 struct drm_connector_state *connector_state; 12893 int bpp, i; 12894 12895 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 12896 IS_CHERRYVIEW(dev_priv))) 12897 bpp = 10*3; 12898 else if (INTEL_GEN(dev_priv) >= 5) 12899 bpp = 12*3; 12900 else 12901 bpp = 8*3; 12902 12903 pipe_config->pipe_bpp = bpp; 12904 12905 /* Clamp display bpp to connector max bpp */ 12906 for_each_new_connector_in_state(state, connector, connector_state, i) { 12907 int ret; 12908 12909 if (connector_state->crtc != &crtc->base) 12910 continue; 12911 12912 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 12913 if (ret) 12914 return ret; 12915 } 12916 12917 return 0; 12918 } 12919 12920 static void intel_dump_crtc_timings(struct drm_i915_private *i915, 12921 const struct drm_display_mode *mode) 12922 { 12923 drm_dbg_kms(&i915->drm, "crtc timings: %d %d %d %d %d %d %d %d %d, " 12924 "type: 0x%x flags: 0x%x\n", 12925 mode->crtc_clock, 12926 mode->crtc_hdisplay, mode->crtc_hsync_start, 12927 mode->crtc_hsync_end, mode->crtc_htotal, 12928 mode->crtc_vdisplay, mode->crtc_vsync_start, 12929 mode->crtc_vsync_end, mode->crtc_vtotal, 12930 mode->type, mode->flags); 12931 } 12932 12933 static void 12934 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 12935 const char *id, unsigned int lane_count, 12936 const struct intel_link_m_n *m_n) 12937 { 12938 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 12939 12940 drm_dbg_kms(&i915->drm, 12941 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 12942 id, lane_count, 12943 m_n->gmch_m, m_n->gmch_n, 12944 m_n->link_m, m_n->link_n, m_n->tu); 12945 } 12946 12947 static void 12948 intel_dump_infoframe(struct drm_i915_private *dev_priv, 12949 const union hdmi_infoframe *frame) 12950 { 12951 if (!drm_debug_enabled(DRM_UT_KMS)) 12952 return; 12953 12954 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 12955 } 12956 12957 static void 12958 intel_dump_dp_vsc_sdp(struct drm_i915_private *dev_priv, 12959 const struct drm_dp_vsc_sdp *vsc) 12960 { 12961 if (!drm_debug_enabled(DRM_UT_KMS)) 12962 return; 12963 12964 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, vsc); 12965 } 12966 12967 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 12968 12969 static const char * const output_type_str[] = { 12970 OUTPUT_TYPE(UNUSED), 12971 OUTPUT_TYPE(ANALOG), 12972 OUTPUT_TYPE(DVO), 12973 OUTPUT_TYPE(SDVO), 12974 OUTPUT_TYPE(LVDS), 12975 OUTPUT_TYPE(TVOUT), 12976 OUTPUT_TYPE(HDMI), 12977 OUTPUT_TYPE(DP), 12978 OUTPUT_TYPE(EDP), 12979 OUTPUT_TYPE(DSI), 12980 OUTPUT_TYPE(DDI), 12981 OUTPUT_TYPE(DP_MST), 12982 }; 12983 12984 #undef OUTPUT_TYPE 12985 12986 static void snprintf_output_types(char *buf, size_t len, 12987 unsigned int output_types) 12988 { 12989 char *str = buf; 12990 int i; 12991 12992 str[0] = '\0'; 12993 12994 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 12995 int r; 12996 12997 if ((output_types & BIT(i)) == 0) 12998 continue; 12999 13000 r = snprintf(str, len, "%s%s", 13001 str != buf ? "," : "", output_type_str[i]); 13002 if (r >= len) 13003 break; 13004 str += r; 13005 len -= r; 13006 13007 output_types &= ~BIT(i); 13008 } 13009 13010 WARN_ON_ONCE(output_types != 0); 13011 } 13012 13013 static const char * const output_format_str[] = { 13014 [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid", 13015 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 13016 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 13017 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 13018 }; 13019 13020 static const char *output_formats(enum intel_output_format format) 13021 { 13022 if (format >= ARRAY_SIZE(output_format_str)) 13023 format = INTEL_OUTPUT_FORMAT_INVALID; 13024 return output_format_str[format]; 13025 } 13026 13027 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 13028 { 13029 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 13030 struct drm_i915_private *i915 = to_i915(plane->base.dev); 13031 const struct drm_framebuffer *fb = plane_state->hw.fb; 13032 struct drm_format_name_buf format_name; 13033 13034 if (!fb) { 13035 drm_dbg_kms(&i915->drm, 13036 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 13037 plane->base.base.id, plane->base.name, 13038 yesno(plane_state->uapi.visible)); 13039 return; 13040 } 13041 13042 drm_dbg_kms(&i915->drm, 13043 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n", 13044 plane->base.base.id, plane->base.name, 13045 fb->base.id, fb->width, fb->height, 13046 drm_get_format_name(fb->format->format, &format_name), 13047 yesno(plane_state->uapi.visible)); 13048 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n", 13049 plane_state->hw.rotation, plane_state->scaler_id); 13050 if (plane_state->uapi.visible) 13051 drm_dbg_kms(&i915->drm, 13052 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 13053 DRM_RECT_FP_ARG(&plane_state->uapi.src), 13054 DRM_RECT_ARG(&plane_state->uapi.dst)); 13055 } 13056 13057 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 13058 struct intel_atomic_state *state, 13059 const char *context) 13060 { 13061 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 13062 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13063 const struct intel_plane_state *plane_state; 13064 struct intel_plane *plane; 13065 char buf[64]; 13066 int i; 13067 13068 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n", 13069 crtc->base.base.id, crtc->base.name, 13070 yesno(pipe_config->hw.enable), context); 13071 13072 if (!pipe_config->hw.enable) 13073 goto dump_planes; 13074 13075 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 13076 drm_dbg_kms(&dev_priv->drm, 13077 "active: %s, output_types: %s (0x%x), output format: %s\n", 13078 yesno(pipe_config->hw.active), 13079 buf, pipe_config->output_types, 13080 output_formats(pipe_config->output_format)); 13081 13082 drm_dbg_kms(&dev_priv->drm, 13083 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 13084 transcoder_name(pipe_config->cpu_transcoder), 13085 pipe_config->pipe_bpp, pipe_config->dither); 13086 13087 drm_dbg_kms(&dev_priv->drm, 13088 "port sync: master transcoder: %s, slave transcoder bitmask = 0x%x\n", 13089 transcoder_name(pipe_config->master_transcoder), 13090 pipe_config->sync_mode_slaves_mask); 13091 13092 if (pipe_config->has_pch_encoder) 13093 intel_dump_m_n_config(pipe_config, "fdi", 13094 pipe_config->fdi_lanes, 13095 &pipe_config->fdi_m_n); 13096 13097 if (intel_crtc_has_dp_encoder(pipe_config)) { 13098 intel_dump_m_n_config(pipe_config, "dp m_n", 13099 pipe_config->lane_count, &pipe_config->dp_m_n); 13100 if (pipe_config->has_drrs) 13101 intel_dump_m_n_config(pipe_config, "dp m2_n2", 13102 pipe_config->lane_count, 13103 &pipe_config->dp_m2_n2); 13104 } 13105 13106 drm_dbg_kms(&dev_priv->drm, 13107 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 13108 pipe_config->has_audio, pipe_config->has_infoframe, 13109 pipe_config->infoframes.enable); 13110 13111 if (pipe_config->infoframes.enable & 13112 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 13113 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n", 13114 pipe_config->infoframes.gcp); 13115 if (pipe_config->infoframes.enable & 13116 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 13117 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 13118 if (pipe_config->infoframes.enable & 13119 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 13120 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 13121 if (pipe_config->infoframes.enable & 13122 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 13123 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 13124 if (pipe_config->infoframes.enable & 13125 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) 13126 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 13127 if (pipe_config->infoframes.enable & 13128 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA)) 13129 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.drm); 13130 if (pipe_config->infoframes.enable & 13131 intel_hdmi_infoframe_enable(DP_SDP_VSC)) 13132 intel_dump_dp_vsc_sdp(dev_priv, &pipe_config->infoframes.vsc); 13133 13134 drm_dbg_kms(&dev_priv->drm, "requested mode:\n"); 13135 drm_mode_debug_printmodeline(&pipe_config->hw.mode); 13136 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n"); 13137 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode); 13138 intel_dump_crtc_timings(dev_priv, &pipe_config->hw.adjusted_mode); 13139 drm_dbg_kms(&dev_priv->drm, 13140 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 13141 pipe_config->port_clock, 13142 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 13143 pipe_config->pixel_rate); 13144 13145 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n", 13146 pipe_config->linetime, pipe_config->ips_linetime); 13147 13148 if (INTEL_GEN(dev_priv) >= 9) 13149 drm_dbg_kms(&dev_priv->drm, 13150 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 13151 crtc->num_scalers, 13152 pipe_config->scaler_state.scaler_users, 13153 pipe_config->scaler_state.scaler_id); 13154 13155 if (HAS_GMCH(dev_priv)) 13156 drm_dbg_kms(&dev_priv->drm, 13157 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 13158 pipe_config->gmch_pfit.control, 13159 pipe_config->gmch_pfit.pgm_ratios, 13160 pipe_config->gmch_pfit.lvds_border_bits); 13161 else 13162 drm_dbg_kms(&dev_priv->drm, 13163 "pch pfit: " DRM_RECT_FMT ", %s, force thru: %s\n", 13164 DRM_RECT_ARG(&pipe_config->pch_pfit.dst), 13165 enableddisabled(pipe_config->pch_pfit.enabled), 13166 yesno(pipe_config->pch_pfit.force_thru)); 13167 13168 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n", 13169 pipe_config->ips_enabled, pipe_config->double_wide); 13170 13171 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 13172 13173 if (IS_CHERRYVIEW(dev_priv)) 13174 drm_dbg_kms(&dev_priv->drm, 13175 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 13176 pipe_config->cgm_mode, pipe_config->gamma_mode, 13177 pipe_config->gamma_enable, pipe_config->csc_enable); 13178 else 13179 drm_dbg_kms(&dev_priv->drm, 13180 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 13181 pipe_config->csc_mode, pipe_config->gamma_mode, 13182 pipe_config->gamma_enable, pipe_config->csc_enable); 13183 13184 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n", 13185 transcoder_name(pipe_config->mst_master_transcoder)); 13186 13187 dump_planes: 13188 if (!state) 13189 return; 13190 13191 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 13192 if (plane->pipe == crtc->pipe) 13193 intel_dump_plane_state(plane_state); 13194 } 13195 } 13196 13197 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 13198 { 13199 struct drm_device *dev = state->base.dev; 13200 struct drm_connector *connector; 13201 struct drm_connector_list_iter conn_iter; 13202 unsigned int used_ports = 0; 13203 unsigned int used_mst_ports = 0; 13204 bool ret = true; 13205 13206 /* 13207 * We're going to peek into connector->state, 13208 * hence connection_mutex must be held. 13209 */ 13210 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); 13211 13212 /* 13213 * Walk the connector list instead of the encoder 13214 * list to detect the problem on ddi platforms 13215 * where there's just one encoder per digital port. 13216 */ 13217 drm_connector_list_iter_begin(dev, &conn_iter); 13218 drm_for_each_connector_iter(connector, &conn_iter) { 13219 struct drm_connector_state *connector_state; 13220 struct intel_encoder *encoder; 13221 13222 connector_state = 13223 drm_atomic_get_new_connector_state(&state->base, 13224 connector); 13225 if (!connector_state) 13226 connector_state = connector->state; 13227 13228 if (!connector_state->best_encoder) 13229 continue; 13230 13231 encoder = to_intel_encoder(connector_state->best_encoder); 13232 13233 drm_WARN_ON(dev, !connector_state->crtc); 13234 13235 switch (encoder->type) { 13236 case INTEL_OUTPUT_DDI: 13237 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev)))) 13238 break; 13239 fallthrough; 13240 case INTEL_OUTPUT_DP: 13241 case INTEL_OUTPUT_HDMI: 13242 case INTEL_OUTPUT_EDP: 13243 /* the same port mustn't appear more than once */ 13244 if (used_ports & BIT(encoder->port)) 13245 ret = false; 13246 13247 used_ports |= BIT(encoder->port); 13248 break; 13249 case INTEL_OUTPUT_DP_MST: 13250 used_mst_ports |= 13251 1 << encoder->port; 13252 break; 13253 default: 13254 break; 13255 } 13256 } 13257 drm_connector_list_iter_end(&conn_iter); 13258 13259 /* can't mix MST and SST/HDMI on the same port */ 13260 if (used_ports & used_mst_ports) 13261 return false; 13262 13263 return ret; 13264 } 13265 13266 static void 13267 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state *crtc_state) 13268 { 13269 intel_crtc_copy_color_blobs(crtc_state); 13270 } 13271 13272 static void 13273 intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state *crtc_state) 13274 { 13275 crtc_state->hw.enable = crtc_state->uapi.enable; 13276 crtc_state->hw.active = crtc_state->uapi.active; 13277 crtc_state->hw.mode = crtc_state->uapi.mode; 13278 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode; 13279 intel_crtc_copy_uapi_to_hw_state_nomodeset(crtc_state); 13280 } 13281 13282 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state) 13283 { 13284 crtc_state->uapi.enable = crtc_state->hw.enable; 13285 crtc_state->uapi.active = crtc_state->hw.active; 13286 drm_WARN_ON(crtc_state->uapi.crtc->dev, 13287 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0); 13288 13289 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode; 13290 13291 /* copy color blobs to uapi */ 13292 drm_property_replace_blob(&crtc_state->uapi.degamma_lut, 13293 crtc_state->hw.degamma_lut); 13294 drm_property_replace_blob(&crtc_state->uapi.gamma_lut, 13295 crtc_state->hw.gamma_lut); 13296 drm_property_replace_blob(&crtc_state->uapi.ctm, 13297 crtc_state->hw.ctm); 13298 } 13299 13300 static int 13301 intel_crtc_prepare_cleared_state(struct intel_crtc_state *crtc_state) 13302 { 13303 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 13304 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13305 struct intel_crtc_state *saved_state; 13306 13307 saved_state = intel_crtc_state_alloc(crtc); 13308 if (!saved_state) 13309 return -ENOMEM; 13310 13311 /* free the old crtc_state->hw members */ 13312 intel_crtc_free_hw_state(crtc_state); 13313 13314 /* FIXME: before the switch to atomic started, a new pipe_config was 13315 * kzalloc'd. Code that depends on any field being zero should be 13316 * fixed, so that the crtc_state can be safely duplicated. For now, 13317 * only fields that are know to not cause problems are preserved. */ 13318 13319 saved_state->uapi = crtc_state->uapi; 13320 saved_state->scaler_state = crtc_state->scaler_state; 13321 saved_state->shared_dpll = crtc_state->shared_dpll; 13322 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 13323 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 13324 sizeof(saved_state->icl_port_dplls)); 13325 saved_state->crc_enabled = crtc_state->crc_enabled; 13326 if (IS_G4X(dev_priv) || 13327 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13328 saved_state->wm = crtc_state->wm; 13329 13330 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 13331 kfree(saved_state); 13332 13333 intel_crtc_copy_uapi_to_hw_state(crtc_state); 13334 13335 return 0; 13336 } 13337 13338 static int 13339 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config) 13340 { 13341 struct drm_crtc *crtc = pipe_config->uapi.crtc; 13342 struct drm_atomic_state *state = pipe_config->uapi.state; 13343 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 13344 struct drm_connector *connector; 13345 struct drm_connector_state *connector_state; 13346 int base_bpp, ret, i; 13347 bool retry = true; 13348 13349 pipe_config->cpu_transcoder = 13350 (enum transcoder) to_intel_crtc(crtc)->pipe; 13351 13352 /* 13353 * Sanitize sync polarity flags based on requested ones. If neither 13354 * positive or negative polarity is requested, treat this as meaning 13355 * negative polarity. 13356 */ 13357 if (!(pipe_config->hw.adjusted_mode.flags & 13358 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 13359 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 13360 13361 if (!(pipe_config->hw.adjusted_mode.flags & 13362 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 13363 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 13364 13365 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 13366 pipe_config); 13367 if (ret) 13368 return ret; 13369 13370 base_bpp = pipe_config->pipe_bpp; 13371 13372 /* 13373 * Determine the real pipe dimensions. Note that stereo modes can 13374 * increase the actual pipe size due to the frame doubling and 13375 * insertion of additional space for blanks between the frame. This 13376 * is stored in the crtc timings. We use the requested mode to do this 13377 * computation to clearly distinguish it from the adjusted mode, which 13378 * can be changed by the connectors in the below retry loop. 13379 */ 13380 drm_mode_get_hv_timing(&pipe_config->hw.mode, 13381 &pipe_config->pipe_src_w, 13382 &pipe_config->pipe_src_h); 13383 13384 for_each_new_connector_in_state(state, connector, connector_state, i) { 13385 struct intel_encoder *encoder = 13386 to_intel_encoder(connector_state->best_encoder); 13387 13388 if (connector_state->crtc != crtc) 13389 continue; 13390 13391 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 13392 drm_dbg_kms(&i915->drm, 13393 "rejecting invalid cloning configuration\n"); 13394 return -EINVAL; 13395 } 13396 13397 /* 13398 * Determine output_types before calling the .compute_config() 13399 * hooks so that the hooks can use this information safely. 13400 */ 13401 if (encoder->compute_output_type) 13402 pipe_config->output_types |= 13403 BIT(encoder->compute_output_type(encoder, pipe_config, 13404 connector_state)); 13405 else 13406 pipe_config->output_types |= BIT(encoder->type); 13407 } 13408 13409 encoder_retry: 13410 /* Ensure the port clock defaults are reset when retrying. */ 13411 pipe_config->port_clock = 0; 13412 pipe_config->pixel_multiplier = 1; 13413 13414 /* Fill in default crtc timings, allow encoders to overwrite them. */ 13415 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode, 13416 CRTC_STEREO_DOUBLE); 13417 13418 /* Pass our mode to the connectors and the CRTC to give them a chance to 13419 * adjust it according to limitations or connector properties, and also 13420 * a chance to reject the mode entirely. 13421 */ 13422 for_each_new_connector_in_state(state, connector, connector_state, i) { 13423 struct intel_encoder *encoder = 13424 to_intel_encoder(connector_state->best_encoder); 13425 13426 if (connector_state->crtc != crtc) 13427 continue; 13428 13429 ret = encoder->compute_config(encoder, pipe_config, 13430 connector_state); 13431 if (ret < 0) { 13432 if (ret != -EDEADLK) 13433 drm_dbg_kms(&i915->drm, 13434 "Encoder config failure: %d\n", 13435 ret); 13436 return ret; 13437 } 13438 } 13439 13440 /* Set default port clock if not overwritten by the encoder. Needs to be 13441 * done afterwards in case the encoder adjusts the mode. */ 13442 if (!pipe_config->port_clock) 13443 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock 13444 * pipe_config->pixel_multiplier; 13445 13446 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 13447 if (ret == -EDEADLK) 13448 return ret; 13449 if (ret < 0) { 13450 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n"); 13451 return ret; 13452 } 13453 13454 if (ret == RETRY) { 13455 if (drm_WARN(&i915->drm, !retry, 13456 "loop in pipe configuration computation\n")) 13457 return -EINVAL; 13458 13459 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n"); 13460 retry = false; 13461 goto encoder_retry; 13462 } 13463 13464 /* Dithering seems to not pass-through bits correctly when it should, so 13465 * only enable it on 6bpc panels and when its not a compliance 13466 * test requesting 6bpc video pattern. 13467 */ 13468 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 13469 !pipe_config->dither_force_disable; 13470 drm_dbg_kms(&i915->drm, 13471 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 13472 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 13473 13474 return 0; 13475 } 13476 13477 static int 13478 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state) 13479 { 13480 struct intel_atomic_state *state = 13481 to_intel_atomic_state(crtc_state->uapi.state); 13482 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 13483 struct drm_connector_state *conn_state; 13484 struct drm_connector *connector; 13485 int i; 13486 13487 for_each_new_connector_in_state(&state->base, connector, 13488 conn_state, i) { 13489 struct intel_encoder *encoder = 13490 to_intel_encoder(conn_state->best_encoder); 13491 int ret; 13492 13493 if (conn_state->crtc != &crtc->base || 13494 !encoder->compute_config_late) 13495 continue; 13496 13497 ret = encoder->compute_config_late(encoder, crtc_state, 13498 conn_state); 13499 if (ret) 13500 return ret; 13501 } 13502 13503 return 0; 13504 } 13505 13506 bool intel_fuzzy_clock_check(int clock1, int clock2) 13507 { 13508 int diff; 13509 13510 if (clock1 == clock2) 13511 return true; 13512 13513 if (!clock1 || !clock2) 13514 return false; 13515 13516 diff = abs(clock1 - clock2); 13517 13518 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 13519 return true; 13520 13521 return false; 13522 } 13523 13524 static bool 13525 intel_compare_m_n(unsigned int m, unsigned int n, 13526 unsigned int m2, unsigned int n2, 13527 bool exact) 13528 { 13529 if (m == m2 && n == n2) 13530 return true; 13531 13532 if (exact || !m || !n || !m2 || !n2) 13533 return false; 13534 13535 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 13536 13537 if (n > n2) { 13538 while (n > n2) { 13539 m2 <<= 1; 13540 n2 <<= 1; 13541 } 13542 } else if (n < n2) { 13543 while (n < n2) { 13544 m <<= 1; 13545 n <<= 1; 13546 } 13547 } 13548 13549 if (n != n2) 13550 return false; 13551 13552 return intel_fuzzy_clock_check(m, m2); 13553 } 13554 13555 static bool 13556 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 13557 const struct intel_link_m_n *m2_n2, 13558 bool exact) 13559 { 13560 return m_n->tu == m2_n2->tu && 13561 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 13562 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 13563 intel_compare_m_n(m_n->link_m, m_n->link_n, 13564 m2_n2->link_m, m2_n2->link_n, exact); 13565 } 13566 13567 static bool 13568 intel_compare_infoframe(const union hdmi_infoframe *a, 13569 const union hdmi_infoframe *b) 13570 { 13571 return memcmp(a, b, sizeof(*a)) == 0; 13572 } 13573 13574 static bool 13575 intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a, 13576 const struct drm_dp_vsc_sdp *b) 13577 { 13578 return memcmp(a, b, sizeof(*a)) == 0; 13579 } 13580 13581 static void 13582 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 13583 bool fastset, const char *name, 13584 const union hdmi_infoframe *a, 13585 const union hdmi_infoframe *b) 13586 { 13587 if (fastset) { 13588 if (!drm_debug_enabled(DRM_UT_KMS)) 13589 return; 13590 13591 drm_dbg_kms(&dev_priv->drm, 13592 "fastset mismatch in %s infoframe\n", name); 13593 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 13594 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 13595 drm_dbg_kms(&dev_priv->drm, "found:\n"); 13596 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 13597 } else { 13598 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name); 13599 drm_err(&dev_priv->drm, "expected:\n"); 13600 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 13601 drm_err(&dev_priv->drm, "found:\n"); 13602 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 13603 } 13604 } 13605 13606 static void 13607 pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv, 13608 bool fastset, const char *name, 13609 const struct drm_dp_vsc_sdp *a, 13610 const struct drm_dp_vsc_sdp *b) 13611 { 13612 if (fastset) { 13613 if (!drm_debug_enabled(DRM_UT_KMS)) 13614 return; 13615 13616 drm_dbg_kms(&dev_priv->drm, 13617 "fastset mismatch in %s dp sdp\n", name); 13618 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 13619 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a); 13620 drm_dbg_kms(&dev_priv->drm, "found:\n"); 13621 drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b); 13622 } else { 13623 drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name); 13624 drm_err(&dev_priv->drm, "expected:\n"); 13625 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a); 13626 drm_err(&dev_priv->drm, "found:\n"); 13627 drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b); 13628 } 13629 } 13630 13631 static void __printf(4, 5) 13632 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, 13633 const char *name, const char *format, ...) 13634 { 13635 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 13636 struct va_format vaf; 13637 va_list args; 13638 13639 va_start(args, format); 13640 vaf.fmt = format; 13641 vaf.va = &args; 13642 13643 if (fastset) 13644 drm_dbg_kms(&i915->drm, 13645 "[CRTC:%d:%s] fastset mismatch in %s %pV\n", 13646 crtc->base.base.id, crtc->base.name, name, &vaf); 13647 else 13648 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n", 13649 crtc->base.base.id, crtc->base.name, name, &vaf); 13650 13651 va_end(args); 13652 } 13653 13654 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 13655 { 13656 if (dev_priv->params.fastboot != -1) 13657 return dev_priv->params.fastboot; 13658 13659 /* Enable fastboot by default on Skylake and newer */ 13660 if (INTEL_GEN(dev_priv) >= 9) 13661 return true; 13662 13663 /* Enable fastboot by default on VLV and CHV */ 13664 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13665 return true; 13666 13667 /* Disabled by default on all others */ 13668 return false; 13669 } 13670 13671 static bool 13672 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 13673 const struct intel_crtc_state *pipe_config, 13674 bool fastset) 13675 { 13676 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev); 13677 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 13678 bool ret = true; 13679 u32 bp_gamma = 0; 13680 bool fixup_inherited = fastset && 13681 current_config->inherited && !pipe_config->inherited; 13682 13683 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 13684 drm_dbg_kms(&dev_priv->drm, 13685 "initial modeset and fastboot not set\n"); 13686 ret = false; 13687 } 13688 13689 #define PIPE_CONF_CHECK_X(name) do { \ 13690 if (current_config->name != pipe_config->name) { \ 13691 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13692 "(expected 0x%08x, found 0x%08x)", \ 13693 current_config->name, \ 13694 pipe_config->name); \ 13695 ret = false; \ 13696 } \ 13697 } while (0) 13698 13699 #define PIPE_CONF_CHECK_I(name) do { \ 13700 if (current_config->name != pipe_config->name) { \ 13701 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13702 "(expected %i, found %i)", \ 13703 current_config->name, \ 13704 pipe_config->name); \ 13705 ret = false; \ 13706 } \ 13707 } while (0) 13708 13709 #define PIPE_CONF_CHECK_BOOL(name) do { \ 13710 if (current_config->name != pipe_config->name) { \ 13711 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13712 "(expected %s, found %s)", \ 13713 yesno(current_config->name), \ 13714 yesno(pipe_config->name)); \ 13715 ret = false; \ 13716 } \ 13717 } while (0) 13718 13719 /* 13720 * Checks state where we only read out the enabling, but not the entire 13721 * state itself (like full infoframes or ELD for audio). These states 13722 * require a full modeset on bootup to fix up. 13723 */ 13724 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 13725 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 13726 PIPE_CONF_CHECK_BOOL(name); \ 13727 } else { \ 13728 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13729 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ 13730 yesno(current_config->name), \ 13731 yesno(pipe_config->name)); \ 13732 ret = false; \ 13733 } \ 13734 } while (0) 13735 13736 #define PIPE_CONF_CHECK_P(name) do { \ 13737 if (current_config->name != pipe_config->name) { \ 13738 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13739 "(expected %p, found %p)", \ 13740 current_config->name, \ 13741 pipe_config->name); \ 13742 ret = false; \ 13743 } \ 13744 } while (0) 13745 13746 #define PIPE_CONF_CHECK_M_N(name) do { \ 13747 if (!intel_compare_link_m_n(¤t_config->name, \ 13748 &pipe_config->name,\ 13749 !fastset)) { \ 13750 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13751 "(expected tu %i gmch %i/%i link %i/%i, " \ 13752 "found tu %i, gmch %i/%i link %i/%i)", \ 13753 current_config->name.tu, \ 13754 current_config->name.gmch_m, \ 13755 current_config->name.gmch_n, \ 13756 current_config->name.link_m, \ 13757 current_config->name.link_n, \ 13758 pipe_config->name.tu, \ 13759 pipe_config->name.gmch_m, \ 13760 pipe_config->name.gmch_n, \ 13761 pipe_config->name.link_m, \ 13762 pipe_config->name.link_n); \ 13763 ret = false; \ 13764 } \ 13765 } while (0) 13766 13767 /* This is required for BDW+ where there is only one set of registers for 13768 * switching between high and low RR. 13769 * This macro can be used whenever a comparison has to be made between one 13770 * hw state and multiple sw state variables. 13771 */ 13772 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 13773 if (!intel_compare_link_m_n(¤t_config->name, \ 13774 &pipe_config->name, !fastset) && \ 13775 !intel_compare_link_m_n(¤t_config->alt_name, \ 13776 &pipe_config->name, !fastset)) { \ 13777 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13778 "(expected tu %i gmch %i/%i link %i/%i, " \ 13779 "or tu %i gmch %i/%i link %i/%i, " \ 13780 "found tu %i, gmch %i/%i link %i/%i)", \ 13781 current_config->name.tu, \ 13782 current_config->name.gmch_m, \ 13783 current_config->name.gmch_n, \ 13784 current_config->name.link_m, \ 13785 current_config->name.link_n, \ 13786 current_config->alt_name.tu, \ 13787 current_config->alt_name.gmch_m, \ 13788 current_config->alt_name.gmch_n, \ 13789 current_config->alt_name.link_m, \ 13790 current_config->alt_name.link_n, \ 13791 pipe_config->name.tu, \ 13792 pipe_config->name.gmch_m, \ 13793 pipe_config->name.gmch_n, \ 13794 pipe_config->name.link_m, \ 13795 pipe_config->name.link_n); \ 13796 ret = false; \ 13797 } \ 13798 } while (0) 13799 13800 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 13801 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 13802 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13803 "(%x) (expected %i, found %i)", \ 13804 (mask), \ 13805 current_config->name & (mask), \ 13806 pipe_config->name & (mask)); \ 13807 ret = false; \ 13808 } \ 13809 } while (0) 13810 13811 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 13812 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 13813 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13814 "(expected %i, found %i)", \ 13815 current_config->name, \ 13816 pipe_config->name); \ 13817 ret = false; \ 13818 } \ 13819 } while (0) 13820 13821 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 13822 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 13823 &pipe_config->infoframes.name)) { \ 13824 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 13825 ¤t_config->infoframes.name, \ 13826 &pipe_config->infoframes.name); \ 13827 ret = false; \ 13828 } \ 13829 } while (0) 13830 13831 #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \ 13832 if (!current_config->has_psr && !pipe_config->has_psr && \ 13833 !intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \ 13834 &pipe_config->infoframes.name)) { \ 13835 pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \ 13836 ¤t_config->infoframes.name, \ 13837 &pipe_config->infoframes.name); \ 13838 ret = false; \ 13839 } \ 13840 } while (0) 13841 13842 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ 13843 if (current_config->name1 != pipe_config->name1) { \ 13844 pipe_config_mismatch(fastset, crtc, __stringify(name1), \ 13845 "(expected %i, found %i, won't compare lut values)", \ 13846 current_config->name1, \ 13847 pipe_config->name1); \ 13848 ret = false;\ 13849 } else { \ 13850 if (!intel_color_lut_equal(current_config->name2, \ 13851 pipe_config->name2, pipe_config->name1, \ 13852 bit_precision)) { \ 13853 pipe_config_mismatch(fastset, crtc, __stringify(name2), \ 13854 "hw_state doesn't match sw_state"); \ 13855 ret = false; \ 13856 } \ 13857 } \ 13858 } while (0) 13859 13860 #define PIPE_CONF_QUIRK(quirk) \ 13861 ((current_config->quirks | pipe_config->quirks) & (quirk)) 13862 13863 PIPE_CONF_CHECK_I(cpu_transcoder); 13864 13865 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 13866 PIPE_CONF_CHECK_I(fdi_lanes); 13867 PIPE_CONF_CHECK_M_N(fdi_m_n); 13868 13869 PIPE_CONF_CHECK_I(lane_count); 13870 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 13871 13872 if (INTEL_GEN(dev_priv) < 8) { 13873 PIPE_CONF_CHECK_M_N(dp_m_n); 13874 13875 if (current_config->has_drrs) 13876 PIPE_CONF_CHECK_M_N(dp_m2_n2); 13877 } else 13878 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 13879 13880 PIPE_CONF_CHECK_X(output_types); 13881 13882 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay); 13883 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal); 13884 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start); 13885 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end); 13886 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start); 13887 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end); 13888 13889 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay); 13890 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal); 13891 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start); 13892 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end); 13893 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start); 13894 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end); 13895 13896 PIPE_CONF_CHECK_I(pixel_multiplier); 13897 PIPE_CONF_CHECK_I(output_format); 13898 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 13899 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 13900 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13901 PIPE_CONF_CHECK_BOOL(limited_color_range); 13902 13903 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 13904 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 13905 PIPE_CONF_CHECK_BOOL(has_infoframe); 13906 PIPE_CONF_CHECK_BOOL(fec_enable); 13907 13908 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 13909 13910 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13911 DRM_MODE_FLAG_INTERLACE); 13912 13913 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 13914 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13915 DRM_MODE_FLAG_PHSYNC); 13916 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13917 DRM_MODE_FLAG_NHSYNC); 13918 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13919 DRM_MODE_FLAG_PVSYNC); 13920 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13921 DRM_MODE_FLAG_NVSYNC); 13922 } 13923 13924 PIPE_CONF_CHECK_X(gmch_pfit.control); 13925 /* pfit ratios are autocomputed by the hw on gen4+ */ 13926 if (INTEL_GEN(dev_priv) < 4) 13927 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 13928 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 13929 13930 /* 13931 * Changing the EDP transcoder input mux 13932 * (A_ONOFF vs. A_ON) requires a full modeset. 13933 */ 13934 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 13935 13936 if (!fastset) { 13937 PIPE_CONF_CHECK_I(pipe_src_w); 13938 PIPE_CONF_CHECK_I(pipe_src_h); 13939 13940 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 13941 if (current_config->pch_pfit.enabled) { 13942 PIPE_CONF_CHECK_I(pch_pfit.dst.x1); 13943 PIPE_CONF_CHECK_I(pch_pfit.dst.y1); 13944 PIPE_CONF_CHECK_I(pch_pfit.dst.x2); 13945 PIPE_CONF_CHECK_I(pch_pfit.dst.y2); 13946 } 13947 13948 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 13949 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 13950 13951 PIPE_CONF_CHECK_X(gamma_mode); 13952 if (IS_CHERRYVIEW(dev_priv)) 13953 PIPE_CONF_CHECK_X(cgm_mode); 13954 else 13955 PIPE_CONF_CHECK_X(csc_mode); 13956 PIPE_CONF_CHECK_BOOL(gamma_enable); 13957 PIPE_CONF_CHECK_BOOL(csc_enable); 13958 13959 PIPE_CONF_CHECK_I(linetime); 13960 PIPE_CONF_CHECK_I(ips_linetime); 13961 13962 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); 13963 if (bp_gamma) 13964 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma); 13965 } 13966 13967 PIPE_CONF_CHECK_BOOL(double_wide); 13968 13969 PIPE_CONF_CHECK_P(shared_dpll); 13970 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 13971 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 13972 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 13973 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 13974 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 13975 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 13976 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 13977 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 13978 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 13979 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 13980 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 13981 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 13982 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 13983 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 13984 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 13985 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 13986 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 13987 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 13988 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 13989 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 13990 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 13991 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 13992 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 13993 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 13994 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 13995 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 13996 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 13997 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 13998 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 13999 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 14000 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 14001 14002 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 14003 PIPE_CONF_CHECK_X(dsi_pll.div); 14004 14005 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) 14006 PIPE_CONF_CHECK_I(pipe_bpp); 14007 14008 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock); 14009 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 14010 14011 PIPE_CONF_CHECK_I(min_voltage_level); 14012 14013 PIPE_CONF_CHECK_X(infoframes.enable); 14014 PIPE_CONF_CHECK_X(infoframes.gcp); 14015 PIPE_CONF_CHECK_INFOFRAME(avi); 14016 PIPE_CONF_CHECK_INFOFRAME(spd); 14017 PIPE_CONF_CHECK_INFOFRAME(hdmi); 14018 PIPE_CONF_CHECK_INFOFRAME(drm); 14019 PIPE_CONF_CHECK_DP_VSC_SDP(vsc); 14020 14021 PIPE_CONF_CHECK_X(sync_mode_slaves_mask); 14022 PIPE_CONF_CHECK_I(master_transcoder); 14023 14024 PIPE_CONF_CHECK_I(dsc.compression_enable); 14025 PIPE_CONF_CHECK_I(dsc.dsc_split); 14026 PIPE_CONF_CHECK_I(dsc.compressed_bpp); 14027 14028 PIPE_CONF_CHECK_I(mst_master_transcoder); 14029 14030 #undef PIPE_CONF_CHECK_X 14031 #undef PIPE_CONF_CHECK_I 14032 #undef PIPE_CONF_CHECK_BOOL 14033 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 14034 #undef PIPE_CONF_CHECK_P 14035 #undef PIPE_CONF_CHECK_FLAGS 14036 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 14037 #undef PIPE_CONF_CHECK_COLOR_LUT 14038 #undef PIPE_CONF_QUIRK 14039 14040 return ret; 14041 } 14042 14043 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 14044 const struct intel_crtc_state *pipe_config) 14045 { 14046 if (pipe_config->has_pch_encoder) { 14047 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 14048 &pipe_config->fdi_m_n); 14049 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock; 14050 14051 /* 14052 * FDI already provided one idea for the dotclock. 14053 * Yell if the encoder disagrees. 14054 */ 14055 drm_WARN(&dev_priv->drm, 14056 !intel_fuzzy_clock_check(fdi_dotclock, dotclock), 14057 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 14058 fdi_dotclock, dotclock); 14059 } 14060 } 14061 14062 static void verify_wm_state(struct intel_crtc *crtc, 14063 struct intel_crtc_state *new_crtc_state) 14064 { 14065 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14066 struct skl_hw_state { 14067 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 14068 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 14069 struct skl_pipe_wm wm; 14070 } *hw; 14071 struct skl_pipe_wm *sw_wm; 14072 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 14073 u8 hw_enabled_slices; 14074 const enum pipe pipe = crtc->pipe; 14075 int plane, level, max_level = ilk_wm_max_level(dev_priv); 14076 14077 if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active) 14078 return; 14079 14080 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 14081 if (!hw) 14082 return; 14083 14084 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 14085 sw_wm = &new_crtc_state->wm.skl.optimal; 14086 14087 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 14088 14089 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv); 14090 14091 if (INTEL_GEN(dev_priv) >= 11 && 14092 hw_enabled_slices != dev_priv->dbuf.enabled_slices) 14093 drm_err(&dev_priv->drm, 14094 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", 14095 dev_priv->dbuf.enabled_slices, 14096 hw_enabled_slices); 14097 14098 /* planes */ 14099 for_each_universal_plane(dev_priv, pipe, plane) { 14100 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 14101 14102 hw_plane_wm = &hw->wm.planes[plane]; 14103 sw_plane_wm = &sw_wm->planes[plane]; 14104 14105 /* Watermarks */ 14106 for (level = 0; level <= max_level; level++) { 14107 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 14108 &sw_plane_wm->wm[level]) || 14109 (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level], 14110 &sw_plane_wm->sagv_wm0))) 14111 continue; 14112 14113 drm_err(&dev_priv->drm, 14114 "mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14115 pipe_name(pipe), plane + 1, level, 14116 sw_plane_wm->wm[level].plane_en, 14117 sw_plane_wm->wm[level].plane_res_b, 14118 sw_plane_wm->wm[level].plane_res_l, 14119 hw_plane_wm->wm[level].plane_en, 14120 hw_plane_wm->wm[level].plane_res_b, 14121 hw_plane_wm->wm[level].plane_res_l); 14122 } 14123 14124 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 14125 &sw_plane_wm->trans_wm)) { 14126 drm_err(&dev_priv->drm, 14127 "mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14128 pipe_name(pipe), plane + 1, 14129 sw_plane_wm->trans_wm.plane_en, 14130 sw_plane_wm->trans_wm.plane_res_b, 14131 sw_plane_wm->trans_wm.plane_res_l, 14132 hw_plane_wm->trans_wm.plane_en, 14133 hw_plane_wm->trans_wm.plane_res_b, 14134 hw_plane_wm->trans_wm.plane_res_l); 14135 } 14136 14137 /* DDB */ 14138 hw_ddb_entry = &hw->ddb_y[plane]; 14139 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane]; 14140 14141 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 14142 drm_err(&dev_priv->drm, 14143 "mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n", 14144 pipe_name(pipe), plane + 1, 14145 sw_ddb_entry->start, sw_ddb_entry->end, 14146 hw_ddb_entry->start, hw_ddb_entry->end); 14147 } 14148 } 14149 14150 /* 14151 * cursor 14152 * If the cursor plane isn't active, we may not have updated it's ddb 14153 * allocation. In that case since the ddb allocation will be updated 14154 * once the plane becomes visible, we can skip this check 14155 */ 14156 if (1) { 14157 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 14158 14159 hw_plane_wm = &hw->wm.planes[PLANE_CURSOR]; 14160 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR]; 14161 14162 /* Watermarks */ 14163 for (level = 0; level <= max_level; level++) { 14164 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 14165 &sw_plane_wm->wm[level]) || 14166 (level == 0 && skl_wm_level_equals(&hw_plane_wm->wm[level], 14167 &sw_plane_wm->sagv_wm0))) 14168 continue; 14169 14170 drm_err(&dev_priv->drm, 14171 "mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14172 pipe_name(pipe), level, 14173 sw_plane_wm->wm[level].plane_en, 14174 sw_plane_wm->wm[level].plane_res_b, 14175 sw_plane_wm->wm[level].plane_res_l, 14176 hw_plane_wm->wm[level].plane_en, 14177 hw_plane_wm->wm[level].plane_res_b, 14178 hw_plane_wm->wm[level].plane_res_l); 14179 } 14180 14181 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 14182 &sw_plane_wm->trans_wm)) { 14183 drm_err(&dev_priv->drm, 14184 "mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14185 pipe_name(pipe), 14186 sw_plane_wm->trans_wm.plane_en, 14187 sw_plane_wm->trans_wm.plane_res_b, 14188 sw_plane_wm->trans_wm.plane_res_l, 14189 hw_plane_wm->trans_wm.plane_en, 14190 hw_plane_wm->trans_wm.plane_res_b, 14191 hw_plane_wm->trans_wm.plane_res_l); 14192 } 14193 14194 /* DDB */ 14195 hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR]; 14196 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR]; 14197 14198 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 14199 drm_err(&dev_priv->drm, 14200 "mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n", 14201 pipe_name(pipe), 14202 sw_ddb_entry->start, sw_ddb_entry->end, 14203 hw_ddb_entry->start, hw_ddb_entry->end); 14204 } 14205 } 14206 14207 kfree(hw); 14208 } 14209 14210 static void 14211 verify_connector_state(struct intel_atomic_state *state, 14212 struct intel_crtc *crtc) 14213 { 14214 struct drm_connector *connector; 14215 struct drm_connector_state *new_conn_state; 14216 int i; 14217 14218 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 14219 struct drm_encoder *encoder = connector->encoder; 14220 struct intel_crtc_state *crtc_state = NULL; 14221 14222 if (new_conn_state->crtc != &crtc->base) 14223 continue; 14224 14225 if (crtc) 14226 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 14227 14228 intel_connector_verify_state(crtc_state, new_conn_state); 14229 14230 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 14231 "connector's atomic encoder doesn't match legacy encoder\n"); 14232 } 14233 } 14234 14235 static void 14236 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 14237 { 14238 struct intel_encoder *encoder; 14239 struct drm_connector *connector; 14240 struct drm_connector_state *old_conn_state, *new_conn_state; 14241 int i; 14242 14243 for_each_intel_encoder(&dev_priv->drm, encoder) { 14244 bool enabled = false, found = false; 14245 enum pipe pipe; 14246 14247 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n", 14248 encoder->base.base.id, 14249 encoder->base.name); 14250 14251 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 14252 new_conn_state, i) { 14253 if (old_conn_state->best_encoder == &encoder->base) 14254 found = true; 14255 14256 if (new_conn_state->best_encoder != &encoder->base) 14257 continue; 14258 found = enabled = true; 14259 14260 I915_STATE_WARN(new_conn_state->crtc != 14261 encoder->base.crtc, 14262 "connector's crtc doesn't match encoder crtc\n"); 14263 } 14264 14265 if (!found) 14266 continue; 14267 14268 I915_STATE_WARN(!!encoder->base.crtc != enabled, 14269 "encoder's enabled state mismatch " 14270 "(expected %i, found %i)\n", 14271 !!encoder->base.crtc, enabled); 14272 14273 if (!encoder->base.crtc) { 14274 bool active; 14275 14276 active = encoder->get_hw_state(encoder, &pipe); 14277 I915_STATE_WARN(active, 14278 "encoder detached but still enabled on pipe %c.\n", 14279 pipe_name(pipe)); 14280 } 14281 } 14282 } 14283 14284 static void 14285 verify_crtc_state(struct intel_crtc *crtc, 14286 struct intel_crtc_state *old_crtc_state, 14287 struct intel_crtc_state *new_crtc_state) 14288 { 14289 struct drm_device *dev = crtc->base.dev; 14290 struct drm_i915_private *dev_priv = to_i915(dev); 14291 struct intel_encoder *encoder; 14292 struct intel_crtc_state *pipe_config = old_crtc_state; 14293 struct drm_atomic_state *state = old_crtc_state->uapi.state; 14294 bool active; 14295 14296 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi); 14297 intel_crtc_free_hw_state(old_crtc_state); 14298 intel_crtc_state_reset(old_crtc_state, crtc); 14299 old_crtc_state->uapi.state = state; 14300 14301 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id, 14302 crtc->base.name); 14303 14304 active = dev_priv->display.get_pipe_config(crtc, pipe_config); 14305 14306 /* we keep both pipes enabled on 830 */ 14307 if (IS_I830(dev_priv)) 14308 active = new_crtc_state->hw.active; 14309 14310 I915_STATE_WARN(new_crtc_state->hw.active != active, 14311 "crtc active state doesn't match with hw state " 14312 "(expected %i, found %i)\n", 14313 new_crtc_state->hw.active, active); 14314 14315 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active, 14316 "transitional active state does not match atomic hw state " 14317 "(expected %i, found %i)\n", 14318 new_crtc_state->hw.active, crtc->active); 14319 14320 for_each_encoder_on_crtc(dev, &crtc->base, encoder) { 14321 enum pipe pipe; 14322 14323 active = encoder->get_hw_state(encoder, &pipe); 14324 I915_STATE_WARN(active != new_crtc_state->hw.active, 14325 "[ENCODER:%i] active %i with crtc active %i\n", 14326 encoder->base.base.id, active, 14327 new_crtc_state->hw.active); 14328 14329 I915_STATE_WARN(active && crtc->pipe != pipe, 14330 "Encoder connected to wrong pipe %c\n", 14331 pipe_name(pipe)); 14332 14333 if (active) 14334 encoder->get_config(encoder, pipe_config); 14335 } 14336 14337 intel_crtc_compute_pixel_rate(pipe_config); 14338 14339 if (!new_crtc_state->hw.active) 14340 return; 14341 14342 intel_pipe_config_sanity_check(dev_priv, pipe_config); 14343 14344 if (!intel_pipe_config_compare(new_crtc_state, 14345 pipe_config, false)) { 14346 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 14347 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 14348 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 14349 } 14350 } 14351 14352 static void 14353 intel_verify_planes(struct intel_atomic_state *state) 14354 { 14355 struct intel_plane *plane; 14356 const struct intel_plane_state *plane_state; 14357 int i; 14358 14359 for_each_new_intel_plane_in_state(state, plane, 14360 plane_state, i) 14361 assert_plane(plane, plane_state->planar_slave || 14362 plane_state->uapi.visible); 14363 } 14364 14365 static void 14366 verify_single_dpll_state(struct drm_i915_private *dev_priv, 14367 struct intel_shared_dpll *pll, 14368 struct intel_crtc *crtc, 14369 struct intel_crtc_state *new_crtc_state) 14370 { 14371 struct intel_dpll_hw_state dpll_hw_state; 14372 unsigned int crtc_mask; 14373 bool active; 14374 14375 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 14376 14377 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name); 14378 14379 active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state); 14380 14381 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 14382 I915_STATE_WARN(!pll->on && pll->active_mask, 14383 "pll in active use but not on in sw tracking\n"); 14384 I915_STATE_WARN(pll->on && !pll->active_mask, 14385 "pll is on but not used by any active crtc\n"); 14386 I915_STATE_WARN(pll->on != active, 14387 "pll on state mismatch (expected %i, found %i)\n", 14388 pll->on, active); 14389 } 14390 14391 if (!crtc) { 14392 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask, 14393 "more active pll users than references: %x vs %x\n", 14394 pll->active_mask, pll->state.crtc_mask); 14395 14396 return; 14397 } 14398 14399 crtc_mask = drm_crtc_mask(&crtc->base); 14400 14401 if (new_crtc_state->hw.active) 14402 I915_STATE_WARN(!(pll->active_mask & crtc_mask), 14403 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n", 14404 pipe_name(crtc->pipe), pll->active_mask); 14405 else 14406 I915_STATE_WARN(pll->active_mask & crtc_mask, 14407 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n", 14408 pipe_name(crtc->pipe), pll->active_mask); 14409 14410 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask), 14411 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n", 14412 crtc_mask, pll->state.crtc_mask); 14413 14414 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 14415 &dpll_hw_state, 14416 sizeof(dpll_hw_state)), 14417 "pll hw state mismatch\n"); 14418 } 14419 14420 static void 14421 verify_shared_dpll_state(struct intel_crtc *crtc, 14422 struct intel_crtc_state *old_crtc_state, 14423 struct intel_crtc_state *new_crtc_state) 14424 { 14425 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14426 14427 if (new_crtc_state->shared_dpll) 14428 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 14429 14430 if (old_crtc_state->shared_dpll && 14431 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 14432 unsigned int crtc_mask = drm_crtc_mask(&crtc->base); 14433 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 14434 14435 I915_STATE_WARN(pll->active_mask & crtc_mask, 14436 "pll active mismatch (didn't expect pipe %c in active mask)\n", 14437 pipe_name(crtc->pipe)); 14438 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask, 14439 "pll enabled crtcs mismatch (found %x in enabled mask)\n", 14440 pipe_name(crtc->pipe)); 14441 } 14442 } 14443 14444 static void 14445 intel_modeset_verify_crtc(struct intel_crtc *crtc, 14446 struct intel_atomic_state *state, 14447 struct intel_crtc_state *old_crtc_state, 14448 struct intel_crtc_state *new_crtc_state) 14449 { 14450 if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 14451 return; 14452 14453 verify_wm_state(crtc, new_crtc_state); 14454 verify_connector_state(state, crtc); 14455 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 14456 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 14457 } 14458 14459 static void 14460 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 14461 { 14462 int i; 14463 14464 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) 14465 verify_single_dpll_state(dev_priv, 14466 &dev_priv->dpll.shared_dplls[i], 14467 NULL, NULL); 14468 } 14469 14470 static void 14471 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 14472 struct intel_atomic_state *state) 14473 { 14474 verify_encoder_state(dev_priv, state); 14475 verify_connector_state(state, NULL); 14476 verify_disabled_dpll_state(dev_priv); 14477 } 14478 14479 static void 14480 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) 14481 { 14482 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 14483 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14484 const struct drm_display_mode *adjusted_mode = 14485 &crtc_state->hw.adjusted_mode; 14486 14487 drm_calc_timestamping_constants(&crtc->base, adjusted_mode); 14488 14489 crtc->mode_flags = crtc_state->mode_flags; 14490 14491 /* 14492 * The scanline counter increments at the leading edge of hsync. 14493 * 14494 * On most platforms it starts counting from vtotal-1 on the 14495 * first active line. That means the scanline counter value is 14496 * always one less than what we would expect. Ie. just after 14497 * start of vblank, which also occurs at start of hsync (on the 14498 * last active line), the scanline counter will read vblank_start-1. 14499 * 14500 * On gen2 the scanline counter starts counting from 1 instead 14501 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 14502 * to keep the value positive), instead of adding one. 14503 * 14504 * On HSW+ the behaviour of the scanline counter depends on the output 14505 * type. For DP ports it behaves like most other platforms, but on HDMI 14506 * there's an extra 1 line difference. So we need to add two instead of 14507 * one to the value. 14508 * 14509 * On VLV/CHV DSI the scanline counter would appear to increment 14510 * approx. 1/3 of a scanline before start of vblank. Unfortunately 14511 * that means we can't tell whether we're in vblank or not while 14512 * we're on that particular line. We must still set scanline_offset 14513 * to 1 so that the vblank timestamps come out correct when we query 14514 * the scanline counter from within the vblank interrupt handler. 14515 * However if queried just before the start of vblank we'll get an 14516 * answer that's slightly in the future. 14517 */ 14518 if (IS_GEN(dev_priv, 2)) { 14519 int vtotal; 14520 14521 vtotal = adjusted_mode->crtc_vtotal; 14522 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 14523 vtotal /= 2; 14524 14525 crtc->scanline_offset = vtotal - 1; 14526 } else if (HAS_DDI(dev_priv) && 14527 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 14528 crtc->scanline_offset = 2; 14529 } else { 14530 crtc->scanline_offset = 1; 14531 } 14532 } 14533 14534 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 14535 { 14536 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14537 struct intel_crtc_state *new_crtc_state; 14538 struct intel_crtc *crtc; 14539 int i; 14540 14541 if (!dev_priv->display.crtc_compute_clock) 14542 return; 14543 14544 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14545 if (!needs_modeset(new_crtc_state)) 14546 continue; 14547 14548 intel_release_shared_dplls(state, crtc); 14549 } 14550 } 14551 14552 /* 14553 * This implements the workaround described in the "notes" section of the mode 14554 * set sequence documentation. When going from no pipes or single pipe to 14555 * multiple pipes, and planes are enabled after the pipe, we need to wait at 14556 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 14557 */ 14558 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) 14559 { 14560 struct intel_crtc_state *crtc_state; 14561 struct intel_crtc *crtc; 14562 struct intel_crtc_state *first_crtc_state = NULL; 14563 struct intel_crtc_state *other_crtc_state = NULL; 14564 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 14565 int i; 14566 14567 /* look at all crtc's that are going to be enabled in during modeset */ 14568 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14569 if (!crtc_state->hw.active || 14570 !needs_modeset(crtc_state)) 14571 continue; 14572 14573 if (first_crtc_state) { 14574 other_crtc_state = crtc_state; 14575 break; 14576 } else { 14577 first_crtc_state = crtc_state; 14578 first_pipe = crtc->pipe; 14579 } 14580 } 14581 14582 /* No workaround needed? */ 14583 if (!first_crtc_state) 14584 return 0; 14585 14586 /* w/a possibly needed, check how many crtc's are already enabled. */ 14587 for_each_intel_crtc(state->base.dev, crtc) { 14588 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 14589 if (IS_ERR(crtc_state)) 14590 return PTR_ERR(crtc_state); 14591 14592 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 14593 14594 if (!crtc_state->hw.active || 14595 needs_modeset(crtc_state)) 14596 continue; 14597 14598 /* 2 or more enabled crtcs means no need for w/a */ 14599 if (enabled_pipe != INVALID_PIPE) 14600 return 0; 14601 14602 enabled_pipe = crtc->pipe; 14603 } 14604 14605 if (enabled_pipe != INVALID_PIPE) 14606 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 14607 else if (other_crtc_state) 14608 other_crtc_state->hsw_workaround_pipe = first_pipe; 14609 14610 return 0; 14611 } 14612 14613 u8 intel_calc_active_pipes(struct intel_atomic_state *state, 14614 u8 active_pipes) 14615 { 14616 const struct intel_crtc_state *crtc_state; 14617 struct intel_crtc *crtc; 14618 int i; 14619 14620 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14621 if (crtc_state->hw.active) 14622 active_pipes |= BIT(crtc->pipe); 14623 else 14624 active_pipes &= ~BIT(crtc->pipe); 14625 } 14626 14627 return active_pipes; 14628 } 14629 14630 static int intel_modeset_checks(struct intel_atomic_state *state) 14631 { 14632 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14633 int ret; 14634 14635 state->modeset = true; 14636 state->active_pipes = intel_calc_active_pipes(state, dev_priv->active_pipes); 14637 14638 if (state->active_pipes != dev_priv->active_pipes) { 14639 ret = _intel_atomic_lock_global_state(state); 14640 if (ret) 14641 return ret; 14642 } 14643 14644 if (IS_HASWELL(dev_priv)) 14645 return hsw_mode_set_planes_workaround(state); 14646 14647 return 0; 14648 } 14649 14650 /* 14651 * Handle calculation of various watermark data at the end of the atomic check 14652 * phase. The code here should be run after the per-crtc and per-plane 'check' 14653 * handlers to ensure that all derived state has been updated. 14654 */ 14655 static int calc_watermark_data(struct intel_atomic_state *state) 14656 { 14657 struct drm_device *dev = state->base.dev; 14658 struct drm_i915_private *dev_priv = to_i915(dev); 14659 14660 /* Is there platform-specific watermark information to calculate? */ 14661 if (dev_priv->display.compute_global_watermarks) 14662 return dev_priv->display.compute_global_watermarks(state); 14663 14664 return 0; 14665 } 14666 14667 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 14668 struct intel_crtc_state *new_crtc_state) 14669 { 14670 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 14671 return; 14672 14673 new_crtc_state->uapi.mode_changed = false; 14674 new_crtc_state->update_pipe = true; 14675 } 14676 14677 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state, 14678 struct intel_crtc_state *new_crtc_state) 14679 { 14680 /* 14681 * If we're not doing the full modeset we want to 14682 * keep the current M/N values as they may be 14683 * sufficiently different to the computed values 14684 * to cause problems. 14685 * 14686 * FIXME: should really copy more fuzzy state here 14687 */ 14688 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 14689 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 14690 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 14691 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 14692 } 14693 14694 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, 14695 struct intel_crtc *crtc, 14696 u8 plane_ids_mask) 14697 { 14698 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14699 struct intel_plane *plane; 14700 14701 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 14702 struct intel_plane_state *plane_state; 14703 14704 if ((plane_ids_mask & BIT(plane->id)) == 0) 14705 continue; 14706 14707 plane_state = intel_atomic_get_plane_state(state, plane); 14708 if (IS_ERR(plane_state)) 14709 return PTR_ERR(plane_state); 14710 } 14711 14712 return 0; 14713 } 14714 14715 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) 14716 { 14717 /* See {hsw,vlv,ivb}_plane_ratio() */ 14718 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || 14719 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || 14720 IS_IVYBRIDGE(dev_priv) || (INTEL_GEN(dev_priv) >= 11); 14721 } 14722 14723 static int intel_atomic_check_planes(struct intel_atomic_state *state) 14724 { 14725 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14726 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 14727 struct intel_plane_state *plane_state; 14728 struct intel_plane *plane; 14729 struct intel_crtc *crtc; 14730 int i, ret; 14731 14732 ret = icl_add_linked_planes(state); 14733 if (ret) 14734 return ret; 14735 14736 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 14737 ret = intel_plane_atomic_check(state, plane); 14738 if (ret) { 14739 drm_dbg_atomic(&dev_priv->drm, 14740 "[PLANE:%d:%s] atomic driver check failed\n", 14741 plane->base.base.id, plane->base.name); 14742 return ret; 14743 } 14744 } 14745 14746 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14747 new_crtc_state, i) { 14748 u8 old_active_planes, new_active_planes; 14749 14750 ret = icl_check_nv12_planes(new_crtc_state); 14751 if (ret) 14752 return ret; 14753 14754 /* 14755 * On some platforms the number of active planes affects 14756 * the planes' minimum cdclk calculation. Add such planes 14757 * to the state before we compute the minimum cdclk. 14758 */ 14759 if (!active_planes_affects_min_cdclk(dev_priv)) 14760 continue; 14761 14762 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 14763 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 14764 14765 /* 14766 * Not only the number of planes, but if the plane configuration had 14767 * changed might already mean we need to recompute min CDCLK, 14768 * because different planes might consume different amount of Dbuf bandwidth 14769 * according to formula: Bw per plane = Pixel rate * bpp * pipe/plane scale factor 14770 */ 14771 if (old_active_planes == new_active_planes) 14772 continue; 14773 14774 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); 14775 if (ret) 14776 return ret; 14777 } 14778 14779 return 0; 14780 } 14781 14782 static int intel_atomic_check_cdclk(struct intel_atomic_state *state, 14783 bool *need_cdclk_calc) 14784 { 14785 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14786 struct intel_cdclk_state *new_cdclk_state; 14787 struct intel_plane_state *plane_state; 14788 struct intel_bw_state *new_bw_state; 14789 struct intel_plane *plane; 14790 int min_cdclk = 0; 14791 enum pipe pipe; 14792 int ret; 14793 int i; 14794 /* 14795 * active_planes bitmask has been updated, and potentially 14796 * affected planes are part of the state. We can now 14797 * compute the minimum cdclk for each plane. 14798 */ 14799 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 14800 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 14801 if (ret) 14802 return ret; 14803 } 14804 14805 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 14806 14807 if (new_cdclk_state && new_cdclk_state->force_min_cdclk_changed) 14808 *need_cdclk_calc = true; 14809 14810 ret = dev_priv->display.bw_calc_min_cdclk(state); 14811 if (ret) 14812 return ret; 14813 14814 new_bw_state = intel_atomic_get_new_bw_state(state); 14815 14816 if (!new_cdclk_state || !new_bw_state) 14817 return 0; 14818 14819 for_each_pipe(dev_priv, pipe) { 14820 min_cdclk = max(new_cdclk_state->min_cdclk[pipe], min_cdclk); 14821 14822 /* 14823 * Currently do this change only if we need to increase 14824 */ 14825 if (new_bw_state->min_cdclk > min_cdclk) 14826 *need_cdclk_calc = true; 14827 } 14828 14829 return 0; 14830 } 14831 14832 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 14833 { 14834 struct intel_crtc_state *crtc_state; 14835 struct intel_crtc *crtc; 14836 int i; 14837 14838 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14839 int ret = intel_crtc_atomic_check(state, crtc); 14840 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 14841 if (ret) { 14842 drm_dbg_atomic(&i915->drm, 14843 "[CRTC:%d:%s] atomic driver check failed\n", 14844 crtc->base.base.id, crtc->base.name); 14845 return ret; 14846 } 14847 } 14848 14849 return 0; 14850 } 14851 14852 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, 14853 u8 transcoders) 14854 { 14855 const struct intel_crtc_state *new_crtc_state; 14856 struct intel_crtc *crtc; 14857 int i; 14858 14859 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14860 if (new_crtc_state->hw.enable && 14861 transcoders & BIT(new_crtc_state->cpu_transcoder) && 14862 needs_modeset(new_crtc_state)) 14863 return true; 14864 } 14865 14866 return false; 14867 } 14868 14869 /** 14870 * intel_atomic_check - validate state object 14871 * @dev: drm device 14872 * @_state: state to validate 14873 */ 14874 static int intel_atomic_check(struct drm_device *dev, 14875 struct drm_atomic_state *_state) 14876 { 14877 struct drm_i915_private *dev_priv = to_i915(dev); 14878 struct intel_atomic_state *state = to_intel_atomic_state(_state); 14879 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 14880 struct intel_crtc *crtc; 14881 int ret, i; 14882 bool any_ms = false; 14883 14884 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14885 new_crtc_state, i) { 14886 if (new_crtc_state->inherited != old_crtc_state->inherited) 14887 new_crtc_state->uapi.mode_changed = true; 14888 } 14889 14890 ret = drm_atomic_helper_check_modeset(dev, &state->base); 14891 if (ret) 14892 goto fail; 14893 14894 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14895 new_crtc_state, i) { 14896 if (!needs_modeset(new_crtc_state)) { 14897 /* Light copy */ 14898 intel_crtc_copy_uapi_to_hw_state_nomodeset(new_crtc_state); 14899 14900 continue; 14901 } 14902 14903 ret = intel_crtc_prepare_cleared_state(new_crtc_state); 14904 if (ret) 14905 goto fail; 14906 14907 if (!new_crtc_state->hw.enable) 14908 continue; 14909 14910 ret = intel_modeset_pipe_config(new_crtc_state); 14911 if (ret) 14912 goto fail; 14913 } 14914 14915 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14916 new_crtc_state, i) { 14917 if (!needs_modeset(new_crtc_state)) 14918 continue; 14919 14920 ret = intel_modeset_pipe_config_late(new_crtc_state); 14921 if (ret) 14922 goto fail; 14923 14924 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 14925 } 14926 14927 /** 14928 * Check if fastset is allowed by external dependencies like other 14929 * pipes and transcoders. 14930 * 14931 * Right now it only forces a fullmodeset when the MST master 14932 * transcoder did not changed but the pipe of the master transcoder 14933 * needs a fullmodeset so all slaves also needs to do a fullmodeset or 14934 * in case of port synced crtcs, if one of the synced crtcs 14935 * needs a full modeset, all other synced crtcs should be 14936 * forced a full modeset. 14937 */ 14938 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14939 if (!new_crtc_state->hw.enable || needs_modeset(new_crtc_state)) 14940 continue; 14941 14942 if (intel_dp_mst_is_slave_trans(new_crtc_state)) { 14943 enum transcoder master = new_crtc_state->mst_master_transcoder; 14944 14945 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) { 14946 new_crtc_state->uapi.mode_changed = true; 14947 new_crtc_state->update_pipe = false; 14948 } 14949 } 14950 14951 if (is_trans_port_sync_mode(new_crtc_state)) { 14952 u8 trans = new_crtc_state->sync_mode_slaves_mask; 14953 14954 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) 14955 trans |= BIT(new_crtc_state->master_transcoder); 14956 14957 if (intel_cpu_transcoders_need_modeset(state, trans)) { 14958 new_crtc_state->uapi.mode_changed = true; 14959 new_crtc_state->update_pipe = false; 14960 } 14961 } 14962 } 14963 14964 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14965 new_crtc_state, i) { 14966 if (needs_modeset(new_crtc_state)) { 14967 any_ms = true; 14968 continue; 14969 } 14970 14971 if (!new_crtc_state->update_pipe) 14972 continue; 14973 14974 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state); 14975 } 14976 14977 if (any_ms && !check_digital_port_conflicts(state)) { 14978 drm_dbg_kms(&dev_priv->drm, 14979 "rejecting conflicting digital port configuration\n"); 14980 ret = -EINVAL; 14981 goto fail; 14982 } 14983 14984 ret = drm_dp_mst_atomic_check(&state->base); 14985 if (ret) 14986 goto fail; 14987 14988 ret = intel_atomic_check_planes(state); 14989 if (ret) 14990 goto fail; 14991 14992 /* 14993 * distrust_bios_wm will force a full dbuf recomputation 14994 * but the hardware state will only get updated accordingly 14995 * if state->modeset==true. Hence distrust_bios_wm==true && 14996 * state->modeset==false is an invalid combination which 14997 * would cause the hardware and software dbuf state to get 14998 * out of sync. We must prevent that. 14999 * 15000 * FIXME clean up this mess and introduce better 15001 * state tracking for dbuf. 15002 */ 15003 if (dev_priv->wm.distrust_bios_wm) 15004 any_ms = true; 15005 15006 intel_fbc_choose_crtc(dev_priv, state); 15007 ret = calc_watermark_data(state); 15008 if (ret) 15009 goto fail; 15010 15011 ret = intel_bw_atomic_check(state); 15012 if (ret) 15013 goto fail; 15014 15015 ret = intel_atomic_check_cdclk(state, &any_ms); 15016 if (ret) 15017 goto fail; 15018 15019 if (any_ms) { 15020 ret = intel_modeset_checks(state); 15021 if (ret) 15022 goto fail; 15023 15024 ret = intel_modeset_calc_cdclk(state); 15025 if (ret) 15026 return ret; 15027 15028 intel_modeset_clear_plls(state); 15029 } 15030 15031 ret = intel_atomic_check_crtcs(state); 15032 if (ret) 15033 goto fail; 15034 15035 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15036 new_crtc_state, i) { 15037 if (!needs_modeset(new_crtc_state) && 15038 !new_crtc_state->update_pipe) 15039 continue; 15040 15041 intel_dump_pipe_config(new_crtc_state, state, 15042 needs_modeset(new_crtc_state) ? 15043 "[modeset]" : "[fastset]"); 15044 } 15045 15046 return 0; 15047 15048 fail: 15049 if (ret == -EDEADLK) 15050 return ret; 15051 15052 /* 15053 * FIXME would probably be nice to know which crtc specifically 15054 * caused the failure, in cases where we can pinpoint it. 15055 */ 15056 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15057 new_crtc_state, i) 15058 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 15059 15060 return ret; 15061 } 15062 15063 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 15064 { 15065 struct intel_crtc_state *crtc_state; 15066 struct intel_crtc *crtc; 15067 int i, ret; 15068 15069 ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base); 15070 if (ret < 0) 15071 return ret; 15072 15073 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 15074 bool mode_changed = needs_modeset(crtc_state); 15075 15076 if (mode_changed || crtc_state->update_pipe || 15077 crtc_state->uapi.color_mgmt_changed) { 15078 intel_dsb_prepare(crtc_state); 15079 } 15080 } 15081 15082 return 0; 15083 } 15084 15085 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc) 15086 { 15087 struct drm_device *dev = crtc->base.dev; 15088 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)]; 15089 15090 if (!vblank->max_vblank_count) 15091 return (u32)drm_crtc_accurate_vblank_count(&crtc->base); 15092 15093 return crtc->base.funcs->get_vblank_counter(&crtc->base); 15094 } 15095 15096 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 15097 struct intel_crtc_state *crtc_state) 15098 { 15099 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 15100 15101 if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes) 15102 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 15103 15104 if (crtc_state->has_pch_encoder) { 15105 enum pipe pch_transcoder = 15106 intel_crtc_pch_transcoder(crtc); 15107 15108 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 15109 } 15110 } 15111 15112 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 15113 const struct intel_crtc_state *new_crtc_state) 15114 { 15115 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 15116 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 15117 15118 /* 15119 * Update pipe size and adjust fitter if needed: the reason for this is 15120 * that in compute_mode_changes we check the native mode (not the pfit 15121 * mode) to see if we can flip rather than do a full mode set. In the 15122 * fastboot case, we'll flip, but if we don't update the pipesrc and 15123 * pfit state, we'll end up with a big fb scanned out into the wrong 15124 * sized surface. 15125 */ 15126 intel_set_pipe_src_size(new_crtc_state); 15127 15128 /* on skylake this is done by detaching scalers */ 15129 if (INTEL_GEN(dev_priv) >= 9) { 15130 skl_detach_scalers(new_crtc_state); 15131 15132 if (new_crtc_state->pch_pfit.enabled) 15133 skl_pfit_enable(new_crtc_state); 15134 } else if (HAS_PCH_SPLIT(dev_priv)) { 15135 if (new_crtc_state->pch_pfit.enabled) 15136 ilk_pfit_enable(new_crtc_state); 15137 else if (old_crtc_state->pch_pfit.enabled) 15138 ilk_pfit_disable(old_crtc_state); 15139 } 15140 15141 /* 15142 * The register is supposedly single buffered so perhaps 15143 * not 100% correct to do this here. But SKL+ calculate 15144 * this based on the adjust pixel rate so pfit changes do 15145 * affect it and so it must be updated for fastsets. 15146 * HSW/BDW only really need this here for fastboot, after 15147 * that the value should not change without a full modeset. 15148 */ 15149 if (INTEL_GEN(dev_priv) >= 9 || 15150 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 15151 hsw_set_linetime_wm(new_crtc_state); 15152 15153 if (INTEL_GEN(dev_priv) >= 11) 15154 icl_set_pipe_chicken(crtc); 15155 } 15156 15157 static void commit_pipe_config(struct intel_atomic_state *state, 15158 struct intel_crtc *crtc) 15159 { 15160 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15161 const struct intel_crtc_state *old_crtc_state = 15162 intel_atomic_get_old_crtc_state(state, crtc); 15163 const struct intel_crtc_state *new_crtc_state = 15164 intel_atomic_get_new_crtc_state(state, crtc); 15165 bool modeset = needs_modeset(new_crtc_state); 15166 15167 /* 15168 * During modesets pipe configuration was programmed as the 15169 * CRTC was enabled. 15170 */ 15171 if (!modeset) { 15172 if (new_crtc_state->uapi.color_mgmt_changed || 15173 new_crtc_state->update_pipe) 15174 intel_color_commit(new_crtc_state); 15175 15176 if (INTEL_GEN(dev_priv) >= 9) 15177 skl_detach_scalers(new_crtc_state); 15178 15179 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 15180 bdw_set_pipemisc(new_crtc_state); 15181 15182 if (new_crtc_state->update_pipe) 15183 intel_pipe_fastset(old_crtc_state, new_crtc_state); 15184 15185 intel_psr2_program_trans_man_trk_ctl(new_crtc_state); 15186 } 15187 15188 if (dev_priv->display.atomic_update_watermarks) 15189 dev_priv->display.atomic_update_watermarks(state, crtc); 15190 } 15191 15192 static void intel_enable_crtc(struct intel_atomic_state *state, 15193 struct intel_crtc *crtc) 15194 { 15195 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15196 const struct intel_crtc_state *new_crtc_state = 15197 intel_atomic_get_new_crtc_state(state, crtc); 15198 15199 if (!needs_modeset(new_crtc_state)) 15200 return; 15201 15202 intel_crtc_update_active_timings(new_crtc_state); 15203 15204 dev_priv->display.crtc_enable(state, crtc); 15205 15206 /* vblanks work again, re-enable pipe CRC. */ 15207 intel_crtc_enable_pipe_crc(crtc); 15208 } 15209 15210 static void intel_update_crtc(struct intel_atomic_state *state, 15211 struct intel_crtc *crtc) 15212 { 15213 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15214 const struct intel_crtc_state *old_crtc_state = 15215 intel_atomic_get_old_crtc_state(state, crtc); 15216 struct intel_crtc_state *new_crtc_state = 15217 intel_atomic_get_new_crtc_state(state, crtc); 15218 bool modeset = needs_modeset(new_crtc_state); 15219 15220 if (!modeset) { 15221 if (new_crtc_state->preload_luts && 15222 (new_crtc_state->uapi.color_mgmt_changed || 15223 new_crtc_state->update_pipe)) 15224 intel_color_load_luts(new_crtc_state); 15225 15226 intel_pre_plane_update(state, crtc); 15227 15228 if (new_crtc_state->update_pipe) 15229 intel_encoders_update_pipe(state, crtc); 15230 } 15231 15232 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 15233 intel_fbc_disable(crtc); 15234 else 15235 intel_fbc_enable(state, crtc); 15236 15237 /* Perform vblank evasion around commit operation */ 15238 intel_pipe_update_start(new_crtc_state); 15239 15240 commit_pipe_config(state, crtc); 15241 15242 if (INTEL_GEN(dev_priv) >= 9) 15243 skl_update_planes_on_crtc(state, crtc); 15244 else 15245 i9xx_update_planes_on_crtc(state, crtc); 15246 15247 intel_pipe_update_end(new_crtc_state); 15248 15249 /* 15250 * We usually enable FIFO underrun interrupts as part of the 15251 * CRTC enable sequence during modesets. But when we inherit a 15252 * valid pipe configuration from the BIOS we need to take care 15253 * of enabling them on the CRTC's first fastset. 15254 */ 15255 if (new_crtc_state->update_pipe && !modeset && 15256 old_crtc_state->inherited) 15257 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 15258 } 15259 15260 15261 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 15262 struct intel_crtc_state *old_crtc_state, 15263 struct intel_crtc_state *new_crtc_state, 15264 struct intel_crtc *crtc) 15265 { 15266 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15267 15268 intel_crtc_disable_planes(state, crtc); 15269 15270 /* 15271 * We need to disable pipe CRC before disabling the pipe, 15272 * or we race against vblank off. 15273 */ 15274 intel_crtc_disable_pipe_crc(crtc); 15275 15276 dev_priv->display.crtc_disable(state, crtc); 15277 crtc->active = false; 15278 intel_fbc_disable(crtc); 15279 intel_disable_shared_dpll(old_crtc_state); 15280 15281 /* FIXME unify this for all platforms */ 15282 if (!new_crtc_state->hw.active && 15283 !HAS_GMCH(dev_priv) && 15284 dev_priv->display.initial_watermarks) 15285 dev_priv->display.initial_watermarks(state, crtc); 15286 } 15287 15288 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 15289 { 15290 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 15291 struct intel_crtc *crtc; 15292 u32 handled = 0; 15293 int i; 15294 15295 /* Only disable port sync and MST slaves */ 15296 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15297 new_crtc_state, i) { 15298 if (!needs_modeset(new_crtc_state)) 15299 continue; 15300 15301 if (!old_crtc_state->hw.active) 15302 continue; 15303 15304 /* In case of Transcoder port Sync master slave CRTCs can be 15305 * assigned in any order and we need to make sure that 15306 * slave CRTCs are disabled first and then master CRTC since 15307 * Slave vblanks are masked till Master Vblanks. 15308 */ 15309 if (!is_trans_port_sync_slave(old_crtc_state) && 15310 !intel_dp_mst_is_slave_trans(old_crtc_state)) 15311 continue; 15312 15313 intel_pre_plane_update(state, crtc); 15314 intel_old_crtc_state_disables(state, old_crtc_state, 15315 new_crtc_state, crtc); 15316 handled |= BIT(crtc->pipe); 15317 } 15318 15319 /* Disable everything else left on */ 15320 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15321 new_crtc_state, i) { 15322 if (!needs_modeset(new_crtc_state) || 15323 (handled & BIT(crtc->pipe))) 15324 continue; 15325 15326 intel_pre_plane_update(state, crtc); 15327 if (old_crtc_state->hw.active) 15328 intel_old_crtc_state_disables(state, old_crtc_state, 15329 new_crtc_state, crtc); 15330 } 15331 } 15332 15333 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 15334 { 15335 struct intel_crtc_state *new_crtc_state; 15336 struct intel_crtc *crtc; 15337 int i; 15338 15339 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15340 if (!new_crtc_state->hw.active) 15341 continue; 15342 15343 intel_enable_crtc(state, crtc); 15344 intel_update_crtc(state, crtc); 15345 } 15346 } 15347 15348 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 15349 { 15350 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15351 struct intel_crtc *crtc; 15352 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 15353 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 15354 u8 update_pipes = 0, modeset_pipes = 0; 15355 int i; 15356 15357 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 15358 enum pipe pipe = crtc->pipe; 15359 15360 if (!new_crtc_state->hw.active) 15361 continue; 15362 15363 /* ignore allocations for crtc's that have been turned off. */ 15364 if (!needs_modeset(new_crtc_state)) { 15365 entries[pipe] = old_crtc_state->wm.skl.ddb; 15366 update_pipes |= BIT(pipe); 15367 } else { 15368 modeset_pipes |= BIT(pipe); 15369 } 15370 } 15371 15372 /* 15373 * Whenever the number of active pipes changes, we need to make sure we 15374 * update the pipes in the right order so that their ddb allocations 15375 * never overlap with each other between CRTC updates. Otherwise we'll 15376 * cause pipe underruns and other bad stuff. 15377 * 15378 * So first lets enable all pipes that do not need a fullmodeset as 15379 * those don't have any external dependency. 15380 */ 15381 while (update_pipes) { 15382 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15383 new_crtc_state, i) { 15384 enum pipe pipe = crtc->pipe; 15385 15386 if ((update_pipes & BIT(pipe)) == 0) 15387 continue; 15388 15389 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 15390 entries, I915_MAX_PIPES, pipe)) 15391 continue; 15392 15393 entries[pipe] = new_crtc_state->wm.skl.ddb; 15394 update_pipes &= ~BIT(pipe); 15395 15396 intel_update_crtc(state, crtc); 15397 15398 /* 15399 * If this is an already active pipe, it's DDB changed, 15400 * and this isn't the last pipe that needs updating 15401 * then we need to wait for a vblank to pass for the 15402 * new ddb allocation to take effect. 15403 */ 15404 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 15405 &old_crtc_state->wm.skl.ddb) && 15406 (update_pipes | modeset_pipes)) 15407 intel_wait_for_vblank(dev_priv, pipe); 15408 } 15409 } 15410 15411 update_pipes = modeset_pipes; 15412 15413 /* 15414 * Enable all pipes that needs a modeset and do not depends on other 15415 * pipes 15416 */ 15417 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15418 enum pipe pipe = crtc->pipe; 15419 15420 if ((modeset_pipes & BIT(pipe)) == 0) 15421 continue; 15422 15423 if (intel_dp_mst_is_slave_trans(new_crtc_state) || 15424 is_trans_port_sync_master(new_crtc_state)) 15425 continue; 15426 15427 modeset_pipes &= ~BIT(pipe); 15428 15429 intel_enable_crtc(state, crtc); 15430 } 15431 15432 /* 15433 * Then we enable all remaining pipes that depend on other 15434 * pipes: MST slaves and port sync masters. 15435 */ 15436 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15437 enum pipe pipe = crtc->pipe; 15438 15439 if ((modeset_pipes & BIT(pipe)) == 0) 15440 continue; 15441 15442 modeset_pipes &= ~BIT(pipe); 15443 15444 intel_enable_crtc(state, crtc); 15445 } 15446 15447 /* 15448 * Finally we do the plane updates/etc. for all pipes that got enabled. 15449 */ 15450 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15451 enum pipe pipe = crtc->pipe; 15452 15453 if ((update_pipes & BIT(pipe)) == 0) 15454 continue; 15455 15456 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 15457 entries, I915_MAX_PIPES, pipe)); 15458 15459 entries[pipe] = new_crtc_state->wm.skl.ddb; 15460 update_pipes &= ~BIT(pipe); 15461 15462 intel_update_crtc(state, crtc); 15463 } 15464 15465 drm_WARN_ON(&dev_priv->drm, modeset_pipes); 15466 drm_WARN_ON(&dev_priv->drm, update_pipes); 15467 } 15468 15469 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 15470 { 15471 struct intel_atomic_state *state, *next; 15472 struct llist_node *freed; 15473 15474 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 15475 llist_for_each_entry_safe(state, next, freed, freed) 15476 drm_atomic_state_put(&state->base); 15477 } 15478 15479 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 15480 { 15481 struct drm_i915_private *dev_priv = 15482 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 15483 15484 intel_atomic_helper_free_state(dev_priv); 15485 } 15486 15487 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 15488 { 15489 struct wait_queue_entry wait_fence, wait_reset; 15490 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 15491 15492 init_wait_entry(&wait_fence, 0); 15493 init_wait_entry(&wait_reset, 0); 15494 for (;;) { 15495 prepare_to_wait(&intel_state->commit_ready.wait, 15496 &wait_fence, TASK_UNINTERRUPTIBLE); 15497 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 15498 I915_RESET_MODESET), 15499 &wait_reset, TASK_UNINTERRUPTIBLE); 15500 15501 15502 if (i915_sw_fence_done(&intel_state->commit_ready) || 15503 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 15504 break; 15505 15506 schedule(); 15507 } 15508 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 15509 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 15510 I915_RESET_MODESET), 15511 &wait_reset); 15512 } 15513 15514 static void intel_cleanup_dsbs(struct intel_atomic_state *state) 15515 { 15516 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 15517 struct intel_crtc *crtc; 15518 int i; 15519 15520 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15521 new_crtc_state, i) 15522 intel_dsb_cleanup(old_crtc_state); 15523 } 15524 15525 static void intel_atomic_cleanup_work(struct work_struct *work) 15526 { 15527 struct intel_atomic_state *state = 15528 container_of(work, struct intel_atomic_state, base.commit_work); 15529 struct drm_i915_private *i915 = to_i915(state->base.dev); 15530 15531 intel_cleanup_dsbs(state); 15532 drm_atomic_helper_cleanup_planes(&i915->drm, &state->base); 15533 drm_atomic_helper_commit_cleanup_done(&state->base); 15534 drm_atomic_state_put(&state->base); 15535 15536 intel_atomic_helper_free_state(i915); 15537 } 15538 15539 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 15540 { 15541 struct drm_device *dev = state->base.dev; 15542 struct drm_i915_private *dev_priv = to_i915(dev); 15543 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 15544 struct intel_crtc *crtc; 15545 u64 put_domains[I915_MAX_PIPES] = {}; 15546 intel_wakeref_t wakeref = 0; 15547 int i; 15548 15549 intel_atomic_commit_fence_wait(state); 15550 15551 drm_atomic_helper_wait_for_dependencies(&state->base); 15552 15553 if (state->modeset) 15554 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 15555 15556 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15557 new_crtc_state, i) { 15558 if (needs_modeset(new_crtc_state) || 15559 new_crtc_state->update_pipe) { 15560 15561 put_domains[crtc->pipe] = 15562 modeset_get_crtc_power_domains(new_crtc_state); 15563 } 15564 } 15565 15566 intel_commit_modeset_disables(state); 15567 15568 /* FIXME: Eventually get rid of our crtc->config pointer */ 15569 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 15570 crtc->config = new_crtc_state; 15571 15572 if (state->modeset) { 15573 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 15574 15575 intel_set_cdclk_pre_plane_update(state); 15576 15577 intel_modeset_verify_disabled(dev_priv, state); 15578 } 15579 15580 intel_sagv_pre_plane_update(state); 15581 15582 /* Complete the events for pipes that have now been disabled */ 15583 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15584 bool modeset = needs_modeset(new_crtc_state); 15585 15586 /* Complete events for now disable pipes here. */ 15587 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { 15588 spin_lock_irq(&dev->event_lock); 15589 drm_crtc_send_vblank_event(&crtc->base, 15590 new_crtc_state->uapi.event); 15591 spin_unlock_irq(&dev->event_lock); 15592 15593 new_crtc_state->uapi.event = NULL; 15594 } 15595 } 15596 15597 if (state->modeset) 15598 intel_encoders_update_prepare(state); 15599 15600 intel_dbuf_pre_plane_update(state); 15601 15602 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 15603 dev_priv->display.commit_modeset_enables(state); 15604 15605 if (state->modeset) { 15606 intel_encoders_update_complete(state); 15607 15608 intel_set_cdclk_post_plane_update(state); 15609 } 15610 15611 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 15612 * already, but still need the state for the delayed optimization. To 15613 * fix this: 15614 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 15615 * - schedule that vblank worker _before_ calling hw_done 15616 * - at the start of commit_tail, cancel it _synchrously 15617 * - switch over to the vblank wait helper in the core after that since 15618 * we don't need out special handling any more. 15619 */ 15620 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 15621 15622 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15623 if (new_crtc_state->hw.active && 15624 !needs_modeset(new_crtc_state) && 15625 !new_crtc_state->preload_luts && 15626 (new_crtc_state->uapi.color_mgmt_changed || 15627 new_crtc_state->update_pipe)) 15628 intel_color_load_luts(new_crtc_state); 15629 } 15630 15631 /* 15632 * Now that the vblank has passed, we can go ahead and program the 15633 * optimal watermarks on platforms that need two-step watermark 15634 * programming. 15635 * 15636 * TODO: Move this (and other cleanup) to an async worker eventually. 15637 */ 15638 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15639 new_crtc_state, i) { 15640 /* 15641 * Gen2 reports pipe underruns whenever all planes are disabled. 15642 * So re-enable underrun reporting after some planes get enabled. 15643 * 15644 * We do this before .optimize_watermarks() so that we have a 15645 * chance of catching underruns with the intermediate watermarks 15646 * vs. the new plane configuration. 15647 */ 15648 if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state)) 15649 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 15650 15651 if (dev_priv->display.optimize_watermarks) 15652 dev_priv->display.optimize_watermarks(state, crtc); 15653 } 15654 15655 intel_dbuf_post_plane_update(state); 15656 15657 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 15658 intel_post_plane_update(state, crtc); 15659 15660 if (put_domains[i]) 15661 modeset_put_power_domains(dev_priv, put_domains[i]); 15662 15663 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 15664 15665 /* 15666 * DSB cleanup is done in cleanup_work aligning with framebuffer 15667 * cleanup. So copy and reset the dsb structure to sync with 15668 * commit_done and later do dsb cleanup in cleanup_work. 15669 */ 15670 old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb); 15671 } 15672 15673 /* Underruns don't always raise interrupts, so check manually */ 15674 intel_check_cpu_fifo_underruns(dev_priv); 15675 intel_check_pch_fifo_underruns(dev_priv); 15676 15677 if (state->modeset) 15678 intel_verify_planes(state); 15679 15680 intel_sagv_post_plane_update(state); 15681 15682 drm_atomic_helper_commit_hw_done(&state->base); 15683 15684 if (state->modeset) { 15685 /* As one of the primary mmio accessors, KMS has a high 15686 * likelihood of triggering bugs in unclaimed access. After we 15687 * finish modesetting, see if an error has been flagged, and if 15688 * so enable debugging for the next modeset - and hope we catch 15689 * the culprit. 15690 */ 15691 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 15692 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 15693 } 15694 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15695 15696 /* 15697 * Defer the cleanup of the old state to a separate worker to not 15698 * impede the current task (userspace for blocking modesets) that 15699 * are executed inline. For out-of-line asynchronous modesets/flips, 15700 * deferring to a new worker seems overkill, but we would place a 15701 * schedule point (cond_resched()) here anyway to keep latencies 15702 * down. 15703 */ 15704 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 15705 queue_work(system_highpri_wq, &state->base.commit_work); 15706 } 15707 15708 static void intel_atomic_commit_work(struct work_struct *work) 15709 { 15710 struct intel_atomic_state *state = 15711 container_of(work, struct intel_atomic_state, base.commit_work); 15712 15713 intel_atomic_commit_tail(state); 15714 } 15715 15716 static int __i915_sw_fence_call 15717 intel_atomic_commit_ready(struct i915_sw_fence *fence, 15718 enum i915_sw_fence_notify notify) 15719 { 15720 struct intel_atomic_state *state = 15721 container_of(fence, struct intel_atomic_state, commit_ready); 15722 15723 switch (notify) { 15724 case FENCE_COMPLETE: 15725 /* we do blocking waits in the worker, nothing to do here */ 15726 break; 15727 case FENCE_FREE: 15728 { 15729 struct intel_atomic_helper *helper = 15730 &to_i915(state->base.dev)->atomic_helper; 15731 15732 if (llist_add(&state->freed, &helper->free_list)) 15733 schedule_work(&helper->free_work); 15734 break; 15735 } 15736 } 15737 15738 return NOTIFY_DONE; 15739 } 15740 15741 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 15742 { 15743 struct intel_plane_state *old_plane_state, *new_plane_state; 15744 struct intel_plane *plane; 15745 int i; 15746 15747 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 15748 new_plane_state, i) 15749 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 15750 to_intel_frontbuffer(new_plane_state->hw.fb), 15751 plane->frontbuffer_bit); 15752 } 15753 15754 static void assert_global_state_locked(struct drm_i915_private *dev_priv) 15755 { 15756 struct intel_crtc *crtc; 15757 15758 for_each_intel_crtc(&dev_priv->drm, crtc) 15759 drm_modeset_lock_assert_held(&crtc->base.mutex); 15760 } 15761 15762 static int intel_atomic_commit(struct drm_device *dev, 15763 struct drm_atomic_state *_state, 15764 bool nonblock) 15765 { 15766 struct intel_atomic_state *state = to_intel_atomic_state(_state); 15767 struct drm_i915_private *dev_priv = to_i915(dev); 15768 int ret = 0; 15769 15770 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 15771 15772 drm_atomic_state_get(&state->base); 15773 i915_sw_fence_init(&state->commit_ready, 15774 intel_atomic_commit_ready); 15775 15776 /* 15777 * The intel_legacy_cursor_update() fast path takes care 15778 * of avoiding the vblank waits for simple cursor 15779 * movement and flips. For cursor on/off and size changes, 15780 * we want to perform the vblank waits so that watermark 15781 * updates happen during the correct frames. Gen9+ have 15782 * double buffered watermarks and so shouldn't need this. 15783 * 15784 * Unset state->legacy_cursor_update before the call to 15785 * drm_atomic_helper_setup_commit() because otherwise 15786 * drm_atomic_helper_wait_for_flip_done() is a noop and 15787 * we get FIFO underruns because we didn't wait 15788 * for vblank. 15789 * 15790 * FIXME doing watermarks and fb cleanup from a vblank worker 15791 * (assuming we had any) would solve these problems. 15792 */ 15793 if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) { 15794 struct intel_crtc_state *new_crtc_state; 15795 struct intel_crtc *crtc; 15796 int i; 15797 15798 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 15799 if (new_crtc_state->wm.need_postvbl_update || 15800 new_crtc_state->update_wm_post) 15801 state->base.legacy_cursor_update = false; 15802 } 15803 15804 ret = intel_atomic_prepare_commit(state); 15805 if (ret) { 15806 drm_dbg_atomic(&dev_priv->drm, 15807 "Preparing state failed with %i\n", ret); 15808 i915_sw_fence_commit(&state->commit_ready); 15809 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15810 return ret; 15811 } 15812 15813 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 15814 if (!ret) 15815 ret = drm_atomic_helper_swap_state(&state->base, true); 15816 if (!ret) 15817 intel_atomic_swap_global_state(state); 15818 15819 if (ret) { 15820 struct intel_crtc_state *new_crtc_state; 15821 struct intel_crtc *crtc; 15822 int i; 15823 15824 i915_sw_fence_commit(&state->commit_ready); 15825 15826 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 15827 intel_dsb_cleanup(new_crtc_state); 15828 15829 drm_atomic_helper_cleanup_planes(dev, &state->base); 15830 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15831 return ret; 15832 } 15833 dev_priv->wm.distrust_bios_wm = false; 15834 intel_shared_dpll_swap_state(state); 15835 intel_atomic_track_fbs(state); 15836 15837 if (state->global_state_changed) { 15838 assert_global_state_locked(dev_priv); 15839 15840 dev_priv->active_pipes = state->active_pipes; 15841 } 15842 15843 drm_atomic_state_get(&state->base); 15844 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 15845 15846 i915_sw_fence_commit(&state->commit_ready); 15847 if (nonblock && state->modeset) { 15848 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 15849 } else if (nonblock) { 15850 queue_work(dev_priv->flip_wq, &state->base.commit_work); 15851 } else { 15852 if (state->modeset) 15853 flush_workqueue(dev_priv->modeset_wq); 15854 intel_atomic_commit_tail(state); 15855 } 15856 15857 return 0; 15858 } 15859 15860 struct wait_rps_boost { 15861 struct wait_queue_entry wait; 15862 15863 struct drm_crtc *crtc; 15864 struct i915_request *request; 15865 }; 15866 15867 static int do_rps_boost(struct wait_queue_entry *_wait, 15868 unsigned mode, int sync, void *key) 15869 { 15870 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); 15871 struct i915_request *rq = wait->request; 15872 15873 /* 15874 * If we missed the vblank, but the request is already running it 15875 * is reasonable to assume that it will complete before the next 15876 * vblank without our intervention, so leave RPS alone. 15877 */ 15878 if (!i915_request_started(rq)) 15879 intel_rps_boost(rq); 15880 i915_request_put(rq); 15881 15882 drm_crtc_vblank_put(wait->crtc); 15883 15884 list_del(&wait->wait.entry); 15885 kfree(wait); 15886 return 1; 15887 } 15888 15889 static void add_rps_boost_after_vblank(struct drm_crtc *crtc, 15890 struct dma_fence *fence) 15891 { 15892 struct wait_rps_boost *wait; 15893 15894 if (!dma_fence_is_i915(fence)) 15895 return; 15896 15897 if (INTEL_GEN(to_i915(crtc->dev)) < 6) 15898 return; 15899 15900 if (drm_crtc_vblank_get(crtc)) 15901 return; 15902 15903 wait = kmalloc(sizeof(*wait), GFP_KERNEL); 15904 if (!wait) { 15905 drm_crtc_vblank_put(crtc); 15906 return; 15907 } 15908 15909 wait->request = to_request(dma_fence_get(fence)); 15910 wait->crtc = crtc; 15911 15912 wait->wait.func = do_rps_boost; 15913 wait->wait.flags = 0; 15914 15915 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); 15916 } 15917 15918 static int intel_plane_pin_fb(struct intel_plane_state *plane_state) 15919 { 15920 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 15921 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 15922 struct drm_framebuffer *fb = plane_state->hw.fb; 15923 struct i915_vma *vma; 15924 15925 if (plane->id == PLANE_CURSOR && 15926 INTEL_INFO(dev_priv)->display.cursor_needs_physical) { 15927 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 15928 const int align = intel_cursor_alignment(dev_priv); 15929 int err; 15930 15931 err = i915_gem_object_attach_phys(obj, align); 15932 if (err) 15933 return err; 15934 } 15935 15936 vma = intel_pin_and_fence_fb_obj(fb, 15937 &plane_state->view, 15938 intel_plane_uses_fence(plane_state), 15939 &plane_state->flags); 15940 if (IS_ERR(vma)) 15941 return PTR_ERR(vma); 15942 15943 plane_state->vma = vma; 15944 15945 return 0; 15946 } 15947 15948 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) 15949 { 15950 struct i915_vma *vma; 15951 15952 vma = fetch_and_zero(&old_plane_state->vma); 15953 if (vma) 15954 intel_unpin_fb_vma(vma, old_plane_state->flags); 15955 } 15956 15957 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj) 15958 { 15959 struct i915_sched_attr attr = { 15960 .priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY), 15961 }; 15962 15963 i915_gem_object_wait_priority(obj, 0, &attr); 15964 } 15965 15966 /** 15967 * intel_prepare_plane_fb - Prepare fb for usage on plane 15968 * @_plane: drm plane to prepare for 15969 * @_new_plane_state: the plane state being prepared 15970 * 15971 * Prepares a framebuffer for usage on a display plane. Generally this 15972 * involves pinning the underlying object and updating the frontbuffer tracking 15973 * bits. Some older platforms need special physical address handling for 15974 * cursor planes. 15975 * 15976 * Returns 0 on success, negative error code on failure. 15977 */ 15978 int 15979 intel_prepare_plane_fb(struct drm_plane *_plane, 15980 struct drm_plane_state *_new_plane_state) 15981 { 15982 struct intel_plane *plane = to_intel_plane(_plane); 15983 struct intel_plane_state *new_plane_state = 15984 to_intel_plane_state(_new_plane_state); 15985 struct intel_atomic_state *state = 15986 to_intel_atomic_state(new_plane_state->uapi.state); 15987 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 15988 const struct intel_plane_state *old_plane_state = 15989 intel_atomic_get_old_plane_state(state, plane); 15990 struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb); 15991 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb); 15992 int ret; 15993 15994 if (old_obj) { 15995 const struct intel_crtc_state *crtc_state = 15996 intel_atomic_get_new_crtc_state(state, 15997 to_intel_crtc(old_plane_state->hw.crtc)); 15998 15999 /* Big Hammer, we also need to ensure that any pending 16000 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 16001 * current scanout is retired before unpinning the old 16002 * framebuffer. Note that we rely on userspace rendering 16003 * into the buffer attached to the pipe they are waiting 16004 * on. If not, userspace generates a GPU hang with IPEHR 16005 * point to the MI_WAIT_FOR_EVENT. 16006 * 16007 * This should only fail upon a hung GPU, in which case we 16008 * can safely continue. 16009 */ 16010 if (needs_modeset(crtc_state)) { 16011 ret = i915_sw_fence_await_reservation(&state->commit_ready, 16012 old_obj->base.resv, NULL, 16013 false, 0, 16014 GFP_KERNEL); 16015 if (ret < 0) 16016 return ret; 16017 } 16018 } 16019 16020 if (new_plane_state->uapi.fence) { /* explicit fencing */ 16021 ret = i915_sw_fence_await_dma_fence(&state->commit_ready, 16022 new_plane_state->uapi.fence, 16023 i915_fence_timeout(dev_priv), 16024 GFP_KERNEL); 16025 if (ret < 0) 16026 return ret; 16027 } 16028 16029 if (!obj) 16030 return 0; 16031 16032 ret = i915_gem_object_pin_pages(obj); 16033 if (ret) 16034 return ret; 16035 16036 ret = intel_plane_pin_fb(new_plane_state); 16037 16038 i915_gem_object_unpin_pages(obj); 16039 if (ret) 16040 return ret; 16041 16042 fb_obj_bump_render_priority(obj); 16043 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB); 16044 16045 if (!new_plane_state->uapi.fence) { /* implicit fencing */ 16046 struct dma_fence *fence; 16047 16048 ret = i915_sw_fence_await_reservation(&state->commit_ready, 16049 obj->base.resv, NULL, 16050 false, 16051 i915_fence_timeout(dev_priv), 16052 GFP_KERNEL); 16053 if (ret < 0) 16054 goto unpin_fb; 16055 16056 fence = dma_resv_get_excl_rcu(obj->base.resv); 16057 if (fence) { 16058 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 16059 fence); 16060 dma_fence_put(fence); 16061 } 16062 } else { 16063 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 16064 new_plane_state->uapi.fence); 16065 } 16066 16067 /* 16068 * We declare pageflips to be interactive and so merit a small bias 16069 * towards upclocking to deliver the frame on time. By only changing 16070 * the RPS thresholds to sample more regularly and aim for higher 16071 * clocks we can hopefully deliver low power workloads (like kodi) 16072 * that are not quite steady state without resorting to forcing 16073 * maximum clocks following a vblank miss (see do_rps_boost()). 16074 */ 16075 if (!state->rps_interactive) { 16076 intel_rps_mark_interactive(&dev_priv->gt.rps, true); 16077 state->rps_interactive = true; 16078 } 16079 16080 return 0; 16081 16082 unpin_fb: 16083 intel_plane_unpin_fb(new_plane_state); 16084 16085 return ret; 16086 } 16087 16088 /** 16089 * intel_cleanup_plane_fb - Cleans up an fb after plane use 16090 * @plane: drm plane to clean up for 16091 * @_old_plane_state: the state from the previous modeset 16092 * 16093 * Cleans up a framebuffer that has just been removed from a plane. 16094 */ 16095 void 16096 intel_cleanup_plane_fb(struct drm_plane *plane, 16097 struct drm_plane_state *_old_plane_state) 16098 { 16099 struct intel_plane_state *old_plane_state = 16100 to_intel_plane_state(_old_plane_state); 16101 struct intel_atomic_state *state = 16102 to_intel_atomic_state(old_plane_state->uapi.state); 16103 struct drm_i915_private *dev_priv = to_i915(plane->dev); 16104 struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb); 16105 16106 if (!obj) 16107 return; 16108 16109 if (state->rps_interactive) { 16110 intel_rps_mark_interactive(&dev_priv->gt.rps, false); 16111 state->rps_interactive = false; 16112 } 16113 16114 /* Should only be called after a successful intel_prepare_plane_fb()! */ 16115 intel_plane_unpin_fb(old_plane_state); 16116 } 16117 16118 /** 16119 * intel_plane_destroy - destroy a plane 16120 * @plane: plane to destroy 16121 * 16122 * Common destruction function for all types of planes (primary, cursor, 16123 * sprite). 16124 */ 16125 void intel_plane_destroy(struct drm_plane *plane) 16126 { 16127 drm_plane_cleanup(plane); 16128 kfree(to_intel_plane(plane)); 16129 } 16130 16131 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane, 16132 u32 format, u64 modifier) 16133 { 16134 switch (modifier) { 16135 case DRM_FORMAT_MOD_LINEAR: 16136 case I915_FORMAT_MOD_X_TILED: 16137 break; 16138 default: 16139 return false; 16140 } 16141 16142 switch (format) { 16143 case DRM_FORMAT_C8: 16144 case DRM_FORMAT_RGB565: 16145 case DRM_FORMAT_XRGB1555: 16146 case DRM_FORMAT_XRGB8888: 16147 return modifier == DRM_FORMAT_MOD_LINEAR || 16148 modifier == I915_FORMAT_MOD_X_TILED; 16149 default: 16150 return false; 16151 } 16152 } 16153 16154 static bool i965_plane_format_mod_supported(struct drm_plane *_plane, 16155 u32 format, u64 modifier) 16156 { 16157 switch (modifier) { 16158 case DRM_FORMAT_MOD_LINEAR: 16159 case I915_FORMAT_MOD_X_TILED: 16160 break; 16161 default: 16162 return false; 16163 } 16164 16165 switch (format) { 16166 case DRM_FORMAT_C8: 16167 case DRM_FORMAT_RGB565: 16168 case DRM_FORMAT_XRGB8888: 16169 case DRM_FORMAT_XBGR8888: 16170 case DRM_FORMAT_ARGB8888: 16171 case DRM_FORMAT_ABGR8888: 16172 case DRM_FORMAT_XRGB2101010: 16173 case DRM_FORMAT_XBGR2101010: 16174 case DRM_FORMAT_ARGB2101010: 16175 case DRM_FORMAT_ABGR2101010: 16176 case DRM_FORMAT_XBGR16161616F: 16177 return modifier == DRM_FORMAT_MOD_LINEAR || 16178 modifier == I915_FORMAT_MOD_X_TILED; 16179 default: 16180 return false; 16181 } 16182 } 16183 16184 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane, 16185 u32 format, u64 modifier) 16186 { 16187 return modifier == DRM_FORMAT_MOD_LINEAR && 16188 format == DRM_FORMAT_ARGB8888; 16189 } 16190 16191 static const struct drm_plane_funcs i965_plane_funcs = { 16192 .update_plane = drm_atomic_helper_update_plane, 16193 .disable_plane = drm_atomic_helper_disable_plane, 16194 .destroy = intel_plane_destroy, 16195 .atomic_duplicate_state = intel_plane_duplicate_state, 16196 .atomic_destroy_state = intel_plane_destroy_state, 16197 .format_mod_supported = i965_plane_format_mod_supported, 16198 }; 16199 16200 static const struct drm_plane_funcs i8xx_plane_funcs = { 16201 .update_plane = drm_atomic_helper_update_plane, 16202 .disable_plane = drm_atomic_helper_disable_plane, 16203 .destroy = intel_plane_destroy, 16204 .atomic_duplicate_state = intel_plane_duplicate_state, 16205 .atomic_destroy_state = intel_plane_destroy_state, 16206 .format_mod_supported = i8xx_plane_format_mod_supported, 16207 }; 16208 16209 static int 16210 intel_legacy_cursor_update(struct drm_plane *_plane, 16211 struct drm_crtc *_crtc, 16212 struct drm_framebuffer *fb, 16213 int crtc_x, int crtc_y, 16214 unsigned int crtc_w, unsigned int crtc_h, 16215 u32 src_x, u32 src_y, 16216 u32 src_w, u32 src_h, 16217 struct drm_modeset_acquire_ctx *ctx) 16218 { 16219 struct intel_plane *plane = to_intel_plane(_plane); 16220 struct intel_crtc *crtc = to_intel_crtc(_crtc); 16221 struct intel_plane_state *old_plane_state = 16222 to_intel_plane_state(plane->base.state); 16223 struct intel_plane_state *new_plane_state; 16224 struct intel_crtc_state *crtc_state = 16225 to_intel_crtc_state(crtc->base.state); 16226 struct intel_crtc_state *new_crtc_state; 16227 int ret; 16228 16229 /* 16230 * When crtc is inactive or there is a modeset pending, 16231 * wait for it to complete in the slowpath 16232 */ 16233 if (!crtc_state->hw.active || needs_modeset(crtc_state) || 16234 crtc_state->update_pipe) 16235 goto slow; 16236 16237 /* 16238 * Don't do an async update if there is an outstanding commit modifying 16239 * the plane. This prevents our async update's changes from getting 16240 * overridden by a previous synchronous update's state. 16241 */ 16242 if (old_plane_state->uapi.commit && 16243 !try_wait_for_completion(&old_plane_state->uapi.commit->hw_done)) 16244 goto slow; 16245 16246 /* 16247 * If any parameters change that may affect watermarks, 16248 * take the slowpath. Only changing fb or position should be 16249 * in the fastpath. 16250 */ 16251 if (old_plane_state->uapi.crtc != &crtc->base || 16252 old_plane_state->uapi.src_w != src_w || 16253 old_plane_state->uapi.src_h != src_h || 16254 old_plane_state->uapi.crtc_w != crtc_w || 16255 old_plane_state->uapi.crtc_h != crtc_h || 16256 !old_plane_state->uapi.fb != !fb) 16257 goto slow; 16258 16259 new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base)); 16260 if (!new_plane_state) 16261 return -ENOMEM; 16262 16263 new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base)); 16264 if (!new_crtc_state) { 16265 ret = -ENOMEM; 16266 goto out_free; 16267 } 16268 16269 drm_atomic_set_fb_for_plane(&new_plane_state->uapi, fb); 16270 16271 new_plane_state->uapi.src_x = src_x; 16272 new_plane_state->uapi.src_y = src_y; 16273 new_plane_state->uapi.src_w = src_w; 16274 new_plane_state->uapi.src_h = src_h; 16275 new_plane_state->uapi.crtc_x = crtc_x; 16276 new_plane_state->uapi.crtc_y = crtc_y; 16277 new_plane_state->uapi.crtc_w = crtc_w; 16278 new_plane_state->uapi.crtc_h = crtc_h; 16279 16280 intel_plane_copy_uapi_to_hw_state(new_plane_state, new_plane_state); 16281 16282 ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state, 16283 old_plane_state, new_plane_state); 16284 if (ret) 16285 goto out_free; 16286 16287 ret = intel_plane_pin_fb(new_plane_state); 16288 if (ret) 16289 goto out_free; 16290 16291 intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->hw.fb), 16292 ORIGIN_FLIP); 16293 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 16294 to_intel_frontbuffer(new_plane_state->hw.fb), 16295 plane->frontbuffer_bit); 16296 16297 /* Swap plane state */ 16298 plane->base.state = &new_plane_state->uapi; 16299 16300 /* 16301 * We cannot swap crtc_state as it may be in use by an atomic commit or 16302 * page flip that's running simultaneously. If we swap crtc_state and 16303 * destroy the old state, we will cause a use-after-free there. 16304 * 16305 * Only update active_planes, which is needed for our internal 16306 * bookkeeping. Either value will do the right thing when updating 16307 * planes atomically. If the cursor was part of the atomic update then 16308 * we would have taken the slowpath. 16309 */ 16310 crtc_state->active_planes = new_crtc_state->active_planes; 16311 16312 if (new_plane_state->uapi.visible) 16313 intel_update_plane(plane, crtc_state, new_plane_state); 16314 else 16315 intel_disable_plane(plane, crtc_state); 16316 16317 intel_plane_unpin_fb(old_plane_state); 16318 16319 out_free: 16320 if (new_crtc_state) 16321 intel_crtc_destroy_state(&crtc->base, &new_crtc_state->uapi); 16322 if (ret) 16323 intel_plane_destroy_state(&plane->base, &new_plane_state->uapi); 16324 else 16325 intel_plane_destroy_state(&plane->base, &old_plane_state->uapi); 16326 return ret; 16327 16328 slow: 16329 return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb, 16330 crtc_x, crtc_y, crtc_w, crtc_h, 16331 src_x, src_y, src_w, src_h, ctx); 16332 } 16333 16334 static const struct drm_plane_funcs intel_cursor_plane_funcs = { 16335 .update_plane = intel_legacy_cursor_update, 16336 .disable_plane = drm_atomic_helper_disable_plane, 16337 .destroy = intel_plane_destroy, 16338 .atomic_duplicate_state = intel_plane_duplicate_state, 16339 .atomic_destroy_state = intel_plane_destroy_state, 16340 .format_mod_supported = intel_cursor_format_mod_supported, 16341 }; 16342 16343 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv, 16344 enum i9xx_plane_id i9xx_plane) 16345 { 16346 if (!HAS_FBC(dev_priv)) 16347 return false; 16348 16349 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 16350 return i9xx_plane == PLANE_A; /* tied to pipe A */ 16351 else if (IS_IVYBRIDGE(dev_priv)) 16352 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B || 16353 i9xx_plane == PLANE_C; 16354 else if (INTEL_GEN(dev_priv) >= 4) 16355 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B; 16356 else 16357 return i9xx_plane == PLANE_A; 16358 } 16359 16360 static struct intel_plane * 16361 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe) 16362 { 16363 struct intel_plane *plane; 16364 const struct drm_plane_funcs *plane_funcs; 16365 unsigned int supported_rotations; 16366 const u32 *formats; 16367 int num_formats; 16368 int ret, zpos; 16369 16370 if (INTEL_GEN(dev_priv) >= 9) 16371 return skl_universal_plane_create(dev_priv, pipe, 16372 PLANE_PRIMARY); 16373 16374 plane = intel_plane_alloc(); 16375 if (IS_ERR(plane)) 16376 return plane; 16377 16378 plane->pipe = pipe; 16379 /* 16380 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS 16381 * port is hooked to pipe B. Hence we want plane A feeding pipe B. 16382 */ 16383 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4 && 16384 INTEL_NUM_PIPES(dev_priv) == 2) 16385 plane->i9xx_plane = (enum i9xx_plane_id) !pipe; 16386 else 16387 plane->i9xx_plane = (enum i9xx_plane_id) pipe; 16388 plane->id = PLANE_PRIMARY; 16389 plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id); 16390 16391 plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane); 16392 if (plane->has_fbc) { 16393 struct intel_fbc *fbc = &dev_priv->fbc; 16394 16395 fbc->possible_framebuffer_bits |= plane->frontbuffer_bit; 16396 } 16397 16398 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 16399 formats = vlv_primary_formats; 16400 num_formats = ARRAY_SIZE(vlv_primary_formats); 16401 } else if (INTEL_GEN(dev_priv) >= 4) { 16402 /* 16403 * WaFP16GammaEnabling:ivb 16404 * "Workaround : When using the 64-bit format, the plane 16405 * output on each color channel has one quarter amplitude. 16406 * It can be brought up to full amplitude by using pipe 16407 * gamma correction or pipe color space conversion to 16408 * multiply the plane output by four." 16409 * 16410 * There is no dedicated plane gamma for the primary plane, 16411 * and using the pipe gamma/csc could conflict with other 16412 * planes, so we choose not to expose fp16 on IVB primary 16413 * planes. HSW primary planes no longer have this problem. 16414 */ 16415 if (IS_IVYBRIDGE(dev_priv)) { 16416 formats = ivb_primary_formats; 16417 num_formats = ARRAY_SIZE(ivb_primary_formats); 16418 } else { 16419 formats = i965_primary_formats; 16420 num_formats = ARRAY_SIZE(i965_primary_formats); 16421 } 16422 } else { 16423 formats = i8xx_primary_formats; 16424 num_formats = ARRAY_SIZE(i8xx_primary_formats); 16425 } 16426 16427 if (INTEL_GEN(dev_priv) >= 4) 16428 plane_funcs = &i965_plane_funcs; 16429 else 16430 plane_funcs = &i8xx_plane_funcs; 16431 16432 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16433 plane->min_cdclk = vlv_plane_min_cdclk; 16434 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 16435 plane->min_cdclk = hsw_plane_min_cdclk; 16436 else if (IS_IVYBRIDGE(dev_priv)) 16437 plane->min_cdclk = ivb_plane_min_cdclk; 16438 else 16439 plane->min_cdclk = i9xx_plane_min_cdclk; 16440 16441 plane->max_stride = i9xx_plane_max_stride; 16442 plane->update_plane = i9xx_update_plane; 16443 plane->disable_plane = i9xx_disable_plane; 16444 plane->get_hw_state = i9xx_plane_get_hw_state; 16445 plane->check_plane = i9xx_plane_check; 16446 16447 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 16448 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 16449 0, plane_funcs, 16450 formats, num_formats, 16451 i9xx_format_modifiers, 16452 DRM_PLANE_TYPE_PRIMARY, 16453 "primary %c", pipe_name(pipe)); 16454 else 16455 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 16456 0, plane_funcs, 16457 formats, num_formats, 16458 i9xx_format_modifiers, 16459 DRM_PLANE_TYPE_PRIMARY, 16460 "plane %c", 16461 plane_name(plane->i9xx_plane)); 16462 if (ret) 16463 goto fail; 16464 16465 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 16466 supported_rotations = 16467 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 | 16468 DRM_MODE_REFLECT_X; 16469 } else if (INTEL_GEN(dev_priv) >= 4) { 16470 supported_rotations = 16471 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180; 16472 } else { 16473 supported_rotations = DRM_MODE_ROTATE_0; 16474 } 16475 16476 if (INTEL_GEN(dev_priv) >= 4) 16477 drm_plane_create_rotation_property(&plane->base, 16478 DRM_MODE_ROTATE_0, 16479 supported_rotations); 16480 16481 zpos = 0; 16482 drm_plane_create_zpos_immutable_property(&plane->base, zpos); 16483 16484 drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs); 16485 16486 return plane; 16487 16488 fail: 16489 intel_plane_free(plane); 16490 16491 return ERR_PTR(ret); 16492 } 16493 16494 static struct intel_plane * 16495 intel_cursor_plane_create(struct drm_i915_private *dev_priv, 16496 enum pipe pipe) 16497 { 16498 struct intel_plane *cursor; 16499 int ret, zpos; 16500 16501 cursor = intel_plane_alloc(); 16502 if (IS_ERR(cursor)) 16503 return cursor; 16504 16505 cursor->pipe = pipe; 16506 cursor->i9xx_plane = (enum i9xx_plane_id) pipe; 16507 cursor->id = PLANE_CURSOR; 16508 cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id); 16509 16510 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) { 16511 cursor->max_stride = i845_cursor_max_stride; 16512 cursor->update_plane = i845_update_cursor; 16513 cursor->disable_plane = i845_disable_cursor; 16514 cursor->get_hw_state = i845_cursor_get_hw_state; 16515 cursor->check_plane = i845_check_cursor; 16516 } else { 16517 cursor->max_stride = i9xx_cursor_max_stride; 16518 cursor->update_plane = i9xx_update_cursor; 16519 cursor->disable_plane = i9xx_disable_cursor; 16520 cursor->get_hw_state = i9xx_cursor_get_hw_state; 16521 cursor->check_plane = i9xx_check_cursor; 16522 } 16523 16524 cursor->cursor.base = ~0; 16525 cursor->cursor.cntl = ~0; 16526 16527 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv)) 16528 cursor->cursor.size = ~0; 16529 16530 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base, 16531 0, &intel_cursor_plane_funcs, 16532 intel_cursor_formats, 16533 ARRAY_SIZE(intel_cursor_formats), 16534 cursor_format_modifiers, 16535 DRM_PLANE_TYPE_CURSOR, 16536 "cursor %c", pipe_name(pipe)); 16537 if (ret) 16538 goto fail; 16539 16540 if (INTEL_GEN(dev_priv) >= 4) 16541 drm_plane_create_rotation_property(&cursor->base, 16542 DRM_MODE_ROTATE_0, 16543 DRM_MODE_ROTATE_0 | 16544 DRM_MODE_ROTATE_180); 16545 16546 zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1; 16547 drm_plane_create_zpos_immutable_property(&cursor->base, zpos); 16548 16549 if (INTEL_GEN(dev_priv) >= 12) 16550 drm_plane_enable_fb_damage_clips(&cursor->base); 16551 16552 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs); 16553 16554 return cursor; 16555 16556 fail: 16557 intel_plane_free(cursor); 16558 16559 return ERR_PTR(ret); 16560 } 16561 16562 #define INTEL_CRTC_FUNCS \ 16563 .gamma_set = drm_atomic_helper_legacy_gamma_set, \ 16564 .set_config = drm_atomic_helper_set_config, \ 16565 .destroy = intel_crtc_destroy, \ 16566 .page_flip = drm_atomic_helper_page_flip, \ 16567 .atomic_duplicate_state = intel_crtc_duplicate_state, \ 16568 .atomic_destroy_state = intel_crtc_destroy_state, \ 16569 .set_crc_source = intel_crtc_set_crc_source, \ 16570 .verify_crc_source = intel_crtc_verify_crc_source, \ 16571 .get_crc_sources = intel_crtc_get_crc_sources 16572 16573 static const struct drm_crtc_funcs bdw_crtc_funcs = { 16574 INTEL_CRTC_FUNCS, 16575 16576 .get_vblank_counter = g4x_get_vblank_counter, 16577 .enable_vblank = bdw_enable_vblank, 16578 .disable_vblank = bdw_disable_vblank, 16579 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16580 }; 16581 16582 static const struct drm_crtc_funcs ilk_crtc_funcs = { 16583 INTEL_CRTC_FUNCS, 16584 16585 .get_vblank_counter = g4x_get_vblank_counter, 16586 .enable_vblank = ilk_enable_vblank, 16587 .disable_vblank = ilk_disable_vblank, 16588 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16589 }; 16590 16591 static const struct drm_crtc_funcs g4x_crtc_funcs = { 16592 INTEL_CRTC_FUNCS, 16593 16594 .get_vblank_counter = g4x_get_vblank_counter, 16595 .enable_vblank = i965_enable_vblank, 16596 .disable_vblank = i965_disable_vblank, 16597 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16598 }; 16599 16600 static const struct drm_crtc_funcs i965_crtc_funcs = { 16601 INTEL_CRTC_FUNCS, 16602 16603 .get_vblank_counter = i915_get_vblank_counter, 16604 .enable_vblank = i965_enable_vblank, 16605 .disable_vblank = i965_disable_vblank, 16606 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16607 }; 16608 16609 static const struct drm_crtc_funcs i915gm_crtc_funcs = { 16610 INTEL_CRTC_FUNCS, 16611 16612 .get_vblank_counter = i915_get_vblank_counter, 16613 .enable_vblank = i915gm_enable_vblank, 16614 .disable_vblank = i915gm_disable_vblank, 16615 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16616 }; 16617 16618 static const struct drm_crtc_funcs i915_crtc_funcs = { 16619 INTEL_CRTC_FUNCS, 16620 16621 .get_vblank_counter = i915_get_vblank_counter, 16622 .enable_vblank = i8xx_enable_vblank, 16623 .disable_vblank = i8xx_disable_vblank, 16624 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16625 }; 16626 16627 static const struct drm_crtc_funcs i8xx_crtc_funcs = { 16628 INTEL_CRTC_FUNCS, 16629 16630 /* no hw vblank counter */ 16631 .enable_vblank = i8xx_enable_vblank, 16632 .disable_vblank = i8xx_disable_vblank, 16633 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16634 }; 16635 16636 static struct intel_crtc *intel_crtc_alloc(void) 16637 { 16638 struct intel_crtc_state *crtc_state; 16639 struct intel_crtc *crtc; 16640 16641 crtc = kzalloc(sizeof(*crtc), GFP_KERNEL); 16642 if (!crtc) 16643 return ERR_PTR(-ENOMEM); 16644 16645 crtc_state = intel_crtc_state_alloc(crtc); 16646 if (!crtc_state) { 16647 kfree(crtc); 16648 return ERR_PTR(-ENOMEM); 16649 } 16650 16651 crtc->base.state = &crtc_state->uapi; 16652 crtc->config = crtc_state; 16653 16654 return crtc; 16655 } 16656 16657 static void intel_crtc_free(struct intel_crtc *crtc) 16658 { 16659 intel_crtc_destroy_state(&crtc->base, crtc->base.state); 16660 kfree(crtc); 16661 } 16662 16663 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv) 16664 { 16665 struct intel_plane *plane; 16666 16667 for_each_intel_plane(&dev_priv->drm, plane) { 16668 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, 16669 plane->pipe); 16670 16671 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base); 16672 } 16673 } 16674 16675 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe) 16676 { 16677 struct intel_plane *primary, *cursor; 16678 const struct drm_crtc_funcs *funcs; 16679 struct intel_crtc *crtc; 16680 int sprite, ret; 16681 16682 crtc = intel_crtc_alloc(); 16683 if (IS_ERR(crtc)) 16684 return PTR_ERR(crtc); 16685 16686 crtc->pipe = pipe; 16687 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe]; 16688 16689 primary = intel_primary_plane_create(dev_priv, pipe); 16690 if (IS_ERR(primary)) { 16691 ret = PTR_ERR(primary); 16692 goto fail; 16693 } 16694 crtc->plane_ids_mask |= BIT(primary->id); 16695 16696 for_each_sprite(dev_priv, pipe, sprite) { 16697 struct intel_plane *plane; 16698 16699 plane = intel_sprite_plane_create(dev_priv, pipe, sprite); 16700 if (IS_ERR(plane)) { 16701 ret = PTR_ERR(plane); 16702 goto fail; 16703 } 16704 crtc->plane_ids_mask |= BIT(plane->id); 16705 } 16706 16707 cursor = intel_cursor_plane_create(dev_priv, pipe); 16708 if (IS_ERR(cursor)) { 16709 ret = PTR_ERR(cursor); 16710 goto fail; 16711 } 16712 crtc->plane_ids_mask |= BIT(cursor->id); 16713 16714 if (HAS_GMCH(dev_priv)) { 16715 if (IS_CHERRYVIEW(dev_priv) || 16716 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv)) 16717 funcs = &g4x_crtc_funcs; 16718 else if (IS_GEN(dev_priv, 4)) 16719 funcs = &i965_crtc_funcs; 16720 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv)) 16721 funcs = &i915gm_crtc_funcs; 16722 else if (IS_GEN(dev_priv, 3)) 16723 funcs = &i915_crtc_funcs; 16724 else 16725 funcs = &i8xx_crtc_funcs; 16726 } else { 16727 if (INTEL_GEN(dev_priv) >= 8) 16728 funcs = &bdw_crtc_funcs; 16729 else 16730 funcs = &ilk_crtc_funcs; 16731 } 16732 16733 ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base, 16734 &primary->base, &cursor->base, 16735 funcs, "pipe %c", pipe_name(pipe)); 16736 if (ret) 16737 goto fail; 16738 16739 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) || 16740 dev_priv->pipe_to_crtc_mapping[pipe] != NULL); 16741 dev_priv->pipe_to_crtc_mapping[pipe] = crtc; 16742 16743 if (INTEL_GEN(dev_priv) < 9) { 16744 enum i9xx_plane_id i9xx_plane = primary->i9xx_plane; 16745 16746 BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || 16747 dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL); 16748 dev_priv->plane_to_crtc_mapping[i9xx_plane] = crtc; 16749 } 16750 16751 intel_color_init(crtc); 16752 16753 intel_crtc_crc_init(crtc); 16754 16755 drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe); 16756 16757 return 0; 16758 16759 fail: 16760 intel_crtc_free(crtc); 16761 16762 return ret; 16763 } 16764 16765 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 16766 struct drm_file *file) 16767 { 16768 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 16769 struct drm_crtc *drmmode_crtc; 16770 struct intel_crtc *crtc; 16771 16772 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 16773 if (!drmmode_crtc) 16774 return -ENOENT; 16775 16776 crtc = to_intel_crtc(drmmode_crtc); 16777 pipe_from_crtc_id->pipe = crtc->pipe; 16778 16779 return 0; 16780 } 16781 16782 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 16783 { 16784 struct drm_device *dev = encoder->base.dev; 16785 struct intel_encoder *source_encoder; 16786 u32 possible_clones = 0; 16787 16788 for_each_intel_encoder(dev, source_encoder) { 16789 if (encoders_cloneable(encoder, source_encoder)) 16790 possible_clones |= drm_encoder_mask(&source_encoder->base); 16791 } 16792 16793 return possible_clones; 16794 } 16795 16796 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 16797 { 16798 struct drm_device *dev = encoder->base.dev; 16799 struct intel_crtc *crtc; 16800 u32 possible_crtcs = 0; 16801 16802 for_each_intel_crtc(dev, crtc) { 16803 if (encoder->pipe_mask & BIT(crtc->pipe)) 16804 possible_crtcs |= drm_crtc_mask(&crtc->base); 16805 } 16806 16807 return possible_crtcs; 16808 } 16809 16810 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 16811 { 16812 if (!IS_MOBILE(dev_priv)) 16813 return false; 16814 16815 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0) 16816 return false; 16817 16818 if (IS_GEN(dev_priv, 5) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE)) 16819 return false; 16820 16821 return true; 16822 } 16823 16824 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 16825 { 16826 if (INTEL_GEN(dev_priv) >= 9) 16827 return false; 16828 16829 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 16830 return false; 16831 16832 if (HAS_PCH_LPT_H(dev_priv) && 16833 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 16834 return false; 16835 16836 /* DDI E can't be used if DDI A requires 4 lanes */ 16837 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 16838 return false; 16839 16840 if (!dev_priv->vbt.int_crt_support) 16841 return false; 16842 16843 return true; 16844 } 16845 16846 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv) 16847 { 16848 int pps_num; 16849 int pps_idx; 16850 16851 if (HAS_DDI(dev_priv)) 16852 return; 16853 /* 16854 * This w/a is needed at least on CPT/PPT, but to be sure apply it 16855 * everywhere where registers can be write protected. 16856 */ 16857 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16858 pps_num = 2; 16859 else 16860 pps_num = 1; 16861 16862 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) { 16863 u32 val = intel_de_read(dev_priv, PP_CONTROL(pps_idx)); 16864 16865 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS; 16866 intel_de_write(dev_priv, PP_CONTROL(pps_idx), val); 16867 } 16868 } 16869 16870 static void intel_pps_init(struct drm_i915_private *dev_priv) 16871 { 16872 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv)) 16873 dev_priv->pps_mmio_base = PCH_PPS_BASE; 16874 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16875 dev_priv->pps_mmio_base = VLV_PPS_BASE; 16876 else 16877 dev_priv->pps_mmio_base = PPS_BASE; 16878 16879 intel_pps_unlock_regs_wa(dev_priv); 16880 } 16881 16882 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 16883 { 16884 struct intel_encoder *encoder; 16885 bool dpd_is_edp = false; 16886 16887 intel_pps_init(dev_priv); 16888 16889 if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv)) 16890 return; 16891 16892 if (IS_ROCKETLAKE(dev_priv)) { 16893 intel_ddi_init(dev_priv, PORT_A); 16894 intel_ddi_init(dev_priv, PORT_B); 16895 intel_ddi_init(dev_priv, PORT_D); /* DDI TC1 */ 16896 intel_ddi_init(dev_priv, PORT_E); /* DDI TC2 */ 16897 } else if (INTEL_GEN(dev_priv) >= 12) { 16898 intel_ddi_init(dev_priv, PORT_A); 16899 intel_ddi_init(dev_priv, PORT_B); 16900 intel_ddi_init(dev_priv, PORT_D); 16901 intel_ddi_init(dev_priv, PORT_E); 16902 intel_ddi_init(dev_priv, PORT_F); 16903 intel_ddi_init(dev_priv, PORT_G); 16904 intel_ddi_init(dev_priv, PORT_H); 16905 intel_ddi_init(dev_priv, PORT_I); 16906 icl_dsi_init(dev_priv); 16907 } else if (IS_ELKHARTLAKE(dev_priv)) { 16908 intel_ddi_init(dev_priv, PORT_A); 16909 intel_ddi_init(dev_priv, PORT_B); 16910 intel_ddi_init(dev_priv, PORT_C); 16911 intel_ddi_init(dev_priv, PORT_D); 16912 icl_dsi_init(dev_priv); 16913 } else if (IS_GEN(dev_priv, 11)) { 16914 intel_ddi_init(dev_priv, PORT_A); 16915 intel_ddi_init(dev_priv, PORT_B); 16916 intel_ddi_init(dev_priv, PORT_C); 16917 intel_ddi_init(dev_priv, PORT_D); 16918 intel_ddi_init(dev_priv, PORT_E); 16919 /* 16920 * On some ICL SKUs port F is not present. No strap bits for 16921 * this, so rely on VBT. 16922 * Work around broken VBTs on SKUs known to have no port F. 16923 */ 16924 if (IS_ICL_WITH_PORT_F(dev_priv) && 16925 intel_bios_is_port_present(dev_priv, PORT_F)) 16926 intel_ddi_init(dev_priv, PORT_F); 16927 16928 icl_dsi_init(dev_priv); 16929 } else if (IS_GEN9_LP(dev_priv)) { 16930 /* 16931 * FIXME: Broxton doesn't support port detection via the 16932 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to 16933 * detect the ports. 16934 */ 16935 intel_ddi_init(dev_priv, PORT_A); 16936 intel_ddi_init(dev_priv, PORT_B); 16937 intel_ddi_init(dev_priv, PORT_C); 16938 16939 vlv_dsi_init(dev_priv); 16940 } else if (HAS_DDI(dev_priv)) { 16941 int found; 16942 16943 if (intel_ddi_crt_present(dev_priv)) 16944 intel_crt_init(dev_priv); 16945 16946 /* 16947 * Haswell uses DDI functions to detect digital outputs. 16948 * On SKL pre-D0 the strap isn't connected, so we assume 16949 * it's there. 16950 */ 16951 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 16952 /* WaIgnoreDDIAStrap: skl */ 16953 if (found || IS_GEN9_BC(dev_priv)) 16954 intel_ddi_init(dev_priv, PORT_A); 16955 16956 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP 16957 * register */ 16958 found = intel_de_read(dev_priv, SFUSE_STRAP); 16959 16960 if (found & SFUSE_STRAP_DDIB_DETECTED) 16961 intel_ddi_init(dev_priv, PORT_B); 16962 if (found & SFUSE_STRAP_DDIC_DETECTED) 16963 intel_ddi_init(dev_priv, PORT_C); 16964 if (found & SFUSE_STRAP_DDID_DETECTED) 16965 intel_ddi_init(dev_priv, PORT_D); 16966 if (found & SFUSE_STRAP_DDIF_DETECTED) 16967 intel_ddi_init(dev_priv, PORT_F); 16968 /* 16969 * On SKL we don't have a way to detect DDI-E so we rely on VBT. 16970 */ 16971 if (IS_GEN9_BC(dev_priv) && 16972 intel_bios_is_port_present(dev_priv, PORT_E)) 16973 intel_ddi_init(dev_priv, PORT_E); 16974 16975 } else if (HAS_PCH_SPLIT(dev_priv)) { 16976 int found; 16977 16978 /* 16979 * intel_edp_init_connector() depends on this completing first, 16980 * to prevent the registration of both eDP and LVDS and the 16981 * incorrect sharing of the PPS. 16982 */ 16983 intel_lvds_init(dev_priv); 16984 intel_crt_init(dev_priv); 16985 16986 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 16987 16988 if (ilk_has_edp_a(dev_priv)) 16989 intel_dp_init(dev_priv, DP_A, PORT_A); 16990 16991 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) { 16992 /* PCH SDVOB multiplex with HDMIB */ 16993 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 16994 if (!found) 16995 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 16996 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED)) 16997 intel_dp_init(dev_priv, PCH_DP_B, PORT_B); 16998 } 16999 17000 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED) 17001 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 17002 17003 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED) 17004 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 17005 17006 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED) 17007 intel_dp_init(dev_priv, PCH_DP_C, PORT_C); 17008 17009 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED) 17010 intel_dp_init(dev_priv, PCH_DP_D, PORT_D); 17011 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 17012 bool has_edp, has_port; 17013 17014 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 17015 intel_crt_init(dev_priv); 17016 17017 /* 17018 * The DP_DETECTED bit is the latched state of the DDC 17019 * SDA pin at boot. However since eDP doesn't require DDC 17020 * (no way to plug in a DP->HDMI dongle) the DDC pins for 17021 * eDP ports may have been muxed to an alternate function. 17022 * Thus we can't rely on the DP_DETECTED bit alone to detect 17023 * eDP ports. Consult the VBT as well as DP_DETECTED to 17024 * detect eDP ports. 17025 * 17026 * Sadly the straps seem to be missing sometimes even for HDMI 17027 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 17028 * and VBT for the presence of the port. Additionally we can't 17029 * trust the port type the VBT declares as we've seen at least 17030 * HDMI ports that the VBT claim are DP or eDP. 17031 */ 17032 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 17033 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 17034 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port) 17035 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B); 17036 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 17037 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 17038 17039 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 17040 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 17041 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port) 17042 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C); 17043 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 17044 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 17045 17046 if (IS_CHERRYVIEW(dev_priv)) { 17047 /* 17048 * eDP not supported on port D, 17049 * so no need to worry about it 17050 */ 17051 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 17052 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port) 17053 intel_dp_init(dev_priv, CHV_DP_D, PORT_D); 17054 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port) 17055 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 17056 } 17057 17058 vlv_dsi_init(dev_priv); 17059 } else if (IS_PINEVIEW(dev_priv)) { 17060 intel_lvds_init(dev_priv); 17061 intel_crt_init(dev_priv); 17062 } else if (IS_GEN_RANGE(dev_priv, 3, 4)) { 17063 bool found = false; 17064 17065 if (IS_MOBILE(dev_priv)) 17066 intel_lvds_init(dev_priv); 17067 17068 intel_crt_init(dev_priv); 17069 17070 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 17071 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n"); 17072 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 17073 if (!found && IS_G4X(dev_priv)) { 17074 drm_dbg_kms(&dev_priv->drm, 17075 "probing HDMI on SDVOB\n"); 17076 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 17077 } 17078 17079 if (!found && IS_G4X(dev_priv)) 17080 intel_dp_init(dev_priv, DP_B, PORT_B); 17081 } 17082 17083 /* Before G4X SDVOC doesn't have its own detect register */ 17084 17085 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 17086 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n"); 17087 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 17088 } 17089 17090 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) { 17091 17092 if (IS_G4X(dev_priv)) { 17093 drm_dbg_kms(&dev_priv->drm, 17094 "probing HDMI on SDVOC\n"); 17095 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 17096 } 17097 if (IS_G4X(dev_priv)) 17098 intel_dp_init(dev_priv, DP_C, PORT_C); 17099 } 17100 17101 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED)) 17102 intel_dp_init(dev_priv, DP_D, PORT_D); 17103 17104 if (SUPPORTS_TV(dev_priv)) 17105 intel_tv_init(dev_priv); 17106 } else if (IS_GEN(dev_priv, 2)) { 17107 if (IS_I85X(dev_priv)) 17108 intel_lvds_init(dev_priv); 17109 17110 intel_crt_init(dev_priv); 17111 intel_dvo_init(dev_priv); 17112 } 17113 17114 intel_psr_init(dev_priv); 17115 17116 for_each_intel_encoder(&dev_priv->drm, encoder) { 17117 encoder->base.possible_crtcs = 17118 intel_encoder_possible_crtcs(encoder); 17119 encoder->base.possible_clones = 17120 intel_encoder_possible_clones(encoder); 17121 } 17122 17123 intel_init_pch_refclk(dev_priv); 17124 17125 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 17126 } 17127 17128 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 17129 { 17130 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 17131 17132 drm_framebuffer_cleanup(fb); 17133 intel_frontbuffer_put(intel_fb->frontbuffer); 17134 17135 kfree(intel_fb); 17136 } 17137 17138 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 17139 struct drm_file *file, 17140 unsigned int *handle) 17141 { 17142 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 17143 struct drm_i915_private *i915 = to_i915(obj->base.dev); 17144 17145 if (obj->userptr.mm) { 17146 drm_dbg(&i915->drm, 17147 "attempting to use a userptr for a framebuffer, denied\n"); 17148 return -EINVAL; 17149 } 17150 17151 return drm_gem_handle_create(file, &obj->base, handle); 17152 } 17153 17154 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 17155 struct drm_file *file, 17156 unsigned flags, unsigned color, 17157 struct drm_clip_rect *clips, 17158 unsigned num_clips) 17159 { 17160 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 17161 17162 i915_gem_object_flush_if_display(obj); 17163 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 17164 17165 return 0; 17166 } 17167 17168 static const struct drm_framebuffer_funcs intel_fb_funcs = { 17169 .destroy = intel_user_framebuffer_destroy, 17170 .create_handle = intel_user_framebuffer_create_handle, 17171 .dirty = intel_user_framebuffer_dirty, 17172 }; 17173 17174 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, 17175 struct drm_i915_gem_object *obj, 17176 struct drm_mode_fb_cmd2 *mode_cmd) 17177 { 17178 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 17179 struct drm_framebuffer *fb = &intel_fb->base; 17180 u32 max_stride; 17181 unsigned int tiling, stride; 17182 int ret = -EINVAL; 17183 int i; 17184 17185 intel_fb->frontbuffer = intel_frontbuffer_get(obj); 17186 if (!intel_fb->frontbuffer) 17187 return -ENOMEM; 17188 17189 i915_gem_object_lock(obj, NULL); 17190 tiling = i915_gem_object_get_tiling(obj); 17191 stride = i915_gem_object_get_stride(obj); 17192 i915_gem_object_unlock(obj); 17193 17194 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 17195 /* 17196 * If there's a fence, enforce that 17197 * the fb modifier and tiling mode match. 17198 */ 17199 if (tiling != I915_TILING_NONE && 17200 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 17201 drm_dbg_kms(&dev_priv->drm, 17202 "tiling_mode doesn't match fb modifier\n"); 17203 goto err; 17204 } 17205 } else { 17206 if (tiling == I915_TILING_X) { 17207 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 17208 } else if (tiling == I915_TILING_Y) { 17209 drm_dbg_kms(&dev_priv->drm, 17210 "No Y tiling for legacy addfb\n"); 17211 goto err; 17212 } 17213 } 17214 17215 if (!drm_any_plane_has_format(&dev_priv->drm, 17216 mode_cmd->pixel_format, 17217 mode_cmd->modifier[0])) { 17218 struct drm_format_name_buf format_name; 17219 17220 drm_dbg_kms(&dev_priv->drm, 17221 "unsupported pixel format %s / modifier 0x%llx\n", 17222 drm_get_format_name(mode_cmd->pixel_format, 17223 &format_name), 17224 mode_cmd->modifier[0]); 17225 goto err; 17226 } 17227 17228 /* 17229 * gen2/3 display engine uses the fence if present, 17230 * so the tiling mode must match the fb modifier exactly. 17231 */ 17232 if (INTEL_GEN(dev_priv) < 4 && 17233 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 17234 drm_dbg_kms(&dev_priv->drm, 17235 "tiling_mode must match fb modifier exactly on gen2/3\n"); 17236 goto err; 17237 } 17238 17239 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, 17240 mode_cmd->modifier[0]); 17241 if (mode_cmd->pitches[0] > max_stride) { 17242 drm_dbg_kms(&dev_priv->drm, 17243 "%s pitch (%u) must be at most %d\n", 17244 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? 17245 "tiled" : "linear", 17246 mode_cmd->pitches[0], max_stride); 17247 goto err; 17248 } 17249 17250 /* 17251 * If there's a fence, enforce that 17252 * the fb pitch and fence stride match. 17253 */ 17254 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { 17255 drm_dbg_kms(&dev_priv->drm, 17256 "pitch (%d) must match tiling stride (%d)\n", 17257 mode_cmd->pitches[0], stride); 17258 goto err; 17259 } 17260 17261 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 17262 if (mode_cmd->offsets[0] != 0) { 17263 drm_dbg_kms(&dev_priv->drm, 17264 "plane 0 offset (0x%08x) must be 0\n", 17265 mode_cmd->offsets[0]); 17266 goto err; 17267 } 17268 17269 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); 17270 17271 for (i = 0; i < fb->format->num_planes; i++) { 17272 u32 stride_alignment; 17273 17274 if (mode_cmd->handles[i] != mode_cmd->handles[0]) { 17275 drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n", 17276 i); 17277 goto err; 17278 } 17279 17280 stride_alignment = intel_fb_stride_alignment(fb, i); 17281 if (fb->pitches[i] & (stride_alignment - 1)) { 17282 drm_dbg_kms(&dev_priv->drm, 17283 "plane %d pitch (%d) must be at least %u byte aligned\n", 17284 i, fb->pitches[i], stride_alignment); 17285 goto err; 17286 } 17287 17288 if (is_gen12_ccs_plane(fb, i)) { 17289 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i); 17290 17291 if (fb->pitches[i] != ccs_aux_stride) { 17292 drm_dbg_kms(&dev_priv->drm, 17293 "ccs aux plane %d pitch (%d) must be %d\n", 17294 i, 17295 fb->pitches[i], ccs_aux_stride); 17296 goto err; 17297 } 17298 } 17299 17300 fb->obj[i] = &obj->base; 17301 } 17302 17303 ret = intel_fill_fb_info(dev_priv, fb); 17304 if (ret) 17305 goto err; 17306 17307 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); 17308 if (ret) { 17309 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret); 17310 goto err; 17311 } 17312 17313 return 0; 17314 17315 err: 17316 intel_frontbuffer_put(intel_fb->frontbuffer); 17317 return ret; 17318 } 17319 17320 static struct drm_framebuffer * 17321 intel_user_framebuffer_create(struct drm_device *dev, 17322 struct drm_file *filp, 17323 const struct drm_mode_fb_cmd2 *user_mode_cmd) 17324 { 17325 struct drm_framebuffer *fb; 17326 struct drm_i915_gem_object *obj; 17327 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 17328 17329 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); 17330 if (!obj) 17331 return ERR_PTR(-ENOENT); 17332 17333 fb = intel_framebuffer_create(obj, &mode_cmd); 17334 i915_gem_object_put(obj); 17335 17336 return fb; 17337 } 17338 17339 static enum drm_mode_status 17340 intel_mode_valid(struct drm_device *dev, 17341 const struct drm_display_mode *mode) 17342 { 17343 struct drm_i915_private *dev_priv = to_i915(dev); 17344 int hdisplay_max, htotal_max; 17345 int vdisplay_max, vtotal_max; 17346 17347 /* 17348 * Can't reject DBLSCAN here because Xorg ddxen can add piles 17349 * of DBLSCAN modes to the output's mode list when they detect 17350 * the scaling mode property on the connector. And they don't 17351 * ask the kernel to validate those modes in any way until 17352 * modeset time at which point the client gets a protocol error. 17353 * So in order to not upset those clients we silently ignore the 17354 * DBLSCAN flag on such connectors. For other connectors we will 17355 * reject modes with the DBLSCAN flag in encoder->compute_config(). 17356 * And we always reject DBLSCAN modes in connector->mode_valid() 17357 * as we never want such modes on the connector's mode list. 17358 */ 17359 17360 if (mode->vscan > 1) 17361 return MODE_NO_VSCAN; 17362 17363 if (mode->flags & DRM_MODE_FLAG_HSKEW) 17364 return MODE_H_ILLEGAL; 17365 17366 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 17367 DRM_MODE_FLAG_NCSYNC | 17368 DRM_MODE_FLAG_PCSYNC)) 17369 return MODE_HSYNC; 17370 17371 if (mode->flags & (DRM_MODE_FLAG_BCAST | 17372 DRM_MODE_FLAG_PIXMUX | 17373 DRM_MODE_FLAG_CLKDIV2)) 17374 return MODE_BAD; 17375 17376 /* Transcoder timing limits */ 17377 if (INTEL_GEN(dev_priv) >= 11) { 17378 hdisplay_max = 16384; 17379 vdisplay_max = 8192; 17380 htotal_max = 16384; 17381 vtotal_max = 8192; 17382 } else if (INTEL_GEN(dev_priv) >= 9 || 17383 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 17384 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 17385 vdisplay_max = 4096; 17386 htotal_max = 8192; 17387 vtotal_max = 8192; 17388 } else if (INTEL_GEN(dev_priv) >= 3) { 17389 hdisplay_max = 4096; 17390 vdisplay_max = 4096; 17391 htotal_max = 8192; 17392 vtotal_max = 8192; 17393 } else { 17394 hdisplay_max = 2048; 17395 vdisplay_max = 2048; 17396 htotal_max = 4096; 17397 vtotal_max = 4096; 17398 } 17399 17400 if (mode->hdisplay > hdisplay_max || 17401 mode->hsync_start > htotal_max || 17402 mode->hsync_end > htotal_max || 17403 mode->htotal > htotal_max) 17404 return MODE_H_ILLEGAL; 17405 17406 if (mode->vdisplay > vdisplay_max || 17407 mode->vsync_start > vtotal_max || 17408 mode->vsync_end > vtotal_max || 17409 mode->vtotal > vtotal_max) 17410 return MODE_V_ILLEGAL; 17411 17412 if (INTEL_GEN(dev_priv) >= 5) { 17413 if (mode->hdisplay < 64 || 17414 mode->htotal - mode->hdisplay < 32) 17415 return MODE_H_ILLEGAL; 17416 17417 if (mode->vtotal - mode->vdisplay < 5) 17418 return MODE_V_ILLEGAL; 17419 } else { 17420 if (mode->htotal - mode->hdisplay < 32) 17421 return MODE_H_ILLEGAL; 17422 17423 if (mode->vtotal - mode->vdisplay < 3) 17424 return MODE_V_ILLEGAL; 17425 } 17426 17427 return MODE_OK; 17428 } 17429 17430 enum drm_mode_status 17431 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, 17432 const struct drm_display_mode *mode) 17433 { 17434 int plane_width_max, plane_height_max; 17435 17436 /* 17437 * intel_mode_valid() should be 17438 * sufficient on older platforms. 17439 */ 17440 if (INTEL_GEN(dev_priv) < 9) 17441 return MODE_OK; 17442 17443 /* 17444 * Most people will probably want a fullscreen 17445 * plane so let's not advertize modes that are 17446 * too big for that. 17447 */ 17448 if (INTEL_GEN(dev_priv) >= 11) { 17449 plane_width_max = 5120; 17450 plane_height_max = 4320; 17451 } else { 17452 plane_width_max = 5120; 17453 plane_height_max = 4096; 17454 } 17455 17456 if (mode->hdisplay > plane_width_max) 17457 return MODE_H_ILLEGAL; 17458 17459 if (mode->vdisplay > plane_height_max) 17460 return MODE_V_ILLEGAL; 17461 17462 return MODE_OK; 17463 } 17464 17465 static const struct drm_mode_config_funcs intel_mode_funcs = { 17466 .fb_create = intel_user_framebuffer_create, 17467 .get_format_info = intel_get_format_info, 17468 .output_poll_changed = intel_fbdev_output_poll_changed, 17469 .mode_valid = intel_mode_valid, 17470 .atomic_check = intel_atomic_check, 17471 .atomic_commit = intel_atomic_commit, 17472 .atomic_state_alloc = intel_atomic_state_alloc, 17473 .atomic_state_clear = intel_atomic_state_clear, 17474 .atomic_state_free = intel_atomic_state_free, 17475 }; 17476 17477 /** 17478 * intel_init_display_hooks - initialize the display modesetting hooks 17479 * @dev_priv: device private 17480 */ 17481 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 17482 { 17483 intel_init_cdclk_hooks(dev_priv); 17484 17485 if (INTEL_GEN(dev_priv) >= 9) { 17486 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 17487 dev_priv->display.get_initial_plane_config = 17488 skl_get_initial_plane_config; 17489 dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock; 17490 dev_priv->display.crtc_enable = hsw_crtc_enable; 17491 dev_priv->display.crtc_disable = hsw_crtc_disable; 17492 } else if (HAS_DDI(dev_priv)) { 17493 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 17494 dev_priv->display.get_initial_plane_config = 17495 i9xx_get_initial_plane_config; 17496 dev_priv->display.crtc_compute_clock = 17497 hsw_crtc_compute_clock; 17498 dev_priv->display.crtc_enable = hsw_crtc_enable; 17499 dev_priv->display.crtc_disable = hsw_crtc_disable; 17500 } else if (HAS_PCH_SPLIT(dev_priv)) { 17501 dev_priv->display.get_pipe_config = ilk_get_pipe_config; 17502 dev_priv->display.get_initial_plane_config = 17503 i9xx_get_initial_plane_config; 17504 dev_priv->display.crtc_compute_clock = 17505 ilk_crtc_compute_clock; 17506 dev_priv->display.crtc_enable = ilk_crtc_enable; 17507 dev_priv->display.crtc_disable = ilk_crtc_disable; 17508 } else if (IS_CHERRYVIEW(dev_priv)) { 17509 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17510 dev_priv->display.get_initial_plane_config = 17511 i9xx_get_initial_plane_config; 17512 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock; 17513 dev_priv->display.crtc_enable = valleyview_crtc_enable; 17514 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17515 } else if (IS_VALLEYVIEW(dev_priv)) { 17516 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17517 dev_priv->display.get_initial_plane_config = 17518 i9xx_get_initial_plane_config; 17519 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock; 17520 dev_priv->display.crtc_enable = valleyview_crtc_enable; 17521 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17522 } else if (IS_G4X(dev_priv)) { 17523 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17524 dev_priv->display.get_initial_plane_config = 17525 i9xx_get_initial_plane_config; 17526 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock; 17527 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17528 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17529 } else if (IS_PINEVIEW(dev_priv)) { 17530 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17531 dev_priv->display.get_initial_plane_config = 17532 i9xx_get_initial_plane_config; 17533 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock; 17534 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17535 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17536 } else if (!IS_GEN(dev_priv, 2)) { 17537 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17538 dev_priv->display.get_initial_plane_config = 17539 i9xx_get_initial_plane_config; 17540 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock; 17541 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17542 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17543 } else { 17544 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17545 dev_priv->display.get_initial_plane_config = 17546 i9xx_get_initial_plane_config; 17547 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock; 17548 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17549 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17550 } 17551 17552 if (IS_GEN(dev_priv, 5)) { 17553 dev_priv->display.fdi_link_train = ilk_fdi_link_train; 17554 } else if (IS_GEN(dev_priv, 6)) { 17555 dev_priv->display.fdi_link_train = gen6_fdi_link_train; 17556 } else if (IS_IVYBRIDGE(dev_priv)) { 17557 /* FIXME: detect B0+ stepping and use auto training */ 17558 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; 17559 } 17560 17561 if (INTEL_GEN(dev_priv) >= 9) 17562 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; 17563 else 17564 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; 17565 17566 } 17567 17568 void intel_modeset_init_hw(struct drm_i915_private *i915) 17569 { 17570 struct intel_cdclk_state *cdclk_state = 17571 to_intel_cdclk_state(i915->cdclk.obj.state); 17572 struct intel_dbuf_state *dbuf_state = 17573 to_intel_dbuf_state(i915->dbuf.obj.state); 17574 17575 intel_update_cdclk(i915); 17576 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK"); 17577 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw; 17578 17579 dbuf_state->enabled_slices = i915->dbuf.enabled_slices; 17580 } 17581 17582 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state) 17583 { 17584 struct drm_plane *plane; 17585 struct intel_crtc *crtc; 17586 17587 for_each_intel_crtc(state->dev, crtc) { 17588 struct intel_crtc_state *crtc_state; 17589 17590 crtc_state = intel_atomic_get_crtc_state(state, crtc); 17591 if (IS_ERR(crtc_state)) 17592 return PTR_ERR(crtc_state); 17593 17594 if (crtc_state->hw.active) { 17595 /* 17596 * Preserve the inherited flag to avoid 17597 * taking the full modeset path. 17598 */ 17599 crtc_state->inherited = true; 17600 } 17601 } 17602 17603 drm_for_each_plane(plane, state->dev) { 17604 struct drm_plane_state *plane_state; 17605 17606 plane_state = drm_atomic_get_plane_state(state, plane); 17607 if (IS_ERR(plane_state)) 17608 return PTR_ERR(plane_state); 17609 } 17610 17611 return 0; 17612 } 17613 17614 /* 17615 * Calculate what we think the watermarks should be for the state we've read 17616 * out of the hardware and then immediately program those watermarks so that 17617 * we ensure the hardware settings match our internal state. 17618 * 17619 * We can calculate what we think WM's should be by creating a duplicate of the 17620 * current state (which was constructed during hardware readout) and running it 17621 * through the atomic check code to calculate new watermark values in the 17622 * state object. 17623 */ 17624 static void sanitize_watermarks(struct drm_i915_private *dev_priv) 17625 { 17626 struct drm_atomic_state *state; 17627 struct intel_atomic_state *intel_state; 17628 struct intel_crtc *crtc; 17629 struct intel_crtc_state *crtc_state; 17630 struct drm_modeset_acquire_ctx ctx; 17631 int ret; 17632 int i; 17633 17634 /* Only supported on platforms that use atomic watermark design */ 17635 if (!dev_priv->display.optimize_watermarks) 17636 return; 17637 17638 state = drm_atomic_state_alloc(&dev_priv->drm); 17639 if (drm_WARN_ON(&dev_priv->drm, !state)) 17640 return; 17641 17642 intel_state = to_intel_atomic_state(state); 17643 17644 drm_modeset_acquire_init(&ctx, 0); 17645 17646 retry: 17647 state->acquire_ctx = &ctx; 17648 17649 /* 17650 * Hardware readout is the only time we don't want to calculate 17651 * intermediate watermarks (since we don't trust the current 17652 * watermarks). 17653 */ 17654 if (!HAS_GMCH(dev_priv)) 17655 intel_state->skip_intermediate_wm = true; 17656 17657 ret = sanitize_watermarks_add_affected(state); 17658 if (ret) 17659 goto fail; 17660 17661 ret = intel_atomic_check(&dev_priv->drm, state); 17662 if (ret) 17663 goto fail; 17664 17665 /* Write calculated watermark values back */ 17666 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 17667 crtc_state->wm.need_postvbl_update = true; 17668 dev_priv->display.optimize_watermarks(intel_state, crtc); 17669 17670 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 17671 } 17672 17673 fail: 17674 if (ret == -EDEADLK) { 17675 drm_atomic_state_clear(state); 17676 drm_modeset_backoff(&ctx); 17677 goto retry; 17678 } 17679 17680 /* 17681 * If we fail here, it means that the hardware appears to be 17682 * programmed in a way that shouldn't be possible, given our 17683 * understanding of watermark requirements. This might mean a 17684 * mistake in the hardware readout code or a mistake in the 17685 * watermark calculations for a given platform. Raise a WARN 17686 * so that this is noticeable. 17687 * 17688 * If this actually happens, we'll have to just leave the 17689 * BIOS-programmed watermarks untouched and hope for the best. 17690 */ 17691 drm_WARN(&dev_priv->drm, ret, 17692 "Could not determine valid watermarks for inherited state\n"); 17693 17694 drm_atomic_state_put(state); 17695 17696 drm_modeset_drop_locks(&ctx); 17697 drm_modeset_acquire_fini(&ctx); 17698 } 17699 17700 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) 17701 { 17702 if (IS_GEN(dev_priv, 5)) { 17703 u32 fdi_pll_clk = 17704 intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; 17705 17706 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; 17707 } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) { 17708 dev_priv->fdi_pll_freq = 270000; 17709 } else { 17710 return; 17711 } 17712 17713 drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); 17714 } 17715 17716 static int intel_initial_commit(struct drm_device *dev) 17717 { 17718 struct drm_atomic_state *state = NULL; 17719 struct drm_modeset_acquire_ctx ctx; 17720 struct intel_crtc *crtc; 17721 int ret = 0; 17722 17723 state = drm_atomic_state_alloc(dev); 17724 if (!state) 17725 return -ENOMEM; 17726 17727 drm_modeset_acquire_init(&ctx, 0); 17728 17729 retry: 17730 state->acquire_ctx = &ctx; 17731 17732 for_each_intel_crtc(dev, crtc) { 17733 struct intel_crtc_state *crtc_state = 17734 intel_atomic_get_crtc_state(state, crtc); 17735 17736 if (IS_ERR(crtc_state)) { 17737 ret = PTR_ERR(crtc_state); 17738 goto out; 17739 } 17740 17741 if (crtc_state->hw.active) { 17742 /* 17743 * We've not yet detected sink capabilities 17744 * (audio,infoframes,etc.) and thus we don't want to 17745 * force a full state recomputation yet. We want that to 17746 * happen only for the first real commit from userspace. 17747 * So preserve the inherited flag for the time being. 17748 */ 17749 crtc_state->inherited = true; 17750 17751 ret = drm_atomic_add_affected_planes(state, &crtc->base); 17752 if (ret) 17753 goto out; 17754 17755 /* 17756 * FIXME hack to force a LUT update to avoid the 17757 * plane update forcing the pipe gamma on without 17758 * having a proper LUT loaded. Remove once we 17759 * have readout for pipe gamma enable. 17760 */ 17761 crtc_state->uapi.color_mgmt_changed = true; 17762 17763 /* 17764 * FIXME hack to force full modeset when DSC is being 17765 * used. 17766 * 17767 * As long as we do not have full state readout and 17768 * config comparison of crtc_state->dsc, we have no way 17769 * to ensure reliable fastset. Remove once we have 17770 * readout for DSC. 17771 */ 17772 if (crtc_state->dsc.compression_enable) { 17773 ret = drm_atomic_add_affected_connectors(state, 17774 &crtc->base); 17775 if (ret) 17776 goto out; 17777 crtc_state->uapi.mode_changed = true; 17778 drm_dbg_kms(dev, "Force full modeset for DSC\n"); 17779 } 17780 } 17781 } 17782 17783 ret = drm_atomic_commit(state); 17784 17785 out: 17786 if (ret == -EDEADLK) { 17787 drm_atomic_state_clear(state); 17788 drm_modeset_backoff(&ctx); 17789 goto retry; 17790 } 17791 17792 drm_atomic_state_put(state); 17793 17794 drm_modeset_drop_locks(&ctx); 17795 drm_modeset_acquire_fini(&ctx); 17796 17797 return ret; 17798 } 17799 17800 static void intel_mode_config_init(struct drm_i915_private *i915) 17801 { 17802 struct drm_mode_config *mode_config = &i915->drm.mode_config; 17803 17804 drm_mode_config_init(&i915->drm); 17805 INIT_LIST_HEAD(&i915->global_obj_list); 17806 17807 mode_config->min_width = 0; 17808 mode_config->min_height = 0; 17809 17810 mode_config->preferred_depth = 24; 17811 mode_config->prefer_shadow = 1; 17812 17813 mode_config->allow_fb_modifiers = true; 17814 17815 mode_config->funcs = &intel_mode_funcs; 17816 17817 /* 17818 * Maximum framebuffer dimensions, chosen to match 17819 * the maximum render engine surface size on gen4+. 17820 */ 17821 if (INTEL_GEN(i915) >= 7) { 17822 mode_config->max_width = 16384; 17823 mode_config->max_height = 16384; 17824 } else if (INTEL_GEN(i915) >= 4) { 17825 mode_config->max_width = 8192; 17826 mode_config->max_height = 8192; 17827 } else if (IS_GEN(i915, 3)) { 17828 mode_config->max_width = 4096; 17829 mode_config->max_height = 4096; 17830 } else { 17831 mode_config->max_width = 2048; 17832 mode_config->max_height = 2048; 17833 } 17834 17835 if (IS_I845G(i915) || IS_I865G(i915)) { 17836 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; 17837 mode_config->cursor_height = 1023; 17838 } else if (IS_I830(i915) || IS_I85X(i915) || 17839 IS_I915G(i915) || IS_I915GM(i915)) { 17840 mode_config->cursor_width = 64; 17841 mode_config->cursor_height = 64; 17842 } else { 17843 mode_config->cursor_width = 256; 17844 mode_config->cursor_height = 256; 17845 } 17846 } 17847 17848 static void intel_mode_config_cleanup(struct drm_i915_private *i915) 17849 { 17850 intel_atomic_global_obj_cleanup(i915); 17851 drm_mode_config_cleanup(&i915->drm); 17852 } 17853 17854 static void plane_config_fini(struct intel_initial_plane_config *plane_config) 17855 { 17856 if (plane_config->fb) { 17857 struct drm_framebuffer *fb = &plane_config->fb->base; 17858 17859 /* We may only have the stub and not a full framebuffer */ 17860 if (drm_framebuffer_read_refcount(fb)) 17861 drm_framebuffer_put(fb); 17862 else 17863 kfree(fb); 17864 } 17865 17866 if (plane_config->vma) 17867 i915_vma_put(plane_config->vma); 17868 } 17869 17870 /* part #1: call before irq install */ 17871 int intel_modeset_init_noirq(struct drm_i915_private *i915) 17872 { 17873 int ret; 17874 17875 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 17876 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | 17877 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); 17878 17879 intel_mode_config_init(i915); 17880 17881 ret = intel_cdclk_init(i915); 17882 if (ret) 17883 return ret; 17884 17885 ret = intel_dbuf_init(i915); 17886 if (ret) 17887 return ret; 17888 17889 ret = intel_bw_init(i915); 17890 if (ret) 17891 return ret; 17892 17893 init_llist_head(&i915->atomic_helper.free_list); 17894 INIT_WORK(&i915->atomic_helper.free_work, 17895 intel_atomic_helper_free_state_worker); 17896 17897 intel_init_quirks(i915); 17898 17899 intel_fbc_init(i915); 17900 17901 return 0; 17902 } 17903 17904 /* part #2: call after irq install */ 17905 int intel_modeset_init(struct drm_i915_private *i915) 17906 { 17907 struct drm_device *dev = &i915->drm; 17908 enum pipe pipe; 17909 struct intel_crtc *crtc; 17910 int ret; 17911 17912 intel_init_pm(i915); 17913 17914 intel_panel_sanitize_ssc(i915); 17915 17916 intel_gmbus_setup(i915); 17917 17918 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n", 17919 INTEL_NUM_PIPES(i915), 17920 INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); 17921 17922 if (HAS_DISPLAY(i915) && INTEL_DISPLAY_ENABLED(i915)) { 17923 for_each_pipe(i915, pipe) { 17924 ret = intel_crtc_init(i915, pipe); 17925 if (ret) { 17926 intel_mode_config_cleanup(i915); 17927 return ret; 17928 } 17929 } 17930 } 17931 17932 intel_plane_possible_crtcs_init(i915); 17933 intel_shared_dpll_init(dev); 17934 intel_update_fdi_pll_freq(i915); 17935 17936 intel_update_czclk(i915); 17937 intel_modeset_init_hw(i915); 17938 17939 intel_hdcp_component_init(i915); 17940 17941 if (i915->max_cdclk_freq == 0) 17942 intel_update_max_cdclk(i915); 17943 17944 /* 17945 * If the platform has HTI, we need to find out whether it has reserved 17946 * any display resources before we create our display outputs. 17947 */ 17948 if (INTEL_INFO(i915)->display.has_hti) 17949 i915->hti_state = intel_de_read(i915, HDPORT_STATE); 17950 17951 /* Just disable it once at startup */ 17952 intel_vga_disable(i915); 17953 intel_setup_outputs(i915); 17954 17955 drm_modeset_lock_all(dev); 17956 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 17957 drm_modeset_unlock_all(dev); 17958 17959 for_each_intel_crtc(dev, crtc) { 17960 struct intel_initial_plane_config plane_config = {}; 17961 17962 if (!crtc->active) 17963 continue; 17964 17965 /* 17966 * Note that reserving the BIOS fb up front prevents us 17967 * from stuffing other stolen allocations like the ring 17968 * on top. This prevents some ugliness at boot time, and 17969 * can even allow for smooth boot transitions if the BIOS 17970 * fb is large enough for the active pipe configuration. 17971 */ 17972 i915->display.get_initial_plane_config(crtc, &plane_config); 17973 17974 /* 17975 * If the fb is shared between multiple heads, we'll 17976 * just get the first one. 17977 */ 17978 intel_find_initial_plane_obj(crtc, &plane_config); 17979 17980 plane_config_fini(&plane_config); 17981 } 17982 17983 /* 17984 * Make sure hardware watermarks really match the state we read out. 17985 * Note that we need to do this after reconstructing the BIOS fb's 17986 * since the watermark calculation done here will use pstate->fb. 17987 */ 17988 if (!HAS_GMCH(i915)) 17989 sanitize_watermarks(i915); 17990 17991 /* 17992 * Force all active planes to recompute their states. So that on 17993 * mode_setcrtc after probe, all the intel_plane_state variables 17994 * are already calculated and there is no assert_plane warnings 17995 * during bootup. 17996 */ 17997 ret = intel_initial_commit(dev); 17998 if (ret) 17999 drm_dbg_kms(&i915->drm, "Initial commit in probe failed.\n"); 18000 18001 return 0; 18002 } 18003 18004 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 18005 { 18006 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18007 /* 640x480@60Hz, ~25175 kHz */ 18008 struct dpll clock = { 18009 .m1 = 18, 18010 .m2 = 7, 18011 .p1 = 13, 18012 .p2 = 4, 18013 .n = 2, 18014 }; 18015 u32 dpll, fp; 18016 int i; 18017 18018 drm_WARN_ON(&dev_priv->drm, 18019 i9xx_calc_dpll_params(48000, &clock) != 25154); 18020 18021 drm_dbg_kms(&dev_priv->drm, 18022 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 18023 pipe_name(pipe), clock.vco, clock.dot); 18024 18025 fp = i9xx_dpll_compute_fp(&clock); 18026 dpll = DPLL_DVO_2X_MODE | 18027 DPLL_VGA_MODE_DIS | 18028 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 18029 PLL_P2_DIVIDE_BY_4 | 18030 PLL_REF_INPUT_DREFCLK | 18031 DPLL_VCO_ENABLE; 18032 18033 intel_de_write(dev_priv, FP0(pipe), fp); 18034 intel_de_write(dev_priv, FP1(pipe), fp); 18035 18036 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 18037 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 18038 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 18039 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 18040 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 18041 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 18042 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 18043 18044 /* 18045 * Apparently we need to have VGA mode enabled prior to changing 18046 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 18047 * dividers, even though the register value does change. 18048 */ 18049 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 18050 intel_de_write(dev_priv, DPLL(pipe), dpll); 18051 18052 /* Wait for the clocks to stabilize. */ 18053 intel_de_posting_read(dev_priv, DPLL(pipe)); 18054 udelay(150); 18055 18056 /* The pixel multiplier can only be updated once the 18057 * DPLL is enabled and the clocks are stable. 18058 * 18059 * So write it again. 18060 */ 18061 intel_de_write(dev_priv, DPLL(pipe), dpll); 18062 18063 /* We do this three times for luck */ 18064 for (i = 0; i < 3 ; i++) { 18065 intel_de_write(dev_priv, DPLL(pipe), dpll); 18066 intel_de_posting_read(dev_priv, DPLL(pipe)); 18067 udelay(150); /* wait for warmup */ 18068 } 18069 18070 intel_de_write(dev_priv, PIPECONF(pipe), 18071 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 18072 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 18073 18074 intel_wait_for_pipe_scanline_moving(crtc); 18075 } 18076 18077 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 18078 { 18079 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18080 18081 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n", 18082 pipe_name(pipe)); 18083 18084 drm_WARN_ON(&dev_priv->drm, 18085 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & 18086 DISPLAY_PLANE_ENABLE); 18087 drm_WARN_ON(&dev_priv->drm, 18088 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & 18089 DISPLAY_PLANE_ENABLE); 18090 drm_WARN_ON(&dev_priv->drm, 18091 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & 18092 DISPLAY_PLANE_ENABLE); 18093 drm_WARN_ON(&dev_priv->drm, 18094 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE); 18095 drm_WARN_ON(&dev_priv->drm, 18096 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE); 18097 18098 intel_de_write(dev_priv, PIPECONF(pipe), 0); 18099 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 18100 18101 intel_wait_for_pipe_scanline_stopped(crtc); 18102 18103 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 18104 intel_de_posting_read(dev_priv, DPLL(pipe)); 18105 } 18106 18107 static void 18108 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 18109 { 18110 struct intel_crtc *crtc; 18111 18112 if (INTEL_GEN(dev_priv) >= 4) 18113 return; 18114 18115 for_each_intel_crtc(&dev_priv->drm, crtc) { 18116 struct intel_plane *plane = 18117 to_intel_plane(crtc->base.primary); 18118 struct intel_crtc *plane_crtc; 18119 enum pipe pipe; 18120 18121 if (!plane->get_hw_state(plane, &pipe)) 18122 continue; 18123 18124 if (pipe == crtc->pipe) 18125 continue; 18126 18127 drm_dbg_kms(&dev_priv->drm, 18128 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 18129 plane->base.base.id, plane->base.name); 18130 18131 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18132 intel_plane_disable_noatomic(plane_crtc, plane); 18133 } 18134 } 18135 18136 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 18137 { 18138 struct drm_device *dev = crtc->base.dev; 18139 struct intel_encoder *encoder; 18140 18141 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 18142 return true; 18143 18144 return false; 18145 } 18146 18147 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 18148 { 18149 struct drm_device *dev = encoder->base.dev; 18150 struct intel_connector *connector; 18151 18152 for_each_connector_on_encoder(dev, &encoder->base, connector) 18153 return connector; 18154 18155 return NULL; 18156 } 18157 18158 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 18159 enum pipe pch_transcoder) 18160 { 18161 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 18162 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 18163 } 18164 18165 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state) 18166 { 18167 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 18168 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 18169 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 18170 18171 if (INTEL_GEN(dev_priv) >= 9 || 18172 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 18173 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); 18174 u32 val; 18175 18176 if (transcoder_is_dsi(cpu_transcoder)) 18177 return; 18178 18179 val = intel_de_read(dev_priv, reg); 18180 val &= ~HSW_FRAME_START_DELAY_MASK; 18181 val |= HSW_FRAME_START_DELAY(0); 18182 intel_de_write(dev_priv, reg, val); 18183 } else { 18184 i915_reg_t reg = PIPECONF(cpu_transcoder); 18185 u32 val; 18186 18187 val = intel_de_read(dev_priv, reg); 18188 val &= ~PIPECONF_FRAME_START_DELAY_MASK; 18189 val |= PIPECONF_FRAME_START_DELAY(0); 18190 intel_de_write(dev_priv, reg, val); 18191 } 18192 18193 if (!crtc_state->has_pch_encoder) 18194 return; 18195 18196 if (HAS_PCH_IBX(dev_priv)) { 18197 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe); 18198 u32 val; 18199 18200 val = intel_de_read(dev_priv, reg); 18201 val &= ~TRANS_FRAME_START_DELAY_MASK; 18202 val |= TRANS_FRAME_START_DELAY(0); 18203 intel_de_write(dev_priv, reg, val); 18204 } else { 18205 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); 18206 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder); 18207 u32 val; 18208 18209 val = intel_de_read(dev_priv, reg); 18210 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 18211 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 18212 intel_de_write(dev_priv, reg, val); 18213 } 18214 } 18215 18216 static void intel_sanitize_crtc(struct intel_crtc *crtc, 18217 struct drm_modeset_acquire_ctx *ctx) 18218 { 18219 struct drm_device *dev = crtc->base.dev; 18220 struct drm_i915_private *dev_priv = to_i915(dev); 18221 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 18222 18223 if (crtc_state->hw.active) { 18224 struct intel_plane *plane; 18225 18226 /* Clear any frame start delays used for debugging left by the BIOS */ 18227 intel_sanitize_frame_start_delay(crtc_state); 18228 18229 /* Disable everything but the primary plane */ 18230 for_each_intel_plane_on_crtc(dev, crtc, plane) { 18231 const struct intel_plane_state *plane_state = 18232 to_intel_plane_state(plane->base.state); 18233 18234 if (plane_state->uapi.visible && 18235 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 18236 intel_plane_disable_noatomic(crtc, plane); 18237 } 18238 18239 /* 18240 * Disable any background color set by the BIOS, but enable the 18241 * gamma and CSC to match how we program our planes. 18242 */ 18243 if (INTEL_GEN(dev_priv) >= 9) 18244 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe), 18245 SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE); 18246 } 18247 18248 /* Adjust the state of the output pipe according to whether we 18249 * have active connectors/encoders. */ 18250 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc)) 18251 intel_crtc_disable_noatomic(crtc, ctx); 18252 18253 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) { 18254 /* 18255 * We start out with underrun reporting disabled to avoid races. 18256 * For correct bookkeeping mark this on active crtcs. 18257 * 18258 * Also on gmch platforms we dont have any hardware bits to 18259 * disable the underrun reporting. Which means we need to start 18260 * out with underrun reporting disabled also on inactive pipes, 18261 * since otherwise we'll complain about the garbage we read when 18262 * e.g. coming up after runtime pm. 18263 * 18264 * No protection against concurrent access is required - at 18265 * worst a fifo underrun happens which also sets this to false. 18266 */ 18267 crtc->cpu_fifo_underrun_disabled = true; 18268 /* 18269 * We track the PCH trancoder underrun reporting state 18270 * within the crtc. With crtc for pipe A housing the underrun 18271 * reporting state for PCH transcoder A, crtc for pipe B housing 18272 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 18273 * and marking underrun reporting as disabled for the non-existing 18274 * PCH transcoders B and C would prevent enabling the south 18275 * error interrupt (see cpt_can_enable_serr_int()). 18276 */ 18277 if (has_pch_trancoder(dev_priv, crtc->pipe)) 18278 crtc->pch_fifo_underrun_disabled = true; 18279 } 18280 } 18281 18282 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 18283 { 18284 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 18285 18286 /* 18287 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 18288 * the hardware when a high res displays plugged in. DPLL P 18289 * divider is zero, and the pipe timings are bonkers. We'll 18290 * try to disable everything in that case. 18291 * 18292 * FIXME would be nice to be able to sanitize this state 18293 * without several WARNs, but for now let's take the easy 18294 * road. 18295 */ 18296 return IS_GEN(dev_priv, 6) && 18297 crtc_state->hw.active && 18298 crtc_state->shared_dpll && 18299 crtc_state->port_clock == 0; 18300 } 18301 18302 static void intel_sanitize_encoder(struct intel_encoder *encoder) 18303 { 18304 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 18305 struct intel_connector *connector; 18306 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 18307 struct intel_crtc_state *crtc_state = crtc ? 18308 to_intel_crtc_state(crtc->base.state) : NULL; 18309 18310 /* We need to check both for a crtc link (meaning that the 18311 * encoder is active and trying to read from a pipe) and the 18312 * pipe itself being active. */ 18313 bool has_active_crtc = crtc_state && 18314 crtc_state->hw.active; 18315 18316 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 18317 drm_dbg_kms(&dev_priv->drm, 18318 "BIOS has misprogrammed the hardware. Disabling pipe %c\n", 18319 pipe_name(crtc->pipe)); 18320 has_active_crtc = false; 18321 } 18322 18323 connector = intel_encoder_find_connector(encoder); 18324 if (connector && !has_active_crtc) { 18325 drm_dbg_kms(&dev_priv->drm, 18326 "[ENCODER:%d:%s] has active connectors but no active pipe!\n", 18327 encoder->base.base.id, 18328 encoder->base.name); 18329 18330 /* Connector is active, but has no active pipe. This is 18331 * fallout from our resume register restoring. Disable 18332 * the encoder manually again. */ 18333 if (crtc_state) { 18334 struct drm_encoder *best_encoder; 18335 18336 drm_dbg_kms(&dev_priv->drm, 18337 "[ENCODER:%d:%s] manually disabled\n", 18338 encoder->base.base.id, 18339 encoder->base.name); 18340 18341 /* avoid oopsing in case the hooks consult best_encoder */ 18342 best_encoder = connector->base.state->best_encoder; 18343 connector->base.state->best_encoder = &encoder->base; 18344 18345 /* FIXME NULL atomic state passed! */ 18346 if (encoder->disable) 18347 encoder->disable(NULL, encoder, crtc_state, 18348 connector->base.state); 18349 if (encoder->post_disable) 18350 encoder->post_disable(NULL, encoder, crtc_state, 18351 connector->base.state); 18352 18353 connector->base.state->best_encoder = best_encoder; 18354 } 18355 encoder->base.crtc = NULL; 18356 18357 /* Inconsistent output/port/pipe state happens presumably due to 18358 * a bug in one of the get_hw_state functions. Or someplace else 18359 * in our code, like the register restore mess on resume. Clamp 18360 * things to off as a safer default. */ 18361 18362 connector->base.dpms = DRM_MODE_DPMS_OFF; 18363 connector->base.encoder = NULL; 18364 } 18365 18366 /* notify opregion of the sanitized encoder state */ 18367 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 18368 18369 if (INTEL_GEN(dev_priv) >= 11) 18370 icl_sanitize_encoder_pll_mapping(encoder); 18371 } 18372 18373 /* FIXME read out full plane state for all planes */ 18374 static void readout_plane_state(struct drm_i915_private *dev_priv) 18375 { 18376 struct intel_plane *plane; 18377 struct intel_crtc *crtc; 18378 18379 for_each_intel_plane(&dev_priv->drm, plane) { 18380 struct intel_plane_state *plane_state = 18381 to_intel_plane_state(plane->base.state); 18382 struct intel_crtc_state *crtc_state; 18383 enum pipe pipe = PIPE_A; 18384 bool visible; 18385 18386 visible = plane->get_hw_state(plane, &pipe); 18387 18388 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18389 crtc_state = to_intel_crtc_state(crtc->base.state); 18390 18391 intel_set_plane_visible(crtc_state, plane_state, visible); 18392 18393 drm_dbg_kms(&dev_priv->drm, 18394 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 18395 plane->base.base.id, plane->base.name, 18396 enableddisabled(visible), pipe_name(pipe)); 18397 } 18398 18399 for_each_intel_crtc(&dev_priv->drm, crtc) { 18400 struct intel_crtc_state *crtc_state = 18401 to_intel_crtc_state(crtc->base.state); 18402 18403 fixup_active_planes(crtc_state); 18404 } 18405 } 18406 18407 static void intel_modeset_readout_hw_state(struct drm_device *dev) 18408 { 18409 struct drm_i915_private *dev_priv = to_i915(dev); 18410 struct intel_cdclk_state *cdclk_state = 18411 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 18412 struct intel_dbuf_state *dbuf_state = 18413 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 18414 enum pipe pipe; 18415 struct intel_crtc *crtc; 18416 struct intel_encoder *encoder; 18417 struct intel_connector *connector; 18418 struct drm_connector_list_iter conn_iter; 18419 u8 active_pipes = 0; 18420 18421 for_each_intel_crtc(dev, crtc) { 18422 struct intel_crtc_state *crtc_state = 18423 to_intel_crtc_state(crtc->base.state); 18424 18425 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi); 18426 intel_crtc_free_hw_state(crtc_state); 18427 intel_crtc_state_reset(crtc_state, crtc); 18428 18429 crtc_state->hw.active = crtc_state->hw.enable = 18430 dev_priv->display.get_pipe_config(crtc, crtc_state); 18431 18432 crtc->base.enabled = crtc_state->hw.enable; 18433 crtc->active = crtc_state->hw.active; 18434 18435 if (crtc_state->hw.active) 18436 active_pipes |= BIT(crtc->pipe); 18437 18438 drm_dbg_kms(&dev_priv->drm, 18439 "[CRTC:%d:%s] hw state readout: %s\n", 18440 crtc->base.base.id, crtc->base.name, 18441 enableddisabled(crtc_state->hw.active)); 18442 } 18443 18444 dev_priv->active_pipes = cdclk_state->active_pipes = 18445 dbuf_state->active_pipes = active_pipes; 18446 18447 readout_plane_state(dev_priv); 18448 18449 intel_dpll_readout_hw_state(dev_priv); 18450 18451 for_each_intel_encoder(dev, encoder) { 18452 pipe = 0; 18453 18454 if (encoder->get_hw_state(encoder, &pipe)) { 18455 struct intel_crtc_state *crtc_state; 18456 18457 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18458 crtc_state = to_intel_crtc_state(crtc->base.state); 18459 18460 encoder->base.crtc = &crtc->base; 18461 encoder->get_config(encoder, crtc_state); 18462 } else { 18463 encoder->base.crtc = NULL; 18464 } 18465 18466 drm_dbg_kms(&dev_priv->drm, 18467 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 18468 encoder->base.base.id, encoder->base.name, 18469 enableddisabled(encoder->base.crtc), 18470 pipe_name(pipe)); 18471 } 18472 18473 drm_connector_list_iter_begin(dev, &conn_iter); 18474 for_each_intel_connector_iter(connector, &conn_iter) { 18475 if (connector->get_hw_state(connector)) { 18476 struct intel_crtc_state *crtc_state; 18477 struct intel_crtc *crtc; 18478 18479 connector->base.dpms = DRM_MODE_DPMS_ON; 18480 18481 encoder = intel_attached_encoder(connector); 18482 connector->base.encoder = &encoder->base; 18483 18484 crtc = to_intel_crtc(encoder->base.crtc); 18485 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; 18486 18487 if (crtc_state && crtc_state->hw.active) { 18488 /* 18489 * This has to be done during hardware readout 18490 * because anything calling .crtc_disable may 18491 * rely on the connector_mask being accurate. 18492 */ 18493 crtc_state->uapi.connector_mask |= 18494 drm_connector_mask(&connector->base); 18495 crtc_state->uapi.encoder_mask |= 18496 drm_encoder_mask(&encoder->base); 18497 } 18498 } else { 18499 connector->base.dpms = DRM_MODE_DPMS_OFF; 18500 connector->base.encoder = NULL; 18501 } 18502 drm_dbg_kms(&dev_priv->drm, 18503 "[CONNECTOR:%d:%s] hw state readout: %s\n", 18504 connector->base.base.id, connector->base.name, 18505 enableddisabled(connector->base.encoder)); 18506 } 18507 drm_connector_list_iter_end(&conn_iter); 18508 18509 for_each_intel_crtc(dev, crtc) { 18510 struct intel_bw_state *bw_state = 18511 to_intel_bw_state(dev_priv->bw_obj.state); 18512 struct intel_crtc_state *crtc_state = 18513 to_intel_crtc_state(crtc->base.state); 18514 struct intel_plane *plane; 18515 int min_cdclk = 0; 18516 18517 if (crtc_state->hw.active) { 18518 struct drm_display_mode *mode = &crtc_state->hw.mode; 18519 18520 intel_mode_from_pipe_config(&crtc_state->hw.adjusted_mode, 18521 crtc_state); 18522 18523 *mode = crtc_state->hw.adjusted_mode; 18524 mode->hdisplay = crtc_state->pipe_src_w; 18525 mode->vdisplay = crtc_state->pipe_src_h; 18526 18527 /* 18528 * The initial mode needs to be set in order to keep 18529 * the atomic core happy. It wants a valid mode if the 18530 * crtc's enabled, so we do the above call. 18531 * 18532 * But we don't set all the derived state fully, hence 18533 * set a flag to indicate that a full recalculation is 18534 * needed on the next commit. 18535 */ 18536 crtc_state->inherited = true; 18537 18538 intel_crtc_compute_pixel_rate(crtc_state); 18539 18540 intel_crtc_update_active_timings(crtc_state); 18541 18542 intel_crtc_copy_hw_to_uapi_state(crtc_state); 18543 } 18544 18545 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 18546 const struct intel_plane_state *plane_state = 18547 to_intel_plane_state(plane->base.state); 18548 18549 /* 18550 * FIXME don't have the fb yet, so can't 18551 * use intel_plane_data_rate() :( 18552 */ 18553 if (plane_state->uapi.visible) 18554 crtc_state->data_rate[plane->id] = 18555 4 * crtc_state->pixel_rate; 18556 /* 18557 * FIXME don't have the fb yet, so can't 18558 * use plane->min_cdclk() :( 18559 */ 18560 if (plane_state->uapi.visible && plane->min_cdclk) { 18561 if (crtc_state->double_wide || 18562 INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 18563 crtc_state->min_cdclk[plane->id] = 18564 DIV_ROUND_UP(crtc_state->pixel_rate, 2); 18565 else 18566 crtc_state->min_cdclk[plane->id] = 18567 crtc_state->pixel_rate; 18568 } 18569 drm_dbg_kms(&dev_priv->drm, 18570 "[PLANE:%d:%s] min_cdclk %d kHz\n", 18571 plane->base.base.id, plane->base.name, 18572 crtc_state->min_cdclk[plane->id]); 18573 } 18574 18575 if (crtc_state->hw.active) { 18576 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 18577 if (drm_WARN_ON(dev, min_cdclk < 0)) 18578 min_cdclk = 0; 18579 } 18580 18581 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 18582 cdclk_state->min_voltage_level[crtc->pipe] = 18583 crtc_state->min_voltage_level; 18584 18585 intel_bw_crtc_update(bw_state, crtc_state); 18586 18587 intel_pipe_config_sanity_check(dev_priv, crtc_state); 18588 } 18589 } 18590 18591 static void 18592 get_encoder_power_domains(struct drm_i915_private *dev_priv) 18593 { 18594 struct intel_encoder *encoder; 18595 18596 for_each_intel_encoder(&dev_priv->drm, encoder) { 18597 struct intel_crtc_state *crtc_state; 18598 18599 if (!encoder->get_power_domains) 18600 continue; 18601 18602 /* 18603 * MST-primary and inactive encoders don't have a crtc state 18604 * and neither of these require any power domain references. 18605 */ 18606 if (!encoder->base.crtc) 18607 continue; 18608 18609 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 18610 encoder->get_power_domains(encoder, crtc_state); 18611 } 18612 } 18613 18614 static void intel_early_display_was(struct drm_i915_private *dev_priv) 18615 { 18616 /* 18617 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl 18618 * Also known as Wa_14010480278. 18619 */ 18620 if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv)) 18621 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0, 18622 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS); 18623 18624 if (IS_HASWELL(dev_priv)) { 18625 /* 18626 * WaRsPkgCStateDisplayPMReq:hsw 18627 * System hang if this isn't done before disabling all planes! 18628 */ 18629 intel_de_write(dev_priv, CHICKEN_PAR1_1, 18630 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 18631 } 18632 } 18633 18634 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 18635 enum port port, i915_reg_t hdmi_reg) 18636 { 18637 u32 val = intel_de_read(dev_priv, hdmi_reg); 18638 18639 if (val & SDVO_ENABLE || 18640 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 18641 return; 18642 18643 drm_dbg_kms(&dev_priv->drm, 18644 "Sanitizing transcoder select for HDMI %c\n", 18645 port_name(port)); 18646 18647 val &= ~SDVO_PIPE_SEL_MASK; 18648 val |= SDVO_PIPE_SEL(PIPE_A); 18649 18650 intel_de_write(dev_priv, hdmi_reg, val); 18651 } 18652 18653 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 18654 enum port port, i915_reg_t dp_reg) 18655 { 18656 u32 val = intel_de_read(dev_priv, dp_reg); 18657 18658 if (val & DP_PORT_EN || 18659 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 18660 return; 18661 18662 drm_dbg_kms(&dev_priv->drm, 18663 "Sanitizing transcoder select for DP %c\n", 18664 port_name(port)); 18665 18666 val &= ~DP_PIPE_SEL_MASK; 18667 val |= DP_PIPE_SEL(PIPE_A); 18668 18669 intel_de_write(dev_priv, dp_reg, val); 18670 } 18671 18672 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 18673 { 18674 /* 18675 * The BIOS may select transcoder B on some of the PCH 18676 * ports even it doesn't enable the port. This would trip 18677 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 18678 * Sanitize the transcoder select bits to prevent that. We 18679 * assume that the BIOS never actually enabled the port, 18680 * because if it did we'd actually have to toggle the port 18681 * on and back off to make the transcoder A select stick 18682 * (see. intel_dp_link_down(), intel_disable_hdmi(), 18683 * intel_disable_sdvo()). 18684 */ 18685 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 18686 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 18687 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 18688 18689 /* PCH SDVOB multiplex with HDMIB */ 18690 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 18691 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 18692 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 18693 } 18694 18695 /* Scan out the current hw modeset state, 18696 * and sanitizes it to the current state 18697 */ 18698 static void 18699 intel_modeset_setup_hw_state(struct drm_device *dev, 18700 struct drm_modeset_acquire_ctx *ctx) 18701 { 18702 struct drm_i915_private *dev_priv = to_i915(dev); 18703 struct intel_encoder *encoder; 18704 struct intel_crtc *crtc; 18705 intel_wakeref_t wakeref; 18706 18707 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 18708 18709 intel_early_display_was(dev_priv); 18710 intel_modeset_readout_hw_state(dev); 18711 18712 /* HW state is read out, now we need to sanitize this mess. */ 18713 18714 /* Sanitize the TypeC port mode upfront, encoders depend on this */ 18715 for_each_intel_encoder(dev, encoder) { 18716 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 18717 18718 /* We need to sanitize only the MST primary port. */ 18719 if (encoder->type != INTEL_OUTPUT_DP_MST && 18720 intel_phy_is_tc(dev_priv, phy)) 18721 intel_tc_port_sanitize(enc_to_dig_port(encoder)); 18722 } 18723 18724 get_encoder_power_domains(dev_priv); 18725 18726 if (HAS_PCH_IBX(dev_priv)) 18727 ibx_sanitize_pch_ports(dev_priv); 18728 18729 /* 18730 * intel_sanitize_plane_mapping() may need to do vblank 18731 * waits, so we need vblank interrupts restored beforehand. 18732 */ 18733 for_each_intel_crtc(&dev_priv->drm, crtc) { 18734 struct intel_crtc_state *crtc_state = 18735 to_intel_crtc_state(crtc->base.state); 18736 18737 drm_crtc_vblank_reset(&crtc->base); 18738 18739 if (crtc_state->hw.active) 18740 intel_crtc_vblank_on(crtc_state); 18741 } 18742 18743 intel_sanitize_plane_mapping(dev_priv); 18744 18745 for_each_intel_encoder(dev, encoder) 18746 intel_sanitize_encoder(encoder); 18747 18748 for_each_intel_crtc(&dev_priv->drm, crtc) { 18749 struct intel_crtc_state *crtc_state = 18750 to_intel_crtc_state(crtc->base.state); 18751 18752 intel_sanitize_crtc(crtc, ctx); 18753 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 18754 } 18755 18756 intel_modeset_update_connector_atomic_state(dev); 18757 18758 intel_dpll_sanitize_state(dev_priv); 18759 18760 if (IS_G4X(dev_priv)) { 18761 g4x_wm_get_hw_state(dev_priv); 18762 g4x_wm_sanitize(dev_priv); 18763 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 18764 vlv_wm_get_hw_state(dev_priv); 18765 vlv_wm_sanitize(dev_priv); 18766 } else if (INTEL_GEN(dev_priv) >= 9) { 18767 skl_wm_get_hw_state(dev_priv); 18768 } else if (HAS_PCH_SPLIT(dev_priv)) { 18769 ilk_wm_get_hw_state(dev_priv); 18770 } 18771 18772 for_each_intel_crtc(dev, crtc) { 18773 struct intel_crtc_state *crtc_state = 18774 to_intel_crtc_state(crtc->base.state); 18775 u64 put_domains; 18776 18777 put_domains = modeset_get_crtc_power_domains(crtc_state); 18778 if (drm_WARN_ON(dev, put_domains)) 18779 modeset_put_power_domains(dev_priv, put_domains); 18780 } 18781 18782 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 18783 } 18784 18785 void intel_display_resume(struct drm_device *dev) 18786 { 18787 struct drm_i915_private *dev_priv = to_i915(dev); 18788 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 18789 struct drm_modeset_acquire_ctx ctx; 18790 int ret; 18791 18792 dev_priv->modeset_restore_state = NULL; 18793 if (state) 18794 state->acquire_ctx = &ctx; 18795 18796 drm_modeset_acquire_init(&ctx, 0); 18797 18798 while (1) { 18799 ret = drm_modeset_lock_all_ctx(dev, &ctx); 18800 if (ret != -EDEADLK) 18801 break; 18802 18803 drm_modeset_backoff(&ctx); 18804 } 18805 18806 if (!ret) 18807 ret = __intel_display_resume(dev, state, &ctx); 18808 18809 intel_enable_ipc(dev_priv); 18810 drm_modeset_drop_locks(&ctx); 18811 drm_modeset_acquire_fini(&ctx); 18812 18813 if (ret) 18814 drm_err(&dev_priv->drm, 18815 "Restoring old state failed with %i\n", ret); 18816 if (state) 18817 drm_atomic_state_put(state); 18818 } 18819 18820 static void intel_hpd_poll_fini(struct drm_i915_private *i915) 18821 { 18822 struct intel_connector *connector; 18823 struct drm_connector_list_iter conn_iter; 18824 18825 /* Kill all the work that may have been queued by hpd. */ 18826 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 18827 for_each_intel_connector_iter(connector, &conn_iter) { 18828 if (connector->modeset_retry_work.func) 18829 cancel_work_sync(&connector->modeset_retry_work); 18830 if (connector->hdcp.shim) { 18831 cancel_delayed_work_sync(&connector->hdcp.check_work); 18832 cancel_work_sync(&connector->hdcp.prop_work); 18833 } 18834 } 18835 drm_connector_list_iter_end(&conn_iter); 18836 } 18837 18838 /* part #1: call before irq uninstall */ 18839 void intel_modeset_driver_remove(struct drm_i915_private *i915) 18840 { 18841 flush_workqueue(i915->flip_wq); 18842 flush_workqueue(i915->modeset_wq); 18843 18844 flush_work(&i915->atomic_helper.free_work); 18845 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list)); 18846 } 18847 18848 /* part #2: call after irq uninstall */ 18849 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915) 18850 { 18851 /* 18852 * Due to the hpd irq storm handling the hotplug work can re-arm the 18853 * poll handlers. Hence disable polling after hpd handling is shut down. 18854 */ 18855 intel_hpd_poll_fini(i915); 18856 18857 /* 18858 * MST topology needs to be suspended so we don't have any calls to 18859 * fbdev after it's finalized. MST will be destroyed later as part of 18860 * drm_mode_config_cleanup() 18861 */ 18862 intel_dp_mst_suspend(i915); 18863 18864 /* poll work can call into fbdev, hence clean that up afterwards */ 18865 intel_fbdev_fini(i915); 18866 18867 intel_unregister_dsm_handler(); 18868 18869 intel_fbc_global_disable(i915); 18870 18871 /* flush any delayed tasks or pending work */ 18872 flush_scheduled_work(); 18873 18874 intel_hdcp_component_fini(i915); 18875 18876 intel_mode_config_cleanup(i915); 18877 18878 intel_overlay_cleanup(i915); 18879 18880 intel_gmbus_teardown(i915); 18881 18882 destroy_workqueue(i915->flip_wq); 18883 destroy_workqueue(i915->modeset_wq); 18884 18885 intel_fbc_cleanup_cfb(i915); 18886 } 18887 18888 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 18889 18890 struct intel_display_error_state { 18891 18892 u32 power_well_driver; 18893 18894 struct intel_cursor_error_state { 18895 u32 control; 18896 u32 position; 18897 u32 base; 18898 u32 size; 18899 } cursor[I915_MAX_PIPES]; 18900 18901 struct intel_pipe_error_state { 18902 bool power_domain_on; 18903 u32 source; 18904 u32 stat; 18905 } pipe[I915_MAX_PIPES]; 18906 18907 struct intel_plane_error_state { 18908 u32 control; 18909 u32 stride; 18910 u32 size; 18911 u32 pos; 18912 u32 addr; 18913 u32 surface; 18914 u32 tile_offset; 18915 } plane[I915_MAX_PIPES]; 18916 18917 struct intel_transcoder_error_state { 18918 bool available; 18919 bool power_domain_on; 18920 enum transcoder cpu_transcoder; 18921 18922 u32 conf; 18923 18924 u32 htotal; 18925 u32 hblank; 18926 u32 hsync; 18927 u32 vtotal; 18928 u32 vblank; 18929 u32 vsync; 18930 } transcoder[5]; 18931 }; 18932 18933 struct intel_display_error_state * 18934 intel_display_capture_error_state(struct drm_i915_private *dev_priv) 18935 { 18936 struct intel_display_error_state *error; 18937 int transcoders[] = { 18938 TRANSCODER_A, 18939 TRANSCODER_B, 18940 TRANSCODER_C, 18941 TRANSCODER_D, 18942 TRANSCODER_EDP, 18943 }; 18944 int i; 18945 18946 BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder)); 18947 18948 if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv)) 18949 return NULL; 18950 18951 error = kzalloc(sizeof(*error), GFP_ATOMIC); 18952 if (error == NULL) 18953 return NULL; 18954 18955 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 18956 error->power_well_driver = intel_de_read(dev_priv, 18957 HSW_PWR_WELL_CTL2); 18958 18959 for_each_pipe(dev_priv, i) { 18960 error->pipe[i].power_domain_on = 18961 __intel_display_power_is_enabled(dev_priv, 18962 POWER_DOMAIN_PIPE(i)); 18963 if (!error->pipe[i].power_domain_on) 18964 continue; 18965 18966 error->cursor[i].control = intel_de_read(dev_priv, CURCNTR(i)); 18967 error->cursor[i].position = intel_de_read(dev_priv, CURPOS(i)); 18968 error->cursor[i].base = intel_de_read(dev_priv, CURBASE(i)); 18969 18970 error->plane[i].control = intel_de_read(dev_priv, DSPCNTR(i)); 18971 error->plane[i].stride = intel_de_read(dev_priv, DSPSTRIDE(i)); 18972 if (INTEL_GEN(dev_priv) <= 3) { 18973 error->plane[i].size = intel_de_read(dev_priv, 18974 DSPSIZE(i)); 18975 error->plane[i].pos = intel_de_read(dev_priv, 18976 DSPPOS(i)); 18977 } 18978 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 18979 error->plane[i].addr = intel_de_read(dev_priv, 18980 DSPADDR(i)); 18981 if (INTEL_GEN(dev_priv) >= 4) { 18982 error->plane[i].surface = intel_de_read(dev_priv, 18983 DSPSURF(i)); 18984 error->plane[i].tile_offset = intel_de_read(dev_priv, 18985 DSPTILEOFF(i)); 18986 } 18987 18988 error->pipe[i].source = intel_de_read(dev_priv, PIPESRC(i)); 18989 18990 if (HAS_GMCH(dev_priv)) 18991 error->pipe[i].stat = intel_de_read(dev_priv, 18992 PIPESTAT(i)); 18993 } 18994 18995 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 18996 enum transcoder cpu_transcoder = transcoders[i]; 18997 18998 if (!HAS_TRANSCODER(dev_priv, cpu_transcoder)) 18999 continue; 19000 19001 error->transcoder[i].available = true; 19002 error->transcoder[i].power_domain_on = 19003 __intel_display_power_is_enabled(dev_priv, 19004 POWER_DOMAIN_TRANSCODER(cpu_transcoder)); 19005 if (!error->transcoder[i].power_domain_on) 19006 continue; 19007 19008 error->transcoder[i].cpu_transcoder = cpu_transcoder; 19009 19010 error->transcoder[i].conf = intel_de_read(dev_priv, 19011 PIPECONF(cpu_transcoder)); 19012 error->transcoder[i].htotal = intel_de_read(dev_priv, 19013 HTOTAL(cpu_transcoder)); 19014 error->transcoder[i].hblank = intel_de_read(dev_priv, 19015 HBLANK(cpu_transcoder)); 19016 error->transcoder[i].hsync = intel_de_read(dev_priv, 19017 HSYNC(cpu_transcoder)); 19018 error->transcoder[i].vtotal = intel_de_read(dev_priv, 19019 VTOTAL(cpu_transcoder)); 19020 error->transcoder[i].vblank = intel_de_read(dev_priv, 19021 VBLANK(cpu_transcoder)); 19022 error->transcoder[i].vsync = intel_de_read(dev_priv, 19023 VSYNC(cpu_transcoder)); 19024 } 19025 19026 return error; 19027 } 19028 19029 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) 19030 19031 void 19032 intel_display_print_error_state(struct drm_i915_error_state_buf *m, 19033 struct intel_display_error_state *error) 19034 { 19035 struct drm_i915_private *dev_priv = m->i915; 19036 int i; 19037 19038 if (!error) 19039 return; 19040 19041 err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv)); 19042 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 19043 err_printf(m, "PWR_WELL_CTL2: %08x\n", 19044 error->power_well_driver); 19045 for_each_pipe(dev_priv, i) { 19046 err_printf(m, "Pipe [%d]:\n", i); 19047 err_printf(m, " Power: %s\n", 19048 onoff(error->pipe[i].power_domain_on)); 19049 err_printf(m, " SRC: %08x\n", error->pipe[i].source); 19050 err_printf(m, " STAT: %08x\n", error->pipe[i].stat); 19051 19052 err_printf(m, "Plane [%d]:\n", i); 19053 err_printf(m, " CNTR: %08x\n", error->plane[i].control); 19054 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride); 19055 if (INTEL_GEN(dev_priv) <= 3) { 19056 err_printf(m, " SIZE: %08x\n", error->plane[i].size); 19057 err_printf(m, " POS: %08x\n", error->plane[i].pos); 19058 } 19059 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 19060 err_printf(m, " ADDR: %08x\n", error->plane[i].addr); 19061 if (INTEL_GEN(dev_priv) >= 4) { 19062 err_printf(m, " SURF: %08x\n", error->plane[i].surface); 19063 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); 19064 } 19065 19066 err_printf(m, "Cursor [%d]:\n", i); 19067 err_printf(m, " CNTR: %08x\n", error->cursor[i].control); 19068 err_printf(m, " POS: %08x\n", error->cursor[i].position); 19069 err_printf(m, " BASE: %08x\n", error->cursor[i].base); 19070 } 19071 19072 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 19073 if (!error->transcoder[i].available) 19074 continue; 19075 19076 err_printf(m, "CPU transcoder: %s\n", 19077 transcoder_name(error->transcoder[i].cpu_transcoder)); 19078 err_printf(m, " Power: %s\n", 19079 onoff(error->transcoder[i].power_domain_on)); 19080 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf); 19081 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal); 19082 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank); 19083 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync); 19084 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal); 19085 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank); 19086 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync); 19087 } 19088 } 19089 19090 #endif 19091