1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <linux/i2c.h> 28 #include <linux/input.h> 29 #include <linux/intel-iommu.h> 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/dma-resv.h> 33 #include <linux/slab.h> 34 35 #include <drm/drm_atomic.h> 36 #include <drm/drm_atomic_helper.h> 37 #include <drm/drm_atomic_uapi.h> 38 #include <drm/drm_dp_helper.h> 39 #include <drm/drm_edid.h> 40 #include <drm/drm_fourcc.h> 41 #include <drm/drm_plane_helper.h> 42 #include <drm/drm_probe_helper.h> 43 #include <drm/drm_rect.h> 44 45 #include "display/intel_crt.h" 46 #include "display/intel_ddi.h" 47 #include "display/intel_dp.h" 48 #include "display/intel_dp_mst.h" 49 #include "display/intel_dsi.h" 50 #include "display/intel_dvo.h" 51 #include "display/intel_gmbus.h" 52 #include "display/intel_hdmi.h" 53 #include "display/intel_lvds.h" 54 #include "display/intel_sdvo.h" 55 #include "display/intel_tv.h" 56 #include "display/intel_vdsc.h" 57 58 #include "gt/intel_rps.h" 59 60 #include "i915_drv.h" 61 #include "i915_trace.h" 62 #include "intel_acpi.h" 63 #include "intel_atomic.h" 64 #include "intel_atomic_plane.h" 65 #include "intel_bw.h" 66 #include "intel_cdclk.h" 67 #include "intel_color.h" 68 #include "intel_display_types.h" 69 #include "intel_dp_link_training.h" 70 #include "intel_fbc.h" 71 #include "intel_fbdev.h" 72 #include "intel_fifo_underrun.h" 73 #include "intel_frontbuffer.h" 74 #include "intel_hdcp.h" 75 #include "intel_hotplug.h" 76 #include "intel_overlay.h" 77 #include "intel_pipe_crc.h" 78 #include "intel_pm.h" 79 #include "intel_psr.h" 80 #include "intel_quirks.h" 81 #include "intel_sideband.h" 82 #include "intel_sprite.h" 83 #include "intel_tc.h" 84 #include "intel_vga.h" 85 86 /* Primary plane formats for gen <= 3 */ 87 static const u32 i8xx_primary_formats[] = { 88 DRM_FORMAT_C8, 89 DRM_FORMAT_XRGB1555, 90 DRM_FORMAT_RGB565, 91 DRM_FORMAT_XRGB8888, 92 }; 93 94 /* Primary plane formats for ivb (no fp16 due to hw issue) */ 95 static const u32 ivb_primary_formats[] = { 96 DRM_FORMAT_C8, 97 DRM_FORMAT_RGB565, 98 DRM_FORMAT_XRGB8888, 99 DRM_FORMAT_XBGR8888, 100 DRM_FORMAT_XRGB2101010, 101 DRM_FORMAT_XBGR2101010, 102 }; 103 104 /* Primary plane formats for gen >= 4, except ivb */ 105 static const u32 i965_primary_formats[] = { 106 DRM_FORMAT_C8, 107 DRM_FORMAT_RGB565, 108 DRM_FORMAT_XRGB8888, 109 DRM_FORMAT_XBGR8888, 110 DRM_FORMAT_XRGB2101010, 111 DRM_FORMAT_XBGR2101010, 112 DRM_FORMAT_XBGR16161616F, 113 }; 114 115 /* Primary plane formats for vlv/chv */ 116 static const u32 vlv_primary_formats[] = { 117 DRM_FORMAT_C8, 118 DRM_FORMAT_RGB565, 119 DRM_FORMAT_XRGB8888, 120 DRM_FORMAT_XBGR8888, 121 DRM_FORMAT_ARGB8888, 122 DRM_FORMAT_ABGR8888, 123 DRM_FORMAT_XRGB2101010, 124 DRM_FORMAT_XBGR2101010, 125 DRM_FORMAT_ARGB2101010, 126 DRM_FORMAT_ABGR2101010, 127 DRM_FORMAT_XBGR16161616F, 128 }; 129 130 static const u64 i9xx_format_modifiers[] = { 131 I915_FORMAT_MOD_X_TILED, 132 DRM_FORMAT_MOD_LINEAR, 133 DRM_FORMAT_MOD_INVALID 134 }; 135 136 /* Cursor formats */ 137 static const u32 intel_cursor_formats[] = { 138 DRM_FORMAT_ARGB8888, 139 }; 140 141 static const u64 cursor_format_modifiers[] = { 142 DRM_FORMAT_MOD_LINEAR, 143 DRM_FORMAT_MOD_INVALID 144 }; 145 146 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 147 struct intel_crtc_state *pipe_config); 148 static void ilk_pch_clock_get(struct intel_crtc *crtc, 149 struct intel_crtc_state *pipe_config); 150 151 static int intel_framebuffer_init(struct intel_framebuffer *ifb, 152 struct drm_i915_gem_object *obj, 153 struct drm_mode_fb_cmd2 *mode_cmd); 154 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state); 155 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 156 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 157 const struct intel_link_m_n *m_n, 158 const struct intel_link_m_n *m2_n2); 159 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 160 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state); 161 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state); 162 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 163 static void vlv_prepare_pll(struct intel_crtc *crtc, 164 const struct intel_crtc_state *pipe_config); 165 static void chv_prepare_pll(struct intel_crtc *crtc, 166 const struct intel_crtc_state *pipe_config); 167 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state); 168 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); 169 static void intel_modeset_setup_hw_state(struct drm_device *dev, 170 struct drm_modeset_acquire_ctx *ctx); 171 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc); 172 173 struct intel_limit { 174 struct { 175 int min, max; 176 } dot, vco, n, m, m1, m2, p, p1; 177 178 struct { 179 int dot_limit; 180 int p2_slow, p2_fast; 181 } p2; 182 }; 183 184 /* returns HPLL frequency in kHz */ 185 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 186 { 187 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 188 189 /* Obtain SKU information */ 190 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 191 CCK_FUSE_HPLL_FREQ_MASK; 192 193 return vco_freq[hpll_freq] * 1000; 194 } 195 196 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 197 const char *name, u32 reg, int ref_freq) 198 { 199 u32 val; 200 int divider; 201 202 val = vlv_cck_read(dev_priv, reg); 203 divider = val & CCK_FREQUENCY_VALUES; 204 205 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != 206 (divider << CCK_FREQUENCY_STATUS_SHIFT), 207 "%s change in progress\n", name); 208 209 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 210 } 211 212 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 213 const char *name, u32 reg) 214 { 215 int hpll; 216 217 vlv_cck_get(dev_priv); 218 219 if (dev_priv->hpll_freq == 0) 220 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 221 222 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 223 224 vlv_cck_put(dev_priv); 225 226 return hpll; 227 } 228 229 static void intel_update_czclk(struct drm_i915_private *dev_priv) 230 { 231 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 232 return; 233 234 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 235 CCK_CZ_CLOCK_CONTROL); 236 237 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n", 238 dev_priv->czclk_freq); 239 } 240 241 static inline u32 /* units of 100MHz */ 242 intel_fdi_link_freq(struct drm_i915_private *dev_priv, 243 const struct intel_crtc_state *pipe_config) 244 { 245 if (HAS_DDI(dev_priv)) 246 return pipe_config->port_clock; /* SPLL */ 247 else 248 return dev_priv->fdi_pll_freq; 249 } 250 251 static const struct intel_limit intel_limits_i8xx_dac = { 252 .dot = { .min = 25000, .max = 350000 }, 253 .vco = { .min = 908000, .max = 1512000 }, 254 .n = { .min = 2, .max = 16 }, 255 .m = { .min = 96, .max = 140 }, 256 .m1 = { .min = 18, .max = 26 }, 257 .m2 = { .min = 6, .max = 16 }, 258 .p = { .min = 4, .max = 128 }, 259 .p1 = { .min = 2, .max = 33 }, 260 .p2 = { .dot_limit = 165000, 261 .p2_slow = 4, .p2_fast = 2 }, 262 }; 263 264 static const struct intel_limit intel_limits_i8xx_dvo = { 265 .dot = { .min = 25000, .max = 350000 }, 266 .vco = { .min = 908000, .max = 1512000 }, 267 .n = { .min = 2, .max = 16 }, 268 .m = { .min = 96, .max = 140 }, 269 .m1 = { .min = 18, .max = 26 }, 270 .m2 = { .min = 6, .max = 16 }, 271 .p = { .min = 4, .max = 128 }, 272 .p1 = { .min = 2, .max = 33 }, 273 .p2 = { .dot_limit = 165000, 274 .p2_slow = 4, .p2_fast = 4 }, 275 }; 276 277 static const struct intel_limit intel_limits_i8xx_lvds = { 278 .dot = { .min = 25000, .max = 350000 }, 279 .vco = { .min = 908000, .max = 1512000 }, 280 .n = { .min = 2, .max = 16 }, 281 .m = { .min = 96, .max = 140 }, 282 .m1 = { .min = 18, .max = 26 }, 283 .m2 = { .min = 6, .max = 16 }, 284 .p = { .min = 4, .max = 128 }, 285 .p1 = { .min = 1, .max = 6 }, 286 .p2 = { .dot_limit = 165000, 287 .p2_slow = 14, .p2_fast = 7 }, 288 }; 289 290 static const struct intel_limit intel_limits_i9xx_sdvo = { 291 .dot = { .min = 20000, .max = 400000 }, 292 .vco = { .min = 1400000, .max = 2800000 }, 293 .n = { .min = 1, .max = 6 }, 294 .m = { .min = 70, .max = 120 }, 295 .m1 = { .min = 8, .max = 18 }, 296 .m2 = { .min = 3, .max = 7 }, 297 .p = { .min = 5, .max = 80 }, 298 .p1 = { .min = 1, .max = 8 }, 299 .p2 = { .dot_limit = 200000, 300 .p2_slow = 10, .p2_fast = 5 }, 301 }; 302 303 static const struct intel_limit intel_limits_i9xx_lvds = { 304 .dot = { .min = 20000, .max = 400000 }, 305 .vco = { .min = 1400000, .max = 2800000 }, 306 .n = { .min = 1, .max = 6 }, 307 .m = { .min = 70, .max = 120 }, 308 .m1 = { .min = 8, .max = 18 }, 309 .m2 = { .min = 3, .max = 7 }, 310 .p = { .min = 7, .max = 98 }, 311 .p1 = { .min = 1, .max = 8 }, 312 .p2 = { .dot_limit = 112000, 313 .p2_slow = 14, .p2_fast = 7 }, 314 }; 315 316 317 static const struct intel_limit intel_limits_g4x_sdvo = { 318 .dot = { .min = 25000, .max = 270000 }, 319 .vco = { .min = 1750000, .max = 3500000}, 320 .n = { .min = 1, .max = 4 }, 321 .m = { .min = 104, .max = 138 }, 322 .m1 = { .min = 17, .max = 23 }, 323 .m2 = { .min = 5, .max = 11 }, 324 .p = { .min = 10, .max = 30 }, 325 .p1 = { .min = 1, .max = 3}, 326 .p2 = { .dot_limit = 270000, 327 .p2_slow = 10, 328 .p2_fast = 10 329 }, 330 }; 331 332 static const struct intel_limit intel_limits_g4x_hdmi = { 333 .dot = { .min = 22000, .max = 400000 }, 334 .vco = { .min = 1750000, .max = 3500000}, 335 .n = { .min = 1, .max = 4 }, 336 .m = { .min = 104, .max = 138 }, 337 .m1 = { .min = 16, .max = 23 }, 338 .m2 = { .min = 5, .max = 11 }, 339 .p = { .min = 5, .max = 80 }, 340 .p1 = { .min = 1, .max = 8}, 341 .p2 = { .dot_limit = 165000, 342 .p2_slow = 10, .p2_fast = 5 }, 343 }; 344 345 static const struct intel_limit intel_limits_g4x_single_channel_lvds = { 346 .dot = { .min = 20000, .max = 115000 }, 347 .vco = { .min = 1750000, .max = 3500000 }, 348 .n = { .min = 1, .max = 3 }, 349 .m = { .min = 104, .max = 138 }, 350 .m1 = { .min = 17, .max = 23 }, 351 .m2 = { .min = 5, .max = 11 }, 352 .p = { .min = 28, .max = 112 }, 353 .p1 = { .min = 2, .max = 8 }, 354 .p2 = { .dot_limit = 0, 355 .p2_slow = 14, .p2_fast = 14 356 }, 357 }; 358 359 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { 360 .dot = { .min = 80000, .max = 224000 }, 361 .vco = { .min = 1750000, .max = 3500000 }, 362 .n = { .min = 1, .max = 3 }, 363 .m = { .min = 104, .max = 138 }, 364 .m1 = { .min = 17, .max = 23 }, 365 .m2 = { .min = 5, .max = 11 }, 366 .p = { .min = 14, .max = 42 }, 367 .p1 = { .min = 2, .max = 6 }, 368 .p2 = { .dot_limit = 0, 369 .p2_slow = 7, .p2_fast = 7 370 }, 371 }; 372 373 static const struct intel_limit pnv_limits_sdvo = { 374 .dot = { .min = 20000, .max = 400000}, 375 .vco = { .min = 1700000, .max = 3500000 }, 376 /* Pineview's Ncounter is a ring counter */ 377 .n = { .min = 3, .max = 6 }, 378 .m = { .min = 2, .max = 256 }, 379 /* Pineview only has one combined m divider, which we treat as m2. */ 380 .m1 = { .min = 0, .max = 0 }, 381 .m2 = { .min = 0, .max = 254 }, 382 .p = { .min = 5, .max = 80 }, 383 .p1 = { .min = 1, .max = 8 }, 384 .p2 = { .dot_limit = 200000, 385 .p2_slow = 10, .p2_fast = 5 }, 386 }; 387 388 static const struct intel_limit pnv_limits_lvds = { 389 .dot = { .min = 20000, .max = 400000 }, 390 .vco = { .min = 1700000, .max = 3500000 }, 391 .n = { .min = 3, .max = 6 }, 392 .m = { .min = 2, .max = 256 }, 393 .m1 = { .min = 0, .max = 0 }, 394 .m2 = { .min = 0, .max = 254 }, 395 .p = { .min = 7, .max = 112 }, 396 .p1 = { .min = 1, .max = 8 }, 397 .p2 = { .dot_limit = 112000, 398 .p2_slow = 14, .p2_fast = 14 }, 399 }; 400 401 /* Ironlake / Sandybridge 402 * 403 * We calculate clock using (register_value + 2) for N/M1/M2, so here 404 * the range value for them is (actual_value - 2). 405 */ 406 static const struct intel_limit ilk_limits_dac = { 407 .dot = { .min = 25000, .max = 350000 }, 408 .vco = { .min = 1760000, .max = 3510000 }, 409 .n = { .min = 1, .max = 5 }, 410 .m = { .min = 79, .max = 127 }, 411 .m1 = { .min = 12, .max = 22 }, 412 .m2 = { .min = 5, .max = 9 }, 413 .p = { .min = 5, .max = 80 }, 414 .p1 = { .min = 1, .max = 8 }, 415 .p2 = { .dot_limit = 225000, 416 .p2_slow = 10, .p2_fast = 5 }, 417 }; 418 419 static const struct intel_limit ilk_limits_single_lvds = { 420 .dot = { .min = 25000, .max = 350000 }, 421 .vco = { .min = 1760000, .max = 3510000 }, 422 .n = { .min = 1, .max = 3 }, 423 .m = { .min = 79, .max = 118 }, 424 .m1 = { .min = 12, .max = 22 }, 425 .m2 = { .min = 5, .max = 9 }, 426 .p = { .min = 28, .max = 112 }, 427 .p1 = { .min = 2, .max = 8 }, 428 .p2 = { .dot_limit = 225000, 429 .p2_slow = 14, .p2_fast = 14 }, 430 }; 431 432 static const struct intel_limit ilk_limits_dual_lvds = { 433 .dot = { .min = 25000, .max = 350000 }, 434 .vco = { .min = 1760000, .max = 3510000 }, 435 .n = { .min = 1, .max = 3 }, 436 .m = { .min = 79, .max = 127 }, 437 .m1 = { .min = 12, .max = 22 }, 438 .m2 = { .min = 5, .max = 9 }, 439 .p = { .min = 14, .max = 56 }, 440 .p1 = { .min = 2, .max = 8 }, 441 .p2 = { .dot_limit = 225000, 442 .p2_slow = 7, .p2_fast = 7 }, 443 }; 444 445 /* LVDS 100mhz refclk limits. */ 446 static const struct intel_limit ilk_limits_single_lvds_100m = { 447 .dot = { .min = 25000, .max = 350000 }, 448 .vco = { .min = 1760000, .max = 3510000 }, 449 .n = { .min = 1, .max = 2 }, 450 .m = { .min = 79, .max = 126 }, 451 .m1 = { .min = 12, .max = 22 }, 452 .m2 = { .min = 5, .max = 9 }, 453 .p = { .min = 28, .max = 112 }, 454 .p1 = { .min = 2, .max = 8 }, 455 .p2 = { .dot_limit = 225000, 456 .p2_slow = 14, .p2_fast = 14 }, 457 }; 458 459 static const struct intel_limit ilk_limits_dual_lvds_100m = { 460 .dot = { .min = 25000, .max = 350000 }, 461 .vco = { .min = 1760000, .max = 3510000 }, 462 .n = { .min = 1, .max = 3 }, 463 .m = { .min = 79, .max = 126 }, 464 .m1 = { .min = 12, .max = 22 }, 465 .m2 = { .min = 5, .max = 9 }, 466 .p = { .min = 14, .max = 42 }, 467 .p1 = { .min = 2, .max = 6 }, 468 .p2 = { .dot_limit = 225000, 469 .p2_slow = 7, .p2_fast = 7 }, 470 }; 471 472 static const struct intel_limit intel_limits_vlv = { 473 /* 474 * These are the data rate limits (measured in fast clocks) 475 * since those are the strictest limits we have. The fast 476 * clock and actual rate limits are more relaxed, so checking 477 * them would make no difference. 478 */ 479 .dot = { .min = 25000 * 5, .max = 270000 * 5 }, 480 .vco = { .min = 4000000, .max = 6000000 }, 481 .n = { .min = 1, .max = 7 }, 482 .m1 = { .min = 2, .max = 3 }, 483 .m2 = { .min = 11, .max = 156 }, 484 .p1 = { .min = 2, .max = 3 }, 485 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ 486 }; 487 488 static const struct intel_limit intel_limits_chv = { 489 /* 490 * These are the data rate limits (measured in fast clocks) 491 * since those are the strictest limits we have. The fast 492 * clock and actual rate limits are more relaxed, so checking 493 * them would make no difference. 494 */ 495 .dot = { .min = 25000 * 5, .max = 540000 * 5}, 496 .vco = { .min = 4800000, .max = 6480000 }, 497 .n = { .min = 1, .max = 1 }, 498 .m1 = { .min = 2, .max = 2 }, 499 .m2 = { .min = 24 << 22, .max = 175 << 22 }, 500 .p1 = { .min = 2, .max = 4 }, 501 .p2 = { .p2_slow = 1, .p2_fast = 14 }, 502 }; 503 504 static const struct intel_limit intel_limits_bxt = { 505 /* FIXME: find real dot limits */ 506 .dot = { .min = 0, .max = INT_MAX }, 507 .vco = { .min = 4800000, .max = 6700000 }, 508 .n = { .min = 1, .max = 1 }, 509 .m1 = { .min = 2, .max = 2 }, 510 /* FIXME: find real m2 limits */ 511 .m2 = { .min = 2 << 22, .max = 255 << 22 }, 512 .p1 = { .min = 2, .max = 4 }, 513 .p2 = { .p2_slow = 1, .p2_fast = 20 }, 514 }; 515 516 /* WA Display #0827: Gen9:all */ 517 static void 518 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) 519 { 520 if (enable) 521 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 522 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); 523 else 524 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 525 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 526 } 527 528 /* Wa_2006604312:icl */ 529 static void 530 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 531 bool enable) 532 { 533 if (enable) 534 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 535 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 536 else 537 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 538 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 539 } 540 541 static bool 542 needs_modeset(const struct intel_crtc_state *state) 543 { 544 return drm_atomic_crtc_needs_modeset(&state->uapi); 545 } 546 547 bool 548 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 549 { 550 return (crtc_state->master_transcoder != INVALID_TRANSCODER || 551 crtc_state->sync_mode_slaves_mask); 552 } 553 554 static bool 555 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) 556 { 557 return crtc_state->master_transcoder != INVALID_TRANSCODER; 558 } 559 560 /* 561 * Platform specific helpers to calculate the port PLL loopback- (clock.m), 562 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast 563 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. 564 * The helpers' return value is the rate of the clock that is fed to the 565 * display engine's pipe which can be the above fast dot clock rate or a 566 * divided-down version of it. 567 */ 568 /* m1 is reserved as 0 in Pineview, n is a ring counter */ 569 static int pnv_calc_dpll_params(int refclk, struct dpll *clock) 570 { 571 clock->m = clock->m2 + 2; 572 clock->p = clock->p1 * clock->p2; 573 if (WARN_ON(clock->n == 0 || clock->p == 0)) 574 return 0; 575 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 576 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 577 578 return clock->dot; 579 } 580 581 static u32 i9xx_dpll_compute_m(struct dpll *dpll) 582 { 583 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); 584 } 585 586 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock) 587 { 588 clock->m = i9xx_dpll_compute_m(clock); 589 clock->p = clock->p1 * clock->p2; 590 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) 591 return 0; 592 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); 593 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 594 595 return clock->dot; 596 } 597 598 static int vlv_calc_dpll_params(int refclk, struct dpll *clock) 599 { 600 clock->m = clock->m1 * clock->m2; 601 clock->p = clock->p1 * clock->p2; 602 if (WARN_ON(clock->n == 0 || clock->p == 0)) 603 return 0; 604 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 605 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 606 607 return clock->dot / 5; 608 } 609 610 int chv_calc_dpll_params(int refclk, struct dpll *clock) 611 { 612 clock->m = clock->m1 * clock->m2; 613 clock->p = clock->p1 * clock->p2; 614 if (WARN_ON(clock->n == 0 || clock->p == 0)) 615 return 0; 616 clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), 617 clock->n << 22); 618 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 619 620 return clock->dot / 5; 621 } 622 623 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0) 624 625 /* 626 * Returns whether the given set of divisors are valid for a given refclk with 627 * the given connectors. 628 */ 629 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv, 630 const struct intel_limit *limit, 631 const struct dpll *clock) 632 { 633 if (clock->n < limit->n.min || limit->n.max < clock->n) 634 INTELPllInvalid("n out of range\n"); 635 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) 636 INTELPllInvalid("p1 out of range\n"); 637 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) 638 INTELPllInvalid("m2 out of range\n"); 639 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) 640 INTELPllInvalid("m1 out of range\n"); 641 642 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) && 643 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv)) 644 if (clock->m1 <= clock->m2) 645 INTELPllInvalid("m1 <= m2\n"); 646 647 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 648 !IS_GEN9_LP(dev_priv)) { 649 if (clock->p < limit->p.min || limit->p.max < clock->p) 650 INTELPllInvalid("p out of range\n"); 651 if (clock->m < limit->m.min || limit->m.max < clock->m) 652 INTELPllInvalid("m out of range\n"); 653 } 654 655 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) 656 INTELPllInvalid("vco out of range\n"); 657 /* XXX: We may need to be checking "Dot clock" depending on the multiplier, 658 * connector, etc., rather than just a single range. 659 */ 660 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) 661 INTELPllInvalid("dot out of range\n"); 662 663 return true; 664 } 665 666 static int 667 i9xx_select_p2_div(const struct intel_limit *limit, 668 const struct intel_crtc_state *crtc_state, 669 int target) 670 { 671 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 672 673 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 674 /* 675 * For LVDS just rely on its current settings for dual-channel. 676 * We haven't figured out how to reliably set up different 677 * single/dual channel state, if we even can. 678 */ 679 if (intel_is_dual_link_lvds(dev_priv)) 680 return limit->p2.p2_fast; 681 else 682 return limit->p2.p2_slow; 683 } else { 684 if (target < limit->p2.dot_limit) 685 return limit->p2.p2_slow; 686 else 687 return limit->p2.p2_fast; 688 } 689 } 690 691 /* 692 * Returns a set of divisors for the desired target clock with the given 693 * refclk, or FALSE. The returned values represent the clock equation: 694 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 695 * 696 * Target and reference clocks are specified in kHz. 697 * 698 * If match_clock is provided, then best_clock P divider must match the P 699 * divider from @match_clock used for LVDS downclocking. 700 */ 701 static bool 702 i9xx_find_best_dpll(const struct intel_limit *limit, 703 struct intel_crtc_state *crtc_state, 704 int target, int refclk, struct dpll *match_clock, 705 struct dpll *best_clock) 706 { 707 struct drm_device *dev = crtc_state->uapi.crtc->dev; 708 struct dpll clock; 709 int err = target; 710 711 memset(best_clock, 0, sizeof(*best_clock)); 712 713 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 714 715 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 716 clock.m1++) { 717 for (clock.m2 = limit->m2.min; 718 clock.m2 <= limit->m2.max; clock.m2++) { 719 if (clock.m2 >= clock.m1) 720 break; 721 for (clock.n = limit->n.min; 722 clock.n <= limit->n.max; clock.n++) { 723 for (clock.p1 = limit->p1.min; 724 clock.p1 <= limit->p1.max; clock.p1++) { 725 int this_err; 726 727 i9xx_calc_dpll_params(refclk, &clock); 728 if (!intel_PLL_is_valid(to_i915(dev), 729 limit, 730 &clock)) 731 continue; 732 if (match_clock && 733 clock.p != match_clock->p) 734 continue; 735 736 this_err = abs(clock.dot - target); 737 if (this_err < err) { 738 *best_clock = clock; 739 err = this_err; 740 } 741 } 742 } 743 } 744 } 745 746 return (err != target); 747 } 748 749 /* 750 * Returns a set of divisors for the desired target clock with the given 751 * refclk, or FALSE. The returned values represent the clock equation: 752 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 753 * 754 * Target and reference clocks are specified in kHz. 755 * 756 * If match_clock is provided, then best_clock P divider must match the P 757 * divider from @match_clock used for LVDS downclocking. 758 */ 759 static bool 760 pnv_find_best_dpll(const struct intel_limit *limit, 761 struct intel_crtc_state *crtc_state, 762 int target, int refclk, struct dpll *match_clock, 763 struct dpll *best_clock) 764 { 765 struct drm_device *dev = crtc_state->uapi.crtc->dev; 766 struct dpll clock; 767 int err = target; 768 769 memset(best_clock, 0, sizeof(*best_clock)); 770 771 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 772 773 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 774 clock.m1++) { 775 for (clock.m2 = limit->m2.min; 776 clock.m2 <= limit->m2.max; clock.m2++) { 777 for (clock.n = limit->n.min; 778 clock.n <= limit->n.max; clock.n++) { 779 for (clock.p1 = limit->p1.min; 780 clock.p1 <= limit->p1.max; clock.p1++) { 781 int this_err; 782 783 pnv_calc_dpll_params(refclk, &clock); 784 if (!intel_PLL_is_valid(to_i915(dev), 785 limit, 786 &clock)) 787 continue; 788 if (match_clock && 789 clock.p != match_clock->p) 790 continue; 791 792 this_err = abs(clock.dot - target); 793 if (this_err < err) { 794 *best_clock = clock; 795 err = this_err; 796 } 797 } 798 } 799 } 800 } 801 802 return (err != target); 803 } 804 805 /* 806 * Returns a set of divisors for the desired target clock with the given 807 * refclk, or FALSE. The returned values represent the clock equation: 808 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 809 * 810 * Target and reference clocks are specified in kHz. 811 * 812 * If match_clock is provided, then best_clock P divider must match the P 813 * divider from @match_clock used for LVDS downclocking. 814 */ 815 static bool 816 g4x_find_best_dpll(const struct intel_limit *limit, 817 struct intel_crtc_state *crtc_state, 818 int target, int refclk, struct dpll *match_clock, 819 struct dpll *best_clock) 820 { 821 struct drm_device *dev = crtc_state->uapi.crtc->dev; 822 struct dpll clock; 823 int max_n; 824 bool found = false; 825 /* approximately equals target * 0.00585 */ 826 int err_most = (target >> 8) + (target >> 9); 827 828 memset(best_clock, 0, sizeof(*best_clock)); 829 830 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 831 832 max_n = limit->n.max; 833 /* based on hardware requirement, prefer smaller n to precision */ 834 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 835 /* based on hardware requirement, prefere larger m1,m2 */ 836 for (clock.m1 = limit->m1.max; 837 clock.m1 >= limit->m1.min; clock.m1--) { 838 for (clock.m2 = limit->m2.max; 839 clock.m2 >= limit->m2.min; clock.m2--) { 840 for (clock.p1 = limit->p1.max; 841 clock.p1 >= limit->p1.min; clock.p1--) { 842 int this_err; 843 844 i9xx_calc_dpll_params(refclk, &clock); 845 if (!intel_PLL_is_valid(to_i915(dev), 846 limit, 847 &clock)) 848 continue; 849 850 this_err = abs(clock.dot - target); 851 if (this_err < err_most) { 852 *best_clock = clock; 853 err_most = this_err; 854 max_n = clock.n; 855 found = true; 856 } 857 } 858 } 859 } 860 } 861 return found; 862 } 863 864 /* 865 * Check if the calculated PLL configuration is more optimal compared to the 866 * best configuration and error found so far. Return the calculated error. 867 */ 868 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, 869 const struct dpll *calculated_clock, 870 const struct dpll *best_clock, 871 unsigned int best_error_ppm, 872 unsigned int *error_ppm) 873 { 874 /* 875 * For CHV ignore the error and consider only the P value. 876 * Prefer a bigger P value based on HW requirements. 877 */ 878 if (IS_CHERRYVIEW(to_i915(dev))) { 879 *error_ppm = 0; 880 881 return calculated_clock->p > best_clock->p; 882 } 883 884 if (drm_WARN_ON_ONCE(dev, !target_freq)) 885 return false; 886 887 *error_ppm = div_u64(1000000ULL * 888 abs(target_freq - calculated_clock->dot), 889 target_freq); 890 /* 891 * Prefer a better P value over a better (smaller) error if the error 892 * is small. Ensure this preference for future configurations too by 893 * setting the error to 0. 894 */ 895 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { 896 *error_ppm = 0; 897 898 return true; 899 } 900 901 return *error_ppm + 10 < best_error_ppm; 902 } 903 904 /* 905 * Returns a set of divisors for the desired target clock with the given 906 * refclk, or FALSE. The returned values represent the clock equation: 907 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 908 */ 909 static bool 910 vlv_find_best_dpll(const struct intel_limit *limit, 911 struct intel_crtc_state *crtc_state, 912 int target, int refclk, struct dpll *match_clock, 913 struct dpll *best_clock) 914 { 915 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 916 struct drm_device *dev = crtc->base.dev; 917 struct dpll clock; 918 unsigned int bestppm = 1000000; 919 /* min update 19.2 MHz */ 920 int max_n = min(limit->n.max, refclk / 19200); 921 bool found = false; 922 923 target *= 5; /* fast clock */ 924 925 memset(best_clock, 0, sizeof(*best_clock)); 926 927 /* based on hardware requirement, prefer smaller n to precision */ 928 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 929 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 930 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; 931 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 932 clock.p = clock.p1 * clock.p2; 933 /* based on hardware requirement, prefer bigger m1,m2 values */ 934 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { 935 unsigned int ppm; 936 937 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, 938 refclk * clock.m1); 939 940 vlv_calc_dpll_params(refclk, &clock); 941 942 if (!intel_PLL_is_valid(to_i915(dev), 943 limit, 944 &clock)) 945 continue; 946 947 if (!vlv_PLL_is_optimal(dev, target, 948 &clock, 949 best_clock, 950 bestppm, &ppm)) 951 continue; 952 953 *best_clock = clock; 954 bestppm = ppm; 955 found = true; 956 } 957 } 958 } 959 } 960 961 return found; 962 } 963 964 /* 965 * Returns a set of divisors for the desired target clock with the given 966 * refclk, or FALSE. The returned values represent the clock equation: 967 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 968 */ 969 static bool 970 chv_find_best_dpll(const struct intel_limit *limit, 971 struct intel_crtc_state *crtc_state, 972 int target, int refclk, struct dpll *match_clock, 973 struct dpll *best_clock) 974 { 975 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 976 struct drm_device *dev = crtc->base.dev; 977 unsigned int best_error_ppm; 978 struct dpll clock; 979 u64 m2; 980 int found = false; 981 982 memset(best_clock, 0, sizeof(*best_clock)); 983 best_error_ppm = 1000000; 984 985 /* 986 * Based on hardware doc, the n always set to 1, and m1 always 987 * set to 2. If requires to support 200Mhz refclk, we need to 988 * revisit this because n may not 1 anymore. 989 */ 990 clock.n = 1, clock.m1 = 2; 991 target *= 5; /* fast clock */ 992 993 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 994 for (clock.p2 = limit->p2.p2_fast; 995 clock.p2 >= limit->p2.p2_slow; 996 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 997 unsigned int error_ppm; 998 999 clock.p = clock.p1 * clock.p2; 1000 1001 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, 1002 refclk * clock.m1); 1003 1004 if (m2 > INT_MAX/clock.m1) 1005 continue; 1006 1007 clock.m2 = m2; 1008 1009 chv_calc_dpll_params(refclk, &clock); 1010 1011 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock)) 1012 continue; 1013 1014 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, 1015 best_error_ppm, &error_ppm)) 1016 continue; 1017 1018 *best_clock = clock; 1019 best_error_ppm = error_ppm; 1020 found = true; 1021 } 1022 } 1023 1024 return found; 1025 } 1026 1027 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, 1028 struct dpll *best_clock) 1029 { 1030 int refclk = 100000; 1031 const struct intel_limit *limit = &intel_limits_bxt; 1032 1033 return chv_find_best_dpll(limit, crtc_state, 1034 crtc_state->port_clock, refclk, 1035 NULL, best_clock); 1036 } 1037 1038 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 1039 enum pipe pipe) 1040 { 1041 i915_reg_t reg = PIPEDSL(pipe); 1042 u32 line1, line2; 1043 u32 line_mask; 1044 1045 if (IS_GEN(dev_priv, 2)) 1046 line_mask = DSL_LINEMASK_GEN2; 1047 else 1048 line_mask = DSL_LINEMASK_GEN3; 1049 1050 line1 = intel_de_read(dev_priv, reg) & line_mask; 1051 msleep(5); 1052 line2 = intel_de_read(dev_priv, reg) & line_mask; 1053 1054 return line1 != line2; 1055 } 1056 1057 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 1058 { 1059 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1060 enum pipe pipe = crtc->pipe; 1061 1062 /* Wait for the display line to settle/start moving */ 1063 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 1064 drm_err(&dev_priv->drm, 1065 "pipe %c scanline %s wait timed out\n", 1066 pipe_name(pipe), onoff(state)); 1067 } 1068 1069 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 1070 { 1071 wait_for_pipe_scanline_moving(crtc, false); 1072 } 1073 1074 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 1075 { 1076 wait_for_pipe_scanline_moving(crtc, true); 1077 } 1078 1079 static void 1080 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 1081 { 1082 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1083 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1084 1085 if (INTEL_GEN(dev_priv) >= 4) { 1086 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1087 i915_reg_t reg = PIPECONF(cpu_transcoder); 1088 1089 /* Wait for the Pipe State to go off */ 1090 if (intel_de_wait_for_clear(dev_priv, reg, 1091 I965_PIPECONF_ACTIVE, 100)) 1092 drm_WARN(&dev_priv->drm, 1, 1093 "pipe_off wait timed out\n"); 1094 } else { 1095 intel_wait_for_pipe_scanline_stopped(crtc); 1096 } 1097 } 1098 1099 /* Only for pre-ILK configs */ 1100 void assert_pll(struct drm_i915_private *dev_priv, 1101 enum pipe pipe, bool state) 1102 { 1103 u32 val; 1104 bool cur_state; 1105 1106 val = intel_de_read(dev_priv, DPLL(pipe)); 1107 cur_state = !!(val & DPLL_VCO_ENABLE); 1108 I915_STATE_WARN(cur_state != state, 1109 "PLL state assertion failure (expected %s, current %s)\n", 1110 onoff(state), onoff(cur_state)); 1111 } 1112 1113 /* XXX: the dsi pll is shared between MIPI DSI ports */ 1114 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 1115 { 1116 u32 val; 1117 bool cur_state; 1118 1119 vlv_cck_get(dev_priv); 1120 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 1121 vlv_cck_put(dev_priv); 1122 1123 cur_state = val & DSI_PLL_VCO_EN; 1124 I915_STATE_WARN(cur_state != state, 1125 "DSI PLL state assertion failure (expected %s, current %s)\n", 1126 onoff(state), onoff(cur_state)); 1127 } 1128 1129 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 1130 enum pipe pipe, bool state) 1131 { 1132 bool cur_state; 1133 1134 if (HAS_DDI(dev_priv)) { 1135 /* 1136 * DDI does not have a specific FDI_TX register. 1137 * 1138 * FDI is never fed from EDP transcoder 1139 * so pipe->transcoder cast is fine here. 1140 */ 1141 enum transcoder cpu_transcoder = (enum transcoder)pipe; 1142 u32 val = intel_de_read(dev_priv, 1143 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 1144 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 1145 } else { 1146 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 1147 cur_state = !!(val & FDI_TX_ENABLE); 1148 } 1149 I915_STATE_WARN(cur_state != state, 1150 "FDI TX state assertion failure (expected %s, current %s)\n", 1151 onoff(state), onoff(cur_state)); 1152 } 1153 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 1154 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 1155 1156 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 1157 enum pipe pipe, bool state) 1158 { 1159 u32 val; 1160 bool cur_state; 1161 1162 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 1163 cur_state = !!(val & FDI_RX_ENABLE); 1164 I915_STATE_WARN(cur_state != state, 1165 "FDI RX state assertion failure (expected %s, current %s)\n", 1166 onoff(state), onoff(cur_state)); 1167 } 1168 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 1169 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 1170 1171 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 1172 enum pipe pipe) 1173 { 1174 u32 val; 1175 1176 /* ILK FDI PLL is always enabled */ 1177 if (IS_GEN(dev_priv, 5)) 1178 return; 1179 1180 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 1181 if (HAS_DDI(dev_priv)) 1182 return; 1183 1184 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 1185 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 1186 } 1187 1188 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 1189 enum pipe pipe, bool state) 1190 { 1191 u32 val; 1192 bool cur_state; 1193 1194 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 1195 cur_state = !!(val & FDI_RX_PLL_ENABLE); 1196 I915_STATE_WARN(cur_state != state, 1197 "FDI RX PLL assertion failure (expected %s, current %s)\n", 1198 onoff(state), onoff(cur_state)); 1199 } 1200 1201 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) 1202 { 1203 i915_reg_t pp_reg; 1204 u32 val; 1205 enum pipe panel_pipe = INVALID_PIPE; 1206 bool locked = true; 1207 1208 if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv))) 1209 return; 1210 1211 if (HAS_PCH_SPLIT(dev_priv)) { 1212 u32 port_sel; 1213 1214 pp_reg = PP_CONTROL(0); 1215 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1216 1217 switch (port_sel) { 1218 case PANEL_PORT_SELECT_LVDS: 1219 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); 1220 break; 1221 case PANEL_PORT_SELECT_DPA: 1222 intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); 1223 break; 1224 case PANEL_PORT_SELECT_DPC: 1225 intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); 1226 break; 1227 case PANEL_PORT_SELECT_DPD: 1228 intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); 1229 break; 1230 default: 1231 MISSING_CASE(port_sel); 1232 break; 1233 } 1234 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1235 /* presumably write lock depends on pipe, not port select */ 1236 pp_reg = PP_CONTROL(pipe); 1237 panel_pipe = pipe; 1238 } else { 1239 u32 port_sel; 1240 1241 pp_reg = PP_CONTROL(0); 1242 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1243 1244 drm_WARN_ON(&dev_priv->drm, 1245 port_sel != PANEL_PORT_SELECT_LVDS); 1246 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); 1247 } 1248 1249 val = intel_de_read(dev_priv, pp_reg); 1250 if (!(val & PANEL_POWER_ON) || 1251 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 1252 locked = false; 1253 1254 I915_STATE_WARN(panel_pipe == pipe && locked, 1255 "panel assertion failure, pipe %c regs locked\n", 1256 pipe_name(pipe)); 1257 } 1258 1259 void assert_pipe(struct drm_i915_private *dev_priv, 1260 enum transcoder cpu_transcoder, bool state) 1261 { 1262 bool cur_state; 1263 enum intel_display_power_domain power_domain; 1264 intel_wakeref_t wakeref; 1265 1266 /* we keep both pipes enabled on 830 */ 1267 if (IS_I830(dev_priv)) 1268 state = true; 1269 1270 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 1271 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 1272 if (wakeref) { 1273 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 1274 cur_state = !!(val & PIPECONF_ENABLE); 1275 1276 intel_display_power_put(dev_priv, power_domain, wakeref); 1277 } else { 1278 cur_state = false; 1279 } 1280 1281 I915_STATE_WARN(cur_state != state, 1282 "transcoder %s assertion failure (expected %s, current %s)\n", 1283 transcoder_name(cpu_transcoder), 1284 onoff(state), onoff(cur_state)); 1285 } 1286 1287 static void assert_plane(struct intel_plane *plane, bool state) 1288 { 1289 enum pipe pipe; 1290 bool cur_state; 1291 1292 cur_state = plane->get_hw_state(plane, &pipe); 1293 1294 I915_STATE_WARN(cur_state != state, 1295 "%s assertion failure (expected %s, current %s)\n", 1296 plane->base.name, onoff(state), onoff(cur_state)); 1297 } 1298 1299 #define assert_plane_enabled(p) assert_plane(p, true) 1300 #define assert_plane_disabled(p) assert_plane(p, false) 1301 1302 static void assert_planes_disabled(struct intel_crtc *crtc) 1303 { 1304 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1305 struct intel_plane *plane; 1306 1307 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 1308 assert_plane_disabled(plane); 1309 } 1310 1311 static void assert_vblank_disabled(struct drm_crtc *crtc) 1312 { 1313 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0)) 1314 drm_crtc_vblank_put(crtc); 1315 } 1316 1317 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 1318 enum pipe pipe) 1319 { 1320 u32 val; 1321 bool enabled; 1322 1323 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe)); 1324 enabled = !!(val & TRANS_ENABLE); 1325 I915_STATE_WARN(enabled, 1326 "transcoder assertion failed, should be off on pipe %c but is still active\n", 1327 pipe_name(pipe)); 1328 } 1329 1330 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 1331 enum pipe pipe, enum port port, 1332 i915_reg_t dp_reg) 1333 { 1334 enum pipe port_pipe; 1335 bool state; 1336 1337 state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 1338 1339 I915_STATE_WARN(state && port_pipe == pipe, 1340 "PCH DP %c enabled on transcoder %c, should be disabled\n", 1341 port_name(port), pipe_name(pipe)); 1342 1343 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1344 "IBX PCH DP %c still using transcoder B\n", 1345 port_name(port)); 1346 } 1347 1348 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 1349 enum pipe pipe, enum port port, 1350 i915_reg_t hdmi_reg) 1351 { 1352 enum pipe port_pipe; 1353 bool state; 1354 1355 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 1356 1357 I915_STATE_WARN(state && port_pipe == pipe, 1358 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 1359 port_name(port), pipe_name(pipe)); 1360 1361 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1362 "IBX PCH HDMI %c still using transcoder B\n", 1363 port_name(port)); 1364 } 1365 1366 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 1367 enum pipe pipe) 1368 { 1369 enum pipe port_pipe; 1370 1371 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 1372 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 1373 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 1374 1375 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 1376 port_pipe == pipe, 1377 "PCH VGA enabled on transcoder %c, should be disabled\n", 1378 pipe_name(pipe)); 1379 1380 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 1381 port_pipe == pipe, 1382 "PCH LVDS enabled on transcoder %c, should be disabled\n", 1383 pipe_name(pipe)); 1384 1385 /* PCH SDVOB multiplex with HDMIB */ 1386 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 1387 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 1388 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 1389 } 1390 1391 static void _vlv_enable_pll(struct intel_crtc *crtc, 1392 const struct intel_crtc_state *pipe_config) 1393 { 1394 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1395 enum pipe pipe = crtc->pipe; 1396 1397 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1398 intel_de_posting_read(dev_priv, DPLL(pipe)); 1399 udelay(150); 1400 1401 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1402 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe); 1403 } 1404 1405 static void vlv_enable_pll(struct intel_crtc *crtc, 1406 const struct intel_crtc_state *pipe_config) 1407 { 1408 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1409 enum pipe pipe = crtc->pipe; 1410 1411 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 1412 1413 /* PLL is protected by panel, make sure we can write it */ 1414 assert_panel_unlocked(dev_priv, pipe); 1415 1416 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1417 _vlv_enable_pll(crtc, pipe_config); 1418 1419 intel_de_write(dev_priv, DPLL_MD(pipe), 1420 pipe_config->dpll_hw_state.dpll_md); 1421 intel_de_posting_read(dev_priv, DPLL_MD(pipe)); 1422 } 1423 1424 1425 static void _chv_enable_pll(struct intel_crtc *crtc, 1426 const struct intel_crtc_state *pipe_config) 1427 { 1428 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1429 enum pipe pipe = crtc->pipe; 1430 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1431 u32 tmp; 1432 1433 vlv_dpio_get(dev_priv); 1434 1435 /* Enable back the 10bit clock to display controller */ 1436 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1437 tmp |= DPIO_DCLKP_EN; 1438 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp); 1439 1440 vlv_dpio_put(dev_priv); 1441 1442 /* 1443 * Need to wait > 100ns between dclkp clock enable bit and PLL enable. 1444 */ 1445 udelay(1); 1446 1447 /* Enable PLL */ 1448 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1449 1450 /* Check PLL is locked */ 1451 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1452 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe); 1453 } 1454 1455 static void chv_enable_pll(struct intel_crtc *crtc, 1456 const struct intel_crtc_state *pipe_config) 1457 { 1458 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1459 enum pipe pipe = crtc->pipe; 1460 1461 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 1462 1463 /* PLL is protected by panel, make sure we can write it */ 1464 assert_panel_unlocked(dev_priv, pipe); 1465 1466 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1467 _chv_enable_pll(crtc, pipe_config); 1468 1469 if (pipe != PIPE_A) { 1470 /* 1471 * WaPixelRepeatModeFixForC0:chv 1472 * 1473 * DPLLCMD is AWOL. Use chicken bits to propagate 1474 * the value from DPLLBMD to either pipe B or C. 1475 */ 1476 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); 1477 intel_de_write(dev_priv, DPLL_MD(PIPE_B), 1478 pipe_config->dpll_hw_state.dpll_md); 1479 intel_de_write(dev_priv, CBR4_VLV, 0); 1480 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md; 1481 1482 /* 1483 * DPLLB VGA mode also seems to cause problems. 1484 * We should always have it disabled. 1485 */ 1486 drm_WARN_ON(&dev_priv->drm, 1487 (intel_de_read(dev_priv, DPLL(PIPE_B)) & 1488 DPLL_VGA_MODE_DIS) == 0); 1489 } else { 1490 intel_de_write(dev_priv, DPLL_MD(pipe), 1491 pipe_config->dpll_hw_state.dpll_md); 1492 intel_de_posting_read(dev_priv, DPLL_MD(pipe)); 1493 } 1494 } 1495 1496 static bool i9xx_has_pps(struct drm_i915_private *dev_priv) 1497 { 1498 if (IS_I830(dev_priv)) 1499 return false; 1500 1501 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 1502 } 1503 1504 static void i9xx_enable_pll(struct intel_crtc *crtc, 1505 const struct intel_crtc_state *crtc_state) 1506 { 1507 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1508 i915_reg_t reg = DPLL(crtc->pipe); 1509 u32 dpll = crtc_state->dpll_hw_state.dpll; 1510 int i; 1511 1512 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 1513 1514 /* PLL is protected by panel, make sure we can write it */ 1515 if (i9xx_has_pps(dev_priv)) 1516 assert_panel_unlocked(dev_priv, crtc->pipe); 1517 1518 /* 1519 * Apparently we need to have VGA mode enabled prior to changing 1520 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 1521 * dividers, even though the register value does change. 1522 */ 1523 intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS); 1524 intel_de_write(dev_priv, reg, dpll); 1525 1526 /* Wait for the clocks to stabilize. */ 1527 intel_de_posting_read(dev_priv, reg); 1528 udelay(150); 1529 1530 if (INTEL_GEN(dev_priv) >= 4) { 1531 intel_de_write(dev_priv, DPLL_MD(crtc->pipe), 1532 crtc_state->dpll_hw_state.dpll_md); 1533 } else { 1534 /* The pixel multiplier can only be updated once the 1535 * DPLL is enabled and the clocks are stable. 1536 * 1537 * So write it again. 1538 */ 1539 intel_de_write(dev_priv, reg, dpll); 1540 } 1541 1542 /* We do this three times for luck */ 1543 for (i = 0; i < 3; i++) { 1544 intel_de_write(dev_priv, reg, dpll); 1545 intel_de_posting_read(dev_priv, reg); 1546 udelay(150); /* wait for warmup */ 1547 } 1548 } 1549 1550 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) 1551 { 1552 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1553 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1554 enum pipe pipe = crtc->pipe; 1555 1556 /* Don't disable pipe or pipe PLLs if needed */ 1557 if (IS_I830(dev_priv)) 1558 return; 1559 1560 /* Make sure the pipe isn't still relying on us */ 1561 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 1562 1563 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 1564 intel_de_posting_read(dev_priv, DPLL(pipe)); 1565 } 1566 1567 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1568 { 1569 u32 val; 1570 1571 /* Make sure the pipe isn't still relying on us */ 1572 assert_pipe_disabled(dev_priv, (enum transcoder)pipe); 1573 1574 val = DPLL_INTEGRATED_REF_CLK_VLV | 1575 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1576 if (pipe != PIPE_A) 1577 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1578 1579 intel_de_write(dev_priv, DPLL(pipe), val); 1580 intel_de_posting_read(dev_priv, DPLL(pipe)); 1581 } 1582 1583 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1584 { 1585 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1586 u32 val; 1587 1588 /* Make sure the pipe isn't still relying on us */ 1589 assert_pipe_disabled(dev_priv, (enum transcoder)pipe); 1590 1591 val = DPLL_SSC_REF_CLK_CHV | 1592 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1593 if (pipe != PIPE_A) 1594 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1595 1596 intel_de_write(dev_priv, DPLL(pipe), val); 1597 intel_de_posting_read(dev_priv, DPLL(pipe)); 1598 1599 vlv_dpio_get(dev_priv); 1600 1601 /* Disable 10bit clock to display controller */ 1602 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1603 val &= ~DPIO_DCLKP_EN; 1604 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val); 1605 1606 vlv_dpio_put(dev_priv); 1607 } 1608 1609 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 1610 struct intel_digital_port *dport, 1611 unsigned int expected_mask) 1612 { 1613 u32 port_mask; 1614 i915_reg_t dpll_reg; 1615 1616 switch (dport->base.port) { 1617 case PORT_B: 1618 port_mask = DPLL_PORTB_READY_MASK; 1619 dpll_reg = DPLL(0); 1620 break; 1621 case PORT_C: 1622 port_mask = DPLL_PORTC_READY_MASK; 1623 dpll_reg = DPLL(0); 1624 expected_mask <<= 4; 1625 break; 1626 case PORT_D: 1627 port_mask = DPLL_PORTD_READY_MASK; 1628 dpll_reg = DPIO_PHY_STATUS; 1629 break; 1630 default: 1631 BUG(); 1632 } 1633 1634 if (intel_de_wait_for_register(dev_priv, dpll_reg, 1635 port_mask, expected_mask, 1000)) 1636 drm_WARN(&dev_priv->drm, 1, 1637 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", 1638 dport->base.base.base.id, dport->base.base.name, 1639 intel_de_read(dev_priv, dpll_reg) & port_mask, 1640 expected_mask); 1641 } 1642 1643 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 1644 { 1645 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1646 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1647 enum pipe pipe = crtc->pipe; 1648 i915_reg_t reg; 1649 u32 val, pipeconf_val; 1650 1651 /* Make sure PCH DPLL is enabled */ 1652 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 1653 1654 /* FDI must be feeding us bits for PCH ports */ 1655 assert_fdi_tx_enabled(dev_priv, pipe); 1656 assert_fdi_rx_enabled(dev_priv, pipe); 1657 1658 if (HAS_PCH_CPT(dev_priv)) { 1659 reg = TRANS_CHICKEN2(pipe); 1660 val = intel_de_read(dev_priv, reg); 1661 /* 1662 * Workaround: Set the timing override bit 1663 * before enabling the pch transcoder. 1664 */ 1665 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1666 /* Configure frame start delay to match the CPU */ 1667 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 1668 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 1669 intel_de_write(dev_priv, reg, val); 1670 } 1671 1672 reg = PCH_TRANSCONF(pipe); 1673 val = intel_de_read(dev_priv, reg); 1674 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe)); 1675 1676 if (HAS_PCH_IBX(dev_priv)) { 1677 /* Configure frame start delay to match the CPU */ 1678 val &= ~TRANS_FRAME_START_DELAY_MASK; 1679 val |= TRANS_FRAME_START_DELAY(0); 1680 1681 /* 1682 * Make the BPC in transcoder be consistent with 1683 * that in pipeconf reg. For HDMI we must use 8bpc 1684 * here for both 8bpc and 12bpc. 1685 */ 1686 val &= ~PIPECONF_BPC_MASK; 1687 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1688 val |= PIPECONF_8BPC; 1689 else 1690 val |= pipeconf_val & PIPECONF_BPC_MASK; 1691 } 1692 1693 val &= ~TRANS_INTERLACE_MASK; 1694 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 1695 if (HAS_PCH_IBX(dev_priv) && 1696 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 1697 val |= TRANS_LEGACY_INTERLACED_ILK; 1698 else 1699 val |= TRANS_INTERLACED; 1700 } else { 1701 val |= TRANS_PROGRESSIVE; 1702 } 1703 1704 intel_de_write(dev_priv, reg, val | TRANS_ENABLE); 1705 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 1706 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n", 1707 pipe_name(pipe)); 1708 } 1709 1710 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 1711 enum transcoder cpu_transcoder) 1712 { 1713 u32 val, pipeconf_val; 1714 1715 /* FDI must be feeding us bits for PCH ports */ 1716 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 1717 assert_fdi_rx_enabled(dev_priv, PIPE_A); 1718 1719 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 1720 /* Workaround: set timing override bit. */ 1721 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1722 /* Configure frame start delay to match the CPU */ 1723 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 1724 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 1725 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 1726 1727 val = TRANS_ENABLE; 1728 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 1729 1730 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 1731 PIPECONF_INTERLACED_ILK) 1732 val |= TRANS_INTERLACED; 1733 else 1734 val |= TRANS_PROGRESSIVE; 1735 1736 intel_de_write(dev_priv, LPT_TRANSCONF, val); 1737 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 1738 TRANS_STATE_ENABLE, 100)) 1739 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n"); 1740 } 1741 1742 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv, 1743 enum pipe pipe) 1744 { 1745 i915_reg_t reg; 1746 u32 val; 1747 1748 /* FDI relies on the transcoder */ 1749 assert_fdi_tx_disabled(dev_priv, pipe); 1750 assert_fdi_rx_disabled(dev_priv, pipe); 1751 1752 /* Ports must be off as well */ 1753 assert_pch_ports_disabled(dev_priv, pipe); 1754 1755 reg = PCH_TRANSCONF(pipe); 1756 val = intel_de_read(dev_priv, reg); 1757 val &= ~TRANS_ENABLE; 1758 intel_de_write(dev_priv, reg, val); 1759 /* wait for PCH transcoder off, transcoder state */ 1760 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 1761 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n", 1762 pipe_name(pipe)); 1763 1764 if (HAS_PCH_CPT(dev_priv)) { 1765 /* Workaround: Clear the timing override chicken bit again. */ 1766 reg = TRANS_CHICKEN2(pipe); 1767 val = intel_de_read(dev_priv, reg); 1768 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1769 intel_de_write(dev_priv, reg, val); 1770 } 1771 } 1772 1773 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 1774 { 1775 u32 val; 1776 1777 val = intel_de_read(dev_priv, LPT_TRANSCONF); 1778 val &= ~TRANS_ENABLE; 1779 intel_de_write(dev_priv, LPT_TRANSCONF, val); 1780 /* wait for PCH transcoder off, transcoder state */ 1781 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 1782 TRANS_STATE_ENABLE, 50)) 1783 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n"); 1784 1785 /* Workaround: clear timing override bit. */ 1786 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 1787 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1788 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 1789 } 1790 1791 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 1792 { 1793 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1794 1795 if (HAS_PCH_LPT(dev_priv)) 1796 return PIPE_A; 1797 else 1798 return crtc->pipe; 1799 } 1800 1801 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state) 1802 { 1803 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1804 1805 /* 1806 * On i965gm the hardware frame counter reads 1807 * zero when the TV encoder is enabled :( 1808 */ 1809 if (IS_I965GM(dev_priv) && 1810 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT))) 1811 return 0; 1812 1813 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1814 return 0xffffffff; /* full 32 bit counter */ 1815 else if (INTEL_GEN(dev_priv) >= 3) 1816 return 0xffffff; /* only 24 bits of frame count */ 1817 else 1818 return 0; /* Gen2 doesn't have a hardware frame counter */ 1819 } 1820 1821 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state) 1822 { 1823 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1824 1825 assert_vblank_disabled(&crtc->base); 1826 drm_crtc_set_max_vblank_count(&crtc->base, 1827 intel_crtc_max_vblank_count(crtc_state)); 1828 drm_crtc_vblank_on(&crtc->base); 1829 } 1830 1831 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state) 1832 { 1833 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1834 1835 drm_crtc_vblank_off(&crtc->base); 1836 assert_vblank_disabled(&crtc->base); 1837 } 1838 1839 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) 1840 { 1841 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 1842 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1843 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 1844 enum pipe pipe = crtc->pipe; 1845 i915_reg_t reg; 1846 u32 val; 1847 1848 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe)); 1849 1850 assert_planes_disabled(crtc); 1851 1852 /* 1853 * A pipe without a PLL won't actually be able to drive bits from 1854 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 1855 * need the check. 1856 */ 1857 if (HAS_GMCH(dev_priv)) { 1858 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 1859 assert_dsi_pll_enabled(dev_priv); 1860 else 1861 assert_pll_enabled(dev_priv, pipe); 1862 } else { 1863 if (new_crtc_state->has_pch_encoder) { 1864 /* if driving the PCH, we need FDI enabled */ 1865 assert_fdi_rx_pll_enabled(dev_priv, 1866 intel_crtc_pch_transcoder(crtc)); 1867 assert_fdi_tx_pll_enabled(dev_priv, 1868 (enum pipe) cpu_transcoder); 1869 } 1870 /* FIXME: assert CPU port conditions for SNB+ */ 1871 } 1872 1873 trace_intel_pipe_enable(crtc); 1874 1875 reg = PIPECONF(cpu_transcoder); 1876 val = intel_de_read(dev_priv, reg); 1877 if (val & PIPECONF_ENABLE) { 1878 /* we keep both pipes enabled on 830 */ 1879 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv)); 1880 return; 1881 } 1882 1883 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE); 1884 intel_de_posting_read(dev_priv, reg); 1885 1886 /* 1887 * Until the pipe starts PIPEDSL reads will return a stale value, 1888 * which causes an apparent vblank timestamp jump when PIPEDSL 1889 * resets to its proper value. That also messes up the frame count 1890 * when it's derived from the timestamps. So let's wait for the 1891 * pipe to start properly before we call drm_crtc_vblank_on() 1892 */ 1893 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 1894 intel_wait_for_pipe_scanline_moving(crtc); 1895 } 1896 1897 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) 1898 { 1899 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1900 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1901 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1902 enum pipe pipe = crtc->pipe; 1903 i915_reg_t reg; 1904 u32 val; 1905 1906 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe)); 1907 1908 /* 1909 * Make sure planes won't keep trying to pump pixels to us, 1910 * or we might hang the display. 1911 */ 1912 assert_planes_disabled(crtc); 1913 1914 trace_intel_pipe_disable(crtc); 1915 1916 reg = PIPECONF(cpu_transcoder); 1917 val = intel_de_read(dev_priv, reg); 1918 if ((val & PIPECONF_ENABLE) == 0) 1919 return; 1920 1921 /* 1922 * Double wide has implications for planes 1923 * so best keep it disabled when not needed. 1924 */ 1925 if (old_crtc_state->double_wide) 1926 val &= ~PIPECONF_DOUBLE_WIDE; 1927 1928 /* Don't disable pipe or pipe PLLs if needed */ 1929 if (!IS_I830(dev_priv)) 1930 val &= ~PIPECONF_ENABLE; 1931 1932 intel_de_write(dev_priv, reg, val); 1933 if ((val & PIPECONF_ENABLE) == 0) 1934 intel_wait_for_pipe_off(old_crtc_state); 1935 } 1936 1937 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv) 1938 { 1939 return IS_GEN(dev_priv, 2) ? 2048 : 4096; 1940 } 1941 1942 static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane) 1943 { 1944 if (!is_ccs_modifier(fb->modifier)) 1945 return false; 1946 1947 return plane >= fb->format->num_planes / 2; 1948 } 1949 1950 static bool is_gen12_ccs_modifier(u64 modifier) 1951 { 1952 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS || 1953 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS; 1954 1955 } 1956 1957 static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane) 1958 { 1959 return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane); 1960 } 1961 1962 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane) 1963 { 1964 if (is_ccs_modifier(fb->modifier)) 1965 return is_ccs_plane(fb, plane); 1966 1967 return plane == 1; 1968 } 1969 1970 static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane) 1971 { 1972 WARN_ON(!is_ccs_modifier(fb->modifier) || 1973 (main_plane && main_plane >= fb->format->num_planes / 2)); 1974 1975 return fb->format->num_planes / 2 + main_plane; 1976 } 1977 1978 static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane) 1979 { 1980 WARN_ON(!is_ccs_modifier(fb->modifier) || 1981 ccs_plane < fb->format->num_planes / 2); 1982 1983 return ccs_plane - fb->format->num_planes / 2; 1984 } 1985 1986 /* Return either the main plane's CCS or - if not a CCS FB - UV plane */ 1987 int intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane) 1988 { 1989 if (is_ccs_modifier(fb->modifier)) 1990 return main_to_ccs_plane(fb, main_plane); 1991 1992 return 1; 1993 } 1994 1995 bool 1996 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info, 1997 uint64_t modifier) 1998 { 1999 return info->is_yuv && 2000 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2); 2001 } 2002 2003 static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb, 2004 int color_plane) 2005 { 2006 return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) && 2007 color_plane == 1; 2008 } 2009 2010 static unsigned int 2011 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) 2012 { 2013 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2014 unsigned int cpp = fb->format->cpp[color_plane]; 2015 2016 switch (fb->modifier) { 2017 case DRM_FORMAT_MOD_LINEAR: 2018 return intel_tile_size(dev_priv); 2019 case I915_FORMAT_MOD_X_TILED: 2020 if (IS_GEN(dev_priv, 2)) 2021 return 128; 2022 else 2023 return 512; 2024 case I915_FORMAT_MOD_Y_TILED_CCS: 2025 if (is_ccs_plane(fb, color_plane)) 2026 return 128; 2027 /* fall through */ 2028 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2029 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2030 if (is_ccs_plane(fb, color_plane)) 2031 return 64; 2032 /* fall through */ 2033 case I915_FORMAT_MOD_Y_TILED: 2034 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv)) 2035 return 128; 2036 else 2037 return 512; 2038 case I915_FORMAT_MOD_Yf_TILED_CCS: 2039 if (is_ccs_plane(fb, color_plane)) 2040 return 128; 2041 /* fall through */ 2042 case I915_FORMAT_MOD_Yf_TILED: 2043 switch (cpp) { 2044 case 1: 2045 return 64; 2046 case 2: 2047 case 4: 2048 return 128; 2049 case 8: 2050 case 16: 2051 return 256; 2052 default: 2053 MISSING_CASE(cpp); 2054 return cpp; 2055 } 2056 break; 2057 default: 2058 MISSING_CASE(fb->modifier); 2059 return cpp; 2060 } 2061 } 2062 2063 static unsigned int 2064 intel_tile_height(const struct drm_framebuffer *fb, int color_plane) 2065 { 2066 if (is_gen12_ccs_plane(fb, color_plane)) 2067 return 1; 2068 2069 return intel_tile_size(to_i915(fb->dev)) / 2070 intel_tile_width_bytes(fb, color_plane); 2071 } 2072 2073 /* Return the tile dimensions in pixel units */ 2074 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane, 2075 unsigned int *tile_width, 2076 unsigned int *tile_height) 2077 { 2078 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane); 2079 unsigned int cpp = fb->format->cpp[color_plane]; 2080 2081 *tile_width = tile_width_bytes / cpp; 2082 *tile_height = intel_tile_height(fb, color_plane); 2083 } 2084 2085 static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb, 2086 int color_plane) 2087 { 2088 unsigned int tile_width, tile_height; 2089 2090 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2091 2092 return fb->pitches[color_plane] * tile_height; 2093 } 2094 2095 unsigned int 2096 intel_fb_align_height(const struct drm_framebuffer *fb, 2097 int color_plane, unsigned int height) 2098 { 2099 unsigned int tile_height = intel_tile_height(fb, color_plane); 2100 2101 return ALIGN(height, tile_height); 2102 } 2103 2104 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 2105 { 2106 unsigned int size = 0; 2107 int i; 2108 2109 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 2110 size += rot_info->plane[i].width * rot_info->plane[i].height; 2111 2112 return size; 2113 } 2114 2115 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 2116 { 2117 unsigned int size = 0; 2118 int i; 2119 2120 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 2121 size += rem_info->plane[i].width * rem_info->plane[i].height; 2122 2123 return size; 2124 } 2125 2126 static void 2127 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, 2128 const struct drm_framebuffer *fb, 2129 unsigned int rotation) 2130 { 2131 view->type = I915_GGTT_VIEW_NORMAL; 2132 if (drm_rotation_90_or_270(rotation)) { 2133 view->type = I915_GGTT_VIEW_ROTATED; 2134 view->rotated = to_intel_framebuffer(fb)->rot_info; 2135 } 2136 } 2137 2138 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv) 2139 { 2140 if (IS_I830(dev_priv)) 2141 return 16 * 1024; 2142 else if (IS_I85X(dev_priv)) 2143 return 256; 2144 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) 2145 return 32; 2146 else 2147 return 4 * 1024; 2148 } 2149 2150 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 2151 { 2152 if (INTEL_GEN(dev_priv) >= 9) 2153 return 256 * 1024; 2154 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || 2155 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 2156 return 128 * 1024; 2157 else if (INTEL_GEN(dev_priv) >= 4) 2158 return 4 * 1024; 2159 else 2160 return 0; 2161 } 2162 2163 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, 2164 int color_plane) 2165 { 2166 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2167 2168 /* AUX_DIST needs only 4K alignment */ 2169 if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) || 2170 is_ccs_plane(fb, color_plane)) 2171 return 4096; 2172 2173 switch (fb->modifier) { 2174 case DRM_FORMAT_MOD_LINEAR: 2175 return intel_linear_alignment(dev_priv); 2176 case I915_FORMAT_MOD_X_TILED: 2177 if (INTEL_GEN(dev_priv) >= 9) 2178 return 256 * 1024; 2179 return 0; 2180 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2181 if (is_semiplanar_uv_plane(fb, color_plane)) 2182 return intel_tile_row_size(fb, color_plane); 2183 /* Fall-through */ 2184 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2185 return 16 * 1024; 2186 case I915_FORMAT_MOD_Y_TILED_CCS: 2187 case I915_FORMAT_MOD_Yf_TILED_CCS: 2188 case I915_FORMAT_MOD_Y_TILED: 2189 if (INTEL_GEN(dev_priv) >= 12 && 2190 is_semiplanar_uv_plane(fb, color_plane)) 2191 return intel_tile_row_size(fb, color_plane); 2192 /* Fall-through */ 2193 case I915_FORMAT_MOD_Yf_TILED: 2194 return 1 * 1024 * 1024; 2195 default: 2196 MISSING_CASE(fb->modifier); 2197 return 0; 2198 } 2199 } 2200 2201 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 2202 { 2203 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2204 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2205 2206 return INTEL_GEN(dev_priv) < 4 || 2207 (plane->has_fbc && 2208 plane_state->view.type == I915_GGTT_VIEW_NORMAL); 2209 } 2210 2211 struct i915_vma * 2212 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 2213 const struct i915_ggtt_view *view, 2214 bool uses_fence, 2215 unsigned long *out_flags) 2216 { 2217 struct drm_device *dev = fb->dev; 2218 struct drm_i915_private *dev_priv = to_i915(dev); 2219 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 2220 intel_wakeref_t wakeref; 2221 struct i915_vma *vma; 2222 unsigned int pinctl; 2223 u32 alignment; 2224 2225 if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj))) 2226 return ERR_PTR(-EINVAL); 2227 2228 alignment = intel_surf_alignment(fb, 0); 2229 if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment))) 2230 return ERR_PTR(-EINVAL); 2231 2232 /* Note that the w/a also requires 64 PTE of padding following the 2233 * bo. We currently fill all unused PTE with the shadow page and so 2234 * we should always have valid PTE following the scanout preventing 2235 * the VT-d warning. 2236 */ 2237 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) 2238 alignment = 256 * 1024; 2239 2240 /* 2241 * Global gtt pte registers are special registers which actually forward 2242 * writes to a chunk of system memory. Which means that there is no risk 2243 * that the register values disappear as soon as we call 2244 * intel_runtime_pm_put(), so it is correct to wrap only the 2245 * pin/unpin/fence and not more. 2246 */ 2247 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 2248 2249 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 2250 2251 /* 2252 * Valleyview is definitely limited to scanning out the first 2253 * 512MiB. Lets presume this behaviour was inherited from the 2254 * g4x display engine and that all earlier gen are similarly 2255 * limited. Testing suggests that it is a little more 2256 * complicated than this. For example, Cherryview appears quite 2257 * happy to scanout from anywhere within its global aperture. 2258 */ 2259 pinctl = 0; 2260 if (HAS_GMCH(dev_priv)) 2261 pinctl |= PIN_MAPPABLE; 2262 2263 vma = i915_gem_object_pin_to_display_plane(obj, 2264 alignment, view, pinctl); 2265 if (IS_ERR(vma)) 2266 goto err; 2267 2268 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { 2269 int ret; 2270 2271 /* 2272 * Install a fence for tiled scan-out. Pre-i965 always needs a 2273 * fence, whereas 965+ only requires a fence if using 2274 * framebuffer compression. For simplicity, we always, when 2275 * possible, install a fence as the cost is not that onerous. 2276 * 2277 * If we fail to fence the tiled scanout, then either the 2278 * modeset will reject the change (which is highly unlikely as 2279 * the affected systems, all but one, do not have unmappable 2280 * space) or we will not be able to enable full powersaving 2281 * techniques (also likely not to apply due to various limits 2282 * FBC and the like impose on the size of the buffer, which 2283 * presumably we violated anyway with this unmappable buffer). 2284 * Anyway, it is presumably better to stumble onwards with 2285 * something and try to run the system in a "less than optimal" 2286 * mode that matches the user configuration. 2287 */ 2288 ret = i915_vma_pin_fence(vma); 2289 if (ret != 0 && INTEL_GEN(dev_priv) < 4) { 2290 i915_gem_object_unpin_from_display_plane(vma); 2291 vma = ERR_PTR(ret); 2292 goto err; 2293 } 2294 2295 if (ret == 0 && vma->fence) 2296 *out_flags |= PLANE_HAS_FENCE; 2297 } 2298 2299 i915_vma_get(vma); 2300 err: 2301 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 2302 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 2303 return vma; 2304 } 2305 2306 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) 2307 { 2308 i915_gem_object_lock(vma->obj); 2309 if (flags & PLANE_HAS_FENCE) 2310 i915_vma_unpin_fence(vma); 2311 i915_gem_object_unpin_from_display_plane(vma); 2312 i915_gem_object_unlock(vma->obj); 2313 2314 i915_vma_put(vma); 2315 } 2316 2317 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane, 2318 unsigned int rotation) 2319 { 2320 if (drm_rotation_90_or_270(rotation)) 2321 return to_intel_framebuffer(fb)->rotated[color_plane].pitch; 2322 else 2323 return fb->pitches[color_plane]; 2324 } 2325 2326 /* 2327 * Convert the x/y offsets into a linear offset. 2328 * Only valid with 0/180 degree rotation, which is fine since linear 2329 * offset is only used with linear buffers on pre-hsw and tiled buffers 2330 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 2331 */ 2332 u32 intel_fb_xy_to_linear(int x, int y, 2333 const struct intel_plane_state *state, 2334 int color_plane) 2335 { 2336 const struct drm_framebuffer *fb = state->hw.fb; 2337 unsigned int cpp = fb->format->cpp[color_plane]; 2338 unsigned int pitch = state->color_plane[color_plane].stride; 2339 2340 return y * pitch + x * cpp; 2341 } 2342 2343 /* 2344 * Add the x/y offsets derived from fb->offsets[] to the user 2345 * specified plane src x/y offsets. The resulting x/y offsets 2346 * specify the start of scanout from the beginning of the gtt mapping. 2347 */ 2348 void intel_add_fb_offsets(int *x, int *y, 2349 const struct intel_plane_state *state, 2350 int color_plane) 2351 2352 { 2353 *x += state->color_plane[color_plane].x; 2354 *y += state->color_plane[color_plane].y; 2355 } 2356 2357 static u32 intel_adjust_tile_offset(int *x, int *y, 2358 unsigned int tile_width, 2359 unsigned int tile_height, 2360 unsigned int tile_size, 2361 unsigned int pitch_tiles, 2362 u32 old_offset, 2363 u32 new_offset) 2364 { 2365 unsigned int pitch_pixels = pitch_tiles * tile_width; 2366 unsigned int tiles; 2367 2368 WARN_ON(old_offset & (tile_size - 1)); 2369 WARN_ON(new_offset & (tile_size - 1)); 2370 WARN_ON(new_offset > old_offset); 2371 2372 tiles = (old_offset - new_offset) / tile_size; 2373 2374 *y += tiles / pitch_tiles * tile_height; 2375 *x += tiles % pitch_tiles * tile_width; 2376 2377 /* minimize x in case it got needlessly big */ 2378 *y += *x / pitch_pixels * tile_height; 2379 *x %= pitch_pixels; 2380 2381 return new_offset; 2382 } 2383 2384 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane) 2385 { 2386 return fb->modifier == DRM_FORMAT_MOD_LINEAR || 2387 is_gen12_ccs_plane(fb, color_plane); 2388 } 2389 2390 static u32 intel_adjust_aligned_offset(int *x, int *y, 2391 const struct drm_framebuffer *fb, 2392 int color_plane, 2393 unsigned int rotation, 2394 unsigned int pitch, 2395 u32 old_offset, u32 new_offset) 2396 { 2397 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2398 unsigned int cpp = fb->format->cpp[color_plane]; 2399 2400 drm_WARN_ON(&dev_priv->drm, new_offset > old_offset); 2401 2402 if (!is_surface_linear(fb, color_plane)) { 2403 unsigned int tile_size, tile_width, tile_height; 2404 unsigned int pitch_tiles; 2405 2406 tile_size = intel_tile_size(dev_priv); 2407 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2408 2409 if (drm_rotation_90_or_270(rotation)) { 2410 pitch_tiles = pitch / tile_height; 2411 swap(tile_width, tile_height); 2412 } else { 2413 pitch_tiles = pitch / (tile_width * cpp); 2414 } 2415 2416 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2417 tile_size, pitch_tiles, 2418 old_offset, new_offset); 2419 } else { 2420 old_offset += *y * pitch + *x * cpp; 2421 2422 *y = (old_offset - new_offset) / pitch; 2423 *x = ((old_offset - new_offset) - *y * pitch) / cpp; 2424 } 2425 2426 return new_offset; 2427 } 2428 2429 /* 2430 * Adjust the tile offset by moving the difference into 2431 * the x/y offsets. 2432 */ 2433 static u32 intel_plane_adjust_aligned_offset(int *x, int *y, 2434 const struct intel_plane_state *state, 2435 int color_plane, 2436 u32 old_offset, u32 new_offset) 2437 { 2438 return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane, 2439 state->hw.rotation, 2440 state->color_plane[color_plane].stride, 2441 old_offset, new_offset); 2442 } 2443 2444 /* 2445 * Computes the aligned offset to the base tile and adjusts 2446 * x, y. bytes per pixel is assumed to be a power-of-two. 2447 * 2448 * In the 90/270 rotated case, x and y are assumed 2449 * to be already rotated to match the rotated GTT view, and 2450 * pitch is the tile_height aligned framebuffer height. 2451 * 2452 * This function is used when computing the derived information 2453 * under intel_framebuffer, so using any of that information 2454 * here is not allowed. Anything under drm_framebuffer can be 2455 * used. This is why the user has to pass in the pitch since it 2456 * is specified in the rotated orientation. 2457 */ 2458 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv, 2459 int *x, int *y, 2460 const struct drm_framebuffer *fb, 2461 int color_plane, 2462 unsigned int pitch, 2463 unsigned int rotation, 2464 u32 alignment) 2465 { 2466 unsigned int cpp = fb->format->cpp[color_plane]; 2467 u32 offset, offset_aligned; 2468 2469 if (!is_surface_linear(fb, color_plane)) { 2470 unsigned int tile_size, tile_width, tile_height; 2471 unsigned int tile_rows, tiles, pitch_tiles; 2472 2473 tile_size = intel_tile_size(dev_priv); 2474 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2475 2476 if (drm_rotation_90_or_270(rotation)) { 2477 pitch_tiles = pitch / tile_height; 2478 swap(tile_width, tile_height); 2479 } else { 2480 pitch_tiles = pitch / (tile_width * cpp); 2481 } 2482 2483 tile_rows = *y / tile_height; 2484 *y %= tile_height; 2485 2486 tiles = *x / tile_width; 2487 *x %= tile_width; 2488 2489 offset = (tile_rows * pitch_tiles + tiles) * tile_size; 2490 2491 offset_aligned = offset; 2492 if (alignment) 2493 offset_aligned = rounddown(offset_aligned, alignment); 2494 2495 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2496 tile_size, pitch_tiles, 2497 offset, offset_aligned); 2498 } else { 2499 offset = *y * pitch + *x * cpp; 2500 offset_aligned = offset; 2501 if (alignment) { 2502 offset_aligned = rounddown(offset_aligned, alignment); 2503 *y = (offset % alignment) / pitch; 2504 *x = ((offset % alignment) - *y * pitch) / cpp; 2505 } else { 2506 *y = *x = 0; 2507 } 2508 } 2509 2510 return offset_aligned; 2511 } 2512 2513 static u32 intel_plane_compute_aligned_offset(int *x, int *y, 2514 const struct intel_plane_state *state, 2515 int color_plane) 2516 { 2517 struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane); 2518 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 2519 const struct drm_framebuffer *fb = state->hw.fb; 2520 unsigned int rotation = state->hw.rotation; 2521 int pitch = state->color_plane[color_plane].stride; 2522 u32 alignment; 2523 2524 if (intel_plane->id == PLANE_CURSOR) 2525 alignment = intel_cursor_alignment(dev_priv); 2526 else 2527 alignment = intel_surf_alignment(fb, color_plane); 2528 2529 return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane, 2530 pitch, rotation, alignment); 2531 } 2532 2533 /* Convert the fb->offset[] into x/y offsets */ 2534 static int intel_fb_offset_to_xy(int *x, int *y, 2535 const struct drm_framebuffer *fb, 2536 int color_plane) 2537 { 2538 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2539 unsigned int height; 2540 u32 alignment; 2541 2542 if (INTEL_GEN(dev_priv) >= 12 && 2543 is_semiplanar_uv_plane(fb, color_plane)) 2544 alignment = intel_tile_row_size(fb, color_plane); 2545 else if (fb->modifier != DRM_FORMAT_MOD_LINEAR) 2546 alignment = intel_tile_size(dev_priv); 2547 else 2548 alignment = 0; 2549 2550 if (alignment != 0 && fb->offsets[color_plane] % alignment) { 2551 drm_dbg_kms(&dev_priv->drm, 2552 "Misaligned offset 0x%08x for color plane %d\n", 2553 fb->offsets[color_plane], color_plane); 2554 return -EINVAL; 2555 } 2556 2557 height = drm_framebuffer_plane_height(fb->height, fb, color_plane); 2558 height = ALIGN(height, intel_tile_height(fb, color_plane)); 2559 2560 /* Catch potential overflows early */ 2561 if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]), 2562 fb->offsets[color_plane])) { 2563 drm_dbg_kms(&dev_priv->drm, 2564 "Bad offset 0x%08x or pitch %d for color plane %d\n", 2565 fb->offsets[color_plane], fb->pitches[color_plane], 2566 color_plane); 2567 return -ERANGE; 2568 } 2569 2570 *x = 0; 2571 *y = 0; 2572 2573 intel_adjust_aligned_offset(x, y, 2574 fb, color_plane, DRM_MODE_ROTATE_0, 2575 fb->pitches[color_plane], 2576 fb->offsets[color_plane], 0); 2577 2578 return 0; 2579 } 2580 2581 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) 2582 { 2583 switch (fb_modifier) { 2584 case I915_FORMAT_MOD_X_TILED: 2585 return I915_TILING_X; 2586 case I915_FORMAT_MOD_Y_TILED: 2587 case I915_FORMAT_MOD_Y_TILED_CCS: 2588 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2589 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2590 return I915_TILING_Y; 2591 default: 2592 return I915_TILING_NONE; 2593 } 2594 } 2595 2596 /* 2597 * From the Sky Lake PRM: 2598 * "The Color Control Surface (CCS) contains the compression status of 2599 * the cache-line pairs. The compression state of the cache-line pair 2600 * is specified by 2 bits in the CCS. Each CCS cache-line represents 2601 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 2602 * cache-line-pairs. CCS is always Y tiled." 2603 * 2604 * Since cache line pairs refers to horizontally adjacent cache lines, 2605 * each cache line in the CCS corresponds to an area of 32x16 cache 2606 * lines on the main surface. Since each pixel is 4 bytes, this gives 2607 * us a ratio of one byte in the CCS for each 8x16 pixels in the 2608 * main surface. 2609 */ 2610 static const struct drm_format_info skl_ccs_formats[] = { 2611 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 2612 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2613 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 2614 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2615 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 2616 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2617 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 2618 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2619 }; 2620 2621 /* 2622 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the 2623 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles 2624 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of 2625 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in 2626 * the main surface. 2627 */ 2628 static const struct drm_format_info gen12_ccs_formats[] = { 2629 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 2630 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2631 .hsub = 1, .vsub = 1, }, 2632 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 2633 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2634 .hsub = 1, .vsub = 1, }, 2635 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 2636 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2637 .hsub = 1, .vsub = 1, .has_alpha = true }, 2638 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 2639 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2640 .hsub = 1, .vsub = 1, .has_alpha = true }, 2641 { .format = DRM_FORMAT_YUYV, .num_planes = 2, 2642 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2643 .hsub = 2, .vsub = 1, .is_yuv = true }, 2644 { .format = DRM_FORMAT_YVYU, .num_planes = 2, 2645 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2646 .hsub = 2, .vsub = 1, .is_yuv = true }, 2647 { .format = DRM_FORMAT_UYVY, .num_planes = 2, 2648 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2649 .hsub = 2, .vsub = 1, .is_yuv = true }, 2650 { .format = DRM_FORMAT_VYUY, .num_planes = 2, 2651 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2652 .hsub = 2, .vsub = 1, .is_yuv = true }, 2653 { .format = DRM_FORMAT_NV12, .num_planes = 4, 2654 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 }, 2655 .hsub = 2, .vsub = 2, .is_yuv = true }, 2656 { .format = DRM_FORMAT_P010, .num_planes = 4, 2657 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2658 .hsub = 2, .vsub = 2, .is_yuv = true }, 2659 { .format = DRM_FORMAT_P012, .num_planes = 4, 2660 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2661 .hsub = 2, .vsub = 2, .is_yuv = true }, 2662 { .format = DRM_FORMAT_P016, .num_planes = 4, 2663 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2664 .hsub = 2, .vsub = 2, .is_yuv = true }, 2665 }; 2666 2667 static const struct drm_format_info * 2668 lookup_format_info(const struct drm_format_info formats[], 2669 int num_formats, u32 format) 2670 { 2671 int i; 2672 2673 for (i = 0; i < num_formats; i++) { 2674 if (formats[i].format == format) 2675 return &formats[i]; 2676 } 2677 2678 return NULL; 2679 } 2680 2681 static const struct drm_format_info * 2682 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 2683 { 2684 switch (cmd->modifier[0]) { 2685 case I915_FORMAT_MOD_Y_TILED_CCS: 2686 case I915_FORMAT_MOD_Yf_TILED_CCS: 2687 return lookup_format_info(skl_ccs_formats, 2688 ARRAY_SIZE(skl_ccs_formats), 2689 cmd->pixel_format); 2690 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2691 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2692 return lookup_format_info(gen12_ccs_formats, 2693 ARRAY_SIZE(gen12_ccs_formats), 2694 cmd->pixel_format); 2695 default: 2696 return NULL; 2697 } 2698 } 2699 2700 bool is_ccs_modifier(u64 modifier) 2701 { 2702 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS || 2703 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS || 2704 modifier == I915_FORMAT_MOD_Y_TILED_CCS || 2705 modifier == I915_FORMAT_MOD_Yf_TILED_CCS; 2706 } 2707 2708 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane) 2709 { 2710 return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)], 2711 512) * 64; 2712 } 2713 2714 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 2715 u32 pixel_format, u64 modifier) 2716 { 2717 struct intel_crtc *crtc; 2718 struct intel_plane *plane; 2719 2720 /* 2721 * We assume the primary plane for pipe A has 2722 * the highest stride limits of them all, 2723 * if in case pipe A is disabled, use the first pipe from pipe_mask. 2724 */ 2725 crtc = intel_get_first_crtc(dev_priv); 2726 if (!crtc) 2727 return 0; 2728 2729 plane = to_intel_plane(crtc->base.primary); 2730 2731 return plane->max_stride(plane, pixel_format, modifier, 2732 DRM_MODE_ROTATE_0); 2733 } 2734 2735 static 2736 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, 2737 u32 pixel_format, u64 modifier) 2738 { 2739 /* 2740 * Arbitrary limit for gen4+ chosen to match the 2741 * render engine max stride. 2742 * 2743 * The new CCS hash mode makes remapping impossible 2744 */ 2745 if (!is_ccs_modifier(modifier)) { 2746 if (INTEL_GEN(dev_priv) >= 7) 2747 return 256*1024; 2748 else if (INTEL_GEN(dev_priv) >= 4) 2749 return 128*1024; 2750 } 2751 2752 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); 2753 } 2754 2755 static u32 2756 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) 2757 { 2758 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2759 u32 tile_width; 2760 2761 if (is_surface_linear(fb, color_plane)) { 2762 u32 max_stride = intel_plane_fb_max_stride(dev_priv, 2763 fb->format->format, 2764 fb->modifier); 2765 2766 /* 2767 * To make remapping with linear generally feasible 2768 * we need the stride to be page aligned. 2769 */ 2770 if (fb->pitches[color_plane] > max_stride && 2771 !is_ccs_modifier(fb->modifier)) 2772 return intel_tile_size(dev_priv); 2773 else 2774 return 64; 2775 } 2776 2777 tile_width = intel_tile_width_bytes(fb, color_plane); 2778 if (is_ccs_modifier(fb->modifier)) { 2779 /* 2780 * Display WA #0531: skl,bxt,kbl,glk 2781 * 2782 * Render decompression and plane width > 3840 2783 * combined with horizontal panning requires the 2784 * plane stride to be a multiple of 4. We'll just 2785 * require the entire fb to accommodate that to avoid 2786 * potential runtime errors at plane configuration time. 2787 */ 2788 if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840) 2789 tile_width *= 4; 2790 /* 2791 * The main surface pitch must be padded to a multiple of four 2792 * tile widths. 2793 */ 2794 else if (INTEL_GEN(dev_priv) >= 12) 2795 tile_width *= 4; 2796 } 2797 return tile_width; 2798 } 2799 2800 bool intel_plane_can_remap(const struct intel_plane_state *plane_state) 2801 { 2802 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2803 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2804 const struct drm_framebuffer *fb = plane_state->hw.fb; 2805 int i; 2806 2807 /* We don't want to deal with remapping with cursors */ 2808 if (plane->id == PLANE_CURSOR) 2809 return false; 2810 2811 /* 2812 * The display engine limits already match/exceed the 2813 * render engine limits, so not much point in remapping. 2814 * Would also need to deal with the fence POT alignment 2815 * and gen2 2KiB GTT tile size. 2816 */ 2817 if (INTEL_GEN(dev_priv) < 4) 2818 return false; 2819 2820 /* 2821 * The new CCS hash mode isn't compatible with remapping as 2822 * the virtual address of the pages affects the compressed data. 2823 */ 2824 if (is_ccs_modifier(fb->modifier)) 2825 return false; 2826 2827 /* Linear needs a page aligned stride for remapping */ 2828 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) { 2829 unsigned int alignment = intel_tile_size(dev_priv) - 1; 2830 2831 for (i = 0; i < fb->format->num_planes; i++) { 2832 if (fb->pitches[i] & alignment) 2833 return false; 2834 } 2835 } 2836 2837 return true; 2838 } 2839 2840 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state) 2841 { 2842 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2843 const struct drm_framebuffer *fb = plane_state->hw.fb; 2844 unsigned int rotation = plane_state->hw.rotation; 2845 u32 stride, max_stride; 2846 2847 /* 2848 * No remapping for invisible planes since we don't have 2849 * an actual source viewport to remap. 2850 */ 2851 if (!plane_state->uapi.visible) 2852 return false; 2853 2854 if (!intel_plane_can_remap(plane_state)) 2855 return false; 2856 2857 /* 2858 * FIXME: aux plane limits on gen9+ are 2859 * unclear in Bspec, for now no checking. 2860 */ 2861 stride = intel_fb_pitch(fb, 0, rotation); 2862 max_stride = plane->max_stride(plane, fb->format->format, 2863 fb->modifier, rotation); 2864 2865 return stride > max_stride; 2866 } 2867 2868 static void 2869 intel_fb_plane_get_subsampling(int *hsub, int *vsub, 2870 const struct drm_framebuffer *fb, 2871 int color_plane) 2872 { 2873 int main_plane; 2874 2875 if (color_plane == 0) { 2876 *hsub = 1; 2877 *vsub = 1; 2878 2879 return; 2880 } 2881 2882 /* 2883 * TODO: Deduct the subsampling from the char block for all CCS 2884 * formats and planes. 2885 */ 2886 if (!is_gen12_ccs_plane(fb, color_plane)) { 2887 *hsub = fb->format->hsub; 2888 *vsub = fb->format->vsub; 2889 2890 return; 2891 } 2892 2893 main_plane = ccs_to_main_plane(fb, color_plane); 2894 *hsub = drm_format_info_block_width(fb->format, color_plane) / 2895 drm_format_info_block_width(fb->format, main_plane); 2896 2897 /* 2898 * The min stride check in the core framebuffer_check() function 2899 * assumes that format->hsub applies to every plane except for the 2900 * first plane. That's incorrect for the CCS AUX plane of the first 2901 * plane, but for the above check to pass we must define the block 2902 * width with that subsampling applied to it. Adjust the width here 2903 * accordingly, so we can calculate the actual subsampling factor. 2904 */ 2905 if (main_plane == 0) 2906 *hsub *= fb->format->hsub; 2907 2908 *vsub = 32; 2909 } 2910 static int 2911 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y) 2912 { 2913 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2914 int main_plane; 2915 int hsub, vsub; 2916 int tile_width, tile_height; 2917 int ccs_x, ccs_y; 2918 int main_x, main_y; 2919 2920 if (!is_ccs_plane(fb, ccs_plane)) 2921 return 0; 2922 2923 intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height); 2924 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 2925 2926 tile_width *= hsub; 2927 tile_height *= vsub; 2928 2929 ccs_x = (x * hsub) % tile_width; 2930 ccs_y = (y * vsub) % tile_height; 2931 2932 main_plane = ccs_to_main_plane(fb, ccs_plane); 2933 main_x = intel_fb->normal[main_plane].x % tile_width; 2934 main_y = intel_fb->normal[main_plane].y % tile_height; 2935 2936 /* 2937 * CCS doesn't have its own x/y offset register, so the intra CCS tile 2938 * x/y offsets must match between CCS and the main surface. 2939 */ 2940 if (main_x != ccs_x || main_y != ccs_y) { 2941 DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n", 2942 main_x, main_y, 2943 ccs_x, ccs_y, 2944 intel_fb->normal[main_plane].x, 2945 intel_fb->normal[main_plane].y, 2946 x, y); 2947 return -EINVAL; 2948 } 2949 2950 return 0; 2951 } 2952 2953 static void 2954 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane) 2955 { 2956 int main_plane = is_ccs_plane(fb, color_plane) ? 2957 ccs_to_main_plane(fb, color_plane) : 0; 2958 int main_hsub, main_vsub; 2959 int hsub, vsub; 2960 2961 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane); 2962 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane); 2963 *w = fb->width / main_hsub / hsub; 2964 *h = fb->height / main_vsub / vsub; 2965 } 2966 2967 /* 2968 * Setup the rotated view for an FB plane and return the size the GTT mapping 2969 * requires for this view. 2970 */ 2971 static u32 2972 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info, 2973 u32 gtt_offset_rotated, int x, int y, 2974 unsigned int width, unsigned int height, 2975 unsigned int tile_size, 2976 unsigned int tile_width, unsigned int tile_height, 2977 struct drm_framebuffer *fb) 2978 { 2979 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2980 struct intel_rotation_info *rot_info = &intel_fb->rot_info; 2981 unsigned int pitch_tiles; 2982 struct drm_rect r; 2983 2984 /* Y or Yf modifiers required for 90/270 rotation */ 2985 if (fb->modifier != I915_FORMAT_MOD_Y_TILED && 2986 fb->modifier != I915_FORMAT_MOD_Yf_TILED) 2987 return 0; 2988 2989 if (WARN_ON(plane >= ARRAY_SIZE(rot_info->plane))) 2990 return 0; 2991 2992 rot_info->plane[plane] = *plane_info; 2993 2994 intel_fb->rotated[plane].pitch = plane_info->height * tile_height; 2995 2996 /* rotate the x/y offsets to match the GTT view */ 2997 drm_rect_init(&r, x, y, width, height); 2998 drm_rect_rotate(&r, 2999 plane_info->width * tile_width, 3000 plane_info->height * tile_height, 3001 DRM_MODE_ROTATE_270); 3002 x = r.x1; 3003 y = r.y1; 3004 3005 /* rotate the tile dimensions to match the GTT view */ 3006 pitch_tiles = intel_fb->rotated[plane].pitch / tile_height; 3007 swap(tile_width, tile_height); 3008 3009 /* 3010 * We only keep the x/y offsets, so push all of the 3011 * gtt offset into the x/y offsets. 3012 */ 3013 intel_adjust_tile_offset(&x, &y, 3014 tile_width, tile_height, 3015 tile_size, pitch_tiles, 3016 gtt_offset_rotated * tile_size, 0); 3017 3018 /* 3019 * First pixel of the framebuffer from 3020 * the start of the rotated gtt mapping. 3021 */ 3022 intel_fb->rotated[plane].x = x; 3023 intel_fb->rotated[plane].y = y; 3024 3025 return plane_info->width * plane_info->height; 3026 } 3027 3028 static int 3029 intel_fill_fb_info(struct drm_i915_private *dev_priv, 3030 struct drm_framebuffer *fb) 3031 { 3032 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 3033 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 3034 u32 gtt_offset_rotated = 0; 3035 unsigned int max_size = 0; 3036 int i, num_planes = fb->format->num_planes; 3037 unsigned int tile_size = intel_tile_size(dev_priv); 3038 3039 for (i = 0; i < num_planes; i++) { 3040 unsigned int width, height; 3041 unsigned int cpp, size; 3042 u32 offset; 3043 int x, y; 3044 int ret; 3045 3046 cpp = fb->format->cpp[i]; 3047 intel_fb_plane_dims(&width, &height, fb, i); 3048 3049 ret = intel_fb_offset_to_xy(&x, &y, fb, i); 3050 if (ret) { 3051 drm_dbg_kms(&dev_priv->drm, 3052 "bad fb plane %d offset: 0x%x\n", 3053 i, fb->offsets[i]); 3054 return ret; 3055 } 3056 3057 ret = intel_fb_check_ccs_xy(fb, i, x, y); 3058 if (ret) 3059 return ret; 3060 3061 /* 3062 * The fence (if used) is aligned to the start of the object 3063 * so having the framebuffer wrap around across the edge of the 3064 * fenced region doesn't really work. We have no API to configure 3065 * the fence start offset within the object (nor could we probably 3066 * on gen2/3). So it's just easier if we just require that the 3067 * fb layout agrees with the fence layout. We already check that the 3068 * fb stride matches the fence stride elsewhere. 3069 */ 3070 if (i == 0 && i915_gem_object_is_tiled(obj) && 3071 (x + width) * cpp > fb->pitches[i]) { 3072 drm_dbg_kms(&dev_priv->drm, 3073 "bad fb plane %d offset: 0x%x\n", 3074 i, fb->offsets[i]); 3075 return -EINVAL; 3076 } 3077 3078 /* 3079 * First pixel of the framebuffer from 3080 * the start of the normal gtt mapping. 3081 */ 3082 intel_fb->normal[i].x = x; 3083 intel_fb->normal[i].y = y; 3084 3085 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i, 3086 fb->pitches[i], 3087 DRM_MODE_ROTATE_0, 3088 tile_size); 3089 offset /= tile_size; 3090 3091 if (!is_surface_linear(fb, i)) { 3092 struct intel_remapped_plane_info plane_info; 3093 unsigned int tile_width, tile_height; 3094 3095 intel_tile_dims(fb, i, &tile_width, &tile_height); 3096 3097 plane_info.offset = offset; 3098 plane_info.stride = DIV_ROUND_UP(fb->pitches[i], 3099 tile_width * cpp); 3100 plane_info.width = DIV_ROUND_UP(x + width, tile_width); 3101 plane_info.height = DIV_ROUND_UP(y + height, 3102 tile_height); 3103 3104 /* how many tiles does this plane need */ 3105 size = plane_info.stride * plane_info.height; 3106 /* 3107 * If the plane isn't horizontally tile aligned, 3108 * we need one more tile. 3109 */ 3110 if (x != 0) 3111 size++; 3112 3113 gtt_offset_rotated += 3114 setup_fb_rotation(i, &plane_info, 3115 gtt_offset_rotated, 3116 x, y, width, height, 3117 tile_size, 3118 tile_width, tile_height, 3119 fb); 3120 } else { 3121 size = DIV_ROUND_UP((y + height) * fb->pitches[i] + 3122 x * cpp, tile_size); 3123 } 3124 3125 /* how many tiles in total needed in the bo */ 3126 max_size = max(max_size, offset + size); 3127 } 3128 3129 if (mul_u32_u32(max_size, tile_size) > obj->base.size) { 3130 drm_dbg_kms(&dev_priv->drm, 3131 "fb too big for bo (need %llu bytes, have %zu bytes)\n", 3132 mul_u32_u32(max_size, tile_size), obj->base.size); 3133 return -EINVAL; 3134 } 3135 3136 return 0; 3137 } 3138 3139 static void 3140 intel_plane_remap_gtt(struct intel_plane_state *plane_state) 3141 { 3142 struct drm_i915_private *dev_priv = 3143 to_i915(plane_state->uapi.plane->dev); 3144 struct drm_framebuffer *fb = plane_state->hw.fb; 3145 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 3146 struct intel_rotation_info *info = &plane_state->view.rotated; 3147 unsigned int rotation = plane_state->hw.rotation; 3148 int i, num_planes = fb->format->num_planes; 3149 unsigned int tile_size = intel_tile_size(dev_priv); 3150 unsigned int src_x, src_y; 3151 unsigned int src_w, src_h; 3152 u32 gtt_offset = 0; 3153 3154 memset(&plane_state->view, 0, sizeof(plane_state->view)); 3155 plane_state->view.type = drm_rotation_90_or_270(rotation) ? 3156 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED; 3157 3158 src_x = plane_state->uapi.src.x1 >> 16; 3159 src_y = plane_state->uapi.src.y1 >> 16; 3160 src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 3161 src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 3162 3163 drm_WARN_ON(&dev_priv->drm, is_ccs_modifier(fb->modifier)); 3164 3165 /* Make src coordinates relative to the viewport */ 3166 drm_rect_translate(&plane_state->uapi.src, 3167 -(src_x << 16), -(src_y << 16)); 3168 3169 /* Rotate src coordinates to match rotated GTT view */ 3170 if (drm_rotation_90_or_270(rotation)) 3171 drm_rect_rotate(&plane_state->uapi.src, 3172 src_w << 16, src_h << 16, 3173 DRM_MODE_ROTATE_270); 3174 3175 for (i = 0; i < num_planes; i++) { 3176 unsigned int hsub = i ? fb->format->hsub : 1; 3177 unsigned int vsub = i ? fb->format->vsub : 1; 3178 unsigned int cpp = fb->format->cpp[i]; 3179 unsigned int tile_width, tile_height; 3180 unsigned int width, height; 3181 unsigned int pitch_tiles; 3182 unsigned int x, y; 3183 u32 offset; 3184 3185 intel_tile_dims(fb, i, &tile_width, &tile_height); 3186 3187 x = src_x / hsub; 3188 y = src_y / vsub; 3189 width = src_w / hsub; 3190 height = src_h / vsub; 3191 3192 /* 3193 * First pixel of the src viewport from the 3194 * start of the normal gtt mapping. 3195 */ 3196 x += intel_fb->normal[i].x; 3197 y += intel_fb->normal[i].y; 3198 3199 offset = intel_compute_aligned_offset(dev_priv, &x, &y, 3200 fb, i, fb->pitches[i], 3201 DRM_MODE_ROTATE_0, tile_size); 3202 offset /= tile_size; 3203 3204 drm_WARN_ON(&dev_priv->drm, i >= ARRAY_SIZE(info->plane)); 3205 info->plane[i].offset = offset; 3206 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], 3207 tile_width * cpp); 3208 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width); 3209 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height); 3210 3211 if (drm_rotation_90_or_270(rotation)) { 3212 struct drm_rect r; 3213 3214 /* rotate the x/y offsets to match the GTT view */ 3215 drm_rect_init(&r, x, y, width, height); 3216 drm_rect_rotate(&r, 3217 info->plane[i].width * tile_width, 3218 info->plane[i].height * tile_height, 3219 DRM_MODE_ROTATE_270); 3220 x = r.x1; 3221 y = r.y1; 3222 3223 pitch_tiles = info->plane[i].height; 3224 plane_state->color_plane[i].stride = pitch_tiles * tile_height; 3225 3226 /* rotate the tile dimensions to match the GTT view */ 3227 swap(tile_width, tile_height); 3228 } else { 3229 pitch_tiles = info->plane[i].width; 3230 plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp; 3231 } 3232 3233 /* 3234 * We only keep the x/y offsets, so push all of the 3235 * gtt offset into the x/y offsets. 3236 */ 3237 intel_adjust_tile_offset(&x, &y, 3238 tile_width, tile_height, 3239 tile_size, pitch_tiles, 3240 gtt_offset * tile_size, 0); 3241 3242 gtt_offset += info->plane[i].width * info->plane[i].height; 3243 3244 plane_state->color_plane[i].offset = 0; 3245 plane_state->color_plane[i].x = x; 3246 plane_state->color_plane[i].y = y; 3247 } 3248 } 3249 3250 static int 3251 intel_plane_compute_gtt(struct intel_plane_state *plane_state) 3252 { 3253 const struct intel_framebuffer *fb = 3254 to_intel_framebuffer(plane_state->hw.fb); 3255 unsigned int rotation = plane_state->hw.rotation; 3256 int i, num_planes; 3257 3258 if (!fb) 3259 return 0; 3260 3261 num_planes = fb->base.format->num_planes; 3262 3263 if (intel_plane_needs_remap(plane_state)) { 3264 intel_plane_remap_gtt(plane_state); 3265 3266 /* 3267 * Sometimes even remapping can't overcome 3268 * the stride limitations :( Can happen with 3269 * big plane sizes and suitably misaligned 3270 * offsets. 3271 */ 3272 return intel_plane_check_stride(plane_state); 3273 } 3274 3275 intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation); 3276 3277 for (i = 0; i < num_planes; i++) { 3278 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation); 3279 plane_state->color_plane[i].offset = 0; 3280 3281 if (drm_rotation_90_or_270(rotation)) { 3282 plane_state->color_plane[i].x = fb->rotated[i].x; 3283 plane_state->color_plane[i].y = fb->rotated[i].y; 3284 } else { 3285 plane_state->color_plane[i].x = fb->normal[i].x; 3286 plane_state->color_plane[i].y = fb->normal[i].y; 3287 } 3288 } 3289 3290 /* Rotate src coordinates to match rotated GTT view */ 3291 if (drm_rotation_90_or_270(rotation)) 3292 drm_rect_rotate(&plane_state->uapi.src, 3293 fb->base.width << 16, fb->base.height << 16, 3294 DRM_MODE_ROTATE_270); 3295 3296 return intel_plane_check_stride(plane_state); 3297 } 3298 3299 static int i9xx_format_to_fourcc(int format) 3300 { 3301 switch (format) { 3302 case DISPPLANE_8BPP: 3303 return DRM_FORMAT_C8; 3304 case DISPPLANE_BGRA555: 3305 return DRM_FORMAT_ARGB1555; 3306 case DISPPLANE_BGRX555: 3307 return DRM_FORMAT_XRGB1555; 3308 case DISPPLANE_BGRX565: 3309 return DRM_FORMAT_RGB565; 3310 default: 3311 case DISPPLANE_BGRX888: 3312 return DRM_FORMAT_XRGB8888; 3313 case DISPPLANE_RGBX888: 3314 return DRM_FORMAT_XBGR8888; 3315 case DISPPLANE_BGRA888: 3316 return DRM_FORMAT_ARGB8888; 3317 case DISPPLANE_RGBA888: 3318 return DRM_FORMAT_ABGR8888; 3319 case DISPPLANE_BGRX101010: 3320 return DRM_FORMAT_XRGB2101010; 3321 case DISPPLANE_RGBX101010: 3322 return DRM_FORMAT_XBGR2101010; 3323 case DISPPLANE_BGRA101010: 3324 return DRM_FORMAT_ARGB2101010; 3325 case DISPPLANE_RGBA101010: 3326 return DRM_FORMAT_ABGR2101010; 3327 case DISPPLANE_RGBX161616: 3328 return DRM_FORMAT_XBGR16161616F; 3329 } 3330 } 3331 3332 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha) 3333 { 3334 switch (format) { 3335 case PLANE_CTL_FORMAT_RGB_565: 3336 return DRM_FORMAT_RGB565; 3337 case PLANE_CTL_FORMAT_NV12: 3338 return DRM_FORMAT_NV12; 3339 case PLANE_CTL_FORMAT_P010: 3340 return DRM_FORMAT_P010; 3341 case PLANE_CTL_FORMAT_P012: 3342 return DRM_FORMAT_P012; 3343 case PLANE_CTL_FORMAT_P016: 3344 return DRM_FORMAT_P016; 3345 case PLANE_CTL_FORMAT_Y210: 3346 return DRM_FORMAT_Y210; 3347 case PLANE_CTL_FORMAT_Y212: 3348 return DRM_FORMAT_Y212; 3349 case PLANE_CTL_FORMAT_Y216: 3350 return DRM_FORMAT_Y216; 3351 case PLANE_CTL_FORMAT_Y410: 3352 return DRM_FORMAT_XVYU2101010; 3353 case PLANE_CTL_FORMAT_Y412: 3354 return DRM_FORMAT_XVYU12_16161616; 3355 case PLANE_CTL_FORMAT_Y416: 3356 return DRM_FORMAT_XVYU16161616; 3357 default: 3358 case PLANE_CTL_FORMAT_XRGB_8888: 3359 if (rgb_order) { 3360 if (alpha) 3361 return DRM_FORMAT_ABGR8888; 3362 else 3363 return DRM_FORMAT_XBGR8888; 3364 } else { 3365 if (alpha) 3366 return DRM_FORMAT_ARGB8888; 3367 else 3368 return DRM_FORMAT_XRGB8888; 3369 } 3370 case PLANE_CTL_FORMAT_XRGB_2101010: 3371 if (rgb_order) { 3372 if (alpha) 3373 return DRM_FORMAT_ABGR2101010; 3374 else 3375 return DRM_FORMAT_XBGR2101010; 3376 } else { 3377 if (alpha) 3378 return DRM_FORMAT_ARGB2101010; 3379 else 3380 return DRM_FORMAT_XRGB2101010; 3381 } 3382 case PLANE_CTL_FORMAT_XRGB_16161616F: 3383 if (rgb_order) { 3384 if (alpha) 3385 return DRM_FORMAT_ABGR16161616F; 3386 else 3387 return DRM_FORMAT_XBGR16161616F; 3388 } else { 3389 if (alpha) 3390 return DRM_FORMAT_ARGB16161616F; 3391 else 3392 return DRM_FORMAT_XRGB16161616F; 3393 } 3394 } 3395 } 3396 3397 static struct i915_vma * 3398 initial_plane_vma(struct drm_i915_private *i915, 3399 struct intel_initial_plane_config *plane_config) 3400 { 3401 struct drm_i915_gem_object *obj; 3402 struct i915_vma *vma; 3403 u32 base, size; 3404 3405 if (plane_config->size == 0) 3406 return NULL; 3407 3408 base = round_down(plane_config->base, 3409 I915_GTT_MIN_ALIGNMENT); 3410 size = round_up(plane_config->base + plane_config->size, 3411 I915_GTT_MIN_ALIGNMENT); 3412 size -= base; 3413 3414 /* 3415 * If the FB is too big, just don't use it since fbdev is not very 3416 * important and we should probably use that space with FBC or other 3417 * features. 3418 */ 3419 if (size * 2 > i915->stolen_usable_size) 3420 return NULL; 3421 3422 obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size); 3423 if (IS_ERR(obj)) 3424 return NULL; 3425 3426 switch (plane_config->tiling) { 3427 case I915_TILING_NONE: 3428 break; 3429 case I915_TILING_X: 3430 case I915_TILING_Y: 3431 obj->tiling_and_stride = 3432 plane_config->fb->base.pitches[0] | 3433 plane_config->tiling; 3434 break; 3435 default: 3436 MISSING_CASE(plane_config->tiling); 3437 goto err_obj; 3438 } 3439 3440 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); 3441 if (IS_ERR(vma)) 3442 goto err_obj; 3443 3444 if (i915_ggtt_pin(vma, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base)) 3445 goto err_obj; 3446 3447 if (i915_gem_object_is_tiled(obj) && 3448 !i915_vma_is_map_and_fenceable(vma)) 3449 goto err_obj; 3450 3451 return vma; 3452 3453 err_obj: 3454 i915_gem_object_put(obj); 3455 return NULL; 3456 } 3457 3458 static bool 3459 intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 3460 struct intel_initial_plane_config *plane_config) 3461 { 3462 struct drm_device *dev = crtc->base.dev; 3463 struct drm_i915_private *dev_priv = to_i915(dev); 3464 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 3465 struct drm_framebuffer *fb = &plane_config->fb->base; 3466 struct i915_vma *vma; 3467 3468 switch (fb->modifier) { 3469 case DRM_FORMAT_MOD_LINEAR: 3470 case I915_FORMAT_MOD_X_TILED: 3471 case I915_FORMAT_MOD_Y_TILED: 3472 break; 3473 default: 3474 drm_dbg(&dev_priv->drm, 3475 "Unsupported modifier for initial FB: 0x%llx\n", 3476 fb->modifier); 3477 return false; 3478 } 3479 3480 vma = initial_plane_vma(dev_priv, plane_config); 3481 if (!vma) 3482 return false; 3483 3484 mode_cmd.pixel_format = fb->format->format; 3485 mode_cmd.width = fb->width; 3486 mode_cmd.height = fb->height; 3487 mode_cmd.pitches[0] = fb->pitches[0]; 3488 mode_cmd.modifier[0] = fb->modifier; 3489 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 3490 3491 if (intel_framebuffer_init(to_intel_framebuffer(fb), 3492 vma->obj, &mode_cmd)) { 3493 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n"); 3494 goto err_vma; 3495 } 3496 3497 plane_config->vma = vma; 3498 return true; 3499 3500 err_vma: 3501 i915_vma_put(vma); 3502 return false; 3503 } 3504 3505 static void 3506 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 3507 struct intel_plane_state *plane_state, 3508 bool visible) 3509 { 3510 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 3511 3512 plane_state->uapi.visible = visible; 3513 3514 if (visible) 3515 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); 3516 else 3517 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); 3518 } 3519 3520 static void fixup_active_planes(struct intel_crtc_state *crtc_state) 3521 { 3522 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 3523 struct drm_plane *plane; 3524 3525 /* 3526 * Active_planes aliases if multiple "primary" or cursor planes 3527 * have been used on the same (or wrong) pipe. plane_mask uses 3528 * unique ids, hence we can use that to reconstruct active_planes. 3529 */ 3530 crtc_state->active_planes = 0; 3531 3532 drm_for_each_plane_mask(plane, &dev_priv->drm, 3533 crtc_state->uapi.plane_mask) 3534 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 3535 } 3536 3537 static void intel_plane_disable_noatomic(struct intel_crtc *crtc, 3538 struct intel_plane *plane) 3539 { 3540 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3541 struct intel_crtc_state *crtc_state = 3542 to_intel_crtc_state(crtc->base.state); 3543 struct intel_plane_state *plane_state = 3544 to_intel_plane_state(plane->base.state); 3545 3546 drm_dbg_kms(&dev_priv->drm, 3547 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 3548 plane->base.base.id, plane->base.name, 3549 crtc->base.base.id, crtc->base.name); 3550 3551 intel_set_plane_visible(crtc_state, plane_state, false); 3552 fixup_active_planes(crtc_state); 3553 crtc_state->data_rate[plane->id] = 0; 3554 crtc_state->min_cdclk[plane->id] = 0; 3555 3556 if (plane->id == PLANE_PRIMARY) 3557 hsw_disable_ips(crtc_state); 3558 3559 /* 3560 * Vblank time updates from the shadow to live plane control register 3561 * are blocked if the memory self-refresh mode is active at that 3562 * moment. So to make sure the plane gets truly disabled, disable 3563 * first the self-refresh mode. The self-refresh enable bit in turn 3564 * will be checked/applied by the HW only at the next frame start 3565 * event which is after the vblank start event, so we need to have a 3566 * wait-for-vblank between disabling the plane and the pipe. 3567 */ 3568 if (HAS_GMCH(dev_priv) && 3569 intel_set_memory_cxsr(dev_priv, false)) 3570 intel_wait_for_vblank(dev_priv, crtc->pipe); 3571 3572 /* 3573 * Gen2 reports pipe underruns whenever all planes are disabled. 3574 * So disable underrun reporting before all the planes get disabled. 3575 */ 3576 if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes) 3577 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 3578 3579 intel_disable_plane(plane, crtc_state); 3580 } 3581 3582 static struct intel_frontbuffer * 3583 to_intel_frontbuffer(struct drm_framebuffer *fb) 3584 { 3585 return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL; 3586 } 3587 3588 static void 3589 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, 3590 struct intel_initial_plane_config *plane_config) 3591 { 3592 struct drm_device *dev = intel_crtc->base.dev; 3593 struct drm_i915_private *dev_priv = to_i915(dev); 3594 struct drm_crtc *c; 3595 struct drm_plane *primary = intel_crtc->base.primary; 3596 struct drm_plane_state *plane_state = primary->state; 3597 struct intel_plane *intel_plane = to_intel_plane(primary); 3598 struct intel_plane_state *intel_state = 3599 to_intel_plane_state(plane_state); 3600 struct drm_framebuffer *fb; 3601 struct i915_vma *vma; 3602 3603 if (!plane_config->fb) 3604 return; 3605 3606 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { 3607 fb = &plane_config->fb->base; 3608 vma = plane_config->vma; 3609 goto valid_fb; 3610 } 3611 3612 /* 3613 * Failed to alloc the obj, check to see if we should share 3614 * an fb with another CRTC instead 3615 */ 3616 for_each_crtc(dev, c) { 3617 struct intel_plane_state *state; 3618 3619 if (c == &intel_crtc->base) 3620 continue; 3621 3622 if (!to_intel_crtc(c)->active) 3623 continue; 3624 3625 state = to_intel_plane_state(c->primary->state); 3626 if (!state->vma) 3627 continue; 3628 3629 if (intel_plane_ggtt_offset(state) == plane_config->base) { 3630 fb = state->hw.fb; 3631 vma = state->vma; 3632 goto valid_fb; 3633 } 3634 } 3635 3636 /* 3637 * We've failed to reconstruct the BIOS FB. Current display state 3638 * indicates that the primary plane is visible, but has a NULL FB, 3639 * which will lead to problems later if we don't fix it up. The 3640 * simplest solution is to just disable the primary plane now and 3641 * pretend the BIOS never had it enabled. 3642 */ 3643 intel_plane_disable_noatomic(intel_crtc, intel_plane); 3644 3645 return; 3646 3647 valid_fb: 3648 intel_state->hw.rotation = plane_config->rotation; 3649 intel_fill_fb_ggtt_view(&intel_state->view, fb, 3650 intel_state->hw.rotation); 3651 intel_state->color_plane[0].stride = 3652 intel_fb_pitch(fb, 0, intel_state->hw.rotation); 3653 3654 __i915_vma_pin(vma); 3655 intel_state->vma = i915_vma_get(vma); 3656 if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0) 3657 if (vma->fence) 3658 intel_state->flags |= PLANE_HAS_FENCE; 3659 3660 plane_state->src_x = 0; 3661 plane_state->src_y = 0; 3662 plane_state->src_w = fb->width << 16; 3663 plane_state->src_h = fb->height << 16; 3664 3665 plane_state->crtc_x = 0; 3666 plane_state->crtc_y = 0; 3667 plane_state->crtc_w = fb->width; 3668 plane_state->crtc_h = fb->height; 3669 3670 intel_state->uapi.src = drm_plane_state_src(plane_state); 3671 intel_state->uapi.dst = drm_plane_state_dest(plane_state); 3672 3673 if (plane_config->tiling) 3674 dev_priv->preserve_bios_swizzle = true; 3675 3676 plane_state->fb = fb; 3677 drm_framebuffer_get(fb); 3678 3679 plane_state->crtc = &intel_crtc->base; 3680 intel_plane_copy_uapi_to_hw_state(intel_state, intel_state); 3681 3682 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 3683 3684 atomic_or(to_intel_plane(primary)->frontbuffer_bit, 3685 &to_intel_frontbuffer(fb)->bits); 3686 } 3687 3688 static int skl_max_plane_width(const struct drm_framebuffer *fb, 3689 int color_plane, 3690 unsigned int rotation) 3691 { 3692 int cpp = fb->format->cpp[color_plane]; 3693 3694 switch (fb->modifier) { 3695 case DRM_FORMAT_MOD_LINEAR: 3696 case I915_FORMAT_MOD_X_TILED: 3697 /* 3698 * Validated limit is 4k, but has 5k should 3699 * work apart from the following features: 3700 * - Ytile (already limited to 4k) 3701 * - FP16 (already limited to 4k) 3702 * - render compression (already limited to 4k) 3703 * - KVMR sprite and cursor (don't care) 3704 * - horizontal panning (TODO verify this) 3705 * - pipe and plane scaling (TODO verify this) 3706 */ 3707 if (cpp == 8) 3708 return 4096; 3709 else 3710 return 5120; 3711 case I915_FORMAT_MOD_Y_TILED_CCS: 3712 case I915_FORMAT_MOD_Yf_TILED_CCS: 3713 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 3714 /* FIXME AUX plane? */ 3715 case I915_FORMAT_MOD_Y_TILED: 3716 case I915_FORMAT_MOD_Yf_TILED: 3717 if (cpp == 8) 3718 return 2048; 3719 else 3720 return 4096; 3721 default: 3722 MISSING_CASE(fb->modifier); 3723 return 2048; 3724 } 3725 } 3726 3727 static int glk_max_plane_width(const struct drm_framebuffer *fb, 3728 int color_plane, 3729 unsigned int rotation) 3730 { 3731 int cpp = fb->format->cpp[color_plane]; 3732 3733 switch (fb->modifier) { 3734 case DRM_FORMAT_MOD_LINEAR: 3735 case I915_FORMAT_MOD_X_TILED: 3736 if (cpp == 8) 3737 return 4096; 3738 else 3739 return 5120; 3740 case I915_FORMAT_MOD_Y_TILED_CCS: 3741 case I915_FORMAT_MOD_Yf_TILED_CCS: 3742 /* FIXME AUX plane? */ 3743 case I915_FORMAT_MOD_Y_TILED: 3744 case I915_FORMAT_MOD_Yf_TILED: 3745 if (cpp == 8) 3746 return 2048; 3747 else 3748 return 5120; 3749 default: 3750 MISSING_CASE(fb->modifier); 3751 return 2048; 3752 } 3753 } 3754 3755 static int icl_max_plane_width(const struct drm_framebuffer *fb, 3756 int color_plane, 3757 unsigned int rotation) 3758 { 3759 return 5120; 3760 } 3761 3762 static int skl_max_plane_height(void) 3763 { 3764 return 4096; 3765 } 3766 3767 static int icl_max_plane_height(void) 3768 { 3769 return 4320; 3770 } 3771 3772 static bool 3773 skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state, 3774 int main_x, int main_y, u32 main_offset, 3775 int ccs_plane) 3776 { 3777 const struct drm_framebuffer *fb = plane_state->hw.fb; 3778 int aux_x = plane_state->color_plane[ccs_plane].x; 3779 int aux_y = plane_state->color_plane[ccs_plane].y; 3780 u32 aux_offset = plane_state->color_plane[ccs_plane].offset; 3781 u32 alignment = intel_surf_alignment(fb, ccs_plane); 3782 int hsub; 3783 int vsub; 3784 3785 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 3786 while (aux_offset >= main_offset && aux_y <= main_y) { 3787 int x, y; 3788 3789 if (aux_x == main_x && aux_y == main_y) 3790 break; 3791 3792 if (aux_offset == 0) 3793 break; 3794 3795 x = aux_x / hsub; 3796 y = aux_y / vsub; 3797 aux_offset = intel_plane_adjust_aligned_offset(&x, &y, 3798 plane_state, 3799 ccs_plane, 3800 aux_offset, 3801 aux_offset - 3802 alignment); 3803 aux_x = x * hsub + aux_x % hsub; 3804 aux_y = y * vsub + aux_y % vsub; 3805 } 3806 3807 if (aux_x != main_x || aux_y != main_y) 3808 return false; 3809 3810 plane_state->color_plane[ccs_plane].offset = aux_offset; 3811 plane_state->color_plane[ccs_plane].x = aux_x; 3812 plane_state->color_plane[ccs_plane].y = aux_y; 3813 3814 return true; 3815 } 3816 3817 static int skl_check_main_surface(struct intel_plane_state *plane_state) 3818 { 3819 struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev); 3820 const struct drm_framebuffer *fb = plane_state->hw.fb; 3821 unsigned int rotation = plane_state->hw.rotation; 3822 int x = plane_state->uapi.src.x1 >> 16; 3823 int y = plane_state->uapi.src.y1 >> 16; 3824 int w = drm_rect_width(&plane_state->uapi.src) >> 16; 3825 int h = drm_rect_height(&plane_state->uapi.src) >> 16; 3826 int max_width; 3827 int max_height; 3828 u32 alignment; 3829 u32 offset; 3830 int aux_plane = intel_main_to_aux_plane(fb, 0); 3831 u32 aux_offset = plane_state->color_plane[aux_plane].offset; 3832 3833 if (INTEL_GEN(dev_priv) >= 11) 3834 max_width = icl_max_plane_width(fb, 0, rotation); 3835 else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 3836 max_width = glk_max_plane_width(fb, 0, rotation); 3837 else 3838 max_width = skl_max_plane_width(fb, 0, rotation); 3839 3840 if (INTEL_GEN(dev_priv) >= 11) 3841 max_height = icl_max_plane_height(); 3842 else 3843 max_height = skl_max_plane_height(); 3844 3845 if (w > max_width || h > max_height) { 3846 drm_dbg_kms(&dev_priv->drm, 3847 "requested Y/RGB source size %dx%d too big (limit %dx%d)\n", 3848 w, h, max_width, max_height); 3849 return -EINVAL; 3850 } 3851 3852 intel_add_fb_offsets(&x, &y, plane_state, 0); 3853 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0); 3854 alignment = intel_surf_alignment(fb, 0); 3855 if (drm_WARN_ON(&dev_priv->drm, alignment && !is_power_of_2(alignment))) 3856 return -EINVAL; 3857 3858 /* 3859 * AUX surface offset is specified as the distance from the 3860 * main surface offset, and it must be non-negative. Make 3861 * sure that is what we will get. 3862 */ 3863 if (offset > aux_offset) 3864 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3865 offset, aux_offset & ~(alignment - 1)); 3866 3867 /* 3868 * When using an X-tiled surface, the plane blows up 3869 * if the x offset + width exceed the stride. 3870 * 3871 * TODO: linear and Y-tiled seem fine, Yf untested, 3872 */ 3873 if (fb->modifier == I915_FORMAT_MOD_X_TILED) { 3874 int cpp = fb->format->cpp[0]; 3875 3876 while ((x + w) * cpp > plane_state->color_plane[0].stride) { 3877 if (offset == 0) { 3878 drm_dbg_kms(&dev_priv->drm, 3879 "Unable to find suitable display surface offset due to X-tiling\n"); 3880 return -EINVAL; 3881 } 3882 3883 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3884 offset, offset - alignment); 3885 } 3886 } 3887 3888 /* 3889 * CCS AUX surface doesn't have its own x/y offsets, we must make sure 3890 * they match with the main surface x/y offsets. 3891 */ 3892 if (is_ccs_modifier(fb->modifier)) { 3893 while (!skl_check_main_ccs_coordinates(plane_state, x, y, 3894 offset, aux_plane)) { 3895 if (offset == 0) 3896 break; 3897 3898 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3899 offset, offset - alignment); 3900 } 3901 3902 if (x != plane_state->color_plane[aux_plane].x || 3903 y != plane_state->color_plane[aux_plane].y) { 3904 drm_dbg_kms(&dev_priv->drm, 3905 "Unable to find suitable display surface offset due to CCS\n"); 3906 return -EINVAL; 3907 } 3908 } 3909 3910 plane_state->color_plane[0].offset = offset; 3911 plane_state->color_plane[0].x = x; 3912 plane_state->color_plane[0].y = y; 3913 3914 /* 3915 * Put the final coordinates back so that the src 3916 * coordinate checks will see the right values. 3917 */ 3918 drm_rect_translate_to(&plane_state->uapi.src, 3919 x << 16, y << 16); 3920 3921 return 0; 3922 } 3923 3924 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state) 3925 { 3926 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 3927 const struct drm_framebuffer *fb = plane_state->hw.fb; 3928 unsigned int rotation = plane_state->hw.rotation; 3929 int uv_plane = 1; 3930 int max_width = skl_max_plane_width(fb, uv_plane, rotation); 3931 int max_height = 4096; 3932 int x = plane_state->uapi.src.x1 >> 17; 3933 int y = plane_state->uapi.src.y1 >> 17; 3934 int w = drm_rect_width(&plane_state->uapi.src) >> 17; 3935 int h = drm_rect_height(&plane_state->uapi.src) >> 17; 3936 u32 offset; 3937 3938 intel_add_fb_offsets(&x, &y, plane_state, uv_plane); 3939 offset = intel_plane_compute_aligned_offset(&x, &y, 3940 plane_state, uv_plane); 3941 3942 /* FIXME not quite sure how/if these apply to the chroma plane */ 3943 if (w > max_width || h > max_height) { 3944 drm_dbg_kms(&i915->drm, 3945 "CbCr source size %dx%d too big (limit %dx%d)\n", 3946 w, h, max_width, max_height); 3947 return -EINVAL; 3948 } 3949 3950 if (is_ccs_modifier(fb->modifier)) { 3951 int ccs_plane = main_to_ccs_plane(fb, uv_plane); 3952 int aux_offset = plane_state->color_plane[ccs_plane].offset; 3953 int alignment = intel_surf_alignment(fb, uv_plane); 3954 3955 if (offset > aux_offset) 3956 offset = intel_plane_adjust_aligned_offset(&x, &y, 3957 plane_state, 3958 uv_plane, 3959 offset, 3960 aux_offset & ~(alignment - 1)); 3961 3962 while (!skl_check_main_ccs_coordinates(plane_state, x, y, 3963 offset, ccs_plane)) { 3964 if (offset == 0) 3965 break; 3966 3967 offset = intel_plane_adjust_aligned_offset(&x, &y, 3968 plane_state, 3969 uv_plane, 3970 offset, offset - alignment); 3971 } 3972 3973 if (x != plane_state->color_plane[ccs_plane].x || 3974 y != plane_state->color_plane[ccs_plane].y) { 3975 drm_dbg_kms(&i915->drm, 3976 "Unable to find suitable display surface offset due to CCS\n"); 3977 return -EINVAL; 3978 } 3979 } 3980 3981 plane_state->color_plane[uv_plane].offset = offset; 3982 plane_state->color_plane[uv_plane].x = x; 3983 plane_state->color_plane[uv_plane].y = y; 3984 3985 return 0; 3986 } 3987 3988 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state) 3989 { 3990 const struct drm_framebuffer *fb = plane_state->hw.fb; 3991 int src_x = plane_state->uapi.src.x1 >> 16; 3992 int src_y = plane_state->uapi.src.y1 >> 16; 3993 u32 offset; 3994 int ccs_plane; 3995 3996 for (ccs_plane = 0; ccs_plane < fb->format->num_planes; ccs_plane++) { 3997 int main_hsub, main_vsub; 3998 int hsub, vsub; 3999 int x, y; 4000 4001 if (!is_ccs_plane(fb, ccs_plane)) 4002 continue; 4003 4004 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, 4005 ccs_to_main_plane(fb, ccs_plane)); 4006 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 4007 4008 hsub *= main_hsub; 4009 vsub *= main_vsub; 4010 x = src_x / hsub; 4011 y = src_y / vsub; 4012 4013 intel_add_fb_offsets(&x, &y, plane_state, ccs_plane); 4014 4015 offset = intel_plane_compute_aligned_offset(&x, &y, 4016 plane_state, 4017 ccs_plane); 4018 4019 plane_state->color_plane[ccs_plane].offset = offset; 4020 plane_state->color_plane[ccs_plane].x = (x * hsub + 4021 src_x % hsub) / 4022 main_hsub; 4023 plane_state->color_plane[ccs_plane].y = (y * vsub + 4024 src_y % vsub) / 4025 main_vsub; 4026 } 4027 4028 return 0; 4029 } 4030 4031 int skl_check_plane_surface(struct intel_plane_state *plane_state) 4032 { 4033 const struct drm_framebuffer *fb = plane_state->hw.fb; 4034 int ret; 4035 bool needs_aux = false; 4036 4037 ret = intel_plane_compute_gtt(plane_state); 4038 if (ret) 4039 return ret; 4040 4041 if (!plane_state->uapi.visible) 4042 return 0; 4043 4044 /* 4045 * Handle the AUX surface first since the main surface setup depends on 4046 * it. 4047 */ 4048 if (is_ccs_modifier(fb->modifier)) { 4049 needs_aux = true; 4050 ret = skl_check_ccs_aux_surface(plane_state); 4051 if (ret) 4052 return ret; 4053 } 4054 4055 if (intel_format_info_is_yuv_semiplanar(fb->format, 4056 fb->modifier)) { 4057 needs_aux = true; 4058 ret = skl_check_nv12_aux_surface(plane_state); 4059 if (ret) 4060 return ret; 4061 } 4062 4063 if (!needs_aux) { 4064 int i; 4065 4066 for (i = 1; i < fb->format->num_planes; i++) { 4067 plane_state->color_plane[i].offset = ~0xfff; 4068 plane_state->color_plane[i].x = 0; 4069 plane_state->color_plane[i].y = 0; 4070 } 4071 } 4072 4073 ret = skl_check_main_surface(plane_state); 4074 if (ret) 4075 return ret; 4076 4077 return 0; 4078 } 4079 4080 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state, 4081 const struct intel_plane_state *plane_state, 4082 unsigned int *num, unsigned int *den) 4083 { 4084 const struct drm_framebuffer *fb = plane_state->hw.fb; 4085 unsigned int cpp = fb->format->cpp[0]; 4086 4087 /* 4088 * g4x bspec says 64bpp pixel rate can't exceed 80% 4089 * of cdclk when the sprite plane is enabled on the 4090 * same pipe. ilk/snb bspec says 64bpp pixel rate is 4091 * never allowed to exceed 80% of cdclk. Let's just go 4092 * with the ilk/snb limit always. 4093 */ 4094 if (cpp == 8) { 4095 *num = 10; 4096 *den = 8; 4097 } else { 4098 *num = 1; 4099 *den = 1; 4100 } 4101 } 4102 4103 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state, 4104 const struct intel_plane_state *plane_state) 4105 { 4106 unsigned int pixel_rate; 4107 unsigned int num, den; 4108 4109 /* 4110 * Note that crtc_state->pixel_rate accounts for both 4111 * horizontal and vertical panel fitter downscaling factors. 4112 * Pre-HSW bspec tells us to only consider the horizontal 4113 * downscaling factor here. We ignore that and just consider 4114 * both for simplicity. 4115 */ 4116 pixel_rate = crtc_state->pixel_rate; 4117 4118 i9xx_plane_ratio(crtc_state, plane_state, &num, &den); 4119 4120 /* two pixels per clock with double wide pipe */ 4121 if (crtc_state->double_wide) 4122 den *= 2; 4123 4124 return DIV_ROUND_UP(pixel_rate * num, den); 4125 } 4126 4127 unsigned int 4128 i9xx_plane_max_stride(struct intel_plane *plane, 4129 u32 pixel_format, u64 modifier, 4130 unsigned int rotation) 4131 { 4132 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4133 4134 if (!HAS_GMCH(dev_priv)) { 4135 return 32*1024; 4136 } else if (INTEL_GEN(dev_priv) >= 4) { 4137 if (modifier == I915_FORMAT_MOD_X_TILED) 4138 return 16*1024; 4139 else 4140 return 32*1024; 4141 } else if (INTEL_GEN(dev_priv) >= 3) { 4142 if (modifier == I915_FORMAT_MOD_X_TILED) 4143 return 8*1024; 4144 else 4145 return 16*1024; 4146 } else { 4147 if (plane->i9xx_plane == PLANE_C) 4148 return 4*1024; 4149 else 4150 return 8*1024; 4151 } 4152 } 4153 4154 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 4155 { 4156 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4157 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4158 u32 dspcntr = 0; 4159 4160 if (crtc_state->gamma_enable) 4161 dspcntr |= DISPPLANE_GAMMA_ENABLE; 4162 4163 if (crtc_state->csc_enable) 4164 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE; 4165 4166 if (INTEL_GEN(dev_priv) < 5) 4167 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe); 4168 4169 return dspcntr; 4170 } 4171 4172 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state, 4173 const struct intel_plane_state *plane_state) 4174 { 4175 struct drm_i915_private *dev_priv = 4176 to_i915(plane_state->uapi.plane->dev); 4177 const struct drm_framebuffer *fb = plane_state->hw.fb; 4178 unsigned int rotation = plane_state->hw.rotation; 4179 u32 dspcntr; 4180 4181 dspcntr = DISPLAY_PLANE_ENABLE; 4182 4183 if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) || 4184 IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 4185 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; 4186 4187 switch (fb->format->format) { 4188 case DRM_FORMAT_C8: 4189 dspcntr |= DISPPLANE_8BPP; 4190 break; 4191 case DRM_FORMAT_XRGB1555: 4192 dspcntr |= DISPPLANE_BGRX555; 4193 break; 4194 case DRM_FORMAT_ARGB1555: 4195 dspcntr |= DISPPLANE_BGRA555; 4196 break; 4197 case DRM_FORMAT_RGB565: 4198 dspcntr |= DISPPLANE_BGRX565; 4199 break; 4200 case DRM_FORMAT_XRGB8888: 4201 dspcntr |= DISPPLANE_BGRX888; 4202 break; 4203 case DRM_FORMAT_XBGR8888: 4204 dspcntr |= DISPPLANE_RGBX888; 4205 break; 4206 case DRM_FORMAT_ARGB8888: 4207 dspcntr |= DISPPLANE_BGRA888; 4208 break; 4209 case DRM_FORMAT_ABGR8888: 4210 dspcntr |= DISPPLANE_RGBA888; 4211 break; 4212 case DRM_FORMAT_XRGB2101010: 4213 dspcntr |= DISPPLANE_BGRX101010; 4214 break; 4215 case DRM_FORMAT_XBGR2101010: 4216 dspcntr |= DISPPLANE_RGBX101010; 4217 break; 4218 case DRM_FORMAT_ARGB2101010: 4219 dspcntr |= DISPPLANE_BGRA101010; 4220 break; 4221 case DRM_FORMAT_ABGR2101010: 4222 dspcntr |= DISPPLANE_RGBA101010; 4223 break; 4224 case DRM_FORMAT_XBGR16161616F: 4225 dspcntr |= DISPPLANE_RGBX161616; 4226 break; 4227 default: 4228 MISSING_CASE(fb->format->format); 4229 return 0; 4230 } 4231 4232 if (INTEL_GEN(dev_priv) >= 4 && 4233 fb->modifier == I915_FORMAT_MOD_X_TILED) 4234 dspcntr |= DISPPLANE_TILED; 4235 4236 if (rotation & DRM_MODE_ROTATE_180) 4237 dspcntr |= DISPPLANE_ROTATE_180; 4238 4239 if (rotation & DRM_MODE_REFLECT_X) 4240 dspcntr |= DISPPLANE_MIRROR; 4241 4242 return dspcntr; 4243 } 4244 4245 int i9xx_check_plane_surface(struct intel_plane_state *plane_state) 4246 { 4247 struct drm_i915_private *dev_priv = 4248 to_i915(plane_state->uapi.plane->dev); 4249 const struct drm_framebuffer *fb = plane_state->hw.fb; 4250 int src_x, src_y, src_w; 4251 u32 offset; 4252 int ret; 4253 4254 ret = intel_plane_compute_gtt(plane_state); 4255 if (ret) 4256 return ret; 4257 4258 if (!plane_state->uapi.visible) 4259 return 0; 4260 4261 src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 4262 src_x = plane_state->uapi.src.x1 >> 16; 4263 src_y = plane_state->uapi.src.y1 >> 16; 4264 4265 /* Undocumented hardware limit on i965/g4x/vlv/chv */ 4266 if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048) 4267 return -EINVAL; 4268 4269 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 4270 4271 if (INTEL_GEN(dev_priv) >= 4) 4272 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 4273 plane_state, 0); 4274 else 4275 offset = 0; 4276 4277 /* 4278 * Put the final coordinates back so that the src 4279 * coordinate checks will see the right values. 4280 */ 4281 drm_rect_translate_to(&plane_state->uapi.src, 4282 src_x << 16, src_y << 16); 4283 4284 /* HSW/BDW do this automagically in hardware */ 4285 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) { 4286 unsigned int rotation = plane_state->hw.rotation; 4287 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 4288 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 4289 4290 if (rotation & DRM_MODE_ROTATE_180) { 4291 src_x += src_w - 1; 4292 src_y += src_h - 1; 4293 } else if (rotation & DRM_MODE_REFLECT_X) { 4294 src_x += src_w - 1; 4295 } 4296 } 4297 4298 plane_state->color_plane[0].offset = offset; 4299 plane_state->color_plane[0].x = src_x; 4300 plane_state->color_plane[0].y = src_y; 4301 4302 return 0; 4303 } 4304 4305 static bool i9xx_plane_has_windowing(struct intel_plane *plane) 4306 { 4307 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4308 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4309 4310 if (IS_CHERRYVIEW(dev_priv)) 4311 return i9xx_plane == PLANE_B; 4312 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 4313 return false; 4314 else if (IS_GEN(dev_priv, 4)) 4315 return i9xx_plane == PLANE_C; 4316 else 4317 return i9xx_plane == PLANE_B || 4318 i9xx_plane == PLANE_C; 4319 } 4320 4321 static int 4322 i9xx_plane_check(struct intel_crtc_state *crtc_state, 4323 struct intel_plane_state *plane_state) 4324 { 4325 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 4326 int ret; 4327 4328 ret = chv_plane_check_rotation(plane_state); 4329 if (ret) 4330 return ret; 4331 4332 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi, 4333 &crtc_state->uapi, 4334 DRM_PLANE_HELPER_NO_SCALING, 4335 DRM_PLANE_HELPER_NO_SCALING, 4336 i9xx_plane_has_windowing(plane), 4337 true); 4338 if (ret) 4339 return ret; 4340 4341 ret = i9xx_check_plane_surface(plane_state); 4342 if (ret) 4343 return ret; 4344 4345 if (!plane_state->uapi.visible) 4346 return 0; 4347 4348 ret = intel_plane_check_src_coordinates(plane_state); 4349 if (ret) 4350 return ret; 4351 4352 plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state); 4353 4354 return 0; 4355 } 4356 4357 static void i9xx_update_plane(struct intel_plane *plane, 4358 const struct intel_crtc_state *crtc_state, 4359 const struct intel_plane_state *plane_state) 4360 { 4361 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4362 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4363 u32 linear_offset; 4364 int x = plane_state->color_plane[0].x; 4365 int y = plane_state->color_plane[0].y; 4366 int crtc_x = plane_state->uapi.dst.x1; 4367 int crtc_y = plane_state->uapi.dst.y1; 4368 int crtc_w = drm_rect_width(&plane_state->uapi.dst); 4369 int crtc_h = drm_rect_height(&plane_state->uapi.dst); 4370 unsigned long irqflags; 4371 u32 dspaddr_offset; 4372 u32 dspcntr; 4373 4374 dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state); 4375 4376 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0); 4377 4378 if (INTEL_GEN(dev_priv) >= 4) 4379 dspaddr_offset = plane_state->color_plane[0].offset; 4380 else 4381 dspaddr_offset = linear_offset; 4382 4383 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4384 4385 intel_de_write_fw(dev_priv, DSPSTRIDE(i9xx_plane), 4386 plane_state->color_plane[0].stride); 4387 4388 if (INTEL_GEN(dev_priv) < 4) { 4389 /* 4390 * PLANE_A doesn't actually have a full window 4391 * generator but let's assume we still need to 4392 * program whatever is there. 4393 */ 4394 intel_de_write_fw(dev_priv, DSPPOS(i9xx_plane), 4395 (crtc_y << 16) | crtc_x); 4396 intel_de_write_fw(dev_priv, DSPSIZE(i9xx_plane), 4397 ((crtc_h - 1) << 16) | (crtc_w - 1)); 4398 } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) { 4399 intel_de_write_fw(dev_priv, PRIMPOS(i9xx_plane), 4400 (crtc_y << 16) | crtc_x); 4401 intel_de_write_fw(dev_priv, PRIMSIZE(i9xx_plane), 4402 ((crtc_h - 1) << 16) | (crtc_w - 1)); 4403 intel_de_write_fw(dev_priv, PRIMCNSTALPHA(i9xx_plane), 0); 4404 } 4405 4406 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 4407 intel_de_write_fw(dev_priv, DSPOFFSET(i9xx_plane), 4408 (y << 16) | x); 4409 } else if (INTEL_GEN(dev_priv) >= 4) { 4410 intel_de_write_fw(dev_priv, DSPLINOFF(i9xx_plane), 4411 linear_offset); 4412 intel_de_write_fw(dev_priv, DSPTILEOFF(i9xx_plane), 4413 (y << 16) | x); 4414 } 4415 4416 /* 4417 * The control register self-arms if the plane was previously 4418 * disabled. Try to make the plane enable atomic by writing 4419 * the control register just before the surface register. 4420 */ 4421 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr); 4422 if (INTEL_GEN(dev_priv) >= 4) 4423 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 4424 intel_plane_ggtt_offset(plane_state) + dspaddr_offset); 4425 else 4426 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 4427 intel_plane_ggtt_offset(plane_state) + dspaddr_offset); 4428 4429 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4430 } 4431 4432 static void i9xx_disable_plane(struct intel_plane *plane, 4433 const struct intel_crtc_state *crtc_state) 4434 { 4435 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4436 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4437 unsigned long irqflags; 4438 u32 dspcntr; 4439 4440 /* 4441 * DSPCNTR pipe gamma enable on g4x+ and pipe csc 4442 * enable on ilk+ affect the pipe bottom color as 4443 * well, so we must configure them even if the plane 4444 * is disabled. 4445 * 4446 * On pre-g4x there is no way to gamma correct the 4447 * pipe bottom color but we'll keep on doing this 4448 * anyway so that the crtc state readout works correctly. 4449 */ 4450 dspcntr = i9xx_plane_ctl_crtc(crtc_state); 4451 4452 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4453 4454 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr); 4455 if (INTEL_GEN(dev_priv) >= 4) 4456 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 0); 4457 else 4458 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 0); 4459 4460 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4461 } 4462 4463 static bool i9xx_plane_get_hw_state(struct intel_plane *plane, 4464 enum pipe *pipe) 4465 { 4466 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4467 enum intel_display_power_domain power_domain; 4468 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4469 intel_wakeref_t wakeref; 4470 bool ret; 4471 u32 val; 4472 4473 /* 4474 * Not 100% correct for planes that can move between pipes, 4475 * but that's only the case for gen2-4 which don't have any 4476 * display power wells. 4477 */ 4478 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 4479 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 4480 if (!wakeref) 4481 return false; 4482 4483 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 4484 4485 ret = val & DISPLAY_PLANE_ENABLE; 4486 4487 if (INTEL_GEN(dev_priv) >= 5) 4488 *pipe = plane->pipe; 4489 else 4490 *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> 4491 DISPPLANE_SEL_PIPE_SHIFT; 4492 4493 intel_display_power_put(dev_priv, power_domain, wakeref); 4494 4495 return ret; 4496 } 4497 4498 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id) 4499 { 4500 struct drm_device *dev = intel_crtc->base.dev; 4501 struct drm_i915_private *dev_priv = to_i915(dev); 4502 unsigned long irqflags; 4503 4504 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4505 4506 intel_de_write_fw(dev_priv, SKL_PS_CTRL(intel_crtc->pipe, id), 0); 4507 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(intel_crtc->pipe, id), 0); 4508 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0); 4509 4510 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4511 } 4512 4513 /* 4514 * This function detaches (aka. unbinds) unused scalers in hardware 4515 */ 4516 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state) 4517 { 4518 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 4519 const struct intel_crtc_scaler_state *scaler_state = 4520 &crtc_state->scaler_state; 4521 int i; 4522 4523 /* loop through and disable scalers that aren't in use */ 4524 for (i = 0; i < intel_crtc->num_scalers; i++) { 4525 if (!scaler_state->scalers[i].in_use) 4526 skl_detach_scaler(intel_crtc, i); 4527 } 4528 } 4529 4530 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb, 4531 int color_plane, unsigned int rotation) 4532 { 4533 /* 4534 * The stride is either expressed as a multiple of 64 bytes chunks for 4535 * linear buffers or in number of tiles for tiled buffers. 4536 */ 4537 if (is_surface_linear(fb, color_plane)) 4538 return 64; 4539 else if (drm_rotation_90_or_270(rotation)) 4540 return intel_tile_height(fb, color_plane); 4541 else 4542 return intel_tile_width_bytes(fb, color_plane); 4543 } 4544 4545 u32 skl_plane_stride(const struct intel_plane_state *plane_state, 4546 int color_plane) 4547 { 4548 const struct drm_framebuffer *fb = plane_state->hw.fb; 4549 unsigned int rotation = plane_state->hw.rotation; 4550 u32 stride = plane_state->color_plane[color_plane].stride; 4551 4552 if (color_plane >= fb->format->num_planes) 4553 return 0; 4554 4555 return stride / skl_plane_stride_mult(fb, color_plane, rotation); 4556 } 4557 4558 static u32 skl_plane_ctl_format(u32 pixel_format) 4559 { 4560 switch (pixel_format) { 4561 case DRM_FORMAT_C8: 4562 return PLANE_CTL_FORMAT_INDEXED; 4563 case DRM_FORMAT_RGB565: 4564 return PLANE_CTL_FORMAT_RGB_565; 4565 case DRM_FORMAT_XBGR8888: 4566 case DRM_FORMAT_ABGR8888: 4567 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX; 4568 case DRM_FORMAT_XRGB8888: 4569 case DRM_FORMAT_ARGB8888: 4570 return PLANE_CTL_FORMAT_XRGB_8888; 4571 case DRM_FORMAT_XBGR2101010: 4572 case DRM_FORMAT_ABGR2101010: 4573 return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX; 4574 case DRM_FORMAT_XRGB2101010: 4575 case DRM_FORMAT_ARGB2101010: 4576 return PLANE_CTL_FORMAT_XRGB_2101010; 4577 case DRM_FORMAT_XBGR16161616F: 4578 case DRM_FORMAT_ABGR16161616F: 4579 return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX; 4580 case DRM_FORMAT_XRGB16161616F: 4581 case DRM_FORMAT_ARGB16161616F: 4582 return PLANE_CTL_FORMAT_XRGB_16161616F; 4583 case DRM_FORMAT_YUYV: 4584 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV; 4585 case DRM_FORMAT_YVYU: 4586 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU; 4587 case DRM_FORMAT_UYVY: 4588 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY; 4589 case DRM_FORMAT_VYUY: 4590 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY; 4591 case DRM_FORMAT_NV12: 4592 return PLANE_CTL_FORMAT_NV12; 4593 case DRM_FORMAT_P010: 4594 return PLANE_CTL_FORMAT_P010; 4595 case DRM_FORMAT_P012: 4596 return PLANE_CTL_FORMAT_P012; 4597 case DRM_FORMAT_P016: 4598 return PLANE_CTL_FORMAT_P016; 4599 case DRM_FORMAT_Y210: 4600 return PLANE_CTL_FORMAT_Y210; 4601 case DRM_FORMAT_Y212: 4602 return PLANE_CTL_FORMAT_Y212; 4603 case DRM_FORMAT_Y216: 4604 return PLANE_CTL_FORMAT_Y216; 4605 case DRM_FORMAT_XVYU2101010: 4606 return PLANE_CTL_FORMAT_Y410; 4607 case DRM_FORMAT_XVYU12_16161616: 4608 return PLANE_CTL_FORMAT_Y412; 4609 case DRM_FORMAT_XVYU16161616: 4610 return PLANE_CTL_FORMAT_Y416; 4611 default: 4612 MISSING_CASE(pixel_format); 4613 } 4614 4615 return 0; 4616 } 4617 4618 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state) 4619 { 4620 if (!plane_state->hw.fb->format->has_alpha) 4621 return PLANE_CTL_ALPHA_DISABLE; 4622 4623 switch (plane_state->hw.pixel_blend_mode) { 4624 case DRM_MODE_BLEND_PIXEL_NONE: 4625 return PLANE_CTL_ALPHA_DISABLE; 4626 case DRM_MODE_BLEND_PREMULTI: 4627 return PLANE_CTL_ALPHA_SW_PREMULTIPLY; 4628 case DRM_MODE_BLEND_COVERAGE: 4629 return PLANE_CTL_ALPHA_HW_PREMULTIPLY; 4630 default: 4631 MISSING_CASE(plane_state->hw.pixel_blend_mode); 4632 return PLANE_CTL_ALPHA_DISABLE; 4633 } 4634 } 4635 4636 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state) 4637 { 4638 if (!plane_state->hw.fb->format->has_alpha) 4639 return PLANE_COLOR_ALPHA_DISABLE; 4640 4641 switch (plane_state->hw.pixel_blend_mode) { 4642 case DRM_MODE_BLEND_PIXEL_NONE: 4643 return PLANE_COLOR_ALPHA_DISABLE; 4644 case DRM_MODE_BLEND_PREMULTI: 4645 return PLANE_COLOR_ALPHA_SW_PREMULTIPLY; 4646 case DRM_MODE_BLEND_COVERAGE: 4647 return PLANE_COLOR_ALPHA_HW_PREMULTIPLY; 4648 default: 4649 MISSING_CASE(plane_state->hw.pixel_blend_mode); 4650 return PLANE_COLOR_ALPHA_DISABLE; 4651 } 4652 } 4653 4654 static u32 skl_plane_ctl_tiling(u64 fb_modifier) 4655 { 4656 switch (fb_modifier) { 4657 case DRM_FORMAT_MOD_LINEAR: 4658 break; 4659 case I915_FORMAT_MOD_X_TILED: 4660 return PLANE_CTL_TILED_X; 4661 case I915_FORMAT_MOD_Y_TILED: 4662 return PLANE_CTL_TILED_Y; 4663 case I915_FORMAT_MOD_Y_TILED_CCS: 4664 return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4665 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 4666 return PLANE_CTL_TILED_Y | 4667 PLANE_CTL_RENDER_DECOMPRESSION_ENABLE | 4668 PLANE_CTL_CLEAR_COLOR_DISABLE; 4669 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 4670 return PLANE_CTL_TILED_Y | PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE; 4671 case I915_FORMAT_MOD_Yf_TILED: 4672 return PLANE_CTL_TILED_YF; 4673 case I915_FORMAT_MOD_Yf_TILED_CCS: 4674 return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4675 default: 4676 MISSING_CASE(fb_modifier); 4677 } 4678 4679 return 0; 4680 } 4681 4682 static u32 skl_plane_ctl_rotate(unsigned int rotate) 4683 { 4684 switch (rotate) { 4685 case DRM_MODE_ROTATE_0: 4686 break; 4687 /* 4688 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 4689 * while i915 HW rotation is clockwise, thats why this swapping. 4690 */ 4691 case DRM_MODE_ROTATE_90: 4692 return PLANE_CTL_ROTATE_270; 4693 case DRM_MODE_ROTATE_180: 4694 return PLANE_CTL_ROTATE_180; 4695 case DRM_MODE_ROTATE_270: 4696 return PLANE_CTL_ROTATE_90; 4697 default: 4698 MISSING_CASE(rotate); 4699 } 4700 4701 return 0; 4702 } 4703 4704 static u32 cnl_plane_ctl_flip(unsigned int reflect) 4705 { 4706 switch (reflect) { 4707 case 0: 4708 break; 4709 case DRM_MODE_REFLECT_X: 4710 return PLANE_CTL_FLIP_HORIZONTAL; 4711 case DRM_MODE_REFLECT_Y: 4712 default: 4713 MISSING_CASE(reflect); 4714 } 4715 4716 return 0; 4717 } 4718 4719 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 4720 { 4721 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4722 u32 plane_ctl = 0; 4723 4724 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4725 return plane_ctl; 4726 4727 if (crtc_state->gamma_enable) 4728 plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE; 4729 4730 if (crtc_state->csc_enable) 4731 plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE; 4732 4733 return plane_ctl; 4734 } 4735 4736 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state, 4737 const struct intel_plane_state *plane_state) 4738 { 4739 struct drm_i915_private *dev_priv = 4740 to_i915(plane_state->uapi.plane->dev); 4741 const struct drm_framebuffer *fb = plane_state->hw.fb; 4742 unsigned int rotation = plane_state->hw.rotation; 4743 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey; 4744 u32 plane_ctl; 4745 4746 plane_ctl = PLANE_CTL_ENABLE; 4747 4748 if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) { 4749 plane_ctl |= skl_plane_ctl_alpha(plane_state); 4750 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE; 4751 4752 if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709) 4753 plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709; 4754 4755 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4756 plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE; 4757 } 4758 4759 plane_ctl |= skl_plane_ctl_format(fb->format->format); 4760 plane_ctl |= skl_plane_ctl_tiling(fb->modifier); 4761 plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK); 4762 4763 if (INTEL_GEN(dev_priv) >= 10) 4764 plane_ctl |= cnl_plane_ctl_flip(rotation & 4765 DRM_MODE_REFLECT_MASK); 4766 4767 if (key->flags & I915_SET_COLORKEY_DESTINATION) 4768 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION; 4769 else if (key->flags & I915_SET_COLORKEY_SOURCE) 4770 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE; 4771 4772 return plane_ctl; 4773 } 4774 4775 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state) 4776 { 4777 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4778 u32 plane_color_ctl = 0; 4779 4780 if (INTEL_GEN(dev_priv) >= 11) 4781 return plane_color_ctl; 4782 4783 if (crtc_state->gamma_enable) 4784 plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE; 4785 4786 if (crtc_state->csc_enable) 4787 plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE; 4788 4789 return plane_color_ctl; 4790 } 4791 4792 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state, 4793 const struct intel_plane_state *plane_state) 4794 { 4795 struct drm_i915_private *dev_priv = 4796 to_i915(plane_state->uapi.plane->dev); 4797 const struct drm_framebuffer *fb = plane_state->hw.fb; 4798 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 4799 u32 plane_color_ctl = 0; 4800 4801 plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE; 4802 plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state); 4803 4804 if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) { 4805 if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709) 4806 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709; 4807 else 4808 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV601_TO_RGB709; 4809 4810 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4811 plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE; 4812 } else if (fb->format->is_yuv) { 4813 plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE; 4814 } 4815 4816 return plane_color_ctl; 4817 } 4818 4819 static int 4820 __intel_display_resume(struct drm_device *dev, 4821 struct drm_atomic_state *state, 4822 struct drm_modeset_acquire_ctx *ctx) 4823 { 4824 struct drm_crtc_state *crtc_state; 4825 struct drm_crtc *crtc; 4826 int i, ret; 4827 4828 intel_modeset_setup_hw_state(dev, ctx); 4829 intel_vga_redisable(to_i915(dev)); 4830 4831 if (!state) 4832 return 0; 4833 4834 /* 4835 * We've duplicated the state, pointers to the old state are invalid. 4836 * 4837 * Don't attempt to use the old state until we commit the duplicated state. 4838 */ 4839 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 4840 /* 4841 * Force recalculation even if we restore 4842 * current state. With fast modeset this may not result 4843 * in a modeset when the state is compatible. 4844 */ 4845 crtc_state->mode_changed = true; 4846 } 4847 4848 /* ignore any reset values/BIOS leftovers in the WM registers */ 4849 if (!HAS_GMCH(to_i915(dev))) 4850 to_intel_atomic_state(state)->skip_intermediate_wm = true; 4851 4852 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 4853 4854 drm_WARN_ON(dev, ret == -EDEADLK); 4855 return ret; 4856 } 4857 4858 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 4859 { 4860 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 4861 intel_has_gpu_reset(&dev_priv->gt)); 4862 } 4863 4864 void intel_prepare_reset(struct drm_i915_private *dev_priv) 4865 { 4866 struct drm_device *dev = &dev_priv->drm; 4867 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4868 struct drm_atomic_state *state; 4869 int ret; 4870 4871 /* reset doesn't touch the display */ 4872 if (!i915_modparams.force_reset_modeset_test && 4873 !gpu_reset_clobbers_display(dev_priv)) 4874 return; 4875 4876 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 4877 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 4878 smp_mb__after_atomic(); 4879 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 4880 4881 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 4882 drm_dbg_kms(&dev_priv->drm, 4883 "Modeset potentially stuck, unbreaking through wedging\n"); 4884 intel_gt_set_wedged(&dev_priv->gt); 4885 } 4886 4887 /* 4888 * Need mode_config.mutex so that we don't 4889 * trample ongoing ->detect() and whatnot. 4890 */ 4891 mutex_lock(&dev->mode_config.mutex); 4892 drm_modeset_acquire_init(ctx, 0); 4893 while (1) { 4894 ret = drm_modeset_lock_all_ctx(dev, ctx); 4895 if (ret != -EDEADLK) 4896 break; 4897 4898 drm_modeset_backoff(ctx); 4899 } 4900 /* 4901 * Disabling the crtcs gracefully seems nicer. Also the 4902 * g33 docs say we should at least disable all the planes. 4903 */ 4904 state = drm_atomic_helper_duplicate_state(dev, ctx); 4905 if (IS_ERR(state)) { 4906 ret = PTR_ERR(state); 4907 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n", 4908 ret); 4909 return; 4910 } 4911 4912 ret = drm_atomic_helper_disable_all(dev, ctx); 4913 if (ret) { 4914 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 4915 ret); 4916 drm_atomic_state_put(state); 4917 return; 4918 } 4919 4920 dev_priv->modeset_restore_state = state; 4921 state->acquire_ctx = ctx; 4922 } 4923 4924 void intel_finish_reset(struct drm_i915_private *dev_priv) 4925 { 4926 struct drm_device *dev = &dev_priv->drm; 4927 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4928 struct drm_atomic_state *state; 4929 int ret; 4930 4931 /* reset doesn't touch the display */ 4932 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 4933 return; 4934 4935 state = fetch_and_zero(&dev_priv->modeset_restore_state); 4936 if (!state) 4937 goto unlock; 4938 4939 /* reset doesn't touch the display */ 4940 if (!gpu_reset_clobbers_display(dev_priv)) { 4941 /* for testing only restore the display */ 4942 ret = __intel_display_resume(dev, state, ctx); 4943 if (ret) 4944 drm_err(&dev_priv->drm, 4945 "Restoring old state failed with %i\n", ret); 4946 } else { 4947 /* 4948 * The display has been reset as well, 4949 * so need a full re-initialization. 4950 */ 4951 intel_pps_unlock_regs_wa(dev_priv); 4952 intel_modeset_init_hw(dev_priv); 4953 intel_init_clock_gating(dev_priv); 4954 4955 spin_lock_irq(&dev_priv->irq_lock); 4956 if (dev_priv->display.hpd_irq_setup) 4957 dev_priv->display.hpd_irq_setup(dev_priv); 4958 spin_unlock_irq(&dev_priv->irq_lock); 4959 4960 ret = __intel_display_resume(dev, state, ctx); 4961 if (ret) 4962 drm_err(&dev_priv->drm, 4963 "Restoring old state failed with %i\n", ret); 4964 4965 intel_hpd_init(dev_priv); 4966 } 4967 4968 drm_atomic_state_put(state); 4969 unlock: 4970 drm_modeset_drop_locks(ctx); 4971 drm_modeset_acquire_fini(ctx); 4972 mutex_unlock(&dev->mode_config.mutex); 4973 4974 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 4975 } 4976 4977 static void icl_set_pipe_chicken(struct intel_crtc *crtc) 4978 { 4979 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4980 enum pipe pipe = crtc->pipe; 4981 u32 tmp; 4982 4983 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe)); 4984 4985 /* 4986 * Display WA #1153: icl 4987 * enable hardware to bypass the alpha math 4988 * and rounding for per-pixel values 00 and 0xff 4989 */ 4990 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 4991 /* 4992 * Display WA # 1605353570: icl 4993 * Set the pixel rounding bit to 1 for allowing 4994 * passthrough of Frame buffer pixels unmodified 4995 * across pipe 4996 */ 4997 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 4998 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp); 4999 } 5000 5001 static void icl_enable_trans_port_sync(const struct intel_crtc_state *crtc_state) 5002 { 5003 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5004 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5005 u32 trans_ddi_func_ctl2_val; 5006 u8 master_select; 5007 5008 /* 5009 * Configure the master select and enable Transcoder Port Sync for 5010 * Slave CRTCs transcoder. 5011 */ 5012 if (crtc_state->master_transcoder == INVALID_TRANSCODER) 5013 return; 5014 5015 if (crtc_state->master_transcoder == TRANSCODER_EDP) 5016 master_select = 0; 5017 else 5018 master_select = crtc_state->master_transcoder + 1; 5019 5020 /* Set the master select bits for Tranascoder Port Sync */ 5021 trans_ddi_func_ctl2_val = (PORT_SYNC_MODE_MASTER_SELECT(master_select) & 5022 PORT_SYNC_MODE_MASTER_SELECT_MASK) << 5023 PORT_SYNC_MODE_MASTER_SELECT_SHIFT; 5024 /* Enable Transcoder Port Sync */ 5025 trans_ddi_func_ctl2_val |= PORT_SYNC_MODE_ENABLE; 5026 5027 intel_de_write(dev_priv, 5028 TRANS_DDI_FUNC_CTL2(crtc_state->cpu_transcoder), 5029 trans_ddi_func_ctl2_val); 5030 } 5031 5032 static void intel_fdi_normal_train(struct intel_crtc *crtc) 5033 { 5034 struct drm_device *dev = crtc->base.dev; 5035 struct drm_i915_private *dev_priv = to_i915(dev); 5036 enum pipe pipe = crtc->pipe; 5037 i915_reg_t reg; 5038 u32 temp; 5039 5040 /* enable normal train */ 5041 reg = FDI_TX_CTL(pipe); 5042 temp = intel_de_read(dev_priv, reg); 5043 if (IS_IVYBRIDGE(dev_priv)) { 5044 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 5045 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; 5046 } else { 5047 temp &= ~FDI_LINK_TRAIN_NONE; 5048 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; 5049 } 5050 intel_de_write(dev_priv, reg, temp); 5051 5052 reg = FDI_RX_CTL(pipe); 5053 temp = intel_de_read(dev_priv, reg); 5054 if (HAS_PCH_CPT(dev_priv)) { 5055 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5056 temp |= FDI_LINK_TRAIN_NORMAL_CPT; 5057 } else { 5058 temp &= ~FDI_LINK_TRAIN_NONE; 5059 temp |= FDI_LINK_TRAIN_NONE; 5060 } 5061 intel_de_write(dev_priv, reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); 5062 5063 /* wait one idle pattern time */ 5064 intel_de_posting_read(dev_priv, reg); 5065 udelay(1000); 5066 5067 /* IVB wants error correction enabled */ 5068 if (IS_IVYBRIDGE(dev_priv)) 5069 intel_de_write(dev_priv, reg, 5070 intel_de_read(dev_priv, reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE); 5071 } 5072 5073 /* The FDI link training functions for ILK/Ibexpeak. */ 5074 static void ilk_fdi_link_train(struct intel_crtc *crtc, 5075 const struct intel_crtc_state *crtc_state) 5076 { 5077 struct drm_device *dev = crtc->base.dev; 5078 struct drm_i915_private *dev_priv = to_i915(dev); 5079 enum pipe pipe = crtc->pipe; 5080 i915_reg_t reg; 5081 u32 temp, tries; 5082 5083 /* FDI needs bits from pipe first */ 5084 assert_pipe_enabled(dev_priv, crtc_state->cpu_transcoder); 5085 5086 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5087 for train result */ 5088 reg = FDI_RX_IMR(pipe); 5089 temp = intel_de_read(dev_priv, reg); 5090 temp &= ~FDI_RX_SYMBOL_LOCK; 5091 temp &= ~FDI_RX_BIT_LOCK; 5092 intel_de_write(dev_priv, reg, temp); 5093 intel_de_read(dev_priv, reg); 5094 udelay(150); 5095 5096 /* enable CPU FDI TX and PCH FDI RX */ 5097 reg = FDI_TX_CTL(pipe); 5098 temp = intel_de_read(dev_priv, reg); 5099 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5100 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5101 temp &= ~FDI_LINK_TRAIN_NONE; 5102 temp |= FDI_LINK_TRAIN_PATTERN_1; 5103 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5104 5105 reg = FDI_RX_CTL(pipe); 5106 temp = intel_de_read(dev_priv, reg); 5107 temp &= ~FDI_LINK_TRAIN_NONE; 5108 temp |= FDI_LINK_TRAIN_PATTERN_1; 5109 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5110 5111 intel_de_posting_read(dev_priv, reg); 5112 udelay(150); 5113 5114 /* Ironlake workaround, enable clock pointer after FDI enable*/ 5115 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5116 FDI_RX_PHASE_SYNC_POINTER_OVR); 5117 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5118 FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN); 5119 5120 reg = FDI_RX_IIR(pipe); 5121 for (tries = 0; tries < 5; tries++) { 5122 temp = intel_de_read(dev_priv, reg); 5123 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5124 5125 if ((temp & FDI_RX_BIT_LOCK)) { 5126 drm_dbg_kms(&dev_priv->drm, "FDI train 1 done.\n"); 5127 intel_de_write(dev_priv, reg, temp | FDI_RX_BIT_LOCK); 5128 break; 5129 } 5130 } 5131 if (tries == 5) 5132 drm_err(&dev_priv->drm, "FDI train 1 fail!\n"); 5133 5134 /* Train 2 */ 5135 reg = FDI_TX_CTL(pipe); 5136 temp = intel_de_read(dev_priv, reg); 5137 temp &= ~FDI_LINK_TRAIN_NONE; 5138 temp |= FDI_LINK_TRAIN_PATTERN_2; 5139 intel_de_write(dev_priv, reg, temp); 5140 5141 reg = FDI_RX_CTL(pipe); 5142 temp = intel_de_read(dev_priv, reg); 5143 temp &= ~FDI_LINK_TRAIN_NONE; 5144 temp |= FDI_LINK_TRAIN_PATTERN_2; 5145 intel_de_write(dev_priv, reg, temp); 5146 5147 intel_de_posting_read(dev_priv, reg); 5148 udelay(150); 5149 5150 reg = FDI_RX_IIR(pipe); 5151 for (tries = 0; tries < 5; tries++) { 5152 temp = intel_de_read(dev_priv, reg); 5153 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5154 5155 if (temp & FDI_RX_SYMBOL_LOCK) { 5156 intel_de_write(dev_priv, reg, 5157 temp | FDI_RX_SYMBOL_LOCK); 5158 drm_dbg_kms(&dev_priv->drm, "FDI train 2 done.\n"); 5159 break; 5160 } 5161 } 5162 if (tries == 5) 5163 drm_err(&dev_priv->drm, "FDI train 2 fail!\n"); 5164 5165 drm_dbg_kms(&dev_priv->drm, "FDI train done\n"); 5166 5167 } 5168 5169 static const int snb_b_fdi_train_param[] = { 5170 FDI_LINK_TRAIN_400MV_0DB_SNB_B, 5171 FDI_LINK_TRAIN_400MV_6DB_SNB_B, 5172 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, 5173 FDI_LINK_TRAIN_800MV_0DB_SNB_B, 5174 }; 5175 5176 /* The FDI link training functions for SNB/Cougarpoint. */ 5177 static void gen6_fdi_link_train(struct intel_crtc *crtc, 5178 const struct intel_crtc_state *crtc_state) 5179 { 5180 struct drm_device *dev = crtc->base.dev; 5181 struct drm_i915_private *dev_priv = to_i915(dev); 5182 enum pipe pipe = crtc->pipe; 5183 i915_reg_t reg; 5184 u32 temp, i, retry; 5185 5186 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5187 for train result */ 5188 reg = FDI_RX_IMR(pipe); 5189 temp = intel_de_read(dev_priv, reg); 5190 temp &= ~FDI_RX_SYMBOL_LOCK; 5191 temp &= ~FDI_RX_BIT_LOCK; 5192 intel_de_write(dev_priv, reg, temp); 5193 5194 intel_de_posting_read(dev_priv, reg); 5195 udelay(150); 5196 5197 /* enable CPU FDI TX and PCH FDI RX */ 5198 reg = FDI_TX_CTL(pipe); 5199 temp = intel_de_read(dev_priv, reg); 5200 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5201 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5202 temp &= ~FDI_LINK_TRAIN_NONE; 5203 temp |= FDI_LINK_TRAIN_PATTERN_1; 5204 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5205 /* SNB-B */ 5206 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 5207 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5208 5209 intel_de_write(dev_priv, FDI_RX_MISC(pipe), 5210 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 5211 5212 reg = FDI_RX_CTL(pipe); 5213 temp = intel_de_read(dev_priv, reg); 5214 if (HAS_PCH_CPT(dev_priv)) { 5215 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5216 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5217 } else { 5218 temp &= ~FDI_LINK_TRAIN_NONE; 5219 temp |= FDI_LINK_TRAIN_PATTERN_1; 5220 } 5221 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5222 5223 intel_de_posting_read(dev_priv, reg); 5224 udelay(150); 5225 5226 for (i = 0; i < 4; i++) { 5227 reg = FDI_TX_CTL(pipe); 5228 temp = intel_de_read(dev_priv, reg); 5229 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5230 temp |= snb_b_fdi_train_param[i]; 5231 intel_de_write(dev_priv, reg, temp); 5232 5233 intel_de_posting_read(dev_priv, reg); 5234 udelay(500); 5235 5236 for (retry = 0; retry < 5; retry++) { 5237 reg = FDI_RX_IIR(pipe); 5238 temp = intel_de_read(dev_priv, reg); 5239 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5240 if (temp & FDI_RX_BIT_LOCK) { 5241 intel_de_write(dev_priv, reg, 5242 temp | FDI_RX_BIT_LOCK); 5243 drm_dbg_kms(&dev_priv->drm, 5244 "FDI train 1 done.\n"); 5245 break; 5246 } 5247 udelay(50); 5248 } 5249 if (retry < 5) 5250 break; 5251 } 5252 if (i == 4) 5253 drm_err(&dev_priv->drm, "FDI train 1 fail!\n"); 5254 5255 /* Train 2 */ 5256 reg = FDI_TX_CTL(pipe); 5257 temp = intel_de_read(dev_priv, reg); 5258 temp &= ~FDI_LINK_TRAIN_NONE; 5259 temp |= FDI_LINK_TRAIN_PATTERN_2; 5260 if (IS_GEN(dev_priv, 6)) { 5261 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5262 /* SNB-B */ 5263 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 5264 } 5265 intel_de_write(dev_priv, reg, temp); 5266 5267 reg = FDI_RX_CTL(pipe); 5268 temp = intel_de_read(dev_priv, reg); 5269 if (HAS_PCH_CPT(dev_priv)) { 5270 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5271 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 5272 } else { 5273 temp &= ~FDI_LINK_TRAIN_NONE; 5274 temp |= FDI_LINK_TRAIN_PATTERN_2; 5275 } 5276 intel_de_write(dev_priv, reg, temp); 5277 5278 intel_de_posting_read(dev_priv, reg); 5279 udelay(150); 5280 5281 for (i = 0; i < 4; i++) { 5282 reg = FDI_TX_CTL(pipe); 5283 temp = intel_de_read(dev_priv, reg); 5284 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5285 temp |= snb_b_fdi_train_param[i]; 5286 intel_de_write(dev_priv, reg, temp); 5287 5288 intel_de_posting_read(dev_priv, reg); 5289 udelay(500); 5290 5291 for (retry = 0; retry < 5; retry++) { 5292 reg = FDI_RX_IIR(pipe); 5293 temp = intel_de_read(dev_priv, reg); 5294 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5295 if (temp & FDI_RX_SYMBOL_LOCK) { 5296 intel_de_write(dev_priv, reg, 5297 temp | FDI_RX_SYMBOL_LOCK); 5298 drm_dbg_kms(&dev_priv->drm, 5299 "FDI train 2 done.\n"); 5300 break; 5301 } 5302 udelay(50); 5303 } 5304 if (retry < 5) 5305 break; 5306 } 5307 if (i == 4) 5308 drm_err(&dev_priv->drm, "FDI train 2 fail!\n"); 5309 5310 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n"); 5311 } 5312 5313 /* Manual link training for Ivy Bridge A0 parts */ 5314 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc, 5315 const struct intel_crtc_state *crtc_state) 5316 { 5317 struct drm_device *dev = crtc->base.dev; 5318 struct drm_i915_private *dev_priv = to_i915(dev); 5319 enum pipe pipe = crtc->pipe; 5320 i915_reg_t reg; 5321 u32 temp, i, j; 5322 5323 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5324 for train result */ 5325 reg = FDI_RX_IMR(pipe); 5326 temp = intel_de_read(dev_priv, reg); 5327 temp &= ~FDI_RX_SYMBOL_LOCK; 5328 temp &= ~FDI_RX_BIT_LOCK; 5329 intel_de_write(dev_priv, reg, temp); 5330 5331 intel_de_posting_read(dev_priv, reg); 5332 udelay(150); 5333 5334 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR before link train 0x%x\n", 5335 intel_de_read(dev_priv, FDI_RX_IIR(pipe))); 5336 5337 /* Try each vswing and preemphasis setting twice before moving on */ 5338 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) { 5339 /* disable first in case we need to retry */ 5340 reg = FDI_TX_CTL(pipe); 5341 temp = intel_de_read(dev_priv, reg); 5342 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); 5343 temp &= ~FDI_TX_ENABLE; 5344 intel_de_write(dev_priv, reg, temp); 5345 5346 reg = FDI_RX_CTL(pipe); 5347 temp = intel_de_read(dev_priv, reg); 5348 temp &= ~FDI_LINK_TRAIN_AUTO; 5349 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5350 temp &= ~FDI_RX_ENABLE; 5351 intel_de_write(dev_priv, reg, temp); 5352 5353 /* enable CPU FDI TX and PCH FDI RX */ 5354 reg = FDI_TX_CTL(pipe); 5355 temp = intel_de_read(dev_priv, reg); 5356 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5357 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5358 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; 5359 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5360 temp |= snb_b_fdi_train_param[j/2]; 5361 temp |= FDI_COMPOSITE_SYNC; 5362 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5363 5364 intel_de_write(dev_priv, FDI_RX_MISC(pipe), 5365 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 5366 5367 reg = FDI_RX_CTL(pipe); 5368 temp = intel_de_read(dev_priv, reg); 5369 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5370 temp |= FDI_COMPOSITE_SYNC; 5371 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5372 5373 intel_de_posting_read(dev_priv, reg); 5374 udelay(1); /* should be 0.5us */ 5375 5376 for (i = 0; i < 4; i++) { 5377 reg = FDI_RX_IIR(pipe); 5378 temp = intel_de_read(dev_priv, reg); 5379 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5380 5381 if (temp & FDI_RX_BIT_LOCK || 5382 (intel_de_read(dev_priv, reg) & FDI_RX_BIT_LOCK)) { 5383 intel_de_write(dev_priv, reg, 5384 temp | FDI_RX_BIT_LOCK); 5385 drm_dbg_kms(&dev_priv->drm, 5386 "FDI train 1 done, level %i.\n", 5387 i); 5388 break; 5389 } 5390 udelay(1); /* should be 0.5us */ 5391 } 5392 if (i == 4) { 5393 drm_dbg_kms(&dev_priv->drm, 5394 "FDI train 1 fail on vswing %d\n", j / 2); 5395 continue; 5396 } 5397 5398 /* Train 2 */ 5399 reg = FDI_TX_CTL(pipe); 5400 temp = intel_de_read(dev_priv, reg); 5401 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 5402 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; 5403 intel_de_write(dev_priv, reg, temp); 5404 5405 reg = FDI_RX_CTL(pipe); 5406 temp = intel_de_read(dev_priv, reg); 5407 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5408 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 5409 intel_de_write(dev_priv, reg, temp); 5410 5411 intel_de_posting_read(dev_priv, reg); 5412 udelay(2); /* should be 1.5us */ 5413 5414 for (i = 0; i < 4; i++) { 5415 reg = FDI_RX_IIR(pipe); 5416 temp = intel_de_read(dev_priv, reg); 5417 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5418 5419 if (temp & FDI_RX_SYMBOL_LOCK || 5420 (intel_de_read(dev_priv, reg) & FDI_RX_SYMBOL_LOCK)) { 5421 intel_de_write(dev_priv, reg, 5422 temp | FDI_RX_SYMBOL_LOCK); 5423 drm_dbg_kms(&dev_priv->drm, 5424 "FDI train 2 done, level %i.\n", 5425 i); 5426 goto train_done; 5427 } 5428 udelay(2); /* should be 1.5us */ 5429 } 5430 if (i == 4) 5431 drm_dbg_kms(&dev_priv->drm, 5432 "FDI train 2 fail on vswing %d\n", j / 2); 5433 } 5434 5435 train_done: 5436 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n"); 5437 } 5438 5439 static void ilk_fdi_pll_enable(const struct intel_crtc_state *crtc_state) 5440 { 5441 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 5442 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 5443 enum pipe pipe = intel_crtc->pipe; 5444 i915_reg_t reg; 5445 u32 temp; 5446 5447 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ 5448 reg = FDI_RX_CTL(pipe); 5449 temp = intel_de_read(dev_priv, reg); 5450 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16)); 5451 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5452 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5453 intel_de_write(dev_priv, reg, temp | FDI_RX_PLL_ENABLE); 5454 5455 intel_de_posting_read(dev_priv, reg); 5456 udelay(200); 5457 5458 /* Switch from Rawclk to PCDclk */ 5459 temp = intel_de_read(dev_priv, reg); 5460 intel_de_write(dev_priv, reg, temp | FDI_PCDCLK); 5461 5462 intel_de_posting_read(dev_priv, reg); 5463 udelay(200); 5464 5465 /* Enable CPU FDI TX PLL, always on for Ironlake */ 5466 reg = FDI_TX_CTL(pipe); 5467 temp = intel_de_read(dev_priv, reg); 5468 if ((temp & FDI_TX_PLL_ENABLE) == 0) { 5469 intel_de_write(dev_priv, reg, temp | FDI_TX_PLL_ENABLE); 5470 5471 intel_de_posting_read(dev_priv, reg); 5472 udelay(100); 5473 } 5474 } 5475 5476 static void ilk_fdi_pll_disable(struct intel_crtc *intel_crtc) 5477 { 5478 struct drm_device *dev = intel_crtc->base.dev; 5479 struct drm_i915_private *dev_priv = to_i915(dev); 5480 enum pipe pipe = intel_crtc->pipe; 5481 i915_reg_t reg; 5482 u32 temp; 5483 5484 /* Switch from PCDclk to Rawclk */ 5485 reg = FDI_RX_CTL(pipe); 5486 temp = intel_de_read(dev_priv, reg); 5487 intel_de_write(dev_priv, reg, temp & ~FDI_PCDCLK); 5488 5489 /* Disable CPU FDI TX PLL */ 5490 reg = FDI_TX_CTL(pipe); 5491 temp = intel_de_read(dev_priv, reg); 5492 intel_de_write(dev_priv, reg, temp & ~FDI_TX_PLL_ENABLE); 5493 5494 intel_de_posting_read(dev_priv, reg); 5495 udelay(100); 5496 5497 reg = FDI_RX_CTL(pipe); 5498 temp = intel_de_read(dev_priv, reg); 5499 intel_de_write(dev_priv, reg, temp & ~FDI_RX_PLL_ENABLE); 5500 5501 /* Wait for the clocks to turn off. */ 5502 intel_de_posting_read(dev_priv, reg); 5503 udelay(100); 5504 } 5505 5506 static void ilk_fdi_disable(struct intel_crtc *crtc) 5507 { 5508 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5509 enum pipe pipe = crtc->pipe; 5510 i915_reg_t reg; 5511 u32 temp; 5512 5513 /* disable CPU FDI tx and PCH FDI rx */ 5514 reg = FDI_TX_CTL(pipe); 5515 temp = intel_de_read(dev_priv, reg); 5516 intel_de_write(dev_priv, reg, temp & ~FDI_TX_ENABLE); 5517 intel_de_posting_read(dev_priv, reg); 5518 5519 reg = FDI_RX_CTL(pipe); 5520 temp = intel_de_read(dev_priv, reg); 5521 temp &= ~(0x7 << 16); 5522 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5523 intel_de_write(dev_priv, reg, temp & ~FDI_RX_ENABLE); 5524 5525 intel_de_posting_read(dev_priv, reg); 5526 udelay(100); 5527 5528 /* Ironlake workaround, disable clock pointer after downing FDI */ 5529 if (HAS_PCH_IBX(dev_priv)) 5530 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5531 FDI_RX_PHASE_SYNC_POINTER_OVR); 5532 5533 /* still set train pattern 1 */ 5534 reg = FDI_TX_CTL(pipe); 5535 temp = intel_de_read(dev_priv, reg); 5536 temp &= ~FDI_LINK_TRAIN_NONE; 5537 temp |= FDI_LINK_TRAIN_PATTERN_1; 5538 intel_de_write(dev_priv, reg, temp); 5539 5540 reg = FDI_RX_CTL(pipe); 5541 temp = intel_de_read(dev_priv, reg); 5542 if (HAS_PCH_CPT(dev_priv)) { 5543 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5544 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5545 } else { 5546 temp &= ~FDI_LINK_TRAIN_NONE; 5547 temp |= FDI_LINK_TRAIN_PATTERN_1; 5548 } 5549 /* BPC in FDI rx is consistent with that in PIPECONF */ 5550 temp &= ~(0x07 << 16); 5551 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5552 intel_de_write(dev_priv, reg, temp); 5553 5554 intel_de_posting_read(dev_priv, reg); 5555 udelay(100); 5556 } 5557 5558 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 5559 { 5560 struct drm_crtc *crtc; 5561 bool cleanup_done; 5562 5563 drm_for_each_crtc(crtc, &dev_priv->drm) { 5564 struct drm_crtc_commit *commit; 5565 spin_lock(&crtc->commit_lock); 5566 commit = list_first_entry_or_null(&crtc->commit_list, 5567 struct drm_crtc_commit, commit_entry); 5568 cleanup_done = commit ? 5569 try_wait_for_completion(&commit->cleanup_done) : true; 5570 spin_unlock(&crtc->commit_lock); 5571 5572 if (cleanup_done) 5573 continue; 5574 5575 drm_crtc_wait_one_vblank(crtc); 5576 5577 return true; 5578 } 5579 5580 return false; 5581 } 5582 5583 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 5584 { 5585 u32 temp; 5586 5587 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE); 5588 5589 mutex_lock(&dev_priv->sb_lock); 5590 5591 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5592 temp |= SBI_SSCCTL_DISABLE; 5593 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5594 5595 mutex_unlock(&dev_priv->sb_lock); 5596 } 5597 5598 /* Program iCLKIP clock to the desired frequency */ 5599 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 5600 { 5601 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5602 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5603 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 5604 u32 divsel, phaseinc, auxdiv, phasedir = 0; 5605 u32 temp; 5606 5607 lpt_disable_iclkip(dev_priv); 5608 5609 /* The iCLK virtual clock root frequency is in MHz, 5610 * but the adjusted_mode->crtc_clock in in KHz. To get the 5611 * divisors, it is necessary to divide one by another, so we 5612 * convert the virtual clock precision to KHz here for higher 5613 * precision. 5614 */ 5615 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 5616 u32 iclk_virtual_root_freq = 172800 * 1000; 5617 u32 iclk_pi_range = 64; 5618 u32 desired_divisor; 5619 5620 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5621 clock << auxdiv); 5622 divsel = (desired_divisor / iclk_pi_range) - 2; 5623 phaseinc = desired_divisor % iclk_pi_range; 5624 5625 /* 5626 * Near 20MHz is a corner case which is 5627 * out of range for the 7-bit divisor 5628 */ 5629 if (divsel <= 0x7f) 5630 break; 5631 } 5632 5633 /* This should not happen with any sane values */ 5634 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 5635 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 5636 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) & 5637 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 5638 5639 drm_dbg_kms(&dev_priv->drm, 5640 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 5641 clock, auxdiv, divsel, phasedir, phaseinc); 5642 5643 mutex_lock(&dev_priv->sb_lock); 5644 5645 /* Program SSCDIVINTPHASE6 */ 5646 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5647 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 5648 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 5649 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 5650 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 5651 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 5652 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 5653 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 5654 5655 /* Program SSCAUXDIV */ 5656 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5657 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 5658 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 5659 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 5660 5661 /* Enable modulator and associated divider */ 5662 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5663 temp &= ~SBI_SSCCTL_DISABLE; 5664 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5665 5666 mutex_unlock(&dev_priv->sb_lock); 5667 5668 /* Wait for initialization time */ 5669 udelay(24); 5670 5671 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE); 5672 } 5673 5674 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 5675 { 5676 u32 divsel, phaseinc, auxdiv; 5677 u32 iclk_virtual_root_freq = 172800 * 1000; 5678 u32 iclk_pi_range = 64; 5679 u32 desired_divisor; 5680 u32 temp; 5681 5682 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 5683 return 0; 5684 5685 mutex_lock(&dev_priv->sb_lock); 5686 5687 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5688 if (temp & SBI_SSCCTL_DISABLE) { 5689 mutex_unlock(&dev_priv->sb_lock); 5690 return 0; 5691 } 5692 5693 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5694 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 5695 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 5696 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 5697 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 5698 5699 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5700 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 5701 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 5702 5703 mutex_unlock(&dev_priv->sb_lock); 5704 5705 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 5706 5707 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5708 desired_divisor << auxdiv); 5709 } 5710 5711 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 5712 enum pipe pch_transcoder) 5713 { 5714 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5715 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5716 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5717 5718 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder), 5719 intel_de_read(dev_priv, HTOTAL(cpu_transcoder))); 5720 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder), 5721 intel_de_read(dev_priv, HBLANK(cpu_transcoder))); 5722 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder), 5723 intel_de_read(dev_priv, HSYNC(cpu_transcoder))); 5724 5725 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder), 5726 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 5727 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder), 5728 intel_de_read(dev_priv, VBLANK(cpu_transcoder))); 5729 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder), 5730 intel_de_read(dev_priv, VSYNC(cpu_transcoder))); 5731 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder), 5732 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder))); 5733 } 5734 5735 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) 5736 { 5737 u32 temp; 5738 5739 temp = intel_de_read(dev_priv, SOUTH_CHICKEN1); 5740 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 5741 return; 5742 5743 drm_WARN_ON(&dev_priv->drm, 5744 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) & 5745 FDI_RX_ENABLE); 5746 drm_WARN_ON(&dev_priv->drm, 5747 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) & 5748 FDI_RX_ENABLE); 5749 5750 temp &= ~FDI_BC_BIFURCATION_SELECT; 5751 if (enable) 5752 temp |= FDI_BC_BIFURCATION_SELECT; 5753 5754 drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n", 5755 enable ? "en" : "dis"); 5756 intel_de_write(dev_priv, SOUTH_CHICKEN1, temp); 5757 intel_de_posting_read(dev_priv, SOUTH_CHICKEN1); 5758 } 5759 5760 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) 5761 { 5762 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5763 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5764 5765 switch (crtc->pipe) { 5766 case PIPE_A: 5767 break; 5768 case PIPE_B: 5769 if (crtc_state->fdi_lanes > 2) 5770 cpt_set_fdi_bc_bifurcation(dev_priv, false); 5771 else 5772 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5773 5774 break; 5775 case PIPE_C: 5776 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5777 5778 break; 5779 default: 5780 BUG(); 5781 } 5782 } 5783 5784 /* 5785 * Finds the encoder associated with the given CRTC. This can only be 5786 * used when we know that the CRTC isn't feeding multiple encoders! 5787 */ 5788 static struct intel_encoder * 5789 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 5790 const struct intel_crtc_state *crtc_state) 5791 { 5792 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5793 const struct drm_connector_state *connector_state; 5794 const struct drm_connector *connector; 5795 struct intel_encoder *encoder = NULL; 5796 int num_encoders = 0; 5797 int i; 5798 5799 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 5800 if (connector_state->crtc != &crtc->base) 5801 continue; 5802 5803 encoder = to_intel_encoder(connector_state->best_encoder); 5804 num_encoders++; 5805 } 5806 5807 drm_WARN(encoder->base.dev, num_encoders != 1, 5808 "%d encoders for pipe %c\n", 5809 num_encoders, pipe_name(crtc->pipe)); 5810 5811 return encoder; 5812 } 5813 5814 /* 5815 * Enable PCH resources required for PCH ports: 5816 * - PCH PLLs 5817 * - FDI training & RX/TX 5818 * - update transcoder timings 5819 * - DP transcoding bits 5820 * - transcoder 5821 */ 5822 static void ilk_pch_enable(const struct intel_atomic_state *state, 5823 const struct intel_crtc_state *crtc_state) 5824 { 5825 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5826 struct drm_device *dev = crtc->base.dev; 5827 struct drm_i915_private *dev_priv = to_i915(dev); 5828 enum pipe pipe = crtc->pipe; 5829 u32 temp; 5830 5831 assert_pch_transcoder_disabled(dev_priv, pipe); 5832 5833 if (IS_IVYBRIDGE(dev_priv)) 5834 ivb_update_fdi_bc_bifurcation(crtc_state); 5835 5836 /* Write the TU size bits before fdi link training, so that error 5837 * detection works. */ 5838 intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe), 5839 intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 5840 5841 /* For PCH output, training FDI link */ 5842 dev_priv->display.fdi_link_train(crtc, crtc_state); 5843 5844 /* We need to program the right clock selection before writing the pixel 5845 * mutliplier into the DPLL. */ 5846 if (HAS_PCH_CPT(dev_priv)) { 5847 u32 sel; 5848 5849 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 5850 temp |= TRANS_DPLL_ENABLE(pipe); 5851 sel = TRANS_DPLLB_SEL(pipe); 5852 if (crtc_state->shared_dpll == 5853 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 5854 temp |= sel; 5855 else 5856 temp &= ~sel; 5857 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 5858 } 5859 5860 /* XXX: pch pll's can be enabled any time before we enable the PCH 5861 * transcoder, and we actually should do this to not upset any PCH 5862 * transcoder that already use the clock when we share it. 5863 * 5864 * Note that enable_shared_dpll tries to do the right thing, but 5865 * get_shared_dpll unconditionally resets the pll - we need that to have 5866 * the right LVDS enable sequence. */ 5867 intel_enable_shared_dpll(crtc_state); 5868 5869 /* set transcoder timing, panel must allow it */ 5870 assert_panel_unlocked(dev_priv, pipe); 5871 ilk_pch_transcoder_set_timings(crtc_state, pipe); 5872 5873 intel_fdi_normal_train(crtc); 5874 5875 /* For PCH DP, enable TRANS_DP_CTL */ 5876 if (HAS_PCH_CPT(dev_priv) && 5877 intel_crtc_has_dp_encoder(crtc_state)) { 5878 const struct drm_display_mode *adjusted_mode = 5879 &crtc_state->hw.adjusted_mode; 5880 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 5881 i915_reg_t reg = TRANS_DP_CTL(pipe); 5882 enum port port; 5883 5884 temp = intel_de_read(dev_priv, reg); 5885 temp &= ~(TRANS_DP_PORT_SEL_MASK | 5886 TRANS_DP_SYNC_MASK | 5887 TRANS_DP_BPC_MASK); 5888 temp |= TRANS_DP_OUTPUT_ENABLE; 5889 temp |= bpc << 9; /* same format but at 11:9 */ 5890 5891 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 5892 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 5893 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 5894 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 5895 5896 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 5897 drm_WARN_ON(dev, port < PORT_B || port > PORT_D); 5898 temp |= TRANS_DP_PORT_SEL(port); 5899 5900 intel_de_write(dev_priv, reg, temp); 5901 } 5902 5903 ilk_enable_pch_transcoder(crtc_state); 5904 } 5905 5906 void lpt_pch_enable(const struct intel_crtc_state *crtc_state) 5907 { 5908 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5909 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5910 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5911 5912 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 5913 5914 lpt_program_iclkip(crtc_state); 5915 5916 /* Set transcoder timing. */ 5917 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A); 5918 5919 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 5920 } 5921 5922 static void cpt_verify_modeset(struct drm_i915_private *dev_priv, 5923 enum pipe pipe) 5924 { 5925 i915_reg_t dslreg = PIPEDSL(pipe); 5926 u32 temp; 5927 5928 temp = intel_de_read(dev_priv, dslreg); 5929 udelay(500); 5930 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) { 5931 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) 5932 drm_err(&dev_priv->drm, 5933 "mode set failed: pipe %c stuck\n", 5934 pipe_name(pipe)); 5935 } 5936 } 5937 5938 /* 5939 * The hardware phase 0.0 refers to the center of the pixel. 5940 * We want to start from the top/left edge which is phase 5941 * -0.5. That matches how the hardware calculates the scaling 5942 * factors (from top-left of the first pixel to bottom-right 5943 * of the last pixel, as opposed to the pixel centers). 5944 * 5945 * For 4:2:0 subsampled chroma planes we obviously have to 5946 * adjust that so that the chroma sample position lands in 5947 * the right spot. 5948 * 5949 * Note that for packed YCbCr 4:2:2 formats there is no way to 5950 * control chroma siting. The hardware simply replicates the 5951 * chroma samples for both of the luma samples, and thus we don't 5952 * actually get the expected MPEG2 chroma siting convention :( 5953 * The same behaviour is observed on pre-SKL platforms as well. 5954 * 5955 * Theory behind the formula (note that we ignore sub-pixel 5956 * source coordinates): 5957 * s = source sample position 5958 * d = destination sample position 5959 * 5960 * Downscaling 4:1: 5961 * -0.5 5962 * | 0.0 5963 * | | 1.5 (initial phase) 5964 * | | | 5965 * v v v 5966 * | s | s | s | s | 5967 * | d | 5968 * 5969 * Upscaling 1:4: 5970 * -0.5 5971 * | -0.375 (initial phase) 5972 * | | 0.0 5973 * | | | 5974 * v v v 5975 * | s | 5976 * | d | d | d | d | 5977 */ 5978 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited) 5979 { 5980 int phase = -0x8000; 5981 u16 trip = 0; 5982 5983 if (chroma_cosited) 5984 phase += (sub - 1) * 0x8000 / sub; 5985 5986 phase += scale / (2 * sub); 5987 5988 /* 5989 * Hardware initial phase limited to [-0.5:1.5]. 5990 * Since the max hardware scale factor is 3.0, we 5991 * should never actually excdeed 1.0 here. 5992 */ 5993 WARN_ON(phase < -0x8000 || phase > 0x18000); 5994 5995 if (phase < 0) 5996 phase = 0x10000 + phase; 5997 else 5998 trip = PS_PHASE_TRIP; 5999 6000 return ((phase >> 2) & PS_PHASE_MASK) | trip; 6001 } 6002 6003 #define SKL_MIN_SRC_W 8 6004 #define SKL_MAX_SRC_W 4096 6005 #define SKL_MIN_SRC_H 8 6006 #define SKL_MAX_SRC_H 4096 6007 #define SKL_MIN_DST_W 8 6008 #define SKL_MAX_DST_W 4096 6009 #define SKL_MIN_DST_H 8 6010 #define SKL_MAX_DST_H 4096 6011 #define ICL_MAX_SRC_W 5120 6012 #define ICL_MAX_SRC_H 4096 6013 #define ICL_MAX_DST_W 5120 6014 #define ICL_MAX_DST_H 4096 6015 #define SKL_MIN_YUV_420_SRC_W 16 6016 #define SKL_MIN_YUV_420_SRC_H 16 6017 6018 static int 6019 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach, 6020 unsigned int scaler_user, int *scaler_id, 6021 int src_w, int src_h, int dst_w, int dst_h, 6022 const struct drm_format_info *format, 6023 u64 modifier, bool need_scaler) 6024 { 6025 struct intel_crtc_scaler_state *scaler_state = 6026 &crtc_state->scaler_state; 6027 struct intel_crtc *intel_crtc = 6028 to_intel_crtc(crtc_state->uapi.crtc); 6029 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 6030 const struct drm_display_mode *adjusted_mode = 6031 &crtc_state->hw.adjusted_mode; 6032 6033 /* 6034 * Src coordinates are already rotated by 270 degrees for 6035 * the 90/270 degree plane rotation cases (to match the 6036 * GTT mapping), hence no need to account for rotation here. 6037 */ 6038 if (src_w != dst_w || src_h != dst_h) 6039 need_scaler = true; 6040 6041 /* 6042 * Scaling/fitting not supported in IF-ID mode in GEN9+ 6043 * TODO: Interlace fetch mode doesn't support YUV420 planar formats. 6044 * Once NV12 is enabled, handle it here while allocating scaler 6045 * for NV12. 6046 */ 6047 if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable && 6048 need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 6049 drm_dbg_kms(&dev_priv->drm, 6050 "Pipe/Plane scaling not supported with IF-ID mode\n"); 6051 return -EINVAL; 6052 } 6053 6054 /* 6055 * if plane is being disabled or scaler is no more required or force detach 6056 * - free scaler binded to this plane/crtc 6057 * - in order to do this, update crtc->scaler_usage 6058 * 6059 * Here scaler state in crtc_state is set free so that 6060 * scaler can be assigned to other user. Actual register 6061 * update to free the scaler is done in plane/panel-fit programming. 6062 * For this purpose crtc/plane_state->scaler_id isn't reset here. 6063 */ 6064 if (force_detach || !need_scaler) { 6065 if (*scaler_id >= 0) { 6066 scaler_state->scaler_users &= ~(1 << scaler_user); 6067 scaler_state->scalers[*scaler_id].in_use = 0; 6068 6069 drm_dbg_kms(&dev_priv->drm, 6070 "scaler_user index %u.%u: " 6071 "Staged freeing scaler id %d scaler_users = 0x%x\n", 6072 intel_crtc->pipe, scaler_user, *scaler_id, 6073 scaler_state->scaler_users); 6074 *scaler_id = -1; 6075 } 6076 return 0; 6077 } 6078 6079 if (format && intel_format_info_is_yuv_semiplanar(format, modifier) && 6080 (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) { 6081 drm_dbg_kms(&dev_priv->drm, 6082 "Planar YUV: src dimensions not met\n"); 6083 return -EINVAL; 6084 } 6085 6086 /* range checks */ 6087 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H || 6088 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H || 6089 (INTEL_GEN(dev_priv) >= 11 && 6090 (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H || 6091 dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) || 6092 (INTEL_GEN(dev_priv) < 11 && 6093 (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H || 6094 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) { 6095 drm_dbg_kms(&dev_priv->drm, 6096 "scaler_user index %u.%u: src %ux%u dst %ux%u " 6097 "size is out of scaler range\n", 6098 intel_crtc->pipe, scaler_user, src_w, src_h, 6099 dst_w, dst_h); 6100 return -EINVAL; 6101 } 6102 6103 /* mark this plane as a scaler user in crtc_state */ 6104 scaler_state->scaler_users |= (1 << scaler_user); 6105 drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: " 6106 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n", 6107 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h, 6108 scaler_state->scaler_users); 6109 6110 return 0; 6111 } 6112 6113 /** 6114 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc. 6115 * 6116 * @state: crtc's scaler state 6117 * 6118 * Return 6119 * 0 - scaler_usage updated successfully 6120 * error - requested scaling cannot be supported or other error condition 6121 */ 6122 int skl_update_scaler_crtc(struct intel_crtc_state *state) 6123 { 6124 const struct drm_display_mode *adjusted_mode = &state->hw.adjusted_mode; 6125 bool need_scaler = false; 6126 6127 if (state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 6128 state->pch_pfit.enabled) 6129 need_scaler = true; 6130 6131 return skl_update_scaler(state, !state->hw.active, SKL_CRTC_INDEX, 6132 &state->scaler_state.scaler_id, 6133 state->pipe_src_w, state->pipe_src_h, 6134 adjusted_mode->crtc_hdisplay, 6135 adjusted_mode->crtc_vdisplay, NULL, 0, 6136 need_scaler); 6137 } 6138 6139 /** 6140 * skl_update_scaler_plane - Stages update to scaler state for a given plane. 6141 * @crtc_state: crtc's scaler state 6142 * @plane_state: atomic plane state to update 6143 * 6144 * Return 6145 * 0 - scaler_usage updated successfully 6146 * error - requested scaling cannot be supported or other error condition 6147 */ 6148 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state, 6149 struct intel_plane_state *plane_state) 6150 { 6151 struct intel_plane *intel_plane = 6152 to_intel_plane(plane_state->uapi.plane); 6153 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 6154 struct drm_framebuffer *fb = plane_state->hw.fb; 6155 int ret; 6156 bool force_detach = !fb || !plane_state->uapi.visible; 6157 bool need_scaler = false; 6158 6159 /* Pre-gen11 and SDR planes always need a scaler for planar formats. */ 6160 if (!icl_is_hdr_plane(dev_priv, intel_plane->id) && 6161 fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier)) 6162 need_scaler = true; 6163 6164 ret = skl_update_scaler(crtc_state, force_detach, 6165 drm_plane_index(&intel_plane->base), 6166 &plane_state->scaler_id, 6167 drm_rect_width(&plane_state->uapi.src) >> 16, 6168 drm_rect_height(&plane_state->uapi.src) >> 16, 6169 drm_rect_width(&plane_state->uapi.dst), 6170 drm_rect_height(&plane_state->uapi.dst), 6171 fb ? fb->format : NULL, 6172 fb ? fb->modifier : 0, 6173 need_scaler); 6174 6175 if (ret || plane_state->scaler_id < 0) 6176 return ret; 6177 6178 /* check colorkey */ 6179 if (plane_state->ckey.flags) { 6180 drm_dbg_kms(&dev_priv->drm, 6181 "[PLANE:%d:%s] scaling with color key not allowed", 6182 intel_plane->base.base.id, 6183 intel_plane->base.name); 6184 return -EINVAL; 6185 } 6186 6187 /* Check src format */ 6188 switch (fb->format->format) { 6189 case DRM_FORMAT_RGB565: 6190 case DRM_FORMAT_XBGR8888: 6191 case DRM_FORMAT_XRGB8888: 6192 case DRM_FORMAT_ABGR8888: 6193 case DRM_FORMAT_ARGB8888: 6194 case DRM_FORMAT_XRGB2101010: 6195 case DRM_FORMAT_XBGR2101010: 6196 case DRM_FORMAT_ARGB2101010: 6197 case DRM_FORMAT_ABGR2101010: 6198 case DRM_FORMAT_YUYV: 6199 case DRM_FORMAT_YVYU: 6200 case DRM_FORMAT_UYVY: 6201 case DRM_FORMAT_VYUY: 6202 case DRM_FORMAT_NV12: 6203 case DRM_FORMAT_P010: 6204 case DRM_FORMAT_P012: 6205 case DRM_FORMAT_P016: 6206 case DRM_FORMAT_Y210: 6207 case DRM_FORMAT_Y212: 6208 case DRM_FORMAT_Y216: 6209 case DRM_FORMAT_XVYU2101010: 6210 case DRM_FORMAT_XVYU12_16161616: 6211 case DRM_FORMAT_XVYU16161616: 6212 break; 6213 case DRM_FORMAT_XBGR16161616F: 6214 case DRM_FORMAT_ABGR16161616F: 6215 case DRM_FORMAT_XRGB16161616F: 6216 case DRM_FORMAT_ARGB16161616F: 6217 if (INTEL_GEN(dev_priv) >= 11) 6218 break; 6219 /* fall through */ 6220 default: 6221 drm_dbg_kms(&dev_priv->drm, 6222 "[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n", 6223 intel_plane->base.base.id, intel_plane->base.name, 6224 fb->base.id, fb->format->format); 6225 return -EINVAL; 6226 } 6227 6228 return 0; 6229 } 6230 6231 void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state) 6232 { 6233 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 6234 int i; 6235 6236 for (i = 0; i < crtc->num_scalers; i++) 6237 skl_detach_scaler(crtc, i); 6238 } 6239 6240 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state) 6241 { 6242 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6243 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6244 enum pipe pipe = crtc->pipe; 6245 const struct intel_crtc_scaler_state *scaler_state = 6246 &crtc_state->scaler_state; 6247 6248 if (crtc_state->pch_pfit.enabled) { 6249 u16 uv_rgb_hphase, uv_rgb_vphase; 6250 int pfit_w, pfit_h, hscale, vscale; 6251 unsigned long irqflags; 6252 int id; 6253 6254 if (drm_WARN_ON(&dev_priv->drm, 6255 crtc_state->scaler_state.scaler_id < 0)) 6256 return; 6257 6258 pfit_w = (crtc_state->pch_pfit.size >> 16) & 0xFFFF; 6259 pfit_h = crtc_state->pch_pfit.size & 0xFFFF; 6260 6261 hscale = (crtc_state->pipe_src_w << 16) / pfit_w; 6262 vscale = (crtc_state->pipe_src_h << 16) / pfit_h; 6263 6264 uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false); 6265 uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false); 6266 6267 id = scaler_state->scaler_id; 6268 6269 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 6270 6271 intel_de_write_fw(dev_priv, SKL_PS_CTRL(pipe, id), PS_SCALER_EN | 6272 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode); 6273 intel_de_write_fw(dev_priv, SKL_PS_VPHASE(pipe, id), 6274 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase)); 6275 intel_de_write_fw(dev_priv, SKL_PS_HPHASE(pipe, id), 6276 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase)); 6277 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(pipe, id), 6278 crtc_state->pch_pfit.pos); 6279 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(pipe, id), 6280 crtc_state->pch_pfit.size); 6281 6282 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 6283 } 6284 } 6285 6286 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state) 6287 { 6288 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6289 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6290 enum pipe pipe = crtc->pipe; 6291 6292 if (crtc_state->pch_pfit.enabled) { 6293 /* Force use of hard-coded filter coefficients 6294 * as some pre-programmed values are broken, 6295 * e.g. x201. 6296 */ 6297 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 6298 intel_de_write(dev_priv, PF_CTL(pipe), 6299 PF_ENABLE | PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); 6300 else 6301 intel_de_write(dev_priv, PF_CTL(pipe), 6302 PF_ENABLE | PF_FILTER_MED_3x3); 6303 intel_de_write(dev_priv, PF_WIN_POS(pipe), 6304 crtc_state->pch_pfit.pos); 6305 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 6306 crtc_state->pch_pfit.size); 6307 } 6308 } 6309 6310 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 6311 { 6312 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6313 struct drm_device *dev = crtc->base.dev; 6314 struct drm_i915_private *dev_priv = to_i915(dev); 6315 6316 if (!crtc_state->ips_enabled) 6317 return; 6318 6319 /* 6320 * We can only enable IPS after we enable a plane and wait for a vblank 6321 * This function is called from post_plane_update, which is run after 6322 * a vblank wait. 6323 */ 6324 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 6325 6326 if (IS_BROADWELL(dev_priv)) { 6327 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 6328 IPS_ENABLE | IPS_PCODE_CONTROL)); 6329 /* Quoting Art Runyan: "its not safe to expect any particular 6330 * value in IPS_CTL bit 31 after enabling IPS through the 6331 * mailbox." Moreover, the mailbox may return a bogus state, 6332 * so we need to just enable it and continue on. 6333 */ 6334 } else { 6335 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE); 6336 /* The bit only becomes 1 in the next vblank, so this wait here 6337 * is essentially intel_wait_for_vblank. If we don't have this 6338 * and don't wait for vblanks until the end of crtc_enable, then 6339 * the HW state readout code will complain that the expected 6340 * IPS_CTL value is not the one we read. */ 6341 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 6342 drm_err(&dev_priv->drm, 6343 "Timed out waiting for IPS enable\n"); 6344 } 6345 } 6346 6347 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 6348 { 6349 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6350 struct drm_device *dev = crtc->base.dev; 6351 struct drm_i915_private *dev_priv = to_i915(dev); 6352 6353 if (!crtc_state->ips_enabled) 6354 return; 6355 6356 if (IS_BROADWELL(dev_priv)) { 6357 drm_WARN_ON(dev, 6358 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 6359 /* 6360 * Wait for PCODE to finish disabling IPS. The BSpec specified 6361 * 42ms timeout value leads to occasional timeouts so use 100ms 6362 * instead. 6363 */ 6364 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 6365 drm_err(&dev_priv->drm, 6366 "Timed out waiting for IPS disable\n"); 6367 } else { 6368 intel_de_write(dev_priv, IPS_CTL, 0); 6369 intel_de_posting_read(dev_priv, IPS_CTL); 6370 } 6371 6372 /* We need to wait for a vblank before we can disable the plane. */ 6373 intel_wait_for_vblank(dev_priv, crtc->pipe); 6374 } 6375 6376 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) 6377 { 6378 if (intel_crtc->overlay) 6379 (void) intel_overlay_switch_off(intel_crtc->overlay); 6380 6381 /* Let userspace switch the overlay on again. In most cases userspace 6382 * has to recompute where to put it anyway. 6383 */ 6384 } 6385 6386 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 6387 const struct intel_crtc_state *new_crtc_state) 6388 { 6389 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 6390 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6391 6392 if (!old_crtc_state->ips_enabled) 6393 return false; 6394 6395 if (needs_modeset(new_crtc_state)) 6396 return true; 6397 6398 /* 6399 * Workaround : Do not read or write the pipe palette/gamma data while 6400 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 6401 * 6402 * Disable IPS before we program the LUT. 6403 */ 6404 if (IS_HASWELL(dev_priv) && 6405 (new_crtc_state->uapi.color_mgmt_changed || 6406 new_crtc_state->update_pipe) && 6407 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 6408 return true; 6409 6410 return !new_crtc_state->ips_enabled; 6411 } 6412 6413 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 6414 const struct intel_crtc_state *new_crtc_state) 6415 { 6416 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 6417 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6418 6419 if (!new_crtc_state->ips_enabled) 6420 return false; 6421 6422 if (needs_modeset(new_crtc_state)) 6423 return true; 6424 6425 /* 6426 * Workaround : Do not read or write the pipe palette/gamma data while 6427 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 6428 * 6429 * Re-enable IPS after the LUT has been programmed. 6430 */ 6431 if (IS_HASWELL(dev_priv) && 6432 (new_crtc_state->uapi.color_mgmt_changed || 6433 new_crtc_state->update_pipe) && 6434 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 6435 return true; 6436 6437 /* 6438 * We can't read out IPS on broadwell, assume the worst and 6439 * forcibly enable IPS on the first fastset. 6440 */ 6441 if (new_crtc_state->update_pipe && 6442 old_crtc_state->hw.adjusted_mode.private_flags & I915_MODE_FLAG_INHERITED) 6443 return true; 6444 6445 return !old_crtc_state->ips_enabled; 6446 } 6447 6448 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) 6449 { 6450 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 6451 6452 if (!crtc_state->nv12_planes) 6453 return false; 6454 6455 /* WA Display #0827: Gen9:all */ 6456 if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv)) 6457 return true; 6458 6459 return false; 6460 } 6461 6462 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) 6463 { 6464 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 6465 6466 /* Wa_2006604312:icl */ 6467 if (crtc_state->scaler_state.scaler_users > 0 && IS_ICELAKE(dev_priv)) 6468 return true; 6469 6470 return false; 6471 } 6472 6473 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, 6474 const struct intel_crtc_state *new_crtc_state) 6475 { 6476 return (!old_crtc_state->active_planes || needs_modeset(new_crtc_state)) && 6477 new_crtc_state->active_planes; 6478 } 6479 6480 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, 6481 const struct intel_crtc_state *new_crtc_state) 6482 { 6483 return old_crtc_state->active_planes && 6484 (!new_crtc_state->active_planes || needs_modeset(new_crtc_state)); 6485 } 6486 6487 static void intel_post_plane_update(struct intel_atomic_state *state, 6488 struct intel_crtc *crtc) 6489 { 6490 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6491 const struct intel_crtc_state *old_crtc_state = 6492 intel_atomic_get_old_crtc_state(state, crtc); 6493 const struct intel_crtc_state *new_crtc_state = 6494 intel_atomic_get_new_crtc_state(state, crtc); 6495 enum pipe pipe = crtc->pipe; 6496 6497 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); 6498 6499 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) 6500 intel_update_watermarks(crtc); 6501 6502 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state)) 6503 hsw_enable_ips(new_crtc_state); 6504 6505 intel_fbc_post_update(state, crtc); 6506 6507 if (needs_nv12_wa(old_crtc_state) && 6508 !needs_nv12_wa(new_crtc_state)) 6509 skl_wa_827(dev_priv, pipe, false); 6510 6511 if (needs_scalerclk_wa(old_crtc_state) && 6512 !needs_scalerclk_wa(new_crtc_state)) 6513 icl_wa_scalerclkgating(dev_priv, pipe, false); 6514 } 6515 6516 static void intel_pre_plane_update(struct intel_atomic_state *state, 6517 struct intel_crtc *crtc) 6518 { 6519 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6520 const struct intel_crtc_state *old_crtc_state = 6521 intel_atomic_get_old_crtc_state(state, crtc); 6522 const struct intel_crtc_state *new_crtc_state = 6523 intel_atomic_get_new_crtc_state(state, crtc); 6524 enum pipe pipe = crtc->pipe; 6525 6526 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state)) 6527 hsw_disable_ips(old_crtc_state); 6528 6529 if (intel_fbc_pre_update(state, crtc)) 6530 intel_wait_for_vblank(dev_priv, pipe); 6531 6532 /* Display WA 827 */ 6533 if (!needs_nv12_wa(old_crtc_state) && 6534 needs_nv12_wa(new_crtc_state)) 6535 skl_wa_827(dev_priv, pipe, true); 6536 6537 /* Wa_2006604312:icl */ 6538 if (!needs_scalerclk_wa(old_crtc_state) && 6539 needs_scalerclk_wa(new_crtc_state)) 6540 icl_wa_scalerclkgating(dev_priv, pipe, true); 6541 6542 /* 6543 * Vblank time updates from the shadow to live plane control register 6544 * are blocked if the memory self-refresh mode is active at that 6545 * moment. So to make sure the plane gets truly disabled, disable 6546 * first the self-refresh mode. The self-refresh enable bit in turn 6547 * will be checked/applied by the HW only at the next frame start 6548 * event which is after the vblank start event, so we need to have a 6549 * wait-for-vblank between disabling the plane and the pipe. 6550 */ 6551 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active && 6552 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 6553 intel_wait_for_vblank(dev_priv, pipe); 6554 6555 /* 6556 * IVB workaround: must disable low power watermarks for at least 6557 * one frame before enabling scaling. LP watermarks can be re-enabled 6558 * when scaling is disabled. 6559 * 6560 * WaCxSRDisabledForSpriteScaling:ivb 6561 */ 6562 if (old_crtc_state->hw.active && 6563 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv)) 6564 intel_wait_for_vblank(dev_priv, pipe); 6565 6566 /* 6567 * If we're doing a modeset we don't need to do any 6568 * pre-vblank watermark programming here. 6569 */ 6570 if (!needs_modeset(new_crtc_state)) { 6571 /* 6572 * For platforms that support atomic watermarks, program the 6573 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 6574 * will be the intermediate values that are safe for both pre- and 6575 * post- vblank; when vblank happens, the 'active' values will be set 6576 * to the final 'target' values and we'll do this again to get the 6577 * optimal watermarks. For gen9+ platforms, the values we program here 6578 * will be the final target values which will get automatically latched 6579 * at vblank time; no further programming will be necessary. 6580 * 6581 * If a platform hasn't been transitioned to atomic watermarks yet, 6582 * we'll continue to update watermarks the old way, if flags tell 6583 * us to. 6584 */ 6585 if (dev_priv->display.initial_watermarks) 6586 dev_priv->display.initial_watermarks(state, crtc); 6587 else if (new_crtc_state->update_wm_pre) 6588 intel_update_watermarks(crtc); 6589 } 6590 6591 /* 6592 * Gen2 reports pipe underruns whenever all planes are disabled. 6593 * So disable underrun reporting before all the planes get disabled. 6594 * 6595 * We do this after .initial_watermarks() so that we have a 6596 * chance of catching underruns with the intermediate watermarks 6597 * vs. the old plane configuration. 6598 */ 6599 if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state)) 6600 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6601 } 6602 6603 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 6604 struct intel_crtc *crtc) 6605 { 6606 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6607 const struct intel_crtc_state *new_crtc_state = 6608 intel_atomic_get_new_crtc_state(state, crtc); 6609 unsigned int update_mask = new_crtc_state->update_planes; 6610 const struct intel_plane_state *old_plane_state; 6611 struct intel_plane *plane; 6612 unsigned fb_bits = 0; 6613 int i; 6614 6615 intel_crtc_dpms_overlay_disable(crtc); 6616 6617 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 6618 if (crtc->pipe != plane->pipe || 6619 !(update_mask & BIT(plane->id))) 6620 continue; 6621 6622 intel_disable_plane(plane, new_crtc_state); 6623 6624 if (old_plane_state->uapi.visible) 6625 fb_bits |= plane->frontbuffer_bit; 6626 } 6627 6628 intel_frontbuffer_flip(dev_priv, fb_bits); 6629 } 6630 6631 /* 6632 * intel_connector_primary_encoder - get the primary encoder for a connector 6633 * @connector: connector for which to return the encoder 6634 * 6635 * Returns the primary encoder for a connector. There is a 1:1 mapping from 6636 * all connectors to their encoder, except for DP-MST connectors which have 6637 * both a virtual and a primary encoder. These DP-MST primary encoders can be 6638 * pointed to by as many DP-MST connectors as there are pipes. 6639 */ 6640 static struct intel_encoder * 6641 intel_connector_primary_encoder(struct intel_connector *connector) 6642 { 6643 struct intel_encoder *encoder; 6644 6645 if (connector->mst_port) 6646 return &dp_to_dig_port(connector->mst_port)->base; 6647 6648 encoder = intel_attached_encoder(connector); 6649 WARN_ON(!encoder); 6650 6651 return encoder; 6652 } 6653 6654 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 6655 { 6656 struct drm_connector_state *new_conn_state; 6657 struct drm_connector *connector; 6658 int i; 6659 6660 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 6661 i) { 6662 struct intel_connector *intel_connector; 6663 struct intel_encoder *encoder; 6664 struct intel_crtc *crtc; 6665 6666 if (!intel_connector_needs_modeset(state, connector)) 6667 continue; 6668 6669 intel_connector = to_intel_connector(connector); 6670 encoder = intel_connector_primary_encoder(intel_connector); 6671 if (!encoder->update_prepare) 6672 continue; 6673 6674 crtc = new_conn_state->crtc ? 6675 to_intel_crtc(new_conn_state->crtc) : NULL; 6676 encoder->update_prepare(state, encoder, crtc); 6677 } 6678 } 6679 6680 static void intel_encoders_update_complete(struct intel_atomic_state *state) 6681 { 6682 struct drm_connector_state *new_conn_state; 6683 struct drm_connector *connector; 6684 int i; 6685 6686 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 6687 i) { 6688 struct intel_connector *intel_connector; 6689 struct intel_encoder *encoder; 6690 struct intel_crtc *crtc; 6691 6692 if (!intel_connector_needs_modeset(state, connector)) 6693 continue; 6694 6695 intel_connector = to_intel_connector(connector); 6696 encoder = intel_connector_primary_encoder(intel_connector); 6697 if (!encoder->update_complete) 6698 continue; 6699 6700 crtc = new_conn_state->crtc ? 6701 to_intel_crtc(new_conn_state->crtc) : NULL; 6702 encoder->update_complete(state, encoder, crtc); 6703 } 6704 } 6705 6706 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, 6707 struct intel_crtc *crtc) 6708 { 6709 const struct intel_crtc_state *crtc_state = 6710 intel_atomic_get_new_crtc_state(state, crtc); 6711 const struct drm_connector_state *conn_state; 6712 struct drm_connector *conn; 6713 int i; 6714 6715 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6716 struct intel_encoder *encoder = 6717 to_intel_encoder(conn_state->best_encoder); 6718 6719 if (conn_state->crtc != &crtc->base) 6720 continue; 6721 6722 if (encoder->pre_pll_enable) 6723 encoder->pre_pll_enable(encoder, crtc_state, conn_state); 6724 } 6725 } 6726 6727 static void intel_encoders_pre_enable(struct intel_atomic_state *state, 6728 struct intel_crtc *crtc) 6729 { 6730 const struct intel_crtc_state *crtc_state = 6731 intel_atomic_get_new_crtc_state(state, crtc); 6732 const struct drm_connector_state *conn_state; 6733 struct drm_connector *conn; 6734 int i; 6735 6736 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6737 struct intel_encoder *encoder = 6738 to_intel_encoder(conn_state->best_encoder); 6739 6740 if (conn_state->crtc != &crtc->base) 6741 continue; 6742 6743 if (encoder->pre_enable) 6744 encoder->pre_enable(encoder, crtc_state, conn_state); 6745 } 6746 } 6747 6748 static void intel_encoders_enable(struct intel_atomic_state *state, 6749 struct intel_crtc *crtc) 6750 { 6751 const struct intel_crtc_state *crtc_state = 6752 intel_atomic_get_new_crtc_state(state, crtc); 6753 const struct drm_connector_state *conn_state; 6754 struct drm_connector *conn; 6755 int i; 6756 6757 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6758 struct intel_encoder *encoder = 6759 to_intel_encoder(conn_state->best_encoder); 6760 6761 if (conn_state->crtc != &crtc->base) 6762 continue; 6763 6764 if (encoder->enable) 6765 encoder->enable(encoder, crtc_state, conn_state); 6766 intel_opregion_notify_encoder(encoder, true); 6767 } 6768 } 6769 6770 static void intel_encoders_disable(struct intel_atomic_state *state, 6771 struct intel_crtc *crtc) 6772 { 6773 const struct intel_crtc_state *old_crtc_state = 6774 intel_atomic_get_old_crtc_state(state, crtc); 6775 const struct drm_connector_state *old_conn_state; 6776 struct drm_connector *conn; 6777 int i; 6778 6779 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6780 struct intel_encoder *encoder = 6781 to_intel_encoder(old_conn_state->best_encoder); 6782 6783 if (old_conn_state->crtc != &crtc->base) 6784 continue; 6785 6786 intel_opregion_notify_encoder(encoder, false); 6787 if (encoder->disable) 6788 encoder->disable(encoder, old_crtc_state, old_conn_state); 6789 } 6790 } 6791 6792 static void intel_encoders_post_disable(struct intel_atomic_state *state, 6793 struct intel_crtc *crtc) 6794 { 6795 const struct intel_crtc_state *old_crtc_state = 6796 intel_atomic_get_old_crtc_state(state, crtc); 6797 const struct drm_connector_state *old_conn_state; 6798 struct drm_connector *conn; 6799 int i; 6800 6801 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6802 struct intel_encoder *encoder = 6803 to_intel_encoder(old_conn_state->best_encoder); 6804 6805 if (old_conn_state->crtc != &crtc->base) 6806 continue; 6807 6808 if (encoder->post_disable) 6809 encoder->post_disable(encoder, old_crtc_state, old_conn_state); 6810 } 6811 } 6812 6813 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, 6814 struct intel_crtc *crtc) 6815 { 6816 const struct intel_crtc_state *old_crtc_state = 6817 intel_atomic_get_old_crtc_state(state, crtc); 6818 const struct drm_connector_state *old_conn_state; 6819 struct drm_connector *conn; 6820 int i; 6821 6822 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6823 struct intel_encoder *encoder = 6824 to_intel_encoder(old_conn_state->best_encoder); 6825 6826 if (old_conn_state->crtc != &crtc->base) 6827 continue; 6828 6829 if (encoder->post_pll_disable) 6830 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state); 6831 } 6832 } 6833 6834 static void intel_encoders_update_pipe(struct intel_atomic_state *state, 6835 struct intel_crtc *crtc) 6836 { 6837 const struct intel_crtc_state *crtc_state = 6838 intel_atomic_get_new_crtc_state(state, crtc); 6839 const struct drm_connector_state *conn_state; 6840 struct drm_connector *conn; 6841 int i; 6842 6843 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6844 struct intel_encoder *encoder = 6845 to_intel_encoder(conn_state->best_encoder); 6846 6847 if (conn_state->crtc != &crtc->base) 6848 continue; 6849 6850 if (encoder->update_pipe) 6851 encoder->update_pipe(encoder, crtc_state, conn_state); 6852 } 6853 } 6854 6855 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 6856 { 6857 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6858 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 6859 6860 plane->disable_plane(plane, crtc_state); 6861 } 6862 6863 static void ilk_crtc_enable(struct intel_atomic_state *state, 6864 struct intel_crtc *crtc) 6865 { 6866 const struct intel_crtc_state *new_crtc_state = 6867 intel_atomic_get_new_crtc_state(state, crtc); 6868 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6869 enum pipe pipe = crtc->pipe; 6870 6871 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 6872 return; 6873 6874 /* 6875 * Sometimes spurious CPU pipe underruns happen during FDI 6876 * training, at least with VGA+HDMI cloning. Suppress them. 6877 * 6878 * On ILK we get an occasional spurious CPU pipe underruns 6879 * between eDP port A enable and vdd enable. Also PCH port 6880 * enable seems to result in the occasional CPU pipe underrun. 6881 * 6882 * Spurious PCH underruns also occur during PCH enabling. 6883 */ 6884 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6885 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 6886 6887 if (new_crtc_state->has_pch_encoder) 6888 intel_prepare_shared_dpll(new_crtc_state); 6889 6890 if (intel_crtc_has_dp_encoder(new_crtc_state)) 6891 intel_dp_set_m_n(new_crtc_state, M1_N1); 6892 6893 intel_set_pipe_timings(new_crtc_state); 6894 intel_set_pipe_src_size(new_crtc_state); 6895 6896 if (new_crtc_state->has_pch_encoder) 6897 intel_cpu_transcoder_set_m_n(new_crtc_state, 6898 &new_crtc_state->fdi_m_n, NULL); 6899 6900 ilk_set_pipeconf(new_crtc_state); 6901 6902 crtc->active = true; 6903 6904 intel_encoders_pre_enable(state, crtc); 6905 6906 if (new_crtc_state->has_pch_encoder) { 6907 /* Note: FDI PLL enabling _must_ be done before we enable the 6908 * cpu pipes, hence this is separate from all the other fdi/pch 6909 * enabling. */ 6910 ilk_fdi_pll_enable(new_crtc_state); 6911 } else { 6912 assert_fdi_tx_disabled(dev_priv, pipe); 6913 assert_fdi_rx_disabled(dev_priv, pipe); 6914 } 6915 6916 ilk_pfit_enable(new_crtc_state); 6917 6918 /* 6919 * On ILK+ LUT must be loaded before the pipe is running but with 6920 * clocks enabled 6921 */ 6922 intel_color_load_luts(new_crtc_state); 6923 intel_color_commit(new_crtc_state); 6924 /* update DSPCNTR to configure gamma for pipe bottom color */ 6925 intel_disable_primary_plane(new_crtc_state); 6926 6927 if (dev_priv->display.initial_watermarks) 6928 dev_priv->display.initial_watermarks(state, crtc); 6929 intel_enable_pipe(new_crtc_state); 6930 6931 if (new_crtc_state->has_pch_encoder) 6932 ilk_pch_enable(state, new_crtc_state); 6933 6934 intel_crtc_vblank_on(new_crtc_state); 6935 6936 intel_encoders_enable(state, crtc); 6937 6938 if (HAS_PCH_CPT(dev_priv)) 6939 cpt_verify_modeset(dev_priv, pipe); 6940 6941 /* 6942 * Must wait for vblank to avoid spurious PCH FIFO underruns. 6943 * And a second vblank wait is needed at least on ILK with 6944 * some interlaced HDMI modes. Let's do the double wait always 6945 * in case there are more corner cases we don't know about. 6946 */ 6947 if (new_crtc_state->has_pch_encoder) { 6948 intel_wait_for_vblank(dev_priv, pipe); 6949 intel_wait_for_vblank(dev_priv, pipe); 6950 } 6951 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 6952 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 6953 } 6954 6955 /* IPS only exists on ULT machines and is tied to pipe A. */ 6956 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 6957 { 6958 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 6959 } 6960 6961 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 6962 enum pipe pipe, bool apply) 6963 { 6964 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)); 6965 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 6966 6967 if (apply) 6968 val |= mask; 6969 else 6970 val &= ~mask; 6971 6972 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val); 6973 } 6974 6975 static void icl_pipe_mbus_enable(struct intel_crtc *crtc) 6976 { 6977 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6978 enum pipe pipe = crtc->pipe; 6979 u32 val; 6980 6981 val = MBUS_DBOX_A_CREDIT(2); 6982 6983 if (INTEL_GEN(dev_priv) >= 12) { 6984 val |= MBUS_DBOX_BW_CREDIT(2); 6985 val |= MBUS_DBOX_B_CREDIT(12); 6986 } else { 6987 val |= MBUS_DBOX_BW_CREDIT(1); 6988 val |= MBUS_DBOX_B_CREDIT(8); 6989 } 6990 6991 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val); 6992 } 6993 6994 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) 6995 { 6996 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6997 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6998 6999 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe), 7000 HSW_LINETIME(crtc_state->linetime) | 7001 HSW_IPS_LINETIME(crtc_state->ips_linetime)); 7002 } 7003 7004 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) 7005 { 7006 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7007 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7008 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder); 7009 u32 val; 7010 7011 val = intel_de_read(dev_priv, reg); 7012 val &= ~HSW_FRAME_START_DELAY_MASK; 7013 val |= HSW_FRAME_START_DELAY(0); 7014 intel_de_write(dev_priv, reg, val); 7015 } 7016 7017 static void hsw_crtc_enable(struct intel_atomic_state *state, 7018 struct intel_crtc *crtc) 7019 { 7020 const struct intel_crtc_state *new_crtc_state = 7021 intel_atomic_get_new_crtc_state(state, crtc); 7022 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7023 enum pipe pipe = crtc->pipe, hsw_workaround_pipe; 7024 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 7025 bool psl_clkgate_wa; 7026 7027 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7028 return; 7029 7030 intel_encoders_pre_pll_enable(state, crtc); 7031 7032 if (new_crtc_state->shared_dpll) 7033 intel_enable_shared_dpll(new_crtc_state); 7034 7035 intel_encoders_pre_enable(state, crtc); 7036 7037 if (!transcoder_is_dsi(cpu_transcoder)) 7038 intel_set_pipe_timings(new_crtc_state); 7039 7040 if (INTEL_GEN(dev_priv) >= 11) 7041 icl_enable_trans_port_sync(new_crtc_state); 7042 7043 intel_set_pipe_src_size(new_crtc_state); 7044 7045 if (cpu_transcoder != TRANSCODER_EDP && 7046 !transcoder_is_dsi(cpu_transcoder)) 7047 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder), 7048 new_crtc_state->pixel_multiplier - 1); 7049 7050 if (new_crtc_state->has_pch_encoder) 7051 intel_cpu_transcoder_set_m_n(new_crtc_state, 7052 &new_crtc_state->fdi_m_n, NULL); 7053 7054 if (!transcoder_is_dsi(cpu_transcoder)) { 7055 hsw_set_frame_start_delay(new_crtc_state); 7056 hsw_set_pipeconf(new_crtc_state); 7057 } 7058 7059 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 7060 bdw_set_pipemisc(new_crtc_state); 7061 7062 crtc->active = true; 7063 7064 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */ 7065 psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) && 7066 new_crtc_state->pch_pfit.enabled; 7067 if (psl_clkgate_wa) 7068 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 7069 7070 if (INTEL_GEN(dev_priv) >= 9) 7071 skl_pfit_enable(new_crtc_state); 7072 else 7073 ilk_pfit_enable(new_crtc_state); 7074 7075 /* 7076 * On ILK+ LUT must be loaded before the pipe is running but with 7077 * clocks enabled 7078 */ 7079 intel_color_load_luts(new_crtc_state); 7080 intel_color_commit(new_crtc_state); 7081 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 7082 if (INTEL_GEN(dev_priv) < 9) 7083 intel_disable_primary_plane(new_crtc_state); 7084 7085 hsw_set_linetime_wm(new_crtc_state); 7086 7087 if (INTEL_GEN(dev_priv) >= 11) 7088 icl_set_pipe_chicken(crtc); 7089 7090 if (!transcoder_is_dsi(cpu_transcoder)) 7091 intel_ddi_enable_transcoder_func(new_crtc_state); 7092 7093 if (dev_priv->display.initial_watermarks) 7094 dev_priv->display.initial_watermarks(state, crtc); 7095 7096 if (INTEL_GEN(dev_priv) >= 11) 7097 icl_pipe_mbus_enable(crtc); 7098 7099 intel_encoders_enable(state, crtc); 7100 7101 if (psl_clkgate_wa) { 7102 intel_wait_for_vblank(dev_priv, pipe); 7103 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 7104 } 7105 7106 /* If we change the relative order between pipe/planes enabling, we need 7107 * to change the workaround. */ 7108 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe; 7109 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 7110 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 7111 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 7112 } 7113 } 7114 7115 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state) 7116 { 7117 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 7118 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7119 enum pipe pipe = crtc->pipe; 7120 7121 /* To avoid upsetting the power well on haswell only disable the pfit if 7122 * it's in use. The hw state code will make sure we get this right. */ 7123 if (old_crtc_state->pch_pfit.enabled) { 7124 intel_de_write(dev_priv, PF_CTL(pipe), 0); 7125 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0); 7126 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0); 7127 } 7128 } 7129 7130 static void ilk_crtc_disable(struct intel_atomic_state *state, 7131 struct intel_crtc *crtc) 7132 { 7133 const struct intel_crtc_state *old_crtc_state = 7134 intel_atomic_get_old_crtc_state(state, crtc); 7135 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7136 enum pipe pipe = crtc->pipe; 7137 7138 /* 7139 * Sometimes spurious CPU pipe underruns happen when the 7140 * pipe is already disabled, but FDI RX/TX is still enabled. 7141 * Happens at least with VGA+HDMI cloning. Suppress them. 7142 */ 7143 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 7144 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 7145 7146 intel_encoders_disable(state, crtc); 7147 7148 intel_crtc_vblank_off(old_crtc_state); 7149 7150 intel_disable_pipe(old_crtc_state); 7151 7152 ilk_pfit_disable(old_crtc_state); 7153 7154 if (old_crtc_state->has_pch_encoder) 7155 ilk_fdi_disable(crtc); 7156 7157 intel_encoders_post_disable(state, crtc); 7158 7159 if (old_crtc_state->has_pch_encoder) { 7160 ilk_disable_pch_transcoder(dev_priv, pipe); 7161 7162 if (HAS_PCH_CPT(dev_priv)) { 7163 i915_reg_t reg; 7164 u32 temp; 7165 7166 /* disable TRANS_DP_CTL */ 7167 reg = TRANS_DP_CTL(pipe); 7168 temp = intel_de_read(dev_priv, reg); 7169 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 7170 TRANS_DP_PORT_SEL_MASK); 7171 temp |= TRANS_DP_PORT_SEL_NONE; 7172 intel_de_write(dev_priv, reg, temp); 7173 7174 /* disable DPLL_SEL */ 7175 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 7176 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 7177 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 7178 } 7179 7180 ilk_fdi_pll_disable(crtc); 7181 } 7182 7183 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7184 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 7185 } 7186 7187 static void hsw_crtc_disable(struct intel_atomic_state *state, 7188 struct intel_crtc *crtc) 7189 { 7190 /* 7191 * FIXME collapse everything to one hook. 7192 * Need care with mst->ddi interactions. 7193 */ 7194 intel_encoders_disable(state, crtc); 7195 intel_encoders_post_disable(state, crtc); 7196 } 7197 7198 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 7199 { 7200 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7201 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7202 7203 if (!crtc_state->gmch_pfit.control) 7204 return; 7205 7206 /* 7207 * The panel fitter should only be adjusted whilst the pipe is disabled, 7208 * according to register description and PRM. 7209 */ 7210 drm_WARN_ON(&dev_priv->drm, 7211 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE); 7212 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 7213 7214 intel_de_write(dev_priv, PFIT_PGM_RATIOS, 7215 crtc_state->gmch_pfit.pgm_ratios); 7216 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control); 7217 7218 /* Border color in case we don't scale up to the full screen. Black by 7219 * default, change to something else for debugging. */ 7220 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0); 7221 } 7222 7223 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 7224 { 7225 if (phy == PHY_NONE) 7226 return false; 7227 7228 if (IS_ELKHARTLAKE(dev_priv)) 7229 return phy <= PHY_C; 7230 7231 if (INTEL_GEN(dev_priv) >= 11) 7232 return phy <= PHY_B; 7233 7234 return false; 7235 } 7236 7237 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 7238 { 7239 if (INTEL_GEN(dev_priv) >= 12) 7240 return phy >= PHY_D && phy <= PHY_I; 7241 7242 if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv)) 7243 return phy >= PHY_C && phy <= PHY_F; 7244 7245 return false; 7246 } 7247 7248 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 7249 { 7250 if (IS_ELKHARTLAKE(i915) && port == PORT_D) 7251 return PHY_A; 7252 7253 return (enum phy)port; 7254 } 7255 7256 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 7257 { 7258 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 7259 return PORT_TC_NONE; 7260 7261 if (INTEL_GEN(dev_priv) >= 12) 7262 return port - PORT_D; 7263 7264 return port - PORT_C; 7265 } 7266 7267 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 7268 { 7269 switch (port) { 7270 case PORT_A: 7271 return POWER_DOMAIN_PORT_DDI_A_LANES; 7272 case PORT_B: 7273 return POWER_DOMAIN_PORT_DDI_B_LANES; 7274 case PORT_C: 7275 return POWER_DOMAIN_PORT_DDI_C_LANES; 7276 case PORT_D: 7277 return POWER_DOMAIN_PORT_DDI_D_LANES; 7278 case PORT_E: 7279 return POWER_DOMAIN_PORT_DDI_E_LANES; 7280 case PORT_F: 7281 return POWER_DOMAIN_PORT_DDI_F_LANES; 7282 case PORT_G: 7283 return POWER_DOMAIN_PORT_DDI_G_LANES; 7284 default: 7285 MISSING_CASE(port); 7286 return POWER_DOMAIN_PORT_OTHER; 7287 } 7288 } 7289 7290 enum intel_display_power_domain 7291 intel_aux_power_domain(struct intel_digital_port *dig_port) 7292 { 7293 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 7294 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 7295 7296 if (intel_phy_is_tc(dev_priv, phy) && 7297 dig_port->tc_mode == TC_PORT_TBT_ALT) { 7298 switch (dig_port->aux_ch) { 7299 case AUX_CH_C: 7300 return POWER_DOMAIN_AUX_C_TBT; 7301 case AUX_CH_D: 7302 return POWER_DOMAIN_AUX_D_TBT; 7303 case AUX_CH_E: 7304 return POWER_DOMAIN_AUX_E_TBT; 7305 case AUX_CH_F: 7306 return POWER_DOMAIN_AUX_F_TBT; 7307 case AUX_CH_G: 7308 return POWER_DOMAIN_AUX_G_TBT; 7309 default: 7310 MISSING_CASE(dig_port->aux_ch); 7311 return POWER_DOMAIN_AUX_C_TBT; 7312 } 7313 } 7314 7315 switch (dig_port->aux_ch) { 7316 case AUX_CH_A: 7317 return POWER_DOMAIN_AUX_A; 7318 case AUX_CH_B: 7319 return POWER_DOMAIN_AUX_B; 7320 case AUX_CH_C: 7321 return POWER_DOMAIN_AUX_C; 7322 case AUX_CH_D: 7323 return POWER_DOMAIN_AUX_D; 7324 case AUX_CH_E: 7325 return POWER_DOMAIN_AUX_E; 7326 case AUX_CH_F: 7327 return POWER_DOMAIN_AUX_F; 7328 case AUX_CH_G: 7329 return POWER_DOMAIN_AUX_G; 7330 default: 7331 MISSING_CASE(dig_port->aux_ch); 7332 return POWER_DOMAIN_AUX_A; 7333 } 7334 } 7335 7336 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 7337 { 7338 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7339 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7340 struct drm_encoder *encoder; 7341 enum pipe pipe = crtc->pipe; 7342 u64 mask; 7343 enum transcoder transcoder = crtc_state->cpu_transcoder; 7344 7345 if (!crtc_state->hw.active) 7346 return 0; 7347 7348 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 7349 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); 7350 if (crtc_state->pch_pfit.enabled || 7351 crtc_state->pch_pfit.force_thru) 7352 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 7353 7354 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 7355 crtc_state->uapi.encoder_mask) { 7356 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 7357 7358 mask |= BIT_ULL(intel_encoder->power_domain); 7359 } 7360 7361 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 7362 mask |= BIT_ULL(POWER_DOMAIN_AUDIO); 7363 7364 if (crtc_state->shared_dpll) 7365 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 7366 7367 return mask; 7368 } 7369 7370 static u64 7371 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 7372 { 7373 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7374 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7375 enum intel_display_power_domain domain; 7376 u64 domains, new_domains, old_domains; 7377 7378 old_domains = crtc->enabled_power_domains; 7379 crtc->enabled_power_domains = new_domains = 7380 get_crtc_power_domains(crtc_state); 7381 7382 domains = new_domains & ~old_domains; 7383 7384 for_each_power_domain(domain, domains) 7385 intel_display_power_get(dev_priv, domain); 7386 7387 return old_domains & ~new_domains; 7388 } 7389 7390 static void modeset_put_power_domains(struct drm_i915_private *dev_priv, 7391 u64 domains) 7392 { 7393 enum intel_display_power_domain domain; 7394 7395 for_each_power_domain(domain, domains) 7396 intel_display_power_put_unchecked(dev_priv, domain); 7397 } 7398 7399 static void valleyview_crtc_enable(struct intel_atomic_state *state, 7400 struct intel_crtc *crtc) 7401 { 7402 const struct intel_crtc_state *new_crtc_state = 7403 intel_atomic_get_new_crtc_state(state, crtc); 7404 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7405 enum pipe pipe = crtc->pipe; 7406 7407 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7408 return; 7409 7410 if (intel_crtc_has_dp_encoder(new_crtc_state)) 7411 intel_dp_set_m_n(new_crtc_state, M1_N1); 7412 7413 intel_set_pipe_timings(new_crtc_state); 7414 intel_set_pipe_src_size(new_crtc_state); 7415 7416 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 7417 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY); 7418 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0); 7419 } 7420 7421 i9xx_set_pipeconf(new_crtc_state); 7422 7423 crtc->active = true; 7424 7425 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7426 7427 intel_encoders_pre_pll_enable(state, crtc); 7428 7429 if (IS_CHERRYVIEW(dev_priv)) { 7430 chv_prepare_pll(crtc, new_crtc_state); 7431 chv_enable_pll(crtc, new_crtc_state); 7432 } else { 7433 vlv_prepare_pll(crtc, new_crtc_state); 7434 vlv_enable_pll(crtc, new_crtc_state); 7435 } 7436 7437 intel_encoders_pre_enable(state, crtc); 7438 7439 i9xx_pfit_enable(new_crtc_state); 7440 7441 intel_color_load_luts(new_crtc_state); 7442 intel_color_commit(new_crtc_state); 7443 /* update DSPCNTR to configure gamma for pipe bottom color */ 7444 intel_disable_primary_plane(new_crtc_state); 7445 7446 dev_priv->display.initial_watermarks(state, crtc); 7447 intel_enable_pipe(new_crtc_state); 7448 7449 intel_crtc_vblank_on(new_crtc_state); 7450 7451 intel_encoders_enable(state, crtc); 7452 } 7453 7454 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) 7455 { 7456 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7457 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7458 7459 intel_de_write(dev_priv, FP0(crtc->pipe), 7460 crtc_state->dpll_hw_state.fp0); 7461 intel_de_write(dev_priv, FP1(crtc->pipe), 7462 crtc_state->dpll_hw_state.fp1); 7463 } 7464 7465 static void i9xx_crtc_enable(struct intel_atomic_state *state, 7466 struct intel_crtc *crtc) 7467 { 7468 const struct intel_crtc_state *new_crtc_state = 7469 intel_atomic_get_new_crtc_state(state, crtc); 7470 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7471 enum pipe pipe = crtc->pipe; 7472 7473 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7474 return; 7475 7476 i9xx_set_pll_dividers(new_crtc_state); 7477 7478 if (intel_crtc_has_dp_encoder(new_crtc_state)) 7479 intel_dp_set_m_n(new_crtc_state, M1_N1); 7480 7481 intel_set_pipe_timings(new_crtc_state); 7482 intel_set_pipe_src_size(new_crtc_state); 7483 7484 i9xx_set_pipeconf(new_crtc_state); 7485 7486 crtc->active = true; 7487 7488 if (!IS_GEN(dev_priv, 2)) 7489 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7490 7491 intel_encoders_pre_enable(state, crtc); 7492 7493 i9xx_enable_pll(crtc, new_crtc_state); 7494 7495 i9xx_pfit_enable(new_crtc_state); 7496 7497 intel_color_load_luts(new_crtc_state); 7498 intel_color_commit(new_crtc_state); 7499 /* update DSPCNTR to configure gamma for pipe bottom color */ 7500 intel_disable_primary_plane(new_crtc_state); 7501 7502 if (dev_priv->display.initial_watermarks) 7503 dev_priv->display.initial_watermarks(state, crtc); 7504 else 7505 intel_update_watermarks(crtc); 7506 intel_enable_pipe(new_crtc_state); 7507 7508 intel_crtc_vblank_on(new_crtc_state); 7509 7510 intel_encoders_enable(state, crtc); 7511 } 7512 7513 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 7514 { 7515 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 7516 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7517 7518 if (!old_crtc_state->gmch_pfit.control) 7519 return; 7520 7521 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 7522 7523 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n", 7524 intel_de_read(dev_priv, PFIT_CONTROL)); 7525 intel_de_write(dev_priv, PFIT_CONTROL, 0); 7526 } 7527 7528 static void i9xx_crtc_disable(struct intel_atomic_state *state, 7529 struct intel_crtc *crtc) 7530 { 7531 struct intel_crtc_state *old_crtc_state = 7532 intel_atomic_get_old_crtc_state(state, crtc); 7533 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7534 enum pipe pipe = crtc->pipe; 7535 7536 /* 7537 * On gen2 planes are double buffered but the pipe isn't, so we must 7538 * wait for planes to fully turn off before disabling the pipe. 7539 */ 7540 if (IS_GEN(dev_priv, 2)) 7541 intel_wait_for_vblank(dev_priv, pipe); 7542 7543 intel_encoders_disable(state, crtc); 7544 7545 intel_crtc_vblank_off(old_crtc_state); 7546 7547 intel_disable_pipe(old_crtc_state); 7548 7549 i9xx_pfit_disable(old_crtc_state); 7550 7551 intel_encoders_post_disable(state, crtc); 7552 7553 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 7554 if (IS_CHERRYVIEW(dev_priv)) 7555 chv_disable_pll(dev_priv, pipe); 7556 else if (IS_VALLEYVIEW(dev_priv)) 7557 vlv_disable_pll(dev_priv, pipe); 7558 else 7559 i9xx_disable_pll(old_crtc_state); 7560 } 7561 7562 intel_encoders_post_pll_disable(state, crtc); 7563 7564 if (!IS_GEN(dev_priv, 2)) 7565 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 7566 7567 if (!dev_priv->display.initial_watermarks) 7568 intel_update_watermarks(crtc); 7569 7570 /* clock the pipe down to 640x480@60 to potentially save power */ 7571 if (IS_I830(dev_priv)) 7572 i830_enable_pipe(dev_priv, pipe); 7573 } 7574 7575 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc, 7576 struct drm_modeset_acquire_ctx *ctx) 7577 { 7578 struct intel_encoder *encoder; 7579 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7580 struct intel_bw_state *bw_state = 7581 to_intel_bw_state(dev_priv->bw_obj.state); 7582 struct intel_cdclk_state *cdclk_state = 7583 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 7584 struct intel_crtc_state *crtc_state = 7585 to_intel_crtc_state(crtc->base.state); 7586 enum intel_display_power_domain domain; 7587 struct intel_plane *plane; 7588 struct drm_atomic_state *state; 7589 struct intel_crtc_state *temp_crtc_state; 7590 enum pipe pipe = crtc->pipe; 7591 u64 domains; 7592 int ret; 7593 7594 if (!crtc_state->hw.active) 7595 return; 7596 7597 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 7598 const struct intel_plane_state *plane_state = 7599 to_intel_plane_state(plane->base.state); 7600 7601 if (plane_state->uapi.visible) 7602 intel_plane_disable_noatomic(crtc, plane); 7603 } 7604 7605 state = drm_atomic_state_alloc(&dev_priv->drm); 7606 if (!state) { 7607 drm_dbg_kms(&dev_priv->drm, 7608 "failed to disable [CRTC:%d:%s], out of memory", 7609 crtc->base.base.id, crtc->base.name); 7610 return; 7611 } 7612 7613 state->acquire_ctx = ctx; 7614 7615 /* Everything's already locked, -EDEADLK can't happen. */ 7616 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc); 7617 ret = drm_atomic_add_affected_connectors(state, &crtc->base); 7618 7619 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret); 7620 7621 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc); 7622 7623 drm_atomic_state_put(state); 7624 7625 drm_dbg_kms(&dev_priv->drm, 7626 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 7627 crtc->base.base.id, crtc->base.name); 7628 7629 crtc->active = false; 7630 crtc->base.enabled = false; 7631 7632 drm_WARN_ON(&dev_priv->drm, 7633 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0); 7634 crtc_state->uapi.active = false; 7635 crtc_state->uapi.connector_mask = 0; 7636 crtc_state->uapi.encoder_mask = 0; 7637 intel_crtc_free_hw_state(crtc_state); 7638 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw)); 7639 7640 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder) 7641 encoder->base.crtc = NULL; 7642 7643 intel_fbc_disable(crtc); 7644 intel_update_watermarks(crtc); 7645 intel_disable_shared_dpll(crtc_state); 7646 7647 domains = crtc->enabled_power_domains; 7648 for_each_power_domain(domain, domains) 7649 intel_display_power_put_unchecked(dev_priv, domain); 7650 crtc->enabled_power_domains = 0; 7651 7652 dev_priv->active_pipes &= ~BIT(pipe); 7653 cdclk_state->min_cdclk[pipe] = 0; 7654 cdclk_state->min_voltage_level[pipe] = 0; 7655 cdclk_state->active_pipes &= ~BIT(pipe); 7656 7657 bw_state->data_rate[pipe] = 0; 7658 bw_state->num_active_planes[pipe] = 0; 7659 } 7660 7661 /* 7662 * turn all crtc's off, but do not adjust state 7663 * This has to be paired with a call to intel_modeset_setup_hw_state. 7664 */ 7665 int intel_display_suspend(struct drm_device *dev) 7666 { 7667 struct drm_i915_private *dev_priv = to_i915(dev); 7668 struct drm_atomic_state *state; 7669 int ret; 7670 7671 state = drm_atomic_helper_suspend(dev); 7672 ret = PTR_ERR_OR_ZERO(state); 7673 if (ret) 7674 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 7675 ret); 7676 else 7677 dev_priv->modeset_restore_state = state; 7678 return ret; 7679 } 7680 7681 void intel_encoder_destroy(struct drm_encoder *encoder) 7682 { 7683 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 7684 7685 drm_encoder_cleanup(encoder); 7686 kfree(intel_encoder); 7687 } 7688 7689 /* Cross check the actual hw state with our own modeset state tracking (and it's 7690 * internal consistency). */ 7691 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 7692 struct drm_connector_state *conn_state) 7693 { 7694 struct intel_connector *connector = to_intel_connector(conn_state->connector); 7695 struct drm_i915_private *i915 = to_i915(connector->base.dev); 7696 7697 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 7698 connector->base.base.id, connector->base.name); 7699 7700 if (connector->get_hw_state(connector)) { 7701 struct intel_encoder *encoder = intel_attached_encoder(connector); 7702 7703 I915_STATE_WARN(!crtc_state, 7704 "connector enabled without attached crtc\n"); 7705 7706 if (!crtc_state) 7707 return; 7708 7709 I915_STATE_WARN(!crtc_state->hw.active, 7710 "connector is active, but attached crtc isn't\n"); 7711 7712 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 7713 return; 7714 7715 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 7716 "atomic encoder doesn't match attached encoder\n"); 7717 7718 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 7719 "attached encoder crtc differs from connector crtc\n"); 7720 } else { 7721 I915_STATE_WARN(crtc_state && crtc_state->hw.active, 7722 "attached crtc is active, but connector isn't\n"); 7723 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 7724 "best encoder set without crtc!\n"); 7725 } 7726 } 7727 7728 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state) 7729 { 7730 if (crtc_state->hw.enable && crtc_state->has_pch_encoder) 7731 return crtc_state->fdi_lanes; 7732 7733 return 0; 7734 } 7735 7736 static int ilk_check_fdi_lanes(struct drm_device *dev, enum pipe pipe, 7737 struct intel_crtc_state *pipe_config) 7738 { 7739 struct drm_i915_private *dev_priv = to_i915(dev); 7740 struct drm_atomic_state *state = pipe_config->uapi.state; 7741 struct intel_crtc *other_crtc; 7742 struct intel_crtc_state *other_crtc_state; 7743 7744 drm_dbg_kms(&dev_priv->drm, 7745 "checking fdi config on pipe %c, lanes %i\n", 7746 pipe_name(pipe), pipe_config->fdi_lanes); 7747 if (pipe_config->fdi_lanes > 4) { 7748 drm_dbg_kms(&dev_priv->drm, 7749 "invalid fdi lane config on pipe %c: %i lanes\n", 7750 pipe_name(pipe), pipe_config->fdi_lanes); 7751 return -EINVAL; 7752 } 7753 7754 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 7755 if (pipe_config->fdi_lanes > 2) { 7756 drm_dbg_kms(&dev_priv->drm, 7757 "only 2 lanes on haswell, required: %i lanes\n", 7758 pipe_config->fdi_lanes); 7759 return -EINVAL; 7760 } else { 7761 return 0; 7762 } 7763 } 7764 7765 if (INTEL_NUM_PIPES(dev_priv) == 2) 7766 return 0; 7767 7768 /* Ivybridge 3 pipe is really complicated */ 7769 switch (pipe) { 7770 case PIPE_A: 7771 return 0; 7772 case PIPE_B: 7773 if (pipe_config->fdi_lanes <= 2) 7774 return 0; 7775 7776 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C); 7777 other_crtc_state = 7778 intel_atomic_get_crtc_state(state, other_crtc); 7779 if (IS_ERR(other_crtc_state)) 7780 return PTR_ERR(other_crtc_state); 7781 7782 if (pipe_required_fdi_lanes(other_crtc_state) > 0) { 7783 drm_dbg_kms(&dev_priv->drm, 7784 "invalid shared fdi lane config on pipe %c: %i lanes\n", 7785 pipe_name(pipe), pipe_config->fdi_lanes); 7786 return -EINVAL; 7787 } 7788 return 0; 7789 case PIPE_C: 7790 if (pipe_config->fdi_lanes > 2) { 7791 drm_dbg_kms(&dev_priv->drm, 7792 "only 2 lanes on pipe %c: required %i lanes\n", 7793 pipe_name(pipe), pipe_config->fdi_lanes); 7794 return -EINVAL; 7795 } 7796 7797 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B); 7798 other_crtc_state = 7799 intel_atomic_get_crtc_state(state, other_crtc); 7800 if (IS_ERR(other_crtc_state)) 7801 return PTR_ERR(other_crtc_state); 7802 7803 if (pipe_required_fdi_lanes(other_crtc_state) > 2) { 7804 drm_dbg_kms(&dev_priv->drm, 7805 "fdi link B uses too many lanes to enable link C\n"); 7806 return -EINVAL; 7807 } 7808 return 0; 7809 default: 7810 BUG(); 7811 } 7812 } 7813 7814 #define RETRY 1 7815 static int ilk_fdi_compute_config(struct intel_crtc *intel_crtc, 7816 struct intel_crtc_state *pipe_config) 7817 { 7818 struct drm_device *dev = intel_crtc->base.dev; 7819 struct drm_i915_private *i915 = to_i915(dev); 7820 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 7821 int lane, link_bw, fdi_dotclock, ret; 7822 bool needs_recompute = false; 7823 7824 retry: 7825 /* FDI is a binary signal running at ~2.7GHz, encoding 7826 * each output octet as 10 bits. The actual frequency 7827 * is stored as a divider into a 100MHz clock, and the 7828 * mode pixel clock is stored in units of 1KHz. 7829 * Hence the bw of each lane in terms of the mode signal 7830 * is: 7831 */ 7832 link_bw = intel_fdi_link_freq(i915, pipe_config); 7833 7834 fdi_dotclock = adjusted_mode->crtc_clock; 7835 7836 lane = ilk_get_lanes_required(fdi_dotclock, link_bw, 7837 pipe_config->pipe_bpp); 7838 7839 pipe_config->fdi_lanes = lane; 7840 7841 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock, 7842 link_bw, &pipe_config->fdi_m_n, false, false); 7843 7844 ret = ilk_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config); 7845 if (ret == -EDEADLK) 7846 return ret; 7847 7848 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) { 7849 pipe_config->pipe_bpp -= 2*3; 7850 drm_dbg_kms(&i915->drm, 7851 "fdi link bw constraint, reducing pipe bpp to %i\n", 7852 pipe_config->pipe_bpp); 7853 needs_recompute = true; 7854 pipe_config->bw_constrained = true; 7855 7856 goto retry; 7857 } 7858 7859 if (needs_recompute) 7860 return RETRY; 7861 7862 return ret; 7863 } 7864 7865 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 7866 { 7867 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7868 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7869 7870 /* IPS only exists on ULT machines and is tied to pipe A. */ 7871 if (!hsw_crtc_supports_ips(crtc)) 7872 return false; 7873 7874 if (!i915_modparams.enable_ips) 7875 return false; 7876 7877 if (crtc_state->pipe_bpp > 24) 7878 return false; 7879 7880 /* 7881 * We compare against max which means we must take 7882 * the increased cdclk requirement into account when 7883 * calculating the new cdclk. 7884 * 7885 * Should measure whether using a lower cdclk w/o IPS 7886 */ 7887 if (IS_BROADWELL(dev_priv) && 7888 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 7889 return false; 7890 7891 return true; 7892 } 7893 7894 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 7895 { 7896 struct drm_i915_private *dev_priv = 7897 to_i915(crtc_state->uapi.crtc->dev); 7898 struct intel_atomic_state *state = 7899 to_intel_atomic_state(crtc_state->uapi.state); 7900 7901 crtc_state->ips_enabled = false; 7902 7903 if (!hsw_crtc_state_ips_capable(crtc_state)) 7904 return 0; 7905 7906 /* 7907 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 7908 * enabled and disabled dynamically based on package C states, 7909 * user space can't make reliable use of the CRCs, so let's just 7910 * completely disable it. 7911 */ 7912 if (crtc_state->crc_enabled) 7913 return 0; 7914 7915 /* IPS should be fine as long as at least one plane is enabled. */ 7916 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 7917 return 0; 7918 7919 if (IS_BROADWELL(dev_priv)) { 7920 const struct intel_cdclk_state *cdclk_state; 7921 7922 cdclk_state = intel_atomic_get_cdclk_state(state); 7923 if (IS_ERR(cdclk_state)) 7924 return PTR_ERR(cdclk_state); 7925 7926 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 7927 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100) 7928 return 0; 7929 } 7930 7931 crtc_state->ips_enabled = true; 7932 7933 return 0; 7934 } 7935 7936 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 7937 { 7938 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7939 7940 /* GDG double wide on either pipe, otherwise pipe A only */ 7941 return INTEL_GEN(dev_priv) < 4 && 7942 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 7943 } 7944 7945 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config) 7946 { 7947 u32 pixel_rate; 7948 7949 pixel_rate = pipe_config->hw.adjusted_mode.crtc_clock; 7950 7951 /* 7952 * We only use IF-ID interlacing. If we ever use 7953 * PF-ID we'll need to adjust the pixel_rate here. 7954 */ 7955 7956 if (pipe_config->pch_pfit.enabled) { 7957 u64 pipe_w, pipe_h, pfit_w, pfit_h; 7958 u32 pfit_size = pipe_config->pch_pfit.size; 7959 7960 pipe_w = pipe_config->pipe_src_w; 7961 pipe_h = pipe_config->pipe_src_h; 7962 7963 pfit_w = (pfit_size >> 16) & 0xFFFF; 7964 pfit_h = pfit_size & 0xFFFF; 7965 if (pipe_w < pfit_w) 7966 pipe_w = pfit_w; 7967 if (pipe_h < pfit_h) 7968 pipe_h = pfit_h; 7969 7970 if (WARN_ON(!pfit_w || !pfit_h)) 7971 return pixel_rate; 7972 7973 pixel_rate = div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h), 7974 pfit_w * pfit_h); 7975 } 7976 7977 return pixel_rate; 7978 } 7979 7980 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 7981 { 7982 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 7983 7984 if (HAS_GMCH(dev_priv)) 7985 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 7986 crtc_state->pixel_rate = 7987 crtc_state->hw.adjusted_mode.crtc_clock; 7988 else 7989 crtc_state->pixel_rate = 7990 ilk_pipe_pixel_rate(crtc_state); 7991 } 7992 7993 static int intel_crtc_compute_config(struct intel_crtc *crtc, 7994 struct intel_crtc_state *pipe_config) 7995 { 7996 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7997 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 7998 int clock_limit = dev_priv->max_dotclk_freq; 7999 8000 if (INTEL_GEN(dev_priv) < 4) { 8001 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 8002 8003 /* 8004 * Enable double wide mode when the dot clock 8005 * is > 90% of the (display) core speed. 8006 */ 8007 if (intel_crtc_supports_double_wide(crtc) && 8008 adjusted_mode->crtc_clock > clock_limit) { 8009 clock_limit = dev_priv->max_dotclk_freq; 8010 pipe_config->double_wide = true; 8011 } 8012 } 8013 8014 if (adjusted_mode->crtc_clock > clock_limit) { 8015 drm_dbg_kms(&dev_priv->drm, 8016 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 8017 adjusted_mode->crtc_clock, clock_limit, 8018 yesno(pipe_config->double_wide)); 8019 return -EINVAL; 8020 } 8021 8022 if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 8023 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) && 8024 pipe_config->hw.ctm) { 8025 /* 8026 * There is only one pipe CSC unit per pipe, and we need that 8027 * for output conversion from RGB->YCBCR. So if CTM is already 8028 * applied we can't support YCBCR420 output. 8029 */ 8030 drm_dbg_kms(&dev_priv->drm, 8031 "YCBCR420 and CTM together are not possible\n"); 8032 return -EINVAL; 8033 } 8034 8035 /* 8036 * Pipe horizontal size must be even in: 8037 * - DVO ganged mode 8038 * - LVDS dual channel mode 8039 * - Double wide pipe 8040 */ 8041 if (pipe_config->pipe_src_w & 1) { 8042 if (pipe_config->double_wide) { 8043 drm_dbg_kms(&dev_priv->drm, 8044 "Odd pipe source width not supported with double wide pipe\n"); 8045 return -EINVAL; 8046 } 8047 8048 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 8049 intel_is_dual_link_lvds(dev_priv)) { 8050 drm_dbg_kms(&dev_priv->drm, 8051 "Odd pipe source width not supported with dual link LVDS\n"); 8052 return -EINVAL; 8053 } 8054 } 8055 8056 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 8057 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 8058 */ 8059 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) && 8060 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay) 8061 return -EINVAL; 8062 8063 intel_crtc_compute_pixel_rate(pipe_config); 8064 8065 if (pipe_config->has_pch_encoder) 8066 return ilk_fdi_compute_config(crtc, pipe_config); 8067 8068 return 0; 8069 } 8070 8071 static void 8072 intel_reduce_m_n_ratio(u32 *num, u32 *den) 8073 { 8074 while (*num > DATA_LINK_M_N_MASK || 8075 *den > DATA_LINK_M_N_MASK) { 8076 *num >>= 1; 8077 *den >>= 1; 8078 } 8079 } 8080 8081 static void compute_m_n(unsigned int m, unsigned int n, 8082 u32 *ret_m, u32 *ret_n, 8083 bool constant_n) 8084 { 8085 /* 8086 * Several DP dongles in particular seem to be fussy about 8087 * too large link M/N values. Give N value as 0x8000 that 8088 * should be acceptable by specific devices. 0x8000 is the 8089 * specified fixed N value for asynchronous clock mode, 8090 * which the devices expect also in synchronous clock mode. 8091 */ 8092 if (constant_n) 8093 *ret_n = 0x8000; 8094 else 8095 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 8096 8097 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 8098 intel_reduce_m_n_ratio(ret_m, ret_n); 8099 } 8100 8101 void 8102 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 8103 int pixel_clock, int link_clock, 8104 struct intel_link_m_n *m_n, 8105 bool constant_n, bool fec_enable) 8106 { 8107 u32 data_clock = bits_per_pixel * pixel_clock; 8108 8109 if (fec_enable) 8110 data_clock = intel_dp_mode_to_fec_clock(data_clock); 8111 8112 m_n->tu = 64; 8113 compute_m_n(data_clock, 8114 link_clock * nlanes * 8, 8115 &m_n->gmch_m, &m_n->gmch_n, 8116 constant_n); 8117 8118 compute_m_n(pixel_clock, link_clock, 8119 &m_n->link_m, &m_n->link_n, 8120 constant_n); 8121 } 8122 8123 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) 8124 { 8125 /* 8126 * There may be no VBT; and if the BIOS enabled SSC we can 8127 * just keep using it to avoid unnecessary flicker. Whereas if the 8128 * BIOS isn't using it, don't assume it will work even if the VBT 8129 * indicates as much. 8130 */ 8131 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 8132 bool bios_lvds_use_ssc = intel_de_read(dev_priv, 8133 PCH_DREF_CONTROL) & 8134 DREF_SSC1_ENABLE; 8135 8136 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 8137 drm_dbg_kms(&dev_priv->drm, 8138 "SSC %s by BIOS, overriding VBT which says %s\n", 8139 enableddisabled(bios_lvds_use_ssc), 8140 enableddisabled(dev_priv->vbt.lvds_use_ssc)); 8141 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 8142 } 8143 } 8144 } 8145 8146 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) 8147 { 8148 if (i915_modparams.panel_use_ssc >= 0) 8149 return i915_modparams.panel_use_ssc != 0; 8150 return dev_priv->vbt.lvds_use_ssc 8151 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); 8152 } 8153 8154 static u32 pnv_dpll_compute_fp(struct dpll *dpll) 8155 { 8156 return (1 << dpll->n) << 16 | dpll->m2; 8157 } 8158 8159 static u32 i9xx_dpll_compute_fp(struct dpll *dpll) 8160 { 8161 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; 8162 } 8163 8164 static void i9xx_update_pll_dividers(struct intel_crtc *crtc, 8165 struct intel_crtc_state *crtc_state, 8166 struct dpll *reduced_clock) 8167 { 8168 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8169 u32 fp, fp2 = 0; 8170 8171 if (IS_PINEVIEW(dev_priv)) { 8172 fp = pnv_dpll_compute_fp(&crtc_state->dpll); 8173 if (reduced_clock) 8174 fp2 = pnv_dpll_compute_fp(reduced_clock); 8175 } else { 8176 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 8177 if (reduced_clock) 8178 fp2 = i9xx_dpll_compute_fp(reduced_clock); 8179 } 8180 8181 crtc_state->dpll_hw_state.fp0 = fp; 8182 8183 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8184 reduced_clock) { 8185 crtc_state->dpll_hw_state.fp1 = fp2; 8186 } else { 8187 crtc_state->dpll_hw_state.fp1 = fp; 8188 } 8189 } 8190 8191 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe 8192 pipe) 8193 { 8194 u32 reg_val; 8195 8196 /* 8197 * PLLB opamp always calibrates to max value of 0x3f, force enable it 8198 * and set it to a reasonable value instead. 8199 */ 8200 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 8201 reg_val &= 0xffffff00; 8202 reg_val |= 0x00000030; 8203 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 8204 8205 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 8206 reg_val &= 0x00ffffff; 8207 reg_val |= 0x8c000000; 8208 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 8209 8210 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 8211 reg_val &= 0xffffff00; 8212 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 8213 8214 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 8215 reg_val &= 0x00ffffff; 8216 reg_val |= 0xb0000000; 8217 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 8218 } 8219 8220 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 8221 const struct intel_link_m_n *m_n) 8222 { 8223 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8224 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8225 enum pipe pipe = crtc->pipe; 8226 8227 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe), 8228 TU_SIZE(m_n->tu) | m_n->gmch_m); 8229 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 8230 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m); 8231 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n); 8232 } 8233 8234 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 8235 enum transcoder transcoder) 8236 { 8237 if (IS_HASWELL(dev_priv)) 8238 return transcoder == TRANSCODER_EDP; 8239 8240 /* 8241 * Strictly speaking some registers are available before 8242 * gen7, but we only support DRRS on gen7+ 8243 */ 8244 return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv); 8245 } 8246 8247 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 8248 const struct intel_link_m_n *m_n, 8249 const struct intel_link_m_n *m2_n2) 8250 { 8251 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8252 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8253 enum pipe pipe = crtc->pipe; 8254 enum transcoder transcoder = crtc_state->cpu_transcoder; 8255 8256 if (INTEL_GEN(dev_priv) >= 5) { 8257 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder), 8258 TU_SIZE(m_n->tu) | m_n->gmch_m); 8259 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder), 8260 m_n->gmch_n); 8261 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder), 8262 m_n->link_m); 8263 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder), 8264 m_n->link_n); 8265 /* 8266 * M2_N2 registers are set only if DRRS is supported 8267 * (to make sure the registers are not unnecessarily accessed). 8268 */ 8269 if (m2_n2 && crtc_state->has_drrs && 8270 transcoder_has_m2_n2(dev_priv, transcoder)) { 8271 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder), 8272 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 8273 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder), 8274 m2_n2->gmch_n); 8275 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder), 8276 m2_n2->link_m); 8277 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder), 8278 m2_n2->link_n); 8279 } 8280 } else { 8281 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe), 8282 TU_SIZE(m_n->tu) | m_n->gmch_m); 8283 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 8284 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m); 8285 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n); 8286 } 8287 } 8288 8289 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 8290 { 8291 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 8292 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 8293 8294 if (m_n == M1_N1) { 8295 dp_m_n = &crtc_state->dp_m_n; 8296 dp_m2_n2 = &crtc_state->dp_m2_n2; 8297 } else if (m_n == M2_N2) { 8298 8299 /* 8300 * M2_N2 registers are not supported. Hence m2_n2 divider value 8301 * needs to be programmed into M1_N1. 8302 */ 8303 dp_m_n = &crtc_state->dp_m2_n2; 8304 } else { 8305 drm_err(&i915->drm, "Unsupported divider value\n"); 8306 return; 8307 } 8308 8309 if (crtc_state->has_pch_encoder) 8310 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 8311 else 8312 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 8313 } 8314 8315 static void vlv_compute_dpll(struct intel_crtc *crtc, 8316 struct intel_crtc_state *pipe_config) 8317 { 8318 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV | 8319 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 8320 if (crtc->pipe != PIPE_A) 8321 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 8322 8323 /* DPLL not used with DSI, but still need the rest set up */ 8324 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 8325 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE | 8326 DPLL_EXT_BUFFER_ENABLE_VLV; 8327 8328 pipe_config->dpll_hw_state.dpll_md = 8329 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8330 } 8331 8332 static void chv_compute_dpll(struct intel_crtc *crtc, 8333 struct intel_crtc_state *pipe_config) 8334 { 8335 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV | 8336 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 8337 if (crtc->pipe != PIPE_A) 8338 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 8339 8340 /* DPLL not used with DSI, but still need the rest set up */ 8341 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 8342 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE; 8343 8344 pipe_config->dpll_hw_state.dpll_md = 8345 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8346 } 8347 8348 static void vlv_prepare_pll(struct intel_crtc *crtc, 8349 const struct intel_crtc_state *pipe_config) 8350 { 8351 struct drm_device *dev = crtc->base.dev; 8352 struct drm_i915_private *dev_priv = to_i915(dev); 8353 enum pipe pipe = crtc->pipe; 8354 u32 mdiv; 8355 u32 bestn, bestm1, bestm2, bestp1, bestp2; 8356 u32 coreclk, reg_val; 8357 8358 /* Enable Refclk */ 8359 intel_de_write(dev_priv, DPLL(pipe), 8360 pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); 8361 8362 /* No need to actually set up the DPLL with DSI */ 8363 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8364 return; 8365 8366 vlv_dpio_get(dev_priv); 8367 8368 bestn = pipe_config->dpll.n; 8369 bestm1 = pipe_config->dpll.m1; 8370 bestm2 = pipe_config->dpll.m2; 8371 bestp1 = pipe_config->dpll.p1; 8372 bestp2 = pipe_config->dpll.p2; 8373 8374 /* See eDP HDMI DPIO driver vbios notes doc */ 8375 8376 /* PLL B needs special handling */ 8377 if (pipe == PIPE_B) 8378 vlv_pllb_recal_opamp(dev_priv, pipe); 8379 8380 /* Set up Tx target for periodic Rcomp update */ 8381 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f); 8382 8383 /* Disable target IRef on PLL */ 8384 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe)); 8385 reg_val &= 0x00ffffff; 8386 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val); 8387 8388 /* Disable fast lock */ 8389 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610); 8390 8391 /* Set idtafcrecal before PLL is enabled */ 8392 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); 8393 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); 8394 mdiv |= ((bestn << DPIO_N_SHIFT)); 8395 mdiv |= (1 << DPIO_K_SHIFT); 8396 8397 /* 8398 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, 8399 * but we don't support that). 8400 * Note: don't use the DAC post divider as it seems unstable. 8401 */ 8402 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); 8403 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 8404 8405 mdiv |= DPIO_ENABLE_CALIBRATION; 8406 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 8407 8408 /* Set HBR and RBR LPF coefficients */ 8409 if (pipe_config->port_clock == 162000 || 8410 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) || 8411 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI)) 8412 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 8413 0x009f0003); 8414 else 8415 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 8416 0x00d0000f); 8417 8418 if (intel_crtc_has_dp_encoder(pipe_config)) { 8419 /* Use SSC source */ 8420 if (pipe == PIPE_A) 8421 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8422 0x0df40000); 8423 else 8424 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8425 0x0df70000); 8426 } else { /* HDMI or VGA */ 8427 /* Use bend source */ 8428 if (pipe == PIPE_A) 8429 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8430 0x0df70000); 8431 else 8432 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8433 0x0df40000); 8434 } 8435 8436 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe)); 8437 coreclk = (coreclk & 0x0000ff00) | 0x01c00000; 8438 if (intel_crtc_has_dp_encoder(pipe_config)) 8439 coreclk |= 0x01000000; 8440 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk); 8441 8442 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000); 8443 8444 vlv_dpio_put(dev_priv); 8445 } 8446 8447 static void chv_prepare_pll(struct intel_crtc *crtc, 8448 const struct intel_crtc_state *pipe_config) 8449 { 8450 struct drm_device *dev = crtc->base.dev; 8451 struct drm_i915_private *dev_priv = to_i915(dev); 8452 enum pipe pipe = crtc->pipe; 8453 enum dpio_channel port = vlv_pipe_to_channel(pipe); 8454 u32 loopfilter, tribuf_calcntr; 8455 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac; 8456 u32 dpio_val; 8457 int vco; 8458 8459 /* Enable Refclk and SSC */ 8460 intel_de_write(dev_priv, DPLL(pipe), 8461 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); 8462 8463 /* No need to actually set up the DPLL with DSI */ 8464 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8465 return; 8466 8467 bestn = pipe_config->dpll.n; 8468 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff; 8469 bestm1 = pipe_config->dpll.m1; 8470 bestm2 = pipe_config->dpll.m2 >> 22; 8471 bestp1 = pipe_config->dpll.p1; 8472 bestp2 = pipe_config->dpll.p2; 8473 vco = pipe_config->dpll.vco; 8474 dpio_val = 0; 8475 loopfilter = 0; 8476 8477 vlv_dpio_get(dev_priv); 8478 8479 /* p1 and p2 divider */ 8480 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port), 8481 5 << DPIO_CHV_S1_DIV_SHIFT | 8482 bestp1 << DPIO_CHV_P1_DIV_SHIFT | 8483 bestp2 << DPIO_CHV_P2_DIV_SHIFT | 8484 1 << DPIO_CHV_K_DIV_SHIFT); 8485 8486 /* Feedback post-divider - m2 */ 8487 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2); 8488 8489 /* Feedback refclk divider - n and m1 */ 8490 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port), 8491 DPIO_CHV_M1_DIV_BY_2 | 8492 1 << DPIO_CHV_N_DIV_SHIFT); 8493 8494 /* M2 fraction division */ 8495 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac); 8496 8497 /* M2 fraction division enable */ 8498 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 8499 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); 8500 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT); 8501 if (bestm2_frac) 8502 dpio_val |= DPIO_CHV_FRAC_DIV_EN; 8503 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val); 8504 8505 /* Program digital lock detect threshold */ 8506 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port)); 8507 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | 8508 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); 8509 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT); 8510 if (!bestm2_frac) 8511 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; 8512 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val); 8513 8514 /* Loop filter */ 8515 if (vco == 5400000) { 8516 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT); 8517 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT); 8518 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT); 8519 tribuf_calcntr = 0x9; 8520 } else if (vco <= 6200000) { 8521 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT); 8522 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT); 8523 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8524 tribuf_calcntr = 0x9; 8525 } else if (vco <= 6480000) { 8526 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 8527 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 8528 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8529 tribuf_calcntr = 0x8; 8530 } else { 8531 /* Not supported. Apply the same limits as in the max case */ 8532 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 8533 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 8534 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8535 tribuf_calcntr = 0; 8536 } 8537 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter); 8538 8539 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port)); 8540 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; 8541 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT); 8542 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val); 8543 8544 /* AFC Recal */ 8545 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), 8546 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) | 8547 DPIO_AFC_RECAL); 8548 8549 vlv_dpio_put(dev_priv); 8550 } 8551 8552 /** 8553 * vlv_force_pll_on - forcibly enable just the PLL 8554 * @dev_priv: i915 private structure 8555 * @pipe: pipe PLL to enable 8556 * @dpll: PLL configuration 8557 * 8558 * Enable the PLL for @pipe using the supplied @dpll config. To be used 8559 * in cases where we need the PLL enabled even when @pipe is not going to 8560 * be enabled. 8561 */ 8562 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe, 8563 const struct dpll *dpll) 8564 { 8565 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 8566 struct intel_crtc_state *pipe_config; 8567 8568 pipe_config = intel_crtc_state_alloc(crtc); 8569 if (!pipe_config) 8570 return -ENOMEM; 8571 8572 pipe_config->cpu_transcoder = (enum transcoder)pipe; 8573 pipe_config->pixel_multiplier = 1; 8574 pipe_config->dpll = *dpll; 8575 8576 if (IS_CHERRYVIEW(dev_priv)) { 8577 chv_compute_dpll(crtc, pipe_config); 8578 chv_prepare_pll(crtc, pipe_config); 8579 chv_enable_pll(crtc, pipe_config); 8580 } else { 8581 vlv_compute_dpll(crtc, pipe_config); 8582 vlv_prepare_pll(crtc, pipe_config); 8583 vlv_enable_pll(crtc, pipe_config); 8584 } 8585 8586 kfree(pipe_config); 8587 8588 return 0; 8589 } 8590 8591 /** 8592 * vlv_force_pll_off - forcibly disable just the PLL 8593 * @dev_priv: i915 private structure 8594 * @pipe: pipe PLL to disable 8595 * 8596 * Disable the PLL for @pipe. To be used in cases where we need 8597 * the PLL enabled even when @pipe is not going to be enabled. 8598 */ 8599 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe) 8600 { 8601 if (IS_CHERRYVIEW(dev_priv)) 8602 chv_disable_pll(dev_priv, pipe); 8603 else 8604 vlv_disable_pll(dev_priv, pipe); 8605 } 8606 8607 static void i9xx_compute_dpll(struct intel_crtc *crtc, 8608 struct intel_crtc_state *crtc_state, 8609 struct dpll *reduced_clock) 8610 { 8611 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8612 u32 dpll; 8613 struct dpll *clock = &crtc_state->dpll; 8614 8615 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8616 8617 dpll = DPLL_VGA_MODE_DIS; 8618 8619 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 8620 dpll |= DPLLB_MODE_LVDS; 8621 else 8622 dpll |= DPLLB_MODE_DAC_SERIAL; 8623 8624 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 8625 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 8626 dpll |= (crtc_state->pixel_multiplier - 1) 8627 << SDVO_MULTIPLIER_SHIFT_HIRES; 8628 } 8629 8630 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 8631 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 8632 dpll |= DPLL_SDVO_HIGH_SPEED; 8633 8634 if (intel_crtc_has_dp_encoder(crtc_state)) 8635 dpll |= DPLL_SDVO_HIGH_SPEED; 8636 8637 /* compute bitmask from p1 value */ 8638 if (IS_PINEVIEW(dev_priv)) 8639 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; 8640 else { 8641 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8642 if (IS_G4X(dev_priv) && reduced_clock) 8643 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 8644 } 8645 switch (clock->p2) { 8646 case 5: 8647 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 8648 break; 8649 case 7: 8650 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 8651 break; 8652 case 10: 8653 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 8654 break; 8655 case 14: 8656 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 8657 break; 8658 } 8659 if (INTEL_GEN(dev_priv) >= 4) 8660 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); 8661 8662 if (crtc_state->sdvo_tv_clock) 8663 dpll |= PLL_REF_INPUT_TVCLKINBC; 8664 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8665 intel_panel_use_ssc(dev_priv)) 8666 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8667 else 8668 dpll |= PLL_REF_INPUT_DREFCLK; 8669 8670 dpll |= DPLL_VCO_ENABLE; 8671 crtc_state->dpll_hw_state.dpll = dpll; 8672 8673 if (INTEL_GEN(dev_priv) >= 4) { 8674 u32 dpll_md = (crtc_state->pixel_multiplier - 1) 8675 << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8676 crtc_state->dpll_hw_state.dpll_md = dpll_md; 8677 } 8678 } 8679 8680 static void i8xx_compute_dpll(struct intel_crtc *crtc, 8681 struct intel_crtc_state *crtc_state, 8682 struct dpll *reduced_clock) 8683 { 8684 struct drm_device *dev = crtc->base.dev; 8685 struct drm_i915_private *dev_priv = to_i915(dev); 8686 u32 dpll; 8687 struct dpll *clock = &crtc_state->dpll; 8688 8689 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8690 8691 dpll = DPLL_VGA_MODE_DIS; 8692 8693 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8694 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8695 } else { 8696 if (clock->p1 == 2) 8697 dpll |= PLL_P1_DIVIDE_BY_TWO; 8698 else 8699 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8700 if (clock->p2 == 4) 8701 dpll |= PLL_P2_DIVIDE_BY_4; 8702 } 8703 8704 /* 8705 * Bspec: 8706 * "[Almador Errata}: For the correct operation of the muxed DVO pins 8707 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, 8708 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock 8709 * Enable) must be set to “1” in both the DPLL A Control Register 8710 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." 8711 * 8712 * For simplicity We simply keep both bits always enabled in 8713 * both DPLLS. The spec says we should disable the DVO 2X clock 8714 * when not needed, but this seems to work fine in practice. 8715 */ 8716 if (IS_I830(dev_priv) || 8717 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) 8718 dpll |= DPLL_DVO_2X_MODE; 8719 8720 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8721 intel_panel_use_ssc(dev_priv)) 8722 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8723 else 8724 dpll |= PLL_REF_INPUT_DREFCLK; 8725 8726 dpll |= DPLL_VCO_ENABLE; 8727 crtc_state->dpll_hw_state.dpll = dpll; 8728 } 8729 8730 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state) 8731 { 8732 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8733 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8734 enum pipe pipe = crtc->pipe; 8735 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8736 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 8737 u32 crtc_vtotal, crtc_vblank_end; 8738 int vsyncshift = 0; 8739 8740 /* We need to be careful not to changed the adjusted mode, for otherwise 8741 * the hw state checker will get angry at the mismatch. */ 8742 crtc_vtotal = adjusted_mode->crtc_vtotal; 8743 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 8744 8745 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 8746 /* the chip adds 2 halflines automatically */ 8747 crtc_vtotal -= 1; 8748 crtc_vblank_end -= 1; 8749 8750 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 8751 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 8752 else 8753 vsyncshift = adjusted_mode->crtc_hsync_start - 8754 adjusted_mode->crtc_htotal / 2; 8755 if (vsyncshift < 0) 8756 vsyncshift += adjusted_mode->crtc_htotal; 8757 } 8758 8759 if (INTEL_GEN(dev_priv) > 3) 8760 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder), 8761 vsyncshift); 8762 8763 intel_de_write(dev_priv, HTOTAL(cpu_transcoder), 8764 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); 8765 intel_de_write(dev_priv, HBLANK(cpu_transcoder), 8766 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); 8767 intel_de_write(dev_priv, HSYNC(cpu_transcoder), 8768 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); 8769 8770 intel_de_write(dev_priv, VTOTAL(cpu_transcoder), 8771 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); 8772 intel_de_write(dev_priv, VBLANK(cpu_transcoder), 8773 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); 8774 intel_de_write(dev_priv, VSYNC(cpu_transcoder), 8775 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); 8776 8777 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 8778 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 8779 * documented on the DDI_FUNC_CTL register description, EDP Input Select 8780 * bits. */ 8781 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 8782 (pipe == PIPE_B || pipe == PIPE_C)) 8783 intel_de_write(dev_priv, VTOTAL(pipe), 8784 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 8785 8786 } 8787 8788 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 8789 { 8790 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8791 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8792 enum pipe pipe = crtc->pipe; 8793 8794 /* pipesrc controls the size that is scaled from, which should 8795 * always be the user's requested size. 8796 */ 8797 intel_de_write(dev_priv, PIPESRC(pipe), 8798 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1)); 8799 } 8800 8801 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 8802 { 8803 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 8804 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8805 8806 if (IS_GEN(dev_priv, 2)) 8807 return false; 8808 8809 if (INTEL_GEN(dev_priv) >= 9 || 8810 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 8811 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; 8812 else 8813 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; 8814 } 8815 8816 static void intel_get_pipe_timings(struct intel_crtc *crtc, 8817 struct intel_crtc_state *pipe_config) 8818 { 8819 struct drm_device *dev = crtc->base.dev; 8820 struct drm_i915_private *dev_priv = to_i915(dev); 8821 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 8822 u32 tmp; 8823 8824 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); 8825 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 8826 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 8827 8828 if (!transcoder_is_dsi(cpu_transcoder)) { 8829 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); 8830 pipe_config->hw.adjusted_mode.crtc_hblank_start = 8831 (tmp & 0xffff) + 1; 8832 pipe_config->hw.adjusted_mode.crtc_hblank_end = 8833 ((tmp >> 16) & 0xffff) + 1; 8834 } 8835 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); 8836 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 8837 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 8838 8839 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); 8840 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 8841 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 8842 8843 if (!transcoder_is_dsi(cpu_transcoder)) { 8844 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); 8845 pipe_config->hw.adjusted_mode.crtc_vblank_start = 8846 (tmp & 0xffff) + 1; 8847 pipe_config->hw.adjusted_mode.crtc_vblank_end = 8848 ((tmp >> 16) & 0xffff) + 1; 8849 } 8850 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); 8851 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 8852 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 8853 8854 if (intel_pipe_is_interlaced(pipe_config)) { 8855 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 8856 pipe_config->hw.adjusted_mode.crtc_vtotal += 1; 8857 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1; 8858 } 8859 } 8860 8861 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 8862 struct intel_crtc_state *pipe_config) 8863 { 8864 struct drm_device *dev = crtc->base.dev; 8865 struct drm_i915_private *dev_priv = to_i915(dev); 8866 u32 tmp; 8867 8868 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe)); 8869 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 8870 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 8871 8872 pipe_config->hw.mode.vdisplay = pipe_config->pipe_src_h; 8873 pipe_config->hw.mode.hdisplay = pipe_config->pipe_src_w; 8874 } 8875 8876 void intel_mode_from_pipe_config(struct drm_display_mode *mode, 8877 struct intel_crtc_state *pipe_config) 8878 { 8879 mode->hdisplay = pipe_config->hw.adjusted_mode.crtc_hdisplay; 8880 mode->htotal = pipe_config->hw.adjusted_mode.crtc_htotal; 8881 mode->hsync_start = pipe_config->hw.adjusted_mode.crtc_hsync_start; 8882 mode->hsync_end = pipe_config->hw.adjusted_mode.crtc_hsync_end; 8883 8884 mode->vdisplay = pipe_config->hw.adjusted_mode.crtc_vdisplay; 8885 mode->vtotal = pipe_config->hw.adjusted_mode.crtc_vtotal; 8886 mode->vsync_start = pipe_config->hw.adjusted_mode.crtc_vsync_start; 8887 mode->vsync_end = pipe_config->hw.adjusted_mode.crtc_vsync_end; 8888 8889 mode->flags = pipe_config->hw.adjusted_mode.flags; 8890 mode->type = DRM_MODE_TYPE_DRIVER; 8891 8892 mode->clock = pipe_config->hw.adjusted_mode.crtc_clock; 8893 8894 drm_mode_set_name(mode); 8895 } 8896 8897 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 8898 { 8899 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8900 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8901 u32 pipeconf; 8902 8903 pipeconf = 0; 8904 8905 /* we keep both pipes enabled on 830 */ 8906 if (IS_I830(dev_priv)) 8907 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 8908 8909 if (crtc_state->double_wide) 8910 pipeconf |= PIPECONF_DOUBLE_WIDE; 8911 8912 /* only g4x and later have fancy bpc/dither controls */ 8913 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 8914 IS_CHERRYVIEW(dev_priv)) { 8915 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 8916 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 8917 pipeconf |= PIPECONF_DITHER_EN | 8918 PIPECONF_DITHER_TYPE_SP; 8919 8920 switch (crtc_state->pipe_bpp) { 8921 case 18: 8922 pipeconf |= PIPECONF_6BPC; 8923 break; 8924 case 24: 8925 pipeconf |= PIPECONF_8BPC; 8926 break; 8927 case 30: 8928 pipeconf |= PIPECONF_10BPC; 8929 break; 8930 default: 8931 /* Case prevented by intel_choose_pipe_bpp_dither. */ 8932 BUG(); 8933 } 8934 } 8935 8936 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 8937 if (INTEL_GEN(dev_priv) < 4 || 8938 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 8939 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 8940 else 8941 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 8942 } else { 8943 pipeconf |= PIPECONF_PROGRESSIVE; 8944 } 8945 8946 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 8947 crtc_state->limited_color_range) 8948 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 8949 8950 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 8951 8952 pipeconf |= PIPECONF_FRAME_START_DELAY(0); 8953 8954 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf); 8955 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); 8956 } 8957 8958 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc, 8959 struct intel_crtc_state *crtc_state) 8960 { 8961 struct drm_device *dev = crtc->base.dev; 8962 struct drm_i915_private *dev_priv = to_i915(dev); 8963 const struct intel_limit *limit; 8964 int refclk = 48000; 8965 8966 memset(&crtc_state->dpll_hw_state, 0, 8967 sizeof(crtc_state->dpll_hw_state)); 8968 8969 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8970 if (intel_panel_use_ssc(dev_priv)) { 8971 refclk = dev_priv->vbt.lvds_ssc_freq; 8972 drm_dbg_kms(&dev_priv->drm, 8973 "using SSC reference clock of %d kHz\n", 8974 refclk); 8975 } 8976 8977 limit = &intel_limits_i8xx_lvds; 8978 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { 8979 limit = &intel_limits_i8xx_dvo; 8980 } else { 8981 limit = &intel_limits_i8xx_dac; 8982 } 8983 8984 if (!crtc_state->clock_set && 8985 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8986 refclk, NULL, &crtc_state->dpll)) { 8987 drm_err(&dev_priv->drm, 8988 "Couldn't find PLL settings for mode!\n"); 8989 return -EINVAL; 8990 } 8991 8992 i8xx_compute_dpll(crtc, crtc_state, NULL); 8993 8994 return 0; 8995 } 8996 8997 static int g4x_crtc_compute_clock(struct intel_crtc *crtc, 8998 struct intel_crtc_state *crtc_state) 8999 { 9000 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9001 const struct intel_limit *limit; 9002 int refclk = 96000; 9003 9004 memset(&crtc_state->dpll_hw_state, 0, 9005 sizeof(crtc_state->dpll_hw_state)); 9006 9007 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9008 if (intel_panel_use_ssc(dev_priv)) { 9009 refclk = dev_priv->vbt.lvds_ssc_freq; 9010 drm_dbg_kms(&dev_priv->drm, 9011 "using SSC reference clock of %d kHz\n", 9012 refclk); 9013 } 9014 9015 if (intel_is_dual_link_lvds(dev_priv)) 9016 limit = &intel_limits_g4x_dual_channel_lvds; 9017 else 9018 limit = &intel_limits_g4x_single_channel_lvds; 9019 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || 9020 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { 9021 limit = &intel_limits_g4x_hdmi; 9022 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { 9023 limit = &intel_limits_g4x_sdvo; 9024 } else { 9025 /* The option is for other outputs */ 9026 limit = &intel_limits_i9xx_sdvo; 9027 } 9028 9029 if (!crtc_state->clock_set && 9030 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9031 refclk, NULL, &crtc_state->dpll)) { 9032 drm_err(&dev_priv->drm, 9033 "Couldn't find PLL settings for mode!\n"); 9034 return -EINVAL; 9035 } 9036 9037 i9xx_compute_dpll(crtc, crtc_state, NULL); 9038 9039 return 0; 9040 } 9041 9042 static int pnv_crtc_compute_clock(struct intel_crtc *crtc, 9043 struct intel_crtc_state *crtc_state) 9044 { 9045 struct drm_device *dev = crtc->base.dev; 9046 struct drm_i915_private *dev_priv = to_i915(dev); 9047 const struct intel_limit *limit; 9048 int refclk = 96000; 9049 9050 memset(&crtc_state->dpll_hw_state, 0, 9051 sizeof(crtc_state->dpll_hw_state)); 9052 9053 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9054 if (intel_panel_use_ssc(dev_priv)) { 9055 refclk = dev_priv->vbt.lvds_ssc_freq; 9056 drm_dbg_kms(&dev_priv->drm, 9057 "using SSC reference clock of %d kHz\n", 9058 refclk); 9059 } 9060 9061 limit = &pnv_limits_lvds; 9062 } else { 9063 limit = &pnv_limits_sdvo; 9064 } 9065 9066 if (!crtc_state->clock_set && 9067 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9068 refclk, NULL, &crtc_state->dpll)) { 9069 drm_err(&dev_priv->drm, 9070 "Couldn't find PLL settings for mode!\n"); 9071 return -EINVAL; 9072 } 9073 9074 i9xx_compute_dpll(crtc, crtc_state, NULL); 9075 9076 return 0; 9077 } 9078 9079 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc, 9080 struct intel_crtc_state *crtc_state) 9081 { 9082 struct drm_device *dev = crtc->base.dev; 9083 struct drm_i915_private *dev_priv = to_i915(dev); 9084 const struct intel_limit *limit; 9085 int refclk = 96000; 9086 9087 memset(&crtc_state->dpll_hw_state, 0, 9088 sizeof(crtc_state->dpll_hw_state)); 9089 9090 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9091 if (intel_panel_use_ssc(dev_priv)) { 9092 refclk = dev_priv->vbt.lvds_ssc_freq; 9093 drm_dbg_kms(&dev_priv->drm, 9094 "using SSC reference clock of %d kHz\n", 9095 refclk); 9096 } 9097 9098 limit = &intel_limits_i9xx_lvds; 9099 } else { 9100 limit = &intel_limits_i9xx_sdvo; 9101 } 9102 9103 if (!crtc_state->clock_set && 9104 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9105 refclk, NULL, &crtc_state->dpll)) { 9106 drm_err(&dev_priv->drm, 9107 "Couldn't find PLL settings for mode!\n"); 9108 return -EINVAL; 9109 } 9110 9111 i9xx_compute_dpll(crtc, crtc_state, NULL); 9112 9113 return 0; 9114 } 9115 9116 static int chv_crtc_compute_clock(struct intel_crtc *crtc, 9117 struct intel_crtc_state *crtc_state) 9118 { 9119 int refclk = 100000; 9120 const struct intel_limit *limit = &intel_limits_chv; 9121 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 9122 9123 memset(&crtc_state->dpll_hw_state, 0, 9124 sizeof(crtc_state->dpll_hw_state)); 9125 9126 if (!crtc_state->clock_set && 9127 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9128 refclk, NULL, &crtc_state->dpll)) { 9129 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n"); 9130 return -EINVAL; 9131 } 9132 9133 chv_compute_dpll(crtc, crtc_state); 9134 9135 return 0; 9136 } 9137 9138 static int vlv_crtc_compute_clock(struct intel_crtc *crtc, 9139 struct intel_crtc_state *crtc_state) 9140 { 9141 int refclk = 100000; 9142 const struct intel_limit *limit = &intel_limits_vlv; 9143 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 9144 9145 memset(&crtc_state->dpll_hw_state, 0, 9146 sizeof(crtc_state->dpll_hw_state)); 9147 9148 if (!crtc_state->clock_set && 9149 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9150 refclk, NULL, &crtc_state->dpll)) { 9151 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n"); 9152 return -EINVAL; 9153 } 9154 9155 vlv_compute_dpll(crtc, crtc_state); 9156 9157 return 0; 9158 } 9159 9160 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 9161 { 9162 if (IS_I830(dev_priv)) 9163 return false; 9164 9165 return INTEL_GEN(dev_priv) >= 4 || 9166 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 9167 } 9168 9169 static void i9xx_get_pfit_config(struct intel_crtc *crtc, 9170 struct intel_crtc_state *pipe_config) 9171 { 9172 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9173 u32 tmp; 9174 9175 if (!i9xx_has_pfit(dev_priv)) 9176 return; 9177 9178 tmp = intel_de_read(dev_priv, PFIT_CONTROL); 9179 if (!(tmp & PFIT_ENABLE)) 9180 return; 9181 9182 /* Check whether the pfit is attached to our pipe. */ 9183 if (INTEL_GEN(dev_priv) < 4) { 9184 if (crtc->pipe != PIPE_B) 9185 return; 9186 } else { 9187 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 9188 return; 9189 } 9190 9191 pipe_config->gmch_pfit.control = tmp; 9192 pipe_config->gmch_pfit.pgm_ratios = intel_de_read(dev_priv, 9193 PFIT_PGM_RATIOS); 9194 } 9195 9196 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 9197 struct intel_crtc_state *pipe_config) 9198 { 9199 struct drm_device *dev = crtc->base.dev; 9200 struct drm_i915_private *dev_priv = to_i915(dev); 9201 enum pipe pipe = crtc->pipe; 9202 struct dpll clock; 9203 u32 mdiv; 9204 int refclk = 100000; 9205 9206 /* In case of DSI, DPLL will not be used */ 9207 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 9208 return; 9209 9210 vlv_dpio_get(dev_priv); 9211 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 9212 vlv_dpio_put(dev_priv); 9213 9214 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 9215 clock.m2 = mdiv & DPIO_M2DIV_MASK; 9216 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 9217 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 9218 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 9219 9220 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 9221 } 9222 9223 static void 9224 i9xx_get_initial_plane_config(struct intel_crtc *crtc, 9225 struct intel_initial_plane_config *plane_config) 9226 { 9227 struct drm_device *dev = crtc->base.dev; 9228 struct drm_i915_private *dev_priv = to_i915(dev); 9229 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 9230 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 9231 enum pipe pipe; 9232 u32 val, base, offset; 9233 int fourcc, pixel_format; 9234 unsigned int aligned_height; 9235 struct drm_framebuffer *fb; 9236 struct intel_framebuffer *intel_fb; 9237 9238 if (!plane->get_hw_state(plane, &pipe)) 9239 return; 9240 9241 drm_WARN_ON(dev, pipe != crtc->pipe); 9242 9243 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 9244 if (!intel_fb) { 9245 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n"); 9246 return; 9247 } 9248 9249 fb = &intel_fb->base; 9250 9251 fb->dev = dev; 9252 9253 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 9254 9255 if (INTEL_GEN(dev_priv) >= 4) { 9256 if (val & DISPPLANE_TILED) { 9257 plane_config->tiling = I915_TILING_X; 9258 fb->modifier = I915_FORMAT_MOD_X_TILED; 9259 } 9260 9261 if (val & DISPPLANE_ROTATE_180) 9262 plane_config->rotation = DRM_MODE_ROTATE_180; 9263 } 9264 9265 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B && 9266 val & DISPPLANE_MIRROR) 9267 plane_config->rotation |= DRM_MODE_REFLECT_X; 9268 9269 pixel_format = val & DISPPLANE_PIXFORMAT_MASK; 9270 fourcc = i9xx_format_to_fourcc(pixel_format); 9271 fb->format = drm_format_info(fourcc); 9272 9273 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 9274 offset = intel_de_read(dev_priv, DSPOFFSET(i9xx_plane)); 9275 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000; 9276 } else if (INTEL_GEN(dev_priv) >= 4) { 9277 if (plane_config->tiling) 9278 offset = intel_de_read(dev_priv, 9279 DSPTILEOFF(i9xx_plane)); 9280 else 9281 offset = intel_de_read(dev_priv, 9282 DSPLINOFF(i9xx_plane)); 9283 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000; 9284 } else { 9285 base = intel_de_read(dev_priv, DSPADDR(i9xx_plane)); 9286 } 9287 plane_config->base = base; 9288 9289 val = intel_de_read(dev_priv, PIPESRC(pipe)); 9290 fb->width = ((val >> 16) & 0xfff) + 1; 9291 fb->height = ((val >> 0) & 0xfff) + 1; 9292 9293 val = intel_de_read(dev_priv, DSPSTRIDE(i9xx_plane)); 9294 fb->pitches[0] = val & 0xffffffc0; 9295 9296 aligned_height = intel_fb_align_height(fb, 0, fb->height); 9297 9298 plane_config->size = fb->pitches[0] * aligned_height; 9299 9300 drm_dbg_kms(&dev_priv->drm, 9301 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 9302 crtc->base.name, plane->base.name, fb->width, fb->height, 9303 fb->format->cpp[0] * 8, base, fb->pitches[0], 9304 plane_config->size); 9305 9306 plane_config->fb = intel_fb; 9307 } 9308 9309 static void chv_crtc_clock_get(struct intel_crtc *crtc, 9310 struct intel_crtc_state *pipe_config) 9311 { 9312 struct drm_device *dev = crtc->base.dev; 9313 struct drm_i915_private *dev_priv = to_i915(dev); 9314 enum pipe pipe = crtc->pipe; 9315 enum dpio_channel port = vlv_pipe_to_channel(pipe); 9316 struct dpll clock; 9317 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 9318 int refclk = 100000; 9319 9320 /* In case of DSI, DPLL will not be used */ 9321 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 9322 return; 9323 9324 vlv_dpio_get(dev_priv); 9325 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 9326 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 9327 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 9328 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 9329 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 9330 vlv_dpio_put(dev_priv); 9331 9332 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 9333 clock.m2 = (pll_dw0 & 0xff) << 22; 9334 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 9335 clock.m2 |= pll_dw2 & 0x3fffff; 9336 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 9337 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 9338 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 9339 9340 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 9341 } 9342 9343 static enum intel_output_format 9344 bdw_get_pipemisc_output_format(struct intel_crtc *crtc) 9345 { 9346 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9347 u32 tmp; 9348 9349 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 9350 9351 if (tmp & PIPEMISC_YUV420_ENABLE) { 9352 /* We support 4:2:0 in full blend mode only */ 9353 drm_WARN_ON(&dev_priv->drm, 9354 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); 9355 9356 return INTEL_OUTPUT_FORMAT_YCBCR420; 9357 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 9358 return INTEL_OUTPUT_FORMAT_YCBCR444; 9359 } else { 9360 return INTEL_OUTPUT_FORMAT_RGB; 9361 } 9362 } 9363 9364 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 9365 { 9366 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9367 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 9368 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9369 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 9370 u32 tmp; 9371 9372 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 9373 9374 if (tmp & DISPPLANE_GAMMA_ENABLE) 9375 crtc_state->gamma_enable = true; 9376 9377 if (!HAS_GMCH(dev_priv) && 9378 tmp & DISPPLANE_PIPE_CSC_ENABLE) 9379 crtc_state->csc_enable = true; 9380 } 9381 9382 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 9383 struct intel_crtc_state *pipe_config) 9384 { 9385 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9386 enum intel_display_power_domain power_domain; 9387 intel_wakeref_t wakeref; 9388 u32 tmp; 9389 bool ret; 9390 9391 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 9392 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 9393 if (!wakeref) 9394 return false; 9395 9396 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 9397 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 9398 pipe_config->shared_dpll = NULL; 9399 pipe_config->master_transcoder = INVALID_TRANSCODER; 9400 9401 ret = false; 9402 9403 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 9404 if (!(tmp & PIPECONF_ENABLE)) 9405 goto out; 9406 9407 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 9408 IS_CHERRYVIEW(dev_priv)) { 9409 switch (tmp & PIPECONF_BPC_MASK) { 9410 case PIPECONF_6BPC: 9411 pipe_config->pipe_bpp = 18; 9412 break; 9413 case PIPECONF_8BPC: 9414 pipe_config->pipe_bpp = 24; 9415 break; 9416 case PIPECONF_10BPC: 9417 pipe_config->pipe_bpp = 30; 9418 break; 9419 default: 9420 break; 9421 } 9422 } 9423 9424 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 9425 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 9426 pipe_config->limited_color_range = true; 9427 9428 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 9429 PIPECONF_GAMMA_MODE_SHIFT; 9430 9431 if (IS_CHERRYVIEW(dev_priv)) 9432 pipe_config->cgm_mode = intel_de_read(dev_priv, 9433 CGM_PIPE_MODE(crtc->pipe)); 9434 9435 i9xx_get_pipe_color_config(pipe_config); 9436 intel_color_get_config(pipe_config); 9437 9438 if (INTEL_GEN(dev_priv) < 4) 9439 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 9440 9441 intel_get_pipe_timings(crtc, pipe_config); 9442 intel_get_pipe_src_size(crtc, pipe_config); 9443 9444 i9xx_get_pfit_config(crtc, pipe_config); 9445 9446 if (INTEL_GEN(dev_priv) >= 4) { 9447 /* No way to read it out on pipes B and C */ 9448 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 9449 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 9450 else 9451 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); 9452 pipe_config->pixel_multiplier = 9453 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 9454 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 9455 pipe_config->dpll_hw_state.dpll_md = tmp; 9456 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 9457 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 9458 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe)); 9459 pipe_config->pixel_multiplier = 9460 ((tmp & SDVO_MULTIPLIER_MASK) 9461 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 9462 } else { 9463 /* Note that on i915G/GM the pixel multiplier is in the sdvo 9464 * port and will be fixed up in the encoder->get_config 9465 * function. */ 9466 pipe_config->pixel_multiplier = 1; 9467 } 9468 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv, 9469 DPLL(crtc->pipe)); 9470 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 9471 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv, 9472 FP0(crtc->pipe)); 9473 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv, 9474 FP1(crtc->pipe)); 9475 } else { 9476 /* Mask out read-only status bits. */ 9477 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 9478 DPLL_PORTC_READY_MASK | 9479 DPLL_PORTB_READY_MASK); 9480 } 9481 9482 if (IS_CHERRYVIEW(dev_priv)) 9483 chv_crtc_clock_get(crtc, pipe_config); 9484 else if (IS_VALLEYVIEW(dev_priv)) 9485 vlv_crtc_clock_get(crtc, pipe_config); 9486 else 9487 i9xx_crtc_clock_get(crtc, pipe_config); 9488 9489 /* 9490 * Normally the dotclock is filled in by the encoder .get_config() 9491 * but in case the pipe is enabled w/o any ports we need a sane 9492 * default. 9493 */ 9494 pipe_config->hw.adjusted_mode.crtc_clock = 9495 pipe_config->port_clock / pipe_config->pixel_multiplier; 9496 9497 ret = true; 9498 9499 out: 9500 intel_display_power_put(dev_priv, power_domain, wakeref); 9501 9502 return ret; 9503 } 9504 9505 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv) 9506 { 9507 struct intel_encoder *encoder; 9508 int i; 9509 u32 val, final; 9510 bool has_lvds = false; 9511 bool has_cpu_edp = false; 9512 bool has_panel = false; 9513 bool has_ck505 = false; 9514 bool can_ssc = false; 9515 bool using_ssc_source = false; 9516 9517 /* We need to take the global config into account */ 9518 for_each_intel_encoder(&dev_priv->drm, encoder) { 9519 switch (encoder->type) { 9520 case INTEL_OUTPUT_LVDS: 9521 has_panel = true; 9522 has_lvds = true; 9523 break; 9524 case INTEL_OUTPUT_EDP: 9525 has_panel = true; 9526 if (encoder->port == PORT_A) 9527 has_cpu_edp = true; 9528 break; 9529 default: 9530 break; 9531 } 9532 } 9533 9534 if (HAS_PCH_IBX(dev_priv)) { 9535 has_ck505 = dev_priv->vbt.display_clock_mode; 9536 can_ssc = has_ck505; 9537 } else { 9538 has_ck505 = false; 9539 can_ssc = true; 9540 } 9541 9542 /* Check if any DPLLs are using the SSC source */ 9543 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) { 9544 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i)); 9545 9546 if (!(temp & DPLL_VCO_ENABLE)) 9547 continue; 9548 9549 if ((temp & PLL_REF_INPUT_MASK) == 9550 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 9551 using_ssc_source = true; 9552 break; 9553 } 9554 } 9555 9556 drm_dbg_kms(&dev_priv->drm, 9557 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 9558 has_panel, has_lvds, has_ck505, using_ssc_source); 9559 9560 /* Ironlake: try to setup display ref clock before DPLL 9561 * enabling. This is only under driver's control after 9562 * PCH B stepping, previous chipset stepping should be 9563 * ignoring this setting. 9564 */ 9565 val = intel_de_read(dev_priv, PCH_DREF_CONTROL); 9566 9567 /* As we must carefully and slowly disable/enable each source in turn, 9568 * compute the final state we want first and check if we need to 9569 * make any changes at all. 9570 */ 9571 final = val; 9572 final &= ~DREF_NONSPREAD_SOURCE_MASK; 9573 if (has_ck505) 9574 final |= DREF_NONSPREAD_CK505_ENABLE; 9575 else 9576 final |= DREF_NONSPREAD_SOURCE_ENABLE; 9577 9578 final &= ~DREF_SSC_SOURCE_MASK; 9579 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9580 final &= ~DREF_SSC1_ENABLE; 9581 9582 if (has_panel) { 9583 final |= DREF_SSC_SOURCE_ENABLE; 9584 9585 if (intel_panel_use_ssc(dev_priv) && can_ssc) 9586 final |= DREF_SSC1_ENABLE; 9587 9588 if (has_cpu_edp) { 9589 if (intel_panel_use_ssc(dev_priv) && can_ssc) 9590 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9591 else 9592 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9593 } else 9594 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9595 } else if (using_ssc_source) { 9596 final |= DREF_SSC_SOURCE_ENABLE; 9597 final |= DREF_SSC1_ENABLE; 9598 } 9599 9600 if (final == val) 9601 return; 9602 9603 /* Always enable nonspread source */ 9604 val &= ~DREF_NONSPREAD_SOURCE_MASK; 9605 9606 if (has_ck505) 9607 val |= DREF_NONSPREAD_CK505_ENABLE; 9608 else 9609 val |= DREF_NONSPREAD_SOURCE_ENABLE; 9610 9611 if (has_panel) { 9612 val &= ~DREF_SSC_SOURCE_MASK; 9613 val |= DREF_SSC_SOURCE_ENABLE; 9614 9615 /* SSC must be turned on before enabling the CPU output */ 9616 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9617 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n"); 9618 val |= DREF_SSC1_ENABLE; 9619 } else 9620 val &= ~DREF_SSC1_ENABLE; 9621 9622 /* Get SSC going before enabling the outputs */ 9623 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9624 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9625 udelay(200); 9626 9627 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9628 9629 /* Enable CPU source on CPU attached eDP */ 9630 if (has_cpu_edp) { 9631 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9632 drm_dbg_kms(&dev_priv->drm, 9633 "Using SSC on eDP\n"); 9634 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9635 } else 9636 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9637 } else 9638 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9639 9640 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9641 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9642 udelay(200); 9643 } else { 9644 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n"); 9645 9646 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9647 9648 /* Turn off CPU output */ 9649 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9650 9651 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9652 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9653 udelay(200); 9654 9655 if (!using_ssc_source) { 9656 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n"); 9657 9658 /* Turn off the SSC source */ 9659 val &= ~DREF_SSC_SOURCE_MASK; 9660 val |= DREF_SSC_SOURCE_DISABLE; 9661 9662 /* Turn off SSC1 */ 9663 val &= ~DREF_SSC1_ENABLE; 9664 9665 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9666 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9667 udelay(200); 9668 } 9669 } 9670 9671 BUG_ON(val != final); 9672 } 9673 9674 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 9675 { 9676 u32 tmp; 9677 9678 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 9679 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 9680 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 9681 9682 if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) & 9683 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 9684 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n"); 9685 9686 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 9687 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 9688 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 9689 9690 if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) & 9691 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 9692 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n"); 9693 } 9694 9695 /* WaMPhyProgramming:hsw */ 9696 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 9697 { 9698 u32 tmp; 9699 9700 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 9701 tmp &= ~(0xFF << 24); 9702 tmp |= (0x12 << 24); 9703 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 9704 9705 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 9706 tmp |= (1 << 11); 9707 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 9708 9709 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 9710 tmp |= (1 << 11); 9711 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 9712 9713 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 9714 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9715 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 9716 9717 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 9718 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9719 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 9720 9721 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 9722 tmp &= ~(7 << 13); 9723 tmp |= (5 << 13); 9724 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 9725 9726 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 9727 tmp &= ~(7 << 13); 9728 tmp |= (5 << 13); 9729 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 9730 9731 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 9732 tmp &= ~0xFF; 9733 tmp |= 0x1C; 9734 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 9735 9736 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 9737 tmp &= ~0xFF; 9738 tmp |= 0x1C; 9739 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 9740 9741 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 9742 tmp &= ~(0xFF << 16); 9743 tmp |= (0x1C << 16); 9744 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 9745 9746 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 9747 tmp &= ~(0xFF << 16); 9748 tmp |= (0x1C << 16); 9749 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 9750 9751 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 9752 tmp |= (1 << 27); 9753 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 9754 9755 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 9756 tmp |= (1 << 27); 9757 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 9758 9759 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 9760 tmp &= ~(0xF << 28); 9761 tmp |= (4 << 28); 9762 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 9763 9764 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 9765 tmp &= ~(0xF << 28); 9766 tmp |= (4 << 28); 9767 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 9768 } 9769 9770 /* Implements 3 different sequences from BSpec chapter "Display iCLK 9771 * Programming" based on the parameters passed: 9772 * - Sequence to enable CLKOUT_DP 9773 * - Sequence to enable CLKOUT_DP without spread 9774 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 9775 */ 9776 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 9777 bool with_spread, bool with_fdi) 9778 { 9779 u32 reg, tmp; 9780 9781 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread, 9782 "FDI requires downspread\n")) 9783 with_spread = true; 9784 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) && 9785 with_fdi, "LP PCH doesn't have FDI\n")) 9786 with_fdi = false; 9787 9788 mutex_lock(&dev_priv->sb_lock); 9789 9790 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9791 tmp &= ~SBI_SSCCTL_DISABLE; 9792 tmp |= SBI_SSCCTL_PATHALT; 9793 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9794 9795 udelay(24); 9796 9797 if (with_spread) { 9798 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9799 tmp &= ~SBI_SSCCTL_PATHALT; 9800 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9801 9802 if (with_fdi) { 9803 lpt_reset_fdi_mphy(dev_priv); 9804 lpt_program_fdi_mphy(dev_priv); 9805 } 9806 } 9807 9808 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9809 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9810 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9811 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9812 9813 mutex_unlock(&dev_priv->sb_lock); 9814 } 9815 9816 /* Sequence to disable CLKOUT_DP */ 9817 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 9818 { 9819 u32 reg, tmp; 9820 9821 mutex_lock(&dev_priv->sb_lock); 9822 9823 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9824 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9825 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9826 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9827 9828 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9829 if (!(tmp & SBI_SSCCTL_DISABLE)) { 9830 if (!(tmp & SBI_SSCCTL_PATHALT)) { 9831 tmp |= SBI_SSCCTL_PATHALT; 9832 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9833 udelay(32); 9834 } 9835 tmp |= SBI_SSCCTL_DISABLE; 9836 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9837 } 9838 9839 mutex_unlock(&dev_priv->sb_lock); 9840 } 9841 9842 #define BEND_IDX(steps) ((50 + (steps)) / 5) 9843 9844 static const u16 sscdivintphase[] = { 9845 [BEND_IDX( 50)] = 0x3B23, 9846 [BEND_IDX( 45)] = 0x3B23, 9847 [BEND_IDX( 40)] = 0x3C23, 9848 [BEND_IDX( 35)] = 0x3C23, 9849 [BEND_IDX( 30)] = 0x3D23, 9850 [BEND_IDX( 25)] = 0x3D23, 9851 [BEND_IDX( 20)] = 0x3E23, 9852 [BEND_IDX( 15)] = 0x3E23, 9853 [BEND_IDX( 10)] = 0x3F23, 9854 [BEND_IDX( 5)] = 0x3F23, 9855 [BEND_IDX( 0)] = 0x0025, 9856 [BEND_IDX( -5)] = 0x0025, 9857 [BEND_IDX(-10)] = 0x0125, 9858 [BEND_IDX(-15)] = 0x0125, 9859 [BEND_IDX(-20)] = 0x0225, 9860 [BEND_IDX(-25)] = 0x0225, 9861 [BEND_IDX(-30)] = 0x0325, 9862 [BEND_IDX(-35)] = 0x0325, 9863 [BEND_IDX(-40)] = 0x0425, 9864 [BEND_IDX(-45)] = 0x0425, 9865 [BEND_IDX(-50)] = 0x0525, 9866 }; 9867 9868 /* 9869 * Bend CLKOUT_DP 9870 * steps -50 to 50 inclusive, in steps of 5 9871 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 9872 * change in clock period = -(steps / 10) * 5.787 ps 9873 */ 9874 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 9875 { 9876 u32 tmp; 9877 int idx = BEND_IDX(steps); 9878 9879 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0)) 9880 return; 9881 9882 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase))) 9883 return; 9884 9885 mutex_lock(&dev_priv->sb_lock); 9886 9887 if (steps % 10 != 0) 9888 tmp = 0xAAAAAAAB; 9889 else 9890 tmp = 0x00000000; 9891 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 9892 9893 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 9894 tmp &= 0xffff0000; 9895 tmp |= sscdivintphase[idx]; 9896 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 9897 9898 mutex_unlock(&dev_priv->sb_lock); 9899 } 9900 9901 #undef BEND_IDX 9902 9903 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 9904 { 9905 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 9906 u32 ctl = intel_de_read(dev_priv, SPLL_CTL); 9907 9908 if ((ctl & SPLL_PLL_ENABLE) == 0) 9909 return false; 9910 9911 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 9912 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 9913 return true; 9914 9915 if (IS_BROADWELL(dev_priv) && 9916 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 9917 return true; 9918 9919 return false; 9920 } 9921 9922 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 9923 enum intel_dpll_id id) 9924 { 9925 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 9926 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id)); 9927 9928 if ((ctl & WRPLL_PLL_ENABLE) == 0) 9929 return false; 9930 9931 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 9932 return true; 9933 9934 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 9935 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 9936 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 9937 return true; 9938 9939 return false; 9940 } 9941 9942 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 9943 { 9944 struct intel_encoder *encoder; 9945 bool has_fdi = false; 9946 9947 for_each_intel_encoder(&dev_priv->drm, encoder) { 9948 switch (encoder->type) { 9949 case INTEL_OUTPUT_ANALOG: 9950 has_fdi = true; 9951 break; 9952 default: 9953 break; 9954 } 9955 } 9956 9957 /* 9958 * The BIOS may have decided to use the PCH SSC 9959 * reference so we must not disable it until the 9960 * relevant PLLs have stopped relying on it. We'll 9961 * just leave the PCH SSC reference enabled in case 9962 * any active PLL is using it. It will get disabled 9963 * after runtime suspend if we don't have FDI. 9964 * 9965 * TODO: Move the whole reference clock handling 9966 * to the modeset sequence proper so that we can 9967 * actually enable/disable/reconfigure these things 9968 * safely. To do that we need to introduce a real 9969 * clock hierarchy. That would also allow us to do 9970 * clock bending finally. 9971 */ 9972 dev_priv->pch_ssc_use = 0; 9973 9974 if (spll_uses_pch_ssc(dev_priv)) { 9975 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n"); 9976 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); 9977 } 9978 9979 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 9980 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n"); 9981 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 9982 } 9983 9984 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 9985 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n"); 9986 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 9987 } 9988 9989 if (dev_priv->pch_ssc_use) 9990 return; 9991 9992 if (has_fdi) { 9993 lpt_bend_clkout_dp(dev_priv, 0); 9994 lpt_enable_clkout_dp(dev_priv, true, true); 9995 } else { 9996 lpt_disable_clkout_dp(dev_priv); 9997 } 9998 } 9999 10000 /* 10001 * Initialize reference clocks when the driver loads 10002 */ 10003 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 10004 { 10005 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 10006 ilk_init_pch_refclk(dev_priv); 10007 else if (HAS_PCH_LPT(dev_priv)) 10008 lpt_init_pch_refclk(dev_priv); 10009 } 10010 10011 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) 10012 { 10013 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10014 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10015 enum pipe pipe = crtc->pipe; 10016 u32 val; 10017 10018 val = 0; 10019 10020 switch (crtc_state->pipe_bpp) { 10021 case 18: 10022 val |= PIPECONF_6BPC; 10023 break; 10024 case 24: 10025 val |= PIPECONF_8BPC; 10026 break; 10027 case 30: 10028 val |= PIPECONF_10BPC; 10029 break; 10030 case 36: 10031 val |= PIPECONF_12BPC; 10032 break; 10033 default: 10034 /* Case prevented by intel_choose_pipe_bpp_dither. */ 10035 BUG(); 10036 } 10037 10038 if (crtc_state->dither) 10039 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 10040 10041 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 10042 val |= PIPECONF_INTERLACED_ILK; 10043 else 10044 val |= PIPECONF_PROGRESSIVE; 10045 10046 /* 10047 * This would end up with an odd purple hue over 10048 * the entire display. Make sure we don't do it. 10049 */ 10050 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && 10051 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 10052 10053 if (crtc_state->limited_color_range) 10054 val |= PIPECONF_COLOR_RANGE_SELECT; 10055 10056 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 10057 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; 10058 10059 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 10060 10061 val |= PIPECONF_FRAME_START_DELAY(0); 10062 10063 intel_de_write(dev_priv, PIPECONF(pipe), val); 10064 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 10065 } 10066 10067 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state) 10068 { 10069 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10070 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10071 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 10072 u32 val = 0; 10073 10074 if (IS_HASWELL(dev_priv) && crtc_state->dither) 10075 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 10076 10077 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 10078 val |= PIPECONF_INTERLACED_ILK; 10079 else 10080 val |= PIPECONF_PROGRESSIVE; 10081 10082 if (IS_HASWELL(dev_priv) && 10083 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 10084 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; 10085 10086 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val); 10087 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder)); 10088 } 10089 10090 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 10091 { 10092 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10093 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10094 u32 val = 0; 10095 10096 switch (crtc_state->pipe_bpp) { 10097 case 18: 10098 val |= PIPEMISC_DITHER_6_BPC; 10099 break; 10100 case 24: 10101 val |= PIPEMISC_DITHER_8_BPC; 10102 break; 10103 case 30: 10104 val |= PIPEMISC_DITHER_10_BPC; 10105 break; 10106 case 36: 10107 val |= PIPEMISC_DITHER_12_BPC; 10108 break; 10109 default: 10110 MISSING_CASE(crtc_state->pipe_bpp); 10111 break; 10112 } 10113 10114 if (crtc_state->dither) 10115 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 10116 10117 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 10118 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 10119 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 10120 10121 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 10122 val |= PIPEMISC_YUV420_ENABLE | 10123 PIPEMISC_YUV420_MODE_FULL_BLEND; 10124 10125 if (INTEL_GEN(dev_priv) >= 11 && 10126 (crtc_state->active_planes & ~(icl_hdr_plane_mask() | 10127 BIT(PLANE_CURSOR))) == 0) 10128 val |= PIPEMISC_HDR_MODE_PRECISION; 10129 10130 if (INTEL_GEN(dev_priv) >= 12) 10131 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC; 10132 10133 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val); 10134 } 10135 10136 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 10137 { 10138 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10139 u32 tmp; 10140 10141 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 10142 10143 switch (tmp & PIPEMISC_DITHER_BPC_MASK) { 10144 case PIPEMISC_DITHER_6_BPC: 10145 return 18; 10146 case PIPEMISC_DITHER_8_BPC: 10147 return 24; 10148 case PIPEMISC_DITHER_10_BPC: 10149 return 30; 10150 case PIPEMISC_DITHER_12_BPC: 10151 return 36; 10152 default: 10153 MISSING_CASE(tmp); 10154 return 0; 10155 } 10156 } 10157 10158 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) 10159 { 10160 /* 10161 * Account for spread spectrum to avoid 10162 * oversubscribing the link. Max center spread 10163 * is 2.5%; use 5% for safety's sake. 10164 */ 10165 u32 bps = target_clock * bpp * 21 / 20; 10166 return DIV_ROUND_UP(bps, link_bw * 8); 10167 } 10168 10169 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor) 10170 { 10171 return i9xx_dpll_compute_m(dpll) < factor * dpll->n; 10172 } 10173 10174 static void ilk_compute_dpll(struct intel_crtc *crtc, 10175 struct intel_crtc_state *crtc_state, 10176 struct dpll *reduced_clock) 10177 { 10178 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10179 u32 dpll, fp, fp2; 10180 int factor; 10181 10182 /* Enable autotuning of the PLL clock (if permissible) */ 10183 factor = 21; 10184 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 10185 if ((intel_panel_use_ssc(dev_priv) && 10186 dev_priv->vbt.lvds_ssc_freq == 100000) || 10187 (HAS_PCH_IBX(dev_priv) && 10188 intel_is_dual_link_lvds(dev_priv))) 10189 factor = 25; 10190 } else if (crtc_state->sdvo_tv_clock) { 10191 factor = 20; 10192 } 10193 10194 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 10195 10196 if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor)) 10197 fp |= FP_CB_TUNE; 10198 10199 if (reduced_clock) { 10200 fp2 = i9xx_dpll_compute_fp(reduced_clock); 10201 10202 if (reduced_clock->m < factor * reduced_clock->n) 10203 fp2 |= FP_CB_TUNE; 10204 } else { 10205 fp2 = fp; 10206 } 10207 10208 dpll = 0; 10209 10210 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 10211 dpll |= DPLLB_MODE_LVDS; 10212 else 10213 dpll |= DPLLB_MODE_DAC_SERIAL; 10214 10215 dpll |= (crtc_state->pixel_multiplier - 1) 10216 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; 10217 10218 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 10219 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 10220 dpll |= DPLL_SDVO_HIGH_SPEED; 10221 10222 if (intel_crtc_has_dp_encoder(crtc_state)) 10223 dpll |= DPLL_SDVO_HIGH_SPEED; 10224 10225 /* 10226 * The high speed IO clock is only really required for 10227 * SDVO/HDMI/DP, but we also enable it for CRT to make it 10228 * possible to share the DPLL between CRT and HDMI. Enabling 10229 * the clock needlessly does no real harm, except use up a 10230 * bit of power potentially. 10231 * 10232 * We'll limit this to IVB with 3 pipes, since it has only two 10233 * DPLLs and so DPLL sharing is the only way to get three pipes 10234 * driving PCH ports at the same time. On SNB we could do this, 10235 * and potentially avoid enabling the second DPLL, but it's not 10236 * clear if it''s a win or loss power wise. No point in doing 10237 * this on ILK at all since it has a fixed DPLL<->pipe mapping. 10238 */ 10239 if (INTEL_NUM_PIPES(dev_priv) == 3 && 10240 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) 10241 dpll |= DPLL_SDVO_HIGH_SPEED; 10242 10243 /* compute bitmask from p1 value */ 10244 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 10245 /* also FPA1 */ 10246 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 10247 10248 switch (crtc_state->dpll.p2) { 10249 case 5: 10250 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 10251 break; 10252 case 7: 10253 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 10254 break; 10255 case 10: 10256 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 10257 break; 10258 case 14: 10259 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 10260 break; 10261 } 10262 10263 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 10264 intel_panel_use_ssc(dev_priv)) 10265 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 10266 else 10267 dpll |= PLL_REF_INPUT_DREFCLK; 10268 10269 dpll |= DPLL_VCO_ENABLE; 10270 10271 crtc_state->dpll_hw_state.dpll = dpll; 10272 crtc_state->dpll_hw_state.fp0 = fp; 10273 crtc_state->dpll_hw_state.fp1 = fp2; 10274 } 10275 10276 static int ilk_crtc_compute_clock(struct intel_crtc *crtc, 10277 struct intel_crtc_state *crtc_state) 10278 { 10279 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10280 struct intel_atomic_state *state = 10281 to_intel_atomic_state(crtc_state->uapi.state); 10282 const struct intel_limit *limit; 10283 int refclk = 120000; 10284 10285 memset(&crtc_state->dpll_hw_state, 0, 10286 sizeof(crtc_state->dpll_hw_state)); 10287 10288 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 10289 if (!crtc_state->has_pch_encoder) 10290 return 0; 10291 10292 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 10293 if (intel_panel_use_ssc(dev_priv)) { 10294 drm_dbg_kms(&dev_priv->drm, 10295 "using SSC reference clock of %d kHz\n", 10296 dev_priv->vbt.lvds_ssc_freq); 10297 refclk = dev_priv->vbt.lvds_ssc_freq; 10298 } 10299 10300 if (intel_is_dual_link_lvds(dev_priv)) { 10301 if (refclk == 100000) 10302 limit = &ilk_limits_dual_lvds_100m; 10303 else 10304 limit = &ilk_limits_dual_lvds; 10305 } else { 10306 if (refclk == 100000) 10307 limit = &ilk_limits_single_lvds_100m; 10308 else 10309 limit = &ilk_limits_single_lvds; 10310 } 10311 } else { 10312 limit = &ilk_limits_dac; 10313 } 10314 10315 if (!crtc_state->clock_set && 10316 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 10317 refclk, NULL, &crtc_state->dpll)) { 10318 drm_err(&dev_priv->drm, 10319 "Couldn't find PLL settings for mode!\n"); 10320 return -EINVAL; 10321 } 10322 10323 ilk_compute_dpll(crtc, crtc_state, NULL); 10324 10325 if (!intel_reserve_shared_dplls(state, crtc, NULL)) { 10326 drm_dbg_kms(&dev_priv->drm, 10327 "failed to find PLL for pipe %c\n", 10328 pipe_name(crtc->pipe)); 10329 return -EINVAL; 10330 } 10331 10332 return 0; 10333 } 10334 10335 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 10336 struct intel_link_m_n *m_n) 10337 { 10338 struct drm_device *dev = crtc->base.dev; 10339 struct drm_i915_private *dev_priv = to_i915(dev); 10340 enum pipe pipe = crtc->pipe; 10341 10342 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe)); 10343 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe)); 10344 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 10345 & ~TU_SIZE_MASK; 10346 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe)); 10347 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 10348 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10349 } 10350 10351 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 10352 enum transcoder transcoder, 10353 struct intel_link_m_n *m_n, 10354 struct intel_link_m_n *m2_n2) 10355 { 10356 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10357 enum pipe pipe = crtc->pipe; 10358 10359 if (INTEL_GEN(dev_priv) >= 5) { 10360 m_n->link_m = intel_de_read(dev_priv, 10361 PIPE_LINK_M1(transcoder)); 10362 m_n->link_n = intel_de_read(dev_priv, 10363 PIPE_LINK_N1(transcoder)); 10364 m_n->gmch_m = intel_de_read(dev_priv, 10365 PIPE_DATA_M1(transcoder)) 10366 & ~TU_SIZE_MASK; 10367 m_n->gmch_n = intel_de_read(dev_priv, 10368 PIPE_DATA_N1(transcoder)); 10369 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder)) 10370 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10371 10372 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 10373 m2_n2->link_m = intel_de_read(dev_priv, 10374 PIPE_LINK_M2(transcoder)); 10375 m2_n2->link_n = intel_de_read(dev_priv, 10376 PIPE_LINK_N2(transcoder)); 10377 m2_n2->gmch_m = intel_de_read(dev_priv, 10378 PIPE_DATA_M2(transcoder)) 10379 & ~TU_SIZE_MASK; 10380 m2_n2->gmch_n = intel_de_read(dev_priv, 10381 PIPE_DATA_N2(transcoder)); 10382 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder)) 10383 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10384 } 10385 } else { 10386 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe)); 10387 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe)); 10388 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 10389 & ~TU_SIZE_MASK; 10390 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe)); 10391 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 10392 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10393 } 10394 } 10395 10396 void intel_dp_get_m_n(struct intel_crtc *crtc, 10397 struct intel_crtc_state *pipe_config) 10398 { 10399 if (pipe_config->has_pch_encoder) 10400 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 10401 else 10402 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 10403 &pipe_config->dp_m_n, 10404 &pipe_config->dp_m2_n2); 10405 } 10406 10407 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc, 10408 struct intel_crtc_state *pipe_config) 10409 { 10410 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 10411 &pipe_config->fdi_m_n, NULL); 10412 } 10413 10414 static void skl_get_pfit_config(struct intel_crtc *crtc, 10415 struct intel_crtc_state *pipe_config) 10416 { 10417 struct drm_device *dev = crtc->base.dev; 10418 struct drm_i915_private *dev_priv = to_i915(dev); 10419 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state; 10420 u32 ps_ctrl = 0; 10421 int id = -1; 10422 int i; 10423 10424 /* find scaler attached to this pipe */ 10425 for (i = 0; i < crtc->num_scalers; i++) { 10426 ps_ctrl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i)); 10427 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) { 10428 id = i; 10429 pipe_config->pch_pfit.enabled = true; 10430 pipe_config->pch_pfit.pos = intel_de_read(dev_priv, 10431 SKL_PS_WIN_POS(crtc->pipe, i)); 10432 pipe_config->pch_pfit.size = intel_de_read(dev_priv, 10433 SKL_PS_WIN_SZ(crtc->pipe, i)); 10434 scaler_state->scalers[i].in_use = true; 10435 break; 10436 } 10437 } 10438 10439 scaler_state->scaler_id = id; 10440 if (id >= 0) { 10441 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 10442 } else { 10443 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 10444 } 10445 } 10446 10447 static void 10448 skl_get_initial_plane_config(struct intel_crtc *crtc, 10449 struct intel_initial_plane_config *plane_config) 10450 { 10451 struct drm_device *dev = crtc->base.dev; 10452 struct drm_i915_private *dev_priv = to_i915(dev); 10453 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 10454 enum plane_id plane_id = plane->id; 10455 enum pipe pipe; 10456 u32 val, base, offset, stride_mult, tiling, alpha; 10457 int fourcc, pixel_format; 10458 unsigned int aligned_height; 10459 struct drm_framebuffer *fb; 10460 struct intel_framebuffer *intel_fb; 10461 10462 if (!plane->get_hw_state(plane, &pipe)) 10463 return; 10464 10465 drm_WARN_ON(dev, pipe != crtc->pipe); 10466 10467 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 10468 if (!intel_fb) { 10469 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n"); 10470 return; 10471 } 10472 10473 fb = &intel_fb->base; 10474 10475 fb->dev = dev; 10476 10477 val = intel_de_read(dev_priv, PLANE_CTL(pipe, plane_id)); 10478 10479 if (INTEL_GEN(dev_priv) >= 11) 10480 pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK; 10481 else 10482 pixel_format = val & PLANE_CTL_FORMAT_MASK; 10483 10484 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { 10485 alpha = intel_de_read(dev_priv, 10486 PLANE_COLOR_CTL(pipe, plane_id)); 10487 alpha &= PLANE_COLOR_ALPHA_MASK; 10488 } else { 10489 alpha = val & PLANE_CTL_ALPHA_MASK; 10490 } 10491 10492 fourcc = skl_format_to_fourcc(pixel_format, 10493 val & PLANE_CTL_ORDER_RGBX, alpha); 10494 fb->format = drm_format_info(fourcc); 10495 10496 tiling = val & PLANE_CTL_TILED_MASK; 10497 switch (tiling) { 10498 case PLANE_CTL_TILED_LINEAR: 10499 fb->modifier = DRM_FORMAT_MOD_LINEAR; 10500 break; 10501 case PLANE_CTL_TILED_X: 10502 plane_config->tiling = I915_TILING_X; 10503 fb->modifier = I915_FORMAT_MOD_X_TILED; 10504 break; 10505 case PLANE_CTL_TILED_Y: 10506 plane_config->tiling = I915_TILING_Y; 10507 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 10508 fb->modifier = INTEL_GEN(dev_priv) >= 12 ? 10509 I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS : 10510 I915_FORMAT_MOD_Y_TILED_CCS; 10511 else if (val & PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE) 10512 fb->modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS; 10513 else 10514 fb->modifier = I915_FORMAT_MOD_Y_TILED; 10515 break; 10516 case PLANE_CTL_TILED_YF: 10517 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 10518 fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS; 10519 else 10520 fb->modifier = I915_FORMAT_MOD_Yf_TILED; 10521 break; 10522 default: 10523 MISSING_CASE(tiling); 10524 goto error; 10525 } 10526 10527 /* 10528 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 10529 * while i915 HW rotation is clockwise, thats why this swapping. 10530 */ 10531 switch (val & PLANE_CTL_ROTATE_MASK) { 10532 case PLANE_CTL_ROTATE_0: 10533 plane_config->rotation = DRM_MODE_ROTATE_0; 10534 break; 10535 case PLANE_CTL_ROTATE_90: 10536 plane_config->rotation = DRM_MODE_ROTATE_270; 10537 break; 10538 case PLANE_CTL_ROTATE_180: 10539 plane_config->rotation = DRM_MODE_ROTATE_180; 10540 break; 10541 case PLANE_CTL_ROTATE_270: 10542 plane_config->rotation = DRM_MODE_ROTATE_90; 10543 break; 10544 } 10545 10546 if (INTEL_GEN(dev_priv) >= 10 && 10547 val & PLANE_CTL_FLIP_HORIZONTAL) 10548 plane_config->rotation |= DRM_MODE_REFLECT_X; 10549 10550 base = intel_de_read(dev_priv, PLANE_SURF(pipe, plane_id)) & 0xfffff000; 10551 plane_config->base = base; 10552 10553 offset = intel_de_read(dev_priv, PLANE_OFFSET(pipe, plane_id)); 10554 10555 val = intel_de_read(dev_priv, PLANE_SIZE(pipe, plane_id)); 10556 fb->height = ((val >> 16) & 0xffff) + 1; 10557 fb->width = ((val >> 0) & 0xffff) + 1; 10558 10559 val = intel_de_read(dev_priv, PLANE_STRIDE(pipe, plane_id)); 10560 stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0); 10561 fb->pitches[0] = (val & 0x3ff) * stride_mult; 10562 10563 aligned_height = intel_fb_align_height(fb, 0, fb->height); 10564 10565 plane_config->size = fb->pitches[0] * aligned_height; 10566 10567 drm_dbg_kms(&dev_priv->drm, 10568 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 10569 crtc->base.name, plane->base.name, fb->width, fb->height, 10570 fb->format->cpp[0] * 8, base, fb->pitches[0], 10571 plane_config->size); 10572 10573 plane_config->fb = intel_fb; 10574 return; 10575 10576 error: 10577 kfree(intel_fb); 10578 } 10579 10580 static void ilk_get_pfit_config(struct intel_crtc *crtc, 10581 struct intel_crtc_state *pipe_config) 10582 { 10583 struct drm_device *dev = crtc->base.dev; 10584 struct drm_i915_private *dev_priv = to_i915(dev); 10585 u32 tmp; 10586 10587 tmp = intel_de_read(dev_priv, PF_CTL(crtc->pipe)); 10588 10589 if (tmp & PF_ENABLE) { 10590 pipe_config->pch_pfit.enabled = true; 10591 pipe_config->pch_pfit.pos = intel_de_read(dev_priv, 10592 PF_WIN_POS(crtc->pipe)); 10593 pipe_config->pch_pfit.size = intel_de_read(dev_priv, 10594 PF_WIN_SZ(crtc->pipe)); 10595 10596 /* We currently do not free assignements of panel fitters on 10597 * ivb/hsw (since we don't use the higher upscaling modes which 10598 * differentiates them) so just WARN about this case for now. */ 10599 if (IS_GEN(dev_priv, 7)) { 10600 drm_WARN_ON(dev, (tmp & PF_PIPE_SEL_MASK_IVB) != 10601 PF_PIPE_SEL_IVB(crtc->pipe)); 10602 } 10603 } 10604 } 10605 10606 static bool ilk_get_pipe_config(struct intel_crtc *crtc, 10607 struct intel_crtc_state *pipe_config) 10608 { 10609 struct drm_device *dev = crtc->base.dev; 10610 struct drm_i915_private *dev_priv = to_i915(dev); 10611 enum intel_display_power_domain power_domain; 10612 intel_wakeref_t wakeref; 10613 u32 tmp; 10614 bool ret; 10615 10616 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 10617 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 10618 if (!wakeref) 10619 return false; 10620 10621 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10622 pipe_config->shared_dpll = NULL; 10623 pipe_config->master_transcoder = INVALID_TRANSCODER; 10624 10625 ret = false; 10626 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 10627 if (!(tmp & PIPECONF_ENABLE)) 10628 goto out; 10629 10630 switch (tmp & PIPECONF_BPC_MASK) { 10631 case PIPECONF_6BPC: 10632 pipe_config->pipe_bpp = 18; 10633 break; 10634 case PIPECONF_8BPC: 10635 pipe_config->pipe_bpp = 24; 10636 break; 10637 case PIPECONF_10BPC: 10638 pipe_config->pipe_bpp = 30; 10639 break; 10640 case PIPECONF_12BPC: 10641 pipe_config->pipe_bpp = 36; 10642 break; 10643 default: 10644 break; 10645 } 10646 10647 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 10648 pipe_config->limited_color_range = true; 10649 10650 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { 10651 case PIPECONF_OUTPUT_COLORSPACE_YUV601: 10652 case PIPECONF_OUTPUT_COLORSPACE_YUV709: 10653 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 10654 break; 10655 default: 10656 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 10657 break; 10658 } 10659 10660 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 10661 PIPECONF_GAMMA_MODE_SHIFT; 10662 10663 pipe_config->csc_mode = intel_de_read(dev_priv, 10664 PIPE_CSC_MODE(crtc->pipe)); 10665 10666 i9xx_get_pipe_color_config(pipe_config); 10667 intel_color_get_config(pipe_config); 10668 10669 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 10670 struct intel_shared_dpll *pll; 10671 enum intel_dpll_id pll_id; 10672 10673 pipe_config->has_pch_encoder = true; 10674 10675 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe)); 10676 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 10677 FDI_DP_PORT_WIDTH_SHIFT) + 1; 10678 10679 ilk_get_fdi_m_n_config(crtc, pipe_config); 10680 10681 if (HAS_PCH_IBX(dev_priv)) { 10682 /* 10683 * The pipe->pch transcoder and pch transcoder->pll 10684 * mapping is fixed. 10685 */ 10686 pll_id = (enum intel_dpll_id) crtc->pipe; 10687 } else { 10688 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL); 10689 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 10690 pll_id = DPLL_ID_PCH_PLL_B; 10691 else 10692 pll_id= DPLL_ID_PCH_PLL_A; 10693 } 10694 10695 pipe_config->shared_dpll = 10696 intel_get_shared_dpll_by_id(dev_priv, pll_id); 10697 pll = pipe_config->shared_dpll; 10698 10699 drm_WARN_ON(dev, !pll->info->funcs->get_hw_state(dev_priv, pll, 10700 &pipe_config->dpll_hw_state)); 10701 10702 tmp = pipe_config->dpll_hw_state.dpll; 10703 pipe_config->pixel_multiplier = 10704 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 10705 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 10706 10707 ilk_pch_clock_get(crtc, pipe_config); 10708 } else { 10709 pipe_config->pixel_multiplier = 1; 10710 } 10711 10712 intel_get_pipe_timings(crtc, pipe_config); 10713 intel_get_pipe_src_size(crtc, pipe_config); 10714 10715 ilk_get_pfit_config(crtc, pipe_config); 10716 10717 ret = true; 10718 10719 out: 10720 intel_display_power_put(dev_priv, power_domain, wakeref); 10721 10722 return ret; 10723 } 10724 10725 static int hsw_crtc_compute_clock(struct intel_crtc *crtc, 10726 struct intel_crtc_state *crtc_state) 10727 { 10728 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10729 struct intel_atomic_state *state = 10730 to_intel_atomic_state(crtc_state->uapi.state); 10731 10732 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) || 10733 INTEL_GEN(dev_priv) >= 11) { 10734 struct intel_encoder *encoder = 10735 intel_get_crtc_new_encoder(state, crtc_state); 10736 10737 if (!intel_reserve_shared_dplls(state, crtc, encoder)) { 10738 drm_dbg_kms(&dev_priv->drm, 10739 "failed to find PLL for pipe %c\n", 10740 pipe_name(crtc->pipe)); 10741 return -EINVAL; 10742 } 10743 } 10744 10745 return 0; 10746 } 10747 10748 static void cnl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10749 struct intel_crtc_state *pipe_config) 10750 { 10751 enum intel_dpll_id id; 10752 u32 temp; 10753 10754 temp = intel_de_read(dev_priv, DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port); 10755 id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port); 10756 10757 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL2)) 10758 return; 10759 10760 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10761 } 10762 10763 static void icl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10764 struct intel_crtc_state *pipe_config) 10765 { 10766 enum phy phy = intel_port_to_phy(dev_priv, port); 10767 enum icl_port_dpll_id port_dpll_id; 10768 enum intel_dpll_id id; 10769 u32 temp; 10770 10771 if (intel_phy_is_combo(dev_priv, phy)) { 10772 temp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0) & 10773 ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); 10774 id = temp >> ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy); 10775 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10776 } else if (intel_phy_is_tc(dev_priv, phy)) { 10777 u32 clk_sel = intel_de_read(dev_priv, DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK; 10778 10779 if (clk_sel == DDI_CLK_SEL_MG) { 10780 id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv, 10781 port)); 10782 port_dpll_id = ICL_PORT_DPLL_MG_PHY; 10783 } else { 10784 drm_WARN_ON(&dev_priv->drm, 10785 clk_sel < DDI_CLK_SEL_TBT_162); 10786 id = DPLL_ID_ICL_TBTPLL; 10787 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10788 } 10789 } else { 10790 drm_WARN(&dev_priv->drm, 1, "Invalid port %x\n", port); 10791 return; 10792 } 10793 10794 pipe_config->icl_port_dplls[port_dpll_id].pll = 10795 intel_get_shared_dpll_by_id(dev_priv, id); 10796 10797 icl_set_active_port_dpll(pipe_config, port_dpll_id); 10798 } 10799 10800 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv, 10801 enum port port, 10802 struct intel_crtc_state *pipe_config) 10803 { 10804 enum intel_dpll_id id; 10805 10806 switch (port) { 10807 case PORT_A: 10808 id = DPLL_ID_SKL_DPLL0; 10809 break; 10810 case PORT_B: 10811 id = DPLL_ID_SKL_DPLL1; 10812 break; 10813 case PORT_C: 10814 id = DPLL_ID_SKL_DPLL2; 10815 break; 10816 default: 10817 drm_err(&dev_priv->drm, "Incorrect port type\n"); 10818 return; 10819 } 10820 10821 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10822 } 10823 10824 static void skl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10825 struct intel_crtc_state *pipe_config) 10826 { 10827 enum intel_dpll_id id; 10828 u32 temp; 10829 10830 temp = intel_de_read(dev_priv, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port); 10831 id = temp >> (port * 3 + 1); 10832 10833 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL3)) 10834 return; 10835 10836 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10837 } 10838 10839 static void hsw_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10840 struct intel_crtc_state *pipe_config) 10841 { 10842 enum intel_dpll_id id; 10843 u32 ddi_pll_sel = intel_de_read(dev_priv, PORT_CLK_SEL(port)); 10844 10845 switch (ddi_pll_sel) { 10846 case PORT_CLK_SEL_WRPLL1: 10847 id = DPLL_ID_WRPLL1; 10848 break; 10849 case PORT_CLK_SEL_WRPLL2: 10850 id = DPLL_ID_WRPLL2; 10851 break; 10852 case PORT_CLK_SEL_SPLL: 10853 id = DPLL_ID_SPLL; 10854 break; 10855 case PORT_CLK_SEL_LCPLL_810: 10856 id = DPLL_ID_LCPLL_810; 10857 break; 10858 case PORT_CLK_SEL_LCPLL_1350: 10859 id = DPLL_ID_LCPLL_1350; 10860 break; 10861 case PORT_CLK_SEL_LCPLL_2700: 10862 id = DPLL_ID_LCPLL_2700; 10863 break; 10864 default: 10865 MISSING_CASE(ddi_pll_sel); 10866 /* fall through */ 10867 case PORT_CLK_SEL_NONE: 10868 return; 10869 } 10870 10871 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10872 } 10873 10874 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 10875 struct intel_crtc_state *pipe_config, 10876 u64 *power_domain_mask, 10877 intel_wakeref_t *wakerefs) 10878 { 10879 struct drm_device *dev = crtc->base.dev; 10880 struct drm_i915_private *dev_priv = to_i915(dev); 10881 enum intel_display_power_domain power_domain; 10882 unsigned long panel_transcoder_mask = 0; 10883 unsigned long enabled_panel_transcoders = 0; 10884 enum transcoder panel_transcoder; 10885 intel_wakeref_t wf; 10886 u32 tmp; 10887 10888 if (INTEL_GEN(dev_priv) >= 11) 10889 panel_transcoder_mask |= 10890 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 10891 10892 if (HAS_TRANSCODER_EDP(dev_priv)) 10893 panel_transcoder_mask |= BIT(TRANSCODER_EDP); 10894 10895 /* 10896 * The pipe->transcoder mapping is fixed with the exception of the eDP 10897 * and DSI transcoders handled below. 10898 */ 10899 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10900 10901 /* 10902 * XXX: Do intel_display_power_get_if_enabled before reading this (for 10903 * consistency and less surprising code; it's in always on power). 10904 */ 10905 for_each_set_bit(panel_transcoder, 10906 &panel_transcoder_mask, 10907 ARRAY_SIZE(INTEL_INFO(dev_priv)->trans_offsets)) { 10908 bool force_thru = false; 10909 enum pipe trans_pipe; 10910 10911 tmp = intel_de_read(dev_priv, 10912 TRANS_DDI_FUNC_CTL(panel_transcoder)); 10913 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 10914 continue; 10915 10916 /* 10917 * Log all enabled ones, only use the first one. 10918 * 10919 * FIXME: This won't work for two separate DSI displays. 10920 */ 10921 enabled_panel_transcoders |= BIT(panel_transcoder); 10922 if (enabled_panel_transcoders != BIT(panel_transcoder)) 10923 continue; 10924 10925 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 10926 default: 10927 drm_WARN(dev, 1, 10928 "unknown pipe linked to transcoder %s\n", 10929 transcoder_name(panel_transcoder)); 10930 /* fall through */ 10931 case TRANS_DDI_EDP_INPUT_A_ONOFF: 10932 force_thru = true; 10933 /* fall through */ 10934 case TRANS_DDI_EDP_INPUT_A_ON: 10935 trans_pipe = PIPE_A; 10936 break; 10937 case TRANS_DDI_EDP_INPUT_B_ONOFF: 10938 trans_pipe = PIPE_B; 10939 break; 10940 case TRANS_DDI_EDP_INPUT_C_ONOFF: 10941 trans_pipe = PIPE_C; 10942 break; 10943 case TRANS_DDI_EDP_INPUT_D_ONOFF: 10944 trans_pipe = PIPE_D; 10945 break; 10946 } 10947 10948 if (trans_pipe == crtc->pipe) { 10949 pipe_config->cpu_transcoder = panel_transcoder; 10950 pipe_config->pch_pfit.force_thru = force_thru; 10951 } 10952 } 10953 10954 /* 10955 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 10956 */ 10957 drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && 10958 enabled_panel_transcoders != BIT(TRANSCODER_EDP)); 10959 10960 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder); 10961 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain)); 10962 10963 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 10964 if (!wf) 10965 return false; 10966 10967 wakerefs[power_domain] = wf; 10968 *power_domain_mask |= BIT_ULL(power_domain); 10969 10970 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); 10971 10972 return tmp & PIPECONF_ENABLE; 10973 } 10974 10975 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 10976 struct intel_crtc_state *pipe_config, 10977 u64 *power_domain_mask, 10978 intel_wakeref_t *wakerefs) 10979 { 10980 struct drm_device *dev = crtc->base.dev; 10981 struct drm_i915_private *dev_priv = to_i915(dev); 10982 enum intel_display_power_domain power_domain; 10983 enum transcoder cpu_transcoder; 10984 intel_wakeref_t wf; 10985 enum port port; 10986 u32 tmp; 10987 10988 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 10989 if (port == PORT_A) 10990 cpu_transcoder = TRANSCODER_DSI_A; 10991 else 10992 cpu_transcoder = TRANSCODER_DSI_C; 10993 10994 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 10995 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain)); 10996 10997 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 10998 if (!wf) 10999 continue; 11000 11001 wakerefs[power_domain] = wf; 11002 *power_domain_mask |= BIT_ULL(power_domain); 11003 11004 /* 11005 * The PLL needs to be enabled with a valid divider 11006 * configuration, otherwise accessing DSI registers will hang 11007 * the machine. See BSpec North Display Engine 11008 * registers/MIPI[BXT]. We can break out here early, since we 11009 * need the same DSI PLL to be enabled for both DSI ports. 11010 */ 11011 if (!bxt_dsi_pll_is_enabled(dev_priv)) 11012 break; 11013 11014 /* XXX: this works for video mode only */ 11015 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); 11016 if (!(tmp & DPI_ENABLE)) 11017 continue; 11018 11019 tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); 11020 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 11021 continue; 11022 11023 pipe_config->cpu_transcoder = cpu_transcoder; 11024 break; 11025 } 11026 11027 return transcoder_is_dsi(pipe_config->cpu_transcoder); 11028 } 11029 11030 static void hsw_get_ddi_port_state(struct intel_crtc *crtc, 11031 struct intel_crtc_state *pipe_config) 11032 { 11033 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11034 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 11035 struct intel_shared_dpll *pll; 11036 enum port port; 11037 u32 tmp; 11038 11039 if (transcoder_is_dsi(cpu_transcoder)) { 11040 port = (cpu_transcoder == TRANSCODER_DSI_A) ? 11041 PORT_A : PORT_B; 11042 } else { 11043 tmp = intel_de_read(dev_priv, 11044 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 11045 if (INTEL_GEN(dev_priv) >= 12) 11046 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 11047 else 11048 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 11049 } 11050 11051 if (INTEL_GEN(dev_priv) >= 11) 11052 icl_get_ddi_pll(dev_priv, port, pipe_config); 11053 else if (IS_CANNONLAKE(dev_priv)) 11054 cnl_get_ddi_pll(dev_priv, port, pipe_config); 11055 else if (IS_GEN9_BC(dev_priv)) 11056 skl_get_ddi_pll(dev_priv, port, pipe_config); 11057 else if (IS_GEN9_LP(dev_priv)) 11058 bxt_get_ddi_pll(dev_priv, port, pipe_config); 11059 else 11060 hsw_get_ddi_pll(dev_priv, port, pipe_config); 11061 11062 pll = pipe_config->shared_dpll; 11063 if (pll) { 11064 drm_WARN_ON(&dev_priv->drm, 11065 !pll->info->funcs->get_hw_state(dev_priv, pll, 11066 &pipe_config->dpll_hw_state)); 11067 } 11068 11069 /* 11070 * Haswell has only FDI/PCH transcoder A. It is which is connected to 11071 * DDI E. So just check whether this pipe is wired to DDI E and whether 11072 * the PCH transcoder is on. 11073 */ 11074 if (INTEL_GEN(dev_priv) < 9 && 11075 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) { 11076 pipe_config->has_pch_encoder = true; 11077 11078 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); 11079 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 11080 FDI_DP_PORT_WIDTH_SHIFT) + 1; 11081 11082 ilk_get_fdi_m_n_config(crtc, pipe_config); 11083 } 11084 } 11085 11086 static enum transcoder transcoder_master_readout(struct drm_i915_private *dev_priv, 11087 enum transcoder cpu_transcoder) 11088 { 11089 u32 trans_port_sync, master_select; 11090 11091 trans_port_sync = intel_de_read(dev_priv, 11092 TRANS_DDI_FUNC_CTL2(cpu_transcoder)); 11093 11094 if ((trans_port_sync & PORT_SYNC_MODE_ENABLE) == 0) 11095 return INVALID_TRANSCODER; 11096 11097 master_select = trans_port_sync & 11098 PORT_SYNC_MODE_MASTER_SELECT_MASK; 11099 if (master_select == 0) 11100 return TRANSCODER_EDP; 11101 else 11102 return master_select - 1; 11103 } 11104 11105 static void icl_get_trans_port_sync_config(struct intel_crtc_state *crtc_state) 11106 { 11107 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 11108 u32 transcoders; 11109 enum transcoder cpu_transcoder; 11110 11111 crtc_state->master_transcoder = transcoder_master_readout(dev_priv, 11112 crtc_state->cpu_transcoder); 11113 11114 transcoders = BIT(TRANSCODER_A) | 11115 BIT(TRANSCODER_B) | 11116 BIT(TRANSCODER_C) | 11117 BIT(TRANSCODER_D); 11118 for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) { 11119 enum intel_display_power_domain power_domain; 11120 intel_wakeref_t trans_wakeref; 11121 11122 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 11123 trans_wakeref = intel_display_power_get_if_enabled(dev_priv, 11124 power_domain); 11125 11126 if (!trans_wakeref) 11127 continue; 11128 11129 if (transcoder_master_readout(dev_priv, cpu_transcoder) == 11130 crtc_state->cpu_transcoder) 11131 crtc_state->sync_mode_slaves_mask |= BIT(cpu_transcoder); 11132 11133 intel_display_power_put(dev_priv, power_domain, trans_wakeref); 11134 } 11135 11136 drm_WARN_ON(&dev_priv->drm, 11137 crtc_state->master_transcoder != INVALID_TRANSCODER && 11138 crtc_state->sync_mode_slaves_mask); 11139 } 11140 11141 static bool hsw_get_pipe_config(struct intel_crtc *crtc, 11142 struct intel_crtc_state *pipe_config) 11143 { 11144 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11145 intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf; 11146 enum intel_display_power_domain power_domain; 11147 u64 power_domain_mask; 11148 bool active; 11149 u32 tmp; 11150 11151 pipe_config->master_transcoder = INVALID_TRANSCODER; 11152 11153 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 11154 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11155 if (!wf) 11156 return false; 11157 11158 wakerefs[power_domain] = wf; 11159 power_domain_mask = BIT_ULL(power_domain); 11160 11161 pipe_config->shared_dpll = NULL; 11162 11163 active = hsw_get_transcoder_state(crtc, pipe_config, 11164 &power_domain_mask, wakerefs); 11165 11166 if (IS_GEN9_LP(dev_priv) && 11167 bxt_get_dsi_transcoder_state(crtc, pipe_config, 11168 &power_domain_mask, wakerefs)) { 11169 drm_WARN_ON(&dev_priv->drm, active); 11170 active = true; 11171 } 11172 11173 if (!active) 11174 goto out; 11175 11176 if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 11177 INTEL_GEN(dev_priv) >= 11) { 11178 hsw_get_ddi_port_state(crtc, pipe_config); 11179 intel_get_pipe_timings(crtc, pipe_config); 11180 } 11181 11182 intel_get_pipe_src_size(crtc, pipe_config); 11183 11184 if (IS_HASWELL(dev_priv)) { 11185 u32 tmp = intel_de_read(dev_priv, 11186 PIPECONF(pipe_config->cpu_transcoder)); 11187 11188 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) 11189 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 11190 else 11191 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 11192 } else { 11193 pipe_config->output_format = 11194 bdw_get_pipemisc_output_format(crtc); 11195 11196 /* 11197 * Currently there is no interface defined to 11198 * check user preference between RGB/YCBCR444 11199 * or YCBCR420. So the only possible case for 11200 * YCBCR444 usage is driving YCBCR420 output 11201 * with LSPCON, when pipe is configured for 11202 * YCBCR444 output and LSPCON takes care of 11203 * downsampling it. 11204 */ 11205 pipe_config->lspcon_downsampling = 11206 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444; 11207 } 11208 11209 pipe_config->gamma_mode = intel_de_read(dev_priv, 11210 GAMMA_MODE(crtc->pipe)); 11211 11212 pipe_config->csc_mode = intel_de_read(dev_priv, 11213 PIPE_CSC_MODE(crtc->pipe)); 11214 11215 if (INTEL_GEN(dev_priv) >= 9) { 11216 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe)); 11217 11218 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 11219 pipe_config->gamma_enable = true; 11220 11221 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 11222 pipe_config->csc_enable = true; 11223 } else { 11224 i9xx_get_pipe_color_config(pipe_config); 11225 } 11226 11227 intel_color_get_config(pipe_config); 11228 11229 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe)); 11230 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); 11231 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 11232 pipe_config->ips_linetime = 11233 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); 11234 11235 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe); 11236 drm_WARN_ON(&dev_priv->drm, power_domain_mask & BIT_ULL(power_domain)); 11237 11238 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11239 if (wf) { 11240 wakerefs[power_domain] = wf; 11241 power_domain_mask |= BIT_ULL(power_domain); 11242 11243 if (INTEL_GEN(dev_priv) >= 9) 11244 skl_get_pfit_config(crtc, pipe_config); 11245 else 11246 ilk_get_pfit_config(crtc, pipe_config); 11247 } 11248 11249 if (hsw_crtc_supports_ips(crtc)) { 11250 if (IS_HASWELL(dev_priv)) 11251 pipe_config->ips_enabled = intel_de_read(dev_priv, 11252 IPS_CTL) & IPS_ENABLE; 11253 else { 11254 /* 11255 * We cannot readout IPS state on broadwell, set to 11256 * true so we can set it to a defined state on first 11257 * commit. 11258 */ 11259 pipe_config->ips_enabled = true; 11260 } 11261 } 11262 11263 if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 11264 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 11265 pipe_config->pixel_multiplier = 11266 intel_de_read(dev_priv, 11267 PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 11268 } else { 11269 pipe_config->pixel_multiplier = 1; 11270 } 11271 11272 if (INTEL_GEN(dev_priv) >= 11 && 11273 !transcoder_is_dsi(pipe_config->cpu_transcoder)) 11274 icl_get_trans_port_sync_config(pipe_config); 11275 11276 out: 11277 for_each_power_domain(power_domain, power_domain_mask) 11278 intel_display_power_put(dev_priv, 11279 power_domain, wakerefs[power_domain]); 11280 11281 return active; 11282 } 11283 11284 static u32 intel_cursor_base(const struct intel_plane_state *plane_state) 11285 { 11286 struct drm_i915_private *dev_priv = 11287 to_i915(plane_state->uapi.plane->dev); 11288 const struct drm_framebuffer *fb = plane_state->hw.fb; 11289 const struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11290 u32 base; 11291 11292 if (INTEL_INFO(dev_priv)->display.cursor_needs_physical) 11293 base = sg_dma_address(obj->mm.pages->sgl); 11294 else 11295 base = intel_plane_ggtt_offset(plane_state); 11296 11297 return base + plane_state->color_plane[0].offset; 11298 } 11299 11300 static u32 intel_cursor_position(const struct intel_plane_state *plane_state) 11301 { 11302 int x = plane_state->uapi.dst.x1; 11303 int y = plane_state->uapi.dst.y1; 11304 u32 pos = 0; 11305 11306 if (x < 0) { 11307 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; 11308 x = -x; 11309 } 11310 pos |= x << CURSOR_X_SHIFT; 11311 11312 if (y < 0) { 11313 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; 11314 y = -y; 11315 } 11316 pos |= y << CURSOR_Y_SHIFT; 11317 11318 return pos; 11319 } 11320 11321 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state) 11322 { 11323 const struct drm_mode_config *config = 11324 &plane_state->uapi.plane->dev->mode_config; 11325 int width = drm_rect_width(&plane_state->uapi.dst); 11326 int height = drm_rect_height(&plane_state->uapi.dst); 11327 11328 return width > 0 && width <= config->cursor_width && 11329 height > 0 && height <= config->cursor_height; 11330 } 11331 11332 static int intel_cursor_check_surface(struct intel_plane_state *plane_state) 11333 { 11334 struct drm_i915_private *dev_priv = 11335 to_i915(plane_state->uapi.plane->dev); 11336 unsigned int rotation = plane_state->hw.rotation; 11337 int src_x, src_y; 11338 u32 offset; 11339 int ret; 11340 11341 ret = intel_plane_compute_gtt(plane_state); 11342 if (ret) 11343 return ret; 11344 11345 if (!plane_state->uapi.visible) 11346 return 0; 11347 11348 src_x = plane_state->uapi.src.x1 >> 16; 11349 src_y = plane_state->uapi.src.y1 >> 16; 11350 11351 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 11352 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 11353 plane_state, 0); 11354 11355 if (src_x != 0 || src_y != 0) { 11356 drm_dbg_kms(&dev_priv->drm, 11357 "Arbitrary cursor panning not supported\n"); 11358 return -EINVAL; 11359 } 11360 11361 /* 11362 * Put the final coordinates back so that the src 11363 * coordinate checks will see the right values. 11364 */ 11365 drm_rect_translate_to(&plane_state->uapi.src, 11366 src_x << 16, src_y << 16); 11367 11368 /* ILK+ do this automagically in hardware */ 11369 if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) { 11370 const struct drm_framebuffer *fb = plane_state->hw.fb; 11371 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 11372 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 11373 11374 offset += (src_h * src_w - 1) * fb->format->cpp[0]; 11375 } 11376 11377 plane_state->color_plane[0].offset = offset; 11378 plane_state->color_plane[0].x = src_x; 11379 plane_state->color_plane[0].y = src_y; 11380 11381 return 0; 11382 } 11383 11384 static int intel_check_cursor(struct intel_crtc_state *crtc_state, 11385 struct intel_plane_state *plane_state) 11386 { 11387 const struct drm_framebuffer *fb = plane_state->hw.fb; 11388 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 11389 int ret; 11390 11391 if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) { 11392 drm_dbg_kms(&i915->drm, "cursor cannot be tiled\n"); 11393 return -EINVAL; 11394 } 11395 11396 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi, 11397 &crtc_state->uapi, 11398 DRM_PLANE_HELPER_NO_SCALING, 11399 DRM_PLANE_HELPER_NO_SCALING, 11400 true, true); 11401 if (ret) 11402 return ret; 11403 11404 /* Use the unclipped src/dst rectangles, which we program to hw */ 11405 plane_state->uapi.src = drm_plane_state_src(&plane_state->uapi); 11406 plane_state->uapi.dst = drm_plane_state_dest(&plane_state->uapi); 11407 11408 ret = intel_cursor_check_surface(plane_state); 11409 if (ret) 11410 return ret; 11411 11412 if (!plane_state->uapi.visible) 11413 return 0; 11414 11415 ret = intel_plane_check_src_coordinates(plane_state); 11416 if (ret) 11417 return ret; 11418 11419 return 0; 11420 } 11421 11422 static unsigned int 11423 i845_cursor_max_stride(struct intel_plane *plane, 11424 u32 pixel_format, u64 modifier, 11425 unsigned int rotation) 11426 { 11427 return 2048; 11428 } 11429 11430 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 11431 { 11432 u32 cntl = 0; 11433 11434 if (crtc_state->gamma_enable) 11435 cntl |= CURSOR_GAMMA_ENABLE; 11436 11437 return cntl; 11438 } 11439 11440 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state, 11441 const struct intel_plane_state *plane_state) 11442 { 11443 return CURSOR_ENABLE | 11444 CURSOR_FORMAT_ARGB | 11445 CURSOR_STRIDE(plane_state->color_plane[0].stride); 11446 } 11447 11448 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state) 11449 { 11450 int width = drm_rect_width(&plane_state->uapi.dst); 11451 11452 /* 11453 * 845g/865g are only limited by the width of their cursors, 11454 * the height is arbitrary up to the precision of the register. 11455 */ 11456 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64); 11457 } 11458 11459 static int i845_check_cursor(struct intel_crtc_state *crtc_state, 11460 struct intel_plane_state *plane_state) 11461 { 11462 const struct drm_framebuffer *fb = plane_state->hw.fb; 11463 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 11464 int ret; 11465 11466 ret = intel_check_cursor(crtc_state, plane_state); 11467 if (ret) 11468 return ret; 11469 11470 /* if we want to turn off the cursor ignore width and height */ 11471 if (!fb) 11472 return 0; 11473 11474 /* Check for which cursor types we support */ 11475 if (!i845_cursor_size_ok(plane_state)) { 11476 drm_dbg_kms(&i915->drm, 11477 "Cursor dimension %dx%d not supported\n", 11478 drm_rect_width(&plane_state->uapi.dst), 11479 drm_rect_height(&plane_state->uapi.dst)); 11480 return -EINVAL; 11481 } 11482 11483 drm_WARN_ON(&i915->drm, plane_state->uapi.visible && 11484 plane_state->color_plane[0].stride != fb->pitches[0]); 11485 11486 switch (fb->pitches[0]) { 11487 case 256: 11488 case 512: 11489 case 1024: 11490 case 2048: 11491 break; 11492 default: 11493 drm_dbg_kms(&i915->drm, "Invalid cursor stride (%u)\n", 11494 fb->pitches[0]); 11495 return -EINVAL; 11496 } 11497 11498 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state); 11499 11500 return 0; 11501 } 11502 11503 static void i845_update_cursor(struct intel_plane *plane, 11504 const struct intel_crtc_state *crtc_state, 11505 const struct intel_plane_state *plane_state) 11506 { 11507 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11508 u32 cntl = 0, base = 0, pos = 0, size = 0; 11509 unsigned long irqflags; 11510 11511 if (plane_state && plane_state->uapi.visible) { 11512 unsigned int width = drm_rect_width(&plane_state->uapi.dst); 11513 unsigned int height = drm_rect_height(&plane_state->uapi.dst); 11514 11515 cntl = plane_state->ctl | 11516 i845_cursor_ctl_crtc(crtc_state); 11517 11518 size = (height << 12) | width; 11519 11520 base = intel_cursor_base(plane_state); 11521 pos = intel_cursor_position(plane_state); 11522 } 11523 11524 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 11525 11526 /* On these chipsets we can only modify the base/size/stride 11527 * whilst the cursor is disabled. 11528 */ 11529 if (plane->cursor.base != base || 11530 plane->cursor.size != size || 11531 plane->cursor.cntl != cntl) { 11532 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), 0); 11533 intel_de_write_fw(dev_priv, CURBASE(PIPE_A), base); 11534 intel_de_write_fw(dev_priv, CURSIZE, size); 11535 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos); 11536 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), cntl); 11537 11538 plane->cursor.base = base; 11539 plane->cursor.size = size; 11540 plane->cursor.cntl = cntl; 11541 } else { 11542 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos); 11543 } 11544 11545 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 11546 } 11547 11548 static void i845_disable_cursor(struct intel_plane *plane, 11549 const struct intel_crtc_state *crtc_state) 11550 { 11551 i845_update_cursor(plane, crtc_state, NULL); 11552 } 11553 11554 static bool i845_cursor_get_hw_state(struct intel_plane *plane, 11555 enum pipe *pipe) 11556 { 11557 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11558 enum intel_display_power_domain power_domain; 11559 intel_wakeref_t wakeref; 11560 bool ret; 11561 11562 power_domain = POWER_DOMAIN_PIPE(PIPE_A); 11563 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11564 if (!wakeref) 11565 return false; 11566 11567 ret = intel_de_read(dev_priv, CURCNTR(PIPE_A)) & CURSOR_ENABLE; 11568 11569 *pipe = PIPE_A; 11570 11571 intel_display_power_put(dev_priv, power_domain, wakeref); 11572 11573 return ret; 11574 } 11575 11576 static unsigned int 11577 i9xx_cursor_max_stride(struct intel_plane *plane, 11578 u32 pixel_format, u64 modifier, 11579 unsigned int rotation) 11580 { 11581 return plane->base.dev->mode_config.cursor_width * 4; 11582 } 11583 11584 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 11585 { 11586 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 11587 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11588 u32 cntl = 0; 11589 11590 if (INTEL_GEN(dev_priv) >= 11) 11591 return cntl; 11592 11593 if (crtc_state->gamma_enable) 11594 cntl = MCURSOR_GAMMA_ENABLE; 11595 11596 if (crtc_state->csc_enable) 11597 cntl |= MCURSOR_PIPE_CSC_ENABLE; 11598 11599 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 11600 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe); 11601 11602 return cntl; 11603 } 11604 11605 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state, 11606 const struct intel_plane_state *plane_state) 11607 { 11608 struct drm_i915_private *dev_priv = 11609 to_i915(plane_state->uapi.plane->dev); 11610 u32 cntl = 0; 11611 11612 if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 11613 cntl |= MCURSOR_TRICKLE_FEED_DISABLE; 11614 11615 switch (drm_rect_width(&plane_state->uapi.dst)) { 11616 case 64: 11617 cntl |= MCURSOR_MODE_64_ARGB_AX; 11618 break; 11619 case 128: 11620 cntl |= MCURSOR_MODE_128_ARGB_AX; 11621 break; 11622 case 256: 11623 cntl |= MCURSOR_MODE_256_ARGB_AX; 11624 break; 11625 default: 11626 MISSING_CASE(drm_rect_width(&plane_state->uapi.dst)); 11627 return 0; 11628 } 11629 11630 if (plane_state->hw.rotation & DRM_MODE_ROTATE_180) 11631 cntl |= MCURSOR_ROTATE_180; 11632 11633 return cntl; 11634 } 11635 11636 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state) 11637 { 11638 struct drm_i915_private *dev_priv = 11639 to_i915(plane_state->uapi.plane->dev); 11640 int width = drm_rect_width(&plane_state->uapi.dst); 11641 int height = drm_rect_height(&plane_state->uapi.dst); 11642 11643 if (!intel_cursor_size_ok(plane_state)) 11644 return false; 11645 11646 /* Cursor width is limited to a few power-of-two sizes */ 11647 switch (width) { 11648 case 256: 11649 case 128: 11650 case 64: 11651 break; 11652 default: 11653 return false; 11654 } 11655 11656 /* 11657 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor 11658 * height from 8 lines up to the cursor width, when the 11659 * cursor is not rotated. Everything else requires square 11660 * cursors. 11661 */ 11662 if (HAS_CUR_FBC(dev_priv) && 11663 plane_state->hw.rotation & DRM_MODE_ROTATE_0) { 11664 if (height < 8 || height > width) 11665 return false; 11666 } else { 11667 if (height != width) 11668 return false; 11669 } 11670 11671 return true; 11672 } 11673 11674 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state, 11675 struct intel_plane_state *plane_state) 11676 { 11677 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 11678 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11679 const struct drm_framebuffer *fb = plane_state->hw.fb; 11680 enum pipe pipe = plane->pipe; 11681 int ret; 11682 11683 ret = intel_check_cursor(crtc_state, plane_state); 11684 if (ret) 11685 return ret; 11686 11687 /* if we want to turn off the cursor ignore width and height */ 11688 if (!fb) 11689 return 0; 11690 11691 /* Check for which cursor types we support */ 11692 if (!i9xx_cursor_size_ok(plane_state)) { 11693 drm_dbg(&dev_priv->drm, 11694 "Cursor dimension %dx%d not supported\n", 11695 drm_rect_width(&plane_state->uapi.dst), 11696 drm_rect_height(&plane_state->uapi.dst)); 11697 return -EINVAL; 11698 } 11699 11700 drm_WARN_ON(&dev_priv->drm, plane_state->uapi.visible && 11701 plane_state->color_plane[0].stride != fb->pitches[0]); 11702 11703 if (fb->pitches[0] != 11704 drm_rect_width(&plane_state->uapi.dst) * fb->format->cpp[0]) { 11705 drm_dbg_kms(&dev_priv->drm, 11706 "Invalid cursor stride (%u) (cursor width %d)\n", 11707 fb->pitches[0], 11708 drm_rect_width(&plane_state->uapi.dst)); 11709 return -EINVAL; 11710 } 11711 11712 /* 11713 * There's something wrong with the cursor on CHV pipe C. 11714 * If it straddles the left edge of the screen then 11715 * moving it away from the edge or disabling it often 11716 * results in a pipe underrun, and often that can lead to 11717 * dead pipe (constant underrun reported, and it scans 11718 * out just a solid color). To recover from that, the 11719 * display power well must be turned off and on again. 11720 * Refuse the put the cursor into that compromised position. 11721 */ 11722 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C && 11723 plane_state->uapi.visible && plane_state->uapi.dst.x1 < 0) { 11724 drm_dbg_kms(&dev_priv->drm, 11725 "CHV cursor C not allowed to straddle the left screen edge\n"); 11726 return -EINVAL; 11727 } 11728 11729 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state); 11730 11731 return 0; 11732 } 11733 11734 static void i9xx_update_cursor(struct intel_plane *plane, 11735 const struct intel_crtc_state *crtc_state, 11736 const struct intel_plane_state *plane_state) 11737 { 11738 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11739 enum pipe pipe = plane->pipe; 11740 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0; 11741 unsigned long irqflags; 11742 11743 if (plane_state && plane_state->uapi.visible) { 11744 unsigned width = drm_rect_width(&plane_state->uapi.dst); 11745 unsigned height = drm_rect_height(&plane_state->uapi.dst); 11746 11747 cntl = plane_state->ctl | 11748 i9xx_cursor_ctl_crtc(crtc_state); 11749 11750 if (width != height) 11751 fbc_ctl = CUR_FBC_CTL_EN | (height - 1); 11752 11753 base = intel_cursor_base(plane_state); 11754 pos = intel_cursor_position(plane_state); 11755 } 11756 11757 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 11758 11759 /* 11760 * On some platforms writing CURCNTR first will also 11761 * cause CURPOS to be armed by the CURBASE write. 11762 * Without the CURCNTR write the CURPOS write would 11763 * arm itself. Thus we always update CURCNTR before 11764 * CURPOS. 11765 * 11766 * On other platforms CURPOS always requires the 11767 * CURBASE write to arm the update. Additonally 11768 * a write to any of the cursor register will cancel 11769 * an already armed cursor update. Thus leaving out 11770 * the CURBASE write after CURPOS could lead to a 11771 * cursor that doesn't appear to move, or even change 11772 * shape. Thus we always write CURBASE. 11773 * 11774 * The other registers are armed by by the CURBASE write 11775 * except when the plane is getting enabled at which time 11776 * the CURCNTR write arms the update. 11777 */ 11778 11779 if (INTEL_GEN(dev_priv) >= 9) 11780 skl_write_cursor_wm(plane, crtc_state); 11781 11782 if (plane->cursor.base != base || 11783 plane->cursor.size != fbc_ctl || 11784 plane->cursor.cntl != cntl) { 11785 if (HAS_CUR_FBC(dev_priv)) 11786 intel_de_write_fw(dev_priv, CUR_FBC_CTL(pipe), 11787 fbc_ctl); 11788 intel_de_write_fw(dev_priv, CURCNTR(pipe), cntl); 11789 intel_de_write_fw(dev_priv, CURPOS(pipe), pos); 11790 intel_de_write_fw(dev_priv, CURBASE(pipe), base); 11791 11792 plane->cursor.base = base; 11793 plane->cursor.size = fbc_ctl; 11794 plane->cursor.cntl = cntl; 11795 } else { 11796 intel_de_write_fw(dev_priv, CURPOS(pipe), pos); 11797 intel_de_write_fw(dev_priv, CURBASE(pipe), base); 11798 } 11799 11800 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 11801 } 11802 11803 static void i9xx_disable_cursor(struct intel_plane *plane, 11804 const struct intel_crtc_state *crtc_state) 11805 { 11806 i9xx_update_cursor(plane, crtc_state, NULL); 11807 } 11808 11809 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane, 11810 enum pipe *pipe) 11811 { 11812 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11813 enum intel_display_power_domain power_domain; 11814 intel_wakeref_t wakeref; 11815 bool ret; 11816 u32 val; 11817 11818 /* 11819 * Not 100% correct for planes that can move between pipes, 11820 * but that's only the case for gen2-3 which don't have any 11821 * display power wells. 11822 */ 11823 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 11824 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11825 if (!wakeref) 11826 return false; 11827 11828 val = intel_de_read(dev_priv, CURCNTR(plane->pipe)); 11829 11830 ret = val & MCURSOR_MODE; 11831 11832 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 11833 *pipe = plane->pipe; 11834 else 11835 *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >> 11836 MCURSOR_PIPE_SELECT_SHIFT; 11837 11838 intel_display_power_put(dev_priv, power_domain, wakeref); 11839 11840 return ret; 11841 } 11842 11843 /* VESA 640x480x72Hz mode to set on the pipe */ 11844 static const struct drm_display_mode load_detect_mode = { 11845 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 11846 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 11847 }; 11848 11849 struct drm_framebuffer * 11850 intel_framebuffer_create(struct drm_i915_gem_object *obj, 11851 struct drm_mode_fb_cmd2 *mode_cmd) 11852 { 11853 struct intel_framebuffer *intel_fb; 11854 int ret; 11855 11856 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 11857 if (!intel_fb) 11858 return ERR_PTR(-ENOMEM); 11859 11860 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); 11861 if (ret) 11862 goto err; 11863 11864 return &intel_fb->base; 11865 11866 err: 11867 kfree(intel_fb); 11868 return ERR_PTR(ret); 11869 } 11870 11871 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 11872 struct drm_crtc *crtc) 11873 { 11874 struct drm_plane *plane; 11875 struct drm_plane_state *plane_state; 11876 int ret, i; 11877 11878 ret = drm_atomic_add_affected_planes(state, crtc); 11879 if (ret) 11880 return ret; 11881 11882 for_each_new_plane_in_state(state, plane, plane_state, i) { 11883 if (plane_state->crtc != crtc) 11884 continue; 11885 11886 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 11887 if (ret) 11888 return ret; 11889 11890 drm_atomic_set_fb_for_plane(plane_state, NULL); 11891 } 11892 11893 return 0; 11894 } 11895 11896 int intel_get_load_detect_pipe(struct drm_connector *connector, 11897 struct intel_load_detect_pipe *old, 11898 struct drm_modeset_acquire_ctx *ctx) 11899 { 11900 struct intel_crtc *intel_crtc; 11901 struct intel_encoder *intel_encoder = 11902 intel_attached_encoder(to_intel_connector(connector)); 11903 struct drm_crtc *possible_crtc; 11904 struct drm_encoder *encoder = &intel_encoder->base; 11905 struct drm_crtc *crtc = NULL; 11906 struct drm_device *dev = encoder->dev; 11907 struct drm_i915_private *dev_priv = to_i915(dev); 11908 struct drm_mode_config *config = &dev->mode_config; 11909 struct drm_atomic_state *state = NULL, *restore_state = NULL; 11910 struct drm_connector_state *connector_state; 11911 struct intel_crtc_state *crtc_state; 11912 int ret, i = -1; 11913 11914 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 11915 connector->base.id, connector->name, 11916 encoder->base.id, encoder->name); 11917 11918 old->restore_state = NULL; 11919 11920 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex)); 11921 11922 /* 11923 * Algorithm gets a little messy: 11924 * 11925 * - if the connector already has an assigned crtc, use it (but make 11926 * sure it's on first) 11927 * 11928 * - try to find the first unused crtc that can drive this connector, 11929 * and use that if we find one 11930 */ 11931 11932 /* See if we already have a CRTC for this connector */ 11933 if (connector->state->crtc) { 11934 crtc = connector->state->crtc; 11935 11936 ret = drm_modeset_lock(&crtc->mutex, ctx); 11937 if (ret) 11938 goto fail; 11939 11940 /* Make sure the crtc and connector are running */ 11941 goto found; 11942 } 11943 11944 /* Find an unused one (if possible) */ 11945 for_each_crtc(dev, possible_crtc) { 11946 i++; 11947 if (!(encoder->possible_crtcs & (1 << i))) 11948 continue; 11949 11950 ret = drm_modeset_lock(&possible_crtc->mutex, ctx); 11951 if (ret) 11952 goto fail; 11953 11954 if (possible_crtc->state->enable) { 11955 drm_modeset_unlock(&possible_crtc->mutex); 11956 continue; 11957 } 11958 11959 crtc = possible_crtc; 11960 break; 11961 } 11962 11963 /* 11964 * If we didn't find an unused CRTC, don't use any. 11965 */ 11966 if (!crtc) { 11967 drm_dbg_kms(&dev_priv->drm, 11968 "no pipe available for load-detect\n"); 11969 ret = -ENODEV; 11970 goto fail; 11971 } 11972 11973 found: 11974 intel_crtc = to_intel_crtc(crtc); 11975 11976 state = drm_atomic_state_alloc(dev); 11977 restore_state = drm_atomic_state_alloc(dev); 11978 if (!state || !restore_state) { 11979 ret = -ENOMEM; 11980 goto fail; 11981 } 11982 11983 state->acquire_ctx = ctx; 11984 restore_state->acquire_ctx = ctx; 11985 11986 connector_state = drm_atomic_get_connector_state(state, connector); 11987 if (IS_ERR(connector_state)) { 11988 ret = PTR_ERR(connector_state); 11989 goto fail; 11990 } 11991 11992 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); 11993 if (ret) 11994 goto fail; 11995 11996 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); 11997 if (IS_ERR(crtc_state)) { 11998 ret = PTR_ERR(crtc_state); 11999 goto fail; 12000 } 12001 12002 crtc_state->uapi.active = true; 12003 12004 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi, 12005 &load_detect_mode); 12006 if (ret) 12007 goto fail; 12008 12009 ret = intel_modeset_disable_planes(state, crtc); 12010 if (ret) 12011 goto fail; 12012 12013 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 12014 if (!ret) 12015 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); 12016 if (!ret) 12017 ret = drm_atomic_add_affected_planes(restore_state, crtc); 12018 if (ret) { 12019 drm_dbg_kms(&dev_priv->drm, 12020 "Failed to create a copy of old state to restore: %i\n", 12021 ret); 12022 goto fail; 12023 } 12024 12025 ret = drm_atomic_commit(state); 12026 if (ret) { 12027 drm_dbg_kms(&dev_priv->drm, 12028 "failed to set mode on load-detect pipe\n"); 12029 goto fail; 12030 } 12031 12032 old->restore_state = restore_state; 12033 drm_atomic_state_put(state); 12034 12035 /* let the connector get through one full cycle before testing */ 12036 intel_wait_for_vblank(dev_priv, intel_crtc->pipe); 12037 return true; 12038 12039 fail: 12040 if (state) { 12041 drm_atomic_state_put(state); 12042 state = NULL; 12043 } 12044 if (restore_state) { 12045 drm_atomic_state_put(restore_state); 12046 restore_state = NULL; 12047 } 12048 12049 if (ret == -EDEADLK) 12050 return ret; 12051 12052 return false; 12053 } 12054 12055 void intel_release_load_detect_pipe(struct drm_connector *connector, 12056 struct intel_load_detect_pipe *old, 12057 struct drm_modeset_acquire_ctx *ctx) 12058 { 12059 struct intel_encoder *intel_encoder = 12060 intel_attached_encoder(to_intel_connector(connector)); 12061 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev); 12062 struct drm_encoder *encoder = &intel_encoder->base; 12063 struct drm_atomic_state *state = old->restore_state; 12064 int ret; 12065 12066 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 12067 connector->base.id, connector->name, 12068 encoder->base.id, encoder->name); 12069 12070 if (!state) 12071 return; 12072 12073 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 12074 if (ret) 12075 drm_dbg_kms(&i915->drm, 12076 "Couldn't release load detect pipe: %i\n", ret); 12077 drm_atomic_state_put(state); 12078 } 12079 12080 static int i9xx_pll_refclk(struct drm_device *dev, 12081 const struct intel_crtc_state *pipe_config) 12082 { 12083 struct drm_i915_private *dev_priv = to_i915(dev); 12084 u32 dpll = pipe_config->dpll_hw_state.dpll; 12085 12086 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 12087 return dev_priv->vbt.lvds_ssc_freq; 12088 else if (HAS_PCH_SPLIT(dev_priv)) 12089 return 120000; 12090 else if (!IS_GEN(dev_priv, 2)) 12091 return 96000; 12092 else 12093 return 48000; 12094 } 12095 12096 /* Returns the clock of the currently programmed mode of the given pipe. */ 12097 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 12098 struct intel_crtc_state *pipe_config) 12099 { 12100 struct drm_device *dev = crtc->base.dev; 12101 struct drm_i915_private *dev_priv = to_i915(dev); 12102 enum pipe pipe = crtc->pipe; 12103 u32 dpll = pipe_config->dpll_hw_state.dpll; 12104 u32 fp; 12105 struct dpll clock; 12106 int port_clock; 12107 int refclk = i9xx_pll_refclk(dev, pipe_config); 12108 12109 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 12110 fp = pipe_config->dpll_hw_state.fp0; 12111 else 12112 fp = pipe_config->dpll_hw_state.fp1; 12113 12114 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 12115 if (IS_PINEVIEW(dev_priv)) { 12116 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 12117 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 12118 } else { 12119 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 12120 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 12121 } 12122 12123 if (!IS_GEN(dev_priv, 2)) { 12124 if (IS_PINEVIEW(dev_priv)) 12125 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 12126 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 12127 else 12128 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 12129 DPLL_FPA01_P1_POST_DIV_SHIFT); 12130 12131 switch (dpll & DPLL_MODE_MASK) { 12132 case DPLLB_MODE_DAC_SERIAL: 12133 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 12134 5 : 10; 12135 break; 12136 case DPLLB_MODE_LVDS: 12137 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 12138 7 : 14; 12139 break; 12140 default: 12141 drm_dbg_kms(&dev_priv->drm, 12142 "Unknown DPLL mode %08x in programmed " 12143 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 12144 return; 12145 } 12146 12147 if (IS_PINEVIEW(dev_priv)) 12148 port_clock = pnv_calc_dpll_params(refclk, &clock); 12149 else 12150 port_clock = i9xx_calc_dpll_params(refclk, &clock); 12151 } else { 12152 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv, 12153 LVDS); 12154 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 12155 12156 if (is_lvds) { 12157 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 12158 DPLL_FPA01_P1_POST_DIV_SHIFT); 12159 12160 if (lvds & LVDS_CLKB_POWER_UP) 12161 clock.p2 = 7; 12162 else 12163 clock.p2 = 14; 12164 } else { 12165 if (dpll & PLL_P1_DIVIDE_BY_TWO) 12166 clock.p1 = 2; 12167 else { 12168 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 12169 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 12170 } 12171 if (dpll & PLL_P2_DIVIDE_BY_4) 12172 clock.p2 = 4; 12173 else 12174 clock.p2 = 2; 12175 } 12176 12177 port_clock = i9xx_calc_dpll_params(refclk, &clock); 12178 } 12179 12180 /* 12181 * This value includes pixel_multiplier. We will use 12182 * port_clock to compute adjusted_mode.crtc_clock in the 12183 * encoder's get_config() function. 12184 */ 12185 pipe_config->port_clock = port_clock; 12186 } 12187 12188 int intel_dotclock_calculate(int link_freq, 12189 const struct intel_link_m_n *m_n) 12190 { 12191 /* 12192 * The calculation for the data clock is: 12193 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 12194 * But we want to avoid losing precison if possible, so: 12195 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 12196 * 12197 * and the link clock is simpler: 12198 * link_clock = (m * link_clock) / n 12199 */ 12200 12201 if (!m_n->link_n) 12202 return 0; 12203 12204 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 12205 } 12206 12207 static void ilk_pch_clock_get(struct intel_crtc *crtc, 12208 struct intel_crtc_state *pipe_config) 12209 { 12210 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12211 12212 /* read out port_clock from the DPLL */ 12213 i9xx_crtc_clock_get(crtc, pipe_config); 12214 12215 /* 12216 * In case there is an active pipe without active ports, 12217 * we may need some idea for the dotclock anyway. 12218 * Calculate one based on the FDI configuration. 12219 */ 12220 pipe_config->hw.adjusted_mode.crtc_clock = 12221 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 12222 &pipe_config->fdi_m_n); 12223 } 12224 12225 static void intel_crtc_state_reset(struct intel_crtc_state *crtc_state, 12226 struct intel_crtc *crtc) 12227 { 12228 memset(crtc_state, 0, sizeof(*crtc_state)); 12229 12230 __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base); 12231 12232 crtc_state->cpu_transcoder = INVALID_TRANSCODER; 12233 crtc_state->master_transcoder = INVALID_TRANSCODER; 12234 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 12235 crtc_state->output_format = INTEL_OUTPUT_FORMAT_INVALID; 12236 crtc_state->scaler_state.scaler_id = -1; 12237 crtc_state->mst_master_transcoder = INVALID_TRANSCODER; 12238 } 12239 12240 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc) 12241 { 12242 struct intel_crtc_state *crtc_state; 12243 12244 crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL); 12245 12246 if (crtc_state) 12247 intel_crtc_state_reset(crtc_state, crtc); 12248 12249 return crtc_state; 12250 } 12251 12252 /* Returns the currently programmed mode of the given encoder. */ 12253 struct drm_display_mode * 12254 intel_encoder_current_mode(struct intel_encoder *encoder) 12255 { 12256 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 12257 struct intel_crtc_state *crtc_state; 12258 struct drm_display_mode *mode; 12259 struct intel_crtc *crtc; 12260 enum pipe pipe; 12261 12262 if (!encoder->get_hw_state(encoder, &pipe)) 12263 return NULL; 12264 12265 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12266 12267 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 12268 if (!mode) 12269 return NULL; 12270 12271 crtc_state = intel_crtc_state_alloc(crtc); 12272 if (!crtc_state) { 12273 kfree(mode); 12274 return NULL; 12275 } 12276 12277 if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) { 12278 kfree(crtc_state); 12279 kfree(mode); 12280 return NULL; 12281 } 12282 12283 encoder->get_config(encoder, crtc_state); 12284 12285 intel_mode_from_pipe_config(mode, crtc_state); 12286 12287 kfree(crtc_state); 12288 12289 return mode; 12290 } 12291 12292 static void intel_crtc_destroy(struct drm_crtc *crtc) 12293 { 12294 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 12295 12296 drm_crtc_cleanup(crtc); 12297 kfree(intel_crtc); 12298 } 12299 12300 /** 12301 * intel_wm_need_update - Check whether watermarks need updating 12302 * @cur: current plane state 12303 * @new: new plane state 12304 * 12305 * Check current plane state versus the new one to determine whether 12306 * watermarks need to be recalculated. 12307 * 12308 * Returns true or false. 12309 */ 12310 static bool intel_wm_need_update(const struct intel_plane_state *cur, 12311 struct intel_plane_state *new) 12312 { 12313 /* Update watermarks on tiling or size changes. */ 12314 if (new->uapi.visible != cur->uapi.visible) 12315 return true; 12316 12317 if (!cur->hw.fb || !new->hw.fb) 12318 return false; 12319 12320 if (cur->hw.fb->modifier != new->hw.fb->modifier || 12321 cur->hw.rotation != new->hw.rotation || 12322 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) || 12323 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) || 12324 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) || 12325 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst)) 12326 return true; 12327 12328 return false; 12329 } 12330 12331 static bool needs_scaling(const struct intel_plane_state *state) 12332 { 12333 int src_w = drm_rect_width(&state->uapi.src) >> 16; 12334 int src_h = drm_rect_height(&state->uapi.src) >> 16; 12335 int dst_w = drm_rect_width(&state->uapi.dst); 12336 int dst_h = drm_rect_height(&state->uapi.dst); 12337 12338 return (src_w != dst_w || src_h != dst_h); 12339 } 12340 12341 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 12342 struct intel_crtc_state *crtc_state, 12343 const struct intel_plane_state *old_plane_state, 12344 struct intel_plane_state *plane_state) 12345 { 12346 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12347 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 12348 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12349 bool mode_changed = needs_modeset(crtc_state); 12350 bool was_crtc_enabled = old_crtc_state->hw.active; 12351 bool is_crtc_enabled = crtc_state->hw.active; 12352 bool turn_off, turn_on, visible, was_visible; 12353 int ret; 12354 12355 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 12356 ret = skl_update_scaler_plane(crtc_state, plane_state); 12357 if (ret) 12358 return ret; 12359 } 12360 12361 was_visible = old_plane_state->uapi.visible; 12362 visible = plane_state->uapi.visible; 12363 12364 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible)) 12365 was_visible = false; 12366 12367 /* 12368 * Visibility is calculated as if the crtc was on, but 12369 * after scaler setup everything depends on it being off 12370 * when the crtc isn't active. 12371 * 12372 * FIXME this is wrong for watermarks. Watermarks should also 12373 * be computed as if the pipe would be active. Perhaps move 12374 * per-plane wm computation to the .check_plane() hook, and 12375 * only combine the results from all planes in the current place? 12376 */ 12377 if (!is_crtc_enabled) { 12378 plane_state->uapi.visible = visible = false; 12379 crtc_state->active_planes &= ~BIT(plane->id); 12380 crtc_state->data_rate[plane->id] = 0; 12381 crtc_state->min_cdclk[plane->id] = 0; 12382 } 12383 12384 if (!was_visible && !visible) 12385 return 0; 12386 12387 turn_off = was_visible && (!visible || mode_changed); 12388 turn_on = visible && (!was_visible || mode_changed); 12389 12390 drm_dbg_atomic(&dev_priv->drm, 12391 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 12392 crtc->base.base.id, crtc->base.name, 12393 plane->base.base.id, plane->base.name, 12394 was_visible, visible, 12395 turn_off, turn_on, mode_changed); 12396 12397 if (turn_on) { 12398 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 12399 crtc_state->update_wm_pre = true; 12400 12401 /* must disable cxsr around plane enable/disable */ 12402 if (plane->id != PLANE_CURSOR) 12403 crtc_state->disable_cxsr = true; 12404 } else if (turn_off) { 12405 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 12406 crtc_state->update_wm_post = true; 12407 12408 /* must disable cxsr around plane enable/disable */ 12409 if (plane->id != PLANE_CURSOR) 12410 crtc_state->disable_cxsr = true; 12411 } else if (intel_wm_need_update(old_plane_state, plane_state)) { 12412 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) { 12413 /* FIXME bollocks */ 12414 crtc_state->update_wm_pre = true; 12415 crtc_state->update_wm_post = true; 12416 } 12417 } 12418 12419 if (visible || was_visible) 12420 crtc_state->fb_bits |= plane->frontbuffer_bit; 12421 12422 /* 12423 * ILK/SNB DVSACNTR/Sprite Enable 12424 * IVB SPR_CTL/Sprite Enable 12425 * "When in Self Refresh Big FIFO mode, a write to enable the 12426 * plane will be internally buffered and delayed while Big FIFO 12427 * mode is exiting." 12428 * 12429 * Which means that enabling the sprite can take an extra frame 12430 * when we start in big FIFO mode (LP1+). Thus we need to drop 12431 * down to LP0 and wait for vblank in order to make sure the 12432 * sprite gets enabled on the next vblank after the register write. 12433 * Doing otherwise would risk enabling the sprite one frame after 12434 * we've already signalled flip completion. We can resume LP1+ 12435 * once the sprite has been enabled. 12436 * 12437 * 12438 * WaCxSRDisabledForSpriteScaling:ivb 12439 * IVB SPR_SCALE/Scaling Enable 12440 * "Low Power watermarks must be disabled for at least one 12441 * frame before enabling sprite scaling, and kept disabled 12442 * until sprite scaling is disabled." 12443 * 12444 * ILK/SNB DVSASCALE/Scaling Enable 12445 * "When in Self Refresh Big FIFO mode, scaling enable will be 12446 * masked off while Big FIFO mode is exiting." 12447 * 12448 * Despite the w/a only being listed for IVB we assume that 12449 * the ILK/SNB note has similar ramifications, hence we apply 12450 * the w/a on all three platforms. 12451 * 12452 * With experimental results seems this is needed also for primary 12453 * plane, not only sprite plane. 12454 */ 12455 if (plane->id != PLANE_CURSOR && 12456 (IS_GEN_RANGE(dev_priv, 5, 6) || 12457 IS_IVYBRIDGE(dev_priv)) && 12458 (turn_on || (!needs_scaling(old_plane_state) && 12459 needs_scaling(plane_state)))) 12460 crtc_state->disable_lp_wm = true; 12461 12462 return 0; 12463 } 12464 12465 static bool encoders_cloneable(const struct intel_encoder *a, 12466 const struct intel_encoder *b) 12467 { 12468 /* masks could be asymmetric, so check both ways */ 12469 return a == b || (a->cloneable & (1 << b->type) && 12470 b->cloneable & (1 << a->type)); 12471 } 12472 12473 static bool check_single_encoder_cloning(struct drm_atomic_state *state, 12474 struct intel_crtc *crtc, 12475 struct intel_encoder *encoder) 12476 { 12477 struct intel_encoder *source_encoder; 12478 struct drm_connector *connector; 12479 struct drm_connector_state *connector_state; 12480 int i; 12481 12482 for_each_new_connector_in_state(state, connector, connector_state, i) { 12483 if (connector_state->crtc != &crtc->base) 12484 continue; 12485 12486 source_encoder = 12487 to_intel_encoder(connector_state->best_encoder); 12488 if (!encoders_cloneable(encoder, source_encoder)) 12489 return false; 12490 } 12491 12492 return true; 12493 } 12494 12495 static int icl_add_linked_planes(struct intel_atomic_state *state) 12496 { 12497 struct intel_plane *plane, *linked; 12498 struct intel_plane_state *plane_state, *linked_plane_state; 12499 int i; 12500 12501 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12502 linked = plane_state->planar_linked_plane; 12503 12504 if (!linked) 12505 continue; 12506 12507 linked_plane_state = intel_atomic_get_plane_state(state, linked); 12508 if (IS_ERR(linked_plane_state)) 12509 return PTR_ERR(linked_plane_state); 12510 12511 WARN_ON(linked_plane_state->planar_linked_plane != plane); 12512 WARN_ON(linked_plane_state->planar_slave == plane_state->planar_slave); 12513 } 12514 12515 return 0; 12516 } 12517 12518 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 12519 { 12520 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12521 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12522 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); 12523 struct intel_plane *plane, *linked; 12524 struct intel_plane_state *plane_state; 12525 int i; 12526 12527 if (INTEL_GEN(dev_priv) < 11) 12528 return 0; 12529 12530 /* 12531 * Destroy all old plane links and make the slave plane invisible 12532 * in the crtc_state->active_planes mask. 12533 */ 12534 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12535 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) 12536 continue; 12537 12538 plane_state->planar_linked_plane = NULL; 12539 if (plane_state->planar_slave && !plane_state->uapi.visible) { 12540 crtc_state->active_planes &= ~BIT(plane->id); 12541 crtc_state->update_planes |= BIT(plane->id); 12542 } 12543 12544 plane_state->planar_slave = false; 12545 } 12546 12547 if (!crtc_state->nv12_planes) 12548 return 0; 12549 12550 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12551 struct intel_plane_state *linked_state = NULL; 12552 12553 if (plane->pipe != crtc->pipe || 12554 !(crtc_state->nv12_planes & BIT(plane->id))) 12555 continue; 12556 12557 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 12558 if (!icl_is_nv12_y_plane(linked->id)) 12559 continue; 12560 12561 if (crtc_state->active_planes & BIT(linked->id)) 12562 continue; 12563 12564 linked_state = intel_atomic_get_plane_state(state, linked); 12565 if (IS_ERR(linked_state)) 12566 return PTR_ERR(linked_state); 12567 12568 break; 12569 } 12570 12571 if (!linked_state) { 12572 drm_dbg_kms(&dev_priv->drm, 12573 "Need %d free Y planes for planar YUV\n", 12574 hweight8(crtc_state->nv12_planes)); 12575 12576 return -EINVAL; 12577 } 12578 12579 plane_state->planar_linked_plane = linked; 12580 12581 linked_state->planar_slave = true; 12582 linked_state->planar_linked_plane = plane; 12583 crtc_state->active_planes |= BIT(linked->id); 12584 crtc_state->update_planes |= BIT(linked->id); 12585 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n", 12586 linked->base.name, plane->base.name); 12587 12588 /* Copy parameters to slave plane */ 12589 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE; 12590 linked_state->color_ctl = plane_state->color_ctl; 12591 linked_state->view = plane_state->view; 12592 memcpy(linked_state->color_plane, plane_state->color_plane, 12593 sizeof(linked_state->color_plane)); 12594 12595 intel_plane_copy_uapi_to_hw_state(linked_state, plane_state); 12596 linked_state->uapi.src = plane_state->uapi.src; 12597 linked_state->uapi.dst = plane_state->uapi.dst; 12598 12599 if (icl_is_hdr_plane(dev_priv, plane->id)) { 12600 if (linked->id == PLANE_SPRITE5) 12601 plane_state->cus_ctl |= PLANE_CUS_PLANE_7; 12602 else if (linked->id == PLANE_SPRITE4) 12603 plane_state->cus_ctl |= PLANE_CUS_PLANE_6; 12604 else 12605 MISSING_CASE(linked->id); 12606 } 12607 } 12608 12609 return 0; 12610 } 12611 12612 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 12613 { 12614 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 12615 struct intel_atomic_state *state = 12616 to_intel_atomic_state(new_crtc_state->uapi.state); 12617 const struct intel_crtc_state *old_crtc_state = 12618 intel_atomic_get_old_crtc_state(state, crtc); 12619 12620 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 12621 } 12622 12623 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) 12624 { 12625 const struct drm_display_mode *adjusted_mode = 12626 &crtc_state->hw.adjusted_mode; 12627 12628 if (!crtc_state->hw.enable) 12629 return 0; 12630 12631 return DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, 12632 adjusted_mode->crtc_clock); 12633 } 12634 12635 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, 12636 const struct intel_cdclk_state *cdclk_state) 12637 { 12638 const struct drm_display_mode *adjusted_mode = 12639 &crtc_state->hw.adjusted_mode; 12640 12641 if (!crtc_state->hw.enable) 12642 return 0; 12643 12644 return DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, 12645 cdclk_state->logical.cdclk); 12646 } 12647 12648 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) 12649 { 12650 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12651 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12652 const struct drm_display_mode *adjusted_mode = 12653 &crtc_state->hw.adjusted_mode; 12654 u16 linetime_wm; 12655 12656 if (!crtc_state->hw.enable) 12657 return 0; 12658 12659 linetime_wm = DIV_ROUND_UP(adjusted_mode->crtc_htotal * 1000 * 8, 12660 crtc_state->pixel_rate); 12661 12662 /* Display WA #1135: BXT:ALL GLK:ALL */ 12663 if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled) 12664 linetime_wm /= 2; 12665 12666 return linetime_wm; 12667 } 12668 12669 static int hsw_compute_linetime_wm(struct intel_atomic_state *state, 12670 struct intel_crtc *crtc) 12671 { 12672 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12673 struct intel_crtc_state *crtc_state = 12674 intel_atomic_get_new_crtc_state(state, crtc); 12675 const struct intel_cdclk_state *cdclk_state; 12676 12677 if (INTEL_GEN(dev_priv) >= 9) 12678 crtc_state->linetime = skl_linetime_wm(crtc_state); 12679 else 12680 crtc_state->linetime = hsw_linetime_wm(crtc_state); 12681 12682 if (!hsw_crtc_supports_ips(crtc)) 12683 return 0; 12684 12685 cdclk_state = intel_atomic_get_cdclk_state(state); 12686 if (IS_ERR(cdclk_state)) 12687 return PTR_ERR(cdclk_state); 12688 12689 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, 12690 cdclk_state); 12691 12692 return 0; 12693 } 12694 12695 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 12696 struct intel_crtc *crtc) 12697 { 12698 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12699 struct intel_crtc_state *crtc_state = 12700 intel_atomic_get_new_crtc_state(state, crtc); 12701 bool mode_changed = needs_modeset(crtc_state); 12702 int ret; 12703 12704 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) && 12705 mode_changed && !crtc_state->hw.active) 12706 crtc_state->update_wm_post = true; 12707 12708 if (mode_changed && crtc_state->hw.enable && 12709 dev_priv->display.crtc_compute_clock && 12710 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) { 12711 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state); 12712 if (ret) 12713 return ret; 12714 } 12715 12716 /* 12717 * May need to update pipe gamma enable bits 12718 * when C8 planes are getting enabled/disabled. 12719 */ 12720 if (c8_planes_changed(crtc_state)) 12721 crtc_state->uapi.color_mgmt_changed = true; 12722 12723 if (mode_changed || crtc_state->update_pipe || 12724 crtc_state->uapi.color_mgmt_changed) { 12725 ret = intel_color_check(crtc_state); 12726 if (ret) 12727 return ret; 12728 } 12729 12730 if (dev_priv->display.compute_pipe_wm) { 12731 ret = dev_priv->display.compute_pipe_wm(crtc_state); 12732 if (ret) { 12733 drm_dbg_kms(&dev_priv->drm, 12734 "Target pipe watermarks are invalid\n"); 12735 return ret; 12736 } 12737 } 12738 12739 if (dev_priv->display.compute_intermediate_wm) { 12740 if (drm_WARN_ON(&dev_priv->drm, 12741 !dev_priv->display.compute_pipe_wm)) 12742 return 0; 12743 12744 /* 12745 * Calculate 'intermediate' watermarks that satisfy both the 12746 * old state and the new state. We can program these 12747 * immediately. 12748 */ 12749 ret = dev_priv->display.compute_intermediate_wm(crtc_state); 12750 if (ret) { 12751 drm_dbg_kms(&dev_priv->drm, 12752 "No valid intermediate pipe watermarks are possible\n"); 12753 return ret; 12754 } 12755 } 12756 12757 if (INTEL_GEN(dev_priv) >= 9) { 12758 if (mode_changed || crtc_state->update_pipe) { 12759 ret = skl_update_scaler_crtc(crtc_state); 12760 if (ret) 12761 return ret; 12762 } 12763 12764 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state); 12765 if (ret) 12766 return ret; 12767 } 12768 12769 if (HAS_IPS(dev_priv)) { 12770 ret = hsw_compute_ips_config(crtc_state); 12771 if (ret) 12772 return ret; 12773 } 12774 12775 if (INTEL_GEN(dev_priv) >= 9 || 12776 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 12777 ret = hsw_compute_linetime_wm(state, crtc); 12778 if (ret) 12779 return ret; 12780 12781 } 12782 12783 return 0; 12784 } 12785 12786 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 12787 { 12788 struct intel_connector *connector; 12789 struct drm_connector_list_iter conn_iter; 12790 12791 drm_connector_list_iter_begin(dev, &conn_iter); 12792 for_each_intel_connector_iter(connector, &conn_iter) { 12793 if (connector->base.state->crtc) 12794 drm_connector_put(&connector->base); 12795 12796 if (connector->base.encoder) { 12797 connector->base.state->best_encoder = 12798 connector->base.encoder; 12799 connector->base.state->crtc = 12800 connector->base.encoder->crtc; 12801 12802 drm_connector_get(&connector->base); 12803 } else { 12804 connector->base.state->best_encoder = NULL; 12805 connector->base.state->crtc = NULL; 12806 } 12807 } 12808 drm_connector_list_iter_end(&conn_iter); 12809 } 12810 12811 static int 12812 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 12813 struct intel_crtc_state *pipe_config) 12814 { 12815 struct drm_connector *connector = conn_state->connector; 12816 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 12817 const struct drm_display_info *info = &connector->display_info; 12818 int bpp; 12819 12820 switch (conn_state->max_bpc) { 12821 case 6 ... 7: 12822 bpp = 6 * 3; 12823 break; 12824 case 8 ... 9: 12825 bpp = 8 * 3; 12826 break; 12827 case 10 ... 11: 12828 bpp = 10 * 3; 12829 break; 12830 case 12: 12831 bpp = 12 * 3; 12832 break; 12833 default: 12834 return -EINVAL; 12835 } 12836 12837 if (bpp < pipe_config->pipe_bpp) { 12838 drm_dbg_kms(&i915->drm, 12839 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 12840 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 12841 connector->base.id, connector->name, 12842 bpp, 3 * info->bpc, 12843 3 * conn_state->max_requested_bpc, 12844 pipe_config->pipe_bpp); 12845 12846 pipe_config->pipe_bpp = bpp; 12847 } 12848 12849 return 0; 12850 } 12851 12852 static int 12853 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 12854 struct intel_crtc_state *pipe_config) 12855 { 12856 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12857 struct drm_atomic_state *state = pipe_config->uapi.state; 12858 struct drm_connector *connector; 12859 struct drm_connector_state *connector_state; 12860 int bpp, i; 12861 12862 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 12863 IS_CHERRYVIEW(dev_priv))) 12864 bpp = 10*3; 12865 else if (INTEL_GEN(dev_priv) >= 5) 12866 bpp = 12*3; 12867 else 12868 bpp = 8*3; 12869 12870 pipe_config->pipe_bpp = bpp; 12871 12872 /* Clamp display bpp to connector max bpp */ 12873 for_each_new_connector_in_state(state, connector, connector_state, i) { 12874 int ret; 12875 12876 if (connector_state->crtc != &crtc->base) 12877 continue; 12878 12879 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 12880 if (ret) 12881 return ret; 12882 } 12883 12884 return 0; 12885 } 12886 12887 static void intel_dump_crtc_timings(const struct drm_display_mode *mode) 12888 { 12889 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, " 12890 "type: 0x%x flags: 0x%x\n", 12891 mode->crtc_clock, 12892 mode->crtc_hdisplay, mode->crtc_hsync_start, 12893 mode->crtc_hsync_end, mode->crtc_htotal, 12894 mode->crtc_vdisplay, mode->crtc_vsync_start, 12895 mode->crtc_vsync_end, mode->crtc_vtotal, 12896 mode->type, mode->flags); 12897 } 12898 12899 static inline void 12900 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 12901 const char *id, unsigned int lane_count, 12902 const struct intel_link_m_n *m_n) 12903 { 12904 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 12905 12906 drm_dbg_kms(&i915->drm, 12907 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 12908 id, lane_count, 12909 m_n->gmch_m, m_n->gmch_n, 12910 m_n->link_m, m_n->link_n, m_n->tu); 12911 } 12912 12913 static void 12914 intel_dump_infoframe(struct drm_i915_private *dev_priv, 12915 const union hdmi_infoframe *frame) 12916 { 12917 if (!drm_debug_enabled(DRM_UT_KMS)) 12918 return; 12919 12920 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 12921 } 12922 12923 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 12924 12925 static const char * const output_type_str[] = { 12926 OUTPUT_TYPE(UNUSED), 12927 OUTPUT_TYPE(ANALOG), 12928 OUTPUT_TYPE(DVO), 12929 OUTPUT_TYPE(SDVO), 12930 OUTPUT_TYPE(LVDS), 12931 OUTPUT_TYPE(TVOUT), 12932 OUTPUT_TYPE(HDMI), 12933 OUTPUT_TYPE(DP), 12934 OUTPUT_TYPE(EDP), 12935 OUTPUT_TYPE(DSI), 12936 OUTPUT_TYPE(DDI), 12937 OUTPUT_TYPE(DP_MST), 12938 }; 12939 12940 #undef OUTPUT_TYPE 12941 12942 static void snprintf_output_types(char *buf, size_t len, 12943 unsigned int output_types) 12944 { 12945 char *str = buf; 12946 int i; 12947 12948 str[0] = '\0'; 12949 12950 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 12951 int r; 12952 12953 if ((output_types & BIT(i)) == 0) 12954 continue; 12955 12956 r = snprintf(str, len, "%s%s", 12957 str != buf ? "," : "", output_type_str[i]); 12958 if (r >= len) 12959 break; 12960 str += r; 12961 len -= r; 12962 12963 output_types &= ~BIT(i); 12964 } 12965 12966 WARN_ON_ONCE(output_types != 0); 12967 } 12968 12969 static const char * const output_format_str[] = { 12970 [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid", 12971 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 12972 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 12973 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 12974 }; 12975 12976 static const char *output_formats(enum intel_output_format format) 12977 { 12978 if (format >= ARRAY_SIZE(output_format_str)) 12979 format = INTEL_OUTPUT_FORMAT_INVALID; 12980 return output_format_str[format]; 12981 } 12982 12983 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 12984 { 12985 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 12986 struct drm_i915_private *i915 = to_i915(plane->base.dev); 12987 const struct drm_framebuffer *fb = plane_state->hw.fb; 12988 struct drm_format_name_buf format_name; 12989 12990 if (!fb) { 12991 drm_dbg_kms(&i915->drm, 12992 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 12993 plane->base.base.id, plane->base.name, 12994 yesno(plane_state->uapi.visible)); 12995 return; 12996 } 12997 12998 drm_dbg_kms(&i915->drm, 12999 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n", 13000 plane->base.base.id, plane->base.name, 13001 fb->base.id, fb->width, fb->height, 13002 drm_get_format_name(fb->format->format, &format_name), 13003 yesno(plane_state->uapi.visible)); 13004 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n", 13005 plane_state->hw.rotation, plane_state->scaler_id); 13006 if (plane_state->uapi.visible) 13007 drm_dbg_kms(&i915->drm, 13008 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 13009 DRM_RECT_FP_ARG(&plane_state->uapi.src), 13010 DRM_RECT_ARG(&plane_state->uapi.dst)); 13011 } 13012 13013 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 13014 struct intel_atomic_state *state, 13015 const char *context) 13016 { 13017 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 13018 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13019 const struct intel_plane_state *plane_state; 13020 struct intel_plane *plane; 13021 char buf[64]; 13022 int i; 13023 13024 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n", 13025 crtc->base.base.id, crtc->base.name, 13026 yesno(pipe_config->hw.enable), context); 13027 13028 if (!pipe_config->hw.enable) 13029 goto dump_planes; 13030 13031 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 13032 drm_dbg_kms(&dev_priv->drm, 13033 "active: %s, output_types: %s (0x%x), output format: %s\n", 13034 yesno(pipe_config->hw.active), 13035 buf, pipe_config->output_types, 13036 output_formats(pipe_config->output_format)); 13037 13038 drm_dbg_kms(&dev_priv->drm, 13039 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 13040 transcoder_name(pipe_config->cpu_transcoder), 13041 pipe_config->pipe_bpp, pipe_config->dither); 13042 13043 if (pipe_config->has_pch_encoder) 13044 intel_dump_m_n_config(pipe_config, "fdi", 13045 pipe_config->fdi_lanes, 13046 &pipe_config->fdi_m_n); 13047 13048 if (intel_crtc_has_dp_encoder(pipe_config)) { 13049 intel_dump_m_n_config(pipe_config, "dp m_n", 13050 pipe_config->lane_count, &pipe_config->dp_m_n); 13051 if (pipe_config->has_drrs) 13052 intel_dump_m_n_config(pipe_config, "dp m2_n2", 13053 pipe_config->lane_count, 13054 &pipe_config->dp_m2_n2); 13055 } 13056 13057 drm_dbg_kms(&dev_priv->drm, 13058 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 13059 pipe_config->has_audio, pipe_config->has_infoframe, 13060 pipe_config->infoframes.enable); 13061 13062 if (pipe_config->infoframes.enable & 13063 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 13064 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n", 13065 pipe_config->infoframes.gcp); 13066 if (pipe_config->infoframes.enable & 13067 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 13068 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 13069 if (pipe_config->infoframes.enable & 13070 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 13071 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 13072 if (pipe_config->infoframes.enable & 13073 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 13074 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 13075 13076 drm_dbg_kms(&dev_priv->drm, "requested mode:\n"); 13077 drm_mode_debug_printmodeline(&pipe_config->hw.mode); 13078 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n"); 13079 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode); 13080 intel_dump_crtc_timings(&pipe_config->hw.adjusted_mode); 13081 drm_dbg_kms(&dev_priv->drm, 13082 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 13083 pipe_config->port_clock, 13084 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 13085 pipe_config->pixel_rate); 13086 13087 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n", 13088 pipe_config->linetime, pipe_config->ips_linetime); 13089 13090 if (INTEL_GEN(dev_priv) >= 9) 13091 drm_dbg_kms(&dev_priv->drm, 13092 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 13093 crtc->num_scalers, 13094 pipe_config->scaler_state.scaler_users, 13095 pipe_config->scaler_state.scaler_id); 13096 13097 if (HAS_GMCH(dev_priv)) 13098 drm_dbg_kms(&dev_priv->drm, 13099 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 13100 pipe_config->gmch_pfit.control, 13101 pipe_config->gmch_pfit.pgm_ratios, 13102 pipe_config->gmch_pfit.lvds_border_bits); 13103 else 13104 drm_dbg_kms(&dev_priv->drm, 13105 "pch pfit: pos: 0x%08x, size: 0x%08x, %s, force thru: %s\n", 13106 pipe_config->pch_pfit.pos, 13107 pipe_config->pch_pfit.size, 13108 enableddisabled(pipe_config->pch_pfit.enabled), 13109 yesno(pipe_config->pch_pfit.force_thru)); 13110 13111 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n", 13112 pipe_config->ips_enabled, pipe_config->double_wide); 13113 13114 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 13115 13116 if (IS_CHERRYVIEW(dev_priv)) 13117 drm_dbg_kms(&dev_priv->drm, 13118 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 13119 pipe_config->cgm_mode, pipe_config->gamma_mode, 13120 pipe_config->gamma_enable, pipe_config->csc_enable); 13121 else 13122 drm_dbg_kms(&dev_priv->drm, 13123 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 13124 pipe_config->csc_mode, pipe_config->gamma_mode, 13125 pipe_config->gamma_enable, pipe_config->csc_enable); 13126 13127 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n", 13128 transcoder_name(pipe_config->mst_master_transcoder)); 13129 13130 dump_planes: 13131 if (!state) 13132 return; 13133 13134 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 13135 if (plane->pipe == crtc->pipe) 13136 intel_dump_plane_state(plane_state); 13137 } 13138 } 13139 13140 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 13141 { 13142 struct drm_device *dev = state->base.dev; 13143 struct drm_connector *connector; 13144 struct drm_connector_list_iter conn_iter; 13145 unsigned int used_ports = 0; 13146 unsigned int used_mst_ports = 0; 13147 bool ret = true; 13148 13149 /* 13150 * We're going to peek into connector->state, 13151 * hence connection_mutex must be held. 13152 */ 13153 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); 13154 13155 /* 13156 * Walk the connector list instead of the encoder 13157 * list to detect the problem on ddi platforms 13158 * where there's just one encoder per digital port. 13159 */ 13160 drm_connector_list_iter_begin(dev, &conn_iter); 13161 drm_for_each_connector_iter(connector, &conn_iter) { 13162 struct drm_connector_state *connector_state; 13163 struct intel_encoder *encoder; 13164 13165 connector_state = 13166 drm_atomic_get_new_connector_state(&state->base, 13167 connector); 13168 if (!connector_state) 13169 connector_state = connector->state; 13170 13171 if (!connector_state->best_encoder) 13172 continue; 13173 13174 encoder = to_intel_encoder(connector_state->best_encoder); 13175 13176 drm_WARN_ON(dev, !connector_state->crtc); 13177 13178 switch (encoder->type) { 13179 case INTEL_OUTPUT_DDI: 13180 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev)))) 13181 break; 13182 /* else, fall through */ 13183 case INTEL_OUTPUT_DP: 13184 case INTEL_OUTPUT_HDMI: 13185 case INTEL_OUTPUT_EDP: 13186 /* the same port mustn't appear more than once */ 13187 if (used_ports & BIT(encoder->port)) 13188 ret = false; 13189 13190 used_ports |= BIT(encoder->port); 13191 break; 13192 case INTEL_OUTPUT_DP_MST: 13193 used_mst_ports |= 13194 1 << encoder->port; 13195 break; 13196 default: 13197 break; 13198 } 13199 } 13200 drm_connector_list_iter_end(&conn_iter); 13201 13202 /* can't mix MST and SST/HDMI on the same port */ 13203 if (used_ports & used_mst_ports) 13204 return false; 13205 13206 return ret; 13207 } 13208 13209 static void 13210 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state *crtc_state) 13211 { 13212 intel_crtc_copy_color_blobs(crtc_state); 13213 } 13214 13215 static void 13216 intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state *crtc_state) 13217 { 13218 crtc_state->hw.enable = crtc_state->uapi.enable; 13219 crtc_state->hw.active = crtc_state->uapi.active; 13220 crtc_state->hw.mode = crtc_state->uapi.mode; 13221 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode; 13222 intel_crtc_copy_uapi_to_hw_state_nomodeset(crtc_state); 13223 } 13224 13225 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state) 13226 { 13227 crtc_state->uapi.enable = crtc_state->hw.enable; 13228 crtc_state->uapi.active = crtc_state->hw.active; 13229 WARN_ON(drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0); 13230 13231 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode; 13232 13233 /* copy color blobs to uapi */ 13234 drm_property_replace_blob(&crtc_state->uapi.degamma_lut, 13235 crtc_state->hw.degamma_lut); 13236 drm_property_replace_blob(&crtc_state->uapi.gamma_lut, 13237 crtc_state->hw.gamma_lut); 13238 drm_property_replace_blob(&crtc_state->uapi.ctm, 13239 crtc_state->hw.ctm); 13240 } 13241 13242 static int 13243 intel_crtc_prepare_cleared_state(struct intel_crtc_state *crtc_state) 13244 { 13245 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 13246 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13247 struct intel_crtc_state *saved_state; 13248 13249 saved_state = intel_crtc_state_alloc(crtc); 13250 if (!saved_state) 13251 return -ENOMEM; 13252 13253 /* free the old crtc_state->hw members */ 13254 intel_crtc_free_hw_state(crtc_state); 13255 13256 /* FIXME: before the switch to atomic started, a new pipe_config was 13257 * kzalloc'd. Code that depends on any field being zero should be 13258 * fixed, so that the crtc_state can be safely duplicated. For now, 13259 * only fields that are know to not cause problems are preserved. */ 13260 13261 saved_state->uapi = crtc_state->uapi; 13262 saved_state->scaler_state = crtc_state->scaler_state; 13263 saved_state->shared_dpll = crtc_state->shared_dpll; 13264 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 13265 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 13266 sizeof(saved_state->icl_port_dplls)); 13267 saved_state->crc_enabled = crtc_state->crc_enabled; 13268 if (IS_G4X(dev_priv) || 13269 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13270 saved_state->wm = crtc_state->wm; 13271 13272 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 13273 kfree(saved_state); 13274 13275 intel_crtc_copy_uapi_to_hw_state(crtc_state); 13276 13277 return 0; 13278 } 13279 13280 static int 13281 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config) 13282 { 13283 struct drm_crtc *crtc = pipe_config->uapi.crtc; 13284 struct drm_atomic_state *state = pipe_config->uapi.state; 13285 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 13286 struct drm_connector *connector; 13287 struct drm_connector_state *connector_state; 13288 int base_bpp, ret, i; 13289 bool retry = true; 13290 13291 pipe_config->cpu_transcoder = 13292 (enum transcoder) to_intel_crtc(crtc)->pipe; 13293 13294 /* 13295 * Sanitize sync polarity flags based on requested ones. If neither 13296 * positive or negative polarity is requested, treat this as meaning 13297 * negative polarity. 13298 */ 13299 if (!(pipe_config->hw.adjusted_mode.flags & 13300 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 13301 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 13302 13303 if (!(pipe_config->hw.adjusted_mode.flags & 13304 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 13305 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 13306 13307 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 13308 pipe_config); 13309 if (ret) 13310 return ret; 13311 13312 base_bpp = pipe_config->pipe_bpp; 13313 13314 /* 13315 * Determine the real pipe dimensions. Note that stereo modes can 13316 * increase the actual pipe size due to the frame doubling and 13317 * insertion of additional space for blanks between the frame. This 13318 * is stored in the crtc timings. We use the requested mode to do this 13319 * computation to clearly distinguish it from the adjusted mode, which 13320 * can be changed by the connectors in the below retry loop. 13321 */ 13322 drm_mode_get_hv_timing(&pipe_config->hw.mode, 13323 &pipe_config->pipe_src_w, 13324 &pipe_config->pipe_src_h); 13325 13326 for_each_new_connector_in_state(state, connector, connector_state, i) { 13327 struct intel_encoder *encoder = 13328 to_intel_encoder(connector_state->best_encoder); 13329 13330 if (connector_state->crtc != crtc) 13331 continue; 13332 13333 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 13334 drm_dbg_kms(&i915->drm, 13335 "rejecting invalid cloning configuration\n"); 13336 return -EINVAL; 13337 } 13338 13339 /* 13340 * Determine output_types before calling the .compute_config() 13341 * hooks so that the hooks can use this information safely. 13342 */ 13343 if (encoder->compute_output_type) 13344 pipe_config->output_types |= 13345 BIT(encoder->compute_output_type(encoder, pipe_config, 13346 connector_state)); 13347 else 13348 pipe_config->output_types |= BIT(encoder->type); 13349 } 13350 13351 encoder_retry: 13352 /* Ensure the port clock defaults are reset when retrying. */ 13353 pipe_config->port_clock = 0; 13354 pipe_config->pixel_multiplier = 1; 13355 13356 /* Fill in default crtc timings, allow encoders to overwrite them. */ 13357 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode, 13358 CRTC_STEREO_DOUBLE); 13359 13360 /* Pass our mode to the connectors and the CRTC to give them a chance to 13361 * adjust it according to limitations or connector properties, and also 13362 * a chance to reject the mode entirely. 13363 */ 13364 for_each_new_connector_in_state(state, connector, connector_state, i) { 13365 struct intel_encoder *encoder = 13366 to_intel_encoder(connector_state->best_encoder); 13367 13368 if (connector_state->crtc != crtc) 13369 continue; 13370 13371 ret = encoder->compute_config(encoder, pipe_config, 13372 connector_state); 13373 if (ret < 0) { 13374 if (ret != -EDEADLK) 13375 drm_dbg_kms(&i915->drm, 13376 "Encoder config failure: %d\n", 13377 ret); 13378 return ret; 13379 } 13380 } 13381 13382 /* Set default port clock if not overwritten by the encoder. Needs to be 13383 * done afterwards in case the encoder adjusts the mode. */ 13384 if (!pipe_config->port_clock) 13385 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock 13386 * pipe_config->pixel_multiplier; 13387 13388 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 13389 if (ret == -EDEADLK) 13390 return ret; 13391 if (ret < 0) { 13392 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n"); 13393 return ret; 13394 } 13395 13396 if (ret == RETRY) { 13397 if (drm_WARN(&i915->drm, !retry, 13398 "loop in pipe configuration computation\n")) 13399 return -EINVAL; 13400 13401 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n"); 13402 retry = false; 13403 goto encoder_retry; 13404 } 13405 13406 /* Dithering seems to not pass-through bits correctly when it should, so 13407 * only enable it on 6bpc panels and when its not a compliance 13408 * test requesting 6bpc video pattern. 13409 */ 13410 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 13411 !pipe_config->dither_force_disable; 13412 drm_dbg_kms(&i915->drm, 13413 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 13414 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 13415 13416 /* 13417 * Make drm_calc_timestamping_constants in 13418 * drm_atomic_helper_update_legacy_modeset_state() happy 13419 */ 13420 pipe_config->uapi.adjusted_mode = pipe_config->hw.adjusted_mode; 13421 13422 return 0; 13423 } 13424 13425 static int 13426 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state) 13427 { 13428 struct intel_atomic_state *state = 13429 to_intel_atomic_state(crtc_state->uapi.state); 13430 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 13431 struct drm_connector_state *conn_state; 13432 struct drm_connector *connector; 13433 int i; 13434 13435 for_each_new_connector_in_state(&state->base, connector, 13436 conn_state, i) { 13437 struct intel_encoder *encoder = 13438 to_intel_encoder(conn_state->best_encoder); 13439 int ret; 13440 13441 if (conn_state->crtc != &crtc->base || 13442 !encoder->compute_config_late) 13443 continue; 13444 13445 ret = encoder->compute_config_late(encoder, crtc_state, 13446 conn_state); 13447 if (ret) 13448 return ret; 13449 } 13450 13451 return 0; 13452 } 13453 13454 bool intel_fuzzy_clock_check(int clock1, int clock2) 13455 { 13456 int diff; 13457 13458 if (clock1 == clock2) 13459 return true; 13460 13461 if (!clock1 || !clock2) 13462 return false; 13463 13464 diff = abs(clock1 - clock2); 13465 13466 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 13467 return true; 13468 13469 return false; 13470 } 13471 13472 static bool 13473 intel_compare_m_n(unsigned int m, unsigned int n, 13474 unsigned int m2, unsigned int n2, 13475 bool exact) 13476 { 13477 if (m == m2 && n == n2) 13478 return true; 13479 13480 if (exact || !m || !n || !m2 || !n2) 13481 return false; 13482 13483 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 13484 13485 if (n > n2) { 13486 while (n > n2) { 13487 m2 <<= 1; 13488 n2 <<= 1; 13489 } 13490 } else if (n < n2) { 13491 while (n < n2) { 13492 m <<= 1; 13493 n <<= 1; 13494 } 13495 } 13496 13497 if (n != n2) 13498 return false; 13499 13500 return intel_fuzzy_clock_check(m, m2); 13501 } 13502 13503 static bool 13504 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 13505 const struct intel_link_m_n *m2_n2, 13506 bool exact) 13507 { 13508 return m_n->tu == m2_n2->tu && 13509 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 13510 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 13511 intel_compare_m_n(m_n->link_m, m_n->link_n, 13512 m2_n2->link_m, m2_n2->link_n, exact); 13513 } 13514 13515 static bool 13516 intel_compare_infoframe(const union hdmi_infoframe *a, 13517 const union hdmi_infoframe *b) 13518 { 13519 return memcmp(a, b, sizeof(*a)) == 0; 13520 } 13521 13522 static void 13523 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 13524 bool fastset, const char *name, 13525 const union hdmi_infoframe *a, 13526 const union hdmi_infoframe *b) 13527 { 13528 if (fastset) { 13529 if (!drm_debug_enabled(DRM_UT_KMS)) 13530 return; 13531 13532 drm_dbg_kms(&dev_priv->drm, 13533 "fastset mismatch in %s infoframe\n", name); 13534 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 13535 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 13536 drm_dbg_kms(&dev_priv->drm, "found:\n"); 13537 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 13538 } else { 13539 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name); 13540 drm_err(&dev_priv->drm, "expected:\n"); 13541 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 13542 drm_err(&dev_priv->drm, "found:\n"); 13543 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 13544 } 13545 } 13546 13547 static void __printf(4, 5) 13548 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, 13549 const char *name, const char *format, ...) 13550 { 13551 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 13552 struct va_format vaf; 13553 va_list args; 13554 13555 va_start(args, format); 13556 vaf.fmt = format; 13557 vaf.va = &args; 13558 13559 if (fastset) 13560 drm_dbg_kms(&i915->drm, 13561 "[CRTC:%d:%s] fastset mismatch in %s %pV\n", 13562 crtc->base.base.id, crtc->base.name, name, &vaf); 13563 else 13564 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n", 13565 crtc->base.base.id, crtc->base.name, name, &vaf); 13566 13567 va_end(args); 13568 } 13569 13570 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 13571 { 13572 if (i915_modparams.fastboot != -1) 13573 return i915_modparams.fastboot; 13574 13575 /* Enable fastboot by default on Skylake and newer */ 13576 if (INTEL_GEN(dev_priv) >= 9) 13577 return true; 13578 13579 /* Enable fastboot by default on VLV and CHV */ 13580 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13581 return true; 13582 13583 /* Disabled by default on all others */ 13584 return false; 13585 } 13586 13587 static bool 13588 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 13589 const struct intel_crtc_state *pipe_config, 13590 bool fastset) 13591 { 13592 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev); 13593 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 13594 bool ret = true; 13595 u32 bp_gamma = 0; 13596 bool fixup_inherited = fastset && 13597 (current_config->hw.mode.private_flags & I915_MODE_FLAG_INHERITED) && 13598 !(pipe_config->hw.mode.private_flags & I915_MODE_FLAG_INHERITED); 13599 13600 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 13601 drm_dbg_kms(&dev_priv->drm, 13602 "initial modeset and fastboot not set\n"); 13603 ret = false; 13604 } 13605 13606 #define PIPE_CONF_CHECK_X(name) do { \ 13607 if (current_config->name != pipe_config->name) { \ 13608 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13609 "(expected 0x%08x, found 0x%08x)", \ 13610 current_config->name, \ 13611 pipe_config->name); \ 13612 ret = false; \ 13613 } \ 13614 } while (0) 13615 13616 #define PIPE_CONF_CHECK_I(name) do { \ 13617 if (current_config->name != pipe_config->name) { \ 13618 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13619 "(expected %i, found %i)", \ 13620 current_config->name, \ 13621 pipe_config->name); \ 13622 ret = false; \ 13623 } \ 13624 } while (0) 13625 13626 #define PIPE_CONF_CHECK_BOOL(name) do { \ 13627 if (current_config->name != pipe_config->name) { \ 13628 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13629 "(expected %s, found %s)", \ 13630 yesno(current_config->name), \ 13631 yesno(pipe_config->name)); \ 13632 ret = false; \ 13633 } \ 13634 } while (0) 13635 13636 /* 13637 * Checks state where we only read out the enabling, but not the entire 13638 * state itself (like full infoframes or ELD for audio). These states 13639 * require a full modeset on bootup to fix up. 13640 */ 13641 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 13642 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 13643 PIPE_CONF_CHECK_BOOL(name); \ 13644 } else { \ 13645 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13646 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ 13647 yesno(current_config->name), \ 13648 yesno(pipe_config->name)); \ 13649 ret = false; \ 13650 } \ 13651 } while (0) 13652 13653 #define PIPE_CONF_CHECK_P(name) do { \ 13654 if (current_config->name != pipe_config->name) { \ 13655 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13656 "(expected %p, found %p)", \ 13657 current_config->name, \ 13658 pipe_config->name); \ 13659 ret = false; \ 13660 } \ 13661 } while (0) 13662 13663 #define PIPE_CONF_CHECK_M_N(name) do { \ 13664 if (!intel_compare_link_m_n(¤t_config->name, \ 13665 &pipe_config->name,\ 13666 !fastset)) { \ 13667 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13668 "(expected tu %i gmch %i/%i link %i/%i, " \ 13669 "found tu %i, gmch %i/%i link %i/%i)", \ 13670 current_config->name.tu, \ 13671 current_config->name.gmch_m, \ 13672 current_config->name.gmch_n, \ 13673 current_config->name.link_m, \ 13674 current_config->name.link_n, \ 13675 pipe_config->name.tu, \ 13676 pipe_config->name.gmch_m, \ 13677 pipe_config->name.gmch_n, \ 13678 pipe_config->name.link_m, \ 13679 pipe_config->name.link_n); \ 13680 ret = false; \ 13681 } \ 13682 } while (0) 13683 13684 /* This is required for BDW+ where there is only one set of registers for 13685 * switching between high and low RR. 13686 * This macro can be used whenever a comparison has to be made between one 13687 * hw state and multiple sw state variables. 13688 */ 13689 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 13690 if (!intel_compare_link_m_n(¤t_config->name, \ 13691 &pipe_config->name, !fastset) && \ 13692 !intel_compare_link_m_n(¤t_config->alt_name, \ 13693 &pipe_config->name, !fastset)) { \ 13694 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13695 "(expected tu %i gmch %i/%i link %i/%i, " \ 13696 "or tu %i gmch %i/%i link %i/%i, " \ 13697 "found tu %i, gmch %i/%i link %i/%i)", \ 13698 current_config->name.tu, \ 13699 current_config->name.gmch_m, \ 13700 current_config->name.gmch_n, \ 13701 current_config->name.link_m, \ 13702 current_config->name.link_n, \ 13703 current_config->alt_name.tu, \ 13704 current_config->alt_name.gmch_m, \ 13705 current_config->alt_name.gmch_n, \ 13706 current_config->alt_name.link_m, \ 13707 current_config->alt_name.link_n, \ 13708 pipe_config->name.tu, \ 13709 pipe_config->name.gmch_m, \ 13710 pipe_config->name.gmch_n, \ 13711 pipe_config->name.link_m, \ 13712 pipe_config->name.link_n); \ 13713 ret = false; \ 13714 } \ 13715 } while (0) 13716 13717 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 13718 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 13719 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13720 "(%x) (expected %i, found %i)", \ 13721 (mask), \ 13722 current_config->name & (mask), \ 13723 pipe_config->name & (mask)); \ 13724 ret = false; \ 13725 } \ 13726 } while (0) 13727 13728 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 13729 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 13730 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13731 "(expected %i, found %i)", \ 13732 current_config->name, \ 13733 pipe_config->name); \ 13734 ret = false; \ 13735 } \ 13736 } while (0) 13737 13738 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 13739 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 13740 &pipe_config->infoframes.name)) { \ 13741 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 13742 ¤t_config->infoframes.name, \ 13743 &pipe_config->infoframes.name); \ 13744 ret = false; \ 13745 } \ 13746 } while (0) 13747 13748 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ 13749 if (current_config->name1 != pipe_config->name1) { \ 13750 pipe_config_mismatch(fastset, crtc, __stringify(name1), \ 13751 "(expected %i, found %i, won't compare lut values)", \ 13752 current_config->name1, \ 13753 pipe_config->name1); \ 13754 ret = false;\ 13755 } else { \ 13756 if (!intel_color_lut_equal(current_config->name2, \ 13757 pipe_config->name2, pipe_config->name1, \ 13758 bit_precision)) { \ 13759 pipe_config_mismatch(fastset, crtc, __stringify(name2), \ 13760 "hw_state doesn't match sw_state"); \ 13761 ret = false; \ 13762 } \ 13763 } \ 13764 } while (0) 13765 13766 #define PIPE_CONF_QUIRK(quirk) \ 13767 ((current_config->quirks | pipe_config->quirks) & (quirk)) 13768 13769 PIPE_CONF_CHECK_I(cpu_transcoder); 13770 13771 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 13772 PIPE_CONF_CHECK_I(fdi_lanes); 13773 PIPE_CONF_CHECK_M_N(fdi_m_n); 13774 13775 PIPE_CONF_CHECK_I(lane_count); 13776 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 13777 13778 if (INTEL_GEN(dev_priv) < 8) { 13779 PIPE_CONF_CHECK_M_N(dp_m_n); 13780 13781 if (current_config->has_drrs) 13782 PIPE_CONF_CHECK_M_N(dp_m2_n2); 13783 } else 13784 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 13785 13786 PIPE_CONF_CHECK_X(output_types); 13787 13788 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay); 13789 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal); 13790 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start); 13791 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end); 13792 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start); 13793 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end); 13794 13795 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay); 13796 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal); 13797 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start); 13798 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end); 13799 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start); 13800 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end); 13801 13802 PIPE_CONF_CHECK_I(pixel_multiplier); 13803 PIPE_CONF_CHECK_I(output_format); 13804 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 13805 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 13806 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13807 PIPE_CONF_CHECK_BOOL(limited_color_range); 13808 13809 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 13810 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 13811 PIPE_CONF_CHECK_BOOL(has_infoframe); 13812 PIPE_CONF_CHECK_BOOL(fec_enable); 13813 13814 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 13815 13816 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13817 DRM_MODE_FLAG_INTERLACE); 13818 13819 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 13820 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13821 DRM_MODE_FLAG_PHSYNC); 13822 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13823 DRM_MODE_FLAG_NHSYNC); 13824 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13825 DRM_MODE_FLAG_PVSYNC); 13826 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13827 DRM_MODE_FLAG_NVSYNC); 13828 } 13829 13830 PIPE_CONF_CHECK_X(gmch_pfit.control); 13831 /* pfit ratios are autocomputed by the hw on gen4+ */ 13832 if (INTEL_GEN(dev_priv) < 4) 13833 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 13834 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 13835 13836 /* 13837 * Changing the EDP transcoder input mux 13838 * (A_ONOFF vs. A_ON) requires a full modeset. 13839 */ 13840 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 13841 13842 if (!fastset) { 13843 PIPE_CONF_CHECK_I(pipe_src_w); 13844 PIPE_CONF_CHECK_I(pipe_src_h); 13845 13846 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 13847 if (current_config->pch_pfit.enabled) { 13848 PIPE_CONF_CHECK_X(pch_pfit.pos); 13849 PIPE_CONF_CHECK_X(pch_pfit.size); 13850 } 13851 13852 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 13853 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 13854 13855 PIPE_CONF_CHECK_X(gamma_mode); 13856 if (IS_CHERRYVIEW(dev_priv)) 13857 PIPE_CONF_CHECK_X(cgm_mode); 13858 else 13859 PIPE_CONF_CHECK_X(csc_mode); 13860 PIPE_CONF_CHECK_BOOL(gamma_enable); 13861 PIPE_CONF_CHECK_BOOL(csc_enable); 13862 13863 PIPE_CONF_CHECK_I(linetime); 13864 PIPE_CONF_CHECK_I(ips_linetime); 13865 13866 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); 13867 if (bp_gamma) 13868 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma); 13869 } 13870 13871 PIPE_CONF_CHECK_BOOL(double_wide); 13872 13873 PIPE_CONF_CHECK_P(shared_dpll); 13874 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 13875 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 13876 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 13877 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 13878 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 13879 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 13880 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 13881 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 13882 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 13883 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 13884 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 13885 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 13886 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 13887 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 13888 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 13889 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 13890 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 13891 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 13892 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 13893 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 13894 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 13895 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 13896 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 13897 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 13898 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 13899 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 13900 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 13901 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 13902 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 13903 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 13904 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 13905 13906 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 13907 PIPE_CONF_CHECK_X(dsi_pll.div); 13908 13909 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) 13910 PIPE_CONF_CHECK_I(pipe_bpp); 13911 13912 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock); 13913 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 13914 13915 PIPE_CONF_CHECK_I(min_voltage_level); 13916 13917 PIPE_CONF_CHECK_X(infoframes.enable); 13918 PIPE_CONF_CHECK_X(infoframes.gcp); 13919 PIPE_CONF_CHECK_INFOFRAME(avi); 13920 PIPE_CONF_CHECK_INFOFRAME(spd); 13921 PIPE_CONF_CHECK_INFOFRAME(hdmi); 13922 PIPE_CONF_CHECK_INFOFRAME(drm); 13923 13924 PIPE_CONF_CHECK_X(sync_mode_slaves_mask); 13925 PIPE_CONF_CHECK_I(master_transcoder); 13926 13927 PIPE_CONF_CHECK_I(dsc.compression_enable); 13928 PIPE_CONF_CHECK_I(dsc.dsc_split); 13929 PIPE_CONF_CHECK_I(dsc.compressed_bpp); 13930 13931 PIPE_CONF_CHECK_I(mst_master_transcoder); 13932 13933 #undef PIPE_CONF_CHECK_X 13934 #undef PIPE_CONF_CHECK_I 13935 #undef PIPE_CONF_CHECK_BOOL 13936 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 13937 #undef PIPE_CONF_CHECK_P 13938 #undef PIPE_CONF_CHECK_FLAGS 13939 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 13940 #undef PIPE_CONF_CHECK_COLOR_LUT 13941 #undef PIPE_CONF_QUIRK 13942 13943 return ret; 13944 } 13945 13946 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 13947 const struct intel_crtc_state *pipe_config) 13948 { 13949 if (pipe_config->has_pch_encoder) { 13950 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 13951 &pipe_config->fdi_m_n); 13952 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock; 13953 13954 /* 13955 * FDI already provided one idea for the dotclock. 13956 * Yell if the encoder disagrees. 13957 */ 13958 drm_WARN(&dev_priv->drm, 13959 !intel_fuzzy_clock_check(fdi_dotclock, dotclock), 13960 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 13961 fdi_dotclock, dotclock); 13962 } 13963 } 13964 13965 static void verify_wm_state(struct intel_crtc *crtc, 13966 struct intel_crtc_state *new_crtc_state) 13967 { 13968 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13969 struct skl_hw_state { 13970 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 13971 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 13972 struct skl_pipe_wm wm; 13973 } *hw; 13974 struct skl_pipe_wm *sw_wm; 13975 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 13976 u8 hw_enabled_slices; 13977 const enum pipe pipe = crtc->pipe; 13978 int plane, level, max_level = ilk_wm_max_level(dev_priv); 13979 13980 if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active) 13981 return; 13982 13983 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 13984 if (!hw) 13985 return; 13986 13987 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 13988 sw_wm = &new_crtc_state->wm.skl.optimal; 13989 13990 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 13991 13992 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv); 13993 13994 if (INTEL_GEN(dev_priv) >= 11 && 13995 hw_enabled_slices != dev_priv->enabled_dbuf_slices_mask) 13996 drm_err(&dev_priv->drm, 13997 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", 13998 dev_priv->enabled_dbuf_slices_mask, 13999 hw_enabled_slices); 14000 14001 /* planes */ 14002 for_each_universal_plane(dev_priv, pipe, plane) { 14003 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 14004 14005 hw_plane_wm = &hw->wm.planes[plane]; 14006 sw_plane_wm = &sw_wm->planes[plane]; 14007 14008 /* Watermarks */ 14009 for (level = 0; level <= max_level; level++) { 14010 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 14011 &sw_plane_wm->wm[level])) 14012 continue; 14013 14014 drm_err(&dev_priv->drm, 14015 "mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14016 pipe_name(pipe), plane + 1, level, 14017 sw_plane_wm->wm[level].plane_en, 14018 sw_plane_wm->wm[level].plane_res_b, 14019 sw_plane_wm->wm[level].plane_res_l, 14020 hw_plane_wm->wm[level].plane_en, 14021 hw_plane_wm->wm[level].plane_res_b, 14022 hw_plane_wm->wm[level].plane_res_l); 14023 } 14024 14025 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 14026 &sw_plane_wm->trans_wm)) { 14027 drm_err(&dev_priv->drm, 14028 "mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14029 pipe_name(pipe), plane + 1, 14030 sw_plane_wm->trans_wm.plane_en, 14031 sw_plane_wm->trans_wm.plane_res_b, 14032 sw_plane_wm->trans_wm.plane_res_l, 14033 hw_plane_wm->trans_wm.plane_en, 14034 hw_plane_wm->trans_wm.plane_res_b, 14035 hw_plane_wm->trans_wm.plane_res_l); 14036 } 14037 14038 /* DDB */ 14039 hw_ddb_entry = &hw->ddb_y[plane]; 14040 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane]; 14041 14042 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 14043 drm_err(&dev_priv->drm, 14044 "mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n", 14045 pipe_name(pipe), plane + 1, 14046 sw_ddb_entry->start, sw_ddb_entry->end, 14047 hw_ddb_entry->start, hw_ddb_entry->end); 14048 } 14049 } 14050 14051 /* 14052 * cursor 14053 * If the cursor plane isn't active, we may not have updated it's ddb 14054 * allocation. In that case since the ddb allocation will be updated 14055 * once the plane becomes visible, we can skip this check 14056 */ 14057 if (1) { 14058 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 14059 14060 hw_plane_wm = &hw->wm.planes[PLANE_CURSOR]; 14061 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR]; 14062 14063 /* Watermarks */ 14064 for (level = 0; level <= max_level; level++) { 14065 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 14066 &sw_plane_wm->wm[level])) 14067 continue; 14068 14069 drm_err(&dev_priv->drm, 14070 "mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14071 pipe_name(pipe), level, 14072 sw_plane_wm->wm[level].plane_en, 14073 sw_plane_wm->wm[level].plane_res_b, 14074 sw_plane_wm->wm[level].plane_res_l, 14075 hw_plane_wm->wm[level].plane_en, 14076 hw_plane_wm->wm[level].plane_res_b, 14077 hw_plane_wm->wm[level].plane_res_l); 14078 } 14079 14080 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 14081 &sw_plane_wm->trans_wm)) { 14082 drm_err(&dev_priv->drm, 14083 "mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14084 pipe_name(pipe), 14085 sw_plane_wm->trans_wm.plane_en, 14086 sw_plane_wm->trans_wm.plane_res_b, 14087 sw_plane_wm->trans_wm.plane_res_l, 14088 hw_plane_wm->trans_wm.plane_en, 14089 hw_plane_wm->trans_wm.plane_res_b, 14090 hw_plane_wm->trans_wm.plane_res_l); 14091 } 14092 14093 /* DDB */ 14094 hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR]; 14095 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR]; 14096 14097 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 14098 drm_err(&dev_priv->drm, 14099 "mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n", 14100 pipe_name(pipe), 14101 sw_ddb_entry->start, sw_ddb_entry->end, 14102 hw_ddb_entry->start, hw_ddb_entry->end); 14103 } 14104 } 14105 14106 kfree(hw); 14107 } 14108 14109 static void 14110 verify_connector_state(struct intel_atomic_state *state, 14111 struct intel_crtc *crtc) 14112 { 14113 struct drm_connector *connector; 14114 struct drm_connector_state *new_conn_state; 14115 int i; 14116 14117 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 14118 struct drm_encoder *encoder = connector->encoder; 14119 struct intel_crtc_state *crtc_state = NULL; 14120 14121 if (new_conn_state->crtc != &crtc->base) 14122 continue; 14123 14124 if (crtc) 14125 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 14126 14127 intel_connector_verify_state(crtc_state, new_conn_state); 14128 14129 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 14130 "connector's atomic encoder doesn't match legacy encoder\n"); 14131 } 14132 } 14133 14134 static void 14135 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 14136 { 14137 struct intel_encoder *encoder; 14138 struct drm_connector *connector; 14139 struct drm_connector_state *old_conn_state, *new_conn_state; 14140 int i; 14141 14142 for_each_intel_encoder(&dev_priv->drm, encoder) { 14143 bool enabled = false, found = false; 14144 enum pipe pipe; 14145 14146 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n", 14147 encoder->base.base.id, 14148 encoder->base.name); 14149 14150 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 14151 new_conn_state, i) { 14152 if (old_conn_state->best_encoder == &encoder->base) 14153 found = true; 14154 14155 if (new_conn_state->best_encoder != &encoder->base) 14156 continue; 14157 found = enabled = true; 14158 14159 I915_STATE_WARN(new_conn_state->crtc != 14160 encoder->base.crtc, 14161 "connector's crtc doesn't match encoder crtc\n"); 14162 } 14163 14164 if (!found) 14165 continue; 14166 14167 I915_STATE_WARN(!!encoder->base.crtc != enabled, 14168 "encoder's enabled state mismatch " 14169 "(expected %i, found %i)\n", 14170 !!encoder->base.crtc, enabled); 14171 14172 if (!encoder->base.crtc) { 14173 bool active; 14174 14175 active = encoder->get_hw_state(encoder, &pipe); 14176 I915_STATE_WARN(active, 14177 "encoder detached but still enabled on pipe %c.\n", 14178 pipe_name(pipe)); 14179 } 14180 } 14181 } 14182 14183 static void 14184 verify_crtc_state(struct intel_crtc *crtc, 14185 struct intel_crtc_state *old_crtc_state, 14186 struct intel_crtc_state *new_crtc_state) 14187 { 14188 struct drm_device *dev = crtc->base.dev; 14189 struct drm_i915_private *dev_priv = to_i915(dev); 14190 struct intel_encoder *encoder; 14191 struct intel_crtc_state *pipe_config = old_crtc_state; 14192 struct drm_atomic_state *state = old_crtc_state->uapi.state; 14193 bool active; 14194 14195 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi); 14196 intel_crtc_free_hw_state(old_crtc_state); 14197 intel_crtc_state_reset(old_crtc_state, crtc); 14198 old_crtc_state->uapi.state = state; 14199 14200 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id, 14201 crtc->base.name); 14202 14203 active = dev_priv->display.get_pipe_config(crtc, pipe_config); 14204 14205 /* we keep both pipes enabled on 830 */ 14206 if (IS_I830(dev_priv)) 14207 active = new_crtc_state->hw.active; 14208 14209 I915_STATE_WARN(new_crtc_state->hw.active != active, 14210 "crtc active state doesn't match with hw state " 14211 "(expected %i, found %i)\n", 14212 new_crtc_state->hw.active, active); 14213 14214 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active, 14215 "transitional active state does not match atomic hw state " 14216 "(expected %i, found %i)\n", 14217 new_crtc_state->hw.active, crtc->active); 14218 14219 for_each_encoder_on_crtc(dev, &crtc->base, encoder) { 14220 enum pipe pipe; 14221 14222 active = encoder->get_hw_state(encoder, &pipe); 14223 I915_STATE_WARN(active != new_crtc_state->hw.active, 14224 "[ENCODER:%i] active %i with crtc active %i\n", 14225 encoder->base.base.id, active, 14226 new_crtc_state->hw.active); 14227 14228 I915_STATE_WARN(active && crtc->pipe != pipe, 14229 "Encoder connected to wrong pipe %c\n", 14230 pipe_name(pipe)); 14231 14232 if (active) 14233 encoder->get_config(encoder, pipe_config); 14234 } 14235 14236 intel_crtc_compute_pixel_rate(pipe_config); 14237 14238 if (!new_crtc_state->hw.active) 14239 return; 14240 14241 intel_pipe_config_sanity_check(dev_priv, pipe_config); 14242 14243 if (!intel_pipe_config_compare(new_crtc_state, 14244 pipe_config, false)) { 14245 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 14246 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 14247 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 14248 } 14249 } 14250 14251 static void 14252 intel_verify_planes(struct intel_atomic_state *state) 14253 { 14254 struct intel_plane *plane; 14255 const struct intel_plane_state *plane_state; 14256 int i; 14257 14258 for_each_new_intel_plane_in_state(state, plane, 14259 plane_state, i) 14260 assert_plane(plane, plane_state->planar_slave || 14261 plane_state->uapi.visible); 14262 } 14263 14264 static void 14265 verify_single_dpll_state(struct drm_i915_private *dev_priv, 14266 struct intel_shared_dpll *pll, 14267 struct intel_crtc *crtc, 14268 struct intel_crtc_state *new_crtc_state) 14269 { 14270 struct intel_dpll_hw_state dpll_hw_state; 14271 unsigned int crtc_mask; 14272 bool active; 14273 14274 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 14275 14276 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name); 14277 14278 active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state); 14279 14280 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 14281 I915_STATE_WARN(!pll->on && pll->active_mask, 14282 "pll in active use but not on in sw tracking\n"); 14283 I915_STATE_WARN(pll->on && !pll->active_mask, 14284 "pll is on but not used by any active crtc\n"); 14285 I915_STATE_WARN(pll->on != active, 14286 "pll on state mismatch (expected %i, found %i)\n", 14287 pll->on, active); 14288 } 14289 14290 if (!crtc) { 14291 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask, 14292 "more active pll users than references: %x vs %x\n", 14293 pll->active_mask, pll->state.crtc_mask); 14294 14295 return; 14296 } 14297 14298 crtc_mask = drm_crtc_mask(&crtc->base); 14299 14300 if (new_crtc_state->hw.active) 14301 I915_STATE_WARN(!(pll->active_mask & crtc_mask), 14302 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n", 14303 pipe_name(crtc->pipe), pll->active_mask); 14304 else 14305 I915_STATE_WARN(pll->active_mask & crtc_mask, 14306 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n", 14307 pipe_name(crtc->pipe), pll->active_mask); 14308 14309 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask), 14310 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n", 14311 crtc_mask, pll->state.crtc_mask); 14312 14313 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 14314 &dpll_hw_state, 14315 sizeof(dpll_hw_state)), 14316 "pll hw state mismatch\n"); 14317 } 14318 14319 static void 14320 verify_shared_dpll_state(struct intel_crtc *crtc, 14321 struct intel_crtc_state *old_crtc_state, 14322 struct intel_crtc_state *new_crtc_state) 14323 { 14324 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14325 14326 if (new_crtc_state->shared_dpll) 14327 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 14328 14329 if (old_crtc_state->shared_dpll && 14330 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 14331 unsigned int crtc_mask = drm_crtc_mask(&crtc->base); 14332 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 14333 14334 I915_STATE_WARN(pll->active_mask & crtc_mask, 14335 "pll active mismatch (didn't expect pipe %c in active mask)\n", 14336 pipe_name(crtc->pipe)); 14337 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask, 14338 "pll enabled crtcs mismatch (found %x in enabled mask)\n", 14339 pipe_name(crtc->pipe)); 14340 } 14341 } 14342 14343 static void 14344 intel_modeset_verify_crtc(struct intel_crtc *crtc, 14345 struct intel_atomic_state *state, 14346 struct intel_crtc_state *old_crtc_state, 14347 struct intel_crtc_state *new_crtc_state) 14348 { 14349 if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 14350 return; 14351 14352 verify_wm_state(crtc, new_crtc_state); 14353 verify_connector_state(state, crtc); 14354 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 14355 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 14356 } 14357 14358 static void 14359 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 14360 { 14361 int i; 14362 14363 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) 14364 verify_single_dpll_state(dev_priv, 14365 &dev_priv->dpll.shared_dplls[i], 14366 NULL, NULL); 14367 } 14368 14369 static void 14370 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 14371 struct intel_atomic_state *state) 14372 { 14373 verify_encoder_state(dev_priv, state); 14374 verify_connector_state(state, NULL); 14375 verify_disabled_dpll_state(dev_priv); 14376 } 14377 14378 static void 14379 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) 14380 { 14381 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 14382 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14383 const struct drm_display_mode *adjusted_mode = 14384 &crtc_state->hw.adjusted_mode; 14385 14386 drm_calc_timestamping_constants(&crtc->base, adjusted_mode); 14387 14388 /* 14389 * The scanline counter increments at the leading edge of hsync. 14390 * 14391 * On most platforms it starts counting from vtotal-1 on the 14392 * first active line. That means the scanline counter value is 14393 * always one less than what we would expect. Ie. just after 14394 * start of vblank, which also occurs at start of hsync (on the 14395 * last active line), the scanline counter will read vblank_start-1. 14396 * 14397 * On gen2 the scanline counter starts counting from 1 instead 14398 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 14399 * to keep the value positive), instead of adding one. 14400 * 14401 * On HSW+ the behaviour of the scanline counter depends on the output 14402 * type. For DP ports it behaves like most other platforms, but on HDMI 14403 * there's an extra 1 line difference. So we need to add two instead of 14404 * one to the value. 14405 * 14406 * On VLV/CHV DSI the scanline counter would appear to increment 14407 * approx. 1/3 of a scanline before start of vblank. Unfortunately 14408 * that means we can't tell whether we're in vblank or not while 14409 * we're on that particular line. We must still set scanline_offset 14410 * to 1 so that the vblank timestamps come out correct when we query 14411 * the scanline counter from within the vblank interrupt handler. 14412 * However if queried just before the start of vblank we'll get an 14413 * answer that's slightly in the future. 14414 */ 14415 if (IS_GEN(dev_priv, 2)) { 14416 int vtotal; 14417 14418 vtotal = adjusted_mode->crtc_vtotal; 14419 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 14420 vtotal /= 2; 14421 14422 crtc->scanline_offset = vtotal - 1; 14423 } else if (HAS_DDI(dev_priv) && 14424 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 14425 crtc->scanline_offset = 2; 14426 } else { 14427 crtc->scanline_offset = 1; 14428 } 14429 } 14430 14431 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 14432 { 14433 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14434 struct intel_crtc_state *new_crtc_state; 14435 struct intel_crtc *crtc; 14436 int i; 14437 14438 if (!dev_priv->display.crtc_compute_clock) 14439 return; 14440 14441 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14442 if (!needs_modeset(new_crtc_state)) 14443 continue; 14444 14445 intel_release_shared_dplls(state, crtc); 14446 } 14447 } 14448 14449 /* 14450 * This implements the workaround described in the "notes" section of the mode 14451 * set sequence documentation. When going from no pipes or single pipe to 14452 * multiple pipes, and planes are enabled after the pipe, we need to wait at 14453 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 14454 */ 14455 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) 14456 { 14457 struct intel_crtc_state *crtc_state; 14458 struct intel_crtc *crtc; 14459 struct intel_crtc_state *first_crtc_state = NULL; 14460 struct intel_crtc_state *other_crtc_state = NULL; 14461 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 14462 int i; 14463 14464 /* look at all crtc's that are going to be enabled in during modeset */ 14465 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14466 if (!crtc_state->hw.active || 14467 !needs_modeset(crtc_state)) 14468 continue; 14469 14470 if (first_crtc_state) { 14471 other_crtc_state = crtc_state; 14472 break; 14473 } else { 14474 first_crtc_state = crtc_state; 14475 first_pipe = crtc->pipe; 14476 } 14477 } 14478 14479 /* No workaround needed? */ 14480 if (!first_crtc_state) 14481 return 0; 14482 14483 /* w/a possibly needed, check how many crtc's are already enabled. */ 14484 for_each_intel_crtc(state->base.dev, crtc) { 14485 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 14486 if (IS_ERR(crtc_state)) 14487 return PTR_ERR(crtc_state); 14488 14489 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 14490 14491 if (!crtc_state->hw.active || 14492 needs_modeset(crtc_state)) 14493 continue; 14494 14495 /* 2 or more enabled crtcs means no need for w/a */ 14496 if (enabled_pipe != INVALID_PIPE) 14497 return 0; 14498 14499 enabled_pipe = crtc->pipe; 14500 } 14501 14502 if (enabled_pipe != INVALID_PIPE) 14503 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 14504 else if (other_crtc_state) 14505 other_crtc_state->hsw_workaround_pipe = first_pipe; 14506 14507 return 0; 14508 } 14509 14510 u8 intel_calc_active_pipes(struct intel_atomic_state *state, 14511 u8 active_pipes) 14512 { 14513 const struct intel_crtc_state *crtc_state; 14514 struct intel_crtc *crtc; 14515 int i; 14516 14517 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14518 if (crtc_state->hw.active) 14519 active_pipes |= BIT(crtc->pipe); 14520 else 14521 active_pipes &= ~BIT(crtc->pipe); 14522 } 14523 14524 return active_pipes; 14525 } 14526 14527 static int intel_modeset_checks(struct intel_atomic_state *state) 14528 { 14529 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14530 int ret; 14531 14532 state->modeset = true; 14533 state->active_pipes = intel_calc_active_pipes(state, dev_priv->active_pipes); 14534 14535 state->active_pipe_changes = state->active_pipes ^ dev_priv->active_pipes; 14536 14537 if (state->active_pipe_changes) { 14538 ret = _intel_atomic_lock_global_state(state); 14539 if (ret) 14540 return ret; 14541 } 14542 14543 ret = intel_modeset_calc_cdclk(state); 14544 if (ret) 14545 return ret; 14546 14547 intel_modeset_clear_plls(state); 14548 14549 if (IS_HASWELL(dev_priv)) 14550 return hsw_mode_set_planes_workaround(state); 14551 14552 return 0; 14553 } 14554 14555 /* 14556 * Handle calculation of various watermark data at the end of the atomic check 14557 * phase. The code here should be run after the per-crtc and per-plane 'check' 14558 * handlers to ensure that all derived state has been updated. 14559 */ 14560 static int calc_watermark_data(struct intel_atomic_state *state) 14561 { 14562 struct drm_device *dev = state->base.dev; 14563 struct drm_i915_private *dev_priv = to_i915(dev); 14564 14565 /* Is there platform-specific watermark information to calculate? */ 14566 if (dev_priv->display.compute_global_watermarks) 14567 return dev_priv->display.compute_global_watermarks(state); 14568 14569 return 0; 14570 } 14571 14572 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 14573 struct intel_crtc_state *new_crtc_state) 14574 { 14575 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 14576 return; 14577 14578 new_crtc_state->uapi.mode_changed = false; 14579 new_crtc_state->update_pipe = true; 14580 } 14581 14582 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state, 14583 struct intel_crtc_state *new_crtc_state) 14584 { 14585 /* 14586 * If we're not doing the full modeset we want to 14587 * keep the current M/N values as they may be 14588 * sufficiently different to the computed values 14589 * to cause problems. 14590 * 14591 * FIXME: should really copy more fuzzy state here 14592 */ 14593 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 14594 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 14595 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 14596 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 14597 } 14598 14599 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, 14600 struct intel_crtc *crtc, 14601 u8 plane_ids_mask) 14602 { 14603 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14604 struct intel_plane *plane; 14605 14606 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 14607 struct intel_plane_state *plane_state; 14608 14609 if ((plane_ids_mask & BIT(plane->id)) == 0) 14610 continue; 14611 14612 plane_state = intel_atomic_get_plane_state(state, plane); 14613 if (IS_ERR(plane_state)) 14614 return PTR_ERR(plane_state); 14615 } 14616 14617 return 0; 14618 } 14619 14620 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) 14621 { 14622 /* See {hsw,vlv,ivb}_plane_ratio() */ 14623 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || 14624 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || 14625 IS_IVYBRIDGE(dev_priv); 14626 } 14627 14628 static int intel_atomic_check_planes(struct intel_atomic_state *state, 14629 bool *need_cdclk_calc) 14630 { 14631 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14632 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 14633 struct intel_plane_state *plane_state; 14634 struct intel_plane *plane; 14635 struct intel_crtc *crtc; 14636 int i, ret; 14637 14638 ret = icl_add_linked_planes(state); 14639 if (ret) 14640 return ret; 14641 14642 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 14643 ret = intel_plane_atomic_check(state, plane); 14644 if (ret) { 14645 drm_dbg_atomic(&dev_priv->drm, 14646 "[PLANE:%d:%s] atomic driver check failed\n", 14647 plane->base.base.id, plane->base.name); 14648 return ret; 14649 } 14650 } 14651 14652 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14653 new_crtc_state, i) { 14654 u8 old_active_planes, new_active_planes; 14655 14656 ret = icl_check_nv12_planes(new_crtc_state); 14657 if (ret) 14658 return ret; 14659 14660 /* 14661 * On some platforms the number of active planes affects 14662 * the planes' minimum cdclk calculation. Add such planes 14663 * to the state before we compute the minimum cdclk. 14664 */ 14665 if (!active_planes_affects_min_cdclk(dev_priv)) 14666 continue; 14667 14668 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 14669 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 14670 14671 if (hweight8(old_active_planes) == hweight8(new_active_planes)) 14672 continue; 14673 14674 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); 14675 if (ret) 14676 return ret; 14677 } 14678 14679 /* 14680 * active_planes bitmask has been updated, and potentially 14681 * affected planes are part of the state. We can now 14682 * compute the minimum cdclk for each plane. 14683 */ 14684 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 14685 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 14686 if (ret) 14687 return ret; 14688 } 14689 14690 return 0; 14691 } 14692 14693 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 14694 { 14695 struct intel_crtc_state *crtc_state; 14696 struct intel_crtc *crtc; 14697 int i; 14698 14699 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14700 int ret = intel_crtc_atomic_check(state, crtc); 14701 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 14702 if (ret) { 14703 drm_dbg_atomic(&i915->drm, 14704 "[CRTC:%d:%s] atomic driver check failed\n", 14705 crtc->base.base.id, crtc->base.name); 14706 return ret; 14707 } 14708 } 14709 14710 return 0; 14711 } 14712 14713 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, 14714 u8 transcoders) 14715 { 14716 const struct intel_crtc_state *new_crtc_state; 14717 struct intel_crtc *crtc; 14718 int i; 14719 14720 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14721 if (new_crtc_state->hw.enable && 14722 transcoders & BIT(new_crtc_state->cpu_transcoder) && 14723 needs_modeset(new_crtc_state)) 14724 return true; 14725 } 14726 14727 return false; 14728 } 14729 14730 /** 14731 * intel_atomic_check - validate state object 14732 * @dev: drm device 14733 * @_state: state to validate 14734 */ 14735 static int intel_atomic_check(struct drm_device *dev, 14736 struct drm_atomic_state *_state) 14737 { 14738 struct drm_i915_private *dev_priv = to_i915(dev); 14739 struct intel_atomic_state *state = to_intel_atomic_state(_state); 14740 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 14741 struct intel_cdclk_state *new_cdclk_state; 14742 struct intel_crtc *crtc; 14743 int ret, i; 14744 bool any_ms = false; 14745 14746 /* Catch I915_MODE_FLAG_INHERITED */ 14747 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14748 new_crtc_state, i) { 14749 if (new_crtc_state->uapi.mode.private_flags != 14750 old_crtc_state->uapi.mode.private_flags) 14751 new_crtc_state->uapi.mode_changed = true; 14752 } 14753 14754 ret = drm_atomic_helper_check_modeset(dev, &state->base); 14755 if (ret) 14756 goto fail; 14757 14758 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14759 new_crtc_state, i) { 14760 if (!needs_modeset(new_crtc_state)) { 14761 /* Light copy */ 14762 intel_crtc_copy_uapi_to_hw_state_nomodeset(new_crtc_state); 14763 14764 continue; 14765 } 14766 14767 ret = intel_crtc_prepare_cleared_state(new_crtc_state); 14768 if (ret) 14769 goto fail; 14770 14771 if (!new_crtc_state->hw.enable) 14772 continue; 14773 14774 ret = intel_modeset_pipe_config(new_crtc_state); 14775 if (ret) 14776 goto fail; 14777 } 14778 14779 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14780 new_crtc_state, i) { 14781 if (!needs_modeset(new_crtc_state)) 14782 continue; 14783 14784 ret = intel_modeset_pipe_config_late(new_crtc_state); 14785 if (ret) 14786 goto fail; 14787 14788 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 14789 } 14790 14791 /** 14792 * Check if fastset is allowed by external dependencies like other 14793 * pipes and transcoders. 14794 * 14795 * Right now it only forces a fullmodeset when the MST master 14796 * transcoder did not changed but the pipe of the master transcoder 14797 * needs a fullmodeset so all slaves also needs to do a fullmodeset or 14798 * in case of port synced crtcs, if one of the synced crtcs 14799 * needs a full modeset, all other synced crtcs should be 14800 * forced a full modeset. 14801 */ 14802 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14803 if (!new_crtc_state->hw.enable || needs_modeset(new_crtc_state)) 14804 continue; 14805 14806 if (intel_dp_mst_is_slave_trans(new_crtc_state)) { 14807 enum transcoder master = new_crtc_state->mst_master_transcoder; 14808 14809 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) { 14810 new_crtc_state->uapi.mode_changed = true; 14811 new_crtc_state->update_pipe = false; 14812 } 14813 } 14814 14815 if (is_trans_port_sync_mode(new_crtc_state)) { 14816 u8 trans = new_crtc_state->sync_mode_slaves_mask; 14817 14818 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) 14819 trans |= BIT(new_crtc_state->master_transcoder); 14820 14821 if (intel_cpu_transcoders_need_modeset(state, trans)) { 14822 new_crtc_state->uapi.mode_changed = true; 14823 new_crtc_state->update_pipe = false; 14824 } 14825 } 14826 } 14827 14828 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14829 new_crtc_state, i) { 14830 if (needs_modeset(new_crtc_state)) { 14831 any_ms = true; 14832 continue; 14833 } 14834 14835 if (!new_crtc_state->update_pipe) 14836 continue; 14837 14838 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state); 14839 } 14840 14841 if (any_ms && !check_digital_port_conflicts(state)) { 14842 drm_dbg_kms(&dev_priv->drm, 14843 "rejecting conflicting digital port configuration\n"); 14844 ret = EINVAL; 14845 goto fail; 14846 } 14847 14848 ret = drm_dp_mst_atomic_check(&state->base); 14849 if (ret) 14850 goto fail; 14851 14852 ret = intel_atomic_check_planes(state, &any_ms); 14853 if (ret) 14854 goto fail; 14855 14856 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 14857 if (new_cdclk_state && new_cdclk_state->force_min_cdclk_changed) 14858 any_ms = true; 14859 14860 /* 14861 * distrust_bios_wm will force a full dbuf recomputation 14862 * but the hardware state will only get updated accordingly 14863 * if state->modeset==true. Hence distrust_bios_wm==true && 14864 * state->modeset==false is an invalid combination which 14865 * would cause the hardware and software dbuf state to get 14866 * out of sync. We must prevent that. 14867 * 14868 * FIXME clean up this mess and introduce better 14869 * state tracking for dbuf. 14870 */ 14871 if (dev_priv->wm.distrust_bios_wm) 14872 any_ms = true; 14873 14874 if (any_ms) { 14875 ret = intel_modeset_checks(state); 14876 if (ret) 14877 goto fail; 14878 } 14879 14880 ret = intel_atomic_check_crtcs(state); 14881 if (ret) 14882 goto fail; 14883 14884 intel_fbc_choose_crtc(dev_priv, state); 14885 ret = calc_watermark_data(state); 14886 if (ret) 14887 goto fail; 14888 14889 ret = intel_bw_atomic_check(state); 14890 if (ret) 14891 goto fail; 14892 14893 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14894 new_crtc_state, i) { 14895 if (!needs_modeset(new_crtc_state) && 14896 !new_crtc_state->update_pipe) 14897 continue; 14898 14899 intel_dump_pipe_config(new_crtc_state, state, 14900 needs_modeset(new_crtc_state) ? 14901 "[modeset]" : "[fastset]"); 14902 } 14903 14904 return 0; 14905 14906 fail: 14907 if (ret == -EDEADLK) 14908 return ret; 14909 14910 /* 14911 * FIXME would probably be nice to know which crtc specifically 14912 * caused the failure, in cases where we can pinpoint it. 14913 */ 14914 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14915 new_crtc_state, i) 14916 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 14917 14918 return ret; 14919 } 14920 14921 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 14922 { 14923 return drm_atomic_helper_prepare_planes(state->base.dev, 14924 &state->base); 14925 } 14926 14927 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc) 14928 { 14929 struct drm_device *dev = crtc->base.dev; 14930 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)]; 14931 14932 if (!vblank->max_vblank_count) 14933 return (u32)drm_crtc_accurate_vblank_count(&crtc->base); 14934 14935 return crtc->base.funcs->get_vblank_counter(&crtc->base); 14936 } 14937 14938 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 14939 struct intel_crtc_state *crtc_state) 14940 { 14941 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14942 14943 if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes) 14944 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 14945 14946 if (crtc_state->has_pch_encoder) { 14947 enum pipe pch_transcoder = 14948 intel_crtc_pch_transcoder(crtc); 14949 14950 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 14951 } 14952 } 14953 14954 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 14955 const struct intel_crtc_state *new_crtc_state) 14956 { 14957 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 14958 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14959 14960 /* 14961 * Update pipe size and adjust fitter if needed: the reason for this is 14962 * that in compute_mode_changes we check the native mode (not the pfit 14963 * mode) to see if we can flip rather than do a full mode set. In the 14964 * fastboot case, we'll flip, but if we don't update the pipesrc and 14965 * pfit state, we'll end up with a big fb scanned out into the wrong 14966 * sized surface. 14967 */ 14968 intel_set_pipe_src_size(new_crtc_state); 14969 14970 /* on skylake this is done by detaching scalers */ 14971 if (INTEL_GEN(dev_priv) >= 9) { 14972 skl_detach_scalers(new_crtc_state); 14973 14974 if (new_crtc_state->pch_pfit.enabled) 14975 skl_pfit_enable(new_crtc_state); 14976 } else if (HAS_PCH_SPLIT(dev_priv)) { 14977 if (new_crtc_state->pch_pfit.enabled) 14978 ilk_pfit_enable(new_crtc_state); 14979 else if (old_crtc_state->pch_pfit.enabled) 14980 ilk_pfit_disable(old_crtc_state); 14981 } 14982 14983 /* 14984 * The register is supposedly single buffered so perhaps 14985 * not 100% correct to do this here. But SKL+ calculate 14986 * this based on the adjust pixel rate so pfit changes do 14987 * affect it and so it must be updated for fastsets. 14988 * HSW/BDW only really need this here for fastboot, after 14989 * that the value should not change without a full modeset. 14990 */ 14991 if (INTEL_GEN(dev_priv) >= 9 || 14992 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 14993 hsw_set_linetime_wm(new_crtc_state); 14994 14995 if (INTEL_GEN(dev_priv) >= 11) 14996 icl_set_pipe_chicken(crtc); 14997 } 14998 14999 static void commit_pipe_config(struct intel_atomic_state *state, 15000 struct intel_crtc_state *old_crtc_state, 15001 struct intel_crtc_state *new_crtc_state) 15002 { 15003 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 15004 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15005 bool modeset = needs_modeset(new_crtc_state); 15006 15007 /* 15008 * During modesets pipe configuration was programmed as the 15009 * CRTC was enabled. 15010 */ 15011 if (!modeset) { 15012 if (new_crtc_state->uapi.color_mgmt_changed || 15013 new_crtc_state->update_pipe) 15014 intel_color_commit(new_crtc_state); 15015 15016 if (INTEL_GEN(dev_priv) >= 9) 15017 skl_detach_scalers(new_crtc_state); 15018 15019 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 15020 bdw_set_pipemisc(new_crtc_state); 15021 15022 if (new_crtc_state->update_pipe) 15023 intel_pipe_fastset(old_crtc_state, new_crtc_state); 15024 } 15025 15026 if (dev_priv->display.atomic_update_watermarks) 15027 dev_priv->display.atomic_update_watermarks(state, crtc); 15028 } 15029 15030 static void intel_update_crtc(struct intel_crtc *crtc, 15031 struct intel_atomic_state *state, 15032 struct intel_crtc_state *old_crtc_state, 15033 struct intel_crtc_state *new_crtc_state) 15034 { 15035 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15036 bool modeset = needs_modeset(new_crtc_state); 15037 15038 if (modeset) { 15039 intel_crtc_update_active_timings(new_crtc_state); 15040 15041 dev_priv->display.crtc_enable(state, crtc); 15042 15043 /* vblanks work again, re-enable pipe CRC. */ 15044 intel_crtc_enable_pipe_crc(crtc); 15045 } else { 15046 if (new_crtc_state->preload_luts && 15047 (new_crtc_state->uapi.color_mgmt_changed || 15048 new_crtc_state->update_pipe)) 15049 intel_color_load_luts(new_crtc_state); 15050 15051 intel_pre_plane_update(state, crtc); 15052 15053 if (new_crtc_state->update_pipe) 15054 intel_encoders_update_pipe(state, crtc); 15055 } 15056 15057 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 15058 intel_fbc_disable(crtc); 15059 else 15060 intel_fbc_enable(state, crtc); 15061 15062 /* Perform vblank evasion around commit operation */ 15063 intel_pipe_update_start(new_crtc_state); 15064 15065 commit_pipe_config(state, old_crtc_state, new_crtc_state); 15066 15067 if (INTEL_GEN(dev_priv) >= 9) 15068 skl_update_planes_on_crtc(state, crtc); 15069 else 15070 i9xx_update_planes_on_crtc(state, crtc); 15071 15072 intel_pipe_update_end(new_crtc_state); 15073 15074 /* 15075 * We usually enable FIFO underrun interrupts as part of the 15076 * CRTC enable sequence during modesets. But when we inherit a 15077 * valid pipe configuration from the BIOS we need to take care 15078 * of enabling them on the CRTC's first fastset. 15079 */ 15080 if (new_crtc_state->update_pipe && !modeset && 15081 old_crtc_state->hw.mode.private_flags & I915_MODE_FLAG_INHERITED) 15082 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 15083 } 15084 15085 static struct intel_crtc *intel_get_slave_crtc(const struct intel_crtc_state *new_crtc_state) 15086 { 15087 struct drm_i915_private *dev_priv = to_i915(new_crtc_state->uapi.crtc->dev); 15088 enum transcoder slave_transcoder; 15089 15090 drm_WARN_ON(&dev_priv->drm, 15091 !is_power_of_2(new_crtc_state->sync_mode_slaves_mask)); 15092 15093 slave_transcoder = ffs(new_crtc_state->sync_mode_slaves_mask) - 1; 15094 return intel_get_crtc_for_pipe(dev_priv, 15095 (enum pipe)slave_transcoder); 15096 } 15097 15098 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 15099 struct intel_crtc_state *old_crtc_state, 15100 struct intel_crtc_state *new_crtc_state, 15101 struct intel_crtc *crtc) 15102 { 15103 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15104 15105 intel_crtc_disable_planes(state, crtc); 15106 15107 /* 15108 * We need to disable pipe CRC before disabling the pipe, 15109 * or we race against vblank off. 15110 */ 15111 intel_crtc_disable_pipe_crc(crtc); 15112 15113 dev_priv->display.crtc_disable(state, crtc); 15114 crtc->active = false; 15115 intel_fbc_disable(crtc); 15116 intel_disable_shared_dpll(old_crtc_state); 15117 15118 /* FIXME unify this for all platforms */ 15119 if (!new_crtc_state->hw.active && 15120 !HAS_GMCH(dev_priv) && 15121 dev_priv->display.initial_watermarks) 15122 dev_priv->display.initial_watermarks(state, crtc); 15123 } 15124 15125 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 15126 { 15127 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 15128 struct intel_crtc *crtc; 15129 u32 handled = 0; 15130 int i; 15131 15132 /* Only disable port sync and MST slaves */ 15133 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15134 new_crtc_state, i) { 15135 if (!needs_modeset(new_crtc_state)) 15136 continue; 15137 15138 if (!old_crtc_state->hw.active) 15139 continue; 15140 15141 /* In case of Transcoder port Sync master slave CRTCs can be 15142 * assigned in any order and we need to make sure that 15143 * slave CRTCs are disabled first and then master CRTC since 15144 * Slave vblanks are masked till Master Vblanks. 15145 */ 15146 if (!is_trans_port_sync_slave(old_crtc_state) && 15147 !intel_dp_mst_is_slave_trans(old_crtc_state)) 15148 continue; 15149 15150 intel_pre_plane_update(state, crtc); 15151 intel_old_crtc_state_disables(state, old_crtc_state, 15152 new_crtc_state, crtc); 15153 handled |= BIT(crtc->pipe); 15154 } 15155 15156 /* Disable everything else left on */ 15157 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15158 new_crtc_state, i) { 15159 if (!needs_modeset(new_crtc_state) || 15160 (handled & BIT(crtc->pipe))) 15161 continue; 15162 15163 intel_pre_plane_update(state, crtc); 15164 if (old_crtc_state->hw.active) 15165 intel_old_crtc_state_disables(state, old_crtc_state, 15166 new_crtc_state, crtc); 15167 } 15168 } 15169 15170 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 15171 { 15172 struct intel_crtc *crtc; 15173 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 15174 int i; 15175 15176 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 15177 if (!new_crtc_state->hw.active) 15178 continue; 15179 15180 intel_update_crtc(crtc, state, old_crtc_state, 15181 new_crtc_state); 15182 } 15183 } 15184 15185 static void intel_crtc_enable_trans_port_sync(struct intel_crtc *crtc, 15186 struct intel_atomic_state *state, 15187 struct intel_crtc_state *new_crtc_state) 15188 { 15189 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15190 15191 intel_crtc_update_active_timings(new_crtc_state); 15192 dev_priv->display.crtc_enable(state, crtc); 15193 intel_crtc_enable_pipe_crc(crtc); 15194 } 15195 15196 static void intel_set_dp_tp_ctl_normal(struct intel_crtc *crtc, 15197 struct intel_atomic_state *state) 15198 { 15199 struct drm_connector *uninitialized_var(conn); 15200 struct drm_connector_state *conn_state; 15201 struct intel_dp *intel_dp; 15202 int i; 15203 15204 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 15205 if (conn_state->crtc == &crtc->base) 15206 break; 15207 } 15208 intel_dp = intel_attached_dp(to_intel_connector(conn)); 15209 intel_dp_stop_link_train(intel_dp); 15210 } 15211 15212 /* 15213 * TODO: This is only called from port sync and it is identical to what will be 15214 * executed again in intel_update_crtc() over port sync pipes 15215 */ 15216 static void intel_post_crtc_enable_updates(struct intel_crtc *crtc, 15217 struct intel_atomic_state *state) 15218 { 15219 struct intel_crtc_state *new_crtc_state = 15220 intel_atomic_get_new_crtc_state(state, crtc); 15221 struct intel_crtc_state *old_crtc_state = 15222 intel_atomic_get_old_crtc_state(state, crtc); 15223 bool modeset = needs_modeset(new_crtc_state); 15224 15225 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 15226 intel_fbc_disable(crtc); 15227 else 15228 intel_fbc_enable(state, crtc); 15229 15230 /* Perform vblank evasion around commit operation */ 15231 intel_pipe_update_start(new_crtc_state); 15232 commit_pipe_config(state, old_crtc_state, new_crtc_state); 15233 skl_update_planes_on_crtc(state, crtc); 15234 intel_pipe_update_end(new_crtc_state); 15235 15236 /* 15237 * We usually enable FIFO underrun interrupts as part of the 15238 * CRTC enable sequence during modesets. But when we inherit a 15239 * valid pipe configuration from the BIOS we need to take care 15240 * of enabling them on the CRTC's first fastset. 15241 */ 15242 if (new_crtc_state->update_pipe && !modeset && 15243 old_crtc_state->hw.mode.private_flags & I915_MODE_FLAG_INHERITED) 15244 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 15245 } 15246 15247 static void intel_update_trans_port_sync_crtcs(struct intel_crtc *crtc, 15248 struct intel_atomic_state *state, 15249 struct intel_crtc_state *old_crtc_state, 15250 struct intel_crtc_state *new_crtc_state) 15251 { 15252 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 15253 struct intel_crtc *slave_crtc = intel_get_slave_crtc(new_crtc_state); 15254 struct intel_crtc_state *new_slave_crtc_state = 15255 intel_atomic_get_new_crtc_state(state, slave_crtc); 15256 struct intel_crtc_state *old_slave_crtc_state = 15257 intel_atomic_get_old_crtc_state(state, slave_crtc); 15258 15259 drm_WARN_ON(&i915->drm, !slave_crtc || !new_slave_crtc_state || 15260 !old_slave_crtc_state); 15261 15262 drm_dbg_kms(&i915->drm, 15263 "Updating Transcoder Port Sync Master CRTC = %d %s and Slave CRTC %d %s\n", 15264 crtc->base.base.id, crtc->base.name, 15265 slave_crtc->base.base.id, slave_crtc->base.name); 15266 15267 /* Enable seq for slave with with DP_TP_CTL left Idle until the 15268 * master is ready 15269 */ 15270 intel_crtc_enable_trans_port_sync(slave_crtc, 15271 state, 15272 new_slave_crtc_state); 15273 15274 /* Enable seq for master with with DP_TP_CTL left Idle */ 15275 intel_crtc_enable_trans_port_sync(crtc, 15276 state, 15277 new_crtc_state); 15278 15279 /* Set Slave's DP_TP_CTL to Normal */ 15280 intel_set_dp_tp_ctl_normal(slave_crtc, 15281 state); 15282 15283 /* Set Master's DP_TP_CTL To Normal */ 15284 usleep_range(200, 400); 15285 intel_set_dp_tp_ctl_normal(crtc, 15286 state); 15287 15288 /* Now do the post crtc enable for all master and slaves */ 15289 intel_post_crtc_enable_updates(slave_crtc, 15290 state); 15291 intel_post_crtc_enable_updates(crtc, 15292 state); 15293 } 15294 15295 static void icl_dbuf_slice_pre_update(struct intel_atomic_state *state) 15296 { 15297 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15298 u8 hw_enabled_slices = dev_priv->enabled_dbuf_slices_mask; 15299 u8 required_slices = state->enabled_dbuf_slices_mask; 15300 u8 slices_union = hw_enabled_slices | required_slices; 15301 15302 /* If 2nd DBuf slice required, enable it here */ 15303 if (INTEL_GEN(dev_priv) >= 11 && slices_union != hw_enabled_slices) 15304 icl_dbuf_slices_update(dev_priv, slices_union); 15305 } 15306 15307 static void icl_dbuf_slice_post_update(struct intel_atomic_state *state) 15308 { 15309 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15310 u8 hw_enabled_slices = dev_priv->enabled_dbuf_slices_mask; 15311 u8 required_slices = state->enabled_dbuf_slices_mask; 15312 15313 /* If 2nd DBuf slice is no more required disable it */ 15314 if (INTEL_GEN(dev_priv) >= 11 && required_slices != hw_enabled_slices) 15315 icl_dbuf_slices_update(dev_priv, required_slices); 15316 } 15317 15318 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 15319 { 15320 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15321 struct intel_crtc *crtc; 15322 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 15323 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 15324 u8 update_pipes = 0, modeset_pipes = 0; 15325 int i; 15326 15327 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 15328 enum pipe pipe = crtc->pipe; 15329 15330 if (!new_crtc_state->hw.active) 15331 continue; 15332 15333 /* ignore allocations for crtc's that have been turned off. */ 15334 if (!needs_modeset(new_crtc_state)) { 15335 entries[pipe] = old_crtc_state->wm.skl.ddb; 15336 update_pipes |= BIT(pipe); 15337 } else { 15338 modeset_pipes |= BIT(pipe); 15339 } 15340 } 15341 15342 /* 15343 * Whenever the number of active pipes changes, we need to make sure we 15344 * update the pipes in the right order so that their ddb allocations 15345 * never overlap with each other between CRTC updates. Otherwise we'll 15346 * cause pipe underruns and other bad stuff. 15347 * 15348 * So first lets enable all pipes that do not need a fullmodeset as 15349 * those don't have any external dependency. 15350 */ 15351 while (update_pipes) { 15352 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15353 new_crtc_state, i) { 15354 enum pipe pipe = crtc->pipe; 15355 15356 if ((update_pipes & BIT(pipe)) == 0) 15357 continue; 15358 15359 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 15360 entries, I915_MAX_PIPES, pipe)) 15361 continue; 15362 15363 entries[pipe] = new_crtc_state->wm.skl.ddb; 15364 update_pipes &= ~BIT(pipe); 15365 15366 intel_update_crtc(crtc, state, old_crtc_state, 15367 new_crtc_state); 15368 15369 /* 15370 * If this is an already active pipe, it's DDB changed, 15371 * and this isn't the last pipe that needs updating 15372 * then we need to wait for a vblank to pass for the 15373 * new ddb allocation to take effect. 15374 */ 15375 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 15376 &old_crtc_state->wm.skl.ddb) && 15377 (update_pipes | modeset_pipes)) 15378 intel_wait_for_vblank(dev_priv, pipe); 15379 } 15380 } 15381 15382 /* 15383 * Enable all pipes that needs a modeset and do not depends on other 15384 * pipes 15385 */ 15386 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15387 new_crtc_state, i) { 15388 enum pipe pipe = crtc->pipe; 15389 15390 if ((modeset_pipes & BIT(pipe)) == 0) 15391 continue; 15392 15393 if (intel_dp_mst_is_slave_trans(new_crtc_state) || 15394 is_trans_port_sync_slave(new_crtc_state)) 15395 continue; 15396 15397 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 15398 entries, I915_MAX_PIPES, pipe)); 15399 15400 entries[pipe] = new_crtc_state->wm.skl.ddb; 15401 modeset_pipes &= ~BIT(pipe); 15402 15403 if (is_trans_port_sync_mode(new_crtc_state)) { 15404 struct intel_crtc *slave_crtc; 15405 15406 intel_update_trans_port_sync_crtcs(crtc, state, 15407 old_crtc_state, 15408 new_crtc_state); 15409 15410 slave_crtc = intel_get_slave_crtc(new_crtc_state); 15411 /* TODO: update entries[] of slave */ 15412 modeset_pipes &= ~BIT(slave_crtc->pipe); 15413 15414 } else { 15415 intel_update_crtc(crtc, state, old_crtc_state, 15416 new_crtc_state); 15417 } 15418 } 15419 15420 /* 15421 * Finally enable all pipes that needs a modeset and depends on 15422 * other pipes, right now it is only MST slaves as both port sync slave 15423 * and master are enabled together 15424 */ 15425 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15426 new_crtc_state, i) { 15427 enum pipe pipe = crtc->pipe; 15428 15429 if ((modeset_pipes & BIT(pipe)) == 0) 15430 continue; 15431 15432 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 15433 entries, I915_MAX_PIPES, pipe)); 15434 15435 entries[pipe] = new_crtc_state->wm.skl.ddb; 15436 modeset_pipes &= ~BIT(pipe); 15437 15438 intel_update_crtc(crtc, state, old_crtc_state, new_crtc_state); 15439 } 15440 15441 drm_WARN_ON(&dev_priv->drm, modeset_pipes); 15442 15443 } 15444 15445 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 15446 { 15447 struct intel_atomic_state *state, *next; 15448 struct llist_node *freed; 15449 15450 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 15451 llist_for_each_entry_safe(state, next, freed, freed) 15452 drm_atomic_state_put(&state->base); 15453 } 15454 15455 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 15456 { 15457 struct drm_i915_private *dev_priv = 15458 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 15459 15460 intel_atomic_helper_free_state(dev_priv); 15461 } 15462 15463 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 15464 { 15465 struct wait_queue_entry wait_fence, wait_reset; 15466 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 15467 15468 init_wait_entry(&wait_fence, 0); 15469 init_wait_entry(&wait_reset, 0); 15470 for (;;) { 15471 prepare_to_wait(&intel_state->commit_ready.wait, 15472 &wait_fence, TASK_UNINTERRUPTIBLE); 15473 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 15474 I915_RESET_MODESET), 15475 &wait_reset, TASK_UNINTERRUPTIBLE); 15476 15477 15478 if (i915_sw_fence_done(&intel_state->commit_ready) || 15479 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 15480 break; 15481 15482 schedule(); 15483 } 15484 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 15485 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 15486 I915_RESET_MODESET), 15487 &wait_reset); 15488 } 15489 15490 static void intel_atomic_cleanup_work(struct work_struct *work) 15491 { 15492 struct drm_atomic_state *state = 15493 container_of(work, struct drm_atomic_state, commit_work); 15494 struct drm_i915_private *i915 = to_i915(state->dev); 15495 15496 drm_atomic_helper_cleanup_planes(&i915->drm, state); 15497 drm_atomic_helper_commit_cleanup_done(state); 15498 drm_atomic_state_put(state); 15499 15500 intel_atomic_helper_free_state(i915); 15501 } 15502 15503 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 15504 { 15505 struct drm_device *dev = state->base.dev; 15506 struct drm_i915_private *dev_priv = to_i915(dev); 15507 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 15508 struct intel_crtc *crtc; 15509 u64 put_domains[I915_MAX_PIPES] = {}; 15510 intel_wakeref_t wakeref = 0; 15511 int i; 15512 15513 intel_atomic_commit_fence_wait(state); 15514 15515 drm_atomic_helper_wait_for_dependencies(&state->base); 15516 15517 if (state->modeset) 15518 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 15519 15520 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15521 new_crtc_state, i) { 15522 if (needs_modeset(new_crtc_state) || 15523 new_crtc_state->update_pipe) { 15524 15525 put_domains[crtc->pipe] = 15526 modeset_get_crtc_power_domains(new_crtc_state); 15527 } 15528 } 15529 15530 intel_commit_modeset_disables(state); 15531 15532 /* FIXME: Eventually get rid of our crtc->config pointer */ 15533 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 15534 crtc->config = new_crtc_state; 15535 15536 if (state->modeset) { 15537 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 15538 15539 intel_set_cdclk_pre_plane_update(state); 15540 15541 /* 15542 * SKL workaround: bspec recommends we disable the SAGV when we 15543 * have more then one pipe enabled 15544 */ 15545 if (!intel_can_enable_sagv(state)) 15546 intel_disable_sagv(dev_priv); 15547 15548 intel_modeset_verify_disabled(dev_priv, state); 15549 } 15550 15551 /* Complete the events for pipes that have now been disabled */ 15552 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15553 bool modeset = needs_modeset(new_crtc_state); 15554 15555 /* Complete events for now disable pipes here. */ 15556 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { 15557 spin_lock_irq(&dev->event_lock); 15558 drm_crtc_send_vblank_event(&crtc->base, 15559 new_crtc_state->uapi.event); 15560 spin_unlock_irq(&dev->event_lock); 15561 15562 new_crtc_state->uapi.event = NULL; 15563 } 15564 } 15565 15566 if (state->modeset) 15567 intel_encoders_update_prepare(state); 15568 15569 /* Enable all new slices, we might need */ 15570 if (state->modeset) 15571 icl_dbuf_slice_pre_update(state); 15572 15573 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 15574 dev_priv->display.commit_modeset_enables(state); 15575 15576 if (state->modeset) { 15577 intel_encoders_update_complete(state); 15578 15579 intel_set_cdclk_post_plane_update(state); 15580 } 15581 15582 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 15583 * already, but still need the state for the delayed optimization. To 15584 * fix this: 15585 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 15586 * - schedule that vblank worker _before_ calling hw_done 15587 * - at the start of commit_tail, cancel it _synchrously 15588 * - switch over to the vblank wait helper in the core after that since 15589 * we don't need out special handling any more. 15590 */ 15591 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 15592 15593 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15594 if (new_crtc_state->hw.active && 15595 !needs_modeset(new_crtc_state) && 15596 !new_crtc_state->preload_luts && 15597 (new_crtc_state->uapi.color_mgmt_changed || 15598 new_crtc_state->update_pipe)) 15599 intel_color_load_luts(new_crtc_state); 15600 } 15601 15602 /* 15603 * Now that the vblank has passed, we can go ahead and program the 15604 * optimal watermarks on platforms that need two-step watermark 15605 * programming. 15606 * 15607 * TODO: Move this (and other cleanup) to an async worker eventually. 15608 */ 15609 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15610 new_crtc_state, i) { 15611 /* 15612 * Gen2 reports pipe underruns whenever all planes are disabled. 15613 * So re-enable underrun reporting after some planes get enabled. 15614 * 15615 * We do this before .optimize_watermarks() so that we have a 15616 * chance of catching underruns with the intermediate watermarks 15617 * vs. the new plane configuration. 15618 */ 15619 if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state)) 15620 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 15621 15622 if (dev_priv->display.optimize_watermarks) 15623 dev_priv->display.optimize_watermarks(state, crtc); 15624 } 15625 15626 /* Disable all slices, we don't need */ 15627 if (state->modeset) 15628 icl_dbuf_slice_post_update(state); 15629 15630 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 15631 intel_post_plane_update(state, crtc); 15632 15633 if (put_domains[i]) 15634 modeset_put_power_domains(dev_priv, put_domains[i]); 15635 15636 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 15637 } 15638 15639 /* Underruns don't always raise interrupts, so check manually */ 15640 intel_check_cpu_fifo_underruns(dev_priv); 15641 intel_check_pch_fifo_underruns(dev_priv); 15642 15643 if (state->modeset) 15644 intel_verify_planes(state); 15645 15646 if (state->modeset && intel_can_enable_sagv(state)) 15647 intel_enable_sagv(dev_priv); 15648 15649 drm_atomic_helper_commit_hw_done(&state->base); 15650 15651 if (state->modeset) { 15652 /* As one of the primary mmio accessors, KMS has a high 15653 * likelihood of triggering bugs in unclaimed access. After we 15654 * finish modesetting, see if an error has been flagged, and if 15655 * so enable debugging for the next modeset - and hope we catch 15656 * the culprit. 15657 */ 15658 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 15659 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 15660 } 15661 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15662 15663 /* 15664 * Defer the cleanup of the old state to a separate worker to not 15665 * impede the current task (userspace for blocking modesets) that 15666 * are executed inline. For out-of-line asynchronous modesets/flips, 15667 * deferring to a new worker seems overkill, but we would place a 15668 * schedule point (cond_resched()) here anyway to keep latencies 15669 * down. 15670 */ 15671 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 15672 queue_work(system_highpri_wq, &state->base.commit_work); 15673 } 15674 15675 static void intel_atomic_commit_work(struct work_struct *work) 15676 { 15677 struct intel_atomic_state *state = 15678 container_of(work, struct intel_atomic_state, base.commit_work); 15679 15680 intel_atomic_commit_tail(state); 15681 } 15682 15683 static int __i915_sw_fence_call 15684 intel_atomic_commit_ready(struct i915_sw_fence *fence, 15685 enum i915_sw_fence_notify notify) 15686 { 15687 struct intel_atomic_state *state = 15688 container_of(fence, struct intel_atomic_state, commit_ready); 15689 15690 switch (notify) { 15691 case FENCE_COMPLETE: 15692 /* we do blocking waits in the worker, nothing to do here */ 15693 break; 15694 case FENCE_FREE: 15695 { 15696 struct intel_atomic_helper *helper = 15697 &to_i915(state->base.dev)->atomic_helper; 15698 15699 if (llist_add(&state->freed, &helper->free_list)) 15700 schedule_work(&helper->free_work); 15701 break; 15702 } 15703 } 15704 15705 return NOTIFY_DONE; 15706 } 15707 15708 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 15709 { 15710 struct intel_plane_state *old_plane_state, *new_plane_state; 15711 struct intel_plane *plane; 15712 int i; 15713 15714 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 15715 new_plane_state, i) 15716 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 15717 to_intel_frontbuffer(new_plane_state->hw.fb), 15718 plane->frontbuffer_bit); 15719 } 15720 15721 static void assert_global_state_locked(struct drm_i915_private *dev_priv) 15722 { 15723 struct intel_crtc *crtc; 15724 15725 for_each_intel_crtc(&dev_priv->drm, crtc) 15726 drm_modeset_lock_assert_held(&crtc->base.mutex); 15727 } 15728 15729 static int intel_atomic_commit(struct drm_device *dev, 15730 struct drm_atomic_state *_state, 15731 bool nonblock) 15732 { 15733 struct intel_atomic_state *state = to_intel_atomic_state(_state); 15734 struct drm_i915_private *dev_priv = to_i915(dev); 15735 int ret = 0; 15736 15737 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 15738 15739 drm_atomic_state_get(&state->base); 15740 i915_sw_fence_init(&state->commit_ready, 15741 intel_atomic_commit_ready); 15742 15743 /* 15744 * The intel_legacy_cursor_update() fast path takes care 15745 * of avoiding the vblank waits for simple cursor 15746 * movement and flips. For cursor on/off and size changes, 15747 * we want to perform the vblank waits so that watermark 15748 * updates happen during the correct frames. Gen9+ have 15749 * double buffered watermarks and so shouldn't need this. 15750 * 15751 * Unset state->legacy_cursor_update before the call to 15752 * drm_atomic_helper_setup_commit() because otherwise 15753 * drm_atomic_helper_wait_for_flip_done() is a noop and 15754 * we get FIFO underruns because we didn't wait 15755 * for vblank. 15756 * 15757 * FIXME doing watermarks and fb cleanup from a vblank worker 15758 * (assuming we had any) would solve these problems. 15759 */ 15760 if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) { 15761 struct intel_crtc_state *new_crtc_state; 15762 struct intel_crtc *crtc; 15763 int i; 15764 15765 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 15766 if (new_crtc_state->wm.need_postvbl_update || 15767 new_crtc_state->update_wm_post) 15768 state->base.legacy_cursor_update = false; 15769 } 15770 15771 ret = intel_atomic_prepare_commit(state); 15772 if (ret) { 15773 drm_dbg_atomic(&dev_priv->drm, 15774 "Preparing state failed with %i\n", ret); 15775 i915_sw_fence_commit(&state->commit_ready); 15776 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15777 return ret; 15778 } 15779 15780 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 15781 if (!ret) 15782 ret = drm_atomic_helper_swap_state(&state->base, true); 15783 if (!ret) 15784 intel_atomic_swap_global_state(state); 15785 15786 if (ret) { 15787 i915_sw_fence_commit(&state->commit_ready); 15788 15789 drm_atomic_helper_cleanup_planes(dev, &state->base); 15790 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15791 return ret; 15792 } 15793 dev_priv->wm.distrust_bios_wm = false; 15794 intel_shared_dpll_swap_state(state); 15795 intel_atomic_track_fbs(state); 15796 15797 if (state->global_state_changed) { 15798 assert_global_state_locked(dev_priv); 15799 15800 dev_priv->active_pipes = state->active_pipes; 15801 } 15802 15803 drm_atomic_state_get(&state->base); 15804 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 15805 15806 i915_sw_fence_commit(&state->commit_ready); 15807 if (nonblock && state->modeset) { 15808 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 15809 } else if (nonblock) { 15810 queue_work(dev_priv->flip_wq, &state->base.commit_work); 15811 } else { 15812 if (state->modeset) 15813 flush_workqueue(dev_priv->modeset_wq); 15814 intel_atomic_commit_tail(state); 15815 } 15816 15817 return 0; 15818 } 15819 15820 struct wait_rps_boost { 15821 struct wait_queue_entry wait; 15822 15823 struct drm_crtc *crtc; 15824 struct i915_request *request; 15825 }; 15826 15827 static int do_rps_boost(struct wait_queue_entry *_wait, 15828 unsigned mode, int sync, void *key) 15829 { 15830 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); 15831 struct i915_request *rq = wait->request; 15832 15833 /* 15834 * If we missed the vblank, but the request is already running it 15835 * is reasonable to assume that it will complete before the next 15836 * vblank without our intervention, so leave RPS alone. 15837 */ 15838 if (!i915_request_started(rq)) 15839 intel_rps_boost(rq); 15840 i915_request_put(rq); 15841 15842 drm_crtc_vblank_put(wait->crtc); 15843 15844 list_del(&wait->wait.entry); 15845 kfree(wait); 15846 return 1; 15847 } 15848 15849 static void add_rps_boost_after_vblank(struct drm_crtc *crtc, 15850 struct dma_fence *fence) 15851 { 15852 struct wait_rps_boost *wait; 15853 15854 if (!dma_fence_is_i915(fence)) 15855 return; 15856 15857 if (INTEL_GEN(to_i915(crtc->dev)) < 6) 15858 return; 15859 15860 if (drm_crtc_vblank_get(crtc)) 15861 return; 15862 15863 wait = kmalloc(sizeof(*wait), GFP_KERNEL); 15864 if (!wait) { 15865 drm_crtc_vblank_put(crtc); 15866 return; 15867 } 15868 15869 wait->request = to_request(dma_fence_get(fence)); 15870 wait->crtc = crtc; 15871 15872 wait->wait.func = do_rps_boost; 15873 wait->wait.flags = 0; 15874 15875 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); 15876 } 15877 15878 static int intel_plane_pin_fb(struct intel_plane_state *plane_state) 15879 { 15880 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 15881 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 15882 struct drm_framebuffer *fb = plane_state->hw.fb; 15883 struct i915_vma *vma; 15884 15885 if (plane->id == PLANE_CURSOR && 15886 INTEL_INFO(dev_priv)->display.cursor_needs_physical) { 15887 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 15888 const int align = intel_cursor_alignment(dev_priv); 15889 int err; 15890 15891 err = i915_gem_object_attach_phys(obj, align); 15892 if (err) 15893 return err; 15894 } 15895 15896 vma = intel_pin_and_fence_fb_obj(fb, 15897 &plane_state->view, 15898 intel_plane_uses_fence(plane_state), 15899 &plane_state->flags); 15900 if (IS_ERR(vma)) 15901 return PTR_ERR(vma); 15902 15903 plane_state->vma = vma; 15904 15905 return 0; 15906 } 15907 15908 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) 15909 { 15910 struct i915_vma *vma; 15911 15912 vma = fetch_and_zero(&old_plane_state->vma); 15913 if (vma) 15914 intel_unpin_fb_vma(vma, old_plane_state->flags); 15915 } 15916 15917 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj) 15918 { 15919 struct i915_sched_attr attr = { 15920 .priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY), 15921 }; 15922 15923 i915_gem_object_wait_priority(obj, 0, &attr); 15924 } 15925 15926 /** 15927 * intel_prepare_plane_fb - Prepare fb for usage on plane 15928 * @_plane: drm plane to prepare for 15929 * @_new_plane_state: the plane state being prepared 15930 * 15931 * Prepares a framebuffer for usage on a display plane. Generally this 15932 * involves pinning the underlying object and updating the frontbuffer tracking 15933 * bits. Some older platforms need special physical address handling for 15934 * cursor planes. 15935 * 15936 * Returns 0 on success, negative error code on failure. 15937 */ 15938 int 15939 intel_prepare_plane_fb(struct drm_plane *_plane, 15940 struct drm_plane_state *_new_plane_state) 15941 { 15942 struct intel_plane *plane = to_intel_plane(_plane); 15943 struct intel_plane_state *new_plane_state = 15944 to_intel_plane_state(_new_plane_state); 15945 struct intel_atomic_state *state = 15946 to_intel_atomic_state(new_plane_state->uapi.state); 15947 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 15948 const struct intel_plane_state *old_plane_state = 15949 intel_atomic_get_old_plane_state(state, plane); 15950 struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb); 15951 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb); 15952 int ret; 15953 15954 if (old_obj) { 15955 const struct intel_crtc_state *crtc_state = 15956 intel_atomic_get_new_crtc_state(state, 15957 to_intel_crtc(old_plane_state->hw.crtc)); 15958 15959 /* Big Hammer, we also need to ensure that any pending 15960 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 15961 * current scanout is retired before unpinning the old 15962 * framebuffer. Note that we rely on userspace rendering 15963 * into the buffer attached to the pipe they are waiting 15964 * on. If not, userspace generates a GPU hang with IPEHR 15965 * point to the MI_WAIT_FOR_EVENT. 15966 * 15967 * This should only fail upon a hung GPU, in which case we 15968 * can safely continue. 15969 */ 15970 if (needs_modeset(crtc_state)) { 15971 ret = i915_sw_fence_await_reservation(&state->commit_ready, 15972 old_obj->base.resv, NULL, 15973 false, 0, 15974 GFP_KERNEL); 15975 if (ret < 0) 15976 return ret; 15977 } 15978 } 15979 15980 if (new_plane_state->uapi.fence) { /* explicit fencing */ 15981 ret = i915_sw_fence_await_dma_fence(&state->commit_ready, 15982 new_plane_state->uapi.fence, 15983 I915_FENCE_TIMEOUT, 15984 GFP_KERNEL); 15985 if (ret < 0) 15986 return ret; 15987 } 15988 15989 if (!obj) 15990 return 0; 15991 15992 ret = i915_gem_object_pin_pages(obj); 15993 if (ret) 15994 return ret; 15995 15996 ret = intel_plane_pin_fb(new_plane_state); 15997 15998 i915_gem_object_unpin_pages(obj); 15999 if (ret) 16000 return ret; 16001 16002 fb_obj_bump_render_priority(obj); 16003 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB); 16004 16005 if (!new_plane_state->uapi.fence) { /* implicit fencing */ 16006 struct dma_fence *fence; 16007 16008 ret = i915_sw_fence_await_reservation(&state->commit_ready, 16009 obj->base.resv, NULL, 16010 false, I915_FENCE_TIMEOUT, 16011 GFP_KERNEL); 16012 if (ret < 0) 16013 goto unpin_fb; 16014 16015 fence = dma_resv_get_excl_rcu(obj->base.resv); 16016 if (fence) { 16017 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 16018 fence); 16019 dma_fence_put(fence); 16020 } 16021 } else { 16022 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 16023 new_plane_state->uapi.fence); 16024 } 16025 16026 /* 16027 * We declare pageflips to be interactive and so merit a small bias 16028 * towards upclocking to deliver the frame on time. By only changing 16029 * the RPS thresholds to sample more regularly and aim for higher 16030 * clocks we can hopefully deliver low power workloads (like kodi) 16031 * that are not quite steady state without resorting to forcing 16032 * maximum clocks following a vblank miss (see do_rps_boost()). 16033 */ 16034 if (!state->rps_interactive) { 16035 intel_rps_mark_interactive(&dev_priv->gt.rps, true); 16036 state->rps_interactive = true; 16037 } 16038 16039 return 0; 16040 16041 unpin_fb: 16042 intel_plane_unpin_fb(new_plane_state); 16043 16044 return ret; 16045 } 16046 16047 /** 16048 * intel_cleanup_plane_fb - Cleans up an fb after plane use 16049 * @plane: drm plane to clean up for 16050 * @_old_plane_state: the state from the previous modeset 16051 * 16052 * Cleans up a framebuffer that has just been removed from a plane. 16053 */ 16054 void 16055 intel_cleanup_plane_fb(struct drm_plane *plane, 16056 struct drm_plane_state *_old_plane_state) 16057 { 16058 struct intel_plane_state *old_plane_state = 16059 to_intel_plane_state(_old_plane_state); 16060 struct intel_atomic_state *state = 16061 to_intel_atomic_state(old_plane_state->uapi.state); 16062 struct drm_i915_private *dev_priv = to_i915(plane->dev); 16063 struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb); 16064 16065 if (!obj) 16066 return; 16067 16068 if (state->rps_interactive) { 16069 intel_rps_mark_interactive(&dev_priv->gt.rps, false); 16070 state->rps_interactive = false; 16071 } 16072 16073 /* Should only be called after a successful intel_prepare_plane_fb()! */ 16074 intel_plane_unpin_fb(old_plane_state); 16075 } 16076 16077 /** 16078 * intel_plane_destroy - destroy a plane 16079 * @plane: plane to destroy 16080 * 16081 * Common destruction function for all types of planes (primary, cursor, 16082 * sprite). 16083 */ 16084 void intel_plane_destroy(struct drm_plane *plane) 16085 { 16086 drm_plane_cleanup(plane); 16087 kfree(to_intel_plane(plane)); 16088 } 16089 16090 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane, 16091 u32 format, u64 modifier) 16092 { 16093 switch (modifier) { 16094 case DRM_FORMAT_MOD_LINEAR: 16095 case I915_FORMAT_MOD_X_TILED: 16096 break; 16097 default: 16098 return false; 16099 } 16100 16101 switch (format) { 16102 case DRM_FORMAT_C8: 16103 case DRM_FORMAT_RGB565: 16104 case DRM_FORMAT_XRGB1555: 16105 case DRM_FORMAT_XRGB8888: 16106 return modifier == DRM_FORMAT_MOD_LINEAR || 16107 modifier == I915_FORMAT_MOD_X_TILED; 16108 default: 16109 return false; 16110 } 16111 } 16112 16113 static bool i965_plane_format_mod_supported(struct drm_plane *_plane, 16114 u32 format, u64 modifier) 16115 { 16116 switch (modifier) { 16117 case DRM_FORMAT_MOD_LINEAR: 16118 case I915_FORMAT_MOD_X_TILED: 16119 break; 16120 default: 16121 return false; 16122 } 16123 16124 switch (format) { 16125 case DRM_FORMAT_C8: 16126 case DRM_FORMAT_RGB565: 16127 case DRM_FORMAT_XRGB8888: 16128 case DRM_FORMAT_XBGR8888: 16129 case DRM_FORMAT_ARGB8888: 16130 case DRM_FORMAT_ABGR8888: 16131 case DRM_FORMAT_XRGB2101010: 16132 case DRM_FORMAT_XBGR2101010: 16133 case DRM_FORMAT_ARGB2101010: 16134 case DRM_FORMAT_ABGR2101010: 16135 case DRM_FORMAT_XBGR16161616F: 16136 return modifier == DRM_FORMAT_MOD_LINEAR || 16137 modifier == I915_FORMAT_MOD_X_TILED; 16138 default: 16139 return false; 16140 } 16141 } 16142 16143 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane, 16144 u32 format, u64 modifier) 16145 { 16146 return modifier == DRM_FORMAT_MOD_LINEAR && 16147 format == DRM_FORMAT_ARGB8888; 16148 } 16149 16150 static const struct drm_plane_funcs i965_plane_funcs = { 16151 .update_plane = drm_atomic_helper_update_plane, 16152 .disable_plane = drm_atomic_helper_disable_plane, 16153 .destroy = intel_plane_destroy, 16154 .atomic_duplicate_state = intel_plane_duplicate_state, 16155 .atomic_destroy_state = intel_plane_destroy_state, 16156 .format_mod_supported = i965_plane_format_mod_supported, 16157 }; 16158 16159 static const struct drm_plane_funcs i8xx_plane_funcs = { 16160 .update_plane = drm_atomic_helper_update_plane, 16161 .disable_plane = drm_atomic_helper_disable_plane, 16162 .destroy = intel_plane_destroy, 16163 .atomic_duplicate_state = intel_plane_duplicate_state, 16164 .atomic_destroy_state = intel_plane_destroy_state, 16165 .format_mod_supported = i8xx_plane_format_mod_supported, 16166 }; 16167 16168 static int 16169 intel_legacy_cursor_update(struct drm_plane *_plane, 16170 struct drm_crtc *_crtc, 16171 struct drm_framebuffer *fb, 16172 int crtc_x, int crtc_y, 16173 unsigned int crtc_w, unsigned int crtc_h, 16174 u32 src_x, u32 src_y, 16175 u32 src_w, u32 src_h, 16176 struct drm_modeset_acquire_ctx *ctx) 16177 { 16178 struct intel_plane *plane = to_intel_plane(_plane); 16179 struct intel_crtc *crtc = to_intel_crtc(_crtc); 16180 struct intel_plane_state *old_plane_state = 16181 to_intel_plane_state(plane->base.state); 16182 struct intel_plane_state *new_plane_state; 16183 struct intel_crtc_state *crtc_state = 16184 to_intel_crtc_state(crtc->base.state); 16185 struct intel_crtc_state *new_crtc_state; 16186 int ret; 16187 16188 /* 16189 * When crtc is inactive or there is a modeset pending, 16190 * wait for it to complete in the slowpath 16191 */ 16192 if (!crtc_state->hw.active || needs_modeset(crtc_state) || 16193 crtc_state->update_pipe) 16194 goto slow; 16195 16196 /* 16197 * Don't do an async update if there is an outstanding commit modifying 16198 * the plane. This prevents our async update's changes from getting 16199 * overridden by a previous synchronous update's state. 16200 */ 16201 if (old_plane_state->uapi.commit && 16202 !try_wait_for_completion(&old_plane_state->uapi.commit->hw_done)) 16203 goto slow; 16204 16205 /* 16206 * If any parameters change that may affect watermarks, 16207 * take the slowpath. Only changing fb or position should be 16208 * in the fastpath. 16209 */ 16210 if (old_plane_state->uapi.crtc != &crtc->base || 16211 old_plane_state->uapi.src_w != src_w || 16212 old_plane_state->uapi.src_h != src_h || 16213 old_plane_state->uapi.crtc_w != crtc_w || 16214 old_plane_state->uapi.crtc_h != crtc_h || 16215 !old_plane_state->uapi.fb != !fb) 16216 goto slow; 16217 16218 new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base)); 16219 if (!new_plane_state) 16220 return -ENOMEM; 16221 16222 new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base)); 16223 if (!new_crtc_state) { 16224 ret = -ENOMEM; 16225 goto out_free; 16226 } 16227 16228 drm_atomic_set_fb_for_plane(&new_plane_state->uapi, fb); 16229 16230 new_plane_state->uapi.src_x = src_x; 16231 new_plane_state->uapi.src_y = src_y; 16232 new_plane_state->uapi.src_w = src_w; 16233 new_plane_state->uapi.src_h = src_h; 16234 new_plane_state->uapi.crtc_x = crtc_x; 16235 new_plane_state->uapi.crtc_y = crtc_y; 16236 new_plane_state->uapi.crtc_w = crtc_w; 16237 new_plane_state->uapi.crtc_h = crtc_h; 16238 16239 intel_plane_copy_uapi_to_hw_state(new_plane_state, new_plane_state); 16240 16241 ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state, 16242 old_plane_state, new_plane_state); 16243 if (ret) 16244 goto out_free; 16245 16246 ret = intel_plane_pin_fb(new_plane_state); 16247 if (ret) 16248 goto out_free; 16249 16250 intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->hw.fb), 16251 ORIGIN_FLIP); 16252 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 16253 to_intel_frontbuffer(new_plane_state->hw.fb), 16254 plane->frontbuffer_bit); 16255 16256 /* Swap plane state */ 16257 plane->base.state = &new_plane_state->uapi; 16258 16259 /* 16260 * We cannot swap crtc_state as it may be in use by an atomic commit or 16261 * page flip that's running simultaneously. If we swap crtc_state and 16262 * destroy the old state, we will cause a use-after-free there. 16263 * 16264 * Only update active_planes, which is needed for our internal 16265 * bookkeeping. Either value will do the right thing when updating 16266 * planes atomically. If the cursor was part of the atomic update then 16267 * we would have taken the slowpath. 16268 */ 16269 crtc_state->active_planes = new_crtc_state->active_planes; 16270 16271 if (new_plane_state->uapi.visible) 16272 intel_update_plane(plane, crtc_state, new_plane_state); 16273 else 16274 intel_disable_plane(plane, crtc_state); 16275 16276 intel_plane_unpin_fb(old_plane_state); 16277 16278 out_free: 16279 if (new_crtc_state) 16280 intel_crtc_destroy_state(&crtc->base, &new_crtc_state->uapi); 16281 if (ret) 16282 intel_plane_destroy_state(&plane->base, &new_plane_state->uapi); 16283 else 16284 intel_plane_destroy_state(&plane->base, &old_plane_state->uapi); 16285 return ret; 16286 16287 slow: 16288 return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb, 16289 crtc_x, crtc_y, crtc_w, crtc_h, 16290 src_x, src_y, src_w, src_h, ctx); 16291 } 16292 16293 static const struct drm_plane_funcs intel_cursor_plane_funcs = { 16294 .update_plane = intel_legacy_cursor_update, 16295 .disable_plane = drm_atomic_helper_disable_plane, 16296 .destroy = intel_plane_destroy, 16297 .atomic_duplicate_state = intel_plane_duplicate_state, 16298 .atomic_destroy_state = intel_plane_destroy_state, 16299 .format_mod_supported = intel_cursor_format_mod_supported, 16300 }; 16301 16302 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv, 16303 enum i9xx_plane_id i9xx_plane) 16304 { 16305 if (!HAS_FBC(dev_priv)) 16306 return false; 16307 16308 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 16309 return i9xx_plane == PLANE_A; /* tied to pipe A */ 16310 else if (IS_IVYBRIDGE(dev_priv)) 16311 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B || 16312 i9xx_plane == PLANE_C; 16313 else if (INTEL_GEN(dev_priv) >= 4) 16314 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B; 16315 else 16316 return i9xx_plane == PLANE_A; 16317 } 16318 16319 static struct intel_plane * 16320 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe) 16321 { 16322 struct intel_plane *plane; 16323 const struct drm_plane_funcs *plane_funcs; 16324 unsigned int supported_rotations; 16325 const u32 *formats; 16326 int num_formats; 16327 int ret, zpos; 16328 16329 if (INTEL_GEN(dev_priv) >= 9) 16330 return skl_universal_plane_create(dev_priv, pipe, 16331 PLANE_PRIMARY); 16332 16333 plane = intel_plane_alloc(); 16334 if (IS_ERR(plane)) 16335 return plane; 16336 16337 plane->pipe = pipe; 16338 /* 16339 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS 16340 * port is hooked to pipe B. Hence we want plane A feeding pipe B. 16341 */ 16342 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4) 16343 plane->i9xx_plane = (enum i9xx_plane_id) !pipe; 16344 else 16345 plane->i9xx_plane = (enum i9xx_plane_id) pipe; 16346 plane->id = PLANE_PRIMARY; 16347 plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id); 16348 16349 plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane); 16350 if (plane->has_fbc) { 16351 struct intel_fbc *fbc = &dev_priv->fbc; 16352 16353 fbc->possible_framebuffer_bits |= plane->frontbuffer_bit; 16354 } 16355 16356 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 16357 formats = vlv_primary_formats; 16358 num_formats = ARRAY_SIZE(vlv_primary_formats); 16359 } else if (INTEL_GEN(dev_priv) >= 4) { 16360 /* 16361 * WaFP16GammaEnabling:ivb 16362 * "Workaround : When using the 64-bit format, the plane 16363 * output on each color channel has one quarter amplitude. 16364 * It can be brought up to full amplitude by using pipe 16365 * gamma correction or pipe color space conversion to 16366 * multiply the plane output by four." 16367 * 16368 * There is no dedicated plane gamma for the primary plane, 16369 * and using the pipe gamma/csc could conflict with other 16370 * planes, so we choose not to expose fp16 on IVB primary 16371 * planes. HSW primary planes no longer have this problem. 16372 */ 16373 if (IS_IVYBRIDGE(dev_priv)) { 16374 formats = ivb_primary_formats; 16375 num_formats = ARRAY_SIZE(ivb_primary_formats); 16376 } else { 16377 formats = i965_primary_formats; 16378 num_formats = ARRAY_SIZE(i965_primary_formats); 16379 } 16380 } else { 16381 formats = i8xx_primary_formats; 16382 num_formats = ARRAY_SIZE(i8xx_primary_formats); 16383 } 16384 16385 if (INTEL_GEN(dev_priv) >= 4) 16386 plane_funcs = &i965_plane_funcs; 16387 else 16388 plane_funcs = &i8xx_plane_funcs; 16389 16390 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16391 plane->min_cdclk = vlv_plane_min_cdclk; 16392 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 16393 plane->min_cdclk = hsw_plane_min_cdclk; 16394 else if (IS_IVYBRIDGE(dev_priv)) 16395 plane->min_cdclk = ivb_plane_min_cdclk; 16396 else 16397 plane->min_cdclk = i9xx_plane_min_cdclk; 16398 16399 plane->max_stride = i9xx_plane_max_stride; 16400 plane->update_plane = i9xx_update_plane; 16401 plane->disable_plane = i9xx_disable_plane; 16402 plane->get_hw_state = i9xx_plane_get_hw_state; 16403 plane->check_plane = i9xx_plane_check; 16404 16405 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 16406 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 16407 0, plane_funcs, 16408 formats, num_formats, 16409 i9xx_format_modifiers, 16410 DRM_PLANE_TYPE_PRIMARY, 16411 "primary %c", pipe_name(pipe)); 16412 else 16413 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 16414 0, plane_funcs, 16415 formats, num_formats, 16416 i9xx_format_modifiers, 16417 DRM_PLANE_TYPE_PRIMARY, 16418 "plane %c", 16419 plane_name(plane->i9xx_plane)); 16420 if (ret) 16421 goto fail; 16422 16423 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 16424 supported_rotations = 16425 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 | 16426 DRM_MODE_REFLECT_X; 16427 } else if (INTEL_GEN(dev_priv) >= 4) { 16428 supported_rotations = 16429 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180; 16430 } else { 16431 supported_rotations = DRM_MODE_ROTATE_0; 16432 } 16433 16434 if (INTEL_GEN(dev_priv) >= 4) 16435 drm_plane_create_rotation_property(&plane->base, 16436 DRM_MODE_ROTATE_0, 16437 supported_rotations); 16438 16439 zpos = 0; 16440 drm_plane_create_zpos_immutable_property(&plane->base, zpos); 16441 16442 drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs); 16443 16444 return plane; 16445 16446 fail: 16447 intel_plane_free(plane); 16448 16449 return ERR_PTR(ret); 16450 } 16451 16452 static struct intel_plane * 16453 intel_cursor_plane_create(struct drm_i915_private *dev_priv, 16454 enum pipe pipe) 16455 { 16456 struct intel_plane *cursor; 16457 int ret, zpos; 16458 16459 cursor = intel_plane_alloc(); 16460 if (IS_ERR(cursor)) 16461 return cursor; 16462 16463 cursor->pipe = pipe; 16464 cursor->i9xx_plane = (enum i9xx_plane_id) pipe; 16465 cursor->id = PLANE_CURSOR; 16466 cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id); 16467 16468 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) { 16469 cursor->max_stride = i845_cursor_max_stride; 16470 cursor->update_plane = i845_update_cursor; 16471 cursor->disable_plane = i845_disable_cursor; 16472 cursor->get_hw_state = i845_cursor_get_hw_state; 16473 cursor->check_plane = i845_check_cursor; 16474 } else { 16475 cursor->max_stride = i9xx_cursor_max_stride; 16476 cursor->update_plane = i9xx_update_cursor; 16477 cursor->disable_plane = i9xx_disable_cursor; 16478 cursor->get_hw_state = i9xx_cursor_get_hw_state; 16479 cursor->check_plane = i9xx_check_cursor; 16480 } 16481 16482 cursor->cursor.base = ~0; 16483 cursor->cursor.cntl = ~0; 16484 16485 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv)) 16486 cursor->cursor.size = ~0; 16487 16488 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base, 16489 0, &intel_cursor_plane_funcs, 16490 intel_cursor_formats, 16491 ARRAY_SIZE(intel_cursor_formats), 16492 cursor_format_modifiers, 16493 DRM_PLANE_TYPE_CURSOR, 16494 "cursor %c", pipe_name(pipe)); 16495 if (ret) 16496 goto fail; 16497 16498 if (INTEL_GEN(dev_priv) >= 4) 16499 drm_plane_create_rotation_property(&cursor->base, 16500 DRM_MODE_ROTATE_0, 16501 DRM_MODE_ROTATE_0 | 16502 DRM_MODE_ROTATE_180); 16503 16504 zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1; 16505 drm_plane_create_zpos_immutable_property(&cursor->base, zpos); 16506 16507 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs); 16508 16509 return cursor; 16510 16511 fail: 16512 intel_plane_free(cursor); 16513 16514 return ERR_PTR(ret); 16515 } 16516 16517 #define INTEL_CRTC_FUNCS \ 16518 .gamma_set = drm_atomic_helper_legacy_gamma_set, \ 16519 .set_config = drm_atomic_helper_set_config, \ 16520 .destroy = intel_crtc_destroy, \ 16521 .page_flip = drm_atomic_helper_page_flip, \ 16522 .atomic_duplicate_state = intel_crtc_duplicate_state, \ 16523 .atomic_destroy_state = intel_crtc_destroy_state, \ 16524 .set_crc_source = intel_crtc_set_crc_source, \ 16525 .verify_crc_source = intel_crtc_verify_crc_source, \ 16526 .get_crc_sources = intel_crtc_get_crc_sources 16527 16528 static const struct drm_crtc_funcs bdw_crtc_funcs = { 16529 INTEL_CRTC_FUNCS, 16530 16531 .get_vblank_counter = g4x_get_vblank_counter, 16532 .enable_vblank = bdw_enable_vblank, 16533 .disable_vblank = bdw_disable_vblank, 16534 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16535 }; 16536 16537 static const struct drm_crtc_funcs ilk_crtc_funcs = { 16538 INTEL_CRTC_FUNCS, 16539 16540 .get_vblank_counter = g4x_get_vblank_counter, 16541 .enable_vblank = ilk_enable_vblank, 16542 .disable_vblank = ilk_disable_vblank, 16543 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16544 }; 16545 16546 static const struct drm_crtc_funcs g4x_crtc_funcs = { 16547 INTEL_CRTC_FUNCS, 16548 16549 .get_vblank_counter = g4x_get_vblank_counter, 16550 .enable_vblank = i965_enable_vblank, 16551 .disable_vblank = i965_disable_vblank, 16552 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16553 }; 16554 16555 static const struct drm_crtc_funcs i965_crtc_funcs = { 16556 INTEL_CRTC_FUNCS, 16557 16558 .get_vblank_counter = i915_get_vblank_counter, 16559 .enable_vblank = i965_enable_vblank, 16560 .disable_vblank = i965_disable_vblank, 16561 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16562 }; 16563 16564 static const struct drm_crtc_funcs i915gm_crtc_funcs = { 16565 INTEL_CRTC_FUNCS, 16566 16567 .get_vblank_counter = i915_get_vblank_counter, 16568 .enable_vblank = i915gm_enable_vblank, 16569 .disable_vblank = i915gm_disable_vblank, 16570 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16571 }; 16572 16573 static const struct drm_crtc_funcs i915_crtc_funcs = { 16574 INTEL_CRTC_FUNCS, 16575 16576 .get_vblank_counter = i915_get_vblank_counter, 16577 .enable_vblank = i8xx_enable_vblank, 16578 .disable_vblank = i8xx_disable_vblank, 16579 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16580 }; 16581 16582 static const struct drm_crtc_funcs i8xx_crtc_funcs = { 16583 INTEL_CRTC_FUNCS, 16584 16585 /* no hw vblank counter */ 16586 .enable_vblank = i8xx_enable_vblank, 16587 .disable_vblank = i8xx_disable_vblank, 16588 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16589 }; 16590 16591 static struct intel_crtc *intel_crtc_alloc(void) 16592 { 16593 struct intel_crtc_state *crtc_state; 16594 struct intel_crtc *crtc; 16595 16596 crtc = kzalloc(sizeof(*crtc), GFP_KERNEL); 16597 if (!crtc) 16598 return ERR_PTR(-ENOMEM); 16599 16600 crtc_state = intel_crtc_state_alloc(crtc); 16601 if (!crtc_state) { 16602 kfree(crtc); 16603 return ERR_PTR(-ENOMEM); 16604 } 16605 16606 crtc->base.state = &crtc_state->uapi; 16607 crtc->config = crtc_state; 16608 16609 return crtc; 16610 } 16611 16612 static void intel_crtc_free(struct intel_crtc *crtc) 16613 { 16614 intel_crtc_destroy_state(&crtc->base, crtc->base.state); 16615 kfree(crtc); 16616 } 16617 16618 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv) 16619 { 16620 struct intel_plane *plane; 16621 16622 for_each_intel_plane(&dev_priv->drm, plane) { 16623 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, 16624 plane->pipe); 16625 16626 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base); 16627 } 16628 } 16629 16630 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe) 16631 { 16632 struct intel_plane *primary, *cursor; 16633 const struct drm_crtc_funcs *funcs; 16634 struct intel_crtc *crtc; 16635 int sprite, ret; 16636 16637 crtc = intel_crtc_alloc(); 16638 if (IS_ERR(crtc)) 16639 return PTR_ERR(crtc); 16640 16641 crtc->pipe = pipe; 16642 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe]; 16643 16644 primary = intel_primary_plane_create(dev_priv, pipe); 16645 if (IS_ERR(primary)) { 16646 ret = PTR_ERR(primary); 16647 goto fail; 16648 } 16649 crtc->plane_ids_mask |= BIT(primary->id); 16650 16651 for_each_sprite(dev_priv, pipe, sprite) { 16652 struct intel_plane *plane; 16653 16654 plane = intel_sprite_plane_create(dev_priv, pipe, sprite); 16655 if (IS_ERR(plane)) { 16656 ret = PTR_ERR(plane); 16657 goto fail; 16658 } 16659 crtc->plane_ids_mask |= BIT(plane->id); 16660 } 16661 16662 cursor = intel_cursor_plane_create(dev_priv, pipe); 16663 if (IS_ERR(cursor)) { 16664 ret = PTR_ERR(cursor); 16665 goto fail; 16666 } 16667 crtc->plane_ids_mask |= BIT(cursor->id); 16668 16669 if (HAS_GMCH(dev_priv)) { 16670 if (IS_CHERRYVIEW(dev_priv) || 16671 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv)) 16672 funcs = &g4x_crtc_funcs; 16673 else if (IS_GEN(dev_priv, 4)) 16674 funcs = &i965_crtc_funcs; 16675 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv)) 16676 funcs = &i915gm_crtc_funcs; 16677 else if (IS_GEN(dev_priv, 3)) 16678 funcs = &i915_crtc_funcs; 16679 else 16680 funcs = &i8xx_crtc_funcs; 16681 } else { 16682 if (INTEL_GEN(dev_priv) >= 8) 16683 funcs = &bdw_crtc_funcs; 16684 else 16685 funcs = &ilk_crtc_funcs; 16686 } 16687 16688 ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base, 16689 &primary->base, &cursor->base, 16690 funcs, "pipe %c", pipe_name(pipe)); 16691 if (ret) 16692 goto fail; 16693 16694 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) || 16695 dev_priv->pipe_to_crtc_mapping[pipe] != NULL); 16696 dev_priv->pipe_to_crtc_mapping[pipe] = crtc; 16697 16698 if (INTEL_GEN(dev_priv) < 9) { 16699 enum i9xx_plane_id i9xx_plane = primary->i9xx_plane; 16700 16701 BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || 16702 dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL); 16703 dev_priv->plane_to_crtc_mapping[i9xx_plane] = crtc; 16704 } 16705 16706 intel_color_init(crtc); 16707 16708 intel_crtc_crc_init(crtc); 16709 16710 drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe); 16711 16712 return 0; 16713 16714 fail: 16715 intel_crtc_free(crtc); 16716 16717 return ret; 16718 } 16719 16720 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 16721 struct drm_file *file) 16722 { 16723 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 16724 struct drm_crtc *drmmode_crtc; 16725 struct intel_crtc *crtc; 16726 16727 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 16728 if (!drmmode_crtc) 16729 return -ENOENT; 16730 16731 crtc = to_intel_crtc(drmmode_crtc); 16732 pipe_from_crtc_id->pipe = crtc->pipe; 16733 16734 return 0; 16735 } 16736 16737 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 16738 { 16739 struct drm_device *dev = encoder->base.dev; 16740 struct intel_encoder *source_encoder; 16741 u32 possible_clones = 0; 16742 16743 for_each_intel_encoder(dev, source_encoder) { 16744 if (encoders_cloneable(encoder, source_encoder)) 16745 possible_clones |= drm_encoder_mask(&source_encoder->base); 16746 } 16747 16748 return possible_clones; 16749 } 16750 16751 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 16752 { 16753 struct drm_device *dev = encoder->base.dev; 16754 struct intel_crtc *crtc; 16755 u32 possible_crtcs = 0; 16756 16757 for_each_intel_crtc(dev, crtc) { 16758 if (encoder->pipe_mask & BIT(crtc->pipe)) 16759 possible_crtcs |= drm_crtc_mask(&crtc->base); 16760 } 16761 16762 return possible_crtcs; 16763 } 16764 16765 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 16766 { 16767 if (!IS_MOBILE(dev_priv)) 16768 return false; 16769 16770 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0) 16771 return false; 16772 16773 if (IS_GEN(dev_priv, 5) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE)) 16774 return false; 16775 16776 return true; 16777 } 16778 16779 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 16780 { 16781 if (INTEL_GEN(dev_priv) >= 9) 16782 return false; 16783 16784 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 16785 return false; 16786 16787 if (HAS_PCH_LPT_H(dev_priv) && 16788 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 16789 return false; 16790 16791 /* DDI E can't be used if DDI A requires 4 lanes */ 16792 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 16793 return false; 16794 16795 if (!dev_priv->vbt.int_crt_support) 16796 return false; 16797 16798 return true; 16799 } 16800 16801 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv) 16802 { 16803 int pps_num; 16804 int pps_idx; 16805 16806 if (HAS_DDI(dev_priv)) 16807 return; 16808 /* 16809 * This w/a is needed at least on CPT/PPT, but to be sure apply it 16810 * everywhere where registers can be write protected. 16811 */ 16812 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16813 pps_num = 2; 16814 else 16815 pps_num = 1; 16816 16817 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) { 16818 u32 val = intel_de_read(dev_priv, PP_CONTROL(pps_idx)); 16819 16820 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS; 16821 intel_de_write(dev_priv, PP_CONTROL(pps_idx), val); 16822 } 16823 } 16824 16825 static void intel_pps_init(struct drm_i915_private *dev_priv) 16826 { 16827 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv)) 16828 dev_priv->pps_mmio_base = PCH_PPS_BASE; 16829 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16830 dev_priv->pps_mmio_base = VLV_PPS_BASE; 16831 else 16832 dev_priv->pps_mmio_base = PPS_BASE; 16833 16834 intel_pps_unlock_regs_wa(dev_priv); 16835 } 16836 16837 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 16838 { 16839 struct intel_encoder *encoder; 16840 bool dpd_is_edp = false; 16841 16842 intel_pps_init(dev_priv); 16843 16844 if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv)) 16845 return; 16846 16847 if (INTEL_GEN(dev_priv) >= 12) { 16848 intel_ddi_init(dev_priv, PORT_A); 16849 intel_ddi_init(dev_priv, PORT_B); 16850 intel_ddi_init(dev_priv, PORT_D); 16851 intel_ddi_init(dev_priv, PORT_E); 16852 intel_ddi_init(dev_priv, PORT_F); 16853 intel_ddi_init(dev_priv, PORT_G); 16854 intel_ddi_init(dev_priv, PORT_H); 16855 intel_ddi_init(dev_priv, PORT_I); 16856 icl_dsi_init(dev_priv); 16857 } else if (IS_ELKHARTLAKE(dev_priv)) { 16858 intel_ddi_init(dev_priv, PORT_A); 16859 intel_ddi_init(dev_priv, PORT_B); 16860 intel_ddi_init(dev_priv, PORT_C); 16861 intel_ddi_init(dev_priv, PORT_D); 16862 icl_dsi_init(dev_priv); 16863 } else if (IS_GEN(dev_priv, 11)) { 16864 intel_ddi_init(dev_priv, PORT_A); 16865 intel_ddi_init(dev_priv, PORT_B); 16866 intel_ddi_init(dev_priv, PORT_C); 16867 intel_ddi_init(dev_priv, PORT_D); 16868 intel_ddi_init(dev_priv, PORT_E); 16869 /* 16870 * On some ICL SKUs port F is not present. No strap bits for 16871 * this, so rely on VBT. 16872 * Work around broken VBTs on SKUs known to have no port F. 16873 */ 16874 if (IS_ICL_WITH_PORT_F(dev_priv) && 16875 intel_bios_is_port_present(dev_priv, PORT_F)) 16876 intel_ddi_init(dev_priv, PORT_F); 16877 16878 icl_dsi_init(dev_priv); 16879 } else if (IS_GEN9_LP(dev_priv)) { 16880 /* 16881 * FIXME: Broxton doesn't support port detection via the 16882 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to 16883 * detect the ports. 16884 */ 16885 intel_ddi_init(dev_priv, PORT_A); 16886 intel_ddi_init(dev_priv, PORT_B); 16887 intel_ddi_init(dev_priv, PORT_C); 16888 16889 vlv_dsi_init(dev_priv); 16890 } else if (HAS_DDI(dev_priv)) { 16891 int found; 16892 16893 if (intel_ddi_crt_present(dev_priv)) 16894 intel_crt_init(dev_priv); 16895 16896 /* 16897 * Haswell uses DDI functions to detect digital outputs. 16898 * On SKL pre-D0 the strap isn't connected, so we assume 16899 * it's there. 16900 */ 16901 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 16902 /* WaIgnoreDDIAStrap: skl */ 16903 if (found || IS_GEN9_BC(dev_priv)) 16904 intel_ddi_init(dev_priv, PORT_A); 16905 16906 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP 16907 * register */ 16908 found = intel_de_read(dev_priv, SFUSE_STRAP); 16909 16910 if (found & SFUSE_STRAP_DDIB_DETECTED) 16911 intel_ddi_init(dev_priv, PORT_B); 16912 if (found & SFUSE_STRAP_DDIC_DETECTED) 16913 intel_ddi_init(dev_priv, PORT_C); 16914 if (found & SFUSE_STRAP_DDID_DETECTED) 16915 intel_ddi_init(dev_priv, PORT_D); 16916 if (found & SFUSE_STRAP_DDIF_DETECTED) 16917 intel_ddi_init(dev_priv, PORT_F); 16918 /* 16919 * On SKL we don't have a way to detect DDI-E so we rely on VBT. 16920 */ 16921 if (IS_GEN9_BC(dev_priv) && 16922 intel_bios_is_port_present(dev_priv, PORT_E)) 16923 intel_ddi_init(dev_priv, PORT_E); 16924 16925 } else if (HAS_PCH_SPLIT(dev_priv)) { 16926 int found; 16927 16928 /* 16929 * intel_edp_init_connector() depends on this completing first, 16930 * to prevent the registration of both eDP and LVDS and the 16931 * incorrect sharing of the PPS. 16932 */ 16933 intel_lvds_init(dev_priv); 16934 intel_crt_init(dev_priv); 16935 16936 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 16937 16938 if (ilk_has_edp_a(dev_priv)) 16939 intel_dp_init(dev_priv, DP_A, PORT_A); 16940 16941 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) { 16942 /* PCH SDVOB multiplex with HDMIB */ 16943 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 16944 if (!found) 16945 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 16946 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED)) 16947 intel_dp_init(dev_priv, PCH_DP_B, PORT_B); 16948 } 16949 16950 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED) 16951 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 16952 16953 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED) 16954 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 16955 16956 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED) 16957 intel_dp_init(dev_priv, PCH_DP_C, PORT_C); 16958 16959 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED) 16960 intel_dp_init(dev_priv, PCH_DP_D, PORT_D); 16961 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 16962 bool has_edp, has_port; 16963 16964 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 16965 intel_crt_init(dev_priv); 16966 16967 /* 16968 * The DP_DETECTED bit is the latched state of the DDC 16969 * SDA pin at boot. However since eDP doesn't require DDC 16970 * (no way to plug in a DP->HDMI dongle) the DDC pins for 16971 * eDP ports may have been muxed to an alternate function. 16972 * Thus we can't rely on the DP_DETECTED bit alone to detect 16973 * eDP ports. Consult the VBT as well as DP_DETECTED to 16974 * detect eDP ports. 16975 * 16976 * Sadly the straps seem to be missing sometimes even for HDMI 16977 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 16978 * and VBT for the presence of the port. Additionally we can't 16979 * trust the port type the VBT declares as we've seen at least 16980 * HDMI ports that the VBT claim are DP or eDP. 16981 */ 16982 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 16983 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 16984 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port) 16985 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B); 16986 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 16987 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 16988 16989 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 16990 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 16991 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port) 16992 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C); 16993 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 16994 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 16995 16996 if (IS_CHERRYVIEW(dev_priv)) { 16997 /* 16998 * eDP not supported on port D, 16999 * so no need to worry about it 17000 */ 17001 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 17002 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port) 17003 intel_dp_init(dev_priv, CHV_DP_D, PORT_D); 17004 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port) 17005 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 17006 } 17007 17008 vlv_dsi_init(dev_priv); 17009 } else if (IS_PINEVIEW(dev_priv)) { 17010 intel_lvds_init(dev_priv); 17011 intel_crt_init(dev_priv); 17012 } else if (IS_GEN_RANGE(dev_priv, 3, 4)) { 17013 bool found = false; 17014 17015 if (IS_MOBILE(dev_priv)) 17016 intel_lvds_init(dev_priv); 17017 17018 intel_crt_init(dev_priv); 17019 17020 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 17021 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n"); 17022 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 17023 if (!found && IS_G4X(dev_priv)) { 17024 drm_dbg_kms(&dev_priv->drm, 17025 "probing HDMI on SDVOB\n"); 17026 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 17027 } 17028 17029 if (!found && IS_G4X(dev_priv)) 17030 intel_dp_init(dev_priv, DP_B, PORT_B); 17031 } 17032 17033 /* Before G4X SDVOC doesn't have its own detect register */ 17034 17035 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 17036 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n"); 17037 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 17038 } 17039 17040 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) { 17041 17042 if (IS_G4X(dev_priv)) { 17043 drm_dbg_kms(&dev_priv->drm, 17044 "probing HDMI on SDVOC\n"); 17045 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 17046 } 17047 if (IS_G4X(dev_priv)) 17048 intel_dp_init(dev_priv, DP_C, PORT_C); 17049 } 17050 17051 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED)) 17052 intel_dp_init(dev_priv, DP_D, PORT_D); 17053 17054 if (SUPPORTS_TV(dev_priv)) 17055 intel_tv_init(dev_priv); 17056 } else if (IS_GEN(dev_priv, 2)) { 17057 if (IS_I85X(dev_priv)) 17058 intel_lvds_init(dev_priv); 17059 17060 intel_crt_init(dev_priv); 17061 intel_dvo_init(dev_priv); 17062 } 17063 17064 intel_psr_init(dev_priv); 17065 17066 for_each_intel_encoder(&dev_priv->drm, encoder) { 17067 encoder->base.possible_crtcs = 17068 intel_encoder_possible_crtcs(encoder); 17069 encoder->base.possible_clones = 17070 intel_encoder_possible_clones(encoder); 17071 } 17072 17073 intel_init_pch_refclk(dev_priv); 17074 17075 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 17076 } 17077 17078 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 17079 { 17080 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 17081 17082 drm_framebuffer_cleanup(fb); 17083 intel_frontbuffer_put(intel_fb->frontbuffer); 17084 17085 kfree(intel_fb); 17086 } 17087 17088 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 17089 struct drm_file *file, 17090 unsigned int *handle) 17091 { 17092 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 17093 struct drm_i915_private *i915 = to_i915(obj->base.dev); 17094 17095 if (obj->userptr.mm) { 17096 drm_dbg(&i915->drm, 17097 "attempting to use a userptr for a framebuffer, denied\n"); 17098 return -EINVAL; 17099 } 17100 17101 return drm_gem_handle_create(file, &obj->base, handle); 17102 } 17103 17104 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 17105 struct drm_file *file, 17106 unsigned flags, unsigned color, 17107 struct drm_clip_rect *clips, 17108 unsigned num_clips) 17109 { 17110 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 17111 17112 i915_gem_object_flush_if_display(obj); 17113 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 17114 17115 return 0; 17116 } 17117 17118 static const struct drm_framebuffer_funcs intel_fb_funcs = { 17119 .destroy = intel_user_framebuffer_destroy, 17120 .create_handle = intel_user_framebuffer_create_handle, 17121 .dirty = intel_user_framebuffer_dirty, 17122 }; 17123 17124 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, 17125 struct drm_i915_gem_object *obj, 17126 struct drm_mode_fb_cmd2 *mode_cmd) 17127 { 17128 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 17129 struct drm_framebuffer *fb = &intel_fb->base; 17130 u32 max_stride; 17131 unsigned int tiling, stride; 17132 int ret = -EINVAL; 17133 int i; 17134 17135 intel_fb->frontbuffer = intel_frontbuffer_get(obj); 17136 if (!intel_fb->frontbuffer) 17137 return -ENOMEM; 17138 17139 i915_gem_object_lock(obj); 17140 tiling = i915_gem_object_get_tiling(obj); 17141 stride = i915_gem_object_get_stride(obj); 17142 i915_gem_object_unlock(obj); 17143 17144 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 17145 /* 17146 * If there's a fence, enforce that 17147 * the fb modifier and tiling mode match. 17148 */ 17149 if (tiling != I915_TILING_NONE && 17150 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 17151 drm_dbg_kms(&dev_priv->drm, 17152 "tiling_mode doesn't match fb modifier\n"); 17153 goto err; 17154 } 17155 } else { 17156 if (tiling == I915_TILING_X) { 17157 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 17158 } else if (tiling == I915_TILING_Y) { 17159 drm_dbg_kms(&dev_priv->drm, 17160 "No Y tiling for legacy addfb\n"); 17161 goto err; 17162 } 17163 } 17164 17165 if (!drm_any_plane_has_format(&dev_priv->drm, 17166 mode_cmd->pixel_format, 17167 mode_cmd->modifier[0])) { 17168 struct drm_format_name_buf format_name; 17169 17170 drm_dbg_kms(&dev_priv->drm, 17171 "unsupported pixel format %s / modifier 0x%llx\n", 17172 drm_get_format_name(mode_cmd->pixel_format, 17173 &format_name), 17174 mode_cmd->modifier[0]); 17175 goto err; 17176 } 17177 17178 /* 17179 * gen2/3 display engine uses the fence if present, 17180 * so the tiling mode must match the fb modifier exactly. 17181 */ 17182 if (INTEL_GEN(dev_priv) < 4 && 17183 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 17184 drm_dbg_kms(&dev_priv->drm, 17185 "tiling_mode must match fb modifier exactly on gen2/3\n"); 17186 goto err; 17187 } 17188 17189 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, 17190 mode_cmd->modifier[0]); 17191 if (mode_cmd->pitches[0] > max_stride) { 17192 drm_dbg_kms(&dev_priv->drm, 17193 "%s pitch (%u) must be at most %d\n", 17194 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? 17195 "tiled" : "linear", 17196 mode_cmd->pitches[0], max_stride); 17197 goto err; 17198 } 17199 17200 /* 17201 * If there's a fence, enforce that 17202 * the fb pitch and fence stride match. 17203 */ 17204 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { 17205 drm_dbg_kms(&dev_priv->drm, 17206 "pitch (%d) must match tiling stride (%d)\n", 17207 mode_cmd->pitches[0], stride); 17208 goto err; 17209 } 17210 17211 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 17212 if (mode_cmd->offsets[0] != 0) { 17213 drm_dbg_kms(&dev_priv->drm, 17214 "plane 0 offset (0x%08x) must be 0\n", 17215 mode_cmd->offsets[0]); 17216 goto err; 17217 } 17218 17219 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); 17220 17221 for (i = 0; i < fb->format->num_planes; i++) { 17222 u32 stride_alignment; 17223 17224 if (mode_cmd->handles[i] != mode_cmd->handles[0]) { 17225 drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n", 17226 i); 17227 goto err; 17228 } 17229 17230 stride_alignment = intel_fb_stride_alignment(fb, i); 17231 if (fb->pitches[i] & (stride_alignment - 1)) { 17232 drm_dbg_kms(&dev_priv->drm, 17233 "plane %d pitch (%d) must be at least %u byte aligned\n", 17234 i, fb->pitches[i], stride_alignment); 17235 goto err; 17236 } 17237 17238 if (is_gen12_ccs_plane(fb, i)) { 17239 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i); 17240 17241 if (fb->pitches[i] != ccs_aux_stride) { 17242 drm_dbg_kms(&dev_priv->drm, 17243 "ccs aux plane %d pitch (%d) must be %d\n", 17244 i, 17245 fb->pitches[i], ccs_aux_stride); 17246 goto err; 17247 } 17248 } 17249 17250 fb->obj[i] = &obj->base; 17251 } 17252 17253 ret = intel_fill_fb_info(dev_priv, fb); 17254 if (ret) 17255 goto err; 17256 17257 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); 17258 if (ret) { 17259 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret); 17260 goto err; 17261 } 17262 17263 return 0; 17264 17265 err: 17266 intel_frontbuffer_put(intel_fb->frontbuffer); 17267 return ret; 17268 } 17269 17270 static struct drm_framebuffer * 17271 intel_user_framebuffer_create(struct drm_device *dev, 17272 struct drm_file *filp, 17273 const struct drm_mode_fb_cmd2 *user_mode_cmd) 17274 { 17275 struct drm_framebuffer *fb; 17276 struct drm_i915_gem_object *obj; 17277 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 17278 17279 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); 17280 if (!obj) 17281 return ERR_PTR(-ENOENT); 17282 17283 fb = intel_framebuffer_create(obj, &mode_cmd); 17284 i915_gem_object_put(obj); 17285 17286 return fb; 17287 } 17288 17289 static enum drm_mode_status 17290 intel_mode_valid(struct drm_device *dev, 17291 const struct drm_display_mode *mode) 17292 { 17293 struct drm_i915_private *dev_priv = to_i915(dev); 17294 int hdisplay_max, htotal_max; 17295 int vdisplay_max, vtotal_max; 17296 17297 /* 17298 * Can't reject DBLSCAN here because Xorg ddxen can add piles 17299 * of DBLSCAN modes to the output's mode list when they detect 17300 * the scaling mode property on the connector. And they don't 17301 * ask the kernel to validate those modes in any way until 17302 * modeset time at which point the client gets a protocol error. 17303 * So in order to not upset those clients we silently ignore the 17304 * DBLSCAN flag on such connectors. For other connectors we will 17305 * reject modes with the DBLSCAN flag in encoder->compute_config(). 17306 * And we always reject DBLSCAN modes in connector->mode_valid() 17307 * as we never want such modes on the connector's mode list. 17308 */ 17309 17310 if (mode->vscan > 1) 17311 return MODE_NO_VSCAN; 17312 17313 if (mode->flags & DRM_MODE_FLAG_HSKEW) 17314 return MODE_H_ILLEGAL; 17315 17316 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 17317 DRM_MODE_FLAG_NCSYNC | 17318 DRM_MODE_FLAG_PCSYNC)) 17319 return MODE_HSYNC; 17320 17321 if (mode->flags & (DRM_MODE_FLAG_BCAST | 17322 DRM_MODE_FLAG_PIXMUX | 17323 DRM_MODE_FLAG_CLKDIV2)) 17324 return MODE_BAD; 17325 17326 /* Transcoder timing limits */ 17327 if (INTEL_GEN(dev_priv) >= 11) { 17328 hdisplay_max = 16384; 17329 vdisplay_max = 8192; 17330 htotal_max = 16384; 17331 vtotal_max = 8192; 17332 } else if (INTEL_GEN(dev_priv) >= 9 || 17333 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 17334 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 17335 vdisplay_max = 4096; 17336 htotal_max = 8192; 17337 vtotal_max = 8192; 17338 } else if (INTEL_GEN(dev_priv) >= 3) { 17339 hdisplay_max = 4096; 17340 vdisplay_max = 4096; 17341 htotal_max = 8192; 17342 vtotal_max = 8192; 17343 } else { 17344 hdisplay_max = 2048; 17345 vdisplay_max = 2048; 17346 htotal_max = 4096; 17347 vtotal_max = 4096; 17348 } 17349 17350 if (mode->hdisplay > hdisplay_max || 17351 mode->hsync_start > htotal_max || 17352 mode->hsync_end > htotal_max || 17353 mode->htotal > htotal_max) 17354 return MODE_H_ILLEGAL; 17355 17356 if (mode->vdisplay > vdisplay_max || 17357 mode->vsync_start > vtotal_max || 17358 mode->vsync_end > vtotal_max || 17359 mode->vtotal > vtotal_max) 17360 return MODE_V_ILLEGAL; 17361 17362 if (INTEL_GEN(dev_priv) >= 5) { 17363 if (mode->hdisplay < 64 || 17364 mode->htotal - mode->hdisplay < 32) 17365 return MODE_H_ILLEGAL; 17366 17367 if (mode->vtotal - mode->vdisplay < 5) 17368 return MODE_V_ILLEGAL; 17369 } else { 17370 if (mode->htotal - mode->hdisplay < 32) 17371 return MODE_H_ILLEGAL; 17372 17373 if (mode->vtotal - mode->vdisplay < 3) 17374 return MODE_V_ILLEGAL; 17375 } 17376 17377 return MODE_OK; 17378 } 17379 17380 enum drm_mode_status 17381 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, 17382 const struct drm_display_mode *mode) 17383 { 17384 int plane_width_max, plane_height_max; 17385 17386 /* 17387 * intel_mode_valid() should be 17388 * sufficient on older platforms. 17389 */ 17390 if (INTEL_GEN(dev_priv) < 9) 17391 return MODE_OK; 17392 17393 /* 17394 * Most people will probably want a fullscreen 17395 * plane so let's not advertize modes that are 17396 * too big for that. 17397 */ 17398 if (INTEL_GEN(dev_priv) >= 11) { 17399 plane_width_max = 5120; 17400 plane_height_max = 4320; 17401 } else { 17402 plane_width_max = 5120; 17403 plane_height_max = 4096; 17404 } 17405 17406 if (mode->hdisplay > plane_width_max) 17407 return MODE_H_ILLEGAL; 17408 17409 if (mode->vdisplay > plane_height_max) 17410 return MODE_V_ILLEGAL; 17411 17412 return MODE_OK; 17413 } 17414 17415 static const struct drm_mode_config_funcs intel_mode_funcs = { 17416 .fb_create = intel_user_framebuffer_create, 17417 .get_format_info = intel_get_format_info, 17418 .output_poll_changed = intel_fbdev_output_poll_changed, 17419 .mode_valid = intel_mode_valid, 17420 .atomic_check = intel_atomic_check, 17421 .atomic_commit = intel_atomic_commit, 17422 .atomic_state_alloc = intel_atomic_state_alloc, 17423 .atomic_state_clear = intel_atomic_state_clear, 17424 .atomic_state_free = intel_atomic_state_free, 17425 }; 17426 17427 /** 17428 * intel_init_display_hooks - initialize the display modesetting hooks 17429 * @dev_priv: device private 17430 */ 17431 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 17432 { 17433 intel_init_cdclk_hooks(dev_priv); 17434 17435 if (INTEL_GEN(dev_priv) >= 9) { 17436 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 17437 dev_priv->display.get_initial_plane_config = 17438 skl_get_initial_plane_config; 17439 dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock; 17440 dev_priv->display.crtc_enable = hsw_crtc_enable; 17441 dev_priv->display.crtc_disable = hsw_crtc_disable; 17442 } else if (HAS_DDI(dev_priv)) { 17443 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 17444 dev_priv->display.get_initial_plane_config = 17445 i9xx_get_initial_plane_config; 17446 dev_priv->display.crtc_compute_clock = 17447 hsw_crtc_compute_clock; 17448 dev_priv->display.crtc_enable = hsw_crtc_enable; 17449 dev_priv->display.crtc_disable = hsw_crtc_disable; 17450 } else if (HAS_PCH_SPLIT(dev_priv)) { 17451 dev_priv->display.get_pipe_config = ilk_get_pipe_config; 17452 dev_priv->display.get_initial_plane_config = 17453 i9xx_get_initial_plane_config; 17454 dev_priv->display.crtc_compute_clock = 17455 ilk_crtc_compute_clock; 17456 dev_priv->display.crtc_enable = ilk_crtc_enable; 17457 dev_priv->display.crtc_disable = ilk_crtc_disable; 17458 } else if (IS_CHERRYVIEW(dev_priv)) { 17459 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17460 dev_priv->display.get_initial_plane_config = 17461 i9xx_get_initial_plane_config; 17462 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock; 17463 dev_priv->display.crtc_enable = valleyview_crtc_enable; 17464 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17465 } else if (IS_VALLEYVIEW(dev_priv)) { 17466 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17467 dev_priv->display.get_initial_plane_config = 17468 i9xx_get_initial_plane_config; 17469 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock; 17470 dev_priv->display.crtc_enable = valleyview_crtc_enable; 17471 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17472 } else if (IS_G4X(dev_priv)) { 17473 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17474 dev_priv->display.get_initial_plane_config = 17475 i9xx_get_initial_plane_config; 17476 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock; 17477 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17478 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17479 } else if (IS_PINEVIEW(dev_priv)) { 17480 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17481 dev_priv->display.get_initial_plane_config = 17482 i9xx_get_initial_plane_config; 17483 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock; 17484 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17485 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17486 } else if (!IS_GEN(dev_priv, 2)) { 17487 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17488 dev_priv->display.get_initial_plane_config = 17489 i9xx_get_initial_plane_config; 17490 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock; 17491 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17492 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17493 } else { 17494 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17495 dev_priv->display.get_initial_plane_config = 17496 i9xx_get_initial_plane_config; 17497 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock; 17498 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17499 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17500 } 17501 17502 if (IS_GEN(dev_priv, 5)) { 17503 dev_priv->display.fdi_link_train = ilk_fdi_link_train; 17504 } else if (IS_GEN(dev_priv, 6)) { 17505 dev_priv->display.fdi_link_train = gen6_fdi_link_train; 17506 } else if (IS_IVYBRIDGE(dev_priv)) { 17507 /* FIXME: detect B0+ stepping and use auto training */ 17508 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; 17509 } 17510 17511 if (INTEL_GEN(dev_priv) >= 9) 17512 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; 17513 else 17514 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; 17515 17516 } 17517 17518 void intel_modeset_init_hw(struct drm_i915_private *i915) 17519 { 17520 struct intel_cdclk_state *cdclk_state = 17521 to_intel_cdclk_state(i915->cdclk.obj.state); 17522 17523 intel_update_cdclk(i915); 17524 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK"); 17525 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw; 17526 } 17527 17528 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state) 17529 { 17530 struct drm_plane *plane; 17531 struct drm_crtc *crtc; 17532 17533 drm_for_each_crtc(crtc, state->dev) { 17534 struct drm_crtc_state *crtc_state; 17535 17536 crtc_state = drm_atomic_get_crtc_state(state, crtc); 17537 if (IS_ERR(crtc_state)) 17538 return PTR_ERR(crtc_state); 17539 } 17540 17541 drm_for_each_plane(plane, state->dev) { 17542 struct drm_plane_state *plane_state; 17543 17544 plane_state = drm_atomic_get_plane_state(state, plane); 17545 if (IS_ERR(plane_state)) 17546 return PTR_ERR(plane_state); 17547 } 17548 17549 return 0; 17550 } 17551 17552 /* 17553 * Calculate what we think the watermarks should be for the state we've read 17554 * out of the hardware and then immediately program those watermarks so that 17555 * we ensure the hardware settings match our internal state. 17556 * 17557 * We can calculate what we think WM's should be by creating a duplicate of the 17558 * current state (which was constructed during hardware readout) and running it 17559 * through the atomic check code to calculate new watermark values in the 17560 * state object. 17561 */ 17562 static void sanitize_watermarks(struct drm_i915_private *dev_priv) 17563 { 17564 struct drm_atomic_state *state; 17565 struct intel_atomic_state *intel_state; 17566 struct intel_crtc *crtc; 17567 struct intel_crtc_state *crtc_state; 17568 struct drm_modeset_acquire_ctx ctx; 17569 int ret; 17570 int i; 17571 17572 /* Only supported on platforms that use atomic watermark design */ 17573 if (!dev_priv->display.optimize_watermarks) 17574 return; 17575 17576 state = drm_atomic_state_alloc(&dev_priv->drm); 17577 if (drm_WARN_ON(&dev_priv->drm, !state)) 17578 return; 17579 17580 intel_state = to_intel_atomic_state(state); 17581 17582 drm_modeset_acquire_init(&ctx, 0); 17583 17584 retry: 17585 state->acquire_ctx = &ctx; 17586 17587 /* 17588 * Hardware readout is the only time we don't want to calculate 17589 * intermediate watermarks (since we don't trust the current 17590 * watermarks). 17591 */ 17592 if (!HAS_GMCH(dev_priv)) 17593 intel_state->skip_intermediate_wm = true; 17594 17595 ret = sanitize_watermarks_add_affected(state); 17596 if (ret) 17597 goto fail; 17598 17599 ret = intel_atomic_check(&dev_priv->drm, state); 17600 if (ret) 17601 goto fail; 17602 17603 /* Write calculated watermark values back */ 17604 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 17605 crtc_state->wm.need_postvbl_update = true; 17606 dev_priv->display.optimize_watermarks(intel_state, crtc); 17607 17608 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 17609 } 17610 17611 fail: 17612 if (ret == -EDEADLK) { 17613 drm_atomic_state_clear(state); 17614 drm_modeset_backoff(&ctx); 17615 goto retry; 17616 } 17617 17618 /* 17619 * If we fail here, it means that the hardware appears to be 17620 * programmed in a way that shouldn't be possible, given our 17621 * understanding of watermark requirements. This might mean a 17622 * mistake in the hardware readout code or a mistake in the 17623 * watermark calculations for a given platform. Raise a WARN 17624 * so that this is noticeable. 17625 * 17626 * If this actually happens, we'll have to just leave the 17627 * BIOS-programmed watermarks untouched and hope for the best. 17628 */ 17629 drm_WARN(&dev_priv->drm, ret, 17630 "Could not determine valid watermarks for inherited state\n"); 17631 17632 drm_atomic_state_put(state); 17633 17634 drm_modeset_drop_locks(&ctx); 17635 drm_modeset_acquire_fini(&ctx); 17636 } 17637 17638 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) 17639 { 17640 if (IS_GEN(dev_priv, 5)) { 17641 u32 fdi_pll_clk = 17642 intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; 17643 17644 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; 17645 } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) { 17646 dev_priv->fdi_pll_freq = 270000; 17647 } else { 17648 return; 17649 } 17650 17651 drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); 17652 } 17653 17654 static int intel_initial_commit(struct drm_device *dev) 17655 { 17656 struct drm_atomic_state *state = NULL; 17657 struct drm_modeset_acquire_ctx ctx; 17658 struct intel_crtc *crtc; 17659 int ret = 0; 17660 17661 state = drm_atomic_state_alloc(dev); 17662 if (!state) 17663 return -ENOMEM; 17664 17665 drm_modeset_acquire_init(&ctx, 0); 17666 17667 retry: 17668 state->acquire_ctx = &ctx; 17669 17670 for_each_intel_crtc(dev, crtc) { 17671 struct intel_crtc_state *crtc_state = 17672 intel_atomic_get_crtc_state(state, crtc); 17673 17674 if (IS_ERR(crtc_state)) { 17675 ret = PTR_ERR(crtc_state); 17676 goto out; 17677 } 17678 17679 if (crtc_state->hw.active) { 17680 ret = drm_atomic_add_affected_planes(state, &crtc->base); 17681 if (ret) 17682 goto out; 17683 17684 /* 17685 * FIXME hack to force a LUT update to avoid the 17686 * plane update forcing the pipe gamma on without 17687 * having a proper LUT loaded. Remove once we 17688 * have readout for pipe gamma enable. 17689 */ 17690 crtc_state->uapi.color_mgmt_changed = true; 17691 17692 /* 17693 * FIXME hack to force full modeset when DSC is being 17694 * used. 17695 * 17696 * As long as we do not have full state readout and 17697 * config comparison of crtc_state->dsc, we have no way 17698 * to ensure reliable fastset. Remove once we have 17699 * readout for DSC. 17700 */ 17701 if (crtc_state->dsc.compression_enable) { 17702 ret = drm_atomic_add_affected_connectors(state, 17703 &crtc->base); 17704 if (ret) 17705 goto out; 17706 crtc_state->uapi.mode_changed = true; 17707 drm_dbg_kms(dev, "Force full modeset for DSC\n"); 17708 } 17709 } 17710 } 17711 17712 ret = drm_atomic_commit(state); 17713 17714 out: 17715 if (ret == -EDEADLK) { 17716 drm_atomic_state_clear(state); 17717 drm_modeset_backoff(&ctx); 17718 goto retry; 17719 } 17720 17721 drm_atomic_state_put(state); 17722 17723 drm_modeset_drop_locks(&ctx); 17724 drm_modeset_acquire_fini(&ctx); 17725 17726 return ret; 17727 } 17728 17729 static void intel_mode_config_init(struct drm_i915_private *i915) 17730 { 17731 struct drm_mode_config *mode_config = &i915->drm.mode_config; 17732 17733 drm_mode_config_init(&i915->drm); 17734 INIT_LIST_HEAD(&i915->global_obj_list); 17735 17736 mode_config->min_width = 0; 17737 mode_config->min_height = 0; 17738 17739 mode_config->preferred_depth = 24; 17740 mode_config->prefer_shadow = 1; 17741 17742 mode_config->allow_fb_modifiers = true; 17743 17744 mode_config->funcs = &intel_mode_funcs; 17745 17746 /* 17747 * Maximum framebuffer dimensions, chosen to match 17748 * the maximum render engine surface size on gen4+. 17749 */ 17750 if (INTEL_GEN(i915) >= 7) { 17751 mode_config->max_width = 16384; 17752 mode_config->max_height = 16384; 17753 } else if (INTEL_GEN(i915) >= 4) { 17754 mode_config->max_width = 8192; 17755 mode_config->max_height = 8192; 17756 } else if (IS_GEN(i915, 3)) { 17757 mode_config->max_width = 4096; 17758 mode_config->max_height = 4096; 17759 } else { 17760 mode_config->max_width = 2048; 17761 mode_config->max_height = 2048; 17762 } 17763 17764 if (IS_I845G(i915) || IS_I865G(i915)) { 17765 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; 17766 mode_config->cursor_height = 1023; 17767 } else if (IS_GEN(i915, 2)) { 17768 mode_config->cursor_width = 64; 17769 mode_config->cursor_height = 64; 17770 } else { 17771 mode_config->cursor_width = 256; 17772 mode_config->cursor_height = 256; 17773 } 17774 } 17775 17776 static void intel_mode_config_cleanup(struct drm_i915_private *i915) 17777 { 17778 intel_atomic_global_obj_cleanup(i915); 17779 drm_mode_config_cleanup(&i915->drm); 17780 } 17781 17782 static void plane_config_fini(struct intel_initial_plane_config *plane_config) 17783 { 17784 if (plane_config->fb) { 17785 struct drm_framebuffer *fb = &plane_config->fb->base; 17786 17787 /* We may only have the stub and not a full framebuffer */ 17788 if (drm_framebuffer_read_refcount(fb)) 17789 drm_framebuffer_put(fb); 17790 else 17791 kfree(fb); 17792 } 17793 17794 if (plane_config->vma) 17795 i915_vma_put(plane_config->vma); 17796 } 17797 17798 /* part #1: call before irq install */ 17799 int intel_modeset_init_noirq(struct drm_i915_private *i915) 17800 { 17801 int ret; 17802 17803 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 17804 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | 17805 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); 17806 17807 intel_mode_config_init(i915); 17808 17809 ret = intel_cdclk_init(i915); 17810 if (ret) 17811 return ret; 17812 17813 ret = intel_bw_init(i915); 17814 if (ret) 17815 return ret; 17816 17817 init_llist_head(&i915->atomic_helper.free_list); 17818 INIT_WORK(&i915->atomic_helper.free_work, 17819 intel_atomic_helper_free_state_worker); 17820 17821 intel_init_quirks(i915); 17822 17823 intel_fbc_init(i915); 17824 17825 return 0; 17826 } 17827 17828 /* part #2: call after irq install */ 17829 int intel_modeset_init(struct drm_i915_private *i915) 17830 { 17831 struct drm_device *dev = &i915->drm; 17832 enum pipe pipe; 17833 struct intel_crtc *crtc; 17834 int ret; 17835 17836 intel_init_pm(i915); 17837 17838 intel_panel_sanitize_ssc(i915); 17839 17840 intel_gmbus_setup(i915); 17841 17842 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n", 17843 INTEL_NUM_PIPES(i915), 17844 INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); 17845 17846 if (HAS_DISPLAY(i915) && INTEL_DISPLAY_ENABLED(i915)) { 17847 for_each_pipe(i915, pipe) { 17848 ret = intel_crtc_init(i915, pipe); 17849 if (ret) { 17850 intel_mode_config_cleanup(i915); 17851 return ret; 17852 } 17853 } 17854 } 17855 17856 intel_plane_possible_crtcs_init(i915); 17857 intel_shared_dpll_init(dev); 17858 intel_update_fdi_pll_freq(i915); 17859 17860 intel_update_czclk(i915); 17861 intel_modeset_init_hw(i915); 17862 17863 intel_hdcp_component_init(i915); 17864 17865 if (i915->max_cdclk_freq == 0) 17866 intel_update_max_cdclk(i915); 17867 17868 /* Just disable it once at startup */ 17869 intel_vga_disable(i915); 17870 intel_setup_outputs(i915); 17871 17872 drm_modeset_lock_all(dev); 17873 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 17874 drm_modeset_unlock_all(dev); 17875 17876 for_each_intel_crtc(dev, crtc) { 17877 struct intel_initial_plane_config plane_config = {}; 17878 17879 if (!crtc->active) 17880 continue; 17881 17882 /* 17883 * Note that reserving the BIOS fb up front prevents us 17884 * from stuffing other stolen allocations like the ring 17885 * on top. This prevents some ugliness at boot time, and 17886 * can even allow for smooth boot transitions if the BIOS 17887 * fb is large enough for the active pipe configuration. 17888 */ 17889 i915->display.get_initial_plane_config(crtc, &plane_config); 17890 17891 /* 17892 * If the fb is shared between multiple heads, we'll 17893 * just get the first one. 17894 */ 17895 intel_find_initial_plane_obj(crtc, &plane_config); 17896 17897 plane_config_fini(&plane_config); 17898 } 17899 17900 /* 17901 * Make sure hardware watermarks really match the state we read out. 17902 * Note that we need to do this after reconstructing the BIOS fb's 17903 * since the watermark calculation done here will use pstate->fb. 17904 */ 17905 if (!HAS_GMCH(i915)) 17906 sanitize_watermarks(i915); 17907 17908 /* 17909 * Force all active planes to recompute their states. So that on 17910 * mode_setcrtc after probe, all the intel_plane_state variables 17911 * are already calculated and there is no assert_plane warnings 17912 * during bootup. 17913 */ 17914 ret = intel_initial_commit(dev); 17915 if (ret) 17916 drm_dbg_kms(&i915->drm, "Initial commit in probe failed.\n"); 17917 17918 return 0; 17919 } 17920 17921 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 17922 { 17923 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 17924 /* 640x480@60Hz, ~25175 kHz */ 17925 struct dpll clock = { 17926 .m1 = 18, 17927 .m2 = 7, 17928 .p1 = 13, 17929 .p2 = 4, 17930 .n = 2, 17931 }; 17932 u32 dpll, fp; 17933 int i; 17934 17935 drm_WARN_ON(&dev_priv->drm, 17936 i9xx_calc_dpll_params(48000, &clock) != 25154); 17937 17938 drm_dbg_kms(&dev_priv->drm, 17939 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 17940 pipe_name(pipe), clock.vco, clock.dot); 17941 17942 fp = i9xx_dpll_compute_fp(&clock); 17943 dpll = DPLL_DVO_2X_MODE | 17944 DPLL_VGA_MODE_DIS | 17945 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 17946 PLL_P2_DIVIDE_BY_4 | 17947 PLL_REF_INPUT_DREFCLK | 17948 DPLL_VCO_ENABLE; 17949 17950 intel_de_write(dev_priv, FP0(pipe), fp); 17951 intel_de_write(dev_priv, FP1(pipe), fp); 17952 17953 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 17954 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 17955 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 17956 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 17957 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 17958 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 17959 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 17960 17961 /* 17962 * Apparently we need to have VGA mode enabled prior to changing 17963 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 17964 * dividers, even though the register value does change. 17965 */ 17966 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 17967 intel_de_write(dev_priv, DPLL(pipe), dpll); 17968 17969 /* Wait for the clocks to stabilize. */ 17970 intel_de_posting_read(dev_priv, DPLL(pipe)); 17971 udelay(150); 17972 17973 /* The pixel multiplier can only be updated once the 17974 * DPLL is enabled and the clocks are stable. 17975 * 17976 * So write it again. 17977 */ 17978 intel_de_write(dev_priv, DPLL(pipe), dpll); 17979 17980 /* We do this three times for luck */ 17981 for (i = 0; i < 3 ; i++) { 17982 intel_de_write(dev_priv, DPLL(pipe), dpll); 17983 intel_de_posting_read(dev_priv, DPLL(pipe)); 17984 udelay(150); /* wait for warmup */ 17985 } 17986 17987 intel_de_write(dev_priv, PIPECONF(pipe), 17988 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 17989 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 17990 17991 intel_wait_for_pipe_scanline_moving(crtc); 17992 } 17993 17994 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 17995 { 17996 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 17997 17998 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n", 17999 pipe_name(pipe)); 18000 18001 drm_WARN_ON(&dev_priv->drm, 18002 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & 18003 DISPLAY_PLANE_ENABLE); 18004 drm_WARN_ON(&dev_priv->drm, 18005 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & 18006 DISPLAY_PLANE_ENABLE); 18007 drm_WARN_ON(&dev_priv->drm, 18008 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & 18009 DISPLAY_PLANE_ENABLE); 18010 drm_WARN_ON(&dev_priv->drm, 18011 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE); 18012 drm_WARN_ON(&dev_priv->drm, 18013 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE); 18014 18015 intel_de_write(dev_priv, PIPECONF(pipe), 0); 18016 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 18017 18018 intel_wait_for_pipe_scanline_stopped(crtc); 18019 18020 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 18021 intel_de_posting_read(dev_priv, DPLL(pipe)); 18022 } 18023 18024 static void 18025 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 18026 { 18027 struct intel_crtc *crtc; 18028 18029 if (INTEL_GEN(dev_priv) >= 4) 18030 return; 18031 18032 for_each_intel_crtc(&dev_priv->drm, crtc) { 18033 struct intel_plane *plane = 18034 to_intel_plane(crtc->base.primary); 18035 struct intel_crtc *plane_crtc; 18036 enum pipe pipe; 18037 18038 if (!plane->get_hw_state(plane, &pipe)) 18039 continue; 18040 18041 if (pipe == crtc->pipe) 18042 continue; 18043 18044 drm_dbg_kms(&dev_priv->drm, 18045 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 18046 plane->base.base.id, plane->base.name); 18047 18048 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18049 intel_plane_disable_noatomic(plane_crtc, plane); 18050 } 18051 } 18052 18053 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 18054 { 18055 struct drm_device *dev = crtc->base.dev; 18056 struct intel_encoder *encoder; 18057 18058 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 18059 return true; 18060 18061 return false; 18062 } 18063 18064 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 18065 { 18066 struct drm_device *dev = encoder->base.dev; 18067 struct intel_connector *connector; 18068 18069 for_each_connector_on_encoder(dev, &encoder->base, connector) 18070 return connector; 18071 18072 return NULL; 18073 } 18074 18075 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 18076 enum pipe pch_transcoder) 18077 { 18078 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 18079 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 18080 } 18081 18082 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state) 18083 { 18084 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 18085 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 18086 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 18087 18088 if (INTEL_GEN(dev_priv) >= 9 || 18089 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 18090 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); 18091 u32 val; 18092 18093 if (transcoder_is_dsi(cpu_transcoder)) 18094 return; 18095 18096 val = intel_de_read(dev_priv, reg); 18097 val &= ~HSW_FRAME_START_DELAY_MASK; 18098 val |= HSW_FRAME_START_DELAY(0); 18099 intel_de_write(dev_priv, reg, val); 18100 } else { 18101 i915_reg_t reg = PIPECONF(cpu_transcoder); 18102 u32 val; 18103 18104 val = intel_de_read(dev_priv, reg); 18105 val &= ~PIPECONF_FRAME_START_DELAY_MASK; 18106 val |= PIPECONF_FRAME_START_DELAY(0); 18107 intel_de_write(dev_priv, reg, val); 18108 } 18109 18110 if (!crtc_state->has_pch_encoder) 18111 return; 18112 18113 if (HAS_PCH_IBX(dev_priv)) { 18114 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe); 18115 u32 val; 18116 18117 val = intel_de_read(dev_priv, reg); 18118 val &= ~TRANS_FRAME_START_DELAY_MASK; 18119 val |= TRANS_FRAME_START_DELAY(0); 18120 intel_de_write(dev_priv, reg, val); 18121 } else { 18122 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); 18123 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder); 18124 u32 val; 18125 18126 val = intel_de_read(dev_priv, reg); 18127 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 18128 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 18129 intel_de_write(dev_priv, reg, val); 18130 } 18131 } 18132 18133 static void intel_sanitize_crtc(struct intel_crtc *crtc, 18134 struct drm_modeset_acquire_ctx *ctx) 18135 { 18136 struct drm_device *dev = crtc->base.dev; 18137 struct drm_i915_private *dev_priv = to_i915(dev); 18138 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 18139 18140 if (crtc_state->hw.active) { 18141 struct intel_plane *plane; 18142 18143 /* Clear any frame start delays used for debugging left by the BIOS */ 18144 intel_sanitize_frame_start_delay(crtc_state); 18145 18146 /* Disable everything but the primary plane */ 18147 for_each_intel_plane_on_crtc(dev, crtc, plane) { 18148 const struct intel_plane_state *plane_state = 18149 to_intel_plane_state(plane->base.state); 18150 18151 if (plane_state->uapi.visible && 18152 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 18153 intel_plane_disable_noatomic(crtc, plane); 18154 } 18155 18156 /* 18157 * Disable any background color set by the BIOS, but enable the 18158 * gamma and CSC to match how we program our planes. 18159 */ 18160 if (INTEL_GEN(dev_priv) >= 9) 18161 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe), 18162 SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE); 18163 } 18164 18165 /* Adjust the state of the output pipe according to whether we 18166 * have active connectors/encoders. */ 18167 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc)) 18168 intel_crtc_disable_noatomic(crtc, ctx); 18169 18170 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) { 18171 /* 18172 * We start out with underrun reporting disabled to avoid races. 18173 * For correct bookkeeping mark this on active crtcs. 18174 * 18175 * Also on gmch platforms we dont have any hardware bits to 18176 * disable the underrun reporting. Which means we need to start 18177 * out with underrun reporting disabled also on inactive pipes, 18178 * since otherwise we'll complain about the garbage we read when 18179 * e.g. coming up after runtime pm. 18180 * 18181 * No protection against concurrent access is required - at 18182 * worst a fifo underrun happens which also sets this to false. 18183 */ 18184 crtc->cpu_fifo_underrun_disabled = true; 18185 /* 18186 * We track the PCH trancoder underrun reporting state 18187 * within the crtc. With crtc for pipe A housing the underrun 18188 * reporting state for PCH transcoder A, crtc for pipe B housing 18189 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 18190 * and marking underrun reporting as disabled for the non-existing 18191 * PCH transcoders B and C would prevent enabling the south 18192 * error interrupt (see cpt_can_enable_serr_int()). 18193 */ 18194 if (has_pch_trancoder(dev_priv, crtc->pipe)) 18195 crtc->pch_fifo_underrun_disabled = true; 18196 } 18197 } 18198 18199 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 18200 { 18201 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 18202 18203 /* 18204 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 18205 * the hardware when a high res displays plugged in. DPLL P 18206 * divider is zero, and the pipe timings are bonkers. We'll 18207 * try to disable everything in that case. 18208 * 18209 * FIXME would be nice to be able to sanitize this state 18210 * without several WARNs, but for now let's take the easy 18211 * road. 18212 */ 18213 return IS_GEN(dev_priv, 6) && 18214 crtc_state->hw.active && 18215 crtc_state->shared_dpll && 18216 crtc_state->port_clock == 0; 18217 } 18218 18219 static void intel_sanitize_encoder(struct intel_encoder *encoder) 18220 { 18221 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 18222 struct intel_connector *connector; 18223 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 18224 struct intel_crtc_state *crtc_state = crtc ? 18225 to_intel_crtc_state(crtc->base.state) : NULL; 18226 18227 /* We need to check both for a crtc link (meaning that the 18228 * encoder is active and trying to read from a pipe) and the 18229 * pipe itself being active. */ 18230 bool has_active_crtc = crtc_state && 18231 crtc_state->hw.active; 18232 18233 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 18234 drm_dbg_kms(&dev_priv->drm, 18235 "BIOS has misprogrammed the hardware. Disabling pipe %c\n", 18236 pipe_name(crtc->pipe)); 18237 has_active_crtc = false; 18238 } 18239 18240 connector = intel_encoder_find_connector(encoder); 18241 if (connector && !has_active_crtc) { 18242 drm_dbg_kms(&dev_priv->drm, 18243 "[ENCODER:%d:%s] has active connectors but no active pipe!\n", 18244 encoder->base.base.id, 18245 encoder->base.name); 18246 18247 /* Connector is active, but has no active pipe. This is 18248 * fallout from our resume register restoring. Disable 18249 * the encoder manually again. */ 18250 if (crtc_state) { 18251 struct drm_encoder *best_encoder; 18252 18253 drm_dbg_kms(&dev_priv->drm, 18254 "[ENCODER:%d:%s] manually disabled\n", 18255 encoder->base.base.id, 18256 encoder->base.name); 18257 18258 /* avoid oopsing in case the hooks consult best_encoder */ 18259 best_encoder = connector->base.state->best_encoder; 18260 connector->base.state->best_encoder = &encoder->base; 18261 18262 if (encoder->disable) 18263 encoder->disable(encoder, crtc_state, 18264 connector->base.state); 18265 if (encoder->post_disable) 18266 encoder->post_disable(encoder, crtc_state, 18267 connector->base.state); 18268 18269 connector->base.state->best_encoder = best_encoder; 18270 } 18271 encoder->base.crtc = NULL; 18272 18273 /* Inconsistent output/port/pipe state happens presumably due to 18274 * a bug in one of the get_hw_state functions. Or someplace else 18275 * in our code, like the register restore mess on resume. Clamp 18276 * things to off as a safer default. */ 18277 18278 connector->base.dpms = DRM_MODE_DPMS_OFF; 18279 connector->base.encoder = NULL; 18280 } 18281 18282 /* notify opregion of the sanitized encoder state */ 18283 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 18284 18285 if (INTEL_GEN(dev_priv) >= 11) 18286 icl_sanitize_encoder_pll_mapping(encoder); 18287 } 18288 18289 /* FIXME read out full plane state for all planes */ 18290 static void readout_plane_state(struct drm_i915_private *dev_priv) 18291 { 18292 struct intel_plane *plane; 18293 struct intel_crtc *crtc; 18294 18295 for_each_intel_plane(&dev_priv->drm, plane) { 18296 struct intel_plane_state *plane_state = 18297 to_intel_plane_state(plane->base.state); 18298 struct intel_crtc_state *crtc_state; 18299 enum pipe pipe = PIPE_A; 18300 bool visible; 18301 18302 visible = plane->get_hw_state(plane, &pipe); 18303 18304 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18305 crtc_state = to_intel_crtc_state(crtc->base.state); 18306 18307 intel_set_plane_visible(crtc_state, plane_state, visible); 18308 18309 drm_dbg_kms(&dev_priv->drm, 18310 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 18311 plane->base.base.id, plane->base.name, 18312 enableddisabled(visible), pipe_name(pipe)); 18313 } 18314 18315 for_each_intel_crtc(&dev_priv->drm, crtc) { 18316 struct intel_crtc_state *crtc_state = 18317 to_intel_crtc_state(crtc->base.state); 18318 18319 fixup_active_planes(crtc_state); 18320 } 18321 } 18322 18323 static void intel_modeset_readout_hw_state(struct drm_device *dev) 18324 { 18325 struct drm_i915_private *dev_priv = to_i915(dev); 18326 struct intel_cdclk_state *cdclk_state = 18327 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 18328 enum pipe pipe; 18329 struct intel_crtc *crtc; 18330 struct intel_encoder *encoder; 18331 struct intel_connector *connector; 18332 struct drm_connector_list_iter conn_iter; 18333 u8 active_pipes = 0; 18334 18335 for_each_intel_crtc(dev, crtc) { 18336 struct intel_crtc_state *crtc_state = 18337 to_intel_crtc_state(crtc->base.state); 18338 18339 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi); 18340 intel_crtc_free_hw_state(crtc_state); 18341 intel_crtc_state_reset(crtc_state, crtc); 18342 18343 crtc_state->hw.active = crtc_state->hw.enable = 18344 dev_priv->display.get_pipe_config(crtc, crtc_state); 18345 18346 crtc->base.enabled = crtc_state->hw.enable; 18347 crtc->active = crtc_state->hw.active; 18348 18349 if (crtc_state->hw.active) 18350 active_pipes |= BIT(crtc->pipe); 18351 18352 drm_dbg_kms(&dev_priv->drm, 18353 "[CRTC:%d:%s] hw state readout: %s\n", 18354 crtc->base.base.id, crtc->base.name, 18355 enableddisabled(crtc_state->hw.active)); 18356 } 18357 18358 dev_priv->active_pipes = cdclk_state->active_pipes = active_pipes; 18359 18360 readout_plane_state(dev_priv); 18361 18362 intel_dpll_readout_hw_state(dev_priv); 18363 18364 for_each_intel_encoder(dev, encoder) { 18365 pipe = 0; 18366 18367 if (encoder->get_hw_state(encoder, &pipe)) { 18368 struct intel_crtc_state *crtc_state; 18369 18370 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18371 crtc_state = to_intel_crtc_state(crtc->base.state); 18372 18373 encoder->base.crtc = &crtc->base; 18374 encoder->get_config(encoder, crtc_state); 18375 } else { 18376 encoder->base.crtc = NULL; 18377 } 18378 18379 drm_dbg_kms(&dev_priv->drm, 18380 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 18381 encoder->base.base.id, encoder->base.name, 18382 enableddisabled(encoder->base.crtc), 18383 pipe_name(pipe)); 18384 } 18385 18386 drm_connector_list_iter_begin(dev, &conn_iter); 18387 for_each_intel_connector_iter(connector, &conn_iter) { 18388 if (connector->get_hw_state(connector)) { 18389 struct intel_crtc_state *crtc_state; 18390 struct intel_crtc *crtc; 18391 18392 connector->base.dpms = DRM_MODE_DPMS_ON; 18393 18394 encoder = intel_attached_encoder(connector); 18395 connector->base.encoder = &encoder->base; 18396 18397 crtc = to_intel_crtc(encoder->base.crtc); 18398 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; 18399 18400 if (crtc_state && crtc_state->hw.active) { 18401 /* 18402 * This has to be done during hardware readout 18403 * because anything calling .crtc_disable may 18404 * rely on the connector_mask being accurate. 18405 */ 18406 crtc_state->uapi.connector_mask |= 18407 drm_connector_mask(&connector->base); 18408 crtc_state->uapi.encoder_mask |= 18409 drm_encoder_mask(&encoder->base); 18410 } 18411 } else { 18412 connector->base.dpms = DRM_MODE_DPMS_OFF; 18413 connector->base.encoder = NULL; 18414 } 18415 drm_dbg_kms(&dev_priv->drm, 18416 "[CONNECTOR:%d:%s] hw state readout: %s\n", 18417 connector->base.base.id, connector->base.name, 18418 enableddisabled(connector->base.encoder)); 18419 } 18420 drm_connector_list_iter_end(&conn_iter); 18421 18422 for_each_intel_crtc(dev, crtc) { 18423 struct intel_bw_state *bw_state = 18424 to_intel_bw_state(dev_priv->bw_obj.state); 18425 struct intel_crtc_state *crtc_state = 18426 to_intel_crtc_state(crtc->base.state); 18427 struct intel_plane *plane; 18428 int min_cdclk = 0; 18429 18430 if (crtc_state->hw.active) { 18431 struct drm_display_mode *mode = &crtc_state->hw.mode; 18432 18433 intel_mode_from_pipe_config(&crtc_state->hw.adjusted_mode, 18434 crtc_state); 18435 18436 *mode = crtc_state->hw.adjusted_mode; 18437 mode->hdisplay = crtc_state->pipe_src_w; 18438 mode->vdisplay = crtc_state->pipe_src_h; 18439 18440 /* 18441 * The initial mode needs to be set in order to keep 18442 * the atomic core happy. It wants a valid mode if the 18443 * crtc's enabled, so we do the above call. 18444 * 18445 * But we don't set all the derived state fully, hence 18446 * set a flag to indicate that a full recalculation is 18447 * needed on the next commit. 18448 */ 18449 mode->private_flags = I915_MODE_FLAG_INHERITED; 18450 18451 intel_crtc_compute_pixel_rate(crtc_state); 18452 18453 intel_crtc_update_active_timings(crtc_state); 18454 18455 intel_crtc_copy_hw_to_uapi_state(crtc_state); 18456 } 18457 18458 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 18459 const struct intel_plane_state *plane_state = 18460 to_intel_plane_state(plane->base.state); 18461 18462 /* 18463 * FIXME don't have the fb yet, so can't 18464 * use intel_plane_data_rate() :( 18465 */ 18466 if (plane_state->uapi.visible) 18467 crtc_state->data_rate[plane->id] = 18468 4 * crtc_state->pixel_rate; 18469 /* 18470 * FIXME don't have the fb yet, so can't 18471 * use plane->min_cdclk() :( 18472 */ 18473 if (plane_state->uapi.visible && plane->min_cdclk) { 18474 if (crtc_state->double_wide || 18475 INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 18476 crtc_state->min_cdclk[plane->id] = 18477 DIV_ROUND_UP(crtc_state->pixel_rate, 2); 18478 else 18479 crtc_state->min_cdclk[plane->id] = 18480 crtc_state->pixel_rate; 18481 } 18482 drm_dbg_kms(&dev_priv->drm, 18483 "[PLANE:%d:%s] min_cdclk %d kHz\n", 18484 plane->base.base.id, plane->base.name, 18485 crtc_state->min_cdclk[plane->id]); 18486 } 18487 18488 if (crtc_state->hw.active) { 18489 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 18490 if (drm_WARN_ON(dev, min_cdclk < 0)) 18491 min_cdclk = 0; 18492 } 18493 18494 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 18495 cdclk_state->min_voltage_level[crtc->pipe] = 18496 crtc_state->min_voltage_level; 18497 18498 intel_bw_crtc_update(bw_state, crtc_state); 18499 18500 intel_pipe_config_sanity_check(dev_priv, crtc_state); 18501 } 18502 } 18503 18504 static void 18505 get_encoder_power_domains(struct drm_i915_private *dev_priv) 18506 { 18507 struct intel_encoder *encoder; 18508 18509 for_each_intel_encoder(&dev_priv->drm, encoder) { 18510 struct intel_crtc_state *crtc_state; 18511 18512 if (!encoder->get_power_domains) 18513 continue; 18514 18515 /* 18516 * MST-primary and inactive encoders don't have a crtc state 18517 * and neither of these require any power domain references. 18518 */ 18519 if (!encoder->base.crtc) 18520 continue; 18521 18522 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 18523 encoder->get_power_domains(encoder, crtc_state); 18524 } 18525 } 18526 18527 static void intel_early_display_was(struct drm_i915_private *dev_priv) 18528 { 18529 /* 18530 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl 18531 * Also known as Wa_14010480278. 18532 */ 18533 if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv)) 18534 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0, 18535 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS); 18536 18537 if (IS_HASWELL(dev_priv)) { 18538 /* 18539 * WaRsPkgCStateDisplayPMReq:hsw 18540 * System hang if this isn't done before disabling all planes! 18541 */ 18542 intel_de_write(dev_priv, CHICKEN_PAR1_1, 18543 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 18544 } 18545 } 18546 18547 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 18548 enum port port, i915_reg_t hdmi_reg) 18549 { 18550 u32 val = intel_de_read(dev_priv, hdmi_reg); 18551 18552 if (val & SDVO_ENABLE || 18553 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 18554 return; 18555 18556 drm_dbg_kms(&dev_priv->drm, 18557 "Sanitizing transcoder select for HDMI %c\n", 18558 port_name(port)); 18559 18560 val &= ~SDVO_PIPE_SEL_MASK; 18561 val |= SDVO_PIPE_SEL(PIPE_A); 18562 18563 intel_de_write(dev_priv, hdmi_reg, val); 18564 } 18565 18566 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 18567 enum port port, i915_reg_t dp_reg) 18568 { 18569 u32 val = intel_de_read(dev_priv, dp_reg); 18570 18571 if (val & DP_PORT_EN || 18572 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 18573 return; 18574 18575 drm_dbg_kms(&dev_priv->drm, 18576 "Sanitizing transcoder select for DP %c\n", 18577 port_name(port)); 18578 18579 val &= ~DP_PIPE_SEL_MASK; 18580 val |= DP_PIPE_SEL(PIPE_A); 18581 18582 intel_de_write(dev_priv, dp_reg, val); 18583 } 18584 18585 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 18586 { 18587 /* 18588 * The BIOS may select transcoder B on some of the PCH 18589 * ports even it doesn't enable the port. This would trip 18590 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 18591 * Sanitize the transcoder select bits to prevent that. We 18592 * assume that the BIOS never actually enabled the port, 18593 * because if it did we'd actually have to toggle the port 18594 * on and back off to make the transcoder A select stick 18595 * (see. intel_dp_link_down(), intel_disable_hdmi(), 18596 * intel_disable_sdvo()). 18597 */ 18598 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 18599 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 18600 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 18601 18602 /* PCH SDVOB multiplex with HDMIB */ 18603 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 18604 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 18605 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 18606 } 18607 18608 /* Scan out the current hw modeset state, 18609 * and sanitizes it to the current state 18610 */ 18611 static void 18612 intel_modeset_setup_hw_state(struct drm_device *dev, 18613 struct drm_modeset_acquire_ctx *ctx) 18614 { 18615 struct drm_i915_private *dev_priv = to_i915(dev); 18616 struct intel_encoder *encoder; 18617 struct intel_crtc *crtc; 18618 intel_wakeref_t wakeref; 18619 18620 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 18621 18622 intel_early_display_was(dev_priv); 18623 intel_modeset_readout_hw_state(dev); 18624 18625 /* HW state is read out, now we need to sanitize this mess. */ 18626 18627 /* Sanitize the TypeC port mode upfront, encoders depend on this */ 18628 for_each_intel_encoder(dev, encoder) { 18629 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 18630 18631 /* We need to sanitize only the MST primary port. */ 18632 if (encoder->type != INTEL_OUTPUT_DP_MST && 18633 intel_phy_is_tc(dev_priv, phy)) 18634 intel_tc_port_sanitize(enc_to_dig_port(encoder)); 18635 } 18636 18637 get_encoder_power_domains(dev_priv); 18638 18639 if (HAS_PCH_IBX(dev_priv)) 18640 ibx_sanitize_pch_ports(dev_priv); 18641 18642 /* 18643 * intel_sanitize_plane_mapping() may need to do vblank 18644 * waits, so we need vblank interrupts restored beforehand. 18645 */ 18646 for_each_intel_crtc(&dev_priv->drm, crtc) { 18647 struct intel_crtc_state *crtc_state = 18648 to_intel_crtc_state(crtc->base.state); 18649 18650 drm_crtc_vblank_reset(&crtc->base); 18651 18652 if (crtc_state->hw.active) 18653 intel_crtc_vblank_on(crtc_state); 18654 } 18655 18656 intel_sanitize_plane_mapping(dev_priv); 18657 18658 for_each_intel_encoder(dev, encoder) 18659 intel_sanitize_encoder(encoder); 18660 18661 for_each_intel_crtc(&dev_priv->drm, crtc) { 18662 struct intel_crtc_state *crtc_state = 18663 to_intel_crtc_state(crtc->base.state); 18664 18665 intel_sanitize_crtc(crtc, ctx); 18666 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 18667 } 18668 18669 intel_modeset_update_connector_atomic_state(dev); 18670 18671 intel_dpll_sanitize_state(dev_priv); 18672 18673 if (IS_G4X(dev_priv)) { 18674 g4x_wm_get_hw_state(dev_priv); 18675 g4x_wm_sanitize(dev_priv); 18676 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 18677 vlv_wm_get_hw_state(dev_priv); 18678 vlv_wm_sanitize(dev_priv); 18679 } else if (INTEL_GEN(dev_priv) >= 9) { 18680 skl_wm_get_hw_state(dev_priv); 18681 } else if (HAS_PCH_SPLIT(dev_priv)) { 18682 ilk_wm_get_hw_state(dev_priv); 18683 } 18684 18685 for_each_intel_crtc(dev, crtc) { 18686 struct intel_crtc_state *crtc_state = 18687 to_intel_crtc_state(crtc->base.state); 18688 u64 put_domains; 18689 18690 put_domains = modeset_get_crtc_power_domains(crtc_state); 18691 if (drm_WARN_ON(dev, put_domains)) 18692 modeset_put_power_domains(dev_priv, put_domains); 18693 } 18694 18695 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 18696 } 18697 18698 void intel_display_resume(struct drm_device *dev) 18699 { 18700 struct drm_i915_private *dev_priv = to_i915(dev); 18701 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 18702 struct drm_modeset_acquire_ctx ctx; 18703 int ret; 18704 18705 dev_priv->modeset_restore_state = NULL; 18706 if (state) 18707 state->acquire_ctx = &ctx; 18708 18709 drm_modeset_acquire_init(&ctx, 0); 18710 18711 while (1) { 18712 ret = drm_modeset_lock_all_ctx(dev, &ctx); 18713 if (ret != -EDEADLK) 18714 break; 18715 18716 drm_modeset_backoff(&ctx); 18717 } 18718 18719 if (!ret) 18720 ret = __intel_display_resume(dev, state, &ctx); 18721 18722 intel_enable_ipc(dev_priv); 18723 drm_modeset_drop_locks(&ctx); 18724 drm_modeset_acquire_fini(&ctx); 18725 18726 if (ret) 18727 drm_err(&dev_priv->drm, 18728 "Restoring old state failed with %i\n", ret); 18729 if (state) 18730 drm_atomic_state_put(state); 18731 } 18732 18733 static void intel_hpd_poll_fini(struct drm_i915_private *i915) 18734 { 18735 struct intel_connector *connector; 18736 struct drm_connector_list_iter conn_iter; 18737 18738 /* Kill all the work that may have been queued by hpd. */ 18739 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 18740 for_each_intel_connector_iter(connector, &conn_iter) { 18741 if (connector->modeset_retry_work.func) 18742 cancel_work_sync(&connector->modeset_retry_work); 18743 if (connector->hdcp.shim) { 18744 cancel_delayed_work_sync(&connector->hdcp.check_work); 18745 cancel_work_sync(&connector->hdcp.prop_work); 18746 } 18747 } 18748 drm_connector_list_iter_end(&conn_iter); 18749 } 18750 18751 /* part #1: call before irq uninstall */ 18752 void intel_modeset_driver_remove(struct drm_i915_private *i915) 18753 { 18754 flush_workqueue(i915->flip_wq); 18755 flush_workqueue(i915->modeset_wq); 18756 18757 flush_work(&i915->atomic_helper.free_work); 18758 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list)); 18759 } 18760 18761 /* part #2: call after irq uninstall */ 18762 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915) 18763 { 18764 /* 18765 * Due to the hpd irq storm handling the hotplug work can re-arm the 18766 * poll handlers. Hence disable polling after hpd handling is shut down. 18767 */ 18768 intel_hpd_poll_fini(i915); 18769 18770 /* 18771 * MST topology needs to be suspended so we don't have any calls to 18772 * fbdev after it's finalized. MST will be destroyed later as part of 18773 * drm_mode_config_cleanup() 18774 */ 18775 intel_dp_mst_suspend(i915); 18776 18777 /* poll work can call into fbdev, hence clean that up afterwards */ 18778 intel_fbdev_fini(i915); 18779 18780 intel_unregister_dsm_handler(); 18781 18782 intel_fbc_global_disable(i915); 18783 18784 /* flush any delayed tasks or pending work */ 18785 flush_scheduled_work(); 18786 18787 intel_hdcp_component_fini(i915); 18788 18789 intel_mode_config_cleanup(i915); 18790 18791 intel_overlay_cleanup(i915); 18792 18793 intel_gmbus_teardown(i915); 18794 18795 destroy_workqueue(i915->flip_wq); 18796 destroy_workqueue(i915->modeset_wq); 18797 18798 intel_fbc_cleanup_cfb(i915); 18799 } 18800 18801 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 18802 18803 static bool 18804 has_transcoder(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder) 18805 { 18806 if (cpu_transcoder == TRANSCODER_EDP) 18807 return HAS_TRANSCODER_EDP(dev_priv); 18808 else 18809 return INTEL_INFO(dev_priv)->pipe_mask & BIT(cpu_transcoder); 18810 } 18811 18812 struct intel_display_error_state { 18813 18814 u32 power_well_driver; 18815 18816 struct intel_cursor_error_state { 18817 u32 control; 18818 u32 position; 18819 u32 base; 18820 u32 size; 18821 } cursor[I915_MAX_PIPES]; 18822 18823 struct intel_pipe_error_state { 18824 bool power_domain_on; 18825 u32 source; 18826 u32 stat; 18827 } pipe[I915_MAX_PIPES]; 18828 18829 struct intel_plane_error_state { 18830 u32 control; 18831 u32 stride; 18832 u32 size; 18833 u32 pos; 18834 u32 addr; 18835 u32 surface; 18836 u32 tile_offset; 18837 } plane[I915_MAX_PIPES]; 18838 18839 struct intel_transcoder_error_state { 18840 bool available; 18841 bool power_domain_on; 18842 enum transcoder cpu_transcoder; 18843 18844 u32 conf; 18845 18846 u32 htotal; 18847 u32 hblank; 18848 u32 hsync; 18849 u32 vtotal; 18850 u32 vblank; 18851 u32 vsync; 18852 } transcoder[5]; 18853 }; 18854 18855 struct intel_display_error_state * 18856 intel_display_capture_error_state(struct drm_i915_private *dev_priv) 18857 { 18858 struct intel_display_error_state *error; 18859 int transcoders[] = { 18860 TRANSCODER_A, 18861 TRANSCODER_B, 18862 TRANSCODER_C, 18863 TRANSCODER_D, 18864 TRANSCODER_EDP, 18865 }; 18866 int i; 18867 18868 BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder)); 18869 18870 if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv)) 18871 return NULL; 18872 18873 error = kzalloc(sizeof(*error), GFP_ATOMIC); 18874 if (error == NULL) 18875 return NULL; 18876 18877 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 18878 error->power_well_driver = intel_de_read(dev_priv, 18879 HSW_PWR_WELL_CTL2); 18880 18881 for_each_pipe(dev_priv, i) { 18882 error->pipe[i].power_domain_on = 18883 __intel_display_power_is_enabled(dev_priv, 18884 POWER_DOMAIN_PIPE(i)); 18885 if (!error->pipe[i].power_domain_on) 18886 continue; 18887 18888 error->cursor[i].control = intel_de_read(dev_priv, CURCNTR(i)); 18889 error->cursor[i].position = intel_de_read(dev_priv, CURPOS(i)); 18890 error->cursor[i].base = intel_de_read(dev_priv, CURBASE(i)); 18891 18892 error->plane[i].control = intel_de_read(dev_priv, DSPCNTR(i)); 18893 error->plane[i].stride = intel_de_read(dev_priv, DSPSTRIDE(i)); 18894 if (INTEL_GEN(dev_priv) <= 3) { 18895 error->plane[i].size = intel_de_read(dev_priv, 18896 DSPSIZE(i)); 18897 error->plane[i].pos = intel_de_read(dev_priv, 18898 DSPPOS(i)); 18899 } 18900 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 18901 error->plane[i].addr = intel_de_read(dev_priv, 18902 DSPADDR(i)); 18903 if (INTEL_GEN(dev_priv) >= 4) { 18904 error->plane[i].surface = intel_de_read(dev_priv, 18905 DSPSURF(i)); 18906 error->plane[i].tile_offset = intel_de_read(dev_priv, 18907 DSPTILEOFF(i)); 18908 } 18909 18910 error->pipe[i].source = intel_de_read(dev_priv, PIPESRC(i)); 18911 18912 if (HAS_GMCH(dev_priv)) 18913 error->pipe[i].stat = intel_de_read(dev_priv, 18914 PIPESTAT(i)); 18915 } 18916 18917 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 18918 enum transcoder cpu_transcoder = transcoders[i]; 18919 18920 if (!has_transcoder(dev_priv, cpu_transcoder)) 18921 continue; 18922 18923 error->transcoder[i].available = true; 18924 error->transcoder[i].power_domain_on = 18925 __intel_display_power_is_enabled(dev_priv, 18926 POWER_DOMAIN_TRANSCODER(cpu_transcoder)); 18927 if (!error->transcoder[i].power_domain_on) 18928 continue; 18929 18930 error->transcoder[i].cpu_transcoder = cpu_transcoder; 18931 18932 error->transcoder[i].conf = intel_de_read(dev_priv, 18933 PIPECONF(cpu_transcoder)); 18934 error->transcoder[i].htotal = intel_de_read(dev_priv, 18935 HTOTAL(cpu_transcoder)); 18936 error->transcoder[i].hblank = intel_de_read(dev_priv, 18937 HBLANK(cpu_transcoder)); 18938 error->transcoder[i].hsync = intel_de_read(dev_priv, 18939 HSYNC(cpu_transcoder)); 18940 error->transcoder[i].vtotal = intel_de_read(dev_priv, 18941 VTOTAL(cpu_transcoder)); 18942 error->transcoder[i].vblank = intel_de_read(dev_priv, 18943 VBLANK(cpu_transcoder)); 18944 error->transcoder[i].vsync = intel_de_read(dev_priv, 18945 VSYNC(cpu_transcoder)); 18946 } 18947 18948 return error; 18949 } 18950 18951 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) 18952 18953 void 18954 intel_display_print_error_state(struct drm_i915_error_state_buf *m, 18955 struct intel_display_error_state *error) 18956 { 18957 struct drm_i915_private *dev_priv = m->i915; 18958 int i; 18959 18960 if (!error) 18961 return; 18962 18963 err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv)); 18964 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 18965 err_printf(m, "PWR_WELL_CTL2: %08x\n", 18966 error->power_well_driver); 18967 for_each_pipe(dev_priv, i) { 18968 err_printf(m, "Pipe [%d]:\n", i); 18969 err_printf(m, " Power: %s\n", 18970 onoff(error->pipe[i].power_domain_on)); 18971 err_printf(m, " SRC: %08x\n", error->pipe[i].source); 18972 err_printf(m, " STAT: %08x\n", error->pipe[i].stat); 18973 18974 err_printf(m, "Plane [%d]:\n", i); 18975 err_printf(m, " CNTR: %08x\n", error->plane[i].control); 18976 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride); 18977 if (INTEL_GEN(dev_priv) <= 3) { 18978 err_printf(m, " SIZE: %08x\n", error->plane[i].size); 18979 err_printf(m, " POS: %08x\n", error->plane[i].pos); 18980 } 18981 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 18982 err_printf(m, " ADDR: %08x\n", error->plane[i].addr); 18983 if (INTEL_GEN(dev_priv) >= 4) { 18984 err_printf(m, " SURF: %08x\n", error->plane[i].surface); 18985 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); 18986 } 18987 18988 err_printf(m, "Cursor [%d]:\n", i); 18989 err_printf(m, " CNTR: %08x\n", error->cursor[i].control); 18990 err_printf(m, " POS: %08x\n", error->cursor[i].position); 18991 err_printf(m, " BASE: %08x\n", error->cursor[i].base); 18992 } 18993 18994 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 18995 if (!error->transcoder[i].available) 18996 continue; 18997 18998 err_printf(m, "CPU transcoder: %s\n", 18999 transcoder_name(error->transcoder[i].cpu_transcoder)); 19000 err_printf(m, " Power: %s\n", 19001 onoff(error->transcoder[i].power_domain_on)); 19002 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf); 19003 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal); 19004 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank); 19005 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync); 19006 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal); 19007 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank); 19008 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync); 19009 } 19010 } 19011 19012 #endif 19013