1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <linux/i2c.h> 28 #include <linux/input.h> 29 #include <linux/intel-iommu.h> 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/dma-resv.h> 33 #include <linux/slab.h> 34 35 #include <drm/drm_atomic.h> 36 #include <drm/drm_atomic_helper.h> 37 #include <drm/drm_atomic_uapi.h> 38 #include <drm/drm_dp_helper.h> 39 #include <drm/drm_edid.h> 40 #include <drm/drm_fourcc.h> 41 #include <drm/drm_plane_helper.h> 42 #include <drm/drm_probe_helper.h> 43 #include <drm/drm_rect.h> 44 45 #include "display/intel_crt.h" 46 #include "display/intel_ddi.h" 47 #include "display/intel_dp.h" 48 #include "display/intel_dp_mst.h" 49 #include "display/intel_dsi.h" 50 #include "display/intel_dvo.h" 51 #include "display/intel_gmbus.h" 52 #include "display/intel_hdmi.h" 53 #include "display/intel_lvds.h" 54 #include "display/intel_sdvo.h" 55 #include "display/intel_tv.h" 56 #include "display/intel_vdsc.h" 57 58 #include "gt/intel_rps.h" 59 60 #include "i915_drv.h" 61 #include "i915_trace.h" 62 #include "intel_acpi.h" 63 #include "intel_atomic.h" 64 #include "intel_atomic_plane.h" 65 #include "intel_bw.h" 66 #include "intel_cdclk.h" 67 #include "intel_color.h" 68 #include "intel_display_types.h" 69 #include "intel_dp_link_training.h" 70 #include "intel_fbc.h" 71 #include "intel_fbdev.h" 72 #include "intel_fifo_underrun.h" 73 #include "intel_frontbuffer.h" 74 #include "intel_hdcp.h" 75 #include "intel_hotplug.h" 76 #include "intel_overlay.h" 77 #include "intel_pipe_crc.h" 78 #include "intel_pm.h" 79 #include "intel_psr.h" 80 #include "intel_quirks.h" 81 #include "intel_sideband.h" 82 #include "intel_sprite.h" 83 #include "intel_tc.h" 84 #include "intel_vga.h" 85 86 /* Primary plane formats for gen <= 3 */ 87 static const u32 i8xx_primary_formats[] = { 88 DRM_FORMAT_C8, 89 DRM_FORMAT_XRGB1555, 90 DRM_FORMAT_RGB565, 91 DRM_FORMAT_XRGB8888, 92 }; 93 94 /* Primary plane formats for ivb (no fp16 due to hw issue) */ 95 static const u32 ivb_primary_formats[] = { 96 DRM_FORMAT_C8, 97 DRM_FORMAT_RGB565, 98 DRM_FORMAT_XRGB8888, 99 DRM_FORMAT_XBGR8888, 100 DRM_FORMAT_XRGB2101010, 101 DRM_FORMAT_XBGR2101010, 102 }; 103 104 /* Primary plane formats for gen >= 4, except ivb */ 105 static const u32 i965_primary_formats[] = { 106 DRM_FORMAT_C8, 107 DRM_FORMAT_RGB565, 108 DRM_FORMAT_XRGB8888, 109 DRM_FORMAT_XBGR8888, 110 DRM_FORMAT_XRGB2101010, 111 DRM_FORMAT_XBGR2101010, 112 DRM_FORMAT_XBGR16161616F, 113 }; 114 115 /* Primary plane formats for vlv/chv */ 116 static const u32 vlv_primary_formats[] = { 117 DRM_FORMAT_C8, 118 DRM_FORMAT_RGB565, 119 DRM_FORMAT_XRGB8888, 120 DRM_FORMAT_XBGR8888, 121 DRM_FORMAT_ARGB8888, 122 DRM_FORMAT_ABGR8888, 123 DRM_FORMAT_XRGB2101010, 124 DRM_FORMAT_XBGR2101010, 125 DRM_FORMAT_ARGB2101010, 126 DRM_FORMAT_ABGR2101010, 127 DRM_FORMAT_XBGR16161616F, 128 }; 129 130 static const u64 i9xx_format_modifiers[] = { 131 I915_FORMAT_MOD_X_TILED, 132 DRM_FORMAT_MOD_LINEAR, 133 DRM_FORMAT_MOD_INVALID 134 }; 135 136 /* Cursor formats */ 137 static const u32 intel_cursor_formats[] = { 138 DRM_FORMAT_ARGB8888, 139 }; 140 141 static const u64 cursor_format_modifiers[] = { 142 DRM_FORMAT_MOD_LINEAR, 143 DRM_FORMAT_MOD_INVALID 144 }; 145 146 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 147 struct intel_crtc_state *pipe_config); 148 static void ilk_pch_clock_get(struct intel_crtc *crtc, 149 struct intel_crtc_state *pipe_config); 150 151 static int intel_framebuffer_init(struct intel_framebuffer *ifb, 152 struct drm_i915_gem_object *obj, 153 struct drm_mode_fb_cmd2 *mode_cmd); 154 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state); 155 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 156 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 157 const struct intel_link_m_n *m_n, 158 const struct intel_link_m_n *m2_n2); 159 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 160 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state); 161 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state); 162 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 163 static void vlv_prepare_pll(struct intel_crtc *crtc, 164 const struct intel_crtc_state *pipe_config); 165 static void chv_prepare_pll(struct intel_crtc *crtc, 166 const struct intel_crtc_state *pipe_config); 167 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state); 168 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); 169 static void intel_modeset_setup_hw_state(struct drm_device *dev, 170 struct drm_modeset_acquire_ctx *ctx); 171 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc); 172 173 struct intel_limit { 174 struct { 175 int min, max; 176 } dot, vco, n, m, m1, m2, p, p1; 177 178 struct { 179 int dot_limit; 180 int p2_slow, p2_fast; 181 } p2; 182 }; 183 184 /* returns HPLL frequency in kHz */ 185 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 186 { 187 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 188 189 /* Obtain SKU information */ 190 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 191 CCK_FUSE_HPLL_FREQ_MASK; 192 193 return vco_freq[hpll_freq] * 1000; 194 } 195 196 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 197 const char *name, u32 reg, int ref_freq) 198 { 199 u32 val; 200 int divider; 201 202 val = vlv_cck_read(dev_priv, reg); 203 divider = val & CCK_FREQUENCY_VALUES; 204 205 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != 206 (divider << CCK_FREQUENCY_STATUS_SHIFT), 207 "%s change in progress\n", name); 208 209 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 210 } 211 212 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 213 const char *name, u32 reg) 214 { 215 int hpll; 216 217 vlv_cck_get(dev_priv); 218 219 if (dev_priv->hpll_freq == 0) 220 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 221 222 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 223 224 vlv_cck_put(dev_priv); 225 226 return hpll; 227 } 228 229 static void intel_update_czclk(struct drm_i915_private *dev_priv) 230 { 231 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 232 return; 233 234 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 235 CCK_CZ_CLOCK_CONTROL); 236 237 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n", 238 dev_priv->czclk_freq); 239 } 240 241 static inline u32 /* units of 100MHz */ 242 intel_fdi_link_freq(struct drm_i915_private *dev_priv, 243 const struct intel_crtc_state *pipe_config) 244 { 245 if (HAS_DDI(dev_priv)) 246 return pipe_config->port_clock; /* SPLL */ 247 else 248 return dev_priv->fdi_pll_freq; 249 } 250 251 static const struct intel_limit intel_limits_i8xx_dac = { 252 .dot = { .min = 25000, .max = 350000 }, 253 .vco = { .min = 908000, .max = 1512000 }, 254 .n = { .min = 2, .max = 16 }, 255 .m = { .min = 96, .max = 140 }, 256 .m1 = { .min = 18, .max = 26 }, 257 .m2 = { .min = 6, .max = 16 }, 258 .p = { .min = 4, .max = 128 }, 259 .p1 = { .min = 2, .max = 33 }, 260 .p2 = { .dot_limit = 165000, 261 .p2_slow = 4, .p2_fast = 2 }, 262 }; 263 264 static const struct intel_limit intel_limits_i8xx_dvo = { 265 .dot = { .min = 25000, .max = 350000 }, 266 .vco = { .min = 908000, .max = 1512000 }, 267 .n = { .min = 2, .max = 16 }, 268 .m = { .min = 96, .max = 140 }, 269 .m1 = { .min = 18, .max = 26 }, 270 .m2 = { .min = 6, .max = 16 }, 271 .p = { .min = 4, .max = 128 }, 272 .p1 = { .min = 2, .max = 33 }, 273 .p2 = { .dot_limit = 165000, 274 .p2_slow = 4, .p2_fast = 4 }, 275 }; 276 277 static const struct intel_limit intel_limits_i8xx_lvds = { 278 .dot = { .min = 25000, .max = 350000 }, 279 .vco = { .min = 908000, .max = 1512000 }, 280 .n = { .min = 2, .max = 16 }, 281 .m = { .min = 96, .max = 140 }, 282 .m1 = { .min = 18, .max = 26 }, 283 .m2 = { .min = 6, .max = 16 }, 284 .p = { .min = 4, .max = 128 }, 285 .p1 = { .min = 1, .max = 6 }, 286 .p2 = { .dot_limit = 165000, 287 .p2_slow = 14, .p2_fast = 7 }, 288 }; 289 290 static const struct intel_limit intel_limits_i9xx_sdvo = { 291 .dot = { .min = 20000, .max = 400000 }, 292 .vco = { .min = 1400000, .max = 2800000 }, 293 .n = { .min = 1, .max = 6 }, 294 .m = { .min = 70, .max = 120 }, 295 .m1 = { .min = 8, .max = 18 }, 296 .m2 = { .min = 3, .max = 7 }, 297 .p = { .min = 5, .max = 80 }, 298 .p1 = { .min = 1, .max = 8 }, 299 .p2 = { .dot_limit = 200000, 300 .p2_slow = 10, .p2_fast = 5 }, 301 }; 302 303 static const struct intel_limit intel_limits_i9xx_lvds = { 304 .dot = { .min = 20000, .max = 400000 }, 305 .vco = { .min = 1400000, .max = 2800000 }, 306 .n = { .min = 1, .max = 6 }, 307 .m = { .min = 70, .max = 120 }, 308 .m1 = { .min = 8, .max = 18 }, 309 .m2 = { .min = 3, .max = 7 }, 310 .p = { .min = 7, .max = 98 }, 311 .p1 = { .min = 1, .max = 8 }, 312 .p2 = { .dot_limit = 112000, 313 .p2_slow = 14, .p2_fast = 7 }, 314 }; 315 316 317 static const struct intel_limit intel_limits_g4x_sdvo = { 318 .dot = { .min = 25000, .max = 270000 }, 319 .vco = { .min = 1750000, .max = 3500000}, 320 .n = { .min = 1, .max = 4 }, 321 .m = { .min = 104, .max = 138 }, 322 .m1 = { .min = 17, .max = 23 }, 323 .m2 = { .min = 5, .max = 11 }, 324 .p = { .min = 10, .max = 30 }, 325 .p1 = { .min = 1, .max = 3}, 326 .p2 = { .dot_limit = 270000, 327 .p2_slow = 10, 328 .p2_fast = 10 329 }, 330 }; 331 332 static const struct intel_limit intel_limits_g4x_hdmi = { 333 .dot = { .min = 22000, .max = 400000 }, 334 .vco = { .min = 1750000, .max = 3500000}, 335 .n = { .min = 1, .max = 4 }, 336 .m = { .min = 104, .max = 138 }, 337 .m1 = { .min = 16, .max = 23 }, 338 .m2 = { .min = 5, .max = 11 }, 339 .p = { .min = 5, .max = 80 }, 340 .p1 = { .min = 1, .max = 8}, 341 .p2 = { .dot_limit = 165000, 342 .p2_slow = 10, .p2_fast = 5 }, 343 }; 344 345 static const struct intel_limit intel_limits_g4x_single_channel_lvds = { 346 .dot = { .min = 20000, .max = 115000 }, 347 .vco = { .min = 1750000, .max = 3500000 }, 348 .n = { .min = 1, .max = 3 }, 349 .m = { .min = 104, .max = 138 }, 350 .m1 = { .min = 17, .max = 23 }, 351 .m2 = { .min = 5, .max = 11 }, 352 .p = { .min = 28, .max = 112 }, 353 .p1 = { .min = 2, .max = 8 }, 354 .p2 = { .dot_limit = 0, 355 .p2_slow = 14, .p2_fast = 14 356 }, 357 }; 358 359 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { 360 .dot = { .min = 80000, .max = 224000 }, 361 .vco = { .min = 1750000, .max = 3500000 }, 362 .n = { .min = 1, .max = 3 }, 363 .m = { .min = 104, .max = 138 }, 364 .m1 = { .min = 17, .max = 23 }, 365 .m2 = { .min = 5, .max = 11 }, 366 .p = { .min = 14, .max = 42 }, 367 .p1 = { .min = 2, .max = 6 }, 368 .p2 = { .dot_limit = 0, 369 .p2_slow = 7, .p2_fast = 7 370 }, 371 }; 372 373 static const struct intel_limit pnv_limits_sdvo = { 374 .dot = { .min = 20000, .max = 400000}, 375 .vco = { .min = 1700000, .max = 3500000 }, 376 /* Pineview's Ncounter is a ring counter */ 377 .n = { .min = 3, .max = 6 }, 378 .m = { .min = 2, .max = 256 }, 379 /* Pineview only has one combined m divider, which we treat as m2. */ 380 .m1 = { .min = 0, .max = 0 }, 381 .m2 = { .min = 0, .max = 254 }, 382 .p = { .min = 5, .max = 80 }, 383 .p1 = { .min = 1, .max = 8 }, 384 .p2 = { .dot_limit = 200000, 385 .p2_slow = 10, .p2_fast = 5 }, 386 }; 387 388 static const struct intel_limit pnv_limits_lvds = { 389 .dot = { .min = 20000, .max = 400000 }, 390 .vco = { .min = 1700000, .max = 3500000 }, 391 .n = { .min = 3, .max = 6 }, 392 .m = { .min = 2, .max = 256 }, 393 .m1 = { .min = 0, .max = 0 }, 394 .m2 = { .min = 0, .max = 254 }, 395 .p = { .min = 7, .max = 112 }, 396 .p1 = { .min = 1, .max = 8 }, 397 .p2 = { .dot_limit = 112000, 398 .p2_slow = 14, .p2_fast = 14 }, 399 }; 400 401 /* Ironlake / Sandybridge 402 * 403 * We calculate clock using (register_value + 2) for N/M1/M2, so here 404 * the range value for them is (actual_value - 2). 405 */ 406 static const struct intel_limit ilk_limits_dac = { 407 .dot = { .min = 25000, .max = 350000 }, 408 .vco = { .min = 1760000, .max = 3510000 }, 409 .n = { .min = 1, .max = 5 }, 410 .m = { .min = 79, .max = 127 }, 411 .m1 = { .min = 12, .max = 22 }, 412 .m2 = { .min = 5, .max = 9 }, 413 .p = { .min = 5, .max = 80 }, 414 .p1 = { .min = 1, .max = 8 }, 415 .p2 = { .dot_limit = 225000, 416 .p2_slow = 10, .p2_fast = 5 }, 417 }; 418 419 static const struct intel_limit ilk_limits_single_lvds = { 420 .dot = { .min = 25000, .max = 350000 }, 421 .vco = { .min = 1760000, .max = 3510000 }, 422 .n = { .min = 1, .max = 3 }, 423 .m = { .min = 79, .max = 118 }, 424 .m1 = { .min = 12, .max = 22 }, 425 .m2 = { .min = 5, .max = 9 }, 426 .p = { .min = 28, .max = 112 }, 427 .p1 = { .min = 2, .max = 8 }, 428 .p2 = { .dot_limit = 225000, 429 .p2_slow = 14, .p2_fast = 14 }, 430 }; 431 432 static const struct intel_limit ilk_limits_dual_lvds = { 433 .dot = { .min = 25000, .max = 350000 }, 434 .vco = { .min = 1760000, .max = 3510000 }, 435 .n = { .min = 1, .max = 3 }, 436 .m = { .min = 79, .max = 127 }, 437 .m1 = { .min = 12, .max = 22 }, 438 .m2 = { .min = 5, .max = 9 }, 439 .p = { .min = 14, .max = 56 }, 440 .p1 = { .min = 2, .max = 8 }, 441 .p2 = { .dot_limit = 225000, 442 .p2_slow = 7, .p2_fast = 7 }, 443 }; 444 445 /* LVDS 100mhz refclk limits. */ 446 static const struct intel_limit ilk_limits_single_lvds_100m = { 447 .dot = { .min = 25000, .max = 350000 }, 448 .vco = { .min = 1760000, .max = 3510000 }, 449 .n = { .min = 1, .max = 2 }, 450 .m = { .min = 79, .max = 126 }, 451 .m1 = { .min = 12, .max = 22 }, 452 .m2 = { .min = 5, .max = 9 }, 453 .p = { .min = 28, .max = 112 }, 454 .p1 = { .min = 2, .max = 8 }, 455 .p2 = { .dot_limit = 225000, 456 .p2_slow = 14, .p2_fast = 14 }, 457 }; 458 459 static const struct intel_limit ilk_limits_dual_lvds_100m = { 460 .dot = { .min = 25000, .max = 350000 }, 461 .vco = { .min = 1760000, .max = 3510000 }, 462 .n = { .min = 1, .max = 3 }, 463 .m = { .min = 79, .max = 126 }, 464 .m1 = { .min = 12, .max = 22 }, 465 .m2 = { .min = 5, .max = 9 }, 466 .p = { .min = 14, .max = 42 }, 467 .p1 = { .min = 2, .max = 6 }, 468 .p2 = { .dot_limit = 225000, 469 .p2_slow = 7, .p2_fast = 7 }, 470 }; 471 472 static const struct intel_limit intel_limits_vlv = { 473 /* 474 * These are the data rate limits (measured in fast clocks) 475 * since those are the strictest limits we have. The fast 476 * clock and actual rate limits are more relaxed, so checking 477 * them would make no difference. 478 */ 479 .dot = { .min = 25000 * 5, .max = 270000 * 5 }, 480 .vco = { .min = 4000000, .max = 6000000 }, 481 .n = { .min = 1, .max = 7 }, 482 .m1 = { .min = 2, .max = 3 }, 483 .m2 = { .min = 11, .max = 156 }, 484 .p1 = { .min = 2, .max = 3 }, 485 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ 486 }; 487 488 static const struct intel_limit intel_limits_chv = { 489 /* 490 * These are the data rate limits (measured in fast clocks) 491 * since those are the strictest limits we have. The fast 492 * clock and actual rate limits are more relaxed, so checking 493 * them would make no difference. 494 */ 495 .dot = { .min = 25000 * 5, .max = 540000 * 5}, 496 .vco = { .min = 4800000, .max = 6480000 }, 497 .n = { .min = 1, .max = 1 }, 498 .m1 = { .min = 2, .max = 2 }, 499 .m2 = { .min = 24 << 22, .max = 175 << 22 }, 500 .p1 = { .min = 2, .max = 4 }, 501 .p2 = { .p2_slow = 1, .p2_fast = 14 }, 502 }; 503 504 static const struct intel_limit intel_limits_bxt = { 505 /* FIXME: find real dot limits */ 506 .dot = { .min = 0, .max = INT_MAX }, 507 .vco = { .min = 4800000, .max = 6700000 }, 508 .n = { .min = 1, .max = 1 }, 509 .m1 = { .min = 2, .max = 2 }, 510 /* FIXME: find real m2 limits */ 511 .m2 = { .min = 2 << 22, .max = 255 << 22 }, 512 .p1 = { .min = 2, .max = 4 }, 513 .p2 = { .p2_slow = 1, .p2_fast = 20 }, 514 }; 515 516 /* WA Display #0827: Gen9:all */ 517 static void 518 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) 519 { 520 if (enable) 521 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 522 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); 523 else 524 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 525 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 526 } 527 528 /* Wa_2006604312:icl */ 529 static void 530 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 531 bool enable) 532 { 533 if (enable) 534 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 535 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 536 else 537 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 538 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 539 } 540 541 static bool 542 needs_modeset(const struct intel_crtc_state *state) 543 { 544 return drm_atomic_crtc_needs_modeset(&state->uapi); 545 } 546 547 bool 548 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 549 { 550 return (crtc_state->master_transcoder != INVALID_TRANSCODER || 551 crtc_state->sync_mode_slaves_mask); 552 } 553 554 static bool 555 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) 556 { 557 return crtc_state->master_transcoder != INVALID_TRANSCODER; 558 } 559 560 /* 561 * Platform specific helpers to calculate the port PLL loopback- (clock.m), 562 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast 563 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. 564 * The helpers' return value is the rate of the clock that is fed to the 565 * display engine's pipe which can be the above fast dot clock rate or a 566 * divided-down version of it. 567 */ 568 /* m1 is reserved as 0 in Pineview, n is a ring counter */ 569 static int pnv_calc_dpll_params(int refclk, struct dpll *clock) 570 { 571 clock->m = clock->m2 + 2; 572 clock->p = clock->p1 * clock->p2; 573 if (WARN_ON(clock->n == 0 || clock->p == 0)) 574 return 0; 575 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 576 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 577 578 return clock->dot; 579 } 580 581 static u32 i9xx_dpll_compute_m(struct dpll *dpll) 582 { 583 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); 584 } 585 586 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock) 587 { 588 clock->m = i9xx_dpll_compute_m(clock); 589 clock->p = clock->p1 * clock->p2; 590 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) 591 return 0; 592 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); 593 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 594 595 return clock->dot; 596 } 597 598 static int vlv_calc_dpll_params(int refclk, struct dpll *clock) 599 { 600 clock->m = clock->m1 * clock->m2; 601 clock->p = clock->p1 * clock->p2; 602 if (WARN_ON(clock->n == 0 || clock->p == 0)) 603 return 0; 604 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 605 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 606 607 return clock->dot / 5; 608 } 609 610 int chv_calc_dpll_params(int refclk, struct dpll *clock) 611 { 612 clock->m = clock->m1 * clock->m2; 613 clock->p = clock->p1 * clock->p2; 614 if (WARN_ON(clock->n == 0 || clock->p == 0)) 615 return 0; 616 clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), 617 clock->n << 22); 618 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 619 620 return clock->dot / 5; 621 } 622 623 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0) 624 625 /* 626 * Returns whether the given set of divisors are valid for a given refclk with 627 * the given connectors. 628 */ 629 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv, 630 const struct intel_limit *limit, 631 const struct dpll *clock) 632 { 633 if (clock->n < limit->n.min || limit->n.max < clock->n) 634 INTELPllInvalid("n out of range\n"); 635 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) 636 INTELPllInvalid("p1 out of range\n"); 637 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) 638 INTELPllInvalid("m2 out of range\n"); 639 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) 640 INTELPllInvalid("m1 out of range\n"); 641 642 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) && 643 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv)) 644 if (clock->m1 <= clock->m2) 645 INTELPllInvalid("m1 <= m2\n"); 646 647 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 648 !IS_GEN9_LP(dev_priv)) { 649 if (clock->p < limit->p.min || limit->p.max < clock->p) 650 INTELPllInvalid("p out of range\n"); 651 if (clock->m < limit->m.min || limit->m.max < clock->m) 652 INTELPllInvalid("m out of range\n"); 653 } 654 655 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) 656 INTELPllInvalid("vco out of range\n"); 657 /* XXX: We may need to be checking "Dot clock" depending on the multiplier, 658 * connector, etc., rather than just a single range. 659 */ 660 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) 661 INTELPllInvalid("dot out of range\n"); 662 663 return true; 664 } 665 666 static int 667 i9xx_select_p2_div(const struct intel_limit *limit, 668 const struct intel_crtc_state *crtc_state, 669 int target) 670 { 671 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 672 673 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 674 /* 675 * For LVDS just rely on its current settings for dual-channel. 676 * We haven't figured out how to reliably set up different 677 * single/dual channel state, if we even can. 678 */ 679 if (intel_is_dual_link_lvds(dev_priv)) 680 return limit->p2.p2_fast; 681 else 682 return limit->p2.p2_slow; 683 } else { 684 if (target < limit->p2.dot_limit) 685 return limit->p2.p2_slow; 686 else 687 return limit->p2.p2_fast; 688 } 689 } 690 691 /* 692 * Returns a set of divisors for the desired target clock with the given 693 * refclk, or FALSE. The returned values represent the clock equation: 694 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 695 * 696 * Target and reference clocks are specified in kHz. 697 * 698 * If match_clock is provided, then best_clock P divider must match the P 699 * divider from @match_clock used for LVDS downclocking. 700 */ 701 static bool 702 i9xx_find_best_dpll(const struct intel_limit *limit, 703 struct intel_crtc_state *crtc_state, 704 int target, int refclk, struct dpll *match_clock, 705 struct dpll *best_clock) 706 { 707 struct drm_device *dev = crtc_state->uapi.crtc->dev; 708 struct dpll clock; 709 int err = target; 710 711 memset(best_clock, 0, sizeof(*best_clock)); 712 713 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 714 715 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 716 clock.m1++) { 717 for (clock.m2 = limit->m2.min; 718 clock.m2 <= limit->m2.max; clock.m2++) { 719 if (clock.m2 >= clock.m1) 720 break; 721 for (clock.n = limit->n.min; 722 clock.n <= limit->n.max; clock.n++) { 723 for (clock.p1 = limit->p1.min; 724 clock.p1 <= limit->p1.max; clock.p1++) { 725 int this_err; 726 727 i9xx_calc_dpll_params(refclk, &clock); 728 if (!intel_PLL_is_valid(to_i915(dev), 729 limit, 730 &clock)) 731 continue; 732 if (match_clock && 733 clock.p != match_clock->p) 734 continue; 735 736 this_err = abs(clock.dot - target); 737 if (this_err < err) { 738 *best_clock = clock; 739 err = this_err; 740 } 741 } 742 } 743 } 744 } 745 746 return (err != target); 747 } 748 749 /* 750 * Returns a set of divisors for the desired target clock with the given 751 * refclk, or FALSE. The returned values represent the clock equation: 752 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 753 * 754 * Target and reference clocks are specified in kHz. 755 * 756 * If match_clock is provided, then best_clock P divider must match the P 757 * divider from @match_clock used for LVDS downclocking. 758 */ 759 static bool 760 pnv_find_best_dpll(const struct intel_limit *limit, 761 struct intel_crtc_state *crtc_state, 762 int target, int refclk, struct dpll *match_clock, 763 struct dpll *best_clock) 764 { 765 struct drm_device *dev = crtc_state->uapi.crtc->dev; 766 struct dpll clock; 767 int err = target; 768 769 memset(best_clock, 0, sizeof(*best_clock)); 770 771 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 772 773 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 774 clock.m1++) { 775 for (clock.m2 = limit->m2.min; 776 clock.m2 <= limit->m2.max; clock.m2++) { 777 for (clock.n = limit->n.min; 778 clock.n <= limit->n.max; clock.n++) { 779 for (clock.p1 = limit->p1.min; 780 clock.p1 <= limit->p1.max; clock.p1++) { 781 int this_err; 782 783 pnv_calc_dpll_params(refclk, &clock); 784 if (!intel_PLL_is_valid(to_i915(dev), 785 limit, 786 &clock)) 787 continue; 788 if (match_clock && 789 clock.p != match_clock->p) 790 continue; 791 792 this_err = abs(clock.dot - target); 793 if (this_err < err) { 794 *best_clock = clock; 795 err = this_err; 796 } 797 } 798 } 799 } 800 } 801 802 return (err != target); 803 } 804 805 /* 806 * Returns a set of divisors for the desired target clock with the given 807 * refclk, or FALSE. The returned values represent the clock equation: 808 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 809 * 810 * Target and reference clocks are specified in kHz. 811 * 812 * If match_clock is provided, then best_clock P divider must match the P 813 * divider from @match_clock used for LVDS downclocking. 814 */ 815 static bool 816 g4x_find_best_dpll(const struct intel_limit *limit, 817 struct intel_crtc_state *crtc_state, 818 int target, int refclk, struct dpll *match_clock, 819 struct dpll *best_clock) 820 { 821 struct drm_device *dev = crtc_state->uapi.crtc->dev; 822 struct dpll clock; 823 int max_n; 824 bool found = false; 825 /* approximately equals target * 0.00585 */ 826 int err_most = (target >> 8) + (target >> 9); 827 828 memset(best_clock, 0, sizeof(*best_clock)); 829 830 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 831 832 max_n = limit->n.max; 833 /* based on hardware requirement, prefer smaller n to precision */ 834 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 835 /* based on hardware requirement, prefere larger m1,m2 */ 836 for (clock.m1 = limit->m1.max; 837 clock.m1 >= limit->m1.min; clock.m1--) { 838 for (clock.m2 = limit->m2.max; 839 clock.m2 >= limit->m2.min; clock.m2--) { 840 for (clock.p1 = limit->p1.max; 841 clock.p1 >= limit->p1.min; clock.p1--) { 842 int this_err; 843 844 i9xx_calc_dpll_params(refclk, &clock); 845 if (!intel_PLL_is_valid(to_i915(dev), 846 limit, 847 &clock)) 848 continue; 849 850 this_err = abs(clock.dot - target); 851 if (this_err < err_most) { 852 *best_clock = clock; 853 err_most = this_err; 854 max_n = clock.n; 855 found = true; 856 } 857 } 858 } 859 } 860 } 861 return found; 862 } 863 864 /* 865 * Check if the calculated PLL configuration is more optimal compared to the 866 * best configuration and error found so far. Return the calculated error. 867 */ 868 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, 869 const struct dpll *calculated_clock, 870 const struct dpll *best_clock, 871 unsigned int best_error_ppm, 872 unsigned int *error_ppm) 873 { 874 /* 875 * For CHV ignore the error and consider only the P value. 876 * Prefer a bigger P value based on HW requirements. 877 */ 878 if (IS_CHERRYVIEW(to_i915(dev))) { 879 *error_ppm = 0; 880 881 return calculated_clock->p > best_clock->p; 882 } 883 884 if (drm_WARN_ON_ONCE(dev, !target_freq)) 885 return false; 886 887 *error_ppm = div_u64(1000000ULL * 888 abs(target_freq - calculated_clock->dot), 889 target_freq); 890 /* 891 * Prefer a better P value over a better (smaller) error if the error 892 * is small. Ensure this preference for future configurations too by 893 * setting the error to 0. 894 */ 895 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { 896 *error_ppm = 0; 897 898 return true; 899 } 900 901 return *error_ppm + 10 < best_error_ppm; 902 } 903 904 /* 905 * Returns a set of divisors for the desired target clock with the given 906 * refclk, or FALSE. The returned values represent the clock equation: 907 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 908 */ 909 static bool 910 vlv_find_best_dpll(const struct intel_limit *limit, 911 struct intel_crtc_state *crtc_state, 912 int target, int refclk, struct dpll *match_clock, 913 struct dpll *best_clock) 914 { 915 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 916 struct drm_device *dev = crtc->base.dev; 917 struct dpll clock; 918 unsigned int bestppm = 1000000; 919 /* min update 19.2 MHz */ 920 int max_n = min(limit->n.max, refclk / 19200); 921 bool found = false; 922 923 target *= 5; /* fast clock */ 924 925 memset(best_clock, 0, sizeof(*best_clock)); 926 927 /* based on hardware requirement, prefer smaller n to precision */ 928 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 929 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 930 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; 931 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 932 clock.p = clock.p1 * clock.p2; 933 /* based on hardware requirement, prefer bigger m1,m2 values */ 934 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { 935 unsigned int ppm; 936 937 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, 938 refclk * clock.m1); 939 940 vlv_calc_dpll_params(refclk, &clock); 941 942 if (!intel_PLL_is_valid(to_i915(dev), 943 limit, 944 &clock)) 945 continue; 946 947 if (!vlv_PLL_is_optimal(dev, target, 948 &clock, 949 best_clock, 950 bestppm, &ppm)) 951 continue; 952 953 *best_clock = clock; 954 bestppm = ppm; 955 found = true; 956 } 957 } 958 } 959 } 960 961 return found; 962 } 963 964 /* 965 * Returns a set of divisors for the desired target clock with the given 966 * refclk, or FALSE. The returned values represent the clock equation: 967 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 968 */ 969 static bool 970 chv_find_best_dpll(const struct intel_limit *limit, 971 struct intel_crtc_state *crtc_state, 972 int target, int refclk, struct dpll *match_clock, 973 struct dpll *best_clock) 974 { 975 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 976 struct drm_device *dev = crtc->base.dev; 977 unsigned int best_error_ppm; 978 struct dpll clock; 979 u64 m2; 980 int found = false; 981 982 memset(best_clock, 0, sizeof(*best_clock)); 983 best_error_ppm = 1000000; 984 985 /* 986 * Based on hardware doc, the n always set to 1, and m1 always 987 * set to 2. If requires to support 200Mhz refclk, we need to 988 * revisit this because n may not 1 anymore. 989 */ 990 clock.n = 1, clock.m1 = 2; 991 target *= 5; /* fast clock */ 992 993 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 994 for (clock.p2 = limit->p2.p2_fast; 995 clock.p2 >= limit->p2.p2_slow; 996 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 997 unsigned int error_ppm; 998 999 clock.p = clock.p1 * clock.p2; 1000 1001 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, 1002 refclk * clock.m1); 1003 1004 if (m2 > INT_MAX/clock.m1) 1005 continue; 1006 1007 clock.m2 = m2; 1008 1009 chv_calc_dpll_params(refclk, &clock); 1010 1011 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock)) 1012 continue; 1013 1014 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, 1015 best_error_ppm, &error_ppm)) 1016 continue; 1017 1018 *best_clock = clock; 1019 best_error_ppm = error_ppm; 1020 found = true; 1021 } 1022 } 1023 1024 return found; 1025 } 1026 1027 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, 1028 struct dpll *best_clock) 1029 { 1030 int refclk = 100000; 1031 const struct intel_limit *limit = &intel_limits_bxt; 1032 1033 return chv_find_best_dpll(limit, crtc_state, 1034 crtc_state->port_clock, refclk, 1035 NULL, best_clock); 1036 } 1037 1038 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 1039 enum pipe pipe) 1040 { 1041 i915_reg_t reg = PIPEDSL(pipe); 1042 u32 line1, line2; 1043 u32 line_mask; 1044 1045 if (IS_GEN(dev_priv, 2)) 1046 line_mask = DSL_LINEMASK_GEN2; 1047 else 1048 line_mask = DSL_LINEMASK_GEN3; 1049 1050 line1 = intel_de_read(dev_priv, reg) & line_mask; 1051 msleep(5); 1052 line2 = intel_de_read(dev_priv, reg) & line_mask; 1053 1054 return line1 != line2; 1055 } 1056 1057 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 1058 { 1059 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1060 enum pipe pipe = crtc->pipe; 1061 1062 /* Wait for the display line to settle/start moving */ 1063 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 1064 drm_err(&dev_priv->drm, 1065 "pipe %c scanline %s wait timed out\n", 1066 pipe_name(pipe), onoff(state)); 1067 } 1068 1069 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 1070 { 1071 wait_for_pipe_scanline_moving(crtc, false); 1072 } 1073 1074 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 1075 { 1076 wait_for_pipe_scanline_moving(crtc, true); 1077 } 1078 1079 static void 1080 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 1081 { 1082 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1083 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1084 1085 if (INTEL_GEN(dev_priv) >= 4) { 1086 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1087 i915_reg_t reg = PIPECONF(cpu_transcoder); 1088 1089 /* Wait for the Pipe State to go off */ 1090 if (intel_de_wait_for_clear(dev_priv, reg, 1091 I965_PIPECONF_ACTIVE, 100)) 1092 drm_WARN(&dev_priv->drm, 1, 1093 "pipe_off wait timed out\n"); 1094 } else { 1095 intel_wait_for_pipe_scanline_stopped(crtc); 1096 } 1097 } 1098 1099 /* Only for pre-ILK configs */ 1100 void assert_pll(struct drm_i915_private *dev_priv, 1101 enum pipe pipe, bool state) 1102 { 1103 u32 val; 1104 bool cur_state; 1105 1106 val = intel_de_read(dev_priv, DPLL(pipe)); 1107 cur_state = !!(val & DPLL_VCO_ENABLE); 1108 I915_STATE_WARN(cur_state != state, 1109 "PLL state assertion failure (expected %s, current %s)\n", 1110 onoff(state), onoff(cur_state)); 1111 } 1112 1113 /* XXX: the dsi pll is shared between MIPI DSI ports */ 1114 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 1115 { 1116 u32 val; 1117 bool cur_state; 1118 1119 vlv_cck_get(dev_priv); 1120 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 1121 vlv_cck_put(dev_priv); 1122 1123 cur_state = val & DSI_PLL_VCO_EN; 1124 I915_STATE_WARN(cur_state != state, 1125 "DSI PLL state assertion failure (expected %s, current %s)\n", 1126 onoff(state), onoff(cur_state)); 1127 } 1128 1129 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 1130 enum pipe pipe, bool state) 1131 { 1132 bool cur_state; 1133 1134 if (HAS_DDI(dev_priv)) { 1135 /* 1136 * DDI does not have a specific FDI_TX register. 1137 * 1138 * FDI is never fed from EDP transcoder 1139 * so pipe->transcoder cast is fine here. 1140 */ 1141 enum transcoder cpu_transcoder = (enum transcoder)pipe; 1142 u32 val = intel_de_read(dev_priv, 1143 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 1144 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 1145 } else { 1146 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 1147 cur_state = !!(val & FDI_TX_ENABLE); 1148 } 1149 I915_STATE_WARN(cur_state != state, 1150 "FDI TX state assertion failure (expected %s, current %s)\n", 1151 onoff(state), onoff(cur_state)); 1152 } 1153 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 1154 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 1155 1156 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 1157 enum pipe pipe, bool state) 1158 { 1159 u32 val; 1160 bool cur_state; 1161 1162 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 1163 cur_state = !!(val & FDI_RX_ENABLE); 1164 I915_STATE_WARN(cur_state != state, 1165 "FDI RX state assertion failure (expected %s, current %s)\n", 1166 onoff(state), onoff(cur_state)); 1167 } 1168 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 1169 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 1170 1171 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 1172 enum pipe pipe) 1173 { 1174 u32 val; 1175 1176 /* ILK FDI PLL is always enabled */ 1177 if (IS_GEN(dev_priv, 5)) 1178 return; 1179 1180 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 1181 if (HAS_DDI(dev_priv)) 1182 return; 1183 1184 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 1185 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 1186 } 1187 1188 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 1189 enum pipe pipe, bool state) 1190 { 1191 u32 val; 1192 bool cur_state; 1193 1194 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 1195 cur_state = !!(val & FDI_RX_PLL_ENABLE); 1196 I915_STATE_WARN(cur_state != state, 1197 "FDI RX PLL assertion failure (expected %s, current %s)\n", 1198 onoff(state), onoff(cur_state)); 1199 } 1200 1201 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) 1202 { 1203 i915_reg_t pp_reg; 1204 u32 val; 1205 enum pipe panel_pipe = INVALID_PIPE; 1206 bool locked = true; 1207 1208 if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv))) 1209 return; 1210 1211 if (HAS_PCH_SPLIT(dev_priv)) { 1212 u32 port_sel; 1213 1214 pp_reg = PP_CONTROL(0); 1215 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1216 1217 switch (port_sel) { 1218 case PANEL_PORT_SELECT_LVDS: 1219 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); 1220 break; 1221 case PANEL_PORT_SELECT_DPA: 1222 intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); 1223 break; 1224 case PANEL_PORT_SELECT_DPC: 1225 intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); 1226 break; 1227 case PANEL_PORT_SELECT_DPD: 1228 intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); 1229 break; 1230 default: 1231 MISSING_CASE(port_sel); 1232 break; 1233 } 1234 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1235 /* presumably write lock depends on pipe, not port select */ 1236 pp_reg = PP_CONTROL(pipe); 1237 panel_pipe = pipe; 1238 } else { 1239 u32 port_sel; 1240 1241 pp_reg = PP_CONTROL(0); 1242 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1243 1244 drm_WARN_ON(&dev_priv->drm, 1245 port_sel != PANEL_PORT_SELECT_LVDS); 1246 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); 1247 } 1248 1249 val = intel_de_read(dev_priv, pp_reg); 1250 if (!(val & PANEL_POWER_ON) || 1251 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 1252 locked = false; 1253 1254 I915_STATE_WARN(panel_pipe == pipe && locked, 1255 "panel assertion failure, pipe %c regs locked\n", 1256 pipe_name(pipe)); 1257 } 1258 1259 void assert_pipe(struct drm_i915_private *dev_priv, 1260 enum transcoder cpu_transcoder, bool state) 1261 { 1262 bool cur_state; 1263 enum intel_display_power_domain power_domain; 1264 intel_wakeref_t wakeref; 1265 1266 /* we keep both pipes enabled on 830 */ 1267 if (IS_I830(dev_priv)) 1268 state = true; 1269 1270 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 1271 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 1272 if (wakeref) { 1273 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 1274 cur_state = !!(val & PIPECONF_ENABLE); 1275 1276 intel_display_power_put(dev_priv, power_domain, wakeref); 1277 } else { 1278 cur_state = false; 1279 } 1280 1281 I915_STATE_WARN(cur_state != state, 1282 "transcoder %s assertion failure (expected %s, current %s)\n", 1283 transcoder_name(cpu_transcoder), 1284 onoff(state), onoff(cur_state)); 1285 } 1286 1287 static void assert_plane(struct intel_plane *plane, bool state) 1288 { 1289 enum pipe pipe; 1290 bool cur_state; 1291 1292 cur_state = plane->get_hw_state(plane, &pipe); 1293 1294 I915_STATE_WARN(cur_state != state, 1295 "%s assertion failure (expected %s, current %s)\n", 1296 plane->base.name, onoff(state), onoff(cur_state)); 1297 } 1298 1299 #define assert_plane_enabled(p) assert_plane(p, true) 1300 #define assert_plane_disabled(p) assert_plane(p, false) 1301 1302 static void assert_planes_disabled(struct intel_crtc *crtc) 1303 { 1304 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1305 struct intel_plane *plane; 1306 1307 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 1308 assert_plane_disabled(plane); 1309 } 1310 1311 static void assert_vblank_disabled(struct drm_crtc *crtc) 1312 { 1313 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0)) 1314 drm_crtc_vblank_put(crtc); 1315 } 1316 1317 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 1318 enum pipe pipe) 1319 { 1320 u32 val; 1321 bool enabled; 1322 1323 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe)); 1324 enabled = !!(val & TRANS_ENABLE); 1325 I915_STATE_WARN(enabled, 1326 "transcoder assertion failed, should be off on pipe %c but is still active\n", 1327 pipe_name(pipe)); 1328 } 1329 1330 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 1331 enum pipe pipe, enum port port, 1332 i915_reg_t dp_reg) 1333 { 1334 enum pipe port_pipe; 1335 bool state; 1336 1337 state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 1338 1339 I915_STATE_WARN(state && port_pipe == pipe, 1340 "PCH DP %c enabled on transcoder %c, should be disabled\n", 1341 port_name(port), pipe_name(pipe)); 1342 1343 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1344 "IBX PCH DP %c still using transcoder B\n", 1345 port_name(port)); 1346 } 1347 1348 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 1349 enum pipe pipe, enum port port, 1350 i915_reg_t hdmi_reg) 1351 { 1352 enum pipe port_pipe; 1353 bool state; 1354 1355 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 1356 1357 I915_STATE_WARN(state && port_pipe == pipe, 1358 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 1359 port_name(port), pipe_name(pipe)); 1360 1361 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1362 "IBX PCH HDMI %c still using transcoder B\n", 1363 port_name(port)); 1364 } 1365 1366 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 1367 enum pipe pipe) 1368 { 1369 enum pipe port_pipe; 1370 1371 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 1372 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 1373 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 1374 1375 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 1376 port_pipe == pipe, 1377 "PCH VGA enabled on transcoder %c, should be disabled\n", 1378 pipe_name(pipe)); 1379 1380 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 1381 port_pipe == pipe, 1382 "PCH LVDS enabled on transcoder %c, should be disabled\n", 1383 pipe_name(pipe)); 1384 1385 /* PCH SDVOB multiplex with HDMIB */ 1386 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 1387 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 1388 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 1389 } 1390 1391 static void _vlv_enable_pll(struct intel_crtc *crtc, 1392 const struct intel_crtc_state *pipe_config) 1393 { 1394 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1395 enum pipe pipe = crtc->pipe; 1396 1397 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1398 intel_de_posting_read(dev_priv, DPLL(pipe)); 1399 udelay(150); 1400 1401 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1402 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe); 1403 } 1404 1405 static void vlv_enable_pll(struct intel_crtc *crtc, 1406 const struct intel_crtc_state *pipe_config) 1407 { 1408 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1409 enum pipe pipe = crtc->pipe; 1410 1411 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 1412 1413 /* PLL is protected by panel, make sure we can write it */ 1414 assert_panel_unlocked(dev_priv, pipe); 1415 1416 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1417 _vlv_enable_pll(crtc, pipe_config); 1418 1419 intel_de_write(dev_priv, DPLL_MD(pipe), 1420 pipe_config->dpll_hw_state.dpll_md); 1421 intel_de_posting_read(dev_priv, DPLL_MD(pipe)); 1422 } 1423 1424 1425 static void _chv_enable_pll(struct intel_crtc *crtc, 1426 const struct intel_crtc_state *pipe_config) 1427 { 1428 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1429 enum pipe pipe = crtc->pipe; 1430 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1431 u32 tmp; 1432 1433 vlv_dpio_get(dev_priv); 1434 1435 /* Enable back the 10bit clock to display controller */ 1436 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1437 tmp |= DPIO_DCLKP_EN; 1438 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp); 1439 1440 vlv_dpio_put(dev_priv); 1441 1442 /* 1443 * Need to wait > 100ns between dclkp clock enable bit and PLL enable. 1444 */ 1445 udelay(1); 1446 1447 /* Enable PLL */ 1448 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1449 1450 /* Check PLL is locked */ 1451 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1452 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe); 1453 } 1454 1455 static void chv_enable_pll(struct intel_crtc *crtc, 1456 const struct intel_crtc_state *pipe_config) 1457 { 1458 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1459 enum pipe pipe = crtc->pipe; 1460 1461 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 1462 1463 /* PLL is protected by panel, make sure we can write it */ 1464 assert_panel_unlocked(dev_priv, pipe); 1465 1466 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1467 _chv_enable_pll(crtc, pipe_config); 1468 1469 if (pipe != PIPE_A) { 1470 /* 1471 * WaPixelRepeatModeFixForC0:chv 1472 * 1473 * DPLLCMD is AWOL. Use chicken bits to propagate 1474 * the value from DPLLBMD to either pipe B or C. 1475 */ 1476 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); 1477 intel_de_write(dev_priv, DPLL_MD(PIPE_B), 1478 pipe_config->dpll_hw_state.dpll_md); 1479 intel_de_write(dev_priv, CBR4_VLV, 0); 1480 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md; 1481 1482 /* 1483 * DPLLB VGA mode also seems to cause problems. 1484 * We should always have it disabled. 1485 */ 1486 drm_WARN_ON(&dev_priv->drm, 1487 (intel_de_read(dev_priv, DPLL(PIPE_B)) & 1488 DPLL_VGA_MODE_DIS) == 0); 1489 } else { 1490 intel_de_write(dev_priv, DPLL_MD(pipe), 1491 pipe_config->dpll_hw_state.dpll_md); 1492 intel_de_posting_read(dev_priv, DPLL_MD(pipe)); 1493 } 1494 } 1495 1496 static bool i9xx_has_pps(struct drm_i915_private *dev_priv) 1497 { 1498 if (IS_I830(dev_priv)) 1499 return false; 1500 1501 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 1502 } 1503 1504 static void i9xx_enable_pll(struct intel_crtc *crtc, 1505 const struct intel_crtc_state *crtc_state) 1506 { 1507 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1508 i915_reg_t reg = DPLL(crtc->pipe); 1509 u32 dpll = crtc_state->dpll_hw_state.dpll; 1510 int i; 1511 1512 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 1513 1514 /* PLL is protected by panel, make sure we can write it */ 1515 if (i9xx_has_pps(dev_priv)) 1516 assert_panel_unlocked(dev_priv, crtc->pipe); 1517 1518 /* 1519 * Apparently we need to have VGA mode enabled prior to changing 1520 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 1521 * dividers, even though the register value does change. 1522 */ 1523 intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS); 1524 intel_de_write(dev_priv, reg, dpll); 1525 1526 /* Wait for the clocks to stabilize. */ 1527 intel_de_posting_read(dev_priv, reg); 1528 udelay(150); 1529 1530 if (INTEL_GEN(dev_priv) >= 4) { 1531 intel_de_write(dev_priv, DPLL_MD(crtc->pipe), 1532 crtc_state->dpll_hw_state.dpll_md); 1533 } else { 1534 /* The pixel multiplier can only be updated once the 1535 * DPLL is enabled and the clocks are stable. 1536 * 1537 * So write it again. 1538 */ 1539 intel_de_write(dev_priv, reg, dpll); 1540 } 1541 1542 /* We do this three times for luck */ 1543 for (i = 0; i < 3; i++) { 1544 intel_de_write(dev_priv, reg, dpll); 1545 intel_de_posting_read(dev_priv, reg); 1546 udelay(150); /* wait for warmup */ 1547 } 1548 } 1549 1550 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) 1551 { 1552 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1553 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1554 enum pipe pipe = crtc->pipe; 1555 1556 /* Don't disable pipe or pipe PLLs if needed */ 1557 if (IS_I830(dev_priv)) 1558 return; 1559 1560 /* Make sure the pipe isn't still relying on us */ 1561 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 1562 1563 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 1564 intel_de_posting_read(dev_priv, DPLL(pipe)); 1565 } 1566 1567 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1568 { 1569 u32 val; 1570 1571 /* Make sure the pipe isn't still relying on us */ 1572 assert_pipe_disabled(dev_priv, (enum transcoder)pipe); 1573 1574 val = DPLL_INTEGRATED_REF_CLK_VLV | 1575 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1576 if (pipe != PIPE_A) 1577 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1578 1579 intel_de_write(dev_priv, DPLL(pipe), val); 1580 intel_de_posting_read(dev_priv, DPLL(pipe)); 1581 } 1582 1583 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1584 { 1585 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1586 u32 val; 1587 1588 /* Make sure the pipe isn't still relying on us */ 1589 assert_pipe_disabled(dev_priv, (enum transcoder)pipe); 1590 1591 val = DPLL_SSC_REF_CLK_CHV | 1592 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1593 if (pipe != PIPE_A) 1594 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1595 1596 intel_de_write(dev_priv, DPLL(pipe), val); 1597 intel_de_posting_read(dev_priv, DPLL(pipe)); 1598 1599 vlv_dpio_get(dev_priv); 1600 1601 /* Disable 10bit clock to display controller */ 1602 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1603 val &= ~DPIO_DCLKP_EN; 1604 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val); 1605 1606 vlv_dpio_put(dev_priv); 1607 } 1608 1609 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 1610 struct intel_digital_port *dport, 1611 unsigned int expected_mask) 1612 { 1613 u32 port_mask; 1614 i915_reg_t dpll_reg; 1615 1616 switch (dport->base.port) { 1617 case PORT_B: 1618 port_mask = DPLL_PORTB_READY_MASK; 1619 dpll_reg = DPLL(0); 1620 break; 1621 case PORT_C: 1622 port_mask = DPLL_PORTC_READY_MASK; 1623 dpll_reg = DPLL(0); 1624 expected_mask <<= 4; 1625 break; 1626 case PORT_D: 1627 port_mask = DPLL_PORTD_READY_MASK; 1628 dpll_reg = DPIO_PHY_STATUS; 1629 break; 1630 default: 1631 BUG(); 1632 } 1633 1634 if (intel_de_wait_for_register(dev_priv, dpll_reg, 1635 port_mask, expected_mask, 1000)) 1636 drm_WARN(&dev_priv->drm, 1, 1637 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", 1638 dport->base.base.base.id, dport->base.base.name, 1639 intel_de_read(dev_priv, dpll_reg) & port_mask, 1640 expected_mask); 1641 } 1642 1643 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 1644 { 1645 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1646 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1647 enum pipe pipe = crtc->pipe; 1648 i915_reg_t reg; 1649 u32 val, pipeconf_val; 1650 1651 /* Make sure PCH DPLL is enabled */ 1652 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 1653 1654 /* FDI must be feeding us bits for PCH ports */ 1655 assert_fdi_tx_enabled(dev_priv, pipe); 1656 assert_fdi_rx_enabled(dev_priv, pipe); 1657 1658 if (HAS_PCH_CPT(dev_priv)) { 1659 reg = TRANS_CHICKEN2(pipe); 1660 val = intel_de_read(dev_priv, reg); 1661 /* 1662 * Workaround: Set the timing override bit 1663 * before enabling the pch transcoder. 1664 */ 1665 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1666 /* Configure frame start delay to match the CPU */ 1667 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 1668 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 1669 intel_de_write(dev_priv, reg, val); 1670 } 1671 1672 reg = PCH_TRANSCONF(pipe); 1673 val = intel_de_read(dev_priv, reg); 1674 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe)); 1675 1676 if (HAS_PCH_IBX(dev_priv)) { 1677 /* Configure frame start delay to match the CPU */ 1678 val &= ~TRANS_FRAME_START_DELAY_MASK; 1679 val |= TRANS_FRAME_START_DELAY(0); 1680 1681 /* 1682 * Make the BPC in transcoder be consistent with 1683 * that in pipeconf reg. For HDMI we must use 8bpc 1684 * here for both 8bpc and 12bpc. 1685 */ 1686 val &= ~PIPECONF_BPC_MASK; 1687 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1688 val |= PIPECONF_8BPC; 1689 else 1690 val |= pipeconf_val & PIPECONF_BPC_MASK; 1691 } 1692 1693 val &= ~TRANS_INTERLACE_MASK; 1694 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 1695 if (HAS_PCH_IBX(dev_priv) && 1696 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 1697 val |= TRANS_LEGACY_INTERLACED_ILK; 1698 else 1699 val |= TRANS_INTERLACED; 1700 } else { 1701 val |= TRANS_PROGRESSIVE; 1702 } 1703 1704 intel_de_write(dev_priv, reg, val | TRANS_ENABLE); 1705 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 1706 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n", 1707 pipe_name(pipe)); 1708 } 1709 1710 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 1711 enum transcoder cpu_transcoder) 1712 { 1713 u32 val, pipeconf_val; 1714 1715 /* FDI must be feeding us bits for PCH ports */ 1716 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 1717 assert_fdi_rx_enabled(dev_priv, PIPE_A); 1718 1719 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 1720 /* Workaround: set timing override bit. */ 1721 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1722 /* Configure frame start delay to match the CPU */ 1723 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 1724 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 1725 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 1726 1727 val = TRANS_ENABLE; 1728 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 1729 1730 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 1731 PIPECONF_INTERLACED_ILK) 1732 val |= TRANS_INTERLACED; 1733 else 1734 val |= TRANS_PROGRESSIVE; 1735 1736 intel_de_write(dev_priv, LPT_TRANSCONF, val); 1737 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 1738 TRANS_STATE_ENABLE, 100)) 1739 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n"); 1740 } 1741 1742 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv, 1743 enum pipe pipe) 1744 { 1745 i915_reg_t reg; 1746 u32 val; 1747 1748 /* FDI relies on the transcoder */ 1749 assert_fdi_tx_disabled(dev_priv, pipe); 1750 assert_fdi_rx_disabled(dev_priv, pipe); 1751 1752 /* Ports must be off as well */ 1753 assert_pch_ports_disabled(dev_priv, pipe); 1754 1755 reg = PCH_TRANSCONF(pipe); 1756 val = intel_de_read(dev_priv, reg); 1757 val &= ~TRANS_ENABLE; 1758 intel_de_write(dev_priv, reg, val); 1759 /* wait for PCH transcoder off, transcoder state */ 1760 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 1761 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n", 1762 pipe_name(pipe)); 1763 1764 if (HAS_PCH_CPT(dev_priv)) { 1765 /* Workaround: Clear the timing override chicken bit again. */ 1766 reg = TRANS_CHICKEN2(pipe); 1767 val = intel_de_read(dev_priv, reg); 1768 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1769 intel_de_write(dev_priv, reg, val); 1770 } 1771 } 1772 1773 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 1774 { 1775 u32 val; 1776 1777 val = intel_de_read(dev_priv, LPT_TRANSCONF); 1778 val &= ~TRANS_ENABLE; 1779 intel_de_write(dev_priv, LPT_TRANSCONF, val); 1780 /* wait for PCH transcoder off, transcoder state */ 1781 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 1782 TRANS_STATE_ENABLE, 50)) 1783 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n"); 1784 1785 /* Workaround: clear timing override bit. */ 1786 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 1787 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1788 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 1789 } 1790 1791 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 1792 { 1793 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1794 1795 if (HAS_PCH_LPT(dev_priv)) 1796 return PIPE_A; 1797 else 1798 return crtc->pipe; 1799 } 1800 1801 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state) 1802 { 1803 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1804 1805 /* 1806 * On i965gm the hardware frame counter reads 1807 * zero when the TV encoder is enabled :( 1808 */ 1809 if (IS_I965GM(dev_priv) && 1810 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT))) 1811 return 0; 1812 1813 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1814 return 0xffffffff; /* full 32 bit counter */ 1815 else if (INTEL_GEN(dev_priv) >= 3) 1816 return 0xffffff; /* only 24 bits of frame count */ 1817 else 1818 return 0; /* Gen2 doesn't have a hardware frame counter */ 1819 } 1820 1821 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state) 1822 { 1823 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1824 1825 assert_vblank_disabled(&crtc->base); 1826 drm_crtc_set_max_vblank_count(&crtc->base, 1827 intel_crtc_max_vblank_count(crtc_state)); 1828 drm_crtc_vblank_on(&crtc->base); 1829 } 1830 1831 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state) 1832 { 1833 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1834 1835 drm_crtc_vblank_off(&crtc->base); 1836 assert_vblank_disabled(&crtc->base); 1837 } 1838 1839 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) 1840 { 1841 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 1842 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1843 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 1844 enum pipe pipe = crtc->pipe; 1845 i915_reg_t reg; 1846 u32 val; 1847 1848 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe)); 1849 1850 assert_planes_disabled(crtc); 1851 1852 /* 1853 * A pipe without a PLL won't actually be able to drive bits from 1854 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 1855 * need the check. 1856 */ 1857 if (HAS_GMCH(dev_priv)) { 1858 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 1859 assert_dsi_pll_enabled(dev_priv); 1860 else 1861 assert_pll_enabled(dev_priv, pipe); 1862 } else { 1863 if (new_crtc_state->has_pch_encoder) { 1864 /* if driving the PCH, we need FDI enabled */ 1865 assert_fdi_rx_pll_enabled(dev_priv, 1866 intel_crtc_pch_transcoder(crtc)); 1867 assert_fdi_tx_pll_enabled(dev_priv, 1868 (enum pipe) cpu_transcoder); 1869 } 1870 /* FIXME: assert CPU port conditions for SNB+ */ 1871 } 1872 1873 trace_intel_pipe_enable(crtc); 1874 1875 reg = PIPECONF(cpu_transcoder); 1876 val = intel_de_read(dev_priv, reg); 1877 if (val & PIPECONF_ENABLE) { 1878 /* we keep both pipes enabled on 830 */ 1879 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv)); 1880 return; 1881 } 1882 1883 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE); 1884 intel_de_posting_read(dev_priv, reg); 1885 1886 /* 1887 * Until the pipe starts PIPEDSL reads will return a stale value, 1888 * which causes an apparent vblank timestamp jump when PIPEDSL 1889 * resets to its proper value. That also messes up the frame count 1890 * when it's derived from the timestamps. So let's wait for the 1891 * pipe to start properly before we call drm_crtc_vblank_on() 1892 */ 1893 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 1894 intel_wait_for_pipe_scanline_moving(crtc); 1895 } 1896 1897 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) 1898 { 1899 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1900 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1901 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1902 enum pipe pipe = crtc->pipe; 1903 i915_reg_t reg; 1904 u32 val; 1905 1906 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe)); 1907 1908 /* 1909 * Make sure planes won't keep trying to pump pixels to us, 1910 * or we might hang the display. 1911 */ 1912 assert_planes_disabled(crtc); 1913 1914 trace_intel_pipe_disable(crtc); 1915 1916 reg = PIPECONF(cpu_transcoder); 1917 val = intel_de_read(dev_priv, reg); 1918 if ((val & PIPECONF_ENABLE) == 0) 1919 return; 1920 1921 /* 1922 * Double wide has implications for planes 1923 * so best keep it disabled when not needed. 1924 */ 1925 if (old_crtc_state->double_wide) 1926 val &= ~PIPECONF_DOUBLE_WIDE; 1927 1928 /* Don't disable pipe or pipe PLLs if needed */ 1929 if (!IS_I830(dev_priv)) 1930 val &= ~PIPECONF_ENABLE; 1931 1932 intel_de_write(dev_priv, reg, val); 1933 if ((val & PIPECONF_ENABLE) == 0) 1934 intel_wait_for_pipe_off(old_crtc_state); 1935 } 1936 1937 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv) 1938 { 1939 return IS_GEN(dev_priv, 2) ? 2048 : 4096; 1940 } 1941 1942 static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane) 1943 { 1944 if (!is_ccs_modifier(fb->modifier)) 1945 return false; 1946 1947 return plane >= fb->format->num_planes / 2; 1948 } 1949 1950 static bool is_gen12_ccs_modifier(u64 modifier) 1951 { 1952 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS || 1953 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS; 1954 1955 } 1956 1957 static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane) 1958 { 1959 return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane); 1960 } 1961 1962 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane) 1963 { 1964 if (is_ccs_modifier(fb->modifier)) 1965 return is_ccs_plane(fb, plane); 1966 1967 return plane == 1; 1968 } 1969 1970 static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane) 1971 { 1972 WARN_ON(!is_ccs_modifier(fb->modifier) || 1973 (main_plane && main_plane >= fb->format->num_planes / 2)); 1974 1975 return fb->format->num_planes / 2 + main_plane; 1976 } 1977 1978 static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane) 1979 { 1980 WARN_ON(!is_ccs_modifier(fb->modifier) || 1981 ccs_plane < fb->format->num_planes / 2); 1982 1983 return ccs_plane - fb->format->num_planes / 2; 1984 } 1985 1986 /* Return either the main plane's CCS or - if not a CCS FB - UV plane */ 1987 int intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane) 1988 { 1989 if (is_ccs_modifier(fb->modifier)) 1990 return main_to_ccs_plane(fb, main_plane); 1991 1992 return 1; 1993 } 1994 1995 bool 1996 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info, 1997 uint64_t modifier) 1998 { 1999 return info->is_yuv && 2000 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2); 2001 } 2002 2003 static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb, 2004 int color_plane) 2005 { 2006 return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) && 2007 color_plane == 1; 2008 } 2009 2010 static unsigned int 2011 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) 2012 { 2013 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2014 unsigned int cpp = fb->format->cpp[color_plane]; 2015 2016 switch (fb->modifier) { 2017 case DRM_FORMAT_MOD_LINEAR: 2018 return intel_tile_size(dev_priv); 2019 case I915_FORMAT_MOD_X_TILED: 2020 if (IS_GEN(dev_priv, 2)) 2021 return 128; 2022 else 2023 return 512; 2024 case I915_FORMAT_MOD_Y_TILED_CCS: 2025 if (is_ccs_plane(fb, color_plane)) 2026 return 128; 2027 /* fall through */ 2028 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2029 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2030 if (is_ccs_plane(fb, color_plane)) 2031 return 64; 2032 /* fall through */ 2033 case I915_FORMAT_MOD_Y_TILED: 2034 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv)) 2035 return 128; 2036 else 2037 return 512; 2038 case I915_FORMAT_MOD_Yf_TILED_CCS: 2039 if (is_ccs_plane(fb, color_plane)) 2040 return 128; 2041 /* fall through */ 2042 case I915_FORMAT_MOD_Yf_TILED: 2043 switch (cpp) { 2044 case 1: 2045 return 64; 2046 case 2: 2047 case 4: 2048 return 128; 2049 case 8: 2050 case 16: 2051 return 256; 2052 default: 2053 MISSING_CASE(cpp); 2054 return cpp; 2055 } 2056 break; 2057 default: 2058 MISSING_CASE(fb->modifier); 2059 return cpp; 2060 } 2061 } 2062 2063 static unsigned int 2064 intel_tile_height(const struct drm_framebuffer *fb, int color_plane) 2065 { 2066 if (is_gen12_ccs_plane(fb, color_plane)) 2067 return 1; 2068 2069 return intel_tile_size(to_i915(fb->dev)) / 2070 intel_tile_width_bytes(fb, color_plane); 2071 } 2072 2073 /* Return the tile dimensions in pixel units */ 2074 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane, 2075 unsigned int *tile_width, 2076 unsigned int *tile_height) 2077 { 2078 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane); 2079 unsigned int cpp = fb->format->cpp[color_plane]; 2080 2081 *tile_width = tile_width_bytes / cpp; 2082 *tile_height = intel_tile_height(fb, color_plane); 2083 } 2084 2085 static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb, 2086 int color_plane) 2087 { 2088 unsigned int tile_width, tile_height; 2089 2090 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2091 2092 return fb->pitches[color_plane] * tile_height; 2093 } 2094 2095 unsigned int 2096 intel_fb_align_height(const struct drm_framebuffer *fb, 2097 int color_plane, unsigned int height) 2098 { 2099 unsigned int tile_height = intel_tile_height(fb, color_plane); 2100 2101 return ALIGN(height, tile_height); 2102 } 2103 2104 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 2105 { 2106 unsigned int size = 0; 2107 int i; 2108 2109 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 2110 size += rot_info->plane[i].width * rot_info->plane[i].height; 2111 2112 return size; 2113 } 2114 2115 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 2116 { 2117 unsigned int size = 0; 2118 int i; 2119 2120 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 2121 size += rem_info->plane[i].width * rem_info->plane[i].height; 2122 2123 return size; 2124 } 2125 2126 static void 2127 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, 2128 const struct drm_framebuffer *fb, 2129 unsigned int rotation) 2130 { 2131 view->type = I915_GGTT_VIEW_NORMAL; 2132 if (drm_rotation_90_or_270(rotation)) { 2133 view->type = I915_GGTT_VIEW_ROTATED; 2134 view->rotated = to_intel_framebuffer(fb)->rot_info; 2135 } 2136 } 2137 2138 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv) 2139 { 2140 if (IS_I830(dev_priv)) 2141 return 16 * 1024; 2142 else if (IS_I85X(dev_priv)) 2143 return 256; 2144 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) 2145 return 32; 2146 else 2147 return 4 * 1024; 2148 } 2149 2150 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 2151 { 2152 if (INTEL_GEN(dev_priv) >= 9) 2153 return 256 * 1024; 2154 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || 2155 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 2156 return 128 * 1024; 2157 else if (INTEL_GEN(dev_priv) >= 4) 2158 return 4 * 1024; 2159 else 2160 return 0; 2161 } 2162 2163 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, 2164 int color_plane) 2165 { 2166 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2167 2168 /* AUX_DIST needs only 4K alignment */ 2169 if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) || 2170 is_ccs_plane(fb, color_plane)) 2171 return 4096; 2172 2173 switch (fb->modifier) { 2174 case DRM_FORMAT_MOD_LINEAR: 2175 return intel_linear_alignment(dev_priv); 2176 case I915_FORMAT_MOD_X_TILED: 2177 if (INTEL_GEN(dev_priv) >= 9) 2178 return 256 * 1024; 2179 return 0; 2180 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2181 if (is_semiplanar_uv_plane(fb, color_plane)) 2182 return intel_tile_row_size(fb, color_plane); 2183 /* Fall-through */ 2184 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2185 return 16 * 1024; 2186 case I915_FORMAT_MOD_Y_TILED_CCS: 2187 case I915_FORMAT_MOD_Yf_TILED_CCS: 2188 case I915_FORMAT_MOD_Y_TILED: 2189 if (INTEL_GEN(dev_priv) >= 12 && 2190 is_semiplanar_uv_plane(fb, color_plane)) 2191 return intel_tile_row_size(fb, color_plane); 2192 /* Fall-through */ 2193 case I915_FORMAT_MOD_Yf_TILED: 2194 return 1 * 1024 * 1024; 2195 default: 2196 MISSING_CASE(fb->modifier); 2197 return 0; 2198 } 2199 } 2200 2201 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 2202 { 2203 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2204 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2205 2206 return INTEL_GEN(dev_priv) < 4 || 2207 (plane->has_fbc && 2208 plane_state->view.type == I915_GGTT_VIEW_NORMAL); 2209 } 2210 2211 struct i915_vma * 2212 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 2213 const struct i915_ggtt_view *view, 2214 bool uses_fence, 2215 unsigned long *out_flags) 2216 { 2217 struct drm_device *dev = fb->dev; 2218 struct drm_i915_private *dev_priv = to_i915(dev); 2219 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 2220 intel_wakeref_t wakeref; 2221 struct i915_vma *vma; 2222 unsigned int pinctl; 2223 u32 alignment; 2224 2225 if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj))) 2226 return ERR_PTR(-EINVAL); 2227 2228 alignment = intel_surf_alignment(fb, 0); 2229 if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment))) 2230 return ERR_PTR(-EINVAL); 2231 2232 /* Note that the w/a also requires 64 PTE of padding following the 2233 * bo. We currently fill all unused PTE with the shadow page and so 2234 * we should always have valid PTE following the scanout preventing 2235 * the VT-d warning. 2236 */ 2237 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) 2238 alignment = 256 * 1024; 2239 2240 /* 2241 * Global gtt pte registers are special registers which actually forward 2242 * writes to a chunk of system memory. Which means that there is no risk 2243 * that the register values disappear as soon as we call 2244 * intel_runtime_pm_put(), so it is correct to wrap only the 2245 * pin/unpin/fence and not more. 2246 */ 2247 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 2248 2249 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 2250 2251 /* 2252 * Valleyview is definitely limited to scanning out the first 2253 * 512MiB. Lets presume this behaviour was inherited from the 2254 * g4x display engine and that all earlier gen are similarly 2255 * limited. Testing suggests that it is a little more 2256 * complicated than this. For example, Cherryview appears quite 2257 * happy to scanout from anywhere within its global aperture. 2258 */ 2259 pinctl = 0; 2260 if (HAS_GMCH(dev_priv)) 2261 pinctl |= PIN_MAPPABLE; 2262 2263 vma = i915_gem_object_pin_to_display_plane(obj, 2264 alignment, view, pinctl); 2265 if (IS_ERR(vma)) 2266 goto err; 2267 2268 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { 2269 int ret; 2270 2271 /* 2272 * Install a fence for tiled scan-out. Pre-i965 always needs a 2273 * fence, whereas 965+ only requires a fence if using 2274 * framebuffer compression. For simplicity, we always, when 2275 * possible, install a fence as the cost is not that onerous. 2276 * 2277 * If we fail to fence the tiled scanout, then either the 2278 * modeset will reject the change (which is highly unlikely as 2279 * the affected systems, all but one, do not have unmappable 2280 * space) or we will not be able to enable full powersaving 2281 * techniques (also likely not to apply due to various limits 2282 * FBC and the like impose on the size of the buffer, which 2283 * presumably we violated anyway with this unmappable buffer). 2284 * Anyway, it is presumably better to stumble onwards with 2285 * something and try to run the system in a "less than optimal" 2286 * mode that matches the user configuration. 2287 */ 2288 ret = i915_vma_pin_fence(vma); 2289 if (ret != 0 && INTEL_GEN(dev_priv) < 4) { 2290 i915_gem_object_unpin_from_display_plane(vma); 2291 vma = ERR_PTR(ret); 2292 goto err; 2293 } 2294 2295 if (ret == 0 && vma->fence) 2296 *out_flags |= PLANE_HAS_FENCE; 2297 } 2298 2299 i915_vma_get(vma); 2300 err: 2301 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 2302 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 2303 return vma; 2304 } 2305 2306 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) 2307 { 2308 i915_gem_object_lock(vma->obj); 2309 if (flags & PLANE_HAS_FENCE) 2310 i915_vma_unpin_fence(vma); 2311 i915_gem_object_unpin_from_display_plane(vma); 2312 i915_gem_object_unlock(vma->obj); 2313 2314 i915_vma_put(vma); 2315 } 2316 2317 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane, 2318 unsigned int rotation) 2319 { 2320 if (drm_rotation_90_or_270(rotation)) 2321 return to_intel_framebuffer(fb)->rotated[color_plane].pitch; 2322 else 2323 return fb->pitches[color_plane]; 2324 } 2325 2326 /* 2327 * Convert the x/y offsets into a linear offset. 2328 * Only valid with 0/180 degree rotation, which is fine since linear 2329 * offset is only used with linear buffers on pre-hsw and tiled buffers 2330 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 2331 */ 2332 u32 intel_fb_xy_to_linear(int x, int y, 2333 const struct intel_plane_state *state, 2334 int color_plane) 2335 { 2336 const struct drm_framebuffer *fb = state->hw.fb; 2337 unsigned int cpp = fb->format->cpp[color_plane]; 2338 unsigned int pitch = state->color_plane[color_plane].stride; 2339 2340 return y * pitch + x * cpp; 2341 } 2342 2343 /* 2344 * Add the x/y offsets derived from fb->offsets[] to the user 2345 * specified plane src x/y offsets. The resulting x/y offsets 2346 * specify the start of scanout from the beginning of the gtt mapping. 2347 */ 2348 void intel_add_fb_offsets(int *x, int *y, 2349 const struct intel_plane_state *state, 2350 int color_plane) 2351 2352 { 2353 *x += state->color_plane[color_plane].x; 2354 *y += state->color_plane[color_plane].y; 2355 } 2356 2357 static u32 intel_adjust_tile_offset(int *x, int *y, 2358 unsigned int tile_width, 2359 unsigned int tile_height, 2360 unsigned int tile_size, 2361 unsigned int pitch_tiles, 2362 u32 old_offset, 2363 u32 new_offset) 2364 { 2365 unsigned int pitch_pixels = pitch_tiles * tile_width; 2366 unsigned int tiles; 2367 2368 WARN_ON(old_offset & (tile_size - 1)); 2369 WARN_ON(new_offset & (tile_size - 1)); 2370 WARN_ON(new_offset > old_offset); 2371 2372 tiles = (old_offset - new_offset) / tile_size; 2373 2374 *y += tiles / pitch_tiles * tile_height; 2375 *x += tiles % pitch_tiles * tile_width; 2376 2377 /* minimize x in case it got needlessly big */ 2378 *y += *x / pitch_pixels * tile_height; 2379 *x %= pitch_pixels; 2380 2381 return new_offset; 2382 } 2383 2384 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane) 2385 { 2386 return fb->modifier == DRM_FORMAT_MOD_LINEAR || 2387 is_gen12_ccs_plane(fb, color_plane); 2388 } 2389 2390 static u32 intel_adjust_aligned_offset(int *x, int *y, 2391 const struct drm_framebuffer *fb, 2392 int color_plane, 2393 unsigned int rotation, 2394 unsigned int pitch, 2395 u32 old_offset, u32 new_offset) 2396 { 2397 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2398 unsigned int cpp = fb->format->cpp[color_plane]; 2399 2400 drm_WARN_ON(&dev_priv->drm, new_offset > old_offset); 2401 2402 if (!is_surface_linear(fb, color_plane)) { 2403 unsigned int tile_size, tile_width, tile_height; 2404 unsigned int pitch_tiles; 2405 2406 tile_size = intel_tile_size(dev_priv); 2407 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2408 2409 if (drm_rotation_90_or_270(rotation)) { 2410 pitch_tiles = pitch / tile_height; 2411 swap(tile_width, tile_height); 2412 } else { 2413 pitch_tiles = pitch / (tile_width * cpp); 2414 } 2415 2416 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2417 tile_size, pitch_tiles, 2418 old_offset, new_offset); 2419 } else { 2420 old_offset += *y * pitch + *x * cpp; 2421 2422 *y = (old_offset - new_offset) / pitch; 2423 *x = ((old_offset - new_offset) - *y * pitch) / cpp; 2424 } 2425 2426 return new_offset; 2427 } 2428 2429 /* 2430 * Adjust the tile offset by moving the difference into 2431 * the x/y offsets. 2432 */ 2433 static u32 intel_plane_adjust_aligned_offset(int *x, int *y, 2434 const struct intel_plane_state *state, 2435 int color_plane, 2436 u32 old_offset, u32 new_offset) 2437 { 2438 return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane, 2439 state->hw.rotation, 2440 state->color_plane[color_plane].stride, 2441 old_offset, new_offset); 2442 } 2443 2444 /* 2445 * Computes the aligned offset to the base tile and adjusts 2446 * x, y. bytes per pixel is assumed to be a power-of-two. 2447 * 2448 * In the 90/270 rotated case, x and y are assumed 2449 * to be already rotated to match the rotated GTT view, and 2450 * pitch is the tile_height aligned framebuffer height. 2451 * 2452 * This function is used when computing the derived information 2453 * under intel_framebuffer, so using any of that information 2454 * here is not allowed. Anything under drm_framebuffer can be 2455 * used. This is why the user has to pass in the pitch since it 2456 * is specified in the rotated orientation. 2457 */ 2458 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv, 2459 int *x, int *y, 2460 const struct drm_framebuffer *fb, 2461 int color_plane, 2462 unsigned int pitch, 2463 unsigned int rotation, 2464 u32 alignment) 2465 { 2466 unsigned int cpp = fb->format->cpp[color_plane]; 2467 u32 offset, offset_aligned; 2468 2469 if (!is_surface_linear(fb, color_plane)) { 2470 unsigned int tile_size, tile_width, tile_height; 2471 unsigned int tile_rows, tiles, pitch_tiles; 2472 2473 tile_size = intel_tile_size(dev_priv); 2474 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2475 2476 if (drm_rotation_90_or_270(rotation)) { 2477 pitch_tiles = pitch / tile_height; 2478 swap(tile_width, tile_height); 2479 } else { 2480 pitch_tiles = pitch / (tile_width * cpp); 2481 } 2482 2483 tile_rows = *y / tile_height; 2484 *y %= tile_height; 2485 2486 tiles = *x / tile_width; 2487 *x %= tile_width; 2488 2489 offset = (tile_rows * pitch_tiles + tiles) * tile_size; 2490 2491 offset_aligned = offset; 2492 if (alignment) 2493 offset_aligned = rounddown(offset_aligned, alignment); 2494 2495 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2496 tile_size, pitch_tiles, 2497 offset, offset_aligned); 2498 } else { 2499 offset = *y * pitch + *x * cpp; 2500 offset_aligned = offset; 2501 if (alignment) { 2502 offset_aligned = rounddown(offset_aligned, alignment); 2503 *y = (offset % alignment) / pitch; 2504 *x = ((offset % alignment) - *y * pitch) / cpp; 2505 } else { 2506 *y = *x = 0; 2507 } 2508 } 2509 2510 return offset_aligned; 2511 } 2512 2513 static u32 intel_plane_compute_aligned_offset(int *x, int *y, 2514 const struct intel_plane_state *state, 2515 int color_plane) 2516 { 2517 struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane); 2518 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 2519 const struct drm_framebuffer *fb = state->hw.fb; 2520 unsigned int rotation = state->hw.rotation; 2521 int pitch = state->color_plane[color_plane].stride; 2522 u32 alignment; 2523 2524 if (intel_plane->id == PLANE_CURSOR) 2525 alignment = intel_cursor_alignment(dev_priv); 2526 else 2527 alignment = intel_surf_alignment(fb, color_plane); 2528 2529 return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane, 2530 pitch, rotation, alignment); 2531 } 2532 2533 /* Convert the fb->offset[] into x/y offsets */ 2534 static int intel_fb_offset_to_xy(int *x, int *y, 2535 const struct drm_framebuffer *fb, 2536 int color_plane) 2537 { 2538 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2539 unsigned int height; 2540 u32 alignment; 2541 2542 if (INTEL_GEN(dev_priv) >= 12 && 2543 is_semiplanar_uv_plane(fb, color_plane)) 2544 alignment = intel_tile_row_size(fb, color_plane); 2545 else if (fb->modifier != DRM_FORMAT_MOD_LINEAR) 2546 alignment = intel_tile_size(dev_priv); 2547 else 2548 alignment = 0; 2549 2550 if (alignment != 0 && fb->offsets[color_plane] % alignment) { 2551 drm_dbg_kms(&dev_priv->drm, 2552 "Misaligned offset 0x%08x for color plane %d\n", 2553 fb->offsets[color_plane], color_plane); 2554 return -EINVAL; 2555 } 2556 2557 height = drm_framebuffer_plane_height(fb->height, fb, color_plane); 2558 height = ALIGN(height, intel_tile_height(fb, color_plane)); 2559 2560 /* Catch potential overflows early */ 2561 if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]), 2562 fb->offsets[color_plane])) { 2563 drm_dbg_kms(&dev_priv->drm, 2564 "Bad offset 0x%08x or pitch %d for color plane %d\n", 2565 fb->offsets[color_plane], fb->pitches[color_plane], 2566 color_plane); 2567 return -ERANGE; 2568 } 2569 2570 *x = 0; 2571 *y = 0; 2572 2573 intel_adjust_aligned_offset(x, y, 2574 fb, color_plane, DRM_MODE_ROTATE_0, 2575 fb->pitches[color_plane], 2576 fb->offsets[color_plane], 0); 2577 2578 return 0; 2579 } 2580 2581 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) 2582 { 2583 switch (fb_modifier) { 2584 case I915_FORMAT_MOD_X_TILED: 2585 return I915_TILING_X; 2586 case I915_FORMAT_MOD_Y_TILED: 2587 case I915_FORMAT_MOD_Y_TILED_CCS: 2588 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2589 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2590 return I915_TILING_Y; 2591 default: 2592 return I915_TILING_NONE; 2593 } 2594 } 2595 2596 /* 2597 * From the Sky Lake PRM: 2598 * "The Color Control Surface (CCS) contains the compression status of 2599 * the cache-line pairs. The compression state of the cache-line pair 2600 * is specified by 2 bits in the CCS. Each CCS cache-line represents 2601 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 2602 * cache-line-pairs. CCS is always Y tiled." 2603 * 2604 * Since cache line pairs refers to horizontally adjacent cache lines, 2605 * each cache line in the CCS corresponds to an area of 32x16 cache 2606 * lines on the main surface. Since each pixel is 4 bytes, this gives 2607 * us a ratio of one byte in the CCS for each 8x16 pixels in the 2608 * main surface. 2609 */ 2610 static const struct drm_format_info skl_ccs_formats[] = { 2611 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 2612 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2613 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 2614 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2615 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 2616 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2617 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 2618 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2619 }; 2620 2621 /* 2622 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the 2623 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles 2624 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of 2625 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in 2626 * the main surface. 2627 */ 2628 static const struct drm_format_info gen12_ccs_formats[] = { 2629 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 2630 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2631 .hsub = 1, .vsub = 1, }, 2632 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 2633 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2634 .hsub = 1, .vsub = 1, }, 2635 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 2636 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2637 .hsub = 1, .vsub = 1, .has_alpha = true }, 2638 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 2639 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2640 .hsub = 1, .vsub = 1, .has_alpha = true }, 2641 { .format = DRM_FORMAT_YUYV, .num_planes = 2, 2642 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2643 .hsub = 2, .vsub = 1, .is_yuv = true }, 2644 { .format = DRM_FORMAT_YVYU, .num_planes = 2, 2645 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2646 .hsub = 2, .vsub = 1, .is_yuv = true }, 2647 { .format = DRM_FORMAT_UYVY, .num_planes = 2, 2648 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2649 .hsub = 2, .vsub = 1, .is_yuv = true }, 2650 { .format = DRM_FORMAT_VYUY, .num_planes = 2, 2651 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2652 .hsub = 2, .vsub = 1, .is_yuv = true }, 2653 { .format = DRM_FORMAT_NV12, .num_planes = 4, 2654 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 }, 2655 .hsub = 2, .vsub = 2, .is_yuv = true }, 2656 { .format = DRM_FORMAT_P010, .num_planes = 4, 2657 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2658 .hsub = 2, .vsub = 2, .is_yuv = true }, 2659 { .format = DRM_FORMAT_P012, .num_planes = 4, 2660 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2661 .hsub = 2, .vsub = 2, .is_yuv = true }, 2662 { .format = DRM_FORMAT_P016, .num_planes = 4, 2663 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2664 .hsub = 2, .vsub = 2, .is_yuv = true }, 2665 }; 2666 2667 static const struct drm_format_info * 2668 lookup_format_info(const struct drm_format_info formats[], 2669 int num_formats, u32 format) 2670 { 2671 int i; 2672 2673 for (i = 0; i < num_formats; i++) { 2674 if (formats[i].format == format) 2675 return &formats[i]; 2676 } 2677 2678 return NULL; 2679 } 2680 2681 static const struct drm_format_info * 2682 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 2683 { 2684 switch (cmd->modifier[0]) { 2685 case I915_FORMAT_MOD_Y_TILED_CCS: 2686 case I915_FORMAT_MOD_Yf_TILED_CCS: 2687 return lookup_format_info(skl_ccs_formats, 2688 ARRAY_SIZE(skl_ccs_formats), 2689 cmd->pixel_format); 2690 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2691 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2692 return lookup_format_info(gen12_ccs_formats, 2693 ARRAY_SIZE(gen12_ccs_formats), 2694 cmd->pixel_format); 2695 default: 2696 return NULL; 2697 } 2698 } 2699 2700 bool is_ccs_modifier(u64 modifier) 2701 { 2702 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS || 2703 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS || 2704 modifier == I915_FORMAT_MOD_Y_TILED_CCS || 2705 modifier == I915_FORMAT_MOD_Yf_TILED_CCS; 2706 } 2707 2708 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane) 2709 { 2710 return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)], 2711 512) * 64; 2712 } 2713 2714 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 2715 u32 pixel_format, u64 modifier) 2716 { 2717 struct intel_crtc *crtc; 2718 struct intel_plane *plane; 2719 2720 /* 2721 * We assume the primary plane for pipe A has 2722 * the highest stride limits of them all, 2723 * if in case pipe A is disabled, use the first pipe from pipe_mask. 2724 */ 2725 crtc = intel_get_first_crtc(dev_priv); 2726 if (!crtc) 2727 return 0; 2728 2729 plane = to_intel_plane(crtc->base.primary); 2730 2731 return plane->max_stride(plane, pixel_format, modifier, 2732 DRM_MODE_ROTATE_0); 2733 } 2734 2735 static 2736 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, 2737 u32 pixel_format, u64 modifier) 2738 { 2739 /* 2740 * Arbitrary limit for gen4+ chosen to match the 2741 * render engine max stride. 2742 * 2743 * The new CCS hash mode makes remapping impossible 2744 */ 2745 if (!is_ccs_modifier(modifier)) { 2746 if (INTEL_GEN(dev_priv) >= 7) 2747 return 256*1024; 2748 else if (INTEL_GEN(dev_priv) >= 4) 2749 return 128*1024; 2750 } 2751 2752 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); 2753 } 2754 2755 static u32 2756 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) 2757 { 2758 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2759 u32 tile_width; 2760 2761 if (is_surface_linear(fb, color_plane)) { 2762 u32 max_stride = intel_plane_fb_max_stride(dev_priv, 2763 fb->format->format, 2764 fb->modifier); 2765 2766 /* 2767 * To make remapping with linear generally feasible 2768 * we need the stride to be page aligned. 2769 */ 2770 if (fb->pitches[color_plane] > max_stride && 2771 !is_ccs_modifier(fb->modifier)) 2772 return intel_tile_size(dev_priv); 2773 else 2774 return 64; 2775 } 2776 2777 tile_width = intel_tile_width_bytes(fb, color_plane); 2778 if (is_ccs_modifier(fb->modifier)) { 2779 /* 2780 * Display WA #0531: skl,bxt,kbl,glk 2781 * 2782 * Render decompression and plane width > 3840 2783 * combined with horizontal panning requires the 2784 * plane stride to be a multiple of 4. We'll just 2785 * require the entire fb to accommodate that to avoid 2786 * potential runtime errors at plane configuration time. 2787 */ 2788 if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840) 2789 tile_width *= 4; 2790 /* 2791 * The main surface pitch must be padded to a multiple of four 2792 * tile widths. 2793 */ 2794 else if (INTEL_GEN(dev_priv) >= 12) 2795 tile_width *= 4; 2796 } 2797 return tile_width; 2798 } 2799 2800 bool intel_plane_can_remap(const struct intel_plane_state *plane_state) 2801 { 2802 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2803 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2804 const struct drm_framebuffer *fb = plane_state->hw.fb; 2805 int i; 2806 2807 /* We don't want to deal with remapping with cursors */ 2808 if (plane->id == PLANE_CURSOR) 2809 return false; 2810 2811 /* 2812 * The display engine limits already match/exceed the 2813 * render engine limits, so not much point in remapping. 2814 * Would also need to deal with the fence POT alignment 2815 * and gen2 2KiB GTT tile size. 2816 */ 2817 if (INTEL_GEN(dev_priv) < 4) 2818 return false; 2819 2820 /* 2821 * The new CCS hash mode isn't compatible with remapping as 2822 * the virtual address of the pages affects the compressed data. 2823 */ 2824 if (is_ccs_modifier(fb->modifier)) 2825 return false; 2826 2827 /* Linear needs a page aligned stride for remapping */ 2828 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) { 2829 unsigned int alignment = intel_tile_size(dev_priv) - 1; 2830 2831 for (i = 0; i < fb->format->num_planes; i++) { 2832 if (fb->pitches[i] & alignment) 2833 return false; 2834 } 2835 } 2836 2837 return true; 2838 } 2839 2840 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state) 2841 { 2842 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2843 const struct drm_framebuffer *fb = plane_state->hw.fb; 2844 unsigned int rotation = plane_state->hw.rotation; 2845 u32 stride, max_stride; 2846 2847 /* 2848 * No remapping for invisible planes since we don't have 2849 * an actual source viewport to remap. 2850 */ 2851 if (!plane_state->uapi.visible) 2852 return false; 2853 2854 if (!intel_plane_can_remap(plane_state)) 2855 return false; 2856 2857 /* 2858 * FIXME: aux plane limits on gen9+ are 2859 * unclear in Bspec, for now no checking. 2860 */ 2861 stride = intel_fb_pitch(fb, 0, rotation); 2862 max_stride = plane->max_stride(plane, fb->format->format, 2863 fb->modifier, rotation); 2864 2865 return stride > max_stride; 2866 } 2867 2868 static void 2869 intel_fb_plane_get_subsampling(int *hsub, int *vsub, 2870 const struct drm_framebuffer *fb, 2871 int color_plane) 2872 { 2873 int main_plane; 2874 2875 if (color_plane == 0) { 2876 *hsub = 1; 2877 *vsub = 1; 2878 2879 return; 2880 } 2881 2882 /* 2883 * TODO: Deduct the subsampling from the char block for all CCS 2884 * formats and planes. 2885 */ 2886 if (!is_gen12_ccs_plane(fb, color_plane)) { 2887 *hsub = fb->format->hsub; 2888 *vsub = fb->format->vsub; 2889 2890 return; 2891 } 2892 2893 main_plane = ccs_to_main_plane(fb, color_plane); 2894 *hsub = drm_format_info_block_width(fb->format, color_plane) / 2895 drm_format_info_block_width(fb->format, main_plane); 2896 2897 /* 2898 * The min stride check in the core framebuffer_check() function 2899 * assumes that format->hsub applies to every plane except for the 2900 * first plane. That's incorrect for the CCS AUX plane of the first 2901 * plane, but for the above check to pass we must define the block 2902 * width with that subsampling applied to it. Adjust the width here 2903 * accordingly, so we can calculate the actual subsampling factor. 2904 */ 2905 if (main_plane == 0) 2906 *hsub *= fb->format->hsub; 2907 2908 *vsub = 32; 2909 } 2910 static int 2911 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y) 2912 { 2913 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2914 int main_plane; 2915 int hsub, vsub; 2916 int tile_width, tile_height; 2917 int ccs_x, ccs_y; 2918 int main_x, main_y; 2919 2920 if (!is_ccs_plane(fb, ccs_plane)) 2921 return 0; 2922 2923 intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height); 2924 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 2925 2926 tile_width *= hsub; 2927 tile_height *= vsub; 2928 2929 ccs_x = (x * hsub) % tile_width; 2930 ccs_y = (y * vsub) % tile_height; 2931 2932 main_plane = ccs_to_main_plane(fb, ccs_plane); 2933 main_x = intel_fb->normal[main_plane].x % tile_width; 2934 main_y = intel_fb->normal[main_plane].y % tile_height; 2935 2936 /* 2937 * CCS doesn't have its own x/y offset register, so the intra CCS tile 2938 * x/y offsets must match between CCS and the main surface. 2939 */ 2940 if (main_x != ccs_x || main_y != ccs_y) { 2941 DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n", 2942 main_x, main_y, 2943 ccs_x, ccs_y, 2944 intel_fb->normal[main_plane].x, 2945 intel_fb->normal[main_plane].y, 2946 x, y); 2947 return -EINVAL; 2948 } 2949 2950 return 0; 2951 } 2952 2953 static void 2954 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane) 2955 { 2956 int main_plane = is_ccs_plane(fb, color_plane) ? 2957 ccs_to_main_plane(fb, color_plane) : 0; 2958 int main_hsub, main_vsub; 2959 int hsub, vsub; 2960 2961 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane); 2962 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane); 2963 *w = fb->width / main_hsub / hsub; 2964 *h = fb->height / main_vsub / vsub; 2965 } 2966 2967 /* 2968 * Setup the rotated view for an FB plane and return the size the GTT mapping 2969 * requires for this view. 2970 */ 2971 static u32 2972 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info, 2973 u32 gtt_offset_rotated, int x, int y, 2974 unsigned int width, unsigned int height, 2975 unsigned int tile_size, 2976 unsigned int tile_width, unsigned int tile_height, 2977 struct drm_framebuffer *fb) 2978 { 2979 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2980 struct intel_rotation_info *rot_info = &intel_fb->rot_info; 2981 unsigned int pitch_tiles; 2982 struct drm_rect r; 2983 2984 /* Y or Yf modifiers required for 90/270 rotation */ 2985 if (fb->modifier != I915_FORMAT_MOD_Y_TILED && 2986 fb->modifier != I915_FORMAT_MOD_Yf_TILED) 2987 return 0; 2988 2989 if (WARN_ON(plane >= ARRAY_SIZE(rot_info->plane))) 2990 return 0; 2991 2992 rot_info->plane[plane] = *plane_info; 2993 2994 intel_fb->rotated[plane].pitch = plane_info->height * tile_height; 2995 2996 /* rotate the x/y offsets to match the GTT view */ 2997 drm_rect_init(&r, x, y, width, height); 2998 drm_rect_rotate(&r, 2999 plane_info->width * tile_width, 3000 plane_info->height * tile_height, 3001 DRM_MODE_ROTATE_270); 3002 x = r.x1; 3003 y = r.y1; 3004 3005 /* rotate the tile dimensions to match the GTT view */ 3006 pitch_tiles = intel_fb->rotated[plane].pitch / tile_height; 3007 swap(tile_width, tile_height); 3008 3009 /* 3010 * We only keep the x/y offsets, so push all of the 3011 * gtt offset into the x/y offsets. 3012 */ 3013 intel_adjust_tile_offset(&x, &y, 3014 tile_width, tile_height, 3015 tile_size, pitch_tiles, 3016 gtt_offset_rotated * tile_size, 0); 3017 3018 /* 3019 * First pixel of the framebuffer from 3020 * the start of the rotated gtt mapping. 3021 */ 3022 intel_fb->rotated[plane].x = x; 3023 intel_fb->rotated[plane].y = y; 3024 3025 return plane_info->width * plane_info->height; 3026 } 3027 3028 static int 3029 intel_fill_fb_info(struct drm_i915_private *dev_priv, 3030 struct drm_framebuffer *fb) 3031 { 3032 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 3033 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 3034 u32 gtt_offset_rotated = 0; 3035 unsigned int max_size = 0; 3036 int i, num_planes = fb->format->num_planes; 3037 unsigned int tile_size = intel_tile_size(dev_priv); 3038 3039 for (i = 0; i < num_planes; i++) { 3040 unsigned int width, height; 3041 unsigned int cpp, size; 3042 u32 offset; 3043 int x, y; 3044 int ret; 3045 3046 cpp = fb->format->cpp[i]; 3047 intel_fb_plane_dims(&width, &height, fb, i); 3048 3049 ret = intel_fb_offset_to_xy(&x, &y, fb, i); 3050 if (ret) { 3051 drm_dbg_kms(&dev_priv->drm, 3052 "bad fb plane %d offset: 0x%x\n", 3053 i, fb->offsets[i]); 3054 return ret; 3055 } 3056 3057 ret = intel_fb_check_ccs_xy(fb, i, x, y); 3058 if (ret) 3059 return ret; 3060 3061 /* 3062 * The fence (if used) is aligned to the start of the object 3063 * so having the framebuffer wrap around across the edge of the 3064 * fenced region doesn't really work. We have no API to configure 3065 * the fence start offset within the object (nor could we probably 3066 * on gen2/3). So it's just easier if we just require that the 3067 * fb layout agrees with the fence layout. We already check that the 3068 * fb stride matches the fence stride elsewhere. 3069 */ 3070 if (i == 0 && i915_gem_object_is_tiled(obj) && 3071 (x + width) * cpp > fb->pitches[i]) { 3072 drm_dbg_kms(&dev_priv->drm, 3073 "bad fb plane %d offset: 0x%x\n", 3074 i, fb->offsets[i]); 3075 return -EINVAL; 3076 } 3077 3078 /* 3079 * First pixel of the framebuffer from 3080 * the start of the normal gtt mapping. 3081 */ 3082 intel_fb->normal[i].x = x; 3083 intel_fb->normal[i].y = y; 3084 3085 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i, 3086 fb->pitches[i], 3087 DRM_MODE_ROTATE_0, 3088 tile_size); 3089 offset /= tile_size; 3090 3091 if (!is_surface_linear(fb, i)) { 3092 struct intel_remapped_plane_info plane_info; 3093 unsigned int tile_width, tile_height; 3094 3095 intel_tile_dims(fb, i, &tile_width, &tile_height); 3096 3097 plane_info.offset = offset; 3098 plane_info.stride = DIV_ROUND_UP(fb->pitches[i], 3099 tile_width * cpp); 3100 plane_info.width = DIV_ROUND_UP(x + width, tile_width); 3101 plane_info.height = DIV_ROUND_UP(y + height, 3102 tile_height); 3103 3104 /* how many tiles does this plane need */ 3105 size = plane_info.stride * plane_info.height; 3106 /* 3107 * If the plane isn't horizontally tile aligned, 3108 * we need one more tile. 3109 */ 3110 if (x != 0) 3111 size++; 3112 3113 gtt_offset_rotated += 3114 setup_fb_rotation(i, &plane_info, 3115 gtt_offset_rotated, 3116 x, y, width, height, 3117 tile_size, 3118 tile_width, tile_height, 3119 fb); 3120 } else { 3121 size = DIV_ROUND_UP((y + height) * fb->pitches[i] + 3122 x * cpp, tile_size); 3123 } 3124 3125 /* how many tiles in total needed in the bo */ 3126 max_size = max(max_size, offset + size); 3127 } 3128 3129 if (mul_u32_u32(max_size, tile_size) > obj->base.size) { 3130 drm_dbg_kms(&dev_priv->drm, 3131 "fb too big for bo (need %llu bytes, have %zu bytes)\n", 3132 mul_u32_u32(max_size, tile_size), obj->base.size); 3133 return -EINVAL; 3134 } 3135 3136 return 0; 3137 } 3138 3139 static void 3140 intel_plane_remap_gtt(struct intel_plane_state *plane_state) 3141 { 3142 struct drm_i915_private *dev_priv = 3143 to_i915(plane_state->uapi.plane->dev); 3144 struct drm_framebuffer *fb = plane_state->hw.fb; 3145 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 3146 struct intel_rotation_info *info = &plane_state->view.rotated; 3147 unsigned int rotation = plane_state->hw.rotation; 3148 int i, num_planes = fb->format->num_planes; 3149 unsigned int tile_size = intel_tile_size(dev_priv); 3150 unsigned int src_x, src_y; 3151 unsigned int src_w, src_h; 3152 u32 gtt_offset = 0; 3153 3154 memset(&plane_state->view, 0, sizeof(plane_state->view)); 3155 plane_state->view.type = drm_rotation_90_or_270(rotation) ? 3156 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED; 3157 3158 src_x = plane_state->uapi.src.x1 >> 16; 3159 src_y = plane_state->uapi.src.y1 >> 16; 3160 src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 3161 src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 3162 3163 drm_WARN_ON(&dev_priv->drm, is_ccs_modifier(fb->modifier)); 3164 3165 /* Make src coordinates relative to the viewport */ 3166 drm_rect_translate(&plane_state->uapi.src, 3167 -(src_x << 16), -(src_y << 16)); 3168 3169 /* Rotate src coordinates to match rotated GTT view */ 3170 if (drm_rotation_90_or_270(rotation)) 3171 drm_rect_rotate(&plane_state->uapi.src, 3172 src_w << 16, src_h << 16, 3173 DRM_MODE_ROTATE_270); 3174 3175 for (i = 0; i < num_planes; i++) { 3176 unsigned int hsub = i ? fb->format->hsub : 1; 3177 unsigned int vsub = i ? fb->format->vsub : 1; 3178 unsigned int cpp = fb->format->cpp[i]; 3179 unsigned int tile_width, tile_height; 3180 unsigned int width, height; 3181 unsigned int pitch_tiles; 3182 unsigned int x, y; 3183 u32 offset; 3184 3185 intel_tile_dims(fb, i, &tile_width, &tile_height); 3186 3187 x = src_x / hsub; 3188 y = src_y / vsub; 3189 width = src_w / hsub; 3190 height = src_h / vsub; 3191 3192 /* 3193 * First pixel of the src viewport from the 3194 * start of the normal gtt mapping. 3195 */ 3196 x += intel_fb->normal[i].x; 3197 y += intel_fb->normal[i].y; 3198 3199 offset = intel_compute_aligned_offset(dev_priv, &x, &y, 3200 fb, i, fb->pitches[i], 3201 DRM_MODE_ROTATE_0, tile_size); 3202 offset /= tile_size; 3203 3204 drm_WARN_ON(&dev_priv->drm, i >= ARRAY_SIZE(info->plane)); 3205 info->plane[i].offset = offset; 3206 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], 3207 tile_width * cpp); 3208 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width); 3209 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height); 3210 3211 if (drm_rotation_90_or_270(rotation)) { 3212 struct drm_rect r; 3213 3214 /* rotate the x/y offsets to match the GTT view */ 3215 drm_rect_init(&r, x, y, width, height); 3216 drm_rect_rotate(&r, 3217 info->plane[i].width * tile_width, 3218 info->plane[i].height * tile_height, 3219 DRM_MODE_ROTATE_270); 3220 x = r.x1; 3221 y = r.y1; 3222 3223 pitch_tiles = info->plane[i].height; 3224 plane_state->color_plane[i].stride = pitch_tiles * tile_height; 3225 3226 /* rotate the tile dimensions to match the GTT view */ 3227 swap(tile_width, tile_height); 3228 } else { 3229 pitch_tiles = info->plane[i].width; 3230 plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp; 3231 } 3232 3233 /* 3234 * We only keep the x/y offsets, so push all of the 3235 * gtt offset into the x/y offsets. 3236 */ 3237 intel_adjust_tile_offset(&x, &y, 3238 tile_width, tile_height, 3239 tile_size, pitch_tiles, 3240 gtt_offset * tile_size, 0); 3241 3242 gtt_offset += info->plane[i].width * info->plane[i].height; 3243 3244 plane_state->color_plane[i].offset = 0; 3245 plane_state->color_plane[i].x = x; 3246 plane_state->color_plane[i].y = y; 3247 } 3248 } 3249 3250 static int 3251 intel_plane_compute_gtt(struct intel_plane_state *plane_state) 3252 { 3253 const struct intel_framebuffer *fb = 3254 to_intel_framebuffer(plane_state->hw.fb); 3255 unsigned int rotation = plane_state->hw.rotation; 3256 int i, num_planes; 3257 3258 if (!fb) 3259 return 0; 3260 3261 num_planes = fb->base.format->num_planes; 3262 3263 if (intel_plane_needs_remap(plane_state)) { 3264 intel_plane_remap_gtt(plane_state); 3265 3266 /* 3267 * Sometimes even remapping can't overcome 3268 * the stride limitations :( Can happen with 3269 * big plane sizes and suitably misaligned 3270 * offsets. 3271 */ 3272 return intel_plane_check_stride(plane_state); 3273 } 3274 3275 intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation); 3276 3277 for (i = 0; i < num_planes; i++) { 3278 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation); 3279 plane_state->color_plane[i].offset = 0; 3280 3281 if (drm_rotation_90_or_270(rotation)) { 3282 plane_state->color_plane[i].x = fb->rotated[i].x; 3283 plane_state->color_plane[i].y = fb->rotated[i].y; 3284 } else { 3285 plane_state->color_plane[i].x = fb->normal[i].x; 3286 plane_state->color_plane[i].y = fb->normal[i].y; 3287 } 3288 } 3289 3290 /* Rotate src coordinates to match rotated GTT view */ 3291 if (drm_rotation_90_or_270(rotation)) 3292 drm_rect_rotate(&plane_state->uapi.src, 3293 fb->base.width << 16, fb->base.height << 16, 3294 DRM_MODE_ROTATE_270); 3295 3296 return intel_plane_check_stride(plane_state); 3297 } 3298 3299 static int i9xx_format_to_fourcc(int format) 3300 { 3301 switch (format) { 3302 case DISPPLANE_8BPP: 3303 return DRM_FORMAT_C8; 3304 case DISPPLANE_BGRA555: 3305 return DRM_FORMAT_ARGB1555; 3306 case DISPPLANE_BGRX555: 3307 return DRM_FORMAT_XRGB1555; 3308 case DISPPLANE_BGRX565: 3309 return DRM_FORMAT_RGB565; 3310 default: 3311 case DISPPLANE_BGRX888: 3312 return DRM_FORMAT_XRGB8888; 3313 case DISPPLANE_RGBX888: 3314 return DRM_FORMAT_XBGR8888; 3315 case DISPPLANE_BGRA888: 3316 return DRM_FORMAT_ARGB8888; 3317 case DISPPLANE_RGBA888: 3318 return DRM_FORMAT_ABGR8888; 3319 case DISPPLANE_BGRX101010: 3320 return DRM_FORMAT_XRGB2101010; 3321 case DISPPLANE_RGBX101010: 3322 return DRM_FORMAT_XBGR2101010; 3323 case DISPPLANE_BGRA101010: 3324 return DRM_FORMAT_ARGB2101010; 3325 case DISPPLANE_RGBA101010: 3326 return DRM_FORMAT_ABGR2101010; 3327 case DISPPLANE_RGBX161616: 3328 return DRM_FORMAT_XBGR16161616F; 3329 } 3330 } 3331 3332 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha) 3333 { 3334 switch (format) { 3335 case PLANE_CTL_FORMAT_RGB_565: 3336 return DRM_FORMAT_RGB565; 3337 case PLANE_CTL_FORMAT_NV12: 3338 return DRM_FORMAT_NV12; 3339 case PLANE_CTL_FORMAT_P010: 3340 return DRM_FORMAT_P010; 3341 case PLANE_CTL_FORMAT_P012: 3342 return DRM_FORMAT_P012; 3343 case PLANE_CTL_FORMAT_P016: 3344 return DRM_FORMAT_P016; 3345 case PLANE_CTL_FORMAT_Y210: 3346 return DRM_FORMAT_Y210; 3347 case PLANE_CTL_FORMAT_Y212: 3348 return DRM_FORMAT_Y212; 3349 case PLANE_CTL_FORMAT_Y216: 3350 return DRM_FORMAT_Y216; 3351 case PLANE_CTL_FORMAT_Y410: 3352 return DRM_FORMAT_XVYU2101010; 3353 case PLANE_CTL_FORMAT_Y412: 3354 return DRM_FORMAT_XVYU12_16161616; 3355 case PLANE_CTL_FORMAT_Y416: 3356 return DRM_FORMAT_XVYU16161616; 3357 default: 3358 case PLANE_CTL_FORMAT_XRGB_8888: 3359 if (rgb_order) { 3360 if (alpha) 3361 return DRM_FORMAT_ABGR8888; 3362 else 3363 return DRM_FORMAT_XBGR8888; 3364 } else { 3365 if (alpha) 3366 return DRM_FORMAT_ARGB8888; 3367 else 3368 return DRM_FORMAT_XRGB8888; 3369 } 3370 case PLANE_CTL_FORMAT_XRGB_2101010: 3371 if (rgb_order) { 3372 if (alpha) 3373 return DRM_FORMAT_ABGR2101010; 3374 else 3375 return DRM_FORMAT_XBGR2101010; 3376 } else { 3377 if (alpha) 3378 return DRM_FORMAT_ARGB2101010; 3379 else 3380 return DRM_FORMAT_XRGB2101010; 3381 } 3382 case PLANE_CTL_FORMAT_XRGB_16161616F: 3383 if (rgb_order) { 3384 if (alpha) 3385 return DRM_FORMAT_ABGR16161616F; 3386 else 3387 return DRM_FORMAT_XBGR16161616F; 3388 } else { 3389 if (alpha) 3390 return DRM_FORMAT_ARGB16161616F; 3391 else 3392 return DRM_FORMAT_XRGB16161616F; 3393 } 3394 } 3395 } 3396 3397 static struct i915_vma * 3398 initial_plane_vma(struct drm_i915_private *i915, 3399 struct intel_initial_plane_config *plane_config) 3400 { 3401 struct drm_i915_gem_object *obj; 3402 struct i915_vma *vma; 3403 u32 base, size; 3404 3405 if (plane_config->size == 0) 3406 return NULL; 3407 3408 base = round_down(plane_config->base, 3409 I915_GTT_MIN_ALIGNMENT); 3410 size = round_up(plane_config->base + plane_config->size, 3411 I915_GTT_MIN_ALIGNMENT); 3412 size -= base; 3413 3414 /* 3415 * If the FB is too big, just don't use it since fbdev is not very 3416 * important and we should probably use that space with FBC or other 3417 * features. 3418 */ 3419 if (size * 2 > i915->stolen_usable_size) 3420 return NULL; 3421 3422 obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size); 3423 if (IS_ERR(obj)) 3424 return NULL; 3425 3426 switch (plane_config->tiling) { 3427 case I915_TILING_NONE: 3428 break; 3429 case I915_TILING_X: 3430 case I915_TILING_Y: 3431 obj->tiling_and_stride = 3432 plane_config->fb->base.pitches[0] | 3433 plane_config->tiling; 3434 break; 3435 default: 3436 MISSING_CASE(plane_config->tiling); 3437 goto err_obj; 3438 } 3439 3440 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); 3441 if (IS_ERR(vma)) 3442 goto err_obj; 3443 3444 if (i915_ggtt_pin(vma, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base)) 3445 goto err_obj; 3446 3447 if (i915_gem_object_is_tiled(obj) && 3448 !i915_vma_is_map_and_fenceable(vma)) 3449 goto err_obj; 3450 3451 return vma; 3452 3453 err_obj: 3454 i915_gem_object_put(obj); 3455 return NULL; 3456 } 3457 3458 static bool 3459 intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 3460 struct intel_initial_plane_config *plane_config) 3461 { 3462 struct drm_device *dev = crtc->base.dev; 3463 struct drm_i915_private *dev_priv = to_i915(dev); 3464 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 3465 struct drm_framebuffer *fb = &plane_config->fb->base; 3466 struct i915_vma *vma; 3467 3468 switch (fb->modifier) { 3469 case DRM_FORMAT_MOD_LINEAR: 3470 case I915_FORMAT_MOD_X_TILED: 3471 case I915_FORMAT_MOD_Y_TILED: 3472 break; 3473 default: 3474 drm_dbg(&dev_priv->drm, 3475 "Unsupported modifier for initial FB: 0x%llx\n", 3476 fb->modifier); 3477 return false; 3478 } 3479 3480 vma = initial_plane_vma(dev_priv, plane_config); 3481 if (!vma) 3482 return false; 3483 3484 mode_cmd.pixel_format = fb->format->format; 3485 mode_cmd.width = fb->width; 3486 mode_cmd.height = fb->height; 3487 mode_cmd.pitches[0] = fb->pitches[0]; 3488 mode_cmd.modifier[0] = fb->modifier; 3489 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 3490 3491 if (intel_framebuffer_init(to_intel_framebuffer(fb), 3492 vma->obj, &mode_cmd)) { 3493 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n"); 3494 goto err_vma; 3495 } 3496 3497 plane_config->vma = vma; 3498 return true; 3499 3500 err_vma: 3501 i915_vma_put(vma); 3502 return false; 3503 } 3504 3505 static void 3506 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 3507 struct intel_plane_state *plane_state, 3508 bool visible) 3509 { 3510 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 3511 3512 plane_state->uapi.visible = visible; 3513 3514 if (visible) 3515 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); 3516 else 3517 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); 3518 } 3519 3520 static void fixup_active_planes(struct intel_crtc_state *crtc_state) 3521 { 3522 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 3523 struct drm_plane *plane; 3524 3525 /* 3526 * Active_planes aliases if multiple "primary" or cursor planes 3527 * have been used on the same (or wrong) pipe. plane_mask uses 3528 * unique ids, hence we can use that to reconstruct active_planes. 3529 */ 3530 crtc_state->active_planes = 0; 3531 3532 drm_for_each_plane_mask(plane, &dev_priv->drm, 3533 crtc_state->uapi.plane_mask) 3534 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 3535 } 3536 3537 static void intel_plane_disable_noatomic(struct intel_crtc *crtc, 3538 struct intel_plane *plane) 3539 { 3540 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3541 struct intel_crtc_state *crtc_state = 3542 to_intel_crtc_state(crtc->base.state); 3543 struct intel_plane_state *plane_state = 3544 to_intel_plane_state(plane->base.state); 3545 3546 drm_dbg_kms(&dev_priv->drm, 3547 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 3548 plane->base.base.id, plane->base.name, 3549 crtc->base.base.id, crtc->base.name); 3550 3551 intel_set_plane_visible(crtc_state, plane_state, false); 3552 fixup_active_planes(crtc_state); 3553 crtc_state->data_rate[plane->id] = 0; 3554 crtc_state->min_cdclk[plane->id] = 0; 3555 3556 if (plane->id == PLANE_PRIMARY) 3557 hsw_disable_ips(crtc_state); 3558 3559 /* 3560 * Vblank time updates from the shadow to live plane control register 3561 * are blocked if the memory self-refresh mode is active at that 3562 * moment. So to make sure the plane gets truly disabled, disable 3563 * first the self-refresh mode. The self-refresh enable bit in turn 3564 * will be checked/applied by the HW only at the next frame start 3565 * event which is after the vblank start event, so we need to have a 3566 * wait-for-vblank between disabling the plane and the pipe. 3567 */ 3568 if (HAS_GMCH(dev_priv) && 3569 intel_set_memory_cxsr(dev_priv, false)) 3570 intel_wait_for_vblank(dev_priv, crtc->pipe); 3571 3572 /* 3573 * Gen2 reports pipe underruns whenever all planes are disabled. 3574 * So disable underrun reporting before all the planes get disabled. 3575 */ 3576 if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes) 3577 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 3578 3579 intel_disable_plane(plane, crtc_state); 3580 } 3581 3582 static struct intel_frontbuffer * 3583 to_intel_frontbuffer(struct drm_framebuffer *fb) 3584 { 3585 return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL; 3586 } 3587 3588 static void 3589 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, 3590 struct intel_initial_plane_config *plane_config) 3591 { 3592 struct drm_device *dev = intel_crtc->base.dev; 3593 struct drm_i915_private *dev_priv = to_i915(dev); 3594 struct drm_crtc *c; 3595 struct drm_plane *primary = intel_crtc->base.primary; 3596 struct drm_plane_state *plane_state = primary->state; 3597 struct intel_plane *intel_plane = to_intel_plane(primary); 3598 struct intel_plane_state *intel_state = 3599 to_intel_plane_state(plane_state); 3600 struct drm_framebuffer *fb; 3601 struct i915_vma *vma; 3602 3603 if (!plane_config->fb) 3604 return; 3605 3606 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { 3607 fb = &plane_config->fb->base; 3608 vma = plane_config->vma; 3609 goto valid_fb; 3610 } 3611 3612 /* 3613 * Failed to alloc the obj, check to see if we should share 3614 * an fb with another CRTC instead 3615 */ 3616 for_each_crtc(dev, c) { 3617 struct intel_plane_state *state; 3618 3619 if (c == &intel_crtc->base) 3620 continue; 3621 3622 if (!to_intel_crtc(c)->active) 3623 continue; 3624 3625 state = to_intel_plane_state(c->primary->state); 3626 if (!state->vma) 3627 continue; 3628 3629 if (intel_plane_ggtt_offset(state) == plane_config->base) { 3630 fb = state->hw.fb; 3631 vma = state->vma; 3632 goto valid_fb; 3633 } 3634 } 3635 3636 /* 3637 * We've failed to reconstruct the BIOS FB. Current display state 3638 * indicates that the primary plane is visible, but has a NULL FB, 3639 * which will lead to problems later if we don't fix it up. The 3640 * simplest solution is to just disable the primary plane now and 3641 * pretend the BIOS never had it enabled. 3642 */ 3643 intel_plane_disable_noatomic(intel_crtc, intel_plane); 3644 3645 return; 3646 3647 valid_fb: 3648 intel_state->hw.rotation = plane_config->rotation; 3649 intel_fill_fb_ggtt_view(&intel_state->view, fb, 3650 intel_state->hw.rotation); 3651 intel_state->color_plane[0].stride = 3652 intel_fb_pitch(fb, 0, intel_state->hw.rotation); 3653 3654 __i915_vma_pin(vma); 3655 intel_state->vma = i915_vma_get(vma); 3656 if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0) 3657 if (vma->fence) 3658 intel_state->flags |= PLANE_HAS_FENCE; 3659 3660 plane_state->src_x = 0; 3661 plane_state->src_y = 0; 3662 plane_state->src_w = fb->width << 16; 3663 plane_state->src_h = fb->height << 16; 3664 3665 plane_state->crtc_x = 0; 3666 plane_state->crtc_y = 0; 3667 plane_state->crtc_w = fb->width; 3668 plane_state->crtc_h = fb->height; 3669 3670 intel_state->uapi.src = drm_plane_state_src(plane_state); 3671 intel_state->uapi.dst = drm_plane_state_dest(plane_state); 3672 3673 if (plane_config->tiling) 3674 dev_priv->preserve_bios_swizzle = true; 3675 3676 plane_state->fb = fb; 3677 drm_framebuffer_get(fb); 3678 3679 plane_state->crtc = &intel_crtc->base; 3680 intel_plane_copy_uapi_to_hw_state(intel_state, intel_state); 3681 3682 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 3683 3684 atomic_or(to_intel_plane(primary)->frontbuffer_bit, 3685 &to_intel_frontbuffer(fb)->bits); 3686 } 3687 3688 static int skl_max_plane_width(const struct drm_framebuffer *fb, 3689 int color_plane, 3690 unsigned int rotation) 3691 { 3692 int cpp = fb->format->cpp[color_plane]; 3693 3694 switch (fb->modifier) { 3695 case DRM_FORMAT_MOD_LINEAR: 3696 case I915_FORMAT_MOD_X_TILED: 3697 /* 3698 * Validated limit is 4k, but has 5k should 3699 * work apart from the following features: 3700 * - Ytile (already limited to 4k) 3701 * - FP16 (already limited to 4k) 3702 * - render compression (already limited to 4k) 3703 * - KVMR sprite and cursor (don't care) 3704 * - horizontal panning (TODO verify this) 3705 * - pipe and plane scaling (TODO verify this) 3706 */ 3707 if (cpp == 8) 3708 return 4096; 3709 else 3710 return 5120; 3711 case I915_FORMAT_MOD_Y_TILED_CCS: 3712 case I915_FORMAT_MOD_Yf_TILED_CCS: 3713 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 3714 /* FIXME AUX plane? */ 3715 case I915_FORMAT_MOD_Y_TILED: 3716 case I915_FORMAT_MOD_Yf_TILED: 3717 if (cpp == 8) 3718 return 2048; 3719 else 3720 return 4096; 3721 default: 3722 MISSING_CASE(fb->modifier); 3723 return 2048; 3724 } 3725 } 3726 3727 static int glk_max_plane_width(const struct drm_framebuffer *fb, 3728 int color_plane, 3729 unsigned int rotation) 3730 { 3731 int cpp = fb->format->cpp[color_plane]; 3732 3733 switch (fb->modifier) { 3734 case DRM_FORMAT_MOD_LINEAR: 3735 case I915_FORMAT_MOD_X_TILED: 3736 if (cpp == 8) 3737 return 4096; 3738 else 3739 return 5120; 3740 case I915_FORMAT_MOD_Y_TILED_CCS: 3741 case I915_FORMAT_MOD_Yf_TILED_CCS: 3742 /* FIXME AUX plane? */ 3743 case I915_FORMAT_MOD_Y_TILED: 3744 case I915_FORMAT_MOD_Yf_TILED: 3745 if (cpp == 8) 3746 return 2048; 3747 else 3748 return 5120; 3749 default: 3750 MISSING_CASE(fb->modifier); 3751 return 2048; 3752 } 3753 } 3754 3755 static int icl_max_plane_width(const struct drm_framebuffer *fb, 3756 int color_plane, 3757 unsigned int rotation) 3758 { 3759 return 5120; 3760 } 3761 3762 static int skl_max_plane_height(void) 3763 { 3764 return 4096; 3765 } 3766 3767 static int icl_max_plane_height(void) 3768 { 3769 return 4320; 3770 } 3771 3772 static bool 3773 skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state, 3774 int main_x, int main_y, u32 main_offset, 3775 int ccs_plane) 3776 { 3777 const struct drm_framebuffer *fb = plane_state->hw.fb; 3778 int aux_x = plane_state->color_plane[ccs_plane].x; 3779 int aux_y = plane_state->color_plane[ccs_plane].y; 3780 u32 aux_offset = plane_state->color_plane[ccs_plane].offset; 3781 u32 alignment = intel_surf_alignment(fb, ccs_plane); 3782 int hsub; 3783 int vsub; 3784 3785 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 3786 while (aux_offset >= main_offset && aux_y <= main_y) { 3787 int x, y; 3788 3789 if (aux_x == main_x && aux_y == main_y) 3790 break; 3791 3792 if (aux_offset == 0) 3793 break; 3794 3795 x = aux_x / hsub; 3796 y = aux_y / vsub; 3797 aux_offset = intel_plane_adjust_aligned_offset(&x, &y, 3798 plane_state, 3799 ccs_plane, 3800 aux_offset, 3801 aux_offset - 3802 alignment); 3803 aux_x = x * hsub + aux_x % hsub; 3804 aux_y = y * vsub + aux_y % vsub; 3805 } 3806 3807 if (aux_x != main_x || aux_y != main_y) 3808 return false; 3809 3810 plane_state->color_plane[ccs_plane].offset = aux_offset; 3811 plane_state->color_plane[ccs_plane].x = aux_x; 3812 plane_state->color_plane[ccs_plane].y = aux_y; 3813 3814 return true; 3815 } 3816 3817 static int skl_check_main_surface(struct intel_plane_state *plane_state) 3818 { 3819 struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev); 3820 const struct drm_framebuffer *fb = plane_state->hw.fb; 3821 unsigned int rotation = plane_state->hw.rotation; 3822 int x = plane_state->uapi.src.x1 >> 16; 3823 int y = plane_state->uapi.src.y1 >> 16; 3824 int w = drm_rect_width(&plane_state->uapi.src) >> 16; 3825 int h = drm_rect_height(&plane_state->uapi.src) >> 16; 3826 int max_width; 3827 int max_height; 3828 u32 alignment; 3829 u32 offset; 3830 int aux_plane = intel_main_to_aux_plane(fb, 0); 3831 u32 aux_offset = plane_state->color_plane[aux_plane].offset; 3832 3833 if (INTEL_GEN(dev_priv) >= 11) 3834 max_width = icl_max_plane_width(fb, 0, rotation); 3835 else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 3836 max_width = glk_max_plane_width(fb, 0, rotation); 3837 else 3838 max_width = skl_max_plane_width(fb, 0, rotation); 3839 3840 if (INTEL_GEN(dev_priv) >= 11) 3841 max_height = icl_max_plane_height(); 3842 else 3843 max_height = skl_max_plane_height(); 3844 3845 if (w > max_width || h > max_height) { 3846 drm_dbg_kms(&dev_priv->drm, 3847 "requested Y/RGB source size %dx%d too big (limit %dx%d)\n", 3848 w, h, max_width, max_height); 3849 return -EINVAL; 3850 } 3851 3852 intel_add_fb_offsets(&x, &y, plane_state, 0); 3853 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0); 3854 alignment = intel_surf_alignment(fb, 0); 3855 if (drm_WARN_ON(&dev_priv->drm, alignment && !is_power_of_2(alignment))) 3856 return -EINVAL; 3857 3858 /* 3859 * AUX surface offset is specified as the distance from the 3860 * main surface offset, and it must be non-negative. Make 3861 * sure that is what we will get. 3862 */ 3863 if (offset > aux_offset) 3864 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3865 offset, aux_offset & ~(alignment - 1)); 3866 3867 /* 3868 * When using an X-tiled surface, the plane blows up 3869 * if the x offset + width exceed the stride. 3870 * 3871 * TODO: linear and Y-tiled seem fine, Yf untested, 3872 */ 3873 if (fb->modifier == I915_FORMAT_MOD_X_TILED) { 3874 int cpp = fb->format->cpp[0]; 3875 3876 while ((x + w) * cpp > plane_state->color_plane[0].stride) { 3877 if (offset == 0) { 3878 drm_dbg_kms(&dev_priv->drm, 3879 "Unable to find suitable display surface offset due to X-tiling\n"); 3880 return -EINVAL; 3881 } 3882 3883 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3884 offset, offset - alignment); 3885 } 3886 } 3887 3888 /* 3889 * CCS AUX surface doesn't have its own x/y offsets, we must make sure 3890 * they match with the main surface x/y offsets. 3891 */ 3892 if (is_ccs_modifier(fb->modifier)) { 3893 while (!skl_check_main_ccs_coordinates(plane_state, x, y, 3894 offset, aux_plane)) { 3895 if (offset == 0) 3896 break; 3897 3898 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3899 offset, offset - alignment); 3900 } 3901 3902 if (x != plane_state->color_plane[aux_plane].x || 3903 y != plane_state->color_plane[aux_plane].y) { 3904 drm_dbg_kms(&dev_priv->drm, 3905 "Unable to find suitable display surface offset due to CCS\n"); 3906 return -EINVAL; 3907 } 3908 } 3909 3910 plane_state->color_plane[0].offset = offset; 3911 plane_state->color_plane[0].x = x; 3912 plane_state->color_plane[0].y = y; 3913 3914 /* 3915 * Put the final coordinates back so that the src 3916 * coordinate checks will see the right values. 3917 */ 3918 drm_rect_translate_to(&plane_state->uapi.src, 3919 x << 16, y << 16); 3920 3921 return 0; 3922 } 3923 3924 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state) 3925 { 3926 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 3927 const struct drm_framebuffer *fb = plane_state->hw.fb; 3928 unsigned int rotation = plane_state->hw.rotation; 3929 int uv_plane = 1; 3930 int max_width = skl_max_plane_width(fb, uv_plane, rotation); 3931 int max_height = 4096; 3932 int x = plane_state->uapi.src.x1 >> 17; 3933 int y = plane_state->uapi.src.y1 >> 17; 3934 int w = drm_rect_width(&plane_state->uapi.src) >> 17; 3935 int h = drm_rect_height(&plane_state->uapi.src) >> 17; 3936 u32 offset; 3937 3938 intel_add_fb_offsets(&x, &y, plane_state, uv_plane); 3939 offset = intel_plane_compute_aligned_offset(&x, &y, 3940 plane_state, uv_plane); 3941 3942 /* FIXME not quite sure how/if these apply to the chroma plane */ 3943 if (w > max_width || h > max_height) { 3944 drm_dbg_kms(&i915->drm, 3945 "CbCr source size %dx%d too big (limit %dx%d)\n", 3946 w, h, max_width, max_height); 3947 return -EINVAL; 3948 } 3949 3950 if (is_ccs_modifier(fb->modifier)) { 3951 int ccs_plane = main_to_ccs_plane(fb, uv_plane); 3952 int aux_offset = plane_state->color_plane[ccs_plane].offset; 3953 int alignment = intel_surf_alignment(fb, uv_plane); 3954 3955 if (offset > aux_offset) 3956 offset = intel_plane_adjust_aligned_offset(&x, &y, 3957 plane_state, 3958 uv_plane, 3959 offset, 3960 aux_offset & ~(alignment - 1)); 3961 3962 while (!skl_check_main_ccs_coordinates(plane_state, x, y, 3963 offset, ccs_plane)) { 3964 if (offset == 0) 3965 break; 3966 3967 offset = intel_plane_adjust_aligned_offset(&x, &y, 3968 plane_state, 3969 uv_plane, 3970 offset, offset - alignment); 3971 } 3972 3973 if (x != plane_state->color_plane[ccs_plane].x || 3974 y != plane_state->color_plane[ccs_plane].y) { 3975 drm_dbg_kms(&i915->drm, 3976 "Unable to find suitable display surface offset due to CCS\n"); 3977 return -EINVAL; 3978 } 3979 } 3980 3981 plane_state->color_plane[uv_plane].offset = offset; 3982 plane_state->color_plane[uv_plane].x = x; 3983 plane_state->color_plane[uv_plane].y = y; 3984 3985 return 0; 3986 } 3987 3988 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state) 3989 { 3990 const struct drm_framebuffer *fb = plane_state->hw.fb; 3991 int src_x = plane_state->uapi.src.x1 >> 16; 3992 int src_y = plane_state->uapi.src.y1 >> 16; 3993 u32 offset; 3994 int ccs_plane; 3995 3996 for (ccs_plane = 0; ccs_plane < fb->format->num_planes; ccs_plane++) { 3997 int main_hsub, main_vsub; 3998 int hsub, vsub; 3999 int x, y; 4000 4001 if (!is_ccs_plane(fb, ccs_plane)) 4002 continue; 4003 4004 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, 4005 ccs_to_main_plane(fb, ccs_plane)); 4006 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 4007 4008 hsub *= main_hsub; 4009 vsub *= main_vsub; 4010 x = src_x / hsub; 4011 y = src_y / vsub; 4012 4013 intel_add_fb_offsets(&x, &y, plane_state, ccs_plane); 4014 4015 offset = intel_plane_compute_aligned_offset(&x, &y, 4016 plane_state, 4017 ccs_plane); 4018 4019 plane_state->color_plane[ccs_plane].offset = offset; 4020 plane_state->color_plane[ccs_plane].x = (x * hsub + 4021 src_x % hsub) / 4022 main_hsub; 4023 plane_state->color_plane[ccs_plane].y = (y * vsub + 4024 src_y % vsub) / 4025 main_vsub; 4026 } 4027 4028 return 0; 4029 } 4030 4031 int skl_check_plane_surface(struct intel_plane_state *plane_state) 4032 { 4033 const struct drm_framebuffer *fb = plane_state->hw.fb; 4034 int ret; 4035 bool needs_aux = false; 4036 4037 ret = intel_plane_compute_gtt(plane_state); 4038 if (ret) 4039 return ret; 4040 4041 if (!plane_state->uapi.visible) 4042 return 0; 4043 4044 /* 4045 * Handle the AUX surface first since the main surface setup depends on 4046 * it. 4047 */ 4048 if (is_ccs_modifier(fb->modifier)) { 4049 needs_aux = true; 4050 ret = skl_check_ccs_aux_surface(plane_state); 4051 if (ret) 4052 return ret; 4053 } 4054 4055 if (intel_format_info_is_yuv_semiplanar(fb->format, 4056 fb->modifier)) { 4057 needs_aux = true; 4058 ret = skl_check_nv12_aux_surface(plane_state); 4059 if (ret) 4060 return ret; 4061 } 4062 4063 if (!needs_aux) { 4064 int i; 4065 4066 for (i = 1; i < fb->format->num_planes; i++) { 4067 plane_state->color_plane[i].offset = ~0xfff; 4068 plane_state->color_plane[i].x = 0; 4069 plane_state->color_plane[i].y = 0; 4070 } 4071 } 4072 4073 ret = skl_check_main_surface(plane_state); 4074 if (ret) 4075 return ret; 4076 4077 return 0; 4078 } 4079 4080 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state, 4081 const struct intel_plane_state *plane_state, 4082 unsigned int *num, unsigned int *den) 4083 { 4084 const struct drm_framebuffer *fb = plane_state->hw.fb; 4085 unsigned int cpp = fb->format->cpp[0]; 4086 4087 /* 4088 * g4x bspec says 64bpp pixel rate can't exceed 80% 4089 * of cdclk when the sprite plane is enabled on the 4090 * same pipe. ilk/snb bspec says 64bpp pixel rate is 4091 * never allowed to exceed 80% of cdclk. Let's just go 4092 * with the ilk/snb limit always. 4093 */ 4094 if (cpp == 8) { 4095 *num = 10; 4096 *den = 8; 4097 } else { 4098 *num = 1; 4099 *den = 1; 4100 } 4101 } 4102 4103 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state, 4104 const struct intel_plane_state *plane_state) 4105 { 4106 unsigned int pixel_rate; 4107 unsigned int num, den; 4108 4109 /* 4110 * Note that crtc_state->pixel_rate accounts for both 4111 * horizontal and vertical panel fitter downscaling factors. 4112 * Pre-HSW bspec tells us to only consider the horizontal 4113 * downscaling factor here. We ignore that and just consider 4114 * both for simplicity. 4115 */ 4116 pixel_rate = crtc_state->pixel_rate; 4117 4118 i9xx_plane_ratio(crtc_state, plane_state, &num, &den); 4119 4120 /* two pixels per clock with double wide pipe */ 4121 if (crtc_state->double_wide) 4122 den *= 2; 4123 4124 return DIV_ROUND_UP(pixel_rate * num, den); 4125 } 4126 4127 unsigned int 4128 i9xx_plane_max_stride(struct intel_plane *plane, 4129 u32 pixel_format, u64 modifier, 4130 unsigned int rotation) 4131 { 4132 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4133 4134 if (!HAS_GMCH(dev_priv)) { 4135 return 32*1024; 4136 } else if (INTEL_GEN(dev_priv) >= 4) { 4137 if (modifier == I915_FORMAT_MOD_X_TILED) 4138 return 16*1024; 4139 else 4140 return 32*1024; 4141 } else if (INTEL_GEN(dev_priv) >= 3) { 4142 if (modifier == I915_FORMAT_MOD_X_TILED) 4143 return 8*1024; 4144 else 4145 return 16*1024; 4146 } else { 4147 if (plane->i9xx_plane == PLANE_C) 4148 return 4*1024; 4149 else 4150 return 8*1024; 4151 } 4152 } 4153 4154 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 4155 { 4156 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4157 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4158 u32 dspcntr = 0; 4159 4160 if (crtc_state->gamma_enable) 4161 dspcntr |= DISPPLANE_GAMMA_ENABLE; 4162 4163 if (crtc_state->csc_enable) 4164 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE; 4165 4166 if (INTEL_GEN(dev_priv) < 5) 4167 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe); 4168 4169 return dspcntr; 4170 } 4171 4172 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state, 4173 const struct intel_plane_state *plane_state) 4174 { 4175 struct drm_i915_private *dev_priv = 4176 to_i915(plane_state->uapi.plane->dev); 4177 const struct drm_framebuffer *fb = plane_state->hw.fb; 4178 unsigned int rotation = plane_state->hw.rotation; 4179 u32 dspcntr; 4180 4181 dspcntr = DISPLAY_PLANE_ENABLE; 4182 4183 if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) || 4184 IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 4185 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; 4186 4187 switch (fb->format->format) { 4188 case DRM_FORMAT_C8: 4189 dspcntr |= DISPPLANE_8BPP; 4190 break; 4191 case DRM_FORMAT_XRGB1555: 4192 dspcntr |= DISPPLANE_BGRX555; 4193 break; 4194 case DRM_FORMAT_ARGB1555: 4195 dspcntr |= DISPPLANE_BGRA555; 4196 break; 4197 case DRM_FORMAT_RGB565: 4198 dspcntr |= DISPPLANE_BGRX565; 4199 break; 4200 case DRM_FORMAT_XRGB8888: 4201 dspcntr |= DISPPLANE_BGRX888; 4202 break; 4203 case DRM_FORMAT_XBGR8888: 4204 dspcntr |= DISPPLANE_RGBX888; 4205 break; 4206 case DRM_FORMAT_ARGB8888: 4207 dspcntr |= DISPPLANE_BGRA888; 4208 break; 4209 case DRM_FORMAT_ABGR8888: 4210 dspcntr |= DISPPLANE_RGBA888; 4211 break; 4212 case DRM_FORMAT_XRGB2101010: 4213 dspcntr |= DISPPLANE_BGRX101010; 4214 break; 4215 case DRM_FORMAT_XBGR2101010: 4216 dspcntr |= DISPPLANE_RGBX101010; 4217 break; 4218 case DRM_FORMAT_ARGB2101010: 4219 dspcntr |= DISPPLANE_BGRA101010; 4220 break; 4221 case DRM_FORMAT_ABGR2101010: 4222 dspcntr |= DISPPLANE_RGBA101010; 4223 break; 4224 case DRM_FORMAT_XBGR16161616F: 4225 dspcntr |= DISPPLANE_RGBX161616; 4226 break; 4227 default: 4228 MISSING_CASE(fb->format->format); 4229 return 0; 4230 } 4231 4232 if (INTEL_GEN(dev_priv) >= 4 && 4233 fb->modifier == I915_FORMAT_MOD_X_TILED) 4234 dspcntr |= DISPPLANE_TILED; 4235 4236 if (rotation & DRM_MODE_ROTATE_180) 4237 dspcntr |= DISPPLANE_ROTATE_180; 4238 4239 if (rotation & DRM_MODE_REFLECT_X) 4240 dspcntr |= DISPPLANE_MIRROR; 4241 4242 return dspcntr; 4243 } 4244 4245 int i9xx_check_plane_surface(struct intel_plane_state *plane_state) 4246 { 4247 struct drm_i915_private *dev_priv = 4248 to_i915(plane_state->uapi.plane->dev); 4249 const struct drm_framebuffer *fb = plane_state->hw.fb; 4250 int src_x, src_y, src_w; 4251 u32 offset; 4252 int ret; 4253 4254 ret = intel_plane_compute_gtt(plane_state); 4255 if (ret) 4256 return ret; 4257 4258 if (!plane_state->uapi.visible) 4259 return 0; 4260 4261 src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 4262 src_x = plane_state->uapi.src.x1 >> 16; 4263 src_y = plane_state->uapi.src.y1 >> 16; 4264 4265 /* Undocumented hardware limit on i965/g4x/vlv/chv */ 4266 if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048) 4267 return -EINVAL; 4268 4269 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 4270 4271 if (INTEL_GEN(dev_priv) >= 4) 4272 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 4273 plane_state, 0); 4274 else 4275 offset = 0; 4276 4277 /* 4278 * Put the final coordinates back so that the src 4279 * coordinate checks will see the right values. 4280 */ 4281 drm_rect_translate_to(&plane_state->uapi.src, 4282 src_x << 16, src_y << 16); 4283 4284 /* HSW/BDW do this automagically in hardware */ 4285 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) { 4286 unsigned int rotation = plane_state->hw.rotation; 4287 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 4288 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 4289 4290 if (rotation & DRM_MODE_ROTATE_180) { 4291 src_x += src_w - 1; 4292 src_y += src_h - 1; 4293 } else if (rotation & DRM_MODE_REFLECT_X) { 4294 src_x += src_w - 1; 4295 } 4296 } 4297 4298 plane_state->color_plane[0].offset = offset; 4299 plane_state->color_plane[0].x = src_x; 4300 plane_state->color_plane[0].y = src_y; 4301 4302 return 0; 4303 } 4304 4305 static bool i9xx_plane_has_windowing(struct intel_plane *plane) 4306 { 4307 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4308 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4309 4310 if (IS_CHERRYVIEW(dev_priv)) 4311 return i9xx_plane == PLANE_B; 4312 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 4313 return false; 4314 else if (IS_GEN(dev_priv, 4)) 4315 return i9xx_plane == PLANE_C; 4316 else 4317 return i9xx_plane == PLANE_B || 4318 i9xx_plane == PLANE_C; 4319 } 4320 4321 static int 4322 i9xx_plane_check(struct intel_crtc_state *crtc_state, 4323 struct intel_plane_state *plane_state) 4324 { 4325 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 4326 int ret; 4327 4328 ret = chv_plane_check_rotation(plane_state); 4329 if (ret) 4330 return ret; 4331 4332 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi, 4333 &crtc_state->uapi, 4334 DRM_PLANE_HELPER_NO_SCALING, 4335 DRM_PLANE_HELPER_NO_SCALING, 4336 i9xx_plane_has_windowing(plane), 4337 true); 4338 if (ret) 4339 return ret; 4340 4341 ret = i9xx_check_plane_surface(plane_state); 4342 if (ret) 4343 return ret; 4344 4345 if (!plane_state->uapi.visible) 4346 return 0; 4347 4348 ret = intel_plane_check_src_coordinates(plane_state); 4349 if (ret) 4350 return ret; 4351 4352 plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state); 4353 4354 return 0; 4355 } 4356 4357 static void i9xx_update_plane(struct intel_plane *plane, 4358 const struct intel_crtc_state *crtc_state, 4359 const struct intel_plane_state *plane_state) 4360 { 4361 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4362 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4363 u32 linear_offset; 4364 int x = plane_state->color_plane[0].x; 4365 int y = plane_state->color_plane[0].y; 4366 int crtc_x = plane_state->uapi.dst.x1; 4367 int crtc_y = plane_state->uapi.dst.y1; 4368 int crtc_w = drm_rect_width(&plane_state->uapi.dst); 4369 int crtc_h = drm_rect_height(&plane_state->uapi.dst); 4370 unsigned long irqflags; 4371 u32 dspaddr_offset; 4372 u32 dspcntr; 4373 4374 dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state); 4375 4376 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0); 4377 4378 if (INTEL_GEN(dev_priv) >= 4) 4379 dspaddr_offset = plane_state->color_plane[0].offset; 4380 else 4381 dspaddr_offset = linear_offset; 4382 4383 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4384 4385 intel_de_write_fw(dev_priv, DSPSTRIDE(i9xx_plane), 4386 plane_state->color_plane[0].stride); 4387 4388 if (INTEL_GEN(dev_priv) < 4) { 4389 /* 4390 * PLANE_A doesn't actually have a full window 4391 * generator but let's assume we still need to 4392 * program whatever is there. 4393 */ 4394 intel_de_write_fw(dev_priv, DSPPOS(i9xx_plane), 4395 (crtc_y << 16) | crtc_x); 4396 intel_de_write_fw(dev_priv, DSPSIZE(i9xx_plane), 4397 ((crtc_h - 1) << 16) | (crtc_w - 1)); 4398 } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) { 4399 intel_de_write_fw(dev_priv, PRIMPOS(i9xx_plane), 4400 (crtc_y << 16) | crtc_x); 4401 intel_de_write_fw(dev_priv, PRIMSIZE(i9xx_plane), 4402 ((crtc_h - 1) << 16) | (crtc_w - 1)); 4403 intel_de_write_fw(dev_priv, PRIMCNSTALPHA(i9xx_plane), 0); 4404 } 4405 4406 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 4407 intel_de_write_fw(dev_priv, DSPOFFSET(i9xx_plane), 4408 (y << 16) | x); 4409 } else if (INTEL_GEN(dev_priv) >= 4) { 4410 intel_de_write_fw(dev_priv, DSPLINOFF(i9xx_plane), 4411 linear_offset); 4412 intel_de_write_fw(dev_priv, DSPTILEOFF(i9xx_plane), 4413 (y << 16) | x); 4414 } 4415 4416 /* 4417 * The control register self-arms if the plane was previously 4418 * disabled. Try to make the plane enable atomic by writing 4419 * the control register just before the surface register. 4420 */ 4421 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr); 4422 if (INTEL_GEN(dev_priv) >= 4) 4423 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 4424 intel_plane_ggtt_offset(plane_state) + dspaddr_offset); 4425 else 4426 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 4427 intel_plane_ggtt_offset(plane_state) + dspaddr_offset); 4428 4429 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4430 } 4431 4432 static void i9xx_disable_plane(struct intel_plane *plane, 4433 const struct intel_crtc_state *crtc_state) 4434 { 4435 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4436 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4437 unsigned long irqflags; 4438 u32 dspcntr; 4439 4440 /* 4441 * DSPCNTR pipe gamma enable on g4x+ and pipe csc 4442 * enable on ilk+ affect the pipe bottom color as 4443 * well, so we must configure them even if the plane 4444 * is disabled. 4445 * 4446 * On pre-g4x there is no way to gamma correct the 4447 * pipe bottom color but we'll keep on doing this 4448 * anyway so that the crtc state readout works correctly. 4449 */ 4450 dspcntr = i9xx_plane_ctl_crtc(crtc_state); 4451 4452 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4453 4454 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr); 4455 if (INTEL_GEN(dev_priv) >= 4) 4456 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 0); 4457 else 4458 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 0); 4459 4460 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4461 } 4462 4463 static bool i9xx_plane_get_hw_state(struct intel_plane *plane, 4464 enum pipe *pipe) 4465 { 4466 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4467 enum intel_display_power_domain power_domain; 4468 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4469 intel_wakeref_t wakeref; 4470 bool ret; 4471 u32 val; 4472 4473 /* 4474 * Not 100% correct for planes that can move between pipes, 4475 * but that's only the case for gen2-4 which don't have any 4476 * display power wells. 4477 */ 4478 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 4479 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 4480 if (!wakeref) 4481 return false; 4482 4483 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 4484 4485 ret = val & DISPLAY_PLANE_ENABLE; 4486 4487 if (INTEL_GEN(dev_priv) >= 5) 4488 *pipe = plane->pipe; 4489 else 4490 *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> 4491 DISPPLANE_SEL_PIPE_SHIFT; 4492 4493 intel_display_power_put(dev_priv, power_domain, wakeref); 4494 4495 return ret; 4496 } 4497 4498 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id) 4499 { 4500 struct drm_device *dev = intel_crtc->base.dev; 4501 struct drm_i915_private *dev_priv = to_i915(dev); 4502 unsigned long irqflags; 4503 4504 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4505 4506 intel_de_write_fw(dev_priv, SKL_PS_CTRL(intel_crtc->pipe, id), 0); 4507 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(intel_crtc->pipe, id), 0); 4508 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0); 4509 4510 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4511 } 4512 4513 /* 4514 * This function detaches (aka. unbinds) unused scalers in hardware 4515 */ 4516 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state) 4517 { 4518 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 4519 const struct intel_crtc_scaler_state *scaler_state = 4520 &crtc_state->scaler_state; 4521 int i; 4522 4523 /* loop through and disable scalers that aren't in use */ 4524 for (i = 0; i < intel_crtc->num_scalers; i++) { 4525 if (!scaler_state->scalers[i].in_use) 4526 skl_detach_scaler(intel_crtc, i); 4527 } 4528 } 4529 4530 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb, 4531 int color_plane, unsigned int rotation) 4532 { 4533 /* 4534 * The stride is either expressed as a multiple of 64 bytes chunks for 4535 * linear buffers or in number of tiles for tiled buffers. 4536 */ 4537 if (is_surface_linear(fb, color_plane)) 4538 return 64; 4539 else if (drm_rotation_90_or_270(rotation)) 4540 return intel_tile_height(fb, color_plane); 4541 else 4542 return intel_tile_width_bytes(fb, color_plane); 4543 } 4544 4545 u32 skl_plane_stride(const struct intel_plane_state *plane_state, 4546 int color_plane) 4547 { 4548 const struct drm_framebuffer *fb = plane_state->hw.fb; 4549 unsigned int rotation = plane_state->hw.rotation; 4550 u32 stride = plane_state->color_plane[color_plane].stride; 4551 4552 if (color_plane >= fb->format->num_planes) 4553 return 0; 4554 4555 return stride / skl_plane_stride_mult(fb, color_plane, rotation); 4556 } 4557 4558 static u32 skl_plane_ctl_format(u32 pixel_format) 4559 { 4560 switch (pixel_format) { 4561 case DRM_FORMAT_C8: 4562 return PLANE_CTL_FORMAT_INDEXED; 4563 case DRM_FORMAT_RGB565: 4564 return PLANE_CTL_FORMAT_RGB_565; 4565 case DRM_FORMAT_XBGR8888: 4566 case DRM_FORMAT_ABGR8888: 4567 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX; 4568 case DRM_FORMAT_XRGB8888: 4569 case DRM_FORMAT_ARGB8888: 4570 return PLANE_CTL_FORMAT_XRGB_8888; 4571 case DRM_FORMAT_XBGR2101010: 4572 case DRM_FORMAT_ABGR2101010: 4573 return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX; 4574 case DRM_FORMAT_XRGB2101010: 4575 case DRM_FORMAT_ARGB2101010: 4576 return PLANE_CTL_FORMAT_XRGB_2101010; 4577 case DRM_FORMAT_XBGR16161616F: 4578 case DRM_FORMAT_ABGR16161616F: 4579 return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX; 4580 case DRM_FORMAT_XRGB16161616F: 4581 case DRM_FORMAT_ARGB16161616F: 4582 return PLANE_CTL_FORMAT_XRGB_16161616F; 4583 case DRM_FORMAT_YUYV: 4584 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV; 4585 case DRM_FORMAT_YVYU: 4586 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU; 4587 case DRM_FORMAT_UYVY: 4588 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY; 4589 case DRM_FORMAT_VYUY: 4590 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY; 4591 case DRM_FORMAT_NV12: 4592 return PLANE_CTL_FORMAT_NV12; 4593 case DRM_FORMAT_P010: 4594 return PLANE_CTL_FORMAT_P010; 4595 case DRM_FORMAT_P012: 4596 return PLANE_CTL_FORMAT_P012; 4597 case DRM_FORMAT_P016: 4598 return PLANE_CTL_FORMAT_P016; 4599 case DRM_FORMAT_Y210: 4600 return PLANE_CTL_FORMAT_Y210; 4601 case DRM_FORMAT_Y212: 4602 return PLANE_CTL_FORMAT_Y212; 4603 case DRM_FORMAT_Y216: 4604 return PLANE_CTL_FORMAT_Y216; 4605 case DRM_FORMAT_XVYU2101010: 4606 return PLANE_CTL_FORMAT_Y410; 4607 case DRM_FORMAT_XVYU12_16161616: 4608 return PLANE_CTL_FORMAT_Y412; 4609 case DRM_FORMAT_XVYU16161616: 4610 return PLANE_CTL_FORMAT_Y416; 4611 default: 4612 MISSING_CASE(pixel_format); 4613 } 4614 4615 return 0; 4616 } 4617 4618 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state) 4619 { 4620 if (!plane_state->hw.fb->format->has_alpha) 4621 return PLANE_CTL_ALPHA_DISABLE; 4622 4623 switch (plane_state->hw.pixel_blend_mode) { 4624 case DRM_MODE_BLEND_PIXEL_NONE: 4625 return PLANE_CTL_ALPHA_DISABLE; 4626 case DRM_MODE_BLEND_PREMULTI: 4627 return PLANE_CTL_ALPHA_SW_PREMULTIPLY; 4628 case DRM_MODE_BLEND_COVERAGE: 4629 return PLANE_CTL_ALPHA_HW_PREMULTIPLY; 4630 default: 4631 MISSING_CASE(plane_state->hw.pixel_blend_mode); 4632 return PLANE_CTL_ALPHA_DISABLE; 4633 } 4634 } 4635 4636 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state) 4637 { 4638 if (!plane_state->hw.fb->format->has_alpha) 4639 return PLANE_COLOR_ALPHA_DISABLE; 4640 4641 switch (plane_state->hw.pixel_blend_mode) { 4642 case DRM_MODE_BLEND_PIXEL_NONE: 4643 return PLANE_COLOR_ALPHA_DISABLE; 4644 case DRM_MODE_BLEND_PREMULTI: 4645 return PLANE_COLOR_ALPHA_SW_PREMULTIPLY; 4646 case DRM_MODE_BLEND_COVERAGE: 4647 return PLANE_COLOR_ALPHA_HW_PREMULTIPLY; 4648 default: 4649 MISSING_CASE(plane_state->hw.pixel_blend_mode); 4650 return PLANE_COLOR_ALPHA_DISABLE; 4651 } 4652 } 4653 4654 static u32 skl_plane_ctl_tiling(u64 fb_modifier) 4655 { 4656 switch (fb_modifier) { 4657 case DRM_FORMAT_MOD_LINEAR: 4658 break; 4659 case I915_FORMAT_MOD_X_TILED: 4660 return PLANE_CTL_TILED_X; 4661 case I915_FORMAT_MOD_Y_TILED: 4662 return PLANE_CTL_TILED_Y; 4663 case I915_FORMAT_MOD_Y_TILED_CCS: 4664 return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4665 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 4666 return PLANE_CTL_TILED_Y | 4667 PLANE_CTL_RENDER_DECOMPRESSION_ENABLE | 4668 PLANE_CTL_CLEAR_COLOR_DISABLE; 4669 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 4670 return PLANE_CTL_TILED_Y | PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE; 4671 case I915_FORMAT_MOD_Yf_TILED: 4672 return PLANE_CTL_TILED_YF; 4673 case I915_FORMAT_MOD_Yf_TILED_CCS: 4674 return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4675 default: 4676 MISSING_CASE(fb_modifier); 4677 } 4678 4679 return 0; 4680 } 4681 4682 static u32 skl_plane_ctl_rotate(unsigned int rotate) 4683 { 4684 switch (rotate) { 4685 case DRM_MODE_ROTATE_0: 4686 break; 4687 /* 4688 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 4689 * while i915 HW rotation is clockwise, thats why this swapping. 4690 */ 4691 case DRM_MODE_ROTATE_90: 4692 return PLANE_CTL_ROTATE_270; 4693 case DRM_MODE_ROTATE_180: 4694 return PLANE_CTL_ROTATE_180; 4695 case DRM_MODE_ROTATE_270: 4696 return PLANE_CTL_ROTATE_90; 4697 default: 4698 MISSING_CASE(rotate); 4699 } 4700 4701 return 0; 4702 } 4703 4704 static u32 cnl_plane_ctl_flip(unsigned int reflect) 4705 { 4706 switch (reflect) { 4707 case 0: 4708 break; 4709 case DRM_MODE_REFLECT_X: 4710 return PLANE_CTL_FLIP_HORIZONTAL; 4711 case DRM_MODE_REFLECT_Y: 4712 default: 4713 MISSING_CASE(reflect); 4714 } 4715 4716 return 0; 4717 } 4718 4719 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 4720 { 4721 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4722 u32 plane_ctl = 0; 4723 4724 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4725 return plane_ctl; 4726 4727 if (crtc_state->gamma_enable) 4728 plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE; 4729 4730 if (crtc_state->csc_enable) 4731 plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE; 4732 4733 return plane_ctl; 4734 } 4735 4736 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state, 4737 const struct intel_plane_state *plane_state) 4738 { 4739 struct drm_i915_private *dev_priv = 4740 to_i915(plane_state->uapi.plane->dev); 4741 const struct drm_framebuffer *fb = plane_state->hw.fb; 4742 unsigned int rotation = plane_state->hw.rotation; 4743 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey; 4744 u32 plane_ctl; 4745 4746 plane_ctl = PLANE_CTL_ENABLE; 4747 4748 if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) { 4749 plane_ctl |= skl_plane_ctl_alpha(plane_state); 4750 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE; 4751 4752 if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709) 4753 plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709; 4754 4755 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4756 plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE; 4757 } 4758 4759 plane_ctl |= skl_plane_ctl_format(fb->format->format); 4760 plane_ctl |= skl_plane_ctl_tiling(fb->modifier); 4761 plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK); 4762 4763 if (INTEL_GEN(dev_priv) >= 10) 4764 plane_ctl |= cnl_plane_ctl_flip(rotation & 4765 DRM_MODE_REFLECT_MASK); 4766 4767 if (key->flags & I915_SET_COLORKEY_DESTINATION) 4768 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION; 4769 else if (key->flags & I915_SET_COLORKEY_SOURCE) 4770 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE; 4771 4772 return plane_ctl; 4773 } 4774 4775 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state) 4776 { 4777 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4778 u32 plane_color_ctl = 0; 4779 4780 if (INTEL_GEN(dev_priv) >= 11) 4781 return plane_color_ctl; 4782 4783 if (crtc_state->gamma_enable) 4784 plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE; 4785 4786 if (crtc_state->csc_enable) 4787 plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE; 4788 4789 return plane_color_ctl; 4790 } 4791 4792 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state, 4793 const struct intel_plane_state *plane_state) 4794 { 4795 struct drm_i915_private *dev_priv = 4796 to_i915(plane_state->uapi.plane->dev); 4797 const struct drm_framebuffer *fb = plane_state->hw.fb; 4798 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 4799 u32 plane_color_ctl = 0; 4800 4801 plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE; 4802 plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state); 4803 4804 if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) { 4805 if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709) 4806 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709; 4807 else 4808 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV601_TO_RGB709; 4809 4810 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4811 plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE; 4812 } else if (fb->format->is_yuv) { 4813 plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE; 4814 } 4815 4816 return plane_color_ctl; 4817 } 4818 4819 static int 4820 __intel_display_resume(struct drm_device *dev, 4821 struct drm_atomic_state *state, 4822 struct drm_modeset_acquire_ctx *ctx) 4823 { 4824 struct drm_crtc_state *crtc_state; 4825 struct drm_crtc *crtc; 4826 int i, ret; 4827 4828 intel_modeset_setup_hw_state(dev, ctx); 4829 intel_vga_redisable(to_i915(dev)); 4830 4831 if (!state) 4832 return 0; 4833 4834 /* 4835 * We've duplicated the state, pointers to the old state are invalid. 4836 * 4837 * Don't attempt to use the old state until we commit the duplicated state. 4838 */ 4839 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 4840 /* 4841 * Force recalculation even if we restore 4842 * current state. With fast modeset this may not result 4843 * in a modeset when the state is compatible. 4844 */ 4845 crtc_state->mode_changed = true; 4846 } 4847 4848 /* ignore any reset values/BIOS leftovers in the WM registers */ 4849 if (!HAS_GMCH(to_i915(dev))) 4850 to_intel_atomic_state(state)->skip_intermediate_wm = true; 4851 4852 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 4853 4854 drm_WARN_ON(dev, ret == -EDEADLK); 4855 return ret; 4856 } 4857 4858 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 4859 { 4860 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 4861 intel_has_gpu_reset(&dev_priv->gt)); 4862 } 4863 4864 void intel_prepare_reset(struct drm_i915_private *dev_priv) 4865 { 4866 struct drm_device *dev = &dev_priv->drm; 4867 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4868 struct drm_atomic_state *state; 4869 int ret; 4870 4871 /* reset doesn't touch the display */ 4872 if (!i915_modparams.force_reset_modeset_test && 4873 !gpu_reset_clobbers_display(dev_priv)) 4874 return; 4875 4876 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 4877 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 4878 smp_mb__after_atomic(); 4879 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 4880 4881 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 4882 drm_dbg_kms(&dev_priv->drm, 4883 "Modeset potentially stuck, unbreaking through wedging\n"); 4884 intel_gt_set_wedged(&dev_priv->gt); 4885 } 4886 4887 /* 4888 * Need mode_config.mutex so that we don't 4889 * trample ongoing ->detect() and whatnot. 4890 */ 4891 mutex_lock(&dev->mode_config.mutex); 4892 drm_modeset_acquire_init(ctx, 0); 4893 while (1) { 4894 ret = drm_modeset_lock_all_ctx(dev, ctx); 4895 if (ret != -EDEADLK) 4896 break; 4897 4898 drm_modeset_backoff(ctx); 4899 } 4900 /* 4901 * Disabling the crtcs gracefully seems nicer. Also the 4902 * g33 docs say we should at least disable all the planes. 4903 */ 4904 state = drm_atomic_helper_duplicate_state(dev, ctx); 4905 if (IS_ERR(state)) { 4906 ret = PTR_ERR(state); 4907 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n", 4908 ret); 4909 return; 4910 } 4911 4912 ret = drm_atomic_helper_disable_all(dev, ctx); 4913 if (ret) { 4914 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 4915 ret); 4916 drm_atomic_state_put(state); 4917 return; 4918 } 4919 4920 dev_priv->modeset_restore_state = state; 4921 state->acquire_ctx = ctx; 4922 } 4923 4924 void intel_finish_reset(struct drm_i915_private *dev_priv) 4925 { 4926 struct drm_device *dev = &dev_priv->drm; 4927 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4928 struct drm_atomic_state *state; 4929 int ret; 4930 4931 /* reset doesn't touch the display */ 4932 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 4933 return; 4934 4935 state = fetch_and_zero(&dev_priv->modeset_restore_state); 4936 if (!state) 4937 goto unlock; 4938 4939 /* reset doesn't touch the display */ 4940 if (!gpu_reset_clobbers_display(dev_priv)) { 4941 /* for testing only restore the display */ 4942 ret = __intel_display_resume(dev, state, ctx); 4943 if (ret) 4944 drm_err(&dev_priv->drm, 4945 "Restoring old state failed with %i\n", ret); 4946 } else { 4947 /* 4948 * The display has been reset as well, 4949 * so need a full re-initialization. 4950 */ 4951 intel_pps_unlock_regs_wa(dev_priv); 4952 intel_modeset_init_hw(dev_priv); 4953 intel_init_clock_gating(dev_priv); 4954 4955 spin_lock_irq(&dev_priv->irq_lock); 4956 if (dev_priv->display.hpd_irq_setup) 4957 dev_priv->display.hpd_irq_setup(dev_priv); 4958 spin_unlock_irq(&dev_priv->irq_lock); 4959 4960 ret = __intel_display_resume(dev, state, ctx); 4961 if (ret) 4962 drm_err(&dev_priv->drm, 4963 "Restoring old state failed with %i\n", ret); 4964 4965 intel_hpd_init(dev_priv); 4966 } 4967 4968 drm_atomic_state_put(state); 4969 unlock: 4970 drm_modeset_drop_locks(ctx); 4971 drm_modeset_acquire_fini(ctx); 4972 mutex_unlock(&dev->mode_config.mutex); 4973 4974 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 4975 } 4976 4977 static void icl_set_pipe_chicken(struct intel_crtc *crtc) 4978 { 4979 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4980 enum pipe pipe = crtc->pipe; 4981 u32 tmp; 4982 4983 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe)); 4984 4985 /* 4986 * Display WA #1153: icl 4987 * enable hardware to bypass the alpha math 4988 * and rounding for per-pixel values 00 and 0xff 4989 */ 4990 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 4991 /* 4992 * Display WA # 1605353570: icl 4993 * Set the pixel rounding bit to 1 for allowing 4994 * passthrough of Frame buffer pixels unmodified 4995 * across pipe 4996 */ 4997 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 4998 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp); 4999 } 5000 5001 static void icl_enable_trans_port_sync(const struct intel_crtc_state *crtc_state) 5002 { 5003 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5004 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5005 u32 trans_ddi_func_ctl2_val; 5006 u8 master_select; 5007 5008 /* 5009 * Configure the master select and enable Transcoder Port Sync for 5010 * Slave CRTCs transcoder. 5011 */ 5012 if (crtc_state->master_transcoder == INVALID_TRANSCODER) 5013 return; 5014 5015 if (crtc_state->master_transcoder == TRANSCODER_EDP) 5016 master_select = 0; 5017 else 5018 master_select = crtc_state->master_transcoder + 1; 5019 5020 /* Set the master select bits for Tranascoder Port Sync */ 5021 trans_ddi_func_ctl2_val = (PORT_SYNC_MODE_MASTER_SELECT(master_select) & 5022 PORT_SYNC_MODE_MASTER_SELECT_MASK) << 5023 PORT_SYNC_MODE_MASTER_SELECT_SHIFT; 5024 /* Enable Transcoder Port Sync */ 5025 trans_ddi_func_ctl2_val |= PORT_SYNC_MODE_ENABLE; 5026 5027 intel_de_write(dev_priv, 5028 TRANS_DDI_FUNC_CTL2(crtc_state->cpu_transcoder), 5029 trans_ddi_func_ctl2_val); 5030 } 5031 5032 static void intel_fdi_normal_train(struct intel_crtc *crtc) 5033 { 5034 struct drm_device *dev = crtc->base.dev; 5035 struct drm_i915_private *dev_priv = to_i915(dev); 5036 enum pipe pipe = crtc->pipe; 5037 i915_reg_t reg; 5038 u32 temp; 5039 5040 /* enable normal train */ 5041 reg = FDI_TX_CTL(pipe); 5042 temp = intel_de_read(dev_priv, reg); 5043 if (IS_IVYBRIDGE(dev_priv)) { 5044 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 5045 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; 5046 } else { 5047 temp &= ~FDI_LINK_TRAIN_NONE; 5048 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; 5049 } 5050 intel_de_write(dev_priv, reg, temp); 5051 5052 reg = FDI_RX_CTL(pipe); 5053 temp = intel_de_read(dev_priv, reg); 5054 if (HAS_PCH_CPT(dev_priv)) { 5055 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5056 temp |= FDI_LINK_TRAIN_NORMAL_CPT; 5057 } else { 5058 temp &= ~FDI_LINK_TRAIN_NONE; 5059 temp |= FDI_LINK_TRAIN_NONE; 5060 } 5061 intel_de_write(dev_priv, reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); 5062 5063 /* wait one idle pattern time */ 5064 intel_de_posting_read(dev_priv, reg); 5065 udelay(1000); 5066 5067 /* IVB wants error correction enabled */ 5068 if (IS_IVYBRIDGE(dev_priv)) 5069 intel_de_write(dev_priv, reg, 5070 intel_de_read(dev_priv, reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE); 5071 } 5072 5073 /* The FDI link training functions for ILK/Ibexpeak. */ 5074 static void ilk_fdi_link_train(struct intel_crtc *crtc, 5075 const struct intel_crtc_state *crtc_state) 5076 { 5077 struct drm_device *dev = crtc->base.dev; 5078 struct drm_i915_private *dev_priv = to_i915(dev); 5079 enum pipe pipe = crtc->pipe; 5080 i915_reg_t reg; 5081 u32 temp, tries; 5082 5083 /* FDI needs bits from pipe first */ 5084 assert_pipe_enabled(dev_priv, crtc_state->cpu_transcoder); 5085 5086 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5087 for train result */ 5088 reg = FDI_RX_IMR(pipe); 5089 temp = intel_de_read(dev_priv, reg); 5090 temp &= ~FDI_RX_SYMBOL_LOCK; 5091 temp &= ~FDI_RX_BIT_LOCK; 5092 intel_de_write(dev_priv, reg, temp); 5093 intel_de_read(dev_priv, reg); 5094 udelay(150); 5095 5096 /* enable CPU FDI TX and PCH FDI RX */ 5097 reg = FDI_TX_CTL(pipe); 5098 temp = intel_de_read(dev_priv, reg); 5099 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5100 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5101 temp &= ~FDI_LINK_TRAIN_NONE; 5102 temp |= FDI_LINK_TRAIN_PATTERN_1; 5103 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5104 5105 reg = FDI_RX_CTL(pipe); 5106 temp = intel_de_read(dev_priv, reg); 5107 temp &= ~FDI_LINK_TRAIN_NONE; 5108 temp |= FDI_LINK_TRAIN_PATTERN_1; 5109 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5110 5111 intel_de_posting_read(dev_priv, reg); 5112 udelay(150); 5113 5114 /* Ironlake workaround, enable clock pointer after FDI enable*/ 5115 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5116 FDI_RX_PHASE_SYNC_POINTER_OVR); 5117 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5118 FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN); 5119 5120 reg = FDI_RX_IIR(pipe); 5121 for (tries = 0; tries < 5; tries++) { 5122 temp = intel_de_read(dev_priv, reg); 5123 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5124 5125 if ((temp & FDI_RX_BIT_LOCK)) { 5126 drm_dbg_kms(&dev_priv->drm, "FDI train 1 done.\n"); 5127 intel_de_write(dev_priv, reg, temp | FDI_RX_BIT_LOCK); 5128 break; 5129 } 5130 } 5131 if (tries == 5) 5132 drm_err(&dev_priv->drm, "FDI train 1 fail!\n"); 5133 5134 /* Train 2 */ 5135 reg = FDI_TX_CTL(pipe); 5136 temp = intel_de_read(dev_priv, reg); 5137 temp &= ~FDI_LINK_TRAIN_NONE; 5138 temp |= FDI_LINK_TRAIN_PATTERN_2; 5139 intel_de_write(dev_priv, reg, temp); 5140 5141 reg = FDI_RX_CTL(pipe); 5142 temp = intel_de_read(dev_priv, reg); 5143 temp &= ~FDI_LINK_TRAIN_NONE; 5144 temp |= FDI_LINK_TRAIN_PATTERN_2; 5145 intel_de_write(dev_priv, reg, temp); 5146 5147 intel_de_posting_read(dev_priv, reg); 5148 udelay(150); 5149 5150 reg = FDI_RX_IIR(pipe); 5151 for (tries = 0; tries < 5; tries++) { 5152 temp = intel_de_read(dev_priv, reg); 5153 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5154 5155 if (temp & FDI_RX_SYMBOL_LOCK) { 5156 intel_de_write(dev_priv, reg, 5157 temp | FDI_RX_SYMBOL_LOCK); 5158 drm_dbg_kms(&dev_priv->drm, "FDI train 2 done.\n"); 5159 break; 5160 } 5161 } 5162 if (tries == 5) 5163 drm_err(&dev_priv->drm, "FDI train 2 fail!\n"); 5164 5165 drm_dbg_kms(&dev_priv->drm, "FDI train done\n"); 5166 5167 } 5168 5169 static const int snb_b_fdi_train_param[] = { 5170 FDI_LINK_TRAIN_400MV_0DB_SNB_B, 5171 FDI_LINK_TRAIN_400MV_6DB_SNB_B, 5172 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, 5173 FDI_LINK_TRAIN_800MV_0DB_SNB_B, 5174 }; 5175 5176 /* The FDI link training functions for SNB/Cougarpoint. */ 5177 static void gen6_fdi_link_train(struct intel_crtc *crtc, 5178 const struct intel_crtc_state *crtc_state) 5179 { 5180 struct drm_device *dev = crtc->base.dev; 5181 struct drm_i915_private *dev_priv = to_i915(dev); 5182 enum pipe pipe = crtc->pipe; 5183 i915_reg_t reg; 5184 u32 temp, i, retry; 5185 5186 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5187 for train result */ 5188 reg = FDI_RX_IMR(pipe); 5189 temp = intel_de_read(dev_priv, reg); 5190 temp &= ~FDI_RX_SYMBOL_LOCK; 5191 temp &= ~FDI_RX_BIT_LOCK; 5192 intel_de_write(dev_priv, reg, temp); 5193 5194 intel_de_posting_read(dev_priv, reg); 5195 udelay(150); 5196 5197 /* enable CPU FDI TX and PCH FDI RX */ 5198 reg = FDI_TX_CTL(pipe); 5199 temp = intel_de_read(dev_priv, reg); 5200 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5201 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5202 temp &= ~FDI_LINK_TRAIN_NONE; 5203 temp |= FDI_LINK_TRAIN_PATTERN_1; 5204 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5205 /* SNB-B */ 5206 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 5207 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5208 5209 intel_de_write(dev_priv, FDI_RX_MISC(pipe), 5210 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 5211 5212 reg = FDI_RX_CTL(pipe); 5213 temp = intel_de_read(dev_priv, reg); 5214 if (HAS_PCH_CPT(dev_priv)) { 5215 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5216 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5217 } else { 5218 temp &= ~FDI_LINK_TRAIN_NONE; 5219 temp |= FDI_LINK_TRAIN_PATTERN_1; 5220 } 5221 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5222 5223 intel_de_posting_read(dev_priv, reg); 5224 udelay(150); 5225 5226 for (i = 0; i < 4; i++) { 5227 reg = FDI_TX_CTL(pipe); 5228 temp = intel_de_read(dev_priv, reg); 5229 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5230 temp |= snb_b_fdi_train_param[i]; 5231 intel_de_write(dev_priv, reg, temp); 5232 5233 intel_de_posting_read(dev_priv, reg); 5234 udelay(500); 5235 5236 for (retry = 0; retry < 5; retry++) { 5237 reg = FDI_RX_IIR(pipe); 5238 temp = intel_de_read(dev_priv, reg); 5239 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5240 if (temp & FDI_RX_BIT_LOCK) { 5241 intel_de_write(dev_priv, reg, 5242 temp | FDI_RX_BIT_LOCK); 5243 drm_dbg_kms(&dev_priv->drm, 5244 "FDI train 1 done.\n"); 5245 break; 5246 } 5247 udelay(50); 5248 } 5249 if (retry < 5) 5250 break; 5251 } 5252 if (i == 4) 5253 drm_err(&dev_priv->drm, "FDI train 1 fail!\n"); 5254 5255 /* Train 2 */ 5256 reg = FDI_TX_CTL(pipe); 5257 temp = intel_de_read(dev_priv, reg); 5258 temp &= ~FDI_LINK_TRAIN_NONE; 5259 temp |= FDI_LINK_TRAIN_PATTERN_2; 5260 if (IS_GEN(dev_priv, 6)) { 5261 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5262 /* SNB-B */ 5263 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 5264 } 5265 intel_de_write(dev_priv, reg, temp); 5266 5267 reg = FDI_RX_CTL(pipe); 5268 temp = intel_de_read(dev_priv, reg); 5269 if (HAS_PCH_CPT(dev_priv)) { 5270 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5271 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 5272 } else { 5273 temp &= ~FDI_LINK_TRAIN_NONE; 5274 temp |= FDI_LINK_TRAIN_PATTERN_2; 5275 } 5276 intel_de_write(dev_priv, reg, temp); 5277 5278 intel_de_posting_read(dev_priv, reg); 5279 udelay(150); 5280 5281 for (i = 0; i < 4; i++) { 5282 reg = FDI_TX_CTL(pipe); 5283 temp = intel_de_read(dev_priv, reg); 5284 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5285 temp |= snb_b_fdi_train_param[i]; 5286 intel_de_write(dev_priv, reg, temp); 5287 5288 intel_de_posting_read(dev_priv, reg); 5289 udelay(500); 5290 5291 for (retry = 0; retry < 5; retry++) { 5292 reg = FDI_RX_IIR(pipe); 5293 temp = intel_de_read(dev_priv, reg); 5294 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5295 if (temp & FDI_RX_SYMBOL_LOCK) { 5296 intel_de_write(dev_priv, reg, 5297 temp | FDI_RX_SYMBOL_LOCK); 5298 drm_dbg_kms(&dev_priv->drm, 5299 "FDI train 2 done.\n"); 5300 break; 5301 } 5302 udelay(50); 5303 } 5304 if (retry < 5) 5305 break; 5306 } 5307 if (i == 4) 5308 drm_err(&dev_priv->drm, "FDI train 2 fail!\n"); 5309 5310 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n"); 5311 } 5312 5313 /* Manual link training for Ivy Bridge A0 parts */ 5314 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc, 5315 const struct intel_crtc_state *crtc_state) 5316 { 5317 struct drm_device *dev = crtc->base.dev; 5318 struct drm_i915_private *dev_priv = to_i915(dev); 5319 enum pipe pipe = crtc->pipe; 5320 i915_reg_t reg; 5321 u32 temp, i, j; 5322 5323 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5324 for train result */ 5325 reg = FDI_RX_IMR(pipe); 5326 temp = intel_de_read(dev_priv, reg); 5327 temp &= ~FDI_RX_SYMBOL_LOCK; 5328 temp &= ~FDI_RX_BIT_LOCK; 5329 intel_de_write(dev_priv, reg, temp); 5330 5331 intel_de_posting_read(dev_priv, reg); 5332 udelay(150); 5333 5334 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR before link train 0x%x\n", 5335 intel_de_read(dev_priv, FDI_RX_IIR(pipe))); 5336 5337 /* Try each vswing and preemphasis setting twice before moving on */ 5338 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) { 5339 /* disable first in case we need to retry */ 5340 reg = FDI_TX_CTL(pipe); 5341 temp = intel_de_read(dev_priv, reg); 5342 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); 5343 temp &= ~FDI_TX_ENABLE; 5344 intel_de_write(dev_priv, reg, temp); 5345 5346 reg = FDI_RX_CTL(pipe); 5347 temp = intel_de_read(dev_priv, reg); 5348 temp &= ~FDI_LINK_TRAIN_AUTO; 5349 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5350 temp &= ~FDI_RX_ENABLE; 5351 intel_de_write(dev_priv, reg, temp); 5352 5353 /* enable CPU FDI TX and PCH FDI RX */ 5354 reg = FDI_TX_CTL(pipe); 5355 temp = intel_de_read(dev_priv, reg); 5356 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5357 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5358 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; 5359 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5360 temp |= snb_b_fdi_train_param[j/2]; 5361 temp |= FDI_COMPOSITE_SYNC; 5362 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5363 5364 intel_de_write(dev_priv, FDI_RX_MISC(pipe), 5365 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 5366 5367 reg = FDI_RX_CTL(pipe); 5368 temp = intel_de_read(dev_priv, reg); 5369 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5370 temp |= FDI_COMPOSITE_SYNC; 5371 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5372 5373 intel_de_posting_read(dev_priv, reg); 5374 udelay(1); /* should be 0.5us */ 5375 5376 for (i = 0; i < 4; i++) { 5377 reg = FDI_RX_IIR(pipe); 5378 temp = intel_de_read(dev_priv, reg); 5379 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5380 5381 if (temp & FDI_RX_BIT_LOCK || 5382 (intel_de_read(dev_priv, reg) & FDI_RX_BIT_LOCK)) { 5383 intel_de_write(dev_priv, reg, 5384 temp | FDI_RX_BIT_LOCK); 5385 drm_dbg_kms(&dev_priv->drm, 5386 "FDI train 1 done, level %i.\n", 5387 i); 5388 break; 5389 } 5390 udelay(1); /* should be 0.5us */ 5391 } 5392 if (i == 4) { 5393 drm_dbg_kms(&dev_priv->drm, 5394 "FDI train 1 fail on vswing %d\n", j / 2); 5395 continue; 5396 } 5397 5398 /* Train 2 */ 5399 reg = FDI_TX_CTL(pipe); 5400 temp = intel_de_read(dev_priv, reg); 5401 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 5402 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; 5403 intel_de_write(dev_priv, reg, temp); 5404 5405 reg = FDI_RX_CTL(pipe); 5406 temp = intel_de_read(dev_priv, reg); 5407 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5408 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 5409 intel_de_write(dev_priv, reg, temp); 5410 5411 intel_de_posting_read(dev_priv, reg); 5412 udelay(2); /* should be 1.5us */ 5413 5414 for (i = 0; i < 4; i++) { 5415 reg = FDI_RX_IIR(pipe); 5416 temp = intel_de_read(dev_priv, reg); 5417 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5418 5419 if (temp & FDI_RX_SYMBOL_LOCK || 5420 (intel_de_read(dev_priv, reg) & FDI_RX_SYMBOL_LOCK)) { 5421 intel_de_write(dev_priv, reg, 5422 temp | FDI_RX_SYMBOL_LOCK); 5423 drm_dbg_kms(&dev_priv->drm, 5424 "FDI train 2 done, level %i.\n", 5425 i); 5426 goto train_done; 5427 } 5428 udelay(2); /* should be 1.5us */ 5429 } 5430 if (i == 4) 5431 drm_dbg_kms(&dev_priv->drm, 5432 "FDI train 2 fail on vswing %d\n", j / 2); 5433 } 5434 5435 train_done: 5436 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n"); 5437 } 5438 5439 static void ilk_fdi_pll_enable(const struct intel_crtc_state *crtc_state) 5440 { 5441 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 5442 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 5443 enum pipe pipe = intel_crtc->pipe; 5444 i915_reg_t reg; 5445 u32 temp; 5446 5447 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ 5448 reg = FDI_RX_CTL(pipe); 5449 temp = intel_de_read(dev_priv, reg); 5450 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16)); 5451 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5452 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5453 intel_de_write(dev_priv, reg, temp | FDI_RX_PLL_ENABLE); 5454 5455 intel_de_posting_read(dev_priv, reg); 5456 udelay(200); 5457 5458 /* Switch from Rawclk to PCDclk */ 5459 temp = intel_de_read(dev_priv, reg); 5460 intel_de_write(dev_priv, reg, temp | FDI_PCDCLK); 5461 5462 intel_de_posting_read(dev_priv, reg); 5463 udelay(200); 5464 5465 /* Enable CPU FDI TX PLL, always on for Ironlake */ 5466 reg = FDI_TX_CTL(pipe); 5467 temp = intel_de_read(dev_priv, reg); 5468 if ((temp & FDI_TX_PLL_ENABLE) == 0) { 5469 intel_de_write(dev_priv, reg, temp | FDI_TX_PLL_ENABLE); 5470 5471 intel_de_posting_read(dev_priv, reg); 5472 udelay(100); 5473 } 5474 } 5475 5476 static void ilk_fdi_pll_disable(struct intel_crtc *intel_crtc) 5477 { 5478 struct drm_device *dev = intel_crtc->base.dev; 5479 struct drm_i915_private *dev_priv = to_i915(dev); 5480 enum pipe pipe = intel_crtc->pipe; 5481 i915_reg_t reg; 5482 u32 temp; 5483 5484 /* Switch from PCDclk to Rawclk */ 5485 reg = FDI_RX_CTL(pipe); 5486 temp = intel_de_read(dev_priv, reg); 5487 intel_de_write(dev_priv, reg, temp & ~FDI_PCDCLK); 5488 5489 /* Disable CPU FDI TX PLL */ 5490 reg = FDI_TX_CTL(pipe); 5491 temp = intel_de_read(dev_priv, reg); 5492 intel_de_write(dev_priv, reg, temp & ~FDI_TX_PLL_ENABLE); 5493 5494 intel_de_posting_read(dev_priv, reg); 5495 udelay(100); 5496 5497 reg = FDI_RX_CTL(pipe); 5498 temp = intel_de_read(dev_priv, reg); 5499 intel_de_write(dev_priv, reg, temp & ~FDI_RX_PLL_ENABLE); 5500 5501 /* Wait for the clocks to turn off. */ 5502 intel_de_posting_read(dev_priv, reg); 5503 udelay(100); 5504 } 5505 5506 static void ilk_fdi_disable(struct intel_crtc *crtc) 5507 { 5508 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5509 enum pipe pipe = crtc->pipe; 5510 i915_reg_t reg; 5511 u32 temp; 5512 5513 /* disable CPU FDI tx and PCH FDI rx */ 5514 reg = FDI_TX_CTL(pipe); 5515 temp = intel_de_read(dev_priv, reg); 5516 intel_de_write(dev_priv, reg, temp & ~FDI_TX_ENABLE); 5517 intel_de_posting_read(dev_priv, reg); 5518 5519 reg = FDI_RX_CTL(pipe); 5520 temp = intel_de_read(dev_priv, reg); 5521 temp &= ~(0x7 << 16); 5522 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5523 intel_de_write(dev_priv, reg, temp & ~FDI_RX_ENABLE); 5524 5525 intel_de_posting_read(dev_priv, reg); 5526 udelay(100); 5527 5528 /* Ironlake workaround, disable clock pointer after downing FDI */ 5529 if (HAS_PCH_IBX(dev_priv)) 5530 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5531 FDI_RX_PHASE_SYNC_POINTER_OVR); 5532 5533 /* still set train pattern 1 */ 5534 reg = FDI_TX_CTL(pipe); 5535 temp = intel_de_read(dev_priv, reg); 5536 temp &= ~FDI_LINK_TRAIN_NONE; 5537 temp |= FDI_LINK_TRAIN_PATTERN_1; 5538 intel_de_write(dev_priv, reg, temp); 5539 5540 reg = FDI_RX_CTL(pipe); 5541 temp = intel_de_read(dev_priv, reg); 5542 if (HAS_PCH_CPT(dev_priv)) { 5543 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5544 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5545 } else { 5546 temp &= ~FDI_LINK_TRAIN_NONE; 5547 temp |= FDI_LINK_TRAIN_PATTERN_1; 5548 } 5549 /* BPC in FDI rx is consistent with that in PIPECONF */ 5550 temp &= ~(0x07 << 16); 5551 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5552 intel_de_write(dev_priv, reg, temp); 5553 5554 intel_de_posting_read(dev_priv, reg); 5555 udelay(100); 5556 } 5557 5558 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 5559 { 5560 struct drm_crtc *crtc; 5561 bool cleanup_done; 5562 5563 drm_for_each_crtc(crtc, &dev_priv->drm) { 5564 struct drm_crtc_commit *commit; 5565 spin_lock(&crtc->commit_lock); 5566 commit = list_first_entry_or_null(&crtc->commit_list, 5567 struct drm_crtc_commit, commit_entry); 5568 cleanup_done = commit ? 5569 try_wait_for_completion(&commit->cleanup_done) : true; 5570 spin_unlock(&crtc->commit_lock); 5571 5572 if (cleanup_done) 5573 continue; 5574 5575 drm_crtc_wait_one_vblank(crtc); 5576 5577 return true; 5578 } 5579 5580 return false; 5581 } 5582 5583 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 5584 { 5585 u32 temp; 5586 5587 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE); 5588 5589 mutex_lock(&dev_priv->sb_lock); 5590 5591 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5592 temp |= SBI_SSCCTL_DISABLE; 5593 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5594 5595 mutex_unlock(&dev_priv->sb_lock); 5596 } 5597 5598 /* Program iCLKIP clock to the desired frequency */ 5599 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 5600 { 5601 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5602 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5603 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 5604 u32 divsel, phaseinc, auxdiv, phasedir = 0; 5605 u32 temp; 5606 5607 lpt_disable_iclkip(dev_priv); 5608 5609 /* The iCLK virtual clock root frequency is in MHz, 5610 * but the adjusted_mode->crtc_clock in in KHz. To get the 5611 * divisors, it is necessary to divide one by another, so we 5612 * convert the virtual clock precision to KHz here for higher 5613 * precision. 5614 */ 5615 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 5616 u32 iclk_virtual_root_freq = 172800 * 1000; 5617 u32 iclk_pi_range = 64; 5618 u32 desired_divisor; 5619 5620 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5621 clock << auxdiv); 5622 divsel = (desired_divisor / iclk_pi_range) - 2; 5623 phaseinc = desired_divisor % iclk_pi_range; 5624 5625 /* 5626 * Near 20MHz is a corner case which is 5627 * out of range for the 7-bit divisor 5628 */ 5629 if (divsel <= 0x7f) 5630 break; 5631 } 5632 5633 /* This should not happen with any sane values */ 5634 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 5635 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 5636 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) & 5637 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 5638 5639 drm_dbg_kms(&dev_priv->drm, 5640 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 5641 clock, auxdiv, divsel, phasedir, phaseinc); 5642 5643 mutex_lock(&dev_priv->sb_lock); 5644 5645 /* Program SSCDIVINTPHASE6 */ 5646 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5647 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 5648 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 5649 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 5650 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 5651 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 5652 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 5653 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 5654 5655 /* Program SSCAUXDIV */ 5656 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5657 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 5658 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 5659 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 5660 5661 /* Enable modulator and associated divider */ 5662 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5663 temp &= ~SBI_SSCCTL_DISABLE; 5664 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5665 5666 mutex_unlock(&dev_priv->sb_lock); 5667 5668 /* Wait for initialization time */ 5669 udelay(24); 5670 5671 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE); 5672 } 5673 5674 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 5675 { 5676 u32 divsel, phaseinc, auxdiv; 5677 u32 iclk_virtual_root_freq = 172800 * 1000; 5678 u32 iclk_pi_range = 64; 5679 u32 desired_divisor; 5680 u32 temp; 5681 5682 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 5683 return 0; 5684 5685 mutex_lock(&dev_priv->sb_lock); 5686 5687 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5688 if (temp & SBI_SSCCTL_DISABLE) { 5689 mutex_unlock(&dev_priv->sb_lock); 5690 return 0; 5691 } 5692 5693 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5694 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 5695 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 5696 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 5697 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 5698 5699 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5700 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 5701 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 5702 5703 mutex_unlock(&dev_priv->sb_lock); 5704 5705 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 5706 5707 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5708 desired_divisor << auxdiv); 5709 } 5710 5711 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 5712 enum pipe pch_transcoder) 5713 { 5714 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5715 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5716 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5717 5718 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder), 5719 intel_de_read(dev_priv, HTOTAL(cpu_transcoder))); 5720 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder), 5721 intel_de_read(dev_priv, HBLANK(cpu_transcoder))); 5722 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder), 5723 intel_de_read(dev_priv, HSYNC(cpu_transcoder))); 5724 5725 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder), 5726 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 5727 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder), 5728 intel_de_read(dev_priv, VBLANK(cpu_transcoder))); 5729 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder), 5730 intel_de_read(dev_priv, VSYNC(cpu_transcoder))); 5731 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder), 5732 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder))); 5733 } 5734 5735 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) 5736 { 5737 u32 temp; 5738 5739 temp = intel_de_read(dev_priv, SOUTH_CHICKEN1); 5740 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 5741 return; 5742 5743 drm_WARN_ON(&dev_priv->drm, 5744 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) & 5745 FDI_RX_ENABLE); 5746 drm_WARN_ON(&dev_priv->drm, 5747 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) & 5748 FDI_RX_ENABLE); 5749 5750 temp &= ~FDI_BC_BIFURCATION_SELECT; 5751 if (enable) 5752 temp |= FDI_BC_BIFURCATION_SELECT; 5753 5754 drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n", 5755 enable ? "en" : "dis"); 5756 intel_de_write(dev_priv, SOUTH_CHICKEN1, temp); 5757 intel_de_posting_read(dev_priv, SOUTH_CHICKEN1); 5758 } 5759 5760 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) 5761 { 5762 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5763 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5764 5765 switch (crtc->pipe) { 5766 case PIPE_A: 5767 break; 5768 case PIPE_B: 5769 if (crtc_state->fdi_lanes > 2) 5770 cpt_set_fdi_bc_bifurcation(dev_priv, false); 5771 else 5772 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5773 5774 break; 5775 case PIPE_C: 5776 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5777 5778 break; 5779 default: 5780 BUG(); 5781 } 5782 } 5783 5784 /* 5785 * Finds the encoder associated with the given CRTC. This can only be 5786 * used when we know that the CRTC isn't feeding multiple encoders! 5787 */ 5788 static struct intel_encoder * 5789 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 5790 const struct intel_crtc_state *crtc_state) 5791 { 5792 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5793 const struct drm_connector_state *connector_state; 5794 const struct drm_connector *connector; 5795 struct intel_encoder *encoder = NULL; 5796 int num_encoders = 0; 5797 int i; 5798 5799 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 5800 if (connector_state->crtc != &crtc->base) 5801 continue; 5802 5803 encoder = to_intel_encoder(connector_state->best_encoder); 5804 num_encoders++; 5805 } 5806 5807 drm_WARN(encoder->base.dev, num_encoders != 1, 5808 "%d encoders for pipe %c\n", 5809 num_encoders, pipe_name(crtc->pipe)); 5810 5811 return encoder; 5812 } 5813 5814 /* 5815 * Enable PCH resources required for PCH ports: 5816 * - PCH PLLs 5817 * - FDI training & RX/TX 5818 * - update transcoder timings 5819 * - DP transcoding bits 5820 * - transcoder 5821 */ 5822 static void ilk_pch_enable(const struct intel_atomic_state *state, 5823 const struct intel_crtc_state *crtc_state) 5824 { 5825 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5826 struct drm_device *dev = crtc->base.dev; 5827 struct drm_i915_private *dev_priv = to_i915(dev); 5828 enum pipe pipe = crtc->pipe; 5829 u32 temp; 5830 5831 assert_pch_transcoder_disabled(dev_priv, pipe); 5832 5833 if (IS_IVYBRIDGE(dev_priv)) 5834 ivb_update_fdi_bc_bifurcation(crtc_state); 5835 5836 /* Write the TU size bits before fdi link training, so that error 5837 * detection works. */ 5838 intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe), 5839 intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 5840 5841 /* For PCH output, training FDI link */ 5842 dev_priv->display.fdi_link_train(crtc, crtc_state); 5843 5844 /* We need to program the right clock selection before writing the pixel 5845 * mutliplier into the DPLL. */ 5846 if (HAS_PCH_CPT(dev_priv)) { 5847 u32 sel; 5848 5849 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 5850 temp |= TRANS_DPLL_ENABLE(pipe); 5851 sel = TRANS_DPLLB_SEL(pipe); 5852 if (crtc_state->shared_dpll == 5853 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 5854 temp |= sel; 5855 else 5856 temp &= ~sel; 5857 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 5858 } 5859 5860 /* XXX: pch pll's can be enabled any time before we enable the PCH 5861 * transcoder, and we actually should do this to not upset any PCH 5862 * transcoder that already use the clock when we share it. 5863 * 5864 * Note that enable_shared_dpll tries to do the right thing, but 5865 * get_shared_dpll unconditionally resets the pll - we need that to have 5866 * the right LVDS enable sequence. */ 5867 intel_enable_shared_dpll(crtc_state); 5868 5869 /* set transcoder timing, panel must allow it */ 5870 assert_panel_unlocked(dev_priv, pipe); 5871 ilk_pch_transcoder_set_timings(crtc_state, pipe); 5872 5873 intel_fdi_normal_train(crtc); 5874 5875 /* For PCH DP, enable TRANS_DP_CTL */ 5876 if (HAS_PCH_CPT(dev_priv) && 5877 intel_crtc_has_dp_encoder(crtc_state)) { 5878 const struct drm_display_mode *adjusted_mode = 5879 &crtc_state->hw.adjusted_mode; 5880 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 5881 i915_reg_t reg = TRANS_DP_CTL(pipe); 5882 enum port port; 5883 5884 temp = intel_de_read(dev_priv, reg); 5885 temp &= ~(TRANS_DP_PORT_SEL_MASK | 5886 TRANS_DP_SYNC_MASK | 5887 TRANS_DP_BPC_MASK); 5888 temp |= TRANS_DP_OUTPUT_ENABLE; 5889 temp |= bpc << 9; /* same format but at 11:9 */ 5890 5891 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 5892 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 5893 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 5894 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 5895 5896 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 5897 drm_WARN_ON(dev, port < PORT_B || port > PORT_D); 5898 temp |= TRANS_DP_PORT_SEL(port); 5899 5900 intel_de_write(dev_priv, reg, temp); 5901 } 5902 5903 ilk_enable_pch_transcoder(crtc_state); 5904 } 5905 5906 void lpt_pch_enable(const struct intel_crtc_state *crtc_state) 5907 { 5908 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5909 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5910 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5911 5912 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 5913 5914 lpt_program_iclkip(crtc_state); 5915 5916 /* Set transcoder timing. */ 5917 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A); 5918 5919 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 5920 } 5921 5922 static void cpt_verify_modeset(struct drm_i915_private *dev_priv, 5923 enum pipe pipe) 5924 { 5925 i915_reg_t dslreg = PIPEDSL(pipe); 5926 u32 temp; 5927 5928 temp = intel_de_read(dev_priv, dslreg); 5929 udelay(500); 5930 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) { 5931 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) 5932 drm_err(&dev_priv->drm, 5933 "mode set failed: pipe %c stuck\n", 5934 pipe_name(pipe)); 5935 } 5936 } 5937 5938 /* 5939 * The hardware phase 0.0 refers to the center of the pixel. 5940 * We want to start from the top/left edge which is phase 5941 * -0.5. That matches how the hardware calculates the scaling 5942 * factors (from top-left of the first pixel to bottom-right 5943 * of the last pixel, as opposed to the pixel centers). 5944 * 5945 * For 4:2:0 subsampled chroma planes we obviously have to 5946 * adjust that so that the chroma sample position lands in 5947 * the right spot. 5948 * 5949 * Note that for packed YCbCr 4:2:2 formats there is no way to 5950 * control chroma siting. The hardware simply replicates the 5951 * chroma samples for both of the luma samples, and thus we don't 5952 * actually get the expected MPEG2 chroma siting convention :( 5953 * The same behaviour is observed on pre-SKL platforms as well. 5954 * 5955 * Theory behind the formula (note that we ignore sub-pixel 5956 * source coordinates): 5957 * s = source sample position 5958 * d = destination sample position 5959 * 5960 * Downscaling 4:1: 5961 * -0.5 5962 * | 0.0 5963 * | | 1.5 (initial phase) 5964 * | | | 5965 * v v v 5966 * | s | s | s | s | 5967 * | d | 5968 * 5969 * Upscaling 1:4: 5970 * -0.5 5971 * | -0.375 (initial phase) 5972 * | | 0.0 5973 * | | | 5974 * v v v 5975 * | s | 5976 * | d | d | d | d | 5977 */ 5978 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited) 5979 { 5980 int phase = -0x8000; 5981 u16 trip = 0; 5982 5983 if (chroma_cosited) 5984 phase += (sub - 1) * 0x8000 / sub; 5985 5986 phase += scale / (2 * sub); 5987 5988 /* 5989 * Hardware initial phase limited to [-0.5:1.5]. 5990 * Since the max hardware scale factor is 3.0, we 5991 * should never actually excdeed 1.0 here. 5992 */ 5993 WARN_ON(phase < -0x8000 || phase > 0x18000); 5994 5995 if (phase < 0) 5996 phase = 0x10000 + phase; 5997 else 5998 trip = PS_PHASE_TRIP; 5999 6000 return ((phase >> 2) & PS_PHASE_MASK) | trip; 6001 } 6002 6003 #define SKL_MIN_SRC_W 8 6004 #define SKL_MAX_SRC_W 4096 6005 #define SKL_MIN_SRC_H 8 6006 #define SKL_MAX_SRC_H 4096 6007 #define SKL_MIN_DST_W 8 6008 #define SKL_MAX_DST_W 4096 6009 #define SKL_MIN_DST_H 8 6010 #define SKL_MAX_DST_H 4096 6011 #define ICL_MAX_SRC_W 5120 6012 #define ICL_MAX_SRC_H 4096 6013 #define ICL_MAX_DST_W 5120 6014 #define ICL_MAX_DST_H 4096 6015 #define SKL_MIN_YUV_420_SRC_W 16 6016 #define SKL_MIN_YUV_420_SRC_H 16 6017 6018 static int 6019 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach, 6020 unsigned int scaler_user, int *scaler_id, 6021 int src_w, int src_h, int dst_w, int dst_h, 6022 const struct drm_format_info *format, 6023 u64 modifier, bool need_scaler) 6024 { 6025 struct intel_crtc_scaler_state *scaler_state = 6026 &crtc_state->scaler_state; 6027 struct intel_crtc *intel_crtc = 6028 to_intel_crtc(crtc_state->uapi.crtc); 6029 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 6030 const struct drm_display_mode *adjusted_mode = 6031 &crtc_state->hw.adjusted_mode; 6032 6033 /* 6034 * Src coordinates are already rotated by 270 degrees for 6035 * the 90/270 degree plane rotation cases (to match the 6036 * GTT mapping), hence no need to account for rotation here. 6037 */ 6038 if (src_w != dst_w || src_h != dst_h) 6039 need_scaler = true; 6040 6041 /* 6042 * Scaling/fitting not supported in IF-ID mode in GEN9+ 6043 * TODO: Interlace fetch mode doesn't support YUV420 planar formats. 6044 * Once NV12 is enabled, handle it here while allocating scaler 6045 * for NV12. 6046 */ 6047 if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable && 6048 need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 6049 drm_dbg_kms(&dev_priv->drm, 6050 "Pipe/Plane scaling not supported with IF-ID mode\n"); 6051 return -EINVAL; 6052 } 6053 6054 /* 6055 * if plane is being disabled or scaler is no more required or force detach 6056 * - free scaler binded to this plane/crtc 6057 * - in order to do this, update crtc->scaler_usage 6058 * 6059 * Here scaler state in crtc_state is set free so that 6060 * scaler can be assigned to other user. Actual register 6061 * update to free the scaler is done in plane/panel-fit programming. 6062 * For this purpose crtc/plane_state->scaler_id isn't reset here. 6063 */ 6064 if (force_detach || !need_scaler) { 6065 if (*scaler_id >= 0) { 6066 scaler_state->scaler_users &= ~(1 << scaler_user); 6067 scaler_state->scalers[*scaler_id].in_use = 0; 6068 6069 drm_dbg_kms(&dev_priv->drm, 6070 "scaler_user index %u.%u: " 6071 "Staged freeing scaler id %d scaler_users = 0x%x\n", 6072 intel_crtc->pipe, scaler_user, *scaler_id, 6073 scaler_state->scaler_users); 6074 *scaler_id = -1; 6075 } 6076 return 0; 6077 } 6078 6079 if (format && intel_format_info_is_yuv_semiplanar(format, modifier) && 6080 (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) { 6081 drm_dbg_kms(&dev_priv->drm, 6082 "Planar YUV: src dimensions not met\n"); 6083 return -EINVAL; 6084 } 6085 6086 /* range checks */ 6087 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H || 6088 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H || 6089 (INTEL_GEN(dev_priv) >= 11 && 6090 (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H || 6091 dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) || 6092 (INTEL_GEN(dev_priv) < 11 && 6093 (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H || 6094 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) { 6095 drm_dbg_kms(&dev_priv->drm, 6096 "scaler_user index %u.%u: src %ux%u dst %ux%u " 6097 "size is out of scaler range\n", 6098 intel_crtc->pipe, scaler_user, src_w, src_h, 6099 dst_w, dst_h); 6100 return -EINVAL; 6101 } 6102 6103 /* mark this plane as a scaler user in crtc_state */ 6104 scaler_state->scaler_users |= (1 << scaler_user); 6105 drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: " 6106 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n", 6107 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h, 6108 scaler_state->scaler_users); 6109 6110 return 0; 6111 } 6112 6113 /** 6114 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc. 6115 * 6116 * @state: crtc's scaler state 6117 * 6118 * Return 6119 * 0 - scaler_usage updated successfully 6120 * error - requested scaling cannot be supported or other error condition 6121 */ 6122 int skl_update_scaler_crtc(struct intel_crtc_state *state) 6123 { 6124 const struct drm_display_mode *adjusted_mode = &state->hw.adjusted_mode; 6125 bool need_scaler = false; 6126 6127 if (state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 6128 state->pch_pfit.enabled) 6129 need_scaler = true; 6130 6131 return skl_update_scaler(state, !state->hw.active, SKL_CRTC_INDEX, 6132 &state->scaler_state.scaler_id, 6133 state->pipe_src_w, state->pipe_src_h, 6134 adjusted_mode->crtc_hdisplay, 6135 adjusted_mode->crtc_vdisplay, NULL, 0, 6136 need_scaler); 6137 } 6138 6139 /** 6140 * skl_update_scaler_plane - Stages update to scaler state for a given plane. 6141 * @crtc_state: crtc's scaler state 6142 * @plane_state: atomic plane state to update 6143 * 6144 * Return 6145 * 0 - scaler_usage updated successfully 6146 * error - requested scaling cannot be supported or other error condition 6147 */ 6148 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state, 6149 struct intel_plane_state *plane_state) 6150 { 6151 struct intel_plane *intel_plane = 6152 to_intel_plane(plane_state->uapi.plane); 6153 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 6154 struct drm_framebuffer *fb = plane_state->hw.fb; 6155 int ret; 6156 bool force_detach = !fb || !plane_state->uapi.visible; 6157 bool need_scaler = false; 6158 6159 /* Pre-gen11 and SDR planes always need a scaler for planar formats. */ 6160 if (!icl_is_hdr_plane(dev_priv, intel_plane->id) && 6161 fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier)) 6162 need_scaler = true; 6163 6164 ret = skl_update_scaler(crtc_state, force_detach, 6165 drm_plane_index(&intel_plane->base), 6166 &plane_state->scaler_id, 6167 drm_rect_width(&plane_state->uapi.src) >> 16, 6168 drm_rect_height(&plane_state->uapi.src) >> 16, 6169 drm_rect_width(&plane_state->uapi.dst), 6170 drm_rect_height(&plane_state->uapi.dst), 6171 fb ? fb->format : NULL, 6172 fb ? fb->modifier : 0, 6173 need_scaler); 6174 6175 if (ret || plane_state->scaler_id < 0) 6176 return ret; 6177 6178 /* check colorkey */ 6179 if (plane_state->ckey.flags) { 6180 drm_dbg_kms(&dev_priv->drm, 6181 "[PLANE:%d:%s] scaling with color key not allowed", 6182 intel_plane->base.base.id, 6183 intel_plane->base.name); 6184 return -EINVAL; 6185 } 6186 6187 /* Check src format */ 6188 switch (fb->format->format) { 6189 case DRM_FORMAT_RGB565: 6190 case DRM_FORMAT_XBGR8888: 6191 case DRM_FORMAT_XRGB8888: 6192 case DRM_FORMAT_ABGR8888: 6193 case DRM_FORMAT_ARGB8888: 6194 case DRM_FORMAT_XRGB2101010: 6195 case DRM_FORMAT_XBGR2101010: 6196 case DRM_FORMAT_ARGB2101010: 6197 case DRM_FORMAT_ABGR2101010: 6198 case DRM_FORMAT_YUYV: 6199 case DRM_FORMAT_YVYU: 6200 case DRM_FORMAT_UYVY: 6201 case DRM_FORMAT_VYUY: 6202 case DRM_FORMAT_NV12: 6203 case DRM_FORMAT_P010: 6204 case DRM_FORMAT_P012: 6205 case DRM_FORMAT_P016: 6206 case DRM_FORMAT_Y210: 6207 case DRM_FORMAT_Y212: 6208 case DRM_FORMAT_Y216: 6209 case DRM_FORMAT_XVYU2101010: 6210 case DRM_FORMAT_XVYU12_16161616: 6211 case DRM_FORMAT_XVYU16161616: 6212 break; 6213 case DRM_FORMAT_XBGR16161616F: 6214 case DRM_FORMAT_ABGR16161616F: 6215 case DRM_FORMAT_XRGB16161616F: 6216 case DRM_FORMAT_ARGB16161616F: 6217 if (INTEL_GEN(dev_priv) >= 11) 6218 break; 6219 /* fall through */ 6220 default: 6221 drm_dbg_kms(&dev_priv->drm, 6222 "[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n", 6223 intel_plane->base.base.id, intel_plane->base.name, 6224 fb->base.id, fb->format->format); 6225 return -EINVAL; 6226 } 6227 6228 return 0; 6229 } 6230 6231 void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state) 6232 { 6233 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 6234 int i; 6235 6236 for (i = 0; i < crtc->num_scalers; i++) 6237 skl_detach_scaler(crtc, i); 6238 } 6239 6240 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state) 6241 { 6242 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6243 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6244 enum pipe pipe = crtc->pipe; 6245 const struct intel_crtc_scaler_state *scaler_state = 6246 &crtc_state->scaler_state; 6247 6248 if (crtc_state->pch_pfit.enabled) { 6249 u16 uv_rgb_hphase, uv_rgb_vphase; 6250 int pfit_w, pfit_h, hscale, vscale; 6251 unsigned long irqflags; 6252 int id; 6253 6254 if (drm_WARN_ON(&dev_priv->drm, 6255 crtc_state->scaler_state.scaler_id < 0)) 6256 return; 6257 6258 pfit_w = (crtc_state->pch_pfit.size >> 16) & 0xFFFF; 6259 pfit_h = crtc_state->pch_pfit.size & 0xFFFF; 6260 6261 hscale = (crtc_state->pipe_src_w << 16) / pfit_w; 6262 vscale = (crtc_state->pipe_src_h << 16) / pfit_h; 6263 6264 uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false); 6265 uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false); 6266 6267 id = scaler_state->scaler_id; 6268 6269 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 6270 6271 intel_de_write_fw(dev_priv, SKL_PS_CTRL(pipe, id), PS_SCALER_EN | 6272 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode); 6273 intel_de_write_fw(dev_priv, SKL_PS_VPHASE(pipe, id), 6274 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase)); 6275 intel_de_write_fw(dev_priv, SKL_PS_HPHASE(pipe, id), 6276 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase)); 6277 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(pipe, id), 6278 crtc_state->pch_pfit.pos); 6279 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(pipe, id), 6280 crtc_state->pch_pfit.size); 6281 6282 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 6283 } 6284 } 6285 6286 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state) 6287 { 6288 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6289 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6290 enum pipe pipe = crtc->pipe; 6291 6292 if (crtc_state->pch_pfit.enabled) { 6293 /* Force use of hard-coded filter coefficients 6294 * as some pre-programmed values are broken, 6295 * e.g. x201. 6296 */ 6297 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 6298 intel_de_write(dev_priv, PF_CTL(pipe), 6299 PF_ENABLE | PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); 6300 else 6301 intel_de_write(dev_priv, PF_CTL(pipe), 6302 PF_ENABLE | PF_FILTER_MED_3x3); 6303 intel_de_write(dev_priv, PF_WIN_POS(pipe), 6304 crtc_state->pch_pfit.pos); 6305 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 6306 crtc_state->pch_pfit.size); 6307 } 6308 } 6309 6310 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 6311 { 6312 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6313 struct drm_device *dev = crtc->base.dev; 6314 struct drm_i915_private *dev_priv = to_i915(dev); 6315 6316 if (!crtc_state->ips_enabled) 6317 return; 6318 6319 /* 6320 * We can only enable IPS after we enable a plane and wait for a vblank 6321 * This function is called from post_plane_update, which is run after 6322 * a vblank wait. 6323 */ 6324 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 6325 6326 if (IS_BROADWELL(dev_priv)) { 6327 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 6328 IPS_ENABLE | IPS_PCODE_CONTROL)); 6329 /* Quoting Art Runyan: "its not safe to expect any particular 6330 * value in IPS_CTL bit 31 after enabling IPS through the 6331 * mailbox." Moreover, the mailbox may return a bogus state, 6332 * so we need to just enable it and continue on. 6333 */ 6334 } else { 6335 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE); 6336 /* The bit only becomes 1 in the next vblank, so this wait here 6337 * is essentially intel_wait_for_vblank. If we don't have this 6338 * and don't wait for vblanks until the end of crtc_enable, then 6339 * the HW state readout code will complain that the expected 6340 * IPS_CTL value is not the one we read. */ 6341 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 6342 drm_err(&dev_priv->drm, 6343 "Timed out waiting for IPS enable\n"); 6344 } 6345 } 6346 6347 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 6348 { 6349 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6350 struct drm_device *dev = crtc->base.dev; 6351 struct drm_i915_private *dev_priv = to_i915(dev); 6352 6353 if (!crtc_state->ips_enabled) 6354 return; 6355 6356 if (IS_BROADWELL(dev_priv)) { 6357 drm_WARN_ON(dev, 6358 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 6359 /* 6360 * Wait for PCODE to finish disabling IPS. The BSpec specified 6361 * 42ms timeout value leads to occasional timeouts so use 100ms 6362 * instead. 6363 */ 6364 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 6365 drm_err(&dev_priv->drm, 6366 "Timed out waiting for IPS disable\n"); 6367 } else { 6368 intel_de_write(dev_priv, IPS_CTL, 0); 6369 intel_de_posting_read(dev_priv, IPS_CTL); 6370 } 6371 6372 /* We need to wait for a vblank before we can disable the plane. */ 6373 intel_wait_for_vblank(dev_priv, crtc->pipe); 6374 } 6375 6376 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) 6377 { 6378 if (intel_crtc->overlay) 6379 (void) intel_overlay_switch_off(intel_crtc->overlay); 6380 6381 /* Let userspace switch the overlay on again. In most cases userspace 6382 * has to recompute where to put it anyway. 6383 */ 6384 } 6385 6386 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 6387 const struct intel_crtc_state *new_crtc_state) 6388 { 6389 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 6390 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6391 6392 if (!old_crtc_state->ips_enabled) 6393 return false; 6394 6395 if (needs_modeset(new_crtc_state)) 6396 return true; 6397 6398 /* 6399 * Workaround : Do not read or write the pipe palette/gamma data while 6400 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 6401 * 6402 * Disable IPS before we program the LUT. 6403 */ 6404 if (IS_HASWELL(dev_priv) && 6405 (new_crtc_state->uapi.color_mgmt_changed || 6406 new_crtc_state->update_pipe) && 6407 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 6408 return true; 6409 6410 return !new_crtc_state->ips_enabled; 6411 } 6412 6413 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 6414 const struct intel_crtc_state *new_crtc_state) 6415 { 6416 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 6417 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6418 6419 if (!new_crtc_state->ips_enabled) 6420 return false; 6421 6422 if (needs_modeset(new_crtc_state)) 6423 return true; 6424 6425 /* 6426 * Workaround : Do not read or write the pipe palette/gamma data while 6427 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 6428 * 6429 * Re-enable IPS after the LUT has been programmed. 6430 */ 6431 if (IS_HASWELL(dev_priv) && 6432 (new_crtc_state->uapi.color_mgmt_changed || 6433 new_crtc_state->update_pipe) && 6434 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 6435 return true; 6436 6437 /* 6438 * We can't read out IPS on broadwell, assume the worst and 6439 * forcibly enable IPS on the first fastset. 6440 */ 6441 if (new_crtc_state->update_pipe && 6442 old_crtc_state->hw.adjusted_mode.private_flags & I915_MODE_FLAG_INHERITED) 6443 return true; 6444 6445 return !old_crtc_state->ips_enabled; 6446 } 6447 6448 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) 6449 { 6450 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 6451 6452 if (!crtc_state->nv12_planes) 6453 return false; 6454 6455 /* WA Display #0827: Gen9:all */ 6456 if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv)) 6457 return true; 6458 6459 return false; 6460 } 6461 6462 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) 6463 { 6464 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 6465 6466 /* Wa_2006604312:icl */ 6467 if (crtc_state->scaler_state.scaler_users > 0 && IS_ICELAKE(dev_priv)) 6468 return true; 6469 6470 return false; 6471 } 6472 6473 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, 6474 const struct intel_crtc_state *new_crtc_state) 6475 { 6476 return (!old_crtc_state->active_planes || needs_modeset(new_crtc_state)) && 6477 new_crtc_state->active_planes; 6478 } 6479 6480 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, 6481 const struct intel_crtc_state *new_crtc_state) 6482 { 6483 return old_crtc_state->active_planes && 6484 (!new_crtc_state->active_planes || needs_modeset(new_crtc_state)); 6485 } 6486 6487 static void intel_post_plane_update(struct intel_atomic_state *state, 6488 struct intel_crtc *crtc) 6489 { 6490 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6491 const struct intel_crtc_state *old_crtc_state = 6492 intel_atomic_get_old_crtc_state(state, crtc); 6493 const struct intel_crtc_state *new_crtc_state = 6494 intel_atomic_get_new_crtc_state(state, crtc); 6495 enum pipe pipe = crtc->pipe; 6496 6497 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); 6498 6499 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) 6500 intel_update_watermarks(crtc); 6501 6502 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state)) 6503 hsw_enable_ips(new_crtc_state); 6504 6505 intel_fbc_post_update(state, crtc); 6506 6507 if (needs_nv12_wa(old_crtc_state) && 6508 !needs_nv12_wa(new_crtc_state)) 6509 skl_wa_827(dev_priv, pipe, false); 6510 6511 if (needs_scalerclk_wa(old_crtc_state) && 6512 !needs_scalerclk_wa(new_crtc_state)) 6513 icl_wa_scalerclkgating(dev_priv, pipe, false); 6514 } 6515 6516 static void intel_pre_plane_update(struct intel_atomic_state *state, 6517 struct intel_crtc *crtc) 6518 { 6519 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6520 const struct intel_crtc_state *old_crtc_state = 6521 intel_atomic_get_old_crtc_state(state, crtc); 6522 const struct intel_crtc_state *new_crtc_state = 6523 intel_atomic_get_new_crtc_state(state, crtc); 6524 enum pipe pipe = crtc->pipe; 6525 6526 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state)) 6527 hsw_disable_ips(old_crtc_state); 6528 6529 if (intel_fbc_pre_update(state, crtc)) 6530 intel_wait_for_vblank(dev_priv, pipe); 6531 6532 /* Display WA 827 */ 6533 if (!needs_nv12_wa(old_crtc_state) && 6534 needs_nv12_wa(new_crtc_state)) 6535 skl_wa_827(dev_priv, pipe, true); 6536 6537 /* Wa_2006604312:icl */ 6538 if (!needs_scalerclk_wa(old_crtc_state) && 6539 needs_scalerclk_wa(new_crtc_state)) 6540 icl_wa_scalerclkgating(dev_priv, pipe, true); 6541 6542 /* 6543 * Vblank time updates from the shadow to live plane control register 6544 * are blocked if the memory self-refresh mode is active at that 6545 * moment. So to make sure the plane gets truly disabled, disable 6546 * first the self-refresh mode. The self-refresh enable bit in turn 6547 * will be checked/applied by the HW only at the next frame start 6548 * event which is after the vblank start event, so we need to have a 6549 * wait-for-vblank between disabling the plane and the pipe. 6550 */ 6551 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active && 6552 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 6553 intel_wait_for_vblank(dev_priv, pipe); 6554 6555 /* 6556 * IVB workaround: must disable low power watermarks for at least 6557 * one frame before enabling scaling. LP watermarks can be re-enabled 6558 * when scaling is disabled. 6559 * 6560 * WaCxSRDisabledForSpriteScaling:ivb 6561 */ 6562 if (old_crtc_state->hw.active && 6563 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv)) 6564 intel_wait_for_vblank(dev_priv, pipe); 6565 6566 /* 6567 * If we're doing a modeset we don't need to do any 6568 * pre-vblank watermark programming here. 6569 */ 6570 if (!needs_modeset(new_crtc_state)) { 6571 /* 6572 * For platforms that support atomic watermarks, program the 6573 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 6574 * will be the intermediate values that are safe for both pre- and 6575 * post- vblank; when vblank happens, the 'active' values will be set 6576 * to the final 'target' values and we'll do this again to get the 6577 * optimal watermarks. For gen9+ platforms, the values we program here 6578 * will be the final target values which will get automatically latched 6579 * at vblank time; no further programming will be necessary. 6580 * 6581 * If a platform hasn't been transitioned to atomic watermarks yet, 6582 * we'll continue to update watermarks the old way, if flags tell 6583 * us to. 6584 */ 6585 if (dev_priv->display.initial_watermarks) 6586 dev_priv->display.initial_watermarks(state, crtc); 6587 else if (new_crtc_state->update_wm_pre) 6588 intel_update_watermarks(crtc); 6589 } 6590 6591 /* 6592 * Gen2 reports pipe underruns whenever all planes are disabled. 6593 * So disable underrun reporting before all the planes get disabled. 6594 * 6595 * We do this after .initial_watermarks() so that we have a 6596 * chance of catching underruns with the intermediate watermarks 6597 * vs. the old plane configuration. 6598 */ 6599 if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state)) 6600 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6601 } 6602 6603 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 6604 struct intel_crtc *crtc) 6605 { 6606 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6607 const struct intel_crtc_state *new_crtc_state = 6608 intel_atomic_get_new_crtc_state(state, crtc); 6609 unsigned int update_mask = new_crtc_state->update_planes; 6610 const struct intel_plane_state *old_plane_state; 6611 struct intel_plane *plane; 6612 unsigned fb_bits = 0; 6613 int i; 6614 6615 intel_crtc_dpms_overlay_disable(crtc); 6616 6617 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 6618 if (crtc->pipe != plane->pipe || 6619 !(update_mask & BIT(plane->id))) 6620 continue; 6621 6622 intel_disable_plane(plane, new_crtc_state); 6623 6624 if (old_plane_state->uapi.visible) 6625 fb_bits |= plane->frontbuffer_bit; 6626 } 6627 6628 intel_frontbuffer_flip(dev_priv, fb_bits); 6629 } 6630 6631 /* 6632 * intel_connector_primary_encoder - get the primary encoder for a connector 6633 * @connector: connector for which to return the encoder 6634 * 6635 * Returns the primary encoder for a connector. There is a 1:1 mapping from 6636 * all connectors to their encoder, except for DP-MST connectors which have 6637 * both a virtual and a primary encoder. These DP-MST primary encoders can be 6638 * pointed to by as many DP-MST connectors as there are pipes. 6639 */ 6640 static struct intel_encoder * 6641 intel_connector_primary_encoder(struct intel_connector *connector) 6642 { 6643 struct intel_encoder *encoder; 6644 6645 if (connector->mst_port) 6646 return &dp_to_dig_port(connector->mst_port)->base; 6647 6648 encoder = intel_attached_encoder(connector); 6649 WARN_ON(!encoder); 6650 6651 return encoder; 6652 } 6653 6654 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 6655 { 6656 struct drm_connector_state *new_conn_state; 6657 struct drm_connector *connector; 6658 int i; 6659 6660 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 6661 i) { 6662 struct intel_connector *intel_connector; 6663 struct intel_encoder *encoder; 6664 struct intel_crtc *crtc; 6665 6666 if (!intel_connector_needs_modeset(state, connector)) 6667 continue; 6668 6669 intel_connector = to_intel_connector(connector); 6670 encoder = intel_connector_primary_encoder(intel_connector); 6671 if (!encoder->update_prepare) 6672 continue; 6673 6674 crtc = new_conn_state->crtc ? 6675 to_intel_crtc(new_conn_state->crtc) : NULL; 6676 encoder->update_prepare(state, encoder, crtc); 6677 } 6678 } 6679 6680 static void intel_encoders_update_complete(struct intel_atomic_state *state) 6681 { 6682 struct drm_connector_state *new_conn_state; 6683 struct drm_connector *connector; 6684 int i; 6685 6686 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 6687 i) { 6688 struct intel_connector *intel_connector; 6689 struct intel_encoder *encoder; 6690 struct intel_crtc *crtc; 6691 6692 if (!intel_connector_needs_modeset(state, connector)) 6693 continue; 6694 6695 intel_connector = to_intel_connector(connector); 6696 encoder = intel_connector_primary_encoder(intel_connector); 6697 if (!encoder->update_complete) 6698 continue; 6699 6700 crtc = new_conn_state->crtc ? 6701 to_intel_crtc(new_conn_state->crtc) : NULL; 6702 encoder->update_complete(state, encoder, crtc); 6703 } 6704 } 6705 6706 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, 6707 struct intel_crtc *crtc) 6708 { 6709 const struct intel_crtc_state *crtc_state = 6710 intel_atomic_get_new_crtc_state(state, crtc); 6711 const struct drm_connector_state *conn_state; 6712 struct drm_connector *conn; 6713 int i; 6714 6715 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6716 struct intel_encoder *encoder = 6717 to_intel_encoder(conn_state->best_encoder); 6718 6719 if (conn_state->crtc != &crtc->base) 6720 continue; 6721 6722 if (encoder->pre_pll_enable) 6723 encoder->pre_pll_enable(encoder, crtc_state, conn_state); 6724 } 6725 } 6726 6727 static void intel_encoders_pre_enable(struct intel_atomic_state *state, 6728 struct intel_crtc *crtc) 6729 { 6730 const struct intel_crtc_state *crtc_state = 6731 intel_atomic_get_new_crtc_state(state, crtc); 6732 const struct drm_connector_state *conn_state; 6733 struct drm_connector *conn; 6734 int i; 6735 6736 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6737 struct intel_encoder *encoder = 6738 to_intel_encoder(conn_state->best_encoder); 6739 6740 if (conn_state->crtc != &crtc->base) 6741 continue; 6742 6743 if (encoder->pre_enable) 6744 encoder->pre_enable(encoder, crtc_state, conn_state); 6745 } 6746 } 6747 6748 static void intel_encoders_enable(struct intel_atomic_state *state, 6749 struct intel_crtc *crtc) 6750 { 6751 const struct intel_crtc_state *crtc_state = 6752 intel_atomic_get_new_crtc_state(state, crtc); 6753 const struct drm_connector_state *conn_state; 6754 struct drm_connector *conn; 6755 int i; 6756 6757 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6758 struct intel_encoder *encoder = 6759 to_intel_encoder(conn_state->best_encoder); 6760 6761 if (conn_state->crtc != &crtc->base) 6762 continue; 6763 6764 if (encoder->enable) 6765 encoder->enable(encoder, crtc_state, conn_state); 6766 intel_opregion_notify_encoder(encoder, true); 6767 } 6768 } 6769 6770 static void intel_encoders_disable(struct intel_atomic_state *state, 6771 struct intel_crtc *crtc) 6772 { 6773 const struct intel_crtc_state *old_crtc_state = 6774 intel_atomic_get_old_crtc_state(state, crtc); 6775 const struct drm_connector_state *old_conn_state; 6776 struct drm_connector *conn; 6777 int i; 6778 6779 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6780 struct intel_encoder *encoder = 6781 to_intel_encoder(old_conn_state->best_encoder); 6782 6783 if (old_conn_state->crtc != &crtc->base) 6784 continue; 6785 6786 intel_opregion_notify_encoder(encoder, false); 6787 if (encoder->disable) 6788 encoder->disable(encoder, old_crtc_state, old_conn_state); 6789 } 6790 } 6791 6792 static void intel_encoders_post_disable(struct intel_atomic_state *state, 6793 struct intel_crtc *crtc) 6794 { 6795 const struct intel_crtc_state *old_crtc_state = 6796 intel_atomic_get_old_crtc_state(state, crtc); 6797 const struct drm_connector_state *old_conn_state; 6798 struct drm_connector *conn; 6799 int i; 6800 6801 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6802 struct intel_encoder *encoder = 6803 to_intel_encoder(old_conn_state->best_encoder); 6804 6805 if (old_conn_state->crtc != &crtc->base) 6806 continue; 6807 6808 if (encoder->post_disable) 6809 encoder->post_disable(encoder, old_crtc_state, old_conn_state); 6810 } 6811 } 6812 6813 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, 6814 struct intel_crtc *crtc) 6815 { 6816 const struct intel_crtc_state *old_crtc_state = 6817 intel_atomic_get_old_crtc_state(state, crtc); 6818 const struct drm_connector_state *old_conn_state; 6819 struct drm_connector *conn; 6820 int i; 6821 6822 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6823 struct intel_encoder *encoder = 6824 to_intel_encoder(old_conn_state->best_encoder); 6825 6826 if (old_conn_state->crtc != &crtc->base) 6827 continue; 6828 6829 if (encoder->post_pll_disable) 6830 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state); 6831 } 6832 } 6833 6834 static void intel_encoders_update_pipe(struct intel_atomic_state *state, 6835 struct intel_crtc *crtc) 6836 { 6837 const struct intel_crtc_state *crtc_state = 6838 intel_atomic_get_new_crtc_state(state, crtc); 6839 const struct drm_connector_state *conn_state; 6840 struct drm_connector *conn; 6841 int i; 6842 6843 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6844 struct intel_encoder *encoder = 6845 to_intel_encoder(conn_state->best_encoder); 6846 6847 if (conn_state->crtc != &crtc->base) 6848 continue; 6849 6850 if (encoder->update_pipe) 6851 encoder->update_pipe(encoder, crtc_state, conn_state); 6852 } 6853 } 6854 6855 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 6856 { 6857 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6858 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 6859 6860 plane->disable_plane(plane, crtc_state); 6861 } 6862 6863 static void ilk_crtc_enable(struct intel_atomic_state *state, 6864 struct intel_crtc *crtc) 6865 { 6866 const struct intel_crtc_state *new_crtc_state = 6867 intel_atomic_get_new_crtc_state(state, crtc); 6868 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6869 enum pipe pipe = crtc->pipe; 6870 6871 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 6872 return; 6873 6874 /* 6875 * Sometimes spurious CPU pipe underruns happen during FDI 6876 * training, at least with VGA+HDMI cloning. Suppress them. 6877 * 6878 * On ILK we get an occasional spurious CPU pipe underruns 6879 * between eDP port A enable and vdd enable. Also PCH port 6880 * enable seems to result in the occasional CPU pipe underrun. 6881 * 6882 * Spurious PCH underruns also occur during PCH enabling. 6883 */ 6884 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6885 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 6886 6887 if (new_crtc_state->has_pch_encoder) 6888 intel_prepare_shared_dpll(new_crtc_state); 6889 6890 if (intel_crtc_has_dp_encoder(new_crtc_state)) 6891 intel_dp_set_m_n(new_crtc_state, M1_N1); 6892 6893 intel_set_pipe_timings(new_crtc_state); 6894 intel_set_pipe_src_size(new_crtc_state); 6895 6896 if (new_crtc_state->has_pch_encoder) 6897 intel_cpu_transcoder_set_m_n(new_crtc_state, 6898 &new_crtc_state->fdi_m_n, NULL); 6899 6900 ilk_set_pipeconf(new_crtc_state); 6901 6902 crtc->active = true; 6903 6904 intel_encoders_pre_enable(state, crtc); 6905 6906 if (new_crtc_state->has_pch_encoder) { 6907 /* Note: FDI PLL enabling _must_ be done before we enable the 6908 * cpu pipes, hence this is separate from all the other fdi/pch 6909 * enabling. */ 6910 ilk_fdi_pll_enable(new_crtc_state); 6911 } else { 6912 assert_fdi_tx_disabled(dev_priv, pipe); 6913 assert_fdi_rx_disabled(dev_priv, pipe); 6914 } 6915 6916 ilk_pfit_enable(new_crtc_state); 6917 6918 /* 6919 * On ILK+ LUT must be loaded before the pipe is running but with 6920 * clocks enabled 6921 */ 6922 intel_color_load_luts(new_crtc_state); 6923 intel_color_commit(new_crtc_state); 6924 /* update DSPCNTR to configure gamma for pipe bottom color */ 6925 intel_disable_primary_plane(new_crtc_state); 6926 6927 if (dev_priv->display.initial_watermarks) 6928 dev_priv->display.initial_watermarks(state, crtc); 6929 intel_enable_pipe(new_crtc_state); 6930 6931 if (new_crtc_state->has_pch_encoder) 6932 ilk_pch_enable(state, new_crtc_state); 6933 6934 intel_crtc_vblank_on(new_crtc_state); 6935 6936 intel_encoders_enable(state, crtc); 6937 6938 if (HAS_PCH_CPT(dev_priv)) 6939 cpt_verify_modeset(dev_priv, pipe); 6940 6941 /* 6942 * Must wait for vblank to avoid spurious PCH FIFO underruns. 6943 * And a second vblank wait is needed at least on ILK with 6944 * some interlaced HDMI modes. Let's do the double wait always 6945 * in case there are more corner cases we don't know about. 6946 */ 6947 if (new_crtc_state->has_pch_encoder) { 6948 intel_wait_for_vblank(dev_priv, pipe); 6949 intel_wait_for_vblank(dev_priv, pipe); 6950 } 6951 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 6952 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 6953 } 6954 6955 /* IPS only exists on ULT machines and is tied to pipe A. */ 6956 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 6957 { 6958 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 6959 } 6960 6961 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 6962 enum pipe pipe, bool apply) 6963 { 6964 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)); 6965 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 6966 6967 if (apply) 6968 val |= mask; 6969 else 6970 val &= ~mask; 6971 6972 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val); 6973 } 6974 6975 static void icl_pipe_mbus_enable(struct intel_crtc *crtc) 6976 { 6977 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6978 enum pipe pipe = crtc->pipe; 6979 u32 val; 6980 6981 val = MBUS_DBOX_A_CREDIT(2); 6982 6983 if (INTEL_GEN(dev_priv) >= 12) { 6984 val |= MBUS_DBOX_BW_CREDIT(2); 6985 val |= MBUS_DBOX_B_CREDIT(12); 6986 } else { 6987 val |= MBUS_DBOX_BW_CREDIT(1); 6988 val |= MBUS_DBOX_B_CREDIT(8); 6989 } 6990 6991 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val); 6992 } 6993 6994 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) 6995 { 6996 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6997 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6998 6999 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe), 7000 HSW_LINETIME(crtc_state->linetime) | 7001 HSW_IPS_LINETIME(crtc_state->ips_linetime)); 7002 } 7003 7004 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) 7005 { 7006 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7007 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7008 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder); 7009 u32 val; 7010 7011 val = intel_de_read(dev_priv, reg); 7012 val &= ~HSW_FRAME_START_DELAY_MASK; 7013 val |= HSW_FRAME_START_DELAY(0); 7014 intel_de_write(dev_priv, reg, val); 7015 } 7016 7017 static void hsw_crtc_enable(struct intel_atomic_state *state, 7018 struct intel_crtc *crtc) 7019 { 7020 const struct intel_crtc_state *new_crtc_state = 7021 intel_atomic_get_new_crtc_state(state, crtc); 7022 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7023 enum pipe pipe = crtc->pipe, hsw_workaround_pipe; 7024 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 7025 bool psl_clkgate_wa; 7026 7027 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7028 return; 7029 7030 intel_encoders_pre_pll_enable(state, crtc); 7031 7032 if (new_crtc_state->shared_dpll) 7033 intel_enable_shared_dpll(new_crtc_state); 7034 7035 intel_encoders_pre_enable(state, crtc); 7036 7037 if (!transcoder_is_dsi(cpu_transcoder)) 7038 intel_set_pipe_timings(new_crtc_state); 7039 7040 if (INTEL_GEN(dev_priv) >= 11) 7041 icl_enable_trans_port_sync(new_crtc_state); 7042 7043 intel_set_pipe_src_size(new_crtc_state); 7044 7045 if (cpu_transcoder != TRANSCODER_EDP && 7046 !transcoder_is_dsi(cpu_transcoder)) 7047 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder), 7048 new_crtc_state->pixel_multiplier - 1); 7049 7050 if (new_crtc_state->has_pch_encoder) 7051 intel_cpu_transcoder_set_m_n(new_crtc_state, 7052 &new_crtc_state->fdi_m_n, NULL); 7053 7054 if (!transcoder_is_dsi(cpu_transcoder)) { 7055 hsw_set_frame_start_delay(new_crtc_state); 7056 hsw_set_pipeconf(new_crtc_state); 7057 } 7058 7059 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 7060 bdw_set_pipemisc(new_crtc_state); 7061 7062 crtc->active = true; 7063 7064 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */ 7065 psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) && 7066 new_crtc_state->pch_pfit.enabled; 7067 if (psl_clkgate_wa) 7068 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 7069 7070 if (INTEL_GEN(dev_priv) >= 9) 7071 skl_pfit_enable(new_crtc_state); 7072 else 7073 ilk_pfit_enable(new_crtc_state); 7074 7075 /* 7076 * On ILK+ LUT must be loaded before the pipe is running but with 7077 * clocks enabled 7078 */ 7079 intel_color_load_luts(new_crtc_state); 7080 intel_color_commit(new_crtc_state); 7081 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 7082 if (INTEL_GEN(dev_priv) < 9) 7083 intel_disable_primary_plane(new_crtc_state); 7084 7085 hsw_set_linetime_wm(new_crtc_state); 7086 7087 if (INTEL_GEN(dev_priv) >= 11) 7088 icl_set_pipe_chicken(crtc); 7089 7090 if (!transcoder_is_dsi(cpu_transcoder)) 7091 intel_ddi_enable_transcoder_func(new_crtc_state); 7092 7093 if (dev_priv->display.initial_watermarks) 7094 dev_priv->display.initial_watermarks(state, crtc); 7095 7096 if (INTEL_GEN(dev_priv) >= 11) 7097 icl_pipe_mbus_enable(crtc); 7098 7099 intel_encoders_enable(state, crtc); 7100 7101 if (psl_clkgate_wa) { 7102 intel_wait_for_vblank(dev_priv, pipe); 7103 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 7104 } 7105 7106 /* If we change the relative order between pipe/planes enabling, we need 7107 * to change the workaround. */ 7108 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe; 7109 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 7110 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 7111 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 7112 } 7113 } 7114 7115 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state) 7116 { 7117 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 7118 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7119 enum pipe pipe = crtc->pipe; 7120 7121 /* To avoid upsetting the power well on haswell only disable the pfit if 7122 * it's in use. The hw state code will make sure we get this right. */ 7123 if (old_crtc_state->pch_pfit.enabled) { 7124 intel_de_write(dev_priv, PF_CTL(pipe), 0); 7125 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0); 7126 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0); 7127 } 7128 } 7129 7130 static void ilk_crtc_disable(struct intel_atomic_state *state, 7131 struct intel_crtc *crtc) 7132 { 7133 const struct intel_crtc_state *old_crtc_state = 7134 intel_atomic_get_old_crtc_state(state, crtc); 7135 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7136 enum pipe pipe = crtc->pipe; 7137 7138 /* 7139 * Sometimes spurious CPU pipe underruns happen when the 7140 * pipe is already disabled, but FDI RX/TX is still enabled. 7141 * Happens at least with VGA+HDMI cloning. Suppress them. 7142 */ 7143 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 7144 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 7145 7146 intel_encoders_disable(state, crtc); 7147 7148 intel_crtc_vblank_off(old_crtc_state); 7149 7150 intel_disable_pipe(old_crtc_state); 7151 7152 ilk_pfit_disable(old_crtc_state); 7153 7154 if (old_crtc_state->has_pch_encoder) 7155 ilk_fdi_disable(crtc); 7156 7157 intel_encoders_post_disable(state, crtc); 7158 7159 if (old_crtc_state->has_pch_encoder) { 7160 ilk_disable_pch_transcoder(dev_priv, pipe); 7161 7162 if (HAS_PCH_CPT(dev_priv)) { 7163 i915_reg_t reg; 7164 u32 temp; 7165 7166 /* disable TRANS_DP_CTL */ 7167 reg = TRANS_DP_CTL(pipe); 7168 temp = intel_de_read(dev_priv, reg); 7169 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 7170 TRANS_DP_PORT_SEL_MASK); 7171 temp |= TRANS_DP_PORT_SEL_NONE; 7172 intel_de_write(dev_priv, reg, temp); 7173 7174 /* disable DPLL_SEL */ 7175 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 7176 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 7177 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 7178 } 7179 7180 ilk_fdi_pll_disable(crtc); 7181 } 7182 7183 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7184 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 7185 } 7186 7187 static void hsw_crtc_disable(struct intel_atomic_state *state, 7188 struct intel_crtc *crtc) 7189 { 7190 /* 7191 * FIXME collapse everything to one hook. 7192 * Need care with mst->ddi interactions. 7193 */ 7194 intel_encoders_disable(state, crtc); 7195 intel_encoders_post_disable(state, crtc); 7196 } 7197 7198 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 7199 { 7200 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7201 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7202 7203 if (!crtc_state->gmch_pfit.control) 7204 return; 7205 7206 /* 7207 * The panel fitter should only be adjusted whilst the pipe is disabled, 7208 * according to register description and PRM. 7209 */ 7210 drm_WARN_ON(&dev_priv->drm, 7211 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE); 7212 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 7213 7214 intel_de_write(dev_priv, PFIT_PGM_RATIOS, 7215 crtc_state->gmch_pfit.pgm_ratios); 7216 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control); 7217 7218 /* Border color in case we don't scale up to the full screen. Black by 7219 * default, change to something else for debugging. */ 7220 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0); 7221 } 7222 7223 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 7224 { 7225 if (phy == PHY_NONE) 7226 return false; 7227 7228 if (IS_ELKHARTLAKE(dev_priv)) 7229 return phy <= PHY_C; 7230 7231 if (INTEL_GEN(dev_priv) >= 11) 7232 return phy <= PHY_B; 7233 7234 return false; 7235 } 7236 7237 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 7238 { 7239 if (INTEL_GEN(dev_priv) >= 12) 7240 return phy >= PHY_D && phy <= PHY_I; 7241 7242 if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv)) 7243 return phy >= PHY_C && phy <= PHY_F; 7244 7245 return false; 7246 } 7247 7248 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 7249 { 7250 if (IS_ELKHARTLAKE(i915) && port == PORT_D) 7251 return PHY_A; 7252 7253 return (enum phy)port; 7254 } 7255 7256 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 7257 { 7258 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 7259 return PORT_TC_NONE; 7260 7261 if (INTEL_GEN(dev_priv) >= 12) 7262 return port - PORT_D; 7263 7264 return port - PORT_C; 7265 } 7266 7267 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 7268 { 7269 switch (port) { 7270 case PORT_A: 7271 return POWER_DOMAIN_PORT_DDI_A_LANES; 7272 case PORT_B: 7273 return POWER_DOMAIN_PORT_DDI_B_LANES; 7274 case PORT_C: 7275 return POWER_DOMAIN_PORT_DDI_C_LANES; 7276 case PORT_D: 7277 return POWER_DOMAIN_PORT_DDI_D_LANES; 7278 case PORT_E: 7279 return POWER_DOMAIN_PORT_DDI_E_LANES; 7280 case PORT_F: 7281 return POWER_DOMAIN_PORT_DDI_F_LANES; 7282 case PORT_G: 7283 return POWER_DOMAIN_PORT_DDI_G_LANES; 7284 default: 7285 MISSING_CASE(port); 7286 return POWER_DOMAIN_PORT_OTHER; 7287 } 7288 } 7289 7290 enum intel_display_power_domain 7291 intel_aux_power_domain(struct intel_digital_port *dig_port) 7292 { 7293 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 7294 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 7295 7296 if (intel_phy_is_tc(dev_priv, phy) && 7297 dig_port->tc_mode == TC_PORT_TBT_ALT) { 7298 switch (dig_port->aux_ch) { 7299 case AUX_CH_C: 7300 return POWER_DOMAIN_AUX_C_TBT; 7301 case AUX_CH_D: 7302 return POWER_DOMAIN_AUX_D_TBT; 7303 case AUX_CH_E: 7304 return POWER_DOMAIN_AUX_E_TBT; 7305 case AUX_CH_F: 7306 return POWER_DOMAIN_AUX_F_TBT; 7307 case AUX_CH_G: 7308 return POWER_DOMAIN_AUX_G_TBT; 7309 default: 7310 MISSING_CASE(dig_port->aux_ch); 7311 return POWER_DOMAIN_AUX_C_TBT; 7312 } 7313 } 7314 7315 switch (dig_port->aux_ch) { 7316 case AUX_CH_A: 7317 return POWER_DOMAIN_AUX_A; 7318 case AUX_CH_B: 7319 return POWER_DOMAIN_AUX_B; 7320 case AUX_CH_C: 7321 return POWER_DOMAIN_AUX_C; 7322 case AUX_CH_D: 7323 return POWER_DOMAIN_AUX_D; 7324 case AUX_CH_E: 7325 return POWER_DOMAIN_AUX_E; 7326 case AUX_CH_F: 7327 return POWER_DOMAIN_AUX_F; 7328 case AUX_CH_G: 7329 return POWER_DOMAIN_AUX_G; 7330 default: 7331 MISSING_CASE(dig_port->aux_ch); 7332 return POWER_DOMAIN_AUX_A; 7333 } 7334 } 7335 7336 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 7337 { 7338 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7339 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7340 struct drm_encoder *encoder; 7341 enum pipe pipe = crtc->pipe; 7342 u64 mask; 7343 enum transcoder transcoder = crtc_state->cpu_transcoder; 7344 7345 if (!crtc_state->hw.active) 7346 return 0; 7347 7348 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 7349 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); 7350 if (crtc_state->pch_pfit.enabled || 7351 crtc_state->pch_pfit.force_thru) 7352 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 7353 7354 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 7355 crtc_state->uapi.encoder_mask) { 7356 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 7357 7358 mask |= BIT_ULL(intel_encoder->power_domain); 7359 } 7360 7361 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 7362 mask |= BIT_ULL(POWER_DOMAIN_AUDIO); 7363 7364 if (crtc_state->shared_dpll) 7365 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 7366 7367 return mask; 7368 } 7369 7370 static u64 7371 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 7372 { 7373 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7374 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7375 enum intel_display_power_domain domain; 7376 u64 domains, new_domains, old_domains; 7377 7378 old_domains = crtc->enabled_power_domains; 7379 crtc->enabled_power_domains = new_domains = 7380 get_crtc_power_domains(crtc_state); 7381 7382 domains = new_domains & ~old_domains; 7383 7384 for_each_power_domain(domain, domains) 7385 intel_display_power_get(dev_priv, domain); 7386 7387 return old_domains & ~new_domains; 7388 } 7389 7390 static void modeset_put_power_domains(struct drm_i915_private *dev_priv, 7391 u64 domains) 7392 { 7393 enum intel_display_power_domain domain; 7394 7395 for_each_power_domain(domain, domains) 7396 intel_display_power_put_unchecked(dev_priv, domain); 7397 } 7398 7399 static void valleyview_crtc_enable(struct intel_atomic_state *state, 7400 struct intel_crtc *crtc) 7401 { 7402 const struct intel_crtc_state *new_crtc_state = 7403 intel_atomic_get_new_crtc_state(state, crtc); 7404 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7405 enum pipe pipe = crtc->pipe; 7406 7407 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7408 return; 7409 7410 if (intel_crtc_has_dp_encoder(new_crtc_state)) 7411 intel_dp_set_m_n(new_crtc_state, M1_N1); 7412 7413 intel_set_pipe_timings(new_crtc_state); 7414 intel_set_pipe_src_size(new_crtc_state); 7415 7416 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 7417 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY); 7418 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0); 7419 } 7420 7421 i9xx_set_pipeconf(new_crtc_state); 7422 7423 crtc->active = true; 7424 7425 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7426 7427 intel_encoders_pre_pll_enable(state, crtc); 7428 7429 if (IS_CHERRYVIEW(dev_priv)) { 7430 chv_prepare_pll(crtc, new_crtc_state); 7431 chv_enable_pll(crtc, new_crtc_state); 7432 } else { 7433 vlv_prepare_pll(crtc, new_crtc_state); 7434 vlv_enable_pll(crtc, new_crtc_state); 7435 } 7436 7437 intel_encoders_pre_enable(state, crtc); 7438 7439 i9xx_pfit_enable(new_crtc_state); 7440 7441 intel_color_load_luts(new_crtc_state); 7442 intel_color_commit(new_crtc_state); 7443 /* update DSPCNTR to configure gamma for pipe bottom color */ 7444 intel_disable_primary_plane(new_crtc_state); 7445 7446 dev_priv->display.initial_watermarks(state, crtc); 7447 intel_enable_pipe(new_crtc_state); 7448 7449 intel_crtc_vblank_on(new_crtc_state); 7450 7451 intel_encoders_enable(state, crtc); 7452 } 7453 7454 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) 7455 { 7456 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7457 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7458 7459 intel_de_write(dev_priv, FP0(crtc->pipe), 7460 crtc_state->dpll_hw_state.fp0); 7461 intel_de_write(dev_priv, FP1(crtc->pipe), 7462 crtc_state->dpll_hw_state.fp1); 7463 } 7464 7465 static void i9xx_crtc_enable(struct intel_atomic_state *state, 7466 struct intel_crtc *crtc) 7467 { 7468 const struct intel_crtc_state *new_crtc_state = 7469 intel_atomic_get_new_crtc_state(state, crtc); 7470 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7471 enum pipe pipe = crtc->pipe; 7472 7473 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7474 return; 7475 7476 i9xx_set_pll_dividers(new_crtc_state); 7477 7478 if (intel_crtc_has_dp_encoder(new_crtc_state)) 7479 intel_dp_set_m_n(new_crtc_state, M1_N1); 7480 7481 intel_set_pipe_timings(new_crtc_state); 7482 intel_set_pipe_src_size(new_crtc_state); 7483 7484 i9xx_set_pipeconf(new_crtc_state); 7485 7486 crtc->active = true; 7487 7488 if (!IS_GEN(dev_priv, 2)) 7489 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7490 7491 intel_encoders_pre_enable(state, crtc); 7492 7493 i9xx_enable_pll(crtc, new_crtc_state); 7494 7495 i9xx_pfit_enable(new_crtc_state); 7496 7497 intel_color_load_luts(new_crtc_state); 7498 intel_color_commit(new_crtc_state); 7499 /* update DSPCNTR to configure gamma for pipe bottom color */ 7500 intel_disable_primary_plane(new_crtc_state); 7501 7502 if (dev_priv->display.initial_watermarks) 7503 dev_priv->display.initial_watermarks(state, crtc); 7504 else 7505 intel_update_watermarks(crtc); 7506 intel_enable_pipe(new_crtc_state); 7507 7508 intel_crtc_vblank_on(new_crtc_state); 7509 7510 intel_encoders_enable(state, crtc); 7511 } 7512 7513 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 7514 { 7515 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 7516 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7517 7518 if (!old_crtc_state->gmch_pfit.control) 7519 return; 7520 7521 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 7522 7523 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n", 7524 intel_de_read(dev_priv, PFIT_CONTROL)); 7525 intel_de_write(dev_priv, PFIT_CONTROL, 0); 7526 } 7527 7528 static void i9xx_crtc_disable(struct intel_atomic_state *state, 7529 struct intel_crtc *crtc) 7530 { 7531 struct intel_crtc_state *old_crtc_state = 7532 intel_atomic_get_old_crtc_state(state, crtc); 7533 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7534 enum pipe pipe = crtc->pipe; 7535 7536 /* 7537 * On gen2 planes are double buffered but the pipe isn't, so we must 7538 * wait for planes to fully turn off before disabling the pipe. 7539 */ 7540 if (IS_GEN(dev_priv, 2)) 7541 intel_wait_for_vblank(dev_priv, pipe); 7542 7543 intel_encoders_disable(state, crtc); 7544 7545 intel_crtc_vblank_off(old_crtc_state); 7546 7547 intel_disable_pipe(old_crtc_state); 7548 7549 i9xx_pfit_disable(old_crtc_state); 7550 7551 intel_encoders_post_disable(state, crtc); 7552 7553 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 7554 if (IS_CHERRYVIEW(dev_priv)) 7555 chv_disable_pll(dev_priv, pipe); 7556 else if (IS_VALLEYVIEW(dev_priv)) 7557 vlv_disable_pll(dev_priv, pipe); 7558 else 7559 i9xx_disable_pll(old_crtc_state); 7560 } 7561 7562 intel_encoders_post_pll_disable(state, crtc); 7563 7564 if (!IS_GEN(dev_priv, 2)) 7565 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 7566 7567 if (!dev_priv->display.initial_watermarks) 7568 intel_update_watermarks(crtc); 7569 7570 /* clock the pipe down to 640x480@60 to potentially save power */ 7571 if (IS_I830(dev_priv)) 7572 i830_enable_pipe(dev_priv, pipe); 7573 } 7574 7575 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc, 7576 struct drm_modeset_acquire_ctx *ctx) 7577 { 7578 struct intel_encoder *encoder; 7579 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7580 struct intel_bw_state *bw_state = 7581 to_intel_bw_state(dev_priv->bw_obj.state); 7582 struct intel_cdclk_state *cdclk_state = 7583 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 7584 struct intel_crtc_state *crtc_state = 7585 to_intel_crtc_state(crtc->base.state); 7586 enum intel_display_power_domain domain; 7587 struct intel_plane *plane; 7588 struct drm_atomic_state *state; 7589 struct intel_crtc_state *temp_crtc_state; 7590 enum pipe pipe = crtc->pipe; 7591 u64 domains; 7592 int ret; 7593 7594 if (!crtc_state->hw.active) 7595 return; 7596 7597 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 7598 const struct intel_plane_state *plane_state = 7599 to_intel_plane_state(plane->base.state); 7600 7601 if (plane_state->uapi.visible) 7602 intel_plane_disable_noatomic(crtc, plane); 7603 } 7604 7605 state = drm_atomic_state_alloc(&dev_priv->drm); 7606 if (!state) { 7607 drm_dbg_kms(&dev_priv->drm, 7608 "failed to disable [CRTC:%d:%s], out of memory", 7609 crtc->base.base.id, crtc->base.name); 7610 return; 7611 } 7612 7613 state->acquire_ctx = ctx; 7614 7615 /* Everything's already locked, -EDEADLK can't happen. */ 7616 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc); 7617 ret = drm_atomic_add_affected_connectors(state, &crtc->base); 7618 7619 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret); 7620 7621 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc); 7622 7623 drm_atomic_state_put(state); 7624 7625 drm_dbg_kms(&dev_priv->drm, 7626 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 7627 crtc->base.base.id, crtc->base.name); 7628 7629 crtc->active = false; 7630 crtc->base.enabled = false; 7631 7632 drm_WARN_ON(&dev_priv->drm, 7633 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0); 7634 crtc_state->uapi.active = false; 7635 crtc_state->uapi.connector_mask = 0; 7636 crtc_state->uapi.encoder_mask = 0; 7637 intel_crtc_free_hw_state(crtc_state); 7638 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw)); 7639 7640 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder) 7641 encoder->base.crtc = NULL; 7642 7643 intel_fbc_disable(crtc); 7644 intel_update_watermarks(crtc); 7645 intel_disable_shared_dpll(crtc_state); 7646 7647 domains = crtc->enabled_power_domains; 7648 for_each_power_domain(domain, domains) 7649 intel_display_power_put_unchecked(dev_priv, domain); 7650 crtc->enabled_power_domains = 0; 7651 7652 dev_priv->active_pipes &= ~BIT(pipe); 7653 cdclk_state->min_cdclk[pipe] = 0; 7654 cdclk_state->min_voltage_level[pipe] = 0; 7655 cdclk_state->active_pipes &= ~BIT(pipe); 7656 7657 bw_state->data_rate[pipe] = 0; 7658 bw_state->num_active_planes[pipe] = 0; 7659 } 7660 7661 /* 7662 * turn all crtc's off, but do not adjust state 7663 * This has to be paired with a call to intel_modeset_setup_hw_state. 7664 */ 7665 int intel_display_suspend(struct drm_device *dev) 7666 { 7667 struct drm_i915_private *dev_priv = to_i915(dev); 7668 struct drm_atomic_state *state; 7669 int ret; 7670 7671 state = drm_atomic_helper_suspend(dev); 7672 ret = PTR_ERR_OR_ZERO(state); 7673 if (ret) 7674 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 7675 ret); 7676 else 7677 dev_priv->modeset_restore_state = state; 7678 return ret; 7679 } 7680 7681 void intel_encoder_destroy(struct drm_encoder *encoder) 7682 { 7683 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 7684 7685 drm_encoder_cleanup(encoder); 7686 kfree(intel_encoder); 7687 } 7688 7689 /* Cross check the actual hw state with our own modeset state tracking (and it's 7690 * internal consistency). */ 7691 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 7692 struct drm_connector_state *conn_state) 7693 { 7694 struct intel_connector *connector = to_intel_connector(conn_state->connector); 7695 struct drm_i915_private *i915 = to_i915(connector->base.dev); 7696 7697 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 7698 connector->base.base.id, connector->base.name); 7699 7700 if (connector->get_hw_state(connector)) { 7701 struct intel_encoder *encoder = intel_attached_encoder(connector); 7702 7703 I915_STATE_WARN(!crtc_state, 7704 "connector enabled without attached crtc\n"); 7705 7706 if (!crtc_state) 7707 return; 7708 7709 I915_STATE_WARN(!crtc_state->hw.active, 7710 "connector is active, but attached crtc isn't\n"); 7711 7712 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 7713 return; 7714 7715 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 7716 "atomic encoder doesn't match attached encoder\n"); 7717 7718 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 7719 "attached encoder crtc differs from connector crtc\n"); 7720 } else { 7721 I915_STATE_WARN(crtc_state && crtc_state->hw.active, 7722 "attached crtc is active, but connector isn't\n"); 7723 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 7724 "best encoder set without crtc!\n"); 7725 } 7726 } 7727 7728 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state) 7729 { 7730 if (crtc_state->hw.enable && crtc_state->has_pch_encoder) 7731 return crtc_state->fdi_lanes; 7732 7733 return 0; 7734 } 7735 7736 static int ilk_check_fdi_lanes(struct drm_device *dev, enum pipe pipe, 7737 struct intel_crtc_state *pipe_config) 7738 { 7739 struct drm_i915_private *dev_priv = to_i915(dev); 7740 struct drm_atomic_state *state = pipe_config->uapi.state; 7741 struct intel_crtc *other_crtc; 7742 struct intel_crtc_state *other_crtc_state; 7743 7744 drm_dbg_kms(&dev_priv->drm, 7745 "checking fdi config on pipe %c, lanes %i\n", 7746 pipe_name(pipe), pipe_config->fdi_lanes); 7747 if (pipe_config->fdi_lanes > 4) { 7748 drm_dbg_kms(&dev_priv->drm, 7749 "invalid fdi lane config on pipe %c: %i lanes\n", 7750 pipe_name(pipe), pipe_config->fdi_lanes); 7751 return -EINVAL; 7752 } 7753 7754 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 7755 if (pipe_config->fdi_lanes > 2) { 7756 drm_dbg_kms(&dev_priv->drm, 7757 "only 2 lanes on haswell, required: %i lanes\n", 7758 pipe_config->fdi_lanes); 7759 return -EINVAL; 7760 } else { 7761 return 0; 7762 } 7763 } 7764 7765 if (INTEL_NUM_PIPES(dev_priv) == 2) 7766 return 0; 7767 7768 /* Ivybridge 3 pipe is really complicated */ 7769 switch (pipe) { 7770 case PIPE_A: 7771 return 0; 7772 case PIPE_B: 7773 if (pipe_config->fdi_lanes <= 2) 7774 return 0; 7775 7776 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C); 7777 other_crtc_state = 7778 intel_atomic_get_crtc_state(state, other_crtc); 7779 if (IS_ERR(other_crtc_state)) 7780 return PTR_ERR(other_crtc_state); 7781 7782 if (pipe_required_fdi_lanes(other_crtc_state) > 0) { 7783 drm_dbg_kms(&dev_priv->drm, 7784 "invalid shared fdi lane config on pipe %c: %i lanes\n", 7785 pipe_name(pipe), pipe_config->fdi_lanes); 7786 return -EINVAL; 7787 } 7788 return 0; 7789 case PIPE_C: 7790 if (pipe_config->fdi_lanes > 2) { 7791 drm_dbg_kms(&dev_priv->drm, 7792 "only 2 lanes on pipe %c: required %i lanes\n", 7793 pipe_name(pipe), pipe_config->fdi_lanes); 7794 return -EINVAL; 7795 } 7796 7797 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B); 7798 other_crtc_state = 7799 intel_atomic_get_crtc_state(state, other_crtc); 7800 if (IS_ERR(other_crtc_state)) 7801 return PTR_ERR(other_crtc_state); 7802 7803 if (pipe_required_fdi_lanes(other_crtc_state) > 2) { 7804 drm_dbg_kms(&dev_priv->drm, 7805 "fdi link B uses too many lanes to enable link C\n"); 7806 return -EINVAL; 7807 } 7808 return 0; 7809 default: 7810 BUG(); 7811 } 7812 } 7813 7814 #define RETRY 1 7815 static int ilk_fdi_compute_config(struct intel_crtc *intel_crtc, 7816 struct intel_crtc_state *pipe_config) 7817 { 7818 struct drm_device *dev = intel_crtc->base.dev; 7819 struct drm_i915_private *i915 = to_i915(dev); 7820 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 7821 int lane, link_bw, fdi_dotclock, ret; 7822 bool needs_recompute = false; 7823 7824 retry: 7825 /* FDI is a binary signal running at ~2.7GHz, encoding 7826 * each output octet as 10 bits. The actual frequency 7827 * is stored as a divider into a 100MHz clock, and the 7828 * mode pixel clock is stored in units of 1KHz. 7829 * Hence the bw of each lane in terms of the mode signal 7830 * is: 7831 */ 7832 link_bw = intel_fdi_link_freq(i915, pipe_config); 7833 7834 fdi_dotclock = adjusted_mode->crtc_clock; 7835 7836 lane = ilk_get_lanes_required(fdi_dotclock, link_bw, 7837 pipe_config->pipe_bpp); 7838 7839 pipe_config->fdi_lanes = lane; 7840 7841 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock, 7842 link_bw, &pipe_config->fdi_m_n, false, false); 7843 7844 ret = ilk_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config); 7845 if (ret == -EDEADLK) 7846 return ret; 7847 7848 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) { 7849 pipe_config->pipe_bpp -= 2*3; 7850 drm_dbg_kms(&i915->drm, 7851 "fdi link bw constraint, reducing pipe bpp to %i\n", 7852 pipe_config->pipe_bpp); 7853 needs_recompute = true; 7854 pipe_config->bw_constrained = true; 7855 7856 goto retry; 7857 } 7858 7859 if (needs_recompute) 7860 return RETRY; 7861 7862 return ret; 7863 } 7864 7865 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 7866 { 7867 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7868 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7869 7870 /* IPS only exists on ULT machines and is tied to pipe A. */ 7871 if (!hsw_crtc_supports_ips(crtc)) 7872 return false; 7873 7874 if (!i915_modparams.enable_ips) 7875 return false; 7876 7877 if (crtc_state->pipe_bpp > 24) 7878 return false; 7879 7880 /* 7881 * We compare against max which means we must take 7882 * the increased cdclk requirement into account when 7883 * calculating the new cdclk. 7884 * 7885 * Should measure whether using a lower cdclk w/o IPS 7886 */ 7887 if (IS_BROADWELL(dev_priv) && 7888 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 7889 return false; 7890 7891 return true; 7892 } 7893 7894 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 7895 { 7896 struct drm_i915_private *dev_priv = 7897 to_i915(crtc_state->uapi.crtc->dev); 7898 struct intel_atomic_state *state = 7899 to_intel_atomic_state(crtc_state->uapi.state); 7900 7901 crtc_state->ips_enabled = false; 7902 7903 if (!hsw_crtc_state_ips_capable(crtc_state)) 7904 return 0; 7905 7906 /* 7907 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 7908 * enabled and disabled dynamically based on package C states, 7909 * user space can't make reliable use of the CRCs, so let's just 7910 * completely disable it. 7911 */ 7912 if (crtc_state->crc_enabled) 7913 return 0; 7914 7915 /* IPS should be fine as long as at least one plane is enabled. */ 7916 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 7917 return 0; 7918 7919 if (IS_BROADWELL(dev_priv)) { 7920 const struct intel_cdclk_state *cdclk_state; 7921 7922 cdclk_state = intel_atomic_get_cdclk_state(state); 7923 if (IS_ERR(cdclk_state)) 7924 return PTR_ERR(cdclk_state); 7925 7926 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 7927 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100) 7928 return 0; 7929 } 7930 7931 crtc_state->ips_enabled = true; 7932 7933 return 0; 7934 } 7935 7936 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 7937 { 7938 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7939 7940 /* GDG double wide on either pipe, otherwise pipe A only */ 7941 return INTEL_GEN(dev_priv) < 4 && 7942 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 7943 } 7944 7945 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config) 7946 { 7947 u32 pixel_rate; 7948 7949 pixel_rate = pipe_config->hw.adjusted_mode.crtc_clock; 7950 7951 /* 7952 * We only use IF-ID interlacing. If we ever use 7953 * PF-ID we'll need to adjust the pixel_rate here. 7954 */ 7955 7956 if (pipe_config->pch_pfit.enabled) { 7957 u64 pipe_w, pipe_h, pfit_w, pfit_h; 7958 u32 pfit_size = pipe_config->pch_pfit.size; 7959 7960 pipe_w = pipe_config->pipe_src_w; 7961 pipe_h = pipe_config->pipe_src_h; 7962 7963 pfit_w = (pfit_size >> 16) & 0xFFFF; 7964 pfit_h = pfit_size & 0xFFFF; 7965 if (pipe_w < pfit_w) 7966 pipe_w = pfit_w; 7967 if (pipe_h < pfit_h) 7968 pipe_h = pfit_h; 7969 7970 if (WARN_ON(!pfit_w || !pfit_h)) 7971 return pixel_rate; 7972 7973 pixel_rate = div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h), 7974 pfit_w * pfit_h); 7975 } 7976 7977 return pixel_rate; 7978 } 7979 7980 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 7981 { 7982 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 7983 7984 if (HAS_GMCH(dev_priv)) 7985 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 7986 crtc_state->pixel_rate = 7987 crtc_state->hw.adjusted_mode.crtc_clock; 7988 else 7989 crtc_state->pixel_rate = 7990 ilk_pipe_pixel_rate(crtc_state); 7991 } 7992 7993 static int intel_crtc_compute_config(struct intel_crtc *crtc, 7994 struct intel_crtc_state *pipe_config) 7995 { 7996 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7997 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 7998 int clock_limit = dev_priv->max_dotclk_freq; 7999 8000 if (INTEL_GEN(dev_priv) < 4) { 8001 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 8002 8003 /* 8004 * Enable double wide mode when the dot clock 8005 * is > 90% of the (display) core speed. 8006 */ 8007 if (intel_crtc_supports_double_wide(crtc) && 8008 adjusted_mode->crtc_clock > clock_limit) { 8009 clock_limit = dev_priv->max_dotclk_freq; 8010 pipe_config->double_wide = true; 8011 } 8012 } 8013 8014 if (adjusted_mode->crtc_clock > clock_limit) { 8015 drm_dbg_kms(&dev_priv->drm, 8016 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 8017 adjusted_mode->crtc_clock, clock_limit, 8018 yesno(pipe_config->double_wide)); 8019 return -EINVAL; 8020 } 8021 8022 if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 8023 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) && 8024 pipe_config->hw.ctm) { 8025 /* 8026 * There is only one pipe CSC unit per pipe, and we need that 8027 * for output conversion from RGB->YCBCR. So if CTM is already 8028 * applied we can't support YCBCR420 output. 8029 */ 8030 drm_dbg_kms(&dev_priv->drm, 8031 "YCBCR420 and CTM together are not possible\n"); 8032 return -EINVAL; 8033 } 8034 8035 /* 8036 * Pipe horizontal size must be even in: 8037 * - DVO ganged mode 8038 * - LVDS dual channel mode 8039 * - Double wide pipe 8040 */ 8041 if (pipe_config->pipe_src_w & 1) { 8042 if (pipe_config->double_wide) { 8043 drm_dbg_kms(&dev_priv->drm, 8044 "Odd pipe source width not supported with double wide pipe\n"); 8045 return -EINVAL; 8046 } 8047 8048 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 8049 intel_is_dual_link_lvds(dev_priv)) { 8050 drm_dbg_kms(&dev_priv->drm, 8051 "Odd pipe source width not supported with dual link LVDS\n"); 8052 return -EINVAL; 8053 } 8054 } 8055 8056 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 8057 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 8058 */ 8059 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) && 8060 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay) 8061 return -EINVAL; 8062 8063 intel_crtc_compute_pixel_rate(pipe_config); 8064 8065 if (pipe_config->has_pch_encoder) 8066 return ilk_fdi_compute_config(crtc, pipe_config); 8067 8068 return 0; 8069 } 8070 8071 static void 8072 intel_reduce_m_n_ratio(u32 *num, u32 *den) 8073 { 8074 while (*num > DATA_LINK_M_N_MASK || 8075 *den > DATA_LINK_M_N_MASK) { 8076 *num >>= 1; 8077 *den >>= 1; 8078 } 8079 } 8080 8081 static void compute_m_n(unsigned int m, unsigned int n, 8082 u32 *ret_m, u32 *ret_n, 8083 bool constant_n) 8084 { 8085 /* 8086 * Several DP dongles in particular seem to be fussy about 8087 * too large link M/N values. Give N value as 0x8000 that 8088 * should be acceptable by specific devices. 0x8000 is the 8089 * specified fixed N value for asynchronous clock mode, 8090 * which the devices expect also in synchronous clock mode. 8091 */ 8092 if (constant_n) 8093 *ret_n = 0x8000; 8094 else 8095 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 8096 8097 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 8098 intel_reduce_m_n_ratio(ret_m, ret_n); 8099 } 8100 8101 void 8102 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 8103 int pixel_clock, int link_clock, 8104 struct intel_link_m_n *m_n, 8105 bool constant_n, bool fec_enable) 8106 { 8107 u32 data_clock = bits_per_pixel * pixel_clock; 8108 8109 if (fec_enable) 8110 data_clock = intel_dp_mode_to_fec_clock(data_clock); 8111 8112 m_n->tu = 64; 8113 compute_m_n(data_clock, 8114 link_clock * nlanes * 8, 8115 &m_n->gmch_m, &m_n->gmch_n, 8116 constant_n); 8117 8118 compute_m_n(pixel_clock, link_clock, 8119 &m_n->link_m, &m_n->link_n, 8120 constant_n); 8121 } 8122 8123 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) 8124 { 8125 /* 8126 * There may be no VBT; and if the BIOS enabled SSC we can 8127 * just keep using it to avoid unnecessary flicker. Whereas if the 8128 * BIOS isn't using it, don't assume it will work even if the VBT 8129 * indicates as much. 8130 */ 8131 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 8132 bool bios_lvds_use_ssc = intel_de_read(dev_priv, 8133 PCH_DREF_CONTROL) & 8134 DREF_SSC1_ENABLE; 8135 8136 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 8137 drm_dbg_kms(&dev_priv->drm, 8138 "SSC %s by BIOS, overriding VBT which says %s\n", 8139 enableddisabled(bios_lvds_use_ssc), 8140 enableddisabled(dev_priv->vbt.lvds_use_ssc)); 8141 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 8142 } 8143 } 8144 } 8145 8146 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) 8147 { 8148 if (i915_modparams.panel_use_ssc >= 0) 8149 return i915_modparams.panel_use_ssc != 0; 8150 return dev_priv->vbt.lvds_use_ssc 8151 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); 8152 } 8153 8154 static u32 pnv_dpll_compute_fp(struct dpll *dpll) 8155 { 8156 return (1 << dpll->n) << 16 | dpll->m2; 8157 } 8158 8159 static u32 i9xx_dpll_compute_fp(struct dpll *dpll) 8160 { 8161 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; 8162 } 8163 8164 static void i9xx_update_pll_dividers(struct intel_crtc *crtc, 8165 struct intel_crtc_state *crtc_state, 8166 struct dpll *reduced_clock) 8167 { 8168 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8169 u32 fp, fp2 = 0; 8170 8171 if (IS_PINEVIEW(dev_priv)) { 8172 fp = pnv_dpll_compute_fp(&crtc_state->dpll); 8173 if (reduced_clock) 8174 fp2 = pnv_dpll_compute_fp(reduced_clock); 8175 } else { 8176 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 8177 if (reduced_clock) 8178 fp2 = i9xx_dpll_compute_fp(reduced_clock); 8179 } 8180 8181 crtc_state->dpll_hw_state.fp0 = fp; 8182 8183 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8184 reduced_clock) { 8185 crtc_state->dpll_hw_state.fp1 = fp2; 8186 } else { 8187 crtc_state->dpll_hw_state.fp1 = fp; 8188 } 8189 } 8190 8191 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe 8192 pipe) 8193 { 8194 u32 reg_val; 8195 8196 /* 8197 * PLLB opamp always calibrates to max value of 0x3f, force enable it 8198 * and set it to a reasonable value instead. 8199 */ 8200 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 8201 reg_val &= 0xffffff00; 8202 reg_val |= 0x00000030; 8203 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 8204 8205 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 8206 reg_val &= 0x00ffffff; 8207 reg_val |= 0x8c000000; 8208 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 8209 8210 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 8211 reg_val &= 0xffffff00; 8212 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 8213 8214 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 8215 reg_val &= 0x00ffffff; 8216 reg_val |= 0xb0000000; 8217 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 8218 } 8219 8220 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 8221 const struct intel_link_m_n *m_n) 8222 { 8223 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8224 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8225 enum pipe pipe = crtc->pipe; 8226 8227 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe), 8228 TU_SIZE(m_n->tu) | m_n->gmch_m); 8229 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 8230 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m); 8231 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n); 8232 } 8233 8234 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 8235 enum transcoder transcoder) 8236 { 8237 if (IS_HASWELL(dev_priv)) 8238 return transcoder == TRANSCODER_EDP; 8239 8240 /* 8241 * Strictly speaking some registers are available before 8242 * gen7, but we only support DRRS on gen7+ 8243 */ 8244 return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv); 8245 } 8246 8247 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 8248 const struct intel_link_m_n *m_n, 8249 const struct intel_link_m_n *m2_n2) 8250 { 8251 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8252 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8253 enum pipe pipe = crtc->pipe; 8254 enum transcoder transcoder = crtc_state->cpu_transcoder; 8255 8256 if (INTEL_GEN(dev_priv) >= 5) { 8257 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder), 8258 TU_SIZE(m_n->tu) | m_n->gmch_m); 8259 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder), 8260 m_n->gmch_n); 8261 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder), 8262 m_n->link_m); 8263 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder), 8264 m_n->link_n); 8265 /* 8266 * M2_N2 registers are set only if DRRS is supported 8267 * (to make sure the registers are not unnecessarily accessed). 8268 */ 8269 if (m2_n2 && crtc_state->has_drrs && 8270 transcoder_has_m2_n2(dev_priv, transcoder)) { 8271 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder), 8272 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 8273 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder), 8274 m2_n2->gmch_n); 8275 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder), 8276 m2_n2->link_m); 8277 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder), 8278 m2_n2->link_n); 8279 } 8280 } else { 8281 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe), 8282 TU_SIZE(m_n->tu) | m_n->gmch_m); 8283 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 8284 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m); 8285 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n); 8286 } 8287 } 8288 8289 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 8290 { 8291 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 8292 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 8293 8294 if (m_n == M1_N1) { 8295 dp_m_n = &crtc_state->dp_m_n; 8296 dp_m2_n2 = &crtc_state->dp_m2_n2; 8297 } else if (m_n == M2_N2) { 8298 8299 /* 8300 * M2_N2 registers are not supported. Hence m2_n2 divider value 8301 * needs to be programmed into M1_N1. 8302 */ 8303 dp_m_n = &crtc_state->dp_m2_n2; 8304 } else { 8305 drm_err(&i915->drm, "Unsupported divider value\n"); 8306 return; 8307 } 8308 8309 if (crtc_state->has_pch_encoder) 8310 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 8311 else 8312 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 8313 } 8314 8315 static void vlv_compute_dpll(struct intel_crtc *crtc, 8316 struct intel_crtc_state *pipe_config) 8317 { 8318 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV | 8319 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 8320 if (crtc->pipe != PIPE_A) 8321 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 8322 8323 /* DPLL not used with DSI, but still need the rest set up */ 8324 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 8325 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE | 8326 DPLL_EXT_BUFFER_ENABLE_VLV; 8327 8328 pipe_config->dpll_hw_state.dpll_md = 8329 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8330 } 8331 8332 static void chv_compute_dpll(struct intel_crtc *crtc, 8333 struct intel_crtc_state *pipe_config) 8334 { 8335 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV | 8336 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 8337 if (crtc->pipe != PIPE_A) 8338 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 8339 8340 /* DPLL not used with DSI, but still need the rest set up */ 8341 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 8342 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE; 8343 8344 pipe_config->dpll_hw_state.dpll_md = 8345 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8346 } 8347 8348 static void vlv_prepare_pll(struct intel_crtc *crtc, 8349 const struct intel_crtc_state *pipe_config) 8350 { 8351 struct drm_device *dev = crtc->base.dev; 8352 struct drm_i915_private *dev_priv = to_i915(dev); 8353 enum pipe pipe = crtc->pipe; 8354 u32 mdiv; 8355 u32 bestn, bestm1, bestm2, bestp1, bestp2; 8356 u32 coreclk, reg_val; 8357 8358 /* Enable Refclk */ 8359 intel_de_write(dev_priv, DPLL(pipe), 8360 pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); 8361 8362 /* No need to actually set up the DPLL with DSI */ 8363 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8364 return; 8365 8366 vlv_dpio_get(dev_priv); 8367 8368 bestn = pipe_config->dpll.n; 8369 bestm1 = pipe_config->dpll.m1; 8370 bestm2 = pipe_config->dpll.m2; 8371 bestp1 = pipe_config->dpll.p1; 8372 bestp2 = pipe_config->dpll.p2; 8373 8374 /* See eDP HDMI DPIO driver vbios notes doc */ 8375 8376 /* PLL B needs special handling */ 8377 if (pipe == PIPE_B) 8378 vlv_pllb_recal_opamp(dev_priv, pipe); 8379 8380 /* Set up Tx target for periodic Rcomp update */ 8381 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f); 8382 8383 /* Disable target IRef on PLL */ 8384 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe)); 8385 reg_val &= 0x00ffffff; 8386 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val); 8387 8388 /* Disable fast lock */ 8389 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610); 8390 8391 /* Set idtafcrecal before PLL is enabled */ 8392 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); 8393 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); 8394 mdiv |= ((bestn << DPIO_N_SHIFT)); 8395 mdiv |= (1 << DPIO_K_SHIFT); 8396 8397 /* 8398 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, 8399 * but we don't support that). 8400 * Note: don't use the DAC post divider as it seems unstable. 8401 */ 8402 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); 8403 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 8404 8405 mdiv |= DPIO_ENABLE_CALIBRATION; 8406 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 8407 8408 /* Set HBR and RBR LPF coefficients */ 8409 if (pipe_config->port_clock == 162000 || 8410 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) || 8411 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI)) 8412 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 8413 0x009f0003); 8414 else 8415 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 8416 0x00d0000f); 8417 8418 if (intel_crtc_has_dp_encoder(pipe_config)) { 8419 /* Use SSC source */ 8420 if (pipe == PIPE_A) 8421 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8422 0x0df40000); 8423 else 8424 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8425 0x0df70000); 8426 } else { /* HDMI or VGA */ 8427 /* Use bend source */ 8428 if (pipe == PIPE_A) 8429 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8430 0x0df70000); 8431 else 8432 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8433 0x0df40000); 8434 } 8435 8436 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe)); 8437 coreclk = (coreclk & 0x0000ff00) | 0x01c00000; 8438 if (intel_crtc_has_dp_encoder(pipe_config)) 8439 coreclk |= 0x01000000; 8440 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk); 8441 8442 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000); 8443 8444 vlv_dpio_put(dev_priv); 8445 } 8446 8447 static void chv_prepare_pll(struct intel_crtc *crtc, 8448 const struct intel_crtc_state *pipe_config) 8449 { 8450 struct drm_device *dev = crtc->base.dev; 8451 struct drm_i915_private *dev_priv = to_i915(dev); 8452 enum pipe pipe = crtc->pipe; 8453 enum dpio_channel port = vlv_pipe_to_channel(pipe); 8454 u32 loopfilter, tribuf_calcntr; 8455 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac; 8456 u32 dpio_val; 8457 int vco; 8458 8459 /* Enable Refclk and SSC */ 8460 intel_de_write(dev_priv, DPLL(pipe), 8461 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); 8462 8463 /* No need to actually set up the DPLL with DSI */ 8464 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8465 return; 8466 8467 bestn = pipe_config->dpll.n; 8468 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff; 8469 bestm1 = pipe_config->dpll.m1; 8470 bestm2 = pipe_config->dpll.m2 >> 22; 8471 bestp1 = pipe_config->dpll.p1; 8472 bestp2 = pipe_config->dpll.p2; 8473 vco = pipe_config->dpll.vco; 8474 dpio_val = 0; 8475 loopfilter = 0; 8476 8477 vlv_dpio_get(dev_priv); 8478 8479 /* p1 and p2 divider */ 8480 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port), 8481 5 << DPIO_CHV_S1_DIV_SHIFT | 8482 bestp1 << DPIO_CHV_P1_DIV_SHIFT | 8483 bestp2 << DPIO_CHV_P2_DIV_SHIFT | 8484 1 << DPIO_CHV_K_DIV_SHIFT); 8485 8486 /* Feedback post-divider - m2 */ 8487 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2); 8488 8489 /* Feedback refclk divider - n and m1 */ 8490 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port), 8491 DPIO_CHV_M1_DIV_BY_2 | 8492 1 << DPIO_CHV_N_DIV_SHIFT); 8493 8494 /* M2 fraction division */ 8495 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac); 8496 8497 /* M2 fraction division enable */ 8498 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 8499 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); 8500 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT); 8501 if (bestm2_frac) 8502 dpio_val |= DPIO_CHV_FRAC_DIV_EN; 8503 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val); 8504 8505 /* Program digital lock detect threshold */ 8506 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port)); 8507 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | 8508 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); 8509 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT); 8510 if (!bestm2_frac) 8511 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; 8512 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val); 8513 8514 /* Loop filter */ 8515 if (vco == 5400000) { 8516 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT); 8517 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT); 8518 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT); 8519 tribuf_calcntr = 0x9; 8520 } else if (vco <= 6200000) { 8521 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT); 8522 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT); 8523 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8524 tribuf_calcntr = 0x9; 8525 } else if (vco <= 6480000) { 8526 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 8527 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 8528 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8529 tribuf_calcntr = 0x8; 8530 } else { 8531 /* Not supported. Apply the same limits as in the max case */ 8532 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 8533 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 8534 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8535 tribuf_calcntr = 0; 8536 } 8537 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter); 8538 8539 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port)); 8540 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; 8541 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT); 8542 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val); 8543 8544 /* AFC Recal */ 8545 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), 8546 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) | 8547 DPIO_AFC_RECAL); 8548 8549 vlv_dpio_put(dev_priv); 8550 } 8551 8552 /** 8553 * vlv_force_pll_on - forcibly enable just the PLL 8554 * @dev_priv: i915 private structure 8555 * @pipe: pipe PLL to enable 8556 * @dpll: PLL configuration 8557 * 8558 * Enable the PLL for @pipe using the supplied @dpll config. To be used 8559 * in cases where we need the PLL enabled even when @pipe is not going to 8560 * be enabled. 8561 */ 8562 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe, 8563 const struct dpll *dpll) 8564 { 8565 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 8566 struct intel_crtc_state *pipe_config; 8567 8568 pipe_config = intel_crtc_state_alloc(crtc); 8569 if (!pipe_config) 8570 return -ENOMEM; 8571 8572 pipe_config->cpu_transcoder = (enum transcoder)pipe; 8573 pipe_config->pixel_multiplier = 1; 8574 pipe_config->dpll = *dpll; 8575 8576 if (IS_CHERRYVIEW(dev_priv)) { 8577 chv_compute_dpll(crtc, pipe_config); 8578 chv_prepare_pll(crtc, pipe_config); 8579 chv_enable_pll(crtc, pipe_config); 8580 } else { 8581 vlv_compute_dpll(crtc, pipe_config); 8582 vlv_prepare_pll(crtc, pipe_config); 8583 vlv_enable_pll(crtc, pipe_config); 8584 } 8585 8586 kfree(pipe_config); 8587 8588 return 0; 8589 } 8590 8591 /** 8592 * vlv_force_pll_off - forcibly disable just the PLL 8593 * @dev_priv: i915 private structure 8594 * @pipe: pipe PLL to disable 8595 * 8596 * Disable the PLL for @pipe. To be used in cases where we need 8597 * the PLL enabled even when @pipe is not going to be enabled. 8598 */ 8599 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe) 8600 { 8601 if (IS_CHERRYVIEW(dev_priv)) 8602 chv_disable_pll(dev_priv, pipe); 8603 else 8604 vlv_disable_pll(dev_priv, pipe); 8605 } 8606 8607 static void i9xx_compute_dpll(struct intel_crtc *crtc, 8608 struct intel_crtc_state *crtc_state, 8609 struct dpll *reduced_clock) 8610 { 8611 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8612 u32 dpll; 8613 struct dpll *clock = &crtc_state->dpll; 8614 8615 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8616 8617 dpll = DPLL_VGA_MODE_DIS; 8618 8619 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 8620 dpll |= DPLLB_MODE_LVDS; 8621 else 8622 dpll |= DPLLB_MODE_DAC_SERIAL; 8623 8624 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 8625 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 8626 dpll |= (crtc_state->pixel_multiplier - 1) 8627 << SDVO_MULTIPLIER_SHIFT_HIRES; 8628 } 8629 8630 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 8631 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 8632 dpll |= DPLL_SDVO_HIGH_SPEED; 8633 8634 if (intel_crtc_has_dp_encoder(crtc_state)) 8635 dpll |= DPLL_SDVO_HIGH_SPEED; 8636 8637 /* compute bitmask from p1 value */ 8638 if (IS_PINEVIEW(dev_priv)) 8639 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; 8640 else { 8641 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8642 if (IS_G4X(dev_priv) && reduced_clock) 8643 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 8644 } 8645 switch (clock->p2) { 8646 case 5: 8647 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 8648 break; 8649 case 7: 8650 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 8651 break; 8652 case 10: 8653 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 8654 break; 8655 case 14: 8656 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 8657 break; 8658 } 8659 if (INTEL_GEN(dev_priv) >= 4) 8660 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); 8661 8662 if (crtc_state->sdvo_tv_clock) 8663 dpll |= PLL_REF_INPUT_TVCLKINBC; 8664 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8665 intel_panel_use_ssc(dev_priv)) 8666 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8667 else 8668 dpll |= PLL_REF_INPUT_DREFCLK; 8669 8670 dpll |= DPLL_VCO_ENABLE; 8671 crtc_state->dpll_hw_state.dpll = dpll; 8672 8673 if (INTEL_GEN(dev_priv) >= 4) { 8674 u32 dpll_md = (crtc_state->pixel_multiplier - 1) 8675 << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8676 crtc_state->dpll_hw_state.dpll_md = dpll_md; 8677 } 8678 } 8679 8680 static void i8xx_compute_dpll(struct intel_crtc *crtc, 8681 struct intel_crtc_state *crtc_state, 8682 struct dpll *reduced_clock) 8683 { 8684 struct drm_device *dev = crtc->base.dev; 8685 struct drm_i915_private *dev_priv = to_i915(dev); 8686 u32 dpll; 8687 struct dpll *clock = &crtc_state->dpll; 8688 8689 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8690 8691 dpll = DPLL_VGA_MODE_DIS; 8692 8693 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8694 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8695 } else { 8696 if (clock->p1 == 2) 8697 dpll |= PLL_P1_DIVIDE_BY_TWO; 8698 else 8699 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8700 if (clock->p2 == 4) 8701 dpll |= PLL_P2_DIVIDE_BY_4; 8702 } 8703 8704 /* 8705 * Bspec: 8706 * "[Almador Errata}: For the correct operation of the muxed DVO pins 8707 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, 8708 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock 8709 * Enable) must be set to “1” in both the DPLL A Control Register 8710 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." 8711 * 8712 * For simplicity We simply keep both bits always enabled in 8713 * both DPLLS. The spec says we should disable the DVO 2X clock 8714 * when not needed, but this seems to work fine in practice. 8715 */ 8716 if (IS_I830(dev_priv) || 8717 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) 8718 dpll |= DPLL_DVO_2X_MODE; 8719 8720 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8721 intel_panel_use_ssc(dev_priv)) 8722 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8723 else 8724 dpll |= PLL_REF_INPUT_DREFCLK; 8725 8726 dpll |= DPLL_VCO_ENABLE; 8727 crtc_state->dpll_hw_state.dpll = dpll; 8728 } 8729 8730 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state) 8731 { 8732 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8733 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8734 enum pipe pipe = crtc->pipe; 8735 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8736 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 8737 u32 crtc_vtotal, crtc_vblank_end; 8738 int vsyncshift = 0; 8739 8740 /* We need to be careful not to changed the adjusted mode, for otherwise 8741 * the hw state checker will get angry at the mismatch. */ 8742 crtc_vtotal = adjusted_mode->crtc_vtotal; 8743 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 8744 8745 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 8746 /* the chip adds 2 halflines automatically */ 8747 crtc_vtotal -= 1; 8748 crtc_vblank_end -= 1; 8749 8750 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 8751 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 8752 else 8753 vsyncshift = adjusted_mode->crtc_hsync_start - 8754 adjusted_mode->crtc_htotal / 2; 8755 if (vsyncshift < 0) 8756 vsyncshift += adjusted_mode->crtc_htotal; 8757 } 8758 8759 if (INTEL_GEN(dev_priv) > 3) 8760 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder), 8761 vsyncshift); 8762 8763 intel_de_write(dev_priv, HTOTAL(cpu_transcoder), 8764 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); 8765 intel_de_write(dev_priv, HBLANK(cpu_transcoder), 8766 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); 8767 intel_de_write(dev_priv, HSYNC(cpu_transcoder), 8768 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); 8769 8770 intel_de_write(dev_priv, VTOTAL(cpu_transcoder), 8771 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); 8772 intel_de_write(dev_priv, VBLANK(cpu_transcoder), 8773 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); 8774 intel_de_write(dev_priv, VSYNC(cpu_transcoder), 8775 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); 8776 8777 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 8778 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 8779 * documented on the DDI_FUNC_CTL register description, EDP Input Select 8780 * bits. */ 8781 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 8782 (pipe == PIPE_B || pipe == PIPE_C)) 8783 intel_de_write(dev_priv, VTOTAL(pipe), 8784 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 8785 8786 } 8787 8788 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 8789 { 8790 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8791 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8792 enum pipe pipe = crtc->pipe; 8793 8794 /* pipesrc controls the size that is scaled from, which should 8795 * always be the user's requested size. 8796 */ 8797 intel_de_write(dev_priv, PIPESRC(pipe), 8798 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1)); 8799 } 8800 8801 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 8802 { 8803 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 8804 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8805 8806 if (IS_GEN(dev_priv, 2)) 8807 return false; 8808 8809 if (INTEL_GEN(dev_priv) >= 9 || 8810 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 8811 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; 8812 else 8813 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; 8814 } 8815 8816 static void intel_get_pipe_timings(struct intel_crtc *crtc, 8817 struct intel_crtc_state *pipe_config) 8818 { 8819 struct drm_device *dev = crtc->base.dev; 8820 struct drm_i915_private *dev_priv = to_i915(dev); 8821 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 8822 u32 tmp; 8823 8824 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); 8825 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 8826 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 8827 8828 if (!transcoder_is_dsi(cpu_transcoder)) { 8829 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); 8830 pipe_config->hw.adjusted_mode.crtc_hblank_start = 8831 (tmp & 0xffff) + 1; 8832 pipe_config->hw.adjusted_mode.crtc_hblank_end = 8833 ((tmp >> 16) & 0xffff) + 1; 8834 } 8835 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); 8836 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 8837 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 8838 8839 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); 8840 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 8841 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 8842 8843 if (!transcoder_is_dsi(cpu_transcoder)) { 8844 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); 8845 pipe_config->hw.adjusted_mode.crtc_vblank_start = 8846 (tmp & 0xffff) + 1; 8847 pipe_config->hw.adjusted_mode.crtc_vblank_end = 8848 ((tmp >> 16) & 0xffff) + 1; 8849 } 8850 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); 8851 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 8852 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 8853 8854 if (intel_pipe_is_interlaced(pipe_config)) { 8855 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 8856 pipe_config->hw.adjusted_mode.crtc_vtotal += 1; 8857 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1; 8858 } 8859 } 8860 8861 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 8862 struct intel_crtc_state *pipe_config) 8863 { 8864 struct drm_device *dev = crtc->base.dev; 8865 struct drm_i915_private *dev_priv = to_i915(dev); 8866 u32 tmp; 8867 8868 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe)); 8869 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 8870 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 8871 8872 pipe_config->hw.mode.vdisplay = pipe_config->pipe_src_h; 8873 pipe_config->hw.mode.hdisplay = pipe_config->pipe_src_w; 8874 } 8875 8876 void intel_mode_from_pipe_config(struct drm_display_mode *mode, 8877 struct intel_crtc_state *pipe_config) 8878 { 8879 mode->hdisplay = pipe_config->hw.adjusted_mode.crtc_hdisplay; 8880 mode->htotal = pipe_config->hw.adjusted_mode.crtc_htotal; 8881 mode->hsync_start = pipe_config->hw.adjusted_mode.crtc_hsync_start; 8882 mode->hsync_end = pipe_config->hw.adjusted_mode.crtc_hsync_end; 8883 8884 mode->vdisplay = pipe_config->hw.adjusted_mode.crtc_vdisplay; 8885 mode->vtotal = pipe_config->hw.adjusted_mode.crtc_vtotal; 8886 mode->vsync_start = pipe_config->hw.adjusted_mode.crtc_vsync_start; 8887 mode->vsync_end = pipe_config->hw.adjusted_mode.crtc_vsync_end; 8888 8889 mode->flags = pipe_config->hw.adjusted_mode.flags; 8890 mode->type = DRM_MODE_TYPE_DRIVER; 8891 8892 mode->clock = pipe_config->hw.adjusted_mode.crtc_clock; 8893 8894 mode->hsync = drm_mode_hsync(mode); 8895 mode->vrefresh = drm_mode_vrefresh(mode); 8896 drm_mode_set_name(mode); 8897 } 8898 8899 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 8900 { 8901 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8902 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8903 u32 pipeconf; 8904 8905 pipeconf = 0; 8906 8907 /* we keep both pipes enabled on 830 */ 8908 if (IS_I830(dev_priv)) 8909 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 8910 8911 if (crtc_state->double_wide) 8912 pipeconf |= PIPECONF_DOUBLE_WIDE; 8913 8914 /* only g4x and later have fancy bpc/dither controls */ 8915 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 8916 IS_CHERRYVIEW(dev_priv)) { 8917 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 8918 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 8919 pipeconf |= PIPECONF_DITHER_EN | 8920 PIPECONF_DITHER_TYPE_SP; 8921 8922 switch (crtc_state->pipe_bpp) { 8923 case 18: 8924 pipeconf |= PIPECONF_6BPC; 8925 break; 8926 case 24: 8927 pipeconf |= PIPECONF_8BPC; 8928 break; 8929 case 30: 8930 pipeconf |= PIPECONF_10BPC; 8931 break; 8932 default: 8933 /* Case prevented by intel_choose_pipe_bpp_dither. */ 8934 BUG(); 8935 } 8936 } 8937 8938 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 8939 if (INTEL_GEN(dev_priv) < 4 || 8940 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 8941 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 8942 else 8943 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 8944 } else { 8945 pipeconf |= PIPECONF_PROGRESSIVE; 8946 } 8947 8948 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 8949 crtc_state->limited_color_range) 8950 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 8951 8952 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 8953 8954 pipeconf |= PIPECONF_FRAME_START_DELAY(0); 8955 8956 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf); 8957 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); 8958 } 8959 8960 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc, 8961 struct intel_crtc_state *crtc_state) 8962 { 8963 struct drm_device *dev = crtc->base.dev; 8964 struct drm_i915_private *dev_priv = to_i915(dev); 8965 const struct intel_limit *limit; 8966 int refclk = 48000; 8967 8968 memset(&crtc_state->dpll_hw_state, 0, 8969 sizeof(crtc_state->dpll_hw_state)); 8970 8971 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8972 if (intel_panel_use_ssc(dev_priv)) { 8973 refclk = dev_priv->vbt.lvds_ssc_freq; 8974 drm_dbg_kms(&dev_priv->drm, 8975 "using SSC reference clock of %d kHz\n", 8976 refclk); 8977 } 8978 8979 limit = &intel_limits_i8xx_lvds; 8980 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { 8981 limit = &intel_limits_i8xx_dvo; 8982 } else { 8983 limit = &intel_limits_i8xx_dac; 8984 } 8985 8986 if (!crtc_state->clock_set && 8987 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8988 refclk, NULL, &crtc_state->dpll)) { 8989 drm_err(&dev_priv->drm, 8990 "Couldn't find PLL settings for mode!\n"); 8991 return -EINVAL; 8992 } 8993 8994 i8xx_compute_dpll(crtc, crtc_state, NULL); 8995 8996 return 0; 8997 } 8998 8999 static int g4x_crtc_compute_clock(struct intel_crtc *crtc, 9000 struct intel_crtc_state *crtc_state) 9001 { 9002 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9003 const struct intel_limit *limit; 9004 int refclk = 96000; 9005 9006 memset(&crtc_state->dpll_hw_state, 0, 9007 sizeof(crtc_state->dpll_hw_state)); 9008 9009 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9010 if (intel_panel_use_ssc(dev_priv)) { 9011 refclk = dev_priv->vbt.lvds_ssc_freq; 9012 drm_dbg_kms(&dev_priv->drm, 9013 "using SSC reference clock of %d kHz\n", 9014 refclk); 9015 } 9016 9017 if (intel_is_dual_link_lvds(dev_priv)) 9018 limit = &intel_limits_g4x_dual_channel_lvds; 9019 else 9020 limit = &intel_limits_g4x_single_channel_lvds; 9021 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || 9022 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { 9023 limit = &intel_limits_g4x_hdmi; 9024 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { 9025 limit = &intel_limits_g4x_sdvo; 9026 } else { 9027 /* The option is for other outputs */ 9028 limit = &intel_limits_i9xx_sdvo; 9029 } 9030 9031 if (!crtc_state->clock_set && 9032 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9033 refclk, NULL, &crtc_state->dpll)) { 9034 drm_err(&dev_priv->drm, 9035 "Couldn't find PLL settings for mode!\n"); 9036 return -EINVAL; 9037 } 9038 9039 i9xx_compute_dpll(crtc, crtc_state, NULL); 9040 9041 return 0; 9042 } 9043 9044 static int pnv_crtc_compute_clock(struct intel_crtc *crtc, 9045 struct intel_crtc_state *crtc_state) 9046 { 9047 struct drm_device *dev = crtc->base.dev; 9048 struct drm_i915_private *dev_priv = to_i915(dev); 9049 const struct intel_limit *limit; 9050 int refclk = 96000; 9051 9052 memset(&crtc_state->dpll_hw_state, 0, 9053 sizeof(crtc_state->dpll_hw_state)); 9054 9055 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9056 if (intel_panel_use_ssc(dev_priv)) { 9057 refclk = dev_priv->vbt.lvds_ssc_freq; 9058 drm_dbg_kms(&dev_priv->drm, 9059 "using SSC reference clock of %d kHz\n", 9060 refclk); 9061 } 9062 9063 limit = &pnv_limits_lvds; 9064 } else { 9065 limit = &pnv_limits_sdvo; 9066 } 9067 9068 if (!crtc_state->clock_set && 9069 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9070 refclk, NULL, &crtc_state->dpll)) { 9071 drm_err(&dev_priv->drm, 9072 "Couldn't find PLL settings for mode!\n"); 9073 return -EINVAL; 9074 } 9075 9076 i9xx_compute_dpll(crtc, crtc_state, NULL); 9077 9078 return 0; 9079 } 9080 9081 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc, 9082 struct intel_crtc_state *crtc_state) 9083 { 9084 struct drm_device *dev = crtc->base.dev; 9085 struct drm_i915_private *dev_priv = to_i915(dev); 9086 const struct intel_limit *limit; 9087 int refclk = 96000; 9088 9089 memset(&crtc_state->dpll_hw_state, 0, 9090 sizeof(crtc_state->dpll_hw_state)); 9091 9092 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9093 if (intel_panel_use_ssc(dev_priv)) { 9094 refclk = dev_priv->vbt.lvds_ssc_freq; 9095 drm_dbg_kms(&dev_priv->drm, 9096 "using SSC reference clock of %d kHz\n", 9097 refclk); 9098 } 9099 9100 limit = &intel_limits_i9xx_lvds; 9101 } else { 9102 limit = &intel_limits_i9xx_sdvo; 9103 } 9104 9105 if (!crtc_state->clock_set && 9106 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9107 refclk, NULL, &crtc_state->dpll)) { 9108 drm_err(&dev_priv->drm, 9109 "Couldn't find PLL settings for mode!\n"); 9110 return -EINVAL; 9111 } 9112 9113 i9xx_compute_dpll(crtc, crtc_state, NULL); 9114 9115 return 0; 9116 } 9117 9118 static int chv_crtc_compute_clock(struct intel_crtc *crtc, 9119 struct intel_crtc_state *crtc_state) 9120 { 9121 int refclk = 100000; 9122 const struct intel_limit *limit = &intel_limits_chv; 9123 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 9124 9125 memset(&crtc_state->dpll_hw_state, 0, 9126 sizeof(crtc_state->dpll_hw_state)); 9127 9128 if (!crtc_state->clock_set && 9129 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9130 refclk, NULL, &crtc_state->dpll)) { 9131 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n"); 9132 return -EINVAL; 9133 } 9134 9135 chv_compute_dpll(crtc, crtc_state); 9136 9137 return 0; 9138 } 9139 9140 static int vlv_crtc_compute_clock(struct intel_crtc *crtc, 9141 struct intel_crtc_state *crtc_state) 9142 { 9143 int refclk = 100000; 9144 const struct intel_limit *limit = &intel_limits_vlv; 9145 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 9146 9147 memset(&crtc_state->dpll_hw_state, 0, 9148 sizeof(crtc_state->dpll_hw_state)); 9149 9150 if (!crtc_state->clock_set && 9151 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9152 refclk, NULL, &crtc_state->dpll)) { 9153 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n"); 9154 return -EINVAL; 9155 } 9156 9157 vlv_compute_dpll(crtc, crtc_state); 9158 9159 return 0; 9160 } 9161 9162 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 9163 { 9164 if (IS_I830(dev_priv)) 9165 return false; 9166 9167 return INTEL_GEN(dev_priv) >= 4 || 9168 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 9169 } 9170 9171 static void i9xx_get_pfit_config(struct intel_crtc *crtc, 9172 struct intel_crtc_state *pipe_config) 9173 { 9174 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9175 u32 tmp; 9176 9177 if (!i9xx_has_pfit(dev_priv)) 9178 return; 9179 9180 tmp = intel_de_read(dev_priv, PFIT_CONTROL); 9181 if (!(tmp & PFIT_ENABLE)) 9182 return; 9183 9184 /* Check whether the pfit is attached to our pipe. */ 9185 if (INTEL_GEN(dev_priv) < 4) { 9186 if (crtc->pipe != PIPE_B) 9187 return; 9188 } else { 9189 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 9190 return; 9191 } 9192 9193 pipe_config->gmch_pfit.control = tmp; 9194 pipe_config->gmch_pfit.pgm_ratios = intel_de_read(dev_priv, 9195 PFIT_PGM_RATIOS); 9196 } 9197 9198 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 9199 struct intel_crtc_state *pipe_config) 9200 { 9201 struct drm_device *dev = crtc->base.dev; 9202 struct drm_i915_private *dev_priv = to_i915(dev); 9203 enum pipe pipe = crtc->pipe; 9204 struct dpll clock; 9205 u32 mdiv; 9206 int refclk = 100000; 9207 9208 /* In case of DSI, DPLL will not be used */ 9209 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 9210 return; 9211 9212 vlv_dpio_get(dev_priv); 9213 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 9214 vlv_dpio_put(dev_priv); 9215 9216 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 9217 clock.m2 = mdiv & DPIO_M2DIV_MASK; 9218 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 9219 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 9220 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 9221 9222 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 9223 } 9224 9225 static void 9226 i9xx_get_initial_plane_config(struct intel_crtc *crtc, 9227 struct intel_initial_plane_config *plane_config) 9228 { 9229 struct drm_device *dev = crtc->base.dev; 9230 struct drm_i915_private *dev_priv = to_i915(dev); 9231 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 9232 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 9233 enum pipe pipe; 9234 u32 val, base, offset; 9235 int fourcc, pixel_format; 9236 unsigned int aligned_height; 9237 struct drm_framebuffer *fb; 9238 struct intel_framebuffer *intel_fb; 9239 9240 if (!plane->get_hw_state(plane, &pipe)) 9241 return; 9242 9243 drm_WARN_ON(dev, pipe != crtc->pipe); 9244 9245 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 9246 if (!intel_fb) { 9247 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n"); 9248 return; 9249 } 9250 9251 fb = &intel_fb->base; 9252 9253 fb->dev = dev; 9254 9255 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 9256 9257 if (INTEL_GEN(dev_priv) >= 4) { 9258 if (val & DISPPLANE_TILED) { 9259 plane_config->tiling = I915_TILING_X; 9260 fb->modifier = I915_FORMAT_MOD_X_TILED; 9261 } 9262 9263 if (val & DISPPLANE_ROTATE_180) 9264 plane_config->rotation = DRM_MODE_ROTATE_180; 9265 } 9266 9267 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B && 9268 val & DISPPLANE_MIRROR) 9269 plane_config->rotation |= DRM_MODE_REFLECT_X; 9270 9271 pixel_format = val & DISPPLANE_PIXFORMAT_MASK; 9272 fourcc = i9xx_format_to_fourcc(pixel_format); 9273 fb->format = drm_format_info(fourcc); 9274 9275 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 9276 offset = intel_de_read(dev_priv, DSPOFFSET(i9xx_plane)); 9277 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000; 9278 } else if (INTEL_GEN(dev_priv) >= 4) { 9279 if (plane_config->tiling) 9280 offset = intel_de_read(dev_priv, 9281 DSPTILEOFF(i9xx_plane)); 9282 else 9283 offset = intel_de_read(dev_priv, 9284 DSPLINOFF(i9xx_plane)); 9285 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000; 9286 } else { 9287 base = intel_de_read(dev_priv, DSPADDR(i9xx_plane)); 9288 } 9289 plane_config->base = base; 9290 9291 val = intel_de_read(dev_priv, PIPESRC(pipe)); 9292 fb->width = ((val >> 16) & 0xfff) + 1; 9293 fb->height = ((val >> 0) & 0xfff) + 1; 9294 9295 val = intel_de_read(dev_priv, DSPSTRIDE(i9xx_plane)); 9296 fb->pitches[0] = val & 0xffffffc0; 9297 9298 aligned_height = intel_fb_align_height(fb, 0, fb->height); 9299 9300 plane_config->size = fb->pitches[0] * aligned_height; 9301 9302 drm_dbg_kms(&dev_priv->drm, 9303 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 9304 crtc->base.name, plane->base.name, fb->width, fb->height, 9305 fb->format->cpp[0] * 8, base, fb->pitches[0], 9306 plane_config->size); 9307 9308 plane_config->fb = intel_fb; 9309 } 9310 9311 static void chv_crtc_clock_get(struct intel_crtc *crtc, 9312 struct intel_crtc_state *pipe_config) 9313 { 9314 struct drm_device *dev = crtc->base.dev; 9315 struct drm_i915_private *dev_priv = to_i915(dev); 9316 enum pipe pipe = crtc->pipe; 9317 enum dpio_channel port = vlv_pipe_to_channel(pipe); 9318 struct dpll clock; 9319 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 9320 int refclk = 100000; 9321 9322 /* In case of DSI, DPLL will not be used */ 9323 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 9324 return; 9325 9326 vlv_dpio_get(dev_priv); 9327 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 9328 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 9329 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 9330 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 9331 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 9332 vlv_dpio_put(dev_priv); 9333 9334 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 9335 clock.m2 = (pll_dw0 & 0xff) << 22; 9336 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 9337 clock.m2 |= pll_dw2 & 0x3fffff; 9338 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 9339 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 9340 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 9341 9342 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 9343 } 9344 9345 static enum intel_output_format 9346 bdw_get_pipemisc_output_format(struct intel_crtc *crtc) 9347 { 9348 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9349 u32 tmp; 9350 9351 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 9352 9353 if (tmp & PIPEMISC_YUV420_ENABLE) { 9354 /* We support 4:2:0 in full blend mode only */ 9355 drm_WARN_ON(&dev_priv->drm, 9356 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); 9357 9358 return INTEL_OUTPUT_FORMAT_YCBCR420; 9359 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 9360 return INTEL_OUTPUT_FORMAT_YCBCR444; 9361 } else { 9362 return INTEL_OUTPUT_FORMAT_RGB; 9363 } 9364 } 9365 9366 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 9367 { 9368 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9369 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 9370 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9371 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 9372 u32 tmp; 9373 9374 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 9375 9376 if (tmp & DISPPLANE_GAMMA_ENABLE) 9377 crtc_state->gamma_enable = true; 9378 9379 if (!HAS_GMCH(dev_priv) && 9380 tmp & DISPPLANE_PIPE_CSC_ENABLE) 9381 crtc_state->csc_enable = true; 9382 } 9383 9384 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 9385 struct intel_crtc_state *pipe_config) 9386 { 9387 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9388 enum intel_display_power_domain power_domain; 9389 intel_wakeref_t wakeref; 9390 u32 tmp; 9391 bool ret; 9392 9393 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 9394 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 9395 if (!wakeref) 9396 return false; 9397 9398 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 9399 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 9400 pipe_config->shared_dpll = NULL; 9401 pipe_config->master_transcoder = INVALID_TRANSCODER; 9402 9403 ret = false; 9404 9405 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 9406 if (!(tmp & PIPECONF_ENABLE)) 9407 goto out; 9408 9409 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 9410 IS_CHERRYVIEW(dev_priv)) { 9411 switch (tmp & PIPECONF_BPC_MASK) { 9412 case PIPECONF_6BPC: 9413 pipe_config->pipe_bpp = 18; 9414 break; 9415 case PIPECONF_8BPC: 9416 pipe_config->pipe_bpp = 24; 9417 break; 9418 case PIPECONF_10BPC: 9419 pipe_config->pipe_bpp = 30; 9420 break; 9421 default: 9422 break; 9423 } 9424 } 9425 9426 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 9427 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 9428 pipe_config->limited_color_range = true; 9429 9430 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 9431 PIPECONF_GAMMA_MODE_SHIFT; 9432 9433 if (IS_CHERRYVIEW(dev_priv)) 9434 pipe_config->cgm_mode = intel_de_read(dev_priv, 9435 CGM_PIPE_MODE(crtc->pipe)); 9436 9437 i9xx_get_pipe_color_config(pipe_config); 9438 intel_color_get_config(pipe_config); 9439 9440 if (INTEL_GEN(dev_priv) < 4) 9441 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 9442 9443 intel_get_pipe_timings(crtc, pipe_config); 9444 intel_get_pipe_src_size(crtc, pipe_config); 9445 9446 i9xx_get_pfit_config(crtc, pipe_config); 9447 9448 if (INTEL_GEN(dev_priv) >= 4) { 9449 /* No way to read it out on pipes B and C */ 9450 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 9451 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 9452 else 9453 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); 9454 pipe_config->pixel_multiplier = 9455 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 9456 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 9457 pipe_config->dpll_hw_state.dpll_md = tmp; 9458 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 9459 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 9460 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe)); 9461 pipe_config->pixel_multiplier = 9462 ((tmp & SDVO_MULTIPLIER_MASK) 9463 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 9464 } else { 9465 /* Note that on i915G/GM the pixel multiplier is in the sdvo 9466 * port and will be fixed up in the encoder->get_config 9467 * function. */ 9468 pipe_config->pixel_multiplier = 1; 9469 } 9470 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv, 9471 DPLL(crtc->pipe)); 9472 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 9473 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv, 9474 FP0(crtc->pipe)); 9475 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv, 9476 FP1(crtc->pipe)); 9477 } else { 9478 /* Mask out read-only status bits. */ 9479 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 9480 DPLL_PORTC_READY_MASK | 9481 DPLL_PORTB_READY_MASK); 9482 } 9483 9484 if (IS_CHERRYVIEW(dev_priv)) 9485 chv_crtc_clock_get(crtc, pipe_config); 9486 else if (IS_VALLEYVIEW(dev_priv)) 9487 vlv_crtc_clock_get(crtc, pipe_config); 9488 else 9489 i9xx_crtc_clock_get(crtc, pipe_config); 9490 9491 /* 9492 * Normally the dotclock is filled in by the encoder .get_config() 9493 * but in case the pipe is enabled w/o any ports we need a sane 9494 * default. 9495 */ 9496 pipe_config->hw.adjusted_mode.crtc_clock = 9497 pipe_config->port_clock / pipe_config->pixel_multiplier; 9498 9499 ret = true; 9500 9501 out: 9502 intel_display_power_put(dev_priv, power_domain, wakeref); 9503 9504 return ret; 9505 } 9506 9507 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv) 9508 { 9509 struct intel_encoder *encoder; 9510 int i; 9511 u32 val, final; 9512 bool has_lvds = false; 9513 bool has_cpu_edp = false; 9514 bool has_panel = false; 9515 bool has_ck505 = false; 9516 bool can_ssc = false; 9517 bool using_ssc_source = false; 9518 9519 /* We need to take the global config into account */ 9520 for_each_intel_encoder(&dev_priv->drm, encoder) { 9521 switch (encoder->type) { 9522 case INTEL_OUTPUT_LVDS: 9523 has_panel = true; 9524 has_lvds = true; 9525 break; 9526 case INTEL_OUTPUT_EDP: 9527 has_panel = true; 9528 if (encoder->port == PORT_A) 9529 has_cpu_edp = true; 9530 break; 9531 default: 9532 break; 9533 } 9534 } 9535 9536 if (HAS_PCH_IBX(dev_priv)) { 9537 has_ck505 = dev_priv->vbt.display_clock_mode; 9538 can_ssc = has_ck505; 9539 } else { 9540 has_ck505 = false; 9541 can_ssc = true; 9542 } 9543 9544 /* Check if any DPLLs are using the SSC source */ 9545 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) { 9546 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i)); 9547 9548 if (!(temp & DPLL_VCO_ENABLE)) 9549 continue; 9550 9551 if ((temp & PLL_REF_INPUT_MASK) == 9552 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 9553 using_ssc_source = true; 9554 break; 9555 } 9556 } 9557 9558 drm_dbg_kms(&dev_priv->drm, 9559 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 9560 has_panel, has_lvds, has_ck505, using_ssc_source); 9561 9562 /* Ironlake: try to setup display ref clock before DPLL 9563 * enabling. This is only under driver's control after 9564 * PCH B stepping, previous chipset stepping should be 9565 * ignoring this setting. 9566 */ 9567 val = intel_de_read(dev_priv, PCH_DREF_CONTROL); 9568 9569 /* As we must carefully and slowly disable/enable each source in turn, 9570 * compute the final state we want first and check if we need to 9571 * make any changes at all. 9572 */ 9573 final = val; 9574 final &= ~DREF_NONSPREAD_SOURCE_MASK; 9575 if (has_ck505) 9576 final |= DREF_NONSPREAD_CK505_ENABLE; 9577 else 9578 final |= DREF_NONSPREAD_SOURCE_ENABLE; 9579 9580 final &= ~DREF_SSC_SOURCE_MASK; 9581 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9582 final &= ~DREF_SSC1_ENABLE; 9583 9584 if (has_panel) { 9585 final |= DREF_SSC_SOURCE_ENABLE; 9586 9587 if (intel_panel_use_ssc(dev_priv) && can_ssc) 9588 final |= DREF_SSC1_ENABLE; 9589 9590 if (has_cpu_edp) { 9591 if (intel_panel_use_ssc(dev_priv) && can_ssc) 9592 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9593 else 9594 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9595 } else 9596 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9597 } else if (using_ssc_source) { 9598 final |= DREF_SSC_SOURCE_ENABLE; 9599 final |= DREF_SSC1_ENABLE; 9600 } 9601 9602 if (final == val) 9603 return; 9604 9605 /* Always enable nonspread source */ 9606 val &= ~DREF_NONSPREAD_SOURCE_MASK; 9607 9608 if (has_ck505) 9609 val |= DREF_NONSPREAD_CK505_ENABLE; 9610 else 9611 val |= DREF_NONSPREAD_SOURCE_ENABLE; 9612 9613 if (has_panel) { 9614 val &= ~DREF_SSC_SOURCE_MASK; 9615 val |= DREF_SSC_SOURCE_ENABLE; 9616 9617 /* SSC must be turned on before enabling the CPU output */ 9618 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9619 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n"); 9620 val |= DREF_SSC1_ENABLE; 9621 } else 9622 val &= ~DREF_SSC1_ENABLE; 9623 9624 /* Get SSC going before enabling the outputs */ 9625 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9626 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9627 udelay(200); 9628 9629 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9630 9631 /* Enable CPU source on CPU attached eDP */ 9632 if (has_cpu_edp) { 9633 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9634 drm_dbg_kms(&dev_priv->drm, 9635 "Using SSC on eDP\n"); 9636 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9637 } else 9638 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9639 } else 9640 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9641 9642 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9643 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9644 udelay(200); 9645 } else { 9646 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n"); 9647 9648 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9649 9650 /* Turn off CPU output */ 9651 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9652 9653 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9654 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9655 udelay(200); 9656 9657 if (!using_ssc_source) { 9658 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n"); 9659 9660 /* Turn off the SSC source */ 9661 val &= ~DREF_SSC_SOURCE_MASK; 9662 val |= DREF_SSC_SOURCE_DISABLE; 9663 9664 /* Turn off SSC1 */ 9665 val &= ~DREF_SSC1_ENABLE; 9666 9667 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9668 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9669 udelay(200); 9670 } 9671 } 9672 9673 BUG_ON(val != final); 9674 } 9675 9676 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 9677 { 9678 u32 tmp; 9679 9680 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 9681 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 9682 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 9683 9684 if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) & 9685 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 9686 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n"); 9687 9688 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 9689 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 9690 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 9691 9692 if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) & 9693 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 9694 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n"); 9695 } 9696 9697 /* WaMPhyProgramming:hsw */ 9698 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 9699 { 9700 u32 tmp; 9701 9702 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 9703 tmp &= ~(0xFF << 24); 9704 tmp |= (0x12 << 24); 9705 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 9706 9707 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 9708 tmp |= (1 << 11); 9709 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 9710 9711 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 9712 tmp |= (1 << 11); 9713 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 9714 9715 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 9716 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9717 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 9718 9719 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 9720 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9721 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 9722 9723 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 9724 tmp &= ~(7 << 13); 9725 tmp |= (5 << 13); 9726 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 9727 9728 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 9729 tmp &= ~(7 << 13); 9730 tmp |= (5 << 13); 9731 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 9732 9733 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 9734 tmp &= ~0xFF; 9735 tmp |= 0x1C; 9736 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 9737 9738 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 9739 tmp &= ~0xFF; 9740 tmp |= 0x1C; 9741 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 9742 9743 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 9744 tmp &= ~(0xFF << 16); 9745 tmp |= (0x1C << 16); 9746 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 9747 9748 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 9749 tmp &= ~(0xFF << 16); 9750 tmp |= (0x1C << 16); 9751 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 9752 9753 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 9754 tmp |= (1 << 27); 9755 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 9756 9757 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 9758 tmp |= (1 << 27); 9759 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 9760 9761 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 9762 tmp &= ~(0xF << 28); 9763 tmp |= (4 << 28); 9764 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 9765 9766 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 9767 tmp &= ~(0xF << 28); 9768 tmp |= (4 << 28); 9769 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 9770 } 9771 9772 /* Implements 3 different sequences from BSpec chapter "Display iCLK 9773 * Programming" based on the parameters passed: 9774 * - Sequence to enable CLKOUT_DP 9775 * - Sequence to enable CLKOUT_DP without spread 9776 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 9777 */ 9778 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 9779 bool with_spread, bool with_fdi) 9780 { 9781 u32 reg, tmp; 9782 9783 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread, 9784 "FDI requires downspread\n")) 9785 with_spread = true; 9786 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) && 9787 with_fdi, "LP PCH doesn't have FDI\n")) 9788 with_fdi = false; 9789 9790 mutex_lock(&dev_priv->sb_lock); 9791 9792 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9793 tmp &= ~SBI_SSCCTL_DISABLE; 9794 tmp |= SBI_SSCCTL_PATHALT; 9795 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9796 9797 udelay(24); 9798 9799 if (with_spread) { 9800 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9801 tmp &= ~SBI_SSCCTL_PATHALT; 9802 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9803 9804 if (with_fdi) { 9805 lpt_reset_fdi_mphy(dev_priv); 9806 lpt_program_fdi_mphy(dev_priv); 9807 } 9808 } 9809 9810 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9811 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9812 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9813 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9814 9815 mutex_unlock(&dev_priv->sb_lock); 9816 } 9817 9818 /* Sequence to disable CLKOUT_DP */ 9819 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 9820 { 9821 u32 reg, tmp; 9822 9823 mutex_lock(&dev_priv->sb_lock); 9824 9825 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9826 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9827 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9828 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9829 9830 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9831 if (!(tmp & SBI_SSCCTL_DISABLE)) { 9832 if (!(tmp & SBI_SSCCTL_PATHALT)) { 9833 tmp |= SBI_SSCCTL_PATHALT; 9834 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9835 udelay(32); 9836 } 9837 tmp |= SBI_SSCCTL_DISABLE; 9838 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9839 } 9840 9841 mutex_unlock(&dev_priv->sb_lock); 9842 } 9843 9844 #define BEND_IDX(steps) ((50 + (steps)) / 5) 9845 9846 static const u16 sscdivintphase[] = { 9847 [BEND_IDX( 50)] = 0x3B23, 9848 [BEND_IDX( 45)] = 0x3B23, 9849 [BEND_IDX( 40)] = 0x3C23, 9850 [BEND_IDX( 35)] = 0x3C23, 9851 [BEND_IDX( 30)] = 0x3D23, 9852 [BEND_IDX( 25)] = 0x3D23, 9853 [BEND_IDX( 20)] = 0x3E23, 9854 [BEND_IDX( 15)] = 0x3E23, 9855 [BEND_IDX( 10)] = 0x3F23, 9856 [BEND_IDX( 5)] = 0x3F23, 9857 [BEND_IDX( 0)] = 0x0025, 9858 [BEND_IDX( -5)] = 0x0025, 9859 [BEND_IDX(-10)] = 0x0125, 9860 [BEND_IDX(-15)] = 0x0125, 9861 [BEND_IDX(-20)] = 0x0225, 9862 [BEND_IDX(-25)] = 0x0225, 9863 [BEND_IDX(-30)] = 0x0325, 9864 [BEND_IDX(-35)] = 0x0325, 9865 [BEND_IDX(-40)] = 0x0425, 9866 [BEND_IDX(-45)] = 0x0425, 9867 [BEND_IDX(-50)] = 0x0525, 9868 }; 9869 9870 /* 9871 * Bend CLKOUT_DP 9872 * steps -50 to 50 inclusive, in steps of 5 9873 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 9874 * change in clock period = -(steps / 10) * 5.787 ps 9875 */ 9876 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 9877 { 9878 u32 tmp; 9879 int idx = BEND_IDX(steps); 9880 9881 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0)) 9882 return; 9883 9884 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase))) 9885 return; 9886 9887 mutex_lock(&dev_priv->sb_lock); 9888 9889 if (steps % 10 != 0) 9890 tmp = 0xAAAAAAAB; 9891 else 9892 tmp = 0x00000000; 9893 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 9894 9895 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 9896 tmp &= 0xffff0000; 9897 tmp |= sscdivintphase[idx]; 9898 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 9899 9900 mutex_unlock(&dev_priv->sb_lock); 9901 } 9902 9903 #undef BEND_IDX 9904 9905 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 9906 { 9907 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 9908 u32 ctl = intel_de_read(dev_priv, SPLL_CTL); 9909 9910 if ((ctl & SPLL_PLL_ENABLE) == 0) 9911 return false; 9912 9913 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 9914 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 9915 return true; 9916 9917 if (IS_BROADWELL(dev_priv) && 9918 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 9919 return true; 9920 9921 return false; 9922 } 9923 9924 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 9925 enum intel_dpll_id id) 9926 { 9927 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 9928 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id)); 9929 9930 if ((ctl & WRPLL_PLL_ENABLE) == 0) 9931 return false; 9932 9933 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 9934 return true; 9935 9936 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 9937 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 9938 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 9939 return true; 9940 9941 return false; 9942 } 9943 9944 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 9945 { 9946 struct intel_encoder *encoder; 9947 bool has_fdi = false; 9948 9949 for_each_intel_encoder(&dev_priv->drm, encoder) { 9950 switch (encoder->type) { 9951 case INTEL_OUTPUT_ANALOG: 9952 has_fdi = true; 9953 break; 9954 default: 9955 break; 9956 } 9957 } 9958 9959 /* 9960 * The BIOS may have decided to use the PCH SSC 9961 * reference so we must not disable it until the 9962 * relevant PLLs have stopped relying on it. We'll 9963 * just leave the PCH SSC reference enabled in case 9964 * any active PLL is using it. It will get disabled 9965 * after runtime suspend if we don't have FDI. 9966 * 9967 * TODO: Move the whole reference clock handling 9968 * to the modeset sequence proper so that we can 9969 * actually enable/disable/reconfigure these things 9970 * safely. To do that we need to introduce a real 9971 * clock hierarchy. That would also allow us to do 9972 * clock bending finally. 9973 */ 9974 dev_priv->pch_ssc_use = 0; 9975 9976 if (spll_uses_pch_ssc(dev_priv)) { 9977 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n"); 9978 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); 9979 } 9980 9981 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 9982 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n"); 9983 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 9984 } 9985 9986 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 9987 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n"); 9988 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 9989 } 9990 9991 if (dev_priv->pch_ssc_use) 9992 return; 9993 9994 if (has_fdi) { 9995 lpt_bend_clkout_dp(dev_priv, 0); 9996 lpt_enable_clkout_dp(dev_priv, true, true); 9997 } else { 9998 lpt_disable_clkout_dp(dev_priv); 9999 } 10000 } 10001 10002 /* 10003 * Initialize reference clocks when the driver loads 10004 */ 10005 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 10006 { 10007 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 10008 ilk_init_pch_refclk(dev_priv); 10009 else if (HAS_PCH_LPT(dev_priv)) 10010 lpt_init_pch_refclk(dev_priv); 10011 } 10012 10013 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) 10014 { 10015 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10016 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10017 enum pipe pipe = crtc->pipe; 10018 u32 val; 10019 10020 val = 0; 10021 10022 switch (crtc_state->pipe_bpp) { 10023 case 18: 10024 val |= PIPECONF_6BPC; 10025 break; 10026 case 24: 10027 val |= PIPECONF_8BPC; 10028 break; 10029 case 30: 10030 val |= PIPECONF_10BPC; 10031 break; 10032 case 36: 10033 val |= PIPECONF_12BPC; 10034 break; 10035 default: 10036 /* Case prevented by intel_choose_pipe_bpp_dither. */ 10037 BUG(); 10038 } 10039 10040 if (crtc_state->dither) 10041 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 10042 10043 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 10044 val |= PIPECONF_INTERLACED_ILK; 10045 else 10046 val |= PIPECONF_PROGRESSIVE; 10047 10048 /* 10049 * This would end up with an odd purple hue over 10050 * the entire display. Make sure we don't do it. 10051 */ 10052 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && 10053 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 10054 10055 if (crtc_state->limited_color_range) 10056 val |= PIPECONF_COLOR_RANGE_SELECT; 10057 10058 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 10059 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; 10060 10061 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 10062 10063 val |= PIPECONF_FRAME_START_DELAY(0); 10064 10065 intel_de_write(dev_priv, PIPECONF(pipe), val); 10066 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 10067 } 10068 10069 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state) 10070 { 10071 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10072 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10073 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 10074 u32 val = 0; 10075 10076 if (IS_HASWELL(dev_priv) && crtc_state->dither) 10077 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 10078 10079 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 10080 val |= PIPECONF_INTERLACED_ILK; 10081 else 10082 val |= PIPECONF_PROGRESSIVE; 10083 10084 if (IS_HASWELL(dev_priv) && 10085 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 10086 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; 10087 10088 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val); 10089 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder)); 10090 } 10091 10092 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 10093 { 10094 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10095 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10096 u32 val = 0; 10097 10098 switch (crtc_state->pipe_bpp) { 10099 case 18: 10100 val |= PIPEMISC_DITHER_6_BPC; 10101 break; 10102 case 24: 10103 val |= PIPEMISC_DITHER_8_BPC; 10104 break; 10105 case 30: 10106 val |= PIPEMISC_DITHER_10_BPC; 10107 break; 10108 case 36: 10109 val |= PIPEMISC_DITHER_12_BPC; 10110 break; 10111 default: 10112 MISSING_CASE(crtc_state->pipe_bpp); 10113 break; 10114 } 10115 10116 if (crtc_state->dither) 10117 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 10118 10119 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 10120 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 10121 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 10122 10123 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 10124 val |= PIPEMISC_YUV420_ENABLE | 10125 PIPEMISC_YUV420_MODE_FULL_BLEND; 10126 10127 if (INTEL_GEN(dev_priv) >= 11 && 10128 (crtc_state->active_planes & ~(icl_hdr_plane_mask() | 10129 BIT(PLANE_CURSOR))) == 0) 10130 val |= PIPEMISC_HDR_MODE_PRECISION; 10131 10132 if (INTEL_GEN(dev_priv) >= 12) 10133 val |= PIPEMISC_PIXEL_ROUNDING_TRUNC; 10134 10135 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val); 10136 } 10137 10138 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 10139 { 10140 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10141 u32 tmp; 10142 10143 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 10144 10145 switch (tmp & PIPEMISC_DITHER_BPC_MASK) { 10146 case PIPEMISC_DITHER_6_BPC: 10147 return 18; 10148 case PIPEMISC_DITHER_8_BPC: 10149 return 24; 10150 case PIPEMISC_DITHER_10_BPC: 10151 return 30; 10152 case PIPEMISC_DITHER_12_BPC: 10153 return 36; 10154 default: 10155 MISSING_CASE(tmp); 10156 return 0; 10157 } 10158 } 10159 10160 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) 10161 { 10162 /* 10163 * Account for spread spectrum to avoid 10164 * oversubscribing the link. Max center spread 10165 * is 2.5%; use 5% for safety's sake. 10166 */ 10167 u32 bps = target_clock * bpp * 21 / 20; 10168 return DIV_ROUND_UP(bps, link_bw * 8); 10169 } 10170 10171 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor) 10172 { 10173 return i9xx_dpll_compute_m(dpll) < factor * dpll->n; 10174 } 10175 10176 static void ilk_compute_dpll(struct intel_crtc *crtc, 10177 struct intel_crtc_state *crtc_state, 10178 struct dpll *reduced_clock) 10179 { 10180 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10181 u32 dpll, fp, fp2; 10182 int factor; 10183 10184 /* Enable autotuning of the PLL clock (if permissible) */ 10185 factor = 21; 10186 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 10187 if ((intel_panel_use_ssc(dev_priv) && 10188 dev_priv->vbt.lvds_ssc_freq == 100000) || 10189 (HAS_PCH_IBX(dev_priv) && 10190 intel_is_dual_link_lvds(dev_priv))) 10191 factor = 25; 10192 } else if (crtc_state->sdvo_tv_clock) { 10193 factor = 20; 10194 } 10195 10196 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 10197 10198 if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor)) 10199 fp |= FP_CB_TUNE; 10200 10201 if (reduced_clock) { 10202 fp2 = i9xx_dpll_compute_fp(reduced_clock); 10203 10204 if (reduced_clock->m < factor * reduced_clock->n) 10205 fp2 |= FP_CB_TUNE; 10206 } else { 10207 fp2 = fp; 10208 } 10209 10210 dpll = 0; 10211 10212 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 10213 dpll |= DPLLB_MODE_LVDS; 10214 else 10215 dpll |= DPLLB_MODE_DAC_SERIAL; 10216 10217 dpll |= (crtc_state->pixel_multiplier - 1) 10218 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; 10219 10220 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 10221 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 10222 dpll |= DPLL_SDVO_HIGH_SPEED; 10223 10224 if (intel_crtc_has_dp_encoder(crtc_state)) 10225 dpll |= DPLL_SDVO_HIGH_SPEED; 10226 10227 /* 10228 * The high speed IO clock is only really required for 10229 * SDVO/HDMI/DP, but we also enable it for CRT to make it 10230 * possible to share the DPLL between CRT and HDMI. Enabling 10231 * the clock needlessly does no real harm, except use up a 10232 * bit of power potentially. 10233 * 10234 * We'll limit this to IVB with 3 pipes, since it has only two 10235 * DPLLs and so DPLL sharing is the only way to get three pipes 10236 * driving PCH ports at the same time. On SNB we could do this, 10237 * and potentially avoid enabling the second DPLL, but it's not 10238 * clear if it''s a win or loss power wise. No point in doing 10239 * this on ILK at all since it has a fixed DPLL<->pipe mapping. 10240 */ 10241 if (INTEL_NUM_PIPES(dev_priv) == 3 && 10242 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) 10243 dpll |= DPLL_SDVO_HIGH_SPEED; 10244 10245 /* compute bitmask from p1 value */ 10246 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 10247 /* also FPA1 */ 10248 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 10249 10250 switch (crtc_state->dpll.p2) { 10251 case 5: 10252 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 10253 break; 10254 case 7: 10255 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 10256 break; 10257 case 10: 10258 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 10259 break; 10260 case 14: 10261 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 10262 break; 10263 } 10264 10265 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 10266 intel_panel_use_ssc(dev_priv)) 10267 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 10268 else 10269 dpll |= PLL_REF_INPUT_DREFCLK; 10270 10271 dpll |= DPLL_VCO_ENABLE; 10272 10273 crtc_state->dpll_hw_state.dpll = dpll; 10274 crtc_state->dpll_hw_state.fp0 = fp; 10275 crtc_state->dpll_hw_state.fp1 = fp2; 10276 } 10277 10278 static int ilk_crtc_compute_clock(struct intel_crtc *crtc, 10279 struct intel_crtc_state *crtc_state) 10280 { 10281 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10282 struct intel_atomic_state *state = 10283 to_intel_atomic_state(crtc_state->uapi.state); 10284 const struct intel_limit *limit; 10285 int refclk = 120000; 10286 10287 memset(&crtc_state->dpll_hw_state, 0, 10288 sizeof(crtc_state->dpll_hw_state)); 10289 10290 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 10291 if (!crtc_state->has_pch_encoder) 10292 return 0; 10293 10294 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 10295 if (intel_panel_use_ssc(dev_priv)) { 10296 drm_dbg_kms(&dev_priv->drm, 10297 "using SSC reference clock of %d kHz\n", 10298 dev_priv->vbt.lvds_ssc_freq); 10299 refclk = dev_priv->vbt.lvds_ssc_freq; 10300 } 10301 10302 if (intel_is_dual_link_lvds(dev_priv)) { 10303 if (refclk == 100000) 10304 limit = &ilk_limits_dual_lvds_100m; 10305 else 10306 limit = &ilk_limits_dual_lvds; 10307 } else { 10308 if (refclk == 100000) 10309 limit = &ilk_limits_single_lvds_100m; 10310 else 10311 limit = &ilk_limits_single_lvds; 10312 } 10313 } else { 10314 limit = &ilk_limits_dac; 10315 } 10316 10317 if (!crtc_state->clock_set && 10318 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 10319 refclk, NULL, &crtc_state->dpll)) { 10320 drm_err(&dev_priv->drm, 10321 "Couldn't find PLL settings for mode!\n"); 10322 return -EINVAL; 10323 } 10324 10325 ilk_compute_dpll(crtc, crtc_state, NULL); 10326 10327 if (!intel_reserve_shared_dplls(state, crtc, NULL)) { 10328 drm_dbg_kms(&dev_priv->drm, 10329 "failed to find PLL for pipe %c\n", 10330 pipe_name(crtc->pipe)); 10331 return -EINVAL; 10332 } 10333 10334 return 0; 10335 } 10336 10337 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 10338 struct intel_link_m_n *m_n) 10339 { 10340 struct drm_device *dev = crtc->base.dev; 10341 struct drm_i915_private *dev_priv = to_i915(dev); 10342 enum pipe pipe = crtc->pipe; 10343 10344 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe)); 10345 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe)); 10346 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 10347 & ~TU_SIZE_MASK; 10348 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe)); 10349 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 10350 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10351 } 10352 10353 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 10354 enum transcoder transcoder, 10355 struct intel_link_m_n *m_n, 10356 struct intel_link_m_n *m2_n2) 10357 { 10358 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10359 enum pipe pipe = crtc->pipe; 10360 10361 if (INTEL_GEN(dev_priv) >= 5) { 10362 m_n->link_m = intel_de_read(dev_priv, 10363 PIPE_LINK_M1(transcoder)); 10364 m_n->link_n = intel_de_read(dev_priv, 10365 PIPE_LINK_N1(transcoder)); 10366 m_n->gmch_m = intel_de_read(dev_priv, 10367 PIPE_DATA_M1(transcoder)) 10368 & ~TU_SIZE_MASK; 10369 m_n->gmch_n = intel_de_read(dev_priv, 10370 PIPE_DATA_N1(transcoder)); 10371 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder)) 10372 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10373 10374 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 10375 m2_n2->link_m = intel_de_read(dev_priv, 10376 PIPE_LINK_M2(transcoder)); 10377 m2_n2->link_n = intel_de_read(dev_priv, 10378 PIPE_LINK_N2(transcoder)); 10379 m2_n2->gmch_m = intel_de_read(dev_priv, 10380 PIPE_DATA_M2(transcoder)) 10381 & ~TU_SIZE_MASK; 10382 m2_n2->gmch_n = intel_de_read(dev_priv, 10383 PIPE_DATA_N2(transcoder)); 10384 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder)) 10385 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10386 } 10387 } else { 10388 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe)); 10389 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe)); 10390 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 10391 & ~TU_SIZE_MASK; 10392 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe)); 10393 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 10394 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10395 } 10396 } 10397 10398 void intel_dp_get_m_n(struct intel_crtc *crtc, 10399 struct intel_crtc_state *pipe_config) 10400 { 10401 if (pipe_config->has_pch_encoder) 10402 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 10403 else 10404 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 10405 &pipe_config->dp_m_n, 10406 &pipe_config->dp_m2_n2); 10407 } 10408 10409 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc, 10410 struct intel_crtc_state *pipe_config) 10411 { 10412 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 10413 &pipe_config->fdi_m_n, NULL); 10414 } 10415 10416 static void skl_get_pfit_config(struct intel_crtc *crtc, 10417 struct intel_crtc_state *pipe_config) 10418 { 10419 struct drm_device *dev = crtc->base.dev; 10420 struct drm_i915_private *dev_priv = to_i915(dev); 10421 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state; 10422 u32 ps_ctrl = 0; 10423 int id = -1; 10424 int i; 10425 10426 /* find scaler attached to this pipe */ 10427 for (i = 0; i < crtc->num_scalers; i++) { 10428 ps_ctrl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i)); 10429 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) { 10430 id = i; 10431 pipe_config->pch_pfit.enabled = true; 10432 pipe_config->pch_pfit.pos = intel_de_read(dev_priv, 10433 SKL_PS_WIN_POS(crtc->pipe, i)); 10434 pipe_config->pch_pfit.size = intel_de_read(dev_priv, 10435 SKL_PS_WIN_SZ(crtc->pipe, i)); 10436 scaler_state->scalers[i].in_use = true; 10437 break; 10438 } 10439 } 10440 10441 scaler_state->scaler_id = id; 10442 if (id >= 0) { 10443 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 10444 } else { 10445 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 10446 } 10447 } 10448 10449 static void 10450 skl_get_initial_plane_config(struct intel_crtc *crtc, 10451 struct intel_initial_plane_config *plane_config) 10452 { 10453 struct drm_device *dev = crtc->base.dev; 10454 struct drm_i915_private *dev_priv = to_i915(dev); 10455 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 10456 enum plane_id plane_id = plane->id; 10457 enum pipe pipe; 10458 u32 val, base, offset, stride_mult, tiling, alpha; 10459 int fourcc, pixel_format; 10460 unsigned int aligned_height; 10461 struct drm_framebuffer *fb; 10462 struct intel_framebuffer *intel_fb; 10463 10464 if (!plane->get_hw_state(plane, &pipe)) 10465 return; 10466 10467 drm_WARN_ON(dev, pipe != crtc->pipe); 10468 10469 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 10470 if (!intel_fb) { 10471 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n"); 10472 return; 10473 } 10474 10475 fb = &intel_fb->base; 10476 10477 fb->dev = dev; 10478 10479 val = intel_de_read(dev_priv, PLANE_CTL(pipe, plane_id)); 10480 10481 if (INTEL_GEN(dev_priv) >= 11) 10482 pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK; 10483 else 10484 pixel_format = val & PLANE_CTL_FORMAT_MASK; 10485 10486 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { 10487 alpha = intel_de_read(dev_priv, 10488 PLANE_COLOR_CTL(pipe, plane_id)); 10489 alpha &= PLANE_COLOR_ALPHA_MASK; 10490 } else { 10491 alpha = val & PLANE_CTL_ALPHA_MASK; 10492 } 10493 10494 fourcc = skl_format_to_fourcc(pixel_format, 10495 val & PLANE_CTL_ORDER_RGBX, alpha); 10496 fb->format = drm_format_info(fourcc); 10497 10498 tiling = val & PLANE_CTL_TILED_MASK; 10499 switch (tiling) { 10500 case PLANE_CTL_TILED_LINEAR: 10501 fb->modifier = DRM_FORMAT_MOD_LINEAR; 10502 break; 10503 case PLANE_CTL_TILED_X: 10504 plane_config->tiling = I915_TILING_X; 10505 fb->modifier = I915_FORMAT_MOD_X_TILED; 10506 break; 10507 case PLANE_CTL_TILED_Y: 10508 plane_config->tiling = I915_TILING_Y; 10509 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 10510 fb->modifier = INTEL_GEN(dev_priv) >= 12 ? 10511 I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS : 10512 I915_FORMAT_MOD_Y_TILED_CCS; 10513 else if (val & PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE) 10514 fb->modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS; 10515 else 10516 fb->modifier = I915_FORMAT_MOD_Y_TILED; 10517 break; 10518 case PLANE_CTL_TILED_YF: 10519 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 10520 fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS; 10521 else 10522 fb->modifier = I915_FORMAT_MOD_Yf_TILED; 10523 break; 10524 default: 10525 MISSING_CASE(tiling); 10526 goto error; 10527 } 10528 10529 /* 10530 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 10531 * while i915 HW rotation is clockwise, thats why this swapping. 10532 */ 10533 switch (val & PLANE_CTL_ROTATE_MASK) { 10534 case PLANE_CTL_ROTATE_0: 10535 plane_config->rotation = DRM_MODE_ROTATE_0; 10536 break; 10537 case PLANE_CTL_ROTATE_90: 10538 plane_config->rotation = DRM_MODE_ROTATE_270; 10539 break; 10540 case PLANE_CTL_ROTATE_180: 10541 plane_config->rotation = DRM_MODE_ROTATE_180; 10542 break; 10543 case PLANE_CTL_ROTATE_270: 10544 plane_config->rotation = DRM_MODE_ROTATE_90; 10545 break; 10546 } 10547 10548 if (INTEL_GEN(dev_priv) >= 10 && 10549 val & PLANE_CTL_FLIP_HORIZONTAL) 10550 plane_config->rotation |= DRM_MODE_REFLECT_X; 10551 10552 base = intel_de_read(dev_priv, PLANE_SURF(pipe, plane_id)) & 0xfffff000; 10553 plane_config->base = base; 10554 10555 offset = intel_de_read(dev_priv, PLANE_OFFSET(pipe, plane_id)); 10556 10557 val = intel_de_read(dev_priv, PLANE_SIZE(pipe, plane_id)); 10558 fb->height = ((val >> 16) & 0xffff) + 1; 10559 fb->width = ((val >> 0) & 0xffff) + 1; 10560 10561 val = intel_de_read(dev_priv, PLANE_STRIDE(pipe, plane_id)); 10562 stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0); 10563 fb->pitches[0] = (val & 0x3ff) * stride_mult; 10564 10565 aligned_height = intel_fb_align_height(fb, 0, fb->height); 10566 10567 plane_config->size = fb->pitches[0] * aligned_height; 10568 10569 drm_dbg_kms(&dev_priv->drm, 10570 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 10571 crtc->base.name, plane->base.name, fb->width, fb->height, 10572 fb->format->cpp[0] * 8, base, fb->pitches[0], 10573 plane_config->size); 10574 10575 plane_config->fb = intel_fb; 10576 return; 10577 10578 error: 10579 kfree(intel_fb); 10580 } 10581 10582 static void ilk_get_pfit_config(struct intel_crtc *crtc, 10583 struct intel_crtc_state *pipe_config) 10584 { 10585 struct drm_device *dev = crtc->base.dev; 10586 struct drm_i915_private *dev_priv = to_i915(dev); 10587 u32 tmp; 10588 10589 tmp = intel_de_read(dev_priv, PF_CTL(crtc->pipe)); 10590 10591 if (tmp & PF_ENABLE) { 10592 pipe_config->pch_pfit.enabled = true; 10593 pipe_config->pch_pfit.pos = intel_de_read(dev_priv, 10594 PF_WIN_POS(crtc->pipe)); 10595 pipe_config->pch_pfit.size = intel_de_read(dev_priv, 10596 PF_WIN_SZ(crtc->pipe)); 10597 10598 /* We currently do not free assignements of panel fitters on 10599 * ivb/hsw (since we don't use the higher upscaling modes which 10600 * differentiates them) so just WARN about this case for now. */ 10601 if (IS_GEN(dev_priv, 7)) { 10602 drm_WARN_ON(dev, (tmp & PF_PIPE_SEL_MASK_IVB) != 10603 PF_PIPE_SEL_IVB(crtc->pipe)); 10604 } 10605 } 10606 } 10607 10608 static bool ilk_get_pipe_config(struct intel_crtc *crtc, 10609 struct intel_crtc_state *pipe_config) 10610 { 10611 struct drm_device *dev = crtc->base.dev; 10612 struct drm_i915_private *dev_priv = to_i915(dev); 10613 enum intel_display_power_domain power_domain; 10614 intel_wakeref_t wakeref; 10615 u32 tmp; 10616 bool ret; 10617 10618 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 10619 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 10620 if (!wakeref) 10621 return false; 10622 10623 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10624 pipe_config->shared_dpll = NULL; 10625 pipe_config->master_transcoder = INVALID_TRANSCODER; 10626 10627 ret = false; 10628 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 10629 if (!(tmp & PIPECONF_ENABLE)) 10630 goto out; 10631 10632 switch (tmp & PIPECONF_BPC_MASK) { 10633 case PIPECONF_6BPC: 10634 pipe_config->pipe_bpp = 18; 10635 break; 10636 case PIPECONF_8BPC: 10637 pipe_config->pipe_bpp = 24; 10638 break; 10639 case PIPECONF_10BPC: 10640 pipe_config->pipe_bpp = 30; 10641 break; 10642 case PIPECONF_12BPC: 10643 pipe_config->pipe_bpp = 36; 10644 break; 10645 default: 10646 break; 10647 } 10648 10649 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 10650 pipe_config->limited_color_range = true; 10651 10652 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { 10653 case PIPECONF_OUTPUT_COLORSPACE_YUV601: 10654 case PIPECONF_OUTPUT_COLORSPACE_YUV709: 10655 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 10656 break; 10657 default: 10658 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 10659 break; 10660 } 10661 10662 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 10663 PIPECONF_GAMMA_MODE_SHIFT; 10664 10665 pipe_config->csc_mode = intel_de_read(dev_priv, 10666 PIPE_CSC_MODE(crtc->pipe)); 10667 10668 i9xx_get_pipe_color_config(pipe_config); 10669 intel_color_get_config(pipe_config); 10670 10671 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 10672 struct intel_shared_dpll *pll; 10673 enum intel_dpll_id pll_id; 10674 10675 pipe_config->has_pch_encoder = true; 10676 10677 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe)); 10678 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 10679 FDI_DP_PORT_WIDTH_SHIFT) + 1; 10680 10681 ilk_get_fdi_m_n_config(crtc, pipe_config); 10682 10683 if (HAS_PCH_IBX(dev_priv)) { 10684 /* 10685 * The pipe->pch transcoder and pch transcoder->pll 10686 * mapping is fixed. 10687 */ 10688 pll_id = (enum intel_dpll_id) crtc->pipe; 10689 } else { 10690 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL); 10691 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 10692 pll_id = DPLL_ID_PCH_PLL_B; 10693 else 10694 pll_id= DPLL_ID_PCH_PLL_A; 10695 } 10696 10697 pipe_config->shared_dpll = 10698 intel_get_shared_dpll_by_id(dev_priv, pll_id); 10699 pll = pipe_config->shared_dpll; 10700 10701 drm_WARN_ON(dev, !pll->info->funcs->get_hw_state(dev_priv, pll, 10702 &pipe_config->dpll_hw_state)); 10703 10704 tmp = pipe_config->dpll_hw_state.dpll; 10705 pipe_config->pixel_multiplier = 10706 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 10707 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 10708 10709 ilk_pch_clock_get(crtc, pipe_config); 10710 } else { 10711 pipe_config->pixel_multiplier = 1; 10712 } 10713 10714 intel_get_pipe_timings(crtc, pipe_config); 10715 intel_get_pipe_src_size(crtc, pipe_config); 10716 10717 ilk_get_pfit_config(crtc, pipe_config); 10718 10719 ret = true; 10720 10721 out: 10722 intel_display_power_put(dev_priv, power_domain, wakeref); 10723 10724 return ret; 10725 } 10726 10727 static int hsw_crtc_compute_clock(struct intel_crtc *crtc, 10728 struct intel_crtc_state *crtc_state) 10729 { 10730 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10731 struct intel_atomic_state *state = 10732 to_intel_atomic_state(crtc_state->uapi.state); 10733 10734 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) || 10735 INTEL_GEN(dev_priv) >= 11) { 10736 struct intel_encoder *encoder = 10737 intel_get_crtc_new_encoder(state, crtc_state); 10738 10739 if (!intel_reserve_shared_dplls(state, crtc, encoder)) { 10740 drm_dbg_kms(&dev_priv->drm, 10741 "failed to find PLL for pipe %c\n", 10742 pipe_name(crtc->pipe)); 10743 return -EINVAL; 10744 } 10745 } 10746 10747 return 0; 10748 } 10749 10750 static void cnl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10751 struct intel_crtc_state *pipe_config) 10752 { 10753 enum intel_dpll_id id; 10754 u32 temp; 10755 10756 temp = intel_de_read(dev_priv, DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port); 10757 id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port); 10758 10759 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL2)) 10760 return; 10761 10762 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10763 } 10764 10765 static void icl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10766 struct intel_crtc_state *pipe_config) 10767 { 10768 enum phy phy = intel_port_to_phy(dev_priv, port); 10769 enum icl_port_dpll_id port_dpll_id; 10770 enum intel_dpll_id id; 10771 u32 temp; 10772 10773 if (intel_phy_is_combo(dev_priv, phy)) { 10774 temp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0) & 10775 ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); 10776 id = temp >> ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy); 10777 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10778 } else if (intel_phy_is_tc(dev_priv, phy)) { 10779 u32 clk_sel = intel_de_read(dev_priv, DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK; 10780 10781 if (clk_sel == DDI_CLK_SEL_MG) { 10782 id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv, 10783 port)); 10784 port_dpll_id = ICL_PORT_DPLL_MG_PHY; 10785 } else { 10786 drm_WARN_ON(&dev_priv->drm, 10787 clk_sel < DDI_CLK_SEL_TBT_162); 10788 id = DPLL_ID_ICL_TBTPLL; 10789 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10790 } 10791 } else { 10792 drm_WARN(&dev_priv->drm, 1, "Invalid port %x\n", port); 10793 return; 10794 } 10795 10796 pipe_config->icl_port_dplls[port_dpll_id].pll = 10797 intel_get_shared_dpll_by_id(dev_priv, id); 10798 10799 icl_set_active_port_dpll(pipe_config, port_dpll_id); 10800 } 10801 10802 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv, 10803 enum port port, 10804 struct intel_crtc_state *pipe_config) 10805 { 10806 enum intel_dpll_id id; 10807 10808 switch (port) { 10809 case PORT_A: 10810 id = DPLL_ID_SKL_DPLL0; 10811 break; 10812 case PORT_B: 10813 id = DPLL_ID_SKL_DPLL1; 10814 break; 10815 case PORT_C: 10816 id = DPLL_ID_SKL_DPLL2; 10817 break; 10818 default: 10819 drm_err(&dev_priv->drm, "Incorrect port type\n"); 10820 return; 10821 } 10822 10823 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10824 } 10825 10826 static void skl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10827 struct intel_crtc_state *pipe_config) 10828 { 10829 enum intel_dpll_id id; 10830 u32 temp; 10831 10832 temp = intel_de_read(dev_priv, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port); 10833 id = temp >> (port * 3 + 1); 10834 10835 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL3)) 10836 return; 10837 10838 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10839 } 10840 10841 static void hsw_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10842 struct intel_crtc_state *pipe_config) 10843 { 10844 enum intel_dpll_id id; 10845 u32 ddi_pll_sel = intel_de_read(dev_priv, PORT_CLK_SEL(port)); 10846 10847 switch (ddi_pll_sel) { 10848 case PORT_CLK_SEL_WRPLL1: 10849 id = DPLL_ID_WRPLL1; 10850 break; 10851 case PORT_CLK_SEL_WRPLL2: 10852 id = DPLL_ID_WRPLL2; 10853 break; 10854 case PORT_CLK_SEL_SPLL: 10855 id = DPLL_ID_SPLL; 10856 break; 10857 case PORT_CLK_SEL_LCPLL_810: 10858 id = DPLL_ID_LCPLL_810; 10859 break; 10860 case PORT_CLK_SEL_LCPLL_1350: 10861 id = DPLL_ID_LCPLL_1350; 10862 break; 10863 case PORT_CLK_SEL_LCPLL_2700: 10864 id = DPLL_ID_LCPLL_2700; 10865 break; 10866 default: 10867 MISSING_CASE(ddi_pll_sel); 10868 /* fall through */ 10869 case PORT_CLK_SEL_NONE: 10870 return; 10871 } 10872 10873 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10874 } 10875 10876 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 10877 struct intel_crtc_state *pipe_config, 10878 u64 *power_domain_mask, 10879 intel_wakeref_t *wakerefs) 10880 { 10881 struct drm_device *dev = crtc->base.dev; 10882 struct drm_i915_private *dev_priv = to_i915(dev); 10883 enum intel_display_power_domain power_domain; 10884 unsigned long panel_transcoder_mask = 0; 10885 unsigned long enabled_panel_transcoders = 0; 10886 enum transcoder panel_transcoder; 10887 intel_wakeref_t wf; 10888 u32 tmp; 10889 10890 if (INTEL_GEN(dev_priv) >= 11) 10891 panel_transcoder_mask |= 10892 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 10893 10894 if (HAS_TRANSCODER_EDP(dev_priv)) 10895 panel_transcoder_mask |= BIT(TRANSCODER_EDP); 10896 10897 /* 10898 * The pipe->transcoder mapping is fixed with the exception of the eDP 10899 * and DSI transcoders handled below. 10900 */ 10901 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10902 10903 /* 10904 * XXX: Do intel_display_power_get_if_enabled before reading this (for 10905 * consistency and less surprising code; it's in always on power). 10906 */ 10907 for_each_set_bit(panel_transcoder, 10908 &panel_transcoder_mask, 10909 ARRAY_SIZE(INTEL_INFO(dev_priv)->trans_offsets)) { 10910 bool force_thru = false; 10911 enum pipe trans_pipe; 10912 10913 tmp = intel_de_read(dev_priv, 10914 TRANS_DDI_FUNC_CTL(panel_transcoder)); 10915 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 10916 continue; 10917 10918 /* 10919 * Log all enabled ones, only use the first one. 10920 * 10921 * FIXME: This won't work for two separate DSI displays. 10922 */ 10923 enabled_panel_transcoders |= BIT(panel_transcoder); 10924 if (enabled_panel_transcoders != BIT(panel_transcoder)) 10925 continue; 10926 10927 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 10928 default: 10929 drm_WARN(dev, 1, 10930 "unknown pipe linked to transcoder %s\n", 10931 transcoder_name(panel_transcoder)); 10932 /* fall through */ 10933 case TRANS_DDI_EDP_INPUT_A_ONOFF: 10934 force_thru = true; 10935 /* fall through */ 10936 case TRANS_DDI_EDP_INPUT_A_ON: 10937 trans_pipe = PIPE_A; 10938 break; 10939 case TRANS_DDI_EDP_INPUT_B_ONOFF: 10940 trans_pipe = PIPE_B; 10941 break; 10942 case TRANS_DDI_EDP_INPUT_C_ONOFF: 10943 trans_pipe = PIPE_C; 10944 break; 10945 case TRANS_DDI_EDP_INPUT_D_ONOFF: 10946 trans_pipe = PIPE_D; 10947 break; 10948 } 10949 10950 if (trans_pipe == crtc->pipe) { 10951 pipe_config->cpu_transcoder = panel_transcoder; 10952 pipe_config->pch_pfit.force_thru = force_thru; 10953 } 10954 } 10955 10956 /* 10957 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 10958 */ 10959 drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && 10960 enabled_panel_transcoders != BIT(TRANSCODER_EDP)); 10961 10962 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder); 10963 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain)); 10964 10965 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 10966 if (!wf) 10967 return false; 10968 10969 wakerefs[power_domain] = wf; 10970 *power_domain_mask |= BIT_ULL(power_domain); 10971 10972 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); 10973 10974 return tmp & PIPECONF_ENABLE; 10975 } 10976 10977 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 10978 struct intel_crtc_state *pipe_config, 10979 u64 *power_domain_mask, 10980 intel_wakeref_t *wakerefs) 10981 { 10982 struct drm_device *dev = crtc->base.dev; 10983 struct drm_i915_private *dev_priv = to_i915(dev); 10984 enum intel_display_power_domain power_domain; 10985 enum transcoder cpu_transcoder; 10986 intel_wakeref_t wf; 10987 enum port port; 10988 u32 tmp; 10989 10990 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 10991 if (port == PORT_A) 10992 cpu_transcoder = TRANSCODER_DSI_A; 10993 else 10994 cpu_transcoder = TRANSCODER_DSI_C; 10995 10996 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 10997 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain)); 10998 10999 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11000 if (!wf) 11001 continue; 11002 11003 wakerefs[power_domain] = wf; 11004 *power_domain_mask |= BIT_ULL(power_domain); 11005 11006 /* 11007 * The PLL needs to be enabled with a valid divider 11008 * configuration, otherwise accessing DSI registers will hang 11009 * the machine. See BSpec North Display Engine 11010 * registers/MIPI[BXT]. We can break out here early, since we 11011 * need the same DSI PLL to be enabled for both DSI ports. 11012 */ 11013 if (!bxt_dsi_pll_is_enabled(dev_priv)) 11014 break; 11015 11016 /* XXX: this works for video mode only */ 11017 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); 11018 if (!(tmp & DPI_ENABLE)) 11019 continue; 11020 11021 tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); 11022 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 11023 continue; 11024 11025 pipe_config->cpu_transcoder = cpu_transcoder; 11026 break; 11027 } 11028 11029 return transcoder_is_dsi(pipe_config->cpu_transcoder); 11030 } 11031 11032 static void hsw_get_ddi_port_state(struct intel_crtc *crtc, 11033 struct intel_crtc_state *pipe_config) 11034 { 11035 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11036 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 11037 struct intel_shared_dpll *pll; 11038 enum port port; 11039 u32 tmp; 11040 11041 if (transcoder_is_dsi(cpu_transcoder)) { 11042 port = (cpu_transcoder == TRANSCODER_DSI_A) ? 11043 PORT_A : PORT_B; 11044 } else { 11045 tmp = intel_de_read(dev_priv, 11046 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 11047 if (INTEL_GEN(dev_priv) >= 12) 11048 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 11049 else 11050 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 11051 } 11052 11053 if (INTEL_GEN(dev_priv) >= 11) 11054 icl_get_ddi_pll(dev_priv, port, pipe_config); 11055 else if (IS_CANNONLAKE(dev_priv)) 11056 cnl_get_ddi_pll(dev_priv, port, pipe_config); 11057 else if (IS_GEN9_BC(dev_priv)) 11058 skl_get_ddi_pll(dev_priv, port, pipe_config); 11059 else if (IS_GEN9_LP(dev_priv)) 11060 bxt_get_ddi_pll(dev_priv, port, pipe_config); 11061 else 11062 hsw_get_ddi_pll(dev_priv, port, pipe_config); 11063 11064 pll = pipe_config->shared_dpll; 11065 if (pll) { 11066 drm_WARN_ON(&dev_priv->drm, 11067 !pll->info->funcs->get_hw_state(dev_priv, pll, 11068 &pipe_config->dpll_hw_state)); 11069 } 11070 11071 /* 11072 * Haswell has only FDI/PCH transcoder A. It is which is connected to 11073 * DDI E. So just check whether this pipe is wired to DDI E and whether 11074 * the PCH transcoder is on. 11075 */ 11076 if (INTEL_GEN(dev_priv) < 9 && 11077 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) { 11078 pipe_config->has_pch_encoder = true; 11079 11080 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); 11081 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 11082 FDI_DP_PORT_WIDTH_SHIFT) + 1; 11083 11084 ilk_get_fdi_m_n_config(crtc, pipe_config); 11085 } 11086 } 11087 11088 static enum transcoder transcoder_master_readout(struct drm_i915_private *dev_priv, 11089 enum transcoder cpu_transcoder) 11090 { 11091 u32 trans_port_sync, master_select; 11092 11093 trans_port_sync = intel_de_read(dev_priv, 11094 TRANS_DDI_FUNC_CTL2(cpu_transcoder)); 11095 11096 if ((trans_port_sync & PORT_SYNC_MODE_ENABLE) == 0) 11097 return INVALID_TRANSCODER; 11098 11099 master_select = trans_port_sync & 11100 PORT_SYNC_MODE_MASTER_SELECT_MASK; 11101 if (master_select == 0) 11102 return TRANSCODER_EDP; 11103 else 11104 return master_select - 1; 11105 } 11106 11107 static void icl_get_trans_port_sync_config(struct intel_crtc_state *crtc_state) 11108 { 11109 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 11110 u32 transcoders; 11111 enum transcoder cpu_transcoder; 11112 11113 crtc_state->master_transcoder = transcoder_master_readout(dev_priv, 11114 crtc_state->cpu_transcoder); 11115 11116 transcoders = BIT(TRANSCODER_A) | 11117 BIT(TRANSCODER_B) | 11118 BIT(TRANSCODER_C) | 11119 BIT(TRANSCODER_D); 11120 for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) { 11121 enum intel_display_power_domain power_domain; 11122 intel_wakeref_t trans_wakeref; 11123 11124 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 11125 trans_wakeref = intel_display_power_get_if_enabled(dev_priv, 11126 power_domain); 11127 11128 if (!trans_wakeref) 11129 continue; 11130 11131 if (transcoder_master_readout(dev_priv, cpu_transcoder) == 11132 crtc_state->cpu_transcoder) 11133 crtc_state->sync_mode_slaves_mask |= BIT(cpu_transcoder); 11134 11135 intel_display_power_put(dev_priv, power_domain, trans_wakeref); 11136 } 11137 11138 drm_WARN_ON(&dev_priv->drm, 11139 crtc_state->master_transcoder != INVALID_TRANSCODER && 11140 crtc_state->sync_mode_slaves_mask); 11141 } 11142 11143 static bool hsw_get_pipe_config(struct intel_crtc *crtc, 11144 struct intel_crtc_state *pipe_config) 11145 { 11146 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11147 intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf; 11148 enum intel_display_power_domain power_domain; 11149 u64 power_domain_mask; 11150 bool active; 11151 u32 tmp; 11152 11153 pipe_config->master_transcoder = INVALID_TRANSCODER; 11154 11155 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 11156 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11157 if (!wf) 11158 return false; 11159 11160 wakerefs[power_domain] = wf; 11161 power_domain_mask = BIT_ULL(power_domain); 11162 11163 pipe_config->shared_dpll = NULL; 11164 11165 active = hsw_get_transcoder_state(crtc, pipe_config, 11166 &power_domain_mask, wakerefs); 11167 11168 if (IS_GEN9_LP(dev_priv) && 11169 bxt_get_dsi_transcoder_state(crtc, pipe_config, 11170 &power_domain_mask, wakerefs)) { 11171 drm_WARN_ON(&dev_priv->drm, active); 11172 active = true; 11173 } 11174 11175 if (!active) 11176 goto out; 11177 11178 if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 11179 INTEL_GEN(dev_priv) >= 11) { 11180 hsw_get_ddi_port_state(crtc, pipe_config); 11181 intel_get_pipe_timings(crtc, pipe_config); 11182 } 11183 11184 intel_get_pipe_src_size(crtc, pipe_config); 11185 11186 if (IS_HASWELL(dev_priv)) { 11187 u32 tmp = intel_de_read(dev_priv, 11188 PIPECONF(pipe_config->cpu_transcoder)); 11189 11190 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) 11191 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 11192 else 11193 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 11194 } else { 11195 pipe_config->output_format = 11196 bdw_get_pipemisc_output_format(crtc); 11197 11198 /* 11199 * Currently there is no interface defined to 11200 * check user preference between RGB/YCBCR444 11201 * or YCBCR420. So the only possible case for 11202 * YCBCR444 usage is driving YCBCR420 output 11203 * with LSPCON, when pipe is configured for 11204 * YCBCR444 output and LSPCON takes care of 11205 * downsampling it. 11206 */ 11207 pipe_config->lspcon_downsampling = 11208 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444; 11209 } 11210 11211 pipe_config->gamma_mode = intel_de_read(dev_priv, 11212 GAMMA_MODE(crtc->pipe)); 11213 11214 pipe_config->csc_mode = intel_de_read(dev_priv, 11215 PIPE_CSC_MODE(crtc->pipe)); 11216 11217 if (INTEL_GEN(dev_priv) >= 9) { 11218 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe)); 11219 11220 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 11221 pipe_config->gamma_enable = true; 11222 11223 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 11224 pipe_config->csc_enable = true; 11225 } else { 11226 i9xx_get_pipe_color_config(pipe_config); 11227 } 11228 11229 intel_color_get_config(pipe_config); 11230 11231 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe)); 11232 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); 11233 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 11234 pipe_config->ips_linetime = 11235 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); 11236 11237 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe); 11238 drm_WARN_ON(&dev_priv->drm, power_domain_mask & BIT_ULL(power_domain)); 11239 11240 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11241 if (wf) { 11242 wakerefs[power_domain] = wf; 11243 power_domain_mask |= BIT_ULL(power_domain); 11244 11245 if (INTEL_GEN(dev_priv) >= 9) 11246 skl_get_pfit_config(crtc, pipe_config); 11247 else 11248 ilk_get_pfit_config(crtc, pipe_config); 11249 } 11250 11251 if (hsw_crtc_supports_ips(crtc)) { 11252 if (IS_HASWELL(dev_priv)) 11253 pipe_config->ips_enabled = intel_de_read(dev_priv, 11254 IPS_CTL) & IPS_ENABLE; 11255 else { 11256 /* 11257 * We cannot readout IPS state on broadwell, set to 11258 * true so we can set it to a defined state on first 11259 * commit. 11260 */ 11261 pipe_config->ips_enabled = true; 11262 } 11263 } 11264 11265 if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 11266 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 11267 pipe_config->pixel_multiplier = 11268 intel_de_read(dev_priv, 11269 PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 11270 } else { 11271 pipe_config->pixel_multiplier = 1; 11272 } 11273 11274 if (INTEL_GEN(dev_priv) >= 11 && 11275 !transcoder_is_dsi(pipe_config->cpu_transcoder)) 11276 icl_get_trans_port_sync_config(pipe_config); 11277 11278 out: 11279 for_each_power_domain(power_domain, power_domain_mask) 11280 intel_display_power_put(dev_priv, 11281 power_domain, wakerefs[power_domain]); 11282 11283 return active; 11284 } 11285 11286 static u32 intel_cursor_base(const struct intel_plane_state *plane_state) 11287 { 11288 struct drm_i915_private *dev_priv = 11289 to_i915(plane_state->uapi.plane->dev); 11290 const struct drm_framebuffer *fb = plane_state->hw.fb; 11291 const struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11292 u32 base; 11293 11294 if (INTEL_INFO(dev_priv)->display.cursor_needs_physical) 11295 base = sg_dma_address(obj->mm.pages->sgl); 11296 else 11297 base = intel_plane_ggtt_offset(plane_state); 11298 11299 return base + plane_state->color_plane[0].offset; 11300 } 11301 11302 static u32 intel_cursor_position(const struct intel_plane_state *plane_state) 11303 { 11304 int x = plane_state->uapi.dst.x1; 11305 int y = plane_state->uapi.dst.y1; 11306 u32 pos = 0; 11307 11308 if (x < 0) { 11309 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; 11310 x = -x; 11311 } 11312 pos |= x << CURSOR_X_SHIFT; 11313 11314 if (y < 0) { 11315 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; 11316 y = -y; 11317 } 11318 pos |= y << CURSOR_Y_SHIFT; 11319 11320 return pos; 11321 } 11322 11323 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state) 11324 { 11325 const struct drm_mode_config *config = 11326 &plane_state->uapi.plane->dev->mode_config; 11327 int width = drm_rect_width(&plane_state->uapi.dst); 11328 int height = drm_rect_height(&plane_state->uapi.dst); 11329 11330 return width > 0 && width <= config->cursor_width && 11331 height > 0 && height <= config->cursor_height; 11332 } 11333 11334 static int intel_cursor_check_surface(struct intel_plane_state *plane_state) 11335 { 11336 struct drm_i915_private *dev_priv = 11337 to_i915(plane_state->uapi.plane->dev); 11338 unsigned int rotation = plane_state->hw.rotation; 11339 int src_x, src_y; 11340 u32 offset; 11341 int ret; 11342 11343 ret = intel_plane_compute_gtt(plane_state); 11344 if (ret) 11345 return ret; 11346 11347 if (!plane_state->uapi.visible) 11348 return 0; 11349 11350 src_x = plane_state->uapi.src.x1 >> 16; 11351 src_y = plane_state->uapi.src.y1 >> 16; 11352 11353 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 11354 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 11355 plane_state, 0); 11356 11357 if (src_x != 0 || src_y != 0) { 11358 drm_dbg_kms(&dev_priv->drm, 11359 "Arbitrary cursor panning not supported\n"); 11360 return -EINVAL; 11361 } 11362 11363 /* 11364 * Put the final coordinates back so that the src 11365 * coordinate checks will see the right values. 11366 */ 11367 drm_rect_translate_to(&plane_state->uapi.src, 11368 src_x << 16, src_y << 16); 11369 11370 /* ILK+ do this automagically in hardware */ 11371 if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) { 11372 const struct drm_framebuffer *fb = plane_state->hw.fb; 11373 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 11374 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 11375 11376 offset += (src_h * src_w - 1) * fb->format->cpp[0]; 11377 } 11378 11379 plane_state->color_plane[0].offset = offset; 11380 plane_state->color_plane[0].x = src_x; 11381 plane_state->color_plane[0].y = src_y; 11382 11383 return 0; 11384 } 11385 11386 static int intel_check_cursor(struct intel_crtc_state *crtc_state, 11387 struct intel_plane_state *plane_state) 11388 { 11389 const struct drm_framebuffer *fb = plane_state->hw.fb; 11390 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 11391 int ret; 11392 11393 if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) { 11394 drm_dbg_kms(&i915->drm, "cursor cannot be tiled\n"); 11395 return -EINVAL; 11396 } 11397 11398 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi, 11399 &crtc_state->uapi, 11400 DRM_PLANE_HELPER_NO_SCALING, 11401 DRM_PLANE_HELPER_NO_SCALING, 11402 true, true); 11403 if (ret) 11404 return ret; 11405 11406 /* Use the unclipped src/dst rectangles, which we program to hw */ 11407 plane_state->uapi.src = drm_plane_state_src(&plane_state->uapi); 11408 plane_state->uapi.dst = drm_plane_state_dest(&plane_state->uapi); 11409 11410 ret = intel_cursor_check_surface(plane_state); 11411 if (ret) 11412 return ret; 11413 11414 if (!plane_state->uapi.visible) 11415 return 0; 11416 11417 ret = intel_plane_check_src_coordinates(plane_state); 11418 if (ret) 11419 return ret; 11420 11421 return 0; 11422 } 11423 11424 static unsigned int 11425 i845_cursor_max_stride(struct intel_plane *plane, 11426 u32 pixel_format, u64 modifier, 11427 unsigned int rotation) 11428 { 11429 return 2048; 11430 } 11431 11432 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 11433 { 11434 u32 cntl = 0; 11435 11436 if (crtc_state->gamma_enable) 11437 cntl |= CURSOR_GAMMA_ENABLE; 11438 11439 return cntl; 11440 } 11441 11442 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state, 11443 const struct intel_plane_state *plane_state) 11444 { 11445 return CURSOR_ENABLE | 11446 CURSOR_FORMAT_ARGB | 11447 CURSOR_STRIDE(plane_state->color_plane[0].stride); 11448 } 11449 11450 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state) 11451 { 11452 int width = drm_rect_width(&plane_state->uapi.dst); 11453 11454 /* 11455 * 845g/865g are only limited by the width of their cursors, 11456 * the height is arbitrary up to the precision of the register. 11457 */ 11458 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64); 11459 } 11460 11461 static int i845_check_cursor(struct intel_crtc_state *crtc_state, 11462 struct intel_plane_state *plane_state) 11463 { 11464 const struct drm_framebuffer *fb = plane_state->hw.fb; 11465 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 11466 int ret; 11467 11468 ret = intel_check_cursor(crtc_state, plane_state); 11469 if (ret) 11470 return ret; 11471 11472 /* if we want to turn off the cursor ignore width and height */ 11473 if (!fb) 11474 return 0; 11475 11476 /* Check for which cursor types we support */ 11477 if (!i845_cursor_size_ok(plane_state)) { 11478 drm_dbg_kms(&i915->drm, 11479 "Cursor dimension %dx%d not supported\n", 11480 drm_rect_width(&plane_state->uapi.dst), 11481 drm_rect_height(&plane_state->uapi.dst)); 11482 return -EINVAL; 11483 } 11484 11485 drm_WARN_ON(&i915->drm, plane_state->uapi.visible && 11486 plane_state->color_plane[0].stride != fb->pitches[0]); 11487 11488 switch (fb->pitches[0]) { 11489 case 256: 11490 case 512: 11491 case 1024: 11492 case 2048: 11493 break; 11494 default: 11495 drm_dbg_kms(&i915->drm, "Invalid cursor stride (%u)\n", 11496 fb->pitches[0]); 11497 return -EINVAL; 11498 } 11499 11500 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state); 11501 11502 return 0; 11503 } 11504 11505 static void i845_update_cursor(struct intel_plane *plane, 11506 const struct intel_crtc_state *crtc_state, 11507 const struct intel_plane_state *plane_state) 11508 { 11509 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11510 u32 cntl = 0, base = 0, pos = 0, size = 0; 11511 unsigned long irqflags; 11512 11513 if (plane_state && plane_state->uapi.visible) { 11514 unsigned int width = drm_rect_width(&plane_state->uapi.dst); 11515 unsigned int height = drm_rect_height(&plane_state->uapi.dst); 11516 11517 cntl = plane_state->ctl | 11518 i845_cursor_ctl_crtc(crtc_state); 11519 11520 size = (height << 12) | width; 11521 11522 base = intel_cursor_base(plane_state); 11523 pos = intel_cursor_position(plane_state); 11524 } 11525 11526 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 11527 11528 /* On these chipsets we can only modify the base/size/stride 11529 * whilst the cursor is disabled. 11530 */ 11531 if (plane->cursor.base != base || 11532 plane->cursor.size != size || 11533 plane->cursor.cntl != cntl) { 11534 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), 0); 11535 intel_de_write_fw(dev_priv, CURBASE(PIPE_A), base); 11536 intel_de_write_fw(dev_priv, CURSIZE, size); 11537 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos); 11538 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), cntl); 11539 11540 plane->cursor.base = base; 11541 plane->cursor.size = size; 11542 plane->cursor.cntl = cntl; 11543 } else { 11544 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos); 11545 } 11546 11547 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 11548 } 11549 11550 static void i845_disable_cursor(struct intel_plane *plane, 11551 const struct intel_crtc_state *crtc_state) 11552 { 11553 i845_update_cursor(plane, crtc_state, NULL); 11554 } 11555 11556 static bool i845_cursor_get_hw_state(struct intel_plane *plane, 11557 enum pipe *pipe) 11558 { 11559 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11560 enum intel_display_power_domain power_domain; 11561 intel_wakeref_t wakeref; 11562 bool ret; 11563 11564 power_domain = POWER_DOMAIN_PIPE(PIPE_A); 11565 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11566 if (!wakeref) 11567 return false; 11568 11569 ret = intel_de_read(dev_priv, CURCNTR(PIPE_A)) & CURSOR_ENABLE; 11570 11571 *pipe = PIPE_A; 11572 11573 intel_display_power_put(dev_priv, power_domain, wakeref); 11574 11575 return ret; 11576 } 11577 11578 static unsigned int 11579 i9xx_cursor_max_stride(struct intel_plane *plane, 11580 u32 pixel_format, u64 modifier, 11581 unsigned int rotation) 11582 { 11583 return plane->base.dev->mode_config.cursor_width * 4; 11584 } 11585 11586 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 11587 { 11588 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 11589 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11590 u32 cntl = 0; 11591 11592 if (INTEL_GEN(dev_priv) >= 11) 11593 return cntl; 11594 11595 if (crtc_state->gamma_enable) 11596 cntl = MCURSOR_GAMMA_ENABLE; 11597 11598 if (crtc_state->csc_enable) 11599 cntl |= MCURSOR_PIPE_CSC_ENABLE; 11600 11601 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 11602 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe); 11603 11604 return cntl; 11605 } 11606 11607 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state, 11608 const struct intel_plane_state *plane_state) 11609 { 11610 struct drm_i915_private *dev_priv = 11611 to_i915(plane_state->uapi.plane->dev); 11612 u32 cntl = 0; 11613 11614 if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 11615 cntl |= MCURSOR_TRICKLE_FEED_DISABLE; 11616 11617 switch (drm_rect_width(&plane_state->uapi.dst)) { 11618 case 64: 11619 cntl |= MCURSOR_MODE_64_ARGB_AX; 11620 break; 11621 case 128: 11622 cntl |= MCURSOR_MODE_128_ARGB_AX; 11623 break; 11624 case 256: 11625 cntl |= MCURSOR_MODE_256_ARGB_AX; 11626 break; 11627 default: 11628 MISSING_CASE(drm_rect_width(&plane_state->uapi.dst)); 11629 return 0; 11630 } 11631 11632 if (plane_state->hw.rotation & DRM_MODE_ROTATE_180) 11633 cntl |= MCURSOR_ROTATE_180; 11634 11635 return cntl; 11636 } 11637 11638 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state) 11639 { 11640 struct drm_i915_private *dev_priv = 11641 to_i915(plane_state->uapi.plane->dev); 11642 int width = drm_rect_width(&plane_state->uapi.dst); 11643 int height = drm_rect_height(&plane_state->uapi.dst); 11644 11645 if (!intel_cursor_size_ok(plane_state)) 11646 return false; 11647 11648 /* Cursor width is limited to a few power-of-two sizes */ 11649 switch (width) { 11650 case 256: 11651 case 128: 11652 case 64: 11653 break; 11654 default: 11655 return false; 11656 } 11657 11658 /* 11659 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor 11660 * height from 8 lines up to the cursor width, when the 11661 * cursor is not rotated. Everything else requires square 11662 * cursors. 11663 */ 11664 if (HAS_CUR_FBC(dev_priv) && 11665 plane_state->hw.rotation & DRM_MODE_ROTATE_0) { 11666 if (height < 8 || height > width) 11667 return false; 11668 } else { 11669 if (height != width) 11670 return false; 11671 } 11672 11673 return true; 11674 } 11675 11676 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state, 11677 struct intel_plane_state *plane_state) 11678 { 11679 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 11680 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11681 const struct drm_framebuffer *fb = plane_state->hw.fb; 11682 enum pipe pipe = plane->pipe; 11683 int ret; 11684 11685 ret = intel_check_cursor(crtc_state, plane_state); 11686 if (ret) 11687 return ret; 11688 11689 /* if we want to turn off the cursor ignore width and height */ 11690 if (!fb) 11691 return 0; 11692 11693 /* Check for which cursor types we support */ 11694 if (!i9xx_cursor_size_ok(plane_state)) { 11695 drm_dbg(&dev_priv->drm, 11696 "Cursor dimension %dx%d not supported\n", 11697 drm_rect_width(&plane_state->uapi.dst), 11698 drm_rect_height(&plane_state->uapi.dst)); 11699 return -EINVAL; 11700 } 11701 11702 drm_WARN_ON(&dev_priv->drm, plane_state->uapi.visible && 11703 plane_state->color_plane[0].stride != fb->pitches[0]); 11704 11705 if (fb->pitches[0] != 11706 drm_rect_width(&plane_state->uapi.dst) * fb->format->cpp[0]) { 11707 drm_dbg_kms(&dev_priv->drm, 11708 "Invalid cursor stride (%u) (cursor width %d)\n", 11709 fb->pitches[0], 11710 drm_rect_width(&plane_state->uapi.dst)); 11711 return -EINVAL; 11712 } 11713 11714 /* 11715 * There's something wrong with the cursor on CHV pipe C. 11716 * If it straddles the left edge of the screen then 11717 * moving it away from the edge or disabling it often 11718 * results in a pipe underrun, and often that can lead to 11719 * dead pipe (constant underrun reported, and it scans 11720 * out just a solid color). To recover from that, the 11721 * display power well must be turned off and on again. 11722 * Refuse the put the cursor into that compromised position. 11723 */ 11724 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C && 11725 plane_state->uapi.visible && plane_state->uapi.dst.x1 < 0) { 11726 drm_dbg_kms(&dev_priv->drm, 11727 "CHV cursor C not allowed to straddle the left screen edge\n"); 11728 return -EINVAL; 11729 } 11730 11731 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state); 11732 11733 return 0; 11734 } 11735 11736 static void i9xx_update_cursor(struct intel_plane *plane, 11737 const struct intel_crtc_state *crtc_state, 11738 const struct intel_plane_state *plane_state) 11739 { 11740 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11741 enum pipe pipe = plane->pipe; 11742 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0; 11743 unsigned long irqflags; 11744 11745 if (plane_state && plane_state->uapi.visible) { 11746 unsigned width = drm_rect_width(&plane_state->uapi.dst); 11747 unsigned height = drm_rect_height(&plane_state->uapi.dst); 11748 11749 cntl = plane_state->ctl | 11750 i9xx_cursor_ctl_crtc(crtc_state); 11751 11752 if (width != height) 11753 fbc_ctl = CUR_FBC_CTL_EN | (height - 1); 11754 11755 base = intel_cursor_base(plane_state); 11756 pos = intel_cursor_position(plane_state); 11757 } 11758 11759 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 11760 11761 /* 11762 * On some platforms writing CURCNTR first will also 11763 * cause CURPOS to be armed by the CURBASE write. 11764 * Without the CURCNTR write the CURPOS write would 11765 * arm itself. Thus we always update CURCNTR before 11766 * CURPOS. 11767 * 11768 * On other platforms CURPOS always requires the 11769 * CURBASE write to arm the update. Additonally 11770 * a write to any of the cursor register will cancel 11771 * an already armed cursor update. Thus leaving out 11772 * the CURBASE write after CURPOS could lead to a 11773 * cursor that doesn't appear to move, or even change 11774 * shape. Thus we always write CURBASE. 11775 * 11776 * The other registers are armed by by the CURBASE write 11777 * except when the plane is getting enabled at which time 11778 * the CURCNTR write arms the update. 11779 */ 11780 11781 if (INTEL_GEN(dev_priv) >= 9) 11782 skl_write_cursor_wm(plane, crtc_state); 11783 11784 if (plane->cursor.base != base || 11785 plane->cursor.size != fbc_ctl || 11786 plane->cursor.cntl != cntl) { 11787 if (HAS_CUR_FBC(dev_priv)) 11788 intel_de_write_fw(dev_priv, CUR_FBC_CTL(pipe), 11789 fbc_ctl); 11790 intel_de_write_fw(dev_priv, CURCNTR(pipe), cntl); 11791 intel_de_write_fw(dev_priv, CURPOS(pipe), pos); 11792 intel_de_write_fw(dev_priv, CURBASE(pipe), base); 11793 11794 plane->cursor.base = base; 11795 plane->cursor.size = fbc_ctl; 11796 plane->cursor.cntl = cntl; 11797 } else { 11798 intel_de_write_fw(dev_priv, CURPOS(pipe), pos); 11799 intel_de_write_fw(dev_priv, CURBASE(pipe), base); 11800 } 11801 11802 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 11803 } 11804 11805 static void i9xx_disable_cursor(struct intel_plane *plane, 11806 const struct intel_crtc_state *crtc_state) 11807 { 11808 i9xx_update_cursor(plane, crtc_state, NULL); 11809 } 11810 11811 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane, 11812 enum pipe *pipe) 11813 { 11814 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11815 enum intel_display_power_domain power_domain; 11816 intel_wakeref_t wakeref; 11817 bool ret; 11818 u32 val; 11819 11820 /* 11821 * Not 100% correct for planes that can move between pipes, 11822 * but that's only the case for gen2-3 which don't have any 11823 * display power wells. 11824 */ 11825 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 11826 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11827 if (!wakeref) 11828 return false; 11829 11830 val = intel_de_read(dev_priv, CURCNTR(plane->pipe)); 11831 11832 ret = val & MCURSOR_MODE; 11833 11834 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 11835 *pipe = plane->pipe; 11836 else 11837 *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >> 11838 MCURSOR_PIPE_SELECT_SHIFT; 11839 11840 intel_display_power_put(dev_priv, power_domain, wakeref); 11841 11842 return ret; 11843 } 11844 11845 /* VESA 640x480x72Hz mode to set on the pipe */ 11846 static const struct drm_display_mode load_detect_mode = { 11847 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 11848 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 11849 }; 11850 11851 struct drm_framebuffer * 11852 intel_framebuffer_create(struct drm_i915_gem_object *obj, 11853 struct drm_mode_fb_cmd2 *mode_cmd) 11854 { 11855 struct intel_framebuffer *intel_fb; 11856 int ret; 11857 11858 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 11859 if (!intel_fb) 11860 return ERR_PTR(-ENOMEM); 11861 11862 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); 11863 if (ret) 11864 goto err; 11865 11866 return &intel_fb->base; 11867 11868 err: 11869 kfree(intel_fb); 11870 return ERR_PTR(ret); 11871 } 11872 11873 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 11874 struct drm_crtc *crtc) 11875 { 11876 struct drm_plane *plane; 11877 struct drm_plane_state *plane_state; 11878 int ret, i; 11879 11880 ret = drm_atomic_add_affected_planes(state, crtc); 11881 if (ret) 11882 return ret; 11883 11884 for_each_new_plane_in_state(state, plane, plane_state, i) { 11885 if (plane_state->crtc != crtc) 11886 continue; 11887 11888 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 11889 if (ret) 11890 return ret; 11891 11892 drm_atomic_set_fb_for_plane(plane_state, NULL); 11893 } 11894 11895 return 0; 11896 } 11897 11898 int intel_get_load_detect_pipe(struct drm_connector *connector, 11899 struct intel_load_detect_pipe *old, 11900 struct drm_modeset_acquire_ctx *ctx) 11901 { 11902 struct intel_crtc *intel_crtc; 11903 struct intel_encoder *intel_encoder = 11904 intel_attached_encoder(to_intel_connector(connector)); 11905 struct drm_crtc *possible_crtc; 11906 struct drm_encoder *encoder = &intel_encoder->base; 11907 struct drm_crtc *crtc = NULL; 11908 struct drm_device *dev = encoder->dev; 11909 struct drm_i915_private *dev_priv = to_i915(dev); 11910 struct drm_mode_config *config = &dev->mode_config; 11911 struct drm_atomic_state *state = NULL, *restore_state = NULL; 11912 struct drm_connector_state *connector_state; 11913 struct intel_crtc_state *crtc_state; 11914 int ret, i = -1; 11915 11916 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 11917 connector->base.id, connector->name, 11918 encoder->base.id, encoder->name); 11919 11920 old->restore_state = NULL; 11921 11922 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex)); 11923 11924 /* 11925 * Algorithm gets a little messy: 11926 * 11927 * - if the connector already has an assigned crtc, use it (but make 11928 * sure it's on first) 11929 * 11930 * - try to find the first unused crtc that can drive this connector, 11931 * and use that if we find one 11932 */ 11933 11934 /* See if we already have a CRTC for this connector */ 11935 if (connector->state->crtc) { 11936 crtc = connector->state->crtc; 11937 11938 ret = drm_modeset_lock(&crtc->mutex, ctx); 11939 if (ret) 11940 goto fail; 11941 11942 /* Make sure the crtc and connector are running */ 11943 goto found; 11944 } 11945 11946 /* Find an unused one (if possible) */ 11947 for_each_crtc(dev, possible_crtc) { 11948 i++; 11949 if (!(encoder->possible_crtcs & (1 << i))) 11950 continue; 11951 11952 ret = drm_modeset_lock(&possible_crtc->mutex, ctx); 11953 if (ret) 11954 goto fail; 11955 11956 if (possible_crtc->state->enable) { 11957 drm_modeset_unlock(&possible_crtc->mutex); 11958 continue; 11959 } 11960 11961 crtc = possible_crtc; 11962 break; 11963 } 11964 11965 /* 11966 * If we didn't find an unused CRTC, don't use any. 11967 */ 11968 if (!crtc) { 11969 drm_dbg_kms(&dev_priv->drm, 11970 "no pipe available for load-detect\n"); 11971 ret = -ENODEV; 11972 goto fail; 11973 } 11974 11975 found: 11976 intel_crtc = to_intel_crtc(crtc); 11977 11978 state = drm_atomic_state_alloc(dev); 11979 restore_state = drm_atomic_state_alloc(dev); 11980 if (!state || !restore_state) { 11981 ret = -ENOMEM; 11982 goto fail; 11983 } 11984 11985 state->acquire_ctx = ctx; 11986 restore_state->acquire_ctx = ctx; 11987 11988 connector_state = drm_atomic_get_connector_state(state, connector); 11989 if (IS_ERR(connector_state)) { 11990 ret = PTR_ERR(connector_state); 11991 goto fail; 11992 } 11993 11994 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); 11995 if (ret) 11996 goto fail; 11997 11998 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); 11999 if (IS_ERR(crtc_state)) { 12000 ret = PTR_ERR(crtc_state); 12001 goto fail; 12002 } 12003 12004 crtc_state->uapi.active = true; 12005 12006 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi, 12007 &load_detect_mode); 12008 if (ret) 12009 goto fail; 12010 12011 ret = intel_modeset_disable_planes(state, crtc); 12012 if (ret) 12013 goto fail; 12014 12015 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 12016 if (!ret) 12017 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); 12018 if (!ret) 12019 ret = drm_atomic_add_affected_planes(restore_state, crtc); 12020 if (ret) { 12021 drm_dbg_kms(&dev_priv->drm, 12022 "Failed to create a copy of old state to restore: %i\n", 12023 ret); 12024 goto fail; 12025 } 12026 12027 ret = drm_atomic_commit(state); 12028 if (ret) { 12029 drm_dbg_kms(&dev_priv->drm, 12030 "failed to set mode on load-detect pipe\n"); 12031 goto fail; 12032 } 12033 12034 old->restore_state = restore_state; 12035 drm_atomic_state_put(state); 12036 12037 /* let the connector get through one full cycle before testing */ 12038 intel_wait_for_vblank(dev_priv, intel_crtc->pipe); 12039 return true; 12040 12041 fail: 12042 if (state) { 12043 drm_atomic_state_put(state); 12044 state = NULL; 12045 } 12046 if (restore_state) { 12047 drm_atomic_state_put(restore_state); 12048 restore_state = NULL; 12049 } 12050 12051 if (ret == -EDEADLK) 12052 return ret; 12053 12054 return false; 12055 } 12056 12057 void intel_release_load_detect_pipe(struct drm_connector *connector, 12058 struct intel_load_detect_pipe *old, 12059 struct drm_modeset_acquire_ctx *ctx) 12060 { 12061 struct intel_encoder *intel_encoder = 12062 intel_attached_encoder(to_intel_connector(connector)); 12063 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev); 12064 struct drm_encoder *encoder = &intel_encoder->base; 12065 struct drm_atomic_state *state = old->restore_state; 12066 int ret; 12067 12068 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 12069 connector->base.id, connector->name, 12070 encoder->base.id, encoder->name); 12071 12072 if (!state) 12073 return; 12074 12075 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 12076 if (ret) 12077 drm_dbg_kms(&i915->drm, 12078 "Couldn't release load detect pipe: %i\n", ret); 12079 drm_atomic_state_put(state); 12080 } 12081 12082 static int i9xx_pll_refclk(struct drm_device *dev, 12083 const struct intel_crtc_state *pipe_config) 12084 { 12085 struct drm_i915_private *dev_priv = to_i915(dev); 12086 u32 dpll = pipe_config->dpll_hw_state.dpll; 12087 12088 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 12089 return dev_priv->vbt.lvds_ssc_freq; 12090 else if (HAS_PCH_SPLIT(dev_priv)) 12091 return 120000; 12092 else if (!IS_GEN(dev_priv, 2)) 12093 return 96000; 12094 else 12095 return 48000; 12096 } 12097 12098 /* Returns the clock of the currently programmed mode of the given pipe. */ 12099 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 12100 struct intel_crtc_state *pipe_config) 12101 { 12102 struct drm_device *dev = crtc->base.dev; 12103 struct drm_i915_private *dev_priv = to_i915(dev); 12104 enum pipe pipe = crtc->pipe; 12105 u32 dpll = pipe_config->dpll_hw_state.dpll; 12106 u32 fp; 12107 struct dpll clock; 12108 int port_clock; 12109 int refclk = i9xx_pll_refclk(dev, pipe_config); 12110 12111 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 12112 fp = pipe_config->dpll_hw_state.fp0; 12113 else 12114 fp = pipe_config->dpll_hw_state.fp1; 12115 12116 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 12117 if (IS_PINEVIEW(dev_priv)) { 12118 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 12119 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 12120 } else { 12121 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 12122 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 12123 } 12124 12125 if (!IS_GEN(dev_priv, 2)) { 12126 if (IS_PINEVIEW(dev_priv)) 12127 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 12128 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 12129 else 12130 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 12131 DPLL_FPA01_P1_POST_DIV_SHIFT); 12132 12133 switch (dpll & DPLL_MODE_MASK) { 12134 case DPLLB_MODE_DAC_SERIAL: 12135 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 12136 5 : 10; 12137 break; 12138 case DPLLB_MODE_LVDS: 12139 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 12140 7 : 14; 12141 break; 12142 default: 12143 drm_dbg_kms(&dev_priv->drm, 12144 "Unknown DPLL mode %08x in programmed " 12145 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 12146 return; 12147 } 12148 12149 if (IS_PINEVIEW(dev_priv)) 12150 port_clock = pnv_calc_dpll_params(refclk, &clock); 12151 else 12152 port_clock = i9xx_calc_dpll_params(refclk, &clock); 12153 } else { 12154 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv, 12155 LVDS); 12156 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 12157 12158 if (is_lvds) { 12159 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 12160 DPLL_FPA01_P1_POST_DIV_SHIFT); 12161 12162 if (lvds & LVDS_CLKB_POWER_UP) 12163 clock.p2 = 7; 12164 else 12165 clock.p2 = 14; 12166 } else { 12167 if (dpll & PLL_P1_DIVIDE_BY_TWO) 12168 clock.p1 = 2; 12169 else { 12170 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 12171 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 12172 } 12173 if (dpll & PLL_P2_DIVIDE_BY_4) 12174 clock.p2 = 4; 12175 else 12176 clock.p2 = 2; 12177 } 12178 12179 port_clock = i9xx_calc_dpll_params(refclk, &clock); 12180 } 12181 12182 /* 12183 * This value includes pixel_multiplier. We will use 12184 * port_clock to compute adjusted_mode.crtc_clock in the 12185 * encoder's get_config() function. 12186 */ 12187 pipe_config->port_clock = port_clock; 12188 } 12189 12190 int intel_dotclock_calculate(int link_freq, 12191 const struct intel_link_m_n *m_n) 12192 { 12193 /* 12194 * The calculation for the data clock is: 12195 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 12196 * But we want to avoid losing precison if possible, so: 12197 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 12198 * 12199 * and the link clock is simpler: 12200 * link_clock = (m * link_clock) / n 12201 */ 12202 12203 if (!m_n->link_n) 12204 return 0; 12205 12206 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 12207 } 12208 12209 static void ilk_pch_clock_get(struct intel_crtc *crtc, 12210 struct intel_crtc_state *pipe_config) 12211 { 12212 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12213 12214 /* read out port_clock from the DPLL */ 12215 i9xx_crtc_clock_get(crtc, pipe_config); 12216 12217 /* 12218 * In case there is an active pipe without active ports, 12219 * we may need some idea for the dotclock anyway. 12220 * Calculate one based on the FDI configuration. 12221 */ 12222 pipe_config->hw.adjusted_mode.crtc_clock = 12223 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 12224 &pipe_config->fdi_m_n); 12225 } 12226 12227 static void intel_crtc_state_reset(struct intel_crtc_state *crtc_state, 12228 struct intel_crtc *crtc) 12229 { 12230 memset(crtc_state, 0, sizeof(*crtc_state)); 12231 12232 __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base); 12233 12234 crtc_state->cpu_transcoder = INVALID_TRANSCODER; 12235 crtc_state->master_transcoder = INVALID_TRANSCODER; 12236 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 12237 crtc_state->output_format = INTEL_OUTPUT_FORMAT_INVALID; 12238 crtc_state->scaler_state.scaler_id = -1; 12239 crtc_state->mst_master_transcoder = INVALID_TRANSCODER; 12240 } 12241 12242 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc) 12243 { 12244 struct intel_crtc_state *crtc_state; 12245 12246 crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL); 12247 12248 if (crtc_state) 12249 intel_crtc_state_reset(crtc_state, crtc); 12250 12251 return crtc_state; 12252 } 12253 12254 /* Returns the currently programmed mode of the given encoder. */ 12255 struct drm_display_mode * 12256 intel_encoder_current_mode(struct intel_encoder *encoder) 12257 { 12258 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 12259 struct intel_crtc_state *crtc_state; 12260 struct drm_display_mode *mode; 12261 struct intel_crtc *crtc; 12262 enum pipe pipe; 12263 12264 if (!encoder->get_hw_state(encoder, &pipe)) 12265 return NULL; 12266 12267 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12268 12269 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 12270 if (!mode) 12271 return NULL; 12272 12273 crtc_state = intel_crtc_state_alloc(crtc); 12274 if (!crtc_state) { 12275 kfree(mode); 12276 return NULL; 12277 } 12278 12279 if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) { 12280 kfree(crtc_state); 12281 kfree(mode); 12282 return NULL; 12283 } 12284 12285 encoder->get_config(encoder, crtc_state); 12286 12287 intel_mode_from_pipe_config(mode, crtc_state); 12288 12289 kfree(crtc_state); 12290 12291 return mode; 12292 } 12293 12294 static void intel_crtc_destroy(struct drm_crtc *crtc) 12295 { 12296 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 12297 12298 drm_crtc_cleanup(crtc); 12299 kfree(intel_crtc); 12300 } 12301 12302 /** 12303 * intel_wm_need_update - Check whether watermarks need updating 12304 * @cur: current plane state 12305 * @new: new plane state 12306 * 12307 * Check current plane state versus the new one to determine whether 12308 * watermarks need to be recalculated. 12309 * 12310 * Returns true or false. 12311 */ 12312 static bool intel_wm_need_update(const struct intel_plane_state *cur, 12313 struct intel_plane_state *new) 12314 { 12315 /* Update watermarks on tiling or size changes. */ 12316 if (new->uapi.visible != cur->uapi.visible) 12317 return true; 12318 12319 if (!cur->hw.fb || !new->hw.fb) 12320 return false; 12321 12322 if (cur->hw.fb->modifier != new->hw.fb->modifier || 12323 cur->hw.rotation != new->hw.rotation || 12324 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) || 12325 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) || 12326 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) || 12327 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst)) 12328 return true; 12329 12330 return false; 12331 } 12332 12333 static bool needs_scaling(const struct intel_plane_state *state) 12334 { 12335 int src_w = drm_rect_width(&state->uapi.src) >> 16; 12336 int src_h = drm_rect_height(&state->uapi.src) >> 16; 12337 int dst_w = drm_rect_width(&state->uapi.dst); 12338 int dst_h = drm_rect_height(&state->uapi.dst); 12339 12340 return (src_w != dst_w || src_h != dst_h); 12341 } 12342 12343 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 12344 struct intel_crtc_state *crtc_state, 12345 const struct intel_plane_state *old_plane_state, 12346 struct intel_plane_state *plane_state) 12347 { 12348 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12349 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 12350 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12351 bool mode_changed = needs_modeset(crtc_state); 12352 bool was_crtc_enabled = old_crtc_state->hw.active; 12353 bool is_crtc_enabled = crtc_state->hw.active; 12354 bool turn_off, turn_on, visible, was_visible; 12355 int ret; 12356 12357 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 12358 ret = skl_update_scaler_plane(crtc_state, plane_state); 12359 if (ret) 12360 return ret; 12361 } 12362 12363 was_visible = old_plane_state->uapi.visible; 12364 visible = plane_state->uapi.visible; 12365 12366 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible)) 12367 was_visible = false; 12368 12369 /* 12370 * Visibility is calculated as if the crtc was on, but 12371 * after scaler setup everything depends on it being off 12372 * when the crtc isn't active. 12373 * 12374 * FIXME this is wrong for watermarks. Watermarks should also 12375 * be computed as if the pipe would be active. Perhaps move 12376 * per-plane wm computation to the .check_plane() hook, and 12377 * only combine the results from all planes in the current place? 12378 */ 12379 if (!is_crtc_enabled) { 12380 plane_state->uapi.visible = visible = false; 12381 crtc_state->active_planes &= ~BIT(plane->id); 12382 crtc_state->data_rate[plane->id] = 0; 12383 crtc_state->min_cdclk[plane->id] = 0; 12384 } 12385 12386 if (!was_visible && !visible) 12387 return 0; 12388 12389 turn_off = was_visible && (!visible || mode_changed); 12390 turn_on = visible && (!was_visible || mode_changed); 12391 12392 drm_dbg_atomic(&dev_priv->drm, 12393 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 12394 crtc->base.base.id, crtc->base.name, 12395 plane->base.base.id, plane->base.name, 12396 was_visible, visible, 12397 turn_off, turn_on, mode_changed); 12398 12399 if (turn_on) { 12400 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 12401 crtc_state->update_wm_pre = true; 12402 12403 /* must disable cxsr around plane enable/disable */ 12404 if (plane->id != PLANE_CURSOR) 12405 crtc_state->disable_cxsr = true; 12406 } else if (turn_off) { 12407 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 12408 crtc_state->update_wm_post = true; 12409 12410 /* must disable cxsr around plane enable/disable */ 12411 if (plane->id != PLANE_CURSOR) 12412 crtc_state->disable_cxsr = true; 12413 } else if (intel_wm_need_update(old_plane_state, plane_state)) { 12414 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) { 12415 /* FIXME bollocks */ 12416 crtc_state->update_wm_pre = true; 12417 crtc_state->update_wm_post = true; 12418 } 12419 } 12420 12421 if (visible || was_visible) 12422 crtc_state->fb_bits |= plane->frontbuffer_bit; 12423 12424 /* 12425 * ILK/SNB DVSACNTR/Sprite Enable 12426 * IVB SPR_CTL/Sprite Enable 12427 * "When in Self Refresh Big FIFO mode, a write to enable the 12428 * plane will be internally buffered and delayed while Big FIFO 12429 * mode is exiting." 12430 * 12431 * Which means that enabling the sprite can take an extra frame 12432 * when we start in big FIFO mode (LP1+). Thus we need to drop 12433 * down to LP0 and wait for vblank in order to make sure the 12434 * sprite gets enabled on the next vblank after the register write. 12435 * Doing otherwise would risk enabling the sprite one frame after 12436 * we've already signalled flip completion. We can resume LP1+ 12437 * once the sprite has been enabled. 12438 * 12439 * 12440 * WaCxSRDisabledForSpriteScaling:ivb 12441 * IVB SPR_SCALE/Scaling Enable 12442 * "Low Power watermarks must be disabled for at least one 12443 * frame before enabling sprite scaling, and kept disabled 12444 * until sprite scaling is disabled." 12445 * 12446 * ILK/SNB DVSASCALE/Scaling Enable 12447 * "When in Self Refresh Big FIFO mode, scaling enable will be 12448 * masked off while Big FIFO mode is exiting." 12449 * 12450 * Despite the w/a only being listed for IVB we assume that 12451 * the ILK/SNB note has similar ramifications, hence we apply 12452 * the w/a on all three platforms. 12453 * 12454 * With experimental results seems this is needed also for primary 12455 * plane, not only sprite plane. 12456 */ 12457 if (plane->id != PLANE_CURSOR && 12458 (IS_GEN_RANGE(dev_priv, 5, 6) || 12459 IS_IVYBRIDGE(dev_priv)) && 12460 (turn_on || (!needs_scaling(old_plane_state) && 12461 needs_scaling(plane_state)))) 12462 crtc_state->disable_lp_wm = true; 12463 12464 return 0; 12465 } 12466 12467 static bool encoders_cloneable(const struct intel_encoder *a, 12468 const struct intel_encoder *b) 12469 { 12470 /* masks could be asymmetric, so check both ways */ 12471 return a == b || (a->cloneable & (1 << b->type) && 12472 b->cloneable & (1 << a->type)); 12473 } 12474 12475 static bool check_single_encoder_cloning(struct drm_atomic_state *state, 12476 struct intel_crtc *crtc, 12477 struct intel_encoder *encoder) 12478 { 12479 struct intel_encoder *source_encoder; 12480 struct drm_connector *connector; 12481 struct drm_connector_state *connector_state; 12482 int i; 12483 12484 for_each_new_connector_in_state(state, connector, connector_state, i) { 12485 if (connector_state->crtc != &crtc->base) 12486 continue; 12487 12488 source_encoder = 12489 to_intel_encoder(connector_state->best_encoder); 12490 if (!encoders_cloneable(encoder, source_encoder)) 12491 return false; 12492 } 12493 12494 return true; 12495 } 12496 12497 static int icl_add_linked_planes(struct intel_atomic_state *state) 12498 { 12499 struct intel_plane *plane, *linked; 12500 struct intel_plane_state *plane_state, *linked_plane_state; 12501 int i; 12502 12503 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12504 linked = plane_state->planar_linked_plane; 12505 12506 if (!linked) 12507 continue; 12508 12509 linked_plane_state = intel_atomic_get_plane_state(state, linked); 12510 if (IS_ERR(linked_plane_state)) 12511 return PTR_ERR(linked_plane_state); 12512 12513 WARN_ON(linked_plane_state->planar_linked_plane != plane); 12514 WARN_ON(linked_plane_state->planar_slave == plane_state->planar_slave); 12515 } 12516 12517 return 0; 12518 } 12519 12520 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 12521 { 12522 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12523 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12524 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); 12525 struct intel_plane *plane, *linked; 12526 struct intel_plane_state *plane_state; 12527 int i; 12528 12529 if (INTEL_GEN(dev_priv) < 11) 12530 return 0; 12531 12532 /* 12533 * Destroy all old plane links and make the slave plane invisible 12534 * in the crtc_state->active_planes mask. 12535 */ 12536 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12537 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) 12538 continue; 12539 12540 plane_state->planar_linked_plane = NULL; 12541 if (plane_state->planar_slave && !plane_state->uapi.visible) { 12542 crtc_state->active_planes &= ~BIT(plane->id); 12543 crtc_state->update_planes |= BIT(plane->id); 12544 } 12545 12546 plane_state->planar_slave = false; 12547 } 12548 12549 if (!crtc_state->nv12_planes) 12550 return 0; 12551 12552 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12553 struct intel_plane_state *linked_state = NULL; 12554 12555 if (plane->pipe != crtc->pipe || 12556 !(crtc_state->nv12_planes & BIT(plane->id))) 12557 continue; 12558 12559 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 12560 if (!icl_is_nv12_y_plane(linked->id)) 12561 continue; 12562 12563 if (crtc_state->active_planes & BIT(linked->id)) 12564 continue; 12565 12566 linked_state = intel_atomic_get_plane_state(state, linked); 12567 if (IS_ERR(linked_state)) 12568 return PTR_ERR(linked_state); 12569 12570 break; 12571 } 12572 12573 if (!linked_state) { 12574 drm_dbg_kms(&dev_priv->drm, 12575 "Need %d free Y planes for planar YUV\n", 12576 hweight8(crtc_state->nv12_planes)); 12577 12578 return -EINVAL; 12579 } 12580 12581 plane_state->planar_linked_plane = linked; 12582 12583 linked_state->planar_slave = true; 12584 linked_state->planar_linked_plane = plane; 12585 crtc_state->active_planes |= BIT(linked->id); 12586 crtc_state->update_planes |= BIT(linked->id); 12587 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n", 12588 linked->base.name, plane->base.name); 12589 12590 /* Copy parameters to slave plane */ 12591 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE; 12592 linked_state->color_ctl = plane_state->color_ctl; 12593 linked_state->view = plane_state->view; 12594 memcpy(linked_state->color_plane, plane_state->color_plane, 12595 sizeof(linked_state->color_plane)); 12596 12597 intel_plane_copy_uapi_to_hw_state(linked_state, plane_state); 12598 linked_state->uapi.src = plane_state->uapi.src; 12599 linked_state->uapi.dst = plane_state->uapi.dst; 12600 12601 if (icl_is_hdr_plane(dev_priv, plane->id)) { 12602 if (linked->id == PLANE_SPRITE5) 12603 plane_state->cus_ctl |= PLANE_CUS_PLANE_7; 12604 else if (linked->id == PLANE_SPRITE4) 12605 plane_state->cus_ctl |= PLANE_CUS_PLANE_6; 12606 else 12607 MISSING_CASE(linked->id); 12608 } 12609 } 12610 12611 return 0; 12612 } 12613 12614 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 12615 { 12616 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 12617 struct intel_atomic_state *state = 12618 to_intel_atomic_state(new_crtc_state->uapi.state); 12619 const struct intel_crtc_state *old_crtc_state = 12620 intel_atomic_get_old_crtc_state(state, crtc); 12621 12622 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 12623 } 12624 12625 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) 12626 { 12627 const struct drm_display_mode *adjusted_mode = 12628 &crtc_state->hw.adjusted_mode; 12629 12630 if (!crtc_state->hw.enable) 12631 return 0; 12632 12633 return DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, 12634 adjusted_mode->crtc_clock); 12635 } 12636 12637 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, 12638 const struct intel_cdclk_state *cdclk_state) 12639 { 12640 const struct drm_display_mode *adjusted_mode = 12641 &crtc_state->hw.adjusted_mode; 12642 12643 if (!crtc_state->hw.enable) 12644 return 0; 12645 12646 return DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, 12647 cdclk_state->logical.cdclk); 12648 } 12649 12650 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) 12651 { 12652 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12653 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12654 const struct drm_display_mode *adjusted_mode = 12655 &crtc_state->hw.adjusted_mode; 12656 u16 linetime_wm; 12657 12658 if (!crtc_state->hw.enable) 12659 return 0; 12660 12661 linetime_wm = DIV_ROUND_UP(adjusted_mode->crtc_htotal * 1000 * 8, 12662 crtc_state->pixel_rate); 12663 12664 /* Display WA #1135: BXT:ALL GLK:ALL */ 12665 if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled) 12666 linetime_wm /= 2; 12667 12668 return linetime_wm; 12669 } 12670 12671 static int hsw_compute_linetime_wm(struct intel_atomic_state *state, 12672 struct intel_crtc *crtc) 12673 { 12674 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12675 struct intel_crtc_state *crtc_state = 12676 intel_atomic_get_new_crtc_state(state, crtc); 12677 const struct intel_cdclk_state *cdclk_state; 12678 12679 if (INTEL_GEN(dev_priv) >= 9) 12680 crtc_state->linetime = skl_linetime_wm(crtc_state); 12681 else 12682 crtc_state->linetime = hsw_linetime_wm(crtc_state); 12683 12684 if (!hsw_crtc_supports_ips(crtc)) 12685 return 0; 12686 12687 cdclk_state = intel_atomic_get_cdclk_state(state); 12688 if (IS_ERR(cdclk_state)) 12689 return PTR_ERR(cdclk_state); 12690 12691 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, 12692 cdclk_state); 12693 12694 return 0; 12695 } 12696 12697 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 12698 struct intel_crtc *crtc) 12699 { 12700 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12701 struct intel_crtc_state *crtc_state = 12702 intel_atomic_get_new_crtc_state(state, crtc); 12703 bool mode_changed = needs_modeset(crtc_state); 12704 int ret; 12705 12706 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) && 12707 mode_changed && !crtc_state->hw.active) 12708 crtc_state->update_wm_post = true; 12709 12710 if (mode_changed && crtc_state->hw.enable && 12711 dev_priv->display.crtc_compute_clock && 12712 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) { 12713 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state); 12714 if (ret) 12715 return ret; 12716 } 12717 12718 /* 12719 * May need to update pipe gamma enable bits 12720 * when C8 planes are getting enabled/disabled. 12721 */ 12722 if (c8_planes_changed(crtc_state)) 12723 crtc_state->uapi.color_mgmt_changed = true; 12724 12725 if (mode_changed || crtc_state->update_pipe || 12726 crtc_state->uapi.color_mgmt_changed) { 12727 ret = intel_color_check(crtc_state); 12728 if (ret) 12729 return ret; 12730 } 12731 12732 if (dev_priv->display.compute_pipe_wm) { 12733 ret = dev_priv->display.compute_pipe_wm(crtc_state); 12734 if (ret) { 12735 drm_dbg_kms(&dev_priv->drm, 12736 "Target pipe watermarks are invalid\n"); 12737 return ret; 12738 } 12739 } 12740 12741 if (dev_priv->display.compute_intermediate_wm) { 12742 if (drm_WARN_ON(&dev_priv->drm, 12743 !dev_priv->display.compute_pipe_wm)) 12744 return 0; 12745 12746 /* 12747 * Calculate 'intermediate' watermarks that satisfy both the 12748 * old state and the new state. We can program these 12749 * immediately. 12750 */ 12751 ret = dev_priv->display.compute_intermediate_wm(crtc_state); 12752 if (ret) { 12753 drm_dbg_kms(&dev_priv->drm, 12754 "No valid intermediate pipe watermarks are possible\n"); 12755 return ret; 12756 } 12757 } 12758 12759 if (INTEL_GEN(dev_priv) >= 9) { 12760 if (mode_changed || crtc_state->update_pipe) { 12761 ret = skl_update_scaler_crtc(crtc_state); 12762 if (ret) 12763 return ret; 12764 } 12765 12766 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state); 12767 if (ret) 12768 return ret; 12769 } 12770 12771 if (HAS_IPS(dev_priv)) { 12772 ret = hsw_compute_ips_config(crtc_state); 12773 if (ret) 12774 return ret; 12775 } 12776 12777 if (INTEL_GEN(dev_priv) >= 9 || 12778 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 12779 ret = hsw_compute_linetime_wm(state, crtc); 12780 if (ret) 12781 return ret; 12782 12783 } 12784 12785 return 0; 12786 } 12787 12788 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 12789 { 12790 struct intel_connector *connector; 12791 struct drm_connector_list_iter conn_iter; 12792 12793 drm_connector_list_iter_begin(dev, &conn_iter); 12794 for_each_intel_connector_iter(connector, &conn_iter) { 12795 if (connector->base.state->crtc) 12796 drm_connector_put(&connector->base); 12797 12798 if (connector->base.encoder) { 12799 connector->base.state->best_encoder = 12800 connector->base.encoder; 12801 connector->base.state->crtc = 12802 connector->base.encoder->crtc; 12803 12804 drm_connector_get(&connector->base); 12805 } else { 12806 connector->base.state->best_encoder = NULL; 12807 connector->base.state->crtc = NULL; 12808 } 12809 } 12810 drm_connector_list_iter_end(&conn_iter); 12811 } 12812 12813 static int 12814 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 12815 struct intel_crtc_state *pipe_config) 12816 { 12817 struct drm_connector *connector = conn_state->connector; 12818 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 12819 const struct drm_display_info *info = &connector->display_info; 12820 int bpp; 12821 12822 switch (conn_state->max_bpc) { 12823 case 6 ... 7: 12824 bpp = 6 * 3; 12825 break; 12826 case 8 ... 9: 12827 bpp = 8 * 3; 12828 break; 12829 case 10 ... 11: 12830 bpp = 10 * 3; 12831 break; 12832 case 12: 12833 bpp = 12 * 3; 12834 break; 12835 default: 12836 return -EINVAL; 12837 } 12838 12839 if (bpp < pipe_config->pipe_bpp) { 12840 drm_dbg_kms(&i915->drm, 12841 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 12842 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 12843 connector->base.id, connector->name, 12844 bpp, 3 * info->bpc, 12845 3 * conn_state->max_requested_bpc, 12846 pipe_config->pipe_bpp); 12847 12848 pipe_config->pipe_bpp = bpp; 12849 } 12850 12851 return 0; 12852 } 12853 12854 static int 12855 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 12856 struct intel_crtc_state *pipe_config) 12857 { 12858 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12859 struct drm_atomic_state *state = pipe_config->uapi.state; 12860 struct drm_connector *connector; 12861 struct drm_connector_state *connector_state; 12862 int bpp, i; 12863 12864 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 12865 IS_CHERRYVIEW(dev_priv))) 12866 bpp = 10*3; 12867 else if (INTEL_GEN(dev_priv) >= 5) 12868 bpp = 12*3; 12869 else 12870 bpp = 8*3; 12871 12872 pipe_config->pipe_bpp = bpp; 12873 12874 /* Clamp display bpp to connector max bpp */ 12875 for_each_new_connector_in_state(state, connector, connector_state, i) { 12876 int ret; 12877 12878 if (connector_state->crtc != &crtc->base) 12879 continue; 12880 12881 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 12882 if (ret) 12883 return ret; 12884 } 12885 12886 return 0; 12887 } 12888 12889 static void intel_dump_crtc_timings(const struct drm_display_mode *mode) 12890 { 12891 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, " 12892 "type: 0x%x flags: 0x%x\n", 12893 mode->crtc_clock, 12894 mode->crtc_hdisplay, mode->crtc_hsync_start, 12895 mode->crtc_hsync_end, mode->crtc_htotal, 12896 mode->crtc_vdisplay, mode->crtc_vsync_start, 12897 mode->crtc_vsync_end, mode->crtc_vtotal, 12898 mode->type, mode->flags); 12899 } 12900 12901 static inline void 12902 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 12903 const char *id, unsigned int lane_count, 12904 const struct intel_link_m_n *m_n) 12905 { 12906 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 12907 12908 drm_dbg_kms(&i915->drm, 12909 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 12910 id, lane_count, 12911 m_n->gmch_m, m_n->gmch_n, 12912 m_n->link_m, m_n->link_n, m_n->tu); 12913 } 12914 12915 static void 12916 intel_dump_infoframe(struct drm_i915_private *dev_priv, 12917 const union hdmi_infoframe *frame) 12918 { 12919 if (!drm_debug_enabled(DRM_UT_KMS)) 12920 return; 12921 12922 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 12923 } 12924 12925 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 12926 12927 static const char * const output_type_str[] = { 12928 OUTPUT_TYPE(UNUSED), 12929 OUTPUT_TYPE(ANALOG), 12930 OUTPUT_TYPE(DVO), 12931 OUTPUT_TYPE(SDVO), 12932 OUTPUT_TYPE(LVDS), 12933 OUTPUT_TYPE(TVOUT), 12934 OUTPUT_TYPE(HDMI), 12935 OUTPUT_TYPE(DP), 12936 OUTPUT_TYPE(EDP), 12937 OUTPUT_TYPE(DSI), 12938 OUTPUT_TYPE(DDI), 12939 OUTPUT_TYPE(DP_MST), 12940 }; 12941 12942 #undef OUTPUT_TYPE 12943 12944 static void snprintf_output_types(char *buf, size_t len, 12945 unsigned int output_types) 12946 { 12947 char *str = buf; 12948 int i; 12949 12950 str[0] = '\0'; 12951 12952 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 12953 int r; 12954 12955 if ((output_types & BIT(i)) == 0) 12956 continue; 12957 12958 r = snprintf(str, len, "%s%s", 12959 str != buf ? "," : "", output_type_str[i]); 12960 if (r >= len) 12961 break; 12962 str += r; 12963 len -= r; 12964 12965 output_types &= ~BIT(i); 12966 } 12967 12968 WARN_ON_ONCE(output_types != 0); 12969 } 12970 12971 static const char * const output_format_str[] = { 12972 [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid", 12973 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 12974 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 12975 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 12976 }; 12977 12978 static const char *output_formats(enum intel_output_format format) 12979 { 12980 if (format >= ARRAY_SIZE(output_format_str)) 12981 format = INTEL_OUTPUT_FORMAT_INVALID; 12982 return output_format_str[format]; 12983 } 12984 12985 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 12986 { 12987 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 12988 struct drm_i915_private *i915 = to_i915(plane->base.dev); 12989 const struct drm_framebuffer *fb = plane_state->hw.fb; 12990 struct drm_format_name_buf format_name; 12991 12992 if (!fb) { 12993 drm_dbg_kms(&i915->drm, 12994 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 12995 plane->base.base.id, plane->base.name, 12996 yesno(plane_state->uapi.visible)); 12997 return; 12998 } 12999 13000 drm_dbg_kms(&i915->drm, 13001 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n", 13002 plane->base.base.id, plane->base.name, 13003 fb->base.id, fb->width, fb->height, 13004 drm_get_format_name(fb->format->format, &format_name), 13005 yesno(plane_state->uapi.visible)); 13006 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n", 13007 plane_state->hw.rotation, plane_state->scaler_id); 13008 if (plane_state->uapi.visible) 13009 drm_dbg_kms(&i915->drm, 13010 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 13011 DRM_RECT_FP_ARG(&plane_state->uapi.src), 13012 DRM_RECT_ARG(&plane_state->uapi.dst)); 13013 } 13014 13015 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 13016 struct intel_atomic_state *state, 13017 const char *context) 13018 { 13019 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 13020 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13021 const struct intel_plane_state *plane_state; 13022 struct intel_plane *plane; 13023 char buf[64]; 13024 int i; 13025 13026 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n", 13027 crtc->base.base.id, crtc->base.name, 13028 yesno(pipe_config->hw.enable), context); 13029 13030 if (!pipe_config->hw.enable) 13031 goto dump_planes; 13032 13033 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 13034 drm_dbg_kms(&dev_priv->drm, 13035 "active: %s, output_types: %s (0x%x), output format: %s\n", 13036 yesno(pipe_config->hw.active), 13037 buf, pipe_config->output_types, 13038 output_formats(pipe_config->output_format)); 13039 13040 drm_dbg_kms(&dev_priv->drm, 13041 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 13042 transcoder_name(pipe_config->cpu_transcoder), 13043 pipe_config->pipe_bpp, pipe_config->dither); 13044 13045 if (pipe_config->has_pch_encoder) 13046 intel_dump_m_n_config(pipe_config, "fdi", 13047 pipe_config->fdi_lanes, 13048 &pipe_config->fdi_m_n); 13049 13050 if (intel_crtc_has_dp_encoder(pipe_config)) { 13051 intel_dump_m_n_config(pipe_config, "dp m_n", 13052 pipe_config->lane_count, &pipe_config->dp_m_n); 13053 if (pipe_config->has_drrs) 13054 intel_dump_m_n_config(pipe_config, "dp m2_n2", 13055 pipe_config->lane_count, 13056 &pipe_config->dp_m2_n2); 13057 } 13058 13059 drm_dbg_kms(&dev_priv->drm, 13060 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 13061 pipe_config->has_audio, pipe_config->has_infoframe, 13062 pipe_config->infoframes.enable); 13063 13064 if (pipe_config->infoframes.enable & 13065 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 13066 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n", 13067 pipe_config->infoframes.gcp); 13068 if (pipe_config->infoframes.enable & 13069 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 13070 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 13071 if (pipe_config->infoframes.enable & 13072 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 13073 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 13074 if (pipe_config->infoframes.enable & 13075 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 13076 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 13077 13078 drm_dbg_kms(&dev_priv->drm, "requested mode:\n"); 13079 drm_mode_debug_printmodeline(&pipe_config->hw.mode); 13080 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n"); 13081 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode); 13082 intel_dump_crtc_timings(&pipe_config->hw.adjusted_mode); 13083 drm_dbg_kms(&dev_priv->drm, 13084 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 13085 pipe_config->port_clock, 13086 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 13087 pipe_config->pixel_rate); 13088 13089 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n", 13090 pipe_config->linetime, pipe_config->ips_linetime); 13091 13092 if (INTEL_GEN(dev_priv) >= 9) 13093 drm_dbg_kms(&dev_priv->drm, 13094 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 13095 crtc->num_scalers, 13096 pipe_config->scaler_state.scaler_users, 13097 pipe_config->scaler_state.scaler_id); 13098 13099 if (HAS_GMCH(dev_priv)) 13100 drm_dbg_kms(&dev_priv->drm, 13101 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 13102 pipe_config->gmch_pfit.control, 13103 pipe_config->gmch_pfit.pgm_ratios, 13104 pipe_config->gmch_pfit.lvds_border_bits); 13105 else 13106 drm_dbg_kms(&dev_priv->drm, 13107 "pch pfit: pos: 0x%08x, size: 0x%08x, %s, force thru: %s\n", 13108 pipe_config->pch_pfit.pos, 13109 pipe_config->pch_pfit.size, 13110 enableddisabled(pipe_config->pch_pfit.enabled), 13111 yesno(pipe_config->pch_pfit.force_thru)); 13112 13113 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n", 13114 pipe_config->ips_enabled, pipe_config->double_wide); 13115 13116 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 13117 13118 if (IS_CHERRYVIEW(dev_priv)) 13119 drm_dbg_kms(&dev_priv->drm, 13120 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 13121 pipe_config->cgm_mode, pipe_config->gamma_mode, 13122 pipe_config->gamma_enable, pipe_config->csc_enable); 13123 else 13124 drm_dbg_kms(&dev_priv->drm, 13125 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 13126 pipe_config->csc_mode, pipe_config->gamma_mode, 13127 pipe_config->gamma_enable, pipe_config->csc_enable); 13128 13129 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n", 13130 transcoder_name(pipe_config->mst_master_transcoder)); 13131 13132 dump_planes: 13133 if (!state) 13134 return; 13135 13136 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 13137 if (plane->pipe == crtc->pipe) 13138 intel_dump_plane_state(plane_state); 13139 } 13140 } 13141 13142 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 13143 { 13144 struct drm_device *dev = state->base.dev; 13145 struct drm_connector *connector; 13146 struct drm_connector_list_iter conn_iter; 13147 unsigned int used_ports = 0; 13148 unsigned int used_mst_ports = 0; 13149 bool ret = true; 13150 13151 /* 13152 * We're going to peek into connector->state, 13153 * hence connection_mutex must be held. 13154 */ 13155 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); 13156 13157 /* 13158 * Walk the connector list instead of the encoder 13159 * list to detect the problem on ddi platforms 13160 * where there's just one encoder per digital port. 13161 */ 13162 drm_connector_list_iter_begin(dev, &conn_iter); 13163 drm_for_each_connector_iter(connector, &conn_iter) { 13164 struct drm_connector_state *connector_state; 13165 struct intel_encoder *encoder; 13166 13167 connector_state = 13168 drm_atomic_get_new_connector_state(&state->base, 13169 connector); 13170 if (!connector_state) 13171 connector_state = connector->state; 13172 13173 if (!connector_state->best_encoder) 13174 continue; 13175 13176 encoder = to_intel_encoder(connector_state->best_encoder); 13177 13178 drm_WARN_ON(dev, !connector_state->crtc); 13179 13180 switch (encoder->type) { 13181 case INTEL_OUTPUT_DDI: 13182 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev)))) 13183 break; 13184 /* else, fall through */ 13185 case INTEL_OUTPUT_DP: 13186 case INTEL_OUTPUT_HDMI: 13187 case INTEL_OUTPUT_EDP: 13188 /* the same port mustn't appear more than once */ 13189 if (used_ports & BIT(encoder->port)) 13190 ret = false; 13191 13192 used_ports |= BIT(encoder->port); 13193 break; 13194 case INTEL_OUTPUT_DP_MST: 13195 used_mst_ports |= 13196 1 << encoder->port; 13197 break; 13198 default: 13199 break; 13200 } 13201 } 13202 drm_connector_list_iter_end(&conn_iter); 13203 13204 /* can't mix MST and SST/HDMI on the same port */ 13205 if (used_ports & used_mst_ports) 13206 return false; 13207 13208 return ret; 13209 } 13210 13211 static void 13212 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state *crtc_state) 13213 { 13214 intel_crtc_copy_color_blobs(crtc_state); 13215 } 13216 13217 static void 13218 intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state *crtc_state) 13219 { 13220 crtc_state->hw.enable = crtc_state->uapi.enable; 13221 crtc_state->hw.active = crtc_state->uapi.active; 13222 crtc_state->hw.mode = crtc_state->uapi.mode; 13223 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode; 13224 intel_crtc_copy_uapi_to_hw_state_nomodeset(crtc_state); 13225 } 13226 13227 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state) 13228 { 13229 crtc_state->uapi.enable = crtc_state->hw.enable; 13230 crtc_state->uapi.active = crtc_state->hw.active; 13231 WARN_ON(drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0); 13232 13233 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode; 13234 13235 /* copy color blobs to uapi */ 13236 drm_property_replace_blob(&crtc_state->uapi.degamma_lut, 13237 crtc_state->hw.degamma_lut); 13238 drm_property_replace_blob(&crtc_state->uapi.gamma_lut, 13239 crtc_state->hw.gamma_lut); 13240 drm_property_replace_blob(&crtc_state->uapi.ctm, 13241 crtc_state->hw.ctm); 13242 } 13243 13244 static int 13245 intel_crtc_prepare_cleared_state(struct intel_crtc_state *crtc_state) 13246 { 13247 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 13248 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13249 struct intel_crtc_state *saved_state; 13250 13251 saved_state = intel_crtc_state_alloc(crtc); 13252 if (!saved_state) 13253 return -ENOMEM; 13254 13255 /* free the old crtc_state->hw members */ 13256 intel_crtc_free_hw_state(crtc_state); 13257 13258 /* FIXME: before the switch to atomic started, a new pipe_config was 13259 * kzalloc'd. Code that depends on any field being zero should be 13260 * fixed, so that the crtc_state can be safely duplicated. For now, 13261 * only fields that are know to not cause problems are preserved. */ 13262 13263 saved_state->uapi = crtc_state->uapi; 13264 saved_state->scaler_state = crtc_state->scaler_state; 13265 saved_state->shared_dpll = crtc_state->shared_dpll; 13266 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 13267 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 13268 sizeof(saved_state->icl_port_dplls)); 13269 saved_state->crc_enabled = crtc_state->crc_enabled; 13270 if (IS_G4X(dev_priv) || 13271 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13272 saved_state->wm = crtc_state->wm; 13273 13274 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 13275 kfree(saved_state); 13276 13277 intel_crtc_copy_uapi_to_hw_state(crtc_state); 13278 13279 return 0; 13280 } 13281 13282 static int 13283 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config) 13284 { 13285 struct drm_crtc *crtc = pipe_config->uapi.crtc; 13286 struct drm_atomic_state *state = pipe_config->uapi.state; 13287 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 13288 struct drm_connector *connector; 13289 struct drm_connector_state *connector_state; 13290 int base_bpp, ret, i; 13291 bool retry = true; 13292 13293 pipe_config->cpu_transcoder = 13294 (enum transcoder) to_intel_crtc(crtc)->pipe; 13295 13296 /* 13297 * Sanitize sync polarity flags based on requested ones. If neither 13298 * positive or negative polarity is requested, treat this as meaning 13299 * negative polarity. 13300 */ 13301 if (!(pipe_config->hw.adjusted_mode.flags & 13302 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 13303 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 13304 13305 if (!(pipe_config->hw.adjusted_mode.flags & 13306 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 13307 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 13308 13309 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 13310 pipe_config); 13311 if (ret) 13312 return ret; 13313 13314 base_bpp = pipe_config->pipe_bpp; 13315 13316 /* 13317 * Determine the real pipe dimensions. Note that stereo modes can 13318 * increase the actual pipe size due to the frame doubling and 13319 * insertion of additional space for blanks between the frame. This 13320 * is stored in the crtc timings. We use the requested mode to do this 13321 * computation to clearly distinguish it from the adjusted mode, which 13322 * can be changed by the connectors in the below retry loop. 13323 */ 13324 drm_mode_get_hv_timing(&pipe_config->hw.mode, 13325 &pipe_config->pipe_src_w, 13326 &pipe_config->pipe_src_h); 13327 13328 for_each_new_connector_in_state(state, connector, connector_state, i) { 13329 struct intel_encoder *encoder = 13330 to_intel_encoder(connector_state->best_encoder); 13331 13332 if (connector_state->crtc != crtc) 13333 continue; 13334 13335 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 13336 drm_dbg_kms(&i915->drm, 13337 "rejecting invalid cloning configuration\n"); 13338 return -EINVAL; 13339 } 13340 13341 /* 13342 * Determine output_types before calling the .compute_config() 13343 * hooks so that the hooks can use this information safely. 13344 */ 13345 if (encoder->compute_output_type) 13346 pipe_config->output_types |= 13347 BIT(encoder->compute_output_type(encoder, pipe_config, 13348 connector_state)); 13349 else 13350 pipe_config->output_types |= BIT(encoder->type); 13351 } 13352 13353 encoder_retry: 13354 /* Ensure the port clock defaults are reset when retrying. */ 13355 pipe_config->port_clock = 0; 13356 pipe_config->pixel_multiplier = 1; 13357 13358 /* Fill in default crtc timings, allow encoders to overwrite them. */ 13359 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode, 13360 CRTC_STEREO_DOUBLE); 13361 13362 /* Pass our mode to the connectors and the CRTC to give them a chance to 13363 * adjust it according to limitations or connector properties, and also 13364 * a chance to reject the mode entirely. 13365 */ 13366 for_each_new_connector_in_state(state, connector, connector_state, i) { 13367 struct intel_encoder *encoder = 13368 to_intel_encoder(connector_state->best_encoder); 13369 13370 if (connector_state->crtc != crtc) 13371 continue; 13372 13373 ret = encoder->compute_config(encoder, pipe_config, 13374 connector_state); 13375 if (ret < 0) { 13376 if (ret != -EDEADLK) 13377 drm_dbg_kms(&i915->drm, 13378 "Encoder config failure: %d\n", 13379 ret); 13380 return ret; 13381 } 13382 } 13383 13384 /* Set default port clock if not overwritten by the encoder. Needs to be 13385 * done afterwards in case the encoder adjusts the mode. */ 13386 if (!pipe_config->port_clock) 13387 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock 13388 * pipe_config->pixel_multiplier; 13389 13390 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 13391 if (ret == -EDEADLK) 13392 return ret; 13393 if (ret < 0) { 13394 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n"); 13395 return ret; 13396 } 13397 13398 if (ret == RETRY) { 13399 if (drm_WARN(&i915->drm, !retry, 13400 "loop in pipe configuration computation\n")) 13401 return -EINVAL; 13402 13403 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n"); 13404 retry = false; 13405 goto encoder_retry; 13406 } 13407 13408 /* Dithering seems to not pass-through bits correctly when it should, so 13409 * only enable it on 6bpc panels and when its not a compliance 13410 * test requesting 6bpc video pattern. 13411 */ 13412 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 13413 !pipe_config->dither_force_disable; 13414 drm_dbg_kms(&i915->drm, 13415 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 13416 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 13417 13418 /* 13419 * Make drm_calc_timestamping_constants in 13420 * drm_atomic_helper_update_legacy_modeset_state() happy 13421 */ 13422 pipe_config->uapi.adjusted_mode = pipe_config->hw.adjusted_mode; 13423 13424 return 0; 13425 } 13426 13427 static int 13428 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state) 13429 { 13430 struct intel_atomic_state *state = 13431 to_intel_atomic_state(crtc_state->uapi.state); 13432 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 13433 struct drm_connector_state *conn_state; 13434 struct drm_connector *connector; 13435 int i; 13436 13437 for_each_new_connector_in_state(&state->base, connector, 13438 conn_state, i) { 13439 struct intel_encoder *encoder = 13440 to_intel_encoder(conn_state->best_encoder); 13441 int ret; 13442 13443 if (conn_state->crtc != &crtc->base || 13444 !encoder->compute_config_late) 13445 continue; 13446 13447 ret = encoder->compute_config_late(encoder, crtc_state, 13448 conn_state); 13449 if (ret) 13450 return ret; 13451 } 13452 13453 return 0; 13454 } 13455 13456 bool intel_fuzzy_clock_check(int clock1, int clock2) 13457 { 13458 int diff; 13459 13460 if (clock1 == clock2) 13461 return true; 13462 13463 if (!clock1 || !clock2) 13464 return false; 13465 13466 diff = abs(clock1 - clock2); 13467 13468 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 13469 return true; 13470 13471 return false; 13472 } 13473 13474 static bool 13475 intel_compare_m_n(unsigned int m, unsigned int n, 13476 unsigned int m2, unsigned int n2, 13477 bool exact) 13478 { 13479 if (m == m2 && n == n2) 13480 return true; 13481 13482 if (exact || !m || !n || !m2 || !n2) 13483 return false; 13484 13485 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 13486 13487 if (n > n2) { 13488 while (n > n2) { 13489 m2 <<= 1; 13490 n2 <<= 1; 13491 } 13492 } else if (n < n2) { 13493 while (n < n2) { 13494 m <<= 1; 13495 n <<= 1; 13496 } 13497 } 13498 13499 if (n != n2) 13500 return false; 13501 13502 return intel_fuzzy_clock_check(m, m2); 13503 } 13504 13505 static bool 13506 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 13507 const struct intel_link_m_n *m2_n2, 13508 bool exact) 13509 { 13510 return m_n->tu == m2_n2->tu && 13511 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 13512 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 13513 intel_compare_m_n(m_n->link_m, m_n->link_n, 13514 m2_n2->link_m, m2_n2->link_n, exact); 13515 } 13516 13517 static bool 13518 intel_compare_infoframe(const union hdmi_infoframe *a, 13519 const union hdmi_infoframe *b) 13520 { 13521 return memcmp(a, b, sizeof(*a)) == 0; 13522 } 13523 13524 static void 13525 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 13526 bool fastset, const char *name, 13527 const union hdmi_infoframe *a, 13528 const union hdmi_infoframe *b) 13529 { 13530 if (fastset) { 13531 if (!drm_debug_enabled(DRM_UT_KMS)) 13532 return; 13533 13534 drm_dbg_kms(&dev_priv->drm, 13535 "fastset mismatch in %s infoframe\n", name); 13536 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 13537 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 13538 drm_dbg_kms(&dev_priv->drm, "found:\n"); 13539 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 13540 } else { 13541 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name); 13542 drm_err(&dev_priv->drm, "expected:\n"); 13543 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 13544 drm_err(&dev_priv->drm, "found:\n"); 13545 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 13546 } 13547 } 13548 13549 static void __printf(4, 5) 13550 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, 13551 const char *name, const char *format, ...) 13552 { 13553 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 13554 struct va_format vaf; 13555 va_list args; 13556 13557 va_start(args, format); 13558 vaf.fmt = format; 13559 vaf.va = &args; 13560 13561 if (fastset) 13562 drm_dbg_kms(&i915->drm, 13563 "[CRTC:%d:%s] fastset mismatch in %s %pV\n", 13564 crtc->base.base.id, crtc->base.name, name, &vaf); 13565 else 13566 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n", 13567 crtc->base.base.id, crtc->base.name, name, &vaf); 13568 13569 va_end(args); 13570 } 13571 13572 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 13573 { 13574 if (i915_modparams.fastboot != -1) 13575 return i915_modparams.fastboot; 13576 13577 /* Enable fastboot by default on Skylake and newer */ 13578 if (INTEL_GEN(dev_priv) >= 9) 13579 return true; 13580 13581 /* Enable fastboot by default on VLV and CHV */ 13582 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13583 return true; 13584 13585 /* Disabled by default on all others */ 13586 return false; 13587 } 13588 13589 static bool 13590 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 13591 const struct intel_crtc_state *pipe_config, 13592 bool fastset) 13593 { 13594 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev); 13595 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 13596 bool ret = true; 13597 u32 bp_gamma = 0; 13598 bool fixup_inherited = fastset && 13599 (current_config->hw.mode.private_flags & I915_MODE_FLAG_INHERITED) && 13600 !(pipe_config->hw.mode.private_flags & I915_MODE_FLAG_INHERITED); 13601 13602 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 13603 drm_dbg_kms(&dev_priv->drm, 13604 "initial modeset and fastboot not set\n"); 13605 ret = false; 13606 } 13607 13608 #define PIPE_CONF_CHECK_X(name) do { \ 13609 if (current_config->name != pipe_config->name) { \ 13610 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13611 "(expected 0x%08x, found 0x%08x)", \ 13612 current_config->name, \ 13613 pipe_config->name); \ 13614 ret = false; \ 13615 } \ 13616 } while (0) 13617 13618 #define PIPE_CONF_CHECK_I(name) do { \ 13619 if (current_config->name != pipe_config->name) { \ 13620 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13621 "(expected %i, found %i)", \ 13622 current_config->name, \ 13623 pipe_config->name); \ 13624 ret = false; \ 13625 } \ 13626 } while (0) 13627 13628 #define PIPE_CONF_CHECK_BOOL(name) do { \ 13629 if (current_config->name != pipe_config->name) { \ 13630 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13631 "(expected %s, found %s)", \ 13632 yesno(current_config->name), \ 13633 yesno(pipe_config->name)); \ 13634 ret = false; \ 13635 } \ 13636 } while (0) 13637 13638 /* 13639 * Checks state where we only read out the enabling, but not the entire 13640 * state itself (like full infoframes or ELD for audio). These states 13641 * require a full modeset on bootup to fix up. 13642 */ 13643 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 13644 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 13645 PIPE_CONF_CHECK_BOOL(name); \ 13646 } else { \ 13647 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13648 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ 13649 yesno(current_config->name), \ 13650 yesno(pipe_config->name)); \ 13651 ret = false; \ 13652 } \ 13653 } while (0) 13654 13655 #define PIPE_CONF_CHECK_P(name) do { \ 13656 if (current_config->name != pipe_config->name) { \ 13657 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13658 "(expected %p, found %p)", \ 13659 current_config->name, \ 13660 pipe_config->name); \ 13661 ret = false; \ 13662 } \ 13663 } while (0) 13664 13665 #define PIPE_CONF_CHECK_M_N(name) do { \ 13666 if (!intel_compare_link_m_n(¤t_config->name, \ 13667 &pipe_config->name,\ 13668 !fastset)) { \ 13669 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13670 "(expected tu %i gmch %i/%i link %i/%i, " \ 13671 "found tu %i, gmch %i/%i link %i/%i)", \ 13672 current_config->name.tu, \ 13673 current_config->name.gmch_m, \ 13674 current_config->name.gmch_n, \ 13675 current_config->name.link_m, \ 13676 current_config->name.link_n, \ 13677 pipe_config->name.tu, \ 13678 pipe_config->name.gmch_m, \ 13679 pipe_config->name.gmch_n, \ 13680 pipe_config->name.link_m, \ 13681 pipe_config->name.link_n); \ 13682 ret = false; \ 13683 } \ 13684 } while (0) 13685 13686 /* This is required for BDW+ where there is only one set of registers for 13687 * switching between high and low RR. 13688 * This macro can be used whenever a comparison has to be made between one 13689 * hw state and multiple sw state variables. 13690 */ 13691 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 13692 if (!intel_compare_link_m_n(¤t_config->name, \ 13693 &pipe_config->name, !fastset) && \ 13694 !intel_compare_link_m_n(¤t_config->alt_name, \ 13695 &pipe_config->name, !fastset)) { \ 13696 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13697 "(expected tu %i gmch %i/%i link %i/%i, " \ 13698 "or tu %i gmch %i/%i link %i/%i, " \ 13699 "found tu %i, gmch %i/%i link %i/%i)", \ 13700 current_config->name.tu, \ 13701 current_config->name.gmch_m, \ 13702 current_config->name.gmch_n, \ 13703 current_config->name.link_m, \ 13704 current_config->name.link_n, \ 13705 current_config->alt_name.tu, \ 13706 current_config->alt_name.gmch_m, \ 13707 current_config->alt_name.gmch_n, \ 13708 current_config->alt_name.link_m, \ 13709 current_config->alt_name.link_n, \ 13710 pipe_config->name.tu, \ 13711 pipe_config->name.gmch_m, \ 13712 pipe_config->name.gmch_n, \ 13713 pipe_config->name.link_m, \ 13714 pipe_config->name.link_n); \ 13715 ret = false; \ 13716 } \ 13717 } while (0) 13718 13719 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 13720 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 13721 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13722 "(%x) (expected %i, found %i)", \ 13723 (mask), \ 13724 current_config->name & (mask), \ 13725 pipe_config->name & (mask)); \ 13726 ret = false; \ 13727 } \ 13728 } while (0) 13729 13730 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 13731 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 13732 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13733 "(expected %i, found %i)", \ 13734 current_config->name, \ 13735 pipe_config->name); \ 13736 ret = false; \ 13737 } \ 13738 } while (0) 13739 13740 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 13741 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 13742 &pipe_config->infoframes.name)) { \ 13743 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 13744 ¤t_config->infoframes.name, \ 13745 &pipe_config->infoframes.name); \ 13746 ret = false; \ 13747 } \ 13748 } while (0) 13749 13750 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ 13751 if (current_config->name1 != pipe_config->name1) { \ 13752 pipe_config_mismatch(fastset, crtc, __stringify(name1), \ 13753 "(expected %i, found %i, won't compare lut values)", \ 13754 current_config->name1, \ 13755 pipe_config->name1); \ 13756 ret = false;\ 13757 } else { \ 13758 if (!intel_color_lut_equal(current_config->name2, \ 13759 pipe_config->name2, pipe_config->name1, \ 13760 bit_precision)) { \ 13761 pipe_config_mismatch(fastset, crtc, __stringify(name2), \ 13762 "hw_state doesn't match sw_state"); \ 13763 ret = false; \ 13764 } \ 13765 } \ 13766 } while (0) 13767 13768 #define PIPE_CONF_QUIRK(quirk) \ 13769 ((current_config->quirks | pipe_config->quirks) & (quirk)) 13770 13771 PIPE_CONF_CHECK_I(cpu_transcoder); 13772 13773 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 13774 PIPE_CONF_CHECK_I(fdi_lanes); 13775 PIPE_CONF_CHECK_M_N(fdi_m_n); 13776 13777 PIPE_CONF_CHECK_I(lane_count); 13778 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 13779 13780 if (INTEL_GEN(dev_priv) < 8) { 13781 PIPE_CONF_CHECK_M_N(dp_m_n); 13782 13783 if (current_config->has_drrs) 13784 PIPE_CONF_CHECK_M_N(dp_m2_n2); 13785 } else 13786 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 13787 13788 PIPE_CONF_CHECK_X(output_types); 13789 13790 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay); 13791 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal); 13792 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start); 13793 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end); 13794 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start); 13795 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end); 13796 13797 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay); 13798 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal); 13799 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start); 13800 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end); 13801 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start); 13802 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end); 13803 13804 PIPE_CONF_CHECK_I(pixel_multiplier); 13805 PIPE_CONF_CHECK_I(output_format); 13806 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 13807 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 13808 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13809 PIPE_CONF_CHECK_BOOL(limited_color_range); 13810 13811 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 13812 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 13813 PIPE_CONF_CHECK_BOOL(has_infoframe); 13814 PIPE_CONF_CHECK_BOOL(fec_enable); 13815 13816 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 13817 13818 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13819 DRM_MODE_FLAG_INTERLACE); 13820 13821 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 13822 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13823 DRM_MODE_FLAG_PHSYNC); 13824 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13825 DRM_MODE_FLAG_NHSYNC); 13826 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13827 DRM_MODE_FLAG_PVSYNC); 13828 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13829 DRM_MODE_FLAG_NVSYNC); 13830 } 13831 13832 PIPE_CONF_CHECK_X(gmch_pfit.control); 13833 /* pfit ratios are autocomputed by the hw on gen4+ */ 13834 if (INTEL_GEN(dev_priv) < 4) 13835 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 13836 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 13837 13838 /* 13839 * Changing the EDP transcoder input mux 13840 * (A_ONOFF vs. A_ON) requires a full modeset. 13841 */ 13842 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 13843 13844 if (!fastset) { 13845 PIPE_CONF_CHECK_I(pipe_src_w); 13846 PIPE_CONF_CHECK_I(pipe_src_h); 13847 13848 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 13849 if (current_config->pch_pfit.enabled) { 13850 PIPE_CONF_CHECK_X(pch_pfit.pos); 13851 PIPE_CONF_CHECK_X(pch_pfit.size); 13852 } 13853 13854 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 13855 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 13856 13857 PIPE_CONF_CHECK_X(gamma_mode); 13858 if (IS_CHERRYVIEW(dev_priv)) 13859 PIPE_CONF_CHECK_X(cgm_mode); 13860 else 13861 PIPE_CONF_CHECK_X(csc_mode); 13862 PIPE_CONF_CHECK_BOOL(gamma_enable); 13863 PIPE_CONF_CHECK_BOOL(csc_enable); 13864 13865 PIPE_CONF_CHECK_I(linetime); 13866 PIPE_CONF_CHECK_I(ips_linetime); 13867 13868 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); 13869 if (bp_gamma) 13870 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma); 13871 } 13872 13873 PIPE_CONF_CHECK_BOOL(double_wide); 13874 13875 PIPE_CONF_CHECK_P(shared_dpll); 13876 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 13877 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 13878 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 13879 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 13880 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 13881 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 13882 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 13883 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 13884 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 13885 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 13886 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 13887 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 13888 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 13889 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 13890 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 13891 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 13892 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 13893 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 13894 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 13895 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 13896 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 13897 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 13898 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 13899 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 13900 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 13901 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 13902 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 13903 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 13904 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 13905 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 13906 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 13907 13908 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 13909 PIPE_CONF_CHECK_X(dsi_pll.div); 13910 13911 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) 13912 PIPE_CONF_CHECK_I(pipe_bpp); 13913 13914 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock); 13915 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 13916 13917 PIPE_CONF_CHECK_I(min_voltage_level); 13918 13919 PIPE_CONF_CHECK_X(infoframes.enable); 13920 PIPE_CONF_CHECK_X(infoframes.gcp); 13921 PIPE_CONF_CHECK_INFOFRAME(avi); 13922 PIPE_CONF_CHECK_INFOFRAME(spd); 13923 PIPE_CONF_CHECK_INFOFRAME(hdmi); 13924 PIPE_CONF_CHECK_INFOFRAME(drm); 13925 13926 PIPE_CONF_CHECK_X(sync_mode_slaves_mask); 13927 PIPE_CONF_CHECK_I(master_transcoder); 13928 13929 PIPE_CONF_CHECK_I(dsc.compression_enable); 13930 PIPE_CONF_CHECK_I(dsc.dsc_split); 13931 PIPE_CONF_CHECK_I(dsc.compressed_bpp); 13932 13933 PIPE_CONF_CHECK_I(mst_master_transcoder); 13934 13935 #undef PIPE_CONF_CHECK_X 13936 #undef PIPE_CONF_CHECK_I 13937 #undef PIPE_CONF_CHECK_BOOL 13938 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 13939 #undef PIPE_CONF_CHECK_P 13940 #undef PIPE_CONF_CHECK_FLAGS 13941 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 13942 #undef PIPE_CONF_CHECK_COLOR_LUT 13943 #undef PIPE_CONF_QUIRK 13944 13945 return ret; 13946 } 13947 13948 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 13949 const struct intel_crtc_state *pipe_config) 13950 { 13951 if (pipe_config->has_pch_encoder) { 13952 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 13953 &pipe_config->fdi_m_n); 13954 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock; 13955 13956 /* 13957 * FDI already provided one idea for the dotclock. 13958 * Yell if the encoder disagrees. 13959 */ 13960 drm_WARN(&dev_priv->drm, 13961 !intel_fuzzy_clock_check(fdi_dotclock, dotclock), 13962 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 13963 fdi_dotclock, dotclock); 13964 } 13965 } 13966 13967 static void verify_wm_state(struct intel_crtc *crtc, 13968 struct intel_crtc_state *new_crtc_state) 13969 { 13970 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13971 struct skl_hw_state { 13972 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 13973 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 13974 struct skl_pipe_wm wm; 13975 } *hw; 13976 struct skl_pipe_wm *sw_wm; 13977 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 13978 u8 hw_enabled_slices; 13979 const enum pipe pipe = crtc->pipe; 13980 int plane, level, max_level = ilk_wm_max_level(dev_priv); 13981 13982 if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active) 13983 return; 13984 13985 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 13986 if (!hw) 13987 return; 13988 13989 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 13990 sw_wm = &new_crtc_state->wm.skl.optimal; 13991 13992 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 13993 13994 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv); 13995 13996 if (INTEL_GEN(dev_priv) >= 11 && 13997 hw_enabled_slices != dev_priv->enabled_dbuf_slices_mask) 13998 drm_err(&dev_priv->drm, 13999 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", 14000 dev_priv->enabled_dbuf_slices_mask, 14001 hw_enabled_slices); 14002 14003 /* planes */ 14004 for_each_universal_plane(dev_priv, pipe, plane) { 14005 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 14006 14007 hw_plane_wm = &hw->wm.planes[plane]; 14008 sw_plane_wm = &sw_wm->planes[plane]; 14009 14010 /* Watermarks */ 14011 for (level = 0; level <= max_level; level++) { 14012 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 14013 &sw_plane_wm->wm[level])) 14014 continue; 14015 14016 drm_err(&dev_priv->drm, 14017 "mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14018 pipe_name(pipe), plane + 1, level, 14019 sw_plane_wm->wm[level].plane_en, 14020 sw_plane_wm->wm[level].plane_res_b, 14021 sw_plane_wm->wm[level].plane_res_l, 14022 hw_plane_wm->wm[level].plane_en, 14023 hw_plane_wm->wm[level].plane_res_b, 14024 hw_plane_wm->wm[level].plane_res_l); 14025 } 14026 14027 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 14028 &sw_plane_wm->trans_wm)) { 14029 drm_err(&dev_priv->drm, 14030 "mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14031 pipe_name(pipe), plane + 1, 14032 sw_plane_wm->trans_wm.plane_en, 14033 sw_plane_wm->trans_wm.plane_res_b, 14034 sw_plane_wm->trans_wm.plane_res_l, 14035 hw_plane_wm->trans_wm.plane_en, 14036 hw_plane_wm->trans_wm.plane_res_b, 14037 hw_plane_wm->trans_wm.plane_res_l); 14038 } 14039 14040 /* DDB */ 14041 hw_ddb_entry = &hw->ddb_y[plane]; 14042 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane]; 14043 14044 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 14045 drm_err(&dev_priv->drm, 14046 "mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n", 14047 pipe_name(pipe), plane + 1, 14048 sw_ddb_entry->start, sw_ddb_entry->end, 14049 hw_ddb_entry->start, hw_ddb_entry->end); 14050 } 14051 } 14052 14053 /* 14054 * cursor 14055 * If the cursor plane isn't active, we may not have updated it's ddb 14056 * allocation. In that case since the ddb allocation will be updated 14057 * once the plane becomes visible, we can skip this check 14058 */ 14059 if (1) { 14060 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 14061 14062 hw_plane_wm = &hw->wm.planes[PLANE_CURSOR]; 14063 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR]; 14064 14065 /* Watermarks */ 14066 for (level = 0; level <= max_level; level++) { 14067 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 14068 &sw_plane_wm->wm[level])) 14069 continue; 14070 14071 drm_err(&dev_priv->drm, 14072 "mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14073 pipe_name(pipe), level, 14074 sw_plane_wm->wm[level].plane_en, 14075 sw_plane_wm->wm[level].plane_res_b, 14076 sw_plane_wm->wm[level].plane_res_l, 14077 hw_plane_wm->wm[level].plane_en, 14078 hw_plane_wm->wm[level].plane_res_b, 14079 hw_plane_wm->wm[level].plane_res_l); 14080 } 14081 14082 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 14083 &sw_plane_wm->trans_wm)) { 14084 drm_err(&dev_priv->drm, 14085 "mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14086 pipe_name(pipe), 14087 sw_plane_wm->trans_wm.plane_en, 14088 sw_plane_wm->trans_wm.plane_res_b, 14089 sw_plane_wm->trans_wm.plane_res_l, 14090 hw_plane_wm->trans_wm.plane_en, 14091 hw_plane_wm->trans_wm.plane_res_b, 14092 hw_plane_wm->trans_wm.plane_res_l); 14093 } 14094 14095 /* DDB */ 14096 hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR]; 14097 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR]; 14098 14099 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 14100 drm_err(&dev_priv->drm, 14101 "mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n", 14102 pipe_name(pipe), 14103 sw_ddb_entry->start, sw_ddb_entry->end, 14104 hw_ddb_entry->start, hw_ddb_entry->end); 14105 } 14106 } 14107 14108 kfree(hw); 14109 } 14110 14111 static void 14112 verify_connector_state(struct intel_atomic_state *state, 14113 struct intel_crtc *crtc) 14114 { 14115 struct drm_connector *connector; 14116 struct drm_connector_state *new_conn_state; 14117 int i; 14118 14119 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 14120 struct drm_encoder *encoder = connector->encoder; 14121 struct intel_crtc_state *crtc_state = NULL; 14122 14123 if (new_conn_state->crtc != &crtc->base) 14124 continue; 14125 14126 if (crtc) 14127 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 14128 14129 intel_connector_verify_state(crtc_state, new_conn_state); 14130 14131 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 14132 "connector's atomic encoder doesn't match legacy encoder\n"); 14133 } 14134 } 14135 14136 static void 14137 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 14138 { 14139 struct intel_encoder *encoder; 14140 struct drm_connector *connector; 14141 struct drm_connector_state *old_conn_state, *new_conn_state; 14142 int i; 14143 14144 for_each_intel_encoder(&dev_priv->drm, encoder) { 14145 bool enabled = false, found = false; 14146 enum pipe pipe; 14147 14148 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n", 14149 encoder->base.base.id, 14150 encoder->base.name); 14151 14152 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 14153 new_conn_state, i) { 14154 if (old_conn_state->best_encoder == &encoder->base) 14155 found = true; 14156 14157 if (new_conn_state->best_encoder != &encoder->base) 14158 continue; 14159 found = enabled = true; 14160 14161 I915_STATE_WARN(new_conn_state->crtc != 14162 encoder->base.crtc, 14163 "connector's crtc doesn't match encoder crtc\n"); 14164 } 14165 14166 if (!found) 14167 continue; 14168 14169 I915_STATE_WARN(!!encoder->base.crtc != enabled, 14170 "encoder's enabled state mismatch " 14171 "(expected %i, found %i)\n", 14172 !!encoder->base.crtc, enabled); 14173 14174 if (!encoder->base.crtc) { 14175 bool active; 14176 14177 active = encoder->get_hw_state(encoder, &pipe); 14178 I915_STATE_WARN(active, 14179 "encoder detached but still enabled on pipe %c.\n", 14180 pipe_name(pipe)); 14181 } 14182 } 14183 } 14184 14185 static void 14186 verify_crtc_state(struct intel_crtc *crtc, 14187 struct intel_crtc_state *old_crtc_state, 14188 struct intel_crtc_state *new_crtc_state) 14189 { 14190 struct drm_device *dev = crtc->base.dev; 14191 struct drm_i915_private *dev_priv = to_i915(dev); 14192 struct intel_encoder *encoder; 14193 struct intel_crtc_state *pipe_config = old_crtc_state; 14194 struct drm_atomic_state *state = old_crtc_state->uapi.state; 14195 bool active; 14196 14197 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi); 14198 intel_crtc_free_hw_state(old_crtc_state); 14199 intel_crtc_state_reset(old_crtc_state, crtc); 14200 old_crtc_state->uapi.state = state; 14201 14202 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id, 14203 crtc->base.name); 14204 14205 active = dev_priv->display.get_pipe_config(crtc, pipe_config); 14206 14207 /* we keep both pipes enabled on 830 */ 14208 if (IS_I830(dev_priv)) 14209 active = new_crtc_state->hw.active; 14210 14211 I915_STATE_WARN(new_crtc_state->hw.active != active, 14212 "crtc active state doesn't match with hw state " 14213 "(expected %i, found %i)\n", 14214 new_crtc_state->hw.active, active); 14215 14216 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active, 14217 "transitional active state does not match atomic hw state " 14218 "(expected %i, found %i)\n", 14219 new_crtc_state->hw.active, crtc->active); 14220 14221 for_each_encoder_on_crtc(dev, &crtc->base, encoder) { 14222 enum pipe pipe; 14223 14224 active = encoder->get_hw_state(encoder, &pipe); 14225 I915_STATE_WARN(active != new_crtc_state->hw.active, 14226 "[ENCODER:%i] active %i with crtc active %i\n", 14227 encoder->base.base.id, active, 14228 new_crtc_state->hw.active); 14229 14230 I915_STATE_WARN(active && crtc->pipe != pipe, 14231 "Encoder connected to wrong pipe %c\n", 14232 pipe_name(pipe)); 14233 14234 if (active) 14235 encoder->get_config(encoder, pipe_config); 14236 } 14237 14238 intel_crtc_compute_pixel_rate(pipe_config); 14239 14240 if (!new_crtc_state->hw.active) 14241 return; 14242 14243 intel_pipe_config_sanity_check(dev_priv, pipe_config); 14244 14245 if (!intel_pipe_config_compare(new_crtc_state, 14246 pipe_config, false)) { 14247 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 14248 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 14249 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 14250 } 14251 } 14252 14253 static void 14254 intel_verify_planes(struct intel_atomic_state *state) 14255 { 14256 struct intel_plane *plane; 14257 const struct intel_plane_state *plane_state; 14258 int i; 14259 14260 for_each_new_intel_plane_in_state(state, plane, 14261 plane_state, i) 14262 assert_plane(plane, plane_state->planar_slave || 14263 plane_state->uapi.visible); 14264 } 14265 14266 static void 14267 verify_single_dpll_state(struct drm_i915_private *dev_priv, 14268 struct intel_shared_dpll *pll, 14269 struct intel_crtc *crtc, 14270 struct intel_crtc_state *new_crtc_state) 14271 { 14272 struct intel_dpll_hw_state dpll_hw_state; 14273 unsigned int crtc_mask; 14274 bool active; 14275 14276 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 14277 14278 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name); 14279 14280 active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state); 14281 14282 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 14283 I915_STATE_WARN(!pll->on && pll->active_mask, 14284 "pll in active use but not on in sw tracking\n"); 14285 I915_STATE_WARN(pll->on && !pll->active_mask, 14286 "pll is on but not used by any active crtc\n"); 14287 I915_STATE_WARN(pll->on != active, 14288 "pll on state mismatch (expected %i, found %i)\n", 14289 pll->on, active); 14290 } 14291 14292 if (!crtc) { 14293 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask, 14294 "more active pll users than references: %x vs %x\n", 14295 pll->active_mask, pll->state.crtc_mask); 14296 14297 return; 14298 } 14299 14300 crtc_mask = drm_crtc_mask(&crtc->base); 14301 14302 if (new_crtc_state->hw.active) 14303 I915_STATE_WARN(!(pll->active_mask & crtc_mask), 14304 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n", 14305 pipe_name(crtc->pipe), pll->active_mask); 14306 else 14307 I915_STATE_WARN(pll->active_mask & crtc_mask, 14308 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n", 14309 pipe_name(crtc->pipe), pll->active_mask); 14310 14311 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask), 14312 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n", 14313 crtc_mask, pll->state.crtc_mask); 14314 14315 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 14316 &dpll_hw_state, 14317 sizeof(dpll_hw_state)), 14318 "pll hw state mismatch\n"); 14319 } 14320 14321 static void 14322 verify_shared_dpll_state(struct intel_crtc *crtc, 14323 struct intel_crtc_state *old_crtc_state, 14324 struct intel_crtc_state *new_crtc_state) 14325 { 14326 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14327 14328 if (new_crtc_state->shared_dpll) 14329 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 14330 14331 if (old_crtc_state->shared_dpll && 14332 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 14333 unsigned int crtc_mask = drm_crtc_mask(&crtc->base); 14334 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 14335 14336 I915_STATE_WARN(pll->active_mask & crtc_mask, 14337 "pll active mismatch (didn't expect pipe %c in active mask)\n", 14338 pipe_name(crtc->pipe)); 14339 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask, 14340 "pll enabled crtcs mismatch (found %x in enabled mask)\n", 14341 pipe_name(crtc->pipe)); 14342 } 14343 } 14344 14345 static void 14346 intel_modeset_verify_crtc(struct intel_crtc *crtc, 14347 struct intel_atomic_state *state, 14348 struct intel_crtc_state *old_crtc_state, 14349 struct intel_crtc_state *new_crtc_state) 14350 { 14351 if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 14352 return; 14353 14354 verify_wm_state(crtc, new_crtc_state); 14355 verify_connector_state(state, crtc); 14356 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 14357 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 14358 } 14359 14360 static void 14361 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 14362 { 14363 int i; 14364 14365 for (i = 0; i < dev_priv->dpll.num_shared_dpll; i++) 14366 verify_single_dpll_state(dev_priv, 14367 &dev_priv->dpll.shared_dplls[i], 14368 NULL, NULL); 14369 } 14370 14371 static void 14372 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 14373 struct intel_atomic_state *state) 14374 { 14375 verify_encoder_state(dev_priv, state); 14376 verify_connector_state(state, NULL); 14377 verify_disabled_dpll_state(dev_priv); 14378 } 14379 14380 static void 14381 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) 14382 { 14383 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 14384 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14385 const struct drm_display_mode *adjusted_mode = 14386 &crtc_state->hw.adjusted_mode; 14387 14388 drm_calc_timestamping_constants(&crtc->base, adjusted_mode); 14389 14390 /* 14391 * The scanline counter increments at the leading edge of hsync. 14392 * 14393 * On most platforms it starts counting from vtotal-1 on the 14394 * first active line. That means the scanline counter value is 14395 * always one less than what we would expect. Ie. just after 14396 * start of vblank, which also occurs at start of hsync (on the 14397 * last active line), the scanline counter will read vblank_start-1. 14398 * 14399 * On gen2 the scanline counter starts counting from 1 instead 14400 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 14401 * to keep the value positive), instead of adding one. 14402 * 14403 * On HSW+ the behaviour of the scanline counter depends on the output 14404 * type. For DP ports it behaves like most other platforms, but on HDMI 14405 * there's an extra 1 line difference. So we need to add two instead of 14406 * one to the value. 14407 * 14408 * On VLV/CHV DSI the scanline counter would appear to increment 14409 * approx. 1/3 of a scanline before start of vblank. Unfortunately 14410 * that means we can't tell whether we're in vblank or not while 14411 * we're on that particular line. We must still set scanline_offset 14412 * to 1 so that the vblank timestamps come out correct when we query 14413 * the scanline counter from within the vblank interrupt handler. 14414 * However if queried just before the start of vblank we'll get an 14415 * answer that's slightly in the future. 14416 */ 14417 if (IS_GEN(dev_priv, 2)) { 14418 int vtotal; 14419 14420 vtotal = adjusted_mode->crtc_vtotal; 14421 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 14422 vtotal /= 2; 14423 14424 crtc->scanline_offset = vtotal - 1; 14425 } else if (HAS_DDI(dev_priv) && 14426 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 14427 crtc->scanline_offset = 2; 14428 } else { 14429 crtc->scanline_offset = 1; 14430 } 14431 } 14432 14433 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 14434 { 14435 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14436 struct intel_crtc_state *new_crtc_state; 14437 struct intel_crtc *crtc; 14438 int i; 14439 14440 if (!dev_priv->display.crtc_compute_clock) 14441 return; 14442 14443 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14444 if (!needs_modeset(new_crtc_state)) 14445 continue; 14446 14447 intel_release_shared_dplls(state, crtc); 14448 } 14449 } 14450 14451 /* 14452 * This implements the workaround described in the "notes" section of the mode 14453 * set sequence documentation. When going from no pipes or single pipe to 14454 * multiple pipes, and planes are enabled after the pipe, we need to wait at 14455 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 14456 */ 14457 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) 14458 { 14459 struct intel_crtc_state *crtc_state; 14460 struct intel_crtc *crtc; 14461 struct intel_crtc_state *first_crtc_state = NULL; 14462 struct intel_crtc_state *other_crtc_state = NULL; 14463 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 14464 int i; 14465 14466 /* look at all crtc's that are going to be enabled in during modeset */ 14467 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14468 if (!crtc_state->hw.active || 14469 !needs_modeset(crtc_state)) 14470 continue; 14471 14472 if (first_crtc_state) { 14473 other_crtc_state = crtc_state; 14474 break; 14475 } else { 14476 first_crtc_state = crtc_state; 14477 first_pipe = crtc->pipe; 14478 } 14479 } 14480 14481 /* No workaround needed? */ 14482 if (!first_crtc_state) 14483 return 0; 14484 14485 /* w/a possibly needed, check how many crtc's are already enabled. */ 14486 for_each_intel_crtc(state->base.dev, crtc) { 14487 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 14488 if (IS_ERR(crtc_state)) 14489 return PTR_ERR(crtc_state); 14490 14491 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 14492 14493 if (!crtc_state->hw.active || 14494 needs_modeset(crtc_state)) 14495 continue; 14496 14497 /* 2 or more enabled crtcs means no need for w/a */ 14498 if (enabled_pipe != INVALID_PIPE) 14499 return 0; 14500 14501 enabled_pipe = crtc->pipe; 14502 } 14503 14504 if (enabled_pipe != INVALID_PIPE) 14505 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 14506 else if (other_crtc_state) 14507 other_crtc_state->hsw_workaround_pipe = first_pipe; 14508 14509 return 0; 14510 } 14511 14512 u8 intel_calc_active_pipes(struct intel_atomic_state *state, 14513 u8 active_pipes) 14514 { 14515 const struct intel_crtc_state *crtc_state; 14516 struct intel_crtc *crtc; 14517 int i; 14518 14519 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14520 if (crtc_state->hw.active) 14521 active_pipes |= BIT(crtc->pipe); 14522 else 14523 active_pipes &= ~BIT(crtc->pipe); 14524 } 14525 14526 return active_pipes; 14527 } 14528 14529 static int intel_modeset_checks(struct intel_atomic_state *state) 14530 { 14531 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14532 int ret; 14533 14534 state->modeset = true; 14535 state->active_pipes = intel_calc_active_pipes(state, dev_priv->active_pipes); 14536 14537 state->active_pipe_changes = state->active_pipes ^ dev_priv->active_pipes; 14538 14539 if (state->active_pipe_changes) { 14540 ret = _intel_atomic_lock_global_state(state); 14541 if (ret) 14542 return ret; 14543 } 14544 14545 ret = intel_modeset_calc_cdclk(state); 14546 if (ret) 14547 return ret; 14548 14549 intel_modeset_clear_plls(state); 14550 14551 if (IS_HASWELL(dev_priv)) 14552 return hsw_mode_set_planes_workaround(state); 14553 14554 return 0; 14555 } 14556 14557 /* 14558 * Handle calculation of various watermark data at the end of the atomic check 14559 * phase. The code here should be run after the per-crtc and per-plane 'check' 14560 * handlers to ensure that all derived state has been updated. 14561 */ 14562 static int calc_watermark_data(struct intel_atomic_state *state) 14563 { 14564 struct drm_device *dev = state->base.dev; 14565 struct drm_i915_private *dev_priv = to_i915(dev); 14566 14567 /* Is there platform-specific watermark information to calculate? */ 14568 if (dev_priv->display.compute_global_watermarks) 14569 return dev_priv->display.compute_global_watermarks(state); 14570 14571 return 0; 14572 } 14573 14574 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 14575 struct intel_crtc_state *new_crtc_state) 14576 { 14577 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 14578 return; 14579 14580 new_crtc_state->uapi.mode_changed = false; 14581 new_crtc_state->update_pipe = true; 14582 } 14583 14584 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state, 14585 struct intel_crtc_state *new_crtc_state) 14586 { 14587 /* 14588 * If we're not doing the full modeset we want to 14589 * keep the current M/N values as they may be 14590 * sufficiently different to the computed values 14591 * to cause problems. 14592 * 14593 * FIXME: should really copy more fuzzy state here 14594 */ 14595 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 14596 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 14597 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 14598 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 14599 } 14600 14601 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, 14602 struct intel_crtc *crtc, 14603 u8 plane_ids_mask) 14604 { 14605 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14606 struct intel_plane *plane; 14607 14608 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 14609 struct intel_plane_state *plane_state; 14610 14611 if ((plane_ids_mask & BIT(plane->id)) == 0) 14612 continue; 14613 14614 plane_state = intel_atomic_get_plane_state(state, plane); 14615 if (IS_ERR(plane_state)) 14616 return PTR_ERR(plane_state); 14617 } 14618 14619 return 0; 14620 } 14621 14622 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) 14623 { 14624 /* See {hsw,vlv,ivb}_plane_ratio() */ 14625 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || 14626 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || 14627 IS_IVYBRIDGE(dev_priv); 14628 } 14629 14630 static int intel_atomic_check_planes(struct intel_atomic_state *state, 14631 bool *need_cdclk_calc) 14632 { 14633 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14634 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 14635 struct intel_plane_state *plane_state; 14636 struct intel_plane *plane; 14637 struct intel_crtc *crtc; 14638 int i, ret; 14639 14640 ret = icl_add_linked_planes(state); 14641 if (ret) 14642 return ret; 14643 14644 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 14645 ret = intel_plane_atomic_check(state, plane); 14646 if (ret) { 14647 drm_dbg_atomic(&dev_priv->drm, 14648 "[PLANE:%d:%s] atomic driver check failed\n", 14649 plane->base.base.id, plane->base.name); 14650 return ret; 14651 } 14652 } 14653 14654 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14655 new_crtc_state, i) { 14656 u8 old_active_planes, new_active_planes; 14657 14658 ret = icl_check_nv12_planes(new_crtc_state); 14659 if (ret) 14660 return ret; 14661 14662 /* 14663 * On some platforms the number of active planes affects 14664 * the planes' minimum cdclk calculation. Add such planes 14665 * to the state before we compute the minimum cdclk. 14666 */ 14667 if (!active_planes_affects_min_cdclk(dev_priv)) 14668 continue; 14669 14670 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 14671 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 14672 14673 if (hweight8(old_active_planes) == hweight8(new_active_planes)) 14674 continue; 14675 14676 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); 14677 if (ret) 14678 return ret; 14679 } 14680 14681 /* 14682 * active_planes bitmask has been updated, and potentially 14683 * affected planes are part of the state. We can now 14684 * compute the minimum cdclk for each plane. 14685 */ 14686 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 14687 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 14688 if (ret) 14689 return ret; 14690 } 14691 14692 return 0; 14693 } 14694 14695 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 14696 { 14697 struct intel_crtc_state *crtc_state; 14698 struct intel_crtc *crtc; 14699 int i; 14700 14701 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14702 int ret = intel_crtc_atomic_check(state, crtc); 14703 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 14704 if (ret) { 14705 drm_dbg_atomic(&i915->drm, 14706 "[CRTC:%d:%s] atomic driver check failed\n", 14707 crtc->base.base.id, crtc->base.name); 14708 return ret; 14709 } 14710 } 14711 14712 return 0; 14713 } 14714 14715 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, 14716 u8 transcoders) 14717 { 14718 const struct intel_crtc_state *new_crtc_state; 14719 struct intel_crtc *crtc; 14720 int i; 14721 14722 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14723 if (new_crtc_state->hw.enable && 14724 transcoders & BIT(new_crtc_state->cpu_transcoder) && 14725 needs_modeset(new_crtc_state)) 14726 return true; 14727 } 14728 14729 return false; 14730 } 14731 14732 /** 14733 * intel_atomic_check - validate state object 14734 * @dev: drm device 14735 * @_state: state to validate 14736 */ 14737 static int intel_atomic_check(struct drm_device *dev, 14738 struct drm_atomic_state *_state) 14739 { 14740 struct drm_i915_private *dev_priv = to_i915(dev); 14741 struct intel_atomic_state *state = to_intel_atomic_state(_state); 14742 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 14743 struct intel_cdclk_state *new_cdclk_state; 14744 struct intel_crtc *crtc; 14745 int ret, i; 14746 bool any_ms = false; 14747 14748 /* Catch I915_MODE_FLAG_INHERITED */ 14749 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14750 new_crtc_state, i) { 14751 if (new_crtc_state->uapi.mode.private_flags != 14752 old_crtc_state->uapi.mode.private_flags) 14753 new_crtc_state->uapi.mode_changed = true; 14754 } 14755 14756 ret = drm_atomic_helper_check_modeset(dev, &state->base); 14757 if (ret) 14758 goto fail; 14759 14760 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14761 new_crtc_state, i) { 14762 if (!needs_modeset(new_crtc_state)) { 14763 /* Light copy */ 14764 intel_crtc_copy_uapi_to_hw_state_nomodeset(new_crtc_state); 14765 14766 continue; 14767 } 14768 14769 ret = intel_crtc_prepare_cleared_state(new_crtc_state); 14770 if (ret) 14771 goto fail; 14772 14773 if (!new_crtc_state->hw.enable) 14774 continue; 14775 14776 ret = intel_modeset_pipe_config(new_crtc_state); 14777 if (ret) 14778 goto fail; 14779 } 14780 14781 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14782 new_crtc_state, i) { 14783 if (!needs_modeset(new_crtc_state)) 14784 continue; 14785 14786 ret = intel_modeset_pipe_config_late(new_crtc_state); 14787 if (ret) 14788 goto fail; 14789 14790 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 14791 } 14792 14793 /** 14794 * Check if fastset is allowed by external dependencies like other 14795 * pipes and transcoders. 14796 * 14797 * Right now it only forces a fullmodeset when the MST master 14798 * transcoder did not changed but the pipe of the master transcoder 14799 * needs a fullmodeset so all slaves also needs to do a fullmodeset or 14800 * in case of port synced crtcs, if one of the synced crtcs 14801 * needs a full modeset, all other synced crtcs should be 14802 * forced a full modeset. 14803 */ 14804 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14805 if (!new_crtc_state->hw.enable || needs_modeset(new_crtc_state)) 14806 continue; 14807 14808 if (intel_dp_mst_is_slave_trans(new_crtc_state)) { 14809 enum transcoder master = new_crtc_state->mst_master_transcoder; 14810 14811 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) { 14812 new_crtc_state->uapi.mode_changed = true; 14813 new_crtc_state->update_pipe = false; 14814 } 14815 } 14816 14817 if (is_trans_port_sync_mode(new_crtc_state)) { 14818 u8 trans = new_crtc_state->sync_mode_slaves_mask; 14819 14820 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) 14821 trans |= BIT(new_crtc_state->master_transcoder); 14822 14823 if (intel_cpu_transcoders_need_modeset(state, trans)) { 14824 new_crtc_state->uapi.mode_changed = true; 14825 new_crtc_state->update_pipe = false; 14826 } 14827 } 14828 } 14829 14830 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14831 new_crtc_state, i) { 14832 if (needs_modeset(new_crtc_state)) { 14833 any_ms = true; 14834 continue; 14835 } 14836 14837 if (!new_crtc_state->update_pipe) 14838 continue; 14839 14840 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state); 14841 } 14842 14843 if (any_ms && !check_digital_port_conflicts(state)) { 14844 drm_dbg_kms(&dev_priv->drm, 14845 "rejecting conflicting digital port configuration\n"); 14846 ret = EINVAL; 14847 goto fail; 14848 } 14849 14850 ret = drm_dp_mst_atomic_check(&state->base); 14851 if (ret) 14852 goto fail; 14853 14854 ret = intel_atomic_check_planes(state, &any_ms); 14855 if (ret) 14856 goto fail; 14857 14858 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 14859 if (new_cdclk_state && new_cdclk_state->force_min_cdclk_changed) 14860 any_ms = true; 14861 14862 /* 14863 * distrust_bios_wm will force a full dbuf recomputation 14864 * but the hardware state will only get updated accordingly 14865 * if state->modeset==true. Hence distrust_bios_wm==true && 14866 * state->modeset==false is an invalid combination which 14867 * would cause the hardware and software dbuf state to get 14868 * out of sync. We must prevent that. 14869 * 14870 * FIXME clean up this mess and introduce better 14871 * state tracking for dbuf. 14872 */ 14873 if (dev_priv->wm.distrust_bios_wm) 14874 any_ms = true; 14875 14876 if (any_ms) { 14877 ret = intel_modeset_checks(state); 14878 if (ret) 14879 goto fail; 14880 } 14881 14882 ret = intel_atomic_check_crtcs(state); 14883 if (ret) 14884 goto fail; 14885 14886 intel_fbc_choose_crtc(dev_priv, state); 14887 ret = calc_watermark_data(state); 14888 if (ret) 14889 goto fail; 14890 14891 ret = intel_bw_atomic_check(state); 14892 if (ret) 14893 goto fail; 14894 14895 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14896 new_crtc_state, i) { 14897 if (!needs_modeset(new_crtc_state) && 14898 !new_crtc_state->update_pipe) 14899 continue; 14900 14901 intel_dump_pipe_config(new_crtc_state, state, 14902 needs_modeset(new_crtc_state) ? 14903 "[modeset]" : "[fastset]"); 14904 } 14905 14906 return 0; 14907 14908 fail: 14909 if (ret == -EDEADLK) 14910 return ret; 14911 14912 /* 14913 * FIXME would probably be nice to know which crtc specifically 14914 * caused the failure, in cases where we can pinpoint it. 14915 */ 14916 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14917 new_crtc_state, i) 14918 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 14919 14920 return ret; 14921 } 14922 14923 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 14924 { 14925 return drm_atomic_helper_prepare_planes(state->base.dev, 14926 &state->base); 14927 } 14928 14929 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc) 14930 { 14931 struct drm_device *dev = crtc->base.dev; 14932 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)]; 14933 14934 if (!vblank->max_vblank_count) 14935 return (u32)drm_crtc_accurate_vblank_count(&crtc->base); 14936 14937 return crtc->base.funcs->get_vblank_counter(&crtc->base); 14938 } 14939 14940 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 14941 struct intel_crtc_state *crtc_state) 14942 { 14943 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14944 14945 if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes) 14946 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 14947 14948 if (crtc_state->has_pch_encoder) { 14949 enum pipe pch_transcoder = 14950 intel_crtc_pch_transcoder(crtc); 14951 14952 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 14953 } 14954 } 14955 14956 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 14957 const struct intel_crtc_state *new_crtc_state) 14958 { 14959 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 14960 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14961 14962 /* 14963 * Update pipe size and adjust fitter if needed: the reason for this is 14964 * that in compute_mode_changes we check the native mode (not the pfit 14965 * mode) to see if we can flip rather than do a full mode set. In the 14966 * fastboot case, we'll flip, but if we don't update the pipesrc and 14967 * pfit state, we'll end up with a big fb scanned out into the wrong 14968 * sized surface. 14969 */ 14970 intel_set_pipe_src_size(new_crtc_state); 14971 14972 /* on skylake this is done by detaching scalers */ 14973 if (INTEL_GEN(dev_priv) >= 9) { 14974 skl_detach_scalers(new_crtc_state); 14975 14976 if (new_crtc_state->pch_pfit.enabled) 14977 skl_pfit_enable(new_crtc_state); 14978 } else if (HAS_PCH_SPLIT(dev_priv)) { 14979 if (new_crtc_state->pch_pfit.enabled) 14980 ilk_pfit_enable(new_crtc_state); 14981 else if (old_crtc_state->pch_pfit.enabled) 14982 ilk_pfit_disable(old_crtc_state); 14983 } 14984 14985 /* 14986 * The register is supposedly single buffered so perhaps 14987 * not 100% correct to do this here. But SKL+ calculate 14988 * this based on the adjust pixel rate so pfit changes do 14989 * affect it and so it must be updated for fastsets. 14990 * HSW/BDW only really need this here for fastboot, after 14991 * that the value should not change without a full modeset. 14992 */ 14993 if (INTEL_GEN(dev_priv) >= 9 || 14994 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 14995 hsw_set_linetime_wm(new_crtc_state); 14996 14997 if (INTEL_GEN(dev_priv) >= 11) 14998 icl_set_pipe_chicken(crtc); 14999 } 15000 15001 static void commit_pipe_config(struct intel_atomic_state *state, 15002 struct intel_crtc_state *old_crtc_state, 15003 struct intel_crtc_state *new_crtc_state) 15004 { 15005 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 15006 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15007 bool modeset = needs_modeset(new_crtc_state); 15008 15009 /* 15010 * During modesets pipe configuration was programmed as the 15011 * CRTC was enabled. 15012 */ 15013 if (!modeset) { 15014 if (new_crtc_state->uapi.color_mgmt_changed || 15015 new_crtc_state->update_pipe) 15016 intel_color_commit(new_crtc_state); 15017 15018 if (INTEL_GEN(dev_priv) >= 9) 15019 skl_detach_scalers(new_crtc_state); 15020 15021 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 15022 bdw_set_pipemisc(new_crtc_state); 15023 15024 if (new_crtc_state->update_pipe) 15025 intel_pipe_fastset(old_crtc_state, new_crtc_state); 15026 } 15027 15028 if (dev_priv->display.atomic_update_watermarks) 15029 dev_priv->display.atomic_update_watermarks(state, crtc); 15030 } 15031 15032 static void intel_update_crtc(struct intel_crtc *crtc, 15033 struct intel_atomic_state *state, 15034 struct intel_crtc_state *old_crtc_state, 15035 struct intel_crtc_state *new_crtc_state) 15036 { 15037 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15038 bool modeset = needs_modeset(new_crtc_state); 15039 15040 if (modeset) { 15041 intel_crtc_update_active_timings(new_crtc_state); 15042 15043 dev_priv->display.crtc_enable(state, crtc); 15044 15045 /* vblanks work again, re-enable pipe CRC. */ 15046 intel_crtc_enable_pipe_crc(crtc); 15047 } else { 15048 if (new_crtc_state->preload_luts && 15049 (new_crtc_state->uapi.color_mgmt_changed || 15050 new_crtc_state->update_pipe)) 15051 intel_color_load_luts(new_crtc_state); 15052 15053 intel_pre_plane_update(state, crtc); 15054 15055 if (new_crtc_state->update_pipe) 15056 intel_encoders_update_pipe(state, crtc); 15057 } 15058 15059 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 15060 intel_fbc_disable(crtc); 15061 else 15062 intel_fbc_enable(state, crtc); 15063 15064 /* Perform vblank evasion around commit operation */ 15065 intel_pipe_update_start(new_crtc_state); 15066 15067 commit_pipe_config(state, old_crtc_state, new_crtc_state); 15068 15069 if (INTEL_GEN(dev_priv) >= 9) 15070 skl_update_planes_on_crtc(state, crtc); 15071 else 15072 i9xx_update_planes_on_crtc(state, crtc); 15073 15074 intel_pipe_update_end(new_crtc_state); 15075 15076 /* 15077 * We usually enable FIFO underrun interrupts as part of the 15078 * CRTC enable sequence during modesets. But when we inherit a 15079 * valid pipe configuration from the BIOS we need to take care 15080 * of enabling them on the CRTC's first fastset. 15081 */ 15082 if (new_crtc_state->update_pipe && !modeset && 15083 old_crtc_state->hw.mode.private_flags & I915_MODE_FLAG_INHERITED) 15084 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 15085 } 15086 15087 static struct intel_crtc *intel_get_slave_crtc(const struct intel_crtc_state *new_crtc_state) 15088 { 15089 struct drm_i915_private *dev_priv = to_i915(new_crtc_state->uapi.crtc->dev); 15090 enum transcoder slave_transcoder; 15091 15092 drm_WARN_ON(&dev_priv->drm, 15093 !is_power_of_2(new_crtc_state->sync_mode_slaves_mask)); 15094 15095 slave_transcoder = ffs(new_crtc_state->sync_mode_slaves_mask) - 1; 15096 return intel_get_crtc_for_pipe(dev_priv, 15097 (enum pipe)slave_transcoder); 15098 } 15099 15100 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 15101 struct intel_crtc_state *old_crtc_state, 15102 struct intel_crtc_state *new_crtc_state, 15103 struct intel_crtc *crtc) 15104 { 15105 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15106 15107 intel_crtc_disable_planes(state, crtc); 15108 15109 /* 15110 * We need to disable pipe CRC before disabling the pipe, 15111 * or we race against vblank off. 15112 */ 15113 intel_crtc_disable_pipe_crc(crtc); 15114 15115 dev_priv->display.crtc_disable(state, crtc); 15116 crtc->active = false; 15117 intel_fbc_disable(crtc); 15118 intel_disable_shared_dpll(old_crtc_state); 15119 15120 /* FIXME unify this for all platforms */ 15121 if (!new_crtc_state->hw.active && 15122 !HAS_GMCH(dev_priv) && 15123 dev_priv->display.initial_watermarks) 15124 dev_priv->display.initial_watermarks(state, crtc); 15125 } 15126 15127 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 15128 { 15129 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 15130 struct intel_crtc *crtc; 15131 u32 handled = 0; 15132 int i; 15133 15134 /* Only disable port sync and MST slaves */ 15135 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15136 new_crtc_state, i) { 15137 if (!needs_modeset(new_crtc_state)) 15138 continue; 15139 15140 if (!old_crtc_state->hw.active) 15141 continue; 15142 15143 /* In case of Transcoder port Sync master slave CRTCs can be 15144 * assigned in any order and we need to make sure that 15145 * slave CRTCs are disabled first and then master CRTC since 15146 * Slave vblanks are masked till Master Vblanks. 15147 */ 15148 if (!is_trans_port_sync_slave(old_crtc_state) && 15149 !intel_dp_mst_is_slave_trans(old_crtc_state)) 15150 continue; 15151 15152 intel_pre_plane_update(state, crtc); 15153 intel_old_crtc_state_disables(state, old_crtc_state, 15154 new_crtc_state, crtc); 15155 handled |= BIT(crtc->pipe); 15156 } 15157 15158 /* Disable everything else left on */ 15159 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15160 new_crtc_state, i) { 15161 if (!needs_modeset(new_crtc_state) || 15162 (handled & BIT(crtc->pipe))) 15163 continue; 15164 15165 intel_pre_plane_update(state, crtc); 15166 if (old_crtc_state->hw.active) 15167 intel_old_crtc_state_disables(state, old_crtc_state, 15168 new_crtc_state, crtc); 15169 } 15170 } 15171 15172 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 15173 { 15174 struct intel_crtc *crtc; 15175 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 15176 int i; 15177 15178 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 15179 if (!new_crtc_state->hw.active) 15180 continue; 15181 15182 intel_update_crtc(crtc, state, old_crtc_state, 15183 new_crtc_state); 15184 } 15185 } 15186 15187 static void intel_crtc_enable_trans_port_sync(struct intel_crtc *crtc, 15188 struct intel_atomic_state *state, 15189 struct intel_crtc_state *new_crtc_state) 15190 { 15191 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15192 15193 intel_crtc_update_active_timings(new_crtc_state); 15194 dev_priv->display.crtc_enable(state, crtc); 15195 intel_crtc_enable_pipe_crc(crtc); 15196 } 15197 15198 static void intel_set_dp_tp_ctl_normal(struct intel_crtc *crtc, 15199 struct intel_atomic_state *state) 15200 { 15201 struct drm_connector *uninitialized_var(conn); 15202 struct drm_connector_state *conn_state; 15203 struct intel_dp *intel_dp; 15204 int i; 15205 15206 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 15207 if (conn_state->crtc == &crtc->base) 15208 break; 15209 } 15210 intel_dp = intel_attached_dp(to_intel_connector(conn)); 15211 intel_dp_stop_link_train(intel_dp); 15212 } 15213 15214 /* 15215 * TODO: This is only called from port sync and it is identical to what will be 15216 * executed again in intel_update_crtc() over port sync pipes 15217 */ 15218 static void intel_post_crtc_enable_updates(struct intel_crtc *crtc, 15219 struct intel_atomic_state *state) 15220 { 15221 struct intel_crtc_state *new_crtc_state = 15222 intel_atomic_get_new_crtc_state(state, crtc); 15223 struct intel_crtc_state *old_crtc_state = 15224 intel_atomic_get_old_crtc_state(state, crtc); 15225 bool modeset = needs_modeset(new_crtc_state); 15226 15227 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 15228 intel_fbc_disable(crtc); 15229 else 15230 intel_fbc_enable(state, crtc); 15231 15232 /* Perform vblank evasion around commit operation */ 15233 intel_pipe_update_start(new_crtc_state); 15234 commit_pipe_config(state, old_crtc_state, new_crtc_state); 15235 skl_update_planes_on_crtc(state, crtc); 15236 intel_pipe_update_end(new_crtc_state); 15237 15238 /* 15239 * We usually enable FIFO underrun interrupts as part of the 15240 * CRTC enable sequence during modesets. But when we inherit a 15241 * valid pipe configuration from the BIOS we need to take care 15242 * of enabling them on the CRTC's first fastset. 15243 */ 15244 if (new_crtc_state->update_pipe && !modeset && 15245 old_crtc_state->hw.mode.private_flags & I915_MODE_FLAG_INHERITED) 15246 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 15247 } 15248 15249 static void intel_update_trans_port_sync_crtcs(struct intel_crtc *crtc, 15250 struct intel_atomic_state *state, 15251 struct intel_crtc_state *old_crtc_state, 15252 struct intel_crtc_state *new_crtc_state) 15253 { 15254 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 15255 struct intel_crtc *slave_crtc = intel_get_slave_crtc(new_crtc_state); 15256 struct intel_crtc_state *new_slave_crtc_state = 15257 intel_atomic_get_new_crtc_state(state, slave_crtc); 15258 struct intel_crtc_state *old_slave_crtc_state = 15259 intel_atomic_get_old_crtc_state(state, slave_crtc); 15260 15261 drm_WARN_ON(&i915->drm, !slave_crtc || !new_slave_crtc_state || 15262 !old_slave_crtc_state); 15263 15264 drm_dbg_kms(&i915->drm, 15265 "Updating Transcoder Port Sync Master CRTC = %d %s and Slave CRTC %d %s\n", 15266 crtc->base.base.id, crtc->base.name, 15267 slave_crtc->base.base.id, slave_crtc->base.name); 15268 15269 /* Enable seq for slave with with DP_TP_CTL left Idle until the 15270 * master is ready 15271 */ 15272 intel_crtc_enable_trans_port_sync(slave_crtc, 15273 state, 15274 new_slave_crtc_state); 15275 15276 /* Enable seq for master with with DP_TP_CTL left Idle */ 15277 intel_crtc_enable_trans_port_sync(crtc, 15278 state, 15279 new_crtc_state); 15280 15281 /* Set Slave's DP_TP_CTL to Normal */ 15282 intel_set_dp_tp_ctl_normal(slave_crtc, 15283 state); 15284 15285 /* Set Master's DP_TP_CTL To Normal */ 15286 usleep_range(200, 400); 15287 intel_set_dp_tp_ctl_normal(crtc, 15288 state); 15289 15290 /* Now do the post crtc enable for all master and slaves */ 15291 intel_post_crtc_enable_updates(slave_crtc, 15292 state); 15293 intel_post_crtc_enable_updates(crtc, 15294 state); 15295 } 15296 15297 static void icl_dbuf_slice_pre_update(struct intel_atomic_state *state) 15298 { 15299 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15300 u8 hw_enabled_slices = dev_priv->enabled_dbuf_slices_mask; 15301 u8 required_slices = state->enabled_dbuf_slices_mask; 15302 u8 slices_union = hw_enabled_slices | required_slices; 15303 15304 /* If 2nd DBuf slice required, enable it here */ 15305 if (INTEL_GEN(dev_priv) >= 11 && slices_union != hw_enabled_slices) 15306 icl_dbuf_slices_update(dev_priv, slices_union); 15307 } 15308 15309 static void icl_dbuf_slice_post_update(struct intel_atomic_state *state) 15310 { 15311 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15312 u8 hw_enabled_slices = dev_priv->enabled_dbuf_slices_mask; 15313 u8 required_slices = state->enabled_dbuf_slices_mask; 15314 15315 /* If 2nd DBuf slice is no more required disable it */ 15316 if (INTEL_GEN(dev_priv) >= 11 && required_slices != hw_enabled_slices) 15317 icl_dbuf_slices_update(dev_priv, required_slices); 15318 } 15319 15320 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 15321 { 15322 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15323 struct intel_crtc *crtc; 15324 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 15325 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 15326 u8 update_pipes = 0, modeset_pipes = 0; 15327 int i; 15328 15329 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 15330 enum pipe pipe = crtc->pipe; 15331 15332 if (!new_crtc_state->hw.active) 15333 continue; 15334 15335 /* ignore allocations for crtc's that have been turned off. */ 15336 if (!needs_modeset(new_crtc_state)) { 15337 entries[pipe] = old_crtc_state->wm.skl.ddb; 15338 update_pipes |= BIT(pipe); 15339 } else { 15340 modeset_pipes |= BIT(pipe); 15341 } 15342 } 15343 15344 /* 15345 * Whenever the number of active pipes changes, we need to make sure we 15346 * update the pipes in the right order so that their ddb allocations 15347 * never overlap with each other between CRTC updates. Otherwise we'll 15348 * cause pipe underruns and other bad stuff. 15349 * 15350 * So first lets enable all pipes that do not need a fullmodeset as 15351 * those don't have any external dependency. 15352 */ 15353 while (update_pipes) { 15354 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15355 new_crtc_state, i) { 15356 enum pipe pipe = crtc->pipe; 15357 15358 if ((update_pipes & BIT(pipe)) == 0) 15359 continue; 15360 15361 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 15362 entries, I915_MAX_PIPES, pipe)) 15363 continue; 15364 15365 entries[pipe] = new_crtc_state->wm.skl.ddb; 15366 update_pipes &= ~BIT(pipe); 15367 15368 intel_update_crtc(crtc, state, old_crtc_state, 15369 new_crtc_state); 15370 15371 /* 15372 * If this is an already active pipe, it's DDB changed, 15373 * and this isn't the last pipe that needs updating 15374 * then we need to wait for a vblank to pass for the 15375 * new ddb allocation to take effect. 15376 */ 15377 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 15378 &old_crtc_state->wm.skl.ddb) && 15379 (update_pipes | modeset_pipes)) 15380 intel_wait_for_vblank(dev_priv, pipe); 15381 } 15382 } 15383 15384 /* 15385 * Enable all pipes that needs a modeset and do not depends on other 15386 * pipes 15387 */ 15388 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15389 new_crtc_state, i) { 15390 enum pipe pipe = crtc->pipe; 15391 15392 if ((modeset_pipes & BIT(pipe)) == 0) 15393 continue; 15394 15395 if (intel_dp_mst_is_slave_trans(new_crtc_state) || 15396 is_trans_port_sync_slave(new_crtc_state)) 15397 continue; 15398 15399 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 15400 entries, I915_MAX_PIPES, pipe)); 15401 15402 entries[pipe] = new_crtc_state->wm.skl.ddb; 15403 modeset_pipes &= ~BIT(pipe); 15404 15405 if (is_trans_port_sync_mode(new_crtc_state)) { 15406 struct intel_crtc *slave_crtc; 15407 15408 intel_update_trans_port_sync_crtcs(crtc, state, 15409 old_crtc_state, 15410 new_crtc_state); 15411 15412 slave_crtc = intel_get_slave_crtc(new_crtc_state); 15413 /* TODO: update entries[] of slave */ 15414 modeset_pipes &= ~BIT(slave_crtc->pipe); 15415 15416 } else { 15417 intel_update_crtc(crtc, state, old_crtc_state, 15418 new_crtc_state); 15419 } 15420 } 15421 15422 /* 15423 * Finally enable all pipes that needs a modeset and depends on 15424 * other pipes, right now it is only MST slaves as both port sync slave 15425 * and master are enabled together 15426 */ 15427 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15428 new_crtc_state, i) { 15429 enum pipe pipe = crtc->pipe; 15430 15431 if ((modeset_pipes & BIT(pipe)) == 0) 15432 continue; 15433 15434 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 15435 entries, I915_MAX_PIPES, pipe)); 15436 15437 entries[pipe] = new_crtc_state->wm.skl.ddb; 15438 modeset_pipes &= ~BIT(pipe); 15439 15440 intel_update_crtc(crtc, state, old_crtc_state, new_crtc_state); 15441 } 15442 15443 drm_WARN_ON(&dev_priv->drm, modeset_pipes); 15444 15445 } 15446 15447 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 15448 { 15449 struct intel_atomic_state *state, *next; 15450 struct llist_node *freed; 15451 15452 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 15453 llist_for_each_entry_safe(state, next, freed, freed) 15454 drm_atomic_state_put(&state->base); 15455 } 15456 15457 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 15458 { 15459 struct drm_i915_private *dev_priv = 15460 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 15461 15462 intel_atomic_helper_free_state(dev_priv); 15463 } 15464 15465 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 15466 { 15467 struct wait_queue_entry wait_fence, wait_reset; 15468 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 15469 15470 init_wait_entry(&wait_fence, 0); 15471 init_wait_entry(&wait_reset, 0); 15472 for (;;) { 15473 prepare_to_wait(&intel_state->commit_ready.wait, 15474 &wait_fence, TASK_UNINTERRUPTIBLE); 15475 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 15476 I915_RESET_MODESET), 15477 &wait_reset, TASK_UNINTERRUPTIBLE); 15478 15479 15480 if (i915_sw_fence_done(&intel_state->commit_ready) || 15481 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 15482 break; 15483 15484 schedule(); 15485 } 15486 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 15487 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 15488 I915_RESET_MODESET), 15489 &wait_reset); 15490 } 15491 15492 static void intel_atomic_cleanup_work(struct work_struct *work) 15493 { 15494 struct drm_atomic_state *state = 15495 container_of(work, struct drm_atomic_state, commit_work); 15496 struct drm_i915_private *i915 = to_i915(state->dev); 15497 15498 drm_atomic_helper_cleanup_planes(&i915->drm, state); 15499 drm_atomic_helper_commit_cleanup_done(state); 15500 drm_atomic_state_put(state); 15501 15502 intel_atomic_helper_free_state(i915); 15503 } 15504 15505 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 15506 { 15507 struct drm_device *dev = state->base.dev; 15508 struct drm_i915_private *dev_priv = to_i915(dev); 15509 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 15510 struct intel_crtc *crtc; 15511 u64 put_domains[I915_MAX_PIPES] = {}; 15512 intel_wakeref_t wakeref = 0; 15513 int i; 15514 15515 intel_atomic_commit_fence_wait(state); 15516 15517 drm_atomic_helper_wait_for_dependencies(&state->base); 15518 15519 if (state->modeset) 15520 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 15521 15522 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15523 new_crtc_state, i) { 15524 if (needs_modeset(new_crtc_state) || 15525 new_crtc_state->update_pipe) { 15526 15527 put_domains[crtc->pipe] = 15528 modeset_get_crtc_power_domains(new_crtc_state); 15529 } 15530 } 15531 15532 intel_commit_modeset_disables(state); 15533 15534 /* FIXME: Eventually get rid of our crtc->config pointer */ 15535 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 15536 crtc->config = new_crtc_state; 15537 15538 if (state->modeset) { 15539 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 15540 15541 intel_set_cdclk_pre_plane_update(state); 15542 15543 /* 15544 * SKL workaround: bspec recommends we disable the SAGV when we 15545 * have more then one pipe enabled 15546 */ 15547 if (!intel_can_enable_sagv(state)) 15548 intel_disable_sagv(dev_priv); 15549 15550 intel_modeset_verify_disabled(dev_priv, state); 15551 } 15552 15553 /* Complete the events for pipes that have now been disabled */ 15554 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15555 bool modeset = needs_modeset(new_crtc_state); 15556 15557 /* Complete events for now disable pipes here. */ 15558 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { 15559 spin_lock_irq(&dev->event_lock); 15560 drm_crtc_send_vblank_event(&crtc->base, 15561 new_crtc_state->uapi.event); 15562 spin_unlock_irq(&dev->event_lock); 15563 15564 new_crtc_state->uapi.event = NULL; 15565 } 15566 } 15567 15568 if (state->modeset) 15569 intel_encoders_update_prepare(state); 15570 15571 /* Enable all new slices, we might need */ 15572 if (state->modeset) 15573 icl_dbuf_slice_pre_update(state); 15574 15575 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 15576 dev_priv->display.commit_modeset_enables(state); 15577 15578 if (state->modeset) { 15579 intel_encoders_update_complete(state); 15580 15581 intel_set_cdclk_post_plane_update(state); 15582 } 15583 15584 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 15585 * already, but still need the state for the delayed optimization. To 15586 * fix this: 15587 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 15588 * - schedule that vblank worker _before_ calling hw_done 15589 * - at the start of commit_tail, cancel it _synchrously 15590 * - switch over to the vblank wait helper in the core after that since 15591 * we don't need out special handling any more. 15592 */ 15593 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 15594 15595 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15596 if (new_crtc_state->hw.active && 15597 !needs_modeset(new_crtc_state) && 15598 !new_crtc_state->preload_luts && 15599 (new_crtc_state->uapi.color_mgmt_changed || 15600 new_crtc_state->update_pipe)) 15601 intel_color_load_luts(new_crtc_state); 15602 } 15603 15604 /* 15605 * Now that the vblank has passed, we can go ahead and program the 15606 * optimal watermarks on platforms that need two-step watermark 15607 * programming. 15608 * 15609 * TODO: Move this (and other cleanup) to an async worker eventually. 15610 */ 15611 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15612 new_crtc_state, i) { 15613 /* 15614 * Gen2 reports pipe underruns whenever all planes are disabled. 15615 * So re-enable underrun reporting after some planes get enabled. 15616 * 15617 * We do this before .optimize_watermarks() so that we have a 15618 * chance of catching underruns with the intermediate watermarks 15619 * vs. the new plane configuration. 15620 */ 15621 if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state)) 15622 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 15623 15624 if (dev_priv->display.optimize_watermarks) 15625 dev_priv->display.optimize_watermarks(state, crtc); 15626 } 15627 15628 /* Disable all slices, we don't need */ 15629 if (state->modeset) 15630 icl_dbuf_slice_post_update(state); 15631 15632 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 15633 intel_post_plane_update(state, crtc); 15634 15635 if (put_domains[i]) 15636 modeset_put_power_domains(dev_priv, put_domains[i]); 15637 15638 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 15639 } 15640 15641 /* Underruns don't always raise interrupts, so check manually */ 15642 intel_check_cpu_fifo_underruns(dev_priv); 15643 intel_check_pch_fifo_underruns(dev_priv); 15644 15645 if (state->modeset) 15646 intel_verify_planes(state); 15647 15648 if (state->modeset && intel_can_enable_sagv(state)) 15649 intel_enable_sagv(dev_priv); 15650 15651 drm_atomic_helper_commit_hw_done(&state->base); 15652 15653 if (state->modeset) { 15654 /* As one of the primary mmio accessors, KMS has a high 15655 * likelihood of triggering bugs in unclaimed access. After we 15656 * finish modesetting, see if an error has been flagged, and if 15657 * so enable debugging for the next modeset - and hope we catch 15658 * the culprit. 15659 */ 15660 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 15661 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 15662 } 15663 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15664 15665 /* 15666 * Defer the cleanup of the old state to a separate worker to not 15667 * impede the current task (userspace for blocking modesets) that 15668 * are executed inline. For out-of-line asynchronous modesets/flips, 15669 * deferring to a new worker seems overkill, but we would place a 15670 * schedule point (cond_resched()) here anyway to keep latencies 15671 * down. 15672 */ 15673 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 15674 queue_work(system_highpri_wq, &state->base.commit_work); 15675 } 15676 15677 static void intel_atomic_commit_work(struct work_struct *work) 15678 { 15679 struct intel_atomic_state *state = 15680 container_of(work, struct intel_atomic_state, base.commit_work); 15681 15682 intel_atomic_commit_tail(state); 15683 } 15684 15685 static int __i915_sw_fence_call 15686 intel_atomic_commit_ready(struct i915_sw_fence *fence, 15687 enum i915_sw_fence_notify notify) 15688 { 15689 struct intel_atomic_state *state = 15690 container_of(fence, struct intel_atomic_state, commit_ready); 15691 15692 switch (notify) { 15693 case FENCE_COMPLETE: 15694 /* we do blocking waits in the worker, nothing to do here */ 15695 break; 15696 case FENCE_FREE: 15697 { 15698 struct intel_atomic_helper *helper = 15699 &to_i915(state->base.dev)->atomic_helper; 15700 15701 if (llist_add(&state->freed, &helper->free_list)) 15702 schedule_work(&helper->free_work); 15703 break; 15704 } 15705 } 15706 15707 return NOTIFY_DONE; 15708 } 15709 15710 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 15711 { 15712 struct intel_plane_state *old_plane_state, *new_plane_state; 15713 struct intel_plane *plane; 15714 int i; 15715 15716 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 15717 new_plane_state, i) 15718 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 15719 to_intel_frontbuffer(new_plane_state->hw.fb), 15720 plane->frontbuffer_bit); 15721 } 15722 15723 static void assert_global_state_locked(struct drm_i915_private *dev_priv) 15724 { 15725 struct intel_crtc *crtc; 15726 15727 for_each_intel_crtc(&dev_priv->drm, crtc) 15728 drm_modeset_lock_assert_held(&crtc->base.mutex); 15729 } 15730 15731 static int intel_atomic_commit(struct drm_device *dev, 15732 struct drm_atomic_state *_state, 15733 bool nonblock) 15734 { 15735 struct intel_atomic_state *state = to_intel_atomic_state(_state); 15736 struct drm_i915_private *dev_priv = to_i915(dev); 15737 int ret = 0; 15738 15739 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 15740 15741 drm_atomic_state_get(&state->base); 15742 i915_sw_fence_init(&state->commit_ready, 15743 intel_atomic_commit_ready); 15744 15745 /* 15746 * The intel_legacy_cursor_update() fast path takes care 15747 * of avoiding the vblank waits for simple cursor 15748 * movement and flips. For cursor on/off and size changes, 15749 * we want to perform the vblank waits so that watermark 15750 * updates happen during the correct frames. Gen9+ have 15751 * double buffered watermarks and so shouldn't need this. 15752 * 15753 * Unset state->legacy_cursor_update before the call to 15754 * drm_atomic_helper_setup_commit() because otherwise 15755 * drm_atomic_helper_wait_for_flip_done() is a noop and 15756 * we get FIFO underruns because we didn't wait 15757 * for vblank. 15758 * 15759 * FIXME doing watermarks and fb cleanup from a vblank worker 15760 * (assuming we had any) would solve these problems. 15761 */ 15762 if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) { 15763 struct intel_crtc_state *new_crtc_state; 15764 struct intel_crtc *crtc; 15765 int i; 15766 15767 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 15768 if (new_crtc_state->wm.need_postvbl_update || 15769 new_crtc_state->update_wm_post) 15770 state->base.legacy_cursor_update = false; 15771 } 15772 15773 ret = intel_atomic_prepare_commit(state); 15774 if (ret) { 15775 drm_dbg_atomic(&dev_priv->drm, 15776 "Preparing state failed with %i\n", ret); 15777 i915_sw_fence_commit(&state->commit_ready); 15778 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15779 return ret; 15780 } 15781 15782 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 15783 if (!ret) 15784 ret = drm_atomic_helper_swap_state(&state->base, true); 15785 if (!ret) 15786 intel_atomic_swap_global_state(state); 15787 15788 if (ret) { 15789 i915_sw_fence_commit(&state->commit_ready); 15790 15791 drm_atomic_helper_cleanup_planes(dev, &state->base); 15792 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15793 return ret; 15794 } 15795 dev_priv->wm.distrust_bios_wm = false; 15796 intel_shared_dpll_swap_state(state); 15797 intel_atomic_track_fbs(state); 15798 15799 if (state->global_state_changed) { 15800 assert_global_state_locked(dev_priv); 15801 15802 dev_priv->active_pipes = state->active_pipes; 15803 } 15804 15805 drm_atomic_state_get(&state->base); 15806 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 15807 15808 i915_sw_fence_commit(&state->commit_ready); 15809 if (nonblock && state->modeset) { 15810 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 15811 } else if (nonblock) { 15812 queue_work(dev_priv->flip_wq, &state->base.commit_work); 15813 } else { 15814 if (state->modeset) 15815 flush_workqueue(dev_priv->modeset_wq); 15816 intel_atomic_commit_tail(state); 15817 } 15818 15819 return 0; 15820 } 15821 15822 struct wait_rps_boost { 15823 struct wait_queue_entry wait; 15824 15825 struct drm_crtc *crtc; 15826 struct i915_request *request; 15827 }; 15828 15829 static int do_rps_boost(struct wait_queue_entry *_wait, 15830 unsigned mode, int sync, void *key) 15831 { 15832 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); 15833 struct i915_request *rq = wait->request; 15834 15835 /* 15836 * If we missed the vblank, but the request is already running it 15837 * is reasonable to assume that it will complete before the next 15838 * vblank without our intervention, so leave RPS alone. 15839 */ 15840 if (!i915_request_started(rq)) 15841 intel_rps_boost(rq); 15842 i915_request_put(rq); 15843 15844 drm_crtc_vblank_put(wait->crtc); 15845 15846 list_del(&wait->wait.entry); 15847 kfree(wait); 15848 return 1; 15849 } 15850 15851 static void add_rps_boost_after_vblank(struct drm_crtc *crtc, 15852 struct dma_fence *fence) 15853 { 15854 struct wait_rps_boost *wait; 15855 15856 if (!dma_fence_is_i915(fence)) 15857 return; 15858 15859 if (INTEL_GEN(to_i915(crtc->dev)) < 6) 15860 return; 15861 15862 if (drm_crtc_vblank_get(crtc)) 15863 return; 15864 15865 wait = kmalloc(sizeof(*wait), GFP_KERNEL); 15866 if (!wait) { 15867 drm_crtc_vblank_put(crtc); 15868 return; 15869 } 15870 15871 wait->request = to_request(dma_fence_get(fence)); 15872 wait->crtc = crtc; 15873 15874 wait->wait.func = do_rps_boost; 15875 wait->wait.flags = 0; 15876 15877 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); 15878 } 15879 15880 static int intel_plane_pin_fb(struct intel_plane_state *plane_state) 15881 { 15882 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 15883 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 15884 struct drm_framebuffer *fb = plane_state->hw.fb; 15885 struct i915_vma *vma; 15886 15887 if (plane->id == PLANE_CURSOR && 15888 INTEL_INFO(dev_priv)->display.cursor_needs_physical) { 15889 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 15890 const int align = intel_cursor_alignment(dev_priv); 15891 int err; 15892 15893 err = i915_gem_object_attach_phys(obj, align); 15894 if (err) 15895 return err; 15896 } 15897 15898 vma = intel_pin_and_fence_fb_obj(fb, 15899 &plane_state->view, 15900 intel_plane_uses_fence(plane_state), 15901 &plane_state->flags); 15902 if (IS_ERR(vma)) 15903 return PTR_ERR(vma); 15904 15905 plane_state->vma = vma; 15906 15907 return 0; 15908 } 15909 15910 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) 15911 { 15912 struct i915_vma *vma; 15913 15914 vma = fetch_and_zero(&old_plane_state->vma); 15915 if (vma) 15916 intel_unpin_fb_vma(vma, old_plane_state->flags); 15917 } 15918 15919 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj) 15920 { 15921 struct i915_sched_attr attr = { 15922 .priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY), 15923 }; 15924 15925 i915_gem_object_wait_priority(obj, 0, &attr); 15926 } 15927 15928 /** 15929 * intel_prepare_plane_fb - Prepare fb for usage on plane 15930 * @_plane: drm plane to prepare for 15931 * @_new_plane_state: the plane state being prepared 15932 * 15933 * Prepares a framebuffer for usage on a display plane. Generally this 15934 * involves pinning the underlying object and updating the frontbuffer tracking 15935 * bits. Some older platforms need special physical address handling for 15936 * cursor planes. 15937 * 15938 * Returns 0 on success, negative error code on failure. 15939 */ 15940 int 15941 intel_prepare_plane_fb(struct drm_plane *_plane, 15942 struct drm_plane_state *_new_plane_state) 15943 { 15944 struct intel_plane *plane = to_intel_plane(_plane); 15945 struct intel_plane_state *new_plane_state = 15946 to_intel_plane_state(_new_plane_state); 15947 struct intel_atomic_state *state = 15948 to_intel_atomic_state(new_plane_state->uapi.state); 15949 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 15950 const struct intel_plane_state *old_plane_state = 15951 intel_atomic_get_old_plane_state(state, plane); 15952 struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb); 15953 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb); 15954 int ret; 15955 15956 if (old_obj) { 15957 const struct intel_crtc_state *crtc_state = 15958 intel_atomic_get_new_crtc_state(state, 15959 to_intel_crtc(old_plane_state->hw.crtc)); 15960 15961 /* Big Hammer, we also need to ensure that any pending 15962 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 15963 * current scanout is retired before unpinning the old 15964 * framebuffer. Note that we rely on userspace rendering 15965 * into the buffer attached to the pipe they are waiting 15966 * on. If not, userspace generates a GPU hang with IPEHR 15967 * point to the MI_WAIT_FOR_EVENT. 15968 * 15969 * This should only fail upon a hung GPU, in which case we 15970 * can safely continue. 15971 */ 15972 if (needs_modeset(crtc_state)) { 15973 ret = i915_sw_fence_await_reservation(&state->commit_ready, 15974 old_obj->base.resv, NULL, 15975 false, 0, 15976 GFP_KERNEL); 15977 if (ret < 0) 15978 return ret; 15979 } 15980 } 15981 15982 if (new_plane_state->uapi.fence) { /* explicit fencing */ 15983 ret = i915_sw_fence_await_dma_fence(&state->commit_ready, 15984 new_plane_state->uapi.fence, 15985 I915_FENCE_TIMEOUT, 15986 GFP_KERNEL); 15987 if (ret < 0) 15988 return ret; 15989 } 15990 15991 if (!obj) 15992 return 0; 15993 15994 ret = i915_gem_object_pin_pages(obj); 15995 if (ret) 15996 return ret; 15997 15998 ret = intel_plane_pin_fb(new_plane_state); 15999 16000 i915_gem_object_unpin_pages(obj); 16001 if (ret) 16002 return ret; 16003 16004 fb_obj_bump_render_priority(obj); 16005 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB); 16006 16007 if (!new_plane_state->uapi.fence) { /* implicit fencing */ 16008 struct dma_fence *fence; 16009 16010 ret = i915_sw_fence_await_reservation(&state->commit_ready, 16011 obj->base.resv, NULL, 16012 false, I915_FENCE_TIMEOUT, 16013 GFP_KERNEL); 16014 if (ret < 0) 16015 goto unpin_fb; 16016 16017 fence = dma_resv_get_excl_rcu(obj->base.resv); 16018 if (fence) { 16019 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 16020 fence); 16021 dma_fence_put(fence); 16022 } 16023 } else { 16024 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 16025 new_plane_state->uapi.fence); 16026 } 16027 16028 /* 16029 * We declare pageflips to be interactive and so merit a small bias 16030 * towards upclocking to deliver the frame on time. By only changing 16031 * the RPS thresholds to sample more regularly and aim for higher 16032 * clocks we can hopefully deliver low power workloads (like kodi) 16033 * that are not quite steady state without resorting to forcing 16034 * maximum clocks following a vblank miss (see do_rps_boost()). 16035 */ 16036 if (!state->rps_interactive) { 16037 intel_rps_mark_interactive(&dev_priv->gt.rps, true); 16038 state->rps_interactive = true; 16039 } 16040 16041 return 0; 16042 16043 unpin_fb: 16044 intel_plane_unpin_fb(new_plane_state); 16045 16046 return ret; 16047 } 16048 16049 /** 16050 * intel_cleanup_plane_fb - Cleans up an fb after plane use 16051 * @plane: drm plane to clean up for 16052 * @_old_plane_state: the state from the previous modeset 16053 * 16054 * Cleans up a framebuffer that has just been removed from a plane. 16055 */ 16056 void 16057 intel_cleanup_plane_fb(struct drm_plane *plane, 16058 struct drm_plane_state *_old_plane_state) 16059 { 16060 struct intel_plane_state *old_plane_state = 16061 to_intel_plane_state(_old_plane_state); 16062 struct intel_atomic_state *state = 16063 to_intel_atomic_state(old_plane_state->uapi.state); 16064 struct drm_i915_private *dev_priv = to_i915(plane->dev); 16065 struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb); 16066 16067 if (!obj) 16068 return; 16069 16070 if (state->rps_interactive) { 16071 intel_rps_mark_interactive(&dev_priv->gt.rps, false); 16072 state->rps_interactive = false; 16073 } 16074 16075 /* Should only be called after a successful intel_prepare_plane_fb()! */ 16076 intel_plane_unpin_fb(old_plane_state); 16077 } 16078 16079 /** 16080 * intel_plane_destroy - destroy a plane 16081 * @plane: plane to destroy 16082 * 16083 * Common destruction function for all types of planes (primary, cursor, 16084 * sprite). 16085 */ 16086 void intel_plane_destroy(struct drm_plane *plane) 16087 { 16088 drm_plane_cleanup(plane); 16089 kfree(to_intel_plane(plane)); 16090 } 16091 16092 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane, 16093 u32 format, u64 modifier) 16094 { 16095 switch (modifier) { 16096 case DRM_FORMAT_MOD_LINEAR: 16097 case I915_FORMAT_MOD_X_TILED: 16098 break; 16099 default: 16100 return false; 16101 } 16102 16103 switch (format) { 16104 case DRM_FORMAT_C8: 16105 case DRM_FORMAT_RGB565: 16106 case DRM_FORMAT_XRGB1555: 16107 case DRM_FORMAT_XRGB8888: 16108 return modifier == DRM_FORMAT_MOD_LINEAR || 16109 modifier == I915_FORMAT_MOD_X_TILED; 16110 default: 16111 return false; 16112 } 16113 } 16114 16115 static bool i965_plane_format_mod_supported(struct drm_plane *_plane, 16116 u32 format, u64 modifier) 16117 { 16118 switch (modifier) { 16119 case DRM_FORMAT_MOD_LINEAR: 16120 case I915_FORMAT_MOD_X_TILED: 16121 break; 16122 default: 16123 return false; 16124 } 16125 16126 switch (format) { 16127 case DRM_FORMAT_C8: 16128 case DRM_FORMAT_RGB565: 16129 case DRM_FORMAT_XRGB8888: 16130 case DRM_FORMAT_XBGR8888: 16131 case DRM_FORMAT_ARGB8888: 16132 case DRM_FORMAT_ABGR8888: 16133 case DRM_FORMAT_XRGB2101010: 16134 case DRM_FORMAT_XBGR2101010: 16135 case DRM_FORMAT_ARGB2101010: 16136 case DRM_FORMAT_ABGR2101010: 16137 case DRM_FORMAT_XBGR16161616F: 16138 return modifier == DRM_FORMAT_MOD_LINEAR || 16139 modifier == I915_FORMAT_MOD_X_TILED; 16140 default: 16141 return false; 16142 } 16143 } 16144 16145 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane, 16146 u32 format, u64 modifier) 16147 { 16148 return modifier == DRM_FORMAT_MOD_LINEAR && 16149 format == DRM_FORMAT_ARGB8888; 16150 } 16151 16152 static const struct drm_plane_funcs i965_plane_funcs = { 16153 .update_plane = drm_atomic_helper_update_plane, 16154 .disable_plane = drm_atomic_helper_disable_plane, 16155 .destroy = intel_plane_destroy, 16156 .atomic_duplicate_state = intel_plane_duplicate_state, 16157 .atomic_destroy_state = intel_plane_destroy_state, 16158 .format_mod_supported = i965_plane_format_mod_supported, 16159 }; 16160 16161 static const struct drm_plane_funcs i8xx_plane_funcs = { 16162 .update_plane = drm_atomic_helper_update_plane, 16163 .disable_plane = drm_atomic_helper_disable_plane, 16164 .destroy = intel_plane_destroy, 16165 .atomic_duplicate_state = intel_plane_duplicate_state, 16166 .atomic_destroy_state = intel_plane_destroy_state, 16167 .format_mod_supported = i8xx_plane_format_mod_supported, 16168 }; 16169 16170 static int 16171 intel_legacy_cursor_update(struct drm_plane *_plane, 16172 struct drm_crtc *_crtc, 16173 struct drm_framebuffer *fb, 16174 int crtc_x, int crtc_y, 16175 unsigned int crtc_w, unsigned int crtc_h, 16176 u32 src_x, u32 src_y, 16177 u32 src_w, u32 src_h, 16178 struct drm_modeset_acquire_ctx *ctx) 16179 { 16180 struct intel_plane *plane = to_intel_plane(_plane); 16181 struct intel_crtc *crtc = to_intel_crtc(_crtc); 16182 struct intel_plane_state *old_plane_state = 16183 to_intel_plane_state(plane->base.state); 16184 struct intel_plane_state *new_plane_state; 16185 struct intel_crtc_state *crtc_state = 16186 to_intel_crtc_state(crtc->base.state); 16187 struct intel_crtc_state *new_crtc_state; 16188 int ret; 16189 16190 /* 16191 * When crtc is inactive or there is a modeset pending, 16192 * wait for it to complete in the slowpath 16193 */ 16194 if (!crtc_state->hw.active || needs_modeset(crtc_state) || 16195 crtc_state->update_pipe) 16196 goto slow; 16197 16198 /* 16199 * Don't do an async update if there is an outstanding commit modifying 16200 * the plane. This prevents our async update's changes from getting 16201 * overridden by a previous synchronous update's state. 16202 */ 16203 if (old_plane_state->uapi.commit && 16204 !try_wait_for_completion(&old_plane_state->uapi.commit->hw_done)) 16205 goto slow; 16206 16207 /* 16208 * If any parameters change that may affect watermarks, 16209 * take the slowpath. Only changing fb or position should be 16210 * in the fastpath. 16211 */ 16212 if (old_plane_state->uapi.crtc != &crtc->base || 16213 old_plane_state->uapi.src_w != src_w || 16214 old_plane_state->uapi.src_h != src_h || 16215 old_plane_state->uapi.crtc_w != crtc_w || 16216 old_plane_state->uapi.crtc_h != crtc_h || 16217 !old_plane_state->uapi.fb != !fb) 16218 goto slow; 16219 16220 new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base)); 16221 if (!new_plane_state) 16222 return -ENOMEM; 16223 16224 new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base)); 16225 if (!new_crtc_state) { 16226 ret = -ENOMEM; 16227 goto out_free; 16228 } 16229 16230 drm_atomic_set_fb_for_plane(&new_plane_state->uapi, fb); 16231 16232 new_plane_state->uapi.src_x = src_x; 16233 new_plane_state->uapi.src_y = src_y; 16234 new_plane_state->uapi.src_w = src_w; 16235 new_plane_state->uapi.src_h = src_h; 16236 new_plane_state->uapi.crtc_x = crtc_x; 16237 new_plane_state->uapi.crtc_y = crtc_y; 16238 new_plane_state->uapi.crtc_w = crtc_w; 16239 new_plane_state->uapi.crtc_h = crtc_h; 16240 16241 intel_plane_copy_uapi_to_hw_state(new_plane_state, new_plane_state); 16242 16243 ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state, 16244 old_plane_state, new_plane_state); 16245 if (ret) 16246 goto out_free; 16247 16248 ret = intel_plane_pin_fb(new_plane_state); 16249 if (ret) 16250 goto out_free; 16251 16252 intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->hw.fb), 16253 ORIGIN_FLIP); 16254 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 16255 to_intel_frontbuffer(new_plane_state->hw.fb), 16256 plane->frontbuffer_bit); 16257 16258 /* Swap plane state */ 16259 plane->base.state = &new_plane_state->uapi; 16260 16261 /* 16262 * We cannot swap crtc_state as it may be in use by an atomic commit or 16263 * page flip that's running simultaneously. If we swap crtc_state and 16264 * destroy the old state, we will cause a use-after-free there. 16265 * 16266 * Only update active_planes, which is needed for our internal 16267 * bookkeeping. Either value will do the right thing when updating 16268 * planes atomically. If the cursor was part of the atomic update then 16269 * we would have taken the slowpath. 16270 */ 16271 crtc_state->active_planes = new_crtc_state->active_planes; 16272 16273 if (new_plane_state->uapi.visible) 16274 intel_update_plane(plane, crtc_state, new_plane_state); 16275 else 16276 intel_disable_plane(plane, crtc_state); 16277 16278 intel_plane_unpin_fb(old_plane_state); 16279 16280 out_free: 16281 if (new_crtc_state) 16282 intel_crtc_destroy_state(&crtc->base, &new_crtc_state->uapi); 16283 if (ret) 16284 intel_plane_destroy_state(&plane->base, &new_plane_state->uapi); 16285 else 16286 intel_plane_destroy_state(&plane->base, &old_plane_state->uapi); 16287 return ret; 16288 16289 slow: 16290 return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb, 16291 crtc_x, crtc_y, crtc_w, crtc_h, 16292 src_x, src_y, src_w, src_h, ctx); 16293 } 16294 16295 static const struct drm_plane_funcs intel_cursor_plane_funcs = { 16296 .update_plane = intel_legacy_cursor_update, 16297 .disable_plane = drm_atomic_helper_disable_plane, 16298 .destroy = intel_plane_destroy, 16299 .atomic_duplicate_state = intel_plane_duplicate_state, 16300 .atomic_destroy_state = intel_plane_destroy_state, 16301 .format_mod_supported = intel_cursor_format_mod_supported, 16302 }; 16303 16304 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv, 16305 enum i9xx_plane_id i9xx_plane) 16306 { 16307 if (!HAS_FBC(dev_priv)) 16308 return false; 16309 16310 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 16311 return i9xx_plane == PLANE_A; /* tied to pipe A */ 16312 else if (IS_IVYBRIDGE(dev_priv)) 16313 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B || 16314 i9xx_plane == PLANE_C; 16315 else if (INTEL_GEN(dev_priv) >= 4) 16316 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B; 16317 else 16318 return i9xx_plane == PLANE_A; 16319 } 16320 16321 static struct intel_plane * 16322 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe) 16323 { 16324 struct intel_plane *plane; 16325 const struct drm_plane_funcs *plane_funcs; 16326 unsigned int supported_rotations; 16327 const u32 *formats; 16328 int num_formats; 16329 int ret, zpos; 16330 16331 if (INTEL_GEN(dev_priv) >= 9) 16332 return skl_universal_plane_create(dev_priv, pipe, 16333 PLANE_PRIMARY); 16334 16335 plane = intel_plane_alloc(); 16336 if (IS_ERR(plane)) 16337 return plane; 16338 16339 plane->pipe = pipe; 16340 /* 16341 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS 16342 * port is hooked to pipe B. Hence we want plane A feeding pipe B. 16343 */ 16344 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4) 16345 plane->i9xx_plane = (enum i9xx_plane_id) !pipe; 16346 else 16347 plane->i9xx_plane = (enum i9xx_plane_id) pipe; 16348 plane->id = PLANE_PRIMARY; 16349 plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id); 16350 16351 plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane); 16352 if (plane->has_fbc) { 16353 struct intel_fbc *fbc = &dev_priv->fbc; 16354 16355 fbc->possible_framebuffer_bits |= plane->frontbuffer_bit; 16356 } 16357 16358 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 16359 formats = vlv_primary_formats; 16360 num_formats = ARRAY_SIZE(vlv_primary_formats); 16361 } else if (INTEL_GEN(dev_priv) >= 4) { 16362 /* 16363 * WaFP16GammaEnabling:ivb 16364 * "Workaround : When using the 64-bit format, the plane 16365 * output on each color channel has one quarter amplitude. 16366 * It can be brought up to full amplitude by using pipe 16367 * gamma correction or pipe color space conversion to 16368 * multiply the plane output by four." 16369 * 16370 * There is no dedicated plane gamma for the primary plane, 16371 * and using the pipe gamma/csc could conflict with other 16372 * planes, so we choose not to expose fp16 on IVB primary 16373 * planes. HSW primary planes no longer have this problem. 16374 */ 16375 if (IS_IVYBRIDGE(dev_priv)) { 16376 formats = ivb_primary_formats; 16377 num_formats = ARRAY_SIZE(ivb_primary_formats); 16378 } else { 16379 formats = i965_primary_formats; 16380 num_formats = ARRAY_SIZE(i965_primary_formats); 16381 } 16382 } else { 16383 formats = i8xx_primary_formats; 16384 num_formats = ARRAY_SIZE(i8xx_primary_formats); 16385 } 16386 16387 if (INTEL_GEN(dev_priv) >= 4) 16388 plane_funcs = &i965_plane_funcs; 16389 else 16390 plane_funcs = &i8xx_plane_funcs; 16391 16392 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16393 plane->min_cdclk = vlv_plane_min_cdclk; 16394 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 16395 plane->min_cdclk = hsw_plane_min_cdclk; 16396 else if (IS_IVYBRIDGE(dev_priv)) 16397 plane->min_cdclk = ivb_plane_min_cdclk; 16398 else 16399 plane->min_cdclk = i9xx_plane_min_cdclk; 16400 16401 plane->max_stride = i9xx_plane_max_stride; 16402 plane->update_plane = i9xx_update_plane; 16403 plane->disable_plane = i9xx_disable_plane; 16404 plane->get_hw_state = i9xx_plane_get_hw_state; 16405 plane->check_plane = i9xx_plane_check; 16406 16407 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 16408 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 16409 0, plane_funcs, 16410 formats, num_formats, 16411 i9xx_format_modifiers, 16412 DRM_PLANE_TYPE_PRIMARY, 16413 "primary %c", pipe_name(pipe)); 16414 else 16415 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 16416 0, plane_funcs, 16417 formats, num_formats, 16418 i9xx_format_modifiers, 16419 DRM_PLANE_TYPE_PRIMARY, 16420 "plane %c", 16421 plane_name(plane->i9xx_plane)); 16422 if (ret) 16423 goto fail; 16424 16425 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 16426 supported_rotations = 16427 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 | 16428 DRM_MODE_REFLECT_X; 16429 } else if (INTEL_GEN(dev_priv) >= 4) { 16430 supported_rotations = 16431 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180; 16432 } else { 16433 supported_rotations = DRM_MODE_ROTATE_0; 16434 } 16435 16436 if (INTEL_GEN(dev_priv) >= 4) 16437 drm_plane_create_rotation_property(&plane->base, 16438 DRM_MODE_ROTATE_0, 16439 supported_rotations); 16440 16441 zpos = 0; 16442 drm_plane_create_zpos_immutable_property(&plane->base, zpos); 16443 16444 drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs); 16445 16446 return plane; 16447 16448 fail: 16449 intel_plane_free(plane); 16450 16451 return ERR_PTR(ret); 16452 } 16453 16454 static struct intel_plane * 16455 intel_cursor_plane_create(struct drm_i915_private *dev_priv, 16456 enum pipe pipe) 16457 { 16458 struct intel_plane *cursor; 16459 int ret, zpos; 16460 16461 cursor = intel_plane_alloc(); 16462 if (IS_ERR(cursor)) 16463 return cursor; 16464 16465 cursor->pipe = pipe; 16466 cursor->i9xx_plane = (enum i9xx_plane_id) pipe; 16467 cursor->id = PLANE_CURSOR; 16468 cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id); 16469 16470 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) { 16471 cursor->max_stride = i845_cursor_max_stride; 16472 cursor->update_plane = i845_update_cursor; 16473 cursor->disable_plane = i845_disable_cursor; 16474 cursor->get_hw_state = i845_cursor_get_hw_state; 16475 cursor->check_plane = i845_check_cursor; 16476 } else { 16477 cursor->max_stride = i9xx_cursor_max_stride; 16478 cursor->update_plane = i9xx_update_cursor; 16479 cursor->disable_plane = i9xx_disable_cursor; 16480 cursor->get_hw_state = i9xx_cursor_get_hw_state; 16481 cursor->check_plane = i9xx_check_cursor; 16482 } 16483 16484 cursor->cursor.base = ~0; 16485 cursor->cursor.cntl = ~0; 16486 16487 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv)) 16488 cursor->cursor.size = ~0; 16489 16490 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base, 16491 0, &intel_cursor_plane_funcs, 16492 intel_cursor_formats, 16493 ARRAY_SIZE(intel_cursor_formats), 16494 cursor_format_modifiers, 16495 DRM_PLANE_TYPE_CURSOR, 16496 "cursor %c", pipe_name(pipe)); 16497 if (ret) 16498 goto fail; 16499 16500 if (INTEL_GEN(dev_priv) >= 4) 16501 drm_plane_create_rotation_property(&cursor->base, 16502 DRM_MODE_ROTATE_0, 16503 DRM_MODE_ROTATE_0 | 16504 DRM_MODE_ROTATE_180); 16505 16506 zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1; 16507 drm_plane_create_zpos_immutable_property(&cursor->base, zpos); 16508 16509 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs); 16510 16511 return cursor; 16512 16513 fail: 16514 intel_plane_free(cursor); 16515 16516 return ERR_PTR(ret); 16517 } 16518 16519 #define INTEL_CRTC_FUNCS \ 16520 .gamma_set = drm_atomic_helper_legacy_gamma_set, \ 16521 .set_config = drm_atomic_helper_set_config, \ 16522 .destroy = intel_crtc_destroy, \ 16523 .page_flip = drm_atomic_helper_page_flip, \ 16524 .atomic_duplicate_state = intel_crtc_duplicate_state, \ 16525 .atomic_destroy_state = intel_crtc_destroy_state, \ 16526 .set_crc_source = intel_crtc_set_crc_source, \ 16527 .verify_crc_source = intel_crtc_verify_crc_source, \ 16528 .get_crc_sources = intel_crtc_get_crc_sources 16529 16530 static const struct drm_crtc_funcs bdw_crtc_funcs = { 16531 INTEL_CRTC_FUNCS, 16532 16533 .get_vblank_counter = g4x_get_vblank_counter, 16534 .enable_vblank = bdw_enable_vblank, 16535 .disable_vblank = bdw_disable_vblank, 16536 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16537 }; 16538 16539 static const struct drm_crtc_funcs ilk_crtc_funcs = { 16540 INTEL_CRTC_FUNCS, 16541 16542 .get_vblank_counter = g4x_get_vblank_counter, 16543 .enable_vblank = ilk_enable_vblank, 16544 .disable_vblank = ilk_disable_vblank, 16545 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16546 }; 16547 16548 static const struct drm_crtc_funcs g4x_crtc_funcs = { 16549 INTEL_CRTC_FUNCS, 16550 16551 .get_vblank_counter = g4x_get_vblank_counter, 16552 .enable_vblank = i965_enable_vblank, 16553 .disable_vblank = i965_disable_vblank, 16554 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16555 }; 16556 16557 static const struct drm_crtc_funcs i965_crtc_funcs = { 16558 INTEL_CRTC_FUNCS, 16559 16560 .get_vblank_counter = i915_get_vblank_counter, 16561 .enable_vblank = i965_enable_vblank, 16562 .disable_vblank = i965_disable_vblank, 16563 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16564 }; 16565 16566 static const struct drm_crtc_funcs i915gm_crtc_funcs = { 16567 INTEL_CRTC_FUNCS, 16568 16569 .get_vblank_counter = i915_get_vblank_counter, 16570 .enable_vblank = i915gm_enable_vblank, 16571 .disable_vblank = i915gm_disable_vblank, 16572 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16573 }; 16574 16575 static const struct drm_crtc_funcs i915_crtc_funcs = { 16576 INTEL_CRTC_FUNCS, 16577 16578 .get_vblank_counter = i915_get_vblank_counter, 16579 .enable_vblank = i8xx_enable_vblank, 16580 .disable_vblank = i8xx_disable_vblank, 16581 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16582 }; 16583 16584 static const struct drm_crtc_funcs i8xx_crtc_funcs = { 16585 INTEL_CRTC_FUNCS, 16586 16587 /* no hw vblank counter */ 16588 .enable_vblank = i8xx_enable_vblank, 16589 .disable_vblank = i8xx_disable_vblank, 16590 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16591 }; 16592 16593 static struct intel_crtc *intel_crtc_alloc(void) 16594 { 16595 struct intel_crtc_state *crtc_state; 16596 struct intel_crtc *crtc; 16597 16598 crtc = kzalloc(sizeof(*crtc), GFP_KERNEL); 16599 if (!crtc) 16600 return ERR_PTR(-ENOMEM); 16601 16602 crtc_state = intel_crtc_state_alloc(crtc); 16603 if (!crtc_state) { 16604 kfree(crtc); 16605 return ERR_PTR(-ENOMEM); 16606 } 16607 16608 crtc->base.state = &crtc_state->uapi; 16609 crtc->config = crtc_state; 16610 16611 return crtc; 16612 } 16613 16614 static void intel_crtc_free(struct intel_crtc *crtc) 16615 { 16616 intel_crtc_destroy_state(&crtc->base, crtc->base.state); 16617 kfree(crtc); 16618 } 16619 16620 static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv) 16621 { 16622 struct intel_plane *plane; 16623 16624 for_each_intel_plane(&dev_priv->drm, plane) { 16625 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, 16626 plane->pipe); 16627 16628 plane->base.possible_crtcs = drm_crtc_mask(&crtc->base); 16629 } 16630 } 16631 16632 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe) 16633 { 16634 struct intel_plane *primary, *cursor; 16635 const struct drm_crtc_funcs *funcs; 16636 struct intel_crtc *crtc; 16637 int sprite, ret; 16638 16639 crtc = intel_crtc_alloc(); 16640 if (IS_ERR(crtc)) 16641 return PTR_ERR(crtc); 16642 16643 crtc->pipe = pipe; 16644 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe]; 16645 16646 primary = intel_primary_plane_create(dev_priv, pipe); 16647 if (IS_ERR(primary)) { 16648 ret = PTR_ERR(primary); 16649 goto fail; 16650 } 16651 crtc->plane_ids_mask |= BIT(primary->id); 16652 16653 for_each_sprite(dev_priv, pipe, sprite) { 16654 struct intel_plane *plane; 16655 16656 plane = intel_sprite_plane_create(dev_priv, pipe, sprite); 16657 if (IS_ERR(plane)) { 16658 ret = PTR_ERR(plane); 16659 goto fail; 16660 } 16661 crtc->plane_ids_mask |= BIT(plane->id); 16662 } 16663 16664 cursor = intel_cursor_plane_create(dev_priv, pipe); 16665 if (IS_ERR(cursor)) { 16666 ret = PTR_ERR(cursor); 16667 goto fail; 16668 } 16669 crtc->plane_ids_mask |= BIT(cursor->id); 16670 16671 if (HAS_GMCH(dev_priv)) { 16672 if (IS_CHERRYVIEW(dev_priv) || 16673 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv)) 16674 funcs = &g4x_crtc_funcs; 16675 else if (IS_GEN(dev_priv, 4)) 16676 funcs = &i965_crtc_funcs; 16677 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv)) 16678 funcs = &i915gm_crtc_funcs; 16679 else if (IS_GEN(dev_priv, 3)) 16680 funcs = &i915_crtc_funcs; 16681 else 16682 funcs = &i8xx_crtc_funcs; 16683 } else { 16684 if (INTEL_GEN(dev_priv) >= 8) 16685 funcs = &bdw_crtc_funcs; 16686 else 16687 funcs = &ilk_crtc_funcs; 16688 } 16689 16690 ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base, 16691 &primary->base, &cursor->base, 16692 funcs, "pipe %c", pipe_name(pipe)); 16693 if (ret) 16694 goto fail; 16695 16696 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) || 16697 dev_priv->pipe_to_crtc_mapping[pipe] != NULL); 16698 dev_priv->pipe_to_crtc_mapping[pipe] = crtc; 16699 16700 if (INTEL_GEN(dev_priv) < 9) { 16701 enum i9xx_plane_id i9xx_plane = primary->i9xx_plane; 16702 16703 BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || 16704 dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL); 16705 dev_priv->plane_to_crtc_mapping[i9xx_plane] = crtc; 16706 } 16707 16708 intel_color_init(crtc); 16709 16710 intel_crtc_crc_init(crtc); 16711 16712 drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe); 16713 16714 return 0; 16715 16716 fail: 16717 intel_crtc_free(crtc); 16718 16719 return ret; 16720 } 16721 16722 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 16723 struct drm_file *file) 16724 { 16725 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 16726 struct drm_crtc *drmmode_crtc; 16727 struct intel_crtc *crtc; 16728 16729 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 16730 if (!drmmode_crtc) 16731 return -ENOENT; 16732 16733 crtc = to_intel_crtc(drmmode_crtc); 16734 pipe_from_crtc_id->pipe = crtc->pipe; 16735 16736 return 0; 16737 } 16738 16739 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 16740 { 16741 struct drm_device *dev = encoder->base.dev; 16742 struct intel_encoder *source_encoder; 16743 u32 possible_clones = 0; 16744 16745 for_each_intel_encoder(dev, source_encoder) { 16746 if (encoders_cloneable(encoder, source_encoder)) 16747 possible_clones |= drm_encoder_mask(&source_encoder->base); 16748 } 16749 16750 return possible_clones; 16751 } 16752 16753 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 16754 { 16755 struct drm_device *dev = encoder->base.dev; 16756 struct intel_crtc *crtc; 16757 u32 possible_crtcs = 0; 16758 16759 for_each_intel_crtc(dev, crtc) { 16760 if (encoder->pipe_mask & BIT(crtc->pipe)) 16761 possible_crtcs |= drm_crtc_mask(&crtc->base); 16762 } 16763 16764 return possible_crtcs; 16765 } 16766 16767 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 16768 { 16769 if (!IS_MOBILE(dev_priv)) 16770 return false; 16771 16772 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0) 16773 return false; 16774 16775 if (IS_GEN(dev_priv, 5) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE)) 16776 return false; 16777 16778 return true; 16779 } 16780 16781 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 16782 { 16783 if (INTEL_GEN(dev_priv) >= 9) 16784 return false; 16785 16786 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 16787 return false; 16788 16789 if (HAS_PCH_LPT_H(dev_priv) && 16790 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 16791 return false; 16792 16793 /* DDI E can't be used if DDI A requires 4 lanes */ 16794 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 16795 return false; 16796 16797 if (!dev_priv->vbt.int_crt_support) 16798 return false; 16799 16800 return true; 16801 } 16802 16803 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv) 16804 { 16805 int pps_num; 16806 int pps_idx; 16807 16808 if (HAS_DDI(dev_priv)) 16809 return; 16810 /* 16811 * This w/a is needed at least on CPT/PPT, but to be sure apply it 16812 * everywhere where registers can be write protected. 16813 */ 16814 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16815 pps_num = 2; 16816 else 16817 pps_num = 1; 16818 16819 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) { 16820 u32 val = intel_de_read(dev_priv, PP_CONTROL(pps_idx)); 16821 16822 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS; 16823 intel_de_write(dev_priv, PP_CONTROL(pps_idx), val); 16824 } 16825 } 16826 16827 static void intel_pps_init(struct drm_i915_private *dev_priv) 16828 { 16829 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv)) 16830 dev_priv->pps_mmio_base = PCH_PPS_BASE; 16831 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16832 dev_priv->pps_mmio_base = VLV_PPS_BASE; 16833 else 16834 dev_priv->pps_mmio_base = PPS_BASE; 16835 16836 intel_pps_unlock_regs_wa(dev_priv); 16837 } 16838 16839 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 16840 { 16841 struct intel_encoder *encoder; 16842 bool dpd_is_edp = false; 16843 16844 intel_pps_init(dev_priv); 16845 16846 if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv)) 16847 return; 16848 16849 if (INTEL_GEN(dev_priv) >= 12) { 16850 intel_ddi_init(dev_priv, PORT_A); 16851 intel_ddi_init(dev_priv, PORT_B); 16852 intel_ddi_init(dev_priv, PORT_D); 16853 intel_ddi_init(dev_priv, PORT_E); 16854 intel_ddi_init(dev_priv, PORT_F); 16855 intel_ddi_init(dev_priv, PORT_G); 16856 intel_ddi_init(dev_priv, PORT_H); 16857 intel_ddi_init(dev_priv, PORT_I); 16858 icl_dsi_init(dev_priv); 16859 } else if (IS_ELKHARTLAKE(dev_priv)) { 16860 intel_ddi_init(dev_priv, PORT_A); 16861 intel_ddi_init(dev_priv, PORT_B); 16862 intel_ddi_init(dev_priv, PORT_C); 16863 intel_ddi_init(dev_priv, PORT_D); 16864 icl_dsi_init(dev_priv); 16865 } else if (IS_GEN(dev_priv, 11)) { 16866 intel_ddi_init(dev_priv, PORT_A); 16867 intel_ddi_init(dev_priv, PORT_B); 16868 intel_ddi_init(dev_priv, PORT_C); 16869 intel_ddi_init(dev_priv, PORT_D); 16870 intel_ddi_init(dev_priv, PORT_E); 16871 /* 16872 * On some ICL SKUs port F is not present. No strap bits for 16873 * this, so rely on VBT. 16874 * Work around broken VBTs on SKUs known to have no port F. 16875 */ 16876 if (IS_ICL_WITH_PORT_F(dev_priv) && 16877 intel_bios_is_port_present(dev_priv, PORT_F)) 16878 intel_ddi_init(dev_priv, PORT_F); 16879 16880 icl_dsi_init(dev_priv); 16881 } else if (IS_GEN9_LP(dev_priv)) { 16882 /* 16883 * FIXME: Broxton doesn't support port detection via the 16884 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to 16885 * detect the ports. 16886 */ 16887 intel_ddi_init(dev_priv, PORT_A); 16888 intel_ddi_init(dev_priv, PORT_B); 16889 intel_ddi_init(dev_priv, PORT_C); 16890 16891 vlv_dsi_init(dev_priv); 16892 } else if (HAS_DDI(dev_priv)) { 16893 int found; 16894 16895 if (intel_ddi_crt_present(dev_priv)) 16896 intel_crt_init(dev_priv); 16897 16898 /* 16899 * Haswell uses DDI functions to detect digital outputs. 16900 * On SKL pre-D0 the strap isn't connected, so we assume 16901 * it's there. 16902 */ 16903 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 16904 /* WaIgnoreDDIAStrap: skl */ 16905 if (found || IS_GEN9_BC(dev_priv)) 16906 intel_ddi_init(dev_priv, PORT_A); 16907 16908 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP 16909 * register */ 16910 found = intel_de_read(dev_priv, SFUSE_STRAP); 16911 16912 if (found & SFUSE_STRAP_DDIB_DETECTED) 16913 intel_ddi_init(dev_priv, PORT_B); 16914 if (found & SFUSE_STRAP_DDIC_DETECTED) 16915 intel_ddi_init(dev_priv, PORT_C); 16916 if (found & SFUSE_STRAP_DDID_DETECTED) 16917 intel_ddi_init(dev_priv, PORT_D); 16918 if (found & SFUSE_STRAP_DDIF_DETECTED) 16919 intel_ddi_init(dev_priv, PORT_F); 16920 /* 16921 * On SKL we don't have a way to detect DDI-E so we rely on VBT. 16922 */ 16923 if (IS_GEN9_BC(dev_priv) && 16924 intel_bios_is_port_present(dev_priv, PORT_E)) 16925 intel_ddi_init(dev_priv, PORT_E); 16926 16927 } else if (HAS_PCH_SPLIT(dev_priv)) { 16928 int found; 16929 16930 /* 16931 * intel_edp_init_connector() depends on this completing first, 16932 * to prevent the registration of both eDP and LVDS and the 16933 * incorrect sharing of the PPS. 16934 */ 16935 intel_lvds_init(dev_priv); 16936 intel_crt_init(dev_priv); 16937 16938 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 16939 16940 if (ilk_has_edp_a(dev_priv)) 16941 intel_dp_init(dev_priv, DP_A, PORT_A); 16942 16943 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) { 16944 /* PCH SDVOB multiplex with HDMIB */ 16945 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 16946 if (!found) 16947 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 16948 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED)) 16949 intel_dp_init(dev_priv, PCH_DP_B, PORT_B); 16950 } 16951 16952 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED) 16953 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 16954 16955 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED) 16956 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 16957 16958 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED) 16959 intel_dp_init(dev_priv, PCH_DP_C, PORT_C); 16960 16961 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED) 16962 intel_dp_init(dev_priv, PCH_DP_D, PORT_D); 16963 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 16964 bool has_edp, has_port; 16965 16966 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 16967 intel_crt_init(dev_priv); 16968 16969 /* 16970 * The DP_DETECTED bit is the latched state of the DDC 16971 * SDA pin at boot. However since eDP doesn't require DDC 16972 * (no way to plug in a DP->HDMI dongle) the DDC pins for 16973 * eDP ports may have been muxed to an alternate function. 16974 * Thus we can't rely on the DP_DETECTED bit alone to detect 16975 * eDP ports. Consult the VBT as well as DP_DETECTED to 16976 * detect eDP ports. 16977 * 16978 * Sadly the straps seem to be missing sometimes even for HDMI 16979 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 16980 * and VBT for the presence of the port. Additionally we can't 16981 * trust the port type the VBT declares as we've seen at least 16982 * HDMI ports that the VBT claim are DP or eDP. 16983 */ 16984 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 16985 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 16986 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port) 16987 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B); 16988 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 16989 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 16990 16991 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 16992 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 16993 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port) 16994 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C); 16995 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 16996 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 16997 16998 if (IS_CHERRYVIEW(dev_priv)) { 16999 /* 17000 * eDP not supported on port D, 17001 * so no need to worry about it 17002 */ 17003 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 17004 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port) 17005 intel_dp_init(dev_priv, CHV_DP_D, PORT_D); 17006 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port) 17007 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 17008 } 17009 17010 vlv_dsi_init(dev_priv); 17011 } else if (IS_PINEVIEW(dev_priv)) { 17012 intel_lvds_init(dev_priv); 17013 intel_crt_init(dev_priv); 17014 } else if (IS_GEN_RANGE(dev_priv, 3, 4)) { 17015 bool found = false; 17016 17017 if (IS_MOBILE(dev_priv)) 17018 intel_lvds_init(dev_priv); 17019 17020 intel_crt_init(dev_priv); 17021 17022 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 17023 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n"); 17024 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 17025 if (!found && IS_G4X(dev_priv)) { 17026 drm_dbg_kms(&dev_priv->drm, 17027 "probing HDMI on SDVOB\n"); 17028 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 17029 } 17030 17031 if (!found && IS_G4X(dev_priv)) 17032 intel_dp_init(dev_priv, DP_B, PORT_B); 17033 } 17034 17035 /* Before G4X SDVOC doesn't have its own detect register */ 17036 17037 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 17038 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n"); 17039 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 17040 } 17041 17042 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) { 17043 17044 if (IS_G4X(dev_priv)) { 17045 drm_dbg_kms(&dev_priv->drm, 17046 "probing HDMI on SDVOC\n"); 17047 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 17048 } 17049 if (IS_G4X(dev_priv)) 17050 intel_dp_init(dev_priv, DP_C, PORT_C); 17051 } 17052 17053 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED)) 17054 intel_dp_init(dev_priv, DP_D, PORT_D); 17055 17056 if (SUPPORTS_TV(dev_priv)) 17057 intel_tv_init(dev_priv); 17058 } else if (IS_GEN(dev_priv, 2)) { 17059 if (IS_I85X(dev_priv)) 17060 intel_lvds_init(dev_priv); 17061 17062 intel_crt_init(dev_priv); 17063 intel_dvo_init(dev_priv); 17064 } 17065 17066 intel_psr_init(dev_priv); 17067 17068 for_each_intel_encoder(&dev_priv->drm, encoder) { 17069 encoder->base.possible_crtcs = 17070 intel_encoder_possible_crtcs(encoder); 17071 encoder->base.possible_clones = 17072 intel_encoder_possible_clones(encoder); 17073 } 17074 17075 intel_init_pch_refclk(dev_priv); 17076 17077 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 17078 } 17079 17080 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 17081 { 17082 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 17083 17084 drm_framebuffer_cleanup(fb); 17085 intel_frontbuffer_put(intel_fb->frontbuffer); 17086 17087 kfree(intel_fb); 17088 } 17089 17090 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 17091 struct drm_file *file, 17092 unsigned int *handle) 17093 { 17094 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 17095 struct drm_i915_private *i915 = to_i915(obj->base.dev); 17096 17097 if (obj->userptr.mm) { 17098 drm_dbg(&i915->drm, 17099 "attempting to use a userptr for a framebuffer, denied\n"); 17100 return -EINVAL; 17101 } 17102 17103 return drm_gem_handle_create(file, &obj->base, handle); 17104 } 17105 17106 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 17107 struct drm_file *file, 17108 unsigned flags, unsigned color, 17109 struct drm_clip_rect *clips, 17110 unsigned num_clips) 17111 { 17112 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 17113 17114 i915_gem_object_flush_if_display(obj); 17115 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 17116 17117 return 0; 17118 } 17119 17120 static const struct drm_framebuffer_funcs intel_fb_funcs = { 17121 .destroy = intel_user_framebuffer_destroy, 17122 .create_handle = intel_user_framebuffer_create_handle, 17123 .dirty = intel_user_framebuffer_dirty, 17124 }; 17125 17126 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, 17127 struct drm_i915_gem_object *obj, 17128 struct drm_mode_fb_cmd2 *mode_cmd) 17129 { 17130 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 17131 struct drm_framebuffer *fb = &intel_fb->base; 17132 u32 max_stride; 17133 unsigned int tiling, stride; 17134 int ret = -EINVAL; 17135 int i; 17136 17137 intel_fb->frontbuffer = intel_frontbuffer_get(obj); 17138 if (!intel_fb->frontbuffer) 17139 return -ENOMEM; 17140 17141 i915_gem_object_lock(obj); 17142 tiling = i915_gem_object_get_tiling(obj); 17143 stride = i915_gem_object_get_stride(obj); 17144 i915_gem_object_unlock(obj); 17145 17146 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 17147 /* 17148 * If there's a fence, enforce that 17149 * the fb modifier and tiling mode match. 17150 */ 17151 if (tiling != I915_TILING_NONE && 17152 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 17153 drm_dbg_kms(&dev_priv->drm, 17154 "tiling_mode doesn't match fb modifier\n"); 17155 goto err; 17156 } 17157 } else { 17158 if (tiling == I915_TILING_X) { 17159 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 17160 } else if (tiling == I915_TILING_Y) { 17161 drm_dbg_kms(&dev_priv->drm, 17162 "No Y tiling for legacy addfb\n"); 17163 goto err; 17164 } 17165 } 17166 17167 if (!drm_any_plane_has_format(&dev_priv->drm, 17168 mode_cmd->pixel_format, 17169 mode_cmd->modifier[0])) { 17170 struct drm_format_name_buf format_name; 17171 17172 drm_dbg_kms(&dev_priv->drm, 17173 "unsupported pixel format %s / modifier 0x%llx\n", 17174 drm_get_format_name(mode_cmd->pixel_format, 17175 &format_name), 17176 mode_cmd->modifier[0]); 17177 goto err; 17178 } 17179 17180 /* 17181 * gen2/3 display engine uses the fence if present, 17182 * so the tiling mode must match the fb modifier exactly. 17183 */ 17184 if (INTEL_GEN(dev_priv) < 4 && 17185 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 17186 drm_dbg_kms(&dev_priv->drm, 17187 "tiling_mode must match fb modifier exactly on gen2/3\n"); 17188 goto err; 17189 } 17190 17191 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, 17192 mode_cmd->modifier[0]); 17193 if (mode_cmd->pitches[0] > max_stride) { 17194 drm_dbg_kms(&dev_priv->drm, 17195 "%s pitch (%u) must be at most %d\n", 17196 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? 17197 "tiled" : "linear", 17198 mode_cmd->pitches[0], max_stride); 17199 goto err; 17200 } 17201 17202 /* 17203 * If there's a fence, enforce that 17204 * the fb pitch and fence stride match. 17205 */ 17206 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { 17207 drm_dbg_kms(&dev_priv->drm, 17208 "pitch (%d) must match tiling stride (%d)\n", 17209 mode_cmd->pitches[0], stride); 17210 goto err; 17211 } 17212 17213 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 17214 if (mode_cmd->offsets[0] != 0) { 17215 drm_dbg_kms(&dev_priv->drm, 17216 "plane 0 offset (0x%08x) must be 0\n", 17217 mode_cmd->offsets[0]); 17218 goto err; 17219 } 17220 17221 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); 17222 17223 for (i = 0; i < fb->format->num_planes; i++) { 17224 u32 stride_alignment; 17225 17226 if (mode_cmd->handles[i] != mode_cmd->handles[0]) { 17227 drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n", 17228 i); 17229 goto err; 17230 } 17231 17232 stride_alignment = intel_fb_stride_alignment(fb, i); 17233 if (fb->pitches[i] & (stride_alignment - 1)) { 17234 drm_dbg_kms(&dev_priv->drm, 17235 "plane %d pitch (%d) must be at least %u byte aligned\n", 17236 i, fb->pitches[i], stride_alignment); 17237 goto err; 17238 } 17239 17240 if (is_gen12_ccs_plane(fb, i)) { 17241 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i); 17242 17243 if (fb->pitches[i] != ccs_aux_stride) { 17244 drm_dbg_kms(&dev_priv->drm, 17245 "ccs aux plane %d pitch (%d) must be %d\n", 17246 i, 17247 fb->pitches[i], ccs_aux_stride); 17248 goto err; 17249 } 17250 } 17251 17252 fb->obj[i] = &obj->base; 17253 } 17254 17255 ret = intel_fill_fb_info(dev_priv, fb); 17256 if (ret) 17257 goto err; 17258 17259 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); 17260 if (ret) { 17261 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret); 17262 goto err; 17263 } 17264 17265 return 0; 17266 17267 err: 17268 intel_frontbuffer_put(intel_fb->frontbuffer); 17269 return ret; 17270 } 17271 17272 static struct drm_framebuffer * 17273 intel_user_framebuffer_create(struct drm_device *dev, 17274 struct drm_file *filp, 17275 const struct drm_mode_fb_cmd2 *user_mode_cmd) 17276 { 17277 struct drm_framebuffer *fb; 17278 struct drm_i915_gem_object *obj; 17279 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 17280 17281 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); 17282 if (!obj) 17283 return ERR_PTR(-ENOENT); 17284 17285 fb = intel_framebuffer_create(obj, &mode_cmd); 17286 i915_gem_object_put(obj); 17287 17288 return fb; 17289 } 17290 17291 static enum drm_mode_status 17292 intel_mode_valid(struct drm_device *dev, 17293 const struct drm_display_mode *mode) 17294 { 17295 struct drm_i915_private *dev_priv = to_i915(dev); 17296 int hdisplay_max, htotal_max; 17297 int vdisplay_max, vtotal_max; 17298 17299 /* 17300 * Can't reject DBLSCAN here because Xorg ddxen can add piles 17301 * of DBLSCAN modes to the output's mode list when they detect 17302 * the scaling mode property on the connector. And they don't 17303 * ask the kernel to validate those modes in any way until 17304 * modeset time at which point the client gets a protocol error. 17305 * So in order to not upset those clients we silently ignore the 17306 * DBLSCAN flag on such connectors. For other connectors we will 17307 * reject modes with the DBLSCAN flag in encoder->compute_config(). 17308 * And we always reject DBLSCAN modes in connector->mode_valid() 17309 * as we never want such modes on the connector's mode list. 17310 */ 17311 17312 if (mode->vscan > 1) 17313 return MODE_NO_VSCAN; 17314 17315 if (mode->flags & DRM_MODE_FLAG_HSKEW) 17316 return MODE_H_ILLEGAL; 17317 17318 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 17319 DRM_MODE_FLAG_NCSYNC | 17320 DRM_MODE_FLAG_PCSYNC)) 17321 return MODE_HSYNC; 17322 17323 if (mode->flags & (DRM_MODE_FLAG_BCAST | 17324 DRM_MODE_FLAG_PIXMUX | 17325 DRM_MODE_FLAG_CLKDIV2)) 17326 return MODE_BAD; 17327 17328 /* Transcoder timing limits */ 17329 if (INTEL_GEN(dev_priv) >= 11) { 17330 hdisplay_max = 16384; 17331 vdisplay_max = 8192; 17332 htotal_max = 16384; 17333 vtotal_max = 8192; 17334 } else if (INTEL_GEN(dev_priv) >= 9 || 17335 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 17336 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 17337 vdisplay_max = 4096; 17338 htotal_max = 8192; 17339 vtotal_max = 8192; 17340 } else if (INTEL_GEN(dev_priv) >= 3) { 17341 hdisplay_max = 4096; 17342 vdisplay_max = 4096; 17343 htotal_max = 8192; 17344 vtotal_max = 8192; 17345 } else { 17346 hdisplay_max = 2048; 17347 vdisplay_max = 2048; 17348 htotal_max = 4096; 17349 vtotal_max = 4096; 17350 } 17351 17352 if (mode->hdisplay > hdisplay_max || 17353 mode->hsync_start > htotal_max || 17354 mode->hsync_end > htotal_max || 17355 mode->htotal > htotal_max) 17356 return MODE_H_ILLEGAL; 17357 17358 if (mode->vdisplay > vdisplay_max || 17359 mode->vsync_start > vtotal_max || 17360 mode->vsync_end > vtotal_max || 17361 mode->vtotal > vtotal_max) 17362 return MODE_V_ILLEGAL; 17363 17364 if (INTEL_GEN(dev_priv) >= 5) { 17365 if (mode->hdisplay < 64 || 17366 mode->htotal - mode->hdisplay < 32) 17367 return MODE_H_ILLEGAL; 17368 17369 if (mode->vtotal - mode->vdisplay < 5) 17370 return MODE_V_ILLEGAL; 17371 } else { 17372 if (mode->htotal - mode->hdisplay < 32) 17373 return MODE_H_ILLEGAL; 17374 17375 if (mode->vtotal - mode->vdisplay < 3) 17376 return MODE_V_ILLEGAL; 17377 } 17378 17379 return MODE_OK; 17380 } 17381 17382 enum drm_mode_status 17383 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, 17384 const struct drm_display_mode *mode) 17385 { 17386 int plane_width_max, plane_height_max; 17387 17388 /* 17389 * intel_mode_valid() should be 17390 * sufficient on older platforms. 17391 */ 17392 if (INTEL_GEN(dev_priv) < 9) 17393 return MODE_OK; 17394 17395 /* 17396 * Most people will probably want a fullscreen 17397 * plane so let's not advertize modes that are 17398 * too big for that. 17399 */ 17400 if (INTEL_GEN(dev_priv) >= 11) { 17401 plane_width_max = 5120; 17402 plane_height_max = 4320; 17403 } else { 17404 plane_width_max = 5120; 17405 plane_height_max = 4096; 17406 } 17407 17408 if (mode->hdisplay > plane_width_max) 17409 return MODE_H_ILLEGAL; 17410 17411 if (mode->vdisplay > plane_height_max) 17412 return MODE_V_ILLEGAL; 17413 17414 return MODE_OK; 17415 } 17416 17417 static const struct drm_mode_config_funcs intel_mode_funcs = { 17418 .fb_create = intel_user_framebuffer_create, 17419 .get_format_info = intel_get_format_info, 17420 .output_poll_changed = intel_fbdev_output_poll_changed, 17421 .mode_valid = intel_mode_valid, 17422 .atomic_check = intel_atomic_check, 17423 .atomic_commit = intel_atomic_commit, 17424 .atomic_state_alloc = intel_atomic_state_alloc, 17425 .atomic_state_clear = intel_atomic_state_clear, 17426 .atomic_state_free = intel_atomic_state_free, 17427 }; 17428 17429 /** 17430 * intel_init_display_hooks - initialize the display modesetting hooks 17431 * @dev_priv: device private 17432 */ 17433 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 17434 { 17435 intel_init_cdclk_hooks(dev_priv); 17436 17437 if (INTEL_GEN(dev_priv) >= 9) { 17438 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 17439 dev_priv->display.get_initial_plane_config = 17440 skl_get_initial_plane_config; 17441 dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock; 17442 dev_priv->display.crtc_enable = hsw_crtc_enable; 17443 dev_priv->display.crtc_disable = hsw_crtc_disable; 17444 } else if (HAS_DDI(dev_priv)) { 17445 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 17446 dev_priv->display.get_initial_plane_config = 17447 i9xx_get_initial_plane_config; 17448 dev_priv->display.crtc_compute_clock = 17449 hsw_crtc_compute_clock; 17450 dev_priv->display.crtc_enable = hsw_crtc_enable; 17451 dev_priv->display.crtc_disable = hsw_crtc_disable; 17452 } else if (HAS_PCH_SPLIT(dev_priv)) { 17453 dev_priv->display.get_pipe_config = ilk_get_pipe_config; 17454 dev_priv->display.get_initial_plane_config = 17455 i9xx_get_initial_plane_config; 17456 dev_priv->display.crtc_compute_clock = 17457 ilk_crtc_compute_clock; 17458 dev_priv->display.crtc_enable = ilk_crtc_enable; 17459 dev_priv->display.crtc_disable = ilk_crtc_disable; 17460 } else if (IS_CHERRYVIEW(dev_priv)) { 17461 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17462 dev_priv->display.get_initial_plane_config = 17463 i9xx_get_initial_plane_config; 17464 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock; 17465 dev_priv->display.crtc_enable = valleyview_crtc_enable; 17466 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17467 } else if (IS_VALLEYVIEW(dev_priv)) { 17468 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17469 dev_priv->display.get_initial_plane_config = 17470 i9xx_get_initial_plane_config; 17471 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock; 17472 dev_priv->display.crtc_enable = valleyview_crtc_enable; 17473 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17474 } else if (IS_G4X(dev_priv)) { 17475 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17476 dev_priv->display.get_initial_plane_config = 17477 i9xx_get_initial_plane_config; 17478 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock; 17479 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17480 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17481 } else if (IS_PINEVIEW(dev_priv)) { 17482 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17483 dev_priv->display.get_initial_plane_config = 17484 i9xx_get_initial_plane_config; 17485 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock; 17486 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17487 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17488 } else if (!IS_GEN(dev_priv, 2)) { 17489 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17490 dev_priv->display.get_initial_plane_config = 17491 i9xx_get_initial_plane_config; 17492 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock; 17493 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17494 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17495 } else { 17496 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17497 dev_priv->display.get_initial_plane_config = 17498 i9xx_get_initial_plane_config; 17499 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock; 17500 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17501 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17502 } 17503 17504 if (IS_GEN(dev_priv, 5)) { 17505 dev_priv->display.fdi_link_train = ilk_fdi_link_train; 17506 } else if (IS_GEN(dev_priv, 6)) { 17507 dev_priv->display.fdi_link_train = gen6_fdi_link_train; 17508 } else if (IS_IVYBRIDGE(dev_priv)) { 17509 /* FIXME: detect B0+ stepping and use auto training */ 17510 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; 17511 } 17512 17513 if (INTEL_GEN(dev_priv) >= 9) 17514 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; 17515 else 17516 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; 17517 17518 } 17519 17520 void intel_modeset_init_hw(struct drm_i915_private *i915) 17521 { 17522 struct intel_cdclk_state *cdclk_state = 17523 to_intel_cdclk_state(i915->cdclk.obj.state); 17524 17525 intel_update_cdclk(i915); 17526 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK"); 17527 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw; 17528 } 17529 17530 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state) 17531 { 17532 struct drm_plane *plane; 17533 struct drm_crtc *crtc; 17534 17535 drm_for_each_crtc(crtc, state->dev) { 17536 struct drm_crtc_state *crtc_state; 17537 17538 crtc_state = drm_atomic_get_crtc_state(state, crtc); 17539 if (IS_ERR(crtc_state)) 17540 return PTR_ERR(crtc_state); 17541 } 17542 17543 drm_for_each_plane(plane, state->dev) { 17544 struct drm_plane_state *plane_state; 17545 17546 plane_state = drm_atomic_get_plane_state(state, plane); 17547 if (IS_ERR(plane_state)) 17548 return PTR_ERR(plane_state); 17549 } 17550 17551 return 0; 17552 } 17553 17554 /* 17555 * Calculate what we think the watermarks should be for the state we've read 17556 * out of the hardware and then immediately program those watermarks so that 17557 * we ensure the hardware settings match our internal state. 17558 * 17559 * We can calculate what we think WM's should be by creating a duplicate of the 17560 * current state (which was constructed during hardware readout) and running it 17561 * through the atomic check code to calculate new watermark values in the 17562 * state object. 17563 */ 17564 static void sanitize_watermarks(struct drm_i915_private *dev_priv) 17565 { 17566 struct drm_atomic_state *state; 17567 struct intel_atomic_state *intel_state; 17568 struct intel_crtc *crtc; 17569 struct intel_crtc_state *crtc_state; 17570 struct drm_modeset_acquire_ctx ctx; 17571 int ret; 17572 int i; 17573 17574 /* Only supported on platforms that use atomic watermark design */ 17575 if (!dev_priv->display.optimize_watermarks) 17576 return; 17577 17578 state = drm_atomic_state_alloc(&dev_priv->drm); 17579 if (drm_WARN_ON(&dev_priv->drm, !state)) 17580 return; 17581 17582 intel_state = to_intel_atomic_state(state); 17583 17584 drm_modeset_acquire_init(&ctx, 0); 17585 17586 retry: 17587 state->acquire_ctx = &ctx; 17588 17589 /* 17590 * Hardware readout is the only time we don't want to calculate 17591 * intermediate watermarks (since we don't trust the current 17592 * watermarks). 17593 */ 17594 if (!HAS_GMCH(dev_priv)) 17595 intel_state->skip_intermediate_wm = true; 17596 17597 ret = sanitize_watermarks_add_affected(state); 17598 if (ret) 17599 goto fail; 17600 17601 ret = intel_atomic_check(&dev_priv->drm, state); 17602 if (ret) 17603 goto fail; 17604 17605 /* Write calculated watermark values back */ 17606 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 17607 crtc_state->wm.need_postvbl_update = true; 17608 dev_priv->display.optimize_watermarks(intel_state, crtc); 17609 17610 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 17611 } 17612 17613 fail: 17614 if (ret == -EDEADLK) { 17615 drm_atomic_state_clear(state); 17616 drm_modeset_backoff(&ctx); 17617 goto retry; 17618 } 17619 17620 /* 17621 * If we fail here, it means that the hardware appears to be 17622 * programmed in a way that shouldn't be possible, given our 17623 * understanding of watermark requirements. This might mean a 17624 * mistake in the hardware readout code or a mistake in the 17625 * watermark calculations for a given platform. Raise a WARN 17626 * so that this is noticeable. 17627 * 17628 * If this actually happens, we'll have to just leave the 17629 * BIOS-programmed watermarks untouched and hope for the best. 17630 */ 17631 drm_WARN(&dev_priv->drm, ret, 17632 "Could not determine valid watermarks for inherited state\n"); 17633 17634 drm_atomic_state_put(state); 17635 17636 drm_modeset_drop_locks(&ctx); 17637 drm_modeset_acquire_fini(&ctx); 17638 } 17639 17640 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) 17641 { 17642 if (IS_GEN(dev_priv, 5)) { 17643 u32 fdi_pll_clk = 17644 intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; 17645 17646 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; 17647 } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) { 17648 dev_priv->fdi_pll_freq = 270000; 17649 } else { 17650 return; 17651 } 17652 17653 drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); 17654 } 17655 17656 static int intel_initial_commit(struct drm_device *dev) 17657 { 17658 struct drm_atomic_state *state = NULL; 17659 struct drm_modeset_acquire_ctx ctx; 17660 struct intel_crtc *crtc; 17661 int ret = 0; 17662 17663 state = drm_atomic_state_alloc(dev); 17664 if (!state) 17665 return -ENOMEM; 17666 17667 drm_modeset_acquire_init(&ctx, 0); 17668 17669 retry: 17670 state->acquire_ctx = &ctx; 17671 17672 for_each_intel_crtc(dev, crtc) { 17673 struct intel_crtc_state *crtc_state = 17674 intel_atomic_get_crtc_state(state, crtc); 17675 17676 if (IS_ERR(crtc_state)) { 17677 ret = PTR_ERR(crtc_state); 17678 goto out; 17679 } 17680 17681 if (crtc_state->hw.active) { 17682 ret = drm_atomic_add_affected_planes(state, &crtc->base); 17683 if (ret) 17684 goto out; 17685 17686 /* 17687 * FIXME hack to force a LUT update to avoid the 17688 * plane update forcing the pipe gamma on without 17689 * having a proper LUT loaded. Remove once we 17690 * have readout for pipe gamma enable. 17691 */ 17692 crtc_state->uapi.color_mgmt_changed = true; 17693 17694 /* 17695 * FIXME hack to force full modeset when DSC is being 17696 * used. 17697 * 17698 * As long as we do not have full state readout and 17699 * config comparison of crtc_state->dsc, we have no way 17700 * to ensure reliable fastset. Remove once we have 17701 * readout for DSC. 17702 */ 17703 if (crtc_state->dsc.compression_enable) { 17704 ret = drm_atomic_add_affected_connectors(state, 17705 &crtc->base); 17706 if (ret) 17707 goto out; 17708 crtc_state->uapi.mode_changed = true; 17709 drm_dbg_kms(dev, "Force full modeset for DSC\n"); 17710 } 17711 } 17712 } 17713 17714 ret = drm_atomic_commit(state); 17715 17716 out: 17717 if (ret == -EDEADLK) { 17718 drm_atomic_state_clear(state); 17719 drm_modeset_backoff(&ctx); 17720 goto retry; 17721 } 17722 17723 drm_atomic_state_put(state); 17724 17725 drm_modeset_drop_locks(&ctx); 17726 drm_modeset_acquire_fini(&ctx); 17727 17728 return ret; 17729 } 17730 17731 static void intel_mode_config_init(struct drm_i915_private *i915) 17732 { 17733 struct drm_mode_config *mode_config = &i915->drm.mode_config; 17734 17735 drm_mode_config_init(&i915->drm); 17736 INIT_LIST_HEAD(&i915->global_obj_list); 17737 17738 mode_config->min_width = 0; 17739 mode_config->min_height = 0; 17740 17741 mode_config->preferred_depth = 24; 17742 mode_config->prefer_shadow = 1; 17743 17744 mode_config->allow_fb_modifiers = true; 17745 17746 mode_config->funcs = &intel_mode_funcs; 17747 17748 /* 17749 * Maximum framebuffer dimensions, chosen to match 17750 * the maximum render engine surface size on gen4+. 17751 */ 17752 if (INTEL_GEN(i915) >= 7) { 17753 mode_config->max_width = 16384; 17754 mode_config->max_height = 16384; 17755 } else if (INTEL_GEN(i915) >= 4) { 17756 mode_config->max_width = 8192; 17757 mode_config->max_height = 8192; 17758 } else if (IS_GEN(i915, 3)) { 17759 mode_config->max_width = 4096; 17760 mode_config->max_height = 4096; 17761 } else { 17762 mode_config->max_width = 2048; 17763 mode_config->max_height = 2048; 17764 } 17765 17766 if (IS_I845G(i915) || IS_I865G(i915)) { 17767 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; 17768 mode_config->cursor_height = 1023; 17769 } else if (IS_GEN(i915, 2)) { 17770 mode_config->cursor_width = 64; 17771 mode_config->cursor_height = 64; 17772 } else { 17773 mode_config->cursor_width = 256; 17774 mode_config->cursor_height = 256; 17775 } 17776 } 17777 17778 static void intel_mode_config_cleanup(struct drm_i915_private *i915) 17779 { 17780 intel_atomic_global_obj_cleanup(i915); 17781 drm_mode_config_cleanup(&i915->drm); 17782 } 17783 17784 static void plane_config_fini(struct intel_initial_plane_config *plane_config) 17785 { 17786 if (plane_config->fb) { 17787 struct drm_framebuffer *fb = &plane_config->fb->base; 17788 17789 /* We may only have the stub and not a full framebuffer */ 17790 if (drm_framebuffer_read_refcount(fb)) 17791 drm_framebuffer_put(fb); 17792 else 17793 kfree(fb); 17794 } 17795 17796 if (plane_config->vma) 17797 i915_vma_put(plane_config->vma); 17798 } 17799 17800 /* part #1: call before irq install */ 17801 int intel_modeset_init_noirq(struct drm_i915_private *i915) 17802 { 17803 int ret; 17804 17805 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 17806 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | 17807 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); 17808 17809 intel_mode_config_init(i915); 17810 17811 ret = intel_cdclk_init(i915); 17812 if (ret) 17813 return ret; 17814 17815 ret = intel_bw_init(i915); 17816 if (ret) 17817 return ret; 17818 17819 init_llist_head(&i915->atomic_helper.free_list); 17820 INIT_WORK(&i915->atomic_helper.free_work, 17821 intel_atomic_helper_free_state_worker); 17822 17823 intel_init_quirks(i915); 17824 17825 intel_fbc_init(i915); 17826 17827 return 0; 17828 } 17829 17830 /* part #2: call after irq install */ 17831 int intel_modeset_init(struct drm_i915_private *i915) 17832 { 17833 struct drm_device *dev = &i915->drm; 17834 enum pipe pipe; 17835 struct intel_crtc *crtc; 17836 int ret; 17837 17838 intel_init_pm(i915); 17839 17840 intel_panel_sanitize_ssc(i915); 17841 17842 intel_gmbus_setup(i915); 17843 17844 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n", 17845 INTEL_NUM_PIPES(i915), 17846 INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); 17847 17848 if (HAS_DISPLAY(i915) && INTEL_DISPLAY_ENABLED(i915)) { 17849 for_each_pipe(i915, pipe) { 17850 ret = intel_crtc_init(i915, pipe); 17851 if (ret) { 17852 intel_mode_config_cleanup(i915); 17853 return ret; 17854 } 17855 } 17856 } 17857 17858 intel_plane_possible_crtcs_init(i915); 17859 intel_shared_dpll_init(dev); 17860 intel_update_fdi_pll_freq(i915); 17861 17862 intel_update_czclk(i915); 17863 intel_modeset_init_hw(i915); 17864 17865 intel_hdcp_component_init(i915); 17866 17867 if (i915->max_cdclk_freq == 0) 17868 intel_update_max_cdclk(i915); 17869 17870 /* Just disable it once at startup */ 17871 intel_vga_disable(i915); 17872 intel_setup_outputs(i915); 17873 17874 drm_modeset_lock_all(dev); 17875 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 17876 drm_modeset_unlock_all(dev); 17877 17878 for_each_intel_crtc(dev, crtc) { 17879 struct intel_initial_plane_config plane_config = {}; 17880 17881 if (!crtc->active) 17882 continue; 17883 17884 /* 17885 * Note that reserving the BIOS fb up front prevents us 17886 * from stuffing other stolen allocations like the ring 17887 * on top. This prevents some ugliness at boot time, and 17888 * can even allow for smooth boot transitions if the BIOS 17889 * fb is large enough for the active pipe configuration. 17890 */ 17891 i915->display.get_initial_plane_config(crtc, &plane_config); 17892 17893 /* 17894 * If the fb is shared between multiple heads, we'll 17895 * just get the first one. 17896 */ 17897 intel_find_initial_plane_obj(crtc, &plane_config); 17898 17899 plane_config_fini(&plane_config); 17900 } 17901 17902 /* 17903 * Make sure hardware watermarks really match the state we read out. 17904 * Note that we need to do this after reconstructing the BIOS fb's 17905 * since the watermark calculation done here will use pstate->fb. 17906 */ 17907 if (!HAS_GMCH(i915)) 17908 sanitize_watermarks(i915); 17909 17910 /* 17911 * Force all active planes to recompute their states. So that on 17912 * mode_setcrtc after probe, all the intel_plane_state variables 17913 * are already calculated and there is no assert_plane warnings 17914 * during bootup. 17915 */ 17916 ret = intel_initial_commit(dev); 17917 if (ret) 17918 drm_dbg_kms(&i915->drm, "Initial commit in probe failed.\n"); 17919 17920 return 0; 17921 } 17922 17923 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 17924 { 17925 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 17926 /* 640x480@60Hz, ~25175 kHz */ 17927 struct dpll clock = { 17928 .m1 = 18, 17929 .m2 = 7, 17930 .p1 = 13, 17931 .p2 = 4, 17932 .n = 2, 17933 }; 17934 u32 dpll, fp; 17935 int i; 17936 17937 drm_WARN_ON(&dev_priv->drm, 17938 i9xx_calc_dpll_params(48000, &clock) != 25154); 17939 17940 drm_dbg_kms(&dev_priv->drm, 17941 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 17942 pipe_name(pipe), clock.vco, clock.dot); 17943 17944 fp = i9xx_dpll_compute_fp(&clock); 17945 dpll = DPLL_DVO_2X_MODE | 17946 DPLL_VGA_MODE_DIS | 17947 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 17948 PLL_P2_DIVIDE_BY_4 | 17949 PLL_REF_INPUT_DREFCLK | 17950 DPLL_VCO_ENABLE; 17951 17952 intel_de_write(dev_priv, FP0(pipe), fp); 17953 intel_de_write(dev_priv, FP1(pipe), fp); 17954 17955 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 17956 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 17957 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 17958 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 17959 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 17960 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 17961 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 17962 17963 /* 17964 * Apparently we need to have VGA mode enabled prior to changing 17965 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 17966 * dividers, even though the register value does change. 17967 */ 17968 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 17969 intel_de_write(dev_priv, DPLL(pipe), dpll); 17970 17971 /* Wait for the clocks to stabilize. */ 17972 intel_de_posting_read(dev_priv, DPLL(pipe)); 17973 udelay(150); 17974 17975 /* The pixel multiplier can only be updated once the 17976 * DPLL is enabled and the clocks are stable. 17977 * 17978 * So write it again. 17979 */ 17980 intel_de_write(dev_priv, DPLL(pipe), dpll); 17981 17982 /* We do this three times for luck */ 17983 for (i = 0; i < 3 ; i++) { 17984 intel_de_write(dev_priv, DPLL(pipe), dpll); 17985 intel_de_posting_read(dev_priv, DPLL(pipe)); 17986 udelay(150); /* wait for warmup */ 17987 } 17988 17989 intel_de_write(dev_priv, PIPECONF(pipe), 17990 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 17991 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 17992 17993 intel_wait_for_pipe_scanline_moving(crtc); 17994 } 17995 17996 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 17997 { 17998 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 17999 18000 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n", 18001 pipe_name(pipe)); 18002 18003 drm_WARN_ON(&dev_priv->drm, 18004 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & 18005 DISPLAY_PLANE_ENABLE); 18006 drm_WARN_ON(&dev_priv->drm, 18007 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & 18008 DISPLAY_PLANE_ENABLE); 18009 drm_WARN_ON(&dev_priv->drm, 18010 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & 18011 DISPLAY_PLANE_ENABLE); 18012 drm_WARN_ON(&dev_priv->drm, 18013 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE); 18014 drm_WARN_ON(&dev_priv->drm, 18015 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE); 18016 18017 intel_de_write(dev_priv, PIPECONF(pipe), 0); 18018 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 18019 18020 intel_wait_for_pipe_scanline_stopped(crtc); 18021 18022 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 18023 intel_de_posting_read(dev_priv, DPLL(pipe)); 18024 } 18025 18026 static void 18027 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 18028 { 18029 struct intel_crtc *crtc; 18030 18031 if (INTEL_GEN(dev_priv) >= 4) 18032 return; 18033 18034 for_each_intel_crtc(&dev_priv->drm, crtc) { 18035 struct intel_plane *plane = 18036 to_intel_plane(crtc->base.primary); 18037 struct intel_crtc *plane_crtc; 18038 enum pipe pipe; 18039 18040 if (!plane->get_hw_state(plane, &pipe)) 18041 continue; 18042 18043 if (pipe == crtc->pipe) 18044 continue; 18045 18046 drm_dbg_kms(&dev_priv->drm, 18047 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 18048 plane->base.base.id, plane->base.name); 18049 18050 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18051 intel_plane_disable_noatomic(plane_crtc, plane); 18052 } 18053 } 18054 18055 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 18056 { 18057 struct drm_device *dev = crtc->base.dev; 18058 struct intel_encoder *encoder; 18059 18060 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 18061 return true; 18062 18063 return false; 18064 } 18065 18066 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 18067 { 18068 struct drm_device *dev = encoder->base.dev; 18069 struct intel_connector *connector; 18070 18071 for_each_connector_on_encoder(dev, &encoder->base, connector) 18072 return connector; 18073 18074 return NULL; 18075 } 18076 18077 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 18078 enum pipe pch_transcoder) 18079 { 18080 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 18081 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 18082 } 18083 18084 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state) 18085 { 18086 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 18087 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 18088 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 18089 18090 if (INTEL_GEN(dev_priv) >= 9 || 18091 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 18092 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); 18093 u32 val; 18094 18095 if (transcoder_is_dsi(cpu_transcoder)) 18096 return; 18097 18098 val = intel_de_read(dev_priv, reg); 18099 val &= ~HSW_FRAME_START_DELAY_MASK; 18100 val |= HSW_FRAME_START_DELAY(0); 18101 intel_de_write(dev_priv, reg, val); 18102 } else { 18103 i915_reg_t reg = PIPECONF(cpu_transcoder); 18104 u32 val; 18105 18106 val = intel_de_read(dev_priv, reg); 18107 val &= ~PIPECONF_FRAME_START_DELAY_MASK; 18108 val |= PIPECONF_FRAME_START_DELAY(0); 18109 intel_de_write(dev_priv, reg, val); 18110 } 18111 18112 if (!crtc_state->has_pch_encoder) 18113 return; 18114 18115 if (HAS_PCH_IBX(dev_priv)) { 18116 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe); 18117 u32 val; 18118 18119 val = intel_de_read(dev_priv, reg); 18120 val &= ~TRANS_FRAME_START_DELAY_MASK; 18121 val |= TRANS_FRAME_START_DELAY(0); 18122 intel_de_write(dev_priv, reg, val); 18123 } else { 18124 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); 18125 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder); 18126 u32 val; 18127 18128 val = intel_de_read(dev_priv, reg); 18129 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 18130 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 18131 intel_de_write(dev_priv, reg, val); 18132 } 18133 } 18134 18135 static void intel_sanitize_crtc(struct intel_crtc *crtc, 18136 struct drm_modeset_acquire_ctx *ctx) 18137 { 18138 struct drm_device *dev = crtc->base.dev; 18139 struct drm_i915_private *dev_priv = to_i915(dev); 18140 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 18141 18142 if (crtc_state->hw.active) { 18143 struct intel_plane *plane; 18144 18145 /* Clear any frame start delays used for debugging left by the BIOS */ 18146 intel_sanitize_frame_start_delay(crtc_state); 18147 18148 /* Disable everything but the primary plane */ 18149 for_each_intel_plane_on_crtc(dev, crtc, plane) { 18150 const struct intel_plane_state *plane_state = 18151 to_intel_plane_state(plane->base.state); 18152 18153 if (plane_state->uapi.visible && 18154 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 18155 intel_plane_disable_noatomic(crtc, plane); 18156 } 18157 18158 /* 18159 * Disable any background color set by the BIOS, but enable the 18160 * gamma and CSC to match how we program our planes. 18161 */ 18162 if (INTEL_GEN(dev_priv) >= 9) 18163 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe), 18164 SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE); 18165 } 18166 18167 /* Adjust the state of the output pipe according to whether we 18168 * have active connectors/encoders. */ 18169 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc)) 18170 intel_crtc_disable_noatomic(crtc, ctx); 18171 18172 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) { 18173 /* 18174 * We start out with underrun reporting disabled to avoid races. 18175 * For correct bookkeeping mark this on active crtcs. 18176 * 18177 * Also on gmch platforms we dont have any hardware bits to 18178 * disable the underrun reporting. Which means we need to start 18179 * out with underrun reporting disabled also on inactive pipes, 18180 * since otherwise we'll complain about the garbage we read when 18181 * e.g. coming up after runtime pm. 18182 * 18183 * No protection against concurrent access is required - at 18184 * worst a fifo underrun happens which also sets this to false. 18185 */ 18186 crtc->cpu_fifo_underrun_disabled = true; 18187 /* 18188 * We track the PCH trancoder underrun reporting state 18189 * within the crtc. With crtc for pipe A housing the underrun 18190 * reporting state for PCH transcoder A, crtc for pipe B housing 18191 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 18192 * and marking underrun reporting as disabled for the non-existing 18193 * PCH transcoders B and C would prevent enabling the south 18194 * error interrupt (see cpt_can_enable_serr_int()). 18195 */ 18196 if (has_pch_trancoder(dev_priv, crtc->pipe)) 18197 crtc->pch_fifo_underrun_disabled = true; 18198 } 18199 } 18200 18201 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 18202 { 18203 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 18204 18205 /* 18206 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 18207 * the hardware when a high res displays plugged in. DPLL P 18208 * divider is zero, and the pipe timings are bonkers. We'll 18209 * try to disable everything in that case. 18210 * 18211 * FIXME would be nice to be able to sanitize this state 18212 * without several WARNs, but for now let's take the easy 18213 * road. 18214 */ 18215 return IS_GEN(dev_priv, 6) && 18216 crtc_state->hw.active && 18217 crtc_state->shared_dpll && 18218 crtc_state->port_clock == 0; 18219 } 18220 18221 static void intel_sanitize_encoder(struct intel_encoder *encoder) 18222 { 18223 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 18224 struct intel_connector *connector; 18225 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 18226 struct intel_crtc_state *crtc_state = crtc ? 18227 to_intel_crtc_state(crtc->base.state) : NULL; 18228 18229 /* We need to check both for a crtc link (meaning that the 18230 * encoder is active and trying to read from a pipe) and the 18231 * pipe itself being active. */ 18232 bool has_active_crtc = crtc_state && 18233 crtc_state->hw.active; 18234 18235 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 18236 drm_dbg_kms(&dev_priv->drm, 18237 "BIOS has misprogrammed the hardware. Disabling pipe %c\n", 18238 pipe_name(crtc->pipe)); 18239 has_active_crtc = false; 18240 } 18241 18242 connector = intel_encoder_find_connector(encoder); 18243 if (connector && !has_active_crtc) { 18244 drm_dbg_kms(&dev_priv->drm, 18245 "[ENCODER:%d:%s] has active connectors but no active pipe!\n", 18246 encoder->base.base.id, 18247 encoder->base.name); 18248 18249 /* Connector is active, but has no active pipe. This is 18250 * fallout from our resume register restoring. Disable 18251 * the encoder manually again. */ 18252 if (crtc_state) { 18253 struct drm_encoder *best_encoder; 18254 18255 drm_dbg_kms(&dev_priv->drm, 18256 "[ENCODER:%d:%s] manually disabled\n", 18257 encoder->base.base.id, 18258 encoder->base.name); 18259 18260 /* avoid oopsing in case the hooks consult best_encoder */ 18261 best_encoder = connector->base.state->best_encoder; 18262 connector->base.state->best_encoder = &encoder->base; 18263 18264 if (encoder->disable) 18265 encoder->disable(encoder, crtc_state, 18266 connector->base.state); 18267 if (encoder->post_disable) 18268 encoder->post_disable(encoder, crtc_state, 18269 connector->base.state); 18270 18271 connector->base.state->best_encoder = best_encoder; 18272 } 18273 encoder->base.crtc = NULL; 18274 18275 /* Inconsistent output/port/pipe state happens presumably due to 18276 * a bug in one of the get_hw_state functions. Or someplace else 18277 * in our code, like the register restore mess on resume. Clamp 18278 * things to off as a safer default. */ 18279 18280 connector->base.dpms = DRM_MODE_DPMS_OFF; 18281 connector->base.encoder = NULL; 18282 } 18283 18284 /* notify opregion of the sanitized encoder state */ 18285 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 18286 18287 if (INTEL_GEN(dev_priv) >= 11) 18288 icl_sanitize_encoder_pll_mapping(encoder); 18289 } 18290 18291 /* FIXME read out full plane state for all planes */ 18292 static void readout_plane_state(struct drm_i915_private *dev_priv) 18293 { 18294 struct intel_plane *plane; 18295 struct intel_crtc *crtc; 18296 18297 for_each_intel_plane(&dev_priv->drm, plane) { 18298 struct intel_plane_state *plane_state = 18299 to_intel_plane_state(plane->base.state); 18300 struct intel_crtc_state *crtc_state; 18301 enum pipe pipe = PIPE_A; 18302 bool visible; 18303 18304 visible = plane->get_hw_state(plane, &pipe); 18305 18306 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18307 crtc_state = to_intel_crtc_state(crtc->base.state); 18308 18309 intel_set_plane_visible(crtc_state, plane_state, visible); 18310 18311 drm_dbg_kms(&dev_priv->drm, 18312 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 18313 plane->base.base.id, plane->base.name, 18314 enableddisabled(visible), pipe_name(pipe)); 18315 } 18316 18317 for_each_intel_crtc(&dev_priv->drm, crtc) { 18318 struct intel_crtc_state *crtc_state = 18319 to_intel_crtc_state(crtc->base.state); 18320 18321 fixup_active_planes(crtc_state); 18322 } 18323 } 18324 18325 static void intel_modeset_readout_hw_state(struct drm_device *dev) 18326 { 18327 struct drm_i915_private *dev_priv = to_i915(dev); 18328 struct intel_cdclk_state *cdclk_state = 18329 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 18330 enum pipe pipe; 18331 struct intel_crtc *crtc; 18332 struct intel_encoder *encoder; 18333 struct intel_connector *connector; 18334 struct drm_connector_list_iter conn_iter; 18335 u8 active_pipes = 0; 18336 18337 for_each_intel_crtc(dev, crtc) { 18338 struct intel_crtc_state *crtc_state = 18339 to_intel_crtc_state(crtc->base.state); 18340 18341 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi); 18342 intel_crtc_free_hw_state(crtc_state); 18343 intel_crtc_state_reset(crtc_state, crtc); 18344 18345 crtc_state->hw.active = crtc_state->hw.enable = 18346 dev_priv->display.get_pipe_config(crtc, crtc_state); 18347 18348 crtc->base.enabled = crtc_state->hw.enable; 18349 crtc->active = crtc_state->hw.active; 18350 18351 if (crtc_state->hw.active) 18352 active_pipes |= BIT(crtc->pipe); 18353 18354 drm_dbg_kms(&dev_priv->drm, 18355 "[CRTC:%d:%s] hw state readout: %s\n", 18356 crtc->base.base.id, crtc->base.name, 18357 enableddisabled(crtc_state->hw.active)); 18358 } 18359 18360 dev_priv->active_pipes = cdclk_state->active_pipes = active_pipes; 18361 18362 readout_plane_state(dev_priv); 18363 18364 intel_dpll_readout_hw_state(dev_priv); 18365 18366 for_each_intel_encoder(dev, encoder) { 18367 pipe = 0; 18368 18369 if (encoder->get_hw_state(encoder, &pipe)) { 18370 struct intel_crtc_state *crtc_state; 18371 18372 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18373 crtc_state = to_intel_crtc_state(crtc->base.state); 18374 18375 encoder->base.crtc = &crtc->base; 18376 encoder->get_config(encoder, crtc_state); 18377 } else { 18378 encoder->base.crtc = NULL; 18379 } 18380 18381 drm_dbg_kms(&dev_priv->drm, 18382 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 18383 encoder->base.base.id, encoder->base.name, 18384 enableddisabled(encoder->base.crtc), 18385 pipe_name(pipe)); 18386 } 18387 18388 drm_connector_list_iter_begin(dev, &conn_iter); 18389 for_each_intel_connector_iter(connector, &conn_iter) { 18390 if (connector->get_hw_state(connector)) { 18391 struct intel_crtc_state *crtc_state; 18392 struct intel_crtc *crtc; 18393 18394 connector->base.dpms = DRM_MODE_DPMS_ON; 18395 18396 encoder = intel_attached_encoder(connector); 18397 connector->base.encoder = &encoder->base; 18398 18399 crtc = to_intel_crtc(encoder->base.crtc); 18400 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; 18401 18402 if (crtc_state && crtc_state->hw.active) { 18403 /* 18404 * This has to be done during hardware readout 18405 * because anything calling .crtc_disable may 18406 * rely on the connector_mask being accurate. 18407 */ 18408 crtc_state->uapi.connector_mask |= 18409 drm_connector_mask(&connector->base); 18410 crtc_state->uapi.encoder_mask |= 18411 drm_encoder_mask(&encoder->base); 18412 } 18413 } else { 18414 connector->base.dpms = DRM_MODE_DPMS_OFF; 18415 connector->base.encoder = NULL; 18416 } 18417 drm_dbg_kms(&dev_priv->drm, 18418 "[CONNECTOR:%d:%s] hw state readout: %s\n", 18419 connector->base.base.id, connector->base.name, 18420 enableddisabled(connector->base.encoder)); 18421 } 18422 drm_connector_list_iter_end(&conn_iter); 18423 18424 for_each_intel_crtc(dev, crtc) { 18425 struct intel_bw_state *bw_state = 18426 to_intel_bw_state(dev_priv->bw_obj.state); 18427 struct intel_crtc_state *crtc_state = 18428 to_intel_crtc_state(crtc->base.state); 18429 struct intel_plane *plane; 18430 int min_cdclk = 0; 18431 18432 if (crtc_state->hw.active) { 18433 struct drm_display_mode *mode = &crtc_state->hw.mode; 18434 18435 intel_mode_from_pipe_config(&crtc_state->hw.adjusted_mode, 18436 crtc_state); 18437 18438 *mode = crtc_state->hw.adjusted_mode; 18439 mode->hdisplay = crtc_state->pipe_src_w; 18440 mode->vdisplay = crtc_state->pipe_src_h; 18441 18442 /* 18443 * The initial mode needs to be set in order to keep 18444 * the atomic core happy. It wants a valid mode if the 18445 * crtc's enabled, so we do the above call. 18446 * 18447 * But we don't set all the derived state fully, hence 18448 * set a flag to indicate that a full recalculation is 18449 * needed on the next commit. 18450 */ 18451 mode->private_flags = I915_MODE_FLAG_INHERITED; 18452 18453 intel_crtc_compute_pixel_rate(crtc_state); 18454 18455 intel_crtc_update_active_timings(crtc_state); 18456 18457 intel_crtc_copy_hw_to_uapi_state(crtc_state); 18458 } 18459 18460 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 18461 const struct intel_plane_state *plane_state = 18462 to_intel_plane_state(plane->base.state); 18463 18464 /* 18465 * FIXME don't have the fb yet, so can't 18466 * use intel_plane_data_rate() :( 18467 */ 18468 if (plane_state->uapi.visible) 18469 crtc_state->data_rate[plane->id] = 18470 4 * crtc_state->pixel_rate; 18471 /* 18472 * FIXME don't have the fb yet, so can't 18473 * use plane->min_cdclk() :( 18474 */ 18475 if (plane_state->uapi.visible && plane->min_cdclk) { 18476 if (crtc_state->double_wide || 18477 INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 18478 crtc_state->min_cdclk[plane->id] = 18479 DIV_ROUND_UP(crtc_state->pixel_rate, 2); 18480 else 18481 crtc_state->min_cdclk[plane->id] = 18482 crtc_state->pixel_rate; 18483 } 18484 drm_dbg_kms(&dev_priv->drm, 18485 "[PLANE:%d:%s] min_cdclk %d kHz\n", 18486 plane->base.base.id, plane->base.name, 18487 crtc_state->min_cdclk[plane->id]); 18488 } 18489 18490 if (crtc_state->hw.active) { 18491 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 18492 if (drm_WARN_ON(dev, min_cdclk < 0)) 18493 min_cdclk = 0; 18494 } 18495 18496 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 18497 cdclk_state->min_voltage_level[crtc->pipe] = 18498 crtc_state->min_voltage_level; 18499 18500 intel_bw_crtc_update(bw_state, crtc_state); 18501 18502 intel_pipe_config_sanity_check(dev_priv, crtc_state); 18503 } 18504 } 18505 18506 static void 18507 get_encoder_power_domains(struct drm_i915_private *dev_priv) 18508 { 18509 struct intel_encoder *encoder; 18510 18511 for_each_intel_encoder(&dev_priv->drm, encoder) { 18512 struct intel_crtc_state *crtc_state; 18513 18514 if (!encoder->get_power_domains) 18515 continue; 18516 18517 /* 18518 * MST-primary and inactive encoders don't have a crtc state 18519 * and neither of these require any power domain references. 18520 */ 18521 if (!encoder->base.crtc) 18522 continue; 18523 18524 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 18525 encoder->get_power_domains(encoder, crtc_state); 18526 } 18527 } 18528 18529 static void intel_early_display_was(struct drm_i915_private *dev_priv) 18530 { 18531 /* 18532 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl 18533 * Also known as Wa_14010480278. 18534 */ 18535 if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv)) 18536 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0, 18537 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS); 18538 18539 if (IS_HASWELL(dev_priv)) { 18540 /* 18541 * WaRsPkgCStateDisplayPMReq:hsw 18542 * System hang if this isn't done before disabling all planes! 18543 */ 18544 intel_de_write(dev_priv, CHICKEN_PAR1_1, 18545 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 18546 } 18547 } 18548 18549 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 18550 enum port port, i915_reg_t hdmi_reg) 18551 { 18552 u32 val = intel_de_read(dev_priv, hdmi_reg); 18553 18554 if (val & SDVO_ENABLE || 18555 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 18556 return; 18557 18558 drm_dbg_kms(&dev_priv->drm, 18559 "Sanitizing transcoder select for HDMI %c\n", 18560 port_name(port)); 18561 18562 val &= ~SDVO_PIPE_SEL_MASK; 18563 val |= SDVO_PIPE_SEL(PIPE_A); 18564 18565 intel_de_write(dev_priv, hdmi_reg, val); 18566 } 18567 18568 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 18569 enum port port, i915_reg_t dp_reg) 18570 { 18571 u32 val = intel_de_read(dev_priv, dp_reg); 18572 18573 if (val & DP_PORT_EN || 18574 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 18575 return; 18576 18577 drm_dbg_kms(&dev_priv->drm, 18578 "Sanitizing transcoder select for DP %c\n", 18579 port_name(port)); 18580 18581 val &= ~DP_PIPE_SEL_MASK; 18582 val |= DP_PIPE_SEL(PIPE_A); 18583 18584 intel_de_write(dev_priv, dp_reg, val); 18585 } 18586 18587 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 18588 { 18589 /* 18590 * The BIOS may select transcoder B on some of the PCH 18591 * ports even it doesn't enable the port. This would trip 18592 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 18593 * Sanitize the transcoder select bits to prevent that. We 18594 * assume that the BIOS never actually enabled the port, 18595 * because if it did we'd actually have to toggle the port 18596 * on and back off to make the transcoder A select stick 18597 * (see. intel_dp_link_down(), intel_disable_hdmi(), 18598 * intel_disable_sdvo()). 18599 */ 18600 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 18601 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 18602 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 18603 18604 /* PCH SDVOB multiplex with HDMIB */ 18605 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 18606 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 18607 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 18608 } 18609 18610 /* Scan out the current hw modeset state, 18611 * and sanitizes it to the current state 18612 */ 18613 static void 18614 intel_modeset_setup_hw_state(struct drm_device *dev, 18615 struct drm_modeset_acquire_ctx *ctx) 18616 { 18617 struct drm_i915_private *dev_priv = to_i915(dev); 18618 struct intel_encoder *encoder; 18619 struct intel_crtc *crtc; 18620 intel_wakeref_t wakeref; 18621 18622 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 18623 18624 intel_early_display_was(dev_priv); 18625 intel_modeset_readout_hw_state(dev); 18626 18627 /* HW state is read out, now we need to sanitize this mess. */ 18628 18629 /* Sanitize the TypeC port mode upfront, encoders depend on this */ 18630 for_each_intel_encoder(dev, encoder) { 18631 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 18632 18633 /* We need to sanitize only the MST primary port. */ 18634 if (encoder->type != INTEL_OUTPUT_DP_MST && 18635 intel_phy_is_tc(dev_priv, phy)) 18636 intel_tc_port_sanitize(enc_to_dig_port(encoder)); 18637 } 18638 18639 get_encoder_power_domains(dev_priv); 18640 18641 if (HAS_PCH_IBX(dev_priv)) 18642 ibx_sanitize_pch_ports(dev_priv); 18643 18644 /* 18645 * intel_sanitize_plane_mapping() may need to do vblank 18646 * waits, so we need vblank interrupts restored beforehand. 18647 */ 18648 for_each_intel_crtc(&dev_priv->drm, crtc) { 18649 struct intel_crtc_state *crtc_state = 18650 to_intel_crtc_state(crtc->base.state); 18651 18652 drm_crtc_vblank_reset(&crtc->base); 18653 18654 if (crtc_state->hw.active) 18655 intel_crtc_vblank_on(crtc_state); 18656 } 18657 18658 intel_sanitize_plane_mapping(dev_priv); 18659 18660 for_each_intel_encoder(dev, encoder) 18661 intel_sanitize_encoder(encoder); 18662 18663 for_each_intel_crtc(&dev_priv->drm, crtc) { 18664 struct intel_crtc_state *crtc_state = 18665 to_intel_crtc_state(crtc->base.state); 18666 18667 intel_sanitize_crtc(crtc, ctx); 18668 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 18669 } 18670 18671 intel_modeset_update_connector_atomic_state(dev); 18672 18673 intel_dpll_sanitize_state(dev_priv); 18674 18675 if (IS_G4X(dev_priv)) { 18676 g4x_wm_get_hw_state(dev_priv); 18677 g4x_wm_sanitize(dev_priv); 18678 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 18679 vlv_wm_get_hw_state(dev_priv); 18680 vlv_wm_sanitize(dev_priv); 18681 } else if (INTEL_GEN(dev_priv) >= 9) { 18682 skl_wm_get_hw_state(dev_priv); 18683 } else if (HAS_PCH_SPLIT(dev_priv)) { 18684 ilk_wm_get_hw_state(dev_priv); 18685 } 18686 18687 for_each_intel_crtc(dev, crtc) { 18688 struct intel_crtc_state *crtc_state = 18689 to_intel_crtc_state(crtc->base.state); 18690 u64 put_domains; 18691 18692 put_domains = modeset_get_crtc_power_domains(crtc_state); 18693 if (drm_WARN_ON(dev, put_domains)) 18694 modeset_put_power_domains(dev_priv, put_domains); 18695 } 18696 18697 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 18698 } 18699 18700 void intel_display_resume(struct drm_device *dev) 18701 { 18702 struct drm_i915_private *dev_priv = to_i915(dev); 18703 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 18704 struct drm_modeset_acquire_ctx ctx; 18705 int ret; 18706 18707 dev_priv->modeset_restore_state = NULL; 18708 if (state) 18709 state->acquire_ctx = &ctx; 18710 18711 drm_modeset_acquire_init(&ctx, 0); 18712 18713 while (1) { 18714 ret = drm_modeset_lock_all_ctx(dev, &ctx); 18715 if (ret != -EDEADLK) 18716 break; 18717 18718 drm_modeset_backoff(&ctx); 18719 } 18720 18721 if (!ret) 18722 ret = __intel_display_resume(dev, state, &ctx); 18723 18724 intel_enable_ipc(dev_priv); 18725 drm_modeset_drop_locks(&ctx); 18726 drm_modeset_acquire_fini(&ctx); 18727 18728 if (ret) 18729 drm_err(&dev_priv->drm, 18730 "Restoring old state failed with %i\n", ret); 18731 if (state) 18732 drm_atomic_state_put(state); 18733 } 18734 18735 static void intel_hpd_poll_fini(struct drm_i915_private *i915) 18736 { 18737 struct intel_connector *connector; 18738 struct drm_connector_list_iter conn_iter; 18739 18740 /* Kill all the work that may have been queued by hpd. */ 18741 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 18742 for_each_intel_connector_iter(connector, &conn_iter) { 18743 if (connector->modeset_retry_work.func) 18744 cancel_work_sync(&connector->modeset_retry_work); 18745 if (connector->hdcp.shim) { 18746 cancel_delayed_work_sync(&connector->hdcp.check_work); 18747 cancel_work_sync(&connector->hdcp.prop_work); 18748 } 18749 } 18750 drm_connector_list_iter_end(&conn_iter); 18751 } 18752 18753 /* part #1: call before irq uninstall */ 18754 void intel_modeset_driver_remove(struct drm_i915_private *i915) 18755 { 18756 flush_workqueue(i915->flip_wq); 18757 flush_workqueue(i915->modeset_wq); 18758 18759 flush_work(&i915->atomic_helper.free_work); 18760 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list)); 18761 } 18762 18763 /* part #2: call after irq uninstall */ 18764 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915) 18765 { 18766 /* 18767 * Due to the hpd irq storm handling the hotplug work can re-arm the 18768 * poll handlers. Hence disable polling after hpd handling is shut down. 18769 */ 18770 intel_hpd_poll_fini(i915); 18771 18772 /* 18773 * MST topology needs to be suspended so we don't have any calls to 18774 * fbdev after it's finalized. MST will be destroyed later as part of 18775 * drm_mode_config_cleanup() 18776 */ 18777 intel_dp_mst_suspend(i915); 18778 18779 /* poll work can call into fbdev, hence clean that up afterwards */ 18780 intel_fbdev_fini(i915); 18781 18782 intel_unregister_dsm_handler(); 18783 18784 intel_fbc_global_disable(i915); 18785 18786 /* flush any delayed tasks or pending work */ 18787 flush_scheduled_work(); 18788 18789 intel_hdcp_component_fini(i915); 18790 18791 intel_mode_config_cleanup(i915); 18792 18793 intel_overlay_cleanup(i915); 18794 18795 intel_gmbus_teardown(i915); 18796 18797 destroy_workqueue(i915->flip_wq); 18798 destroy_workqueue(i915->modeset_wq); 18799 18800 intel_fbc_cleanup_cfb(i915); 18801 } 18802 18803 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 18804 18805 static bool 18806 has_transcoder(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder) 18807 { 18808 if (cpu_transcoder == TRANSCODER_EDP) 18809 return HAS_TRANSCODER_EDP(dev_priv); 18810 else 18811 return INTEL_INFO(dev_priv)->pipe_mask & BIT(cpu_transcoder); 18812 } 18813 18814 struct intel_display_error_state { 18815 18816 u32 power_well_driver; 18817 18818 struct intel_cursor_error_state { 18819 u32 control; 18820 u32 position; 18821 u32 base; 18822 u32 size; 18823 } cursor[I915_MAX_PIPES]; 18824 18825 struct intel_pipe_error_state { 18826 bool power_domain_on; 18827 u32 source; 18828 u32 stat; 18829 } pipe[I915_MAX_PIPES]; 18830 18831 struct intel_plane_error_state { 18832 u32 control; 18833 u32 stride; 18834 u32 size; 18835 u32 pos; 18836 u32 addr; 18837 u32 surface; 18838 u32 tile_offset; 18839 } plane[I915_MAX_PIPES]; 18840 18841 struct intel_transcoder_error_state { 18842 bool available; 18843 bool power_domain_on; 18844 enum transcoder cpu_transcoder; 18845 18846 u32 conf; 18847 18848 u32 htotal; 18849 u32 hblank; 18850 u32 hsync; 18851 u32 vtotal; 18852 u32 vblank; 18853 u32 vsync; 18854 } transcoder[5]; 18855 }; 18856 18857 struct intel_display_error_state * 18858 intel_display_capture_error_state(struct drm_i915_private *dev_priv) 18859 { 18860 struct intel_display_error_state *error; 18861 int transcoders[] = { 18862 TRANSCODER_A, 18863 TRANSCODER_B, 18864 TRANSCODER_C, 18865 TRANSCODER_D, 18866 TRANSCODER_EDP, 18867 }; 18868 int i; 18869 18870 BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder)); 18871 18872 if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv)) 18873 return NULL; 18874 18875 error = kzalloc(sizeof(*error), GFP_ATOMIC); 18876 if (error == NULL) 18877 return NULL; 18878 18879 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 18880 error->power_well_driver = intel_de_read(dev_priv, 18881 HSW_PWR_WELL_CTL2); 18882 18883 for_each_pipe(dev_priv, i) { 18884 error->pipe[i].power_domain_on = 18885 __intel_display_power_is_enabled(dev_priv, 18886 POWER_DOMAIN_PIPE(i)); 18887 if (!error->pipe[i].power_domain_on) 18888 continue; 18889 18890 error->cursor[i].control = intel_de_read(dev_priv, CURCNTR(i)); 18891 error->cursor[i].position = intel_de_read(dev_priv, CURPOS(i)); 18892 error->cursor[i].base = intel_de_read(dev_priv, CURBASE(i)); 18893 18894 error->plane[i].control = intel_de_read(dev_priv, DSPCNTR(i)); 18895 error->plane[i].stride = intel_de_read(dev_priv, DSPSTRIDE(i)); 18896 if (INTEL_GEN(dev_priv) <= 3) { 18897 error->plane[i].size = intel_de_read(dev_priv, 18898 DSPSIZE(i)); 18899 error->plane[i].pos = intel_de_read(dev_priv, 18900 DSPPOS(i)); 18901 } 18902 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 18903 error->plane[i].addr = intel_de_read(dev_priv, 18904 DSPADDR(i)); 18905 if (INTEL_GEN(dev_priv) >= 4) { 18906 error->plane[i].surface = intel_de_read(dev_priv, 18907 DSPSURF(i)); 18908 error->plane[i].tile_offset = intel_de_read(dev_priv, 18909 DSPTILEOFF(i)); 18910 } 18911 18912 error->pipe[i].source = intel_de_read(dev_priv, PIPESRC(i)); 18913 18914 if (HAS_GMCH(dev_priv)) 18915 error->pipe[i].stat = intel_de_read(dev_priv, 18916 PIPESTAT(i)); 18917 } 18918 18919 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 18920 enum transcoder cpu_transcoder = transcoders[i]; 18921 18922 if (!has_transcoder(dev_priv, cpu_transcoder)) 18923 continue; 18924 18925 error->transcoder[i].available = true; 18926 error->transcoder[i].power_domain_on = 18927 __intel_display_power_is_enabled(dev_priv, 18928 POWER_DOMAIN_TRANSCODER(cpu_transcoder)); 18929 if (!error->transcoder[i].power_domain_on) 18930 continue; 18931 18932 error->transcoder[i].cpu_transcoder = cpu_transcoder; 18933 18934 error->transcoder[i].conf = intel_de_read(dev_priv, 18935 PIPECONF(cpu_transcoder)); 18936 error->transcoder[i].htotal = intel_de_read(dev_priv, 18937 HTOTAL(cpu_transcoder)); 18938 error->transcoder[i].hblank = intel_de_read(dev_priv, 18939 HBLANK(cpu_transcoder)); 18940 error->transcoder[i].hsync = intel_de_read(dev_priv, 18941 HSYNC(cpu_transcoder)); 18942 error->transcoder[i].vtotal = intel_de_read(dev_priv, 18943 VTOTAL(cpu_transcoder)); 18944 error->transcoder[i].vblank = intel_de_read(dev_priv, 18945 VBLANK(cpu_transcoder)); 18946 error->transcoder[i].vsync = intel_de_read(dev_priv, 18947 VSYNC(cpu_transcoder)); 18948 } 18949 18950 return error; 18951 } 18952 18953 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) 18954 18955 void 18956 intel_display_print_error_state(struct drm_i915_error_state_buf *m, 18957 struct intel_display_error_state *error) 18958 { 18959 struct drm_i915_private *dev_priv = m->i915; 18960 int i; 18961 18962 if (!error) 18963 return; 18964 18965 err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv)); 18966 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 18967 err_printf(m, "PWR_WELL_CTL2: %08x\n", 18968 error->power_well_driver); 18969 for_each_pipe(dev_priv, i) { 18970 err_printf(m, "Pipe [%d]:\n", i); 18971 err_printf(m, " Power: %s\n", 18972 onoff(error->pipe[i].power_domain_on)); 18973 err_printf(m, " SRC: %08x\n", error->pipe[i].source); 18974 err_printf(m, " STAT: %08x\n", error->pipe[i].stat); 18975 18976 err_printf(m, "Plane [%d]:\n", i); 18977 err_printf(m, " CNTR: %08x\n", error->plane[i].control); 18978 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride); 18979 if (INTEL_GEN(dev_priv) <= 3) { 18980 err_printf(m, " SIZE: %08x\n", error->plane[i].size); 18981 err_printf(m, " POS: %08x\n", error->plane[i].pos); 18982 } 18983 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 18984 err_printf(m, " ADDR: %08x\n", error->plane[i].addr); 18985 if (INTEL_GEN(dev_priv) >= 4) { 18986 err_printf(m, " SURF: %08x\n", error->plane[i].surface); 18987 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); 18988 } 18989 18990 err_printf(m, "Cursor [%d]:\n", i); 18991 err_printf(m, " CNTR: %08x\n", error->cursor[i].control); 18992 err_printf(m, " POS: %08x\n", error->cursor[i].position); 18993 err_printf(m, " BASE: %08x\n", error->cursor[i].base); 18994 } 18995 18996 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 18997 if (!error->transcoder[i].available) 18998 continue; 18999 19000 err_printf(m, "CPU transcoder: %s\n", 19001 transcoder_name(error->transcoder[i].cpu_transcoder)); 19002 err_printf(m, " Power: %s\n", 19003 onoff(error->transcoder[i].power_domain_on)); 19004 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf); 19005 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal); 19006 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank); 19007 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync); 19008 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal); 19009 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank); 19010 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync); 19011 } 19012 } 19013 19014 #endif 19015