1 /* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27 #include <linux/i2c.h> 28 #include <linux/input.h> 29 #include <linux/intel-iommu.h> 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/dma-resv.h> 33 #include <linux/slab.h> 34 35 #include <drm/drm_atomic.h> 36 #include <drm/drm_atomic_helper.h> 37 #include <drm/drm_atomic_uapi.h> 38 #include <drm/drm_dp_helper.h> 39 #include <drm/drm_edid.h> 40 #include <drm/drm_fourcc.h> 41 #include <drm/drm_plane_helper.h> 42 #include <drm/drm_probe_helper.h> 43 #include <drm/drm_rect.h> 44 #include <drm/i915_drm.h> 45 46 #include "display/intel_crt.h" 47 #include "display/intel_ddi.h" 48 #include "display/intel_dp.h" 49 #include "display/intel_dp_mst.h" 50 #include "display/intel_dsi.h" 51 #include "display/intel_dvo.h" 52 #include "display/intel_gmbus.h" 53 #include "display/intel_hdmi.h" 54 #include "display/intel_lvds.h" 55 #include "display/intel_sdvo.h" 56 #include "display/intel_tv.h" 57 #include "display/intel_vdsc.h" 58 59 #include "gt/intel_rps.h" 60 61 #include "i915_drv.h" 62 #include "i915_trace.h" 63 #include "intel_acpi.h" 64 #include "intel_atomic.h" 65 #include "intel_atomic_plane.h" 66 #include "intel_bw.h" 67 #include "intel_cdclk.h" 68 #include "intel_color.h" 69 #include "intel_display_types.h" 70 #include "intel_dp_link_training.h" 71 #include "intel_fbc.h" 72 #include "intel_fbdev.h" 73 #include "intel_fifo_underrun.h" 74 #include "intel_frontbuffer.h" 75 #include "intel_hdcp.h" 76 #include "intel_hotplug.h" 77 #include "intel_overlay.h" 78 #include "intel_pipe_crc.h" 79 #include "intel_pm.h" 80 #include "intel_psr.h" 81 #include "intel_quirks.h" 82 #include "intel_sideband.h" 83 #include "intel_sprite.h" 84 #include "intel_tc.h" 85 #include "intel_vga.h" 86 87 /* Primary plane formats for gen <= 3 */ 88 static const u32 i8xx_primary_formats[] = { 89 DRM_FORMAT_C8, 90 DRM_FORMAT_XRGB1555, 91 DRM_FORMAT_RGB565, 92 DRM_FORMAT_XRGB8888, 93 }; 94 95 /* Primary plane formats for ivb (no fp16 due to hw issue) */ 96 static const u32 ivb_primary_formats[] = { 97 DRM_FORMAT_C8, 98 DRM_FORMAT_RGB565, 99 DRM_FORMAT_XRGB8888, 100 DRM_FORMAT_XBGR8888, 101 DRM_FORMAT_XRGB2101010, 102 DRM_FORMAT_XBGR2101010, 103 }; 104 105 /* Primary plane formats for gen >= 4, except ivb */ 106 static const u32 i965_primary_formats[] = { 107 DRM_FORMAT_C8, 108 DRM_FORMAT_RGB565, 109 DRM_FORMAT_XRGB8888, 110 DRM_FORMAT_XBGR8888, 111 DRM_FORMAT_XRGB2101010, 112 DRM_FORMAT_XBGR2101010, 113 DRM_FORMAT_XBGR16161616F, 114 }; 115 116 /* Primary plane formats for vlv/chv */ 117 static const u32 vlv_primary_formats[] = { 118 DRM_FORMAT_C8, 119 DRM_FORMAT_RGB565, 120 DRM_FORMAT_XRGB8888, 121 DRM_FORMAT_XBGR8888, 122 DRM_FORMAT_ARGB8888, 123 DRM_FORMAT_ABGR8888, 124 DRM_FORMAT_XRGB2101010, 125 DRM_FORMAT_XBGR2101010, 126 DRM_FORMAT_ARGB2101010, 127 DRM_FORMAT_ABGR2101010, 128 DRM_FORMAT_XBGR16161616F, 129 }; 130 131 static const u64 i9xx_format_modifiers[] = { 132 I915_FORMAT_MOD_X_TILED, 133 DRM_FORMAT_MOD_LINEAR, 134 DRM_FORMAT_MOD_INVALID 135 }; 136 137 /* Cursor formats */ 138 static const u32 intel_cursor_formats[] = { 139 DRM_FORMAT_ARGB8888, 140 }; 141 142 static const u64 cursor_format_modifiers[] = { 143 DRM_FORMAT_MOD_LINEAR, 144 DRM_FORMAT_MOD_INVALID 145 }; 146 147 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 148 struct intel_crtc_state *pipe_config); 149 static void ilk_pch_clock_get(struct intel_crtc *crtc, 150 struct intel_crtc_state *pipe_config); 151 152 static int intel_framebuffer_init(struct intel_framebuffer *ifb, 153 struct drm_i915_gem_object *obj, 154 struct drm_mode_fb_cmd2 *mode_cmd); 155 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state); 156 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); 157 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 158 const struct intel_link_m_n *m_n, 159 const struct intel_link_m_n *m2_n2); 160 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state); 161 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state); 162 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state); 163 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); 164 static void vlv_prepare_pll(struct intel_crtc *crtc, 165 const struct intel_crtc_state *pipe_config); 166 static void chv_prepare_pll(struct intel_crtc *crtc, 167 const struct intel_crtc_state *pipe_config); 168 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state); 169 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); 170 static void intel_modeset_setup_hw_state(struct drm_device *dev, 171 struct drm_modeset_acquire_ctx *ctx); 172 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc); 173 174 struct intel_limit { 175 struct { 176 int min, max; 177 } dot, vco, n, m, m1, m2, p, p1; 178 179 struct { 180 int dot_limit; 181 int p2_slow, p2_fast; 182 } p2; 183 }; 184 185 /* returns HPLL frequency in kHz */ 186 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) 187 { 188 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 189 190 /* Obtain SKU information */ 191 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 192 CCK_FUSE_HPLL_FREQ_MASK; 193 194 return vco_freq[hpll_freq] * 1000; 195 } 196 197 int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 198 const char *name, u32 reg, int ref_freq) 199 { 200 u32 val; 201 int divider; 202 203 val = vlv_cck_read(dev_priv, reg); 204 divider = val & CCK_FREQUENCY_VALUES; 205 206 drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != 207 (divider << CCK_FREQUENCY_STATUS_SHIFT), 208 "%s change in progress\n", name); 209 210 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 211 } 212 213 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 214 const char *name, u32 reg) 215 { 216 int hpll; 217 218 vlv_cck_get(dev_priv); 219 220 if (dev_priv->hpll_freq == 0) 221 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); 222 223 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); 224 225 vlv_cck_put(dev_priv); 226 227 return hpll; 228 } 229 230 static void intel_update_czclk(struct drm_i915_private *dev_priv) 231 { 232 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 233 return; 234 235 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 236 CCK_CZ_CLOCK_CONTROL); 237 238 drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n", 239 dev_priv->czclk_freq); 240 } 241 242 static inline u32 /* units of 100MHz */ 243 intel_fdi_link_freq(struct drm_i915_private *dev_priv, 244 const struct intel_crtc_state *pipe_config) 245 { 246 if (HAS_DDI(dev_priv)) 247 return pipe_config->port_clock; /* SPLL */ 248 else 249 return dev_priv->fdi_pll_freq; 250 } 251 252 static const struct intel_limit intel_limits_i8xx_dac = { 253 .dot = { .min = 25000, .max = 350000 }, 254 .vco = { .min = 908000, .max = 1512000 }, 255 .n = { .min = 2, .max = 16 }, 256 .m = { .min = 96, .max = 140 }, 257 .m1 = { .min = 18, .max = 26 }, 258 .m2 = { .min = 6, .max = 16 }, 259 .p = { .min = 4, .max = 128 }, 260 .p1 = { .min = 2, .max = 33 }, 261 .p2 = { .dot_limit = 165000, 262 .p2_slow = 4, .p2_fast = 2 }, 263 }; 264 265 static const struct intel_limit intel_limits_i8xx_dvo = { 266 .dot = { .min = 25000, .max = 350000 }, 267 .vco = { .min = 908000, .max = 1512000 }, 268 .n = { .min = 2, .max = 16 }, 269 .m = { .min = 96, .max = 140 }, 270 .m1 = { .min = 18, .max = 26 }, 271 .m2 = { .min = 6, .max = 16 }, 272 .p = { .min = 4, .max = 128 }, 273 .p1 = { .min = 2, .max = 33 }, 274 .p2 = { .dot_limit = 165000, 275 .p2_slow = 4, .p2_fast = 4 }, 276 }; 277 278 static const struct intel_limit intel_limits_i8xx_lvds = { 279 .dot = { .min = 25000, .max = 350000 }, 280 .vco = { .min = 908000, .max = 1512000 }, 281 .n = { .min = 2, .max = 16 }, 282 .m = { .min = 96, .max = 140 }, 283 .m1 = { .min = 18, .max = 26 }, 284 .m2 = { .min = 6, .max = 16 }, 285 .p = { .min = 4, .max = 128 }, 286 .p1 = { .min = 1, .max = 6 }, 287 .p2 = { .dot_limit = 165000, 288 .p2_slow = 14, .p2_fast = 7 }, 289 }; 290 291 static const struct intel_limit intel_limits_i9xx_sdvo = { 292 .dot = { .min = 20000, .max = 400000 }, 293 .vco = { .min = 1400000, .max = 2800000 }, 294 .n = { .min = 1, .max = 6 }, 295 .m = { .min = 70, .max = 120 }, 296 .m1 = { .min = 8, .max = 18 }, 297 .m2 = { .min = 3, .max = 7 }, 298 .p = { .min = 5, .max = 80 }, 299 .p1 = { .min = 1, .max = 8 }, 300 .p2 = { .dot_limit = 200000, 301 .p2_slow = 10, .p2_fast = 5 }, 302 }; 303 304 static const struct intel_limit intel_limits_i9xx_lvds = { 305 .dot = { .min = 20000, .max = 400000 }, 306 .vco = { .min = 1400000, .max = 2800000 }, 307 .n = { .min = 1, .max = 6 }, 308 .m = { .min = 70, .max = 120 }, 309 .m1 = { .min = 8, .max = 18 }, 310 .m2 = { .min = 3, .max = 7 }, 311 .p = { .min = 7, .max = 98 }, 312 .p1 = { .min = 1, .max = 8 }, 313 .p2 = { .dot_limit = 112000, 314 .p2_slow = 14, .p2_fast = 7 }, 315 }; 316 317 318 static const struct intel_limit intel_limits_g4x_sdvo = { 319 .dot = { .min = 25000, .max = 270000 }, 320 .vco = { .min = 1750000, .max = 3500000}, 321 .n = { .min = 1, .max = 4 }, 322 .m = { .min = 104, .max = 138 }, 323 .m1 = { .min = 17, .max = 23 }, 324 .m2 = { .min = 5, .max = 11 }, 325 .p = { .min = 10, .max = 30 }, 326 .p1 = { .min = 1, .max = 3}, 327 .p2 = { .dot_limit = 270000, 328 .p2_slow = 10, 329 .p2_fast = 10 330 }, 331 }; 332 333 static const struct intel_limit intel_limits_g4x_hdmi = { 334 .dot = { .min = 22000, .max = 400000 }, 335 .vco = { .min = 1750000, .max = 3500000}, 336 .n = { .min = 1, .max = 4 }, 337 .m = { .min = 104, .max = 138 }, 338 .m1 = { .min = 16, .max = 23 }, 339 .m2 = { .min = 5, .max = 11 }, 340 .p = { .min = 5, .max = 80 }, 341 .p1 = { .min = 1, .max = 8}, 342 .p2 = { .dot_limit = 165000, 343 .p2_slow = 10, .p2_fast = 5 }, 344 }; 345 346 static const struct intel_limit intel_limits_g4x_single_channel_lvds = { 347 .dot = { .min = 20000, .max = 115000 }, 348 .vco = { .min = 1750000, .max = 3500000 }, 349 .n = { .min = 1, .max = 3 }, 350 .m = { .min = 104, .max = 138 }, 351 .m1 = { .min = 17, .max = 23 }, 352 .m2 = { .min = 5, .max = 11 }, 353 .p = { .min = 28, .max = 112 }, 354 .p1 = { .min = 2, .max = 8 }, 355 .p2 = { .dot_limit = 0, 356 .p2_slow = 14, .p2_fast = 14 357 }, 358 }; 359 360 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { 361 .dot = { .min = 80000, .max = 224000 }, 362 .vco = { .min = 1750000, .max = 3500000 }, 363 .n = { .min = 1, .max = 3 }, 364 .m = { .min = 104, .max = 138 }, 365 .m1 = { .min = 17, .max = 23 }, 366 .m2 = { .min = 5, .max = 11 }, 367 .p = { .min = 14, .max = 42 }, 368 .p1 = { .min = 2, .max = 6 }, 369 .p2 = { .dot_limit = 0, 370 .p2_slow = 7, .p2_fast = 7 371 }, 372 }; 373 374 static const struct intel_limit pnv_limits_sdvo = { 375 .dot = { .min = 20000, .max = 400000}, 376 .vco = { .min = 1700000, .max = 3500000 }, 377 /* Pineview's Ncounter is a ring counter */ 378 .n = { .min = 3, .max = 6 }, 379 .m = { .min = 2, .max = 256 }, 380 /* Pineview only has one combined m divider, which we treat as m2. */ 381 .m1 = { .min = 0, .max = 0 }, 382 .m2 = { .min = 0, .max = 254 }, 383 .p = { .min = 5, .max = 80 }, 384 .p1 = { .min = 1, .max = 8 }, 385 .p2 = { .dot_limit = 200000, 386 .p2_slow = 10, .p2_fast = 5 }, 387 }; 388 389 static const struct intel_limit pnv_limits_lvds = { 390 .dot = { .min = 20000, .max = 400000 }, 391 .vco = { .min = 1700000, .max = 3500000 }, 392 .n = { .min = 3, .max = 6 }, 393 .m = { .min = 2, .max = 256 }, 394 .m1 = { .min = 0, .max = 0 }, 395 .m2 = { .min = 0, .max = 254 }, 396 .p = { .min = 7, .max = 112 }, 397 .p1 = { .min = 1, .max = 8 }, 398 .p2 = { .dot_limit = 112000, 399 .p2_slow = 14, .p2_fast = 14 }, 400 }; 401 402 /* Ironlake / Sandybridge 403 * 404 * We calculate clock using (register_value + 2) for N/M1/M2, so here 405 * the range value for them is (actual_value - 2). 406 */ 407 static const struct intel_limit ilk_limits_dac = { 408 .dot = { .min = 25000, .max = 350000 }, 409 .vco = { .min = 1760000, .max = 3510000 }, 410 .n = { .min = 1, .max = 5 }, 411 .m = { .min = 79, .max = 127 }, 412 .m1 = { .min = 12, .max = 22 }, 413 .m2 = { .min = 5, .max = 9 }, 414 .p = { .min = 5, .max = 80 }, 415 .p1 = { .min = 1, .max = 8 }, 416 .p2 = { .dot_limit = 225000, 417 .p2_slow = 10, .p2_fast = 5 }, 418 }; 419 420 static const struct intel_limit ilk_limits_single_lvds = { 421 .dot = { .min = 25000, .max = 350000 }, 422 .vco = { .min = 1760000, .max = 3510000 }, 423 .n = { .min = 1, .max = 3 }, 424 .m = { .min = 79, .max = 118 }, 425 .m1 = { .min = 12, .max = 22 }, 426 .m2 = { .min = 5, .max = 9 }, 427 .p = { .min = 28, .max = 112 }, 428 .p1 = { .min = 2, .max = 8 }, 429 .p2 = { .dot_limit = 225000, 430 .p2_slow = 14, .p2_fast = 14 }, 431 }; 432 433 static const struct intel_limit ilk_limits_dual_lvds = { 434 .dot = { .min = 25000, .max = 350000 }, 435 .vco = { .min = 1760000, .max = 3510000 }, 436 .n = { .min = 1, .max = 3 }, 437 .m = { .min = 79, .max = 127 }, 438 .m1 = { .min = 12, .max = 22 }, 439 .m2 = { .min = 5, .max = 9 }, 440 .p = { .min = 14, .max = 56 }, 441 .p1 = { .min = 2, .max = 8 }, 442 .p2 = { .dot_limit = 225000, 443 .p2_slow = 7, .p2_fast = 7 }, 444 }; 445 446 /* LVDS 100mhz refclk limits. */ 447 static const struct intel_limit ilk_limits_single_lvds_100m = { 448 .dot = { .min = 25000, .max = 350000 }, 449 .vco = { .min = 1760000, .max = 3510000 }, 450 .n = { .min = 1, .max = 2 }, 451 .m = { .min = 79, .max = 126 }, 452 .m1 = { .min = 12, .max = 22 }, 453 .m2 = { .min = 5, .max = 9 }, 454 .p = { .min = 28, .max = 112 }, 455 .p1 = { .min = 2, .max = 8 }, 456 .p2 = { .dot_limit = 225000, 457 .p2_slow = 14, .p2_fast = 14 }, 458 }; 459 460 static const struct intel_limit ilk_limits_dual_lvds_100m = { 461 .dot = { .min = 25000, .max = 350000 }, 462 .vco = { .min = 1760000, .max = 3510000 }, 463 .n = { .min = 1, .max = 3 }, 464 .m = { .min = 79, .max = 126 }, 465 .m1 = { .min = 12, .max = 22 }, 466 .m2 = { .min = 5, .max = 9 }, 467 .p = { .min = 14, .max = 42 }, 468 .p1 = { .min = 2, .max = 6 }, 469 .p2 = { .dot_limit = 225000, 470 .p2_slow = 7, .p2_fast = 7 }, 471 }; 472 473 static const struct intel_limit intel_limits_vlv = { 474 /* 475 * These are the data rate limits (measured in fast clocks) 476 * since those are the strictest limits we have. The fast 477 * clock and actual rate limits are more relaxed, so checking 478 * them would make no difference. 479 */ 480 .dot = { .min = 25000 * 5, .max = 270000 * 5 }, 481 .vco = { .min = 4000000, .max = 6000000 }, 482 .n = { .min = 1, .max = 7 }, 483 .m1 = { .min = 2, .max = 3 }, 484 .m2 = { .min = 11, .max = 156 }, 485 .p1 = { .min = 2, .max = 3 }, 486 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ 487 }; 488 489 static const struct intel_limit intel_limits_chv = { 490 /* 491 * These are the data rate limits (measured in fast clocks) 492 * since those are the strictest limits we have. The fast 493 * clock and actual rate limits are more relaxed, so checking 494 * them would make no difference. 495 */ 496 .dot = { .min = 25000 * 5, .max = 540000 * 5}, 497 .vco = { .min = 4800000, .max = 6480000 }, 498 .n = { .min = 1, .max = 1 }, 499 .m1 = { .min = 2, .max = 2 }, 500 .m2 = { .min = 24 << 22, .max = 175 << 22 }, 501 .p1 = { .min = 2, .max = 4 }, 502 .p2 = { .p2_slow = 1, .p2_fast = 14 }, 503 }; 504 505 static const struct intel_limit intel_limits_bxt = { 506 /* FIXME: find real dot limits */ 507 .dot = { .min = 0, .max = INT_MAX }, 508 .vco = { .min = 4800000, .max = 6700000 }, 509 .n = { .min = 1, .max = 1 }, 510 .m1 = { .min = 2, .max = 2 }, 511 /* FIXME: find real m2 limits */ 512 .m2 = { .min = 2 << 22, .max = 255 << 22 }, 513 .p1 = { .min = 2, .max = 4 }, 514 .p2 = { .p2_slow = 1, .p2_fast = 20 }, 515 }; 516 517 /* WA Display #0827: Gen9:all */ 518 static void 519 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) 520 { 521 if (enable) 522 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 523 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); 524 else 525 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 526 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); 527 } 528 529 /* Wa_2006604312:icl */ 530 static void 531 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, 532 bool enable) 533 { 534 if (enable) 535 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 536 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); 537 else 538 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), 539 intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); 540 } 541 542 static bool 543 needs_modeset(const struct intel_crtc_state *state) 544 { 545 return drm_atomic_crtc_needs_modeset(&state->uapi); 546 } 547 548 bool 549 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) 550 { 551 return (crtc_state->master_transcoder != INVALID_TRANSCODER || 552 crtc_state->sync_mode_slaves_mask); 553 } 554 555 static bool 556 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) 557 { 558 return crtc_state->master_transcoder != INVALID_TRANSCODER; 559 } 560 561 /* 562 * Platform specific helpers to calculate the port PLL loopback- (clock.m), 563 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast 564 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. 565 * The helpers' return value is the rate of the clock that is fed to the 566 * display engine's pipe which can be the above fast dot clock rate or a 567 * divided-down version of it. 568 */ 569 /* m1 is reserved as 0 in Pineview, n is a ring counter */ 570 static int pnv_calc_dpll_params(int refclk, struct dpll *clock) 571 { 572 clock->m = clock->m2 + 2; 573 clock->p = clock->p1 * clock->p2; 574 if (WARN_ON(clock->n == 0 || clock->p == 0)) 575 return 0; 576 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 577 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 578 579 return clock->dot; 580 } 581 582 static u32 i9xx_dpll_compute_m(struct dpll *dpll) 583 { 584 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); 585 } 586 587 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock) 588 { 589 clock->m = i9xx_dpll_compute_m(clock); 590 clock->p = clock->p1 * clock->p2; 591 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) 592 return 0; 593 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); 594 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 595 596 return clock->dot; 597 } 598 599 static int vlv_calc_dpll_params(int refclk, struct dpll *clock) 600 { 601 clock->m = clock->m1 * clock->m2; 602 clock->p = clock->p1 * clock->p2; 603 if (WARN_ON(clock->n == 0 || clock->p == 0)) 604 return 0; 605 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 606 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 607 608 return clock->dot / 5; 609 } 610 611 int chv_calc_dpll_params(int refclk, struct dpll *clock) 612 { 613 clock->m = clock->m1 * clock->m2; 614 clock->p = clock->p1 * clock->p2; 615 if (WARN_ON(clock->n == 0 || clock->p == 0)) 616 return 0; 617 clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), 618 clock->n << 22); 619 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 620 621 return clock->dot / 5; 622 } 623 624 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0) 625 626 /* 627 * Returns whether the given set of divisors are valid for a given refclk with 628 * the given connectors. 629 */ 630 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv, 631 const struct intel_limit *limit, 632 const struct dpll *clock) 633 { 634 if (clock->n < limit->n.min || limit->n.max < clock->n) 635 INTELPllInvalid("n out of range\n"); 636 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) 637 INTELPllInvalid("p1 out of range\n"); 638 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) 639 INTELPllInvalid("m2 out of range\n"); 640 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) 641 INTELPllInvalid("m1 out of range\n"); 642 643 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) && 644 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv)) 645 if (clock->m1 <= clock->m2) 646 INTELPllInvalid("m1 <= m2\n"); 647 648 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 649 !IS_GEN9_LP(dev_priv)) { 650 if (clock->p < limit->p.min || limit->p.max < clock->p) 651 INTELPllInvalid("p out of range\n"); 652 if (clock->m < limit->m.min || limit->m.max < clock->m) 653 INTELPllInvalid("m out of range\n"); 654 } 655 656 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) 657 INTELPllInvalid("vco out of range\n"); 658 /* XXX: We may need to be checking "Dot clock" depending on the multiplier, 659 * connector, etc., rather than just a single range. 660 */ 661 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) 662 INTELPllInvalid("dot out of range\n"); 663 664 return true; 665 } 666 667 static int 668 i9xx_select_p2_div(const struct intel_limit *limit, 669 const struct intel_crtc_state *crtc_state, 670 int target) 671 { 672 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 673 674 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 675 /* 676 * For LVDS just rely on its current settings for dual-channel. 677 * We haven't figured out how to reliably set up different 678 * single/dual channel state, if we even can. 679 */ 680 if (intel_is_dual_link_lvds(dev_priv)) 681 return limit->p2.p2_fast; 682 else 683 return limit->p2.p2_slow; 684 } else { 685 if (target < limit->p2.dot_limit) 686 return limit->p2.p2_slow; 687 else 688 return limit->p2.p2_fast; 689 } 690 } 691 692 /* 693 * Returns a set of divisors for the desired target clock with the given 694 * refclk, or FALSE. The returned values represent the clock equation: 695 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 696 * 697 * Target and reference clocks are specified in kHz. 698 * 699 * If match_clock is provided, then best_clock P divider must match the P 700 * divider from @match_clock used for LVDS downclocking. 701 */ 702 static bool 703 i9xx_find_best_dpll(const struct intel_limit *limit, 704 struct intel_crtc_state *crtc_state, 705 int target, int refclk, struct dpll *match_clock, 706 struct dpll *best_clock) 707 { 708 struct drm_device *dev = crtc_state->uapi.crtc->dev; 709 struct dpll clock; 710 int err = target; 711 712 memset(best_clock, 0, sizeof(*best_clock)); 713 714 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 715 716 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 717 clock.m1++) { 718 for (clock.m2 = limit->m2.min; 719 clock.m2 <= limit->m2.max; clock.m2++) { 720 if (clock.m2 >= clock.m1) 721 break; 722 for (clock.n = limit->n.min; 723 clock.n <= limit->n.max; clock.n++) { 724 for (clock.p1 = limit->p1.min; 725 clock.p1 <= limit->p1.max; clock.p1++) { 726 int this_err; 727 728 i9xx_calc_dpll_params(refclk, &clock); 729 if (!intel_PLL_is_valid(to_i915(dev), 730 limit, 731 &clock)) 732 continue; 733 if (match_clock && 734 clock.p != match_clock->p) 735 continue; 736 737 this_err = abs(clock.dot - target); 738 if (this_err < err) { 739 *best_clock = clock; 740 err = this_err; 741 } 742 } 743 } 744 } 745 } 746 747 return (err != target); 748 } 749 750 /* 751 * Returns a set of divisors for the desired target clock with the given 752 * refclk, or FALSE. The returned values represent the clock equation: 753 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 754 * 755 * Target and reference clocks are specified in kHz. 756 * 757 * If match_clock is provided, then best_clock P divider must match the P 758 * divider from @match_clock used for LVDS downclocking. 759 */ 760 static bool 761 pnv_find_best_dpll(const struct intel_limit *limit, 762 struct intel_crtc_state *crtc_state, 763 int target, int refclk, struct dpll *match_clock, 764 struct dpll *best_clock) 765 { 766 struct drm_device *dev = crtc_state->uapi.crtc->dev; 767 struct dpll clock; 768 int err = target; 769 770 memset(best_clock, 0, sizeof(*best_clock)); 771 772 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 773 774 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 775 clock.m1++) { 776 for (clock.m2 = limit->m2.min; 777 clock.m2 <= limit->m2.max; clock.m2++) { 778 for (clock.n = limit->n.min; 779 clock.n <= limit->n.max; clock.n++) { 780 for (clock.p1 = limit->p1.min; 781 clock.p1 <= limit->p1.max; clock.p1++) { 782 int this_err; 783 784 pnv_calc_dpll_params(refclk, &clock); 785 if (!intel_PLL_is_valid(to_i915(dev), 786 limit, 787 &clock)) 788 continue; 789 if (match_clock && 790 clock.p != match_clock->p) 791 continue; 792 793 this_err = abs(clock.dot - target); 794 if (this_err < err) { 795 *best_clock = clock; 796 err = this_err; 797 } 798 } 799 } 800 } 801 } 802 803 return (err != target); 804 } 805 806 /* 807 * Returns a set of divisors for the desired target clock with the given 808 * refclk, or FALSE. The returned values represent the clock equation: 809 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 810 * 811 * Target and reference clocks are specified in kHz. 812 * 813 * If match_clock is provided, then best_clock P divider must match the P 814 * divider from @match_clock used for LVDS downclocking. 815 */ 816 static bool 817 g4x_find_best_dpll(const struct intel_limit *limit, 818 struct intel_crtc_state *crtc_state, 819 int target, int refclk, struct dpll *match_clock, 820 struct dpll *best_clock) 821 { 822 struct drm_device *dev = crtc_state->uapi.crtc->dev; 823 struct dpll clock; 824 int max_n; 825 bool found = false; 826 /* approximately equals target * 0.00585 */ 827 int err_most = (target >> 8) + (target >> 9); 828 829 memset(best_clock, 0, sizeof(*best_clock)); 830 831 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 832 833 max_n = limit->n.max; 834 /* based on hardware requirement, prefer smaller n to precision */ 835 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 836 /* based on hardware requirement, prefere larger m1,m2 */ 837 for (clock.m1 = limit->m1.max; 838 clock.m1 >= limit->m1.min; clock.m1--) { 839 for (clock.m2 = limit->m2.max; 840 clock.m2 >= limit->m2.min; clock.m2--) { 841 for (clock.p1 = limit->p1.max; 842 clock.p1 >= limit->p1.min; clock.p1--) { 843 int this_err; 844 845 i9xx_calc_dpll_params(refclk, &clock); 846 if (!intel_PLL_is_valid(to_i915(dev), 847 limit, 848 &clock)) 849 continue; 850 851 this_err = abs(clock.dot - target); 852 if (this_err < err_most) { 853 *best_clock = clock; 854 err_most = this_err; 855 max_n = clock.n; 856 found = true; 857 } 858 } 859 } 860 } 861 } 862 return found; 863 } 864 865 /* 866 * Check if the calculated PLL configuration is more optimal compared to the 867 * best configuration and error found so far. Return the calculated error. 868 */ 869 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, 870 const struct dpll *calculated_clock, 871 const struct dpll *best_clock, 872 unsigned int best_error_ppm, 873 unsigned int *error_ppm) 874 { 875 /* 876 * For CHV ignore the error and consider only the P value. 877 * Prefer a bigger P value based on HW requirements. 878 */ 879 if (IS_CHERRYVIEW(to_i915(dev))) { 880 *error_ppm = 0; 881 882 return calculated_clock->p > best_clock->p; 883 } 884 885 if (drm_WARN_ON_ONCE(dev, !target_freq)) 886 return false; 887 888 *error_ppm = div_u64(1000000ULL * 889 abs(target_freq - calculated_clock->dot), 890 target_freq); 891 /* 892 * Prefer a better P value over a better (smaller) error if the error 893 * is small. Ensure this preference for future configurations too by 894 * setting the error to 0. 895 */ 896 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { 897 *error_ppm = 0; 898 899 return true; 900 } 901 902 return *error_ppm + 10 < best_error_ppm; 903 } 904 905 /* 906 * Returns a set of divisors for the desired target clock with the given 907 * refclk, or FALSE. The returned values represent the clock equation: 908 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 909 */ 910 static bool 911 vlv_find_best_dpll(const struct intel_limit *limit, 912 struct intel_crtc_state *crtc_state, 913 int target, int refclk, struct dpll *match_clock, 914 struct dpll *best_clock) 915 { 916 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 917 struct drm_device *dev = crtc->base.dev; 918 struct dpll clock; 919 unsigned int bestppm = 1000000; 920 /* min update 19.2 MHz */ 921 int max_n = min(limit->n.max, refclk / 19200); 922 bool found = false; 923 924 target *= 5; /* fast clock */ 925 926 memset(best_clock, 0, sizeof(*best_clock)); 927 928 /* based on hardware requirement, prefer smaller n to precision */ 929 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 930 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 931 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; 932 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 933 clock.p = clock.p1 * clock.p2; 934 /* based on hardware requirement, prefer bigger m1,m2 values */ 935 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { 936 unsigned int ppm; 937 938 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, 939 refclk * clock.m1); 940 941 vlv_calc_dpll_params(refclk, &clock); 942 943 if (!intel_PLL_is_valid(to_i915(dev), 944 limit, 945 &clock)) 946 continue; 947 948 if (!vlv_PLL_is_optimal(dev, target, 949 &clock, 950 best_clock, 951 bestppm, &ppm)) 952 continue; 953 954 *best_clock = clock; 955 bestppm = ppm; 956 found = true; 957 } 958 } 959 } 960 } 961 962 return found; 963 } 964 965 /* 966 * Returns a set of divisors for the desired target clock with the given 967 * refclk, or FALSE. The returned values represent the clock equation: 968 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 969 */ 970 static bool 971 chv_find_best_dpll(const struct intel_limit *limit, 972 struct intel_crtc_state *crtc_state, 973 int target, int refclk, struct dpll *match_clock, 974 struct dpll *best_clock) 975 { 976 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 977 struct drm_device *dev = crtc->base.dev; 978 unsigned int best_error_ppm; 979 struct dpll clock; 980 u64 m2; 981 int found = false; 982 983 memset(best_clock, 0, sizeof(*best_clock)); 984 best_error_ppm = 1000000; 985 986 /* 987 * Based on hardware doc, the n always set to 1, and m1 always 988 * set to 2. If requires to support 200Mhz refclk, we need to 989 * revisit this because n may not 1 anymore. 990 */ 991 clock.n = 1, clock.m1 = 2; 992 target *= 5; /* fast clock */ 993 994 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 995 for (clock.p2 = limit->p2.p2_fast; 996 clock.p2 >= limit->p2.p2_slow; 997 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 998 unsigned int error_ppm; 999 1000 clock.p = clock.p1 * clock.p2; 1001 1002 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, 1003 refclk * clock.m1); 1004 1005 if (m2 > INT_MAX/clock.m1) 1006 continue; 1007 1008 clock.m2 = m2; 1009 1010 chv_calc_dpll_params(refclk, &clock); 1011 1012 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock)) 1013 continue; 1014 1015 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, 1016 best_error_ppm, &error_ppm)) 1017 continue; 1018 1019 *best_clock = clock; 1020 best_error_ppm = error_ppm; 1021 found = true; 1022 } 1023 } 1024 1025 return found; 1026 } 1027 1028 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, 1029 struct dpll *best_clock) 1030 { 1031 int refclk = 100000; 1032 const struct intel_limit *limit = &intel_limits_bxt; 1033 1034 return chv_find_best_dpll(limit, crtc_state, 1035 crtc_state->port_clock, refclk, 1036 NULL, best_clock); 1037 } 1038 1039 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 1040 enum pipe pipe) 1041 { 1042 i915_reg_t reg = PIPEDSL(pipe); 1043 u32 line1, line2; 1044 u32 line_mask; 1045 1046 if (IS_GEN(dev_priv, 2)) 1047 line_mask = DSL_LINEMASK_GEN2; 1048 else 1049 line_mask = DSL_LINEMASK_GEN3; 1050 1051 line1 = intel_de_read(dev_priv, reg) & line_mask; 1052 msleep(5); 1053 line2 = intel_de_read(dev_priv, reg) & line_mask; 1054 1055 return line1 != line2; 1056 } 1057 1058 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 1059 { 1060 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1061 enum pipe pipe = crtc->pipe; 1062 1063 /* Wait for the display line to settle/start moving */ 1064 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 1065 drm_err(&dev_priv->drm, 1066 "pipe %c scanline %s wait timed out\n", 1067 pipe_name(pipe), onoff(state)); 1068 } 1069 1070 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 1071 { 1072 wait_for_pipe_scanline_moving(crtc, false); 1073 } 1074 1075 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 1076 { 1077 wait_for_pipe_scanline_moving(crtc, true); 1078 } 1079 1080 static void 1081 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) 1082 { 1083 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1084 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1085 1086 if (INTEL_GEN(dev_priv) >= 4) { 1087 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1088 i915_reg_t reg = PIPECONF(cpu_transcoder); 1089 1090 /* Wait for the Pipe State to go off */ 1091 if (intel_de_wait_for_clear(dev_priv, reg, 1092 I965_PIPECONF_ACTIVE, 100)) 1093 drm_WARN(&dev_priv->drm, 1, 1094 "pipe_off wait timed out\n"); 1095 } else { 1096 intel_wait_for_pipe_scanline_stopped(crtc); 1097 } 1098 } 1099 1100 /* Only for pre-ILK configs */ 1101 void assert_pll(struct drm_i915_private *dev_priv, 1102 enum pipe pipe, bool state) 1103 { 1104 u32 val; 1105 bool cur_state; 1106 1107 val = intel_de_read(dev_priv, DPLL(pipe)); 1108 cur_state = !!(val & DPLL_VCO_ENABLE); 1109 I915_STATE_WARN(cur_state != state, 1110 "PLL state assertion failure (expected %s, current %s)\n", 1111 onoff(state), onoff(cur_state)); 1112 } 1113 1114 /* XXX: the dsi pll is shared between MIPI DSI ports */ 1115 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 1116 { 1117 u32 val; 1118 bool cur_state; 1119 1120 vlv_cck_get(dev_priv); 1121 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 1122 vlv_cck_put(dev_priv); 1123 1124 cur_state = val & DSI_PLL_VCO_EN; 1125 I915_STATE_WARN(cur_state != state, 1126 "DSI PLL state assertion failure (expected %s, current %s)\n", 1127 onoff(state), onoff(cur_state)); 1128 } 1129 1130 static void assert_fdi_tx(struct drm_i915_private *dev_priv, 1131 enum pipe pipe, bool state) 1132 { 1133 bool cur_state; 1134 1135 if (HAS_DDI(dev_priv)) { 1136 /* 1137 * DDI does not have a specific FDI_TX register. 1138 * 1139 * FDI is never fed from EDP transcoder 1140 * so pipe->transcoder cast is fine here. 1141 */ 1142 enum transcoder cpu_transcoder = (enum transcoder)pipe; 1143 u32 val = intel_de_read(dev_priv, 1144 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 1145 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 1146 } else { 1147 u32 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 1148 cur_state = !!(val & FDI_TX_ENABLE); 1149 } 1150 I915_STATE_WARN(cur_state != state, 1151 "FDI TX state assertion failure (expected %s, current %s)\n", 1152 onoff(state), onoff(cur_state)); 1153 } 1154 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 1155 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 1156 1157 static void assert_fdi_rx(struct drm_i915_private *dev_priv, 1158 enum pipe pipe, bool state) 1159 { 1160 u32 val; 1161 bool cur_state; 1162 1163 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 1164 cur_state = !!(val & FDI_RX_ENABLE); 1165 I915_STATE_WARN(cur_state != state, 1166 "FDI RX state assertion failure (expected %s, current %s)\n", 1167 onoff(state), onoff(cur_state)); 1168 } 1169 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 1170 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 1171 1172 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 1173 enum pipe pipe) 1174 { 1175 u32 val; 1176 1177 /* ILK FDI PLL is always enabled */ 1178 if (IS_GEN(dev_priv, 5)) 1179 return; 1180 1181 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 1182 if (HAS_DDI(dev_priv)) 1183 return; 1184 1185 val = intel_de_read(dev_priv, FDI_TX_CTL(pipe)); 1186 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 1187 } 1188 1189 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 1190 enum pipe pipe, bool state) 1191 { 1192 u32 val; 1193 bool cur_state; 1194 1195 val = intel_de_read(dev_priv, FDI_RX_CTL(pipe)); 1196 cur_state = !!(val & FDI_RX_PLL_ENABLE); 1197 I915_STATE_WARN(cur_state != state, 1198 "FDI RX PLL assertion failure (expected %s, current %s)\n", 1199 onoff(state), onoff(cur_state)); 1200 } 1201 1202 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) 1203 { 1204 i915_reg_t pp_reg; 1205 u32 val; 1206 enum pipe panel_pipe = INVALID_PIPE; 1207 bool locked = true; 1208 1209 if (drm_WARN_ON(&dev_priv->drm, HAS_DDI(dev_priv))) 1210 return; 1211 1212 if (HAS_PCH_SPLIT(dev_priv)) { 1213 u32 port_sel; 1214 1215 pp_reg = PP_CONTROL(0); 1216 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1217 1218 switch (port_sel) { 1219 case PANEL_PORT_SELECT_LVDS: 1220 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe); 1221 break; 1222 case PANEL_PORT_SELECT_DPA: 1223 intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe); 1224 break; 1225 case PANEL_PORT_SELECT_DPC: 1226 intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe); 1227 break; 1228 case PANEL_PORT_SELECT_DPD: 1229 intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe); 1230 break; 1231 default: 1232 MISSING_CASE(port_sel); 1233 break; 1234 } 1235 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1236 /* presumably write lock depends on pipe, not port select */ 1237 pp_reg = PP_CONTROL(pipe); 1238 panel_pipe = pipe; 1239 } else { 1240 u32 port_sel; 1241 1242 pp_reg = PP_CONTROL(0); 1243 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK; 1244 1245 drm_WARN_ON(&dev_priv->drm, 1246 port_sel != PANEL_PORT_SELECT_LVDS); 1247 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe); 1248 } 1249 1250 val = intel_de_read(dev_priv, pp_reg); 1251 if (!(val & PANEL_POWER_ON) || 1252 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 1253 locked = false; 1254 1255 I915_STATE_WARN(panel_pipe == pipe && locked, 1256 "panel assertion failure, pipe %c regs locked\n", 1257 pipe_name(pipe)); 1258 } 1259 1260 void assert_pipe(struct drm_i915_private *dev_priv, 1261 enum transcoder cpu_transcoder, bool state) 1262 { 1263 bool cur_state; 1264 enum intel_display_power_domain power_domain; 1265 intel_wakeref_t wakeref; 1266 1267 /* we keep both pipes enabled on 830 */ 1268 if (IS_I830(dev_priv)) 1269 state = true; 1270 1271 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 1272 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 1273 if (wakeref) { 1274 u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 1275 cur_state = !!(val & PIPECONF_ENABLE); 1276 1277 intel_display_power_put(dev_priv, power_domain, wakeref); 1278 } else { 1279 cur_state = false; 1280 } 1281 1282 I915_STATE_WARN(cur_state != state, 1283 "transcoder %s assertion failure (expected %s, current %s)\n", 1284 transcoder_name(cpu_transcoder), 1285 onoff(state), onoff(cur_state)); 1286 } 1287 1288 static void assert_plane(struct intel_plane *plane, bool state) 1289 { 1290 enum pipe pipe; 1291 bool cur_state; 1292 1293 cur_state = plane->get_hw_state(plane, &pipe); 1294 1295 I915_STATE_WARN(cur_state != state, 1296 "%s assertion failure (expected %s, current %s)\n", 1297 plane->base.name, onoff(state), onoff(cur_state)); 1298 } 1299 1300 #define assert_plane_enabled(p) assert_plane(p, true) 1301 #define assert_plane_disabled(p) assert_plane(p, false) 1302 1303 static void assert_planes_disabled(struct intel_crtc *crtc) 1304 { 1305 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1306 struct intel_plane *plane; 1307 1308 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) 1309 assert_plane_disabled(plane); 1310 } 1311 1312 static void assert_vblank_disabled(struct drm_crtc *crtc) 1313 { 1314 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0)) 1315 drm_crtc_vblank_put(crtc); 1316 } 1317 1318 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 1319 enum pipe pipe) 1320 { 1321 u32 val; 1322 bool enabled; 1323 1324 val = intel_de_read(dev_priv, PCH_TRANSCONF(pipe)); 1325 enabled = !!(val & TRANS_ENABLE); 1326 I915_STATE_WARN(enabled, 1327 "transcoder assertion failed, should be off on pipe %c but is still active\n", 1328 pipe_name(pipe)); 1329 } 1330 1331 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 1332 enum pipe pipe, enum port port, 1333 i915_reg_t dp_reg) 1334 { 1335 enum pipe port_pipe; 1336 bool state; 1337 1338 state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe); 1339 1340 I915_STATE_WARN(state && port_pipe == pipe, 1341 "PCH DP %c enabled on transcoder %c, should be disabled\n", 1342 port_name(port), pipe_name(pipe)); 1343 1344 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1345 "IBX PCH DP %c still using transcoder B\n", 1346 port_name(port)); 1347 } 1348 1349 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 1350 enum pipe pipe, enum port port, 1351 i915_reg_t hdmi_reg) 1352 { 1353 enum pipe port_pipe; 1354 bool state; 1355 1356 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe); 1357 1358 I915_STATE_WARN(state && port_pipe == pipe, 1359 "PCH HDMI %c enabled on transcoder %c, should be disabled\n", 1360 port_name(port), pipe_name(pipe)); 1361 1362 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B, 1363 "IBX PCH HDMI %c still using transcoder B\n", 1364 port_name(port)); 1365 } 1366 1367 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 1368 enum pipe pipe) 1369 { 1370 enum pipe port_pipe; 1371 1372 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B); 1373 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C); 1374 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D); 1375 1376 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) && 1377 port_pipe == pipe, 1378 "PCH VGA enabled on transcoder %c, should be disabled\n", 1379 pipe_name(pipe)); 1380 1381 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) && 1382 port_pipe == pipe, 1383 "PCH LVDS enabled on transcoder %c, should be disabled\n", 1384 pipe_name(pipe)); 1385 1386 /* PCH SDVOB multiplex with HDMIB */ 1387 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB); 1388 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC); 1389 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID); 1390 } 1391 1392 static void _vlv_enable_pll(struct intel_crtc *crtc, 1393 const struct intel_crtc_state *pipe_config) 1394 { 1395 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1396 enum pipe pipe = crtc->pipe; 1397 1398 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1399 intel_de_posting_read(dev_priv, DPLL(pipe)); 1400 udelay(150); 1401 1402 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1403 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe); 1404 } 1405 1406 static void vlv_enable_pll(struct intel_crtc *crtc, 1407 const struct intel_crtc_state *pipe_config) 1408 { 1409 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1410 enum pipe pipe = crtc->pipe; 1411 1412 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 1413 1414 /* PLL is protected by panel, make sure we can write it */ 1415 assert_panel_unlocked(dev_priv, pipe); 1416 1417 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1418 _vlv_enable_pll(crtc, pipe_config); 1419 1420 intel_de_write(dev_priv, DPLL_MD(pipe), 1421 pipe_config->dpll_hw_state.dpll_md); 1422 intel_de_posting_read(dev_priv, DPLL_MD(pipe)); 1423 } 1424 1425 1426 static void _chv_enable_pll(struct intel_crtc *crtc, 1427 const struct intel_crtc_state *pipe_config) 1428 { 1429 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1430 enum pipe pipe = crtc->pipe; 1431 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1432 u32 tmp; 1433 1434 vlv_dpio_get(dev_priv); 1435 1436 /* Enable back the 10bit clock to display controller */ 1437 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1438 tmp |= DPIO_DCLKP_EN; 1439 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp); 1440 1441 vlv_dpio_put(dev_priv); 1442 1443 /* 1444 * Need to wait > 100ns between dclkp clock enable bit and PLL enable. 1445 */ 1446 udelay(1); 1447 1448 /* Enable PLL */ 1449 intel_de_write(dev_priv, DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1450 1451 /* Check PLL is locked */ 1452 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1)) 1453 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe); 1454 } 1455 1456 static void chv_enable_pll(struct intel_crtc *crtc, 1457 const struct intel_crtc_state *pipe_config) 1458 { 1459 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1460 enum pipe pipe = crtc->pipe; 1461 1462 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 1463 1464 /* PLL is protected by panel, make sure we can write it */ 1465 assert_panel_unlocked(dev_priv, pipe); 1466 1467 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1468 _chv_enable_pll(crtc, pipe_config); 1469 1470 if (pipe != PIPE_A) { 1471 /* 1472 * WaPixelRepeatModeFixForC0:chv 1473 * 1474 * DPLLCMD is AWOL. Use chicken bits to propagate 1475 * the value from DPLLBMD to either pipe B or C. 1476 */ 1477 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); 1478 intel_de_write(dev_priv, DPLL_MD(PIPE_B), 1479 pipe_config->dpll_hw_state.dpll_md); 1480 intel_de_write(dev_priv, CBR4_VLV, 0); 1481 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md; 1482 1483 /* 1484 * DPLLB VGA mode also seems to cause problems. 1485 * We should always have it disabled. 1486 */ 1487 drm_WARN_ON(&dev_priv->drm, 1488 (intel_de_read(dev_priv, DPLL(PIPE_B)) & 1489 DPLL_VGA_MODE_DIS) == 0); 1490 } else { 1491 intel_de_write(dev_priv, DPLL_MD(pipe), 1492 pipe_config->dpll_hw_state.dpll_md); 1493 intel_de_posting_read(dev_priv, DPLL_MD(pipe)); 1494 } 1495 } 1496 1497 static bool i9xx_has_pps(struct drm_i915_private *dev_priv) 1498 { 1499 if (IS_I830(dev_priv)) 1500 return false; 1501 1502 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 1503 } 1504 1505 static void i9xx_enable_pll(struct intel_crtc *crtc, 1506 const struct intel_crtc_state *crtc_state) 1507 { 1508 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1509 i915_reg_t reg = DPLL(crtc->pipe); 1510 u32 dpll = crtc_state->dpll_hw_state.dpll; 1511 int i; 1512 1513 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 1514 1515 /* PLL is protected by panel, make sure we can write it */ 1516 if (i9xx_has_pps(dev_priv)) 1517 assert_panel_unlocked(dev_priv, crtc->pipe); 1518 1519 /* 1520 * Apparently we need to have VGA mode enabled prior to changing 1521 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 1522 * dividers, even though the register value does change. 1523 */ 1524 intel_de_write(dev_priv, reg, dpll & ~DPLL_VGA_MODE_DIS); 1525 intel_de_write(dev_priv, reg, dpll); 1526 1527 /* Wait for the clocks to stabilize. */ 1528 intel_de_posting_read(dev_priv, reg); 1529 udelay(150); 1530 1531 if (INTEL_GEN(dev_priv) >= 4) { 1532 intel_de_write(dev_priv, DPLL_MD(crtc->pipe), 1533 crtc_state->dpll_hw_state.dpll_md); 1534 } else { 1535 /* The pixel multiplier can only be updated once the 1536 * DPLL is enabled and the clocks are stable. 1537 * 1538 * So write it again. 1539 */ 1540 intel_de_write(dev_priv, reg, dpll); 1541 } 1542 1543 /* We do this three times for luck */ 1544 for (i = 0; i < 3; i++) { 1545 intel_de_write(dev_priv, reg, dpll); 1546 intel_de_posting_read(dev_priv, reg); 1547 udelay(150); /* wait for warmup */ 1548 } 1549 } 1550 1551 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) 1552 { 1553 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1554 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1555 enum pipe pipe = crtc->pipe; 1556 1557 /* Don't disable pipe or pipe PLLs if needed */ 1558 if (IS_I830(dev_priv)) 1559 return; 1560 1561 /* Make sure the pipe isn't still relying on us */ 1562 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 1563 1564 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 1565 intel_de_posting_read(dev_priv, DPLL(pipe)); 1566 } 1567 1568 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1569 { 1570 u32 val; 1571 1572 /* Make sure the pipe isn't still relying on us */ 1573 assert_pipe_disabled(dev_priv, (enum transcoder)pipe); 1574 1575 val = DPLL_INTEGRATED_REF_CLK_VLV | 1576 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1577 if (pipe != PIPE_A) 1578 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1579 1580 intel_de_write(dev_priv, DPLL(pipe), val); 1581 intel_de_posting_read(dev_priv, DPLL(pipe)); 1582 } 1583 1584 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1585 { 1586 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1587 u32 val; 1588 1589 /* Make sure the pipe isn't still relying on us */ 1590 assert_pipe_disabled(dev_priv, (enum transcoder)pipe); 1591 1592 val = DPLL_SSC_REF_CLK_CHV | 1593 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1594 if (pipe != PIPE_A) 1595 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1596 1597 intel_de_write(dev_priv, DPLL(pipe), val); 1598 intel_de_posting_read(dev_priv, DPLL(pipe)); 1599 1600 vlv_dpio_get(dev_priv); 1601 1602 /* Disable 10bit clock to display controller */ 1603 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1604 val &= ~DPIO_DCLKP_EN; 1605 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val); 1606 1607 vlv_dpio_put(dev_priv); 1608 } 1609 1610 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 1611 struct intel_digital_port *dport, 1612 unsigned int expected_mask) 1613 { 1614 u32 port_mask; 1615 i915_reg_t dpll_reg; 1616 1617 switch (dport->base.port) { 1618 case PORT_B: 1619 port_mask = DPLL_PORTB_READY_MASK; 1620 dpll_reg = DPLL(0); 1621 break; 1622 case PORT_C: 1623 port_mask = DPLL_PORTC_READY_MASK; 1624 dpll_reg = DPLL(0); 1625 expected_mask <<= 4; 1626 break; 1627 case PORT_D: 1628 port_mask = DPLL_PORTD_READY_MASK; 1629 dpll_reg = DPIO_PHY_STATUS; 1630 break; 1631 default: 1632 BUG(); 1633 } 1634 1635 if (intel_de_wait_for_register(dev_priv, dpll_reg, 1636 port_mask, expected_mask, 1000)) 1637 drm_WARN(&dev_priv->drm, 1, 1638 "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", 1639 dport->base.base.base.id, dport->base.base.name, 1640 intel_de_read(dev_priv, dpll_reg) & port_mask, 1641 expected_mask); 1642 } 1643 1644 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state) 1645 { 1646 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1647 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1648 enum pipe pipe = crtc->pipe; 1649 i915_reg_t reg; 1650 u32 val, pipeconf_val; 1651 1652 /* Make sure PCH DPLL is enabled */ 1653 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll); 1654 1655 /* FDI must be feeding us bits for PCH ports */ 1656 assert_fdi_tx_enabled(dev_priv, pipe); 1657 assert_fdi_rx_enabled(dev_priv, pipe); 1658 1659 if (HAS_PCH_CPT(dev_priv)) { 1660 reg = TRANS_CHICKEN2(pipe); 1661 val = intel_de_read(dev_priv, reg); 1662 /* 1663 * Workaround: Set the timing override bit 1664 * before enabling the pch transcoder. 1665 */ 1666 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1667 /* Configure frame start delay to match the CPU */ 1668 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 1669 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 1670 intel_de_write(dev_priv, reg, val); 1671 } 1672 1673 reg = PCH_TRANSCONF(pipe); 1674 val = intel_de_read(dev_priv, reg); 1675 pipeconf_val = intel_de_read(dev_priv, PIPECONF(pipe)); 1676 1677 if (HAS_PCH_IBX(dev_priv)) { 1678 /* Configure frame start delay to match the CPU */ 1679 val &= ~TRANS_FRAME_START_DELAY_MASK; 1680 val |= TRANS_FRAME_START_DELAY(0); 1681 1682 /* 1683 * Make the BPC in transcoder be consistent with 1684 * that in pipeconf reg. For HDMI we must use 8bpc 1685 * here for both 8bpc and 12bpc. 1686 */ 1687 val &= ~PIPECONF_BPC_MASK; 1688 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1689 val |= PIPECONF_8BPC; 1690 else 1691 val |= pipeconf_val & PIPECONF_BPC_MASK; 1692 } 1693 1694 val &= ~TRANS_INTERLACE_MASK; 1695 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) { 1696 if (HAS_PCH_IBX(dev_priv) && 1697 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 1698 val |= TRANS_LEGACY_INTERLACED_ILK; 1699 else 1700 val |= TRANS_INTERLACED; 1701 } else { 1702 val |= TRANS_PROGRESSIVE; 1703 } 1704 1705 intel_de_write(dev_priv, reg, val | TRANS_ENABLE); 1706 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100)) 1707 drm_err(&dev_priv->drm, "failed to enable transcoder %c\n", 1708 pipe_name(pipe)); 1709 } 1710 1711 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 1712 enum transcoder cpu_transcoder) 1713 { 1714 u32 val, pipeconf_val; 1715 1716 /* FDI must be feeding us bits for PCH ports */ 1717 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 1718 assert_fdi_rx_enabled(dev_priv, PIPE_A); 1719 1720 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 1721 /* Workaround: set timing override bit. */ 1722 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1723 /* Configure frame start delay to match the CPU */ 1724 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 1725 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 1726 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 1727 1728 val = TRANS_ENABLE; 1729 pipeconf_val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); 1730 1731 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 1732 PIPECONF_INTERLACED_ILK) 1733 val |= TRANS_INTERLACED; 1734 else 1735 val |= TRANS_PROGRESSIVE; 1736 1737 intel_de_write(dev_priv, LPT_TRANSCONF, val); 1738 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF, 1739 TRANS_STATE_ENABLE, 100)) 1740 drm_err(&dev_priv->drm, "Failed to enable PCH transcoder\n"); 1741 } 1742 1743 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv, 1744 enum pipe pipe) 1745 { 1746 i915_reg_t reg; 1747 u32 val; 1748 1749 /* FDI relies on the transcoder */ 1750 assert_fdi_tx_disabled(dev_priv, pipe); 1751 assert_fdi_rx_disabled(dev_priv, pipe); 1752 1753 /* Ports must be off as well */ 1754 assert_pch_ports_disabled(dev_priv, pipe); 1755 1756 reg = PCH_TRANSCONF(pipe); 1757 val = intel_de_read(dev_priv, reg); 1758 val &= ~TRANS_ENABLE; 1759 intel_de_write(dev_priv, reg, val); 1760 /* wait for PCH transcoder off, transcoder state */ 1761 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50)) 1762 drm_err(&dev_priv->drm, "failed to disable transcoder %c\n", 1763 pipe_name(pipe)); 1764 1765 if (HAS_PCH_CPT(dev_priv)) { 1766 /* Workaround: Clear the timing override chicken bit again. */ 1767 reg = TRANS_CHICKEN2(pipe); 1768 val = intel_de_read(dev_priv, reg); 1769 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1770 intel_de_write(dev_priv, reg, val); 1771 } 1772 } 1773 1774 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 1775 { 1776 u32 val; 1777 1778 val = intel_de_read(dev_priv, LPT_TRANSCONF); 1779 val &= ~TRANS_ENABLE; 1780 intel_de_write(dev_priv, LPT_TRANSCONF, val); 1781 /* wait for PCH transcoder off, transcoder state */ 1782 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF, 1783 TRANS_STATE_ENABLE, 50)) 1784 drm_err(&dev_priv->drm, "Failed to disable PCH transcoder\n"); 1785 1786 /* Workaround: clear timing override bit. */ 1787 val = intel_de_read(dev_priv, TRANS_CHICKEN2(PIPE_A)); 1788 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1789 intel_de_write(dev_priv, TRANS_CHICKEN2(PIPE_A), val); 1790 } 1791 1792 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc) 1793 { 1794 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1795 1796 if (HAS_PCH_LPT(dev_priv)) 1797 return PIPE_A; 1798 else 1799 return crtc->pipe; 1800 } 1801 1802 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state) 1803 { 1804 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1805 1806 /* 1807 * On i965gm the hardware frame counter reads 1808 * zero when the TV encoder is enabled :( 1809 */ 1810 if (IS_I965GM(dev_priv) && 1811 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT))) 1812 return 0; 1813 1814 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1815 return 0xffffffff; /* full 32 bit counter */ 1816 else if (INTEL_GEN(dev_priv) >= 3) 1817 return 0xffffff; /* only 24 bits of frame count */ 1818 else 1819 return 0; /* Gen2 doesn't have a hardware frame counter */ 1820 } 1821 1822 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state) 1823 { 1824 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1825 1826 assert_vblank_disabled(&crtc->base); 1827 drm_crtc_set_max_vblank_count(&crtc->base, 1828 intel_crtc_max_vblank_count(crtc_state)); 1829 drm_crtc_vblank_on(&crtc->base); 1830 } 1831 1832 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state) 1833 { 1834 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1835 1836 drm_crtc_vblank_off(&crtc->base); 1837 assert_vblank_disabled(&crtc->base); 1838 } 1839 1840 void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state) 1841 { 1842 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 1843 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1844 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 1845 enum pipe pipe = crtc->pipe; 1846 i915_reg_t reg; 1847 u32 val; 1848 1849 drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe)); 1850 1851 assert_planes_disabled(crtc); 1852 1853 /* 1854 * A pipe without a PLL won't actually be able to drive bits from 1855 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 1856 * need the check. 1857 */ 1858 if (HAS_GMCH(dev_priv)) { 1859 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 1860 assert_dsi_pll_enabled(dev_priv); 1861 else 1862 assert_pll_enabled(dev_priv, pipe); 1863 } else { 1864 if (new_crtc_state->has_pch_encoder) { 1865 /* if driving the PCH, we need FDI enabled */ 1866 assert_fdi_rx_pll_enabled(dev_priv, 1867 intel_crtc_pch_transcoder(crtc)); 1868 assert_fdi_tx_pll_enabled(dev_priv, 1869 (enum pipe) cpu_transcoder); 1870 } 1871 /* FIXME: assert CPU port conditions for SNB+ */ 1872 } 1873 1874 trace_intel_pipe_enable(crtc); 1875 1876 reg = PIPECONF(cpu_transcoder); 1877 val = intel_de_read(dev_priv, reg); 1878 if (val & PIPECONF_ENABLE) { 1879 /* we keep both pipes enabled on 830 */ 1880 drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv)); 1881 return; 1882 } 1883 1884 intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE); 1885 intel_de_posting_read(dev_priv, reg); 1886 1887 /* 1888 * Until the pipe starts PIPEDSL reads will return a stale value, 1889 * which causes an apparent vblank timestamp jump when PIPEDSL 1890 * resets to its proper value. That also messes up the frame count 1891 * when it's derived from the timestamps. So let's wait for the 1892 * pipe to start properly before we call drm_crtc_vblank_on() 1893 */ 1894 if (intel_crtc_max_vblank_count(new_crtc_state) == 0) 1895 intel_wait_for_pipe_scanline_moving(crtc); 1896 } 1897 1898 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state) 1899 { 1900 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 1901 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1902 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; 1903 enum pipe pipe = crtc->pipe; 1904 i915_reg_t reg; 1905 u32 val; 1906 1907 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe)); 1908 1909 /* 1910 * Make sure planes won't keep trying to pump pixels to us, 1911 * or we might hang the display. 1912 */ 1913 assert_planes_disabled(crtc); 1914 1915 trace_intel_pipe_disable(crtc); 1916 1917 reg = PIPECONF(cpu_transcoder); 1918 val = intel_de_read(dev_priv, reg); 1919 if ((val & PIPECONF_ENABLE) == 0) 1920 return; 1921 1922 /* 1923 * Double wide has implications for planes 1924 * so best keep it disabled when not needed. 1925 */ 1926 if (old_crtc_state->double_wide) 1927 val &= ~PIPECONF_DOUBLE_WIDE; 1928 1929 /* Don't disable pipe or pipe PLLs if needed */ 1930 if (!IS_I830(dev_priv)) 1931 val &= ~PIPECONF_ENABLE; 1932 1933 intel_de_write(dev_priv, reg, val); 1934 if ((val & PIPECONF_ENABLE) == 0) 1935 intel_wait_for_pipe_off(old_crtc_state); 1936 } 1937 1938 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv) 1939 { 1940 return IS_GEN(dev_priv, 2) ? 2048 : 4096; 1941 } 1942 1943 static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane) 1944 { 1945 if (!is_ccs_modifier(fb->modifier)) 1946 return false; 1947 1948 return plane >= fb->format->num_planes / 2; 1949 } 1950 1951 static bool is_gen12_ccs_modifier(u64 modifier) 1952 { 1953 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS || 1954 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS; 1955 1956 } 1957 1958 static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane) 1959 { 1960 return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane); 1961 } 1962 1963 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane) 1964 { 1965 if (is_ccs_modifier(fb->modifier)) 1966 return is_ccs_plane(fb, plane); 1967 1968 return plane == 1; 1969 } 1970 1971 static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane) 1972 { 1973 WARN_ON(!is_ccs_modifier(fb->modifier) || 1974 (main_plane && main_plane >= fb->format->num_planes / 2)); 1975 1976 return fb->format->num_planes / 2 + main_plane; 1977 } 1978 1979 static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane) 1980 { 1981 WARN_ON(!is_ccs_modifier(fb->modifier) || 1982 ccs_plane < fb->format->num_planes / 2); 1983 1984 return ccs_plane - fb->format->num_planes / 2; 1985 } 1986 1987 /* Return either the main plane's CCS or - if not a CCS FB - UV plane */ 1988 int intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane) 1989 { 1990 if (is_ccs_modifier(fb->modifier)) 1991 return main_to_ccs_plane(fb, main_plane); 1992 1993 return 1; 1994 } 1995 1996 bool 1997 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info, 1998 uint64_t modifier) 1999 { 2000 return info->is_yuv && 2001 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2); 2002 } 2003 2004 static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb, 2005 int color_plane) 2006 { 2007 return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) && 2008 color_plane == 1; 2009 } 2010 2011 static unsigned int 2012 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) 2013 { 2014 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2015 unsigned int cpp = fb->format->cpp[color_plane]; 2016 2017 switch (fb->modifier) { 2018 case DRM_FORMAT_MOD_LINEAR: 2019 return intel_tile_size(dev_priv); 2020 case I915_FORMAT_MOD_X_TILED: 2021 if (IS_GEN(dev_priv, 2)) 2022 return 128; 2023 else 2024 return 512; 2025 case I915_FORMAT_MOD_Y_TILED_CCS: 2026 if (is_ccs_plane(fb, color_plane)) 2027 return 128; 2028 /* fall through */ 2029 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2030 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2031 if (is_ccs_plane(fb, color_plane)) 2032 return 64; 2033 /* fall through */ 2034 case I915_FORMAT_MOD_Y_TILED: 2035 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv)) 2036 return 128; 2037 else 2038 return 512; 2039 case I915_FORMAT_MOD_Yf_TILED_CCS: 2040 if (is_ccs_plane(fb, color_plane)) 2041 return 128; 2042 /* fall through */ 2043 case I915_FORMAT_MOD_Yf_TILED: 2044 switch (cpp) { 2045 case 1: 2046 return 64; 2047 case 2: 2048 case 4: 2049 return 128; 2050 case 8: 2051 case 16: 2052 return 256; 2053 default: 2054 MISSING_CASE(cpp); 2055 return cpp; 2056 } 2057 break; 2058 default: 2059 MISSING_CASE(fb->modifier); 2060 return cpp; 2061 } 2062 } 2063 2064 static unsigned int 2065 intel_tile_height(const struct drm_framebuffer *fb, int color_plane) 2066 { 2067 if (is_gen12_ccs_plane(fb, color_plane)) 2068 return 1; 2069 2070 return intel_tile_size(to_i915(fb->dev)) / 2071 intel_tile_width_bytes(fb, color_plane); 2072 } 2073 2074 /* Return the tile dimensions in pixel units */ 2075 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane, 2076 unsigned int *tile_width, 2077 unsigned int *tile_height) 2078 { 2079 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane); 2080 unsigned int cpp = fb->format->cpp[color_plane]; 2081 2082 *tile_width = tile_width_bytes / cpp; 2083 *tile_height = intel_tile_height(fb, color_plane); 2084 } 2085 2086 static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb, 2087 int color_plane) 2088 { 2089 unsigned int tile_width, tile_height; 2090 2091 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2092 2093 return fb->pitches[color_plane] * tile_height; 2094 } 2095 2096 unsigned int 2097 intel_fb_align_height(const struct drm_framebuffer *fb, 2098 int color_plane, unsigned int height) 2099 { 2100 unsigned int tile_height = intel_tile_height(fb, color_plane); 2101 2102 return ALIGN(height, tile_height); 2103 } 2104 2105 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 2106 { 2107 unsigned int size = 0; 2108 int i; 2109 2110 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 2111 size += rot_info->plane[i].width * rot_info->plane[i].height; 2112 2113 return size; 2114 } 2115 2116 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) 2117 { 2118 unsigned int size = 0; 2119 int i; 2120 2121 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 2122 size += rem_info->plane[i].width * rem_info->plane[i].height; 2123 2124 return size; 2125 } 2126 2127 static void 2128 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, 2129 const struct drm_framebuffer *fb, 2130 unsigned int rotation) 2131 { 2132 view->type = I915_GGTT_VIEW_NORMAL; 2133 if (drm_rotation_90_or_270(rotation)) { 2134 view->type = I915_GGTT_VIEW_ROTATED; 2135 view->rotated = to_intel_framebuffer(fb)->rot_info; 2136 } 2137 } 2138 2139 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv) 2140 { 2141 if (IS_I830(dev_priv)) 2142 return 16 * 1024; 2143 else if (IS_I85X(dev_priv)) 2144 return 256; 2145 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) 2146 return 32; 2147 else 2148 return 4 * 1024; 2149 } 2150 2151 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 2152 { 2153 if (INTEL_GEN(dev_priv) >= 9) 2154 return 256 * 1024; 2155 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || 2156 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 2157 return 128 * 1024; 2158 else if (INTEL_GEN(dev_priv) >= 4) 2159 return 4 * 1024; 2160 else 2161 return 0; 2162 } 2163 2164 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, 2165 int color_plane) 2166 { 2167 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2168 2169 /* AUX_DIST needs only 4K alignment */ 2170 if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) || 2171 is_ccs_plane(fb, color_plane)) 2172 return 4096; 2173 2174 switch (fb->modifier) { 2175 case DRM_FORMAT_MOD_LINEAR: 2176 return intel_linear_alignment(dev_priv); 2177 case I915_FORMAT_MOD_X_TILED: 2178 if (INTEL_GEN(dev_priv) >= 9) 2179 return 256 * 1024; 2180 return 0; 2181 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2182 if (is_semiplanar_uv_plane(fb, color_plane)) 2183 return intel_tile_row_size(fb, color_plane); 2184 /* Fall-through */ 2185 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2186 return 16 * 1024; 2187 case I915_FORMAT_MOD_Y_TILED_CCS: 2188 case I915_FORMAT_MOD_Yf_TILED_CCS: 2189 case I915_FORMAT_MOD_Y_TILED: 2190 if (INTEL_GEN(dev_priv) >= 12 && 2191 is_semiplanar_uv_plane(fb, color_plane)) 2192 return intel_tile_row_size(fb, color_plane); 2193 /* Fall-through */ 2194 case I915_FORMAT_MOD_Yf_TILED: 2195 return 1 * 1024 * 1024; 2196 default: 2197 MISSING_CASE(fb->modifier); 2198 return 0; 2199 } 2200 } 2201 2202 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) 2203 { 2204 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2205 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2206 2207 return INTEL_GEN(dev_priv) < 4 || 2208 (plane->has_fbc && 2209 plane_state->view.type == I915_GGTT_VIEW_NORMAL); 2210 } 2211 2212 struct i915_vma * 2213 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 2214 const struct i915_ggtt_view *view, 2215 bool uses_fence, 2216 unsigned long *out_flags) 2217 { 2218 struct drm_device *dev = fb->dev; 2219 struct drm_i915_private *dev_priv = to_i915(dev); 2220 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 2221 intel_wakeref_t wakeref; 2222 struct i915_vma *vma; 2223 unsigned int pinctl; 2224 u32 alignment; 2225 2226 if (drm_WARN_ON(dev, !i915_gem_object_is_framebuffer(obj))) 2227 return ERR_PTR(-EINVAL); 2228 2229 alignment = intel_surf_alignment(fb, 0); 2230 if (drm_WARN_ON(dev, alignment && !is_power_of_2(alignment))) 2231 return ERR_PTR(-EINVAL); 2232 2233 /* Note that the w/a also requires 64 PTE of padding following the 2234 * bo. We currently fill all unused PTE with the shadow page and so 2235 * we should always have valid PTE following the scanout preventing 2236 * the VT-d warning. 2237 */ 2238 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024) 2239 alignment = 256 * 1024; 2240 2241 /* 2242 * Global gtt pte registers are special registers which actually forward 2243 * writes to a chunk of system memory. Which means that there is no risk 2244 * that the register values disappear as soon as we call 2245 * intel_runtime_pm_put(), so it is correct to wrap only the 2246 * pin/unpin/fence and not more. 2247 */ 2248 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 2249 2250 atomic_inc(&dev_priv->gpu_error.pending_fb_pin); 2251 2252 /* 2253 * Valleyview is definitely limited to scanning out the first 2254 * 512MiB. Lets presume this behaviour was inherited from the 2255 * g4x display engine and that all earlier gen are similarly 2256 * limited. Testing suggests that it is a little more 2257 * complicated than this. For example, Cherryview appears quite 2258 * happy to scanout from anywhere within its global aperture. 2259 */ 2260 pinctl = 0; 2261 if (HAS_GMCH(dev_priv)) 2262 pinctl |= PIN_MAPPABLE; 2263 2264 vma = i915_gem_object_pin_to_display_plane(obj, 2265 alignment, view, pinctl); 2266 if (IS_ERR(vma)) 2267 goto err; 2268 2269 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) { 2270 int ret; 2271 2272 /* 2273 * Install a fence for tiled scan-out. Pre-i965 always needs a 2274 * fence, whereas 965+ only requires a fence if using 2275 * framebuffer compression. For simplicity, we always, when 2276 * possible, install a fence as the cost is not that onerous. 2277 * 2278 * If we fail to fence the tiled scanout, then either the 2279 * modeset will reject the change (which is highly unlikely as 2280 * the affected systems, all but one, do not have unmappable 2281 * space) or we will not be able to enable full powersaving 2282 * techniques (also likely not to apply due to various limits 2283 * FBC and the like impose on the size of the buffer, which 2284 * presumably we violated anyway with this unmappable buffer). 2285 * Anyway, it is presumably better to stumble onwards with 2286 * something and try to run the system in a "less than optimal" 2287 * mode that matches the user configuration. 2288 */ 2289 ret = i915_vma_pin_fence(vma); 2290 if (ret != 0 && INTEL_GEN(dev_priv) < 4) { 2291 i915_gem_object_unpin_from_display_plane(vma); 2292 vma = ERR_PTR(ret); 2293 goto err; 2294 } 2295 2296 if (ret == 0 && vma->fence) 2297 *out_flags |= PLANE_HAS_FENCE; 2298 } 2299 2300 i915_vma_get(vma); 2301 err: 2302 atomic_dec(&dev_priv->gpu_error.pending_fb_pin); 2303 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 2304 return vma; 2305 } 2306 2307 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags) 2308 { 2309 i915_gem_object_lock(vma->obj); 2310 if (flags & PLANE_HAS_FENCE) 2311 i915_vma_unpin_fence(vma); 2312 i915_gem_object_unpin_from_display_plane(vma); 2313 i915_gem_object_unlock(vma->obj); 2314 2315 i915_vma_put(vma); 2316 } 2317 2318 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane, 2319 unsigned int rotation) 2320 { 2321 if (drm_rotation_90_or_270(rotation)) 2322 return to_intel_framebuffer(fb)->rotated[color_plane].pitch; 2323 else 2324 return fb->pitches[color_plane]; 2325 } 2326 2327 /* 2328 * Convert the x/y offsets into a linear offset. 2329 * Only valid with 0/180 degree rotation, which is fine since linear 2330 * offset is only used with linear buffers on pre-hsw and tiled buffers 2331 * with gen2/3, and 90/270 degree rotations isn't supported on any of them. 2332 */ 2333 u32 intel_fb_xy_to_linear(int x, int y, 2334 const struct intel_plane_state *state, 2335 int color_plane) 2336 { 2337 const struct drm_framebuffer *fb = state->hw.fb; 2338 unsigned int cpp = fb->format->cpp[color_plane]; 2339 unsigned int pitch = state->color_plane[color_plane].stride; 2340 2341 return y * pitch + x * cpp; 2342 } 2343 2344 /* 2345 * Add the x/y offsets derived from fb->offsets[] to the user 2346 * specified plane src x/y offsets. The resulting x/y offsets 2347 * specify the start of scanout from the beginning of the gtt mapping. 2348 */ 2349 void intel_add_fb_offsets(int *x, int *y, 2350 const struct intel_plane_state *state, 2351 int color_plane) 2352 2353 { 2354 *x += state->color_plane[color_plane].x; 2355 *y += state->color_plane[color_plane].y; 2356 } 2357 2358 static u32 intel_adjust_tile_offset(int *x, int *y, 2359 unsigned int tile_width, 2360 unsigned int tile_height, 2361 unsigned int tile_size, 2362 unsigned int pitch_tiles, 2363 u32 old_offset, 2364 u32 new_offset) 2365 { 2366 unsigned int pitch_pixels = pitch_tiles * tile_width; 2367 unsigned int tiles; 2368 2369 WARN_ON(old_offset & (tile_size - 1)); 2370 WARN_ON(new_offset & (tile_size - 1)); 2371 WARN_ON(new_offset > old_offset); 2372 2373 tiles = (old_offset - new_offset) / tile_size; 2374 2375 *y += tiles / pitch_tiles * tile_height; 2376 *x += tiles % pitch_tiles * tile_width; 2377 2378 /* minimize x in case it got needlessly big */ 2379 *y += *x / pitch_pixels * tile_height; 2380 *x %= pitch_pixels; 2381 2382 return new_offset; 2383 } 2384 2385 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane) 2386 { 2387 return fb->modifier == DRM_FORMAT_MOD_LINEAR || 2388 is_gen12_ccs_plane(fb, color_plane); 2389 } 2390 2391 static u32 intel_adjust_aligned_offset(int *x, int *y, 2392 const struct drm_framebuffer *fb, 2393 int color_plane, 2394 unsigned int rotation, 2395 unsigned int pitch, 2396 u32 old_offset, u32 new_offset) 2397 { 2398 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2399 unsigned int cpp = fb->format->cpp[color_plane]; 2400 2401 drm_WARN_ON(&dev_priv->drm, new_offset > old_offset); 2402 2403 if (!is_surface_linear(fb, color_plane)) { 2404 unsigned int tile_size, tile_width, tile_height; 2405 unsigned int pitch_tiles; 2406 2407 tile_size = intel_tile_size(dev_priv); 2408 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2409 2410 if (drm_rotation_90_or_270(rotation)) { 2411 pitch_tiles = pitch / tile_height; 2412 swap(tile_width, tile_height); 2413 } else { 2414 pitch_tiles = pitch / (tile_width * cpp); 2415 } 2416 2417 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2418 tile_size, pitch_tiles, 2419 old_offset, new_offset); 2420 } else { 2421 old_offset += *y * pitch + *x * cpp; 2422 2423 *y = (old_offset - new_offset) / pitch; 2424 *x = ((old_offset - new_offset) - *y * pitch) / cpp; 2425 } 2426 2427 return new_offset; 2428 } 2429 2430 /* 2431 * Adjust the tile offset by moving the difference into 2432 * the x/y offsets. 2433 */ 2434 static u32 intel_plane_adjust_aligned_offset(int *x, int *y, 2435 const struct intel_plane_state *state, 2436 int color_plane, 2437 u32 old_offset, u32 new_offset) 2438 { 2439 return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane, 2440 state->hw.rotation, 2441 state->color_plane[color_plane].stride, 2442 old_offset, new_offset); 2443 } 2444 2445 /* 2446 * Computes the aligned offset to the base tile and adjusts 2447 * x, y. bytes per pixel is assumed to be a power-of-two. 2448 * 2449 * In the 90/270 rotated case, x and y are assumed 2450 * to be already rotated to match the rotated GTT view, and 2451 * pitch is the tile_height aligned framebuffer height. 2452 * 2453 * This function is used when computing the derived information 2454 * under intel_framebuffer, so using any of that information 2455 * here is not allowed. Anything under drm_framebuffer can be 2456 * used. This is why the user has to pass in the pitch since it 2457 * is specified in the rotated orientation. 2458 */ 2459 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv, 2460 int *x, int *y, 2461 const struct drm_framebuffer *fb, 2462 int color_plane, 2463 unsigned int pitch, 2464 unsigned int rotation, 2465 u32 alignment) 2466 { 2467 unsigned int cpp = fb->format->cpp[color_plane]; 2468 u32 offset, offset_aligned; 2469 2470 if (!is_surface_linear(fb, color_plane)) { 2471 unsigned int tile_size, tile_width, tile_height; 2472 unsigned int tile_rows, tiles, pitch_tiles; 2473 2474 tile_size = intel_tile_size(dev_priv); 2475 intel_tile_dims(fb, color_plane, &tile_width, &tile_height); 2476 2477 if (drm_rotation_90_or_270(rotation)) { 2478 pitch_tiles = pitch / tile_height; 2479 swap(tile_width, tile_height); 2480 } else { 2481 pitch_tiles = pitch / (tile_width * cpp); 2482 } 2483 2484 tile_rows = *y / tile_height; 2485 *y %= tile_height; 2486 2487 tiles = *x / tile_width; 2488 *x %= tile_width; 2489 2490 offset = (tile_rows * pitch_tiles + tiles) * tile_size; 2491 2492 offset_aligned = offset; 2493 if (alignment) 2494 offset_aligned = rounddown(offset_aligned, alignment); 2495 2496 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2497 tile_size, pitch_tiles, 2498 offset, offset_aligned); 2499 } else { 2500 offset = *y * pitch + *x * cpp; 2501 offset_aligned = offset; 2502 if (alignment) { 2503 offset_aligned = rounddown(offset_aligned, alignment); 2504 *y = (offset % alignment) / pitch; 2505 *x = ((offset % alignment) - *y * pitch) / cpp; 2506 } else { 2507 *y = *x = 0; 2508 } 2509 } 2510 2511 return offset_aligned; 2512 } 2513 2514 static u32 intel_plane_compute_aligned_offset(int *x, int *y, 2515 const struct intel_plane_state *state, 2516 int color_plane) 2517 { 2518 struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane); 2519 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 2520 const struct drm_framebuffer *fb = state->hw.fb; 2521 unsigned int rotation = state->hw.rotation; 2522 int pitch = state->color_plane[color_plane].stride; 2523 u32 alignment; 2524 2525 if (intel_plane->id == PLANE_CURSOR) 2526 alignment = intel_cursor_alignment(dev_priv); 2527 else 2528 alignment = intel_surf_alignment(fb, color_plane); 2529 2530 return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane, 2531 pitch, rotation, alignment); 2532 } 2533 2534 /* Convert the fb->offset[] into x/y offsets */ 2535 static int intel_fb_offset_to_xy(int *x, int *y, 2536 const struct drm_framebuffer *fb, 2537 int color_plane) 2538 { 2539 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2540 unsigned int height; 2541 u32 alignment; 2542 2543 if (INTEL_GEN(dev_priv) >= 12 && 2544 is_semiplanar_uv_plane(fb, color_plane)) 2545 alignment = intel_tile_row_size(fb, color_plane); 2546 else if (fb->modifier != DRM_FORMAT_MOD_LINEAR) 2547 alignment = intel_tile_size(dev_priv); 2548 else 2549 alignment = 0; 2550 2551 if (alignment != 0 && fb->offsets[color_plane] % alignment) { 2552 drm_dbg_kms(&dev_priv->drm, 2553 "Misaligned offset 0x%08x for color plane %d\n", 2554 fb->offsets[color_plane], color_plane); 2555 return -EINVAL; 2556 } 2557 2558 height = drm_framebuffer_plane_height(fb->height, fb, color_plane); 2559 height = ALIGN(height, intel_tile_height(fb, color_plane)); 2560 2561 /* Catch potential overflows early */ 2562 if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]), 2563 fb->offsets[color_plane])) { 2564 drm_dbg_kms(&dev_priv->drm, 2565 "Bad offset 0x%08x or pitch %d for color plane %d\n", 2566 fb->offsets[color_plane], fb->pitches[color_plane], 2567 color_plane); 2568 return -ERANGE; 2569 } 2570 2571 *x = 0; 2572 *y = 0; 2573 2574 intel_adjust_aligned_offset(x, y, 2575 fb, color_plane, DRM_MODE_ROTATE_0, 2576 fb->pitches[color_plane], 2577 fb->offsets[color_plane], 0); 2578 2579 return 0; 2580 } 2581 2582 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) 2583 { 2584 switch (fb_modifier) { 2585 case I915_FORMAT_MOD_X_TILED: 2586 return I915_TILING_X; 2587 case I915_FORMAT_MOD_Y_TILED: 2588 case I915_FORMAT_MOD_Y_TILED_CCS: 2589 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2590 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2591 return I915_TILING_Y; 2592 default: 2593 return I915_TILING_NONE; 2594 } 2595 } 2596 2597 /* 2598 * From the Sky Lake PRM: 2599 * "The Color Control Surface (CCS) contains the compression status of 2600 * the cache-line pairs. The compression state of the cache-line pair 2601 * is specified by 2 bits in the CCS. Each CCS cache-line represents 2602 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled 2603 * cache-line-pairs. CCS is always Y tiled." 2604 * 2605 * Since cache line pairs refers to horizontally adjacent cache lines, 2606 * each cache line in the CCS corresponds to an area of 32x16 cache 2607 * lines on the main surface. Since each pixel is 4 bytes, this gives 2608 * us a ratio of one byte in the CCS for each 8x16 pixels in the 2609 * main surface. 2610 */ 2611 static const struct drm_format_info skl_ccs_formats[] = { 2612 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 2613 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2614 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 2615 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, 2616 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 2617 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2618 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 2619 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, 2620 }; 2621 2622 /* 2623 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the 2624 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles 2625 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of 2626 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in 2627 * the main surface. 2628 */ 2629 static const struct drm_format_info gen12_ccs_formats[] = { 2630 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, 2631 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2632 .hsub = 1, .vsub = 1, }, 2633 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, 2634 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2635 .hsub = 1, .vsub = 1, }, 2636 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, 2637 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2638 .hsub = 1, .vsub = 1, .has_alpha = true }, 2639 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, 2640 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2641 .hsub = 1, .vsub = 1, .has_alpha = true }, 2642 { .format = DRM_FORMAT_YUYV, .num_planes = 2, 2643 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2644 .hsub = 2, .vsub = 1, .is_yuv = true }, 2645 { .format = DRM_FORMAT_YVYU, .num_planes = 2, 2646 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2647 .hsub = 2, .vsub = 1, .is_yuv = true }, 2648 { .format = DRM_FORMAT_UYVY, .num_planes = 2, 2649 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2650 .hsub = 2, .vsub = 1, .is_yuv = true }, 2651 { .format = DRM_FORMAT_VYUY, .num_planes = 2, 2652 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, 2653 .hsub = 2, .vsub = 1, .is_yuv = true }, 2654 { .format = DRM_FORMAT_NV12, .num_planes = 4, 2655 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 }, 2656 .hsub = 2, .vsub = 2, .is_yuv = true }, 2657 { .format = DRM_FORMAT_P010, .num_planes = 4, 2658 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2659 .hsub = 2, .vsub = 2, .is_yuv = true }, 2660 { .format = DRM_FORMAT_P012, .num_planes = 4, 2661 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2662 .hsub = 2, .vsub = 2, .is_yuv = true }, 2663 { .format = DRM_FORMAT_P016, .num_planes = 4, 2664 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, 2665 .hsub = 2, .vsub = 2, .is_yuv = true }, 2666 }; 2667 2668 static const struct drm_format_info * 2669 lookup_format_info(const struct drm_format_info formats[], 2670 int num_formats, u32 format) 2671 { 2672 int i; 2673 2674 for (i = 0; i < num_formats; i++) { 2675 if (formats[i].format == format) 2676 return &formats[i]; 2677 } 2678 2679 return NULL; 2680 } 2681 2682 static const struct drm_format_info * 2683 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd) 2684 { 2685 switch (cmd->modifier[0]) { 2686 case I915_FORMAT_MOD_Y_TILED_CCS: 2687 case I915_FORMAT_MOD_Yf_TILED_CCS: 2688 return lookup_format_info(skl_ccs_formats, 2689 ARRAY_SIZE(skl_ccs_formats), 2690 cmd->pixel_format); 2691 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 2692 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 2693 return lookup_format_info(gen12_ccs_formats, 2694 ARRAY_SIZE(gen12_ccs_formats), 2695 cmd->pixel_format); 2696 default: 2697 return NULL; 2698 } 2699 } 2700 2701 bool is_ccs_modifier(u64 modifier) 2702 { 2703 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS || 2704 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS || 2705 modifier == I915_FORMAT_MOD_Y_TILED_CCS || 2706 modifier == I915_FORMAT_MOD_Yf_TILED_CCS; 2707 } 2708 2709 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane) 2710 { 2711 return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)], 2712 512) * 64; 2713 } 2714 2715 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, 2716 u32 pixel_format, u64 modifier) 2717 { 2718 struct intel_crtc *crtc; 2719 struct intel_plane *plane; 2720 2721 /* 2722 * We assume the primary plane for pipe A has 2723 * the highest stride limits of them all. 2724 */ 2725 crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_A); 2726 if (!crtc) 2727 return 0; 2728 2729 plane = to_intel_plane(crtc->base.primary); 2730 2731 return plane->max_stride(plane, pixel_format, modifier, 2732 DRM_MODE_ROTATE_0); 2733 } 2734 2735 static 2736 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, 2737 u32 pixel_format, u64 modifier) 2738 { 2739 /* 2740 * Arbitrary limit for gen4+ chosen to match the 2741 * render engine max stride. 2742 * 2743 * The new CCS hash mode makes remapping impossible 2744 */ 2745 if (!is_ccs_modifier(modifier)) { 2746 if (INTEL_GEN(dev_priv) >= 7) 2747 return 256*1024; 2748 else if (INTEL_GEN(dev_priv) >= 4) 2749 return 128*1024; 2750 } 2751 2752 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); 2753 } 2754 2755 static u32 2756 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) 2757 { 2758 struct drm_i915_private *dev_priv = to_i915(fb->dev); 2759 u32 tile_width; 2760 2761 if (is_surface_linear(fb, color_plane)) { 2762 u32 max_stride = intel_plane_fb_max_stride(dev_priv, 2763 fb->format->format, 2764 fb->modifier); 2765 2766 /* 2767 * To make remapping with linear generally feasible 2768 * we need the stride to be page aligned. 2769 */ 2770 if (fb->pitches[color_plane] > max_stride && 2771 !is_ccs_modifier(fb->modifier)) 2772 return intel_tile_size(dev_priv); 2773 else 2774 return 64; 2775 } 2776 2777 tile_width = intel_tile_width_bytes(fb, color_plane); 2778 if (is_ccs_modifier(fb->modifier)) { 2779 /* 2780 * Display WA #0531: skl,bxt,kbl,glk 2781 * 2782 * Render decompression and plane width > 3840 2783 * combined with horizontal panning requires the 2784 * plane stride to be a multiple of 4. We'll just 2785 * require the entire fb to accommodate that to avoid 2786 * potential runtime errors at plane configuration time. 2787 */ 2788 if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840) 2789 tile_width *= 4; 2790 /* 2791 * The main surface pitch must be padded to a multiple of four 2792 * tile widths. 2793 */ 2794 else if (INTEL_GEN(dev_priv) >= 12) 2795 tile_width *= 4; 2796 } 2797 return tile_width; 2798 } 2799 2800 bool intel_plane_can_remap(const struct intel_plane_state *plane_state) 2801 { 2802 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2803 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 2804 const struct drm_framebuffer *fb = plane_state->hw.fb; 2805 int i; 2806 2807 /* We don't want to deal with remapping with cursors */ 2808 if (plane->id == PLANE_CURSOR) 2809 return false; 2810 2811 /* 2812 * The display engine limits already match/exceed the 2813 * render engine limits, so not much point in remapping. 2814 * Would also need to deal with the fence POT alignment 2815 * and gen2 2KiB GTT tile size. 2816 */ 2817 if (INTEL_GEN(dev_priv) < 4) 2818 return false; 2819 2820 /* 2821 * The new CCS hash mode isn't compatible with remapping as 2822 * the virtual address of the pages affects the compressed data. 2823 */ 2824 if (is_ccs_modifier(fb->modifier)) 2825 return false; 2826 2827 /* Linear needs a page aligned stride for remapping */ 2828 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) { 2829 unsigned int alignment = intel_tile_size(dev_priv) - 1; 2830 2831 for (i = 0; i < fb->format->num_planes; i++) { 2832 if (fb->pitches[i] & alignment) 2833 return false; 2834 } 2835 } 2836 2837 return true; 2838 } 2839 2840 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state) 2841 { 2842 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2843 const struct drm_framebuffer *fb = plane_state->hw.fb; 2844 unsigned int rotation = plane_state->hw.rotation; 2845 u32 stride, max_stride; 2846 2847 /* 2848 * No remapping for invisible planes since we don't have 2849 * an actual source viewport to remap. 2850 */ 2851 if (!plane_state->uapi.visible) 2852 return false; 2853 2854 if (!intel_plane_can_remap(plane_state)) 2855 return false; 2856 2857 /* 2858 * FIXME: aux plane limits on gen9+ are 2859 * unclear in Bspec, for now no checking. 2860 */ 2861 stride = intel_fb_pitch(fb, 0, rotation); 2862 max_stride = plane->max_stride(plane, fb->format->format, 2863 fb->modifier, rotation); 2864 2865 return stride > max_stride; 2866 } 2867 2868 static void 2869 intel_fb_plane_get_subsampling(int *hsub, int *vsub, 2870 const struct drm_framebuffer *fb, 2871 int color_plane) 2872 { 2873 int main_plane; 2874 2875 if (color_plane == 0) { 2876 *hsub = 1; 2877 *vsub = 1; 2878 2879 return; 2880 } 2881 2882 /* 2883 * TODO: Deduct the subsampling from the char block for all CCS 2884 * formats and planes. 2885 */ 2886 if (!is_gen12_ccs_plane(fb, color_plane)) { 2887 *hsub = fb->format->hsub; 2888 *vsub = fb->format->vsub; 2889 2890 return; 2891 } 2892 2893 main_plane = ccs_to_main_plane(fb, color_plane); 2894 *hsub = drm_format_info_block_width(fb->format, color_plane) / 2895 drm_format_info_block_width(fb->format, main_plane); 2896 2897 /* 2898 * The min stride check in the core framebuffer_check() function 2899 * assumes that format->hsub applies to every plane except for the 2900 * first plane. That's incorrect for the CCS AUX plane of the first 2901 * plane, but for the above check to pass we must define the block 2902 * width with that subsampling applied to it. Adjust the width here 2903 * accordingly, so we can calculate the actual subsampling factor. 2904 */ 2905 if (main_plane == 0) 2906 *hsub *= fb->format->hsub; 2907 2908 *vsub = 32; 2909 } 2910 static int 2911 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y) 2912 { 2913 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2914 int main_plane; 2915 int hsub, vsub; 2916 int tile_width, tile_height; 2917 int ccs_x, ccs_y; 2918 int main_x, main_y; 2919 2920 if (!is_ccs_plane(fb, ccs_plane)) 2921 return 0; 2922 2923 intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height); 2924 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 2925 2926 tile_width *= hsub; 2927 tile_height *= vsub; 2928 2929 ccs_x = (x * hsub) % tile_width; 2930 ccs_y = (y * vsub) % tile_height; 2931 2932 main_plane = ccs_to_main_plane(fb, ccs_plane); 2933 main_x = intel_fb->normal[main_plane].x % tile_width; 2934 main_y = intel_fb->normal[main_plane].y % tile_height; 2935 2936 /* 2937 * CCS doesn't have its own x/y offset register, so the intra CCS tile 2938 * x/y offsets must match between CCS and the main surface. 2939 */ 2940 if (main_x != ccs_x || main_y != ccs_y) { 2941 DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n", 2942 main_x, main_y, 2943 ccs_x, ccs_y, 2944 intel_fb->normal[main_plane].x, 2945 intel_fb->normal[main_plane].y, 2946 x, y); 2947 return -EINVAL; 2948 } 2949 2950 return 0; 2951 } 2952 2953 static void 2954 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane) 2955 { 2956 int main_plane = is_ccs_plane(fb, color_plane) ? 2957 ccs_to_main_plane(fb, color_plane) : 0; 2958 int main_hsub, main_vsub; 2959 int hsub, vsub; 2960 2961 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane); 2962 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane); 2963 *w = fb->width / main_hsub / hsub; 2964 *h = fb->height / main_vsub / vsub; 2965 } 2966 2967 /* 2968 * Setup the rotated view for an FB plane and return the size the GTT mapping 2969 * requires for this view. 2970 */ 2971 static u32 2972 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info, 2973 u32 gtt_offset_rotated, int x, int y, 2974 unsigned int width, unsigned int height, 2975 unsigned int tile_size, 2976 unsigned int tile_width, unsigned int tile_height, 2977 struct drm_framebuffer *fb) 2978 { 2979 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 2980 struct intel_rotation_info *rot_info = &intel_fb->rot_info; 2981 unsigned int pitch_tiles; 2982 struct drm_rect r; 2983 2984 /* Y or Yf modifiers required for 90/270 rotation */ 2985 if (fb->modifier != I915_FORMAT_MOD_Y_TILED && 2986 fb->modifier != I915_FORMAT_MOD_Yf_TILED) 2987 return 0; 2988 2989 if (WARN_ON(plane >= ARRAY_SIZE(rot_info->plane))) 2990 return 0; 2991 2992 rot_info->plane[plane] = *plane_info; 2993 2994 intel_fb->rotated[plane].pitch = plane_info->height * tile_height; 2995 2996 /* rotate the x/y offsets to match the GTT view */ 2997 drm_rect_init(&r, x, y, width, height); 2998 drm_rect_rotate(&r, 2999 plane_info->width * tile_width, 3000 plane_info->height * tile_height, 3001 DRM_MODE_ROTATE_270); 3002 x = r.x1; 3003 y = r.y1; 3004 3005 /* rotate the tile dimensions to match the GTT view */ 3006 pitch_tiles = intel_fb->rotated[plane].pitch / tile_height; 3007 swap(tile_width, tile_height); 3008 3009 /* 3010 * We only keep the x/y offsets, so push all of the 3011 * gtt offset into the x/y offsets. 3012 */ 3013 intel_adjust_tile_offset(&x, &y, 3014 tile_width, tile_height, 3015 tile_size, pitch_tiles, 3016 gtt_offset_rotated * tile_size, 0); 3017 3018 /* 3019 * First pixel of the framebuffer from 3020 * the start of the rotated gtt mapping. 3021 */ 3022 intel_fb->rotated[plane].x = x; 3023 intel_fb->rotated[plane].y = y; 3024 3025 return plane_info->width * plane_info->height; 3026 } 3027 3028 static int 3029 intel_fill_fb_info(struct drm_i915_private *dev_priv, 3030 struct drm_framebuffer *fb) 3031 { 3032 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 3033 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 3034 u32 gtt_offset_rotated = 0; 3035 unsigned int max_size = 0; 3036 int i, num_planes = fb->format->num_planes; 3037 unsigned int tile_size = intel_tile_size(dev_priv); 3038 3039 for (i = 0; i < num_planes; i++) { 3040 unsigned int width, height; 3041 unsigned int cpp, size; 3042 u32 offset; 3043 int x, y; 3044 int ret; 3045 3046 cpp = fb->format->cpp[i]; 3047 intel_fb_plane_dims(&width, &height, fb, i); 3048 3049 ret = intel_fb_offset_to_xy(&x, &y, fb, i); 3050 if (ret) { 3051 drm_dbg_kms(&dev_priv->drm, 3052 "bad fb plane %d offset: 0x%x\n", 3053 i, fb->offsets[i]); 3054 return ret; 3055 } 3056 3057 ret = intel_fb_check_ccs_xy(fb, i, x, y); 3058 if (ret) 3059 return ret; 3060 3061 /* 3062 * The fence (if used) is aligned to the start of the object 3063 * so having the framebuffer wrap around across the edge of the 3064 * fenced region doesn't really work. We have no API to configure 3065 * the fence start offset within the object (nor could we probably 3066 * on gen2/3). So it's just easier if we just require that the 3067 * fb layout agrees with the fence layout. We already check that the 3068 * fb stride matches the fence stride elsewhere. 3069 */ 3070 if (i == 0 && i915_gem_object_is_tiled(obj) && 3071 (x + width) * cpp > fb->pitches[i]) { 3072 drm_dbg_kms(&dev_priv->drm, 3073 "bad fb plane %d offset: 0x%x\n", 3074 i, fb->offsets[i]); 3075 return -EINVAL; 3076 } 3077 3078 /* 3079 * First pixel of the framebuffer from 3080 * the start of the normal gtt mapping. 3081 */ 3082 intel_fb->normal[i].x = x; 3083 intel_fb->normal[i].y = y; 3084 3085 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i, 3086 fb->pitches[i], 3087 DRM_MODE_ROTATE_0, 3088 tile_size); 3089 offset /= tile_size; 3090 3091 if (!is_surface_linear(fb, i)) { 3092 struct intel_remapped_plane_info plane_info; 3093 unsigned int tile_width, tile_height; 3094 3095 intel_tile_dims(fb, i, &tile_width, &tile_height); 3096 3097 plane_info.offset = offset; 3098 plane_info.stride = DIV_ROUND_UP(fb->pitches[i], 3099 tile_width * cpp); 3100 plane_info.width = DIV_ROUND_UP(x + width, tile_width); 3101 plane_info.height = DIV_ROUND_UP(y + height, 3102 tile_height); 3103 3104 /* how many tiles does this plane need */ 3105 size = plane_info.stride * plane_info.height; 3106 /* 3107 * If the plane isn't horizontally tile aligned, 3108 * we need one more tile. 3109 */ 3110 if (x != 0) 3111 size++; 3112 3113 gtt_offset_rotated += 3114 setup_fb_rotation(i, &plane_info, 3115 gtt_offset_rotated, 3116 x, y, width, height, 3117 tile_size, 3118 tile_width, tile_height, 3119 fb); 3120 } else { 3121 size = DIV_ROUND_UP((y + height) * fb->pitches[i] + 3122 x * cpp, tile_size); 3123 } 3124 3125 /* how many tiles in total needed in the bo */ 3126 max_size = max(max_size, offset + size); 3127 } 3128 3129 if (mul_u32_u32(max_size, tile_size) > obj->base.size) { 3130 drm_dbg_kms(&dev_priv->drm, 3131 "fb too big for bo (need %llu bytes, have %zu bytes)\n", 3132 mul_u32_u32(max_size, tile_size), obj->base.size); 3133 return -EINVAL; 3134 } 3135 3136 return 0; 3137 } 3138 3139 static void 3140 intel_plane_remap_gtt(struct intel_plane_state *plane_state) 3141 { 3142 struct drm_i915_private *dev_priv = 3143 to_i915(plane_state->uapi.plane->dev); 3144 struct drm_framebuffer *fb = plane_state->hw.fb; 3145 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 3146 struct intel_rotation_info *info = &plane_state->view.rotated; 3147 unsigned int rotation = plane_state->hw.rotation; 3148 int i, num_planes = fb->format->num_planes; 3149 unsigned int tile_size = intel_tile_size(dev_priv); 3150 unsigned int src_x, src_y; 3151 unsigned int src_w, src_h; 3152 u32 gtt_offset = 0; 3153 3154 memset(&plane_state->view, 0, sizeof(plane_state->view)); 3155 plane_state->view.type = drm_rotation_90_or_270(rotation) ? 3156 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED; 3157 3158 src_x = plane_state->uapi.src.x1 >> 16; 3159 src_y = plane_state->uapi.src.y1 >> 16; 3160 src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 3161 src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 3162 3163 drm_WARN_ON(&dev_priv->drm, is_ccs_modifier(fb->modifier)); 3164 3165 /* Make src coordinates relative to the viewport */ 3166 drm_rect_translate(&plane_state->uapi.src, 3167 -(src_x << 16), -(src_y << 16)); 3168 3169 /* Rotate src coordinates to match rotated GTT view */ 3170 if (drm_rotation_90_or_270(rotation)) 3171 drm_rect_rotate(&plane_state->uapi.src, 3172 src_w << 16, src_h << 16, 3173 DRM_MODE_ROTATE_270); 3174 3175 for (i = 0; i < num_planes; i++) { 3176 unsigned int hsub = i ? fb->format->hsub : 1; 3177 unsigned int vsub = i ? fb->format->vsub : 1; 3178 unsigned int cpp = fb->format->cpp[i]; 3179 unsigned int tile_width, tile_height; 3180 unsigned int width, height; 3181 unsigned int pitch_tiles; 3182 unsigned int x, y; 3183 u32 offset; 3184 3185 intel_tile_dims(fb, i, &tile_width, &tile_height); 3186 3187 x = src_x / hsub; 3188 y = src_y / vsub; 3189 width = src_w / hsub; 3190 height = src_h / vsub; 3191 3192 /* 3193 * First pixel of the src viewport from the 3194 * start of the normal gtt mapping. 3195 */ 3196 x += intel_fb->normal[i].x; 3197 y += intel_fb->normal[i].y; 3198 3199 offset = intel_compute_aligned_offset(dev_priv, &x, &y, 3200 fb, i, fb->pitches[i], 3201 DRM_MODE_ROTATE_0, tile_size); 3202 offset /= tile_size; 3203 3204 drm_WARN_ON(&dev_priv->drm, i >= ARRAY_SIZE(info->plane)); 3205 info->plane[i].offset = offset; 3206 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], 3207 tile_width * cpp); 3208 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width); 3209 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height); 3210 3211 if (drm_rotation_90_or_270(rotation)) { 3212 struct drm_rect r; 3213 3214 /* rotate the x/y offsets to match the GTT view */ 3215 drm_rect_init(&r, x, y, width, height); 3216 drm_rect_rotate(&r, 3217 info->plane[i].width * tile_width, 3218 info->plane[i].height * tile_height, 3219 DRM_MODE_ROTATE_270); 3220 x = r.x1; 3221 y = r.y1; 3222 3223 pitch_tiles = info->plane[i].height; 3224 plane_state->color_plane[i].stride = pitch_tiles * tile_height; 3225 3226 /* rotate the tile dimensions to match the GTT view */ 3227 swap(tile_width, tile_height); 3228 } else { 3229 pitch_tiles = info->plane[i].width; 3230 plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp; 3231 } 3232 3233 /* 3234 * We only keep the x/y offsets, so push all of the 3235 * gtt offset into the x/y offsets. 3236 */ 3237 intel_adjust_tile_offset(&x, &y, 3238 tile_width, tile_height, 3239 tile_size, pitch_tiles, 3240 gtt_offset * tile_size, 0); 3241 3242 gtt_offset += info->plane[i].width * info->plane[i].height; 3243 3244 plane_state->color_plane[i].offset = 0; 3245 plane_state->color_plane[i].x = x; 3246 plane_state->color_plane[i].y = y; 3247 } 3248 } 3249 3250 static int 3251 intel_plane_compute_gtt(struct intel_plane_state *plane_state) 3252 { 3253 const struct intel_framebuffer *fb = 3254 to_intel_framebuffer(plane_state->hw.fb); 3255 unsigned int rotation = plane_state->hw.rotation; 3256 int i, num_planes; 3257 3258 if (!fb) 3259 return 0; 3260 3261 num_planes = fb->base.format->num_planes; 3262 3263 if (intel_plane_needs_remap(plane_state)) { 3264 intel_plane_remap_gtt(plane_state); 3265 3266 /* 3267 * Sometimes even remapping can't overcome 3268 * the stride limitations :( Can happen with 3269 * big plane sizes and suitably misaligned 3270 * offsets. 3271 */ 3272 return intel_plane_check_stride(plane_state); 3273 } 3274 3275 intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation); 3276 3277 for (i = 0; i < num_planes; i++) { 3278 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation); 3279 plane_state->color_plane[i].offset = 0; 3280 3281 if (drm_rotation_90_or_270(rotation)) { 3282 plane_state->color_plane[i].x = fb->rotated[i].x; 3283 plane_state->color_plane[i].y = fb->rotated[i].y; 3284 } else { 3285 plane_state->color_plane[i].x = fb->normal[i].x; 3286 plane_state->color_plane[i].y = fb->normal[i].y; 3287 } 3288 } 3289 3290 /* Rotate src coordinates to match rotated GTT view */ 3291 if (drm_rotation_90_or_270(rotation)) 3292 drm_rect_rotate(&plane_state->uapi.src, 3293 fb->base.width << 16, fb->base.height << 16, 3294 DRM_MODE_ROTATE_270); 3295 3296 return intel_plane_check_stride(plane_state); 3297 } 3298 3299 static int i9xx_format_to_fourcc(int format) 3300 { 3301 switch (format) { 3302 case DISPPLANE_8BPP: 3303 return DRM_FORMAT_C8; 3304 case DISPPLANE_BGRA555: 3305 return DRM_FORMAT_ARGB1555; 3306 case DISPPLANE_BGRX555: 3307 return DRM_FORMAT_XRGB1555; 3308 case DISPPLANE_BGRX565: 3309 return DRM_FORMAT_RGB565; 3310 default: 3311 case DISPPLANE_BGRX888: 3312 return DRM_FORMAT_XRGB8888; 3313 case DISPPLANE_RGBX888: 3314 return DRM_FORMAT_XBGR8888; 3315 case DISPPLANE_BGRA888: 3316 return DRM_FORMAT_ARGB8888; 3317 case DISPPLANE_RGBA888: 3318 return DRM_FORMAT_ABGR8888; 3319 case DISPPLANE_BGRX101010: 3320 return DRM_FORMAT_XRGB2101010; 3321 case DISPPLANE_RGBX101010: 3322 return DRM_FORMAT_XBGR2101010; 3323 case DISPPLANE_BGRA101010: 3324 return DRM_FORMAT_ARGB2101010; 3325 case DISPPLANE_RGBA101010: 3326 return DRM_FORMAT_ABGR2101010; 3327 case DISPPLANE_RGBX161616: 3328 return DRM_FORMAT_XBGR16161616F; 3329 } 3330 } 3331 3332 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha) 3333 { 3334 switch (format) { 3335 case PLANE_CTL_FORMAT_RGB_565: 3336 return DRM_FORMAT_RGB565; 3337 case PLANE_CTL_FORMAT_NV12: 3338 return DRM_FORMAT_NV12; 3339 case PLANE_CTL_FORMAT_P010: 3340 return DRM_FORMAT_P010; 3341 case PLANE_CTL_FORMAT_P012: 3342 return DRM_FORMAT_P012; 3343 case PLANE_CTL_FORMAT_P016: 3344 return DRM_FORMAT_P016; 3345 case PLANE_CTL_FORMAT_Y210: 3346 return DRM_FORMAT_Y210; 3347 case PLANE_CTL_FORMAT_Y212: 3348 return DRM_FORMAT_Y212; 3349 case PLANE_CTL_FORMAT_Y216: 3350 return DRM_FORMAT_Y216; 3351 case PLANE_CTL_FORMAT_Y410: 3352 return DRM_FORMAT_XVYU2101010; 3353 case PLANE_CTL_FORMAT_Y412: 3354 return DRM_FORMAT_XVYU12_16161616; 3355 case PLANE_CTL_FORMAT_Y416: 3356 return DRM_FORMAT_XVYU16161616; 3357 default: 3358 case PLANE_CTL_FORMAT_XRGB_8888: 3359 if (rgb_order) { 3360 if (alpha) 3361 return DRM_FORMAT_ABGR8888; 3362 else 3363 return DRM_FORMAT_XBGR8888; 3364 } else { 3365 if (alpha) 3366 return DRM_FORMAT_ARGB8888; 3367 else 3368 return DRM_FORMAT_XRGB8888; 3369 } 3370 case PLANE_CTL_FORMAT_XRGB_2101010: 3371 if (rgb_order) { 3372 if (alpha) 3373 return DRM_FORMAT_ABGR2101010; 3374 else 3375 return DRM_FORMAT_XBGR2101010; 3376 } else { 3377 if (alpha) 3378 return DRM_FORMAT_ARGB2101010; 3379 else 3380 return DRM_FORMAT_XRGB2101010; 3381 } 3382 case PLANE_CTL_FORMAT_XRGB_16161616F: 3383 if (rgb_order) { 3384 if (alpha) 3385 return DRM_FORMAT_ABGR16161616F; 3386 else 3387 return DRM_FORMAT_XBGR16161616F; 3388 } else { 3389 if (alpha) 3390 return DRM_FORMAT_ARGB16161616F; 3391 else 3392 return DRM_FORMAT_XRGB16161616F; 3393 } 3394 } 3395 } 3396 3397 static struct i915_vma * 3398 initial_plane_vma(struct drm_i915_private *i915, 3399 struct intel_initial_plane_config *plane_config) 3400 { 3401 struct drm_i915_gem_object *obj; 3402 struct i915_vma *vma; 3403 u32 base, size; 3404 3405 if (plane_config->size == 0) 3406 return NULL; 3407 3408 base = round_down(plane_config->base, 3409 I915_GTT_MIN_ALIGNMENT); 3410 size = round_up(plane_config->base + plane_config->size, 3411 I915_GTT_MIN_ALIGNMENT); 3412 size -= base; 3413 3414 /* 3415 * If the FB is too big, just don't use it since fbdev is not very 3416 * important and we should probably use that space with FBC or other 3417 * features. 3418 */ 3419 if (size * 2 > i915->stolen_usable_size) 3420 return NULL; 3421 3422 obj = i915_gem_object_create_stolen_for_preallocated(i915, base, size); 3423 if (IS_ERR(obj)) 3424 return NULL; 3425 3426 switch (plane_config->tiling) { 3427 case I915_TILING_NONE: 3428 break; 3429 case I915_TILING_X: 3430 case I915_TILING_Y: 3431 obj->tiling_and_stride = 3432 plane_config->fb->base.pitches[0] | 3433 plane_config->tiling; 3434 break; 3435 default: 3436 MISSING_CASE(plane_config->tiling); 3437 goto err_obj; 3438 } 3439 3440 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL); 3441 if (IS_ERR(vma)) 3442 goto err_obj; 3443 3444 if (i915_ggtt_pin(vma, 0, PIN_MAPPABLE | PIN_OFFSET_FIXED | base)) 3445 goto err_obj; 3446 3447 if (i915_gem_object_is_tiled(obj) && 3448 !i915_vma_is_map_and_fenceable(vma)) 3449 goto err_obj; 3450 3451 return vma; 3452 3453 err_obj: 3454 i915_gem_object_put(obj); 3455 return NULL; 3456 } 3457 3458 static bool 3459 intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 3460 struct intel_initial_plane_config *plane_config) 3461 { 3462 struct drm_device *dev = crtc->base.dev; 3463 struct drm_i915_private *dev_priv = to_i915(dev); 3464 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 3465 struct drm_framebuffer *fb = &plane_config->fb->base; 3466 struct i915_vma *vma; 3467 3468 switch (fb->modifier) { 3469 case DRM_FORMAT_MOD_LINEAR: 3470 case I915_FORMAT_MOD_X_TILED: 3471 case I915_FORMAT_MOD_Y_TILED: 3472 break; 3473 default: 3474 drm_dbg(&dev_priv->drm, 3475 "Unsupported modifier for initial FB: 0x%llx\n", 3476 fb->modifier); 3477 return false; 3478 } 3479 3480 vma = initial_plane_vma(dev_priv, plane_config); 3481 if (!vma) 3482 return false; 3483 3484 mode_cmd.pixel_format = fb->format->format; 3485 mode_cmd.width = fb->width; 3486 mode_cmd.height = fb->height; 3487 mode_cmd.pitches[0] = fb->pitches[0]; 3488 mode_cmd.modifier[0] = fb->modifier; 3489 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 3490 3491 if (intel_framebuffer_init(to_intel_framebuffer(fb), 3492 vma->obj, &mode_cmd)) { 3493 drm_dbg_kms(&dev_priv->drm, "intel fb init failed\n"); 3494 goto err_vma; 3495 } 3496 3497 plane_config->vma = vma; 3498 return true; 3499 3500 err_vma: 3501 i915_vma_put(vma); 3502 return false; 3503 } 3504 3505 static void 3506 intel_set_plane_visible(struct intel_crtc_state *crtc_state, 3507 struct intel_plane_state *plane_state, 3508 bool visible) 3509 { 3510 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 3511 3512 plane_state->uapi.visible = visible; 3513 3514 if (visible) 3515 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); 3516 else 3517 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); 3518 } 3519 3520 static void fixup_active_planes(struct intel_crtc_state *crtc_state) 3521 { 3522 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 3523 struct drm_plane *plane; 3524 3525 /* 3526 * Active_planes aliases if multiple "primary" or cursor planes 3527 * have been used on the same (or wrong) pipe. plane_mask uses 3528 * unique ids, hence we can use that to reconstruct active_planes. 3529 */ 3530 crtc_state->active_planes = 0; 3531 3532 drm_for_each_plane_mask(plane, &dev_priv->drm, 3533 crtc_state->uapi.plane_mask) 3534 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); 3535 } 3536 3537 static void intel_plane_disable_noatomic(struct intel_crtc *crtc, 3538 struct intel_plane *plane) 3539 { 3540 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3541 struct intel_crtc_state *crtc_state = 3542 to_intel_crtc_state(crtc->base.state); 3543 struct intel_plane_state *plane_state = 3544 to_intel_plane_state(plane->base.state); 3545 3546 drm_dbg_kms(&dev_priv->drm, 3547 "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", 3548 plane->base.base.id, plane->base.name, 3549 crtc->base.base.id, crtc->base.name); 3550 3551 intel_set_plane_visible(crtc_state, plane_state, false); 3552 fixup_active_planes(crtc_state); 3553 crtc_state->data_rate[plane->id] = 0; 3554 crtc_state->min_cdclk[plane->id] = 0; 3555 3556 if (plane->id == PLANE_PRIMARY) 3557 hsw_disable_ips(crtc_state); 3558 3559 /* 3560 * Vblank time updates from the shadow to live plane control register 3561 * are blocked if the memory self-refresh mode is active at that 3562 * moment. So to make sure the plane gets truly disabled, disable 3563 * first the self-refresh mode. The self-refresh enable bit in turn 3564 * will be checked/applied by the HW only at the next frame start 3565 * event which is after the vblank start event, so we need to have a 3566 * wait-for-vblank between disabling the plane and the pipe. 3567 */ 3568 if (HAS_GMCH(dev_priv) && 3569 intel_set_memory_cxsr(dev_priv, false)) 3570 intel_wait_for_vblank(dev_priv, crtc->pipe); 3571 3572 /* 3573 * Gen2 reports pipe underruns whenever all planes are disabled. 3574 * So disable underrun reporting before all the planes get disabled. 3575 */ 3576 if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes) 3577 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 3578 3579 intel_disable_plane(plane, crtc_state); 3580 } 3581 3582 static struct intel_frontbuffer * 3583 to_intel_frontbuffer(struct drm_framebuffer *fb) 3584 { 3585 return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL; 3586 } 3587 3588 static void 3589 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, 3590 struct intel_initial_plane_config *plane_config) 3591 { 3592 struct drm_device *dev = intel_crtc->base.dev; 3593 struct drm_i915_private *dev_priv = to_i915(dev); 3594 struct drm_crtc *c; 3595 struct drm_plane *primary = intel_crtc->base.primary; 3596 struct drm_plane_state *plane_state = primary->state; 3597 struct intel_plane *intel_plane = to_intel_plane(primary); 3598 struct intel_plane_state *intel_state = 3599 to_intel_plane_state(plane_state); 3600 struct drm_framebuffer *fb; 3601 struct i915_vma *vma; 3602 3603 if (!plane_config->fb) 3604 return; 3605 3606 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { 3607 fb = &plane_config->fb->base; 3608 vma = plane_config->vma; 3609 goto valid_fb; 3610 } 3611 3612 /* 3613 * Failed to alloc the obj, check to see if we should share 3614 * an fb with another CRTC instead 3615 */ 3616 for_each_crtc(dev, c) { 3617 struct intel_plane_state *state; 3618 3619 if (c == &intel_crtc->base) 3620 continue; 3621 3622 if (!to_intel_crtc(c)->active) 3623 continue; 3624 3625 state = to_intel_plane_state(c->primary->state); 3626 if (!state->vma) 3627 continue; 3628 3629 if (intel_plane_ggtt_offset(state) == plane_config->base) { 3630 fb = state->hw.fb; 3631 vma = state->vma; 3632 goto valid_fb; 3633 } 3634 } 3635 3636 /* 3637 * We've failed to reconstruct the BIOS FB. Current display state 3638 * indicates that the primary plane is visible, but has a NULL FB, 3639 * which will lead to problems later if we don't fix it up. The 3640 * simplest solution is to just disable the primary plane now and 3641 * pretend the BIOS never had it enabled. 3642 */ 3643 intel_plane_disable_noatomic(intel_crtc, intel_plane); 3644 3645 return; 3646 3647 valid_fb: 3648 intel_state->hw.rotation = plane_config->rotation; 3649 intel_fill_fb_ggtt_view(&intel_state->view, fb, 3650 intel_state->hw.rotation); 3651 intel_state->color_plane[0].stride = 3652 intel_fb_pitch(fb, 0, intel_state->hw.rotation); 3653 3654 __i915_vma_pin(vma); 3655 intel_state->vma = i915_vma_get(vma); 3656 if (intel_plane_uses_fence(intel_state) && i915_vma_pin_fence(vma) == 0) 3657 if (vma->fence) 3658 intel_state->flags |= PLANE_HAS_FENCE; 3659 3660 plane_state->src_x = 0; 3661 plane_state->src_y = 0; 3662 plane_state->src_w = fb->width << 16; 3663 plane_state->src_h = fb->height << 16; 3664 3665 plane_state->crtc_x = 0; 3666 plane_state->crtc_y = 0; 3667 plane_state->crtc_w = fb->width; 3668 plane_state->crtc_h = fb->height; 3669 3670 intel_state->uapi.src = drm_plane_state_src(plane_state); 3671 intel_state->uapi.dst = drm_plane_state_dest(plane_state); 3672 3673 if (plane_config->tiling) 3674 dev_priv->preserve_bios_swizzle = true; 3675 3676 plane_state->fb = fb; 3677 drm_framebuffer_get(fb); 3678 3679 plane_state->crtc = &intel_crtc->base; 3680 intel_plane_copy_uapi_to_hw_state(intel_state, intel_state); 3681 3682 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 3683 3684 atomic_or(to_intel_plane(primary)->frontbuffer_bit, 3685 &to_intel_frontbuffer(fb)->bits); 3686 } 3687 3688 static int skl_max_plane_width(const struct drm_framebuffer *fb, 3689 int color_plane, 3690 unsigned int rotation) 3691 { 3692 int cpp = fb->format->cpp[color_plane]; 3693 3694 switch (fb->modifier) { 3695 case DRM_FORMAT_MOD_LINEAR: 3696 case I915_FORMAT_MOD_X_TILED: 3697 /* 3698 * Validated limit is 4k, but has 5k should 3699 * work apart from the following features: 3700 * - Ytile (already limited to 4k) 3701 * - FP16 (already limited to 4k) 3702 * - render compression (already limited to 4k) 3703 * - KVMR sprite and cursor (don't care) 3704 * - horizontal panning (TODO verify this) 3705 * - pipe and plane scaling (TODO verify this) 3706 */ 3707 if (cpp == 8) 3708 return 4096; 3709 else 3710 return 5120; 3711 case I915_FORMAT_MOD_Y_TILED_CCS: 3712 case I915_FORMAT_MOD_Yf_TILED_CCS: 3713 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 3714 /* FIXME AUX plane? */ 3715 case I915_FORMAT_MOD_Y_TILED: 3716 case I915_FORMAT_MOD_Yf_TILED: 3717 if (cpp == 8) 3718 return 2048; 3719 else 3720 return 4096; 3721 default: 3722 MISSING_CASE(fb->modifier); 3723 return 2048; 3724 } 3725 } 3726 3727 static int glk_max_plane_width(const struct drm_framebuffer *fb, 3728 int color_plane, 3729 unsigned int rotation) 3730 { 3731 int cpp = fb->format->cpp[color_plane]; 3732 3733 switch (fb->modifier) { 3734 case DRM_FORMAT_MOD_LINEAR: 3735 case I915_FORMAT_MOD_X_TILED: 3736 if (cpp == 8) 3737 return 4096; 3738 else 3739 return 5120; 3740 case I915_FORMAT_MOD_Y_TILED_CCS: 3741 case I915_FORMAT_MOD_Yf_TILED_CCS: 3742 /* FIXME AUX plane? */ 3743 case I915_FORMAT_MOD_Y_TILED: 3744 case I915_FORMAT_MOD_Yf_TILED: 3745 if (cpp == 8) 3746 return 2048; 3747 else 3748 return 5120; 3749 default: 3750 MISSING_CASE(fb->modifier); 3751 return 2048; 3752 } 3753 } 3754 3755 static int icl_max_plane_width(const struct drm_framebuffer *fb, 3756 int color_plane, 3757 unsigned int rotation) 3758 { 3759 return 5120; 3760 } 3761 3762 static int skl_max_plane_height(void) 3763 { 3764 return 4096; 3765 } 3766 3767 static int icl_max_plane_height(void) 3768 { 3769 return 4320; 3770 } 3771 3772 static bool 3773 skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state, 3774 int main_x, int main_y, u32 main_offset, 3775 int ccs_plane) 3776 { 3777 const struct drm_framebuffer *fb = plane_state->hw.fb; 3778 int aux_x = plane_state->color_plane[ccs_plane].x; 3779 int aux_y = plane_state->color_plane[ccs_plane].y; 3780 u32 aux_offset = plane_state->color_plane[ccs_plane].offset; 3781 u32 alignment = intel_surf_alignment(fb, ccs_plane); 3782 int hsub; 3783 int vsub; 3784 3785 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 3786 while (aux_offset >= main_offset && aux_y <= main_y) { 3787 int x, y; 3788 3789 if (aux_x == main_x && aux_y == main_y) 3790 break; 3791 3792 if (aux_offset == 0) 3793 break; 3794 3795 x = aux_x / hsub; 3796 y = aux_y / vsub; 3797 aux_offset = intel_plane_adjust_aligned_offset(&x, &y, 3798 plane_state, 3799 ccs_plane, 3800 aux_offset, 3801 aux_offset - 3802 alignment); 3803 aux_x = x * hsub + aux_x % hsub; 3804 aux_y = y * vsub + aux_y % vsub; 3805 } 3806 3807 if (aux_x != main_x || aux_y != main_y) 3808 return false; 3809 3810 plane_state->color_plane[ccs_plane].offset = aux_offset; 3811 plane_state->color_plane[ccs_plane].x = aux_x; 3812 plane_state->color_plane[ccs_plane].y = aux_y; 3813 3814 return true; 3815 } 3816 3817 static int skl_check_main_surface(struct intel_plane_state *plane_state) 3818 { 3819 struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev); 3820 const struct drm_framebuffer *fb = plane_state->hw.fb; 3821 unsigned int rotation = plane_state->hw.rotation; 3822 int x = plane_state->uapi.src.x1 >> 16; 3823 int y = plane_state->uapi.src.y1 >> 16; 3824 int w = drm_rect_width(&plane_state->uapi.src) >> 16; 3825 int h = drm_rect_height(&plane_state->uapi.src) >> 16; 3826 int max_width; 3827 int max_height; 3828 u32 alignment; 3829 u32 offset; 3830 int aux_plane = intel_main_to_aux_plane(fb, 0); 3831 u32 aux_offset = plane_state->color_plane[aux_plane].offset; 3832 3833 if (INTEL_GEN(dev_priv) >= 11) 3834 max_width = icl_max_plane_width(fb, 0, rotation); 3835 else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 3836 max_width = glk_max_plane_width(fb, 0, rotation); 3837 else 3838 max_width = skl_max_plane_width(fb, 0, rotation); 3839 3840 if (INTEL_GEN(dev_priv) >= 11) 3841 max_height = icl_max_plane_height(); 3842 else 3843 max_height = skl_max_plane_height(); 3844 3845 if (w > max_width || h > max_height) { 3846 drm_dbg_kms(&dev_priv->drm, 3847 "requested Y/RGB source size %dx%d too big (limit %dx%d)\n", 3848 w, h, max_width, max_height); 3849 return -EINVAL; 3850 } 3851 3852 intel_add_fb_offsets(&x, &y, plane_state, 0); 3853 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0); 3854 alignment = intel_surf_alignment(fb, 0); 3855 if (drm_WARN_ON(&dev_priv->drm, alignment && !is_power_of_2(alignment))) 3856 return -EINVAL; 3857 3858 /* 3859 * AUX surface offset is specified as the distance from the 3860 * main surface offset, and it must be non-negative. Make 3861 * sure that is what we will get. 3862 */ 3863 if (offset > aux_offset) 3864 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3865 offset, aux_offset & ~(alignment - 1)); 3866 3867 /* 3868 * When using an X-tiled surface, the plane blows up 3869 * if the x offset + width exceed the stride. 3870 * 3871 * TODO: linear and Y-tiled seem fine, Yf untested, 3872 */ 3873 if (fb->modifier == I915_FORMAT_MOD_X_TILED) { 3874 int cpp = fb->format->cpp[0]; 3875 3876 while ((x + w) * cpp > plane_state->color_plane[0].stride) { 3877 if (offset == 0) { 3878 drm_dbg_kms(&dev_priv->drm, 3879 "Unable to find suitable display surface offset due to X-tiling\n"); 3880 return -EINVAL; 3881 } 3882 3883 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3884 offset, offset - alignment); 3885 } 3886 } 3887 3888 /* 3889 * CCS AUX surface doesn't have its own x/y offsets, we must make sure 3890 * they match with the main surface x/y offsets. 3891 */ 3892 if (is_ccs_modifier(fb->modifier)) { 3893 while (!skl_check_main_ccs_coordinates(plane_state, x, y, 3894 offset, aux_plane)) { 3895 if (offset == 0) 3896 break; 3897 3898 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, 3899 offset, offset - alignment); 3900 } 3901 3902 if (x != plane_state->color_plane[aux_plane].x || 3903 y != plane_state->color_plane[aux_plane].y) { 3904 drm_dbg_kms(&dev_priv->drm, 3905 "Unable to find suitable display surface offset due to CCS\n"); 3906 return -EINVAL; 3907 } 3908 } 3909 3910 plane_state->color_plane[0].offset = offset; 3911 plane_state->color_plane[0].x = x; 3912 plane_state->color_plane[0].y = y; 3913 3914 /* 3915 * Put the final coordinates back so that the src 3916 * coordinate checks will see the right values. 3917 */ 3918 drm_rect_translate_to(&plane_state->uapi.src, 3919 x << 16, y << 16); 3920 3921 return 0; 3922 } 3923 3924 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state) 3925 { 3926 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 3927 const struct drm_framebuffer *fb = plane_state->hw.fb; 3928 unsigned int rotation = plane_state->hw.rotation; 3929 int uv_plane = 1; 3930 int max_width = skl_max_plane_width(fb, uv_plane, rotation); 3931 int max_height = 4096; 3932 int x = plane_state->uapi.src.x1 >> 17; 3933 int y = plane_state->uapi.src.y1 >> 17; 3934 int w = drm_rect_width(&plane_state->uapi.src) >> 17; 3935 int h = drm_rect_height(&plane_state->uapi.src) >> 17; 3936 u32 offset; 3937 3938 intel_add_fb_offsets(&x, &y, plane_state, uv_plane); 3939 offset = intel_plane_compute_aligned_offset(&x, &y, 3940 plane_state, uv_plane); 3941 3942 /* FIXME not quite sure how/if these apply to the chroma plane */ 3943 if (w > max_width || h > max_height) { 3944 drm_dbg_kms(&i915->drm, 3945 "CbCr source size %dx%d too big (limit %dx%d)\n", 3946 w, h, max_width, max_height); 3947 return -EINVAL; 3948 } 3949 3950 if (is_ccs_modifier(fb->modifier)) { 3951 int ccs_plane = main_to_ccs_plane(fb, uv_plane); 3952 int aux_offset = plane_state->color_plane[ccs_plane].offset; 3953 int alignment = intel_surf_alignment(fb, uv_plane); 3954 3955 if (offset > aux_offset) 3956 offset = intel_plane_adjust_aligned_offset(&x, &y, 3957 plane_state, 3958 uv_plane, 3959 offset, 3960 aux_offset & ~(alignment - 1)); 3961 3962 while (!skl_check_main_ccs_coordinates(plane_state, x, y, 3963 offset, ccs_plane)) { 3964 if (offset == 0) 3965 break; 3966 3967 offset = intel_plane_adjust_aligned_offset(&x, &y, 3968 plane_state, 3969 uv_plane, 3970 offset, offset - alignment); 3971 } 3972 3973 if (x != plane_state->color_plane[ccs_plane].x || 3974 y != plane_state->color_plane[ccs_plane].y) { 3975 drm_dbg_kms(&i915->drm, 3976 "Unable to find suitable display surface offset due to CCS\n"); 3977 return -EINVAL; 3978 } 3979 } 3980 3981 plane_state->color_plane[uv_plane].offset = offset; 3982 plane_state->color_plane[uv_plane].x = x; 3983 plane_state->color_plane[uv_plane].y = y; 3984 3985 return 0; 3986 } 3987 3988 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state) 3989 { 3990 const struct drm_framebuffer *fb = plane_state->hw.fb; 3991 int src_x = plane_state->uapi.src.x1 >> 16; 3992 int src_y = plane_state->uapi.src.y1 >> 16; 3993 u32 offset; 3994 int ccs_plane; 3995 3996 for (ccs_plane = 0; ccs_plane < fb->format->num_planes; ccs_plane++) { 3997 int main_hsub, main_vsub; 3998 int hsub, vsub; 3999 int x, y; 4000 4001 if (!is_ccs_plane(fb, ccs_plane)) 4002 continue; 4003 4004 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, 4005 ccs_to_main_plane(fb, ccs_plane)); 4006 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); 4007 4008 hsub *= main_hsub; 4009 vsub *= main_vsub; 4010 x = src_x / hsub; 4011 y = src_y / vsub; 4012 4013 intel_add_fb_offsets(&x, &y, plane_state, ccs_plane); 4014 4015 offset = intel_plane_compute_aligned_offset(&x, &y, 4016 plane_state, 4017 ccs_plane); 4018 4019 plane_state->color_plane[ccs_plane].offset = offset; 4020 plane_state->color_plane[ccs_plane].x = (x * hsub + 4021 src_x % hsub) / 4022 main_hsub; 4023 plane_state->color_plane[ccs_plane].y = (y * vsub + 4024 src_y % vsub) / 4025 main_vsub; 4026 } 4027 4028 return 0; 4029 } 4030 4031 int skl_check_plane_surface(struct intel_plane_state *plane_state) 4032 { 4033 const struct drm_framebuffer *fb = plane_state->hw.fb; 4034 int ret; 4035 bool needs_aux = false; 4036 4037 ret = intel_plane_compute_gtt(plane_state); 4038 if (ret) 4039 return ret; 4040 4041 if (!plane_state->uapi.visible) 4042 return 0; 4043 4044 /* 4045 * Handle the AUX surface first since the main surface setup depends on 4046 * it. 4047 */ 4048 if (is_ccs_modifier(fb->modifier)) { 4049 needs_aux = true; 4050 ret = skl_check_ccs_aux_surface(plane_state); 4051 if (ret) 4052 return ret; 4053 } 4054 4055 if (intel_format_info_is_yuv_semiplanar(fb->format, 4056 fb->modifier)) { 4057 needs_aux = true; 4058 ret = skl_check_nv12_aux_surface(plane_state); 4059 if (ret) 4060 return ret; 4061 } 4062 4063 if (!needs_aux) { 4064 int i; 4065 4066 for (i = 1; i < fb->format->num_planes; i++) { 4067 plane_state->color_plane[i].offset = ~0xfff; 4068 plane_state->color_plane[i].x = 0; 4069 plane_state->color_plane[i].y = 0; 4070 } 4071 } 4072 4073 ret = skl_check_main_surface(plane_state); 4074 if (ret) 4075 return ret; 4076 4077 return 0; 4078 } 4079 4080 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state, 4081 const struct intel_plane_state *plane_state, 4082 unsigned int *num, unsigned int *den) 4083 { 4084 const struct drm_framebuffer *fb = plane_state->hw.fb; 4085 unsigned int cpp = fb->format->cpp[0]; 4086 4087 /* 4088 * g4x bspec says 64bpp pixel rate can't exceed 80% 4089 * of cdclk when the sprite plane is enabled on the 4090 * same pipe. ilk/snb bspec says 64bpp pixel rate is 4091 * never allowed to exceed 80% of cdclk. Let's just go 4092 * with the ilk/snb limit always. 4093 */ 4094 if (cpp == 8) { 4095 *num = 10; 4096 *den = 8; 4097 } else { 4098 *num = 1; 4099 *den = 1; 4100 } 4101 } 4102 4103 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state, 4104 const struct intel_plane_state *plane_state) 4105 { 4106 unsigned int pixel_rate; 4107 unsigned int num, den; 4108 4109 /* 4110 * Note that crtc_state->pixel_rate accounts for both 4111 * horizontal and vertical panel fitter downscaling factors. 4112 * Pre-HSW bspec tells us to only consider the horizontal 4113 * downscaling factor here. We ignore that and just consider 4114 * both for simplicity. 4115 */ 4116 pixel_rate = crtc_state->pixel_rate; 4117 4118 i9xx_plane_ratio(crtc_state, plane_state, &num, &den); 4119 4120 /* two pixels per clock with double wide pipe */ 4121 if (crtc_state->double_wide) 4122 den *= 2; 4123 4124 return DIV_ROUND_UP(pixel_rate * num, den); 4125 } 4126 4127 unsigned int 4128 i9xx_plane_max_stride(struct intel_plane *plane, 4129 u32 pixel_format, u64 modifier, 4130 unsigned int rotation) 4131 { 4132 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4133 4134 if (!HAS_GMCH(dev_priv)) { 4135 return 32*1024; 4136 } else if (INTEL_GEN(dev_priv) >= 4) { 4137 if (modifier == I915_FORMAT_MOD_X_TILED) 4138 return 16*1024; 4139 else 4140 return 32*1024; 4141 } else if (INTEL_GEN(dev_priv) >= 3) { 4142 if (modifier == I915_FORMAT_MOD_X_TILED) 4143 return 8*1024; 4144 else 4145 return 16*1024; 4146 } else { 4147 if (plane->i9xx_plane == PLANE_C) 4148 return 4*1024; 4149 else 4150 return 8*1024; 4151 } 4152 } 4153 4154 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 4155 { 4156 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4157 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4158 u32 dspcntr = 0; 4159 4160 if (crtc_state->gamma_enable) 4161 dspcntr |= DISPPLANE_GAMMA_ENABLE; 4162 4163 if (crtc_state->csc_enable) 4164 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE; 4165 4166 if (INTEL_GEN(dev_priv) < 5) 4167 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe); 4168 4169 return dspcntr; 4170 } 4171 4172 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state, 4173 const struct intel_plane_state *plane_state) 4174 { 4175 struct drm_i915_private *dev_priv = 4176 to_i915(plane_state->uapi.plane->dev); 4177 const struct drm_framebuffer *fb = plane_state->hw.fb; 4178 unsigned int rotation = plane_state->hw.rotation; 4179 u32 dspcntr; 4180 4181 dspcntr = DISPLAY_PLANE_ENABLE; 4182 4183 if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) || 4184 IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 4185 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; 4186 4187 switch (fb->format->format) { 4188 case DRM_FORMAT_C8: 4189 dspcntr |= DISPPLANE_8BPP; 4190 break; 4191 case DRM_FORMAT_XRGB1555: 4192 dspcntr |= DISPPLANE_BGRX555; 4193 break; 4194 case DRM_FORMAT_ARGB1555: 4195 dspcntr |= DISPPLANE_BGRA555; 4196 break; 4197 case DRM_FORMAT_RGB565: 4198 dspcntr |= DISPPLANE_BGRX565; 4199 break; 4200 case DRM_FORMAT_XRGB8888: 4201 dspcntr |= DISPPLANE_BGRX888; 4202 break; 4203 case DRM_FORMAT_XBGR8888: 4204 dspcntr |= DISPPLANE_RGBX888; 4205 break; 4206 case DRM_FORMAT_ARGB8888: 4207 dspcntr |= DISPPLANE_BGRA888; 4208 break; 4209 case DRM_FORMAT_ABGR8888: 4210 dspcntr |= DISPPLANE_RGBA888; 4211 break; 4212 case DRM_FORMAT_XRGB2101010: 4213 dspcntr |= DISPPLANE_BGRX101010; 4214 break; 4215 case DRM_FORMAT_XBGR2101010: 4216 dspcntr |= DISPPLANE_RGBX101010; 4217 break; 4218 case DRM_FORMAT_ARGB2101010: 4219 dspcntr |= DISPPLANE_BGRA101010; 4220 break; 4221 case DRM_FORMAT_ABGR2101010: 4222 dspcntr |= DISPPLANE_RGBA101010; 4223 break; 4224 case DRM_FORMAT_XBGR16161616F: 4225 dspcntr |= DISPPLANE_RGBX161616; 4226 break; 4227 default: 4228 MISSING_CASE(fb->format->format); 4229 return 0; 4230 } 4231 4232 if (INTEL_GEN(dev_priv) >= 4 && 4233 fb->modifier == I915_FORMAT_MOD_X_TILED) 4234 dspcntr |= DISPPLANE_TILED; 4235 4236 if (rotation & DRM_MODE_ROTATE_180) 4237 dspcntr |= DISPPLANE_ROTATE_180; 4238 4239 if (rotation & DRM_MODE_REFLECT_X) 4240 dspcntr |= DISPPLANE_MIRROR; 4241 4242 return dspcntr; 4243 } 4244 4245 int i9xx_check_plane_surface(struct intel_plane_state *plane_state) 4246 { 4247 struct drm_i915_private *dev_priv = 4248 to_i915(plane_state->uapi.plane->dev); 4249 const struct drm_framebuffer *fb = plane_state->hw.fb; 4250 int src_x, src_y, src_w; 4251 u32 offset; 4252 int ret; 4253 4254 ret = intel_plane_compute_gtt(plane_state); 4255 if (ret) 4256 return ret; 4257 4258 if (!plane_state->uapi.visible) 4259 return 0; 4260 4261 src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 4262 src_x = plane_state->uapi.src.x1 >> 16; 4263 src_y = plane_state->uapi.src.y1 >> 16; 4264 4265 /* Undocumented hardware limit on i965/g4x/vlv/chv */ 4266 if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048) 4267 return -EINVAL; 4268 4269 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 4270 4271 if (INTEL_GEN(dev_priv) >= 4) 4272 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 4273 plane_state, 0); 4274 else 4275 offset = 0; 4276 4277 /* 4278 * Put the final coordinates back so that the src 4279 * coordinate checks will see the right values. 4280 */ 4281 drm_rect_translate_to(&plane_state->uapi.src, 4282 src_x << 16, src_y << 16); 4283 4284 /* HSW/BDW do this automagically in hardware */ 4285 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) { 4286 unsigned int rotation = plane_state->hw.rotation; 4287 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 4288 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 4289 4290 if (rotation & DRM_MODE_ROTATE_180) { 4291 src_x += src_w - 1; 4292 src_y += src_h - 1; 4293 } else if (rotation & DRM_MODE_REFLECT_X) { 4294 src_x += src_w - 1; 4295 } 4296 } 4297 4298 plane_state->color_plane[0].offset = offset; 4299 plane_state->color_plane[0].x = src_x; 4300 plane_state->color_plane[0].y = src_y; 4301 4302 return 0; 4303 } 4304 4305 static bool i9xx_plane_has_windowing(struct intel_plane *plane) 4306 { 4307 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4308 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4309 4310 if (IS_CHERRYVIEW(dev_priv)) 4311 return i9xx_plane == PLANE_B; 4312 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 4313 return false; 4314 else if (IS_GEN(dev_priv, 4)) 4315 return i9xx_plane == PLANE_C; 4316 else 4317 return i9xx_plane == PLANE_B || 4318 i9xx_plane == PLANE_C; 4319 } 4320 4321 static int 4322 i9xx_plane_check(struct intel_crtc_state *crtc_state, 4323 struct intel_plane_state *plane_state) 4324 { 4325 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 4326 int ret; 4327 4328 ret = chv_plane_check_rotation(plane_state); 4329 if (ret) 4330 return ret; 4331 4332 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi, 4333 &crtc_state->uapi, 4334 DRM_PLANE_HELPER_NO_SCALING, 4335 DRM_PLANE_HELPER_NO_SCALING, 4336 i9xx_plane_has_windowing(plane), 4337 true); 4338 if (ret) 4339 return ret; 4340 4341 ret = i9xx_check_plane_surface(plane_state); 4342 if (ret) 4343 return ret; 4344 4345 if (!plane_state->uapi.visible) 4346 return 0; 4347 4348 ret = intel_plane_check_src_coordinates(plane_state); 4349 if (ret) 4350 return ret; 4351 4352 plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state); 4353 4354 return 0; 4355 } 4356 4357 static void i9xx_update_plane(struct intel_plane *plane, 4358 const struct intel_crtc_state *crtc_state, 4359 const struct intel_plane_state *plane_state) 4360 { 4361 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4362 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4363 u32 linear_offset; 4364 int x = plane_state->color_plane[0].x; 4365 int y = plane_state->color_plane[0].y; 4366 int crtc_x = plane_state->uapi.dst.x1; 4367 int crtc_y = plane_state->uapi.dst.y1; 4368 int crtc_w = drm_rect_width(&plane_state->uapi.dst); 4369 int crtc_h = drm_rect_height(&plane_state->uapi.dst); 4370 unsigned long irqflags; 4371 u32 dspaddr_offset; 4372 u32 dspcntr; 4373 4374 dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state); 4375 4376 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0); 4377 4378 if (INTEL_GEN(dev_priv) >= 4) 4379 dspaddr_offset = plane_state->color_plane[0].offset; 4380 else 4381 dspaddr_offset = linear_offset; 4382 4383 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4384 4385 intel_de_write_fw(dev_priv, DSPSTRIDE(i9xx_plane), 4386 plane_state->color_plane[0].stride); 4387 4388 if (INTEL_GEN(dev_priv) < 4) { 4389 /* 4390 * PLANE_A doesn't actually have a full window 4391 * generator but let's assume we still need to 4392 * program whatever is there. 4393 */ 4394 intel_de_write_fw(dev_priv, DSPPOS(i9xx_plane), 4395 (crtc_y << 16) | crtc_x); 4396 intel_de_write_fw(dev_priv, DSPSIZE(i9xx_plane), 4397 ((crtc_h - 1) << 16) | (crtc_w - 1)); 4398 } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) { 4399 intel_de_write_fw(dev_priv, PRIMPOS(i9xx_plane), 4400 (crtc_y << 16) | crtc_x); 4401 intel_de_write_fw(dev_priv, PRIMSIZE(i9xx_plane), 4402 ((crtc_h - 1) << 16) | (crtc_w - 1)); 4403 intel_de_write_fw(dev_priv, PRIMCNSTALPHA(i9xx_plane), 0); 4404 } 4405 4406 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 4407 intel_de_write_fw(dev_priv, DSPOFFSET(i9xx_plane), 4408 (y << 16) | x); 4409 } else if (INTEL_GEN(dev_priv) >= 4) { 4410 intel_de_write_fw(dev_priv, DSPLINOFF(i9xx_plane), 4411 linear_offset); 4412 intel_de_write_fw(dev_priv, DSPTILEOFF(i9xx_plane), 4413 (y << 16) | x); 4414 } 4415 4416 /* 4417 * The control register self-arms if the plane was previously 4418 * disabled. Try to make the plane enable atomic by writing 4419 * the control register just before the surface register. 4420 */ 4421 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr); 4422 if (INTEL_GEN(dev_priv) >= 4) 4423 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 4424 intel_plane_ggtt_offset(plane_state) + dspaddr_offset); 4425 else 4426 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 4427 intel_plane_ggtt_offset(plane_state) + dspaddr_offset); 4428 4429 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4430 } 4431 4432 static void i9xx_disable_plane(struct intel_plane *plane, 4433 const struct intel_crtc_state *crtc_state) 4434 { 4435 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4436 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4437 unsigned long irqflags; 4438 u32 dspcntr; 4439 4440 /* 4441 * DSPCNTR pipe gamma enable on g4x+ and pipe csc 4442 * enable on ilk+ affect the pipe bottom color as 4443 * well, so we must configure them even if the plane 4444 * is disabled. 4445 * 4446 * On pre-g4x there is no way to gamma correct the 4447 * pipe bottom color but we'll keep on doing this 4448 * anyway so that the crtc state readout works correctly. 4449 */ 4450 dspcntr = i9xx_plane_ctl_crtc(crtc_state); 4451 4452 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4453 4454 intel_de_write_fw(dev_priv, DSPCNTR(i9xx_plane), dspcntr); 4455 if (INTEL_GEN(dev_priv) >= 4) 4456 intel_de_write_fw(dev_priv, DSPSURF(i9xx_plane), 0); 4457 else 4458 intel_de_write_fw(dev_priv, DSPADDR(i9xx_plane), 0); 4459 4460 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4461 } 4462 4463 static bool i9xx_plane_get_hw_state(struct intel_plane *plane, 4464 enum pipe *pipe) 4465 { 4466 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 4467 enum intel_display_power_domain power_domain; 4468 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 4469 intel_wakeref_t wakeref; 4470 bool ret; 4471 u32 val; 4472 4473 /* 4474 * Not 100% correct for planes that can move between pipes, 4475 * but that's only the case for gen2-4 which don't have any 4476 * display power wells. 4477 */ 4478 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 4479 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 4480 if (!wakeref) 4481 return false; 4482 4483 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 4484 4485 ret = val & DISPLAY_PLANE_ENABLE; 4486 4487 if (INTEL_GEN(dev_priv) >= 5) 4488 *pipe = plane->pipe; 4489 else 4490 *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> 4491 DISPPLANE_SEL_PIPE_SHIFT; 4492 4493 intel_display_power_put(dev_priv, power_domain, wakeref); 4494 4495 return ret; 4496 } 4497 4498 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id) 4499 { 4500 struct drm_device *dev = intel_crtc->base.dev; 4501 struct drm_i915_private *dev_priv = to_i915(dev); 4502 unsigned long irqflags; 4503 4504 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 4505 4506 intel_de_write_fw(dev_priv, SKL_PS_CTRL(intel_crtc->pipe, id), 0); 4507 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(intel_crtc->pipe, id), 0); 4508 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0); 4509 4510 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 4511 } 4512 4513 /* 4514 * This function detaches (aka. unbinds) unused scalers in hardware 4515 */ 4516 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state) 4517 { 4518 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 4519 const struct intel_crtc_scaler_state *scaler_state = 4520 &crtc_state->scaler_state; 4521 int i; 4522 4523 /* loop through and disable scalers that aren't in use */ 4524 for (i = 0; i < intel_crtc->num_scalers; i++) { 4525 if (!scaler_state->scalers[i].in_use) 4526 skl_detach_scaler(intel_crtc, i); 4527 } 4528 } 4529 4530 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb, 4531 int color_plane, unsigned int rotation) 4532 { 4533 /* 4534 * The stride is either expressed as a multiple of 64 bytes chunks for 4535 * linear buffers or in number of tiles for tiled buffers. 4536 */ 4537 if (is_surface_linear(fb, color_plane)) 4538 return 64; 4539 else if (drm_rotation_90_or_270(rotation)) 4540 return intel_tile_height(fb, color_plane); 4541 else 4542 return intel_tile_width_bytes(fb, color_plane); 4543 } 4544 4545 u32 skl_plane_stride(const struct intel_plane_state *plane_state, 4546 int color_plane) 4547 { 4548 const struct drm_framebuffer *fb = plane_state->hw.fb; 4549 unsigned int rotation = plane_state->hw.rotation; 4550 u32 stride = plane_state->color_plane[color_plane].stride; 4551 4552 if (color_plane >= fb->format->num_planes) 4553 return 0; 4554 4555 return stride / skl_plane_stride_mult(fb, color_plane, rotation); 4556 } 4557 4558 static u32 skl_plane_ctl_format(u32 pixel_format) 4559 { 4560 switch (pixel_format) { 4561 case DRM_FORMAT_C8: 4562 return PLANE_CTL_FORMAT_INDEXED; 4563 case DRM_FORMAT_RGB565: 4564 return PLANE_CTL_FORMAT_RGB_565; 4565 case DRM_FORMAT_XBGR8888: 4566 case DRM_FORMAT_ABGR8888: 4567 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX; 4568 case DRM_FORMAT_XRGB8888: 4569 case DRM_FORMAT_ARGB8888: 4570 return PLANE_CTL_FORMAT_XRGB_8888; 4571 case DRM_FORMAT_XBGR2101010: 4572 case DRM_FORMAT_ABGR2101010: 4573 return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX; 4574 case DRM_FORMAT_XRGB2101010: 4575 case DRM_FORMAT_ARGB2101010: 4576 return PLANE_CTL_FORMAT_XRGB_2101010; 4577 case DRM_FORMAT_XBGR16161616F: 4578 case DRM_FORMAT_ABGR16161616F: 4579 return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX; 4580 case DRM_FORMAT_XRGB16161616F: 4581 case DRM_FORMAT_ARGB16161616F: 4582 return PLANE_CTL_FORMAT_XRGB_16161616F; 4583 case DRM_FORMAT_YUYV: 4584 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV; 4585 case DRM_FORMAT_YVYU: 4586 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU; 4587 case DRM_FORMAT_UYVY: 4588 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY; 4589 case DRM_FORMAT_VYUY: 4590 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY; 4591 case DRM_FORMAT_NV12: 4592 return PLANE_CTL_FORMAT_NV12; 4593 case DRM_FORMAT_P010: 4594 return PLANE_CTL_FORMAT_P010; 4595 case DRM_FORMAT_P012: 4596 return PLANE_CTL_FORMAT_P012; 4597 case DRM_FORMAT_P016: 4598 return PLANE_CTL_FORMAT_P016; 4599 case DRM_FORMAT_Y210: 4600 return PLANE_CTL_FORMAT_Y210; 4601 case DRM_FORMAT_Y212: 4602 return PLANE_CTL_FORMAT_Y212; 4603 case DRM_FORMAT_Y216: 4604 return PLANE_CTL_FORMAT_Y216; 4605 case DRM_FORMAT_XVYU2101010: 4606 return PLANE_CTL_FORMAT_Y410; 4607 case DRM_FORMAT_XVYU12_16161616: 4608 return PLANE_CTL_FORMAT_Y412; 4609 case DRM_FORMAT_XVYU16161616: 4610 return PLANE_CTL_FORMAT_Y416; 4611 default: 4612 MISSING_CASE(pixel_format); 4613 } 4614 4615 return 0; 4616 } 4617 4618 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state) 4619 { 4620 if (!plane_state->hw.fb->format->has_alpha) 4621 return PLANE_CTL_ALPHA_DISABLE; 4622 4623 switch (plane_state->hw.pixel_blend_mode) { 4624 case DRM_MODE_BLEND_PIXEL_NONE: 4625 return PLANE_CTL_ALPHA_DISABLE; 4626 case DRM_MODE_BLEND_PREMULTI: 4627 return PLANE_CTL_ALPHA_SW_PREMULTIPLY; 4628 case DRM_MODE_BLEND_COVERAGE: 4629 return PLANE_CTL_ALPHA_HW_PREMULTIPLY; 4630 default: 4631 MISSING_CASE(plane_state->hw.pixel_blend_mode); 4632 return PLANE_CTL_ALPHA_DISABLE; 4633 } 4634 } 4635 4636 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state) 4637 { 4638 if (!plane_state->hw.fb->format->has_alpha) 4639 return PLANE_COLOR_ALPHA_DISABLE; 4640 4641 switch (plane_state->hw.pixel_blend_mode) { 4642 case DRM_MODE_BLEND_PIXEL_NONE: 4643 return PLANE_COLOR_ALPHA_DISABLE; 4644 case DRM_MODE_BLEND_PREMULTI: 4645 return PLANE_COLOR_ALPHA_SW_PREMULTIPLY; 4646 case DRM_MODE_BLEND_COVERAGE: 4647 return PLANE_COLOR_ALPHA_HW_PREMULTIPLY; 4648 default: 4649 MISSING_CASE(plane_state->hw.pixel_blend_mode); 4650 return PLANE_COLOR_ALPHA_DISABLE; 4651 } 4652 } 4653 4654 static u32 skl_plane_ctl_tiling(u64 fb_modifier) 4655 { 4656 switch (fb_modifier) { 4657 case DRM_FORMAT_MOD_LINEAR: 4658 break; 4659 case I915_FORMAT_MOD_X_TILED: 4660 return PLANE_CTL_TILED_X; 4661 case I915_FORMAT_MOD_Y_TILED: 4662 return PLANE_CTL_TILED_Y; 4663 case I915_FORMAT_MOD_Y_TILED_CCS: 4664 return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4665 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: 4666 return PLANE_CTL_TILED_Y | 4667 PLANE_CTL_RENDER_DECOMPRESSION_ENABLE | 4668 PLANE_CTL_CLEAR_COLOR_DISABLE; 4669 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: 4670 return PLANE_CTL_TILED_Y | PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE; 4671 case I915_FORMAT_MOD_Yf_TILED: 4672 return PLANE_CTL_TILED_YF; 4673 case I915_FORMAT_MOD_Yf_TILED_CCS: 4674 return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE; 4675 default: 4676 MISSING_CASE(fb_modifier); 4677 } 4678 4679 return 0; 4680 } 4681 4682 static u32 skl_plane_ctl_rotate(unsigned int rotate) 4683 { 4684 switch (rotate) { 4685 case DRM_MODE_ROTATE_0: 4686 break; 4687 /* 4688 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 4689 * while i915 HW rotation is clockwise, thats why this swapping. 4690 */ 4691 case DRM_MODE_ROTATE_90: 4692 return PLANE_CTL_ROTATE_270; 4693 case DRM_MODE_ROTATE_180: 4694 return PLANE_CTL_ROTATE_180; 4695 case DRM_MODE_ROTATE_270: 4696 return PLANE_CTL_ROTATE_90; 4697 default: 4698 MISSING_CASE(rotate); 4699 } 4700 4701 return 0; 4702 } 4703 4704 static u32 cnl_plane_ctl_flip(unsigned int reflect) 4705 { 4706 switch (reflect) { 4707 case 0: 4708 break; 4709 case DRM_MODE_REFLECT_X: 4710 return PLANE_CTL_FLIP_HORIZONTAL; 4711 case DRM_MODE_REFLECT_Y: 4712 default: 4713 MISSING_CASE(reflect); 4714 } 4715 4716 return 0; 4717 } 4718 4719 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state) 4720 { 4721 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4722 u32 plane_ctl = 0; 4723 4724 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4725 return plane_ctl; 4726 4727 if (crtc_state->gamma_enable) 4728 plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE; 4729 4730 if (crtc_state->csc_enable) 4731 plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE; 4732 4733 return plane_ctl; 4734 } 4735 4736 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state, 4737 const struct intel_plane_state *plane_state) 4738 { 4739 struct drm_i915_private *dev_priv = 4740 to_i915(plane_state->uapi.plane->dev); 4741 const struct drm_framebuffer *fb = plane_state->hw.fb; 4742 unsigned int rotation = plane_state->hw.rotation; 4743 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey; 4744 u32 plane_ctl; 4745 4746 plane_ctl = PLANE_CTL_ENABLE; 4747 4748 if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) { 4749 plane_ctl |= skl_plane_ctl_alpha(plane_state); 4750 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE; 4751 4752 if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709) 4753 plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709; 4754 4755 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4756 plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE; 4757 } 4758 4759 plane_ctl |= skl_plane_ctl_format(fb->format->format); 4760 plane_ctl |= skl_plane_ctl_tiling(fb->modifier); 4761 plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK); 4762 4763 if (INTEL_GEN(dev_priv) >= 10) 4764 plane_ctl |= cnl_plane_ctl_flip(rotation & 4765 DRM_MODE_REFLECT_MASK); 4766 4767 if (key->flags & I915_SET_COLORKEY_DESTINATION) 4768 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION; 4769 else if (key->flags & I915_SET_COLORKEY_SOURCE) 4770 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE; 4771 4772 return plane_ctl; 4773 } 4774 4775 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state) 4776 { 4777 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4778 u32 plane_color_ctl = 0; 4779 4780 if (INTEL_GEN(dev_priv) >= 11) 4781 return plane_color_ctl; 4782 4783 if (crtc_state->gamma_enable) 4784 plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE; 4785 4786 if (crtc_state->csc_enable) 4787 plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE; 4788 4789 return plane_color_ctl; 4790 } 4791 4792 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state, 4793 const struct intel_plane_state *plane_state) 4794 { 4795 struct drm_i915_private *dev_priv = 4796 to_i915(plane_state->uapi.plane->dev); 4797 const struct drm_framebuffer *fb = plane_state->hw.fb; 4798 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 4799 u32 plane_color_ctl = 0; 4800 4801 plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE; 4802 plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state); 4803 4804 if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) { 4805 if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709) 4806 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709; 4807 else 4808 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV601_TO_RGB709; 4809 4810 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE) 4811 plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE; 4812 } else if (fb->format->is_yuv) { 4813 plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE; 4814 } 4815 4816 return plane_color_ctl; 4817 } 4818 4819 static int 4820 __intel_display_resume(struct drm_device *dev, 4821 struct drm_atomic_state *state, 4822 struct drm_modeset_acquire_ctx *ctx) 4823 { 4824 struct drm_crtc_state *crtc_state; 4825 struct drm_crtc *crtc; 4826 int i, ret; 4827 4828 intel_modeset_setup_hw_state(dev, ctx); 4829 intel_vga_redisable(to_i915(dev)); 4830 4831 if (!state) 4832 return 0; 4833 4834 /* 4835 * We've duplicated the state, pointers to the old state are invalid. 4836 * 4837 * Don't attempt to use the old state until we commit the duplicated state. 4838 */ 4839 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 4840 /* 4841 * Force recalculation even if we restore 4842 * current state. With fast modeset this may not result 4843 * in a modeset when the state is compatible. 4844 */ 4845 crtc_state->mode_changed = true; 4846 } 4847 4848 /* ignore any reset values/BIOS leftovers in the WM registers */ 4849 if (!HAS_GMCH(to_i915(dev))) 4850 to_intel_atomic_state(state)->skip_intermediate_wm = true; 4851 4852 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 4853 4854 drm_WARN_ON(dev, ret == -EDEADLK); 4855 return ret; 4856 } 4857 4858 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) 4859 { 4860 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && 4861 intel_has_gpu_reset(&dev_priv->gt)); 4862 } 4863 4864 void intel_prepare_reset(struct drm_i915_private *dev_priv) 4865 { 4866 struct drm_device *dev = &dev_priv->drm; 4867 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4868 struct drm_atomic_state *state; 4869 int ret; 4870 4871 /* reset doesn't touch the display */ 4872 if (!i915_modparams.force_reset_modeset_test && 4873 !gpu_reset_clobbers_display(dev_priv)) 4874 return; 4875 4876 /* We have a modeset vs reset deadlock, defensively unbreak it. */ 4877 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 4878 smp_mb__after_atomic(); 4879 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET); 4880 4881 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { 4882 drm_dbg_kms(&dev_priv->drm, 4883 "Modeset potentially stuck, unbreaking through wedging\n"); 4884 intel_gt_set_wedged(&dev_priv->gt); 4885 } 4886 4887 /* 4888 * Need mode_config.mutex so that we don't 4889 * trample ongoing ->detect() and whatnot. 4890 */ 4891 mutex_lock(&dev->mode_config.mutex); 4892 drm_modeset_acquire_init(ctx, 0); 4893 while (1) { 4894 ret = drm_modeset_lock_all_ctx(dev, ctx); 4895 if (ret != -EDEADLK) 4896 break; 4897 4898 drm_modeset_backoff(ctx); 4899 } 4900 /* 4901 * Disabling the crtcs gracefully seems nicer. Also the 4902 * g33 docs say we should at least disable all the planes. 4903 */ 4904 state = drm_atomic_helper_duplicate_state(dev, ctx); 4905 if (IS_ERR(state)) { 4906 ret = PTR_ERR(state); 4907 drm_err(&dev_priv->drm, "Duplicating state failed with %i\n", 4908 ret); 4909 return; 4910 } 4911 4912 ret = drm_atomic_helper_disable_all(dev, ctx); 4913 if (ret) { 4914 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 4915 ret); 4916 drm_atomic_state_put(state); 4917 return; 4918 } 4919 4920 dev_priv->modeset_restore_state = state; 4921 state->acquire_ctx = ctx; 4922 } 4923 4924 void intel_finish_reset(struct drm_i915_private *dev_priv) 4925 { 4926 struct drm_device *dev = &dev_priv->drm; 4927 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; 4928 struct drm_atomic_state *state; 4929 int ret; 4930 4931 /* reset doesn't touch the display */ 4932 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 4933 return; 4934 4935 state = fetch_and_zero(&dev_priv->modeset_restore_state); 4936 if (!state) 4937 goto unlock; 4938 4939 /* reset doesn't touch the display */ 4940 if (!gpu_reset_clobbers_display(dev_priv)) { 4941 /* for testing only restore the display */ 4942 ret = __intel_display_resume(dev, state, ctx); 4943 if (ret) 4944 drm_err(&dev_priv->drm, 4945 "Restoring old state failed with %i\n", ret); 4946 } else { 4947 /* 4948 * The display has been reset as well, 4949 * so need a full re-initialization. 4950 */ 4951 intel_pps_unlock_regs_wa(dev_priv); 4952 intel_modeset_init_hw(dev_priv); 4953 intel_init_clock_gating(dev_priv); 4954 4955 spin_lock_irq(&dev_priv->irq_lock); 4956 if (dev_priv->display.hpd_irq_setup) 4957 dev_priv->display.hpd_irq_setup(dev_priv); 4958 spin_unlock_irq(&dev_priv->irq_lock); 4959 4960 ret = __intel_display_resume(dev, state, ctx); 4961 if (ret) 4962 drm_err(&dev_priv->drm, 4963 "Restoring old state failed with %i\n", ret); 4964 4965 intel_hpd_init(dev_priv); 4966 } 4967 4968 drm_atomic_state_put(state); 4969 unlock: 4970 drm_modeset_drop_locks(ctx); 4971 drm_modeset_acquire_fini(ctx); 4972 mutex_unlock(&dev->mode_config.mutex); 4973 4974 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags); 4975 } 4976 4977 static void icl_set_pipe_chicken(struct intel_crtc *crtc) 4978 { 4979 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4980 enum pipe pipe = crtc->pipe; 4981 u32 tmp; 4982 4983 tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe)); 4984 4985 /* 4986 * Display WA #1153: icl 4987 * enable hardware to bypass the alpha math 4988 * and rounding for per-pixel values 00 and 0xff 4989 */ 4990 tmp |= PER_PIXEL_ALPHA_BYPASS_EN; 4991 /* 4992 * Display WA # 1605353570: icl 4993 * Set the pixel rounding bit to 1 for allowing 4994 * passthrough of Frame buffer pixels unmodified 4995 * across pipe 4996 */ 4997 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; 4998 intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp); 4999 } 5000 5001 static void icl_enable_trans_port_sync(const struct intel_crtc_state *crtc_state) 5002 { 5003 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5004 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5005 u32 trans_ddi_func_ctl2_val; 5006 u8 master_select; 5007 5008 /* 5009 * Configure the master select and enable Transcoder Port Sync for 5010 * Slave CRTCs transcoder. 5011 */ 5012 if (crtc_state->master_transcoder == INVALID_TRANSCODER) 5013 return; 5014 5015 if (crtc_state->master_transcoder == TRANSCODER_EDP) 5016 master_select = 0; 5017 else 5018 master_select = crtc_state->master_transcoder + 1; 5019 5020 /* Set the master select bits for Tranascoder Port Sync */ 5021 trans_ddi_func_ctl2_val = (PORT_SYNC_MODE_MASTER_SELECT(master_select) & 5022 PORT_SYNC_MODE_MASTER_SELECT_MASK) << 5023 PORT_SYNC_MODE_MASTER_SELECT_SHIFT; 5024 /* Enable Transcoder Port Sync */ 5025 trans_ddi_func_ctl2_val |= PORT_SYNC_MODE_ENABLE; 5026 5027 intel_de_write(dev_priv, 5028 TRANS_DDI_FUNC_CTL2(crtc_state->cpu_transcoder), 5029 trans_ddi_func_ctl2_val); 5030 } 5031 5032 static void intel_fdi_normal_train(struct intel_crtc *crtc) 5033 { 5034 struct drm_device *dev = crtc->base.dev; 5035 struct drm_i915_private *dev_priv = to_i915(dev); 5036 enum pipe pipe = crtc->pipe; 5037 i915_reg_t reg; 5038 u32 temp; 5039 5040 /* enable normal train */ 5041 reg = FDI_TX_CTL(pipe); 5042 temp = intel_de_read(dev_priv, reg); 5043 if (IS_IVYBRIDGE(dev_priv)) { 5044 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 5045 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; 5046 } else { 5047 temp &= ~FDI_LINK_TRAIN_NONE; 5048 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; 5049 } 5050 intel_de_write(dev_priv, reg, temp); 5051 5052 reg = FDI_RX_CTL(pipe); 5053 temp = intel_de_read(dev_priv, reg); 5054 if (HAS_PCH_CPT(dev_priv)) { 5055 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5056 temp |= FDI_LINK_TRAIN_NORMAL_CPT; 5057 } else { 5058 temp &= ~FDI_LINK_TRAIN_NONE; 5059 temp |= FDI_LINK_TRAIN_NONE; 5060 } 5061 intel_de_write(dev_priv, reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); 5062 5063 /* wait one idle pattern time */ 5064 intel_de_posting_read(dev_priv, reg); 5065 udelay(1000); 5066 5067 /* IVB wants error correction enabled */ 5068 if (IS_IVYBRIDGE(dev_priv)) 5069 intel_de_write(dev_priv, reg, 5070 intel_de_read(dev_priv, reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE); 5071 } 5072 5073 /* The FDI link training functions for ILK/Ibexpeak. */ 5074 static void ilk_fdi_link_train(struct intel_crtc *crtc, 5075 const struct intel_crtc_state *crtc_state) 5076 { 5077 struct drm_device *dev = crtc->base.dev; 5078 struct drm_i915_private *dev_priv = to_i915(dev); 5079 enum pipe pipe = crtc->pipe; 5080 i915_reg_t reg; 5081 u32 temp, tries; 5082 5083 /* FDI needs bits from pipe first */ 5084 assert_pipe_enabled(dev_priv, crtc_state->cpu_transcoder); 5085 5086 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5087 for train result */ 5088 reg = FDI_RX_IMR(pipe); 5089 temp = intel_de_read(dev_priv, reg); 5090 temp &= ~FDI_RX_SYMBOL_LOCK; 5091 temp &= ~FDI_RX_BIT_LOCK; 5092 intel_de_write(dev_priv, reg, temp); 5093 intel_de_read(dev_priv, reg); 5094 udelay(150); 5095 5096 /* enable CPU FDI TX and PCH FDI RX */ 5097 reg = FDI_TX_CTL(pipe); 5098 temp = intel_de_read(dev_priv, reg); 5099 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5100 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5101 temp &= ~FDI_LINK_TRAIN_NONE; 5102 temp |= FDI_LINK_TRAIN_PATTERN_1; 5103 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5104 5105 reg = FDI_RX_CTL(pipe); 5106 temp = intel_de_read(dev_priv, reg); 5107 temp &= ~FDI_LINK_TRAIN_NONE; 5108 temp |= FDI_LINK_TRAIN_PATTERN_1; 5109 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5110 5111 intel_de_posting_read(dev_priv, reg); 5112 udelay(150); 5113 5114 /* Ironlake workaround, enable clock pointer after FDI enable*/ 5115 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5116 FDI_RX_PHASE_SYNC_POINTER_OVR); 5117 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5118 FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN); 5119 5120 reg = FDI_RX_IIR(pipe); 5121 for (tries = 0; tries < 5; tries++) { 5122 temp = intel_de_read(dev_priv, reg); 5123 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5124 5125 if ((temp & FDI_RX_BIT_LOCK)) { 5126 drm_dbg_kms(&dev_priv->drm, "FDI train 1 done.\n"); 5127 intel_de_write(dev_priv, reg, temp | FDI_RX_BIT_LOCK); 5128 break; 5129 } 5130 } 5131 if (tries == 5) 5132 drm_err(&dev_priv->drm, "FDI train 1 fail!\n"); 5133 5134 /* Train 2 */ 5135 reg = FDI_TX_CTL(pipe); 5136 temp = intel_de_read(dev_priv, reg); 5137 temp &= ~FDI_LINK_TRAIN_NONE; 5138 temp |= FDI_LINK_TRAIN_PATTERN_2; 5139 intel_de_write(dev_priv, reg, temp); 5140 5141 reg = FDI_RX_CTL(pipe); 5142 temp = intel_de_read(dev_priv, reg); 5143 temp &= ~FDI_LINK_TRAIN_NONE; 5144 temp |= FDI_LINK_TRAIN_PATTERN_2; 5145 intel_de_write(dev_priv, reg, temp); 5146 5147 intel_de_posting_read(dev_priv, reg); 5148 udelay(150); 5149 5150 reg = FDI_RX_IIR(pipe); 5151 for (tries = 0; tries < 5; tries++) { 5152 temp = intel_de_read(dev_priv, reg); 5153 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5154 5155 if (temp & FDI_RX_SYMBOL_LOCK) { 5156 intel_de_write(dev_priv, reg, 5157 temp | FDI_RX_SYMBOL_LOCK); 5158 drm_dbg_kms(&dev_priv->drm, "FDI train 2 done.\n"); 5159 break; 5160 } 5161 } 5162 if (tries == 5) 5163 drm_err(&dev_priv->drm, "FDI train 2 fail!\n"); 5164 5165 drm_dbg_kms(&dev_priv->drm, "FDI train done\n"); 5166 5167 } 5168 5169 static const int snb_b_fdi_train_param[] = { 5170 FDI_LINK_TRAIN_400MV_0DB_SNB_B, 5171 FDI_LINK_TRAIN_400MV_6DB_SNB_B, 5172 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, 5173 FDI_LINK_TRAIN_800MV_0DB_SNB_B, 5174 }; 5175 5176 /* The FDI link training functions for SNB/Cougarpoint. */ 5177 static void gen6_fdi_link_train(struct intel_crtc *crtc, 5178 const struct intel_crtc_state *crtc_state) 5179 { 5180 struct drm_device *dev = crtc->base.dev; 5181 struct drm_i915_private *dev_priv = to_i915(dev); 5182 enum pipe pipe = crtc->pipe; 5183 i915_reg_t reg; 5184 u32 temp, i, retry; 5185 5186 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5187 for train result */ 5188 reg = FDI_RX_IMR(pipe); 5189 temp = intel_de_read(dev_priv, reg); 5190 temp &= ~FDI_RX_SYMBOL_LOCK; 5191 temp &= ~FDI_RX_BIT_LOCK; 5192 intel_de_write(dev_priv, reg, temp); 5193 5194 intel_de_posting_read(dev_priv, reg); 5195 udelay(150); 5196 5197 /* enable CPU FDI TX and PCH FDI RX */ 5198 reg = FDI_TX_CTL(pipe); 5199 temp = intel_de_read(dev_priv, reg); 5200 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5201 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5202 temp &= ~FDI_LINK_TRAIN_NONE; 5203 temp |= FDI_LINK_TRAIN_PATTERN_1; 5204 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5205 /* SNB-B */ 5206 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 5207 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5208 5209 intel_de_write(dev_priv, FDI_RX_MISC(pipe), 5210 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 5211 5212 reg = FDI_RX_CTL(pipe); 5213 temp = intel_de_read(dev_priv, reg); 5214 if (HAS_PCH_CPT(dev_priv)) { 5215 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5216 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5217 } else { 5218 temp &= ~FDI_LINK_TRAIN_NONE; 5219 temp |= FDI_LINK_TRAIN_PATTERN_1; 5220 } 5221 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5222 5223 intel_de_posting_read(dev_priv, reg); 5224 udelay(150); 5225 5226 for (i = 0; i < 4; i++) { 5227 reg = FDI_TX_CTL(pipe); 5228 temp = intel_de_read(dev_priv, reg); 5229 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5230 temp |= snb_b_fdi_train_param[i]; 5231 intel_de_write(dev_priv, reg, temp); 5232 5233 intel_de_posting_read(dev_priv, reg); 5234 udelay(500); 5235 5236 for (retry = 0; retry < 5; retry++) { 5237 reg = FDI_RX_IIR(pipe); 5238 temp = intel_de_read(dev_priv, reg); 5239 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5240 if (temp & FDI_RX_BIT_LOCK) { 5241 intel_de_write(dev_priv, reg, 5242 temp | FDI_RX_BIT_LOCK); 5243 drm_dbg_kms(&dev_priv->drm, 5244 "FDI train 1 done.\n"); 5245 break; 5246 } 5247 udelay(50); 5248 } 5249 if (retry < 5) 5250 break; 5251 } 5252 if (i == 4) 5253 drm_err(&dev_priv->drm, "FDI train 1 fail!\n"); 5254 5255 /* Train 2 */ 5256 reg = FDI_TX_CTL(pipe); 5257 temp = intel_de_read(dev_priv, reg); 5258 temp &= ~FDI_LINK_TRAIN_NONE; 5259 temp |= FDI_LINK_TRAIN_PATTERN_2; 5260 if (IS_GEN(dev_priv, 6)) { 5261 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5262 /* SNB-B */ 5263 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 5264 } 5265 intel_de_write(dev_priv, reg, temp); 5266 5267 reg = FDI_RX_CTL(pipe); 5268 temp = intel_de_read(dev_priv, reg); 5269 if (HAS_PCH_CPT(dev_priv)) { 5270 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5271 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 5272 } else { 5273 temp &= ~FDI_LINK_TRAIN_NONE; 5274 temp |= FDI_LINK_TRAIN_PATTERN_2; 5275 } 5276 intel_de_write(dev_priv, reg, temp); 5277 5278 intel_de_posting_read(dev_priv, reg); 5279 udelay(150); 5280 5281 for (i = 0; i < 4; i++) { 5282 reg = FDI_TX_CTL(pipe); 5283 temp = intel_de_read(dev_priv, reg); 5284 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5285 temp |= snb_b_fdi_train_param[i]; 5286 intel_de_write(dev_priv, reg, temp); 5287 5288 intel_de_posting_read(dev_priv, reg); 5289 udelay(500); 5290 5291 for (retry = 0; retry < 5; retry++) { 5292 reg = FDI_RX_IIR(pipe); 5293 temp = intel_de_read(dev_priv, reg); 5294 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5295 if (temp & FDI_RX_SYMBOL_LOCK) { 5296 intel_de_write(dev_priv, reg, 5297 temp | FDI_RX_SYMBOL_LOCK); 5298 drm_dbg_kms(&dev_priv->drm, 5299 "FDI train 2 done.\n"); 5300 break; 5301 } 5302 udelay(50); 5303 } 5304 if (retry < 5) 5305 break; 5306 } 5307 if (i == 4) 5308 drm_err(&dev_priv->drm, "FDI train 2 fail!\n"); 5309 5310 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n"); 5311 } 5312 5313 /* Manual link training for Ivy Bridge A0 parts */ 5314 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc, 5315 const struct intel_crtc_state *crtc_state) 5316 { 5317 struct drm_device *dev = crtc->base.dev; 5318 struct drm_i915_private *dev_priv = to_i915(dev); 5319 enum pipe pipe = crtc->pipe; 5320 i915_reg_t reg; 5321 u32 temp, i, j; 5322 5323 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 5324 for train result */ 5325 reg = FDI_RX_IMR(pipe); 5326 temp = intel_de_read(dev_priv, reg); 5327 temp &= ~FDI_RX_SYMBOL_LOCK; 5328 temp &= ~FDI_RX_BIT_LOCK; 5329 intel_de_write(dev_priv, reg, temp); 5330 5331 intel_de_posting_read(dev_priv, reg); 5332 udelay(150); 5333 5334 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR before link train 0x%x\n", 5335 intel_de_read(dev_priv, FDI_RX_IIR(pipe))); 5336 5337 /* Try each vswing and preemphasis setting twice before moving on */ 5338 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) { 5339 /* disable first in case we need to retry */ 5340 reg = FDI_TX_CTL(pipe); 5341 temp = intel_de_read(dev_priv, reg); 5342 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); 5343 temp &= ~FDI_TX_ENABLE; 5344 intel_de_write(dev_priv, reg, temp); 5345 5346 reg = FDI_RX_CTL(pipe); 5347 temp = intel_de_read(dev_priv, reg); 5348 temp &= ~FDI_LINK_TRAIN_AUTO; 5349 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5350 temp &= ~FDI_RX_ENABLE; 5351 intel_de_write(dev_priv, reg, temp); 5352 5353 /* enable CPU FDI TX and PCH FDI RX */ 5354 reg = FDI_TX_CTL(pipe); 5355 temp = intel_de_read(dev_priv, reg); 5356 temp &= ~FDI_DP_PORT_WIDTH_MASK; 5357 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5358 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; 5359 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 5360 temp |= snb_b_fdi_train_param[j/2]; 5361 temp |= FDI_COMPOSITE_SYNC; 5362 intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE); 5363 5364 intel_de_write(dev_priv, FDI_RX_MISC(pipe), 5365 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 5366 5367 reg = FDI_RX_CTL(pipe); 5368 temp = intel_de_read(dev_priv, reg); 5369 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5370 temp |= FDI_COMPOSITE_SYNC; 5371 intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE); 5372 5373 intel_de_posting_read(dev_priv, reg); 5374 udelay(1); /* should be 0.5us */ 5375 5376 for (i = 0; i < 4; i++) { 5377 reg = FDI_RX_IIR(pipe); 5378 temp = intel_de_read(dev_priv, reg); 5379 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5380 5381 if (temp & FDI_RX_BIT_LOCK || 5382 (intel_de_read(dev_priv, reg) & FDI_RX_BIT_LOCK)) { 5383 intel_de_write(dev_priv, reg, 5384 temp | FDI_RX_BIT_LOCK); 5385 drm_dbg_kms(&dev_priv->drm, 5386 "FDI train 1 done, level %i.\n", 5387 i); 5388 break; 5389 } 5390 udelay(1); /* should be 0.5us */ 5391 } 5392 if (i == 4) { 5393 drm_dbg_kms(&dev_priv->drm, 5394 "FDI train 1 fail on vswing %d\n", j / 2); 5395 continue; 5396 } 5397 5398 /* Train 2 */ 5399 reg = FDI_TX_CTL(pipe); 5400 temp = intel_de_read(dev_priv, reg); 5401 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 5402 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; 5403 intel_de_write(dev_priv, reg, temp); 5404 5405 reg = FDI_RX_CTL(pipe); 5406 temp = intel_de_read(dev_priv, reg); 5407 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5408 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 5409 intel_de_write(dev_priv, reg, temp); 5410 5411 intel_de_posting_read(dev_priv, reg); 5412 udelay(2); /* should be 1.5us */ 5413 5414 for (i = 0; i < 4; i++) { 5415 reg = FDI_RX_IIR(pipe); 5416 temp = intel_de_read(dev_priv, reg); 5417 drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp); 5418 5419 if (temp & FDI_RX_SYMBOL_LOCK || 5420 (intel_de_read(dev_priv, reg) & FDI_RX_SYMBOL_LOCK)) { 5421 intel_de_write(dev_priv, reg, 5422 temp | FDI_RX_SYMBOL_LOCK); 5423 drm_dbg_kms(&dev_priv->drm, 5424 "FDI train 2 done, level %i.\n", 5425 i); 5426 goto train_done; 5427 } 5428 udelay(2); /* should be 1.5us */ 5429 } 5430 if (i == 4) 5431 drm_dbg_kms(&dev_priv->drm, 5432 "FDI train 2 fail on vswing %d\n", j / 2); 5433 } 5434 5435 train_done: 5436 drm_dbg_kms(&dev_priv->drm, "FDI train done.\n"); 5437 } 5438 5439 static void ilk_fdi_pll_enable(const struct intel_crtc_state *crtc_state) 5440 { 5441 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 5442 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 5443 enum pipe pipe = intel_crtc->pipe; 5444 i915_reg_t reg; 5445 u32 temp; 5446 5447 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ 5448 reg = FDI_RX_CTL(pipe); 5449 temp = intel_de_read(dev_priv, reg); 5450 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16)); 5451 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); 5452 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5453 intel_de_write(dev_priv, reg, temp | FDI_RX_PLL_ENABLE); 5454 5455 intel_de_posting_read(dev_priv, reg); 5456 udelay(200); 5457 5458 /* Switch from Rawclk to PCDclk */ 5459 temp = intel_de_read(dev_priv, reg); 5460 intel_de_write(dev_priv, reg, temp | FDI_PCDCLK); 5461 5462 intel_de_posting_read(dev_priv, reg); 5463 udelay(200); 5464 5465 /* Enable CPU FDI TX PLL, always on for Ironlake */ 5466 reg = FDI_TX_CTL(pipe); 5467 temp = intel_de_read(dev_priv, reg); 5468 if ((temp & FDI_TX_PLL_ENABLE) == 0) { 5469 intel_de_write(dev_priv, reg, temp | FDI_TX_PLL_ENABLE); 5470 5471 intel_de_posting_read(dev_priv, reg); 5472 udelay(100); 5473 } 5474 } 5475 5476 static void ilk_fdi_pll_disable(struct intel_crtc *intel_crtc) 5477 { 5478 struct drm_device *dev = intel_crtc->base.dev; 5479 struct drm_i915_private *dev_priv = to_i915(dev); 5480 enum pipe pipe = intel_crtc->pipe; 5481 i915_reg_t reg; 5482 u32 temp; 5483 5484 /* Switch from PCDclk to Rawclk */ 5485 reg = FDI_RX_CTL(pipe); 5486 temp = intel_de_read(dev_priv, reg); 5487 intel_de_write(dev_priv, reg, temp & ~FDI_PCDCLK); 5488 5489 /* Disable CPU FDI TX PLL */ 5490 reg = FDI_TX_CTL(pipe); 5491 temp = intel_de_read(dev_priv, reg); 5492 intel_de_write(dev_priv, reg, temp & ~FDI_TX_PLL_ENABLE); 5493 5494 intel_de_posting_read(dev_priv, reg); 5495 udelay(100); 5496 5497 reg = FDI_RX_CTL(pipe); 5498 temp = intel_de_read(dev_priv, reg); 5499 intel_de_write(dev_priv, reg, temp & ~FDI_RX_PLL_ENABLE); 5500 5501 /* Wait for the clocks to turn off. */ 5502 intel_de_posting_read(dev_priv, reg); 5503 udelay(100); 5504 } 5505 5506 static void ilk_fdi_disable(struct intel_crtc *crtc) 5507 { 5508 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5509 enum pipe pipe = crtc->pipe; 5510 i915_reg_t reg; 5511 u32 temp; 5512 5513 /* disable CPU FDI tx and PCH FDI rx */ 5514 reg = FDI_TX_CTL(pipe); 5515 temp = intel_de_read(dev_priv, reg); 5516 intel_de_write(dev_priv, reg, temp & ~FDI_TX_ENABLE); 5517 intel_de_posting_read(dev_priv, reg); 5518 5519 reg = FDI_RX_CTL(pipe); 5520 temp = intel_de_read(dev_priv, reg); 5521 temp &= ~(0x7 << 16); 5522 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5523 intel_de_write(dev_priv, reg, temp & ~FDI_RX_ENABLE); 5524 5525 intel_de_posting_read(dev_priv, reg); 5526 udelay(100); 5527 5528 /* Ironlake workaround, disable clock pointer after downing FDI */ 5529 if (HAS_PCH_IBX(dev_priv)) 5530 intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe), 5531 FDI_RX_PHASE_SYNC_POINTER_OVR); 5532 5533 /* still set train pattern 1 */ 5534 reg = FDI_TX_CTL(pipe); 5535 temp = intel_de_read(dev_priv, reg); 5536 temp &= ~FDI_LINK_TRAIN_NONE; 5537 temp |= FDI_LINK_TRAIN_PATTERN_1; 5538 intel_de_write(dev_priv, reg, temp); 5539 5540 reg = FDI_RX_CTL(pipe); 5541 temp = intel_de_read(dev_priv, reg); 5542 if (HAS_PCH_CPT(dev_priv)) { 5543 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 5544 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 5545 } else { 5546 temp &= ~FDI_LINK_TRAIN_NONE; 5547 temp |= FDI_LINK_TRAIN_PATTERN_1; 5548 } 5549 /* BPC in FDI rx is consistent with that in PIPECONF */ 5550 temp &= ~(0x07 << 16); 5551 temp |= (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 5552 intel_de_write(dev_priv, reg, temp); 5553 5554 intel_de_posting_read(dev_priv, reg); 5555 udelay(100); 5556 } 5557 5558 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) 5559 { 5560 struct drm_crtc *crtc; 5561 bool cleanup_done; 5562 5563 drm_for_each_crtc(crtc, &dev_priv->drm) { 5564 struct drm_crtc_commit *commit; 5565 spin_lock(&crtc->commit_lock); 5566 commit = list_first_entry_or_null(&crtc->commit_list, 5567 struct drm_crtc_commit, commit_entry); 5568 cleanup_done = commit ? 5569 try_wait_for_completion(&commit->cleanup_done) : true; 5570 spin_unlock(&crtc->commit_lock); 5571 5572 if (cleanup_done) 5573 continue; 5574 5575 drm_crtc_wait_one_vblank(crtc); 5576 5577 return true; 5578 } 5579 5580 return false; 5581 } 5582 5583 void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 5584 { 5585 u32 temp; 5586 5587 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_GATE); 5588 5589 mutex_lock(&dev_priv->sb_lock); 5590 5591 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5592 temp |= SBI_SSCCTL_DISABLE; 5593 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5594 5595 mutex_unlock(&dev_priv->sb_lock); 5596 } 5597 5598 /* Program iCLKIP clock to the desired frequency */ 5599 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 5600 { 5601 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5602 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5603 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 5604 u32 divsel, phaseinc, auxdiv, phasedir = 0; 5605 u32 temp; 5606 5607 lpt_disable_iclkip(dev_priv); 5608 5609 /* The iCLK virtual clock root frequency is in MHz, 5610 * but the adjusted_mode->crtc_clock in in KHz. To get the 5611 * divisors, it is necessary to divide one by another, so we 5612 * convert the virtual clock precision to KHz here for higher 5613 * precision. 5614 */ 5615 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 5616 u32 iclk_virtual_root_freq = 172800 * 1000; 5617 u32 iclk_pi_range = 64; 5618 u32 desired_divisor; 5619 5620 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5621 clock << auxdiv); 5622 divsel = (desired_divisor / iclk_pi_range) - 2; 5623 phaseinc = desired_divisor % iclk_pi_range; 5624 5625 /* 5626 * Near 20MHz is a corner case which is 5627 * out of range for the 7-bit divisor 5628 */ 5629 if (divsel <= 0x7f) 5630 break; 5631 } 5632 5633 /* This should not happen with any sane values */ 5634 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 5635 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 5636 drm_WARN_ON(&dev_priv->drm, SBI_SSCDIVINTPHASE_DIR(phasedir) & 5637 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 5638 5639 drm_dbg_kms(&dev_priv->drm, 5640 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 5641 clock, auxdiv, divsel, phasedir, phaseinc); 5642 5643 mutex_lock(&dev_priv->sb_lock); 5644 5645 /* Program SSCDIVINTPHASE6 */ 5646 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5647 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 5648 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 5649 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 5650 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 5651 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 5652 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 5653 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 5654 5655 /* Program SSCAUXDIV */ 5656 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5657 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 5658 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 5659 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 5660 5661 /* Enable modulator and associated divider */ 5662 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5663 temp &= ~SBI_SSCCTL_DISABLE; 5664 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 5665 5666 mutex_unlock(&dev_priv->sb_lock); 5667 5668 /* Wait for initialization time */ 5669 udelay(24); 5670 5671 intel_de_write(dev_priv, PIXCLK_GATE, PIXCLK_GATE_UNGATE); 5672 } 5673 5674 int lpt_get_iclkip(struct drm_i915_private *dev_priv) 5675 { 5676 u32 divsel, phaseinc, auxdiv; 5677 u32 iclk_virtual_root_freq = 172800 * 1000; 5678 u32 iclk_pi_range = 64; 5679 u32 desired_divisor; 5680 u32 temp; 5681 5682 if ((intel_de_read(dev_priv, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 5683 return 0; 5684 5685 mutex_lock(&dev_priv->sb_lock); 5686 5687 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 5688 if (temp & SBI_SSCCTL_DISABLE) { 5689 mutex_unlock(&dev_priv->sb_lock); 5690 return 0; 5691 } 5692 5693 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 5694 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 5695 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 5696 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 5697 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 5698 5699 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 5700 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 5701 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 5702 5703 mutex_unlock(&dev_priv->sb_lock); 5704 5705 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 5706 5707 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 5708 desired_divisor << auxdiv); 5709 } 5710 5711 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state, 5712 enum pipe pch_transcoder) 5713 { 5714 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5715 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5716 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5717 5718 intel_de_write(dev_priv, PCH_TRANS_HTOTAL(pch_transcoder), 5719 intel_de_read(dev_priv, HTOTAL(cpu_transcoder))); 5720 intel_de_write(dev_priv, PCH_TRANS_HBLANK(pch_transcoder), 5721 intel_de_read(dev_priv, HBLANK(cpu_transcoder))); 5722 intel_de_write(dev_priv, PCH_TRANS_HSYNC(pch_transcoder), 5723 intel_de_read(dev_priv, HSYNC(cpu_transcoder))); 5724 5725 intel_de_write(dev_priv, PCH_TRANS_VTOTAL(pch_transcoder), 5726 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 5727 intel_de_write(dev_priv, PCH_TRANS_VBLANK(pch_transcoder), 5728 intel_de_read(dev_priv, VBLANK(cpu_transcoder))); 5729 intel_de_write(dev_priv, PCH_TRANS_VSYNC(pch_transcoder), 5730 intel_de_read(dev_priv, VSYNC(cpu_transcoder))); 5731 intel_de_write(dev_priv, PCH_TRANS_VSYNCSHIFT(pch_transcoder), 5732 intel_de_read(dev_priv, VSYNCSHIFT(cpu_transcoder))); 5733 } 5734 5735 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable) 5736 { 5737 u32 temp; 5738 5739 temp = intel_de_read(dev_priv, SOUTH_CHICKEN1); 5740 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 5741 return; 5742 5743 drm_WARN_ON(&dev_priv->drm, 5744 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) & 5745 FDI_RX_ENABLE); 5746 drm_WARN_ON(&dev_priv->drm, 5747 intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) & 5748 FDI_RX_ENABLE); 5749 5750 temp &= ~FDI_BC_BIFURCATION_SELECT; 5751 if (enable) 5752 temp |= FDI_BC_BIFURCATION_SELECT; 5753 5754 drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n", 5755 enable ? "en" : "dis"); 5756 intel_de_write(dev_priv, SOUTH_CHICKEN1, temp); 5757 intel_de_posting_read(dev_priv, SOUTH_CHICKEN1); 5758 } 5759 5760 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state) 5761 { 5762 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5763 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5764 5765 switch (crtc->pipe) { 5766 case PIPE_A: 5767 break; 5768 case PIPE_B: 5769 if (crtc_state->fdi_lanes > 2) 5770 cpt_set_fdi_bc_bifurcation(dev_priv, false); 5771 else 5772 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5773 5774 break; 5775 case PIPE_C: 5776 cpt_set_fdi_bc_bifurcation(dev_priv, true); 5777 5778 break; 5779 default: 5780 BUG(); 5781 } 5782 } 5783 5784 /* 5785 * Finds the encoder associated with the given CRTC. This can only be 5786 * used when we know that the CRTC isn't feeding multiple encoders! 5787 */ 5788 static struct intel_encoder * 5789 intel_get_crtc_new_encoder(const struct intel_atomic_state *state, 5790 const struct intel_crtc_state *crtc_state) 5791 { 5792 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5793 const struct drm_connector_state *connector_state; 5794 const struct drm_connector *connector; 5795 struct intel_encoder *encoder = NULL; 5796 int num_encoders = 0; 5797 int i; 5798 5799 for_each_new_connector_in_state(&state->base, connector, connector_state, i) { 5800 if (connector_state->crtc != &crtc->base) 5801 continue; 5802 5803 encoder = to_intel_encoder(connector_state->best_encoder); 5804 num_encoders++; 5805 } 5806 5807 drm_WARN(encoder->base.dev, num_encoders != 1, 5808 "%d encoders for pipe %c\n", 5809 num_encoders, pipe_name(crtc->pipe)); 5810 5811 return encoder; 5812 } 5813 5814 /* 5815 * Enable PCH resources required for PCH ports: 5816 * - PCH PLLs 5817 * - FDI training & RX/TX 5818 * - update transcoder timings 5819 * - DP transcoding bits 5820 * - transcoder 5821 */ 5822 static void ilk_pch_enable(const struct intel_atomic_state *state, 5823 const struct intel_crtc_state *crtc_state) 5824 { 5825 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5826 struct drm_device *dev = crtc->base.dev; 5827 struct drm_i915_private *dev_priv = to_i915(dev); 5828 enum pipe pipe = crtc->pipe; 5829 u32 temp; 5830 5831 assert_pch_transcoder_disabled(dev_priv, pipe); 5832 5833 if (IS_IVYBRIDGE(dev_priv)) 5834 ivb_update_fdi_bc_bifurcation(crtc_state); 5835 5836 /* Write the TU size bits before fdi link training, so that error 5837 * detection works. */ 5838 intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe), 5839 intel_de_read(dev_priv, PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 5840 5841 /* For PCH output, training FDI link */ 5842 dev_priv->display.fdi_link_train(crtc, crtc_state); 5843 5844 /* We need to program the right clock selection before writing the pixel 5845 * mutliplier into the DPLL. */ 5846 if (HAS_PCH_CPT(dev_priv)) { 5847 u32 sel; 5848 5849 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 5850 temp |= TRANS_DPLL_ENABLE(pipe); 5851 sel = TRANS_DPLLB_SEL(pipe); 5852 if (crtc_state->shared_dpll == 5853 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 5854 temp |= sel; 5855 else 5856 temp &= ~sel; 5857 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 5858 } 5859 5860 /* XXX: pch pll's can be enabled any time before we enable the PCH 5861 * transcoder, and we actually should do this to not upset any PCH 5862 * transcoder that already use the clock when we share it. 5863 * 5864 * Note that enable_shared_dpll tries to do the right thing, but 5865 * get_shared_dpll unconditionally resets the pll - we need that to have 5866 * the right LVDS enable sequence. */ 5867 intel_enable_shared_dpll(crtc_state); 5868 5869 /* set transcoder timing, panel must allow it */ 5870 assert_panel_unlocked(dev_priv, pipe); 5871 ilk_pch_transcoder_set_timings(crtc_state, pipe); 5872 5873 intel_fdi_normal_train(crtc); 5874 5875 /* For PCH DP, enable TRANS_DP_CTL */ 5876 if (HAS_PCH_CPT(dev_priv) && 5877 intel_crtc_has_dp_encoder(crtc_state)) { 5878 const struct drm_display_mode *adjusted_mode = 5879 &crtc_state->hw.adjusted_mode; 5880 u32 bpc = (intel_de_read(dev_priv, PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 5881 i915_reg_t reg = TRANS_DP_CTL(pipe); 5882 enum port port; 5883 5884 temp = intel_de_read(dev_priv, reg); 5885 temp &= ~(TRANS_DP_PORT_SEL_MASK | 5886 TRANS_DP_SYNC_MASK | 5887 TRANS_DP_BPC_MASK); 5888 temp |= TRANS_DP_OUTPUT_ENABLE; 5889 temp |= bpc << 9; /* same format but at 11:9 */ 5890 5891 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 5892 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 5893 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 5894 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 5895 5896 port = intel_get_crtc_new_encoder(state, crtc_state)->port; 5897 drm_WARN_ON(dev, port < PORT_B || port > PORT_D); 5898 temp |= TRANS_DP_PORT_SEL(port); 5899 5900 intel_de_write(dev_priv, reg, temp); 5901 } 5902 5903 ilk_enable_pch_transcoder(crtc_state); 5904 } 5905 5906 void lpt_pch_enable(const struct intel_crtc_state *crtc_state) 5907 { 5908 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5909 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5910 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 5911 5912 assert_pch_transcoder_disabled(dev_priv, PIPE_A); 5913 5914 lpt_program_iclkip(crtc_state); 5915 5916 /* Set transcoder timing. */ 5917 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A); 5918 5919 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 5920 } 5921 5922 static void cpt_verify_modeset(struct drm_i915_private *dev_priv, 5923 enum pipe pipe) 5924 { 5925 i915_reg_t dslreg = PIPEDSL(pipe); 5926 u32 temp; 5927 5928 temp = intel_de_read(dev_priv, dslreg); 5929 udelay(500); 5930 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) { 5931 if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) 5932 drm_err(&dev_priv->drm, 5933 "mode set failed: pipe %c stuck\n", 5934 pipe_name(pipe)); 5935 } 5936 } 5937 5938 /* 5939 * The hardware phase 0.0 refers to the center of the pixel. 5940 * We want to start from the top/left edge which is phase 5941 * -0.5. That matches how the hardware calculates the scaling 5942 * factors (from top-left of the first pixel to bottom-right 5943 * of the last pixel, as opposed to the pixel centers). 5944 * 5945 * For 4:2:0 subsampled chroma planes we obviously have to 5946 * adjust that so that the chroma sample position lands in 5947 * the right spot. 5948 * 5949 * Note that for packed YCbCr 4:2:2 formats there is no way to 5950 * control chroma siting. The hardware simply replicates the 5951 * chroma samples for both of the luma samples, and thus we don't 5952 * actually get the expected MPEG2 chroma siting convention :( 5953 * The same behaviour is observed on pre-SKL platforms as well. 5954 * 5955 * Theory behind the formula (note that we ignore sub-pixel 5956 * source coordinates): 5957 * s = source sample position 5958 * d = destination sample position 5959 * 5960 * Downscaling 4:1: 5961 * -0.5 5962 * | 0.0 5963 * | | 1.5 (initial phase) 5964 * | | | 5965 * v v v 5966 * | s | s | s | s | 5967 * | d | 5968 * 5969 * Upscaling 1:4: 5970 * -0.5 5971 * | -0.375 (initial phase) 5972 * | | 0.0 5973 * | | | 5974 * v v v 5975 * | s | 5976 * | d | d | d | d | 5977 */ 5978 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited) 5979 { 5980 int phase = -0x8000; 5981 u16 trip = 0; 5982 5983 if (chroma_cosited) 5984 phase += (sub - 1) * 0x8000 / sub; 5985 5986 phase += scale / (2 * sub); 5987 5988 /* 5989 * Hardware initial phase limited to [-0.5:1.5]. 5990 * Since the max hardware scale factor is 3.0, we 5991 * should never actually excdeed 1.0 here. 5992 */ 5993 WARN_ON(phase < -0x8000 || phase > 0x18000); 5994 5995 if (phase < 0) 5996 phase = 0x10000 + phase; 5997 else 5998 trip = PS_PHASE_TRIP; 5999 6000 return ((phase >> 2) & PS_PHASE_MASK) | trip; 6001 } 6002 6003 #define SKL_MIN_SRC_W 8 6004 #define SKL_MAX_SRC_W 4096 6005 #define SKL_MIN_SRC_H 8 6006 #define SKL_MAX_SRC_H 4096 6007 #define SKL_MIN_DST_W 8 6008 #define SKL_MAX_DST_W 4096 6009 #define SKL_MIN_DST_H 8 6010 #define SKL_MAX_DST_H 4096 6011 #define ICL_MAX_SRC_W 5120 6012 #define ICL_MAX_SRC_H 4096 6013 #define ICL_MAX_DST_W 5120 6014 #define ICL_MAX_DST_H 4096 6015 #define SKL_MIN_YUV_420_SRC_W 16 6016 #define SKL_MIN_YUV_420_SRC_H 16 6017 6018 static int 6019 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach, 6020 unsigned int scaler_user, int *scaler_id, 6021 int src_w, int src_h, int dst_w, int dst_h, 6022 const struct drm_format_info *format, 6023 u64 modifier, bool need_scaler) 6024 { 6025 struct intel_crtc_scaler_state *scaler_state = 6026 &crtc_state->scaler_state; 6027 struct intel_crtc *intel_crtc = 6028 to_intel_crtc(crtc_state->uapi.crtc); 6029 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 6030 const struct drm_display_mode *adjusted_mode = 6031 &crtc_state->hw.adjusted_mode; 6032 6033 /* 6034 * Src coordinates are already rotated by 270 degrees for 6035 * the 90/270 degree plane rotation cases (to match the 6036 * GTT mapping), hence no need to account for rotation here. 6037 */ 6038 if (src_w != dst_w || src_h != dst_h) 6039 need_scaler = true; 6040 6041 /* 6042 * Scaling/fitting not supported in IF-ID mode in GEN9+ 6043 * TODO: Interlace fetch mode doesn't support YUV420 planar formats. 6044 * Once NV12 is enabled, handle it here while allocating scaler 6045 * for NV12. 6046 */ 6047 if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable && 6048 need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 6049 drm_dbg_kms(&dev_priv->drm, 6050 "Pipe/Plane scaling not supported with IF-ID mode\n"); 6051 return -EINVAL; 6052 } 6053 6054 /* 6055 * if plane is being disabled or scaler is no more required or force detach 6056 * - free scaler binded to this plane/crtc 6057 * - in order to do this, update crtc->scaler_usage 6058 * 6059 * Here scaler state in crtc_state is set free so that 6060 * scaler can be assigned to other user. Actual register 6061 * update to free the scaler is done in plane/panel-fit programming. 6062 * For this purpose crtc/plane_state->scaler_id isn't reset here. 6063 */ 6064 if (force_detach || !need_scaler) { 6065 if (*scaler_id >= 0) { 6066 scaler_state->scaler_users &= ~(1 << scaler_user); 6067 scaler_state->scalers[*scaler_id].in_use = 0; 6068 6069 drm_dbg_kms(&dev_priv->drm, 6070 "scaler_user index %u.%u: " 6071 "Staged freeing scaler id %d scaler_users = 0x%x\n", 6072 intel_crtc->pipe, scaler_user, *scaler_id, 6073 scaler_state->scaler_users); 6074 *scaler_id = -1; 6075 } 6076 return 0; 6077 } 6078 6079 if (format && intel_format_info_is_yuv_semiplanar(format, modifier) && 6080 (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) { 6081 drm_dbg_kms(&dev_priv->drm, 6082 "Planar YUV: src dimensions not met\n"); 6083 return -EINVAL; 6084 } 6085 6086 /* range checks */ 6087 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H || 6088 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H || 6089 (INTEL_GEN(dev_priv) >= 11 && 6090 (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H || 6091 dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) || 6092 (INTEL_GEN(dev_priv) < 11 && 6093 (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H || 6094 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) { 6095 drm_dbg_kms(&dev_priv->drm, 6096 "scaler_user index %u.%u: src %ux%u dst %ux%u " 6097 "size is out of scaler range\n", 6098 intel_crtc->pipe, scaler_user, src_w, src_h, 6099 dst_w, dst_h); 6100 return -EINVAL; 6101 } 6102 6103 /* mark this plane as a scaler user in crtc_state */ 6104 scaler_state->scaler_users |= (1 << scaler_user); 6105 drm_dbg_kms(&dev_priv->drm, "scaler_user index %u.%u: " 6106 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n", 6107 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h, 6108 scaler_state->scaler_users); 6109 6110 return 0; 6111 } 6112 6113 /** 6114 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc. 6115 * 6116 * @state: crtc's scaler state 6117 * 6118 * Return 6119 * 0 - scaler_usage updated successfully 6120 * error - requested scaling cannot be supported or other error condition 6121 */ 6122 int skl_update_scaler_crtc(struct intel_crtc_state *state) 6123 { 6124 const struct drm_display_mode *adjusted_mode = &state->hw.adjusted_mode; 6125 bool need_scaler = false; 6126 6127 if (state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 6128 state->pch_pfit.enabled) 6129 need_scaler = true; 6130 6131 return skl_update_scaler(state, !state->hw.active, SKL_CRTC_INDEX, 6132 &state->scaler_state.scaler_id, 6133 state->pipe_src_w, state->pipe_src_h, 6134 adjusted_mode->crtc_hdisplay, 6135 adjusted_mode->crtc_vdisplay, NULL, 0, 6136 need_scaler); 6137 } 6138 6139 /** 6140 * skl_update_scaler_plane - Stages update to scaler state for a given plane. 6141 * @crtc_state: crtc's scaler state 6142 * @plane_state: atomic plane state to update 6143 * 6144 * Return 6145 * 0 - scaler_usage updated successfully 6146 * error - requested scaling cannot be supported or other error condition 6147 */ 6148 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state, 6149 struct intel_plane_state *plane_state) 6150 { 6151 struct intel_plane *intel_plane = 6152 to_intel_plane(plane_state->uapi.plane); 6153 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev); 6154 struct drm_framebuffer *fb = plane_state->hw.fb; 6155 int ret; 6156 bool force_detach = !fb || !plane_state->uapi.visible; 6157 bool need_scaler = false; 6158 6159 /* Pre-gen11 and SDR planes always need a scaler for planar formats. */ 6160 if (!icl_is_hdr_plane(dev_priv, intel_plane->id) && 6161 fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier)) 6162 need_scaler = true; 6163 6164 ret = skl_update_scaler(crtc_state, force_detach, 6165 drm_plane_index(&intel_plane->base), 6166 &plane_state->scaler_id, 6167 drm_rect_width(&plane_state->uapi.src) >> 16, 6168 drm_rect_height(&plane_state->uapi.src) >> 16, 6169 drm_rect_width(&plane_state->uapi.dst), 6170 drm_rect_height(&plane_state->uapi.dst), 6171 fb ? fb->format : NULL, 6172 fb ? fb->modifier : 0, 6173 need_scaler); 6174 6175 if (ret || plane_state->scaler_id < 0) 6176 return ret; 6177 6178 /* check colorkey */ 6179 if (plane_state->ckey.flags) { 6180 drm_dbg_kms(&dev_priv->drm, 6181 "[PLANE:%d:%s] scaling with color key not allowed", 6182 intel_plane->base.base.id, 6183 intel_plane->base.name); 6184 return -EINVAL; 6185 } 6186 6187 /* Check src format */ 6188 switch (fb->format->format) { 6189 case DRM_FORMAT_RGB565: 6190 case DRM_FORMAT_XBGR8888: 6191 case DRM_FORMAT_XRGB8888: 6192 case DRM_FORMAT_ABGR8888: 6193 case DRM_FORMAT_ARGB8888: 6194 case DRM_FORMAT_XRGB2101010: 6195 case DRM_FORMAT_XBGR2101010: 6196 case DRM_FORMAT_ARGB2101010: 6197 case DRM_FORMAT_ABGR2101010: 6198 case DRM_FORMAT_YUYV: 6199 case DRM_FORMAT_YVYU: 6200 case DRM_FORMAT_UYVY: 6201 case DRM_FORMAT_VYUY: 6202 case DRM_FORMAT_NV12: 6203 case DRM_FORMAT_P010: 6204 case DRM_FORMAT_P012: 6205 case DRM_FORMAT_P016: 6206 case DRM_FORMAT_Y210: 6207 case DRM_FORMAT_Y212: 6208 case DRM_FORMAT_Y216: 6209 case DRM_FORMAT_XVYU2101010: 6210 case DRM_FORMAT_XVYU12_16161616: 6211 case DRM_FORMAT_XVYU16161616: 6212 break; 6213 case DRM_FORMAT_XBGR16161616F: 6214 case DRM_FORMAT_ABGR16161616F: 6215 case DRM_FORMAT_XRGB16161616F: 6216 case DRM_FORMAT_ARGB16161616F: 6217 if (INTEL_GEN(dev_priv) >= 11) 6218 break; 6219 /* fall through */ 6220 default: 6221 drm_dbg_kms(&dev_priv->drm, 6222 "[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n", 6223 intel_plane->base.base.id, intel_plane->base.name, 6224 fb->base.id, fb->format->format); 6225 return -EINVAL; 6226 } 6227 6228 return 0; 6229 } 6230 6231 void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state) 6232 { 6233 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 6234 int i; 6235 6236 for (i = 0; i < crtc->num_scalers; i++) 6237 skl_detach_scaler(crtc, i); 6238 } 6239 6240 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state) 6241 { 6242 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6243 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6244 enum pipe pipe = crtc->pipe; 6245 const struct intel_crtc_scaler_state *scaler_state = 6246 &crtc_state->scaler_state; 6247 6248 if (crtc_state->pch_pfit.enabled) { 6249 u16 uv_rgb_hphase, uv_rgb_vphase; 6250 int pfit_w, pfit_h, hscale, vscale; 6251 unsigned long irqflags; 6252 int id; 6253 6254 if (drm_WARN_ON(&dev_priv->drm, 6255 crtc_state->scaler_state.scaler_id < 0)) 6256 return; 6257 6258 pfit_w = (crtc_state->pch_pfit.size >> 16) & 0xFFFF; 6259 pfit_h = crtc_state->pch_pfit.size & 0xFFFF; 6260 6261 hscale = (crtc_state->pipe_src_w << 16) / pfit_w; 6262 vscale = (crtc_state->pipe_src_h << 16) / pfit_h; 6263 6264 uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false); 6265 uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false); 6266 6267 id = scaler_state->scaler_id; 6268 6269 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 6270 6271 intel_de_write_fw(dev_priv, SKL_PS_CTRL(pipe, id), PS_SCALER_EN | 6272 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode); 6273 intel_de_write_fw(dev_priv, SKL_PS_VPHASE(pipe, id), 6274 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase)); 6275 intel_de_write_fw(dev_priv, SKL_PS_HPHASE(pipe, id), 6276 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase)); 6277 intel_de_write_fw(dev_priv, SKL_PS_WIN_POS(pipe, id), 6278 crtc_state->pch_pfit.pos); 6279 intel_de_write_fw(dev_priv, SKL_PS_WIN_SZ(pipe, id), 6280 crtc_state->pch_pfit.size); 6281 6282 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 6283 } 6284 } 6285 6286 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state) 6287 { 6288 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6289 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6290 enum pipe pipe = crtc->pipe; 6291 6292 if (crtc_state->pch_pfit.enabled) { 6293 /* Force use of hard-coded filter coefficients 6294 * as some pre-programmed values are broken, 6295 * e.g. x201. 6296 */ 6297 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) 6298 intel_de_write(dev_priv, PF_CTL(pipe), 6299 PF_ENABLE | PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); 6300 else 6301 intel_de_write(dev_priv, PF_CTL(pipe), 6302 PF_ENABLE | PF_FILTER_MED_3x3); 6303 intel_de_write(dev_priv, PF_WIN_POS(pipe), 6304 crtc_state->pch_pfit.pos); 6305 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 6306 crtc_state->pch_pfit.size); 6307 } 6308 } 6309 6310 void hsw_enable_ips(const struct intel_crtc_state *crtc_state) 6311 { 6312 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6313 struct drm_device *dev = crtc->base.dev; 6314 struct drm_i915_private *dev_priv = to_i915(dev); 6315 6316 if (!crtc_state->ips_enabled) 6317 return; 6318 6319 /* 6320 * We can only enable IPS after we enable a plane and wait for a vblank 6321 * This function is called from post_plane_update, which is run after 6322 * a vblank wait. 6323 */ 6324 drm_WARN_ON(dev, !(crtc_state->active_planes & ~BIT(PLANE_CURSOR))); 6325 6326 if (IS_BROADWELL(dev_priv)) { 6327 drm_WARN_ON(dev, sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 6328 IPS_ENABLE | IPS_PCODE_CONTROL)); 6329 /* Quoting Art Runyan: "its not safe to expect any particular 6330 * value in IPS_CTL bit 31 after enabling IPS through the 6331 * mailbox." Moreover, the mailbox may return a bogus state, 6332 * so we need to just enable it and continue on. 6333 */ 6334 } else { 6335 intel_de_write(dev_priv, IPS_CTL, IPS_ENABLE); 6336 /* The bit only becomes 1 in the next vblank, so this wait here 6337 * is essentially intel_wait_for_vblank. If we don't have this 6338 * and don't wait for vblanks until the end of crtc_enable, then 6339 * the HW state readout code will complain that the expected 6340 * IPS_CTL value is not the one we read. */ 6341 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50)) 6342 drm_err(&dev_priv->drm, 6343 "Timed out waiting for IPS enable\n"); 6344 } 6345 } 6346 6347 void hsw_disable_ips(const struct intel_crtc_state *crtc_state) 6348 { 6349 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6350 struct drm_device *dev = crtc->base.dev; 6351 struct drm_i915_private *dev_priv = to_i915(dev); 6352 6353 if (!crtc_state->ips_enabled) 6354 return; 6355 6356 if (IS_BROADWELL(dev_priv)) { 6357 drm_WARN_ON(dev, 6358 sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 6359 /* 6360 * Wait for PCODE to finish disabling IPS. The BSpec specified 6361 * 42ms timeout value leads to occasional timeouts so use 100ms 6362 * instead. 6363 */ 6364 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100)) 6365 drm_err(&dev_priv->drm, 6366 "Timed out waiting for IPS disable\n"); 6367 } else { 6368 intel_de_write(dev_priv, IPS_CTL, 0); 6369 intel_de_posting_read(dev_priv, IPS_CTL); 6370 } 6371 6372 /* We need to wait for a vblank before we can disable the plane. */ 6373 intel_wait_for_vblank(dev_priv, crtc->pipe); 6374 } 6375 6376 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) 6377 { 6378 if (intel_crtc->overlay) 6379 (void) intel_overlay_switch_off(intel_crtc->overlay); 6380 6381 /* Let userspace switch the overlay on again. In most cases userspace 6382 * has to recompute where to put it anyway. 6383 */ 6384 } 6385 6386 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state, 6387 const struct intel_crtc_state *new_crtc_state) 6388 { 6389 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 6390 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6391 6392 if (!old_crtc_state->ips_enabled) 6393 return false; 6394 6395 if (needs_modeset(new_crtc_state)) 6396 return true; 6397 6398 /* 6399 * Workaround : Do not read or write the pipe palette/gamma data while 6400 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 6401 * 6402 * Disable IPS before we program the LUT. 6403 */ 6404 if (IS_HASWELL(dev_priv) && 6405 (new_crtc_state->uapi.color_mgmt_changed || 6406 new_crtc_state->update_pipe) && 6407 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 6408 return true; 6409 6410 return !new_crtc_state->ips_enabled; 6411 } 6412 6413 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state, 6414 const struct intel_crtc_state *new_crtc_state) 6415 { 6416 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 6417 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6418 6419 if (!new_crtc_state->ips_enabled) 6420 return false; 6421 6422 if (needs_modeset(new_crtc_state)) 6423 return true; 6424 6425 /* 6426 * Workaround : Do not read or write the pipe palette/gamma data while 6427 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. 6428 * 6429 * Re-enable IPS after the LUT has been programmed. 6430 */ 6431 if (IS_HASWELL(dev_priv) && 6432 (new_crtc_state->uapi.color_mgmt_changed || 6433 new_crtc_state->update_pipe) && 6434 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) 6435 return true; 6436 6437 /* 6438 * We can't read out IPS on broadwell, assume the worst and 6439 * forcibly enable IPS on the first fastset. 6440 */ 6441 if (new_crtc_state->update_pipe && 6442 old_crtc_state->hw.adjusted_mode.private_flags & I915_MODE_FLAG_INHERITED) 6443 return true; 6444 6445 return !old_crtc_state->ips_enabled; 6446 } 6447 6448 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) 6449 { 6450 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 6451 6452 if (!crtc_state->nv12_planes) 6453 return false; 6454 6455 /* WA Display #0827: Gen9:all */ 6456 if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv)) 6457 return true; 6458 6459 return false; 6460 } 6461 6462 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) 6463 { 6464 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 6465 6466 /* Wa_2006604312:icl */ 6467 if (crtc_state->scaler_state.scaler_users > 0 && IS_ICELAKE(dev_priv)) 6468 return true; 6469 6470 return false; 6471 } 6472 6473 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, 6474 const struct intel_crtc_state *new_crtc_state) 6475 { 6476 return (!old_crtc_state->active_planes || needs_modeset(new_crtc_state)) && 6477 new_crtc_state->active_planes; 6478 } 6479 6480 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, 6481 const struct intel_crtc_state *new_crtc_state) 6482 { 6483 return old_crtc_state->active_planes && 6484 (!new_crtc_state->active_planes || needs_modeset(new_crtc_state)); 6485 } 6486 6487 static void intel_post_plane_update(struct intel_atomic_state *state, 6488 struct intel_crtc *crtc) 6489 { 6490 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6491 const struct intel_crtc_state *old_crtc_state = 6492 intel_atomic_get_old_crtc_state(state, crtc); 6493 const struct intel_crtc_state *new_crtc_state = 6494 intel_atomic_get_new_crtc_state(state, crtc); 6495 enum pipe pipe = crtc->pipe; 6496 6497 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); 6498 6499 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) 6500 intel_update_watermarks(crtc); 6501 6502 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state)) 6503 hsw_enable_ips(new_crtc_state); 6504 6505 intel_fbc_post_update(state, crtc); 6506 6507 if (needs_nv12_wa(old_crtc_state) && 6508 !needs_nv12_wa(new_crtc_state)) 6509 skl_wa_827(dev_priv, pipe, false); 6510 6511 if (needs_scalerclk_wa(old_crtc_state) && 6512 !needs_scalerclk_wa(new_crtc_state)) 6513 icl_wa_scalerclkgating(dev_priv, pipe, false); 6514 } 6515 6516 static void intel_pre_plane_update(struct intel_atomic_state *state, 6517 struct intel_crtc *crtc) 6518 { 6519 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6520 const struct intel_crtc_state *old_crtc_state = 6521 intel_atomic_get_old_crtc_state(state, crtc); 6522 const struct intel_crtc_state *new_crtc_state = 6523 intel_atomic_get_new_crtc_state(state, crtc); 6524 enum pipe pipe = crtc->pipe; 6525 6526 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state)) 6527 hsw_disable_ips(old_crtc_state); 6528 6529 if (intel_fbc_pre_update(state, crtc)) 6530 intel_wait_for_vblank(dev_priv, pipe); 6531 6532 /* Display WA 827 */ 6533 if (!needs_nv12_wa(old_crtc_state) && 6534 needs_nv12_wa(new_crtc_state)) 6535 skl_wa_827(dev_priv, pipe, true); 6536 6537 /* Wa_2006604312:icl */ 6538 if (!needs_scalerclk_wa(old_crtc_state) && 6539 needs_scalerclk_wa(new_crtc_state)) 6540 icl_wa_scalerclkgating(dev_priv, pipe, true); 6541 6542 /* 6543 * Vblank time updates from the shadow to live plane control register 6544 * are blocked if the memory self-refresh mode is active at that 6545 * moment. So to make sure the plane gets truly disabled, disable 6546 * first the self-refresh mode. The self-refresh enable bit in turn 6547 * will be checked/applied by the HW only at the next frame start 6548 * event which is after the vblank start event, so we need to have a 6549 * wait-for-vblank between disabling the plane and the pipe. 6550 */ 6551 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active && 6552 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) 6553 intel_wait_for_vblank(dev_priv, pipe); 6554 6555 /* 6556 * IVB workaround: must disable low power watermarks for at least 6557 * one frame before enabling scaling. LP watermarks can be re-enabled 6558 * when scaling is disabled. 6559 * 6560 * WaCxSRDisabledForSpriteScaling:ivb 6561 */ 6562 if (old_crtc_state->hw.active && 6563 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv)) 6564 intel_wait_for_vblank(dev_priv, pipe); 6565 6566 /* 6567 * If we're doing a modeset we don't need to do any 6568 * pre-vblank watermark programming here. 6569 */ 6570 if (!needs_modeset(new_crtc_state)) { 6571 /* 6572 * For platforms that support atomic watermarks, program the 6573 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 6574 * will be the intermediate values that are safe for both pre- and 6575 * post- vblank; when vblank happens, the 'active' values will be set 6576 * to the final 'target' values and we'll do this again to get the 6577 * optimal watermarks. For gen9+ platforms, the values we program here 6578 * will be the final target values which will get automatically latched 6579 * at vblank time; no further programming will be necessary. 6580 * 6581 * If a platform hasn't been transitioned to atomic watermarks yet, 6582 * we'll continue to update watermarks the old way, if flags tell 6583 * us to. 6584 */ 6585 if (dev_priv->display.initial_watermarks) 6586 dev_priv->display.initial_watermarks(state, crtc); 6587 else if (new_crtc_state->update_wm_pre) 6588 intel_update_watermarks(crtc); 6589 } 6590 6591 /* 6592 * Gen2 reports pipe underruns whenever all planes are disabled. 6593 * So disable underrun reporting before all the planes get disabled. 6594 * 6595 * We do this after .initial_watermarks() so that we have a 6596 * chance of catching underruns with the intermediate watermarks 6597 * vs. the old plane configuration. 6598 */ 6599 if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state)) 6600 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6601 } 6602 6603 static void intel_crtc_disable_planes(struct intel_atomic_state *state, 6604 struct intel_crtc *crtc) 6605 { 6606 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6607 const struct intel_crtc_state *new_crtc_state = 6608 intel_atomic_get_new_crtc_state(state, crtc); 6609 unsigned int update_mask = new_crtc_state->update_planes; 6610 const struct intel_plane_state *old_plane_state; 6611 struct intel_plane *plane; 6612 unsigned fb_bits = 0; 6613 int i; 6614 6615 intel_crtc_dpms_overlay_disable(crtc); 6616 6617 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { 6618 if (crtc->pipe != plane->pipe || 6619 !(update_mask & BIT(plane->id))) 6620 continue; 6621 6622 intel_disable_plane(plane, new_crtc_state); 6623 6624 if (old_plane_state->uapi.visible) 6625 fb_bits |= plane->frontbuffer_bit; 6626 } 6627 6628 intel_frontbuffer_flip(dev_priv, fb_bits); 6629 } 6630 6631 /* 6632 * intel_connector_primary_encoder - get the primary encoder for a connector 6633 * @connector: connector for which to return the encoder 6634 * 6635 * Returns the primary encoder for a connector. There is a 1:1 mapping from 6636 * all connectors to their encoder, except for DP-MST connectors which have 6637 * both a virtual and a primary encoder. These DP-MST primary encoders can be 6638 * pointed to by as many DP-MST connectors as there are pipes. 6639 */ 6640 static struct intel_encoder * 6641 intel_connector_primary_encoder(struct intel_connector *connector) 6642 { 6643 struct intel_encoder *encoder; 6644 6645 if (connector->mst_port) 6646 return &dp_to_dig_port(connector->mst_port)->base; 6647 6648 encoder = intel_attached_encoder(connector); 6649 WARN_ON(!encoder); 6650 6651 return encoder; 6652 } 6653 6654 static void intel_encoders_update_prepare(struct intel_atomic_state *state) 6655 { 6656 struct drm_connector_state *new_conn_state; 6657 struct drm_connector *connector; 6658 int i; 6659 6660 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 6661 i) { 6662 struct intel_connector *intel_connector; 6663 struct intel_encoder *encoder; 6664 struct intel_crtc *crtc; 6665 6666 if (!intel_connector_needs_modeset(state, connector)) 6667 continue; 6668 6669 intel_connector = to_intel_connector(connector); 6670 encoder = intel_connector_primary_encoder(intel_connector); 6671 if (!encoder->update_prepare) 6672 continue; 6673 6674 crtc = new_conn_state->crtc ? 6675 to_intel_crtc(new_conn_state->crtc) : NULL; 6676 encoder->update_prepare(state, encoder, crtc); 6677 } 6678 } 6679 6680 static void intel_encoders_update_complete(struct intel_atomic_state *state) 6681 { 6682 struct drm_connector_state *new_conn_state; 6683 struct drm_connector *connector; 6684 int i; 6685 6686 for_each_new_connector_in_state(&state->base, connector, new_conn_state, 6687 i) { 6688 struct intel_connector *intel_connector; 6689 struct intel_encoder *encoder; 6690 struct intel_crtc *crtc; 6691 6692 if (!intel_connector_needs_modeset(state, connector)) 6693 continue; 6694 6695 intel_connector = to_intel_connector(connector); 6696 encoder = intel_connector_primary_encoder(intel_connector); 6697 if (!encoder->update_complete) 6698 continue; 6699 6700 crtc = new_conn_state->crtc ? 6701 to_intel_crtc(new_conn_state->crtc) : NULL; 6702 encoder->update_complete(state, encoder, crtc); 6703 } 6704 } 6705 6706 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, 6707 struct intel_crtc *crtc) 6708 { 6709 const struct intel_crtc_state *crtc_state = 6710 intel_atomic_get_new_crtc_state(state, crtc); 6711 const struct drm_connector_state *conn_state; 6712 struct drm_connector *conn; 6713 int i; 6714 6715 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6716 struct intel_encoder *encoder = 6717 to_intel_encoder(conn_state->best_encoder); 6718 6719 if (conn_state->crtc != &crtc->base) 6720 continue; 6721 6722 if (encoder->pre_pll_enable) 6723 encoder->pre_pll_enable(encoder, crtc_state, conn_state); 6724 } 6725 } 6726 6727 static void intel_encoders_pre_enable(struct intel_atomic_state *state, 6728 struct intel_crtc *crtc) 6729 { 6730 const struct intel_crtc_state *crtc_state = 6731 intel_atomic_get_new_crtc_state(state, crtc); 6732 const struct drm_connector_state *conn_state; 6733 struct drm_connector *conn; 6734 int i; 6735 6736 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6737 struct intel_encoder *encoder = 6738 to_intel_encoder(conn_state->best_encoder); 6739 6740 if (conn_state->crtc != &crtc->base) 6741 continue; 6742 6743 if (encoder->pre_enable) 6744 encoder->pre_enable(encoder, crtc_state, conn_state); 6745 } 6746 } 6747 6748 static void intel_encoders_enable(struct intel_atomic_state *state, 6749 struct intel_crtc *crtc) 6750 { 6751 const struct intel_crtc_state *crtc_state = 6752 intel_atomic_get_new_crtc_state(state, crtc); 6753 const struct drm_connector_state *conn_state; 6754 struct drm_connector *conn; 6755 int i; 6756 6757 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6758 struct intel_encoder *encoder = 6759 to_intel_encoder(conn_state->best_encoder); 6760 6761 if (conn_state->crtc != &crtc->base) 6762 continue; 6763 6764 if (encoder->enable) 6765 encoder->enable(encoder, crtc_state, conn_state); 6766 intel_opregion_notify_encoder(encoder, true); 6767 } 6768 } 6769 6770 static void intel_encoders_disable(struct intel_atomic_state *state, 6771 struct intel_crtc *crtc) 6772 { 6773 const struct intel_crtc_state *old_crtc_state = 6774 intel_atomic_get_old_crtc_state(state, crtc); 6775 const struct drm_connector_state *old_conn_state; 6776 struct drm_connector *conn; 6777 int i; 6778 6779 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6780 struct intel_encoder *encoder = 6781 to_intel_encoder(old_conn_state->best_encoder); 6782 6783 if (old_conn_state->crtc != &crtc->base) 6784 continue; 6785 6786 intel_opregion_notify_encoder(encoder, false); 6787 if (encoder->disable) 6788 encoder->disable(encoder, old_crtc_state, old_conn_state); 6789 } 6790 } 6791 6792 static void intel_encoders_post_disable(struct intel_atomic_state *state, 6793 struct intel_crtc *crtc) 6794 { 6795 const struct intel_crtc_state *old_crtc_state = 6796 intel_atomic_get_old_crtc_state(state, crtc); 6797 const struct drm_connector_state *old_conn_state; 6798 struct drm_connector *conn; 6799 int i; 6800 6801 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6802 struct intel_encoder *encoder = 6803 to_intel_encoder(old_conn_state->best_encoder); 6804 6805 if (old_conn_state->crtc != &crtc->base) 6806 continue; 6807 6808 if (encoder->post_disable) 6809 encoder->post_disable(encoder, old_crtc_state, old_conn_state); 6810 } 6811 } 6812 6813 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, 6814 struct intel_crtc *crtc) 6815 { 6816 const struct intel_crtc_state *old_crtc_state = 6817 intel_atomic_get_old_crtc_state(state, crtc); 6818 const struct drm_connector_state *old_conn_state; 6819 struct drm_connector *conn; 6820 int i; 6821 6822 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { 6823 struct intel_encoder *encoder = 6824 to_intel_encoder(old_conn_state->best_encoder); 6825 6826 if (old_conn_state->crtc != &crtc->base) 6827 continue; 6828 6829 if (encoder->post_pll_disable) 6830 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state); 6831 } 6832 } 6833 6834 static void intel_encoders_update_pipe(struct intel_atomic_state *state, 6835 struct intel_crtc *crtc) 6836 { 6837 const struct intel_crtc_state *crtc_state = 6838 intel_atomic_get_new_crtc_state(state, crtc); 6839 const struct drm_connector_state *conn_state; 6840 struct drm_connector *conn; 6841 int i; 6842 6843 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 6844 struct intel_encoder *encoder = 6845 to_intel_encoder(conn_state->best_encoder); 6846 6847 if (conn_state->crtc != &crtc->base) 6848 continue; 6849 6850 if (encoder->update_pipe) 6851 encoder->update_pipe(encoder, crtc_state, conn_state); 6852 } 6853 } 6854 6855 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) 6856 { 6857 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6858 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 6859 6860 plane->disable_plane(plane, crtc_state); 6861 } 6862 6863 static void ilk_crtc_enable(struct intel_atomic_state *state, 6864 struct intel_crtc *crtc) 6865 { 6866 const struct intel_crtc_state *new_crtc_state = 6867 intel_atomic_get_new_crtc_state(state, crtc); 6868 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6869 enum pipe pipe = crtc->pipe; 6870 6871 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 6872 return; 6873 6874 /* 6875 * Sometimes spurious CPU pipe underruns happen during FDI 6876 * training, at least with VGA+HDMI cloning. Suppress them. 6877 * 6878 * On ILK we get an occasional spurious CPU pipe underruns 6879 * between eDP port A enable and vdd enable. Also PCH port 6880 * enable seems to result in the occasional CPU pipe underrun. 6881 * 6882 * Spurious PCH underruns also occur during PCH enabling. 6883 */ 6884 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6885 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 6886 6887 if (new_crtc_state->has_pch_encoder) 6888 intel_prepare_shared_dpll(new_crtc_state); 6889 6890 if (intel_crtc_has_dp_encoder(new_crtc_state)) 6891 intel_dp_set_m_n(new_crtc_state, M1_N1); 6892 6893 intel_set_pipe_timings(new_crtc_state); 6894 intel_set_pipe_src_size(new_crtc_state); 6895 6896 if (new_crtc_state->has_pch_encoder) 6897 intel_cpu_transcoder_set_m_n(new_crtc_state, 6898 &new_crtc_state->fdi_m_n, NULL); 6899 6900 ilk_set_pipeconf(new_crtc_state); 6901 6902 crtc->active = true; 6903 6904 intel_encoders_pre_enable(state, crtc); 6905 6906 if (new_crtc_state->has_pch_encoder) { 6907 /* Note: FDI PLL enabling _must_ be done before we enable the 6908 * cpu pipes, hence this is separate from all the other fdi/pch 6909 * enabling. */ 6910 ilk_fdi_pll_enable(new_crtc_state); 6911 } else { 6912 assert_fdi_tx_disabled(dev_priv, pipe); 6913 assert_fdi_rx_disabled(dev_priv, pipe); 6914 } 6915 6916 ilk_pfit_enable(new_crtc_state); 6917 6918 /* 6919 * On ILK+ LUT must be loaded before the pipe is running but with 6920 * clocks enabled 6921 */ 6922 intel_color_load_luts(new_crtc_state); 6923 intel_color_commit(new_crtc_state); 6924 /* update DSPCNTR to configure gamma for pipe bottom color */ 6925 intel_disable_primary_plane(new_crtc_state); 6926 6927 if (dev_priv->display.initial_watermarks) 6928 dev_priv->display.initial_watermarks(state, crtc); 6929 intel_enable_pipe(new_crtc_state); 6930 6931 if (new_crtc_state->has_pch_encoder) 6932 ilk_pch_enable(state, new_crtc_state); 6933 6934 intel_crtc_vblank_on(new_crtc_state); 6935 6936 intel_encoders_enable(state, crtc); 6937 6938 if (HAS_PCH_CPT(dev_priv)) 6939 cpt_verify_modeset(dev_priv, pipe); 6940 6941 /* 6942 * Must wait for vblank to avoid spurious PCH FIFO underruns. 6943 * And a second vblank wait is needed at least on ILK with 6944 * some interlaced HDMI modes. Let's do the double wait always 6945 * in case there are more corner cases we don't know about. 6946 */ 6947 if (new_crtc_state->has_pch_encoder) { 6948 intel_wait_for_vblank(dev_priv, pipe); 6949 intel_wait_for_vblank(dev_priv, pipe); 6950 } 6951 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 6952 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 6953 } 6954 6955 /* IPS only exists on ULT machines and is tied to pipe A. */ 6956 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 6957 { 6958 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A; 6959 } 6960 6961 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, 6962 enum pipe pipe, bool apply) 6963 { 6964 u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)); 6965 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; 6966 6967 if (apply) 6968 val |= mask; 6969 else 6970 val &= ~mask; 6971 6972 intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val); 6973 } 6974 6975 static void icl_pipe_mbus_enable(struct intel_crtc *crtc) 6976 { 6977 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6978 enum pipe pipe = crtc->pipe; 6979 u32 val; 6980 6981 val = MBUS_DBOX_A_CREDIT(2); 6982 6983 if (INTEL_GEN(dev_priv) >= 12) { 6984 val |= MBUS_DBOX_BW_CREDIT(2); 6985 val |= MBUS_DBOX_B_CREDIT(12); 6986 } else { 6987 val |= MBUS_DBOX_BW_CREDIT(1); 6988 val |= MBUS_DBOX_B_CREDIT(8); 6989 } 6990 6991 intel_de_write(dev_priv, PIPE_MBUS_DBOX_CTL(pipe), val); 6992 } 6993 6994 static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) 6995 { 6996 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 6997 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6998 6999 intel_de_write(dev_priv, WM_LINETIME(crtc->pipe), 7000 HSW_LINETIME(crtc_state->linetime) | 7001 HSW_IPS_LINETIME(crtc_state->ips_linetime)); 7002 } 7003 7004 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) 7005 { 7006 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7007 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7008 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder); 7009 u32 val; 7010 7011 val = intel_de_read(dev_priv, reg); 7012 val &= ~HSW_FRAME_START_DELAY_MASK; 7013 val |= HSW_FRAME_START_DELAY(0); 7014 intel_de_write(dev_priv, reg, val); 7015 } 7016 7017 static void hsw_crtc_enable(struct intel_atomic_state *state, 7018 struct intel_crtc *crtc) 7019 { 7020 const struct intel_crtc_state *new_crtc_state = 7021 intel_atomic_get_new_crtc_state(state, crtc); 7022 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7023 enum pipe pipe = crtc->pipe, hsw_workaround_pipe; 7024 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; 7025 bool psl_clkgate_wa; 7026 7027 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7028 return; 7029 7030 intel_encoders_pre_pll_enable(state, crtc); 7031 7032 if (new_crtc_state->shared_dpll) 7033 intel_enable_shared_dpll(new_crtc_state); 7034 7035 intel_encoders_pre_enable(state, crtc); 7036 7037 if (!transcoder_is_dsi(cpu_transcoder)) 7038 intel_set_pipe_timings(new_crtc_state); 7039 7040 if (INTEL_GEN(dev_priv) >= 11) 7041 icl_enable_trans_port_sync(new_crtc_state); 7042 7043 intel_set_pipe_src_size(new_crtc_state); 7044 7045 if (cpu_transcoder != TRANSCODER_EDP && 7046 !transcoder_is_dsi(cpu_transcoder)) 7047 intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder), 7048 new_crtc_state->pixel_multiplier - 1); 7049 7050 if (new_crtc_state->has_pch_encoder) 7051 intel_cpu_transcoder_set_m_n(new_crtc_state, 7052 &new_crtc_state->fdi_m_n, NULL); 7053 7054 if (!transcoder_is_dsi(cpu_transcoder)) { 7055 hsw_set_frame_start_delay(new_crtc_state); 7056 hsw_set_pipeconf(new_crtc_state); 7057 } 7058 7059 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 7060 bdw_set_pipemisc(new_crtc_state); 7061 7062 crtc->active = true; 7063 7064 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */ 7065 psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) && 7066 new_crtc_state->pch_pfit.enabled; 7067 if (psl_clkgate_wa) 7068 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); 7069 7070 if (INTEL_GEN(dev_priv) >= 9) 7071 skl_pfit_enable(new_crtc_state); 7072 else 7073 ilk_pfit_enable(new_crtc_state); 7074 7075 /* 7076 * On ILK+ LUT must be loaded before the pipe is running but with 7077 * clocks enabled 7078 */ 7079 intel_color_load_luts(new_crtc_state); 7080 intel_color_commit(new_crtc_state); 7081 /* update DSPCNTR to configure gamma/csc for pipe bottom color */ 7082 if (INTEL_GEN(dev_priv) < 9) 7083 intel_disable_primary_plane(new_crtc_state); 7084 7085 hsw_set_linetime_wm(new_crtc_state); 7086 7087 if (INTEL_GEN(dev_priv) >= 11) 7088 icl_set_pipe_chicken(crtc); 7089 7090 if (!transcoder_is_dsi(cpu_transcoder)) 7091 intel_ddi_enable_transcoder_func(new_crtc_state); 7092 7093 if (dev_priv->display.initial_watermarks) 7094 dev_priv->display.initial_watermarks(state, crtc); 7095 7096 if (INTEL_GEN(dev_priv) >= 11) 7097 icl_pipe_mbus_enable(crtc); 7098 7099 intel_encoders_enable(state, crtc); 7100 7101 if (psl_clkgate_wa) { 7102 intel_wait_for_vblank(dev_priv, pipe); 7103 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); 7104 } 7105 7106 /* If we change the relative order between pipe/planes enabling, we need 7107 * to change the workaround. */ 7108 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe; 7109 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { 7110 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 7111 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe); 7112 } 7113 } 7114 7115 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state) 7116 { 7117 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 7118 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7119 enum pipe pipe = crtc->pipe; 7120 7121 /* To avoid upsetting the power well on haswell only disable the pfit if 7122 * it's in use. The hw state code will make sure we get this right. */ 7123 if (old_crtc_state->pch_pfit.enabled) { 7124 intel_de_write(dev_priv, PF_CTL(pipe), 0); 7125 intel_de_write(dev_priv, PF_WIN_POS(pipe), 0); 7126 intel_de_write(dev_priv, PF_WIN_SZ(pipe), 0); 7127 } 7128 } 7129 7130 static void ilk_crtc_disable(struct intel_atomic_state *state, 7131 struct intel_crtc *crtc) 7132 { 7133 const struct intel_crtc_state *old_crtc_state = 7134 intel_atomic_get_old_crtc_state(state, crtc); 7135 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7136 enum pipe pipe = crtc->pipe; 7137 7138 /* 7139 * Sometimes spurious CPU pipe underruns happen when the 7140 * pipe is already disabled, but FDI RX/TX is still enabled. 7141 * Happens at least with VGA+HDMI cloning. Suppress them. 7142 */ 7143 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 7144 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 7145 7146 intel_encoders_disable(state, crtc); 7147 7148 intel_crtc_vblank_off(old_crtc_state); 7149 7150 intel_disable_pipe(old_crtc_state); 7151 7152 ilk_pfit_disable(old_crtc_state); 7153 7154 if (old_crtc_state->has_pch_encoder) 7155 ilk_fdi_disable(crtc); 7156 7157 intel_encoders_post_disable(state, crtc); 7158 7159 if (old_crtc_state->has_pch_encoder) { 7160 ilk_disable_pch_transcoder(dev_priv, pipe); 7161 7162 if (HAS_PCH_CPT(dev_priv)) { 7163 i915_reg_t reg; 7164 u32 temp; 7165 7166 /* disable TRANS_DP_CTL */ 7167 reg = TRANS_DP_CTL(pipe); 7168 temp = intel_de_read(dev_priv, reg); 7169 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 7170 TRANS_DP_PORT_SEL_MASK); 7171 temp |= TRANS_DP_PORT_SEL_NONE; 7172 intel_de_write(dev_priv, reg, temp); 7173 7174 /* disable DPLL_SEL */ 7175 temp = intel_de_read(dev_priv, PCH_DPLL_SEL); 7176 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 7177 intel_de_write(dev_priv, PCH_DPLL_SEL, temp); 7178 } 7179 7180 ilk_fdi_pll_disable(crtc); 7181 } 7182 7183 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7184 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 7185 } 7186 7187 static void hsw_crtc_disable(struct intel_atomic_state *state, 7188 struct intel_crtc *crtc) 7189 { 7190 /* 7191 * FIXME collapse everything to one hook. 7192 * Need care with mst->ddi interactions. 7193 */ 7194 intel_encoders_disable(state, crtc); 7195 intel_encoders_post_disable(state, crtc); 7196 } 7197 7198 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) 7199 { 7200 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7201 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7202 7203 if (!crtc_state->gmch_pfit.control) 7204 return; 7205 7206 /* 7207 * The panel fitter should only be adjusted whilst the pipe is disabled, 7208 * according to register description and PRM. 7209 */ 7210 drm_WARN_ON(&dev_priv->drm, 7211 intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE); 7212 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder); 7213 7214 intel_de_write(dev_priv, PFIT_PGM_RATIOS, 7215 crtc_state->gmch_pfit.pgm_ratios); 7216 intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control); 7217 7218 /* Border color in case we don't scale up to the full screen. Black by 7219 * default, change to something else for debugging. */ 7220 intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0); 7221 } 7222 7223 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) 7224 { 7225 if (phy == PHY_NONE) 7226 return false; 7227 7228 if (IS_ELKHARTLAKE(dev_priv)) 7229 return phy <= PHY_C; 7230 7231 if (INTEL_GEN(dev_priv) >= 11) 7232 return phy <= PHY_B; 7233 7234 return false; 7235 } 7236 7237 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) 7238 { 7239 if (INTEL_GEN(dev_priv) >= 12) 7240 return phy >= PHY_D && phy <= PHY_I; 7241 7242 if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv)) 7243 return phy >= PHY_C && phy <= PHY_F; 7244 7245 return false; 7246 } 7247 7248 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) 7249 { 7250 if (IS_ELKHARTLAKE(i915) && port == PORT_D) 7251 return PHY_A; 7252 7253 return (enum phy)port; 7254 } 7255 7256 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) 7257 { 7258 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) 7259 return PORT_TC_NONE; 7260 7261 if (INTEL_GEN(dev_priv) >= 12) 7262 return port - PORT_D; 7263 7264 return port - PORT_C; 7265 } 7266 7267 enum intel_display_power_domain intel_port_to_power_domain(enum port port) 7268 { 7269 switch (port) { 7270 case PORT_A: 7271 return POWER_DOMAIN_PORT_DDI_A_LANES; 7272 case PORT_B: 7273 return POWER_DOMAIN_PORT_DDI_B_LANES; 7274 case PORT_C: 7275 return POWER_DOMAIN_PORT_DDI_C_LANES; 7276 case PORT_D: 7277 return POWER_DOMAIN_PORT_DDI_D_LANES; 7278 case PORT_E: 7279 return POWER_DOMAIN_PORT_DDI_E_LANES; 7280 case PORT_F: 7281 return POWER_DOMAIN_PORT_DDI_F_LANES; 7282 case PORT_G: 7283 return POWER_DOMAIN_PORT_DDI_G_LANES; 7284 default: 7285 MISSING_CASE(port); 7286 return POWER_DOMAIN_PORT_OTHER; 7287 } 7288 } 7289 7290 enum intel_display_power_domain 7291 intel_aux_power_domain(struct intel_digital_port *dig_port) 7292 { 7293 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 7294 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 7295 7296 if (intel_phy_is_tc(dev_priv, phy) && 7297 dig_port->tc_mode == TC_PORT_TBT_ALT) { 7298 switch (dig_port->aux_ch) { 7299 case AUX_CH_C: 7300 return POWER_DOMAIN_AUX_C_TBT; 7301 case AUX_CH_D: 7302 return POWER_DOMAIN_AUX_D_TBT; 7303 case AUX_CH_E: 7304 return POWER_DOMAIN_AUX_E_TBT; 7305 case AUX_CH_F: 7306 return POWER_DOMAIN_AUX_F_TBT; 7307 case AUX_CH_G: 7308 return POWER_DOMAIN_AUX_G_TBT; 7309 default: 7310 MISSING_CASE(dig_port->aux_ch); 7311 return POWER_DOMAIN_AUX_C_TBT; 7312 } 7313 } 7314 7315 switch (dig_port->aux_ch) { 7316 case AUX_CH_A: 7317 return POWER_DOMAIN_AUX_A; 7318 case AUX_CH_B: 7319 return POWER_DOMAIN_AUX_B; 7320 case AUX_CH_C: 7321 return POWER_DOMAIN_AUX_C; 7322 case AUX_CH_D: 7323 return POWER_DOMAIN_AUX_D; 7324 case AUX_CH_E: 7325 return POWER_DOMAIN_AUX_E; 7326 case AUX_CH_F: 7327 return POWER_DOMAIN_AUX_F; 7328 case AUX_CH_G: 7329 return POWER_DOMAIN_AUX_G; 7330 default: 7331 MISSING_CASE(dig_port->aux_ch); 7332 return POWER_DOMAIN_AUX_A; 7333 } 7334 } 7335 7336 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state) 7337 { 7338 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7339 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7340 struct drm_encoder *encoder; 7341 enum pipe pipe = crtc->pipe; 7342 u64 mask; 7343 enum transcoder transcoder = crtc_state->cpu_transcoder; 7344 7345 if (!crtc_state->hw.active) 7346 return 0; 7347 7348 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe)); 7349 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder)); 7350 if (crtc_state->pch_pfit.enabled || 7351 crtc_state->pch_pfit.force_thru) 7352 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 7353 7354 drm_for_each_encoder_mask(encoder, &dev_priv->drm, 7355 crtc_state->uapi.encoder_mask) { 7356 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 7357 7358 mask |= BIT_ULL(intel_encoder->power_domain); 7359 } 7360 7361 if (HAS_DDI(dev_priv) && crtc_state->has_audio) 7362 mask |= BIT_ULL(POWER_DOMAIN_AUDIO); 7363 7364 if (crtc_state->shared_dpll) 7365 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE); 7366 7367 return mask; 7368 } 7369 7370 static u64 7371 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state) 7372 { 7373 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7374 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7375 enum intel_display_power_domain domain; 7376 u64 domains, new_domains, old_domains; 7377 7378 old_domains = crtc->enabled_power_domains; 7379 crtc->enabled_power_domains = new_domains = 7380 get_crtc_power_domains(crtc_state); 7381 7382 domains = new_domains & ~old_domains; 7383 7384 for_each_power_domain(domain, domains) 7385 intel_display_power_get(dev_priv, domain); 7386 7387 return old_domains & ~new_domains; 7388 } 7389 7390 static void modeset_put_power_domains(struct drm_i915_private *dev_priv, 7391 u64 domains) 7392 { 7393 enum intel_display_power_domain domain; 7394 7395 for_each_power_domain(domain, domains) 7396 intel_display_power_put_unchecked(dev_priv, domain); 7397 } 7398 7399 static void valleyview_crtc_enable(struct intel_atomic_state *state, 7400 struct intel_crtc *crtc) 7401 { 7402 const struct intel_crtc_state *new_crtc_state = 7403 intel_atomic_get_new_crtc_state(state, crtc); 7404 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7405 enum pipe pipe = crtc->pipe; 7406 7407 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7408 return; 7409 7410 if (intel_crtc_has_dp_encoder(new_crtc_state)) 7411 intel_dp_set_m_n(new_crtc_state, M1_N1); 7412 7413 intel_set_pipe_timings(new_crtc_state); 7414 intel_set_pipe_src_size(new_crtc_state); 7415 7416 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 7417 intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY); 7418 intel_de_write(dev_priv, CHV_CANVAS(pipe), 0); 7419 } 7420 7421 i9xx_set_pipeconf(new_crtc_state); 7422 7423 crtc->active = true; 7424 7425 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7426 7427 intel_encoders_pre_pll_enable(state, crtc); 7428 7429 if (IS_CHERRYVIEW(dev_priv)) { 7430 chv_prepare_pll(crtc, new_crtc_state); 7431 chv_enable_pll(crtc, new_crtc_state); 7432 } else { 7433 vlv_prepare_pll(crtc, new_crtc_state); 7434 vlv_enable_pll(crtc, new_crtc_state); 7435 } 7436 7437 intel_encoders_pre_enable(state, crtc); 7438 7439 i9xx_pfit_enable(new_crtc_state); 7440 7441 intel_color_load_luts(new_crtc_state); 7442 intel_color_commit(new_crtc_state); 7443 /* update DSPCNTR to configure gamma for pipe bottom color */ 7444 intel_disable_primary_plane(new_crtc_state); 7445 7446 dev_priv->display.initial_watermarks(state, crtc); 7447 intel_enable_pipe(new_crtc_state); 7448 7449 intel_crtc_vblank_on(new_crtc_state); 7450 7451 intel_encoders_enable(state, crtc); 7452 } 7453 7454 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state) 7455 { 7456 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7457 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7458 7459 intel_de_write(dev_priv, FP0(crtc->pipe), 7460 crtc_state->dpll_hw_state.fp0); 7461 intel_de_write(dev_priv, FP1(crtc->pipe), 7462 crtc_state->dpll_hw_state.fp1); 7463 } 7464 7465 static void i9xx_crtc_enable(struct intel_atomic_state *state, 7466 struct intel_crtc *crtc) 7467 { 7468 const struct intel_crtc_state *new_crtc_state = 7469 intel_atomic_get_new_crtc_state(state, crtc); 7470 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7471 enum pipe pipe = crtc->pipe; 7472 7473 if (drm_WARN_ON(&dev_priv->drm, crtc->active)) 7474 return; 7475 7476 i9xx_set_pll_dividers(new_crtc_state); 7477 7478 if (intel_crtc_has_dp_encoder(new_crtc_state)) 7479 intel_dp_set_m_n(new_crtc_state, M1_N1); 7480 7481 intel_set_pipe_timings(new_crtc_state); 7482 intel_set_pipe_src_size(new_crtc_state); 7483 7484 i9xx_set_pipeconf(new_crtc_state); 7485 7486 crtc->active = true; 7487 7488 if (!IS_GEN(dev_priv, 2)) 7489 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 7490 7491 intel_encoders_pre_enable(state, crtc); 7492 7493 i9xx_enable_pll(crtc, new_crtc_state); 7494 7495 i9xx_pfit_enable(new_crtc_state); 7496 7497 intel_color_load_luts(new_crtc_state); 7498 intel_color_commit(new_crtc_state); 7499 /* update DSPCNTR to configure gamma for pipe bottom color */ 7500 intel_disable_primary_plane(new_crtc_state); 7501 7502 if (dev_priv->display.initial_watermarks) 7503 dev_priv->display.initial_watermarks(state, crtc); 7504 else 7505 intel_update_watermarks(crtc); 7506 intel_enable_pipe(new_crtc_state); 7507 7508 intel_crtc_vblank_on(new_crtc_state); 7509 7510 intel_encoders_enable(state, crtc); 7511 } 7512 7513 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) 7514 { 7515 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 7516 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7517 7518 if (!old_crtc_state->gmch_pfit.control) 7519 return; 7520 7521 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 7522 7523 drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n", 7524 intel_de_read(dev_priv, PFIT_CONTROL)); 7525 intel_de_write(dev_priv, PFIT_CONTROL, 0); 7526 } 7527 7528 static void i9xx_crtc_disable(struct intel_atomic_state *state, 7529 struct intel_crtc *crtc) 7530 { 7531 struct intel_crtc_state *old_crtc_state = 7532 intel_atomic_get_old_crtc_state(state, crtc); 7533 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7534 enum pipe pipe = crtc->pipe; 7535 7536 /* 7537 * On gen2 planes are double buffered but the pipe isn't, so we must 7538 * wait for planes to fully turn off before disabling the pipe. 7539 */ 7540 if (IS_GEN(dev_priv, 2)) 7541 intel_wait_for_vblank(dev_priv, pipe); 7542 7543 intel_encoders_disable(state, crtc); 7544 7545 intel_crtc_vblank_off(old_crtc_state); 7546 7547 intel_disable_pipe(old_crtc_state); 7548 7549 i9xx_pfit_disable(old_crtc_state); 7550 7551 intel_encoders_post_disable(state, crtc); 7552 7553 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { 7554 if (IS_CHERRYVIEW(dev_priv)) 7555 chv_disable_pll(dev_priv, pipe); 7556 else if (IS_VALLEYVIEW(dev_priv)) 7557 vlv_disable_pll(dev_priv, pipe); 7558 else 7559 i9xx_disable_pll(old_crtc_state); 7560 } 7561 7562 intel_encoders_post_pll_disable(state, crtc); 7563 7564 if (!IS_GEN(dev_priv, 2)) 7565 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 7566 7567 if (!dev_priv->display.initial_watermarks) 7568 intel_update_watermarks(crtc); 7569 7570 /* clock the pipe down to 640x480@60 to potentially save power */ 7571 if (IS_I830(dev_priv)) 7572 i830_enable_pipe(dev_priv, pipe); 7573 } 7574 7575 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc, 7576 struct drm_modeset_acquire_ctx *ctx) 7577 { 7578 struct intel_encoder *encoder; 7579 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7580 struct intel_bw_state *bw_state = 7581 to_intel_bw_state(dev_priv->bw_obj.state); 7582 struct intel_cdclk_state *cdclk_state = 7583 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 7584 struct intel_crtc_state *crtc_state = 7585 to_intel_crtc_state(crtc->base.state); 7586 enum intel_display_power_domain domain; 7587 struct intel_plane *plane; 7588 struct drm_atomic_state *state; 7589 struct intel_crtc_state *temp_crtc_state; 7590 enum pipe pipe = crtc->pipe; 7591 u64 domains; 7592 int ret; 7593 7594 if (!crtc_state->hw.active) 7595 return; 7596 7597 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 7598 const struct intel_plane_state *plane_state = 7599 to_intel_plane_state(plane->base.state); 7600 7601 if (plane_state->uapi.visible) 7602 intel_plane_disable_noatomic(crtc, plane); 7603 } 7604 7605 state = drm_atomic_state_alloc(&dev_priv->drm); 7606 if (!state) { 7607 drm_dbg_kms(&dev_priv->drm, 7608 "failed to disable [CRTC:%d:%s], out of memory", 7609 crtc->base.base.id, crtc->base.name); 7610 return; 7611 } 7612 7613 state->acquire_ctx = ctx; 7614 7615 /* Everything's already locked, -EDEADLK can't happen. */ 7616 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc); 7617 ret = drm_atomic_add_affected_connectors(state, &crtc->base); 7618 7619 drm_WARN_ON(&dev_priv->drm, IS_ERR(temp_crtc_state) || ret); 7620 7621 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc); 7622 7623 drm_atomic_state_put(state); 7624 7625 drm_dbg_kms(&dev_priv->drm, 7626 "[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n", 7627 crtc->base.base.id, crtc->base.name); 7628 7629 crtc->active = false; 7630 crtc->base.enabled = false; 7631 7632 drm_WARN_ON(&dev_priv->drm, 7633 drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0); 7634 crtc_state->uapi.active = false; 7635 crtc_state->uapi.connector_mask = 0; 7636 crtc_state->uapi.encoder_mask = 0; 7637 intel_crtc_free_hw_state(crtc_state); 7638 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw)); 7639 7640 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder) 7641 encoder->base.crtc = NULL; 7642 7643 intel_fbc_disable(crtc); 7644 intel_update_watermarks(crtc); 7645 intel_disable_shared_dpll(crtc_state); 7646 7647 domains = crtc->enabled_power_domains; 7648 for_each_power_domain(domain, domains) 7649 intel_display_power_put_unchecked(dev_priv, domain); 7650 crtc->enabled_power_domains = 0; 7651 7652 dev_priv->active_pipes &= ~BIT(pipe); 7653 cdclk_state->min_cdclk[pipe] = 0; 7654 cdclk_state->min_voltage_level[pipe] = 0; 7655 cdclk_state->active_pipes &= ~BIT(pipe); 7656 7657 bw_state->data_rate[pipe] = 0; 7658 bw_state->num_active_planes[pipe] = 0; 7659 } 7660 7661 /* 7662 * turn all crtc's off, but do not adjust state 7663 * This has to be paired with a call to intel_modeset_setup_hw_state. 7664 */ 7665 int intel_display_suspend(struct drm_device *dev) 7666 { 7667 struct drm_i915_private *dev_priv = to_i915(dev); 7668 struct drm_atomic_state *state; 7669 int ret; 7670 7671 state = drm_atomic_helper_suspend(dev); 7672 ret = PTR_ERR_OR_ZERO(state); 7673 if (ret) 7674 drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", 7675 ret); 7676 else 7677 dev_priv->modeset_restore_state = state; 7678 return ret; 7679 } 7680 7681 void intel_encoder_destroy(struct drm_encoder *encoder) 7682 { 7683 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 7684 7685 drm_encoder_cleanup(encoder); 7686 kfree(intel_encoder); 7687 } 7688 7689 /* Cross check the actual hw state with our own modeset state tracking (and it's 7690 * internal consistency). */ 7691 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state, 7692 struct drm_connector_state *conn_state) 7693 { 7694 struct intel_connector *connector = to_intel_connector(conn_state->connector); 7695 struct drm_i915_private *i915 = to_i915(connector->base.dev); 7696 7697 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 7698 connector->base.base.id, connector->base.name); 7699 7700 if (connector->get_hw_state(connector)) { 7701 struct intel_encoder *encoder = intel_attached_encoder(connector); 7702 7703 I915_STATE_WARN(!crtc_state, 7704 "connector enabled without attached crtc\n"); 7705 7706 if (!crtc_state) 7707 return; 7708 7709 I915_STATE_WARN(!crtc_state->hw.active, 7710 "connector is active, but attached crtc isn't\n"); 7711 7712 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 7713 return; 7714 7715 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 7716 "atomic encoder doesn't match attached encoder\n"); 7717 7718 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 7719 "attached encoder crtc differs from connector crtc\n"); 7720 } else { 7721 I915_STATE_WARN(crtc_state && crtc_state->hw.active, 7722 "attached crtc is active, but connector isn't\n"); 7723 I915_STATE_WARN(!crtc_state && conn_state->best_encoder, 7724 "best encoder set without crtc!\n"); 7725 } 7726 } 7727 7728 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state) 7729 { 7730 if (crtc_state->hw.enable && crtc_state->has_pch_encoder) 7731 return crtc_state->fdi_lanes; 7732 7733 return 0; 7734 } 7735 7736 static int ilk_check_fdi_lanes(struct drm_device *dev, enum pipe pipe, 7737 struct intel_crtc_state *pipe_config) 7738 { 7739 struct drm_i915_private *dev_priv = to_i915(dev); 7740 struct drm_atomic_state *state = pipe_config->uapi.state; 7741 struct intel_crtc *other_crtc; 7742 struct intel_crtc_state *other_crtc_state; 7743 7744 drm_dbg_kms(&dev_priv->drm, 7745 "checking fdi config on pipe %c, lanes %i\n", 7746 pipe_name(pipe), pipe_config->fdi_lanes); 7747 if (pipe_config->fdi_lanes > 4) { 7748 drm_dbg_kms(&dev_priv->drm, 7749 "invalid fdi lane config on pipe %c: %i lanes\n", 7750 pipe_name(pipe), pipe_config->fdi_lanes); 7751 return -EINVAL; 7752 } 7753 7754 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 7755 if (pipe_config->fdi_lanes > 2) { 7756 drm_dbg_kms(&dev_priv->drm, 7757 "only 2 lanes on haswell, required: %i lanes\n", 7758 pipe_config->fdi_lanes); 7759 return -EINVAL; 7760 } else { 7761 return 0; 7762 } 7763 } 7764 7765 if (INTEL_NUM_PIPES(dev_priv) == 2) 7766 return 0; 7767 7768 /* Ivybridge 3 pipe is really complicated */ 7769 switch (pipe) { 7770 case PIPE_A: 7771 return 0; 7772 case PIPE_B: 7773 if (pipe_config->fdi_lanes <= 2) 7774 return 0; 7775 7776 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C); 7777 other_crtc_state = 7778 intel_atomic_get_crtc_state(state, other_crtc); 7779 if (IS_ERR(other_crtc_state)) 7780 return PTR_ERR(other_crtc_state); 7781 7782 if (pipe_required_fdi_lanes(other_crtc_state) > 0) { 7783 drm_dbg_kms(&dev_priv->drm, 7784 "invalid shared fdi lane config on pipe %c: %i lanes\n", 7785 pipe_name(pipe), pipe_config->fdi_lanes); 7786 return -EINVAL; 7787 } 7788 return 0; 7789 case PIPE_C: 7790 if (pipe_config->fdi_lanes > 2) { 7791 drm_dbg_kms(&dev_priv->drm, 7792 "only 2 lanes on pipe %c: required %i lanes\n", 7793 pipe_name(pipe), pipe_config->fdi_lanes); 7794 return -EINVAL; 7795 } 7796 7797 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B); 7798 other_crtc_state = 7799 intel_atomic_get_crtc_state(state, other_crtc); 7800 if (IS_ERR(other_crtc_state)) 7801 return PTR_ERR(other_crtc_state); 7802 7803 if (pipe_required_fdi_lanes(other_crtc_state) > 2) { 7804 drm_dbg_kms(&dev_priv->drm, 7805 "fdi link B uses too many lanes to enable link C\n"); 7806 return -EINVAL; 7807 } 7808 return 0; 7809 default: 7810 BUG(); 7811 } 7812 } 7813 7814 #define RETRY 1 7815 static int ilk_fdi_compute_config(struct intel_crtc *intel_crtc, 7816 struct intel_crtc_state *pipe_config) 7817 { 7818 struct drm_device *dev = intel_crtc->base.dev; 7819 struct drm_i915_private *i915 = to_i915(dev); 7820 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 7821 int lane, link_bw, fdi_dotclock, ret; 7822 bool needs_recompute = false; 7823 7824 retry: 7825 /* FDI is a binary signal running at ~2.7GHz, encoding 7826 * each output octet as 10 bits. The actual frequency 7827 * is stored as a divider into a 100MHz clock, and the 7828 * mode pixel clock is stored in units of 1KHz. 7829 * Hence the bw of each lane in terms of the mode signal 7830 * is: 7831 */ 7832 link_bw = intel_fdi_link_freq(i915, pipe_config); 7833 7834 fdi_dotclock = adjusted_mode->crtc_clock; 7835 7836 lane = ilk_get_lanes_required(fdi_dotclock, link_bw, 7837 pipe_config->pipe_bpp); 7838 7839 pipe_config->fdi_lanes = lane; 7840 7841 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock, 7842 link_bw, &pipe_config->fdi_m_n, false, false); 7843 7844 ret = ilk_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config); 7845 if (ret == -EDEADLK) 7846 return ret; 7847 7848 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) { 7849 pipe_config->pipe_bpp -= 2*3; 7850 drm_dbg_kms(&i915->drm, 7851 "fdi link bw constraint, reducing pipe bpp to %i\n", 7852 pipe_config->pipe_bpp); 7853 needs_recompute = true; 7854 pipe_config->bw_constrained = true; 7855 7856 goto retry; 7857 } 7858 7859 if (needs_recompute) 7860 return RETRY; 7861 7862 return ret; 7863 } 7864 7865 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state) 7866 { 7867 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 7868 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7869 7870 /* IPS only exists on ULT machines and is tied to pipe A. */ 7871 if (!hsw_crtc_supports_ips(crtc)) 7872 return false; 7873 7874 if (!i915_modparams.enable_ips) 7875 return false; 7876 7877 if (crtc_state->pipe_bpp > 24) 7878 return false; 7879 7880 /* 7881 * We compare against max which means we must take 7882 * the increased cdclk requirement into account when 7883 * calculating the new cdclk. 7884 * 7885 * Should measure whether using a lower cdclk w/o IPS 7886 */ 7887 if (IS_BROADWELL(dev_priv) && 7888 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100) 7889 return false; 7890 7891 return true; 7892 } 7893 7894 static int hsw_compute_ips_config(struct intel_crtc_state *crtc_state) 7895 { 7896 struct drm_i915_private *dev_priv = 7897 to_i915(crtc_state->uapi.crtc->dev); 7898 struct intel_atomic_state *state = 7899 to_intel_atomic_state(crtc_state->uapi.state); 7900 7901 crtc_state->ips_enabled = false; 7902 7903 if (!hsw_crtc_state_ips_capable(crtc_state)) 7904 return 0; 7905 7906 /* 7907 * When IPS gets enabled, the pipe CRC changes. Since IPS gets 7908 * enabled and disabled dynamically based on package C states, 7909 * user space can't make reliable use of the CRCs, so let's just 7910 * completely disable it. 7911 */ 7912 if (crtc_state->crc_enabled) 7913 return 0; 7914 7915 /* IPS should be fine as long as at least one plane is enabled. */ 7916 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR))) 7917 return 0; 7918 7919 if (IS_BROADWELL(dev_priv)) { 7920 const struct intel_cdclk_state *cdclk_state; 7921 7922 cdclk_state = intel_atomic_get_cdclk_state(state); 7923 if (IS_ERR(cdclk_state)) 7924 return PTR_ERR(cdclk_state); 7925 7926 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 7927 if (crtc_state->pixel_rate > cdclk_state->logical.cdclk * 95 / 100) 7928 return 0; 7929 } 7930 7931 crtc_state->ips_enabled = true; 7932 7933 return 0; 7934 } 7935 7936 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 7937 { 7938 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7939 7940 /* GDG double wide on either pipe, otherwise pipe A only */ 7941 return INTEL_GEN(dev_priv) < 4 && 7942 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 7943 } 7944 7945 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config) 7946 { 7947 u32 pixel_rate; 7948 7949 pixel_rate = pipe_config->hw.adjusted_mode.crtc_clock; 7950 7951 /* 7952 * We only use IF-ID interlacing. If we ever use 7953 * PF-ID we'll need to adjust the pixel_rate here. 7954 */ 7955 7956 if (pipe_config->pch_pfit.enabled) { 7957 u64 pipe_w, pipe_h, pfit_w, pfit_h; 7958 u32 pfit_size = pipe_config->pch_pfit.size; 7959 7960 pipe_w = pipe_config->pipe_src_w; 7961 pipe_h = pipe_config->pipe_src_h; 7962 7963 pfit_w = (pfit_size >> 16) & 0xFFFF; 7964 pfit_h = pfit_size & 0xFFFF; 7965 if (pipe_w < pfit_w) 7966 pipe_w = pfit_w; 7967 if (pipe_h < pfit_h) 7968 pipe_h = pfit_h; 7969 7970 if (WARN_ON(!pfit_w || !pfit_h)) 7971 return pixel_rate; 7972 7973 pixel_rate = div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h), 7974 pfit_w * pfit_h); 7975 } 7976 7977 return pixel_rate; 7978 } 7979 7980 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) 7981 { 7982 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 7983 7984 if (HAS_GMCH(dev_priv)) 7985 /* FIXME calculate proper pipe pixel rate for GMCH pfit */ 7986 crtc_state->pixel_rate = 7987 crtc_state->hw.adjusted_mode.crtc_clock; 7988 else 7989 crtc_state->pixel_rate = 7990 ilk_pipe_pixel_rate(crtc_state); 7991 } 7992 7993 static int intel_crtc_compute_config(struct intel_crtc *crtc, 7994 struct intel_crtc_state *pipe_config) 7995 { 7996 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 7997 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 7998 int clock_limit = dev_priv->max_dotclk_freq; 7999 8000 if (INTEL_GEN(dev_priv) < 4) { 8001 clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 8002 8003 /* 8004 * Enable double wide mode when the dot clock 8005 * is > 90% of the (display) core speed. 8006 */ 8007 if (intel_crtc_supports_double_wide(crtc) && 8008 adjusted_mode->crtc_clock > clock_limit) { 8009 clock_limit = dev_priv->max_dotclk_freq; 8010 pipe_config->double_wide = true; 8011 } 8012 } 8013 8014 if (adjusted_mode->crtc_clock > clock_limit) { 8015 drm_dbg_kms(&dev_priv->drm, 8016 "requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 8017 adjusted_mode->crtc_clock, clock_limit, 8018 yesno(pipe_config->double_wide)); 8019 return -EINVAL; 8020 } 8021 8022 if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 8023 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) && 8024 pipe_config->hw.ctm) { 8025 /* 8026 * There is only one pipe CSC unit per pipe, and we need that 8027 * for output conversion from RGB->YCBCR. So if CTM is already 8028 * applied we can't support YCBCR420 output. 8029 */ 8030 drm_dbg_kms(&dev_priv->drm, 8031 "YCBCR420 and CTM together are not possible\n"); 8032 return -EINVAL; 8033 } 8034 8035 /* 8036 * Pipe horizontal size must be even in: 8037 * - DVO ganged mode 8038 * - LVDS dual channel mode 8039 * - Double wide pipe 8040 */ 8041 if (pipe_config->pipe_src_w & 1) { 8042 if (pipe_config->double_wide) { 8043 drm_dbg_kms(&dev_priv->drm, 8044 "Odd pipe source width not supported with double wide pipe\n"); 8045 return -EINVAL; 8046 } 8047 8048 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) && 8049 intel_is_dual_link_lvds(dev_priv)) { 8050 drm_dbg_kms(&dev_priv->drm, 8051 "Odd pipe source width not supported with dual link LVDS\n"); 8052 return -EINVAL; 8053 } 8054 } 8055 8056 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 8057 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 8058 */ 8059 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) && 8060 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay) 8061 return -EINVAL; 8062 8063 intel_crtc_compute_pixel_rate(pipe_config); 8064 8065 if (pipe_config->has_pch_encoder) 8066 return ilk_fdi_compute_config(crtc, pipe_config); 8067 8068 return 0; 8069 } 8070 8071 static void 8072 intel_reduce_m_n_ratio(u32 *num, u32 *den) 8073 { 8074 while (*num > DATA_LINK_M_N_MASK || 8075 *den > DATA_LINK_M_N_MASK) { 8076 *num >>= 1; 8077 *den >>= 1; 8078 } 8079 } 8080 8081 static void compute_m_n(unsigned int m, unsigned int n, 8082 u32 *ret_m, u32 *ret_n, 8083 bool constant_n) 8084 { 8085 /* 8086 * Several DP dongles in particular seem to be fussy about 8087 * too large link M/N values. Give N value as 0x8000 that 8088 * should be acceptable by specific devices. 0x8000 is the 8089 * specified fixed N value for asynchronous clock mode, 8090 * which the devices expect also in synchronous clock mode. 8091 */ 8092 if (constant_n) 8093 *ret_n = 0x8000; 8094 else 8095 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 8096 8097 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); 8098 intel_reduce_m_n_ratio(ret_m, ret_n); 8099 } 8100 8101 void 8102 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, 8103 int pixel_clock, int link_clock, 8104 struct intel_link_m_n *m_n, 8105 bool constant_n, bool fec_enable) 8106 { 8107 u32 data_clock = bits_per_pixel * pixel_clock; 8108 8109 if (fec_enable) 8110 data_clock = intel_dp_mode_to_fec_clock(data_clock); 8111 8112 m_n->tu = 64; 8113 compute_m_n(data_clock, 8114 link_clock * nlanes * 8, 8115 &m_n->gmch_m, &m_n->gmch_n, 8116 constant_n); 8117 8118 compute_m_n(pixel_clock, link_clock, 8119 &m_n->link_m, &m_n->link_n, 8120 constant_n); 8121 } 8122 8123 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) 8124 { 8125 /* 8126 * There may be no VBT; and if the BIOS enabled SSC we can 8127 * just keep using it to avoid unnecessary flicker. Whereas if the 8128 * BIOS isn't using it, don't assume it will work even if the VBT 8129 * indicates as much. 8130 */ 8131 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 8132 bool bios_lvds_use_ssc = intel_de_read(dev_priv, 8133 PCH_DREF_CONTROL) & 8134 DREF_SSC1_ENABLE; 8135 8136 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 8137 drm_dbg_kms(&dev_priv->drm, 8138 "SSC %s by BIOS, overriding VBT which says %s\n", 8139 enableddisabled(bios_lvds_use_ssc), 8140 enableddisabled(dev_priv->vbt.lvds_use_ssc)); 8141 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 8142 } 8143 } 8144 } 8145 8146 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) 8147 { 8148 if (i915_modparams.panel_use_ssc >= 0) 8149 return i915_modparams.panel_use_ssc != 0; 8150 return dev_priv->vbt.lvds_use_ssc 8151 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); 8152 } 8153 8154 static u32 pnv_dpll_compute_fp(struct dpll *dpll) 8155 { 8156 return (1 << dpll->n) << 16 | dpll->m2; 8157 } 8158 8159 static u32 i9xx_dpll_compute_fp(struct dpll *dpll) 8160 { 8161 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; 8162 } 8163 8164 static void i9xx_update_pll_dividers(struct intel_crtc *crtc, 8165 struct intel_crtc_state *crtc_state, 8166 struct dpll *reduced_clock) 8167 { 8168 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8169 u32 fp, fp2 = 0; 8170 8171 if (IS_PINEVIEW(dev_priv)) { 8172 fp = pnv_dpll_compute_fp(&crtc_state->dpll); 8173 if (reduced_clock) 8174 fp2 = pnv_dpll_compute_fp(reduced_clock); 8175 } else { 8176 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 8177 if (reduced_clock) 8178 fp2 = i9xx_dpll_compute_fp(reduced_clock); 8179 } 8180 8181 crtc_state->dpll_hw_state.fp0 = fp; 8182 8183 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8184 reduced_clock) { 8185 crtc_state->dpll_hw_state.fp1 = fp2; 8186 } else { 8187 crtc_state->dpll_hw_state.fp1 = fp; 8188 } 8189 } 8190 8191 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe 8192 pipe) 8193 { 8194 u32 reg_val; 8195 8196 /* 8197 * PLLB opamp always calibrates to max value of 0x3f, force enable it 8198 * and set it to a reasonable value instead. 8199 */ 8200 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 8201 reg_val &= 0xffffff00; 8202 reg_val |= 0x00000030; 8203 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 8204 8205 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 8206 reg_val &= 0x00ffffff; 8207 reg_val |= 0x8c000000; 8208 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 8209 8210 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 8211 reg_val &= 0xffffff00; 8212 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 8213 8214 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 8215 reg_val &= 0x00ffffff; 8216 reg_val |= 0xb0000000; 8217 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 8218 } 8219 8220 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 8221 const struct intel_link_m_n *m_n) 8222 { 8223 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8224 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8225 enum pipe pipe = crtc->pipe; 8226 8227 intel_de_write(dev_priv, PCH_TRANS_DATA_M1(pipe), 8228 TU_SIZE(m_n->tu) | m_n->gmch_m); 8229 intel_de_write(dev_priv, PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 8230 intel_de_write(dev_priv, PCH_TRANS_LINK_M1(pipe), m_n->link_m); 8231 intel_de_write(dev_priv, PCH_TRANS_LINK_N1(pipe), m_n->link_n); 8232 } 8233 8234 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv, 8235 enum transcoder transcoder) 8236 { 8237 if (IS_HASWELL(dev_priv)) 8238 return transcoder == TRANSCODER_EDP; 8239 8240 /* 8241 * Strictly speaking some registers are available before 8242 * gen7, but we only support DRRS on gen7+ 8243 */ 8244 return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv); 8245 } 8246 8247 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state, 8248 const struct intel_link_m_n *m_n, 8249 const struct intel_link_m_n *m2_n2) 8250 { 8251 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8252 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8253 enum pipe pipe = crtc->pipe; 8254 enum transcoder transcoder = crtc_state->cpu_transcoder; 8255 8256 if (INTEL_GEN(dev_priv) >= 5) { 8257 intel_de_write(dev_priv, PIPE_DATA_M1(transcoder), 8258 TU_SIZE(m_n->tu) | m_n->gmch_m); 8259 intel_de_write(dev_priv, PIPE_DATA_N1(transcoder), 8260 m_n->gmch_n); 8261 intel_de_write(dev_priv, PIPE_LINK_M1(transcoder), 8262 m_n->link_m); 8263 intel_de_write(dev_priv, PIPE_LINK_N1(transcoder), 8264 m_n->link_n); 8265 /* 8266 * M2_N2 registers are set only if DRRS is supported 8267 * (to make sure the registers are not unnecessarily accessed). 8268 */ 8269 if (m2_n2 && crtc_state->has_drrs && 8270 transcoder_has_m2_n2(dev_priv, transcoder)) { 8271 intel_de_write(dev_priv, PIPE_DATA_M2(transcoder), 8272 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 8273 intel_de_write(dev_priv, PIPE_DATA_N2(transcoder), 8274 m2_n2->gmch_n); 8275 intel_de_write(dev_priv, PIPE_LINK_M2(transcoder), 8276 m2_n2->link_m); 8277 intel_de_write(dev_priv, PIPE_LINK_N2(transcoder), 8278 m2_n2->link_n); 8279 } 8280 } else { 8281 intel_de_write(dev_priv, PIPE_DATA_M_G4X(pipe), 8282 TU_SIZE(m_n->tu) | m_n->gmch_m); 8283 intel_de_write(dev_priv, PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 8284 intel_de_write(dev_priv, PIPE_LINK_M_G4X(pipe), m_n->link_m); 8285 intel_de_write(dev_priv, PIPE_LINK_N_G4X(pipe), m_n->link_n); 8286 } 8287 } 8288 8289 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n) 8290 { 8291 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 8292 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 8293 8294 if (m_n == M1_N1) { 8295 dp_m_n = &crtc_state->dp_m_n; 8296 dp_m2_n2 = &crtc_state->dp_m2_n2; 8297 } else if (m_n == M2_N2) { 8298 8299 /* 8300 * M2_N2 registers are not supported. Hence m2_n2 divider value 8301 * needs to be programmed into M1_N1. 8302 */ 8303 dp_m_n = &crtc_state->dp_m2_n2; 8304 } else { 8305 drm_err(&i915->drm, "Unsupported divider value\n"); 8306 return; 8307 } 8308 8309 if (crtc_state->has_pch_encoder) 8310 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n); 8311 else 8312 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); 8313 } 8314 8315 static void vlv_compute_dpll(struct intel_crtc *crtc, 8316 struct intel_crtc_state *pipe_config) 8317 { 8318 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV | 8319 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 8320 if (crtc->pipe != PIPE_A) 8321 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 8322 8323 /* DPLL not used with DSI, but still need the rest set up */ 8324 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 8325 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE | 8326 DPLL_EXT_BUFFER_ENABLE_VLV; 8327 8328 pipe_config->dpll_hw_state.dpll_md = 8329 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8330 } 8331 8332 static void chv_compute_dpll(struct intel_crtc *crtc, 8333 struct intel_crtc_state *pipe_config) 8334 { 8335 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV | 8336 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 8337 if (crtc->pipe != PIPE_A) 8338 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 8339 8340 /* DPLL not used with DSI, but still need the rest set up */ 8341 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) 8342 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE; 8343 8344 pipe_config->dpll_hw_state.dpll_md = 8345 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8346 } 8347 8348 static void vlv_prepare_pll(struct intel_crtc *crtc, 8349 const struct intel_crtc_state *pipe_config) 8350 { 8351 struct drm_device *dev = crtc->base.dev; 8352 struct drm_i915_private *dev_priv = to_i915(dev); 8353 enum pipe pipe = crtc->pipe; 8354 u32 mdiv; 8355 u32 bestn, bestm1, bestm2, bestp1, bestp2; 8356 u32 coreclk, reg_val; 8357 8358 /* Enable Refclk */ 8359 intel_de_write(dev_priv, DPLL(pipe), 8360 pipe_config->dpll_hw_state.dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); 8361 8362 /* No need to actually set up the DPLL with DSI */ 8363 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8364 return; 8365 8366 vlv_dpio_get(dev_priv); 8367 8368 bestn = pipe_config->dpll.n; 8369 bestm1 = pipe_config->dpll.m1; 8370 bestm2 = pipe_config->dpll.m2; 8371 bestp1 = pipe_config->dpll.p1; 8372 bestp2 = pipe_config->dpll.p2; 8373 8374 /* See eDP HDMI DPIO driver vbios notes doc */ 8375 8376 /* PLL B needs special handling */ 8377 if (pipe == PIPE_B) 8378 vlv_pllb_recal_opamp(dev_priv, pipe); 8379 8380 /* Set up Tx target for periodic Rcomp update */ 8381 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f); 8382 8383 /* Disable target IRef on PLL */ 8384 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe)); 8385 reg_val &= 0x00ffffff; 8386 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val); 8387 8388 /* Disable fast lock */ 8389 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610); 8390 8391 /* Set idtafcrecal before PLL is enabled */ 8392 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); 8393 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); 8394 mdiv |= ((bestn << DPIO_N_SHIFT)); 8395 mdiv |= (1 << DPIO_K_SHIFT); 8396 8397 /* 8398 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, 8399 * but we don't support that). 8400 * Note: don't use the DAC post divider as it seems unstable. 8401 */ 8402 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); 8403 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 8404 8405 mdiv |= DPIO_ENABLE_CALIBRATION; 8406 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 8407 8408 /* Set HBR and RBR LPF coefficients */ 8409 if (pipe_config->port_clock == 162000 || 8410 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) || 8411 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI)) 8412 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 8413 0x009f0003); 8414 else 8415 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 8416 0x00d0000f); 8417 8418 if (intel_crtc_has_dp_encoder(pipe_config)) { 8419 /* Use SSC source */ 8420 if (pipe == PIPE_A) 8421 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8422 0x0df40000); 8423 else 8424 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8425 0x0df70000); 8426 } else { /* HDMI or VGA */ 8427 /* Use bend source */ 8428 if (pipe == PIPE_A) 8429 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8430 0x0df70000); 8431 else 8432 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 8433 0x0df40000); 8434 } 8435 8436 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe)); 8437 coreclk = (coreclk & 0x0000ff00) | 0x01c00000; 8438 if (intel_crtc_has_dp_encoder(pipe_config)) 8439 coreclk |= 0x01000000; 8440 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk); 8441 8442 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000); 8443 8444 vlv_dpio_put(dev_priv); 8445 } 8446 8447 static void chv_prepare_pll(struct intel_crtc *crtc, 8448 const struct intel_crtc_state *pipe_config) 8449 { 8450 struct drm_device *dev = crtc->base.dev; 8451 struct drm_i915_private *dev_priv = to_i915(dev); 8452 enum pipe pipe = crtc->pipe; 8453 enum dpio_channel port = vlv_pipe_to_channel(pipe); 8454 u32 loopfilter, tribuf_calcntr; 8455 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac; 8456 u32 dpio_val; 8457 int vco; 8458 8459 /* Enable Refclk and SSC */ 8460 intel_de_write(dev_priv, DPLL(pipe), 8461 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); 8462 8463 /* No need to actually set up the DPLL with DSI */ 8464 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8465 return; 8466 8467 bestn = pipe_config->dpll.n; 8468 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff; 8469 bestm1 = pipe_config->dpll.m1; 8470 bestm2 = pipe_config->dpll.m2 >> 22; 8471 bestp1 = pipe_config->dpll.p1; 8472 bestp2 = pipe_config->dpll.p2; 8473 vco = pipe_config->dpll.vco; 8474 dpio_val = 0; 8475 loopfilter = 0; 8476 8477 vlv_dpio_get(dev_priv); 8478 8479 /* p1 and p2 divider */ 8480 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port), 8481 5 << DPIO_CHV_S1_DIV_SHIFT | 8482 bestp1 << DPIO_CHV_P1_DIV_SHIFT | 8483 bestp2 << DPIO_CHV_P2_DIV_SHIFT | 8484 1 << DPIO_CHV_K_DIV_SHIFT); 8485 8486 /* Feedback post-divider - m2 */ 8487 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2); 8488 8489 /* Feedback refclk divider - n and m1 */ 8490 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port), 8491 DPIO_CHV_M1_DIV_BY_2 | 8492 1 << DPIO_CHV_N_DIV_SHIFT); 8493 8494 /* M2 fraction division */ 8495 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac); 8496 8497 /* M2 fraction division enable */ 8498 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 8499 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); 8500 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT); 8501 if (bestm2_frac) 8502 dpio_val |= DPIO_CHV_FRAC_DIV_EN; 8503 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val); 8504 8505 /* Program digital lock detect threshold */ 8506 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port)); 8507 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | 8508 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); 8509 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT); 8510 if (!bestm2_frac) 8511 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; 8512 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val); 8513 8514 /* Loop filter */ 8515 if (vco == 5400000) { 8516 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT); 8517 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT); 8518 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT); 8519 tribuf_calcntr = 0x9; 8520 } else if (vco <= 6200000) { 8521 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT); 8522 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT); 8523 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8524 tribuf_calcntr = 0x9; 8525 } else if (vco <= 6480000) { 8526 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 8527 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 8528 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8529 tribuf_calcntr = 0x8; 8530 } else { 8531 /* Not supported. Apply the same limits as in the max case */ 8532 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 8533 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 8534 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 8535 tribuf_calcntr = 0; 8536 } 8537 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter); 8538 8539 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port)); 8540 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; 8541 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT); 8542 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val); 8543 8544 /* AFC Recal */ 8545 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), 8546 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) | 8547 DPIO_AFC_RECAL); 8548 8549 vlv_dpio_put(dev_priv); 8550 } 8551 8552 /** 8553 * vlv_force_pll_on - forcibly enable just the PLL 8554 * @dev_priv: i915 private structure 8555 * @pipe: pipe PLL to enable 8556 * @dpll: PLL configuration 8557 * 8558 * Enable the PLL for @pipe using the supplied @dpll config. To be used 8559 * in cases where we need the PLL enabled even when @pipe is not going to 8560 * be enabled. 8561 */ 8562 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe, 8563 const struct dpll *dpll) 8564 { 8565 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 8566 struct intel_crtc_state *pipe_config; 8567 8568 pipe_config = intel_crtc_state_alloc(crtc); 8569 if (!pipe_config) 8570 return -ENOMEM; 8571 8572 pipe_config->cpu_transcoder = (enum transcoder)pipe; 8573 pipe_config->pixel_multiplier = 1; 8574 pipe_config->dpll = *dpll; 8575 8576 if (IS_CHERRYVIEW(dev_priv)) { 8577 chv_compute_dpll(crtc, pipe_config); 8578 chv_prepare_pll(crtc, pipe_config); 8579 chv_enable_pll(crtc, pipe_config); 8580 } else { 8581 vlv_compute_dpll(crtc, pipe_config); 8582 vlv_prepare_pll(crtc, pipe_config); 8583 vlv_enable_pll(crtc, pipe_config); 8584 } 8585 8586 kfree(pipe_config); 8587 8588 return 0; 8589 } 8590 8591 /** 8592 * vlv_force_pll_off - forcibly disable just the PLL 8593 * @dev_priv: i915 private structure 8594 * @pipe: pipe PLL to disable 8595 * 8596 * Disable the PLL for @pipe. To be used in cases where we need 8597 * the PLL enabled even when @pipe is not going to be enabled. 8598 */ 8599 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe) 8600 { 8601 if (IS_CHERRYVIEW(dev_priv)) 8602 chv_disable_pll(dev_priv, pipe); 8603 else 8604 vlv_disable_pll(dev_priv, pipe); 8605 } 8606 8607 static void i9xx_compute_dpll(struct intel_crtc *crtc, 8608 struct intel_crtc_state *crtc_state, 8609 struct dpll *reduced_clock) 8610 { 8611 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8612 u32 dpll; 8613 struct dpll *clock = &crtc_state->dpll; 8614 8615 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8616 8617 dpll = DPLL_VGA_MODE_DIS; 8618 8619 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 8620 dpll |= DPLLB_MODE_LVDS; 8621 else 8622 dpll |= DPLLB_MODE_DAC_SERIAL; 8623 8624 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 8625 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 8626 dpll |= (crtc_state->pixel_multiplier - 1) 8627 << SDVO_MULTIPLIER_SHIFT_HIRES; 8628 } 8629 8630 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 8631 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 8632 dpll |= DPLL_SDVO_HIGH_SPEED; 8633 8634 if (intel_crtc_has_dp_encoder(crtc_state)) 8635 dpll |= DPLL_SDVO_HIGH_SPEED; 8636 8637 /* compute bitmask from p1 value */ 8638 if (IS_PINEVIEW(dev_priv)) 8639 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; 8640 else { 8641 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8642 if (IS_G4X(dev_priv) && reduced_clock) 8643 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 8644 } 8645 switch (clock->p2) { 8646 case 5: 8647 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 8648 break; 8649 case 7: 8650 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 8651 break; 8652 case 10: 8653 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 8654 break; 8655 case 14: 8656 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 8657 break; 8658 } 8659 if (INTEL_GEN(dev_priv) >= 4) 8660 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); 8661 8662 if (crtc_state->sdvo_tv_clock) 8663 dpll |= PLL_REF_INPUT_TVCLKINBC; 8664 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8665 intel_panel_use_ssc(dev_priv)) 8666 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8667 else 8668 dpll |= PLL_REF_INPUT_DREFCLK; 8669 8670 dpll |= DPLL_VCO_ENABLE; 8671 crtc_state->dpll_hw_state.dpll = dpll; 8672 8673 if (INTEL_GEN(dev_priv) >= 4) { 8674 u32 dpll_md = (crtc_state->pixel_multiplier - 1) 8675 << DPLL_MD_UDI_MULTIPLIER_SHIFT; 8676 crtc_state->dpll_hw_state.dpll_md = dpll_md; 8677 } 8678 } 8679 8680 static void i8xx_compute_dpll(struct intel_crtc *crtc, 8681 struct intel_crtc_state *crtc_state, 8682 struct dpll *reduced_clock) 8683 { 8684 struct drm_device *dev = crtc->base.dev; 8685 struct drm_i915_private *dev_priv = to_i915(dev); 8686 u32 dpll; 8687 struct dpll *clock = &crtc_state->dpll; 8688 8689 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 8690 8691 dpll = DPLL_VGA_MODE_DIS; 8692 8693 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8694 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8695 } else { 8696 if (clock->p1 == 2) 8697 dpll |= PLL_P1_DIVIDE_BY_TWO; 8698 else 8699 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8700 if (clock->p2 == 4) 8701 dpll |= PLL_P2_DIVIDE_BY_4; 8702 } 8703 8704 /* 8705 * Bspec: 8706 * "[Almador Errata}: For the correct operation of the muxed DVO pins 8707 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, 8708 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock 8709 * Enable) must be set to “1” in both the DPLL A Control Register 8710 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." 8711 * 8712 * For simplicity We simply keep both bits always enabled in 8713 * both DPLLS. The spec says we should disable the DVO 2X clock 8714 * when not needed, but this seems to work fine in practice. 8715 */ 8716 if (IS_I830(dev_priv) || 8717 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) 8718 dpll |= DPLL_DVO_2X_MODE; 8719 8720 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 8721 intel_panel_use_ssc(dev_priv)) 8722 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8723 else 8724 dpll |= PLL_REF_INPUT_DREFCLK; 8725 8726 dpll |= DPLL_VCO_ENABLE; 8727 crtc_state->dpll_hw_state.dpll = dpll; 8728 } 8729 8730 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state) 8731 { 8732 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8733 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8734 enum pipe pipe = crtc->pipe; 8735 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8736 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 8737 u32 crtc_vtotal, crtc_vblank_end; 8738 int vsyncshift = 0; 8739 8740 /* We need to be careful not to changed the adjusted mode, for otherwise 8741 * the hw state checker will get angry at the mismatch. */ 8742 crtc_vtotal = adjusted_mode->crtc_vtotal; 8743 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 8744 8745 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 8746 /* the chip adds 2 halflines automatically */ 8747 crtc_vtotal -= 1; 8748 crtc_vblank_end -= 1; 8749 8750 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 8751 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 8752 else 8753 vsyncshift = adjusted_mode->crtc_hsync_start - 8754 adjusted_mode->crtc_htotal / 2; 8755 if (vsyncshift < 0) 8756 vsyncshift += adjusted_mode->crtc_htotal; 8757 } 8758 8759 if (INTEL_GEN(dev_priv) > 3) 8760 intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder), 8761 vsyncshift); 8762 8763 intel_de_write(dev_priv, HTOTAL(cpu_transcoder), 8764 (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); 8765 intel_de_write(dev_priv, HBLANK(cpu_transcoder), 8766 (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); 8767 intel_de_write(dev_priv, HSYNC(cpu_transcoder), 8768 (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); 8769 8770 intel_de_write(dev_priv, VTOTAL(cpu_transcoder), 8771 (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); 8772 intel_de_write(dev_priv, VBLANK(cpu_transcoder), 8773 (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); 8774 intel_de_write(dev_priv, VSYNC(cpu_transcoder), 8775 (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); 8776 8777 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 8778 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 8779 * documented on the DDI_FUNC_CTL register description, EDP Input Select 8780 * bits. */ 8781 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && 8782 (pipe == PIPE_B || pipe == PIPE_C)) 8783 intel_de_write(dev_priv, VTOTAL(pipe), 8784 intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); 8785 8786 } 8787 8788 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) 8789 { 8790 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8791 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8792 enum pipe pipe = crtc->pipe; 8793 8794 /* pipesrc controls the size that is scaled from, which should 8795 * always be the user's requested size. 8796 */ 8797 intel_de_write(dev_priv, PIPESRC(pipe), 8798 ((crtc_state->pipe_src_w - 1) << 16) | (crtc_state->pipe_src_h - 1)); 8799 } 8800 8801 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) 8802 { 8803 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 8804 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 8805 8806 if (IS_GEN(dev_priv, 2)) 8807 return false; 8808 8809 if (INTEL_GEN(dev_priv) >= 9 || 8810 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 8811 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; 8812 else 8813 return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; 8814 } 8815 8816 static void intel_get_pipe_timings(struct intel_crtc *crtc, 8817 struct intel_crtc_state *pipe_config) 8818 { 8819 struct drm_device *dev = crtc->base.dev; 8820 struct drm_i915_private *dev_priv = to_i915(dev); 8821 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 8822 u32 tmp; 8823 8824 tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); 8825 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 8826 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 8827 8828 if (!transcoder_is_dsi(cpu_transcoder)) { 8829 tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); 8830 pipe_config->hw.adjusted_mode.crtc_hblank_start = 8831 (tmp & 0xffff) + 1; 8832 pipe_config->hw.adjusted_mode.crtc_hblank_end = 8833 ((tmp >> 16) & 0xffff) + 1; 8834 } 8835 tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); 8836 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 8837 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 8838 8839 tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); 8840 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 8841 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 8842 8843 if (!transcoder_is_dsi(cpu_transcoder)) { 8844 tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); 8845 pipe_config->hw.adjusted_mode.crtc_vblank_start = 8846 (tmp & 0xffff) + 1; 8847 pipe_config->hw.adjusted_mode.crtc_vblank_end = 8848 ((tmp >> 16) & 0xffff) + 1; 8849 } 8850 tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); 8851 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 8852 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 8853 8854 if (intel_pipe_is_interlaced(pipe_config)) { 8855 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 8856 pipe_config->hw.adjusted_mode.crtc_vtotal += 1; 8857 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1; 8858 } 8859 } 8860 8861 static void intel_get_pipe_src_size(struct intel_crtc *crtc, 8862 struct intel_crtc_state *pipe_config) 8863 { 8864 struct drm_device *dev = crtc->base.dev; 8865 struct drm_i915_private *dev_priv = to_i915(dev); 8866 u32 tmp; 8867 8868 tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe)); 8869 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 8870 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 8871 8872 pipe_config->hw.mode.vdisplay = pipe_config->pipe_src_h; 8873 pipe_config->hw.mode.hdisplay = pipe_config->pipe_src_w; 8874 } 8875 8876 void intel_mode_from_pipe_config(struct drm_display_mode *mode, 8877 struct intel_crtc_state *pipe_config) 8878 { 8879 mode->hdisplay = pipe_config->hw.adjusted_mode.crtc_hdisplay; 8880 mode->htotal = pipe_config->hw.adjusted_mode.crtc_htotal; 8881 mode->hsync_start = pipe_config->hw.adjusted_mode.crtc_hsync_start; 8882 mode->hsync_end = pipe_config->hw.adjusted_mode.crtc_hsync_end; 8883 8884 mode->vdisplay = pipe_config->hw.adjusted_mode.crtc_vdisplay; 8885 mode->vtotal = pipe_config->hw.adjusted_mode.crtc_vtotal; 8886 mode->vsync_start = pipe_config->hw.adjusted_mode.crtc_vsync_start; 8887 mode->vsync_end = pipe_config->hw.adjusted_mode.crtc_vsync_end; 8888 8889 mode->flags = pipe_config->hw.adjusted_mode.flags; 8890 mode->type = DRM_MODE_TYPE_DRIVER; 8891 8892 mode->clock = pipe_config->hw.adjusted_mode.crtc_clock; 8893 8894 mode->hsync = drm_mode_hsync(mode); 8895 mode->vrefresh = drm_mode_vrefresh(mode); 8896 drm_mode_set_name(mode); 8897 } 8898 8899 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) 8900 { 8901 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 8902 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 8903 u32 pipeconf; 8904 8905 pipeconf = 0; 8906 8907 /* we keep both pipes enabled on 830 */ 8908 if (IS_I830(dev_priv)) 8909 pipeconf |= intel_de_read(dev_priv, PIPECONF(crtc->pipe)) & PIPECONF_ENABLE; 8910 8911 if (crtc_state->double_wide) 8912 pipeconf |= PIPECONF_DOUBLE_WIDE; 8913 8914 /* only g4x and later have fancy bpc/dither controls */ 8915 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 8916 IS_CHERRYVIEW(dev_priv)) { 8917 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 8918 if (crtc_state->dither && crtc_state->pipe_bpp != 30) 8919 pipeconf |= PIPECONF_DITHER_EN | 8920 PIPECONF_DITHER_TYPE_SP; 8921 8922 switch (crtc_state->pipe_bpp) { 8923 case 18: 8924 pipeconf |= PIPECONF_6BPC; 8925 break; 8926 case 24: 8927 pipeconf |= PIPECONF_8BPC; 8928 break; 8929 case 30: 8930 pipeconf |= PIPECONF_10BPC; 8931 break; 8932 default: 8933 /* Case prevented by intel_choose_pipe_bpp_dither. */ 8934 BUG(); 8935 } 8936 } 8937 8938 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 8939 if (INTEL_GEN(dev_priv) < 4 || 8940 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) 8941 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 8942 else 8943 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 8944 } else { 8945 pipeconf |= PIPECONF_PROGRESSIVE; 8946 } 8947 8948 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 8949 crtc_state->limited_color_range) 8950 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 8951 8952 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 8953 8954 pipeconf |= PIPECONF_FRAME_START_DELAY(0); 8955 8956 intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf); 8957 intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); 8958 } 8959 8960 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc, 8961 struct intel_crtc_state *crtc_state) 8962 { 8963 struct drm_device *dev = crtc->base.dev; 8964 struct drm_i915_private *dev_priv = to_i915(dev); 8965 const struct intel_limit *limit; 8966 int refclk = 48000; 8967 8968 memset(&crtc_state->dpll_hw_state, 0, 8969 sizeof(crtc_state->dpll_hw_state)); 8970 8971 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8972 if (intel_panel_use_ssc(dev_priv)) { 8973 refclk = dev_priv->vbt.lvds_ssc_freq; 8974 drm_dbg_kms(&dev_priv->drm, 8975 "using SSC reference clock of %d kHz\n", 8976 refclk); 8977 } 8978 8979 limit = &intel_limits_i8xx_lvds; 8980 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { 8981 limit = &intel_limits_i8xx_dvo; 8982 } else { 8983 limit = &intel_limits_i8xx_dac; 8984 } 8985 8986 if (!crtc_state->clock_set && 8987 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8988 refclk, NULL, &crtc_state->dpll)) { 8989 drm_err(&dev_priv->drm, 8990 "Couldn't find PLL settings for mode!\n"); 8991 return -EINVAL; 8992 } 8993 8994 i8xx_compute_dpll(crtc, crtc_state, NULL); 8995 8996 return 0; 8997 } 8998 8999 static int g4x_crtc_compute_clock(struct intel_crtc *crtc, 9000 struct intel_crtc_state *crtc_state) 9001 { 9002 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9003 const struct intel_limit *limit; 9004 int refclk = 96000; 9005 9006 memset(&crtc_state->dpll_hw_state, 0, 9007 sizeof(crtc_state->dpll_hw_state)); 9008 9009 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9010 if (intel_panel_use_ssc(dev_priv)) { 9011 refclk = dev_priv->vbt.lvds_ssc_freq; 9012 drm_dbg_kms(&dev_priv->drm, 9013 "using SSC reference clock of %d kHz\n", 9014 refclk); 9015 } 9016 9017 if (intel_is_dual_link_lvds(dev_priv)) 9018 limit = &intel_limits_g4x_dual_channel_lvds; 9019 else 9020 limit = &intel_limits_g4x_single_channel_lvds; 9021 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || 9022 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { 9023 limit = &intel_limits_g4x_hdmi; 9024 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { 9025 limit = &intel_limits_g4x_sdvo; 9026 } else { 9027 /* The option is for other outputs */ 9028 limit = &intel_limits_i9xx_sdvo; 9029 } 9030 9031 if (!crtc_state->clock_set && 9032 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9033 refclk, NULL, &crtc_state->dpll)) { 9034 drm_err(&dev_priv->drm, 9035 "Couldn't find PLL settings for mode!\n"); 9036 return -EINVAL; 9037 } 9038 9039 i9xx_compute_dpll(crtc, crtc_state, NULL); 9040 9041 return 0; 9042 } 9043 9044 static int pnv_crtc_compute_clock(struct intel_crtc *crtc, 9045 struct intel_crtc_state *crtc_state) 9046 { 9047 struct drm_device *dev = crtc->base.dev; 9048 struct drm_i915_private *dev_priv = to_i915(dev); 9049 const struct intel_limit *limit; 9050 int refclk = 96000; 9051 9052 memset(&crtc_state->dpll_hw_state, 0, 9053 sizeof(crtc_state->dpll_hw_state)); 9054 9055 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9056 if (intel_panel_use_ssc(dev_priv)) { 9057 refclk = dev_priv->vbt.lvds_ssc_freq; 9058 drm_dbg_kms(&dev_priv->drm, 9059 "using SSC reference clock of %d kHz\n", 9060 refclk); 9061 } 9062 9063 limit = &pnv_limits_lvds; 9064 } else { 9065 limit = &pnv_limits_sdvo; 9066 } 9067 9068 if (!crtc_state->clock_set && 9069 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9070 refclk, NULL, &crtc_state->dpll)) { 9071 drm_err(&dev_priv->drm, 9072 "Couldn't find PLL settings for mode!\n"); 9073 return -EINVAL; 9074 } 9075 9076 i9xx_compute_dpll(crtc, crtc_state, NULL); 9077 9078 return 0; 9079 } 9080 9081 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc, 9082 struct intel_crtc_state *crtc_state) 9083 { 9084 struct drm_device *dev = crtc->base.dev; 9085 struct drm_i915_private *dev_priv = to_i915(dev); 9086 const struct intel_limit *limit; 9087 int refclk = 96000; 9088 9089 memset(&crtc_state->dpll_hw_state, 0, 9090 sizeof(crtc_state->dpll_hw_state)); 9091 9092 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 9093 if (intel_panel_use_ssc(dev_priv)) { 9094 refclk = dev_priv->vbt.lvds_ssc_freq; 9095 drm_dbg_kms(&dev_priv->drm, 9096 "using SSC reference clock of %d kHz\n", 9097 refclk); 9098 } 9099 9100 limit = &intel_limits_i9xx_lvds; 9101 } else { 9102 limit = &intel_limits_i9xx_sdvo; 9103 } 9104 9105 if (!crtc_state->clock_set && 9106 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9107 refclk, NULL, &crtc_state->dpll)) { 9108 drm_err(&dev_priv->drm, 9109 "Couldn't find PLL settings for mode!\n"); 9110 return -EINVAL; 9111 } 9112 9113 i9xx_compute_dpll(crtc, crtc_state, NULL); 9114 9115 return 0; 9116 } 9117 9118 static int chv_crtc_compute_clock(struct intel_crtc *crtc, 9119 struct intel_crtc_state *crtc_state) 9120 { 9121 int refclk = 100000; 9122 const struct intel_limit *limit = &intel_limits_chv; 9123 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 9124 9125 memset(&crtc_state->dpll_hw_state, 0, 9126 sizeof(crtc_state->dpll_hw_state)); 9127 9128 if (!crtc_state->clock_set && 9129 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9130 refclk, NULL, &crtc_state->dpll)) { 9131 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n"); 9132 return -EINVAL; 9133 } 9134 9135 chv_compute_dpll(crtc, crtc_state); 9136 9137 return 0; 9138 } 9139 9140 static int vlv_crtc_compute_clock(struct intel_crtc *crtc, 9141 struct intel_crtc_state *crtc_state) 9142 { 9143 int refclk = 100000; 9144 const struct intel_limit *limit = &intel_limits_vlv; 9145 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 9146 9147 memset(&crtc_state->dpll_hw_state, 0, 9148 sizeof(crtc_state->dpll_hw_state)); 9149 9150 if (!crtc_state->clock_set && 9151 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 9152 refclk, NULL, &crtc_state->dpll)) { 9153 drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n"); 9154 return -EINVAL; 9155 } 9156 9157 vlv_compute_dpll(crtc, crtc_state); 9158 9159 return 0; 9160 } 9161 9162 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) 9163 { 9164 if (IS_I830(dev_priv)) 9165 return false; 9166 9167 return INTEL_GEN(dev_priv) >= 4 || 9168 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 9169 } 9170 9171 static void i9xx_get_pfit_config(struct intel_crtc *crtc, 9172 struct intel_crtc_state *pipe_config) 9173 { 9174 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9175 u32 tmp; 9176 9177 if (!i9xx_has_pfit(dev_priv)) 9178 return; 9179 9180 tmp = intel_de_read(dev_priv, PFIT_CONTROL); 9181 if (!(tmp & PFIT_ENABLE)) 9182 return; 9183 9184 /* Check whether the pfit is attached to our pipe. */ 9185 if (INTEL_GEN(dev_priv) < 4) { 9186 if (crtc->pipe != PIPE_B) 9187 return; 9188 } else { 9189 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 9190 return; 9191 } 9192 9193 pipe_config->gmch_pfit.control = tmp; 9194 pipe_config->gmch_pfit.pgm_ratios = intel_de_read(dev_priv, 9195 PFIT_PGM_RATIOS); 9196 } 9197 9198 static void vlv_crtc_clock_get(struct intel_crtc *crtc, 9199 struct intel_crtc_state *pipe_config) 9200 { 9201 struct drm_device *dev = crtc->base.dev; 9202 struct drm_i915_private *dev_priv = to_i915(dev); 9203 enum pipe pipe = crtc->pipe; 9204 struct dpll clock; 9205 u32 mdiv; 9206 int refclk = 100000; 9207 9208 /* In case of DSI, DPLL will not be used */ 9209 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 9210 return; 9211 9212 vlv_dpio_get(dev_priv); 9213 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 9214 vlv_dpio_put(dev_priv); 9215 9216 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 9217 clock.m2 = mdiv & DPIO_M2DIV_MASK; 9218 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 9219 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 9220 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 9221 9222 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 9223 } 9224 9225 static void 9226 i9xx_get_initial_plane_config(struct intel_crtc *crtc, 9227 struct intel_initial_plane_config *plane_config) 9228 { 9229 struct drm_device *dev = crtc->base.dev; 9230 struct drm_i915_private *dev_priv = to_i915(dev); 9231 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 9232 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 9233 enum pipe pipe; 9234 u32 val, base, offset; 9235 int fourcc, pixel_format; 9236 unsigned int aligned_height; 9237 struct drm_framebuffer *fb; 9238 struct intel_framebuffer *intel_fb; 9239 9240 if (!plane->get_hw_state(plane, &pipe)) 9241 return; 9242 9243 drm_WARN_ON(dev, pipe != crtc->pipe); 9244 9245 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 9246 if (!intel_fb) { 9247 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n"); 9248 return; 9249 } 9250 9251 fb = &intel_fb->base; 9252 9253 fb->dev = dev; 9254 9255 val = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 9256 9257 if (INTEL_GEN(dev_priv) >= 4) { 9258 if (val & DISPPLANE_TILED) { 9259 plane_config->tiling = I915_TILING_X; 9260 fb->modifier = I915_FORMAT_MOD_X_TILED; 9261 } 9262 9263 if (val & DISPPLANE_ROTATE_180) 9264 plane_config->rotation = DRM_MODE_ROTATE_180; 9265 } 9266 9267 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B && 9268 val & DISPPLANE_MIRROR) 9269 plane_config->rotation |= DRM_MODE_REFLECT_X; 9270 9271 pixel_format = val & DISPPLANE_PIXFORMAT_MASK; 9272 fourcc = i9xx_format_to_fourcc(pixel_format); 9273 fb->format = drm_format_info(fourcc); 9274 9275 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 9276 offset = intel_de_read(dev_priv, DSPOFFSET(i9xx_plane)); 9277 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000; 9278 } else if (INTEL_GEN(dev_priv) >= 4) { 9279 if (plane_config->tiling) 9280 offset = intel_de_read(dev_priv, 9281 DSPTILEOFF(i9xx_plane)); 9282 else 9283 offset = intel_de_read(dev_priv, 9284 DSPLINOFF(i9xx_plane)); 9285 base = intel_de_read(dev_priv, DSPSURF(i9xx_plane)) & 0xfffff000; 9286 } else { 9287 base = intel_de_read(dev_priv, DSPADDR(i9xx_plane)); 9288 } 9289 plane_config->base = base; 9290 9291 val = intel_de_read(dev_priv, PIPESRC(pipe)); 9292 fb->width = ((val >> 16) & 0xfff) + 1; 9293 fb->height = ((val >> 0) & 0xfff) + 1; 9294 9295 val = intel_de_read(dev_priv, DSPSTRIDE(i9xx_plane)); 9296 fb->pitches[0] = val & 0xffffffc0; 9297 9298 aligned_height = intel_fb_align_height(fb, 0, fb->height); 9299 9300 plane_config->size = fb->pitches[0] * aligned_height; 9301 9302 drm_dbg_kms(&dev_priv->drm, 9303 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 9304 crtc->base.name, plane->base.name, fb->width, fb->height, 9305 fb->format->cpp[0] * 8, base, fb->pitches[0], 9306 plane_config->size); 9307 9308 plane_config->fb = intel_fb; 9309 } 9310 9311 static void chv_crtc_clock_get(struct intel_crtc *crtc, 9312 struct intel_crtc_state *pipe_config) 9313 { 9314 struct drm_device *dev = crtc->base.dev; 9315 struct drm_i915_private *dev_priv = to_i915(dev); 9316 enum pipe pipe = crtc->pipe; 9317 enum dpio_channel port = vlv_pipe_to_channel(pipe); 9318 struct dpll clock; 9319 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 9320 int refclk = 100000; 9321 9322 /* In case of DSI, DPLL will not be used */ 9323 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 9324 return; 9325 9326 vlv_dpio_get(dev_priv); 9327 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 9328 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 9329 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 9330 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 9331 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 9332 vlv_dpio_put(dev_priv); 9333 9334 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 9335 clock.m2 = (pll_dw0 & 0xff) << 22; 9336 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 9337 clock.m2 |= pll_dw2 & 0x3fffff; 9338 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 9339 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 9340 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 9341 9342 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 9343 } 9344 9345 static enum intel_output_format 9346 bdw_get_pipemisc_output_format(struct intel_crtc *crtc) 9347 { 9348 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9349 u32 tmp; 9350 9351 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 9352 9353 if (tmp & PIPEMISC_YUV420_ENABLE) { 9354 /* We support 4:2:0 in full blend mode only */ 9355 drm_WARN_ON(&dev_priv->drm, 9356 (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); 9357 9358 return INTEL_OUTPUT_FORMAT_YCBCR420; 9359 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { 9360 return INTEL_OUTPUT_FORMAT_YCBCR444; 9361 } else { 9362 return INTEL_OUTPUT_FORMAT_RGB; 9363 } 9364 } 9365 9366 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) 9367 { 9368 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 9369 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 9370 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9371 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; 9372 u32 tmp; 9373 9374 tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); 9375 9376 if (tmp & DISPPLANE_GAMMA_ENABLE) 9377 crtc_state->gamma_enable = true; 9378 9379 if (!HAS_GMCH(dev_priv) && 9380 tmp & DISPPLANE_PIPE_CSC_ENABLE) 9381 crtc_state->csc_enable = true; 9382 } 9383 9384 static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 9385 struct intel_crtc_state *pipe_config) 9386 { 9387 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 9388 enum intel_display_power_domain power_domain; 9389 intel_wakeref_t wakeref; 9390 u32 tmp; 9391 bool ret; 9392 9393 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 9394 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 9395 if (!wakeref) 9396 return false; 9397 9398 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 9399 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 9400 pipe_config->shared_dpll = NULL; 9401 pipe_config->master_transcoder = INVALID_TRANSCODER; 9402 9403 ret = false; 9404 9405 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 9406 if (!(tmp & PIPECONF_ENABLE)) 9407 goto out; 9408 9409 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 9410 IS_CHERRYVIEW(dev_priv)) { 9411 switch (tmp & PIPECONF_BPC_MASK) { 9412 case PIPECONF_6BPC: 9413 pipe_config->pipe_bpp = 18; 9414 break; 9415 case PIPECONF_8BPC: 9416 pipe_config->pipe_bpp = 24; 9417 break; 9418 case PIPECONF_10BPC: 9419 pipe_config->pipe_bpp = 30; 9420 break; 9421 default: 9422 break; 9423 } 9424 } 9425 9426 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 9427 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 9428 pipe_config->limited_color_range = true; 9429 9430 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >> 9431 PIPECONF_GAMMA_MODE_SHIFT; 9432 9433 if (IS_CHERRYVIEW(dev_priv)) 9434 pipe_config->cgm_mode = intel_de_read(dev_priv, 9435 CGM_PIPE_MODE(crtc->pipe)); 9436 9437 i9xx_get_pipe_color_config(pipe_config); 9438 intel_color_get_config(pipe_config); 9439 9440 if (INTEL_GEN(dev_priv) < 4) 9441 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 9442 9443 intel_get_pipe_timings(crtc, pipe_config); 9444 intel_get_pipe_src_size(crtc, pipe_config); 9445 9446 i9xx_get_pfit_config(crtc, pipe_config); 9447 9448 if (INTEL_GEN(dev_priv) >= 4) { 9449 /* No way to read it out on pipes B and C */ 9450 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) 9451 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 9452 else 9453 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); 9454 pipe_config->pixel_multiplier = 9455 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 9456 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 9457 pipe_config->dpll_hw_state.dpll_md = tmp; 9458 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 9459 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { 9460 tmp = intel_de_read(dev_priv, DPLL(crtc->pipe)); 9461 pipe_config->pixel_multiplier = 9462 ((tmp & SDVO_MULTIPLIER_MASK) 9463 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 9464 } else { 9465 /* Note that on i915G/GM the pixel multiplier is in the sdvo 9466 * port and will be fixed up in the encoder->get_config 9467 * function. */ 9468 pipe_config->pixel_multiplier = 1; 9469 } 9470 pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv, 9471 DPLL(crtc->pipe)); 9472 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { 9473 pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv, 9474 FP0(crtc->pipe)); 9475 pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv, 9476 FP1(crtc->pipe)); 9477 } else { 9478 /* Mask out read-only status bits. */ 9479 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 9480 DPLL_PORTC_READY_MASK | 9481 DPLL_PORTB_READY_MASK); 9482 } 9483 9484 if (IS_CHERRYVIEW(dev_priv)) 9485 chv_crtc_clock_get(crtc, pipe_config); 9486 else if (IS_VALLEYVIEW(dev_priv)) 9487 vlv_crtc_clock_get(crtc, pipe_config); 9488 else 9489 i9xx_crtc_clock_get(crtc, pipe_config); 9490 9491 /* 9492 * Normally the dotclock is filled in by the encoder .get_config() 9493 * but in case the pipe is enabled w/o any ports we need a sane 9494 * default. 9495 */ 9496 pipe_config->hw.adjusted_mode.crtc_clock = 9497 pipe_config->port_clock / pipe_config->pixel_multiplier; 9498 9499 ret = true; 9500 9501 out: 9502 intel_display_power_put(dev_priv, power_domain, wakeref); 9503 9504 return ret; 9505 } 9506 9507 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv) 9508 { 9509 struct intel_encoder *encoder; 9510 int i; 9511 u32 val, final; 9512 bool has_lvds = false; 9513 bool has_cpu_edp = false; 9514 bool has_panel = false; 9515 bool has_ck505 = false; 9516 bool can_ssc = false; 9517 bool using_ssc_source = false; 9518 9519 /* We need to take the global config into account */ 9520 for_each_intel_encoder(&dev_priv->drm, encoder) { 9521 switch (encoder->type) { 9522 case INTEL_OUTPUT_LVDS: 9523 has_panel = true; 9524 has_lvds = true; 9525 break; 9526 case INTEL_OUTPUT_EDP: 9527 has_panel = true; 9528 if (encoder->port == PORT_A) 9529 has_cpu_edp = true; 9530 break; 9531 default: 9532 break; 9533 } 9534 } 9535 9536 if (HAS_PCH_IBX(dev_priv)) { 9537 has_ck505 = dev_priv->vbt.display_clock_mode; 9538 can_ssc = has_ck505; 9539 } else { 9540 has_ck505 = false; 9541 can_ssc = true; 9542 } 9543 9544 /* Check if any DPLLs are using the SSC source */ 9545 for (i = 0; i < dev_priv->num_shared_dpll; i++) { 9546 u32 temp = intel_de_read(dev_priv, PCH_DPLL(i)); 9547 9548 if (!(temp & DPLL_VCO_ENABLE)) 9549 continue; 9550 9551 if ((temp & PLL_REF_INPUT_MASK) == 9552 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 9553 using_ssc_source = true; 9554 break; 9555 } 9556 } 9557 9558 drm_dbg_kms(&dev_priv->drm, 9559 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 9560 has_panel, has_lvds, has_ck505, using_ssc_source); 9561 9562 /* Ironlake: try to setup display ref clock before DPLL 9563 * enabling. This is only under driver's control after 9564 * PCH B stepping, previous chipset stepping should be 9565 * ignoring this setting. 9566 */ 9567 val = intel_de_read(dev_priv, PCH_DREF_CONTROL); 9568 9569 /* As we must carefully and slowly disable/enable each source in turn, 9570 * compute the final state we want first and check if we need to 9571 * make any changes at all. 9572 */ 9573 final = val; 9574 final &= ~DREF_NONSPREAD_SOURCE_MASK; 9575 if (has_ck505) 9576 final |= DREF_NONSPREAD_CK505_ENABLE; 9577 else 9578 final |= DREF_NONSPREAD_SOURCE_ENABLE; 9579 9580 final &= ~DREF_SSC_SOURCE_MASK; 9581 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9582 final &= ~DREF_SSC1_ENABLE; 9583 9584 if (has_panel) { 9585 final |= DREF_SSC_SOURCE_ENABLE; 9586 9587 if (intel_panel_use_ssc(dev_priv) && can_ssc) 9588 final |= DREF_SSC1_ENABLE; 9589 9590 if (has_cpu_edp) { 9591 if (intel_panel_use_ssc(dev_priv) && can_ssc) 9592 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9593 else 9594 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9595 } else 9596 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9597 } else if (using_ssc_source) { 9598 final |= DREF_SSC_SOURCE_ENABLE; 9599 final |= DREF_SSC1_ENABLE; 9600 } 9601 9602 if (final == val) 9603 return; 9604 9605 /* Always enable nonspread source */ 9606 val &= ~DREF_NONSPREAD_SOURCE_MASK; 9607 9608 if (has_ck505) 9609 val |= DREF_NONSPREAD_CK505_ENABLE; 9610 else 9611 val |= DREF_NONSPREAD_SOURCE_ENABLE; 9612 9613 if (has_panel) { 9614 val &= ~DREF_SSC_SOURCE_MASK; 9615 val |= DREF_SSC_SOURCE_ENABLE; 9616 9617 /* SSC must be turned on before enabling the CPU output */ 9618 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9619 drm_dbg_kms(&dev_priv->drm, "Using SSC on panel\n"); 9620 val |= DREF_SSC1_ENABLE; 9621 } else 9622 val &= ~DREF_SSC1_ENABLE; 9623 9624 /* Get SSC going before enabling the outputs */ 9625 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9626 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9627 udelay(200); 9628 9629 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9630 9631 /* Enable CPU source on CPU attached eDP */ 9632 if (has_cpu_edp) { 9633 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 9634 drm_dbg_kms(&dev_priv->drm, 9635 "Using SSC on eDP\n"); 9636 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 9637 } else 9638 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 9639 } else 9640 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9641 9642 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9643 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9644 udelay(200); 9645 } else { 9646 drm_dbg_kms(&dev_priv->drm, "Disabling CPU source output\n"); 9647 9648 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 9649 9650 /* Turn off CPU output */ 9651 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 9652 9653 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9654 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9655 udelay(200); 9656 9657 if (!using_ssc_source) { 9658 drm_dbg_kms(&dev_priv->drm, "Disabling SSC source\n"); 9659 9660 /* Turn off the SSC source */ 9661 val &= ~DREF_SSC_SOURCE_MASK; 9662 val |= DREF_SSC_SOURCE_DISABLE; 9663 9664 /* Turn off SSC1 */ 9665 val &= ~DREF_SSC1_ENABLE; 9666 9667 intel_de_write(dev_priv, PCH_DREF_CONTROL, val); 9668 intel_de_posting_read(dev_priv, PCH_DREF_CONTROL); 9669 udelay(200); 9670 } 9671 } 9672 9673 BUG_ON(val != final); 9674 } 9675 9676 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 9677 { 9678 u32 tmp; 9679 9680 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 9681 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 9682 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 9683 9684 if (wait_for_us(intel_de_read(dev_priv, SOUTH_CHICKEN2) & 9685 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 9686 drm_err(&dev_priv->drm, "FDI mPHY reset assert timeout\n"); 9687 9688 tmp = intel_de_read(dev_priv, SOUTH_CHICKEN2); 9689 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 9690 intel_de_write(dev_priv, SOUTH_CHICKEN2, tmp); 9691 9692 if (wait_for_us((intel_de_read(dev_priv, SOUTH_CHICKEN2) & 9693 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 9694 drm_err(&dev_priv->drm, "FDI mPHY reset de-assert timeout\n"); 9695 } 9696 9697 /* WaMPhyProgramming:hsw */ 9698 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 9699 { 9700 u32 tmp; 9701 9702 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 9703 tmp &= ~(0xFF << 24); 9704 tmp |= (0x12 << 24); 9705 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 9706 9707 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 9708 tmp |= (1 << 11); 9709 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 9710 9711 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 9712 tmp |= (1 << 11); 9713 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 9714 9715 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 9716 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9717 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 9718 9719 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 9720 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 9721 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 9722 9723 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 9724 tmp &= ~(7 << 13); 9725 tmp |= (5 << 13); 9726 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 9727 9728 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 9729 tmp &= ~(7 << 13); 9730 tmp |= (5 << 13); 9731 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 9732 9733 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 9734 tmp &= ~0xFF; 9735 tmp |= 0x1C; 9736 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 9737 9738 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 9739 tmp &= ~0xFF; 9740 tmp |= 0x1C; 9741 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 9742 9743 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 9744 tmp &= ~(0xFF << 16); 9745 tmp |= (0x1C << 16); 9746 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 9747 9748 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 9749 tmp &= ~(0xFF << 16); 9750 tmp |= (0x1C << 16); 9751 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 9752 9753 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 9754 tmp |= (1 << 27); 9755 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 9756 9757 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 9758 tmp |= (1 << 27); 9759 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 9760 9761 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 9762 tmp &= ~(0xF << 28); 9763 tmp |= (4 << 28); 9764 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 9765 9766 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 9767 tmp &= ~(0xF << 28); 9768 tmp |= (4 << 28); 9769 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 9770 } 9771 9772 /* Implements 3 different sequences from BSpec chapter "Display iCLK 9773 * Programming" based on the parameters passed: 9774 * - Sequence to enable CLKOUT_DP 9775 * - Sequence to enable CLKOUT_DP without spread 9776 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 9777 */ 9778 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv, 9779 bool with_spread, bool with_fdi) 9780 { 9781 u32 reg, tmp; 9782 9783 if (drm_WARN(&dev_priv->drm, with_fdi && !with_spread, 9784 "FDI requires downspread\n")) 9785 with_spread = true; 9786 if (drm_WARN(&dev_priv->drm, HAS_PCH_LPT_LP(dev_priv) && 9787 with_fdi, "LP PCH doesn't have FDI\n")) 9788 with_fdi = false; 9789 9790 mutex_lock(&dev_priv->sb_lock); 9791 9792 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9793 tmp &= ~SBI_SSCCTL_DISABLE; 9794 tmp |= SBI_SSCCTL_PATHALT; 9795 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9796 9797 udelay(24); 9798 9799 if (with_spread) { 9800 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9801 tmp &= ~SBI_SSCCTL_PATHALT; 9802 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9803 9804 if (with_fdi) { 9805 lpt_reset_fdi_mphy(dev_priv); 9806 lpt_program_fdi_mphy(dev_priv); 9807 } 9808 } 9809 9810 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9811 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9812 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9813 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9814 9815 mutex_unlock(&dev_priv->sb_lock); 9816 } 9817 9818 /* Sequence to disable CLKOUT_DP */ 9819 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv) 9820 { 9821 u32 reg, tmp; 9822 9823 mutex_lock(&dev_priv->sb_lock); 9824 9825 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0; 9826 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 9827 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 9828 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 9829 9830 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 9831 if (!(tmp & SBI_SSCCTL_DISABLE)) { 9832 if (!(tmp & SBI_SSCCTL_PATHALT)) { 9833 tmp |= SBI_SSCCTL_PATHALT; 9834 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9835 udelay(32); 9836 } 9837 tmp |= SBI_SSCCTL_DISABLE; 9838 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 9839 } 9840 9841 mutex_unlock(&dev_priv->sb_lock); 9842 } 9843 9844 #define BEND_IDX(steps) ((50 + (steps)) / 5) 9845 9846 static const u16 sscdivintphase[] = { 9847 [BEND_IDX( 50)] = 0x3B23, 9848 [BEND_IDX( 45)] = 0x3B23, 9849 [BEND_IDX( 40)] = 0x3C23, 9850 [BEND_IDX( 35)] = 0x3C23, 9851 [BEND_IDX( 30)] = 0x3D23, 9852 [BEND_IDX( 25)] = 0x3D23, 9853 [BEND_IDX( 20)] = 0x3E23, 9854 [BEND_IDX( 15)] = 0x3E23, 9855 [BEND_IDX( 10)] = 0x3F23, 9856 [BEND_IDX( 5)] = 0x3F23, 9857 [BEND_IDX( 0)] = 0x0025, 9858 [BEND_IDX( -5)] = 0x0025, 9859 [BEND_IDX(-10)] = 0x0125, 9860 [BEND_IDX(-15)] = 0x0125, 9861 [BEND_IDX(-20)] = 0x0225, 9862 [BEND_IDX(-25)] = 0x0225, 9863 [BEND_IDX(-30)] = 0x0325, 9864 [BEND_IDX(-35)] = 0x0325, 9865 [BEND_IDX(-40)] = 0x0425, 9866 [BEND_IDX(-45)] = 0x0425, 9867 [BEND_IDX(-50)] = 0x0525, 9868 }; 9869 9870 /* 9871 * Bend CLKOUT_DP 9872 * steps -50 to 50 inclusive, in steps of 5 9873 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 9874 * change in clock period = -(steps / 10) * 5.787 ps 9875 */ 9876 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 9877 { 9878 u32 tmp; 9879 int idx = BEND_IDX(steps); 9880 9881 if (drm_WARN_ON(&dev_priv->drm, steps % 5 != 0)) 9882 return; 9883 9884 if (drm_WARN_ON(&dev_priv->drm, idx >= ARRAY_SIZE(sscdivintphase))) 9885 return; 9886 9887 mutex_lock(&dev_priv->sb_lock); 9888 9889 if (steps % 10 != 0) 9890 tmp = 0xAAAAAAAB; 9891 else 9892 tmp = 0x00000000; 9893 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 9894 9895 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 9896 tmp &= 0xffff0000; 9897 tmp |= sscdivintphase[idx]; 9898 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 9899 9900 mutex_unlock(&dev_priv->sb_lock); 9901 } 9902 9903 #undef BEND_IDX 9904 9905 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv) 9906 { 9907 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 9908 u32 ctl = intel_de_read(dev_priv, SPLL_CTL); 9909 9910 if ((ctl & SPLL_PLL_ENABLE) == 0) 9911 return false; 9912 9913 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 9914 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 9915 return true; 9916 9917 if (IS_BROADWELL(dev_priv) && 9918 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 9919 return true; 9920 9921 return false; 9922 } 9923 9924 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv, 9925 enum intel_dpll_id id) 9926 { 9927 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP); 9928 u32 ctl = intel_de_read(dev_priv, WRPLL_CTL(id)); 9929 9930 if ((ctl & WRPLL_PLL_ENABLE) == 0) 9931 return false; 9932 9933 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 9934 return true; 9935 9936 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) && 9937 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 9938 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 9939 return true; 9940 9941 return false; 9942 } 9943 9944 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv) 9945 { 9946 struct intel_encoder *encoder; 9947 bool has_fdi = false; 9948 9949 for_each_intel_encoder(&dev_priv->drm, encoder) { 9950 switch (encoder->type) { 9951 case INTEL_OUTPUT_ANALOG: 9952 has_fdi = true; 9953 break; 9954 default: 9955 break; 9956 } 9957 } 9958 9959 /* 9960 * The BIOS may have decided to use the PCH SSC 9961 * reference so we must not disable it until the 9962 * relevant PLLs have stopped relying on it. We'll 9963 * just leave the PCH SSC reference enabled in case 9964 * any active PLL is using it. It will get disabled 9965 * after runtime suspend if we don't have FDI. 9966 * 9967 * TODO: Move the whole reference clock handling 9968 * to the modeset sequence proper so that we can 9969 * actually enable/disable/reconfigure these things 9970 * safely. To do that we need to introduce a real 9971 * clock hierarchy. That would also allow us to do 9972 * clock bending finally. 9973 */ 9974 dev_priv->pch_ssc_use = 0; 9975 9976 if (spll_uses_pch_ssc(dev_priv)) { 9977 drm_dbg_kms(&dev_priv->drm, "SPLL using PCH SSC\n"); 9978 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL); 9979 } 9980 9981 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) { 9982 drm_dbg_kms(&dev_priv->drm, "WRPLL1 using PCH SSC\n"); 9983 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 9984 } 9985 9986 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) { 9987 drm_dbg_kms(&dev_priv->drm, "WRPLL2 using PCH SSC\n"); 9988 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 9989 } 9990 9991 if (dev_priv->pch_ssc_use) 9992 return; 9993 9994 if (has_fdi) { 9995 lpt_bend_clkout_dp(dev_priv, 0); 9996 lpt_enable_clkout_dp(dev_priv, true, true); 9997 } else { 9998 lpt_disable_clkout_dp(dev_priv); 9999 } 10000 } 10001 10002 /* 10003 * Initialize reference clocks when the driver loads 10004 */ 10005 void intel_init_pch_refclk(struct drm_i915_private *dev_priv) 10006 { 10007 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) 10008 ilk_init_pch_refclk(dev_priv); 10009 else if (HAS_PCH_LPT(dev_priv)) 10010 lpt_init_pch_refclk(dev_priv); 10011 } 10012 10013 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) 10014 { 10015 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10016 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10017 enum pipe pipe = crtc->pipe; 10018 u32 val; 10019 10020 val = 0; 10021 10022 switch (crtc_state->pipe_bpp) { 10023 case 18: 10024 val |= PIPECONF_6BPC; 10025 break; 10026 case 24: 10027 val |= PIPECONF_8BPC; 10028 break; 10029 case 30: 10030 val |= PIPECONF_10BPC; 10031 break; 10032 case 36: 10033 val |= PIPECONF_12BPC; 10034 break; 10035 default: 10036 /* Case prevented by intel_choose_pipe_bpp_dither. */ 10037 BUG(); 10038 } 10039 10040 if (crtc_state->dither) 10041 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 10042 10043 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 10044 val |= PIPECONF_INTERLACED_ILK; 10045 else 10046 val |= PIPECONF_PROGRESSIVE; 10047 10048 /* 10049 * This would end up with an odd purple hue over 10050 * the entire display. Make sure we don't do it. 10051 */ 10052 drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && 10053 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 10054 10055 if (crtc_state->limited_color_range) 10056 val |= PIPECONF_COLOR_RANGE_SELECT; 10057 10058 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 10059 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; 10060 10061 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); 10062 10063 val |= PIPECONF_FRAME_START_DELAY(0); 10064 10065 intel_de_write(dev_priv, PIPECONF(pipe), val); 10066 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 10067 } 10068 10069 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state) 10070 { 10071 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10072 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10073 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 10074 u32 val = 0; 10075 10076 if (IS_HASWELL(dev_priv) && crtc_state->dither) 10077 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 10078 10079 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 10080 val |= PIPECONF_INTERLACED_ILK; 10081 else 10082 val |= PIPECONF_PROGRESSIVE; 10083 10084 if (IS_HASWELL(dev_priv) && 10085 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 10086 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; 10087 10088 intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val); 10089 intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder)); 10090 } 10091 10092 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) 10093 { 10094 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 10095 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10096 u32 val = 0; 10097 10098 switch (crtc_state->pipe_bpp) { 10099 case 18: 10100 val |= PIPEMISC_DITHER_6_BPC; 10101 break; 10102 case 24: 10103 val |= PIPEMISC_DITHER_8_BPC; 10104 break; 10105 case 30: 10106 val |= PIPEMISC_DITHER_10_BPC; 10107 break; 10108 case 36: 10109 val |= PIPEMISC_DITHER_12_BPC; 10110 break; 10111 default: 10112 MISSING_CASE(crtc_state->pipe_bpp); 10113 break; 10114 } 10115 10116 if (crtc_state->dither) 10117 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 10118 10119 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 10120 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 10121 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; 10122 10123 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 10124 val |= PIPEMISC_YUV420_ENABLE | 10125 PIPEMISC_YUV420_MODE_FULL_BLEND; 10126 10127 if (INTEL_GEN(dev_priv) >= 11 && 10128 (crtc_state->active_planes & ~(icl_hdr_plane_mask() | 10129 BIT(PLANE_CURSOR))) == 0) 10130 val |= PIPEMISC_HDR_MODE_PRECISION; 10131 10132 intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val); 10133 } 10134 10135 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) 10136 { 10137 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10138 u32 tmp; 10139 10140 tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); 10141 10142 switch (tmp & PIPEMISC_DITHER_BPC_MASK) { 10143 case PIPEMISC_DITHER_6_BPC: 10144 return 18; 10145 case PIPEMISC_DITHER_8_BPC: 10146 return 24; 10147 case PIPEMISC_DITHER_10_BPC: 10148 return 30; 10149 case PIPEMISC_DITHER_12_BPC: 10150 return 36; 10151 default: 10152 MISSING_CASE(tmp); 10153 return 0; 10154 } 10155 } 10156 10157 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) 10158 { 10159 /* 10160 * Account for spread spectrum to avoid 10161 * oversubscribing the link. Max center spread 10162 * is 2.5%; use 5% for safety's sake. 10163 */ 10164 u32 bps = target_clock * bpp * 21 / 20; 10165 return DIV_ROUND_UP(bps, link_bw * 8); 10166 } 10167 10168 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor) 10169 { 10170 return i9xx_dpll_compute_m(dpll) < factor * dpll->n; 10171 } 10172 10173 static void ilk_compute_dpll(struct intel_crtc *crtc, 10174 struct intel_crtc_state *crtc_state, 10175 struct dpll *reduced_clock) 10176 { 10177 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10178 u32 dpll, fp, fp2; 10179 int factor; 10180 10181 /* Enable autotuning of the PLL clock (if permissible) */ 10182 factor = 21; 10183 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 10184 if ((intel_panel_use_ssc(dev_priv) && 10185 dev_priv->vbt.lvds_ssc_freq == 100000) || 10186 (HAS_PCH_IBX(dev_priv) && 10187 intel_is_dual_link_lvds(dev_priv))) 10188 factor = 25; 10189 } else if (crtc_state->sdvo_tv_clock) { 10190 factor = 20; 10191 } 10192 10193 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 10194 10195 if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor)) 10196 fp |= FP_CB_TUNE; 10197 10198 if (reduced_clock) { 10199 fp2 = i9xx_dpll_compute_fp(reduced_clock); 10200 10201 if (reduced_clock->m < factor * reduced_clock->n) 10202 fp2 |= FP_CB_TUNE; 10203 } else { 10204 fp2 = fp; 10205 } 10206 10207 dpll = 0; 10208 10209 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 10210 dpll |= DPLLB_MODE_LVDS; 10211 else 10212 dpll |= DPLLB_MODE_DAC_SERIAL; 10213 10214 dpll |= (crtc_state->pixel_multiplier - 1) 10215 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; 10216 10217 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 10218 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 10219 dpll |= DPLL_SDVO_HIGH_SPEED; 10220 10221 if (intel_crtc_has_dp_encoder(crtc_state)) 10222 dpll |= DPLL_SDVO_HIGH_SPEED; 10223 10224 /* 10225 * The high speed IO clock is only really required for 10226 * SDVO/HDMI/DP, but we also enable it for CRT to make it 10227 * possible to share the DPLL between CRT and HDMI. Enabling 10228 * the clock needlessly does no real harm, except use up a 10229 * bit of power potentially. 10230 * 10231 * We'll limit this to IVB with 3 pipes, since it has only two 10232 * DPLLs and so DPLL sharing is the only way to get three pipes 10233 * driving PCH ports at the same time. On SNB we could do this, 10234 * and potentially avoid enabling the second DPLL, but it's not 10235 * clear if it''s a win or loss power wise. No point in doing 10236 * this on ILK at all since it has a fixed DPLL<->pipe mapping. 10237 */ 10238 if (INTEL_NUM_PIPES(dev_priv) == 3 && 10239 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) 10240 dpll |= DPLL_SDVO_HIGH_SPEED; 10241 10242 /* compute bitmask from p1 value */ 10243 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 10244 /* also FPA1 */ 10245 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 10246 10247 switch (crtc_state->dpll.p2) { 10248 case 5: 10249 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 10250 break; 10251 case 7: 10252 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 10253 break; 10254 case 10: 10255 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 10256 break; 10257 case 14: 10258 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 10259 break; 10260 } 10261 10262 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 10263 intel_panel_use_ssc(dev_priv)) 10264 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 10265 else 10266 dpll |= PLL_REF_INPUT_DREFCLK; 10267 10268 dpll |= DPLL_VCO_ENABLE; 10269 10270 crtc_state->dpll_hw_state.dpll = dpll; 10271 crtc_state->dpll_hw_state.fp0 = fp; 10272 crtc_state->dpll_hw_state.fp1 = fp2; 10273 } 10274 10275 static int ilk_crtc_compute_clock(struct intel_crtc *crtc, 10276 struct intel_crtc_state *crtc_state) 10277 { 10278 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10279 struct intel_atomic_state *state = 10280 to_intel_atomic_state(crtc_state->uapi.state); 10281 const struct intel_limit *limit; 10282 int refclk = 120000; 10283 10284 memset(&crtc_state->dpll_hw_state, 0, 10285 sizeof(crtc_state->dpll_hw_state)); 10286 10287 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 10288 if (!crtc_state->has_pch_encoder) 10289 return 0; 10290 10291 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 10292 if (intel_panel_use_ssc(dev_priv)) { 10293 drm_dbg_kms(&dev_priv->drm, 10294 "using SSC reference clock of %d kHz\n", 10295 dev_priv->vbt.lvds_ssc_freq); 10296 refclk = dev_priv->vbt.lvds_ssc_freq; 10297 } 10298 10299 if (intel_is_dual_link_lvds(dev_priv)) { 10300 if (refclk == 100000) 10301 limit = &ilk_limits_dual_lvds_100m; 10302 else 10303 limit = &ilk_limits_dual_lvds; 10304 } else { 10305 if (refclk == 100000) 10306 limit = &ilk_limits_single_lvds_100m; 10307 else 10308 limit = &ilk_limits_single_lvds; 10309 } 10310 } else { 10311 limit = &ilk_limits_dac; 10312 } 10313 10314 if (!crtc_state->clock_set && 10315 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 10316 refclk, NULL, &crtc_state->dpll)) { 10317 drm_err(&dev_priv->drm, 10318 "Couldn't find PLL settings for mode!\n"); 10319 return -EINVAL; 10320 } 10321 10322 ilk_compute_dpll(crtc, crtc_state, NULL); 10323 10324 if (!intel_reserve_shared_dplls(state, crtc, NULL)) { 10325 drm_dbg_kms(&dev_priv->drm, 10326 "failed to find PLL for pipe %c\n", 10327 pipe_name(crtc->pipe)); 10328 return -EINVAL; 10329 } 10330 10331 return 0; 10332 } 10333 10334 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 10335 struct intel_link_m_n *m_n) 10336 { 10337 struct drm_device *dev = crtc->base.dev; 10338 struct drm_i915_private *dev_priv = to_i915(dev); 10339 enum pipe pipe = crtc->pipe; 10340 10341 m_n->link_m = intel_de_read(dev_priv, PCH_TRANS_LINK_M1(pipe)); 10342 m_n->link_n = intel_de_read(dev_priv, PCH_TRANS_LINK_N1(pipe)); 10343 m_n->gmch_m = intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 10344 & ~TU_SIZE_MASK; 10345 m_n->gmch_n = intel_de_read(dev_priv, PCH_TRANS_DATA_N1(pipe)); 10346 m_n->tu = ((intel_de_read(dev_priv, PCH_TRANS_DATA_M1(pipe)) 10347 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10348 } 10349 10350 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 10351 enum transcoder transcoder, 10352 struct intel_link_m_n *m_n, 10353 struct intel_link_m_n *m2_n2) 10354 { 10355 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10356 enum pipe pipe = crtc->pipe; 10357 10358 if (INTEL_GEN(dev_priv) >= 5) { 10359 m_n->link_m = intel_de_read(dev_priv, 10360 PIPE_LINK_M1(transcoder)); 10361 m_n->link_n = intel_de_read(dev_priv, 10362 PIPE_LINK_N1(transcoder)); 10363 m_n->gmch_m = intel_de_read(dev_priv, 10364 PIPE_DATA_M1(transcoder)) 10365 & ~TU_SIZE_MASK; 10366 m_n->gmch_n = intel_de_read(dev_priv, 10367 PIPE_DATA_N1(transcoder)); 10368 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M1(transcoder)) 10369 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10370 10371 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) { 10372 m2_n2->link_m = intel_de_read(dev_priv, 10373 PIPE_LINK_M2(transcoder)); 10374 m2_n2->link_n = intel_de_read(dev_priv, 10375 PIPE_LINK_N2(transcoder)); 10376 m2_n2->gmch_m = intel_de_read(dev_priv, 10377 PIPE_DATA_M2(transcoder)) 10378 & ~TU_SIZE_MASK; 10379 m2_n2->gmch_n = intel_de_read(dev_priv, 10380 PIPE_DATA_N2(transcoder)); 10381 m2_n2->tu = ((intel_de_read(dev_priv, PIPE_DATA_M2(transcoder)) 10382 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10383 } 10384 } else { 10385 m_n->link_m = intel_de_read(dev_priv, PIPE_LINK_M_G4X(pipe)); 10386 m_n->link_n = intel_de_read(dev_priv, PIPE_LINK_N_G4X(pipe)); 10387 m_n->gmch_m = intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 10388 & ~TU_SIZE_MASK; 10389 m_n->gmch_n = intel_de_read(dev_priv, PIPE_DATA_N_G4X(pipe)); 10390 m_n->tu = ((intel_de_read(dev_priv, PIPE_DATA_M_G4X(pipe)) 10391 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 10392 } 10393 } 10394 10395 void intel_dp_get_m_n(struct intel_crtc *crtc, 10396 struct intel_crtc_state *pipe_config) 10397 { 10398 if (pipe_config->has_pch_encoder) 10399 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 10400 else 10401 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 10402 &pipe_config->dp_m_n, 10403 &pipe_config->dp_m2_n2); 10404 } 10405 10406 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc, 10407 struct intel_crtc_state *pipe_config) 10408 { 10409 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 10410 &pipe_config->fdi_m_n, NULL); 10411 } 10412 10413 static void skl_get_pfit_config(struct intel_crtc *crtc, 10414 struct intel_crtc_state *pipe_config) 10415 { 10416 struct drm_device *dev = crtc->base.dev; 10417 struct drm_i915_private *dev_priv = to_i915(dev); 10418 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state; 10419 u32 ps_ctrl = 0; 10420 int id = -1; 10421 int i; 10422 10423 /* find scaler attached to this pipe */ 10424 for (i = 0; i < crtc->num_scalers; i++) { 10425 ps_ctrl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i)); 10426 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) { 10427 id = i; 10428 pipe_config->pch_pfit.enabled = true; 10429 pipe_config->pch_pfit.pos = intel_de_read(dev_priv, 10430 SKL_PS_WIN_POS(crtc->pipe, i)); 10431 pipe_config->pch_pfit.size = intel_de_read(dev_priv, 10432 SKL_PS_WIN_SZ(crtc->pipe, i)); 10433 scaler_state->scalers[i].in_use = true; 10434 break; 10435 } 10436 } 10437 10438 scaler_state->scaler_id = id; 10439 if (id >= 0) { 10440 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 10441 } else { 10442 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 10443 } 10444 } 10445 10446 static void 10447 skl_get_initial_plane_config(struct intel_crtc *crtc, 10448 struct intel_initial_plane_config *plane_config) 10449 { 10450 struct drm_device *dev = crtc->base.dev; 10451 struct drm_i915_private *dev_priv = to_i915(dev); 10452 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 10453 enum plane_id plane_id = plane->id; 10454 enum pipe pipe; 10455 u32 val, base, offset, stride_mult, tiling, alpha; 10456 int fourcc, pixel_format; 10457 unsigned int aligned_height; 10458 struct drm_framebuffer *fb; 10459 struct intel_framebuffer *intel_fb; 10460 10461 if (!plane->get_hw_state(plane, &pipe)) 10462 return; 10463 10464 drm_WARN_ON(dev, pipe != crtc->pipe); 10465 10466 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 10467 if (!intel_fb) { 10468 drm_dbg_kms(&dev_priv->drm, "failed to alloc fb\n"); 10469 return; 10470 } 10471 10472 fb = &intel_fb->base; 10473 10474 fb->dev = dev; 10475 10476 val = intel_de_read(dev_priv, PLANE_CTL(pipe, plane_id)); 10477 10478 if (INTEL_GEN(dev_priv) >= 11) 10479 pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK; 10480 else 10481 pixel_format = val & PLANE_CTL_FORMAT_MASK; 10482 10483 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { 10484 alpha = intel_de_read(dev_priv, 10485 PLANE_COLOR_CTL(pipe, plane_id)); 10486 alpha &= PLANE_COLOR_ALPHA_MASK; 10487 } else { 10488 alpha = val & PLANE_CTL_ALPHA_MASK; 10489 } 10490 10491 fourcc = skl_format_to_fourcc(pixel_format, 10492 val & PLANE_CTL_ORDER_RGBX, alpha); 10493 fb->format = drm_format_info(fourcc); 10494 10495 tiling = val & PLANE_CTL_TILED_MASK; 10496 switch (tiling) { 10497 case PLANE_CTL_TILED_LINEAR: 10498 fb->modifier = DRM_FORMAT_MOD_LINEAR; 10499 break; 10500 case PLANE_CTL_TILED_X: 10501 plane_config->tiling = I915_TILING_X; 10502 fb->modifier = I915_FORMAT_MOD_X_TILED; 10503 break; 10504 case PLANE_CTL_TILED_Y: 10505 plane_config->tiling = I915_TILING_Y; 10506 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 10507 fb->modifier = INTEL_GEN(dev_priv) >= 12 ? 10508 I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS : 10509 I915_FORMAT_MOD_Y_TILED_CCS; 10510 else if (val & PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE) 10511 fb->modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS; 10512 else 10513 fb->modifier = I915_FORMAT_MOD_Y_TILED; 10514 break; 10515 case PLANE_CTL_TILED_YF: 10516 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE) 10517 fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS; 10518 else 10519 fb->modifier = I915_FORMAT_MOD_Yf_TILED; 10520 break; 10521 default: 10522 MISSING_CASE(tiling); 10523 goto error; 10524 } 10525 10526 /* 10527 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr 10528 * while i915 HW rotation is clockwise, thats why this swapping. 10529 */ 10530 switch (val & PLANE_CTL_ROTATE_MASK) { 10531 case PLANE_CTL_ROTATE_0: 10532 plane_config->rotation = DRM_MODE_ROTATE_0; 10533 break; 10534 case PLANE_CTL_ROTATE_90: 10535 plane_config->rotation = DRM_MODE_ROTATE_270; 10536 break; 10537 case PLANE_CTL_ROTATE_180: 10538 plane_config->rotation = DRM_MODE_ROTATE_180; 10539 break; 10540 case PLANE_CTL_ROTATE_270: 10541 plane_config->rotation = DRM_MODE_ROTATE_90; 10542 break; 10543 } 10544 10545 if (INTEL_GEN(dev_priv) >= 10 && 10546 val & PLANE_CTL_FLIP_HORIZONTAL) 10547 plane_config->rotation |= DRM_MODE_REFLECT_X; 10548 10549 base = intel_de_read(dev_priv, PLANE_SURF(pipe, plane_id)) & 0xfffff000; 10550 plane_config->base = base; 10551 10552 offset = intel_de_read(dev_priv, PLANE_OFFSET(pipe, plane_id)); 10553 10554 val = intel_de_read(dev_priv, PLANE_SIZE(pipe, plane_id)); 10555 fb->height = ((val >> 16) & 0xffff) + 1; 10556 fb->width = ((val >> 0) & 0xffff) + 1; 10557 10558 val = intel_de_read(dev_priv, PLANE_STRIDE(pipe, plane_id)); 10559 stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0); 10560 fb->pitches[0] = (val & 0x3ff) * stride_mult; 10561 10562 aligned_height = intel_fb_align_height(fb, 0, fb->height); 10563 10564 plane_config->size = fb->pitches[0] * aligned_height; 10565 10566 drm_dbg_kms(&dev_priv->drm, 10567 "%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 10568 crtc->base.name, plane->base.name, fb->width, fb->height, 10569 fb->format->cpp[0] * 8, base, fb->pitches[0], 10570 plane_config->size); 10571 10572 plane_config->fb = intel_fb; 10573 return; 10574 10575 error: 10576 kfree(intel_fb); 10577 } 10578 10579 static void ilk_get_pfit_config(struct intel_crtc *crtc, 10580 struct intel_crtc_state *pipe_config) 10581 { 10582 struct drm_device *dev = crtc->base.dev; 10583 struct drm_i915_private *dev_priv = to_i915(dev); 10584 u32 tmp; 10585 10586 tmp = intel_de_read(dev_priv, PF_CTL(crtc->pipe)); 10587 10588 if (tmp & PF_ENABLE) { 10589 pipe_config->pch_pfit.enabled = true; 10590 pipe_config->pch_pfit.pos = intel_de_read(dev_priv, 10591 PF_WIN_POS(crtc->pipe)); 10592 pipe_config->pch_pfit.size = intel_de_read(dev_priv, 10593 PF_WIN_SZ(crtc->pipe)); 10594 10595 /* We currently do not free assignements of panel fitters on 10596 * ivb/hsw (since we don't use the higher upscaling modes which 10597 * differentiates them) so just WARN about this case for now. */ 10598 if (IS_GEN(dev_priv, 7)) { 10599 drm_WARN_ON(dev, (tmp & PF_PIPE_SEL_MASK_IVB) != 10600 PF_PIPE_SEL_IVB(crtc->pipe)); 10601 } 10602 } 10603 } 10604 10605 static bool ilk_get_pipe_config(struct intel_crtc *crtc, 10606 struct intel_crtc_state *pipe_config) 10607 { 10608 struct drm_device *dev = crtc->base.dev; 10609 struct drm_i915_private *dev_priv = to_i915(dev); 10610 enum intel_display_power_domain power_domain; 10611 intel_wakeref_t wakeref; 10612 u32 tmp; 10613 bool ret; 10614 10615 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 10616 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 10617 if (!wakeref) 10618 return false; 10619 10620 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10621 pipe_config->shared_dpll = NULL; 10622 pipe_config->master_transcoder = INVALID_TRANSCODER; 10623 10624 ret = false; 10625 tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); 10626 if (!(tmp & PIPECONF_ENABLE)) 10627 goto out; 10628 10629 switch (tmp & PIPECONF_BPC_MASK) { 10630 case PIPECONF_6BPC: 10631 pipe_config->pipe_bpp = 18; 10632 break; 10633 case PIPECONF_8BPC: 10634 pipe_config->pipe_bpp = 24; 10635 break; 10636 case PIPECONF_10BPC: 10637 pipe_config->pipe_bpp = 30; 10638 break; 10639 case PIPECONF_12BPC: 10640 pipe_config->pipe_bpp = 36; 10641 break; 10642 default: 10643 break; 10644 } 10645 10646 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 10647 pipe_config->limited_color_range = true; 10648 10649 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { 10650 case PIPECONF_OUTPUT_COLORSPACE_YUV601: 10651 case PIPECONF_OUTPUT_COLORSPACE_YUV709: 10652 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 10653 break; 10654 default: 10655 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 10656 break; 10657 } 10658 10659 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >> 10660 PIPECONF_GAMMA_MODE_SHIFT; 10661 10662 pipe_config->csc_mode = intel_de_read(dev_priv, 10663 PIPE_CSC_MODE(crtc->pipe)); 10664 10665 i9xx_get_pipe_color_config(pipe_config); 10666 intel_color_get_config(pipe_config); 10667 10668 if (intel_de_read(dev_priv, PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 10669 struct intel_shared_dpll *pll; 10670 enum intel_dpll_id pll_id; 10671 10672 pipe_config->has_pch_encoder = true; 10673 10674 tmp = intel_de_read(dev_priv, FDI_RX_CTL(crtc->pipe)); 10675 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 10676 FDI_DP_PORT_WIDTH_SHIFT) + 1; 10677 10678 ilk_get_fdi_m_n_config(crtc, pipe_config); 10679 10680 if (HAS_PCH_IBX(dev_priv)) { 10681 /* 10682 * The pipe->pch transcoder and pch transcoder->pll 10683 * mapping is fixed. 10684 */ 10685 pll_id = (enum intel_dpll_id) crtc->pipe; 10686 } else { 10687 tmp = intel_de_read(dev_priv, PCH_DPLL_SEL); 10688 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 10689 pll_id = DPLL_ID_PCH_PLL_B; 10690 else 10691 pll_id= DPLL_ID_PCH_PLL_A; 10692 } 10693 10694 pipe_config->shared_dpll = 10695 intel_get_shared_dpll_by_id(dev_priv, pll_id); 10696 pll = pipe_config->shared_dpll; 10697 10698 drm_WARN_ON(dev, !pll->info->funcs->get_hw_state(dev_priv, pll, 10699 &pipe_config->dpll_hw_state)); 10700 10701 tmp = pipe_config->dpll_hw_state.dpll; 10702 pipe_config->pixel_multiplier = 10703 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 10704 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 10705 10706 ilk_pch_clock_get(crtc, pipe_config); 10707 } else { 10708 pipe_config->pixel_multiplier = 1; 10709 } 10710 10711 intel_get_pipe_timings(crtc, pipe_config); 10712 intel_get_pipe_src_size(crtc, pipe_config); 10713 10714 ilk_get_pfit_config(crtc, pipe_config); 10715 10716 ret = true; 10717 10718 out: 10719 intel_display_power_put(dev_priv, power_domain, wakeref); 10720 10721 return ret; 10722 } 10723 10724 static int hsw_crtc_compute_clock(struct intel_crtc *crtc, 10725 struct intel_crtc_state *crtc_state) 10726 { 10727 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10728 struct intel_atomic_state *state = 10729 to_intel_atomic_state(crtc_state->uapi.state); 10730 10731 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) || 10732 INTEL_GEN(dev_priv) >= 11) { 10733 struct intel_encoder *encoder = 10734 intel_get_crtc_new_encoder(state, crtc_state); 10735 10736 if (!intel_reserve_shared_dplls(state, crtc, encoder)) { 10737 drm_dbg_kms(&dev_priv->drm, 10738 "failed to find PLL for pipe %c\n", 10739 pipe_name(crtc->pipe)); 10740 return -EINVAL; 10741 } 10742 } 10743 10744 return 0; 10745 } 10746 10747 static void cnl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10748 struct intel_crtc_state *pipe_config) 10749 { 10750 enum intel_dpll_id id; 10751 u32 temp; 10752 10753 temp = intel_de_read(dev_priv, DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port); 10754 id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port); 10755 10756 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL2)) 10757 return; 10758 10759 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10760 } 10761 10762 static void icl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10763 struct intel_crtc_state *pipe_config) 10764 { 10765 enum phy phy = intel_port_to_phy(dev_priv, port); 10766 enum icl_port_dpll_id port_dpll_id; 10767 enum intel_dpll_id id; 10768 u32 temp; 10769 10770 if (intel_phy_is_combo(dev_priv, phy)) { 10771 temp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0) & 10772 ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); 10773 id = temp >> ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy); 10774 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10775 } else if (intel_phy_is_tc(dev_priv, phy)) { 10776 u32 clk_sel = intel_de_read(dev_priv, DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK; 10777 10778 if (clk_sel == DDI_CLK_SEL_MG) { 10779 id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv, 10780 port)); 10781 port_dpll_id = ICL_PORT_DPLL_MG_PHY; 10782 } else { 10783 drm_WARN_ON(&dev_priv->drm, 10784 clk_sel < DDI_CLK_SEL_TBT_162); 10785 id = DPLL_ID_ICL_TBTPLL; 10786 port_dpll_id = ICL_PORT_DPLL_DEFAULT; 10787 } 10788 } else { 10789 drm_WARN(&dev_priv->drm, 1, "Invalid port %x\n", port); 10790 return; 10791 } 10792 10793 pipe_config->icl_port_dplls[port_dpll_id].pll = 10794 intel_get_shared_dpll_by_id(dev_priv, id); 10795 10796 icl_set_active_port_dpll(pipe_config, port_dpll_id); 10797 } 10798 10799 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv, 10800 enum port port, 10801 struct intel_crtc_state *pipe_config) 10802 { 10803 enum intel_dpll_id id; 10804 10805 switch (port) { 10806 case PORT_A: 10807 id = DPLL_ID_SKL_DPLL0; 10808 break; 10809 case PORT_B: 10810 id = DPLL_ID_SKL_DPLL1; 10811 break; 10812 case PORT_C: 10813 id = DPLL_ID_SKL_DPLL2; 10814 break; 10815 default: 10816 drm_err(&dev_priv->drm, "Incorrect port type\n"); 10817 return; 10818 } 10819 10820 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10821 } 10822 10823 static void skl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10824 struct intel_crtc_state *pipe_config) 10825 { 10826 enum intel_dpll_id id; 10827 u32 temp; 10828 10829 temp = intel_de_read(dev_priv, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port); 10830 id = temp >> (port * 3 + 1); 10831 10832 if (drm_WARN_ON(&dev_priv->drm, id < SKL_DPLL0 || id > SKL_DPLL3)) 10833 return; 10834 10835 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10836 } 10837 10838 static void hsw_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, 10839 struct intel_crtc_state *pipe_config) 10840 { 10841 enum intel_dpll_id id; 10842 u32 ddi_pll_sel = intel_de_read(dev_priv, PORT_CLK_SEL(port)); 10843 10844 switch (ddi_pll_sel) { 10845 case PORT_CLK_SEL_WRPLL1: 10846 id = DPLL_ID_WRPLL1; 10847 break; 10848 case PORT_CLK_SEL_WRPLL2: 10849 id = DPLL_ID_WRPLL2; 10850 break; 10851 case PORT_CLK_SEL_SPLL: 10852 id = DPLL_ID_SPLL; 10853 break; 10854 case PORT_CLK_SEL_LCPLL_810: 10855 id = DPLL_ID_LCPLL_810; 10856 break; 10857 case PORT_CLK_SEL_LCPLL_1350: 10858 id = DPLL_ID_LCPLL_1350; 10859 break; 10860 case PORT_CLK_SEL_LCPLL_2700: 10861 id = DPLL_ID_LCPLL_2700; 10862 break; 10863 default: 10864 MISSING_CASE(ddi_pll_sel); 10865 /* fall through */ 10866 case PORT_CLK_SEL_NONE: 10867 return; 10868 } 10869 10870 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 10871 } 10872 10873 static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 10874 struct intel_crtc_state *pipe_config, 10875 u64 *power_domain_mask, 10876 intel_wakeref_t *wakerefs) 10877 { 10878 struct drm_device *dev = crtc->base.dev; 10879 struct drm_i915_private *dev_priv = to_i915(dev); 10880 enum intel_display_power_domain power_domain; 10881 unsigned long panel_transcoder_mask = 0; 10882 unsigned long enabled_panel_transcoders = 0; 10883 enum transcoder panel_transcoder; 10884 intel_wakeref_t wf; 10885 u32 tmp; 10886 10887 if (INTEL_GEN(dev_priv) >= 11) 10888 panel_transcoder_mask |= 10889 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); 10890 10891 if (HAS_TRANSCODER_EDP(dev_priv)) 10892 panel_transcoder_mask |= BIT(TRANSCODER_EDP); 10893 10894 /* 10895 * The pipe->transcoder mapping is fixed with the exception of the eDP 10896 * and DSI transcoders handled below. 10897 */ 10898 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 10899 10900 /* 10901 * XXX: Do intel_display_power_get_if_enabled before reading this (for 10902 * consistency and less surprising code; it's in always on power). 10903 */ 10904 for_each_set_bit(panel_transcoder, 10905 &panel_transcoder_mask, 10906 ARRAY_SIZE(INTEL_INFO(dev_priv)->trans_offsets)) { 10907 bool force_thru = false; 10908 enum pipe trans_pipe; 10909 10910 tmp = intel_de_read(dev_priv, 10911 TRANS_DDI_FUNC_CTL(panel_transcoder)); 10912 if (!(tmp & TRANS_DDI_FUNC_ENABLE)) 10913 continue; 10914 10915 /* 10916 * Log all enabled ones, only use the first one. 10917 * 10918 * FIXME: This won't work for two separate DSI displays. 10919 */ 10920 enabled_panel_transcoders |= BIT(panel_transcoder); 10921 if (enabled_panel_transcoders != BIT(panel_transcoder)) 10922 continue; 10923 10924 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 10925 default: 10926 drm_WARN(dev, 1, 10927 "unknown pipe linked to transcoder %s\n", 10928 transcoder_name(panel_transcoder)); 10929 /* fall through */ 10930 case TRANS_DDI_EDP_INPUT_A_ONOFF: 10931 force_thru = true; 10932 /* fall through */ 10933 case TRANS_DDI_EDP_INPUT_A_ON: 10934 trans_pipe = PIPE_A; 10935 break; 10936 case TRANS_DDI_EDP_INPUT_B_ONOFF: 10937 trans_pipe = PIPE_B; 10938 break; 10939 case TRANS_DDI_EDP_INPUT_C_ONOFF: 10940 trans_pipe = PIPE_C; 10941 break; 10942 case TRANS_DDI_EDP_INPUT_D_ONOFF: 10943 trans_pipe = PIPE_D; 10944 break; 10945 } 10946 10947 if (trans_pipe == crtc->pipe) { 10948 pipe_config->cpu_transcoder = panel_transcoder; 10949 pipe_config->pch_pfit.force_thru = force_thru; 10950 } 10951 } 10952 10953 /* 10954 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1 10955 */ 10956 drm_WARN_ON(dev, (enabled_panel_transcoders & BIT(TRANSCODER_EDP)) && 10957 enabled_panel_transcoders != BIT(TRANSCODER_EDP)); 10958 10959 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder); 10960 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain)); 10961 10962 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 10963 if (!wf) 10964 return false; 10965 10966 wakerefs[power_domain] = wf; 10967 *power_domain_mask |= BIT_ULL(power_domain); 10968 10969 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); 10970 10971 return tmp & PIPECONF_ENABLE; 10972 } 10973 10974 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 10975 struct intel_crtc_state *pipe_config, 10976 u64 *power_domain_mask, 10977 intel_wakeref_t *wakerefs) 10978 { 10979 struct drm_device *dev = crtc->base.dev; 10980 struct drm_i915_private *dev_priv = to_i915(dev); 10981 enum intel_display_power_domain power_domain; 10982 enum transcoder cpu_transcoder; 10983 intel_wakeref_t wf; 10984 enum port port; 10985 u32 tmp; 10986 10987 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 10988 if (port == PORT_A) 10989 cpu_transcoder = TRANSCODER_DSI_A; 10990 else 10991 cpu_transcoder = TRANSCODER_DSI_C; 10992 10993 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 10994 drm_WARN_ON(dev, *power_domain_mask & BIT_ULL(power_domain)); 10995 10996 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 10997 if (!wf) 10998 continue; 10999 11000 wakerefs[power_domain] = wf; 11001 *power_domain_mask |= BIT_ULL(power_domain); 11002 11003 /* 11004 * The PLL needs to be enabled with a valid divider 11005 * configuration, otherwise accessing DSI registers will hang 11006 * the machine. See BSpec North Display Engine 11007 * registers/MIPI[BXT]. We can break out here early, since we 11008 * need the same DSI PLL to be enabled for both DSI ports. 11009 */ 11010 if (!bxt_dsi_pll_is_enabled(dev_priv)) 11011 break; 11012 11013 /* XXX: this works for video mode only */ 11014 tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); 11015 if (!(tmp & DPI_ENABLE)) 11016 continue; 11017 11018 tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); 11019 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 11020 continue; 11021 11022 pipe_config->cpu_transcoder = cpu_transcoder; 11023 break; 11024 } 11025 11026 return transcoder_is_dsi(pipe_config->cpu_transcoder); 11027 } 11028 11029 static void hsw_get_ddi_port_state(struct intel_crtc *crtc, 11030 struct intel_crtc_state *pipe_config) 11031 { 11032 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11033 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 11034 struct intel_shared_dpll *pll; 11035 enum port port; 11036 u32 tmp; 11037 11038 if (transcoder_is_dsi(cpu_transcoder)) { 11039 port = (cpu_transcoder == TRANSCODER_DSI_A) ? 11040 PORT_A : PORT_B; 11041 } else { 11042 tmp = intel_de_read(dev_priv, 11043 TRANS_DDI_FUNC_CTL(cpu_transcoder)); 11044 if (INTEL_GEN(dev_priv) >= 12) 11045 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 11046 else 11047 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp); 11048 } 11049 11050 if (INTEL_GEN(dev_priv) >= 11) 11051 icl_get_ddi_pll(dev_priv, port, pipe_config); 11052 else if (IS_CANNONLAKE(dev_priv)) 11053 cnl_get_ddi_pll(dev_priv, port, pipe_config); 11054 else if (IS_GEN9_BC(dev_priv)) 11055 skl_get_ddi_pll(dev_priv, port, pipe_config); 11056 else if (IS_GEN9_LP(dev_priv)) 11057 bxt_get_ddi_pll(dev_priv, port, pipe_config); 11058 else 11059 hsw_get_ddi_pll(dev_priv, port, pipe_config); 11060 11061 pll = pipe_config->shared_dpll; 11062 if (pll) { 11063 drm_WARN_ON(&dev_priv->drm, 11064 !pll->info->funcs->get_hw_state(dev_priv, pll, 11065 &pipe_config->dpll_hw_state)); 11066 } 11067 11068 /* 11069 * Haswell has only FDI/PCH transcoder A. It is which is connected to 11070 * DDI E. So just check whether this pipe is wired to DDI E and whether 11071 * the PCH transcoder is on. 11072 */ 11073 if (INTEL_GEN(dev_priv) < 9 && 11074 (port == PORT_E) && intel_de_read(dev_priv, LPT_TRANSCONF) & TRANS_ENABLE) { 11075 pipe_config->has_pch_encoder = true; 11076 11077 tmp = intel_de_read(dev_priv, FDI_RX_CTL(PIPE_A)); 11078 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 11079 FDI_DP_PORT_WIDTH_SHIFT) + 1; 11080 11081 ilk_get_fdi_m_n_config(crtc, pipe_config); 11082 } 11083 } 11084 11085 static enum transcoder transcoder_master_readout(struct drm_i915_private *dev_priv, 11086 enum transcoder cpu_transcoder) 11087 { 11088 u32 trans_port_sync, master_select; 11089 11090 trans_port_sync = intel_de_read(dev_priv, 11091 TRANS_DDI_FUNC_CTL2(cpu_transcoder)); 11092 11093 if ((trans_port_sync & PORT_SYNC_MODE_ENABLE) == 0) 11094 return INVALID_TRANSCODER; 11095 11096 master_select = trans_port_sync & 11097 PORT_SYNC_MODE_MASTER_SELECT_MASK; 11098 if (master_select == 0) 11099 return TRANSCODER_EDP; 11100 else 11101 return master_select - 1; 11102 } 11103 11104 static void icl_get_trans_port_sync_config(struct intel_crtc_state *crtc_state) 11105 { 11106 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 11107 u32 transcoders; 11108 enum transcoder cpu_transcoder; 11109 11110 crtc_state->master_transcoder = transcoder_master_readout(dev_priv, 11111 crtc_state->cpu_transcoder); 11112 11113 transcoders = BIT(TRANSCODER_A) | 11114 BIT(TRANSCODER_B) | 11115 BIT(TRANSCODER_C) | 11116 BIT(TRANSCODER_D); 11117 for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) { 11118 enum intel_display_power_domain power_domain; 11119 intel_wakeref_t trans_wakeref; 11120 11121 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 11122 trans_wakeref = intel_display_power_get_if_enabled(dev_priv, 11123 power_domain); 11124 11125 if (!trans_wakeref) 11126 continue; 11127 11128 if (transcoder_master_readout(dev_priv, cpu_transcoder) == 11129 crtc_state->cpu_transcoder) 11130 crtc_state->sync_mode_slaves_mask |= BIT(cpu_transcoder); 11131 11132 intel_display_power_put(dev_priv, power_domain, trans_wakeref); 11133 } 11134 11135 drm_WARN_ON(&dev_priv->drm, 11136 crtc_state->master_transcoder != INVALID_TRANSCODER && 11137 crtc_state->sync_mode_slaves_mask); 11138 } 11139 11140 static bool hsw_get_pipe_config(struct intel_crtc *crtc, 11141 struct intel_crtc_state *pipe_config) 11142 { 11143 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11144 intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf; 11145 enum intel_display_power_domain power_domain; 11146 u64 power_domain_mask; 11147 bool active; 11148 u32 tmp; 11149 11150 pipe_config->master_transcoder = INVALID_TRANSCODER; 11151 11152 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 11153 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11154 if (!wf) 11155 return false; 11156 11157 wakerefs[power_domain] = wf; 11158 power_domain_mask = BIT_ULL(power_domain); 11159 11160 pipe_config->shared_dpll = NULL; 11161 11162 active = hsw_get_transcoder_state(crtc, pipe_config, 11163 &power_domain_mask, wakerefs); 11164 11165 if (IS_GEN9_LP(dev_priv) && 11166 bxt_get_dsi_transcoder_state(crtc, pipe_config, 11167 &power_domain_mask, wakerefs)) { 11168 drm_WARN_ON(&dev_priv->drm, active); 11169 active = true; 11170 } 11171 11172 if (!active) 11173 goto out; 11174 11175 if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || 11176 INTEL_GEN(dev_priv) >= 11) { 11177 hsw_get_ddi_port_state(crtc, pipe_config); 11178 intel_get_pipe_timings(crtc, pipe_config); 11179 } 11180 11181 intel_get_pipe_src_size(crtc, pipe_config); 11182 11183 if (IS_HASWELL(dev_priv)) { 11184 u32 tmp = intel_de_read(dev_priv, 11185 PIPECONF(pipe_config->cpu_transcoder)); 11186 11187 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) 11188 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; 11189 else 11190 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 11191 } else { 11192 pipe_config->output_format = 11193 bdw_get_pipemisc_output_format(crtc); 11194 11195 /* 11196 * Currently there is no interface defined to 11197 * check user preference between RGB/YCBCR444 11198 * or YCBCR420. So the only possible case for 11199 * YCBCR444 usage is driving YCBCR420 output 11200 * with LSPCON, when pipe is configured for 11201 * YCBCR444 output and LSPCON takes care of 11202 * downsampling it. 11203 */ 11204 pipe_config->lspcon_downsampling = 11205 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444; 11206 } 11207 11208 pipe_config->gamma_mode = intel_de_read(dev_priv, 11209 GAMMA_MODE(crtc->pipe)); 11210 11211 pipe_config->csc_mode = intel_de_read(dev_priv, 11212 PIPE_CSC_MODE(crtc->pipe)); 11213 11214 if (INTEL_GEN(dev_priv) >= 9) { 11215 tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe)); 11216 11217 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) 11218 pipe_config->gamma_enable = true; 11219 11220 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) 11221 pipe_config->csc_enable = true; 11222 } else { 11223 i9xx_get_pipe_color_config(pipe_config); 11224 } 11225 11226 intel_color_get_config(pipe_config); 11227 11228 tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe)); 11229 pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); 11230 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 11231 pipe_config->ips_linetime = 11232 REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); 11233 11234 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe); 11235 drm_WARN_ON(&dev_priv->drm, power_domain_mask & BIT_ULL(power_domain)); 11236 11237 wf = intel_display_power_get_if_enabled(dev_priv, power_domain); 11238 if (wf) { 11239 wakerefs[power_domain] = wf; 11240 power_domain_mask |= BIT_ULL(power_domain); 11241 11242 if (INTEL_GEN(dev_priv) >= 9) 11243 skl_get_pfit_config(crtc, pipe_config); 11244 else 11245 ilk_get_pfit_config(crtc, pipe_config); 11246 } 11247 11248 if (hsw_crtc_supports_ips(crtc)) { 11249 if (IS_HASWELL(dev_priv)) 11250 pipe_config->ips_enabled = intel_de_read(dev_priv, 11251 IPS_CTL) & IPS_ENABLE; 11252 else { 11253 /* 11254 * We cannot readout IPS state on broadwell, set to 11255 * true so we can set it to a defined state on first 11256 * commit. 11257 */ 11258 pipe_config->ips_enabled = true; 11259 } 11260 } 11261 11262 if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 11263 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 11264 pipe_config->pixel_multiplier = 11265 intel_de_read(dev_priv, 11266 PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 11267 } else { 11268 pipe_config->pixel_multiplier = 1; 11269 } 11270 11271 if (INTEL_GEN(dev_priv) >= 11 && 11272 !transcoder_is_dsi(pipe_config->cpu_transcoder)) 11273 icl_get_trans_port_sync_config(pipe_config); 11274 11275 out: 11276 for_each_power_domain(power_domain, power_domain_mask) 11277 intel_display_power_put(dev_priv, 11278 power_domain, wakerefs[power_domain]); 11279 11280 return active; 11281 } 11282 11283 static u32 intel_cursor_base(const struct intel_plane_state *plane_state) 11284 { 11285 struct drm_i915_private *dev_priv = 11286 to_i915(plane_state->uapi.plane->dev); 11287 const struct drm_framebuffer *fb = plane_state->hw.fb; 11288 const struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11289 u32 base; 11290 11291 if (INTEL_INFO(dev_priv)->display.cursor_needs_physical) 11292 base = sg_dma_address(obj->mm.pages->sgl); 11293 else 11294 base = intel_plane_ggtt_offset(plane_state); 11295 11296 return base + plane_state->color_plane[0].offset; 11297 } 11298 11299 static u32 intel_cursor_position(const struct intel_plane_state *plane_state) 11300 { 11301 int x = plane_state->uapi.dst.x1; 11302 int y = plane_state->uapi.dst.y1; 11303 u32 pos = 0; 11304 11305 if (x < 0) { 11306 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; 11307 x = -x; 11308 } 11309 pos |= x << CURSOR_X_SHIFT; 11310 11311 if (y < 0) { 11312 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; 11313 y = -y; 11314 } 11315 pos |= y << CURSOR_Y_SHIFT; 11316 11317 return pos; 11318 } 11319 11320 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state) 11321 { 11322 const struct drm_mode_config *config = 11323 &plane_state->uapi.plane->dev->mode_config; 11324 int width = drm_rect_width(&plane_state->uapi.dst); 11325 int height = drm_rect_height(&plane_state->uapi.dst); 11326 11327 return width > 0 && width <= config->cursor_width && 11328 height > 0 && height <= config->cursor_height; 11329 } 11330 11331 static int intel_cursor_check_surface(struct intel_plane_state *plane_state) 11332 { 11333 struct drm_i915_private *dev_priv = 11334 to_i915(plane_state->uapi.plane->dev); 11335 unsigned int rotation = plane_state->hw.rotation; 11336 int src_x, src_y; 11337 u32 offset; 11338 int ret; 11339 11340 ret = intel_plane_compute_gtt(plane_state); 11341 if (ret) 11342 return ret; 11343 11344 if (!plane_state->uapi.visible) 11345 return 0; 11346 11347 src_x = plane_state->uapi.src.x1 >> 16; 11348 src_y = plane_state->uapi.src.y1 >> 16; 11349 11350 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0); 11351 offset = intel_plane_compute_aligned_offset(&src_x, &src_y, 11352 plane_state, 0); 11353 11354 if (src_x != 0 || src_y != 0) { 11355 drm_dbg_kms(&dev_priv->drm, 11356 "Arbitrary cursor panning not supported\n"); 11357 return -EINVAL; 11358 } 11359 11360 /* 11361 * Put the final coordinates back so that the src 11362 * coordinate checks will see the right values. 11363 */ 11364 drm_rect_translate_to(&plane_state->uapi.src, 11365 src_x << 16, src_y << 16); 11366 11367 /* ILK+ do this automagically in hardware */ 11368 if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) { 11369 const struct drm_framebuffer *fb = plane_state->hw.fb; 11370 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16; 11371 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16; 11372 11373 offset += (src_h * src_w - 1) * fb->format->cpp[0]; 11374 } 11375 11376 plane_state->color_plane[0].offset = offset; 11377 plane_state->color_plane[0].x = src_x; 11378 plane_state->color_plane[0].y = src_y; 11379 11380 return 0; 11381 } 11382 11383 static int intel_check_cursor(struct intel_crtc_state *crtc_state, 11384 struct intel_plane_state *plane_state) 11385 { 11386 const struct drm_framebuffer *fb = plane_state->hw.fb; 11387 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 11388 int ret; 11389 11390 if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) { 11391 drm_dbg_kms(&i915->drm, "cursor cannot be tiled\n"); 11392 return -EINVAL; 11393 } 11394 11395 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi, 11396 &crtc_state->uapi, 11397 DRM_PLANE_HELPER_NO_SCALING, 11398 DRM_PLANE_HELPER_NO_SCALING, 11399 true, true); 11400 if (ret) 11401 return ret; 11402 11403 /* Use the unclipped src/dst rectangles, which we program to hw */ 11404 plane_state->uapi.src = drm_plane_state_src(&plane_state->uapi); 11405 plane_state->uapi.dst = drm_plane_state_dest(&plane_state->uapi); 11406 11407 ret = intel_cursor_check_surface(plane_state); 11408 if (ret) 11409 return ret; 11410 11411 if (!plane_state->uapi.visible) 11412 return 0; 11413 11414 ret = intel_plane_check_src_coordinates(plane_state); 11415 if (ret) 11416 return ret; 11417 11418 return 0; 11419 } 11420 11421 static unsigned int 11422 i845_cursor_max_stride(struct intel_plane *plane, 11423 u32 pixel_format, u64 modifier, 11424 unsigned int rotation) 11425 { 11426 return 2048; 11427 } 11428 11429 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 11430 { 11431 u32 cntl = 0; 11432 11433 if (crtc_state->gamma_enable) 11434 cntl |= CURSOR_GAMMA_ENABLE; 11435 11436 return cntl; 11437 } 11438 11439 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state, 11440 const struct intel_plane_state *plane_state) 11441 { 11442 return CURSOR_ENABLE | 11443 CURSOR_FORMAT_ARGB | 11444 CURSOR_STRIDE(plane_state->color_plane[0].stride); 11445 } 11446 11447 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state) 11448 { 11449 int width = drm_rect_width(&plane_state->uapi.dst); 11450 11451 /* 11452 * 845g/865g are only limited by the width of their cursors, 11453 * the height is arbitrary up to the precision of the register. 11454 */ 11455 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64); 11456 } 11457 11458 static int i845_check_cursor(struct intel_crtc_state *crtc_state, 11459 struct intel_plane_state *plane_state) 11460 { 11461 const struct drm_framebuffer *fb = plane_state->hw.fb; 11462 struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); 11463 int ret; 11464 11465 ret = intel_check_cursor(crtc_state, plane_state); 11466 if (ret) 11467 return ret; 11468 11469 /* if we want to turn off the cursor ignore width and height */ 11470 if (!fb) 11471 return 0; 11472 11473 /* Check for which cursor types we support */ 11474 if (!i845_cursor_size_ok(plane_state)) { 11475 drm_dbg_kms(&i915->drm, 11476 "Cursor dimension %dx%d not supported\n", 11477 drm_rect_width(&plane_state->uapi.dst), 11478 drm_rect_height(&plane_state->uapi.dst)); 11479 return -EINVAL; 11480 } 11481 11482 drm_WARN_ON(&i915->drm, plane_state->uapi.visible && 11483 plane_state->color_plane[0].stride != fb->pitches[0]); 11484 11485 switch (fb->pitches[0]) { 11486 case 256: 11487 case 512: 11488 case 1024: 11489 case 2048: 11490 break; 11491 default: 11492 drm_dbg_kms(&i915->drm, "Invalid cursor stride (%u)\n", 11493 fb->pitches[0]); 11494 return -EINVAL; 11495 } 11496 11497 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state); 11498 11499 return 0; 11500 } 11501 11502 static void i845_update_cursor(struct intel_plane *plane, 11503 const struct intel_crtc_state *crtc_state, 11504 const struct intel_plane_state *plane_state) 11505 { 11506 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11507 u32 cntl = 0, base = 0, pos = 0, size = 0; 11508 unsigned long irqflags; 11509 11510 if (plane_state && plane_state->uapi.visible) { 11511 unsigned int width = drm_rect_width(&plane_state->uapi.dst); 11512 unsigned int height = drm_rect_height(&plane_state->uapi.dst); 11513 11514 cntl = plane_state->ctl | 11515 i845_cursor_ctl_crtc(crtc_state); 11516 11517 size = (height << 12) | width; 11518 11519 base = intel_cursor_base(plane_state); 11520 pos = intel_cursor_position(plane_state); 11521 } 11522 11523 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 11524 11525 /* On these chipsets we can only modify the base/size/stride 11526 * whilst the cursor is disabled. 11527 */ 11528 if (plane->cursor.base != base || 11529 plane->cursor.size != size || 11530 plane->cursor.cntl != cntl) { 11531 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), 0); 11532 intel_de_write_fw(dev_priv, CURBASE(PIPE_A), base); 11533 intel_de_write_fw(dev_priv, CURSIZE, size); 11534 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos); 11535 intel_de_write_fw(dev_priv, CURCNTR(PIPE_A), cntl); 11536 11537 plane->cursor.base = base; 11538 plane->cursor.size = size; 11539 plane->cursor.cntl = cntl; 11540 } else { 11541 intel_de_write_fw(dev_priv, CURPOS(PIPE_A), pos); 11542 } 11543 11544 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 11545 } 11546 11547 static void i845_disable_cursor(struct intel_plane *plane, 11548 const struct intel_crtc_state *crtc_state) 11549 { 11550 i845_update_cursor(plane, crtc_state, NULL); 11551 } 11552 11553 static bool i845_cursor_get_hw_state(struct intel_plane *plane, 11554 enum pipe *pipe) 11555 { 11556 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11557 enum intel_display_power_domain power_domain; 11558 intel_wakeref_t wakeref; 11559 bool ret; 11560 11561 power_domain = POWER_DOMAIN_PIPE(PIPE_A); 11562 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11563 if (!wakeref) 11564 return false; 11565 11566 ret = intel_de_read(dev_priv, CURCNTR(PIPE_A)) & CURSOR_ENABLE; 11567 11568 *pipe = PIPE_A; 11569 11570 intel_display_power_put(dev_priv, power_domain, wakeref); 11571 11572 return ret; 11573 } 11574 11575 static unsigned int 11576 i9xx_cursor_max_stride(struct intel_plane *plane, 11577 u32 pixel_format, u64 modifier, 11578 unsigned int rotation) 11579 { 11580 return plane->base.dev->mode_config.cursor_width * 4; 11581 } 11582 11583 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state) 11584 { 11585 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 11586 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 11587 u32 cntl = 0; 11588 11589 if (INTEL_GEN(dev_priv) >= 11) 11590 return cntl; 11591 11592 if (crtc_state->gamma_enable) 11593 cntl = MCURSOR_GAMMA_ENABLE; 11594 11595 if (crtc_state->csc_enable) 11596 cntl |= MCURSOR_PIPE_CSC_ENABLE; 11597 11598 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 11599 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe); 11600 11601 return cntl; 11602 } 11603 11604 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state, 11605 const struct intel_plane_state *plane_state) 11606 { 11607 struct drm_i915_private *dev_priv = 11608 to_i915(plane_state->uapi.plane->dev); 11609 u32 cntl = 0; 11610 11611 if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) 11612 cntl |= MCURSOR_TRICKLE_FEED_DISABLE; 11613 11614 switch (drm_rect_width(&plane_state->uapi.dst)) { 11615 case 64: 11616 cntl |= MCURSOR_MODE_64_ARGB_AX; 11617 break; 11618 case 128: 11619 cntl |= MCURSOR_MODE_128_ARGB_AX; 11620 break; 11621 case 256: 11622 cntl |= MCURSOR_MODE_256_ARGB_AX; 11623 break; 11624 default: 11625 MISSING_CASE(drm_rect_width(&plane_state->uapi.dst)); 11626 return 0; 11627 } 11628 11629 if (plane_state->hw.rotation & DRM_MODE_ROTATE_180) 11630 cntl |= MCURSOR_ROTATE_180; 11631 11632 return cntl; 11633 } 11634 11635 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state) 11636 { 11637 struct drm_i915_private *dev_priv = 11638 to_i915(plane_state->uapi.plane->dev); 11639 int width = drm_rect_width(&plane_state->uapi.dst); 11640 int height = drm_rect_height(&plane_state->uapi.dst); 11641 11642 if (!intel_cursor_size_ok(plane_state)) 11643 return false; 11644 11645 /* Cursor width is limited to a few power-of-two sizes */ 11646 switch (width) { 11647 case 256: 11648 case 128: 11649 case 64: 11650 break; 11651 default: 11652 return false; 11653 } 11654 11655 /* 11656 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor 11657 * height from 8 lines up to the cursor width, when the 11658 * cursor is not rotated. Everything else requires square 11659 * cursors. 11660 */ 11661 if (HAS_CUR_FBC(dev_priv) && 11662 plane_state->hw.rotation & DRM_MODE_ROTATE_0) { 11663 if (height < 8 || height > width) 11664 return false; 11665 } else { 11666 if (height != width) 11667 return false; 11668 } 11669 11670 return true; 11671 } 11672 11673 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state, 11674 struct intel_plane_state *plane_state) 11675 { 11676 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 11677 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11678 const struct drm_framebuffer *fb = plane_state->hw.fb; 11679 enum pipe pipe = plane->pipe; 11680 int ret; 11681 11682 ret = intel_check_cursor(crtc_state, plane_state); 11683 if (ret) 11684 return ret; 11685 11686 /* if we want to turn off the cursor ignore width and height */ 11687 if (!fb) 11688 return 0; 11689 11690 /* Check for which cursor types we support */ 11691 if (!i9xx_cursor_size_ok(plane_state)) { 11692 drm_dbg(&dev_priv->drm, 11693 "Cursor dimension %dx%d not supported\n", 11694 drm_rect_width(&plane_state->uapi.dst), 11695 drm_rect_height(&plane_state->uapi.dst)); 11696 return -EINVAL; 11697 } 11698 11699 drm_WARN_ON(&dev_priv->drm, plane_state->uapi.visible && 11700 plane_state->color_plane[0].stride != fb->pitches[0]); 11701 11702 if (fb->pitches[0] != 11703 drm_rect_width(&plane_state->uapi.dst) * fb->format->cpp[0]) { 11704 drm_dbg_kms(&dev_priv->drm, 11705 "Invalid cursor stride (%u) (cursor width %d)\n", 11706 fb->pitches[0], 11707 drm_rect_width(&plane_state->uapi.dst)); 11708 return -EINVAL; 11709 } 11710 11711 /* 11712 * There's something wrong with the cursor on CHV pipe C. 11713 * If it straddles the left edge of the screen then 11714 * moving it away from the edge or disabling it often 11715 * results in a pipe underrun, and often that can lead to 11716 * dead pipe (constant underrun reported, and it scans 11717 * out just a solid color). To recover from that, the 11718 * display power well must be turned off and on again. 11719 * Refuse the put the cursor into that compromised position. 11720 */ 11721 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C && 11722 plane_state->uapi.visible && plane_state->uapi.dst.x1 < 0) { 11723 drm_dbg_kms(&dev_priv->drm, 11724 "CHV cursor C not allowed to straddle the left screen edge\n"); 11725 return -EINVAL; 11726 } 11727 11728 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state); 11729 11730 return 0; 11731 } 11732 11733 static void i9xx_update_cursor(struct intel_plane *plane, 11734 const struct intel_crtc_state *crtc_state, 11735 const struct intel_plane_state *plane_state) 11736 { 11737 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11738 enum pipe pipe = plane->pipe; 11739 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0; 11740 unsigned long irqflags; 11741 11742 if (plane_state && plane_state->uapi.visible) { 11743 unsigned width = drm_rect_width(&plane_state->uapi.dst); 11744 unsigned height = drm_rect_height(&plane_state->uapi.dst); 11745 11746 cntl = plane_state->ctl | 11747 i9xx_cursor_ctl_crtc(crtc_state); 11748 11749 if (width != height) 11750 fbc_ctl = CUR_FBC_CTL_EN | (height - 1); 11751 11752 base = intel_cursor_base(plane_state); 11753 pos = intel_cursor_position(plane_state); 11754 } 11755 11756 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 11757 11758 /* 11759 * On some platforms writing CURCNTR first will also 11760 * cause CURPOS to be armed by the CURBASE write. 11761 * Without the CURCNTR write the CURPOS write would 11762 * arm itself. Thus we always update CURCNTR before 11763 * CURPOS. 11764 * 11765 * On other platforms CURPOS always requires the 11766 * CURBASE write to arm the update. Additonally 11767 * a write to any of the cursor register will cancel 11768 * an already armed cursor update. Thus leaving out 11769 * the CURBASE write after CURPOS could lead to a 11770 * cursor that doesn't appear to move, or even change 11771 * shape. Thus we always write CURBASE. 11772 * 11773 * The other registers are armed by by the CURBASE write 11774 * except when the plane is getting enabled at which time 11775 * the CURCNTR write arms the update. 11776 */ 11777 11778 if (INTEL_GEN(dev_priv) >= 9) 11779 skl_write_cursor_wm(plane, crtc_state); 11780 11781 if (plane->cursor.base != base || 11782 plane->cursor.size != fbc_ctl || 11783 plane->cursor.cntl != cntl) { 11784 if (HAS_CUR_FBC(dev_priv)) 11785 intel_de_write_fw(dev_priv, CUR_FBC_CTL(pipe), 11786 fbc_ctl); 11787 intel_de_write_fw(dev_priv, CURCNTR(pipe), cntl); 11788 intel_de_write_fw(dev_priv, CURPOS(pipe), pos); 11789 intel_de_write_fw(dev_priv, CURBASE(pipe), base); 11790 11791 plane->cursor.base = base; 11792 plane->cursor.size = fbc_ctl; 11793 plane->cursor.cntl = cntl; 11794 } else { 11795 intel_de_write_fw(dev_priv, CURPOS(pipe), pos); 11796 intel_de_write_fw(dev_priv, CURBASE(pipe), base); 11797 } 11798 11799 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 11800 } 11801 11802 static void i9xx_disable_cursor(struct intel_plane *plane, 11803 const struct intel_crtc_state *crtc_state) 11804 { 11805 i9xx_update_cursor(plane, crtc_state, NULL); 11806 } 11807 11808 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane, 11809 enum pipe *pipe) 11810 { 11811 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 11812 enum intel_display_power_domain power_domain; 11813 intel_wakeref_t wakeref; 11814 bool ret; 11815 u32 val; 11816 11817 /* 11818 * Not 100% correct for planes that can move between pipes, 11819 * but that's only the case for gen2-3 which don't have any 11820 * display power wells. 11821 */ 11822 power_domain = POWER_DOMAIN_PIPE(plane->pipe); 11823 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 11824 if (!wakeref) 11825 return false; 11826 11827 val = intel_de_read(dev_priv, CURCNTR(plane->pipe)); 11828 11829 ret = val & MCURSOR_MODE; 11830 11831 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 11832 *pipe = plane->pipe; 11833 else 11834 *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >> 11835 MCURSOR_PIPE_SELECT_SHIFT; 11836 11837 intel_display_power_put(dev_priv, power_domain, wakeref); 11838 11839 return ret; 11840 } 11841 11842 /* VESA 640x480x72Hz mode to set on the pipe */ 11843 static const struct drm_display_mode load_detect_mode = { 11844 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 11845 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 11846 }; 11847 11848 struct drm_framebuffer * 11849 intel_framebuffer_create(struct drm_i915_gem_object *obj, 11850 struct drm_mode_fb_cmd2 *mode_cmd) 11851 { 11852 struct intel_framebuffer *intel_fb; 11853 int ret; 11854 11855 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 11856 if (!intel_fb) 11857 return ERR_PTR(-ENOMEM); 11858 11859 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); 11860 if (ret) 11861 goto err; 11862 11863 return &intel_fb->base; 11864 11865 err: 11866 kfree(intel_fb); 11867 return ERR_PTR(ret); 11868 } 11869 11870 static int intel_modeset_disable_planes(struct drm_atomic_state *state, 11871 struct drm_crtc *crtc) 11872 { 11873 struct drm_plane *plane; 11874 struct drm_plane_state *plane_state; 11875 int ret, i; 11876 11877 ret = drm_atomic_add_affected_planes(state, crtc); 11878 if (ret) 11879 return ret; 11880 11881 for_each_new_plane_in_state(state, plane, plane_state, i) { 11882 if (plane_state->crtc != crtc) 11883 continue; 11884 11885 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); 11886 if (ret) 11887 return ret; 11888 11889 drm_atomic_set_fb_for_plane(plane_state, NULL); 11890 } 11891 11892 return 0; 11893 } 11894 11895 int intel_get_load_detect_pipe(struct drm_connector *connector, 11896 struct intel_load_detect_pipe *old, 11897 struct drm_modeset_acquire_ctx *ctx) 11898 { 11899 struct intel_crtc *intel_crtc; 11900 struct intel_encoder *intel_encoder = 11901 intel_attached_encoder(to_intel_connector(connector)); 11902 struct drm_crtc *possible_crtc; 11903 struct drm_encoder *encoder = &intel_encoder->base; 11904 struct drm_crtc *crtc = NULL; 11905 struct drm_device *dev = encoder->dev; 11906 struct drm_i915_private *dev_priv = to_i915(dev); 11907 struct drm_mode_config *config = &dev->mode_config; 11908 struct drm_atomic_state *state = NULL, *restore_state = NULL; 11909 struct drm_connector_state *connector_state; 11910 struct intel_crtc_state *crtc_state; 11911 int ret, i = -1; 11912 11913 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 11914 connector->base.id, connector->name, 11915 encoder->base.id, encoder->name); 11916 11917 old->restore_state = NULL; 11918 11919 drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex)); 11920 11921 /* 11922 * Algorithm gets a little messy: 11923 * 11924 * - if the connector already has an assigned crtc, use it (but make 11925 * sure it's on first) 11926 * 11927 * - try to find the first unused crtc that can drive this connector, 11928 * and use that if we find one 11929 */ 11930 11931 /* See if we already have a CRTC for this connector */ 11932 if (connector->state->crtc) { 11933 crtc = connector->state->crtc; 11934 11935 ret = drm_modeset_lock(&crtc->mutex, ctx); 11936 if (ret) 11937 goto fail; 11938 11939 /* Make sure the crtc and connector are running */ 11940 goto found; 11941 } 11942 11943 /* Find an unused one (if possible) */ 11944 for_each_crtc(dev, possible_crtc) { 11945 i++; 11946 if (!(encoder->possible_crtcs & (1 << i))) 11947 continue; 11948 11949 ret = drm_modeset_lock(&possible_crtc->mutex, ctx); 11950 if (ret) 11951 goto fail; 11952 11953 if (possible_crtc->state->enable) { 11954 drm_modeset_unlock(&possible_crtc->mutex); 11955 continue; 11956 } 11957 11958 crtc = possible_crtc; 11959 break; 11960 } 11961 11962 /* 11963 * If we didn't find an unused CRTC, don't use any. 11964 */ 11965 if (!crtc) { 11966 drm_dbg_kms(&dev_priv->drm, 11967 "no pipe available for load-detect\n"); 11968 ret = -ENODEV; 11969 goto fail; 11970 } 11971 11972 found: 11973 intel_crtc = to_intel_crtc(crtc); 11974 11975 state = drm_atomic_state_alloc(dev); 11976 restore_state = drm_atomic_state_alloc(dev); 11977 if (!state || !restore_state) { 11978 ret = -ENOMEM; 11979 goto fail; 11980 } 11981 11982 state->acquire_ctx = ctx; 11983 restore_state->acquire_ctx = ctx; 11984 11985 connector_state = drm_atomic_get_connector_state(state, connector); 11986 if (IS_ERR(connector_state)) { 11987 ret = PTR_ERR(connector_state); 11988 goto fail; 11989 } 11990 11991 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); 11992 if (ret) 11993 goto fail; 11994 11995 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); 11996 if (IS_ERR(crtc_state)) { 11997 ret = PTR_ERR(crtc_state); 11998 goto fail; 11999 } 12000 12001 crtc_state->uapi.active = true; 12002 12003 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi, 12004 &load_detect_mode); 12005 if (ret) 12006 goto fail; 12007 12008 ret = intel_modeset_disable_planes(state, crtc); 12009 if (ret) 12010 goto fail; 12011 12012 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 12013 if (!ret) 12014 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); 12015 if (!ret) 12016 ret = drm_atomic_add_affected_planes(restore_state, crtc); 12017 if (ret) { 12018 drm_dbg_kms(&dev_priv->drm, 12019 "Failed to create a copy of old state to restore: %i\n", 12020 ret); 12021 goto fail; 12022 } 12023 12024 ret = drm_atomic_commit(state); 12025 if (ret) { 12026 drm_dbg_kms(&dev_priv->drm, 12027 "failed to set mode on load-detect pipe\n"); 12028 goto fail; 12029 } 12030 12031 old->restore_state = restore_state; 12032 drm_atomic_state_put(state); 12033 12034 /* let the connector get through one full cycle before testing */ 12035 intel_wait_for_vblank(dev_priv, intel_crtc->pipe); 12036 return true; 12037 12038 fail: 12039 if (state) { 12040 drm_atomic_state_put(state); 12041 state = NULL; 12042 } 12043 if (restore_state) { 12044 drm_atomic_state_put(restore_state); 12045 restore_state = NULL; 12046 } 12047 12048 if (ret == -EDEADLK) 12049 return ret; 12050 12051 return false; 12052 } 12053 12054 void intel_release_load_detect_pipe(struct drm_connector *connector, 12055 struct intel_load_detect_pipe *old, 12056 struct drm_modeset_acquire_ctx *ctx) 12057 { 12058 struct intel_encoder *intel_encoder = 12059 intel_attached_encoder(to_intel_connector(connector)); 12060 struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev); 12061 struct drm_encoder *encoder = &intel_encoder->base; 12062 struct drm_atomic_state *state = old->restore_state; 12063 int ret; 12064 12065 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 12066 connector->base.id, connector->name, 12067 encoder->base.id, encoder->name); 12068 12069 if (!state) 12070 return; 12071 12072 ret = drm_atomic_helper_commit_duplicated_state(state, ctx); 12073 if (ret) 12074 drm_dbg_kms(&i915->drm, 12075 "Couldn't release load detect pipe: %i\n", ret); 12076 drm_atomic_state_put(state); 12077 } 12078 12079 static int i9xx_pll_refclk(struct drm_device *dev, 12080 const struct intel_crtc_state *pipe_config) 12081 { 12082 struct drm_i915_private *dev_priv = to_i915(dev); 12083 u32 dpll = pipe_config->dpll_hw_state.dpll; 12084 12085 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 12086 return dev_priv->vbt.lvds_ssc_freq; 12087 else if (HAS_PCH_SPLIT(dev_priv)) 12088 return 120000; 12089 else if (!IS_GEN(dev_priv, 2)) 12090 return 96000; 12091 else 12092 return 48000; 12093 } 12094 12095 /* Returns the clock of the currently programmed mode of the given pipe. */ 12096 static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 12097 struct intel_crtc_state *pipe_config) 12098 { 12099 struct drm_device *dev = crtc->base.dev; 12100 struct drm_i915_private *dev_priv = to_i915(dev); 12101 enum pipe pipe = crtc->pipe; 12102 u32 dpll = pipe_config->dpll_hw_state.dpll; 12103 u32 fp; 12104 struct dpll clock; 12105 int port_clock; 12106 int refclk = i9xx_pll_refclk(dev, pipe_config); 12107 12108 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 12109 fp = pipe_config->dpll_hw_state.fp0; 12110 else 12111 fp = pipe_config->dpll_hw_state.fp1; 12112 12113 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 12114 if (IS_PINEVIEW(dev_priv)) { 12115 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 12116 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 12117 } else { 12118 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 12119 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 12120 } 12121 12122 if (!IS_GEN(dev_priv, 2)) { 12123 if (IS_PINEVIEW(dev_priv)) 12124 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 12125 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 12126 else 12127 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 12128 DPLL_FPA01_P1_POST_DIV_SHIFT); 12129 12130 switch (dpll & DPLL_MODE_MASK) { 12131 case DPLLB_MODE_DAC_SERIAL: 12132 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 12133 5 : 10; 12134 break; 12135 case DPLLB_MODE_LVDS: 12136 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 12137 7 : 14; 12138 break; 12139 default: 12140 drm_dbg_kms(&dev_priv->drm, 12141 "Unknown DPLL mode %08x in programmed " 12142 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 12143 return; 12144 } 12145 12146 if (IS_PINEVIEW(dev_priv)) 12147 port_clock = pnv_calc_dpll_params(refclk, &clock); 12148 else 12149 port_clock = i9xx_calc_dpll_params(refclk, &clock); 12150 } else { 12151 u32 lvds = IS_I830(dev_priv) ? 0 : intel_de_read(dev_priv, 12152 LVDS); 12153 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 12154 12155 if (is_lvds) { 12156 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 12157 DPLL_FPA01_P1_POST_DIV_SHIFT); 12158 12159 if (lvds & LVDS_CLKB_POWER_UP) 12160 clock.p2 = 7; 12161 else 12162 clock.p2 = 14; 12163 } else { 12164 if (dpll & PLL_P1_DIVIDE_BY_TWO) 12165 clock.p1 = 2; 12166 else { 12167 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 12168 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 12169 } 12170 if (dpll & PLL_P2_DIVIDE_BY_4) 12171 clock.p2 = 4; 12172 else 12173 clock.p2 = 2; 12174 } 12175 12176 port_clock = i9xx_calc_dpll_params(refclk, &clock); 12177 } 12178 12179 /* 12180 * This value includes pixel_multiplier. We will use 12181 * port_clock to compute adjusted_mode.crtc_clock in the 12182 * encoder's get_config() function. 12183 */ 12184 pipe_config->port_clock = port_clock; 12185 } 12186 12187 int intel_dotclock_calculate(int link_freq, 12188 const struct intel_link_m_n *m_n) 12189 { 12190 /* 12191 * The calculation for the data clock is: 12192 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 12193 * But we want to avoid losing precison if possible, so: 12194 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 12195 * 12196 * and the link clock is simpler: 12197 * link_clock = (m * link_clock) / n 12198 */ 12199 12200 if (!m_n->link_n) 12201 return 0; 12202 12203 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); 12204 } 12205 12206 static void ilk_pch_clock_get(struct intel_crtc *crtc, 12207 struct intel_crtc_state *pipe_config) 12208 { 12209 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12210 12211 /* read out port_clock from the DPLL */ 12212 i9xx_crtc_clock_get(crtc, pipe_config); 12213 12214 /* 12215 * In case there is an active pipe without active ports, 12216 * we may need some idea for the dotclock anyway. 12217 * Calculate one based on the FDI configuration. 12218 */ 12219 pipe_config->hw.adjusted_mode.crtc_clock = 12220 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 12221 &pipe_config->fdi_m_n); 12222 } 12223 12224 static void intel_crtc_state_reset(struct intel_crtc_state *crtc_state, 12225 struct intel_crtc *crtc) 12226 { 12227 memset(crtc_state, 0, sizeof(*crtc_state)); 12228 12229 __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base); 12230 12231 crtc_state->cpu_transcoder = INVALID_TRANSCODER; 12232 crtc_state->master_transcoder = INVALID_TRANSCODER; 12233 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 12234 crtc_state->output_format = INTEL_OUTPUT_FORMAT_INVALID; 12235 crtc_state->scaler_state.scaler_id = -1; 12236 crtc_state->mst_master_transcoder = INVALID_TRANSCODER; 12237 } 12238 12239 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc) 12240 { 12241 struct intel_crtc_state *crtc_state; 12242 12243 crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL); 12244 12245 if (crtc_state) 12246 intel_crtc_state_reset(crtc_state, crtc); 12247 12248 return crtc_state; 12249 } 12250 12251 /* Returns the currently programmed mode of the given encoder. */ 12252 struct drm_display_mode * 12253 intel_encoder_current_mode(struct intel_encoder *encoder) 12254 { 12255 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 12256 struct intel_crtc_state *crtc_state; 12257 struct drm_display_mode *mode; 12258 struct intel_crtc *crtc; 12259 enum pipe pipe; 12260 12261 if (!encoder->get_hw_state(encoder, &pipe)) 12262 return NULL; 12263 12264 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 12265 12266 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 12267 if (!mode) 12268 return NULL; 12269 12270 crtc_state = intel_crtc_state_alloc(crtc); 12271 if (!crtc_state) { 12272 kfree(mode); 12273 return NULL; 12274 } 12275 12276 if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) { 12277 kfree(crtc_state); 12278 kfree(mode); 12279 return NULL; 12280 } 12281 12282 encoder->get_config(encoder, crtc_state); 12283 12284 intel_mode_from_pipe_config(mode, crtc_state); 12285 12286 kfree(crtc_state); 12287 12288 return mode; 12289 } 12290 12291 static void intel_crtc_destroy(struct drm_crtc *crtc) 12292 { 12293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 12294 12295 drm_crtc_cleanup(crtc); 12296 kfree(intel_crtc); 12297 } 12298 12299 /** 12300 * intel_wm_need_update - Check whether watermarks need updating 12301 * @cur: current plane state 12302 * @new: new plane state 12303 * 12304 * Check current plane state versus the new one to determine whether 12305 * watermarks need to be recalculated. 12306 * 12307 * Returns true or false. 12308 */ 12309 static bool intel_wm_need_update(const struct intel_plane_state *cur, 12310 struct intel_plane_state *new) 12311 { 12312 /* Update watermarks on tiling or size changes. */ 12313 if (new->uapi.visible != cur->uapi.visible) 12314 return true; 12315 12316 if (!cur->hw.fb || !new->hw.fb) 12317 return false; 12318 12319 if (cur->hw.fb->modifier != new->hw.fb->modifier || 12320 cur->hw.rotation != new->hw.rotation || 12321 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) || 12322 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) || 12323 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) || 12324 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst)) 12325 return true; 12326 12327 return false; 12328 } 12329 12330 static bool needs_scaling(const struct intel_plane_state *state) 12331 { 12332 int src_w = drm_rect_width(&state->uapi.src) >> 16; 12333 int src_h = drm_rect_height(&state->uapi.src) >> 16; 12334 int dst_w = drm_rect_width(&state->uapi.dst); 12335 int dst_h = drm_rect_height(&state->uapi.dst); 12336 12337 return (src_w != dst_w || src_h != dst_h); 12338 } 12339 12340 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state, 12341 struct intel_crtc_state *crtc_state, 12342 const struct intel_plane_state *old_plane_state, 12343 struct intel_plane_state *plane_state) 12344 { 12345 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12346 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 12347 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12348 bool mode_changed = needs_modeset(crtc_state); 12349 bool was_crtc_enabled = old_crtc_state->hw.active; 12350 bool is_crtc_enabled = crtc_state->hw.active; 12351 bool turn_off, turn_on, visible, was_visible; 12352 int ret; 12353 12354 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) { 12355 ret = skl_update_scaler_plane(crtc_state, plane_state); 12356 if (ret) 12357 return ret; 12358 } 12359 12360 was_visible = old_plane_state->uapi.visible; 12361 visible = plane_state->uapi.visible; 12362 12363 if (!was_crtc_enabled && drm_WARN_ON(&dev_priv->drm, was_visible)) 12364 was_visible = false; 12365 12366 /* 12367 * Visibility is calculated as if the crtc was on, but 12368 * after scaler setup everything depends on it being off 12369 * when the crtc isn't active. 12370 * 12371 * FIXME this is wrong for watermarks. Watermarks should also 12372 * be computed as if the pipe would be active. Perhaps move 12373 * per-plane wm computation to the .check_plane() hook, and 12374 * only combine the results from all planes in the current place? 12375 */ 12376 if (!is_crtc_enabled) { 12377 plane_state->uapi.visible = visible = false; 12378 crtc_state->active_planes &= ~BIT(plane->id); 12379 crtc_state->data_rate[plane->id] = 0; 12380 crtc_state->min_cdclk[plane->id] = 0; 12381 } 12382 12383 if (!was_visible && !visible) 12384 return 0; 12385 12386 turn_off = was_visible && (!visible || mode_changed); 12387 turn_on = visible && (!was_visible || mode_changed); 12388 12389 drm_dbg_atomic(&dev_priv->drm, 12390 "[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n", 12391 crtc->base.base.id, crtc->base.name, 12392 plane->base.base.id, plane->base.name, 12393 was_visible, visible, 12394 turn_off, turn_on, mode_changed); 12395 12396 if (turn_on) { 12397 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 12398 crtc_state->update_wm_pre = true; 12399 12400 /* must disable cxsr around plane enable/disable */ 12401 if (plane->id != PLANE_CURSOR) 12402 crtc_state->disable_cxsr = true; 12403 } else if (turn_off) { 12404 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) 12405 crtc_state->update_wm_post = true; 12406 12407 /* must disable cxsr around plane enable/disable */ 12408 if (plane->id != PLANE_CURSOR) 12409 crtc_state->disable_cxsr = true; 12410 } else if (intel_wm_need_update(old_plane_state, plane_state)) { 12411 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) { 12412 /* FIXME bollocks */ 12413 crtc_state->update_wm_pre = true; 12414 crtc_state->update_wm_post = true; 12415 } 12416 } 12417 12418 if (visible || was_visible) 12419 crtc_state->fb_bits |= plane->frontbuffer_bit; 12420 12421 /* 12422 * ILK/SNB DVSACNTR/Sprite Enable 12423 * IVB SPR_CTL/Sprite Enable 12424 * "When in Self Refresh Big FIFO mode, a write to enable the 12425 * plane will be internally buffered and delayed while Big FIFO 12426 * mode is exiting." 12427 * 12428 * Which means that enabling the sprite can take an extra frame 12429 * when we start in big FIFO mode (LP1+). Thus we need to drop 12430 * down to LP0 and wait for vblank in order to make sure the 12431 * sprite gets enabled on the next vblank after the register write. 12432 * Doing otherwise would risk enabling the sprite one frame after 12433 * we've already signalled flip completion. We can resume LP1+ 12434 * once the sprite has been enabled. 12435 * 12436 * 12437 * WaCxSRDisabledForSpriteScaling:ivb 12438 * IVB SPR_SCALE/Scaling Enable 12439 * "Low Power watermarks must be disabled for at least one 12440 * frame before enabling sprite scaling, and kept disabled 12441 * until sprite scaling is disabled." 12442 * 12443 * ILK/SNB DVSASCALE/Scaling Enable 12444 * "When in Self Refresh Big FIFO mode, scaling enable will be 12445 * masked off while Big FIFO mode is exiting." 12446 * 12447 * Despite the w/a only being listed for IVB we assume that 12448 * the ILK/SNB note has similar ramifications, hence we apply 12449 * the w/a on all three platforms. 12450 * 12451 * With experimental results seems this is needed also for primary 12452 * plane, not only sprite plane. 12453 */ 12454 if (plane->id != PLANE_CURSOR && 12455 (IS_GEN_RANGE(dev_priv, 5, 6) || 12456 IS_IVYBRIDGE(dev_priv)) && 12457 (turn_on || (!needs_scaling(old_plane_state) && 12458 needs_scaling(plane_state)))) 12459 crtc_state->disable_lp_wm = true; 12460 12461 return 0; 12462 } 12463 12464 static bool encoders_cloneable(const struct intel_encoder *a, 12465 const struct intel_encoder *b) 12466 { 12467 /* masks could be asymmetric, so check both ways */ 12468 return a == b || (a->cloneable & (1 << b->type) && 12469 b->cloneable & (1 << a->type)); 12470 } 12471 12472 static bool check_single_encoder_cloning(struct drm_atomic_state *state, 12473 struct intel_crtc *crtc, 12474 struct intel_encoder *encoder) 12475 { 12476 struct intel_encoder *source_encoder; 12477 struct drm_connector *connector; 12478 struct drm_connector_state *connector_state; 12479 int i; 12480 12481 for_each_new_connector_in_state(state, connector, connector_state, i) { 12482 if (connector_state->crtc != &crtc->base) 12483 continue; 12484 12485 source_encoder = 12486 to_intel_encoder(connector_state->best_encoder); 12487 if (!encoders_cloneable(encoder, source_encoder)) 12488 return false; 12489 } 12490 12491 return true; 12492 } 12493 12494 static int icl_add_linked_planes(struct intel_atomic_state *state) 12495 { 12496 struct intel_plane *plane, *linked; 12497 struct intel_plane_state *plane_state, *linked_plane_state; 12498 int i; 12499 12500 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12501 linked = plane_state->planar_linked_plane; 12502 12503 if (!linked) 12504 continue; 12505 12506 linked_plane_state = intel_atomic_get_plane_state(state, linked); 12507 if (IS_ERR(linked_plane_state)) 12508 return PTR_ERR(linked_plane_state); 12509 12510 WARN_ON(linked_plane_state->planar_linked_plane != plane); 12511 WARN_ON(linked_plane_state->planar_slave == plane_state->planar_slave); 12512 } 12513 12514 return 0; 12515 } 12516 12517 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) 12518 { 12519 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12520 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12521 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); 12522 struct intel_plane *plane, *linked; 12523 struct intel_plane_state *plane_state; 12524 int i; 12525 12526 if (INTEL_GEN(dev_priv) < 11) 12527 return 0; 12528 12529 /* 12530 * Destroy all old plane links and make the slave plane invisible 12531 * in the crtc_state->active_planes mask. 12532 */ 12533 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12534 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) 12535 continue; 12536 12537 plane_state->planar_linked_plane = NULL; 12538 if (plane_state->planar_slave && !plane_state->uapi.visible) { 12539 crtc_state->active_planes &= ~BIT(plane->id); 12540 crtc_state->update_planes |= BIT(plane->id); 12541 } 12542 12543 plane_state->planar_slave = false; 12544 } 12545 12546 if (!crtc_state->nv12_planes) 12547 return 0; 12548 12549 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 12550 struct intel_plane_state *linked_state = NULL; 12551 12552 if (plane->pipe != crtc->pipe || 12553 !(crtc_state->nv12_planes & BIT(plane->id))) 12554 continue; 12555 12556 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { 12557 if (!icl_is_nv12_y_plane(linked->id)) 12558 continue; 12559 12560 if (crtc_state->active_planes & BIT(linked->id)) 12561 continue; 12562 12563 linked_state = intel_atomic_get_plane_state(state, linked); 12564 if (IS_ERR(linked_state)) 12565 return PTR_ERR(linked_state); 12566 12567 break; 12568 } 12569 12570 if (!linked_state) { 12571 drm_dbg_kms(&dev_priv->drm, 12572 "Need %d free Y planes for planar YUV\n", 12573 hweight8(crtc_state->nv12_planes)); 12574 12575 return -EINVAL; 12576 } 12577 12578 plane_state->planar_linked_plane = linked; 12579 12580 linked_state->planar_slave = true; 12581 linked_state->planar_linked_plane = plane; 12582 crtc_state->active_planes |= BIT(linked->id); 12583 crtc_state->update_planes |= BIT(linked->id); 12584 drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n", 12585 linked->base.name, plane->base.name); 12586 12587 /* Copy parameters to slave plane */ 12588 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE; 12589 linked_state->color_ctl = plane_state->color_ctl; 12590 linked_state->view = plane_state->view; 12591 memcpy(linked_state->color_plane, plane_state->color_plane, 12592 sizeof(linked_state->color_plane)); 12593 12594 intel_plane_copy_uapi_to_hw_state(linked_state, plane_state); 12595 linked_state->uapi.src = plane_state->uapi.src; 12596 linked_state->uapi.dst = plane_state->uapi.dst; 12597 12598 if (icl_is_hdr_plane(dev_priv, plane->id)) { 12599 if (linked->id == PLANE_SPRITE5) 12600 plane_state->cus_ctl |= PLANE_CUS_PLANE_7; 12601 else if (linked->id == PLANE_SPRITE4) 12602 plane_state->cus_ctl |= PLANE_CUS_PLANE_6; 12603 else 12604 MISSING_CASE(linked->id); 12605 } 12606 } 12607 12608 return 0; 12609 } 12610 12611 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) 12612 { 12613 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 12614 struct intel_atomic_state *state = 12615 to_intel_atomic_state(new_crtc_state->uapi.state); 12616 const struct intel_crtc_state *old_crtc_state = 12617 intel_atomic_get_old_crtc_state(state, crtc); 12618 12619 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; 12620 } 12621 12622 static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) 12623 { 12624 const struct drm_display_mode *adjusted_mode = 12625 &crtc_state->hw.adjusted_mode; 12626 12627 if (!crtc_state->hw.enable) 12628 return 0; 12629 12630 return DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, 12631 adjusted_mode->crtc_clock); 12632 } 12633 12634 static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, 12635 const struct intel_cdclk_state *cdclk_state) 12636 { 12637 const struct drm_display_mode *adjusted_mode = 12638 &crtc_state->hw.adjusted_mode; 12639 12640 if (!crtc_state->hw.enable) 12641 return 0; 12642 12643 return DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8, 12644 cdclk_state->logical.cdclk); 12645 } 12646 12647 static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) 12648 { 12649 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 12650 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12651 const struct drm_display_mode *adjusted_mode = 12652 &crtc_state->hw.adjusted_mode; 12653 u16 linetime_wm; 12654 12655 if (!crtc_state->hw.enable) 12656 return 0; 12657 12658 linetime_wm = DIV_ROUND_UP(adjusted_mode->crtc_htotal * 1000 * 8, 12659 crtc_state->pixel_rate); 12660 12661 /* Display WA #1135: BXT:ALL GLK:ALL */ 12662 if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled) 12663 linetime_wm /= 2; 12664 12665 return linetime_wm; 12666 } 12667 12668 static int hsw_compute_linetime_wm(struct intel_atomic_state *state, 12669 struct intel_crtc *crtc) 12670 { 12671 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12672 struct intel_crtc_state *crtc_state = 12673 intel_atomic_get_new_crtc_state(state, crtc); 12674 const struct intel_cdclk_state *cdclk_state; 12675 12676 if (INTEL_GEN(dev_priv) >= 9) 12677 crtc_state->linetime = skl_linetime_wm(crtc_state); 12678 else 12679 crtc_state->linetime = hsw_linetime_wm(crtc_state); 12680 12681 if (!hsw_crtc_supports_ips(crtc)) 12682 return 0; 12683 12684 cdclk_state = intel_atomic_get_cdclk_state(state); 12685 if (IS_ERR(cdclk_state)) 12686 return PTR_ERR(cdclk_state); 12687 12688 crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, 12689 cdclk_state); 12690 12691 return 0; 12692 } 12693 12694 static int intel_crtc_atomic_check(struct intel_atomic_state *state, 12695 struct intel_crtc *crtc) 12696 { 12697 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12698 struct intel_crtc_state *crtc_state = 12699 intel_atomic_get_new_crtc_state(state, crtc); 12700 bool mode_changed = needs_modeset(crtc_state); 12701 int ret; 12702 12703 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) && 12704 mode_changed && !crtc_state->hw.active) 12705 crtc_state->update_wm_post = true; 12706 12707 if (mode_changed && crtc_state->hw.enable && 12708 dev_priv->display.crtc_compute_clock && 12709 !drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll)) { 12710 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state); 12711 if (ret) 12712 return ret; 12713 } 12714 12715 /* 12716 * May need to update pipe gamma enable bits 12717 * when C8 planes are getting enabled/disabled. 12718 */ 12719 if (c8_planes_changed(crtc_state)) 12720 crtc_state->uapi.color_mgmt_changed = true; 12721 12722 if (mode_changed || crtc_state->update_pipe || 12723 crtc_state->uapi.color_mgmt_changed) { 12724 ret = intel_color_check(crtc_state); 12725 if (ret) 12726 return ret; 12727 } 12728 12729 if (dev_priv->display.compute_pipe_wm) { 12730 ret = dev_priv->display.compute_pipe_wm(crtc_state); 12731 if (ret) { 12732 drm_dbg_kms(&dev_priv->drm, 12733 "Target pipe watermarks are invalid\n"); 12734 return ret; 12735 } 12736 } 12737 12738 if (dev_priv->display.compute_intermediate_wm) { 12739 if (drm_WARN_ON(&dev_priv->drm, 12740 !dev_priv->display.compute_pipe_wm)) 12741 return 0; 12742 12743 /* 12744 * Calculate 'intermediate' watermarks that satisfy both the 12745 * old state and the new state. We can program these 12746 * immediately. 12747 */ 12748 ret = dev_priv->display.compute_intermediate_wm(crtc_state); 12749 if (ret) { 12750 drm_dbg_kms(&dev_priv->drm, 12751 "No valid intermediate pipe watermarks are possible\n"); 12752 return ret; 12753 } 12754 } 12755 12756 if (INTEL_GEN(dev_priv) >= 9) { 12757 if (mode_changed || crtc_state->update_pipe) { 12758 ret = skl_update_scaler_crtc(crtc_state); 12759 if (ret) 12760 return ret; 12761 } 12762 12763 ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state); 12764 if (ret) 12765 return ret; 12766 } 12767 12768 if (HAS_IPS(dev_priv)) { 12769 ret = hsw_compute_ips_config(crtc_state); 12770 if (ret) 12771 return ret; 12772 } 12773 12774 if (INTEL_GEN(dev_priv) >= 9 || 12775 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 12776 ret = hsw_compute_linetime_wm(state, crtc); 12777 if (ret) 12778 return ret; 12779 12780 } 12781 12782 return 0; 12783 } 12784 12785 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 12786 { 12787 struct intel_connector *connector; 12788 struct drm_connector_list_iter conn_iter; 12789 12790 drm_connector_list_iter_begin(dev, &conn_iter); 12791 for_each_intel_connector_iter(connector, &conn_iter) { 12792 if (connector->base.state->crtc) 12793 drm_connector_put(&connector->base); 12794 12795 if (connector->base.encoder) { 12796 connector->base.state->best_encoder = 12797 connector->base.encoder; 12798 connector->base.state->crtc = 12799 connector->base.encoder->crtc; 12800 12801 drm_connector_get(&connector->base); 12802 } else { 12803 connector->base.state->best_encoder = NULL; 12804 connector->base.state->crtc = NULL; 12805 } 12806 } 12807 drm_connector_list_iter_end(&conn_iter); 12808 } 12809 12810 static int 12811 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, 12812 struct intel_crtc_state *pipe_config) 12813 { 12814 struct drm_connector *connector = conn_state->connector; 12815 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 12816 const struct drm_display_info *info = &connector->display_info; 12817 int bpp; 12818 12819 switch (conn_state->max_bpc) { 12820 case 6 ... 7: 12821 bpp = 6 * 3; 12822 break; 12823 case 8 ... 9: 12824 bpp = 8 * 3; 12825 break; 12826 case 10 ... 11: 12827 bpp = 10 * 3; 12828 break; 12829 case 12: 12830 bpp = 12 * 3; 12831 break; 12832 default: 12833 return -EINVAL; 12834 } 12835 12836 if (bpp < pipe_config->pipe_bpp) { 12837 drm_dbg_kms(&i915->drm, 12838 "[CONNECTOR:%d:%s] Limiting display bpp to %d instead of " 12839 "EDID bpp %d, requested bpp %d, max platform bpp %d\n", 12840 connector->base.id, connector->name, 12841 bpp, 3 * info->bpc, 12842 3 * conn_state->max_requested_bpc, 12843 pipe_config->pipe_bpp); 12844 12845 pipe_config->pipe_bpp = bpp; 12846 } 12847 12848 return 0; 12849 } 12850 12851 static int 12852 compute_baseline_pipe_bpp(struct intel_crtc *crtc, 12853 struct intel_crtc_state *pipe_config) 12854 { 12855 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 12856 struct drm_atomic_state *state = pipe_config->uapi.state; 12857 struct drm_connector *connector; 12858 struct drm_connector_state *connector_state; 12859 int bpp, i; 12860 12861 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 12862 IS_CHERRYVIEW(dev_priv))) 12863 bpp = 10*3; 12864 else if (INTEL_GEN(dev_priv) >= 5) 12865 bpp = 12*3; 12866 else 12867 bpp = 8*3; 12868 12869 pipe_config->pipe_bpp = bpp; 12870 12871 /* Clamp display bpp to connector max bpp */ 12872 for_each_new_connector_in_state(state, connector, connector_state, i) { 12873 int ret; 12874 12875 if (connector_state->crtc != &crtc->base) 12876 continue; 12877 12878 ret = compute_sink_pipe_bpp(connector_state, pipe_config); 12879 if (ret) 12880 return ret; 12881 } 12882 12883 return 0; 12884 } 12885 12886 static void intel_dump_crtc_timings(const struct drm_display_mode *mode) 12887 { 12888 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, " 12889 "type: 0x%x flags: 0x%x\n", 12890 mode->crtc_clock, 12891 mode->crtc_hdisplay, mode->crtc_hsync_start, 12892 mode->crtc_hsync_end, mode->crtc_htotal, 12893 mode->crtc_vdisplay, mode->crtc_vsync_start, 12894 mode->crtc_vsync_end, mode->crtc_vtotal, 12895 mode->type, mode->flags); 12896 } 12897 12898 static inline void 12899 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config, 12900 const char *id, unsigned int lane_count, 12901 const struct intel_link_m_n *m_n) 12902 { 12903 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 12904 12905 drm_dbg_kms(&i915->drm, 12906 "%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 12907 id, lane_count, 12908 m_n->gmch_m, m_n->gmch_n, 12909 m_n->link_m, m_n->link_n, m_n->tu); 12910 } 12911 12912 static void 12913 intel_dump_infoframe(struct drm_i915_private *dev_priv, 12914 const union hdmi_infoframe *frame) 12915 { 12916 if (!drm_debug_enabled(DRM_UT_KMS)) 12917 return; 12918 12919 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame); 12920 } 12921 12922 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x 12923 12924 static const char * const output_type_str[] = { 12925 OUTPUT_TYPE(UNUSED), 12926 OUTPUT_TYPE(ANALOG), 12927 OUTPUT_TYPE(DVO), 12928 OUTPUT_TYPE(SDVO), 12929 OUTPUT_TYPE(LVDS), 12930 OUTPUT_TYPE(TVOUT), 12931 OUTPUT_TYPE(HDMI), 12932 OUTPUT_TYPE(DP), 12933 OUTPUT_TYPE(EDP), 12934 OUTPUT_TYPE(DSI), 12935 OUTPUT_TYPE(DDI), 12936 OUTPUT_TYPE(DP_MST), 12937 }; 12938 12939 #undef OUTPUT_TYPE 12940 12941 static void snprintf_output_types(char *buf, size_t len, 12942 unsigned int output_types) 12943 { 12944 char *str = buf; 12945 int i; 12946 12947 str[0] = '\0'; 12948 12949 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) { 12950 int r; 12951 12952 if ((output_types & BIT(i)) == 0) 12953 continue; 12954 12955 r = snprintf(str, len, "%s%s", 12956 str != buf ? "," : "", output_type_str[i]); 12957 if (r >= len) 12958 break; 12959 str += r; 12960 len -= r; 12961 12962 output_types &= ~BIT(i); 12963 } 12964 12965 WARN_ON_ONCE(output_types != 0); 12966 } 12967 12968 static const char * const output_format_str[] = { 12969 [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid", 12970 [INTEL_OUTPUT_FORMAT_RGB] = "RGB", 12971 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0", 12972 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4", 12973 }; 12974 12975 static const char *output_formats(enum intel_output_format format) 12976 { 12977 if (format >= ARRAY_SIZE(output_format_str)) 12978 format = INTEL_OUTPUT_FORMAT_INVALID; 12979 return output_format_str[format]; 12980 } 12981 12982 static void intel_dump_plane_state(const struct intel_plane_state *plane_state) 12983 { 12984 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 12985 struct drm_i915_private *i915 = to_i915(plane->base.dev); 12986 const struct drm_framebuffer *fb = plane_state->hw.fb; 12987 struct drm_format_name_buf format_name; 12988 12989 if (!fb) { 12990 drm_dbg_kms(&i915->drm, 12991 "[PLANE:%d:%s] fb: [NOFB], visible: %s\n", 12992 plane->base.base.id, plane->base.name, 12993 yesno(plane_state->uapi.visible)); 12994 return; 12995 } 12996 12997 drm_dbg_kms(&i915->drm, 12998 "[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n", 12999 plane->base.base.id, plane->base.name, 13000 fb->base.id, fb->width, fb->height, 13001 drm_get_format_name(fb->format->format, &format_name), 13002 yesno(plane_state->uapi.visible)); 13003 drm_dbg_kms(&i915->drm, "\trotation: 0x%x, scaler: %d\n", 13004 plane_state->hw.rotation, plane_state->scaler_id); 13005 if (plane_state->uapi.visible) 13006 drm_dbg_kms(&i915->drm, 13007 "\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n", 13008 DRM_RECT_FP_ARG(&plane_state->uapi.src), 13009 DRM_RECT_ARG(&plane_state->uapi.dst)); 13010 } 13011 13012 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config, 13013 struct intel_atomic_state *state, 13014 const char *context) 13015 { 13016 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 13017 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13018 const struct intel_plane_state *plane_state; 13019 struct intel_plane *plane; 13020 char buf[64]; 13021 int i; 13022 13023 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s] enable: %s %s\n", 13024 crtc->base.base.id, crtc->base.name, 13025 yesno(pipe_config->hw.enable), context); 13026 13027 if (!pipe_config->hw.enable) 13028 goto dump_planes; 13029 13030 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types); 13031 drm_dbg_kms(&dev_priv->drm, 13032 "active: %s, output_types: %s (0x%x), output format: %s\n", 13033 yesno(pipe_config->hw.active), 13034 buf, pipe_config->output_types, 13035 output_formats(pipe_config->output_format)); 13036 13037 drm_dbg_kms(&dev_priv->drm, 13038 "cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n", 13039 transcoder_name(pipe_config->cpu_transcoder), 13040 pipe_config->pipe_bpp, pipe_config->dither); 13041 13042 if (pipe_config->has_pch_encoder) 13043 intel_dump_m_n_config(pipe_config, "fdi", 13044 pipe_config->fdi_lanes, 13045 &pipe_config->fdi_m_n); 13046 13047 if (intel_crtc_has_dp_encoder(pipe_config)) { 13048 intel_dump_m_n_config(pipe_config, "dp m_n", 13049 pipe_config->lane_count, &pipe_config->dp_m_n); 13050 if (pipe_config->has_drrs) 13051 intel_dump_m_n_config(pipe_config, "dp m2_n2", 13052 pipe_config->lane_count, 13053 &pipe_config->dp_m2_n2); 13054 } 13055 13056 drm_dbg_kms(&dev_priv->drm, 13057 "audio: %i, infoframes: %i, infoframes enabled: 0x%x\n", 13058 pipe_config->has_audio, pipe_config->has_infoframe, 13059 pipe_config->infoframes.enable); 13060 13061 if (pipe_config->infoframes.enable & 13062 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) 13063 drm_dbg_kms(&dev_priv->drm, "GCP: 0x%x\n", 13064 pipe_config->infoframes.gcp); 13065 if (pipe_config->infoframes.enable & 13066 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) 13067 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi); 13068 if (pipe_config->infoframes.enable & 13069 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD)) 13070 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd); 13071 if (pipe_config->infoframes.enable & 13072 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR)) 13073 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi); 13074 13075 drm_dbg_kms(&dev_priv->drm, "requested mode:\n"); 13076 drm_mode_debug_printmodeline(&pipe_config->hw.mode); 13077 drm_dbg_kms(&dev_priv->drm, "adjusted mode:\n"); 13078 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode); 13079 intel_dump_crtc_timings(&pipe_config->hw.adjusted_mode); 13080 drm_dbg_kms(&dev_priv->drm, 13081 "port clock: %d, pipe src size: %dx%d, pixel rate %d\n", 13082 pipe_config->port_clock, 13083 pipe_config->pipe_src_w, pipe_config->pipe_src_h, 13084 pipe_config->pixel_rate); 13085 13086 drm_dbg_kms(&dev_priv->drm, "linetime: %d, ips linetime: %d\n", 13087 pipe_config->linetime, pipe_config->ips_linetime); 13088 13089 if (INTEL_GEN(dev_priv) >= 9) 13090 drm_dbg_kms(&dev_priv->drm, 13091 "num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 13092 crtc->num_scalers, 13093 pipe_config->scaler_state.scaler_users, 13094 pipe_config->scaler_state.scaler_id); 13095 13096 if (HAS_GMCH(dev_priv)) 13097 drm_dbg_kms(&dev_priv->drm, 13098 "gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 13099 pipe_config->gmch_pfit.control, 13100 pipe_config->gmch_pfit.pgm_ratios, 13101 pipe_config->gmch_pfit.lvds_border_bits); 13102 else 13103 drm_dbg_kms(&dev_priv->drm, 13104 "pch pfit: pos: 0x%08x, size: 0x%08x, %s, force thru: %s\n", 13105 pipe_config->pch_pfit.pos, 13106 pipe_config->pch_pfit.size, 13107 enableddisabled(pipe_config->pch_pfit.enabled), 13108 yesno(pipe_config->pch_pfit.force_thru)); 13109 13110 drm_dbg_kms(&dev_priv->drm, "ips: %i, double wide: %i\n", 13111 pipe_config->ips_enabled, pipe_config->double_wide); 13112 13113 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state); 13114 13115 if (IS_CHERRYVIEW(dev_priv)) 13116 drm_dbg_kms(&dev_priv->drm, 13117 "cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 13118 pipe_config->cgm_mode, pipe_config->gamma_mode, 13119 pipe_config->gamma_enable, pipe_config->csc_enable); 13120 else 13121 drm_dbg_kms(&dev_priv->drm, 13122 "csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n", 13123 pipe_config->csc_mode, pipe_config->gamma_mode, 13124 pipe_config->gamma_enable, pipe_config->csc_enable); 13125 13126 drm_dbg_kms(&dev_priv->drm, "MST master transcoder: %s\n", 13127 transcoder_name(pipe_config->mst_master_transcoder)); 13128 13129 dump_planes: 13130 if (!state) 13131 return; 13132 13133 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 13134 if (plane->pipe == crtc->pipe) 13135 intel_dump_plane_state(plane_state); 13136 } 13137 } 13138 13139 static bool check_digital_port_conflicts(struct intel_atomic_state *state) 13140 { 13141 struct drm_device *dev = state->base.dev; 13142 struct drm_connector *connector; 13143 struct drm_connector_list_iter conn_iter; 13144 unsigned int used_ports = 0; 13145 unsigned int used_mst_ports = 0; 13146 bool ret = true; 13147 13148 /* 13149 * We're going to peek into connector->state, 13150 * hence connection_mutex must be held. 13151 */ 13152 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); 13153 13154 /* 13155 * Walk the connector list instead of the encoder 13156 * list to detect the problem on ddi platforms 13157 * where there's just one encoder per digital port. 13158 */ 13159 drm_connector_list_iter_begin(dev, &conn_iter); 13160 drm_for_each_connector_iter(connector, &conn_iter) { 13161 struct drm_connector_state *connector_state; 13162 struct intel_encoder *encoder; 13163 13164 connector_state = 13165 drm_atomic_get_new_connector_state(&state->base, 13166 connector); 13167 if (!connector_state) 13168 connector_state = connector->state; 13169 13170 if (!connector_state->best_encoder) 13171 continue; 13172 13173 encoder = to_intel_encoder(connector_state->best_encoder); 13174 13175 drm_WARN_ON(dev, !connector_state->crtc); 13176 13177 switch (encoder->type) { 13178 case INTEL_OUTPUT_DDI: 13179 if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev)))) 13180 break; 13181 /* else, fall through */ 13182 case INTEL_OUTPUT_DP: 13183 case INTEL_OUTPUT_HDMI: 13184 case INTEL_OUTPUT_EDP: 13185 /* the same port mustn't appear more than once */ 13186 if (used_ports & BIT(encoder->port)) 13187 ret = false; 13188 13189 used_ports |= BIT(encoder->port); 13190 break; 13191 case INTEL_OUTPUT_DP_MST: 13192 used_mst_ports |= 13193 1 << encoder->port; 13194 break; 13195 default: 13196 break; 13197 } 13198 } 13199 drm_connector_list_iter_end(&conn_iter); 13200 13201 /* can't mix MST and SST/HDMI on the same port */ 13202 if (used_ports & used_mst_ports) 13203 return false; 13204 13205 return ret; 13206 } 13207 13208 static void 13209 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state *crtc_state) 13210 { 13211 intel_crtc_copy_color_blobs(crtc_state); 13212 } 13213 13214 static void 13215 intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state *crtc_state) 13216 { 13217 crtc_state->hw.enable = crtc_state->uapi.enable; 13218 crtc_state->hw.active = crtc_state->uapi.active; 13219 crtc_state->hw.mode = crtc_state->uapi.mode; 13220 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode; 13221 intel_crtc_copy_uapi_to_hw_state_nomodeset(crtc_state); 13222 } 13223 13224 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state) 13225 { 13226 crtc_state->uapi.enable = crtc_state->hw.enable; 13227 crtc_state->uapi.active = crtc_state->hw.active; 13228 WARN_ON(drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0); 13229 13230 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode; 13231 13232 /* copy color blobs to uapi */ 13233 drm_property_replace_blob(&crtc_state->uapi.degamma_lut, 13234 crtc_state->hw.degamma_lut); 13235 drm_property_replace_blob(&crtc_state->uapi.gamma_lut, 13236 crtc_state->hw.gamma_lut); 13237 drm_property_replace_blob(&crtc_state->uapi.ctm, 13238 crtc_state->hw.ctm); 13239 } 13240 13241 static int 13242 intel_crtc_prepare_cleared_state(struct intel_crtc_state *crtc_state) 13243 { 13244 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 13245 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13246 struct intel_crtc_state *saved_state; 13247 13248 saved_state = intel_crtc_state_alloc(crtc); 13249 if (!saved_state) 13250 return -ENOMEM; 13251 13252 /* free the old crtc_state->hw members */ 13253 intel_crtc_free_hw_state(crtc_state); 13254 13255 /* FIXME: before the switch to atomic started, a new pipe_config was 13256 * kzalloc'd. Code that depends on any field being zero should be 13257 * fixed, so that the crtc_state can be safely duplicated. For now, 13258 * only fields that are know to not cause problems are preserved. */ 13259 13260 saved_state->uapi = crtc_state->uapi; 13261 saved_state->scaler_state = crtc_state->scaler_state; 13262 saved_state->shared_dpll = crtc_state->shared_dpll; 13263 saved_state->dpll_hw_state = crtc_state->dpll_hw_state; 13264 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, 13265 sizeof(saved_state->icl_port_dplls)); 13266 saved_state->crc_enabled = crtc_state->crc_enabled; 13267 if (IS_G4X(dev_priv) || 13268 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13269 saved_state->wm = crtc_state->wm; 13270 13271 memcpy(crtc_state, saved_state, sizeof(*crtc_state)); 13272 kfree(saved_state); 13273 13274 intel_crtc_copy_uapi_to_hw_state(crtc_state); 13275 13276 return 0; 13277 } 13278 13279 static int 13280 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config) 13281 { 13282 struct drm_crtc *crtc = pipe_config->uapi.crtc; 13283 struct drm_atomic_state *state = pipe_config->uapi.state; 13284 struct drm_i915_private *i915 = to_i915(pipe_config->uapi.crtc->dev); 13285 struct drm_connector *connector; 13286 struct drm_connector_state *connector_state; 13287 int base_bpp, ret, i; 13288 bool retry = true; 13289 13290 pipe_config->cpu_transcoder = 13291 (enum transcoder) to_intel_crtc(crtc)->pipe; 13292 13293 /* 13294 * Sanitize sync polarity flags based on requested ones. If neither 13295 * positive or negative polarity is requested, treat this as meaning 13296 * negative polarity. 13297 */ 13298 if (!(pipe_config->hw.adjusted_mode.flags & 13299 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 13300 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 13301 13302 if (!(pipe_config->hw.adjusted_mode.flags & 13303 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 13304 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 13305 13306 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 13307 pipe_config); 13308 if (ret) 13309 return ret; 13310 13311 base_bpp = pipe_config->pipe_bpp; 13312 13313 /* 13314 * Determine the real pipe dimensions. Note that stereo modes can 13315 * increase the actual pipe size due to the frame doubling and 13316 * insertion of additional space for blanks between the frame. This 13317 * is stored in the crtc timings. We use the requested mode to do this 13318 * computation to clearly distinguish it from the adjusted mode, which 13319 * can be changed by the connectors in the below retry loop. 13320 */ 13321 drm_mode_get_hv_timing(&pipe_config->hw.mode, 13322 &pipe_config->pipe_src_w, 13323 &pipe_config->pipe_src_h); 13324 13325 for_each_new_connector_in_state(state, connector, connector_state, i) { 13326 struct intel_encoder *encoder = 13327 to_intel_encoder(connector_state->best_encoder); 13328 13329 if (connector_state->crtc != crtc) 13330 continue; 13331 13332 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) { 13333 drm_dbg_kms(&i915->drm, 13334 "rejecting invalid cloning configuration\n"); 13335 return -EINVAL; 13336 } 13337 13338 /* 13339 * Determine output_types before calling the .compute_config() 13340 * hooks so that the hooks can use this information safely. 13341 */ 13342 if (encoder->compute_output_type) 13343 pipe_config->output_types |= 13344 BIT(encoder->compute_output_type(encoder, pipe_config, 13345 connector_state)); 13346 else 13347 pipe_config->output_types |= BIT(encoder->type); 13348 } 13349 13350 encoder_retry: 13351 /* Ensure the port clock defaults are reset when retrying. */ 13352 pipe_config->port_clock = 0; 13353 pipe_config->pixel_multiplier = 1; 13354 13355 /* Fill in default crtc timings, allow encoders to overwrite them. */ 13356 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode, 13357 CRTC_STEREO_DOUBLE); 13358 13359 /* Pass our mode to the connectors and the CRTC to give them a chance to 13360 * adjust it according to limitations or connector properties, and also 13361 * a chance to reject the mode entirely. 13362 */ 13363 for_each_new_connector_in_state(state, connector, connector_state, i) { 13364 struct intel_encoder *encoder = 13365 to_intel_encoder(connector_state->best_encoder); 13366 13367 if (connector_state->crtc != crtc) 13368 continue; 13369 13370 ret = encoder->compute_config(encoder, pipe_config, 13371 connector_state); 13372 if (ret < 0) { 13373 if (ret != -EDEADLK) 13374 drm_dbg_kms(&i915->drm, 13375 "Encoder config failure: %d\n", 13376 ret); 13377 return ret; 13378 } 13379 } 13380 13381 /* Set default port clock if not overwritten by the encoder. Needs to be 13382 * done afterwards in case the encoder adjusts the mode. */ 13383 if (!pipe_config->port_clock) 13384 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock 13385 * pipe_config->pixel_multiplier; 13386 13387 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 13388 if (ret == -EDEADLK) 13389 return ret; 13390 if (ret < 0) { 13391 drm_dbg_kms(&i915->drm, "CRTC fixup failed\n"); 13392 return ret; 13393 } 13394 13395 if (ret == RETRY) { 13396 if (drm_WARN(&i915->drm, !retry, 13397 "loop in pipe configuration computation\n")) 13398 return -EINVAL; 13399 13400 drm_dbg_kms(&i915->drm, "CRTC bw constrained, retrying\n"); 13401 retry = false; 13402 goto encoder_retry; 13403 } 13404 13405 /* Dithering seems to not pass-through bits correctly when it should, so 13406 * only enable it on 6bpc panels and when its not a compliance 13407 * test requesting 6bpc video pattern. 13408 */ 13409 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) && 13410 !pipe_config->dither_force_disable; 13411 drm_dbg_kms(&i915->drm, 13412 "hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 13413 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 13414 13415 /* 13416 * Make drm_calc_timestamping_constants in 13417 * drm_atomic_helper_update_legacy_modeset_state() happy 13418 */ 13419 pipe_config->uapi.adjusted_mode = pipe_config->hw.adjusted_mode; 13420 13421 return 0; 13422 } 13423 13424 static int 13425 intel_modeset_pipe_config_late(struct intel_crtc_state *crtc_state) 13426 { 13427 struct intel_atomic_state *state = 13428 to_intel_atomic_state(crtc_state->uapi.state); 13429 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 13430 struct drm_connector_state *conn_state; 13431 struct drm_connector *connector; 13432 int i; 13433 13434 for_each_new_connector_in_state(&state->base, connector, 13435 conn_state, i) { 13436 struct intel_encoder *encoder = 13437 to_intel_encoder(conn_state->best_encoder); 13438 int ret; 13439 13440 if (conn_state->crtc != &crtc->base || 13441 !encoder->compute_config_late) 13442 continue; 13443 13444 ret = encoder->compute_config_late(encoder, crtc_state, 13445 conn_state); 13446 if (ret) 13447 return ret; 13448 } 13449 13450 return 0; 13451 } 13452 13453 bool intel_fuzzy_clock_check(int clock1, int clock2) 13454 { 13455 int diff; 13456 13457 if (clock1 == clock2) 13458 return true; 13459 13460 if (!clock1 || !clock2) 13461 return false; 13462 13463 diff = abs(clock1 - clock2); 13464 13465 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 13466 return true; 13467 13468 return false; 13469 } 13470 13471 static bool 13472 intel_compare_m_n(unsigned int m, unsigned int n, 13473 unsigned int m2, unsigned int n2, 13474 bool exact) 13475 { 13476 if (m == m2 && n == n2) 13477 return true; 13478 13479 if (exact || !m || !n || !m2 || !n2) 13480 return false; 13481 13482 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 13483 13484 if (n > n2) { 13485 while (n > n2) { 13486 m2 <<= 1; 13487 n2 <<= 1; 13488 } 13489 } else if (n < n2) { 13490 while (n < n2) { 13491 m <<= 1; 13492 n <<= 1; 13493 } 13494 } 13495 13496 if (n != n2) 13497 return false; 13498 13499 return intel_fuzzy_clock_check(m, m2); 13500 } 13501 13502 static bool 13503 intel_compare_link_m_n(const struct intel_link_m_n *m_n, 13504 const struct intel_link_m_n *m2_n2, 13505 bool exact) 13506 { 13507 return m_n->tu == m2_n2->tu && 13508 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 13509 m2_n2->gmch_m, m2_n2->gmch_n, exact) && 13510 intel_compare_m_n(m_n->link_m, m_n->link_n, 13511 m2_n2->link_m, m2_n2->link_n, exact); 13512 } 13513 13514 static bool 13515 intel_compare_infoframe(const union hdmi_infoframe *a, 13516 const union hdmi_infoframe *b) 13517 { 13518 return memcmp(a, b, sizeof(*a)) == 0; 13519 } 13520 13521 static void 13522 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, 13523 bool fastset, const char *name, 13524 const union hdmi_infoframe *a, 13525 const union hdmi_infoframe *b) 13526 { 13527 if (fastset) { 13528 if (!drm_debug_enabled(DRM_UT_KMS)) 13529 return; 13530 13531 drm_dbg_kms(&dev_priv->drm, 13532 "fastset mismatch in %s infoframe\n", name); 13533 drm_dbg_kms(&dev_priv->drm, "expected:\n"); 13534 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); 13535 drm_dbg_kms(&dev_priv->drm, "found:\n"); 13536 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); 13537 } else { 13538 drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name); 13539 drm_err(&dev_priv->drm, "expected:\n"); 13540 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); 13541 drm_err(&dev_priv->drm, "found:\n"); 13542 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); 13543 } 13544 } 13545 13546 static void __printf(4, 5) 13547 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, 13548 const char *name, const char *format, ...) 13549 { 13550 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 13551 struct va_format vaf; 13552 va_list args; 13553 13554 va_start(args, format); 13555 vaf.fmt = format; 13556 vaf.va = &args; 13557 13558 if (fastset) 13559 drm_dbg_kms(&i915->drm, 13560 "[CRTC:%d:%s] fastset mismatch in %s %pV\n", 13561 crtc->base.base.id, crtc->base.name, name, &vaf); 13562 else 13563 drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n", 13564 crtc->base.base.id, crtc->base.name, name, &vaf); 13565 13566 va_end(args); 13567 } 13568 13569 static bool fastboot_enabled(struct drm_i915_private *dev_priv) 13570 { 13571 if (i915_modparams.fastboot != -1) 13572 return i915_modparams.fastboot; 13573 13574 /* Enable fastboot by default on Skylake and newer */ 13575 if (INTEL_GEN(dev_priv) >= 9) 13576 return true; 13577 13578 /* Enable fastboot by default on VLV and CHV */ 13579 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13580 return true; 13581 13582 /* Disabled by default on all others */ 13583 return false; 13584 } 13585 13586 static bool 13587 intel_pipe_config_compare(const struct intel_crtc_state *current_config, 13588 const struct intel_crtc_state *pipe_config, 13589 bool fastset) 13590 { 13591 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev); 13592 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 13593 bool ret = true; 13594 u32 bp_gamma = 0; 13595 bool fixup_inherited = fastset && 13596 (current_config->hw.mode.private_flags & I915_MODE_FLAG_INHERITED) && 13597 !(pipe_config->hw.mode.private_flags & I915_MODE_FLAG_INHERITED); 13598 13599 if (fixup_inherited && !fastboot_enabled(dev_priv)) { 13600 drm_dbg_kms(&dev_priv->drm, 13601 "initial modeset and fastboot not set\n"); 13602 ret = false; 13603 } 13604 13605 #define PIPE_CONF_CHECK_X(name) do { \ 13606 if (current_config->name != pipe_config->name) { \ 13607 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13608 "(expected 0x%08x, found 0x%08x)", \ 13609 current_config->name, \ 13610 pipe_config->name); \ 13611 ret = false; \ 13612 } \ 13613 } while (0) 13614 13615 #define PIPE_CONF_CHECK_I(name) do { \ 13616 if (current_config->name != pipe_config->name) { \ 13617 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13618 "(expected %i, found %i)", \ 13619 current_config->name, \ 13620 pipe_config->name); \ 13621 ret = false; \ 13622 } \ 13623 } while (0) 13624 13625 #define PIPE_CONF_CHECK_BOOL(name) do { \ 13626 if (current_config->name != pipe_config->name) { \ 13627 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13628 "(expected %s, found %s)", \ 13629 yesno(current_config->name), \ 13630 yesno(pipe_config->name)); \ 13631 ret = false; \ 13632 } \ 13633 } while (0) 13634 13635 /* 13636 * Checks state where we only read out the enabling, but not the entire 13637 * state itself (like full infoframes or ELD for audio). These states 13638 * require a full modeset on bootup to fix up. 13639 */ 13640 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ 13641 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ 13642 PIPE_CONF_CHECK_BOOL(name); \ 13643 } else { \ 13644 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13645 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ 13646 yesno(current_config->name), \ 13647 yesno(pipe_config->name)); \ 13648 ret = false; \ 13649 } \ 13650 } while (0) 13651 13652 #define PIPE_CONF_CHECK_P(name) do { \ 13653 if (current_config->name != pipe_config->name) { \ 13654 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13655 "(expected %p, found %p)", \ 13656 current_config->name, \ 13657 pipe_config->name); \ 13658 ret = false; \ 13659 } \ 13660 } while (0) 13661 13662 #define PIPE_CONF_CHECK_M_N(name) do { \ 13663 if (!intel_compare_link_m_n(¤t_config->name, \ 13664 &pipe_config->name,\ 13665 !fastset)) { \ 13666 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13667 "(expected tu %i gmch %i/%i link %i/%i, " \ 13668 "found tu %i, gmch %i/%i link %i/%i)", \ 13669 current_config->name.tu, \ 13670 current_config->name.gmch_m, \ 13671 current_config->name.gmch_n, \ 13672 current_config->name.link_m, \ 13673 current_config->name.link_n, \ 13674 pipe_config->name.tu, \ 13675 pipe_config->name.gmch_m, \ 13676 pipe_config->name.gmch_n, \ 13677 pipe_config->name.link_m, \ 13678 pipe_config->name.link_n); \ 13679 ret = false; \ 13680 } \ 13681 } while (0) 13682 13683 /* This is required for BDW+ where there is only one set of registers for 13684 * switching between high and low RR. 13685 * This macro can be used whenever a comparison has to be made between one 13686 * hw state and multiple sw state variables. 13687 */ 13688 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ 13689 if (!intel_compare_link_m_n(¤t_config->name, \ 13690 &pipe_config->name, !fastset) && \ 13691 !intel_compare_link_m_n(¤t_config->alt_name, \ 13692 &pipe_config->name, !fastset)) { \ 13693 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13694 "(expected tu %i gmch %i/%i link %i/%i, " \ 13695 "or tu %i gmch %i/%i link %i/%i, " \ 13696 "found tu %i, gmch %i/%i link %i/%i)", \ 13697 current_config->name.tu, \ 13698 current_config->name.gmch_m, \ 13699 current_config->name.gmch_n, \ 13700 current_config->name.link_m, \ 13701 current_config->name.link_n, \ 13702 current_config->alt_name.tu, \ 13703 current_config->alt_name.gmch_m, \ 13704 current_config->alt_name.gmch_n, \ 13705 current_config->alt_name.link_m, \ 13706 current_config->alt_name.link_n, \ 13707 pipe_config->name.tu, \ 13708 pipe_config->name.gmch_m, \ 13709 pipe_config->name.gmch_n, \ 13710 pipe_config->name.link_m, \ 13711 pipe_config->name.link_n); \ 13712 ret = false; \ 13713 } \ 13714 } while (0) 13715 13716 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ 13717 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 13718 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13719 "(%x) (expected %i, found %i)", \ 13720 (mask), \ 13721 current_config->name & (mask), \ 13722 pipe_config->name & (mask)); \ 13723 ret = false; \ 13724 } \ 13725 } while (0) 13726 13727 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \ 13728 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 13729 pipe_config_mismatch(fastset, crtc, __stringify(name), \ 13730 "(expected %i, found %i)", \ 13731 current_config->name, \ 13732 pipe_config->name); \ 13733 ret = false; \ 13734 } \ 13735 } while (0) 13736 13737 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ 13738 if (!intel_compare_infoframe(¤t_config->infoframes.name, \ 13739 &pipe_config->infoframes.name)) { \ 13740 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ 13741 ¤t_config->infoframes.name, \ 13742 &pipe_config->infoframes.name); \ 13743 ret = false; \ 13744 } \ 13745 } while (0) 13746 13747 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ 13748 if (current_config->name1 != pipe_config->name1) { \ 13749 pipe_config_mismatch(fastset, crtc, __stringify(name1), \ 13750 "(expected %i, found %i, won't compare lut values)", \ 13751 current_config->name1, \ 13752 pipe_config->name1); \ 13753 ret = false;\ 13754 } else { \ 13755 if (!intel_color_lut_equal(current_config->name2, \ 13756 pipe_config->name2, pipe_config->name1, \ 13757 bit_precision)) { \ 13758 pipe_config_mismatch(fastset, crtc, __stringify(name2), \ 13759 "hw_state doesn't match sw_state"); \ 13760 ret = false; \ 13761 } \ 13762 } \ 13763 } while (0) 13764 13765 #define PIPE_CONF_QUIRK(quirk) \ 13766 ((current_config->quirks | pipe_config->quirks) & (quirk)) 13767 13768 PIPE_CONF_CHECK_I(cpu_transcoder); 13769 13770 PIPE_CONF_CHECK_BOOL(has_pch_encoder); 13771 PIPE_CONF_CHECK_I(fdi_lanes); 13772 PIPE_CONF_CHECK_M_N(fdi_m_n); 13773 13774 PIPE_CONF_CHECK_I(lane_count); 13775 PIPE_CONF_CHECK_X(lane_lat_optim_mask); 13776 13777 if (INTEL_GEN(dev_priv) < 8) { 13778 PIPE_CONF_CHECK_M_N(dp_m_n); 13779 13780 if (current_config->has_drrs) 13781 PIPE_CONF_CHECK_M_N(dp_m2_n2); 13782 } else 13783 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 13784 13785 PIPE_CONF_CHECK_X(output_types); 13786 13787 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay); 13788 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal); 13789 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start); 13790 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end); 13791 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start); 13792 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end); 13793 13794 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay); 13795 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal); 13796 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start); 13797 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end); 13798 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start); 13799 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end); 13800 13801 PIPE_CONF_CHECK_I(pixel_multiplier); 13802 PIPE_CONF_CHECK_I(output_format); 13803 PIPE_CONF_CHECK_BOOL(has_hdmi_sink); 13804 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || 13805 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 13806 PIPE_CONF_CHECK_BOOL(limited_color_range); 13807 13808 PIPE_CONF_CHECK_BOOL(hdmi_scrambling); 13809 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); 13810 PIPE_CONF_CHECK_BOOL(has_infoframe); 13811 PIPE_CONF_CHECK_BOOL(fec_enable); 13812 13813 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); 13814 13815 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13816 DRM_MODE_FLAG_INTERLACE); 13817 13818 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 13819 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13820 DRM_MODE_FLAG_PHSYNC); 13821 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13822 DRM_MODE_FLAG_NHSYNC); 13823 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13824 DRM_MODE_FLAG_PVSYNC); 13825 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, 13826 DRM_MODE_FLAG_NVSYNC); 13827 } 13828 13829 PIPE_CONF_CHECK_X(gmch_pfit.control); 13830 /* pfit ratios are autocomputed by the hw on gen4+ */ 13831 if (INTEL_GEN(dev_priv) < 4) 13832 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 13833 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 13834 13835 /* 13836 * Changing the EDP transcoder input mux 13837 * (A_ONOFF vs. A_ON) requires a full modeset. 13838 */ 13839 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); 13840 13841 if (!fastset) { 13842 PIPE_CONF_CHECK_I(pipe_src_w); 13843 PIPE_CONF_CHECK_I(pipe_src_h); 13844 13845 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); 13846 if (current_config->pch_pfit.enabled) { 13847 PIPE_CONF_CHECK_X(pch_pfit.pos); 13848 PIPE_CONF_CHECK_X(pch_pfit.size); 13849 } 13850 13851 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 13852 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate); 13853 13854 PIPE_CONF_CHECK_X(gamma_mode); 13855 if (IS_CHERRYVIEW(dev_priv)) 13856 PIPE_CONF_CHECK_X(cgm_mode); 13857 else 13858 PIPE_CONF_CHECK_X(csc_mode); 13859 PIPE_CONF_CHECK_BOOL(gamma_enable); 13860 PIPE_CONF_CHECK_BOOL(csc_enable); 13861 13862 PIPE_CONF_CHECK_I(linetime); 13863 PIPE_CONF_CHECK_I(ips_linetime); 13864 13865 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); 13866 if (bp_gamma) 13867 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma); 13868 } 13869 13870 PIPE_CONF_CHECK_BOOL(double_wide); 13871 13872 PIPE_CONF_CHECK_P(shared_dpll); 13873 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 13874 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 13875 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 13876 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 13877 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 13878 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 13879 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 13880 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 13881 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 13882 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); 13883 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); 13884 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); 13885 PIPE_CONF_CHECK_X(dpll_hw_state.pll0); 13886 PIPE_CONF_CHECK_X(dpll_hw_state.pll1); 13887 PIPE_CONF_CHECK_X(dpll_hw_state.pll2); 13888 PIPE_CONF_CHECK_X(dpll_hw_state.pll3); 13889 PIPE_CONF_CHECK_X(dpll_hw_state.pll6); 13890 PIPE_CONF_CHECK_X(dpll_hw_state.pll8); 13891 PIPE_CONF_CHECK_X(dpll_hw_state.pll9); 13892 PIPE_CONF_CHECK_X(dpll_hw_state.pll10); 13893 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); 13894 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); 13895 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); 13896 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); 13897 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); 13898 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); 13899 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); 13900 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); 13901 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); 13902 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); 13903 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); 13904 13905 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 13906 PIPE_CONF_CHECK_X(dsi_pll.div); 13907 13908 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) 13909 PIPE_CONF_CHECK_I(pipe_bpp); 13910 13911 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock); 13912 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 13913 13914 PIPE_CONF_CHECK_I(min_voltage_level); 13915 13916 PIPE_CONF_CHECK_X(infoframes.enable); 13917 PIPE_CONF_CHECK_X(infoframes.gcp); 13918 PIPE_CONF_CHECK_INFOFRAME(avi); 13919 PIPE_CONF_CHECK_INFOFRAME(spd); 13920 PIPE_CONF_CHECK_INFOFRAME(hdmi); 13921 PIPE_CONF_CHECK_INFOFRAME(drm); 13922 13923 PIPE_CONF_CHECK_X(sync_mode_slaves_mask); 13924 PIPE_CONF_CHECK_I(master_transcoder); 13925 13926 PIPE_CONF_CHECK_I(dsc.compression_enable); 13927 PIPE_CONF_CHECK_I(dsc.dsc_split); 13928 PIPE_CONF_CHECK_I(dsc.compressed_bpp); 13929 13930 PIPE_CONF_CHECK_I(mst_master_transcoder); 13931 13932 #undef PIPE_CONF_CHECK_X 13933 #undef PIPE_CONF_CHECK_I 13934 #undef PIPE_CONF_CHECK_BOOL 13935 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE 13936 #undef PIPE_CONF_CHECK_P 13937 #undef PIPE_CONF_CHECK_FLAGS 13938 #undef PIPE_CONF_CHECK_CLOCK_FUZZY 13939 #undef PIPE_CONF_CHECK_COLOR_LUT 13940 #undef PIPE_CONF_QUIRK 13941 13942 return ret; 13943 } 13944 13945 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 13946 const struct intel_crtc_state *pipe_config) 13947 { 13948 if (pipe_config->has_pch_encoder) { 13949 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 13950 &pipe_config->fdi_m_n); 13951 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock; 13952 13953 /* 13954 * FDI already provided one idea for the dotclock. 13955 * Yell if the encoder disagrees. 13956 */ 13957 drm_WARN(&dev_priv->drm, 13958 !intel_fuzzy_clock_check(fdi_dotclock, dotclock), 13959 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 13960 fdi_dotclock, dotclock); 13961 } 13962 } 13963 13964 static void verify_wm_state(struct intel_crtc *crtc, 13965 struct intel_crtc_state *new_crtc_state) 13966 { 13967 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 13968 struct skl_hw_state { 13969 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 13970 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES]; 13971 struct skl_pipe_wm wm; 13972 } *hw; 13973 struct skl_pipe_wm *sw_wm; 13974 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 13975 u8 hw_enabled_slices; 13976 const enum pipe pipe = crtc->pipe; 13977 int plane, level, max_level = ilk_wm_max_level(dev_priv); 13978 13979 if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active) 13980 return; 13981 13982 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 13983 if (!hw) 13984 return; 13985 13986 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 13987 sw_wm = &new_crtc_state->wm.skl.optimal; 13988 13989 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv); 13990 13991 hw_enabled_slices = intel_enabled_dbuf_slices_mask(dev_priv); 13992 13993 if (INTEL_GEN(dev_priv) >= 11 && 13994 hw_enabled_slices != dev_priv->enabled_dbuf_slices_mask) 13995 drm_err(&dev_priv->drm, 13996 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", 13997 dev_priv->enabled_dbuf_slices_mask, 13998 hw_enabled_slices); 13999 14000 /* planes */ 14001 for_each_universal_plane(dev_priv, pipe, plane) { 14002 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 14003 14004 hw_plane_wm = &hw->wm.planes[plane]; 14005 sw_plane_wm = &sw_wm->planes[plane]; 14006 14007 /* Watermarks */ 14008 for (level = 0; level <= max_level; level++) { 14009 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 14010 &sw_plane_wm->wm[level])) 14011 continue; 14012 14013 drm_err(&dev_priv->drm, 14014 "mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14015 pipe_name(pipe), plane + 1, level, 14016 sw_plane_wm->wm[level].plane_en, 14017 sw_plane_wm->wm[level].plane_res_b, 14018 sw_plane_wm->wm[level].plane_res_l, 14019 hw_plane_wm->wm[level].plane_en, 14020 hw_plane_wm->wm[level].plane_res_b, 14021 hw_plane_wm->wm[level].plane_res_l); 14022 } 14023 14024 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 14025 &sw_plane_wm->trans_wm)) { 14026 drm_err(&dev_priv->drm, 14027 "mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14028 pipe_name(pipe), plane + 1, 14029 sw_plane_wm->trans_wm.plane_en, 14030 sw_plane_wm->trans_wm.plane_res_b, 14031 sw_plane_wm->trans_wm.plane_res_l, 14032 hw_plane_wm->trans_wm.plane_en, 14033 hw_plane_wm->trans_wm.plane_res_b, 14034 hw_plane_wm->trans_wm.plane_res_l); 14035 } 14036 14037 /* DDB */ 14038 hw_ddb_entry = &hw->ddb_y[plane]; 14039 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane]; 14040 14041 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 14042 drm_err(&dev_priv->drm, 14043 "mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n", 14044 pipe_name(pipe), plane + 1, 14045 sw_ddb_entry->start, sw_ddb_entry->end, 14046 hw_ddb_entry->start, hw_ddb_entry->end); 14047 } 14048 } 14049 14050 /* 14051 * cursor 14052 * If the cursor plane isn't active, we may not have updated it's ddb 14053 * allocation. In that case since the ddb allocation will be updated 14054 * once the plane becomes visible, we can skip this check 14055 */ 14056 if (1) { 14057 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm; 14058 14059 hw_plane_wm = &hw->wm.planes[PLANE_CURSOR]; 14060 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR]; 14061 14062 /* Watermarks */ 14063 for (level = 0; level <= max_level; level++) { 14064 if (skl_wm_level_equals(&hw_plane_wm->wm[level], 14065 &sw_plane_wm->wm[level])) 14066 continue; 14067 14068 drm_err(&dev_priv->drm, 14069 "mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14070 pipe_name(pipe), level, 14071 sw_plane_wm->wm[level].plane_en, 14072 sw_plane_wm->wm[level].plane_res_b, 14073 sw_plane_wm->wm[level].plane_res_l, 14074 hw_plane_wm->wm[level].plane_en, 14075 hw_plane_wm->wm[level].plane_res_b, 14076 hw_plane_wm->wm[level].plane_res_l); 14077 } 14078 14079 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm, 14080 &sw_plane_wm->trans_wm)) { 14081 drm_err(&dev_priv->drm, 14082 "mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 14083 pipe_name(pipe), 14084 sw_plane_wm->trans_wm.plane_en, 14085 sw_plane_wm->trans_wm.plane_res_b, 14086 sw_plane_wm->trans_wm.plane_res_l, 14087 hw_plane_wm->trans_wm.plane_en, 14088 hw_plane_wm->trans_wm.plane_res_b, 14089 hw_plane_wm->trans_wm.plane_res_l); 14090 } 14091 14092 /* DDB */ 14093 hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR]; 14094 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR]; 14095 14096 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 14097 drm_err(&dev_priv->drm, 14098 "mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n", 14099 pipe_name(pipe), 14100 sw_ddb_entry->start, sw_ddb_entry->end, 14101 hw_ddb_entry->start, hw_ddb_entry->end); 14102 } 14103 } 14104 14105 kfree(hw); 14106 } 14107 14108 static void 14109 verify_connector_state(struct intel_atomic_state *state, 14110 struct intel_crtc *crtc) 14111 { 14112 struct drm_connector *connector; 14113 struct drm_connector_state *new_conn_state; 14114 int i; 14115 14116 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { 14117 struct drm_encoder *encoder = connector->encoder; 14118 struct intel_crtc_state *crtc_state = NULL; 14119 14120 if (new_conn_state->crtc != &crtc->base) 14121 continue; 14122 14123 if (crtc) 14124 crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 14125 14126 intel_connector_verify_state(crtc_state, new_conn_state); 14127 14128 I915_STATE_WARN(new_conn_state->best_encoder != encoder, 14129 "connector's atomic encoder doesn't match legacy encoder\n"); 14130 } 14131 } 14132 14133 static void 14134 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state) 14135 { 14136 struct intel_encoder *encoder; 14137 struct drm_connector *connector; 14138 struct drm_connector_state *old_conn_state, *new_conn_state; 14139 int i; 14140 14141 for_each_intel_encoder(&dev_priv->drm, encoder) { 14142 bool enabled = false, found = false; 14143 enum pipe pipe; 14144 14145 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s]\n", 14146 encoder->base.base.id, 14147 encoder->base.name); 14148 14149 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state, 14150 new_conn_state, i) { 14151 if (old_conn_state->best_encoder == &encoder->base) 14152 found = true; 14153 14154 if (new_conn_state->best_encoder != &encoder->base) 14155 continue; 14156 found = enabled = true; 14157 14158 I915_STATE_WARN(new_conn_state->crtc != 14159 encoder->base.crtc, 14160 "connector's crtc doesn't match encoder crtc\n"); 14161 } 14162 14163 if (!found) 14164 continue; 14165 14166 I915_STATE_WARN(!!encoder->base.crtc != enabled, 14167 "encoder's enabled state mismatch " 14168 "(expected %i, found %i)\n", 14169 !!encoder->base.crtc, enabled); 14170 14171 if (!encoder->base.crtc) { 14172 bool active; 14173 14174 active = encoder->get_hw_state(encoder, &pipe); 14175 I915_STATE_WARN(active, 14176 "encoder detached but still enabled on pipe %c.\n", 14177 pipe_name(pipe)); 14178 } 14179 } 14180 } 14181 14182 static void 14183 verify_crtc_state(struct intel_crtc *crtc, 14184 struct intel_crtc_state *old_crtc_state, 14185 struct intel_crtc_state *new_crtc_state) 14186 { 14187 struct drm_device *dev = crtc->base.dev; 14188 struct drm_i915_private *dev_priv = to_i915(dev); 14189 struct intel_encoder *encoder; 14190 struct intel_crtc_state *pipe_config = old_crtc_state; 14191 struct drm_atomic_state *state = old_crtc_state->uapi.state; 14192 bool active; 14193 14194 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi); 14195 intel_crtc_free_hw_state(old_crtc_state); 14196 intel_crtc_state_reset(old_crtc_state, crtc); 14197 old_crtc_state->uapi.state = state; 14198 14199 drm_dbg_kms(&dev_priv->drm, "[CRTC:%d:%s]\n", crtc->base.base.id, 14200 crtc->base.name); 14201 14202 active = dev_priv->display.get_pipe_config(crtc, pipe_config); 14203 14204 /* we keep both pipes enabled on 830 */ 14205 if (IS_I830(dev_priv)) 14206 active = new_crtc_state->hw.active; 14207 14208 I915_STATE_WARN(new_crtc_state->hw.active != active, 14209 "crtc active state doesn't match with hw state " 14210 "(expected %i, found %i)\n", 14211 new_crtc_state->hw.active, active); 14212 14213 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active, 14214 "transitional active state does not match atomic hw state " 14215 "(expected %i, found %i)\n", 14216 new_crtc_state->hw.active, crtc->active); 14217 14218 for_each_encoder_on_crtc(dev, &crtc->base, encoder) { 14219 enum pipe pipe; 14220 14221 active = encoder->get_hw_state(encoder, &pipe); 14222 I915_STATE_WARN(active != new_crtc_state->hw.active, 14223 "[ENCODER:%i] active %i with crtc active %i\n", 14224 encoder->base.base.id, active, 14225 new_crtc_state->hw.active); 14226 14227 I915_STATE_WARN(active && crtc->pipe != pipe, 14228 "Encoder connected to wrong pipe %c\n", 14229 pipe_name(pipe)); 14230 14231 if (active) 14232 encoder->get_config(encoder, pipe_config); 14233 } 14234 14235 intel_crtc_compute_pixel_rate(pipe_config); 14236 14237 if (!new_crtc_state->hw.active) 14238 return; 14239 14240 intel_pipe_config_sanity_check(dev_priv, pipe_config); 14241 14242 if (!intel_pipe_config_compare(new_crtc_state, 14243 pipe_config, false)) { 14244 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 14245 intel_dump_pipe_config(pipe_config, NULL, "[hw state]"); 14246 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]"); 14247 } 14248 } 14249 14250 static void 14251 intel_verify_planes(struct intel_atomic_state *state) 14252 { 14253 struct intel_plane *plane; 14254 const struct intel_plane_state *plane_state; 14255 int i; 14256 14257 for_each_new_intel_plane_in_state(state, plane, 14258 plane_state, i) 14259 assert_plane(plane, plane_state->planar_slave || 14260 plane_state->uapi.visible); 14261 } 14262 14263 static void 14264 verify_single_dpll_state(struct drm_i915_private *dev_priv, 14265 struct intel_shared_dpll *pll, 14266 struct intel_crtc *crtc, 14267 struct intel_crtc_state *new_crtc_state) 14268 { 14269 struct intel_dpll_hw_state dpll_hw_state; 14270 unsigned int crtc_mask; 14271 bool active; 14272 14273 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 14274 14275 drm_dbg_kms(&dev_priv->drm, "%s\n", pll->info->name); 14276 14277 active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state); 14278 14279 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) { 14280 I915_STATE_WARN(!pll->on && pll->active_mask, 14281 "pll in active use but not on in sw tracking\n"); 14282 I915_STATE_WARN(pll->on && !pll->active_mask, 14283 "pll is on but not used by any active crtc\n"); 14284 I915_STATE_WARN(pll->on != active, 14285 "pll on state mismatch (expected %i, found %i)\n", 14286 pll->on, active); 14287 } 14288 14289 if (!crtc) { 14290 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask, 14291 "more active pll users than references: %x vs %x\n", 14292 pll->active_mask, pll->state.crtc_mask); 14293 14294 return; 14295 } 14296 14297 crtc_mask = drm_crtc_mask(&crtc->base); 14298 14299 if (new_crtc_state->hw.active) 14300 I915_STATE_WARN(!(pll->active_mask & crtc_mask), 14301 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n", 14302 pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask); 14303 else 14304 I915_STATE_WARN(pll->active_mask & crtc_mask, 14305 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n", 14306 pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask); 14307 14308 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask), 14309 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n", 14310 crtc_mask, pll->state.crtc_mask); 14311 14312 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state, 14313 &dpll_hw_state, 14314 sizeof(dpll_hw_state)), 14315 "pll hw state mismatch\n"); 14316 } 14317 14318 static void 14319 verify_shared_dpll_state(struct intel_crtc *crtc, 14320 struct intel_crtc_state *old_crtc_state, 14321 struct intel_crtc_state *new_crtc_state) 14322 { 14323 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14324 14325 if (new_crtc_state->shared_dpll) 14326 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state); 14327 14328 if (old_crtc_state->shared_dpll && 14329 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 14330 unsigned int crtc_mask = drm_crtc_mask(&crtc->base); 14331 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 14332 14333 I915_STATE_WARN(pll->active_mask & crtc_mask, 14334 "pll active mismatch (didn't expect pipe %c in active mask)\n", 14335 pipe_name(drm_crtc_index(&crtc->base))); 14336 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask, 14337 "pll enabled crtcs mismatch (found %x in enabled mask)\n", 14338 pipe_name(drm_crtc_index(&crtc->base))); 14339 } 14340 } 14341 14342 static void 14343 intel_modeset_verify_crtc(struct intel_crtc *crtc, 14344 struct intel_atomic_state *state, 14345 struct intel_crtc_state *old_crtc_state, 14346 struct intel_crtc_state *new_crtc_state) 14347 { 14348 if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) 14349 return; 14350 14351 verify_wm_state(crtc, new_crtc_state); 14352 verify_connector_state(state, crtc); 14353 verify_crtc_state(crtc, old_crtc_state, new_crtc_state); 14354 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state); 14355 } 14356 14357 static void 14358 verify_disabled_dpll_state(struct drm_i915_private *dev_priv) 14359 { 14360 int i; 14361 14362 for (i = 0; i < dev_priv->num_shared_dpll; i++) 14363 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL); 14364 } 14365 14366 static void 14367 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv, 14368 struct intel_atomic_state *state) 14369 { 14370 verify_encoder_state(dev_priv, state); 14371 verify_connector_state(state, NULL); 14372 verify_disabled_dpll_state(dev_priv); 14373 } 14374 14375 static void 14376 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) 14377 { 14378 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 14379 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14380 const struct drm_display_mode *adjusted_mode = 14381 &crtc_state->hw.adjusted_mode; 14382 14383 drm_calc_timestamping_constants(&crtc->base, adjusted_mode); 14384 14385 /* 14386 * The scanline counter increments at the leading edge of hsync. 14387 * 14388 * On most platforms it starts counting from vtotal-1 on the 14389 * first active line. That means the scanline counter value is 14390 * always one less than what we would expect. Ie. just after 14391 * start of vblank, which also occurs at start of hsync (on the 14392 * last active line), the scanline counter will read vblank_start-1. 14393 * 14394 * On gen2 the scanline counter starts counting from 1 instead 14395 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 14396 * to keep the value positive), instead of adding one. 14397 * 14398 * On HSW+ the behaviour of the scanline counter depends on the output 14399 * type. For DP ports it behaves like most other platforms, but on HDMI 14400 * there's an extra 1 line difference. So we need to add two instead of 14401 * one to the value. 14402 * 14403 * On VLV/CHV DSI the scanline counter would appear to increment 14404 * approx. 1/3 of a scanline before start of vblank. Unfortunately 14405 * that means we can't tell whether we're in vblank or not while 14406 * we're on that particular line. We must still set scanline_offset 14407 * to 1 so that the vblank timestamps come out correct when we query 14408 * the scanline counter from within the vblank interrupt handler. 14409 * However if queried just before the start of vblank we'll get an 14410 * answer that's slightly in the future. 14411 */ 14412 if (IS_GEN(dev_priv, 2)) { 14413 int vtotal; 14414 14415 vtotal = adjusted_mode->crtc_vtotal; 14416 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 14417 vtotal /= 2; 14418 14419 crtc->scanline_offset = vtotal - 1; 14420 } else if (HAS_DDI(dev_priv) && 14421 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 14422 crtc->scanline_offset = 2; 14423 } else { 14424 crtc->scanline_offset = 1; 14425 } 14426 } 14427 14428 static void intel_modeset_clear_plls(struct intel_atomic_state *state) 14429 { 14430 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14431 struct intel_crtc_state *new_crtc_state; 14432 struct intel_crtc *crtc; 14433 int i; 14434 14435 if (!dev_priv->display.crtc_compute_clock) 14436 return; 14437 14438 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14439 if (!needs_modeset(new_crtc_state)) 14440 continue; 14441 14442 intel_release_shared_dplls(state, crtc); 14443 } 14444 } 14445 14446 /* 14447 * This implements the workaround described in the "notes" section of the mode 14448 * set sequence documentation. When going from no pipes or single pipe to 14449 * multiple pipes, and planes are enabled after the pipe, we need to wait at 14450 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 14451 */ 14452 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) 14453 { 14454 struct intel_crtc_state *crtc_state; 14455 struct intel_crtc *crtc; 14456 struct intel_crtc_state *first_crtc_state = NULL; 14457 struct intel_crtc_state *other_crtc_state = NULL; 14458 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 14459 int i; 14460 14461 /* look at all crtc's that are going to be enabled in during modeset */ 14462 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14463 if (!crtc_state->hw.active || 14464 !needs_modeset(crtc_state)) 14465 continue; 14466 14467 if (first_crtc_state) { 14468 other_crtc_state = crtc_state; 14469 break; 14470 } else { 14471 first_crtc_state = crtc_state; 14472 first_pipe = crtc->pipe; 14473 } 14474 } 14475 14476 /* No workaround needed? */ 14477 if (!first_crtc_state) 14478 return 0; 14479 14480 /* w/a possibly needed, check how many crtc's are already enabled. */ 14481 for_each_intel_crtc(state->base.dev, crtc) { 14482 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 14483 if (IS_ERR(crtc_state)) 14484 return PTR_ERR(crtc_state); 14485 14486 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 14487 14488 if (!crtc_state->hw.active || 14489 needs_modeset(crtc_state)) 14490 continue; 14491 14492 /* 2 or more enabled crtcs means no need for w/a */ 14493 if (enabled_pipe != INVALID_PIPE) 14494 return 0; 14495 14496 enabled_pipe = crtc->pipe; 14497 } 14498 14499 if (enabled_pipe != INVALID_PIPE) 14500 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 14501 else if (other_crtc_state) 14502 other_crtc_state->hsw_workaround_pipe = first_pipe; 14503 14504 return 0; 14505 } 14506 14507 u8 intel_calc_active_pipes(struct intel_atomic_state *state, 14508 u8 active_pipes) 14509 { 14510 const struct intel_crtc_state *crtc_state; 14511 struct intel_crtc *crtc; 14512 int i; 14513 14514 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14515 if (crtc_state->hw.active) 14516 active_pipes |= BIT(crtc->pipe); 14517 else 14518 active_pipes &= ~BIT(crtc->pipe); 14519 } 14520 14521 return active_pipes; 14522 } 14523 14524 static int intel_modeset_checks(struct intel_atomic_state *state) 14525 { 14526 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14527 int ret; 14528 14529 state->modeset = true; 14530 state->active_pipes = intel_calc_active_pipes(state, dev_priv->active_pipes); 14531 14532 state->active_pipe_changes = state->active_pipes ^ dev_priv->active_pipes; 14533 14534 if (state->active_pipe_changes) { 14535 ret = _intel_atomic_lock_global_state(state); 14536 if (ret) 14537 return ret; 14538 } 14539 14540 ret = intel_modeset_calc_cdclk(state); 14541 if (ret) 14542 return ret; 14543 14544 intel_modeset_clear_plls(state); 14545 14546 if (IS_HASWELL(dev_priv)) 14547 return hsw_mode_set_planes_workaround(state); 14548 14549 return 0; 14550 } 14551 14552 /* 14553 * Handle calculation of various watermark data at the end of the atomic check 14554 * phase. The code here should be run after the per-crtc and per-plane 'check' 14555 * handlers to ensure that all derived state has been updated. 14556 */ 14557 static int calc_watermark_data(struct intel_atomic_state *state) 14558 { 14559 struct drm_device *dev = state->base.dev; 14560 struct drm_i915_private *dev_priv = to_i915(dev); 14561 14562 /* Is there platform-specific watermark information to calculate? */ 14563 if (dev_priv->display.compute_global_watermarks) 14564 return dev_priv->display.compute_global_watermarks(state); 14565 14566 return 0; 14567 } 14568 14569 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, 14570 struct intel_crtc_state *new_crtc_state) 14571 { 14572 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) 14573 return; 14574 14575 new_crtc_state->uapi.mode_changed = false; 14576 new_crtc_state->update_pipe = true; 14577 } 14578 14579 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state, 14580 struct intel_crtc_state *new_crtc_state) 14581 { 14582 /* 14583 * If we're not doing the full modeset we want to 14584 * keep the current M/N values as they may be 14585 * sufficiently different to the computed values 14586 * to cause problems. 14587 * 14588 * FIXME: should really copy more fuzzy state here 14589 */ 14590 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n; 14591 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n; 14592 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2; 14593 new_crtc_state->has_drrs = old_crtc_state->has_drrs; 14594 } 14595 14596 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, 14597 struct intel_crtc *crtc, 14598 u8 plane_ids_mask) 14599 { 14600 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14601 struct intel_plane *plane; 14602 14603 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 14604 struct intel_plane_state *plane_state; 14605 14606 if ((plane_ids_mask & BIT(plane->id)) == 0) 14607 continue; 14608 14609 plane_state = intel_atomic_get_plane_state(state, plane); 14610 if (IS_ERR(plane_state)) 14611 return PTR_ERR(plane_state); 14612 } 14613 14614 return 0; 14615 } 14616 14617 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) 14618 { 14619 /* See {hsw,vlv,ivb}_plane_ratio() */ 14620 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || 14621 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || 14622 IS_IVYBRIDGE(dev_priv); 14623 } 14624 14625 static int intel_atomic_check_planes(struct intel_atomic_state *state, 14626 bool *need_cdclk_calc) 14627 { 14628 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 14629 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 14630 struct intel_plane_state *plane_state; 14631 struct intel_plane *plane; 14632 struct intel_crtc *crtc; 14633 int i, ret; 14634 14635 ret = icl_add_linked_planes(state); 14636 if (ret) 14637 return ret; 14638 14639 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 14640 ret = intel_plane_atomic_check(state, plane); 14641 if (ret) { 14642 drm_dbg_atomic(&dev_priv->drm, 14643 "[PLANE:%d:%s] atomic driver check failed\n", 14644 plane->base.base.id, plane->base.name); 14645 return ret; 14646 } 14647 } 14648 14649 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14650 new_crtc_state, i) { 14651 u8 old_active_planes, new_active_planes; 14652 14653 ret = icl_check_nv12_planes(new_crtc_state); 14654 if (ret) 14655 return ret; 14656 14657 /* 14658 * On some platforms the number of active planes affects 14659 * the planes' minimum cdclk calculation. Add such planes 14660 * to the state before we compute the minimum cdclk. 14661 */ 14662 if (!active_planes_affects_min_cdclk(dev_priv)) 14663 continue; 14664 14665 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 14666 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); 14667 14668 if (hweight8(old_active_planes) == hweight8(new_active_planes)) 14669 continue; 14670 14671 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); 14672 if (ret) 14673 return ret; 14674 } 14675 14676 /* 14677 * active_planes bitmask has been updated, and potentially 14678 * affected planes are part of the state. We can now 14679 * compute the minimum cdclk for each plane. 14680 */ 14681 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 14682 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc); 14683 if (ret) 14684 return ret; 14685 } 14686 14687 return 0; 14688 } 14689 14690 static int intel_atomic_check_crtcs(struct intel_atomic_state *state) 14691 { 14692 struct intel_crtc_state *crtc_state; 14693 struct intel_crtc *crtc; 14694 int i; 14695 14696 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 14697 int ret = intel_crtc_atomic_check(state, crtc); 14698 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 14699 if (ret) { 14700 drm_dbg_atomic(&i915->drm, 14701 "[CRTC:%d:%s] atomic driver check failed\n", 14702 crtc->base.base.id, crtc->base.name); 14703 return ret; 14704 } 14705 } 14706 14707 return 0; 14708 } 14709 14710 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, 14711 u8 transcoders) 14712 { 14713 const struct intel_crtc_state *new_crtc_state; 14714 struct intel_crtc *crtc; 14715 int i; 14716 14717 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14718 if (new_crtc_state->hw.enable && 14719 transcoders & BIT(new_crtc_state->cpu_transcoder) && 14720 needs_modeset(new_crtc_state)) 14721 return true; 14722 } 14723 14724 return false; 14725 } 14726 14727 /** 14728 * intel_atomic_check - validate state object 14729 * @dev: drm device 14730 * @_state: state to validate 14731 */ 14732 static int intel_atomic_check(struct drm_device *dev, 14733 struct drm_atomic_state *_state) 14734 { 14735 struct drm_i915_private *dev_priv = to_i915(dev); 14736 struct intel_atomic_state *state = to_intel_atomic_state(_state); 14737 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 14738 struct intel_cdclk_state *new_cdclk_state; 14739 struct intel_crtc *crtc; 14740 int ret, i; 14741 bool any_ms = false; 14742 14743 /* Catch I915_MODE_FLAG_INHERITED */ 14744 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14745 new_crtc_state, i) { 14746 if (new_crtc_state->hw.mode.private_flags != 14747 old_crtc_state->hw.mode.private_flags) 14748 new_crtc_state->uapi.mode_changed = true; 14749 } 14750 14751 ret = drm_atomic_helper_check_modeset(dev, &state->base); 14752 if (ret) 14753 goto fail; 14754 14755 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14756 new_crtc_state, i) { 14757 if (!needs_modeset(new_crtc_state)) { 14758 /* Light copy */ 14759 intel_crtc_copy_uapi_to_hw_state_nomodeset(new_crtc_state); 14760 14761 continue; 14762 } 14763 14764 ret = intel_crtc_prepare_cleared_state(new_crtc_state); 14765 if (ret) 14766 goto fail; 14767 14768 if (!new_crtc_state->hw.enable) 14769 continue; 14770 14771 ret = intel_modeset_pipe_config(new_crtc_state); 14772 if (ret) 14773 goto fail; 14774 } 14775 14776 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14777 new_crtc_state, i) { 14778 if (!needs_modeset(new_crtc_state)) 14779 continue; 14780 14781 ret = intel_modeset_pipe_config_late(new_crtc_state); 14782 if (ret) 14783 goto fail; 14784 14785 intel_crtc_check_fastset(old_crtc_state, new_crtc_state); 14786 } 14787 14788 /** 14789 * Check if fastset is allowed by external dependencies like other 14790 * pipes and transcoders. 14791 * 14792 * Right now it only forces a fullmodeset when the MST master 14793 * transcoder did not changed but the pipe of the master transcoder 14794 * needs a fullmodeset so all slaves also needs to do a fullmodeset or 14795 * in case of port synced crtcs, if one of the synced crtcs 14796 * needs a full modeset, all other synced crtcs should be 14797 * forced a full modeset. 14798 */ 14799 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 14800 if (!new_crtc_state->hw.enable || needs_modeset(new_crtc_state)) 14801 continue; 14802 14803 if (intel_dp_mst_is_slave_trans(new_crtc_state)) { 14804 enum transcoder master = new_crtc_state->mst_master_transcoder; 14805 14806 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) { 14807 new_crtc_state->uapi.mode_changed = true; 14808 new_crtc_state->update_pipe = false; 14809 } 14810 } 14811 14812 if (is_trans_port_sync_mode(new_crtc_state)) { 14813 u8 trans = new_crtc_state->sync_mode_slaves_mask; 14814 14815 if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) 14816 trans |= BIT(new_crtc_state->master_transcoder); 14817 14818 if (intel_cpu_transcoders_need_modeset(state, trans)) { 14819 new_crtc_state->uapi.mode_changed = true; 14820 new_crtc_state->update_pipe = false; 14821 } 14822 } 14823 } 14824 14825 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14826 new_crtc_state, i) { 14827 if (needs_modeset(new_crtc_state)) { 14828 any_ms = true; 14829 continue; 14830 } 14831 14832 if (!new_crtc_state->update_pipe) 14833 continue; 14834 14835 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state); 14836 } 14837 14838 if (any_ms && !check_digital_port_conflicts(state)) { 14839 drm_dbg_kms(&dev_priv->drm, 14840 "rejecting conflicting digital port configuration\n"); 14841 ret = EINVAL; 14842 goto fail; 14843 } 14844 14845 ret = drm_dp_mst_atomic_check(&state->base); 14846 if (ret) 14847 goto fail; 14848 14849 ret = intel_atomic_check_planes(state, &any_ms); 14850 if (ret) 14851 goto fail; 14852 14853 new_cdclk_state = intel_atomic_get_new_cdclk_state(state); 14854 if (new_cdclk_state && new_cdclk_state->force_min_cdclk_changed) 14855 any_ms = true; 14856 14857 /* 14858 * distrust_bios_wm will force a full dbuf recomputation 14859 * but the hardware state will only get updated accordingly 14860 * if state->modeset==true. Hence distrust_bios_wm==true && 14861 * state->modeset==false is an invalid combination which 14862 * would cause the hardware and software dbuf state to get 14863 * out of sync. We must prevent that. 14864 * 14865 * FIXME clean up this mess and introduce better 14866 * state tracking for dbuf. 14867 */ 14868 if (dev_priv->wm.distrust_bios_wm) 14869 any_ms = true; 14870 14871 if (any_ms) { 14872 ret = intel_modeset_checks(state); 14873 if (ret) 14874 goto fail; 14875 } 14876 14877 ret = intel_atomic_check_crtcs(state); 14878 if (ret) 14879 goto fail; 14880 14881 intel_fbc_choose_crtc(dev_priv, state); 14882 ret = calc_watermark_data(state); 14883 if (ret) 14884 goto fail; 14885 14886 ret = intel_bw_atomic_check(state); 14887 if (ret) 14888 goto fail; 14889 14890 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14891 new_crtc_state, i) { 14892 if (!needs_modeset(new_crtc_state) && 14893 !new_crtc_state->update_pipe) 14894 continue; 14895 14896 intel_dump_pipe_config(new_crtc_state, state, 14897 needs_modeset(new_crtc_state) ? 14898 "[modeset]" : "[fastset]"); 14899 } 14900 14901 return 0; 14902 14903 fail: 14904 if (ret == -EDEADLK) 14905 return ret; 14906 14907 /* 14908 * FIXME would probably be nice to know which crtc specifically 14909 * caused the failure, in cases where we can pinpoint it. 14910 */ 14911 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 14912 new_crtc_state, i) 14913 intel_dump_pipe_config(new_crtc_state, state, "[failed]"); 14914 14915 return ret; 14916 } 14917 14918 static int intel_atomic_prepare_commit(struct intel_atomic_state *state) 14919 { 14920 return drm_atomic_helper_prepare_planes(state->base.dev, 14921 &state->base); 14922 } 14923 14924 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc) 14925 { 14926 struct drm_device *dev = crtc->base.dev; 14927 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)]; 14928 14929 if (!vblank->max_vblank_count) 14930 return (u32)drm_crtc_accurate_vblank_count(&crtc->base); 14931 14932 return crtc->base.funcs->get_vblank_counter(&crtc->base); 14933 } 14934 14935 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, 14936 struct intel_crtc_state *crtc_state) 14937 { 14938 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14939 14940 if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes) 14941 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 14942 14943 if (crtc_state->has_pch_encoder) { 14944 enum pipe pch_transcoder = 14945 intel_crtc_pch_transcoder(crtc); 14946 14947 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); 14948 } 14949 } 14950 14951 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, 14952 const struct intel_crtc_state *new_crtc_state) 14953 { 14954 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 14955 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 14956 14957 /* 14958 * Update pipe size and adjust fitter if needed: the reason for this is 14959 * that in compute_mode_changes we check the native mode (not the pfit 14960 * mode) to see if we can flip rather than do a full mode set. In the 14961 * fastboot case, we'll flip, but if we don't update the pipesrc and 14962 * pfit state, we'll end up with a big fb scanned out into the wrong 14963 * sized surface. 14964 */ 14965 intel_set_pipe_src_size(new_crtc_state); 14966 14967 /* on skylake this is done by detaching scalers */ 14968 if (INTEL_GEN(dev_priv) >= 9) { 14969 skl_detach_scalers(new_crtc_state); 14970 14971 if (new_crtc_state->pch_pfit.enabled) 14972 skl_pfit_enable(new_crtc_state); 14973 } else if (HAS_PCH_SPLIT(dev_priv)) { 14974 if (new_crtc_state->pch_pfit.enabled) 14975 ilk_pfit_enable(new_crtc_state); 14976 else if (old_crtc_state->pch_pfit.enabled) 14977 ilk_pfit_disable(old_crtc_state); 14978 } 14979 14980 /* 14981 * The register is supposedly single buffered so perhaps 14982 * not 100% correct to do this here. But SKL+ calculate 14983 * this based on the adjust pixel rate so pfit changes do 14984 * affect it and so it must be updated for fastsets. 14985 * HSW/BDW only really need this here for fastboot, after 14986 * that the value should not change without a full modeset. 14987 */ 14988 if (INTEL_GEN(dev_priv) >= 9 || 14989 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 14990 hsw_set_linetime_wm(new_crtc_state); 14991 14992 if (INTEL_GEN(dev_priv) >= 11) 14993 icl_set_pipe_chicken(crtc); 14994 } 14995 14996 static void commit_pipe_config(struct intel_atomic_state *state, 14997 struct intel_crtc_state *old_crtc_state, 14998 struct intel_crtc_state *new_crtc_state) 14999 { 15000 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 15001 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15002 bool modeset = needs_modeset(new_crtc_state); 15003 15004 /* 15005 * During modesets pipe configuration was programmed as the 15006 * CRTC was enabled. 15007 */ 15008 if (!modeset) { 15009 if (new_crtc_state->uapi.color_mgmt_changed || 15010 new_crtc_state->update_pipe) 15011 intel_color_commit(new_crtc_state); 15012 15013 if (INTEL_GEN(dev_priv) >= 9) 15014 skl_detach_scalers(new_crtc_state); 15015 15016 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) 15017 bdw_set_pipemisc(new_crtc_state); 15018 15019 if (new_crtc_state->update_pipe) 15020 intel_pipe_fastset(old_crtc_state, new_crtc_state); 15021 } 15022 15023 if (dev_priv->display.atomic_update_watermarks) 15024 dev_priv->display.atomic_update_watermarks(state, crtc); 15025 } 15026 15027 static void intel_update_crtc(struct intel_crtc *crtc, 15028 struct intel_atomic_state *state, 15029 struct intel_crtc_state *old_crtc_state, 15030 struct intel_crtc_state *new_crtc_state) 15031 { 15032 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15033 bool modeset = needs_modeset(new_crtc_state); 15034 15035 if (modeset) { 15036 intel_crtc_update_active_timings(new_crtc_state); 15037 15038 dev_priv->display.crtc_enable(state, crtc); 15039 15040 /* vblanks work again, re-enable pipe CRC. */ 15041 intel_crtc_enable_pipe_crc(crtc); 15042 } else { 15043 if (new_crtc_state->preload_luts && 15044 (new_crtc_state->uapi.color_mgmt_changed || 15045 new_crtc_state->update_pipe)) 15046 intel_color_load_luts(new_crtc_state); 15047 15048 intel_pre_plane_update(state, crtc); 15049 15050 if (new_crtc_state->update_pipe) 15051 intel_encoders_update_pipe(state, crtc); 15052 } 15053 15054 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 15055 intel_fbc_disable(crtc); 15056 else 15057 intel_fbc_enable(state, crtc); 15058 15059 /* Perform vblank evasion around commit operation */ 15060 intel_pipe_update_start(new_crtc_state); 15061 15062 commit_pipe_config(state, old_crtc_state, new_crtc_state); 15063 15064 if (INTEL_GEN(dev_priv) >= 9) 15065 skl_update_planes_on_crtc(state, crtc); 15066 else 15067 i9xx_update_planes_on_crtc(state, crtc); 15068 15069 intel_pipe_update_end(new_crtc_state); 15070 15071 /* 15072 * We usually enable FIFO underrun interrupts as part of the 15073 * CRTC enable sequence during modesets. But when we inherit a 15074 * valid pipe configuration from the BIOS we need to take care 15075 * of enabling them on the CRTC's first fastset. 15076 */ 15077 if (new_crtc_state->update_pipe && !modeset && 15078 old_crtc_state->hw.mode.private_flags & I915_MODE_FLAG_INHERITED) 15079 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 15080 } 15081 15082 static struct intel_crtc *intel_get_slave_crtc(const struct intel_crtc_state *new_crtc_state) 15083 { 15084 struct drm_i915_private *dev_priv = to_i915(new_crtc_state->uapi.crtc->dev); 15085 enum transcoder slave_transcoder; 15086 15087 drm_WARN_ON(&dev_priv->drm, 15088 !is_power_of_2(new_crtc_state->sync_mode_slaves_mask)); 15089 15090 slave_transcoder = ffs(new_crtc_state->sync_mode_slaves_mask) - 1; 15091 return intel_get_crtc_for_pipe(dev_priv, 15092 (enum pipe)slave_transcoder); 15093 } 15094 15095 static void intel_old_crtc_state_disables(struct intel_atomic_state *state, 15096 struct intel_crtc_state *old_crtc_state, 15097 struct intel_crtc_state *new_crtc_state, 15098 struct intel_crtc *crtc) 15099 { 15100 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15101 15102 intel_crtc_disable_planes(state, crtc); 15103 15104 /* 15105 * We need to disable pipe CRC before disabling the pipe, 15106 * or we race against vblank off. 15107 */ 15108 intel_crtc_disable_pipe_crc(crtc); 15109 15110 dev_priv->display.crtc_disable(state, crtc); 15111 crtc->active = false; 15112 intel_fbc_disable(crtc); 15113 intel_disable_shared_dpll(old_crtc_state); 15114 15115 /* FIXME unify this for all platforms */ 15116 if (!new_crtc_state->hw.active && 15117 !HAS_GMCH(dev_priv) && 15118 dev_priv->display.initial_watermarks) 15119 dev_priv->display.initial_watermarks(state, crtc); 15120 } 15121 15122 static void intel_commit_modeset_disables(struct intel_atomic_state *state) 15123 { 15124 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 15125 struct intel_crtc *crtc; 15126 u32 handled = 0; 15127 int i; 15128 15129 /* Only disable port sync and MST slaves */ 15130 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15131 new_crtc_state, i) { 15132 if (!needs_modeset(new_crtc_state)) 15133 continue; 15134 15135 if (!old_crtc_state->hw.active) 15136 continue; 15137 15138 /* In case of Transcoder port Sync master slave CRTCs can be 15139 * assigned in any order and we need to make sure that 15140 * slave CRTCs are disabled first and then master CRTC since 15141 * Slave vblanks are masked till Master Vblanks. 15142 */ 15143 if (!is_trans_port_sync_slave(old_crtc_state) && 15144 !intel_dp_mst_is_slave_trans(old_crtc_state)) 15145 continue; 15146 15147 intel_pre_plane_update(state, crtc); 15148 intel_old_crtc_state_disables(state, old_crtc_state, 15149 new_crtc_state, crtc); 15150 handled |= BIT(crtc->pipe); 15151 } 15152 15153 /* Disable everything else left on */ 15154 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15155 new_crtc_state, i) { 15156 if (!needs_modeset(new_crtc_state) || 15157 (handled & BIT(crtc->pipe))) 15158 continue; 15159 15160 intel_pre_plane_update(state, crtc); 15161 if (old_crtc_state->hw.active) 15162 intel_old_crtc_state_disables(state, old_crtc_state, 15163 new_crtc_state, crtc); 15164 } 15165 } 15166 15167 static void intel_commit_modeset_enables(struct intel_atomic_state *state) 15168 { 15169 struct intel_crtc *crtc; 15170 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 15171 int i; 15172 15173 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 15174 if (!new_crtc_state->hw.active) 15175 continue; 15176 15177 intel_update_crtc(crtc, state, old_crtc_state, 15178 new_crtc_state); 15179 } 15180 } 15181 15182 static void intel_crtc_enable_trans_port_sync(struct intel_crtc *crtc, 15183 struct intel_atomic_state *state, 15184 struct intel_crtc_state *new_crtc_state) 15185 { 15186 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15187 15188 intel_crtc_update_active_timings(new_crtc_state); 15189 dev_priv->display.crtc_enable(state, crtc); 15190 intel_crtc_enable_pipe_crc(crtc); 15191 } 15192 15193 static void intel_set_dp_tp_ctl_normal(struct intel_crtc *crtc, 15194 struct intel_atomic_state *state) 15195 { 15196 struct drm_connector *uninitialized_var(conn); 15197 struct drm_connector_state *conn_state; 15198 struct intel_dp *intel_dp; 15199 int i; 15200 15201 for_each_new_connector_in_state(&state->base, conn, conn_state, i) { 15202 if (conn_state->crtc == &crtc->base) 15203 break; 15204 } 15205 intel_dp = intel_attached_dp(to_intel_connector(conn)); 15206 intel_dp_stop_link_train(intel_dp); 15207 } 15208 15209 /* 15210 * TODO: This is only called from port sync and it is identical to what will be 15211 * executed again in intel_update_crtc() over port sync pipes 15212 */ 15213 static void intel_post_crtc_enable_updates(struct intel_crtc *crtc, 15214 struct intel_atomic_state *state) 15215 { 15216 struct intel_crtc_state *new_crtc_state = 15217 intel_atomic_get_new_crtc_state(state, crtc); 15218 struct intel_crtc_state *old_crtc_state = 15219 intel_atomic_get_old_crtc_state(state, crtc); 15220 bool modeset = needs_modeset(new_crtc_state); 15221 15222 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc) 15223 intel_fbc_disable(crtc); 15224 else 15225 intel_fbc_enable(state, crtc); 15226 15227 /* Perform vblank evasion around commit operation */ 15228 intel_pipe_update_start(new_crtc_state); 15229 commit_pipe_config(state, old_crtc_state, new_crtc_state); 15230 skl_update_planes_on_crtc(state, crtc); 15231 intel_pipe_update_end(new_crtc_state); 15232 15233 /* 15234 * We usually enable FIFO underrun interrupts as part of the 15235 * CRTC enable sequence during modesets. But when we inherit a 15236 * valid pipe configuration from the BIOS we need to take care 15237 * of enabling them on the CRTC's first fastset. 15238 */ 15239 if (new_crtc_state->update_pipe && !modeset && 15240 old_crtc_state->hw.mode.private_flags & I915_MODE_FLAG_INHERITED) 15241 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); 15242 } 15243 15244 static void intel_update_trans_port_sync_crtcs(struct intel_crtc *crtc, 15245 struct intel_atomic_state *state, 15246 struct intel_crtc_state *old_crtc_state, 15247 struct intel_crtc_state *new_crtc_state) 15248 { 15249 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 15250 struct intel_crtc *slave_crtc = intel_get_slave_crtc(new_crtc_state); 15251 struct intel_crtc_state *new_slave_crtc_state = 15252 intel_atomic_get_new_crtc_state(state, slave_crtc); 15253 struct intel_crtc_state *old_slave_crtc_state = 15254 intel_atomic_get_old_crtc_state(state, slave_crtc); 15255 15256 drm_WARN_ON(&i915->drm, !slave_crtc || !new_slave_crtc_state || 15257 !old_slave_crtc_state); 15258 15259 drm_dbg_kms(&i915->drm, 15260 "Updating Transcoder Port Sync Master CRTC = %d %s and Slave CRTC %d %s\n", 15261 crtc->base.base.id, crtc->base.name, 15262 slave_crtc->base.base.id, slave_crtc->base.name); 15263 15264 /* Enable seq for slave with with DP_TP_CTL left Idle until the 15265 * master is ready 15266 */ 15267 intel_crtc_enable_trans_port_sync(slave_crtc, 15268 state, 15269 new_slave_crtc_state); 15270 15271 /* Enable seq for master with with DP_TP_CTL left Idle */ 15272 intel_crtc_enable_trans_port_sync(crtc, 15273 state, 15274 new_crtc_state); 15275 15276 /* Set Slave's DP_TP_CTL to Normal */ 15277 intel_set_dp_tp_ctl_normal(slave_crtc, 15278 state); 15279 15280 /* Set Master's DP_TP_CTL To Normal */ 15281 usleep_range(200, 400); 15282 intel_set_dp_tp_ctl_normal(crtc, 15283 state); 15284 15285 /* Now do the post crtc enable for all master and slaves */ 15286 intel_post_crtc_enable_updates(slave_crtc, 15287 state); 15288 intel_post_crtc_enable_updates(crtc, 15289 state); 15290 } 15291 15292 static void icl_dbuf_slice_pre_update(struct intel_atomic_state *state) 15293 { 15294 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15295 u8 hw_enabled_slices = dev_priv->enabled_dbuf_slices_mask; 15296 u8 required_slices = state->enabled_dbuf_slices_mask; 15297 u8 slices_union = hw_enabled_slices | required_slices; 15298 15299 /* If 2nd DBuf slice required, enable it here */ 15300 if (INTEL_GEN(dev_priv) >= 11 && slices_union != hw_enabled_slices) 15301 icl_dbuf_slices_update(dev_priv, slices_union); 15302 } 15303 15304 static void icl_dbuf_slice_post_update(struct intel_atomic_state *state) 15305 { 15306 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15307 u8 hw_enabled_slices = dev_priv->enabled_dbuf_slices_mask; 15308 u8 required_slices = state->enabled_dbuf_slices_mask; 15309 15310 /* If 2nd DBuf slice is no more required disable it */ 15311 if (INTEL_GEN(dev_priv) >= 11 && required_slices != hw_enabled_slices) 15312 icl_dbuf_slices_update(dev_priv, required_slices); 15313 } 15314 15315 static void skl_commit_modeset_enables(struct intel_atomic_state *state) 15316 { 15317 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 15318 struct intel_crtc *crtc; 15319 struct intel_crtc_state *old_crtc_state, *new_crtc_state; 15320 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 15321 const u8 num_pipes = INTEL_NUM_PIPES(dev_priv); 15322 u8 update_pipes = 0, modeset_pipes = 0; 15323 int i; 15324 15325 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 15326 enum pipe pipe = crtc->pipe; 15327 15328 if (!new_crtc_state->hw.active) 15329 continue; 15330 15331 /* ignore allocations for crtc's that have been turned off. */ 15332 if (!needs_modeset(new_crtc_state)) { 15333 entries[pipe] = old_crtc_state->wm.skl.ddb; 15334 update_pipes |= BIT(pipe); 15335 } else { 15336 modeset_pipes |= BIT(pipe); 15337 } 15338 } 15339 15340 /* 15341 * Whenever the number of active pipes changes, we need to make sure we 15342 * update the pipes in the right order so that their ddb allocations 15343 * never overlap with each other between CRTC updates. Otherwise we'll 15344 * cause pipe underruns and other bad stuff. 15345 * 15346 * So first lets enable all pipes that do not need a fullmodeset as 15347 * those don't have any external dependency. 15348 */ 15349 while (update_pipes) { 15350 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15351 new_crtc_state, i) { 15352 enum pipe pipe = crtc->pipe; 15353 15354 if ((update_pipes & BIT(pipe)) == 0) 15355 continue; 15356 15357 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 15358 entries, num_pipes, pipe)) 15359 continue; 15360 15361 entries[pipe] = new_crtc_state->wm.skl.ddb; 15362 update_pipes &= ~BIT(pipe); 15363 15364 intel_update_crtc(crtc, state, old_crtc_state, 15365 new_crtc_state); 15366 15367 /* 15368 * If this is an already active pipe, it's DDB changed, 15369 * and this isn't the last pipe that needs updating 15370 * then we need to wait for a vblank to pass for the 15371 * new ddb allocation to take effect. 15372 */ 15373 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, 15374 &old_crtc_state->wm.skl.ddb) && 15375 (update_pipes | modeset_pipes)) 15376 intel_wait_for_vblank(dev_priv, pipe); 15377 } 15378 } 15379 15380 /* 15381 * Enable all pipes that needs a modeset and do not depends on other 15382 * pipes 15383 */ 15384 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15385 new_crtc_state, i) { 15386 enum pipe pipe = crtc->pipe; 15387 15388 if ((modeset_pipes & BIT(pipe)) == 0) 15389 continue; 15390 15391 if (intel_dp_mst_is_slave_trans(new_crtc_state) || 15392 is_trans_port_sync_slave(new_crtc_state)) 15393 continue; 15394 15395 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 15396 entries, num_pipes, pipe)); 15397 15398 entries[pipe] = new_crtc_state->wm.skl.ddb; 15399 modeset_pipes &= ~BIT(pipe); 15400 15401 if (is_trans_port_sync_mode(new_crtc_state)) { 15402 struct intel_crtc *slave_crtc; 15403 15404 intel_update_trans_port_sync_crtcs(crtc, state, 15405 old_crtc_state, 15406 new_crtc_state); 15407 15408 slave_crtc = intel_get_slave_crtc(new_crtc_state); 15409 /* TODO: update entries[] of slave */ 15410 modeset_pipes &= ~BIT(slave_crtc->pipe); 15411 15412 } else { 15413 intel_update_crtc(crtc, state, old_crtc_state, 15414 new_crtc_state); 15415 } 15416 } 15417 15418 /* 15419 * Finally enable all pipes that needs a modeset and depends on 15420 * other pipes, right now it is only MST slaves as both port sync slave 15421 * and master are enabled together 15422 */ 15423 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15424 new_crtc_state, i) { 15425 enum pipe pipe = crtc->pipe; 15426 15427 if ((modeset_pipes & BIT(pipe)) == 0) 15428 continue; 15429 15430 drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, 15431 entries, num_pipes, pipe)); 15432 15433 entries[pipe] = new_crtc_state->wm.skl.ddb; 15434 modeset_pipes &= ~BIT(pipe); 15435 15436 intel_update_crtc(crtc, state, old_crtc_state, new_crtc_state); 15437 } 15438 15439 drm_WARN_ON(&dev_priv->drm, modeset_pipes); 15440 15441 } 15442 15443 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) 15444 { 15445 struct intel_atomic_state *state, *next; 15446 struct llist_node *freed; 15447 15448 freed = llist_del_all(&dev_priv->atomic_helper.free_list); 15449 llist_for_each_entry_safe(state, next, freed, freed) 15450 drm_atomic_state_put(&state->base); 15451 } 15452 15453 static void intel_atomic_helper_free_state_worker(struct work_struct *work) 15454 { 15455 struct drm_i915_private *dev_priv = 15456 container_of(work, typeof(*dev_priv), atomic_helper.free_work); 15457 15458 intel_atomic_helper_free_state(dev_priv); 15459 } 15460 15461 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) 15462 { 15463 struct wait_queue_entry wait_fence, wait_reset; 15464 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); 15465 15466 init_wait_entry(&wait_fence, 0); 15467 init_wait_entry(&wait_reset, 0); 15468 for (;;) { 15469 prepare_to_wait(&intel_state->commit_ready.wait, 15470 &wait_fence, TASK_UNINTERRUPTIBLE); 15471 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 15472 I915_RESET_MODESET), 15473 &wait_reset, TASK_UNINTERRUPTIBLE); 15474 15475 15476 if (i915_sw_fence_done(&intel_state->commit_ready) || 15477 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags)) 15478 break; 15479 15480 schedule(); 15481 } 15482 finish_wait(&intel_state->commit_ready.wait, &wait_fence); 15483 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags, 15484 I915_RESET_MODESET), 15485 &wait_reset); 15486 } 15487 15488 static void intel_atomic_cleanup_work(struct work_struct *work) 15489 { 15490 struct drm_atomic_state *state = 15491 container_of(work, struct drm_atomic_state, commit_work); 15492 struct drm_i915_private *i915 = to_i915(state->dev); 15493 15494 drm_atomic_helper_cleanup_planes(&i915->drm, state); 15495 drm_atomic_helper_commit_cleanup_done(state); 15496 drm_atomic_state_put(state); 15497 15498 intel_atomic_helper_free_state(i915); 15499 } 15500 15501 static void intel_atomic_commit_tail(struct intel_atomic_state *state) 15502 { 15503 struct drm_device *dev = state->base.dev; 15504 struct drm_i915_private *dev_priv = to_i915(dev); 15505 struct intel_crtc_state *new_crtc_state, *old_crtc_state; 15506 struct intel_crtc *crtc; 15507 u64 put_domains[I915_MAX_PIPES] = {}; 15508 intel_wakeref_t wakeref = 0; 15509 int i; 15510 15511 intel_atomic_commit_fence_wait(state); 15512 15513 drm_atomic_helper_wait_for_dependencies(&state->base); 15514 15515 if (state->modeset) 15516 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 15517 15518 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15519 new_crtc_state, i) { 15520 if (needs_modeset(new_crtc_state) || 15521 new_crtc_state->update_pipe) { 15522 15523 put_domains[crtc->pipe] = 15524 modeset_get_crtc_power_domains(new_crtc_state); 15525 } 15526 } 15527 15528 intel_commit_modeset_disables(state); 15529 15530 /* FIXME: Eventually get rid of our crtc->config pointer */ 15531 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 15532 crtc->config = new_crtc_state; 15533 15534 if (state->modeset) { 15535 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); 15536 15537 intel_set_cdclk_pre_plane_update(state); 15538 15539 /* 15540 * SKL workaround: bspec recommends we disable the SAGV when we 15541 * have more then one pipe enabled 15542 */ 15543 if (!intel_can_enable_sagv(state)) 15544 intel_disable_sagv(dev_priv); 15545 15546 intel_modeset_verify_disabled(dev_priv, state); 15547 } 15548 15549 /* Complete the events for pipes that have now been disabled */ 15550 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15551 bool modeset = needs_modeset(new_crtc_state); 15552 15553 /* Complete events for now disable pipes here. */ 15554 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { 15555 spin_lock_irq(&dev->event_lock); 15556 drm_crtc_send_vblank_event(&crtc->base, 15557 new_crtc_state->uapi.event); 15558 spin_unlock_irq(&dev->event_lock); 15559 15560 new_crtc_state->uapi.event = NULL; 15561 } 15562 } 15563 15564 if (state->modeset) 15565 intel_encoders_update_prepare(state); 15566 15567 /* Enable all new slices, we might need */ 15568 if (state->modeset) 15569 icl_dbuf_slice_pre_update(state); 15570 15571 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 15572 dev_priv->display.commit_modeset_enables(state); 15573 15574 if (state->modeset) { 15575 intel_encoders_update_complete(state); 15576 15577 intel_set_cdclk_post_plane_update(state); 15578 } 15579 15580 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here 15581 * already, but still need the state for the delayed optimization. To 15582 * fix this: 15583 * - wrap the optimization/post_plane_update stuff into a per-crtc work. 15584 * - schedule that vblank worker _before_ calling hw_done 15585 * - at the start of commit_tail, cancel it _synchrously 15586 * - switch over to the vblank wait helper in the core after that since 15587 * we don't need out special handling any more. 15588 */ 15589 drm_atomic_helper_wait_for_flip_done(dev, &state->base); 15590 15591 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 15592 if (new_crtc_state->hw.active && 15593 !needs_modeset(new_crtc_state) && 15594 !new_crtc_state->preload_luts && 15595 (new_crtc_state->uapi.color_mgmt_changed || 15596 new_crtc_state->update_pipe)) 15597 intel_color_load_luts(new_crtc_state); 15598 } 15599 15600 /* 15601 * Now that the vblank has passed, we can go ahead and program the 15602 * optimal watermarks on platforms that need two-step watermark 15603 * programming. 15604 * 15605 * TODO: Move this (and other cleanup) to an async worker eventually. 15606 */ 15607 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 15608 new_crtc_state, i) { 15609 /* 15610 * Gen2 reports pipe underruns whenever all planes are disabled. 15611 * So re-enable underrun reporting after some planes get enabled. 15612 * 15613 * We do this before .optimize_watermarks() so that we have a 15614 * chance of catching underruns with the intermediate watermarks 15615 * vs. the new plane configuration. 15616 */ 15617 if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state)) 15618 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 15619 15620 if (dev_priv->display.optimize_watermarks) 15621 dev_priv->display.optimize_watermarks(state, crtc); 15622 } 15623 15624 /* Disable all slices, we don't need */ 15625 if (state->modeset) 15626 icl_dbuf_slice_post_update(state); 15627 15628 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 15629 intel_post_plane_update(state, crtc); 15630 15631 if (put_domains[i]) 15632 modeset_put_power_domains(dev_priv, put_domains[i]); 15633 15634 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); 15635 } 15636 15637 /* Underruns don't always raise interrupts, so check manually */ 15638 intel_check_cpu_fifo_underruns(dev_priv); 15639 intel_check_pch_fifo_underruns(dev_priv); 15640 15641 if (state->modeset) 15642 intel_verify_planes(state); 15643 15644 if (state->modeset && intel_can_enable_sagv(state)) 15645 intel_enable_sagv(dev_priv); 15646 15647 drm_atomic_helper_commit_hw_done(&state->base); 15648 15649 if (state->modeset) { 15650 /* As one of the primary mmio accessors, KMS has a high 15651 * likelihood of triggering bugs in unclaimed access. After we 15652 * finish modesetting, see if an error has been flagged, and if 15653 * so enable debugging for the next modeset - and hope we catch 15654 * the culprit. 15655 */ 15656 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); 15657 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); 15658 } 15659 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15660 15661 /* 15662 * Defer the cleanup of the old state to a separate worker to not 15663 * impede the current task (userspace for blocking modesets) that 15664 * are executed inline. For out-of-line asynchronous modesets/flips, 15665 * deferring to a new worker seems overkill, but we would place a 15666 * schedule point (cond_resched()) here anyway to keep latencies 15667 * down. 15668 */ 15669 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); 15670 queue_work(system_highpri_wq, &state->base.commit_work); 15671 } 15672 15673 static void intel_atomic_commit_work(struct work_struct *work) 15674 { 15675 struct intel_atomic_state *state = 15676 container_of(work, struct intel_atomic_state, base.commit_work); 15677 15678 intel_atomic_commit_tail(state); 15679 } 15680 15681 static int __i915_sw_fence_call 15682 intel_atomic_commit_ready(struct i915_sw_fence *fence, 15683 enum i915_sw_fence_notify notify) 15684 { 15685 struct intel_atomic_state *state = 15686 container_of(fence, struct intel_atomic_state, commit_ready); 15687 15688 switch (notify) { 15689 case FENCE_COMPLETE: 15690 /* we do blocking waits in the worker, nothing to do here */ 15691 break; 15692 case FENCE_FREE: 15693 { 15694 struct intel_atomic_helper *helper = 15695 &to_i915(state->base.dev)->atomic_helper; 15696 15697 if (llist_add(&state->freed, &helper->free_list)) 15698 schedule_work(&helper->free_work); 15699 break; 15700 } 15701 } 15702 15703 return NOTIFY_DONE; 15704 } 15705 15706 static void intel_atomic_track_fbs(struct intel_atomic_state *state) 15707 { 15708 struct intel_plane_state *old_plane_state, *new_plane_state; 15709 struct intel_plane *plane; 15710 int i; 15711 15712 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 15713 new_plane_state, i) 15714 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 15715 to_intel_frontbuffer(new_plane_state->hw.fb), 15716 plane->frontbuffer_bit); 15717 } 15718 15719 static void assert_global_state_locked(struct drm_i915_private *dev_priv) 15720 { 15721 struct intel_crtc *crtc; 15722 15723 for_each_intel_crtc(&dev_priv->drm, crtc) 15724 drm_modeset_lock_assert_held(&crtc->base.mutex); 15725 } 15726 15727 static int intel_atomic_commit(struct drm_device *dev, 15728 struct drm_atomic_state *_state, 15729 bool nonblock) 15730 { 15731 struct intel_atomic_state *state = to_intel_atomic_state(_state); 15732 struct drm_i915_private *dev_priv = to_i915(dev); 15733 int ret = 0; 15734 15735 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 15736 15737 drm_atomic_state_get(&state->base); 15738 i915_sw_fence_init(&state->commit_ready, 15739 intel_atomic_commit_ready); 15740 15741 /* 15742 * The intel_legacy_cursor_update() fast path takes care 15743 * of avoiding the vblank waits for simple cursor 15744 * movement and flips. For cursor on/off and size changes, 15745 * we want to perform the vblank waits so that watermark 15746 * updates happen during the correct frames. Gen9+ have 15747 * double buffered watermarks and so shouldn't need this. 15748 * 15749 * Unset state->legacy_cursor_update before the call to 15750 * drm_atomic_helper_setup_commit() because otherwise 15751 * drm_atomic_helper_wait_for_flip_done() is a noop and 15752 * we get FIFO underruns because we didn't wait 15753 * for vblank. 15754 * 15755 * FIXME doing watermarks and fb cleanup from a vblank worker 15756 * (assuming we had any) would solve these problems. 15757 */ 15758 if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) { 15759 struct intel_crtc_state *new_crtc_state; 15760 struct intel_crtc *crtc; 15761 int i; 15762 15763 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) 15764 if (new_crtc_state->wm.need_postvbl_update || 15765 new_crtc_state->update_wm_post) 15766 state->base.legacy_cursor_update = false; 15767 } 15768 15769 ret = intel_atomic_prepare_commit(state); 15770 if (ret) { 15771 drm_dbg_atomic(&dev_priv->drm, 15772 "Preparing state failed with %i\n", ret); 15773 i915_sw_fence_commit(&state->commit_ready); 15774 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15775 return ret; 15776 } 15777 15778 ret = drm_atomic_helper_setup_commit(&state->base, nonblock); 15779 if (!ret) 15780 ret = drm_atomic_helper_swap_state(&state->base, true); 15781 if (!ret) 15782 intel_atomic_swap_global_state(state); 15783 15784 if (ret) { 15785 i915_sw_fence_commit(&state->commit_ready); 15786 15787 drm_atomic_helper_cleanup_planes(dev, &state->base); 15788 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); 15789 return ret; 15790 } 15791 dev_priv->wm.distrust_bios_wm = false; 15792 intel_shared_dpll_swap_state(state); 15793 intel_atomic_track_fbs(state); 15794 15795 if (state->global_state_changed) { 15796 assert_global_state_locked(dev_priv); 15797 15798 dev_priv->active_pipes = state->active_pipes; 15799 } 15800 15801 drm_atomic_state_get(&state->base); 15802 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); 15803 15804 i915_sw_fence_commit(&state->commit_ready); 15805 if (nonblock && state->modeset) { 15806 queue_work(dev_priv->modeset_wq, &state->base.commit_work); 15807 } else if (nonblock) { 15808 queue_work(dev_priv->flip_wq, &state->base.commit_work); 15809 } else { 15810 if (state->modeset) 15811 flush_workqueue(dev_priv->modeset_wq); 15812 intel_atomic_commit_tail(state); 15813 } 15814 15815 return 0; 15816 } 15817 15818 struct wait_rps_boost { 15819 struct wait_queue_entry wait; 15820 15821 struct drm_crtc *crtc; 15822 struct i915_request *request; 15823 }; 15824 15825 static int do_rps_boost(struct wait_queue_entry *_wait, 15826 unsigned mode, int sync, void *key) 15827 { 15828 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait); 15829 struct i915_request *rq = wait->request; 15830 15831 /* 15832 * If we missed the vblank, but the request is already running it 15833 * is reasonable to assume that it will complete before the next 15834 * vblank without our intervention, so leave RPS alone. 15835 */ 15836 if (!i915_request_started(rq)) 15837 intel_rps_boost(rq); 15838 i915_request_put(rq); 15839 15840 drm_crtc_vblank_put(wait->crtc); 15841 15842 list_del(&wait->wait.entry); 15843 kfree(wait); 15844 return 1; 15845 } 15846 15847 static void add_rps_boost_after_vblank(struct drm_crtc *crtc, 15848 struct dma_fence *fence) 15849 { 15850 struct wait_rps_boost *wait; 15851 15852 if (!dma_fence_is_i915(fence)) 15853 return; 15854 15855 if (INTEL_GEN(to_i915(crtc->dev)) < 6) 15856 return; 15857 15858 if (drm_crtc_vblank_get(crtc)) 15859 return; 15860 15861 wait = kmalloc(sizeof(*wait), GFP_KERNEL); 15862 if (!wait) { 15863 drm_crtc_vblank_put(crtc); 15864 return; 15865 } 15866 15867 wait->request = to_request(dma_fence_get(fence)); 15868 wait->crtc = crtc; 15869 15870 wait->wait.func = do_rps_boost; 15871 wait->wait.flags = 0; 15872 15873 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait); 15874 } 15875 15876 static int intel_plane_pin_fb(struct intel_plane_state *plane_state) 15877 { 15878 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 15879 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 15880 struct drm_framebuffer *fb = plane_state->hw.fb; 15881 struct i915_vma *vma; 15882 15883 if (plane->id == PLANE_CURSOR && 15884 INTEL_INFO(dev_priv)->display.cursor_needs_physical) { 15885 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 15886 const int align = intel_cursor_alignment(dev_priv); 15887 int err; 15888 15889 err = i915_gem_object_attach_phys(obj, align); 15890 if (err) 15891 return err; 15892 } 15893 15894 vma = intel_pin_and_fence_fb_obj(fb, 15895 &plane_state->view, 15896 intel_plane_uses_fence(plane_state), 15897 &plane_state->flags); 15898 if (IS_ERR(vma)) 15899 return PTR_ERR(vma); 15900 15901 plane_state->vma = vma; 15902 15903 return 0; 15904 } 15905 15906 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state) 15907 { 15908 struct i915_vma *vma; 15909 15910 vma = fetch_and_zero(&old_plane_state->vma); 15911 if (vma) 15912 intel_unpin_fb_vma(vma, old_plane_state->flags); 15913 } 15914 15915 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj) 15916 { 15917 struct i915_sched_attr attr = { 15918 .priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY), 15919 }; 15920 15921 i915_gem_object_wait_priority(obj, 0, &attr); 15922 } 15923 15924 /** 15925 * intel_prepare_plane_fb - Prepare fb for usage on plane 15926 * @_plane: drm plane to prepare for 15927 * @_new_plane_state: the plane state being prepared 15928 * 15929 * Prepares a framebuffer for usage on a display plane. Generally this 15930 * involves pinning the underlying object and updating the frontbuffer tracking 15931 * bits. Some older platforms need special physical address handling for 15932 * cursor planes. 15933 * 15934 * Returns 0 on success, negative error code on failure. 15935 */ 15936 int 15937 intel_prepare_plane_fb(struct drm_plane *_plane, 15938 struct drm_plane_state *_new_plane_state) 15939 { 15940 struct intel_plane *plane = to_intel_plane(_plane); 15941 struct intel_plane_state *new_plane_state = 15942 to_intel_plane_state(_new_plane_state); 15943 struct intel_atomic_state *state = 15944 to_intel_atomic_state(new_plane_state->uapi.state); 15945 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 15946 const struct intel_plane_state *old_plane_state = 15947 intel_atomic_get_old_plane_state(state, plane); 15948 struct drm_i915_gem_object *obj = intel_fb_obj(new_plane_state->hw.fb); 15949 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_plane_state->hw.fb); 15950 int ret; 15951 15952 if (old_obj) { 15953 const struct intel_crtc_state *crtc_state = 15954 intel_atomic_get_new_crtc_state(state, 15955 to_intel_crtc(old_plane_state->hw.crtc)); 15956 15957 /* Big Hammer, we also need to ensure that any pending 15958 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 15959 * current scanout is retired before unpinning the old 15960 * framebuffer. Note that we rely on userspace rendering 15961 * into the buffer attached to the pipe they are waiting 15962 * on. If not, userspace generates a GPU hang with IPEHR 15963 * point to the MI_WAIT_FOR_EVENT. 15964 * 15965 * This should only fail upon a hung GPU, in which case we 15966 * can safely continue. 15967 */ 15968 if (needs_modeset(crtc_state)) { 15969 ret = i915_sw_fence_await_reservation(&state->commit_ready, 15970 old_obj->base.resv, NULL, 15971 false, 0, 15972 GFP_KERNEL); 15973 if (ret < 0) 15974 return ret; 15975 } 15976 } 15977 15978 if (new_plane_state->uapi.fence) { /* explicit fencing */ 15979 ret = i915_sw_fence_await_dma_fence(&state->commit_ready, 15980 new_plane_state->uapi.fence, 15981 I915_FENCE_TIMEOUT, 15982 GFP_KERNEL); 15983 if (ret < 0) 15984 return ret; 15985 } 15986 15987 if (!obj) 15988 return 0; 15989 15990 ret = i915_gem_object_pin_pages(obj); 15991 if (ret) 15992 return ret; 15993 15994 ret = intel_plane_pin_fb(new_plane_state); 15995 15996 i915_gem_object_unpin_pages(obj); 15997 if (ret) 15998 return ret; 15999 16000 fb_obj_bump_render_priority(obj); 16001 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB); 16002 16003 if (!new_plane_state->uapi.fence) { /* implicit fencing */ 16004 struct dma_fence *fence; 16005 16006 ret = i915_sw_fence_await_reservation(&state->commit_ready, 16007 obj->base.resv, NULL, 16008 false, I915_FENCE_TIMEOUT, 16009 GFP_KERNEL); 16010 if (ret < 0) 16011 goto unpin_fb; 16012 16013 fence = dma_resv_get_excl_rcu(obj->base.resv); 16014 if (fence) { 16015 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 16016 fence); 16017 dma_fence_put(fence); 16018 } 16019 } else { 16020 add_rps_boost_after_vblank(new_plane_state->hw.crtc, 16021 new_plane_state->uapi.fence); 16022 } 16023 16024 /* 16025 * We declare pageflips to be interactive and so merit a small bias 16026 * towards upclocking to deliver the frame on time. By only changing 16027 * the RPS thresholds to sample more regularly and aim for higher 16028 * clocks we can hopefully deliver low power workloads (like kodi) 16029 * that are not quite steady state without resorting to forcing 16030 * maximum clocks following a vblank miss (see do_rps_boost()). 16031 */ 16032 if (!state->rps_interactive) { 16033 intel_rps_mark_interactive(&dev_priv->gt.rps, true); 16034 state->rps_interactive = true; 16035 } 16036 16037 return 0; 16038 16039 unpin_fb: 16040 intel_plane_unpin_fb(new_plane_state); 16041 16042 return ret; 16043 } 16044 16045 /** 16046 * intel_cleanup_plane_fb - Cleans up an fb after plane use 16047 * @plane: drm plane to clean up for 16048 * @_old_plane_state: the state from the previous modeset 16049 * 16050 * Cleans up a framebuffer that has just been removed from a plane. 16051 */ 16052 void 16053 intel_cleanup_plane_fb(struct drm_plane *plane, 16054 struct drm_plane_state *_old_plane_state) 16055 { 16056 struct intel_plane_state *old_plane_state = 16057 to_intel_plane_state(_old_plane_state); 16058 struct intel_atomic_state *state = 16059 to_intel_atomic_state(old_plane_state->uapi.state); 16060 struct drm_i915_private *dev_priv = to_i915(plane->dev); 16061 struct drm_i915_gem_object *obj = intel_fb_obj(old_plane_state->hw.fb); 16062 16063 if (!obj) 16064 return; 16065 16066 if (state->rps_interactive) { 16067 intel_rps_mark_interactive(&dev_priv->gt.rps, false); 16068 state->rps_interactive = false; 16069 } 16070 16071 /* Should only be called after a successful intel_prepare_plane_fb()! */ 16072 intel_plane_unpin_fb(old_plane_state); 16073 } 16074 16075 /** 16076 * intel_plane_destroy - destroy a plane 16077 * @plane: plane to destroy 16078 * 16079 * Common destruction function for all types of planes (primary, cursor, 16080 * sprite). 16081 */ 16082 void intel_plane_destroy(struct drm_plane *plane) 16083 { 16084 drm_plane_cleanup(plane); 16085 kfree(to_intel_plane(plane)); 16086 } 16087 16088 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane, 16089 u32 format, u64 modifier) 16090 { 16091 switch (modifier) { 16092 case DRM_FORMAT_MOD_LINEAR: 16093 case I915_FORMAT_MOD_X_TILED: 16094 break; 16095 default: 16096 return false; 16097 } 16098 16099 switch (format) { 16100 case DRM_FORMAT_C8: 16101 case DRM_FORMAT_RGB565: 16102 case DRM_FORMAT_XRGB1555: 16103 case DRM_FORMAT_XRGB8888: 16104 return modifier == DRM_FORMAT_MOD_LINEAR || 16105 modifier == I915_FORMAT_MOD_X_TILED; 16106 default: 16107 return false; 16108 } 16109 } 16110 16111 static bool i965_plane_format_mod_supported(struct drm_plane *_plane, 16112 u32 format, u64 modifier) 16113 { 16114 switch (modifier) { 16115 case DRM_FORMAT_MOD_LINEAR: 16116 case I915_FORMAT_MOD_X_TILED: 16117 break; 16118 default: 16119 return false; 16120 } 16121 16122 switch (format) { 16123 case DRM_FORMAT_C8: 16124 case DRM_FORMAT_RGB565: 16125 case DRM_FORMAT_XRGB8888: 16126 case DRM_FORMAT_XBGR8888: 16127 case DRM_FORMAT_ARGB8888: 16128 case DRM_FORMAT_ABGR8888: 16129 case DRM_FORMAT_XRGB2101010: 16130 case DRM_FORMAT_XBGR2101010: 16131 case DRM_FORMAT_ARGB2101010: 16132 case DRM_FORMAT_ABGR2101010: 16133 case DRM_FORMAT_XBGR16161616F: 16134 return modifier == DRM_FORMAT_MOD_LINEAR || 16135 modifier == I915_FORMAT_MOD_X_TILED; 16136 default: 16137 return false; 16138 } 16139 } 16140 16141 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane, 16142 u32 format, u64 modifier) 16143 { 16144 return modifier == DRM_FORMAT_MOD_LINEAR && 16145 format == DRM_FORMAT_ARGB8888; 16146 } 16147 16148 static const struct drm_plane_funcs i965_plane_funcs = { 16149 .update_plane = drm_atomic_helper_update_plane, 16150 .disable_plane = drm_atomic_helper_disable_plane, 16151 .destroy = intel_plane_destroy, 16152 .atomic_duplicate_state = intel_plane_duplicate_state, 16153 .atomic_destroy_state = intel_plane_destroy_state, 16154 .format_mod_supported = i965_plane_format_mod_supported, 16155 }; 16156 16157 static const struct drm_plane_funcs i8xx_plane_funcs = { 16158 .update_plane = drm_atomic_helper_update_plane, 16159 .disable_plane = drm_atomic_helper_disable_plane, 16160 .destroy = intel_plane_destroy, 16161 .atomic_duplicate_state = intel_plane_duplicate_state, 16162 .atomic_destroy_state = intel_plane_destroy_state, 16163 .format_mod_supported = i8xx_plane_format_mod_supported, 16164 }; 16165 16166 static int 16167 intel_legacy_cursor_update(struct drm_plane *_plane, 16168 struct drm_crtc *_crtc, 16169 struct drm_framebuffer *fb, 16170 int crtc_x, int crtc_y, 16171 unsigned int crtc_w, unsigned int crtc_h, 16172 u32 src_x, u32 src_y, 16173 u32 src_w, u32 src_h, 16174 struct drm_modeset_acquire_ctx *ctx) 16175 { 16176 struct intel_plane *plane = to_intel_plane(_plane); 16177 struct intel_crtc *crtc = to_intel_crtc(_crtc); 16178 struct intel_plane_state *old_plane_state = 16179 to_intel_plane_state(plane->base.state); 16180 struct intel_plane_state *new_plane_state; 16181 struct intel_crtc_state *crtc_state = 16182 to_intel_crtc_state(crtc->base.state); 16183 struct intel_crtc_state *new_crtc_state; 16184 int ret; 16185 16186 /* 16187 * When crtc is inactive or there is a modeset pending, 16188 * wait for it to complete in the slowpath 16189 */ 16190 if (!crtc_state->hw.active || needs_modeset(crtc_state) || 16191 crtc_state->update_pipe) 16192 goto slow; 16193 16194 /* 16195 * Don't do an async update if there is an outstanding commit modifying 16196 * the plane. This prevents our async update's changes from getting 16197 * overridden by a previous synchronous update's state. 16198 */ 16199 if (old_plane_state->uapi.commit && 16200 !try_wait_for_completion(&old_plane_state->uapi.commit->hw_done)) 16201 goto slow; 16202 16203 /* 16204 * If any parameters change that may affect watermarks, 16205 * take the slowpath. Only changing fb or position should be 16206 * in the fastpath. 16207 */ 16208 if (old_plane_state->uapi.crtc != &crtc->base || 16209 old_plane_state->uapi.src_w != src_w || 16210 old_plane_state->uapi.src_h != src_h || 16211 old_plane_state->uapi.crtc_w != crtc_w || 16212 old_plane_state->uapi.crtc_h != crtc_h || 16213 !old_plane_state->uapi.fb != !fb) 16214 goto slow; 16215 16216 new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base)); 16217 if (!new_plane_state) 16218 return -ENOMEM; 16219 16220 new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base)); 16221 if (!new_crtc_state) { 16222 ret = -ENOMEM; 16223 goto out_free; 16224 } 16225 16226 drm_atomic_set_fb_for_plane(&new_plane_state->uapi, fb); 16227 16228 new_plane_state->uapi.src_x = src_x; 16229 new_plane_state->uapi.src_y = src_y; 16230 new_plane_state->uapi.src_w = src_w; 16231 new_plane_state->uapi.src_h = src_h; 16232 new_plane_state->uapi.crtc_x = crtc_x; 16233 new_plane_state->uapi.crtc_y = crtc_y; 16234 new_plane_state->uapi.crtc_w = crtc_w; 16235 new_plane_state->uapi.crtc_h = crtc_h; 16236 16237 intel_plane_copy_uapi_to_hw_state(new_plane_state, new_plane_state); 16238 16239 ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state, 16240 old_plane_state, new_plane_state); 16241 if (ret) 16242 goto out_free; 16243 16244 ret = intel_plane_pin_fb(new_plane_state); 16245 if (ret) 16246 goto out_free; 16247 16248 intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->hw.fb), 16249 ORIGIN_FLIP); 16250 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), 16251 to_intel_frontbuffer(new_plane_state->hw.fb), 16252 plane->frontbuffer_bit); 16253 16254 /* Swap plane state */ 16255 plane->base.state = &new_plane_state->uapi; 16256 16257 /* 16258 * We cannot swap crtc_state as it may be in use by an atomic commit or 16259 * page flip that's running simultaneously. If we swap crtc_state and 16260 * destroy the old state, we will cause a use-after-free there. 16261 * 16262 * Only update active_planes, which is needed for our internal 16263 * bookkeeping. Either value will do the right thing when updating 16264 * planes atomically. If the cursor was part of the atomic update then 16265 * we would have taken the slowpath. 16266 */ 16267 crtc_state->active_planes = new_crtc_state->active_planes; 16268 16269 if (new_plane_state->uapi.visible) 16270 intel_update_plane(plane, crtc_state, new_plane_state); 16271 else 16272 intel_disable_plane(plane, crtc_state); 16273 16274 intel_plane_unpin_fb(old_plane_state); 16275 16276 out_free: 16277 if (new_crtc_state) 16278 intel_crtc_destroy_state(&crtc->base, &new_crtc_state->uapi); 16279 if (ret) 16280 intel_plane_destroy_state(&plane->base, &new_plane_state->uapi); 16281 else 16282 intel_plane_destroy_state(&plane->base, &old_plane_state->uapi); 16283 return ret; 16284 16285 slow: 16286 return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb, 16287 crtc_x, crtc_y, crtc_w, crtc_h, 16288 src_x, src_y, src_w, src_h, ctx); 16289 } 16290 16291 static const struct drm_plane_funcs intel_cursor_plane_funcs = { 16292 .update_plane = intel_legacy_cursor_update, 16293 .disable_plane = drm_atomic_helper_disable_plane, 16294 .destroy = intel_plane_destroy, 16295 .atomic_duplicate_state = intel_plane_duplicate_state, 16296 .atomic_destroy_state = intel_plane_destroy_state, 16297 .format_mod_supported = intel_cursor_format_mod_supported, 16298 }; 16299 16300 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv, 16301 enum i9xx_plane_id i9xx_plane) 16302 { 16303 if (!HAS_FBC(dev_priv)) 16304 return false; 16305 16306 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 16307 return i9xx_plane == PLANE_A; /* tied to pipe A */ 16308 else if (IS_IVYBRIDGE(dev_priv)) 16309 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B || 16310 i9xx_plane == PLANE_C; 16311 else if (INTEL_GEN(dev_priv) >= 4) 16312 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B; 16313 else 16314 return i9xx_plane == PLANE_A; 16315 } 16316 16317 static struct intel_plane * 16318 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe) 16319 { 16320 struct intel_plane *plane; 16321 const struct drm_plane_funcs *plane_funcs; 16322 unsigned int supported_rotations; 16323 unsigned int possible_crtcs; 16324 const u32 *formats; 16325 int num_formats; 16326 int ret, zpos; 16327 16328 if (INTEL_GEN(dev_priv) >= 9) 16329 return skl_universal_plane_create(dev_priv, pipe, 16330 PLANE_PRIMARY); 16331 16332 plane = intel_plane_alloc(); 16333 if (IS_ERR(plane)) 16334 return plane; 16335 16336 plane->pipe = pipe; 16337 /* 16338 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS 16339 * port is hooked to pipe B. Hence we want plane A feeding pipe B. 16340 */ 16341 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4) 16342 plane->i9xx_plane = (enum i9xx_plane_id) !pipe; 16343 else 16344 plane->i9xx_plane = (enum i9xx_plane_id) pipe; 16345 plane->id = PLANE_PRIMARY; 16346 plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id); 16347 16348 plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane); 16349 if (plane->has_fbc) { 16350 struct intel_fbc *fbc = &dev_priv->fbc; 16351 16352 fbc->possible_framebuffer_bits |= plane->frontbuffer_bit; 16353 } 16354 16355 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 16356 formats = vlv_primary_formats; 16357 num_formats = ARRAY_SIZE(vlv_primary_formats); 16358 } else if (INTEL_GEN(dev_priv) >= 4) { 16359 /* 16360 * WaFP16GammaEnabling:ivb 16361 * "Workaround : When using the 64-bit format, the plane 16362 * output on each color channel has one quarter amplitude. 16363 * It can be brought up to full amplitude by using pipe 16364 * gamma correction or pipe color space conversion to 16365 * multiply the plane output by four." 16366 * 16367 * There is no dedicated plane gamma for the primary plane, 16368 * and using the pipe gamma/csc could conflict with other 16369 * planes, so we choose not to expose fp16 on IVB primary 16370 * planes. HSW primary planes no longer have this problem. 16371 */ 16372 if (IS_IVYBRIDGE(dev_priv)) { 16373 formats = ivb_primary_formats; 16374 num_formats = ARRAY_SIZE(ivb_primary_formats); 16375 } else { 16376 formats = i965_primary_formats; 16377 num_formats = ARRAY_SIZE(i965_primary_formats); 16378 } 16379 } else { 16380 formats = i8xx_primary_formats; 16381 num_formats = ARRAY_SIZE(i8xx_primary_formats); 16382 } 16383 16384 if (INTEL_GEN(dev_priv) >= 4) 16385 plane_funcs = &i965_plane_funcs; 16386 else 16387 plane_funcs = &i8xx_plane_funcs; 16388 16389 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16390 plane->min_cdclk = vlv_plane_min_cdclk; 16391 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 16392 plane->min_cdclk = hsw_plane_min_cdclk; 16393 else if (IS_IVYBRIDGE(dev_priv)) 16394 plane->min_cdclk = ivb_plane_min_cdclk; 16395 else 16396 plane->min_cdclk = i9xx_plane_min_cdclk; 16397 16398 plane->max_stride = i9xx_plane_max_stride; 16399 plane->update_plane = i9xx_update_plane; 16400 plane->disable_plane = i9xx_disable_plane; 16401 plane->get_hw_state = i9xx_plane_get_hw_state; 16402 plane->check_plane = i9xx_plane_check; 16403 16404 possible_crtcs = BIT(pipe); 16405 16406 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 16407 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 16408 possible_crtcs, plane_funcs, 16409 formats, num_formats, 16410 i9xx_format_modifiers, 16411 DRM_PLANE_TYPE_PRIMARY, 16412 "primary %c", pipe_name(pipe)); 16413 else 16414 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base, 16415 possible_crtcs, plane_funcs, 16416 formats, num_formats, 16417 i9xx_format_modifiers, 16418 DRM_PLANE_TYPE_PRIMARY, 16419 "plane %c", 16420 plane_name(plane->i9xx_plane)); 16421 if (ret) 16422 goto fail; 16423 16424 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { 16425 supported_rotations = 16426 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 | 16427 DRM_MODE_REFLECT_X; 16428 } else if (INTEL_GEN(dev_priv) >= 4) { 16429 supported_rotations = 16430 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180; 16431 } else { 16432 supported_rotations = DRM_MODE_ROTATE_0; 16433 } 16434 16435 if (INTEL_GEN(dev_priv) >= 4) 16436 drm_plane_create_rotation_property(&plane->base, 16437 DRM_MODE_ROTATE_0, 16438 supported_rotations); 16439 16440 zpos = 0; 16441 drm_plane_create_zpos_immutable_property(&plane->base, zpos); 16442 16443 drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs); 16444 16445 return plane; 16446 16447 fail: 16448 intel_plane_free(plane); 16449 16450 return ERR_PTR(ret); 16451 } 16452 16453 static struct intel_plane * 16454 intel_cursor_plane_create(struct drm_i915_private *dev_priv, 16455 enum pipe pipe) 16456 { 16457 unsigned int possible_crtcs; 16458 struct intel_plane *cursor; 16459 int ret, zpos; 16460 16461 cursor = intel_plane_alloc(); 16462 if (IS_ERR(cursor)) 16463 return cursor; 16464 16465 cursor->pipe = pipe; 16466 cursor->i9xx_plane = (enum i9xx_plane_id) pipe; 16467 cursor->id = PLANE_CURSOR; 16468 cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id); 16469 16470 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) { 16471 cursor->max_stride = i845_cursor_max_stride; 16472 cursor->update_plane = i845_update_cursor; 16473 cursor->disable_plane = i845_disable_cursor; 16474 cursor->get_hw_state = i845_cursor_get_hw_state; 16475 cursor->check_plane = i845_check_cursor; 16476 } else { 16477 cursor->max_stride = i9xx_cursor_max_stride; 16478 cursor->update_plane = i9xx_update_cursor; 16479 cursor->disable_plane = i9xx_disable_cursor; 16480 cursor->get_hw_state = i9xx_cursor_get_hw_state; 16481 cursor->check_plane = i9xx_check_cursor; 16482 } 16483 16484 cursor->cursor.base = ~0; 16485 cursor->cursor.cntl = ~0; 16486 16487 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv)) 16488 cursor->cursor.size = ~0; 16489 16490 possible_crtcs = BIT(pipe); 16491 16492 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base, 16493 possible_crtcs, &intel_cursor_plane_funcs, 16494 intel_cursor_formats, 16495 ARRAY_SIZE(intel_cursor_formats), 16496 cursor_format_modifiers, 16497 DRM_PLANE_TYPE_CURSOR, 16498 "cursor %c", pipe_name(pipe)); 16499 if (ret) 16500 goto fail; 16501 16502 if (INTEL_GEN(dev_priv) >= 4) 16503 drm_plane_create_rotation_property(&cursor->base, 16504 DRM_MODE_ROTATE_0, 16505 DRM_MODE_ROTATE_0 | 16506 DRM_MODE_ROTATE_180); 16507 16508 zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1; 16509 drm_plane_create_zpos_immutable_property(&cursor->base, zpos); 16510 16511 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs); 16512 16513 return cursor; 16514 16515 fail: 16516 intel_plane_free(cursor); 16517 16518 return ERR_PTR(ret); 16519 } 16520 16521 #define INTEL_CRTC_FUNCS \ 16522 .gamma_set = drm_atomic_helper_legacy_gamma_set, \ 16523 .set_config = drm_atomic_helper_set_config, \ 16524 .destroy = intel_crtc_destroy, \ 16525 .page_flip = drm_atomic_helper_page_flip, \ 16526 .atomic_duplicate_state = intel_crtc_duplicate_state, \ 16527 .atomic_destroy_state = intel_crtc_destroy_state, \ 16528 .set_crc_source = intel_crtc_set_crc_source, \ 16529 .verify_crc_source = intel_crtc_verify_crc_source, \ 16530 .get_crc_sources = intel_crtc_get_crc_sources 16531 16532 static const struct drm_crtc_funcs bdw_crtc_funcs = { 16533 INTEL_CRTC_FUNCS, 16534 16535 .get_vblank_counter = g4x_get_vblank_counter, 16536 .enable_vblank = bdw_enable_vblank, 16537 .disable_vblank = bdw_disable_vblank, 16538 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16539 }; 16540 16541 static const struct drm_crtc_funcs ilk_crtc_funcs = { 16542 INTEL_CRTC_FUNCS, 16543 16544 .get_vblank_counter = g4x_get_vblank_counter, 16545 .enable_vblank = ilk_enable_vblank, 16546 .disable_vblank = ilk_disable_vblank, 16547 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16548 }; 16549 16550 static const struct drm_crtc_funcs g4x_crtc_funcs = { 16551 INTEL_CRTC_FUNCS, 16552 16553 .get_vblank_counter = g4x_get_vblank_counter, 16554 .enable_vblank = i965_enable_vblank, 16555 .disable_vblank = i965_disable_vblank, 16556 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16557 }; 16558 16559 static const struct drm_crtc_funcs i965_crtc_funcs = { 16560 INTEL_CRTC_FUNCS, 16561 16562 .get_vblank_counter = i915_get_vblank_counter, 16563 .enable_vblank = i965_enable_vblank, 16564 .disable_vblank = i965_disable_vblank, 16565 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16566 }; 16567 16568 static const struct drm_crtc_funcs i915gm_crtc_funcs = { 16569 INTEL_CRTC_FUNCS, 16570 16571 .get_vblank_counter = i915_get_vblank_counter, 16572 .enable_vblank = i915gm_enable_vblank, 16573 .disable_vblank = i915gm_disable_vblank, 16574 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16575 }; 16576 16577 static const struct drm_crtc_funcs i915_crtc_funcs = { 16578 INTEL_CRTC_FUNCS, 16579 16580 .get_vblank_counter = i915_get_vblank_counter, 16581 .enable_vblank = i8xx_enable_vblank, 16582 .disable_vblank = i8xx_disable_vblank, 16583 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16584 }; 16585 16586 static const struct drm_crtc_funcs i8xx_crtc_funcs = { 16587 INTEL_CRTC_FUNCS, 16588 16589 /* no hw vblank counter */ 16590 .enable_vblank = i8xx_enable_vblank, 16591 .disable_vblank = i8xx_disable_vblank, 16592 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 16593 }; 16594 16595 static struct intel_crtc *intel_crtc_alloc(void) 16596 { 16597 struct intel_crtc_state *crtc_state; 16598 struct intel_crtc *crtc; 16599 16600 crtc = kzalloc(sizeof(*crtc), GFP_KERNEL); 16601 if (!crtc) 16602 return ERR_PTR(-ENOMEM); 16603 16604 crtc_state = intel_crtc_state_alloc(crtc); 16605 if (!crtc_state) { 16606 kfree(crtc); 16607 return ERR_PTR(-ENOMEM); 16608 } 16609 16610 crtc->base.state = &crtc_state->uapi; 16611 crtc->config = crtc_state; 16612 16613 return crtc; 16614 } 16615 16616 static void intel_crtc_free(struct intel_crtc *crtc) 16617 { 16618 intel_crtc_destroy_state(&crtc->base, crtc->base.state); 16619 kfree(crtc); 16620 } 16621 16622 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe) 16623 { 16624 struct intel_plane *primary, *cursor; 16625 const struct drm_crtc_funcs *funcs; 16626 struct intel_crtc *crtc; 16627 int sprite, ret; 16628 16629 crtc = intel_crtc_alloc(); 16630 if (IS_ERR(crtc)) 16631 return PTR_ERR(crtc); 16632 16633 crtc->pipe = pipe; 16634 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe]; 16635 16636 primary = intel_primary_plane_create(dev_priv, pipe); 16637 if (IS_ERR(primary)) { 16638 ret = PTR_ERR(primary); 16639 goto fail; 16640 } 16641 crtc->plane_ids_mask |= BIT(primary->id); 16642 16643 for_each_sprite(dev_priv, pipe, sprite) { 16644 struct intel_plane *plane; 16645 16646 plane = intel_sprite_plane_create(dev_priv, pipe, sprite); 16647 if (IS_ERR(plane)) { 16648 ret = PTR_ERR(plane); 16649 goto fail; 16650 } 16651 crtc->plane_ids_mask |= BIT(plane->id); 16652 } 16653 16654 cursor = intel_cursor_plane_create(dev_priv, pipe); 16655 if (IS_ERR(cursor)) { 16656 ret = PTR_ERR(cursor); 16657 goto fail; 16658 } 16659 crtc->plane_ids_mask |= BIT(cursor->id); 16660 16661 if (HAS_GMCH(dev_priv)) { 16662 if (IS_CHERRYVIEW(dev_priv) || 16663 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv)) 16664 funcs = &g4x_crtc_funcs; 16665 else if (IS_GEN(dev_priv, 4)) 16666 funcs = &i965_crtc_funcs; 16667 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv)) 16668 funcs = &i915gm_crtc_funcs; 16669 else if (IS_GEN(dev_priv, 3)) 16670 funcs = &i915_crtc_funcs; 16671 else 16672 funcs = &i8xx_crtc_funcs; 16673 } else { 16674 if (INTEL_GEN(dev_priv) >= 8) 16675 funcs = &bdw_crtc_funcs; 16676 else 16677 funcs = &ilk_crtc_funcs; 16678 } 16679 16680 ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base, 16681 &primary->base, &cursor->base, 16682 funcs, "pipe %c", pipe_name(pipe)); 16683 if (ret) 16684 goto fail; 16685 16686 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) || 16687 dev_priv->pipe_to_crtc_mapping[pipe] != NULL); 16688 dev_priv->pipe_to_crtc_mapping[pipe] = crtc; 16689 16690 if (INTEL_GEN(dev_priv) < 9) { 16691 enum i9xx_plane_id i9xx_plane = primary->i9xx_plane; 16692 16693 BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || 16694 dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL); 16695 dev_priv->plane_to_crtc_mapping[i9xx_plane] = crtc; 16696 } 16697 16698 intel_color_init(crtc); 16699 16700 drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe); 16701 16702 return 0; 16703 16704 fail: 16705 intel_crtc_free(crtc); 16706 16707 return ret; 16708 } 16709 16710 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, 16711 struct drm_file *file) 16712 { 16713 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 16714 struct drm_crtc *drmmode_crtc; 16715 struct intel_crtc *crtc; 16716 16717 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); 16718 if (!drmmode_crtc) 16719 return -ENOENT; 16720 16721 crtc = to_intel_crtc(drmmode_crtc); 16722 pipe_from_crtc_id->pipe = crtc->pipe; 16723 16724 return 0; 16725 } 16726 16727 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) 16728 { 16729 struct drm_device *dev = encoder->base.dev; 16730 struct intel_encoder *source_encoder; 16731 u32 possible_clones = 0; 16732 16733 for_each_intel_encoder(dev, source_encoder) { 16734 if (encoders_cloneable(encoder, source_encoder)) 16735 possible_clones |= drm_encoder_mask(&source_encoder->base); 16736 } 16737 16738 return possible_clones; 16739 } 16740 16741 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) 16742 { 16743 struct drm_device *dev = encoder->base.dev; 16744 struct intel_crtc *crtc; 16745 u32 possible_crtcs = 0; 16746 16747 for_each_intel_crtc(dev, crtc) { 16748 if (encoder->pipe_mask & BIT(crtc->pipe)) 16749 possible_crtcs |= drm_crtc_mask(&crtc->base); 16750 } 16751 16752 return possible_crtcs; 16753 } 16754 16755 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) 16756 { 16757 if (!IS_MOBILE(dev_priv)) 16758 return false; 16759 16760 if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0) 16761 return false; 16762 16763 if (IS_GEN(dev_priv, 5) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE)) 16764 return false; 16765 16766 return true; 16767 } 16768 16769 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) 16770 { 16771 if (INTEL_GEN(dev_priv) >= 9) 16772 return false; 16773 16774 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) 16775 return false; 16776 16777 if (HAS_PCH_LPT_H(dev_priv) && 16778 intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 16779 return false; 16780 16781 /* DDI E can't be used if DDI A requires 4 lanes */ 16782 if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 16783 return false; 16784 16785 if (!dev_priv->vbt.int_crt_support) 16786 return false; 16787 16788 return true; 16789 } 16790 16791 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv) 16792 { 16793 int pps_num; 16794 int pps_idx; 16795 16796 if (HAS_DDI(dev_priv)) 16797 return; 16798 /* 16799 * This w/a is needed at least on CPT/PPT, but to be sure apply it 16800 * everywhere where registers can be write protected. 16801 */ 16802 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16803 pps_num = 2; 16804 else 16805 pps_num = 1; 16806 16807 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) { 16808 u32 val = intel_de_read(dev_priv, PP_CONTROL(pps_idx)); 16809 16810 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS; 16811 intel_de_write(dev_priv, PP_CONTROL(pps_idx), val); 16812 } 16813 } 16814 16815 static void intel_pps_init(struct drm_i915_private *dev_priv) 16816 { 16817 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv)) 16818 dev_priv->pps_mmio_base = PCH_PPS_BASE; 16819 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 16820 dev_priv->pps_mmio_base = VLV_PPS_BASE; 16821 else 16822 dev_priv->pps_mmio_base = PPS_BASE; 16823 16824 intel_pps_unlock_regs_wa(dev_priv); 16825 } 16826 16827 static void intel_setup_outputs(struct drm_i915_private *dev_priv) 16828 { 16829 struct intel_encoder *encoder; 16830 bool dpd_is_edp = false; 16831 16832 intel_pps_init(dev_priv); 16833 16834 if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv)) 16835 return; 16836 16837 if (INTEL_GEN(dev_priv) >= 12) { 16838 intel_ddi_init(dev_priv, PORT_A); 16839 intel_ddi_init(dev_priv, PORT_B); 16840 intel_ddi_init(dev_priv, PORT_D); 16841 intel_ddi_init(dev_priv, PORT_E); 16842 intel_ddi_init(dev_priv, PORT_F); 16843 intel_ddi_init(dev_priv, PORT_G); 16844 intel_ddi_init(dev_priv, PORT_H); 16845 intel_ddi_init(dev_priv, PORT_I); 16846 icl_dsi_init(dev_priv); 16847 } else if (IS_ELKHARTLAKE(dev_priv)) { 16848 intel_ddi_init(dev_priv, PORT_A); 16849 intel_ddi_init(dev_priv, PORT_B); 16850 intel_ddi_init(dev_priv, PORT_C); 16851 intel_ddi_init(dev_priv, PORT_D); 16852 icl_dsi_init(dev_priv); 16853 } else if (IS_GEN(dev_priv, 11)) { 16854 intel_ddi_init(dev_priv, PORT_A); 16855 intel_ddi_init(dev_priv, PORT_B); 16856 intel_ddi_init(dev_priv, PORT_C); 16857 intel_ddi_init(dev_priv, PORT_D); 16858 intel_ddi_init(dev_priv, PORT_E); 16859 /* 16860 * On some ICL SKUs port F is not present. No strap bits for 16861 * this, so rely on VBT. 16862 * Work around broken VBTs on SKUs known to have no port F. 16863 */ 16864 if (IS_ICL_WITH_PORT_F(dev_priv) && 16865 intel_bios_is_port_present(dev_priv, PORT_F)) 16866 intel_ddi_init(dev_priv, PORT_F); 16867 16868 icl_dsi_init(dev_priv); 16869 } else if (IS_GEN9_LP(dev_priv)) { 16870 /* 16871 * FIXME: Broxton doesn't support port detection via the 16872 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to 16873 * detect the ports. 16874 */ 16875 intel_ddi_init(dev_priv, PORT_A); 16876 intel_ddi_init(dev_priv, PORT_B); 16877 intel_ddi_init(dev_priv, PORT_C); 16878 16879 vlv_dsi_init(dev_priv); 16880 } else if (HAS_DDI(dev_priv)) { 16881 int found; 16882 16883 if (intel_ddi_crt_present(dev_priv)) 16884 intel_crt_init(dev_priv); 16885 16886 /* 16887 * Haswell uses DDI functions to detect digital outputs. 16888 * On SKL pre-D0 the strap isn't connected, so we assume 16889 * it's there. 16890 */ 16891 found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 16892 /* WaIgnoreDDIAStrap: skl */ 16893 if (found || IS_GEN9_BC(dev_priv)) 16894 intel_ddi_init(dev_priv, PORT_A); 16895 16896 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP 16897 * register */ 16898 found = intel_de_read(dev_priv, SFUSE_STRAP); 16899 16900 if (found & SFUSE_STRAP_DDIB_DETECTED) 16901 intel_ddi_init(dev_priv, PORT_B); 16902 if (found & SFUSE_STRAP_DDIC_DETECTED) 16903 intel_ddi_init(dev_priv, PORT_C); 16904 if (found & SFUSE_STRAP_DDID_DETECTED) 16905 intel_ddi_init(dev_priv, PORT_D); 16906 if (found & SFUSE_STRAP_DDIF_DETECTED) 16907 intel_ddi_init(dev_priv, PORT_F); 16908 /* 16909 * On SKL we don't have a way to detect DDI-E so we rely on VBT. 16910 */ 16911 if (IS_GEN9_BC(dev_priv) && 16912 intel_bios_is_port_present(dev_priv, PORT_E)) 16913 intel_ddi_init(dev_priv, PORT_E); 16914 16915 } else if (HAS_PCH_SPLIT(dev_priv)) { 16916 int found; 16917 16918 /* 16919 * intel_edp_init_connector() depends on this completing first, 16920 * to prevent the registration of both eDP and LVDS and the 16921 * incorrect sharing of the PPS. 16922 */ 16923 intel_lvds_init(dev_priv); 16924 intel_crt_init(dev_priv); 16925 16926 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); 16927 16928 if (ilk_has_edp_a(dev_priv)) 16929 intel_dp_init(dev_priv, DP_A, PORT_A); 16930 16931 if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) { 16932 /* PCH SDVOB multiplex with HDMIB */ 16933 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); 16934 if (!found) 16935 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); 16936 if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED)) 16937 intel_dp_init(dev_priv, PCH_DP_B, PORT_B); 16938 } 16939 16940 if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED) 16941 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); 16942 16943 if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED) 16944 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D); 16945 16946 if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED) 16947 intel_dp_init(dev_priv, PCH_DP_C, PORT_C); 16948 16949 if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED) 16950 intel_dp_init(dev_priv, PCH_DP_D, PORT_D); 16951 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 16952 bool has_edp, has_port; 16953 16954 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support) 16955 intel_crt_init(dev_priv); 16956 16957 /* 16958 * The DP_DETECTED bit is the latched state of the DDC 16959 * SDA pin at boot. However since eDP doesn't require DDC 16960 * (no way to plug in a DP->HDMI dongle) the DDC pins for 16961 * eDP ports may have been muxed to an alternate function. 16962 * Thus we can't rely on the DP_DETECTED bit alone to detect 16963 * eDP ports. Consult the VBT as well as DP_DETECTED to 16964 * detect eDP ports. 16965 * 16966 * Sadly the straps seem to be missing sometimes even for HDMI 16967 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 16968 * and VBT for the presence of the port. Additionally we can't 16969 * trust the port type the VBT declares as we've seen at least 16970 * HDMI ports that the VBT claim are DP or eDP. 16971 */ 16972 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); 16973 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 16974 if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port) 16975 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B); 16976 if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 16977 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); 16978 16979 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); 16980 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 16981 if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port) 16982 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C); 16983 if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 16984 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); 16985 16986 if (IS_CHERRYVIEW(dev_priv)) { 16987 /* 16988 * eDP not supported on port D, 16989 * so no need to worry about it 16990 */ 16991 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 16992 if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port) 16993 intel_dp_init(dev_priv, CHV_DP_D, PORT_D); 16994 if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port) 16995 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D); 16996 } 16997 16998 vlv_dsi_init(dev_priv); 16999 } else if (IS_PINEVIEW(dev_priv)) { 17000 intel_lvds_init(dev_priv); 17001 intel_crt_init(dev_priv); 17002 } else if (IS_GEN_RANGE(dev_priv, 3, 4)) { 17003 bool found = false; 17004 17005 if (IS_MOBILE(dev_priv)) 17006 intel_lvds_init(dev_priv); 17007 17008 intel_crt_init(dev_priv); 17009 17010 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 17011 drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n"); 17012 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); 17013 if (!found && IS_G4X(dev_priv)) { 17014 drm_dbg_kms(&dev_priv->drm, 17015 "probing HDMI on SDVOB\n"); 17016 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); 17017 } 17018 17019 if (!found && IS_G4X(dev_priv)) 17020 intel_dp_init(dev_priv, DP_B, PORT_B); 17021 } 17022 17023 /* Before G4X SDVOC doesn't have its own detect register */ 17024 17025 if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { 17026 drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n"); 17027 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); 17028 } 17029 17030 if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) { 17031 17032 if (IS_G4X(dev_priv)) { 17033 drm_dbg_kms(&dev_priv->drm, 17034 "probing HDMI on SDVOC\n"); 17035 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); 17036 } 17037 if (IS_G4X(dev_priv)) 17038 intel_dp_init(dev_priv, DP_C, PORT_C); 17039 } 17040 17041 if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED)) 17042 intel_dp_init(dev_priv, DP_D, PORT_D); 17043 17044 if (SUPPORTS_TV(dev_priv)) 17045 intel_tv_init(dev_priv); 17046 } else if (IS_GEN(dev_priv, 2)) { 17047 if (IS_I85X(dev_priv)) 17048 intel_lvds_init(dev_priv); 17049 17050 intel_crt_init(dev_priv); 17051 intel_dvo_init(dev_priv); 17052 } 17053 17054 intel_psr_init(dev_priv); 17055 17056 for_each_intel_encoder(&dev_priv->drm, encoder) { 17057 encoder->base.possible_crtcs = 17058 intel_encoder_possible_crtcs(encoder); 17059 encoder->base.possible_clones = 17060 intel_encoder_possible_clones(encoder); 17061 } 17062 17063 intel_init_pch_refclk(dev_priv); 17064 17065 drm_helper_move_panel_connectors_to_head(&dev_priv->drm); 17066 } 17067 17068 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 17069 { 17070 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 17071 17072 drm_framebuffer_cleanup(fb); 17073 intel_frontbuffer_put(intel_fb->frontbuffer); 17074 17075 kfree(intel_fb); 17076 } 17077 17078 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 17079 struct drm_file *file, 17080 unsigned int *handle) 17081 { 17082 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 17083 struct drm_i915_private *i915 = to_i915(obj->base.dev); 17084 17085 if (obj->userptr.mm) { 17086 drm_dbg(&i915->drm, 17087 "attempting to use a userptr for a framebuffer, denied\n"); 17088 return -EINVAL; 17089 } 17090 17091 return drm_gem_handle_create(file, &obj->base, handle); 17092 } 17093 17094 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 17095 struct drm_file *file, 17096 unsigned flags, unsigned color, 17097 struct drm_clip_rect *clips, 17098 unsigned num_clips) 17099 { 17100 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 17101 17102 i915_gem_object_flush_if_display(obj); 17103 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); 17104 17105 return 0; 17106 } 17107 17108 static const struct drm_framebuffer_funcs intel_fb_funcs = { 17109 .destroy = intel_user_framebuffer_destroy, 17110 .create_handle = intel_user_framebuffer_create_handle, 17111 .dirty = intel_user_framebuffer_dirty, 17112 }; 17113 17114 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb, 17115 struct drm_i915_gem_object *obj, 17116 struct drm_mode_fb_cmd2 *mode_cmd) 17117 { 17118 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 17119 struct drm_framebuffer *fb = &intel_fb->base; 17120 u32 max_stride; 17121 unsigned int tiling, stride; 17122 int ret = -EINVAL; 17123 int i; 17124 17125 intel_fb->frontbuffer = intel_frontbuffer_get(obj); 17126 if (!intel_fb->frontbuffer) 17127 return -ENOMEM; 17128 17129 i915_gem_object_lock(obj); 17130 tiling = i915_gem_object_get_tiling(obj); 17131 stride = i915_gem_object_get_stride(obj); 17132 i915_gem_object_unlock(obj); 17133 17134 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 17135 /* 17136 * If there's a fence, enforce that 17137 * the fb modifier and tiling mode match. 17138 */ 17139 if (tiling != I915_TILING_NONE && 17140 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 17141 drm_dbg_kms(&dev_priv->drm, 17142 "tiling_mode doesn't match fb modifier\n"); 17143 goto err; 17144 } 17145 } else { 17146 if (tiling == I915_TILING_X) { 17147 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 17148 } else if (tiling == I915_TILING_Y) { 17149 drm_dbg_kms(&dev_priv->drm, 17150 "No Y tiling for legacy addfb\n"); 17151 goto err; 17152 } 17153 } 17154 17155 if (!drm_any_plane_has_format(&dev_priv->drm, 17156 mode_cmd->pixel_format, 17157 mode_cmd->modifier[0])) { 17158 struct drm_format_name_buf format_name; 17159 17160 drm_dbg_kms(&dev_priv->drm, 17161 "unsupported pixel format %s / modifier 0x%llx\n", 17162 drm_get_format_name(mode_cmd->pixel_format, 17163 &format_name), 17164 mode_cmd->modifier[0]); 17165 goto err; 17166 } 17167 17168 /* 17169 * gen2/3 display engine uses the fence if present, 17170 * so the tiling mode must match the fb modifier exactly. 17171 */ 17172 if (INTEL_GEN(dev_priv) < 4 && 17173 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { 17174 drm_dbg_kms(&dev_priv->drm, 17175 "tiling_mode must match fb modifier exactly on gen2/3\n"); 17176 goto err; 17177 } 17178 17179 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, 17180 mode_cmd->modifier[0]); 17181 if (mode_cmd->pitches[0] > max_stride) { 17182 drm_dbg_kms(&dev_priv->drm, 17183 "%s pitch (%u) must be at most %d\n", 17184 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? 17185 "tiled" : "linear", 17186 mode_cmd->pitches[0], max_stride); 17187 goto err; 17188 } 17189 17190 /* 17191 * If there's a fence, enforce that 17192 * the fb pitch and fence stride match. 17193 */ 17194 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { 17195 drm_dbg_kms(&dev_priv->drm, 17196 "pitch (%d) must match tiling stride (%d)\n", 17197 mode_cmd->pitches[0], stride); 17198 goto err; 17199 } 17200 17201 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 17202 if (mode_cmd->offsets[0] != 0) { 17203 drm_dbg_kms(&dev_priv->drm, 17204 "plane 0 offset (0x%08x) must be 0\n", 17205 mode_cmd->offsets[0]); 17206 goto err; 17207 } 17208 17209 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); 17210 17211 for (i = 0; i < fb->format->num_planes; i++) { 17212 u32 stride_alignment; 17213 17214 if (mode_cmd->handles[i] != mode_cmd->handles[0]) { 17215 drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n", 17216 i); 17217 goto err; 17218 } 17219 17220 stride_alignment = intel_fb_stride_alignment(fb, i); 17221 if (fb->pitches[i] & (stride_alignment - 1)) { 17222 drm_dbg_kms(&dev_priv->drm, 17223 "plane %d pitch (%d) must be at least %u byte aligned\n", 17224 i, fb->pitches[i], stride_alignment); 17225 goto err; 17226 } 17227 17228 if (is_gen12_ccs_plane(fb, i)) { 17229 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i); 17230 17231 if (fb->pitches[i] != ccs_aux_stride) { 17232 drm_dbg_kms(&dev_priv->drm, 17233 "ccs aux plane %d pitch (%d) must be %d\n", 17234 i, 17235 fb->pitches[i], ccs_aux_stride); 17236 goto err; 17237 } 17238 } 17239 17240 fb->obj[i] = &obj->base; 17241 } 17242 17243 ret = intel_fill_fb_info(dev_priv, fb); 17244 if (ret) 17245 goto err; 17246 17247 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); 17248 if (ret) { 17249 drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret); 17250 goto err; 17251 } 17252 17253 return 0; 17254 17255 err: 17256 intel_frontbuffer_put(intel_fb->frontbuffer); 17257 return ret; 17258 } 17259 17260 static struct drm_framebuffer * 17261 intel_user_framebuffer_create(struct drm_device *dev, 17262 struct drm_file *filp, 17263 const struct drm_mode_fb_cmd2 *user_mode_cmd) 17264 { 17265 struct drm_framebuffer *fb; 17266 struct drm_i915_gem_object *obj; 17267 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 17268 17269 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); 17270 if (!obj) 17271 return ERR_PTR(-ENOENT); 17272 17273 fb = intel_framebuffer_create(obj, &mode_cmd); 17274 i915_gem_object_put(obj); 17275 17276 return fb; 17277 } 17278 17279 static enum drm_mode_status 17280 intel_mode_valid(struct drm_device *dev, 17281 const struct drm_display_mode *mode) 17282 { 17283 struct drm_i915_private *dev_priv = to_i915(dev); 17284 int hdisplay_max, htotal_max; 17285 int vdisplay_max, vtotal_max; 17286 17287 /* 17288 * Can't reject DBLSCAN here because Xorg ddxen can add piles 17289 * of DBLSCAN modes to the output's mode list when they detect 17290 * the scaling mode property on the connector. And they don't 17291 * ask the kernel to validate those modes in any way until 17292 * modeset time at which point the client gets a protocol error. 17293 * So in order to not upset those clients we silently ignore the 17294 * DBLSCAN flag on such connectors. For other connectors we will 17295 * reject modes with the DBLSCAN flag in encoder->compute_config(). 17296 * And we always reject DBLSCAN modes in connector->mode_valid() 17297 * as we never want such modes on the connector's mode list. 17298 */ 17299 17300 if (mode->vscan > 1) 17301 return MODE_NO_VSCAN; 17302 17303 if (mode->flags & DRM_MODE_FLAG_HSKEW) 17304 return MODE_H_ILLEGAL; 17305 17306 if (mode->flags & (DRM_MODE_FLAG_CSYNC | 17307 DRM_MODE_FLAG_NCSYNC | 17308 DRM_MODE_FLAG_PCSYNC)) 17309 return MODE_HSYNC; 17310 17311 if (mode->flags & (DRM_MODE_FLAG_BCAST | 17312 DRM_MODE_FLAG_PIXMUX | 17313 DRM_MODE_FLAG_CLKDIV2)) 17314 return MODE_BAD; 17315 17316 /* Transcoder timing limits */ 17317 if (INTEL_GEN(dev_priv) >= 11) { 17318 hdisplay_max = 16384; 17319 vdisplay_max = 8192; 17320 htotal_max = 16384; 17321 vtotal_max = 8192; 17322 } else if (INTEL_GEN(dev_priv) >= 9 || 17323 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 17324 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ 17325 vdisplay_max = 4096; 17326 htotal_max = 8192; 17327 vtotal_max = 8192; 17328 } else if (INTEL_GEN(dev_priv) >= 3) { 17329 hdisplay_max = 4096; 17330 vdisplay_max = 4096; 17331 htotal_max = 8192; 17332 vtotal_max = 8192; 17333 } else { 17334 hdisplay_max = 2048; 17335 vdisplay_max = 2048; 17336 htotal_max = 4096; 17337 vtotal_max = 4096; 17338 } 17339 17340 if (mode->hdisplay > hdisplay_max || 17341 mode->hsync_start > htotal_max || 17342 mode->hsync_end > htotal_max || 17343 mode->htotal > htotal_max) 17344 return MODE_H_ILLEGAL; 17345 17346 if (mode->vdisplay > vdisplay_max || 17347 mode->vsync_start > vtotal_max || 17348 mode->vsync_end > vtotal_max || 17349 mode->vtotal > vtotal_max) 17350 return MODE_V_ILLEGAL; 17351 17352 if (INTEL_GEN(dev_priv) >= 5) { 17353 if (mode->hdisplay < 64 || 17354 mode->htotal - mode->hdisplay < 32) 17355 return MODE_H_ILLEGAL; 17356 17357 if (mode->vtotal - mode->vdisplay < 5) 17358 return MODE_V_ILLEGAL; 17359 } else { 17360 if (mode->htotal - mode->hdisplay < 32) 17361 return MODE_H_ILLEGAL; 17362 17363 if (mode->vtotal - mode->vdisplay < 3) 17364 return MODE_V_ILLEGAL; 17365 } 17366 17367 return MODE_OK; 17368 } 17369 17370 enum drm_mode_status 17371 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, 17372 const struct drm_display_mode *mode) 17373 { 17374 int plane_width_max, plane_height_max; 17375 17376 /* 17377 * intel_mode_valid() should be 17378 * sufficient on older platforms. 17379 */ 17380 if (INTEL_GEN(dev_priv) < 9) 17381 return MODE_OK; 17382 17383 /* 17384 * Most people will probably want a fullscreen 17385 * plane so let's not advertize modes that are 17386 * too big for that. 17387 */ 17388 if (INTEL_GEN(dev_priv) >= 11) { 17389 plane_width_max = 5120; 17390 plane_height_max = 4320; 17391 } else { 17392 plane_width_max = 5120; 17393 plane_height_max = 4096; 17394 } 17395 17396 if (mode->hdisplay > plane_width_max) 17397 return MODE_H_ILLEGAL; 17398 17399 if (mode->vdisplay > plane_height_max) 17400 return MODE_V_ILLEGAL; 17401 17402 return MODE_OK; 17403 } 17404 17405 static const struct drm_mode_config_funcs intel_mode_funcs = { 17406 .fb_create = intel_user_framebuffer_create, 17407 .get_format_info = intel_get_format_info, 17408 .output_poll_changed = intel_fbdev_output_poll_changed, 17409 .mode_valid = intel_mode_valid, 17410 .atomic_check = intel_atomic_check, 17411 .atomic_commit = intel_atomic_commit, 17412 .atomic_state_alloc = intel_atomic_state_alloc, 17413 .atomic_state_clear = intel_atomic_state_clear, 17414 .atomic_state_free = intel_atomic_state_free, 17415 }; 17416 17417 /** 17418 * intel_init_display_hooks - initialize the display modesetting hooks 17419 * @dev_priv: device private 17420 */ 17421 void intel_init_display_hooks(struct drm_i915_private *dev_priv) 17422 { 17423 intel_init_cdclk_hooks(dev_priv); 17424 17425 if (INTEL_GEN(dev_priv) >= 9) { 17426 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 17427 dev_priv->display.get_initial_plane_config = 17428 skl_get_initial_plane_config; 17429 dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock; 17430 dev_priv->display.crtc_enable = hsw_crtc_enable; 17431 dev_priv->display.crtc_disable = hsw_crtc_disable; 17432 } else if (HAS_DDI(dev_priv)) { 17433 dev_priv->display.get_pipe_config = hsw_get_pipe_config; 17434 dev_priv->display.get_initial_plane_config = 17435 i9xx_get_initial_plane_config; 17436 dev_priv->display.crtc_compute_clock = 17437 hsw_crtc_compute_clock; 17438 dev_priv->display.crtc_enable = hsw_crtc_enable; 17439 dev_priv->display.crtc_disable = hsw_crtc_disable; 17440 } else if (HAS_PCH_SPLIT(dev_priv)) { 17441 dev_priv->display.get_pipe_config = ilk_get_pipe_config; 17442 dev_priv->display.get_initial_plane_config = 17443 i9xx_get_initial_plane_config; 17444 dev_priv->display.crtc_compute_clock = 17445 ilk_crtc_compute_clock; 17446 dev_priv->display.crtc_enable = ilk_crtc_enable; 17447 dev_priv->display.crtc_disable = ilk_crtc_disable; 17448 } else if (IS_CHERRYVIEW(dev_priv)) { 17449 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17450 dev_priv->display.get_initial_plane_config = 17451 i9xx_get_initial_plane_config; 17452 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock; 17453 dev_priv->display.crtc_enable = valleyview_crtc_enable; 17454 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17455 } else if (IS_VALLEYVIEW(dev_priv)) { 17456 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17457 dev_priv->display.get_initial_plane_config = 17458 i9xx_get_initial_plane_config; 17459 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock; 17460 dev_priv->display.crtc_enable = valleyview_crtc_enable; 17461 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17462 } else if (IS_G4X(dev_priv)) { 17463 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17464 dev_priv->display.get_initial_plane_config = 17465 i9xx_get_initial_plane_config; 17466 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock; 17467 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17468 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17469 } else if (IS_PINEVIEW(dev_priv)) { 17470 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17471 dev_priv->display.get_initial_plane_config = 17472 i9xx_get_initial_plane_config; 17473 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock; 17474 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17475 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17476 } else if (!IS_GEN(dev_priv, 2)) { 17477 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17478 dev_priv->display.get_initial_plane_config = 17479 i9xx_get_initial_plane_config; 17480 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock; 17481 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17482 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17483 } else { 17484 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 17485 dev_priv->display.get_initial_plane_config = 17486 i9xx_get_initial_plane_config; 17487 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock; 17488 dev_priv->display.crtc_enable = i9xx_crtc_enable; 17489 dev_priv->display.crtc_disable = i9xx_crtc_disable; 17490 } 17491 17492 if (IS_GEN(dev_priv, 5)) { 17493 dev_priv->display.fdi_link_train = ilk_fdi_link_train; 17494 } else if (IS_GEN(dev_priv, 6)) { 17495 dev_priv->display.fdi_link_train = gen6_fdi_link_train; 17496 } else if (IS_IVYBRIDGE(dev_priv)) { 17497 /* FIXME: detect B0+ stepping and use auto training */ 17498 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; 17499 } 17500 17501 if (INTEL_GEN(dev_priv) >= 9) 17502 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; 17503 else 17504 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; 17505 17506 } 17507 17508 void intel_modeset_init_hw(struct drm_i915_private *i915) 17509 { 17510 struct intel_cdclk_state *cdclk_state = 17511 to_intel_cdclk_state(i915->cdclk.obj.state); 17512 17513 intel_update_cdclk(i915); 17514 intel_dump_cdclk_config(&i915->cdclk.hw, "Current CDCLK"); 17515 cdclk_state->logical = cdclk_state->actual = i915->cdclk.hw; 17516 } 17517 17518 static int sanitize_watermarks_add_affected(struct drm_atomic_state *state) 17519 { 17520 struct drm_plane *plane; 17521 struct drm_crtc *crtc; 17522 17523 drm_for_each_crtc(crtc, state->dev) { 17524 struct drm_crtc_state *crtc_state; 17525 17526 crtc_state = drm_atomic_get_crtc_state(state, crtc); 17527 if (IS_ERR(crtc_state)) 17528 return PTR_ERR(crtc_state); 17529 } 17530 17531 drm_for_each_plane(plane, state->dev) { 17532 struct drm_plane_state *plane_state; 17533 17534 plane_state = drm_atomic_get_plane_state(state, plane); 17535 if (IS_ERR(plane_state)) 17536 return PTR_ERR(plane_state); 17537 } 17538 17539 return 0; 17540 } 17541 17542 /* 17543 * Calculate what we think the watermarks should be for the state we've read 17544 * out of the hardware and then immediately program those watermarks so that 17545 * we ensure the hardware settings match our internal state. 17546 * 17547 * We can calculate what we think WM's should be by creating a duplicate of the 17548 * current state (which was constructed during hardware readout) and running it 17549 * through the atomic check code to calculate new watermark values in the 17550 * state object. 17551 */ 17552 static void sanitize_watermarks(struct drm_i915_private *dev_priv) 17553 { 17554 struct drm_atomic_state *state; 17555 struct intel_atomic_state *intel_state; 17556 struct intel_crtc *crtc; 17557 struct intel_crtc_state *crtc_state; 17558 struct drm_modeset_acquire_ctx ctx; 17559 int ret; 17560 int i; 17561 17562 /* Only supported on platforms that use atomic watermark design */ 17563 if (!dev_priv->display.optimize_watermarks) 17564 return; 17565 17566 state = drm_atomic_state_alloc(&dev_priv->drm); 17567 if (drm_WARN_ON(&dev_priv->drm, !state)) 17568 return; 17569 17570 intel_state = to_intel_atomic_state(state); 17571 17572 drm_modeset_acquire_init(&ctx, 0); 17573 17574 retry: 17575 state->acquire_ctx = &ctx; 17576 17577 /* 17578 * Hardware readout is the only time we don't want to calculate 17579 * intermediate watermarks (since we don't trust the current 17580 * watermarks). 17581 */ 17582 if (!HAS_GMCH(dev_priv)) 17583 intel_state->skip_intermediate_wm = true; 17584 17585 ret = sanitize_watermarks_add_affected(state); 17586 if (ret) 17587 goto fail; 17588 17589 ret = intel_atomic_check(&dev_priv->drm, state); 17590 if (ret) 17591 goto fail; 17592 17593 /* Write calculated watermark values back */ 17594 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { 17595 crtc_state->wm.need_postvbl_update = true; 17596 dev_priv->display.optimize_watermarks(intel_state, crtc); 17597 17598 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; 17599 } 17600 17601 fail: 17602 if (ret == -EDEADLK) { 17603 drm_atomic_state_clear(state); 17604 drm_modeset_backoff(&ctx); 17605 goto retry; 17606 } 17607 17608 /* 17609 * If we fail here, it means that the hardware appears to be 17610 * programmed in a way that shouldn't be possible, given our 17611 * understanding of watermark requirements. This might mean a 17612 * mistake in the hardware readout code or a mistake in the 17613 * watermark calculations for a given platform. Raise a WARN 17614 * so that this is noticeable. 17615 * 17616 * If this actually happens, we'll have to just leave the 17617 * BIOS-programmed watermarks untouched and hope for the best. 17618 */ 17619 drm_WARN(&dev_priv->drm, ret, 17620 "Could not determine valid watermarks for inherited state\n"); 17621 17622 drm_atomic_state_put(state); 17623 17624 drm_modeset_drop_locks(&ctx); 17625 drm_modeset_acquire_fini(&ctx); 17626 } 17627 17628 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv) 17629 { 17630 if (IS_GEN(dev_priv, 5)) { 17631 u32 fdi_pll_clk = 17632 intel_de_read(dev_priv, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK; 17633 17634 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000; 17635 } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) { 17636 dev_priv->fdi_pll_freq = 270000; 17637 } else { 17638 return; 17639 } 17640 17641 drm_dbg(&dev_priv->drm, "FDI PLL freq=%d\n", dev_priv->fdi_pll_freq); 17642 } 17643 17644 static int intel_initial_commit(struct drm_device *dev) 17645 { 17646 struct drm_atomic_state *state = NULL; 17647 struct drm_modeset_acquire_ctx ctx; 17648 struct intel_crtc *crtc; 17649 int ret = 0; 17650 17651 state = drm_atomic_state_alloc(dev); 17652 if (!state) 17653 return -ENOMEM; 17654 17655 drm_modeset_acquire_init(&ctx, 0); 17656 17657 retry: 17658 state->acquire_ctx = &ctx; 17659 17660 for_each_intel_crtc(dev, crtc) { 17661 struct intel_crtc_state *crtc_state = 17662 intel_atomic_get_crtc_state(state, crtc); 17663 17664 if (IS_ERR(crtc_state)) { 17665 ret = PTR_ERR(crtc_state); 17666 goto out; 17667 } 17668 17669 if (crtc_state->hw.active) { 17670 ret = drm_atomic_add_affected_planes(state, &crtc->base); 17671 if (ret) 17672 goto out; 17673 17674 /* 17675 * FIXME hack to force a LUT update to avoid the 17676 * plane update forcing the pipe gamma on without 17677 * having a proper LUT loaded. Remove once we 17678 * have readout for pipe gamma enable. 17679 */ 17680 crtc_state->uapi.color_mgmt_changed = true; 17681 17682 /* 17683 * FIXME hack to force full modeset when DSC is being 17684 * used. 17685 * 17686 * As long as we do not have full state readout and 17687 * config comparison of crtc_state->dsc, we have no way 17688 * to ensure reliable fastset. Remove once we have 17689 * readout for DSC. 17690 */ 17691 if (crtc_state->dsc.compression_enable) { 17692 ret = drm_atomic_add_affected_connectors(state, 17693 &crtc->base); 17694 if (ret) 17695 goto out; 17696 crtc_state->uapi.mode_changed = true; 17697 drm_dbg_kms(dev, "Force full modeset for DSC\n"); 17698 } 17699 } 17700 } 17701 17702 ret = drm_atomic_commit(state); 17703 17704 out: 17705 if (ret == -EDEADLK) { 17706 drm_atomic_state_clear(state); 17707 drm_modeset_backoff(&ctx); 17708 goto retry; 17709 } 17710 17711 drm_atomic_state_put(state); 17712 17713 drm_modeset_drop_locks(&ctx); 17714 drm_modeset_acquire_fini(&ctx); 17715 17716 return ret; 17717 } 17718 17719 static void intel_mode_config_init(struct drm_i915_private *i915) 17720 { 17721 struct drm_mode_config *mode_config = &i915->drm.mode_config; 17722 17723 drm_mode_config_init(&i915->drm); 17724 INIT_LIST_HEAD(&i915->global_obj_list); 17725 17726 mode_config->min_width = 0; 17727 mode_config->min_height = 0; 17728 17729 mode_config->preferred_depth = 24; 17730 mode_config->prefer_shadow = 1; 17731 17732 mode_config->allow_fb_modifiers = true; 17733 17734 mode_config->funcs = &intel_mode_funcs; 17735 17736 /* 17737 * Maximum framebuffer dimensions, chosen to match 17738 * the maximum render engine surface size on gen4+. 17739 */ 17740 if (INTEL_GEN(i915) >= 7) { 17741 mode_config->max_width = 16384; 17742 mode_config->max_height = 16384; 17743 } else if (INTEL_GEN(i915) >= 4) { 17744 mode_config->max_width = 8192; 17745 mode_config->max_height = 8192; 17746 } else if (IS_GEN(i915, 3)) { 17747 mode_config->max_width = 4096; 17748 mode_config->max_height = 4096; 17749 } else { 17750 mode_config->max_width = 2048; 17751 mode_config->max_height = 2048; 17752 } 17753 17754 if (IS_I845G(i915) || IS_I865G(i915)) { 17755 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; 17756 mode_config->cursor_height = 1023; 17757 } else if (IS_GEN(i915, 2)) { 17758 mode_config->cursor_width = 64; 17759 mode_config->cursor_height = 64; 17760 } else { 17761 mode_config->cursor_width = 256; 17762 mode_config->cursor_height = 256; 17763 } 17764 } 17765 17766 static void intel_mode_config_cleanup(struct drm_i915_private *i915) 17767 { 17768 intel_atomic_global_obj_cleanup(i915); 17769 drm_mode_config_cleanup(&i915->drm); 17770 } 17771 17772 static void plane_config_fini(struct intel_initial_plane_config *plane_config) 17773 { 17774 if (plane_config->fb) { 17775 struct drm_framebuffer *fb = &plane_config->fb->base; 17776 17777 /* We may only have the stub and not a full framebuffer */ 17778 if (drm_framebuffer_read_refcount(fb)) 17779 drm_framebuffer_put(fb); 17780 else 17781 kfree(fb); 17782 } 17783 17784 if (plane_config->vma) 17785 i915_vma_put(plane_config->vma); 17786 } 17787 17788 int intel_modeset_init(struct drm_i915_private *i915) 17789 { 17790 struct drm_device *dev = &i915->drm; 17791 enum pipe pipe; 17792 struct intel_crtc *crtc; 17793 int ret; 17794 17795 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0); 17796 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI | 17797 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); 17798 17799 intel_mode_config_init(i915); 17800 17801 ret = intel_cdclk_init(i915); 17802 if (ret) 17803 return ret; 17804 17805 ret = intel_bw_init(i915); 17806 if (ret) 17807 return ret; 17808 17809 init_llist_head(&i915->atomic_helper.free_list); 17810 INIT_WORK(&i915->atomic_helper.free_work, 17811 intel_atomic_helper_free_state_worker); 17812 17813 intel_init_quirks(i915); 17814 17815 intel_fbc_init(i915); 17816 17817 intel_init_pm(i915); 17818 17819 intel_panel_sanitize_ssc(i915); 17820 17821 intel_gmbus_setup(i915); 17822 17823 drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n", 17824 INTEL_NUM_PIPES(i915), 17825 INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); 17826 17827 if (HAS_DISPLAY(i915) && INTEL_DISPLAY_ENABLED(i915)) { 17828 for_each_pipe(i915, pipe) { 17829 ret = intel_crtc_init(i915, pipe); 17830 if (ret) { 17831 intel_mode_config_cleanup(i915); 17832 return ret; 17833 } 17834 } 17835 } 17836 17837 intel_shared_dpll_init(dev); 17838 intel_update_fdi_pll_freq(i915); 17839 17840 intel_update_czclk(i915); 17841 intel_modeset_init_hw(i915); 17842 17843 intel_hdcp_component_init(i915); 17844 17845 if (i915->max_cdclk_freq == 0) 17846 intel_update_max_cdclk(i915); 17847 17848 /* Just disable it once at startup */ 17849 intel_vga_disable(i915); 17850 intel_setup_outputs(i915); 17851 17852 drm_modeset_lock_all(dev); 17853 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx); 17854 drm_modeset_unlock_all(dev); 17855 17856 for_each_intel_crtc(dev, crtc) { 17857 struct intel_initial_plane_config plane_config = {}; 17858 17859 if (!crtc->active) 17860 continue; 17861 17862 /* 17863 * Note that reserving the BIOS fb up front prevents us 17864 * from stuffing other stolen allocations like the ring 17865 * on top. This prevents some ugliness at boot time, and 17866 * can even allow for smooth boot transitions if the BIOS 17867 * fb is large enough for the active pipe configuration. 17868 */ 17869 i915->display.get_initial_plane_config(crtc, &plane_config); 17870 17871 /* 17872 * If the fb is shared between multiple heads, we'll 17873 * just get the first one. 17874 */ 17875 intel_find_initial_plane_obj(crtc, &plane_config); 17876 17877 plane_config_fini(&plane_config); 17878 } 17879 17880 /* 17881 * Make sure hardware watermarks really match the state we read out. 17882 * Note that we need to do this after reconstructing the BIOS fb's 17883 * since the watermark calculation done here will use pstate->fb. 17884 */ 17885 if (!HAS_GMCH(i915)) 17886 sanitize_watermarks(i915); 17887 17888 /* 17889 * Force all active planes to recompute their states. So that on 17890 * mode_setcrtc after probe, all the intel_plane_state variables 17891 * are already calculated and there is no assert_plane warnings 17892 * during bootup. 17893 */ 17894 ret = intel_initial_commit(dev); 17895 if (ret) 17896 drm_dbg_kms(&i915->drm, "Initial commit in probe failed.\n"); 17897 17898 return 0; 17899 } 17900 17901 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 17902 { 17903 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 17904 /* 640x480@60Hz, ~25175 kHz */ 17905 struct dpll clock = { 17906 .m1 = 18, 17907 .m2 = 7, 17908 .p1 = 13, 17909 .p2 = 4, 17910 .n = 2, 17911 }; 17912 u32 dpll, fp; 17913 int i; 17914 17915 drm_WARN_ON(&dev_priv->drm, 17916 i9xx_calc_dpll_params(48000, &clock) != 25154); 17917 17918 drm_dbg_kms(&dev_priv->drm, 17919 "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", 17920 pipe_name(pipe), clock.vco, clock.dot); 17921 17922 fp = i9xx_dpll_compute_fp(&clock); 17923 dpll = DPLL_DVO_2X_MODE | 17924 DPLL_VGA_MODE_DIS | 17925 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | 17926 PLL_P2_DIVIDE_BY_4 | 17927 PLL_REF_INPUT_DREFCLK | 17928 DPLL_VCO_ENABLE; 17929 17930 intel_de_write(dev_priv, FP0(pipe), fp); 17931 intel_de_write(dev_priv, FP1(pipe), fp); 17932 17933 intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); 17934 intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); 17935 intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); 17936 intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); 17937 intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); 17938 intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); 17939 intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); 17940 17941 /* 17942 * Apparently we need to have VGA mode enabled prior to changing 17943 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 17944 * dividers, even though the register value does change. 17945 */ 17946 intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); 17947 intel_de_write(dev_priv, DPLL(pipe), dpll); 17948 17949 /* Wait for the clocks to stabilize. */ 17950 intel_de_posting_read(dev_priv, DPLL(pipe)); 17951 udelay(150); 17952 17953 /* The pixel multiplier can only be updated once the 17954 * DPLL is enabled and the clocks are stable. 17955 * 17956 * So write it again. 17957 */ 17958 intel_de_write(dev_priv, DPLL(pipe), dpll); 17959 17960 /* We do this three times for luck */ 17961 for (i = 0; i < 3 ; i++) { 17962 intel_de_write(dev_priv, DPLL(pipe), dpll); 17963 intel_de_posting_read(dev_priv, DPLL(pipe)); 17964 udelay(150); /* wait for warmup */ 17965 } 17966 17967 intel_de_write(dev_priv, PIPECONF(pipe), 17968 PIPECONF_ENABLE | PIPECONF_PROGRESSIVE); 17969 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 17970 17971 intel_wait_for_pipe_scanline_moving(crtc); 17972 } 17973 17974 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) 17975 { 17976 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 17977 17978 drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n", 17979 pipe_name(pipe)); 17980 17981 drm_WARN_ON(&dev_priv->drm, 17982 intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & 17983 DISPLAY_PLANE_ENABLE); 17984 drm_WARN_ON(&dev_priv->drm, 17985 intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & 17986 DISPLAY_PLANE_ENABLE); 17987 drm_WARN_ON(&dev_priv->drm, 17988 intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & 17989 DISPLAY_PLANE_ENABLE); 17990 drm_WARN_ON(&dev_priv->drm, 17991 intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE); 17992 drm_WARN_ON(&dev_priv->drm, 17993 intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE); 17994 17995 intel_de_write(dev_priv, PIPECONF(pipe), 0); 17996 intel_de_posting_read(dev_priv, PIPECONF(pipe)); 17997 17998 intel_wait_for_pipe_scanline_stopped(crtc); 17999 18000 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); 18001 intel_de_posting_read(dev_priv, DPLL(pipe)); 18002 } 18003 18004 static void 18005 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv) 18006 { 18007 struct intel_crtc *crtc; 18008 18009 if (INTEL_GEN(dev_priv) >= 4) 18010 return; 18011 18012 for_each_intel_crtc(&dev_priv->drm, crtc) { 18013 struct intel_plane *plane = 18014 to_intel_plane(crtc->base.primary); 18015 struct intel_crtc *plane_crtc; 18016 enum pipe pipe; 18017 18018 if (!plane->get_hw_state(plane, &pipe)) 18019 continue; 18020 18021 if (pipe == crtc->pipe) 18022 continue; 18023 18024 drm_dbg_kms(&dev_priv->drm, 18025 "[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n", 18026 plane->base.base.id, plane->base.name); 18027 18028 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18029 intel_plane_disable_noatomic(plane_crtc, plane); 18030 } 18031 } 18032 18033 static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 18034 { 18035 struct drm_device *dev = crtc->base.dev; 18036 struct intel_encoder *encoder; 18037 18038 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 18039 return true; 18040 18041 return false; 18042 } 18043 18044 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder) 18045 { 18046 struct drm_device *dev = encoder->base.dev; 18047 struct intel_connector *connector; 18048 18049 for_each_connector_on_encoder(dev, &encoder->base, connector) 18050 return connector; 18051 18052 return NULL; 18053 } 18054 18055 static bool has_pch_trancoder(struct drm_i915_private *dev_priv, 18056 enum pipe pch_transcoder) 18057 { 18058 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 18059 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A); 18060 } 18061 18062 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state) 18063 { 18064 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 18065 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 18066 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 18067 18068 if (INTEL_GEN(dev_priv) >= 9 || 18069 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { 18070 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); 18071 u32 val; 18072 18073 if (transcoder_is_dsi(cpu_transcoder)) 18074 return; 18075 18076 val = intel_de_read(dev_priv, reg); 18077 val &= ~HSW_FRAME_START_DELAY_MASK; 18078 val |= HSW_FRAME_START_DELAY(0); 18079 intel_de_write(dev_priv, reg, val); 18080 } else { 18081 i915_reg_t reg = PIPECONF(cpu_transcoder); 18082 u32 val; 18083 18084 val = intel_de_read(dev_priv, reg); 18085 val &= ~PIPECONF_FRAME_START_DELAY_MASK; 18086 val |= PIPECONF_FRAME_START_DELAY(0); 18087 intel_de_write(dev_priv, reg, val); 18088 } 18089 18090 if (!crtc_state->has_pch_encoder) 18091 return; 18092 18093 if (HAS_PCH_IBX(dev_priv)) { 18094 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe); 18095 u32 val; 18096 18097 val = intel_de_read(dev_priv, reg); 18098 val &= ~TRANS_FRAME_START_DELAY_MASK; 18099 val |= TRANS_FRAME_START_DELAY(0); 18100 intel_de_write(dev_priv, reg, val); 18101 } else { 18102 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); 18103 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder); 18104 u32 val; 18105 18106 val = intel_de_read(dev_priv, reg); 18107 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK; 18108 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0); 18109 intel_de_write(dev_priv, reg, val); 18110 } 18111 } 18112 18113 static void intel_sanitize_crtc(struct intel_crtc *crtc, 18114 struct drm_modeset_acquire_ctx *ctx) 18115 { 18116 struct drm_device *dev = crtc->base.dev; 18117 struct drm_i915_private *dev_priv = to_i915(dev); 18118 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 18119 18120 if (crtc_state->hw.active) { 18121 struct intel_plane *plane; 18122 18123 /* Clear any frame start delays used for debugging left by the BIOS */ 18124 intel_sanitize_frame_start_delay(crtc_state); 18125 18126 /* Disable everything but the primary plane */ 18127 for_each_intel_plane_on_crtc(dev, crtc, plane) { 18128 const struct intel_plane_state *plane_state = 18129 to_intel_plane_state(plane->base.state); 18130 18131 if (plane_state->uapi.visible && 18132 plane->base.type != DRM_PLANE_TYPE_PRIMARY) 18133 intel_plane_disable_noatomic(crtc, plane); 18134 } 18135 18136 /* 18137 * Disable any background color set by the BIOS, but enable the 18138 * gamma and CSC to match how we program our planes. 18139 */ 18140 if (INTEL_GEN(dev_priv) >= 9) 18141 intel_de_write(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe), 18142 SKL_BOTTOM_COLOR_GAMMA_ENABLE | SKL_BOTTOM_COLOR_CSC_ENABLE); 18143 } 18144 18145 /* Adjust the state of the output pipe according to whether we 18146 * have active connectors/encoders. */ 18147 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc)) 18148 intel_crtc_disable_noatomic(crtc, ctx); 18149 18150 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) { 18151 /* 18152 * We start out with underrun reporting disabled to avoid races. 18153 * For correct bookkeeping mark this on active crtcs. 18154 * 18155 * Also on gmch platforms we dont have any hardware bits to 18156 * disable the underrun reporting. Which means we need to start 18157 * out with underrun reporting disabled also on inactive pipes, 18158 * since otherwise we'll complain about the garbage we read when 18159 * e.g. coming up after runtime pm. 18160 * 18161 * No protection against concurrent access is required - at 18162 * worst a fifo underrun happens which also sets this to false. 18163 */ 18164 crtc->cpu_fifo_underrun_disabled = true; 18165 /* 18166 * We track the PCH trancoder underrun reporting state 18167 * within the crtc. With crtc for pipe A housing the underrun 18168 * reporting state for PCH transcoder A, crtc for pipe B housing 18169 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A, 18170 * and marking underrun reporting as disabled for the non-existing 18171 * PCH transcoders B and C would prevent enabling the south 18172 * error interrupt (see cpt_can_enable_serr_int()). 18173 */ 18174 if (has_pch_trancoder(dev_priv, crtc->pipe)) 18175 crtc->pch_fifo_underrun_disabled = true; 18176 } 18177 } 18178 18179 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state) 18180 { 18181 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 18182 18183 /* 18184 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram 18185 * the hardware when a high res displays plugged in. DPLL P 18186 * divider is zero, and the pipe timings are bonkers. We'll 18187 * try to disable everything in that case. 18188 * 18189 * FIXME would be nice to be able to sanitize this state 18190 * without several WARNs, but for now let's take the easy 18191 * road. 18192 */ 18193 return IS_GEN(dev_priv, 6) && 18194 crtc_state->hw.active && 18195 crtc_state->shared_dpll && 18196 crtc_state->port_clock == 0; 18197 } 18198 18199 static void intel_sanitize_encoder(struct intel_encoder *encoder) 18200 { 18201 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 18202 struct intel_connector *connector; 18203 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); 18204 struct intel_crtc_state *crtc_state = crtc ? 18205 to_intel_crtc_state(crtc->base.state) : NULL; 18206 18207 /* We need to check both for a crtc link (meaning that the 18208 * encoder is active and trying to read from a pipe) and the 18209 * pipe itself being active. */ 18210 bool has_active_crtc = crtc_state && 18211 crtc_state->hw.active; 18212 18213 if (crtc_state && has_bogus_dpll_config(crtc_state)) { 18214 drm_dbg_kms(&dev_priv->drm, 18215 "BIOS has misprogrammed the hardware. Disabling pipe %c\n", 18216 pipe_name(crtc->pipe)); 18217 has_active_crtc = false; 18218 } 18219 18220 connector = intel_encoder_find_connector(encoder); 18221 if (connector && !has_active_crtc) { 18222 drm_dbg_kms(&dev_priv->drm, 18223 "[ENCODER:%d:%s] has active connectors but no active pipe!\n", 18224 encoder->base.base.id, 18225 encoder->base.name); 18226 18227 /* Connector is active, but has no active pipe. This is 18228 * fallout from our resume register restoring. Disable 18229 * the encoder manually again. */ 18230 if (crtc_state) { 18231 struct drm_encoder *best_encoder; 18232 18233 drm_dbg_kms(&dev_priv->drm, 18234 "[ENCODER:%d:%s] manually disabled\n", 18235 encoder->base.base.id, 18236 encoder->base.name); 18237 18238 /* avoid oopsing in case the hooks consult best_encoder */ 18239 best_encoder = connector->base.state->best_encoder; 18240 connector->base.state->best_encoder = &encoder->base; 18241 18242 if (encoder->disable) 18243 encoder->disable(encoder, crtc_state, 18244 connector->base.state); 18245 if (encoder->post_disable) 18246 encoder->post_disable(encoder, crtc_state, 18247 connector->base.state); 18248 18249 connector->base.state->best_encoder = best_encoder; 18250 } 18251 encoder->base.crtc = NULL; 18252 18253 /* Inconsistent output/port/pipe state happens presumably due to 18254 * a bug in one of the get_hw_state functions. Or someplace else 18255 * in our code, like the register restore mess on resume. Clamp 18256 * things to off as a safer default. */ 18257 18258 connector->base.dpms = DRM_MODE_DPMS_OFF; 18259 connector->base.encoder = NULL; 18260 } 18261 18262 /* notify opregion of the sanitized encoder state */ 18263 intel_opregion_notify_encoder(encoder, connector && has_active_crtc); 18264 18265 if (INTEL_GEN(dev_priv) >= 11) 18266 icl_sanitize_encoder_pll_mapping(encoder); 18267 } 18268 18269 /* FIXME read out full plane state for all planes */ 18270 static void readout_plane_state(struct drm_i915_private *dev_priv) 18271 { 18272 struct intel_plane *plane; 18273 struct intel_crtc *crtc; 18274 18275 for_each_intel_plane(&dev_priv->drm, plane) { 18276 struct intel_plane_state *plane_state = 18277 to_intel_plane_state(plane->base.state); 18278 struct intel_crtc_state *crtc_state; 18279 enum pipe pipe = PIPE_A; 18280 bool visible; 18281 18282 visible = plane->get_hw_state(plane, &pipe); 18283 18284 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18285 crtc_state = to_intel_crtc_state(crtc->base.state); 18286 18287 intel_set_plane_visible(crtc_state, plane_state, visible); 18288 18289 drm_dbg_kms(&dev_priv->drm, 18290 "[PLANE:%d:%s] hw state readout: %s, pipe %c\n", 18291 plane->base.base.id, plane->base.name, 18292 enableddisabled(visible), pipe_name(pipe)); 18293 } 18294 18295 for_each_intel_crtc(&dev_priv->drm, crtc) { 18296 struct intel_crtc_state *crtc_state = 18297 to_intel_crtc_state(crtc->base.state); 18298 18299 fixup_active_planes(crtc_state); 18300 } 18301 } 18302 18303 static void intel_modeset_readout_hw_state(struct drm_device *dev) 18304 { 18305 struct drm_i915_private *dev_priv = to_i915(dev); 18306 struct intel_cdclk_state *cdclk_state = 18307 to_intel_cdclk_state(dev_priv->cdclk.obj.state); 18308 enum pipe pipe; 18309 struct intel_crtc *crtc; 18310 struct intel_encoder *encoder; 18311 struct intel_connector *connector; 18312 struct drm_connector_list_iter conn_iter; 18313 u8 active_pipes = 0; 18314 int i; 18315 18316 for_each_intel_crtc(dev, crtc) { 18317 struct intel_crtc_state *crtc_state = 18318 to_intel_crtc_state(crtc->base.state); 18319 18320 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi); 18321 intel_crtc_free_hw_state(crtc_state); 18322 intel_crtc_state_reset(crtc_state, crtc); 18323 18324 crtc_state->hw.active = crtc_state->hw.enable = 18325 dev_priv->display.get_pipe_config(crtc, crtc_state); 18326 18327 crtc->base.enabled = crtc_state->hw.enable; 18328 crtc->active = crtc_state->hw.active; 18329 18330 if (crtc_state->hw.active) 18331 active_pipes |= BIT(crtc->pipe); 18332 18333 drm_dbg_kms(&dev_priv->drm, 18334 "[CRTC:%d:%s] hw state readout: %s\n", 18335 crtc->base.base.id, crtc->base.name, 18336 enableddisabled(crtc_state->hw.active)); 18337 } 18338 18339 dev_priv->active_pipes = cdclk_state->active_pipes = active_pipes; 18340 18341 readout_plane_state(dev_priv); 18342 18343 for (i = 0; i < dev_priv->num_shared_dpll; i++) { 18344 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; 18345 18346 pll->on = pll->info->funcs->get_hw_state(dev_priv, pll, 18347 &pll->state.hw_state); 18348 18349 if (IS_ELKHARTLAKE(dev_priv) && pll->on && 18350 pll->info->id == DPLL_ID_EHL_DPLL4) { 18351 pll->wakeref = intel_display_power_get(dev_priv, 18352 POWER_DOMAIN_DPLL_DC_OFF); 18353 } 18354 18355 pll->state.crtc_mask = 0; 18356 for_each_intel_crtc(dev, crtc) { 18357 struct intel_crtc_state *crtc_state = 18358 to_intel_crtc_state(crtc->base.state); 18359 18360 if (crtc_state->hw.active && 18361 crtc_state->shared_dpll == pll) 18362 pll->state.crtc_mask |= 1 << crtc->pipe; 18363 } 18364 pll->active_mask = pll->state.crtc_mask; 18365 18366 drm_dbg_kms(&dev_priv->drm, 18367 "%s hw state readout: crtc_mask 0x%08x, on %i\n", 18368 pll->info->name, pll->state.crtc_mask, pll->on); 18369 } 18370 18371 for_each_intel_encoder(dev, encoder) { 18372 pipe = 0; 18373 18374 if (encoder->get_hw_state(encoder, &pipe)) { 18375 struct intel_crtc_state *crtc_state; 18376 18377 crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 18378 crtc_state = to_intel_crtc_state(crtc->base.state); 18379 18380 encoder->base.crtc = &crtc->base; 18381 encoder->get_config(encoder, crtc_state); 18382 } else { 18383 encoder->base.crtc = NULL; 18384 } 18385 18386 drm_dbg_kms(&dev_priv->drm, 18387 "[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 18388 encoder->base.base.id, encoder->base.name, 18389 enableddisabled(encoder->base.crtc), 18390 pipe_name(pipe)); 18391 } 18392 18393 drm_connector_list_iter_begin(dev, &conn_iter); 18394 for_each_intel_connector_iter(connector, &conn_iter) { 18395 if (connector->get_hw_state(connector)) { 18396 struct intel_crtc_state *crtc_state; 18397 struct intel_crtc *crtc; 18398 18399 connector->base.dpms = DRM_MODE_DPMS_ON; 18400 18401 encoder = intel_attached_encoder(connector); 18402 connector->base.encoder = &encoder->base; 18403 18404 crtc = to_intel_crtc(encoder->base.crtc); 18405 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL; 18406 18407 if (crtc_state && crtc_state->hw.active) { 18408 /* 18409 * This has to be done during hardware readout 18410 * because anything calling .crtc_disable may 18411 * rely on the connector_mask being accurate. 18412 */ 18413 crtc_state->uapi.connector_mask |= 18414 drm_connector_mask(&connector->base); 18415 crtc_state->uapi.encoder_mask |= 18416 drm_encoder_mask(&encoder->base); 18417 } 18418 } else { 18419 connector->base.dpms = DRM_MODE_DPMS_OFF; 18420 connector->base.encoder = NULL; 18421 } 18422 drm_dbg_kms(&dev_priv->drm, 18423 "[CONNECTOR:%d:%s] hw state readout: %s\n", 18424 connector->base.base.id, connector->base.name, 18425 enableddisabled(connector->base.encoder)); 18426 } 18427 drm_connector_list_iter_end(&conn_iter); 18428 18429 for_each_intel_crtc(dev, crtc) { 18430 struct intel_bw_state *bw_state = 18431 to_intel_bw_state(dev_priv->bw_obj.state); 18432 struct intel_crtc_state *crtc_state = 18433 to_intel_crtc_state(crtc->base.state); 18434 struct intel_plane *plane; 18435 int min_cdclk = 0; 18436 18437 if (crtc_state->hw.active) { 18438 struct drm_display_mode *mode = &crtc_state->hw.mode; 18439 18440 intel_mode_from_pipe_config(&crtc_state->hw.adjusted_mode, 18441 crtc_state); 18442 18443 *mode = crtc_state->hw.adjusted_mode; 18444 mode->hdisplay = crtc_state->pipe_src_w; 18445 mode->vdisplay = crtc_state->pipe_src_h; 18446 18447 /* 18448 * The initial mode needs to be set in order to keep 18449 * the atomic core happy. It wants a valid mode if the 18450 * crtc's enabled, so we do the above call. 18451 * 18452 * But we don't set all the derived state fully, hence 18453 * set a flag to indicate that a full recalculation is 18454 * needed on the next commit. 18455 */ 18456 mode->private_flags = I915_MODE_FLAG_INHERITED; 18457 18458 intel_crtc_compute_pixel_rate(crtc_state); 18459 18460 intel_crtc_update_active_timings(crtc_state); 18461 18462 intel_crtc_copy_hw_to_uapi_state(crtc_state); 18463 } 18464 18465 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 18466 const struct intel_plane_state *plane_state = 18467 to_intel_plane_state(plane->base.state); 18468 18469 /* 18470 * FIXME don't have the fb yet, so can't 18471 * use intel_plane_data_rate() :( 18472 */ 18473 if (plane_state->uapi.visible) 18474 crtc_state->data_rate[plane->id] = 18475 4 * crtc_state->pixel_rate; 18476 /* 18477 * FIXME don't have the fb yet, so can't 18478 * use plane->min_cdclk() :( 18479 */ 18480 if (plane_state->uapi.visible && plane->min_cdclk) { 18481 if (crtc_state->double_wide || 18482 INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 18483 crtc_state->min_cdclk[plane->id] = 18484 DIV_ROUND_UP(crtc_state->pixel_rate, 2); 18485 else 18486 crtc_state->min_cdclk[plane->id] = 18487 crtc_state->pixel_rate; 18488 } 18489 drm_dbg_kms(&dev_priv->drm, 18490 "[PLANE:%d:%s] min_cdclk %d kHz\n", 18491 plane->base.base.id, plane->base.name, 18492 crtc_state->min_cdclk[plane->id]); 18493 } 18494 18495 if (crtc_state->hw.active) { 18496 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state); 18497 if (drm_WARN_ON(dev, min_cdclk < 0)) 18498 min_cdclk = 0; 18499 } 18500 18501 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk; 18502 cdclk_state->min_voltage_level[crtc->pipe] = 18503 crtc_state->min_voltage_level; 18504 18505 intel_bw_crtc_update(bw_state, crtc_state); 18506 18507 intel_pipe_config_sanity_check(dev_priv, crtc_state); 18508 } 18509 } 18510 18511 static void 18512 get_encoder_power_domains(struct drm_i915_private *dev_priv) 18513 { 18514 struct intel_encoder *encoder; 18515 18516 for_each_intel_encoder(&dev_priv->drm, encoder) { 18517 struct intel_crtc_state *crtc_state; 18518 18519 if (!encoder->get_power_domains) 18520 continue; 18521 18522 /* 18523 * MST-primary and inactive encoders don't have a crtc state 18524 * and neither of these require any power domain references. 18525 */ 18526 if (!encoder->base.crtc) 18527 continue; 18528 18529 crtc_state = to_intel_crtc_state(encoder->base.crtc->state); 18530 encoder->get_power_domains(encoder, crtc_state); 18531 } 18532 } 18533 18534 static void intel_early_display_was(struct drm_i915_private *dev_priv) 18535 { 18536 /* 18537 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl 18538 * Also known as Wa_14010480278. 18539 */ 18540 if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv)) 18541 intel_de_write(dev_priv, GEN9_CLKGATE_DIS_0, 18542 intel_de_read(dev_priv, GEN9_CLKGATE_DIS_0) | DARBF_GATING_DIS); 18543 18544 if (IS_HASWELL(dev_priv)) { 18545 /* 18546 * WaRsPkgCStateDisplayPMReq:hsw 18547 * System hang if this isn't done before disabling all planes! 18548 */ 18549 intel_de_write(dev_priv, CHICKEN_PAR1_1, 18550 intel_de_read(dev_priv, CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES); 18551 } 18552 } 18553 18554 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv, 18555 enum port port, i915_reg_t hdmi_reg) 18556 { 18557 u32 val = intel_de_read(dev_priv, hdmi_reg); 18558 18559 if (val & SDVO_ENABLE || 18560 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A)) 18561 return; 18562 18563 drm_dbg_kms(&dev_priv->drm, 18564 "Sanitizing transcoder select for HDMI %c\n", 18565 port_name(port)); 18566 18567 val &= ~SDVO_PIPE_SEL_MASK; 18568 val |= SDVO_PIPE_SEL(PIPE_A); 18569 18570 intel_de_write(dev_priv, hdmi_reg, val); 18571 } 18572 18573 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv, 18574 enum port port, i915_reg_t dp_reg) 18575 { 18576 u32 val = intel_de_read(dev_priv, dp_reg); 18577 18578 if (val & DP_PORT_EN || 18579 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A)) 18580 return; 18581 18582 drm_dbg_kms(&dev_priv->drm, 18583 "Sanitizing transcoder select for DP %c\n", 18584 port_name(port)); 18585 18586 val &= ~DP_PIPE_SEL_MASK; 18587 val |= DP_PIPE_SEL(PIPE_A); 18588 18589 intel_de_write(dev_priv, dp_reg, val); 18590 } 18591 18592 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv) 18593 { 18594 /* 18595 * The BIOS may select transcoder B on some of the PCH 18596 * ports even it doesn't enable the port. This would trip 18597 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled(). 18598 * Sanitize the transcoder select bits to prevent that. We 18599 * assume that the BIOS never actually enabled the port, 18600 * because if it did we'd actually have to toggle the port 18601 * on and back off to make the transcoder A select stick 18602 * (see. intel_dp_link_down(), intel_disable_hdmi(), 18603 * intel_disable_sdvo()). 18604 */ 18605 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B); 18606 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C); 18607 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D); 18608 18609 /* PCH SDVOB multiplex with HDMIB */ 18610 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB); 18611 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC); 18612 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID); 18613 } 18614 18615 /* Scan out the current hw modeset state, 18616 * and sanitizes it to the current state 18617 */ 18618 static void 18619 intel_modeset_setup_hw_state(struct drm_device *dev, 18620 struct drm_modeset_acquire_ctx *ctx) 18621 { 18622 struct drm_i915_private *dev_priv = to_i915(dev); 18623 struct intel_encoder *encoder; 18624 struct intel_crtc *crtc; 18625 intel_wakeref_t wakeref; 18626 int i; 18627 18628 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); 18629 18630 intel_early_display_was(dev_priv); 18631 intel_modeset_readout_hw_state(dev); 18632 18633 /* HW state is read out, now we need to sanitize this mess. */ 18634 18635 /* Sanitize the TypeC port mode upfront, encoders depend on this */ 18636 for_each_intel_encoder(dev, encoder) { 18637 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 18638 18639 /* We need to sanitize only the MST primary port. */ 18640 if (encoder->type != INTEL_OUTPUT_DP_MST && 18641 intel_phy_is_tc(dev_priv, phy)) 18642 intel_tc_port_sanitize(enc_to_dig_port(encoder)); 18643 } 18644 18645 get_encoder_power_domains(dev_priv); 18646 18647 if (HAS_PCH_IBX(dev_priv)) 18648 ibx_sanitize_pch_ports(dev_priv); 18649 18650 /* 18651 * intel_sanitize_plane_mapping() may need to do vblank 18652 * waits, so we need vblank interrupts restored beforehand. 18653 */ 18654 for_each_intel_crtc(&dev_priv->drm, crtc) { 18655 struct intel_crtc_state *crtc_state = 18656 to_intel_crtc_state(crtc->base.state); 18657 18658 drm_crtc_vblank_reset(&crtc->base); 18659 18660 if (crtc_state->hw.active) 18661 intel_crtc_vblank_on(crtc_state); 18662 } 18663 18664 intel_sanitize_plane_mapping(dev_priv); 18665 18666 for_each_intel_encoder(dev, encoder) 18667 intel_sanitize_encoder(encoder); 18668 18669 for_each_intel_crtc(&dev_priv->drm, crtc) { 18670 struct intel_crtc_state *crtc_state = 18671 to_intel_crtc_state(crtc->base.state); 18672 18673 intel_sanitize_crtc(crtc, ctx); 18674 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]"); 18675 } 18676 18677 intel_modeset_update_connector_atomic_state(dev); 18678 18679 for (i = 0; i < dev_priv->num_shared_dpll; i++) { 18680 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; 18681 18682 if (!pll->on || pll->active_mask) 18683 continue; 18684 18685 drm_dbg_kms(&dev_priv->drm, 18686 "%s enabled but not in use, disabling\n", 18687 pll->info->name); 18688 18689 pll->info->funcs->disable(dev_priv, pll); 18690 pll->on = false; 18691 } 18692 18693 if (IS_G4X(dev_priv)) { 18694 g4x_wm_get_hw_state(dev_priv); 18695 g4x_wm_sanitize(dev_priv); 18696 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 18697 vlv_wm_get_hw_state(dev_priv); 18698 vlv_wm_sanitize(dev_priv); 18699 } else if (INTEL_GEN(dev_priv) >= 9) { 18700 skl_wm_get_hw_state(dev_priv); 18701 } else if (HAS_PCH_SPLIT(dev_priv)) { 18702 ilk_wm_get_hw_state(dev_priv); 18703 } 18704 18705 for_each_intel_crtc(dev, crtc) { 18706 struct intel_crtc_state *crtc_state = 18707 to_intel_crtc_state(crtc->base.state); 18708 u64 put_domains; 18709 18710 put_domains = modeset_get_crtc_power_domains(crtc_state); 18711 if (drm_WARN_ON(dev, put_domains)) 18712 modeset_put_power_domains(dev_priv, put_domains); 18713 } 18714 18715 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref); 18716 } 18717 18718 void intel_display_resume(struct drm_device *dev) 18719 { 18720 struct drm_i915_private *dev_priv = to_i915(dev); 18721 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 18722 struct drm_modeset_acquire_ctx ctx; 18723 int ret; 18724 18725 dev_priv->modeset_restore_state = NULL; 18726 if (state) 18727 state->acquire_ctx = &ctx; 18728 18729 drm_modeset_acquire_init(&ctx, 0); 18730 18731 while (1) { 18732 ret = drm_modeset_lock_all_ctx(dev, &ctx); 18733 if (ret != -EDEADLK) 18734 break; 18735 18736 drm_modeset_backoff(&ctx); 18737 } 18738 18739 if (!ret) 18740 ret = __intel_display_resume(dev, state, &ctx); 18741 18742 intel_enable_ipc(dev_priv); 18743 drm_modeset_drop_locks(&ctx); 18744 drm_modeset_acquire_fini(&ctx); 18745 18746 if (ret) 18747 drm_err(&dev_priv->drm, 18748 "Restoring old state failed with %i\n", ret); 18749 if (state) 18750 drm_atomic_state_put(state); 18751 } 18752 18753 static void intel_hpd_poll_fini(struct drm_i915_private *i915) 18754 { 18755 struct intel_connector *connector; 18756 struct drm_connector_list_iter conn_iter; 18757 18758 /* Kill all the work that may have been queued by hpd. */ 18759 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 18760 for_each_intel_connector_iter(connector, &conn_iter) { 18761 if (connector->modeset_retry_work.func) 18762 cancel_work_sync(&connector->modeset_retry_work); 18763 if (connector->hdcp.shim) { 18764 cancel_delayed_work_sync(&connector->hdcp.check_work); 18765 cancel_work_sync(&connector->hdcp.prop_work); 18766 } 18767 } 18768 drm_connector_list_iter_end(&conn_iter); 18769 } 18770 18771 /* part #1: call before irq uninstall */ 18772 void intel_modeset_driver_remove(struct drm_i915_private *i915) 18773 { 18774 flush_workqueue(i915->flip_wq); 18775 flush_workqueue(i915->modeset_wq); 18776 18777 flush_work(&i915->atomic_helper.free_work); 18778 drm_WARN_ON(&i915->drm, !llist_empty(&i915->atomic_helper.free_list)); 18779 } 18780 18781 /* part #2: call after irq uninstall */ 18782 void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915) 18783 { 18784 /* 18785 * Due to the hpd irq storm handling the hotplug work can re-arm the 18786 * poll handlers. Hence disable polling after hpd handling is shut down. 18787 */ 18788 intel_hpd_poll_fini(i915); 18789 18790 /* 18791 * MST topology needs to be suspended so we don't have any calls to 18792 * fbdev after it's finalized. MST will be destroyed later as part of 18793 * drm_mode_config_cleanup() 18794 */ 18795 intel_dp_mst_suspend(i915); 18796 18797 /* poll work can call into fbdev, hence clean that up afterwards */ 18798 intel_fbdev_fini(i915); 18799 18800 intel_unregister_dsm_handler(); 18801 18802 intel_fbc_global_disable(i915); 18803 18804 /* flush any delayed tasks or pending work */ 18805 flush_scheduled_work(); 18806 18807 intel_hdcp_component_fini(i915); 18808 18809 intel_mode_config_cleanup(i915); 18810 18811 intel_overlay_cleanup(i915); 18812 18813 intel_gmbus_teardown(i915); 18814 18815 destroy_workqueue(i915->flip_wq); 18816 destroy_workqueue(i915->modeset_wq); 18817 18818 intel_fbc_cleanup_cfb(i915); 18819 } 18820 18821 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 18822 18823 struct intel_display_error_state { 18824 18825 u32 power_well_driver; 18826 18827 struct intel_cursor_error_state { 18828 u32 control; 18829 u32 position; 18830 u32 base; 18831 u32 size; 18832 } cursor[I915_MAX_PIPES]; 18833 18834 struct intel_pipe_error_state { 18835 bool power_domain_on; 18836 u32 source; 18837 u32 stat; 18838 } pipe[I915_MAX_PIPES]; 18839 18840 struct intel_plane_error_state { 18841 u32 control; 18842 u32 stride; 18843 u32 size; 18844 u32 pos; 18845 u32 addr; 18846 u32 surface; 18847 u32 tile_offset; 18848 } plane[I915_MAX_PIPES]; 18849 18850 struct intel_transcoder_error_state { 18851 bool available; 18852 bool power_domain_on; 18853 enum transcoder cpu_transcoder; 18854 18855 u32 conf; 18856 18857 u32 htotal; 18858 u32 hblank; 18859 u32 hsync; 18860 u32 vtotal; 18861 u32 vblank; 18862 u32 vsync; 18863 } transcoder[5]; 18864 }; 18865 18866 struct intel_display_error_state * 18867 intel_display_capture_error_state(struct drm_i915_private *dev_priv) 18868 { 18869 struct intel_display_error_state *error; 18870 int transcoders[] = { 18871 TRANSCODER_A, 18872 TRANSCODER_B, 18873 TRANSCODER_C, 18874 TRANSCODER_D, 18875 TRANSCODER_EDP, 18876 }; 18877 int i; 18878 18879 BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder)); 18880 18881 if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv)) 18882 return NULL; 18883 18884 error = kzalloc(sizeof(*error), GFP_ATOMIC); 18885 if (error == NULL) 18886 return NULL; 18887 18888 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 18889 error->power_well_driver = intel_de_read(dev_priv, 18890 HSW_PWR_WELL_CTL2); 18891 18892 for_each_pipe(dev_priv, i) { 18893 error->pipe[i].power_domain_on = 18894 __intel_display_power_is_enabled(dev_priv, 18895 POWER_DOMAIN_PIPE(i)); 18896 if (!error->pipe[i].power_domain_on) 18897 continue; 18898 18899 error->cursor[i].control = intel_de_read(dev_priv, CURCNTR(i)); 18900 error->cursor[i].position = intel_de_read(dev_priv, CURPOS(i)); 18901 error->cursor[i].base = intel_de_read(dev_priv, CURBASE(i)); 18902 18903 error->plane[i].control = intel_de_read(dev_priv, DSPCNTR(i)); 18904 error->plane[i].stride = intel_de_read(dev_priv, DSPSTRIDE(i)); 18905 if (INTEL_GEN(dev_priv) <= 3) { 18906 error->plane[i].size = intel_de_read(dev_priv, 18907 DSPSIZE(i)); 18908 error->plane[i].pos = intel_de_read(dev_priv, 18909 DSPPOS(i)); 18910 } 18911 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 18912 error->plane[i].addr = intel_de_read(dev_priv, 18913 DSPADDR(i)); 18914 if (INTEL_GEN(dev_priv) >= 4) { 18915 error->plane[i].surface = intel_de_read(dev_priv, 18916 DSPSURF(i)); 18917 error->plane[i].tile_offset = intel_de_read(dev_priv, 18918 DSPTILEOFF(i)); 18919 } 18920 18921 error->pipe[i].source = intel_de_read(dev_priv, PIPESRC(i)); 18922 18923 if (HAS_GMCH(dev_priv)) 18924 error->pipe[i].stat = intel_de_read(dev_priv, 18925 PIPESTAT(i)); 18926 } 18927 18928 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 18929 enum transcoder cpu_transcoder = transcoders[i]; 18930 18931 if (!INTEL_INFO(dev_priv)->trans_offsets[cpu_transcoder]) 18932 continue; 18933 18934 error->transcoder[i].available = true; 18935 error->transcoder[i].power_domain_on = 18936 __intel_display_power_is_enabled(dev_priv, 18937 POWER_DOMAIN_TRANSCODER(cpu_transcoder)); 18938 if (!error->transcoder[i].power_domain_on) 18939 continue; 18940 18941 error->transcoder[i].cpu_transcoder = cpu_transcoder; 18942 18943 error->transcoder[i].conf = intel_de_read(dev_priv, 18944 PIPECONF(cpu_transcoder)); 18945 error->transcoder[i].htotal = intel_de_read(dev_priv, 18946 HTOTAL(cpu_transcoder)); 18947 error->transcoder[i].hblank = intel_de_read(dev_priv, 18948 HBLANK(cpu_transcoder)); 18949 error->transcoder[i].hsync = intel_de_read(dev_priv, 18950 HSYNC(cpu_transcoder)); 18951 error->transcoder[i].vtotal = intel_de_read(dev_priv, 18952 VTOTAL(cpu_transcoder)); 18953 error->transcoder[i].vblank = intel_de_read(dev_priv, 18954 VBLANK(cpu_transcoder)); 18955 error->transcoder[i].vsync = intel_de_read(dev_priv, 18956 VSYNC(cpu_transcoder)); 18957 } 18958 18959 return error; 18960 } 18961 18962 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) 18963 18964 void 18965 intel_display_print_error_state(struct drm_i915_error_state_buf *m, 18966 struct intel_display_error_state *error) 18967 { 18968 struct drm_i915_private *dev_priv = m->i915; 18969 int i; 18970 18971 if (!error) 18972 return; 18973 18974 err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv)); 18975 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 18976 err_printf(m, "PWR_WELL_CTL2: %08x\n", 18977 error->power_well_driver); 18978 for_each_pipe(dev_priv, i) { 18979 err_printf(m, "Pipe [%d]:\n", i); 18980 err_printf(m, " Power: %s\n", 18981 onoff(error->pipe[i].power_domain_on)); 18982 err_printf(m, " SRC: %08x\n", error->pipe[i].source); 18983 err_printf(m, " STAT: %08x\n", error->pipe[i].stat); 18984 18985 err_printf(m, "Plane [%d]:\n", i); 18986 err_printf(m, " CNTR: %08x\n", error->plane[i].control); 18987 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride); 18988 if (INTEL_GEN(dev_priv) <= 3) { 18989 err_printf(m, " SIZE: %08x\n", error->plane[i].size); 18990 err_printf(m, " POS: %08x\n", error->plane[i].pos); 18991 } 18992 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv)) 18993 err_printf(m, " ADDR: %08x\n", error->plane[i].addr); 18994 if (INTEL_GEN(dev_priv) >= 4) { 18995 err_printf(m, " SURF: %08x\n", error->plane[i].surface); 18996 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); 18997 } 18998 18999 err_printf(m, "Cursor [%d]:\n", i); 19000 err_printf(m, " CNTR: %08x\n", error->cursor[i].control); 19001 err_printf(m, " POS: %08x\n", error->cursor[i].position); 19002 err_printf(m, " BASE: %08x\n", error->cursor[i].base); 19003 } 19004 19005 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) { 19006 if (!error->transcoder[i].available) 19007 continue; 19008 19009 err_printf(m, "CPU transcoder: %s\n", 19010 transcoder_name(error->transcoder[i].cpu_transcoder)); 19011 err_printf(m, " Power: %s\n", 19012 onoff(error->transcoder[i].power_domain_on)); 19013 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf); 19014 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal); 19015 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank); 19016 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync); 19017 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal); 19018 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank); 19019 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync); 19020 } 19021 } 19022 19023 #endif 19024