1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include <linux/log2.h>
7 #include <linux/math64.h>
8 #include "i915_reg.h"
9 #include "intel_cx0_phy.h"
10 #include "intel_cx0_phy_regs.h"
11 #include "intel_ddi.h"
12 #include "intel_ddi_buf_trans.h"
13 #include "intel_de.h"
14 #include "intel_display_types.h"
15 #include "intel_dp.h"
16 #include "intel_hdmi.h"
17 #include "intel_panel.h"
18 #include "intel_psr.h"
19 #include "intel_tc.h"
20 
21 #define MB_WRITE_COMMITTED      true
22 #define MB_WRITE_UNCOMMITTED    false
23 
24 #define for_each_cx0_lane_in_mask(__lane_mask, __lane) \
25 	for ((__lane) = 0; (__lane) < 2; (__lane)++) \
26 		for_each_if((__lane_mask) & BIT(__lane))
27 
28 #define INTEL_CX0_LANE0		BIT(0)
29 #define INTEL_CX0_LANE1		BIT(1)
30 #define INTEL_CX0_BOTH_LANES	(INTEL_CX0_LANE1 | INTEL_CX0_LANE0)
31 
32 bool intel_is_c10phy(struct drm_i915_private *i915, enum phy phy)
33 {
34 	if (IS_METEORLAKE(i915) && (phy < PHY_C))
35 		return true;
36 
37 	return false;
38 }
39 
40 static int lane_mask_to_lane(u8 lane_mask)
41 {
42 	if (WARN_ON((lane_mask & ~INTEL_CX0_BOTH_LANES) ||
43 		    hweight8(lane_mask) != 1))
44 		return 0;
45 
46 	return ilog2(lane_mask);
47 }
48 
49 static void
50 assert_dc_off(struct drm_i915_private *i915)
51 {
52 	bool enabled;
53 
54 	enabled = intel_display_power_is_enabled(i915, POWER_DOMAIN_DC_OFF);
55 	drm_WARN_ON(&i915->drm, !enabled);
56 }
57 
58 /*
59  * Prepare HW for CX0 phy transactions.
60  *
61  * It is required that PSR and DC5/6 are disabled before any CX0 message
62  * bus transaction is executed.
63  */
64 static intel_wakeref_t intel_cx0_phy_transaction_begin(struct intel_encoder *encoder)
65 {
66 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
67 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
68 
69 	intel_psr_pause(intel_dp);
70 	return intel_display_power_get(i915, POWER_DOMAIN_DC_OFF);
71 }
72 
73 static void intel_cx0_phy_transaction_end(struct intel_encoder *encoder, intel_wakeref_t wakeref)
74 {
75 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
76 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
77 
78 	intel_psr_resume(intel_dp);
79 	intel_display_power_put(i915, POWER_DOMAIN_DC_OFF, wakeref);
80 }
81 
82 static void intel_clear_response_ready_flag(struct drm_i915_private *i915,
83 					    enum port port, int lane)
84 {
85 	intel_de_rmw(i915, XELPDP_PORT_P2M_MSGBUS_STATUS(port, lane),
86 		     0, XELPDP_PORT_P2M_RESPONSE_READY | XELPDP_PORT_P2M_ERROR_SET);
87 }
88 
89 static void intel_cx0_bus_reset(struct drm_i915_private *i915, enum port port, int lane)
90 {
91 	enum phy phy = intel_port_to_phy(i915, port);
92 
93 	intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
94 		       XELPDP_PORT_M2P_TRANSACTION_RESET);
95 
96 	if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
97 				    XELPDP_PORT_M2P_TRANSACTION_RESET,
98 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
99 		drm_err_once(&i915->drm, "Failed to bring PHY %c to idle.\n", phy_name(phy));
100 		return;
101 	}
102 
103 	intel_clear_response_ready_flag(i915, port, lane);
104 }
105 
106 static int intel_cx0_wait_for_ack(struct drm_i915_private *i915, enum port port,
107 				  int command, int lane, u32 *val)
108 {
109 	enum phy phy = intel_port_to_phy(i915, port);
110 
111 	if (__intel_de_wait_for_register(i915,
112 					 XELPDP_PORT_P2M_MSGBUS_STATUS(port, lane),
113 					 XELPDP_PORT_P2M_RESPONSE_READY,
114 					 XELPDP_PORT_P2M_RESPONSE_READY,
115 					 XELPDP_MSGBUS_TIMEOUT_FAST_US,
116 					 XELPDP_MSGBUS_TIMEOUT_SLOW, val)) {
117 		drm_dbg_kms(&i915->drm, "PHY %c Timeout waiting for message ACK. Status: 0x%x\n",
118 			    phy_name(phy), *val);
119 		intel_cx0_bus_reset(i915, port, lane);
120 		return -ETIMEDOUT;
121 	}
122 
123 	if (*val & XELPDP_PORT_P2M_ERROR_SET) {
124 		drm_dbg_kms(&i915->drm, "PHY %c Error occurred during %s command. Status: 0x%x\n", phy_name(phy),
125 			    command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
126 		intel_cx0_bus_reset(i915, port, lane);
127 		return -EINVAL;
128 	}
129 
130 	if (REG_FIELD_GET(XELPDP_PORT_P2M_COMMAND_TYPE_MASK, *val) != command) {
131 		drm_dbg_kms(&i915->drm, "PHY %c Not a %s response. MSGBUS Status: 0x%x.\n", phy_name(phy),
132 			    command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
133 		intel_cx0_bus_reset(i915, port, lane);
134 		return -EINVAL;
135 	}
136 
137 	return 0;
138 }
139 
140 static int __intel_cx0_read_once(struct drm_i915_private *i915, enum port port,
141 				 int lane, u16 addr)
142 {
143 	enum phy phy = intel_port_to_phy(i915, port);
144 	int ack;
145 	u32 val;
146 
147 	if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
148 				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
149 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
150 		drm_dbg_kms(&i915->drm,
151 			    "PHY %c Timeout waiting for previous transaction to complete. Reset the bus and retry.\n", phy_name(phy));
152 		intel_cx0_bus_reset(i915, port, lane);
153 		return -ETIMEDOUT;
154 	}
155 
156 	intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
157 		       XELPDP_PORT_M2P_TRANSACTION_PENDING |
158 		       XELPDP_PORT_M2P_COMMAND_READ |
159 		       XELPDP_PORT_M2P_ADDRESS(addr));
160 
161 	ack = intel_cx0_wait_for_ack(i915, port, XELPDP_PORT_P2M_COMMAND_READ_ACK, lane, &val);
162 	if (ack < 0)
163 		return ack;
164 
165 	intel_clear_response_ready_flag(i915, port, lane);
166 
167 	return REG_FIELD_GET(XELPDP_PORT_P2M_DATA_MASK, val);
168 }
169 
170 static u8 __intel_cx0_read(struct drm_i915_private *i915, enum port port,
171 			   int lane, u16 addr)
172 {
173 	enum phy phy = intel_port_to_phy(i915, port);
174 	int i, status;
175 
176 	assert_dc_off(i915);
177 
178 	/* 3 tries is assumed to be enough to read successfully */
179 	for (i = 0; i < 3; i++) {
180 		status = __intel_cx0_read_once(i915, port, lane, addr);
181 
182 		if (status >= 0)
183 			return status;
184 	}
185 
186 	drm_err_once(&i915->drm, "PHY %c Read %04x failed after %d retries.\n",
187 		     phy_name(phy), addr, i);
188 
189 	return 0;
190 }
191 
192 static u8 intel_cx0_read(struct drm_i915_private *i915, enum port port,
193 			 u8 lane_mask, u16 addr)
194 {
195 	int lane = lane_mask_to_lane(lane_mask);
196 
197 	return __intel_cx0_read(i915, port, lane, addr);
198 }
199 
200 static int __intel_cx0_write_once(struct drm_i915_private *i915, enum port port,
201 				  int lane, u16 addr, u8 data, bool committed)
202 {
203 	enum phy phy = intel_port_to_phy(i915, port);
204 	int ack;
205 	u32 val;
206 
207 	if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
208 				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
209 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
210 		drm_dbg_kms(&i915->drm,
211 			    "PHY %c Timeout waiting for previous transaction to complete. Resetting the bus.\n", phy_name(phy));
212 		intel_cx0_bus_reset(i915, port, lane);
213 		return -ETIMEDOUT;
214 	}
215 
216 	intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
217 		       XELPDP_PORT_M2P_TRANSACTION_PENDING |
218 		       (committed ? XELPDP_PORT_M2P_COMMAND_WRITE_COMMITTED :
219 				    XELPDP_PORT_M2P_COMMAND_WRITE_UNCOMMITTED) |
220 		       XELPDP_PORT_M2P_DATA(data) |
221 		       XELPDP_PORT_M2P_ADDRESS(addr));
222 
223 	if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
224 				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
225 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
226 		drm_dbg_kms(&i915->drm,
227 			    "PHY %c Timeout waiting for write to complete. Resetting the bus.\n", phy_name(phy));
228 		intel_cx0_bus_reset(i915, port, lane);
229 		return -ETIMEDOUT;
230 	}
231 
232 	if (committed) {
233 		ack = intel_cx0_wait_for_ack(i915, port, XELPDP_PORT_P2M_COMMAND_WRITE_ACK, lane, &val);
234 		if (ack < 0)
235 			return ack;
236 	} else if ((intel_de_read(i915, XELPDP_PORT_P2M_MSGBUS_STATUS(port, lane)) &
237 		    XELPDP_PORT_P2M_ERROR_SET)) {
238 		drm_dbg_kms(&i915->drm,
239 			    "PHY %c Error occurred during write command.\n", phy_name(phy));
240 		intel_cx0_bus_reset(i915, port, lane);
241 		return -EINVAL;
242 	}
243 
244 	intel_clear_response_ready_flag(i915, port, lane);
245 
246 	return 0;
247 }
248 
249 static void __intel_cx0_write(struct drm_i915_private *i915, enum port port,
250 			      int lane, u16 addr, u8 data, bool committed)
251 {
252 	enum phy phy = intel_port_to_phy(i915, port);
253 	int i, status;
254 
255 	assert_dc_off(i915);
256 
257 	/* 3 tries is assumed to be enough to write successfully */
258 	for (i = 0; i < 3; i++) {
259 		status = __intel_cx0_write_once(i915, port, lane, addr, data, committed);
260 
261 		if (status == 0)
262 			return;
263 	}
264 
265 	drm_err_once(&i915->drm,
266 		     "PHY %c Write %04x failed after %d retries.\n", phy_name(phy), addr, i);
267 }
268 
269 static void intel_cx0_write(struct drm_i915_private *i915, enum port port,
270 			    u8 lane_mask, u16 addr, u8 data, bool committed)
271 {
272 	int lane;
273 
274 	for_each_cx0_lane_in_mask(lane_mask, lane)
275 		__intel_cx0_write(i915, port, lane, addr, data, committed);
276 }
277 
278 static void intel_c20_sram_write(struct drm_i915_private *i915, enum port port,
279 				 int lane, u16 addr, u16 data)
280 {
281 	assert_dc_off(i915);
282 
283 	intel_cx0_write(i915, port, lane, PHY_C20_WR_ADDRESS_H, addr >> 8, 0);
284 	intel_cx0_write(i915, port, lane, PHY_C20_WR_ADDRESS_L, addr & 0xff, 0);
285 
286 	intel_cx0_write(i915, port, lane, PHY_C20_WR_DATA_H, data >> 8, 0);
287 	intel_cx0_write(i915, port, lane, PHY_C20_WR_DATA_L, data & 0xff, 1);
288 }
289 
290 static u16 intel_c20_sram_read(struct drm_i915_private *i915, enum port port,
291 			       int lane, u16 addr)
292 {
293 	u16 val;
294 
295 	assert_dc_off(i915);
296 
297 	intel_cx0_write(i915, port, lane, PHY_C20_RD_ADDRESS_H, addr >> 8, 0);
298 	intel_cx0_write(i915, port, lane, PHY_C20_RD_ADDRESS_L, addr & 0xff, 1);
299 
300 	val = intel_cx0_read(i915, port, lane, PHY_C20_RD_DATA_H);
301 	val <<= 8;
302 	val |= intel_cx0_read(i915, port, lane, PHY_C20_RD_DATA_L);
303 
304 	return val;
305 }
306 
307 static void __intel_cx0_rmw(struct drm_i915_private *i915, enum port port,
308 			    int lane, u16 addr, u8 clear, u8 set, bool committed)
309 {
310 	u8 old, val;
311 
312 	old = __intel_cx0_read(i915, port, lane, addr);
313 	val = (old & ~clear) | set;
314 
315 	if (val != old)
316 		__intel_cx0_write(i915, port, lane, addr, val, committed);
317 }
318 
319 static void intel_cx0_rmw(struct drm_i915_private *i915, enum port port,
320 			  u8 lane_mask, u16 addr, u8 clear, u8 set, bool committed)
321 {
322 	u8 lane;
323 
324 	for_each_cx0_lane_in_mask(lane_mask, lane)
325 		__intel_cx0_rmw(i915, port, lane, addr, clear, set, committed);
326 }
327 
328 static u8 intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state *crtc_state)
329 {
330 	if (intel_crtc_has_dp_encoder(crtc_state)) {
331 		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
332 		    (crtc_state->port_clock == 540000 ||
333 		     crtc_state->port_clock == 810000))
334 			return 5;
335 		else
336 			return 4;
337 	} else {
338 		return 5;
339 	}
340 }
341 
342 static u8 intel_c10_get_tx_term_ctl(const struct intel_crtc_state *crtc_state)
343 {
344 	if (intel_crtc_has_dp_encoder(crtc_state)) {
345 		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
346 		    (crtc_state->port_clock == 540000 ||
347 		     crtc_state->port_clock == 810000))
348 			return 5;
349 		else
350 			return 2;
351 	} else {
352 		return 6;
353 	}
354 }
355 
356 void intel_cx0_phy_set_signal_levels(struct intel_encoder *encoder,
357 				     const struct intel_crtc_state *crtc_state)
358 {
359 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
360 	const struct intel_ddi_buf_trans *trans;
361 	enum phy phy = intel_port_to_phy(i915, encoder->port);
362 	intel_wakeref_t wakeref;
363 	int n_entries, ln;
364 
365 	wakeref = intel_cx0_phy_transaction_begin(encoder);
366 
367 	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
368 	if (drm_WARN_ON_ONCE(&i915->drm, !trans)) {
369 		intel_cx0_phy_transaction_end(encoder, wakeref);
370 		return;
371 	}
372 
373 	if (intel_is_c10phy(i915, phy)) {
374 		intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
375 			      0, C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED);
376 		intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CMN(3),
377 			      C10_CMN3_TXVBOOST_MASK,
378 			      C10_CMN3_TXVBOOST(intel_c10_get_tx_vboost_lvl(crtc_state)),
379 			      MB_WRITE_UNCOMMITTED);
380 		intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_TX(1),
381 			      C10_TX1_TERMCTL_MASK,
382 			      C10_TX1_TERMCTL(intel_c10_get_tx_term_ctl(crtc_state)),
383 			      MB_WRITE_COMMITTED);
384 	}
385 
386 	for (ln = 0; ln < crtc_state->lane_count; ln++) {
387 		int level = intel_ddi_level(encoder, crtc_state, ln);
388 		int lane, tx;
389 
390 		lane = ln / 2;
391 		tx = ln % 2;
392 
393 		intel_cx0_rmw(i915, encoder->port, BIT(lane), PHY_CX0_VDROVRD_CTL(lane, tx, 0),
394 			      C10_PHY_OVRD_LEVEL_MASK,
395 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.pre_cursor),
396 			      MB_WRITE_COMMITTED);
397 		intel_cx0_rmw(i915, encoder->port, BIT(lane), PHY_CX0_VDROVRD_CTL(lane, tx, 1),
398 			      C10_PHY_OVRD_LEVEL_MASK,
399 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.vswing),
400 			      MB_WRITE_COMMITTED);
401 		intel_cx0_rmw(i915, encoder->port, BIT(lane), PHY_CX0_VDROVRD_CTL(lane, tx, 2),
402 			      C10_PHY_OVRD_LEVEL_MASK,
403 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.post_cursor),
404 			      MB_WRITE_COMMITTED);
405 	}
406 
407 	/* Write Override enables in 0xD71 */
408 	intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_OVRD,
409 		      0, PHY_C10_VDR_OVRD_TX1 | PHY_C10_VDR_OVRD_TX2,
410 		      MB_WRITE_COMMITTED);
411 
412 	if (intel_is_c10phy(i915, phy))
413 		intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
414 			      0, C10_VDR_CTRL_UPDATE_CFG, MB_WRITE_COMMITTED);
415 
416 	intel_cx0_phy_transaction_end(encoder, wakeref);
417 }
418 
419 /*
420  * Basic DP link rates with 38.4 MHz reference clock.
421  * Note: The tables below are with SSC. In non-ssc
422  * registers 0xC04 to 0xC08(pll[4] to pll[8]) will be
423  * programmed 0.
424  */
425 
426 static const struct intel_c10pll_state mtl_c10_dp_rbr = {
427 	.clock = 162000,
428 	.tx = 0x10,
429 	.cmn = 0x21,
430 	.pll[0] = 0xB4,
431 	.pll[1] = 0,
432 	.pll[2] = 0x30,
433 	.pll[3] = 0x1,
434 	.pll[4] = 0x26,
435 	.pll[5] = 0x0C,
436 	.pll[6] = 0x98,
437 	.pll[7] = 0x46,
438 	.pll[8] = 0x1,
439 	.pll[9] = 0x1,
440 	.pll[10] = 0,
441 	.pll[11] = 0,
442 	.pll[12] = 0xC0,
443 	.pll[13] = 0,
444 	.pll[14] = 0,
445 	.pll[15] = 0x2,
446 	.pll[16] = 0x84,
447 	.pll[17] = 0x4F,
448 	.pll[18] = 0xE5,
449 	.pll[19] = 0x23,
450 };
451 
452 static const struct intel_c10pll_state mtl_c10_edp_r216 = {
453 	.clock = 216000,
454 	.tx = 0x10,
455 	.cmn = 0x21,
456 	.pll[0] = 0x4,
457 	.pll[1] = 0,
458 	.pll[2] = 0xA2,
459 	.pll[3] = 0x1,
460 	.pll[4] = 0x33,
461 	.pll[5] = 0x10,
462 	.pll[6] = 0x75,
463 	.pll[7] = 0xB3,
464 	.pll[8] = 0x1,
465 	.pll[9] = 0x1,
466 	.pll[10] = 0,
467 	.pll[11] = 0,
468 	.pll[12] = 0,
469 	.pll[13] = 0,
470 	.pll[14] = 0,
471 	.pll[15] = 0x2,
472 	.pll[16] = 0x85,
473 	.pll[17] = 0x0F,
474 	.pll[18] = 0xE6,
475 	.pll[19] = 0x23,
476 };
477 
478 static const struct intel_c10pll_state mtl_c10_edp_r243 = {
479 	.clock = 243000,
480 	.tx = 0x10,
481 	.cmn = 0x21,
482 	.pll[0] = 0x34,
483 	.pll[1] = 0,
484 	.pll[2] = 0xDA,
485 	.pll[3] = 0x1,
486 	.pll[4] = 0x39,
487 	.pll[5] = 0x12,
488 	.pll[6] = 0xE3,
489 	.pll[7] = 0xE9,
490 	.pll[8] = 0x1,
491 	.pll[9] = 0x1,
492 	.pll[10] = 0,
493 	.pll[11] = 0,
494 	.pll[12] = 0x20,
495 	.pll[13] = 0,
496 	.pll[14] = 0,
497 	.pll[15] = 0x2,
498 	.pll[16] = 0x85,
499 	.pll[17] = 0x8F,
500 	.pll[18] = 0xE6,
501 	.pll[19] = 0x23,
502 };
503 
504 static const struct intel_c10pll_state mtl_c10_dp_hbr1 = {
505 	.clock = 270000,
506 	.tx = 0x10,
507 	.cmn = 0x21,
508 	.pll[0] = 0xF4,
509 	.pll[1] = 0,
510 	.pll[2] = 0xF8,
511 	.pll[3] = 0x0,
512 	.pll[4] = 0x20,
513 	.pll[5] = 0x0A,
514 	.pll[6] = 0x29,
515 	.pll[7] = 0x10,
516 	.pll[8] = 0x1,   /* Verify */
517 	.pll[9] = 0x1,
518 	.pll[10] = 0,
519 	.pll[11] = 0,
520 	.pll[12] = 0xA0,
521 	.pll[13] = 0,
522 	.pll[14] = 0,
523 	.pll[15] = 0x1,
524 	.pll[16] = 0x84,
525 	.pll[17] = 0x4F,
526 	.pll[18] = 0xE5,
527 	.pll[19] = 0x23,
528 };
529 
530 static const struct intel_c10pll_state mtl_c10_edp_r324 = {
531 	.clock = 324000,
532 	.tx = 0x10,
533 	.cmn = 0x21,
534 	.pll[0] = 0xB4,
535 	.pll[1] = 0,
536 	.pll[2] = 0x30,
537 	.pll[3] = 0x1,
538 	.pll[4] = 0x26,
539 	.pll[5] = 0x0C,
540 	.pll[6] = 0x98,
541 	.pll[7] = 0x46,
542 	.pll[8] = 0x1,
543 	.pll[9] = 0x1,
544 	.pll[10] = 0,
545 	.pll[11] = 0,
546 	.pll[12] = 0xC0,
547 	.pll[13] = 0,
548 	.pll[14] = 0,
549 	.pll[15] = 0x1,
550 	.pll[16] = 0x85,
551 	.pll[17] = 0x4F,
552 	.pll[18] = 0xE6,
553 	.pll[19] = 0x23,
554 };
555 
556 static const struct intel_c10pll_state mtl_c10_edp_r432 = {
557 	.clock = 432000,
558 	.tx = 0x10,
559 	.cmn = 0x21,
560 	.pll[0] = 0x4,
561 	.pll[1] = 0,
562 	.pll[2] = 0xA2,
563 	.pll[3] = 0x1,
564 	.pll[4] = 0x33,
565 	.pll[5] = 0x10,
566 	.pll[6] = 0x75,
567 	.pll[7] = 0xB3,
568 	.pll[8] = 0x1,
569 	.pll[9] = 0x1,
570 	.pll[10] = 0,
571 	.pll[11] = 0,
572 	.pll[12] = 0,
573 	.pll[13] = 0,
574 	.pll[14] = 0,
575 	.pll[15] = 0x1,
576 	.pll[16] = 0x85,
577 	.pll[17] = 0x0F,
578 	.pll[18] = 0xE6,
579 	.pll[19] = 0x23,
580 };
581 
582 static const struct intel_c10pll_state mtl_c10_dp_hbr2 = {
583 	.clock = 540000,
584 	.tx = 0x10,
585 	.cmn = 0x21,
586 	.pll[0] = 0xF4,
587 	.pll[1] = 0,
588 	.pll[2] = 0xF8,
589 	.pll[3] = 0,
590 	.pll[4] = 0x20,
591 	.pll[5] = 0x0A,
592 	.pll[6] = 0x29,
593 	.pll[7] = 0x10,
594 	.pll[8] = 0x1,
595 	.pll[9] = 0x1,
596 	.pll[10] = 0,
597 	.pll[11] = 0,
598 	.pll[12] = 0xA0,
599 	.pll[13] = 0,
600 	.pll[14] = 0,
601 	.pll[15] = 0,
602 	.pll[16] = 0x84,
603 	.pll[17] = 0x4F,
604 	.pll[18] = 0xE5,
605 	.pll[19] = 0x23,
606 };
607 
608 static const struct intel_c10pll_state mtl_c10_edp_r675 = {
609 	.clock = 675000,
610 	.tx = 0x10,
611 	.cmn = 0x21,
612 	.pll[0] = 0xB4,
613 	.pll[1] = 0,
614 	.pll[2] = 0x3E,
615 	.pll[3] = 0x1,
616 	.pll[4] = 0xA8,
617 	.pll[5] = 0x0C,
618 	.pll[6] = 0x33,
619 	.pll[7] = 0x54,
620 	.pll[8] = 0x1,
621 	.pll[9] = 0x1,
622 	.pll[10] = 0,
623 	.pll[11] = 0,
624 	.pll[12] = 0xC8,
625 	.pll[13] = 0,
626 	.pll[14] = 0,
627 	.pll[15] = 0,
628 	.pll[16] = 0x85,
629 	.pll[17] = 0x8F,
630 	.pll[18] = 0xE6,
631 	.pll[19] = 0x23,
632 };
633 
634 static const struct intel_c10pll_state mtl_c10_dp_hbr3 = {
635 	.clock = 810000,
636 	.tx = 0x10,
637 	.cmn = 0x21,
638 	.pll[0] = 0x34,
639 	.pll[1] = 0,
640 	.pll[2] = 0x84,
641 	.pll[3] = 0x1,
642 	.pll[4] = 0x30,
643 	.pll[5] = 0x0F,
644 	.pll[6] = 0x3D,
645 	.pll[7] = 0x98,
646 	.pll[8] = 0x1,
647 	.pll[9] = 0x1,
648 	.pll[10] = 0,
649 	.pll[11] = 0,
650 	.pll[12] = 0xF0,
651 	.pll[13] = 0,
652 	.pll[14] = 0,
653 	.pll[15] = 0,
654 	.pll[16] = 0x84,
655 	.pll[17] = 0x0F,
656 	.pll[18] = 0xE5,
657 	.pll[19] = 0x23,
658 };
659 
660 static const struct intel_c10pll_state * const mtl_c10_dp_tables[] = {
661 	&mtl_c10_dp_rbr,
662 	&mtl_c10_dp_hbr1,
663 	&mtl_c10_dp_hbr2,
664 	&mtl_c10_dp_hbr3,
665 	NULL,
666 };
667 
668 static const struct intel_c10pll_state * const mtl_c10_edp_tables[] = {
669 	&mtl_c10_dp_rbr,
670 	&mtl_c10_edp_r216,
671 	&mtl_c10_edp_r243,
672 	&mtl_c10_dp_hbr1,
673 	&mtl_c10_edp_r324,
674 	&mtl_c10_edp_r432,
675 	&mtl_c10_dp_hbr2,
676 	&mtl_c10_edp_r675,
677 	&mtl_c10_dp_hbr3,
678 	NULL,
679 };
680 
681 /* C20 basic DP 1.4 tables */
682 static const struct intel_c20pll_state mtl_c20_dp_rbr = {
683 	.link_bit_rate = 162000,
684 	.clock = 162000,
685 	.tx = {	0xbe88, /* tx cfg0 */
686 		0x5800, /* tx cfg1 */
687 		0x0000, /* tx cfg2 */
688 		},
689 	.cmn = {0x0500, /* cmn cfg0*/
690 		0x0005, /* cmn cfg1 */
691 		0x0000, /* cmn cfg2 */
692 		0x0000, /* cmn cfg3 */
693 		},
694 	.mpllb = { 0x50a8,	/* mpllb cfg0 */
695 		0x2120,		/* mpllb cfg1 */
696 		0xcd9a,		/* mpllb cfg2 */
697 		0xbfc1,		/* mpllb cfg3 */
698 		0x5ab8,         /* mpllb cfg4 */
699 		0x4c34,         /* mpllb cfg5 */
700 		0x2000,		/* mpllb cfg6 */
701 		0x0001,		/* mpllb cfg7 */
702 		0x6000,		/* mpllb cfg8 */
703 		0x0000,		/* mpllb cfg9 */
704 		0x0000,		/* mpllb cfg10 */
705 		},
706 };
707 
708 static const struct intel_c20pll_state mtl_c20_dp_hbr1 = {
709 	.link_bit_rate = 270000,
710 	.clock = 270000,
711 	.tx = {	0xbe88, /* tx cfg0 */
712 		0x4800, /* tx cfg1 */
713 		0x0000, /* tx cfg2 */
714 		},
715 	.cmn = {0x0500, /* cmn cfg0*/
716 		0x0005, /* cmn cfg1 */
717 		0x0000, /* cmn cfg2 */
718 		0x0000, /* cmn cfg3 */
719 		},
720 	.mpllb = { 0x308c,	/* mpllb cfg0 */
721 		0x2110,		/* mpllb cfg1 */
722 		0xcc9c,		/* mpllb cfg2 */
723 		0xbfc1,		/* mpllb cfg3 */
724 		0x4b9a,         /* mpllb cfg4 */
725 		0x3f81,         /* mpllb cfg5 */
726 		0x2000,		/* mpllb cfg6 */
727 		0x0001,		/* mpllb cfg7 */
728 		0x5000,		/* mpllb cfg8 */
729 		0x0000,		/* mpllb cfg9 */
730 		0x0000,		/* mpllb cfg10 */
731 		},
732 };
733 
734 static const struct intel_c20pll_state mtl_c20_dp_hbr2 = {
735 	.link_bit_rate = 540000,
736 	.clock = 540000,
737 	.tx = {	0xbe88, /* tx cfg0 */
738 		0x4800, /* tx cfg1 */
739 		0x0000, /* tx cfg2 */
740 		},
741 	.cmn = {0x0500, /* cmn cfg0*/
742 		0x0005, /* cmn cfg1 */
743 		0x0000, /* cmn cfg2 */
744 		0x0000, /* cmn cfg3 */
745 		},
746 	.mpllb = { 0x108c,	/* mpllb cfg0 */
747 		0x2108,		/* mpllb cfg1 */
748 		0xcc9c,		/* mpllb cfg2 */
749 		0xbfc1,		/* mpllb cfg3 */
750 		0x4b9a,         /* mpllb cfg4 */
751 		0x3f81,         /* mpllb cfg5 */
752 		0x2000,		/* mpllb cfg6 */
753 		0x0001,		/* mpllb cfg7 */
754 		0x5000,		/* mpllb cfg8 */
755 		0x0000,		/* mpllb cfg9 */
756 		0x0000,		/* mpllb cfg10 */
757 		},
758 };
759 
760 static const struct intel_c20pll_state mtl_c20_dp_hbr3 = {
761 	.link_bit_rate = 810000,
762 	.clock = 810000,
763 	.tx = {	0xbe88, /* tx cfg0 */
764 		0x4800, /* tx cfg1 */
765 		0x0000, /* tx cfg2 */
766 		},
767 	.cmn = {0x0500, /* cmn cfg0*/
768 		0x0005, /* cmn cfg1 */
769 		0x0000, /* cmn cfg2 */
770 		0x0000, /* cmn cfg3 */
771 		},
772 	.mpllb = { 0x10d2,	/* mpllb cfg0 */
773 		0x2108,		/* mpllb cfg1 */
774 		0x8d98,		/* mpllb cfg2 */
775 		0xbfc1,		/* mpllb cfg3 */
776 		0x7166,         /* mpllb cfg4 */
777 		0x5f42,         /* mpllb cfg5 */
778 		0x2000,		/* mpllb cfg6 */
779 		0x0001,		/* mpllb cfg7 */
780 		0x7800,		/* mpllb cfg8 */
781 		0x0000,		/* mpllb cfg9 */
782 		0x0000,		/* mpllb cfg10 */
783 		},
784 };
785 
786 /* C20 basic DP 2.0 tables */
787 static const struct intel_c20pll_state mtl_c20_dp_uhbr10 = {
788 	.link_bit_rate = 1000000, /* 10 Gbps */
789 	.clock = 312500,
790 	.tx = {	0xbe21, /* tx cfg0 */
791 		0x4800, /* tx cfg1 */
792 		0x0000, /* tx cfg2 */
793 		},
794 	.cmn = {0x0500, /* cmn cfg0*/
795 		0x0005, /* cmn cfg1 */
796 		0x0000, /* cmn cfg2 */
797 		0x0000, /* cmn cfg3 */
798 		},
799 	.mplla = { 0x3104,	/* mplla cfg0 */
800 		0xd105,		/* mplla cfg1 */
801 		0xc025,		/* mplla cfg2 */
802 		0xc025,		/* mplla cfg3 */
803 		0x8c00,		/* mplla cfg4 */
804 		0x759a,		/* mplla cfg5 */
805 		0x4000,		/* mplla cfg6 */
806 		0x0003,		/* mplla cfg7 */
807 		0x3555,		/* mplla cfg8 */
808 		0x0001,		/* mplla cfg9 */
809 		},
810 };
811 
812 static const struct intel_c20pll_state mtl_c20_dp_uhbr13_5 = {
813 	.link_bit_rate = 1350000, /* 13.5 Gbps */
814 	.clock = 421875,
815 	.tx = {	0xbea0, /* tx cfg0 */
816 		0x4800, /* tx cfg1 */
817 		0x0000, /* tx cfg2 */
818 		},
819 	.cmn = {0x0500, /* cmn cfg0*/
820 		0x0005, /* cmn cfg1 */
821 		0x0000, /* cmn cfg2 */
822 		0x0000, /* cmn cfg3 */
823 		},
824 	.mpllb = { 0x015f,	/* mpllb cfg0 */
825 		0x2205,		/* mpllb cfg1 */
826 		0x1b17,		/* mpllb cfg2 */
827 		0xffc1,		/* mpllb cfg3 */
828 		0xe100,		/* mpllb cfg4 */
829 		0xbd00,		/* mpllb cfg5 */
830 		0x2000,		/* mpllb cfg6 */
831 		0x0001,		/* mpllb cfg7 */
832 		0x4800,		/* mpllb cfg8 */
833 		0x0000,		/* mpllb cfg9 */
834 		0x0000,		/* mpllb cfg10 */
835 		},
836 };
837 
838 static const struct intel_c20pll_state mtl_c20_dp_uhbr20 = {
839 	.link_bit_rate = 2000000, /* 20 Gbps */
840 	.clock = 625000,
841 	.tx = {	0xbe20, /* tx cfg0 */
842 		0x4800, /* tx cfg1 */
843 		0x0000, /* tx cfg2 */
844 		},
845 	.cmn = {0x0500, /* cmn cfg0*/
846 		0x0005, /* cmn cfg1 */
847 		0x0000, /* cmn cfg2 */
848 		0x0000, /* cmn cfg3 */
849 		},
850 	.mplla = { 0x3104,	/* mplla cfg0 */
851 		0xd105,		/* mplla cfg1 */
852 		0xc025,		/* mplla cfg2 */
853 		0xc025,		/* mplla cfg3 */
854 		0xa6ab,		/* mplla cfg4 */
855 		0x8c00,		/* mplla cfg5 */
856 		0x4000,		/* mplla cfg6 */
857 		0x0003,		/* mplla cfg7 */
858 		0x3555,		/* mplla cfg8 */
859 		0x0001,		/* mplla cfg9 */
860 		},
861 };
862 
863 static const struct intel_c20pll_state * const mtl_c20_dp_tables[] = {
864 	&mtl_c20_dp_rbr,
865 	&mtl_c20_dp_hbr1,
866 	&mtl_c20_dp_hbr2,
867 	&mtl_c20_dp_hbr3,
868 	&mtl_c20_dp_uhbr10,
869 	&mtl_c20_dp_uhbr13_5,
870 	&mtl_c20_dp_uhbr20,
871 	NULL,
872 };
873 
874 /*
875  * HDMI link rates with 38.4 MHz reference clock.
876  */
877 
878 static const struct intel_c10pll_state mtl_c10_hdmi_25_2 = {
879 	.clock = 25200,
880 	.tx = 0x10,
881 	.cmn = 0x1,
882 	.pll[0] = 0x4,
883 	.pll[1] = 0,
884 	.pll[2] = 0xB2,
885 	.pll[3] = 0,
886 	.pll[4] = 0,
887 	.pll[5] = 0,
888 	.pll[6] = 0,
889 	.pll[7] = 0,
890 	.pll[8] = 0x20,
891 	.pll[9] = 0x1,
892 	.pll[10] = 0,
893 	.pll[11] = 0,
894 	.pll[12] = 0,
895 	.pll[13] = 0,
896 	.pll[14] = 0,
897 	.pll[15] = 0xD,
898 	.pll[16] = 0x6,
899 	.pll[17] = 0x8F,
900 	.pll[18] = 0x84,
901 	.pll[19] = 0x23,
902 };
903 
904 static const struct intel_c10pll_state mtl_c10_hdmi_27_0 = {
905 	.clock = 27000,
906 	.tx = 0x10,
907 	.cmn = 0x1,
908 	.pll[0] = 0x34,
909 	.pll[1] = 0,
910 	.pll[2] = 0xC0,
911 	.pll[3] = 0,
912 	.pll[4] = 0,
913 	.pll[5] = 0,
914 	.pll[6] = 0,
915 	.pll[7] = 0,
916 	.pll[8] = 0x20,
917 	.pll[9] = 0x1,
918 	.pll[10] = 0,
919 	.pll[11] = 0,
920 	.pll[12] = 0x80,
921 	.pll[13] = 0,
922 	.pll[14] = 0,
923 	.pll[15] = 0xD,
924 	.pll[16] = 0x6,
925 	.pll[17] = 0xCF,
926 	.pll[18] = 0x84,
927 	.pll[19] = 0x23,
928 };
929 
930 static const struct intel_c10pll_state mtl_c10_hdmi_74_25 = {
931 	.clock = 74250,
932 	.tx = 0x10,
933 	.cmn = 0x1,
934 	.pll[0] = 0xF4,
935 	.pll[1] = 0,
936 	.pll[2] = 0x7A,
937 	.pll[3] = 0,
938 	.pll[4] = 0,
939 	.pll[5] = 0,
940 	.pll[6] = 0,
941 	.pll[7] = 0,
942 	.pll[8] = 0x20,
943 	.pll[9] = 0x1,
944 	.pll[10] = 0,
945 	.pll[11] = 0,
946 	.pll[12] = 0x58,
947 	.pll[13] = 0,
948 	.pll[14] = 0,
949 	.pll[15] = 0xB,
950 	.pll[16] = 0x6,
951 	.pll[17] = 0xF,
952 	.pll[18] = 0x85,
953 	.pll[19] = 0x23,
954 };
955 
956 static const struct intel_c10pll_state mtl_c10_hdmi_148_5 = {
957 	.clock = 148500,
958 	.tx = 0x10,
959 	.cmn = 0x1,
960 	.pll[0] = 0xF4,
961 	.pll[1] = 0,
962 	.pll[2] = 0x7A,
963 	.pll[3] = 0,
964 	.pll[4] = 0,
965 	.pll[5] = 0,
966 	.pll[6] = 0,
967 	.pll[7] = 0,
968 	.pll[8] = 0x20,
969 	.pll[9] = 0x1,
970 	.pll[10] = 0,
971 	.pll[11] = 0,
972 	.pll[12] = 0x58,
973 	.pll[13] = 0,
974 	.pll[14] = 0,
975 	.pll[15] = 0xA,
976 	.pll[16] = 0x6,
977 	.pll[17] = 0xF,
978 	.pll[18] = 0x85,
979 	.pll[19] = 0x23,
980 };
981 
982 static const struct intel_c10pll_state mtl_c10_hdmi_594 = {
983 	.clock = 594000,
984 	.tx = 0x10,
985 	.cmn = 0x1,
986 	.pll[0] = 0xF4,
987 	.pll[1] = 0,
988 	.pll[2] = 0x7A,
989 	.pll[3] = 0,
990 	.pll[4] = 0,
991 	.pll[5] = 0,
992 	.pll[6] = 0,
993 	.pll[7] = 0,
994 	.pll[8] = 0x20,
995 	.pll[9] = 0x1,
996 	.pll[10] = 0,
997 	.pll[11] = 0,
998 	.pll[12] = 0x58,
999 	.pll[13] = 0,
1000 	.pll[14] = 0,
1001 	.pll[15] = 0x8,
1002 	.pll[16] = 0x6,
1003 	.pll[17] = 0xF,
1004 	.pll[18] = 0x85,
1005 	.pll[19] = 0x23,
1006 };
1007 
1008 /* Precomputed C10 HDMI PLL tables */
1009 static const struct intel_c10pll_state mtl_c10_hdmi_27027 = {
1010 	.clock = 27027,
1011 	.tx = 0x10,
1012 	.cmn = 0x1,
1013 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1014 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1015 	.pll[10] = 0xFF, .pll[11] = 0xCC, .pll[12] = 0x9C, .pll[13] = 0xCB, .pll[14] = 0xCC,
1016 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1017 };
1018 
1019 static const struct intel_c10pll_state mtl_c10_hdmi_28320 = {
1020 	.clock = 28320,
1021 	.tx = 0x10,
1022 	.cmn = 0x1,
1023 	.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xCC, .pll[3] = 0x00, .pll[4] = 0x00,
1024 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1025 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1026 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1027 };
1028 
1029 static const struct intel_c10pll_state mtl_c10_hdmi_30240 = {
1030 	.clock = 30240,
1031 	.tx = 0x10,
1032 	.cmn = 0x1,
1033 	.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xDC, .pll[3] = 0x00, .pll[4] = 0x00,
1034 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1035 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1036 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1037 };
1038 
1039 static const struct intel_c10pll_state mtl_c10_hdmi_31500 = {
1040 	.clock = 31500,
1041 	.tx = 0x10,
1042 	.cmn = 0x1,
1043 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x62, .pll[3] = 0x00, .pll[4] = 0x00,
1044 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1045 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xA0, .pll[13] = 0x00, .pll[14] = 0x00,
1046 	.pll[15] = 0x0C, .pll[16] = 0x09, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1047 };
1048 
1049 static const struct intel_c10pll_state mtl_c10_hdmi_36000 = {
1050 	.clock = 36000,
1051 	.tx = 0x10,
1052 	.cmn = 0x1,
1053 	.pll[0] = 0xC4, .pll[1] = 0x00, .pll[2] = 0x76, .pll[3] = 0x00, .pll[4] = 0x00,
1054 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1055 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1056 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1057 };
1058 
1059 static const struct intel_c10pll_state mtl_c10_hdmi_40000 = {
1060 	.clock = 40000,
1061 	.tx = 0x10,
1062 	.cmn = 0x1,
1063 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1064 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1065 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x55, .pll[13] = 0x55, .pll[14] = 0x55,
1066 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1067 };
1068 
1069 static const struct intel_c10pll_state mtl_c10_hdmi_49500 = {
1070 	.clock = 49500,
1071 	.tx = 0x10,
1072 	.cmn = 0x1,
1073 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1074 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1075 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1076 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1077 };
1078 
1079 static const struct intel_c10pll_state mtl_c10_hdmi_50000 = {
1080 	.clock = 50000,
1081 	.tx = 0x10,
1082 	.cmn = 0x1,
1083 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xB0, .pll[3] = 0x00, .pll[4] = 0x00,
1084 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1085 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x2A, .pll[13] = 0xA9, .pll[14] = 0xAA,
1086 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1087 };
1088 
1089 static const struct intel_c10pll_state mtl_c10_hdmi_57284 = {
1090 	.clock = 57284,
1091 	.tx = 0x10,
1092 	.cmn = 0x1,
1093 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xCE, .pll[3] = 0x00, .pll[4] = 0x00,
1094 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1095 	.pll[10] = 0xFF, .pll[11] = 0x77, .pll[12] = 0x57, .pll[13] = 0x77, .pll[14] = 0x77,
1096 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1097 };
1098 
1099 static const struct intel_c10pll_state mtl_c10_hdmi_58000 = {
1100 	.clock = 58000,
1101 	.tx = 0x10,
1102 	.cmn = 0x1,
1103 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1104 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1105 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xD5, .pll[13] = 0x55, .pll[14] = 0x55,
1106 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1107 };
1108 
1109 static const struct intel_c10pll_state mtl_c10_hdmi_65000 = {
1110 	.clock = 65000,
1111 	.tx = 0x10,
1112 	.cmn = 0x1,
1113 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x66, .pll[3] = 0x00, .pll[4] = 0x00,
1114 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1115 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xB5, .pll[13] = 0x55, .pll[14] = 0x55,
1116 	.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1117 };
1118 
1119 static const struct intel_c10pll_state mtl_c10_hdmi_71000 = {
1120 	.clock = 71000,
1121 	.tx = 0x10,
1122 	.cmn = 0x1,
1123 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x72, .pll[3] = 0x00, .pll[4] = 0x00,
1124 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1125 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1126 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1127 };
1128 
1129 static const struct intel_c10pll_state mtl_c10_hdmi_74176 = {
1130 	.clock = 74176,
1131 	.tx = 0x10,
1132 	.cmn = 0x1,
1133 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1134 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1135 	.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1136 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1137 };
1138 
1139 static const struct intel_c10pll_state mtl_c10_hdmi_75000 = {
1140 	.clock = 75000,
1141 	.tx = 0x10,
1142 	.cmn = 0x1,
1143 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7C, .pll[3] = 0x00, .pll[4] = 0x00,
1144 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1145 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1146 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1147 };
1148 
1149 static const struct intel_c10pll_state mtl_c10_hdmi_78750 = {
1150 	.clock = 78750,
1151 	.tx = 0x10,
1152 	.cmn = 0x1,
1153 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x84, .pll[3] = 0x00, .pll[4] = 0x00,
1154 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1155 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x08, .pll[13] = 0x00, .pll[14] = 0x00,
1156 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1157 };
1158 
1159 static const struct intel_c10pll_state mtl_c10_hdmi_85500 = {
1160 	.clock = 85500,
1161 	.tx = 0x10,
1162 	.cmn = 0x1,
1163 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x92, .pll[3] = 0x00, .pll[4] = 0x00,
1164 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1165 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x10, .pll[13] = 0x00, .pll[14] = 0x00,
1166 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1167 };
1168 
1169 static const struct intel_c10pll_state mtl_c10_hdmi_88750 = {
1170 	.clock = 88750,
1171 	.tx = 0x10,
1172 	.cmn = 0x1,
1173 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0x98, .pll[3] = 0x00, .pll[4] = 0x00,
1174 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1175 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x72, .pll[13] = 0xA9, .pll[14] = 0xAA,
1176 	.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1177 };
1178 
1179 static const struct intel_c10pll_state mtl_c10_hdmi_106500 = {
1180 	.clock = 106500,
1181 	.tx = 0x10,
1182 	.cmn = 0x1,
1183 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBC, .pll[3] = 0x00, .pll[4] = 0x00,
1184 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1185 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xF0, .pll[13] = 0x00, .pll[14] = 0x00,
1186 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1187 };
1188 
1189 static const struct intel_c10pll_state mtl_c10_hdmi_108000 = {
1190 	.clock = 108000,
1191 	.tx = 0x10,
1192 	.cmn = 0x1,
1193 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1194 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1195 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x80, .pll[13] = 0x00, .pll[14] = 0x00,
1196 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1197 };
1198 
1199 static const struct intel_c10pll_state mtl_c10_hdmi_115500 = {
1200 	.clock = 115500,
1201 	.tx = 0x10,
1202 	.cmn = 0x1,
1203 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1204 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1205 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1206 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1207 };
1208 
1209 static const struct intel_c10pll_state mtl_c10_hdmi_119000 = {
1210 	.clock = 119000,
1211 	.tx = 0x10,
1212 	.cmn = 0x1,
1213 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD6, .pll[3] = 0x00, .pll[4] = 0x00,
1214 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1215 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1216 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1217 };
1218 
1219 static const struct intel_c10pll_state mtl_c10_hdmi_135000 = {
1220 	.clock = 135000,
1221 	.tx = 0x10,
1222 	.cmn = 0x1,
1223 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6C, .pll[3] = 0x00, .pll[4] = 0x00,
1224 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1225 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1226 	.pll[15] = 0x0A, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1227 };
1228 
1229 static const struct intel_c10pll_state mtl_c10_hdmi_138500 = {
1230 	.clock = 138500,
1231 	.tx = 0x10,
1232 	.cmn = 0x1,
1233 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x70, .pll[3] = 0x00, .pll[4] = 0x00,
1234 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1235 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x22, .pll[13] = 0xA9, .pll[14] = 0xAA,
1236 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1237 };
1238 
1239 static const struct intel_c10pll_state mtl_c10_hdmi_147160 = {
1240 	.clock = 147160,
1241 	.tx = 0x10,
1242 	.cmn = 0x1,
1243 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x78, .pll[3] = 0x00, .pll[4] = 0x00,
1244 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1245 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xA5, .pll[13] = 0x55, .pll[14] = 0x55,
1246 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1247 };
1248 
1249 static const struct intel_c10pll_state mtl_c10_hdmi_148352 = {
1250 	.clock = 148352,
1251 	.tx = 0x10,
1252 	.cmn = 0x1,
1253 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1254 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1255 	.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1256 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1257 };
1258 
1259 static const struct intel_c10pll_state mtl_c10_hdmi_154000 = {
1260 	.clock = 154000,
1261 	.tx = 0x10,
1262 	.cmn = 0x1,
1263 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x80, .pll[3] = 0x00, .pll[4] = 0x00,
1264 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1265 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x35, .pll[13] = 0x55, .pll[14] = 0x55,
1266 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1267 };
1268 
1269 static const struct intel_c10pll_state mtl_c10_hdmi_162000 = {
1270 	.clock = 162000,
1271 	.tx = 0x10,
1272 	.cmn = 0x1,
1273 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x88, .pll[3] = 0x00, .pll[4] = 0x00,
1274 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1275 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x60, .pll[13] = 0x00, .pll[14] = 0x00,
1276 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1277 };
1278 
1279 static const struct intel_c10pll_state mtl_c10_hdmi_167000 = {
1280 	.clock = 167000,
1281 	.tx = 0x10,
1282 	.cmn = 0x1,
1283 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x8C, .pll[3] = 0x00, .pll[4] = 0x00,
1284 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1285 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0xFA, .pll[13] = 0xA9, .pll[14] = 0xAA,
1286 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1287 };
1288 
1289 static const struct intel_c10pll_state mtl_c10_hdmi_197802 = {
1290 	.clock = 197802,
1291 	.tx = 0x10,
1292 	.cmn = 0x1,
1293 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1294 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1295 	.pll[10] = 0xFF, .pll[11] = 0x99, .pll[12] = 0x05, .pll[13] = 0x98, .pll[14] = 0x99,
1296 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1297 };
1298 
1299 static const struct intel_c10pll_state mtl_c10_hdmi_198000 = {
1300 	.clock = 198000,
1301 	.tx = 0x10,
1302 	.cmn = 0x1,
1303 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1304 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1305 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1306 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1307 };
1308 
1309 static const struct intel_c10pll_state mtl_c10_hdmi_209800 = {
1310 	.clock = 209800,
1311 	.tx = 0x10,
1312 	.cmn = 0x1,
1313 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBA, .pll[3] = 0x00, .pll[4] = 0x00,
1314 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1315 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x45, .pll[13] = 0x55, .pll[14] = 0x55,
1316 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1317 };
1318 
1319 static const struct intel_c10pll_state mtl_c10_hdmi_241500 = {
1320 	.clock = 241500,
1321 	.tx = 0x10,
1322 	.cmn = 0x1,
1323 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xDA, .pll[3] = 0x00, .pll[4] = 0x00,
1324 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1325 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xC8, .pll[13] = 0x00, .pll[14] = 0x00,
1326 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1327 };
1328 
1329 static const struct intel_c10pll_state mtl_c10_hdmi_262750 = {
1330 	.clock = 262750,
1331 	.tx = 0x10,
1332 	.cmn = 0x1,
1333 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x68, .pll[3] = 0x00, .pll[4] = 0x00,
1334 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1335 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x6C, .pll[13] = 0xA9, .pll[14] = 0xAA,
1336 	.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1337 };
1338 
1339 static const struct intel_c10pll_state mtl_c10_hdmi_268500 = {
1340 	.clock = 268500,
1341 	.tx = 0x10,
1342 	.cmn = 0x1,
1343 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6A, .pll[3] = 0x00, .pll[4] = 0x00,
1344 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1345 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xEC, .pll[13] = 0x00, .pll[14] = 0x00,
1346 	.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1347 };
1348 
1349 static const struct intel_c10pll_state mtl_c10_hdmi_296703 = {
1350 	.clock = 296703,
1351 	.tx = 0x10,
1352 	.cmn = 0x1,
1353 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1354 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1355 	.pll[10] = 0xFF, .pll[11] = 0x33, .pll[12] = 0x44, .pll[13] = 0x33, .pll[14] = 0x33,
1356 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1357 };
1358 
1359 static const struct intel_c10pll_state mtl_c10_hdmi_297000 = {
1360 	.clock = 297000,
1361 	.tx = 0x10,
1362 	.cmn = 0x1,
1363 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1364 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1365 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x58, .pll[13] = 0x00, .pll[14] = 0x00,
1366 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1367 };
1368 
1369 static const struct intel_c10pll_state mtl_c10_hdmi_319750 = {
1370 	.clock = 319750,
1371 	.tx = 0x10,
1372 	.cmn = 0x1,
1373 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1374 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1375 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x44, .pll[13] = 0xA9, .pll[14] = 0xAA,
1376 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1377 };
1378 
1379 static const struct intel_c10pll_state mtl_c10_hdmi_497750 = {
1380 	.clock = 497750,
1381 	.tx = 0x10,
1382 	.cmn = 0x1,
1383 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xE2, .pll[3] = 0x00, .pll[4] = 0x00,
1384 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1385 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x9F, .pll[13] = 0x55, .pll[14] = 0x55,
1386 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1387 };
1388 
1389 static const struct intel_c10pll_state mtl_c10_hdmi_592000 = {
1390 	.clock = 592000,
1391 	.tx = 0x10,
1392 	.cmn = 0x1,
1393 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1394 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1395 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x15, .pll[13] = 0x55, .pll[14] = 0x55,
1396 	.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1397 };
1398 
1399 static const struct intel_c10pll_state mtl_c10_hdmi_593407 = {
1400 	.clock = 593407,
1401 	.tx = 0x10,
1402 	.cmn = 0x1,
1403 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1404 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1405 	.pll[10] = 0xFF, .pll[11] = 0x3B, .pll[12] = 0x44, .pll[13] = 0xBA, .pll[14] = 0xBB,
1406 	.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1407 };
1408 
1409 static const struct intel_c10pll_state * const mtl_c10_hdmi_tables[] = {
1410 	&mtl_c10_hdmi_25_2, /* Consolidated Table */
1411 	&mtl_c10_hdmi_27_0, /* Consolidated Table */
1412 	&mtl_c10_hdmi_27027,
1413 	&mtl_c10_hdmi_28320,
1414 	&mtl_c10_hdmi_30240,
1415 	&mtl_c10_hdmi_31500,
1416 	&mtl_c10_hdmi_36000,
1417 	&mtl_c10_hdmi_40000,
1418 	&mtl_c10_hdmi_49500,
1419 	&mtl_c10_hdmi_50000,
1420 	&mtl_c10_hdmi_57284,
1421 	&mtl_c10_hdmi_58000,
1422 	&mtl_c10_hdmi_65000,
1423 	&mtl_c10_hdmi_71000,
1424 	&mtl_c10_hdmi_74176,
1425 	&mtl_c10_hdmi_74_25, /* Consolidated Table */
1426 	&mtl_c10_hdmi_75000,
1427 	&mtl_c10_hdmi_78750,
1428 	&mtl_c10_hdmi_85500,
1429 	&mtl_c10_hdmi_88750,
1430 	&mtl_c10_hdmi_106500,
1431 	&mtl_c10_hdmi_108000,
1432 	&mtl_c10_hdmi_115500,
1433 	&mtl_c10_hdmi_119000,
1434 	&mtl_c10_hdmi_135000,
1435 	&mtl_c10_hdmi_138500,
1436 	&mtl_c10_hdmi_147160,
1437 	&mtl_c10_hdmi_148352,
1438 	&mtl_c10_hdmi_148_5, /* Consolidated Table */
1439 	&mtl_c10_hdmi_154000,
1440 	&mtl_c10_hdmi_162000,
1441 	&mtl_c10_hdmi_167000,
1442 	&mtl_c10_hdmi_197802,
1443 	&mtl_c10_hdmi_198000,
1444 	&mtl_c10_hdmi_209800,
1445 	&mtl_c10_hdmi_241500,
1446 	&mtl_c10_hdmi_262750,
1447 	&mtl_c10_hdmi_268500,
1448 	&mtl_c10_hdmi_296703,
1449 	&mtl_c10_hdmi_297000,
1450 	&mtl_c10_hdmi_319750,
1451 	&mtl_c10_hdmi_497750,
1452 	&mtl_c10_hdmi_592000,
1453 	&mtl_c10_hdmi_593407,
1454 	&mtl_c10_hdmi_594, /* Consolidated Table */
1455 	NULL,
1456 };
1457 
1458 static const struct intel_c20pll_state mtl_c20_hdmi_25_175 = {
1459 	.link_bit_rate = 25175,
1460 	.clock = 25175,
1461 	.tx = {  0xbe88, /* tx cfg0 */
1462 		  0x9800, /* tx cfg1 */
1463 		  0x0000, /* tx cfg2 */
1464 		},
1465 	.cmn = { 0x0500, /* cmn cfg0*/
1466 		  0x0005, /* cmn cfg1 */
1467 		  0x0000, /* cmn cfg2 */
1468 		  0x0000, /* cmn cfg3 */
1469 		},
1470 	.mpllb = { 0xa0d2,	/* mpllb cfg0 */
1471 		   0x7d80,	/* mpllb cfg1 */
1472 		   0x0906,	/* mpllb cfg2 */
1473 		   0xbe40,	/* mpllb cfg3 */
1474 		   0x0000,	/* mpllb cfg4 */
1475 		   0x0000,	/* mpllb cfg5 */
1476 		   0x0200,	/* mpllb cfg6 */
1477 		   0x0001,	/* mpllb cfg7 */
1478 		   0x0000,	/* mpllb cfg8 */
1479 		   0x0000,	/* mpllb cfg9 */
1480 		   0x0001,	/* mpllb cfg10 */
1481 		},
1482 };
1483 
1484 static const struct intel_c20pll_state mtl_c20_hdmi_27_0 = {
1485 	.link_bit_rate = 27000,
1486 	.clock = 27000,
1487 	.tx = {  0xbe88, /* tx cfg0 */
1488 		  0x9800, /* tx cfg1 */
1489 		  0x0000, /* tx cfg2 */
1490 		},
1491 	.cmn = { 0x0500, /* cmn cfg0*/
1492 		  0x0005, /* cmn cfg1 */
1493 		  0x0000, /* cmn cfg2 */
1494 		  0x0000, /* cmn cfg3 */
1495 		},
1496 	.mpllb = { 0xa0e0,	/* mpllb cfg0 */
1497 		   0x7d80,	/* mpllb cfg1 */
1498 		   0x0906,	/* mpllb cfg2 */
1499 		   0xbe40,	/* mpllb cfg3 */
1500 		   0x0000,	/* mpllb cfg4 */
1501 		   0x0000,	/* mpllb cfg5 */
1502 		   0x2200,	/* mpllb cfg6 */
1503 		   0x0001,	/* mpllb cfg7 */
1504 		   0x8000,	/* mpllb cfg8 */
1505 		   0x0000,	/* mpllb cfg9 */
1506 		   0x0001,	/* mpllb cfg10 */
1507 		},
1508 };
1509 
1510 static const struct intel_c20pll_state mtl_c20_hdmi_74_25 = {
1511 	.link_bit_rate = 74250,
1512 	.clock = 74250,
1513 	.tx = {  0xbe88, /* tx cfg0 */
1514 		  0x9800, /* tx cfg1 */
1515 		  0x0000, /* tx cfg2 */
1516 		},
1517 	.cmn = { 0x0500, /* cmn cfg0*/
1518 		  0x0005, /* cmn cfg1 */
1519 		  0x0000, /* cmn cfg2 */
1520 		  0x0000, /* cmn cfg3 */
1521 		},
1522 	.mpllb = { 0x609a,	/* mpllb cfg0 */
1523 		   0x7d40,	/* mpllb cfg1 */
1524 		   0xca06,	/* mpllb cfg2 */
1525 		   0xbe40,	/* mpllb cfg3 */
1526 		   0x0000,	/* mpllb cfg4 */
1527 		   0x0000,	/* mpllb cfg5 */
1528 		   0x2200,	/* mpllb cfg6 */
1529 		   0x0001,	/* mpllb cfg7 */
1530 		   0x5800,	/* mpllb cfg8 */
1531 		   0x0000,	/* mpllb cfg9 */
1532 		   0x0001,	/* mpllb cfg10 */
1533 		},
1534 };
1535 
1536 static const struct intel_c20pll_state mtl_c20_hdmi_148_5 = {
1537 	.link_bit_rate = 148500,
1538 	.clock = 148500,
1539 	.tx = {  0xbe88, /* tx cfg0 */
1540 		  0x9800, /* tx cfg1 */
1541 		  0x0000, /* tx cfg2 */
1542 		},
1543 	.cmn = { 0x0500, /* cmn cfg0*/
1544 		  0x0005, /* cmn cfg1 */
1545 		  0x0000, /* cmn cfg2 */
1546 		  0x0000, /* cmn cfg3 */
1547 		},
1548 	.mpllb = { 0x409a,	/* mpllb cfg0 */
1549 		   0x7d20,	/* mpllb cfg1 */
1550 		   0xca06,	/* mpllb cfg2 */
1551 		   0xbe40,	/* mpllb cfg3 */
1552 		   0x0000,	/* mpllb cfg4 */
1553 		   0x0000,	/* mpllb cfg5 */
1554 		   0x2200,	/* mpllb cfg6 */
1555 		   0x0001,	/* mpllb cfg7 */
1556 		   0x5800,	/* mpllb cfg8 */
1557 		   0x0000,	/* mpllb cfg9 */
1558 		   0x0001,	/* mpllb cfg10 */
1559 		},
1560 };
1561 
1562 static const struct intel_c20pll_state mtl_c20_hdmi_594 = {
1563 	.link_bit_rate = 594000,
1564 	.clock = 594000,
1565 	.tx = {  0xbe88, /* tx cfg0 */
1566 		  0x9800, /* tx cfg1 */
1567 		  0x0000, /* tx cfg2 */
1568 		},
1569 	.cmn = { 0x0500, /* cmn cfg0*/
1570 		  0x0005, /* cmn cfg1 */
1571 		  0x0000, /* cmn cfg2 */
1572 		  0x0000, /* cmn cfg3 */
1573 		},
1574 	.mpllb = { 0x009a,	/* mpllb cfg0 */
1575 		   0x7d08,	/* mpllb cfg1 */
1576 		   0xca06,	/* mpllb cfg2 */
1577 		   0xbe40,	/* mpllb cfg3 */
1578 		   0x0000,	/* mpllb cfg4 */
1579 		   0x0000,	/* mpllb cfg5 */
1580 		   0x2200,	/* mpllb cfg6 */
1581 		   0x0001,	/* mpllb cfg7 */
1582 		   0x5800,	/* mpllb cfg8 */
1583 		   0x0000,	/* mpllb cfg9 */
1584 		   0x0001,	/* mpllb cfg10 */
1585 		},
1586 };
1587 
1588 static const struct intel_c20pll_state mtl_c20_hdmi_300 = {
1589 	.link_bit_rate = 3000000,
1590 	.clock = 166670,
1591 	.tx = {  0xbe98, /* tx cfg0 */
1592 		  0x9800, /* tx cfg1 */
1593 		  0x0000, /* tx cfg2 */
1594 		},
1595 	.cmn = { 0x0500, /* cmn cfg0*/
1596 		  0x0005, /* cmn cfg1 */
1597 		  0x0000, /* cmn cfg2 */
1598 		  0x0000, /* cmn cfg3 */
1599 		},
1600 	.mpllb = { 0x209c,	/* mpllb cfg0 */
1601 		   0x7d10,	/* mpllb cfg1 */
1602 		   0xca06,	/* mpllb cfg2 */
1603 		   0xbe40,	/* mpllb cfg3 */
1604 		   0x0000,	/* mpllb cfg4 */
1605 		   0x0000,	/* mpllb cfg5 */
1606 		   0x2200,	/* mpllb cfg6 */
1607 		   0x0001,	/* mpllb cfg7 */
1608 		   0x2000,	/* mpllb cfg8 */
1609 		   0x0000,	/* mpllb cfg9 */
1610 		   0x0004,	/* mpllb cfg10 */
1611 		},
1612 };
1613 
1614 static const struct intel_c20pll_state mtl_c20_hdmi_600 = {
1615 	.link_bit_rate = 6000000,
1616 	.clock = 333330,
1617 	.tx = {  0xbe98, /* tx cfg0 */
1618 		  0x9800, /* tx cfg1 */
1619 		  0x0000, /* tx cfg2 */
1620 		},
1621 	.cmn = { 0x0500, /* cmn cfg0*/
1622 		  0x0005, /* cmn cfg1 */
1623 		  0x0000, /* cmn cfg2 */
1624 		  0x0000, /* cmn cfg3 */
1625 		},
1626 	.mpllb = { 0x009c,	/* mpllb cfg0 */
1627 		   0x7d08,	/* mpllb cfg1 */
1628 		   0xca06,	/* mpllb cfg2 */
1629 		   0xbe40,	/* mpllb cfg3 */
1630 		   0x0000,	/* mpllb cfg4 */
1631 		   0x0000,	/* mpllb cfg5 */
1632 		   0x2200,	/* mpllb cfg6 */
1633 		   0x0001,	/* mpllb cfg7 */
1634 		   0x2000,	/* mpllb cfg8 */
1635 		   0x0000,	/* mpllb cfg9 */
1636 		   0x0004,	/* mpllb cfg10 */
1637 		},
1638 };
1639 
1640 static const struct intel_c20pll_state mtl_c20_hdmi_800 = {
1641 	.link_bit_rate = 8000000,
1642 	.clock = 444440,
1643 	.tx = {  0xbe98, /* tx cfg0 */
1644 		  0x9800, /* tx cfg1 */
1645 		  0x0000, /* tx cfg2 */
1646 		},
1647 	.cmn = { 0x0500, /* cmn cfg0*/
1648 		  0x0005, /* cmn cfg1 */
1649 		  0x0000, /* cmn cfg2 */
1650 		  0x0000, /* cmn cfg3 */
1651 		},
1652 	.mpllb = { 0x00d0,	/* mpllb cfg0 */
1653 		   0x7d08,	/* mpllb cfg1 */
1654 		   0x4a06,	/* mpllb cfg2 */
1655 		   0xbe40,	/* mpllb cfg3 */
1656 		   0x0000,	/* mpllb cfg4 */
1657 		   0x0000,	/* mpllb cfg5 */
1658 		   0x2200,	/* mpllb cfg6 */
1659 		   0x0003,	/* mpllb cfg7 */
1660 		   0x2aaa,	/* mpllb cfg8 */
1661 		   0x0002,	/* mpllb cfg9 */
1662 		   0x0004,	/* mpllb cfg10 */
1663 		},
1664 };
1665 
1666 static const struct intel_c20pll_state mtl_c20_hdmi_1000 = {
1667 	.link_bit_rate = 10000000,
1668 	.clock = 555560,
1669 	.tx = {  0xbe98, /* tx cfg0 */
1670 		  0x9800, /* tx cfg1 */
1671 		  0x0000, /* tx cfg2 */
1672 		},
1673 	.cmn = { 0x0500, /* cmn cfg0*/
1674 		  0x0005, /* cmn cfg1 */
1675 		  0x0000, /* cmn cfg2 */
1676 		  0x0000, /* cmn cfg3 */
1677 		},
1678 	.mpllb = { 0x1104,	/* mpllb cfg0 */
1679 		   0x7d08,	/* mpllb cfg1 */
1680 		   0x0a06,	/* mpllb cfg2 */
1681 		   0xbe40,	/* mpllb cfg3 */
1682 		   0x0000,	/* mpllb cfg4 */
1683 		   0x0000,	/* mpllb cfg5 */
1684 		   0x2200,	/* mpllb cfg6 */
1685 		   0x0003,	/* mpllb cfg7 */
1686 		   0x3555,	/* mpllb cfg8 */
1687 		   0x0001,	/* mpllb cfg9 */
1688 		   0x0004,	/* mpllb cfg10 */
1689 		},
1690 };
1691 
1692 static const struct intel_c20pll_state mtl_c20_hdmi_1200 = {
1693 	.link_bit_rate = 12000000,
1694 	.clock = 666670,
1695 	.tx = {  0xbe98, /* tx cfg0 */
1696 		  0x9800, /* tx cfg1 */
1697 		  0x0000, /* tx cfg2 */
1698 		},
1699 	.cmn = { 0x0500, /* cmn cfg0*/
1700 		  0x0005, /* cmn cfg1 */
1701 		  0x0000, /* cmn cfg2 */
1702 		  0x0000, /* cmn cfg3 */
1703 		},
1704 	.mpllb = { 0x0138,	/* mpllb cfg0 */
1705 		   0x7d08,	/* mpllb cfg1 */
1706 		   0x5486,	/* mpllb cfg2 */
1707 		   0xfe40,	/* mpllb cfg3 */
1708 		   0x0000,	/* mpllb cfg4 */
1709 		   0x0000,	/* mpllb cfg5 */
1710 		   0x2200,	/* mpllb cfg6 */
1711 		   0x0001,	/* mpllb cfg7 */
1712 		   0x4000,	/* mpllb cfg8 */
1713 		   0x0000,	/* mpllb cfg9 */
1714 		   0x0004,	/* mpllb cfg10 */
1715 		},
1716 };
1717 
1718 static const struct intel_c20pll_state * const mtl_c20_hdmi_tables[] = {
1719 	&mtl_c20_hdmi_25_175,
1720 	&mtl_c20_hdmi_27_0,
1721 	&mtl_c20_hdmi_74_25,
1722 	&mtl_c20_hdmi_148_5,
1723 	&mtl_c20_hdmi_594,
1724 	&mtl_c20_hdmi_300,
1725 	&mtl_c20_hdmi_600,
1726 	&mtl_c20_hdmi_800,
1727 	&mtl_c20_hdmi_1000,
1728 	&mtl_c20_hdmi_1200,
1729 	NULL,
1730 };
1731 
1732 static int intel_c10_phy_check_hdmi_link_rate(int clock)
1733 {
1734 	const struct intel_c10pll_state * const *tables = mtl_c10_hdmi_tables;
1735 	int i;
1736 
1737 	for (i = 0; tables[i]; i++) {
1738 		if (clock == tables[i]->clock)
1739 			return MODE_OK;
1740 	}
1741 
1742 	return MODE_CLOCK_RANGE;
1743 }
1744 
1745 static const struct intel_c10pll_state * const *
1746 intel_c10pll_tables_get(struct intel_crtc_state *crtc_state,
1747 			struct intel_encoder *encoder)
1748 {
1749 	if (intel_crtc_has_dp_encoder(crtc_state)) {
1750 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
1751 			return mtl_c10_edp_tables;
1752 		else
1753 			return mtl_c10_dp_tables;
1754 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
1755 		return mtl_c10_hdmi_tables;
1756 	}
1757 
1758 	MISSING_CASE(encoder->type);
1759 	return NULL;
1760 }
1761 
1762 static void intel_c10pll_update_pll(struct intel_crtc_state *crtc_state,
1763 				    struct intel_encoder *encoder)
1764 {
1765 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
1766 	struct intel_cx0pll_state *pll_state = &crtc_state->cx0pll_state;
1767 	int i;
1768 
1769 	if (intel_crtc_has_dp_encoder(crtc_state)) {
1770 		if (intel_panel_use_ssc(i915)) {
1771 			struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1772 
1773 			pll_state->ssc_enabled =
1774 				(intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_MAX_DOWNSPREAD_0_5);
1775 		}
1776 	}
1777 
1778 	if (pll_state->ssc_enabled)
1779 		return;
1780 
1781 	drm_WARN_ON(&i915->drm, ARRAY_SIZE(pll_state->c10.pll) < 9);
1782 	for (i = 4; i < 9; i++)
1783 		pll_state->c10.pll[i] = 0;
1784 }
1785 
1786 static int intel_c10pll_calc_state(struct intel_crtc_state *crtc_state,
1787 				   struct intel_encoder *encoder)
1788 {
1789 	const struct intel_c10pll_state * const *tables;
1790 	int i;
1791 
1792 	tables = intel_c10pll_tables_get(crtc_state, encoder);
1793 	if (!tables)
1794 		return -EINVAL;
1795 
1796 	for (i = 0; tables[i]; i++) {
1797 		if (crtc_state->port_clock == tables[i]->clock) {
1798 			crtc_state->cx0pll_state.c10 = *tables[i];
1799 			intel_c10pll_update_pll(crtc_state, encoder);
1800 
1801 			return 0;
1802 		}
1803 	}
1804 
1805 	return -EINVAL;
1806 }
1807 
1808 void intel_c10pll_readout_hw_state(struct intel_encoder *encoder,
1809 				   struct intel_c10pll_state *pll_state)
1810 {
1811 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
1812 	u8 lane = INTEL_CX0_LANE0;
1813 	intel_wakeref_t wakeref;
1814 	int i;
1815 
1816 	wakeref = intel_cx0_phy_transaction_begin(encoder);
1817 
1818 	/*
1819 	 * According to C10 VDR Register programming Sequence we need
1820 	 * to do this to read PHY internal registers from MsgBus.
1821 	 */
1822 	intel_cx0_rmw(i915, encoder->port, lane, PHY_C10_VDR_CONTROL(1),
1823 		      0, C10_VDR_CTRL_MSGBUS_ACCESS,
1824 		      MB_WRITE_COMMITTED);
1825 
1826 	for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
1827 		pll_state->pll[i] = intel_cx0_read(i915, encoder->port, lane,
1828 						   PHY_C10_VDR_PLL(i));
1829 
1830 	pll_state->cmn = intel_cx0_read(i915, encoder->port, lane, PHY_C10_VDR_CMN(0));
1831 	pll_state->tx = intel_cx0_read(i915, encoder->port, lane, PHY_C10_VDR_TX(0));
1832 
1833 	intel_cx0_phy_transaction_end(encoder, wakeref);
1834 }
1835 
1836 static void intel_c10_pll_program(struct drm_i915_private *i915,
1837 				  const struct intel_crtc_state *crtc_state,
1838 				  struct intel_encoder *encoder)
1839 {
1840 	const struct intel_c10pll_state *pll_state = &crtc_state->cx0pll_state.c10;
1841 	int i;
1842 
1843 	intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
1844 		      0, C10_VDR_CTRL_MSGBUS_ACCESS,
1845 		      MB_WRITE_COMMITTED);
1846 
1847 	/* Custom width needs to be programmed to 0 for both the phy lanes */
1848 	intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CUSTOM_WIDTH,
1849 		      C10_VDR_CUSTOM_WIDTH_MASK, C10_VDR_CUSTOM_WIDTH_8_10,
1850 		      MB_WRITE_COMMITTED);
1851 	intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
1852 		      0, C10_VDR_CTRL_UPDATE_CFG,
1853 		      MB_WRITE_COMMITTED);
1854 
1855 	/* Program the pll values only for the master lane */
1856 	for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
1857 		intel_cx0_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C10_VDR_PLL(i),
1858 				pll_state->pll[i],
1859 				(i % 4) ? MB_WRITE_UNCOMMITTED : MB_WRITE_COMMITTED);
1860 
1861 	intel_cx0_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C10_VDR_CMN(0), pll_state->cmn, MB_WRITE_COMMITTED);
1862 	intel_cx0_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C10_VDR_TX(0), pll_state->tx, MB_WRITE_COMMITTED);
1863 
1864 	intel_cx0_rmw(i915, encoder->port, INTEL_CX0_LANE0, PHY_C10_VDR_CONTROL(1),
1865 		      0, C10_VDR_CTRL_MASTER_LANE | C10_VDR_CTRL_UPDATE_CFG,
1866 		      MB_WRITE_COMMITTED);
1867 }
1868 
1869 void intel_c10pll_dump_hw_state(struct drm_i915_private *i915,
1870 				const struct intel_c10pll_state *hw_state)
1871 {
1872 	bool fracen;
1873 	int i;
1874 	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
1875 	unsigned int multiplier, tx_clk_div;
1876 
1877 	fracen = hw_state->pll[0] & C10_PLL0_FRACEN;
1878 	drm_dbg_kms(&i915->drm, "c10pll_hw_state: fracen: %s, ",
1879 		    str_yes_no(fracen));
1880 
1881 	if (fracen) {
1882 		frac_quot = hw_state->pll[12] << 8 | hw_state->pll[11];
1883 		frac_rem =  hw_state->pll[14] << 8 | hw_state->pll[13];
1884 		frac_den =  hw_state->pll[10] << 8 | hw_state->pll[9];
1885 		drm_dbg_kms(&i915->drm, "quot: %u, rem: %u, den: %u,\n",
1886 			    frac_quot, frac_rem, frac_den);
1887 	}
1888 
1889 	multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, hw_state->pll[3]) << 8 |
1890 		      hw_state->pll[2]) / 2 + 16;
1891 	tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, hw_state->pll[15]);
1892 	drm_dbg_kms(&i915->drm,
1893 		    "multiplier: %u, tx_clk_div: %u.\n", multiplier, tx_clk_div);
1894 
1895 	drm_dbg_kms(&i915->drm, "c10pll_rawhw_state:");
1896 	drm_dbg_kms(&i915->drm, "tx: 0x%x, cmn: 0x%x\n", hw_state->tx, hw_state->cmn);
1897 
1898 	BUILD_BUG_ON(ARRAY_SIZE(hw_state->pll) % 4);
1899 	for (i = 0; i < ARRAY_SIZE(hw_state->pll); i = i + 4)
1900 		drm_dbg_kms(&i915->drm, "pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x\n",
1901 			    i, hw_state->pll[i], i + 1, hw_state->pll[i + 1],
1902 			    i + 2, hw_state->pll[i + 2], i + 3, hw_state->pll[i + 3]);
1903 }
1904 
1905 static int intel_c20_compute_hdmi_tmds_pll(u64 pixel_clock, struct intel_c20pll_state *pll_state)
1906 {
1907 	u64 datarate;
1908 	u64 mpll_tx_clk_div;
1909 	u64 vco_freq_shift;
1910 	u64 vco_freq;
1911 	u64 multiplier;
1912 	u64 mpll_multiplier;
1913 	u64 mpll_fracn_quot;
1914 	u64 mpll_fracn_rem;
1915 	u8  mpllb_ana_freq_vco;
1916 	u8  mpll_div_multiplier;
1917 
1918 	if (pixel_clock < 25175 || pixel_clock > 600000)
1919 		return -EINVAL;
1920 
1921 	datarate = ((u64)pixel_clock * 1000) * 10;
1922 	mpll_tx_clk_div = ilog2(div64_u64((u64)CLOCK_9999MHZ, (u64)datarate));
1923 	vco_freq_shift = ilog2(div64_u64((u64)CLOCK_4999MHZ * (u64)256, (u64)datarate));
1924 	vco_freq = (datarate << vco_freq_shift) >> 8;
1925 	multiplier = div64_u64((vco_freq << 28), (REFCLK_38_4_MHZ >> 4));
1926 	mpll_multiplier = 2 * (multiplier >> 32);
1927 
1928 	mpll_fracn_quot = (multiplier >> 16) & 0xFFFF;
1929 	mpll_fracn_rem  = multiplier & 0xFFFF;
1930 
1931 	mpll_div_multiplier = min_t(u8, div64_u64((vco_freq * 16 + (datarate >> 1)),
1932 						  datarate), 255);
1933 
1934 	if (vco_freq <= DATARATE_3000000000)
1935 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_3;
1936 	else if (vco_freq <= DATARATE_3500000000)
1937 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_2;
1938 	else if (vco_freq <= DATARATE_4000000000)
1939 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_1;
1940 	else
1941 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_0;
1942 
1943 	pll_state->link_bit_rate	= pixel_clock;
1944 	pll_state->clock	= pixel_clock;
1945 	pll_state->tx[0]	= 0xbe88;
1946 	pll_state->tx[1]	= 0x9800;
1947 	pll_state->tx[2]	= 0x0000;
1948 	pll_state->cmn[0]	= 0x0500;
1949 	pll_state->cmn[1]	= 0x0005;
1950 	pll_state->cmn[2]	= 0x0000;
1951 	pll_state->cmn[3]	= 0x0000;
1952 	pll_state->mpllb[0]	= (MPLL_TX_CLK_DIV(mpll_tx_clk_div) |
1953 				   MPLL_MULTIPLIER(mpll_multiplier));
1954 	pll_state->mpllb[1]	= (CAL_DAC_CODE(CAL_DAC_CODE_31) |
1955 				   WORD_CLK_DIV |
1956 				   MPLL_DIV_MULTIPLIER(mpll_div_multiplier));
1957 	pll_state->mpllb[2]	= (MPLLB_ANA_FREQ_VCO(mpllb_ana_freq_vco) |
1958 				   CP_PROP(CP_PROP_20) |
1959 				   CP_INT(CP_INT_6));
1960 	pll_state->mpllb[3]	= (V2I(V2I_2) |
1961 				   CP_PROP_GS(CP_PROP_GS_30) |
1962 				   CP_INT_GS(CP_INT_GS_28));
1963 	pll_state->mpllb[4]	= 0x0000;
1964 	pll_state->mpllb[5]	= 0x0000;
1965 	pll_state->mpllb[6]	= (C20_MPLLB_FRACEN | SSC_UP_SPREAD);
1966 	pll_state->mpllb[7]	= MPLL_FRACN_DEN;
1967 	pll_state->mpllb[8]	= mpll_fracn_quot;
1968 	pll_state->mpllb[9]	= mpll_fracn_rem;
1969 	pll_state->mpllb[10]	= HDMI_DIV(HDMI_DIV_1);
1970 
1971 	return 0;
1972 }
1973 
1974 static int intel_c20_phy_check_hdmi_link_rate(int clock)
1975 {
1976 	const struct intel_c20pll_state * const *tables = mtl_c20_hdmi_tables;
1977 	int i;
1978 
1979 	for (i = 0; tables[i]; i++) {
1980 		if (clock == tables[i]->link_bit_rate)
1981 			return MODE_OK;
1982 	}
1983 
1984 	if (clock >= 25175 && clock <= 594000)
1985 		return MODE_OK;
1986 
1987 	return MODE_CLOCK_RANGE;
1988 }
1989 
1990 int intel_cx0_phy_check_hdmi_link_rate(struct intel_hdmi *hdmi, int clock)
1991 {
1992 	struct intel_digital_port *dig_port = hdmi_to_dig_port(hdmi);
1993 	struct drm_i915_private *i915 = intel_hdmi_to_i915(hdmi);
1994 	enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
1995 
1996 	if (intel_is_c10phy(i915, phy))
1997 		return intel_c10_phy_check_hdmi_link_rate(clock);
1998 	return intel_c20_phy_check_hdmi_link_rate(clock);
1999 }
2000 
2001 static const struct intel_c20pll_state * const *
2002 intel_c20_pll_tables_get(struct intel_crtc_state *crtc_state,
2003 			 struct intel_encoder *encoder)
2004 {
2005 	if (intel_crtc_has_dp_encoder(crtc_state))
2006 		return mtl_c20_dp_tables;
2007 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
2008 		return mtl_c20_hdmi_tables;
2009 
2010 	MISSING_CASE(encoder->type);
2011 	return NULL;
2012 }
2013 
2014 static int intel_c20pll_calc_state(struct intel_crtc_state *crtc_state,
2015 				   struct intel_encoder *encoder)
2016 {
2017 	const struct intel_c20pll_state * const *tables;
2018 	int i;
2019 
2020 	/* try computed C20 HDMI tables before using consolidated tables */
2021 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2022 		if (intel_c20_compute_hdmi_tmds_pll(crtc_state->port_clock,
2023 						    &crtc_state->cx0pll_state.c20) == 0)
2024 			return 0;
2025 	}
2026 
2027 	tables = intel_c20_pll_tables_get(crtc_state, encoder);
2028 	if (!tables)
2029 		return -EINVAL;
2030 
2031 	for (i = 0; tables[i]; i++) {
2032 		if (crtc_state->port_clock == tables[i]->link_bit_rate) {
2033 			crtc_state->cx0pll_state.c20 = *tables[i];
2034 			return 0;
2035 		}
2036 	}
2037 
2038 	return -EINVAL;
2039 }
2040 
2041 int intel_cx0pll_calc_state(struct intel_crtc_state *crtc_state,
2042 			    struct intel_encoder *encoder)
2043 {
2044 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2045 	enum phy phy = intel_port_to_phy(i915, encoder->port);
2046 
2047 	if (intel_is_c10phy(i915, phy))
2048 		return intel_c10pll_calc_state(crtc_state, encoder);
2049 	return intel_c20pll_calc_state(crtc_state, encoder);
2050 }
2051 
2052 static bool intel_c20_use_mplla(u32 clock)
2053 {
2054 	/* 10G and 20G rates use MPLLA */
2055 	if (clock == 312500 || clock == 625000)
2056 		return true;
2057 
2058 	return false;
2059 }
2060 
2061 void intel_c20pll_readout_hw_state(struct intel_encoder *encoder,
2062 				   struct intel_c20pll_state *pll_state)
2063 {
2064 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2065 	bool cntx;
2066 	intel_wakeref_t wakeref;
2067 	int i;
2068 
2069 	wakeref = intel_cx0_phy_transaction_begin(encoder);
2070 
2071 	/* 1. Read current context selection */
2072 	cntx = intel_cx0_read(i915, encoder->port, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & PHY_C20_CONTEXT_TOGGLE;
2073 
2074 	/* Read Tx configuration */
2075 	for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2076 		if (cntx)
2077 			pll_state->tx[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
2078 							       PHY_C20_B_TX_CNTX_CFG(i));
2079 		else
2080 			pll_state->tx[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
2081 							       PHY_C20_A_TX_CNTX_CFG(i));
2082 	}
2083 
2084 	/* Read common configuration */
2085 	for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2086 		if (cntx)
2087 			pll_state->cmn[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
2088 								PHY_C20_B_CMN_CNTX_CFG(i));
2089 		else
2090 			pll_state->cmn[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
2091 								PHY_C20_A_CMN_CNTX_CFG(i));
2092 	}
2093 
2094 	if (pll_state->tx[0] & C20_PHY_USE_MPLLB) {
2095 		/* MPLLB configuration */
2096 		for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2097 			if (cntx)
2098 				pll_state->mpllb[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
2099 									  PHY_C20_B_MPLLB_CNTX_CFG(i));
2100 			else
2101 				pll_state->mpllb[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
2102 									  PHY_C20_A_MPLLB_CNTX_CFG(i));
2103 		}
2104 	} else {
2105 		/* MPLLA configuration */
2106 		for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2107 			if (cntx)
2108 				pll_state->mplla[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
2109 									  PHY_C20_B_MPLLA_CNTX_CFG(i));
2110 			else
2111 				pll_state->mplla[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
2112 									  PHY_C20_A_MPLLA_CNTX_CFG(i));
2113 		}
2114 	}
2115 
2116 	intel_cx0_phy_transaction_end(encoder, wakeref);
2117 }
2118 
2119 void intel_c20pll_dump_hw_state(struct drm_i915_private *i915,
2120 				const struct intel_c20pll_state *hw_state)
2121 {
2122 	int i;
2123 
2124 	drm_dbg_kms(&i915->drm, "c20pll_hw_state:\n");
2125 	drm_dbg_kms(&i915->drm, "tx[0] = 0x%.4x, tx[1] = 0x%.4x, tx[2] = 0x%.4x\n",
2126 		    hw_state->tx[0], hw_state->tx[1], hw_state->tx[2]);
2127 	drm_dbg_kms(&i915->drm, "cmn[0] = 0x%.4x, cmn[1] = 0x%.4x, cmn[2] = 0x%.4x, cmn[3] = 0x%.4x\n",
2128 		    hw_state->cmn[0], hw_state->cmn[1], hw_state->cmn[2], hw_state->cmn[3]);
2129 
2130 	if (intel_c20_use_mplla(hw_state->clock)) {
2131 		for (i = 0; i < ARRAY_SIZE(hw_state->mplla); i++)
2132 			drm_dbg_kms(&i915->drm, "mplla[%d] = 0x%.4x\n", i, hw_state->mplla[i]);
2133 	} else {
2134 		for (i = 0; i < ARRAY_SIZE(hw_state->mpllb); i++)
2135 			drm_dbg_kms(&i915->drm, "mpllb[%d] = 0x%.4x\n", i, hw_state->mpllb[i]);
2136 	}
2137 }
2138 
2139 static u8 intel_c20_get_dp_rate(u32 clock)
2140 {
2141 	switch (clock) {
2142 	case 162000: /* 1.62 Gbps DP1.4 */
2143 		return 0;
2144 	case 270000: /* 2.7 Gbps DP1.4 */
2145 		return 1;
2146 	case 540000: /* 5.4 Gbps DP 1.4 */
2147 		return 2;
2148 	case 810000: /* 8.1 Gbps DP1.4 */
2149 		return 3;
2150 	case 216000: /* 2.16 Gbps eDP */
2151 		return 4;
2152 	case 243000: /* 2.43 Gbps eDP */
2153 		return 5;
2154 	case 324000: /* 3.24 Gbps eDP */
2155 		return 6;
2156 	case 432000: /* 4.32 Gbps eDP */
2157 		return 7;
2158 	case 312500: /* 10 Gbps DP2.0 */
2159 		return 8;
2160 	case 421875: /* 13.5 Gbps DP2.0 */
2161 		return 9;
2162 	case 625000: /* 20 Gbps DP2.0*/
2163 		return 10;
2164 	case 648000: /* 6.48 Gbps eDP*/
2165 		return 11;
2166 	case 675000: /* 6.75 Gbps eDP*/
2167 		return 12;
2168 	default:
2169 		MISSING_CASE(clock);
2170 		return 0;
2171 	}
2172 }
2173 
2174 static u8 intel_c20_get_hdmi_rate(u32 clock)
2175 {
2176 	if (clock >= 25175 && clock <= 600000)
2177 		return 0;
2178 
2179 	switch (clock) {
2180 	case 166670: /* 3 Gbps */
2181 	case 333330: /* 6 Gbps */
2182 	case 666670: /* 12 Gbps */
2183 		return 1;
2184 	case 444440: /* 8 Gbps */
2185 		return 2;
2186 	case 555560: /* 10 Gbps */
2187 		return 3;
2188 	default:
2189 		MISSING_CASE(clock);
2190 		return 0;
2191 	}
2192 }
2193 
2194 static bool is_dp2(u32 clock)
2195 {
2196 	/* DP2.0 clock rates */
2197 	if (clock == 312500 || clock == 421875 || clock  == 625000)
2198 		return true;
2199 
2200 	return false;
2201 }
2202 
2203 static bool is_hdmi_frl(u32 clock)
2204 {
2205 	switch (clock) {
2206 	case 166670: /* 3 Gbps */
2207 	case 333330: /* 6 Gbps */
2208 	case 444440: /* 8 Gbps */
2209 	case 555560: /* 10 Gbps */
2210 	case 666670: /* 12 Gbps */
2211 		return true;
2212 	default:
2213 		return false;
2214 	}
2215 }
2216 
2217 static bool intel_c20_protocol_switch_valid(struct intel_encoder *encoder)
2218 {
2219 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2220 
2221 	/* banks should not be cleared for DPALT/USB4/TBT modes */
2222 	/* TODO: optimize re-calibration in legacy mode */
2223 	return intel_tc_port_in_legacy_mode(intel_dig_port);
2224 }
2225 
2226 static int intel_get_c20_custom_width(u32 clock, bool dp)
2227 {
2228 	if (dp && is_dp2(clock))
2229 		return 2;
2230 	else if (is_hdmi_frl(clock))
2231 		return 1;
2232 	else
2233 		return 0;
2234 }
2235 
2236 static void intel_c20_pll_program(struct drm_i915_private *i915,
2237 				  const struct intel_crtc_state *crtc_state,
2238 				  struct intel_encoder *encoder)
2239 {
2240 	const struct intel_c20pll_state *pll_state = &crtc_state->cx0pll_state.c20;
2241 	bool dp = false;
2242 	int lane = crtc_state->lane_count > 2 ? INTEL_CX0_BOTH_LANES : INTEL_CX0_LANE0;
2243 	bool cntx;
2244 	int i;
2245 
2246 	if (intel_crtc_has_dp_encoder(crtc_state))
2247 		dp = true;
2248 
2249 	/* 1. Read current context selection */
2250 	cntx = intel_cx0_read(i915, encoder->port, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & BIT(0);
2251 
2252 	/*
2253 	 * 2. If there is a protocol switch from HDMI to DP or vice versa, clear
2254 	 * the lane #0 MPLLB CAL_DONE_BANK DP2.0 10G and 20G rates enable MPLLA.
2255 	 * Protocol switch is only applicable for MPLLA
2256 	 */
2257 	if (intel_c20_protocol_switch_valid(encoder)) {
2258 		for (i = 0; i < 4; i++)
2259 			intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0, RAWLANEAONX_DIG_TX_MPLLB_CAL_DONE_BANK(i), 0);
2260 		usleep_range(4000, 4100);
2261 	}
2262 
2263 	/* 3. Write SRAM configuration context. If A in use, write configuration to B context */
2264 	/* 3.1 Tx configuration */
2265 	for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2266 		if (cntx)
2267 			intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C20_A_TX_CNTX_CFG(i), pll_state->tx[i]);
2268 		else
2269 			intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C20_B_TX_CNTX_CFG(i), pll_state->tx[i]);
2270 	}
2271 
2272 	/* 3.2 common configuration */
2273 	for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2274 		if (cntx)
2275 			intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C20_A_CMN_CNTX_CFG(i), pll_state->cmn[i]);
2276 		else
2277 			intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C20_B_CMN_CNTX_CFG(i), pll_state->cmn[i]);
2278 	}
2279 
2280 	/* 3.3 mpllb or mplla configuration */
2281 	if (intel_c20_use_mplla(pll_state->clock)) {
2282 		for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2283 			if (cntx)
2284 				intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0,
2285 						     PHY_C20_A_MPLLA_CNTX_CFG(i),
2286 						     pll_state->mplla[i]);
2287 			else
2288 				intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0,
2289 						     PHY_C20_B_MPLLA_CNTX_CFG(i),
2290 						     pll_state->mplla[i]);
2291 		}
2292 	} else {
2293 		for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2294 			if (cntx)
2295 				intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0,
2296 						     PHY_C20_A_MPLLB_CNTX_CFG(i),
2297 						     pll_state->mpllb[i]);
2298 			else
2299 				intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0,
2300 						     PHY_C20_B_MPLLB_CNTX_CFG(i),
2301 						     pll_state->mpllb[i]);
2302 		}
2303 	}
2304 
2305 	/* 4. Program custom width to match the link protocol */
2306 	intel_cx0_rmw(i915, encoder->port, lane, PHY_C20_VDR_CUSTOM_WIDTH,
2307 		      PHY_C20_CUSTOM_WIDTH_MASK,
2308 		      PHY_C20_CUSTOM_WIDTH(intel_get_c20_custom_width(pll_state->clock, dp)),
2309 		      MB_WRITE_COMMITTED);
2310 
2311 	/* 5. For DP or 6. For HDMI */
2312 	if (dp) {
2313 		intel_cx0_rmw(i915, encoder->port, lane, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2314 			      BIT(6) | PHY_C20_CUSTOM_SERDES_MASK,
2315 			      BIT(6) | PHY_C20_CUSTOM_SERDES(intel_c20_get_dp_rate(pll_state->clock)),
2316 			      MB_WRITE_COMMITTED);
2317 	} else {
2318 		intel_cx0_rmw(i915, encoder->port, lane, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2319 			      BIT(7) | PHY_C20_CUSTOM_SERDES_MASK,
2320 			      is_hdmi_frl(pll_state->clock) ? BIT(7) : 0,
2321 			      MB_WRITE_COMMITTED);
2322 
2323 		intel_cx0_write(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C20_VDR_HDMI_RATE,
2324 				intel_c20_get_hdmi_rate(pll_state->clock),
2325 				MB_WRITE_COMMITTED);
2326 	}
2327 
2328 	/*
2329 	 * 7. Write Vendor specific registers to toggle context setting to load
2330 	 * the updated programming toggle context bit
2331 	 */
2332 	intel_cx0_rmw(i915, encoder->port, lane, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2333 		      BIT(0), cntx ? 0 : 1, MB_WRITE_COMMITTED);
2334 }
2335 
2336 int intel_c10pll_calc_port_clock(struct intel_encoder *encoder,
2337 				 const struct intel_c10pll_state *pll_state)
2338 {
2339 	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
2340 	unsigned int multiplier, tx_clk_div, hdmi_div, refclk = 38400;
2341 	int tmpclk = 0;
2342 
2343 	if (pll_state->pll[0] & C10_PLL0_FRACEN) {
2344 		frac_quot = pll_state->pll[12] << 8 | pll_state->pll[11];
2345 		frac_rem =  pll_state->pll[14] << 8 | pll_state->pll[13];
2346 		frac_den =  pll_state->pll[10] << 8 | pll_state->pll[9];
2347 	}
2348 
2349 	multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, pll_state->pll[3]) << 8 |
2350 		      pll_state->pll[2]) / 2 + 16;
2351 
2352 	tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, pll_state->pll[15]);
2353 	hdmi_div = REG_FIELD_GET8(C10_PLL15_HDMIDIV_MASK, pll_state->pll[15]);
2354 
2355 	tmpclk = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, (multiplier << 16) + frac_quot) +
2356 				     DIV_ROUND_CLOSEST(refclk * frac_rem, frac_den),
2357 				     10 << (tx_clk_div + 16));
2358 	tmpclk *= (hdmi_div ? 2 : 1);
2359 
2360 	return tmpclk;
2361 }
2362 
2363 int intel_c20pll_calc_port_clock(struct intel_encoder *encoder,
2364 				 const struct intel_c20pll_state *pll_state)
2365 {
2366 	unsigned int frac, frac_en, frac_quot, frac_rem, frac_den;
2367 	unsigned int multiplier, refclk = 38400;
2368 	unsigned int tx_clk_div;
2369 	unsigned int ref_clk_mpllb_div;
2370 	unsigned int fb_clk_div4_en;
2371 	unsigned int ref, vco;
2372 	unsigned int tx_rate_mult;
2373 	unsigned int tx_rate = REG_FIELD_GET(C20_PHY_TX_RATE, pll_state->tx[0]);
2374 
2375 	if (pll_state->tx[0] & C20_PHY_USE_MPLLB) {
2376 		tx_rate_mult = 1;
2377 		frac_en = REG_FIELD_GET(C20_MPLLB_FRACEN, pll_state->mpllb[6]);
2378 		frac_quot = pll_state->mpllb[8];
2379 		frac_rem =  pll_state->mpllb[9];
2380 		frac_den =  pll_state->mpllb[7];
2381 		multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mpllb[0]);
2382 		tx_clk_div = REG_FIELD_GET(C20_MPLLB_TX_CLK_DIV_MASK, pll_state->mpllb[0]);
2383 		ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mpllb[6]);
2384 		fb_clk_div4_en = 0;
2385 	} else {
2386 		tx_rate_mult = 2;
2387 		frac_en = REG_FIELD_GET(C20_MPLLA_FRACEN, pll_state->mplla[6]);
2388 		frac_quot = pll_state->mplla[8];
2389 		frac_rem =  pll_state->mplla[9];
2390 		frac_den =  pll_state->mplla[7];
2391 		multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mplla[0]);
2392 		tx_clk_div = REG_FIELD_GET(C20_MPLLA_TX_CLK_DIV_MASK, pll_state->mplla[1]);
2393 		ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mplla[6]);
2394 		fb_clk_div4_en = REG_FIELD_GET(C20_FB_CLK_DIV4_EN, pll_state->mplla[0]);
2395 	}
2396 
2397 	if (frac_en)
2398 		frac = frac_quot + DIV_ROUND_CLOSEST(frac_rem, frac_den);
2399 	else
2400 		frac = 0;
2401 
2402 	ref = DIV_ROUND_CLOSEST(refclk * (1 << (1 + fb_clk_div4_en)), 1 << ref_clk_mpllb_div);
2403 	vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(ref, (multiplier << (17 - 2)) + frac) >> 17, 10);
2404 
2405 	return vco << tx_rate_mult >> tx_clk_div >> tx_rate;
2406 }
2407 
2408 static void intel_program_port_clock_ctl(struct intel_encoder *encoder,
2409 					 const struct intel_crtc_state *crtc_state,
2410 					 bool lane_reversal)
2411 {
2412 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2413 	u32 val = 0;
2414 
2415 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL1(encoder->port), XELPDP_PORT_REVERSAL,
2416 		     lane_reversal ? XELPDP_PORT_REVERSAL : 0);
2417 
2418 	if (lane_reversal)
2419 		val |= XELPDP_LANE1_PHY_CLOCK_SELECT;
2420 
2421 	val |= XELPDP_FORWARD_CLOCK_UNGATE;
2422 
2423 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) &&
2424 	    is_hdmi_frl(crtc_state->port_clock))
2425 		val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_DIV18CLK);
2426 	else
2427 		val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_MAXPCLK);
2428 
2429 	/* TODO: HDMI FRL */
2430 	/* DP2.0 10G and 20G rates enable MPLLA*/
2431 	if (crtc_state->port_clock == 1000000 || crtc_state->port_clock == 2000000)
2432 		val |= crtc_state->cx0pll_state.ssc_enabled ? XELPDP_SSC_ENABLE_PLLA : 0;
2433 	else
2434 		val |= crtc_state->cx0pll_state.ssc_enabled ? XELPDP_SSC_ENABLE_PLLB : 0;
2435 
2436 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2437 		     XELPDP_LANE1_PHY_CLOCK_SELECT | XELPDP_FORWARD_CLOCK_UNGATE |
2438 		     XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_SSC_ENABLE_PLLA |
2439 		     XELPDP_SSC_ENABLE_PLLB, val);
2440 }
2441 
2442 static u32 intel_cx0_get_powerdown_update(u8 lane_mask)
2443 {
2444 	u32 val = 0;
2445 	int lane = 0;
2446 
2447 	for_each_cx0_lane_in_mask(lane_mask, lane)
2448 		val |= XELPDP_LANE_POWERDOWN_UPDATE(lane);
2449 
2450 	return val;
2451 }
2452 
2453 static u32 intel_cx0_get_powerdown_state(u8 lane_mask, u8 state)
2454 {
2455 	u32 val = 0;
2456 	int lane = 0;
2457 
2458 	for_each_cx0_lane_in_mask(lane_mask, lane)
2459 		val |= XELPDP_LANE_POWERDOWN_NEW_STATE(lane, state);
2460 
2461 	return val;
2462 }
2463 
2464 static void intel_cx0_powerdown_change_sequence(struct drm_i915_private *i915,
2465 						enum port port,
2466 						u8 lane_mask, u8 state)
2467 {
2468 	enum phy phy = intel_port_to_phy(i915, port);
2469 	int lane;
2470 
2471 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(port),
2472 		     intel_cx0_get_powerdown_state(INTEL_CX0_BOTH_LANES, XELPDP_LANE_POWERDOWN_NEW_STATE_MASK),
2473 		     intel_cx0_get_powerdown_state(lane_mask, state));
2474 
2475 	/* Wait for pending transactions.*/
2476 	for_each_cx0_lane_in_mask(lane_mask, lane)
2477 		if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
2478 					    XELPDP_PORT_M2P_TRANSACTION_PENDING,
2479 					    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
2480 			drm_dbg_kms(&i915->drm,
2481 				    "PHY %c Timeout waiting for previous transaction to complete. Reset the bus.\n",
2482 				    phy_name(phy));
2483 			intel_cx0_bus_reset(i915, port, lane);
2484 		}
2485 
2486 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(port),
2487 		     intel_cx0_get_powerdown_update(INTEL_CX0_BOTH_LANES),
2488 		     intel_cx0_get_powerdown_update(lane_mask));
2489 
2490 	/* Update Timeout Value */
2491 	if (__intel_de_wait_for_register(i915, XELPDP_PORT_BUF_CTL2(port),
2492 					 intel_cx0_get_powerdown_update(lane_mask), 0,
2493 					 XELPDP_PORT_POWERDOWN_UPDATE_TIMEOUT_US, 0, NULL))
2494 		drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dus.\n",
2495 			 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2496 }
2497 
2498 static void intel_cx0_setup_powerdown(struct drm_i915_private *i915, enum port port)
2499 {
2500 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(port),
2501 		     XELPDP_POWER_STATE_READY_MASK,
2502 		     XELPDP_POWER_STATE_READY(CX0_P2_STATE_READY));
2503 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL3(port),
2504 		     XELPDP_POWER_STATE_ACTIVE_MASK |
2505 		     XELPDP_PLL_LANE_STAGGERING_DELAY_MASK,
2506 		     XELPDP_POWER_STATE_ACTIVE(CX0_P0_STATE_ACTIVE) |
2507 		     XELPDP_PLL_LANE_STAGGERING_DELAY(0));
2508 }
2509 
2510 static u32 intel_cx0_get_pclk_refclk_request(u8 lane_mask)
2511 {
2512 	u32 val = 0;
2513 	int lane = 0;
2514 
2515 	for_each_cx0_lane_in_mask(lane_mask, lane)
2516 		val |= XELPDP_LANE_PCLK_REFCLK_REQUEST(lane);
2517 
2518 	return val;
2519 }
2520 
2521 static u32 intel_cx0_get_pclk_refclk_ack(u8 lane_mask)
2522 {
2523 	u32 val = 0;
2524 	int lane = 0;
2525 
2526 	for_each_cx0_lane_in_mask(lane_mask, lane)
2527 		val |= XELPDP_LANE_PCLK_REFCLK_ACK(lane);
2528 
2529 	return val;
2530 }
2531 
2532 static void intel_cx0_phy_lane_reset(struct drm_i915_private *i915,
2533 				     struct intel_encoder *encoder,
2534 				     bool lane_reversal)
2535 {
2536 	enum port port = encoder->port;
2537 	enum phy phy = intel_port_to_phy(i915, port);
2538 	bool both_lanes =  intel_tc_port_fia_max_lane_count(enc_to_dig_port(encoder)) > 2;
2539 	u8 lane_mask = lane_reversal ? INTEL_CX0_LANE1 :
2540 				  INTEL_CX0_LANE0;
2541 	u32 lane_pipe_reset = both_lanes ?
2542 			      XELPDP_LANE_PIPE_RESET(0) |
2543 			      XELPDP_LANE_PIPE_RESET(1) :
2544 			      XELPDP_LANE_PIPE_RESET(0);
2545 	u32 lane_phy_current_status = both_lanes ?
2546 				      XELPDP_LANE_PHY_CURRENT_STATUS(0) |
2547 				      XELPDP_LANE_PHY_CURRENT_STATUS(1) :
2548 				      XELPDP_LANE_PHY_CURRENT_STATUS(0);
2549 
2550 	if (__intel_de_wait_for_register(i915, XELPDP_PORT_BUF_CTL1(port),
2551 					 XELPDP_PORT_BUF_SOC_PHY_READY,
2552 					 XELPDP_PORT_BUF_SOC_PHY_READY,
2553 					 XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US, 0, NULL))
2554 		drm_warn(&i915->drm, "PHY %c failed to bring out of SOC reset after %dus.\n",
2555 			 phy_name(phy), XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US);
2556 
2557 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(port), lane_pipe_reset,
2558 		     lane_pipe_reset);
2559 
2560 	if (__intel_de_wait_for_register(i915, XELPDP_PORT_BUF_CTL2(port),
2561 					 lane_phy_current_status, lane_phy_current_status,
2562 					 XELPDP_PORT_RESET_START_TIMEOUT_US, 0, NULL))
2563 		drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dus.\n",
2564 			 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2565 
2566 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(port),
2567 		     intel_cx0_get_pclk_refclk_request(both_lanes ?
2568 						       INTEL_CX0_BOTH_LANES :
2569 						       INTEL_CX0_LANE0),
2570 		     intel_cx0_get_pclk_refclk_request(lane_mask));
2571 
2572 	if (__intel_de_wait_for_register(i915, XELPDP_PORT_CLOCK_CTL(port),
2573 					 intel_cx0_get_pclk_refclk_ack(both_lanes ?
2574 								       INTEL_CX0_BOTH_LANES :
2575 								       INTEL_CX0_LANE0),
2576 					 intel_cx0_get_pclk_refclk_ack(lane_mask),
2577 					 XELPDP_REFCLK_ENABLE_TIMEOUT_US, 0, NULL))
2578 		drm_warn(&i915->drm, "PHY %c failed to request refclk after %dus.\n",
2579 			 phy_name(phy), XELPDP_REFCLK_ENABLE_TIMEOUT_US);
2580 
2581 	intel_cx0_powerdown_change_sequence(i915, port, INTEL_CX0_BOTH_LANES,
2582 					    CX0_P2_STATE_RESET);
2583 	intel_cx0_setup_powerdown(i915, port);
2584 
2585 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(port), lane_pipe_reset, 0);
2586 
2587 	if (intel_de_wait_for_clear(i915, XELPDP_PORT_BUF_CTL2(port), lane_phy_current_status,
2588 				    XELPDP_PORT_RESET_END_TIMEOUT))
2589 		drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dms.\n",
2590 			 phy_name(phy), XELPDP_PORT_RESET_END_TIMEOUT);
2591 }
2592 
2593 static void intel_cx0_program_phy_lane(struct drm_i915_private *i915,
2594 				       struct intel_encoder *encoder, int lane_count,
2595 				       bool lane_reversal)
2596 {
2597 	u8 l0t1, l0t2, l1t1, l1t2;
2598 	bool dp_alt_mode = intel_tc_port_in_dp_alt_mode(enc_to_dig_port(encoder));
2599 	enum port port = encoder->port;
2600 
2601 	if (intel_is_c10phy(i915, intel_port_to_phy(i915, port)))
2602 		intel_cx0_rmw(i915, port, INTEL_CX0_BOTH_LANES,
2603 			      PHY_C10_VDR_CONTROL(1), 0,
2604 			      C10_VDR_CTRL_MSGBUS_ACCESS,
2605 			      MB_WRITE_COMMITTED);
2606 
2607 	/* TODO: DP-alt MFD case where only one PHY lane should be programmed. */
2608 	l0t1 = intel_cx0_read(i915, port, INTEL_CX0_LANE0, PHY_CX0_TX_CONTROL(1, 2));
2609 	l0t2 = intel_cx0_read(i915, port, INTEL_CX0_LANE0, PHY_CX0_TX_CONTROL(2, 2));
2610 	l1t1 = intel_cx0_read(i915, port, INTEL_CX0_LANE1, PHY_CX0_TX_CONTROL(1, 2));
2611 	l1t2 = intel_cx0_read(i915, port, INTEL_CX0_LANE1, PHY_CX0_TX_CONTROL(2, 2));
2612 
2613 	l0t1 |= CONTROL2_DISABLE_SINGLE_TX;
2614 	l0t2 |= CONTROL2_DISABLE_SINGLE_TX;
2615 	l1t1 |= CONTROL2_DISABLE_SINGLE_TX;
2616 	l1t2 |= CONTROL2_DISABLE_SINGLE_TX;
2617 
2618 	if (lane_reversal) {
2619 		switch (lane_count) {
2620 		case 4:
2621 			l0t1 &= ~CONTROL2_DISABLE_SINGLE_TX;
2622 			fallthrough;
2623 		case 3:
2624 			l0t2 &= ~CONTROL2_DISABLE_SINGLE_TX;
2625 			fallthrough;
2626 		case 2:
2627 			l1t1 &= ~CONTROL2_DISABLE_SINGLE_TX;
2628 			fallthrough;
2629 		case 1:
2630 			l1t2 &= ~CONTROL2_DISABLE_SINGLE_TX;
2631 			break;
2632 		default:
2633 			MISSING_CASE(lane_count);
2634 		}
2635 	} else {
2636 		switch (lane_count) {
2637 		case 4:
2638 			l1t2 &= ~CONTROL2_DISABLE_SINGLE_TX;
2639 			fallthrough;
2640 		case 3:
2641 			l1t1 &= ~CONTROL2_DISABLE_SINGLE_TX;
2642 			fallthrough;
2643 		case 2:
2644 			l0t2 &= ~CONTROL2_DISABLE_SINGLE_TX;
2645 			l0t1 &= ~CONTROL2_DISABLE_SINGLE_TX;
2646 			break;
2647 		case 1:
2648 			if (dp_alt_mode)
2649 				l0t2 &= ~CONTROL2_DISABLE_SINGLE_TX;
2650 			else
2651 				l0t1 &= ~CONTROL2_DISABLE_SINGLE_TX;
2652 			break;
2653 		default:
2654 			MISSING_CASE(lane_count);
2655 		}
2656 	}
2657 
2658 	/* disable MLs */
2659 	intel_cx0_write(i915, port, INTEL_CX0_LANE0, PHY_CX0_TX_CONTROL(1, 2),
2660 			l0t1, MB_WRITE_COMMITTED);
2661 	intel_cx0_write(i915, port, INTEL_CX0_LANE0, PHY_CX0_TX_CONTROL(2, 2),
2662 			l0t2, MB_WRITE_COMMITTED);
2663 	intel_cx0_write(i915, port, INTEL_CX0_LANE1, PHY_CX0_TX_CONTROL(1, 2),
2664 			l1t1, MB_WRITE_COMMITTED);
2665 	intel_cx0_write(i915, port, INTEL_CX0_LANE1, PHY_CX0_TX_CONTROL(2, 2),
2666 			l1t2, MB_WRITE_COMMITTED);
2667 
2668 	if (intel_is_c10phy(i915, intel_port_to_phy(i915, port)))
2669 		intel_cx0_rmw(i915, port, INTEL_CX0_BOTH_LANES,
2670 			      PHY_C10_VDR_CONTROL(1), 0,
2671 			      C10_VDR_CTRL_UPDATE_CFG,
2672 			      MB_WRITE_COMMITTED);
2673 }
2674 
2675 static u32 intel_cx0_get_pclk_pll_request(u8 lane_mask)
2676 {
2677 	u32 val = 0;
2678 	int lane = 0;
2679 
2680 	for_each_cx0_lane_in_mask(lane_mask, lane)
2681 		val |= XELPDP_LANE_PCLK_PLL_REQUEST(lane);
2682 
2683 	return val;
2684 }
2685 
2686 static u32 intel_cx0_get_pclk_pll_ack(u8 lane_mask)
2687 {
2688 	u32 val = 0;
2689 	int lane = 0;
2690 
2691 	for_each_cx0_lane_in_mask(lane_mask, lane)
2692 		val |= XELPDP_LANE_PCLK_PLL_ACK(lane);
2693 
2694 	return val;
2695 }
2696 
2697 static void intel_cx0pll_enable(struct intel_encoder *encoder,
2698 				const struct intel_crtc_state *crtc_state)
2699 {
2700 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2701 	enum phy phy = intel_port_to_phy(i915, encoder->port);
2702 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
2703 	bool lane_reversal = dig_port->saved_port_bits & DDI_BUF_PORT_REVERSAL;
2704 	u8 maxpclk_lane = lane_reversal ? INTEL_CX0_LANE1 :
2705 					  INTEL_CX0_LANE0;
2706 	intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
2707 
2708 	/*
2709 	 * 1. Program PORT_CLOCK_CTL REGISTER to configure
2710 	 * clock muxes, gating and SSC
2711 	 */
2712 	intel_program_port_clock_ctl(encoder, crtc_state, lane_reversal);
2713 
2714 	/* 2. Bring PHY out of reset. */
2715 	intel_cx0_phy_lane_reset(i915, encoder, lane_reversal);
2716 
2717 	/*
2718 	 * 3. Change Phy power state to Ready.
2719 	 * TODO: For DP alt mode use only one lane.
2720 	 */
2721 	intel_cx0_powerdown_change_sequence(i915, encoder->port, INTEL_CX0_BOTH_LANES,
2722 					    CX0_P2_STATE_READY);
2723 
2724 	/* 4. Program PHY internal PLL internal registers. */
2725 	if (intel_is_c10phy(i915, phy))
2726 		intel_c10_pll_program(i915, crtc_state, encoder);
2727 	else
2728 		intel_c20_pll_program(i915, crtc_state, encoder);
2729 
2730 	/*
2731 	 * 5. Program the enabled and disabled owned PHY lane
2732 	 * transmitters over message bus
2733 	 */
2734 	intel_cx0_program_phy_lane(i915, encoder, crtc_state->lane_count, lane_reversal);
2735 
2736 	/*
2737 	 * 6. Follow the Display Voltage Frequency Switching - Sequence
2738 	 * Before Frequency Change. We handle this step in bxt_set_cdclk().
2739 	 */
2740 
2741 	/*
2742 	 * 7. Program DDI_CLK_VALFREQ to match intended DDI
2743 	 * clock frequency.
2744 	 */
2745 	intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port),
2746 		       crtc_state->port_clock);
2747 
2748 	/*
2749 	 * 8. Set PORT_CLOCK_CTL register PCLK PLL Request
2750 	 * LN<Lane for maxPCLK> to "1" to enable PLL.
2751 	 */
2752 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2753 		     intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES),
2754 		     intel_cx0_get_pclk_pll_request(maxpclk_lane));
2755 
2756 	/* 9. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK> == "1". */
2757 	if (__intel_de_wait_for_register(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2758 					 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES),
2759 					 intel_cx0_get_pclk_pll_ack(maxpclk_lane),
2760 					 XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US, 0, NULL))
2761 		drm_warn(&i915->drm, "Port %c PLL not locked after %dus.\n",
2762 			 phy_name(phy), XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US);
2763 
2764 	/*
2765 	 * 10. Follow the Display Voltage Frequency Switching Sequence After
2766 	 * Frequency Change. We handle this step in bxt_set_cdclk().
2767 	 */
2768 
2769 	/* TODO: enable TBT-ALT mode */
2770 	intel_cx0_phy_transaction_end(encoder, wakeref);
2771 }
2772 
2773 int intel_mtl_tbt_calc_port_clock(struct intel_encoder *encoder)
2774 {
2775 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2776 	u32 clock;
2777 	u32 val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(encoder->port));
2778 
2779 	clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val);
2780 
2781 	drm_WARN_ON(&i915->drm, !(val & XELPDP_FORWARD_CLOCK_UNGATE));
2782 	drm_WARN_ON(&i915->drm, !(val & XELPDP_TBT_CLOCK_REQUEST));
2783 	drm_WARN_ON(&i915->drm, !(val & XELPDP_TBT_CLOCK_ACK));
2784 
2785 	switch (clock) {
2786 	case XELPDP_DDI_CLOCK_SELECT_TBT_162:
2787 		return 162000;
2788 	case XELPDP_DDI_CLOCK_SELECT_TBT_270:
2789 		return 270000;
2790 	case XELPDP_DDI_CLOCK_SELECT_TBT_540:
2791 		return 540000;
2792 	case XELPDP_DDI_CLOCK_SELECT_TBT_810:
2793 		return 810000;
2794 	default:
2795 		MISSING_CASE(clock);
2796 		return 162000;
2797 	}
2798 }
2799 
2800 static int intel_mtl_tbt_clock_select(struct drm_i915_private *i915, int clock)
2801 {
2802 	switch (clock) {
2803 	case 162000:
2804 		return XELPDP_DDI_CLOCK_SELECT_TBT_162;
2805 	case 270000:
2806 		return XELPDP_DDI_CLOCK_SELECT_TBT_270;
2807 	case 540000:
2808 		return XELPDP_DDI_CLOCK_SELECT_TBT_540;
2809 	case 810000:
2810 		return XELPDP_DDI_CLOCK_SELECT_TBT_810;
2811 	default:
2812 		MISSING_CASE(clock);
2813 		return XELPDP_DDI_CLOCK_SELECT_TBT_162;
2814 	}
2815 }
2816 
2817 static void intel_mtl_tbt_pll_enable(struct intel_encoder *encoder,
2818 				     const struct intel_crtc_state *crtc_state)
2819 {
2820 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2821 	enum phy phy = intel_port_to_phy(i915, encoder->port);
2822 	u32 val = 0;
2823 
2824 	/*
2825 	 * 1. Program PORT_CLOCK_CTL REGISTER to configure
2826 	 * clock muxes, gating and SSC
2827 	 */
2828 	val |= XELPDP_DDI_CLOCK_SELECT(intel_mtl_tbt_clock_select(i915, crtc_state->port_clock));
2829 	val |= XELPDP_FORWARD_CLOCK_UNGATE;
2830 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2831 		     XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_FORWARD_CLOCK_UNGATE, val);
2832 
2833 	/* 2. Read back PORT_CLOCK_CTL REGISTER */
2834 	val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(encoder->port));
2835 
2836 	/*
2837 	 * 3. Follow the Display Voltage Frequency Switching - Sequence
2838 	 * Before Frequency Change. We handle this step in bxt_set_cdclk().
2839 	 */
2840 
2841 	/*
2842 	 * 4. Set PORT_CLOCK_CTL register TBT CLOCK Request to "1" to enable PLL.
2843 	 */
2844 	val |= XELPDP_TBT_CLOCK_REQUEST;
2845 	intel_de_write(i915, XELPDP_PORT_CLOCK_CTL(encoder->port), val);
2846 
2847 	/* 5. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "1". */
2848 	if (__intel_de_wait_for_register(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2849 					 XELPDP_TBT_CLOCK_ACK,
2850 					 XELPDP_TBT_CLOCK_ACK,
2851 					 100, 0, NULL))
2852 		drm_warn(&i915->drm, "[ENCODER:%d:%s][%c] PHY PLL not locked after 100us.\n",
2853 			 encoder->base.base.id, encoder->base.name, phy_name(phy));
2854 
2855 	/*
2856 	 * 6. Follow the Display Voltage Frequency Switching Sequence After
2857 	 * Frequency Change. We handle this step in bxt_set_cdclk().
2858 	 */
2859 
2860 	/*
2861 	 * 7. Program DDI_CLK_VALFREQ to match intended DDI
2862 	 * clock frequency.
2863 	 */
2864 	intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port),
2865 		       crtc_state->port_clock);
2866 }
2867 
2868 void intel_mtl_pll_enable(struct intel_encoder *encoder,
2869 			  const struct intel_crtc_state *crtc_state)
2870 {
2871 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
2872 
2873 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
2874 		intel_mtl_tbt_pll_enable(encoder, crtc_state);
2875 	else
2876 		intel_cx0pll_enable(encoder, crtc_state);
2877 }
2878 
2879 static void intel_cx0pll_disable(struct intel_encoder *encoder)
2880 {
2881 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2882 	enum phy phy = intel_port_to_phy(i915, encoder->port);
2883 	bool is_c10 = intel_is_c10phy(i915, phy);
2884 	intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
2885 
2886 	/* 1. Change owned PHY lane power to Disable state. */
2887 	intel_cx0_powerdown_change_sequence(i915, encoder->port, INTEL_CX0_BOTH_LANES,
2888 					    is_c10 ? CX0_P2PG_STATE_DISABLE :
2889 					    CX0_P4PG_STATE_DISABLE);
2890 
2891 	/*
2892 	 * 2. Follow the Display Voltage Frequency Switching Sequence Before
2893 	 * Frequency Change. We handle this step in bxt_set_cdclk().
2894 	 */
2895 
2896 	/*
2897 	 * 3. Set PORT_CLOCK_CTL register PCLK PLL Request LN<Lane for maxPCLK>
2898 	 * to "0" to disable PLL.
2899 	 */
2900 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2901 		     intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES) |
2902 		     intel_cx0_get_pclk_refclk_request(INTEL_CX0_BOTH_LANES), 0);
2903 
2904 	/* 4. Program DDI_CLK_VALFREQ to 0. */
2905 	intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port), 0);
2906 
2907 	/*
2908 	 * 5. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK**> == "0".
2909 	 */
2910 	if (__intel_de_wait_for_register(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2911 					 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES) |
2912 					 intel_cx0_get_pclk_refclk_ack(INTEL_CX0_BOTH_LANES), 0,
2913 					 XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US, 0, NULL))
2914 		drm_warn(&i915->drm, "Port %c PLL not unlocked after %dus.\n",
2915 			 phy_name(phy), XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US);
2916 
2917 	/*
2918 	 * 6. Follow the Display Voltage Frequency Switching Sequence After
2919 	 * Frequency Change. We handle this step in bxt_set_cdclk().
2920 	 */
2921 
2922 	/* 7. Program PORT_CLOCK_CTL register to disable and gate clocks. */
2923 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2924 		     XELPDP_DDI_CLOCK_SELECT_MASK, 0);
2925 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2926 		     XELPDP_FORWARD_CLOCK_UNGATE, 0);
2927 
2928 	intel_cx0_phy_transaction_end(encoder, wakeref);
2929 }
2930 
2931 static void intel_mtl_tbt_pll_disable(struct intel_encoder *encoder)
2932 {
2933 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2934 	enum phy phy = intel_port_to_phy(i915, encoder->port);
2935 
2936 	/*
2937 	 * 1. Follow the Display Voltage Frequency Switching Sequence Before
2938 	 * Frequency Change. We handle this step in bxt_set_cdclk().
2939 	 */
2940 
2941 	/*
2942 	 * 2. Set PORT_CLOCK_CTL register TBT CLOCK Request to "0" to disable PLL.
2943 	 */
2944 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2945 		     XELPDP_TBT_CLOCK_REQUEST, 0);
2946 
2947 	/* 3. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "0". */
2948 	if (__intel_de_wait_for_register(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2949 					 XELPDP_TBT_CLOCK_ACK, 0, 10, 0, NULL))
2950 		drm_warn(&i915->drm, "[ENCODER:%d:%s][%c] PHY PLL not unlocked after 10us.\n",
2951 			 encoder->base.base.id, encoder->base.name, phy_name(phy));
2952 
2953 	/*
2954 	 * 4. Follow the Display Voltage Frequency Switching Sequence After
2955 	 * Frequency Change. We handle this step in bxt_set_cdclk().
2956 	 */
2957 
2958 	/*
2959 	 * 5. Program PORT CLOCK CTRL register to disable and gate clocks
2960 	 */
2961 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2962 		     XELPDP_DDI_CLOCK_SELECT_MASK |
2963 		     XELPDP_FORWARD_CLOCK_UNGATE, 0);
2964 
2965 	/* 6. Program DDI_CLK_VALFREQ to 0. */
2966 	intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port), 0);
2967 }
2968 
2969 void intel_mtl_pll_disable(struct intel_encoder *encoder)
2970 {
2971 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
2972 
2973 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
2974 		intel_mtl_tbt_pll_disable(encoder);
2975 	else
2976 		intel_cx0pll_disable(encoder);
2977 }
2978 
2979 enum icl_port_dpll_id
2980 intel_mtl_port_pll_type(struct intel_encoder *encoder,
2981 			const struct intel_crtc_state *crtc_state)
2982 {
2983 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2984 	/*
2985 	 * TODO: Determine the PLL type from the SW state, once MTL PLL
2986 	 * handling is done via the standard shared DPLL framework.
2987 	 */
2988 	u32 val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(encoder->port));
2989 	u32 clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val);
2990 
2991 	if (clock == XELPDP_DDI_CLOCK_SELECT_MAXPCLK ||
2992 	    clock == XELPDP_DDI_CLOCK_SELECT_DIV18CLK)
2993 		return ICL_PORT_DPLL_MG_PHY;
2994 	else
2995 		return ICL_PORT_DPLL_DEFAULT;
2996 }
2997 
2998 void intel_c10pll_state_verify(struct intel_atomic_state *state,
2999 			       struct intel_crtc_state *new_crtc_state)
3000 {
3001 	struct drm_i915_private *i915 = to_i915(state->base.dev);
3002 	struct intel_c10pll_state mpllb_hw_state = { 0 };
3003 	struct intel_c10pll_state *mpllb_sw_state = &new_crtc_state->cx0pll_state.c10;
3004 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
3005 	struct intel_encoder *encoder;
3006 	enum phy phy;
3007 	int i;
3008 
3009 	if (DISPLAY_VER(i915) < 14)
3010 		return;
3011 
3012 	if (!new_crtc_state->hw.active)
3013 		return;
3014 
3015 	/* intel_get_crtc_new_encoder() only works for modeset/fastset commits */
3016 	if (!intel_crtc_needs_modeset(new_crtc_state) &&
3017 	    !intel_crtc_needs_fastset(new_crtc_state))
3018 		return;
3019 
3020 	encoder = intel_get_crtc_new_encoder(state, new_crtc_state);
3021 	phy = intel_port_to_phy(i915, encoder->port);
3022 
3023 	if (!intel_is_c10phy(i915, phy))
3024 		return;
3025 
3026 	intel_c10pll_readout_hw_state(encoder, &mpllb_hw_state);
3027 
3028 	for (i = 0; i < ARRAY_SIZE(mpllb_sw_state->pll); i++) {
3029 		u8 expected = mpllb_sw_state->pll[i];
3030 
3031 		I915_STATE_WARN(i915, mpllb_hw_state.pll[i] != expected,
3032 				"[CRTC:%d:%s] mismatch in C10MPLLB: Register[%d] (expected 0x%02x, found 0x%02x)",
3033 				crtc->base.base.id, crtc->base.name, i,
3034 				expected, mpllb_hw_state.pll[i]);
3035 	}
3036 
3037 	I915_STATE_WARN(i915, mpllb_hw_state.tx != mpllb_sw_state->tx,
3038 			"[CRTC:%d:%s] mismatch in C10MPLLB: Register TX0 (expected 0x%02x, found 0x%02x)",
3039 			crtc->base.base.id, crtc->base.name,
3040 			mpllb_sw_state->tx, mpllb_hw_state.tx);
3041 
3042 	I915_STATE_WARN(i915, mpllb_hw_state.cmn != mpllb_sw_state->cmn,
3043 			"[CRTC:%d:%s] mismatch in C10MPLLB: Register CMN0 (expected 0x%02x, found 0x%02x)",
3044 			crtc->base.base.id, crtc->base.name,
3045 			mpllb_sw_state->cmn, mpllb_hw_state.cmn);
3046 }
3047