xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_cx0_phy.c (revision 32bc7297d855608fcb13af62a95739a079b4f8e2)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include <linux/log2.h>
7 #include <linux/math64.h>
8 #include "i915_reg.h"
9 #include "intel_cx0_phy.h"
10 #include "intel_cx0_phy_regs.h"
11 #include "intel_ddi.h"
12 #include "intel_ddi_buf_trans.h"
13 #include "intel_de.h"
14 #include "intel_display_types.h"
15 #include "intel_dp.h"
16 #include "intel_hdmi.h"
17 #include "intel_panel.h"
18 #include "intel_psr.h"
19 #include "intel_tc.h"
20 
21 #define MB_WRITE_COMMITTED      true
22 #define MB_WRITE_UNCOMMITTED    false
23 
24 #define for_each_cx0_lane_in_mask(__lane_mask, __lane) \
25 	for ((__lane) = 0; (__lane) < 2; (__lane)++) \
26 		for_each_if((__lane_mask) & BIT(__lane))
27 
28 #define INTEL_CX0_LANE0		BIT(0)
29 #define INTEL_CX0_LANE1		BIT(1)
30 #define INTEL_CX0_BOTH_LANES	(INTEL_CX0_LANE1 | INTEL_CX0_LANE0)
31 
32 bool intel_is_c10phy(struct drm_i915_private *i915, enum phy phy)
33 {
34 	if (IS_METEORLAKE(i915) && (phy < PHY_C))
35 		return true;
36 
37 	return false;
38 }
39 
40 static int lane_mask_to_lane(u8 lane_mask)
41 {
42 	if (WARN_ON((lane_mask & ~INTEL_CX0_BOTH_LANES) ||
43 		    hweight8(lane_mask) != 1))
44 		return 0;
45 
46 	return ilog2(lane_mask);
47 }
48 
49 static void
50 assert_dc_off(struct drm_i915_private *i915)
51 {
52 	bool enabled;
53 
54 	enabled = intel_display_power_is_enabled(i915, POWER_DOMAIN_DC_OFF);
55 	drm_WARN_ON(&i915->drm, !enabled);
56 }
57 
58 /*
59  * Prepare HW for CX0 phy transactions.
60  *
61  * It is required that PSR and DC5/6 are disabled before any CX0 message
62  * bus transaction is executed.
63  */
64 static intel_wakeref_t intel_cx0_phy_transaction_begin(struct intel_encoder *encoder)
65 {
66 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
67 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
68 
69 	intel_psr_pause(intel_dp);
70 	return intel_display_power_get(i915, POWER_DOMAIN_DC_OFF);
71 }
72 
73 static void intel_cx0_phy_transaction_end(struct intel_encoder *encoder, intel_wakeref_t wakeref)
74 {
75 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
76 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
77 
78 	intel_psr_resume(intel_dp);
79 	intel_display_power_put(i915, POWER_DOMAIN_DC_OFF, wakeref);
80 }
81 
82 static void intel_clear_response_ready_flag(struct drm_i915_private *i915,
83 					    enum port port, int lane)
84 {
85 	intel_de_rmw(i915, XELPDP_PORT_P2M_MSGBUS_STATUS(port, lane),
86 		     0, XELPDP_PORT_P2M_RESPONSE_READY | XELPDP_PORT_P2M_ERROR_SET);
87 }
88 
89 static void intel_cx0_bus_reset(struct drm_i915_private *i915, enum port port, int lane)
90 {
91 	enum phy phy = intel_port_to_phy(i915, port);
92 
93 	intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
94 		       XELPDP_PORT_M2P_TRANSACTION_RESET);
95 
96 	if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
97 				    XELPDP_PORT_M2P_TRANSACTION_RESET,
98 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
99 		drm_err_once(&i915->drm, "Failed to bring PHY %c to idle.\n", phy_name(phy));
100 		return;
101 	}
102 
103 	intel_clear_response_ready_flag(i915, port, lane);
104 }
105 
106 static int intel_cx0_wait_for_ack(struct drm_i915_private *i915, enum port port,
107 				  int command, int lane, u32 *val)
108 {
109 	enum phy phy = intel_port_to_phy(i915, port);
110 
111 	if (__intel_de_wait_for_register(i915,
112 					 XELPDP_PORT_P2M_MSGBUS_STATUS(port, lane),
113 					 XELPDP_PORT_P2M_RESPONSE_READY,
114 					 XELPDP_PORT_P2M_RESPONSE_READY,
115 					 XELPDP_MSGBUS_TIMEOUT_FAST_US,
116 					 XELPDP_MSGBUS_TIMEOUT_SLOW, val)) {
117 		drm_dbg_kms(&i915->drm, "PHY %c Timeout waiting for message ACK. Status: 0x%x\n",
118 			    phy_name(phy), *val);
119 		return -ETIMEDOUT;
120 	}
121 
122 	if (*val & XELPDP_PORT_P2M_ERROR_SET) {
123 		drm_dbg_kms(&i915->drm, "PHY %c Error occurred during %s command. Status: 0x%x\n", phy_name(phy),
124 			    command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
125 		intel_cx0_bus_reset(i915, port, lane);
126 		return -EINVAL;
127 	}
128 
129 	if (REG_FIELD_GET(XELPDP_PORT_P2M_COMMAND_TYPE_MASK, *val) != command) {
130 		drm_dbg_kms(&i915->drm, "PHY %c Not a %s response. MSGBUS Status: 0x%x.\n", phy_name(phy),
131 			    command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
132 		intel_cx0_bus_reset(i915, port, lane);
133 		return -EINVAL;
134 	}
135 
136 	return 0;
137 }
138 
139 static int __intel_cx0_read_once(struct drm_i915_private *i915, enum port port,
140 				 int lane, u16 addr)
141 {
142 	enum phy phy = intel_port_to_phy(i915, port);
143 	int ack;
144 	u32 val;
145 
146 	if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
147 				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
148 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
149 		drm_dbg_kms(&i915->drm,
150 			    "PHY %c Timeout waiting for previous transaction to complete. Reset the bus and retry.\n", phy_name(phy));
151 		intel_cx0_bus_reset(i915, port, lane);
152 		return -ETIMEDOUT;
153 	}
154 
155 	intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
156 		       XELPDP_PORT_M2P_TRANSACTION_PENDING |
157 		       XELPDP_PORT_M2P_COMMAND_READ |
158 		       XELPDP_PORT_M2P_ADDRESS(addr));
159 
160 	ack = intel_cx0_wait_for_ack(i915, port, XELPDP_PORT_P2M_COMMAND_READ_ACK, lane, &val);
161 	if (ack < 0) {
162 		intel_cx0_bus_reset(i915, port, lane);
163 		return ack;
164 	}
165 
166 	intel_clear_response_ready_flag(i915, port, lane);
167 
168 	return REG_FIELD_GET(XELPDP_PORT_P2M_DATA_MASK, val);
169 }
170 
171 static u8 __intel_cx0_read(struct drm_i915_private *i915, enum port port,
172 			   int lane, u16 addr)
173 {
174 	enum phy phy = intel_port_to_phy(i915, port);
175 	int i, status;
176 
177 	assert_dc_off(i915);
178 
179 	/* 3 tries is assumed to be enough to read successfully */
180 	for (i = 0; i < 3; i++) {
181 		status = __intel_cx0_read_once(i915, port, lane, addr);
182 
183 		if (status >= 0)
184 			return status;
185 	}
186 
187 	drm_err_once(&i915->drm, "PHY %c Read %04x failed after %d retries.\n",
188 		     phy_name(phy), addr, i);
189 
190 	return 0;
191 }
192 
193 static u8 intel_cx0_read(struct drm_i915_private *i915, enum port port,
194 			 u8 lane_mask, u16 addr)
195 {
196 	int lane = lane_mask_to_lane(lane_mask);
197 
198 	return __intel_cx0_read(i915, port, lane, addr);
199 }
200 
201 static int __intel_cx0_write_once(struct drm_i915_private *i915, enum port port,
202 				  int lane, u16 addr, u8 data, bool committed)
203 {
204 	enum phy phy = intel_port_to_phy(i915, port);
205 	u32 val;
206 
207 	if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
208 				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
209 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
210 		drm_dbg_kms(&i915->drm,
211 			    "PHY %c Timeout waiting for previous transaction to complete. Resetting the bus.\n", phy_name(phy));
212 		intel_cx0_bus_reset(i915, port, lane);
213 		return -ETIMEDOUT;
214 	}
215 
216 	intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
217 		       XELPDP_PORT_M2P_TRANSACTION_PENDING |
218 		       (committed ? XELPDP_PORT_M2P_COMMAND_WRITE_COMMITTED :
219 				    XELPDP_PORT_M2P_COMMAND_WRITE_UNCOMMITTED) |
220 		       XELPDP_PORT_M2P_DATA(data) |
221 		       XELPDP_PORT_M2P_ADDRESS(addr));
222 
223 	if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
224 				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
225 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
226 		drm_dbg_kms(&i915->drm,
227 			    "PHY %c Timeout waiting for write to complete. Resetting the bus.\n", phy_name(phy));
228 		intel_cx0_bus_reset(i915, port, lane);
229 		return -ETIMEDOUT;
230 	}
231 
232 	if (committed) {
233 		if (intel_cx0_wait_for_ack(i915, port, XELPDP_PORT_P2M_COMMAND_WRITE_ACK, lane, &val) < 0) {
234 			intel_cx0_bus_reset(i915, port, lane);
235 			return -EINVAL;
236 		}
237 	} else if ((intel_de_read(i915, XELPDP_PORT_P2M_MSGBUS_STATUS(port, lane)) &
238 		    XELPDP_PORT_P2M_ERROR_SET)) {
239 		drm_dbg_kms(&i915->drm,
240 			    "PHY %c Error occurred during write command.\n", phy_name(phy));
241 		intel_cx0_bus_reset(i915, port, lane);
242 		return -EINVAL;
243 	}
244 
245 	intel_clear_response_ready_flag(i915, port, lane);
246 
247 	return 0;
248 }
249 
250 static void __intel_cx0_write(struct drm_i915_private *i915, enum port port,
251 			      int lane, u16 addr, u8 data, bool committed)
252 {
253 	enum phy phy = intel_port_to_phy(i915, port);
254 	int i, status;
255 
256 	assert_dc_off(i915);
257 
258 	/* 3 tries is assumed to be enough to write successfully */
259 	for (i = 0; i < 3; i++) {
260 		status = __intel_cx0_write_once(i915, port, lane, addr, data, committed);
261 
262 		if (status == 0)
263 			return;
264 	}
265 
266 	drm_err_once(&i915->drm,
267 		     "PHY %c Write %04x failed after %d retries.\n", phy_name(phy), addr, i);
268 }
269 
270 static void intel_cx0_write(struct drm_i915_private *i915, enum port port,
271 			    u8 lane_mask, u16 addr, u8 data, bool committed)
272 {
273 	int lane;
274 
275 	for_each_cx0_lane_in_mask(lane_mask, lane)
276 		__intel_cx0_write(i915, port, lane, addr, data, committed);
277 }
278 
279 static void intel_c20_sram_write(struct drm_i915_private *i915, enum port port,
280 				 int lane, u16 addr, u16 data)
281 {
282 	assert_dc_off(i915);
283 
284 	intel_cx0_write(i915, port, lane, PHY_C20_WR_ADDRESS_H, addr >> 8, 0);
285 	intel_cx0_write(i915, port, lane, PHY_C20_WR_ADDRESS_L, addr & 0xff, 0);
286 
287 	intel_cx0_write(i915, port, lane, PHY_C20_WR_DATA_H, data >> 8, 0);
288 	intel_cx0_write(i915, port, lane, PHY_C20_WR_DATA_L, data & 0xff, 1);
289 }
290 
291 static u16 intel_c20_sram_read(struct drm_i915_private *i915, enum port port,
292 			       int lane, u16 addr)
293 {
294 	u16 val;
295 
296 	assert_dc_off(i915);
297 
298 	intel_cx0_write(i915, port, lane, PHY_C20_RD_ADDRESS_H, addr >> 8, 0);
299 	intel_cx0_write(i915, port, lane, PHY_C20_RD_ADDRESS_L, addr & 0xff, 1);
300 
301 	val = intel_cx0_read(i915, port, lane, PHY_C20_RD_DATA_H);
302 	val <<= 8;
303 	val |= intel_cx0_read(i915, port, lane, PHY_C20_RD_DATA_L);
304 
305 	return val;
306 }
307 
308 static void __intel_cx0_rmw(struct drm_i915_private *i915, enum port port,
309 			    int lane, u16 addr, u8 clear, u8 set, bool committed)
310 {
311 	u8 old, val;
312 
313 	old = __intel_cx0_read(i915, port, lane, addr);
314 	val = (old & ~clear) | set;
315 
316 	if (val != old)
317 		__intel_cx0_write(i915, port, lane, addr, val, committed);
318 }
319 
320 static void intel_cx0_rmw(struct drm_i915_private *i915, enum port port,
321 			  u8 lane_mask, u16 addr, u8 clear, u8 set, bool committed)
322 {
323 	u8 lane;
324 
325 	for_each_cx0_lane_in_mask(lane_mask, lane)
326 		__intel_cx0_rmw(i915, port, lane, addr, clear, set, committed);
327 }
328 
329 static u8 intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state *crtc_state)
330 {
331 	if (intel_crtc_has_dp_encoder(crtc_state)) {
332 		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
333 		    (crtc_state->port_clock == 540000 ||
334 		     crtc_state->port_clock == 810000))
335 			return 5;
336 		else
337 			return 4;
338 	} else {
339 		return 5;
340 	}
341 }
342 
343 static u8 intel_c10_get_tx_term_ctl(const struct intel_crtc_state *crtc_state)
344 {
345 	if (intel_crtc_has_dp_encoder(crtc_state)) {
346 		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
347 		    (crtc_state->port_clock == 540000 ||
348 		     crtc_state->port_clock == 810000))
349 			return 5;
350 		else
351 			return 2;
352 	} else {
353 		return 6;
354 	}
355 }
356 
357 void intel_cx0_phy_set_signal_levels(struct intel_encoder *encoder,
358 				     const struct intel_crtc_state *crtc_state)
359 {
360 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
361 	const struct intel_ddi_buf_trans *trans;
362 	enum phy phy = intel_port_to_phy(i915, encoder->port);
363 	intel_wakeref_t wakeref;
364 	int n_entries, ln;
365 
366 	wakeref = intel_cx0_phy_transaction_begin(encoder);
367 
368 	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
369 	if (drm_WARN_ON_ONCE(&i915->drm, !trans)) {
370 		intel_cx0_phy_transaction_end(encoder, wakeref);
371 		return;
372 	}
373 
374 	if (intel_is_c10phy(i915, phy)) {
375 		intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
376 			      0, C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED);
377 		intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CMN(3),
378 			      C10_CMN3_TXVBOOST_MASK,
379 			      C10_CMN3_TXVBOOST(intel_c10_get_tx_vboost_lvl(crtc_state)),
380 			      MB_WRITE_UNCOMMITTED);
381 		intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_TX(1),
382 			      C10_TX1_TERMCTL_MASK,
383 			      C10_TX1_TERMCTL(intel_c10_get_tx_term_ctl(crtc_state)),
384 			      MB_WRITE_COMMITTED);
385 	}
386 
387 	for (ln = 0; ln < crtc_state->lane_count; ln++) {
388 		int level = intel_ddi_level(encoder, crtc_state, ln);
389 		int lane, tx;
390 
391 		lane = ln / 2;
392 		tx = ln % 2;
393 
394 		intel_cx0_rmw(i915, encoder->port, BIT(lane), PHY_CX0_VDROVRD_CTL(lane, tx, 0),
395 			      C10_PHY_OVRD_LEVEL_MASK,
396 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.pre_cursor),
397 			      MB_WRITE_COMMITTED);
398 		intel_cx0_rmw(i915, encoder->port, BIT(lane), PHY_CX0_VDROVRD_CTL(lane, tx, 1),
399 			      C10_PHY_OVRD_LEVEL_MASK,
400 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.vswing),
401 			      MB_WRITE_COMMITTED);
402 		intel_cx0_rmw(i915, encoder->port, BIT(lane), PHY_CX0_VDROVRD_CTL(lane, tx, 2),
403 			      C10_PHY_OVRD_LEVEL_MASK,
404 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.post_cursor),
405 			      MB_WRITE_COMMITTED);
406 	}
407 
408 	/* Write Override enables in 0xD71 */
409 	intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_OVRD,
410 		      0, PHY_C10_VDR_OVRD_TX1 | PHY_C10_VDR_OVRD_TX2,
411 		      MB_WRITE_COMMITTED);
412 
413 	if (intel_is_c10phy(i915, phy))
414 		intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
415 			      0, C10_VDR_CTRL_UPDATE_CFG, MB_WRITE_COMMITTED);
416 
417 	intel_cx0_phy_transaction_end(encoder, wakeref);
418 }
419 
420 /*
421  * Basic DP link rates with 38.4 MHz reference clock.
422  * Note: The tables below are with SSC. In non-ssc
423  * registers 0xC04 to 0xC08(pll[4] to pll[8]) will be
424  * programmed 0.
425  */
426 
427 static const struct intel_c10pll_state mtl_c10_dp_rbr = {
428 	.clock = 162000,
429 	.tx = 0x10,
430 	.cmn = 0x21,
431 	.pll[0] = 0xB4,
432 	.pll[1] = 0,
433 	.pll[2] = 0x30,
434 	.pll[3] = 0x1,
435 	.pll[4] = 0x26,
436 	.pll[5] = 0x0C,
437 	.pll[6] = 0x98,
438 	.pll[7] = 0x46,
439 	.pll[8] = 0x1,
440 	.pll[9] = 0x1,
441 	.pll[10] = 0,
442 	.pll[11] = 0,
443 	.pll[12] = 0xC0,
444 	.pll[13] = 0,
445 	.pll[14] = 0,
446 	.pll[15] = 0x2,
447 	.pll[16] = 0x84,
448 	.pll[17] = 0x4F,
449 	.pll[18] = 0xE5,
450 	.pll[19] = 0x23,
451 };
452 
453 static const struct intel_c10pll_state mtl_c10_edp_r216 = {
454 	.clock = 216000,
455 	.tx = 0x10,
456 	.cmn = 0x21,
457 	.pll[0] = 0x4,
458 	.pll[1] = 0,
459 	.pll[2] = 0xA2,
460 	.pll[3] = 0x1,
461 	.pll[4] = 0x33,
462 	.pll[5] = 0x10,
463 	.pll[6] = 0x75,
464 	.pll[7] = 0xB3,
465 	.pll[8] = 0x1,
466 	.pll[9] = 0x1,
467 	.pll[10] = 0,
468 	.pll[11] = 0,
469 	.pll[12] = 0,
470 	.pll[13] = 0,
471 	.pll[14] = 0,
472 	.pll[15] = 0x2,
473 	.pll[16] = 0x85,
474 	.pll[17] = 0x0F,
475 	.pll[18] = 0xE6,
476 	.pll[19] = 0x23,
477 };
478 
479 static const struct intel_c10pll_state mtl_c10_edp_r243 = {
480 	.clock = 243000,
481 	.tx = 0x10,
482 	.cmn = 0x21,
483 	.pll[0] = 0x34,
484 	.pll[1] = 0,
485 	.pll[2] = 0xDA,
486 	.pll[3] = 0x1,
487 	.pll[4] = 0x39,
488 	.pll[5] = 0x12,
489 	.pll[6] = 0xE3,
490 	.pll[7] = 0xE9,
491 	.pll[8] = 0x1,
492 	.pll[9] = 0x1,
493 	.pll[10] = 0,
494 	.pll[11] = 0,
495 	.pll[12] = 0x20,
496 	.pll[13] = 0,
497 	.pll[14] = 0,
498 	.pll[15] = 0x2,
499 	.pll[16] = 0x85,
500 	.pll[17] = 0x8F,
501 	.pll[18] = 0xE6,
502 	.pll[19] = 0x23,
503 };
504 
505 static const struct intel_c10pll_state mtl_c10_dp_hbr1 = {
506 	.clock = 270000,
507 	.tx = 0x10,
508 	.cmn = 0x21,
509 	.pll[0] = 0xF4,
510 	.pll[1] = 0,
511 	.pll[2] = 0xF8,
512 	.pll[3] = 0x0,
513 	.pll[4] = 0x20,
514 	.pll[5] = 0x0A,
515 	.pll[6] = 0x29,
516 	.pll[7] = 0x10,
517 	.pll[8] = 0x1,   /* Verify */
518 	.pll[9] = 0x1,
519 	.pll[10] = 0,
520 	.pll[11] = 0,
521 	.pll[12] = 0xA0,
522 	.pll[13] = 0,
523 	.pll[14] = 0,
524 	.pll[15] = 0x1,
525 	.pll[16] = 0x84,
526 	.pll[17] = 0x4F,
527 	.pll[18] = 0xE5,
528 	.pll[19] = 0x23,
529 };
530 
531 static const struct intel_c10pll_state mtl_c10_edp_r324 = {
532 	.clock = 324000,
533 	.tx = 0x10,
534 	.cmn = 0x21,
535 	.pll[0] = 0xB4,
536 	.pll[1] = 0,
537 	.pll[2] = 0x30,
538 	.pll[3] = 0x1,
539 	.pll[4] = 0x26,
540 	.pll[5] = 0x0C,
541 	.pll[6] = 0x98,
542 	.pll[7] = 0x46,
543 	.pll[8] = 0x1,
544 	.pll[9] = 0x1,
545 	.pll[10] = 0,
546 	.pll[11] = 0,
547 	.pll[12] = 0xC0,
548 	.pll[13] = 0,
549 	.pll[14] = 0,
550 	.pll[15] = 0x1,
551 	.pll[16] = 0x85,
552 	.pll[17] = 0x4F,
553 	.pll[18] = 0xE6,
554 	.pll[19] = 0x23,
555 };
556 
557 static const struct intel_c10pll_state mtl_c10_edp_r432 = {
558 	.clock = 432000,
559 	.tx = 0x10,
560 	.cmn = 0x21,
561 	.pll[0] = 0x4,
562 	.pll[1] = 0,
563 	.pll[2] = 0xA2,
564 	.pll[3] = 0x1,
565 	.pll[4] = 0x33,
566 	.pll[5] = 0x10,
567 	.pll[6] = 0x75,
568 	.pll[7] = 0xB3,
569 	.pll[8] = 0x1,
570 	.pll[9] = 0x1,
571 	.pll[10] = 0,
572 	.pll[11] = 0,
573 	.pll[12] = 0,
574 	.pll[13] = 0,
575 	.pll[14] = 0,
576 	.pll[15] = 0x1,
577 	.pll[16] = 0x85,
578 	.pll[17] = 0x0F,
579 	.pll[18] = 0xE6,
580 	.pll[19] = 0x23,
581 };
582 
583 static const struct intel_c10pll_state mtl_c10_dp_hbr2 = {
584 	.clock = 540000,
585 	.tx = 0x10,
586 	.cmn = 0x21,
587 	.pll[0] = 0xF4,
588 	.pll[1] = 0,
589 	.pll[2] = 0xF8,
590 	.pll[3] = 0,
591 	.pll[4] = 0x20,
592 	.pll[5] = 0x0A,
593 	.pll[6] = 0x29,
594 	.pll[7] = 0x10,
595 	.pll[8] = 0x1,
596 	.pll[9] = 0x1,
597 	.pll[10] = 0,
598 	.pll[11] = 0,
599 	.pll[12] = 0xA0,
600 	.pll[13] = 0,
601 	.pll[14] = 0,
602 	.pll[15] = 0,
603 	.pll[16] = 0x84,
604 	.pll[17] = 0x4F,
605 	.pll[18] = 0xE5,
606 	.pll[19] = 0x23,
607 };
608 
609 static const struct intel_c10pll_state mtl_c10_edp_r675 = {
610 	.clock = 675000,
611 	.tx = 0x10,
612 	.cmn = 0x21,
613 	.pll[0] = 0xB4,
614 	.pll[1] = 0,
615 	.pll[2] = 0x3E,
616 	.pll[3] = 0x1,
617 	.pll[4] = 0xA8,
618 	.pll[5] = 0x0C,
619 	.pll[6] = 0x33,
620 	.pll[7] = 0x54,
621 	.pll[8] = 0x1,
622 	.pll[9] = 0x1,
623 	.pll[10] = 0,
624 	.pll[11] = 0,
625 	.pll[12] = 0xC8,
626 	.pll[13] = 0,
627 	.pll[14] = 0,
628 	.pll[15] = 0,
629 	.pll[16] = 0x85,
630 	.pll[17] = 0x8F,
631 	.pll[18] = 0xE6,
632 	.pll[19] = 0x23,
633 };
634 
635 static const struct intel_c10pll_state mtl_c10_dp_hbr3 = {
636 	.clock = 810000,
637 	.tx = 0x10,
638 	.cmn = 0x21,
639 	.pll[0] = 0x34,
640 	.pll[1] = 0,
641 	.pll[2] = 0x84,
642 	.pll[3] = 0x1,
643 	.pll[4] = 0x30,
644 	.pll[5] = 0x0F,
645 	.pll[6] = 0x3D,
646 	.pll[7] = 0x98,
647 	.pll[8] = 0x1,
648 	.pll[9] = 0x1,
649 	.pll[10] = 0,
650 	.pll[11] = 0,
651 	.pll[12] = 0xF0,
652 	.pll[13] = 0,
653 	.pll[14] = 0,
654 	.pll[15] = 0,
655 	.pll[16] = 0x84,
656 	.pll[17] = 0x0F,
657 	.pll[18] = 0xE5,
658 	.pll[19] = 0x23,
659 };
660 
661 static const struct intel_c10pll_state * const mtl_c10_dp_tables[] = {
662 	&mtl_c10_dp_rbr,
663 	&mtl_c10_dp_hbr1,
664 	&mtl_c10_dp_hbr2,
665 	&mtl_c10_dp_hbr3,
666 	NULL,
667 };
668 
669 static const struct intel_c10pll_state * const mtl_c10_edp_tables[] = {
670 	&mtl_c10_dp_rbr,
671 	&mtl_c10_edp_r216,
672 	&mtl_c10_edp_r243,
673 	&mtl_c10_dp_hbr1,
674 	&mtl_c10_edp_r324,
675 	&mtl_c10_edp_r432,
676 	&mtl_c10_dp_hbr2,
677 	&mtl_c10_edp_r675,
678 	&mtl_c10_dp_hbr3,
679 	NULL,
680 };
681 
682 /* C20 basic DP 1.4 tables */
683 static const struct intel_c20pll_state mtl_c20_dp_rbr = {
684 	.link_bit_rate = 162000,
685 	.clock = 162000,
686 	.tx = {	0xbe88, /* tx cfg0 */
687 		0x5800, /* tx cfg1 */
688 		0x0000, /* tx cfg2 */
689 		},
690 	.cmn = {0x0500, /* cmn cfg0*/
691 		0x0005, /* cmn cfg1 */
692 		0x0000, /* cmn cfg2 */
693 		0x0000, /* cmn cfg3 */
694 		},
695 	.mpllb = { 0x50a8,	/* mpllb cfg0 */
696 		0x2120,		/* mpllb cfg1 */
697 		0xcd9a,		/* mpllb cfg2 */
698 		0xbfc1,		/* mpllb cfg3 */
699 		0x5ab8,         /* mpllb cfg4 */
700 		0x4c34,         /* mpllb cfg5 */
701 		0x2000,		/* mpllb cfg6 */
702 		0x0001,		/* mpllb cfg7 */
703 		0x6000,		/* mpllb cfg8 */
704 		0x0000,		/* mpllb cfg9 */
705 		0x0000,		/* mpllb cfg10 */
706 		},
707 };
708 
709 static const struct intel_c20pll_state mtl_c20_dp_hbr1 = {
710 	.link_bit_rate = 270000,
711 	.clock = 270000,
712 	.tx = {	0xbe88, /* tx cfg0 */
713 		0x4800, /* tx cfg1 */
714 		0x0000, /* tx cfg2 */
715 		},
716 	.cmn = {0x0500, /* cmn cfg0*/
717 		0x0005, /* cmn cfg1 */
718 		0x0000, /* cmn cfg2 */
719 		0x0000, /* cmn cfg3 */
720 		},
721 	.mpllb = { 0x308c,	/* mpllb cfg0 */
722 		0x2110,		/* mpllb cfg1 */
723 		0xcc9c,		/* mpllb cfg2 */
724 		0xbfc1,		/* mpllb cfg3 */
725 		0x4b9a,         /* mpllb cfg4 */
726 		0x3f81,         /* mpllb cfg5 */
727 		0x2000,		/* mpllb cfg6 */
728 		0x0001,		/* mpllb cfg7 */
729 		0x5000,		/* mpllb cfg8 */
730 		0x0000,		/* mpllb cfg9 */
731 		0x0000,		/* mpllb cfg10 */
732 		},
733 };
734 
735 static const struct intel_c20pll_state mtl_c20_dp_hbr2 = {
736 	.link_bit_rate = 540000,
737 	.clock = 540000,
738 	.tx = {	0xbe88, /* tx cfg0 */
739 		0x4800, /* tx cfg1 */
740 		0x0000, /* tx cfg2 */
741 		},
742 	.cmn = {0x0500, /* cmn cfg0*/
743 		0x0005, /* cmn cfg1 */
744 		0x0000, /* cmn cfg2 */
745 		0x0000, /* cmn cfg3 */
746 		},
747 	.mpllb = { 0x108c,	/* mpllb cfg0 */
748 		0x2108,		/* mpllb cfg1 */
749 		0xcc9c,		/* mpllb cfg2 */
750 		0xbfc1,		/* mpllb cfg3 */
751 		0x4b9a,         /* mpllb cfg4 */
752 		0x3f81,         /* mpllb cfg5 */
753 		0x2000,		/* mpllb cfg6 */
754 		0x0001,		/* mpllb cfg7 */
755 		0x5000,		/* mpllb cfg8 */
756 		0x0000,		/* mpllb cfg9 */
757 		0x0000,		/* mpllb cfg10 */
758 		},
759 };
760 
761 static const struct intel_c20pll_state mtl_c20_dp_hbr3 = {
762 	.link_bit_rate = 810000,
763 	.clock = 810000,
764 	.tx = {	0xbe88, /* tx cfg0 */
765 		0x4800, /* tx cfg1 */
766 		0x0000, /* tx cfg2 */
767 		},
768 	.cmn = {0x0500, /* cmn cfg0*/
769 		0x0005, /* cmn cfg1 */
770 		0x0000, /* cmn cfg2 */
771 		0x0000, /* cmn cfg3 */
772 		},
773 	.mpllb = { 0x10d2,	/* mpllb cfg0 */
774 		0x2108,		/* mpllb cfg1 */
775 		0x8d98,		/* mpllb cfg2 */
776 		0xbfc1,		/* mpllb cfg3 */
777 		0x7166,         /* mpllb cfg4 */
778 		0x5f42,         /* mpllb cfg5 */
779 		0x2000,		/* mpllb cfg6 */
780 		0x0001,		/* mpllb cfg7 */
781 		0x7800,		/* mpllb cfg8 */
782 		0x0000,		/* mpllb cfg9 */
783 		0x0000,		/* mpllb cfg10 */
784 		},
785 };
786 
787 /* C20 basic DP 2.0 tables */
788 static const struct intel_c20pll_state mtl_c20_dp_uhbr10 = {
789 	.link_bit_rate = 1000000, /* 10 Gbps */
790 	.clock = 312500,
791 	.tx = {	0xbe21, /* tx cfg0 */
792 		0x4800, /* tx cfg1 */
793 		0x0000, /* tx cfg2 */
794 		},
795 	.cmn = {0x0500, /* cmn cfg0*/
796 		0x0005, /* cmn cfg1 */
797 		0x0000, /* cmn cfg2 */
798 		0x0000, /* cmn cfg3 */
799 		},
800 	.mplla = { 0x3104,	/* mplla cfg0 */
801 		0xd105,		/* mplla cfg1 */
802 		0xc025,		/* mplla cfg2 */
803 		0xc025,		/* mplla cfg3 */
804 		0x8c00,		/* mplla cfg4 */
805 		0x759a,		/* mplla cfg5 */
806 		0x4000,		/* mplla cfg6 */
807 		0x0003,		/* mplla cfg7 */
808 		0x3555,		/* mplla cfg8 */
809 		0x0001,		/* mplla cfg9 */
810 		},
811 };
812 
813 static const struct intel_c20pll_state mtl_c20_dp_uhbr13_5 = {
814 	.link_bit_rate = 1350000, /* 13.5 Gbps */
815 	.clock = 421875,
816 	.tx = {	0xbea0, /* tx cfg0 */
817 		0x4800, /* tx cfg1 */
818 		0x0000, /* tx cfg2 */
819 		},
820 	.cmn = {0x0500, /* cmn cfg0*/
821 		0x0005, /* cmn cfg1 */
822 		0x0000, /* cmn cfg2 */
823 		0x0000, /* cmn cfg3 */
824 		},
825 	.mpllb = { 0x015f,	/* mpllb cfg0 */
826 		0x2205,		/* mpllb cfg1 */
827 		0x1b17,		/* mpllb cfg2 */
828 		0xffc1,		/* mpllb cfg3 */
829 		0xe100,		/* mpllb cfg4 */
830 		0xbd00,		/* mpllb cfg5 */
831 		0x2000,		/* mpllb cfg6 */
832 		0x0001,		/* mpllb cfg7 */
833 		0x4800,		/* mpllb cfg8 */
834 		0x0000,		/* mpllb cfg9 */
835 		0x0000,		/* mpllb cfg10 */
836 		},
837 };
838 
839 static const struct intel_c20pll_state mtl_c20_dp_uhbr20 = {
840 	.link_bit_rate = 2000000, /* 20 Gbps */
841 	.clock = 625000,
842 	.tx = {	0xbe20, /* tx cfg0 */
843 		0x4800, /* tx cfg1 */
844 		0x0000, /* tx cfg2 */
845 		},
846 	.cmn = {0x0500, /* cmn cfg0*/
847 		0x0005, /* cmn cfg1 */
848 		0x0000, /* cmn cfg2 */
849 		0x0000, /* cmn cfg3 */
850 		},
851 	.mplla = { 0x3104,	/* mplla cfg0 */
852 		0xd105,		/* mplla cfg1 */
853 		0xc025,		/* mplla cfg2 */
854 		0xc025,		/* mplla cfg3 */
855 		0xa6ab,		/* mplla cfg4 */
856 		0x8c00,		/* mplla cfg5 */
857 		0x4000,		/* mplla cfg6 */
858 		0x0003,		/* mplla cfg7 */
859 		0x3555,		/* mplla cfg8 */
860 		0x0001,		/* mplla cfg9 */
861 		},
862 };
863 
864 static const struct intel_c20pll_state * const mtl_c20_dp_tables[] = {
865 	&mtl_c20_dp_rbr,
866 	&mtl_c20_dp_hbr1,
867 	&mtl_c20_dp_hbr2,
868 	&mtl_c20_dp_hbr3,
869 	&mtl_c20_dp_uhbr10,
870 	&mtl_c20_dp_uhbr13_5,
871 	&mtl_c20_dp_uhbr20,
872 	NULL,
873 };
874 
875 /*
876  * HDMI link rates with 38.4 MHz reference clock.
877  */
878 
879 static const struct intel_c10pll_state mtl_c10_hdmi_25_2 = {
880 	.clock = 25200,
881 	.tx = 0x10,
882 	.cmn = 0x1,
883 	.pll[0] = 0x4,
884 	.pll[1] = 0,
885 	.pll[2] = 0xB2,
886 	.pll[3] = 0,
887 	.pll[4] = 0,
888 	.pll[5] = 0,
889 	.pll[6] = 0,
890 	.pll[7] = 0,
891 	.pll[8] = 0x20,
892 	.pll[9] = 0x1,
893 	.pll[10] = 0,
894 	.pll[11] = 0,
895 	.pll[12] = 0,
896 	.pll[13] = 0,
897 	.pll[14] = 0,
898 	.pll[15] = 0xD,
899 	.pll[16] = 0x6,
900 	.pll[17] = 0x8F,
901 	.pll[18] = 0x84,
902 	.pll[19] = 0x23,
903 };
904 
905 static const struct intel_c10pll_state mtl_c10_hdmi_27_0 = {
906 	.clock = 27000,
907 	.tx = 0x10,
908 	.cmn = 0x1,
909 	.pll[0] = 0x34,
910 	.pll[1] = 0,
911 	.pll[2] = 0xC0,
912 	.pll[3] = 0,
913 	.pll[4] = 0,
914 	.pll[5] = 0,
915 	.pll[6] = 0,
916 	.pll[7] = 0,
917 	.pll[8] = 0x20,
918 	.pll[9] = 0x1,
919 	.pll[10] = 0,
920 	.pll[11] = 0,
921 	.pll[12] = 0x80,
922 	.pll[13] = 0,
923 	.pll[14] = 0,
924 	.pll[15] = 0xD,
925 	.pll[16] = 0x6,
926 	.pll[17] = 0xCF,
927 	.pll[18] = 0x84,
928 	.pll[19] = 0x23,
929 };
930 
931 static const struct intel_c10pll_state mtl_c10_hdmi_74_25 = {
932 	.clock = 74250,
933 	.tx = 0x10,
934 	.cmn = 0x1,
935 	.pll[0] = 0xF4,
936 	.pll[1] = 0,
937 	.pll[2] = 0x7A,
938 	.pll[3] = 0,
939 	.pll[4] = 0,
940 	.pll[5] = 0,
941 	.pll[6] = 0,
942 	.pll[7] = 0,
943 	.pll[8] = 0x20,
944 	.pll[9] = 0x1,
945 	.pll[10] = 0,
946 	.pll[11] = 0,
947 	.pll[12] = 0x58,
948 	.pll[13] = 0,
949 	.pll[14] = 0,
950 	.pll[15] = 0xB,
951 	.pll[16] = 0x6,
952 	.pll[17] = 0xF,
953 	.pll[18] = 0x85,
954 	.pll[19] = 0x23,
955 };
956 
957 static const struct intel_c10pll_state mtl_c10_hdmi_148_5 = {
958 	.clock = 148500,
959 	.tx = 0x10,
960 	.cmn = 0x1,
961 	.pll[0] = 0xF4,
962 	.pll[1] = 0,
963 	.pll[2] = 0x7A,
964 	.pll[3] = 0,
965 	.pll[4] = 0,
966 	.pll[5] = 0,
967 	.pll[6] = 0,
968 	.pll[7] = 0,
969 	.pll[8] = 0x20,
970 	.pll[9] = 0x1,
971 	.pll[10] = 0,
972 	.pll[11] = 0,
973 	.pll[12] = 0x58,
974 	.pll[13] = 0,
975 	.pll[14] = 0,
976 	.pll[15] = 0xA,
977 	.pll[16] = 0x6,
978 	.pll[17] = 0xF,
979 	.pll[18] = 0x85,
980 	.pll[19] = 0x23,
981 };
982 
983 static const struct intel_c10pll_state mtl_c10_hdmi_594 = {
984 	.clock = 594000,
985 	.tx = 0x10,
986 	.cmn = 0x1,
987 	.pll[0] = 0xF4,
988 	.pll[1] = 0,
989 	.pll[2] = 0x7A,
990 	.pll[3] = 0,
991 	.pll[4] = 0,
992 	.pll[5] = 0,
993 	.pll[6] = 0,
994 	.pll[7] = 0,
995 	.pll[8] = 0x20,
996 	.pll[9] = 0x1,
997 	.pll[10] = 0,
998 	.pll[11] = 0,
999 	.pll[12] = 0x58,
1000 	.pll[13] = 0,
1001 	.pll[14] = 0,
1002 	.pll[15] = 0x8,
1003 	.pll[16] = 0x6,
1004 	.pll[17] = 0xF,
1005 	.pll[18] = 0x85,
1006 	.pll[19] = 0x23,
1007 };
1008 
1009 /* Precomputed C10 HDMI PLL tables */
1010 static const struct intel_c10pll_state mtl_c10_hdmi_27027 = {
1011 	.clock = 27027,
1012 	.tx = 0x10,
1013 	.cmn = 0x1,
1014 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1015 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1016 	.pll[10] = 0xFF, .pll[11] = 0xCC, .pll[12] = 0x9C, .pll[13] = 0xCB, .pll[14] = 0xCC,
1017 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1018 };
1019 
1020 static const struct intel_c10pll_state mtl_c10_hdmi_28320 = {
1021 	.clock = 28320,
1022 	.tx = 0x10,
1023 	.cmn = 0x1,
1024 	.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xCC, .pll[3] = 0x00, .pll[4] = 0x00,
1025 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1026 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1027 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1028 };
1029 
1030 static const struct intel_c10pll_state mtl_c10_hdmi_30240 = {
1031 	.clock = 30240,
1032 	.tx = 0x10,
1033 	.cmn = 0x1,
1034 	.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xDC, .pll[3] = 0x00, .pll[4] = 0x00,
1035 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1036 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1037 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1038 };
1039 
1040 static const struct intel_c10pll_state mtl_c10_hdmi_31500 = {
1041 	.clock = 31500,
1042 	.tx = 0x10,
1043 	.cmn = 0x1,
1044 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x62, .pll[3] = 0x00, .pll[4] = 0x00,
1045 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1046 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xA0, .pll[13] = 0x00, .pll[14] = 0x00,
1047 	.pll[15] = 0x0C, .pll[16] = 0x09, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1048 };
1049 
1050 static const struct intel_c10pll_state mtl_c10_hdmi_36000 = {
1051 	.clock = 36000,
1052 	.tx = 0x10,
1053 	.cmn = 0x1,
1054 	.pll[0] = 0xC4, .pll[1] = 0x00, .pll[2] = 0x76, .pll[3] = 0x00, .pll[4] = 0x00,
1055 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1056 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1057 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1058 };
1059 
1060 static const struct intel_c10pll_state mtl_c10_hdmi_40000 = {
1061 	.clock = 40000,
1062 	.tx = 0x10,
1063 	.cmn = 0x1,
1064 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1065 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1066 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x55, .pll[13] = 0x55, .pll[14] = 0x55,
1067 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1068 };
1069 
1070 static const struct intel_c10pll_state mtl_c10_hdmi_49500 = {
1071 	.clock = 49500,
1072 	.tx = 0x10,
1073 	.cmn = 0x1,
1074 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1075 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1076 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1077 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1078 };
1079 
1080 static const struct intel_c10pll_state mtl_c10_hdmi_50000 = {
1081 	.clock = 50000,
1082 	.tx = 0x10,
1083 	.cmn = 0x1,
1084 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xB0, .pll[3] = 0x00, .pll[4] = 0x00,
1085 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1086 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x2A, .pll[13] = 0xA9, .pll[14] = 0xAA,
1087 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1088 };
1089 
1090 static const struct intel_c10pll_state mtl_c10_hdmi_57284 = {
1091 	.clock = 57284,
1092 	.tx = 0x10,
1093 	.cmn = 0x1,
1094 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xCE, .pll[3] = 0x00, .pll[4] = 0x00,
1095 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1096 	.pll[10] = 0xFF, .pll[11] = 0x77, .pll[12] = 0x57, .pll[13] = 0x77, .pll[14] = 0x77,
1097 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1098 };
1099 
1100 static const struct intel_c10pll_state mtl_c10_hdmi_58000 = {
1101 	.clock = 58000,
1102 	.tx = 0x10,
1103 	.cmn = 0x1,
1104 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1105 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1106 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xD5, .pll[13] = 0x55, .pll[14] = 0x55,
1107 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1108 };
1109 
1110 static const struct intel_c10pll_state mtl_c10_hdmi_65000 = {
1111 	.clock = 65000,
1112 	.tx = 0x10,
1113 	.cmn = 0x1,
1114 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x66, .pll[3] = 0x00, .pll[4] = 0x00,
1115 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1116 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xB5, .pll[13] = 0x55, .pll[14] = 0x55,
1117 	.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1118 };
1119 
1120 static const struct intel_c10pll_state mtl_c10_hdmi_71000 = {
1121 	.clock = 71000,
1122 	.tx = 0x10,
1123 	.cmn = 0x1,
1124 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x72, .pll[3] = 0x00, .pll[4] = 0x00,
1125 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1126 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1127 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1128 };
1129 
1130 static const struct intel_c10pll_state mtl_c10_hdmi_74176 = {
1131 	.clock = 74176,
1132 	.tx = 0x10,
1133 	.cmn = 0x1,
1134 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1135 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1136 	.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1137 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1138 };
1139 
1140 static const struct intel_c10pll_state mtl_c10_hdmi_75000 = {
1141 	.clock = 75000,
1142 	.tx = 0x10,
1143 	.cmn = 0x1,
1144 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7C, .pll[3] = 0x00, .pll[4] = 0x00,
1145 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1146 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1147 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1148 };
1149 
1150 static const struct intel_c10pll_state mtl_c10_hdmi_78750 = {
1151 	.clock = 78750,
1152 	.tx = 0x10,
1153 	.cmn = 0x1,
1154 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x84, .pll[3] = 0x00, .pll[4] = 0x00,
1155 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1156 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x08, .pll[13] = 0x00, .pll[14] = 0x00,
1157 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1158 };
1159 
1160 static const struct intel_c10pll_state mtl_c10_hdmi_85500 = {
1161 	.clock = 85500,
1162 	.tx = 0x10,
1163 	.cmn = 0x1,
1164 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x92, .pll[3] = 0x00, .pll[4] = 0x00,
1165 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1166 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x10, .pll[13] = 0x00, .pll[14] = 0x00,
1167 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1168 };
1169 
1170 static const struct intel_c10pll_state mtl_c10_hdmi_88750 = {
1171 	.clock = 88750,
1172 	.tx = 0x10,
1173 	.cmn = 0x1,
1174 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0x98, .pll[3] = 0x00, .pll[4] = 0x00,
1175 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1176 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x72, .pll[13] = 0xA9, .pll[14] = 0xAA,
1177 	.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1178 };
1179 
1180 static const struct intel_c10pll_state mtl_c10_hdmi_106500 = {
1181 	.clock = 106500,
1182 	.tx = 0x10,
1183 	.cmn = 0x1,
1184 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBC, .pll[3] = 0x00, .pll[4] = 0x00,
1185 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1186 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xF0, .pll[13] = 0x00, .pll[14] = 0x00,
1187 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1188 };
1189 
1190 static const struct intel_c10pll_state mtl_c10_hdmi_108000 = {
1191 	.clock = 108000,
1192 	.tx = 0x10,
1193 	.cmn = 0x1,
1194 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1195 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1196 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x80, .pll[13] = 0x00, .pll[14] = 0x00,
1197 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1198 };
1199 
1200 static const struct intel_c10pll_state mtl_c10_hdmi_115500 = {
1201 	.clock = 115500,
1202 	.tx = 0x10,
1203 	.cmn = 0x1,
1204 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1205 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1206 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1207 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1208 };
1209 
1210 static const struct intel_c10pll_state mtl_c10_hdmi_119000 = {
1211 	.clock = 119000,
1212 	.tx = 0x10,
1213 	.cmn = 0x1,
1214 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD6, .pll[3] = 0x00, .pll[4] = 0x00,
1215 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1216 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1217 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1218 };
1219 
1220 static const struct intel_c10pll_state mtl_c10_hdmi_135000 = {
1221 	.clock = 135000,
1222 	.tx = 0x10,
1223 	.cmn = 0x1,
1224 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6C, .pll[3] = 0x00, .pll[4] = 0x00,
1225 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1226 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1227 	.pll[15] = 0x0A, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1228 };
1229 
1230 static const struct intel_c10pll_state mtl_c10_hdmi_138500 = {
1231 	.clock = 138500,
1232 	.tx = 0x10,
1233 	.cmn = 0x1,
1234 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x70, .pll[3] = 0x00, .pll[4] = 0x00,
1235 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1236 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x22, .pll[13] = 0xA9, .pll[14] = 0xAA,
1237 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1238 };
1239 
1240 static const struct intel_c10pll_state mtl_c10_hdmi_147160 = {
1241 	.clock = 147160,
1242 	.tx = 0x10,
1243 	.cmn = 0x1,
1244 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x78, .pll[3] = 0x00, .pll[4] = 0x00,
1245 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1246 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xA5, .pll[13] = 0x55, .pll[14] = 0x55,
1247 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1248 };
1249 
1250 static const struct intel_c10pll_state mtl_c10_hdmi_148352 = {
1251 	.clock = 148352,
1252 	.tx = 0x10,
1253 	.cmn = 0x1,
1254 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1255 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1256 	.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1257 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1258 };
1259 
1260 static const struct intel_c10pll_state mtl_c10_hdmi_154000 = {
1261 	.clock = 154000,
1262 	.tx = 0x10,
1263 	.cmn = 0x1,
1264 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x80, .pll[3] = 0x00, .pll[4] = 0x00,
1265 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1266 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x35, .pll[13] = 0x55, .pll[14] = 0x55,
1267 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1268 };
1269 
1270 static const struct intel_c10pll_state mtl_c10_hdmi_162000 = {
1271 	.clock = 162000,
1272 	.tx = 0x10,
1273 	.cmn = 0x1,
1274 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x88, .pll[3] = 0x00, .pll[4] = 0x00,
1275 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1276 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x60, .pll[13] = 0x00, .pll[14] = 0x00,
1277 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1278 };
1279 
1280 static const struct intel_c10pll_state mtl_c10_hdmi_167000 = {
1281 	.clock = 167000,
1282 	.tx = 0x10,
1283 	.cmn = 0x1,
1284 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x8C, .pll[3] = 0x00, .pll[4] = 0x00,
1285 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1286 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0xFA, .pll[13] = 0xA9, .pll[14] = 0xAA,
1287 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1288 };
1289 
1290 static const struct intel_c10pll_state mtl_c10_hdmi_197802 = {
1291 	.clock = 197802,
1292 	.tx = 0x10,
1293 	.cmn = 0x1,
1294 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1295 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1296 	.pll[10] = 0xFF, .pll[11] = 0x99, .pll[12] = 0x05, .pll[13] = 0x98, .pll[14] = 0x99,
1297 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1298 };
1299 
1300 static const struct intel_c10pll_state mtl_c10_hdmi_198000 = {
1301 	.clock = 198000,
1302 	.tx = 0x10,
1303 	.cmn = 0x1,
1304 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1305 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1306 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1307 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1308 };
1309 
1310 static const struct intel_c10pll_state mtl_c10_hdmi_209800 = {
1311 	.clock = 209800,
1312 	.tx = 0x10,
1313 	.cmn = 0x1,
1314 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBA, .pll[3] = 0x00, .pll[4] = 0x00,
1315 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1316 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x45, .pll[13] = 0x55, .pll[14] = 0x55,
1317 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1318 };
1319 
1320 static const struct intel_c10pll_state mtl_c10_hdmi_241500 = {
1321 	.clock = 241500,
1322 	.tx = 0x10,
1323 	.cmn = 0x1,
1324 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xDA, .pll[3] = 0x00, .pll[4] = 0x00,
1325 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1326 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xC8, .pll[13] = 0x00, .pll[14] = 0x00,
1327 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1328 };
1329 
1330 static const struct intel_c10pll_state mtl_c10_hdmi_262750 = {
1331 	.clock = 262750,
1332 	.tx = 0x10,
1333 	.cmn = 0x1,
1334 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x68, .pll[3] = 0x00, .pll[4] = 0x00,
1335 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1336 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x6C, .pll[13] = 0xA9, .pll[14] = 0xAA,
1337 	.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1338 };
1339 
1340 static const struct intel_c10pll_state mtl_c10_hdmi_268500 = {
1341 	.clock = 268500,
1342 	.tx = 0x10,
1343 	.cmn = 0x1,
1344 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6A, .pll[3] = 0x00, .pll[4] = 0x00,
1345 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1346 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xEC, .pll[13] = 0x00, .pll[14] = 0x00,
1347 	.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1348 };
1349 
1350 static const struct intel_c10pll_state mtl_c10_hdmi_296703 = {
1351 	.clock = 296703,
1352 	.tx = 0x10,
1353 	.cmn = 0x1,
1354 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1355 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1356 	.pll[10] = 0xFF, .pll[11] = 0x33, .pll[12] = 0x44, .pll[13] = 0x33, .pll[14] = 0x33,
1357 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1358 };
1359 
1360 static const struct intel_c10pll_state mtl_c10_hdmi_297000 = {
1361 	.clock = 297000,
1362 	.tx = 0x10,
1363 	.cmn = 0x1,
1364 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1365 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1366 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x58, .pll[13] = 0x00, .pll[14] = 0x00,
1367 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1368 };
1369 
1370 static const struct intel_c10pll_state mtl_c10_hdmi_319750 = {
1371 	.clock = 319750,
1372 	.tx = 0x10,
1373 	.cmn = 0x1,
1374 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1375 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1376 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x44, .pll[13] = 0xA9, .pll[14] = 0xAA,
1377 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1378 };
1379 
1380 static const struct intel_c10pll_state mtl_c10_hdmi_497750 = {
1381 	.clock = 497750,
1382 	.tx = 0x10,
1383 	.cmn = 0x1,
1384 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xE2, .pll[3] = 0x00, .pll[4] = 0x00,
1385 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1386 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x9F, .pll[13] = 0x55, .pll[14] = 0x55,
1387 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1388 };
1389 
1390 static const struct intel_c10pll_state mtl_c10_hdmi_592000 = {
1391 	.clock = 592000,
1392 	.tx = 0x10,
1393 	.cmn = 0x1,
1394 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1395 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1396 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x15, .pll[13] = 0x55, .pll[14] = 0x55,
1397 	.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1398 };
1399 
1400 static const struct intel_c10pll_state mtl_c10_hdmi_593407 = {
1401 	.clock = 593407,
1402 	.tx = 0x10,
1403 	.cmn = 0x1,
1404 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1405 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1406 	.pll[10] = 0xFF, .pll[11] = 0x3B, .pll[12] = 0x44, .pll[13] = 0xBA, .pll[14] = 0xBB,
1407 	.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1408 };
1409 
1410 static const struct intel_c10pll_state * const mtl_c10_hdmi_tables[] = {
1411 	&mtl_c10_hdmi_25_2, /* Consolidated Table */
1412 	&mtl_c10_hdmi_27_0, /* Consolidated Table */
1413 	&mtl_c10_hdmi_27027,
1414 	&mtl_c10_hdmi_28320,
1415 	&mtl_c10_hdmi_30240,
1416 	&mtl_c10_hdmi_31500,
1417 	&mtl_c10_hdmi_36000,
1418 	&mtl_c10_hdmi_40000,
1419 	&mtl_c10_hdmi_49500,
1420 	&mtl_c10_hdmi_50000,
1421 	&mtl_c10_hdmi_57284,
1422 	&mtl_c10_hdmi_58000,
1423 	&mtl_c10_hdmi_65000,
1424 	&mtl_c10_hdmi_71000,
1425 	&mtl_c10_hdmi_74176,
1426 	&mtl_c10_hdmi_74_25, /* Consolidated Table */
1427 	&mtl_c10_hdmi_75000,
1428 	&mtl_c10_hdmi_78750,
1429 	&mtl_c10_hdmi_85500,
1430 	&mtl_c10_hdmi_88750,
1431 	&mtl_c10_hdmi_106500,
1432 	&mtl_c10_hdmi_108000,
1433 	&mtl_c10_hdmi_115500,
1434 	&mtl_c10_hdmi_119000,
1435 	&mtl_c10_hdmi_135000,
1436 	&mtl_c10_hdmi_138500,
1437 	&mtl_c10_hdmi_147160,
1438 	&mtl_c10_hdmi_148352,
1439 	&mtl_c10_hdmi_148_5, /* Consolidated Table */
1440 	&mtl_c10_hdmi_154000,
1441 	&mtl_c10_hdmi_162000,
1442 	&mtl_c10_hdmi_167000,
1443 	&mtl_c10_hdmi_197802,
1444 	&mtl_c10_hdmi_198000,
1445 	&mtl_c10_hdmi_209800,
1446 	&mtl_c10_hdmi_241500,
1447 	&mtl_c10_hdmi_262750,
1448 	&mtl_c10_hdmi_268500,
1449 	&mtl_c10_hdmi_296703,
1450 	&mtl_c10_hdmi_297000,
1451 	&mtl_c10_hdmi_319750,
1452 	&mtl_c10_hdmi_497750,
1453 	&mtl_c10_hdmi_592000,
1454 	&mtl_c10_hdmi_593407,
1455 	&mtl_c10_hdmi_594, /* Consolidated Table */
1456 	NULL,
1457 };
1458 
1459 static const struct intel_c20pll_state mtl_c20_hdmi_25_175 = {
1460 	.link_bit_rate = 25175,
1461 	.clock = 25175,
1462 	.tx = {  0xbe88, /* tx cfg0 */
1463 		  0x9800, /* tx cfg1 */
1464 		  0x0000, /* tx cfg2 */
1465 		},
1466 	.cmn = { 0x0500, /* cmn cfg0*/
1467 		  0x0005, /* cmn cfg1 */
1468 		  0x0000, /* cmn cfg2 */
1469 		  0x0000, /* cmn cfg3 */
1470 		},
1471 	.mpllb = { 0xa0d2,	/* mpllb cfg0 */
1472 		   0x7d80,	/* mpllb cfg1 */
1473 		   0x0906,	/* mpllb cfg2 */
1474 		   0xbe40,	/* mpllb cfg3 */
1475 		   0x0000,	/* mpllb cfg4 */
1476 		   0x0000,	/* mpllb cfg5 */
1477 		   0x0200,	/* mpllb cfg6 */
1478 		   0x0001,	/* mpllb cfg7 */
1479 		   0x0000,	/* mpllb cfg8 */
1480 		   0x0000,	/* mpllb cfg9 */
1481 		   0x0001,	/* mpllb cfg10 */
1482 		},
1483 };
1484 
1485 static const struct intel_c20pll_state mtl_c20_hdmi_27_0 = {
1486 	.link_bit_rate = 27000,
1487 	.clock = 27000,
1488 	.tx = {  0xbe88, /* tx cfg0 */
1489 		  0x9800, /* tx cfg1 */
1490 		  0x0000, /* tx cfg2 */
1491 		},
1492 	.cmn = { 0x0500, /* cmn cfg0*/
1493 		  0x0005, /* cmn cfg1 */
1494 		  0x0000, /* cmn cfg2 */
1495 		  0x0000, /* cmn cfg3 */
1496 		},
1497 	.mpllb = { 0xa0e0,	/* mpllb cfg0 */
1498 		   0x7d80,	/* mpllb cfg1 */
1499 		   0x0906,	/* mpllb cfg2 */
1500 		   0xbe40,	/* mpllb cfg3 */
1501 		   0x0000,	/* mpllb cfg4 */
1502 		   0x0000,	/* mpllb cfg5 */
1503 		   0x2200,	/* mpllb cfg6 */
1504 		   0x0001,	/* mpllb cfg7 */
1505 		   0x8000,	/* mpllb cfg8 */
1506 		   0x0000,	/* mpllb cfg9 */
1507 		   0x0001,	/* mpllb cfg10 */
1508 		},
1509 };
1510 
1511 static const struct intel_c20pll_state mtl_c20_hdmi_74_25 = {
1512 	.link_bit_rate = 74250,
1513 	.clock = 74250,
1514 	.tx = {  0xbe88, /* tx cfg0 */
1515 		  0x9800, /* tx cfg1 */
1516 		  0x0000, /* tx cfg2 */
1517 		},
1518 	.cmn = { 0x0500, /* cmn cfg0*/
1519 		  0x0005, /* cmn cfg1 */
1520 		  0x0000, /* cmn cfg2 */
1521 		  0x0000, /* cmn cfg3 */
1522 		},
1523 	.mpllb = { 0x609a,	/* mpllb cfg0 */
1524 		   0x7d40,	/* mpllb cfg1 */
1525 		   0xca06,	/* mpllb cfg2 */
1526 		   0xbe40,	/* mpllb cfg3 */
1527 		   0x0000,	/* mpllb cfg4 */
1528 		   0x0000,	/* mpllb cfg5 */
1529 		   0x2200,	/* mpllb cfg6 */
1530 		   0x0001,	/* mpllb cfg7 */
1531 		   0x5800,	/* mpllb cfg8 */
1532 		   0x0000,	/* mpllb cfg9 */
1533 		   0x0001,	/* mpllb cfg10 */
1534 		},
1535 };
1536 
1537 static const struct intel_c20pll_state mtl_c20_hdmi_148_5 = {
1538 	.link_bit_rate = 148500,
1539 	.clock = 148500,
1540 	.tx = {  0xbe88, /* tx cfg0 */
1541 		  0x9800, /* tx cfg1 */
1542 		  0x0000, /* tx cfg2 */
1543 		},
1544 	.cmn = { 0x0500, /* cmn cfg0*/
1545 		  0x0005, /* cmn cfg1 */
1546 		  0x0000, /* cmn cfg2 */
1547 		  0x0000, /* cmn cfg3 */
1548 		},
1549 	.mpllb = { 0x409a,	/* mpllb cfg0 */
1550 		   0x7d20,	/* mpllb cfg1 */
1551 		   0xca06,	/* mpllb cfg2 */
1552 		   0xbe40,	/* mpllb cfg3 */
1553 		   0x0000,	/* mpllb cfg4 */
1554 		   0x0000,	/* mpllb cfg5 */
1555 		   0x2200,	/* mpllb cfg6 */
1556 		   0x0001,	/* mpllb cfg7 */
1557 		   0x5800,	/* mpllb cfg8 */
1558 		   0x0000,	/* mpllb cfg9 */
1559 		   0x0001,	/* mpllb cfg10 */
1560 		},
1561 };
1562 
1563 static const struct intel_c20pll_state mtl_c20_hdmi_594 = {
1564 	.link_bit_rate = 594000,
1565 	.clock = 594000,
1566 	.tx = {  0xbe88, /* tx cfg0 */
1567 		  0x9800, /* tx cfg1 */
1568 		  0x0000, /* tx cfg2 */
1569 		},
1570 	.cmn = { 0x0500, /* cmn cfg0*/
1571 		  0x0005, /* cmn cfg1 */
1572 		  0x0000, /* cmn cfg2 */
1573 		  0x0000, /* cmn cfg3 */
1574 		},
1575 	.mpllb = { 0x009a,	/* mpllb cfg0 */
1576 		   0x7d08,	/* mpllb cfg1 */
1577 		   0xca06,	/* mpllb cfg2 */
1578 		   0xbe40,	/* mpllb cfg3 */
1579 		   0x0000,	/* mpllb cfg4 */
1580 		   0x0000,	/* mpllb cfg5 */
1581 		   0x2200,	/* mpllb cfg6 */
1582 		   0x0001,	/* mpllb cfg7 */
1583 		   0x5800,	/* mpllb cfg8 */
1584 		   0x0000,	/* mpllb cfg9 */
1585 		   0x0001,	/* mpllb cfg10 */
1586 		},
1587 };
1588 
1589 static const struct intel_c20pll_state mtl_c20_hdmi_300 = {
1590 	.link_bit_rate = 3000000,
1591 	.clock = 166670,
1592 	.tx = {  0xbe98, /* tx cfg0 */
1593 		  0x9800, /* tx cfg1 */
1594 		  0x0000, /* tx cfg2 */
1595 		},
1596 	.cmn = { 0x0500, /* cmn cfg0*/
1597 		  0x0005, /* cmn cfg1 */
1598 		  0x0000, /* cmn cfg2 */
1599 		  0x0000, /* cmn cfg3 */
1600 		},
1601 	.mpllb = { 0x209c,	/* mpllb cfg0 */
1602 		   0x7d10,	/* mpllb cfg1 */
1603 		   0xca06,	/* mpllb cfg2 */
1604 		   0xbe40,	/* mpllb cfg3 */
1605 		   0x0000,	/* mpllb cfg4 */
1606 		   0x0000,	/* mpllb cfg5 */
1607 		   0x2200,	/* mpllb cfg6 */
1608 		   0x0001,	/* mpllb cfg7 */
1609 		   0x2000,	/* mpllb cfg8 */
1610 		   0x0000,	/* mpllb cfg9 */
1611 		   0x0004,	/* mpllb cfg10 */
1612 		},
1613 };
1614 
1615 static const struct intel_c20pll_state mtl_c20_hdmi_600 = {
1616 	.link_bit_rate = 6000000,
1617 	.clock = 333330,
1618 	.tx = {  0xbe98, /* tx cfg0 */
1619 		  0x9800, /* tx cfg1 */
1620 		  0x0000, /* tx cfg2 */
1621 		},
1622 	.cmn = { 0x0500, /* cmn cfg0*/
1623 		  0x0005, /* cmn cfg1 */
1624 		  0x0000, /* cmn cfg2 */
1625 		  0x0000, /* cmn cfg3 */
1626 		},
1627 	.mpllb = { 0x009c,	/* mpllb cfg0 */
1628 		   0x7d08,	/* mpllb cfg1 */
1629 		   0xca06,	/* mpllb cfg2 */
1630 		   0xbe40,	/* mpllb cfg3 */
1631 		   0x0000,	/* mpllb cfg4 */
1632 		   0x0000,	/* mpllb cfg5 */
1633 		   0x2200,	/* mpllb cfg6 */
1634 		   0x0001,	/* mpllb cfg7 */
1635 		   0x2000,	/* mpllb cfg8 */
1636 		   0x0000,	/* mpllb cfg9 */
1637 		   0x0004,	/* mpllb cfg10 */
1638 		},
1639 };
1640 
1641 static const struct intel_c20pll_state mtl_c20_hdmi_800 = {
1642 	.link_bit_rate = 8000000,
1643 	.clock = 444440,
1644 	.tx = {  0xbe98, /* tx cfg0 */
1645 		  0x9800, /* tx cfg1 */
1646 		  0x0000, /* tx cfg2 */
1647 		},
1648 	.cmn = { 0x0500, /* cmn cfg0*/
1649 		  0x0005, /* cmn cfg1 */
1650 		  0x0000, /* cmn cfg2 */
1651 		  0x0000, /* cmn cfg3 */
1652 		},
1653 	.mpllb = { 0x00d0,	/* mpllb cfg0 */
1654 		   0x7d08,	/* mpllb cfg1 */
1655 		   0x4a06,	/* mpllb cfg2 */
1656 		   0xbe40,	/* mpllb cfg3 */
1657 		   0x0000,	/* mpllb cfg4 */
1658 		   0x0000,	/* mpllb cfg5 */
1659 		   0x2200,	/* mpllb cfg6 */
1660 		   0x0003,	/* mpllb cfg7 */
1661 		   0x2aaa,	/* mpllb cfg8 */
1662 		   0x0002,	/* mpllb cfg9 */
1663 		   0x0004,	/* mpllb cfg10 */
1664 		},
1665 };
1666 
1667 static const struct intel_c20pll_state mtl_c20_hdmi_1000 = {
1668 	.link_bit_rate = 10000000,
1669 	.clock = 555560,
1670 	.tx = {  0xbe98, /* tx cfg0 */
1671 		  0x9800, /* tx cfg1 */
1672 		  0x0000, /* tx cfg2 */
1673 		},
1674 	.cmn = { 0x0500, /* cmn cfg0*/
1675 		  0x0005, /* cmn cfg1 */
1676 		  0x0000, /* cmn cfg2 */
1677 		  0x0000, /* cmn cfg3 */
1678 		},
1679 	.mpllb = { 0x1104,	/* mpllb cfg0 */
1680 		   0x7d08,	/* mpllb cfg1 */
1681 		   0x0a06,	/* mpllb cfg2 */
1682 		   0xbe40,	/* mpllb cfg3 */
1683 		   0x0000,	/* mpllb cfg4 */
1684 		   0x0000,	/* mpllb cfg5 */
1685 		   0x2200,	/* mpllb cfg6 */
1686 		   0x0003,	/* mpllb cfg7 */
1687 		   0x3555,	/* mpllb cfg8 */
1688 		   0x0001,	/* mpllb cfg9 */
1689 		   0x0004,	/* mpllb cfg10 */
1690 		},
1691 };
1692 
1693 static const struct intel_c20pll_state mtl_c20_hdmi_1200 = {
1694 	.link_bit_rate = 12000000,
1695 	.clock = 666670,
1696 	.tx = {  0xbe98, /* tx cfg0 */
1697 		  0x9800, /* tx cfg1 */
1698 		  0x0000, /* tx cfg2 */
1699 		},
1700 	.cmn = { 0x0500, /* cmn cfg0*/
1701 		  0x0005, /* cmn cfg1 */
1702 		  0x0000, /* cmn cfg2 */
1703 		  0x0000, /* cmn cfg3 */
1704 		},
1705 	.mpllb = { 0x0138,	/* mpllb cfg0 */
1706 		   0x7d08,	/* mpllb cfg1 */
1707 		   0x5486,	/* mpllb cfg2 */
1708 		   0xfe40,	/* mpllb cfg3 */
1709 		   0x0000,	/* mpllb cfg4 */
1710 		   0x0000,	/* mpllb cfg5 */
1711 		   0x2200,	/* mpllb cfg6 */
1712 		   0x0001,	/* mpllb cfg7 */
1713 		   0x4000,	/* mpllb cfg8 */
1714 		   0x0000,	/* mpllb cfg9 */
1715 		   0x0004,	/* mpllb cfg10 */
1716 		},
1717 };
1718 
1719 static const struct intel_c20pll_state * const mtl_c20_hdmi_tables[] = {
1720 	&mtl_c20_hdmi_25_175,
1721 	&mtl_c20_hdmi_27_0,
1722 	&mtl_c20_hdmi_74_25,
1723 	&mtl_c20_hdmi_148_5,
1724 	&mtl_c20_hdmi_594,
1725 	&mtl_c20_hdmi_300,
1726 	&mtl_c20_hdmi_600,
1727 	&mtl_c20_hdmi_800,
1728 	&mtl_c20_hdmi_1000,
1729 	&mtl_c20_hdmi_1200,
1730 	NULL,
1731 };
1732 
1733 static int intel_c10_phy_check_hdmi_link_rate(int clock)
1734 {
1735 	const struct intel_c10pll_state * const *tables = mtl_c10_hdmi_tables;
1736 	int i;
1737 
1738 	for (i = 0; tables[i]; i++) {
1739 		if (clock == tables[i]->clock)
1740 			return MODE_OK;
1741 	}
1742 
1743 	return MODE_CLOCK_RANGE;
1744 }
1745 
1746 static const struct intel_c10pll_state * const *
1747 intel_c10pll_tables_get(struct intel_crtc_state *crtc_state,
1748 			struct intel_encoder *encoder)
1749 {
1750 	if (intel_crtc_has_dp_encoder(crtc_state)) {
1751 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
1752 			return mtl_c10_edp_tables;
1753 		else
1754 			return mtl_c10_dp_tables;
1755 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
1756 		return mtl_c10_hdmi_tables;
1757 	}
1758 
1759 	MISSING_CASE(encoder->type);
1760 	return NULL;
1761 }
1762 
1763 static void intel_c10pll_update_pll(struct intel_crtc_state *crtc_state,
1764 				    struct intel_encoder *encoder)
1765 {
1766 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
1767 	struct intel_cx0pll_state *pll_state = &crtc_state->cx0pll_state;
1768 	int i;
1769 
1770 	if (intel_crtc_has_dp_encoder(crtc_state)) {
1771 		if (intel_panel_use_ssc(i915)) {
1772 			struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1773 
1774 			pll_state->ssc_enabled =
1775 				(intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_MAX_DOWNSPREAD_0_5);
1776 		}
1777 	}
1778 
1779 	if (pll_state->ssc_enabled)
1780 		return;
1781 
1782 	drm_WARN_ON(&i915->drm, ARRAY_SIZE(pll_state->c10.pll) < 9);
1783 	for (i = 4; i < 9; i++)
1784 		pll_state->c10.pll[i] = 0;
1785 }
1786 
1787 static int intel_c10pll_calc_state(struct intel_crtc_state *crtc_state,
1788 				   struct intel_encoder *encoder)
1789 {
1790 	const struct intel_c10pll_state * const *tables;
1791 	int i;
1792 
1793 	tables = intel_c10pll_tables_get(crtc_state, encoder);
1794 	if (!tables)
1795 		return -EINVAL;
1796 
1797 	for (i = 0; tables[i]; i++) {
1798 		if (crtc_state->port_clock == tables[i]->clock) {
1799 			crtc_state->cx0pll_state.c10 = *tables[i];
1800 			intel_c10pll_update_pll(crtc_state, encoder);
1801 
1802 			return 0;
1803 		}
1804 	}
1805 
1806 	return -EINVAL;
1807 }
1808 
1809 void intel_c10pll_readout_hw_state(struct intel_encoder *encoder,
1810 				   struct intel_c10pll_state *pll_state)
1811 {
1812 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
1813 	u8 lane = INTEL_CX0_LANE0;
1814 	intel_wakeref_t wakeref;
1815 	int i;
1816 
1817 	wakeref = intel_cx0_phy_transaction_begin(encoder);
1818 
1819 	/*
1820 	 * According to C10 VDR Register programming Sequence we need
1821 	 * to do this to read PHY internal registers from MsgBus.
1822 	 */
1823 	intel_cx0_rmw(i915, encoder->port, lane, PHY_C10_VDR_CONTROL(1),
1824 		      0, C10_VDR_CTRL_MSGBUS_ACCESS,
1825 		      MB_WRITE_COMMITTED);
1826 
1827 	for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
1828 		pll_state->pll[i] = intel_cx0_read(i915, encoder->port, lane,
1829 						   PHY_C10_VDR_PLL(i));
1830 
1831 	pll_state->cmn = intel_cx0_read(i915, encoder->port, lane, PHY_C10_VDR_CMN(0));
1832 	pll_state->tx = intel_cx0_read(i915, encoder->port, lane, PHY_C10_VDR_TX(0));
1833 
1834 	intel_cx0_phy_transaction_end(encoder, wakeref);
1835 }
1836 
1837 static void intel_c10_pll_program(struct drm_i915_private *i915,
1838 				  const struct intel_crtc_state *crtc_state,
1839 				  struct intel_encoder *encoder)
1840 {
1841 	const struct intel_c10pll_state *pll_state = &crtc_state->cx0pll_state.c10;
1842 	int i;
1843 
1844 	intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
1845 		      0, C10_VDR_CTRL_MSGBUS_ACCESS,
1846 		      MB_WRITE_COMMITTED);
1847 
1848 	/* Custom width needs to be programmed to 0 for both the phy lanes */
1849 	intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CUSTOM_WIDTH,
1850 		      C10_VDR_CUSTOM_WIDTH_MASK, C10_VDR_CUSTOM_WIDTH_8_10,
1851 		      MB_WRITE_COMMITTED);
1852 	intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
1853 		      0, C10_VDR_CTRL_UPDATE_CFG,
1854 		      MB_WRITE_COMMITTED);
1855 
1856 	/* Program the pll values only for the master lane */
1857 	for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
1858 		intel_cx0_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C10_VDR_PLL(i),
1859 				pll_state->pll[i],
1860 				(i % 4) ? MB_WRITE_UNCOMMITTED : MB_WRITE_COMMITTED);
1861 
1862 	intel_cx0_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C10_VDR_CMN(0), pll_state->cmn, MB_WRITE_COMMITTED);
1863 	intel_cx0_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C10_VDR_TX(0), pll_state->tx, MB_WRITE_COMMITTED);
1864 
1865 	intel_cx0_rmw(i915, encoder->port, INTEL_CX0_LANE0, PHY_C10_VDR_CONTROL(1),
1866 		      0, C10_VDR_CTRL_MASTER_LANE | C10_VDR_CTRL_UPDATE_CFG,
1867 		      MB_WRITE_COMMITTED);
1868 }
1869 
1870 void intel_c10pll_dump_hw_state(struct drm_i915_private *i915,
1871 				const struct intel_c10pll_state *hw_state)
1872 {
1873 	bool fracen;
1874 	int i;
1875 	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
1876 	unsigned int multiplier, tx_clk_div;
1877 
1878 	fracen = hw_state->pll[0] & C10_PLL0_FRACEN;
1879 	drm_dbg_kms(&i915->drm, "c10pll_hw_state: fracen: %s, ",
1880 		    str_yes_no(fracen));
1881 
1882 	if (fracen) {
1883 		frac_quot = hw_state->pll[12] << 8 | hw_state->pll[11];
1884 		frac_rem =  hw_state->pll[14] << 8 | hw_state->pll[13];
1885 		frac_den =  hw_state->pll[10] << 8 | hw_state->pll[9];
1886 		drm_dbg_kms(&i915->drm, "quot: %u, rem: %u, den: %u,\n",
1887 			    frac_quot, frac_rem, frac_den);
1888 	}
1889 
1890 	multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, hw_state->pll[3]) << 8 |
1891 		      hw_state->pll[2]) / 2 + 16;
1892 	tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, hw_state->pll[15]);
1893 	drm_dbg_kms(&i915->drm,
1894 		    "multiplier: %u, tx_clk_div: %u.\n", multiplier, tx_clk_div);
1895 
1896 	drm_dbg_kms(&i915->drm, "c10pll_rawhw_state:");
1897 	drm_dbg_kms(&i915->drm, "tx: 0x%x, cmn: 0x%x\n", hw_state->tx, hw_state->cmn);
1898 
1899 	BUILD_BUG_ON(ARRAY_SIZE(hw_state->pll) % 4);
1900 	for (i = 0; i < ARRAY_SIZE(hw_state->pll); i = i + 4)
1901 		drm_dbg_kms(&i915->drm, "pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x\n",
1902 			    i, hw_state->pll[i], i + 1, hw_state->pll[i + 1],
1903 			    i + 2, hw_state->pll[i + 2], i + 3, hw_state->pll[i + 3]);
1904 }
1905 
1906 static int intel_c20_compute_hdmi_tmds_pll(u64 pixel_clock, struct intel_c20pll_state *pll_state)
1907 {
1908 	u64 datarate;
1909 	u64 mpll_tx_clk_div;
1910 	u64 vco_freq_shift;
1911 	u64 vco_freq;
1912 	u64 multiplier;
1913 	u64 mpll_multiplier;
1914 	u64 mpll_fracn_quot;
1915 	u64 mpll_fracn_rem;
1916 	u8  mpllb_ana_freq_vco;
1917 	u8  mpll_div_multiplier;
1918 
1919 	if (pixel_clock < 25175 || pixel_clock > 600000)
1920 		return -EINVAL;
1921 
1922 	datarate = ((u64)pixel_clock * 1000) * 10;
1923 	mpll_tx_clk_div = ilog2(div64_u64((u64)CLOCK_9999MHZ, (u64)datarate));
1924 	vco_freq_shift = ilog2(div64_u64((u64)CLOCK_4999MHZ * (u64)256, (u64)datarate));
1925 	vco_freq = (datarate << vco_freq_shift) >> 8;
1926 	multiplier = div64_u64((vco_freq << 28), (REFCLK_38_4_MHZ >> 4));
1927 	mpll_multiplier = 2 * (multiplier >> 32);
1928 
1929 	mpll_fracn_quot = (multiplier >> 16) & 0xFFFF;
1930 	mpll_fracn_rem  = multiplier & 0xFFFF;
1931 
1932 	mpll_div_multiplier = min_t(u8, div64_u64((vco_freq * 16 + (datarate >> 1)),
1933 						  datarate), 255);
1934 
1935 	if (vco_freq <= DATARATE_3000000000)
1936 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_3;
1937 	else if (vco_freq <= DATARATE_3500000000)
1938 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_2;
1939 	else if (vco_freq <= DATARATE_4000000000)
1940 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_1;
1941 	else
1942 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_0;
1943 
1944 	pll_state->link_bit_rate	= pixel_clock;
1945 	pll_state->clock	= pixel_clock;
1946 	pll_state->tx[0]	= 0xbe88;
1947 	pll_state->tx[1]	= 0x9800;
1948 	pll_state->tx[2]	= 0x0000;
1949 	pll_state->cmn[0]	= 0x0500;
1950 	pll_state->cmn[1]	= 0x0005;
1951 	pll_state->cmn[2]	= 0x0000;
1952 	pll_state->cmn[3]	= 0x0000;
1953 	pll_state->mpllb[0]	= (MPLL_TX_CLK_DIV(mpll_tx_clk_div) |
1954 				   MPLL_MULTIPLIER(mpll_multiplier));
1955 	pll_state->mpllb[1]	= (CAL_DAC_CODE(CAL_DAC_CODE_31) |
1956 				   WORD_CLK_DIV |
1957 				   MPLL_DIV_MULTIPLIER(mpll_div_multiplier));
1958 	pll_state->mpllb[2]	= (MPLLB_ANA_FREQ_VCO(mpllb_ana_freq_vco) |
1959 				   CP_PROP(CP_PROP_20) |
1960 				   CP_INT(CP_INT_6));
1961 	pll_state->mpllb[3]	= (V2I(V2I_2) |
1962 				   CP_PROP_GS(CP_PROP_GS_30) |
1963 				   CP_INT_GS(CP_INT_GS_28));
1964 	pll_state->mpllb[4]	= 0x0000;
1965 	pll_state->mpllb[5]	= 0x0000;
1966 	pll_state->mpllb[6]	= (C20_MPLLB_FRACEN | SSC_UP_SPREAD);
1967 	pll_state->mpllb[7]	= MPLL_FRACN_DEN;
1968 	pll_state->mpllb[8]	= mpll_fracn_quot;
1969 	pll_state->mpllb[9]	= mpll_fracn_rem;
1970 	pll_state->mpllb[10]	= HDMI_DIV(HDMI_DIV_1);
1971 
1972 	return 0;
1973 }
1974 
1975 static int intel_c20_phy_check_hdmi_link_rate(int clock)
1976 {
1977 	const struct intel_c20pll_state * const *tables = mtl_c20_hdmi_tables;
1978 	int i;
1979 
1980 	for (i = 0; tables[i]; i++) {
1981 		if (clock == tables[i]->link_bit_rate)
1982 			return MODE_OK;
1983 	}
1984 
1985 	if (clock >= 25175 && clock <= 594000)
1986 		return MODE_OK;
1987 
1988 	return MODE_CLOCK_RANGE;
1989 }
1990 
1991 int intel_cx0_phy_check_hdmi_link_rate(struct intel_hdmi *hdmi, int clock)
1992 {
1993 	struct intel_digital_port *dig_port = hdmi_to_dig_port(hdmi);
1994 	struct drm_i915_private *i915 = intel_hdmi_to_i915(hdmi);
1995 	enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
1996 
1997 	if (intel_is_c10phy(i915, phy))
1998 		return intel_c10_phy_check_hdmi_link_rate(clock);
1999 	return intel_c20_phy_check_hdmi_link_rate(clock);
2000 }
2001 
2002 static const struct intel_c20pll_state * const *
2003 intel_c20_pll_tables_get(struct intel_crtc_state *crtc_state,
2004 			 struct intel_encoder *encoder)
2005 {
2006 	if (intel_crtc_has_dp_encoder(crtc_state))
2007 		return mtl_c20_dp_tables;
2008 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
2009 		return mtl_c20_hdmi_tables;
2010 
2011 	MISSING_CASE(encoder->type);
2012 	return NULL;
2013 }
2014 
2015 static int intel_c20pll_calc_state(struct intel_crtc_state *crtc_state,
2016 				   struct intel_encoder *encoder)
2017 {
2018 	const struct intel_c20pll_state * const *tables;
2019 	int i;
2020 
2021 	/* try computed C20 HDMI tables before using consolidated tables */
2022 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2023 		if (intel_c20_compute_hdmi_tmds_pll(crtc_state->port_clock,
2024 						    &crtc_state->cx0pll_state.c20) == 0)
2025 			return 0;
2026 	}
2027 
2028 	tables = intel_c20_pll_tables_get(crtc_state, encoder);
2029 	if (!tables)
2030 		return -EINVAL;
2031 
2032 	for (i = 0; tables[i]; i++) {
2033 		if (crtc_state->port_clock == tables[i]->link_bit_rate) {
2034 			crtc_state->cx0pll_state.c20 = *tables[i];
2035 			return 0;
2036 		}
2037 	}
2038 
2039 	return -EINVAL;
2040 }
2041 
2042 int intel_cx0pll_calc_state(struct intel_crtc_state *crtc_state,
2043 			    struct intel_encoder *encoder)
2044 {
2045 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2046 	enum phy phy = intel_port_to_phy(i915, encoder->port);
2047 
2048 	if (intel_is_c10phy(i915, phy))
2049 		return intel_c10pll_calc_state(crtc_state, encoder);
2050 	return intel_c20pll_calc_state(crtc_state, encoder);
2051 }
2052 
2053 static bool intel_c20_use_mplla(u32 clock)
2054 {
2055 	/* 10G and 20G rates use MPLLA */
2056 	if (clock == 312500 || clock == 625000)
2057 		return true;
2058 
2059 	return false;
2060 }
2061 
2062 void intel_c20pll_readout_hw_state(struct intel_encoder *encoder,
2063 				   struct intel_c20pll_state *pll_state)
2064 {
2065 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2066 	bool cntx;
2067 	intel_wakeref_t wakeref;
2068 	int i;
2069 
2070 	wakeref = intel_cx0_phy_transaction_begin(encoder);
2071 
2072 	/* 1. Read current context selection */
2073 	cntx = intel_cx0_read(i915, encoder->port, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & PHY_C20_CONTEXT_TOGGLE;
2074 
2075 	/* Read Tx configuration */
2076 	for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2077 		if (cntx)
2078 			pll_state->tx[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
2079 							       PHY_C20_B_TX_CNTX_CFG(i));
2080 		else
2081 			pll_state->tx[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
2082 							       PHY_C20_A_TX_CNTX_CFG(i));
2083 	}
2084 
2085 	/* Read common configuration */
2086 	for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2087 		if (cntx)
2088 			pll_state->cmn[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
2089 								PHY_C20_B_CMN_CNTX_CFG(i));
2090 		else
2091 			pll_state->cmn[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
2092 								PHY_C20_A_CMN_CNTX_CFG(i));
2093 	}
2094 
2095 	if (pll_state->tx[0] & C20_PHY_USE_MPLLB) {
2096 		/* MPLLB configuration */
2097 		for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2098 			if (cntx)
2099 				pll_state->mpllb[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
2100 									  PHY_C20_B_MPLLB_CNTX_CFG(i));
2101 			else
2102 				pll_state->mpllb[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
2103 									  PHY_C20_A_MPLLB_CNTX_CFG(i));
2104 		}
2105 	} else {
2106 		/* MPLLA configuration */
2107 		for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2108 			if (cntx)
2109 				pll_state->mplla[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
2110 									  PHY_C20_B_MPLLA_CNTX_CFG(i));
2111 			else
2112 				pll_state->mplla[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
2113 									  PHY_C20_A_MPLLA_CNTX_CFG(i));
2114 		}
2115 	}
2116 
2117 	intel_cx0_phy_transaction_end(encoder, wakeref);
2118 }
2119 
2120 void intel_c20pll_dump_hw_state(struct drm_i915_private *i915,
2121 				const struct intel_c20pll_state *hw_state)
2122 {
2123 	int i;
2124 
2125 	drm_dbg_kms(&i915->drm, "c20pll_hw_state:\n");
2126 	drm_dbg_kms(&i915->drm, "tx[0] = 0x%.4x, tx[1] = 0x%.4x, tx[2] = 0x%.4x\n",
2127 		    hw_state->tx[0], hw_state->tx[1], hw_state->tx[2]);
2128 	drm_dbg_kms(&i915->drm, "cmn[0] = 0x%.4x, cmn[1] = 0x%.4x, cmn[2] = 0x%.4x, cmn[3] = 0x%.4x\n",
2129 		    hw_state->cmn[0], hw_state->cmn[1], hw_state->cmn[2], hw_state->cmn[3]);
2130 
2131 	if (intel_c20_use_mplla(hw_state->clock)) {
2132 		for (i = 0; i < ARRAY_SIZE(hw_state->mplla); i++)
2133 			drm_dbg_kms(&i915->drm, "mplla[%d] = 0x%.4x\n", i, hw_state->mplla[i]);
2134 	} else {
2135 		for (i = 0; i < ARRAY_SIZE(hw_state->mpllb); i++)
2136 			drm_dbg_kms(&i915->drm, "mpllb[%d] = 0x%.4x\n", i, hw_state->mpllb[i]);
2137 	}
2138 }
2139 
2140 static u8 intel_c20_get_dp_rate(u32 clock)
2141 {
2142 	switch (clock) {
2143 	case 162000: /* 1.62 Gbps DP1.4 */
2144 		return 0;
2145 	case 270000: /* 2.7 Gbps DP1.4 */
2146 		return 1;
2147 	case 540000: /* 5.4 Gbps DP 1.4 */
2148 		return 2;
2149 	case 810000: /* 8.1 Gbps DP1.4 */
2150 		return 3;
2151 	case 216000: /* 2.16 Gbps eDP */
2152 		return 4;
2153 	case 243000: /* 2.43 Gbps eDP */
2154 		return 5;
2155 	case 324000: /* 3.24 Gbps eDP */
2156 		return 6;
2157 	case 432000: /* 4.32 Gbps eDP */
2158 		return 7;
2159 	case 312500: /* 10 Gbps DP2.0 */
2160 		return 8;
2161 	case 421875: /* 13.5 Gbps DP2.0 */
2162 		return 9;
2163 	case 625000: /* 20 Gbps DP2.0*/
2164 		return 10;
2165 	case 648000: /* 6.48 Gbps eDP*/
2166 		return 11;
2167 	case 675000: /* 6.75 Gbps eDP*/
2168 		return 12;
2169 	default:
2170 		MISSING_CASE(clock);
2171 		return 0;
2172 	}
2173 }
2174 
2175 static u8 intel_c20_get_hdmi_rate(u32 clock)
2176 {
2177 	if (clock >= 25175 && clock <= 600000)
2178 		return 0;
2179 
2180 	switch (clock) {
2181 	case 166670: /* 3 Gbps */
2182 	case 333330: /* 6 Gbps */
2183 	case 666670: /* 12 Gbps */
2184 		return 1;
2185 	case 444440: /* 8 Gbps */
2186 		return 2;
2187 	case 555560: /* 10 Gbps */
2188 		return 3;
2189 	default:
2190 		MISSING_CASE(clock);
2191 		return 0;
2192 	}
2193 }
2194 
2195 static bool is_dp2(u32 clock)
2196 {
2197 	/* DP2.0 clock rates */
2198 	if (clock == 312500 || clock == 421875 || clock  == 625000)
2199 		return true;
2200 
2201 	return false;
2202 }
2203 
2204 static bool is_hdmi_frl(u32 clock)
2205 {
2206 	switch (clock) {
2207 	case 166670: /* 3 Gbps */
2208 	case 333330: /* 6 Gbps */
2209 	case 444440: /* 8 Gbps */
2210 	case 555560: /* 10 Gbps */
2211 	case 666670: /* 12 Gbps */
2212 		return true;
2213 	default:
2214 		return false;
2215 	}
2216 }
2217 
2218 static bool intel_c20_protocol_switch_valid(struct intel_encoder *encoder)
2219 {
2220 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2221 
2222 	/* banks should not be cleared for DPALT/USB4/TBT modes */
2223 	/* TODO: optimize re-calibration in legacy mode */
2224 	return intel_tc_port_in_legacy_mode(intel_dig_port);
2225 }
2226 
2227 static int intel_get_c20_custom_width(u32 clock, bool dp)
2228 {
2229 	if (dp && is_dp2(clock))
2230 		return 2;
2231 	else if (is_hdmi_frl(clock))
2232 		return 1;
2233 	else
2234 		return 0;
2235 }
2236 
2237 static void intel_c20_pll_program(struct drm_i915_private *i915,
2238 				  const struct intel_crtc_state *crtc_state,
2239 				  struct intel_encoder *encoder)
2240 {
2241 	const struct intel_c20pll_state *pll_state = &crtc_state->cx0pll_state.c20;
2242 	bool dp = false;
2243 	int lane = crtc_state->lane_count > 2 ? INTEL_CX0_BOTH_LANES : INTEL_CX0_LANE0;
2244 	bool cntx;
2245 	int i;
2246 
2247 	if (intel_crtc_has_dp_encoder(crtc_state))
2248 		dp = true;
2249 
2250 	/* 1. Read current context selection */
2251 	cntx = intel_cx0_read(i915, encoder->port, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & BIT(0);
2252 
2253 	/*
2254 	 * 2. If there is a protocol switch from HDMI to DP or vice versa, clear
2255 	 * the lane #0 MPLLB CAL_DONE_BANK DP2.0 10G and 20G rates enable MPLLA.
2256 	 * Protocol switch is only applicable for MPLLA
2257 	 */
2258 	if (intel_c20_protocol_switch_valid(encoder)) {
2259 		for (i = 0; i < 4; i++)
2260 			intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0, RAWLANEAONX_DIG_TX_MPLLB_CAL_DONE_BANK(i), 0);
2261 		usleep_range(4000, 4100);
2262 	}
2263 
2264 	/* 3. Write SRAM configuration context. If A in use, write configuration to B context */
2265 	/* 3.1 Tx configuration */
2266 	for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2267 		if (cntx)
2268 			intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C20_A_TX_CNTX_CFG(i), pll_state->tx[i]);
2269 		else
2270 			intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C20_B_TX_CNTX_CFG(i), pll_state->tx[i]);
2271 	}
2272 
2273 	/* 3.2 common configuration */
2274 	for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2275 		if (cntx)
2276 			intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C20_A_CMN_CNTX_CFG(i), pll_state->cmn[i]);
2277 		else
2278 			intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C20_B_CMN_CNTX_CFG(i), pll_state->cmn[i]);
2279 	}
2280 
2281 	/* 3.3 mpllb or mplla configuration */
2282 	if (intel_c20_use_mplla(pll_state->clock)) {
2283 		for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2284 			if (cntx)
2285 				intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0,
2286 						     PHY_C20_A_MPLLA_CNTX_CFG(i),
2287 						     pll_state->mplla[i]);
2288 			else
2289 				intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0,
2290 						     PHY_C20_B_MPLLA_CNTX_CFG(i),
2291 						     pll_state->mplla[i]);
2292 		}
2293 	} else {
2294 		for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2295 			if (cntx)
2296 				intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0,
2297 						     PHY_C20_A_MPLLB_CNTX_CFG(i),
2298 						     pll_state->mpllb[i]);
2299 			else
2300 				intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0,
2301 						     PHY_C20_B_MPLLB_CNTX_CFG(i),
2302 						     pll_state->mpllb[i]);
2303 		}
2304 	}
2305 
2306 	/* 4. Program custom width to match the link protocol */
2307 	intel_cx0_rmw(i915, encoder->port, lane, PHY_C20_VDR_CUSTOM_WIDTH,
2308 		      PHY_C20_CUSTOM_WIDTH_MASK,
2309 		      PHY_C20_CUSTOM_WIDTH(intel_get_c20_custom_width(pll_state->clock, dp)),
2310 		      MB_WRITE_COMMITTED);
2311 
2312 	/* 5. For DP or 6. For HDMI */
2313 	if (dp) {
2314 		intel_cx0_rmw(i915, encoder->port, lane, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2315 			      BIT(6) | PHY_C20_CUSTOM_SERDES_MASK,
2316 			      BIT(6) | PHY_C20_CUSTOM_SERDES(intel_c20_get_dp_rate(pll_state->clock)),
2317 			      MB_WRITE_COMMITTED);
2318 	} else {
2319 		intel_cx0_rmw(i915, encoder->port, lane, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2320 			      BIT(7) | PHY_C20_CUSTOM_SERDES_MASK,
2321 			      is_hdmi_frl(pll_state->clock) ? BIT(7) : 0,
2322 			      MB_WRITE_COMMITTED);
2323 
2324 		intel_cx0_write(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C20_VDR_HDMI_RATE,
2325 				intel_c20_get_hdmi_rate(pll_state->clock),
2326 				MB_WRITE_COMMITTED);
2327 	}
2328 
2329 	/*
2330 	 * 7. Write Vendor specific registers to toggle context setting to load
2331 	 * the updated programming toggle context bit
2332 	 */
2333 	intel_cx0_rmw(i915, encoder->port, lane, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2334 		      BIT(0), cntx ? 0 : 1, MB_WRITE_COMMITTED);
2335 }
2336 
2337 int intel_c10pll_calc_port_clock(struct intel_encoder *encoder,
2338 				 const struct intel_c10pll_state *pll_state)
2339 {
2340 	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
2341 	unsigned int multiplier, tx_clk_div, hdmi_div, refclk = 38400;
2342 	int tmpclk = 0;
2343 
2344 	if (pll_state->pll[0] & C10_PLL0_FRACEN) {
2345 		frac_quot = pll_state->pll[12] << 8 | pll_state->pll[11];
2346 		frac_rem =  pll_state->pll[14] << 8 | pll_state->pll[13];
2347 		frac_den =  pll_state->pll[10] << 8 | pll_state->pll[9];
2348 	}
2349 
2350 	multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, pll_state->pll[3]) << 8 |
2351 		      pll_state->pll[2]) / 2 + 16;
2352 
2353 	tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, pll_state->pll[15]);
2354 	hdmi_div = REG_FIELD_GET8(C10_PLL15_HDMIDIV_MASK, pll_state->pll[15]);
2355 
2356 	tmpclk = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, (multiplier << 16) + frac_quot) +
2357 				     DIV_ROUND_CLOSEST(refclk * frac_rem, frac_den),
2358 				     10 << (tx_clk_div + 16));
2359 	tmpclk *= (hdmi_div ? 2 : 1);
2360 
2361 	return tmpclk;
2362 }
2363 
2364 int intel_c20pll_calc_port_clock(struct intel_encoder *encoder,
2365 				 const struct intel_c20pll_state *pll_state)
2366 {
2367 	unsigned int frac, frac_en, frac_quot, frac_rem, frac_den;
2368 	unsigned int multiplier, refclk = 38400;
2369 	unsigned int tx_clk_div;
2370 	unsigned int ref_clk_mpllb_div;
2371 	unsigned int fb_clk_div4_en;
2372 	unsigned int ref, vco;
2373 	unsigned int tx_rate_mult;
2374 	unsigned int tx_rate = REG_FIELD_GET(C20_PHY_TX_RATE, pll_state->tx[0]);
2375 
2376 	if (pll_state->tx[0] & C20_PHY_USE_MPLLB) {
2377 		tx_rate_mult = 1;
2378 		frac_en = REG_FIELD_GET(C20_MPLLB_FRACEN, pll_state->mpllb[6]);
2379 		frac_quot = pll_state->mpllb[8];
2380 		frac_rem =  pll_state->mpllb[9];
2381 		frac_den =  pll_state->mpllb[7];
2382 		multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mpllb[0]);
2383 		tx_clk_div = REG_FIELD_GET(C20_MPLLB_TX_CLK_DIV_MASK, pll_state->mpllb[0]);
2384 		ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mpllb[6]);
2385 		fb_clk_div4_en = 0;
2386 	} else {
2387 		tx_rate_mult = 2;
2388 		frac_en = REG_FIELD_GET(C20_MPLLA_FRACEN, pll_state->mplla[6]);
2389 		frac_quot = pll_state->mplla[8];
2390 		frac_rem =  pll_state->mplla[9];
2391 		frac_den =  pll_state->mplla[7];
2392 		multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mplla[0]);
2393 		tx_clk_div = REG_FIELD_GET(C20_MPLLA_TX_CLK_DIV_MASK, pll_state->mplla[1]);
2394 		ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mplla[6]);
2395 		fb_clk_div4_en = REG_FIELD_GET(C20_FB_CLK_DIV4_EN, pll_state->mplla[0]);
2396 	}
2397 
2398 	if (frac_en)
2399 		frac = frac_quot + DIV_ROUND_CLOSEST(frac_rem, frac_den);
2400 	else
2401 		frac = 0;
2402 
2403 	ref = DIV_ROUND_CLOSEST(refclk * (1 << (1 + fb_clk_div4_en)), 1 << ref_clk_mpllb_div);
2404 	vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(ref, (multiplier << (17 - 2)) + frac) >> 17, 10);
2405 
2406 	return vco << tx_rate_mult >> tx_clk_div >> tx_rate;
2407 }
2408 
2409 static void intel_program_port_clock_ctl(struct intel_encoder *encoder,
2410 					 const struct intel_crtc_state *crtc_state,
2411 					 bool lane_reversal)
2412 {
2413 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2414 	u32 val = 0;
2415 
2416 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL1(encoder->port), XELPDP_PORT_REVERSAL,
2417 		     lane_reversal ? XELPDP_PORT_REVERSAL : 0);
2418 
2419 	if (lane_reversal)
2420 		val |= XELPDP_LANE1_PHY_CLOCK_SELECT;
2421 
2422 	val |= XELPDP_FORWARD_CLOCK_UNGATE;
2423 
2424 	if (is_hdmi_frl(crtc_state->port_clock))
2425 		val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_DIV18CLK);
2426 	else
2427 		val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_MAXPCLK);
2428 
2429 	/* TODO: HDMI FRL */
2430 	/* DP2.0 10G and 20G rates enable MPLLA*/
2431 	if (crtc_state->port_clock == 1000000 || crtc_state->port_clock == 2000000)
2432 		val |= crtc_state->cx0pll_state.ssc_enabled ? XELPDP_SSC_ENABLE_PLLA : 0;
2433 	else
2434 		val |= crtc_state->cx0pll_state.ssc_enabled ? XELPDP_SSC_ENABLE_PLLB : 0;
2435 
2436 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2437 		     XELPDP_LANE1_PHY_CLOCK_SELECT | XELPDP_FORWARD_CLOCK_UNGATE |
2438 		     XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_SSC_ENABLE_PLLA |
2439 		     XELPDP_SSC_ENABLE_PLLB, val);
2440 }
2441 
2442 static u32 intel_cx0_get_powerdown_update(u8 lane_mask)
2443 {
2444 	u32 val = 0;
2445 	int lane = 0;
2446 
2447 	for_each_cx0_lane_in_mask(lane_mask, lane)
2448 		val |= XELPDP_LANE_POWERDOWN_UPDATE(lane);
2449 
2450 	return val;
2451 }
2452 
2453 static u32 intel_cx0_get_powerdown_state(u8 lane_mask, u8 state)
2454 {
2455 	u32 val = 0;
2456 	int lane = 0;
2457 
2458 	for_each_cx0_lane_in_mask(lane_mask, lane)
2459 		val |= XELPDP_LANE_POWERDOWN_NEW_STATE(lane, state);
2460 
2461 	return val;
2462 }
2463 
2464 static void intel_cx0_powerdown_change_sequence(struct drm_i915_private *i915,
2465 						enum port port,
2466 						u8 lane_mask, u8 state)
2467 {
2468 	enum phy phy = intel_port_to_phy(i915, port);
2469 	int lane;
2470 
2471 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(port),
2472 		     intel_cx0_get_powerdown_state(INTEL_CX0_BOTH_LANES, XELPDP_LANE_POWERDOWN_NEW_STATE_MASK),
2473 		     intel_cx0_get_powerdown_state(lane_mask, state));
2474 
2475 	/* Wait for pending transactions.*/
2476 	for_each_cx0_lane_in_mask(lane_mask, lane)
2477 		if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
2478 					    XELPDP_PORT_M2P_TRANSACTION_PENDING,
2479 					    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
2480 			drm_dbg_kms(&i915->drm,
2481 				    "PHY %c Timeout waiting for previous transaction to complete. Reset the bus.\n",
2482 				    phy_name(phy));
2483 			intel_cx0_bus_reset(i915, port, lane);
2484 		}
2485 
2486 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(port),
2487 		     intel_cx0_get_powerdown_update(INTEL_CX0_BOTH_LANES),
2488 		     intel_cx0_get_powerdown_update(lane_mask));
2489 
2490 	/* Update Timeout Value */
2491 	if (__intel_de_wait_for_register(i915, XELPDP_PORT_BUF_CTL2(port),
2492 					 intel_cx0_get_powerdown_update(lane_mask), 0,
2493 					 XELPDP_PORT_POWERDOWN_UPDATE_TIMEOUT_US, 0, NULL))
2494 		drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dus.\n",
2495 			 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2496 }
2497 
2498 static void intel_cx0_setup_powerdown(struct drm_i915_private *i915, enum port port)
2499 {
2500 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(port),
2501 		     XELPDP_POWER_STATE_READY_MASK,
2502 		     XELPDP_POWER_STATE_READY(CX0_P2_STATE_READY));
2503 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL3(port),
2504 		     XELPDP_POWER_STATE_ACTIVE_MASK |
2505 		     XELPDP_PLL_LANE_STAGGERING_DELAY_MASK,
2506 		     XELPDP_POWER_STATE_ACTIVE(CX0_P0_STATE_ACTIVE) |
2507 		     XELPDP_PLL_LANE_STAGGERING_DELAY(0));
2508 }
2509 
2510 static u32 intel_cx0_get_pclk_refclk_request(u8 lane_mask)
2511 {
2512 	u32 val = 0;
2513 	int lane = 0;
2514 
2515 	for_each_cx0_lane_in_mask(lane_mask, lane)
2516 		val |= XELPDP_LANE_PCLK_REFCLK_REQUEST(lane);
2517 
2518 	return val;
2519 }
2520 
2521 static u32 intel_cx0_get_pclk_refclk_ack(u8 lane_mask)
2522 {
2523 	u32 val = 0;
2524 	int lane = 0;
2525 
2526 	for_each_cx0_lane_in_mask(lane_mask, lane)
2527 		val |= XELPDP_LANE_PCLK_REFCLK_ACK(lane);
2528 
2529 	return val;
2530 }
2531 
2532 static void intel_cx0_phy_lane_reset(struct drm_i915_private *i915,
2533 				     struct intel_encoder *encoder,
2534 				     bool lane_reversal)
2535 {
2536 	enum port port = encoder->port;
2537 	enum phy phy = intel_port_to_phy(i915, port);
2538 	bool both_lanes =  intel_tc_port_fia_max_lane_count(enc_to_dig_port(encoder)) > 2;
2539 	u8 lane_mask = lane_reversal ? INTEL_CX0_LANE1 :
2540 				  INTEL_CX0_LANE0;
2541 	u32 lane_pipe_reset = both_lanes ?
2542 			      XELPDP_LANE_PIPE_RESET(0) |
2543 			      XELPDP_LANE_PIPE_RESET(1) :
2544 			      XELPDP_LANE_PIPE_RESET(0);
2545 	u32 lane_phy_current_status = both_lanes ?
2546 				      XELPDP_LANE_PHY_CURRENT_STATUS(0) |
2547 				      XELPDP_LANE_PHY_CURRENT_STATUS(1) :
2548 				      XELPDP_LANE_PHY_CURRENT_STATUS(0);
2549 
2550 	if (__intel_de_wait_for_register(i915, XELPDP_PORT_BUF_CTL1(port),
2551 					 XELPDP_PORT_BUF_SOC_PHY_READY,
2552 					 XELPDP_PORT_BUF_SOC_PHY_READY,
2553 					 XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US, 0, NULL))
2554 		drm_warn(&i915->drm, "PHY %c failed to bring out of SOC reset after %dus.\n",
2555 			 phy_name(phy), XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US);
2556 
2557 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(port),
2558 		     XELPDP_LANE_PIPE_RESET(0) | XELPDP_LANE_PIPE_RESET(1),
2559 		     lane_pipe_reset);
2560 
2561 	if (__intel_de_wait_for_register(i915, XELPDP_PORT_BUF_CTL2(port),
2562 					 lane_phy_current_status, lane_phy_current_status,
2563 					 XELPDP_PORT_RESET_START_TIMEOUT_US, 0, NULL))
2564 		drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dus.\n",
2565 			 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2566 
2567 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(port),
2568 		     intel_cx0_get_pclk_refclk_request(both_lanes ?
2569 						       INTEL_CX0_BOTH_LANES :
2570 						       INTEL_CX0_LANE0),
2571 		     intel_cx0_get_pclk_refclk_request(lane_mask));
2572 
2573 	if (__intel_de_wait_for_register(i915, XELPDP_PORT_CLOCK_CTL(port),
2574 					 intel_cx0_get_pclk_refclk_ack(both_lanes ?
2575 								       INTEL_CX0_BOTH_LANES :
2576 								       INTEL_CX0_LANE0),
2577 					 intel_cx0_get_pclk_refclk_ack(lane_mask),
2578 					 XELPDP_REFCLK_ENABLE_TIMEOUT_US, 0, NULL))
2579 		drm_warn(&i915->drm, "PHY %c failed to request refclk after %dus.\n",
2580 			 phy_name(phy), XELPDP_REFCLK_ENABLE_TIMEOUT_US);
2581 
2582 	intel_cx0_powerdown_change_sequence(i915, port, INTEL_CX0_BOTH_LANES,
2583 					    CX0_P2_STATE_RESET);
2584 	intel_cx0_setup_powerdown(i915, port);
2585 
2586 	intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(port), lane_pipe_reset, 0);
2587 
2588 	if (intel_de_wait_for_clear(i915, XELPDP_PORT_BUF_CTL2(port), lane_phy_current_status,
2589 				    XELPDP_PORT_RESET_END_TIMEOUT))
2590 		drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dms.\n",
2591 			 phy_name(phy), XELPDP_PORT_RESET_END_TIMEOUT);
2592 }
2593 
2594 static void intel_cx0_program_phy_lane(struct drm_i915_private *i915,
2595 				       struct intel_encoder *encoder, int lane_count,
2596 				       bool lane_reversal)
2597 {
2598 	u8 l0t1, l0t2, l1t1, l1t2;
2599 	bool dp_alt_mode = intel_tc_port_in_dp_alt_mode(enc_to_dig_port(encoder));
2600 	enum port port = encoder->port;
2601 
2602 	if (intel_is_c10phy(i915, intel_port_to_phy(i915, port)))
2603 		intel_cx0_rmw(i915, port, INTEL_CX0_BOTH_LANES,
2604 			      PHY_C10_VDR_CONTROL(1), 0,
2605 			      C10_VDR_CTRL_MSGBUS_ACCESS,
2606 			      MB_WRITE_COMMITTED);
2607 
2608 	/* TODO: DP-alt MFD case where only one PHY lane should be programmed. */
2609 	l0t1 = intel_cx0_read(i915, port, INTEL_CX0_LANE0, PHY_CX0_TX_CONTROL(1, 2));
2610 	l0t2 = intel_cx0_read(i915, port, INTEL_CX0_LANE0, PHY_CX0_TX_CONTROL(2, 2));
2611 	l1t1 = intel_cx0_read(i915, port, INTEL_CX0_LANE1, PHY_CX0_TX_CONTROL(1, 2));
2612 	l1t2 = intel_cx0_read(i915, port, INTEL_CX0_LANE1, PHY_CX0_TX_CONTROL(2, 2));
2613 
2614 	l0t1 |= CONTROL2_DISABLE_SINGLE_TX;
2615 	l0t2 |= CONTROL2_DISABLE_SINGLE_TX;
2616 	l1t1 |= CONTROL2_DISABLE_SINGLE_TX;
2617 	l1t2 |= CONTROL2_DISABLE_SINGLE_TX;
2618 
2619 	if (lane_reversal) {
2620 		switch (lane_count) {
2621 		case 4:
2622 			l0t1 &= ~CONTROL2_DISABLE_SINGLE_TX;
2623 			fallthrough;
2624 		case 3:
2625 			l0t2 &= ~CONTROL2_DISABLE_SINGLE_TX;
2626 			fallthrough;
2627 		case 2:
2628 			l1t1 &= ~CONTROL2_DISABLE_SINGLE_TX;
2629 			fallthrough;
2630 		case 1:
2631 			l1t2 &= ~CONTROL2_DISABLE_SINGLE_TX;
2632 			break;
2633 		default:
2634 			MISSING_CASE(lane_count);
2635 		}
2636 	} else {
2637 		switch (lane_count) {
2638 		case 4:
2639 			l1t2 &= ~CONTROL2_DISABLE_SINGLE_TX;
2640 			fallthrough;
2641 		case 3:
2642 			l1t1 &= ~CONTROL2_DISABLE_SINGLE_TX;
2643 			fallthrough;
2644 		case 2:
2645 			l0t2 &= ~CONTROL2_DISABLE_SINGLE_TX;
2646 			l0t1 &= ~CONTROL2_DISABLE_SINGLE_TX;
2647 			break;
2648 		case 1:
2649 			if (dp_alt_mode)
2650 				l0t2 &= ~CONTROL2_DISABLE_SINGLE_TX;
2651 			else
2652 				l0t1 &= ~CONTROL2_DISABLE_SINGLE_TX;
2653 			break;
2654 		default:
2655 			MISSING_CASE(lane_count);
2656 		}
2657 	}
2658 
2659 	/* disable MLs */
2660 	intel_cx0_write(i915, port, INTEL_CX0_LANE0, PHY_CX0_TX_CONTROL(1, 2),
2661 			l0t1, MB_WRITE_COMMITTED);
2662 	intel_cx0_write(i915, port, INTEL_CX0_LANE0, PHY_CX0_TX_CONTROL(2, 2),
2663 			l0t2, MB_WRITE_COMMITTED);
2664 	intel_cx0_write(i915, port, INTEL_CX0_LANE1, PHY_CX0_TX_CONTROL(1, 2),
2665 			l1t1, MB_WRITE_COMMITTED);
2666 	intel_cx0_write(i915, port, INTEL_CX0_LANE1, PHY_CX0_TX_CONTROL(2, 2),
2667 			l1t2, MB_WRITE_COMMITTED);
2668 
2669 	if (intel_is_c10phy(i915, intel_port_to_phy(i915, port)))
2670 		intel_cx0_rmw(i915, port, INTEL_CX0_BOTH_LANES,
2671 			      PHY_C10_VDR_CONTROL(1), 0,
2672 			      C10_VDR_CTRL_UPDATE_CFG,
2673 			      MB_WRITE_COMMITTED);
2674 }
2675 
2676 static u32 intel_cx0_get_pclk_pll_request(u8 lane_mask)
2677 {
2678 	u32 val = 0;
2679 	int lane = 0;
2680 
2681 	for_each_cx0_lane_in_mask(lane_mask, lane)
2682 		val |= XELPDP_LANE_PCLK_PLL_REQUEST(lane);
2683 
2684 	return val;
2685 }
2686 
2687 static u32 intel_cx0_get_pclk_pll_ack(u8 lane_mask)
2688 {
2689 	u32 val = 0;
2690 	int lane = 0;
2691 
2692 	for_each_cx0_lane_in_mask(lane_mask, lane)
2693 		val |= XELPDP_LANE_PCLK_PLL_ACK(lane);
2694 
2695 	return val;
2696 }
2697 
2698 static void intel_cx0pll_enable(struct intel_encoder *encoder,
2699 				const struct intel_crtc_state *crtc_state)
2700 {
2701 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2702 	enum phy phy = intel_port_to_phy(i915, encoder->port);
2703 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
2704 	bool lane_reversal = dig_port->saved_port_bits & DDI_BUF_PORT_REVERSAL;
2705 	u8 maxpclk_lane = lane_reversal ? INTEL_CX0_LANE1 :
2706 					  INTEL_CX0_LANE0;
2707 	intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
2708 
2709 	/*
2710 	 * 1. Program PORT_CLOCK_CTL REGISTER to configure
2711 	 * clock muxes, gating and SSC
2712 	 */
2713 	intel_program_port_clock_ctl(encoder, crtc_state, lane_reversal);
2714 
2715 	/* 2. Bring PHY out of reset. */
2716 	intel_cx0_phy_lane_reset(i915, encoder, lane_reversal);
2717 
2718 	/*
2719 	 * 3. Change Phy power state to Ready.
2720 	 * TODO: For DP alt mode use only one lane.
2721 	 */
2722 	intel_cx0_powerdown_change_sequence(i915, encoder->port, INTEL_CX0_BOTH_LANES,
2723 					    CX0_P2_STATE_READY);
2724 
2725 	/* 4. Program PHY internal PLL internal registers. */
2726 	if (intel_is_c10phy(i915, phy))
2727 		intel_c10_pll_program(i915, crtc_state, encoder);
2728 	else
2729 		intel_c20_pll_program(i915, crtc_state, encoder);
2730 
2731 	/*
2732 	 * 5. Program the enabled and disabled owned PHY lane
2733 	 * transmitters over message bus
2734 	 */
2735 	intel_cx0_program_phy_lane(i915, encoder, crtc_state->lane_count, lane_reversal);
2736 
2737 	/*
2738 	 * 6. Follow the Display Voltage Frequency Switching - Sequence
2739 	 * Before Frequency Change. We handle this step in bxt_set_cdclk().
2740 	 */
2741 
2742 	/*
2743 	 * 7. Program DDI_CLK_VALFREQ to match intended DDI
2744 	 * clock frequency.
2745 	 */
2746 	intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port),
2747 		       crtc_state->port_clock);
2748 
2749 	/*
2750 	 * 8. Set PORT_CLOCK_CTL register PCLK PLL Request
2751 	 * LN<Lane for maxPCLK> to "1" to enable PLL.
2752 	 */
2753 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2754 		     intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES),
2755 		     intel_cx0_get_pclk_pll_request(maxpclk_lane));
2756 
2757 	/* 9. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK> == "1". */
2758 	if (__intel_de_wait_for_register(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2759 					 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES),
2760 					 intel_cx0_get_pclk_pll_ack(maxpclk_lane),
2761 					 XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US, 0, NULL))
2762 		drm_warn(&i915->drm, "Port %c PLL not locked after %dus.\n",
2763 			 phy_name(phy), XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US);
2764 
2765 	/*
2766 	 * 10. Follow the Display Voltage Frequency Switching Sequence After
2767 	 * Frequency Change. We handle this step in bxt_set_cdclk().
2768 	 */
2769 
2770 	/* TODO: enable TBT-ALT mode */
2771 	intel_cx0_phy_transaction_end(encoder, wakeref);
2772 }
2773 
2774 int intel_mtl_tbt_calc_port_clock(struct intel_encoder *encoder)
2775 {
2776 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2777 	u32 clock;
2778 	u32 val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(encoder->port));
2779 
2780 	clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val);
2781 
2782 	drm_WARN_ON(&i915->drm, !(val & XELPDP_FORWARD_CLOCK_UNGATE));
2783 	drm_WARN_ON(&i915->drm, !(val & XELPDP_TBT_CLOCK_REQUEST));
2784 	drm_WARN_ON(&i915->drm, !(val & XELPDP_TBT_CLOCK_ACK));
2785 
2786 	switch (clock) {
2787 	case XELPDP_DDI_CLOCK_SELECT_TBT_162:
2788 		return 162000;
2789 	case XELPDP_DDI_CLOCK_SELECT_TBT_270:
2790 		return 270000;
2791 	case XELPDP_DDI_CLOCK_SELECT_TBT_540:
2792 		return 540000;
2793 	case XELPDP_DDI_CLOCK_SELECT_TBT_810:
2794 		return 810000;
2795 	default:
2796 		MISSING_CASE(clock);
2797 		return 162000;
2798 	}
2799 }
2800 
2801 static int intel_mtl_tbt_clock_select(struct drm_i915_private *i915, int clock)
2802 {
2803 	switch (clock) {
2804 	case 162000:
2805 		return XELPDP_DDI_CLOCK_SELECT_TBT_162;
2806 	case 270000:
2807 		return XELPDP_DDI_CLOCK_SELECT_TBT_270;
2808 	case 540000:
2809 		return XELPDP_DDI_CLOCK_SELECT_TBT_540;
2810 	case 810000:
2811 		return XELPDP_DDI_CLOCK_SELECT_TBT_810;
2812 	default:
2813 		MISSING_CASE(clock);
2814 		return XELPDP_DDI_CLOCK_SELECT_TBT_162;
2815 	}
2816 }
2817 
2818 static void intel_mtl_tbt_pll_enable(struct intel_encoder *encoder,
2819 				     const struct intel_crtc_state *crtc_state)
2820 {
2821 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2822 	enum phy phy = intel_port_to_phy(i915, encoder->port);
2823 	u32 val = 0;
2824 
2825 	/*
2826 	 * 1. Program PORT_CLOCK_CTL REGISTER to configure
2827 	 * clock muxes, gating and SSC
2828 	 */
2829 	val |= XELPDP_DDI_CLOCK_SELECT(intel_mtl_tbt_clock_select(i915, crtc_state->port_clock));
2830 	val |= XELPDP_FORWARD_CLOCK_UNGATE;
2831 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2832 		     XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_FORWARD_CLOCK_UNGATE, val);
2833 
2834 	/* 2. Read back PORT_CLOCK_CTL REGISTER */
2835 	val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(encoder->port));
2836 
2837 	/*
2838 	 * 3. Follow the Display Voltage Frequency Switching - Sequence
2839 	 * Before Frequency Change. We handle this step in bxt_set_cdclk().
2840 	 */
2841 
2842 	/*
2843 	 * 4. Set PORT_CLOCK_CTL register TBT CLOCK Request to "1" to enable PLL.
2844 	 */
2845 	val |= XELPDP_TBT_CLOCK_REQUEST;
2846 	intel_de_write(i915, XELPDP_PORT_CLOCK_CTL(encoder->port), val);
2847 
2848 	/* 5. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "1". */
2849 	if (__intel_de_wait_for_register(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2850 					 XELPDP_TBT_CLOCK_ACK,
2851 					 XELPDP_TBT_CLOCK_ACK,
2852 					 100, 0, NULL))
2853 		drm_warn(&i915->drm, "[ENCODER:%d:%s][%c] PHY PLL not locked after 100us.\n",
2854 			 encoder->base.base.id, encoder->base.name, phy_name(phy));
2855 
2856 	/*
2857 	 * 6. Follow the Display Voltage Frequency Switching Sequence After
2858 	 * Frequency Change. We handle this step in bxt_set_cdclk().
2859 	 */
2860 
2861 	/*
2862 	 * 7. Program DDI_CLK_VALFREQ to match intended DDI
2863 	 * clock frequency.
2864 	 */
2865 	intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port),
2866 		       crtc_state->port_clock);
2867 }
2868 
2869 void intel_mtl_pll_enable(struct intel_encoder *encoder,
2870 			  const struct intel_crtc_state *crtc_state)
2871 {
2872 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
2873 
2874 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
2875 		intel_mtl_tbt_pll_enable(encoder, crtc_state);
2876 	else
2877 		intel_cx0pll_enable(encoder, crtc_state);
2878 }
2879 
2880 static void intel_cx0pll_disable(struct intel_encoder *encoder)
2881 {
2882 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2883 	enum phy phy = intel_port_to_phy(i915, encoder->port);
2884 	bool is_c10 = intel_is_c10phy(i915, phy);
2885 	intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
2886 
2887 	/* 1. Change owned PHY lane power to Disable state. */
2888 	intel_cx0_powerdown_change_sequence(i915, encoder->port, INTEL_CX0_BOTH_LANES,
2889 					    is_c10 ? CX0_P2PG_STATE_DISABLE :
2890 					    CX0_P4PG_STATE_DISABLE);
2891 
2892 	/*
2893 	 * 2. Follow the Display Voltage Frequency Switching Sequence Before
2894 	 * Frequency Change. We handle this step in bxt_set_cdclk().
2895 	 */
2896 
2897 	/*
2898 	 * 3. Set PORT_CLOCK_CTL register PCLK PLL Request LN<Lane for maxPCLK>
2899 	 * to "0" to disable PLL.
2900 	 */
2901 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2902 		     intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES) |
2903 		     intel_cx0_get_pclk_refclk_request(INTEL_CX0_BOTH_LANES), 0);
2904 
2905 	/* 4. Program DDI_CLK_VALFREQ to 0. */
2906 	intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port), 0);
2907 
2908 	/*
2909 	 * 5. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK**> == "0".
2910 	 */
2911 	if (__intel_de_wait_for_register(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2912 					 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES) |
2913 					 intel_cx0_get_pclk_refclk_ack(INTEL_CX0_BOTH_LANES), 0,
2914 					 XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US, 0, NULL))
2915 		drm_warn(&i915->drm, "Port %c PLL not unlocked after %dus.\n",
2916 			 phy_name(phy), XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US);
2917 
2918 	/*
2919 	 * 6. Follow the Display Voltage Frequency Switching Sequence After
2920 	 * Frequency Change. We handle this step in bxt_set_cdclk().
2921 	 */
2922 
2923 	/* 7. Program PORT_CLOCK_CTL register to disable and gate clocks. */
2924 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2925 		     XELPDP_DDI_CLOCK_SELECT_MASK, 0);
2926 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2927 		     XELPDP_FORWARD_CLOCK_UNGATE, 0);
2928 
2929 	intel_cx0_phy_transaction_end(encoder, wakeref);
2930 }
2931 
2932 static void intel_mtl_tbt_pll_disable(struct intel_encoder *encoder)
2933 {
2934 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2935 	enum phy phy = intel_port_to_phy(i915, encoder->port);
2936 
2937 	/*
2938 	 * 1. Follow the Display Voltage Frequency Switching Sequence Before
2939 	 * Frequency Change. We handle this step in bxt_set_cdclk().
2940 	 */
2941 
2942 	/*
2943 	 * 2. Set PORT_CLOCK_CTL register TBT CLOCK Request to "0" to disable PLL.
2944 	 */
2945 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2946 		     XELPDP_TBT_CLOCK_REQUEST, 0);
2947 
2948 	/* 3. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "0". */
2949 	if (__intel_de_wait_for_register(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2950 					 XELPDP_TBT_CLOCK_ACK, 0, 10, 0, NULL))
2951 		drm_warn(&i915->drm, "[ENCODER:%d:%s][%c] PHY PLL not unlocked after 10us.\n",
2952 			 encoder->base.base.id, encoder->base.name, phy_name(phy));
2953 
2954 	/*
2955 	 * 4. Follow the Display Voltage Frequency Switching Sequence After
2956 	 * Frequency Change. We handle this step in bxt_set_cdclk().
2957 	 */
2958 
2959 	/*
2960 	 * 5. Program PORT CLOCK CTRL register to disable and gate clocks
2961 	 */
2962 	intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
2963 		     XELPDP_DDI_CLOCK_SELECT_MASK |
2964 		     XELPDP_FORWARD_CLOCK_UNGATE, 0);
2965 
2966 	/* 6. Program DDI_CLK_VALFREQ to 0. */
2967 	intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port), 0);
2968 }
2969 
2970 void intel_mtl_pll_disable(struct intel_encoder *encoder)
2971 {
2972 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
2973 
2974 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
2975 		intel_mtl_tbt_pll_disable(encoder);
2976 	else
2977 		intel_cx0pll_disable(encoder);
2978 }
2979 
2980 enum icl_port_dpll_id
2981 intel_mtl_port_pll_type(struct intel_encoder *encoder,
2982 			const struct intel_crtc_state *crtc_state)
2983 {
2984 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2985 	/*
2986 	 * TODO: Determine the PLL type from the SW state, once MTL PLL
2987 	 * handling is done via the standard shared DPLL framework.
2988 	 */
2989 	u32 val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(encoder->port));
2990 	u32 clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val);
2991 
2992 	if (clock == XELPDP_DDI_CLOCK_SELECT_MAXPCLK ||
2993 	    clock == XELPDP_DDI_CLOCK_SELECT_DIV18CLK)
2994 		return ICL_PORT_DPLL_MG_PHY;
2995 	else
2996 		return ICL_PORT_DPLL_DEFAULT;
2997 }
2998 
2999 void intel_c10pll_state_verify(struct intel_atomic_state *state,
3000 			       struct intel_crtc_state *new_crtc_state)
3001 {
3002 	struct drm_i915_private *i915 = to_i915(state->base.dev);
3003 	struct intel_c10pll_state mpllb_hw_state = { 0 };
3004 	struct intel_c10pll_state *mpllb_sw_state = &new_crtc_state->cx0pll_state.c10;
3005 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
3006 	struct intel_encoder *encoder;
3007 	enum phy phy;
3008 	int i;
3009 
3010 	if (DISPLAY_VER(i915) < 14)
3011 		return;
3012 
3013 	if (!new_crtc_state->hw.active)
3014 		return;
3015 
3016 	/* intel_get_crtc_new_encoder() only works for modeset/fastset commits */
3017 	if (!intel_crtc_needs_modeset(new_crtc_state) &&
3018 	    !intel_crtc_needs_fastset(new_crtc_state))
3019 		return;
3020 
3021 	encoder = intel_get_crtc_new_encoder(state, new_crtc_state);
3022 	phy = intel_port_to_phy(i915, encoder->port);
3023 
3024 	if (!intel_is_c10phy(i915, phy))
3025 		return;
3026 
3027 	intel_c10pll_readout_hw_state(encoder, &mpllb_hw_state);
3028 
3029 	for (i = 0; i < ARRAY_SIZE(mpllb_sw_state->pll); i++) {
3030 		u8 expected = mpllb_sw_state->pll[i];
3031 
3032 		I915_STATE_WARN(i915, mpllb_hw_state.pll[i] != expected,
3033 				"[CRTC:%d:%s] mismatch in C10MPLLB: Register[%d] (expected 0x%02x, found 0x%02x)",
3034 				crtc->base.base.id, crtc->base.name, i,
3035 				expected, mpllb_hw_state.pll[i]);
3036 	}
3037 
3038 	I915_STATE_WARN(i915, mpllb_hw_state.tx != mpllb_sw_state->tx,
3039 			"[CRTC:%d:%s] mismatch in C10MPLLB: Register TX0 (expected 0x%02x, found 0x%02x)",
3040 			crtc->base.base.id, crtc->base.name,
3041 			mpllb_sw_state->tx, mpllb_hw_state.tx);
3042 
3043 	I915_STATE_WARN(i915, mpllb_hw_state.cmn != mpllb_sw_state->cmn,
3044 			"[CRTC:%d:%s] mismatch in C10MPLLB: Register CMN0 (expected 0x%02x, found 0x%02x)",
3045 			crtc->base.base.id, crtc->base.name,
3046 			mpllb_sw_state->cmn, mpllb_hw_state.cmn);
3047 }
3048