1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 #include <linux/kernel.h> 6 #include <linux/pm_qos.h> 7 #include <linux/slab.h> 8 9 #include <drm/drm_atomic_helper.h> 10 #include <drm/drm_fourcc.h> 11 #include <drm/drm_plane.h> 12 #include <drm/drm_vblank_work.h> 13 14 #include "i915_irq.h" 15 #include "i915_vgpu.h" 16 #include "i9xx_plane.h" 17 #include "icl_dsi.h" 18 #include "intel_atomic.h" 19 #include "intel_atomic_plane.h" 20 #include "intel_color.h" 21 #include "intel_crtc.h" 22 #include "intel_cursor.h" 23 #include "intel_display_debugfs.h" 24 #include "intel_display_trace.h" 25 #include "intel_display_types.h" 26 #include "intel_drrs.h" 27 #include "intel_dsi.h" 28 #include "intel_pipe_crc.h" 29 #include "intel_psr.h" 30 #include "intel_sprite.h" 31 #include "intel_vblank.h" 32 #include "intel_vrr.h" 33 #include "skl_universal_plane.h" 34 35 static void assert_vblank_disabled(struct drm_crtc *crtc) 36 { 37 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0)) 38 drm_crtc_vblank_put(crtc); 39 } 40 41 struct intel_crtc *intel_first_crtc(struct drm_i915_private *i915) 42 { 43 return to_intel_crtc(drm_crtc_from_index(&i915->drm, 0)); 44 } 45 46 struct intel_crtc *intel_crtc_for_pipe(struct drm_i915_private *i915, 47 enum pipe pipe) 48 { 49 struct intel_crtc *crtc; 50 51 for_each_intel_crtc(&i915->drm, crtc) { 52 if (crtc->pipe == pipe) 53 return crtc; 54 } 55 56 return NULL; 57 } 58 59 void intel_crtc_wait_for_next_vblank(struct intel_crtc *crtc) 60 { 61 drm_crtc_wait_one_vblank(&crtc->base); 62 } 63 64 void intel_wait_for_vblank_if_active(struct drm_i915_private *i915, 65 enum pipe pipe) 66 { 67 struct intel_crtc *crtc = intel_crtc_for_pipe(i915, pipe); 68 69 if (crtc->active) 70 intel_crtc_wait_for_next_vblank(crtc); 71 } 72 73 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc) 74 { 75 struct drm_device *dev = crtc->base.dev; 76 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)]; 77 78 if (!crtc->active) 79 return 0; 80 81 if (!vblank->max_vblank_count) 82 return (u32)drm_crtc_accurate_vblank_count(&crtc->base); 83 84 return crtc->base.funcs->get_vblank_counter(&crtc->base); 85 } 86 87 u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state) 88 { 89 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 90 91 /* 92 * From Gen 11, In case of dsi cmd mode, frame counter wouldnt 93 * have updated at the beginning of TE, if we want to use 94 * the hw counter, then we would find it updated in only 95 * the next TE, hence switching to sw counter. 96 */ 97 if (crtc_state->mode_flags & (I915_MODE_FLAG_DSI_USE_TE0 | 98 I915_MODE_FLAG_DSI_USE_TE1)) 99 return 0; 100 101 /* 102 * On i965gm the hardware frame counter reads 103 * zero when the TV encoder is enabled :( 104 */ 105 if (IS_I965GM(dev_priv) && 106 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT))) 107 return 0; 108 109 if (DISPLAY_VER(dev_priv) >= 5 || IS_G4X(dev_priv)) 110 return 0xffffffff; /* full 32 bit counter */ 111 else if (DISPLAY_VER(dev_priv) >= 3) 112 return 0xffffff; /* only 24 bits of frame count */ 113 else 114 return 0; /* Gen2 doesn't have a hardware frame counter */ 115 } 116 117 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state) 118 { 119 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 120 121 assert_vblank_disabled(&crtc->base); 122 drm_crtc_set_max_vblank_count(&crtc->base, 123 intel_crtc_max_vblank_count(crtc_state)); 124 drm_crtc_vblank_on(&crtc->base); 125 126 /* 127 * Should really happen exactly when we enable the pipe 128 * but we want the frame counters in the trace, and that 129 * requires vblank support on some platforms/outputs. 130 */ 131 trace_intel_pipe_enable(crtc); 132 } 133 134 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state) 135 { 136 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 137 138 /* 139 * Should really happen exactly when we disable the pipe 140 * but we want the frame counters in the trace, and that 141 * requires vblank support on some platforms/outputs. 142 */ 143 trace_intel_pipe_disable(crtc); 144 145 drm_crtc_vblank_off(&crtc->base); 146 assert_vblank_disabled(&crtc->base); 147 } 148 149 struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc) 150 { 151 struct intel_crtc_state *crtc_state; 152 153 crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL); 154 155 if (crtc_state) 156 intel_crtc_state_reset(crtc_state, crtc); 157 158 return crtc_state; 159 } 160 161 void intel_crtc_state_reset(struct intel_crtc_state *crtc_state, 162 struct intel_crtc *crtc) 163 { 164 memset(crtc_state, 0, sizeof(*crtc_state)); 165 166 __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base); 167 168 crtc_state->cpu_transcoder = INVALID_TRANSCODER; 169 crtc_state->master_transcoder = INVALID_TRANSCODER; 170 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 171 crtc_state->scaler_state.scaler_id = -1; 172 crtc_state->mst_master_transcoder = INVALID_TRANSCODER; 173 } 174 175 static struct intel_crtc *intel_crtc_alloc(void) 176 { 177 struct intel_crtc_state *crtc_state; 178 struct intel_crtc *crtc; 179 180 crtc = kzalloc(sizeof(*crtc), GFP_KERNEL); 181 if (!crtc) 182 return ERR_PTR(-ENOMEM); 183 184 crtc_state = intel_crtc_state_alloc(crtc); 185 if (!crtc_state) { 186 kfree(crtc); 187 return ERR_PTR(-ENOMEM); 188 } 189 190 crtc->base.state = &crtc_state->uapi; 191 crtc->config = crtc_state; 192 193 return crtc; 194 } 195 196 static void intel_crtc_free(struct intel_crtc *crtc) 197 { 198 intel_crtc_destroy_state(&crtc->base, crtc->base.state); 199 kfree(crtc); 200 } 201 202 static void intel_crtc_destroy(struct drm_crtc *_crtc) 203 { 204 struct intel_crtc *crtc = to_intel_crtc(_crtc); 205 206 cpu_latency_qos_remove_request(&crtc->vblank_pm_qos); 207 208 drm_crtc_cleanup(&crtc->base); 209 kfree(crtc); 210 } 211 212 static int intel_crtc_late_register(struct drm_crtc *crtc) 213 { 214 intel_crtc_debugfs_add(crtc); 215 return 0; 216 } 217 218 #define INTEL_CRTC_FUNCS \ 219 .set_config = drm_atomic_helper_set_config, \ 220 .destroy = intel_crtc_destroy, \ 221 .page_flip = drm_atomic_helper_page_flip, \ 222 .atomic_duplicate_state = intel_crtc_duplicate_state, \ 223 .atomic_destroy_state = intel_crtc_destroy_state, \ 224 .set_crc_source = intel_crtc_set_crc_source, \ 225 .verify_crc_source = intel_crtc_verify_crc_source, \ 226 .get_crc_sources = intel_crtc_get_crc_sources, \ 227 .late_register = intel_crtc_late_register 228 229 static const struct drm_crtc_funcs bdw_crtc_funcs = { 230 INTEL_CRTC_FUNCS, 231 232 .get_vblank_counter = g4x_get_vblank_counter, 233 .enable_vblank = bdw_enable_vblank, 234 .disable_vblank = bdw_disable_vblank, 235 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 236 }; 237 238 static const struct drm_crtc_funcs ilk_crtc_funcs = { 239 INTEL_CRTC_FUNCS, 240 241 .get_vblank_counter = g4x_get_vblank_counter, 242 .enable_vblank = ilk_enable_vblank, 243 .disable_vblank = ilk_disable_vblank, 244 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 245 }; 246 247 static const struct drm_crtc_funcs g4x_crtc_funcs = { 248 INTEL_CRTC_FUNCS, 249 250 .get_vblank_counter = g4x_get_vblank_counter, 251 .enable_vblank = i965_enable_vblank, 252 .disable_vblank = i965_disable_vblank, 253 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 254 }; 255 256 static const struct drm_crtc_funcs i965_crtc_funcs = { 257 INTEL_CRTC_FUNCS, 258 259 .get_vblank_counter = i915_get_vblank_counter, 260 .enable_vblank = i965_enable_vblank, 261 .disable_vblank = i965_disable_vblank, 262 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 263 }; 264 265 static const struct drm_crtc_funcs i915gm_crtc_funcs = { 266 INTEL_CRTC_FUNCS, 267 268 .get_vblank_counter = i915_get_vblank_counter, 269 .enable_vblank = i915gm_enable_vblank, 270 .disable_vblank = i915gm_disable_vblank, 271 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 272 }; 273 274 static const struct drm_crtc_funcs i915_crtc_funcs = { 275 INTEL_CRTC_FUNCS, 276 277 .get_vblank_counter = i915_get_vblank_counter, 278 .enable_vblank = i8xx_enable_vblank, 279 .disable_vblank = i8xx_disable_vblank, 280 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 281 }; 282 283 static const struct drm_crtc_funcs i8xx_crtc_funcs = { 284 INTEL_CRTC_FUNCS, 285 286 /* no hw vblank counter */ 287 .enable_vblank = i8xx_enable_vblank, 288 .disable_vblank = i8xx_disable_vblank, 289 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 290 }; 291 292 int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe) 293 { 294 struct intel_plane *primary, *cursor; 295 const struct drm_crtc_funcs *funcs; 296 struct intel_crtc *crtc; 297 int sprite, ret; 298 299 crtc = intel_crtc_alloc(); 300 if (IS_ERR(crtc)) 301 return PTR_ERR(crtc); 302 303 crtc->pipe = pipe; 304 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe]; 305 306 if (DISPLAY_VER(dev_priv) >= 9) 307 primary = skl_universal_plane_create(dev_priv, pipe, 308 PLANE_PRIMARY); 309 else 310 primary = intel_primary_plane_create(dev_priv, pipe); 311 if (IS_ERR(primary)) { 312 ret = PTR_ERR(primary); 313 goto fail; 314 } 315 crtc->plane_ids_mask |= BIT(primary->id); 316 317 for_each_sprite(dev_priv, pipe, sprite) { 318 struct intel_plane *plane; 319 320 if (DISPLAY_VER(dev_priv) >= 9) 321 plane = skl_universal_plane_create(dev_priv, pipe, 322 PLANE_SPRITE0 + sprite); 323 else 324 plane = intel_sprite_plane_create(dev_priv, pipe, sprite); 325 if (IS_ERR(plane)) { 326 ret = PTR_ERR(plane); 327 goto fail; 328 } 329 crtc->plane_ids_mask |= BIT(plane->id); 330 } 331 332 cursor = intel_cursor_plane_create(dev_priv, pipe); 333 if (IS_ERR(cursor)) { 334 ret = PTR_ERR(cursor); 335 goto fail; 336 } 337 crtc->plane_ids_mask |= BIT(cursor->id); 338 339 if (HAS_GMCH(dev_priv)) { 340 if (IS_CHERRYVIEW(dev_priv) || 341 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv)) 342 funcs = &g4x_crtc_funcs; 343 else if (DISPLAY_VER(dev_priv) == 4) 344 funcs = &i965_crtc_funcs; 345 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv)) 346 funcs = &i915gm_crtc_funcs; 347 else if (DISPLAY_VER(dev_priv) == 3) 348 funcs = &i915_crtc_funcs; 349 else 350 funcs = &i8xx_crtc_funcs; 351 } else { 352 if (DISPLAY_VER(dev_priv) >= 8) 353 funcs = &bdw_crtc_funcs; 354 else 355 funcs = &ilk_crtc_funcs; 356 } 357 358 ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base, 359 &primary->base, &cursor->base, 360 funcs, "pipe %c", pipe_name(pipe)); 361 if (ret) 362 goto fail; 363 364 if (DISPLAY_VER(dev_priv) >= 11) 365 drm_crtc_create_scaling_filter_property(&crtc->base, 366 BIT(DRM_SCALING_FILTER_DEFAULT) | 367 BIT(DRM_SCALING_FILTER_NEAREST_NEIGHBOR)); 368 369 intel_color_crtc_init(crtc); 370 intel_drrs_crtc_init(crtc); 371 intel_crtc_crc_init(crtc); 372 373 cpu_latency_qos_add_request(&crtc->vblank_pm_qos, PM_QOS_DEFAULT_VALUE); 374 375 drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe); 376 377 return 0; 378 379 fail: 380 intel_crtc_free(crtc); 381 382 return ret; 383 } 384 385 static bool intel_crtc_needs_vblank_work(const struct intel_crtc_state *crtc_state) 386 { 387 return crtc_state->hw.active && 388 !intel_crtc_needs_modeset(crtc_state) && 389 !crtc_state->preload_luts && 390 intel_crtc_needs_color_update(crtc_state); 391 } 392 393 static void intel_crtc_vblank_work(struct kthread_work *base) 394 { 395 struct drm_vblank_work *work = to_drm_vblank_work(base); 396 struct intel_crtc_state *crtc_state = 397 container_of(work, typeof(*crtc_state), vblank_work); 398 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 399 400 trace_intel_crtc_vblank_work_start(crtc); 401 402 intel_color_load_luts(crtc_state); 403 404 if (crtc_state->uapi.event) { 405 spin_lock_irq(&crtc->base.dev->event_lock); 406 drm_crtc_send_vblank_event(&crtc->base, crtc_state->uapi.event); 407 crtc_state->uapi.event = NULL; 408 spin_unlock_irq(&crtc->base.dev->event_lock); 409 } 410 411 trace_intel_crtc_vblank_work_end(crtc); 412 } 413 414 static void intel_crtc_vblank_work_init(struct intel_crtc_state *crtc_state) 415 { 416 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 417 418 drm_vblank_work_init(&crtc_state->vblank_work, &crtc->base, 419 intel_crtc_vblank_work); 420 /* 421 * Interrupt latency is critical for getting the vblank 422 * work executed as early as possible during the vblank. 423 */ 424 cpu_latency_qos_update_request(&crtc->vblank_pm_qos, 0); 425 } 426 427 void intel_wait_for_vblank_workers(struct intel_atomic_state *state) 428 { 429 struct intel_crtc_state *crtc_state; 430 struct intel_crtc *crtc; 431 int i; 432 433 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 434 if (!intel_crtc_needs_vblank_work(crtc_state)) 435 continue; 436 437 drm_vblank_work_flush(&crtc_state->vblank_work); 438 cpu_latency_qos_update_request(&crtc->vblank_pm_qos, 439 PM_QOS_DEFAULT_VALUE); 440 } 441 } 442 443 int intel_usecs_to_scanlines(const struct drm_display_mode *adjusted_mode, 444 int usecs) 445 { 446 /* paranoia */ 447 if (!adjusted_mode->crtc_htotal) 448 return 1; 449 450 return DIV_ROUND_UP(usecs * adjusted_mode->crtc_clock, 451 1000 * adjusted_mode->crtc_htotal); 452 } 453 454 static int intel_mode_vblank_start(const struct drm_display_mode *mode) 455 { 456 int vblank_start = mode->crtc_vblank_start; 457 458 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 459 vblank_start = DIV_ROUND_UP(vblank_start, 2); 460 461 return vblank_start; 462 } 463 464 /** 465 * intel_pipe_update_start() - start update of a set of display registers 466 * @new_crtc_state: the new crtc state 467 * 468 * Mark the start of an update to pipe registers that should be updated 469 * atomically regarding vblank. If the next vblank will happens within 470 * the next 100 us, this function waits until the vblank passes. 471 * 472 * After a successful call to this function, interrupts will be disabled 473 * until a subsequent call to intel_pipe_update_end(). That is done to 474 * avoid random delays. 475 */ 476 void intel_pipe_update_start(struct intel_crtc_state *new_crtc_state) 477 { 478 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 479 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 480 const struct drm_display_mode *adjusted_mode = &new_crtc_state->hw.adjusted_mode; 481 long timeout = msecs_to_jiffies_timeout(1); 482 int scanline, min, max, vblank_start; 483 wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base); 484 bool need_vlv_dsi_wa = (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 485 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI); 486 DEFINE_WAIT(wait); 487 488 intel_psr_lock(new_crtc_state); 489 490 if (new_crtc_state->do_async_flip) 491 return; 492 493 if (intel_crtc_needs_vblank_work(new_crtc_state)) 494 intel_crtc_vblank_work_init(new_crtc_state); 495 496 if (new_crtc_state->vrr.enable) { 497 if (intel_vrr_is_push_sent(new_crtc_state)) 498 vblank_start = intel_vrr_vmin_vblank_start(new_crtc_state); 499 else 500 vblank_start = intel_vrr_vmax_vblank_start(new_crtc_state); 501 } else { 502 vblank_start = intel_mode_vblank_start(adjusted_mode); 503 } 504 505 /* FIXME needs to be calibrated sensibly */ 506 min = vblank_start - intel_usecs_to_scanlines(adjusted_mode, 507 VBLANK_EVASION_TIME_US); 508 max = vblank_start - 1; 509 510 if (min <= 0 || max <= 0) 511 goto irq_disable; 512 513 if (drm_WARN_ON(&dev_priv->drm, drm_crtc_vblank_get(&crtc->base))) 514 goto irq_disable; 515 516 /* 517 * Wait for psr to idle out after enabling the VBL interrupts 518 * VBL interrupts will start the PSR exit and prevent a PSR 519 * re-entry as well. 520 */ 521 intel_psr_wait_for_idle_locked(new_crtc_state); 522 523 local_irq_disable(); 524 525 crtc->debug.min_vbl = min; 526 crtc->debug.max_vbl = max; 527 trace_intel_pipe_update_start(crtc); 528 529 for (;;) { 530 /* 531 * prepare_to_wait() has a memory barrier, which guarantees 532 * other CPUs can see the task state update by the time we 533 * read the scanline. 534 */ 535 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 536 537 scanline = intel_get_crtc_scanline(crtc); 538 if (scanline < min || scanline > max) 539 break; 540 541 if (!timeout) { 542 drm_err(&dev_priv->drm, 543 "Potential atomic update failure on pipe %c\n", 544 pipe_name(crtc->pipe)); 545 break; 546 } 547 548 local_irq_enable(); 549 550 timeout = schedule_timeout(timeout); 551 552 local_irq_disable(); 553 } 554 555 finish_wait(wq, &wait); 556 557 drm_crtc_vblank_put(&crtc->base); 558 559 /* 560 * On VLV/CHV DSI the scanline counter would appear to 561 * increment approx. 1/3 of a scanline before start of vblank. 562 * The registers still get latched at start of vblank however. 563 * This means we must not write any registers on the first 564 * line of vblank (since not the whole line is actually in 565 * vblank). And unfortunately we can't use the interrupt to 566 * wait here since it will fire too soon. We could use the 567 * frame start interrupt instead since it will fire after the 568 * critical scanline, but that would require more changes 569 * in the interrupt code. So for now we'll just do the nasty 570 * thing and poll for the bad scanline to pass us by. 571 * 572 * FIXME figure out if BXT+ DSI suffers from this as well 573 */ 574 while (need_vlv_dsi_wa && scanline == vblank_start) 575 scanline = intel_get_crtc_scanline(crtc); 576 577 crtc->debug.scanline_start = scanline; 578 crtc->debug.start_vbl_time = ktime_get(); 579 crtc->debug.start_vbl_count = intel_crtc_get_vblank_counter(crtc); 580 581 trace_intel_pipe_update_vblank_evaded(crtc); 582 return; 583 584 irq_disable: 585 local_irq_disable(); 586 } 587 588 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_VBLANK_EVADE) 589 static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end) 590 { 591 u64 delta = ktime_to_ns(ktime_sub(end, crtc->debug.start_vbl_time)); 592 unsigned int h; 593 594 h = ilog2(delta >> 9); 595 if (h >= ARRAY_SIZE(crtc->debug.vbl.times)) 596 h = ARRAY_SIZE(crtc->debug.vbl.times) - 1; 597 crtc->debug.vbl.times[h]++; 598 599 crtc->debug.vbl.sum += delta; 600 if (!crtc->debug.vbl.min || delta < crtc->debug.vbl.min) 601 crtc->debug.vbl.min = delta; 602 if (delta > crtc->debug.vbl.max) 603 crtc->debug.vbl.max = delta; 604 605 if (delta > 1000 * VBLANK_EVASION_TIME_US) { 606 drm_dbg_kms(crtc->base.dev, 607 "Atomic update on pipe (%c) took %lld us, max time under evasion is %u us\n", 608 pipe_name(crtc->pipe), 609 div_u64(delta, 1000), 610 VBLANK_EVASION_TIME_US); 611 crtc->debug.vbl.over++; 612 } 613 } 614 #else 615 static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end) {} 616 #endif 617 618 /** 619 * intel_pipe_update_end() - end update of a set of display registers 620 * @new_crtc_state: the new crtc state 621 * 622 * Mark the end of an update started with intel_pipe_update_start(). This 623 * re-enables interrupts and verifies the update was actually completed 624 * before a vblank. 625 */ 626 void intel_pipe_update_end(struct intel_crtc_state *new_crtc_state) 627 { 628 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 629 enum pipe pipe = crtc->pipe; 630 int scanline_end = intel_get_crtc_scanline(crtc); 631 u32 end_vbl_count = intel_crtc_get_vblank_counter(crtc); 632 ktime_t end_vbl_time = ktime_get(); 633 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 634 635 intel_psr_unlock(new_crtc_state); 636 637 if (new_crtc_state->do_async_flip) 638 return; 639 640 trace_intel_pipe_update_end(crtc, end_vbl_count, scanline_end); 641 642 /* 643 * Incase of mipi dsi command mode, we need to set frame update 644 * request for every commit. 645 */ 646 if (DISPLAY_VER(dev_priv) >= 11 && 647 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 648 icl_dsi_frame_update(new_crtc_state); 649 650 /* We're still in the vblank-evade critical section, this can't race. 651 * Would be slightly nice to just grab the vblank count and arm the 652 * event outside of the critical section - the spinlock might spin for a 653 * while ... */ 654 if (intel_crtc_needs_vblank_work(new_crtc_state)) { 655 drm_vblank_work_schedule(&new_crtc_state->vblank_work, 656 drm_crtc_accurate_vblank_count(&crtc->base) + 1, 657 false); 658 } else if (new_crtc_state->uapi.event) { 659 drm_WARN_ON(&dev_priv->drm, 660 drm_crtc_vblank_get(&crtc->base) != 0); 661 662 spin_lock(&crtc->base.dev->event_lock); 663 drm_crtc_arm_vblank_event(&crtc->base, 664 new_crtc_state->uapi.event); 665 spin_unlock(&crtc->base.dev->event_lock); 666 667 new_crtc_state->uapi.event = NULL; 668 } 669 670 /* 671 * Send VRR Push to terminate Vblank. If we are already in vblank 672 * this has to be done _after_ sampling the frame counter, as 673 * otherwise the push would immediately terminate the vblank and 674 * the sampled frame counter would correspond to the next frame 675 * instead of the current frame. 676 * 677 * There is a tiny race here (iff vblank evasion failed us) where 678 * we might sample the frame counter just before vmax vblank start 679 * but the push would be sent just after it. That would cause the 680 * push to affect the next frame instead of the current frame, 681 * which would cause the next frame to terminate already at vmin 682 * vblank start instead of vmax vblank start. 683 */ 684 intel_vrr_send_push(new_crtc_state); 685 686 local_irq_enable(); 687 688 if (intel_vgpu_active(dev_priv)) 689 return; 690 691 if (crtc->debug.start_vbl_count && 692 crtc->debug.start_vbl_count != end_vbl_count) { 693 drm_err(&dev_priv->drm, 694 "Atomic update failure on pipe %c (start=%u end=%u) time %lld us, min %d, max %d, scanline start %d, end %d\n", 695 pipe_name(pipe), crtc->debug.start_vbl_count, 696 end_vbl_count, 697 ktime_us_delta(end_vbl_time, 698 crtc->debug.start_vbl_time), 699 crtc->debug.min_vbl, crtc->debug.max_vbl, 700 crtc->debug.scanline_start, scanline_end); 701 } 702 703 dbg_vblank_evade(crtc, end_vbl_time); 704 } 705