1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 #include <linux/kernel.h> 6 #include <linux/pm_qos.h> 7 #include <linux/slab.h> 8 9 #include <drm/drm_atomic_helper.h> 10 #include <drm/drm_fourcc.h> 11 #include <drm/drm_plane.h> 12 #include <drm/drm_plane_helper.h> 13 #include <drm/drm_vblank_work.h> 14 15 #include "i915_vgpu.h" 16 #include "i9xx_plane.h" 17 #include "icl_dsi.h" 18 #include "intel_atomic.h" 19 #include "intel_atomic_plane.h" 20 #include "intel_color.h" 21 #include "intel_crtc.h" 22 #include "intel_cursor.h" 23 #include "intel_display_debugfs.h" 24 #include "intel_display_trace.h" 25 #include "intel_display_types.h" 26 #include "intel_dsi.h" 27 #include "intel_pipe_crc.h" 28 #include "intel_psr.h" 29 #include "intel_sprite.h" 30 #include "intel_vrr.h" 31 #include "skl_universal_plane.h" 32 33 static void assert_vblank_disabled(struct drm_crtc *crtc) 34 { 35 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0)) 36 drm_crtc_vblank_put(crtc); 37 } 38 39 struct intel_crtc *intel_first_crtc(struct drm_i915_private *i915) 40 { 41 return to_intel_crtc(drm_crtc_from_index(&i915->drm, 0)); 42 } 43 44 struct intel_crtc *intel_crtc_for_pipe(struct drm_i915_private *i915, 45 enum pipe pipe) 46 { 47 struct intel_crtc *crtc; 48 49 for_each_intel_crtc(&i915->drm, crtc) { 50 if (crtc->pipe == pipe) 51 return crtc; 52 } 53 54 return NULL; 55 } 56 57 void intel_crtc_wait_for_next_vblank(struct intel_crtc *crtc) 58 { 59 drm_crtc_wait_one_vblank(&crtc->base); 60 } 61 62 void intel_wait_for_vblank_if_active(struct drm_i915_private *i915, 63 enum pipe pipe) 64 { 65 struct intel_crtc *crtc = intel_crtc_for_pipe(i915, pipe); 66 67 if (crtc->active) 68 intel_crtc_wait_for_next_vblank(crtc); 69 } 70 71 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc) 72 { 73 struct drm_device *dev = crtc->base.dev; 74 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)]; 75 76 if (!crtc->active) 77 return 0; 78 79 if (!vblank->max_vblank_count) 80 return (u32)drm_crtc_accurate_vblank_count(&crtc->base); 81 82 return crtc->base.funcs->get_vblank_counter(&crtc->base); 83 } 84 85 u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state) 86 { 87 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 88 89 /* 90 * From Gen 11, In case of dsi cmd mode, frame counter wouldnt 91 * have updated at the beginning of TE, if we want to use 92 * the hw counter, then we would find it updated in only 93 * the next TE, hence switching to sw counter. 94 */ 95 if (crtc_state->mode_flags & (I915_MODE_FLAG_DSI_USE_TE0 | 96 I915_MODE_FLAG_DSI_USE_TE1)) 97 return 0; 98 99 /* 100 * On i965gm the hardware frame counter reads 101 * zero when the TV encoder is enabled :( 102 */ 103 if (IS_I965GM(dev_priv) && 104 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT))) 105 return 0; 106 107 if (DISPLAY_VER(dev_priv) >= 5 || IS_G4X(dev_priv)) 108 return 0xffffffff; /* full 32 bit counter */ 109 else if (DISPLAY_VER(dev_priv) >= 3) 110 return 0xffffff; /* only 24 bits of frame count */ 111 else 112 return 0; /* Gen2 doesn't have a hardware frame counter */ 113 } 114 115 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state) 116 { 117 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 118 119 assert_vblank_disabled(&crtc->base); 120 drm_crtc_set_max_vblank_count(&crtc->base, 121 intel_crtc_max_vblank_count(crtc_state)); 122 drm_crtc_vblank_on(&crtc->base); 123 124 /* 125 * Should really happen exactly when we enable the pipe 126 * but we want the frame counters in the trace, and that 127 * requires vblank support on some platforms/outputs. 128 */ 129 trace_intel_pipe_enable(crtc); 130 } 131 132 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state) 133 { 134 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 135 136 /* 137 * Should really happen exactly when we disable the pipe 138 * but we want the frame counters in the trace, and that 139 * requires vblank support on some platforms/outputs. 140 */ 141 trace_intel_pipe_disable(crtc); 142 143 drm_crtc_vblank_off(&crtc->base); 144 assert_vblank_disabled(&crtc->base); 145 } 146 147 struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc) 148 { 149 struct intel_crtc_state *crtc_state; 150 151 crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL); 152 153 if (crtc_state) 154 intel_crtc_state_reset(crtc_state, crtc); 155 156 return crtc_state; 157 } 158 159 void intel_crtc_state_reset(struct intel_crtc_state *crtc_state, 160 struct intel_crtc *crtc) 161 { 162 memset(crtc_state, 0, sizeof(*crtc_state)); 163 164 __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base); 165 166 crtc_state->cpu_transcoder = INVALID_TRANSCODER; 167 crtc_state->master_transcoder = INVALID_TRANSCODER; 168 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 169 crtc_state->scaler_state.scaler_id = -1; 170 crtc_state->mst_master_transcoder = INVALID_TRANSCODER; 171 } 172 173 static struct intel_crtc *intel_crtc_alloc(void) 174 { 175 struct intel_crtc_state *crtc_state; 176 struct intel_crtc *crtc; 177 178 crtc = kzalloc(sizeof(*crtc), GFP_KERNEL); 179 if (!crtc) 180 return ERR_PTR(-ENOMEM); 181 182 crtc_state = intel_crtc_state_alloc(crtc); 183 if (!crtc_state) { 184 kfree(crtc); 185 return ERR_PTR(-ENOMEM); 186 } 187 188 crtc->base.state = &crtc_state->uapi; 189 crtc->config = crtc_state; 190 191 return crtc; 192 } 193 194 static void intel_crtc_free(struct intel_crtc *crtc) 195 { 196 intel_crtc_destroy_state(&crtc->base, crtc->base.state); 197 kfree(crtc); 198 } 199 200 static void intel_crtc_destroy(struct drm_crtc *_crtc) 201 { 202 struct intel_crtc *crtc = to_intel_crtc(_crtc); 203 204 cpu_latency_qos_remove_request(&crtc->vblank_pm_qos); 205 206 drm_crtc_cleanup(&crtc->base); 207 kfree(crtc); 208 } 209 210 static int intel_crtc_late_register(struct drm_crtc *crtc) 211 { 212 intel_crtc_debugfs_add(crtc); 213 return 0; 214 } 215 216 #define INTEL_CRTC_FUNCS \ 217 .set_config = drm_atomic_helper_set_config, \ 218 .destroy = intel_crtc_destroy, \ 219 .page_flip = drm_atomic_helper_page_flip, \ 220 .atomic_duplicate_state = intel_crtc_duplicate_state, \ 221 .atomic_destroy_state = intel_crtc_destroy_state, \ 222 .set_crc_source = intel_crtc_set_crc_source, \ 223 .verify_crc_source = intel_crtc_verify_crc_source, \ 224 .get_crc_sources = intel_crtc_get_crc_sources, \ 225 .late_register = intel_crtc_late_register 226 227 static const struct drm_crtc_funcs bdw_crtc_funcs = { 228 INTEL_CRTC_FUNCS, 229 230 .get_vblank_counter = g4x_get_vblank_counter, 231 .enable_vblank = bdw_enable_vblank, 232 .disable_vblank = bdw_disable_vblank, 233 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 234 }; 235 236 static const struct drm_crtc_funcs ilk_crtc_funcs = { 237 INTEL_CRTC_FUNCS, 238 239 .get_vblank_counter = g4x_get_vblank_counter, 240 .enable_vblank = ilk_enable_vblank, 241 .disable_vblank = ilk_disable_vblank, 242 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 243 }; 244 245 static const struct drm_crtc_funcs g4x_crtc_funcs = { 246 INTEL_CRTC_FUNCS, 247 248 .get_vblank_counter = g4x_get_vblank_counter, 249 .enable_vblank = i965_enable_vblank, 250 .disable_vblank = i965_disable_vblank, 251 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 252 }; 253 254 static const struct drm_crtc_funcs i965_crtc_funcs = { 255 INTEL_CRTC_FUNCS, 256 257 .get_vblank_counter = i915_get_vblank_counter, 258 .enable_vblank = i965_enable_vblank, 259 .disable_vblank = i965_disable_vblank, 260 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 261 }; 262 263 static const struct drm_crtc_funcs i915gm_crtc_funcs = { 264 INTEL_CRTC_FUNCS, 265 266 .get_vblank_counter = i915_get_vblank_counter, 267 .enable_vblank = i915gm_enable_vblank, 268 .disable_vblank = i915gm_disable_vblank, 269 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 270 }; 271 272 static const struct drm_crtc_funcs i915_crtc_funcs = { 273 INTEL_CRTC_FUNCS, 274 275 .get_vblank_counter = i915_get_vblank_counter, 276 .enable_vblank = i8xx_enable_vblank, 277 .disable_vblank = i8xx_disable_vblank, 278 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 279 }; 280 281 static const struct drm_crtc_funcs i8xx_crtc_funcs = { 282 INTEL_CRTC_FUNCS, 283 284 /* no hw vblank counter */ 285 .enable_vblank = i8xx_enable_vblank, 286 .disable_vblank = i8xx_disable_vblank, 287 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 288 }; 289 290 int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe) 291 { 292 struct intel_plane *primary, *cursor; 293 const struct drm_crtc_funcs *funcs; 294 struct intel_crtc *crtc; 295 int sprite, ret; 296 297 crtc = intel_crtc_alloc(); 298 if (IS_ERR(crtc)) 299 return PTR_ERR(crtc); 300 301 crtc->pipe = pipe; 302 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe]; 303 304 if (DISPLAY_VER(dev_priv) >= 9) 305 primary = skl_universal_plane_create(dev_priv, pipe, 306 PLANE_PRIMARY); 307 else 308 primary = intel_primary_plane_create(dev_priv, pipe); 309 if (IS_ERR(primary)) { 310 ret = PTR_ERR(primary); 311 goto fail; 312 } 313 crtc->plane_ids_mask |= BIT(primary->id); 314 315 for_each_sprite(dev_priv, pipe, sprite) { 316 struct intel_plane *plane; 317 318 if (DISPLAY_VER(dev_priv) >= 9) 319 plane = skl_universal_plane_create(dev_priv, pipe, 320 PLANE_SPRITE0 + sprite); 321 else 322 plane = intel_sprite_plane_create(dev_priv, pipe, sprite); 323 if (IS_ERR(plane)) { 324 ret = PTR_ERR(plane); 325 goto fail; 326 } 327 crtc->plane_ids_mask |= BIT(plane->id); 328 } 329 330 cursor = intel_cursor_plane_create(dev_priv, pipe); 331 if (IS_ERR(cursor)) { 332 ret = PTR_ERR(cursor); 333 goto fail; 334 } 335 crtc->plane_ids_mask |= BIT(cursor->id); 336 337 if (HAS_GMCH(dev_priv)) { 338 if (IS_CHERRYVIEW(dev_priv) || 339 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv)) 340 funcs = &g4x_crtc_funcs; 341 else if (DISPLAY_VER(dev_priv) == 4) 342 funcs = &i965_crtc_funcs; 343 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv)) 344 funcs = &i915gm_crtc_funcs; 345 else if (DISPLAY_VER(dev_priv) == 3) 346 funcs = &i915_crtc_funcs; 347 else 348 funcs = &i8xx_crtc_funcs; 349 } else { 350 if (DISPLAY_VER(dev_priv) >= 8) 351 funcs = &bdw_crtc_funcs; 352 else 353 funcs = &ilk_crtc_funcs; 354 } 355 356 ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base, 357 &primary->base, &cursor->base, 358 funcs, "pipe %c", pipe_name(pipe)); 359 if (ret) 360 goto fail; 361 362 if (DISPLAY_VER(dev_priv) >= 11) 363 drm_crtc_create_scaling_filter_property(&crtc->base, 364 BIT(DRM_SCALING_FILTER_DEFAULT) | 365 BIT(DRM_SCALING_FILTER_NEAREST_NEIGHBOR)); 366 367 intel_color_init(crtc); 368 369 intel_crtc_crc_init(crtc); 370 371 cpu_latency_qos_add_request(&crtc->vblank_pm_qos, PM_QOS_DEFAULT_VALUE); 372 373 drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe); 374 375 return 0; 376 377 fail: 378 intel_crtc_free(crtc); 379 380 return ret; 381 } 382 383 static bool intel_crtc_needs_vblank_work(const struct intel_crtc_state *crtc_state) 384 { 385 return crtc_state->hw.active && 386 !intel_crtc_needs_modeset(crtc_state) && 387 !crtc_state->preload_luts && 388 (crtc_state->uapi.color_mgmt_changed || 389 crtc_state->update_pipe); 390 } 391 392 static void intel_crtc_vblank_work(struct kthread_work *base) 393 { 394 struct drm_vblank_work *work = to_drm_vblank_work(base); 395 struct intel_crtc_state *crtc_state = 396 container_of(work, typeof(*crtc_state), vblank_work); 397 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 398 399 trace_intel_crtc_vblank_work_start(crtc); 400 401 intel_color_load_luts(crtc_state); 402 403 if (crtc_state->uapi.event) { 404 spin_lock_irq(&crtc->base.dev->event_lock); 405 drm_crtc_send_vblank_event(&crtc->base, crtc_state->uapi.event); 406 crtc_state->uapi.event = NULL; 407 spin_unlock_irq(&crtc->base.dev->event_lock); 408 } 409 410 trace_intel_crtc_vblank_work_end(crtc); 411 } 412 413 static void intel_crtc_vblank_work_init(struct intel_crtc_state *crtc_state) 414 { 415 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 416 417 drm_vblank_work_init(&crtc_state->vblank_work, &crtc->base, 418 intel_crtc_vblank_work); 419 /* 420 * Interrupt latency is critical for getting the vblank 421 * work executed as early as possible during the vblank. 422 */ 423 cpu_latency_qos_update_request(&crtc->vblank_pm_qos, 0); 424 } 425 426 void intel_wait_for_vblank_workers(struct intel_atomic_state *state) 427 { 428 struct intel_crtc_state *crtc_state; 429 struct intel_crtc *crtc; 430 int i; 431 432 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 433 if (!intel_crtc_needs_vblank_work(crtc_state)) 434 continue; 435 436 drm_vblank_work_flush(&crtc_state->vblank_work); 437 cpu_latency_qos_update_request(&crtc->vblank_pm_qos, 438 PM_QOS_DEFAULT_VALUE); 439 } 440 } 441 442 int intel_usecs_to_scanlines(const struct drm_display_mode *adjusted_mode, 443 int usecs) 444 { 445 /* paranoia */ 446 if (!adjusted_mode->crtc_htotal) 447 return 1; 448 449 return DIV_ROUND_UP(usecs * adjusted_mode->crtc_clock, 450 1000 * adjusted_mode->crtc_htotal); 451 } 452 453 static int intel_mode_vblank_start(const struct drm_display_mode *mode) 454 { 455 int vblank_start = mode->crtc_vblank_start; 456 457 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 458 vblank_start = DIV_ROUND_UP(vblank_start, 2); 459 460 return vblank_start; 461 } 462 463 /** 464 * intel_pipe_update_start() - start update of a set of display registers 465 * @new_crtc_state: the new crtc state 466 * 467 * Mark the start of an update to pipe registers that should be updated 468 * atomically regarding vblank. If the next vblank will happens within 469 * the next 100 us, this function waits until the vblank passes. 470 * 471 * After a successful call to this function, interrupts will be disabled 472 * until a subsequent call to intel_pipe_update_end(). That is done to 473 * avoid random delays. 474 */ 475 void intel_pipe_update_start(struct intel_crtc_state *new_crtc_state) 476 { 477 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 478 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 479 const struct drm_display_mode *adjusted_mode = &new_crtc_state->hw.adjusted_mode; 480 long timeout = msecs_to_jiffies_timeout(1); 481 int scanline, min, max, vblank_start; 482 wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base); 483 bool need_vlv_dsi_wa = (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 484 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI); 485 DEFINE_WAIT(wait); 486 487 if (new_crtc_state->uapi.async_flip) 488 return; 489 490 if (intel_crtc_needs_vblank_work(new_crtc_state)) 491 intel_crtc_vblank_work_init(new_crtc_state); 492 493 if (new_crtc_state->vrr.enable) { 494 if (intel_vrr_is_push_sent(new_crtc_state)) 495 vblank_start = intel_vrr_vmin_vblank_start(new_crtc_state); 496 else 497 vblank_start = intel_vrr_vmax_vblank_start(new_crtc_state); 498 } else { 499 vblank_start = intel_mode_vblank_start(adjusted_mode); 500 } 501 502 /* FIXME needs to be calibrated sensibly */ 503 min = vblank_start - intel_usecs_to_scanlines(adjusted_mode, 504 VBLANK_EVASION_TIME_US); 505 max = vblank_start - 1; 506 507 if (min <= 0 || max <= 0) 508 goto irq_disable; 509 510 if (drm_WARN_ON(&dev_priv->drm, drm_crtc_vblank_get(&crtc->base))) 511 goto irq_disable; 512 513 /* 514 * Wait for psr to idle out after enabling the VBL interrupts 515 * VBL interrupts will start the PSR exit and prevent a PSR 516 * re-entry as well. 517 */ 518 intel_psr_wait_for_idle(new_crtc_state); 519 520 local_irq_disable(); 521 522 crtc->debug.min_vbl = min; 523 crtc->debug.max_vbl = max; 524 trace_intel_pipe_update_start(crtc); 525 526 for (;;) { 527 /* 528 * prepare_to_wait() has a memory barrier, which guarantees 529 * other CPUs can see the task state update by the time we 530 * read the scanline. 531 */ 532 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 533 534 scanline = intel_get_crtc_scanline(crtc); 535 if (scanline < min || scanline > max) 536 break; 537 538 if (!timeout) { 539 drm_err(&dev_priv->drm, 540 "Potential atomic update failure on pipe %c\n", 541 pipe_name(crtc->pipe)); 542 break; 543 } 544 545 local_irq_enable(); 546 547 timeout = schedule_timeout(timeout); 548 549 local_irq_disable(); 550 } 551 552 finish_wait(wq, &wait); 553 554 drm_crtc_vblank_put(&crtc->base); 555 556 /* 557 * On VLV/CHV DSI the scanline counter would appear to 558 * increment approx. 1/3 of a scanline before start of vblank. 559 * The registers still get latched at start of vblank however. 560 * This means we must not write any registers on the first 561 * line of vblank (since not the whole line is actually in 562 * vblank). And unfortunately we can't use the interrupt to 563 * wait here since it will fire too soon. We could use the 564 * frame start interrupt instead since it will fire after the 565 * critical scanline, but that would require more changes 566 * in the interrupt code. So for now we'll just do the nasty 567 * thing and poll for the bad scanline to pass us by. 568 * 569 * FIXME figure out if BXT+ DSI suffers from this as well 570 */ 571 while (need_vlv_dsi_wa && scanline == vblank_start) 572 scanline = intel_get_crtc_scanline(crtc); 573 574 crtc->debug.scanline_start = scanline; 575 crtc->debug.start_vbl_time = ktime_get(); 576 crtc->debug.start_vbl_count = intel_crtc_get_vblank_counter(crtc); 577 578 trace_intel_pipe_update_vblank_evaded(crtc); 579 return; 580 581 irq_disable: 582 local_irq_disable(); 583 } 584 585 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_VBLANK_EVADE) 586 static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end) 587 { 588 u64 delta = ktime_to_ns(ktime_sub(end, crtc->debug.start_vbl_time)); 589 unsigned int h; 590 591 h = ilog2(delta >> 9); 592 if (h >= ARRAY_SIZE(crtc->debug.vbl.times)) 593 h = ARRAY_SIZE(crtc->debug.vbl.times) - 1; 594 crtc->debug.vbl.times[h]++; 595 596 crtc->debug.vbl.sum += delta; 597 if (!crtc->debug.vbl.min || delta < crtc->debug.vbl.min) 598 crtc->debug.vbl.min = delta; 599 if (delta > crtc->debug.vbl.max) 600 crtc->debug.vbl.max = delta; 601 602 if (delta > 1000 * VBLANK_EVASION_TIME_US) { 603 drm_dbg_kms(crtc->base.dev, 604 "Atomic update on pipe (%c) took %lld us, max time under evasion is %u us\n", 605 pipe_name(crtc->pipe), 606 div_u64(delta, 1000), 607 VBLANK_EVASION_TIME_US); 608 crtc->debug.vbl.over++; 609 } 610 } 611 #else 612 static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end) {} 613 #endif 614 615 /** 616 * intel_pipe_update_end() - end update of a set of display registers 617 * @new_crtc_state: the new crtc state 618 * 619 * Mark the end of an update started with intel_pipe_update_start(). This 620 * re-enables interrupts and verifies the update was actually completed 621 * before a vblank. 622 */ 623 void intel_pipe_update_end(struct intel_crtc_state *new_crtc_state) 624 { 625 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 626 enum pipe pipe = crtc->pipe; 627 int scanline_end = intel_get_crtc_scanline(crtc); 628 u32 end_vbl_count = intel_crtc_get_vblank_counter(crtc); 629 ktime_t end_vbl_time = ktime_get(); 630 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 631 632 if (new_crtc_state->uapi.async_flip) 633 return; 634 635 trace_intel_pipe_update_end(crtc, end_vbl_count, scanline_end); 636 637 /* 638 * Incase of mipi dsi command mode, we need to set frame update 639 * request for every commit. 640 */ 641 if (DISPLAY_VER(dev_priv) >= 11 && 642 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 643 icl_dsi_frame_update(new_crtc_state); 644 645 /* We're still in the vblank-evade critical section, this can't race. 646 * Would be slightly nice to just grab the vblank count and arm the 647 * event outside of the critical section - the spinlock might spin for a 648 * while ... */ 649 if (intel_crtc_needs_vblank_work(new_crtc_state)) { 650 drm_vblank_work_schedule(&new_crtc_state->vblank_work, 651 drm_crtc_accurate_vblank_count(&crtc->base) + 1, 652 false); 653 } else if (new_crtc_state->uapi.event) { 654 drm_WARN_ON(&dev_priv->drm, 655 drm_crtc_vblank_get(&crtc->base) != 0); 656 657 spin_lock(&crtc->base.dev->event_lock); 658 drm_crtc_arm_vblank_event(&crtc->base, 659 new_crtc_state->uapi.event); 660 spin_unlock(&crtc->base.dev->event_lock); 661 662 new_crtc_state->uapi.event = NULL; 663 } 664 665 /* 666 * Send VRR Push to terminate Vblank. If we are already in vblank 667 * this has to be done _after_ sampling the frame counter, as 668 * otherwise the push would immediately terminate the vblank and 669 * the sampled frame counter would correspond to the next frame 670 * instead of the current frame. 671 * 672 * There is a tiny race here (iff vblank evasion failed us) where 673 * we might sample the frame counter just before vmax vblank start 674 * but the push would be sent just after it. That would cause the 675 * push to affect the next frame instead of the current frame, 676 * which would cause the next frame to terminate already at vmin 677 * vblank start instead of vmax vblank start. 678 */ 679 intel_vrr_send_push(new_crtc_state); 680 681 local_irq_enable(); 682 683 if (intel_vgpu_active(dev_priv)) 684 return; 685 686 if (crtc->debug.start_vbl_count && 687 crtc->debug.start_vbl_count != end_vbl_count) { 688 drm_err(&dev_priv->drm, 689 "Atomic update failure on pipe %c (start=%u end=%u) time %lld us, min %d, max %d, scanline start %d, end %d\n", 690 pipe_name(pipe), crtc->debug.start_vbl_count, 691 end_vbl_count, 692 ktime_us_delta(end_vbl_time, 693 crtc->debug.start_vbl_time), 694 crtc->debug.min_vbl, crtc->debug.max_vbl, 695 crtc->debug.scanline_start, scanline_end); 696 } 697 698 dbg_vblank_evade(crtc, end_vbl_time); 699 } 700