1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 #include <linux/kernel.h> 6 #include <linux/pm_qos.h> 7 #include <linux/slab.h> 8 9 #include <drm/drm_atomic_helper.h> 10 #include <drm/drm_fourcc.h> 11 #include <drm/drm_plane.h> 12 #include <drm/drm_vblank_work.h> 13 14 #include "i915_irq.h" 15 #include "i915_vgpu.h" 16 #include "i9xx_plane.h" 17 #include "icl_dsi.h" 18 #include "intel_atomic.h" 19 #include "intel_atomic_plane.h" 20 #include "intel_color.h" 21 #include "intel_crtc.h" 22 #include "intel_cursor.h" 23 #include "intel_display_debugfs.h" 24 #include "intel_display_trace.h" 25 #include "intel_display_types.h" 26 #include "intel_drrs.h" 27 #include "intel_dsi.h" 28 #include "intel_pipe_crc.h" 29 #include "intel_psr.h" 30 #include "intel_sprite.h" 31 #include "intel_vrr.h" 32 #include "skl_universal_plane.h" 33 34 static void assert_vblank_disabled(struct drm_crtc *crtc) 35 { 36 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0)) 37 drm_crtc_vblank_put(crtc); 38 } 39 40 struct intel_crtc *intel_first_crtc(struct drm_i915_private *i915) 41 { 42 return to_intel_crtc(drm_crtc_from_index(&i915->drm, 0)); 43 } 44 45 struct intel_crtc *intel_crtc_for_pipe(struct drm_i915_private *i915, 46 enum pipe pipe) 47 { 48 struct intel_crtc *crtc; 49 50 for_each_intel_crtc(&i915->drm, crtc) { 51 if (crtc->pipe == pipe) 52 return crtc; 53 } 54 55 return NULL; 56 } 57 58 void intel_crtc_wait_for_next_vblank(struct intel_crtc *crtc) 59 { 60 drm_crtc_wait_one_vblank(&crtc->base); 61 } 62 63 void intel_wait_for_vblank_if_active(struct drm_i915_private *i915, 64 enum pipe pipe) 65 { 66 struct intel_crtc *crtc = intel_crtc_for_pipe(i915, pipe); 67 68 if (crtc->active) 69 intel_crtc_wait_for_next_vblank(crtc); 70 } 71 72 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc) 73 { 74 struct drm_device *dev = crtc->base.dev; 75 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)]; 76 77 if (!crtc->active) 78 return 0; 79 80 if (!vblank->max_vblank_count) 81 return (u32)drm_crtc_accurate_vblank_count(&crtc->base); 82 83 return crtc->base.funcs->get_vblank_counter(&crtc->base); 84 } 85 86 u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state) 87 { 88 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 89 90 /* 91 * From Gen 11, In case of dsi cmd mode, frame counter wouldnt 92 * have updated at the beginning of TE, if we want to use 93 * the hw counter, then we would find it updated in only 94 * the next TE, hence switching to sw counter. 95 */ 96 if (crtc_state->mode_flags & (I915_MODE_FLAG_DSI_USE_TE0 | 97 I915_MODE_FLAG_DSI_USE_TE1)) 98 return 0; 99 100 /* 101 * On i965gm the hardware frame counter reads 102 * zero when the TV encoder is enabled :( 103 */ 104 if (IS_I965GM(dev_priv) && 105 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT))) 106 return 0; 107 108 if (DISPLAY_VER(dev_priv) >= 5 || IS_G4X(dev_priv)) 109 return 0xffffffff; /* full 32 bit counter */ 110 else if (DISPLAY_VER(dev_priv) >= 3) 111 return 0xffffff; /* only 24 bits of frame count */ 112 else 113 return 0; /* Gen2 doesn't have a hardware frame counter */ 114 } 115 116 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state) 117 { 118 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 119 120 assert_vblank_disabled(&crtc->base); 121 drm_crtc_set_max_vblank_count(&crtc->base, 122 intel_crtc_max_vblank_count(crtc_state)); 123 drm_crtc_vblank_on(&crtc->base); 124 125 /* 126 * Should really happen exactly when we enable the pipe 127 * but we want the frame counters in the trace, and that 128 * requires vblank support on some platforms/outputs. 129 */ 130 trace_intel_pipe_enable(crtc); 131 } 132 133 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state) 134 { 135 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 136 137 /* 138 * Should really happen exactly when we disable the pipe 139 * but we want the frame counters in the trace, and that 140 * requires vblank support on some platforms/outputs. 141 */ 142 trace_intel_pipe_disable(crtc); 143 144 drm_crtc_vblank_off(&crtc->base); 145 assert_vblank_disabled(&crtc->base); 146 } 147 148 struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc) 149 { 150 struct intel_crtc_state *crtc_state; 151 152 crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL); 153 154 if (crtc_state) 155 intel_crtc_state_reset(crtc_state, crtc); 156 157 return crtc_state; 158 } 159 160 void intel_crtc_state_reset(struct intel_crtc_state *crtc_state, 161 struct intel_crtc *crtc) 162 { 163 memset(crtc_state, 0, sizeof(*crtc_state)); 164 165 __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base); 166 167 crtc_state->cpu_transcoder = INVALID_TRANSCODER; 168 crtc_state->master_transcoder = INVALID_TRANSCODER; 169 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 170 crtc_state->scaler_state.scaler_id = -1; 171 crtc_state->mst_master_transcoder = INVALID_TRANSCODER; 172 } 173 174 static struct intel_crtc *intel_crtc_alloc(void) 175 { 176 struct intel_crtc_state *crtc_state; 177 struct intel_crtc *crtc; 178 179 crtc = kzalloc(sizeof(*crtc), GFP_KERNEL); 180 if (!crtc) 181 return ERR_PTR(-ENOMEM); 182 183 crtc_state = intel_crtc_state_alloc(crtc); 184 if (!crtc_state) { 185 kfree(crtc); 186 return ERR_PTR(-ENOMEM); 187 } 188 189 crtc->base.state = &crtc_state->uapi; 190 crtc->config = crtc_state; 191 192 return crtc; 193 } 194 195 static void intel_crtc_free(struct intel_crtc *crtc) 196 { 197 intel_crtc_destroy_state(&crtc->base, crtc->base.state); 198 kfree(crtc); 199 } 200 201 static void intel_crtc_destroy(struct drm_crtc *_crtc) 202 { 203 struct intel_crtc *crtc = to_intel_crtc(_crtc); 204 205 cpu_latency_qos_remove_request(&crtc->vblank_pm_qos); 206 207 drm_crtc_cleanup(&crtc->base); 208 kfree(crtc); 209 } 210 211 static int intel_crtc_late_register(struct drm_crtc *crtc) 212 { 213 intel_crtc_debugfs_add(crtc); 214 return 0; 215 } 216 217 #define INTEL_CRTC_FUNCS \ 218 .set_config = drm_atomic_helper_set_config, \ 219 .destroy = intel_crtc_destroy, \ 220 .page_flip = drm_atomic_helper_page_flip, \ 221 .atomic_duplicate_state = intel_crtc_duplicate_state, \ 222 .atomic_destroy_state = intel_crtc_destroy_state, \ 223 .set_crc_source = intel_crtc_set_crc_source, \ 224 .verify_crc_source = intel_crtc_verify_crc_source, \ 225 .get_crc_sources = intel_crtc_get_crc_sources, \ 226 .late_register = intel_crtc_late_register 227 228 static const struct drm_crtc_funcs bdw_crtc_funcs = { 229 INTEL_CRTC_FUNCS, 230 231 .get_vblank_counter = g4x_get_vblank_counter, 232 .enable_vblank = bdw_enable_vblank, 233 .disable_vblank = bdw_disable_vblank, 234 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 235 }; 236 237 static const struct drm_crtc_funcs ilk_crtc_funcs = { 238 INTEL_CRTC_FUNCS, 239 240 .get_vblank_counter = g4x_get_vblank_counter, 241 .enable_vblank = ilk_enable_vblank, 242 .disable_vblank = ilk_disable_vblank, 243 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 244 }; 245 246 static const struct drm_crtc_funcs g4x_crtc_funcs = { 247 INTEL_CRTC_FUNCS, 248 249 .get_vblank_counter = g4x_get_vblank_counter, 250 .enable_vblank = i965_enable_vblank, 251 .disable_vblank = i965_disable_vblank, 252 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 253 }; 254 255 static const struct drm_crtc_funcs i965_crtc_funcs = { 256 INTEL_CRTC_FUNCS, 257 258 .get_vblank_counter = i915_get_vblank_counter, 259 .enable_vblank = i965_enable_vblank, 260 .disable_vblank = i965_disable_vblank, 261 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 262 }; 263 264 static const struct drm_crtc_funcs i915gm_crtc_funcs = { 265 INTEL_CRTC_FUNCS, 266 267 .get_vblank_counter = i915_get_vblank_counter, 268 .enable_vblank = i915gm_enable_vblank, 269 .disable_vblank = i915gm_disable_vblank, 270 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 271 }; 272 273 static const struct drm_crtc_funcs i915_crtc_funcs = { 274 INTEL_CRTC_FUNCS, 275 276 .get_vblank_counter = i915_get_vblank_counter, 277 .enable_vblank = i8xx_enable_vblank, 278 .disable_vblank = i8xx_disable_vblank, 279 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 280 }; 281 282 static const struct drm_crtc_funcs i8xx_crtc_funcs = { 283 INTEL_CRTC_FUNCS, 284 285 /* no hw vblank counter */ 286 .enable_vblank = i8xx_enable_vblank, 287 .disable_vblank = i8xx_disable_vblank, 288 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 289 }; 290 291 int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe) 292 { 293 struct intel_plane *primary, *cursor; 294 const struct drm_crtc_funcs *funcs; 295 struct intel_crtc *crtc; 296 int sprite, ret; 297 298 crtc = intel_crtc_alloc(); 299 if (IS_ERR(crtc)) 300 return PTR_ERR(crtc); 301 302 crtc->pipe = pipe; 303 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe]; 304 305 if (DISPLAY_VER(dev_priv) >= 9) 306 primary = skl_universal_plane_create(dev_priv, pipe, 307 PLANE_PRIMARY); 308 else 309 primary = intel_primary_plane_create(dev_priv, pipe); 310 if (IS_ERR(primary)) { 311 ret = PTR_ERR(primary); 312 goto fail; 313 } 314 crtc->plane_ids_mask |= BIT(primary->id); 315 316 for_each_sprite(dev_priv, pipe, sprite) { 317 struct intel_plane *plane; 318 319 if (DISPLAY_VER(dev_priv) >= 9) 320 plane = skl_universal_plane_create(dev_priv, pipe, 321 PLANE_SPRITE0 + sprite); 322 else 323 plane = intel_sprite_plane_create(dev_priv, pipe, sprite); 324 if (IS_ERR(plane)) { 325 ret = PTR_ERR(plane); 326 goto fail; 327 } 328 crtc->plane_ids_mask |= BIT(plane->id); 329 } 330 331 cursor = intel_cursor_plane_create(dev_priv, pipe); 332 if (IS_ERR(cursor)) { 333 ret = PTR_ERR(cursor); 334 goto fail; 335 } 336 crtc->plane_ids_mask |= BIT(cursor->id); 337 338 if (HAS_GMCH(dev_priv)) { 339 if (IS_CHERRYVIEW(dev_priv) || 340 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv)) 341 funcs = &g4x_crtc_funcs; 342 else if (DISPLAY_VER(dev_priv) == 4) 343 funcs = &i965_crtc_funcs; 344 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv)) 345 funcs = &i915gm_crtc_funcs; 346 else if (DISPLAY_VER(dev_priv) == 3) 347 funcs = &i915_crtc_funcs; 348 else 349 funcs = &i8xx_crtc_funcs; 350 } else { 351 if (DISPLAY_VER(dev_priv) >= 8) 352 funcs = &bdw_crtc_funcs; 353 else 354 funcs = &ilk_crtc_funcs; 355 } 356 357 ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base, 358 &primary->base, &cursor->base, 359 funcs, "pipe %c", pipe_name(pipe)); 360 if (ret) 361 goto fail; 362 363 if (DISPLAY_VER(dev_priv) >= 11) 364 drm_crtc_create_scaling_filter_property(&crtc->base, 365 BIT(DRM_SCALING_FILTER_DEFAULT) | 366 BIT(DRM_SCALING_FILTER_NEAREST_NEIGHBOR)); 367 368 intel_color_init(crtc); 369 370 intel_crtc_drrs_init(crtc); 371 intel_crtc_crc_init(crtc); 372 373 cpu_latency_qos_add_request(&crtc->vblank_pm_qos, PM_QOS_DEFAULT_VALUE); 374 375 drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe); 376 377 return 0; 378 379 fail: 380 intel_crtc_free(crtc); 381 382 return ret; 383 } 384 385 static bool intel_crtc_needs_vblank_work(const struct intel_crtc_state *crtc_state) 386 { 387 return crtc_state->hw.active && 388 !intel_crtc_needs_modeset(crtc_state) && 389 !crtc_state->preload_luts && 390 (crtc_state->uapi.color_mgmt_changed || 391 crtc_state->update_pipe); 392 } 393 394 static void intel_crtc_vblank_work(struct kthread_work *base) 395 { 396 struct drm_vblank_work *work = to_drm_vblank_work(base); 397 struct intel_crtc_state *crtc_state = 398 container_of(work, typeof(*crtc_state), vblank_work); 399 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 400 401 trace_intel_crtc_vblank_work_start(crtc); 402 403 intel_color_load_luts(crtc_state); 404 405 if (crtc_state->uapi.event) { 406 spin_lock_irq(&crtc->base.dev->event_lock); 407 drm_crtc_send_vblank_event(&crtc->base, crtc_state->uapi.event); 408 crtc_state->uapi.event = NULL; 409 spin_unlock_irq(&crtc->base.dev->event_lock); 410 } 411 412 trace_intel_crtc_vblank_work_end(crtc); 413 } 414 415 static void intel_crtc_vblank_work_init(struct intel_crtc_state *crtc_state) 416 { 417 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 418 419 drm_vblank_work_init(&crtc_state->vblank_work, &crtc->base, 420 intel_crtc_vblank_work); 421 /* 422 * Interrupt latency is critical for getting the vblank 423 * work executed as early as possible during the vblank. 424 */ 425 cpu_latency_qos_update_request(&crtc->vblank_pm_qos, 0); 426 } 427 428 void intel_wait_for_vblank_workers(struct intel_atomic_state *state) 429 { 430 struct intel_crtc_state *crtc_state; 431 struct intel_crtc *crtc; 432 int i; 433 434 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 435 if (!intel_crtc_needs_vblank_work(crtc_state)) 436 continue; 437 438 drm_vblank_work_flush(&crtc_state->vblank_work); 439 cpu_latency_qos_update_request(&crtc->vblank_pm_qos, 440 PM_QOS_DEFAULT_VALUE); 441 } 442 } 443 444 int intel_usecs_to_scanlines(const struct drm_display_mode *adjusted_mode, 445 int usecs) 446 { 447 /* paranoia */ 448 if (!adjusted_mode->crtc_htotal) 449 return 1; 450 451 return DIV_ROUND_UP(usecs * adjusted_mode->crtc_clock, 452 1000 * adjusted_mode->crtc_htotal); 453 } 454 455 static int intel_mode_vblank_start(const struct drm_display_mode *mode) 456 { 457 int vblank_start = mode->crtc_vblank_start; 458 459 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 460 vblank_start = DIV_ROUND_UP(vblank_start, 2); 461 462 return vblank_start; 463 } 464 465 /** 466 * intel_pipe_update_start() - start update of a set of display registers 467 * @new_crtc_state: the new crtc state 468 * 469 * Mark the start of an update to pipe registers that should be updated 470 * atomically regarding vblank. If the next vblank will happens within 471 * the next 100 us, this function waits until the vblank passes. 472 * 473 * After a successful call to this function, interrupts will be disabled 474 * until a subsequent call to intel_pipe_update_end(). That is done to 475 * avoid random delays. 476 */ 477 void intel_pipe_update_start(struct intel_crtc_state *new_crtc_state) 478 { 479 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 480 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 481 const struct drm_display_mode *adjusted_mode = &new_crtc_state->hw.adjusted_mode; 482 long timeout = msecs_to_jiffies_timeout(1); 483 int scanline, min, max, vblank_start; 484 wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base); 485 bool need_vlv_dsi_wa = (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 486 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI); 487 DEFINE_WAIT(wait); 488 489 intel_psr_lock(new_crtc_state); 490 491 if (new_crtc_state->do_async_flip) 492 return; 493 494 if (intel_crtc_needs_vblank_work(new_crtc_state)) 495 intel_crtc_vblank_work_init(new_crtc_state); 496 497 if (new_crtc_state->vrr.enable) { 498 if (intel_vrr_is_push_sent(new_crtc_state)) 499 vblank_start = intel_vrr_vmin_vblank_start(new_crtc_state); 500 else 501 vblank_start = intel_vrr_vmax_vblank_start(new_crtc_state); 502 } else { 503 vblank_start = intel_mode_vblank_start(adjusted_mode); 504 } 505 506 /* FIXME needs to be calibrated sensibly */ 507 min = vblank_start - intel_usecs_to_scanlines(adjusted_mode, 508 VBLANK_EVASION_TIME_US); 509 max = vblank_start - 1; 510 511 if (min <= 0 || max <= 0) 512 goto irq_disable; 513 514 if (drm_WARN_ON(&dev_priv->drm, drm_crtc_vblank_get(&crtc->base))) 515 goto irq_disable; 516 517 /* 518 * Wait for psr to idle out after enabling the VBL interrupts 519 * VBL interrupts will start the PSR exit and prevent a PSR 520 * re-entry as well. 521 */ 522 intel_psr_wait_for_idle_locked(new_crtc_state); 523 524 local_irq_disable(); 525 526 crtc->debug.min_vbl = min; 527 crtc->debug.max_vbl = max; 528 trace_intel_pipe_update_start(crtc); 529 530 for (;;) { 531 /* 532 * prepare_to_wait() has a memory barrier, which guarantees 533 * other CPUs can see the task state update by the time we 534 * read the scanline. 535 */ 536 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 537 538 scanline = intel_get_crtc_scanline(crtc); 539 if (scanline < min || scanline > max) 540 break; 541 542 if (!timeout) { 543 drm_err(&dev_priv->drm, 544 "Potential atomic update failure on pipe %c\n", 545 pipe_name(crtc->pipe)); 546 break; 547 } 548 549 local_irq_enable(); 550 551 timeout = schedule_timeout(timeout); 552 553 local_irq_disable(); 554 } 555 556 finish_wait(wq, &wait); 557 558 drm_crtc_vblank_put(&crtc->base); 559 560 /* 561 * On VLV/CHV DSI the scanline counter would appear to 562 * increment approx. 1/3 of a scanline before start of vblank. 563 * The registers still get latched at start of vblank however. 564 * This means we must not write any registers on the first 565 * line of vblank (since not the whole line is actually in 566 * vblank). And unfortunately we can't use the interrupt to 567 * wait here since it will fire too soon. We could use the 568 * frame start interrupt instead since it will fire after the 569 * critical scanline, but that would require more changes 570 * in the interrupt code. So for now we'll just do the nasty 571 * thing and poll for the bad scanline to pass us by. 572 * 573 * FIXME figure out if BXT+ DSI suffers from this as well 574 */ 575 while (need_vlv_dsi_wa && scanline == vblank_start) 576 scanline = intel_get_crtc_scanline(crtc); 577 578 crtc->debug.scanline_start = scanline; 579 crtc->debug.start_vbl_time = ktime_get(); 580 crtc->debug.start_vbl_count = intel_crtc_get_vblank_counter(crtc); 581 582 trace_intel_pipe_update_vblank_evaded(crtc); 583 return; 584 585 irq_disable: 586 local_irq_disable(); 587 } 588 589 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_VBLANK_EVADE) 590 static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end) 591 { 592 u64 delta = ktime_to_ns(ktime_sub(end, crtc->debug.start_vbl_time)); 593 unsigned int h; 594 595 h = ilog2(delta >> 9); 596 if (h >= ARRAY_SIZE(crtc->debug.vbl.times)) 597 h = ARRAY_SIZE(crtc->debug.vbl.times) - 1; 598 crtc->debug.vbl.times[h]++; 599 600 crtc->debug.vbl.sum += delta; 601 if (!crtc->debug.vbl.min || delta < crtc->debug.vbl.min) 602 crtc->debug.vbl.min = delta; 603 if (delta > crtc->debug.vbl.max) 604 crtc->debug.vbl.max = delta; 605 606 if (delta > 1000 * VBLANK_EVASION_TIME_US) { 607 drm_dbg_kms(crtc->base.dev, 608 "Atomic update on pipe (%c) took %lld us, max time under evasion is %u us\n", 609 pipe_name(crtc->pipe), 610 div_u64(delta, 1000), 611 VBLANK_EVASION_TIME_US); 612 crtc->debug.vbl.over++; 613 } 614 } 615 #else 616 static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end) {} 617 #endif 618 619 /** 620 * intel_pipe_update_end() - end update of a set of display registers 621 * @new_crtc_state: the new crtc state 622 * 623 * Mark the end of an update started with intel_pipe_update_start(). This 624 * re-enables interrupts and verifies the update was actually completed 625 * before a vblank. 626 */ 627 void intel_pipe_update_end(struct intel_crtc_state *new_crtc_state) 628 { 629 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 630 enum pipe pipe = crtc->pipe; 631 int scanline_end = intel_get_crtc_scanline(crtc); 632 u32 end_vbl_count = intel_crtc_get_vblank_counter(crtc); 633 ktime_t end_vbl_time = ktime_get(); 634 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 635 636 intel_psr_unlock(new_crtc_state); 637 638 if (new_crtc_state->do_async_flip) 639 return; 640 641 trace_intel_pipe_update_end(crtc, end_vbl_count, scanline_end); 642 643 /* 644 * Incase of mipi dsi command mode, we need to set frame update 645 * request for every commit. 646 */ 647 if (DISPLAY_VER(dev_priv) >= 11 && 648 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 649 icl_dsi_frame_update(new_crtc_state); 650 651 /* We're still in the vblank-evade critical section, this can't race. 652 * Would be slightly nice to just grab the vblank count and arm the 653 * event outside of the critical section - the spinlock might spin for a 654 * while ... */ 655 if (intel_crtc_needs_vblank_work(new_crtc_state)) { 656 drm_vblank_work_schedule(&new_crtc_state->vblank_work, 657 drm_crtc_accurate_vblank_count(&crtc->base) + 1, 658 false); 659 } else if (new_crtc_state->uapi.event) { 660 drm_WARN_ON(&dev_priv->drm, 661 drm_crtc_vblank_get(&crtc->base) != 0); 662 663 spin_lock(&crtc->base.dev->event_lock); 664 drm_crtc_arm_vblank_event(&crtc->base, 665 new_crtc_state->uapi.event); 666 spin_unlock(&crtc->base.dev->event_lock); 667 668 new_crtc_state->uapi.event = NULL; 669 } 670 671 /* 672 * Send VRR Push to terminate Vblank. If we are already in vblank 673 * this has to be done _after_ sampling the frame counter, as 674 * otherwise the push would immediately terminate the vblank and 675 * the sampled frame counter would correspond to the next frame 676 * instead of the current frame. 677 * 678 * There is a tiny race here (iff vblank evasion failed us) where 679 * we might sample the frame counter just before vmax vblank start 680 * but the push would be sent just after it. That would cause the 681 * push to affect the next frame instead of the current frame, 682 * which would cause the next frame to terminate already at vmin 683 * vblank start instead of vmax vblank start. 684 */ 685 intel_vrr_send_push(new_crtc_state); 686 687 local_irq_enable(); 688 689 if (intel_vgpu_active(dev_priv)) 690 return; 691 692 if (crtc->debug.start_vbl_count && 693 crtc->debug.start_vbl_count != end_vbl_count) { 694 drm_err(&dev_priv->drm, 695 "Atomic update failure on pipe %c (start=%u end=%u) time %lld us, min %d, max %d, scanline start %d, end %d\n", 696 pipe_name(pipe), crtc->debug.start_vbl_count, 697 end_vbl_count, 698 ktime_us_delta(end_vbl_time, 699 crtc->debug.start_vbl_time), 700 crtc->debug.min_vbl, crtc->debug.max_vbl, 701 crtc->debug.scanline_start, scanline_end); 702 } 703 704 dbg_vblank_evade(crtc, end_vbl_time); 705 } 706