1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 #include <linux/kernel.h> 6 #include <linux/pm_qos.h> 7 #include <linux/slab.h> 8 9 #include <drm/drm_atomic_helper.h> 10 #include <drm/drm_fourcc.h> 11 #include <drm/drm_plane.h> 12 #include <drm/drm_vblank_work.h> 13 14 #include "i915_vgpu.h" 15 #include "i9xx_plane.h" 16 #include "icl_dsi.h" 17 #include "intel_atomic.h" 18 #include "intel_atomic_plane.h" 19 #include "intel_color.h" 20 #include "intel_crtc.h" 21 #include "intel_cursor.h" 22 #include "intel_display_debugfs.h" 23 #include "intel_display_irq.h" 24 #include "intel_display_trace.h" 25 #include "intel_display_types.h" 26 #include "intel_drrs.h" 27 #include "intel_dsi.h" 28 #include "intel_fifo_underrun.h" 29 #include "intel_pipe_crc.h" 30 #include "intel_psr.h" 31 #include "intel_sprite.h" 32 #include "intel_vblank.h" 33 #include "intel_vrr.h" 34 #include "skl_universal_plane.h" 35 36 static void assert_vblank_disabled(struct drm_crtc *crtc) 37 { 38 struct drm_i915_private *i915 = to_i915(crtc->dev); 39 40 if (I915_STATE_WARN(i915, drm_crtc_vblank_get(crtc) == 0, 41 "[CRTC:%d:%s] vblank assertion failure (expected off, current on)\n", 42 crtc->base.id, crtc->name)) 43 drm_crtc_vblank_put(crtc); 44 } 45 46 struct intel_crtc *intel_first_crtc(struct drm_i915_private *i915) 47 { 48 return to_intel_crtc(drm_crtc_from_index(&i915->drm, 0)); 49 } 50 51 struct intel_crtc *intel_crtc_for_pipe(struct drm_i915_private *i915, 52 enum pipe pipe) 53 { 54 struct intel_crtc *crtc; 55 56 for_each_intel_crtc(&i915->drm, crtc) { 57 if (crtc->pipe == pipe) 58 return crtc; 59 } 60 61 return NULL; 62 } 63 64 void intel_crtc_wait_for_next_vblank(struct intel_crtc *crtc) 65 { 66 drm_crtc_wait_one_vblank(&crtc->base); 67 } 68 69 void intel_wait_for_vblank_if_active(struct drm_i915_private *i915, 70 enum pipe pipe) 71 { 72 struct intel_crtc *crtc = intel_crtc_for_pipe(i915, pipe); 73 74 if (crtc->active) 75 intel_crtc_wait_for_next_vblank(crtc); 76 } 77 78 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc) 79 { 80 struct drm_device *dev = crtc->base.dev; 81 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)]; 82 83 if (!crtc->active) 84 return 0; 85 86 if (!vblank->max_vblank_count) 87 return (u32)drm_crtc_accurate_vblank_count(&crtc->base); 88 89 return crtc->base.funcs->get_vblank_counter(&crtc->base); 90 } 91 92 u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state) 93 { 94 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 95 96 /* 97 * From Gen 11, In case of dsi cmd mode, frame counter wouldnt 98 * have updated at the beginning of TE, if we want to use 99 * the hw counter, then we would find it updated in only 100 * the next TE, hence switching to sw counter. 101 */ 102 if (crtc_state->mode_flags & (I915_MODE_FLAG_DSI_USE_TE0 | 103 I915_MODE_FLAG_DSI_USE_TE1)) 104 return 0; 105 106 /* 107 * On i965gm the hardware frame counter reads 108 * zero when the TV encoder is enabled :( 109 */ 110 if (IS_I965GM(dev_priv) && 111 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT))) 112 return 0; 113 114 if (DISPLAY_VER(dev_priv) >= 5 || IS_G4X(dev_priv)) 115 return 0xffffffff; /* full 32 bit counter */ 116 else if (DISPLAY_VER(dev_priv) >= 3) 117 return 0xffffff; /* only 24 bits of frame count */ 118 else 119 return 0; /* Gen2 doesn't have a hardware frame counter */ 120 } 121 122 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state) 123 { 124 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 125 126 assert_vblank_disabled(&crtc->base); 127 drm_crtc_set_max_vblank_count(&crtc->base, 128 intel_crtc_max_vblank_count(crtc_state)); 129 drm_crtc_vblank_on(&crtc->base); 130 131 /* 132 * Should really happen exactly when we enable the pipe 133 * but we want the frame counters in the trace, and that 134 * requires vblank support on some platforms/outputs. 135 */ 136 trace_intel_pipe_enable(crtc); 137 } 138 139 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state) 140 { 141 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 142 143 /* 144 * Should really happen exactly when we disable the pipe 145 * but we want the frame counters in the trace, and that 146 * requires vblank support on some platforms/outputs. 147 */ 148 trace_intel_pipe_disable(crtc); 149 150 drm_crtc_vblank_off(&crtc->base); 151 assert_vblank_disabled(&crtc->base); 152 } 153 154 struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc) 155 { 156 struct intel_crtc_state *crtc_state; 157 158 crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL); 159 160 if (crtc_state) 161 intel_crtc_state_reset(crtc_state, crtc); 162 163 return crtc_state; 164 } 165 166 void intel_crtc_state_reset(struct intel_crtc_state *crtc_state, 167 struct intel_crtc *crtc) 168 { 169 memset(crtc_state, 0, sizeof(*crtc_state)); 170 171 __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base); 172 173 crtc_state->cpu_transcoder = INVALID_TRANSCODER; 174 crtc_state->master_transcoder = INVALID_TRANSCODER; 175 crtc_state->hsw_workaround_pipe = INVALID_PIPE; 176 crtc_state->scaler_state.scaler_id = -1; 177 crtc_state->mst_master_transcoder = INVALID_TRANSCODER; 178 } 179 180 static struct intel_crtc *intel_crtc_alloc(void) 181 { 182 struct intel_crtc_state *crtc_state; 183 struct intel_crtc *crtc; 184 185 crtc = kzalloc(sizeof(*crtc), GFP_KERNEL); 186 if (!crtc) 187 return ERR_PTR(-ENOMEM); 188 189 crtc_state = intel_crtc_state_alloc(crtc); 190 if (!crtc_state) { 191 kfree(crtc); 192 return ERR_PTR(-ENOMEM); 193 } 194 195 crtc->base.state = &crtc_state->uapi; 196 crtc->config = crtc_state; 197 198 return crtc; 199 } 200 201 static void intel_crtc_free(struct intel_crtc *crtc) 202 { 203 intel_crtc_destroy_state(&crtc->base, crtc->base.state); 204 kfree(crtc); 205 } 206 207 static void intel_crtc_destroy(struct drm_crtc *_crtc) 208 { 209 struct intel_crtc *crtc = to_intel_crtc(_crtc); 210 211 cpu_latency_qos_remove_request(&crtc->vblank_pm_qos); 212 213 drm_crtc_cleanup(&crtc->base); 214 kfree(crtc); 215 } 216 217 static int intel_crtc_late_register(struct drm_crtc *crtc) 218 { 219 intel_crtc_debugfs_add(to_intel_crtc(crtc)); 220 return 0; 221 } 222 223 #define INTEL_CRTC_FUNCS \ 224 .set_config = drm_atomic_helper_set_config, \ 225 .destroy = intel_crtc_destroy, \ 226 .page_flip = drm_atomic_helper_page_flip, \ 227 .atomic_duplicate_state = intel_crtc_duplicate_state, \ 228 .atomic_destroy_state = intel_crtc_destroy_state, \ 229 .set_crc_source = intel_crtc_set_crc_source, \ 230 .verify_crc_source = intel_crtc_verify_crc_source, \ 231 .get_crc_sources = intel_crtc_get_crc_sources, \ 232 .late_register = intel_crtc_late_register 233 234 static const struct drm_crtc_funcs bdw_crtc_funcs = { 235 INTEL_CRTC_FUNCS, 236 237 .get_vblank_counter = g4x_get_vblank_counter, 238 .enable_vblank = bdw_enable_vblank, 239 .disable_vblank = bdw_disable_vblank, 240 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 241 }; 242 243 static const struct drm_crtc_funcs ilk_crtc_funcs = { 244 INTEL_CRTC_FUNCS, 245 246 .get_vblank_counter = g4x_get_vblank_counter, 247 .enable_vblank = ilk_enable_vblank, 248 .disable_vblank = ilk_disable_vblank, 249 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 250 }; 251 252 static const struct drm_crtc_funcs g4x_crtc_funcs = { 253 INTEL_CRTC_FUNCS, 254 255 .get_vblank_counter = g4x_get_vblank_counter, 256 .enable_vblank = i965_enable_vblank, 257 .disable_vblank = i965_disable_vblank, 258 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 259 }; 260 261 static const struct drm_crtc_funcs i965_crtc_funcs = { 262 INTEL_CRTC_FUNCS, 263 264 .get_vblank_counter = i915_get_vblank_counter, 265 .enable_vblank = i965_enable_vblank, 266 .disable_vblank = i965_disable_vblank, 267 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 268 }; 269 270 static const struct drm_crtc_funcs i915gm_crtc_funcs = { 271 INTEL_CRTC_FUNCS, 272 273 .get_vblank_counter = i915_get_vblank_counter, 274 .enable_vblank = i915gm_enable_vblank, 275 .disable_vblank = i915gm_disable_vblank, 276 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 277 }; 278 279 static const struct drm_crtc_funcs i915_crtc_funcs = { 280 INTEL_CRTC_FUNCS, 281 282 .get_vblank_counter = i915_get_vblank_counter, 283 .enable_vblank = i8xx_enable_vblank, 284 .disable_vblank = i8xx_disable_vblank, 285 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 286 }; 287 288 static const struct drm_crtc_funcs i8xx_crtc_funcs = { 289 INTEL_CRTC_FUNCS, 290 291 /* no hw vblank counter */ 292 .enable_vblank = i8xx_enable_vblank, 293 .disable_vblank = i8xx_disable_vblank, 294 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, 295 }; 296 297 int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe) 298 { 299 struct intel_plane *primary, *cursor; 300 const struct drm_crtc_funcs *funcs; 301 struct intel_crtc *crtc; 302 int sprite, ret; 303 304 crtc = intel_crtc_alloc(); 305 if (IS_ERR(crtc)) 306 return PTR_ERR(crtc); 307 308 crtc->pipe = pipe; 309 crtc->num_scalers = DISPLAY_RUNTIME_INFO(dev_priv)->num_scalers[pipe]; 310 311 if (DISPLAY_VER(dev_priv) >= 9) 312 primary = skl_universal_plane_create(dev_priv, pipe, 313 PLANE_PRIMARY); 314 else 315 primary = intel_primary_plane_create(dev_priv, pipe); 316 if (IS_ERR(primary)) { 317 ret = PTR_ERR(primary); 318 goto fail; 319 } 320 crtc->plane_ids_mask |= BIT(primary->id); 321 322 intel_init_fifo_underrun_reporting(dev_priv, crtc, false); 323 324 for_each_sprite(dev_priv, pipe, sprite) { 325 struct intel_plane *plane; 326 327 if (DISPLAY_VER(dev_priv) >= 9) 328 plane = skl_universal_plane_create(dev_priv, pipe, 329 PLANE_SPRITE0 + sprite); 330 else 331 plane = intel_sprite_plane_create(dev_priv, pipe, sprite); 332 if (IS_ERR(plane)) { 333 ret = PTR_ERR(plane); 334 goto fail; 335 } 336 crtc->plane_ids_mask |= BIT(plane->id); 337 } 338 339 cursor = intel_cursor_plane_create(dev_priv, pipe); 340 if (IS_ERR(cursor)) { 341 ret = PTR_ERR(cursor); 342 goto fail; 343 } 344 crtc->plane_ids_mask |= BIT(cursor->id); 345 346 if (HAS_GMCH(dev_priv)) { 347 if (IS_CHERRYVIEW(dev_priv) || 348 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv)) 349 funcs = &g4x_crtc_funcs; 350 else if (DISPLAY_VER(dev_priv) == 4) 351 funcs = &i965_crtc_funcs; 352 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv)) 353 funcs = &i915gm_crtc_funcs; 354 else if (DISPLAY_VER(dev_priv) == 3) 355 funcs = &i915_crtc_funcs; 356 else 357 funcs = &i8xx_crtc_funcs; 358 } else { 359 if (DISPLAY_VER(dev_priv) >= 8) 360 funcs = &bdw_crtc_funcs; 361 else 362 funcs = &ilk_crtc_funcs; 363 } 364 365 ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base, 366 &primary->base, &cursor->base, 367 funcs, "pipe %c", pipe_name(pipe)); 368 if (ret) 369 goto fail; 370 371 if (DISPLAY_VER(dev_priv) >= 11) 372 drm_crtc_create_scaling_filter_property(&crtc->base, 373 BIT(DRM_SCALING_FILTER_DEFAULT) | 374 BIT(DRM_SCALING_FILTER_NEAREST_NEIGHBOR)); 375 376 intel_color_crtc_init(crtc); 377 intel_drrs_crtc_init(crtc); 378 intel_crtc_crc_init(crtc); 379 380 cpu_latency_qos_add_request(&crtc->vblank_pm_qos, PM_QOS_DEFAULT_VALUE); 381 382 drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe); 383 384 return 0; 385 386 fail: 387 intel_crtc_free(crtc); 388 389 return ret; 390 } 391 392 static bool intel_crtc_needs_vblank_work(const struct intel_crtc_state *crtc_state) 393 { 394 return crtc_state->hw.active && 395 !intel_crtc_needs_modeset(crtc_state) && 396 !crtc_state->preload_luts && 397 intel_crtc_needs_color_update(crtc_state); 398 } 399 400 static void intel_crtc_vblank_work(struct kthread_work *base) 401 { 402 struct drm_vblank_work *work = to_drm_vblank_work(base); 403 struct intel_crtc_state *crtc_state = 404 container_of(work, typeof(*crtc_state), vblank_work); 405 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 406 407 trace_intel_crtc_vblank_work_start(crtc); 408 409 intel_color_load_luts(crtc_state); 410 411 if (crtc_state->uapi.event) { 412 spin_lock_irq(&crtc->base.dev->event_lock); 413 drm_crtc_send_vblank_event(&crtc->base, crtc_state->uapi.event); 414 crtc_state->uapi.event = NULL; 415 spin_unlock_irq(&crtc->base.dev->event_lock); 416 } 417 418 trace_intel_crtc_vblank_work_end(crtc); 419 } 420 421 static void intel_crtc_vblank_work_init(struct intel_crtc_state *crtc_state) 422 { 423 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 424 425 drm_vblank_work_init(&crtc_state->vblank_work, &crtc->base, 426 intel_crtc_vblank_work); 427 /* 428 * Interrupt latency is critical for getting the vblank 429 * work executed as early as possible during the vblank. 430 */ 431 cpu_latency_qos_update_request(&crtc->vblank_pm_qos, 0); 432 } 433 434 void intel_wait_for_vblank_workers(struct intel_atomic_state *state) 435 { 436 struct intel_crtc_state *crtc_state; 437 struct intel_crtc *crtc; 438 int i; 439 440 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { 441 if (!intel_crtc_needs_vblank_work(crtc_state)) 442 continue; 443 444 drm_vblank_work_flush(&crtc_state->vblank_work); 445 cpu_latency_qos_update_request(&crtc->vblank_pm_qos, 446 PM_QOS_DEFAULT_VALUE); 447 } 448 } 449 450 int intel_usecs_to_scanlines(const struct drm_display_mode *adjusted_mode, 451 int usecs) 452 { 453 /* paranoia */ 454 if (!adjusted_mode->crtc_htotal) 455 return 1; 456 457 return DIV_ROUND_UP(usecs * adjusted_mode->crtc_clock, 458 1000 * adjusted_mode->crtc_htotal); 459 } 460 461 static int intel_mode_vblank_start(const struct drm_display_mode *mode) 462 { 463 int vblank_start = mode->crtc_vblank_start; 464 465 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 466 vblank_start = DIV_ROUND_UP(vblank_start, 2); 467 468 return vblank_start; 469 } 470 471 static void intel_crtc_vblank_evade_scanlines(struct intel_atomic_state *state, 472 struct intel_crtc *crtc, 473 int *min, int *max, int *vblank_start) 474 { 475 const struct intel_crtc_state *old_crtc_state = 476 intel_atomic_get_old_crtc_state(state, crtc); 477 const struct intel_crtc_state *new_crtc_state = 478 intel_atomic_get_new_crtc_state(state, crtc); 479 const struct intel_crtc_state *crtc_state; 480 const struct drm_display_mode *adjusted_mode; 481 482 /* 483 * During fastsets/etc. the transcoder is still 484 * running with the old timings at this point. 485 * 486 * TODO: maybe just use the active timings here? 487 */ 488 if (intel_crtc_needs_modeset(new_crtc_state)) 489 crtc_state = new_crtc_state; 490 else 491 crtc_state = old_crtc_state; 492 493 adjusted_mode = &crtc_state->hw.adjusted_mode; 494 495 if (crtc->mode_flags & I915_MODE_FLAG_VRR) { 496 if (intel_vrr_is_push_sent(crtc_state)) 497 *vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 498 else 499 *vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 500 } else { 501 *vblank_start = intel_mode_vblank_start(adjusted_mode); 502 } 503 504 /* FIXME needs to be calibrated sensibly */ 505 *min = *vblank_start - intel_usecs_to_scanlines(adjusted_mode, 506 VBLANK_EVASION_TIME_US); 507 *max = *vblank_start - 1; 508 509 /* 510 * M/N is double buffered on the transcoder's undelayed vblank, 511 * so with seamless M/N we must evade both vblanks. 512 */ 513 if (new_crtc_state->update_m_n) 514 *min -= adjusted_mode->crtc_vblank_start - adjusted_mode->crtc_vdisplay; 515 } 516 517 /** 518 * intel_pipe_update_start() - start update of a set of display registers 519 * @state: the atomic state 520 * @crtc: the crtc 521 * 522 * Mark the start of an update to pipe registers that should be updated 523 * atomically regarding vblank. If the next vblank will happens within 524 * the next 100 us, this function waits until the vblank passes. 525 * 526 * After a successful call to this function, interrupts will be disabled 527 * until a subsequent call to intel_pipe_update_end(). That is done to 528 * avoid random delays. 529 */ 530 void intel_pipe_update_start(struct intel_atomic_state *state, 531 struct intel_crtc *crtc) 532 { 533 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 534 struct intel_crtc_state *new_crtc_state = 535 intel_atomic_get_new_crtc_state(state, crtc); 536 long timeout = msecs_to_jiffies_timeout(1); 537 int scanline, min, max, vblank_start; 538 wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base); 539 bool need_vlv_dsi_wa = (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 540 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI); 541 DEFINE_WAIT(wait); 542 543 intel_psr_lock(new_crtc_state); 544 545 if (new_crtc_state->do_async_flip) 546 return; 547 548 if (intel_crtc_needs_vblank_work(new_crtc_state)) 549 intel_crtc_vblank_work_init(new_crtc_state); 550 551 intel_crtc_vblank_evade_scanlines(state, crtc, &min, &max, &vblank_start); 552 if (min <= 0 || max <= 0) 553 goto irq_disable; 554 555 if (drm_WARN_ON(&dev_priv->drm, drm_crtc_vblank_get(&crtc->base))) 556 goto irq_disable; 557 558 /* 559 * Wait for psr to idle out after enabling the VBL interrupts 560 * VBL interrupts will start the PSR exit and prevent a PSR 561 * re-entry as well. 562 */ 563 intel_psr_wait_for_idle_locked(new_crtc_state); 564 565 local_irq_disable(); 566 567 crtc->debug.min_vbl = min; 568 crtc->debug.max_vbl = max; 569 trace_intel_pipe_update_start(crtc); 570 571 for (;;) { 572 /* 573 * prepare_to_wait() has a memory barrier, which guarantees 574 * other CPUs can see the task state update by the time we 575 * read the scanline. 576 */ 577 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 578 579 scanline = intel_get_crtc_scanline(crtc); 580 if (scanline < min || scanline > max) 581 break; 582 583 if (!timeout) { 584 drm_err(&dev_priv->drm, 585 "Potential atomic update failure on pipe %c\n", 586 pipe_name(crtc->pipe)); 587 break; 588 } 589 590 local_irq_enable(); 591 592 timeout = schedule_timeout(timeout); 593 594 local_irq_disable(); 595 } 596 597 finish_wait(wq, &wait); 598 599 drm_crtc_vblank_put(&crtc->base); 600 601 /* 602 * On VLV/CHV DSI the scanline counter would appear to 603 * increment approx. 1/3 of a scanline before start of vblank. 604 * The registers still get latched at start of vblank however. 605 * This means we must not write any registers on the first 606 * line of vblank (since not the whole line is actually in 607 * vblank). And unfortunately we can't use the interrupt to 608 * wait here since it will fire too soon. We could use the 609 * frame start interrupt instead since it will fire after the 610 * critical scanline, but that would require more changes 611 * in the interrupt code. So for now we'll just do the nasty 612 * thing and poll for the bad scanline to pass us by. 613 * 614 * FIXME figure out if BXT+ DSI suffers from this as well 615 */ 616 while (need_vlv_dsi_wa && scanline == vblank_start) 617 scanline = intel_get_crtc_scanline(crtc); 618 619 crtc->debug.scanline_start = scanline; 620 crtc->debug.start_vbl_time = ktime_get(); 621 crtc->debug.start_vbl_count = intel_crtc_get_vblank_counter(crtc); 622 623 trace_intel_pipe_update_vblank_evaded(crtc); 624 return; 625 626 irq_disable: 627 local_irq_disable(); 628 } 629 630 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_VBLANK_EVADE) 631 static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end) 632 { 633 u64 delta = ktime_to_ns(ktime_sub(end, crtc->debug.start_vbl_time)); 634 unsigned int h; 635 636 h = ilog2(delta >> 9); 637 if (h >= ARRAY_SIZE(crtc->debug.vbl.times)) 638 h = ARRAY_SIZE(crtc->debug.vbl.times) - 1; 639 crtc->debug.vbl.times[h]++; 640 641 crtc->debug.vbl.sum += delta; 642 if (!crtc->debug.vbl.min || delta < crtc->debug.vbl.min) 643 crtc->debug.vbl.min = delta; 644 if (delta > crtc->debug.vbl.max) 645 crtc->debug.vbl.max = delta; 646 647 if (delta > 1000 * VBLANK_EVASION_TIME_US) { 648 drm_dbg_kms(crtc->base.dev, 649 "Atomic update on pipe (%c) took %lld us, max time under evasion is %u us\n", 650 pipe_name(crtc->pipe), 651 div_u64(delta, 1000), 652 VBLANK_EVASION_TIME_US); 653 crtc->debug.vbl.over++; 654 } 655 } 656 #else 657 static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end) {} 658 #endif 659 660 /** 661 * intel_pipe_update_end() - end update of a set of display registers 662 * @state: the atomic state 663 * @crtc: the crtc 664 * 665 * Mark the end of an update started with intel_pipe_update_start(). This 666 * re-enables interrupts and verifies the update was actually completed 667 * before a vblank. 668 */ 669 void intel_pipe_update_end(struct intel_atomic_state *state, 670 struct intel_crtc *crtc) 671 { 672 struct intel_crtc_state *new_crtc_state = 673 intel_atomic_get_new_crtc_state(state, crtc); 674 enum pipe pipe = crtc->pipe; 675 int scanline_end = intel_get_crtc_scanline(crtc); 676 u32 end_vbl_count = intel_crtc_get_vblank_counter(crtc); 677 ktime_t end_vbl_time = ktime_get(); 678 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 679 680 intel_psr_unlock(new_crtc_state); 681 682 if (new_crtc_state->do_async_flip) 683 return; 684 685 trace_intel_pipe_update_end(crtc, end_vbl_count, scanline_end); 686 687 /* 688 * Incase of mipi dsi command mode, we need to set frame update 689 * request for every commit. 690 */ 691 if (DISPLAY_VER(dev_priv) >= 11 && 692 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) 693 icl_dsi_frame_update(new_crtc_state); 694 695 /* We're still in the vblank-evade critical section, this can't race. 696 * Would be slightly nice to just grab the vblank count and arm the 697 * event outside of the critical section - the spinlock might spin for a 698 * while ... */ 699 if (intel_crtc_needs_vblank_work(new_crtc_state)) { 700 drm_vblank_work_schedule(&new_crtc_state->vblank_work, 701 drm_crtc_accurate_vblank_count(&crtc->base) + 1, 702 false); 703 } else if (new_crtc_state->uapi.event) { 704 drm_WARN_ON(&dev_priv->drm, 705 drm_crtc_vblank_get(&crtc->base) != 0); 706 707 spin_lock(&crtc->base.dev->event_lock); 708 drm_crtc_arm_vblank_event(&crtc->base, 709 new_crtc_state->uapi.event); 710 spin_unlock(&crtc->base.dev->event_lock); 711 712 new_crtc_state->uapi.event = NULL; 713 } 714 715 /* 716 * Send VRR Push to terminate Vblank. If we are already in vblank 717 * this has to be done _after_ sampling the frame counter, as 718 * otherwise the push would immediately terminate the vblank and 719 * the sampled frame counter would correspond to the next frame 720 * instead of the current frame. 721 * 722 * There is a tiny race here (iff vblank evasion failed us) where 723 * we might sample the frame counter just before vmax vblank start 724 * but the push would be sent just after it. That would cause the 725 * push to affect the next frame instead of the current frame, 726 * which would cause the next frame to terminate already at vmin 727 * vblank start instead of vmax vblank start. 728 */ 729 intel_vrr_send_push(new_crtc_state); 730 731 local_irq_enable(); 732 733 if (intel_vgpu_active(dev_priv)) 734 return; 735 736 if (crtc->debug.start_vbl_count && 737 crtc->debug.start_vbl_count != end_vbl_count) { 738 drm_err(&dev_priv->drm, 739 "Atomic update failure on pipe %c (start=%u end=%u) time %lld us, min %d, max %d, scanline start %d, end %d\n", 740 pipe_name(pipe), crtc->debug.start_vbl_count, 741 end_vbl_count, 742 ktime_us_delta(end_vbl_time, 743 crtc->debug.start_vbl_time), 744 crtc->debug.min_vbl, crtc->debug.max_vbl, 745 crtc->debug.scanline_start, scanline_end); 746 } 747 748 dbg_vblank_evade(crtc, end_vbl_time); 749 } 750