1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include "intel_color.h"
26 #include "intel_display_types.h"
27 
28 #define CTM_COEFF_SIGN	(1ULL << 63)
29 
30 #define CTM_COEFF_1_0	(1ULL << 32)
31 #define CTM_COEFF_2_0	(CTM_COEFF_1_0 << 1)
32 #define CTM_COEFF_4_0	(CTM_COEFF_2_0 << 1)
33 #define CTM_COEFF_8_0	(CTM_COEFF_4_0 << 1)
34 #define CTM_COEFF_0_5	(CTM_COEFF_1_0 >> 1)
35 #define CTM_COEFF_0_25	(CTM_COEFF_0_5 >> 1)
36 #define CTM_COEFF_0_125	(CTM_COEFF_0_25 >> 1)
37 
38 #define CTM_COEFF_LIMITED_RANGE ((235ULL - 16ULL) * CTM_COEFF_1_0 / 255)
39 
40 #define CTM_COEFF_NEGATIVE(coeff)	(((coeff) & CTM_COEFF_SIGN) != 0)
41 #define CTM_COEFF_ABS(coeff)		((coeff) & (CTM_COEFF_SIGN - 1))
42 
43 #define LEGACY_LUT_LENGTH		256
44 
45 /*
46  * ILK+ csc matrix:
47  *
48  * |R/Cr|   | c0 c1 c2 |   ( |R/Cr|   |preoff0| )   |postoff0|
49  * |G/Y | = | c3 c4 c5 | x ( |G/Y | + |preoff1| ) + |postoff1|
50  * |B/Cb|   | c6 c7 c8 |   ( |B/Cb|   |preoff2| )   |postoff2|
51  *
52  * ILK/SNB don't have explicit post offsets, and instead
53  * CSC_MODE_YUV_TO_RGB and CSC_BLACK_SCREEN_OFFSET are used:
54  *  CSC_MODE_YUV_TO_RGB=0 + CSC_BLACK_SCREEN_OFFSET=0 -> 1/2, 0, 1/2
55  *  CSC_MODE_YUV_TO_RGB=0 + CSC_BLACK_SCREEN_OFFSET=1 -> 1/2, 1/16, 1/2
56  *  CSC_MODE_YUV_TO_RGB=1 + CSC_BLACK_SCREEN_OFFSET=0 -> 0, 0, 0
57  *  CSC_MODE_YUV_TO_RGB=1 + CSC_BLACK_SCREEN_OFFSET=1 -> 1/16, 1/16, 1/16
58  */
59 
60 /*
61  * Extract the CSC coefficient from a CTM coefficient (in U32.32 fixed point
62  * format). This macro takes the coefficient we want transformed and the
63  * number of fractional bits.
64  *
65  * We only have a 9 bits precision window which slides depending on the value
66  * of the CTM coefficient and we write the value from bit 3. We also round the
67  * value.
68  */
69 #define ILK_CSC_COEFF_FP(coeff, fbits)	\
70 	(clamp_val(((coeff) >> (32 - (fbits) - 3)) + 4, 0, 0xfff) & 0xff8)
71 
72 #define ILK_CSC_COEFF_LIMITED_RANGE 0x0dc0
73 #define ILK_CSC_COEFF_1_0 0x7800
74 
75 #define ILK_CSC_POSTOFF_LIMITED_RANGE (16 * (1 << 12) / 255)
76 
77 /* Nop pre/post offsets */
78 static const u16 ilk_csc_off_zero[3] = {};
79 
80 /* Identity matrix */
81 static const u16 ilk_csc_coeff_identity[9] = {
82 	ILK_CSC_COEFF_1_0, 0, 0,
83 	0, ILK_CSC_COEFF_1_0, 0,
84 	0, 0, ILK_CSC_COEFF_1_0,
85 };
86 
87 /* Limited range RGB post offsets */
88 static const u16 ilk_csc_postoff_limited_range[3] = {
89 	ILK_CSC_POSTOFF_LIMITED_RANGE,
90 	ILK_CSC_POSTOFF_LIMITED_RANGE,
91 	ILK_CSC_POSTOFF_LIMITED_RANGE,
92 };
93 
94 /* Full range RGB -> limited range RGB matrix */
95 static const u16 ilk_csc_coeff_limited_range[9] = {
96 	ILK_CSC_COEFF_LIMITED_RANGE, 0, 0,
97 	0, ILK_CSC_COEFF_LIMITED_RANGE, 0,
98 	0, 0, ILK_CSC_COEFF_LIMITED_RANGE,
99 };
100 
101 /* BT.709 full range RGB -> limited range YCbCr matrix */
102 static const u16 ilk_csc_coeff_rgb_to_ycbcr[9] = {
103 	0x1e08, 0x9cc0, 0xb528,
104 	0x2ba8, 0x09d8, 0x37e8,
105 	0xbce8, 0x9ad8, 0x1e08,
106 };
107 
108 /* Limited range YCbCr post offsets */
109 static const u16 ilk_csc_postoff_rgb_to_ycbcr[3] = {
110 	0x0800, 0x0100, 0x0800,
111 };
112 
113 static bool lut_is_legacy(const struct drm_property_blob *lut)
114 {
115 	return drm_color_lut_size(lut) == LEGACY_LUT_LENGTH;
116 }
117 
118 static bool crtc_state_is_legacy_gamma(const struct intel_crtc_state *crtc_state)
119 {
120 	return !crtc_state->hw.degamma_lut &&
121 		!crtc_state->hw.ctm &&
122 		crtc_state->hw.gamma_lut &&
123 		lut_is_legacy(crtc_state->hw.gamma_lut);
124 }
125 
126 /*
127  * When using limited range, multiply the matrix given by userspace by
128  * the matrix that we would use for the limited range.
129  */
130 static u64 *ctm_mult_by_limited(u64 *result, const u64 *input)
131 {
132 	int i;
133 
134 	for (i = 0; i < 9; i++) {
135 		u64 user_coeff = input[i];
136 		u32 limited_coeff = CTM_COEFF_LIMITED_RANGE;
137 		u32 abs_coeff = clamp_val(CTM_COEFF_ABS(user_coeff), 0,
138 					  CTM_COEFF_4_0 - 1) >> 2;
139 
140 		/*
141 		 * By scaling every co-efficient with limited range (16-235)
142 		 * vs full range (0-255) the final o/p will be scaled down to
143 		 * fit in the limited range supported by the panel.
144 		 */
145 		result[i] = mul_u32_u32(limited_coeff, abs_coeff) >> 30;
146 		result[i] |= user_coeff & CTM_COEFF_SIGN;
147 	}
148 
149 	return result;
150 }
151 
152 static void ilk_update_pipe_csc(struct intel_crtc *crtc,
153 				const u16 preoff[3],
154 				const u16 coeff[9],
155 				const u16 postoff[3])
156 {
157 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
158 	enum pipe pipe = crtc->pipe;
159 
160 	intel_de_write(dev_priv, PIPE_CSC_PREOFF_HI(pipe), preoff[0]);
161 	intel_de_write(dev_priv, PIPE_CSC_PREOFF_ME(pipe), preoff[1]);
162 	intel_de_write(dev_priv, PIPE_CSC_PREOFF_LO(pipe), preoff[2]);
163 
164 	intel_de_write(dev_priv, PIPE_CSC_COEFF_RY_GY(pipe),
165 		       coeff[0] << 16 | coeff[1]);
166 	intel_de_write(dev_priv, PIPE_CSC_COEFF_BY(pipe), coeff[2] << 16);
167 
168 	intel_de_write(dev_priv, PIPE_CSC_COEFF_RU_GU(pipe),
169 		       coeff[3] << 16 | coeff[4]);
170 	intel_de_write(dev_priv, PIPE_CSC_COEFF_BU(pipe), coeff[5] << 16);
171 
172 	intel_de_write(dev_priv, PIPE_CSC_COEFF_RV_GV(pipe),
173 		       coeff[6] << 16 | coeff[7]);
174 	intel_de_write(dev_priv, PIPE_CSC_COEFF_BV(pipe), coeff[8] << 16);
175 
176 	if (INTEL_GEN(dev_priv) >= 7) {
177 		intel_de_write(dev_priv, PIPE_CSC_POSTOFF_HI(pipe),
178 			       postoff[0]);
179 		intel_de_write(dev_priv, PIPE_CSC_POSTOFF_ME(pipe),
180 			       postoff[1]);
181 		intel_de_write(dev_priv, PIPE_CSC_POSTOFF_LO(pipe),
182 			       postoff[2]);
183 	}
184 }
185 
186 static void icl_update_output_csc(struct intel_crtc *crtc,
187 				  const u16 preoff[3],
188 				  const u16 coeff[9],
189 				  const u16 postoff[3])
190 {
191 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
192 	enum pipe pipe = crtc->pipe;
193 
194 	intel_de_write(dev_priv, PIPE_CSC_OUTPUT_PREOFF_HI(pipe), preoff[0]);
195 	intel_de_write(dev_priv, PIPE_CSC_OUTPUT_PREOFF_ME(pipe), preoff[1]);
196 	intel_de_write(dev_priv, PIPE_CSC_OUTPUT_PREOFF_LO(pipe), preoff[2]);
197 
198 	intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_RY_GY(pipe),
199 		       coeff[0] << 16 | coeff[1]);
200 	intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_BY(pipe),
201 		       coeff[2] << 16);
202 
203 	intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_RU_GU(pipe),
204 		       coeff[3] << 16 | coeff[4]);
205 	intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_BU(pipe),
206 		       coeff[5] << 16);
207 
208 	intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_RV_GV(pipe),
209 		       coeff[6] << 16 | coeff[7]);
210 	intel_de_write(dev_priv, PIPE_CSC_OUTPUT_COEFF_BV(pipe),
211 		       coeff[8] << 16);
212 
213 	intel_de_write(dev_priv, PIPE_CSC_OUTPUT_POSTOFF_HI(pipe), postoff[0]);
214 	intel_de_write(dev_priv, PIPE_CSC_OUTPUT_POSTOFF_ME(pipe), postoff[1]);
215 	intel_de_write(dev_priv, PIPE_CSC_OUTPUT_POSTOFF_LO(pipe), postoff[2]);
216 }
217 
218 static bool ilk_csc_limited_range(const struct intel_crtc_state *crtc_state)
219 {
220 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
221 
222 	/*
223 	 * FIXME if there's a gamma LUT after the CSC, we should
224 	 * do the range compression using the gamma LUT instead.
225 	 */
226 	return crtc_state->limited_color_range &&
227 		(IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
228 		 IS_GEN_RANGE(dev_priv, 9, 10));
229 }
230 
231 static void ilk_csc_convert_ctm(const struct intel_crtc_state *crtc_state,
232 				u16 coeffs[9])
233 {
234 	const struct drm_color_ctm *ctm = crtc_state->hw.ctm->data;
235 	const u64 *input;
236 	u64 temp[9];
237 	int i;
238 
239 	if (ilk_csc_limited_range(crtc_state))
240 		input = ctm_mult_by_limited(temp, ctm->matrix);
241 	else
242 		input = ctm->matrix;
243 
244 	/*
245 	 * Convert fixed point S31.32 input to format supported by the
246 	 * hardware.
247 	 */
248 	for (i = 0; i < 9; i++) {
249 		u64 abs_coeff = ((1ULL << 63) - 1) & input[i];
250 
251 		/*
252 		 * Clamp input value to min/max supported by
253 		 * hardware.
254 		 */
255 		abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_4_0 - 1);
256 
257 		coeffs[i] = 0;
258 
259 		/* sign bit */
260 		if (CTM_COEFF_NEGATIVE(input[i]))
261 			coeffs[i] |= 1 << 15;
262 
263 		if (abs_coeff < CTM_COEFF_0_125)
264 			coeffs[i] |= (3 << 12) |
265 				ILK_CSC_COEFF_FP(abs_coeff, 12);
266 		else if (abs_coeff < CTM_COEFF_0_25)
267 			coeffs[i] |= (2 << 12) |
268 				ILK_CSC_COEFF_FP(abs_coeff, 11);
269 		else if (abs_coeff < CTM_COEFF_0_5)
270 			coeffs[i] |= (1 << 12) |
271 				ILK_CSC_COEFF_FP(abs_coeff, 10);
272 		else if (abs_coeff < CTM_COEFF_1_0)
273 			coeffs[i] |= ILK_CSC_COEFF_FP(abs_coeff, 9);
274 		else if (abs_coeff < CTM_COEFF_2_0)
275 			coeffs[i] |= (7 << 12) |
276 				ILK_CSC_COEFF_FP(abs_coeff, 8);
277 		else
278 			coeffs[i] |= (6 << 12) |
279 				ILK_CSC_COEFF_FP(abs_coeff, 7);
280 	}
281 }
282 
283 static void ilk_load_csc_matrix(const struct intel_crtc_state *crtc_state)
284 {
285 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
286 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
287 	bool limited_color_range = ilk_csc_limited_range(crtc_state);
288 
289 	if (crtc_state->hw.ctm) {
290 		u16 coeff[9];
291 
292 		ilk_csc_convert_ctm(crtc_state, coeff);
293 		ilk_update_pipe_csc(crtc, ilk_csc_off_zero, coeff,
294 				    limited_color_range ?
295 				    ilk_csc_postoff_limited_range :
296 				    ilk_csc_off_zero);
297 	} else if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) {
298 		ilk_update_pipe_csc(crtc, ilk_csc_off_zero,
299 				    ilk_csc_coeff_rgb_to_ycbcr,
300 				    ilk_csc_postoff_rgb_to_ycbcr);
301 	} else if (limited_color_range) {
302 		ilk_update_pipe_csc(crtc, ilk_csc_off_zero,
303 				    ilk_csc_coeff_limited_range,
304 				    ilk_csc_postoff_limited_range);
305 	} else if (crtc_state->csc_enable) {
306 		/*
307 		 * On GLK+ both pipe CSC and degamma LUT are controlled
308 		 * by csc_enable. Hence for the cases where the degama
309 		 * LUT is needed but CSC is not we need to load an
310 		 * identity matrix.
311 		 */
312 		drm_WARN_ON(&dev_priv->drm, !IS_CANNONLAKE(dev_priv) &&
313 			    !IS_GEMINILAKE(dev_priv));
314 
315 		ilk_update_pipe_csc(crtc, ilk_csc_off_zero,
316 				    ilk_csc_coeff_identity,
317 				    ilk_csc_off_zero);
318 	}
319 
320 	intel_de_write(dev_priv, PIPE_CSC_MODE(crtc->pipe),
321 		       crtc_state->csc_mode);
322 }
323 
324 static void icl_load_csc_matrix(const struct intel_crtc_state *crtc_state)
325 {
326 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
327 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
328 
329 	if (crtc_state->hw.ctm) {
330 		u16 coeff[9];
331 
332 		ilk_csc_convert_ctm(crtc_state, coeff);
333 		ilk_update_pipe_csc(crtc, ilk_csc_off_zero,
334 				    coeff, ilk_csc_off_zero);
335 	}
336 
337 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) {
338 		icl_update_output_csc(crtc, ilk_csc_off_zero,
339 				      ilk_csc_coeff_rgb_to_ycbcr,
340 				      ilk_csc_postoff_rgb_to_ycbcr);
341 	} else if (crtc_state->limited_color_range) {
342 		icl_update_output_csc(crtc, ilk_csc_off_zero,
343 				      ilk_csc_coeff_limited_range,
344 				      ilk_csc_postoff_limited_range);
345 	}
346 
347 	intel_de_write(dev_priv, PIPE_CSC_MODE(crtc->pipe),
348 		       crtc_state->csc_mode);
349 }
350 
351 static void chv_load_cgm_csc(struct intel_crtc *crtc,
352 			     const struct drm_property_blob *blob)
353 {
354 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
355 	const struct drm_color_ctm *ctm = blob->data;
356 	enum pipe pipe = crtc->pipe;
357 	u16 coeffs[9];
358 	int i;
359 
360 	for (i = 0; i < ARRAY_SIZE(coeffs); i++) {
361 		u64 abs_coeff = ((1ULL << 63) - 1) & ctm->matrix[i];
362 
363 		/* Round coefficient. */
364 		abs_coeff += 1 << (32 - 13);
365 		/* Clamp to hardware limits. */
366 		abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_8_0 - 1);
367 
368 		coeffs[i] = 0;
369 
370 		/* Write coefficients in S3.12 format. */
371 		if (ctm->matrix[i] & (1ULL << 63))
372 			coeffs[i] |= 1 << 15;
373 
374 		coeffs[i] |= ((abs_coeff >> 32) & 7) << 12;
375 		coeffs[i] |= (abs_coeff >> 20) & 0xfff;
376 	}
377 
378 	intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF01(pipe),
379 		       coeffs[1] << 16 | coeffs[0]);
380 	intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF23(pipe),
381 		       coeffs[3] << 16 | coeffs[2]);
382 	intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF45(pipe),
383 		       coeffs[5] << 16 | coeffs[4]);
384 	intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF67(pipe),
385 		       coeffs[7] << 16 | coeffs[6]);
386 	intel_de_write(dev_priv, CGM_PIPE_CSC_COEFF8(pipe),
387 		       coeffs[8]);
388 }
389 
390 /* convert hw value with given bit_precision to lut property val */
391 static u32 intel_color_lut_pack(u32 val, int bit_precision)
392 {
393 	u32 max = 0xffff >> (16 - bit_precision);
394 
395 	val = clamp_val(val, 0, max);
396 
397 	if (bit_precision < 16)
398 		val <<= 16 - bit_precision;
399 
400 	return val;
401 }
402 
403 static u32 i9xx_lut_8(const struct drm_color_lut *color)
404 {
405 	return drm_color_lut_extract(color->red, 8) << 16 |
406 		drm_color_lut_extract(color->green, 8) << 8 |
407 		drm_color_lut_extract(color->blue, 8);
408 }
409 
410 static void i9xx_lut_8_pack(struct drm_color_lut *entry, u32 val)
411 {
412 	entry->red = intel_color_lut_pack(REG_FIELD_GET(LGC_PALETTE_RED_MASK, val), 8);
413 	entry->green = intel_color_lut_pack(REG_FIELD_GET(LGC_PALETTE_GREEN_MASK, val), 8);
414 	entry->blue = intel_color_lut_pack(REG_FIELD_GET(LGC_PALETTE_BLUE_MASK, val), 8);
415 }
416 
417 /* i965+ "10.6" bit interpolated format "even DW" (low 8 bits) */
418 static u32 i965_lut_10p6_ldw(const struct drm_color_lut *color)
419 {
420 	return (color->red & 0xff) << 16 |
421 		(color->green & 0xff) << 8 |
422 		(color->blue & 0xff);
423 }
424 
425 /* i965+ "10.6" interpolated format "odd DW" (high 8 bits) */
426 static u32 i965_lut_10p6_udw(const struct drm_color_lut *color)
427 {
428 	return (color->red >> 8) << 16 |
429 		(color->green >> 8) << 8 |
430 		(color->blue >> 8);
431 }
432 
433 static void i965_lut_10p6_pack(struct drm_color_lut *entry, u32 ldw, u32 udw)
434 {
435 	entry->red = REG_FIELD_GET(PALETTE_RED_MASK, udw) << 8 |
436 		REG_FIELD_GET(PALETTE_RED_MASK, ldw);
437 	entry->green = REG_FIELD_GET(PALETTE_GREEN_MASK, udw) << 8 |
438 		REG_FIELD_GET(PALETTE_GREEN_MASK, ldw);
439 	entry->blue = REG_FIELD_GET(PALETTE_BLUE_MASK, udw) << 8 |
440 		REG_FIELD_GET(PALETTE_BLUE_MASK, ldw);
441 }
442 
443 static u16 i965_lut_11p6_max_pack(u32 val)
444 {
445 	/* PIPEGCMAX is 11.6, clamp to 10.6 */
446 	return clamp_val(val, 0, 0xffff);
447 }
448 
449 static u32 ilk_lut_10(const struct drm_color_lut *color)
450 {
451 	return drm_color_lut_extract(color->red, 10) << 20 |
452 		drm_color_lut_extract(color->green, 10) << 10 |
453 		drm_color_lut_extract(color->blue, 10);
454 }
455 
456 static void ilk_lut_10_pack(struct drm_color_lut *entry, u32 val)
457 {
458 	entry->red = intel_color_lut_pack(REG_FIELD_GET(PREC_PALETTE_RED_MASK, val), 10);
459 	entry->green = intel_color_lut_pack(REG_FIELD_GET(PREC_PALETTE_GREEN_MASK, val), 10);
460 	entry->blue = intel_color_lut_pack(REG_FIELD_GET(PREC_PALETTE_BLUE_MASK, val), 10);
461 }
462 
463 static void icl_lut_multi_seg_pack(struct drm_color_lut *entry, u32 ldw, u32 udw)
464 {
465 	entry->red = REG_FIELD_GET(PAL_PREC_MULTI_SEG_RED_UDW_MASK, udw) << 6 |
466 				   REG_FIELD_GET(PAL_PREC_MULTI_SEG_RED_LDW_MASK, ldw);
467 	entry->green = REG_FIELD_GET(PAL_PREC_MULTI_SEG_GREEN_UDW_MASK, udw) << 6 |
468 				     REG_FIELD_GET(PAL_PREC_MULTI_SEG_GREEN_LDW_MASK, ldw);
469 	entry->blue = REG_FIELD_GET(PAL_PREC_MULTI_SEG_BLUE_UDW_MASK, udw) << 6 |
470 				    REG_FIELD_GET(PAL_PREC_MULTI_SEG_BLUE_LDW_MASK, ldw);
471 }
472 
473 static void i9xx_color_commit(const struct intel_crtc_state *crtc_state)
474 {
475 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
476 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
477 	enum pipe pipe = crtc->pipe;
478 	u32 val;
479 
480 	val = intel_de_read(dev_priv, PIPECONF(pipe));
481 	val &= ~PIPECONF_GAMMA_MODE_MASK_I9XX;
482 	val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
483 	intel_de_write(dev_priv, PIPECONF(pipe), val);
484 }
485 
486 static void ilk_color_commit(const struct intel_crtc_state *crtc_state)
487 {
488 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
489 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
490 	enum pipe pipe = crtc->pipe;
491 	u32 val;
492 
493 	val = intel_de_read(dev_priv, PIPECONF(pipe));
494 	val &= ~PIPECONF_GAMMA_MODE_MASK_ILK;
495 	val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
496 	intel_de_write(dev_priv, PIPECONF(pipe), val);
497 
498 	ilk_load_csc_matrix(crtc_state);
499 }
500 
501 static void hsw_color_commit(const struct intel_crtc_state *crtc_state)
502 {
503 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
504 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
505 
506 	intel_de_write(dev_priv, GAMMA_MODE(crtc->pipe),
507 		       crtc_state->gamma_mode);
508 
509 	ilk_load_csc_matrix(crtc_state);
510 }
511 
512 static void skl_color_commit(const struct intel_crtc_state *crtc_state)
513 {
514 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
515 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
516 	enum pipe pipe = crtc->pipe;
517 	u32 val = 0;
518 
519 	/*
520 	 * We don't (yet) allow userspace to control the pipe background color,
521 	 * so force it to black, but apply pipe gamma and CSC appropriately
522 	 * so that its handling will match how we program our planes.
523 	 */
524 	if (crtc_state->gamma_enable)
525 		val |= SKL_BOTTOM_COLOR_GAMMA_ENABLE;
526 	if (crtc_state->csc_enable)
527 		val |= SKL_BOTTOM_COLOR_CSC_ENABLE;
528 	intel_de_write(dev_priv, SKL_BOTTOM_COLOR(pipe), val);
529 
530 	intel_de_write(dev_priv, GAMMA_MODE(crtc->pipe),
531 		       crtc_state->gamma_mode);
532 
533 	if (INTEL_GEN(dev_priv) >= 11)
534 		icl_load_csc_matrix(crtc_state);
535 	else
536 		ilk_load_csc_matrix(crtc_state);
537 }
538 
539 static void i9xx_load_lut_8(struct intel_crtc *crtc,
540 			    const struct drm_property_blob *blob)
541 {
542 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
543 	const struct drm_color_lut *lut;
544 	enum pipe pipe = crtc->pipe;
545 	int i;
546 
547 	if (!blob)
548 		return;
549 
550 	lut = blob->data;
551 
552 	for (i = 0; i < 256; i++)
553 		intel_de_write(dev_priv, PALETTE(pipe, i),
554 			       i9xx_lut_8(&lut[i]));
555 }
556 
557 static void i9xx_load_luts(const struct intel_crtc_state *crtc_state)
558 {
559 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
560 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
561 	const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
562 
563 	assert_pll_enabled(dev_priv, crtc->pipe);
564 
565 	i9xx_load_lut_8(crtc, gamma_lut);
566 }
567 
568 static void i965_load_lut_10p6(struct intel_crtc *crtc,
569 			       const struct drm_property_blob *blob)
570 {
571 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
572 	const struct drm_color_lut *lut = blob->data;
573 	int i, lut_size = drm_color_lut_size(blob);
574 	enum pipe pipe = crtc->pipe;
575 
576 	for (i = 0; i < lut_size - 1; i++) {
577 		intel_de_write(dev_priv, PALETTE(pipe, 2 * i + 0),
578 			       i965_lut_10p6_ldw(&lut[i]));
579 		intel_de_write(dev_priv, PALETTE(pipe, 2 * i + 1),
580 			       i965_lut_10p6_udw(&lut[i]));
581 	}
582 
583 	intel_de_write(dev_priv, PIPEGCMAX(pipe, 0), lut[i].red);
584 	intel_de_write(dev_priv, PIPEGCMAX(pipe, 1), lut[i].green);
585 	intel_de_write(dev_priv, PIPEGCMAX(pipe, 2), lut[i].blue);
586 }
587 
588 static void i965_load_luts(const struct intel_crtc_state *crtc_state)
589 {
590 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
591 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
592 	const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
593 
594 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
595 		assert_dsi_pll_enabled(dev_priv);
596 	else
597 		assert_pll_enabled(dev_priv, crtc->pipe);
598 
599 	if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT)
600 		i9xx_load_lut_8(crtc, gamma_lut);
601 	else
602 		i965_load_lut_10p6(crtc, gamma_lut);
603 }
604 
605 static void ilk_load_lut_8(struct intel_crtc *crtc,
606 			   const struct drm_property_blob *blob)
607 {
608 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
609 	const struct drm_color_lut *lut;
610 	enum pipe pipe = crtc->pipe;
611 	int i;
612 
613 	if (!blob)
614 		return;
615 
616 	lut = blob->data;
617 
618 	for (i = 0; i < 256; i++)
619 		intel_de_write(dev_priv, LGC_PALETTE(pipe, i),
620 			       i9xx_lut_8(&lut[i]));
621 }
622 
623 static void ilk_load_lut_10(struct intel_crtc *crtc,
624 			    const struct drm_property_blob *blob)
625 {
626 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
627 	const struct drm_color_lut *lut = blob->data;
628 	int i, lut_size = drm_color_lut_size(blob);
629 	enum pipe pipe = crtc->pipe;
630 
631 	for (i = 0; i < lut_size; i++)
632 		intel_de_write(dev_priv, PREC_PALETTE(pipe, i),
633 			       ilk_lut_10(&lut[i]));
634 }
635 
636 static void ilk_load_luts(const struct intel_crtc_state *crtc_state)
637 {
638 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
639 	const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
640 
641 	if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT)
642 		ilk_load_lut_8(crtc, gamma_lut);
643 	else
644 		ilk_load_lut_10(crtc, gamma_lut);
645 }
646 
647 static int ivb_lut_10_size(u32 prec_index)
648 {
649 	if (prec_index & PAL_PREC_SPLIT_MODE)
650 		return 512;
651 	else
652 		return 1024;
653 }
654 
655 /*
656  * IVB/HSW Bspec / PAL_PREC_INDEX:
657  * "Restriction : Index auto increment mode is not
658  *  supported and must not be enabled."
659  */
660 static void ivb_load_lut_10(struct intel_crtc *crtc,
661 			    const struct drm_property_blob *blob,
662 			    u32 prec_index)
663 {
664 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
665 	int hw_lut_size = ivb_lut_10_size(prec_index);
666 	const struct drm_color_lut *lut = blob->data;
667 	int i, lut_size = drm_color_lut_size(blob);
668 	enum pipe pipe = crtc->pipe;
669 
670 	for (i = 0; i < hw_lut_size; i++) {
671 		/* We discard half the user entries in split gamma mode */
672 		const struct drm_color_lut *entry =
673 			&lut[i * (lut_size - 1) / (hw_lut_size - 1)];
674 
675 		intel_de_write(dev_priv, PREC_PAL_INDEX(pipe), prec_index++);
676 		intel_de_write(dev_priv, PREC_PAL_DATA(pipe),
677 			       ilk_lut_10(entry));
678 	}
679 
680 	/*
681 	 * Reset the index, otherwise it prevents the legacy palette to be
682 	 * written properly.
683 	 */
684 	intel_de_write(dev_priv, PREC_PAL_INDEX(pipe), 0);
685 }
686 
687 /* On BDW+ the index auto increment mode actually works */
688 static void bdw_load_lut_10(struct intel_crtc *crtc,
689 			    const struct drm_property_blob *blob,
690 			    u32 prec_index)
691 {
692 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
693 	int hw_lut_size = ivb_lut_10_size(prec_index);
694 	const struct drm_color_lut *lut = blob->data;
695 	int i, lut_size = drm_color_lut_size(blob);
696 	enum pipe pipe = crtc->pipe;
697 
698 	intel_de_write(dev_priv, PREC_PAL_INDEX(pipe),
699 		       prec_index | PAL_PREC_AUTO_INCREMENT);
700 
701 	for (i = 0; i < hw_lut_size; i++) {
702 		/* We discard half the user entries in split gamma mode */
703 		const struct drm_color_lut *entry =
704 			&lut[i * (lut_size - 1) / (hw_lut_size - 1)];
705 
706 		intel_de_write(dev_priv, PREC_PAL_DATA(pipe),
707 			       ilk_lut_10(entry));
708 	}
709 
710 	/*
711 	 * Reset the index, otherwise it prevents the legacy palette to be
712 	 * written properly.
713 	 */
714 	intel_de_write(dev_priv, PREC_PAL_INDEX(pipe), 0);
715 }
716 
717 static void ivb_load_lut_ext_max(struct intel_crtc *crtc)
718 {
719 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
720 	struct intel_dsb *dsb = intel_dsb_get(crtc);
721 	enum pipe pipe = crtc->pipe;
722 
723 	/* Program the max register to clamp values > 1.0. */
724 	intel_dsb_reg_write(dsb, PREC_PAL_EXT_GC_MAX(pipe, 0), 1 << 16);
725 	intel_dsb_reg_write(dsb, PREC_PAL_EXT_GC_MAX(pipe, 1), 1 << 16);
726 	intel_dsb_reg_write(dsb, PREC_PAL_EXT_GC_MAX(pipe, 2), 1 << 16);
727 
728 	/*
729 	 * Program the gc max 2 register to clamp values > 1.0.
730 	 * ToDo: Extend the ABI to be able to program values
731 	 * from 3.0 to 7.0
732 	 */
733 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
734 		intel_dsb_reg_write(dsb, PREC_PAL_EXT2_GC_MAX(pipe, 0),
735 				    1 << 16);
736 		intel_dsb_reg_write(dsb, PREC_PAL_EXT2_GC_MAX(pipe, 1),
737 				    1 << 16);
738 		intel_dsb_reg_write(dsb, PREC_PAL_EXT2_GC_MAX(pipe, 2),
739 				    1 << 16);
740 	}
741 
742 	intel_dsb_put(dsb);
743 }
744 
745 static void ivb_load_luts(const struct intel_crtc_state *crtc_state)
746 {
747 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
748 	const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
749 	const struct drm_property_blob *degamma_lut = crtc_state->hw.degamma_lut;
750 
751 	if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT) {
752 		ilk_load_lut_8(crtc, gamma_lut);
753 	} else if (crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) {
754 		ivb_load_lut_10(crtc, degamma_lut, PAL_PREC_SPLIT_MODE |
755 				PAL_PREC_INDEX_VALUE(0));
756 		ivb_load_lut_ext_max(crtc);
757 		ivb_load_lut_10(crtc, gamma_lut, PAL_PREC_SPLIT_MODE |
758 				PAL_PREC_INDEX_VALUE(512));
759 	} else {
760 		const struct drm_property_blob *blob = gamma_lut ?: degamma_lut;
761 
762 		ivb_load_lut_10(crtc, blob,
763 				PAL_PREC_INDEX_VALUE(0));
764 		ivb_load_lut_ext_max(crtc);
765 	}
766 }
767 
768 static void bdw_load_luts(const struct intel_crtc_state *crtc_state)
769 {
770 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
771 	const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
772 	const struct drm_property_blob *degamma_lut = crtc_state->hw.degamma_lut;
773 
774 	if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT) {
775 		ilk_load_lut_8(crtc, gamma_lut);
776 	} else if (crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) {
777 		bdw_load_lut_10(crtc, degamma_lut, PAL_PREC_SPLIT_MODE |
778 				PAL_PREC_INDEX_VALUE(0));
779 		ivb_load_lut_ext_max(crtc);
780 		bdw_load_lut_10(crtc, gamma_lut, PAL_PREC_SPLIT_MODE |
781 				PAL_PREC_INDEX_VALUE(512));
782 	} else {
783 		const struct drm_property_blob *blob = gamma_lut ?: degamma_lut;
784 
785 		bdw_load_lut_10(crtc, blob,
786 				PAL_PREC_INDEX_VALUE(0));
787 		ivb_load_lut_ext_max(crtc);
788 	}
789 }
790 
791 static void glk_load_degamma_lut(const struct intel_crtc_state *crtc_state)
792 {
793 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
794 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
795 	enum pipe pipe = crtc->pipe;
796 	int i, lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size;
797 	const struct drm_color_lut *lut = crtc_state->hw.degamma_lut->data;
798 
799 	/*
800 	 * When setting the auto-increment bit, the hardware seems to
801 	 * ignore the index bits, so we need to reset it to index 0
802 	 * separately.
803 	 */
804 	intel_de_write(dev_priv, PRE_CSC_GAMC_INDEX(pipe), 0);
805 	intel_de_write(dev_priv, PRE_CSC_GAMC_INDEX(pipe),
806 		       PRE_CSC_GAMC_AUTO_INCREMENT);
807 
808 	for (i = 0; i < lut_size; i++) {
809 		/*
810 		 * First 33 entries represent range from 0 to 1.0
811 		 * 34th and 35th entry will represent extended range
812 		 * inputs 3.0 and 7.0 respectively, currently clamped
813 		 * at 1.0. Since the precision is 16bit, the user
814 		 * value can be directly filled to register.
815 		 * The pipe degamma table in GLK+ onwards doesn't
816 		 * support different values per channel, so this just
817 		 * programs green value which will be equal to Red and
818 		 * Blue into the lut registers.
819 		 * ToDo: Extend to max 7.0. Enable 32 bit input value
820 		 * as compared to just 16 to achieve this.
821 		 */
822 		intel_de_write(dev_priv, PRE_CSC_GAMC_DATA(pipe),
823 		               lut[i].green);
824 	}
825 
826 	/* Clamp values > 1.0. */
827 	while (i++ < 35)
828 		intel_de_write(dev_priv, PRE_CSC_GAMC_DATA(pipe), 1 << 16);
829 }
830 
831 static void glk_load_degamma_lut_linear(const struct intel_crtc_state *crtc_state)
832 {
833 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
834 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
835 	enum pipe pipe = crtc->pipe;
836 	int i, lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size;
837 
838 	/*
839 	 * When setting the auto-increment bit, the hardware seems to
840 	 * ignore the index bits, so we need to reset it to index 0
841 	 * separately.
842 	 */
843 	intel_de_write(dev_priv, PRE_CSC_GAMC_INDEX(pipe), 0);
844 	intel_de_write(dev_priv, PRE_CSC_GAMC_INDEX(pipe),
845 		       PRE_CSC_GAMC_AUTO_INCREMENT);
846 
847 	for (i = 0; i < lut_size; i++) {
848 		u32 v = (i << 16) / (lut_size - 1);
849 
850 		intel_de_write(dev_priv, PRE_CSC_GAMC_DATA(pipe), v);
851 	}
852 
853 	/* Clamp values > 1.0. */
854 	while (i++ < 35)
855 		intel_de_write(dev_priv, PRE_CSC_GAMC_DATA(pipe), 1 << 16);
856 }
857 
858 static void glk_load_luts(const struct intel_crtc_state *crtc_state)
859 {
860 	const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
861 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
862 
863 	/*
864 	 * On GLK+ both pipe CSC and degamma LUT are controlled
865 	 * by csc_enable. Hence for the cases where the CSC is
866 	 * needed but degamma LUT is not we need to load a
867 	 * linear degamma LUT. In fact we'll just always load
868 	 * the degama LUT so that we don't have to reload
869 	 * it every time the pipe CSC is being enabled.
870 	 */
871 	if (crtc_state->hw.degamma_lut)
872 		glk_load_degamma_lut(crtc_state);
873 	else
874 		glk_load_degamma_lut_linear(crtc_state);
875 
876 	if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT) {
877 		ilk_load_lut_8(crtc, gamma_lut);
878 	} else {
879 		bdw_load_lut_10(crtc, gamma_lut, PAL_PREC_INDEX_VALUE(0));
880 		ivb_load_lut_ext_max(crtc);
881 	}
882 }
883 
884 /* ilk+ "12.4" interpolated format (high 10 bits) */
885 static u32 ilk_lut_12p4_udw(const struct drm_color_lut *color)
886 {
887 	return (color->red >> 6) << 20 | (color->green >> 6) << 10 |
888 		(color->blue >> 6);
889 }
890 
891 /* ilk+ "12.4" interpolated format (low 6 bits) */
892 static u32 ilk_lut_12p4_ldw(const struct drm_color_lut *color)
893 {
894 	return (color->red & 0x3f) << 24 | (color->green & 0x3f) << 14 |
895 		(color->blue & 0x3f) << 4;
896 }
897 
898 static void
899 icl_load_gcmax(const struct intel_crtc_state *crtc_state,
900 	       const struct drm_color_lut *color)
901 {
902 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
903 	struct intel_dsb *dsb = intel_dsb_get(crtc);
904 	enum pipe pipe = crtc->pipe;
905 
906 	/* FIXME LUT entries are 16 bit only, so we can prog 0xFFFF max */
907 	intel_dsb_reg_write(dsb, PREC_PAL_GC_MAX(pipe, 0), color->red);
908 	intel_dsb_reg_write(dsb, PREC_PAL_GC_MAX(pipe, 1), color->green);
909 	intel_dsb_reg_write(dsb, PREC_PAL_GC_MAX(pipe, 2), color->blue);
910 	intel_dsb_put(dsb);
911 }
912 
913 static void
914 icl_program_gamma_superfine_segment(const struct intel_crtc_state *crtc_state)
915 {
916 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
917 	const struct drm_property_blob *blob = crtc_state->hw.gamma_lut;
918 	const struct drm_color_lut *lut = blob->data;
919 	struct intel_dsb *dsb = intel_dsb_get(crtc);
920 	enum pipe pipe = crtc->pipe;
921 	int i;
922 
923 	/*
924 	 * Program Super Fine segment (let's call it seg1)...
925 	 *
926 	 * Super Fine segment's step is 1/(8 * 128 * 256) and it has
927 	 * 9 entries, corresponding to values 0, 1/(8 * 128 * 256),
928 	 * 2/(8 * 128 * 256) ... 8/(8 * 128 * 256).
929 	 */
930 	intel_dsb_reg_write(dsb, PREC_PAL_MULTI_SEG_INDEX(pipe),
931 			    PAL_PREC_AUTO_INCREMENT);
932 
933 	for (i = 0; i < 9; i++) {
934 		const struct drm_color_lut *entry = &lut[i];
935 
936 		intel_dsb_indexed_reg_write(dsb, PREC_PAL_MULTI_SEG_DATA(pipe),
937 					    ilk_lut_12p4_ldw(entry));
938 		intel_dsb_indexed_reg_write(dsb, PREC_PAL_MULTI_SEG_DATA(pipe),
939 					    ilk_lut_12p4_udw(entry));
940 	}
941 
942 	intel_dsb_put(dsb);
943 }
944 
945 static void
946 icl_program_gamma_multi_segment(const struct intel_crtc_state *crtc_state)
947 {
948 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
949 	const struct drm_property_blob *blob = crtc_state->hw.gamma_lut;
950 	const struct drm_color_lut *lut = blob->data;
951 	const struct drm_color_lut *entry;
952 	struct intel_dsb *dsb = intel_dsb_get(crtc);
953 	enum pipe pipe = crtc->pipe;
954 	int i;
955 
956 	/*
957 	 * Program Fine segment (let's call it seg2)...
958 	 *
959 	 * Fine segment's step is 1/(128 * 256) i.e. 1/(128 * 256), 2/(128 * 256)
960 	 * ... 256/(128 * 256). So in order to program fine segment of LUT we
961 	 * need to pick every 8th entry in the LUT, and program 256 indexes.
962 	 *
963 	 * PAL_PREC_INDEX[0] and PAL_PREC_INDEX[1] map to seg2[1],
964 	 * seg2[0] being unused by the hardware.
965 	 */
966 	intel_dsb_reg_write(dsb, PREC_PAL_INDEX(pipe), PAL_PREC_AUTO_INCREMENT);
967 	for (i = 1; i < 257; i++) {
968 		entry = &lut[i * 8];
969 		intel_dsb_indexed_reg_write(dsb, PREC_PAL_DATA(pipe),
970 					    ilk_lut_12p4_ldw(entry));
971 		intel_dsb_indexed_reg_write(dsb, PREC_PAL_DATA(pipe),
972 					    ilk_lut_12p4_udw(entry));
973 	}
974 
975 	/*
976 	 * Program Coarse segment (let's call it seg3)...
977 	 *
978 	 * Coarse segment starts from index 0 and it's step is 1/256 ie 0,
979 	 * 1/256, 2/256 ... 256/256. As per the description of each entry in LUT
980 	 * above, we need to pick every (8 * 128)th entry in LUT, and
981 	 * program 256 of those.
982 	 *
983 	 * Spec is not very clear about if entries seg3[0] and seg3[1] are
984 	 * being used or not, but we still need to program these to advance
985 	 * the index.
986 	 */
987 	for (i = 0; i < 256; i++) {
988 		entry = &lut[i * 8 * 128];
989 		intel_dsb_indexed_reg_write(dsb, PREC_PAL_DATA(pipe),
990 					    ilk_lut_12p4_ldw(entry));
991 		intel_dsb_indexed_reg_write(dsb, PREC_PAL_DATA(pipe),
992 					    ilk_lut_12p4_udw(entry));
993 	}
994 
995 	/* The last entry in the LUT is to be programmed in GCMAX */
996 	entry = &lut[256 * 8 * 128];
997 	icl_load_gcmax(crtc_state, entry);
998 	ivb_load_lut_ext_max(crtc);
999 	intel_dsb_put(dsb);
1000 }
1001 
1002 static void icl_load_luts(const struct intel_crtc_state *crtc_state)
1003 {
1004 	const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
1005 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1006 	struct intel_dsb *dsb = intel_dsb_get(crtc);
1007 
1008 	if (crtc_state->hw.degamma_lut)
1009 		glk_load_degamma_lut(crtc_state);
1010 
1011 	switch (crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) {
1012 	case GAMMA_MODE_MODE_8BIT:
1013 		ilk_load_lut_8(crtc, gamma_lut);
1014 		break;
1015 	case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED:
1016 		icl_program_gamma_superfine_segment(crtc_state);
1017 		icl_program_gamma_multi_segment(crtc_state);
1018 		break;
1019 	default:
1020 		bdw_load_lut_10(crtc, gamma_lut, PAL_PREC_INDEX_VALUE(0));
1021 		ivb_load_lut_ext_max(crtc);
1022 	}
1023 
1024 	intel_dsb_commit(dsb);
1025 	intel_dsb_put(dsb);
1026 }
1027 
1028 static u32 chv_cgm_degamma_ldw(const struct drm_color_lut *color)
1029 {
1030 	return drm_color_lut_extract(color->green, 14) << 16 |
1031 		drm_color_lut_extract(color->blue, 14);
1032 }
1033 
1034 static u32 chv_cgm_degamma_udw(const struct drm_color_lut *color)
1035 {
1036 	return drm_color_lut_extract(color->red, 14);
1037 }
1038 
1039 static void chv_cgm_gamma_pack(struct drm_color_lut *entry, u32 ldw, u32 udw)
1040 {
1041 	entry->green = intel_color_lut_pack(REG_FIELD_GET(CGM_PIPE_GAMMA_GREEN_MASK, ldw), 10);
1042 	entry->blue = intel_color_lut_pack(REG_FIELD_GET(CGM_PIPE_GAMMA_BLUE_MASK, ldw), 10);
1043 	entry->red = intel_color_lut_pack(REG_FIELD_GET(CGM_PIPE_GAMMA_RED_MASK, udw), 10);
1044 }
1045 
1046 static void chv_load_cgm_degamma(struct intel_crtc *crtc,
1047 				 const struct drm_property_blob *blob)
1048 {
1049 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1050 	const struct drm_color_lut *lut = blob->data;
1051 	int i, lut_size = drm_color_lut_size(blob);
1052 	enum pipe pipe = crtc->pipe;
1053 
1054 	for (i = 0; i < lut_size; i++) {
1055 		intel_de_write(dev_priv, CGM_PIPE_DEGAMMA(pipe, i, 0),
1056 			       chv_cgm_degamma_ldw(&lut[i]));
1057 		intel_de_write(dev_priv, CGM_PIPE_DEGAMMA(pipe, i, 1),
1058 			       chv_cgm_degamma_udw(&lut[i]));
1059 	}
1060 }
1061 
1062 static u32 chv_cgm_gamma_ldw(const struct drm_color_lut *color)
1063 {
1064 	return drm_color_lut_extract(color->green, 10) << 16 |
1065 		drm_color_lut_extract(color->blue, 10);
1066 }
1067 
1068 static u32 chv_cgm_gamma_udw(const struct drm_color_lut *color)
1069 {
1070 	return drm_color_lut_extract(color->red, 10);
1071 }
1072 
1073 static void chv_load_cgm_gamma(struct intel_crtc *crtc,
1074 			       const struct drm_property_blob *blob)
1075 {
1076 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1077 	const struct drm_color_lut *lut = blob->data;
1078 	int i, lut_size = drm_color_lut_size(blob);
1079 	enum pipe pipe = crtc->pipe;
1080 
1081 	for (i = 0; i < lut_size; i++) {
1082 		intel_de_write(dev_priv, CGM_PIPE_GAMMA(pipe, i, 0),
1083 			       chv_cgm_gamma_ldw(&lut[i]));
1084 		intel_de_write(dev_priv, CGM_PIPE_GAMMA(pipe, i, 1),
1085 			       chv_cgm_gamma_udw(&lut[i]));
1086 	}
1087 }
1088 
1089 static void chv_load_luts(const struct intel_crtc_state *crtc_state)
1090 {
1091 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1092 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1093 	const struct drm_property_blob *degamma_lut = crtc_state->hw.degamma_lut;
1094 	const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
1095 	const struct drm_property_blob *ctm = crtc_state->hw.ctm;
1096 
1097 	if (crtc_state->cgm_mode & CGM_PIPE_MODE_CSC)
1098 		chv_load_cgm_csc(crtc, ctm);
1099 
1100 	if (crtc_state->cgm_mode & CGM_PIPE_MODE_DEGAMMA)
1101 		chv_load_cgm_degamma(crtc, degamma_lut);
1102 
1103 	if (crtc_state->cgm_mode & CGM_PIPE_MODE_GAMMA)
1104 		chv_load_cgm_gamma(crtc, gamma_lut);
1105 	else
1106 		i965_load_luts(crtc_state);
1107 
1108 	intel_de_write(dev_priv, CGM_PIPE_MODE(crtc->pipe),
1109 		       crtc_state->cgm_mode);
1110 }
1111 
1112 void intel_color_load_luts(const struct intel_crtc_state *crtc_state)
1113 {
1114 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1115 
1116 	dev_priv->display.load_luts(crtc_state);
1117 }
1118 
1119 void intel_color_commit(const struct intel_crtc_state *crtc_state)
1120 {
1121 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1122 
1123 	dev_priv->display.color_commit(crtc_state);
1124 }
1125 
1126 static bool intel_can_preload_luts(const struct intel_crtc_state *new_crtc_state)
1127 {
1128 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1129 	struct intel_atomic_state *state =
1130 		to_intel_atomic_state(new_crtc_state->uapi.state);
1131 	const struct intel_crtc_state *old_crtc_state =
1132 		intel_atomic_get_old_crtc_state(state, crtc);
1133 
1134 	return !old_crtc_state->hw.gamma_lut &&
1135 		!old_crtc_state->hw.degamma_lut;
1136 }
1137 
1138 static bool chv_can_preload_luts(const struct intel_crtc_state *new_crtc_state)
1139 {
1140 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1141 	struct intel_atomic_state *state =
1142 		to_intel_atomic_state(new_crtc_state->uapi.state);
1143 	const struct intel_crtc_state *old_crtc_state =
1144 		intel_atomic_get_old_crtc_state(state, crtc);
1145 
1146 	/*
1147 	 * CGM_PIPE_MODE is itself single buffered. We'd have to
1148 	 * somehow split it out from chv_load_luts() if we wanted
1149 	 * the ability to preload the CGM LUTs/CSC without tearing.
1150 	 */
1151 	if (old_crtc_state->cgm_mode || new_crtc_state->cgm_mode)
1152 		return false;
1153 
1154 	return !old_crtc_state->hw.gamma_lut;
1155 }
1156 
1157 static bool glk_can_preload_luts(const struct intel_crtc_state *new_crtc_state)
1158 {
1159 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1160 	struct intel_atomic_state *state =
1161 		to_intel_atomic_state(new_crtc_state->uapi.state);
1162 	const struct intel_crtc_state *old_crtc_state =
1163 		intel_atomic_get_old_crtc_state(state, crtc);
1164 
1165 	/*
1166 	 * The hardware degamma is active whenever the pipe
1167 	 * CSC is active. Thus even if the old state has no
1168 	 * software degamma we need to avoid clobbering the
1169 	 * linear hardware degamma mid scanout.
1170 	 */
1171 	return !old_crtc_state->csc_enable &&
1172 		!old_crtc_state->hw.gamma_lut;
1173 }
1174 
1175 int intel_color_check(struct intel_crtc_state *crtc_state)
1176 {
1177 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1178 
1179 	return dev_priv->display.color_check(crtc_state);
1180 }
1181 
1182 void intel_color_get_config(struct intel_crtc_state *crtc_state)
1183 {
1184 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1185 
1186 	if (dev_priv->display.read_luts)
1187 		dev_priv->display.read_luts(crtc_state);
1188 }
1189 
1190 static bool need_plane_update(struct intel_plane *plane,
1191 			      const struct intel_crtc_state *crtc_state)
1192 {
1193 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1194 
1195 	/*
1196 	 * On pre-SKL the pipe gamma enable and pipe csc enable for
1197 	 * the pipe bottom color are configured via the primary plane.
1198 	 * We have to reconfigure that even if the plane is inactive.
1199 	 */
1200 	return crtc_state->active_planes & BIT(plane->id) ||
1201 		(INTEL_GEN(dev_priv) < 9 &&
1202 		 plane->id == PLANE_PRIMARY);
1203 }
1204 
1205 static int
1206 intel_color_add_affected_planes(struct intel_crtc_state *new_crtc_state)
1207 {
1208 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1209 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1210 	struct intel_atomic_state *state =
1211 		to_intel_atomic_state(new_crtc_state->uapi.state);
1212 	const struct intel_crtc_state *old_crtc_state =
1213 		intel_atomic_get_old_crtc_state(state, crtc);
1214 	struct intel_plane *plane;
1215 
1216 	if (!new_crtc_state->hw.active ||
1217 	    drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi))
1218 		return 0;
1219 
1220 	if (new_crtc_state->gamma_enable == old_crtc_state->gamma_enable &&
1221 	    new_crtc_state->csc_enable == old_crtc_state->csc_enable)
1222 		return 0;
1223 
1224 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1225 		struct intel_plane_state *plane_state;
1226 
1227 		if (!need_plane_update(plane, new_crtc_state))
1228 			continue;
1229 
1230 		plane_state = intel_atomic_get_plane_state(state, plane);
1231 		if (IS_ERR(plane_state))
1232 			return PTR_ERR(plane_state);
1233 
1234 		new_crtc_state->update_planes |= BIT(plane->id);
1235 	}
1236 
1237 	return 0;
1238 }
1239 
1240 static int check_lut_size(const struct drm_property_blob *lut, int expected)
1241 {
1242 	int len;
1243 
1244 	if (!lut)
1245 		return 0;
1246 
1247 	len = drm_color_lut_size(lut);
1248 	if (len != expected) {
1249 		DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1250 			      len, expected);
1251 		return -EINVAL;
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 static int check_luts(const struct intel_crtc_state *crtc_state)
1258 {
1259 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1260 	const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut;
1261 	const struct drm_property_blob *degamma_lut = crtc_state->hw.degamma_lut;
1262 	int gamma_length, degamma_length;
1263 	u32 gamma_tests, degamma_tests;
1264 
1265 	/* Always allow legacy gamma LUT with no further checking. */
1266 	if (crtc_state_is_legacy_gamma(crtc_state))
1267 		return 0;
1268 
1269 	/* C8 relies on its palette being stored in the legacy LUT */
1270 	if (crtc_state->c8_planes) {
1271 		drm_dbg_kms(&dev_priv->drm,
1272 			    "C8 pixelformat requires the legacy LUT\n");
1273 		return -EINVAL;
1274 	}
1275 
1276 	degamma_length = INTEL_INFO(dev_priv)->color.degamma_lut_size;
1277 	gamma_length = INTEL_INFO(dev_priv)->color.gamma_lut_size;
1278 	degamma_tests = INTEL_INFO(dev_priv)->color.degamma_lut_tests;
1279 	gamma_tests = INTEL_INFO(dev_priv)->color.gamma_lut_tests;
1280 
1281 	if (check_lut_size(degamma_lut, degamma_length) ||
1282 	    check_lut_size(gamma_lut, gamma_length))
1283 		return -EINVAL;
1284 
1285 	if (drm_color_lut_check(degamma_lut, degamma_tests) ||
1286 	    drm_color_lut_check(gamma_lut, gamma_tests))
1287 		return -EINVAL;
1288 
1289 	return 0;
1290 }
1291 
1292 static u32 i9xx_gamma_mode(struct intel_crtc_state *crtc_state)
1293 {
1294 	if (!crtc_state->gamma_enable ||
1295 	    crtc_state_is_legacy_gamma(crtc_state))
1296 		return GAMMA_MODE_MODE_8BIT;
1297 	else
1298 		return GAMMA_MODE_MODE_10BIT; /* i965+ only */
1299 }
1300 
1301 static int i9xx_color_check(struct intel_crtc_state *crtc_state)
1302 {
1303 	int ret;
1304 
1305 	ret = check_luts(crtc_state);
1306 	if (ret)
1307 		return ret;
1308 
1309 	crtc_state->gamma_enable =
1310 		crtc_state->hw.gamma_lut &&
1311 		!crtc_state->c8_planes;
1312 
1313 	crtc_state->gamma_mode = i9xx_gamma_mode(crtc_state);
1314 
1315 	ret = intel_color_add_affected_planes(crtc_state);
1316 	if (ret)
1317 		return ret;
1318 
1319 	crtc_state->preload_luts = intel_can_preload_luts(crtc_state);
1320 
1321 	return 0;
1322 }
1323 
1324 static u32 chv_cgm_mode(const struct intel_crtc_state *crtc_state)
1325 {
1326 	u32 cgm_mode = 0;
1327 
1328 	if (crtc_state_is_legacy_gamma(crtc_state))
1329 		return 0;
1330 
1331 	if (crtc_state->hw.degamma_lut)
1332 		cgm_mode |= CGM_PIPE_MODE_DEGAMMA;
1333 	if (crtc_state->hw.ctm)
1334 		cgm_mode |= CGM_PIPE_MODE_CSC;
1335 	if (crtc_state->hw.gamma_lut)
1336 		cgm_mode |= CGM_PIPE_MODE_GAMMA;
1337 
1338 	return cgm_mode;
1339 }
1340 
1341 /*
1342  * CHV color pipeline:
1343  * u0.10 -> CGM degamma -> u0.14 -> CGM csc -> u0.14 -> CGM gamma ->
1344  * u0.10 -> WGC csc -> u0.10 -> pipe gamma -> u0.10
1345  *
1346  * We always bypass the WGC csc and use the CGM csc
1347  * instead since it has degamma and better precision.
1348  */
1349 static int chv_color_check(struct intel_crtc_state *crtc_state)
1350 {
1351 	int ret;
1352 
1353 	ret = check_luts(crtc_state);
1354 	if (ret)
1355 		return ret;
1356 
1357 	/*
1358 	 * Pipe gamma will be used only for the legacy LUT.
1359 	 * Otherwise we bypass it and use the CGM gamma instead.
1360 	 */
1361 	crtc_state->gamma_enable =
1362 		crtc_state_is_legacy_gamma(crtc_state) &&
1363 		!crtc_state->c8_planes;
1364 
1365 	crtc_state->gamma_mode = GAMMA_MODE_MODE_8BIT;
1366 
1367 	crtc_state->cgm_mode = chv_cgm_mode(crtc_state);
1368 
1369 	ret = intel_color_add_affected_planes(crtc_state);
1370 	if (ret)
1371 		return ret;
1372 
1373 	crtc_state->preload_luts = chv_can_preload_luts(crtc_state);
1374 
1375 	return 0;
1376 }
1377 
1378 static u32 ilk_gamma_mode(const struct intel_crtc_state *crtc_state)
1379 {
1380 	if (!crtc_state->gamma_enable ||
1381 	    crtc_state_is_legacy_gamma(crtc_state))
1382 		return GAMMA_MODE_MODE_8BIT;
1383 	else
1384 		return GAMMA_MODE_MODE_10BIT;
1385 }
1386 
1387 static u32 ilk_csc_mode(const struct intel_crtc_state *crtc_state)
1388 {
1389 	/*
1390 	 * CSC comes after the LUT in RGB->YCbCr mode.
1391 	 * RGB->YCbCr needs the limited range offsets added to
1392 	 * the output. RGB limited range output is handled by
1393 	 * the hw automagically elsewhere.
1394 	 */
1395 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
1396 		return CSC_BLACK_SCREEN_OFFSET;
1397 
1398 	return CSC_MODE_YUV_TO_RGB |
1399 		CSC_POSITION_BEFORE_GAMMA;
1400 }
1401 
1402 static int ilk_color_check(struct intel_crtc_state *crtc_state)
1403 {
1404 	int ret;
1405 
1406 	ret = check_luts(crtc_state);
1407 	if (ret)
1408 		return ret;
1409 
1410 	crtc_state->gamma_enable =
1411 		crtc_state->hw.gamma_lut &&
1412 		!crtc_state->c8_planes;
1413 
1414 	/*
1415 	 * We don't expose the ctm on ilk/snb currently, also RGB
1416 	 * limited range output is handled by the hw automagically.
1417 	 */
1418 	crtc_state->csc_enable =
1419 		crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB;
1420 
1421 	crtc_state->gamma_mode = ilk_gamma_mode(crtc_state);
1422 
1423 	crtc_state->csc_mode = ilk_csc_mode(crtc_state);
1424 
1425 	ret = intel_color_add_affected_planes(crtc_state);
1426 	if (ret)
1427 		return ret;
1428 
1429 	crtc_state->preload_luts = intel_can_preload_luts(crtc_state);
1430 
1431 	return 0;
1432 }
1433 
1434 static u32 ivb_gamma_mode(const struct intel_crtc_state *crtc_state)
1435 {
1436 	if (!crtc_state->gamma_enable ||
1437 	    crtc_state_is_legacy_gamma(crtc_state))
1438 		return GAMMA_MODE_MODE_8BIT;
1439 	else if (crtc_state->hw.gamma_lut &&
1440 		 crtc_state->hw.degamma_lut)
1441 		return GAMMA_MODE_MODE_SPLIT;
1442 	else
1443 		return GAMMA_MODE_MODE_10BIT;
1444 }
1445 
1446 static u32 ivb_csc_mode(const struct intel_crtc_state *crtc_state)
1447 {
1448 	bool limited_color_range = ilk_csc_limited_range(crtc_state);
1449 
1450 	/*
1451 	 * CSC comes after the LUT in degamma, RGB->YCbCr,
1452 	 * and RGB full->limited range mode.
1453 	 */
1454 	if (crtc_state->hw.degamma_lut ||
1455 	    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB ||
1456 	    limited_color_range)
1457 		return 0;
1458 
1459 	return CSC_POSITION_BEFORE_GAMMA;
1460 }
1461 
1462 static int ivb_color_check(struct intel_crtc_state *crtc_state)
1463 {
1464 	bool limited_color_range = ilk_csc_limited_range(crtc_state);
1465 	int ret;
1466 
1467 	ret = check_luts(crtc_state);
1468 	if (ret)
1469 		return ret;
1470 
1471 	crtc_state->gamma_enable =
1472 		(crtc_state->hw.gamma_lut ||
1473 		 crtc_state->hw.degamma_lut) &&
1474 		!crtc_state->c8_planes;
1475 
1476 	crtc_state->csc_enable =
1477 		crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB ||
1478 		crtc_state->hw.ctm || limited_color_range;
1479 
1480 	crtc_state->gamma_mode = ivb_gamma_mode(crtc_state);
1481 
1482 	crtc_state->csc_mode = ivb_csc_mode(crtc_state);
1483 
1484 	ret = intel_color_add_affected_planes(crtc_state);
1485 	if (ret)
1486 		return ret;
1487 
1488 	crtc_state->preload_luts = intel_can_preload_luts(crtc_state);
1489 
1490 	return 0;
1491 }
1492 
1493 static u32 glk_gamma_mode(const struct intel_crtc_state *crtc_state)
1494 {
1495 	if (!crtc_state->gamma_enable ||
1496 	    crtc_state_is_legacy_gamma(crtc_state))
1497 		return GAMMA_MODE_MODE_8BIT;
1498 	else
1499 		return GAMMA_MODE_MODE_10BIT;
1500 }
1501 
1502 static int glk_color_check(struct intel_crtc_state *crtc_state)
1503 {
1504 	int ret;
1505 
1506 	ret = check_luts(crtc_state);
1507 	if (ret)
1508 		return ret;
1509 
1510 	crtc_state->gamma_enable =
1511 		crtc_state->hw.gamma_lut &&
1512 		!crtc_state->c8_planes;
1513 
1514 	/* On GLK+ degamma LUT is controlled by csc_enable */
1515 	crtc_state->csc_enable =
1516 		crtc_state->hw.degamma_lut ||
1517 		crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB ||
1518 		crtc_state->hw.ctm || crtc_state->limited_color_range;
1519 
1520 	crtc_state->gamma_mode = glk_gamma_mode(crtc_state);
1521 
1522 	crtc_state->csc_mode = 0;
1523 
1524 	ret = intel_color_add_affected_planes(crtc_state);
1525 	if (ret)
1526 		return ret;
1527 
1528 	crtc_state->preload_luts = glk_can_preload_luts(crtc_state);
1529 
1530 	return 0;
1531 }
1532 
1533 static u32 icl_gamma_mode(const struct intel_crtc_state *crtc_state)
1534 {
1535 	u32 gamma_mode = 0;
1536 
1537 	if (crtc_state->hw.degamma_lut)
1538 		gamma_mode |= PRE_CSC_GAMMA_ENABLE;
1539 
1540 	if (crtc_state->hw.gamma_lut &&
1541 	    !crtc_state->c8_planes)
1542 		gamma_mode |= POST_CSC_GAMMA_ENABLE;
1543 
1544 	if (!crtc_state->hw.gamma_lut ||
1545 	    crtc_state_is_legacy_gamma(crtc_state))
1546 		gamma_mode |= GAMMA_MODE_MODE_8BIT;
1547 	else
1548 		gamma_mode |= GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED;
1549 
1550 	return gamma_mode;
1551 }
1552 
1553 static u32 icl_csc_mode(const struct intel_crtc_state *crtc_state)
1554 {
1555 	u32 csc_mode = 0;
1556 
1557 	if (crtc_state->hw.ctm)
1558 		csc_mode |= ICL_CSC_ENABLE;
1559 
1560 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB ||
1561 	    crtc_state->limited_color_range)
1562 		csc_mode |= ICL_OUTPUT_CSC_ENABLE;
1563 
1564 	return csc_mode;
1565 }
1566 
1567 static int icl_color_check(struct intel_crtc_state *crtc_state)
1568 {
1569 	int ret;
1570 
1571 	ret = check_luts(crtc_state);
1572 	if (ret)
1573 		return ret;
1574 
1575 	crtc_state->gamma_mode = icl_gamma_mode(crtc_state);
1576 
1577 	crtc_state->csc_mode = icl_csc_mode(crtc_state);
1578 
1579 	crtc_state->preload_luts = intel_can_preload_luts(crtc_state);
1580 
1581 	return 0;
1582 }
1583 
1584 static int i9xx_gamma_precision(const struct intel_crtc_state *crtc_state)
1585 {
1586 	if (!crtc_state->gamma_enable)
1587 		return 0;
1588 
1589 	switch (crtc_state->gamma_mode) {
1590 	case GAMMA_MODE_MODE_8BIT:
1591 		return 8;
1592 	case GAMMA_MODE_MODE_10BIT:
1593 		return 16;
1594 	default:
1595 		MISSING_CASE(crtc_state->gamma_mode);
1596 		return 0;
1597 	}
1598 }
1599 
1600 static int ilk_gamma_precision(const struct intel_crtc_state *crtc_state)
1601 {
1602 	if (!crtc_state->gamma_enable)
1603 		return 0;
1604 
1605 	if ((crtc_state->csc_mode & CSC_POSITION_BEFORE_GAMMA) == 0)
1606 		return 0;
1607 
1608 	switch (crtc_state->gamma_mode) {
1609 	case GAMMA_MODE_MODE_8BIT:
1610 		return 8;
1611 	case GAMMA_MODE_MODE_10BIT:
1612 		return 10;
1613 	default:
1614 		MISSING_CASE(crtc_state->gamma_mode);
1615 		return 0;
1616 	}
1617 }
1618 
1619 static int chv_gamma_precision(const struct intel_crtc_state *crtc_state)
1620 {
1621 	if (crtc_state->cgm_mode & CGM_PIPE_MODE_GAMMA)
1622 		return 10;
1623 	else
1624 		return i9xx_gamma_precision(crtc_state);
1625 }
1626 
1627 static int glk_gamma_precision(const struct intel_crtc_state *crtc_state)
1628 {
1629 	if (!crtc_state->gamma_enable)
1630 		return 0;
1631 
1632 	switch (crtc_state->gamma_mode) {
1633 	case GAMMA_MODE_MODE_8BIT:
1634 		return 8;
1635 	case GAMMA_MODE_MODE_10BIT:
1636 		return 10;
1637 	default:
1638 		MISSING_CASE(crtc_state->gamma_mode);
1639 		return 0;
1640 	}
1641 }
1642 
1643 static int icl_gamma_precision(const struct intel_crtc_state *crtc_state)
1644 {
1645 	if ((crtc_state->gamma_mode & POST_CSC_GAMMA_ENABLE) == 0)
1646 		return 0;
1647 
1648 	switch (crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) {
1649 	case GAMMA_MODE_MODE_8BIT:
1650 		return 8;
1651 	case GAMMA_MODE_MODE_10BIT:
1652 		return 10;
1653 	case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED:
1654 		return 16;
1655 	default:
1656 		MISSING_CASE(crtc_state->gamma_mode);
1657 		return 0;
1658 	}
1659 }
1660 
1661 int intel_color_get_gamma_bit_precision(const struct intel_crtc_state *crtc_state)
1662 {
1663 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1664 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1665 
1666 	if (HAS_GMCH(dev_priv)) {
1667 		if (IS_CHERRYVIEW(dev_priv))
1668 			return chv_gamma_precision(crtc_state);
1669 		else
1670 			return i9xx_gamma_precision(crtc_state);
1671 	} else {
1672 		if (INTEL_GEN(dev_priv) >= 11)
1673 			return icl_gamma_precision(crtc_state);
1674 		else if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
1675 			return glk_gamma_precision(crtc_state);
1676 		else if (IS_IRONLAKE(dev_priv))
1677 			return ilk_gamma_precision(crtc_state);
1678 	}
1679 
1680 	return 0;
1681 }
1682 
1683 static bool err_check(struct drm_color_lut *lut1,
1684 		      struct drm_color_lut *lut2, u32 err)
1685 {
1686 	return ((abs((long)lut2->red - lut1->red)) <= err) &&
1687 		((abs((long)lut2->blue - lut1->blue)) <= err) &&
1688 		((abs((long)lut2->green - lut1->green)) <= err);
1689 }
1690 
1691 static bool intel_color_lut_entries_equal(struct drm_color_lut *lut1,
1692 					  struct drm_color_lut *lut2,
1693 					  int lut_size, u32 err)
1694 {
1695 	int i;
1696 
1697 	for (i = 0; i < lut_size; i++) {
1698 		if (!err_check(&lut1[i], &lut2[i], err))
1699 			return false;
1700 	}
1701 
1702 	return true;
1703 }
1704 
1705 bool intel_color_lut_equal(struct drm_property_blob *blob1,
1706 			   struct drm_property_blob *blob2,
1707 			   u32 gamma_mode, u32 bit_precision)
1708 {
1709 	struct drm_color_lut *lut1, *lut2;
1710 	int lut_size1, lut_size2;
1711 	u32 err;
1712 
1713 	if (!blob1 != !blob2)
1714 		return false;
1715 
1716 	if (!blob1)
1717 		return true;
1718 
1719 	lut_size1 = drm_color_lut_size(blob1);
1720 	lut_size2 = drm_color_lut_size(blob2);
1721 
1722 	/* check sw and hw lut size */
1723 	if (lut_size1 != lut_size2)
1724 		return false;
1725 
1726 	lut1 = blob1->data;
1727 	lut2 = blob2->data;
1728 
1729 	err = 0xffff >> bit_precision;
1730 
1731 	/* check sw and hw lut entry to be equal */
1732 	switch (gamma_mode & GAMMA_MODE_MODE_MASK) {
1733 	case GAMMA_MODE_MODE_8BIT:
1734 	case GAMMA_MODE_MODE_10BIT:
1735 		if (!intel_color_lut_entries_equal(lut1, lut2,
1736 						   lut_size2, err))
1737 			return false;
1738 		break;
1739 	case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED:
1740 		if (!intel_color_lut_entries_equal(lut1, lut2,
1741 						   9, err))
1742 			return false;
1743 		break;
1744 	default:
1745 		MISSING_CASE(gamma_mode);
1746 			return false;
1747 	}
1748 
1749 	return true;
1750 }
1751 
1752 static struct drm_property_blob *i9xx_read_lut_8(struct intel_crtc *crtc)
1753 {
1754 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1755 	enum pipe pipe = crtc->pipe;
1756 	struct drm_property_blob *blob;
1757 	struct drm_color_lut *lut;
1758 	int i;
1759 
1760 	blob = drm_property_create_blob(&dev_priv->drm,
1761 					sizeof(struct drm_color_lut) * LEGACY_LUT_LENGTH,
1762 					NULL);
1763 	if (IS_ERR(blob))
1764 		return NULL;
1765 
1766 	lut = blob->data;
1767 
1768 	for (i = 0; i < LEGACY_LUT_LENGTH; i++) {
1769 		u32 val = intel_de_read(dev_priv, PALETTE(pipe, i));
1770 
1771 		i9xx_lut_8_pack(&lut[i], val);
1772 	}
1773 
1774 	return blob;
1775 }
1776 
1777 static void i9xx_read_luts(struct intel_crtc_state *crtc_state)
1778 {
1779 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1780 
1781 	if (!crtc_state->gamma_enable)
1782 		return;
1783 
1784 	crtc_state->hw.gamma_lut = i9xx_read_lut_8(crtc);
1785 }
1786 
1787 static struct drm_property_blob *i965_read_lut_10p6(struct intel_crtc *crtc)
1788 {
1789 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1790 	int i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
1791 	enum pipe pipe = crtc->pipe;
1792 	struct drm_property_blob *blob;
1793 	struct drm_color_lut *lut;
1794 
1795 	blob = drm_property_create_blob(&dev_priv->drm,
1796 					sizeof(struct drm_color_lut) * lut_size,
1797 					NULL);
1798 	if (IS_ERR(blob))
1799 		return NULL;
1800 
1801 	lut = blob->data;
1802 
1803 	for (i = 0; i < lut_size - 1; i++) {
1804 		u32 ldw = intel_de_read(dev_priv, PALETTE(pipe, 2 * i + 0));
1805 		u32 udw = intel_de_read(dev_priv, PALETTE(pipe, 2 * i + 1));
1806 
1807 		i965_lut_10p6_pack(&lut[i], ldw, udw);
1808 	}
1809 
1810 	lut[i].red = i965_lut_11p6_max_pack(intel_de_read(dev_priv, PIPEGCMAX(pipe, 0)));
1811 	lut[i].green = i965_lut_11p6_max_pack(intel_de_read(dev_priv, PIPEGCMAX(pipe, 1)));
1812 	lut[i].blue = i965_lut_11p6_max_pack(intel_de_read(dev_priv, PIPEGCMAX(pipe, 2)));
1813 
1814 	return blob;
1815 }
1816 
1817 static void i965_read_luts(struct intel_crtc_state *crtc_state)
1818 {
1819 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1820 
1821 	if (!crtc_state->gamma_enable)
1822 		return;
1823 
1824 	if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT)
1825 		crtc_state->hw.gamma_lut = i9xx_read_lut_8(crtc);
1826 	else
1827 		crtc_state->hw.gamma_lut = i965_read_lut_10p6(crtc);
1828 }
1829 
1830 static struct drm_property_blob *chv_read_cgm_gamma(struct intel_crtc *crtc)
1831 {
1832 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1833 	int i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
1834 	enum pipe pipe = crtc->pipe;
1835 	struct drm_property_blob *blob;
1836 	struct drm_color_lut *lut;
1837 
1838 	blob = drm_property_create_blob(&dev_priv->drm,
1839 					sizeof(struct drm_color_lut) * lut_size,
1840 					NULL);
1841 	if (IS_ERR(blob))
1842 		return NULL;
1843 
1844 	lut = blob->data;
1845 
1846 	for (i = 0; i < lut_size; i++) {
1847 		u32 ldw = intel_de_read(dev_priv, CGM_PIPE_GAMMA(pipe, i, 0));
1848 		u32 udw = intel_de_read(dev_priv, CGM_PIPE_GAMMA(pipe, i, 1));
1849 
1850 		chv_cgm_gamma_pack(&lut[i], ldw, udw);
1851 	}
1852 
1853 	return blob;
1854 }
1855 
1856 static void chv_read_luts(struct intel_crtc_state *crtc_state)
1857 {
1858 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1859 
1860 	if (crtc_state->cgm_mode & CGM_PIPE_MODE_GAMMA)
1861 		crtc_state->hw.gamma_lut = chv_read_cgm_gamma(crtc);
1862 	else
1863 		i965_read_luts(crtc_state);
1864 }
1865 
1866 static struct drm_property_blob *ilk_read_lut_8(struct intel_crtc *crtc)
1867 {
1868 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1869 	enum pipe pipe = crtc->pipe;
1870 	struct drm_property_blob *blob;
1871 	struct drm_color_lut *lut;
1872 	int i;
1873 
1874 	blob = drm_property_create_blob(&dev_priv->drm,
1875 					sizeof(struct drm_color_lut) * LEGACY_LUT_LENGTH,
1876 					NULL);
1877 	if (IS_ERR(blob))
1878 		return NULL;
1879 
1880 	lut = blob->data;
1881 
1882 	for (i = 0; i < LEGACY_LUT_LENGTH; i++) {
1883 		u32 val = intel_de_read(dev_priv, LGC_PALETTE(pipe, i));
1884 
1885 		i9xx_lut_8_pack(&lut[i], val);
1886 	}
1887 
1888 	return blob;
1889 }
1890 
1891 static struct drm_property_blob *ilk_read_lut_10(struct intel_crtc *crtc)
1892 {
1893 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1894 	int i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
1895 	enum pipe pipe = crtc->pipe;
1896 	struct drm_property_blob *blob;
1897 	struct drm_color_lut *lut;
1898 
1899 	blob = drm_property_create_blob(&dev_priv->drm,
1900 					sizeof(struct drm_color_lut) * lut_size,
1901 					NULL);
1902 	if (IS_ERR(blob))
1903 		return NULL;
1904 
1905 	lut = blob->data;
1906 
1907 	for (i = 0; i < lut_size; i++) {
1908 		u32 val = intel_de_read(dev_priv, PREC_PALETTE(pipe, i));
1909 
1910 		ilk_lut_10_pack(&lut[i], val);
1911 	}
1912 
1913 	return blob;
1914 }
1915 
1916 static void ilk_read_luts(struct intel_crtc_state *crtc_state)
1917 {
1918 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1919 
1920 	if (!crtc_state->gamma_enable)
1921 		return;
1922 
1923 	if ((crtc_state->csc_mode & CSC_POSITION_BEFORE_GAMMA) == 0)
1924 		return;
1925 
1926 	if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT)
1927 		crtc_state->hw.gamma_lut = ilk_read_lut_8(crtc);
1928 	else
1929 		crtc_state->hw.gamma_lut = ilk_read_lut_10(crtc);
1930 }
1931 
1932 static struct drm_property_blob *glk_read_lut_10(struct intel_crtc *crtc,
1933 						 u32 prec_index)
1934 {
1935 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1936 	int i, hw_lut_size = ivb_lut_10_size(prec_index);
1937 	enum pipe pipe = crtc->pipe;
1938 	struct drm_property_blob *blob;
1939 	struct drm_color_lut *lut;
1940 
1941 	blob = drm_property_create_blob(&dev_priv->drm,
1942 					sizeof(struct drm_color_lut) * hw_lut_size,
1943 					NULL);
1944 	if (IS_ERR(blob))
1945 		return NULL;
1946 
1947 	lut = blob->data;
1948 
1949 	intel_de_write(dev_priv, PREC_PAL_INDEX(pipe),
1950 		       prec_index | PAL_PREC_AUTO_INCREMENT);
1951 
1952 	for (i = 0; i < hw_lut_size; i++) {
1953 		u32 val = intel_de_read(dev_priv, PREC_PAL_DATA(pipe));
1954 
1955 		ilk_lut_10_pack(&lut[i], val);
1956 	}
1957 
1958 	intel_de_write(dev_priv, PREC_PAL_INDEX(pipe), 0);
1959 
1960 	return blob;
1961 }
1962 
1963 static void glk_read_luts(struct intel_crtc_state *crtc_state)
1964 {
1965 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1966 
1967 	if (!crtc_state->gamma_enable)
1968 		return;
1969 
1970 	if (crtc_state->gamma_mode == GAMMA_MODE_MODE_8BIT)
1971 		crtc_state->hw.gamma_lut = ilk_read_lut_8(crtc);
1972 	else
1973 		crtc_state->hw.gamma_lut = glk_read_lut_10(crtc, PAL_PREC_INDEX_VALUE(0));
1974 }
1975 
1976 static struct drm_property_blob *
1977 icl_read_lut_multi_segment(struct intel_crtc *crtc)
1978 {
1979 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1980 	int i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
1981 	enum pipe pipe = crtc->pipe;
1982 	struct drm_property_blob *blob;
1983 	struct drm_color_lut *lut;
1984 
1985 	blob = drm_property_create_blob(&dev_priv->drm,
1986 					sizeof(struct drm_color_lut) * lut_size,
1987 					NULL);
1988 	if (IS_ERR(blob))
1989 		return NULL;
1990 
1991 	lut = blob->data;
1992 
1993 	intel_de_write(dev_priv, PREC_PAL_MULTI_SEG_INDEX(pipe),
1994 		       PAL_PREC_AUTO_INCREMENT);
1995 
1996 	for (i = 0; i < 9; i++) {
1997 		u32 ldw = intel_de_read(dev_priv, PREC_PAL_MULTI_SEG_DATA(pipe));
1998 		u32 udw = intel_de_read(dev_priv, PREC_PAL_MULTI_SEG_DATA(pipe));
1999 
2000 		icl_lut_multi_seg_pack(&lut[i], ldw, udw);
2001 	}
2002 
2003 	intel_de_write(dev_priv, PREC_PAL_MULTI_SEG_INDEX(pipe), 0);
2004 
2005 	/*
2006 	 * FIXME readouts from PAL_PREC_DATA register aren't giving
2007 	 * correct values in the case of fine and coarse segments.
2008 	 * Restricting readouts only for super fine segment as of now.
2009 	 */
2010 
2011 	return blob;
2012 }
2013 
2014 static void icl_read_luts(struct intel_crtc_state *crtc_state)
2015 {
2016 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2017 
2018 	if ((crtc_state->gamma_mode & POST_CSC_GAMMA_ENABLE) == 0)
2019 		return;
2020 
2021 	switch (crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) {
2022 	case GAMMA_MODE_MODE_8BIT:
2023 		crtc_state->hw.gamma_lut = ilk_read_lut_8(crtc);
2024 		break;
2025 	case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED:
2026 		crtc_state->hw.gamma_lut = icl_read_lut_multi_segment(crtc);
2027 		break;
2028 	default:
2029 		crtc_state->hw.gamma_lut = glk_read_lut_10(crtc, PAL_PREC_INDEX_VALUE(0));
2030 	}
2031 }
2032 
2033 void intel_color_init(struct intel_crtc *crtc)
2034 {
2035 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2036 	bool has_ctm = INTEL_INFO(dev_priv)->color.degamma_lut_size != 0;
2037 
2038 	drm_mode_crtc_set_gamma_size(&crtc->base, 256);
2039 
2040 	if (HAS_GMCH(dev_priv)) {
2041 		if (IS_CHERRYVIEW(dev_priv)) {
2042 			dev_priv->display.color_check = chv_color_check;
2043 			dev_priv->display.color_commit = i9xx_color_commit;
2044 			dev_priv->display.load_luts = chv_load_luts;
2045 			dev_priv->display.read_luts = chv_read_luts;
2046 		} else if (INTEL_GEN(dev_priv) >= 4) {
2047 			dev_priv->display.color_check = i9xx_color_check;
2048 			dev_priv->display.color_commit = i9xx_color_commit;
2049 			dev_priv->display.load_luts = i965_load_luts;
2050 			dev_priv->display.read_luts = i965_read_luts;
2051 		} else {
2052 			dev_priv->display.color_check = i9xx_color_check;
2053 			dev_priv->display.color_commit = i9xx_color_commit;
2054 			dev_priv->display.load_luts = i9xx_load_luts;
2055 			dev_priv->display.read_luts = i9xx_read_luts;
2056 		}
2057 	} else {
2058 		if (INTEL_GEN(dev_priv) >= 11)
2059 			dev_priv->display.color_check = icl_color_check;
2060 		else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
2061 			dev_priv->display.color_check = glk_color_check;
2062 		else if (INTEL_GEN(dev_priv) >= 7)
2063 			dev_priv->display.color_check = ivb_color_check;
2064 		else
2065 			dev_priv->display.color_check = ilk_color_check;
2066 
2067 		if (INTEL_GEN(dev_priv) >= 9)
2068 			dev_priv->display.color_commit = skl_color_commit;
2069 		else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
2070 			dev_priv->display.color_commit = hsw_color_commit;
2071 		else
2072 			dev_priv->display.color_commit = ilk_color_commit;
2073 
2074 		if (INTEL_GEN(dev_priv) >= 11) {
2075 			dev_priv->display.load_luts = icl_load_luts;
2076 			dev_priv->display.read_luts = icl_read_luts;
2077 		} else if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv)) {
2078 			dev_priv->display.load_luts = glk_load_luts;
2079 			dev_priv->display.read_luts = glk_read_luts;
2080 		} else if (INTEL_GEN(dev_priv) >= 8) {
2081 			dev_priv->display.load_luts = bdw_load_luts;
2082 		} else if (INTEL_GEN(dev_priv) >= 7) {
2083 			dev_priv->display.load_luts = ivb_load_luts;
2084 		} else {
2085 			dev_priv->display.load_luts = ilk_load_luts;
2086 			dev_priv->display.read_luts = ilk_read_luts;
2087 		}
2088 	}
2089 
2090 	drm_crtc_enable_color_mgmt(&crtc->base,
2091 				   INTEL_INFO(dev_priv)->color.degamma_lut_size,
2092 				   has_ctm,
2093 				   INTEL_INFO(dev_priv)->color.gamma_lut_size);
2094 }
2095